content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
import socket import struct def int2ip(addr: int) -> str: """convert an IP int to a string """ return socket.inet_ntoa(struct.pack("!I", addr))
57de2a840a1f1b25ce9de835d29aa88f9955f8ed
26,167
def phase_LogLinear(phase, slope=0.04): """A logLinear phase function, roughly appropriate for cometary nuclei. An H-G phase function is likely a better approximation. Parameters ---------- phase : float or array Phase angle (degrees) slope : float, optional The slope for the phase function. Default 0.04. Returns ------- phi : float or array Phase function evaluated at phase """ return 10**(-0.4 * slope * phase)
1c5cdbf4a41387244d38a0fde368af3ecf224f52
26,169
def _is_section(tag): """Check if `tag` is a sphinx section (linkeable header).""" return ( tag.tag == 'div' and 'section' in tag.attributes.get('class', []) )
8605d8d95e9344c80e91dd1735bec79072507f7b
26,172
def event_asn_org(event): """Get asn org from event.""" asn_org = event.get("details", {}).get("asn_org") if not asn_org: return "UNKOWN" return asn_org
61ad3a5ee61a9ce0a088724c199fe0c432ec900b
26,174
import platform def is_windows() -> bool: """is the script runnning on a windows system?""" return platform.system() == 'Windows'
a8469c16b4942ec07b8e5c6072327d7eac66ed79
26,175
from typing import Callable def exp_decay_with_warmup(warmup: int, gamma: float, min_val: float = 1e-8) -> Callable: """Returns exponential decay with warmup function. The function increases linearly from ``min_val`` to 1.0 until ``step`` is equal to warmup. For a ``step`` larger than ``warmup``, the function decays with a given ``gamma`` (last_val * gamma). Parameters ---------- warmup The number of steps until which the function increases linearly. gamma The parameter of decay in (0, 1). Large numbers for slow decay. min_val The minimum lr factor that is used for the 0-th step, a small number > 0. Returns ---------- A function taking the current step as single argument. """ def f(x): return min_val + x * (1.0 - min_val) / warmup if x < warmup else gamma ** (x - warmup) return f
b26488aab2844521c4fdc9377bb6c90454531984
26,176
def name_matches(name,pattern): """Simple wildcard matching of project and sample names Matching options are: - exact match of a single name e.g. pattern 'PJB' matches 'PJB' - match start of a name using trailing '*' e.g. pattern 'PJ*' matches 'PJB','PJBriggs' etc - match using multiple patterns by separating with comma e.g. pattern 'PJB,IJD' matches 'PJB' or 'IJD'. Subpatterns can include trailing '*' character to match more names. Arguments name: text to match against pattern pattern: simple 'glob'-like pattern to match against Returns True if name matches pattern; False otherwise. """ for subpattern in pattern.split(','): if not subpattern.endswith('*'): # Exact match required if name == subpattern: return True else: if name.startswith(subpattern.rstrip('*')): return True else: return False
eb8ceead45cc0766af0aec92ca02b37f387c3311
26,177
def path_in_cc(path, cc): """Determines whether all vertices of a given path belong to a given connected component. :param path: :param cc: list of vertices representing a connected component in a graph :return: True if the path vertices are found in the connected component, False otherwise """ for node in path: if node not in cc: return False return True
9d549234f2a1294380a3e416fea93cdf7944d8b2
26,181
import urllib.request import urllib.parse import re def search(query , results:int=10) -> list: """ Search: - Will search `youtube.com` and fetch the number of requested results (default is `10`) If the number of results are not sufficient then it will return as much as it can find ie: if the number of results are `6` but you requested `10` then; it will return `as many results as possible` or `6` in our case. Note: - - The results is a `list` of (video) links """ tmp = list() format_of_link = r"watch\?v=(\S{11})" raw_query = query print() query = urllib.parse.quote(raw_query) html = urllib.request.urlopen(f"https://www.youtube.com/results?search_query={query}") videos = re.findall(format_of_link , html.read().decode()) for video in videos: tmp.append(f'https://www.youtube.com/watch?v={video}') while True: try: return tmp[:results] break except IndexError: results -= 1 continue
8350e9b0fb4b545a5e51df256cb6cd95a8cd355c
26,186
def find_point(coords, point_list): """ Coordinates represent either the source or destination [x,y] coordinates of a line. Given a list of unique points, map one to the given coordinates. """ for p in point_list: if p["coordinates"] == coords: return p["idx"] print("Couldn't find the point -- {}!\n".format(str(point_list)))
2d6cb286b630dc49e86532111bba7d0a00f385cc
26,187
def twolens_efl(efl1, efl2, separation): """Use thick lens equations to compute the focal length for two elements separated by some distance. Parameters ---------- efl1 : `float` EFL of the first lens efl2 : `float` EFL of the second lens separation : `float` separation of the two lenses Returns ------- `float` focal length of the two lens system """ phi1, phi2, t = 1 / efl1, 1 / efl2, separation phi_tot = phi1 + phi2 - t * phi1 * phi2 return 1 / phi_tot
dfcaff2e30f2b6249ec5dc9ec1a4c443fdccd2f5
26,191
def read_xyz_charge_mult(file): """ Reads charge and multiplicity from XYZ files. These parameters should be defined in the title lines as charge=X and mult=Y (i.e. FILENAME charge=1 mult=1 Eopt -129384.564) """ charge_xyz,mult_xyz = None,None # read charge and mult from xyz files with open(file, "r") as F: lines = F.readlines() for line in lines: for keyword in line.strip().split(): if keyword.lower().find('charge') > -1: charge_xyz = int(keyword.split('=')[1]) elif keyword.lower().find('mult') > -1: mult_xyz = int(keyword.split('=')[1]) elif charge_xyz is not None and mult_xyz is not None: break if charge_xyz is None: charge_xyz = 0 if mult_xyz is None: mult_xyz = 1 return charge_xyz,mult_xyz
9048ff64f5385206ccb8d926776ed5d1ff1c4dc6
26,195
import base64 def convert_image_file_to_b64_string(filename): """Convert a image file to the corresponding b64_string This function will all the b64encode function from the base64 module and convert the specified image file to b64_string for saving in data bse and transmission. The image file could be either JPEG file or PNG file. Args: filename (str): The name (path) of image you want to process Returns: str : The b64_string that was generated """ with open(filename, "rb") as image_file: b64_bytes = base64.b64encode(image_file.read()) b64_string = str(b64_bytes, encoding="utf-8") return b64_string
3036abf52a38ea7ef3534de4929334a221176fe8
26,196
import uuid def validate_uuid_string(uuid_obj, uuid_version=4): """ Checks whether the provided string is a valid UUID string :param uuid_obj: A string or stringable object containing the UUID :param uuid_version: The UUID version to be used """ uuid_string = str(uuid_obj).lower() try: uuid.UUID(uuid_string, version=uuid_version) except ValueError: # If it's a value error, then the string # is not a valid hex code for a UUID. return False return True
c83ca62527e05473973d034e03c3eb3b4abec3ad
26,197
def arrangeByType(service_list, preferred_types): """Rearrange service_list in a new list so services are ordered by types listed in preferred_types. Return the new list.""" def bestMatchingService(service): """Return the index of the first matching type, or something higher if no type matches. This provides an ordering in which service elements that contain a type that comes earlier in the preferred types list come before service elements that come later. If a service element has more than one type, the most preferred one wins. """ for i, t in enumerate(preferred_types): if preferred_types[i] in service.type_uris: return i return len(preferred_types) # Build a list with the service elements in tuples whose # comparison will prefer the one with the best matching service prio_services = sorted((bestMatchingService(s), orig_index, s) for (orig_index, s) in enumerate(service_list)) # Now that the services are sorted by priority, remove the sort # keys from the list. for i in range(len(prio_services)): prio_services[i] = prio_services[i][2] return prio_services
b65999d4fbaa4e6839482c018b1233bbeb301bf1
26,199
def read_byte(bus, i2caddr, adr): """ Read a single byte from the bus """ return bus.read_byte_data(i2caddr, adr)
2205d26977a92fb6cf6db6226cbf748addb71f5f
26,201
def represents_int(s): """Returns boolean value if parameter can be cast to int""" try: int(s) return True except ValueError: return False
356ddc018e5d605e4219cb6356aa8c11437d275b
26,204
def _store_dir_and_cache(tmpdir_factory): """Returns the directory where to build the mock database and where to cache it. """ store = tmpdir_factory.mktemp('mock_store') cache = tmpdir_factory.mktemp('mock_store_cache') return store, cache
01ef0527e63cb62003c6f0ccb0e63c629c2f1e42
26,205
def resize_keypoint(keypoint, in_size, out_size): """Change values of keypoint according to paramters for resizing an image. Args: keypoint (~numpy.ndarray): Keypoints in the image. The shape of this array is :math:`(K, 2)`. :math:`K` is the number of keypoint in the image. The last dimension is composed of :math:`y` and :math:`x` coordinates of the keypoints. in_size (tuple): A tuple of length 2. The height and the width of the image before resized. out_size (tuple): A tuple of length 2. The height and the width of the image after resized. Returns: ~numpy.ndarray: Keypoint rescaled according to the given image shapes. """ keypoint = keypoint.copy() y_scale = float(out_size[0]) / in_size[0] x_scale = float(out_size[1]) / in_size[1] keypoint[:, 0] = y_scale * keypoint[:, 0] keypoint[:, 1] = x_scale * keypoint[:, 1] return keypoint
b299a1e2e0031e6ae9111d2261dd98b9d6ce0660
26,209
def to_bytes(value): """ returns 8-byte big-endian byte order of provided value """ return value.to_bytes(8, byteorder='big', signed=False)
d32fb88c24274d3bdf3fbd8b8c5917e4a0f3bcca
26,211
def abs_fold_change(row, fold_change_column): """Add absolute fold change value for two group comparison. # Arguments: row: certain row of peak table (pandas dataframe). fold_change_column: column name in the peak table of the fold change value. # Returns: absolute fold change value. """ return abs(row[fold_change_column])
1189b7411af6c37bede3c601d9325f7a10efa528
26,213
def without_fixed_prefix(form, prefix_length): """ Return a new form with ``prefix_length`` chars removed from left """ word, tag, normal_form, score, methods_stack = form return (word[prefix_length:], tag, normal_form[prefix_length:], score, methods_stack)
b34736da1ce95daeac09a865b6750aea24b52dcd
26,214
def convert_dms_to_dd(dms): """ Convert values expressed in DMS (decimals, minutes, seconds) to decimal degrees. Parameters ---------- dms: string DMS value without special symbols as well as hemisphere location Returns ------- dd: float Decimal degree value """ # Split DMS into different components dms_split = dms.split(' ') degrees = int(dms_split[0]) minutes = int(dms_split[1]) seconds = int(dms_split[2]) hemisphere = dms_split[3] # Calculate decimal degree value using the DMS dd = degrees + minutes/60 + seconds/3600 # Calculate the sign of the decimal degree value based on the hemisphere if hemisphere == 'N' or hemisphere == 'E': dd = abs(dd) if hemisphere == 'S' or hemisphere == 'W': dd = -abs(dd) return dd
4cc84d572ec445ac2ae586f3151edd10f2d3d611
26,215
def process_small_clause(graph, cycle, cut=True): """ Match a cycle if there is a small clause relationship: verb with outgoing edge ARG3/H to a preposition node, the preposition node has an outgoing edge ARG1/NEQ, and 1) an outgoing edge ARG2/NEQ, or 2) an outgoing edge ARG2/EQ to a noun; ARG2/NEQ or ARG2/EQ edge is removed if cut is set to True. :param graph: DmrsGraph object :param cycle: Set of Node objects in the cycle :param cut: If True and cycle is matched, the cycle is broken by removing a target edge :return: True if cycle is matched, otherwise False """ verb_nodes = [node for node in cycle if node.pos == 'v'] if len(verb_nodes) == 0: return False for verb_node in verb_nodes: outgoing_edges = [edge for edge in graph.get_outgoing_node_edges(verb_node) if edge.to_node in cycle] outgoing_labels = dict((edge.label, edge.to_node) for edge in outgoing_edges) if 'ARG3_H' not in outgoing_labels: continue prep_node = outgoing_labels['ARG3_H'] if prep_node.pos != 'p': continue prep_outgoing_labels = [edge.label for edge in graph.get_outgoing_node_edges(prep_node) if edge.to_node in cycle] if 'ARG1_NEQ' not in prep_outgoing_labels: continue if 'ARG2_NEQ' in outgoing_labels: if cut: arg2_neq_edge = [edge for edge in outgoing_edges if edge.label == 'ARG2_NEQ'][0] graph.edges.remove(arg2_neq_edge) return True if 'ARG2_EQ' in outgoing_labels and outgoing_labels['ARG2_EQ'].pos == 'n': if cut: arg2_eq_edge = [edge for edge in outgoing_edges if edge.label == 'ARG2_EQ'][0] graph.edges.remove(arg2_eq_edge) return True return False
4cc714838efc47b2de8c35821763249286039299
26,216
def localhost_url(url, local_hostname): """Return a version of the url optimized for local development. If the url includes the string `localhost`, it will be replaced by the `local_hostname`. Parameters ---------- url : str The url to check Returns ------- str : The url, possibly converted to use a different local hostname """ return url.replace('localhost', local_hostname)
dc2cba2acc89fe4ad7da30da9e6a3a1c16465731
26,217
def weighted_average(cols): """Given tuples of (weight, value), return weighted average. >>> weighted_average(((100, 1), (200, 2), (100, 5))) 2.5 """ return sum(w * v for (w, v) in cols) / sum(w for (w, v) in cols)
ef1607dc4e12fc23558dbd642e8fcc6e1692e31f
26,224
import json def get_best_hyperparams(hyperparams_dict, fit_params_dict, best, file_name=None): """ Helper function to extract the numerical values of best hyperparameters from hyperopt into a more easily usable format. :param hyperparams_dict: Dictionary of hyperparameter values :param fit_params_dict: Dictionary of fit parameter values :param best: The best hyperparameters as returned by hyperopt :param file_name: Directory plus name of the file you want to save the best parameters to. File name must end in .json as this is the expected output format :return: Parameter dictionary. Contains both model hyperparameters and epochs parameter for model fit. """ # Extract hyperparameters for the model best_params = {} for key, val in best.items(): if key in hyperparams_dict: input_ = hyperparams_dict[key] if input_[0] == 'choice': best_params[key] = input_[1][val] else: best_params[key] = val # The only other parameter I need to get out is the number of epochs to train for. # I'll put it all into the best_params dictionary, but I'll need to pop it out before defining the model best_params['num_epochs'] = fit_params_dict['num_epochs'][1][best['num_epochs']] if file_name is not None: json_out =json.dumps(best_params) f = open(file_name, "w") f.write(json_out) f.close() return best_params
1bac0d463ba5cf5a69912673d1235794d9a448ff
26,226
def get(x, key, default=None): """ Get the value associated with the provided key from a `dict`-like object :param x: dictlike Any object with `__contains__()` or `__iter__()` and `__getitem__()` methods which accept `key` :param key: The key to extract from the provided `dict`-like object` :param default: A default value to return if the provided key is not present :return: Either the value associated with the key or the default if the key is missing. If he object does not implement the required methods an error will be thrown. """ return x[key] if key in x else default
7e54520fe5a0ec8e56bfa0e55fbca6060282b838
26,230
def calc_csr(sigma_veff, sigma_v, pga, rd, gwl, depth): """ Cyclic stress ratio from CPT, Eq 2.2, """ return 0.65 * (sigma_v / sigma_veff) * rd * pga
becedff4526031f5047e68a0a2d51476bf56ca9b
26,232
def gen_dots(val): """Generate dots from real data val = dict (x:y) return ox, oy lists """ oy = [] ox = [] for x in sorted(val.keys()): ox.append(int(x[:-1])) if val[x][0] != 0: oy.append(1.0/val[x][0]) else: oy.append(0) return ox, oy
cbd38754f696cd39b21fea1ae307f62819f4f7ee
26,240
def bgr2rgb(img): """Converts an RGB image to BGR and vice versa """ return img[..., ::-1]
ece41c92d036ccf28b27d18019f0e0fc1b6d315b
26,243
def find_min(nums): """ Find minimum element in rotated sorted array :param nums: given array :type nums: list[int] :return: minimum element :rtype: int """ left, right = 0, len(nums) - 1 while left + 1 < right: mid = (left + right) // 2 if nums[mid] < nums[right]: right = mid elif nums[mid] > nums[right]: left = mid else: # we cannot determine which side is sorted subarray # when nums[left] == nums[mid] # so just move right pointer step backward right -= 1 if nums[left] < nums[right]: return nums[left] else: return nums[right]
7b5c48e599e74c396617b3981d7b2e83061da05c
26,249
def parse_processing_parents(processings, parent_keys): """Return a dictionary relating each processing identifier to its parent. Parameters ---------- processings : dict A dictionary of processing data, whose keys are processing identifiers and values are dictionaries containing corresponding processing data. This sort of dictionary is generated by reading the JSON file containing processing/artifact metadata derived from the processing network/tree on Qiita. parent_keys : ordered iterable of str An ordered collection of strings that are keys that will be sequentially used to find parent processing identifiers in the processing data of the `processings` argument. Returns ------- dict Dictionary whose keys are processing identifiers and values are the identifiers of a parent processing. """ processing_parents = {} for proc_id, proc_data in processings.items(): for key in parent_keys: try: parent_id = proc_data[key] except KeyError: # Processings can also have no parents, in which case the for # loop will simply exhaust all keys. pass else: processing_parents[proc_id] = parent_id break return processing_parents
7a7940371648f7236ba73c519cebe8610c0a7b8e
26,250
def chunk_string(string, length): """ Split a string into chunks of [length] characters, for easy human readability. Source: https://stackoverflow.com/a/18854817 """ return (string[0 + i:length + i] for i in range(0, len(string), length))
48d3c406ae9577cf3eb72c44398290eaca40821e
26,252
import math def depth(n): """Tree depth (distance from root), used to calculate node spacing.""" return int(math.log(n + 1, 2))
80f49914786f2ba322d7a9321cc75ee4fdb1f01a
26,255
from typing import Iterable from typing import Callable from typing import Generator def argmap(functions: Iterable[Callable], args: Iterable) -> Generator: """Maps the same argument(s) to multiple functions. >>> inc = lambda x:x+1 >>> dec = lambda x:x-1 >>> list(argmap([inc, dec],[1])) [2,0] you can even map multiple arguments >>> add = lambda a,b: a+b >>> sub = lambda a,b: a-b >>> list(argmap([add, sub], [2, 1])) # two arguments [3, 1] Added in version: 0.1.0 """ return (f(*args) for f in functions)
56b5d28ecd6daeef8e78df0c8e774ee4aedafe09
26,260
def dot_t(inputa,inputb): """Dot product for four vectors""" return inputa[:,0]*inputb[:,0] - inputa[:,1]*inputb[:,1] - inputa[:,2]*inputb[:,2] - inputa[:,3]*inputb[:,3]
5983a3da541d2884832154dac4a8fb11a583fa3e
26,262
def SummarizeWindow(states): """Collapse the set or list of values in a particular temporal activity window into a single summary. Valid values are ambiguous, inactive, activation, inhibition. """ # Verify that all states are recognized validStates = set(["ambiguous", "inactive", "activation", "inhibition"]) for state in states: if state not in validStates: raise RuntimeError("Invalid temporal activity state: %s" % state) # If any are ambiguous, the entire window is ambiguous if "ambiguous" in states: return "ambiguous" # If all are activation or inhibition, return that state if all([s == "activation" for s in states]): return "activation" if all([s == "inhibition" for s in states]): return "inhibition" # A combination of activation and inhibition is ambiguous, regardless # of whether there is also inactive if "activation" in states and "inhibition" in states: return "ambiguous" # If all inactive, return inactive if all([s == "inactive" for s in states]): return "inactive" # Otherwise the states are a mix of inactive and activation or inhibition # so activation/inhibition dominates if "activation" in states: return "activation" if "inhibition" in states: return "inhibition" raise RuntimeError("Invalid case reached")
3d9ff71beddd0f38f0d5a98a4ab0a4e2aac047aa
26,265
def uniq(seq): """Return unique elements in the input collection, preserving the order. :param seq: sequence to filter :return: sequence with duplicate items removed """ seen = set() return [x for x in seq if not (x in seen or seen.add(x))]
2180b6aac4760d31503a9d4c7f2b3cf528d2a4f2
26,267
def set_verbosity(level=1): """Set logging verbosity level, 0 is lowest.""" global verbosity verbosity = level return verbosity
4588991bbfb9f52041e46fb0c302ded7f1a83667
26,273
def get_connection_config(configuration, connection): """ Extracts information for a specified connection from configuration. Parameters: configuration (dict): Configuration dictionary containing a 'connections' key connection (string): Name of a connection to extract configuration for Returns: dict: Configuration associated with the specified connection """ if not connection in configuration['connections']: raise RuntimeError('connection "%s" not found in config.connections' % connection) return configuration['connections'][connection]
772ffdcdea363d9adf5493fff01a060835471753
26,275
def subset_1d(da, dim, domain): """Subsets data along a single dimension. Parameters ---------- da : xarray.DataArray Data to subset. dim : str Name of dimension to subset along. domain : bcdp.Domain 1D Domain object with .min and .max accessors. Returns ------- xarray.DataArray Subsetted data. """ coord = da[dim] dmin, dmax = domain.min, domain.max if dim == 'time': coord = coord.astype(str) dmin, dmax = str(dmin), str(dmax) selection = (coord >= dmin) & (coord <= dmax) return da.isel(**{dim: selection})
29e13c4262f0f693c2d0ca16d4a2e235b37e400b
26,276
import random def data_p4(local_jobs_list, local_data_no): """ This function will generate data for p4 :param local_jobs_list: list of all the job titles :param local_data_no: total number of data entries in the dict :return: a dataset in dictionary format """ # create an empty dict to begin with local_data_dict = {} # generate a data_no of entries in the dict for i in range(local_data_no): local_person_id = random.randint(10000, 99999) local_job = random.choice(local_jobs_list) local_age = random.randint(0, 120) local_area = random.choice([True, False]) # add the generated data to a list local_data_dict[local_person_id] = [local_job, local_age, local_area] return local_data_dict
3d93719346620bf5429a6b2f4d5d215c90bf2ca5
26,285
def pyeapi_result(output): """Return the 'result' value from the pyeapi output.""" return output[0]['result']
d4af079c3776ec7bfb6fcdcfd396836b2edc58fb
26,288
import itertools def generate_jobs(entry): """ Generate a list of job configurations by varying the parameters in the given entry. In practice, computes the cartesian product of all the lists at the toplevel of the input dictionary, and generates one job for each resulting instance. Args: entry (dict): Input job configurations Returns: list: List of jobs with list parameters replaced by actual values """ keys = [k for k, v in entry.items() if isinstance(v, list)] all_vals = itertools.product( *[v for __, v in entry.items() if isinstance(v, list)]) all_jobs = [] for vals in all_vals: job = entry.copy() for k, v in zip(keys, vals): job[k] = v all_jobs.append(job) return all_jobs
ee376c0a2e3817784b8aac20ffa0b1144138e852
26,293
import torch import warnings def safe_cholesky(covariance_matrix, jitter=1e-6): """Perform a safe cholesky decomposition of the covariance matrix. If cholesky decomposition raises Runtime error, it adds jitter to the covariance matrix. Parameters ---------- covariance_matrix: torch.Tensor. Tensor with dimensions batch x dim x dim. jitter: float, optional. Jitter to add to the covariance matrix. """ try: return torch.cholesky(covariance_matrix) except RuntimeError: dim = covariance_matrix.shape[-1] if jitter > 1: # When jitter is too big, then there is some numerical issue and this avoids # stack overflow. warnings.warn("Jitter too big. Maybe some numerical issue somewhere.") return torch.eye(dim) return safe_cholesky( covariance_matrix + jitter * torch.eye(dim), jitter=10 * jitter )
94c91a1b34908e7e7b62be89e6ea0a3bc7432bac
26,295
import re def recognize_delivery_service(tracking_code: str): """Infer the parcel carrier for a tracking code. Can be used as a quick validation.""" service = None # Strip whitespace tracking_code = re.sub(r"\s+", "", tracking_code) usps_pattern = [ "^(94|93|92|94|95)[0-9]{20}$", "^(94|93|92|94|95)[0-9]{22}$", "^(70|14|23|03)[0-9]{14}$", "^(M0|82)[0-9]{8}$", "^([A-Z]{2})[0-9]{9}([A-Z]{2})$", ] ups_pattern = [ "^(1Z)[0-9A-Z]{16}$", "^(T)+[0-9A-Z]{10}$", "^[0-9]{9}$", "^[0-9]{26}$", ] fedex_pattern = ["^[0-9]{20}$", "^[0-9]{15}$", "^[0-9]{12}$", "^[0-9]{22}$"] usps = "(" + ")|(".join(usps_pattern) + ")" fedex = "(" + ")|(".join(fedex_pattern) + ")" ups = "(" + ")|(".join(ups_pattern) + ")" if re.match(usps, tracking_code) != None: service = "USPS" elif re.match(ups, tracking_code) != None: service = "UPS" elif re.match(fedex, tracking_code) != None: service = "FedEx" else: raise ValueError("Unable to determine service for %s", tracking_code) return service
ff30a95a0f0bdbcaec25a8f8b6db1ac6346800ca
26,297
import re def replace_urls(string_input: str, replace_by: str = "URL"): """ Replace url's in a string by replace_by :param string_input: string input :param replace_by: string, what we want to replace the url with :return: string, with urls replaced by replaced_by """ return re.sub(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\), ]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', replace_by, string_input)
56e66ef06580e608dc09c2ba690179d820819c9a
26,298
def target_title(target): """The title of a Target instance in text representations""" return 'Target #%d @ %fs' % (target.targetNumber, target.frameGrabTime)
a755aeb428c94ce6b79ac066877be1130112cba5
26,301
from datetime import datetime def parse_session(line): """Parse H4 line into session.""" if not line.startswith("H4"): raise ValueError("Not H4 line for session parser!") return { "data" : None, "start" : datetime( year = int(line[6:10]), month = int(line[11:13]), day = int(line[14:16]), hour = int(line[17:19]), minute = int(line[20:22]), second = int(line[23:25]) ), "end" : datetime( year = int(line[26:30]), month = int(line[31:33]), day = int(line[34:36]), hour = int(line[37:39]), minute = int(line[40:42]), second = int(line[43:45]) ), "troposphere_corrected" : int(line[49]), "CoM_corrected" : int(line[51]), "receive_amplitude_corrected" : int(line[53]), "station_delay_corrected" : int(line[55]), "spacecraft_delay_corrected" : int(line[57]), "range_type" : int(line[59]), "data_quality" : int(line[61]) }
3fa735495b296e5e3b6c5e4b60f23a48dfceada6
26,303
def add_storage_mappings_arguments_to_parser(parser): """ Given an `argparse.ArgumentParser` instance, add the arguments required for the 'storage_mappings' field for both Migrations and Replicas: * '--default-storage-backend' will be under 'default_storage_backend' * '--disk-storage-mapping's will be under 'disk_storage_mappings' * '--storage-backend-mapping's will be under 'storage_backend_mappings' """ parser.add_argument( "--default-storage-backend", dest='default_storage_backend', help="Name of a storage backend on the destination platform to " "default to using.") # NOTE: arparse will just call whatever 'type=' was supplied on a value # so we can pass in a single-arg function to have it modify the value: def _split_disk_arg(arg): disk_id, dest = arg.split('=') return { "disk_id": disk_id.strip('\'"'), "destination": dest.strip('\'"')} parser.add_argument( "--disk-storage-mapping", action='append', type=_split_disk_arg, dest='disk_storage_mappings', help="Mappings between IDs of the source VM's disks and the names of " "storage backends on the destination platform as seen by running " "`coriolis endpoint storage list $DEST_ENDPOINT_ID`. " "Values should be fomatted with '=' (ex: \"id#1=lvm)\"." "Can be specified multiple times for multiple disks.") def _split_backend_arg(arg): src, dest = arg.split('=') return { "source": src.strip('\'"'), "destination": dest.strip('\'"')} parser.add_argument( "--storage-backend-mapping", action='append', type=_split_backend_arg, dest='storage_backend_mappings', help="Mappings between names of source and destination storage " "backends as seen by running `coriolis endpoint storage " "list $DEST_ENDPOINT_ID`. Values should be fomatted with '=' " "(ex: \"id#1=lvm)\". Can be specified multiple times for " "multiple backends.")
c79cdd273b561e6605bc7322092f289251816d76
26,304
def remove_outliers(df): """ For INS and OUTS, remove implausibly values :param df: dataframe :return: dataframe """ df = df[df['INS'] < 200000] df = df[df['INS'] >= 0] df = df[df['OUTS'] < 200000] df = df[df['OUTS'] >= 0] return df
c9f0002992b971dc31839e9803049a4db5b1702e
26,307
def construct_path(vertex, reverse_paths): """Returns the shortest path to a vertex using the reverse_path mapping.""" path = [] while vertex is not None: path.append(vertex) vertex = reverse_paths[vertex] return list(reversed(path))
9ed1aa226a2055c16c22743f7930c4981f2ac16c
26,308
def _learning_rate_schedule(global_step_value, max_iters, initial_lr): """Calculates learning_rate with linear decay. Args: global_step_value: int, global step. max_iters: int, maximum iterations. initial_lr: float, initial learning rate. Returns: lr: float, learning rate. """ lr = initial_lr * (1.0 - global_step_value / max_iters) return lr
c0adcf9d64d83e9917b278fe7b49dd152cff9a47
26,310
def read_pid(pid_file): """ Read PID from given PID file. :param str pidfile: Name of the PID file to read from. :return: PID from given PID file. :rtype: int """ with open(pid_file, 'r') as pidfd: return int(pidfd.readline().strip())
61df745a73483bd9a9dd16b722ca53d559f07539
26,312
def bytechr(i): """Return bytestring of one character with ordinal i; 0 <= i < 256.""" if not 0 <= i < 256: if not isinstance(i, int): raise TypeError('an integer is required') else: raise ValueError('bytechr() arg not in range(256)') return chr(i).encode('latin1')
0949f417ec521edb4e3edef103e099ef43057869
26,313
def macro(name): """Replaces :func:`~flask_admin.model.template.macro`, adding support for using macros imported from another file. For example: .. code:: html+jinja {# templates/admin/column_formatters.html #} {% macro email(model, column) %} {% set address = model[column] %} <a href="mailto:{{ address }}">{{ address }}</a> {% endmacro %} .. code:: python class FooAdmin(ModelAdmin): column_formatters = { 'col_name': macro('column_formatters.email') } Also required for this to work, is to add the following to the top of your master admin template: .. code:: html+jinja {# templates/admin/master.html #} {% import 'admin/column_formatters.html' as column_formatters with context %} """ def wrapper(view, context, model, column): # skipcq: PYL-W0613 (unused arg) if '.' in name: macro_import_name, macro_name = name.split('.') m = getattr(context.get(macro_import_name), macro_name, None) else: m = context.resolve(name) if not m: return m return m(model=model, column=column) return wrapper
622aec9bd44e5cdb412e4fd92b07fdf4f2cb8aa7
26,314
from typing import Tuple def _get_level_percentiles(level: float) -> Tuple[float, float]: """Convert a credibility level to percentiles. Similar to the highest-density region of a symmetric, unimodal distribution (e.g. Gaussian distribution). For example, an credibility level of `95` will be converted to `(2.5, 97.5)`. Parameters ---------- level: The credibility level used to calculate the percentiles. For example, `[95]` for a 95% credibility interval. These levels are split symmetrically, e.g. `95` corresponds to plotting values between the 2.5% and 97.5% percentiles, and are equivalent to highest-density regions for a normal distribution. For skewed distributions, asymmetric percentiles may be preferable, but are not yet implemented. Returns ------- The percentiles, with the lower percentile first. """ lower_percentile = (100 - level) / 2 return lower_percentile, 100 - lower_percentile
7b7ff713e4b5c95c6e38c5807ee3706bcb01bc0f
26,315
def hysteresis(im, weak, strong=255): """Transforms weak pixel into strong ones if at least 1 pixel around the one being processed is a strong one Parameters ---------- im input image weak weak pixel that has intensity value that is not enough to be considered strong ones, but not non-relevant strong pixel with very high intensity Returns ------- im output result image """ row, col = im.shape for i in range(1, row-1): for j in range(1, col-1): if (im[i,j] == weak): if ((im[i+1, j-1] == strong) or (im[i+1, j] == strong) or (im[i+1, j+1] == strong) or (im[i, j-1] == strong) or (im[i, j+1] == strong) or (im[i-1, j-1] == strong) or (im[i-1, j] == strong) or (im[i-1, j+1] == strong)): im[i, j] = strong else: im[i, j] = 0 return im
4fe1f6c7728f69cef393432a6298744e5a4c383d
26,316
def print_tree(ifaces): """ Prints the tree for the given ifaces. """ return " ".join(i.get_tree() for i in ifaces)
27d117b3454420580a836a6419300b918b08b135
26,317
import importlib import warnings def import_or_raise(library, error_msg=None, warning=False): """Attempts to import the requested library by name. If the import fails, raises an ImportError or warning. Args: library (str): The name of the library. error_msg (str): Rrror message to return if the import fails. warning (bool): If True, import_or_raise gives a warning instead of ImportError. Defaults to False. Returns: Returns the library if importing succeeded. Raises: ImportError: If attempting to import the library fails because the library is not installed. Exception: If importing the library fails. """ try: return importlib.import_module(library) except ImportError: if error_msg is None: error_msg = "" msg = f"Missing optional dependency '{library}'. Please use pip to install {library}. {error_msg}" if warning: warnings.warn(msg) else: raise ImportError(msg) except Exception as ex: msg = f"An exception occurred while trying to import `{library}`: {str(ex)}" if warning: warnings.warn(msg) else: raise Exception(msg)
51d890fde3cbc9740299fd262b544d09acfe7bdc
26,321
from bs4 import BeautifulSoup def parse_response(response): """ Convert a valid response form the https://www.myshiptracking.com/vessels/ website into a dictionary containing the information parsed from the 'vessels_table2' :param response: :return: dict """ soup = BeautifulSoup(response.text, "html.parser") tables = soup.find_all("table", {"class": "vessels_table2"}) data = [] for table in tables: rows = table.findAll(lambda tag: tag.name == "tr") for row in rows: cols = row.find_all("td") cols = [ele.text.strip() for ele in cols] data.append([ele for ele in cols if ele]) ans = {x[0]: x[1] for x in data if len(x) == 2} return ans
cd08616001d10de4c45b7240b4df5b71393ac68f
26,324
def bool_to_str(boolean: bool) -> str: """Converts a bool such as True to 'true'.""" return 'true' if boolean else 'false'
515701bf0b8d60a875ac7d49446df7ea62a0abdb
26,326
def read_input(filename): """read input file and return list of raw intcodes.""" with open(filename, "r") as infile: raw_intcodes = infile.readlines()[0].strip().split(",") return raw_intcodes
6ba22122472d69b7adf067d652b8da67092f87d4
26,332
from typing import List def dsv_line_to_list(line: str, *, delimiter=',', quote='"') -> List[str]: """ Splits line into fields on delimiter ignoring delimiters in fields that start and end with quote NB: Empty fields produce an empty string :param line: The line to be split :param delimiter: The delimiter to use to split the fields :param quote: The quote char to surround fields that contain the delimiter :return: a list of the fields found """ result = [] within_quoted_field = False at_start_of_field = True last_was_quote = False # Used to see if quote is not at end of field field = '' def new_field(): nonlocal field, within_quoted_field, at_start_of_field, last_was_quote result.append(field) within_quoted_field = False at_start_of_field = True last_was_quote = False field = '' for char in line: if at_start_of_field: at_start_of_field = False # Check for quote if char == quote: within_quoted_field = True continue # Skip quote do not include in field if within_quoted_field: if char == quote: last_was_quote = True continue # May not want to add this char if end of field if last_was_quote: if char == delimiter: new_field() continue else: field += quote last_was_quote = False field += char else: if char == delimiter: new_field() else: field += char # Add last field that was being filled (or empty if empty in comma) result.append(field) return result
d0e1248152ecbe95d68e57de15bf7c0e22be7c7f
26,335
def flatten(x): """Build a flat list out of any iter-able at infinite depth""" result = [] for el in x: # Iteratively call itself until a non-iterable is found if hasattr(el, "__len__") and not isinstance(el, str): flt = flatten(el) result.extend(flt) else: result.append(el) return result
c77950ae9e3839a450b797be1aaee9bff8a1f164
26,336
def combine_points(points_list): """Combine list of points (`ImagePoints`, `Points`, etc). List must be nonempty. Returns: combined_points """ cls = type(points_list[0]) return cls.combine(points_list)
bddc4262057359ff65d1b8356eacf445a78449e8
26,337
from typing import List import collections def unique(list_: List) -> List: """Remove duplicate entries from list, keeping it in its original order >>> unique([1, 2, 2, 3, 4, 6, 2, 5]) [1, 2, 3, 4, 6, 5] >>> unique(['bb', 'aa', 'aa', 'aa', 'aa', 'aa', 'bb']) ['bb', 'aa'] """ return list(collections.OrderedDict.fromkeys(list_))
8707e2d2dbf6b77f8818ad39282b113da9d22707
26,339
def read_reqn_file(path_to_file): """ Reads the contents of a file and returns it as a list of lines. Parameters ---------- path_to_file : str Path to file that is to read in Returns ------- list of str The file contents as separate strings in a list """ with open(path_to_file) as f: lines = f.readlines() return lines
3df65ff2b6475ffbdceb9c2727684ab69c146da4
26,341
def weekDay (obj): """ return the weekDay from a obj with a datetime 'date' field weekDay 0 is monday """ return obj['date'].weekday()
f67d086076e99727e2b39f6a52608144ac24165d
26,342
def get_bl_data(adni_comp, clin_data, scan_data): """This function extracts the data from the baseline visit only for each patient. Supply the three dataframes adni_comp, clin_data, and scan_data as input. """ # extract the baseline data only adni_bl = adni_comp[adni_comp.EXAMDATE == adni_comp.EXAMDATE_bl] clin_bl = clin_data[clin_data.EXAMDATE == clin_data.EXAMDATE_bl] scan_bl = scan_data[scan_data.EXAMDATE == scan_data.EXAMDATE_bl] # return the three dataframes return adni_bl, clin_bl, scan_bl
fad3b7b422a23e597b2f37b8e2f2a9a702b1af0a
26,344
import math def formatElapsedSeconds(seconds): """ Returns a string of the form "mm:ss" or "hh:mm:ss" or "n days", representing the indicated elapsed time in seconds. """ sign = '' if seconds < 0: seconds = -seconds sign = '-' # We use math.floor() instead of casting to an int, so we avoid # problems with numbers that are too large to represent as # type int. seconds = math.floor(seconds) hours = math.floor(seconds / (60 * 60)) if hours > 36: days = math.floor((hours + 12) / 24) return "%s%d days" % (sign, days) seconds -= hours * (60 * 60) minutes = (int)(seconds / 60) seconds -= minutes * 60 if hours != 0: return "%s%d:%02d:%02d" % (sign, hours, minutes, seconds) else: return "%s%d:%02d" % (sign, minutes, seconds)
de8ec8614dd534871a3628c15f3d89f3f7a87d6f
26,345
def from_keyed_iterable(iterable, key, filter_func=None): """Construct a dictionary out of an iterable, using an attribute name as the key. Optionally provide a filter function, to determine what should be kept in the dictionary.""" generated = {} for element in iterable: try: k = getattr(element, key) except AttributeError: raise RuntimeError("{} does not have the keyed attribute: {}".format( element, key )) if filter_func is None or filter_func(element): if k in generated: generated[k] += [element] else: generated[k] = [element] return generated
e2d349876f446b378d2b6b5b535f9119e648cfbe
26,346
import hashlib def check_sum(fl_name, tid=None): """ compute checksum for generated file of `fl_name` """ hasher = hashlib.md5() with open(fl_name, 'rb') as fin: for chunk in iter(lambda: fin.read(4096), b""): hasher.update(chunk) ret = hasher.hexdigest() if tid is not None: ret = ret + str(tid) return ret
842f6de54827b524f1d5cf18d4c5ad18b8ad8b59
26,352
def _get_class_with_reference(visible_name: str, ref: str) -> str: """ Return the name of the class with a valid reference to be used by sphinx. """ return f"\\ :class:`{visible_name} <{ref}>`\\"
4a31fdcffcd2b295deecba062a683bb1cab91bee
26,354
def int_median_cutter(lower_bound: int, upper_bound: int, value: int): """ Simple function for cutting values to fit between bounds Args: lower_bound (int): lower cutting bound upper_bound (int): upper cutting bound value (int): value to fit between bounds Returns: value cut to fit into bounds (as integer) """ return int(max(min(value, upper_bound), lower_bound))
dc6ebea3876f35470b2289312596f83ab8ba5fed
26,365
import random def get_framesets(cls, maximum=10, pattern=None): """ Gather FrameSet objects from either Frames or Bars. If `pattern` is set to a compiled regex pattern, return all FrameSets matching the pattern. Otherwise, return up to `maximum` random FrameSets. """ frametypes = set() framenames = cls.names() if pattern is None: while len(frametypes) < maximum: frametypes.add(cls.get_by_name(random.choice(framenames))) else: frametypes.update( cls.get_by_name(s) for s in framenames if pattern.search(s) is not None ) return frametypes
f6f094b67243685f352ea624e2bf45b62693e38d
26,375
def psi2(ctx, z): """Shortcut for psi(2,z) (the tetragamma function)""" return ctx.psi(2, z)
68b3ade0f3844cf67c57b37b95744ffc09b46e52
26,378
def remove_char(string, iterable): """ Return str without given elements from the iterable. More convenient than chaining the built-in replace methods. Parameters ------- string: str String from which the characters from the iterable are removed. iterable: str, list, tuple, set Iterable with characters that are removed from the string. Returns ------- str Without elements from the iterable. """ for i in iterable: string = string.replace(i, "") return string
a7106236fc15adf7b7aa4cdc7e4f3b6b86e6a889
26,379
def parse_command(cmd_str): """ # the line has one word for the command and n pairs that go to key, value (separator is space) :param cmd_str: string with name of command and pairs of params and values :return: cmd : str (name of the command) cmd_par: dictionary {par_name: str(par_value)} with the parameters for the command """ split_cmd = cmd_str.split(' ') assert (len(split_cmd) % 2) cmd_par = {split_cmd[i]: split_cmd[i + 1] for i in range(1, len(split_cmd), 2)} cmd = split_cmd[0] return cmd, cmd_par
ac48d05bcd88c7eb5e04cedeb26c5d5278bbc3bd
26,382
def central_slice(k): """Return central slice objects (last 2 dimensions).""" if k < 1: return ..., slice(None), slice(None) return ..., slice(k, -k), slice(k, -k)
a69a18adf07c9e841f58328c1869e44bd0de24e2
26,385
from typing import List from typing import Tuple def concatenate_shapes(shapes: List[Tuple[int]], axis: int): """Concatenate shapes along axis""" out = list(shapes[0]) out[axis] = sum(list(s)[axis] for s in shapes) return tuple(out)
959a66fec11fa7d67218f2fb1b76d5bcf990d463
26,386
def GetModSaveMetaDataFileName () -> str: """ Get the file name of every mod save meta data file. """ return "Meta_Data.json"
68af6a2a4428242aedf7f1b313322d8a4e148e78
26,391
def support(transactions, itemsets): """Returns the percentages of transactions that contain the itemsets. Parameters ---------- transactions : list of list itemsets : list of frozenset Returns ------- dict Key of each item is the itemset and the value is the itemset's support """ counts = {} for itemset in itemsets: counts[itemset] = 0 for transaction in transactions: for itemset in itemsets: if itemset.issubset(transaction): counts[itemset] += 1 supports = {} total_transactions = len(transactions) for itemset, count in counts.items(): supports[itemset] = count / total_transactions return supports
f6d9751b2560dd8ac636dac965d912595ccb9831
26,394
import functools def compose(*functions): """ Compose multiple functions into a single function Create a function that calls a series of functions, passing the output of one function as the input of the next. See https://mathieularose.com/function-composition-in-python/ """ return functools.reduce(lambda f, g: lambda x: f(g(x)), functions, lambda x: x)
32190bf758f4e7198fff96b684001bf50229b4c2
26,395
def extended_GCD(a, b): """ The extended Euclidean algorithm computes the greatest common divisor and the Bézout coefficients s, t. Returns (remainder, (s, t)) """ (r, rP) = (a, b) (s, sP) = (1, 0) (t, tP) = (0, 1) while rP != 0: q = r // rP (r, rP) = (rP, r - q * rP) (s, sP) = (sP, s - q * sP) (t, tP) = (tP, t - q * tP) return (r, (s, t))
ca963ab6fff79e8cd375d4ce6a866cf28fd94f3b
26,400
def find_digits_in_str(string: str) -> str: """Find digits in a given string. Args: string: str, input string with the desired digits Returns: digits: str, found in the given string """ return "".join(x for x in string if x.isdigit())
7b9e824f8100d6289a8ed135b50e10d3b3046ed1
26,402
from pathlib import Path def exists( fileName:str ) -> bool: """ Check whether the given fileName exists """ fname = fileName + ".pkl" my_file = Path(fname) return my_file.exists()
5173fbe936564c67f9f32b33ba0a7f85bb172ec8
26,404
def _format_defaults(value): """ Format value to CLI syntax. Example usage: if default value of a parameter is ['gene'], the description in CLI would be:: (default: ['gene']) After using this function the description is tailored to CLI usage:: (default: gene) """ if isinstance(value, list): return ' '.join(value) else: return value
e665ba6cf28ccb03db5a3ee69721bf03dfa4b41e
26,405
import ast def parseTypeFromString(value): """ Parse a string representation of a variable into a true, typed, python variable """ return ast.literal_eval(value)
2a7664af015a60a9070e3090772c73af4ef76fb5
26,409
def number_to_digits(number, base): """Convert a positive number to its digit representation in base.""" digits = [] while number > 0: digits.insert(0, number % base) number = number // base return digits
d04091511cbf2c1a86a315239321612b60a27a2d
26,414
def select_bboxes(selection_bbox: dict, page_bboxes: list, tolerance: int = 10) -> list: """ Filter the characters bboxes of the document page according to their x/y values. The result only includes the characters that are inside the selection bbox. :param selection_bbox: Bounding box used to select the characters bboxes. :param page_bboxes: Bounding boxes of the characters in the document page. :param tolerance: Tolerance for the coordinates values. :return: Selected characters bboxes. """ selected_char_bboxes = [ char_bbox for char_bbox in page_bboxes if int(selection_bbox["x0"]) - tolerance <= char_bbox["x0"] and int(selection_bbox["x1"]) + tolerance >= char_bbox["x1"] and int(selection_bbox["y0"]) - tolerance <= char_bbox["y0"] and int(selection_bbox["y1"]) + tolerance >= char_bbox["y1"] ] return selected_char_bboxes
6b3a091aafc0b2af7045e964daf02237ae18f1f4
26,415
def merge(data, delimiter=","): """ Merge rows with an equal starting index from an array of CSV data rows. Args: data (list): input list of string rows or row values as a list to merge. delimiter (str): delimiter of the CSV format to use for value splitting. Returns: merged list of rows in string format. """ data_merged = [] row_merged = [] # Register an empty field. id = None for row in data: # Convert our string row into a list of strings if it's not already one. values = row.split(delimiter) if type(row) is str else row # Assign a value if this is the first run. if not id: id = values[0] row_merged.append(id) # If our identifier does not match up with the last, append the row and reset. if values[0] != id: data_merged.append(row_merged) row_merged = [] id = values[0] row_merged.append(id) # Begin iteration over values skipping our identifier. for value in values[1:]: row_merged.append(value) # If this is the last row append it. if row == data[-1]: data_merged.append(row_merged) return data_merged
121f3b5d3057b7e8aa639fad9063fff82e7033ab
26,417
def sum_ratios_to_percentage(ratios): """Sums ratios and converts to two-decimal rounded percentage""" return round(sum(ratios) * 100, 2)
2341436755fbf67559b164919bbab275d9a935ea
26,418
import re def _remove_whitespace(string): """Return a version of the input string with whitespace removed""" whitespace_re = re.compile(r"\s+") return whitespace_re.sub('', string)
0da9083b1f4d4e4c8cb4a375b2e70cd3b70a4564
26,422
def count(s, value): """ for循环版本的遍历 :param s: 待遍历链表 :param value: 待查找值 :return: value的出现次数 """ total = 0 for elem in s: if elem == value: total = total + 1 return total
bbe0ff7d00943a45c912d02f8e6e52748f9725e3
26,424
def _split_attrs(attrs, second_part_keys=None): """Split `attrs` dictionary into two parts: * Dict with keys that are not in `second_part_keys` * Remainder dict with keys in `second_part_keys` """ dict_1 = {k: v for k, v in attrs.iteritems() if k not in second_part_keys} dict_2 = {k: v for k, v in attrs.iteritems() if k in second_part_keys} return dict_1, dict_2
ed19608ec7bc5bf5b40a0a1315e952e7af103dc7
26,425
from urllib.parse import urlparse, urlencode, parse_qs, unquote def merge_url_query(url, _doseq=True, **kwargs): """Add (new) query params to url, overwriting existing query parameters. Note: Python 3.5+ only Args: url (str): A URL, e.g. 'http://stackoverflow.com/search?q=question' _doseq (bool): Wether to urlencode using doseq kwargs (dict): Query parameters to add to url, e.g. {'q': ['a', 'b']} Returns: str: Modified URL, e.g. 'http://stackoverflow.com/search?q=a&q=b' """ parsed = urlparse(unquote(url)) return parsed._replace( query=urlencode({**parse_qs(parsed.query), **kwargs}, doseq=_doseq) ).geturl()
fad16c498b9aa8fcac10cbcd995166a5f443a59d
26,427
from typing import Iterable from typing import Callable def count_nice_words(all_words: Iterable[str], checker: Callable[[str], bool]) -> int: """ Count the number of words which are nice, using the given nice-word-checking function. """ return sum(1 for word in all_words if checker(word))
53d7de35aad33d159c985acadad1a68fbb5ef11e
26,428
def getAngleStatus(angle): """ returns status based on the angle. Status codes: 0 - straight (-10 to +10) 1 - left or down (less than -10) 2 - right or up (greater than 10) """ if angle < -10: return 1 elif angle > 10: return 2 return 0
235c988bc285be4fbfbb3f3113030b79585c1976
26,430