content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
import re
def rx_filter(objs: list, attr: str, prompt: str) -> list:
"""
Filter a list of dicts based on user-entered regex match to one of their values.
"""
while True:
search_term = input(prompt+" ")
# Prefer exact match first -- otherwise can never select an item that's a substring of another!
matches = [obj for obj in objs if obj[attr] == search_term]
# matches = [obj for obj in objs if attr(obj) == search_term]
if matches:
return matches
rx_flags = 0
# If search doesn't have uppercase letters, make it case-insensitive.
if search_term == search_term.lower():
rx_flags |= re.IGNORECASE
rx = re.compile(search_term, rx_flags)
matches = [obj for obj in objs if rx.search(obj[attr])]
# matches = [obj for obj in objs if rx.search(attr(obj))]
if matches:
return matches
print("No matches, try again.") | f0c6dd5609020054da7895e577483c911d9aaea3 | 703,942 |
def _get_usb_hub_map(device_info_list):
"""Creates a map of usb hub addresses to device_infos by port.
Args:
device_info_list (list): list of known usb_connections dicts.
Returns:
dict: map of usb hub addresses to device_infos by port
"""
map_usb_hub_ports = {}
for device_info in device_info_list:
hub_address = device_info['usb_hub_address']
port = device_info['usb_hub_port']
if hub_address:
if hub_address not in map_usb_hub_ports:
map_usb_hub_ports[hub_address] = {}
if not map_usb_hub_ports[hub_address].get(
port) or device_info['ftdi_interface'] == 2:
map_usb_hub_ports[hub_address][port] = device_info
return map_usb_hub_ports | eaadc4713a41fdf38cea4fce35806d1d8772df27 | 703,943 |
import re
def parse_pgsql_logs(data):
"""
Parse the pgsql benchmark data from ripsaw and return
the data in list format
Args:
data (str): log data from pgsql bench run
Returns:
list_data (list): data digestable by scripts with below format
e.g.:
[
{1: {'num_clients': '2','num_threads': '7','latency_avg': '7',
'lat_stddev': '0', 'tps_incl': '234', 'tps_excl': '243'},
{2: {'num_clients': '2','num_threads': '7','latency_avg': '7',
'lat_stddev': '0', 'tps_incl': '234', 'tps_excl': '243'},
{3: {'num_clients': '2','num_threads': '7','latency_avg': '7',
'lat_stddev': '0', 'tps_incl': '234', 'tps_excl': '243'},
]
where keys{1,2,3} are run-IDs
"""
match = data.split("PGBench Results")
list_data = []
for i in range(2, len(match)):
log = "".join(match[i].split("\n"))
pgsql_data = dict()
pgsql_data[i - 1] = {}
clients = re.search(r"scaling_factor\':\s+(\d+),", log)
if clients and clients.group(1):
pgsql_data[i - 1]["scaling_factor"] = clients.group(1)
clients = re.search(r"number_of_clients\':\s+(\d+),", log)
if clients and clients.group(1):
pgsql_data[i - 1]["num_clients"] = clients.group(1)
threads = re.search(r"number_of_threads\':\s+(\d+)", log)
if threads and threads.group(1):
pgsql_data[i - 1]["num_threads"] = threads.group(1)
clients = re.search(r"number_of_transactions_per_client\':\s+(\d+),", log)
if clients and clients.group(1):
pgsql_data[i - 1]["number_of_transactions_per_client"] = clients.group(1)
clients = re.search(
r"number_of_transactions_actually_processed\':\s+(\d+),", log
)
if clients and clients.group(1):
pgsql_data[i - 1][
"number_of_transactions_actually_processed"
] = clients.group(1)
lat_avg = re.search(r"latency_average_ms\':\s+(\d+)", log)
if lat_avg and lat_avg.group(1):
pgsql_data[i - 1]["latency_avg"] = lat_avg.group(1)
lat_stddev = re.search(r"latency_stddev_ms\':\s+(\d+)", log)
if lat_stddev and lat_stddev.group(1):
pgsql_data[i - 1]["lat_stddev"] = lat_stddev.group(1)
tps_incl = re.search(r"tps_incl_con_est\':\s+(\w+)", log)
if tps_incl and tps_incl.group(1):
pgsql_data[i - 1]["tps_incl"] = tps_incl.group(1)
tps_excl = re.search(r"tps_excl_con_est\':\s+(\w+)", log)
if tps_excl and tps_excl.group(1):
pgsql_data[i - 1]["tps_excl"] = tps_excl.group(1)
list_data.append(pgsql_data)
return list_data | 5bd5cd43432b17be6bd52004b151b32a0f574980 | 703,945 |
def jd2gdate(myjd):
"""Julian date to Gregorian calendar date and time of day.
The input and output are for the proleptic Gregorian calendar.
Parameters
----------
myjd:
julian date (float).
Returns
-------
y, m, d, f : int, int, int, float
Four element tuple containing year, month, day and the
fractional part of the day in the Gregorian calendar. The first
three are integers, and the last part is a float.
"""
jd_i = int(myjd)
f = myjd-jd_i
# Set JD to noon of the current date. Fractional part is the
# fraction from midnight of the current date.
if -0.5 < f < 0.5:
f += 0.5
elif f >= 0.5:
jd_i += 1
f -= 0.5
elif f <= -0.5:
jd_i -= 1
f += 1.5
l = jd_i + 68569
n = int((4 * l) / 146097.0)
l -= int(((146097 * n) + 3) / 4.0)
i = int((4000 * (l + 1)) / 1461001)
l -= int((1461 * i) / 4.0) - 31
j = int((80 * l) / 2447.0)
day = l - int((2447 * j) / 80.0)
l = int(j / 11.0)
month = j + 2 - (12 * l)
year = 100 * (n - 49) + i + l
return int(year), int(month), int(day), f | f43a299fd8627804893eb5b6266d6a016c191d72 | 703,946 |
def get_policy_targets(context, presentation):
"""
Returns our target node templates and groups if we have them.
"""
node_templates = []
groups = []
our_targets = presentation.targets
if our_targets:
all_node_templates = \
context.presentation.get('service_template', 'topology_template', 'node_templates') \
or {}
all_groups = \
context.presentation.get('service_template', 'topology_template', 'groups') \
or {}
for our_target in our_targets:
if our_target in all_node_templates:
node_templates.append(all_node_templates[our_target])
elif our_target in all_groups:
groups.append(all_groups[our_target])
return node_templates, groups | f483b9749c25b7d56c0e0a02a6787d936782e470 | 703,948 |
import torch
def isPD(B):
"""Check whether a matrix is positive definite.
Args:
B ([torch.Tensor]): [Input matrix.]
Returns:
[bool]: [Returns True if matrix is positive definite, otherwise False.]
"""
try:
_ = torch.cholesky(B)
return True
except RuntimeError:
return False | c51dc4f6f48ac7417f49ef41b81f3b04816b9279 | 703,950 |
def convert_TriMap_to_SelectedLEDs( best_led_config ):
""" Returns a lookup dict of the selected LEDs.
"""
d = {}
for tri_num in best_led_config:
for led_num in best_led_config[tri_num]:
d[led_num] = True
return d | 521a1be0d11cb8198944e437d20d4ac0349c8856 | 703,951 |
def get_table_id(table):
"""
Returns id column of the cdm table
:param table: cdm table name
:return: id column name for the table
"""
return table + '_id' | 33fd8f445f15fb7e7c22535a31249abf6f0c819b | 703,954 |
from typing import Sequence
from typing import Hashable
def all_items_present(sequence: Sequence[Hashable], values: Sequence[Hashable]) -> bool:
"""
Check whether all provided `values` are present at any index
in the provided `sequence`.
Arguments:
sequence: An iterable of Hashable values to check for values in.
values: An iterable of Hashable values for whose presence to
check `sequence` for.
Returns:
`True` if all `values` are present somewhere in `sequence`,
else `False`.
"""
return all(k in sequence for k in values) | f43a881159ccf147d3bc22cfeb261620fff67d7a | 703,955 |
def reorder(rules):
""" Set in ascending order a list of rules, based on their score.
"""
return(sorted(rules, key = lambda x : x.score)) | cf4ff3b8d8aacd5e868ee468b37071fed2c1d67e | 703,956 |
import re
def extract_floats(string):
"""Extract all real numbers from the string into a list (used to parse the CMI gateway's cgi output)."""
return [float(t) for t in re.findall(r'[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?', string)] | 0dc26261d45bd0974e925df5ed660a6e31adf30c | 703,957 |
def binary(n, digits):
"""Returns a tuple of (digits) integers representing the
integer (n) in binary. For example, binary(3,3) returns (0, 1, 1)"""
t = []
for i in range(digits):
n, r = divmod(n, 2)
t.append(r)
return tuple(reversed(t)) | bc52a985b86954b1d23bb80a14c56b3e3dfb7c59 | 703,958 |
import re
def _parse_uci_regression_dataset(name_str):
"""Parse name and seed for uci regression data.
E.g. yacht_2 is the yacht dataset with seed 2.
"""
pattern_string = "(?P<name>[a-z]+)_(?P<seed>[0-9]+)"
pattern = re.compile(pattern_string)
matched = pattern.match(name_str)
if matched:
name = matched.group("name")
seed = matched.group("seed")
return name, seed
return None, None | dd2158e1a5ceeba25a088b07ff8064e8016ae551 | 703,966 |
import re
def get_params(proto):
""" get the list of parameters from a function prototype
example: proto = "int main (int argc, char ** argv)"
returns: ['int argc', 'char ** argv']
"""
paramregex = re.compile('.*\((.*)\);')
a = paramregex.findall(proto)[0].split(', ')
#a = [i.replace('const ', '') for i in a]
return a | 37841b2503f53353fcbb881993e8b486c199ea58 | 703,967 |
import inspect
def list_module_public_functions(mod, excepted=()):
""" Build the list of all public functions of a module.
Args:
mod: Module to parse
excepted: List of function names to not include. Default is none.
Returns:
List of public functions declared in this module
"""
return [t[1] for t in inspect.getmembers(mod, inspect.isfunction) if not t[0].startswith('_')
and inspect.getmodule(t[1]) == mod
and not t[0] in excepted] | d27dc869cf12701bcb7d2406d60a51a8539a9e1b | 703,968 |
def strRT(R, T):
"""Returns a string for a rotation/translation pair in a readable form.
"""
x = "[%6.3f %6.3f %6.3f %6.3f]\n" % (
R[0,0], R[0,1], R[0,2], T[0])
x += "[%6.3f %6.3f %6.3f %6.3f]\n" % (
R[1,0], R[1,1], R[1,2], T[1])
x += "[%6.3f %6.3f %6.3f %6.3f]\n" % (
R[2,0], R[2,1], R[2,2], T[2])
return x | 2d7ec1bf2ebd5a03472b7b6155ed43fdcc71f76a | 703,971 |
def general_value(value):
"""Checks if value is generally valid
Returns:
200 if ok,
700 if ',' in value,
701 if '\n' in value"""
if ',' in value:
return 700
elif '\n' in value:
return 701
else:
return 200 | 5cf8388294cae31ca70ce528b38ca78cdfd85c2c | 703,973 |
def padZeros(numberString, numZeros, insertSide):
"""Return a string padded with zeros on the left or right side."""
if insertSide == 'left':
return '0' * numZeros + numberString
elif insertSide == 'right':
return numberString + '0' * numZeros | d0c2d08a392e4792b13a64d076c8fb6aff1572cb | 703,982 |
def _resample_event_obs(obs, fx, obs_data):
"""
Resample the event observation.
Parameters
----------
obs : datamodel.Observation
The Observation being resampled.
fx : datamodel.EventForecast
The corresponding Forecast.
obs_data : pd.Series
Timeseries data of the event observation.
Returns
-------
obs_resampled : pandas.Series
Timeseries data of the Observation resampled to match the Forecast.
Raises
------
RuntimeError
If the Forecast and Observation do not have the same interval length.
"""
if fx.interval_length != obs.interval_length:
raise ValueError("Event observation and forecast time-series "
"must have matching interval length.")
else:
obs_resampled = obs_data
return obs_resampled | 1c66ae124aaa2e732c7d0ec3e733ae2b5caaa6cb | 703,985 |
def _arg_raw(dvi, delta):
"""Return *delta* without reading anything more from the dvi file"""
return delta | 041cfaaf23c6e229b60d5278e8cf27352e078a65 | 703,986 |
def _read_tmpfd(fil):
"""Read from a temporary file object
Call this method only when nothing more will be written to the temporary
file - i.e., all the writing has already been done.
"""
fil.seek(0)
return fil.read() | 08648325e7e0e9bcd543d3238cb4630ac284f6ed | 703,988 |
def evens(input):
"""
Returns a list with only the even elements of data
Example: evens([0, 1, 2, 3, 4]) returns [0,2,4]
Parameter input: The data to process
Precondition: input an iterable, each element an int
"""
result = []
for x in input:
if x % 2 == 0:
result.append(x)
return result | 8a219f8815d95a18bea148eaae117f3356a77d4b | 703,989 |
def piece_not(piece: str) -> str:
"""
helper function to return the other game piece that is not the current game piece
Preconditions:
- piece in {'x', 'o'}
>>> piece_not('x')
'o'
>>> piece_not('o')
'x'
"""
return 'x' if piece == 'o' else 'o' | 18bb3b45accf98d4f914e3f50372c4c083c1db4d | 703,992 |
from typing import List
from typing import Dict
from typing import Tuple
from typing import Callable
def enum_options(values: List[Dict]) -> Tuple[List[str], int, Callable]:
"""Enumerate options of a enum parameter for display in a select box.
Returns a 3-tuple containing a list of option value, the list index of
the default option, and a function that provides a mapping from option
values to their names (identifier).
Parameters
----------
values: list of dict
List of enumeration values from the parameter declaration.
Returns
-------
(list, int, callable)
"""
options = list()
default_index = 0
mapping = dict()
for i, obj in enumerate(values):
identifier = obj['value']
options.append(identifier)
mapping[identifier] = obj['name']
if obj.get('isDefault', False):
default_index = i
def mapfunc(value: str) -> str:
"""Mapping for option values to thier identifier."""
return mapping[value]
return options, default_index, mapfunc | c1214f319847b40705f425e529420a5916debe6e | 703,994 |
def find_elements(node, xpath, allow_zero=True, allow_multiple=True):
"""Attempt to find child elements in a node by xpath. Raise exceptions if conditions are violated. Return a
(possibly empty) list of elements."""
all_elements = node.findall(xpath)
if (len(all_elements) == 0 and not allow_zero) or (len(all_elements) > 1 and not allow_multiple):
raise AssertionError(f'Found {len(all_elements)} instances of {xpath} in {node}, which is not allowed')
return all_elements | 2255fcd63f35837c647dd6dca81ab648d59addc8 | 703,996 |
def get_text(original, token, replace):
"""Convenience function for getting the text to use for a match when
formatting.
If ``replace`` is False, returns the part of ``original`` between
``token.startchar`` and ``token.endchar``. If ``replace`` is True, returns
``token.text``.
"""
if replace:
return token.text
else:
return original[token.startchar:token.endchar] | b0e2e53611cb5b26b04d0e8350f1ae88a6b56056 | 704,002 |
def calc_Ti(Te, Tg, n):
"""Calcuate the infectious period."""
return (Tg - Te) * 2.0 * n / (n + 1.0) | 7ba0176b821032e4f69ff7fe368393c2773c7d0d | 704,003 |
def _get_indent(line):
"""Return the indentation in front of a line"""
indent = line.replace(line.lstrip(), '')
return indent | 6a5dd97d4c5702a55b8b1ddaad91c5ecb99458fa | 704,004 |
def problems(mod, msg):
"""Ansible module exist with an error."""
return mod.exit_json(changed=False, failed=True, msg=msg) | 3ec1a8c8843ba9b33d47e61d1b775aadb32ab45e | 704,006 |
def to_sql_name(name):
"""
Ensure ``name`` is a valid SQL name.
"""
return name.lower().replace(' ', '_') | f3157d9444793d0af05e27317fdab2aa55531b84 | 704,007 |
def polygon_to_points( poly ):
"""
Plotting helper, which rearranges polygon vertices into lists
of X and Y coordinates. The first point is duplicated at the end
of each list, to make a closed path.
:Parameters:
poly: tuple of ((x1,y1),(x2,y2),...)
The coordinates of the vertices of the polygon.
:Returns:
(xlist, ylist): list of 2 tuples
((x1, x2, ..., x1), (y1, y2, ..., y1))
"""
xlist = []
ylist = []
for vertex in poly:
xlist.append(vertex[0])
ylist.append(vertex[1])
xlist.append(xlist[0])
ylist.append(ylist[0])
return (xlist, ylist) | 958621cb7ff2d4fe22c4482e07a6a7ba614f9fc1 | 704,009 |
import re
def alphanumerical(string):
"""
A function to filter a string to only allow alphanumerical characters.
"""
pattern = re.compile('[^a-zA-Z0-9]+')
return pattern.sub('', string) | 3acd64f629e601c72421ac73955a61c1426d3a9d | 704,010 |
def decode_dbkey(dbkey):
""" Decodes dbkey and returns tuple ( username, dbkey )"""
if isinstance(dbkey, str) and ':' in dbkey:
return dbkey.split(':')
else:
return None, dbkey | de2a076b36e4ea82412478384b65845af225b1ab | 704,014 |
def sum_of_vals(vals):
"""
:param vals: an iterable such as list
:return: sum of the values from the iterable
"""
sum = 0
for val in vals:
sum += val
return sum | aecc28e505acbea02f5ec41aec03b2db7bc3baad | 704,018 |
def time_sa_to_s(t, clock_freq):
"""
convert from time in samples to time in seconds
"""
return float(t / clock_freq) | eabf76cda8529dc9c9ad0acc6466c5037062b295 | 704,019 |
def kdcompare(r, p, depth):
"""
Returns the branch of searching on a k-d tree
Input
r: root
p: point
depth : starting depth of search
Output
A value of -1 (left branch), or 1 (right)
"""
k = len(p)
dim = depth%k
if p[dim] <= r.point[dim]:
return -1
else:
return 1 | c11aa24718b8a2d8d9e39852ca53e09118d3c215 | 704,021 |
def _has_class(domElement, className):
"""
Helper function to test if the provided element has the provided class
"""
return className in domElement.get_attribute('class').split(" ") | 9a20557cc8d3e3dc91ac33764a6d94139b70f6f2 | 704,022 |
def format_datestamp(datestamp):
"""Format datestamp to an OAI-PMH compliant format.
Parameters
----------
datestamp: datetime.datetime
A datestamp.
Return
------
str:
Formatted datestamp.
"""
return datestamp.strftime('%Y-%m-%dT%H:%M:%SZ') | f050dd4f18691034c0414a4d9fa51629b0208d6a | 704,023 |
import base64
def encode_base64(data: bytes) -> bytes:
""" Creates a url safe base64 representation of an input string, strips
new lines."""
return base64.urlsafe_b64encode(data).replace(b"\n", b"") | 472ff045dc1df4ad5fe2a0e3001477a4d1c738fd | 704,025 |
def yellow_bold(payload):
"""
Format payload as yellow.
"""
return '\x1b[33;1m{0}\x1b[39;22m'.format(payload) | 2ae528c9dcc5a4f9b5f685f201f4d6696387a256 | 704,026 |
def normalize(rendered):
"""Return the input string without non-functional spaces or newlines."""
out = ''.join([line.strip()
for line in rendered.splitlines()
if line.strip()])
out = out.replace(', ', ',')
return out | 02a87a7a5e596b45d15bb2559403e92cb69a2f1d | 704,028 |
import aiohttp
import asyncio
async def test_download_speed(session: aiohttp.ClientSession, url: str) -> int:
"""Count the amount of data successfully downloaded."""
result = 0
try:
async with session.get(url) as resp:
while True:
chunk = await resp.content.read(56)
if not chunk:
break
else:
result += len(chunk)
except asyncio.CancelledError:
pass
finally:
return result | c6ca9504f90cbb9091051931054f12f8498b8535 | 704,029 |
def compare_nodal_prices(df_dcopf, df_mppdc):
"""Find max absolute difference in nodal prices between DCOPF and MPPDC models
Parameters
----------
df_dcopf : pandas DataFrame
Results from DCOPF model
df_mppdc : pandas DataFrame
Results from MPPDC model
Returns
-------
max_price_difference : float
Maximum difference between nodal prices for DCOPF and MPPDC models
over all nodes and scenarios
"""
# DCOPF model
# -----------
df_tmp_1 = df_dcopf.reset_index().copy()
# Filter price records
df_tmp_1 = df_tmp_1[df_tmp_1['index'].str.contains(r'\.POWER_BALANCE\[')]
# Extract values
df_tmp_1['Value'] = df_tmp_1.apply(lambda x: x['Constraint']['Dual'], axis=1)
# Extract node and scenario IDs
df_tmp_1['NODE_ID'] = df_tmp_1['index'].str.extract(r'\.POWER_BALANCE\[(\d+)\]').astype(int)
df_tmp_1['SCENARIO_ID'] = df_tmp_1['SCENARIO_ID'].astype(int)
# Prices at each node for each scenario
df_dcopf_prices = df_tmp_1.set_index(['SCENARIO_ID', 'NODE_ID'])['Value']
# MPPDC model
# -----------
df_tmp_2 = df_mppdc.reset_index().copy()
# Filter price records
df_tmp_2 = df_tmp_2[df_tmp_2['index'].str.contains(r'\.lambda_var\[')]
# Extract values
df_tmp_2['Value'] = df_tmp_2.apply(lambda x: x['Variable']['Value'], axis=1)
# Extract node and scenario IDs
df_tmp_2['NODE_ID'] = df_tmp_2['index'].str.extract(r'\.lambda_var\[(\d+)\]').astype(int)
df_tmp_2['SCENARIO_ID'] = df_tmp_2['index'].str.extract(r'LL_DUAL\[(\d+)\]').astype(int)
# Prices at each node for each scenario
df_mppdc_prices = df_tmp_2.set_index(['SCENARIO_ID', 'NODE_ID'])['Value']
# Compute difference between models
# ---------------------------------
max_price_difference = df_dcopf_prices.subtract(df_mppdc_prices).abs().max()
print('Maximum difference between nodal prices over all nodes and scenarios: {0}'.format(max_price_difference))
return max_price_difference | 2368bb7f8534ac466ab7858fa1056e3fe5f48f16 | 704,030 |
def add(a, b):
"""A dummy function to add two variables"""
return a + b | 4914b8d73e6808d93e8e8ee98902ad3b093f1ce6 | 704,031 |
def truncate(s, eps):
"""
Find the smallest k such that sum(s[:k]**2) \geq 1-eps.
"""
mysum = 0.0
k=-1
while (mysum < 1-eps):
k += 1
mysum += s[k]**2
return k+1 | fc9b5984316e969961b496fd54425e4f52f025ff | 704,032 |
def ObjectToDict(obj):
"""Converts an object into a dict."""
keys = [ k for k in dir(obj) if not k.startswith("__") ]
return { k : getattr(obj, k) for k in keys } | f2679daab84d5cee2c7f319d1d34f3c669971cd6 | 704,043 |
def _unravel(nodes,tets,index):
"""Returns a list containing the node coordinates of the tet
stored in the 'index' position in the 'tets' list."""
return [nodes[tets[index][0]],nodes[tets[index][1]],nodes[tets[index][2]],nodes[tets[index][3]]] | e8428de351db2a84a4875a81b47d07b03a67efd9 | 704,045 |
import types
import asyncio
def loop_apply_coroutine(loop, func: types.FunctionType, *args, **kwargs) -> object:
"""
Call a function with the supplied arguments.
If the result is a coroutine, use the supplied loop to run it.
"""
if asyncio.iscoroutinefunction(func):
future = asyncio.ensure_future(
func(*args, **kwargs), loop=loop)
loop.run_until_complete(future)
return future.result()
else:
return func(*args, **kwargs) | d77a70540237f690e712e30b93b53b363907b678 | 704,049 |
def zipmap(keys, vals):
"""
Return a ``dict`` with the keys mapped to the corresponding ``vals``.
"""
return dict(zip(keys, vals)) | a058e5a4e462416f48d83b3c288a0cd8d6b000ef | 704,050 |
def maxsubarray(list):
"""
Naive approach to calculating max subarray
Iterating all possible subarrays
Complexity (n = list size)
Time complexity: O(n^2)
Space complexity: O(1)
"""
maxStart = 0
maxEnd = 0
maxSum = list[0]
for i in range (len(list)):
currentSum = 0
for j in range (i, len(list)):
currentSum += list[j]
if currentSum > maxSum:
maxSum = currentSum
maxStart = i
maxEnd = j
return (maxSum, maxStart, maxEnd) | 71b4a12d02fab45fc14890ae4a34a0dc50d6a7b4 | 704,052 |
from typing import Sequence
def is_sequence(obj):
"""Is the object a *non-str* sequence?
Checking whether an object is a *non-string* sequence is a bit
unwieldy. This makes it simple.
"""
return isinstance(obj, Sequence) and not isinstance(obj, str) | 06129c6122fec0290edb34cadc75b68199738435 | 704,053 |
def getAxisList(var):
"""
Returns a list of coordinates from: var
"""
return [var.coords[key] for key in var.dims] | eae9b971bcbf021ef2203dd6cb21df6343d0f19a | 704,054 |
def skip_nothing(name, dirpath):
"""Always returns :obj:`False`.
"""
return False | 9e846b7060af43b2c4165e6530fcabc66415615b | 704,056 |
def centtoinch(cents):
"""Cents to inch."""
return .3937*cents | 517142a29242246721abd05638c8ecbefcd888cb | 704,059 |
def get_top_element_count(mol, top):
"""
Returns the element count for the molecule considering only the atom indices in ``top``.
Args:
mol (Molecule): The molecule to consider.
top (list): The atom indices to consider.
Returns:
dict: The element count, keys are tuples of (element symbol, isotope number), values are counts.
"""
if not isinstance(top, list):
top = list(top)
element_count = {}
for i, atom in enumerate(mol.atoms):
if i in top:
key = (atom.element.symbol, atom.element.isotope)
if key in element_count:
element_count[key] += 1
else:
element_count[key] = 1
return element_count | f7293c1d154346c955052ceff0ee59483538bdc3 | 704,060 |
def at_least_one_shift_each(cur_individual):
""" checks if there is at least one of each shift: 01, 10, 11 """
num_entrega = 0
num_recogida = 0
num_dual = 0
while cur_individual:
shift = cur_individual[:2]
cur_individual = cur_individual[2:]
if shift == '01':
num_entrega += 1
elif shift == '10':
num_recogida += 1
elif shift == '11':
num_dual += 1
if num_entrega > 0 and num_recogida > 0 and num_dual > 0:
return True
return False | 070fe16e779ab30bcee7873ec01876962f30ec91 | 704,062 |
from typing import Optional
from typing import Callable
from typing import Iterator
from typing import Any
import inspect
def iterpoints(resp: dict, parser: Optional[Callable] = None) -> Iterator[Any]:
"""Iterates a response JSON yielding data point by point.
Can be used with both regular and chunked responses.
By default, returns just a plain list of values representing each point,
without column names, or other metadata.
In case a specific format is needed, an optional ``parser`` argument can be passed.
``parser`` is a function/callable that takes data point values
and, optionally, a ``meta`` parameter containing which takes a
dictionary containing all or a subset of the following:
``{'columns', 'name', 'tags', 'statement_id'}``.
Sample parser functions:
.. code:: python
# Function optional meta argument
def parser(*x, meta):
return dict(zip(meta['columns'], x))
# Namedtuple (callable)
from collections import namedtuple
parser = namedtuple('MyPoint', ['col1', 'col2', 'col3'])
:param resp: Dictionary containing parsed JSON (output from InfluxDBClient.query)
:param parser: Optional parser function/callable
:return: Generator object
"""
for statement in resp['results']:
if 'series' not in statement:
continue
for series in statement['series']:
if parser is None:
return (x for x in series['values'])
elif 'meta' in inspect.signature(parser).parameters:
meta = {k: series[k] for k in series if k != 'values'}
meta['statement_id'] = statement['statement_id']
return (parser(*x, meta=meta) for x in series['values'])
else:
return (parser(*x) for x in series['values'])
return iter([]) | 000c2c873ab38378bb42945ed3304213b254061a | 704,064 |
def convert_output_key(name):
""" Convert output name into IE-like name
:param name: output name to convert
:return: IE-like output name
"""
if not isinstance(name, tuple):
return name
if len(name) != 2:
raise Exception('stats name should be a string name or 2 elements tuple '
'with string as the first item and port number the second')
return '{}.{}'.format(*name) | d5c59766c615e0e7b45f173948692050a7b890e3 | 704,065 |
def in_polygon(point, polygon):
"""Simple wrapper on the within method of shapely points
Params: point (POINT) a shapely point object
polygon (POLYGON) a shapely polygon object (the target overlap area)
Returns: (bool) whether or not the point is within polygon expressed as a boolean
"""
return point.within(polygon) | 0a26d023672162a53affddfe23a89361d900d9a0 | 704,066 |
def set_spines(ax, plot_params):
"""
Sets spines of the shift graph to be invisible if chosen by the user
Parameters
----------
ax: Matplotlib ax
Current ax of the shift graph
plot_parms: dict
Dictionary of plotting parameters. Here `invisible_spines` is used
"""
spines = plot_params["invisible_spines"]
if spines:
for spine in spines:
if spine in {"left", "right", "top", "bottom"}:
ax.spines[spine].set_visible(False)
else:
print("invalid spine argument")
return ax | 4e74ce30f52d465e9470f608cd8c909dfae4d0a5 | 704,069 |
def matches(G, queue):
"""
If the sequence in 'queue' correspond to a
node in 'G', return the sequence id,
otherwise return False
"""
if not queue:
return False
seq = 0
for a in queue:
try:
seq = G[seq][a]
except KeyError:
return False
return seq | 859f43f6457b4add4cda88495a8dc6c4a559e5d5 | 704,071 |
def getPortList(chute):
"""
Get a list of ports to expose in the format expected by create_container.
Uses the port binding dictionary from the chute host_config section.
The keys are expected to be integers or strings in one of the
following formats: "port" or "port/protocol".
Example:
port_bindings = {
"1111/udp": 1111,
"2222": 2222
}
getPortList returns [(1111, 'udp'), (2222, 'tcp')]
"""
if not hasattr(chute, 'host_config') or chute.host_config == None:
config = {}
else:
config = chute.host_config
ports = []
for port in config.get('port_bindings', {}).keys():
if isinstance(port, int):
ports.append((port, 'tcp'))
continue
parts = port.split('/')
if len(parts) == 1:
ports.append((int(parts[0]), 'tcp'))
else:
ports.append((int(parts[0]), parts[1]))
# If the chute is configured to host a web service, check
# whether there is already an entry in the list for the
# web port. If not, we should add one.
web_port = chute.getWebPort()
if web_port is not None:
if not any(p[0] == web_port for p in ports):
ports.append((web_port, 'tcp'))
return ports | eb97568befca72f6d9cb6c455d8d9ad03b13eebf | 704,072 |
import re
def camelcase_to_snakecase(value: str) -> str:
"""
Convert a string from snake_case to camelCase.
>>> camelcase_to_snakecase('')
''
>>> camelcase_to_snakecase('foo')
'foo'
>>> camelcase_to_snakecase('fooBarBaz')
'foo_bar_baz'
>>> camelcase_to_snakecase('foo_bar_baz')
'foo_bar_baz'
>>> camelcase_to_snakecase('_fooBarBaz')
'_foo_bar_baz'
>>> camelcase_to_snakecase('__fooBarBaz_')
'__foo_bar_baz_'
"""
value = re.sub(r"[\-\.\s]", "_", value)
if not value:
return value
return value[0].lower() + re.sub(
r"[A-Z]", lambda matched: "_" + matched.group(0).lower(), value[1:]
) | 05fe02739e8152bc64ab35bd842162b5d7c3ab4c | 704,075 |
import uuid
def generate_unique_str(allow_dashes=True):
"""
Generate unique string using uuid package
Args:
allow_dashes (bool, optional): If true use uuid4() otherwise use hex that will skip dash in names. Defaults to True.
"""
if allow_dashes:
unique_str = str(uuid.uuid4())
else:
unique_str = uuid.uuid4().hex
return unique_str | 9a08364837ea719454b885fcb344631005e7a610 | 704,079 |
def remove_batch_from_layout(layout):
"""
The tf-mesh layout splits across batch size, remove it.
Useful for prediction steps, when you no longer want large batches.
:param layout: string describing tf-mesh layout
:return: layout minus batch dimension
"""
layout = layout.split(',')
ret_layout = ""
for i in layout:
if "batch" in i:
pass
else:
ret_layout += f"{i},"
return ret_layout[:-1] | 44d032504055e1133a6dc97ea040ff44ea2ac327 | 704,081 |
def _knapsack01_recur(val, wt, wt_cap, n):
"""0-1 Knapsack Problem by naive recursion.
Time complexity: O(2^n), where n is the number of items.
Space complexity: O(n).
"""
if n < 0 or wt_cap == 0:
return 0
if wt[n] > wt_cap:
# Cannot be put.
max_val = _knapsack01_recur(val, wt, wt_cap, n - 1)
else:
# Can be put: to put or not to put.
val_in = val[n] + _knapsack01_recur(val, wt, wt_cap - wt[n], n - 1)
val_ex = _knapsack01_recur(val, wt, wt_cap, n - 1)
max_val = max(val_in, val_ex)
return max_val | 88f73b2e2f577b5e17a4ba235699ad542dfc7f0d | 704,082 |
def auc_step(X, Y):
"""Compute area under curve using step function (in 'post' mode)."""
if len(X) != len(Y):
raise ValueError(
"The length of X and Y should be equal but got " + "{} and {} !".format(len(X), len(Y))
)
area = 0
for i in range(len(X) - 1):
delta_X = X[i + 1] - X[i]
area += delta_X * Y[i]
return area | 886f410a35a49a7098c1f2dcd145b54d1b54d423 | 704,084 |
def calculate_num_modules(slot_map):
"""
Reads the slot map and counts the number of modules we have in total
:param slot_map: The Slot map containing the number of modules.
:return: The number of modules counted in the config.
"""
return sum([len(v) for v in slot_map.values()]) | efbb82a54843f093a5527ebb6a1d4c4b75668ebb | 704,085 |
import filecmp
def files_differ(path_a, path_b):
"""
True if the files at `path_a` and `path_b` have different content.
"""
return not filecmp.cmp(path_a, path_b) | ea0382e619228cd0fc042a9003c34f33bd53f313 | 704,089 |
def m2(topic_srs, topic_vol, sharpe, ref_vol, cum=False, annual_factor=1):
"""Calcs m2 return which is a port to mkt vol adjusted return measure.
The Sharpe ratio can be difficult to interpret since it's a ratio, so M2
converts a Sharpe to a return number.
Args:
topic_srs (Pandas DataFrame of float): The series of interest.
topic_vol (Pandas DataFrame of float): The volatility of the topic
series.
sharpe (Pandas DataFrame of float): The Sharpe ratio of the topic.
ref_vol (Pandas DataFrame of float): The reference series' volatility.
The M2 return calculated with be comparable to this reference
series' return.
cum (bool, optional): Boolean flag to inidicate calculating a
cumulative value.
(default is False)
annual_factor (float, optional): The factor used to annualize the M2
value.
(default is 1)
Returns:
Pantas DataFrame of float: M2 return.
"""
return (topic_srs + (sharpe * (ref_vol - topic_vol))) * annual_factor | 8b05b0419db895d1de756cfb8751b9311cd43eca | 704,090 |
def find_largest(line: str) -> int:
"""Return the largest value in line, which is a whitespace-delimited string
of integers that each end with a '.'.
>>> find_largest('1. 3. 2. 5. 2.')
5
"""
# The largest value seen so far.
largest = -1
for value in line.split():
# Remove the trailing period.
v = int(value[:-1])
# If we find a larger value, remember it.
if v > largest:
largest = v
return largest | 95ceb1e79812e9ef9c7338f393e9d22224eb5a03 | 704,093 |
def strify(iterable_struct, delimiter=','):
""" Convert an iterable structure to comma separated string.
:param iterable_struct: an iterable structure
:param delimiter: separated character, default comma
:return: a string with delimiter separated
"""
return delimiter.join(map(str, iterable_struct)) | 3c8337691c9008449a86e1805fe703d6da73a523 | 704,098 |
def generate_pattern_eq_ipv4(value):
"""
makes a pattern to check an ip address
"""
return "ipv4-addr:value = '" + value + "'" | 36b4a09363512709c3bdf8046ea52f8ba14aa8e7 | 704,099 |
import torch
def undo_imagenet_preprocess(image):
""" Undo imagenet preprocessing
Input:
- image (pytorch tensor): image after imagenet preprocessing in CPU, shape = (3, 224, 224)
Output:
- undo_image (pytorch tensor): pixel values in [0, 1]
"""
mean = torch.Tensor([0.485, 0.456, 0.406]).view((3, 1, 1))
std = torch.Tensor([0.229, 0.224, 0.225]).view((3, 1, 1))
undo_image = image * std
undo_image += mean
return undo_image | 57d4cfc365c4e6c2dcfd37c8a2c500465daa421a | 704,102 |
def collapse(html):
"""Remove any indentation and newlines from the html."""
return ''.join([line.strip() for line in html.split('\n')]).strip() | a5a55691f2f51401dbd8b933562266cbed90c63d | 704,103 |
import pytz
def localtime(utc_dt, tz_str):
"""
Convert utc datetime to local timezone datetime
:param utc_dt: datetime, utc
:param tz_str: str, pytz e.g. 'US/Eastern'
:return: datetime, in timezone of tz
"""
tz = pytz.timezone(tz_str)
local_dt = tz.normalize(utc_dt.astimezone(tz))
return local_dt | f48844c72895813fdcd3913cfe7de0e6f6d0ac3c | 704,107 |
def HTTP405(environ, start_response):
"""
HTTP 405 Response
"""
start_response('405 METHOD NOT ALLOWED', [('Content-Type', 'text/plain')])
return [''] | f07522ac904ec5ab1367ef42eb5afe8a2f0d1fce | 704,110 |
def get_percentage(numerator, denominator, precision = 2):
"""
Return a percentage value with the specified precision.
"""
return round(float(numerator) / float(denominator) * 100, precision) | 7104f6bf2d88f9081913ec3fbae596254cdcc878 | 704,114 |
def _calculate_verification_code(hash: bytes) -> int:
"""
Verification code is a 4-digit number used in mobile authentication and mobile signing linked with the hash value to be signed.
See https://github.com/SK-EID/MID#241-verification-code-calculation-algorithm
"""
return ((0xFC & hash[0]) << 5) | (hash[-1] & 0x7F) | 173f9653f9914672160fb263a04fff7130ddf687 | 704,115 |
def suggest_parameters_DRE_NMNIST(trial,
list_lr, list_bs, list_opt,
list_wd, list_multLam, list_order):
""" Suggest hyperparameters.
Args:
trial: A trial object for optuna optimization.
list_lr: A list of floats. Candidates of learning rates.
list_bs: A list of ints. Candidates of batch sizes.
list_opt: A list of strings. Candidates of optimizers.
list_wd: A list of floats. weight decay
list_multLam: A list of floats. Prefactor of the second term of BARR.
list_order: A list of integers. Order of SPRT-TANDEM.
Returns:
learning_rate: A float.
batch_size: An int.
name_optimizer: A string.
weight_decay: A float.
param_multLam: A float.
order_sprt: An int.
"""
# load yaml interprrets, e.g., 1e-2 as a string...
for iter_idx in range(len(list_lr)):
list_lr[iter_idx] = float(list_lr[iter_idx])
learning_rate = trial.suggest_categorical('learning_rate', list_lr)
batch_size = trial.suggest_categorical('batch_size', list_bs)
name_optimizer = trial.suggest_categorical('optimizer', list_opt)
weight_decay = trial.suggest_categorical('weight_decay', list_wd)
param_multLam = trial.suggest_categorical('param_multLam', list_multLam)
order_sprt = trial.suggest_categorical('order_sprt', list_order)
return learning_rate, batch_size, name_optimizer,\
weight_decay, param_multLam, order_sprt | 627855f5fe8fd15d43cc7c8ca3da22b704b5907e | 704,119 |
def _contains_atom(example, atoms, get_atoms_fn):
"""Returns True if example contains any atom in atoms."""
example_atoms = get_atoms_fn(example)
for example_atom in example_atoms:
if example_atom in atoms:
return True
return False | c9e60d956585c185f9fb62cc0d11f169e6b79f88 | 704,121 |
def get_diff_level(files):
"""Return the lowest hierarchical file parts level at which there are differences among file paths."""
for i, parts in enumerate(zip(*[f.parts for f in files])):
if len(set(parts)) > 1:
return i | c9c3f774712684c6817c8bb5b3bf9c101e1df8fa | 704,122 |
def get_max(list_tuples):
"""
Returns from a list a tuple which has the highest value as first element.
If empty, it returns -2's
"""
if len(list_tuples) == 0:
return (-2, -2, -2, -2)
# evaluate the max result
found = max(tup[0] for tup in list_tuples)
for result in list_tuples:
if result[0] == found:
return result | 91c662d5865de346a1ac73025ced78a996077111 | 704,123 |
import six
def remove_nulls_from_dict(d):
"""
remove_nulls_from_dict function recursively remove empty or null values
from dictionary and embedded lists of dictionaries
"""
if isinstance(d, dict):
return {k: remove_nulls_from_dict(v) for k, v in six.iteritems(d) if v}
if isinstance(d, list):
return [remove_nulls_from_dict(entry) for entry in d if entry]
else:
return d | dd0da02eae06ceccc1347e6ac87dcb65bdc44126 | 704,125 |
def safe_divide(num, denom):
"""Divides the two numbers, avoiding ZeroDivisionError.
Args:
num: numerator
denom: demoninator
Returns:
the quotient, or 0 if the demoninator is 0
"""
try:
return num / denom
except ZeroDivisionError:
return 0 | 144cf6bf8b53ab43f3ab2e16e7dd2c95f5408035 | 704,130 |
def convert_units(P, In='cm', Out='m'):
"""
Quickly convert distance units between meters, centimeters and millimeters
"""
c = {'m':{'mm':1000.,'cm':100.,'m':1.},
'cm':{'mm':10.,'cm':1.,'m':0.01},
'mm':{'mm':1.,'cm':0.1,'m':0.001}}
return c[In][Out]*P | bc318011ffc71d575c7e7276c2dede467a84dc2c | 704,132 |
def F16(x):
"""Rosenbrock function"""
sum = 0
for i in range(len(x)-1):
sum += 100*(x[i+1]-x[i]**2)**2+(x[i]+1)**2
return sum | 7421ad45568a8b86aff41fc5c8466ae6ce7aeb9d | 704,134 |
def div_up(a, b):
"""Return the upper bound of a divide operation."""
return (a + b - 1) // b | e297f2d08972ebc667d1f3eadca25ef885ef5453 | 704,137 |
def solar_elevation_angle(solar_zenith_angle):
"""Returns Solar Angle in Degrees, with Solar Zenith Angle, solar_zenith_angle."""
solar_elevation_angle = 90 - solar_zenith_angle
return solar_elevation_angle | f896c5d0608171f3e5bd37cede1965fe57846d07 | 704,139 |
def parse_ucsc_file_index(stream, base_url):
"""Turn a UCSC DCC files.txt index into a dictionary of name-value pairs
"""
file_index = {}
for line in stream:
filename, attribute_line = line.split('\t')
filename = base_url + filename
attributes = {}
for assignment in attribute_line.split(';'):
name, value = assignment.split('=')
attributes[name.strip()] = value.strip()
file_index[filename] = attributes
return file_index | 2d74bae9c7f2584ff8d859c8d2781faa3f6631b5 | 704,142 |
def update_internal_subnets(
self,
ipv4_list: list = [
"10.0.0.0/8",
"172.16.0.0/12",
"192.168.0.0/16",
"169.254.0.0/16",
"224.0.0.0/4",
],
ipv6_list: list = [],
segment_ipv4_list: list = [],
non_default_routes: bool = False,
) -> bool:
"""Update the list of internal subnets to use to classify internet
traffic.
.. list-table::
:header-rows: 1
* - Swagger Section
- Method
- Endpoint
* - internalSubnets
- POST
- /gms/internalSubnets2
Any traffic not matching the internal subnets will be classified as
internet traffic. This list will be pushed to all appliances. User
can configure up to 512 subnets in each ipv4 and ipv6 entry.
.. warning::
This will overwrite current subnets!
:param ipv4_list: List of ipv4 networks in CIDR format for all VRFs,
defaults to ["10.0.0.0/8", "172.16.0.0/12", "192.168.0.0/16",
"169.254.0.0/16", "224.0.0.0/4"]
:type ipv4_list: list, optional
:param ipv6_list: List of ipv6 networks in CIDR format,
defaults to []
:type ipv6_list: list, optional
:param segment_ipv4_list: List of ipv4 networks each prefaced with
related VRF id #, e.g. For VRF 1 only ["1:192.168.0.0/16"],
defaults to []
:type segment_ipv4_list: list, optional
:param non_default_routes: Treat non-default routes as internal
subnets, defaults to False
:param non_default_routes: bool, optional
:return: Returns True/False based on successful call.
:rtype: bool
"""
data = {
"ipv4": ipv4_list,
"ipv6": ipv6_list,
"segmentIpv4": segment_ipv4_list,
"nonDefaultRoutes": non_default_routes,
}
return self._post(
"/gms/internalSubnets2",
data=data,
expected_status=[204],
return_type="bool",
) | ce1a11f2cbdb01c81fb01a13ba3d73c7ce5d0cf6 | 704,143 |
from operator import add
def expand_to_point(b1, p1):
"""
Expand bbox b1 to contain p1: [(x,y),(x,y)]
"""
for p in p1:
b1 = add(b1, (p[0], p[1], p[0], p[1]))
return b1 | 5a79646403f7f9c2397aadb4f1826d8309eb8dcb | 704,145 |
def format_fields(field_data, include_empty=True):
"""Format field labels and values.
Parameters
----------
field_data : |list| of |tuple|
2-tuples of field labels and values.
include_empty : |bool|, optional
Whether fields whose values are |None| or an empty |str| should
be included in the formatted fields.
Returns
-------
str
Formatted field labels and values.
Examples
--------
>>> field_data = [('Name', 'Jane'), ('Age', 30), ('DOB', None)]
>>> format_fields(field_data, include_empty=True)
Name: Jane
Age: 30
DOB: None
>>> field_data = [('Name', 'Jane'), ('Age', 30), ('DOB', None)]
>>> format_fields(field_data, include_empty=False)
Name: Jane
Age: 30
"""
max_label = 0
for (label, value) in field_data:
label_length = len(label)
if label_length > max_label:
max_label = label_length
fields = []
for (label, value) in field_data:
empty = str(value).strip() in ['', 'None']
if not empty or include_empty:
label_length = len(label.strip())
extra_spaces = ' ' * (max_label - label_length)
label_sep = ':' + extra_spaces + ' '
joined_field = label_sep.join([label, str(value)])
fields.append(joined_field)
return '\n'.join(fields) | cce4b5279e01c33fec0f83c6f86141c33012fc4c | 704,155 |
import re
def only_bf(txt):
""" Strip a string from all characters, except brainfuck chars """
return re.sub(r"[^\.,<>\+-\]\[]", "", txt) | 8c32b11d511f5c7b92d7454dcbfea09627ddf172 | 704,156 |
import re
import string
def validate_word(word, text):
"""Check if something is a valid "word" submission with previous existing text.
Return (valid, formatted_word, message), where valid is a boolean, formatted_word is
the word ready to be added to existing text (adding a space if applicable for example), and
message is an error message if the word was not valid.
It can be a word, or ?, !, . for now. Can make it a little more complicated later."""
if not text:
if re.fullmatch("[a-zA-Z']+", word):
return (True, string.capwords(word), "")
else:
return (False, "", "Story must begin with a word")
if word == "":
return (False, "", "You have to write something!")
if re.fullmatch("[a-zA-Z']+", word):
if text[-1] in ["?", ".", "!", "\n"]:
return (True, (' ' + string.capwords(word)), "")
else:
return (True, (' ' + word), "")
if re.fullmatch("\-[a-zA-Z']+", word):
if not text[-1].isalpha():
return (False, "", "You can only hyphenate after a word.")
if re.search("\-'", word):
return(False, "", "An apostrophe cannot directly follow a hyphen.")
else:
return (True, word, "")
if re.search(",", word):
if re.fullmatch(", [a-zA-Z']+", word):
if text[-1].isalpha():
return (True, word, "")
else:
return (False, "", "A comma can only come after a word.")
else:
return (False, "", "Invalid comma use.")
if word in ["?", ".", "!"]:
if text[-1].isalpha():
return (True, word, "")
else:
return (False, "", "Sentence-ending punctuation can only go after a word.")
if " " in word:
return (False, "", "Word cannot contain spaces except after a comma.")
else:
return (False, "", "Not a valid word for some reason (disallowed characters?)") | 658873c8cbf446cbe53ec5f806db668ceecaa2cf | 704,158 |
def process_content_updates(results):
"""Process Content Updates
Args:
results (Element): XML results from firewall
Returns:
max_app_version (str): A string containing the latest App-ID version
"""
app_version_list = []
version_list = results.findall('./result/content-updates/entry')
for version in version_list:
app_version = version.find('./version').text
app_version_list.append(app_version)
max_app_version = max(app_version_list)
return max_app_version | 021c9ac9246034874a1fe274fb49aabfa0f15d61 | 704,159 |
def inverso(x):
"""
El inverso de un número.
.. math::
\\frac{1}{x}
Args:
x (float): Número a invertir.
Returns:
float: El inverso.
"""
return 1 / x | 16f2cb9466efa661d3ee8b10b6a0d637273f6b7c | 704,161 |
def galeshapley(suitor_pref_dict, reviewer_pref_dict, max_iteration):
""" The Gale-Shapley algorithm. This is known to provide a unique, stable
suitor-optimal matching. The algorithm is as follows:
(1) Assign all suitors and reviewers to be unmatched.
(2) Take any unmatched suitor, s, and their most preferred reviewer, r.
- If r is unmatched, match s to r.
- Else, if r is matched, consider their current partner, r_partner.
- If r prefers s to r_partner, unmatch r_partner from r and
match s to r.
- Else, leave s unmatched and remove r from their preference
list.
(3) Go to (2) until all suitors are matched, then end.
Parameters
----------
suitor_pref_dict : dict
A dictionary with suitors as keys and their respective preference lists
as values
reviewer_pref_dict : dict
A dictionary with reviewers as keys and their respective preference
lists as values
max_iteration : int
An integer as the maximum iterations
Returns
-------
matching : dict
The suitor-optimal (stable) matching with suitors as keys and the
reviewer they are matched with as values
"""
suitors = list(suitor_pref_dict.keys())
matching = dict()
rev_matching = dict()
for i in range(max_iteration):
if len(suitors) <= 0:
break
for s in suitors:
r = suitor_pref_dict[s][0]
if r not in matching.values():
matching[s] = r
rev_matching[r] = s
else:
r_partner = rev_matching.get(r)
if reviewer_pref_dict[r].index(s) < reviewer_pref_dict[r].index(r_partner):
del matching[r_partner]
matching[s] = r
rev_matching[r] = s
else:
suitor_pref_dict[s].remove(r)
suitors = list(set(suitor_pref_dict.keys()) - set(matching.keys()))
return matching | 5b52cb165d15a0992b58c38958daf222d8d642cd | 704,166 |
from pathlib import Path
def create_upload_file(tmp_path):
"""Create temporary text file for upload."""
file_path = Path(tmp_path, "test_upload_1.txt")
with open(file_path, "w") as f:
f.write("Hello World")
return file_path | 50b707f59736ae1b1e06018aedec451b578eafc8 | 704,168 |
def get_path_up_down(path_source, path_target):
"""paths for up/down
NOTE: both lists always show the LOWER level element
even for the so for path up, it shows the source,
for path down the target!
Args:
path_source(list)
path_target(list)
"""
# find common part of path
path_shared = []
for pu, pd in zip(path_source, path_target):
if pu != pd:
break
path_shared.append(pu)
n = len(path_shared) # root is always shared
peak = path_shared[-1]
path_down = path_target[n:]
path_up = list(reversed(path_source[n:]))
return path_up, peak, path_down | ba4719b42e0703ea0ac885de29b36466b7eb3676 | 704,169 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.