content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def _to_int(parsed):
"""
Transforms the received parsed value into an integer.
:param parsed: the parsed value
:return: an integer created from the value
"""
if len(parsed) > 0:
return int(parsed[0])
else:
return None | 1701648c7e42232c8be0c7451d19ffe43f322118 | 699,589 |
def get_model_string(model):
"""
:param model: model
:returns: <app_label>.<model_name> string representation for the model
"""
return "{app_label}.{model_name}".format(app_label=model._meta.app_label, model_name=model._meta.model_name) | d54323680c4a15cc99bbbcea09cf319c571ff9cf | 699,590 |
def check_overscan(xstart, xsize, total_prescan_pixels=24,
total_science_pixels=4096):
"""Check image for bias columns.
Parameters
----------
xstart : int
Starting column of the readout in detector coordinates.
xsize : int
Number of columns in the readout.
total_prescan_pixels : int
Total prescan pixels for a single amplifier on a detector.
Default is 24 for WFC.
total_science_pixels : int
Total science pixels across a detector.
Default is 4096 for WFC (across two amplifiers).
Returns
-------
hasoverscan : bool
Indication if there are bias columns in the image.
leading : int
Number of bias columns on the A/C amplifiers
side of the CCDs ("TRIMX1" in ``OSCNTAB``).
trailing : int
Number of bias columns on the B/D amplifiers
side of the CCDs ("TRIMX2" in ``OSCNTAB``).
"""
hasoverscan = False
leading = 0
trailing = 0
if xstart < total_prescan_pixels:
hasoverscan = True
leading = abs(xstart - total_prescan_pixels)
if (xstart + xsize) > total_science_pixels:
hasoverscan = True
trailing = abs(total_science_pixels -
(xstart + xsize - total_prescan_pixels))
return hasoverscan, leading, trailing | 934d7683a710e9fe88d488398a9ad9e769470460 | 699,592 |
def vec_reverse(a):
"""
Reverses a vector
Parameters
----------
a: list[]
A vector of scalar values
Returns
-------
list[]
The reversed vector
"""
return a[::-1] | b22e13746de1fe8de60d774b1e20f5c5528507ff | 699,595 |
def t04_ValueDNE(C, pks, crypto, server):
"""Checks that values not stored at the server return None."""
score = 0
alice = C("alice")
score += alice.download("a") is None
score += alice.download("b") is None
score += alice.download("c") is None
alice.upload("d", "e")
score += alice.download("e") is None
score += alice.download("d") == "e"
return float(score) / 5.0 | af42da60a48d407ad16da6801e847417dbcc69e9 | 699,596 |
def get_cell_values(queries, subjects, key=len, attr=None):
"""Generates the values of cells in the binary matrix.
This function calls some specified key function (def. max) against all
values of a specified attribute (def. None) from Hits inside Subjects which
match each query. By default, this function will just count all matching Hits
(i.e. len() is called on all Hits whose query attribute matches). To find
maximum identities, for example, provide key=max and attr='identity' to this
function.
Parameters:
queries (list): Names of query sequences.
subjects (list): Subject objects to generate vlaues for.
key (callable): Some callable that takes a list and produces a value.
attr (str): A Hit attribute to calculate values with in key function.
"""
result = [0] * len(queries)
for index, query in enumerate(queries):
values = [
getattr(hit, attr) if attr else hit
for subject in subjects
for hit in subject.hits
if hit.query == query
]
result[index] = key(values)
return result | 4725a4c9f9dc291ff0e8595bb25f51c4612f747d | 699,598 |
def and_(fst, snd):
"""Wraps the logical and function."""
return fst and snd | c03f2cb9178aa2863e2da58e4fe2741f4a98ea79 | 699,599 |
def _partition(sequence, size, count):
"""Partition sequence into count subsequences of size
length, and a remainder.
Return (partitions, remainder), where partitions is a sequence of
count subsequences of cardinality count, and
apply(append, partitions) + remainder == sequence."""
partitions = []
for index in range(0, size * count, size):
partitions.append(sequence[index:index + size])
return (partitions, sequence[size * count:]) | e33e7eaa35e3c57f0decda50e863686f529d5afa | 699,600 |
import re
def parse_docket_number(docket_number):
""" Parse a Common Pleas docket number into its components.
A docket number has the form "CP-46-CR-1234567-2019"
This method takes a docket number as a string and
returns a dictionary with the different parts as keys
"""
patt = re.compile(
"(?P<court>[A-Z]{2})-(?P<county>[0-9]{2})-" +
"(?P<docket_type>[A-Z]{2})-(?P<docket_index>[0-9]{7})-" +
"(?P<year>[0-9]{4})")
match = patt.match(docket_number)
if match is None:
return None
else:
return match.groupdict() | 8f9af7709f881cc82bb7d22b420a5361e085de70 | 699,602 |
def build_url(param_dict):
"""
Builds the URL needed to query [University of Wyoming, College of Engineering, Department of Atmospheric Science's website](http://weather.uwyo.edu/upperair/sounding.html) to get the proper sounding data.
Parameters
----------
param_dict : dict
A dictionary containing the station number, year, month, and day/hour of the desired date and location.
Returns
-------
full_url : string
String of the query URL with the proper date and location of the desired atmospheric sounding.
"""
base_url = 'http://weather.uwyo.edu/cgi-bin/sounding?TYPE=TEXT%3ALIST'
full_url = base_url
for key in param_dict.keys():
full_url += '&' + key + '=' + param_dict[key]
return full_url | 77825ae917650d1b832333920b6363d4dac7c36b | 699,604 |
def in_month(ref_date):
""" which month contains a reference date
:param ref_date: mx.DateTime reference date
:rtype: range_string e.g. 2007-M12
"""
return "%4d-M%02d" % (ref_date.year, ref_date.mon) | fe8126529521565e35f2012e359d7a9c57b773d1 | 699,606 |
def _precipitable_water(ea, pair):
"""Precipitable water in the atmosphere (Eq. D.3)
Parameters
----------
ea : ee.Image
Vapor pressure [kPa].
pair : ee.Image or ee.Number
Air pressure [kPa].
Returns
-------
ee.Image or ee.Number
Precipitable water [mm].
Notes
-----
w = pair * 0.14 * ea + 2.1
"""
return ea.multiply(pair).multiply(0.14).add(2.1) | a56b3948167fb22bb49b6f84bd3980a2666dd345 | 699,607 |
from pathlib import Path
def fullpath(path=""):
""" Path: Expand relative paths and tildes. """
return Path.cwd() / Path(path).expanduser() | e7b7d1caa67a2a9988035713ec18347b5581406e | 699,611 |
import io
def read_file(path):
"""Returns all the lines of a file at path as a List"""
file_lines = []
with io.open(path, mode="rt", encoding="utf-8") as the_file:
file_lines = the_file.readlines()
return file_lines | 8e220e0b90ded168a1d1d8d37b7451b7796b1ed5 | 699,612 |
import turtle
def new_horse(image_file):
"""(str) -> turtle
Create a new horse where <image_file> is a valid shapename
Returns a turtle object
"""
horse = turtle.Turtle()
horse.hideturtle()
horse.shape(image_file)
return horse | 8abd7ea09cfe3340c06250f430ee6f25b03f45aa | 699,615 |
import re
def sort_simulations(df_ts, dyn_dend_order):
"""
Sorts the simulations in the dataframe according to the order in the list dyn_dend_order
"""
# Create a dictionary with the order of each simulation row in the plot
dyn_dend_order_dict = { dyn_name : dyn_dend_order.index(dyn_name) for dyn_name in dyn_dend_order }
# Adding column based in new order recieved from clustering
df_ts['clust_order'] = df_ts['Id'].apply(lambda x: dyn_dend_order_dict[x])
#Sorting by ballesteros Id's (helixloop column) and clustering order
df_ts['helixloop'] = df_ts['Position'].apply(lambda x: re.sub(r'^(\d)x',r'\g<1>0x',x))
df_ts = df_ts.sort_values(["helixloop",'clust_order'])
#Drop sort columns once used
df_ts.drop(['helixloop','clust_order'], axis = 1, inplace = True)
return df_ts | 68ae24234698803e9f5dd861d7f5255f845401c7 | 699,616 |
import csv
def load_penetration(scenario, path):
"""
Load penetration forecast.
"""
output = {}
with open(path, 'r') as source:
reader = csv.DictReader(source)
for row in reader:
if row['scenario'] == scenario.split('_')[0]:
output[int(row['year'])] = float(row['penetration'])
return output | 23a9730e9d8ec524fe79eaf50c3adb2a1641d002 | 699,617 |
def get4Neighbors(img, i, j):
"""
Get the 4 neighbours for the pixel analysed.
Parameters: img, image;
i, row number;
j, column number.
Returns: neighbors, list of neighbors.
"""
N, M = img.shape
neighbors = []
if i - 1 >= 0:
neighbors.append(img[i-1][j])
if j - 1 >= 0:
neighbors.append(img[i][j-1])
if j - 1 >= 0 and i - 1 >= 0:
neighbors.append(img[i-1][j-1])
if j + 1 < M and i - 1 >= 0:
neighbors.append(img[i-1][j+1])
return neighbors | e3765a34ad02b9cf8d1be19f6e0e03db20ea28df | 699,618 |
def input_block(config, section):
"""Return the input block as a string."""
block = ''
if section not in config:
return ''
for key in config[section]:
value = config[section][key].strip()
if value:
block += '{} {}\n'.format(key, value)
else:
block += key + '\n'
return block | 4f6ff5979c99171b390429bc6e90b325986d9f99 | 699,620 |
import hashlib
def git_hash_data(data, typ='blob'):
"""Calculate the git-style SHA1 for some data.
Only supports 'blob' type data at the moment.
"""
assert typ == 'blob', 'Only support blobs for now'
return hashlib.sha1(b'blob %d\0%s' % (len(data), data)).hexdigest() | b3195de0c04444a811308e8b2b79b5d136095ea8 | 699,624 |
def transpose(table):
"""Returns: copy of table with rows and columns swapped
Precondition: table is a (non-ragged) 2d List"""
new_table = []
n_row = len(table)
n_col = len(table[0])
for col in range(n_col):
each_col = []
for row in range(n_row):
each_col.append(table[row][col])
new_table.append(each_col)
# print(table)
# print(new_table)
return new_table | 11c74863d8b1941f1a74fb1c054f67b8dd2f22e8 | 699,628 |
def getSheetContent(sheet):
"""
Returns two dimensional array of all non empty content of the given
sheet. Array contains string and double values.
"""
cursor = sheet.createCursor()
cursor.gotoStartOfUsedArea(False)
cursor.gotoEndOfUsedArea(True)
return [list(row) for row in cursor.getDataArray()] | 9a77c7dadcdf5247f30fa3dc4fa87cc5683cfee2 | 699,633 |
def sbas_nav_decode(dwrds: list) -> dict:
"""
Helper function to decode RXM-SFRBX dwrds for SBAS navigation data.
:param list dwrds: array of navigation data dwrds
:return: dict of navdata attributes
:rtype: dict
"""
return {"dwrds": dwrds} | 215d945ac939a817ae84fa08607b72e0c14a1cc9 | 699,634 |
def constant(step, total_train_steps, value=1.0):
"""Constant learning rate (multiplier).
Args:
step: a tf.Scalar
total_train_steps: a number
value: a number or tf.Scalar
Returns:
a tf.Scalar, the learning rate for the step.
"""
del step, total_train_steps
return value | 53285310764c8d627ae366b2ec8e5ff98339e612 | 699,635 |
def set_image(images, row, issues, pre, overrides={}, verbose=False):
"""
Update an image based on known issues.
Given an image, image metadata, and a set of known issues, determine if any
of the known issues apply to the image in question and, if they do, make
the appropriate edits to the image.
Parameters
----------
images : dict
Dict of (SCI, ERR, DQ) np.ndarray images
row : abscal.common.exposure_data_table.AbscalDataTable
A single-row table containing metadata on the image
issues : dict
A dictionary containing a set of parameters, along with information to
identify files whose parameters should be adjusted.
overrides : dict
A dictionary containing any parameters whose value is being overridden
by the user.
verbose : bool
Whether or not informational output should be printed.
Returns
-------
image : tuple
Tuple of (SCI, ERR, DQ) np.ndarray images, as edited.
"""
# print("set_image with {}, {}, {}, {}".format(images, row, issues, overrides))
for issue in issues:
# print(issue)
# print(issue["column"], type(issue["column"]))
# print(row)
found = False
if issue["column"] in row:
if isinstance(issue["column"], str):
issue_len = len(issue["value"])
if issue["value"] == row[issue["column"]][:issue_len]:
found = True
else:
if issue["value"] == row[issue["column"]]:
found = True
if found:
if len(issue["x"]) > 1:
x1, x2 = issue["x"][0], issue["x"][1]
else:
x1, x2 = issue["x"][0], issue["x"][0]+1
if len(issue["y"]) > 1:
y1, y2 = issue["y"][0], issue["y"][1]
else:
y1, y2 = issue["y"][0], issue["y"][0]+1
images[issue["ext"]][y1:y2,x1:x2] = issue["value"]
if verbose:
reason = issue["reason"]
source = issue["source"]
value = issue["value"]
msg = "{}: changed ({}:{},{}:{}) to {} because {} from {}"
print(msg.format(pre, y1, y2, x1, x2, value, reason, source))
return images | fae11f006dc93abdc0b04dc0aaf09c2ce4642450 | 699,637 |
def boyer_moore_preprocessing(pattern, alphabet_size=4):
"""
Bad character rule used by Boyer-Moore algorithm:
For each character x in the alphabet, let R(x) be the position of right-most occurrence of character x in P.
R(x) is defined to be zero if x does not occur in P.
"""
R = [0] * alphabet_size
for i in range(len(pattern)):
R[pattern[i]] = i
return R | 1d70891cfe0f0f55579c7a9349fb24d6954379fd | 699,639 |
def max_consecutive_sum(array):
"""
given an array of numbers (positive, negative, or 0)
return the maximum sum of consecutive numbers
"""
max_value = max(array)
running_sum = 0
for num in array:
if running_sum < 0:
running_sum = 0
running_sum += num
if running_sum > max_value:
max_value = running_sum
return max_value | 32e7322f8936f8399ec2ebe0702dbb10332cb529 | 699,640 |
def _mask_for_bits(i):
"""Generate a mask to grab `i` bits from an int value."""
return (1 << i) - 1 | 53fc285225632cce34a74536a085cfe0af10300a | 699,644 |
import random
def random_int(min_num=1, max_num=200):
"""
return an int inclusively between min_nim and max_num
:param min_num:
:param max_num:
:return: {int} a number
"""
return random.randint(min_num, max_num) | 0c481f889f4a40e8a72a1efa44244e113f395168 | 699,646 |
def checkIfDuplicates_2(listOfElems):
""" Check if given list contains any duplicates """
setOfElems = set()
for elem in listOfElems:
if elem in setOfElems:
return True
else:
setOfElems.add(elem)
return False | a7d9f322faefa4b0b0191ca96097bbf38c61ee3d | 699,649 |
async def root():
"""
Default endpoint for testing if the server is running
:return: Positive JSON Message
"""
return {"MLDatasetTemplate is Running!"} | 17fccde4f21561a5166e39ca43df9e88539e0b2e | 699,651 |
def delete(context, key):
"""Delete a key from the current task context."""
return context.pop(key, None) | 0b697ede943653ba41e7c50fff86907f93becee1 | 699,653 |
def matches_beginning(prefix: str, allowlist_key: str) -> bool:
""""
:param prefix: the value of the prefix query parameter
:param allowlist_key: the key from
:return: a bool of whether the prefix can be found on the allowlist.
Both values are stripped of leading `/` before comparison.
"""
return prefix.lstrip('/').find(allowlist_key.lstrip('/')) == 0 | ef047dfe16722d98b8fe894d3c400330a2defd74 | 699,654 |
import torch
def create_tau( fval, gradf, d1x, d2x, smoothing_operator=None ):
"""
tau = create_tau( fval, gradf, d1x, d2x )
In:
fval: torch.FloatTensor
of shape B
gradf: torch.FloatTensor
of shape B*C*H*W
d1x: torch.FloatTensor
of shape B*C*H*W
d2x: torch.FloatTensor
of shape B*C*H*W
smoothing_operator: function
A self-adjoint smoothing operator sending torch.FloatTensor
of shape B*2*H*W to torch.FloatTensor of shape B*2*H*W.
Out:
tau: torch.FloatTensor
of shape B*H*W*2
"""
B,C,H,W = gradf.shape
# Sum over color channels
alpha1 = torch.sum( gradf*d1x, 1).unsqueeze_(1)
alpha2 = torch.sum( gradf*d2x, 1).unsqueeze_(1)
# stack vector field components into shape B*2*H*W
tau = torch.cat([alpha1,alpha2], 1)
# Smoothing
if smoothing_operator:
tau = smoothing_operator( tau )
# torch can't sum over multiple axes.
norm_squared_alpha = (tau**2).sum(1).sum(1).sum(1)
# In theory, we need to apply the filter a second time.
tau = smoothing_operator( tau )
else:
# torch can't sum over multiple axes.
norm_squared_alpha = (tau**2).sum(1).sum(1).sum(1)
scale = -fval/norm_squared_alpha
tau *= scale.view(B,1,1,1)
# rearrange for compatibility with compose(), B*2*H*W -> B*H*W*2
return tau.permute( 0, 2, 3, 1 ).detach() | 5e086908e432fbc6a34e1ce72bee84a1f467823e | 699,656 |
def format_seconds(delta):
"""
Given a time delta object, calculate the total number of seconds and return
it as a string.
"""
def _total_seconds(td):
return (td.microseconds + (td.seconds + td.days * 24 * 3600) * 10 ** 6) / 10 ** 6
return '%s' % (_total_seconds(delta)) | 60248f96a64b04be6480e27aa134c943461a6daa | 699,657 |
def convert_str_to_list(sequence: str, is_ordered_sequence: bool = True, is_first_term_seq_name: bool = True):
"""
sequence: A string that contains a comma seperated numbers
is_first_term_seq_name: True to drop the first term (i.e. A01255,1,3,5, ...)
return: A list of integers in a list (String ---> List)
"""
terms_split: list
sequence = sequence.strip().strip(",")
if is_ordered_sequence:
terms_split = sequence.split(",")
else:
terms_split = sequence.split(" ")
if is_first_term_seq_name:
del terms_split[0] # Delete the name of the sequence
int_list: list = [0] * (len(terms_split))
for idx in range(0, len(terms_split)):
int_list[idx] = int(terms_split[idx])
return int_list | f73213ae3484e00824920722eb58368bb116886b | 699,663 |
def filter_chants_without_notes(chants, logger=None):
"""Exclude all chants without notes"""
notes_pattern = r'[89abcdefghjklmnopqrs\(\)ABCDEFGHJKLMNOPQRS]+'
contains_notes = chants.volpiano.str.contains(notes_pattern) == True
return chants[contains_notes] | 98324a2b9c17d975ebfc7860ad9ca38e65db481e | 699,666 |
def correct_eval_poly(d):
"""This function evaluates the polynomial poly at point x.
Poly is a list of floats containing the coeficients
of the polynomial
poly[i] -> coeficient of degree i
Parameters
----------
poly: [float]
Coefficients of the polynomial,
where poly[i] -> coeficient of degree i
x : float
Point
Returns
-------
float
Value of the polynomial at point x
Example
-------
>>> eval_poly( [1.0, 1.0], 2)
3.0
"""
poly, x = d["poly"], d['x']
result = 0.0
power = 1
degree = len(poly) - 1
i = 0
while i <= degree:
result = result + poly[i] * power
power = power * x
i = i + 1
return (d,result) | 5a0042c0fb28a5fa4891f86b8b8fa70516fbed34 | 699,667 |
import torch
def zeros(shape, dtype=None, device = None):
"""
Creates a tensor with all elements set to zero.
Parameters
----------
shape : A list of integers
a tuple of integers, or a 1-D Tensor of type int32.
dtype : tensor
The DType of an element in the resulting Tensor
Returns
-------
A Tensor with all elements set to zero.
"""
if device == 'cpu':
device = torch.device('cpu')
elif device == 'gpu':
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
return torch.zeros(size=shape, dtype=dtype, device = device) | e8e7b18a1f0d2999152504536709388440c56f1a | 699,668 |
import random
def chapter_uid_generator() -> str:
"""Random number generator for Mastroka chapter UIDs."""
return str(random.choice(range(int(1E18), int(1E19)))) | 024ea43a93d3e94576324364375542338b859d13 | 699,669 |
from datetime import datetime
def generate_header(header: str = "") -> str:
"""
Generates a file header.
Args:
header: A custom header to insert.
Returns:
str: The generated header of a file.
"""
syntax = " Warning generated file ".center(90, "-")
date = datetime.now().isoformat()
syntax += "\n"
syntax += f"Generated at: {date}"
syntax += "\n"
syntax += "".center(90, "-")
return header if header else syntax | 0821aef1f5f77dcd7b9fb1bcbcbca74749c3ed4a | 699,671 |
from typing import Callable
import time
def create_timer() -> Callable[[], float]:
"""Create a timer function that returns elapsed time since creation of the timer function"""
start = time.time()
def elapsed():
return time.time() - start
return elapsed | e97fbb8b6fded209d1e5659f548feac726d9cf04 | 699,681 |
from typing import Mapping
def recursive_update(old_dict, update_dict):
"""
Update one embed dictionary with another, similar to dict.update(),
But recursively update dictionary values that are dictionaries as well.
based on the answers in
https://stackoverflow.com/questions/3232943/update-value-of-a-nested-dictionary-of-varying-depth
"""
for k, v in update_dict.items():
if isinstance(v, Mapping):
old_dict[k] = recursive_update(old_dict.get(k, {}), v)
else:
old_dict[k] = v
return old_dict | 7f0c4fdca6a58f8416e5f9c2762918fa776d8d9d | 699,685 |
import copy
def merge_dicts(dict1, dict2):
"""Recursively merge two dictionaries.
Values in dict2 override values in dict1. If dict1 and dict2 contain a dictionary as a
value, this will call itself recursively to merge these dictionaries.
This does not modify the input dictionaries (creates an internal copy).
Parameters
----------
dict1: dict
First dict.
dict2: dict
Second dict. Values in dict2 will override values from dict1 in case they share the same key.
Returns
-------
return_dict: dict
Merged dictionaries.
"""
if not isinstance(dict1, dict):
raise ValueError(f"Expecting dict1 to be dict, found {type(dict1)}.")
if not isinstance(dict2, dict):
raise ValueError(f"Expecting dict2 to be dict, found {type(dict2)}.")
return_dict = copy.deepcopy(dict1)
for k, v in dict2.items():
if k not in dict1:
return_dict[k] = v
else:
if isinstance(v, dict) and isinstance(dict1[k], dict):
return_dict[k] = merge_dicts(dict1[k], dict2[k])
else:
return_dict[k] = dict2[k]
return return_dict | b3dccd6301be21a096bb3d299793b4cf1461c3d9 | 699,686 |
def adder_function(args):
"""Dummy function to execute returning a single float."""
loc, scale = args
return loc + scale | 7646bb1acc324f05c92268b78fefaa75283f812a | 699,688 |
import requests
def get_api_results(url, id):
"""[summary]
Args:
url ([str]): [External API url]
id ([int]): [member id]
Returns:
[json]: [API request response]
"""
r = requests.get(url.format(id))
return r.json() | 4dc686c616f3ea9124c866b593d44bdc63e54d1d | 699,689 |
def window_optical_flow(vec, window):
"""
Return pairs of images to generate the optical flow.
These pairs contains the first and the last image of the optical flow
according to the size of the window.
Parameters:
-----------
vec : array_like
sorted list containing the image ids (type int)
window : int
size of the window to generate the optical flow
Returns:
--------
pairs : array_like
list containing tuples with pairs as (first image, last image)
of the optical flow
Usage:
------
>>> vec = [0, 1, 2, 3]
>>> window_optical_flow(vec, 2)
[(0, 2), (1, 3), (2, 3), (3, 3)]
"""
pairs = []
for img in vec:
last_img = img + window
if last_img in vec:
pairs.append((img, last_img))
else:
pairs.append((img, vec[-1]))
return pairs | dde566f6eff6845cb16a1acec95a7bdbc4609b11 | 699,691 |
def text_width(text_item):
"""Returns width of Autocad `Text` or `MultiText` object
"""
bbox_min, bbox_max = text_item.GetBoundingbox()
return bbox_max[0] - bbox_min[0] | 001816ff5937d1e286f00088ede076b86590a951 | 699,692 |
from bs4 import BeautifulSoup
def is_html(string):
"""
Check if string contains html.
If html, return true, otherwise, return false.
"""
result = bool(BeautifulSoup(string, 'html.parser').find())
return result | 404723e869608ad7949c144c2f11c0bf629b0262 | 699,694 |
import codecs
def get_text(filename:str) -> str:
"""
Load and return the text of a text file, assuming latin-1 encoding as that
is what the BBC corpus uses. Use codecs.open() function not open().
"""
f = codecs.open(filename, encoding='latin-1', mode='r')
s = f.read()
f.close()
return s | 43d6036ba8c10946d704dee1cd32b1968de5c199 | 699,696 |
def evidence_type_number_to_name(num: int) -> str:
"""
Transforms evidence type number to it's corresponding name
:param num: The evidence type number
:return: The string name of the evidence type
"""
name: str = str()
supported_types = ['Network', 'Process', 'File', 'Registry', 'Security', 'Image', 'DNS']
try:
name = supported_types[num - 1]
except IndexError:
name = 'Unknown'
finally:
return name | 1f6a8e57334e08e997a3f86e629df04cb9602594 | 699,699 |
def axis_slicer(n, sl, axis):
"""
Return an indexing tuple for an array with `n` dimensions,
with slice `sl` taken on `axis`.
"""
itup = [slice(None)] * n
itup[axis] = sl
return tuple(itup) | 0fdd64be34428da20c79d8c52a22c916cb5afe19 | 699,705 |
def zzx_degree(f):
"""Returns leading degree of f in Z[x]. """
return len(f) - 1 | f24b966a69c998014a54542d906bbbf62f027126 | 699,706 |
def is_visible(self, y):
"""Checks whether a given point is within the currently visible area of the markdown area.
The function is used to handle text which is longer than the specified height of the markdown area and
during scrolling.
:param self: MarkdownRenderer
:param y: y-coordinate
:return: boolean
"""
return not self.is_above_area(y) and not self.is_below_area(y) | aa982d8fadf70f970e084ead9be07916d2599217 | 699,709 |
import resource
def _IncreaseSoftLimitForResource(resource_name, fallback_value):
"""Sets a new soft limit for the maximum number of open files.
The soft limit is used for this process (and its children), but the
hard limit is set by the system and cannot be exceeded.
We will first try to set the soft limit to the hard limit's value; if that
fails, we will try to set the soft limit to the fallback_value iff this would
increase the soft limit.
Args:
resource_name: Name of the resource to increase the soft limit for.
fallback_value: Fallback value to be used if we couldn't set the
soft value to the hard value (e.g., if the hard value
is "unlimited").
Returns:
Current soft limit for the resource (after any changes we were able to
make), or -1 if the resource doesn't exist.
"""
# Get the value of the resource.
try:
(soft_limit, hard_limit) = resource.getrlimit(resource_name)
except (resource.error, ValueError):
# The resource wasn't present, so we can't do anything here.
return -1
# Try to set the value of the soft limit to the value of the hard limit.
if hard_limit > soft_limit: # Some OS's report 0 for "unlimited".
try:
resource.setrlimit(resource_name, (hard_limit, hard_limit))
return hard_limit
except (resource.error, ValueError):
# We'll ignore this and try the fallback value.
pass
# Try to set the value of the soft limit to the fallback value.
if soft_limit < fallback_value:
try:
resource.setrlimit(resource_name, (fallback_value, hard_limit))
return fallback_value
except (resource.error, ValueError):
# We couldn't change the soft limit, so just report the current
# value of the soft limit.
return soft_limit
else:
return soft_limit | aa71fa41f721a612e44c7ce9b65a025f2e9d1bba | 699,710 |
def get_edges(tree):
"""
Get edges from url tree. Where url tree is tuple of (url, list of tuples(
url, list)) etc.
Example tree:
(url, [(url1, [...]),
(url2, [...]).
])
Parameters
----------
tree : tuple
Tree of urls.
Returns
-------
list
List of tuples (source page, end page).
"""
edges = []
url, elements = tree
if isinstance(elements, list):
for element in elements:
if isinstance(element, str):
edges.append((url.split("/")[-1], element.split("/")[-1]))
else:
edges.append((url.split("/")[-1], element[0].split("/")[-1]))
edges += get_edges(element)
return edges | f0e5d591e1453c6b7507c889a51f9c7064f4be39 | 699,711 |
def asstring(bitArray):
"""
Return string representation of bit array
Parameters:
bitArray (list): an array of bits
Returns:
(string): string form of bitArray
"""
return ''.join([str(bit) for bit in bitArray]) | 23df601aa1b66c89428004d2e1e8a5961066c8be | 699,713 |
def is_in_fold_innermost_scope_scope(context):
"""Return True if the current context is within a scope marked @fold."""
return 'fold_innermost_scope' in context | 6bed2406d28ce17c09c6dd293fe61e7f70fbf4b2 | 699,714 |
import collections
def coords_assign(coords, dim, new_name, new_val):
"""Reassign an xray.DataArray-style coord at a given dimension.
Parameters
----------
coords : collections.OrderedDict
Ordered dictionary of coord name : value pairs.
dim : int
Dimension to change (e.g. -1 for last dimension).
new_name : string
New name for coordinate key.
new_val : any
New value, e.g. numpy array of values
Returns
-------
new_coords : collections.OrderedDict
Ordered dictionary with altered dimension.
Example
-------
lat = np.arange(89., -89., -1.0)
lon = np.arange(0., 359., 1.)
data = np.ones((len(lat), len(lon)), dtype=float)
coords = coords_init(data)
coords = coords_assign(coords, -1, 'lon', lon)
coords = coords_assign(coords, -2, 'lat', lat)
"""
items = list(coords.items())
items[dim] = (new_name, new_val)
new_coords = collections.OrderedDict(items)
return new_coords | ed5210ec2f5399aa8302eadc53e515bdd6722307 | 699,715 |
def add_clusters(data, clusters):
"""
Adds the cluster predictions to the original data for interpretation.
:param data: DataFrame. The data to have the cluster predictions added on to.
:param clusters: List. The list of cluster predictions to be added to the DataFrame.
"""
addclusters = data
addclusters["cluster"] = clusters
return addclusters | 5a91c9af1bccf6ee76d419ceba3274dcecef7535 | 699,719 |
def compose_gates(cliff, gatelist):
"""
Add gates to a Clifford object from a list of gates.
Args:
cliff: A Clifford class object.
gatelist: a list of gates.
Returns:
A Clifford class object.
"""
for op in gatelist:
split = op.split()
q1 = int(split[1])
if split[0] == 'v':
cliff.v(q1)
elif split[0] == 'w':
cliff.w(q1)
elif split[0] == 'x':
cliff.x(q1)
elif split[0] == 'y':
cliff.y(q1)
elif split[0] == 'z':
cliff.z(q1)
elif split[0] == 'cx':
cliff.cx(q1, int(split[2]))
elif split[0] == 'h':
cliff.h(q1)
elif split[0] == 's':
cliff.s(q1)
elif split[0] == 'sdg':
cliff.sdg(q1)
else:
raise ValueError("Unknown gate type: ", op)
return cliff | bcbade0ec400b46805f73512a1c2fc64ac866404 | 699,721 |
import math
def color_distance(from_color, to_color):
"""
Calculate the euclidean distance of two colors in 3D space
"""
return math.sqrt(
(from_color[0] - to_color[0]) ** 2
+ (from_color[1] - to_color[1]) ** 2
+ (from_color[2] - to_color[2]) ** 2
) | b72e9101682bd498ed21e8fb9f73b8f52401b888 | 699,723 |
def _get_native_location(name):
# type: (str) -> str
"""
Fetches the location of a native MacOS library.
:param name: The name of the library to be loaded.
:return: The location of the library on a MacOS filesystem.
"""
return '/System/Library/Frameworks/{0}.framework/{0}'.format(name) | 53cb9ac2a771883b791a111e53e23bd77c08f43b | 699,728 |
def ra2float(ra):
"""
Convert ra to degress (float).
ra can be given as a time string, HH:MM:SS.SS or as string like '25.6554'
or (trivially) as a float.
An exception is thrown if ra is invalid
360 deg = 24 hrs, 360/24 = 15
"""
if ra is None:
return ra
if type(ra) is float or type(ra) is int:
return float(ra)
if (type(ra) is str or type(ra) is str) and ra.find(':') == -1:
return float(ra)
try:
return float(ra) # catch numpy types
except:
pass
assert type(ra) is str,'Invalid parameter format (ra2float - data type %r)' % type(ra)
h,m,s = ra.strip().split(':')
if h.find('-') != -1:
h=h.replace('-','')
sign = -1.0
else:
sign = 1.0
return sign*(float(h)*15.0 + float(m)/4.0 + float(s)/240.0) | d16e1163f9e821fdff4344eacf7c29b08a8ba266 | 699,729 |
def split_unknown_args(argv: list[str]) -> tuple[list[str], list[str]]:
"""Separate known command-line arguments from unknown one.
Unknown arguments are separated from known arguments by
the special **--** argument.
:param argv: command-line arguments
:return: tuple (known_args, unknown_args)
"""
for i in range(len(argv)):
if argv[i] == "--":
return argv[:i], argv[i + 1 :]
return argv, [] | 14e6f202e105cb1001563e9a5a5fc1c5f4bd9fd0 | 699,730 |
def byte_to_megabyte(byte):
"""
Convert byte value to megabyte
"""
return byte / (1024.0 ** 2) | 1b410bcec539e3946a7b5751b984758f89a7ed96 | 699,732 |
import string
def decode(digits, base):
"""Decode given digits in given base to number in base 10.
digits: str -- string representation of number (in given base)
base: int -- base of given number
return: int -- integer representation of number (in base 10)"""
# Handle up to base 36 [0-9a-z]
assert 2 <= base <= 36, 'base is out of range: {}'.format(base)
result = 0
power = len(digits)-1
for i in range(len(digits)):
if digits[i] in string.ascii_lowercase:
digit = ord(digits[i]) - 87
elif digits[i] in string.ascii_uppercase:
digit = ord(digits[i]) - 55
else:
digit = int(digits[i])
num = (base**power) * digit
result += num
power -= 1
return result | febdf9973a73de5b3686a20b8c2a5738391a815e | 699,734 |
def normalize_variant(variant: str) -> str:
"""
Normalize variant.
Reformat variant replace colons as separators
to underscore.
chromosome:position:reference:alternative
to
chromosome_position_reference_alternative
:param variant: string representation of variant
:return: reformatted variant
"""
cpra = variant.split(":")
cpra[0] = "X" if cpra[0] == "23" else cpra[0]
return "_".join(cpra) | 2dc97b7f7b09add6a8062db94376c1ab030ff07c | 699,739 |
from typing import Tuple
def compute_limits(
numdata: int, numblocks: int, blocksize: int, blockn: int
) -> Tuple[int, ...]:
"""Generates the limit of indices corresponding to a specific block. It
takes into account the non-exact divisibility of numdata into numblocks
letting the last block to take the extra chunk.
Parameters
----------
numdata : int
Total number of data points to distribute
numblocks : int
Total number of blocks to distribute into
blocksize : int
Size of data per block
blockn : int
Index of block, from 0 to numblocks-1
Return
----------
start : int
Position to start assigning indices
end : int
One beyond position to stop assigning indices
"""
start = blockn * blocksize
end = start + blocksize
if blockn == (numblocks - 1): # last block gets the extra
end = numdata
return start, end | 748344d60baa8f2ecd31ce822c0e33aca981bc13 | 699,740 |
import json
def getToken(response):
"""
Get the tokenised card reference from the API response
:param response: Response object in JSON
:return: String - token
"""
resp_dict = json.loads(response.text)
try:
token = resp_dict["token"]
except KeyError:
print('Retrieval unsuccessful.')
return None
return token | b849f3b021b995b164b99690a82ecabf881bb18b | 699,741 |
def _read_transition_statistics_from_files(model, verbose):
"""Parses the transitions statistics from the simulation output files for later analysis
Parameters
-------
model : obj
object containing all anchor and milestone information
Returns
---------
total_steps : int
total number of MD steps taken in all simulations in all anchors
"""
total_steps = 0
for site in model.sites:
for anchor in site.anchors:
if anchor.md == True and anchor.directory:
#if verbose: print 'parsing md transitions for:Anchor', milestone.fullname
#print info['max_steps']
print('parsing md transitions for:Anchor', anchor.fullname)
max_steps = anchor._parse_md_transitions()
print(max_steps, total_steps)
if max_steps > total_steps:
total_steps = max_steps
return total_steps | 1a4f326bd628e6ddd9475c9610b92cb2ba564bba | 699,742 |
def createSubsetGafDict(subset, gafDict):
"""
Generates a dictionary that maps the subset's Uniprot ACs to the GO IDs,
based on the provided gene subset and the gaf dictionary.
Parameters
----------
subset : set of str
A subset of Uniprot ACs of interest.
gafDict : dict of str mapping to set
A dictionary that maps Uniprot ACs (str) to a set GO IDs.
Generated by importGAF().
Returns
-------
dict of str mapping to set
A dictionary that maps the subset's Uniprot ACs to GO IDs.
"""
gafSubsetDict = {gene: gafDict[gene] for gene in subset if gene in gafDict}
return gafSubsetDict | 76e69cd79c984a19254df171403c008405276408 | 699,743 |
def shortest_paths(graph, vertex_key):
"""Uses Dijkstra's algorithm to find the shortest path from
`vertex_key` to all other vertices. If we have no lengths, then each
edge has length 1.
:return: `(lengths, prevs)` where `lengths` is a dictionary from key
to length. A length of -1 means that the vertex is not connected to
`vertex_key`. `prevs` is a dictionary from key to key, giving for
each vertex the previous vertex in the path from `vertex_key` to that
vertex. Working backwards, you can hence construct all shortest
paths.
"""
shortest_length = { k : -1 for k in graph.vertices }
shortest_length[vertex_key] = 0
candidates = {vertex_key}
done = set()
prevs = {vertex_key:vertex_key}
while len(candidates) > 0:
next_vertex, min_dist = None, -1
for v in candidates:
dist = shortest_length[v]
if min_dist == -1 or dist < min_dist:
min_dist = dist
next_vertex = v
candidates.discard(next_vertex)
done.add(next_vertex)
for v in graph.neighbours(next_vertex):
edge_index, _ = graph.find_edge(next_vertex, v)
dist = min_dist + graph.length(edge_index)
current_dist = shortest_length[v]
if current_dist == -1 or current_dist > dist:
shortest_length[v] = dist
prevs[v] = next_vertex
if v not in done:
candidates.add(v)
return shortest_length, prevs | f2ac9abf9292364099748475988d4ee1dbeb4b23 | 699,744 |
def process_overall_mode_choice(mode_choice_data):
"""Processing and reorganizing the data in a dataframe ready for plotting
Parameters
----------
mode_choice_data: pandas DataFrame
From the `modeChoice.csv` input file (located in the output directory of the simulation)
Returns
-------
mode_choice: pandas DataFrame
Mode choice data that is ready for plotting.
"""
mode_choice = mode_choice_data
# Select columns w/ modes
mode_choice = mode_choice.iloc[-1,:]
mode_choice = mode_choice.drop(["iterations"])
# Replace "ride_hail" by "on_demand ride"
mode_choice.rename({"ride_hail":"on-demand ride"}, inplace = True)
return mode_choice | 870685017d223f8a277265f80eea56e50eedec90 | 699,745 |
def nb_year(p0, percent, aug, p):
"""
Finds the amount of years required for the population to reach a desired amount.
:param p0: integer of starting population.
:param percent: float of percent increase per year.
:param aug: integer of new inhabitants.
:param p: integer of desired population.
:return: the amount of years to reach the population
"""
if p0 >= p:
return 0
else:
return 1 + nb_year(p0 + (p0 * percent / 100) + aug, percent, aug, p) | 054496347fc8bedca3424143d48d122712dd1363 | 699,748 |
def tshark_read(
device,
capture_file,
packet_details=False,
filter_str=None,
timeout=60,
rm_file=True,
):
"""Read the packets via tshark
:param device: lan or wan...
:type device: Object
:param capture_file: Filename in which the packets were captured
:type capture_file: String
:param packet_details: output of packet tree (Packet Details)
:type packet_details: Bool
:param filter_str: capture filter, ex. 'data.len == 1400'
:type filter_str: String
:param timeout: timeout after executing the read command; default is 30 seconds
:type timeout: int
:param rm_file: Flag to remove capture file
:type rm_file: bool
"""
command_string = "tshark -r {} ".format(capture_file)
if packet_details:
command_string += "-V "
if filter_str:
command_string += "{}".format(filter_str)
device.sendline(command_string)
device.expect(device.prompt, timeout=timeout)
output = device.before
if rm_file:
device.sudo_sendline("rm %s" % (capture_file))
device.expect(device.prompt)
return output | 8fc31098e750691a1aa7c27a868abf0d6254adec | 699,749 |
def chunk_size(request):
""" Set the chunk size for the source (or None to use the default).
"""
return request.param | c57269f434790953d475a2791c862d70d204ed86 | 699,756 |
from datetime import datetime
def isoformat(dt: datetime) -> str:
"""ISO format datetime object with max precision limited to seconds.
Args:
dt: datatime object to be formatted
Returns:
ISO 8601 formatted string
"""
# IMPORTANT should the format be ever changed, be sure to update TIMESTAMP_REGEX as well!
return dt.isoformat(timespec="seconds") | 679ce7aa71ab30e4c78a0953272c17f487714177 | 699,758 |
def _recursive_namedtuple_convert(data):
"""
Recursively converts the named tuples in the given object to dictionaries
:param data: An object in a named tuple or its children
:return: The converted object
"""
if isinstance(data, list):
# List
return [_recursive_namedtuple_convert(item) for item in data]
elif hasattr(data, '_asdict'):
# Named tuple
dict_value = dict(data._asdict())
for key, value in dict_value.items():
dict_value[key] = _recursive_namedtuple_convert(value)
return dict_value
else:
# Standard object
return data | 292bc249b056c14eb1c700561d366ff4e6e64a10 | 699,760 |
def _find_start(score_matrix, align_globally):
"""Return a list of starting points (score, (row, col)).
Indicating every possible place to start the tracebacks.
"""
nrows, ncols = len(score_matrix), len(score_matrix[0])
# In this implementation of the global algorithm, the start will always be
# the bottom right corner of the matrix.
if align_globally:
starts = [(score_matrix[-1][-1], (nrows - 1, ncols - 1))]
else:
starts = []
for row in range(nrows):
for col in range(ncols):
score = score_matrix[row][col]
starts.append((score, (row, col)))
return starts | 361a1ea87ecf9bbef0950521ed0fdcfd70b7b608 | 699,761 |
def get_f1_score(precision, recall):
"""
Calculate and return F1 score
:param precision: precision score
:param recall: recall score
:return: F1 score
"""
return (2 * (precision * recall)) / (precision + recall) | e94dd20acac443be9856b9dbb43adf2ead2e0ba5 | 699,762 |
def bh2u(x: bytes) -> str:
"""
str with hex representation of a bytes-like object
>>> x = bytes((1, 2, 10))
>>> bh2u(x)
'01020A'
"""
return x.hex() | 8ab7bf9b536d13a1944e014ea83a4302917c2306 | 699,763 |
from typing import List
from functools import reduce
def decode(obs: int, spaces: List[int]) -> List[int]:
"""
Decode an observation from a list of gym.Discrete spaces in a list of integers.
It assumes that obs has been encoded by using the 'utils.encode' function.
:param obs: the encoded observation
:param spaces: the list of gym.Discrete spaces from where the observation is observed.
:return: the decoded observation.
"""
result = []
sizes = spaces[::-1]
shift = reduce(lambda x, y: x*y, sizes) // sizes[0]
for size in sizes[1:]:
r = obs // shift
result.append(r)
obs %= shift
shift //= size
result.append(obs)
return result[::-1] | 6c3c1348776b7b164cf70a5bfa9da3e8b53a280f | 699,765 |
import re
def duration_to_seconds(duration):
"""
Convert duration string to seconds
:param duration: as string (either 00:00 or 00:00:00)
:return: duration in seconds :class:`int` or None if it's in the wrong format
"""
if not re.match("^\\d\\d:\\d\\d(:\\d\\d)?$", duration):
return None
array = duration.split(':')
if len(array) == 2:
return int(array[0]) * 60 + int(array[1])
return int(array[0]) * 3600 + int(array[1]) * 60 + int(array[2]) | 25340e85fdc2db03eaa65aba60a158f951da389a | 699,769 |
def flatten_tests(test_classes):
"""
>>> test_classes = {x: [x] for x in range(5)}
>>> flatten_tests(test_classes)
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]
>>> test_classes = {x: [x + 1, x + 2] for x in range(2)}
>>> flatten_tests(test_classes)
[(0, 1), (0, 2), (1, 2), (1, 3)]
"""
tests = []
for class_name, test_names in test_classes.items():
tests += [(class_name, test_name) for test_name in test_names]
return tests | 332b98ab499ff53ba974d51ac862e7015f616e64 | 699,770 |
import re
def normalize_whitespace(s: str) -> str:
"""Convert all whitespace (tabs, newlines, etc) into spaces."""
return re.sub(r"\s+", " ", s, flags=re.MULTILINE) | 6d8b65bcdca9838aa0f4d16d158db5d2218cbf24 | 699,774 |
def determine_letter(current_score):
"""
Calculates the letter grade for a given score
:param current_score: the score to be evaluated
:return: the letter grade that score falls within
"""
if current_score >= 90:
return "A"
elif current_score >= 80:
return "B"
elif current_score >= 70:
return "C"
elif current_score >= 60:
return "D"
else:
return "F" | 324aaa8e28a0cbc298410ecd83ea4eee6d39a970 | 699,779 |
from typing import Tuple
from typing import Dict
def parse_icf(icf_file: str) -> Tuple[Dict, Dict]:
"""Parse ICF linker file.
ST only provides .icf linker files for many products, so there is a need
to generate basic GCC compatible .ld files for all products.
This parses the basic features from the .icf format well enough to work
for the ST's .icf files that exist in `cmsis_device`
Args:
icf_file: .icf linker file read into a string
Returns:
(regions, blocks) where
`regions` is a map from region_name -> (start_hex, end_hex)
`blocks` is a map from block_name -> {feature_1: val_1,...}
Raises:
IndexError if .icf is malformed (at least compared to how ST makes them)
"""
symbols = {}
regions = {} # region: (start_addr, end_addr)
blocks = {}
for line in icf_file.split('\n'):
line = line.strip()
if line == '' or line.startswith('/*') or line.startswith('//'):
continue
tokens = line.split()
if len(tokens) < 2:
continue
if tokens[0] == 'define':
if tokens[1] == 'symbol':
symbols[tokens[2]] = tokens[4].strip(';')
elif tokens[1] == 'region':
regions[tokens[2].split('_')[0]] = (tokens[5],
tokens[7].strip('];'))
elif tokens[1] == 'block':
blocks[tokens[2]] = {
tokens[4]: tokens[6].strip(','),
tokens[7]: tokens[9]
}
parsed_regions = {
region: (symbols[start] if start in symbols else start,
symbols[end] if end in symbols else end)
for region, (start, end) in regions.items()
}
parsed_blocks = {
name:
{k: symbols[v] if v in symbols else v
for k, v in fields.items()}
for name, fields in blocks.items()
}
return (parsed_regions, parsed_blocks) | ddc1288603d0697bf915eb82a712f210f54efacd | 699,780 |
def normalize_attribute(attr):
"""
Normalizes the name of an attribute which is spelled in slightly different
ways in paizo HTMLs
"""
attr = attr.strip()
if attr.endswith(':'):
attr = attr[:-1] # Remove trailing ':' if any
if attr == 'Prerequisites':
attr = 'Prerequisite' # Normalize
if attr == 'Note':
attr = 'Prerequisite' # Normalize a very special case (Versatile Channeler)
if attr == 'Benefits':
attr = 'Benefit' # Normalize
if attr == 'Leadership Modifiers':
attr = 'Benefit' # Normalize a very special case (Leadership)
assert attr in ('Prerequisite', 'Benefit', 'Normal', 'Special')
return attr.lower() | 2cb66878547ee8a98c14bf08261f2610def57a37 | 699,782 |
def _parseExpectedWords(wordList, defaultSensitivity=80):
"""Parse expected words list.
This function is used internally by other functions and classes within the
`transcribe` module.
Expected words or phrases are usually specified as a list of strings. CMU
Pocket Sphinx allows for additional 'sensitivity' values for each phrase
ranging from *0* to *100*. This function will generate to lists, first with
just words and another with specified sensitivity values. This allows the
user to specify sensitivity levels which can be ignored if the recognizer
engine does not support it.
Parameters
----------
wordList : list of str
List of words of phrases. Sensitivity levels for each can be specified
by putting a value at the end of each string separated with a colon `:`.
For example, ``'hello:80'`` for 80% sensitivity on 'hello'. Values are
normalized between *0.0* and *1.0* when returned.
defaultSensitivity : int or float
Default sensitivity to use if a word does not have one specified between
0 and 100%.
Returns
-------
tuple
Returns list of expected words and list of normalized sensitivities for
each.
Examples
--------
Specifying expected words to CMU Pocket Sphinx::
words = [('hello:95', 'bye:50')]
expectedWords = zip(_parseExpectedWords(words))
"""
defaultSensitivity = defaultSensitivity / 100. # normalized
sensitivities = []
if wordList is not None:
# sensitivity specified as `word:80`
wordListTemp = []
for word in wordList:
wordAndSense = word.split(':')
if len(wordAndSense) == 2: # specified as `word:80`
word, sensitivity = wordAndSense
sensitivity = int(sensitivity) / 100.
else:
word = wordAndSense[0]
sensitivity = defaultSensitivity # default is 80% confidence
wordListTemp.append(word)
sensitivities.append(sensitivity)
wordList = wordListTemp
return wordList, sensitivities | 83512a86ae112de79bd84e1d9ea3ebebcb4cdefd | 699,788 |
def measurement(qreg=int(0),
creg=int(0)):
"""Generate QASM that takes a measurement from a qubit and stores it in a classical register.
Args:
qreg(int): Number of the Qubit to measure. (default 0)
creg(int): Number of the Classical Register to store the measurement to. (default 1)
Returns:
str: Generated QASM containing measurement instruction."""
# Ensure Integer Variables Have Correct Types
if qreg is not None:
qreg = int(qreg)
if creg is not None:
creg = int(creg)
# Generate a measurement argument for QASM 2.0.
meas_str = f'measure q[{str(qreg)}] -> c[{str(creg)}];'
# Return generated measurement argument.
return meas_str | 9a9a24f390bf0745e7cdfe80bb1893f77161c171 | 699,794 |
def adjacent(p):
"""Return the positions adjacent to position p"""
return (
(p[0] + 1, p[1], p[2]),
(p[0] - 1, p[1], p[2]),
(p[0], p[1] + 1, p[2]),
(p[0], p[1] - 1, p[2]),
(p[0], p[1], p[2] + 1),
(p[0], p[1], p[2] - 1),
) | 988597e0abd150ae60b556e52a217bd8a136707b | 699,796 |
import re
def replace_special_whitespace_chars(text: str) -> str:
"""It's annoying to deal with nonbreaking whitespace chars like u'xa0'
or other whitespace chars. Let's replace all of them with the standard
char before doing any other processing."""
text = re.sub(r"\s", " ", text)
return text | 17be082a827039264cd75fb7459fc31eb7f617dd | 699,799 |
def two_sequences_in_parallel(sequence1, sequence2):
"""
Demonstrates iterating (looping) through TWO sequences in PARALLEL.
This particular example assumes that the two sequences are of equal
length and returns the number of items in sequence2 that are bigger
than their corresponding item in sequence1. For example,
if the sequences are:
[11, 22, 10, 44, 33, 12]
[55, 10, 30, 30, 30, 30]
then this function returns 3, since 55 > 11 and 30 > 10 and 30 > 12.
"""
# ------------------------------------------------------------------
# The TWO-SEQUENCES-IN-PARALLEL pattern is:
#
# for k in range(len(sequence1)):
# ... sequence1[k] ... sequence2[k] ...
#
# The above assumes that the sequences are of equal length
# (or that you just want to do the length of sequence1).
# ------------------------------------------------------------------
count = 0
for k in range(len(sequence1)):
if sequence1[k] > sequence2[k]:
count = count + 1
return count | c5dbce5f99d5c2efeee4048ec1451ea63f404fef | 699,801 |
def image_crop(src, x1, y1, x2, y2):
"""
Crop image from (x1, y1) to (x2, y2).
Parameters
----------
:param src: Input image in BGR format
:param x1: Initial coordinates for image cropping
:param y1: Initial coordinates for image cropping
:param x2: End coordinates of image cropping
:param y2: End coordinates of image cropping
"""
return src[x1:x2, y1:y2] | 6ab70dc644d0d7054ea70fadcf7ec0ca381918d8 | 699,802 |
def fill_with_gauss(df, w=12):
"""
Fill missing values in a time series data using gaussian
"""
return df.fillna(
df.rolling(window=w, win_type="gaussian", center=True, min_periods=1).mean(
std=2
)
) | fdfdedaf7968f617ff98df586b89c30053a6c886 | 699,806 |
def swap(heights_list, index01, index02):
"""swap two positions in a list at given indexes
Args:
heights_list (list): iterable in which swapping occurs
index01 (int): index of first element
index02 (int): index of second element
Returns:
list: list with element positions swapped
"""
heights_list[index01], heights_list[index02] = heights_list[index02], heights_list[index01]
return heights_list | f7add4a06a79837766b5840840d17c3247b0bcae | 699,807 |
def create_first_n_1_bits_mask(n, k):
""" Return a binary mask of first n bits of 1, k bits of 0s"""
if n < 0 or k < 0:
raise ValueError("n and k cannot be negative number")
if n == 0:
return 0
mask = (2 << n) - 1
return mask << k | 5a9b637a8973f004da2330c8ebb06ea63fd542c3 | 699,809 |
import re
def clean_str(string):
"""
Strip and replace some special characters.
"""
msg = str(string)
msg = msg.replace("\n", " ")
msg = re.sub(r"\s+", r" ", msg)
msg = re.sub(r"^\s", r"", msg)
msg = re.sub(r"\s$", r"", msg)
return msg | 50132d2c56498f4590fcba7837deb791500f3110 | 699,810 |
def char_to_ix(chars):
"""
Make a dictionary that maps a character to an index
Arguments:
chars -- list of character set
Returns:
dictionary that maps a character to an index
"""
return {ch: i for i, ch in enumerate(chars)} | 8bfc5b99c7f5aef6d88276fe4b3ad005ce9a017e | 699,811 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.