markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
Step 4.b: Define $\tilde{\tau}$ and $\tilde{S}_i$ flux terms for GRHD equations \[Back to [top](toc)\]$$\label{taustildesourceterms}$$Recall from above that\begin{array}\ \partial_t \tilde{\tau} &+ \partial_j \underbrace{\left(\alpha^2 \sqrt{\gamma} T^{0j} - \rho_* v^j \right)} &= s \\\partial_t \tilde{S}_i &+ \partial_j \underbrace{\left(\alpha \sqrt{\gamma} T^j{}_i \right)} &= \frac{1}{2} \alpha\sqrt{\gamma} T^{\mu\nu} g_{\mu\nu,i}.\end{array}Here we will define all terms that go inside the $\partial_j$'s on the left-hand side of the above equations (i.e., the underbraced expressions): | # Step 4.c: tau_tilde flux
def compute_tau_tilde_fluxU(alpha, sqrtgammaDET, vU,T4UU, rho_star):
global tau_tilde_fluxU
tau_tilde_fluxU = ixp.zerorank1(DIM=3)
for j in range(3):
tau_tilde_fluxU[j] = alpha**2*sqrtgammaDET*T4UU[0][j+1] - rho_star*vU[j]
# Step 4.d: S_tilde flux
def compute_S_tilde_fluxUD(alpha, sqrtgammaDET, T4UD):
global S_tilde_fluxUD
S_tilde_fluxUD = ixp.zerorank2(DIM=3)
for j in range(3):
for i in range(3):
S_tilde_fluxUD[j][i] = alpha*sqrtgammaDET*T4UD[j+1][i+1] | _____no_output_____ | BSD-2-Clause | Tutorial-GRHD_Equations-Cartesian.ipynb | rhaas80/nrpytutorial |
Step 5: Define source terms on RHSs of GRHD equations \[Back to [top](toc)\]$$\label{grhdsourceterms}$$ Step 5.a: Define $s$ source term on RHS of $\tilde{\tau}$ equation \[Back to [top](toc)\]$$\label{ssourceterm}$$Recall again from above the $s$ source term on the right-hand side of the $\tilde{\tau}$ evolution equation is given in terms of ADM quantities and the stress-energy tensor via$$s = \underbrace{\alpha \sqrt{\gamma}}_{\text{Term 3}}\left[\underbrace{\left(T^{00}\beta^i\beta^j + 2 T^{0i}\beta^j + T^{ij} \right)K_{ij}}_{\text{Term 1}}\underbrace{- \left(T^{00}\beta^i + T^{0i} \right)\partial_i\alpha}_{\text{Term 2}} \right],$$ | def compute_s_source_term(KDD,betaU,alpha, sqrtgammaDET,alpha_dD, T4UU):
global s_source_term
s_source_term = sp.sympify(0)
# Term 1:
for i in range(3):
for j in range(3):
s_source_term += (T4UU[0][0]*betaU[i]*betaU[j] + 2*T4UU[0][i+1]*betaU[j] + T4UU[i+1][j+1])*KDD[i][j]
# Term 2:
for i in range(3):
s_source_term += -(T4UU[0][0]*betaU[i] + T4UU[0][i+1])*alpha_dD[i]
# Term 3:
s_source_term *= alpha*sqrtgammaDET | _____no_output_____ | BSD-2-Clause | Tutorial-GRHD_Equations-Cartesian.ipynb | rhaas80/nrpytutorial |
Step 5.b: Define source term on RHS of $\tilde{S}_i$ equation \[Back to [top](toc)\]$$\label{stildeisourceterm}$$Recall from above$$\partial_t \tilde{S}_i + \partial_j \left(\alpha \sqrt{\gamma} T^j{}_i \right) = \frac{1}{2} \alpha\sqrt{\gamma} T^{\mu\nu} g_{\mu\nu,i}.$$Our goal here will be to compute$$\frac{1}{2} \alpha\sqrt{\gamma} T^{\mu\nu} g_{\mu\nu,i}.$$ Step 5.b.i: Compute $g_{\mu\nu,i}$ in terms of ADM quantities and their derivatives \[Back to [top](toc)\]$$\label{fourmetricderivs}$$To compute $g_{\mu\nu,i}$ we need to evaluate the first derivative of $g_{\mu\nu}$ in terms of ADM variables.We are given $\gamma_{ij}$, $\alpha$, and $\beta^i$, and the 4-metric is given in terms of these quantities via$$g_{\mu\nu} = \begin{pmatrix} -\alpha^2 + \beta^k \beta_k & \beta_i \\\beta_j & \gamma_{ij}\end{pmatrix}.$$Thus $$g_{\mu\nu,k} = \begin{pmatrix} -2 \alpha\alpha_{,i} + \beta^j_{,k} \beta_j + \beta^j \beta_{j,k} & \beta_{i,k} \\\beta_{j,k} & \gamma_{ij,k}\end{pmatrix},$$where $\beta_{i} = \gamma_{ij} \beta^j$, so$$\beta_{i,k} = \gamma_{ij,k} \beta^j + \gamma_{ij} \beta^j_{,k}$$ | def compute_g4DD_zerotimederiv_dD(gammaDD,betaU,alpha, gammaDD_dD,betaU_dD,alpha_dD):
global g4DD_zerotimederiv_dD
# Eq. 2.121 in B&S
betaD = ixp.zerorank1(DIM=3)
for i in range(3):
for j in range(3):
betaD[i] += gammaDD[i][j]*betaU[j]
betaDdD = ixp.zerorank2(DIM=3)
for i in range(3):
for j in range(3):
for k in range(3):
# Recall that betaD[i] = gammaDD[i][j]*betaU[j] (Eq. 2.121 in B&S)
betaDdD[i][k] += gammaDD_dD[i][j][k]*betaU[j] + gammaDD[i][j]*betaU_dD[j][k]
# Eq. 2.122 in B&S
g4DD_zerotimederiv_dD = ixp.zerorank3(DIM=4)
for k in range(3):
# Recall that g4DD[0][0] = -alpha^2 + betaU[j]*betaD[j]
g4DD_zerotimederiv_dD[0][0][k+1] += -2*alpha*alpha_dD[k]
for j in range(3):
g4DD_zerotimederiv_dD[0][0][k+1] += betaU_dD[j][k]*betaD[j] + betaU[j]*betaDdD[j][k]
for i in range(3):
for k in range(3):
# Recall that g4DD[i][0] = g4DD[0][i] = betaD[i]
g4DD_zerotimederiv_dD[i+1][0][k+1] = g4DD_zerotimederiv_dD[0][i+1][k+1] = betaDdD[i][k]
for i in range(3):
for j in range(3):
for k in range(3):
# Recall that g4DD[i][j] = gammaDD[i][j]
g4DD_zerotimederiv_dD[i+1][j+1][k+1] = gammaDD_dD[i][j][k] | _____no_output_____ | BSD-2-Clause | Tutorial-GRHD_Equations-Cartesian.ipynb | rhaas80/nrpytutorial |
Step 5.b.ii: Compute source term of the $\tilde{S}_i$ equation: $\frac{1}{2} \alpha\sqrt{\gamma} T^{\mu\nu} g_{\mu\nu,i}$ \[Back to [top](toc)\]$$\label{stildeisource}$$Now that we've computed `g4DD_zerotimederiv_dD`$=g_{\mu\nu,i}$, the $\tilde{S}_i$ evolution equation source term may be quickly constructed. | # Step 5.b.ii: Compute S_tilde source term
def compute_S_tilde_source_termD(alpha, sqrtgammaDET,g4DD_zerotimederiv_dD, T4UU):
global S_tilde_source_termD
S_tilde_source_termD = ixp.zerorank1(DIM=3)
for i in range(3):
for mu in range(4):
for nu in range(4):
S_tilde_source_termD[i] += sp.Rational(1,2)*alpha*sqrtgammaDET*T4UU[mu][nu]*g4DD_zerotimederiv_dD[mu][nu][i+1] | _____no_output_____ | BSD-2-Clause | Tutorial-GRHD_Equations-Cartesian.ipynb | rhaas80/nrpytutorial |
Step 6: Conversion of $v^i$ to $u^\mu$ (Courtesy Patrick Nelson) \[Back to [top](toc)\]$$\label{convertvtou}$$According to Eqs. 9-11 of [the IllinoisGRMHD paper](https://arxiv.org/pdf/1501.07276.pdf), the Valencia 3-velocity $v^i_{(n)}$ is related to the 4-velocity $u^\mu$ via\begin{align}\alpha v^i_{(n)} &= \frac{u^i}{u^0} + \beta^i \\\implies u^i &= u^0 \left(\alpha v^i_{(n)} - \beta^i\right)\end{align}Defining $v^i = \frac{u^i}{u^0}$, we get$$v^i = \alpha v^i_{(n)} - \beta^i,$$and in terms of this variable we get\begin{align}g_{00} \left(u^0\right)^2 + 2 g_{0i} u^0 u^i + g_{ij} u^i u^j &= \left(u^0\right)^2 \left(g_{00} + 2 g_{0i} v^i + g_{ij} v^i v^j\right)\\\implies u^0 &= \pm \sqrt{\frac{-1}{g_{00} + 2 g_{0i} v^i + g_{ij} v^i v^j}} \\&= \pm \sqrt{\frac{-1}{(-\alpha^2 + \beta^2) + 2 \beta_i v^i + \gamma_{ij} v^i v^j}} \\&= \pm \sqrt{\frac{1}{\alpha^2 - \gamma_{ij}\left(\beta^i + v^i\right)\left(\beta^j + v^j\right)}}\\&= \pm \sqrt{\frac{1}{\alpha^2 - \alpha^2 \gamma_{ij}v^i_{(n)}v^j_{(n)}}}\\&= \pm \frac{1}{\alpha}\sqrt{\frac{1}{1 - \gamma_{ij}v^i_{(n)}v^j_{(n)}}}\end{align}Generally speaking, numerical errors will occasionally drive expressions under the radical to either negative values or potentially enormous values (corresponding to enormous Lorentz factors). Thus a reliable approach for computing $u^0$ requires that we first rewrite the above expression in terms of the Lorentz factor squared: $\Gamma^2=\left(\alpha u^0\right)^2$:\begin{align}u^0 &= \pm \frac{1}{\alpha}\sqrt{\frac{1}{1 - \gamma_{ij}v^i_{(n)}v^j_{(n)}}}\\\implies \left(\alpha u^0\right)^2 &= \frac{1}{1 - \gamma_{ij}v^i_{(n)}v^j_{(n)}} \\\implies \gamma_{ij}v^i_{(n)}v^j_{(n)} &= 1 - \frac{1}{\left(\alpha u^0\right)^2} \\&= 1 - \frac{1}{\Gamma^2}\end{align}In order for the bottom expression to hold true, the left-hand side must be between 0 and 1. Again, this is not guaranteed due to the appearance of numerical errors. In fact, a robust algorithm will not allow $\Gamma^2$ to become too large (which might contribute greatly to the stress-energy of a given gridpoint), so let's define the largest allowed Lorentz factor as $\Gamma_{\rm max}$.Then our algorithm for computing $u^0$ is as follows:If$$R=\gamma_{ij}v^i_{(n)}v^j_{(n)}>1 - \frac{1}{\Gamma_{\rm max}^2},$$ then adjust the 3-velocity $v^i$ as follows:$$v^i_{(n)} \to \sqrt{\frac{1 - \frac{1}{\Gamma_{\rm max}^2}}{R}}v^i_{(n)}.$$After this rescaling, we are then guaranteed that if $R$ is recomputed, it will be set to its ceiling value $R=R_{\rm max} = 1 - \frac{1}{\Gamma_{\rm max}^2}$.Then, regardless of whether the ceiling on $R$ was applied, $u^0$ can be safely computed via$$u^0 = \frac{1}{\alpha \sqrt{1-R}},$$and the remaining components $u^i$ via$$u^i = u^0 v^i.$$In summary our algorithm for computing $u^{\mu}$ from $v^i = \frac{u^i}{u^0}$ is as follows:1. Choose a maximum Lorentz factor $\Gamma_{\rm max}$=`GAMMA_SPEED_LIMIT`, and define $v^i_{(n)} = \frac{1}{\alpha}\left( \frac{u^i}{u^0} + \beta^i\right)$.1. Compute $R=\gamma_{ij}v^i_{(n)}v^j_{(n)}=1 - \frac{1}{\Gamma^2}$1. If $R \le 1 - \frac{1}{\Gamma_{\rm max}^2}$, then skip the next step.1. Otherwise if $R > 1 - \frac{1}{\Gamma_{\rm max}^2}$ then adjust $v^i_{(n)}\to \sqrt{\frac{1 - \frac{1}{\Gamma_{\rm max}^2}}{R}}v^i_{(n)}$, which will force $R=R_{\rm max}$.1. Given the $R$ computed in the above step, $u^0 = \frac{1}{\alpha \sqrt{1-R}}$, and $u^i=u^0 v^i$.While the above algorithm is quite robust, its `if()` statement in the fourth step is not very friendly to NRPy+ or an optimizing C compiler, as it would require NRPy+ to generate separate C kernels for each branch of the `if()`. Let's instead try the following trick, which Roland Haas taught us. Define $R^*$ as$$R^* = \frac{1}{2} \left(R_{\rm max} + R - |R_{\rm max} - R| \right).$$If $R>R_{\rm max}$, then $|R_{\rm max} - R|=R - R_{\rm max}$, and we get:$$R^* = \frac{1}{2} \left(R_{\rm max} + R - (R - R_{\rm max}) \right) = \frac{1}{2} \left(2 R_{\rm max}\right) = R_{\rm max}$$If $R\le R_{\rm max}$, then $|R_{\rm max} - R|=R_{\rm max} - R$, and we get:$$R^* = \frac{1}{2} \left(R_{\rm max} + R - (R_{\rm max} - R) \right) = \frac{1}{2} \left(2 R\right) = R$$Then we can rescale *all* $v^i_{(n)}$ via$$v^i_{(n)} \to v^i_{(n)} \sqrt{\frac{R^*}{R}},$$though we must be very careful to carefully handle the case in which $R=0$. To avoid any problems in this case, we simply adjust the above rescaling by adding a tiny number [`TINYDOUBLE`](https://en.wikipedia.org/wiki/Tiny_Bubbles) to $R$ in the denominator, typically `1e-100`:$$v^i_{(n)} \to v^i_{(n)} \sqrt{\frac{R^*}{R + {\rm TINYDOUBLE}}}.$$Finally, $u^0$ can be immediately and safely computed, via:$$u^0 = \frac{1}{\alpha \sqrt{1-R^*}},$$and $u^i$ via $$u^i = u^0 v^i = u^0 \left(\alpha v^i_{(n)} - \beta^i\right).$$ | # Step 6.a: Convert Valencia 3-velocity v_{(n)}^i into u^\mu, and apply a speed limiter
# Speed-limited ValenciavU is output to rescaledValenciavU global.
def u4U_in_terms_of_ValenciavU__rescale_ValenciavU_by_applying_speed_limit(alpha,betaU,gammaDD, ValenciavU):
# Inputs: Metric lapse alpha, shift betaU, 3-metric gammaDD, Valencia 3-velocity ValenciavU
# Outputs (as globals): u4U_ito_ValenciavU, rescaledValenciavU
# R = gamma_{ij} v^i v^j
R = sp.sympify(0)
for i in range(3):
for j in range(3):
R += gammaDD[i][j]*ValenciavU[i]*ValenciavU[j]
thismodule = "GRHD"
# The default value isn't terribly important here, since we can overwrite in the main C code
GAMMA_SPEED_LIMIT = par.Cparameters("REAL", thismodule, "GAMMA_SPEED_LIMIT", 10.0) # Default value based on
# IllinoisGRMHD.
# GiRaFFE default = 2000.0
Rmax = 1 - 1 / (GAMMA_SPEED_LIMIT * GAMMA_SPEED_LIMIT)
# Now, we set Rstar = min(Rmax,R):
# If R < Rmax, then Rstar = 0.5*(Rmax+R-Rmax+R) = R
# If R >= Rmax, then Rstar = 0.5*(Rmax+R+Rmax-R) = Rmax
Rstar = sp.Rational(1, 2) * (Rmax + R - nrpyAbs(Rmax - R))
# We add TINYDOUBLE to R below to avoid a 0/0, which occurs when
# ValenciavU == 0 for all Valencia 3-velocity components.
# "Those tiny *doubles* make me warm all over
# with a feeling that I'm gonna love you till the end of time."
# - Adapted from Connie Francis' "Tiny Bubbles"
TINYDOUBLE = par.Cparameters("#define",thismodule,"TINYDOUBLE",1e-100)
# The rescaled (speed-limited) Valencia 3-velocity
# is given by, v_{(n)}^i = sqrt{Rstar/R} v^i
global rescaledValenciavU
rescaledValenciavU = ixp.zerorank1(DIM=3)
for i in range(3):
# If R == 0, then Rstar == 0, so sqrt( Rstar/(R+TINYDOUBLE) )=sqrt(0/1e-100) = 0
# If your velocities are of order 1e-100 and this is physically
# meaningful, there must be something wrong with your unit conversion.
rescaledValenciavU[i] = ValenciavU[i]*sp.sqrt(Rstar/(R + TINYDOUBLE))
# Finally compute u^mu in terms of Valenciav^i
# u^0 = 1/(alpha-sqrt(1-R^*))
global u4U_ito_ValenciavU
u4U_ito_ValenciavU = ixp.zerorank1(DIM=4)
u4U_ito_ValenciavU[0] = 1/(alpha*sp.sqrt(1-Rstar))
# u^i = u^0 ( alpha v^i_{(n)} - beta^i ), where v^i_{(n)} is the Valencia 3-velocity
for i in range(3):
u4U_ito_ValenciavU[i+1] = u4U_ito_ValenciavU[0] * (alpha * rescaledValenciavU[i] - betaU[i])
# Step 6.b: Convert v^i into u^\mu, and apply a speed limiter.
# Speed-limited vU is output to rescaledvU global.
def u4U_in_terms_of_vU__rescale_vU_by_applying_speed_limit(alpha,betaU,gammaDD, vU):
ValenciavU = ixp.zerorank1(DIM=3)
for i in range(3):
ValenciavU[i] = (vU[i] + betaU[i])/alpha
u4U_in_terms_of_ValenciavU__rescale_ValenciavU_by_applying_speed_limit(alpha,betaU,gammaDD, ValenciavU)
# Since ValenciavU is written in terms of vU,
# u4U_ito_ValenciavU is actually u4U_ito_vU
global u4U_ito_vU
u4U_ito_vU = ixp.zerorank1(DIM=4)
for mu in range(4):
u4U_ito_vU[mu] = u4U_ito_ValenciavU[mu]
# Finally compute the rescaled (speed-limited) vU
global rescaledvU
rescaledvU = ixp.zerorank1(DIM=3)
for i in range(3):
rescaledvU[i] = alpha * rescaledValenciavU[i] - betaU[i] | _____no_output_____ | BSD-2-Clause | Tutorial-GRHD_Equations-Cartesian.ipynb | rhaas80/nrpytutorial |
Step 7: Declare ADM and hydrodynamical input variables, and construct GRHD equations \[Back to [top](toc)\]$$\label{declarevarsconstructgrhdeqs}$$ | # First define hydrodynamical quantities
u4U = ixp.declarerank1("u4U", DIM=4)
rho_b,P,epsilon = sp.symbols('rho_b P epsilon',real=True)
# Then ADM quantities
gammaDD = ixp.declarerank2("gammaDD","sym01",DIM=3)
KDD = ixp.declarerank2("KDD" ,"sym01",DIM=3)
betaU = ixp.declarerank1("betaU", DIM=3)
alpha = sp.symbols('alpha', real=True)
# First compute stress-energy tensor T4UU and T4UD:
compute_T4UU(gammaDD,betaU,alpha, rho_b,P,epsilon,u4U)
compute_T4UD(gammaDD,betaU,alpha, T4UU)
# Next sqrt(gamma)
compute_sqrtgammaDET(gammaDD)
# Compute conservative variables in terms of primitive variables
compute_rho_star( alpha, sqrtgammaDET, rho_b,u4U)
compute_tau_tilde(alpha, sqrtgammaDET, T4UU,rho_star)
compute_S_tildeD( alpha, sqrtgammaDET, T4UD)
# Then compute v^i from u^mu
compute_vU_from_u4U__no_speed_limit(u4U)
# Next compute fluxes of conservative variables
compute_rho_star_fluxU( vU, rho_star)
compute_tau_tilde_fluxU(alpha, sqrtgammaDET, vU,T4UU, rho_star)
compute_S_tilde_fluxUD( alpha, sqrtgammaDET, T4UD)
# Then declare derivatives & compute g4DD_zerotimederiv_dD
gammaDD_dD = ixp.declarerank3("gammaDD_dD","sym01",DIM=3)
betaU_dD = ixp.declarerank2("betaU_dD" ,"nosym",DIM=3)
alpha_dD = ixp.declarerank1("alpha_dD" ,DIM=3)
compute_g4DD_zerotimederiv_dD(gammaDD,betaU,alpha, gammaDD_dD,betaU_dD,alpha_dD)
# Then compute source terms on tau_tilde and S_tilde equations
compute_s_source_term(KDD,betaU,alpha, sqrtgammaDET,alpha_dD, T4UU)
compute_S_tilde_source_termD( alpha, sqrtgammaDET,g4DD_zerotimederiv_dD, T4UU)
# Then compute the 4-velocities in terms of an input Valencia 3-velocity testValenciavU[i]
testValenciavU = ixp.declarerank1("testValenciavU",DIM=3)
u4U_in_terms_of_ValenciavU__rescale_ValenciavU_by_applying_speed_limit(alpha,betaU,gammaDD, testValenciavU)
# Finally compute the 4-velocities in terms of an input 3-velocity testvU[i] = u^i/u^0
testvU = ixp.declarerank1("testvU",DIM=3)
u4U_in_terms_of_vU__rescale_vU_by_applying_speed_limit(alpha,betaU,gammaDD, testvU) | _____no_output_____ | BSD-2-Clause | Tutorial-GRHD_Equations-Cartesian.ipynb | rhaas80/nrpytutorial |
Step 8: Code Validation against `GRHD.equations` NRPy+ module \[Back to [top](toc)\]$$\label{code_validation}$$As a code validation check, we verify agreement in the SymPy expressions for the GRHD equations generated in1. this tutorial versus2. the NRPy+ [GRHD.equations](../edit/GRHD/equations.py) module. | import GRHD.equations as Ge
# First compute stress-energy tensor T4UU and T4UD:
Ge.compute_T4UU(gammaDD,betaU,alpha, rho_b,P,epsilon,u4U)
Ge.compute_T4UD(gammaDD,betaU,alpha, Ge.T4UU)
# Next sqrt(gamma)
Ge.compute_sqrtgammaDET(gammaDD)
# Compute conservative variables in terms of primitive variables
Ge.compute_rho_star( alpha, Ge.sqrtgammaDET, rho_b,u4U)
Ge.compute_tau_tilde(alpha, Ge.sqrtgammaDET, Ge.T4UU,Ge.rho_star)
Ge.compute_S_tildeD( alpha, Ge.sqrtgammaDET, Ge.T4UD)
# Then compute v^i from u^mu
Ge.compute_vU_from_u4U__no_speed_limit(u4U)
# Next compute fluxes of conservative variables
Ge.compute_rho_star_fluxU ( Ge.vU, Ge.rho_star)
Ge.compute_tau_tilde_fluxU(alpha, Ge.sqrtgammaDET, Ge.vU,Ge.T4UU, Ge.rho_star)
Ge.compute_S_tilde_fluxUD (alpha, Ge.sqrtgammaDET, Ge.T4UD)
# Then declare derivatives & compute g4DD_zerotimederiv_dD
# gammaDD_dD = ixp.declarerank3("gammaDD_dD","sym01",DIM=3)
# betaU_dD = ixp.declarerank2("betaU_dD" ,"nosym",DIM=3)
# alpha_dD = ixp.declarerank1("alpha_dD" ,DIM=3)
Ge.compute_g4DD_zerotimederiv_dD(gammaDD,betaU,alpha, gammaDD_dD,betaU_dD,alpha_dD)
# Finally compute source terms on tau_tilde and S_tilde equations
Ge.compute_s_source_term(KDD,betaU,alpha, Ge.sqrtgammaDET,alpha_dD, Ge.T4UU)
Ge.compute_S_tilde_source_termD( alpha, Ge.sqrtgammaDET,Ge.g4DD_zerotimederiv_dD,Ge.T4UU)
GetestValenciavU = ixp.declarerank1("testValenciavU")
Ge.u4U_in_terms_of_ValenciavU__rescale_ValenciavU_by_applying_speed_limit(alpha, betaU, gammaDD, GetestValenciavU)
GetestvU = ixp.declarerank1("testvU")
Ge.u4U_in_terms_of_vU__rescale_vU_by_applying_speed_limit( alpha, betaU, gammaDD, GetestvU)
all_passed=True
def comp_func(expr1,expr2,basename,prefixname2="Ge."):
if str(expr1-expr2)!="0":
print(basename+" - "+prefixname2+basename+" = "+ str(expr1-expr2))
all_passed=False
def gfnm(basename,idx1,idx2=None,idx3=None):
if idx2 is None:
return basename+"["+str(idx1)+"]"
if idx3 is None:
return basename+"["+str(idx1)+"]["+str(idx2)+"]"
return basename+"["+str(idx1)+"]["+str(idx2)+"]["+str(idx3)+"]"
expr_list = []
exprcheck_list = []
namecheck_list = []
namecheck_list.extend(["sqrtgammaDET","rho_star","tau_tilde","s_source_term"])
exprcheck_list.extend([Ge.sqrtgammaDET,Ge.rho_star,Ge.tau_tilde,Ge.s_source_term])
expr_list.extend([sqrtgammaDET,rho_star,tau_tilde,s_source_term])
for mu in range(4):
namecheck_list.extend([gfnm("u4_ito_ValenciavU",mu),gfnm("u4U_ito_vU",mu)])
exprcheck_list.extend([ Ge.u4U_ito_ValenciavU[mu], Ge.u4U_ito_vU[mu]])
expr_list.extend( [ u4U_ito_ValenciavU[mu], u4U_ito_vU[mu]])
for nu in range(4):
namecheck_list.extend([gfnm("T4UU",mu,nu),gfnm("T4UD",mu,nu)])
exprcheck_list.extend([Ge.T4UU[mu][nu],Ge.T4UD[mu][nu]])
expr_list.extend([T4UU[mu][nu],T4UD[mu][nu]])
for delta in range(4):
namecheck_list.extend([gfnm("g4DD_zerotimederiv_dD",mu,nu,delta)])
exprcheck_list.extend([Ge.g4DD_zerotimederiv_dD[mu][nu][delta]])
expr_list.extend([g4DD_zerotimederiv_dD[mu][nu][delta]])
for i in range(3):
namecheck_list.extend([gfnm("S_tildeD",i),gfnm("vU",i),gfnm("rho_star_fluxU",i),
gfnm("tau_tilde_fluxU",i),gfnm("S_tilde_source_termD",i),
gfnm("rescaledValenciavU",i), gfnm("rescaledvU",i)])
exprcheck_list.extend([Ge.S_tildeD[i],Ge.vU[i],Ge.rho_star_fluxU[i],
Ge.tau_tilde_fluxU[i],Ge.S_tilde_source_termD[i],
Ge.rescaledValenciavU[i],Ge.rescaledvU[i]])
expr_list.extend([S_tildeD[i],vU[i],rho_star_fluxU[i],
tau_tilde_fluxU[i],S_tilde_source_termD[i],
rescaledValenciavU[i],rescaledvU[i]])
for j in range(3):
namecheck_list.extend([gfnm("S_tilde_fluxUD",i,j)])
exprcheck_list.extend([Ge.S_tilde_fluxUD[i][j]])
expr_list.extend([S_tilde_fluxUD[i][j]])
for i in range(len(expr_list)):
comp_func(expr_list[i],exprcheck_list[i],namecheck_list[i])
import sys
if all_passed:
print("ALL TESTS PASSED!")
else:
print("ERROR: AT LEAST ONE TEST DID NOT PASS")
sys.exit(1) | ALL TESTS PASSED!
| BSD-2-Clause | Tutorial-GRHD_Equations-Cartesian.ipynb | rhaas80/nrpytutorial |
Step 9: Output this notebook to $\LaTeX$-formatted PDF file \[Back to [top](toc)\]$$\label{latex_pdf_output}$$The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename[Tutorial-GRHD_Equations-Cartesian.pdf](Tutorial-GRHD_Equations-Cartesian.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.) | import cmdline_helper as cmd # NRPy+: Multi-platform Python command-line interface
cmd.output_Jupyter_notebook_to_LaTeXed_PDF("Tutorial-GRHD_Equations-Cartesian") | Created Tutorial-GRHD_Equations-Cartesian.tex, and compiled LaTeX file to
PDF file Tutorial-GRHD_Equations-Cartesian.pdf
| BSD-2-Clause | Tutorial-GRHD_Equations-Cartesian.ipynb | rhaas80/nrpytutorial |
K-Means | class Kmeans:
"""K-Means Clustering Algorithm"""
def __init__(self, k, centers=None, cost=None,iter=None, labels=None, max_iter = 1000):
"""Initialize Parameters"""
self.max_iter = max_iter
self.k = k
self.centers = np.empty(1)
self.cost = []
self.iter = 1
self.labels = np.empty(1)
def calc_distances(self, data, centers, weights):
"""Distance Matrix"""
distance = pairwise_distances(data, centers)**2
min_distance = np.min(distance, axis = 1)
D = min_distance*weights
return D
def fit(self, data):
"""Clustering Process"""
## Initial centers
if type(data) == pd.DataFrame: data = data.values
nrow = data.shape[0]
index = np.random.choice(range(nrow), self.k, False)
self.centers = data[index]
while (self.iter <= self.max_iter):
distance = pairwise_distances(data, self.centers)**2
self.cost.append(sum(np.min(distance, axis=1)))
self.labels = np.argmin(distance, axis=1)
centers_new = np.array([np.mean(data[self.labels == i], axis=0) for i in np.unique(self.labels)])
## sanity check
if(np.all(self.centers == centers_new)): break
self.centers = centers_new
self.iter += 1
## convergence check
if (sum(np.min(pairwise_distances(data, self.centers)**2, axis=1)) != self.cost[-1]):
warnings.warn("Algorithm Did Not Converge In {} Iterations".format(self.max_iter))
return self | _____no_output_____ | MIT | Algorithms.ipynb | BeanHam/STA-663-Project |
K-Means++ | class Kmeanspp:
"""K-Means++ Clustering Algorithm"""
def __init__(self, k, centers=None, cost=None,iter=None, labels=None, max_iter = 1000):
"""Initialize Parameters"""
self.max_iter = max_iter
self.k = k
self.centers = np.empty(1)
self.cost = []
self.iter = 1
self.labels = np.empty(1)
def calc_distances(self, data, centers, weights):
"""Distance Matrix"""
distance = pairwise_distances(data, centers)**2
min_distance = np.min(distance, axis = 1)
D = min_distance*weights
return D
def initial_centers_Kmeansapp(self, data, k, weights):
"""Initialize centers for K-Means++"""
centers = []
centers.append(random.choice(data))
while(len(centers) < k):
distances = self.calc_distances(data, centers, weights)
prob = distances/sum(distances)
c = np.random.choice(range(data.shape[0]), 1, p=prob)
centers.append(data[c[0]])
return centers
def fit(self, data, weights=None):
"""Clustering Process"""
if weights is None: weights = np.ones(len(data))
if type(data) == pd.DataFrame: data=data.values
nrow = data.shape[0]
self.centers = self.initial_centers_Kmeansapp(data, self.k, weights)
while (self.iter <= self.max_iter):
distance = pairwise_distances(data, self.centers)**2
self.cost.append(sum(np.min(distance, axis=1)))
self.labels = np.argmin(distance, axis=1)
centers_new = np.array([np.mean(data[self.labels == i], axis=0) for i in np.unique(self.labels)])
## sanity check
if(np.all(self.centers == centers_new)): break
self.centers = centers_new
self.iter += 1
## convergence check
if (sum(np.min(pairwise_distances(data, self.centers)**2, axis=1)) != self.cost[-1]):
warnings.warn("Algorithm Did Not Converge In {} Iterations".format(self.max_iter))
return self | _____no_output_____ | MIT | Algorithms.ipynb | BeanHam/STA-663-Project |
K-Meansll | class Kmeansll:
"""K-Meansll Clustering Algorithm"""
def __init__(self, k, omega, centers=None, cost=None,iter=None, labels=None, max_iter = 1000):
"""Initialize Parameters"""
self.max_iter = max_iter
self.k = k
self.omega = omega
self.centers = np.empty(1)
self.cost = []
self.iter = 1
self.labels = np.empty(1)
def calc_weight(self, data, centers):
"""Weight Calculation"""
l = len(centers)
distance = pairwise_distances(data, centers)
labels = np.argmin(distance, axis=1)
weights = [sum(labels == i) for i in range(l)]
return (weights/sum(weights))
def calc_distances(self, data, centers, weights):
"""Distance Matrix"""
distance = pairwise_distances(data, centers)**2
min_distance = np.min(distance, axis = 1)
D = min_distance*weights
return D
def initial_centers_Kmeansll(self, data, k, omega, weights):
"""Initialize Centers for K-Meansll"""
centers = []
centers.append(random.choice(data))
phi = np.int(np.round(np.log(sum(self.calc_distances(data, centers, weights)))))
l = k*omega ## oversampling factor
for i in range(phi):
dist = self.calc_distances(data, centers, weights)
prob = l*dist/sum(dist)
for i in range(len(prob)):
if prob[i] > np.random.uniform():
centers.append(data[i])
centers = np.array(centers)
recluster_weight = self.calc_weight(data, centers)
reclusters = kmeanspp.Kmeanspp(k).fit(centers, recluster_weight).labels
initial_centers = []
for i in np.unique(reclusters):
initial_centers.append(np.mean(centers[reclusters == i], axis = 0))
return initial_centers
def fit(self, data, weights=None):
"""Clustering Process"""
if weights is None: weights = np.ones(len(data))
if type(data) == pd.DataFrame: data=data.values
nrow = data.shape[0]
self.centers = self.initial_centers_Kmeansll(data, self.k, self.omega, weights)
while (self.iter <= self.max_iter):
distance = pairwise_distances(data, self.centers)**2
self.cost.append(sum(np.min(distance, axis=1)))
self.labels = np.argmin(distance, axis=1)
centers_new = np.array([np.mean(data[self.labels == i], axis=0) for i in np.unique(self.labels)])
## sanity check
if(np.all(self.centers == centers_new)): break
self.centers = centers_new
self.iter += 1
## convergence check
if (sum(np.min(pairwise_distances(data, self.centers)**2, axis=1)) != self.cost[-1]):
warnings.warn("Algorithm Did Not Converge In {} Iterations".format(self.max_iter))
return self | _____no_output_____ | MIT | Algorithms.ipynb | BeanHam/STA-663-Project |
1. a) | def simetrica(A):
"Verifică dacă matricea A este simetrică"
return np.all(A == A.T)
def pozitiv_definita(A):
"Verifică dacă matricea A este pozitiv definită"
for i in range(1, len(A) + 1):
d_minor = np.linalg.det(A[:i, :i])
if d_minor < 0:
return False
return True
def fact_ll(A):
# Pasul 1
if not simetrica(A):
raise Exception("Nu este simetrica")
if not pozitiv_definita(A):
raise Exception("Nu este pozitiv definită")
N = A.shape[0]
# Pasul 2
S = A.copy()
L = np.zeros((N, N))
# Pasul 3
for i in range(N):
# Actualizez coloana i din matricea L
L[:, i] = S[:, i] / np.sqrt(S[i, i])
# Calculez noul complement Schur
S_21 = S[i + 1:, i]
S_nou = np.eye(N)
S_nou[i + 1:, i + 1:] = S[i + 1:, i + 1:] - np.outer(S_21, S_21.T) / S[i, i]
S = S_nou
# Returnez matricea calculată
return L
A = np.array([
[25, 15, -5],
[15, 18, 0],
[-5, 0, 11]
], dtype=np.float64)
L = fact_ll(A)
print("L este:")
print(L)
print("Verificare:")
print(L @ L.T) | L este:
[[ 5. 0. 0.]
[ 3. 3. 0.]
[-1. 1. 3.]]
Verificare:
[[25. 15. -5.]
[15. 18. 0.]
[-5. 0. 11.]]
| MIT | cn/examen/Examen - Proba practică.ipynb | GabrielMajeri/teme-fmi |
b) | b = np.array([1, 2, 3], dtype=np.float64)
y = np.zeros(3)
x = np.zeros(3)
# Substituție ascendentă
for i in range(0, 3):
coefs = L[i, :i + 1]
values = y[:i + 1]
y[i] = (b[i] - coefs @ values) / L[i, i]
L_t = L.T
# Substituție descendentă
for i in range(2, -1, -1):
coefs = L_t[i, i + 1:]
values = x[i + 1:]
x[i] = (y[i] - coefs @ values) / L_t[i, i]
print("x =", x)
print()
print("Verificare: A @ x =", A @ x) | x = [0.06814815 0.05432099 0.3037037 ]
Verificare: A @ x = [1. 2. 3.]
| MIT | cn/examen/Examen - Proba practică.ipynb | GabrielMajeri/teme-fmi |
2. | def step(x, f, df):
"Calculează un pas din metoda Newton-Rhapson."
return x - f(x) / df(x)
def newton_rhapson(f, df, x0, eps):
"Determină o soluție a f(x) = 0 plecând de la x_0"
# Primul punct este cel primit ca parametru
prev_x = x0
# Execut o iterație
x = step(x0, f, df)
N = 1
while True:
# Verific condiția de oprire
if abs(x - prev_x) / abs(prev_x) < eps:
break
# Execut încă un pas
prev_x = x
x = step(x, f, df)
# Contorizez numărul de iterații
N += 1
return x, N | _____no_output_____ | MIT | cn/examen/Examen - Proba practică.ipynb | GabrielMajeri/teme-fmi |
Funcția dată este$$f(x) = x^3 + 3 x^2 - 18 x - 40$$iar derivatele ei sunt$$f'(x) = 3x^2 + 6 x - 18$$$$f''(x) = 6x + 6$$ | f = lambda x: (x ** 3) + 3 * (x ** 2) - 18 * x - 40
df = lambda x: 3 * (x ** 2) + 6 * x - 18
ddf = lambda x: 6 * x + 6
left = -8
right = +8
x_grafic = np.linspace(left, right, 500)
def set_spines(ax):
# Mut axele de coordonate
ax.spines['bottom'].set_position('zero')
ax.spines['top'].set_color('none')
ax.spines['left'].set_position('zero')
ax.spines['right'].set_color('none')
fig, ax = plt.subplots(dpi=120)
set_spines(ax)
plt.plot(x_grafic, f(x_grafic), label='$f$')
plt.plot(x_grafic, df(x_grafic), label="$f'$")
plt.plot(x_grafic, ddf(x_grafic), label="$f''$")
plt.legend()
plt.show() | _____no_output_____ | MIT | cn/examen/Examen - Proba practică.ipynb | GabrielMajeri/teme-fmi |
Alegem subintervale astfel încât $f(a) f(b) < 0$:- $[-8, -4]$- $[-4, 0]$- $[2, 6]$Pentru fiecare dintre acestea, căutăm un punct $x_0$ astfel încât $f(x_0) f''(x_0) > 0$:- $-6$- $-1$- $5$ | eps = 1e-3
x1, _ = newton_rhapson(f, df, -6, eps)
x2, _ = newton_rhapson(f, df, -1, eps)
x3, _ = newton_rhapson(f, df, 5, eps)
fig, ax = plt.subplots(dpi=120)
plt.suptitle('Soluțiile lui $f(x) = 0$')
set_spines(ax)
plt.plot(x_grafic, f(x_grafic))
plt.scatter(x1, 0)
plt.scatter(x2, 0)
plt.scatter(x3, 0)
plt.show() | _____no_output_____ | MIT | cn/examen/Examen - Proba practică.ipynb | GabrielMajeri/teme-fmi |
Input data representation as 2D array of 3D blocks> An easy way to represent input data to neural networks or any other machine learning algorithm in the form of 2D array of 3D-blocks- toc: false- branch: master- badges: true- comments: true- categories: [machine learning, jupyter, graphviz]- image: images/array_visualiser/thumbnail.png- search_exclude: false ---Often while working with machine learning algorithms the developer has a good picture of how the input data looks like apart from knowing what the input data is. Also, most of the times the input data is usually represented or decribed with array terminology. Hence, this particular post is one such attempt to create simple 2D representations of 3D-blocks symbolising the arrays used for input.[Graphviz](https://graphviz.readthedocs.io/en/stable/) a highly versatile graphing library that creates graphs based on DOT language is used to create the 2D array representation of 3D blocks with annotation and color uniformity to create quick and concise graphs/pictures for good explanations of input data used in various machine learning/deep learning algorithms.In what follows is a script to create the 2D array representation og 3D blocks mainly intented for time-series data. The script facilitates some features which include-* Starting at time instant 0 or -1* counting backwards i.e. t-4 -> t-3 -> t-2 -> t-1 -> t-0 or counting forwards t-0 -> t-1 -> t-2 -> t-3 -> t-4 -> t-5 Imports and global constants | import graphviz as G # to create the required graphs
import random # to generate random hex codes for colors
FORWARDS = True # to visualise array from left to right
BACKWARDS = False # to visualise array from right to left | _____no_output_____ | Apache-2.0 | _notebooks/2020-12-26-Array-Visualiser.ipynb | logicatcore/scratchpad |
Properties of 2D representation of 3D array blocksMain features/properties of the array visualisation needed are defined gere before actually creating the graph/picture.1) Number of Rows: similar to rows in a matrix where each each row corresponds to one particular data type with data across different time instants arranged in columns2) Blocks: which corresponds to the number of time instants in each row (jagged arrays can also be graphed)3) Prefix: the annotation used to annotate each 3D block in the 2D array representation | ROW_NUMS = [1, 2] # Layer numbers corresponding to the number of rows of array data (must be contiguous)
BLOCKS = [3, 3] # number of data fields in each row i.e., columns in each row
diff = [x - ROW_NUMS[i] for i, x in enumerate(ROW_NUMS[1:])]
assert diff == [1]*(len(ROW_NUMS) - 1), '"layer_num" should contain contiguous numbers only'
assert len(ROW_NUMS) == len(BLOCKS), "'cells' list and 'layer_num' list should contain same number of entries"
direction = BACKWARDS # control the direction of countdown of timesteps
INCLUDE_ZERO = True # for time series based data
START_AT = 0 if INCLUDE_ZERO else 1
# names = [['Softmax\nprobabilities', 'p1', 'p2', 'p3', 'p4', 'p5', 'p6', 'p7', 'p8', 'p9', 'p10'],['', ' +', ' +', ' +', ' +', ' +', ' +'],['GMM\nprobabilities', 'p1', 'p2', 'p3', 'p4', 'p5', 'p6']]
# the trick to adding symbols like the "partial(dou)" i.e. '∂' is to write these symbols in a markdown cell using the $\partial$ utilising the mathjax support and
# copying the content after being rendered and paste in the code as a string wherever needed
prefix = ['∂(i)-', '∂(v)-']
r = lambda: random.randint(0,255) # to generate random colors for each row
# intantiate a directed graph with intial properties
dot = G.Digraph(comment='Matrix',
graph_attr={'nodesep':'0.02', 'ranksep':'0.02', 'bgcolor':'transparent'},
node_attr={'shape':'box3d','fixedsize':'true', 'width':'1.1'})
for row_no in ROW_NUMS:
if row_no != 1:
dot.edge(str(row_no-1)+str(START_AT), str(row_no)+str(START_AT), style='invis') # invisible edges to contrain layout
with dot.subgraph() as sg:
sg.attr(rank='same')
color = '#{:02x}{:02x}{:02x}'.format(r(),r(),r())
for block_no in range(START_AT, BLOCKS[row_no-1]+START_AT):
if direction:
sg.node(str(row_no)+str(block_no), 't-'+str(block_no), style='filled', fillcolor=color)
else:
if START_AT == 0:
sg.node(str(row_no)+str(block_no), prefix[row_no-1]+str(BLOCKS[row_no-1]-block_no-1), style='filled', fillcolor=color)
else:
sg.node(str(row_no)+str(block_no), prefix[row_no-1]+str(BLOCKS[row_no-1]-block_no-1), style='filled', fillcolor=color) | _____no_output_____ | Apache-2.0 | _notebooks/2020-12-26-Array-Visualiser.ipynb | logicatcore/scratchpad |
Render | dot | _____no_output_____ | Apache-2.0 | _notebooks/2020-12-26-Array-Visualiser.ipynb | logicatcore/scratchpad |
Save/Export | # dot.format = 'jpeg' # or PDF, SVG, JPEG, PNG, etc.
# to save the file, pdf is default
dot.render('./lstm_input') | _____no_output_____ | Apache-2.0 | _notebooks/2020-12-26-Array-Visualiser.ipynb | logicatcore/scratchpad |
Additional script to just show the breakdown of train-test data of the dataset being used | import random
r = lambda: random.randint(0,255) # to generate random colors for each row
folders = G.Digraph(node_attr={'style':'filled'}, graph_attr={'style':'invis', 'rankdir':'LR'},edge_attr={'color':'black', 'arrowsize':'.2'})
color = '#{:02x}{:02x}{:02x}'.format(r(),r(),r())
with folders.subgraph(name='cluster0') as f:
f.node('root', 'Dataset \n x2000', shape='folder', fillcolor=color)
color = '#{:02x}{:02x}{:02x}'.format(r(),r(),r())
with folders.subgraph(name='cluster1') as f:
f.node('train', 'Train \n 1800', shape='note', fillcolor=color)
f.node('test', 'Test \n x200', shape='note', fillcolor=color)
folders.edge('root', 'train')
folders.edge('root', 'test')
folders
folders.render('./dataset') | _____no_output_____ | Apache-2.0 | _notebooks/2020-12-26-Array-Visualiser.ipynb | logicatcore/scratchpad |
Jupman TestsTests and cornercases.The page Title has one sharp, the Sections always have two sharps. Sezione 1bla bla Sezione 2Subsections always have three sharps Subsection 1bla bla Subsection 2bla bla Quotes > I'm quoted with **greater than** symbol> on multiple lines> Am I readable? I'm quoted with **spaces** on multiple lines Am I readable? Download linksFiles manually put in `_static` : * Download [trial.odt](_static/trial.odt)* Download [trial.pdf](_static/trial.pdf)Files in arbitrary folder position : * Download [requirements.txt](requirements.txt)NOTE: download links are messy, [see issue 8](https://github.com/DavidLeoni/jupman/issues/8) Info/Warning BoxesUntil there is an info/warning extension for Markdown/CommonMark (see this issue), such boxes can be created by using HTML elements like this: **Note:** This is an info! **Note:** This is a warn! For this to work reliably, you should obey the following guidelines:* The class attribute has to be either "alert alert-info" or "alert alert-warning", other values will not be converted correctly.* No further attributes are allowed.* For compatibility with CommonMark, you should add an empty line between the start tag and the beginning of the content. MathFor math stuff, [see npshpinx docs](https://nbsphinx.readthedocs.io/en/0.2.14/markdown-cells.htmlEquations)Here we put just some equation to show it behaves fine in JupmanThis is infinity: $\infty$ Unicode Unicode characters should display an HTML, but with latex you might have problems, and need to manually map characters in conf.pyYou should see a star in a black circle: ✪ You should see a check: ✓table characters: │ ├ └ ─ Image SVG ImagesSVG images work in notebook, but here it is commented since it breaks Latex, [see issue](https://github.com/DavidLeoni/jupman/issues/1)``````This one also doesn't works (and shows ugly code in the notebook anyway)```from IPython.display import SVGSVG(filename='img/cc-by.svg')``` PNG Images Inline images - pure markdown Bla  bli blo Bla  bli blo Inline images - markdown and img bla bli blo bla bli blo Img classIf we pass a class, it will to be present in the website: This should be inline Expressions listHighlighting **does** work both in Jupyter and SphinxThree quotes, multiple lines - Careful: put **exactly 4 spaces** indentation1. ```python [2,3,1] != "[2,3,1]" ```1. ```python [4,8,12] == [2*2,"4*2",6*2] ```1. ```python [][:] == [] ``` Three quotes, multiple lines, more compact - works in Jupyter, **doesn't** in Sphinx1. ```python [2,3,1] != "[2,3,1]"```1. ```python [4,8,12] == [2*2,"4*2",6*2]```1. ```python [][:] == []``` Highlighting **doesn't** work in Jupyter neither in Sphinx:Three quotes, single line1. ```python [2,3,1] != ["2",3,1]```1. ```python [4,8,12] == [2*2,"4*2",6*2]```1. ```python [][:] == "[]"```Single quote, single line1. `python [2,3,1] != ["2",3,1]`1. `python [4,8,12] == [2*2,"4*2",6*2]`1. `python [][:] == "[]"` Togglable cellsThere are various ways to have togglable cells. Show/hide exercises (PREFERRED)If you need clickable show/hide buttons for exercise solutions , see here: [Usage - Exercise types](https://jupman.softpython.org/en/latest/usage.htmlType-of-exercises). It manages comprehensively use cases for display in website, student zips, exams, etcIf you have other needs, we report here some test we made, but keep in mind this sort of hacks tend to change behaviour with different versions of jupyter. Toggling with Javascript* Works in MarkDown* Works while in Jupyter* Works in HTML* Does not show in Latex (which might be a good point, if you intend to put somehow solutions at the end of the document)* NOTE: after creating the text to see the results you have to run the initial cell with jupman.init (as for the toc) * NOTE: you can't use Markdown block code since of Sept 2017 doesn't show well in HTML output SOME CODE color = raw_input("What's your eyes' color?") if color == "": sys.exit()<div class="jupman-togglable" data-jupman-show="Customized show msg" data-jupman-hide="Customized hide msg"> SOME OTHER CODE how_old = raw_input("How old are you?") x = random.randint(1,8) if question == "": sys.exit() HTML details in Markdown, code tag * Works while in Jupyter* Doesn't work in HTML output* as of Sept Oct 2017, not yet supported in Microsoft browsersClick here to see the code question = raw_input("What?") answers = random.randint(1,8) if question == "": sys.exit() HTML details in Markdown, Markdown mixed code* Works while in Jupyter * Doesn't work in HTML output* as of Sept Oct 2017, not yet supported in Microsoft browsersClick here to see the code```python question = raw_input("What?") answers = random.randint(1,8) if question == "": sys.exit()``` HTML details in HTML, raw NBConvert Format * Doesn't work in Jupyter* Works in HTML output * NOTE: as of Sept Oct 2017, not yet supported in Microsoft browsers* Doesn't show at all in PDF output | <details>
<summary>Click here to see the code</summary>
<code>
<pre>
question = raw_input("What?")
answers = random.randint(1,8)
if question == "":
sys.exit()
</pre>
</code>
</details> | _____no_output_____ | Apache-2.0 | jupman-tests.ipynb | DavidLeoni/iep |
Some other Markdown cell afterwards .... Files in templatesSince Dec 2019 they are not accessible [see issue 10](https://github.com/DavidLeoni/jupman/issues/10), but it is not a great problem, you can always put a link to Github, see for example [exam-yyyy-mm-dd.ipynb](https://github.com/DavidLeoni/jupman/tree/master/_templates/exam/exam-yyyy-mm-dd.ipynb) Python tutorThere are various ways to embed Python tutor, first we put the recommended one. jupman.pytut **RECOMMENDED**: You can put a call to `jupman.pytut()` at the end of a cell, and the cell code will magically appear in python tutor in the output (except the call to `pytut()` of course). Does not need internet connection. | x = [5,8,4,10,30,20,40,50,60,70,20,30]
y= {3:9}
z = [x]
jupman.pytut() | _____no_output_____ | Apache-2.0 | jupman-tests.ipynb | DavidLeoni/iep |
**jupman.pytut scope**: BEWARE of variables which were initialized in previous cells, they WILL NOT be available in Python Tutor: | w = 8
x = w + 5
jupman.pytut() | Traceback (most recent call last):
File "/home/da/Da/prj/jupman/prj/jupman.py", line 2305, in _runscript
self.run(script_str, user_globals, user_globals)
File "/usr/lib/python3.5/bdb.py", line 431, in run
exec(cmd, globals, locals)
File "<string>", line 2, in <module>
NameError: name 'w' is not defined
| Apache-2.0 | jupman-tests.ipynb | DavidLeoni/iep |
**jupman.pytut window overflow**: When too much right space is taken, it might be difficult to scroll: | x = [3,2,5,2,42,34,2,4,34,2,3,4,23,4,23,4,2,34,23,4,23,4,23,4,234,34,23,4,23,4,23,4,2]
jupman.pytut()
x = w + 5
jupman.pytut() | Traceback (most recent call last):
File "/home/da/Da/prj/jupman/prj/jupman.py", line 2305, in _runscript
self.run(script_str, user_globals, user_globals)
File "/usr/lib/python3.5/bdb.py", line 431, in run
exec(cmd, globals, locals)
File "<string>", line 2, in <module>
NameError: name 'w' is not defined
| Apache-2.0 | jupman-tests.ipynb | DavidLeoni/iep |
**jupman.pytut execution:** Some cells might execute in Jupyter but not so well in Python Tutor, due to [its inherent limitations](https://github.com/pgbovine/OnlinePythonTutor/blob/master/unsupported-features.md): | x = 0
for i in range(10000):
x += 1
print(x)
jupman.pytut() | 10000
| Apache-2.0 | jupman-tests.ipynb | DavidLeoni/iep |
**jupman.pytut infinite loops**: Since execution occurs first in Jupyter and then in Python tutor, if you have an infinite loop no Python Tutor instance will be spawned: ```pythonwhile True: passjupman.pytut()``` **jupman.pytut() resizability:** long vertical and horizontal expansion should work: | x = {0:'a'}
for i in range(1,30):
x[i] = x[i-1]+str(i*10000)
jupman.pytut() | _____no_output_____ | Apache-2.0 | jupman-tests.ipynb | DavidLeoni/iep |
**jupman.pytut cross arrows**: With multiple visualizations, arrows shouldn't cross from one to the other even if underlying script is loaded multiple times (relates to visualizerIdOverride) | x = [1,2,3]
jupman.pytut() | _____no_output_____ | Apache-2.0 | jupman-tests.ipynb | DavidLeoni/iep |
**jupman.pytut print output**: With only one line of print, Print output panel shouldn't be too short: | print("hello")
jupman.pytut()
y = [1,2,3,4]
jupman.pytut() | _____no_output_____ | Apache-2.0 | jupman-tests.ipynb | DavidLeoni/iep |
HTML magicsAnother option is to directly paste Python Tutor iframe in the cells, and use Jupyter `%%HTML` magics command. HTML should be available both in notebook and website - of course, requires an internet connection.Beware: you need the HTTP**S** ! | %%HTML
<iframe width="800" height="300" frameborder="0"
src="https://pythontutor.com/iframe-embed.html#code=x+%3D+5%0Ay+%3D+10%0Az+%3D+x+%2B+y&cumulative=false&py=2&curInstr=3">
</iframe> | _____no_output_____ | Apache-2.0 | jupman-tests.ipynb | DavidLeoni/iep |
NBTutor To show Python Tutor in notebooks, there is already a jupyter extension called [NBTutor](https://github.com/lgpage/nbtutor) , afterwards you can use magic `%%nbtutor` to show the interpreter.Unfortunately, it doesn't show in the generated HTML :-/ | %reload_ext nbtutor
%%nbtutor
for x in range(1,4):
print("ciao")
x=5
y=7
x +y
| ciao
ciao
ciao
| Apache-2.0 | jupman-tests.ipynb | DavidLeoni/iep |
Stripping answersFor stripping answers examples, see [jupyter-example/jupyter-example-sol](jupyter-example/jupyter-example-sol.ipynb). For explanation, see [usage](usage.ipynbTags-to-strip) Metadata to HTML classes Formatting problems Characters per linePython standard for code has limit to 79, many styles have 80 (see [Wikipedia](https://en.wikipedia.org/wiki/Characters_per_line))We can keep 80:```--------------------------------------------------------------------------------``````python--------------------------------------------------------------------------------```Errors hold 75 dashes:Plain:```---------------------------------------------------------------------------ZeroDivisionError Traceback (most recent call last) in ()----> 1 1/0ZeroDivisionError: division by zero```As Python markup:```python---------------------------------------------------------------------------ZeroDivisionError Traceback (most recent call last) in ()----> 1 1/0ZeroDivisionError: division by zero``` | len('---------------------------------------------------------------------------') | _____no_output_____ | Apache-2.0 | jupman-tests.ipynb | DavidLeoni/iep |
On website this **may** display a scroll bar, because it will actually print `'` apexes plus the dashes | '-'*80 | _____no_output_____ | Apache-2.0 | jupman-tests.ipynb | DavidLeoni/iep |
This should **not** display a scrollbar: | '-'*78 | _____no_output_____ | Apache-2.0 | jupman-tests.ipynb | DavidLeoni/iep |
This should **not** display a scrollbar: | print('-'*80) | --------------------------------------------------------------------------------
| Apache-2.0 | jupman-tests.ipynb | DavidLeoni/iep |
Very large inputIn Jupyter: default behaviour, show scrollbarOn the website: should expand in horizontal as much as it wants, the rationale is that for input code since it may be printed to PDF you should always manually put line breaks. | # line with an exceedingly long comment line with an exceedingly long comment line with an exceedingly long comment line with an exceedingly long comment line with an exceedingly long comment line with an exceedingly long comment
# line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment line with an an out-of-this-world long comment
| _____no_output_____ | Apache-2.0 | jupman-tests.ipynb | DavidLeoni/iep |
**Very long HTML** (and long code line)Should expand in vertical as much as it wants. | %%HTML
<iframe width="100%" height="1300px" frameBorder="0" src="https://umap.openstreetmap.fr/en/map/mia-mappa-agritur_182055?scaleControl=false&miniMap=false&scrollWheelZoom=false&zoomControl=true&allowEdit=false&moreControl=true&searchControl=null&tilelayersControl=null&embedControl=null&datalayersControl=true&onLoadPanel=undefined&captionBar=false#11/46.0966/11.4024"></iframe><p><a href="http://umap.openstreetmap.fr/en/map/mia-mappa-agritur_182055">See full screen</a></p>
| _____no_output_____ | Apache-2.0 | jupman-tests.ipynb | DavidLeoni/iep |
Very long outputIn Jupyter: by clicking, you can collapseOn the website: a scrollbar should appear | for x in range(150):
print('long output ...', x) | long output ... 0
long output ... 1
long output ... 2
long output ... 3
long output ... 4
long output ... 5
long output ... 6
long output ... 7
long output ... 8
long output ... 9
long output ... 10
long output ... 11
long output ... 12
long output ... 13
long output ... 14
long output ... 15
long output ... 16
long output ... 17
long output ... 18
long output ... 19
long output ... 20
long output ... 21
long output ... 22
long output ... 23
long output ... 24
long output ... 25
long output ... 26
long output ... 27
long output ... 28
long output ... 29
long output ... 30
long output ... 31
long output ... 32
long output ... 33
long output ... 34
long output ... 35
long output ... 36
long output ... 37
long output ... 38
long output ... 39
long output ... 40
long output ... 41
long output ... 42
long output ... 43
long output ... 44
long output ... 45
long output ... 46
long output ... 47
long output ... 48
long output ... 49
long output ... 50
long output ... 51
long output ... 52
long output ... 53
long output ... 54
long output ... 55
long output ... 56
long output ... 57
long output ... 58
long output ... 59
long output ... 60
long output ... 61
long output ... 62
long output ... 63
long output ... 64
long output ... 65
long output ... 66
long output ... 67
long output ... 68
long output ... 69
long output ... 70
long output ... 71
long output ... 72
long output ... 73
long output ... 74
long output ... 75
long output ... 76
long output ... 77
long output ... 78
long output ... 79
long output ... 80
long output ... 81
long output ... 82
long output ... 83
long output ... 84
long output ... 85
long output ... 86
long output ... 87
long output ... 88
long output ... 89
long output ... 90
long output ... 91
long output ... 92
long output ... 93
long output ... 94
long output ... 95
long output ... 96
long output ... 97
long output ... 98
long output ... 99
long output ... 100
long output ... 101
long output ... 102
long output ... 103
long output ... 104
long output ... 105
long output ... 106
long output ... 107
long output ... 108
long output ... 109
long output ... 110
long output ... 111
long output ... 112
long output ... 113
long output ... 114
long output ... 115
long output ... 116
long output ... 117
long output ... 118
long output ... 119
long output ... 120
long output ... 121
long output ... 122
long output ... 123
long output ... 124
long output ... 125
long output ... 126
long output ... 127
long output ... 128
long output ... 129
long output ... 130
long output ... 131
long output ... 132
long output ... 133
long output ... 134
long output ... 135
long output ... 136
long output ... 137
long output ... 138
long output ... 139
long output ... 140
long output ... 141
long output ... 142
long output ... 143
long output ... 144
long output ... 145
long output ... 146
long output ... 147
long output ... 148
long output ... 149
| Apache-2.0 | jupman-tests.ipynb | DavidLeoni/iep |
Load Dataset | import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
# 노트북 안에 그래프를 그리기 위해
%matplotlib inline
# 그래프에서 마이너스 폰트 깨지는 문제에 대한 대처
mpl.rcParams['axes.unicode_minus'] = False
import warnings
warnings.filterwarnings('ignore')
train = pd.read_csv("data/train.csv", parse_dates=["datetime"])
train.shape
test = pd.read_csv("data/test.csv", parse_dates=["datetime"])
test.shape | _____no_output_____ | MIT | bike-sharing-demand/bike-sharing-demand-rf.ipynb | jaepil-choi/Kaggle_bikeshare |
Feature Engineering | train["year"] = train["datetime"].dt.year
train["month"] = train["datetime"].dt.month
train["day"] = train["datetime"].dt.day
train["hour"] = train["datetime"].dt.hour
train["minute"] = train["datetime"].dt.minute
train["second"] = train["datetime"].dt.second
train["dayofweek"] = train["datetime"].dt.dayofweek
train.shape
test["year"] = test["datetime"].dt.year
test["month"] = test["datetime"].dt.month
test["day"] = test["datetime"].dt.day
test["hour"] = test["datetime"].dt.hour
test["minute"] = test["datetime"].dt.minute
test["second"] = test["datetime"].dt.second
test["dayofweek"] = test["datetime"].dt.dayofweek
test.shape
# widspeed 풍속에 0 값이 가장 많다. => 잘못 기록된 데이터를 고쳐 줄 필요가 있음
fig, axes = plt.subplots(nrows=2)
fig.set_size_inches(18,10)
plt.sca(axes[0])
plt.xticks(rotation=30, ha='right')
axes[0].set(ylabel='Count',title="train windspeed")
sns.countplot(data=train, x="windspeed", ax=axes[0])
plt.sca(axes[1])
plt.xticks(rotation=30, ha='right')
axes[1].set(ylabel='Count',title="test windspeed")
sns.countplot(data=test, x="windspeed", ax=axes[1])
# 풍속의 0값에 특정 값을 넣어준다.
# 평균을 구해 일괄적으로 넣어줄 수도 있지만, 예측의 정확도를 높이는 데 도움이 될것 같진 않다.
# train.loc[train["windspeed"] == 0, "windspeed"] = train["windspeed"].mean()
# test.loc[train["windspeed"] == 0, "windspeed"] = train["windspeed"].mean()
# 풍속이 0인것과 아닌 것의 세트를 나누어 준다.
trainWind0 = train.loc[train['windspeed'] == 0]
trainWindNot0 = train.loc[train['windspeed'] != 0]
print(trainWind0.shape)
print(trainWindNot0.shape)
# 그래서 머신러닝으로 예측을 해서 풍속을 넣어주도록 한다.
from sklearn.ensemble import RandomForestClassifier
def predict_windspeed(data):
# 풍속이 0인것과 아닌 것을 나누어 준다.
dataWind0 = data.loc[data['windspeed'] == 0]
dataWindNot0 = data.loc[data['windspeed'] != 0]
# 풍속을 예측할 피처를 선택한다.
wCol = ["season", "weather", "humidity", "month", "temp", "year", "atemp"]
# 풍속이 0이 아닌 데이터들의 타입을 스트링으로 바꿔준다.
dataWindNot0["windspeed"] = dataWindNot0["windspeed"].astype("str")
# 랜덤포레스트 분류기를 사용한다.
rfModel_wind = RandomForestClassifier()
# wCol에 있는 피처의 값을 바탕으로 풍속을 학습시킨다.
rfModel_wind.fit(dataWindNot0[wCol], dataWindNot0["windspeed"])
# 학습한 값을 바탕으로 풍속이 0으로 기록 된 데이터의 풍속을 예측한다.
wind0Values = rfModel_wind.predict(X = dataWind0[wCol])
# 값을 다 예측 후 비교해 보기 위해
# 예측한 값을 넣어 줄 데이터 프레임을 새로 만든다.
predictWind0 = dataWind0
predictWindNot0 = dataWindNot0
# 값이 0으로 기록 된 풍속에 대해 예측한 값을 넣어준다.
predictWind0["windspeed"] = wind0Values
# dataWindNot0 0이 아닌 풍속이 있는 데이터프레임에 예측한 값이 있는 데이터프레임을 합쳐준다.
data = predictWindNot0.append(predictWind0)
# 풍속의 데이터타입을 float으로 지정해 준다.
data["windspeed"] = data["windspeed"].astype("float")
data.reset_index(inplace=True)
data.drop('index', inplace=True, axis=1)
return data
# 0값을 조정한다.
train = predict_windspeed(train)
# test = predict_windspeed(test)
# widspeed 의 0값을 조정한 데이터를 시각화
fig, ax1 = plt.subplots()
fig.set_size_inches(18,6)
plt.sca(ax1)
plt.xticks(rotation=30, ha='right')
ax1.set(ylabel='Count',title="train windspeed")
sns.countplot(data=train, x="windspeed", ax=ax1) | _____no_output_____ | MIT | bike-sharing-demand/bike-sharing-demand-rf.ipynb | jaepil-choi/Kaggle_bikeshare |
Feature Selection* 신호와 잡음을 구분해야 한다.* 피처가 많다고 해서 무조건 좋은 성능을 내지 않는다.* 피처를 하나씩 추가하고 변경해 가면서 성능이 좋지 않은 피처는 제거하도록 한다. | # 연속형 feature와 범주형 feature
# 연속형 feature = ["temp","humidity","windspeed","atemp"]
# 범주형 feature의 type을 category로 변경 해 준다.
categorical_feature_names = ["season","holiday","workingday","weather",
"dayofweek","month","year","hour"]
for var in categorical_feature_names:
train[var] = train[var].astype("category")
test[var] = test[var].astype("category")
feature_names = ["season", "weather", "temp", "atemp", "humidity", "windspeed",
"year", "hour", "dayofweek", "holiday", "workingday"]
feature_names
X_train = train[feature_names]
print(X_train.shape)
X_train.head()
X_test = test[feature_names]
print(X_test.shape)
X_test.head()
label_name = "count"
y_train = train[label_name]
print(y_train.shape)
y_train.head() | (10886,)
| MIT | bike-sharing-demand/bike-sharing-demand-rf.ipynb | jaepil-choi/Kaggle_bikeshare |
Score RMSLE과대평가 된 항목보다는 과소평가 된 항목에 패널티를 준다.오차(Error)를 제곱(Square)해서 평균(Mean)한 값의 제곱근(Root) 으로 값이 작을 수록 정밀도가 높다. 0에 가까운 값이 나올 수록 정밀도가 높은 값이다.Submissions are evaluated one the Root Mean Squared Logarithmic Error (RMSLE) $$ \sqrt{\frac{1}{n} \sum_{i=1}^n (\log(p_i + 1) - \log(a_i+1))^2 } $$ * \\({n}\\) is the number of hours in the test set* \\(p_i\\) is your predicted count* \\(a_i\\) is the actual count* \\(\log(x)\\) is the natural logarithm* 좀 더 자세한 설명은 : [RMSLE cost function](https://www.slideshare.net/KhorSoonHin/rmsle-cost-function)* 잔차(residual)에 대한 평균에 로그를 씌운 값이다. => 과대평가 된 항목보다 과소 평가 된 항목에 패널티를 주기위해* 정답에 대한 오류를 숫자로 나타낸 값으로 값이 클 수록 오차가 크다는 의미다.* 값이 작을 수록 오류가 적다는 의미를 나타낸다.이미지 출처 : 위키피디아 https://ko.wikipedia.org/wiki/로그 | from sklearn.metrics import make_scorer
def rmsle(predicted_values, actual_values):
# 넘파이로 배열 형태로 바꿔준다.
predicted_values = np.array(predicted_values)
actual_values = np.array(actual_values)
# 예측값과 실제 값에 1을 더하고 로그를 씌워준다.
log_predict = np.log(predicted_values + 1)
log_actual = np.log(actual_values + 1)
# 위에서 계산한 예측값에서 실제값을 빼주고 제곱을 해준다.
difference = log_predict - log_actual
# difference = (log_predict - log_actual) ** 2
difference = np.square(difference)
# 평균을 낸다.
mean_difference = difference.mean()
# 다시 루트를 씌운다.
score = np.sqrt(mean_difference)
return score
rmsle_scorer = make_scorer(rmsle)
rmsle_scorer | _____no_output_____ | MIT | bike-sharing-demand/bike-sharing-demand-rf.ipynb | jaepil-choi/Kaggle_bikeshare |
Cross Validation 교차 검증* 일반화 성능을 측정하기 위해 데이터를 여러 번 반복해서 나누고 여러 모델을 학습한다.이미지 출처 : https://www.researchgate.net/figure/228403467_fig2_Figure-4-k-fold-cross-validation-scheme-example* KFold 교차검증 * 데이터를 폴드라 부르는 비슷한 크기의 부분집합(n_splits)으로 나누고 각각의 폴드 정확도를 측정한다. * 첫 번째 폴드를 테스트 세트로 사용하고 나머지 폴드를 훈련세트로 사용하여 학습한다. * 나머지 훈련세트로 만들어진 세트의 정확도를 첫 번째 폴드로 평가한다. * 다음은 두 번째 폴드가 테스트 세트가 되고 나머지 폴드의 훈련세트를 두 번째 폴드로 정확도를 측정한다. * 이 과정을 마지막 폴드까지 반복한다. * 이렇게 훈련세트와 테스트세트로 나누는 N개의 분할마다 정확도를 측정하여 평균 값을 낸게 정확도가 된다. | from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
k_fold = KFold(n_splits=10, shuffle=True, random_state=0) | _____no_output_____ | MIT | bike-sharing-demand/bike-sharing-demand-rf.ipynb | jaepil-choi/Kaggle_bikeshare |
RandomForest | from sklearn.ensemble import RandomForestRegressor
max_depth_list = []
model = RandomForestRegressor(n_estimators=100, # 높을수록 좋지만, 느려짐.
n_jobs=-1,
random_state=0)
model
%time score = cross_val_score(model, X_train, y_train, cv=k_fold, scoring=rmsle_scorer)
score = score.mean()
# 0에 근접할수록 좋은 데이터
print("Score= {0:.5f}".format(score)) | Wall time: 19.9 s
Score= 0.33110
| MIT | bike-sharing-demand/bike-sharing-demand-rf.ipynb | jaepil-choi/Kaggle_bikeshare |
Train | # 학습시킴, 피팅(옷을 맞출 때 사용하는 피팅을 생각함) - 피처와 레이블을 넣어주면 알아서 학습을 함
model.fit(X_train, y_train)
# 예측
predictions = model.predict(X_test)
print(predictions.shape)
predictions[0:10]
# 예측한 데이터를 시각화 해본다.
fig,(ax1,ax2)= plt.subplots(ncols=2)
fig.set_size_inches(12,5)
sns.distplot(y_train,ax=ax1,bins=50)
ax1.set(title="train")
sns.distplot(predictions,ax=ax2,bins=50)
ax2.set(title="test") | _____no_output_____ | MIT | bike-sharing-demand/bike-sharing-demand-rf.ipynb | jaepil-choi/Kaggle_bikeshare |
Submit | submission = pd.read_csv("data/sampleSubmission.csv")
submission
submission["count"] = predictions
print(submission.shape)
submission.head()
submission.to_csv("data/Score_{0:.5f}_submission.csv".format(score), index=False) | _____no_output_____ | MIT | bike-sharing-demand/bike-sharing-demand-rf.ipynb | jaepil-choi/Kaggle_bikeshare |
After separating tweets out as male and female tweets, try to find topic | with open('her_list.txt', 'r') as filename:
her_list=json.load(filename)
with open('his_list.txt','r') as filename:
his_list=json.load(filename)
cv_tfidf = TfidfVectorizer(stop_words='english')
X_tfidf = cv_tfidf.fit_transform(her_list)
nmf_model = NMF(3)
topic_matrix = nmf_model.fit_transform(X_tfidf)
def display_topics(model, feature_names, no_top_words, topic_names=None):
for ix, topic in enumerate(model.components_):
if not topic_names or not topic_names[ix]:
print("\nTopic ", ix)
else:
print("\nTopic: '",topic_names[ix],"'")
print(", ".join([feature_names[i]
for i in topic.argsort()[:-no_top_words - 1:-1]]))
display_topics(nmf_model, cv_tfidf.get_feature_names(), 25)
lsa = TruncatedSVD(2)
doc_topic = lsa.fit_transform(X_tfidf)
lsa.explained_variance_ratio_
display_topics(lsa, cv_tfidf.get_feature_names(), 20)
for tweet in her_list:
if ' men ' in tweet:
print(tweet)
X_tfidf_2 = cv_tfidf.fit_transform(his_list)
nmf_model_2 = NMF(3)
topic_matrix_2 = nmf_model_2.fit_transform(X_tfidf_2)
display_topics(nmf_model_2, cv_tfidf.get_feature_names(), 25)
lsa_2 = TruncatedSVD(4)
doc_topic = lsa_2.fit_transform(X_tfidf_2)
lsa.explained_variance_ratio_
display_topics(lsa_2, cv_tfidf.get_feature_names(), 10) |
Topic 0
hes, man, trump, good, men, said, oh, great, got, work
Topic 1
man, oh, boy, thanks, old, life, thankyou, work, sorry, young
Topic 2
hes, man, andrew___baker, oh, talking, boy, gelbach, modeledbehavior, wearing, saying
Topic 3
men, women, white, work, good, economics, macro, great, read, labor
| MIT | code/model_his_her_tfidf_nmf.ipynb | my321/project4_econtwitter |
_____no_output_____ | MIT | src/02_loops_condicionais_metodos_funcoes/06_funcao_range.ipynb | ralsouza/python_fundamentos |
||
Range Imprimir os números pares entre 50 e 101. Usar a técnica da função range que executa saltos entre os números. | for i in range(50,101,2):
print(i)
| 50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
| MIT | src/02_loops_condicionais_metodos_funcoes/06_funcao_range.ipynb | ralsouza/python_fundamentos |
Imprimir de 3 à 6, lembrando que o último número é exclusivo. | for i in range(3,6):
print(i) | 3
4
5
| MIT | src/02_loops_condicionais_metodos_funcoes/06_funcao_range.ipynb | ralsouza/python_fundamentos |
Gerar uma lista negativa, iniciando de 0 até -20, saltando de dois em dois números.Lembrando novamente que o valor máximo é exclusivo. | for i in range(0,-20,-2):
print(i) | 0
-2
-4
-6
-8
-10
-12
-14
-16
-18
| MIT | src/02_loops_condicionais_metodos_funcoes/06_funcao_range.ipynb | ralsouza/python_fundamentos |
Configurar o valor máximo do range, conforme o tamanho de um objeto em um loop for. | lista = ['morango','abacaxi','banana','melão']
for i in range(0, len(lista)):
print(lista[i])
# Checar o tipo do objeto range
type(range(0,5))
| _____no_output_____ | MIT | src/02_loops_condicionais_metodos_funcoes/06_funcao_range.ipynb | ralsouza/python_fundamentos |
From Variables to Classes A short Introduction Python - as any programming language - has many extensions and libraries at its disposal. Basically, there exist libraries for everything. But what are **libraries**? Basically, **libraries** are a collection of methods (_small pieces of code where you put sth in and get sth else out_) which you can use to analyse your data, visualise your data, run models ... do anything you like. As said, methods usually take _something_ as input. That _something_ is usually a **variable**. In the following, we will work our way from **variables** to **libraries**. Variables Variables are one of the simplest types of objects in a programming language. An [object](https://en.wikipedia.org/wiki/Object_(computer_science) is a value stored in the memory of your computer, marked by a specific identifyer. Variables can have different types, such as [strings, numbers, and booleans](https://www.learnpython.org/en/Variables_and_Types). Differently to other programming languages, you do not need to declare the type of a variable, as variables are handled as objects in Python. ```pythonx = 4.2 floating point numbery = 'Hello World!' stringz = True boolean``` | x = 4.24725723
print(type(x))
y = 'Hello World! Hello universe'
print(y)
z = True
print(type(z)) | <class 'float'>
Hello World! Hello universe
<class 'bool'>
| MIT | 00_Variables_to_Classes.ipynb | Zqs0527/geothermics |
We can use operations (normal arithmetic operations) to use variables for getting results we want. With numbers, you can add, substract, multiply, divide, basically taking the values from the memory assigned to the variable name and performing calculations. Let's have a look at operations with numbers and strings. We leave booleans to the side for the moment. We will simply add the variables below. ```python n1 = 7 n2 = 42s1 = 'Looking good, 's2 = 'you are.'``` | n1 = 7
n2 = 42
s1 = 'Looking good, '
s2 = 'you are.'
first_sum = n1 + n2
print(first_sum)
first_conc = s1 + s2
print(first_conc) | 49
Looking good, you are.
| MIT | 00_Variables_to_Classes.ipynb | Zqs0527/geothermics |
Variables can be more than just a number. If you think of an Excel-Spreadsheet, a variable can be the content of a single cell, or multiple cells can be combined in one variable (e.g. one column of an Excel table). So let's create a list -_a collection of variables_ - from `x`, `n1`, and `n2`. Lists in python are created using [ ]. Now, if you want to calculate the sum of this list, it is really exhausting to sum up every item of this list manually. ```pythonfirst_list = [x, n1, n2] a sum of a list could look likesecond_sum = some_list[0] + some_list[1] + ... + some_list[n] where n is the last item of the list, e.g. 2 for first_list. ``` Actually, writing the second sum like this is the same as before. It would be great, if this step of calculating the sum could be used many times without writing it out. And this is, what functions are for. For example, there already exists a sum function: ```python sum(first_list)``` | first_list = [x, n1, n2]
second_sum = first_list[0] + first_list[1] + first_list[2]
print('manual sum {}'.format(second_sum))
# This can also be done with a function
print('sum function {}'.format(sum(first_list))) | manual sum 53.2
sum function 53.2
| MIT | 00_Variables_to_Classes.ipynb | Zqs0527/geothermics |
Functions The `sum()` method we used above is a **function**. Functions (later we will call them methods) are pieces of code, which take an input, perform some kind of operation, and (_optionally_) return an output. In Python, functions are written like: ```pythondef func(input): """ Description of the functions content called the function header """ some kind of operation on input called the function body return output```As an example, we write a `sumup` function which sums up a list. | def sumup(inp):
"""
input: inp - list/array with floating point or integer numbers
return: sumd - scalar value of the summed up list
"""
val = 0
for i in inp:
val = val + i
return val
# let's compare the implemented standard sum function with the new sumup function
sum1 = sum(first_list)
sum2 = sumup(first_list)
print("The python sum function yields {}, \nand our sumup function yields {}.".format(*(sum1,sum2)))
# summing up the numbers from 1 to 100
import numpy as np
ar_2_sum = np.linspace(1,100,100, dtype='i')
print("the sum of the array is: {}".format(sumup(ar_2_sum))) | the sum of the array is: 5050
| MIT | 00_Variables_to_Classes.ipynb | Zqs0527/geothermics |
As we see above, functions are quite practical and save a lot of time. Further, they help structuring your code. Some functions are directly available in python without any libraries or other external software. In the example above however, you might have noticed, that we `import`ed a library called `numpy`. In those libraries, functions are merged to one package, having the advantage that you don't need to import each single function at a time. Imagine you move and have to pack all your belongings. You can think of libraries as packing things with similar purpose in the same box (= library). Functions to Methods as part of classesWhen we talk about functions in the environment of classes, we usually call them methods. But what are **classes**? [Classes](https://docs.python.org/3/tutorial/classes.html) are ways to bundle functionality together. Logically, functionality with similar purpose (or different kind of similarity). One example could be: think of **apples**. Apples are now a class. You can apply methods to this class, such as `eat()` or `cut()`. Or more sophisticated methods including various recipes using apples comprised in a cookbook. The `eat()` method is straight forward. But the `cut()` method may be more interesting, since there are various ways to cut an apple. Let's assume there are two apples to be cut differently. In python, once you have assigned a class to a variable, you have created an **instance** of that class. Then, methods of are applied to that instance by using a . notation.```pythonGolden_Delicious = apple()Yoya = apple()Golden_Delicious.cut(4)Yoya.cut(8)```The two apples Golden Delicious and Yoya are _instances_ of the class apple. Real _incarnations_ of the abstract concept _apple_. The Golden Delicious is cut into 4 pieces, while the Yoya is cut into 8 pieces. This is similar to more complex libraries, such as the `scikit-learn`. In one exercise, you used the command: ```pythonfrom sklearn.cluster import KMeans```which simply imports the **class** `KMeans` from the library part `sklearn.cluster`. `KMeans` comprises several methods for clustering, which you can use by calling them similar to the apple example before. For this, you need to create an _instance_ of the `KMeans` class. ```python...kmeans_inst = KMeans(n_clusters=n_clusters) first we create the instance of the KMeans class called kmeans_instkmeans_inst.fit(data) then we apply a method to the instance kmeans_inst...```An example: | # here we just create the data for clustering
from sklearn.datasets.samples_generator import make_blobs
import matplotlib.pyplot as plt
%matplotlib inline
X, y = make_blobs(n_samples=100, centers=3, cluster_std= 0.5,
random_state=0)
plt.scatter(X[:,0], X[:,1], s=70)
# now we create an instance of the KMeans class
from sklearn.cluster import KMeans
nr_of_clusters = 3 # because we see 3 clusters in the plot above
kmeans_inst = KMeans(n_clusters= nr_of_clusters) # create the instance kmeans_inst
kmeans_inst.fit(X) # apply a method to the instance
y_predict = kmeans_inst.predict(X) # apply another method to the instance and save it in another variable
# lets plot the predicted cluster centers colored in the cluster color
plt.scatter(X[:, 0], X[:, 1], c=y_predict, s=50, cmap='Accent')
centers = kmeans_inst.cluster_centers_ # apply the method to find the new centers of the determined clusters
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.6); # plot the cluster centers | _____no_output_____ | MIT | 00_Variables_to_Classes.ipynb | Zqs0527/geothermics |
Visualize Counts for the three classes The number of volume-wise predictions for each of the three classes can be visualized in a 2D-space (with two classes as the axes and the remained or class1-class2 as the value of the third class). Also, the percentage of volume-wise predictions can be shown in a modified pie-chart, i.e. a doughnut plot. import modules | import os
import pickle
import numpy as np
import pandas as pd
from sklearn import preprocessing
from sklearn import svm
import scipy.misc
from scipy import ndimage
from scipy.stats import beta
from PIL import Image
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_context('poster')
sns.set_style('ticks')
# after converstion to .py, we can use __file__ to get the module folder
try:
thisDir = os.path.realpath(__file__)
# in notebook form, we take the current working directory (we need to be in 'notebooks/' for this!)
except:
thisDir = '.'
# convert relative path into absolute path, so this will work with notebooks and py modules
supDir = os.path.abspath(os.path.join(os.path.dirname(thisDir), '..'))
supDir | _____no_output_____ | MIT | notebooks/14-mw-prediction-space.ipynb | mwegrzyn/volume-wise-language |
Outline the WTA prediction model make all possible values | def make_all_dummy():
my_max = 100
d = {}
count = 0
for bi in np.arange(0,my_max+(10**-10),0.5):
left_and_right = my_max - bi
for left in np.arange(0,left_and_right+(10**-10),0.5):
right = left_and_right-left
d[count] = {'left':left,'bilateral':bi,'right':right}
count+=1
df = pd.DataFrame(d).T
assert np.unique(df.sum(axis=1))[-1] == my_max
df['pred'] = df.idxmax(axis=1)
return df
dummy_df = make_all_dummy()
dummy_df.tail() | _____no_output_____ | MIT | notebooks/14-mw-prediction-space.ipynb | mwegrzyn/volume-wise-language |
transform labels into numbers | my_labeler = preprocessing.LabelEncoder()
my_labeler.fit(['left','bilateral','right','inconclusive'])
my_labeler.classes_ | _____no_output_____ | MIT | notebooks/14-mw-prediction-space.ipynb | mwegrzyn/volume-wise-language |
2d space where highest number indiciates class membership (WTA) | def make_dummy_space(dummy_df):
space_df = dummy_df.copy()
space_df['pred'] = my_labeler.transform(dummy_df['pred'])
space_df.index = [space_df.left, space_df.right]
space_df = space_df[['pred']]
space_df = space_df.unstack(1)['pred']
return space_df
dummy_space_df = make_dummy_space(dummy_df)
dummy_space_df.tail() | _____no_output_____ | MIT | notebooks/14-mw-prediction-space.ipynb | mwegrzyn/volume-wise-language |
define color map | colors_file = os.path.join(supDir,'models','colors.p')
with open(colors_file, 'rb') as f:
color_dict = pickle.load(f)
my_cols = {}
for i, j in zip(['red','yellow','blue','trans'], ['left','bilateral','right','inconclusive']):
my_cols[j] = color_dict[i]
my_col_order = np.array([my_cols[g] for g in my_labeler.classes_])
cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", my_col_order) | _____no_output_____ | MIT | notebooks/14-mw-prediction-space.ipynb | mwegrzyn/volume-wise-language |
plot WTA predictions | plt.figure(figsize=(6,6))
plt.imshow(dummy_space_df, origin='image',cmap=cmap,extent=(0,100,0,100),alpha=0.8)
plt.contour(dummy_space_df[::-1],colors='white',alpha=1,origin='image',extent=(0,100,0,100),antialiased=True)
plt.xlabel('right',fontsize=32)
plt.xticks(range(0,101,25),np.arange(0,1.01,.25),fontsize=28)
plt.yticks(range(0,101,25),np.arange(0,1.01,.25),fontsize=28)
plt.ylabel('left',fontsize=32)
sns.despine()
plt.show() | _____no_output_____ | MIT | notebooks/14-mw-prediction-space.ipynb | mwegrzyn/volume-wise-language |
load data | groupdata_filename = '../data/processed/csv/withinconclusive_prediction_df.csv'
prediction_df = pd.read_csv(groupdata_filename,index_col=[0,1],header=0) | _____no_output_____ | MIT | notebooks/14-mw-prediction-space.ipynb | mwegrzyn/volume-wise-language |
toolbox use | #groupdata_filename = os.path.join(supDir,'models','withinconclusive_prediction_df.csv')
#prediction_df = pd.read_csv(groupdata_filename,index_col=[0,1],header=0)
prediction_df.tail() | _____no_output_____ | MIT | notebooks/14-mw-prediction-space.ipynb | mwegrzyn/volume-wise-language |
show data and WTA space | plt.figure(figsize=(6,6))
plt.imshow(dummy_space_df, origin='image',cmap=cmap,extent=(0,100,0,100),alpha=0.8)
plt.contour(dummy_space_df[::-1],colors='white',alpha=1,origin='image',extent=(0,100,0,100),antialiased=True)
for c in ['left','right','bilateral']:
a_df = prediction_df.loc[c,['left','right']] * 100
plt.scatter(a_df['right'],a_df['left'],c=[my_cols[c]],edgecolor='k',linewidth=2,s=200,alpha=0.6)
plt.xlabel('right',fontsize=32)
plt.xticks(range(0,101,25),np.arange(0,1.01,.25),fontsize=28)
plt.yticks(range(0,101,25),np.arange(0,1.01,.25),fontsize=28)
plt.ylabel('left',fontsize=32)
sns.despine()
plt.savefig('../reports/figures/14-prediction-space.png',dpi=300,bbox_inches='tight')
plt.show() | _____no_output_____ | MIT | notebooks/14-mw-prediction-space.ipynb | mwegrzyn/volume-wise-language |
show one patient's data doughnut plot | p_name = 'pat###'
p_count_df = pd.read_csv('../data/processed/csv/%s_counts_df.csv'%p_name,index_col=[0,1],header=0)
p_count_df
def make_donut(p_count_df, ax, my_cols=my_cols):
"""show proportion of the number of volumes correlating highest with one of the three groups"""
percentages = p_count_df/p_count_df.sum(axis=1).values[-1] * 100
## donut plot visualization adapted from https://gist.github.com/krishnakummar/ad00d05311977732764f#file-donut-example-py
ax.pie(
percentages.values[-1],
pctdistance=0.75,
colors=[my_cols[x] for x in percentages.columns],
autopct='%0.0f%%',
shadow=False,
textprops={'fontsize': 40})
centre_circle = plt.Circle((0, 0), 0.55, fc='white')
ax.add_artist(centre_circle)
ax.set_aspect('equal')
return ax
fig,ax = plt.subplots(1,1,figsize=(8,8))
ax = make_donut(p_count_df,ax)
plt.savefig('../examples/%s_donut.png'%p_name,dpi=300,bbox_inches='tight')
plt.show() | _____no_output_____ | MIT | notebooks/14-mw-prediction-space.ipynb | mwegrzyn/volume-wise-language |
prediction space | def make_pred_space(p_count_df, prediction_df, ax, dummy_space_df=dummy_space_df):
ax.imshow(dummy_space_df, origin='image',cmap=cmap,extent=(0,100,0,100),alpha=0.8)
ax.contour(dummy_space_df[::-1],colors='white',alpha=1,origin='image',extent=(0,100,0,100),antialiased=True)
for c in ['left','right','bilateral']:
a_df = prediction_df.loc[c,['left','right']] * 100
ax.scatter(a_df['right'],a_df['left'],c=[my_cols[c]],edgecolor='k',linewidth=2,s=200,alpha=0.6)
percentages = p_count_df/p_count_df.sum(axis=1).values[-1] * 100
y_pred = percentages.idxmax(axis=1).values[-1]
ax.scatter(percentages['right'],percentages['left'],c=[my_cols[y_pred]],edgecolor='white',linewidth=4,s=1500,alpha=1)
plt.xlabel('right',fontsize=32)
plt.xticks(range(0,101,25),np.arange(0,1.01,.25),fontsize=28)
plt.yticks(range(0,101,25),np.arange(0,1.01,.25),fontsize=28)
plt.ylabel('left',fontsize=32)
sns.despine()
return ax
fig,ax = plt.subplots(1,1,figsize=(8,8))
ax = make_pred_space(p_count_df,prediction_df,ax)
plt.savefig('../examples/%s_predSpace.png'%p_name,dpi=300,bbox_inches='tight')
plt.show() | _____no_output_____ | MIT | notebooks/14-mw-prediction-space.ipynb | mwegrzyn/volume-wise-language |
toolbox use | #def make_p(pFolder,pName,prediction_df=prediction_df):
#
# count_filename = os.path.join(pFolder,''.join([pName,'_counts_df.csv']))
# p_count_df = pd.read_csv(count_filename,index_col=[0,1],header=0)
#
# fig = plt.figure(figsize=(8,8))
# ax = plt.subplot(111)
# ax = make_donut(p_count_df,ax)
# out_name_donut = os.path.join(pFolder,''.join([pName,'_donut.png']))
# plt.savefig(out_name_donut,dpi=300,bbox_inches='tight')
# plt.close()
#
# fig = plt.figure(figsize=(8,8))
# with sns.axes_style("ticks"):
# ax = plt.subplot(111)
# ax = make_pred_space(p_count_df,prediction_df,ax)
# out_name_space = os.path.join(pFolder,''.join([pName,'_predSpace.png']))
# plt.savefig(out_name_space,dpi=300,bbox_inches='tight')
# plt.close()
#
# return out_name_donut, out_name_space | _____no_output_____ | MIT | notebooks/14-mw-prediction-space.ipynb | mwegrzyn/volume-wise-language |
Torch Core> Basic pytorch functions used in the fastai library Arrays and show | #export
@delegates(plt.subplots, keep=True)
def subplots(nrows=1, ncols=1, figsize=None, imsize=3, add_vert=0, **kwargs):
if figsize is None: figsize=(ncols*imsize, nrows*imsize+add_vert)
fig,ax = plt.subplots(nrows, ncols, figsize=figsize, **kwargs)
if nrows*ncols==1: ax = array([ax])
return fig,ax
#hide
_,axs = subplots()
test_eq(axs.shape,[1])
plt.close()
_,axs = subplots(2,3)
test_eq(axs.shape,[2,3])
plt.close()
#export
def _fig_bounds(x):
r = x//32
return min(5, max(1,r))
#export
def show_image(im, ax=None, figsize=None, title=None, ctx=None, **kwargs):
"Show a PIL or PyTorch image on `ax`."
# Handle pytorch axis order
if hasattrs(im, ('data','cpu','permute')):
im = im.data.cpu()
if im.shape[0]<5: im=im.permute(1,2,0)
elif not isinstance(im,np.ndarray): im=array(im)
# Handle 1-channel images
if im.shape[-1]==1: im=im[...,0]
ax = ifnone(ax,ctx)
if figsize is None: figsize = (_fig_bounds(im.shape[0]), _fig_bounds(im.shape[1]))
if ax is None: _,ax = plt.subplots(figsize=figsize)
ax.imshow(im, **kwargs)
if title is not None: ax.set_title(title)
ax.axis('off')
return ax | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
`show_image` can show PIL images... | im = Image.open(TEST_IMAGE_BW)
ax = show_image(im, cmap="Greys") | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
...and color images with standard `CHW` dim order... | im2 = np.array(Image.open(TEST_IMAGE))
ax = show_image(im2, figsize=(2,2)) | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
...and color images with `HWC` dim order... | im3 = torch.as_tensor(im2).permute(2,0,1)
ax = show_image(im3, figsize=(2,2))
#export
def show_titled_image(o, **kwargs):
"Call `show_image` destructuring `o` to `(img,title)`"
show_image(o[0], title=str(o[1]), **kwargs)
show_titled_image((im3,'A puppy'), figsize=(2,2))
#export
@delegates(subplots)
def show_images(ims, nrows=1, ncols=None, titles=None, **kwargs):
"Show all images `ims` as subplots with `rows` using `titles`"
if ncols is None: ncols = int(math.ceil(len(ims)/nrows))
if titles is None: titles = [None]*len(ims)
axs = subplots(nrows, ncols, **kwargs)[1].flat
for im,t,ax in zip(ims, titles, axs): show_image(im, ax=ax, title=t)
show_images((im,im3), titles=('number','puppy'), imsize=2) | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
`ArrayImage`, `ArrayImageBW` and `ArrayMask` are subclasses of `ndarray` that know how to show themselves. | #export
class ArrayBase(ndarray):
@classmethod
def _before_cast(cls, x): return x if isinstance(x,ndarray) else array(x)
#export
class ArrayImageBase(ArrayBase):
_show_args = {'cmap':'viridis'}
def show(self, ctx=None, **kwargs):
return show_image(self, ctx=ctx, **{**self._show_args, **kwargs})
#export
class ArrayImage(ArrayImageBase): pass
#export
class ArrayImageBW(ArrayImage): _show_args = {'cmap':'Greys'}
#export
class ArrayMask(ArrayImageBase): _show_args = {'alpha':0.5, 'cmap':'tab20', 'interpolation':'nearest'}
im = Image.open(TEST_IMAGE)
im_t = cast(im, ArrayImage)
test_eq(type(im_t), ArrayImage)
ax = im_t.show(figsize=(2,2))
test_fig_exists(ax) | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
Basics | #export
@patch
def __array_eq__(self:Tensor,b):
return torch.equal(self,b) if self.dim() else self==b
#export
def _array2tensor(x):
if x.dtype==np.uint16: x = x.astype(np.float32)
return torch.from_numpy(x)
#export
def tensor(x, *rest, **kwargs):
"Like `torch.as_tensor`, but handle lists too, and can pass multiple vector elements directly."
if len(rest): x = (x,)+rest
# There was a Pytorch bug in dataloader using num_workers>0. Haven't confirmed if fixed
# if isinstance(x, (tuple,list)) and len(x)==0: return tensor(0)
res = (x if isinstance(x, Tensor)
else torch.tensor(x, **kwargs) if isinstance(x, (tuple,list))
else _array2tensor(x) if isinstance(x, ndarray)
else as_tensor(x.values, **kwargs) if isinstance(x, (pd.Series, pd.DataFrame))
else as_tensor(x, **kwargs) if hasattr(x, '__array__') or is_iter(x)
else _array2tensor(array(x), **kwargs))
if res.dtype is torch.float64: return res.float()
return res
test_eq(tensor(torch.tensor([1,2,3])), torch.tensor([1,2,3]))
test_eq(tensor(array([1,2,3])), torch.tensor([1,2,3]))
test_eq(tensor(1,2,3), torch.tensor([1,2,3]))
test_eq_type(tensor(1.0), torch.tensor(1.0))
#export
def set_seed(s):
"Set random seed for `random`, `torch`, and `numpy` (where available)"
try: torch.manual_seed(s)
except NameError: pass
try: np.random.seed(s%(2**32-1))
except NameError: pass
random.seed(s)
set_seed(2*33)
a1 = np.random.random()
a2 = torch.rand(())
a3 = random.random()
set_seed(2*33)
b1 = np.random.random()
b2 = torch.rand(())
b3 = random.random()
test_eq(a1,b1)
test_eq(a2,b2)
test_eq(a3,b3)
#export
def unsqueeze(x, dim=-1, n=1):
"Same as `torch.unsqueeze` but can add `n` dims"
for _ in range(n): x = x.unsqueeze(dim)
return x
t = tensor([1])
t2 = unsqueeze(t, n=2)
test_eq(t2,t[:,None,None])
#export
def unsqueeze_(x, dim=-1, n=1):
"Same as `torch.unsqueeze_` but can add `n` dims"
for _ in range(n): x.unsqueeze_(dim)
return x
t = tensor([1])
unsqueeze_(t, n=2)
test_eq(t, tensor([1]).view(1,1,1))
#export
def _fa_rebuild_tensor (cls, *args, **kwargs): return cls(torch._utils._rebuild_tensor_v2(*args, **kwargs))
def _fa_rebuild_qtensor(cls, *args, **kwargs): return cls(torch._utils._rebuild_qtensor (*args, **kwargs))
#export
def apply(func, x, *args, **kwargs):
"Apply `func` recursively to `x`, passing on args"
if is_listy(x): return type(x)([apply(func, o, *args, **kwargs) for o in x])
if isinstance(x,dict): return {k: apply(func, v, *args, **kwargs) for k,v in x.items()}
res = func(x, *args, **kwargs)
return res if x is None else retain_type(res, x)
#export
def maybe_gather(x, axis=0):
"Gather copies of `x` on `axis` (if training is distributed)"
if num_distrib()<=1: return x
ndim = x.ndim
res = [x.new_zeros(*x.shape if ndim > 0 else (1,)) for _ in range(num_distrib())]
torch.distributed.all_gather(res, x if ndim > 0 else x[None])
return torch.cat(res, dim=axis) if ndim > 0 else torch.cat(res, dim=axis).mean()
#export
def to_detach(b, cpu=True, gather=True):
"Recursively detach lists of tensors in `b `; put them on the CPU if `cpu=True`."
def _inner(x, cpu=True, gather=True):
if not isinstance(x,Tensor): return x
x = x.detach()
if gather: x = maybe_gather(x)
return x.cpu() if cpu else x
return apply(_inner, b, cpu=cpu, gather=gather) | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
`gather` only applies during distributed training and the result tensor will be the one gathered accross processes if `gather=True` (as a result, the batch size will be multiplied by the number of processes). | #export
def to_half(b):
"Recursively map lists of tensors in `b ` to FP16."
return apply(lambda x: x.half() if torch.is_floating_point(x) else x, b)
#export
def to_float(b):
"Recursively map lists of int tensors in `b ` to float."
return apply(lambda x: x.float() if torch.is_floating_point(x) else x, b)
#export
# None: True if available; True: error if not availabe; False: use CPU
defaults.use_cuda = None
#export
def default_device(use_cuda=-1):
"Return or set default device; `use_cuda`: None - CUDA if available; True - error if not availabe; False - CPU"
if use_cuda != -1: defaults.use_cuda=use_cuda
use = defaults.use_cuda or (torch.cuda.is_available() and defaults.use_cuda is None)
assert torch.cuda.is_available() or not use
return torch.device(torch.cuda.current_device()) if use else torch.device('cpu')
#cuda
_td = torch.device(torch.cuda.current_device())
test_eq(default_device(None), _td)
test_eq(default_device(True), _td)
test_eq(default_device(False), torch.device('cpu'))
default_device(None);
#export
def to_device(b, device=None):
"Recursively put `b` on `device`."
if defaults.use_cuda==False: device='cpu'
elif device is None: device=default_device()
def _inner(o): return o.to(device, non_blocking=True) if isinstance(o,Tensor) else o.to_device(device) if hasattr(o, "to_device") else o
return apply(_inner, b)
t = to_device((3,(tensor(3),tensor(2))))
t1,(t2,t3) = t
test_eq_type(t,(3,(tensor(3).cuda(),tensor(2).cuda())))
test_eq(t2.type(), "torch.cuda.LongTensor")
test_eq(t3.type(), "torch.cuda.LongTensor")
#export
def to_cpu(b):
"Recursively map lists of tensors in `b ` to the cpu."
return to_device(b,'cpu')
t3 = to_cpu(t3)
test_eq(t3.type(), "torch.LongTensor")
test_eq(t3, 2)
#export
def to_np(x):
"Convert a tensor to a numpy array."
return apply(lambda o: o.data.cpu().numpy(), x)
t3 = to_np(t3)
test_eq(type(t3), np.ndarray)
test_eq(t3, 2)
#export
def to_concat(xs, dim=0):
"Concat the element in `xs` (recursively if they are tuples/lists of tensors)"
if is_listy(xs[0]): return type(xs[0])([to_concat([x[i] for x in xs], dim=dim) for i in range_of(xs[0])])
if isinstance(xs[0],dict): return {k: to_concat([x[k] for x in xs], dim=dim) for k in xs[0].keys()}
#We may receives xs that are not concatenatable (inputs of a text classifier for instance),
# in this case we return a big list
try: return retain_type(torch.cat(xs, dim=dim), xs[0])
except: return sum([L(retain_type(o_.index_select(dim, tensor(i)).squeeze(dim), xs[0])
for i in range_of(o_)) for o_ in xs], L())
test_eq(to_concat([tensor([1,2]), tensor([3,4])]), tensor([1,2,3,4]))
test_eq(to_concat([tensor([[1,2]]), tensor([[3,4]])], dim=1), tensor([[1,2,3,4]]))
test_eq_type(to_concat([(tensor([1,2]), tensor([3,4])), (tensor([3,4]), tensor([5,6]))]), (tensor([1,2,3,4]), tensor([3,4,5,6])))
test_eq_type(to_concat([[tensor([1,2]), tensor([3,4])], [tensor([3,4]), tensor([5,6])]]), [tensor([1,2,3,4]), tensor([3,4,5,6])])
test_eq_type(to_concat([(tensor([1,2]),), (tensor([3,4]),)]), (tensor([1,2,3,4]),))
test_eq(to_concat([tensor([[1,2]]), tensor([[3,4], [5,6]])], dim=1), [tensor([1]),tensor([3, 5]),tensor([4, 6])])
test_eq(type(to_concat([dict(foo=tensor([1,2]), bar=tensor(3,4))])), dict) | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
Tensor subtypes | #export
@patch
def set_meta(self:Tensor, x):
"Set all metadata in `__dict__`"
if hasattr(x,'__dict__'): self.__dict__ = x.__dict__
#export
@patch
def get_meta(self:Tensor, n, d=None):
"Set `n` from `self._meta` if it exists and returns default `d` otherwise"
return getattr(self, '_meta', {}).get(n, d)
#export
@patch
def as_subclass(self:Tensor, typ):
"Cast to `typ` (should be in future PyTorch version, so remove this then)"
res = torch.Tensor._make_subclass(typ, self)
return retain_meta(self, res) | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
`Tensor.set_meta` and `Tensor.as_subclass` work together to maintain `_meta` after casting. | class _T(Tensor): pass
t = tensor(1)
t._meta = {'img_size': 1}
t2 = t.as_subclass(_T)
test_eq(t._meta, t2._meta)
test_eq(t2.get_meta('img_size'), 1)
#export
class TensorBase(Tensor):
def __new__(cls, x, **kwargs):
res = cast(tensor(x), cls)
res._meta = kwargs
return res
@classmethod
def _before_cast(cls, x): return x if isinstance(x,Tensor) else tensor(x)
def __reduce_ex__(self,proto):
torch.utils.hooks.warn_if_has_hooks(self)
args = (type(self), self.storage(), self.storage_offset(), tuple(self.size()), self.stride())
if self.is_quantized: args = args + (self.q_scale(), self.q_zero_point())
f = _fa_rebuild_qtensor if self.is_quantized else _fa_rebuild_tensor
return (f, args + (self.requires_grad, OrderedDict()))
def gi(self, i):
res = self[i]
return res.as_subclass(type(self)) if isinstance(res,Tensor) else res
def __repr__(self):
return re.sub('tensor', self.__class__.__name__, super().__repr__())
#export
def _patch_tb():
if getattr(TensorBase,'_patched',False): return
TensorBase._patched = True
def get_f(fn):
def _f(self, *args, **kwargs):
cls = self.__class__
res = getattr(super(TensorBase, self), fn)(*args, **kwargs)
return retain_type(res, self)
return _f
t = tensor([1])
skips = 'as_subclass __getitem__ __class__ __deepcopy__ __delattr__ __dir__ __doc__ __getattribute__ __hash__ __init__ \
__init_subclass__ __new__ __reduce__ __reduce_ex__ __repr__ __module__ __setstate__'.split()
for fn in dir(t):
if fn in skips: continue
f = getattr(t, fn)
if isinstance(f, (MethodWrapperType, BuiltinFunctionType, BuiltinMethodType, MethodType, FunctionType)):
setattr(TensorBase, fn, get_f(fn))
_patch_tb()
#export
class TensorCategory(TensorBase): pass
#export
class TensorMultiCategory(TensorCategory): pass
class _T(TensorBase): pass
t = _T(range(5))
test_eq(t[0], 0)
test_eq_type(t.gi(0), _T(0))
test_eq_type(t.gi(slice(2)), _T([0,1]))
test_eq_type(t+1, _T(range(1,6)))
test_eq(repr(t), '_T([0, 1, 2, 3, 4])')
test_eq(type(pickle.loads(pickle.dumps(t))), _T)
t = tensor([1,2,3])
m = TensorBase([False,True,True])
test_eq(t[m], tensor([2,3]))
t = tensor([[1,2,3],[1,2,3]])
m = cast(tensor([[False,True,True],
[False,True,True]]), TensorBase)
test_eq(t[m], tensor([2,3,2,3]))
t = tensor([[1,2,3],[1,2,3]])
t._meta = {'img_size': 1}
t2 = cast(t, TensorBase)
test_eq(t2._meta, t._meta)
x = retain_type(tensor([4,5,6]), t2)
test_eq(x._meta, t._meta)
t3 = TensorBase([[1,2,3],[1,2,3]], img_size=1)
test_eq(t3._meta, t._meta)
#export
class TensorImageBase(TensorBase):
_show_args = ArrayImageBase._show_args
def show(self, ctx=None, **kwargs):
return show_image(self, ctx=ctx, **{**self._show_args, **kwargs})
#export
class TensorImage(TensorImageBase): pass
#export
class TensorImageBW(TensorImage): _show_args = ArrayImageBW._show_args
#export
class TensorMask(TensorImageBase):
_show_args = ArrayMask._show_args
def show(self, ctx=None, **kwargs):
codes = self.get_meta('codes')
if codes is not None: kwargs = merge({'vmin': 1, 'vmax': len(codes)}, kwargs)
return super().show(ctx=ctx, **kwargs)
im = Image.open(TEST_IMAGE)
im_t = cast(array(im), TensorImage)
test_eq(type(im_t), TensorImage)
im_t2 = cast(tensor(1), TensorMask)
test_eq(type(im_t2), TensorMask)
test_eq(im_t2, tensor(1))
ax = im_t.show(figsize=(2,2))
test_fig_exists(ax)
#hide (last test of to_concat)
test_eq_type(to_concat([TensorImage([1,2]), TensorImage([3,4])]), TensorImage([1,2,3,4]))
#export
class TitledTensorScalar(TensorBase):
"A tensor containing a scalar that has a `show` method"
def show(self, **kwargs): show_title(self.item(), **kwargs) | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
L - | #export
@patch
def tensored(self:L):
"`mapped(tensor)`"
return self.map(tensor)
@patch
def stack(self:L, dim=0):
"Same as `torch.stack`"
return torch.stack(list(self.tensored()), dim=dim)
@patch
def cat (self:L, dim=0):
"Same as `torch.cat`"
return torch.cat (list(self.tensored()), dim=dim)
show_doc(L.tensored) | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
There are shortcuts for `torch.stack` and `torch.cat` if your `L` contains tensors or something convertible. You can manually convert with `tensored`. | t = L(([1,2],[3,4]))
test_eq(t.tensored(), [tensor(1,2),tensor(3,4)])
show_doc(L.stack)
test_eq(t.stack(), tensor([[1,2],[3,4]]))
show_doc(L.cat)
test_eq(t.cat(), tensor([1,2,3,4])) | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
Chunks | #export
def concat(*ls):
"Concatenate tensors, arrays, lists, or tuples"
if not len(ls): return []
it = ls[0]
if isinstance(it,torch.Tensor): res = torch.cat(ls)
elif isinstance(it,ndarray): res = np.concatenate(ls)
else:
res = itertools.chain.from_iterable(map(L,ls))
if isinstance(it,(tuple,list)): res = type(it)(res)
else: res = L(res)
return retain_type(res, it)
a,b,c = [1],[1,2],[1,1,2]
test_eq(concat(a,b), c)
test_eq_type(concat(tuple (a),tuple (b)), tuple (c))
test_eq_type(concat(array (a),array (b)), array (c))
test_eq_type(concat(tensor(a),tensor(b)), tensor(c))
test_eq_type(concat(TensorBase(a),TensorBase(b)), TensorBase(c))
test_eq_type(concat([1,1],1), [1,1,1])
test_eq_type(concat(1,1,1), L(1,1,1))
test_eq_type(concat(L(1,2),1), L(1,2,1))
#export
class Chunks:
"Slice and int indexing into a list of lists"
def __init__(self, chunks, lens=None):
self.chunks = chunks
self.lens = L(map(len,self.chunks) if lens is None else lens)
self.cumlens = np.cumsum(0+self.lens)
self.totlen = self.cumlens[-1]
def __getitem__(self,i):
if isinstance(i,slice): return retain_type(self.getslice(i), old=self.chunks[0])
di,idx = self.doc_idx(i)
return retain_type(self.chunks[di][idx], old=self.chunks[0])
def getslice(self, i):
st_d,st_i = self.doc_idx(ifnone(i.start,0))
en_d,en_i = self.doc_idx(ifnone(i.stop,self.totlen+1))
res = [self.chunks[st_d][st_i:(en_i if st_d==en_d else sys.maxsize)]]
for b in range(st_d+1,en_d): res.append(self.chunks[b])
if st_d!=en_d and en_d<len(self.chunks): res.append(self.chunks[en_d][:en_i])
return concat(*res)
def doc_idx(self, i):
if i<0: i=self.totlen+i # count from end
docidx = np.searchsorted(self.cumlens, i+1)-1
cl = self.cumlens[docidx]
return docidx,i-cl
docs = L(list(string.ascii_lowercase[a:b]) for a,b in ((0,3),(3,7),(7,8),(8,16),(16,24),(24,26)))
b = Chunks(docs)
test_eq([b[ o] for o in range(0,5)], ['a','b','c','d','e'])
test_eq([b[-o] for o in range(1,6)], ['z','y','x','w','v'])
test_eq(b[6:13], 'g,h,i,j,k,l,m'.split(','))
test_eq(b[20:77], 'u,v,w,x,y,z'.split(','))
test_eq(b[:5], 'a,b,c,d,e'.split(','))
test_eq(b[:2], 'a,b'.split(','))
t = torch.arange(26)
docs = L(t[a:b] for a,b in ((0,3),(3,7),(7,8),(8,16),(16,24),(24,26)))
b = Chunks(docs)
test_eq([b[ o] for o in range(0,5)], range(0,5))
test_eq([b[-o] for o in range(1,6)], [25,24,23,22,21])
test_eq(b[6:13], torch.arange(6,13))
test_eq(b[20:77], torch.arange(20,26))
test_eq(b[:5], torch.arange(5))
test_eq(b[:2], torch.arange(2))
docs = L(TensorBase(t[a:b]) for a,b in ((0,3),(3,7),(7,8),(8,16),(16,24),(24,26)))
b = Chunks(docs)
test_eq_type(b[:2], TensorBase(range(2)))
test_eq_type(b[:5], TensorBase(range(5)))
test_eq_type(b[9:13], TensorBase(range(9,13))) | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
Simple types | #export
def show_title(o, ax=None, ctx=None, label=None, color='black', **kwargs):
"Set title of `ax` to `o`, or print `o` if `ax` is `None`"
ax = ifnone(ax,ctx)
if ax is None: print(o)
elif hasattr(ax, 'set_title'):
t = ax.title.get_text()
if len(t) > 0: o = t+'\n'+str(o)
ax.set_title(o, color=color)
elif isinstance(ax, pd.Series):
while label in ax: label += '_'
ax = ax.append(pd.Series({label: o}))
return ax
test_stdout(lambda: show_title("title"), "title")
# ensure that col names are unique when showing to a pandas series
assert show_title("title", ctx=pd.Series(dict(a=1)), label='a').equals(pd.Series(dict(a=1,a_='title')))
#export
class ShowTitle:
"Base class that adds a simple `show`"
_show_args = {'label': 'text'}
def show(self, ctx=None, **kwargs):
"Show self"
return show_title(str(self), ctx=ctx, **merge(self._show_args, kwargs))
class TitledInt(Int, ShowTitle):
_show_args = {'label': 'text'}
def show(self, ctx=None, **kwargs):
"Show self"
return show_title(str(self), ctx=ctx, **merge(self._show_args, kwargs))
class TitledFloat(Float, ShowTitle):
_show_args = {'label': 'text'}
def show(self, ctx=None, **kwargs):
"Show self"
return show_title(str(self), ctx=ctx, **merge(self._show_args, kwargs))
class TitledStr(Str, ShowTitle):
_show_args = {'label': 'text'}
def show(self, ctx=None, **kwargs):
"Show self"
return show_title(str(self), ctx=ctx, **merge(self._show_args, kwargs))
class TitledTuple(Tuple, ShowTitle):
_show_args = {'label': 'text'}
def show(self, ctx=None, **kwargs):
"Show self"
return show_title(str(self), ctx=ctx, **merge(self._show_args, kwargs))
add_docs(TitledInt, "An `int` with `show`"); add_docs(TitledStr, "An `str` with `show`");
add_docs(TitledFloat, "A `float` with `show`"); add_docs(TitledTuple, "A `Tuple` with `show`")
show_doc(TitledInt, title_level=3)
show_doc(TitledStr, title_level=3)
show_doc(TitledFloat, title_level=3)
test_stdout(lambda: TitledStr('s').show(), 's')
test_stdout(lambda: TitledInt(1).show(), '1')
show_doc(TitledTuple, title_level=3)
#hide
df = pd.DataFrame(index = range(1))
row = df.iloc[0]
x = TitledFloat(2.56)
row = x.show(ctx=row, label='lbl')
test_eq(float(row.lbl), 2.56)
#export
@patch
def truncate(self:TitledStr, n):
"Truncate self to `n`"
words = self.split(' ')[:n]
return TitledStr(' '.join(words)) | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
Other functions | #export
if not hasattr(pd.DataFrame,'_old_init'): pd.DataFrame._old_init = pd.DataFrame.__init__
#export
@patch
def __init__(self:pd.DataFrame, data=None, index=None, columns=None, dtype=None, copy=False):
if data is not None and isinstance(data, Tensor): data = to_np(data)
self._old_init(data, index=index, columns=columns, dtype=dtype, copy=copy)
#export
def get_empty_df(n):
"Return `n` empty rows of a dataframe"
df = pd.DataFrame(index = range(n))
return [df.iloc[i] for i in range(n)]
#export
def display_df(df):
"Display `df` in a notebook or defaults to print"
try: from IPython.display import display, HTML
except: return print(df)
display(HTML(df.to_html()))
#export
def get_first(c):
"Get the first element of c, even if c is a dataframe"
return getattr(c, 'iloc', c)[0]
#export
def one_param(m):
"First parameter in `m`"
return first(m.parameters())
#export
def item_find(x, idx=0):
"Recursively takes the `idx`-th element of `x`"
if is_listy(x): return item_find(x[idx])
if isinstance(x,dict):
key = list(x.keys())[idx] if isinstance(idx, int) else idx
return item_find(x[key])
return x
#export
def find_device(b):
"Recursively search the device of `b`."
return item_find(b).device
t2 = to_device(tensor(0))
dev = default_device()
test_eq(find_device(t2), dev)
test_eq(find_device([t2,t2]), dev)
test_eq(find_device({'a':t2,'b':t2}), dev)
test_eq(find_device({'a':[[t2],[t2]],'b':t2}), dev)
#export
def find_bs(b):
"Recursively search the batch size of `b`."
return item_find(b).shape[0]
x = torch.randn(4,5)
test_eq(find_bs(x), 4)
test_eq(find_bs([x, x]), 4)
test_eq(find_bs({'a':x,'b':x}), 4)
test_eq(find_bs({'a':[[x],[x]],'b':x}), 4)
def np_func(f):
"Convert a function taking and returning numpy arrays to one taking and returning tensors"
def _inner(*args, **kwargs):
nargs = [to_np(arg) if isinstance(arg,Tensor) else arg for arg in args]
return tensor(f(*nargs, **kwargs))
functools.update_wrapper(_inner, f)
return _inner | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
This decorator is particularly useful for using numpy functions as fastai metrics, for instance: | from sklearn.metrics import f1_score
@np_func
def f1(inp,targ): return f1_score(targ, inp)
a1,a2 = array([0,1,1]),array([1,0,1])
t = f1(tensor(a1),tensor(a2))
test_eq(f1_score(a1,a2), t)
assert isinstance(t,Tensor)
#export
class Module(nn.Module, metaclass=PrePostInitMeta):
"Same as `nn.Module`, but no need for subclasses to call `super().__init__`"
def __pre_init__(self, *args, **kwargs): super().__init__()
def __init__(self): pass
show_doc(Module, title_level=3)
class _T(Module):
def __init__(self): self.f = nn.Linear(1,1)
def forward(self,x): return self.f(x)
t = _T()
t(tensor([1.]))
# export
from torch.nn.parallel import DistributedDataParallel
def get_model(model):
"Return the model maybe wrapped inside `model`."
return model.module if isinstance(model, (DistributedDataParallel, nn.DataParallel)) else model
# export
def one_hot(x, c):
"One-hot encode `x` with `c` classes."
res = torch.zeros(c, dtype=torch.uint8)
if isinstance(x, Tensor) and x.numel()>0: res[x] = 1.
else: res[list(L(x, use_list=None))] = 1.
return res
test_eq(one_hot([1,4], 5), tensor(0,1,0,0,1).byte())
test_eq(one_hot(torch.tensor([]), 5), tensor(0,0,0,0,0).byte())
test_eq(one_hot(2, 5), tensor(0,0,1,0,0).byte())
#export
def one_hot_decode(x, vocab=None):
return L(vocab[i] if vocab else i for i,x_ in enumerate(x) if x_==1)
test_eq(one_hot_decode(tensor(0,1,0,0,1)), [1,4])
test_eq(one_hot_decode(tensor(0,0,0,0,0)), [ ])
test_eq(one_hot_decode(tensor(0,0,1,0,0)), [2 ])
#export
def params(m):
"Return all parameters of `m`"
return [p for p in m.parameters()]
#export
def trainable_params(m):
"Return all trainable parameters of `m`"
return [p for p in m.parameters() if p.requires_grad]
m = nn.Linear(4,5)
test_eq(trainable_params(m), [m.weight, m.bias])
m.weight.requires_grad_(False)
test_eq(trainable_params(m), [m.bias])
#export
norm_types = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.InstanceNorm1d, nn.InstanceNorm2d, nn.InstanceNorm3d)
#export
def bn_bias_params(m, with_bias=True): # TODO: Rename to `norm_bias_params`
"Return all bias and BatchNorm parameters"
if isinstance(m, norm_types): return L(m.parameters())
res = L(m.children()).map(bn_bias_params, with_bias=with_bias).concat()
if with_bias and getattr(m, 'bias', None) is not None: res.append(m.bias)
return res
for norm_func in [nn.BatchNorm1d, partial(nn.InstanceNorm1d, affine=True)]:
model = nn.Sequential(nn.Linear(10,20), norm_func(20), nn.Conv1d(3,4, 3))
test_eq(bn_bias_params(model), [model[0].bias, model[1].weight, model[1].bias, model[2].bias])
model = nn.ModuleList([nn.Linear(10,20, bias=False), nn.Sequential(norm_func(20), nn.Conv1d(3,4,3))])
test_eq(bn_bias_params(model), [model[1][0].weight, model[1][0].bias, model[1][1].bias])
model = nn.ModuleList([nn.Linear(10,20), nn.Sequential(norm_func(20), nn.Conv1d(3,4,3))])
test_eq(bn_bias_params(model, with_bias=False), [model[1][0].weight, model[1][0].bias])
#export
def batch_to_samples(b, max_n=10):
"'Transposes' a batch to (at most `max_n`) samples"
if isinstance(b, Tensor): return retain_types(list(b[:max_n]), [b])
else:
res = L(b).map(partial(batch_to_samples,max_n=max_n))
return retain_types(res.zip(), [b])
t = tensor([1,2,3])
test_eq(batch_to_samples([t,t+1], max_n=2), ([1,2],[2,3]))
test_eq(batch_to_samples(tensor([1,2,3]), 10), [1, 2, 3])
test_eq(batch_to_samples([tensor([1,2,3]), tensor([4,5,6])], 10), [(1, 4), (2, 5), (3, 6)])
test_eq(batch_to_samples([tensor([1,2,3]), tensor([4,5,6])], 2), [(1, 4), (2, 5)])
test_eq(batch_to_samples([tensor([1,2,3]), [tensor([4,5,6]),tensor([7,8,9])]], 10),
[(1, (4, 7)), (2, (5, 8)), (3, (6, 9))])
test_eq(batch_to_samples([tensor([1,2,3]), [tensor([4,5,6]),tensor([7,8,9])]], 2), [(1, (4, 7)), (2, (5, 8))])
t = Tuple(tensor([1,2,3]),TensorBase([2,3,4]))
test_eq_type(batch_to_samples(t)[0][1], TensorBase(2))
test_eq(batch_to_samples(t).map(type), [Tuple]*3)
#export
@patch
def interp_1d(x:Tensor, xp, fp):
"Same as `np.interp`"
slopes = (fp[1:]-fp[:-1])/(xp[1:]-xp[:-1])
incx = fp[:-1] - (slopes*xp[:-1])
locs = (x[:,None]>=xp[None,:]).long().sum(1)-1
locs = locs.clamp(0,len(slopes)-1)
return slopes[locs]*x + incx[locs]
brks = tensor(0,1,2,4,8,64).float()
ys = tensor(range_of(brks)).float()
ys /= ys[-1].item()
pts = tensor(0.2,0.5,0.8,3,5,63)
preds = pts.interp_1d(brks, ys)
test_close(preds.numpy(), np.interp(pts.numpy(), brks.numpy(), ys.numpy()))
plt.scatter(brks,ys)
plt.scatter(pts,preds)
plt.legend(['breaks','preds']);
#export
@patch
def pca(x:Tensor, k=2):
"Compute PCA of `x` with `k` dimensions."
x = x-torch.mean(x,0)
U,S,V = torch.svd(x.t())
return torch.mm(x,U[:,:k])
# export
def logit(x):
"Logit of `x`, clamped to avoid inf."
x = x.clamp(1e-7, 1-1e-7)
return -(1/x-1).log()
#export
def num_distrib():
"Return the number of processes in distributed training (if applicable)."
return int(os.environ.get('WORLD_SIZE', 0))
#export
def rank_distrib():
"Return the distributed rank of this process (if applicable)."
return int(os.environ.get('RANK', 0))
#export
def distrib_barrier():
"Place a synchronization barrier in distributed training so that ALL sub-processes in the pytorch process group must arrive here before proceeding."
if num_distrib() > 1: torch.distributed.barrier()
#export
# Saving arrays requires pytables - optional dependency
try: import tables
except: pass
#export
def _comp_filter(lib='lz4',lvl=3): return tables.Filters(complib=f'blosc:{lib}', complevel=lvl)
#export
@patch
def save_array(p:Path, o, complib='lz4', lvl=3):
"Save numpy array to a compressed `pytables` file, using compression level `lvl`"
if isinstance(o,Tensor): o = to_np(o)
with tables.open_file(p, mode='w', filters=_comp_filter(lib=complib,lvl=lvl)) as f: f.create_carray('/', 'data', obj=o) | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
Compression lib can be any of: blosclz, lz4, lz4hc, snappy, zlib or zstd. | #export
@patch
def load_array(p:Path):
"Save numpy array to a `pytables` file"
with tables.open_file(p, 'r') as f: return f.root.data.read()
inspect.getdoc(load_array)
str(inspect.signature(load_array))
#export
def base_doc(elt):
"Print a base documentation of `elt`"
name = getattr(elt, '__qualname__', getattr(elt, '__name__', ''))
print(f'{name}{inspect.signature(elt)}\n{inspect.getdoc(elt)}\n')
print('To get a prettier result with hyperlinks to source code and documentation, install nbdev: pip install nbdev')
#export
def doc(elt):
"Try to use doc form nbdev and fall back to `base_doc`"
try:
from nbdev.showdoc import doc
doc(elt)
except: base_doc(elt)
#export
def nested_reorder(t, idxs):
"Reorder all tensors in `t` using `idxs`"
if isinstance(t, (Tensor,L)): return t[idxs]
elif is_listy(t): return type(t)(nested_reorder(t_, idxs) for t_ in t)
if t is None: return t
raise TypeError(f"Expected tensor, tuple, list or L but got {type(t)}")
x = tensor([0,1,2,3,4,5])
idxs = tensor([2,5,1,0,3,4])
test_eq_type(nested_reorder(([x], x), idxs), ([idxs], idxs))
y = L(0,1,2,3,4,5)
z = L(i.item() for i in idxs)
test_eq_type(nested_reorder((y, x), idxs), (z,idxs)) | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
Image helpers | #export
def to_image(x):
if isinstance(x,Image.Image): return x
if isinstance(x,Tensor): x = to_np(x.permute((1,2,0)))
if x.dtype==np.float32: x = (x*255).astype(np.uint8)
return Image.fromarray(x, mode=['RGB','CMYK'][x.shape[0]==4])
#export
def make_cross_image(bw=True):
"Create a tensor containing a cross image, either `bw` (True) or color"
if bw:
im = torch.zeros(5,5)
im[2,:] = 1.
im[:,2] = 1.
else:
im = torch.zeros(3,5,5)
im[0,2,:] = 1.
im[1,:,2] = 1.
return im
plt.imshow(make_cross_image(), cmap="Greys");
plt.imshow(make_cross_image(False).permute(1,2,0));
#export
def show_image_batch(b, show=show_titled_image, items=9, cols=3, figsize=None, **kwargs):
"Display batch `b` in a grid of size `items` with `cols` width"
if items<cols: cols=items
rows = (items+cols-1) // cols
if figsize is None: figsize = (cols*3, rows*3)
fig,axs = plt.subplots(rows, cols, figsize=figsize)
for *o,ax in zip(*to_cpu(b), axs.flatten()): show(o, ax=ax, **kwargs)
show_image_batch(([Image.open(TEST_IMAGE_BW),Image.open(TEST_IMAGE)],['bw','color']), items=2) | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
Model init | #export
def requires_grad(m):
"Check if the first parameter of `m` requires grad or not"
ps = list(m.parameters())
return ps[0].requires_grad if len(ps)>0 else False
tst = nn.Linear(4,5)
assert requires_grad(tst)
for p in tst.parameters(): p.requires_grad_(False)
assert not requires_grad(tst)
#export
def init_default(m, func=nn.init.kaiming_normal_):
"Initialize `m` weights with `func` and set `bias` to 0."
if func:
if hasattr(m, 'weight'): func(m.weight)
if hasattr(m, 'bias') and hasattr(m.bias, 'data'): m.bias.data.fill_(0.)
return m
tst = nn.Linear(4,5)
tst.weight.data.uniform_(-1,1)
tst.bias.data.uniform_(-1,1)
tst = init_default(tst, func = lambda x: x.data.fill_(1.))
test_eq(tst.weight, torch.ones(5,4))
test_eq(tst.bias, torch.zeros(5))
#export
def cond_init(m, func):
"Apply `init_default` to `m` unless it's a batchnorm module"
if (not isinstance(m, norm_types)) and requires_grad(m): init_default(m, func)
tst = nn.Linear(4,5)
tst.weight.data.uniform_(-1,1)
tst.bias.data.uniform_(-1,1)
cond_init(tst, func = lambda x: x.data.fill_(1.))
test_eq(tst.weight, torch.ones(5,4))
test_eq(tst.bias, torch.zeros(5))
tst = nn.BatchNorm2d(5)
init = [tst.weight.clone(), tst.bias.clone()]
cond_init(tst, func = lambda x: x.data.fill_(1.))
test_eq(tst.weight, init[0])
test_eq(tst.bias, init[1])
#export
def apply_leaf(m, f):
"Apply `f` to children of `m`."
c = m.children()
if isinstance(m, nn.Module): f(m)
for l in c: apply_leaf(l,f)
tst = nn.Sequential(nn.Linear(4,5), nn.Sequential(nn.Linear(4,5), nn.Linear(4,5)))
apply_leaf(tst, partial(init_default, func=lambda x: x.data.fill_(1.)))
for l in [tst[0], *tst[1]]: test_eq(l.weight, torch.ones(5,4))
for l in [tst[0], *tst[1]]: test_eq(l.bias, torch.zeros(5))
#export
def apply_init(m, func=nn.init.kaiming_normal_):
"Initialize all non-batchnorm layers of `m` with `func`."
apply_leaf(m, partial(cond_init, func=func))
tst = nn.Sequential(nn.Linear(4,5), nn.Sequential(nn.Linear(4,5), nn.BatchNorm1d(5)))
init = [tst[1][1].weight.clone(), tst[1][1].bias.clone()]
apply_init(tst, func=lambda x: x.data.fill_(1.))
for l in [tst[0], tst[1][0]]: test_eq(l.weight, torch.ones(5,4))
for l in [tst[0], tst[1][0]]: test_eq(l.bias, torch.zeros(5))
test_eq(tst[1][1].weight, init[0])
test_eq(tst[1][1].bias, init[1]) | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
Multiprocessing | #export
from multiprocessing import Process, Queue
#export
def set_num_threads(nt):
"Get numpy (and others) to use `nt` threads"
try: import mkl; mkl.set_num_threads(nt)
except: pass
torch.set_num_threads(1)
os.environ['IPC_ENABLE']='1'
for o in ['OPENBLAS_NUM_THREADS','NUMEXPR_NUM_THREADS','OMP_NUM_THREADS','MKL_NUM_THREADS']:
os.environ[o] = str(nt)
#export
@delegates(concurrent.futures.ProcessPoolExecutor)
class ProcessPoolExecutor(concurrent.futures.ProcessPoolExecutor):
def __init__(self, max_workers=None, on_exc=print, **kwargs):
self.not_parallel = max_workers==0
self.on_exc = on_exc
if self.not_parallel: max_workers=1
super().__init__(max_workers, **kwargs)
def map(self, f, items, *args, **kwargs):
g = partial(f, *args, **kwargs)
if self.not_parallel: return map(g, items)
try: return super().map(g, items)
except Exception as e: self.on_exc(e)
#export
def parallel(f, items, *args, n_workers=defaults.cpus, total=None, progress=True, **kwargs):
"Applies `func` in parallel to `items`, using `n_workers`"
with ProcessPoolExecutor(n_workers) as ex:
r = ex.map(f,items, *args, **kwargs)
if progress:
if total is None: total = len(items)
r = progress_bar(r, total=total, leave=False)
return L(r)
def add_one(x, a=1):
time.sleep(random.random()/100)
return x+a
inp,exp = range(50),range(1,51)
test_eq(parallel(add_one, inp, n_workers=2), exp)
test_eq(parallel(add_one, inp, n_workers=0), exp)
test_eq(parallel(add_one, inp, n_workers=1, a=2), range(2,52))
test_eq(parallel(add_one, inp, n_workers=0, a=2), range(2,52))
#export
def run_procs(f, f_done, args):
"Call `f` for each item in `args` in parallel, yielding `f_done`"
processes = L(args).map(Process, args=arg0, target=f)
for o in processes: o.start()
try: yield from f_done()
except Exception as e: print(e)
finally: processes.map(Self.join())
#export
def parallel_gen(cls, items, n_workers=defaults.cpus, as_gen=False, **kwargs):
"Instantiate `cls` in `n_workers` procs & call each on a subset of `items` in parallel."
batches = np.array_split(items, n_workers)
idx = np.cumsum(0 + L(batches).map(len))
queue = Queue()
def f(batch, start_idx):
for i,b in enumerate(cls(**kwargs)(batch)): queue.put((start_idx+i,b))
def done(): return (queue.get() for _ in progress_bar(items, leave=False))
yield from run_procs(f, done, L(batches,idx).zip()) | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
`cls` is any class with `__call__`. It will be passed `args` and `kwargs` when initialized. Note that `n_workers` instances of `cls` are created, one in each process. `items` are then split in `n_workers` batches and one is sent to each `cls`. The function then returns a list of all the results, matching the order of `items` (if not `as_gen`) or a generator of tuples of item indices and results (if `as_gen`). | class SleepyBatchFunc:
def __init__(self): self.a=1
def __call__(self, batch):
for k in batch:
time.sleep(random.random()/4)
yield k+self.a
x = np.linspace(0,0.99,20)
res = L(parallel_gen(SleepyBatchFunc, x, n_workers=2))
test_eq(res.sorted().itemgot(1), x+1) | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
autograd jit functions | #export
def script_use_ctx(f):
"Decorator: create jit script and pass everything in `ctx.saved_variables to `f`, after `*args`"
sf = torch.jit.script(f)
def _f(ctx, *args, **kwargs): return sf(*args, *ctx.saved_variables, **kwargs)
return update_wrapper(_f,f)
#export
def script_save_ctx(static, *argidx):
"Decorator: create jit script and save args with indices `argidx` using `ctx.save_for_backward`"
def _dec(f):
sf = torch.jit.script(f)
def _f(ctx, *args, **kwargs):
if argidx:
save = [args[o] for o in argidx]
ctx.save_for_backward(*save)
if not argidx: args = [ctx]+args
return sf(*args, **kwargs)
if static: _f = staticmethod(_f)
return update_wrapper(_f,f)
return _dec
#export
def script_fwd(*argidx):
"Decorator: create static jit script and save args with indices `argidx` using `ctx.save_for_backward`"
return script_save_ctx(True, *argidx)
#export
def script_bwd(f):
"Decorator: create static jit script and pass everything in `ctx.saved_variables to `f`, after `*args`"
return staticmethod(script_use_ctx(f))
#export
def grad_module(cls):
"Decorator: convert `cls` into an autograd function"
class _c(nn.Module):
def forward(self, *args, **kwargs): return cls.apply(*args, **kwargs)
return _c | _____no_output_____ | Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
Export - | #hide
from nbdev.export import notebook2script
notebook2script() | Converted 00_torch_core.ipynb.
Converted 01_layers.ipynb.
Converted 02_data.load.ipynb.
Converted 03_data.core.ipynb.
Converted 04_data.external.ipynb.
Converted 05_data.transforms.ipynb.
Converted 06_data.block.ipynb.
Converted 07_vision.core.ipynb.
Converted 08_vision.data.ipynb.
Converted 09_vision.augment.ipynb.
Converted 09b_vision.utils.ipynb.
Converted 09c_vision.widgets.ipynb.
Converted 10_tutorial.pets.ipynb.
Converted 11_vision.models.xresnet.ipynb.
Converted 12_optimizer.ipynb.
Converted 13_callback.core.ipynb.
Converted 13a_learner.ipynb.
Converted 13b_metrics.ipynb.
Converted 14_callback.schedule.ipynb.
Converted 14a_callback.data.ipynb.
Converted 15_callback.hook.ipynb.
Converted 15a_vision.models.unet.ipynb.
Converted 16_callback.progress.ipynb.
Converted 17_callback.tracker.ipynb.
Converted 18_callback.fp16.ipynb.
Converted 18a_callback.training.ipynb.
Converted 19_callback.mixup.ipynb.
Converted 20_interpret.ipynb.
Converted 20a_distributed.ipynb.
Converted 21_vision.learner.ipynb.
Converted 22_tutorial.imagenette.ipynb.
Converted 23_tutorial.vision.ipynb.
Converted 24_tutorial.siamese.ipynb.
Converted 24_vision.gan.ipynb.
Converted 30_text.core.ipynb.
Converted 31_text.data.ipynb.
Converted 32_text.models.awdlstm.ipynb.
Converted 33_text.models.core.ipynb.
Converted 34_callback.rnn.ipynb.
Converted 35_tutorial.wikitext.ipynb.
Converted 36_text.models.qrnn.ipynb.
Converted 37_text.learner.ipynb.
Converted 38_tutorial.text.ipynb.
Converted 40_tabular.core.ipynb.
Converted 41_tabular.data.ipynb.
Converted 42_tabular.model.ipynb.
Converted 43_tabular.learner.ipynb.
Converted 44_tutorial.tabular.ipynb.
Converted 45_collab.ipynb.
Converted 46_tutorial.collab.ipynb.
Converted 50_tutorial.datablock.ipynb.
Converted 60_medical.imaging.ipynb.
Converted 61_tutorial.medical_imaging.ipynb.
Converted 65_medical.text.ipynb.
Converted 70_callback.wandb.ipynb.
Converted 71_callback.tensorboard.ipynb.
Converted 72_callback.neptune.ipynb.
Converted 73_callback.captum.ipynb.
Converted 74_callback.cutmix.ipynb.
Converted 97_test_utils.ipynb.
Converted 99_pytorch_doc.ipynb.
Converted index.ipynb.
Converted tutorial.ipynb.
| Apache-2.0 | nbs/00_torch_core.ipynb | nigh8w0lf/fastai2 |
Soft Computing Vežba 1 - Digitalna slika, computer vision, OpenCV OpenCVOpen source biblioteka namenjena oblasti računarske vizije (eng. computer vision). Dokumentacija dostupna ovde. matplotlibPlotting biblioteka za programski jezik Python i njegov numerički paket NumPy. Dokumentacija dostupna ovde. Učitavanje slikeOpenCV metoda za učitavanje slike sa diska je imread(path_to_image), koja kao parametar prima putanju do slike na disku. Učitana slika img je zapravo NumPy matrica, čije dimenzije zavise od same prirode slike. Ako je slika u boji, onda je img trodimenzionalna matrica, čije su prve dve dimenzije visina i širina slike, a treća dimenzija je veličine 3, zato što ona predstavlja boju (RGB, po jedan segment za svaku osnonvu boju). | import numpy as np
import cv2 # OpenCV biblioteka
import matplotlib
import matplotlib.pyplot as plt
# iscrtavanje slika i grafika unutar samog browsera
%matplotlib inline
# prikaz vecih slika
matplotlib.rcParams['figure.figsize'] = 16,12
img = cv2.imread('images/girl.jpg') # ucitavanje slike sa diska
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # konvertovanje iz BGR u RGB model boja (OpenCV ucita sliku kao BGR)
plt.imshow(img) # prikazivanje slike | _____no_output_____ | MIT | v1-uvod/sc-siit-v1-cv-basics.ipynb | ftn-ai-lab/sc-2019-siit |
Prikazivanje dimenzija slike | print(img.shape) # shape je property Numpy array-a za prikaz dimenzija | _____no_output_____ | MIT | v1-uvod/sc-siit-v1-cv-basics.ipynb | ftn-ai-lab/sc-2019-siit |
Obratiti pažnju da slika u boji ima 3 komponente za svaki piksel na slici - R (red), G (green) i B (blue). | img | _____no_output_____ | MIT | v1-uvod/sc-siit-v1-cv-basics.ipynb | ftn-ai-lab/sc-2019-siit |
Primetite da je svaki element matrice **uint8** (unsigned 8-bit integer), odnosno celobroja vrednost u interval [0, 255]. | img.dtype | _____no_output_____ | MIT | v1-uvod/sc-siit-v1-cv-basics.ipynb | ftn-ai-lab/sc-2019-siit |
Osnovne operacije pomoću NumPyPredstavljanje slike kao NumPy array je vrlo korisna stvar, jer omogućava jednostavnu manipulaciju i izvršavanje osnovih operacija nad slikom. Isecanje (crop) | img_crop = img[100:200, 300:600] # prva koordinata je po visini (formalno red), druga po širini (formalo kolona)
plt.imshow(img_crop) | _____no_output_____ | MIT | v1-uvod/sc-siit-v1-cv-basics.ipynb | ftn-ai-lab/sc-2019-siit |
Okretanje (flip) | img_flip_h = img[:, ::-1] # prva koordinata ostaje ista, a kolone se uzimaju unazad
plt.imshow(img_flip_h)
img_flip_v = img[::-1, :] # druga koordinata ostaje ista, a redovi se uzimaju unazad
plt.imshow(img_flip_v)
img_flip_c = img[:, :, ::-1] # možemo i izmeniti redosled boja (RGB->BGR), samo je pitanje koliko to ima smisla
plt.imshow(img_flip_c) | _____no_output_____ | MIT | v1-uvod/sc-siit-v1-cv-basics.ipynb | ftn-ai-lab/sc-2019-siit |
Invertovanje | img_inv = 255 - img # ako su pikeli u intervalu [0,255] ovo je ok, a ako su u intervalu [0.,1.] onda bi bilo 1. - img
plt.imshow(img_inv) | _____no_output_____ | MIT | v1-uvod/sc-siit-v1-cv-basics.ipynb | ftn-ai-lab/sc-2019-siit |
Konvertovanje iz RGB u "grayscale"Konvertovanjem iz RGB modela u nijanse sivih (grayscale) se gubi informacija o boji piksela na slici, ali sama slika postaje mnogo lakša za dalju obradu.Ovo se može uraditi na više načina:1. **Srednja vrednost** RGB komponenti - najjednostavnija varijanta $$ G = \frac{R+G+B}{3} $$2. **Metod osvetljenosti** - srednja vrednost najjače i najslabije boje $$ G = \frac{max(R,G,B) + min(R,G,B)}{2} $$3. **Metod perceptivne osvetljenosti** - težinska srednja vrednost koja uzima u obzir ljudsku percepciju (npr. najviše smo osetljivi na zelenu boju, pa to treba uzeti u obzir)$$ G = 0.21*R + 0.72*G + 0.07*B $$ | # implementacija metode perceptivne osvetljenosti
def my_rgb2gray(img_rgb):
img_gray = np.ndarray((img_rgb.shape[0], img_rgb.shape[1])) # zauzimanje memorije za sliku (nema trece dimenzije)
img_gray = 0.21*img_rgb[:, :, 0] + 0.77*img_rgb[:, :, 1] + 0.07*img_rgb[:, :, 2]
img_gray = img_gray.astype('uint8') # u prethodnom koraku smo mnozili sa float, pa sada moramo da vratimo u [0,255] opseg
return img_gray
img_gray = my_rgb2gray(img)
plt.imshow(img_gray, 'gray') # kada se prikazuje slika koja nije RGB, obavezno je staviti 'gray' kao drugi parametar | _____no_output_____ | MIT | v1-uvod/sc-siit-v1-cv-basics.ipynb | ftn-ai-lab/sc-2019-siit |
Ipak je najbolje se držati implementacije u **OpenCV** biblioteci :). | img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
img_gray.shape
plt.imshow(img_gray, 'gray')
img_gray | _____no_output_____ | MIT | v1-uvod/sc-siit-v1-cv-basics.ipynb | ftn-ai-lab/sc-2019-siit |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.