question_id
stringlengths
8
35
subject
stringclasses
1 value
chapter
stringclasses
32 values
topic
stringclasses
178 values
question
stringlengths
26
9.64k
options
stringlengths
2
1.63k
correct_option
stringclasses
5 values
answer
stringclasses
293 values
explanation
stringlengths
13
9.38k
question_type
stringclasses
3 values
paper_id
stringclasses
149 values
lv0vxc6v
maths
circle
basic-theorems-of-a-circle
<p>A square is inscribed in the circle $$x^2+y^2-10 x-6 y+30=0$$. One side of this square is parallel to $$y=x+3$$. If $$\left(x_i, y_i\right)$$ are the vertices of the square, then $$\Sigma\left(x_i^2+y_i^2\right)$$ is equal to:</p>
[{"identifier": "A", "content": "152"}, {"identifier": "B", "content": "148"}, {"identifier": "C", "content": "156"}, {"identifier": "D", "content": "160"}]
["A"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lwk74s6l/678de8fc-2a12-44e3-8b6b-dd8440b79fd7/1bfb85d0-1988-11ef-a7bd-376696e028ce/file-1lwk74s6m.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lwk74s6l/678de8fc-2a12-44e3-8b6b-dd8440b79fd7/1bfb85d0-1988-11ef-a7bd-376696e028ce/file-1lwk74s6m.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 4th April Morning Shift Mathematics - Circle Question 9 English Explanation"></p> <p>One side of square is $$y=x+k$$ Distance of $$(5,3)$$ to the line $$y=x+k$$ is</p> <p>$$\begin{aligned} &amp; \frac{|3-5-k|}{\sqrt{2}}=\sqrt{2} \\ &amp; =|-2-k|=2 \\ &amp; \Rightarrow k=0 \text { or } k=-4 \end{aligned}$$</p> <p>So lines are $$y=x$$ and $$y=x-4$$</p> <p>Now, solving these lines with circle</p> <p>$$\begin{aligned} y= &amp; x \text { and } x^2+y^2-10 x-6 y+30=0 \\ \Rightarrow &amp; 2 x^2-16 x+30=0 \\ \Rightarrow &amp; x=3, y=3 \\ &amp; x=5, y=5 \\ &amp; y=x-4 \text { and } x^2+y^2-10 x-6 y+30=0 \\ \Rightarrow &amp; x=5, y=1 \\ &amp; x=7, y=3 \\ &amp; \sum_{i=1}^4 x_i^2+y_i^2=9+9+25+25+25+1+49+9 \\ = &amp; 152 \end{aligned}$$</p>
mcq
jee-main-2024-online-4th-april-morning-shift
lv3ve68b
maths
circle
basic-theorems-of-a-circle
<p>If the image of the point $$(-4,5)$$ in the line $$x+2 y=2$$ lies on the circle $$(x+4)^2+(y-3)^2=r^2$$, then $$r$$ is equal to:</p>
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "3"}, {"identifier": "C", "content": "4"}, {"identifier": "D", "content": "1"}]
["A"]
null
<p>$$\begin{aligned} & \frac{x+4}{1}=\frac{y-5}{2}=\frac{-2(4)}{5} \\ & \Rightarrow \quad x=-4-\frac{8}{5}=-\frac{28}{5}, y=5-\frac{16}{5}=\frac{9}{5} \\ & \therefore \quad \text { Image is }\left(\frac{-28}{5}, \frac{9}{5}\right) \end{aligned}$$</p> <p>Image lies on circle $$(x+4)^2+(y-3)^2=r^2$$</p> <p>$$\begin{aligned} & \left(\frac{-28}{5}+4\right)^2+\left(\frac{9}{5}-3\right)^2=r^2 \\ & \Rightarrow \frac{64}{25}+\frac{36}{25}=r^2 \\ & \Rightarrow r=2 \end{aligned}$$</p>
mcq
jee-main-2024-online-8th-april-evening-shift
lv9s1zub
maths
circle
basic-theorems-of-a-circle
<p>Let ABCD and AEFG be squares of side 4 and 2 units, respectively. The point E is on the line segment AB and the point F is on the diagonal AC. Then the radius r of the circle passing through the point F and touching the line segments BC and CD satisfies :</p>
[{"identifier": "A", "content": "$$\\mathrm{r}=1$$\n"}, {"identifier": "B", "content": "$$2 \\mathrm{r}^2-4 \\mathrm{r}+1=0$$\n"}, {"identifier": "C", "content": "$$2 \\mathrm{r}^2-8 \\mathrm{r}+7=0$$\n"}, {"identifier": "D", "content": "$$\\mathrm{r}^2-8 \\mathrm{r}+8=0$$"}]
["D"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lweo69as/998331bc-73f9-46f0-9260-389c06031bce/0c501540-167e-11ef-9070-f523f4c6bd4b/file-1lweo69at.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lweo69as/998331bc-73f9-46f0-9260-389c06031bce/0c501540-167e-11ef-9070-f523f4c6bd4b/file-1lweo69at.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 5th April Evening Shift Mathematics - Circle Question 3 English Explanation"></p> <p>$$C F=4 \sqrt{2}-2 \sqrt{2}=2 \sqrt{2}=r+r \sqrt{2}$$</p> <p>$$\begin{aligned} &amp; \Rightarrow \quad(2-r) \sqrt{2}=r \\ &amp; \Rightarrow \quad \sqrt{2}=\left(\frac{r}{2-r}\right) \Rightarrow 2=\frac{r^2}{(2-r)^2} \\ &amp; \Rightarrow 2\left(r^2-4 r+4\right)=r^2 \\ &amp; \Rightarrow r^2-8 r+8=0 \end{aligned}$$</p>
mcq
jee-main-2024-online-5th-april-evening-shift
lvc57bdz
maths
circle
basic-theorems-of-a-circle
<p>A circle is inscribed in an equilateral triangle of side of length 12. If the area and perimeter of any square inscribed in this circle are $$m$$ and $$n$$, respectively, then $$m+n^2$$ is equal to</p>
[{"identifier": "A", "content": "408"}, {"identifier": "B", "content": "414"}, {"identifier": "C", "content": "312"}, {"identifier": "D", "content": "396"}]
["A"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lwd0dvt3/ce397cb2-87aa-4135-a838-45d211acf529/3c9d7570-1594-11ef-88c8-4b364e13ab15/file-1lwd0dvt4.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lwd0dvt3/ce397cb2-87aa-4135-a838-45d211acf529/3c9d7570-1594-11ef-88c8-4b364e13ab15/file-1lwd0dvt4.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 6th April Morning Shift Mathematics - Circle Question 1 English Explanation"></p> <p>Inradius of $$\triangle A B C=r=\frac{\Delta}{s}=\frac{\frac{\sqrt{3}}{4} \times(12)^2}{18}$$</p> <p>$$r=2 \sqrt{3}$$</p> <p>Side length of square is $$a$$, then $$a^2=2 r^2$$</p> <p>$$\Rightarrow a^2=24$$</p> <p>Area of square, $$m=24$$</p> <p>Perimeter of square, $$n=4 \sqrt{24}$$</p> <p>$$\begin{aligned} &amp; \Rightarrow m+n^2=24+384 \\ &amp; =408 \end{aligned}$$</p>
mcq
jee-main-2024-online-6th-april-morning-shift
1l5bb5tdb
maths
circle
chord-of-contact
<p>Let a circle C : (x $$-$$ h)<sup>2</sup> + (y $$-$$ k)<sup>2</sup> = r<sup>2</sup>, k &gt; 0, touch the x-axis at (1, 0). If the line x + y = 0 intersects the circle C at P and Q such that the length of the chord PQ is 2, then the value of h + k + r is equal to ___________.</p>
[]
null
7
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l5v64hz0/fe62d372-86ba-43d3-b376-3bcc7cdf6f30/f2e103c0-0906-11ed-a790-b11fa70c8a36/file-1l5v64hz1.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l5v64hz0/fe62d372-86ba-43d3-b376-3bcc7cdf6f30/f2e103c0-0906-11ed-a790-b11fa70c8a36/file-1l5v64hz1.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 24th June Evening Shift Mathematics - Circle Question 51 English Explanation"></p> <p>Here, $$O{M^2} = O{P^2} - P{M^2}$$</p> <p>$${\left( {{{|1 + r|} \over {\sqrt 2 }}} \right)^2} = {r^2} - 1$$</p> <p>$$\therefore$$ $${r^2} - 2r - 3 = 0$$</p> <p>$$\therefore$$ $$r = 3$$</p> <p>$$\therefore$$ Equation of circle is</p> <p>$${(x - 1)^2} + {(y - 3)^2} = {3^2}$$</p> <p>$$\therefore$$ h = 1, k = 3, r = 3</p> <p>$$\therefore$$ $$h + k + r = 7$$</p>
integer
jee-main-2022-online-24th-june-evening-shift
1l6rfz5ti
maths
circle
chord-of-contact
<p>Let $$A B$$ be a chord of length 12 of the circle $$(x-2)^{2}+(y+1)^{2}=\frac{169}{4}$$. If tangents drawn to the circle at points $$A$$ and $$B$$ intersect at the point $$P$$, then five times the distance of point $$P$$ from chord $$A B$$ is equal to __________.</p>
[]
null
72
Here $A M=B M=6$ <br><br>$$ O M=\sqrt{\left(\frac{13}{2}\right)^{2}-6^{2}}=\frac{5}{2} $$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l7z3hbu0/c0ab874c-f40a-4393-abd9-7c5a221a294e/2d9f8370-32c8-11ed-a433-8d18e842a53d/file-1l7z3hbu1.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l7z3hbu0/c0ab874c-f40a-4393-abd9-7c5a221a294e/2d9f8370-32c8-11ed-a433-8d18e842a53d/file-1l7z3hbu1.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 29th July Evening Shift Mathematics - Circle Question 41 English Explanation"> <br><br>$$ \sin \theta=\frac{12}{13} $$ <br><br>In $\triangle P A O$ : <br><br>$$ \begin{aligned} &amp;\frac{P O}{O A}=\sec \theta \\\\ &amp;P O=\frac{13}{2} \cdot \frac{13}{5}=\frac{169}{10} \\\\ &amp;\therefore P M=\frac{169}{10}-\frac{5}{2}=\frac{144}{10}=\frac{72}{5} \\\\ &amp;\therefore 5 P M=72 . \end{aligned} $$
integer
jee-main-2022-online-29th-july-evening-shift
1ldsuhn1h
maths
circle
chord-of-contact
<p>Let the tangents at the points $$A(4,-11)$$ and $$B(8,-5)$$ on the circle $$x^{2}+y^{2}-3 x+10 y-15=0$$, intersect at the point $$C$$. Then the radius of the circle, whose centre is $$C$$ and the line joining $$A$$ and $$B$$ is its tangent, is equal to :</p>
[{"identifier": "A", "content": "$$\\frac{2\\sqrt{13}}{3}$$"}, {"identifier": "B", "content": "$$\\frac{3\\sqrt{3}}{4}$$"}, {"identifier": "C", "content": "$$\\sqrt{13}$$"}, {"identifier": "D", "content": "$$2\\sqrt{13}$$"}]
["A"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1ldt0172l/c56cbb61-8f00-4972-aa26-7f1c65ed7300/4a06dfd0-a637-11ed-8501-8d588d737388/file-1ldt0174e.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1ldt0172l/c56cbb61-8f00-4972-aa26-7f1c65ed7300/4a06dfd0-a637-11ed-8501-8d588d737388/file-1ldt0174e.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2023 (Online) 29th January Morning Shift Mathematics - Circle Question 34 English Explanation"></p> <p>Equation of AB :</p> <p>$$y - ( - 5) = {{ - 5 + 11} \over {8 - 4}}(x - 8)$$</p> <p>$$ \Rightarrow y + 5 = {3 \over 2}(x - 8)$$</p> <p>$$ \Rightarrow 2y + 10 = 3x - 24$$</p> <p>$$ \Rightarrow 3x - 2y - 34 = 0$$ .... (1)</p> <p>Also AB is cord of contact. And we know equation of cord of contact to a circle is $$T = 0$$</p> <p>$$ \Rightarrow xh + yk - {3 \over 2}(x + h) + 5(y + k) - 15 = 0$$</p> <p>$$ \Rightarrow x\left( {h - {3 \over 2}} \right) + y(k + 5) + \left( { - {3 \over 2}h + 5k - 15} \right) = 0$$ .... (2)</p> <p>Comparing equation (1) and (2), we get</p> <p>$${{h - {3 \over 2}} \over 3} = {{k + 5} \over { - 2}} = {{ - {3 \over 2}h + 5k - 15} \over { - 34}}$$</p> <p>$$\therefore$$ $$ - 2h + 3 = 3k + 15$$</p> <p>$$ \Rightarrow 3k + 2h = - 12$$ ..... (3)</p> <p>and</p> <p>$$17(k + 5) = - {3 \over 2}h + 5k - 15$$</p> <p>$$ \Rightarrow 12k + {3 \over 2}h - 100$$</p> <p>$$ \Rightarrow 3h + 24k = - 200$$ ..... (4)</p> <p>Solving (3) and (4), we get</p> <p>$$h = 8$$ and $$k = - {{28} \over 3}$$</p> <p>$$\therefore$$ Point C is $$\left( {8, - {{28} \over 3}} \right)$$</p> <p>Now radius of the circle whose centre is at C and tangent is AB is</p> <p>$$ = \left| {{{3(8) - 2\left( { - {{28} \over 3}} \right) - 34} \over {\sqrt {{3^2} + {2^2}} }}} \right|$$</p> <p>$$ = \left| {{{26} \over {3\sqrt {13} }}} \right|$$</p> <p>$$ = {{2\sqrt {13} } \over 3}$$</p>
mcq
jee-main-2023-online-29th-january-morning-shift
lsapr1j6
maths
circle
chord-of-contact
Let $C: x^2+y^2=4$ and $C^{\prime}: x^2+y^2-4 \lambda x+9=0$ be two circles. If the set of all values of $\lambda$ so that the circles $\mathrm{C}$ and $\mathrm{C}$ intersect at two distinct points, is $\mathrm{R}-[\mathrm{a}, \mathrm{b}]$, then the point $(8 \mathrm{a}+12,16 \mathrm{~b}-20)$ lies on the curve :
[{"identifier": "A", "content": "$x^2+2 y^2-5 x+6 y=3$"}, {"identifier": "B", "content": "$5 x^2-y=-11$"}, {"identifier": "C", "content": "$x^2-4 y^2=7$"}, {"identifier": "D", "content": "$6 x^2+y^2=42$"}]
["D"]
null
$\begin{aligned} & C: x^2+y^2=4 \Rightarrow C(0,0), r_1=2 \\\\ & C^{\prime}: x^2+y^2-4 \lambda x+9=0 \Rightarrow C^{\prime}(2 \lambda, 0), r_2=\sqrt{4 \lambda^2-9} \\\\ & \left|r_1-r_2\right| < C C^{\prime} < \left|r_1+r_2\right| \\\\ & \left|2-\sqrt{4 \lambda^2-9}\right|<|2 \lambda|<2+\sqrt{4 \lambda^2-9} \\\\ & |2 \lambda|>\left|2-\sqrt{4 \lambda^2-9}\right| \\\\ & \Rightarrow 4 \lambda^2 > 4+4 \lambda^2-9-4 \sqrt{4 \lambda^2-9} \\\\ & 4 \sqrt{4 \lambda^2-9}+5>0 \Rightarrow \lambda \in R\end{aligned}$ <br/><br/>$\begin{aligned} & |2 \lambda|<2+\sqrt{4 \lambda^2-9} \\\\ & \Rightarrow 4 \lambda^2<4+4 \lambda^2-9+4 \sqrt{\left(4 \lambda^2\right)-9} \\\\ & 5<4 \sqrt{4 \lambda^2-9} \text { and } \lambda^2 \geq \frac{9}{4}\end{aligned}$ <br/><br/>$\begin{aligned} & \frac{25}{16} < 4 \lambda^2-9 \\\\ & \Rightarrow \lambda^2>\frac{169}{64} \\\\ & \lambda \in\left(-\infty, \frac{-13}{8}\right) \cup\left(\frac{13}{8}, \infty\right) \\\\ & \lambda \in R-\left[\frac{-13}{8}, \frac{13}{8}\right] \\\\ & a=\frac{-13}{8}, b=\frac{13}{8} \\\\ & \Rightarrow(8 a+12,16 b-20)=(-1,6) \\\\ & \Rightarrow 6(-1)^2+(6)^2=42\end{aligned}$
mcq
jee-main-2024-online-1st-february-morning-shift
jaoe38c1lse5ofy4
maths
circle
chord-of-contact
<p>If one of the diameters of the circle $$x^2+y^2-10 x+4 y+13=0$$ is a chord of another circle $$\mathrm{C}$$, whose center is the point of intersection of the lines $$2 x+3 y=12$$ and $$3 x-2 y=5$$, then the radius of the circle $$\mathrm{C}$$ is :</p>
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "3$$\\sqrt2$$"}, {"identifier": "C", "content": "6"}, {"identifier": "D", "content": "$$\\sqrt{20}$$"}]
["C"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lsnjrugw/97f6ed68-0662-482a-8e94-7842336e50a8/07576000-cc2f-11ee-b20d-39b621d226e3/file-6y3zli1lsnjrugx.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lsnjrugw/97f6ed68-0662-482a-8e94-7842336e50a8/07576000-cc2f-11ee-b20d-39b621d226e3/file-6y3zli1lsnjrugx.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 31st January Morning Shift Mathematics - Circle Question 15 English Explanation"></p> <p>$$\begin{aligned} &amp; 2 x+3 y=12 \\ &amp; 3 x-2 y=5 \end{aligned}$$</p> <p>$$\begin{aligned} &amp; 13 x=39 \\ &amp; x=3, y=2 \end{aligned}$$</p> <p>Center of given circle is $$(5,-2)$$</p> <p>Radius $$\sqrt{25+4-13}=4$$</p> <p>$$\begin{aligned} &amp; \therefore \mathrm{CM}=\sqrt{4+16}=5 \sqrt{2} \\ &amp; \therefore \mathrm{CP}=\sqrt{16+20}=6 \end{aligned}$$</p>
mcq
jee-main-2024-online-31st-january-morning-shift
NnZUsbM8LvOKxeUN
maths
circle
chord-with-a-given-middle-point
If the chord y = mx + 1 of the circle $${x^2}\, + \,{y^2} = 1$$ subtends an angle of measure $${45^ \circ }$$ at the major segment of the circle then value of m is :
[{"identifier": "A", "content": "$$2\\, \\pm \\,\\sqrt 2 \\,\\,$$ "}, {"identifier": "B", "content": "$$ - \\,2\\, \\pm \\,\\sqrt 2 \\,$$ "}, {"identifier": "C", "content": "$$- 1\\, \\pm \\,\\sqrt 2 \\,\\,$$"}, {"identifier": "D", "content": "none of these"}]
["C"]
null
Equation of circle $${x^2} + {y^2} = 1 = {\left( 1 \right)^2}$$ <br><br>$$ \Rightarrow {x^2} + {y^2} = {\left( {y - mx} \right)^2}$$ <br><br>$$ \Rightarrow {x^2} = {m^2}{x^2} - 2\,\,mxy;$$ <br><br>$$ \Rightarrow {x^2}\left( {1 - {m^2}} \right) + 2mxy = 0.$$ <br><br>Which represents the pair of lines between which the angle is $${45^ \circ }.$$ <br><br>$$\tan 45 = \pm {{2\sqrt {{m^2} - 0} } \over {1 - {m^2}}} = {{ \pm 2m} \over {1 - {m^2}}};$$ <br><br>$$ \Rightarrow 1 - {m^2} = \pm 2m$$ <br><br>$$ \Rightarrow {m^2} \pm 2m - 1 = 0$$ <br><br>$$ \Rightarrow m = {{ - 2 \pm \sqrt {4 + 4} } \over 2}$$ <br><br>$$ = {{ - 2 \pm 2\sqrt 2 } \over 2}$$ <br><br>$$ = - 1 \pm \sqrt 2 .$$
mcq
aieee-2002
XkwXCuYHq4WaJyZN
maths
circle
chord-with-a-given-middle-point
The lines 2x - 3y = 5 and 3x - 4y = 7 are diameters of a circle having area as 154 sq. units. Then the equation of the circle is :
[{"identifier": "A", "content": "$${x^2}\\, + \\,{y^2} - \\,2x\\, + \\,2y\\,\\, = \\,62$$ "}, {"identifier": "B", "content": "$${x^2}\\, + \\,{y^2} + \\,2x\\, - \\,2y\\,\\, = \\,62$$ "}, {"identifier": "C", "content": "$${x^2}\\, + \\,{y^2} + \\,2x\\, - \\,2y\\,\\, = \\,47$$"}, {"identifier": "D", "content": "$${x^2}\\, + \\,{y^2} - \\,2x\\, + \\,2y\\,\\, = \\,47$$ "}]
["D"]
null
$$\pi {r^2} = 154 \Rightarrow r = 7$$ <br><br>For center on solving equation <br><br>$$2x - 3y = 5\&amp; 3x - 4y = 7$$ <br><br>we get $$x = 1,\,y = - 1$$ <br><br>$$\therefore$$ center $$=(1,-1)$$ <br><br>Equation of circle, <br><br>$${\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = {7^2}$$ <br><br>$${x^2} + {y^2} - 2x + 2y = 47$$
mcq
aieee-2003
gy3TyrWxXDlyzSzo
maths
circle
chord-with-a-given-middle-point
If the lines 2x + 3y + 1 + 0 and 3x - y - 4 = 0 lie along diameter of a circle of circumference $$10\,\pi $$, then the equation of the circle is :
[{"identifier": "A", "content": "$${x^2}\\, + \\,{y^2} + \\,2x\\, - \\,2y - \\,23\\,\\, = 0$$ "}, {"identifier": "B", "content": "$${x^2}\\, + \\,{y^2} - \\,2x\\, - \\,2y - \\,23\\,\\, = 0$$ "}, {"identifier": "C", "content": "$${x^2}\\, + \\,{y^2} + \\,2x\\, + \\,2y - \\,23\\,\\, = 0$$ "}, {"identifier": "D", "content": "$${x^2}\\, + \\,{y^2} - \\,2x\\, + \\,2y - \\,23\\,\\, = 0$$ "}]
["D"]
null
Two diameters are along <br><br>$$2x+3y+1=0$$ and $$3x-y-4=0$$ <br><br>solving we get center $$(1,-1)$$ <br><br>circumference $$ = 2\pi r = 10\pi $$ <br><br>$$\therefore$$ $$r=5$$. <br><br>Required circle is, $${\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = {5^2}$$ <br><br>$$ \Rightarrow {x^2} + {y^2} - 2x + 2y - 23 = 0$$
mcq
aieee-2004
V5nqVAwPhcaJmyA3
maths
circle
chord-with-a-given-middle-point
Intercept on the line y = x by the circle $${x^2}\, + \,{y^2} - 2x = 0$$ is AB. Equation of the circle on AB as a diameter is :
[{"identifier": "A", "content": "$$\\,{x^2}\\, + \\,{y^2} + \\,x\\, - \\,y\\,\\, = 0$$ "}, {"identifier": "B", "content": "$$\\,{x^2}\\, + \\,{y^2} - \\,x\\, + \\,y\\,\\, = 0$$"}, {"identifier": "C", "content": "$$\\,{x^2}\\, + \\,{y^2} + \\,x\\, + \\,y\\,\\, = 0$$ "}, {"identifier": "D", "content": "$$\\,{x^2}\\, + \\,{y^2} - \\,x\\, - \\,y\\,\\, = 0$$ "}]
["D"]
null
Solving $$y=x$$ and the circle <br><br>$${x^2} + {y^2} - 2x = 0,$$ we get <br><br>$$x = 0,y = 0$$ and $$x=1,$$ $$y=1$$ <br><br>$$\therefore$$ Extremities of diameter of the required circle are <br><br>$$\left( {0,0} \right)$$ and $$\left( {1,1} \right)$$. Hence, the equation of circle is <br><br>$$\left( {x - 0} \right)\left( {x - 1} \right) + \left( {y - 0} \right)\left( {y - 1} \right) = 0$$ <br><br>$$ \Rightarrow {x^2} + {y^2} - x - y = 0$$
mcq
aieee-2004
wDezU4MM76FhKiUT
maths
circle
chord-with-a-given-middle-point
If the pair of lines $$a{x^2} + 2\left( {a + b} \right)xy + b{y^2} = 0$$ lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sector then :
[{"identifier": "A", "content": "$$3{a^2} - 10ab + 3{b^2} = 0$$ "}, {"identifier": "B", "content": "$$3{a^2} - 2ab + 3{b^2} = 0$$ "}, {"identifier": "C", "content": "$$3{a^2} + 10ab + 3{b^2} = 0$$ "}, {"identifier": "D", "content": "$$3{a^2} + 2ab + 3{b^2} = 0$$ "}]
["D"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265897/exam_images/tcowhr59pgnhld1bijkk.webp" loading="lazy" alt="AIEEE 2005 Mathematics - Circle Question 148 English Explanation"> <br><br>As per question area of one sector $$=3$$ area of another sector <br><br>$$ \Rightarrow $$ at center by one sector $$ = 3 \times $$ angle at center by another sector <br><br>Let one angle be $$\theta $$ then other $$=30$$ <br><br>Clearly $$\theta + 3\theta = 180 \Rightarrow \theta = {45^ \circ }$$ <br><br>$$\therefore$$ Angle between the diameters represented by combined equation <br><br>$$a{x^2} + 2\left( {a + b\,\,\,xy} \right) + b{y^2} = 0$$ is $${45^ \circ }$$ <br><br>$$\therefore$$ Using $$tan$$ $$\theta $$ $$ = {{2\sqrt {{h^2} - ab} } \over {a + b}}$$ <br><br>we get $$\tan \,{45^ \circ } = {{2\sqrt {{{\left( {a + b} \right)}^2} - ab} } \over {a + b}}$$ <br><br>$$ \Rightarrow 1 = {{2\sqrt {{a^2} + {b^2} + ab} } \over {a + b}}$$ <br><br>$$ \Rightarrow {\left( {a + b} \right)^2} = 4\left( {{a^2} + {b^2} + ab} \right)$$ <br><br>$$ \Rightarrow {a^2} + {b^2} + 2ab = 4{a^2} + 4{b^2} + 4ab$$ <br><br>$$ \Rightarrow 3{a^2} + 3{b^2} + 2ab = 0$$
mcq
aieee-2005
3U5RrWuDdNdu7DGZ
maths
circle
chord-with-a-given-middle-point
If the lines $$3x - 4y - 7 = 0$$ and $$2x - 3y - 5 = 0$$ are two diameters of a circle of area $$49\pi $$ square units, the equation of the circle is :
[{"identifier": "A", "content": "$$\\,{x^2} + {y^2} + 2x\\, - 2y - 47 = 0\\,$$ "}, {"identifier": "B", "content": "$$\\,{x^2} + {y^2} + 2x\\, - 2y - 62 = 0\\,$$"}, {"identifier": "C", "content": "$${x^2} + {y^2} - 2x\\, + 2y - 62 = 0$$ "}, {"identifier": "D", "content": "$${x^2} + {y^2} - 2x\\, + 2y - 47 = 0$$"}]
["D"]
null
Point of intersection of $$3x - 4y - 7 = 0$$ and <br><br>$$2x - 3y - 5 = 0$$ is $$\left( {1, - 1} \right)$$ which is the center of the <br><br>circle and radius $$=7$$ <br><br>$$\therefore$$ Equation is $${\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 49$$ <br><br>$$ \Rightarrow {x^2} + {y^2} - 2x + 2y - 47 = 0$$
mcq
aieee-2006
YnQUn55VJcVWDi9o
maths
circle
chord-with-a-given-middle-point
Let $$C$$ be the circle with centre $$(0, 0)$$ and radius $$3$$ units. The equation of the locus of the mid points of the chords of the circle $$C$$ that subtend an angle of $${{2\pi } \over 3}$$ at its center is :
[{"identifier": "A", "content": "$${x^2} + {y^2} = {3 \\over 2}$$ "}, {"identifier": "B", "content": "$${x^2} + {y^2} = 1$$ "}, {"identifier": "C", "content": "$${x^2} + {y^2} = {{27} \\over 4}$$ "}, {"identifier": "D", "content": "$${x^2} + {y^2} = {{9} \\over 4}$$"}]
["D"]
null
Let $$M\left( {h,k} \right)$$ be the mid point of chord $$AB$$ where <br><br>$$\angle AOB = {{2\pi } \over 3}$$ <br><br><img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263288/exam_images/uamjsjszwgsvyetzibag.webp" loading="lazy" alt="AIEEE 2006 Mathematics - Circle Question 146 English Explanation"> <br><br>$$\therefore$$ $$\angle AOM = {\pi \over 3}.$$ Also $$OM=$$ $$3\cos {\pi \over 3} = {3 \over 2}$$ <br><br>$$ \Rightarrow \sqrt {{h^2} + k{}^2} = {3 \over 2}$$ <br><br>$$ \Rightarrow {h^2} + {k^2} = {9 \over 4}$$ <br><br>$$\therefore$$ Locus of $$\left( {h,k} \right)$$ is <br><br>$${x^2} + {y^2} = {9 \over 4}$$
mcq
aieee-2006
wr3znUdfJFsVkS7T
maths
circle
chord-with-a-given-middle-point
If one of the diameters of the circle, given by the equation, $${x^2} + {y^2} - 4x + 6y - 12 = 0,$$ is a chord of a circle $$S$$, whose centre is at $$(-3, 2)$$, then the radius of $$S$$ is :
[{"identifier": "A", "content": "$$5$$ "}, {"identifier": "B", "content": "$$10$$"}, {"identifier": "C", "content": "$$5\\sqrt 2 $$ "}, {"identifier": "D", "content": "$$5\\sqrt 3 $$"}]
["D"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266458/exam_images/taibjlarssmymugj1mse.webp" loading="lazy" alt="JEE Main 2016 (Offline) Mathematics - Circle Question 133 English Explanation"> <br><br>Center of $$S$$ : $$O(-3, 2)$$ center of given circle $$A(2, -3)$$ <br><br>$$ \Rightarrow OA = 5\sqrt 2 $$ <br><br>Also $$AB=5$$ (as $$AB=r$$ of the given circle) <br><br>$$ \Rightarrow $$ Using pythagoras theorem in $$\Delta OAB$$ <br><br>$$r = 5\sqrt 3 $$
mcq
jee-main-2016-offline
KGtTt7pYyTrsPHIXJGpXP
maths
circle
chord-with-a-given-middle-point
A circle passes through (βˆ’2, 4) and touches the y-axis at (0, 2). Which one of the following equations can represent a diameter of this circle?
[{"identifier": "A", "content": "4x + 5y \u2212 6 = 0"}, {"identifier": "B", "content": "2x \u2212 3y + 10 = 0"}, {"identifier": "C", "content": "3x + 4y \u2212 3 = 0"}, {"identifier": "D", "content": "5x + 2y + 4 = 0 "}]
["B"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264340/exam_images/ylrnxacrnykkxgmlb3iu.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2016 (Online) 9th April Morning Slot Mathematics - Circle Question 123 English Explanation"> <br>EF = perpendicular bisector of chord AB <br><br>BG = perpendicular to y-axis <br><br>Here C = center of the circle <br><br>mid-point of chord AB, D = ($$-$$ 1, 3) <br><br>slope of AB = $${{4 - 2} \over { - 2 - 0}}$$ = $$-$$ 1 <br><br>$$ \because $$&nbsp;&nbsp;&nbsp;EF &nbsp;$$ \bot $$&nbsp;AB <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;Slope of EF = 1 <br><br>Equation of EF, y $$-$$ 3 = 1 (x + 1) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp; y = x + 4 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . .(i) <br><br>Equation of BG <br><br>y = 2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . . (ii) <br><br>From equations (i) and (ii) <br><br>x = $$-$$ 2, y = 2 <br><br>since C be the point of intersection of EF and BG, therefore center, C = ($$-$$ 2, 2) <br><br>Now coordinates of center C satiesfy the equation <br><br>2x $$-$$ 3y + 10 = 0 <br><br>Hence 2x $$-$$ 3y + 10 = 0&nbsp;&nbsp;&nbsp;is the equation of the diameter
mcq
jee-main-2016-online-9th-april-morning-slot
Bb1rY9owBIJLvGWfcTGpH
maths
circle
chord-with-a-given-middle-point
If two parallel chords of a circle, having diameter 4units, lie on the opposite sides of the center and subtend angles $${\cos ^{ - 1}}\left( {{1 \over 7}} \right)$$ and sec<sup>$$-$$1</sup> (7) at the center respectivey, then the distance between these chords, is :
[{"identifier": "A", "content": "$${4 \\over {\\sqrt 7 }}$$ "}, {"identifier": "B", "content": "$${8 \\over {\\sqrt 7 }}$$ "}, {"identifier": "C", "content": "$${8 \\over 7}$$ "}, {"identifier": "D", "content": "$${16 \\over 7}$$"}]
["B"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266917/exam_images/e9ndaij1z9oqlqstuhea.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2017 (Online) 8th April Morning Slot Mathematics - Circle Question 126 English Explanation"> <br><br>Since cos2$$\theta $$ = 1/7 &nbsp;$$ \Rightarrow $$&nbsp;2 cos<sup>2</sup> Q $$-$$ 1 = 1/7 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;2 cos<sup>2</sup>$$\theta $$ = 8/7 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp; cos<sup>2</sup> $$\theta $$ = 4/7 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp; cos<sup>2</sup>$$\theta $$ = $${4 \over 7}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;cos<sup>2</sup>$$\theta $$ = $${2 \over {\sqrt 7 }}$$ <br><br>Also, sec<sup>2</sup>$$\phi $$ = 7 = $${1 \over {2{{\cos }^2}\phi - 1}}$$ 7 <br><br>= cos<sup>2</sup>$$\phi $$ $$-$$ 1 = $${1 \over 7}$$ <br><br>= 2 cos<sup>2</sup> $$\phi $$ = $${8 \over 7}$$ <br><br>= cos$$\phi $$ = $${2 \over {\sqrt 7 }}$$ <br><br>P<sub>1</sub>P<sub>2</sub> = r cos$$\theta $$ + r cos$$\phi $$ <br><br>= $${4 \over {\sqrt 7 }} + {4 \over {\sqrt 7 }}$$ = $${8 \over {\sqrt 7 }}$$
mcq
jee-main-2017-online-8th-april-morning-slot
NN0JSJAcrtZgFuxsgmSCP
maths
circle
chord-with-a-given-middle-point
A line drawn through the point P(4, 7) cuts the circle x<sup>2</sup> + y<sup>2</sup> = 9 at the points A and B. Then PAβ‹…PB is equal to :
[{"identifier": "A", "content": "53"}, {"identifier": "B", "content": "56"}, {"identifier": "C", "content": "74"}, {"identifier": "D", "content": "65"}]
["B"]
null
P(4, 7).&nbsp;&nbsp; Here, x = 4, y = 7 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;PA $$ \times $$ PB = PT<sup>2</sup> <br><br>Also; &nbsp;&nbsp;PT = $$\sqrt {{x^2} + {y^2} - {{\left( {x - y} \right)}^2}} $$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;PT&nbsp;=&nbsp;$$\sqrt {16 + 49 - 9} $$ = $$\sqrt {56} $$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;PT<sup>2</sup> = 56 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;PA $$ \times $$ PB = 56
mcq
jee-main-2017-online-9th-april-morning-slot
R6YFDH6A7gVn9tALWCeel
maths
circle
chord-with-a-given-middle-point
If the area of an equilateral triangle inscribed in the circle x<sup>2</sup> + y<sup>2</sup> + 10x + 12y + c = 0 is $$27\sqrt 3 $$ sq units then c is equal to :
[{"identifier": "A", "content": "20"}, {"identifier": "B", "content": "25"}, {"identifier": "C", "content": "$$-$$ 25"}, {"identifier": "D", "content": "13"}]
["B"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266928/exam_images/dalvkc5ol09xl6tzqcfw.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 10th January Evening Slot Mathematics - Circle Question 118 English Explanation"> <br>$$3\left( {{1 \over 2}{r^2}.\sin {{120}^o}} \right) = 27\sqrt 3 $$ <br><br>$${{{r^2}} \over 2}{{\sqrt 3 } \over 2} = {{27\sqrt 3 } \over 3}$$ <br><br>$${r^2} = {{108} \over 3} = 36$$ <br><br>Radius &nbsp;&nbsp;$$ = \sqrt {25 + 36 - C} = \sqrt {36} $$ <br><br>$$C = 25$$
mcq
jee-main-2019-online-10th-january-evening-slot
ezwzoSZQrfXnvICEWi3rsa0w2w9jx5zq07t
maths
circle
chord-with-a-given-middle-point
If the angle of intersection at a point where the two circles with radii 5 cm and 12 cm intersect is 90<sup>o</sup>, then the length (in cm) of their common chord is :
[{"identifier": "A", "content": "$${{13} \\over 5}$$"}, {"identifier": "B", "content": "$${{60} \\over {13}}$$"}, {"identifier": "C", "content": "$${{120} \\over {13}}$$"}, {"identifier": "D", "content": "$${{13} \\over 2}$$"}]
["C"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264886/exam_images/tuxfhzteere5dc5zztu5.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 12th April Morning Slot Mathematics - Circle Question 103 English Explanation"> C<sub>1</sub>C<sub>2</sub> = $$\sqrt {{{12}^2} + {5^2}} $$ = 13<br><br> Area of $$\Delta $$AC<sub>1</sub>C<sub>2</sub> = $${1 \over 2}.12.5 = {1 \over 2}.13{{AB} \over 2} \Rightarrow AB = {{120} \over {13}}units$$
mcq
jee-main-2019-online-12th-april-morning-slot
8Hmto3n9u9rvWrSaFljgy2xukfqcq27h
maths
circle
chord-with-a-given-middle-point
If the length of the chord of the circle, <br/>x<sup>2</sup> + y<sup>2</sup> = r<sup>2</sup> (r &gt; 0) along the line, y – 2x = 3 is r, <br/>then r<sup>2</sup> is equal to :
[{"identifier": "A", "content": "$${9 \\over 5}$$"}, {"identifier": "B", "content": "$${{24} \\over 5}$$"}, {"identifier": "C", "content": "$${{12} \\over 5}$$"}, {"identifier": "D", "content": "12"}]
["C"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267098/exam_images/ce8t39fixejz7c7rqvi3.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2020 (Online) 5th September Evening Slot Mathematics - Circle Question 93 English Explanation"> <br><br>In right $$\Delta $$CDB, <br><br>sin 60<sup>o</sup> = $${{CD} \over r}$$ <br><br>$$ \Rightarrow $$ CD = $$r \times {{\sqrt 3 } \over 2}$$ = $${{\sqrt 3 r} \over 2}$$ <br><br>Now equation of AB is <br><br>y – 2x – 3 = 0 <br><br>So $${{\sqrt 3 r} \over 2}$$ = $${{\left| {0 + 0 - 3} \right|} \over {\sqrt 5 }}$$ <br><br>$$ \Rightarrow $$ $${{\sqrt 3 r} \over 2}$$ = $${3 \over {\sqrt 5 }}$$ <br><br>$$ \Rightarrow $$ r = $${{2\sqrt 3 } \over 5}$$ <br><br>$$ \Rightarrow $$ r<sup>2</sup> = $${{12} \over 5}$$
mcq
jee-main-2020-online-5th-september-evening-slot
J6DqCFwbzQxYPjKuAF1klrjlmf3
maths
circle
chord-with-a-given-middle-point
If one of the diameters of the circle x<sup>2</sup> + y<sup>2</sup> - 2x - 6y + 6 = 0 is a chord of another circle 'C', whose center is at (2, 1), then its radius is ________.
[]
null
3
Circle x<sup>2</sup> + y<sup>2</sup> - 2x - 6y + 6 = 0 has centre O<sub>1</sub>(1, 3) and radius r = 2. <br><br>Let centre O<sub>2</sub> (2, 1) of required circle and its radius being r. <br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266179/exam_images/zp0tmjnahzn7ywtwha3e.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 24th February Morning Shift Mathematics - Circle Question 92 English Explanation"> <br><br>Distance between (1, 3) and (2, 1) is $$\sqrt 5 $$<br><br>$$ \therefore $$ $${\left( {\sqrt 5 } \right)^2} + {(2)^2} = {r^2}$$<br><br>$$ \Rightarrow r = 3$$
integer
jee-main-2021-online-24th-february-morning-slot
9DizyxVsY5PYMF4DAQ1kluxkl2d
maths
circle
chord-with-a-given-middle-point
If the locus of the mid-point of the line segment from the point (3, 2) to a point on the circle, x<sup>2</sup> + y<sup>2</sup> = 1 is a circle of radius r, then r is equal to :
[{"identifier": "A", "content": "$${1 \\over 4}$$"}, {"identifier": "B", "content": "$${1 \\over 2}$$"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "$${1 \\over 3}$$"}]
["B"]
null
Let P(h, k) and point on the circle is (cos$$\theta$$, sin$$\theta$$)<br><br>$$ \therefore $$ $${{3 + \cos \theta } \over 2} = h$$ and $${{2 + \sin \theta } \over 2} = k$$<br><br>cos$$\theta$$ = 2h $$-$$ 3 and sin$$\theta$$ = 2h $$-$$ 2<br><br>Squaring and adding we get<br><br>$${(2h - 3)^2} + {(2h - 2)^2} = 1$$<br><br>$$ \Rightarrow 4{x^2} - 12x + 9 + 4{y^2} - 8y + 4 = 1$$<br><br>$$ \Rightarrow 4{x^2} + 4{y^2} - 12x - 8y + 12 = 0$$<br><br>$$ \Rightarrow {x^2} + {y^2} - 3x - 2y + 3 = 0$$<br><br>Radius = $$\sqrt {{9 \over 4} + 1 - 3} = {1 \over 2}$$
mcq
jee-main-2021-online-26th-february-evening-slot
1ktbehi2f
maths
circle
chord-with-a-given-middle-point
If a line along a chord of the circle 4x<sup>2</sup> + 4y<sup>2</sup> + 120x + 675 = 0, passes through the point ($$-$$30, 0) and is tangent to the parabola y<sup>2</sup> = 30x, then the length of this chord is :
[{"identifier": "A", "content": "5"}, {"identifier": "B", "content": "7"}, {"identifier": "C", "content": "5$${\\sqrt 3 }$$"}, {"identifier": "D", "content": "3$${\\sqrt 5 }$$"}]
["D"]
null
Equation of tangent to y<sup>2</sup> = 30 x<br><br>y = mx + $${{30} \over {4m}}$$<br><br>Pass thru ($$-$$30, 0) : a = $$-$$30m + $${{30} \over {4m}}$$ $$\Rightarrow$$ m<sup>2</sup> = 1/4<br><br>$$\Rightarrow$$ m = $${1 \over 2}$$ or m = $$-$$$${1 \over 2}$$<br><br>At m = $${1 \over 2}$$ : y = $${x \over 2}$$ + 15 $$\Rightarrow$$ x $$-$$ 2y + 30 = 0<br><br> <picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265047/exam_images/smft0g8rdwr7refltkmp.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267004/exam_images/fs750d5ymgmfsjcrszl0.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263855/exam_images/wmekhvnakbugxniy2cw2.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 26th August Morning Shift Mathematics - Circle Question 70 English Explanation"></picture> <br><br>l<sub>AB</sub> = 2$$\sqrt {{R^2} - {P^2}} $$ = 2$$\sqrt {{{225} \over 4} - {{225} \over 5}} $$<br><br>$$\Rightarrow$$ l<sub>AB</sub> = 30 . $$\sqrt {{1 \over {20}}} $$ = $${{{15} \over {\sqrt 5 }}}$$ = 3$${\sqrt 5 }$$
mcq
jee-main-2021-online-26th-august-morning-shift
1ktd2kuim
maths
circle
chord-with-a-given-middle-point
A circle C touches the line x = 2y at the point (2, 1) and intersects the circle <br/><br/>C<sub>1</sub> : x<sup>2</sup> + y<sup>2</sup> + 2y $$-$$ 5 = 0 at two points P and Q such that PQ is a diameter of C<sub>1</sub>. Then the diameter of C is :
[{"identifier": "A", "content": "$$7\\sqrt 5 $$"}, {"identifier": "B", "content": "15"}, {"identifier": "C", "content": "$$\\sqrt {285} $$"}, {"identifier": "D", "content": "$$4\\sqrt {15} $$"}]
["A"]
null
(x $$-$$ 2)<sup>2</sup> + (y $$-$$ 1)<sup>2</sup> + $$\lambda$$(x $$-$$ 2y) = 0<br><br>C : x<sup>2</sup> + y<sup>2</sup> + x($$\lambda$$ $$-$$ 4) + y($$-$$2 $$-$$2$$\lambda$$) + 5 = 0<br><br>C<sub>1</sub> : x<sup>2</sup> + y<sup>2</sup> + 2y $$-$$ 5 = 0<br><br>S<sub>1</sub> $$-$$ S<sub>2</sub> = 0 (Equation of PQ)<br><br>($$\lambda$$ $$-$$ 4)x $$-$$ (2$$\lambda$$ + 4)y + 10 = 0 Passes through (0, $$-$$1)<br><br>$$\Rightarrow$$ $$\lambda$$ = $$-$$7<br><br>C : x<sup>2</sup> + y<sup>2</sup> $$-$$ 11x + 12y + 5 = 0<br><br>= $${{\sqrt {245} } \over 4}$$<br><br>Diameter = $$7\sqrt 5 $$
mcq
jee-main-2021-online-26th-august-evening-shift
1l55j0dpj
maths
circle
chord-with-a-given-middle-point
<p>If one of the diameters of the circle $${x^2} + {y^2} - 2\sqrt 2 x - 6\sqrt 2 y + 14 = 0$$ is a chord of the circle $${(x - 2\sqrt 2 )^2} + {(y - 2\sqrt 2 )^2} = {r^2}$$, then the value of r<sup>2</sup> is equal to ____________.</p>
[]
null
10
For $x^{2}+y^{2}-2 \sqrt{2} x-6 \sqrt{2} y+14=0$ <br/><br/> $$ \text { Radius }=\sqrt{(\sqrt{2})^{2}+(3 \sqrt{2})^{2}-14}=\sqrt{6} $$ <br/><br/> $\Rightarrow$ Diameter $=2 \sqrt{6}$ <br/><br/> If this diameter is chord to <br/><br/> $$ \begin{aligned} &(x-2 \sqrt{2})^{2}+(y-2 \sqrt{2})^{2}=r^{2} \text { then } \\\\ &\Rightarrow r^{2}=6+\left(\sqrt{(\sqrt{2})^{2}+(\sqrt{2})^{2}}\right)^{2} \\\\ &\Rightarrow r^{2}=6+4=10 \\\\ &\Rightarrow r^{2}=10 \end{aligned} $$
integer
jee-main-2022-online-28th-june-evening-shift
1l5ajotbj
maths
circle
chord-with-a-given-middle-point
<p>Let the abscissae of the two points P and Q be the roots of $$2{x^2} - rx + p = 0$$ and the ordinates of P and Q be the roots of $${x^2} - sx - q = 0$$. If the equation of the circle described on PQ as diameter is $$2({x^2} + {y^2}) - 11x - 14y - 22 = 0$$, then $$2r + s - 2q + p$$ is equal to __________.</p>
[]
null
7
<p>Let $$P({x_1},{y_1})$$ & $$Q({x_2},{y_2})$$</p> <p>$$\therefore$$ Roots of $$2{x^2} - rx + p = 0$$ are $${x_1},\,{x_2}$$</p> <p>and roots of $${x^2} - sx - q = 0$$ are $${y_1},\,{y_2}$$.</p> <p>$$\therefore$$ Equation of circle $$ \equiv (x - {x_1})(x - {x_2}) + (y - {y_1})(y - {y_2}) = 0$$</p> <p>$$ \Rightarrow {x^2} - ({x_1} + {x_2})x + {x_1}{x_2} + {y^2} - ({y_1} + {y_2})y + {y_1}{y_2} = 0$$</p> <p>$$ \Rightarrow {x^2} - {r \over 2}x + {p \over 2} + {y^2} + sy - q = 0$$</p> <p>$$ \Rightarrow 2{x^2} + 2{y^2} - rx + 2sy + p - 2q = 0$$</p> <p>Compare with $$2{x^2} + 2{y^2} - 11x - 14y - 22 = 0$$</p> <p>We get $$r = 11,\,s = 7,\,p - 2q = - 22$$</p> <p>$$ \Rightarrow 2r + s + p - 2q = 22 + 7 - 22 = 7$$</p>
integer
jee-main-2022-online-25th-june-morning-shift
1l6hyv47p
maths
circle
chord-with-a-given-middle-point
<p>Let the abscissae of the two points $$P$$ and $$Q$$ on a circle be the roots of $$x^{2}-4 x-6=0$$ and the ordinates of $$\mathrm{P}$$ and $$\mathrm{Q}$$ be the roots of $$y^{2}+2 y-7=0$$. If $$\mathrm{PQ}$$ is a diameter of the circle $$x^{2}+y^{2}+2 a x+2 b y+c=0$$, then the value of $$(a+b-c)$$ is _____________.</p>
[{"identifier": "A", "content": "12"}, {"identifier": "B", "content": "13"}, {"identifier": "C", "content": "14"}, {"identifier": "D", "content": "16"}]
["A"]
null
<p>Abscissae of PQ are roots of $${x^2} - 4x - 6 = 0$$</p> <p>Ordinates of PQ are roots of $${y^2} + 2y - 7 = 0$$</p> <p>and PQ is diameter</p> <p>$$\Rightarrow$$ Equation of circle is</p> <p>$${x^2} + {y^2} - 4x + 2y - 13 = 0$$</p> <p>But, given $${x^2} + {y^2} + 2ax + 2by + c = 0$$</p> <p>By comparison $$a = - 2,b = 1,c = - 13$$</p> <p>$$ \Rightarrow a + b - c = - 2 + 1 + 13 = 12$$</p>
mcq
jee-main-2022-online-26th-july-evening-shift
ldoa8b8u
maths
circle
chord-with-a-given-middle-point
The set of all values of $a^{2}$ for which the line $x+y=0$ bisects two distinct chords drawn from a point $\mathrm{P}\left(\frac{1+a}{2}, \frac{1-a}{2}\right)$ on the circle $2 x^{2}+2 y^{2}-(1+a) x-(1-a) y=0$, is equal to :
[{"identifier": "A", "content": "$(0,4]$"}, {"identifier": "B", "content": "$(4, \\infty)$"}, {"identifier": "C", "content": "$(2,12]$"}, {"identifier": "D", "content": "$(8, \\infty)$"}]
["D"]
null
$x^{2}+y^{2}-\frac{(1+a) x}{2}-\frac{(1-a) y}{2}=0$ <br><br>Centre $\left(\frac{1+\mathrm{a}}{4}, \frac{1-\mathrm{a}}{4}\right) \Rightarrow(\mathrm{h}, \mathrm{k})$ <br><br>$\mathrm{P}\left(\frac{1+\mathrm{a}}{2}, \frac{1-\mathrm{a}}{2}\right) \Rightarrow(2 \mathrm{h}, 2 \mathrm{k})$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lefxmkpv/6d2d69d3-c054-4a9a-b9ad-79779d129ce3/e8127240-b2d3-11ed-8169-e1635469e777/file-1lefxmkpw.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lefxmkpv/6d2d69d3-c054-4a9a-b9ad-79779d129ce3/e8127240-b2d3-11ed-8169-e1635469e777/file-1lefxmkpw.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2023 (Online) 31st January Evening Shift Mathematics - Circle Question 39 English Explanation"> <br>Equation of chord $\Rightarrow \mathrm{T}=\mathrm{S}_{1}$ <br><br>$\Rightarrow(\mathrm{x}-\mathrm{y}) \lambda-\frac{2 \mathrm{~h}(\mathrm{x}+\lambda)}{2}-\frac{(2 \mathrm{k})(\mathrm{y}-\lambda)}{2}$ <br><br>$=2 \lambda^{2}-2 \mathrm{~h}(\lambda)+2 \mathrm{k} \lambda$ <br><br>Now, $\lambda(2 \mathrm{~h}, 2 \mathrm{k})$ satisfies the chord <br><br>$\therefore(2 \mathrm{~h}-2 \mathrm{k}) \lambda-\mathrm{h}(\mathrm{x}+\lambda)-\mathrm{k}(\mathrm{y}-\lambda)$ <br><br>$\Rightarrow 2 \lambda^{2}+4 \mathrm{k} \lambda-4 \mathrm{~h} \lambda+\mathrm{h} \lambda-\mathrm{k} \lambda+\mathrm{hx}+\mathrm{ky}=0$ <br><br>$\Rightarrow 2 \lambda^{2}+\lambda(3 \mathrm{k}-3 \mathrm{~h})+\mathrm{ky}+\mathrm{hx}=0$ <br><br>$\Rightarrow \mathrm{D}&gt;0$ <br><br>$\Rightarrow 9(\mathrm{k}-\mathrm{h})^{2}-8(\mathrm{ky}+\mathrm{hx})&gt;0$ <br><br>$\Rightarrow 9(\mathrm{k}-\mathrm{h})^{2}-8\left(2 \mathrm{k}^{2}+2 \mathrm{~h}^{2}\right)&gt;0$ <br><br>$\Rightarrow-7 \mathrm{k}^{2}-7 \mathrm{~h}^{2}-18 \mathrm{kh}&gt;0$ <br><br>$\Rightarrow 7 \mathrm{k}^{2}+7 \mathrm{~h}^{2}+18 \mathrm{kh}&lt;0$ <br><br>$\Rightarrow 7\left(\frac{1-\mathrm{a}}{4}\right)^{2}+7\left(\frac{1+\mathrm{a}}{4}\right)^{2}+18\left(\frac{1-\mathrm{a}^{2}}{16}\right)&lt;0$ <br><br>$\Rightarrow 7\left[\frac{2\left(1+\mathrm{a}^{2}\right)}{16}\right]+\frac{18\left(1-\mathrm{a}^{2}\right)}{16}&lt;0, \quad \mathrm{a}^{2}=\mathrm{t}$ <br><br>$\Rightarrow \frac{7}{8}(1+\mathrm{t})+\frac{18(1-\mathrm{t})}{16}&lt;0$ <br><br>$\Rightarrow \frac{14+14 \mathrm{t}+18-18 \mathrm{t}}{16}&lt;0$ <br><br>$\Rightarrow 4 \mathrm{t}&gt;32$ <br><br>$$ \Rightarrow $$ $\mathrm{t}&gt;8 $ <br><br>$$ \Rightarrow $$ $ \mathrm{a}^{2}&gt;8$
mcq
jee-main-2023-online-31st-january-evening-shift
1ldwwp6i8
maths
circle
chord-with-a-given-middle-point
<p>The locus of the mid points of the chords of the circle $${C_1}:{(x - 4)^2} + {(y - 5)^2} = 4$$ which subtend an angle $${\theta _i}$$ at the centre of the circle $$C_1$$, is a circle of radius $$r_i$$. If $${\theta _1} = {\pi \over 3},{\theta _3} = {{2\pi } \over 3}$$ and $$r_1^2 = r_2^2 + r_3^2$$, then $${\theta _2}$$ is equal to :</p>
[{"identifier": "A", "content": "$${\\pi \\over 2}$$"}, {"identifier": "B", "content": "$${\\pi \\over 4}$$"}, {"identifier": "C", "content": "$${{3\\pi } \\over 4}$$"}, {"identifier": "D", "content": "$${\\pi \\over 6}$$"}]
["A"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1le5ga481/2ad2340b-953f-4942-9834-237efb8eb334/3bee0510-ad10-11ed-a86d-8dfe0389db88/file-1le5ga482.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1le5ga481/2ad2340b-953f-4942-9834-237efb8eb334/3bee0510-ad10-11ed-a86d-8dfe0389db88/file-1le5ga482.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2023 (Online) 24th January Evening Shift Mathematics - Circle Question 31 English Explanation"></p> <p>$\therefore \cos \left(\frac{\theta_{1}}{2}\right)=\frac{r_{i}}{2} \Rightarrow r_{i}=2 \cos \left(\frac{\theta_{i}}{2}\right)$ </p> <p>Given $r_{1}^{2}=r_{2}^{2}+r_{3}^{3}$</p> <p>$\Rightarrow\left(\cos \left(\frac{\theta_{1}}{2}\right)\right)^{2}=\left(\cos \left(\frac{\theta_{2}}{2}\right)\right)^{2}+\left(\cos \left(\frac{\theta_{3}}{2}\right)\right)^{2}$</p> <p>$\Rightarrow \frac{3}{4}=\cos ^{2}\left(\frac{\theta_{2}}{2}\right)+\frac{1}{4}$</p> <p>$\Rightarrow \cos ^{2}\left(\frac{\theta_{2}}{2}\right)=\frac{1}{2}$</p> <p>$\Rightarrow \frac{\theta_{2}}{2}=\frac{\pi}{4}$</p> <p>$\Rightarrow \theta_{2}=\frac{\pi}{2}$</p>
mcq
jee-main-2023-online-24th-january-evening-shift
1lgxvzvzw
maths
circle
chord-with-a-given-middle-point
<p>A line segment AB of length $$\lambda$$ moves such that the points A and B remain on the periphery of a circle of radius $$\lambda$$. Then the locus of the point, that divides the line segment AB in the ratio 2 : 3, is a circle of radius :</p>
[{"identifier": "A", "content": "$${2 \\over 3}\\lambda $$"}, {"identifier": "B", "content": "$${3 \\over 5}\\lambda $$"}, {"identifier": "C", "content": "$${{\\sqrt {19} } \\over 7}\\lambda $$"}, {"identifier": "D", "content": "$${{\\sqrt {19} } \\over 5}\\lambda $$"}]
["D"]
null
Given, length of $A B=\lambda$ <br><br>So, $A C=\frac{\lambda}{2}$ and $A M=\frac{2 \lambda}{5}$ <br><br>$$ C M=A C-A M=\frac{\lambda}{2}-\frac{2 \lambda}{5}=\frac{\lambda}{10} $$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lncsenht/b19528f0-d9c0-44df-a496-57a56c3fa6bf/168f1e10-6347-11ee-8e13-d93c7a44ebe2/file-6y3zli1lncsenhu.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lncsenht/b19528f0-d9c0-44df-a496-57a56c3fa6bf/168f1e10-6347-11ee-8e13-d93c7a44ebe2/file-6y3zli1lncsenhu.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh; vertical-align: baseline;" alt="JEE Main 2023 (Online) 10th April Morning Shift Mathematics - Circle Question 26 English Explanation"> <br><br>Now, from $\triangle O C M$, we get <br><br>$$ \begin{array}{ll} &amp;O M^2=C M^2+O C^2 \\\\ &amp;\Rightarrow x^2+y^2=\left(\frac{\lambda}{10}\right)^2+\left(\lambda^2-\frac{\lambda^2}{4}\right) \\\\ &amp;\Rightarrow x^2+y^2=\frac{\lambda^2}{100}+\frac{3 \lambda^2}{4}=\frac{\lambda^2+75 \lambda^2}{100} \\\\ &amp;\Rightarrow x^2+y^2=\frac{76 \lambda^2}{100}=\frac{19 \lambda^2}{25} \\\\ &amp;\therefore x^2+y^2=\left(\frac{\sqrt{19} \lambda}{5}\right)^2 \end{array} $$ <br><br>So, radius is $\frac{\sqrt{19} \lambda}{5}$.
mcq
jee-main-2023-online-10th-april-morning-shift
lsamkf38
maths
circle
chord-with-a-given-middle-point
Let the locus of the midpoints of the chords of the circle $x^2+(y-1)^2=1$ drawn from the origin intersect the line $x+y=1$ at $\mathrm{P}$ and $\mathrm{Q}$. Then, the length of $\mathrm{PQ}$ is :
[{"identifier": "A", "content": "$\\frac{1}{2}$"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "$\\frac{1}{\\sqrt{2}}$"}, {"identifier": "D", "content": "$\\sqrt{2}$"}]
["C"]
null
Let mid-point is $(x, y)$ <br/><br/>$$ \begin{aligned} & x^2+y^2-2 y=0 \\\\ & x x_1+y y_1-\left(y+y_1\right)=x_1^2+y_1^2-2 y_1 \end{aligned} $$ <br/><br/>It is passing through origin <br/><br/>$$ \begin{aligned} & \text { So, } 0+0-\left(0+y_1\right)=x_1^2+y_1^2-2 y_1 \\\\ & \Rightarrow -y_1=x_1^2+y_1^2-2 y_1 \\\\ & \Rightarrow x_1^2+y_1^2-y_1=0 \end{aligned} $$ <br/><br/>$$ x^2+y^2-y=0 $$ ............ (1) <br/><br/>$\because$ It intersects the line $x+y=1$ <br/><br/>So put $x=1-y$ in equation (1) <br/><br/>$$ \begin{aligned} & (1-y)^2+y^2-y=0 \\\\ & 2 y^2-3 y+1=0 \end{aligned} $$ <br/><br/>$\begin{aligned} & \Rightarrow (y-1)(2 y-1)=0 \\\\ & \Rightarrow y=1, \frac{1}{2} \\\\ & \therefore P(0,1) \text { and } Q\left(\frac{1}{2}, \frac{1}{2}\right)\end{aligned}$ <br/><br/>So, $P Q=\sqrt{\left(\frac{1}{2}-0\right)^2+\left(\frac{1}{2}-1\right)^2}=\frac{1}{\sqrt{2}}$
mcq
jee-main-2024-online-1st-february-evening-shift
lv2eruuk
maths
circle
chord-with-a-given-middle-point
<p>Let $$\mathrm{C}$$ be a circle with radius $$\sqrt{10}$$ units and centre at the origin. Let the line $$x+y=2$$ intersects the circle $$\mathrm{C}$$ at the points $$\mathrm{P}$$ and $$\mathrm{Q}$$. Let $$\mathrm{MN}$$ be a chord of $$\mathrm{C}$$ of length 2 unit and slope $$-1$$. Then, a distance (in units) between the chord PQ and the chord $$\mathrm{MN}$$ is</p>
[{"identifier": "A", "content": "$$3-\\sqrt{2}$$\n"}, {"identifier": "B", "content": "$$2-\\sqrt{3}$$\n"}, {"identifier": "C", "content": "$$\\sqrt{2}-1$$\n"}, {"identifier": "D", "content": "$$\\sqrt{2}+1$$"}]
["A"]
null
<p>$$\text { Let the line by } x+y=\lambda$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lwhfpfz5/cd7503a4-2670-4a67-8200-c99b5e7fc89f/49a14910-1803-11ef-b156-f754785ad3ce/file-1lwhfpfz6.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lwhfpfz5/cd7503a4-2670-4a67-8200-c99b5e7fc89f/49a14910-1803-11ef-b156-f754785ad3ce/file-1lwhfpfz6.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 4th April Evening Shift Mathematics - Circle Question 8 English Explanation"></p> <p>$$\begin{aligned} &amp; \therefore\left|\frac{\lambda}{\sqrt{2}}\right|=3 \\ &amp; \therefore \quad \lambda= \pm 3 \sqrt{2} \end{aligned}$$</p> <p>$$\therefore$$ distance between lines $$x+y=2$$ and $$x+y=3 \sqrt{2}$$ is</p> <p>$$\frac{3 \sqrt{2}-2}{\sqrt{2}}=3-\sqrt{2}$$</p>
mcq
jee-main-2024-online-4th-april-evening-shift
1l6m5uq0x
maths
circle
director-circle
<p>Let $$C$$ be the centre of the circle $$x^{2}+y^{2}-x+2 y=\frac{11}{4}$$ and $$P$$ be a point on the circle. A line passes through the point $$\mathrm{C}$$, makes an angle of $$\frac{\pi}{4}$$ with the line $$\mathrm{CP}$$ and intersects the circle at the points $$Q$$ and $$R$$. Then the area of the triangle $$P Q R$$ (in unit $$^{2}$$ ) is :</p>
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "2$$\\sqrt2$$"}, {"identifier": "C", "content": "$$8 \\sin \\left(\\frac{\\pi}{8}\\right)$$"}, {"identifier": "D", "content": "$$8 \\cos \\left(\\frac{\\pi}{8}\\right)$$"}]
["B"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l7rb097k/86b1d3e8-f7fd-49d7-85c5-28047f9ac8ec/56adfa00-2e7f-11ed-8702-156c00ced081/file-1l7rb097l.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l7rb097k/86b1d3e8-f7fd-49d7-85c5-28047f9ac8ec/56adfa00-2e7f-11ed-8702-156c00ced081/file-1l7rb097l.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 28th July Morning Shift Mathematics - Circle Question 43 English Explanation"></p> <p>$$QR = 2r = 4$$</p> <p>$$P = \left( {{1 \over 2} + 2\cos {\pi \over 4}, - 1 + 2\sin {\pi \over 4}} \right)$$</p> <p>$$ = \left( {{1 \over 2} + \sqrt 2 , - 1 + \sqrt 2 } \right)$$</p> <p>Area of $$\Delta PQR = {1 \over 2} \times 4 \times \sqrt 2 $$</p> <p>$$ = 2\sqrt 2 $$ sq. units</p>
mcq
jee-main-2022-online-28th-july-morning-shift
9LotZu5LbanRuKpm
maths
circle
family-of-circle
The centres of a set of circles, each of radius 3, lie on the circle $${x^2}\, + \,{y^2} = 25$$. The locus of any point in the set is :
[{"identifier": "A", "content": "$$4\\, \\le \\,\\,{x^2}\\, + \\,{y^2}\\, \\le \\,\\,64$$ "}, {"identifier": "B", "content": "$${x^2}\\, + \\,{y^2}\\, \\le \\,\\,25$$ "}, {"identifier": "C", "content": "$${x^2}\\, + \\,{y^2}\\, \\ge \\,\\,25$$ "}, {"identifier": "D", "content": "$$3\\, \\le \\,\\,{x^2}\\, + \\,{y^2}\\, \\le \\,\\,9$$ "}]
["A"]
null
For any point $$P(x,y)$$ in the given circle, <br><br><img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267291/exam_images/wa96grbw4mjhrj5s0fuz.webp" loading="lazy" alt="AIEEE 2002 Mathematics - Circle Question 159 English Explanation"> <br><br>we should have <br><br>$$OA \le OP \le OB$$ <br><br>$$ \Rightarrow \left( {5 - 3} \right) \le \sqrt {{x^2} + {y^2}} \le 5 + 3$$ <br><br>$$ \Rightarrow 4 \le {x^2} + {y^2} \le 64$$
mcq
aieee-2002
vHVMDhgdHeB7Ln2W
maths
circle
family-of-circle
A variable circle passes through the fixed point A (p, q) and touches x-axis. The locus of the other end of the diameter through A is :
[{"identifier": "A", "content": "$${(y\\, - \\,q)^2} = \\,4\\,px$$ "}, {"identifier": "B", "content": "$${(x\\, - \\,q)^2} = \\,4\\,py$$"}, {"identifier": "C", "content": "$${(y\\, - \\,p)^2} = \\,4\\,qx$$"}, {"identifier": "D", "content": "$${(x\\, - \\,p)^2} = \\,4\\,qy$$"}]
["D"]
null
Let the variable circle be <br><br>$${x^2} + {y^2} + 2gx + 2fy + c = 0\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$$ <br><br>$$\therefore$$ $${p^2} + {q^2} + 2gp + 2fq + c = 0\,\,\,\,\,\,\,\,\,...\left( 2 \right)$$ <br><br>Circle $$(1)$$ touches $$x$$-axis, <br><br>$$\therefore$$ $${g^2} - c = 0 \Rightarrow c = {g^2}.\,\,\,$$ <br><br>From $$(2)$$ <br><br>$${p^2} + {q^2} + 2gp + 2fq + {g^2} = 0\,\,\,\,\,\,\,\,\,...\left( 3 \right)$$ <br><br>Let the other end of diameter through $$(p,q)$$ be $$(h,k),$$ <br><br>then, $${{h + p} \over 2} = - g$$ and $${{k + q} \over 2} = - f$$ <br><br>Put in $$(3)$$ <br><br>$${p^2} + {q^2} + 2p\left( { - {{h + p} \over 2}} \right) + 2q\left( { - {{k + q} \over 2}} \right) + {\left( {{{h + p} \over 2}} \right)^2} = 0$$ <br><br>$$ \Rightarrow {h^2} + {p^2} - 2hp - 4kq = 0$$ <br><br>$$\therefore$$ locus of $$\left( {h,k} \right)$$ is $${x^2} + {p^2} - 2xp - 4yq = 0$$ <br><br>$$ \Rightarrow {\left( {x - p} \right)^2} = 4qy$$
mcq
aieee-2004
R6msSj4yWbFMiKDF
maths
circle
family-of-circle
A circle touches the x-axis and also touches the circle with centre at (0, 3) and radius 2. The locus of the centre of the circle is :
[{"identifier": "A", "content": "an ellipse"}, {"identifier": "B", "content": "a circle "}, {"identifier": "C", "content": "a hyperbola "}, {"identifier": "D", "content": "a parabola "}]
["D"]
null
Equation of circle with center $$(0,3)$$ and radius $$2$$ is <br><br>$${x^2} + {\left( {y - 3} \right)^2} = 4$$ <br><br>Let locus of the variable circle is $$\left( {\alpha ,\beta } \right)$$ <br><br>As it touches $$x$$-axis. <br><br>$$\therefore$$ It's equation is $${\left( {x - \alpha } \right)^2} + {\left( {y + \beta } \right)^2} = {\beta ^2}$$ <br><br><img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263352/exam_images/a5hzdfxls1frvo9492ui.webp" loading="lazy" alt="AIEEE 2005 Mathematics - Circle Question 161 English Explanation"> <br><br>Circle touch externally $$ \Rightarrow {c_1}{c_2} = {r_1} + {r_2}$$ <br><br>$$\therefore$$ $$\sqrt {{\alpha ^2} + {{\left( {\beta - 3} \right)}^2}} = 2 + \beta $$ <br><br>$${\alpha ^2} + {\left( {\beta - 3} \right)^2} = {\beta ^2} + 4 + 4\beta $$ <br><br>$$ \Rightarrow {\alpha ^2} = 10\left( {\beta - 1/2} \right)$$ <br><br>$$\therefore$$ Locus is $${x^2} = 10\left( {y - {1 \over 2}} \right)$$ which is parabola.
mcq
aieee-2005
uxc61AnvgIDOB2bO
maths
circle
family-of-circle
Consider a family of circles which are passing through the point $$(-1, 1)$$ and are tangent to $$x$$-axis. If $$(h, k)$$ are the coordinate of the centre of the circles, then the set of values of $$k$$ is given by the interval :
[{"identifier": "A", "content": "$$ - {1 \\over 2} \\le k \\le {1 \\over 2}$$ "}, {"identifier": "B", "content": "$$k \\le {1 \\over 2}$$ "}, {"identifier": "C", "content": "$$0 \\le k \\le {1 \\over 2}$$ "}, {"identifier": "D", "content": "$$k \\ge {1 \\over 2}$$ "}]
["D"]
null
Equation of circle whose center is $$\left( {h,k} \right)$$ <br><br>i.e $${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {k^2}$$ <br><br><img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264751/exam_images/dhlchwnp8kfgccfwlmlr.webp" loading="lazy" alt="AIEEE 2007 Mathematics - Circle Question 145 English Explanation"> <br><br>(radius of circle $$=k$$ because circle is tangent to $$x$$-axis) <br><br>Equation of circle passing through $$\left( { - 1, + 1} \right)$$ <br><br>$$\therefore$$ $${\left( { - 1, - h} \right)^2} + {\left( {1 - k} \right)^2} = {k^2}$$ <br><br>$$ \Rightarrow 1 + {h^2} + 2h + 1 + {k^2} - 2k = {k^2}$$ <br><br>$$ \Rightarrow {h^2} + 2h - 2k + 2 = 0$$ <br><br>$$D \ge 0$$ <br><br>$$\therefore$$ $${\left( 2 \right)^2} - 4 \times 1.\left( { - 2k + 2} \right) \ge 0$$ <br><br>$$ \Rightarrow 4 - 4\left( { - 2k + 2} \right) \ge 0$$ <br><br>$$ \Rightarrow 1 + 2k - 2 \ge 0$$ <br><br>$$ \Rightarrow k \ge {1 \over 2}$$
mcq
aieee-2007
W5qdG7lPRwsgI7vI
maths
circle
family-of-circle
The differential equation of the family of circles with fixed radius $$5$$ units and centre on the line $$y = 2$$ is :
[{"identifier": "A", "content": "$$\\left( {x - 2} \\right){y^2} = 25 - {\\left( {y - 2} \\right)^2}$$ "}, {"identifier": "B", "content": "$$\\left( {y - 2} \\right){y^2} = 25 - {\\left( {y - 2} \\right)^2}$$"}, {"identifier": "C", "content": "$${\\left( {y - 2} \\right)^2}{y^2} = 25 - {\\left( {y - 2} \\right)^2}$$ "}, {"identifier": "D", "content": "$${\\left( {x - 2} \\right)^2}{y^2} = 25 - {\\left( {y - 2} \\right)^2}$$"}]
["C"]
null
Let the center of the circle be $$(h, 2)$$ <br><br>$$\therefore$$ Equation of circle is <br><br>$${\left( {x - h} \right)^2} + \left( {y - 2} \right){}^2 = 25\,\,\,\,\,\,\,\,\,...\left( 1 \right)$$ <br><br>Differentiating with respect to $$x,$$ we get <br><br>$$2\left( {x - h} \right) + 2\left( {y - 2} \right){{dy} \over {dx}} = 0$$ <br><br>$$ \Rightarrow x - h = - \left( {y - 2} \right){{dy} \over {dx}}$$ <br><br>Substituting in equation $$(1)$$ we get <br><br>$${\left( {y - 2} \right)^2}{\left( {{{dy} \over {dx}}} \right)^2} + {\left( {y - 2} \right)^2} = 25$$ <br><br>$$ \Rightarrow {\left( {y - 2} \right)^2}{\left( {y'} \right)^2} = 25 - {\left( {y - 2} \right)^2}$$
mcq
aieee-2008
CVivCukoCBuAkUMw
maths
circle
family-of-circle
If $$P$$ and $$Q$$ are the points of intersection of the circles <br/>$${x^2} + {y^2} + 3x + 7y + 2p - 5 = 0$$ and $${x^2} + {y^2} + 2x + 2y - {p^2} = 0$$ then there is a circle passing through $$P,Q $$ and $$(1, 1)$$ for :
[{"identifier": "A", "content": "all except one value of $$p$$ "}, {"identifier": "B", "content": "all except two values of $$p$$ "}, {"identifier": "C", "content": "exactly one value of $$p$$ "}, {"identifier": "D", "content": "all values of $$p$$"}]
["A"]
null
The given circles are <br><br>$${S_1} \equiv {x^2} + {y^2} + 3x + 7y + 2p - 5 = 0\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$$ <br><br>$${S_2} \equiv {x^2} + {y^2} + 2x + 2y - {p^2} = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( 2 \right)$$ <br><br>$$\therefore$$ Equation of common chord $$PQ$$ is $${S_1} - {S_2} = 0$$ <br><br>$$ \Rightarrow L \equiv x + 5y + {p^2} + 2p - 5 = 0$$ <br><br>$$ \Rightarrow $$ Equation of circle passing through $$P$$ and $$Q$$ is <br><br>$${S_1} + \lambda \,\,L = 0$$ <br><br>$$ \Rightarrow \left( {{x^2} + {y^2} + 3x + 7y + 2p - 5} \right) + \lambda $$ <br><br>$$\left( {x + 5y + {p^2} + 2p - 5} \right) = 0$$ <br><br>As it passes through $$\left( {1,1} \right),$$ therefore <br><br>$$ \Rightarrow \left( {7 + 2p} \right) + \lambda \left( {2p + {p^2} + 1} \right) = 0$$ <br><br>$$ \Rightarrow \lambda = - {{2p + 7} \over {\left( {p + 1} \right)}},$$ <br><br>which does not exist for $$p=-1$$
mcq
aieee-2009
pdGMim6mel1wVHfj
maths
circle
family-of-circle
The centres of those circles which touch the circle, $${x^2} + {y^2} - 8x - 8y - 4 = 0$$, externally and also touch the $$x$$-axis, lie on :
[{"identifier": "A", "content": "a circle "}, {"identifier": "B", "content": "an ellipse which is not a circle "}, {"identifier": "C", "content": "a hyperbola"}, {"identifier": "D", "content": "a parabola "}]
["D"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264280/exam_images/cr0skvuxufhkzumdnzhn.webp" loading="lazy" alt="JEE Main 2016 (Offline) Mathematics - Circle Question 134 English Explanation"> <br><br>For the given circle, <br><br>center : $$(4,4)$$ <br><br>radius $$=6$$ <br><br>$$6 + k = \sqrt {{{\left( {h - 4} \right)}^2} + {{\left( {k - 4} \right)}^2}} $$ <br><br>$${\left( {h - 4} \right)^2} = 20k + 20$$ <br><br>$$\therefore$$ locus of $$(h, k)$$ is <br><br>$${\left( {h - 4} \right)^2} = 20\left( {y + 1} \right),$$ <br><br>which is parabola.
mcq
jee-main-2016-offline
DtjBungYu7lolDmmqPBQA
maths
circle
family-of-circle
A circle passes through the points (2, 3) and (4, 5). If its centre lies on the line, $$y - 4x + 3 = 0,$$ then its radius is equal to :
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "$$\\sqrt 5 $$"}, {"identifier": "C", "content": "$$\\sqrt 2 $$"}, {"identifier": "D", "content": "1"}]
["A"]
null
Centre $(\alpha, \beta)$ lies on line $y-4 x+3=0$ <br/><br/>Then, $\quad \beta=4 \alpha-3$ <br/><br/>And <br/><br/>$$ \text { Radius }=\sqrt{(\alpha-2)^2+(\beta-3)^2}=\sqrt{(\alpha-4)^2+(\beta-5)^2} $$ <br/><br/>$$ \begin{aligned} & \alpha^2+\beta^2+ 13-4 \alpha-6 \beta=\alpha^2+\beta^2+41-8 \alpha-10 \beta \\\\ & 4 \alpha+4 \beta=28 \Rightarrow \alpha+\beta=7 \\\\ & \Rightarrow \alpha+4 \alpha-3=7 \\\\ & \Rightarrow \alpha=2, \beta=5 \end{aligned} $$ <br/><br/>Therefore, $\quad$ Radius $=\sqrt{(2-2)^2+(5-3)^2}=2$
mcq
jee-main-2018-online-15th-april-morning-slot
GhHPQJZMreFqETJ1UGuYQ
maths
circle
family-of-circle
Three circles of radii a, b, c (a &lt; b &lt; c) touch each other externally. If they have x-axis as a common tangent, then :
[{"identifier": "A", "content": "a, b, c are in A.P."}, {"identifier": "B", "content": "$$\\sqrt a ,\\sqrt b ,\\sqrt c $$ are in A.P"}, {"identifier": "C", "content": "$${1 \\over {\\sqrt b }} + {1 \\over {\\sqrt c }}$$ = $${1 \\over {\\sqrt a }}$$"}, {"identifier": "D", "content": "$${1 \\over {\\sqrt b }} = {1 \\over {\\sqrt a }} + {1 \\over {\\sqrt c }}$$"}]
["C"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264861/exam_images/znw3pusc82f7kl1xv763.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 9th January Morning Slot Mathematics - Circle Question 121 English Explanation"> <br><br>AB = AC + CB <br><br>$$\sqrt {{{\left( {b + c} \right)}^2} - {{\left( {c - b} \right)}^2}} $$ = $$\sqrt {{{\left( {b + a} \right)}^2} - {{\left( {b - a} \right)}^2}} $$ <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;+ $$\sqrt {{{\left( {c + a} \right)}^2} - {{\left( {c - a} \right)}^2}} $$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$\sqrt {2bc} $$ = $$\sqrt {2ac} $$ + $$\sqrt {2ab} $$ <br><br>Dividing by $$\sqrt {abc} $$ we get. <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$${1 \over {\sqrt a }}$$ = $${1 \over {\sqrt b }}$$ + $${1 \over {\sqrt c }}$$
mcq
jee-main-2019-online-9th-january-morning-slot
KCwGH1e7nkaCmpz92Q3rsa0w2w9jx1ytgcp
maths
circle
family-of-circle
The locus of the centres of the circles, which touch the circle, x<sup>2</sup> + y<sup>2</sup> = 1 externally, also touch the y-axis and lie in the first quadrant, is :
[{"identifier": "A", "content": "$$x = \\sqrt {1 + 2y} ,y \\ge 0$$"}, {"identifier": "B", "content": "$$y = \\sqrt {1 + 2x} ,x \\ge 0$$"}, {"identifier": "C", "content": "$$y = \\sqrt {1 + 4x} ,x \\ge 0$$"}, {"identifier": "D", "content": "$$x = \\sqrt {1 + 4y} ,y \\ge 0$$"}]
["B"]
null
Let the centre is (h, k) &amp; radius is h (h, k &gt; 0)<br><br> OP = h + 1<br><br> <img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266464/exam_images/pevci3b1ygpkppdlpbgl.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 10th April Evening Slot Mathematics - Circle Question 104 English Explanation"><br> $$\sqrt {{h^2} + {k^2}} = h + 1$$<br><br> $$ \Rightarrow {h^2} + {k^2} = {h^2} + 2h + 1$$<br><br> $$ \Rightarrow {k^2} = 2h + 1$$<br><br> $$ \therefore $$ Locus is y<sup>2</sup> = 2x + 1
mcq
jee-main-2019-online-10th-april-evening-slot
S19NaXGqv0LGnFkd1wovy
maths
circle
family-of-circle
If a circle C passing through the point (4, 0) touches the circle x<sup>2</sup> + y<sup>2</sup> + 4x – 6y = 12 externally at the point (1, – 1), then the radius of C is :
[{"identifier": "A", "content": "5"}, {"identifier": "B", "content": "2$$\\sqrt {5} $$"}, {"identifier": "C", "content": "4"}, {"identifier": "D", "content": "$$\\sqrt {37} $$"}]
["A"]
null
x<sup>2</sup> + y<sup>2</sup> + 4x $$-$$ 6y $$-$$ 12 = 0 <br><br>Equation of tangent at (1, $$-$$ 1) <br><br>x $$-$$ y + 2(x + 1) $$-$$ 3(y $$-$$ 1) $$-$$ 12 = 0 <br><br>3x $$-$$ 4y $$-$$ 7 = 0 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;Equation of circle is <br><br>(x<sup>2</sup> + y<sup>2</sup> + 4x $$-$$ 6y $$-$$ 12) + $$\lambda $$ (3x $$-$$ 4y $$-$$ 7) = 0 <br><br>It passes through (4, 0) : <br><br>(16 + 16 $$-$$ 12) + $$\lambda $$ (12 $$-$$ 7) = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;20 + $$\lambda $$(5) = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$\lambda $$ = $$-$$ 4 <br><br>$$ \therefore $$&nbsp;&nbsp;(x<sup>2</sup> + y<sup>2</sup> + 4x $$-$$ 6y $$-$$ 12) $$-$$ 4(3x $$-$$ 4y $$-$$ 7) = 0 <br><br>or &nbsp;&nbsp;x<sup>2</sup> + y<sup>2</sup> $$-$$ 8x + 10y + 16 = 0 <br><br>Radius = $$\sqrt {16 + 25 - 16} = 5$$
mcq
jee-main-2019-online-10th-january-morning-slot
aLcjY2vZwkdplfoJYSjgy2xukfakl6kz
maths
circle
family-of-circle
The circle passing through the intersection of the circles, <br/>x<sup>2</sup> + y<sup>2</sup> – 6x = 0 and x<sup>2</sup> + y<sup>2</sup> – 4y = 0, having its centre on<br/> the line, 2x – 3y + 12 = 0, also passes through the point :
[{"identifier": "A", "content": "(\u20133, 1)"}, {"identifier": "B", "content": "(1, \u20133) "}, {"identifier": "C", "content": "(\u20131, 3) "}, {"identifier": "D", "content": "(\u20133, 6) "}]
["D"]
null
Let S be the circle passing through point of intersection of S<sub>1</sub> &amp; S<sub>2</sub><br><br>$$ \therefore $$ S = S<sub>1</sub> + $$\lambda $$S<sub>2</sub> = 0<br><br>$$ \Rightarrow $$ $$S:({x^2} + {y^2} - 6x) + \lambda ({x^2} + {y^2} - 4y) = 0$$<br><br>$$ \Rightarrow $$ $$S:{x^2} + {y^2} - \left( {{6 \over {1 + \lambda }}} \right)x - \left( {{{4\lambda } \over {1 + \lambda }}} \right)y = 0$$ ....(1)<br><br>Centre $$\left( {{3 \over {1 + \lambda }},{{2\lambda } \over {1 + \lambda }}} \right)$$ lies on<br><br>$$2x - 3y + 12 = 0 \Rightarrow \lambda = - 3$$<br><br>put in $$(1) \Rightarrow S:{x^2} + {y^2} + 3x - 6y = 0$$<br><br>Now check options point $$( - 3,6)$$<br><br>lies on S.
mcq
jee-main-2020-online-4th-september-evening-slot
NDpPPI6KPUzk1c1oIm1kmm35609
maths
circle
family-of-circle
Let S<sub>1</sub> : x<sup>2</sup> + y<sup>2</sup> = 9 and S<sub>2</sub> : (x $$-$$ 2)<sup>2</sup> + y<sup>2</sup> = 1. Then the locus of center of a variable circle S which touches S<sub>1</sub> internally and S<sub>2</sub> externally always passes through the points :
[{"identifier": "A", "content": "$$\\left( {{1 \\over 2}, \\pm {{\\sqrt 5 } \\over 2}} \\right)$$"}, {"identifier": "B", "content": "(1, $$\\pm$$ 2)"}, {"identifier": "C", "content": "$$\\left( {2, \\pm {3 \\over 2}} \\right)$$"}, {"identifier": "D", "content": "(0, $$\\pm$$ $$\\sqrt 3 $$)"}]
["C"]
null
S<sub>1</sub> : x<sup>2</sup> + y<sup>2</sup> = 9 ; C<sub>1</sub> (0, 0), r<sub>1</sub> = 3<br><br>S<sub>2</sub> : (x $$-$$ 2)<sup>2</sup> + y<sup>2</sup> = 1 ; C<sub>2</sub> (2, 0), r<sub>2</sub> = 1<br><br>Image<br><br>Let the variable circle S and its radius is r units.<br><br>Here S and S<sub>1</sub> touches internally<br><br>$$ \therefore $$ Distance between center,<br><br>S + S<sub>1</sub> = PC<sub>1</sub> = 3 $$-$$ r<br><br>Here S and S<sub>2</sub> touches externally <br><br>$$ \therefore $$ Distance between center,<br><br> S + S<sub>2</sub> = PC<sub>2</sub> = 1 + r<br><br>$$ \therefore $$ PC<sub>1</sub> + PC<sub>2</sub> = 4 &gt; C<sub>1</sub> C<sub>2</sub><br><br>So locus is ellipse whose focii are C<sub>1</sub> &amp; C<sub>2</sub> and major axis is 2a = 4 and 2ae = C<sub>1</sub>C<sub>2</sub> = 2<br><br>$$ \Rightarrow $$ $$e = {1 \over 2}$$<br><br>$$ \Rightarrow $$ $${b^2} = 4\left( {1 - {1 \over 4}} \right) = 3$$<br><br>Centre of ellipse is midpoint of C<sub>1</sub> &amp; C<sub>2</sub> is (1, 0)<br><br>Equation of ellipse is $${{{{(x - 1)}^2}} \over {{2^2}}} + {{{y^2}} \over {{{\left( {\sqrt 3 } \right)}^2}}} = 1$$<br><br>Now by cross checking the option $$\left( {2, \pm {3 \over 2}} \right)$$ satisfied it.
mcq
jee-main-2021-online-18th-march-evening-shift
1krrorbwe
maths
circle
family-of-circle
Let r<sub>1</sub> and r<sub>2</sub> be the radii of the largest and smallest circles, respectively, which pass through the point ($$-$$4, 1) and having their centres on the circumference of the circle x<sup>2</sup> + y<sup>2</sup> + 2x + 4y $$-$$ 4 = 0. If $${{{r_1}} \over {{r_2}}} = a + b\sqrt 2 $$, then a + b is equal to :
[{"identifier": "A", "content": "3"}, {"identifier": "B", "content": "11"}, {"identifier": "C", "content": "5"}, {"identifier": "D", "content": "7"}]
["C"]
null
<picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264563/exam_images/bn5acdhhem4hvhtrnsbo.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265467/exam_images/qc4gbepselvkks5k9sik.webp"><source media="(max-width: 680px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267795/exam_images/n7dacsflbuzorb3rmaqd.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265624/exam_images/d4ezp6p9d95v96et0sky.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 20th July Evening Shift Mathematics - Circle Question 77 English Explanation"></picture> <br><br>Centre of smallest circle is A<br><br>Centre of largest circle is B<br><br>$${r_2} = |CP - CA| = 3\sqrt 2 - 3$$<br><br>$${r_1} = CP - CB = 3\sqrt 2 + 3$$<br><br>$${{{r_1}} \over {{r_2}}} = {{3\sqrt 2 + 3} \over {3\sqrt 2 - 3}} = {{{{(3\sqrt 2 + 3)}^2}} \over 9} = {(\sqrt 2 + 1)^2} = 3 + 2\sqrt 2 $$<br><br>a = 3, b = 2
mcq
jee-main-2021-online-20th-july-evening-shift
1kteov0d4
maths
circle
family-of-circle
Let the equation x<sup>2</sup> + y<sup>2</sup> + px + (1 $$-$$ p)y + 5 = 0 represent circles of varying radius r $$\in$$ (0, 5]. Then the number of elements in the set S = {q : q = p<sup>2</sup> and q is an integer} is __________.
[]
null
61
$$r = \sqrt {{{{p^2}} \over 4} + {{{{(1 - p)}^2}} \over 4} - 5} = {{\sqrt {2{p^2} - 2p - 19} } \over 2}$$<br><br>Since, $$r \in (0,5]$$<br><br>So, $$0 &lt; 2{p^2} - 2p - 19 \le 100$$<br><br>$$ \Rightarrow p \in \left[ {{{1 - \sqrt {239} } \over 2},{{1 - \sqrt {39} } \over 2}} \right) \cup \left( {{{1 + \sqrt {39} } \over 2},{{1 + \sqrt {239} } \over 2}} \right]$$ <br><br>so, number of integral values of p<sup>2</sup> is 61.
integer
jee-main-2021-online-27th-august-morning-shift
1l589r0yu
maths
circle
family-of-circle
<p>Let C be a circle passing through the points A(2, $$-$$1) and B(3, 4). The line segment AB s not a diameter of C. If r is the radius of C and its centre lies on the circle $${(x - 5)^2} + {(y - 1)^2} = {{13} \over 2}$$, then r<sup>2</sup> is equal to :</p>
[{"identifier": "A", "content": "32"}, {"identifier": "B", "content": "$${{65} \\over 2}$$"}, {"identifier": "C", "content": "$${{61} \\over 2}$$"}, {"identifier": "D", "content": "30"}]
["B"]
null
<p>Equation of perpendicular bisector of AB is</p> <p>$$y - {3 \over 2} = - {1 \over 5}\left( {x - {5 \over 2}} \right) \Rightarrow x + 5y = 10$$</p> <p>Solving it with equation of given circle,</p> <p>$${(x - 5)^2}{\left( {{{10 - x} \over 5} - 1} \right)^2} = {{13} \over 2}$$</p> <p>$$ \Rightarrow {(x - 5)^2}\left( {1 + {1 \over {25}}} \right) = {{13} \over 2}$$</p> <p>$$ \Rightarrow x - 5 = \pm \,{5 \over 2} \Rightarrow x = {5 \over 2}$$ or $${{15} \over 2}$$</p> <p>But $$x \ne {5 \over 2}$$ because AB is not the diameter.</p> <p>So, centre will be $$\left( {{{15} \over 2},{1 \over 2}} \right)$$</p> <p>Now, $${r^2} = {\left( {{{15} \over 2} - 2} \right)^2} + {\left( {{1 \over 2} + 1} \right)^2}$$</p> <p>$$ = {{65} \over 2}$$</p>
mcq
jee-main-2022-online-26th-june-morning-shift
1ldpsfpye
maths
circle
family-of-circle
<p>Let a circle $$C_{1}$$ be obtained on rolling the circle $$x^{2}+y^{2}-4 x-6 y+11=0$$ upwards 4 units on the tangent $$\mathrm{T}$$ to it at the point $$(3,2)$$. Let $$C_{2}$$ be the image of $$C_{1}$$ in $$\mathrm{T}$$. Let $$A$$ and $$B$$ be the centers of circles $$C_{1}$$ and $$C_{2}$$ respectively, and $$M$$ and $$N$$ be respectively the feet of perpendiculars drawn from $$A$$ and $$B$$ on the $$x$$-axis. Then the area of the trapezium AMNB is :</p>
[{"identifier": "A", "content": "$$2\\left( {2 + \\sqrt 2 } \\right)$$"}, {"identifier": "B", "content": "$$4\\left( {1 + \\sqrt 2 } \\right)$$"}, {"identifier": "C", "content": "$$3 + 2\\sqrt 2 $$"}, {"identifier": "D", "content": "$$2\\left( {1 + \\sqrt 2 } \\right)$$"}]
["B"]
null
Given circle is $x^{2}+y^{2}-4 x-6 y+11=0$, centre $(2,3)$ <br/><br/>Tangent at $(3,2)$ is $x-y=1$ <br/><br/>After rolling up by 4 units centre of $C_{1}$ is <br/><br/>$A \equiv\left(2+\frac{4}{\sqrt{2}}, 3+\frac{4}{\sqrt{2}}\right)$ <br/><br/>$\Rightarrow A=(2+2 \sqrt{2}, 3+2 \sqrt{2})$ <br/><br/>$B$ is the image of $A$ in $x-y=1$ <br/><br/>$\frac{x-(2+2 \sqrt{2})}{1}=\frac{y-(3+2 \sqrt{2})}{-1}=\frac{-2(-2)}{2}=2$ <br/><br/>$\Rightarrow x=4+2 \sqrt{2}, y=1+2 \sqrt{2}$ <br/><br/>Area of $A M N B$ <br/><br/>$=\frac{1}{2}(4+4 \sqrt{2})(4+2 \sqrt{2}-(2+2 \sqrt{2}))$ <br/><br/>$=4(1+\sqrt{2})$
mcq
jee-main-2023-online-31st-january-morning-shift
6ss2xEl1EvF1sipa
maths
circle
intercepts-of-a-circle
The circle $${x^2} + {y^2} = 4x + 8y + 5$$ intersects the line $$3x - 4y = m$$ at two distinct points if :
[{"identifier": "A", "content": "$$ - 35 &lt; m &lt; 15$$ "}, {"identifier": "B", "content": "$$ 15 &lt; m &lt; 65$$"}, {"identifier": "C", "content": "$$ 35 &lt; m &lt; 85$$"}, {"identifier": "D", "content": "$$ - 85 &lt; m &lt; -35$$"}]
["A"]
null
Circle $${x^2} + {y^2} - 4x - 8y - 5 = 0$$ <br><br>Center $$=(2,4),$$ Radius $$ = \sqrt {4 + 16 + 5} = 5$$ <br><br>If circle is intersecting line $$3x-4y=m,$$ at two distinct points. <br><br>$$ \Rightarrow $$ length of perpendicular from center to the line $$ &lt; $$ radius <br><br>$$ \Rightarrow {{\left| {6 - 16 - m} \right|} \over 5} &lt; 5 \Rightarrow \left| {10 + m} \right| &lt; 25$$ <br><br>$$ \Rightarrow - 25 &lt; m + 10 &lt; 25 \Rightarrow - 35 &lt; m &lt; 15$$
mcq
aieee-2010
0D5SbWICmfbrSiS6nhSKX
maths
circle
intercepts-of-a-circle
If a circle C, whose radius is 3, touches externally the circle, <br/>$${x^2} + {y^2} + 2x - 4y - 4 = 0$$ at the point (2, 2), then the length of the intercept cut by this circle C, on the x-axis is equal to :
[{"identifier": "A", "content": "$$2\\sqrt 5 $$ "}, {"identifier": "B", "content": "$$3\\sqrt 2 $$"}, {"identifier": "C", "content": "$$\\sqrt 5 $$"}, {"identifier": "D", "content": "$$2\\sqrt 3 $$"}]
["A"]
null
Given circle is : <br><br>x<sup>2</sup> + y<sup>2</sup> + 2x $$-$$ 4y $$-$$4 = 0 <br><br>$$\therefore\,\,\,$$ its center is ($$-$$ 1, 2) and radius is 3 units. <br><br>Let A = (x, y) be the center of the circle C <br><br>$$ \therefore $$$$\,\,\,$$ $${{x - 1} \over 2}$$ = 2 $$ \Rightarrow $$ x = 5 and $${{y + 2} \over 2}$$ = 2 $$ \Rightarrow $$ y = 2 <br><br>So the center of C is (5, 2) and its radius is 3 <br><br>$$\therefore\,\,\,$$ Equation of center C is : <br><br>x<sup>2</sup> + y<sup>2</sup> $$-$$ 10x $$-$$ 4y + 20 = 0 <br><br>$$\therefore\,\,\,$$ The length of the intercept it cuts on the x-axis <br><br>= 2$$\sqrt {{g^2} - c} = 2\sqrt {25 - 20} = 2\sqrt 5 $$
mcq
jee-main-2018-online-16th-april-morning-slot
bwfEFliy0nuIS6V14kpQ2
maths
circle
intercepts-of-a-circle
The straight line x + 2y = 1 meets the coordinate axes at A and B. A circle is drawn through A, B and the origin. Then the sum of perpendicular distances from A and B on the tangent to the circle at the origin is :
[{"identifier": "A", "content": "$$4\\sqrt 5 $$ "}, {"identifier": "B", "content": "$${{\\sqrt 5 } \\over 2}$$"}, {"identifier": "C", "content": "$$2\\sqrt 5 $$"}, {"identifier": "D", "content": "$${{\\sqrt 5 } \\over 4}$$"}]
["B"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264558/exam_images/tv9y0wlrozxdjluksyez.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 11th January Morning Slot Mathematics - Circle Question 117 English Explanation"> <br><br>Equation of circle <br><br>(x $$-$$ 1) (x $$-$$ 0) + (y $$-$$ 0) (y $$-$$ $${1 \over 2}$$) = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;x<sup>2</sup> + y<sup>2</sup><sup></sup> $$-$$ x $$-$$ $${y \over 2}$$ = 0 <br><br>Equation of tangent of region is 2x + y = 0 <br><br>$$\ell $$<sub>1</sub> + $$\ell $$<sub>2</sub> = $${2 \over {\sqrt 5 }} + {1 \over {2\sqrt 5 }}$$ <br><br>= $${{4 + 1} \over {2\sqrt 5 }} = {{\sqrt 5 } \over 2}$$
mcq
jee-main-2019-online-11th-january-morning-slot
dGyz2Ms65BQBVjVOx30tZ
maths
circle
intercepts-of-a-circle
A square is inscribed in the circle x<sup>2</sup> + y<sup>2</sup> – 6x + 8y – 103 = 0 with its sides parallel to the coordinate axes. Then the distance of the vertex of this square which is nearest to the origin is :
[{"identifier": "A", "content": "$$\\sqrt {137} $$"}, {"identifier": "B", "content": "6"}, {"identifier": "C", "content": "$$\\sqrt {41} $$"}, {"identifier": "D", "content": "13"}]
["C"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266267/exam_images/raqnosna6rdmei2xv6vs.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 11th January Morning Slot Mathematics - Circle Question 116 English Explanation"> <br>R $$ = \sqrt {9 + 16 + 103} = 8\sqrt 2 $$ <br><br>OA $$ = 13$$ <br><br>OB $$ = \sqrt {265} $$ <br><br>OC $$ = \sqrt {137} $$ <br><br>OD $$ = \sqrt {41} $$
mcq
jee-main-2019-online-11th-january-morning-slot
MNZ8HDiEA2opWMQFzoaec
maths
circle
intercepts-of-a-circle
If a circle of radius R passes through the origin O and intersects the coordinates axes at A and B, then the locus of the foot of perpendicular from O on AB is :
[{"identifier": "A", "content": "(x<sup>2</sup> + y<sup>2</sup>)<sup>2</sup> = 4R<sup>2</sup>x<sup>2</sup>y<sup>2</sup>"}, {"identifier": "B", "content": "(x<sup>2</sup> + y<sup>2</sup>) (x + y) = R<sup>2</sup>xy"}, {"identifier": "C", "content": "(x<sup>2</sup> + y<sup>2</sup>)<sup>2</sup> = 4R<sup></sup>x<sup>2</sup>y<sup>2</sup>"}, {"identifier": "D", "content": "(x<sup>2</sup> + y<sup>2</sup>)<sup>3</sup> = 4R<sup>2</sup>x<sup>2</sup>y<sup>2</sup> "}]
["D"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266292/exam_images/mqtptxaki1efkgjktaz3.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 12th January Evening Slot Mathematics - Circle Question 112 English Explanation"> <br>Slope of AB = $${{ - h} \over k}$$ <br><br>Equation of AB is hx + ky = h<sup>2</sup> + k<sup>2</sup> <br><br>A $$\left( {{{{h^2} + {k^2}} \over h},0} \right),B\left( {0,{{{h^2} + {k^2}} \over k}} \right)$$ <br><br>AB = 2R <br><br>$$ \Rightarrow $$&nbsp;&nbsp; (h<sup>2</sup> + k<sup>2</sup>)<sup>3</sup> = 4R<sup>2</sup>h<sup>2</sup>k<sup>2</sup> <br><br>$$ \Rightarrow $$&nbsp;&nbsp;(x<sup>2</sup> + y<sup>2</sup>)<sup>3</sup> = 4R<sup>2</sup>x<sup>2</sup>y<sup>2</sup>
mcq
jee-main-2019-online-12th-january-evening-slot
61W16N54NVigiXQdvP8G4
maths
circle
intercepts-of-a-circle
The sum of the squares of the lengths of the chords intercepted on the circle, x<sup>2</sup> + y<sup>2</sup> = 16, by the lines, x + y = n, n $$ \in $$ N, where N is the set of all natural numbers, is :
[{"identifier": "A", "content": "210"}, {"identifier": "B", "content": "160"}, {"identifier": "C", "content": "320"}, {"identifier": "D", "content": "105"}]
["A"]
null
<picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265623/exam_images/doy3xrxadrncldcwhphr.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265990/exam_images/c61gxkjkwqx5wosotcyk.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265002/exam_images/bk22gu7jwtdummbjsmw8.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 8th April Morning Slot Mathematics - Circle Question 111 English Explanation"></picture> <br>Let the chord x + y = n cuts the circle x<sup>2</sup> + y<sup>2</sup> = 16 at A and B. <br><br>Length of perpendicular from O on AB, <br><br>OM = $$\left| {{{0 + 0 - n} \over {\sqrt {{1^2} + {1^2}} }}} \right| = {n \over {\sqrt 2 }}$$ <br><br>Radius of the circle = 4 <br><br>From the picture you can see, <br><br>$${n \over {\sqrt 2 }}$$ &lt; 4 <br><br>$$ \Rightarrow $$ n &lt; 5.65 <br><br>$$ \therefore $$ Possible value of n = 1, 2, 3, 4, 5 <br><br>Length of chord AB = $$2\sqrt {{{\left( 4 \right)}^2} - {{\left( {{n \over {\sqrt 2 }}} \right)}^2}} $$ <br><br>= $$2\sqrt {16 - {{{n^2}} \over 2}} $$ <br><br>= $$\sqrt {64 - 2{n^2}} $$ = $${l}$$ <br><br>For n = 1, $${l^2}$$ = 62 <br><br>For n = 2, $${l^2}$$ = 56 <br><br>For n = 3, $${l^2}$$ = 46 <br><br>For n = 4, $${l^2}$$ = 32 <br><br>For n = 5, $${l^2}$$ = 14 <br><br>$$ \therefore $$ Sum of square of length of chords = 62 + 56 + 46 + 32 + 14 = 210
mcq
jee-main-2019-online-8th-april-morning-slot
zzLYX99HzUqacuDxIm3rsa0w2w9jxaykypb
maths
circle
intercepts-of-a-circle
A circle touching the x-axis at (3, 0) and making an intercept of length 8 on the y-axis passes through the point :
[{"identifier": "A", "content": "(1, 5)"}, {"identifier": "B", "content": "( 2, 3)"}, {"identifier": "C", "content": "(3, 5)"}, {"identifier": "D", "content": "(3, 10)"}]
["D"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265069/exam_images/iuwti6tm5cysz6ebxdbi.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 12th April Evening Slot Mathematics - Circle Question 102 English Explanation"><br><br> From the above figure equation of circle is (x - 3)<sup>2</sup> + (y - 5)<sup>5</sup> = 5<sup>2</sup><br><br> So (3, 10) will satisfy the equation.
mcq
jee-main-2019-online-12th-april-evening-slot
ZkMgZkefk4fu6UwEbm1kmixaf77
maths
circle
intercepts-of-a-circle
Let the lengths of intercepts on x-axis and y-axis made by the circle <br/>x<sup>2</sup> + y<sup>2</sup> + ax + 2ay + c = 0, (a &lt; 0) be 2$${\sqrt 2 }$$ and 2$${\sqrt 5 }$$, respectively. Then the shortest distance from origin to a tangent to this circle which is perpendicular to the line x + 2y = 0, is equal to :
[{"identifier": "A", "content": "$${\\sqrt {10} }$$"}, {"identifier": "B", "content": "$${\\sqrt {6} }$$"}, {"identifier": "C", "content": "$${\\sqrt {11} }$$"}, {"identifier": "D", "content": "$${\\sqrt {7} }$$"}]
["B"]
null
$$2\sqrt {{{{a^2}} \over 4} - c} = 2\sqrt 2 $$<br><br>$$\sqrt {{a^2} - 4c} = 2\sqrt 2 $$<br><br>$${a^2} - 4c = 8$$ .... (1)<br><br>$$2\sqrt {{a^2} - c} = 2\sqrt 5 $$<br><br>$${a^2} - c = 5$$ .... (2)<br><br>$$(2) - (1)$$<br><br>$$3c = - 3a \Rightarrow c = - 1$$<br><br>$${a^2} = 4 \Rightarrow a = - 2$$ (Given a &lt; 0)<br><br>Equation of circle <br><br>$${x^2} + {y^2} - 2x - 4y - 1 = 0$$<br><br>Equation of tangent which is perpendicular to the line x + 2y = 0 is <br><br>$$2x - y + \lambda = 0$$<br><br>$$ \therefore $$ p = r<br><br>$$\left| {{{2 - 2 + \lambda } \over {\sqrt 5 }}} \right| = \sqrt 6 $$<br><br>$$ \Rightarrow \lambda = \pm \sqrt {30} $$<br><br>$$ \therefore $$ Tangent $$2x - y \pm \sqrt {30} = 0$$<br><br>Distance from origin = $${{\sqrt {30} } \over {\sqrt 5 }} = \sqrt 6 $$
mcq
jee-main-2021-online-16th-march-evening-shift
1kryesdeh
maths
circle
intercepts-of-a-circle
Consider a circle C which touches the y-axis at (0, 6) and cuts off an intercept $$6\sqrt 5 $$ on the x-axis. Then the radius of the circle C is equal to :
[{"identifier": "A", "content": "$$\\sqrt {53} $$"}, {"identifier": "B", "content": "9"}, {"identifier": "C", "content": "8"}, {"identifier": "D", "content": "$$\\sqrt {82} $$"}]
["B"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266278/exam_images/kb34kqlzzf1i40yfp522.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 27th July Evening Shift Mathematics - Circle Question 75 English Explanation"><br><br>$$r = \sqrt {{6^2} + {{\left( {3 + \sqrt 5 } \right)}^2}} $$<br><br>$$ = \sqrt {36 + 45} = 9$$
mcq
jee-main-2021-online-27th-july-evening-shift
1l6jdc4r8
maths
circle
intercepts-of-a-circle
<p>If the circle $$x^{2}+y^{2}-2 g x+6 y-19 c=0, g, c \in \mathbb{R}$$ passes through the point $$(6,1)$$ and its centre lies on the line $$x-2 c y=8$$, then the length of intercept made by the circle on $$x$$-axis is :</p>
[{"identifier": "A", "content": "$$\\sqrt{11}$$"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "$$2 \\sqrt{23}$$"}]
["D"]
null
<p>Circle : $${x^2} + {y^2} - 2gx + 6y - 19c = 0$$</p> <p>It passes through $$h(6,1)$$</p> <p>$$ \Rightarrow 36 + 1 - 12g + 6 - 19c = 0$$</p> <p>$$ = 12g + 19c = 43$$ ..... (1)</p> <p>Line $$x - 2cy = 8$$ passes through centre</p> <p>$$ \Rightarrow g + 6c = 8$$ ...... (2)</p> <p>From (1) & (2)</p> <p>$$g = 2,\,c = 1$$</p> <p>$$C:{x^2} + {y^2} - 4x + 6y - 19 = 0$$</p> <p>x intercept $$= 2\sqrt {{g^2} - C} $$</p> <p>$$ = 2\sqrt {4 + 19} $$</p> <p>$$ = 2\sqrt {23} $$</p>
mcq
jee-main-2022-online-27th-july-morning-shift
1lgrgje37
maths
circle
intercepts-of-a-circle
<p>Two circles in the first quadrant of radii $$r_{1}$$ and $$r_{2}$$ touch the coordinate axes. Each of them cuts off an intercept of 2 units with the line $$x+y=2$$. Then $$r_{1}^{2}+r_{2}^{2}-r_{1} r_{2}$$ is equal to ___________.</p>
[]
null
7
$$ \begin{aligned} &amp; \text { Circle }(x-a)^2+(y-a)^2=a^2 \\\\ &amp; x^2+y^2-2 a x-2 a y+a^2=0 \\\\ &amp; \text { intercept }=2 \\\\ &amp; \Rightarrow 2 \sqrt{a^2-d^2}=2 \end{aligned} $$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1li9wqjod/6e47a7f9-a970-48fa-94e5-b8b0e7d86b93/96fe4cd0-feb4-11ed-9a3f-cb8a261721bd/file-1li9wqjoe.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1li9wqjod/6e47a7f9-a970-48fa-94e5-b8b0e7d86b93/96fe4cd0-feb4-11ed-9a3f-cb8a261721bd/file-1li9wqjoe.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2023 (Online) 12th April Morning Shift Mathematics - Circle Question 28 English Explanation"> <br><br>Where $\mathrm{d}=$ perpendicular distance of centre from line $x+y=2$ <br><br>$$ \begin{aligned} &amp; \Rightarrow 2 \sqrt{a^2-\left(\frac{a+a-2}{\sqrt{2}}\right)^2}=2 \\\\ &amp; \Rightarrow a^2-\frac{(2 a-2)^2}{2}=1 \Rightarrow 2 a^2-4 a^2+8 a-4=2 \\\\ &amp; \Rightarrow 2 a^2-8 a+6=0 \Rightarrow a^2-4 a+3=0 \\\\ &amp; \therefore r_1+r_2=4 \text { and } r_1 r_2=3 \\\\ &amp; \therefore r_1^2+r_2^2-r_1 r_2=\left(r_1+r_2\right)^2-3 r_1 r_2 \\\\ &amp; =16-9=7 \end{aligned} $$
integer
jee-main-2023-online-12th-april-morning-shift
1lgvq76au
maths
circle
intercepts-of-a-circle
<p>Let A be the point $$(1,2)$$ and B be any point on the curve $$x^{2}+y^{2}=16$$. If the centre of the locus of the point P, which divides the line segment $$\mathrm{AB}$$ in the ratio $$3: 2$$ is the point C$$(\alpha, \beta)$$, then the length of the line segment $$\mathrm{AC}$$ is :</p>
[{"identifier": "A", "content": "$$\\frac{3 \\sqrt{5}}{5}$$"}, {"identifier": "B", "content": "$$\\frac{6 \\sqrt{5}}{5}$$"}, {"identifier": "C", "content": "$$\\frac{2 \\sqrt{5}}{5}$$"}, {"identifier": "D", "content": "$$\\frac{4 \\sqrt{5}}{5}$$"}]
["A"]
null
We have, equation of circle is $x^2+y^2=16$ <br><br>Let any point on the circle $x^2+y^2=4^2$ is $B(4 \cos \theta, 4 \sin \theta)$ and $A(1,2)$ <br><br>Let $\mathrm{P}$ be $(h, k)$ which divides $\mathrm{AB}$ in $3: 2$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lnk5g4ko/0e3a3eb2-16a6-4d51-952c-ed316089a0d7/92c95a80-6753-11ee-a917-d528e09e481b/file-6y3zli1lnk5g4kp.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lnk5g4ko/0e3a3eb2-16a6-4d51-952c-ed316089a0d7/92c95a80-6753-11ee-a917-d528e09e481b/file-6y3zli1lnk5g4kp.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh; vertical-align: baseline;" alt="JEE Main 2023 (Online) 10th April Evening Shift Mathematics - Circle Question 27 English Explanation"> <br><br>So <br><br>$$ h=\frac{12 \cos \theta+2}{3+2} \text { and } k=\frac{12 \sin \theta+2 \times 2}{3+2} $$ <br><br>$\Rightarrow \cos \theta=\frac{5 h-2}{12}$ and $\sin \theta=\frac{5 k-4}{12}$ <br><br>As, $\cos ^2 \theta+\sin ^2 \theta=1,\left(\frac{5 h-2}{12}\right)^2+\left(\frac{5 k-4}{12}\right)^2=1$ <br><br>$$ \Rightarrow\left(h-\frac{2}{5}\right)^2+\left(k-\frac{4}{5}\right)^2=\frac{12^2}{5^2} $$ <br><br>$\therefore$ Locus of point $P$ is $\left(x-\frac{2}{5}\right)^2+\left(y-\frac{4}{5}\right)^2=\frac{12^2}{5^2}$ <br><br>which is equation of circle with centre $\left(\frac{2}{5}, \frac{4}{5}\right)$ <br><br>Hence, $A C=\sqrt{\left(1-\frac{2}{5}\right)^2+\left(2-\frac{4}{5}\right)^2}=\frac{\sqrt{45}}{5}=\frac{3 \sqrt{5}}{5}$
mcq
jee-main-2023-online-10th-april-evening-shift
1lh23y6we
maths
circle
intercepts-of-a-circle
<p> A circle passing through the point $$P(\alpha, \beta)$$ in the first quadrant touches the two coordinate axes at the points $$A$$ and $$B$$. The point $$P$$ is above the line $$A B$$. The point $$Q$$ on the line segment $$A B$$ is the foot of perpendicular from $$P$$ on $$A B$$. If $$P Q$$ is equal to 11 units, then the value of $$\alpha \beta$$ is ___________.</p>
[]
null
121
Let equation of circle is $(x-a)^2+(y-a)^2=a^2$ <br><br>Since, (i) passes through $P(\alpha, \beta)$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lo4iz7t1/8abb90cb-5a21-43f7-858e-e4e5d897d907/29530750-7288-11ee-955e-53a531d428f9/file-6y3zli1lo4iz7t2.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lo4iz7t1/8abb90cb-5a21-43f7-858e-e4e5d897d907/29530750-7288-11ee-955e-53a531d428f9/file-6y3zli1lo4iz7t2.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh; vertical-align: baseline;" alt="JEE Main 2023 (Online) 6th April Morning Shift Mathematics - Circle Question 22 English Explanation"> <br><br>$\therefore (\alpha-a)^2+(\beta-a)^2=a^2$ <br><br>$$ \begin{array}{lr} &amp;\Rightarrow \alpha^2+\beta^2-2 \alpha a-2 \beta a+a^2=0 .........(i) \end{array} $$ <br><br>Equation of $A B=\frac{x}{a}+\frac{y}{a}=1$ <br><br>$$\Rightarrow x+y=a$$ .........(ii) <br><br>Let $Q(p, q)$ be the foot of the perpendicular from $P$ to line (iii) <br><br>$$ \begin{aligned} &amp; \therefore \frac{p-\alpha}{1}=\frac{q-\beta}{1}=\frac{-(\alpha+\beta-\alpha)}{(1)^2+(1)^2} \\\\ &amp; \Rightarrow \frac{p-\alpha}{1}=\frac{q-\beta}{1}=\frac{-(\alpha+\beta-a)}{2} \\\\ &amp; \Rightarrow p-\alpha=\frac{-(\alpha+\beta-a)}{2} \\\\ &amp; \text { and } q-\beta=\frac{-(\alpha+\beta-a)}{2} \end{aligned} $$ <br><br>Now, <br><br>$$ \begin{aligned} &amp; P Q^2 =(p-\alpha)^2+(q-\beta)^2 \\\\ &amp; =\frac{1}{4}(\alpha+\beta-a)^2+\frac{1}{4}(\alpha+\beta-a)^2 \end{aligned} $$ <br><br>$$ \Rightarrow (11)^2=\frac{1}{2}(\alpha+\beta-\alpha)^2 $$ <br><br>$$ \begin{array}{ll} &amp;\Rightarrow \alpha^2+\beta^2+a^2+2 \alpha \beta-2 \beta a-2 \alpha a=242 \\\\ &amp;\Rightarrow 2 \alpha \beta=242 \text { [Using Eq. (ii)] }\\\\ &amp;\Rightarrow \alpha \beta=121 \end{array} $$
integer
jee-main-2023-online-6th-april-morning-shift
jaoe38c1lsd4sm2c
maths
circle
intercepts-of-a-circle
<p>Let a variable line passing through the centre of the circle $$x^2+y^2-16 x-4 y=0$$, meet the positive co-ordinate axes at the points $$A$$ and $$B$$. Then the minimum value of $$O A+O B$$, where $$O$$ is the origin, is equal to</p>
[{"identifier": "A", "content": "12"}, {"identifier": "B", "content": "20"}, {"identifier": "C", "content": "24"}, {"identifier": "D", "content": "18"}]
["D"]
null
<p>$$\begin{aligned} & (y-2)=m(x-8) \\ & \Rightarrow x \text {-intercept } \\ & \Rightarrow\left(\frac{-2}{m}+8\right) \\ & \Rightarrow y \text {-intercept } \\ & \Rightarrow(-8 \mathrm{~m}+2) \\ & \Rightarrow \mathrm{OA}+\mathrm{OB}=\frac{-2}{\mathrm{~m}}+8-8 \mathrm{~m}+2 \\ & \mathrm{f}^{\prime}(\mathrm{m})=\frac{2}{\mathrm{~m}^2}-8=0 \\ & \Rightarrow \mathrm{m}^2=\frac{1}{4} \\ & \Rightarrow \mathrm{m}=\frac{-1}{2} \\ & \Rightarrow \mathrm{f}\left(\frac{-1}{2}\right)=18 \\ & \Rightarrow \text { Minimum }=18 \end{aligned}$$</p>
mcq
jee-main-2024-online-31st-january-evening-shift
TKL3WEcvBv7bL9pT
maths
circle
number-of-common-tangents-and-position-of-two-circle
If the two circles $${(x - 1)^2}\, + \,{(y - 3)^2} = \,{r^2}$$ and $$\,{x^2}\, + \,{y^2} - \,8x\, + \,2y\, + \,\,8\,\, = 0$$ intersect in two distinct point, then :
[{"identifier": "A", "content": "$$r &gt; 2$$"}, {"identifier": "B", "content": "$$2 &lt; r &lt; 8$$"}, {"identifier": "C", "content": "$$r &lt; 2$$"}, {"identifier": "D", "content": "$$r = 2.$$"}]
["B"]
null
$$\left| {{r_1} - {r_2}} \right| &lt; {C_1}{C_2}$$ for intersection <br><br>$$ \Rightarrow r - 3 &lt; 5 \Rightarrow r &lt; 8\,\,\,\,\,\,\,\,\,...\left( 1 \right)$$ <br><br>and $${r_1} + {r_2} &gt; {C_1}{C_2},\,$$ <br><br>$$r + 3 &gt; 5 \Rightarrow r &gt; 2\,\,\,...\left( 2 \right)$$ <br><br>From $$\left( 1 \right)$$ and $$\left( 2 \right),$$ $$2 &lt; r &lt; 8.$$
mcq
aieee-2003
pRzLsQDdQrCvWwSH
maths
circle
number-of-common-tangents-and-position-of-two-circle
The two circles x<sup>2</sup> + y<sup>2</sup> = ax, and x<sup>2</sup> + y<sup>2</sup> = c<sup>2</sup> (c &gt; 0) touch each other if :
[{"identifier": "A", "content": "| a | = c"}, {"identifier": "B", "content": "a = 2c"}, {"identifier": "C", "content": "| a | = 2c"}, {"identifier": "D", "content": "2 | a | = c"}]
["A"]
null
As center of one circle is $$\left( {0,0} \right)$$ and other circle passes through $$(0,0),$$ therefore <br><br>Also $${C_1}\left( {{a \over 2},0} \right){C_2}\left( {0,0} \right)$$ <br><br>$${r_1} = {a \over 2}{r_2} = C$$ <br><br>$${C_1}{C_2} = {r_1} - {r_2} = {a \over 2}$$ <br><br>$$ \Rightarrow C - {a \over 2} = {a \over 2}$$ <br><br>$$ \Rightarrow C = a$$ <br><br>If the two circles touch each other, then they must touch each other internally.
mcq
aieee-2011
Dym616D1FHZIYakE
maths
circle
number-of-common-tangents-and-position-of-two-circle
Let $$C$$ be the circle with centre at $$(1, 1)$$ and radius $$=$$ $$1$$. If $$T$$ is the circle centred at $$(0, y)$$, passing through origin and touching the circle $$C$$ externally, then the radius of $$T$$ is equal to :
[{"identifier": "A", "content": "$${1 \\over 2}$$ "}, {"identifier": "B", "content": "$${1 \\over 4}$$"}, {"identifier": "C", "content": "$${{\\sqrt 3 } \\over {\\sqrt 2 }}$$ "}, {"identifier": "D", "content": "$${{\\sqrt 3 } \\over 2}$$ "}]
["B"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263502/exam_images/az5z8h8zms4j96efvsxd.webp" loading="lazy" alt="JEE Main 2014 (Offline) Mathematics - Circle Question 137 English Explanation"> <br><br>Equation of circle $$C \equiv {\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 1$$ <br><br>Radius of $$T = \left| y \right|$$ <br><br>$$T$$ touches $$C$$ externally <br><br>therefore, <br><br>Distance between the centers $$=$$ sum of their radii <br><br>$$ \Rightarrow \sqrt {{{\left( {0 - 1} \right)}^2} + {{\left( {y - 1} \right)}^2}} = 1 + \left| y \right|$$ <br><br>$$ \Rightarrow {\left( {0 - 1} \right)^2} + {\left( {y - 1} \right)^2} = {\left( {1 + \left| y \right|} \right)^2}$$ <br><br>$$ \Rightarrow 1 + {y^2} + 1 - 2y = 1 + {y^2} + 2\left| y \right|$$ <br><br>$$2\left| y \right| = 1 - 2y$$ <br><br>If $$y&gt;0$$ then $$2y=1-2y$$ $$ \Rightarrow y = {1 \over 4}$$ <br><br>$$y&lt;0$$ then $$-2y=1-2y$$ $$ \Rightarrow 0 = 1$$ (not possible) <br><br>$$\therefore$$ $$y = {1 \over 4}$$
mcq
jee-main-2014-offline
0uEqnZaNFKvdeUZb
maths
circle
number-of-common-tangents-and-position-of-two-circle
The number of common tangents to the circles $${x^2} + {y^2} - 4x - 6x - 12 = 0$$ and $${x^2} + {y^2} + 6x + 18y + 26 = 0,$$ is :
[{"identifier": "A", "content": "$$3$$"}, {"identifier": "B", "content": "$$4$$"}, {"identifier": "C", "content": "$$1$$"}, {"identifier": "D", "content": "$$2$$"}]
["A"]
null
$${x^2} + {y^2} - 4x - 6y - 12 = 0\,\,\,\,\,\,\,\,\,\,\,\,...\left( i \right)$$ <br><br>Center, $${c_1} = \left( {2,\,3} \right)$$ and Radius, $${r_1} = 5$$ units <br><br>$${x^2} + {y^2} + 6x + 18y + 26 = 0\,\,\,\,\,\,\,\,\,\,\,...\left( {ii} \right)$$ <br><br>Center, $${c_2} = \left( { - 3, - 9} \right)$$ and Radius, $${r_2} = 8$$ units <br><br>$${C_1}{C_2} = \sqrt {{{\left( {2 + 3} \right)}^2} + {{\left( {3 + 9} \right)}^2}} = 13\,\,$$ units <br><br>$${r_1} + {r_2} = 5 + 8 = 13$$ <br><br>$$\therefore$$ $${C_1}{C_2} = {r_1} + {r_2}$$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l91nnzlt/1c575b95-e553-4210-a91e-c044bf073271/e61a5710-47fc-11ed-8757-0f869593f41f/file-1l91nnzlu.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l91nnzlt/1c575b95-e553-4210-a91e-c044bf073271/e61a5710-47fc-11ed-8757-0f869593f41f/file-1l91nnzlu.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2015 (Offline) Mathematics - Circle Question 135 English Explanation"> <br>Therefore there are three common tangents.
mcq
jee-main-2015-offline
kF4KgNZxNSIv6qYCVW3rsa0w2w9jwxu8ooq
maths
circle
number-of-common-tangents-and-position-of-two-circle
If the circles x<sup>2</sup> + y<sup>2</sup> + 5Kx + 2y + K = 0 and 2(x<sup>2</sup> + y<sup>2</sup>) + 2Kx + 3y –1 = 0, (K$$ \in $$R), intersect at the points P and Q, then the line 4x + 5y – K = 0 passes through P and Q, for :
[{"identifier": "A", "content": "exactly two values of K"}, {"identifier": "B", "content": "no value of K"}, {"identifier": "C", "content": "exactly one value of K"}, {"identifier": "D", "content": "infinitely many values of K"}]
["B"]
null
S<sub>1</sub> $$ \equiv $$ x<sup>2</sup> + y<sup>2</sup> + 5Kx + 2y + K = 0<br><br> $${S_2} \equiv {x^2} + {y^2} + Kx + {3 \over 2}y - {1 \over 2} = 0$$<br><br> Equation of common chord is<br><br> S<sub>1</sub> – S<sub>2</sub> = 0<br><br> $$ \Rightarrow 4Kx + {y \over 2} + K + {1 \over 2} = 0$$ ....(1)<br><br> 4x + 5y – K = 0 …(2) (given)<br><br> On comparing (1) and (2)<br><br> $${{4K} \over 4} = {1 \over {10}} = {{2K + 1} \over { - 2K}}$$<br><br> $$ \Rightarrow K = {1 \over {10}}$$ and $$ - 2K = 20K + 10$$<br><br> $$ \Rightarrow $$ 22K = –10<br><br> $$\therefore K = {{ - 5} \over {11}}$$<br><br> So No value of <b>K</b> exists.
mcq
jee-main-2019-online-10th-april-morning-slot
p8FE11vq7emHA0SgNw18hoxe66ijvwub61o
maths
circle
number-of-common-tangents-and-position-of-two-circle
The common tangent to the circles x <sup>2</sup> + y<sup>2</sup> = 4 and x<sup>2</sup> + y<sup>2</sup> + 6x + 8y – 24 = 0 also passes through the point :
[{"identifier": "A", "content": "(6, \u20132)"}, {"identifier": "B", "content": "(4, \u20132)"}, {"identifier": "C", "content": "(\u20134, 6)"}, {"identifier": "D", "content": "(\u20136, 4)"}]
["A"]
null
For this circle x <sup>2</sup> + y<sup>2</sup> = 4 <br><br>Center C<sub>1</sub> = (0, 0) and radius r<sub>1</sub> = 2 <br><br>For this circle x<sup>2</sup> + y<sup>2</sup> + 6x + 8y – 24 = 0 <br><br>Center C<sub>2</sub> = (-3, -4) and radius r<sub>2</sub> = $$\sqrt {9 + 16 + 24} $$ = 7 <br><br>So distance between center, <br><br>C<sub>1</sub>C<sub>2</sub> = 5 <br><br>r<sub>1</sub> + r<sub>2</sub> = 7 <br><br>|r<sub>1</sub> - r<sub>2</sub>| = 5 <br><br>As C<sub>1</sub>C<sub>2</sub> = |r<sub>1</sub> - r<sub>2</sub>| <br><br>$$ \therefore $$ Circles touches internally. <picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263600/exam_images/nze8tx1zaegnzuv6v50m.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266752/exam_images/eqogrowu23mfgo9kij83.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264280/exam_images/rjykkmfni3s0h2hccm3q.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 9th April Evening Slot Mathematics - Circle Question 108 English Explanation"></picture> <br><br>Here Equation of common tangent is same as common chord. <br><br>$$ \therefore $$ S<sub>1</sub> - S<sub>2</sub> = 0 <br><br>$$ \Rightarrow $$ (x <sup>2</sup> + y<sup>2</sup> - 4) - (x<sup>2</sup> + y<sup>2</sup> + 6x + 8y - 24) = 0 <br><br>$$ \Rightarrow $$ - 6x - 8y + 20 = 0 <br><br>$$ \Rightarrow $$ 3x + 4y - 10 = 0 <br><br>By checking all the options you can see that, <br><br>(6, –2) point satisfy the equation 3x + 4y - 10 = 0.
mcq
jee-main-2019-online-9th-april-evening-slot
RQXU1QZmaI8cAm09q9pZQ
maths
circle
number-of-common-tangents-and-position-of-two-circle
Let C<sub>1</sub> and C<sub>2</sub> be the centres of the circles x<sup>2</sup> + y<sup>2</sup> – 2x – 2y – 2 = 0 and x<sup>2</sup> + y<sup>2</sup> – 6x – 6y + 14 = 0 respectively. If P and Q are the points of intersection of these circles, then the area (in sq. units) of the quadrilateral PC<sub>1</sub>QC<sub>2</sub> is :
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "6"}, {"identifier": "C", "content": "9"}, {"identifier": "D", "content": "8"}]
["A"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263648/exam_images/kjqkelq5u313u7up3q3r.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 12th January Morning Slot Mathematics - Circle Question 113 English Explanation"> <br>Area = 2 $$ \times $$ $${1 \over 2}$$.4 = 2
mcq
jee-main-2019-online-12th-january-morning-slot
spzMVkSBmK5b0Xg5TlTdc
maths
circle
number-of-common-tangents-and-position-of-two-circle
If a variable line, 3x + 4y – $$\lambda $$ = 0 is such that the two circles x<sup>2</sup> + y<sup>2</sup> – 2x – 2y + 1 = 0 and x<sup>2</sup> + y<sup>2</sup> – 18x – 2y + 78 = 0 are on its opposite sides, then the set of all values of $$\lambda $$ is the interval :
[{"identifier": "A", "content": "(23, 31)"}, {"identifier": "B", "content": "(2, 17)"}, {"identifier": "C", "content": "[13, 23] "}, {"identifier": "D", "content": "[12, 21] "}]
["D"]
null
Centre of circles are opposite side of line <br><br>(3 + 4 $$-$$ $$\lambda $$) (27 + 4 $$-$$ $$\lambda $$) &lt; 0 <br><br>($$\lambda $$ $$-$$ 7) ($$\lambda $$ $$-$$ 31) &lt; 0 <br><br>$$\lambda $$ $$ \in $$ (7, 31) <br><br>distance from S<sub>1</sub> <br><br>$$\left| {{{3 + 4 - \lambda } \over 5}} \right| \ge 1 \Rightarrow \lambda \in ( - \infty ,2] \cup [(12,\infty ]$$ <br><br>distance from S<sub>2</sub> <br><br>$$\left| {{{27 + 4 - \lambda } \over 5}} \right| \ge 2 \Rightarrow \lambda \in ( - \infty ,21] \cup [41,\infty )$$ <br><br>so&nbsp;&nbsp;$$\lambda \in \left[ {12,21} \right]$$
mcq
jee-main-2019-online-12th-january-morning-slot
zbBZfrh5YlxIoiF5Ce8if
maths
circle
number-of-common-tangents-and-position-of-two-circle
Two circles with equal radii are intersecting at the points (0, 1) and (0, –1). The tangent at the point (0, 1) to one of the circles passes through the centre of the other circle. Then the distance between the centres of these circles is :
[{"identifier": "A", "content": "$$2\\sqrt 2 $$"}, {"identifier": "B", "content": "$$\\sqrt 2 $$"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "1"}]
["C"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263285/exam_images/yhmndiwp2ujk1aofixgb.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 11th January Morning Slot Mathematics - Circle Question 115 English Explanation"> <br><br>In $$\Delta $$APO <br><br>$${\left( {{{\sqrt 2 r} \over 2}} \right)^2} + {1^2} = {r^2}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$r = \sqrt 2 $$ <br><br>So distance between centres $$ = \sqrt 2 r = 2$$
mcq
jee-main-2019-online-11th-january-morning-slot
BRTMkdqUdllpf8r6uf8jG
maths
circle
number-of-common-tangents-and-position-of-two-circle
If the circles <br/><br/>x<sup>2</sup> + y<sup>2</sup> $$-$$ 16x $$-$$ 20y + 164 = r<sup>2</sup>Β Β  <br/><br/>andΒ Β (x $$-$$ 4)<sup>2</sup> + (y $$-$$ 7)<sup>2</sup> = 36 <br/><br/>intersect at two distinct points, then :
[{"identifier": "A", "content": "r &gt; 11"}, {"identifier": "B", "content": "0 &lt; r &lt; 1"}, {"identifier": "C", "content": "r = 11"}, {"identifier": "D", "content": "1 &lt; r &lt; 11"}]
["D"]
null
Circles are x<sup>2</sup> + y<sup>2</sup> $$-$$ 16x $$-$$ 20y + 164 = r<sup>2</sup> $$ \Rightarrow $$&nbsp;c<sub>1</sub> (8, 10) <br><br>and (x $$-$$ 4)<sup>2</sup> + (y $$-$$ 7)<sup>2</sup> = 36 <br><br>they intersect at two distinct points <br><br>$$\left| {{r_1} - {r_2}} \right| &lt; {c_1}{c_2} &lt; {r_1} + {r_2}\left\{ {{c_1}{c_2} = \sqrt {16 + 9} = 5} \right\}$$ <br><br>Now &nbsp;$$\left| {r - 6} \right| &lt; 5 &lt; r + 6$$ <br><br>$$\left| {r - 6} \right| &lt; 5$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$ - 5 &lt; r - 6 &lt; 5$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$1 &lt; r &lt; 11\,\,\,\,\,\,\,\,\,...(i)$$ <br><br>$$5 &lt; r + 6$$ <br><br>$$ - 1 &lt; r\,\,\,\,\,\,\,\,\,\,\,\,\,...(ii)$$ <br><br>from (i) and (ii) <br><br>r $$ \in $$ (1, 11)
mcq
jee-main-2019-online-9th-january-evening-slot
9GoPmJBIeKYfTPS79ujgy2xukewts732
maths
circle
number-of-common-tangents-and-position-of-two-circle
The number of integral values of k for which the line, 3x + 4y = k intersects the circle, <br/>x<sup>2</sup> + y<sup>2</sup> – 2x – 4y + 4 = 0 at two distinct points is ______.
[]
null
9
Circle x<sup>2</sup> + y<sup>2</sup> – 2x – 4y + 4 = 0 <br><br>$$ \Rightarrow $$ (x – 1)<sup>2</sup> + (y – 2)<sup>2</sup> = 1 <br><br>Centre: (1, 2), radius = 1 <br><br>Line 3x + 4y – k = 0 intersects the circle at two distinct points. <br><br>$$ \Rightarrow $$ distance of centre from the line &lt; radius <br><br>$$ \Rightarrow $$ $$\left| {{{3 \times 1 + 4 \times 2 - k} \over {\sqrt {{3^2} + {4^2}} }}} \right| &lt; 1$$ <br><br>$$ \Rightarrow $$ |11 - k| &lt; 5 <br><br>$$ \Rightarrow $$ 6 &lt; k &lt; 5 <br><br>$$ \Rightarrow $$ k $$ \in $$ {7, 8, 9, ……15} since k $$ \in $$ I <br><br>$$ \therefore $$ Total 9 integral value of k.
integer
jee-main-2020-online-2nd-september-morning-slot
ppjkwHdAOgYLtIrc8d1kmjb64v2
maths
circle
number-of-common-tangents-and-position-of-two-circle
Choose the incorrect statement about the two circles whose equations are given below :<br/><br/>x<sup>2</sup> + y<sup>2</sup> $$-$$ 10x $$-$$ 10y + 41 = 0 and <br/><br/>x<sup>2</sup> + y<sup>2</sup> $$-$$ 16x $$-$$ 10y + 80 = 0
[{"identifier": "A", "content": "Distance between two centres is the average of radii of both the circles."}, {"identifier": "B", "content": "Both circles pass through the centre of each other."}, {"identifier": "C", "content": "Circles have two intersection points."}, {"identifier": "D", "content": "Both circle's centers lie inside region of one another."}]
["D"]
null
S<sub>1</sub> $$ \equiv $$ x<sup>2</sup> + y<sup>2</sup> $$-$$ 10x $$-$$ 10y + 41 = 0<br><br>Centre C<sub>1</sub> $$ \equiv $$ (5, 5), radius r<sub>1</sub> = 3<br><br>S<sub>2</sub> $$ \equiv $$ x<sup>2</sup> + y<sup>2</sup> $$-$$ 16x $$-$$ 10y + 80 = 0<br><br>Centre C<sub>2</sub> $$ \equiv $$ (8, 5), radius r<sub>2</sub> = 3<br><br>Distance between centres = 3<br><br>Hence both circles pass through the centre of each other, have two intersection point and distance between two centres in average of radii of both the circles.<br/><br/> Hence, option (d) is the incorrect statement.
mcq
jee-main-2021-online-17th-march-morning-shift
jj6PYUtpBmn4DW8BTT1kmjco2b6
maths
circle
number-of-common-tangents-and-position-of-two-circle
The minimum distance between any two points P<sub>1</sub> and P<sub>2</sub> while considering point P<sub>1</sub> on one circle and point P<sub>2</sub> on the other circle for the given circles' equations<br/><br/>x<sup>2</sup> + y<sup>2</sup> $$-$$ 10x $$-$$ 10y + 41 = 0<br/><br/>x<sup>2</sup> + y<sup>2</sup> $$-$$ 24x $$-$$ 10y + 160 = 0 is ___________.
[]
null
1
$${S_1}:{(x - 5)^2} + {(y - 5)^2} = 9$$ <br><br>Centre (5, 5), r<sub>1</sub> = 3<br><br>$${S_2}:{(x - 12)^2} + {(y - 5)^2} = 9$$ <br><br>Centre (12, 5), r<sub>2</sub> = 3<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264982/exam_images/rpihjtwuabjqwdlwqq9s.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 17th March Morning Shift Mathematics - Circle Question 84 English Explanation"><br><br>So (P<sub>1</sub>P<sub>2</sub>)<sub>min</sub> = 1
integer
jee-main-2021-online-17th-march-morning-shift
vSsFERngWYuSBpA34g1kmli5r94
maths
circle
number-of-common-tangents-and-position-of-two-circle
Choose the correct statement about two circles whose equations are given below :<br/><br/>x<sup>2</sup> + y<sup>2</sup> $$-$$ 10x $$-$$ 10y + 41 = 0<br/><br/>x<sup>2</sup> + y<sup>2</sup> $$-$$ 22x $$-$$ 10y + 137 = 0
[{"identifier": "A", "content": "circles have same centre"}, {"identifier": "B", "content": "circles have no meeting point"}, {"identifier": "C", "content": "circles have only one meeting point"}, {"identifier": "D", "content": "circles have two meeting points"}]
["C"]
null
Let $${S_1}:{x^2} + {y^2} - 10x - 10y + 41 = 0$$<br><br>$$ \Rightarrow {(x - 5)^2} + {(y - 5)^2} = 9$$<br><br>Centre $$({C_1}) = (5,5)$$<br><br>Radius r<sub>1</sub> = 3<br><br>$${S_2}:{x^2} + {y^2} - 22x - 10y + 137 = 0$$<br><br>$$ \Rightarrow {(x - 11)^2} + {(y - 5)^2} = 9$$<br><br>Centre $$({C_2}) = (11,5)$$<br><br>Radius r<sub>2</sub> = 3<br><br>distance $$({C_1}{C_2}) = \sqrt {{{(5 - 11)}^2} + {{(5 - 5)}^2}} $$<br><br>distance $$({C_1}{C_2}) = 6$$<br><br>$$ \because $$ $${r_1} + {r_2} = 3 + 3 = 6$$<br><br>$$ \therefore $$ circles touch externally<br><br>Hence, circle have only one meeting point.
mcq
jee-main-2021-online-18th-march-morning-shift
1l6f3r23l
maths
circle
number-of-common-tangents-and-position-of-two-circle
<p>If the circles $${x^2} + {y^2} + 6x + 8y + 16 = 0$$ and $${x^2} + {y^2} + 2\left( {3 - \sqrt 3 } \right)x + 2\left( {4 - \sqrt 6 } \right)y = k + 6\sqrt 3 + 8\sqrt 6 $$, $$k &gt; 0$$, touch internally at the point $$P(\alpha ,\beta )$$, then $${\left( {\alpha + \sqrt 3 } \right)^2} + {\left( {\beta + \sqrt 6 } \right)^2}$$ is equal to ________________.</p>
[]
null
25
<p>The circle $${x^2} + {y^2} + 6x + 8y + 16 = 0$$ has centre $$( - 3, - 4)$$ and radius 3 units.</p> <p>The circle $${x^2} + {y^2} + 2\left( {3 - \sqrt 3 } \right)x + 2\left( {4 - \sqrt 6 } \right)y = k + 6\sqrt 3 + 8\sqrt 6 ,\,k > 0$$ has centre $$\left( {\sqrt 3 - 3,\,\sqrt 6 - 4} \right)$$ and radius $$\sqrt {k + 34} $$</p> <p>$$\because$$ These two circles touch internally hence</p> <p>$$\sqrt {3 + 6} = \left| {\sqrt {k + 34} - 3} \right|$$</p> <p>Here, $$k = 2$$ is only possible ($$\because$$ $$k > 0$$)</p> <p>Equation of common tangent to two circles is $$2\sqrt 3 x + 2\sqrt 6 y + 16 + 6\sqrt 3 + 8\sqrt 6 + k = 0$$</p> <p>$$\because$$ $$k = 2$$ then equation is</p> <p>$$x + \sqrt 2 y + 3 + 4\sqrt 2 + 3\sqrt 3 = 0$$ ...... (i)</p> <p>$$\because$$ ($$\alpha$$, $$\beta$$) are foot of perpendicular from $$( - 3, - 4)$$</p> <p>To line (i) then</p> <p>$${{\alpha + 3} \over 1} = {{\beta + 4} \over {\sqrt 2 }} = {{ - \left( { - 3 - 4\sqrt 2 + 3 + 4\sqrt 2 + 3\sqrt 3 } \right)} \over {1 + 2}}$$</p> <p>$$\therefore$$ $$\alpha + 3 = {{\beta + 4} \over {\sqrt 2 }} = - \sqrt 3 $$</p> <p>$$ \Rightarrow {\left( {\alpha + \sqrt 3 } \right)^2} = 9$$ and $${\left( {\beta + \sqrt 6 } \right)^2} = 16$$</p> <p>$$\therefore$$ $${\left( {\alpha + \sqrt 3 } \right)^2} + {\left( {\beta + \sqrt 6 } \right)^2} = 25$$</p>
integer
jee-main-2022-online-25th-july-evening-shift
lgnx2ht3
maths
circle
number-of-common-tangents-and-position-of-two-circle
The number of common tangents, to the circles <br/><br/>$x^{2}+y^{2}-18 x-15 y+131=0$ <br/><br/>and $x^{2}+y^{2}-6 x-6 y-7=0$, is :
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "2"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "1"}]
["C"]
null
<p>We are given two circles:</p> <p>(1) $x^2+y^2-18 x-15 y+131=0$</p> <p>(2) $x^2+y^2-6 x-6 y-7=0$</p> <p>First, let&#39;s find the centers and radii of the circles.</p> <p>For circle (1):</p> <p>Completing the square for the equation:</p> <p>$(x^2-18x+{81})+(y^2-15y+\frac{225}{4})=-131+{81}+\frac{225}{4}$</p> <p>$(x-9)^2+(y-\frac{15}{2})^2=\frac{25}{4}$</p> <p>Center 1: $C_1(9, \frac{15}{2})$</p> <p>Radius 1: $r_1 = \sqrt{\frac{25}{4}}=\frac{5}{2}$</p> <p>For circle (2):</p> <p>Completing the square for the equation:</p> <p>$(x^2-6x+9)+(y^2-6y+9)=7+9+9$</p> <p>$(x-3)^2+(y-3)^2=25$</p> <p>Center 2: $C_2(3, 3)$</p> <p>Radius 2: $r_2 = 5$</p> <p>Now, let&#39;s find the distance between the centers :</p> <p>$d = \sqrt{(9-3)^2 + (\frac{15}{2}-3)^2} = \sqrt{6^2 + \frac{9}{2}^2} = \sqrt{36 + \frac{81}{4}} = \frac{15}{2}$</p> <p>Next, let&#39;s analyze the relative positions of the circles using the distance between centers and the sum and difference of the radii :</p> <ol> <li>If $d &gt; r_1 + r_2$, the circles are separate, and there are 4 common tangents.</li> <li>If $d = r_1 + r_2$, the circles are externally tangent, and there are 3 common tangents.</li> <li>If $0 &lt; d &lt; |r_1 - r_2|$, one circle is inside the other, and there are no common tangents.</li> <li>If $d = |r_1 - r_2|$, the circles are internally tangent, and there is 1 common tangent.</li> <li>If $d &lt; |r_1 - r_2|$, one circle is completely inside the other, and there are no common tangents.</li> </ol> <p>In this case :</p> <p>$d = \frac{15}{2}$</p> <p>$r_1 = \frac{5}{2}$</p> <p>$r_2 = 5$</p> <p>Now, let&#39;s check the conditions :</p> <p>$r_1 + r_2 = \frac{5}{2} + 5$ = $\frac{15}{2}$ </p> <p>Since $d = \frac{15}{2} = r_1 + r_2$, the circles touch each other externally, and there are 3 common tangents.</p>
mcq
jee-main-2023-online-15th-april-morning-shift
1lsg8yeao
maths
circle
number-of-common-tangents-and-position-of-two-circle
<p>If the circles $$(x+1)^2+(y+2)^2=r^2$$ and $$x^2+y^2-4 x-4 y+4=0$$ intersect at exactly two distinct points, then</p>
[{"identifier": "A", "content": "$$\\frac{1}{2}<\\mathrm{r}<7$$\n"}, {"identifier": "B", "content": "$$3<\\mathrm{r}<7$$\n"}, {"identifier": "C", "content": "$$5<\\mathrm{r}<9$$\n"}, {"identifier": "D", "content": "$$0<\\mathrm{r}<7$$"}]
["B"]
null
<p>If two circles intersect at two distinct points</p> <p>$$\begin{aligned} & \Rightarrow\left|\mathrm{r}_1-\mathrm{r}_2\right|<\mathrm{C}_1 \mathrm{C}_2<\mathrm{r}_1+\mathrm{r}_2 \\ & |\mathrm{r}-2|<\sqrt{9+16}<\mathrm{r}+2 \\ & |\mathrm{r}-2|<5 \text { and } \mathrm{r}+2>5 \\ & -5<\mathrm{r}-2<5 \quad \mathrm{r}>3 ~\text{......... 2} \end{aligned}$$</p> <p>$$-3<\mathrm{r}<7\quad$$ .... (1)</p> <p>From (1) and (2)</p> <p>$$3<\text { r }<7$$</p>
mcq
jee-main-2024-online-30th-january-morning-shift
luy9clii
maths
circle
number-of-common-tangents-and-position-of-two-circle
<p>Let the centre of a circle, passing through the points $$(0,0),(1,0)$$ and touching the circle $$x^2+y^2=9$$, be $$(h, k)$$. Then for all possible values of the coordinates of the centre $$(h, k), 4\left(h^2+k^2\right)$$ is equal to __________.</p>
[]
null
9
<p>Circle will touch internally</p> <p>$$\begin{aligned} & C_1 C_2=\left|r_1-r_2\right| \\ & =\sqrt{h^2+k^2}=3-\sqrt{h^2+k^2} \\ & \Rightarrow 2 \sqrt{h^2+k^2}=3 \\ & \Rightarrow h^2+k^2=\frac{9}{4} \\ & \therefore 4\left(h^2+k^2\right)=9 \end{aligned}$$</p>
integer
jee-main-2024-online-9th-april-morning-shift
lv5grw3t
maths
circle
number-of-common-tangents-and-position-of-two-circle
<p>Let the circles $$C_1:(x-\alpha)^2+(y-\beta)^2=r_1^2$$ and $$C_2:(x-8)^2+\left(y-\frac{15}{2}\right)^2=r_2^2$$ touch each other externally at the point $$(6,6)$$. If the point $$(6,6)$$ divides the line segment joining the centres of the circles $$C_1$$ and $$C_2$$ internally in the ratio $$2: 1$$, then $$(\alpha+\beta)+4\left(r_1^2+r_2^2\right)$$ equals</p>
[{"identifier": "A", "content": "130"}, {"identifier": "B", "content": "110"}, {"identifier": "C", "content": "145"}, {"identifier": "D", "content": "125"}]
["A"]
null
<p>$$\begin{aligned} &amp; C_1 \rightarrow(x-\alpha)^2+(y-\beta)^2=r_1^2 \\ &amp; C_2 \rightarrow(x-8)^2+\left(y-\frac{15}{2}\right)^2=r_2^2 \end{aligned}$$</p> <p>Point $$P$$ divide the line segment internally $$C_1 C_2$$ in the ratio 2 : 1</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lw8ocyvq/170f2048-377a-4fac-b220-54e6cf0f1120/13082c50-1332-11ef-9f8d-838c388c326d/file-1lw8ocyvr.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lw8ocyvq/170f2048-377a-4fac-b220-54e6cf0f1120/13082c50-1332-11ef-9f8d-838c388c326d/file-1lw8ocyvr.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 8th April Morning Shift Mathematics - Circle Question 6 English Explanation"></p> <p>$$\begin{aligned} &amp; \frac{\alpha \times 1+8 \times 2}{1+2}=6, \alpha=2 \\ &amp; \frac{\beta \times 1+\frac{15}{\alpha} \times 2}{1+2}=6, \beta=3 \\ &amp; r_1=\sqrt{(6-2)^2+(6-3)^2}=\sqrt{25}=5 \\ &amp; r_2=\sqrt{(8-6)^2+\left(\frac{15}{\alpha}-6\right)^2}=\frac{5}{2} \\ &amp; \alpha+\beta+4\left(r_1^2+r_2^2\right)=2+3+4\left(5^2+\left(\frac{5}{2}\right)^2\right) \\ &amp; =5+4\left(\frac{125}{4}\right) \\ &amp; =130 \\ \end{aligned}$$</p>
mcq
jee-main-2024-online-8th-april-morning-shift
k3MJZWxo319I8veN
maths
circle
orthogonality-of-two-circles
If a circle passes through the point (a, b) and cuts the circle $${x^2}\, + \,{y^2} = 4$$ orthogonally, then the locus of its centre is :
[{"identifier": "A", "content": "$$2ax\\, - 2by\\, - ({a^2}\\, + \\,{b^2} + 4) = 0$$ "}, {"identifier": "B", "content": "$$2ax\\, + 2by\\, - ({a^2}\\, + \\,{b^2} + 4) = 0$$ "}, {"identifier": "C", "content": "$$2ax\\, - 2by\\, + ({a^2}\\, + \\,{b^2} + 4) = 0$$ "}, {"identifier": "D", "content": "$$2ax\\, + 2by\\, + ({a^2}\\, + \\,{b^2} + 4) = 0$$ "}]
["B"]
null
Let the variable circle is <br><br>$${x^2} + {y^2} + 2gx + 2fy + c = 0\,\,\,\,\,\,\,\,...\left( 1 \right)$$ <br><br>It passes through $$(a,b)$$ <br><br>$$\therefore$$ $${a^2} + {b^2} + 2ga + 2fb + c = 0\,\,\,\,\,\,\,...\left( 2 \right)$$ <br><br>$$(1)$$ cuts $${x^2} + {y^2} = 4$$ orthogonally <br><br>$$\therefore$$ $$2\left( {g \times 0 + f \times 0} \right) = c - 4 \Rightarrow c = 4$$ <br><br>$$\therefore$$ from $$(2)$$ $$\,\,\,{a^2} + {b^2} + 2ga + 2fb + 4 = 0$$ <br><br>$$\therefore$$ Locus of center $$\left( { - g, - f} \right)$$ is <br><br>$${a^2} + {b^2} - 2ax - 2by + 4 = 0$$ <br><br>or $$2ax + 2by = {a^2} + {b^2} + 4$$
mcq
aieee-2004
4lEUAEKUXUmcORcA
maths
circle
orthogonality-of-two-circles
If a circle passes through the point (a, b) and cuts the circle $${x^2}\, + \,{y^2} = {p^2}$$ orthogonally, then the equation of the locus of its centre is :
[{"identifier": "A", "content": "$${x^2}\\, + \\,{y^2} - \\,3ax\\, - \\,4\\,by\\,\\, + \\,({a^2}\\, + \\,{b^2} - {p^2}) = 0$$ "}, {"identifier": "B", "content": "$$2ax\\, + \\,\\,2\\,by\\,\\, - \\,({a^2}\\, - \\,{b^2} + {p^2}) = 0$$ "}, {"identifier": "C", "content": "$${x^2}\\, + \\,{y^2} - \\,2ax\\, - \\,\\,3\\,by\\,\\, + \\,({a^2}\\, - \\,{b^2} - {p^2}) = 0$$ "}, {"identifier": "D", "content": "$$2ax\\, + \\,\\,2\\,by\\,\\, - \\,({a^2}\\, + \\,{b^2} + {p^2}) = 0$$ "}]
["D"]
null
Let the center be $$\left( {\alpha ,\beta } \right)$$ <br><br>As It cuts the circle $${x^2} + {y^2} = {p^2}$$ orthogonally <br><br>$$\therefore$$ Using $$2{g_1}{g_2} + 2{f_1}{f_2} = {c_1} + {c_2},\,\,$$ we get <br><br>$$2\left( { - \alpha } \right) \times 0 + 2\left( { - \beta } \right) \times 0$$ <br><br>$$ = {c_1} - {p^2} \Rightarrow {c_1} = {p^2}$$ <br><br>Let equation of circle is <br><br>$${x^2} + {y^2} - 2\alpha x - 2\beta y + {p^2} = 0$$ <br><br>It passes through <br><br>$$\left( {a,b} \right) \Rightarrow {a^2} + {b^2} - 2\alpha a - 2\beta b + {p^2} = 0$$ <br><br>$$\therefore$$ Locus of $$\left( {\alpha ,\beta } \right)$$ is <br><br>$$\therefore$$ $$2ax + 2by - \left( {{a^2} + {b^2} + {p^2}} \right) = 0.$$
mcq
aieee-2005
gIWxzoGle7kZLLADRm7k9k2k5kia3nk
maths
circle
orthogonality-of-two-circles
If the curves, x<sup>2</sup> – 6x + y<sup>2</sup> + 8 = 0 and <br/>x<sup>2</sup> – 8y + y<sup>2</sup> + 16 – k = 0, (k &gt; 0) touch each other at a point, then the largest value of k is ______.
[]
null
36
C<sub>1</sub> : x<sup>2</sup> + y<sup>2</sup> – 6x + + 8 = 0 <br><br>C<sub>1</sub>(3, 0) and r<sub>1</sub> = 1 <br><br>C<sub>2</sub> : x<sup>2</sup> + y<sup>2</sup> – 8y + 16 – k = 0 <br><br>C<sub>2</sub>(0, 4) and r<sub>2</sub> = $$\sqrt k $$ <br><br>Two circles touch each other <br><br>$$ \therefore $$ C<sub>1</sub>C<sub>2</sub> = | r<sub>1</sub> $$ \pm $$ r<sub>2</sub> | <br><br>$$ \Rightarrow $$ 5 = | 1 $$ \pm $$ $$\sqrt k $$ | <br><br>$$ \therefore $$ 1 + $$\sqrt k $$ = 5 or $$\sqrt k $$ - 1 = 5 <br><br>$$ \Rightarrow $$ k = 16 or k = 36 <br><br>So largest value of k = 36.
integer
jee-main-2020-online-9th-january-evening-slot
1l6p3thnw
maths
circle
orthogonality-of-two-circles
<p>Let the mirror image of a circle $$c_{1}: x^{2}+y^{2}-2 x-6 y+\alpha=0$$ in line $$y=x+1$$ be $$c_{2}: 5 x^{2}+5 y^{2}+10 g x+10 f y+38=0$$. If $$\mathrm{r}$$ is the radius of circle $$\mathrm{c}_{2}$$, then $$\alpha+6 \mathrm{r}^{2}$$ is equal to ________.</p>
[]
null
12
<p>$${c_1}:{x^2} + {y^2} - 2x - 6y + \alpha = 0$$</p> <p>Then centre $$ = (1,3)$$ and radius $$(r) = \sqrt {10 - \alpha } $$</p> <p>Image of $$(1,3)$$ w.r.t. line $$x - y + 1 = 0$$ is $$(2,2)$$</p> <p>$${c_2}:5{x^2} + 5{y^2} + 10gx + 10fy + 38 = 0$$</p> <p>or $${x^2} + {y^2} + 2gx + 2fy + {{38} \over 5} = 0$$</p> <p>Then $$( - g, - f) = (2,2)$$</p> <p>$$\therefore$$ $$g = f = - 2$$ .......... (i)</p> <p>Radius of $${c_2} = r = \sqrt {4 + 4 - {{38} \over 5}} = \sqrt {10 - \alpha } $$</p> <p>$$ \Rightarrow {2 \over 5} = 10 - \alpha $$</p> <p>$$\therefore$$ $$\alpha = {{48} \over 5}$$ and $$r = \sqrt {{2 \over 5}} $$</p> <p>$$\therefore$$ $$\alpha + 6{r^2} = {{48} \over 5} + {{12} \over 5} = 12$$</p>
integer
jee-main-2022-online-29th-july-morning-shift
wwSAsTzXYKfdbOPl
maths
circle
pair-of-tangents
The centre of the circle passing through (0, 0) and (1, 0) and touching the circle $${x^2}\, + \,{y^2} = 9$$ is :
[{"identifier": "A", "content": "$$\\left( {{1 \\over 2},\\,{1 \\over 2}} \\right)$$ "}, {"identifier": "B", "content": "$$\\left( {{1 \\over 2},\\, - \\,\\sqrt 2 } \\right)$$ "}, {"identifier": "C", "content": "$$\\left( {{3 \\over 2},\\,{1 \\over 2}} \\right)$$ "}, {"identifier": "D", "content": "$$\\left( {{1 \\over 2},\\,{3 \\over 2}} \\right)$$ "}]
["B"]
null
Let the required circle be <br><br>$${x^2} + {y^2} + 2gx + 2fy + c = 0$$ <br><br>Since it passes through $$\left( {0,0} \right)$$ and $$\left( {1,0} \right)$$ <br><br>$$ \Rightarrow c = 0$$ and $$g = - {1 \over 2}$$ <br><br>Points $$\left( {0,0} \right)$$ and $$\left( {1,0} \right)$$ lie inside the circle $${x^2} + {y^2} = 9,$$ <br><br>so two circles touch internally <br><br>$$ \Rightarrow c{}_1{c_2} = {r_1} - {r_2}$$ <br><br>$$\therefore$$ $$\sqrt {{g^2} + {f^2}} = 3 - \sqrt {{g^2} + {f^2}} $$ <br><br>$$ \Rightarrow \sqrt {{g^2} + {f^2}} = {3 \over 2}$$ <br><br>$$ \Rightarrow {f^2} = {9 \over 4} - {1 \over 4} = 2$$ <br><br>$$\therefore$$ $$f = \pm \sqrt 2 .$$ <br><br>Hence, the centers of required circle are <br><br>$$\left( {{1 \over 2}.\sqrt 2 } \right)$$ or $$\left( {{1 \over 2}, - \sqrt 2 } \right)$$
mcq
aieee-2002
1ktgpx85g
maths
circle
pair-of-tangents
Two circles each of radius 5 units touch each other at the point (1, 2). If the equation of their common tangent is 4x + 3y = 10, and C<sub>1</sub>($$\alpha$$, $$\beta$$) and C<sub>2</sub>($$\gamma$$, $$\delta$$), C<sub>1</sub> $$\ne$$ C<sub>2</sub> are their centres, then |($$\alpha$$ + $$\beta$$) ($$\gamma$$ + $$\delta$$)| is equal to ___________.
[]
null
40
Slope of line joining centres of circles = $${4 \over 3} = \tan \theta $$<br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1kx5g1hrm/3c7cc7eb-253c-4f70-8baa-06a68070a4ec/9eab2120-5c7f-11ec-bf3c-e32253ee0710/file-1kx5g1hrn.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1kx5g1hrm/3c7cc7eb-253c-4f70-8baa-06a68070a4ec/9eab2120-5c7f-11ec-bf3c-e32253ee0710/file-1kx5g1hrn.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2021 (Online) 27th August Evening Shift Mathematics - Circle Question 66 English Explanation"><br>$$ \Rightarrow \cos \theta = {3 \over 5},\sin \theta = {4 \over 5}$$<br><br>Now using parametric form <br><br>$${{x - 1} \over {\cos \theta }} = {{y - 2} \over {\sin \theta }} = \pm \,5$$<br><br> (x, y) = (1 + 5cos$$\theta$$, 2 + 5sin$$\theta$$)<br><br>($$\alpha$$, $$\beta$$) = (4, 6)<br><br> (x, y) = ($$\gamma$$, $$\delta$$) = (1 $$-$$ 5cos$$\theta$$, 2 $$-$$ 5sin$$\theta$$)<br><br>($$\gamma$$, s) = ($$-$$2, $$-$$2)<br><br>$$\Rightarrow$$ |($$\alpha$$ + $$\beta$$) ($$\gamma$$ + $$\delta$$)| = | 10x $$-$$ 4 | = 40
integer
jee-main-2021-online-27th-august-evening-shift
1l5w01mde
maths
circle
pair-of-tangents
<p>Consider three circles:</p> <p>$${C_1}:{x^2} + {y^2} = {r^2}$$</p> <p>$${C_2}:{(x - 1)^2} + {(y - 1)^2} = {r^2}$$</p> <p>$${C_3}:{(x - 2)^2} + {(y - 1)^2} = {r^2}$$</p> <p>If a line L : y = mx + c be a common tangent to C<sub>1</sub>, C<sub>2</sub> and C<sub>3</sub> such that C<sub>1</sub> and C<sub>3</sub> lie on one side of line L while C<sub>2</sub> lies on other side, then the value of $$20({r^2} + c)$$ is equal to :</p>
[{"identifier": "A", "content": "23"}, {"identifier": "B", "content": "15"}, {"identifier": "C", "content": "12"}, {"identifier": "D", "content": "6"}]
["D"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l5ykyyx8/21715b9a-e296-480d-b13d-bb0f765bfb24/5c010fd0-0ae7-11ed-a51c-73986e88f75f/file-1l5ykyyx9.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l5ykyyx8/21715b9a-e296-480d-b13d-bb0f765bfb24/5c010fd0-0ae7-11ed-a51c-73986e88f75f/file-1l5ykyyx9.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 30th June Morning Shift Mathematics - Circle Question 50 English Explanation"></p> <p>$${c_1}:{x^2} + {y^2} = {r^2}$$ ; center = (0, 0) and radius = r</p> <p>$${c_2}:{(x - 1)^2} + {(y - 1)^2} = {r^2}$$ ; center = (1, 1) and radius = r</p> <p>$${c_3}:{(x - 2)^2} + {(y - 1)^2} = {r^2}$$ ; center = (2, 1) and radius = r</p> <p>Distance of $$y = mx + c$$ line from center (0, 0) is,</p> <p>$$\left| {{{0 + 0 + c} \over {\sqrt {{m^2} + 1} }}} \right| = r$$ ..... (1)</p> <p>Distance of $$y = mx + c$$ line from center (1, 1) is,</p> <p>$$\left| {{{m - 1 + c} \over {\sqrt {{m^2} + 1} }}} \right| = r$$ ..... (2)</p> <p>Distance of $$y = mx + c$$ line from center (2, 1) is,</p> <p>$$\left| {{{2m - 1 + c} \over {\sqrt {{m^2} + 1} }}} \right| = r$$ .... (3)</p> <p>From (1) and (2), we get</p> <p>$$\left| {{c \over {\sqrt {1 + {m^2}} }}} \right| = \left| {{{m - 1 + c} \over {\sqrt {1 + {m^2}} }}} \right|$$</p> <p>$$ \Rightarrow m - 1 + c = \pm \,c$$ ..... (4)</p> <p>taking positive sign,</p> <p>$$m - 1 + c = c$$</p> <p>$$ \Rightarrow m - 1 = 0$$</p> <p>$$ \Rightarrow m = 1$$</p> <p>From (2) and (3), we get</p> <p>$$\left| {{{m - 1 + c} \over {\sqrt {1 + {m^2}} }}} \right| = \left| {{{2m - 1 + c} \over {\sqrt {{m^2} + 1} }}} \right|$$</p> <p>$$ \Rightarrow (m - 1 + c) = \, \pm \,(2m - 1 + c)$$ ...... (5)</p> <p>taking positive sign,</p> <p>$$m - 1 + c = 2m - 1 + c$$</p> <p>$$ \Rightarrow m = 0$$</p> <p>By taking positive sign we get two different value of m so it is not acceptable.</p> <p>From equation (4), taking negative sign,</p> <p>$$m - 1 + c = - c$$</p> <p>$$ \Rightarrow m + 2c - 1 = 0$$ ..... (6)</p> <p>From equation (5), taking negative sign</p> <p>$$m - 1 + c = - (2m - 1 + c)$$</p> <p>$$ \Rightarrow 3m + 2c - 2 = 0$$ ..... (7)</p> <p>Solving equation (6) and (7), we get</p> <p>$$3m + 1 - m - 2 = 0$$</p> <p>$$ \Rightarrow 2m = 1$$</p> <p>$$ \Rightarrow m = {1 \over 2}$$</p> <p>$$\therefore$$ $$2c = 1 - {1 \over 2}$$</p> <p>$$ \Rightarrow c = {1 \over 4}$$</p> <p>Putting value of $$m = {1 \over 2}$$ and $$c = {1 \over 4}$$ in equation (1), we get</p> <p>$$r = \left| {{{{1 \over 4}} \over {\sqrt {1 + {1 \over 4}} }}} \right|$$</p> <p>$$ = \left| {{1 \over 4} \times {2 \over {\sqrt 5 }}} \right|$$</p> <p>$$ = {1 \over {2\sqrt 5 }}$$</p> <p>$$\therefore$$ $$20({r^2} + c)$$</p> <p>$$ = 20\left( {{1 \over {4 \times 5}} + {1 \over 4}} \right)$$</p> <p>$$ = 20\left( {{{1 + 5} \over {20}}} \right)$$</p> <p>$$ = 6$$</p>
mcq
jee-main-2022-online-30th-june-morning-shift
JQOYhImF3TPwcQ2r
maths
circle
position-of-a-point-with-respect-to-circle
The length of the diameter of the circle which touches the $$x$$-axis at the point $$(1, 0)$$ and passes through the point $$(2, 3)$$ is :
[{"identifier": "A", "content": "$${{10} \\over 3}$$ "}, {"identifier": "B", "content": "$${{3} \\over 5}$$"}, {"identifier": "C", "content": "$${{6} \\over 5}$$"}, {"identifier": "D", "content": "$${{5} \\over 3}$$"}]
["A"]
null
Let center of the circle be $$\left( {1,h} \right)$$ <br><br>$$\left[ {\,\,} \right.$$ as circle touches $$x$$-axis at $$\left. {\left( {1,0} \right)\,\,} \right]$$ <br><br><img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265134/exam_images/q6ltvxbm00bb6jj7jhhr.webp" loading="lazy" alt="AIEEE 2012 Mathematics - Circle Question 139 English Explanation"> <br><br>Let the circle passes through the point $$B(2,3)$$ <br><br>$$\therefore$$ $$CA=CB$$ (radius) <br><br>$$ \Rightarrow C{A^2} = C{B^2}$$ <br><br>$$ \Rightarrow {\left( {1 - 1} \right)^2} + \left( {h - 0} \right){}^2 = {\left( {1 - 2} \right)^2} + {\left( {h - 3} \right)^2}$$ <br><br>$$ \Rightarrow {h^2} = 1 + {h^2} + 9 - 6h$$ <br><br>$$ \Rightarrow h = {{10} \over 6} = {5 \over 3}$$ <br><br>Thus, diameter is $$2h = {{10} \over 3}.$$
mcq
aieee-2012
RKxAtAiPnPuYZZifgEV7R
maths
circle
position-of-a-point-with-respect-to-circle
If a point P has co-ordinates (0, $$-$$2) and Q is any point on the circle, x<sup>2</sup> + y<sup>2</sup> $$-$$ 5x $$-$$ y + 5 = 0, then the maximum value of (PQ)<sup>2</sup> is :
[{"identifier": "A", "content": "$${{25 + \\sqrt 6 } \\over 2}$$ "}, {"identifier": "B", "content": "14 + $$5\\sqrt 3 $$"}, {"identifier": "C", "content": "$${{47 + 10\\sqrt 6 } \\over 2}$$"}, {"identifier": "D", "content": "8 + 5$$\\sqrt 3 $$"}]
["B"]
null
Given that x<sup>2</sup> + y<sup>2</sup> $$-$$ 5x $$-$$ y + 5 = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;(x $$-$$ 5/2)<sup>2</sup> $$-$$ $${{25} \over 4}$$ + (y $$-$$ 1/2)<sup>2</sup> $$-$$ 1/4 = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;(x $$-$$ 5/2)<sup>2</sup> + (y $$-$$ 1/2)<sup>2</sup> = 3/2 <br><br>on circle [ Q $$ \equiv $$ (5/2 + $$\sqrt {3/2} $$ cos Q, $${1 \over 2}$$ + $$\sqrt {3/2} $$ sin Q)] <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;PQ<sup>2</sup> = $${\left( {{5 \over 2} + \sqrt {3/2} \cos Q} \right)^2}$$ + $${\left( {{5 \over 2} + \sqrt {3/2} \sin Q} \right)^2}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;PQ<sup>2</sup> = $${{25} \over 2} + {3 \over 2} + 5\sqrt {3/2} $$ (cos Q + sinQ) <br><br>= 14 + 5$$\sqrt {3/2} $$ (cosQ + sinQ) <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;Maximum value of PQ<sup>2</sup> <br><br>= 14 + 5$$\sqrt {3/2} $$ $$ \times $$&nbsp;$$\sqrt 2 $$ = 14 + 5$$\sqrt 3 $$
mcq
jee-main-2017-online-8th-april-morning-slot
pEYxJxihaVS8EGPeEO1kluvq0eh
maths
circle
position-of-a-point-with-respect-to-circle
Let A(1, 4) and B(1, $$-$$5) be two points. Let P be a point on the circle <br/>(x $$-$$ 1)<sup>2</sup> + (y $$-$$ 1)<sup>2</sup> = 1 such that (PA)<sup>2</sup> + (PB)<sup>2</sup> have maximum value, then the points, P, A and B lie on :
[{"identifier": "A", "content": "a straight line"}, {"identifier": "B", "content": "an ellipse"}, {"identifier": "C", "content": "a parabola"}, {"identifier": "D", "content": "a hyperbola"}]
["A"]
null
P be a point on $${(x - 1)^2} + {(y - 1)^2} = 1$$<br><br>so $$P(1 + \cos \theta ,1 + \sin \theta )$$<br><br>A(1, 4), B(1, $$-$$5)<br><br>$${(PA)^2} + {(PB)^2}$$<br><br>$$ = {(\cos \theta )^2} + {(\sin \theta - 3)^2} + {(\cos \theta )^2} + {(\sin \theta + 6)^2}$$<br><br>$$ = 47 + 6\sin \theta $$<br><br>It is maximum if $$\sin \theta = 1$$<br><br>When $$ \sin \theta = 1,\cos \theta = 0$$<br><br>So P(1, 2), A(1, 4), B(1, $$-$$5)<br><br>P, A, B are collinear points.
mcq
jee-main-2021-online-26th-february-evening-slot
yqOGL0vZWY5owc1JTs1kmliqxwh
maths
circle
position-of-a-point-with-respect-to-circle
For the four circles M, N, O and P, following four equations are given :<br/><br/>Circle M : x<sup>2</sup> + y<sup>2</sup> = 1<br/><br/>Circle N : x<sup>2</sup> + y<sup>2</sup> $$-$$ 2x = 0<br/><br/>Circle O : x<sup>2</sup> + y<sup>2</sup> $$-$$ 2x $$-$$ 2y + 1 = 0<br/><br/>Circle P : x<sup>2</sup> + y<sup>2</sup> $$-$$ 2y = 0<br/><br/>If the centre of circle M is joined with centre of the circle N, further center of circle N is joined with centre of the circle O, centre of circle O is joined with the centre of circle P and lastly, centre of circle P is joined with centre of circle M, then these lines form the sides of a :
[{"identifier": "A", "content": "Rhombus"}, {"identifier": "B", "content": "Square"}, {"identifier": "C", "content": "Rectangle"}, {"identifier": "D", "content": "Parallelogram"}]
["B"]
null
$${C_M} = (0,0)$$<br><br>$${C_N} = (1,0)$$<br><br>$${C_O} = (1,1)$$<br><br>$${C_P} = (0,1)$$<br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266015/exam_images/tynzdnx9ipskg5hfjo3r.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 18th March Morning Shift Mathematics - Circle Question 79 English Explanation">
mcq
jee-main-2021-online-18th-march-morning-shift
1kru4cxvo
maths
circle
position-of-a-point-with-respect-to-circle
Let the circle S : 36x<sup>2</sup> + 36y<sup>2</sup> $$-$$ 108x + 120y + C = 0 be such that it neither intersects nor touches the co-ordinate axes. If the point of intersection of the lines, x $$-$$ 2y = 4 and 2x $$-$$ y = 5 lies inside the circle S, then :
[{"identifier": "A", "content": "$${{25} \\over 9} &lt; C &lt; {{13} \\over 3}$$"}, {"identifier": "B", "content": "100 &lt; C &lt; 165"}, {"identifier": "C", "content": "81 &lt; C &lt; 156"}, {"identifier": "D", "content": "100 &lt; C &lt; 156"}]
["D"]
null
S : 36x<sup>2</sup> + 36y<sup>2</sup> $$-$$ 108x + 120y + C = 0<br><br>$$\Rightarrow$$ x<sup>2</sup> + y<sup>2</sup> $$-$$ 3x + $${{10} \over 3}$$y + $${C \over {36}}$$ = 0<br><br>Centre $$ \equiv ( - g, - f) \equiv \left( {{3 \over 2},{{ - 10} \over 6}} \right)$$<br><br>radius = $$r = \sqrt {{9 \over 4} + {{100} \over {36}} - {C \over {36}}} $$<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266423/exam_images/ulkyx4q33vkkr3loyvyz.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 22th July Evening Shift Mathematics - Circle Question 76 English Explanation"><br>Now, <br><br>$$ \Rightarrow r &lt; {3 \over 2}$$<br><br>$$ \Rightarrow {9 \over 4} + {{100} \over {36}} - {C \over {36}} &lt; {9 \over 4}$$<br><br>$$\Rightarrow$$ C &gt; 100 ...... (1)<br><br>Now, point of intersection of x $$-$$ 2y = 4 and 2x $$-$$ y = 5 is (2, $$-$$1), which lies inside the circle S.<br><br>$$\therefore$$ S(2, $$-$$1) &lt; 0<br><br>$$\Rightarrow$$ (2)<sup>2</sup> + ($$-$$1)<sup>2</sup> $$-$$ 3(2) + $${{10} \over 3}$$($$-$$1) + $${C \over {36}}$$ &lt; 0<br><br>$$\Rightarrow$$ 4 + 1 $$-$$ 6 $$-$$ $${{10} \over 3}$$ + $${C \over {36}}$$ &lt; 0<br><br>C &lt; 156 ..... (2)<br><br>From (1) &amp; (2)<br><br>100 &lt; C &lt; 156 Ans.
mcq
jee-main-2021-online-22th-july-evening-shift
1ktislkyb
maths
circle
position-of-a-point-with-respect-to-circle
If the variable line 3x + 4y = $$\alpha$$ lies between the two <br/>circles (x $$-$$ 1)<sup>2</sup> + (y $$-$$ 1)<sup>2</sup> = 1 <br/>and (x $$-$$ 9)<sup>2</sup> + (y $$-$$ 1)<sup>2</sup> = 4, without intercepting a chord on either circle, then the sum of all the integral values of $$\alpha$$ is ___________.
[]
null
165
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263671/exam_images/tmz0n9h2htagrkfozwru.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 31st August Morning Shift Mathematics - Circle Question 65 English Explanation"><br><br>Both centers should lie on either side of the line as well as line can be tangent to circle.<br><br>(3 + 4 $$-$$ $$\alpha$$) . (27 + 4 $$-$$ $$\alpha$$) &lt; 0<br><br>(7 $$-$$ $$\alpha$$) . (31 $$-$$ $$\alpha$$) &lt; 0 $$\Rightarrow$$ $$\alpha$$ $$\in$$ (7, 31) ....... (1)<br><br>d<sub>1</sub> = distance of (1, 1) from line<br><br>d<sub>2</sub> = distance of (9, 1) from line<br><br>$${d_1} \ge {r_1} \Rightarrow {{|7 - \alpha |} \over 5} \ge 1 \Rightarrow \alpha \in ( - \infty ,2] \cup [12,\infty )$$ .... (2)<br><br>$${d_2} \ge {r_2} \Rightarrow {{|31 - \alpha |} \over 5} \ge 2 \Rightarrow \alpha \in ( - \infty ,21] \cup [41,\infty )$$ ....(3)<br><br>(1) $$\cap$$ (2) $$\cap$$ (3) $$\Rightarrow$$ $$\alpha$$ $$\in$$ [12, 21]<br><br>Sum of integers = 165
integer
jee-main-2021-online-31st-august-morning-shift
1l56r83vp
maths
circle
position-of-a-point-with-respect-to-circle
<p>The set of values of k, for which the circle $$C:4{x^2} + 4{y^2} - 12x + 8y + k = 0$$ lies inside the fourth quadrant and the point $$\left( {1, - {1 \over 3}} \right)$$ lies on or inside the circle C, is :</p>
[{"identifier": "A", "content": "an empty set"}, {"identifier": "B", "content": "$$\\left( {6,{{65} \\over 9}} \\right]$$"}, {"identifier": "C", "content": "$$\\left[ {{{80} \\over 9},10} \\right)$$"}, {"identifier": "D", "content": "$$\\left( {9,{{92} \\over 9}} \\right]$$"}]
["D"]
null
<p>$$C:4{x^2} + 4{y^2} - 12x + 8y + k = 0$$</p> <p>$$\because$$ $$\left( {1, - {1 \over 3}} \right)$$ lies on or inside the C</p> <p>then $$4 + {4 \over 9} - 12 - {8 \over 3} + k \le 0$$</p> <p>$$ \Rightarrow k \le {{92} \over 9}$$</p> <p>Now, circle lies in 4<sup>th</sup> quadrant centre $$ \equiv \left( {{3 \over 2}, - 1} \right)$$</p> <p>$$\therefore$$ $$r < 1 \Rightarrow \sqrt {{9 \over 4} + 1 - {k \over 4}} < 1$$</p> <p>$$ \Rightarrow {{13} \over 4} - {k \over 4} < 1$$</p> <p>$$ \Rightarrow {k \over 4} > {9 \over 4}$$</p> <p>$$ \Rightarrow k > 9$$</p> <p>$$\therefore$$ $$k \in \left( {9,{{92} \over 9}} \right)$$</p>
mcq
jee-main-2022-online-27th-june-evening-shift