question_id
stringlengths
8
35
subject
stringclasses
1 value
chapter
stringclasses
32 values
topic
stringclasses
178 values
question
stringlengths
26
9.64k
options
stringlengths
2
1.63k
correct_option
stringclasses
5 values
answer
stringclasses
293 values
explanation
stringlengths
13
9.38k
question_type
stringclasses
3 values
paper_id
stringclasses
149 values
1l55hphme
maths
straight-lines-and-pair-of-straight-lines
area-of-triangle-and-condition-of-collinearity
<p>Let a triangle be bounded by the lines L<sub>1</sub> : 2x + 5y = 10; L<sub>2</sub> : $$-$$4x + 3y = 12 and the line L<sub>3</sub>, which passes through the point P(2, 3), intersects L<sub>2</sub> at A and L<sub>1</sub> at B. If the point P divides the line-segment AB, internally in the ratio 1 : 3, then the area of the triangle is equal to :</p>
[{"identifier": "A", "content": "$${{110} \\over {13}}$$"}, {"identifier": "B", "content": "$${{132} \\over {13}}$$"}, {"identifier": "C", "content": "$${{142} \\over {13}}$$"}, {"identifier": "D", "content": "$${{151} \\over {13}}$$"}]
["B"]
null
$L_{1}: 2 x+5 y=10$<br><br> $L_{2}: -4 x+ 3 y=12$<br><br> <img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l99tn43d/ebd74024-c280-415b-bc94-0859668a0f7c/89bb0690-4c7a-11ed-b94d-45a8040c2a81/file-1l99tn43e.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l99tn43d/ebd74024-c280-415b-bc94-0859668a0f7c/89bb0690-4c7a-11ed-b94d-45a8040c2a81/file-1l99tn43e.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 28th June Evening Shift Mathematics - Straight Lines and Pair of Straight Lines Question 52 English Explanation"><br> Solving $L_{1}$ and $L_{2}$ we get <br><br> $$ C \equiv\left(\frac{-15}{13}, \frac{32}{13}\right) $$ <br><br> Now, Let $A\left(x_{1}, \frac{1}{3}\left(12+4 x_{1}\right)\right)$ and <br><br> $$ \begin{aligned} &amp;B\left(x_{2}, \frac{1}{5}\left(10-2 x_{2}\right)\right) \\\\ &amp;\therefore \quad \frac{3 x_{1}+x_{2}}{4}=2 \\\\ &amp;\text { and } \frac{\left(12+4 x_{1}\right)+\frac{10-2 x_{2}}{5}}{4}=3 \end{aligned} $$ <br><br> So, $3 x_{1}+x_{2}=8$ and $10 x_{1}-x_{2}=-5$ <br><br> So, $\left(x_{1}, x_{2}\right)=\left(\frac{3}{13}, \frac{95}{13}\right)$ <br><br> $$ \begin{aligned} &amp;A=\left(\frac{3}{13}, \frac{56}{13}\right) \text { and } B=\left(\frac{95}{13}, \frac{-12}{13}\right) \\\\ &amp;=\left|\frac{1}{2}\left(\frac{3}{13}\left(\frac{-44}{13}\right) \frac{-56}{13}\left(\frac{110}{13}\right)+1\left(\frac{2860}{169}\right)\right)\right| \\\\ &amp;=\frac{132}{13} \text { sq. units } \end{aligned} $$
mcq
jee-main-2022-online-28th-june-evening-shift
1l589p2la
maths
straight-lines-and-pair-of-straight-lines
area-of-triangle-and-condition-of-collinearity
<p>Let R be the point (3, 7) and let P and Q be two points on the line x + y = 5 such that PQR is an equilateral triangle. Then the area of $$\Delta$$PQR is :</p>
[{"identifier": "A", "content": "$${{25} \\over {4\\sqrt 3 }}$$"}, {"identifier": "B", "content": "$${{25\\sqrt 3 } \\over 2}$$"}, {"identifier": "C", "content": "$${{25} \\over {\\sqrt 3 }}$$"}, {"identifier": "D", "content": "$${{25} \\over {2\\sqrt 3 }}$$"}]
["D"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l59j3d6d/8a4b3248-26d5-486b-9475-fbc8a7d508b1/6bc27690-fd20-11ec-8035-4341fba75e09/file-1l59j3d6h.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l59j3d6d/8a4b3248-26d5-486b-9475-fbc8a7d508b1/6bc27690-fd20-11ec-8035-4341fba75e09/file-1l59j3d6h.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 26th June Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 49 English Explanation"></p> <p>Let, side of triangle = a.</p> <p>$$h = {{|3 + 7 - 5|} \over {\sqrt {{1^2} + {1^2}} }}$$</p> <p>$$ = {5 \over {\sqrt 2 }}$$</p> <p>From figure, $$h = a\sin 60^\circ $$</p> <p>$$ \Rightarrow a = {{2h} \over {\sqrt 3 }}$$</p> <p>$$ = {2 \over {\sqrt 3 }} \times {5 \over {\sqrt 2 }}$$</p> <p>$$ = {{10} \over {\sqrt 6 }}$$</p> <p>$$\therefore$$ Area $$ = {3 \over 4}{\left( {{{10} \over {\sqrt 6 }}} \right)^2}$$</p> <p>$$ = {{25} \over {2\sqrt 3 }}$$</p>
mcq
jee-main-2022-online-26th-june-morning-shift
1l5b8adb6
maths
straight-lines-and-pair-of-straight-lines
area-of-triangle-and-condition-of-collinearity
<p>Let the area of the triangle with vertices A(1, $$\alpha$$), B($$\alpha$$, 0) and C(0, $$\alpha$$) be 4 sq. units. If the points ($$\alpha$$, $$-$$$$\alpha$$), ($$-$$$$\alpha$$, $$\alpha$$) and ($$\alpha$$<sup>2</sup>, $$\beta$$) are collinear, then $$\beta$$ is equal to :</p>
[{"identifier": "A", "content": "64"}, {"identifier": "B", "content": "$$-$$8"}, {"identifier": "C", "content": "$$-$$64"}, {"identifier": "D", "content": "512"}]
["C"]
null
<p>$$\because$$ A(1, $$\alpha$$), B($$\alpha$$, 0) and C(0, $$\alpha$$) are the vertices of $$\Delta$$ABC and area of $$\Delta$$ABC = 4</p> <p>$$\therefore$$ $$\left| {{1 \over 2}\left| {\matrix{ 1 & \alpha & 1 \cr \alpha & 0 & 1 \cr 0 & \alpha & 1 \cr } } \right|} \right| = 4$$</p> <p>$$ \Rightarrow \left| {1(1 - \alpha ) - \alpha (\alpha ) + {\alpha ^2}} \right| = 8$$</p> <p>$$ \Rightarrow \alpha = \, \pm \,8$$</p> <p>Now, $$(\alpha ,\, - \alpha ),\,( - \alpha ,\alpha )$$ and $$({\alpha ^2},\beta )$$ are collinear</p> <p>$$\therefore$$ $$\left| {\matrix{ 8 & { - 8} & 1 \cr { - 8} & 8 & 1 \cr {64} & \beta & 1 \cr } } \right| = 0 = \left| {\matrix{ { - 8} & 8 & 1 \cr 8 & { - 8} & 1 \cr {64} & \beta & 1 \cr } } \right|$$</p> <p>$$ \Rightarrow 8(8 - \beta ) + 8( - 8 - 64) + 1( - 8\beta - 8 \times 64) = 0$$</p> <p>$$ \Rightarrow 8 - \beta - 72 - \beta - 64 = 0$$</p> <p>$$ \Rightarrow \beta = - 64$$</p>
mcq
jee-main-2022-online-24th-june-evening-shift
1l5c29doe
maths
straight-lines-and-pair-of-straight-lines
area-of-triangle-and-condition-of-collinearity
<p>Let $$A\left( {{3 \over {\sqrt a }},\sqrt a } \right),\,a &gt; 0$$, be a fixed point in the xy-plane. The image of A in y-axis be B and the image of B in x-axis be C. If $$D(3\cos \theta ,a\sin \theta )$$ is a point in the fourth quadrant such that the maximum area of $$\Delta$$ACD is 12 square units, then a is equal to ____________.</p>
[]
null
8
Clearly $B$ is $\left(-\frac{3}{\sqrt{a}},+\sqrt{a}\right)$ and $C$ is $\left(-\frac{3}{\sqrt{a}},-\sqrt{a}\right)$ <br/><br/> $$ \begin{aligned} &\text { Area of } \triangle A C D=\frac{1}{2}\left|\begin{array}{ccc} \frac{3}{\sqrt{a}} & \sqrt{a} & 1 \\\\ -\frac{3}{\sqrt{a}} & -\sqrt{a} & 1 \\\\ 3 \cos \theta & a \sin \theta & 1 \end{array}\right| \\\\ &\Rightarrow \quad \Delta=\left|\begin{array}{ccc} 0 & 0 & 1 \\\\ -\frac{3}{\sqrt{a}} & -\sqrt{a} & 1 \\\\ 3 \cos \theta & a \sin \theta & 1 \end{array}\right| \\\\ &\Rightarrow \quad \Delta=|3 \sqrt{a} \sin \theta+3 \sqrt{a} \cos \theta|=3 \sqrt{a}|\sin \theta+\cos \theta| \\\\ &\Rightarrow \quad \Delta_{\max }=3 \sqrt{a} \cdot \sqrt{2}=12 \Rightarrow a=(2 \sqrt{2})^{2}=8 \end{aligned} $$
integer
jee-main-2022-online-24th-june-morning-shift
1l5vzzg8x
maths
straight-lines-and-pair-of-straight-lines
area-of-triangle-and-condition-of-collinearity
<p>Let $$\alpha$$<sub>1</sub>, $$\alpha$$<sub>2</sub> ($$\alpha$$<sub>1</sub> &lt; $$\alpha$$<sub>2</sub>) be the values of $$\alpha$$ fo the points ($$\alpha$$, $$-$$3), (2, 0) and (1, $$\alpha$$) to be collinear. Then the equation of the line, passing through ($$\alpha$$<sub>1</sub>, $$\alpha$$<sub>2</sub>) and making an angle of $${\pi \over 3}$$ with the positive direction of the x-axis, is :</p>
[{"identifier": "A", "content": "$$x - \\sqrt 3 y - 3\\sqrt 3 + 1 = 0$$"}, {"identifier": "B", "content": "$$\\sqrt 3 x - y + \\sqrt 3 + 3 = 0$$"}, {"identifier": "C", "content": "$$x - \\sqrt 3 y + 3\\sqrt 3 + 1 = 0$$"}, {"identifier": "D", "content": "$$\\sqrt 3 x - y + \\sqrt 3 - 3 = 0$$"}]
["B"]
null
<p>Points A($$\alpha$$, $$-$$3), B(2, 0) and C(1, $$\alpha$$) are collinear.</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l5yktc03/7dba7f27-1a1c-4810-bc97-87e79ff18cdf/bf409530-0ae6-11ed-a51c-73986e88f75f/file-1l5yktc04.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l5yktc03/7dba7f27-1a1c-4810-bc97-87e79ff18cdf/bf409530-0ae6-11ed-a51c-73986e88f75f/file-1l5yktc04.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 30th June Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 46 English Explanation"></p> <p>$$\therefore$$ Slope of AB = Slope of BC</p> <p>$$ \Rightarrow {{0 + 3} \over {2 - \alpha }} = {{\alpha - 0} \over {1 - 2}}$$</p> <p>$$ \Rightarrow - 3 = \alpha (2 - \alpha )$$</p> <p>$$ \Rightarrow - 3 = 2\alpha - {\alpha ^2}$$</p> <p>$$ \Rightarrow {\alpha ^2} - 2\alpha - 3 = 0$$</p> <p>$$ \Rightarrow {\alpha ^2} - 3\alpha + \alpha - 3 = 0$$</p> <p>$$ \Rightarrow \alpha (\alpha - 3) + 1(\alpha - 3) = 0$$</p> <p>$$ \Rightarrow (\alpha + 1)(\alpha - 3) = 0$$</p> <p>$$ \Rightarrow \alpha = - 1,\,3$$</p> <p>Given, $${\alpha _1} &lt; {\alpha _2}$$</p> <p>$$\therefore$$ $${\alpha _1} = -1$$ and $${\alpha _2} = 3$$</p> <p>$$\therefore$$ $$\left( {{\alpha _1},\,{\alpha _2}} \right) = ( - 1,\,3)$$</p> <p>Now, equation of the line passing through ($$-$$1, 3) and making angle $${\pi \over 3}$$ with positive x-axis is</p> <p>$$(y - {y_1}) = m(x - {x_1})$$</p> <p>$$ \Rightarrow y - 3 = \left( {\tan {\pi \over 3}} \right)(x + 1)$$</p> <p>$$ \Rightarrow y - 3 = \sqrt 3 (x + 1)$$</p> <p>$$ \Rightarrow \sqrt 3 x - y + \sqrt 3 + 3 = 0$$</p>
mcq
jee-main-2022-online-30th-june-morning-shift
1l6jd47sy
maths
straight-lines-and-pair-of-straight-lines
area-of-triangle-and-condition-of-collinearity
<p>Let $$A(1,1), B(-4,3), C(-2,-5)$$ be vertices of a triangle $$A B C, P$$ be a point on side $$B C$$, and $$\Delta_{1}$$ and $$\Delta_{2}$$ be the areas of triangles $$A P B$$ and $$A B C$$, respectively. If $$\Delta_{1}: \Delta_{2}=4: 7$$, then the area enclosed by the lines $$A P, A C$$ and the $$x$$-axis is :</p>
[{"identifier": "A", "content": "$$\\frac{1}{4}$$"}, {"identifier": "B", "content": "$$\\frac{3}{4}$$"}, {"identifier": "C", "content": "$$\\frac{1}{2}$$"}, {"identifier": "D", "content": "1"}]
["C"]
null
<p>$${{{\Delta _1}} \over {{\Delta _2}}} = {{{1 \over 2} \times BP \times AH} \over {{1 \over 2} \times BC \times AH}} = {4 \over 7}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l7psetoj/75213353-b6a6-48ee-b558-8da28250e29e/d5b7d130-2da9-11ed-8542-f96181a425b5/file-1l7psetok.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l7psetoj/75213353-b6a6-48ee-b558-8da28250e29e/d5b7d130-2da9-11ed-8542-f96181a425b5/file-1l7psetok.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 27th July Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 41 English Explanation"></p> <p>$$P\left( {{{ - 20} \over 7},{{ - 11} \over 7}} \right)$$</p> <p>Line $$AC:y - 1 = 2(x - 1)$$</p> <p>Intersection with x-axis $$ = \left( {{1 \over 2},0} \right)$$</p> <p>Line $$AP:y - 1 = {2 \over 3}(x - 1)$$</p> <p>Intersection with x-axis $$\left( {{{ - 1} \over 2},0} \right)$$</p> <p>Vertices are $$(1,1),\left( {{1 \over 2},0} \right)$$ and $$\left( {{{ - 1} \over 2},0} \right)$$</p> <p>Area $$ = {1 \over 2}$$ sq. unit</p>
mcq
jee-main-2022-online-27th-july-morning-shift
1ldsu6789
maths
straight-lines-and-pair-of-straight-lines
area-of-triangle-and-condition-of-collinearity
<p>Let $$B$$ and $$C$$ be the two points on the line $$y+x=0$$ such that $$B$$ and $$C$$ are symmetric with respect to the origin. Suppose $$A$$ is a point on $$y-2 x=2$$ such that $$\triangle A B C$$ is an equilateral triangle. Then, the area of the $$\triangle A B C$$ is :</p>
[{"identifier": "A", "content": "$$\\frac{10}{\\sqrt{3}}$$"}, {"identifier": "B", "content": "$$2 \\sqrt{3}$$"}, {"identifier": "C", "content": "$$3 \\sqrt{3}$$"}, {"identifier": "D", "content": "$$\\frac{8}{\\sqrt{3}}$$"}]
["D"]
null
Origin $(O)$ is mid-point of $B C(x+y=0)$. <br/><br/> $A$ lies on perpendicular bisector of $B C$, which is $x-y=0$ <br/><br/> A is point of intersection of $x-y=0$ and $y-2 x=2$ <br/><br/> $\therefore A \equiv(-2,-2)$ <br/><br/> Let $h=A O=\frac{-2-2}{\sqrt{1^{2}+1^{2}}}=2 \sqrt{2}$ <br/><br/> $$ \text { Area }=\frac{h^{2}}{\sqrt{3}}=\frac{8}{\sqrt{3}} $$
mcq
jee-main-2023-online-29th-january-morning-shift
luy6z4o4
maths
straight-lines-and-pair-of-straight-lines
area-of-triangle-and-condition-of-collinearity
<p>A variable line $$\mathrm{L}$$ passes through the point $$(3,5)$$ and intersects the positive coordinate axes at the points $$\mathrm{A}$$ and $$\mathrm{B}$$. The minimum area of the triangle $$\mathrm{OAB}$$, where $$\mathrm{O}$$ is the origin, is :</p>
[{"identifier": "A", "content": "35"}, {"identifier": "B", "content": "25"}, {"identifier": "C", "content": "30"}, {"identifier": "D", "content": "40"}]
["C"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lw3avn6c/d5ed79f8-059d-4be3-a5b7-c41490773adc/6f4ef630-103d-11ef-94ca-5b39b659c816/file-1lw3avn6d.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lw3avn6c/d5ed79f8-059d-4be3-a5b7-c41490773adc/6f4ef630-103d-11ef-94ca-5b39b659c816/file-1lw3avn6d.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 9th April Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 11 English Explanation"></p> <p>$$\begin{aligned} &amp; \frac{x}{a}+\frac{y}{b}=1 \\ &amp; \frac{3}{a}+\frac{5}{b}=1 \\ &amp; 3 b+5 a=a b \\ &amp; 5 a-a b=-3 b \\ &amp; a(5-b)=-3 b \\ &amp; a=\frac{3 b}{b-5} \end{aligned}$$</p> <p>$$\begin{aligned} &amp; \text { Area of triangle }=\left|\frac{1}{2} \times a \times b\right| \\ &amp; =\frac{1}{2} \times \frac{3 b}{b-5} \times b \\ &amp; \Rightarrow f(b)=\frac{3 b^2}{2 b-10} \\ &amp; \Rightarrow f^{\prime}(b)=0,(2 b-10) 6 b-2\left(3 b^2\right)=0 \\ &amp; 12 b^2-60 b-6 b^2=0 \\ &amp; 6 b^2-60 b=0 \\ &amp; b^2-10 b=0 \\ &amp; b(b-10)=0 \\ &amp; b=0 \text { or } b=10 \end{aligned}$$</p> <p>So for minimum area, $$b=10$$</p> <p>then $$\frac{1}{2} \times a \times b=30$$</p>
mcq
jee-main-2024-online-9th-april-morning-shift
H01NW8Z2GN5a4Mxe
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
If a vertex of a triangle is $$(1, 1)$$ and the mid points of two sides through this vertex are $$(-1, 2)$$ and $$(3, 2)$$ then the centroid of the triangle is :
[{"identifier": "A", "content": "$$\\left( { - 1,{7 \\over 3}} \\right)$$ "}, {"identifier": "B", "content": "$$\\left( {{{ - 1} \\over 3},{7 \\over 3}} \\right)$$ "}, {"identifier": "C", "content": "$$\\left( { 1,{7 \\over 3}} \\right)$$"}, {"identifier": "D", "content": "$$\\left( {{{ 1} \\over 3},{7 \\over 3}} \\right)$$"}]
["C"]
null
Vertex of triangle is $$\left( {1,\,1} \right)$$ and midpoint of sides through - <br><br>this vertex is $$\left( { - 1,\,2} \right)$$ and $$\left( {3,2} \right)$$ <br><br><img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263971/exam_images/d94fpagqlokdwur1hypq.webp" loading="lazy" alt="AIEEE 2005 Mathematics - Straight Lines and Pair of Straight Lines Question 138 English Explanation"> <br><br>$$ \Rightarrow $$ vertex $$B$$ and $$C$$ come out to be $$\left( { - 3,3} \right)$$ and $$\left( {5,3} \right)$$ <br><br>$$\therefore$$ centroid is $${{1 - 3 + 5} \over 3},{{1 + 3 + 5} \over 3} \Rightarrow \left( {1,{7 \over 3}} \right)$$
mcq
aieee-2005
OtQMa91jbhOp68Kd
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
The $$x$$-coordinate of the incentre of the triangle that has the coordinates of mid points of its sides as $$(0, 1) (1, 1)$$ and $$(1, 0)$$ is :
[{"identifier": "A", "content": "$$2 + \\sqrt 2 $$ "}, {"identifier": "B", "content": "$$2 - \\sqrt 2 $$"}, {"identifier": "C", "content": "$$1 + \\sqrt 2 $$"}, {"identifier": "D", "content": "$$1 - \\sqrt 2 $$"}]
["B"]
null
From the figure, we have <br><br>$$a = 2,b = 2\sqrt 2 ,c = 2$$ <br><br>$${x_1} = 0,\,{x^2} = 0,\,{x_3} = 2$$ <br><br><img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264731/exam_images/mfh7nksrzqack2i9ykdk.webp" loading="lazy" alt="JEE Main 2013 (Offline) Mathematics - Straight Lines and Pair of Straight Lines Question 125 English Explanation"> <br><br>Now, $$x$$-co-ordinate of incenter is given as <br><br>$${{a{x_1} + b{x_2} + c{x_3}} \over {a + b + c}}$$ <br><br>$$ \Rightarrow x$$-coordinate of incentre <br><br>$$ = {{2 \times 0 + 2\sqrt 2 .0 + 2.2} \over {2 + 2 + 2\sqrt 2 }}$$ <br><br>$$=$$ $${2 \over {2 + \sqrt 2 }} = 2 - \sqrt 2 $$
mcq
jee-main-2013-offline
JQXASfRf5qjuZV5Y
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
Let k be an integer such that the triangle with vertices (k, – 3k), (5, k) and (–k, 2) has area 28 sq. units. Then the orthocentre of this triangle is at the point :
[{"identifier": "A", "content": "$$\\left( {1,{3 \\over 4}} \\right)$$"}, {"identifier": "B", "content": "$$\\left( {1, - {3 \\over 4}} \\right)$$"}, {"identifier": "C", "content": "$$\\left( {2,{1 \\over 2}} \\right)$$"}, {"identifier": "D", "content": "$$\\left( {2, - {1 \\over 2}} \\right)$$"}]
["C"]
null
Given, vertices of triangle are (k, – 3k), (5, k) and (–k, 2). <br><br>$${1 \over 2}\left| {\matrix{ k &amp; { - 3k} &amp; 1 \cr 5 &amp; k &amp; 1 \cr { - k} &amp; 2 &amp; 1 \cr } } \right| = \pm 28$$ <br><br>$$ \Rightarrow $$ k(k - 2) + 3k(5 + k) + 1(10 + k<sup>2</sup>) = $$ \pm $$ 56 <br><br>$$ \Rightarrow $$ 5k<sup>2</sup> + 13k + 10 = $$ \pm $$ 56 <br><br>$$ \Rightarrow $$ 5k<sup>2</sup> + 13k - 66 = 0 <br><br>$$ \Rightarrow $$ k = $${{ - 13 \pm \sqrt { - 1151} } \over {10}}$$ <br><br>So no real solution exist. <br><br>or 5k<sup>2</sup> + 13k - 46 = 0 <br><br>$$ \therefore $$ k = $${{ - 23} \over 5}$$ or k = 2 <br><br>since k is an integer $$ \therefore $$ k = 2 <br><br>Thus, the coordinate of vertices of triangle are <br><br>A(2, -6), B(5, 2) and C(-2, 2). <br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265540/exam_images/uwujwuudzsbrhbcutpgm.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2017 (Offline) Mathematics - Straight Lines and Pair of Straight Lines Question 118 English Explanation"> <br><br>Now, equation of altitude from vertex A is <br><br>y - (-6) = $${{ - 1} \over {\left( {{{2 - 2} \over { - 2 - 5}}} \right)}}\left( {x - 2} \right)$$ <br><br>$$ \Rightarrow $$ x = 2 .......(1) <br><br>Equation of altitude from vertex B is <br><br>y - 2 = $${{ - 1} \over {\left( {{{2 + 6} \over { - 2 - 2}}} \right)}}\left( {x - 5} \right)$$ <br><br>$$ \Rightarrow $$ 2y - 4 = x - 5 <br><br>$$ \Rightarrow $$ x - 2y = 1 .......(2) <br><br>Point H($$\alpha $$, $$\beta $$) lies on both (1) and (2), <br><br>$$ \therefore $$ $$\alpha $$ = 2 .........(3) <br><br>$$\alpha $$ - 2$$\beta $$ = 1 ......(4) <br><br>Solving (3) and (4), we get <br><br>$$\alpha $$ = 2 , $$\beta $$ = $${1 \over 2}$$ <br><br>$$ \therefore $$ Orthocentre is $$\left( {2,{1 \over 2}} \right)$$.
mcq
jee-main-2017-offline
oKvo7JHtrCRqrm0obaHah
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
Let the equations of two sides of a triangle be 3x $$-$$ 2y + 6 = 0 and 4x + 5y $$-$$ 20 = 0. If the orthocentre of this triangle is at (1, 1), then the equation of its third side is :
[{"identifier": "A", "content": "122y $$-$$ 26x $$-$$ 1675 = 0"}, {"identifier": "B", "content": "122y + 26x + 1675 = 0"}, {"identifier": "C", "content": "26x + 61y + 1675 = 0"}, {"identifier": "D", "content": "26x $$-$$ 122y $$-$$ 1675 = 0"}]
["D"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264905/exam_images/ubp63holkjbubzmm73xt.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 9th January Evening Slot Mathematics - Straight Lines and Pair of Straight Lines Question 104 English Explanation"> <br><br>4x + 5y $$-$$ 20 = 0 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . .(1) <br><br>3x $$-$$ 2y + 6 = 0&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; . . . (2) <br><br>orthocentre is (1, 1) <br><br>line perpendicular to 4x + 5y $$-$$ 20 = 0 <br><br>and passes through (1, 1) is <br><br>(y $$-$$ 1) = $${5 \over 4}$$(x $$-$$ 1) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;5x $$-$$ 4y = 1 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . .(3) <br><br>and line $$ \bot $$ to 3x $$-$$ 2y + 6 = 0 <br><br>and passes through (1, 1) <br><br>y $$-$$ 1 = $$-$$ $${2 \over 3}$$ (x $$-$$ 1) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;2x + 3y = 5&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . .(4) <br><br>Solving (1) and (4) we get C$$\left( {{{35} \over 2}, - 10} \right)$$ <br><br>Solving (2) and (3) we get A $$\left( { - 13,{{ - 33} \over 2}} \right)$$ <br><br>Side BC is y + 10 = $${{{{ - 33} \over 2} + 10} \over { - 13 - {{35} \over 2}}}\left( {x - {{35} \over 2}} \right)$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;y + 10 = $${{13} \over {61}}\left( {x - {{35} \over 2}} \right)$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;26x $$-$$ 122y $$-$$ 1675 = 0
mcq
jee-main-2019-online-9th-january-evening-slot
jzTjddlv24Pe3XwUGoOyx
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
A point P moves on the line 2x – 3y + 4 = 0. If Q(1, 4) and R (3, – 2) are fixed points, then the locus of the centroid of $$\Delta $$PQR is a line :
[{"identifier": "A", "content": "parallel to y-axis"}, {"identifier": "B", "content": "with slope $${2 \\over 3}$$"}, {"identifier": "C", "content": "parallel to x-axis"}, {"identifier": "D", "content": "with slope $${3 \\over 2}$$"}]
["B"]
null
Let the centroid of $$\Delta $$PQR is (h, k) &amp; P is ($$\alpha $$, $$\beta $$), then <br><br>$${{\alpha + 1 + 3} \over 3} = h\,$$&nbsp;&nbsp;&nbsp;and&nbsp;&nbsp;&nbsp;$${{\beta + 4 - 2} \over 3} = k$$ <br><br>$$\alpha = \left( {3h - 4} \right)$$&nbsp;&nbsp;&nbsp;$$\beta = \left( {3k - 4} \right)$$ <br><br>Point P($$\alpha $$, $$\beta $$) lies on the line 2x $$-$$ 3y + 4 = 0 <br><br>$$ \therefore $$&nbsp;&nbsp;2(3h $$-$$ 4) $$-$$ 3 (3k $$-$$ 2) + 4 = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;locus is 6x $$-$$ 9y + 2 = 0
mcq
jee-main-2019-online-10th-january-morning-slot
tkJLUql0mThR9SD5j5Xie
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
If the line 3x + 4y – 24 = 0 intersects the x-axis at the point A and the y-axis at the point B, then the incentre of the triangle OAB, where O is the origin, is :
[{"identifier": "A", "content": "(3, 4)"}, {"identifier": "B", "content": "(2, 2)"}, {"identifier": "C", "content": "(4, 4)"}, {"identifier": "D", "content": "(4, 3)"}]
["B"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265477/exam_images/migtvndabwdpqcwl9h0o.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 10th January Morning Slot Mathematics - Straight Lines and Pair of Straight Lines Question 101 English Explanation"> <br><br>$$\left| {{{3r + 4r - 24} \over 5}} \right| = r$$ <br><br>$$7r - 24 = \pm 5r$$ <br><br>$$2r = 24$$&nbsp;&nbsp;or&nbsp;&nbsp;$$12r + 24$$ <br><br>$$r = 14,\,\,\,r = 2$$ <br><br> then incentre is $$(2,2)$$
mcq
jee-main-2019-online-10th-january-morning-slot
TWc5X8nsXEQEf4RxhueyF
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
Two vertices of a triangle are (0, 2) and (4, 3). If its orthocenter is at the origin, then its third vertex lies in which quadrant :
[{"identifier": "A", "content": "third"}, {"identifier": "B", "content": "fourth"}, {"identifier": "C", "content": "second"}, {"identifier": "D", "content": "first"}]
["C"]
null
m<sub>BD</sub> $$ \times $$ m<sub>AD</sub> = $$-$$ 1 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$\left( {{{3 - 2} \over {4 - 0}}} \right) \times \left( {{{b - 0} \over {a - 0}}} \right) = - 1$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;b + 4a = 0 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . . (i) <br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267693/exam_images/loayka4cghxne7uqkofa.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 10th January Evening Slot Mathematics - Straight Lines and Pair of Straight Lines Question 99 English Explanation"> <br>m<sub>AB</sub> $$ \times $$ m<sub>CF</sub> = $$-$$ 1 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$$\left( {{{\left( {b - 2} \right)} \over {a - 0}}} \right) \times \left( {{3 \over 4}} \right) = - 1$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;3b $$-$$ 6 = $$-$$ 4a <br><br>$$ \Rightarrow $$&nbsp;&nbsp;4a + 3b = 6 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . . .(ii) <br><br>From (i) and (ii) <br><br>a = $${{ - 3} \over 4}$$, b = 3 <br><br>$$ \therefore $$&nbsp;&nbsp;II<sup>nd</sup> quadrant.
mcq
jee-main-2019-online-10th-january-evening-slot
8T16OEh0f3XuKhA4lw7k9k2k5e4orbt
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
Let A(1, 0), B(6, 2) and C $$\left( {{3 \over 2},6} \right)$$ be the vertices of a triangle ABC. If P is a Point inside the triangle ABC such that the triangles APC, APB and BPC have equal areas, then the length of the line segment PQ, where Q is the point $$\left( { - {7 \over 6}, - {1 \over 3}} \right)$$, is ________.
[]
null
5
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265627/exam_images/uw3nb7jjk16aarugxdjz.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2020 (Online) 7th January Morning Slot Mathematics - Straight Lines and Pair of Straight Lines Question 86 English Explanation"> <br> P is centroid of the triangle ABC. <br><br>P = $$\left( {{{1 + 6 + {3 \over 2}} \over 3},{{0 + 2 + 6} \over 3}} \right)$$ <br><br>= $$\left( {{{17} \over 6},{8 \over 3}} \right)$$ <br><br>Given Q $$\left( { - {7 \over 6}, - {1 \over 3}} \right)$$. <br><br>$$ \therefore $$ PQ = $$\sqrt {{{\left( {{{24} \over 6}} \right)}^2} + {{\left( {{9 \over 3}} \right)}^2}} $$ = 5
integer
jee-main-2020-online-7th-january-morning-slot
kAbgo0MsBNIlywerYv7k9k2k5itigqx
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
Let C be the centroid of the triangle with vertices (3, –1), (1, 3) and (2, 4). Let P be the point of intersection of the lines x + 3y – 1 = 0 and 3x – y + 1 = 0. Then the line passing through the points C and P also passes through the point :
[{"identifier": "A", "content": "(\u20139, \u20137)"}, {"identifier": "B", "content": "(9, 7)"}, {"identifier": "C", "content": "(7, 6)"}, {"identifier": "D", "content": "(\u20139, \u20136)"}]
["D"]
null
Centroid C $$\left( {{{3 + 1 + 2} \over 3},{{ - 1 + 3 + 4} \over 3}} \right)$$ = (2, 2) <br><br>Point of intersection of lines x + 3y – 1 = 0 <br><br>and 3x – y + 1 = 0 is P $$\left( { - {1 \over 5},{2 \over 5}} \right)$$ <br><br>So, equation of line CP is 8x – 11y + 6 = 0 <br><br>Point (–9, –6) satisfy this equation.
mcq
jee-main-2020-online-9th-january-morning-slot
9r0ym1rWgH3JCykDoIjgy2xukf4662pc
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
If a $$\Delta $$ABC has vertices A(–1, 7), B(–7, 1) and C(5, –5), then its orthocentre has coordinates :
[{"identifier": "A", "content": "(\u20133, 3)"}, {"identifier": "B", "content": "(3, \u20133)"}, {"identifier": "C", "content": "$$\\left( {{3 \\over 5}, - {3 \\over 5}} \\right)$$"}, {"identifier": "D", "content": "$$\\left( { - {3 \\over 5},{3 \\over 5}} \\right)$$"}]
["A"]
null
<picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267134/exam_images/ubvfpgl2agbziakghok1.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265216/exam_images/cip9scai14rag6uy6gdh.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267104/exam_images/idr7pfamynl59pilcm5t.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2020 (Online) 3rd September Evening Slot Mathematics - Straight Lines and Pair of Straight Lines Question 81 English Explanation"></picture> <br><br>equation of CD <br> <br>y + 5 = -1 (x - 5) <br><br>$$ \Rightarrow $$ x + y = 0 .....(1) <br><br> equation of AE <br><br>y - 7 = 2 (x + 1) <br><br>$$ \Rightarrow $$ 2x - y = -9 ......(2) <br><br> from (1) &amp; (2) <br><br> x = -3, y = 3 <br><br> Othocentre = (-3, 3)
mcq
jee-main-2020-online-3rd-september-evening-slot
2l8AfZuROD0j15pyvo1kmja51tj
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
In a triangle PQR, the co-ordinates of the points P and Q are ($$-$$2, 4) and (4, $$-$$2) respectively. If the equation of the perpendicular bisector of PR is 2x $$-$$ y + 2 = 0, then the centre of the circumcircle of the $$\Delta$$PQR is :
[{"identifier": "A", "content": "($$-$$1, 0)"}, {"identifier": "B", "content": "(1, 4)"}, {"identifier": "C", "content": "(0, 2)"}, {"identifier": "D", "content": "($$-$$2, $$-$$2)"}]
["D"]
null
Mid point of $$PQ \equiv \left( {{{ - 2 + 4} \over 2},{{4 - 2} \over 2}} \right) \equiv (1,1)$$<br><br>Slope of $$PQ = {{4 + 2} \over { - 2 - 4}} = - 1$$<br><br>Slope of perpendicular bisector of PQ = 1<br><br>Equation of perpendicular bisector of PQ <br><br>$$y - 1 = 1(x - 1)$$<br><br>$$ \Rightarrow y = x$$<br><br>Solving with perpendicular bisector of PR, <br><br>2x $$-$$ y + 2 = 0<br><br>Circumcentre is ($$-$$2, $$-$$2)
mcq
jee-main-2021-online-17th-march-morning-shift
0EJF9pQuqeuwViMpNb1kmknr7sp
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
Let tan$$\alpha$$, tan$$\beta$$ and tan$$\gamma$$; $$\alpha$$, $$\beta$$, $$\gamma$$ $$\ne$$ $${{(2n - 1)\pi } \over 2}$$, n$$\in$$N be the slopes of three line segments OA, OB and OC, respectively, where O is origin. If circumcentre of $$\Delta$$ABC coincides with origin and its orthocentre lies on y-axis, then the value of $${\left( {{{\cos 3\alpha + \cos 3\beta + \cos 3\gamma } \over {\cos \alpha \cos \beta \cos \gamma }}} \right)^2}$$ is equal to ____________.
[]
null
144
Since orthocentre and circumcentre both lies on y-axis.<br><br>$$ \Rightarrow $$ Centroid also lies on y-axis.<br><br>$$ \Rightarrow $$ $$\sum {\cos \alpha = 0} $$<br><br>cos$$\alpha$$ + cos$$\beta$$ + cos$$\gamma$$ = 0<br><br>$$ \Rightarrow $$ cos<sup>3</sup> $$\alpha$$ + cos<sup>3</sup> $$\beta$$ + cos<sup>3</sup> $$\gamma$$ = 3cos$$\alpha$$cos$$\beta$$cos$$\gamma$$<br><br>$$ \therefore $$ $${{\cos 3\alpha + \cos 3\beta + \cos 3\gamma } \over {\cos \alpha \cos \beta \cos \gamma }}$$<br><br>$$ = {{4({{\cos }^3}\alpha + {{\cos }^3}\beta + {{\cos }^3}\gamma ) - 3(\cos \alpha + \cos \beta + \cos \gamma )} \over {\cos \alpha \cos \beta \cos \gamma }} = 12$$<br><br>then, $${\left( {{{\cos 3\alpha + \cos 3\beta + \cos 3\gamma } \over {\cos \alpha \cos \beta \cos \gamma }}} \right)^2} = 144$$
integer
jee-main-2021-online-17th-march-evening-shift
Qjcr2pxjkzDbBSuAFH1kmm3hfre
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
Let the centroid of an equilateral triangle ABC be at the origin. Let one of the sides of the equilateral triangle be along the straight line x + y = 3. If R and r be the radius of circumcircle and incircle respectively of $$\Delta$$ABC, then (R + r) is equal to :
[{"identifier": "A", "content": "$$7\\sqrt 2 $$"}, {"identifier": "B", "content": "$${9 \\over {\\sqrt 2 }}$$"}, {"identifier": "C", "content": "$$2\\sqrt 2 $$"}, {"identifier": "D", "content": "$$3\\sqrt 2 $$"}]
["B"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264797/exam_images/ajzrnczcpsrafxwpsdbk.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 18th March Evening Shift Mathematics - Straight Lines and Pair of Straight Lines Question 65 English Explanation"> <br><br>$$r = \left| {{{0 + 0 - 3} \over {\sqrt 2 }}} \right| = {3 \over {\sqrt 2 }}$$<br><br>$$\sin 30^\circ = {r \over R} = {1 \over 2}$$<br><br>R = 2r<br><br>So, $$r + R = 3r = 3 \times \left( {{3 \over {\sqrt 2 }}} \right) = {9 \over {\sqrt 2 }}$$
mcq
jee-main-2021-online-18th-march-evening-shift
1krrwe4qx
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
Consider a triangle having vertices A($$-$$2, 3), B(1, 9) and C(3, 8). If a line L passing through the circum-centre of triangle ABC, bisects line BC, and intersects y-axis at point $$\left( {0,{\alpha \over 2}} \right)$$, then the value of real number $$\alpha$$ is ________________.
[]
null
9
<br>$${\left( {\sqrt {50} } \right)^2} = {\left( {\sqrt {45} } \right)^2} + {\left( {\sqrt 5 } \right)^2}$$<br><br>$$\angle B = 90^\circ $$<br><br>Circum-center $$ = \left( {{1 \over 2},{{11} \over 2}} \right)$$<br><br>Mid point of BC $$ = \left( {2,{{17} \over 2}} \right)$$<br><br>Line : $$\left( {y - {{11} \over 2}} \right) = 2\left( {x - {1 \over 2}} \right) \Rightarrow y = 2x + {9 \over 2}$$<br><br>Passing through $$\left( {0,{\alpha \over 2}} \right)$$<br><br>$${\alpha \over 2} = {9 \over 2} \Rightarrow \alpha = 9$$<img src="https://app-content.cdn.examgoal.net/fly/@width/image/1kwjjv06e/aee1807a-0488-47e6-945f-12a768cd6dab/5074a460-5075-11ec-8f7b-45f8e5a35226/file-1kwjjv06f.jpeg" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2021 (Online) 20th July Evening Shift Mathematics - Straight Lines and Pair of Straight Lines Question 64 English Explanation">
integer
jee-main-2021-online-20th-july-evening-shift
1l54bfz5l
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
<p>The distance of the origin from the centroid of the triangle whose two sides have the equations $$x - 2y + 1 = 0$$ and $$2x - y - 1 = 0$$ and whose orthocenter is $$\left( {{7 \over 3},{7 \over 3}} \right)$$ is :</p>
[{"identifier": "A", "content": "$$\\sqrt 2 $$"}, {"identifier": "B", "content": "2"}, {"identifier": "C", "content": "2$$\\sqrt 2 $$"}, {"identifier": "D", "content": "4"}]
["C"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l5gmnar6/e2444175-9dd2-4655-a827-d624ec162bae/ce00a120-0107-11ed-a5c5-a7461ac77783/file-1l5gmnar7.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l5gmnar6/e2444175-9dd2-4655-a827-d624ec162bae/ce00a120-0107-11ed-a5c5-a7461ac77783/file-1l5gmnar7.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 29th June Evening Shift Mathematics - Straight Lines and Pair of Straight Lines Question 53 English Explanation"></p> <p>For point A,</p> <p>2x $$-$$ y $$-$$ 1 = 0 ...... (1)</p> <p>x $$-$$ 2y + 1 = 0 ...... (2)</p> <p>Solving (1) and (2), we get</p> <p>x = 1, y = 1.</p> <p>$$\therefore$$ Point A = (1, 1)</p> <p>Altitude from B to line AC is perpendicular to line AC.</p> <p>$$\therefore$$ Equator of altitude BH is</p> <p>2x + y + $$\lambda$$ = 0 ...... (3)</p> <p>It passes through point $$H\left( {{7 \over 3},{7 \over 3}} \right)$$ so it satisfy the equation (3).</p> <p>$${{14} \over 3} + {7 \over 3} + \lambda = 0$$</p> <p>$$\Rightarrow$$ $$\alpha$$ = $$-$$7</p> <p>$$\therefore$$ Altitude BH = 2x + y $$-$$ 7 = 0 ...... (4)</p> <p>Solving equation (1) and (4), we get</p> <p>x = 2, y = 3.</p> <p>$$\therefore$$ Point B = (2, 3)</p> <p>Altitude from C to line AB is perpendicular to line AB.</p> <p>$$\therefore$$ Equation of altitude CH is</p> <p>x + 2y + $$\lambda$$ = 0 ...... (5)</p> <p>It passes through point $$H\left( {{7 \over 3},{7 \over 3}} \right)$$ so it satisfy equation (5).</p> <p>$${7 \over 3} + {{14} \over 3} + \lambda = 0$$</p> <p>$$\Rightarrow$$ $$\lambda$$ = $$-$$7</p> <p>$$\therefore$$ Altitude CH = x + 2y $$-$$ 7 = 0 ...... (6)</p> <p>Solving equation (2) and (6), we get</p> <p>x = 3, y = 2</p> <p>$$\therefore$$ Point C = (3, 2)</p> <p>Centroid G (x, y) of triangle A (1, 1), B (2, 3) and C (3, 2) is</p> <p>$$x = {{1 + 2 + 3} \over 3} = 2$$, $$y = {{1 + 2 + 3} \over 3} = 2$$</p> <p>Now, distance of point G (2, 2) from center O (0, 0) is</p> <p>$$OG = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 $$</p>
mcq
jee-main-2022-online-29th-june-evening-shift
1l57oeszr
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
<p>In an isosceles triangle ABC, the vertex A is (6, 1) and the equation of the base BC is 2x + y = 4. Let the point B lie on the line x + 3y = 7. If ($$\alpha$$, $$\beta$$) is the centroid of $$\Delta$$ABC, then 15($$\alpha$$ + $$\beta$$) is equal to :</p>
[{"identifier": "A", "content": "39"}, {"identifier": "B", "content": "41"}, {"identifier": "C", "content": "51"}, {"identifier": "D", "content": "63"}]
["C"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l5q9xuo0/da6e885c-cdde-4480-b9d1-c22df8a701e5/f34a6800-0655-11ed-903e-c9687588b3f3/file-1l5q9xuo1.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l5q9xuo0/da6e885c-cdde-4480-b9d1-c22df8a701e5/f34a6800-0655-11ed-903e-c9687588b3f3/file-1l5q9xuo1.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 27th June Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 50 English Explanation"></p> <p>$$\left. \matrix{ 2x + y = 4 \hfill \cr 2x + 6y = 14 \hfill \cr} \right\}y = 2,\,x = 3$$</p> <p>B(1, 2)</p> <p>Let C(k, 4 $$-$$ 2k)</p> <p>Now $$A{B^2} = A{C^2}$$</p> <p>$${5^2} + {( - 1)^2} = {(6 - k)^2} + {( - 3 + 2k)^2}$$</p> <p>$$ \Rightarrow 5{k^2} - 24k + 19 = 0$$</p> <p>$$(5k - 19)(k - 1) = 0 \Rightarrow k = {{19} \over 5}$$</p> <p>$$C\left( {{{19} \over 5}, - {{18} \over 5}} \right)$$</p> <p>Centroid ($$\alpha$$, $$\beta$$)</p> <p>$$\alpha = {{6 + 1 + {{19} \over 5}} \over 3} = {{18} \over 5}$$</p> <p>$$\beta = {{1 + 2 - {{18} \over 5}} \over 3} = - {1 \over 5}$$</p> <p>Now $$15(\alpha + \beta )$$</p> <p>$$15\left( {{{17} \over 5}} \right) = 51$$</p>
mcq
jee-main-2022-online-27th-june-morning-shift
1l6gjlh74
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
<p>The equations of the sides $$\mathrm{AB}, \mathrm{BC}$$ and $$\mathrm{CA}$$ of a triangle $$\mathrm{ABC}$$ are $$2 x+y=0, x+\mathrm{p} y=15 \mathrm{a}$$ and $$x-y=3$$ respectively. If its orthocentre is $$(2, a),-\frac{1}{2}&lt;\mathrm{a}&lt;2$$, then $$\mathrm{p}$$ is equal to ______________.</p>
[]
null
3
<p> <img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l7nbzt6e/130dc0b4-c7c5-40cb-813c-5bded9b079b4/10d39160-2c50-11ed-9dc0-a1792fcc650d/file-1l7nbzt6f.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l7nbzt6e/130dc0b4-c7c5-40cb-813c-5bded9b079b4/10d39160-2c50-11ed-9dc0-a1792fcc650d/file-1l7nbzt6f.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 26th July Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 42 English Explanation"> </p> <p>Slope of $$AH = {{a + 2} \over 1}$$</p> <p>Slope of $$BC = - {1 \over p}$$</p> <p>$$\therefore$$ $$p = a + 2$$ ...... (i)</p> <p>Coordinate of $$C = \left( {{{18p - 30} \over {p + 1}},\,{{15p - 33} \over {p + 1}}} \right)$$</p> <p>Slope of $$HC = {{{{15P - 33} \over {p + 1}} - a} \over {{{18p - 30} \over {p + 1}} - 2}} = {{15p - 33 - (p - 2)(p + 1)} \over {18p - 30 - 2p - 2}}$$</p> <p>$$ = {{16p - {p^2} - 31} \over {16p - 32}}$$</p> <p>$$\because$$ $${{16p - {p^2} - 31} \over {16p - 32}} \times - 2 = - 1$$</p> <p>$$\therefore$$ $${p^2} - 8p + 15 = 0$$</p> <p>$$\therefore$$ $$p = 3$$ or $$5$$</p> <p>But if $$p = 5$$ then $$a = 3$$ not acceptable</p> <p>$$\therefore$$ $$p = 3$$</p>
integer
jee-main-2022-online-26th-july-morning-shift
1l6kk3vb7
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
<p>The equations of the sides $$\mathrm{AB}, \mathrm{BC}$$ and CA of a triangle ABC are $$2 x+y=0, x+\mathrm{p} y=39$$ and $$x-y=3$$ respectively and $$\mathrm{P}(2,3)$$ is its circumcentre. Then which of the following is NOT true?</p>
[{"identifier": "A", "content": "$$(\\mathrm{AC})^{2}=9 \\mathrm{p}$$"}, {"identifier": "B", "content": "$$(\\mathrm{AC})^{2}+\\mathrm{p}^{2}=136$$"}, {"identifier": "C", "content": "$$32<\\operatorname{area}\\,(\\Delta \\mathrm{ABC})<36$$"}, {"identifier": "D", "content": "$$34<\\operatorname{area}\\,(\\triangle \\mathrm{ABC})<38$$"}]
["D"]
null
<p>Intersection of $$2x + y = 0$$ and $$x - y = 3\,:\,A(1, - 2)$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l7qa6xtq/139436a6-31d3-4607-a05c-66e2b0bc9d4d/5ec55de0-2def-11ed-a744-1fb8f3709cfa/file-1l7qa6xtr.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l7qa6xtq/139436a6-31d3-4607-a05c-66e2b0bc9d4d/5ec55de0-2def-11ed-a744-1fb8f3709cfa/file-1l7qa6xtr.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 27th July Evening Shift Mathematics - Straight Lines and Pair of Straight Lines Question 40 English Explanation"></p> <p>Equation of perpendicular bisector of AB is</p> <p>$$x - 2y = - 4$$</p> <p>Equation of perpendicular bisector of AC is</p> <p>$$x + y = 5$$</p> <p>Point B is the image of A in line $$x - 2y + 4 = 0$$ which is obtained as $$B\left( {{{ - 13} \over 5},{{26} \over 5}} \right)$$</p> <p>Similarly vertex $$C:(7,4)$$</p> <p>Equation of line $$BC:x + 8y = 39$$</p> <p>So, $$p = 8$$</p> <p>$$AC = \sqrt {{{(7 - 1)}^2} + {{(4 + 2)}^2}} = 6\sqrt 2 $$</p> <p>Area of triangle $$ABC = 32.4$$</p>
mcq
jee-main-2022-online-27th-july-evening-shift
1l6p2cpyz
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
<p>Let the circumcentre of a triangle with vertices A(a, 3), B(b, 5) and C(a, b), ab &gt; 0 be P(1,1). If the line AP intersects the line BC at the point Q$$\left(k_{1}, k_{2}\right)$$, then $$k_{1}+k_{2}$$ is equal to :</p>
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "$$\\frac{4}{7}$$"}, {"identifier": "C", "content": "$$\\frac{2}{7}$$"}, {"identifier": "D", "content": "4"}]
["B"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l7ssjo3c/b55f47a7-9a89-4d60-875b-d115e046f61f/b6651380-2f50-11ed-85dd-19dc023e9ad1/file-1l7ssjo3d.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l7ssjo3c/b55f47a7-9a89-4d60-875b-d115e046f61f/b6651380-2f50-11ed-85dd-19dc023e9ad1/file-1l7ssjo3d.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 29th July Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 39 English Explanation"></p> <p>Let D be mid-point of AC, then</p> <p>$${{b + 3} \over 2} = 1 \Rightarrow b = - 1$$</p> <p>Let E be mid-point of BC,</p> <p>$${{5 - b} \over {b - a}}\,.\,{{{{(3 + b)} \over 2}} \over {{{a + b} \over 2} - 1}} = - 1$$</p> <p>On putting $$b = - 1$$, we get $$a = 5$$ or $$-3$$</p> <p>But $$a = 5$$ is rejected as $$ab &gt; 0$$</p> <p>$$A( - 3,3),\,B( - 1,5),\,C( - 3, - 1),\,P(1,1)$$</p> <p>Line $$BC \Rightarrow y = 3x + 8$$</p> <p>Line $$AP \Rightarrow y = {{3 - x} \over 2}$$</p> <p>Point of intersection $$\left( {{{ - 13} \over 7},{{17} \over 7}} \right)$$</p>
mcq
jee-main-2022-online-29th-july-morning-shift
1l6relrm0
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
<p>Let $$\mathrm{A}(\alpha,-2), \mathrm{B}(\alpha, 6)$$ and $$\mathrm{C}\left(\frac{\alpha}{4},-2\right)$$ be vertices of a $$\triangle \mathrm{ABC}$$. If $$\left(5, \frac{\alpha}{4}\right)$$ is the circumcentre of $$\triangle \mathrm{ABC}$$, then which of the following is NOT correct about $$\triangle \mathrm{ABC}$$?</p>
[{"identifier": "A", "content": "area is 24"}, {"identifier": "B", "content": "perimeter is 25"}, {"identifier": "C", "content": "circumradius is 5"}, {"identifier": "D", "content": "inradius is 2"}]
["B"]
null
<img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l7xrag3x/1171f510-f750-4a4d-8bf7-c934d96c9030/b8102bd0-320b-11ed-b25b-a342e8d3e498/file-1l7xrag3y.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l7xrag3x/1171f510-f750-4a4d-8bf7-c934d96c9030/b8102bd0-320b-11ed-b25b-a342e8d3e498/file-1l7xrag3y.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 29th July Evening Shift Mathematics - Straight Lines and Pair of Straight Lines Question 37 English Explanation"> <br><br>Circumcentre of $\triangle A B C$ <br><br>$$ \begin{aligned} &amp;=\left(\frac{\alpha+\frac{\alpha}{4}}{2}, \frac{6-2}{2}\right) \\\\ &amp;=\left(\frac{5 \alpha}{8}, 2\right) \\\\ &amp;=\left(5, \frac{\alpha}{4}\right) \\\\ &amp;\Rightarrow \alpha=8 \end{aligned} $$ <br><br>$\operatorname{area}(\triangle A B C)=\frac{1}{2} \cdot \frac{3 \alpha}{4} \times 8=24$ sq. units <br><br>$$ \begin{aligned} \text { Perimeter } &amp;=8+\frac{3 \alpha}{4}+\sqrt{8^{2}+\left(\frac{3 \alpha}{4}\right)^{2}} \\\\ &amp;=8+6+10=24 \end{aligned} $$ <br><br>Circumradius $=\frac{10}{2}=5$ <br><br> inradius $(r)=\frac{\Delta}{s}=\frac{24}{12}=2$
mcq
jee-main-2022-online-29th-july-evening-shift
1ldonjeqx
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
<p>If the orthocentre of the triangle, whose vertices are (1, 2), (2, 3) and (3, 1) is $$(\alpha,\beta)$$, then the quadratic equation whose roots are $$\alpha+4\beta$$ and $$4\alpha+\beta$$, is :</p>
[{"identifier": "A", "content": "$$x^2-20x+99=0$$"}, {"identifier": "B", "content": "$$x^2-22x+120=0$$"}, {"identifier": "C", "content": "$$x^2-19x+90=0$$"}, {"identifier": "D", "content": "$$x^2-18x+80=0$$"}]
["A"]
null
<img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lf41l718/e00587c4-d3cd-4c76-ac3c-9d17149d6abd/35cb41c0-c016-11ed-89c7-f9c9b186ec3c/file-1lf41l719.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lf41l718/e00587c4-d3cd-4c76-ac3c-9d17149d6abd/35cb41c0-c016-11ed-89c7-f9c9b186ec3c/file-1lf41l719.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2023 (Online) 1st February Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 35 English Explanation"> <br><br>$$ \mathrm{m}=-\frac{1}{2} $$ <br><br>Here $\mathrm{m_BH} \times \mathrm{m_AC}=-1$ <br><br>$$ \begin{array}{ll} &amp; \left(\frac{\beta-3}{\alpha-2}\right)\left(\frac{1}{-2}\right)=-1 \\\\ &amp; \beta-3=2 \alpha-4 \\\\ &amp; \beta=2 \alpha-1 \\\\ &amp; \mathrm{~m}_{\mathrm{AH}} \times \mathrm{m}_{\mathrm{BC}}=-1 \\\\ \Rightarrow &amp; \left(\frac{\beta-2}{\alpha-1}\right)(-2)=-1 \\\\ \Rightarrow &amp; 2 \beta-4=\alpha-1 \\\\ \Rightarrow &amp; 2(2 \alpha-1)=\alpha+3 \\\\ \Rightarrow &amp; 3 \alpha=5 \\\\ &amp; \alpha=\frac{5}{3}, \beta=\frac{7}{3} \Rightarrow \mathrm{H}\left(\frac{5}{3}, \frac{7}{3}\right) \\\\ &amp; \alpha+4 \beta=\frac{5}{3}+\frac{28}{3}=\frac{33}{3}=11 \\\\ &amp; \beta+4 \alpha=\frac{7}{3}+\frac{20}{3}=\frac{27}{3}=9 \\\\ &amp; \mathrm{x}^2-20 \mathrm{x}+99=0 \end{array} $$
mcq
jee-main-2023-online-1st-february-morning-shift
1ldwxnvl2
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
<p>The equations of the sides AB, BC and CA of a triangle ABC are : $$2x+y=0,x+py=21a,(a\pm0)$$ and $$x-y=3$$ respectively. Let P(2, a) be the centroid of $$\Delta$$ABC. Then (BC)$$^2$$ is equal to ___________.</p>
[]
null
122
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1le5hxc6e/38f5f2ee-c758-49c2-a1e2-99e79ae87394/aad05860-ad16-11ed-8a8c-4d67f5492755/file-1le5hxc6f.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1le5hxc6e/38f5f2ee-c758-49c2-a1e2-99e79ae87394/aad05860-ad16-11ed-8a8c-4d67f5492755/file-1le5hxc6f.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2023 (Online) 24th January Evening Shift Mathematics - Straight Lines and Pair of Straight Lines Question 32 English Explanation"></p> $$ \because \frac{21 a}{1-2 p}+1+\frac{3 p+21 a}{p+1}=6 $$ <br><br> $$ \begin{aligned} &amp; \therefore 4 p^{2}-21 a p+8 p+42 a-5=0\quad...(1) \end{aligned} $$ <br><br> And $\frac{-42 a}{1-2 p}-2+\frac{21 a-3}{p+1}=3 a$ <br><br> $$ \therefore 4 p^{2}-81 a p+6 a p^{2}-24 a+8 p-5=0 \quad...(2) $$ <br><br> From equation (1) - equation (2) we get; <br><br> $$ 60 a p+66 a-6 a p^{2}=0 $$ <br><br> $$ \begin{aligned} \because a \neq 0 \Rightarrow p^{2}-10 p-11=0 \\\\ p=-1 \text { or } 11 \Rightarrow p=11 . \end{aligned} $$ <br><br> When $p=11$ then $a=3$ <br><br> Coordinate of $B=(-3,6)$ <br><br> And coordinate of $C=(8,5)$ <br><br> $\therefore B C^{2}=122$
integer
jee-main-2023-online-24th-january-evening-shift
lgny7des
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
If $(\alpha, \beta)$ is the orthocenter of the triangle $\mathrm{ABC}$ with vertices $A(3,-7), B(-1,2)$ and $C(4,5)$, then $9 \alpha-6 \beta+60$ is equal to :
[{"identifier": "A", "content": "30"}, {"identifier": "B", "content": "40"}, {"identifier": "C", "content": "25"}, {"identifier": "D", "content": "35"}]
["C"]
null
<img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lgxuayzx/c68e4c1e-f2ed-4189-96d3-77fa5b78bc40/7473b5d0-e445-11ed-97cc-4f9b4bf32610/file-1lgxuayzy.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lgxuayzx/c68e4c1e-f2ed-4189-96d3-77fa5b78bc40/7473b5d0-e445-11ed-97cc-4f9b4bf32610/file-1lgxuayzy.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2023 (Online) 15th April Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 31 English Explanation"> <br><br>$$ \begin{aligned} &amp; \text { Altitude of BC: } y+7=\frac{-5}{3}(x-3) \\\\ &amp; 3 y+21=-5 x+15 \\\\ &amp; 5 x+3 y+6=0 \\\\ &amp; \text { Altitude of AC: } y-2=\frac{-1}{12}(x+1) \\\\ &amp; 12 y-24=-x-1 \\\\ &amp; x+12 y=23 \\\\ &amp; \alpha=\frac{-47}{19}, \quad \beta=\frac{121}{57} \\\\ &amp; 9 \alpha-6 \beta+60=25 \end{aligned} $$
mcq
jee-main-2023-online-15th-april-morning-shift
1lgowjxyl
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
<p>Let $$(\alpha, \beta)$$ be the centroid of the triangle formed by the lines $$15 x-y=82,6 x-5 y=-4$$ and $$9 x+4 y=17$$. Then $$\alpha+2 \beta$$ and $$2 \alpha-\beta$$ are the roots of the equation :</p>
[{"identifier": "A", "content": "$$x^{2}-7 x+12=0$$"}, {"identifier": "B", "content": "$$x^{2}-13 x+42=0$$"}, {"identifier": "C", "content": "$$x^{2}-14 x+48=0$$"}, {"identifier": "D", "content": "$$x^{2}-10 x+25=0$$"}]
["B"]
null
<ol> <li>Solve the equations $15x - y = 82$ and $6x - 5y = -4$</li> </ol> <p>Multiply the first equation by 5 and the second by 1 and then subtract the second from the first:</p> <p>$75x - 5y = 410$</p> <p>$6x - 5y = -4$</p> <p>Subtracting these gives $69x = 414$ which leads to $x = 6$</p> <p>Substitute $x = 6$ into the first equation to get $y = 8$</p> <p>So, the first vertex is $(6,8)$.</p> <ol> <li>Solve the equations $15x - y = 82$ and $9x + 4y = 17$</li> </ol> <p>Multiply the first equation by 4 and the second by 1 and then add:</p> <p>$60x - 4y = 328$</p> <p>$9x + 4y = 17$</p> <p>Adding these gives $69x = 345$ which leads to $x = 5$</p> <p>Substitute $x = 5$ into the second equation to get $y = -7$</p> <p>So, the second vertex is $(5,-7)$.</p> <ol> <li>Solve the equations $6x - 5y = -4$ and $9x + 4y = 17$</li> </ol> <p>Multiply the first equation by 4 and the second by 5 and then add:</p> <p>$24x - 20y = -16$</p> <p>$45x + 20y = 85$</p> <p>Adding these gives $69x = 69$ which leads to $x = 1$</p> <p>Substitute $x = 1$ into the first equation to get $y = 2$</p> <p>So, the third vertex is $(1,2)$.</p> <p>So, the vertices of the triangle are $(6,8)$, $(5,-7)$, and $(1,2)$.</p> <p>Now that we have the vertices of the triangle, we can find the centroid. The centroid $(\alpha, \beta)$ of a triangle with vertices $(x_1, y_1)$, $(x_2, y_2)$, and $(x_3, y_3)$ is given by :</p> <p>$$ \alpha=\frac{x_1+x_2+x_3}{3}$$, <br/><br/>$$ \beta=\frac{y_1+y_2+y_3}{3} $$</p> <p>Substituting the coordinates of the vertices into these equations, we get:</p> <p>$$ \alpha=\frac{6+5+1}{3}=4 $$, <br/><br/>$$ \beta=\frac{8-7+2}{3}=1 $$</p> <p>Then, we find $\alpha+2\beta$ and $2\alpha-\beta$:</p> <p>$$ \alpha+2\beta=4+2(1)=6 \ 2\alpha-\beta=2(4)-1=7 $$</p> <p>So, $\alpha+2\beta=6$ and $2\alpha-\beta=7$ are the roots of the quadratic equation. </p> <p>We can write the quadratic equation as </p> <p>$$x^2-(\alpha+2\beta+2\alpha-\beta)x+(\alpha+2\beta)(2\alpha-\beta)=0$$</p> <p>Substituting $\alpha=4$, $\beta=1$ gives us:</p> <p>$$x^2-13x+42=0$$</p>
mcq
jee-main-2023-online-13th-april-evening-shift
1lgzzli1e
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
<p>Let $$C(\alpha, \beta)$$ be the circumcenter of the triangle formed by the lines</p> <p>$$4 x+3 y=69$$</p> <p>$$4 y-3 x=17$$, and</p> <p>$$x+7 y=61$$.</p> <p>Then $$(\alpha-\beta)^{2}+\alpha+\beta$$ is equal to :</p>
[{"identifier": "A", "content": "15"}, {"identifier": "B", "content": "17"}, {"identifier": "C", "content": "16"}, {"identifier": "D", "content": "18"}]
["B"]
null
We have, <br><br>$$ \begin{aligned} &amp; 4 x+3 y=69 .......(i) \\\\ &amp; 4 y-3 x=17 .......(ii) \\\\ &amp; x+7 y=61 .......(iii) \end{aligned} $$ <br><br>On solving (i) and (iii), we get, <br><br>$$ \begin{aligned} &amp; x=12, \text { and } y=7 \\\\ &amp; \text { So, } A \equiv(12,7) \end{aligned} $$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1ljg2jcjv/40b71be8-c597-4834-92a0-31af71c5e4d0/30e031b0-15e4-11ee-a5f8-af44f69476e0/file-6y3zli1ljg2jcjw.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1ljg2jcjv/40b71be8-c597-4834-92a0-31af71c5e4d0/30e031b0-15e4-11ee-a5f8-af44f69476e0/file-6y3zli1ljg2jcjw.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh; vertical-align: baseline;" alt="JEE Main 2023 (Online) 8th April Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 26 English Explanation"> <br>On solving (ii) and (iii), we get, <br><br>$$ \begin{aligned} &amp; x=5 \text { and } y=8 \\\\ &amp; \text { So, B } \equiv(5,8) \end{aligned} $$ <br><br>$$ \begin{aligned} &amp; \text { Hence, circumcentre } \equiv\left(\frac{12+5}{2}, \frac{7+8}{2}\right) \\\\ &amp; \equiv\left(\frac{17}{2}, \frac{15}{2}\right) \end{aligned} $$ <br><br>$$ \begin{aligned} &amp; \therefore \alpha=\frac{17}{2}, \beta=\frac{15}{2} \\\\ &amp; \therefore(\alpha-\beta)^2+(\alpha+\beta)=\left(\frac{17}{2}-\frac{15}{2}\right)^2+\left(\frac{17}{2}+\frac{15}{2}\right) \\\\ &amp; =(1)^2+(16)=17 \end{aligned} $$
mcq
jee-main-2023-online-8th-april-morning-shift
lv5gs2w8
maths
straight-lines-and-pair-of-straight-lines
centers-of-triangle
<p>If the orthocentre of the triangle formed by the lines $$2 x+3 y-1=0, x+2 y-1=0$$ and $$a x+b y-1=0$$, is the centroid of another triangle, whose circumcentre and orthocentre respectively are $$(3,4)$$ and $$(-6,-8)$$, then the value of $$|a-b|$$ is _________.</p>
[]
null
16
<p>Let circumcentre, orthocentre and centroid of a triangle $$P Q R$$ are $$C_1, H_1$$ and $$G_1$$ respectively</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lw8vj8jo/f80a9888-77a1-4003-a6a8-8ff4c790fc36/21421350-134e-11ef-8bbe-1b4949638519/file-1lw8vj8jp.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lw8vj8jo/f80a9888-77a1-4003-a6a8-8ff4c790fc36/21421350-134e-11ef-8bbe-1b4949638519/file-1lw8vj8jp.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 8th April Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 6 English Explanation 1"></p> <p>$$\Rightarrow G_1 \equiv(0,0)$$ orthocentre of $$\triangle A B C$$ is $$(0,0)$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lw8vkatq/d9a6291d-037a-470f-95f4-e32e235ad67c/3ed3cee0-134e-11ef-8bbe-1b4949638519/file-1lw8vkatr.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lw8vkatq/d9a6291d-037a-470f-95f4-e32e235ad67c/3ed3cee0-134e-11ef-8bbe-1b4949638519/file-1lw8vkatr.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 8th April Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 6 English Explanation 2"></p> <p>$$\begin{aligned} &amp; m_{A H_2}=+\frac{b}{a} \Rightarrow a+b=0 \\ &amp; \text { eq }{ }^{\text {n }} \text { of lines } H_2 C \text { is } y=\frac{3}{2} x \\ &amp; \Rightarrow \text { point } C \equiv\left(\frac{1}{4}, \frac{3}{8}\right) \text { lies on } a x+b y-1=0 \\ &amp; \Rightarrow \frac{a}{4}+\frac{3}{8} b-1=0 \Rightarrow \frac{a}{4}-\frac{3}{8} a-1=0 \\ &amp; \Rightarrow a=-8, b=8 \\ &amp; |a-b|=16 \end{aligned}$$</p>
integer
jee-main-2024-online-8th-april-morning-shift
qEqKSCymL9HY964D
maths
straight-lines-and-pair-of-straight-lines
distance-formula
A triangle with vertices $$\left( {4,0} \right),\left( { - 1, - 1} \right),\left( {3,5} \right)$$ is :
[{"identifier": "A", "content": "isosceles and right angled"}, {"identifier": "B", "content": "isosceles but not right angled"}, {"identifier": "C", "content": "right angled but not isosceles "}, {"identifier": "D", "content": "neither right angled nor isosceles "}]
["A"]
null
$$AB = \sqrt {{{\left( {4 + 1} \right)}^2} + {{\left( {0 + 1} \right)}^2}} = \sqrt {26} ;$$ <br><br>$$BC = \sqrt {{{\left( {3 + 1} \right)}^2} + {{\left( {5 + 1} \right)}^2}} = \sqrt {52} $$ <br><br>$$CA = \sqrt {{{\left( {4 - 3} \right)}^2} + {{\left( {0 - 5} \right)}^2}} = \sqrt {26} ;$$ <br><br>In isosceles triangle side $$AB=CA$$ <br><br>For right angled triangle, $$B{C^2} = A{B^2} + A{C^2}$$ <br><br>So, here $$BC = \sqrt {52} $$ or $$B{C^2} = 52$$ <br><br>or $$\,\,\,\,\,\,\,\,\,{\left( {\sqrt {26} } \right)^2} + {\left( {\sqrt {26} } \right)^2} = 52$$ <br><br>So, the given triangle is right angled and also isosceles.
mcq
aieee-2002
1ktocacrw
maths
straight-lines-and-pair-of-straight-lines
distance-formula
A man starts walking from the point P($$-$$3, 4), touches the x-axis at R, and then turns to reach at the point Q(0, 2). The man is walking at a constant speed. If the man reaches the point Q in the minimum time, then $$50\left( {{{(PR)}^2} + {{(RQ)}^2}} \right)$$ is equal to ____________.
[]
null
1250
<img src="https://app-content.cdn.examgoal.net/fly/@width/image/1kwjjmzcw/b86a6d68-7b5e-434f-a89c-eef8431d96b0/715950f0-5074-11ec-8a49-997c456a58f9/file-1kwjjmzcx.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1kwjjmzcw/b86a6d68-7b5e-434f-a89c-eef8431d96b0/715950f0-5074-11ec-8a49-997c456a58f9/file-1kwjjmzcx.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2021 (Online) 1st September Evening Shift Mathematics - Straight Lines and Pair of Straight Lines Question 56 English Explanation"> <br>For minimum $(P R+R Q)$ <br><br>$R$ lies on $P Q^{\prime}$ (where $Q^{\prime}$ is image of $Q$ in $X$-axis) <br><br>$\Rightarrow$ Equation on $P Q^{\prime}$ is <br><br>$$ 2 x+y+2=0 \Rightarrow R(-1,0) $$ <br><br>$$ \therefore $$ 50(PR<sup>2</sup> + RQ<sup>2</sup>)<br><br>= 50(20 + 5)<br><br>= 50(25)<br><br>= 1250
integer
jee-main-2021-online-1st-september-evening-shift
1l545buee
maths
straight-lines-and-pair-of-straight-lines
distance-formula
<p>The distance between the two points A and A' which lie on y = 2 such that both the line segments AB and A' B (where B is the point (2, 3)) subtend angle $${\pi \over 4}$$ at the origin, is equal to :</p>
[{"identifier": "A", "content": "10"}, {"identifier": "B", "content": "$${48 \\over 5}$$"}, {"identifier": "C", "content": "$${52 \\over 5}$$"}, {"identifier": "D", "content": "3"}]
["C"]
null
Let $A(\alpha, 2) \quad$ Given $B(2,3)$ <br/><br/> $$ \begin{aligned} & m_{O A}=\frac{2}{\alpha} \quad\&\quad m_{O B}=\frac{3}{2} \\\\ & \tan \frac{\pi}{4}=\left|\frac{\frac{2}{\alpha}-\frac{3}{2}}{1+\frac{2}{\alpha} \cdot \frac{3}{2}}\right| \Rightarrow \frac{4-3 \alpha}{2 \alpha+6}=\pm 1 \\\\ & 4-3 \alpha=2 \alpha+6 \quad \& 4-3 \alpha=-2 \alpha-6 \\\\ & \alpha=\frac{-2}{5} \& \alpha=10 \\\\ & A\left(-\frac{2}{5}, 2\right) \& A^{\prime}(10,2) \text { and } B(2,3) \\\\ & A A^{\prime}=10+\frac{2}{5}=\frac{52}{5} \end{aligned} $$
mcq
jee-main-2022-online-29th-june-morning-shift
gJzbydMWci067R88
maths
straight-lines-and-pair-of-straight-lines
distance-of-a-point-from-a-line
The shortest distance between the line $$y - x = 1$$ and the curve $$x = {y^2}$$ is :
[{"identifier": "A", "content": "$${{2\\sqrt 3 } \\over 8}$$ "}, {"identifier": "B", "content": "$${{3\\sqrt 2 } \\over 5}$$"}, {"identifier": "C", "content": "$${{\\sqrt 3 } \\over 4}$$ "}, {"identifier": "D", "content": "$${{3\\sqrt 2 } \\over 8}$$"}]
["D"]
null
Let $$\left( {{a^2},a} \right)$$ be the point of shortest distance on $$x = {y^2}$$ <br><br>Then distance between $$\left( {{a^2},a} \right)$$ and line $$x - y + 1 = 0$$ <br><br>is given by <br><br>$$\,\,\,\,\,\,\,\,D = {{{a^2} - a + 1} \over {\sqrt 2 }} = {1 \over {\sqrt 2 }}\left[ {{{\left( {a - {1 \over 2}} \right)}^2} + {3 \over 4}} \right]$$ <br><br>It is min when $$a = {1 \over 2}$$ and $$D{}_{\min } = {3 \over {4\sqrt 2 }} = {{3\sqrt 2 } \over 8}$$
mcq
aieee-2009
EXLH2cD628vv64gu
maths
straight-lines-and-pair-of-straight-lines
distance-of-a-point-from-a-line
The line $$L$$ given by $${x \over 5} + {y \over b} = 1$$ passes through the point $$\left( {13,32} \right)$$. The line K is parrallel to $$L$$ and has the equation $${x \over c} + {y \over 3} = 1.$$ Then the distance between $$L$$ and $$K$$ is :
[{"identifier": "A", "content": "$$\\sqrt {17} $$ "}, {"identifier": "B", "content": "$${{17} \\over {\\sqrt {15} }}$$ "}, {"identifier": "C", "content": "$${{23} \\over {\\sqrt {17} }}$$ "}, {"identifier": "D", "content": "$${{23} \\over {\\sqrt {15} }}$$ "}]
["C"]
null
Slope of line $$L = - {b \over 5}$$ <br><br>Slope of line $$K = - {3 \over c}$$ <br><br>Line $$L$$ is parallel to line $$k.$$ <br><br>$$ \Rightarrow {b \over 5} = {3 \over c} \Rightarrow bc = 15$$ <br><br>$$(13,32)$$ is a point on $$L.$$ <br><br>$$\therefore$$ $${{13} \over 5} + {{32} \over b} = 1 \Rightarrow {{32} \over b} = - {8 \over 5}$$ <br><br>$$ \Rightarrow b = - 20 \Rightarrow c = - {3 \over 4}$$ <br><br>Equation of $$K:$$ $$y - 4x = 3$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,$$ $$ \Rightarrow 4x - y + 3 = 0$$ <br><br>Distance between $$L$$ and $$K$$ <br><br>$$ = {{\left| {52 - 32 + 3} \right|} \over {\sqrt {17} }} = {{23} \over {\sqrt {17} }}$$
mcq
aieee-2010
0czF19Zrf3iad8lsIiqYU
maths
straight-lines-and-pair-of-straight-lines
distance-of-a-point-from-a-line
The foot of the perpendicular drawn from the origin, on the line, 3x + y = $$\lambda $$ ($$\lambda $$ $$ \ne $$ 0) is P. If the line meets x-axis at A and y-axis at B, then the ratio BP : PA is :
[{"identifier": "A", "content": "1 : 3"}, {"identifier": "B", "content": "3 : 1"}, {"identifier": "C", "content": "1 : 9"}, {"identifier": "D", "content": "9 : 1"}]
["D"]
null
Equation of the line, which is perpendicular to the line, <br><br>3x + y = $$\lambda $$($$\lambda $$ $$ \ne $$0) and passing through origin , <br><br>is given by $${{x - 0} \over 3} = {{y - 0} \over 1} = r$$ <br><br>For foot of perpendicular <br><br>r = $${{ - \left( {\left( {3 \times 0} \right) + \left( {1 \times 0} \right) - \lambda } \right)} \over {{3^2} + {1^2}}}$$ = $${\lambda \over {10}}$$ <br><br>So, foot of perpendicular P = $$\left( {{{3\lambda } \over {10}},{\lambda \over {10}}} \right)$$ <br><br> Given the line meets X-axis where y = 0, so 3x + 0 = $$\lambda $$ <br><br>$$ \Rightarrow $$ x = $${\lambda \over 3}$$ <br><br>Hence, coordinates of A = $$\left( {{\lambda \over 3},0} \right)$$ and meets <br><br>Y-axis at B = (0, $$\lambda $$) <br><br>So, BP = $$\sqrt {{{\left( {{{3\lambda } \over {10}}} \right)}^2} + {{\left( {{\lambda \over {10}} - \lambda } \right)}^2}} $$ <br><br>$$ \Rightarrow $$ &nbsp;&nbsp;BP = $$\sqrt {{{9{\lambda ^2}} \over {100}} + {{81{\lambda ^2}} \over {100}}} $$ <br><br>= BP = $$\sqrt {{{90{\lambda ^2}} \over {100}}} $$ <br><br>Now, PA = $$\sqrt {{{\left( {{\lambda \over 3} - {{3\lambda } \over {10}}} \right)}^2} + {{\left( {0 - {\lambda \over {10}}} \right)}^2}} $$ <br><br>$$ \Rightarrow $$$$\,\,\,$$ PA = $$\sqrt {{{{\lambda ^2}} \over {900}} + {{{\lambda ^2}} \over {100}}} \Rightarrow PA$$ = $$\sqrt {{{10{\lambda ^2}} \over {900}}} $$ <br><br>Therefore BP : PA = 9 : 1 <br><br>
mcq
jee-main-2018-online-15th-april-evening-slot
juSWMIEgIH0JUKssdD3rsa0w2w9jx2ezrxa
maths
straight-lines-and-pair-of-straight-lines
distance-of-a-point-from-a-line
Lines are drawn parallel to the line 4x – 3y + 2 = 0, at a distance $${3 \over 5}$$ from the origin. Then which one of the following points lies on any of these lines ?
[{"identifier": "A", "content": "$$\\left( {{1 \\over 4}, - {1 \\over 3}} \\right)$$"}, {"identifier": "B", "content": "$$\\left( { - {1 \\over 4},{2 \\over 3}} \\right)$$"}, {"identifier": "C", "content": "$$\\left( { - {1 \\over 4}, - {2 \\over 3}} \\right)$$"}, {"identifier": "D", "content": "$$\\left( {{1 \\over 4},{1 \\over 3}} \\right)$$"}]
["B"]
null
Line parallel to 4x – 3y + 2 = 0<br><br> is given as 4x – 3y + $$\lambda $$ = 0<br><br> distance from origin is <br><br> $$\left| {{\lambda \over 5}} \right| = {3 \over 5}$$<br><br> $$ \Rightarrow \lambda = \pm 3$$<br><br> $$ \therefore $$ required lines are 4x – 3y + 3 = 0 &amp; 4x – 3y – 3 = 0<br><br> By Putting $$\left( { - {1 \over 4},{2 \over 3}} \right)$$ on both lines it satisfy.
mcq
jee-main-2019-online-10th-april-evening-slot
9jOfE5xmA53cL9ZKq9jgy2xukfjjzmeu
maths
straight-lines-and-pair-of-straight-lines
distance-of-a-point-from-a-line
If the line, 2x - y + 3 = 0 is at a distance<br/> $${1 \over {\sqrt 5 }}$$ and $${2 \over {\sqrt 5 }}$$ from the lines 4x - 2y + $$\alpha $$ = 0 <br/>and 6x - 3y + $$\beta $$ = 0, respectively, then the sum of all possible values of $$\alpha $$ and $$\beta $$ is :
[]
null
30
Apply distance between parallel line formula<br><br>$$4x - 2y + \alpha = 0$$<br><br>$$4x - 2y + 6 = 0$$<br><br>$$\left| {{{\alpha - 6} \over {25}}} \right| = {1 \over {55}}$$<br><br>$$|\alpha - 6|\, = 2 \Rightarrow \alpha = 8,4$$<br><br>sum = 12<br><br>Again <br><br>$$6x - 3y + \beta = 0$$<br><br>$$6x - 3y + 9 = 0$$<br><br>$$\left| {{{\beta - 9} \over {3\sqrt 5 }}} \right| = {2 \over {\sqrt 5 }}$$<br><br>$$|\beta - 9|\, = 6 \Rightarrow \beta = 15,3$$<br><br>sum = 18<br><br>$$ \therefore $$ Sum of all values of $$\alpha$$ and $$\beta$$ is = 30
integer
jee-main-2020-online-5th-september-morning-slot
1ktiq1mtm
maths
straight-lines-and-pair-of-straight-lines
distance-of-a-point-from-a-line
If p and q are the lengths of the perpendiculars from the origin on the lines,<br/><br/>x cosec $$\alpha$$ $$-$$ y sec $$\alpha$$ = k cot 2$$\alpha$$ and<br/><br/>x sin$$\alpha$$ + y cos$$\alpha$$ = k sin2$$\alpha$$<br/><br/>respectively, then k<sup>2</sup> is equal to :
[{"identifier": "A", "content": "4p<sup>2</sup> + q<sup>2</sup>"}, {"identifier": "B", "content": "2p<sup>2</sup> + q<sup>2</sup>"}, {"identifier": "C", "content": "p<sup>2</sup> + 2q<sup>2</sup>"}, {"identifier": "D", "content": "p<sup>2</sup> + 4q<sup>2</sup>"}]
["A"]
null
First line is $${x \over {\sin \alpha }} - {y \over {\cos \alpha }} = {{k\cos 2\alpha } \over {\sin 2\alpha }}$$<br><br>$$ \Rightarrow x\cos \alpha - y\sin \alpha = {k \over 2}\cos 2\alpha $$ <br><br>$$ \Rightarrow p = \left| {{k \over 2}\cos \alpha } \right| \Rightarrow 2p = \left| {k\cos 2\alpha } \right|$$ .... (i)<br><br>second line is $$x\sin \alpha + y\cos \alpha = k\sin 2\alpha $$<br><br>$$ \Rightarrow q = \left| {k\sin 2\alpha } \right|$$ .... (ii)<br><br>Hence, $$4{p^2} + {q^2} = {k^2}$$ (From (i) &amp; (ii))
mcq
jee-main-2021-online-31st-august-morning-shift
1l6f18gvo
maths
straight-lines-and-pair-of-straight-lines
distance-of-a-point-from-a-line
<p>Let the point $$P(\alpha, \beta)$$ be at a unit distance from each of the two lines $$L_{1}: 3 x-4 y+12=0$$, and $$L_{2}: 8 x+6 y+11=0$$. If $$P$$ lies below $$L_{1}$$ and above $${ }{L_{2}}$$, then $$100(\alpha+\beta)$$ is equal to :</p>
[{"identifier": "A", "content": "$$-$$14"}, {"identifier": "B", "content": "42"}, {"identifier": "C", "content": "$$-$$22"}, {"identifier": "D", "content": "14"}]
["D"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l7bukhhd/39a595d1-0f44-4de9-a640-89709cea02f6/4c50df10-25ff-11ed-9c74-c5a04899a045/file-1l7bukhhe.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l7bukhhd/39a595d1-0f44-4de9-a640-89709cea02f6/4c50df10-25ff-11ed-9c74-c5a04899a045/file-1l7bukhhe.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 25th July Evening Shift Mathematics - Straight Lines and Pair of Straight Lines Question 44 English Explanation"></p> <p>$${L_1}:3x - 4y + 12 = 0$$</p> <p>$${L_2}:8x + 6y + 11 = 0$$</p> <p>Equation of angle bisector of L<sub>1</sub> and L<sub>2</sub> of angle containing origin</p> <p>$$2(3x - 4y + 12) = 8x + 6y + 11$$</p> <p>$$2x + 14y - 13 = 0$$ ...... (i)</p> <p>$${{3\alpha - 4\beta + 12} \over 5} = 1$$</p> <p>$$ \Rightarrow 3\alpha - 4\beta + 7 = 0$$ ...... (ii)</p> <p>Solution of $$2x + 14y - 13 = 0$$ and $$3x - 4y + 7 = 0$$ gives the required point $$P(\alpha ,\beta ),\,\alpha = {{ - 23} \over {25}},\beta = {{53} \over {50}}$$</p> <p>$$100(\alpha + \beta ) = 14$$</p>
mcq
jee-main-2022-online-25th-july-evening-shift
1lgvr0lnr
maths
straight-lines-and-pair-of-straight-lines
distance-of-a-point-from-a-line
<p>Let the equations of two adjacent sides of a parallelogram $$\mathrm{ABCD}$$ be $$2 x-3 y=-23$$ and $$5 x+4 y=23$$. If the equation of its one diagonal $$\mathrm{AC}$$ is $$3 x+7 y=23$$ and the distance of A from the other diagonal is $$\mathrm{d}$$, then $$50 \mathrm{~d}^{2}$$ is equal to ____________.</p>
[]
null
529
<img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lnkfs1i7/86b3f2b6-ecef-40f3-8533-8213186f85af/f96ad2f0-677b-11ee-aeb9-a1910acfd49b/file-6y3zli1lnkfs1i8.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lnkfs1i7/86b3f2b6-ecef-40f3-8533-8213186f85af/f96ad2f0-677b-11ee-aeb9-a1910acfd49b/file-6y3zli1lnkfs1i8.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh; vertical-align: baseline;" alt="JEE Main 2023 (Online) 10th April Evening Shift Mathematics - Straight Lines and Pair of Straight Lines Question 27 English Explanation"> <br><br>We have, $A B C D$ is a parallelogram <br><br>Let equation of $A B$ be $2 x-3 y=-23 \ldots$ (i) <br><br>and equation of $B C$ be $5 x+4 y=23\ldots$ (ii) <br><br>Equation of $A C$ is $3 x+7 y=23 \ldots$ (iii) <br><br>Solving Eqs. (i) and (ii), we get <br><br>$x=-1$, and $y=7$ <br><br>$\therefore$ Co-ordinate of $B$ is $(-1,7)$ <br><br>On solving Eqs. (ii) and (iii), we get <br><br>$$ x=3, y=2 $$ <br><br>$\therefore$ Co-ordinate of $C$ is $(3,2)$ <br><br>On solving Eqs. (i) and (iii), we get $x=-4$ and $y=5$ <br><br>$\therefore$ Co-ordinate of $A$ is $(-4,5)$. <br><br>Let $E$ be the intersection point of diagonal co-ordinate of <br><br>$E$ is $\left(\frac{-4+3}{2}, \frac{5+2}{2}\right)$ or $\left(-\frac{1}{2}, \frac{7}{2}\right)$ <br><br>$\because E$ is mid-point of $A C$ <br><br>$$ \begin{aligned} &amp; \text { Equation of } B D \text { is } y-7=\left(\frac{7-\frac{7}{2}}{-1+\frac{1}{2}}\right)(x+1) \\\\ &amp; \Rightarrow 7 x+y=0 \end{aligned} $$ <br><br>Distance of $A$ from diagonal $B D=\frac{|7 \times(-4)+5|}{\sqrt{7^2+1^2}}$ <br><br>$$ \therefore d=\frac{23}{\sqrt{50}} $$ <br><br>Hence, $50 d^2=(23)^2=529$
integer
jee-main-2023-online-10th-april-evening-shift
jaoe38c1lscoky97
maths
straight-lines-and-pair-of-straight-lines
distance-of-a-point-from-a-line
<p>If the sum of squares of all real values of $$\alpha$$, for which the lines $$2 x-y+3=0,6 x+3 y+1=0$$ and $$\alpha x+2 y-2=0$$ do not form a triangle is $$p$$, then the greatest integer less than or equal to $$p$$ is _________.</p>
[]
null
32
<p>$$\begin{aligned} & 2 x-y+3=0 \\ & 6 x+3 y+1=0 \\ & \alpha x+2 y-2=0 \end{aligned}$$</p> <p>Will not form a $$\Delta$$ if $$\alpha x+2 y-2=0$$ is concurrent with $$2 x-y+3=0$$ and $$6 x+3 y+1=0$$ or parallel to either of them so</p> <p>Case-1: Concurrent lines</p> <p>$$\left|\begin{array}{ccc} 2 & -1 & 3 \\ 6 & 3 & 1 \\ \alpha & 2 & -2 \end{array}\right|=0 \Rightarrow \alpha=\frac{4}{5}$$</p> <p>Case-2 : Parallel lines</p> <p>$$\begin{aligned} & -\frac{\alpha}{2}=\frac{-6}{3} \text { or }-\frac{\alpha}{2}=2 \\ & \Rightarrow \alpha=4 \text { or } \alpha=-4 \\ & P=16+16+\frac{16}{25} \\ & {[P]=\left[32+\frac{16}{25}\right]=32} \end{aligned}$$</p>
integer
jee-main-2024-online-27th-january-evening-shift
jaoe38c1lsd4u0pr
maths
straight-lines-and-pair-of-straight-lines
distance-of-a-point-from-a-line
<p>Let $$A(a, b), B(3,4)$$ and $$C(-6,-8)$$ respectively denote the centroid, circumcentre and orthocentre of a triangle. Then, the distance of the point $$P(2 a+3,7 b+5)$$ from the line $$2 x+3 y-4=0$$ measured parallel to the line $$x-2 y-1=0$$ is</p>
[{"identifier": "A", "content": "$$\\frac{17 \\sqrt{5}}{6}$$\n"}, {"identifier": "B", "content": "$$\\frac{15 \\sqrt{5}}{7}$$\n"}, {"identifier": "C", "content": "$$\\frac{17 \\sqrt{5}}{7}$$\n"}, {"identifier": "D", "content": "$$\\frac{\\sqrt{5}}{17}$$"}]
["C"]
null
<p>$$\mathrm{A}(\mathrm{a}, \mathrm{b}), \quad \mathrm{B}(3,4), \quad \mathrm{C}(-6,-8)$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lsjwjvlw/dec041c9-e406-4f98-a94d-783370c1f55d/ddd44840-ca2d-11ee-8854-3b5a6c9e9092/file-6y3zli1lsjwjvlx.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lsjwjvlw/dec041c9-e406-4f98-a94d-783370c1f55d/ddd44840-ca2d-11ee-8854-3b5a6c9e9092/file-6y3zli1lsjwjvlx.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 31st January Evening Shift Mathematics - Straight Lines and Pair of Straight Lines Question 19 English Explanation"></p> <p>$$\Rightarrow \mathrm{a}=0, \mathrm{~b}=0 \quad \Rightarrow \mathrm{P}(3,5)$$</p> <p>Distance from $$\mathrm{P}$$ measured along $$\mathrm{x}-2 \mathrm{y}-1=0$$</p> <p>$$\Rightarrow x=3+r \cos \theta, \quad y=5+r \sin \theta$$</p> <p>$$\begin{aligned} &amp; \text { Where } \tan \theta=\frac{1}{2} \\ &amp; \mathrm{r}(2 \cos \theta+3 \sin \theta)=-17 \\ &amp; \Rightarrow \mathrm{r}=\left|\frac{-17 \sqrt{5}}{7}\right|=\frac{17 \sqrt{5}}{7} \end{aligned}$$</p>
mcq
jee-main-2024-online-31st-january-evening-shift
jaoe38c1lsfkb2im
maths
straight-lines-and-pair-of-straight-lines
distance-of-a-point-from-a-line
<p>Let $$\mathrm{A}$$ be the point of intersection of the lines $$3 x+2 y=14,5 x-y=6$$ and $$\mathrm{B}$$ be the point of intersection of the lines $$4 x+3 y=8,6 x+y=5$$. The distance of the point $$P(5,-2)$$ from the line $$\mathrm{AB}$$ is</p>
[{"identifier": "A", "content": "$$\\frac{13}{2}$$"}, {"identifier": "B", "content": "8"}, {"identifier": "C", "content": "$$\\frac{5}{2}$$"}, {"identifier": "D", "content": "6"}]
["D"]
null
<p>Solving lines $$\mathrm{L}_1(3 \mathrm{x}+2 \mathrm{y}=14)$$ and $$\mathrm{L}_2(5 \mathrm{x}-\mathrm{y}=6)$$ to get $$\mathrm{A}(2,4)$$ and solving lines $$\mathrm{L}_3(4 \mathrm{x}+3 \mathrm{y}=8)$$ and $$\mathrm{L}_4(6 \mathrm{x}+\mathrm{y}=5)$$ to get $$\mathrm{B}\left(\frac{1}{2}, 2\right)$$.</p> <p>Finding Eqn. of $$\mathrm{AB}: 4 \mathrm{x}-3 \mathrm{y}+4=0$$</p> <p>Calculate distance PM</p> <p>$$\Rightarrow\left|\frac{4(5)-3(-2)+4}{5}\right|=6$$</p>
mcq
jee-main-2024-online-29th-january-evening-shift
jaoe38c1lsfkdr4d
maths
straight-lines-and-pair-of-straight-lines
distance-of-a-point-from-a-line
<p>The distance of the point $$(2,3)$$ from the line $$2 x-3 y+28=0$$, measured parallel to the line $$\sqrt{3} x-y+1=0$$, is equal to</p>
[{"identifier": "A", "content": "$$3+4 \\sqrt{2}$$\n"}, {"identifier": "B", "content": "$$6 \\sqrt{3}$$\n"}, {"identifier": "C", "content": "$$4+6 \\sqrt{3}$$\n"}, {"identifier": "D", "content": "$$4 \\sqrt{2}$$"}]
["C"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lsr8s48w/7106c58a-521f-4564-b530-e2a9d2152dfd/2d124800-ce37-11ee-9412-cd4f9c6f2c40/file-6y3zli1lsr8s48x.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lsr8s48w/7106c58a-521f-4564-b530-e2a9d2152dfd/2d124800-ce37-11ee-9412-cd4f9c6f2c40/file-6y3zli1lsr8s48x.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 29th January Evening Shift Mathematics - Straight Lines and Pair of Straight Lines Question 14 English Explanation"></p> <p>Writing $$P$$ in terms of parametric co-ordinates $$2+r$$</p> <p>$$\begin{aligned} &amp; \cos \theta, 3+\mathrm{r} \sin \theta \text { as } \tan \theta=\sqrt{3} \\ &amp; \mathrm{P}\left(2+\frac{\mathrm{r}}{2}, 3+\frac{\sqrt{3} \mathrm{r}}{2}\right) \end{aligned}$$</p> <p>$$\mathrm{P}$$ must satisfy $$2 \mathrm{x}-3 \mathrm{y}+28=0$$</p> <p>So, $$2\left(2+\frac{r}{2}\right)-3\left(3+\frac{\sqrt{3} \mathrm{r}}{2}\right)+28=0$$</p> <p>We find $$r=4+6 \sqrt{3}$$</p>
mcq
jee-main-2024-online-29th-january-evening-shift
1lsg40lwf
maths
straight-lines-and-pair-of-straight-lines
distance-of-a-point-from-a-line
<p>If $$x^2-y^2+2 h x y+2 g x+2 f y+c=0$$ is the locus of a point, which moves such that it is always equidistant from the lines $$x+2 y+7=0$$ and $$2 x-y+8=0$$, then the value of $$g+c+h-f$$ equals</p>
[{"identifier": "A", "content": "8"}, {"identifier": "B", "content": "14"}, {"identifier": "C", "content": "29"}, {"identifier": "D", "content": "6"}]
["B"]
null
<p>Cocus of point $$\mathrm{P}(\mathrm{x}, \mathrm{y})$$ whose distance from Gives $$X+2 y+7=0$$ & $$2 x-y+8=0$$ are equal is $$\frac{x+2 y+7}{\sqrt{5}}= \pm \frac{2 x-y+8}{\sqrt{5}}$$</p> <p>$$(x+2 y+7)^2-(2 x-y+8)^2=0$$</p> <p>Combined equation of lines</p> <p>$$\begin{aligned} & (x-3 y+1)(3 x+y+15)=0 \\ & 3 x^2-3 y^2-8 x y+18 x-44 y+15=0 \\ & x^2-y^2-\frac{8}{3} x y+6 x-\frac{44}{3} y+5=0 \\ & x^2-y^2+2 h x y+2 g x 2+2 f y+c=0 \\ & h=\frac{4}{3}, g=3, f=-\frac{22}{3}, c=5 \\ & g+c+h-f=3+5-\frac{4}{3}+\frac{22}{3}=8+6=14 \end{aligned}$$</p>
mcq
jee-main-2024-online-30th-january-evening-shift
lv0vxcqn
maths
straight-lines-and-pair-of-straight-lines
distance-of-a-point-from-a-line
<p>The vertices of a triangle are $$\mathrm{A}(-1,3), \mathrm{B}(-2,2)$$ and $$\mathrm{C}(3,-1)$$. A new triangle is formed by shifting the sides of the triangle by one unit inwards. Then the equation of the side of the new triangle nearest to origin is :</p>
[{"identifier": "A", "content": "$$-x+y-(2-\\sqrt{2})=0$$\n"}, {"identifier": "B", "content": "$$x+y-(2-\\sqrt{2})=0$$\n"}, {"identifier": "C", "content": "$$x+y+(2-\\sqrt{2})=0$$\n"}, {"identifier": "D", "content": "$$x-y-(2+\\sqrt{2})=0$$"}]
["B"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lwk4845t/9c9451b9-d46c-4c1c-ab08-287bac97c8b0/bd468810-197c-11ef-8e15-2107d8c35500/file-1lwk4845u.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lwk4845t/9c9451b9-d46c-4c1c-ab08-287bac97c8b0/bd468810-197c-11ef-8e15-2107d8c35500/file-1lwk4845u.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 4th April Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 9 English Explanation"></p> <p>Equation of $$A C: x+y=2$$</p> <p>Equation of $$A B: x-y+4=0$$</p> <p>Equation of $$B C: 3 x+5 y=4$$</p> <p>The line nearest to origin is parallel to $$A C$$ and inward. Let its equation is $$x+y=C$$.</p> <p>$$\therefore\left|\frac{C-2}{\sqrt{2}}\right|=1$$</p> <p>$$\therefore \quad C=2-\sqrt{2}$$</p> <p>$$\therefore$$ required equation line is :</p> <p>$$x+y-(2-\sqrt{2})=0$$</p>
mcq
jee-main-2024-online-4th-april-morning-shift
mxfnnIcoMHiIDWz92h6ya
maths
straight-lines-and-pair-of-straight-lines
family-of-straight-line
Consider the set of all lines px + qy + r = 0 such that 3p + 2q + 4r = 0. Which one of the following statements is true?
[{"identifier": "A", "content": "The lines are not concurrent"}, {"identifier": "B", "content": "The lines are concurrent at the point $$\\left( {{3 \\over 4},{1 \\over 2}} \\right)$$"}, {"identifier": "C", "content": "The lines are all parallel "}, {"identifier": "D", "content": "Each line passes through the origin"}]
["B"]
null
Equation of lines; <br><br>px + qy + r = 0 &nbsp;&nbsp;. . . . . (1) <br><br>Also given <br><br>3p + 2q + 4r = 0 &nbsp;&nbsp;. . . . . . (2) <br><br>divide equation (2) by 4, we get <br><br>$${3 \over 4}P + {2 \over 4}q + r = 0$$ &nbsp;&nbsp;. . . . (3) <br><br>By comparing (1) and (3) we get, <br><br>x = $${3 \over 4}$$ and y = $${2 \over 4}$$ = $${1 \over 2}$$ <br><br>For any value of p,q and r, the equation of set of lines will pan through $$\left( {{3 \over 4},{1 \over 2}} \right)$$
mcq
jee-main-2019-online-9th-january-morning-slot
1MTF5OuuQpiWHnCU
maths
straight-lines-and-pair-of-straight-lines
locus
Locus of mid point of the portion between the axes of <br/><br/>$$x$$ $$cos$$ $$\alpha + y\,\sin \alpha = p$$ where $$p$$ is constant is :
[{"identifier": "A", "content": "$${x^2} + {y^2} = {4 \\over {{p^2}}}$$ "}, {"identifier": "B", "content": "$${x^2} + {y^2} = 4{p^2}$$ "}, {"identifier": "C", "content": "$${1 \\over {{x^2}}} + {1 \\over {{y^2}}} = {2 \\over {{p^2}}}$$ "}, {"identifier": "D", "content": "$${1 \\over {{x^2}}} + {1 \\over {{y^2}}} = {4 \\over {{p^2}}}$$ "}]
["D"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264686/exam_images/ug1vcgctwnpzuwlv3nqn.webp" loading="lazy" alt="AIEEE 2002 Mathematics - Straight Lines and Pair of Straight Lines Question 116 English Explanation"> <br><br>Equation of $$AB$$ is <br><br>$$x\cos \alpha + y\sin \alpha = p;$$ <br><br>$$ \Rightarrow {{x\cos \alpha } \over p} + {{y\sin \alpha } \over p} = 1;$$ <br><br>$$ \Rightarrow {x \over {p/\cos \alpha }} + {y \over {p/\sin \alpha }} = 1$$ <br><br>So co-ordinates of $$A$$ and $$B$$ are <br><br>$$\left( {{p \over {\cos \alpha }},0} \right)$$ and $$\left( {0,{p \over {\sin \alpha }}} \right);$$ <br><br>So coordinates of midpoint of $$AB$$ are <br><br>$$\left( {{p \over {2\cos \,\alpha }},{p \over {2\sin \alpha }}} \right) = \left( {{x_1},{y_1}} \right)\left( {let} \right);$$ <br><br>$${x_1} = {p \over {2\,\cos \,\alpha }}\,\,\&amp; \,\,{y_1} = {p \over {2\sin \alpha }};$$ <br><br>$$ \Rightarrow \cos \alpha = p/2{x_1}$$ and $$\sin \alpha = p/2{y_1};$$ <br><br>$${\cos ^2}\alpha + {\sin ^2}\alpha = 1 \Rightarrow {{{p^2}} \over 4}\left( {{1 \over {{x_1}^2}} + {1 \over {{y_1}^2}}} \right) = 1$$ <br><br>Locus of $$\left( {{x_1},{y_1}} \right)$$ is $${1 \over {{x^2}}} + {1 \over {{y^2}}} = {4 \over {{p^2}}}.$$
mcq
aieee-2002
2Jxdn4DG7BLAO7DQ
maths
straight-lines-and-pair-of-straight-lines
locus
Locus of centroid of the triangle whose vertices are $$\left( {a\cos t,a\sin t} \right),\left( {b\sin t, - b\cos t} \right)$$ and $$\left( {1,0} \right),$$ where $$t$$ is a parameter, is :
[{"identifier": "A", "content": "$${\\left( {3x + 1} \\right)^2} + {\\left( {3y} \\right)^2} = {a^2} - {b^2}$$ "}, {"identifier": "B", "content": "$${\\left( {3x - 1} \\right)^2} + {\\left( {3y} \\right)^2} = {a^2} - {b^2}$$"}, {"identifier": "C", "content": "$${\\left( {3x - 1} \\right)^2} + {\\left( {3y} \\right)^2} = {a^2} + {b^2}$$"}, {"identifier": "D", "content": "$${\\left( {3x + 1} \\right)^2} + {\\left( {3y} \\right)^2} = {a^2} + {b^2}$$"}]
["C"]
null
$$x = {{a\cos t + b\sin t + 1} \over 3}$$ <br><br>$$ \Rightarrow a\cos t + b\sin t = 3x - 1$$ <br><br>$$y = {{a\sin t - b\cos t} \over 3}$$ <br><br>$$ \Rightarrow a\sin t - b\cos t = 3y$$
mcq
aieee-2003
E8ErhhYaYvb3mkqG
maths
straight-lines-and-pair-of-straight-lines
locus
If the equation of the locus of a point equidistant from the point $$\left( {{a_{1,}}{b_1}} \right)$$ and $$\left( {{a_{2,}}{b_2}} \right)$$ is <br/>$$\left( {{a_1} - {a_2}} \right)x + \left( {{b_1} - {b_2}} \right)y + c = 0$$ , then the value of $$'c'$$ is :
[{"identifier": "A", "content": "$$\\sqrt {{a_1}^2 + {b_1}^2 - {a_2}^2 - {b_2}^2} $$ "}, {"identifier": "B", "content": "$${1 \\over 2}\\left( {{a_2}^2 + {b_2}^2 - {a_1}^2 - {b_1}^2} \\right)$$ "}, {"identifier": "C", "content": "$${{a_1}^2 - {a_2}^2 + {b_1}^2 - {b_2}^2}$$ "}, {"identifier": "D", "content": "$${1 \\over 2}\\left( {{a_1}^2 + {a_2}^2 + {b_1}^2 + {b_2}^2} \\right)$$."}]
["B"]
null
Since, the points $\left(a_1, b_1\right)$ and $\left(a_2, b_2\right)$ satisfy the equation. So, that <br/><br/>$$ \begin{aligned} & a_1\left(a_1-a_2\right)+b_1\left(b_1-b_2\right)+c=0 ~~........(1) \\\\ & \text { and } a_2\left(a_1-a_2\right)+b_2\left(b_1-b_2\right)+c=0 ~~.........(2) \\\\ & \text { On adding Eqs. (i) and (ii), we get } \\\\ & \left(a_1+a_2\right)\left(a_1-a_2\right)+\left(b_1+b_2\right)\left(b_1-b_2\right)+2 c=0 \\\\ & \Rightarrow 2 c=-\left(a_1^2-a_2^2+b_1^2-b_2^2\right) \\\\ & \Rightarrow c=\frac{1}{2}\left(a_2^2+b_2^2-a_1^2-b_1^2\right) \end{aligned} $$
mcq
aieee-2003
cq2gQ4UBsv796eLK
maths
straight-lines-and-pair-of-straight-lines
locus
Let $$A\left( {2, - 3} \right)$$ and $$B\left( {-2, 1} \right)$$ be vertices of a triangle $$ABC$$. If the centroid of this triangle moves on the line $$2x + 3y = 1$$, then the locus of the vertex $$C$$ is the line :
[{"identifier": "A", "content": "$$3x - 2y = 3$$"}, {"identifier": "B", "content": "$$2x - 3y = 7$$"}, {"identifier": "C", "content": "$$3x + 2y = 5$$"}, {"identifier": "D", "content": "$$2x + 3y = 9$$"}]
["D"]
null
Let the vertex $$C$$ be $$(h,k),$$ then the <br><br>centroid of $$\Delta ABC$$ is $$\left( {{{2 + (- 2) + h} \over 3},{{ - 3 + 1 + k} \over 3}} \right)$$ <br><br>or $$\left( {{h \over 3},{{ - 2 + k} \over 3}} \right).$$ It lies on $$2x+3y=1$$ <br><br>$$ \Rightarrow {{2h} \over 3} - 2 + k = 1$$ <br><br>$$ \Rightarrow 2h + 3k = 9$$ <br><br>$$ \therefore $$ Locus of $$C$$ is $$2x+3y=9$$
mcq
aieee-2004
2OQtj1HvFLf6RH1ewBHeh
maths
straight-lines-and-pair-of-straight-lines
locus
If a variable line drawn through the intersection of the lines $${x \over 3} + {y \over 4} = 1$$ and $${x \over 4} + {y \over 3} = 1,$$ meets the coordinate axes at A and B, (A $$ \ne $$ B), then the locus of the midpoint of AB is :
[{"identifier": "A", "content": "6xy = 7(x + y)"}, {"identifier": "B", "content": "4(x + y)<sup>2</sup> \u2212 28(x + y) + 49 = 0"}, {"identifier": "C", "content": "7xy = 6(x + y)\n"}, {"identifier": "D", "content": "14(x + y)<sup>2</sup> \u2212 97(x + y) + 168 = 0"}]
["C"]
null
L<sub>1</sub> : 4x + 3y $$-$$ 12 = 0 <br><br>L<sub>2</sub> : 3x + 4y $$-$$ 12 = 0 <br><br>Equation of line passing through the intersection of these two lines L<sub>1</sub> and L<sub>2</sub> is <br><br>L<sub>1</sub> + $$\lambda $$L<sub>2</sub> = 0 <br><br>$$ \Rightarrow $$$$\,\,\,$$(4x + 3y $$-$$ 12) + $$\lambda $$(3x + 4y $$-$$ 12) = 0 <br><br>$$ \Rightarrow $$$$\,\,\,$$ x(4 + 3$$\lambda $$) + y(3 + 4$$\lambda $$) $$-$$ 12(1 + $$\lambda $$) = 0 <br><br>this line meets x coordinate at point A and y coordinate at point B. <br><br>$$\therefore\,\,\,$$ Point A = $$\left( {{{12\left( {1 + \lambda } \right)} \over {4 + 3\lambda }},0} \right)$$ <br><br>and Point B = $$\left( {0,\,\,{{12\left( {1 + \lambda } \right)} \over {3 + 4\lambda }}} \right)$$ <br><br>Let coordinate of midpoint of line AB is (h, k). <br><br>$$\therefore\,\,\,$$ h = $${{6\left( {1 + \lambda } \right)} \over {4 + 3\lambda }}$$ . . . . . (1) <br><br>and k = $${{6\left( {1 + \lambda } \right)} \over {3 + 4\lambda }}$$ . . . . (2) <br><br>Eliminate $$\lambda $$ from (1) and (2), then we get <br><br>6(h + k) = 7 hk <br><br>$$\therefore\,\,\,$$ Locus of midpoint of line AB is , <br><br>6(x + y) = 7xy
mcq
jee-main-2016-online-9th-april-morning-slot
cQrKvrI7xZYjN5kt
maths
straight-lines-and-pair-of-straight-lines
locus
A straight line through a fixed point (2, 3) intersects the coordinate axes at distinct points P and Q. If O is the origin and the rectangle OPRQ is completed, then the locus of R is :
[{"identifier": "A", "content": "3x + 2y = 6xy"}, {"identifier": "B", "content": "3x + 2y = 6"}, {"identifier": "C", "content": "2x + 3y = xy"}, {"identifier": "D", "content": "3x + 2y = xy"}]
["D"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265351/exam_images/bpha9tfo2ojwynaftia1.webp" loading="lazy" alt="JEE Main 2018 (Offline) Mathematics - Straight Lines and Pair of Straight Lines Question 119 English Explanation"> <br><br>Let coordinate of point R = (h, k). <br><br>Equation of line PQ, <br><br>(y $$-$$ 3) = m (x $$-$$ 2). <br><br>Put y = 0 to get coordinate of point p, <br><br>0 $$-$$ 3 = (x $$-$$ 2) <br><br>$$ \Rightarrow $$ x = 2 $$-$$ $${3 \over m}$$ <br><br>$$\therefore\,\,\,$$ p = (2 $$-$$ $${3 \over m}$$, 0) <br><br>As p = (h, 0) then <br><br>h = 2 $$-$$ $${3 \over m}$$ <br><br>$$ \Rightarrow $$ $${3 \over m}$$ = 2 $$-$$ h <br><br>$$ \Rightarrow $$ m = $${3 \over {2 - h}}$$ . . . . . . (1) <br><br>Put x = 0 to get coordinate of point Q, <br><br>y $$-$$ 3 $$=$$ m (0 $$-$$ 2) <br><br> $$ \Rightarrow $$ y = 3 $$-$$ 2m <br><br>$$\therefore\,\,\,$$ point Q = (0, 3 $$-$$ 2m) <br><br>And From the graph you can see Q = (0, k). <br><br>$$\therefore\,\,\,$$ k = 3 $$-$$ 2m <br><br>$$ \Rightarrow $$ m = $${{3 - k} \over 2}$$ . . . . (2) <br><br>By comparing (1) and (2) get <br><br>$${3 \over {2 - h}} = {{3 - k} \over 2}$$ <br><br>$$ \Rightarrow $$ (2 $$-$$ h)(3 $$-$$ k) = 6 <br><br>$$ \Rightarrow $$ 6 $$-$$ 3h $$-$$ 2K + hk = 6 <br><br>$$ \Rightarrow $$ 3 h + 2K = hk <br><br>$$\therefore\,\,\,$$ locus of point R is 3x + 2y= xy
mcq
jee-main-2018-offline
3BmWgWmgNz7RCJsg8h9jZ
maths
straight-lines-and-pair-of-straight-lines
locus
Let O(0, 0) and A(0, 1) be two fixed points. Then the locus of a point P such that the perimeter of $$\Delta $$AOP is 4, is :
[{"identifier": "A", "content": "9x<sup>2</sup> + 8y<sup>2</sup> \u2013 8y = 16\n"}, {"identifier": "B", "content": "8x<sup>2</sup> \u2013 9y<sup>2</sup> + 9y = 18"}, {"identifier": "C", "content": "8x<sup>2</sup> + 9y<sup>2</sup> \u2013 9y = 18\n"}, {"identifier": "D", "content": "9x<sup>2</sup> \u2013 8y<sup>2</sup> + 8y = 16"}]
["A"]
null
<picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267479/exam_images/wjrxugubrcihnruos7c4.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265282/exam_images/uonftnxl941nxalen4tg.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 8th April Morning Slot Mathematics - Straight Lines and Pair of Straight Lines Question 94 English Explanation"></picture> <br>Let point C(h, k) <br><br>Given, AB + BC + AC = 4 <br><br>From graph, AB = 1 <br><br>$$ \therefore $$ BC + AC = 3 <br><br>$$ \Rightarrow $$ $$\sqrt {{h^2} + {k^2}} + \sqrt {{h^2} + {{\left( {k - 1} \right)}^2}} = 3$$ <br><br>$$ \Rightarrow $$ $${{h^2} + {{\left( {k - 1} \right)}^2}}$$ = 9 + $${{h^2} + {k^2}}$$ - $$6\sqrt {{h^2} + {k^2}} $$ <br><br>$$ \Rightarrow $$ $$6\sqrt {{h^2} + {k^2}} = 2k + 8$$ <br><br>$$ \Rightarrow $$ $$9\left( {{h^2} + {k^2}} \right) = {k^2} + 8k + 16$$ <br><br>$$ \Rightarrow $$ $$9{h^2} + 8{k^2} - 8k - 16 = 0$$ <br><br>$$ \therefore $$ Locus of point C will be, <br><br>9x<sup>2</sup> + 8y<sup>2</sup> – 8y = 16
mcq
jee-main-2019-online-8th-april-morning-slot
KozcYkC6ueHANPacpT7k9k2k5fmtcf6
maths
straight-lines-and-pair-of-straight-lines
locus
The locus of the mid-points of the perpendiculars drawn from points on the line, x = 2y to the line x = y is :
[{"identifier": "A", "content": "3x - 2y = 0"}, {"identifier": "B", "content": "7x - 5y = 0\n"}, {"identifier": "C", "content": "2x - 3y = 0"}, {"identifier": "D", "content": "5x - 7y = 0"}]
["D"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263683/exam_images/w8qnmvdmubr7jibhtirj.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2020 (Online) 7th January Evening Slot Mathematics - Straight Lines and Pair of Straight Lines Question 85 English Explanation"> <br><br>Slope of line y = x is 1 <br><br>Line AB is perpendicular to line y = x so <br><br>Slope of AB = -1 <br><br>Also slope of AB = $${{\alpha - \beta } \over {2\alpha - \beta }}$$ <br><br>$$ \therefore $$ $${{\alpha - \beta } \over {2\alpha - \beta }}$$ = -1 <br><br>$$ \Rightarrow $$ 3$$\alpha $$ = 2$$\beta $$ <br><br>h = $${{2\alpha + \beta } \over 2}$$ <br><br>$$ \Rightarrow $$ 2h = $${{4\alpha + 2\beta } \over 2}$$ = $${{4\alpha + 3\alpha } \over 2}$$ = $${{7\alpha } \over 2}$$ <br><br>Also k = $${{\alpha + \beta } \over 2}$$ <br><br>$$ \Rightarrow $$ 2k = $${{5\alpha } \over 2}$$ <br><br>So $${h \over k} = {7 \over 5}$$ <br><br>$$ \Rightarrow $$ 5h = 7k <br><br>$$ \Rightarrow $$ 5x = 7y
mcq
jee-main-2020-online-7th-january-evening-slot
fsvYqfrKekcQWsXuJU1kmlm4kfs
maths
straight-lines-and-pair-of-straight-lines
locus
A square ABCD has all its vertices on the curve x<sup>2</sup>y<sup>2</sup> = 1. The midpoints of its sides also lie on the same curve. Then, the square of area of ABCD is _________.
[]
null
80
x<sup>2</sup>y<sup>2</sup> = 1 <br><br>$$ \Rightarrow $$ y<sup>2</sup> = $${1 \over {{x^2}}}$$ <br><br>$$ \Rightarrow $$ y = $$ \pm {1 \over x}$$ <br><br>Graph of this equation, <br><br>$$OA \bot OB$$<br><br>$$ \Rightarrow \left( {{1 \over {{p^2}}}} \right)\left( { - {1 \over {{q^2}}}} \right) = - 1$$<br><br>$$ \Rightarrow {p^2}{q^2} = 1$$<br><br>$$P\left( {{{p + q} \over 2},{{{1 \over p} - {1 \over q}} \over 2}} \right)$$ midpoint of AB lies<br><br>On $${x^2}{y^2} = 1$$<br><br>$$ \Rightarrow {(p + q)^2}{\left( {{1 \over p} - {1 \over q}} \right)^2} = 16$$<br><br>$$ \Rightarrow {(p + q)^2}{(p - q)^2} = 16$$<br><br>$$ \Rightarrow {({p^2} - {q^2})^2} = 16$$<br><br>$$ \Rightarrow {P^2} - {1 \over {{P^2}}} = \pm 4$$<br><br>$$ \Rightarrow {p^4} \pm 4{p^2} - 1 = 0$$<br><br>$$ \Rightarrow {p^2} = {{ \pm 4 \pm \sqrt {20} } \over 2} = \pm 2 \pm \sqrt 5 $$<br><br>$$ \Rightarrow {p^2} = 2 + \sqrt 5 $$ or $$ - 2 + \sqrt 5 $$<br><br>$$O{B^2} = {p^2} + {1 \over {{p^2}}} = 2 + \sqrt 5 + {1 \over {2 + \sqrt 5 }}$$ or $$ - 2 + \sqrt 5 + {1 \over { - 2 + \sqrt 5 }} = 2\sqrt 5 $$<br><br>Area $$ = 4\left( {{1 \over 2}} \right)(OA)(OB) = 2{(OB)^2} = 4\sqrt 5 $$<img src="https://app-content.cdn.examgoal.net/fly/@width/image/1kwjjyhu6/768a07f6-81f2-4c0b-ad88-e9817b38c6d7/b186a5f0-5075-11ec-8f7b-45f8e5a35226/file-1kwjjyhu7.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 50vh" alt="JEE Main 2021 (Online) 18th March Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 66 English Explanation">
integer
jee-main-2021-online-18th-march-morning-shift
1ktehxolh
maths
straight-lines-and-pair-of-straight-lines
locus
Let A be a fixed point (0, 6) and B be a moving point (2t, 0). Let M be the mid-point of AB and the perpendicular bisector of AB meets the y-axis at C. The locus of the mid-point P of MC is :
[{"identifier": "A", "content": "3x<sup>2</sup> $$-$$ 2y $$-$$ 6 = 0"}, {"identifier": "B", "content": "3x<sup>2</sup> + 2y $$-$$ 6 = 0"}, {"identifier": "C", "content": "2x<sup>2</sup> + 3y $$-$$ 9 = 0"}, {"identifier": "D", "content": "2x<sup>2</sup> $$-$$ 3y + 9 = 0"}]
["C"]
null
A(0, 6) and B(2t, 0)<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265928/exam_images/t38wivroym0l1mk7udq7.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 27th August Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 59 English Explanation"><br><br>Perpendicular bisector of AB is <br><br>$$(y - 3) = {t \over 3}(x - t)$$<br><br>So, $$C = \left( {0,3 - {{{t^2}} \over 3}} \right)$$<br><br>Let P be (h, k)<br><br>$$h = {t \over 2};k = \left( {3 - {{{t^2}} \over 6}} \right)$$<br><br>$$ \Rightarrow k = 3 - {{4{h^2}} \over 6} \Rightarrow 2{x^2} + 3y - 9 = 0$$
mcq
jee-main-2021-online-27th-august-morning-shift
1l6gijngm
maths
straight-lines-and-pair-of-straight-lines
locus
<p>A point $$P$$ moves so that the sum of squares of its distances from the points $$(1,2)$$ and $$(-2,1)$$ is 14. Let $$f(x, y)=0$$ be the locus of $$\mathrm{P}$$, which intersects the $$x$$-axis at the points $$\mathrm{A}$$, $$\mathrm{B}$$ and the $$y$$-axis at the points C, D. Then the area of the quadrilateral ACBD is equal to :</p>
[{"identifier": "A", "content": "$${9 \\over 2}$$"}, {"identifier": "B", "content": "$${{3\\sqrt {17} } \\over 2}$$"}, {"identifier": "C", "content": "$${{3\\sqrt {17} } \\over 4}$$"}, {"identifier": "D", "content": "9"}]
["B"]
null
<p>Let point $$P:(h,\,k)$$</p> <p>$${(h - 1)^2} + {(k - 2)^2} + {(h + 2)^2} + {(k - 1)^2} = 14$$</p> <p>$$2{h^2} + 2{k^2} + 2h - 6k - 4 = 0$$</p> <p>Locus of $$P:{x^2} + {y^2} + x - 3y - 2 = 0$$</p> <p>Intersection with x-axis,</p> <p>$${x^2} + x - 2 = 0$$</p> <p>$$ \Rightarrow x = - 2,\,1$$</p> <p>Intersection with y-axis,</p> <p>$${y^2} - 3y - 2 = 0$$</p> <p>$$ \Rightarrow y = {{3\, \pm \,\sqrt {17} } \over 2}$$</p> <p>Area of the quadrilateral ACBD is</p> <p>$$ = {1 \over 2}(|{x_1}| + |{x_2}|)(|{y_1}| + |{y_2}|)$$</p> <p>$$ = {1 \over 2} \times 3 \times \sqrt {17} = {{3\sqrt {17} } \over 2}$$</p>
mcq
jee-main-2022-online-26th-july-morning-shift
1lgrg2uy5
maths
straight-lines-and-pair-of-straight-lines
locus
<p>If the point $$\left(\alpha, \frac{7 \sqrt{3}}{3}\right)$$ lies on the curve traced by the mid-points of the line segments of the lines $$x \cos \theta+y \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)$$ between the co-ordinates axes, then $$\alpha$$ is equal to :</p>
[{"identifier": "A", "content": "$$-$$7"}, {"identifier": "B", "content": "7"}, {"identifier": "C", "content": "$$-$$7$$\\sqrt3$$"}, {"identifier": "D", "content": "7$$\\sqrt3$$"}]
["B"]
null
<img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lhu7fnjs/31373c2a-3f37-47d1-bed5-e74cffaeb86b/e21d2070-f611-11ed-8eab-4b3832376002/file-1lhu7fnjt.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lhu7fnjs/31373c2a-3f37-47d1-bed5-e74cffaeb86b/e21d2070-f611-11ed-8eab-4b3832376002/file-1lhu7fnjt.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2023 (Online) 12th April Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 29 English Explanation"> <br><br>$$ \begin{gathered} x \cos \theta+y \sin \theta=7 \\\\ x-\text { intercept }=\frac{7}{\cos \theta} \\\\ y-\text { intercept }=\frac{7}{\sin \theta} \\\\ \mathrm{A}:\left(\frac{7}{\cos \theta}, 0\right) \mathrm{B}:\left(0, \frac{7}{\sin \theta}\right) \end{gathered} $$ <br><br>Locus of mid point M : (h, k) <br><br>$$ \begin{aligned} &amp; \mathrm{h}=\frac{7}{2 \cos \theta}, \mathrm{k}=\frac{7}{2 \sin \theta} \\\\ &amp; \frac{7}{2 \sin \theta}=\frac{7 \sqrt{3}}{3} \Rightarrow \sin \theta=\frac{\sqrt{3}}{2} \Rightarrow \theta=\frac{\pi}{3} \\\\ &amp; \alpha=\frac{7}{2 \cos \theta}=7 \end{aligned} $$
mcq
jee-main-2023-online-12th-april-morning-shift
lv9s201x
maths
straight-lines-and-pair-of-straight-lines
locus
<p>Let $$\mathrm{A}(-1,1)$$ and $$\mathrm{B}(2,3)$$ be two points and $$\mathrm{P}$$ be a variable point above the line $$\mathrm{AB}$$ such that the area of $$\triangle \mathrm{PAB}$$ is 10. If the locus of $$\mathrm{P}$$ is $$\mathrm{a} x+\mathrm{by}=15$$, then $$5 \mathrm{a}+2 \mathrm{~b}$$ is :</p>
[{"identifier": "A", "content": "$$-\\frac{12}{5}$$"}, {"identifier": "B", "content": "$$-\\frac{6}{5}$$"}, {"identifier": "C", "content": "6"}, {"identifier": "D", "content": "4"}]
["A"]
null
<img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lvnxhk5n/61340bd7-15c2-4d49-8787-6b1d30c56e5c/4f3a81b0-07c9-11ef-afdb-fb69ed1077de/file-6y3zli1lvnxhk5o.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lvnxhk5n/61340bd7-15c2-4d49-8787-6b1d30c56e5c/4f3a81b0-07c9-11ef-afdb-fb69ed1077de/file-6y3zli1lvnxhk5o.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 5th April Evening Shift Mathematics - Straight Lines and Pair of Straight Lines Question 3 English Explanation"> <br>$\begin{aligned} &amp; \frac{1}{2}\left|\begin{array}{ccc}h &amp; k &amp; 1 \\ -1 &amp; 1 &amp; 1 \\ 2 &amp; 3 &amp; 1\end{array}\right|=10 \\\\ &amp; -2 x+3 y=25 \\\\ &amp; -\frac{6}{5} x+\frac{9}{5} y=15\end{aligned}$ <br><br>$\begin{aligned} &amp; a=-\frac{6}{5}, b=\frac{9}{5} \\\\ &amp; 5 a=-6,2 b=\frac{18}{5}\end{aligned}$ <br><br>$$ \therefore $$ $$5 \mathrm{a}+2 \mathrm{~b}$$ = $$-\frac{12}{5}$$
mcq
jee-main-2024-online-5th-april-evening-shift
lvb294xq
maths
straight-lines-and-pair-of-straight-lines
locus
<p>If the locus of the point, whose distances from the point $$(2,1)$$ and $$(1,3)$$ are in the ratio $$5: 4$$, is $$a x^2+b y^2+c x y+d x+e y+170=0$$, then the value of $$a^2+2 b+3 c+4 d+e$$ is equal to :</p>
[{"identifier": "A", "content": "37"}, {"identifier": "B", "content": "$$-27$$"}, {"identifier": "C", "content": "437"}, {"identifier": "D", "content": "5"}]
["A"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lwagdtgz/adc2b178-39c7-4610-ae95-7cf96da59f71/72edac30-142c-11ef-983f-65b4bd1ca415/file-1lwagdth0.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lwagdtgz/adc2b178-39c7-4610-ae95-7cf96da59f71/72edac30-142c-11ef-983f-65b4bd1ca415/file-1lwagdth0.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 6th April Evening Shift Mathematics - Straight Lines and Pair of Straight Lines Question 2 English Explanation"></p> <p>$$\begin{aligned} &amp; \therefore \frac{(h-2)^2+(k-1)^2}{(h-1)^2+(k-3)^2}=\frac{25}{16} \\ &amp; \frac{h^2+k^2-4 h-2 k+5}{h^2+k^2-2 h-6 k+10}=\frac{25}{16} \\ \end{aligned}$$</p> <p>Replacing $$h \rightarrow x$$ and $$k \rightarrow y$$.</p> <p>$$\begin{aligned} &amp; 16 x^2+16 y^2-64 x-32 y+80 \\ &amp; =25 x^2+25 y^2-50 x-150 y+250 \\ &amp; 9 x^2+9 y^2+14 x-118 y+170=0 \\ &amp; \Rightarrow a=9, b=9, c=0, d=14, e=-118 \\ &amp; a^2+2 b+3 c+4 d+e \\ &amp; 81+18+56-118 \\ &amp; \Rightarrow 37 \end{aligned}$$</p>
mcq
jee-main-2024-online-6th-april-evening-shift
OYKsgMxcEWV5KKqu
maths
straight-lines-and-pair-of-straight-lines
pair-of-straight-lines
If the pair of lines <br/><br/>$$a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$$ <br/><br/>intersect on the $$y$$-axis then :
[{"identifier": "A", "content": "$$2fgh = b{g^2} + c{h^2}$$ "}, {"identifier": "B", "content": "$$b{g^2} \\ne c{h^2}$$ "}, {"identifier": "C", "content": "$$abc = 2fgh$$ "}, {"identifier": "D", "content": "none of these "}]
["A"]
null
Put $$x=0$$ in the given equation <br><br>$$ \Rightarrow b{y^2} + 2fy + c = 0.$$ <br><br>For unique point of intersection $${f^2} - bc = 0$$ <br><br>$$ \Rightarrow a{f^2} - abc = 0.$$ <br><br>Since $$abc + 2fgh - a{f^2} - b{g^2} - c{h^2} = 0$$ <br><br>$$ \Rightarrow 2fgh - b{g^2} - c{h^2} = 0$$
mcq
aieee-2002
nRhgOiVMJ3weRKlW
maths
straight-lines-and-pair-of-straight-lines
pair-of-straight-lines
The pair of lines represented by $$$3a{x^2} + 5xy + \left( {{a^2} - 2} \right){y^2} = 0$$$ <br/><br/>are perpendicular to each other for :
[{"identifier": "A", "content": "two values of $$a$$"}, {"identifier": "B", "content": "$$\\forall \\,a$$ "}, {"identifier": "C", "content": "for one value of $$a$$ "}, {"identifier": "D", "content": "for no values of $$a$$ "}]
["A"]
null
$$3a + {a^2} - 2 = 0 \Rightarrow {a^2} + 3a - 2 = 0;$$ <br><br>$$ \Rightarrow a = {{ - 3 \pm \sqrt {9 + 8} } \over 2} = {{ - 3 \pm \sqrt {17} } \over 2}$$
mcq
aieee-2002
d4SHDHZK60aYSFFU
maths
straight-lines-and-pair-of-straight-lines
pair-of-straight-lines
If the pair of straight lines $${x^2} - 2pxy - {y^2} = 0$$ and $${x^2} - 2qxy - {y^2} = 0$$ be such that each pair bisects the angle between the other pair, then :
[{"identifier": "A", "content": "$$pq = -1$$ "}, {"identifier": "B", "content": "$$p = q$$ "}, {"identifier": "C", "content": "$$p = -q$$ "}, {"identifier": "D", "content": "$$pq = 1$$."}]
["A"]
null
Equation of bisectors of second pair of straight lines is, <br><br>$$q{x^2} + 2xy - q{y^2} = 0\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$$ <br><br>It must be identical to the first pair <br><br>$${x^2} - 2\,pxy - {y^2} = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left(... 2 \right)$$ <br><br>from $$(1)$$ and $$(2)$$ $${q \over 1} = {2 \over { - 2p}} = {{ - q} \over { - 1}}$$ <br><br>$$ \Rightarrow pq = - 1.$$
mcq
aieee-2003
LKV0RhPLyjQeTiXA
maths
straight-lines-and-pair-of-straight-lines
pair-of-straight-lines
If the sum of the slopes of the lines given by $${x^2} - 2cxy - 7{y^2} = 0$$ is four times their product $$c$$ has the value :
[{"identifier": "A", "content": "$$-2$$ "}, {"identifier": "B", "content": "$$-1$$ "}, {"identifier": "C", "content": "$$2$$ "}, {"identifier": "D", "content": "$$1$$"}]
["C"]
null
Let the lines be $$y = {m_1}x$$ and $$y = {m_2}x$$ then <br><br>$${m_1} + {m_2} = - {{2c} \over 7}$$ and $${m_1}{m_2} = - {1 \over 7}$$ <br><br>Given $${m_1} + {m_2} = 4m{}_1{m_2}$$ <br><br>$$ \Rightarrow {{2c} \over 7} = - {4 \over 7} \Rightarrow c = 2$$
mcq
aieee-2004
Cy25MQi1BYWBv2tA
maths
straight-lines-and-pair-of-straight-lines
pair-of-straight-lines
If one of the lines given by $$6{x^2} - xy + 4c{y^2} = 0$$ is $$3x + 4y = 0,$$ then $$c$$ equals :
[{"identifier": "A", "content": "$$-3$$ "}, {"identifier": "B", "content": "$$-1$$"}, {"identifier": "C", "content": "$$3$$ "}, {"identifier": "D", "content": "$$1$$ "}]
["A"]
null
$$3x+4y=0$$ is one of the lines of the pair <br><br>$$6{x^2} - xy + 4c{y^2} = 0,$$ $$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ <br><br>Put $$y = - {3 \over 4}x,$$ <br><br>we get $$6{x^2} + {3 \over 4}{x^2} + 4c{\left( { - {3 \over 4}x} \right)^2} = 0$$ <br><br>$$ \Rightarrow 6 + {3 \over 4} + {{9c} \over 4} = 0 \Rightarrow c = - 3$$
mcq
aieee-2004
lCN4wgVHnbo8LVq1
maths
straight-lines-and-pair-of-straight-lines
pair-of-straight-lines
If one of the lines of $$m{y^2} + \left( {1 - {m^2}} \right)xy - m{x^2} = 0$$ is a bisector of angle between the lines $$xy = 0,$$ then $$m$$ is :
[{"identifier": "A", "content": "$$1$$"}, {"identifier": "B", "content": "$$2$$ "}, {"identifier": "C", "content": "$$-1/2$$ "}, {"identifier": "D", "content": "$$-2$$"}]
["A"]
null
Equation of bisectors of lines, $$xy=0$$ are $$y = \pm x$$ <br><br><img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264578/exam_images/cudjhzff4ynokmmza2f9.webp" loading="lazy" alt="AIEEE 2007 Mathematics - Straight Lines and Pair of Straight Lines Question 133 English Explanation"> <br><br>$$\therefore$$ Put $$y = \pm \,x$$ in the given equation <br><br>$$m{y^2} + \left( {1 - {m^2}} \right)xy - m{x^2} = 0$$ <br><br>$$\therefore$$ $$m{x^2} + \left( {1 - {m^2}} \right){x^2} - m{x^2} = 0$$ <br><br>$$ \Rightarrow 1 - {m^2} = 0 \Rightarrow m = \pm 1$$
mcq
aieee-2007
1krznn46g
maths
straight-lines-and-pair-of-straight-lines
pair-of-straight-lines
Let the equation of the pair of lines, y = px and y = qx, can be written as (y $$-$$ px) (y $$-$$ qx) = 0. Then the equation of the pair of the angle bisectors of the lines x<sup>2</sup> $$-$$ 4xy $$-$$ 5y<sup>2</sup> = 0 is :
[{"identifier": "A", "content": "x<sup>2</sup> $$-$$ 3xy + y<sup>2</sup> = 0"}, {"identifier": "B", "content": "x<sup>2</sup> + 4xy $$-$$ y<sup>2</sup> = 0"}, {"identifier": "C", "content": "x<sup>2</sup> + 3xy $$-$$ y<sup>2</sup> = 0"}, {"identifier": "D", "content": "x<sup>2</sup> $$-$$ 3xy $$-$$ y<sup>2</sup> = 0"}]
["C"]
null
Equation of angle bisector of homogeneous <br>equation of pair of straight line ax<sup>2</sup> + 2hxy + by<sup>2</sup> is <br><br>$${{{x^2} - {y^2}} \over {a - b}} = {{xy} \over h}$$ <br><br>for x<sup>2</sup> – 4xy – 5y<sup>2</sup> = 0 <br><br> a = 1, h = – 2, b = – 5 <br><br>So, equation of angle bisector is <br><br>$${{{x^2} - {y^2}} \over {1 - ( - 5)}} = {{xy} \over { - 2}}$$<br><br>$${{{x^2} - {y^2}} \over 6} = {{xy} \over { - 2}}$$<br><br>$$ \Rightarrow {x^2} - {y^2} = - 3xy$$<br><br>So, combined equation of angle bisector is $$ {x^2} + 3xy - {y^2} = 0$$
mcq
jee-main-2021-online-25th-july-evening-shift
lsana1e6
maths
straight-lines-and-pair-of-straight-lines
pair-of-straight-lines
The lines $\mathrm{L}_1, \mathrm{~L}_2, \ldots, \mathrm{L}_{20}$ are distinct. For $\mathrm{n}=1,2,3, \ldots, 10$ all the lines $\mathrm{L}_{2 \mathrm{n}-1}$ are parallel to each other and all the lines $L_{2 n}$ pass through a given point $P$. The maximum number of points of intersection of pairs of lines from the set $\left\{\mathrm{L}_1, \mathrm{~L}_2, \ldots, \mathrm{L}_{20}\right\}$ is equal to ___________.
[]
null
101
<p>To find the maximum number of points of intersection of pairs of lines from the given set, we need to consider how the lines are arranged based on the given conditions.</p><p>Firstly, there are 10 lines (${L}_1, {L}_3, ..., {L}_{19}$) that are parallel to each other. Since parallel lines do not intersect with each other, these 10 lines will not contribute to the number of intersection points among themselves.</p><p>Secondly, there are 10 lines (${L}_2, {L}_4, ..., {L}_{20}$) that all pass through a given point $P$. Although these lines intersect at $P$, they only contribute one unique point of intersection to the total count.</p><p>To calculate the maximum number of intersection points, we need to consider the total number of ways to pick pairs of lines from the 20 lines available without restrictions, then subtract the combinations that do not result in intersections, which includes the combinations of parallel lines among themselves and the concurrent lines through point $P$.</p><p>This calculation is represented as:</p><p>$$Total = ^{20}C_2 - ^{10}C_2 - ^{10}C_2 + 1$$</p><p>Here, $^{20}C_2$ calculates the total number of ways to pick any two lines out of 20, which includes intersecting and non-intersecting lines. $^{10}C_2$ is subtracted twice: once for the set of parallel lines (${L}_1, {L}_3, ..., {L}_{19}$) that don't intersect among themselves and once more for the set of concurrent lines (${L}_2, {L}_4, ..., {L}_{20}$) intersecting only at point $P$. Since all the concurrent lines intersect at the same point, we add 1 back to include this intersection point.</p><p>Carrying out this calculation gives us the total number of distinct intersection points as $101$.</p>
integer
jee-main-2024-online-1st-february-evening-shift
48fQMDjK28k2Jmox
maths
straight-lines-and-pair-of-straight-lines
position-of-a-point-with-respect-to-a-line
If $$\left( {a,{a^2}} \right)$$ falls inside the angle made by the lines $$y = {x \over 2},$$ $$x &gt; 0$$ and $$y = 3x,$$ $$x &gt; 0,$$ then a belong to :
[{"identifier": "A", "content": "$$\\left( {0,{1 \\over 2}} \\right)$$ "}, {"identifier": "B", "content": "$$\\left( {3,\\infty } \\right)$$ "}, {"identifier": "C", "content": "$$\\left( {{1 \\over 2},3} \\right)$$ "}, {"identifier": "D", "content": "$$\\left( {-3,-{1 \\over 2}} \\right)$$"}]
["C"]
null
Clearly for point $$P,$$ <br><br><img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266344/exam_images/ctbame8e1bgmyuficejz.webp" loading="lazy" alt="AIEEE 2006 Mathematics - Straight Lines and Pair of Straight Lines Question 136 English Explanation"> <br><br>$${a^2} - 3a &lt; 0$$ <b>and</b> $${a^2} - {a \over 2} &gt; 0 \Rightarrow {1 \over 2} &lt; a &lt; 3$$
mcq
aieee-2006
GjQYnrzI4iqIKureOsjgy2xukezf9uo6
maths
straight-lines-and-pair-of-straight-lines
position-of-a-point-with-respect-to-a-line
The set of all possible values of $$\theta $$ in the interval <br/>(0, $$\pi $$) for which the points (1, 2) and (sin $$\theta $$, cos $$\theta $$) lie <br/>on the same side of the line x + y = 1 is :
[{"identifier": "A", "content": "$$\\left( {0,{\\pi \\over 4}} \\right)$$"}, {"identifier": "B", "content": "$$\\left( {0,{{3\\pi } \\over 4}} \\right)$$"}, {"identifier": "C", "content": "$$\\left( {{\\pi \\over 4},{{3\\pi } \\over 4}} \\right)$$"}, {"identifier": "D", "content": "$$\\left( {0,{\\pi \\over 2}} \\right)$$"}]
["D"]
null
Let f(x, y) = x + y - 1<br><br> $$ \because f\left( {1,2} \right).f\left( {\sin \theta ,\cos \theta } \right) &gt; 0$$<br><br> $$ \Rightarrow 2\left[ {\sin \theta + \cos \theta - 1} \right] &gt; 0$$<br><br> $$ \Rightarrow \sin \theta + \cos \theta &gt; 1$$<br><br> $$ \Rightarrow \sin \left( {\theta + {\pi \over 4}} \right) &gt; {1 \over {\sqrt 2 }}$$<br><br> $$ \Rightarrow \theta + {\pi \over 4} \in \left( {{\pi \over 4},{{3\pi } \over 4}} \right)$$<br><br> $$ \Rightarrow \theta \in \left( {0,{\pi \over 2}} \right)$$
mcq
jee-main-2020-online-2nd-september-evening-slot
RTESslESMCU0Xz8Ntajgy2xukg3bb6q3
maths
straight-lines-and-pair-of-straight-lines
position-of-a-point-with-respect-to-a-line
Let L denote the line in the xy-plane with x and y intercepts as 3 and 1 respectively. Then the image of the point (–1, –4) in this line is :
[{"identifier": "A", "content": "$$\\left( {{{11} \\over 5},{{28} \\over 5}} \\right)$$"}, {"identifier": "B", "content": "$$\\left( {{{29} \\over 5},{{11} \\over 5}} \\right)$$"}, {"identifier": "C", "content": "$$\\left( {{{29} \\over 5},{8 \\over 5}} \\right)$$"}, {"identifier": "D", "content": "$$\\left( {{8 \\over 5},{{29} \\over 5}} \\right)$$"}]
["A"]
null
Line is $${x \over 3} + {y \over 1} = 1$$ <br><br>$$ \Rightarrow $$ x + 3y – 3 = 0 <br><br>Let Image of point (–1, –4) is ($$\alpha $$, $$\beta $$) <br><br>Hence, $${{\alpha + 1} \over 1} = {{\beta + 4} \over 3} = - 2\left( {{{ - 1 - 12 - 3} \over {10}}} \right)$$ <br><br>$$ \Rightarrow $$ $${{\alpha + 1} \over 1} = {{\beta + 4} \over 3} = {{16} \over 5}$$ <br><br>$$ \Rightarrow $$ $$\alpha $$ = $${{11} \over 5}$$, $$\beta $$ = $${{28} \over 5}$$
mcq
jee-main-2020-online-6th-september-evening-slot
xEGrouMGvUDJjnlrut1kls5d2xb
maths
straight-lines-and-pair-of-straight-lines
position-of-a-point-with-respect-to-a-line
The image of the point (3, 5) in the line x $$-$$ y + 1 = 0, lies on :
[{"identifier": "A", "content": "(x $$-$$ 4)<sup>2</sup> + (y $$-$$ 4)<sup>2</sup> = 8"}, {"identifier": "B", "content": "(x $$-$$ 4)<sup>2</sup> + (y $$+$$ 2)<sup>2</sup> = 16"}, {"identifier": "C", "content": "(x $$-$$ 2)<sup>2</sup> + (y $$-$$ 2)<sup>2</sup> = 12"}, {"identifier": "D", "content": "(x $$-$$ 2)<sup>2</sup> + (y $$-$$ 4)<sup>2</sup> = 4"}]
["D"]
null
So, let the image is (x, y)<br><br>So, we have<br><br>$${{x - 3} \over 1} = {{y - 5} \over { - 1}} = - {{2(3 - 5 + 1)} \over {1 + 1}}$$<br><br>$$ \Rightarrow $$ x = 4, y = 4<br><br>$$ \Rightarrow $$ Point (4, 4)<br><br>Which will satisfy the curve <br><br>(x $$-$$ 2)<sup>2</sup> + (y $$-$$ 4)<sup>2</sup> = 4<br><br>as (4 $$-$$ 2)<sup>2</sup> + (4 $$-$$ 4)<sup>2</sup> = 4 + 0 = 4
mcq
jee-main-2021-online-25th-february-morning-slot
jaoe38c1lscnigca
maths
straight-lines-and-pair-of-straight-lines
position-of-a-point-with-respect-to-a-line
<p>Let $$\mathrm{R}$$ be the interior region between the lines $$3 x-y+1=0$$ and $$x+2 y-5=0$$ containing the origin. The set of all values of $$a$$, for which the points $$\left(a^2, a+1\right)$$ lie in $$R$$, is :</p>
[{"identifier": "A", "content": "&nbsp;$$(-3,0) \\cup\\left(\\frac{2}{3}, 1\\right)$$\n"}, {"identifier": "B", "content": "$$(-3,0) \\cup\\left(\\frac{1}{3}, 1\\right)$$\n"}, {"identifier": "C", "content": "$$(-3,-1) \\cup\\left(\\frac{1}{3}, 1\\right)$$\n"}, {"identifier": "D", "content": "$$(-3,-1) \\cup\\left(-\\frac{1}{3}, 1\\right)$$"}]
["B"]
null
<p>$$\begin{aligned} &amp; \mathrm{P}\left(\mathrm{a}^2, \mathrm{a}+1\right) \\ &amp; \mathrm{L}_1=3 \mathrm{x}-\mathrm{y}+1=0 \end{aligned}$$</p> <p>Origin and $$\mathrm{P}$$ lies same side w.r.t. $$\mathrm{L}_1$$</p> <p>$$\begin{aligned} &amp; \Rightarrow \mathrm{L}_1(0) \cdot \mathrm{L}_1(\mathrm{P})&gt;0 \\ &amp; \therefore 3\left(\mathrm{a}^2\right)-(\mathrm{a}+1)+1&gt;0 \end{aligned}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lt1u0w1z/5e71e275-9890-4f83-b0e3-dce0674de6b5/173b5570-d40a-11ee-b9d5-0585032231f0/file-1lt1u0w20.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lt1u0w1z/5e71e275-9890-4f83-b0e3-dce0674de6b5/173b5570-d40a-11ee-b9d5-0585032231f0/file-1lt1u0w20.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 27th January Evening Shift Mathematics - Straight Lines and Pair of Straight Lines Question 21 English Explanation"></p> <p>$$\begin{aligned} &amp; \Rightarrow 3 \mathrm{a}^2-\mathrm{a}&gt;0 \\ &amp; \mathrm{a} \in(-\infty, 0) \cup\left(\frac{1}{3}, \infty\right) \quad \text{..... (1)} \end{aligned}$$</p> <p>Let $$L_2: x+2 y-5=0$$</p> <p>Origin and $$\mathrm{P}$$ lies same side w.r.t. $$\mathrm{L}_2$$</p> <p>$$\begin{aligned} &amp; \Rightarrow \mathrm{L}_2(0) \cdot \mathrm{L}_2(\mathrm{P})&gt;0 \\ &amp; \Rightarrow \mathrm{a}^2+2(\mathrm{a}+1)-5&lt;0 \\ &amp; \Rightarrow \mathrm{a}^2+2 \mathrm{a}-3&lt;0 \\ &amp; \Rightarrow(\mathrm{a}+3)(\mathrm{a}-1)&lt;0 \end{aligned}$$</p> <p>$$\therefore \mathrm{a} \in(-3,1)\quad \text{..... (2)}$$</p> <p>Intersection of (1) and (2)</p> <p>$$\mathrm{a} \in(-3,0) \cup\left(\frac{1}{3}, 1\right)$$</p>
mcq
jee-main-2024-online-27th-january-evening-shift
zrvlgkTshq7OXXx6
maths
straight-lines-and-pair-of-straight-lines
section-formula
The perpendicular bisector of the line segment joining P(1, 4) and Q(k, 3) has y-intercept -4. Then a possible value of k is :
[{"identifier": "A", "content": "1 "}, {"identifier": "B", "content": "2 "}, {"identifier": "C", "content": "-2"}, {"identifier": "D", "content": "-4"}]
["D"]
null
Slope of $$PQ = {{3 - 4} \over {k - 1}} = {{ - 1} \over {k - 1}}$$ <br><br>$$\therefore$$ Slope of perpendicular bisector of <br><br>$$PQ = \left( {k - 1} \right)$$ <br><br>Also mid point of <br><br>$$PQ\left( {{{k + 1} \over 2},{7 \over 2}} \right).$$ <br><br>Equation of perpendicular bisector is <br><br>$$y - {7 \over 2} = \left( {k - 1} \right)\left( {x - {{k + 1} \over 2}} \right)$$ <br><br>$$ \Rightarrow 2y - 7 = 2\left( {k - 1} \right)x - \left( {{k^2} - 1} \right)$$ <br><br>$$ \Rightarrow 2\left( {k - 1} \right)x - 2y + \left( {8 - {k^2}} \right) = 0$$ <br><br>$$\therefore$$ $$y$$-intercept $$ = {{8 - {k^2}} \over { - 2}} = - 4$$ <br><br>$$ \Rightarrow $$ $$8 - {k^2} = - 8$$ or $${k^2} = 16 \Rightarrow k = \pm 4$$
mcq
aieee-2008
GqfASFWCWxm72l58
maths
straight-lines-and-pair-of-straight-lines
section-formula
If the line $$2x + y = k$$ passes through the point which divides the line segment joining the points $$(1, 1)$$ and $$(2, 4)$$ in the ratio $$3 : 2$$, then $$k$$ equals :
[{"identifier": "A", "content": "$${{29 \\over 5}}$$"}, {"identifier": "B", "content": "$$5$$"}, {"identifier": "C", "content": "$$6$$ "}, {"identifier": "D", "content": "$${{11 \\over 5}}$$"}]
["C"]
null
<p>The point which divides the line segment joining the points (1, 1) and (2, 4) in the ratio 3 : 2 is</p> <p>$$ = \left( {{{3 \times 2 + 2 \times 1} \over {3 + 2}},{{3 \times 4 + 2 \times 1} \over {3 + 2}}} \right)$$</p> <p>$$ = \left( {{{6 + 2} \over 5},{{12 + 2} \over 5}} \right) = \left( {{8 \over 5},{{14} \over 5}} \right)$$</p> <p>Since the line 2x + y = k passes through this point,</p> <p>$$\therefore$$ $$2 \times {8 \over 5} + {{14} \over 5} = k$$ or $${{30} \over 5} = k$$ or, k = 6</p>
mcq
aieee-2012
RqP4GjPbQFXkv1uZ
maths
straight-lines-and-pair-of-straight-lines
section-formula
Let $$PS$$ be the median of the triangle with vertices $$P(2, 2)$$, $$Q(6, -1)$$ and $$R(7, 3)$$. The equation of the line passing through $$(1, -1)$$ band parallel to PS is :
[{"identifier": "A", "content": "$$4x + 7y + 3 = 0$$ "}, {"identifier": "B", "content": "$$2x - 9y - 11 = 0$$"}, {"identifier": "C", "content": "$$4x - 7y - 11 = 0$$"}, {"identifier": "D", "content": "$$2x + 9y + 7 = 0$$"}]
["D"]
null
Let $$P,Q,R,$$ be the vertices of $$\Delta PQR$$ <br><br><img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263525/exam_images/hrqnkqyxxwu0ays0itme.webp" loading="lazy" alt="JEE Main 2014 (Offline) Mathematics - Straight Lines and Pair of Straight Lines Question 124 English Explanation"> <br><br>Since $$PS$$ is the median, $$S$$ is mid-point of $$QR$$ <br><br>So, $$S = \left( {{{7 + 6} \over 2},{{3 - 1} \over 2}} \right) = \left( {{{13} \over 2},1} \right)$$ <br><br>Now, slope of $$PS$$ $$ = {{2 - 1} \over {2 - {{13} \over 2}}} = - {2 \over 9}$$ <br><br>Since, required line is parallel to $$PS$$ therefore slope of required line $$=$$ slope of $$PS$$ <br><br>Now, equation of line passing through $$(1, -1)$$ and having slope $$ - {2 \over 9}$$ is <br><br>$$y - \left( { - 1} \right) = - {2 \over 9}\left( {x - 1} \right)$$ <br><br>$$9y + 9 = - 2x + 2$$ <br><br>$$ \Rightarrow 2x + 9y + 7 = 0$$
mcq
jee-main-2014-offline
tteS99KoDoR8VPgKcQ97i
maths
straight-lines-and-pair-of-straight-lines
section-formula
A straight line through origin O meets the lines 3y = 10 − 4x and 8x + 6y + 5 = 0 at points A and B respectively. Then O divides the segment AB in the ratio :
[{"identifier": "A", "content": "2 : 3 "}, {"identifier": "B", "content": "1 : 2"}, {"identifier": "C", "content": "4 : 1"}, {"identifier": "D", "content": "3 : 4"}]
["C"]
null
The lines 4x + 3y $$-$$ 10 = 0 and <br><br>8x + 6y + 5 = 0 , are parallel as <br><br>&nbsp;&nbsp;&nbsp;&nbsp;$${4 \over 8}$$&nbsp;&nbsp;=&nbsp;&nbsp;$${3 \over 6}$$ <br><br>Now length of perpendicular from <br><br>(0, 0, 0) to 4x + 3y $$-$$ 10 = 0 is, <br><br>P<sub>1</sub> &nbsp;&nbsp;= &nbsp;&nbsp;$$\left| {{{4\left( 0 \right) + 3\left( 0 \right) - 10} \over {\sqrt {{4^2} + {3^2}} }}} \right|$$&nbsp;&nbsp;=&nbsp;&nbsp;$${{10} \over 5}$$&nbsp;&nbsp;=&nbsp;&nbsp;2 <br><br>Length of perpendicular from <br><br>0 (0, 0) to 8x + 6y + 5 = 0 is <br><br>P<sub>2</sub> &nbsp;&nbsp;=&nbsp;&nbsp;$$\left| {{{8\left( 0 \right) + 6\left( 0 \right) + 5} \over {\sqrt {{6^2} + {8^2}} }}} \right|$$ &nbsp;&nbsp;=&nbsp;&nbsp;$${5 \over {10}}$$&nbsp;&nbsp; =&nbsp;&nbsp;$${1 \over 2}$$ <br><br>$$\therefore\,\,\,$$ P<sub>1</sub> : P<sub>2</sub> &nbsp;&nbsp;=&nbsp;&nbsp; 2 : $${1 \over 2}$$ &nbsp;&nbsp;=&nbsp;&nbsp; 4 : 1
mcq
jee-main-2016-online-10th-april-morning-slot
YOxO9TpRClzGuqXh6Wjgy2xukf8zo2oh
maths
straight-lines-and-pair-of-straight-lines
section-formula
Two vertical poles AB = 15 m and CD = 10 m are standing apart on a horizontal ground with points A and C on the ground. If P is the point of intersection of BC and AD, then the height of P (in m) above the line AC is :
[{"identifier": "A", "content": "10/3"}, {"identifier": "B", "content": "5"}, {"identifier": "C", "content": "20/3"}, {"identifier": "D", "content": "6"}]
["D"]
null
<picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264412/exam_images/wsbio4fzzawvxpgqqiq9.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265203/exam_images/ovvgpzy8at9xuqen3rrd.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2020 (Online) 4th September Morning Slot Mathematics - Straight Lines and Pair of Straight Lines Question 80 English Explanation"></picture> <br>Equation of AD : $$y = {{10} \over a}x$$<br><br>Equation of BC : $${x \over a} + {y \over {15}} = 1$$<br><br>$$ \Rightarrow {{ay} \over {10a}} + {y \over {15}} = 1$$<br><br>$$ \Rightarrow {{3y + 2y} \over {30}} = 1$$<br><br>$$ \Rightarrow y = 6$$<br><br>$$ \therefore $$ y coordinate of point P = 6 = height of point P above the line AC.
mcq
jee-main-2020-online-4th-september-morning-slot
1l567opn9
maths
straight-lines-and-pair-of-straight-lines
section-formula
<p>A ray of light passing through the point P(2, 3) reflects on the x-axis at point A and the reflected ray passes through the point Q(5, 4). Let R be the point that divides the line segment AQ internally into the ratio 2 : 1. Let the co-ordinates of the foot of the perpendicular M from R on the bisector of the angle PAQ be ($$\alpha$$, $$\beta$$). Then, the value of 7$$\alpha$$ + 3$$\beta$$ is equal to ____________.</p>
[]
null
31
<p> <img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l5oc3byi/c98d69fd-398a-42cd-a87f-3ee77ee795a4/cca73aa0-0544-11ed-987f-3938cfc0f7f1/file-1l5oc3byj.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l5oc3byi/c98d69fd-398a-42cd-a87f-3ee77ee795a4/cca73aa0-0544-11ed-987f-3938cfc0f7f1/file-1l5oc3byj.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 28th June Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 51 English Explanation"> </p> <p>$${4 \over {5 - \alpha }} = {3 \over {\alpha - 2}} \Rightarrow 4\alpha - 8 = 15 - 3\alpha $$</p> <p>$$\alpha = {{23} \over 7}$$</p> <p>$$A = \left( {{{23} \over 7},0} \right)\,Q = (5,4)$$</p> <p>$$R = \left( {{{10 + {{23} \over 7}} \over 3},{8 \over 3}} \right)$$</p> <p>$$ = \left( {{{31} \over 7},{8 \over 3}} \right)$$</p> <p>Bisector of angle PAQ is $$X = {{23} \over 7}$$</p> <p>$$ \Rightarrow M = \left( {{{23} \over 7},{8 \over 3}} \right)$$</p> <p>So, $$7\alpha + 3\beta = 31$$</p>
integer
jee-main-2022-online-28th-june-morning-shift
lv5gsk1h
maths
straight-lines-and-pair-of-straight-lines
section-formula
<p>The equations of two sides $$\mathrm{AB}$$ and $$\mathrm{AC}$$ of a triangle $$\mathrm{ABC}$$ are $$4 x+y=14$$ and $$3 x-2 y=5$$, respectively. The point $$\left(2,-\frac{4}{3}\right)$$ divides the third side $$\mathrm{BC}$$ internally in the ratio $$2: 1$$, the equation of the side $$\mathrm{BC}$$ is</p>
[{"identifier": "A", "content": "$$x+6 y+6=0$$\n"}, {"identifier": "B", "content": "$$x-3 y-6=0$$\n"}, {"identifier": "C", "content": "$$x+3 y+2=0$$\n"}, {"identifier": "D", "content": "$$x-6 y-10=0$$"}]
["C"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lw8pr3ta/992548a6-ea30-4544-b8d1-c7f041deb6d3/854cb2e0-1337-11ef-9f8d-838c388c326d/file-1lw8pr3tb.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lw8pr3ta/992548a6-ea30-4544-b8d1-c7f041deb6d3/854cb2e0-1337-11ef-9f8d-838c388c326d/file-1lw8pr3tb.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 8th April Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 5 English Explanation"></p> <p>$$\begin{aligned} &amp; 2=\frac{2 x_2+x_1}{3}, \frac{-4}{3}=\frac{2 y_2+y_1}{3} \\ &amp; 2 x_2+x_1=6,2 y_2+y_1=-4 \end{aligned}$$</p> <p>$$\begin{aligned} &amp; x_1=6-2 x_2 \quad \text{.... (1)}\\ &amp; y_1=-4-2 y_2 \quad \text{.... (2)}\\ &amp; 4 x_1+y_1=14 \quad \text{.... (3)}\\ &amp; 3 x_2-2 y_2=5 \quad \text{.... (4)} \end{aligned}$$</p> <p>From here, $$x_2=1, y_2=-1, x_1=4, y_1=-2$$</p> <p>$$\begin{aligned} &amp; B(4,-2) C(1,-1) \\ &amp; y+2=\frac{-1+2}{1-4}(x-4) \\ &amp; -3 y-6=x-4 \\ &amp; x+3 y+2=0 \end{aligned}$$</p>
mcq
jee-main-2024-online-8th-april-morning-shift
0QBTBsX9nVPc2AOX
maths
straight-lines-and-pair-of-straight-lines
various-forms-of-straight-line
If $${x_1},{x_2},{x_3}$$ and $${y_1},{y_2},{y_3}$$ are both in G.P. with the same common ratio, then the points $$\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right)$$ and $$\left( {{x_3},{y_3}} \right)$$ :
[{"identifier": "A", "content": "are vertices of a triangle"}, {"identifier": "B", "content": "lie on a straight line "}, {"identifier": "C", "content": "lie on an ellipse "}, {"identifier": "D", "content": "lie on a circle "}]
["B"]
null
Taking co-ordinates as <br><br>$$\left( {{x \over r},{y \over r}} \right);\left( {x,y} \right)\,\,\&amp; \,\,\left( {xr,yr} \right)$$ <br><br>Then slope of line joining <br><br>$$\left( {{x \over r},{y \over r}} \right),\left( {x,y} \right) = {{y\left( {1 - {1 \over r}} \right)} \over {x\left( {1 - {1 \over r}} \right)}} = {y \over x}$$ <br><br>and slope of line joining $$(x,y)$$ and $$(xr, yr)$$ <br><br>$$ = {{y\left( {r - 1} \right)} \over {x\left( {r - 1} \right)}} = {y \over x}$$ <br><br>$$\therefore$$ $${m_1} = {m_2}$$ <br><br>$$ \Rightarrow $$ Points lie on the straight line.
mcq
aieee-2003
65zVUjMq9RnyfkmS
maths
straight-lines-and-pair-of-straight-lines
various-forms-of-straight-line
A square of side a lies above the $$x$$-axis and has one vertex at the origin. The side passing through the origin makes an angle $$\alpha \left( {0 &lt; \alpha &lt; {\pi \over 4}} \right)$$ with the positive direction of x-axis. The equation of its diagonal not passing through the origin is :
[{"identifier": "A", "content": "$$y\\left( {\\cos \\alpha + \\sin \\alpha } \\right) + x\\left( {\\cos \\alpha - \\sin \\alpha } \\right) = a$$ "}, {"identifier": "B", "content": "$$y\\left( {\\cos \\alpha - \\sin \\alpha } \\right) - x\\left( {\\sin \\alpha - \\cos \\alpha } \\right) = a$$ "}, {"identifier": "C", "content": "$$y\\left( {\\cos \\alpha + \\sin \\alpha } \\right) + x\\left( {\\sin \\alpha - \\cos \\alpha } \\right) = a$$ "}, {"identifier": "D", "content": "$$y\\left( {\\cos \\alpha + \\sin \\alpha } \\right) + x\\left( {\\sin \\alpha + \\cos \\alpha } \\right) = a$$ "}]
["A"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265012/exam_images/xq65o2ooxotlgbornwg4.webp" loading="lazy" alt="AIEEE 2003 Mathematics - Straight Lines and Pair of Straight Lines Question 148 English Explanation"> <br><br>Co-ordinate of $$A = \left( {a\,\cos \,\alpha ,\,\,a\,\sin \,\alpha } \right)$$ <br><br>Equation of $$OB,$$ <br><br>$$y = \tan \left( {{\pi \over 4} + \alpha } \right)x$$ <br><br>$$CA{ \bot ^r}$$ to $$OB$$ <br><br>$$\therefore$$ slope of $$CA=-$$ $$\cot \left( {{\pi \over 4} + \alpha } \right)$$ <br><br>Equation of $$CA$$ <br><br>$$y - a\sin \alpha = - cot\left( {{\pi \over 4} + \alpha } \right)\left( {x - a\,\cos \,\alpha } \right)$$ <br><br>$$ \Rightarrow \left( {y - a\sin \alpha } \right)\left( {\tan \left( {{\pi \over 4} + \alpha } \right)} \right) = \left( {a\,\cos \,\alpha - x} \right)$$ <br><br>$$ \Rightarrow \left( {y - a\sin \alpha } \right)\left( {{{\tan {\pi \over 4} + \tan \alpha } \over {1 - \tan {\pi \over 4}\tan \alpha }}} \right)\left( {a\,\cos \,\alpha - x} \right)$$ <br><br>$$ \Rightarrow \left( {y - a\sin \alpha } \right)\left( {1 + \tan \alpha } \right) = \left( {a\cos \alpha - x} \right)\left( {1 - \tan \alpha } \right)$$ <br><br>$$ \Rightarrow \left( {y - a\sin \alpha } \right)\left( {\cos \alpha + \sin \alpha } \right) = \left( {a\cos \alpha - x} \right)\left( {\cos \alpha - \sin \alpha } \right)$$ <br><br>$$ \Rightarrow y\left( {\cos + \sin \alpha } \right) - a\sin \alpha \cos \alpha - a{\sin ^2}\alpha $$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = a{\cos ^2}\alpha - a\cos \alpha \sin \alpha - x\left( {\cos \alpha - \sin \alpha } \right)$$ <br><br>$$ \Rightarrow y\left( {\cos \alpha + sin\alpha } \right) + x\left( {\cos \alpha - \sin \alpha } \right) = a$$ <br><br>$$y\left( {\sin \alpha + \cos \alpha } \right) + x\left( {\cos \alpha - \sin \alpha } \right) = a.$$
mcq
aieee-2003
cL9c59Yxiueh22Ud
maths
straight-lines-and-pair-of-straight-lines
various-forms-of-straight-line
The equation of the straight line passing through the point $$(4, 3)$$ and making intercepts on the co-ordinate axes whose sum is $$-1$$ is :
[{"identifier": "A", "content": "$${x \\over 2} - {y \\over 3} = 1$$ and $${x \\over -2} +{y \\over 1} = 1$$"}, {"identifier": "B", "content": "$${x \\over 2} - {y \\over 3} = -1$$ and $${x \\over -2} +{y \\over 1} = -1$$"}, {"identifier": "C", "content": "$${x \\over 2} + {y \\over 3} = 1$$ and $${x \\over 2} +{y \\over 1} = 1$$ "}, {"identifier": "D", "content": "$${x \\over 2} + {y \\over 3} = -1$$ and $${x \\over -2} +{y \\over 1} = -1$$"}]
["A"]
null
Let the required line be $${x \over a} + {y \over b} = 1.......\left( 1 \right)$$ <br><br>then $$a+b=-1$$ $$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,.........\left( 2 \right)$$ <br><br>$$(1)$$ passes through $$(4,3), $$ $$ \Rightarrow {4 \over a} + {3 \over b} = 1$$ <br><br>$$ \Rightarrow 4b + 3a = ab\,\,...............\left( 3 \right)$$ <br><br>Eliminating $$b$$ from $$(2)$$ and $$(3),$$ we get <br><br>$${a^2} - 4 = 0 \Rightarrow a = \pm 2 \Rightarrow b = - 3$$, $$1$$ <br><br>$$\therefore$$ Equation of straight lines are <br><br>$${x \over 2} + {y \over { - 3}} = 1$$ <br><br>or $${x \over { - 2}} + {y \over 1} = 1$$
mcq
aieee-2004
nxWNixRK8ZREBj7D
maths
straight-lines-and-pair-of-straight-lines
various-forms-of-straight-line
The line parallel to the $$x$$ - axis and passing through the intersection of the lines $$ax + 2by + 3b = 0$$ and $$bx - 2ay - 3a = 0,$$ where $$(a, b)$$ $$ \ne $$ $$(0, 0)$$ is :
[{"identifier": "A", "content": "below the $$x$$ - axis at a distance of $${3 \\over 2}$$ from it "}, {"identifier": "B", "content": "below the $$x$$ - axis at a distance of $${2 \\over 3}$$ from it "}, {"identifier": "C", "content": "above the $$x$$ - axis at a distance of $${3 \\over 2}$$ from it "}, {"identifier": "D", "content": "above the $$x$$ - axis at a distance of $${2 \\over 3}$$ from it "}]
["A"]
null
The line passing through the intersection of lines <br><br>$$ax + 2by = 3b = 0$$ <br><br>and $$bx - 2ay - 3a = 0$$ is <br><br>$$ax + 2by + 3b + \lambda \left( {bx - 2ay - 3a} \right) = 0$$ <br><br>$$ \Rightarrow \left( {a + b\lambda } \right)x + \left( {2b - 2a\lambda } \right)y + 3b - 3\lambda a = 0$$ <br><br>As this line is parallel to $$x$$-axis. <br><br>$$\therefore$$ $$a + b\lambda = 0 \Rightarrow \lambda = - a/b$$ <br><br>$$ \Rightarrow ax + 2by + 3b - {a \over b}\left( {bx - 2ay - 3a} \right) = 0$$ <br><br>$$ \Rightarrow ax + 2by + 3b - ax + {{2{a^2}} \over b}y + {{3{a^2}} \over b} = 0$$ <br><br>$$y\left( {2b + {{2{a^2}} \over b}} \right) + 3b + {{3{a^2}} \over b} = 0$$ <br><br>$$y\left( {{{2{b^2} + 2{a^2}} \over b}} \right) = - \left( {{{3{b^2} + 3{a^2}} \over b}} \right)$$ <br><br>$$y = {{ - 3\left( {{a^2} + {b^2}} \right)} \over {2\left( {{b^2} + {a^2}} \right)}} = {{ - 3} \over 2}$$ <br><br>So it is $$3/2$$ units below $$x$$-axis.
mcq
aieee-2005
Zla6JGrNhMGxYwmk
maths
straight-lines-and-pair-of-straight-lines
various-forms-of-straight-line
If non zero numbers $$a, b, c$$ are in $$H.P.,$$ then the straight line $${x \over a} + {y \over b} + {1 \over c} = 0$$ always passes through a fixed point. That point is :
[{"identifier": "A", "content": "$$(-1,2)$$ "}, {"identifier": "B", "content": "$$(-1, -2)$$ "}, {"identifier": "C", "content": "$$(1, -2)$$ "}, {"identifier": "D", "content": "$$\\left( {1, - {1 \\over 2}} \\right)$$ "}]
["C"]
null
$$a,b,c$$ are in $$H.P. \Rightarrow {1 \over a}.{1 \over b},{1 \over c}$$ are in $$A.P.$$ <br><br>$$ \Rightarrow {2 \over b} = {1 \over a} + {1 \over c}$$ <br><br>$$ \Rightarrow {1 \over a} - {2 \over b} + {1 \over c} = 0$$ <br><br>$$\therefore$$ $${x \over a} + {y \over a} + {1 \over c} = 0$$ passes through $$\left( {1, - 2} \right)$$
mcq
aieee-2005
OAWySqVefvLlw1nd
maths
straight-lines-and-pair-of-straight-lines
various-forms-of-straight-line
A straight line through the point $$A (3, 4)$$ is such that its intercept between the axes is bisected at $$A$$. Its equation is :
[{"identifier": "A", "content": "$$x + y = 7$$ "}, {"identifier": "B", "content": "$$3x - 4y + 7 = 0$$ "}, {"identifier": "C", "content": "$$4x + 3y = 24$$ "}, {"identifier": "D", "content": "$$3x + 4y = 25$$ "}]
["C"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266358/exam_images/znwolrv8chfin230lej7.webp" loading="lazy" alt="AIEEE 2006 Mathematics - Straight Lines and Pair of Straight Lines Question 137 English Explanation"> <br><br>As is the mid point of $$PQ,$$ therefore <br><br>$${{a + 0} \over 2} = 3,{{0 + b} \over 2} = 4 \Rightarrow a = 6,b = 8$$ <br><br>$$\therefore$$ Equation of line is $${x \over 6} + {y \over 8} = 1$$ <br><br>or $$4x + 3y = 24$$
mcq
aieee-2006
jYK1HsUIIC1y5WHG
maths
straight-lines-and-pair-of-straight-lines
various-forms-of-straight-line
Let $$a, b, c$$ and $$d$$ be non-zero numbers. If the point of intersection of the lines $$4ax + 2ay + c = 0$$ and $$5bx + 2by + d = 0$$ lies in the fourth quadrant and is equidistant from the two axes then :
[{"identifier": "A", "content": "$$3bc - 2ad = 0$$ "}, {"identifier": "B", "content": "$$3bc + 2ad = 0$$"}, {"identifier": "C", "content": "$$2bc - 3ad = 0$$"}, {"identifier": "D", "content": "$$2bc + 3ad = 0$$"}]
["A"]
null
<p>Since the point of intersection lies on fourth quadrant and equidistant from the two axes,</p> <p>i.e., let the point be (k, $$-$$k) and this point satisfies the two equations of the given lines.</p> <p>$$\therefore$$ 4ak $$-$$ 2ak + c = 0 ......... (1)</p> <p>and 5bk $$-$$ 2bk + d = 0 ..... (2)</p> <p>From (1) we get, $$k = {{ - c} \over {2a}}$$</p> <p>Putting the value of k in (2) we get,</p> <p>$$5b\left( { - {c \over {2a}}} \right) - 2b\left( { - {c \over {2a}}} \right) + d = 0$$</p> <p>or, $$ - {{5bc} \over {2a}} + {{2bc} \over {2a}} + d = 0$$ or, $$ - {{3bc} \over {2a}} + d = 0$$</p> <p>or, $$ - 3bc + 2ad = 0$$ or, $$3bc - 2ad = 0$$</p>
mcq
jee-main-2014-offline
bpCTwPT3438MxJvz
maths
straight-lines-and-pair-of-straight-lines
various-forms-of-straight-line
Two sides of a rhombus are along the lines, $$x - y + 1 = 0$$ and $$7x - y - 5 = 0$$. If its diagonals intersect at $$(-1, -2)$$, then which one of the following is a vertex of this rhombus?
[{"identifier": "A", "content": "$$\\left( {{{ 1} \\over 3}, - {8 \\over 3}} \\right)$$"}, {"identifier": "B", "content": "$$\\left( - {{{ 10} \\over 3}, - {7 \\over 3}} \\right)$$"}, {"identifier": "C", "content": "$$\\left( { - 3, - 9} \\right)$$ "}, {"identifier": "D", "content": "$$\\left( { - 3, - 8} \\right)$$"}]
["A"]
null
<img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264559/exam_images/k1bzxqvdfbjwl4zlissa.webp" loading="lazy" alt="JEE Main 2016 (Offline) Mathematics - Straight Lines and Pair of Straight Lines Question 121 English Explanation"> <br><br>Let other two sides of rhombus are <br><br>$$x - y + \lambda = 0$$ <br><br>and $$7x - y + \mu = 0$$ <br><br>then $$O$$ is equidistant from $$AB$$ and $$DC$$ and from $$AD$$ and $$BC$$ <br><br>$$\therefore$$ $$\left| { - 1 + 2 + 1} \right| = \left| { - 1 + 2 + \lambda } \right| \Rightarrow \lambda = - 3$$ <br><br>and $$\left| { - 7 + 2 - 5} \right| = \left| { - 7 + 2 + \mu } \right| \Rightarrow \mu = 15$$ <br><br>$$\therefore$$ Other two sides are $$x-y-3=0$$ and $$7x-y+15=0$$ <br><br>On solving the equations of sides pairwise, we get <br><br>the vertices as $$\left( {{1 \over 3},{{ - 8} \over 3}} \right),\left( {1,2} \right),\left( {{{ - 7} \over 3},{{ - 4} \over 3}} \right),\left( { - 3, - 6} \right)$$
mcq
jee-main-2016-offline
LY8gcmgBjIzs6lsaUq1Mb
maths
straight-lines-and-pair-of-straight-lines
various-forms-of-straight-line
The point (2, 1) is translated parallel to the line L : x− y = 4 by $$2\sqrt 3 $$ units. If the newpoint Q lies in the third quadrant, then the equation of the line passing through Q and perpendicular to L is :
[{"identifier": "A", "content": "x + y = 2 $$-$$ $$\\sqrt 6 $$"}, {"identifier": "B", "content": "x + y = 3 $$-$$ 3$$\\sqrt 6 $$"}, {"identifier": "C", "content": "x + y = 3 $$-$$ 2$$\\sqrt 6 $$"}, {"identifier": "D", "content": "2x + 2y = 1 $$-$$ $$\\sqrt 6 $$"}]
["C"]
null
x $$-$$ y = 4 <br><br>To find equation of R <br><br>slope of L = 0 is 1 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;slope of QR = $$-$$ 1 <br><br>Let QR is y = mx + c <br><br>y = $$-$$ x + c <br><br>x + y $$-$$ c = 0 <br><br>distance of QR from (2, 1) is 2$$\sqrt 3 $$ <br><br>2$$\sqrt 3 $$ = $${{\left| {2 + 1 - c} \right|} \over {\sqrt 2 }}$$ <br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266026/exam_images/irq1wiy4pougehf2jvx7.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2016 (Online) 9th April Morning Slot Mathematics - Straight Lines and Pair of Straight Lines Question 108 English Explanation"> <br><br>2$$\sqrt 6 $$ = $$\left| {3 - c} \right|$$ <br><br>c $$-$$ 3 = $$ \pm 2\sqrt 6 $$ c = 3 $$ \pm $$ 2$$\sqrt 6 $$ <br><br>Line can be x + y = 3 $$ \pm $$ 2$$\sqrt 6 $$ <br><br>x + y = 3 $$-$$ 2$$\sqrt 6 $$
mcq
jee-main-2016-online-9th-april-morning-slot
vT4E9VT8KM2QVtITg2Uw8
maths
straight-lines-and-pair-of-straight-lines
various-forms-of-straight-line
A square, of each side 2, lies above the x-axis and has one vertex at the origin. If one of the sides passing through the origin makes an angle 30<sup>o</sup> with the positive direction of the x-axis, then the sum of the x-coordinates of the vertices of the square is :
[{"identifier": "A", "content": "$$2\\sqrt 3 - 1$$ "}, {"identifier": "B", "content": "$$2\\sqrt 3 - 2$$"}, {"identifier": "C", "content": "$$\\sqrt 3 - 2$$"}, {"identifier": "D", "content": "$$\\sqrt 3 - 1$$"}]
["B"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265670/exam_images/k7tcjadeqglnae8jaifx.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2017 (Online) 9th April Morning Slot Mathematics - Straight Lines and Pair of Straight Lines Question 110 English Explanation"> <br><br>Let, coordinate of point A = (x, y). <br><br>$$\therefore\,\,\,$$ For point A, <br><br>$${x \over {\cos {{30}^ \circ }}}$$ = $${y \over {\sin {{30}^ \circ }}}$$ = 2 <br><br>$$ \Rightarrow $$ x = $$\sqrt 3 $$ <br><br>and y = 1 <br><br>Similarly, For point B, <br><br>$${x \over {\cos {{75}^ \circ }}}$$ = $${y \over {\sin {{75}^ \circ }}}$$ = 2$$\sqrt 2 $$ <br><br>$$\therefore\,\,\,$$ x = $$\sqrt 3 - 1$$ <br><br>y = $$\sqrt 3 + 1$$ <br><br>For point C, <br><br>$${x \over {cos{{120}^ \circ }}}$$ = $${y \over {sin{{120}^ \circ }}}$$ = 2 <br><br>$$ \Rightarrow $$$$\,\,\,$$ x = $$-$$1 <br><br>y = $$\sqrt 3 $$ <br><br>$$\therefore\,\,\,$$ Sum of the x - coordinate of the vertices <br><br>= 0 + $$\sqrt 3 $$ + $$\sqrt 3 $$ $$-$$ 1 + ($$-$$ 1) = 2$$\sqrt 3 $$ $$-$$ 2
mcq
jee-main-2017-online-9th-april-morning-slot
vqNPfS7B1xL53D3pxu4Up
maths
straight-lines-and-pair-of-straight-lines
various-forms-of-straight-line
The sides of a rhombus ABCD are parallel to the lines, x $$-$$ y + 2 = 0 and 7x $$-$$ y + 3 = 0. If the diagonals of the rhombus intersect P(1, 2) and the vertex A (different from the origin) is on the y-axis, then the coordinate of A is :
[{"identifier": "A", "content": "$${5 \\over 2}$$"}, {"identifier": "B", "content": "$${7 \\over 4}$$"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "$${7 \\over 2}$$"}]
["A"]
null
Let the coordinate A be (0, c) <br><br>Equations of the given lines are <br><br>x $$-$$ y + 2 = 0 and 7x $$-$$ y + 3 = 0 <br><br>We know that the diagonals of the rhombus will be parallel to the angle bisectors of the two given lines; y = x + 2 and y = 7x + 3 <br><br>$$\therefore\,\,\,$$ equation of angle bisectors is given as : <br><br>$${{x - y + 2} \over {\sqrt 2 }} = \pm {{7x - y + 3} \over {5\sqrt 2 }}$$ <br><br>5x $$-$$ 5y + 10 = $$ \pm $$ (7x $$-$$ y + 3) <br><br>$$\therefore\,\,\,$$ Parallel equations of the diagonals are 2x + 4y $$-$$ 7 = 0 <br><br>and 12x $$-$$ 6y + 13 = 0 <br><br>$$\therefore\,\,\,$$ slopes of diagonals are $${{ - 1} \over 2}$$ and 2. <br><br>Now, slope of the diagonal from A(0, c) and passing through P(1, 2) is (2 $$-$$ c) <br><br>$$\therefore\,\,\,$$ 2 $$-$$ c = 2 $$ \Rightarrow $$&nbsp;c = 0 (not possible) <br><br>$$ \therefore $$$$\,\,\,$$ 2 $$-$$ c = $${{ - 1} \over 2}$$ $$ \Rightarrow $$ c = $${5 \over 2}$$ <br><br>$$\therefore\,\,\,$$ Coordinate of A is $${5 \over 2}$$.
mcq
jee-main-2018-online-15th-april-evening-slot
xC0LBb5tjEdVjHbTBY3rsa0w2w9jxb12n1a
maths
straight-lines-and-pair-of-straight-lines
various-forms-of-straight-line
A straight line L at a distance of 4 units from the origin makes positive intercepts on the coordinate axes and the perpendicular from the origin to this line makes an angle of 60<sup>o</sup> with the line x + y = 0. Then an equation of the line L is :
[{"identifier": "A", "content": "x + $$\\sqrt 3 $$y = 8"}, {"identifier": "B", "content": "$$\\sqrt 3 $$x + y = 8"}, {"identifier": "C", "content": "( $$\\sqrt 3 $$ + 1)x + ( $$\\sqrt 3 $$ \u2013 1)y = 8 $$\\sqrt 2 $$"}, {"identifier": "D", "content": "( $$\\sqrt 3 $$ - 1)x + ( $$\\sqrt 3 $$ + 1)y = 8 $$\\sqrt 2 $$"}]
["D"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263835/exam_images/thzbx3newaxtuygg2q1m.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 12th April Evening Slot Mathematics - Straight Lines and Pair of Straight Lines Question 87 English Explanation"><br><br> The equation of line is<br> x cos $$\theta $$ + y sin $$\theta $$ = p<br><br> $$ \Rightarrow $$ x cos (75<sup>o</sup>) + y sin (75<sup>o</sup>) = 4<br><br> $$ \Rightarrow $$ $$x\left( {{{\sqrt 3 - 1} \over {2\sqrt 2 }}} \right) + y\left( {{{\sqrt 3 + 1} \over {2\sqrt 2 }}} \right) = 4$$<br><br> $$ \Rightarrow $$ $$x\left( {\sqrt 3 - 1} \right) + y\left( {\sqrt 3 + 1} \right) = 8\sqrt 2 $$
mcq
jee-main-2019-online-12th-april-evening-slot
lHjdEqZBq7U1siUTH43rsa0w2w9jwxcnqce
maths
straight-lines-and-pair-of-straight-lines
various-forms-of-straight-line
The region represented by| x – y | $$ \le $$ 2 and | x + y| $$ \le $$ 2 is bounded by a :
[{"identifier": "A", "content": "rhombus of area 8$$\\sqrt 2 $$ sq. units"}, {"identifier": "B", "content": "square of side length 2$$\\sqrt 2 $$ units"}, {"identifier": "C", "content": "square of area 16 sq. units"}, {"identifier": "D", "content": "rhombus of side length 2 units "}]
["B"]
null
$${C_1}{\rm{ }}:{\rm{ }}\left| {y{\rm{ }}-{\rm{ }}x} \right|{\rm{ }} \le {\rm{ }}2$$<br><br> $${C_2}{\rm{ }}:{\rm{ }}\left| {y{\rm{ + }}x} \right|{\rm{ }} \le {\rm{ }}2$$<br><br> Now region is square<br><br> <picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266766/exam_images/lhnvd8cr9waoz2zvoag6.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263668/exam_images/mgjl1wkptyvhor7wxha1.webp"><source media="(max-width: 680px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263328/exam_images/drh8s7u21s9brht8u0yx.webp"><source media="(max-width: 860px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267524/exam_images/c2iwadkerleudum49qna.webp"><source media="(max-width: 1040px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265625/exam_images/rljoyrwrbko0eohgfzvz.webp"><source media="(max-width: 1220px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263816/exam_images/jyuhctantbp4a9fiusad.webp"><source media="(max-width: 1400px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266977/exam_images/ivw3r3yxkznap8s1ynrl.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266256/exam_images/wqywhib9gce5rptudaka.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 10th April Morning Slot Mathematics - Straight Lines and Pair of Straight Lines Question 89 English Explanation"></picture><br> shown figure is square with side length 2$$\sqrt 2$$ .
mcq
jee-main-2019-online-10th-april-morning-slot
11zVmn3h8n66ftAlElPXW
maths
straight-lines-and-pair-of-straight-lines
various-forms-of-straight-line
Slope of a line passing through P(2, 3) and intersecting the line, x + y = 7 at a distance of 4 units from P, is :
[{"identifier": "A", "content": "$${{\\sqrt 7 - 1} \\over {\\sqrt 7 + 1}}$$"}, {"identifier": "B", "content": "$${{\\sqrt 5 - 1} \\over {\\sqrt 5 + 1}}$$"}, {"identifier": "C", "content": "$${{1 - \\sqrt 5 } \\over {1 + \\sqrt 5 }}$$"}, {"identifier": "D", "content": "$${{1 - \\sqrt 7 } \\over {1 + \\sqrt 7 }}$$"}]
["D"]
null
<picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266822/exam_images/vodxfa1zmymjb9pd25x3.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263362/exam_images/jeb4k12c2xkbyeykmyvx.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266409/exam_images/r46trc585juw1pxqfahv.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 9th April Morning Slot Mathematics - Straight Lines and Pair of Straight Lines Question 91 English Explanation"></picture> <br><br>We know parametric form of straight line is <br><br>$${{x - {x_1}} \over {\cos \theta }} = {{y - {y_1}} \over {\sin \theta }} = r$$ <br><br>$$ \Rightarrow $$ $${{x - 2} \over {\cos \theta }} = {{y - 3} \over {\sin \theta }} = 4$$ <br><br>$$ \therefore $$ x = 4 + 2cos$$\theta $$ <br><br>y = 4 + 3sin$$\theta $$ <br><br>$$ \therefore $$ Point A = (4 + 2cos$$\theta $$, 4 + 3sin$$\theta $$) <br><br>Point A lies on line x + y = 7, <br><br>$$ \therefore $$ (4 + 2cos$$\theta $$) + (4 + 3sin$$\theta $$) = 7 <br><br>$$ \Rightarrow $$ sin$$\theta $$ + cos$$\theta $$ = $${1 \over 2}$$ <br><br>$$ \Rightarrow $$ $${\sin ^2}\theta + {\cos ^2}\theta $$ + 2sin$$\theta $$cos$$\theta $$ = $${1 \over 4}$$ <br><br>$$ \Rightarrow $$ 1 + sin 2$$\theta $$ = $${1 \over 4}$$ <br><br>$$ \Rightarrow $$ sin 2$$\theta $$ = $$ - {3 \over 4}$$ <br><br>$$ \Rightarrow $$ $${{2\tan \theta } \over {1 + {{\tan }^2}\theta }}$$ = $$ - {3 \over 4}$$ <br><br>$$ \Rightarrow $$ 3tan<sup>2</sup>$$\theta $$ + 8tan$$\theta $$ + 3 = 0 <br><br>$$ \Rightarrow $$ tan$$\theta $$ = $${{ - 8 \pm 2\sqrt 7 } \over 6}$$ <br><br>So slope = $${{ - 8 \pm 2\sqrt 7 } \over 6}$$ <br><br>By checking each options, <br><br>Slope = $${{1 - \sqrt 7 } \over {1 + \sqrt 7 }}$$ <br><br>As $${{1 - \sqrt 7 } \over {1 + \sqrt 7 }}$$ = $${{{{\left( {1 - \sqrt 7 } \right)}^2}} \over {1 - 7}}$$ = $${{8 - 2\sqrt 7 } \over { - 6}}$$ = $${{ - 8 + 2\sqrt 7 } \over 6}$$
mcq
jee-main-2019-online-9th-april-morning-slot