question_id
stringlengths
8
35
subject
stringclasses
1 value
chapter
stringclasses
32 values
topic
stringclasses
178 values
question
stringlengths
26
9.64k
options
stringlengths
2
1.63k
correct_option
stringclasses
5 values
answer
stringclasses
293 values
explanation
stringlengths
13
9.38k
question_type
stringclasses
3 values
paper_id
stringclasses
149 values
1lh00jkrz
maths
application-of-derivatives
maxima-and-minima
<p>If $$a_{\alpha}$$ is the greatest term in the sequence $$\alpha_{n}=\frac{n^{3}}{n^{4}+147}, n=1,2,3, \ldots$$, then $$\alpha$$ is equal to _____________.</p>
[]
null
5
$$ \begin{aligned} &amp; \text { Let } y=\frac{x^3}{x^4+147} \\\\ &amp; \Rightarrow \frac{d y}{d x}=\frac{\left(x^4+147\right) \times 3 x^2-x^3\left(4 x^3\right)}{\left(x^4+147\right)^2} \\\\ &amp; =\frac{3 x^6+441 x^2-4 x^6}{\left(x^4+147\right)^2}=\frac{441 x^2-x^6}{\left(x^4+147\right)^2} \end{aligned} $$ <br><br>For maxima/minima, put $\frac{d y}{d x}=0$ <br><br>$$ \begin{aligned} &amp; \Rightarrow 441 x^2-x^6=0 \Rightarrow x^4=441 \\\\ &amp; \Rightarrow x= \pm \sqrt{21}, \pm \sqrt{21} i \end{aligned} $$ <br><br>Now, by descrates rule on number line we have <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lmls8gbc/7f8dbf18-7516-4da9-acc1-29bce97edc3b/409f8a70-546d-11ee-b10a-c342ea039081/file-6y3zli1lmls8gbd.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lmls8gbc/7f8dbf18-7516-4da9-acc1-29bce97edc3b/409f8a70-546d-11ee-b10a-c342ea039081/file-6y3zli1lmls8gbd.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh; vertical-align: baseline;" alt="JEE Main 2023 (Online) 8th April Morning Shift Mathematics - Application of Derivatives Question 30 English Explanation"> <br><br>Since sign changes from negative to positive at 0 . <br><br>$\therefore$ Maximum value of is at $x=\sqrt{21}=4.58$ <br><br>Now, $4&lt;4.5&lt;5$ <br><br>$$ \begin{aligned} &amp; \therefore \text { yat } x=4=\frac{64}{403}=0.159 \\\\ &amp; y \text { at } x=5=\frac{125}{772}=0.162 \end{aligned} $$ <br><br>So, $y$ is maximum at $x=5$ <br><br>$$ \therefore \alpha=5 $$
integer
jee-main-2023-online-8th-april-morning-shift
jaoe38c1lscngs3o
maths
application-of-derivatives
maxima-and-minima
<p>Let $$g(x)=3 f\left(\frac{x}{3}\right)+f(3-x)$$ and $$f^{\prime \prime}(x)&gt;0$$ for all $$x \in(0,3)$$. If $$g$$ is decreasing in $$(0, \alpha)$$ and increasing in $$(\alpha, 3)$$, then $$8 \alpha$$ is :</p>
[{"identifier": "A", "content": "0"}, {"identifier": "B", "content": "24"}, {"identifier": "C", "content": "18"}, {"identifier": "D", "content": "20"}]
["C"]
null
<p>$$g(x)=3 f\left(\frac{x}{3}\right)+f(3-x) \text { and } f^{\prime \prime}(x)>0 \forall x \in(0,3)$$</p> <p>$$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})$$ is increasing function</p> <p>$$\begin{aligned} & g^{\prime}(x)=3 \times \frac{1}{3} \cdot f^{\prime}\left(\frac{x}{3}\right)-f^{\prime}(3-x) \\ & =f^{\prime}\left(\frac{x}{3}\right)-f^{\prime}(3-x) \end{aligned}$$</p> <p>If $$\mathrm{g}$$ is decreasing in $$(0, \alpha)$$</p> <p>$$\begin{aligned} & \mathrm{g}^{\prime}(\mathrm{x})<0 \\ & \mathrm{f}^{\prime}\left(\frac{\mathrm{x}}{3}\right)-\mathrm{f}^{\prime}(3-\mathrm{x})<0 \\ & \mathrm{f}^{\prime}\left(\frac{\mathrm{x}}{3}\right)<\mathrm{f}^{\prime}(3-\mathrm{x}) \\ & \Rightarrow \frac{\mathrm{x}}{3}<3-\mathrm{x} \\ & \Rightarrow \mathrm{x}<\frac{9}{4} \end{aligned}$$</p> <p>Therefore $$\alpha=\frac{9}{4}$$</p> <p>Then $$8 \alpha=8 \times \frac{9}{4}=18$$</p>
mcq
jee-main-2024-online-27th-january-evening-shift
jaoe38c1lsf0sbol
maths
application-of-derivatives
maxima-and-minima
<p>Let $$f(x)=2^x-x^2, x \in \mathbb{R}$$. If $$m$$ and $$n$$ are respectively the number of points at which the curves $$y=f(x)$$ and $$y=f^{\prime}(x)$$ intersect the $$x$$-axis, then the value of $$\mathrm{m}+\mathrm{n}$$ is ___________.</p>
[]
null
5
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lt307bt9/dd10aeba-887c-4185-a5fe-218e2ee9b2bf/09af1ae0-d4af-11ee-8384-811001421c41/file-1lt307bta.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lt307bt9/dd10aeba-887c-4185-a5fe-218e2ee9b2bf/09af1ae0-d4af-11ee-8384-811001421c41/file-1lt307bta.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 29th January Morning Shift Mathematics - Application of Derivatives Question 19 English Explanation 1"></p> <p>$$\begin{aligned} &amp; \therefore \mathrm{m}=3 \\ &amp; \mathrm{f}^{\prime}(\mathrm{x})=2^{\mathrm{x}} \ln 2-2 \mathrm{x}=0 \\ &amp; 2^{\mathrm{x}} \ln 2=2 \mathrm{x} \end{aligned}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lt30872c/dd61fe66-bd37-4697-9d03-3f699eeb03a7/21d35f50-d4af-11ee-8384-811001421c41/file-1lt30872d.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lt30872c/dd61fe66-bd37-4697-9d03-3f699eeb03a7/21d35f50-d4af-11ee-8384-811001421c41/file-1lt30872d.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 29th January Morning Shift Mathematics - Application of Derivatives Question 19 English Explanation 2"></p> <p>$$\begin{aligned} &amp; \therefore \mathrm{n}=2 \\ &amp; \Rightarrow \mathrm{m}+\mathrm{n}=5 \end{aligned}$$</p>
integer
jee-main-2024-online-29th-january-morning-shift
jaoe38c1lsfksmfv
maths
application-of-derivatives
maxima-and-minima
<p>The function $$f(x)=2 x+3(x)^{\frac{2}{3}}, x \in \mathbb{R}$$, has</p>
[{"identifier": "A", "content": "exactly one point of local minima and no point of local maxima\n"}, {"identifier": "B", "content": "exactly one point of local maxima and exactly one point of local minima\n"}, {"identifier": "C", "content": "exactly two points of local maxima and exactly one point of local minima\n"}, {"identifier": "D", "content": "exactly one point of local maxima and no point of local minima"}]
["B"]
null
<p>$$\begin{aligned} &amp; f(x)=2 x+3(x)^{\frac{2}{3}} \\ &amp; f^{\prime}(x)=2+2 x^{\frac{-1}{3}} \\ &amp; =2\left(1+\frac{1}{x^{\frac{1}{3}}}\right) \\ &amp; =2\left(\frac{x^{\frac{1}{3}}+1}{x^{\frac{1}{3}}}\right) \end{aligned}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lsr8t6nc/4c9643cb-de77-44b7-86fb-da033b7c270c/4abc4680-ce37-11ee-9412-cd4f9c6f2c40/file-6y3zli1lsr8t6nd.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lsr8t6nc/4c9643cb-de77-44b7-86fb-da033b7c270c/4abc4680-ce37-11ee-9412-cd4f9c6f2c40/file-6y3zli1lsr8t6nd.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 29th January Evening Shift Mathematics - Application of Derivatives Question 18 English Explanation"></p> <p>So, maxima (M) at x = $$-$$1 &amp; minima (m) at x = 0</p>
mcq
jee-main-2024-online-29th-january-evening-shift
1lsg4fvwc
maths
application-of-derivatives
maxima-and-minima
<p>Let $$f(x)=(x+3)^2(x-2)^3, x \in[-4,4]$$. If $$M$$ and $$m$$ are the maximum and minimum values of $$f$$, respectively in $$[-4,4]$$, then the value of $$M-m$$ is</p>
[{"identifier": "A", "content": "108"}, {"identifier": "B", "content": "392"}, {"identifier": "C", "content": "608"}, {"identifier": "D", "content": "600"}]
["C"]
null
<p>$$\begin{aligned} &amp; \mathrm{f}^{\prime}(\mathrm{x})=(\mathrm{x}+3)^2 \cdot 3(\mathrm{x}-2)^2+(\mathrm{x}-2)^3 2(\mathrm{x}+3) \\ &amp; =5(\mathrm{x}+3)(\mathrm{x}-2)^2(\mathrm{x}+1) \\ &amp; \mathrm{f}^{\prime}(\mathrm{x})=0, \mathrm{x}=-3,-1,2 \end{aligned}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lsoxw4nw/e2162195-84ee-4126-95ca-5b36a9ae1ecf/06e90dc0-ccf3-11ee-a330-494dca5e9a63/file-6y3zli1lsoxw4nx.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lsoxw4nw/e2162195-84ee-4126-95ca-5b36a9ae1ecf/06e90dc0-ccf3-11ee-a330-494dca5e9a63/file-6y3zli1lsoxw4nx.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 30th January Evening Shift Mathematics - Application of Derivatives Question 16 English Explanation"></p> <p>$$\begin{aligned} &amp; f(-4)=-216 \\ &amp; f(-3)=0, f(4)=49 \times 8=392 \\ &amp; M=392, m=-216 \\ &amp; M-m=392+216=608 \\ &amp; \text { Ans }=\text { '3' } \end{aligned}$$</p>
mcq
jee-main-2024-online-30th-january-evening-shift
1lsg91cac
maths
application-of-derivatives
maxima-and-minima
<p>The maximum area of a triangle whose one vertex is at $$(0,0)$$ and the other two vertices lie on the curve $$y=-2 x^2+54$$ at points $$(x, y)$$ and $$(-x, y)$$, where $$y&gt;0$$, is :</p>
[{"identifier": "A", "content": "108"}, {"identifier": "B", "content": "122"}, {"identifier": "C", "content": "88"}, {"identifier": "D", "content": "92"}]
["A"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lsqngokt/b3ef22bc-e563-4b45-a320-95a6d263c505/cf5ad1d0-cde3-11ee-a0d3-7b75c4537559/file-6y3zli1lsqngoku.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lsqngokt/b3ef22bc-e563-4b45-a320-95a6d263c505/cf5ad1d0-cde3-11ee-a0d3-7b75c4537559/file-6y3zli1lsqngoku.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 30th January Morning Shift Mathematics - Application of Derivatives Question 15 English Explanation"></p> <p>Area of $$\Delta$$</p> <p>$$\begin{aligned} &amp; =\frac{1}{2}\left|\begin{array}{ccc} 0 &amp; 0 &amp; 1 \\ x &amp; y &amp; 1 \\ -x &amp; y &amp; 1 \end{array}\right| \\ &amp; \Rightarrow\left|\frac{1}{2}(x y+x y)\right|=|x y| \\ &amp; \operatorname{Area}(\Delta)=|x y|=\left|x\left(-2 x^2+54\right)\right| \\ &amp; \frac{d(\Delta)}{d x}=\left|\left(-6 x^2+54\right)\right| \Rightarrow \frac{d \Delta}{d x}=0 \text { at } x=3 \\ &amp; \text { Area }=3(-2 \times 9+54)=108 \end{aligned}$$</p>
mcq
jee-main-2024-online-30th-january-morning-shift
luy9clmh
maths
application-of-derivatives
maxima-and-minima
<p>Let the set of all positive values of $$\lambda$$, for which the point of local minimum of the function $$(1+x(\lambda^2-x^2))$$ satisfies $$\frac{x^2+x+2}{x^2+5 x+6}&lt;0$$, be $$(\alpha, \beta)$$. Then $$\alpha^2+\beta^2$$ is equal to _________.</p>
[]
null
39
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lw3i47n9/78e3808f-b6b1-4774-ad57-06e016fc0e17/bd7fae50-1059-11ef-abcd-c333ada72a30/file-1lw3i47na.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lw3i47n9/78e3808f-b6b1-4774-ad57-06e016fc0e17/bd7fae50-1059-11ef-abcd-c333ada72a30/file-1lw3i47na.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 9th April Morning Shift Mathematics - Application of Derivatives Question 13 English Explanation 1"></p> <p>$$\begin{aligned} &amp; f(x)=1+x\left(\lambda^2-x^2\right) \\ &amp; f(x)=-x^3+\left(\lambda^2 x+1\right) \\ &amp; f^{\prime}(x)=-3 x^2+\lambda^2 \\ &amp; x= \pm \frac{\lambda}{\sqrt{3}} \end{aligned}$$</p> <p>$$-\frac{\lambda}{\sqrt{3}}$$ should satisfy the given condition</p> <p>$$\begin{aligned} &amp; \frac{x^2+x+2}{x^2+5 x+6}&lt;6 \\ &amp; \frac{1}{(x+2)(x+3)}&lt;0 \end{aligned}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lw3i5n3l/0bfecb58-7297-4604-ad51-f617b9a67d6c/e53eda10-1059-11ef-abcd-c333ada72a30/file-1lw3i5n3m.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lw3i5n3l/0bfecb58-7297-4604-ad51-f617b9a67d6c/e53eda10-1059-11ef-abcd-c333ada72a30/file-1lw3i5n3m.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 9th April Morning Shift Mathematics - Application of Derivatives Question 13 English Explanation 2"></p> <p>$$\begin{aligned} &amp;\begin{aligned} &amp; x \in(-3,-2) \\ &amp; -3&lt;-\frac{\lambda}{\sqrt{3}}&lt;-2 \\ &amp; -3 \sqrt{3}&lt;-\lambda&lt;-2 \sqrt{3} \\ &amp; 2 \sqrt{3}&lt;\lambda&lt;3 \sqrt{3} \\ &amp; \left.\begin{array}{l} \alpha=2 \sqrt{3} \\ \beta=2 \sqrt{3} \end{array}\right\} \\ &amp; (2 \sqrt{3})^2+(3 \sqrt{2})^2 \\ &amp; 12+27 \\ \end{aligned}\\ &amp;39 \end{aligned}$$</p>
integer
jee-main-2024-online-9th-april-morning-shift
lv0vxd5u
maths
application-of-derivatives
maxima-and-minima
<p>Let the sum of the maximum and the minimum values of the function $$f(x)=\frac{2 x^2-3 x+8}{2 x^2+3 x+8}$$ be $$\frac{m}{n}$$, where $$\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$$. Then $$\mathrm{m}+\mathrm{n}$$ is equal to :</p>
[{"identifier": "A", "content": "217"}, {"identifier": "B", "content": "182"}, {"identifier": "C", "content": "201"}, {"identifier": "D", "content": "195"}]
["C"]
null
<p>$$\begin{aligned} & f(x)=\frac{2 x^2-3 x+8}{2 x^2+3 x+8}=y, 2 x^2+3 x+8>0 \quad \forall x \in \mathbb{R} \\ & \Rightarrow \quad x^2(2 y-2)+x(3 y+3)+8 y-8=0 \end{aligned}$$</p> <p>Since $$x \in \mathbb{R}$$, the equation has real roots</p> <p>$$\begin{aligned} & \Rightarrow \quad D \geq 0 \\ & \Rightarrow(3 y+3)^2-4(2 y-2)(8 y-8) \geq 0 \\ & \Rightarrow 9(y+1)^2-64 y(y-1)^2 \geq 0 \\ & \Rightarrow(3 y+3)^2-(8 y-8)^2 \geq 0 \\ & \Rightarrow(11 y-5)(-5 y+11) \geq 0 \\ & \Rightarrow\left(y-\frac{5}{11}\right)\left(y-\frac{11}{5}\right) \leq 0 \\ & \Rightarrow y \in\left[\frac{5}{11}, \frac{11}{5}\right] \end{aligned}$$</p> <p>Sum of maximum and minimum value</p> <p>$$\begin{aligned} & y_{\max }+y_{\min }=\frac{5}{11}+\frac{11}{5}=\frac{25+121}{55} \\ & =\frac{146}{55}=\frac{m}{n} \Rightarrow m+n=201 \end{aligned}$$</p>
mcq
jee-main-2024-online-4th-april-morning-shift
lv2er3i1
maths
application-of-derivatives
maxima-and-minima
<p>Let $$f(x)=3 \sqrt{x-2}+\sqrt{4-x}$$ be a real valued function. If $$\alpha$$ and $$\beta$$ are respectively the minimum and the maximum values of $$f$$, then $$\alpha^2+2 \beta^2$$ is equal to</p>
[{"identifier": "A", "content": "42"}, {"identifier": "B", "content": "38"}, {"identifier": "C", "content": "24"}, {"identifier": "D", "content": "44"}]
["A"]
null
<p>$$\begin{aligned} & f(x)=3 \sqrt{x-2}+\sqrt{4-x} \\ & \text { Let } x=2 \sin ^2 \theta+4 \cos ^2 \theta \\ & =3 \sqrt{2 \sin ^2 \theta+4 \cos ^2 \theta-2}+\sqrt{4-2 \sin ^2 \theta-4 \cos ^2 \theta} \\ & =3 \sqrt{2 \cos ^2 \theta}+\sqrt{2 \sin ^2 \theta} \\ & =3 \sqrt{2}|\cos \theta|+\sqrt{2}|\sin \theta| \end{aligned}$$</p> <p>$$\begin{aligned} & \Rightarrow 3 \sqrt{2} \cos \theta+\sqrt{2} \sin \theta \leq \sqrt{18+2} \\ & \Rightarrow 3 \sqrt{2} \cos \theta+\sqrt{2} \sin \theta \leq \sqrt{20} \end{aligned}$$</p> <p>Minimum value exists when $$\theta=\frac{\pi}{2}$$</p> <p>$$\begin{aligned} & \text { So, minimum value }=\sqrt{2} \\ & \Rightarrow \alpha=\sqrt{2} \text { and } \beta=\sqrt{20} \\ & \Rightarrow \alpha^2+2 \beta^2=2+40 \\ & =42 \end{aligned}$$</p>
mcq
jee-main-2024-online-4th-april-evening-shift
lv3ve65y
maths
application-of-derivatives
maxima-and-minima
<p>If the function $$f(x)=2 x^3-9 \mathrm{ax}^2+12 \mathrm{a}^2 x+1, \mathrm{a}&gt; 0$$ has a local maximum at $$x=\alpha$$ and a local minimum at $$x=\alpha^2$$, then $$\alpha$$ and $$\alpha^2$$ are the roots of the equation :</p>
[{"identifier": "A", "content": "$$x^2-6 x+8=0$$\n"}, {"identifier": "B", "content": "$$8 x^2-6 x+1=0$$\n"}, {"identifier": "C", "content": "$$8 x^2+6 x-1=0$$\n"}, {"identifier": "D", "content": "$$x^2+6 x+8=0$$"}]
["A"]
null
<p>$$\begin{aligned} & f(x)=6 x^2-18 a x+12 a^2 \\ & =6\left(x^2-3 a+2 a^2\right) \\ & =6(x-a)(x-2 a)=0 \\ & x=a, 2 a \end{aligned}$$</p> <p>$$a=\alpha, \quad 2 a=\alpha^2 \quad \Rightarrow \alpha=0,2$$</p> <p>$$\begin{array}{lll} a>0 & \therefore & \alpha=2 \\ & & \alpha^2=4 \end{array}$$</p> <p>$$\therefore x^2-6 x+8=0$$ is the required quadratic equation.</p>
mcq
jee-main-2024-online-8th-april-evening-shift
lv3vef38
maths
application-of-derivatives
maxima-and-minima
<p>Let $$\mathrm{A}$$ be the region enclosed by the parabola $$y^2=2 x$$ and the line $$x=24$$. Then the maximum area of the rectangle inscribed in the region $$\mathrm{A}$$ is ________.</p>
[]
null
128
<p>$$\begin{aligned} &amp; y^2=2 x \\ &amp; a=\left(\frac{1}{2}\right) \end{aligned}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lw4uhftn/eaae4a9d-2d8a-4b86-93c7-b8b3dfc45e4c/e388a2b0-1116-11ef-b9cb-b5e0fe4ba33b/file-1lw4uhfto.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lw4uhftn/eaae4a9d-2d8a-4b86-93c7-b8b3dfc45e4c/e388a2b0-1116-11ef-b9cb-b5e0fe4ba33b/file-1lw4uhfto.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 8th April Evening Shift Mathematics - Application of Derivatives Question 9 English Explanation 1"></p> <p>$$\begin{aligned} &amp; A(t)=2 t \times\left(24-\frac{t^2}{2}\right) \\ &amp; A=48 t-t^3 \end{aligned}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lw4uiqqc/051e5d6a-5dcd-41d3-92ba-260c0a74c2b1/07c4e940-1117-11ef-b9cb-b5e0fe4ba33b/file-1lw4uiqqd.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lw4uiqqc/051e5d6a-5dcd-41d3-92ba-260c0a74c2b1/07c4e940-1117-11ef-b9cb-b5e0fe4ba33b/file-1lw4uiqqd.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 8th April Evening Shift Mathematics - Application of Derivatives Question 9 English Explanation 2"></p> <p>$$\begin{aligned} &amp; \frac{d A}{d t}=48-3 t^2 \\ &amp; 48-3 t^2=0 \\ &amp; 3 t^2=48 \\ &amp; t^2=16 \\ &amp; t= \pm 4 \end{aligned}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lw4uomxr/b876dfc7-50c6-4c89-9214-81e07c07cec0/abb17af0-1117-11ef-b9cb-b5e0fe4ba33b/file-1lw4uomxs.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lw4uomxr/b876dfc7-50c6-4c89-9214-81e07c07cec0/abb17af0-1117-11ef-b9cb-b5e0fe4ba33b/file-1lw4uomxs.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 8th April Evening Shift Mathematics - Application of Derivatives Question 9 English Explanation 3"></p> <p>$$\begin{aligned} &amp; A(4)=48 \times 4-4^3 \\ &amp; =192-64 \\ &amp; A(4)=128 \end{aligned}$$</p>
integer
jee-main-2024-online-8th-april-evening-shift
lv5grwlv
maths
application-of-derivatives
maxima-and-minima
<p>Let $$f(x)=4 \cos ^3 x+3 \sqrt{3} \cos ^2 x-10$$. The number of points of local maxima of $$f$$ in interval $$(0,2 \pi)$$ is</p>
[{"identifier": "A", "content": "1"}, {"identifier": "B", "content": "3"}, {"identifier": "C", "content": "4"}, {"identifier": "D", "content": "2"}]
["D"]
null
<p>$$\begin{aligned} &amp; f(x)=4 \cos ^3 x+3 \sqrt{3} \cos ^2 x-10 \\ &amp; f^{\prime}(x)=12 \cos ^2 x \cdot(-\sin x)+6 \sqrt{3} \cos x \cdot(-\sin x)=0 \\ &amp; =-6 \sqrt{3} \cos x \cdot \sin x\left(1+\frac{2}{\sqrt{3}} \cos x\right)=0 \\ &amp; \cos x=0, \sin x=0, \cos x=\frac{-\sqrt{3}}{2} \end{aligned}$$</p> <p>Sign of $$f(x)$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lw8slgdc/e7ec72d2-9c20-4762-a251-c217bf88f1ea/a3884200-1342-11ef-9cb4-095599b9956f/file-1lw8slgdd.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lw8slgdc/e7ec72d2-9c20-4762-a251-c217bf88f1ea/a3884200-1342-11ef-9cb4-095599b9956f/file-1lw8slgdd.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 8th April Morning Shift Mathematics - Application of Derivatives Question 7 English Explanation"></p> <p>$$\therefore \text { Maxima at } \frac{5 \pi}{6}, \frac{7 \pi}{6}$$</p>
mcq
jee-main-2024-online-8th-april-morning-shift
lv5grwiz
maths
application-of-derivatives
maxima-and-minima
<p>The number of critical points of the function $$f(x)=(x-2)^{2 / 3}(2 x+1)$$ is</p>
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "0"}, {"identifier": "D", "content": "3"}]
["A"]
null
<p>To find the number of critical points of the function $$f(x)=(x-2)^{2 / 3}(2 x+1)$$, we need to determine where its derivative $$f'(x)$$ is equal to zero or undefined. Critical points occur where the derivative is zero or does not exist.</p> <p>First, let's find the derivative of the function:</p> <p>$$f(x)=(x-2)^{2 / 3}(2 x+1)$$</p> <p>We apply the product rule for differentiation, which states that $$(uv)' = u'v + uv'$$, where $$u = (x-2)^{2/3}$$ and $$v = 2x + 1$$.</p> <p>We need the derivatives of $$u$$ and $$v$$:</p> <p>For $$u = (x-2)^{2/3}$$, we use the chain rule:</p> <p>$$u'(x) = \frac{d}{dx}[(x-2)^{2/3}] = \frac{2}{3}(x-2)^{-1/3} \cdot 1 = \frac{2}{3}(x-2)^{-1/3}$$</p> <p>The derivative of $$v$$ is straightforward, as $$v = 2x + 1$$:</p> <p>$$v'(x) = 2$$</p> <p>Now we apply the product rule:</p> <p>$$f'(x) = u'(x)v(x) + u(x)v'(x)$$</p> <p>Substituting $$u$$, $$u'$$, and $$v$$, we get:</p> <p>$$f'(x) = \left( \frac{2}{3}(x-2)^{-1/3} \right)(2x+1) + \left( (x-2)^{2/3} \right)(2)$$</p> <p>This simplifies to:</p> <p>$$f'(x) = \frac{2(2x + 1)}{3(x-2)^{1/3}} + 2(x-2)^{2/3}$$</p> <p>For critical points, we need to solve $$f'(x) = 0$$ or where it is undefined.</p> <p>1. <strong>Solve for where the derivative is zero:</strong></p> <p>$$\frac{2(2x + 1)}{3(x-2)^{1/3}} + 2(x-2)^{2/3} = 0$$</p> <p>Combining like terms in a common denominator, we get:</p> <p>$$\frac{2(2x + 1) + 6(x - 2)}{3(x-2)^{1/3}} = 0$$</p> <p>Simplifying the numerator:</p> <p>$$2(2x + 1) + 6(x-2) = 4x + 2 + 6x - 12 = 10x - 10 = 10(x-1)$$</p> <p>So:</p> <p>$$\frac{10(x-1)}{3(x-2)^{1/3}} = 0$$</p> <p>The numerator is zero when:</p> <p>$$10(x-1) = 0$$</p> <p>Therefore:</p> <p>$$x = 1$$</p> <p>2. <strong>Solve for where the derivative is undefined:</strong></p> <p>The denominator, $$3(x-2)^{1/3}$$, is undefined when $$(x-2)^{1/3} = 0$$, which happens at:</p> <p>$$x = 2$$</p> <p>From the above analysis, the critical points are at $$x = 1$$ and $$x = 2$$. Thus, there are 2 critical points.</p> <p>Therefore, the number of critical points of the function $$f(x)=(x-2)^{2 / 3}(2 x+1)$$ is:</p> <p><b>Option A</b></p>
mcq
jee-main-2024-online-8th-april-morning-shift
lv7v3jz2
maths
application-of-derivatives
maxima-and-minima
<p>Let a rectangle ABCD of sides 2 and 4 be inscribed in another rectangle PQRS such that the vertices of the rectangle ABCD lie on the sides of the rectangle PQRS. Let a and b be the sides of the rectangle PQRS when its area is maximum. Then (a+b)$$^2$$ is equal to :</p>
[{"identifier": "A", "content": "64"}, {"identifier": "B", "content": "80"}, {"identifier": "C", "content": "60"}, {"identifier": "D", "content": "72"}]
["D"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lwgejsnu/15565bcf-b8bf-4793-9f53-176aa69e81ff/facbac90-1771-11ef-910c-8da948f7ddd9/file-1lwgejsnv.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lwgejsnu/15565bcf-b8bf-4793-9f53-176aa69e81ff/facbac90-1771-11ef-910c-8da948f7ddd9/file-1lwgejsnv.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 5th April Morning Shift Mathematics - Application of Derivatives Question 4 English Explanation"></p> <p>$$\begin{aligned} &amp; P D=4 \cos \theta \Rightarrow P S=4 \cos \theta+2 \sin \theta \\ &amp; D S=2 \sin \theta \\ &amp; A P=4 \sin \theta \\ &amp; Q A=2 \cos \theta \Rightarrow P Q=2 \cos \theta+4 \sin \theta \\ &amp; \Rightarrow \text { Area of } P Q R S=4(2 \cos \theta+\sin \theta)(\cos \theta+2 \sin \theta) \\ &amp;=4\left[2 \cos ^2 \theta+2 \sin ^2 \theta+5 \sin \theta \cos \theta\right] \\ &amp;=8+10 \sin 2 \theta \end{aligned}$$</p> <p>Area is maximum when $$\sin 2 \theta=1 \Rightarrow \theta=45^{\circ}$$</p> <p>$$\Rightarrow$$ Maximum area $$=8+10=18$$</p> <p>$$\therefore P S=4 \times \frac{1}{\sqrt{2}}+2 \times \frac{1}{\sqrt{2}}=\frac{6}{\sqrt{2}}$$</p> <p>$$\begin{aligned} &amp; P Q=2 \times \frac{1}{\sqrt{2}}+4 \times \frac{1}{\sqrt{2}}=\frac{6}{\sqrt{2}} \\ \therefore \quad &amp; (a+b)^2=\left(\frac{6}{\sqrt{2}}+\frac{6}{\sqrt{2}}\right)^2=\left(\frac{12}{\sqrt{2}}\right)=(6 \sqrt{2})^2=72 \end{aligned}$$</p>
mcq
jee-main-2024-online-5th-april-morning-shift
lv9s20kb
maths
application-of-derivatives
maxima-and-minima
<p>Let the maximum and minimum values of $$\left(\sqrt{8 x-x^2-12}-4\right)^2+(x-7)^2, x \in \mathbf{R}$$ be $$\mathrm{M}$$ and $$\mathrm{m}$$, respectively. Then $$\mathrm{M}^2-\mathrm{m}^2$$ is equal to _________.</p>
[]
null
1600
<p>$$\begin{aligned} &amp; \text { Let } y=\sqrt{8 x-x^2-12} \Rightarrow(x-4)^2+y^2=2^2 \\ &amp; \Rightarrow d=(y-4)^2+(x-7)^2 \end{aligned}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lweqs4gr/cb92f82c-cbcf-4ca2-8ad5-d05029ed7bb2/3ea356b0-1688-11ef-9ee8-13752e98d8d6/file-1lweqs4gs.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lweqs4gr/cb92f82c-cbcf-4ca2-8ad5-d05029ed7bb2/3ea356b0-1688-11ef-9ee8-13752e98d8d6/file-1lweqs4gs.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 5th April Evening Shift Mathematics - Application of Derivatives Question 2 English Explanation"></p> <p>$$\begin{aligned} \Rightarrow &amp; M=P A^2=16+25=41 \\ &amp; m=P Q^2=(\sqrt{16+9}-2)^2=9 \\ \Rightarrow &amp; M^2-m^2=1681-81=1600 \end{aligned}$$</p>
integer
jee-main-2024-online-5th-april-evening-shift
WKbUFfnFg5soehXh
maths
application-of-derivatives
mean-value-theorem
If $$2a+3b+6c=0,$$ $$\left( {a,b,c \in R} \right)$$ then the quadratic equation $$a{x^2} + bx + c = 0$$ has
[{"identifier": "A", "content": "at least one root in $$\\left[ {0,1} \\right]$$"}, {"identifier": "B", "content": "at least one root in $$\\left[ {2,3} \\right]$$"}, {"identifier": "C", "content": "at least one root in $$\\left[ {4,5} \\right]$$"}, {"identifier": "D", "content": "none of these "}]
["A"]
null
Let $$f\left( x \right) = {{a{x^3}} \over 3} + {{b{x^2}} \over 2} + cx \Rightarrow f\left( 0 \right) = 0$$ and $$f(1)$$ <br><br>$$ = {a \over 3} + {b \over 2} + c = {{2a + 3b + 6c} \over 6} = 0$$ <br><br>Also $$f(x)$$ is continuous and differentiable in $$\left[ {0,1} \right]$$ and <br><br>$$\left[ {0,1\left[ {.\,\,} \right.} \right.$$ So by Rolle's theorem $$f'\left( x \right) = 0.$$ <br><br>i.e $$\,\,a{x^2} + bx + c = 0$$ has at least one root in $$\left[ {0,1} \right].$$
mcq
aieee-2002
s1Rt0Q9slH5xcy55
maths
application-of-derivatives
mean-value-theorem
If $$2a+3b+6c=0$$, then at least one root of the equation <br/>$$a{x^2} + bx + c = 0$$ lies in the interval
[{"identifier": "A", "content": "$$(1, 3)$$ "}, {"identifier": "B", "content": "$$(1, 2)$$ "}, {"identifier": "C", "content": "$$(2, 3)$$ "}, {"identifier": "D", "content": "$$(0, 1)$$ "}]
["D"]
null
Let us define a function <br><br>$$f\left( x \right) = {{ax{}^3} \over 3} + {{b{x^2}} \over 2} + cx$$ <br><br>Being polynomial, it is continuous and differentiable, also, <br><br>$$f\left( 0 \right) = 0\,$$ and $$\,\,f\left( 1 \right) = {a \over 3} + {b \over 2} + c$$ <br><br>$$ \Rightarrow f\left( 1 \right) = {{2a + 3b + 6c} \over 6} = 0$$ (given) <br><br>$$\therefore$$ $$f\left( 0 \right) = f\left( 1 \right)$$ <br><br>$$\therefore$$ $$f(x)$$ satisfies all conditions of Rolle's theorem <br><br>therefore $$f'\left( x \right) = 0$$ has a root in $$\left( {0,1} \right)$$ <br><br>i.e. $$a{x^2} + bx + c = 0$$ has at lease one root in $$(0, 1)$$
mcq
aieee-2004
FvFBxKtfz58VB2r3
maths
application-of-derivatives
mean-value-theorem
If the equation $${a_n}{x^n} + {a_{n - 1}}{x^{n - 1}} + ........... + {a_1}x = 0$$ <br/>$${a_1} \ne 0,n \ge 2,$$ has a positive root $$x = \alpha $$, then the equation <br/>$$n{a_n}{x^{n - 1}} + \left( {n - 1} \right){a_{n - 1}}{x^{n - 2}} + ........... + {a_1} = 0$$ has a positive root, which is
[{"identifier": "A", "content": "greater than $$\\alpha $$ "}, {"identifier": "B", "content": "smaller than $$\\alpha $$ "}, {"identifier": "C", "content": "greater than or equal to smaller than $$\\alpha $$ "}, {"identifier": "D", "content": "equal to smaller than $$\\alpha $$ "}]
["B"]
null
Let $$f\left( x \right) = {a_n}{x^n} + {a_{n - 1}}{x^{n - 1}} + ........... + {a_1}x = 0$$ <br><br>The other given equation, <br><br>$$na{}_n{x^{n - 1}} + \left( {n - 1} \right){a_{n - 1}}{x^{n - 2}} + .... + {a_1} = 0 = f'\left( x \right)$$ <br><br>Given $${a_1} \ne 0 \Rightarrow f\left( 0 \right) = 0$$ <br><br>Again $$f(x)$$ has root $$\alpha ,\,\,\, \Rightarrow f\left( \alpha \right) = 0$$ <br><br>$$\therefore$$ $$\,\,\,\,\,f\left( 0 \right) = f\left( \alpha \right)$$ <br><br>$$\therefore$$ By Roll's theorem $$f'(x)=0$$ has root be- <br><br>tween $$\left( {0,\alpha } \right)$$ <br><br>Hence $$f'(x)$$ has a positive root smaller than $$\alpha .$$
mcq
aieee-2005
UJUItPkT64O9QtSG
maths
application-of-derivatives
mean-value-theorem
Let f be differentiable for all x. If f(1) = -2 and f'(x) $$ \ge $$ 2 for <br/>x $$ \in \left[ {1,6} \right]$$, then
[{"identifier": "A", "content": "f(6) $$ \\ge $$ 8"}, {"identifier": "B", "content": "f(6) &lt; 8"}, {"identifier": "C", "content": "f(6) &lt; 5"}, {"identifier": "D", "content": "f(6) = 5"}]
["A"]
null
As $$\,\,f\left( 1 \right) = - 2\,\,\&amp; \;\,f'\left( x \right) \ge 2\,\forall x \in \left[ {1,6} \right]$$ <br><br>Applying Lagrange's mean value theorem <br><br>$${{f\left( 6 \right) - f\left( 1 \right)} \over 5} = f'\left( c \right) \ge 2$$ <br><br>$$ \Rightarrow f\left( 6 \right) \ge 10 + f\left( 1 \right)$$ <br><br>$$ \Rightarrow f\left( 6 \right) \ge 10 - 2$$ <br><br>$$ \Rightarrow f\left( 6 \right) \ge 8.$$
mcq
aieee-2005
yVtBIed6SEB53zdc
maths
application-of-derivatives
mean-value-theorem
A value of $$c$$ for which conclusion of Mean Value Theorem holds for the function $$f\left( x \right) = {\log _e}x$$ on the interval $$\left[ {1,3} \right]$$ is
[{"identifier": "A", "content": "$${\\log _3}e$$ "}, {"identifier": "B", "content": "$${\\log _e}3$$"}, {"identifier": "C", "content": "$$2\\,\\,{\\log _3}e$$ "}, {"identifier": "D", "content": "$${1 \\over 2}{\\log _3}e$$ "}]
["C"]
null
Using Lagrange's Mean Value Theorem <br><br>Let $$f(x)$$ be a function defined on $$\left[ {a,b} \right]$$ <br><br>then, $$f'\left( c \right) = {{f\left( b \right) - f\left( a \right)} \over {b - a}}\,\,\,\,\,\,\,\,\,\,\,\,....\left( i \right)$$ <br><br>$$c\,\, \in \left[ {a,b} \right]$$ <br><br>$$\therefore$$ Given $$f\left( x \right) = {\log _e}x$$ <br><br>$$\therefore$$ $$f'\left( x \right) = {1 \over x}$$ <br><br>$$\therefore$$ equation $$(i)$$ become $${1 \over c} = {{f\left( 3 \right) - f\left( 1 \right)} \over {3 - 1}}$$ <br><br>$$ \Rightarrow {1 \over c} = {{{{\log }_e}3 - {{\log }_e}1} \over 2} = {{{{\log }_e}3} \over 2}$$ <br><br>$$ \Rightarrow c = {2 \over {{{\log }_e}3}} \Rightarrow c = 2\,{\log _3}e$$
mcq
aieee-2007
9i0za95SuBx6OsEG
maths
application-of-derivatives
mean-value-theorem
If $$f$$ and $$g$$ are differentiable functions in $$\left[ {0,1} \right]$$ satisfying <br/>$$f\left( 0 \right) = 2 = g\left( 1 \right),g\left( 0 \right) = 0$$ and $$f\left( 1 \right) = 6,$$ then for some $$c \in \left] {0,1} \right[$$
[{"identifier": "A", "content": "$$f'\\left( c \\right) = g'\\left( c \\right)$$ "}, {"identifier": "B", "content": "$$f'\\left( c \\right) = 2g'\\left( c \\right)$$"}, {"identifier": "C", "content": "$$2f'\\left( c \\right) = g'\\left( c \\right)$$"}, {"identifier": "D", "content": "$$2f'\\left( c \\right) = 3g'\\left( c \\right)$$"}]
["B"]
null
Since, $$f$$ and $$g$$ both are continuous function on $$\left[ {0,1} \right]$$ <br><br>and differentiable on $$\left( {0,1} \right)$$ then $$\exists c \in \left( {0,1} \right)$$ such that <br><br>$$f'\left( c \right) = {{f\left( 1 \right) - f\left( 0 \right)} \over 1} = {{6 - 2} \over 1} = 4$$ <br><br>and $$g'\left( c \right) = {{g\left( 1 \right) - g\left( 0 \right)} \over 1} = {{2 - 0} \over 1} = 2$$ <br><br>Thus, we get $$f'\left( c \right) = 2g'\left( c \right)$$
mcq
jee-main-2014-offline
RiuUixc2KvzB1Mn3kM7k9k2k5e32k5u
maths
application-of-derivatives
mean-value-theorem
Let the function, Ζ’:[-7, 0]$$ \to $$R be continuous on [-7,0] and differentiable on (-7, 0). If Ζ’(-7) = - 3 and Ζ’'(x) $$ \le $$ 2, for all x $$ \in $$ (-7,0), then for all such functions Ζ’, Ζ’(-1) + Ζ’(0) lies in the interval:
[{"identifier": "A", "content": "$$\\left[ { - 6,20} \\right]$$"}, {"identifier": "B", "content": "$$\\left( { - \\infty ,\\left. {20} \\right]} \\right.$$"}, {"identifier": "C", "content": "$$\\left[ { - 3,11} \\right]$$"}, {"identifier": "D", "content": "$$\\left( { - \\infty ,\\left. {11} \\right]} \\right.$$"}]
["B"]
null
Using Lagrange’s Mean Value Theorem in [–7, –1] <br><br>$${{f\left( { - 1} \right) - f\left( { - 7} \right)} \over { - 1 - \left( { - 7} \right)}}$$ = f'(c<sub>1</sub>) <br><br>As Ζ’'(x) $$ \le $$ 2 then f'(c<sub>1</sub>) $$ \le $$ 2 <br><br>$$ \therefore $$ $${{f\left( { - 1} \right) - f\left( { - 7} \right)} \over { - 1 - \left( { - 7} \right)}}$$ $$ \le $$ 2 <br><br>$$ \Rightarrow $$ $${{f\left( { - 1} \right) + 3} \over 6}$$ $$ \le $$ 2 <br><br>$$ \Rightarrow $$ f(-1) $$ \le $$ 9 <br><br>Using Lagrange’s Mean Value Theorem in [–7, 0] <br><br>$$ \Rightarrow $$ $${{f\left( 0 \right) - f\left( { - 7} \right)} \over {0 - \left( { - 7} \right)}}$$ $$ \le $$ 2 <br><br>$$ \Rightarrow $$ f(0) $$ \le $$ 11 <br><br>$$ \therefore $$ Ζ’(-1) + Ζ’(0) $$ \le $$ 11 + 9 <br><br>$$ \Rightarrow $$ Ζ’(-1) + Ζ’(0) $$ \le $$ 20
mcq
jee-main-2020-online-7th-january-morning-slot
SY1QQZrwAcg8toamm57k9k2k5fnb4sd
maths
application-of-derivatives
mean-value-theorem
The value of c in the Lagrange's mean value theorem for the function <br/>Ζ’(x) = x<sup>3</sup> - 4x<sup>2</sup> + 8x + 11, when x $$ \in $$ [0, 1] is:
[{"identifier": "A", "content": "$${2 \\over 3}$$"}, {"identifier": "B", "content": "$${{\\sqrt 7 - 2} \\over 3}$$"}, {"identifier": "C", "content": "$${{4 - \\sqrt 5 } \\over 3}$$"}, {"identifier": "D", "content": "$${{4 - \\sqrt 7 } \\over 3}$$"}]
["D"]
null
Ζ’(x) = x<sup>3</sup> - 4x<sup>2</sup> + 8x + 11 <br><br>f(0) = 11 <br><br>f(1) = 16 <br><br>Using LMVT <br><br>f'(c) = $${{f\left( 1 \right) - f\left( 0 \right)} \over {1 - 0}}$$ <br><br>$$ \Rightarrow $$ 3c<sup>2</sup> – 8c + 8 = $${{16 - 11} \over {1 - 0}}$$ <br><br>$$ \Rightarrow $$ 3c<sup>2</sup> – 8c + 3 = 0 <br><br>$$ \therefore $$ c = $${{8 \pm 2\sqrt 7 } \over 6}$$ <br><br>$$ \therefore $$ c = $${{4 - \sqrt 7 } \over 3}$$ as c $$ \in $$ [0, 1]
mcq
jee-main-2020-online-7th-january-evening-slot
7HHI3mgBSQbnJgC9CJ7k9k2k5gyu0fm
maths
application-of-derivatives
mean-value-theorem
If c is a point at which Rolle's theorem holds for the function, <br/>f(x) = $${\log _e}\left( {{{{x^2} + \alpha } \over {7x}}} \right)$$ in the interval [3, 4], where a $$ \in $$ R, then Ζ’''(c) is equal to
[{"identifier": "A", "content": "$${1 \\over {12}}$$"}, {"identifier": "B", "content": "$${{\\sqrt 3 } \\over 7}$$"}, {"identifier": "C", "content": "$$-{1 \\over {12}}$$"}, {"identifier": "D", "content": "$$-{1 \\over {24}}$$"}]
["A"]
null
For Rolle’s theorem to be applicable in [3, 4] <br><br>Ζ’(3) = Ζ’(4) <br><br>$$ \Rightarrow $$ $${\log _e}\left( {{{9 + \alpha } \over {21}}} \right) = {\log _e}\left( {{{16 + \alpha } \over {28}}} \right)$$ <br><br>$$ \Rightarrow $$ $$\left( {{{9 + \alpha } \over {21}}} \right) = \left( {{{16 + \alpha } \over {28}}} \right)$$ <br><br>$$ \Rightarrow $$ 36 + 4$$\alpha $$ = 48 + 3$$\alpha $$ <br><br>$$ \Rightarrow $$ $$\alpha $$ = 12 <br><br>According to Rolle’s theorem, f'(c) = 0 <br>where c $$ \in $$ (3, 4) <br><br>f'(x) = $${{7x} \over {{x^2} + 12}}$$ $$ \times $$ $$\left( {{{2x\left( {7x} \right) - \left( {{x^2} + 12} \right)7} \over {{7^2}{x^2}}}} \right)$$ <br><br>$$ \Rightarrow $$ f'(x) = $${{{x^2} - 12} \over {\left( {{x^2} + 12} \right)x}}$$ <br><br>$$ \therefore $$ f'(c) = $${{{c^2} - 12} \over {\left( {{c^2} + 12} \right)c}}$$ <br><br>From Rolle's theorem <br><br>$${{{c^2} - 12} \over {\left( {{c^2} + 12} \right)c}}$$ = 0 <br><br>$$ \Rightarrow $$ c<sup>2</sup> = 12 <br><br>Now f''(c) = $${{2c\left( {{c^3} + 12c} \right) - \left( {{c^2} - 12} \right)\left( {3{c^2} + 12} \right)} \over {{{\left( {{c^2} + 12} \right)}^2}{c^2}}}$$ <br><br>= $${{2\left( {12} \right)\left( {24} \right) - 0} \over {{{\left( {24} \right)}^2} \times 12}}$$ <br><br>= $${1 \over {12}}$$
mcq
jee-main-2020-online-8th-january-morning-slot
hRKCTLC497lJlskzXd1kls4t2ij
maths
application-of-derivatives
mean-value-theorem
If Rolle's theorem holds for the function $$f(x) = {x^3} - a{x^2} + bx - 4$$, $$x \in [1,2]$$ with $$f'\left( {{4 \over 3}} \right) = 0$$, then ordered pair (a, b) is equal to :
[{"identifier": "A", "content": "($$-$$5, $$-$$8)"}, {"identifier": "B", "content": "(5, $$-$$8)"}, {"identifier": "C", "content": "($$-$$5, 8)"}, {"identifier": "D", "content": "(5, 8)"}]
["D"]
null
$$f(1) = f(2)$$<br><br>$$ \Rightarrow 1 - a + b - 4 = 8 - 4a + 2b - 4$$<br><br>$$3a - b = 7$$ ..... (1)<br><br>$$f'(x) = 3{x^2} - 2ax + b$$<br><br>$$ \Rightarrow f'\left( {{4 \over 3}} \right) = 0 \Rightarrow 3 \times {{16} \over 9} - {8 \over 3}a + b = 0$$<br><br>$$ \Rightarrow - 8a + 3b = - 16$$ ..... (2)<br><br>$$ \therefore $$ $$a = 5,b = 8$$
mcq
jee-main-2021-online-25th-february-morning-slot
IvgThkO2TD7WaLN3jF1klui2sw9
maths
application-of-derivatives
mean-value-theorem
Let f be any function defined on R and let it satisfy the condition : $$|f(x) - f(y)|\, \le \,|{(x - y)^2}|,\forall (x,y) \in R$$<br/><br/>If f(0) = 1, then :
[{"identifier": "A", "content": "f(x) can take any value in R"}, {"identifier": "B", "content": "$$f(x) &lt; 0,\\forall x \\in R$$"}, {"identifier": "C", "content": "$$f(x) &gt; 0,\\forall x \\in R$$"}, {"identifier": "D", "content": "$$f(x) = 0,\\forall x \\in R$$"}]
["C"]
null
$$|f(x) - f(y)|\, \le \,|{(x - y)^2}|$$<br><br>$$ \Rightarrow \left| {{{f(x) - f(y)} \over {x - y}}} \right|\, \le \,|x - y|$$<br><br>$$ \Rightarrow \left| {\mathop {\lim }\limits_{x \to y} {{f(x) - f(y)} \over {x - y}}} \right|\, \le \,|\mathop {\lim }\limits_{x \to y} (x - y)|$$<br><br>$$ \Rightarrow |f'(x)|\, \le 0$$<br><br>$$ \Rightarrow f'(x) = 0$$<br><br>$$ \Rightarrow f(x)$$ is constant function.<br><br>$$ \because $$ $$f(0)$$ = 1 then f(x) = 1
mcq
jee-main-2021-online-26th-february-morning-slot
1lguw40hj
maths
application-of-derivatives
mean-value-theorem
<p>Let $$f:[2,4] \rightarrow \mathbb{R}$$ be a differentiable function such that $$\left(x \log _{e} x\right) f^{\prime}(x)+\left(\log _{e} x\right) f(x)+f(x) \geq 1, x \in[2,4]$$ with $$f(2)=\frac{1}{2}$$ and $$f(4)=\frac{1}{4}$$.</p> <p>Consider the following two statements :</p> <p>(A) : $$f(x) \leq 1$$, for all $$x \in[2,4]$$</p> <p>(B) : $$f(x) \geq \frac{1}{8}$$, for all $$x \in[2,4]$$</p> <p>Then,</p>
[{"identifier": "A", "content": "Neither statement (A) nor statement (B) is true"}, {"identifier": "B", "content": "Only statement (A) is true"}, {"identifier": "C", "content": "Only statement (B) is true"}, {"identifier": "D", "content": "Both the statements $$(\\mathrm{A})$$ and (B) are true"}]
["D"]
null
Given, $$\left(x \log _{e} x\right) f^{\prime}(x)+\left(\log _{e} x\right) f(x)+f(x) \geq 1, x \in[2,4]$$ <br/><br/>$$ \left(x\log _e x\right) f^{\prime}(x)+f(x)\left[\log _e x+1\right] \geq 1$$ <br/><br/>$$ \Rightarrow $$ $$ \frac{d}{d x}\left[x \log _e x f(x)\right] \geq 1$$ <br/><br/>$$ \begin{aligned} &\Rightarrow \frac{d}{d x}\left[x \log _e x f(x)-x\right] \geq 0 \quad\left[\because \frac{d}{d x}(x)=1\right] \\\\ & \forall x \in[2,4] \end{aligned} $$ <br/><br/>Let $g(x)=x \log _e x f(x)-x$ <br/><br/>As $g(x) \geq 0, \forall x \in[2,4], g(x)$ is an increasing function in $[2,4]$ <br/><br/>$$ \begin{aligned} g(2) & =2 \log _e 2 f(2)-2 \\\\ & =\log _e 2-2 \quad\left[\because f(x)=\frac{1}{2}\right] \end{aligned} $$ <br/><br/>$$ \begin{aligned} & g(4)=4 \log _e 4 f(4)-4=\log _e 4-4 \\\\ &=2\left(\log _e 2-2\right)\\\\ & {\left[\therefore f(4)=\frac{1}{4}\right] } \end{aligned} $$ <br/><br/>As, $g(x)$ is an increasing function, <br/><br/>$$ \begin{aligned} & g(2) \leq g(x) \leq g(4) \\\\ & \log _e 2-2 \leq g(x) \leq 2\left(\log _e 2-2\right) \\\\ & \log _e 2-2 \leq x \log _e x f(x)-x \leq 2\left(\log _e 2-2\right) \end{aligned} $$ <br/><br/>$$ \frac{\log _e 2-2+x}{x \log _e x} \leq f(x) \leq \frac{2\left(\log _e 2-2\right)+x}{x \log _e x} $$ <br/><br/>$$ \begin{aligned} & \text {Now for } x \in[2,4] \\\\ & \begin{aligned} \frac{\log _e 2-2+x}{x \log _e x} & \leq \frac{2\left(\log _e 2-2\right)+e^2}{2 \log _e 2} =1-\frac{1}{\log _e 2}<1 \end{aligned} \end{aligned} $$ <br/><br/>$$ \Rightarrow \mathrm{f}(\mathrm{x}) \leq 1 \text { for } \mathrm{x} \in[2,4] $$ <br/><br/>$$ \text { Also for } \mathrm{x} \in[2,4] \text { : } $$ <br/><br/>Now, <br/><br/>$$ \begin{aligned} \frac{2\left(\log _e 2-2\right)+2}{2 \log _e 2} & \geq \frac{\log _e 2-2+4}{4 \log _e 4} =\frac{1}{8}+\frac{1}{2 \log _e 2}>\frac{1}{8} \end{aligned} $$ <br/><br/>$$ \therefore f(x) \geq \frac{1}{8}, \forall x \in[2,4] $$ <br/><br/>Hence, both statements $A$ and $B$ are true. <br/><br/><b>Note :</b> LMVT on $(\mathrm{yx}(\ln \mathrm{x}))$ not satisfied. <br/><br/>Hence no such function exists. <br/><br/>Therefore it should be bonus.
mcq
jee-main-2023-online-11th-april-morning-shift
lsblgir9
maths
application-of-derivatives
mean-value-theorem
Let for a differentiable function $f:(0, \infty) \rightarrow \mathbf{R}, f(x)-f(y) \geqslant \log _{\mathrm{e}}\left(\frac{x}{y}\right)+x-y, \forall x, y \in(0, \infty)$. Then $\sum\limits_{n=1}^{20} f^{\prime}\left(\frac{1}{n^2}\right)$ is equal to ____________.
[]
null
2890
<p>$$\begin{aligned} & f(x)-f(y) \geq \ln x-\ln y+x-y \\ & \frac{f(x)-f(y)}{x-y} \geq \frac{\ln x-\ln y}{x-y}+1 \end{aligned}$$</p> <p>Let $$x>y$$</p> <p>$$\lim _\limits{y \rightarrow x} f^{\prime}\left(x^{-}\right) \geq \frac{1}{x}+1\quad\text{.... (1)}$$</p> <p>Let $$x< y$$</p> <p>$$\lim _\limits{y \rightarrow x} f^{\prime}\left(x^{+}\right) \leq \frac{1}{x}+1 \quad\text{.... (2)}$$</p> <p>$$\begin{aligned} & \mathrm{f}^1\left(\mathrm{x}^{-}\right)=\mathrm{f}^1\left(\mathrm{x}^{+}\right) \\ & \mathrm{f}^1(\mathrm{x})=\frac{1}{\mathrm{x}}+1 \\ & \mathrm{f}^{\prime}\left(\frac{1}{\mathrm{x}^2}\right)=\mathrm{x}^2+1 \end{aligned}$$</p> <p>$$\begin{aligned} & \sum_{x=1}^{20}\left(x^2+1\right)=\sum_{x-1}^{20} x^2+20 \\ & =\frac{20 \times 21 \times 41}{6}+20 \\ & =2890 \end{aligned}$$</p>
integer
jee-main-2024-online-27th-january-morning-shift
1ty77dtcxjHwzLQg
maths
application-of-derivatives
monotonicity
A function is matched below against an interval where it is supposed to be increasing. Which of the following pairs is incorrectly matched?
[{"identifier": "A", "content": "<table class=\"tg\">\n <tbody><tr>\n <th class=\"tg-s6z2\"><span style=\"font-weight:bold\">Interval</span></th>\n <th class=\"tg-s6z2\"><span style=\"font-weight:bold\">Function</span></th>\n </tr>\n <tr>\n <td class=\"tg-s6z2\">(- $$\\infty $$, $$\\infty $$)</td>\n <td class=\"tg-s6z2\">x<sup>3</sup> - 3x<sup>2</sup> + 3x + 3</td>\n </tr>\n</tbody></table>"}, {"identifier": "B", "content": "<table class=\"tg\">\n <tbody><tr>\n <th class=\"tg-s6z2\"><span style=\"font-weight:bold\">Interval</span></th>\n <th class=\"tg-s6z2\"><span style=\"font-weight:bold\">Function</span></th>\n </tr>\n <tr>\n <td class=\"tg-s6z2\">[2, $$\\infty $$)</td>\n <td class=\"tg-s6z2\">2x<sup>3</sup> - 3x<sup>2</sup> - 12x + 6</td>\n </tr>\n</tbody></table>"}, {"identifier": "C", "content": "<table class=\"tg\">\n <tbody><tr>\n <th class=\"tg-s6z2\"><span style=\"font-weight:bold\">Interval</span></th>\n <th class=\"tg-s6z2\"><span style=\"font-weight:bold\">Function</span></th>\n </tr>\n <tr>\n <td class=\"tg-s6z2\">$$\\left( { - \\infty ,{1 \\over 3}} \\right]$$</td>\n <td class=\"tg-s6z2\">3x<sup>2</sup> - 2x + 1</td>\n </tr>\n</tbody></table>"}, {"identifier": "D", "content": "<table class=\"tg\">\n <tbody><tr>\n <th class=\"tg-s6z2\"><span style=\"font-weight:bold\">Interval</span></th>\n <th class=\"tg-s6z2\"><span style=\"font-weight:bold\">Function</span></th>\n </tr>\n <tr>\n <td class=\"tg-s6z2\">($$ - \\infty $$, - 4 )</td>\n <td class=\"tg-s6z2\">x<sup>3</sup> + 6x<sup>2</sup> + 6</td>\n </tr>\n</tbody></table>"}]
["C"]
null
Clearly function $$f\left( x \right) = 3{x^2} - 2x + 1$$ is increasing <br><br> when $$f'\left( x \right) = 6x - 2 \ge 0 \Rightarrow \,\,\,\,\,x \in \left[ {1/3,\left. \infty \right)} \right.$$ <br><br>$$\therefore$$ $$f(x)$$ is incorrectly matched with $$\left( { - \infty ,{1 \over 3}} \right)$$
mcq
aieee-2005
jaXMH0IezPGTzEA1
maths
application-of-derivatives
monotonicity
The function $$f\left( x \right) = {\tan ^{ - 1}}\left( {\sin x + \cos x} \right)$$ is an incresing function in
[{"identifier": "A", "content": "$$\\left( {0,{\\pi \\over 2}} \\right)$$ "}, {"identifier": "B", "content": "$$\\left( { - {\\pi \\over 2},{\\pi \\over 2}} \\right)$$ "}, {"identifier": "C", "content": "$$\\left( { {\\pi \\over 4},{\\pi \\over 2}} \\right)$$"}, {"identifier": "D", "content": "$$\\left( { - {\\pi \\over 2},{\\pi \\over 4}} \\right)$$"}]
["D"]
null
Given $$f\left( x \right) = {\tan ^{ - 1}}\left( {\sin x + \cos x} \right)$$ <br><br>$$f'\left( x \right) = {1 \over {1 + {{\left( {\sin x + \cos x} \right)}^2}}}.\left( {\cos x - \sin x} \right)$$ <br><br>$$ = {{\sqrt 2 .\left( {{1 \over {\sqrt 2 }}\cos x - {1 \over {\sqrt 2 }}\sin x} \right)} \over {1 + {{\left( {\sin x + \cos x} \right)}^2}}}$$ <br><br>$$ = {{\left( {\cos {\pi \over 4}.\cos x - \sin {\pi \over 4}.\sin x} \right)} \over {1 + {{\left( {\sin x + \cos x} \right)}^2}}}$$ <br><br>$$\therefore$$ $$f'\left( x \right) = {{\sqrt 2 \cos \left( {x + {\pi \over 4}} \right)} \over {1 + {{\left( {\sin x + \cos x} \right)}^2}}}$$ <br><br>if $$f'\left( x \right) &gt; O$$ then $$f\left( x \right)$$ is increasing function. <br><br>Hence $$f(x)$$ is increasing, if $$ - {\pi \over 2} &lt; x + {\pi \over 4} &lt; {\pi \over 2}$$ <br><br>$$ \Rightarrow - {{3\pi } \over 4} &lt; x &lt; {\pi \over 4}$$ <br><br>Hence, $$f(x)$$ is increasing when $$n \in \left( { - {\pi \over 2},{\pi \over 4}} \right)$$
mcq
aieee-2007
ecU4XGHCPdnGACZd
maths
application-of-derivatives
monotonicity
How many real solutions does the equation <br/>$${x^7} + 14{x^5} + 16{x^3} + 30x - 560 = 0$$ have?
[{"identifier": "A", "content": "$$7$$ "}, {"identifier": "B", "content": "$$1$$ "}, {"identifier": "C", "content": "$$3$$ "}, {"identifier": "D", "content": "$$5$$ "}]
["B"]
null
Let $$f\left( x \right) = {x^7} + 14{x^5} + 16{x^3} + 30x - 560$$ <br><br>$$ \Rightarrow f'\left( x \right) = 7{x^6} + 70{x^4} + 48{x^2} + 30 &gt; 0,\,\forall x \in R$$ <br><br>$$ \Rightarrow f$$ is an increasing function on $$R$$ <br><br>Also $$\mathop {\lim }\limits_{x \to \infty } \,\,f\left( x \right) = \infty $$ and $$\mathop {\lim }\limits_{x \to - \infty } \,\,f\left( x \right) = - \infty $$ <br><br>$$ \Rightarrow $$ The curve $$y = f\left( x \right)$$ crosses $$x$$-axis only once. <br><br>$$\therefore$$ $$f\left( x \right) = 0$$ has exactly one real root.
mcq
aieee-2008
1hCumHByo0ZaOkXiKDLcf
maths
application-of-derivatives
monotonicity
Let f(x) = sin<sup>4</sup>x + cos<sup>4</sup> x. Then <i>f</i> is an increasing function in the interval :
[{"identifier": "A", "content": "$$] 0, \\frac{\\pi}{4}[$$"}, {"identifier": "B", "content": "$$] \\frac{\\pi}{4}, \\frac{\\pi}{2}[$$"}, {"identifier": "C", "content": "$$] \\frac{\\pi}{2}, \\frac{5 \\pi}{8}[$$"}, {"identifier": "D", "content": "$$] \\frac{5 \\pi}{8}, \\frac{3 \\pi}{4}[$$"}]
["B"]
null
f(x) = sin<sup>4</sup>x + cos<sup>4</sup>x <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;f'(x) = 4sin<sup>3</sup>x cosx + 4cos<sup>3</sup>x ($$-$$ sinx) <br><br>= 4sinx cosx (sin<sup>2</sup>x $$-$$ cos<sup>2</sup>x) <br><br>= $$-$$ 2sin2x cos2x <br><br>= $$-$$ sin4x <br><br>As, f(x) is increasing function when f'(x) &gt; 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp; $$-$$ sin4x &gt; 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;sin4x &lt; 0 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;$$\pi $$ &lt; 4x &lt; 2$$\pi $$ <br><br>$${\pi \over 4} &lt; x &lt; {\pi \over 2}$$ <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;x $$ \in $$ $$\left( {{\pi \over 4},{\pi \over 2}} \right)$$
mcq
jee-main-2016-online-10th-april-morning-slot
QxDDYKNpsGnt8PZt0K0rq
maths
application-of-derivatives
monotonicity
The function f defined by <br/><br/>f(x) = x<sup>3</sup> $$-$$ 3x<sup>2</sup> + 5x + 7 , is :
[{"identifier": "A", "content": "increasing in <b>R</b>."}, {"identifier": "B", "content": "decreasing in <b>R</b>."}, {"identifier": "C", "content": "decreasing in (0, $$\\infty $$) and increasing in ($$-$$ $$\\infty $$, 0)"}, {"identifier": "D", "content": "increasing in (0, $$\\infty $$) and decreasing in ($$-$$ $$\\infty $$, 0)"}]
["A"]
null
<p>The given function is</p> <p>$$f(x) = {x^2} - 3{x^2} + 5x + 7$$</p> <p>$$f'(x) = 3{x^2} - 6x + 5$$</p> <p>The discriminant of the above quadratic equation is</p> <p>$$\Delta = 36 - 4(3)(5) = 36 - 60 < 0$$</p> <p>Therefore, $$f'(x) > 0\,\forall x \in {R^ + }$$</p> <p>Also, $$f'(x) > 0\,\forall x \in {R^ - }$$</p> <p>Therefore, the given function f is increasing in R.</p>
mcq
jee-main-2017-online-9th-april-morning-slot
XB56wgM0Ps8wqSh3VSc4L
maths
application-of-derivatives
monotonicity
Let f(x) = $${x \over {\sqrt {{a^2} + {x^2}} }} - {{d - x} \over {\sqrt {{b^2} + {{\left( {d - x} \right)}^2}} }},\,\,$$ x $$\, \in $$ R, where a, b and d are non-zero real constants. Then :
[{"identifier": "A", "content": "f is an increasing function of x"}, {"identifier": "B", "content": "f is neither increasing nor decreasing function of x"}, {"identifier": "C", "content": "f ' is not a continuous function of x"}, {"identifier": "D", "content": "f is a decreasing function of x"}]
["A"]
null
$$f\left( x \right) = {x \over {\sqrt {{a^2} + {x^2}} }} - {{d - x} \over {\sqrt {{b^2} + {{\left( {d - x} \right)}^2}} }}$$ <br><br>$$f'\left( x \right) = {{{a^2}} \over {{{\left( {{a^2} + {x^2}} \right)}^{3/2}}}} + {{{b^2}} \over {{{\left( {{b^2} + {{\left( {d - x} \right)}^2}} \right)}^{3/2}}}} &gt; 0\forall x \in R$$ <br><br>f(x) is an increasing function.
mcq
jee-main-2019-online-11th-january-evening-slot
G8bQuG05kI5WhxXcgg9bh
maths
application-of-derivatives
monotonicity
If the function f given by f(x) = x<sup>3</sup> – 3(a – 2)x<sup>2</sup> + 3ax + 7, for some a$$ \in $$R is increasing in (0, 1] and decreasing in [1, 5), then a root of the equation, $${{f\left( x \right) - 14} \over {{{\left( {x - 1} \right)}^2}}} = 0\left( {x \ne 1} \right)$$ is :
[{"identifier": "A", "content": "$$-$$ 7"}, {"identifier": "B", "content": "5"}, {"identifier": "C", "content": "7"}, {"identifier": "D", "content": "6"}]
["C"]
null
f '(x) = 3x<sup>2</sup> $$-$$ 6(a $$-$$ 2)x + 3a <br><br>f '(x) $$ \ge $$ 0 $$\forall $$ x $$ \in $$ (0, 1] <br><br>f '(x) $$ \le $$ 0 $$\forall $$ x $$ \in $$ [1, 5) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;f '(x) = 0 at x = 1 $$ \Rightarrow $$&nbsp;&nbsp;a = 5 <br><br>f(x) $$-$$ 14 = (x $$-$$ 1)<sup>2</sup> (x $$-$$ 7) <br><br>$${{f(x) - 14} \over {{{\left( {x - 1} \right)}^2}}} = x - 7$$
mcq
jee-main-2019-online-12th-january-evening-slot
kHdxiJODeiP3oavxynlS5
maths
application-of-derivatives
monotonicity
Let Ζ’ : [0, 2] $$ \to $$ R be a twice differentiable function such that Ζ’''(x) &gt; 0, for all x $$ \in $$ (0, 2). If $$\phi $$(x) = Ζ’(x) + Ζ’(2 – x), then $$\phi $$ is :
[{"identifier": "A", "content": "decreasing on (0, 2)"}, {"identifier": "B", "content": "decreasing on (0, 1) and increasing on (1, 2)"}, {"identifier": "C", "content": "increasing on (0, 2)"}, {"identifier": "D", "content": "increasing on (0, 1) and decreasing on (1, 2)"}]
["B"]
null
$$\phi $$(x) = Ζ’(x) + Ζ’(2 – x) <br><br>$$ \Rightarrow $$ $$\phi $$'(x) = Ζ’'(x) - Ζ’'(2 – x) <br><br>Since Ζ’''(x) &gt; 0 for all x $$ \in $$ (0, 2) <br><br>$$ \Rightarrow $$ Ζ’'(x) is an increasing function for all x $$ \in $$ (0, 2). <br><br><b>Case 1 : When $$\phi $$(x) is increasing function</b> <br><br>So $$\phi $$'(x) &gt; 0 <br><br>$$ \Rightarrow $$ Ζ’'(x) - Ζ’'(2 – x) &gt; 0 <br><br>$$ \Rightarrow $$ Ζ’'(x) &gt; Ζ’'(2 – x) <br><br>$$ \Rightarrow $$ x &gt; 2 – x <br><br>$$ \Rightarrow $$ x &gt; 1 <br><br> $$ \therefore $$ $$\phi $$(x) is increasing on (1, 2). <br><br><b>Case 2 : When $$\phi $$(x) is decreasing function</b> <br><br>So $$\phi $$'(x) &lt; 0 <br><br>$$ \Rightarrow $$ Ζ’'(x) - Ζ’'(2 – x) &lt; 0 <br><br>$$ \Rightarrow $$ Ζ’'(x) &lt; Ζ’'(2 – x) <br><br>$$ \Rightarrow $$ x &lt; 2 – x <br><br>$$ \Rightarrow $$ x &lt; 1 <br><br> $$ \therefore $$ $$\phi $$(x) is decreasing on (0, 1).
mcq
jee-main-2019-online-8th-april-morning-slot
EJjlcBzmev4ZccS9XX3rsa0w2w9jx5ejv28
maths
application-of-derivatives
monotonicity
If m is the minimum value of k for which the function f(x) = x$$\sqrt {kx - {x^2}} $$ is increasing in the interval [0,3] and M is the maximum value of f in [0, 3] when k = m, then the ordered pair (m, M) is equal to :
[{"identifier": "A", "content": "$$\\left( {5,3\\sqrt 6 } \\right)$$"}, {"identifier": "B", "content": "$$\\left( {4,3\\sqrt 3 } \\right)$$"}, {"identifier": "C", "content": "$$\\left( {4,3\\sqrt 2 } \\right)$$"}, {"identifier": "D", "content": "$$\\left( {3,3\\sqrt 3 } \\right)$$"}]
["B"]
null
$$f\left( x \right) = x\sqrt {kx - {x^2}} $$<br><br> $$ \Rightarrow $$ $$f'\left( x \right) = \sqrt {kx - {x^2}} + {{(k - 2x)x} \over {2\sqrt {kx - {x^2}} }}$$<br><br> $$ \Rightarrow {{2\left( {kx - {x^2}} \right) + kx - 2{x^2}} \over {2\sqrt {kx - {x^2}} }} = {{3kx - 4{x^2}} \over {2\sqrt {kx - {x^2}} }}$$<br><br> $$ \Rightarrow {{x(3k - 4x)} \over {2\sqrt {kx - {x^2}} }}$$<br><br> Now for increasing function<br><br> for f'(x) $$ \ge $$ 0, &nbsp; $$\forall x \in [0,3]$$<br><br> $$ \Rightarrow kx - {x^2} \ge 0,\forall x \in \left[ {0,3} \right]\,\,and\,x(3k - 4x) \ge 0,\,\forall x \in \left[ {0,3} \right]\,$$<br><br> $$ \Rightarrow x(x - k) \le 0,\forall x \in \left[ {0,3} \right]\,\,and\,x(4x - 3k) \le 0,\,\forall x \in \left[ {0,3} \right]\,$$<br><br> k $$ \ge $$ 3 and k $$ \ge $$ 4 $$ \Rightarrow $$ k $$ \ge $$ 4<br><br> $$ \Rightarrow $$ m = 4<br><br> So f(x) is maximum when k = 4 then $$3\sqrt {4 \times 3 - {3^2}} = 3\sqrt 3 = M$$<br><br> $$ \therefore $$ (m, M) = (4, $$3\sqrt 3 $$)
mcq
jee-main-2019-online-12th-april-morning-slot
5qPzYxvBb1sYWL6hEVjgy2xukf0vzp5w
maths
application-of-derivatives
monotonicity
The function, f(x) = (3x – 7)x<sup>2/3</sup>, x $$ \in $$ R, is increasing for all x lying in :
[{"identifier": "A", "content": "$$\\left( { - \\infty ,0} \\right) \\cup \\left( {{3 \\over 7},\\infty } \\right)$$"}, {"identifier": "B", "content": "$$\\left( { - \\infty ,0} \\right) \\cup \\left( {{{14} \\over {15}},\\infty } \\right)$$"}, {"identifier": "C", "content": "$$\\left( { - \\infty ,{{14} \\over {15}}} \\right)$$"}, {"identifier": "D", "content": "$$\\left( { - \\infty ,{{14} \\over {15}}} \\right) \\cup \\left( {0,\\infty } \\right)$$"}]
["B"]
null
f(x) = (3x – 7)x<sup>2/3</sup> <br><br>f’(x) = $$\left( {3x - 7} \right){2 \over {3{x^{1/3}}}} + {x^{{2 \over 3}}}.3$$ <br><br>= $${{6x - 14 - 9x} \over {3{x^{1/3}}}}$$ <br><br>= $${{15x - 14} \over {3{x^{1/3}}}}$$ <br><br>As f(x) increasing so f'(x) &gt; 0 <br><br>$$ \therefore $$ $${{15x - 14} \over {3{x^{1/3}}}}$$ &gt; 0 <img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264871/exam_images/dc3lrjubrnemgdlvwzox.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2020 (Online) 3rd September Morning Slot Mathematics - Application of Derivatives Question 122 English Explanation"> <br>$$ \therefore $$ x $$ \in $$ $$\left( { - \infty ,0} \right) \cup \left( {{{14} \over {15}},\infty } \right)$$
mcq
jee-main-2020-online-3rd-september-morning-slot
FBiTnaSpw8Lymvky7rjgy2xukf8z47kh
maths
application-of-derivatives
monotonicity
Let f be a twice differentiable function on (1, 6). If f(2) = 8, f’(2) = 5, f’(x) $$ \ge $$ 1 and f''(x) $$ \ge $$ 4, for all x $$ \in $$ (1, 6), then :
[{"identifier": "A", "content": "f(5) $$ \\le $$ 10"}, {"identifier": "B", "content": "f(5) + f'(5) $$ \\ge $$ 28"}, {"identifier": "C", "content": "f(5) + f'(5) $$ \\le $$ 26"}, {"identifier": "D", "content": "f'(5) + f''(5) $$ \\le $$ 20"}]
["B"]
null
Given, $$f'(x) \ge 1$$<br><br>$$ \therefore $$ $$\int_2^5 {f'(x)} dx\, \ge \,\int_2^5 {dx} $$<br><br>$$ \Rightarrow f(5) - f(2) \ge 3$$<br><br>$$ \Rightarrow f(5) - 8 \ge 3$$<br><br>$$ \Rightarrow f(5) \ge 11$$ ...(1)<br><br>Also, $$f''(x) \ge 4$$<br><br>$$ \therefore $$ $$\int_2^5 {f''(x)} dx\, \ge \,\int_2^5 {4dx} $$<br><br>$$ \Rightarrow f'(5) - f'(2) \ge 4(3)$$<br><br>$$ \Rightarrow f'(5) - 5 \ge 12$$<br><br>$$ \Rightarrow f'(5) \ge 17$$ ...(2)<br><br>From (1) and (2),<br><br>$$f'(5) + f'(5) \ge 11 + 17$$<br><br>$$ \Rightarrow f'(5) + f'(5) \ge 28$$
mcq
jee-main-2020-online-4th-september-morning-slot
R9J8afK3LpQfSZFxYhjgy2xukez6upin
maths
application-of-derivatives
monotonicity
Let f : (–1, $$\infty $$) $$ \to $$ R be defined by f(0) = 1 and <br/>f(x) = $${1 \over x}{\log _e}\left( {1 + x} \right)$$, x $$ \ne $$ 0. Then the function f :
[{"identifier": "A", "content": "decreases in (\u20131, $$\\infty $$)"}, {"identifier": "B", "content": "decreases in (\u20131, 0) and increases in (0, $$\\infty $$)"}, {"identifier": "C", "content": "increases in (\u20131, $$\\infty $$)"}, {"identifier": "D", "content": "increases in (\u20131, 0) and decreases in (0, $$\\infty $$)"}]
["A"]
null
$$f(x) = {1 \over x}{\log _e}\left( {1 + x} \right)$$<br><br> $$ \Rightarrow f'(x) = {{x{1 \over {1 + x}} - 1{{\log }_e}\left( {1 + x} \right)} \over {{x^2}}}$$<br><br> $$ \Rightarrow f'(x) = {{x - \left( {1 + x} \right){{\log }_e}\left( {1 + x} \right)} \over {{x^2}\left( {1 + x} \right)}}$$<br><br> Let $$g(x) = x - \left( {1 + x} \right){\log _e}\left( {1 + x} \right)$$<br><br> $$ \Rightarrow g'(x) = 1 - \left( {1 + x} \right){1 \over {1 + x}} - \left( 1 \right) \times {\log _e}\left( {1 + x} \right)$$<br><br> $$ = 1 - 1 - {\log _e}\left( {1 + x} \right)$$<br><br> $$ = - {\log _e}\left( {1 + x} \right)$$<br><br> For $$x \in \left( { - 1,0} \right),g'(x) &gt; 0$$<br> <br>and for $$x \in \left( {0,\infty } \right),g'(x) &lt; 0$$<br><br> Also, $$g(0) = 0 - \left( {1 + 0} \right){\log _e}\left( {1 + 0} \right) = 0$$<br><br> $$ \therefore g'(x) &lt; 0\,\,\forall\,\, x \in \left( { - 1,\infty } \right)$$<br><br> $$ \Rightarrow f'(x) &lt; 0\,\,\forall\,\, x \in \left( { - 1,\infty } \right)$$<br><br> $$ \Rightarrow $$ f(x) is a decreasing function for all $$x \in \left( { - 1,\infty } \right)$$
mcq
jee-main-2020-online-2nd-september-evening-slot
Zpp13XvDvvswz7dWtl7k9k2k5gzwf3e
maths
application-of-derivatives
monotonicity
Let Ζ’(x) = xcos<sup>–1</sup>(–sin|x|), $$x \in \left[ { - {\pi \over 2},{\pi \over 2}} \right]$$, then which of the following is true?
[{"identifier": "A", "content": "\u0192' is decreasing in $$\\left( { - {\\pi \\over 2},0} \\right)$$ and increasing\nin $$\\left( {0,{\\pi \\over 2}} \\right)$$"}, {"identifier": "B", "content": "\u0192 '(0) = $${ - {\\pi \\over 2}}$$"}, {"identifier": "C", "content": "\u0192 is not differentiable at x = 0"}, {"identifier": "D", "content": "\u0192' is increasing in $$\\left( { - {\\pi \\over 2},0} \\right)$$ and decreasing\nin $$\\left( {0,{\\pi \\over 2}} \\right)$$"}]
["A"]
null
We know, cos<sup>-1</sup>(-x) = $$\pi $$ - cos<sup>-1</sup>x <br><br>$$ \therefore $$ Ζ’(x) = x($$\pi $$ - cos<sup>–1</sup>(sin|x|)) <br><br>= x($$\pi $$ - $${\pi \over 2}$$ + sin<sup>–1</sup>(sin|x|)) <br><br>= x($$\pi $$ - $${\pi \over 2}$$ + sin<sup>–1</sup>(sin|x|)) <br><br>= x$${\pi \over 2}$$ + x|x| <br><br>$$ \therefore $$ f(x) = $$\left\{ {\matrix{ {x{\pi \over 2} - {x^2},} &amp; {x &lt; 0} \cr {x{\pi \over 2} + {x^2},} &amp; {x \ge 0} \cr } } \right.$$ <br><br>Now f'(x) = $$\left\{ {\matrix{ {{\pi \over 2} - 2x,} &amp; {x &lt; 0} \cr {{\pi \over 2} + 2x,} &amp; {x \ge 0} \cr } } \right.$$ <br><br>and f''(x) = $$\left\{ {\matrix{ { - 2,} &amp; {x &lt; 0} \cr {2,} &amp; {x \ge 0} \cr } } \right.$$ <br><br>$$ \therefore $$ Ζ’' is decreasing in $$\left( { - {\pi \over 2},0} \right)$$ and increasing in $$\left( {0,{\pi \over 2}} \right)$$
mcq
jee-main-2020-online-8th-january-morning-slot
iyKGHbJgw1CgsdT1FY1klrf64yg
maths
application-of-derivatives
monotonicity
The function <br/>f(x) = $${{4{x^3} - 3{x^2}} \over 6} - 2\sin x + \left( {2x - 1} \right)\cos x$$ :
[{"identifier": "A", "content": "increases in $$\\left( { - \\infty ,{1 \\over 2}} \\right]$$"}, {"identifier": "B", "content": "decreases in $$\\left( { - \\infty ,{1 \\over 2}} \\right]$$"}, {"identifier": "C", "content": "increases in $$\\left[ {{1 \\over 2},\\infty } \\right)$$"}, {"identifier": "D", "content": "decreases in $$\\left[ {{1 \\over 2},\\infty } \\right)$$"}]
["C"]
null
Given, $$f(x) = {{4{x^3} - 3{x^2}} \over 6} - 2\sin x + (2x - 1)\cos x$$<br/><br/>$$f'(x) = {{12{x^2} - 6x} \over 6} - 2\cos x + (2x - 1)( - \sin x) + \cos x(2)$$<br/><br/>$$ = (2{x^2} - x) - 2\cos x - 2x\sin x + \sin x + 2\cos x$$<br/><br/>$$ = 2{x^2} - x - 2x\sin x + \sin x$$<br/><br/>$$ = 2x(x - \sin x) - 1(x - \sin x)$$<br/><br/>$$f'(x) = (2x - 1)(x - \sin x)$$<br/><br/>for $$x > 0,x - \sin x > 0$$<br/><br/>$$x < 0,x - \sin x < 0$$<br/><br/>for $$x \in ( - \infty ,0] \cup \left[ {{1 \over 2},\infty } \right),f'(x) \ge 0$$<br/><br/>for $$x \in \left[ {0,{1 \over 2}} \right],f'(x) \le 0$$<br/><br/>Hence, f(x) increases in $$\left[ {{1 \over 2},\infty } \right)$$.
mcq
jee-main-2021-online-24th-february-morning-slot
blzO06JKs65FBoRsOx1klrlnsa6
maths
application-of-derivatives
monotonicity
Let $$f:R \to R$$ be defined as<br/><br/>$$f(x) = \left\{ {\matrix{ { - 55x,} &amp; {if\,x &lt; - 5} \cr {2{x^3} - 3{x^2} - 120x,} &amp; {if\, - 5 \le x \le 4} \cr {2{x^3} - 3{x^2} - 36x - 336,} &amp; {if\,x &gt; 4,} \cr } } \right.$$<br/><br/>Let A = {x $$ \in $$ R : f is increasing}. Then A is equal to :
[{"identifier": "A", "content": "$$( - 5,\\infty )$$"}, {"identifier": "B", "content": "$$( - \\infty , - 5) \\cup (4,\\infty )$$"}, {"identifier": "C", "content": "$$( - 5, - 4) \\cup (4,\\infty )$$"}, {"identifier": "D", "content": "$$( - \\infty , - 5) \\cup ( - 4,\\infty )$$"}]
["C"]
null
$$f(x) = \left\{ {\matrix{ { - 55x,} &amp; {if\,x &lt; - 5} \cr {2{x^3} - 3{x^2} - 120x,} &amp; {if\, - 5 \le x \le 4} \cr {2{x^3} - 3{x^2} - 36x - 336,} &amp; {if\,x &gt; 4,} \cr } } \right.$$ <br><br>Now, $$f'(x) = \left\{ {\matrix{ { - 55} &amp; ; &amp; {x &lt; - 5} \cr {6({x^2} - x - 20)} &amp; ; &amp; { - 5 &lt; x &lt; 4} \cr {6({x^2} - x - 6)} &amp; ; &amp; {x &gt; 4} \cr } } \right.$$<br><br>$$f'(x) = \left\{ {\matrix{ { - 55} &amp; ; &amp; {x &lt; - 5} \cr {6(x - 5)(x + 4)} &amp; ; &amp; { - 5 &lt; x &lt; 4} \cr {6(x - 3)(x + 2)} &amp; ; &amp; {x &gt; 4} \cr } } \right.$$<br><br>Hence, f(x) is monotonically increasing in interval $$( - 5, - 4) \cup (4,\infty )$$
mcq
jee-main-2021-online-24th-february-evening-slot
jnHf1y8tK5XeR4tPda1kluz1e2i
maths
application-of-derivatives
monotonicity
Let a be an integer such that all the real roots of the polynomial <br/>2x<sup>5</sup> + 5x<sup>4</sup> + 10x<sup>3</sup> + 10x<sup>2</sup> + 10x + 10 lie in the interval (a, a + 1). Then, |a| is equal to ___________.
[]
null
2
Let, $$f(x) = 2{x^5} + 5{x^4} + 10{x^3} + 10{x^2} + 10x + 10$$<br><br>$$ \Rightarrow f'(x) = 10({x^4} + 2{x^3} + 3{x^2} + 2x + 1)$$<br><br>$$ = 10\left( {{x^2} + {1 \over {{x^2}}} + 2\left( {x + {1 \over x}} \right) + 3} \right)$$<br><br>$$ = 10\left( {{{\left( {x + {1 \over x}} \right)}^2} + 2\left( {x + {1 \over x}} \right) + 1} \right)$$<br><br>$$ = 10{\left( {\left( {x + {1 \over x}} \right) + 1} \right)^2} &gt; 0;\forall x \in R$$<br><br>$$ \therefore $$ f(x) is strictly increasing function. Since, it is an odd degree polynomial it will have exactly one real root.<br><br>Now, by observation.<br><br>$$f( - 1) = 3 &gt; 0$$<br><br>$$f( - 2) = - 64 + 80 - 80 + 40 - 20 + 10$$<br><br>$$ = - 34 &lt; 0$$<br><br>$$ \Rightarrow f(x)$$ has at least one root in $$( - 2, - 1) \equiv (a,a + 1)$$<br><br>$$ \Rightarrow a = - 2$$ <br><br>$$ \Rightarrow $$ |a| = - 2
integer
jee-main-2021-online-26th-february-evening-slot
mQLintGwdQfFf2qnw61kmiw0lr1
maths
application-of-derivatives
monotonicity
Let f be a real valued function, defined on R $$-$$ {$$-$$1, 1} and given by <br/><br/>f(x) = 3 log<sub>e</sub> $$\left| {{{x - 1} \over {x + 1}}} \right| - {2 \over {x - 1}}$$.<br/><br/>Then in which of the following intervals, function f(x) is increasing?
[{"identifier": "A", "content": "($$-$$$$\\infty $$, $$-$$1) $$\\cup$$ $$\\left( {[{1 \\over 2},\\infty ) - \\{ 1\\} } \\right)$$"}, {"identifier": "B", "content": "($$-$$$$\\infty $$, $$\\infty $$) $$-$$ {$$-$$1, 1)"}, {"identifier": "C", "content": "($$-$$$$\\infty $$, $${{1 \\over 2}}$$] $$-$$ {$$-$$1}"}, {"identifier": "D", "content": "($$-$$1, $${{1 \\over 2}}$$]"}]
["A"]
null
f(x) = 3 log<sub>e</sub> $$\left| {{{x - 1} \over {x + 1}}} \right| - {2 \over {x - 1}}$$ <br><br>$$f'(x) = {{3(x + 1)} \over {x - 1}} \times {{(x + 1) - (x - 1)} \over {{{(x + 1)}^2}}} + {2 \over {{{(x - 1)}^2}}} &gt; 0$$<br><br>$$ = {6 \over {{x^2} - 1}} + {2 \over {{{(x - 1)}^2}}} &gt; 0$$<br><br>$$ = {{2(3(x - 1) + (x + 1))} \over {{{(x - 1)}^2}(x + 1)}} = {{4(2x - 1)} \over {{{(x - 1)}^2}(x + 1)}} &gt; 0$$<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264455/exam_images/u5uxawmfdatdnnbbfy6y.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 16th March Evening Shift Mathematics - Application of Derivatives Question 96 English Explanation"><br><br>$$ \Rightarrow x \in ( - \infty , - 1) \cup \left[ {{1 \over 2},\infty ) - \{ 1\} } \right.$$
mcq
jee-main-2021-online-16th-march-evening-shift
4M0JODSlLdB22Grotz1kmkn7lpe
maths
application-of-derivatives
monotonicity
Consider the function f : R $$ \to $$ R defined by <br/><br/>$$f(x) = \left\{ \matrix{ \left( {2 - \sin \left( {{1 \over x}} \right)} \right)|x|,x \ne 0 \hfill \cr 0,\,\,x = 0 \hfill \cr} \right.$$. Then f is :
[{"identifier": "A", "content": "not monotonic on ($$-$$$$\\infty $$, 0) and (0, $$\\infty $$)"}, {"identifier": "B", "content": "monotonic on (0, $$\\infty $$) only"}, {"identifier": "C", "content": "monotonic on ($$-$$$$\\infty $$, 0) only"}, {"identifier": "D", "content": "monotonic on ($$-$$$$\\infty $$, 0) $$\\cup$$ (0, $$\\infty $$)"}]
["A"]
null
$$f(x) = \left\{ {\matrix{ { - \left( {2 - \sin {1 \over x}} \right)x} &amp; , &amp; {x &lt; 0} \cr 0 &amp; , &amp; {x = 0} \cr {\left( {2 - \sin {1 \over x}} \right)x} &amp; , &amp; {x &gt; 0} \cr } } \right.$$<br><br>$$f'(x) = \left\{ \matrix{ - x\left( { - \cos {1 \over x}} \right)\left( { - {1 \over {{x^2}}}} \right) - \left( {2 - \sin {1 \over x}} \right),x &lt; 0 \hfill \cr x\left( { - \cos {1 \over x}} \right)\left( { - {1 \over {{x^2}}}} \right) + \left( {2 - \sin {1 \over x}} \right),x &gt; 0 \hfill \cr} \right.$$<br><br>= $$\left\{ \matrix{ - {1 \over x}\cos {1 \over x} + \sin {1 \over x} - 2,x &lt; 0 \hfill \cr {1 \over x}\cos {1 \over x} - \sin {1 \over x} + 2,x &gt; 0 \hfill \cr} \right.$$ <br><br>$$ \therefore $$ f'(x) is an oscillating function which is non-monotonic on ($$-$$$$\infty $$, 0) and (0, $$\infty $$).
mcq
jee-main-2021-online-17th-march-evening-shift
1krtbxxgh
maths
application-of-derivatives
monotonicity
Let f : R $$\to$$ R be defined as<br/><br/>$$f(x) = \left\{ {\matrix{ { - {4 \over 3}{x^3} + 2{x^2} + 3x,} &amp; {x &gt; 0} \cr {3x{e^x},} &amp; {x \le 0} \cr } } \right.$$. Then f is increasing function in the interval
[{"identifier": "A", "content": "$$\\left( { - {1 \\over 2},2} \\right)$$"}, {"identifier": "B", "content": "(0,2)"}, {"identifier": "C", "content": "$$\\left( { - 1,{3 \\over 2}} \\right)$$"}, {"identifier": "D", "content": "($$-$$3, $$-$$1)"}]
["C"]
null
$$f'(x)\left\{ {\matrix{ { - 4{x^2} + 4x + 3} &amp; {x &gt; 0} \cr {3{e^x}(1 + x)} &amp; {x \le 0} \cr } } \right.$$<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266545/exam_images/qfalbkppdpmpdrbmbsgj.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 22th July Evening Shift Mathematics - Application of Derivatives Question 89 English Explanation"><br>For x &gt; 0, $$f'(x) = - 4{x^2} + 4x + 3$$<br><br>f(x) is increasing in $$\left( { - {1 \over 2},{3 \over 2}} \right)$$<br><br>For x $$\le$$ 0, f'(x) = 3e<sup>x</sup>(1 + x)<br><br>f'(x) &gt; 0 $$\forall$$ x $$\in$$($$-$$1, 0)<br><br>$$\Rightarrow$$ f(x) is increasing in ($$-$$1, 0)<br><br>So, in complete domain, f(x) is increasing in $$\left( { - 1,{3 \over 2}} \right)$$
mcq
jee-main-2021-online-22th-july-evening-shift
1krvrw9s4
maths
application-of-derivatives
monotonicity
Let $$f(x) = 3{\sin ^4}x + 10{\sin ^3}x + 6{\sin ^2}x - 3$$, $$x \in \left[ { - {\pi \over 6},{\pi \over 2}} \right]$$. Then, f is :
[{"identifier": "A", "content": "increasing in $$\\left( { - {\\pi \\over 6},{\\pi \\over 2}} \\right)$$"}, {"identifier": "B", "content": "decreasing in $$\\left( {0,{\\pi \\over 2}} \\right)$$"}, {"identifier": "C", "content": "increasing in $$\\left( { - {\\pi \\over 6},0} \\right)$$"}, {"identifier": "D", "content": "decreasing in $$\\left( { - {\\pi \\over 6},0} \\right)$$"}]
["D"]
null
$$f(x) = 3{\sin ^4}x + 10{\sin ^3}x + 6{\sin ^2}x - 3,x \in \left[ { - {\pi \over 6},{\pi \over 2}} \right]$$<br><br>$$f'(x) = 12{\sin ^3}x\cos x + 30{\sin ^2}x\cos x + 12\sin x\cos x$$<br><br>$$ = 6\sin x\cos x(2{\sin ^2}x + 5\sin x + 2)$$<br><br>$$ = 6\sin x\cos x(2\sin x + 1)(\sin + 2)$$<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263470/exam_images/ogwasocqxensp73bghx1.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 25th July Morning Shift Mathematics - Application of Derivatives Question 88 English Explanation"><br>Decreasing in $$\left( { - {\pi \over 6},0} \right)$$
mcq
jee-main-2021-online-25th-july-morning-shift
1ktis8nus
maths
application-of-derivatives
monotonicity
If 'R' is the least value of 'a' such that the function f(x) = x<sup>2</sup> + ax + 1 is increasing on [1, 2] and 'S' is the greatest value of 'a' such that the function f(x) = x<sup>2</sup> + ax + 1 is decreasing on [1, 2], then <br/>the value of |R $$-$$ S| is ___________.
[]
null
2
f(x) = x<sup>2</sup> + ax + 1<br><br>f'(x) = 2x + a<br><br>when f(x) is increasing on [1, 2]<br><br>2x + a $$\ge$$ 0 $$\forall$$ x$$\in$$[1, 2]<br><br>a $$\ge$$ $$-$$2x $$\forall$$ x$$\in$$[1, 2]<br><br>R = $$-$$4<br><br>when f(x) is decreasing on [1, 2]<br><br>2x + a $$\le$$ 0 $$\forall$$ x$$\in$$[1, 2]<br><br>a $$\le$$ $$-$$2 $$\forall$$ x$$\in$$[1, 2]<br><br>S = $$-$$2<br><br>|R $$-$$ S| = | $$-$$4 + 2 | = 2
integer
jee-main-2021-online-31st-august-morning-shift
1kto3gifb
maths
application-of-derivatives
monotonicity
The function $$f(x) = {x^3} - 6{x^2} + ax + b$$ is such that $$f(2) = f(4) = 0$$. Consider two statements :<br/><br/>Statement 1 : there exists x<sub>1</sub>, x<sub>2</sub> $$\in$$(2, 4), x<sub>1</sub> &lt; x<sub>2</sub>, such that f'(x<sub>1</sub>) = $$-$$1 and f'(x<sub>2</sub>) = 0.<br/><br/>Statement 2 : there exists x<sub>3</sub>, x<sub>4</sub> $$\in$$ (2, 4), x<sub>3</sub> &lt; x<sub>4</sub>, such that f is decreasing in (2, x<sub>4</sub>), increasing in (x<sub>4</sub>, 4) and $$2f'({x_3}) = \sqrt 3 f({x_4})$$.<br/><br/>Then
[{"identifier": "A", "content": "both Statement 1 and Statement 2 are true"}, {"identifier": "B", "content": "Statement 1 is false and Statement 2 is true"}, {"identifier": "C", "content": "both Statement 1 and Statement 2 are false"}, {"identifier": "D", "content": "Statement 1 is true and Statement 2 is false"}]
["A"]
null
$$f(x) = {x^3} - 6{x^2} + ax + b$$<br><br>$$f(2) = 8 - 24 + 2a + b = 0$$<br><br>$$2a + b = 16$$ .... (1)<br><br>$$f(4) = 64 - 96 + 4a + b = 0$$<br><br>$$4a + b = 32$$ .... (2)<br><br>Solving (1) and (2)<br><br>a = 8, b = 0<br><br>$$f(x) = {x^3} - 6{x^2} + 8x$$<br><br>$$f'(x) = 3{x^2} - 12x + 8$$<br><br>$$f''(x) = 6x - 12$$<br><br>$$\Rightarrow$$ f'(x) is $$ \uparrow $$ for x &gt; 2, and f'(x) is $$ \downarrow $$ for x &lt; 2<br><br>$$f'(2) = 12 - 24 + 8 = - 4$$<br><br>$$f'(4) = 48 - 48 + 8 = 8$$<br><br>$$f'(x) = 3{x^2} - 12x + 8$$<br><br>vertex (2, $$-$$4)<br><br>f'(2) = $$-$$4, f'(4) = 8, f'(3) = 27 $$-$$ 36 + 8<br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1kwopvl27/adfb9c3f-bff0-4d72-a03f-536e9ff2142c/c29c0ef0-534c-11ec-9cbb-695a838b20fb/file-1kwopvl28.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1kwopvl27/adfb9c3f-bff0-4d72-a03f-536e9ff2142c/c29c0ef0-534c-11ec-9cbb-695a838b20fb/file-1kwopvl28.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2021 (Online) 1st September Evening Shift Mathematics - Application of Derivatives Question 79 English Explanation"><br>f'(x<sub>1</sub>) = $$-$$1, then x<sub>1</sub> = 3<br><br>f'(x<sub>2</sub>) = 0<br><br>Again<br><br>f'(x) &lt; 0 for x $$\in$$ (2, x<sub>4</sub>)<br><br>f'(x) &gt; 0 for x $$\in$$ (x<sub>4</sub>, 4)<br><br>x<sub>4</sub> $$\in$$ (3, 4)<br><br>f(x) = x<sup>3</sup> $$-$$ 6x<sup>2</sup> + 8x<br><br>f(3) = 27 $$-$$ 54 + 24 = $$-$$3<br><br>f(4) = 64 $$-$$ 96 + 32 = 0<br><br>For x<sub>4</sub>(3, 4)<br><br>f(x<sub>4</sub>) &lt; $$-$$3$$\sqrt 3 $$<br><br>and f'(x<sub>3</sub>) &gt; $$-$$4<br><br>2f'(x<sub>3</sub>) &gt; $$-$$8<br><br>So, 2f'(x<sub>3</sub>) = $$\sqrt 3 $$ f(x<sub>4</sub>)<br><br>Correct Ans. (a).
mcq
jee-main-2021-online-1st-september-evening-shift
1l566qk0u
maths
application-of-derivatives
monotonicity
<p>The number of real solutions of <br/><br/>$${x^7} + 5{x^3} + 3x + 1 = 0$$ is equal to ____________.</p>
[{"identifier": "A", "content": "0"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "5"}]
["B"]
null
<img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lc8ekncq/3bb86ec8-2e21-4aa5-b7aa-771daae2cbcc/79bb29a0-8717-11ed-b3ec-0bde88094e1e/file-1lc8ekncr.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lc8ekncq/3bb86ec8-2e21-4aa5-b7aa-771daae2cbcc/79bb29a0-8717-11ed-b3ec-0bde88094e1e/file-1lc8ekncr.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 28th June Morning Shift Mathematics - Application of Derivatives Question 76 English Explanation"><br> $f^{\prime}(x)=7 x^{6}+15 x^{2}+3&gt;0 \,\,\forall\,\, x \in R$ <br><br> $f(x)$ is always increasing <br><br> So clearly it intersects <br><br> x-axis at only one point
mcq
jee-main-2022-online-28th-june-morning-shift
1l58a7w47
maths
application-of-derivatives
monotonicity
<p>Let $$f(x) = 2{\cos ^{ - 1}}x + 4{\cot ^{ - 1}}x - 3{x^2} - 2x + 10$$, $$x \in [ - 1,1]$$. If [a, b] is the range of the function f, then 4a $$-$$ b is equal to :</p>
[{"identifier": "A", "content": "11"}, {"identifier": "B", "content": "11 $$-$$ $$\\pi$$"}, {"identifier": "C", "content": "11 + $$\\pi$$"}, {"identifier": "D", "content": "15 $$-$$ $$\\pi$$"}]
["B"]
null
<p>$$f(x) = 2{\cos ^{ - 1}}x + 4{\cot ^{ - 1}}x - 3{x^2} - 2x + 10\,\forall x \in [ - 1,1]$$</p> <p>$$ \Rightarrow f'(x) = - {2 \over {\sqrt {1 - {x^2}} }} - {4 \over {1 + {x^2}}} - 6x - 2 < 0\,\forall x \in [ - 1,1]$$</p> <p>So f(x) is decreasing function and range of f(x) is [f(1), f($$-$$1)], which is [$$\pi$$ + 5, 5$$\pi$$ + 9]</p> <p>Now $$4a - b = 4(\pi + 5) - (5\pi + 9)$$</p> <p>$$ = 11 - \pi $$</p>
mcq
jee-main-2022-online-26th-june-morning-shift
1l5bavxs8
maths
application-of-derivatives
monotonicity
<p>Let $$\lambda$$$$^ * $$ be the largest value of $$\lambda$$ for which the function $${f_\lambda }(x) = 4\lambda {x^3} - 36\lambda {x^2} + 36x + 48$$ is increasing for all x $$\in$$ R. Then $${f_{{\lambda ^ * }}}(1) + {f_{{\lambda ^ * }}}( - 1)$$ is equal to :</p>
[{"identifier": "A", "content": "36"}, {"identifier": "B", "content": "48"}, {"identifier": "C", "content": "64"}, {"identifier": "D", "content": "72"}]
["D"]
null
<p>$$\because$$ $${f_\lambda }(x) = 4\lambda {x^3} - 36\lambda {x^2} + 36\lambda + 48$$</p> <p>$$\therefore$$ $$f{'_\lambda }(x) = 12(\lambda {x^2} - 6\lambda x + 3)$$</p> <p>For $${f_\lambda }(x)$$ increasing : $${(6\lambda )^2} - 12\lambda \le 0$$</p> <p>$$\therefore$$ $$\lambda \in \left[ {0,\,{1 \over 3}} \right]$$</p> <p>$$\therefore$$ $$\lambda^ * = {1 \over 3}$$</p> <p>Now, $$f_\lambda ^*(x) = {4 \over 3}{x^3} - 12{x^2} + 36x + 48$$</p> <p>$$\therefore$$ $$f_\lambda ^*(1) + f_\lambda ^*( - 1) = 73{1 \over 2} - 1{1 \over 2} = 72$$</p>
mcq
jee-main-2022-online-24th-june-evening-shift
1l5c19dx8
maths
application-of-derivatives
monotonicity
<p>For the function <br/><br/>$$f(x) = 4{\log _e}(x - 1) - 2{x^2} + 4x + 5,\,x &gt; 1$$, which one of the following is NOT correct?</p>
[{"identifier": "A", "content": "f is increasing in (1, 2) and decreasing in (2, $$\\infty$$)"}, {"identifier": "B", "content": "f(x) = $$-$$1 has exactly two solutions"}, {"identifier": "C", "content": "$$f'(e) - f''(2) < 0$$"}, {"identifier": "D", "content": "f(x) = 0 has a root in the interval (e, e + 1)"}]
["C"]
null
Lets draw the curve $y=f(x)=4 \log _e(x-1)-2 x^2$ $+4 x+5, x&gt;1$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lkavtohl/5b2f07ad-6815-4447-8b5a-bda6bf0cb5b3/3c6a7290-26d6-11ee-b52b-3728f15f4ced/file-6y3zli1lkavtohm.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lkavtohl/5b2f07ad-6815-4447-8b5a-bda6bf0cb5b3/3c6a7290-26d6-11ee-b52b-3728f15f4ced/file-6y3zli1lkavtohm.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh; vertical-align: baseline;" alt="JEE Main 2022 (Online) 24th June Morning Shift Mathematics - Application of Derivatives Question 65 English Explanation"> <br>$$ \begin{aligned} &amp;f(x)=4 \log _e(x-1)-2 x^2+4 x+5, x &gt; 1 \\\\ &amp;f^{\prime}(x)=\frac{4}{x-1}-4(x-1) \\\\ &amp;f^{\prime \prime}(x)=\frac{-4}{(x-1)^2}-4\\\\ &amp;\text {For} 1 &lt; x&lt; 2 \Rightarrow f^{\prime}(x) &gt; 0 \\\\ &amp;\text {For}~ x &gt; 2 \Rightarrow f^{\prime}(x)&lt;0 \text { (option } A \text { is correct) } \\\\ &amp;f(x)=-1 \text { has two solution (option } B \text { is correct) } \\\\ &amp;f(e) &gt; 0 \\\\ &amp;f(e+1) &lt; 0 \\\\ &amp;f(e) \cdot f(e+1)&lt;0(\text { option } D \text { is correct) } \\\\ &amp;f^{\prime}(e)-f^{\prime \prime}(2)=\frac{4}{e-1}-4(e-1)+8 &gt; 0 \end{aligned} $$ <br><br>(option C is incorrect)
mcq
jee-main-2022-online-24th-june-morning-shift
1l6gjnyuy
maths
application-of-derivatives
monotonicity
<p>Let the function $$f(x)=2 x^{2}-\log _{\mathrm{e}} x, x&gt;0$$, be decreasing in $$(0, \mathrm{a})$$ and increasing in $$(\mathrm{a}, 4)$$. A tangent to the parabola $$y^{2}=4 a x$$ at a point $$\mathrm{P}$$ on it passes through the point $$(8 \mathrm{a}, 8 \mathrm{a}-1)$$ but does not pass through the point $$\left(-\frac{1}{a}, 0\right)$$. If the equation of the normal at $$P$$ is : $$\frac{x}{\alpha}+\frac{y}{\beta}=1$$, then $$\alpha+\beta$$ is equal to ________________.</p>
[]
null
45
<p>$$\delta '(x) = {{4{x^2} - 1} \over x}$$ so f(x) is decreasing in $$\left( {0,{1 \over 2}} \right)$$ and increasing in $$\left( {{1 \over 2},\infty } \right) \Rightarrow a = {1 \over 2}$$</p> <p>Tangent at $${y^2} = 2x \Rightarrow y = ,x + {1 \over {2m}}$$</p> <p>It is passing through $$(4,3)$$</p> <p>$$3 = 4m + {1 \over {2m}} \Rightarrow m = {1 \over 2}$$ or $${1 \over 4}$$</p> <p>So tangent may be</p> <p>$$y = {1 \over 2}x + 1$$ or $$y = {1 \over 4}x + 2$$</p> <p>But $$y = {1 \over 2}x + 1$$ passes through $$( - 2,0)$$ so rejected.</p> <p>Equation of normal</p> <p>$$y = - 4x - 2\left( {{1 \over 2}} \right)( - 4) - {1 \over 2}{( - 4)^3}$$</p> <p>or $$y = - 4x + 4 + 32$$</p> <p>or $${x \over 9} + {y \over {36}} = 1$$</p>
integer
jee-main-2022-online-26th-july-morning-shift
1l6nm1791
maths
application-of-derivatives
monotonicity
<p>The function $$f(x)=x \mathrm{e}^{x(1-x)}, x \in \mathbb{R}$$, is :</p>
[{"identifier": "A", "content": "increasing in $$\\left(-\\frac{1}{2}, 1\\right)$$"}, {"identifier": "B", "content": "decreasing in $$\\left(\\frac{1}{2}, 2\\right)$$"}, {"identifier": "C", "content": "increasing in $$\\left(-1,-\\frac{1}{2}\\right)$$"}, {"identifier": "D", "content": "decreasing in $$\\left(-\\frac{1}{2}, \\frac{1}{2}\\right)$$"}]
["A"]
null
<p>$$f(x) = x{e^{x(1 - x)}},\,x \in R$$</p> <p>$$f'(x) = x{e^{x(1 - x)}}\,.\,(1 - 2x) + {e^{x(1 - x)}}$$</p> <p>$$ = {e^{x(1 - x)}}[x - 2{x^2} + 1]$$</p> <p>$$ = - {e^{x(1 - x)}}[2{x^2} - x - 1]$$</p> <p>$$ = - {e^{x(1 - x)}}(2x + 1)(x - 1)$$</p> <p>$$\therefore$$ $$f(x)$$ is increasing in $$\left( { - {1 \over 2},1} \right)$$ and decreasing in $$\left( { - \infty ,\, - {1 \over 2}} \right) \cup \left( {1,\infty } \right)$$</p>
mcq
jee-main-2022-online-28th-july-evening-shift
1ldv2lvfb
maths
application-of-derivatives
monotonicity
<p>Let $$f:(0,1)\to\mathbb{R}$$ be a function defined $$f(x) = {1 \over {1 - {e^{ - x}}}}$$, and $$g(x) = \left( {f( - x) - f(x)} \right)$$. Consider two statements</p> <p>(I) g is an increasing function in (0, 1)</p> <p>(II) g is one-one in (0, 1)</p> <p>Then,</p>
[{"identifier": "A", "content": "Both (I) and (II) are true"}, {"identifier": "B", "content": "Neither (I) nor (II) is true"}, {"identifier": "C", "content": "Only (II) is true"}, {"identifier": "D", "content": "Only (I) is true"}]
["A"]
null
$g(x)=f(-x)-f(x)$ <br/><br/> $$ \begin{aligned} & =\frac{1}{1-e^{x}}-\frac{1}{1-e^{-x}} \\\\ & =\frac{1}{1-e^{x}}-\frac{e^{x}}{e^{x}-1} \\\\ & =\frac{1+e^{x}}{1-e^{x}} \\\\ g^{\prime}(x) & =\frac{\left(1-e^{x}\right) e^{x}-\left(1+e^{x}\right)\left(-e^{x}\right)}{\left(1-e^{x}\right)^{2}} \\\\ & =\frac{e^{x}-2 e^{x}+e^{x}+2 e^{x}}{\left(1-e^{x}\right)^{2}}>0 \end{aligned} $$<br/><br/> <p>So both statements are correct</p>
mcq
jee-main-2023-online-25th-january-morning-shift
1lgvpk0py
maths
application-of-derivatives
monotonicity
<p>Let $$\mathrm{g}(x)=f(x)+f(1-x)$$ and $$f^{\prime \prime}(x) &gt; 0, x \in(0,1)$$. If $$\mathrm{g}$$ is decreasing in the interval $$(0, a)$$ and increasing in the interval $$(\alpha, 1)$$, then $$\tan ^{-1}(2 \alpha)+\tan ^{-1}\left(\frac{1}{\alpha}\right)+\tan ^{-1}\left(\frac{\alpha+1}{\alpha}\right)$$ is equal to :</p>
[{"identifier": "A", "content": "$$\\frac{3 \\pi}{4}$$\n"}, {"identifier": "B", "content": "$$\\pi$$"}, {"identifier": "C", "content": "$$\\frac{5 \\pi}{4}$$"}, {"identifier": "D", "content": "$$\\frac{3 \\pi}{2}$$"}]
["B"]
null
We have, $g(x)=f(x)+f(1-x)$ <br/><br/>Differentiating both side, we get <br/><br/>$g^{\prime}(x)=f^{\prime}(x)-f^{\prime}(1-x)$ <br/><br/>As $f^{\prime \prime}(x)>0, f^{\prime}(x)$ is an increasing function. <br/><br/>Also, $g(x)=f(x)+f(2 a-x)$ is always symmetric about $x=a$ <br/><br/>So, $g(x)=f(x)+f(1-x)$ is also symmetric about $x=1 / 2$ <br/><br/>$\therefore g$ is decreasing in the interval $(0,1 / 2)$ and increasing in the interval $(1 / 2,1)$. <br/><br/>Now, <br/><br/>$$ \begin{aligned} & \tan ^{-1} 2 \alpha+\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{\alpha+1}{\alpha}\right) \\\\ & =\tan ^{-1} 1+\tan ^{-1}(2)+\tan ^{-1} 3=\pi \end{aligned} $$
mcq
jee-main-2023-online-10th-april-evening-shift
lsaps6wb
maths
application-of-derivatives
monotonicity
If $5 f(x)+4 f\left(\frac{1}{x}\right)=x^2-2, \forall x \neq 0$ and $y=9 x^2 f(x)$, then $y$ is strictly increasing in :
[{"identifier": "A", "content": "$\\left(0, \\frac{1}{\\sqrt{5}}\\right) \\cup\\left(\\frac{1}{\\sqrt{5}}, \\infty\\right)$"}, {"identifier": "B", "content": "$\\left(-\\frac{1}{\\sqrt{5}}, 0\\right) \\cup\\left(\\frac{1}{\\sqrt{5}}, \\infty\\right)$"}, {"identifier": "C", "content": "$\\left(-\\frac{1}{\\sqrt{5}}, 0\\right) \\cup\\left(0, \\frac{1}{\\sqrt{5}}\\right)$"}, {"identifier": "D", "content": "$\\left(-\\infty, \\frac{1}{\\sqrt{5}}\\right) \\cup\\left(0, \\frac{1}{\\sqrt{5}}\\right)$"}]
["B"]
null
$$ 5 f(x)+4 f(1 / x)=x^2-2 $$ ........(1) <br><br>Replace $x$ by $1 / x$ <br><br>$$ 5 f(1 / x)+4 f(x)=\frac{1}{x^2}-2 $$ ..........(2) <br><br>Multiply equation (1) by 5 and multiply equation (2) by 4 and then subtract equation (2) from (1) <br><br>$\begin{aligned} &amp; 25 f(x)-16 f(x)=5 x^2-10-\frac{4}{x^2}+8 \\\\ &amp; 9 f(x)=5 x^2-\frac{4}{x^2}-2 \\\\ &amp; 9 f(x)=\frac{5 x^4-4-2 x^2}{x^2}\end{aligned}$ <br><br>$\begin{aligned} &amp; y=9 x^2 f(x) \\\\ &amp; y=5 x^4-2 x^2-4 \\\\ &amp; y^{\prime}=20 x^3-4 x \\\\ &amp; \text { Put } y^{\prime}&gt;0 \\\\ &amp; 20 x^3-4 x&gt;0 \\\\ &amp; 5 x^3-x&gt;0 \\\\ &amp; x\left(5 x^2-1\right)&gt;0\end{aligned}$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lt4ueirs/bdaf4cf1-dcad-4fa2-b9ed-fb23b230da96/ec3f4080-d5b1-11ee-954c-abbae7354768/file-6y3zli1lt4ueirt.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lt4ueirs/bdaf4cf1-dcad-4fa2-b9ed-fb23b230da96/ec3f4080-d5b1-11ee-954c-abbae7354768/file-6y3zli1lt4ueirt.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 1st February Morning Shift Mathematics - Application of Derivatives Question 26 English Explanation"> <br><br>$x \in\left(-\frac{1}{\sqrt{5}}, 0\right) \cup\left(\frac{1}{\sqrt{5}}, \infty\right)$
mcq
jee-main-2024-online-1st-february-morning-shift
jaoe38c1lsd4jja0
maths
application-of-derivatives
monotonicity
<p>Let $$f: \rightarrow \mathbb{R} \rightarrow(0, \infty)$$ be strictly increasing function such that $$\lim _\limits{x \rightarrow \infty} \frac{f(7 x)}{f(x)}=1$$. Then, the value of $$\lim _\limits{x \rightarrow \infty}\left[\frac{f(5 x)}{f(x)}-1\right]$$ is equal to</p>
[{"identifier": "A", "content": "0"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "7/5"}]
["A"]
null
<p>$$\begin{aligned} & f: R \rightarrow(0, \infty) \\ & \lim _{x \rightarrow \infty} \frac{f(7 x)}{f(x)}=1 \end{aligned}$$</p> <p>$$\because \mathrm{f}$$ is increasing</p> <p>$$\begin{aligned} & \therefore \mathrm{f}(\mathrm{x})<\mathrm{f}(5 \mathrm{x})<\mathrm{f}(7 \mathrm{x}) \\ & \because \frac{\mathrm{f}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}<\frac{\mathrm{f}(5 \mathrm{x})}{\mathrm{f}(\mathrm{x})}<\frac{\mathrm{f}(7 \mathrm{x})}{\mathrm{f}(\mathrm{x})} \\ & 1<\lim _{\mathrm{x} \rightarrow \infty} \frac{\mathrm{f}(5 \mathrm{x})}{\mathrm{f}(\mathrm{x})}<1 \\ & \therefore\left[\frac{\mathrm{f}(5 \mathrm{x})}{\mathrm{f}(\mathrm{x})}-1\right] \\ & \Rightarrow 1-1=0 \end{aligned}$$</p>
mcq
jee-main-2024-online-31st-january-evening-shift
jaoe38c1lsd4mvvi
maths
application-of-derivatives
monotonicity
<p>If the function $$f:(-\infty,-1] \rightarrow(a, b]$$ defined by $$f(x)=e^{x^3-3 x+1}$$ is one - one and onto, then the distance of the point $$P(2 b+4, a+2)$$ from the line $$x+e^{-3} y=4$$ is :</p>
[{"identifier": "A", "content": "$$2 \\sqrt{1+e^6}$$\n"}, {"identifier": "B", "content": "$$\\sqrt{1+e^6}$$\n"}, {"identifier": "C", "content": "$$3 \\sqrt{1+e^6}$$\n"}, {"identifier": "D", "content": "$$4 \\sqrt{1+e^6}$$"}]
["A"]
null
<p>$$\begin{aligned} &amp; f(x)=e^{x^3-3 x+1} \\ &amp; f^{\prime}(x)=e^{x^3-3 x+1} \cdot\left(3 x^2-3\right) \\ &amp; =e^{x^3-3 x+1} \cdot 3(x-1)(x+1) \end{aligned}$$</p> <p>For $$\mathrm{f}^{\prime}(\mathrm{x}) \geq 0$$</p> <p>$$\therefore \mathrm{f}(\mathrm{x})$$ is increasing function</p> <p>$$\begin{aligned} &amp; \therefore \mathrm{a}=\mathrm{e}^{-\infty}=0=\mathrm{f}(-\infty) \\ &amp; \mathrm{b}=\mathrm{e}^{-1+3+1}=\mathrm{e}^3=\mathrm{f}(-1) \\ &amp; \mathrm{P}(2 \mathrm{~b}+4, \mathrm{a}+2) \\ &amp; \therefore \mathrm{P}\left(2 \mathrm{e}^3+4,2\right) \end{aligned}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lsjw7x98/08591748-2ee9-41c3-9af0-f822bc19a883/916485c0-ca2c-11ee-8854-3b5a6c9e9092/file-6y3zli1lsjw7x99.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lsjw7x98/08591748-2ee9-41c3-9af0-f822bc19a883/916485c0-ca2c-11ee-8854-3b5a6c9e9092/file-6y3zli1lsjw7x99.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 31st January Evening Shift Mathematics - Application of Derivatives Question 22 English Explanation"></p> <p>$$\mathrm{d}=\frac{\left(2 \mathrm{e}^3+4\right)+2 \mathrm{e}^{-3}-4}{\sqrt{1+\mathrm{e}^{-6}}}=2 \sqrt{1+\mathrm{e}^6}$$</p>
mcq
jee-main-2024-online-31st-january-evening-shift
jaoe38c1lsf073t9
maths
application-of-derivatives
monotonicity
<p>Consider the function $$f:\left[\frac{1}{2}, 1\right] \rightarrow \mathbb{R}$$ defined by $$f(x)=4 \sqrt{2} x^3-3 \sqrt{2} x-1$$. Consider the statements</p> <p>(I) The curve $$y=f(x)$$ intersects the $$x$$-axis exactly at one point.</p> <p>(II) The curve $$y=f(x)$$ intersects the $$x$$-axis at $$x=\cos \frac{\pi}{12}$$.</p> <p>Then</p>
[{"identifier": "A", "content": "Both (I) and (II) are correct.\n"}, {"identifier": "B", "content": "Only (I) is correct.\n"}, {"identifier": "C", "content": "Both (I) and (II) are incorrect.\n"}, {"identifier": "D", "content": "Only (II) is correct."}]
["A"]
null
<p>$$\begin{aligned} & \mathrm{f}^{\prime}(\mathrm{x})=12 \sqrt{2} \mathrm{x}^2-3 \sqrt{2} \geq 0 \text { for }\left[\frac{1}{2}, 1\right] \\ & \mathrm{f}\left(\frac{1}{2}\right)<0 \end{aligned}$$</p> <p>$$\mathrm{f}(1)>0 \Rightarrow(\mathrm{A})$$ is correct.</p> <p>$$f(x)=\sqrt{2}\left(4 x^3-3 x\right)-1=0$$</p> <p>Let $$\cos \alpha=\mathrm{x}$$,</p> <p>$$\cos 3 \alpha=\cos \frac{\pi}{4} \Rightarrow \alpha=\frac{\pi}{12}$$</p> <p>$$\mathrm{x}=\cos \frac{\pi}{12}$$</p> <p>(4) is correct.</p>
mcq
jee-main-2024-online-29th-january-morning-shift
jaoe38c1lsfkgqg0
maths
application-of-derivatives
monotonicity
<p>The function $$f(x)=\frac{x}{x^2-6 x-16}, x \in \mathbb{R}-\{-2,8\}$$</p>
[{"identifier": "A", "content": "decreases in $$(-\\infty,-2) \\cup(-2,8) \\cup(8, \\infty)$$\n"}, {"identifier": "B", "content": "increases in $$(-\\infty,-2) \\cup(-2,8) \\cup(8, \\infty)$$\n"}, {"identifier": "C", "content": "decreases in $$(-2,8)$$ and increases in $$(-\\infty,-2) \\cup(8, \\infty)$$\n"}, {"identifier": "D", "content": "decreases in $$(-\\infty,-2)$$ and increases in $$(8, \\infty)$$"}]
["A"]
null
<p>$$f(x)=\frac{x}{x^2-6 x-16}$$</p> <p>Now,</p> <p>$$\begin{aligned} & \mathrm{f}^{\prime}(\mathrm{x})=\frac{-\left(\mathrm{x}^2+16\right)}{\left(\mathrm{x}^2-6 \mathrm{x}-16\right)^2} \\ & \mathrm{f}^{\prime}(\mathrm{x})<0 \end{aligned}$$</p> <p>Thus $$f(x)$$ is decreasing in</p> <p>$$(-\infty,-2) \cup(-2,8) \cup(8, \infty)$$</p>
mcq
jee-main-2024-online-29th-january-evening-shift
luxwdep3
maths
application-of-derivatives
monotonicity
<p>Let the set of all values of $$p$$, for which $$f(x)=\left(p^2-6 p+8\right)\left(\sin ^2 2 x-\cos ^2 2 x\right)+2(2-p) x+7$$ does not have any critical point, be the interval $$(a, b)$$. Then $$16 a b$$ is equal to _________.</p>
[]
null
252
<p>$$\begin{aligned} & f(x)=\left(p^2-6 p+8\right)\left(\sin ^2 2 x-\cos ^2 2 x\right) +2(2-p) x+7 \\ & f(x)=-\cos 4 x\left(p^2-6 p+8\right)+2(2-p) x+7 \\ & f^{\prime}(x)=4 \sin 4 x\left(p^2-6 p+8\right)+2(2-p) \neq 0 \\ & 2(2-p)+\left[-4\left(p^2-6 p+8\right), 4\left(p^2-6 p+8\right)\right] \\ & \Rightarrow\left[-4 p^2+24 p-32,4 p^2-24 p+32\right]+(4-2 p) \\ & {\left[-4 p^2+22 p-28,4 p^2-26 p+36\right]} \\ & {[(p-2)(-4 p+14),(p-2)(4 p-18)]} \\ & \Rightarrow(p-2)[(-4 p+14), 4 p-18] \Rightarrow p \in\left(\frac{7}{2}, \frac{9}{2}\right) \\ & \Rightarrow a=\frac{7}{2}, b=\frac{9}{2} \\ & \Rightarrow 16 a b=4 \times 63=252 \end{aligned}$$</p>
integer
jee-main-2024-online-9th-april-evening-shift
lv5gt1vv
maths
application-of-derivatives
monotonicity
<p>For the function $$f(x)=(\cos x)-x+1, x \in \mathbb{R}$$, between the following two statements</p> <p>(S1) $$f(x)=0$$ for only one value of $$x$$ in $$[0, \pi]$$.</p> <p>(S2) $$f(x)$$ is decreasing in $$\left[0, \frac{\pi}{2}\right]$$ and increasing in $$\left[\frac{\pi}{2}, \pi\right]$$.</p>
[{"identifier": "A", "content": "Both (S1) and (S2) are incorrect.\n"}, {"identifier": "B", "content": "Only (S1) is correct.\n"}, {"identifier": "C", "content": "Only (S2) is correct.\n"}, {"identifier": "D", "content": "Both (S1) and (S2) are correct."}]
["B"]
null
<p>Let's analyze the function $$f(x) = (\cos x) - x + 1$$ over the interval $$[0, \pi]$$ and the statements provided.</p> <p>First, let's consider statement (S1):</p> <p>(S1) $$f(x)=0$$ for only one value of $$x$$ in $$[0, \pi]$$.</p> <p>To examine this statement, we need to explore the zeros of the function $$f(x)$$ within the given interval. Let's define and analyze the function:</p> <p>$$f(x) = \cos x - x + 1$$</p> <p>We seek to determine if $$f(x) = 0$$ has only one solution in the interval $$[0, \pi]$$. To do this, we can use the Intermediate Value Theorem and the behavior of the function's derivative. First, compute the derivative of $$f(x)$$:</p> <p>$$f'(x) = \frac{d}{dx}(\cos x - x + 1) = -\sin x - 1$$</p> <p>The critical points occur when $$f'(x) = 0$$: <p>$$- \sin x - 1 = 0 \Rightarrow \sin x = -1$$.</p></p> <p>The equation $$\sin x = -1$$ does not hold for any $$x$$ in $$[0, \pi]$$. Note that: <ul> <li>For $$x \in [0, \frac{\pi}{2}]$$, $$\sin x$$ ranges from 0 to 1.</li><br> <li>For $$x \in [\frac{\pi}{2}, \pi]$$, $$\sin x$$ ranges from 1 to 0.</p></li> </ul> <p>Since $$f'(x)$$ is always negative (i.e., $$f'(x) < 0$$), $$f(x)$$ is a strictly decreasing function in $$[0, \pi]$$. Moreover, we evaluate:</p> <p>$$f(0) = \cos 0 - 0 + 1 = 1 + 1 = 2$$</p> <p>$$f(\pi) = \cos \pi - \pi + 1 = -1 - \pi + 1 = -\pi$$</p> <p>Given the continuous and strictly decreasing nature of $$f(x)$$ in $$[0, \pi]$$, by the Intermediate Value Theorem, there is exactly one value of $$x$$ in the interval $$[0, \pi]$$ where $$f(x) = 0$$, confirming (S1).</p> <p>Now, let's consider statement (S2):</p> <p>(S2) $$f(x)$$ is decreasing in $$\left[0, \frac{\pi}{2}\right]$$ and increasing in $$\left[\frac{\pi}{2}, \pi\right]$$.</p> <p>We already analyzed that $$f'(x)$$ shows that $$f'(x) = -\sin x - 1$$ is always less than zero in $$[0, \pi]$$. No interval exists where the derivative is positive. This means that $$f(x)$$ is strictly decreasing throughout the entire interval of $$[0, \pi]$$, invalidating (S2).</p> <p>Therefore, the correct option is:</p> <p><b>Option B</b>: Only (S1) is correct.</p>
mcq
jee-main-2024-online-8th-april-morning-shift
lv7v3jxe
maths
application-of-derivatives
monotonicity
<p>For the function</p> <p>$$f(x)=\sin x+3 x-\frac{2}{\pi}\left(x^2+x\right), \text { where } x \in\left[0, \frac{\pi}{2}\right],$$</p> <p>consider the following two statements :</p> <p>(I) $$f$$ is increasing in $$\left(0, \frac{\pi}{2}\right)$$.</p> <p>(II) $$f^{\prime}$$ is decreasing in $$\left(0, \frac{\pi}{2}\right)$$.</p> <p>Between the above two statements,</p>
[{"identifier": "A", "content": "only (I) is true.\n"}, {"identifier": "B", "content": "both (I) and (II) are true.\n"}, {"identifier": "C", "content": "only (II) is true.\n"}, {"identifier": "D", "content": "neither (I) nor (II) is true."}]
["B"]
null
<p>$$\begin{aligned} & f(x)=\sin x+3 x-\frac{2}{\pi}\left(x^2+x\right), \text { where } x \in\left[0, \frac{\pi}{2}\right] \\ & f^{\prime}(x)=\cos x+3-\frac{2}{\pi}(2 x+1) \\ & =\cos x-\frac{4 x}{\pi}-\frac{2}{\pi}+3 \\ & \text { as } x \in\left[0, \frac{\pi}{2}\right] \\ & \frac{4 x}{\pi} \in[0,2] \end{aligned}$$</p> <p>$$\Rightarrow 3-\frac{2}{\pi}-\frac{4 x}{\pi}>0$$</p> <p>and also $$\cos x>0$$ when $$x \in\left[0, \frac{\pi}{2}\right]$$</p> <p>$$\Rightarrow f^{\prime}(x)>0$$</p> <p>$$\Rightarrow f(x)$$ is increasing</p> <p>Now, $$f^{\prime \prime}(x)=-\sin x-\frac{4}{\pi}<0 \forall x \in\left[0, \frac{\pi}{2}\right]$$</p> <p>Hence, $$f^{\prime}(x)$$ is decreasing</p> <p>$$\therefore \quad$$ Both statements (I) and (II) are true</p>
mcq
jee-main-2024-online-5th-april-morning-shift
lvc57uea
maths
application-of-derivatives
monotonicity
<p>The interval in which the function $$f(x)=x^x, x&gt;0$$, is strictly increasing is</p>
[{"identifier": "A", "content": "$$(0, \\infty)$$\n"}, {"identifier": "B", "content": "$$\\left(0, \\frac{1}{e}\\right]$$\n"}, {"identifier": "C", "content": "$$\\left[\\frac{1}{e^2}, 1\\right)$$\n"}, {"identifier": "D", "content": "$$\\left[\\frac{1}{e}, \\infty\\right)$$"}]
["D"]
null
<p>$$\begin{aligned} & f(x)=x^x \\ & f(x)=x^x(\log x+1) \\ & f(x) \geq 0 \\ & \Rightarrow 1+\log x \geq 0 \\ & \Rightarrow \log x \geq-1 \\ & \Rightarrow x \geq e^{-1} \\ & \therefore x \in\left[\frac{1}{e^{\prime}}, \infty\right) \end{aligned}$$</p>
mcq
jee-main-2024-online-6th-april-morning-shift
5hg8moK4Iyz89JC7
maths
application-of-derivatives
rate-of-change-of-quantity
A point on the parabola $${y^2} = 18x$$ at which the ordinate increases at twice the rate of the abscissa is
[{"identifier": "A", "content": "$$\\left( {{9 \\over 8},{9 \\over 2}} \\right)$$ "}, {"identifier": "B", "content": "$$(2, -4)$$ "}, {"identifier": "C", "content": "$$\\left( {{-9 \\over 8},{9 \\over 2}} \\right)$$"}, {"identifier": "D", "content": "$$(2, 4)$$ "}]
["A"]
null
$${y^2} = 18x \Rightarrow 2y{{dy} \over {dx}} = 18 \Rightarrow {{dy} \over {dx}} = {9 \over y}$$ <br><br>Given $${{dy} \over {dx}} = 2 \Rightarrow {9 \over 2} = 2 \Rightarrow y = {9 \over 2}$$ <br><br>Puting in $${y^2} = 18x \Rightarrow x = {9 \over 8}$$ <br><br>$$\therefore$$ Required point is $$\left( {{9 \over 8},{9 \over 2}} \right)$$
mcq
aieee-2004
eSua2dp9jsk4cv3A
maths
application-of-derivatives
rate-of-change-of-quantity
A spherical iron ball $$10$$ cm in radius is coated with a layer of ice of uniform thickness that melts at a rate of $$50$$ cm$$^3$$ /min. When the thickness of ice is $$5$$ cm, then the rate at which the thickness of ice decreases is
[{"identifier": "A", "content": "$${1 \\over {36\\pi }}$$ cm/min"}, {"identifier": "B", "content": "$${1 \\over {18\\pi }}$$ cm/min"}, {"identifier": "C", "content": "$${1 \\over {54\\pi }}$$ cm/min"}, {"identifier": "D", "content": "$${5 \\over {6\\pi }}$$ cm/min"}]
["B"]
null
Given that <br><br>$${{dv} \over {dt}} = 50\,c{m^3}/\min $$ <br><br>$$ \Rightarrow {d \over {dt}}\left( {{4 \over 3}\pi {r^3}} \right) = 50$$ <br><br>$$ \Rightarrow 4\pi {r^2}{{dr} \over {dt}} = 50$$ <br><br>$$ \Rightarrow {{dr} \over {dt}} = {{50} \over {4\pi {{\left( {15} \right)}^2}}} = {1 \over {18\pi }}\,\,cm/\min \,\,$$ <br><br>(here $$r=10+5)$$
mcq
aieee-2005
ljle24hk
maths
application-of-derivatives
rate-of-change-of-quantity
A lizard, at an initial distance of 21 cm behind an insect moves from rest with an acceleration of $2 \mathrm{~cm} / \mathrm{s}^2$ and pursues the insect which is crawling uniformly along a straight line at a speed of $20 \mathrm{~cm} / \mathrm{s}$. Then the lizard will catch the insect after :
[{"identifier": "A", "content": "20 s"}, {"identifier": "B", "content": "1 s"}, {"identifier": "C", "content": "21 s"}, {"identifier": "D", "content": "24 s"}]
["C"]
null
<p>The motion of the lizard, which starts from rest and accelerates at a rate of $a = 2 \, \text{cm/s}^2$, can be described by the equation of motion :</p> <p>$D_l = \frac{1}{2} a t^2$</p> <p>where $D_l$ is the distance the lizard travels, $a$ is its acceleration, and $t$ is the time.</p> <p>The insect, moving at a constant speed of $v = 20 \, \text{cm/s}$, has a motion that can be simply described as:</p> <p>$D_i = v t$</p> <p>where $D_i$ is the distance the insect travels, $v$ is its velocity, and $t$ is the time.</p> <p>Since the lizard starts 21 cm behind the insect and needs to catch up, it must travel the distance the insect travels plus an additional 21 cm. Equating these two distances gives us :</p> <p>$\frac{1}{2} a t^2 = v t + 21$</p> <p>Substituting the given values into this equation gives :</p> <p>$t^2 = \frac{(v t + 21) \cdot 2}{a}$</p> <p>Substituting $a = 2 \, \text{cm/s}^2$ and $v = 20 \, \text{cm/s}$, we simplify to :</p> <p>$t^2 = 20t + 21$</p> <p>This simplifies to a quadratic equation :</p> <p>$t^2 - 20t - 21 = 0$</p> <p>Solving this quadratic equation for $t$ gives the solutions $t = 21 \, \text{s}$ and $t = -1 \, \text{s}$. Since time cannot be negative, we discard the -1 s solution. Therefore, the lizard will catch the insect after 21 seconds.</p> <p>So, the correct answer is <strong>Option C : 21 s</strong>.</p>
mcq
aieee-2005
ZlHAOfk1vBZtgBRm
maths
application-of-derivatives
rate-of-change-of-quantity
A spherical balloon is filled with $$4500\pi $$ cubic meters of helium gas. If a leak in the balloon causes the gas to escape at the rate of $$72\pi $$ cubic meters per minute, then the rate (in meters per minute) at which the radius of the balloon decreases $$49$$ minutes after the leakage began is :
[{"identifier": "A", "content": "$${{9 \\over 7}}$$"}, {"identifier": "B", "content": "$${{7 \\over 9}}$$"}, {"identifier": "C", "content": "$${{2 \\over 9}}$$"}, {"identifier": "D", "content": "$${{9 \\over 2}}$$"}]
["C"]
null
Volume of spherical balloon $$ = V = {4 \over 3}\pi {r^3}$$ <br><br>$$ \Rightarrow 4500\pi = {{4\pi {r^3}} \over 3}$$ <br><br>( as Given, volume $$ = 4500\pi {m^3}$$ ) <br><br>Differentiating both the sides, $$w.r.t't'$$ we get, <br><br>$${{dV} \over {dt}} = 4\pi {r^2}\left( {{{dr} \over {dt}}} \right)$$ <br><br>Now, it is given that $${{dV} \over {dt}} = 72\pi $$ <br><br>$$\therefore$$ After $$49$$ min, Volume - <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {4500 - 49 \times 72} \right)\pi $$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {4500 - 3528} \right)\pi $$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 972\pi {m^3}$$ <br><br>$$ \Rightarrow V = 972\,\,\pi {m^3}$$ <br><br>$$\therefore$$ $$972\pi = {4 \over 3}\pi r{}^3$$ <br><br>$$ \Rightarrow {r^3} = 3 \times 243 = 3 \times {3^5} = {3^6} = {\left( {{3^2}} \right)^3} \Rightarrow r = 9$$ <br><br>Also, we have $${{dV} \over {dt}} = 72\pi $$ <br><br>$$\therefore$$ $$72\pi = 4\pi \times 9 \times 9\left( {{{dr} \over {dt}}} \right) \Rightarrow {{dr} \over {dt}} = \left( {{2 \over 9}} \right)$$
mcq
aieee-2012
j6dKprjfuC9iNtm3Qv18hoxe66ijvwuw2ce
maths
application-of-derivatives
rate-of-change-of-quantity
A water tank has the shape of an inverted right circular cone, whose semi-vertical angle is $${\tan ^{ - 1}}\left( {{1 \over 2}} \right)$$. Water is poured into it at a constant rate of 5 cubic meter per minute. The the rate (in m/min.), at which the level of water is rising at the instant when the depth of water in the tank is 10m; is :-
[{"identifier": "A", "content": "$${1 \\over {15\\pi }}$$"}, {"identifier": "B", "content": "$${1 \\over {5\\pi }}$$"}, {"identifier": "C", "content": "$${1 \\over {10\\pi }}$$"}, {"identifier": "D", "content": "$${2 \\over \\pi }$$"}]
["B"]
null
<picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265192/exam_images/spujcpaesz26bmcciwz1.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264494/exam_images/cmldsgcfwufq2oz2bpff.webp"><source media="(max-width: 680px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266702/exam_images/ympsmpobjl8mibz9vqjo.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265845/exam_images/dk7w8bditkgxgia8lokx.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 9th April Evening Slot Mathematics - Application of Derivatives Question 141 English Explanation"></picture> <br><br>Given $${{dv} \over {dt}}$$ = 5 cm<sup>3</sup>/min <br><br> and $$\theta $$ = $${\tan ^{ - 1}}\left( {{1 \over 2}} \right)$$ <br><br>$$ \Rightarrow $$ tan $$\theta $$ = $${1 \over 2}$$ = $${r \over h}$$ <br><br>$$ \Rightarrow $$ h = 2r <br><br>Volume of the cone, <br><br>v = $${1 \over 3}\pi {r^2}h$$ = $${1 \over 3}\pi {\left( {{h \over 2}} \right)^2}h$$ = $${{\pi {h^3}} \over {12}}$$ <br><br>$$ \therefore $$ $${{dv} \over {dt}} = {\pi \over {12}}\left( {3{h^2}} \right){{dh} \over {dt}}$$ <br><br>$$ \Rightarrow $$ 5 = $${\pi \over 4}{h^2}{{dh} \over {dt}}$$ <br><br>$$ \Rightarrow $$ 5 = $${\pi \over 4}{\left( {10} \right)^2}{{dh} \over {dt}}$$ <br><br>$$ \Rightarrow $$ $${{dh} \over {dt}}$$ = $${1 \over {5\pi }}$$
mcq
jee-main-2019-online-9th-april-evening-slot
kaw0SkAcvfOydLXkka3rsa0w2w9jx1zj510
maths
application-of-derivatives
rate-of-change-of-quantity
A spherical iron ball of radius 10 cm is coated with a layer of ice of uniform thickness that melts at a rate of 50 cm<sup>3</sup> /min. When the thickness of the ice is 5 cm, then the rate at which the thickness (in cm/min) of the ice decreases, is :
[{"identifier": "A", "content": "$${5 \\over {6\\pi }}$$"}, {"identifier": "B", "content": "$${1 \\over {9\\pi }}$$"}, {"identifier": "C", "content": "$${1 \\over {36\\pi }}$$"}, {"identifier": "D", "content": "$${1 \\over {18\\pi }}$$"}]
["D"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263695/exam_images/a99ifvlxnsbj5wrmjdqh.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 10th April Evening Slot Mathematics - Application of Derivatives Question 140 English Explanation"><br> $$V = {4 \over 3}\pi \left( {{{\left( {10 + h} \right)}^3} - {{10}^3}} \right)$$<br><br> $$ \Rightarrow {{dV} \over {dt}} = 4\pi {(10 + h)^2}{{dh} \over {dt}}$$<br><br> $$ \Rightarrow - 50 = 4\pi {\left( {10 + 5} \right)^2}{{dh} \over {dt}}$$<br><br> $$ \Rightarrow {{dh} \over {dt}} = - {1 \over {18\pi }}$$
mcq
jee-main-2019-online-10th-april-evening-slot
D5MTcIGTKq9EGcY3D23rsa0w2w9jx65rjtw
maths
application-of-derivatives
rate-of-change-of-quantity
A 2 m ladder leans against a vertical wall. If the top of the ladder begins to slide down the wall at the rate 25 cm/sec, then the rate (in cm/sec.) at which the bottom of the ladder slides away from the wall on the horizontal ground when the top of the ladder is 1 m above the ground is :
[{"identifier": "A", "content": "$${{25} \\over 3}$$"}, {"identifier": "B", "content": "25"}, {"identifier": "C", "content": "25$$\\sqrt 3 $$"}, {"identifier": "D", "content": "$${{25} \\over {\\sqrt 3 }}$$"}]
["D"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266309/exam_images/axa7ph2cq7yfizyo5afc.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 12th April Morning Slot Mathematics - Application of Derivatives Question 137 English Explanation"><br> x<sup>2</sup> + y<sup>2</sup> = 4 $$ \Rightarrow $$ $$2x{{dx} \over {dt}} + 2y{{dy} \over {dt}} = 0$$<br><br> $$ \Rightarrow {{dx} \over {dt}} = - {y \over x}.{{dy} \over {dt}}$$<br><br> When upper end is 1m above the ground, $${{dx} \over {dt}} = - {1 \over {\sqrt 3 }}.25 = - {{25} \over {\sqrt 3 }}$$ cm/sec.
mcq
jee-main-2019-online-12th-april-morning-slot
WdFaC9JydJYDDwFq5b7k9k2k5ioxa2s
maths
application-of-derivatives
rate-of-change-of-quantity
A spherical iron ball of 10 cm radius is coated with a layer of ice of uniform thickness the melts at a rate of 50 cm<sup>3</sup>/min. When the thickness of ice is 5 cm, then the rate (in cm/min.) at which of the thickness of ice decreases, is :
[{"identifier": "A", "content": "$${1 \\over {18\\pi }}$$"}, {"identifier": "B", "content": "$${1 \\over {36\\pi }}$$"}, {"identifier": "C", "content": "$${1 \\over {54\\pi }}$$"}, {"identifier": "D", "content": "$${5 \\over {6\\pi }}$$"}]
["A"]
null
Let the thickness = h cm <br><br>Volume of ice = v = $${{4\pi } \over 3}\left( {{{\left( {10 + h} \right)}^3} - {{10}^3}} \right)$$ <br><br>$$ \Rightarrow $$ $${{dv} \over {dt}} = {{4\pi } \over 3}\left( {3{{\left( {10 + h} \right)}^2}} \right).{{dh} \over {dt}}$$ <br><br>Given $${{dv} \over {dt}} = $$ 50 cm<sup>3</sup>/min and h = 5 cm <br><br>$$ \therefore $$ 50 = $${{4\pi } \over 3}\left( {3{{\left( {10 + 5} \right)}^2}} \right).{{dh} \over {dt}}$$ <br><br>$$ \Rightarrow $$ $${{dh} \over {dt}} = {{50} \over {4\pi \times {{15}^2}}}$$ = $${1 \over {18\pi }}$$ cm/min
mcq
jee-main-2020-online-9th-january-morning-slot
R9XIGlr0aLF6KGHJEFjgy2xukf46a92x
maths
application-of-derivatives
rate-of-change-of-quantity
If the surface area of a cube is increasing at a rate of 3.6 cm<sup>2</sup>/sec, retaining its shape; then the rate of change of its volume (in cm<sup>3</sup>/sec), when the length of a side of the cube is 10 cm, is :
[{"identifier": "A", "content": "9"}, {"identifier": "B", "content": "10"}, {"identifier": "C", "content": "18"}, {"identifier": "D", "content": "20"}]
["A"]
null
For cube of side 'a'<br><br>A = 6a<sup>2</sup> and V = a<sup>3</sup><br><br>Given $${{dA} \over {dt}} = 3.6$$<br><br>$$ \Rightarrow $$$$ 12a{{da} \over {dt}}$$ = 3.6<br><br>$${{dV} \over {dt}} = 3{a^2}.{{da} \over {dt}} = 3{a^2}\left( {{{3.6} \over {12a}}} \right)$$<br><br>at a = 10<br><br>$${{dV} \over {dt}} = 9$$
mcq
jee-main-2020-online-3rd-september-evening-slot
1l59ke5cr
maths
application-of-derivatives
rate-of-change-of-quantity
<p>Water is being filled at the rate of 1 cm<sup>3</sup> / sec in a right circular conical vessel (vertex downwards) of height 35 cm and diameter 14 cm. When the height of the water level is 10 cm, the rate (in cm<sup>2</sup> / sec) at which the wet conical surface area of the vessel increases is</p>
[{"identifier": "A", "content": "5"}, {"identifier": "B", "content": "$${{\\sqrt {21} } \\over 5}$$"}, {"identifier": "C", "content": "$${{\\sqrt {26} } \\over 5}$$"}, {"identifier": "D", "content": "$${{\\sqrt {26} } \\over {10}}$$"}]
["C"]
null
<p>$$\because$$ $$V = {1 \over 3}\pi {r^2}h$$ and $${r \over h} = {7 \over {35}} = {1 \over 5}$$</p> <p>$$ \Rightarrow V = {1 \over {75}}\pi {h^3}$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l5th5qtk/a97fb8bf-1c8b-4d95-accc-6e78d7642980/88a53880-0818-11ed-98aa-f9038709a939/file-1l5th5qtl.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l5th5qtk/a97fb8bf-1c8b-4d95-accc-6e78d7642980/88a53880-0818-11ed-98aa-f9038709a939/file-1l5th5qtl.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 25th June Evening Shift Mathematics - Application of Derivatives Question 68 English Explanation"></p> <p>$${{dV} \over {dt}} = {1 \over {25}}\pi {h^2}{{dh} \over {dt}} = 1$$</p> <p>$$ \Rightarrow {{dh} \over {dt}} = {{25} \over {\pi {h^2}}}$$</p> <p>Now, $$S = \pi rl = \pi \left( {{h \over 5}} \right)\sqrt {{h^2} + {{{h^2}} \over {25}}} = {\pi \over {25}}\sqrt {26} {h^2}$$</p> <p>$$ \Rightarrow {{dS} \over {dt}} = {{2\sqrt {26} \pi h} \over {25}}\,.\,{{dh} \over {dt}} = {{2\sqrt {26} } \over h}$$</p> <p>$$ \Rightarrow {{dS} \over {d{t_{(h = 10)}}}} = {{\sqrt {26} } \over 5}$$</p>
mcq
jee-main-2022-online-25th-june-evening-shift
1l5c0t4qw
maths
application-of-derivatives
rate-of-change-of-quantity
<p>The surface area of a balloon of spherical shape being inflated, increases at a constant rate. If initially, the radius of balloon is 3 units and after 5 seconds, it becomes 7 units, then its radius after 9 seconds is :</p>
[{"identifier": "A", "content": "9"}, {"identifier": "B", "content": "10"}, {"identifier": "C", "content": "11"}, {"identifier": "D", "content": "12"}]
["A"]
null
<p>We know,</p> <p>Surface area of balloon (s) = 4$$\pi$$r<sup>2</sup></p> <p>$$\therefore$$ $${{ds} \over {dt}} = {d \over {dt}}(4\pi {r^2})$$</p> <p>$$ \Rightarrow {{ds} \over {dt}} = 4\pi (2r) \times {{dr} \over {dt}}$$</p> <p>$$ \Rightarrow {{ds} \over {dt}} = 8\pi r \times {{dr} \over {dt}}$$</p> <p>Given that, surface area of balloon is increasing in constant rate.</p> <p>$$\therefore$$ $${{ds} \over {dt}}$$ = constant = k (Assume)</p> <p>$$ \Rightarrow k = 8\pi r\,.\,{{dr} \over {dt}}$$</p> <p>$$ \Rightarrow \int {k\,dt = \int {8\pi r\,dr} } $$</p> <p>$$ \Rightarrow kt = 8\pi \times {{{r^2}} \over 2} + c$$</p> <p>$$ \Rightarrow kt = 4\pi {r^2} + c$$ ..... (1)</p> <p>Given at t = 0, radius r = 3</p> <p>So, $$0 = 4\pi ({3^2}) + c$$</p> <p>$$ \Rightarrow c = - 36\pi $$</p> <p>$$\therefore$$ Equation (1) becomes</p> <p>$$kt = 4\pi {r^2} - 36\pi $$</p> <p>Also given, at t = 5, radius r = 7</p> <p>$$\therefore$$ $$k(5) = 4\pi {(7)^2} - 36$$</p> <p>$$ \Rightarrow k = 32\pi $$</p> <p>$$\therefore$$ Equation (1) is</p> <p>$$32\pi t = 4\pi {r^2} - 36\pi $$</p> <p>Now at $$t = 9$$</p> <p>$$ \Rightarrow 32\pi (9) = 4\pi {r^2} - 36\pi $$</p> <p>$$ \Rightarrow 8 \times 9 = {r^2} - 9$$</p> <p>$$ \Rightarrow {r^2} = 81 \Rightarrow r = 9$$</p>
mcq
jee-main-2022-online-24th-june-morning-shift
1l5w1f9pv
maths
application-of-derivatives
rate-of-change-of-quantity
<p>A hostel has 100 students. On a certain day (consider it day zero) it was found that two students are infected with some virus. Assume that the rate at which the virus spreads is directly proportional to the product of the number of infected students and the number of non-infected students. If the number of infected students on 4<sup>th</sup> day is 30, then number of infected students on 8<sup>th</sup> day will be __________.</p>
[]
null
90
<p>Total students = 100</p> <p>At t = 0 (zero day), infected student = 2</p> <p>Let at t = t day infected student = x</p> <p>$$\therefore$$ At t = t day non infected student = (100 $$-$$ x)</p> <p>Rate of infection $$ = {{dx} \over {dt}}$$</p> <p>Given, $${{dx} \over {dt}} \propto x(100 - x)$$</p> <p>$$ \Rightarrow \int\limits_{}^{} {{{dx} \over {x(100 - x)}} = \int\limits_{}^{} {k\,dt} } $$</p> <p>$$ \Rightarrow {1 \over {100}}\int\limits_{}^{} {{{100 - x + x} \over {x(100 - x)}}dx = k\,t + c} $$</p> <p>$$ \Rightarrow {1 \over {100}}\int\limits_{}^{} {\left( {{1 \over x} + {1 \over {100 - x}}} \right)dx = k\,t + c} $$</p> <p>$$ \Rightarrow {1 \over {100}}\left[ {\ln x - \ln (100 - x)} \right] = k\,t + c$$</p> <p>$$ \Rightarrow {1 \over {100}}\ln {x \over {100 - x}} = k\,t + c$$ ...... (1)</p> <p>Given, At, t = 0, x = 2</p> <p>$$\therefore$$ $${1 \over {100}}\ln {2 \over {98}} = c$$</p> <p>Putting value of c in equation (1), we get</p> <p>$${1 \over {100}}\ln {x \over {100 - x}} = kt + {1 \over {100}}\ln {2 \over {98}}$$</p> <p>$$ \Rightarrow {1 \over {100}}\ln {x \over {100 - x}} - {1 \over {100}}\ln {2 \over {98}} = kt$$</p> <p>$$ \Rightarrow {1 \over {100}}\ln {{x \times 98} \over {2(100 - x)}} = kt$$</p> <p>Given, At t = 4, x = 30</p> <p>$$\therefore$$ $${1 \over {100}}\ln {{30 \times 98} \over {2(70)}} = k \times 4$$</p> <p>$$ \Rightarrow k = {1 \over {400}}\ln 21$$</p> <p>$$\therefore$$ $${1 \over {100}}\ln {{x \times 98} \over {2(100 - x)}} = t \times {1 \over {400}} \times \ln 21$$</p> <p>Now, when t = 8, then r = ?</p> <p>$${1 \over {100}}\ln {{49x} \over {(100 - x)}} = 8 \times {1 \over {400}} \times \ln 21$$</p> <p>$$ \Rightarrow \ln {{49x} \over {(100 - x)}} = 2\ln 21$$</p> <p>$$ \Rightarrow {{49x} \over {100 - x}} = {21^2}$$</p> <p>$$ \Rightarrow {x \over {100 - x}} = {{21 \times 21} \over {49}}$$</p> <p>$$ \Rightarrow {x \over {100 - x}} = 9$$</p> <p>$$ \Rightarrow x = 900 - 9x$$</p> <p>$$ \Rightarrow 10x = 900$$</p> <p>$$ \Rightarrow x = 90$$</p>
integer
jee-main-2022-online-30th-june-morning-shift
1l6kljqrp
maths
application-of-derivatives
rate-of-change-of-quantity
<p>A water tank has the shape of a right circular cone with axis vertical and vertex downwards. Its semi-vertical angle is $$\tan ^{-1} \frac{3}{4}$$. Water is poured in it at a constant rate of 6 cubic meter per hour. The rate (in square meter per hour), at which the wet curved surface area of the tank is increasing, when the depth of water in the tank is 4 meters, is ______________.</p>
[]
null
5
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l7qaiwsv/317e788b-9fe5-4c30-acd5-40a1d96c242d/abb0b900-2df0-11ed-a744-1fb8f3709cfa/file-1l7qaiwsw.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l7qaiwsv/317e788b-9fe5-4c30-acd5-40a1d96c242d/abb0b900-2df0-11ed-a744-1fb8f3709cfa/file-1l7qaiwsw.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 27th July Evening Shift Mathematics - Application of Derivatives Question 51 English Explanation"></p> <p>$$v = {1 \over 3}\pi {r^2}h$$ ..... (i)</p> <p>And $$\tan \theta = {3 \over 4} = {r \over h}$$ ...... (ii)</p> <p>i.e. if $$h = 4,\,r = 3$$</p> <p>$$v = {1 \over 3}\pi {r^2}\left( {{{4r} \over 3}} \right)$$</p> <p>$${{dv} \over {dt}} = {{4\pi } \over 9}3{r^2}{{dr} \over {dt}} \Rightarrow 6 = {{4\pi } \over 3}(9){{dr} \over {dt}}$$</p> <p>$$ \Rightarrow {{dr} \over {dt}} = {1 \over {2\pi }}$$</p> <p>Curved area $$ = \pi r\sqrt {{r^2} + {h^2}} $$</p> <p>$$ = \pi r\sqrt {{r^2} + {{16{r^2}} \over 9}} $$</p> <p>$$ = {5 \over 3}\pi {r^2}$$</p> <p>$${{dA} \over {dt}} = {{10} \over 3}\pi r{{dr} \over {dt}}$$</p> <p>$$ = {{10} \over 3}\pi \,.\,3\,.\,{1 \over {2\pi }}$$</p> <p>$$ = 5$$</p>
integer
jee-main-2022-online-27th-july-evening-shift
1lh2zk9lq
maths
application-of-derivatives
rate-of-change-of-quantity
<p> The number of points, where the curve $$y=x^{5}-20 x^{3}+50 x+2$$ crosses the $$\mathrm{x}$$-axis, is ____________.</p>
[]
null
5
Given equation of curve <br><br>$$ \begin{aligned} &amp; y=x^5-20 x^3+50 x+2 \\\\ &amp; \Rightarrow \frac{d y}{d x}=5 x^4-60 x^2+50 \end{aligned} $$ <br><br>On putting $\frac{d y}{d x}=0$ <br><br>$$ \begin{array}{ll} \Rightarrow &amp; 5\left(x^4-12 x^2+10\right)=0 \\\\ \Rightarrow &amp; x^2=\frac{12 \pm \sqrt{144-40}}{2}=6 \pm \sqrt{26} \\\\ \Rightarrow &amp; x^2=6-\sqrt{26}, 6+\sqrt{26} \\\\ \Rightarrow &amp; x^2=6-5.10,6+5.10 \\\\ \Rightarrow &amp; x^2=09,11.1 \\\\ \Rightarrow &amp; x= \pm \sqrt{0.9}, \pm \sqrt{11.1} \\\\ \Rightarrow &amp; x=-0.95,0.95,-3.33,3.33 \end{array} $$ <br><br>Now, <br><br>$$ \begin{aligned} y(0) &amp; =2(+\mathrm{ve}) \Rightarrow y(1)=+\mathrm{ve} \\\\ y(2) &amp; =-\mathrm{ve} \Rightarrow y(3.3)=-\mathrm{ve} \\\\ y(-1) &amp; =-\mathrm{ve} \Rightarrow y(-2)=+\mathrm{ve} \\\\ y(-3.3) &amp; =-\mathrm{ve} \end{aligned} $$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1locy9o68/7ed2dae1-7f5d-4feb-a54d-f2d90c2aabe3/3a30c2f0-772a-11ee-8319-49c6602bc172/file-6y3zli1locy9o69.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1locy9o68/7ed2dae1-7f5d-4feb-a54d-f2d90c2aabe3/3a30c2f0-772a-11ee-8319-49c6602bc172/file-6y3zli1locy9o69.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh; vertical-align: baseline;" alt="JEE Main 2023 (Online) 6th April Evening Shift Mathematics - Application of Derivatives Question 29 English Explanation"> <br>$$ \because \text { Required number of points }=5 $$
integer
jee-main-2023-online-6th-april-evening-shift
jaoe38c1lse5ndcf
maths
application-of-derivatives
rate-of-change-of-quantity
<p>$$\text { If } f(x)=\left|\begin{array}{ccc} x^3 &amp; 2 x^2+1 &amp; 1+3 x \\ 3 x^2+2 &amp; 2 x &amp; x^3+6 \\ x^3-x &amp; 4 &amp; x^2-2 \end{array}\right| \text { for all } x \in \mathbb{R} \text {, then } 2 f(0)+f^{\prime}(0) \text { is equal to }$$</p>
[{"identifier": "A", "content": "24"}, {"identifier": "B", "content": "18"}, {"identifier": "C", "content": "42"}, {"identifier": "D", "content": "48"}]
["C"]
null
<p>$$\begin{aligned} & f(0)=\left|\begin{array}{ccc} 0 & 1 & 1 \\ 2 & 0 & 6 \\ 0 & 4 & -2 \end{array}\right|=12 \\ & f^{\prime}(x)=\left|\begin{array}{ccc} 3 x^2 & 4 x & 3 \\ 3 x^2+2 & 2 x & x^3+6 \\ x^3-x & 4 & x^2-2 \end{array}\right|+ \end{aligned}$$</p> <p>$$\begin{aligned} & \left|\begin{array}{ccc} x^3 & 2 x^2+1 & 1+3 x \\ 6 x & 2 & 3 x^2 \\ x^3-x & 4 & x^2-2 \end{array}\right|+ \\ & \left|\begin{array}{ccc} x^3 & 2 x^2+1 & 1+3 x \\ 3 x^2+2 & 2 x & x^3+6 \\ 3 x^2-1 & 0 & 2 x \end{array}\right| \\ & \therefore f^{\prime}(0)=\left|\begin{array}{ccc} 0 & 0 & 3 \\ 2 & 0 & 6 \\ 0 & 4 & -2 \end{array}\right|+\left|\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 4 & -2 \end{array}\right|+\left|\begin{array}{ccc} 0 & 1 & 1 \\ 2 & 0 & 6 \\ -1 & 0 & 0 \end{array}\right| \\ & =24-6=18 \\ & \therefore 2 f(0)+f^{\prime}(0)=42 \end{aligned}$$</p>
mcq
jee-main-2024-online-31st-january-morning-shift
lv7v4o2e
maths
application-of-derivatives
rate-of-change-of-quantity
<p>Let $$f(x)=x^5+2 x^3+3 x+1, x \in \mathbf{R}$$, and $$g(x)$$ be a function such that $$g(f(x))=x$$ for all $$x \in \mathbf{R}$$. Then $$\frac{g(7)}{g^{\prime}(7)}$$ is equal to :</p>
[{"identifier": "A", "content": "42"}, {"identifier": "B", "content": "7"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "14"}]
["D"]
null
<p>$$\begin{aligned} & f(x)=x^5+2 x^3+3 x+1 \\ & g(f(x))=x . \quad \Rightarrow g^{\prime}(f(x)) f^{\prime}(x)=1 \\ \end{aligned}$$</p> <p>$$\begin{aligned} &\begin{aligned} & \text { Now } \frac{g(7)}{g^{\prime}(7)} \\ & g(7) \Rightarrow f(x)=7 \\ & x^5+2 x^3+3 x+1=7 \\ & \Rightarrow x\left(x^4+2 x^2+3\right)=0 \\ & \Rightarrow x=1 \\ & \therefore g(7) \Rightarrow g(f(1))=1 \\ & \& ~g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)} \\ & g^{\prime}(7) \\ & \Rightarrow f(x)=7 \Rightarrow x=1 \\ & \therefore g^{\prime}(7)=\frac{1}{f^{\prime}(1)} \\ & =\frac{1}{5 x^4+6 x^2+3} \\ & =\frac{1}{14} \\ & \therefore \frac{g(7)}{g^{\prime}(7)}=\frac{1}{\frac{1}{14}} \quad 14 \end{aligned}\\ \end{aligned}$$</p>
mcq
jee-main-2024-online-5th-april-morning-shift
WzB2UMLEAvI0j8Sz
maths
application-of-derivatives
tangent-and-normal
A function $$y=f(x)$$ has a second order derivative $$f''\left( x \right) = 6\left( {x - 1} \right).$$ If its graph passes through the point $$(2, 1)$$ and at that point the tangent to the graph is $$y = 3x - 5$$, then the function is :
[{"identifier": "A", "content": "$${\\left( {x + 1} \\right)^2}$$ "}, {"identifier": "B", "content": "$${\\left( {x - 1} \\right)^3}$$"}, {"identifier": "C", "content": "$${\\left( {x + 1} \\right)^3}$$"}, {"identifier": "D", "content": "$${\\left( {x - 1} \\right)^2}$$"}]
["B"]
null
$$f''\left( x \right) = 6\left( {x - 1} \right).$$ Inegrating, <br><br>we get $$f'\left( x \right) = 3{x^2} - 6x + c$$ <br><br>Slope at $$\left( {2,1} \right) = f'\left( 2 \right) = c = 3$$ <br><br>$$\left[ {\,\,} \right.$$ As slope of tangent at $$(2, 1)$$ is $$3$$ $$\left. {\,\,} \right]$$ <br><br>$$\therefore$$ $$f'\left( x \right) = 3{x^2} - 6x + 3 = 3{\left( {x - 1} \right)^2}$$ <br><br>Inegrating again, we get <br><br>$$f\left( x \right) = {\left( {x - 1} \right)^3} + D$$ <br><br>The curve passes through $$(2,1)$$ <br><br>$$ \Rightarrow 1 = {\left( {2 - 1} \right)^3} + D \Rightarrow D = 0$$ <br><br>$$\therefore$$ $$f\left( x \right) = {\left( {x - 1} \right)^3}$$
mcq
aieee-2004
7xmtfPK7UFAAvV0N
maths
application-of-derivatives
tangent-and-normal
The normal to the curve x = a(1 + cos $$\theta $$), $$y = a\sin \theta $$ at $$'\theta '$$ always passes through the fixed point
[{"identifier": "A", "content": "$$(a, a)$$ "}, {"identifier": "B", "content": "$$(0, a)$$ "}, {"identifier": "C", "content": "$$(0, 0)$$ "}, {"identifier": "D", "content": "$$(a, 0)$$ "}]
["D"]
null
$${{dx} \over {d\theta }} = - a\sin \theta $$ and $${{dy} \over {d\theta }} = a\cos \theta $$ <br><br>$$\therefore$$ $${{dy} \over {dx}} = - \cot \theta .$$ <br><br>$$\therefore$$ The slope of the normal at $$\theta $$ = $$ - {1 \over { - \cot \theta }}$$$$= \tan \theta $$ <br><br>$$\therefore$$ The equation of the normal at $$\theta $$ is <br><br>$$y - a\sin \theta = \tan \theta \left( {x - a - a\cos \theta } \right)$$ <br><br>$$ \Rightarrow $$ $$y - a\sin \theta =$$ $${{\sin \theta } \over {\cos \theta }}$$ $$\left( {x - a - a\cos \theta } \right)$$ <br><br>$$ \Rightarrow y\cos \theta - a\sin \theta \cos \theta $$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,$$ $$ = x\sin \theta - a\sin \theta - a\sin \theta \cos \theta $$ <br><br>$$ \Rightarrow x\sin \theta - y\cos \theta = a\sin \theta $$ <br><br>$$ \Rightarrow y = \left( {x - a} \right)\tan \theta $$ <br><br>which always passes through $$(a, 0)$$
mcq
aieee-2004
xDpHAzVDO3wJz2Tq
maths
application-of-derivatives
tangent-and-normal
The normal to the curve <br/>$$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$ at any point <br/>$$\theta\, '$$ is such that
[{"identifier": "A", "content": "it passes through the origin "}, {"identifier": "B", "content": "it makes an angle $${\\pi \\over 2} + \\theta $$ with the $$x$$-axis "}, {"identifier": "C", "content": "it passes through $$\\left( {a{\\pi \\over 2}, - a} \\right)$$ "}, {"identifier": "D", "content": "it is at a constant distance from the origin "}]
["D"]
null
$$x = a\left( {\cos \theta + \theta \sin \theta } \right)$$ <br><br>$$ \Rightarrow {{dx} \over {d\theta }} = a\left( { - \sin \theta + \sin \theta + \theta \cos \theta } \right)$$ <br><br>$$ \Rightarrow {{dx} \over {d\theta }} = a\theta \cos \theta \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$$ <br><br>$$y = a\left( {\sin \theta - \theta \cos \theta } \right)$$ <br><br>$${{dy} \over {d\theta }} = a\left[ {\cos \theta - \cos \theta + \theta \sin \theta } \right]$$ <br><br>$$ \Rightarrow {{dy} \over {d\theta }} = a\theta \sin \theta \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( 2 \right)$$ <br><br>From equations $$(1)$$ and $$(2),$$ we get <br><br>$${{dy} \over {dx}} = \tan \theta \Rightarrow $$ Slope of normal $$ = - \cot \,\theta $$ <br><br>Equation of normal at <br><br>$$'\theta '$$ is $$y - a\left( {\sin \theta - \theta \cos \theta } \right)$$ <br><br>$$ = - \cot \theta \left( {x - a\left( {\cos \theta + \theta \sin \theta } \right)} \right.$$ <br><br>$$ \Rightarrow y\sin \theta - a{\sin ^2}\theta + a\,\,\theta \cos \theta \sin \theta $$ <br><br>$$ = - x\cos \theta + a{\cos ^2}\theta + a\,\theta \sin \theta \cos \theta $$ <br><br>$$ \Rightarrow x\cos \theta + y\sin \theta = a$$ <br><br>Clearly this is an equation of straight line - <br><br>which is at a constant distance $$'a'$$ from origin.
mcq
aieee-2005
DLqakneawRUrbWd3
maths
application-of-derivatives
tangent-and-normal
Angle between the tangents to the curve $$y = {x^2} - 5x + 6$$ at the points $$(2,0)$$ and $$(3,0)$$ is
[{"identifier": "A", "content": "$$\\pi $$ "}, {"identifier": "B", "content": "$${\\pi \\over 2}$$ "}, {"identifier": "C", "content": "$${\\pi \\over 6}$$"}, {"identifier": "D", "content": "$${\\pi \\over 4}$$"}]
["B"]
null
$${{dy} \over {dx}} = 2x - 5$$ <br><br>$$\therefore$$ $${m_1} = {\left( {2x - 5} \right)_{\left( {2,0} \right)}} = - 1,$$ <br><br> $${m_2} = {\left( {2x - 5} \right)_{\left( {3,0} \right)}} = 1 \Rightarrow {m_1}{m_2} = - 1$$ <br><br>i.e. the tangents are perpendicular to each other.
mcq
aieee-2006
TN45biXlr0c9O695
maths
application-of-derivatives
tangent-and-normal
The equation of the tangent to the curve $$y = x + {4 \over {{x^2}}}$$, that <br/>is parallel to the $$x$$-axis, is
[{"identifier": "A", "content": "$$y=1$$ "}, {"identifier": "B", "content": "$$y=2$$ "}, {"identifier": "C", "content": "$$y=3$$ "}, {"identifier": "D", "content": "$$y=0$$ "}]
["C"]
null
Since tangent is parallel to $$x$$-axis, <br><br>$$\therefore$$ $${{dy} \over {dx}} = 0 \Rightarrow 1 - {8 \over {{x^3}}} = 0 \Rightarrow x = 2 \Rightarrow y = 3$$ <br><br>Equation of tangent is $$y - 3 = 0\left( {x - 2} \right) \Rightarrow y = 3$$
mcq
aieee-2010
da6RXvhPYMZWxEIr
maths
application-of-derivatives
tangent-and-normal
The shortest distance between line $$y-x=1$$ and curve $$x = {y^2}$$ is
[{"identifier": "A", "content": "$${{3\\sqrt 2 } \\over 8}$$ "}, {"identifier": "B", "content": "$${8 \\over {3\\sqrt 2 }}$$ "}, {"identifier": "C", "content": "$${4 \\over {\\sqrt 3 }}$$ "}, {"identifier": "D", "content": "$${{\\sqrt 3 } \\over 4}$$ "}]
["A"]
null
Shortest distance between two curve occurred along - <br><br>the common normal <br><br>Slope of normal to $${y^2} = x$$ at point <br><br>$$P\left( {{t^2},t} \right)$$ is $$-2t$$ and <br><br>slope of line $$y - x = 1$$ is $$1.$$ <br><br>As they are perpendicular to each other <br><br>$$\therefore$$ $$\left( { - 2t} \right) = - 1 \Rightarrow t = {1 \over 2}$$ <br><br>$$\therefore$$ $$P\left( {{1 \over 4},{1 \over 2}} \right)$$ <br><br>and shortest distance $$ = \left| {{{{1 \over 2} - {1 \over 4} - 1} \over {\sqrt 2 }}} \right|$$ <br><br><img class="question-image" src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266469/exam_images/f698mokq1rh01m1s0toe.webp" loading="lazy" alt="AIEEE 2011 Mathematics - Application of Derivatives Question 182 English Explanation"> <br><br>So shortest distance between them is $${{3\sqrt 2 } \over 8}$$
mcq
aieee-2011
i0kX6KoVoB3amGZz
maths
application-of-derivatives
tangent-and-normal
The intercepts on $$x$$-axis made by tangents to the curve, <br/>$$y = \int\limits_0^x {\left| t \right|dt,x \in R,} $$ which are parallel to the line $$y=2x$$, are equal to :
[{"identifier": "A", "content": "$$ \\pm 1$$ "}, {"identifier": "B", "content": "$$ \\pm 2$$"}, {"identifier": "C", "content": "$$ \\pm 3$$"}, {"identifier": "D", "content": "$$ \\pm 4$$"}]
["A"]
null
Since, $$y = \int\limits_0^x {\left| t \right|} dt,x \in R$$ <br><br>therefore $${{dy} \over {dx}} = \left| x \right|$$ <br><br>But from $$y = 2x,{{dy} \over {dx}} = 2$$ <br><br>$$ \Rightarrow \left| x \right| = 2 \Rightarrow x = \pm 2$$ <br><br>Points $$y = \int\limits_0^{ \pm 2} {\left| t \right|dt} = \pm 2$$ <br><br>$$\therefore$$ equation of tangent is <br><br>$$y - 2 = 2\left( {x - 2} \right)$$ or $$y + 2 = 2\left( {x + 2} \right)$$ <br><br>$$ \Rightarrow $$ $$x$$-intercept $$ = \pm 1.$$
mcq
jee-main-2013-offline
nbnpebQ2nYcrhYcK
maths
application-of-derivatives
tangent-and-normal
The normal to the curve, $${x^2} + 2xy - 3{y^2} = 0$$, at $$(1,1)$$
[{"identifier": "A", "content": "meets the curve again in the third quadrant. "}, {"identifier": "B", "content": "meets the curve again in the fourth quadrant. "}, {"identifier": "C", "content": "does not meet the curve again."}, {"identifier": "D", "content": "meets the curve again in the second quadrant."}]
["B"]
null
Given curve is <br><br>$${x^2} + 2xy - 3{y^2} = 0$$ <br><br>Difference $$w.r.t.x,$$ <br><br>$$2x + 2x{{dy} \over {dx}} + 2y - 6y{{dy} \over {dx}} = 0$$ <br><br>$${\left( {{{dy} \over {dx}}} \right)_{\left( {1,1} \right)}} = 1$$ <br><br>Equation of normal at $$(1,1)$$ is <br><br>$$y=2-x$$ <br><br>Solving eq. $$(1)$$ and $$(2),$$ we get $$x=1,3$$ <br><br>Point of intersection $$\left( {1,1} \right),\left( {3, - 1} \right)$$ <br><br>Normal cuts the curve again in $$4$$th quadrant.
mcq
jee-main-2015-offline
k0fZVE4svRgWgQQCzYBRu
maths
application-of-derivatives
tangent-and-normal
If the tangent at a point P, with parameter t, on the curve x = 4t<sup>2</sup> + 3, y = 8t<sup>3</sup>βˆ’1, <i>t</i> $$ \in $$ <b>R</b>, meets the curve again at a point Q, then the coordinates of Q are :
[{"identifier": "A", "content": "(t<sup>2</sup> + 3, \u2212 t<sup>3</sup> \u22121)\n"}, {"identifier": "B", "content": "(4t<sup>2</sup> + 3, \u2212 8t<sup>3</sup> \u22121)\n"}, {"identifier": "C", "content": "(t<sup>2</sup> + 3, t<sup>3</sup> \u22121)\n"}, {"identifier": "D", "content": "(16t<sup>2</sup> + 3, \u2212 64t<sup>3</sup> \u22121)"}]
["A"]
null
Given, x = 4t<sup>2</sup> + 3 and y = 8t<sup>3</sup> $$-$$ 1 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;P $$ \equiv $$ (4t<sup>2</sup> + 3, 8t<sup>3</sup> $$-$$ 1) <br><br>$${{dx} \over {dt}} = 8t$$ and $${{dy} \over {dt}}$$ $$=$$ 24t<sup>2</sup> <br><br>Slope of tangent at <br><br>P $$=$$ $${{dy} \over {dx}}$$ $$=$$ $${{dy/dt} \over {dx/dt}}$$ $$=$$ 3t <br><br>Assume Q $$=$$ (4$$\lambda $$<sup>2</sup> + 3, 8$$\lambda $$<sup>3</sup> $$-$$ 1) <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;Slope of PQ $$=$$ 3t <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp; $${{8{\lambda ^3} - 8{t^3}} \over {4{\lambda ^2} - 4{t^2}}} = 3t$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;$${{8\left( {\lambda - t} \right)\left( {{\lambda ^2} + {t^2} + \lambda t} \right)} \over {4\left( {\lambda - t} \right)\left( {\lambda + t} \right)}} = 3t$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp; 2$$\lambda $$<sup>2</sup> + 2t<sup>2</sup> + 2$$\lambda $$t $$=$$ 3t (t + $$\lambda $$) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp; t<sup>2</sup> + $$\lambda $$t $$-$$ 2$$\lambda $$<sup>2</sup> = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;(t $$-$$ $$\lambda $$) (t + 2$$\lambda $$) $$=$$ 0 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;$$\lambda $$ $$=$$ t &nbsp;&nbsp;or&nbsp;&nbsp; $$\lambda $$ $$=$$ $$-$$ $${t \over 2}$$ <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;Q $$=$$ (4t<sup>2</sup> + 3, 8t<sup>3</sup> $$-$$ 1)&nbsp;&nbsp;Or&nbsp;&nbsp; <br><br>Q $$=$$ $$\left( {4 \times {{\left( { - {t \over 2}} \right)}^2} + 3, - 8 \times {{{t^3}} \over 8} - 1} \right)$$ <br><br>&nbsp;&nbsp;&nbsp;$$=$$ (t<sup>2</sup> + 3, $$-$$ t<sup>3</sup> $$-$$ 1)
mcq
jee-main-2016-online-9th-april-morning-slot
idGZjiTMQyZ5SsmMHXupk
maths
application-of-derivatives
tangent-and-normal
Let C be a curve given by y(x) = 1 + $$\sqrt {4x - 3} ,x &gt; {3 \over 4}.$$ If P is a point on C, such that the tangent at P has slope $${2 \over 3}$$, then a point through which the normal at P passes, is :
[{"identifier": "A", "content": "(2, 3)"}, {"identifier": "B", "content": "(4, $$-$$3)"}, {"identifier": "C", "content": "(1, 7) "}, {"identifier": "D", "content": "(3, $$-$$ 4), "}]
["C"]
null
Given, <br><br>y = 1 + $$\sqrt {4x - 3} $$ <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;$${{dy} \over {dx}}$$ = $${1 \over {2\sqrt {4x - 3} }} \times 4 = {2 \over 3}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;4x $$-$$ 3 = 9 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;x = 3 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;y = 1 + $$\sqrt {12 - 3} $$ = 4 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;Equation of normal at point P(3,4) <br><br>y $$-$$ 4 = $$-$$ $${3 \over 2}$$ (x $$-$$ 3) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;2y $$-$$ 8 = $$-$$ 3x + 9 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp; 3x + 2y $$-$$ 17 = 0
mcq
jee-main-2016-online-10th-april-morning-slot
v0O67CCyo8mfgAHJ
maths
application-of-derivatives
tangent-and-normal
Consider : <br/>f $$\left( x \right) = {\tan ^{ - 1}}\left( {\sqrt {{{1 + \sin x} \over {1 - \sin x}}} } \right),x \in \left( {0,{\pi \over 2}} \right).$$ <p>A normal to $$y = $$ f$$\left( x \right)$$ at $$x = {\pi \over 6}$$ also passes through the point:</p>
[{"identifier": "A", "content": "$$\\left( {{\\pi \\over 6},0} \\right)$$ "}, {"identifier": "B", "content": "$$\\left( {{\\pi \\over 4},0} \\right)$$"}, {"identifier": "C", "content": "$$(0,0)$$ "}, {"identifier": "D", "content": "$$\\left( {0,{{2\\pi } \\over 3}} \\right)$$ "}]
["D"]
null
$$f\left( x \right) = {\tan ^{ - 1}}\left( {\sqrt {{{1 + \sin \,x} \over {1 - \sin x}}} } \right)$$ <br><br>$$ = {\tan ^{ - 1}}\left( {\sqrt {{{{{\left( {\sin {x \over 2} + \cos {x \over 2}} \right)}^2}} \over {{{\left( {\sin {x \over x} - \cos {x \over 2}} \right)}^2}}}} } \right)$$ <br><br>$$ = {\tan ^{ - 1}}\left( {{{1 + \tan {x \over 2}} \over {1 - \tan {x \over 2}}}} \right)$$ <br><br>$$ = {\tan ^{ - 1}}\left( {\tan \left( {{\pi \over 4} + {x \over 2}} \right)} \right)$$ <br><br>$$ \Rightarrow y = {\pi \over 4} + {x \over 2}$$ <br><br>$$ \Rightarrow {{dy} \over {dx}} = {1 \over 2}$$ <br><br>Slope of normal $$ = {{ - 1} \over {\left( {{{dy} \over {dx}}} \right)}} = - 2$$ <br><br>At $$\left( {{\pi \over 6},{\pi \over 4} + {\pi \over {12}}} \right)$$ <br><br>$$y - \left( {{\pi \over 4} + {\pi \over {12}}} \right) = - 2\left( {x - {\pi \over 6}} \right)$$ <br><br>$$y - {{4\pi } \over {12}} = - 2x + {{2\pi } \over 6}$$ <br><br>$$y - {\pi \over 3} = - 2x + {\pi \over 3}$$ <br><br>$$y = - 2x + {{2\pi } \over 3}$$ <br><br>This equation is satisfied only by the point <br><br>$$\left( {0,{{2\pi } \over 3}} \right)$$
mcq
jee-main-2016-offline
ApbhaGnJQ9LIEHm8
maths
application-of-derivatives
tangent-and-normal
The normal to the curve y(x – 2)(x – 3) = x + 6 at the point where the curve intersects the y-axis passes through the point :
[{"identifier": "A", "content": "$$\\left( {{1 \\over 2},{1 \\over 2}} \\right)$$"}, {"identifier": "B", "content": "$$\\left( {{1 \\over 2}, - {1 \\over 3}} \\right)$$"}, {"identifier": "C", "content": "$$\\left( {{1 \\over 2},{1 \\over 3}} \\right)$$"}, {"identifier": "D", "content": "$$\\left( { - {1 \\over 2}, - {1 \\over 3}} \\right)$$"}]
["A"]
null
Given $$y = {{x + 6} \over {\left( {x - 2} \right)\left( {x - 2} \right)}}$$ <br><br>At y-axis, x = 0 $$ \Rightarrow $$ y = 1 <br><br>On differentiating, we get <br><br>$${{dy} \over {dx}} = {{\left( {{x^2} - 5x + 6} \right)\left( 1 \right) - \left( {x + 6} \right)\left( {2x - 5} \right)} \over {{{\left( {{x^2} - 5x + 6} \right)}^2}}}$$ <br><br>$${{dy} \over {dx}} = 1$$ at point (0, 1) <br><br>$$ \therefore $$ Slope of normal = – 1 <br><br>Now equation of normal is y – 1 = –1 (x – 0) <br><br>$$ \Rightarrow $$ y – 1 = – x <br><br>x + y = 1 ......(1) <br><br>By checking each option you can see point $$\left( {{1 \over 2},{1 \over 2}} \right)$$ satisfy equation (1).
mcq
jee-main-2017-offline
2Vz6ubbB5NN9kiDT6g4bK
maths
application-of-derivatives
tangent-and-normal
The tangent at the point (2, $$-$$2) to the curve, x<sup>2</sup>y<sup>2</sup> $$-$$ 2x = 4(1 $$-$$ y) <b>does not</b> pass through the point :
[{"identifier": "A", "content": "$$\\left( {4,{1 \\over 3}} \\right)$$"}, {"identifier": "B", "content": "(8, 5)"}, {"identifier": "C", "content": "($$-$$4, $$-$$9)"}, {"identifier": "D", "content": "($$-$$2, $$-$$7)"}]
["D"]
null
As, &nbsp;&nbsp; $${{dy} \over {dx}}$$ = $$-$$ $$\left[ {{{{{\delta f} \over {\delta x}}} \over {{{\delta f} \over {\delta y}}}}} \right]$$ <br><br>$${{{\delta f} \over {\delta x}}}$$ = y<sup>2</sup> $$ \times $$2x $$-$$ 2 <br><br>$${{{\delta f} \over {\delta y}}}$$ = x<sup>2</sup> $$ \times $$ 2y + 4 <br><br>$$\therefore\,\,\,$$ $${{dy} \over {dx}}$$ = $$-$$ $$\left( {{{2x{y^2} - 2} \over {2{x^2}y + 4}}} \right)$$ <br><br>$${\left[ {{{dy} \over {dx}}} \right]_{(2, - 2)}}$$ = $$-$$ $$\left( {{{2 \times 2 \times 4 - 2} \over {2 \times 4 \times ( - 2) + 4}}} \right)$$ = $$-$$ $$\left( {{{14} \over { - 12}}} \right)$$ = $${7 \over 6}$$ <br><br>$$\therefore\,\,\,$$ Slope of tangent to the curve = $${7 \over 6}$$ <br><br>Equation of tangent passes through (2, $$-$$ 2) is <br><br>y + 2 = $${7 \over 6}$$ (x $$-$$ 2) <br><br>$$ \Rightarrow $$$$\,\,\,$$ 7x $$-$$ 6y = 26 . . . . .(1) <br><br>Now put each option in equation (1) and see which one does not satisfy the equation. <br><br>By verifying each points you can see ($$-$$ 2, $$-$$ 7) does not satisfy the equation.
mcq
jee-main-2017-online-8th-april-morning-slot
2Cp4wkEasxlGmlzJJmg0m
maths
application-of-derivatives
tangent-and-normal
A tangent to the curve, y = f(x) at P(x, y) meets x-axis at A and y-axis at B. If AP : BP = 1 : 3 and f(1) = 1, then the curve also passes through the point :
[{"identifier": "A", "content": "$$\\left( {{1 \\over 3},24} \\right)$$ "}, {"identifier": "B", "content": "$$\\left( {{1 \\over 2},4} \\right)$$ "}, {"identifier": "C", "content": "$$\\left( {2,{1 \\over 8}} \\right)$$ "}, {"identifier": "D", "content": "$$\\left( {3,{1 \\over 28}} \\right)$$"}]
["C"]
null
<p>We have</p> <p>$${{(y - {y_2})} \over {(x - {x_1})}} = f'({x_1})$$</p> <p>$$ \Rightarrow y - {y_1} = f'({x_1})(x - {x_1})$$</p> <p>$$\bullet$$ When y = 0: $${{ - {y_1}} \over {f'({x_1})}} = x - {x_1}$$</p> <p>$$ \Rightarrow x = {x_1} - {{{y_1}} \over {f'({x_1})}}$$</p> <p>Therefore, point A is $$A\left( {{x_1} - {{{y_1}} \over {f'({x_1})}},0} \right)$$</p> <p>$$\bullet$$ When x = 0: $$y - {y_1} = f'(x)\,.\,( - {x_1})$$</p> <p>$$ \Rightarrow y = {y_1} - {x_1}f'({x_1})$$</p> <p>Therefore, point B is $$B(0,{y_1} - {x_1}f'({x_1}))$$</p> <p>Point P divides AB in the ratio 1 : 3.</p> <p>$${x_1} = {{\left[ {3\left( {{x_1} - {{{y_1}} \over {f'({x_1})}}} \right)} \right]} \over 4}$$</p> <p>$${y_1} = {{{y_1} - {x_1}f'({x_1})} \over 4}$$</p> <p>Therefore, $$4{y_1} = {y_1} - {x_1}f'({x_1})$$</p> <p>$$ \Rightarrow f'({x_1}) = {{ - 3{y_1}} \over {{x_1}}} \Rightarrow f'(x) = {{ - 3y} \over x}$$</p> <p>Now, $${{dy} \over {dx}} = {{ - 3y} \over x} \Rightarrow {{dy} \over y} = {{ - 3dx} \over x}$$</p> <p>On integrating, we get</p> <p>$$\ln y = - 3\ln x + C \Rightarrow y = k{x^{ - 3}}$$</p> <p>$$y(1) = 1 \Rightarrow k = 1$$</p> <p>$$y = {1 \over {{x^3}}}$$</p> <p>When we substitute the values from the given options, only option (c) satisfies the above equation.</p>
mcq
jee-main-2017-online-9th-april-morning-slot
9tt20aC5xbn0orfm
maths
application-of-derivatives
tangent-and-normal
If the curves y<sup>2</sup> = 6x, 9x<sup>2</sup> + by<sup>2</sup> = 16 intersect each other at right angles, then the value of b is :
[{"identifier": "A", "content": "$${9 \\over 2}$$"}, {"identifier": "B", "content": "6"}, {"identifier": "C", "content": "$${7 \\over 2}$$"}, {"identifier": "D", "content": "4"}]
["A"]
null
When two curves intersect each other at right angle, then at the point of intersection the product of tangent of slopes = $$-1$$. <br><br>Let m<sub>1</sub>, and m<sub>2</sub> are the tangent of the slope of the two curves respectively <br><br>$$\therefore\,\,\,$$ m<sub>1</sub> m<sub>2</sub> = $$-$$ 1. <br><br>Now let they intersect at point (x<sub>1</sub>, y<sub>1</sub>) <br><br>$$\therefore\,\,\,$$ $$y_1^2 = 6x,$$ and $$9x_1^2 + b\,y_1^2 = 16$$ <br><br>y<sup>2</sup> = 6x <br><br>$$ \Rightarrow \,\,\,\,2y{{dy} \over {dx}} = 6$$ <br><br>$$ \Rightarrow \,\,\,\,{{dy} \over {dx}} = {3 \over y}$$ <br><br>$$\therefore\,\,\,$$ $${\left( {{{dy} \over {dx}}} \right)_{\left( {{x_1},{y_1}} \right)}} = {3 \over {{y_1}}} = {m_1}$$ <br><br>9x<sup>2</sup> + by<sup>2</sup> = 16 <br><br>$$ = 18x + 2by{{dy} \over {dx}} = O$$ <br><br>$$ \Rightarrow \,\,\,\,{\left( {{{dy} \over {dx}}} \right)_{({x_1},{y_1})}} = - {{9{x_1}} \over {b{y_1}}} = {m_2}$$ <br><br>As m<sub>1</sub> m<sub>2</sub> = $$-$$1 <br><br>$$\therefore\,\,\,$$ $${3 \over {y{}_1}} \times - {{9{x_1}} \over {b{y_1}}} = - 1$$ <br><br>$$ \Rightarrow \,\,\,\,27{x_1} = by_1^2$$ <br><br>$$ \Rightarrow \,\,\,\,\,27{x_1} = b.6{x_1}$$ $$\,\,\,$$ [as $$y_1^2 = 6{x_1}\,]$$ <br><br>$$ \Rightarrow \,\,\,\,b = {{27} \over 6} = {9 \over 2}$$
mcq
jee-main-2018-offline
boajRKD8w1QSY5sgpYNZA
maths
application-of-derivatives
tangent-and-normal
If $$\beta $$ is one of the angles between the normals to the ellipse, x<sup>2</sup> + 3y<sup>2</sup> = 9 at the points (3 cos $$\theta $$, $$\sqrt 3 \sin \theta $$) and ($$-$$ 3 sin $$\theta $$, $$\sqrt 3 \,\cos \theta $$); $$\theta \in \left( {0,{\pi \over 2}} \right);$$ then $${{2\,\cot \beta } \over {\sin 2\theta }}$$ is equal to :
[{"identifier": "A", "content": "$${2 \\over {\\sqrt 3 }}$$"}, {"identifier": "B", "content": "$${1 \\over {\\sqrt 3 }}$$"}, {"identifier": "C", "content": "$$\\sqrt 2 $$"}, {"identifier": "D", "content": "$${{\\sqrt 3 } \\over 4}$$ "}]
["A"]
null
Since, x<sup>2</sup> + 3y<sup>2</sup> = 9 <br><br>$$ \Rightarrow $$ 2x + 6y $${{dy} \over {dx}}$$ = 0 <br><br>$$ \Rightarrow $$ $${{dy} \over {dx}}$$ = $${{ - x} \over {3y}}$$ <br><br>Slope of normal is $$-$$ $${{dx} \over {dy}}$$ = $${{3y} \over x}$$ <br><br>$$ \Rightarrow $$ $${\left( { - {{dx} \over {dy}}} \right)_{\left( {3\cos \theta ,\sqrt 3 \sin \theta } \right)}}$$ <br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;= $${{3\sqrt 3 \sin \theta } \over {3\cos \theta }}$$ = $$\sqrt 3 \tan \theta $$ = m<sub>1</sub> <br><br>&amp; &nbsp;&nbsp;$${\left( { - {{dx} \over {dy}}} \right)_{\left( { - 3\sin \theta ,\sqrt 3 \cos \theta } \right)}}$$ <br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;= $${{3\sqrt 3 \cos \theta } \over { - 3\sin \theta }}$$ = $$ - \sqrt 3 \cot \theta $$ = m<sub>2</sub> <br><br>As, $$\beta $$ is the angle between the normals to the given ellipse then <br><br>tan$$\beta $$ = $$\left| {{{{m_1} - {m_2}} \over {1 + {m_1}{m_2}}}} \right|$$ <br><br>= $$\left| {{{\sqrt 3 \tan \theta + \sqrt 3 \cot \theta } \over {1 - 3\tan \theta \cot \theta }}} \right|$$ = $$\left| {{{\sqrt 3 \tan \theta + \sqrt 3 \cot \theta } \over {1 - 3}}} \right|$$ <br><br>So, tan $$\beta $$ = $${{\sqrt 3 } \over 2}$$ $$\left| {\tan \theta + \cot \theta } \right|$$ <br><br>$$ \Rightarrow $$ $${1 \over {\cot \beta }} = {{\sqrt 3 } \over 2}\left| {{{\sin \theta } \over {\cos \theta }} + {{\cos \theta } \over {\sin \theta }}} \right|$$ <br><br>$$ \Rightarrow $$ $${1 \over {\cot \beta }} = {{\sqrt 3 } \over 2}$$ $$\left| {{1 \over {\sin \theta \cos \theta }}} \right|$$ <br><br>$$ \Rightarrow $$ $${1 \over {\cot \beta }} = {{\sqrt 3 } \over {\sin 2\theta }}$$ <br><br>$$ \Rightarrow $$ $${{2\cot \beta } \over {\sin 2\theta }}$$ = $${2 \over {\sqrt 3 }}$$
mcq
jee-main-2018-online-15th-april-morning-slot
8ffCZxoD0TRKsnKUmshBK
maths
application-of-derivatives
tangent-and-normal
The tangent to the curve y = x<sup>2</sup> – 5x + 5, parallel to the line 2y = 4x + 1, also passes through the point :
[{"identifier": "A", "content": "$$\\left\\{ {{1 \\over 4},{7 \\over 2}} \\right\\}$$"}, {"identifier": "B", "content": "$$\\left( { - {1 \\over 8},7} \\right)$$"}, {"identifier": "C", "content": "$$\\left( {{7 \\over 2},{1 \\over 4}} \\right)$$"}, {"identifier": "D", "content": "$$\\left( {{1 \\over 8}, - 7} \\right)$$"}]
["D"]
null
y = x<sup>2</sup> $$-$$ 5x + 5 <br><br>$${{dy} \over {dx}} = 2x - 5 = 2 \Rightarrow x = {7 \over 2}$$ <br><br>at&nbsp;&nbsp;x = $${7 \over 2}$$,&nbsp;y = $${{ - 1} \over 4}$$ <br><br>Equation of tangent at <br><br>$$\left( {{7 \over 2},{{ - 1} \over 4}} \right)$$ is 2x $$-$$ y $$-$$ $${{29} \over 4}$$ = 0 <br><br>Now check options <br><br>x = $${1 \over 8}$$, y = $$-$$7
mcq
jee-main-2019-online-12th-january-evening-slot