question_id
stringlengths
8
35
subject
stringclasses
1 value
chapter
stringclasses
32 values
topic
stringclasses
178 values
question
stringlengths
26
9.64k
options
stringlengths
2
1.63k
correct_option
stringclasses
5 values
answer
stringclasses
293 values
explanation
stringlengths
13
9.38k
question_type
stringclasses
3 values
paper_id
stringclasses
149 values
yhonGffUZ1g1RreXDYZq2
maths
mathematical-reasoning
logical-statement
The contrapositive of the following statement, <br/><br/>“If the side of a square doubles, then its area increases four times”, is :
[{"identifier": "A", "content": "If the side of a square is not doubled, then its area does not increase four times."}, {"identifier": "B", "content": "If the area of a square increases four times, then its side is doubled."}, {"identifier": "C", "content": "If the area of a square increases four times, then its side is not doubled."}, {"identifier": "D", "content": "If the area of a square does not increase four times, then its side is not doubled.\n"}]
["D"]
null
Contrapositive of p $$ \to $$ q is $$ \sim $$q $$ \to $$ $$ \sim $$p. <br><br>Here, <br><br>Let <br><br>&nbsp;&nbsp;&nbsp;p = Side of a square is doubles. <br><br>&nbsp;&nbsp;&nbsp;q = Area of square increases four times. <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;$$ \sim $$q $$ \to $$&nbsp;$$ \sim $$p = If the area of a square does not increase four times, then its side is not doubled.
mcq
jee-main-2016-online-10th-april-morning-slot
5pVUlnZkfL3JgxJQQJldg
maths
mathematical-reasoning
logical-statement
Contrapositive of the statement <br/><br/>‘If two numbers are not equal, then their squares are not equal’, is :
[{"identifier": "A", "content": "If the squares of two numbers are equal, then the numbers are equal."}, {"identifier": "B", "content": "If the squares of two numbers are equal, then the numbers are not equal."}, {"identifier": "C", "content": "If the squares of two numbers are not equal, then the numbers are not equal.\n"}, {"identifier": "D", "content": "If the squares of two numbers are not equal, then the numbers are equal."}]
["A"]
null
Let, <br><br>p : two numbers are not equal <br><br>q : squares of two numbers are not equal <br><br>Contrapositive of p $$ \to $$ q is $$ \sim $$q $$ \to $$ $$ \sim $$p. <br><br>$$ \therefore $$ $$ \sim $$q $$ \to $$ $$ \sim $$p means "If the squares of two numbers are equal, then the numbers are equal".
mcq
jee-main-2017-online-9th-april-morning-slot
v9SVtI3nIde0ejoVgeEB0
maths
mathematical-reasoning
logical-statement
Consider the following two statements : <br/><br/><b>Statement p :</b> <br/>The value of sin 120<sup>o</sup> can be derived by taking $$\theta = {240^o}$$ in the equation <br/>2sin$${\theta \over 2} = \sqrt {1 + \sin \theta } - \sqrt {1 - \sin \theta } $$ <br/><br/><b>Statement q :</b> <br/>The angles A, B, C and D of any quadrilateral ABCD satisfy the equation <br/>cos$$\left( {{1 \over 2}\left( {A + C} \right)} \right) + \cos \left( {{1 \over 2}\left( {B + D} \right)} \right) = 0$$ <br/><br/>Then the truth values of p and q are respectively :
[{"identifier": "A", "content": "F, T"}, {"identifier": "B", "content": "T, F"}, {"identifier": "C", "content": "T, T"}, {"identifier": "D", "content": "F, F"}]
["A"]
null
<b>Statement p :</b> <br>sin 120<sup>o</sup> = cos 30<sup>o</sup> = $${{\sqrt 3 } \over 2}$$ $$ \Rightarrow $$ 2 sin 120<sup>o</sup> = $$\sqrt 3 $$ <br><br>So, $$\sqrt {1 + \sin {{240}^o}} - \sqrt {1 - \sin {{240}^o}} $$ <br><br> $$ = \sqrt {{{1 - \sqrt 3 } \over 2}} - \sqrt {{{1 + \sqrt 3 } \over 2}} \ne \sqrt 3 $$ <br><br><b>Statement q :</b> <br>So, &nbsp;&nbsp;A + B + C + D = 2$$\pi $$ <br><br>$$ \Rightarrow $$ $${{A + C} \over 2} + {{B + D} \over 2} = \pi $$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;cos$$\left( {{{A + C} \over 2}} \right) + \cos \left( {{{B + D} \over 2}} \right)$$ <br><br>= cos $$\left( {{{A + C} \over 2}} \right)$$ $$-$$ cos$$\left( {{{A + C} \over 2}} \right) = 0$$ <br><br>Therefore, statement p is false and statement q is true.
mcq
jee-main-2018-online-15th-april-evening-slot
WGPsr0o7H2TKzUFjIMsK9
maths
mathematical-reasoning
logical-statement
Consider the statement : "P(n) : n<sup>2</sup> – n + 41 is prime". Then which one of the following is true ?
[{"identifier": "A", "content": "P(5) is false but P(3) is true"}, {"identifier": "B", "content": "Both P(3) and P(5) are true"}, {"identifier": "C", "content": "P(3) is false but P(5) is true"}, {"identifier": "D", "content": "Both P(3) and P(5) are false"}]
["B"]
null
P(n) : n<sup>2</sup> $$-$$ n + 41 is prime <br><br>P(5) = 61 which is prime <br><br>P(3) = 47 which is also prime
mcq
jee-main-2019-online-10th-january-morning-slot
XGWuG9V4dktxwFEkSEcmf
maths
mathematical-reasoning
logical-statement
Consider the following three statements : <br/><br/>P : 5 is a prime number <br/><br/>Q : 7 is a factor of 192 <br/><br/>R : L.C.M. of 5 and 7 is 35 <br/><br/>Then the truth value of which one of the following statements is true ?
[{"identifier": "A", "content": "(P $$ \\wedge $$ Q) $$ \\vee $$ ($$ \\sim $$ R)"}, {"identifier": "B", "content": "P $$ \\vee $$ ($$ \\sim $$ Q $$ \\wedge $$ R)"}, {"identifier": "C", "content": "(~ P) $$ \\wedge $$ ($$ \\sim $$ Q $$ \\wedge $$ R)"}, {"identifier": "D", "content": "($$ \\sim $$ P) $$ \\vee $$ (Q $$ \\wedge $$ R)"}]
["B"]
null
It is obvious
mcq
jee-main-2019-online-10th-january-evening-slot
oBwMmAnQrawvLlbPhGr5h
maths
mathematical-reasoning
logical-statement
Contrapositive of the statement " If two numbers are not equal, then their squares are not equal." is :
[{"identifier": "A", "content": "If the squares of two numbers are equal, then the numbers are not equal"}, {"identifier": "B", "content": "If the squares of two numbers are equal, then the numbers are equal "}, {"identifier": "C", "content": "If the squares of two numbers are not equal, then the numbers are equal"}, {"identifier": "D", "content": "If the squares of two numbers are not equal, then the numbers are not equal"}]
["B"]
null
Let, <br><br>p : two numbers are not equal <br><br>q : squares of two numbers are not equal <br><br>Contrapositive of p $$ \to $$ q is $$ \sim $$q $$ \to $$ $$ \sim $$p. <br><br>$$ \therefore $$ $$ \sim $$q $$ \to $$ $$ \sim $$p means "If the squares of two numbers are equal, then the numbers are equal".
mcq
jee-main-2019-online-11th-january-evening-slot
lCnssXZcN2ubzefec6xFx
maths
mathematical-reasoning
logical-statement
The contrapositive of the statement "If you are born in India, then you are a citizen of India", is :
[{"identifier": "A", "content": "If you are not a citizen of India, then you are\nnot born in India."}, {"identifier": "B", "content": "If you are born in India, then you are not a\ncitizen of India."}, {"identifier": "C", "content": "If you are a citizen of India, then you are born\nin India."}, {"identifier": "D", "content": "If you are not born in India, then you are not\na citizen of India"}]
["A"]
null
Let p = you are born in India. <br><br>q = you are a citizen of India. <br><br>$$ \therefore $$ $$ \sim $$ p = you are not born in India. <br><br>$$ \sim $$ q = you are not a citizen of India. <br><br>We know Contrapositive of p $$ \to $$ q is ~q $$ \to $$ ~p <br><br>So contrapositive of statement will be : <br><br>“If you are not a citizen of India, then you are not born in India.”
mcq
jee-main-2019-online-8th-april-morning-slot
dA7B1752ytqOXgSd827k9k2k5irgtwi
maths
mathematical-reasoning
logical-statement
Negation of the statement : <br/><br/>$$\sqrt 5 $$ is an integer or 5 is an irrational is :
[{"identifier": "A", "content": "$$\\sqrt 5 $$ is not an integer and 5 is not irrational."}, {"identifier": "B", "content": "$$\\sqrt 5 $$ is irrational or 5 is an integer."}, {"identifier": "C", "content": "$$\\sqrt 5 $$ is an integer and 5 is irrational."}, {"identifier": "D", "content": "$$\\sqrt 5 $$ is not an integer or 5 is not irrational."}]
["A"]
null
p = $$\sqrt 5 $$ is an integer. <br><br>q : 5 is irrational <br><br>$$ \sim $$$$\left( {p \vee q} \right)$$ $$ \equiv $$ $$ \sim $$p $$ \wedge $$ $$ \sim $$q <br><br>= $$\sqrt 5 $$ is not an integer and 5 is not irrational.
mcq
jee-main-2020-online-9th-january-morning-slot
hLzGTd37OiUHlAyvkcjgy2xukg38l1kq
maths
mathematical-reasoning
logical-statement
Consider the statement : <br/>‘‘For an integer n, if n<sup>3</sup> – 1 is even, then n is odd.’’<br/> The contrapositive statement of this statement is :
[{"identifier": "A", "content": "For an integer n, if n is even, then n<sup>3</sup> \u2013 1 is even."}, {"identifier": "B", "content": "For an integer n, if n<sup>3</sup> \u2013 1 is not even, then n is not odd."}, {"identifier": "C", "content": "For an integer n, if n is odd, then n<sup>3</sup> \u2013 1 is even."}, {"identifier": "D", "content": "For an integer n, if n is even, then n<sup>3</sup> \u2013 1 is odd."}]
["D"]
null
Let, p : n<sup>3</sup>–1 is even, <br>q : n is odd <br><br>Contrapositive of p $$ \to $$ q = $$ \sim $$q $$ \to $$ $$ \sim $$p <br><br>$$ \Rightarrow $$ If n is not odd then n<sup>3</sup> – 1 is not even. <br><br>$$ \Rightarrow $$ For an integer n, if n is even, then n<sup>3</sup> – 1 is odd.
mcq
jee-main-2020-online-6th-september-evening-slot
mQhzgCsAFvfKM3rNxDjgy2xukfah5akq
maths
mathematical-reasoning
logical-statement
Contrapositive of the statement :<br/> ‘If a function f is differentiable at a, then it is also continuous at a’, is:
[{"identifier": "A", "content": "If a function f is continuous at a, then it is not differentiable at a."}, {"identifier": "B", "content": "If a function f is not continuous at a, then it is differentiable at a."}, {"identifier": "C", "content": "If a function f is not continuous at a, then it is not differentiable at a.\n"}, {"identifier": "D", "content": "If a function f is continuous at a, then it is differentiable at a."}]
["C"]
null
p = function is differentiable at a <br><br>q = function is continuous at a <br><br>Contrapositive of statements p $$ \to $$ q is <br><br>$$ \sim $$q $$ \to $$ $$ \sim $$p <br><br>$$ \therefore $$ Contrapositive statement is : <br><br> If a function f is not continuous at a, then it is not differentiable at a.
mcq
jee-main-2020-online-4th-september-evening-slot
DnY3UxFkGprb04C8H1jgy2xukewqg1g8
maths
mathematical-reasoning
logical-statement
The contrapositive of the statement <br/>"If I reach the station in time, then I will catch the train" is :
[{"identifier": "A", "content": "If I will catch the train, then I reach the station\nin time."}, {"identifier": "B", "content": "If I do not reach the station in time, then I will\nnot catch the train."}, {"identifier": "C", "content": "If I will not catch the train, then I do not reach\nthe station in time."}, {"identifier": "D", "content": "If I do not reach the station in time, then I will\ncatch the train."}]
["C"]
null
Let p denotes statement <br><br>p : I reach the station in time. <br><br>q : I will catch the train. <br><br>Contrapositive of p $$ \to $$ q is $$ \sim $$q $$ \to $$ $$ \sim $$p <br><br>$$ \sim $$q $$ \to $$ $$ \sim $$p : If I will not catch the train, then I do not reach the station in time.
mcq
jee-main-2020-online-2nd-september-morning-slot
LWR517jHskS2az6BJG1klt77hyt
maths
mathematical-reasoning
logical-statement
The contrapositive of the statement "If you will work, you will earn money" is :
[{"identifier": "A", "content": "If you will not earn money, you will not work"}, {"identifier": "B", "content": "If you will earn money, you will work"}, {"identifier": "C", "content": "You will earn money, if you will not work"}, {"identifier": "D", "content": "To earn money, you need to work"}]
["A"]
null
Contrapositive of p $$ \to $$ q is ~q $$ \to $$ ~p <br><br>p : you will work <br><br>q : you will earn money <br><br>~q : you will not earn money <br><br>~p : you will not work <br><br>$$ \therefore $$ ~q $$ \to $$ ~p : If you will not earn money, you will not work
mcq
jee-main-2021-online-25th-february-evening-slot
1krrp2k1g
maths
mathematical-reasoning
logical-statement
Consider the following three statements :<br/><br/>(A) If 3 + 3 = 7 then 4 + 3 = 8<br/><br/>(B) If 5 + 3 = 8 then earth is flat.<br/><br/>(C) If both (A) and (B) are true then 5 + 6 = 17.<br/><br/>Then, which of the following statements is correct?
[{"identifier": "A", "content": "(A) is false, but (B) and (C) re true"}, {"identifier": "B", "content": "(A) and (C) are true while (B) is false"}, {"identifier": "C", "content": "(A) is true while (B) and (C) are false"}, {"identifier": "D", "content": "(A) and (B) are false while (C) is true"}]
["B"]
null
Truth Table <br><br><style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-baqh{text-align:center;vertical-align:top} </style> <table class="tg"> <thead> <tr> <th class="tg-baqh">P</th> <th class="tg-baqh">q</th> <th class="tg-baqh">P$$ \to $$q</th> </tr> </thead> <tbody> <tr> <td class="tg-baqh">T</td> <td class="tg-baqh">T</td> <td class="tg-baqh">T</td> </tr> <tr> <td class="tg-baqh">T</td> <td class="tg-baqh">F</td> <td class="tg-baqh">F</td> </tr> <tr> <td class="tg-baqh">F</td> <td class="tg-baqh">T</td> <td class="tg-baqh">T</td> </tr> <tr> <td class="tg-baqh">F</td> <td class="tg-baqh">F</td> <td class="tg-baqh">T</td> </tr> </tbody> </table>
mcq
jee-main-2021-online-20th-july-evening-shift
1kryepvv0
maths
mathematical-reasoning
logical-statement
Which of the following is the negation of the statement "for all M &gt; 0, there exists x$$\in$$S such that x $$\ge$$ M" ?
[{"identifier": "A", "content": "there exists M &gt; 0, such that x &lt; M for all x$$\\in$$S"}, {"identifier": "B", "content": "there exists M &gt; 0, there exists x$$\\in$$S such that x $$\\ge$$ M"}, {"identifier": "C", "content": "there exists M &gt; 0, there exists x$$\\in$$S such that x &lt; M"}, {"identifier": "D", "content": "there exists M &gt; 0, such that x $$\\ge$$ M for all x$$\\in$$S"}]
["A"]
null
P : for all M &gt; 0, there exists x$$\in$$S such that x $$\ge$$ M.<br><br>$$ \sim $$ P : there exists M &gt; 0, for all x$$\in$$S<br><br>Such that x &lt; M<br><br>Negation of 'there exists' is 'for all'.
mcq
jee-main-2021-online-27th-july-evening-shift
1krzlvswd
maths
mathematical-reasoning
logical-statement
Consider the statement "The match will be played only if the weather is good and ground is not wet". Select the correct negation from the following :
[{"identifier": "A", "content": "The match will not be played and weather is not good and ground is wet."}, {"identifier": "B", "content": "If the match will not be played, then either weather is not good or ground is wet."}, {"identifier": "C", "content": "The match will be played and weather is not good or ground is wet."}, {"identifier": "D", "content": "The match will not be played or weather is good and ground is not wet."}]
["C"]
null
p : weather is good<br><br>q : ground is not wet<br><br>$$\sim$$ (p $$ \wedge $$ q) $$ \equiv $$ $$\sim$$ p $$ \vee $$ $$\sim$$ q<br><br>$$\equiv$$ weather is not good or ground is wet
mcq
jee-main-2021-online-25th-july-evening-shift
1l5baqdkw
maths
mathematical-reasoning
logical-statement
<p>Consider the following statements:</p> <p>A : Rishi is a judge.</p> <p>B : Rishi is honest.</p> <p>C : Rishi is not arrogant.</p> <p>The negation of the statement "if Rishi is a judge and he is not arrogant, then he is honest" is</p>
[{"identifier": "A", "content": "B $$\\to$$ (A $$\\vee$$ C)"}, {"identifier": "B", "content": "($$\\sim$$B) $$\\wedge$$ (A $$\\wedge$$ C)"}, {"identifier": "C", "content": "B $$\\to$$ (($$\\sim$$A) $$\\vee$$ ($$\\sim$$C))"}, {"identifier": "D", "content": "B $$\\to$$ (A $$\\wedge$$ C)"}]
["B"]
null
<p>$$\because$$ Given statement is</p> <p>(A $$\wedge$$ C) $$\to$$ B</p> <p>Then its negation is</p> <p>$$\sim$$ {(A $$\wedge$$ C) $$\to$$ B}</p> <p>or $$\sim$$ {$$\sim$$ (A $$\wedge$$ C) $$\vee$$ B}</p> <p>$$\therefore$$ (A $$\wedge$$ C) $$\wedge$$ ($$\sim$$ B)</p> <p>or ($$\sim$$ B) $$\wedge$$ (A $$\wedge$$ C)</p>
mcq
jee-main-2022-online-24th-june-evening-shift
1l6f32pyv
maths
mathematical-reasoning
logical-statement
<p>Consider the following statements:</p> <p>P : Ramu is intelligent.</p> <p>Q : Ramu is rich.</p> <p>R : Ramu is not honest.</p> <p>The negation of the statement "Ramu is intelligent and honest if and only if Ramu is not rich" can be expressed as:</p>
[{"identifier": "A", "content": "$$((P \\wedge(\\sim R)) \\wedge Q) \\wedge((\\sim Q) \\wedge((\\sim P) \\vee R))$$"}, {"identifier": "B", "content": "$$((P \\wedge R) \\wedge Q) \\vee((\\sim Q) \\wedge((\\sim P) \\vee(\\sim R)))$$"}, {"identifier": "C", "content": "$$((P \\wedge R) \\wedge Q) \\wedge((\\sim Q) \\wedge((\\sim P) \\vee(\\sim R)))$$"}, {"identifier": "D", "content": "$$((P \\wedge(\\sim R)) \\wedge Q) \\vee((\\sim Q) \\wedge((\\sim P) \\vee R))$$"}]
["D"]
null
<p>P : Ramu is intelligent</p> <p>Q : Ramu is rich</p> <p>R : Ramu is not honest</p> <p>Given statement, "Ramu is intelligent and honest if and only if Ramu is not rich"</p> <p>$$ = (P \wedge \sim R) \Leftrightarrow \, \sim Q$$</p> <p>So, negation of the statement is</p> <p>$$ \sim [(P \wedge \sim R) \Leftrightarrow \, \sim Q]$$</p> <p>$$ = \sim [\{ \sim (P \wedge \sim R) \vee \, \sim Q\} \wedge \{ Q \vee (P \wedge \sim R)\} ]$$</p> <p>$$ = ((P \wedge \sim R) \wedge Q) \vee ( \sim Q \wedge ( \sim P \vee R))$$</p>
mcq
jee-main-2022-online-25th-july-evening-shift
1l6notty1
maths
mathematical-reasoning
logical-statement
<p>Let</p> <p>$$\mathrm{p}$$ : Ramesh listens to music.</p> <p>$$\mathrm{q}$$ : Ramesh is out of his village.</p> <p>$$\mathrm{r}$$ : It is Sunday.</p> <p>$$\mathrm{s}$$ : It is Saturday.</p> <p>Then the statement "Ramesh listens to music only if he is in his village and it is Sunday or Saturday" can be expressed as</p>
[{"identifier": "A", "content": "$$((\\sim q) \\wedge(r \\vee s)) \\Rightarrow p$$"}, {"identifier": "B", "content": "$$(\\mathrm{q} \\wedge(\\mathrm{r} \\vee \\mathrm{s})) \\Rightarrow \\mathrm{p}$$"}, {"identifier": "C", "content": "$$p \\Rightarrow(q \\wedge(r \\vee s))$$"}, {"identifier": "D", "content": "$$\\mathrm{p} \\Rightarrow((\\sim \\mathrm{q}) \\wedge(\\mathrm{r} \\vee \\mathrm{s}))$$"}]
["D"]
null
<p>p : Ramesh listens to music</p> <p>q : Ramesh is out of his village</p> <p>r : It is Sunday</p> <p>s : It is Saturday</p> <p>p $$\to$$ q conveys the same p only if q</p> <p>Statement "Ramesh listens to music only if he is in his village and it is Sunday or Saturday"</p> <p>$$p \Rightarrow (( \sim \,q)\, \wedge \,(r\, \vee \,s))$$</p>
mcq
jee-main-2022-online-28th-july-evening-shift
ldqvxf4d
maths
mathematical-reasoning
logical-statement
<p>Consider the following statements:</p> <p>P : I have fever</p> <p>Q: I will not take medicine</p> <p>$\mathrm{R}$ : I will take rest.</p> <p>The statement "If I have fever, then I will take medicine and I will take rest" is equivalent to :</p>
[{"identifier": "A", "content": "$((\\sim P) \\vee \\sim Q) \\wedge((\\sim P) \\vee \\sim R)$"}, {"identifier": "B", "content": "$(P \\vee \\sim Q) \\wedge(P \\vee \\sim R)$"}, {"identifier": "C", "content": "$((\\sim P) \\vee \\sim Q) \\wedge((\\sim P) \\vee R)$"}, {"identifier": "D", "content": "$(P \\vee Q) \\wedge((\\sim P) \\vee R)$"}]
["C"]
null
<p>The given expression is</p> <p>$$P \to \sim Q \wedge R$$</p> <p>$$ \equiv ( \sim P) \vee ( \sim Q \wedge R)$$</p> <p>$$ \equiv ( \sim P \vee \sim Q) \wedge ( \sim P \vee R)$$</p>
mcq
jee-main-2023-online-30th-january-evening-shift
1lguwsge5
maths
mathematical-reasoning
logical-statement
<p>The number of ordered triplets of the truth values of $$p, q$$ and $$r$$ such that the truth value of the statement $$(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$$ is True, is equal to ___________.</p>
[]
null
7
$$ \begin{array}{|c|c|c|c|c|c|c|c|} \hline \boldsymbol{p} & \boldsymbol{q} & \boldsymbol{r} & \boldsymbol{p} \vee \boldsymbol{q} & \boldsymbol{p} \vee \boldsymbol{r} & \begin{array}{c} (\boldsymbol{p} \vee \boldsymbol{q}) \wedge \\ (\boldsymbol{p} \vee \boldsymbol{r}) \end{array} & \boldsymbol{q} \vee \boldsymbol{r} & \begin{array}{c} (\boldsymbol{p} \vee \boldsymbol{q}) \wedge(\boldsymbol{p} \vee \boldsymbol{r}) \\ \Rightarrow(\boldsymbol{q} \vee \boldsymbol{r}) \end{array} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \end{array} $$ <br/><br/>Hence, the total number of ordered triplets are 7.
integer
jee-main-2023-online-11th-april-morning-shift
QFyqBI1sBBGMrWsu
maths
matrices-and-determinants
adjoint-of-a-matrix
If $$A = \left[ {\matrix{ {5a} &amp; { - b} \cr 3 &amp; 2 \cr } } \right]$$ and $$A$$ adj $$A=A$$ $${A^T},$$ then $$5a+b$$ is equal to :
[{"identifier": "A", "content": "$$4$$ "}, {"identifier": "B", "content": "$$13$$"}, {"identifier": "C", "content": "$$-1$$ "}, {"identifier": "D", "content": "$$5$$"}]
["D"]
null
$$A\left( {Adj\,\,A} \right) = A\,{A^T}$$ <br><br>$$ \Rightarrow {A^{ - 1}}A\left( {adj\,\,A} \right) = {A^{ - 1}}A\,{A^T}$$ <br><br>$$Adj\,\,A = {A^T}$$ <br><br>$$ \Rightarrow \left[ {\matrix{ 2 &amp; b \cr { - 3} &amp; {5a} \cr } } \right] = \left[ {\matrix{ {5a} &amp; 3 \cr { - b} &amp; 2 \cr } } \right]$$ <br><br>$$ \Rightarrow a = {2 \over 5}\,\,$$ and $$\,\,b = 3$$ <br><br>$$ \Rightarrow 5a + b = 5$$
mcq
jee-main-2016-offline
2bwNHWvvDdm8rsiP
maths
matrices-and-determinants
adjoint-of-a-matrix
If $$A = \left[ {\matrix{ 2 &amp; { - 3} \cr { - 4} &amp; 1 \cr } } \right]$$, <br/><br/>then adj(3A<sup>2</sup> + 12A) is equal to
[{"identifier": "A", "content": "$$\\left[ {\\matrix{\n {51} &amp; {63} \\cr \n {84} &amp; {72} \\cr \n\n } } \\right]$$"}, {"identifier": "B", "content": "$$\\left[ {\\matrix{\n {51} &amp; {84} \\cr \n {63} &amp; {72} \\cr \n\n } } \\right]$$"}, {"identifier": "C", "content": "$$\\left[ {\\matrix{\n {72} &amp; {-63} \\cr \n {-84} &amp; {51} \\cr \n\n } } \\right]$$"}, {"identifier": "D", "content": "$$\\left[ {\\matrix{\n {72} &amp; {-84} \\cr \n {-63} &amp; {51} \\cr \n\n } } \\right]$$"}]
["A"]
null
We have, $$A = \left[ {\matrix{ 2 &amp; { - 3} \cr { - 4} &amp; 1 \cr } } \right]$$ <br><br>$$ \therefore $$ A<sup>2</sup> = A.A = $$\left[ {\matrix{ 2 &amp; { - 3} \cr { - 4} &amp; 1 \cr } } \right]\left[ {\matrix{ 2 &amp; { - 3} \cr { - 4} &amp; 1 \cr } } \right]$$ <br><br>= $$\left[ {\matrix{ {4 + 12} &amp; { - 6 - 3} \cr { - 8 - 4} &amp; {12 + 1} \cr } } \right]$$ <br><br>= $$\left[ {\matrix{ {16} &amp; { - 9} \cr { - 12} &amp; {13} \cr } } \right]$$ <br><br>Now, 3A<sup>2</sup> + 12A <br><br>= $$3\left[ {\matrix{ {16} &amp; { - 9} \cr { - 12} &amp; {13} \cr } } \right] + 12\left[ {\matrix{ 2 &amp; { - 3} \cr { - 4} &amp; 1 \cr } } \right]$$ <br><br>= $$\left[ {\matrix{ {48} &amp; { - 27} \cr { - 36} &amp; {39} \cr } } \right] + \left[ {\matrix{ {24} &amp; { - 36} \cr { - 48} &amp; {12} \cr } } \right]$$ <br><br>= $$\left[ {\matrix{ {72} &amp; { - 63} \cr { - 84} &amp; {51} \cr } } \right]$$ <br><br>$$ \therefore $$ adj(3A<sup>2</sup> + 12A) = $$\left[ {\matrix{ {51} &amp; {63} \cr {84} &amp; {72} \cr } } \right]$$
mcq
jee-main-2017-offline
8yFgTFWWqZrfjWfpecKpP
maths
matrices-and-determinants
adjoint-of-a-matrix
Let A be any 3 $$ \times $$ 3 invertible matrix. Then which one of the following is <b>not</b> always true ?
[{"identifier": "A", "content": "adj (A) = $$\\left| \\right.$$A$$\\left| \\right.$$.A<sup>$$-$$1</sup>"}, {"identifier": "B", "content": "adj (adj(A)) = $$\\left| \\right.$$A$$\\left| \\right.$$.A"}, {"identifier": "C", "content": "adj (adj(A)) = $$\\left| \\right.$$A$$\\left| \\right.$$<sup>2</sup>.(adj(A))<sup>$$-$$1</sup> "}, {"identifier": "D", "content": "adj (adj(A)) = $$\\left| \\, \\right.$$A $$\\left| \\, \\right.$$.(adj(A))<sup>$$-$$1</sup>"}]
["D"]
null
We know, the formula <br><br>A<sup>-1</sup> = $${{adj\left( A \right)} \over {\left| A \right|}}$$ <br><br>$$ \therefore $$ adj (A) = $$\left| \right.$$A$$\left| \right.$$.A<sup>$$-$$1</sup> <br><br><b>So, Option (A) is true.</b> <br><br>We know, the formula <br><br>adj (adj (A)) = $${\left| A \right|^{n - 2}}.A$$ <br><br>Now if we put n = 3 as given that A is a 3 $$ \times $$ 3 matrix, we get <br><br>adj (adj (A)) = $${\left| A \right|^{3 - 2}}.A$$ = $$\left| A \right|.A$$ <br><br><b>So, Option (B) is also true.</b> <br><br>We know, the formula <br><br>adj (adj (A)) = $${\left| A \right|^{n - 1}}{\left( {adj\left( A \right)} \right)^{ - 1}}$$ <br><br>Now if we put n = 3 as given that A is a 3 $$ \times $$ 3 matrix, we get <br><br>adj (adj (A)) = $${\left| A \right|^{3 - 1}}{\left( {adj\left( A \right)} \right)^{ - 1}}$$ = $${\left| A \right|^{2}}{\left( {adj\left( A \right)} \right)^{ - 1}}$$ <br><br><b>So, Option (C) is also true.</b> <br><br>Now in this formula <br><br>adj (adj (A)) = $${\left| A \right|^{n - 1}}{\left( {adj\left( A \right)} \right)^{ - 1}}$$ <br><br>if we put n = 2, we get <br><br>adj (adj (A)) = $${\left| A \right|^{2 - 1}}{\left( {adj\left( A \right)} \right)^{ - 1}}$$ = $${\left| A \right|}{\left( {adj\left( A \right)} \right)^{ - 1}}$$ <br><br>But as A is a 3 $$ \times $$ 3 matrix so we can not take n = 2, so we can say for a 3 $$ \times $$ 3 matrix option (D) is not true. <br><br><b>So, Option (D) is false.</b>
mcq
jee-main-2017-online-8th-april-morning-slot
1lgpy4kyx
maths
matrices-and-determinants
adjoint-of-a-matrix
<p>Let $$B=\left[\begin{array}{lll}1 &amp; 3 &amp; \alpha \\ 1 &amp; 2 &amp; 3 \\ \alpha &amp; \alpha &amp; 4\end{array}\right], \alpha &gt; 2$$ be the adjoint of a matrix $$A$$ and $$|A|=2$$. Then $$\left[\begin{array}{ccc}\alpha &amp; -2 \alpha &amp; \alpha\end{array}\right] B\left[\begin{array}{c}\alpha \\ -2 \alpha \\ \alpha\end{array}\right]$$ is equal to :</p>
[{"identifier": "A", "content": "32"}, {"identifier": "B", "content": "$$-$$16"}, {"identifier": "C", "content": "0"}, {"identifier": "D", "content": "16"}]
["B"]
null
$$ B=\left[\begin{array}{lll} 1 & 3 & \alpha \\ 1 & 2 & 3 \\ \alpha & \alpha & 4 \end{array}\right], \alpha>2 $$ <br/><br/>And $\operatorname{adj}(A)=B,|A|=2$ <br/><br/>$$ \begin{aligned} & \Rightarrow|\operatorname{adj}(A)|=|B| \\\\ & \Rightarrow 2^2=(8-3 \alpha)-3(4-3 \alpha)+\alpha(-\alpha) \\\\ & \Rightarrow \alpha^2-6 \alpha+8=0 \end{aligned} $$ <br/><br/>$$ \begin{aligned} \Rightarrow & (\alpha-4)(\alpha-2)=0 \\\\ & \alpha=4,2 \text { but } \alpha>2 \text { so } \alpha=4 \end{aligned} $$ <br/><br/>Now <br/><br/>$$ \begin{aligned} & {\left[\begin{array}{ccc}\alpha & -2 \alpha & \alpha\end{array}\right] B\left[\begin{array}{c} \alpha \\ -2 \alpha \\ \alpha \end{array}\right]=\left[\begin{array}{lll} 4-8 & 4 \end{array}\right]\left[\begin{array}{lll} 1 & 3 & 4 \\ 1 & 2 & 3 \\ 4 & 4 & 4 \end{array}\right]\left[\begin{array}{c} 4 \\ -8 \\ 4 \end{array}\right]} \\\\ & =\left[\begin{array}{lll} 12 & 12 & 8 \end{array}\right]\left[\begin{array}{c} 4 \\ -8 \\ 4 \end{array}\right] \\\\ & = {48-96+32=-16} \end{aligned} $$
mcq
jee-main-2023-online-13th-april-morning-shift
1lgzxiiqh
maths
matrices-and-determinants
adjoint-of-a-matrix
<p>Let $$A=\left[\begin{array}{ccc}2 &amp; 1 &amp; 0 \\ 1 &amp; 2 &amp; -1 \\ 0 &amp; -1 &amp; 2\end{array}\right]$$. If $$|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} 2 A))|=(16)^{n}$$, then $$n$$ is equal to :</p>
[{"identifier": "A", "content": "9"}, {"identifier": "B", "content": "8"}, {"identifier": "C", "content": "10"}, {"identifier": "D", "content": "12"}]
["C"]
null
We have, <br/><br/>$$ \begin{aligned} & |\mathrm{A}|=\left|\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{array}\right|=2(4-1)-1(2-0)+0 \\\\ & =6-2=4 \\\\ & \text { So, }|2 \mathrm{~A}|=2^3|\mathrm{~A}|=8 \times 4=32 \\\\ & \text { Now, }|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} 2 \mathrm{~A}))|=|2 \mathrm{~A}|^{(n-1)^3} \\\\ & =(32)^{2^3}=32^8 \\\\ & \Rightarrow 16^n=(32)^8=2^8 \times 16^8 \\\\ & \Rightarrow 16^n=16^{2+8} \Rightarrow n=10 \end{aligned} $$ <br/><br/><b>Concepts :</b> <br/><br/>(a) $|k \mathrm{~A}|=k^n|\mathrm{~A}|$ <br/><br/>(b) $|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{n-1}$
mcq
jee-main-2023-online-8th-april-morning-shift
jaoe38c1lsd58dpi
maths
matrices-and-determinants
adjoint-of-a-matrix
<p>Let A be a $$3 \times 3$$ matrix and $$\operatorname{det}(A)=2$$. If $$n=\operatorname{det}(\underbrace{\operatorname{adj}(\operatorname{adj}(\ldots . .(\operatorname{adj} A))}_{2024-\text { times }}))$$, then the remainder when $$n$$ is divided by 9 is equal to __________.</p>
[]
null
7
<p>$$\begin{aligned} & |\mathrm{A}|=2 \\ & \underbrace{\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \ldots . .(\mathrm{a})))}_{2024 \text { times }}=|\mathrm{A}|^{(\mathrm{n}-1)^{2024}} \\ & =|\mathrm{A}|^{2024} \\ & =2^{2^{2024}} \end{aligned}$$</p> <p>$$\begin{aligned} & 2^{2024}=\left(2^2\right) 2^{2022}=4(8)^{674}=4(9-1)^{674} \\ & \Rightarrow 2^{2024} \equiv 4(\bmod 9) \\ & \Rightarrow 2^{2024} \equiv 9 \mathrm{~m}+4, \mathrm{~m} \leftarrow \text { even } \\ & 2^{9 \mathrm{~m}+4} \equiv 16 \cdot\left(2^3\right)^{3 \mathrm{~m}} \equiv 16(\bmod 9) \\ & \quad \equiv 7 \end{aligned}$$</p>
integer
jee-main-2024-online-31st-january-evening-shift
luy9cloc
maths
matrices-and-determinants
adjoint-of-a-matrix
<p>Let $$A$$ be a non-singular matrix of order 3. If $$\operatorname{det}(3 \operatorname{adj}(2 \operatorname{adj}((\operatorname{det} A) A)))=3^{-13} \cdot 2^{-10}$$ and $$\operatorname{det}(3\operatorname{adj}(2 \mathrm{A}))=2^{\mathrm{m}} \cdot 3^{\mathrm{n}}$$, then $$|3 \mathrm{~m}+2 \mathrm{n}|$$ is equal to _________.</p>
[]
null
14
<p>$$|\operatorname{adj}(2 \operatorname{adj}(|A| A))|=3^{-13} \cdot 2^{-10}$$</p> <p>Let $$|A| A=B \Rightarrow|B|=\| A|A|=|A|^3|A|=|A|^4$$</p> <p>$$\begin{aligned} \Rightarrow \quad & \operatorname{adj}(|A| A)=(\operatorname{adj} B) \\ \Rightarrow \quad & 2 \operatorname{adj}(|A| A)=(2 \operatorname{adj} B)=C \text { (say) } \\ & |\operatorname{3adj}(C)|=3^3 \cdot|C|^2 \end{aligned}$$</p> <p>$$\begin{aligned} & |C|=|(2 \operatorname{adj} B)|=2^3|B|^2=2^3 \cdot\left|A^4\right|^2=2^3 \cdot|A|^8 \\ & \Rightarrow|\operatorname{3adj} C|=3^3 \cdot\left(2^3|A|^8\right)^2=3^{-13} \cdot 2^{-10} \\ & \quad=2^6|A|^{16}=3^{-16} \cdot 2^{-10} \\ & \Rightarrow|A|^{16}=(3 \cdot 2)^{-16}=\left(\frac{1}{6}\right)^{16} \\ & \Rightarrow|A|= \pm \frac{1}{6} \end{aligned}$$</p> <p>$$\begin{array}{r} \mid \text { 3adj }\left.2 A\left|=3^3\right| 2 A\right|^2=3^3 \cdot\left(2^3|A|\right)^2=3^3 \cdot 2^6|A|^2 \\ =3^3 \cdot 2^6 \cdot \frac{1}{36}=\frac{27 \times 64}{36}=48 \end{array}$$</p> <p>$$ \begin{aligned} & \Rightarrow 2^m \cdot 3^n=2^4 \cdot 3^1 \Rightarrow m=4 \\ & \qquad n=1 \\ & \Rightarrow|3 \times 4+2 \times 1|=14 \\ \end{aligned}$$</p>
integer
jee-main-2024-online-9th-april-morning-shift
lv0vxbzn
maths
matrices-and-determinants
adjoint-of-a-matrix
<p>Let $$\alpha \in(0, \infty)$$ and $$A=\left[\begin{array}{lll}1 &amp; 2 &amp; \alpha \\ 1 &amp; 0 &amp; 1 \\ 0 &amp; 1 &amp; 2\end{array}\right]$$. If $$\operatorname{det}\left(\operatorname{adj}\left(2 A-A^T\right) \cdot \operatorname{adj}\left(A-2 A^T\right)\right)=2^8$$, then $$(\operatorname{det}(A))^2$$ is equal to:</p>
[{"identifier": "A", "content": "16"}, {"identifier": "B", "content": "36"}, {"identifier": "C", "content": "49"}, {"identifier": "D", "content": "1"}]
["A"]
null
<p>$$\begin{aligned} & \left|\operatorname{adj}\left(A-2 A^T\right) \cdot \operatorname{adj}\left(2 A-A^T\right)\right|=2^8 \\ & P=A-2 A^{\top} \\ & Q=2 A^T-A \Rightarrow Q^T=2 A^T-A=-P \\ & |\operatorname{adj}(P) \operatorname{adj}(Q)| \Rightarrow|P Q|=-2^4 \\ & \Rightarrow|P|(-|P|)=-2^4 \Rightarrow|P|=4 \text { and }|Q|=-4 \\ & \left|A-2 A^T\right|=4 \\ & A-2 A^T=\left[\begin{array}{lll} 1 & 2 & \alpha \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{array}\right]-2\left[\begin{array}{lll} 1 & 1 & 0 \\ 2 & 0 & 1 \\ \alpha & 1 & 2 \end{array}\right]=\left[\begin{array}{ccc} -1 & 0 & \alpha \\ -3 & 0 & -1 \\ -2 \alpha & -1 & -2 \end{array}\right] \\ & \Rightarrow\left|A-2 A^T\right|=1+3 \alpha=4 \Rightarrow \alpha=1 \Rightarrow|A|=-4 \\ & \Rightarrow|A|^2=16 \end{aligned}$$</p>
mcq
jee-main-2024-online-4th-april-morning-shift
lv2eryn4
maths
matrices-and-determinants
adjoint-of-a-matrix
<p>Let $$A=\left[\begin{array}{ll}1 &amp; 2 \\ 0 &amp; 1\end{array}\right]$$ and $$B=I+\operatorname{adj}(A)+(\operatorname{adj} A)^2+\ldots+(\operatorname{adj} A)^{10}$$. Then, the sum of all the elements of the matrix $$B$$ is:</p>
[{"identifier": "A", "content": "$$-$$110"}, {"identifier": "B", "content": "22"}, {"identifier": "C", "content": "$$-$$124"}, {"identifier": "D", "content": "$$-$$88"}]
["D"]
null
<p>$$\begin{aligned} & \operatorname{adj}(A)=\left[\begin{array}{ll} 1 & -2 \\ 0 & 1 \end{array}\right] \\ & (\operatorname{adj} A)^2=\left[\begin{array}{ll} 1 & -4 \\ 0 & 1 \end{array}\right] \\ & (\operatorname{adj} A)^3=\left[\begin{array}{cc} 1 & -6 \\ 0 & 1 \end{array}\right] \\ & (\operatorname{adj} A)^4=\left[\begin{array}{cc} 1 & -8 \\ 0 & 1 \end{array}\right] \\ & (\operatorname{adj} A)^r=\left[\begin{array}{cc} 1 & (-2 r) \\ 0 & 1 \end{array}\right] \end{aligned}$$</p> <p>$$\begin{aligned} & B=\sum_{r=0}^{10}(\operatorname{adj} A)^r=\left[\begin{array}{ll} \sum_\limits{r=0}^{10} 1 & \sum_\limits{r=0}^{10}(-2 r) \\ \sum_\limits{r=0}^{10}(0) & \sum_\limits{r=0}^{10}(1) \end{array}\right] \\ & B=\left[\begin{array}{cc} 11 & -110 \\ 0 & 11 \end{array}\right] \end{aligned}$$</p> <p>$$\text { Sum of elements }=-110+11+11=-88$$</p>
mcq
jee-main-2024-online-4th-april-evening-shift
lv9s20az
maths
matrices-and-determinants
adjoint-of-a-matrix
<p>Let $$\alpha \beta \neq 0$$ and $$A=\left[\begin{array}{rrr}\beta &amp; \alpha &amp; 3 \\ \alpha &amp; \alpha &amp; \beta \\ -\beta &amp; \alpha &amp; 2 \alpha\end{array}\right]$$. If $$B=\left[\begin{array}{rrr}3 \alpha &amp; -9 &amp; 3 \alpha \\ -\alpha &amp; 7 &amp; -2 \alpha \\ -2 \alpha &amp; 5 &amp; -2 \beta\end{array}\right]$$ is the matrix of cofactors of the elements of $$A$$, then $$\operatorname{det}(A B)$$ is equal to :</p>
[{"identifier": "A", "content": "64"}, {"identifier": "B", "content": "343"}, {"identifier": "C", "content": "125"}, {"identifier": "D", "content": "216"}]
["D"]
null
<p>$$A=\left[\begin{array}{ccc} \beta & \alpha & 3 \\ \alpha & \alpha & \beta \\ -\beta & \alpha & 2 \alpha \end{array}\right], B=\left[\begin{array}{ccc} 3 \alpha & -9 & 3 \alpha \\ -\alpha & 7 & -2 \alpha \\ -2 \alpha & 5 & -2 \beta \end{array}\right]$$</p> <p>Cofactor of $$A$$-matrix is</p> <p>$$=\left[\begin{array}{ccc} 2 \alpha^2-\alpha \beta & -\left(2 \alpha^2+\beta^2\right) & \alpha^2+\alpha \beta \\ -\left(2 \alpha^2-3 \alpha\right) & (2 \alpha \beta+3 \beta) & -(2 \alpha \beta) \\ \alpha \beta-3 \alpha & -\left(\beta^2-3 \alpha\right) & \beta \alpha-\alpha^2 \end{array}\right]$$</p> <p>which is equal to matrix $$B$$</p> <p>So, by comparing elements of two matrix</p> <p>$$\begin{aligned} & \Rightarrow \alpha \beta-3 \alpha=-2 \alpha \\ & \Rightarrow \alpha \beta-\alpha=0 \\ & \Rightarrow \alpha(\beta-1)=0 \\ & \Rightarrow \alpha=0 \text { or } \beta=1[\because \alpha \text { cannot be } 0] \\ & \Rightarrow \beta=1 \\ & \text { and }-\beta^2+3 \alpha=5 \\ & \Rightarrow 3 \alpha=6 \\ & \Rightarrow \alpha=2 \\ & A=\left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 2 & 1 \\ -1 & 2 & 4 \end{array}\right] \\ & \operatorname{Det}(A B)=|A||B|=|A|\left|(\operatorname{adj} A)^{\top}\right| \\ & =|A| \cdot|A|^2 \\ & =|A|^3 \\ & =(6-18+18)^3 \\ & =6^3 \\ & =216 \\ \end{aligned}$$</p>
mcq
jee-main-2024-online-5th-april-evening-shift
lvb294f8
maths
matrices-and-determinants
adjoint-of-a-matrix
<p>If $$A$$ is a square matrix of order 3 such that $$\operatorname{det}(A)=3$$ and $$\operatorname{det}\left(\operatorname{adj}\left(-4 \operatorname{adj}\left(-3 \operatorname{adj}\left(3 \operatorname{adj}\left((2 \mathrm{~A})^{-1}\right)\right)\right)\right)\right)=2^{\mathrm{m}} 3^{\mathrm{n}}$$, then $$\mathrm{m}+2 \mathrm{n}$$ is equal to :</p>
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "6"}]
["B"]
null
<p>$$\begin{aligned} & |A|=3 \\ & \left|\operatorname{adj}\left(-4 \operatorname{adj}\left(-3 \operatorname{adj}\left(3 \operatorname{adj}(2 A)^{-1}\right)\right)\right)\right| \\ & =\left|-4 \operatorname{adj}\left(-3 \operatorname{adj}\left(3 \operatorname{adj}\left((2 A)^{-1}\right)\right)\right)\right|^2 \end{aligned}$$</p> <p>$$\begin{aligned} & =4^6\left|-3 \operatorname{adj}\left(\operatorname{aadj}\left((2 A)^{-1}\right)\right)\right|^4 \\ & =4^6 \cdot 3^{12}\left|\operatorname{aadj}\left((2 A)^{-1}\right)\right|^8 \\ & =4^6 \cdot 3^{12} \cdot 3^{24}\left|(2 A)^{-1}\right|^{16} \\ & =4^6 \cdot 3^{36} 2^{-48}\left|A^{-1}\right|^{16} \\ & =\frac{2^{-36} 3^{36}}{3^{16}}=2^{-36} 3^{20} \\ & m=-36 \\ & n=20 \\ & m+2 n=4 \end{aligned}$$</p>
mcq
jee-main-2024-online-6th-april-evening-shift
vLYN6IboT26J7IDy
maths
matrices-and-determinants
basic-of-matrix
The number of $$3 \times 3$$ non-singular matrices, with four entries as $$1$$ and all other entries as $$0$$, is :
[{"identifier": "A", "content": "$$5$$ "}, {"identifier": "B", "content": "$$6$$ "}, {"identifier": "C", "content": "at least $$7$$ "}, {"identifier": "D", "content": "less than $$4$$ "}]
["C"]
null
$$\left[ {\matrix{ 1 &amp; {...} &amp; {...} \cr {...} &amp; 1 &amp; {...} \cr {...} &amp; {...} &amp; 1 \cr } } \right]\,\,$$ are $$6$$ non-singular matrices because $$6$$ <br><br>blanks will be filled by $$5$$ zeros and $$1$$ one. <br><br>Similarly, $$\left[ {\matrix{ {...} &amp; {...} &amp; 1 \cr {...} &amp; 1 &amp; {...} \cr 1 &amp; {...} &amp; {...} \cr } } \right]\,\,$$ are $$6$$ non-singular matrices. <br><br>So, required cases are more than $$7,$$ non-singular $$3 \times 3$$ matrices.
mcq
aieee-2010
1l6f3ahmk
maths
matrices-and-determinants
basic-of-matrix
<p>Let $$A=\left[\begin{array}{lll} 1 &amp; a &amp; a \\ 0 &amp; 1 &amp; b \\ 0 &amp; 0 &amp; 1 \end{array}\right], a, b \in \mathbb{R}$$. If for some <br/><br/>$$n \in \mathbb{N}, A^{n}=\left[\begin{array}{ccc} 1 &amp; 48 &amp; 2160 \\ 0 &amp; 1 &amp; 96 \\ 0 &amp; 0 &amp; 1 \end{array}\right] $$ then $$n+a+b$$ is equal to ____________.</p>
[]
null
24
<p>$$A = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right] + \left[ {\matrix{ 0 & a & a \cr 0 & 0 & b \cr 0 & 0 & 0 \cr } } \right] = I + B$$</p> <p>$${B^2} = \left[ {\matrix{ 0 & a & a \cr 0 & 0 & b \cr 0 & 0 & 0 \cr } } \right] + \left[ {\matrix{ 0 & a & a \cr 0 & 0 & b \cr 0 & 0 & 0 \cr } } \right] = \left[ {\matrix{ 0 & 0 & {ab} \cr 0 & 0 & 0 \cr 0 & 0 & 0 \cr } } \right]$$</p> <p>$${B^3} = 0$$</p> <p>$$\therefore$$ $${A^n} = {(1 + B)^n} = {}^n{C_0}I + {}^n{C_1}B + {}^n{C_2}{B^2} + {}^n{C_3}{B^3} + \,\,....$$</p> <p>$$ = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right] + \left[ {\matrix{ 0 & {na} & {na} \cr 0 & 0 & {nb} \cr 0 & 0 & 0 \cr } } \right] + \left[ {\matrix{ 0 & 0 & {{{n(n - 1)ab} \over 2}} \cr 0 & 0 & 0 \cr 0 & 0 & 0 \cr } } \right]$$</p> <p>$$ = \left[ {\matrix{ 1 & {na} & {na + {{n(n - 1)} \over 2}ab} \cr 0 & 1 & {nb} \cr 0 & 0 & 1 \cr } } \right] = \left[ {\matrix{ 1 & {48} & {2160} \cr 0 & 1 & {48} \cr 0 & 0 & 1 \cr } } \right]$$</p> <p>On comparing we get $$na = 48$$, $$nb = 96$$ and</p> <p>$$na + {{n(n - 1)} \over 2}ab = 2160$$</p> <p>$$ \Rightarrow a = 4,n = 12$$ and $$b = 8$$</p> <p>$$n + a + b = 24$$</p>
integer
jee-main-2022-online-25th-july-evening-shift
Ame1VqiXGsSrDpFU
maths
matrices-and-determinants
expansion-of-determinant
If $$a&gt;0$$ and discriminant of $$\,a{x^2} + 2bx + c$$ is $$-ve$$, then <br/>$$\left| {\matrix{ a &amp; b &amp; {ax + b} \cr b &amp; c &amp; {bx + c} \cr {ax + b} &amp; {bx + c} &amp; 0 \cr } } \right|$$ is equal to
[{"identifier": "A", "content": "$$+ve$$ "}, {"identifier": "B", "content": "$$\\left( {ac - {b^2}} \\right)\\left( {a{x^2} + 2bx + c} \\right)$$ "}, {"identifier": "C", "content": "$$-ve$$"}, {"identifier": "D", "content": "$$0$$ "}]
["C"]
null
We have $$\left| {\matrix{ a &amp; b &amp; {ax + b} \cr b &amp; c &amp; {bx + c} \cr {ax + b} &amp; {bx + c} &amp; 0 \cr } } \right|$$ <br><br>By $$\,\,\,{R_3} \to {R_3} - \left( {x{R_1} + {R_2}} \right);$$ <br><br>$$ = \left| {\matrix{ a &amp; b &amp; {ax + b} \cr b &amp; c &amp; {bx + c} \cr 0 &amp; 0 &amp; { - \left( {a{x^2} + 2bx + C} \right)} \cr } } \right|$$ <br><br>$$ = \left( {a{x^2} + 2bx + c} \right)\left( {{b^2} - ac} \right)$$ <br><br>$$ = \left( + \right)\left( - \right) = - ve.$$
mcq
aieee-2002
tULOO1HXFB32hWVY
maths
matrices-and-determinants
expansion-of-determinant
If $$1,$$ $$\omega ,{\omega ^2}$$ are the cube roots of unity, then <p>$$\Delta = \left| {\matrix{ 1 &amp; {{\omega ^n}} &amp; {{\omega ^{2n}}} \cr {{\omega ^n}} &amp; {{\omega ^{2n}}} &amp; 1 \cr {{\omega ^{2n}}} &amp; 1 &amp; {{\omega ^n}} \cr } } \right|$$ is equal to</p>
[{"identifier": "A", "content": "$${\\omega ^2}$$ "}, {"identifier": "B", "content": "$$0$$"}, {"identifier": "C", "content": "$$1$$ "}, {"identifier": "D", "content": "$$\\omega $$ "}]
["B"]
null
$$\Delta = \left| {\matrix{ 1 &amp; {{\omega ^n}} &amp; {{\omega ^{2n}}} \cr {{\omega ^n}} &amp; {{\omega ^{2n}}} &amp; 1 \cr {{\omega ^{2n}}} &amp; 1 &amp; {{\omega ^n}} \cr } } \right|$$ <br><br>$$ = 1\left( {{\omega ^{3n}} - 1} \right) - {\omega ^n}\left( {{\omega ^{2n}} - {\omega ^{2n}}} \right) + $$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^{2n}}\left( {{\omega ^n} - {\omega ^{4n}}} \right)$$ <br><br>$$ = {\omega ^{3n}} - 1 - 0 + {\omega ^{3n}} - {\omega ^{6n}}$$ <br><br>$$ = 1 - 1 + 1 - 1 = 0$$ $$\left[ {} \right.$$ as $$\,\,\,\,\,$$ $${\omega ^{3n}} = 1$$ $$\left. {} \right]$$
mcq
aieee-2003
cR2lVel1EGtJOygR
maths
matrices-and-determinants
expansion-of-determinant
If $${a_1},{a_2},{a_3},.........,{a_n},......$$ are in G.P., then the value of the determinant <p>$$\left| {\matrix{ {\log {a_n}} &amp; {\log {a_{n + 1}}} &amp; {\log {a_{n + 2}}} \cr {\log {a_{n + 3}}} &amp; {\log {a_{n + 4}}} &amp; {\log {a_{n + 5}}} \cr {\log {a_{n + 6}}} &amp; {\log {a_{n + 7}}} &amp; {\log {a_{n + 8}}} \cr } } \right|,$$ is </p>
[{"identifier": "A", "content": "$$-2$$ "}, {"identifier": "B", "content": "$$1$$"}, {"identifier": "C", "content": "$$2$$ "}, {"identifier": "D", "content": "$$0$$"}]
["D"]
null
$$\left| {\matrix{ {\log {a_n}} &amp; {\log {a_{n + 1}}} &amp; {\log {a_{n + 2}}} \cr {\log {a_{n + 3}}} &amp; {\log {a_{n + 4}}} &amp; {\log {a_{n + 5}}} \cr {\log {a_{n + 6}}} &amp; {\log {a_{n + 7}}} &amp; {\log {a_{n + 8}}} \cr } } \right|$$ <br><br>$$ = \left| {\matrix{ {\log {a_1}r{}^{n - 1}} &amp; {\log {a_1}r{}^n} &amp; {\log {a_1}r{}^{n + 1}} \cr {\log {a_1}r{}^{n + 2}} &amp; {\log {a_1}r{}^{n + 3}} &amp; {\log {a_1}r{}^{n + 4}} \cr {\log {a_1}r{}^{n + 5}} &amp; {\log {a_1}r{}^{n + 6}} &amp; {\log {a_1}r{}^{n + 7}} \cr } } \right|$$ <br><br>$$ = \left| {\matrix{ {\log {a_1} + \left( {n - 1} \right)\log r} &amp; {\log {a_1} + n\log r} &amp; {\log {a_1} + \left( {n + 1} \right)\log r} \cr {\log {a_1} + \left( {n + 2} \right)\log r} &amp; {\log {a_1} + \left( {n + 3} \right)\log r} &amp; {\log {a_1} + \left( {n + 4} \right)\log r} \cr {\log {a_1} + \left( {n + 5} \right)\log r} &amp; {\log {a_1} + \left( {n + 6} \right)\log r} &amp; {\log {a_1} + \left( {n + 7} \right)\log r} \cr } } \right|$$ <br><br>$$ = 0\left[ \, \right.$$ Apply $$\,\,\,\,{c_2} \to {c_2} - {1 \over 2}{c_1} - {1 \over 2}{c_3}\,\left. \, \right]$$
mcq
aieee-2004
GpuKipzHONqFXg6t
maths
matrices-and-determinants
expansion-of-determinant
If $${a_1},{a_2},{a_3},........,{a_n},.....$$ are in G.P., then the determinant $$$\Delta = \left| {\matrix{ {\log {a_n}} &amp; {\log {a_{n + 1}}} &amp; {\log {a_{n + 2}}} \cr {\log {a_{n + 3}}} &amp; {\log {a_{n + 4}}} &amp; {\log {a_{n + 5}}} \cr {\log {a_{n + 6}}} &amp; {\log {a_{n + 7}}} &amp; {\log {a_{n + 8}}} \cr } } \right|$$$ <br/>is equal to :
[{"identifier": "A", "content": "$$1$$ "}, {"identifier": "B", "content": "$$0$$"}, {"identifier": "C", "content": "$$4$$ "}, {"identifier": "D", "content": "$$2$$ "}]
["B"]
null
As $$\,\,\,\,{a_1},{a_2},{a_3},.........$$ are in $$G.P.$$ <br><br>$$\therefore$$ Using $${a_n} = a{r^{n - 1}},\,\,\,$$ we get the given determinant, <br><br>as $$\,\,\,\,\,\,\,\left| {\matrix{ {\log a{r^{n - 1}}} &amp; {\log a{r^n}} &amp; {\log a{r^{n + 1}}} \cr {\log a{r^{n + 2}}} &amp; {\log a{r^{n + 3}}} &amp; {\log a{r^{n + 4}}} \cr {\log a{r^{n + 5}}} &amp; {\log a{r^{n + 6}}} &amp; {\log a{r^{n + 7}}} \cr } } \right|$$ <br><br>Operating $${C_3} - {C_2}$$ and $${C_2} - {C_1}$$ and using <br><br>$$\log m - \log n = \log {m \over n}\,\,\,\,$$ we get <br><br>$$ = \left| {\matrix{ {\log a{r^{n - 1}}} &amp; {\log r} &amp; {\log r} \cr {\log a{r^{n + 2}}} &amp; {\log r} &amp; {\log r} \cr {\log a{r^{n + 5}}} &amp; {\log r} &amp; {\log r} \cr } } \right| $$ <br><br>$$=0$$ (two columns being identical)
mcq
aieee-2005
xFgehdfYl6MahZIw
maths
matrices-and-determinants
expansion-of-determinant
If $${a^2} + {b^2} + {c^2} = - 2$$ and <p>f$$\left( x \right) = \left| {\matrix{ {1 + {a^2}x} &amp; {\left( {1 + {b^2}} \right)x} &amp; {\left( {1 + {c^2}} \right)x} \cr {\left( {1 + {a^2}} \right)x} &amp; {1 + {b^2}x} &amp; {\left( {1 + {c^2}} \right)x} \cr {\left( {1 + {a^2}} \right)x} &amp; {\left( {1 + {b^2}} \right)x} &amp; {1 + {c^2}x} \cr } } \right|,$$</p> <p>then f$$(x)$$ is a polynomial of degree :</p>
[{"identifier": "A", "content": "$$1$$ "}, {"identifier": "B", "content": "$$0$$ "}, {"identifier": "C", "content": "$$3$$ "}, {"identifier": "D", "content": "$$2$$"}]
["D"]
null
Applying, $${C_1} \to {C_1} + {C_2} + {C_3}\,\,\,$$ we get <br><br>$$f\left( x \right) = \left| {\matrix{ {1 + \left( {{a^2} + {b^2} + {c^2} + 2} \right)x} &amp; {\left( {1 + {b^2}} \right)x} &amp; {\left( {1 + {c^2}} \right)x} \cr {1 + \left( {{a^2} + {b^2} + {c^2} + 2} \right)x} &amp; {1 + {b^2}x} &amp; {\left( {1 + {c^2}x} \right)} \cr {1 + \left( {{a^2} + {b^2} + {c^2} + 2} \right)x} &amp; {\left( {1 + {b^2}} \right)x} &amp; {1 + {c^2}x} \cr } } \right|$$ <br><br>$$ = \left| {\matrix{ 1 &amp; {\left( {1 + {b^2}} \right)x} &amp; {\left( {1 + {c^2}} \right)x} \cr 1 &amp; {1 + {b^2}x} &amp; {\left( {1 + {c^2}x} \right)} \cr 1 &amp; {\left( {1 + {b^2}} \right)x} &amp; {1 + {c^2}x} \cr } } \right|$$ <br><br>$$\left[ \, \right.$$ As given that $${a^2} + {b^2} + {c^2} = - 2$$ $$\left. {} \right]$$ <br><br>$$\therefore$$ $${a^2} + {b^2} + {c^2} + 2 = 0$$ <br><br>Applying $${R_1} \to {R_1} - {R_2},\,\,\,{R_2} \to {R_2} - {R_3}$$ <br><br>$$\therefore$$ $$f\left( x \right) = \left| {\matrix{ 0 &amp; {x - 1} &amp; 0 \cr 0 &amp; {1 - x} &amp; {x - 1} \cr 1 &amp; {\left( {1 + {b^2}} \right)x} &amp; {1 + {c^2}x} \cr } } \right|$$ <br><br>$$f\left( x \right) = {\left( {x - 1} \right)^2}$$ <br><br>Hence degree $$=2.$$
mcq
aieee-2005
qp2BEp4dd9iOFnFq
maths
matrices-and-determinants
expansion-of-determinant
If $$D = \left| {\matrix{ 1 &amp; 1 &amp; 1 \cr 1 &amp; {1 + x} &amp; 1 \cr 1 &amp; 1 &amp; {1 + y} \cr } } \right|$$ for $$x \ne 0,y \ne 0,$$ then $$D$$ is :
[{"identifier": "A", "content": "divisible by $$x$$ but not $$y$$"}, {"identifier": "B", "content": "divisible by $$y$$ but not $$x$$"}, {"identifier": "C", "content": "divisible by neither $$x$$ nor $$y$$"}, {"identifier": "D", "content": "divisible by both $$x$$ and $$y$$"}]
["D"]
null
Given, $$D = \left| {\matrix{ 1 &amp; 1 &amp; 1 \cr 1 &amp; {1 + x} &amp; 1 \cr 1 &amp; 1 &amp; {1 + y} \cr } } \right|$$ <br><br>Apply $$\,\,\,{R^2} \to {R_2} - {R_1}$$ $$\,\,\,\,$$ <br><br>and $$\,\,\,\,$$ $$R \to {R_3} - {R_1}$$ <br><br>$$\therefore$$ $$\,\,\,\,\,D = \left| {\matrix{ 1 &amp; 1 &amp; 1 \cr 0 &amp; x &amp; 0 \cr 0 &amp; 0 &amp; y \cr } } \right| = xy$$ <br><br>Hence, $$D$$ is divisible by both $$x$$ and $$y$$
mcq
aieee-2007
2Zr5gIOJoHIbdmBP
maths
matrices-and-determinants
expansion-of-determinant
Let $$a, b, c$$ be such that $$b\left( {a + c} \right) \ne 0$$ if <p>$$\left| {\matrix{ a &amp; {a + 1} &amp; {a - 1} \cr { - b} &amp; {b + 1} &amp; {b - 1} \cr c &amp; {c - 1} &amp; {c + 1} \cr } } \right| + \left| {\matrix{ {a + 1} &amp; {b + 1} &amp; {c - 1} \cr {a - 1} &amp; {b - 1} &amp; {c + 1} \cr {{{\left( { - 1} \right)}^{n + 2}}a} &amp; {{{\left( { - 1} \right)}^{n + 1}}b} &amp; {{{\left( { - 1} \right)}^n}c} \cr } } \right| = 0$$ <br/><br>then the value of $$n$$ :</br></p>
[{"identifier": "A", "content": "any even integer "}, {"identifier": "B", "content": "any odd integer "}, {"identifier": "C", "content": "any integer "}, {"identifier": "D", "content": "zero"}]
["B"]
null
$$\left| {\matrix{ a &amp; {a + 1} &amp; {a - 1} \cr { - b} &amp; {b + 1} &amp; {b - 1} \cr c &amp; {c - 1} &amp; {c + 1} \cr } } \right| + \left| {\matrix{ {a + 1} &amp; {b + 1} &amp; {c - 1} \cr {a - 1} &amp; {b - 1} &amp; {c + 1} \cr {{{\left( { - 1} \right)}^{n + 2}}a} &amp; {{{\left( { - 1} \right)}^{n + 1}}b} &amp; {{{\left( { - 1} \right)}^n}c} \cr } } \right| = 0$$ <br><br>$$ \Rightarrow \left| {\matrix{ a &amp; {a + 1} &amp; {a - 1} \cr { - b} &amp; {b + 1} &amp; {b - 1} \cr c &amp; {c - 1} &amp; {c + 1} \cr } } \right| + \left| {\matrix{ {a + 1} &amp; {a - 1} &amp; {{{\left( { - 1} \right)}^{n + 2}}a} \cr {b + 1} &amp; {b - 1} &amp; {{{\left( { - 1} \right)}^{n + 1}}b} \cr {c - 1} &amp; {c + 1} &amp; {{{\left( { - 1} \right)}^n}c} \cr } } \right| = 0$$ <br><br>(Taking transpose of second determinant) <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{C_1} \Leftrightarrow {C_3}$$ <br><br>$$ \Rightarrow \left| {\matrix{ a &amp; {a + 1} &amp; {a - 1} \cr { - b} &amp; {b + 1} &amp; {b - 1} \cr c &amp; {c - 1} &amp; {c + 1} \cr } } \right| - \left| {\matrix{ {{{\left( { - 1} \right)}^{n + 2}}a} &amp; {a - 1} &amp; {a + 1} \cr {{{\left( { - 1} \right)}^{n + 2}}\left( { - b} \right)} &amp; {b - 1} &amp; {b + 1} \cr {{{\left( { - 1} \right)}^{n + 2}}c} &amp; {c + 1} &amp; {c - 1} \cr } } \right| = 0$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{C_2} \Leftrightarrow {C_3}$$ <br><br>$$ \Rightarrow \left| {\matrix{ a &amp; {a + 1} &amp; {a - 1} \cr { - b} &amp; {b + 1} &amp; {b - 1} \cr c &amp; {c - 1} &amp; {c + 1} \cr } } \right| + {\left( 1 \right)^{n + 2}}\left| {\matrix{ a &amp; {a + 1} &amp; {a - 1} \cr { - b} &amp; {b + 1} &amp; {b - 1} \cr c &amp; {c - 1} &amp; {c + 1} \cr } } \right| = 0$$ <br><br>$$ \Rightarrow \left[ {1 + {{\left( { - 1} \right)}^{n + 2}}} \right]\left| {\matrix{ a &amp; {a + 1} &amp; {a - 1} \cr { - b} &amp; {b + 1} &amp; {b - 1} \cr c &amp; {c - 1} &amp; {c + 1} \cr } } \right| = 0$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{C_2} - {C_1},{C_3} - {C_1}$$ <br><br>$$ \Rightarrow \left[ {1 + {{\left( { - 1} \right)}^{n + 2}}} \right]\left| {\matrix{ a &amp; 1 &amp; { - 1} \cr { - b} &amp; {2b + 1} &amp; {2b - 1} \cr c &amp; { - 1} &amp; 1 \cr } } \right| = 0$$ <br><br>$${R_1} + {R_3}$$ <br><br>$$ \Rightarrow \left[ {1 + {{\left( { - 1} \right)}^{n + 2}}} \right]\left| {\matrix{ {a + c} &amp; 0 &amp; 0 \cr { - b} &amp; {2b + 1} &amp; {2b - 1} \cr c &amp; { - 1} &amp; 1 \cr } } \right| = 0$$ <br><br>$$ \Rightarrow \left[ {1 + {{\left( { - 1} \right)}^{n + 2}}} \right]\left( {a + c} \right)\left( {2b + 1 + 2b - 1} \right) = 0$$ <br><br>$$ \Rightarrow 4b\left( {a + c} \right)\left[ {1 + {{\left( { - 1} \right)}^{n + 2}}} \right] = 0$$ <br><br>$$ \Rightarrow 1 + {\left( { - 1} \right)^{n + 2}} = 0$$ $$\,\,\,\,\,$$ as $$\,\,\,\,\,b\left( {a + c} \right) \ne 0$$ <br><br>$$ \Rightarrow n$$ should be an odd integer.
mcq
aieee-2009
r4Fv71k1mBq9dYh2
maths
matrices-and-determinants
expansion-of-determinant
If $$\alpha ,\beta \ne 0,$$ and $$f\left( n \right) = {\alpha ^n} + {\beta ^n}$$ and $$$\left| {\matrix{ 3 &amp; {1 + f\left( 1 \right)} &amp; {1 + f\left( 2 \right)} \cr {1 + f\left( 1 \right)} &amp; {1 + f\left( 2 \right)} &amp; {1 + f\left( 3 \right)} \cr {1 + f\left( 2 \right)} &amp; {1 + f\left( 3 \right)} &amp; {1 + f\left( 4 \right)} \cr } } \right|$$$ <br/> $$ = K{\left( {1 - \alpha } \right)^2}{\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2},$$ then $$K$$ is equal to :
[{"identifier": "A", "content": "$$1$$ "}, {"identifier": "B", "content": "$$-1$$"}, {"identifier": "C", "content": "$$\\alpha \\beta $$ "}, {"identifier": "D", "content": "$${1 \\over {\\alpha \\beta }}$$ "}]
["A"]
null
Consider <br><br>$$\left| {\matrix{ 3 &amp; {1 + f\left( 1 \right)} &amp; {1 + f\left( 2 \right)} \cr {1 + f\left( 1 \right)} &amp; {1 + f\left( 2 \right)} &amp; {1 + f\left( 3 \right)} \cr {1 + f\left( 2 \right)} &amp; {1 + f\left( 3 \right)} &amp; {1 + f\left( 4 \right)} \cr } } \right|$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\, = \left| {\matrix{ {1 + 1 + 1} &amp; {1 + \alpha + \beta } &amp; {1 + {\alpha ^2} + {\beta ^2}} \cr {1 + \alpha + \beta } &amp; {1 + {\alpha ^2} + {\beta ^2}} &amp; {1 + {\alpha ^3} + {\beta ^3}} \cr {1 + {\alpha ^2} + {\beta ^2}} &amp; {1 + {\alpha ^3} + {\beta ^3}} &amp; {1 + {\alpha ^4} + {\beta ^4}} \cr } } \right|$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\, = \left| {\matrix{ 1 &amp; 1 &amp; 1 \cr 1 &amp; \alpha &amp; \beta \cr 1 &amp; {{\alpha ^2}} &amp; {{\beta ^2}} \cr } } \right| \times \left| {\matrix{ 1 &amp; 1 &amp; 1 \cr 1 &amp; \alpha &amp; \beta \cr 1 &amp; {{\alpha ^2}} &amp; {{\beta ^2}} \cr } } \right|$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\, = {\left| {\matrix{ 1 &amp; 1 &amp; 1 \cr 1 &amp; \alpha &amp; \beta \cr 1 &amp; {{\alpha ^2}} &amp; {{\beta ^2}} \cr } } \right|^2}$$ <br><br>$$\,\,\,\,\,\,\,\,\,\,\, = {\left[ {\left( {1 - \alpha } \right)\left( {1 - \beta } \right)\left( {\alpha - \beta } \right)} \right]^2}$$ <br><br>So, $$k=1$$
mcq
jee-main-2014-offline
3HijCKA6R6fQjXo8tvuQN
maths
matrices-and-determinants
expansion-of-determinant
If    A = $$\left[ {\matrix{ { - 4} &amp; { - 1} \cr 3 &amp; 1 \cr } } \right]$$, <br/><br/>then the determinant of the matrix (A<sup>2016</sup> − 2A<sup>2015</sup> − A<sup>2014</sup>) is :
[{"identifier": "A", "content": "2014"}, {"identifier": "B", "content": "$$-$$ 175"}, {"identifier": "C", "content": "2016"}, {"identifier": "D", "content": "$$-$$ 25"}]
["D"]
null
Given, <br><br>$$A = \left[ {\matrix{ { - 4} &amp; { - 1} \cr 3 &amp; 1 \cr } } \right]$$ <br><br>$${A^2} = \left[ {\matrix{ { - 4} &amp; { - 1} \cr 3 &amp; 1 \cr } } \right]\left[ {\matrix{ { - 4} &amp; { - 1} \cr 3 &amp; 1 \cr } } \right]$$ <br><br>$$ = \left[ {\matrix{ {13} &amp; 3 \cr { - 9} &amp; { - 2} \cr } } \right]$$ <br><br>A<sup>2</sup> $$-$$ 2A $$-$$ I <br><br>$$ = \left[ {\matrix{ {13} &amp; 3 \cr { - 9} &amp; { - 2} \cr } } \right] - \left[ {\matrix{ { - 8} &amp; { - 2} \cr 6 &amp; 2 \cr } } \right] - \left[ {\matrix{ 1 &amp; 0 \cr 0 &amp; 1 \cr } } \right]$$ <br><br>$$ = \left[ {\matrix{ {20} &amp; 5 \cr { - 15} &amp; { - 5} \cr } } \right]$$ <br><br>$$\left| A \right| = \left| {\matrix{ { - 4} &amp; { - 1} \cr 3 &amp; 1 \cr } } \right|$$ $$=$$ $$-$$ 4 + 3 $$=$$ $$-$$ 1 <br><br>Now, <br><br>$$\left| {{A^{2016}} - 2{A^{2015}} - {A^{2014}}} \right|$$ <br><br>$$=$$ $${\left| A \right|^{2014}}\left| {{A^2} - 2A - {\rm I}} \right|$$ <br><br>$$ = {\left( { - 1} \right)^{2014}}\left| {\matrix{ {20} &amp; 5 \cr { - 15} &amp; { - 5} \cr } } \right|$$ <br><br>$$=$$ 1 $$ \times $$ ($$-$$ 100 + 75) <br><br>$$=$$ $$-$$ 25
mcq
jee-main-2016-online-10th-april-morning-slot
RS4yHNVUSJJseZvzGSGiK
maths
matrices-and-determinants
expansion-of-determinant
The number of distinct real roots of the equation, <br/><br/>$$\left| {\matrix{ {\cos x} &amp; {\sin x} &amp; {\sin x} \cr {\sin x} &amp; {\cos x} &amp; {\sin x} \cr {\sin x} &amp; {\sin x} &amp; {\cos x} \cr } } \right| = 0$$ in the interval $$\left[ { - {\pi \over 4},{\pi \over 4}} \right]$$ is :
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "3"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "1"}]
["C"]
null
Given, <br><br>$$\left| {\matrix{ {\cos x} &amp; {\sin x} &amp; {\sin x} \cr {\sin x} &amp; {\cos x} &amp; {\sin x} \cr {\sin x} &amp; {\sin x} &amp; {\cos x} \cr } } \right| = 0$$ <br><br>R<sub>1</sub>&nbsp;&nbsp;$$ \to $$&nbsp;&nbsp;R<sub>1</sub>&nbsp;&nbsp;$$-$$&nbsp;&nbsp;R<sub>3</sub> <br><br>R<sub>1</sub>&nbsp;&nbsp;$$ \to $$&nbsp;&nbsp;R<sub>2</sub>&nbsp;&nbsp;$$-$$&nbsp;&nbsp;R<sub>3</sub> <br><br>$$\left| {\matrix{ {\cos x - \sin x} &amp; 0 &amp; {\sin x - \cos x} \cr 0 &amp; {\cos x - \sin x} &amp; {\sin x - \cos x} \cr {\sin x} &amp; {\sin x} &amp; { \cos x} \cr } } \right| = 0$$ <br><br>C<sub>3</sub>&nbsp;&nbsp;$$ \to $$&nbsp;&nbsp;C<sub>3</sub>&nbsp;&nbsp;+&nbsp;&nbsp;C<sub>2</sub> <br><br>$$\left| {\matrix{ {\cos x - \sin x} &amp; 0 &amp; {\sin x - \cos x} \cr 0 &amp; {\cos x - \sin x} &amp; 0 \cr {\sin x} &amp; {\sin x} &amp; {\sin x + \cos x} \cr } } \right| = 0$$ <br><br>Expanding using first column, <br><br>(cosx $$-$$ sinx)(cos $$-$$ sinx) (sinx + cos x) <br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;+ sinx (cosx $$-$$ sinx) (sinx $$-$$ cosx) = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;(cosx $$-$$ sinx)<sup>2</sup> (sinx + cosx) <br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;$$+$$ sinx (cosx $$-$$ sinx)<sup>2</sup> = 0 <br><br>$$ \Rightarrow $$ &nbsp;&nbsp;&nbsp;(cosx $$-$$ sinx)<sup>2</sup> (sinx + cosx $$+$$ sinx) = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp; (2sinx + cosx )(cosx $$-$$ sinx)<sup>2</sup> = 0 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;cosx = -2sinx &nbsp;&nbsp;or&nbsp;&nbsp;cosx &nbsp;&nbsp;=&nbsp;&nbsp;sinx <br><br>$$ \Rightarrow $$ tanx = $$ - {1 \over 2}$$ or tanx = 1 <br><br>$$ \therefore $$ x = $$ - {\tan ^{ - 1}}\left( {{1 \over 2}} \right)$$, $${\pi \over 4}$$ <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;Number of solutions &nbsp;&nbsp;=&nbsp;&nbsp;2
mcq
jee-main-2016-online-9th-april-morning-slot
eun9UQWukCJ25rjmhngyg
maths
matrices-and-determinants
expansion-of-determinant
If <br/><br/>$$S = \left\{ {x \in \left[ {0,2\pi } \right]:\left| {\matrix{ 0 &amp; {\cos x} &amp; { - \sin x} \cr {\sin x} &amp; 0 &amp; {\cos x} \cr {\cos x} &amp; {\sin x} &amp; 0 \cr } } \right| = 0} \right\},$$ <br/><br/>then $$\sum\limits_{x \in S} {\tan \left( {{\pi \over 3} + x} \right)} $$ is equal to :
[{"identifier": "A", "content": "$$4 + 2\\sqrt 3 $$"}, {"identifier": "B", "content": "$$ - 2 + \\sqrt 3 $$"}, {"identifier": "C", "content": "$$ - 2 - \\sqrt 3 $$"}, {"identifier": "D", "content": "$$-\\,\\,4 - 2\\sqrt 3 $$"}]
["C"]
null
Given, <br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;$$\left| {\matrix{ 0 &amp; {\cos x} &amp; { - \sin x} \cr {\sin x} &amp; 0 &amp; {\cos x} \cr {\cos x} &amp; {\sin x} &amp; 0 \cr } } \right|$$ = 0 <br><br>$$ \Rightarrow $$$$\,\,\,$$ 0 (0 $$-$$ cosx sinx) $$-$$ cosx (0 $$-$$ cos<sup>2</sup>x) $$-$$ sinx(sin<sup>2</sup>x) = 0 <br><br>$$ \Rightarrow $$$$\,\,\,$$ cos<sup>3</sup>x $$-$$ sin<sup>3</sup> x = 0 <br><br>$$ \Rightarrow $$$$\,\,\,$$ tan<sup>3</sup>x = 1 <br><br>$$ \Rightarrow $$$$\,\,\,$$ tanx = 1 <br><br>$$ \therefore $$ $$\,\,\,$$ $$\sum\limits_{x\, \in \,\,S} {\,\tan \left( {{\pi \over 3} + x} \right)} $$ <br><br>= $${{\tan {\pi \over 3} + \tan x} \over {1 - \tan {\pi \over 3}\tan x}}$$ <br><br>= $${{\sqrt 3 + 1} \over {1 - \sqrt 3 }}$$ <br><br>= $${{\left( {\sqrt 3 + 1} \right)} \over {\left( {1 - \sqrt 3 } \right)}} \times {{1 + \sqrt 3 } \over {1 + \sqrt 3 }}$$ <br><br>= $${{1 + 3 + 2\sqrt 3 } \over { - 2}}$$ <br><br>= $$-$$ 2 $$-$$ $$\sqrt 3 $$
mcq
jee-main-2017-online-8th-april-morning-slot
eHnuQRvur8S3cbRr4ps0G
maths
matrices-and-determinants
expansion-of-determinant
Let $$A$$ be a matrix such that $$A.\left[ {\matrix{ 1 &amp; 2 \cr 0 &amp; 3 \cr } } \right]$$ is a scalar matrix and |3A| = 108. <br/>Then A<sup>2</sup> equals :
[{"identifier": "A", "content": "$$\\left[ {\\matrix{\n 4 &amp; { - 32} \\cr \n 0 &amp; {36} \\cr \n\n } } \\right]$$"}, {"identifier": "B", "content": "$$\\left[ {\\matrix{\n {36} &amp; 0 \\cr \n { - 32} &amp; 4 \\cr \n\n } } \\right]$$"}, {"identifier": "C", "content": "$$\\left[ {\\matrix{\n 4 &amp; 0 \\cr \n { - 32} &amp; {36} \\cr \n\n } } \\right]$$"}, {"identifier": "D", "content": "$$\\left[ {\\matrix{\n {36} &amp; { - 32} \\cr \n 0 &amp; 4 \\cr \n\n } } \\right]$$"}]
["D"]
null
According to questions, <br/><br> A. $$\left[ {\matrix{ 1 &amp; 2 \cr 0 &amp; 3 \cr } } \right]$$ = $$\left[ {\matrix{ \lambda &amp; 0 \cr 0 &amp; \lambda \cr } } \right]$$<br><br> $$ \Rightarrow $$ A = $$\left[ {\matrix{ \lambda &amp; 0 \cr 0 &amp; \lambda \cr } } \right]$$ $$\left[ {\matrix{ 1 &amp; 2 \cr 0 &amp; 3 \cr } } \right]^{-1}$$<br><br> $$ \Rightarrow $$ A = $$1 \over 3$$$$\left[ {\matrix{ \lambda &amp; 0 \cr 0 &amp; \lambda \cr } } \right]$$ $$\left[ {\matrix{ 3 &amp; {-2} \cr 0 &amp; 1 \cr } } \right]$$<br><br> $$ \Rightarrow $$ A = $$\left[ {\matrix{ \lambda &amp; 0 \cr 0 &amp; \lambda \cr } } \right]$$ $$\left[ {\matrix{ 1 &amp; { - {2 \over 3}} \cr 0 &amp; {{1 \over 3}} \cr } } \right]$$<br><br> $$ \Rightarrow $$ A = $$\left[ {\matrix{ \lambda &amp; { - {2 \over 3}\lambda } \cr 0 &amp; {{\lambda \over 3}} \cr } } \right]$$<br><br> As $$\left| {3A} \right|$$ = 108<br><br> $$ \Rightarrow $$ 108 = $$\left| {\matrix{ {3\lambda } &amp; { - 2\lambda } \cr 0 &amp; \lambda \cr } } \right|$$ <br><br> $$ \Rightarrow $$ 3$$\lambda $$<sup>2</sup> = 108<br><br> $$ \Rightarrow $$ $$\lambda $$<sup>2</sup> = 36<br><br> $$ \Rightarrow $$ $$\lambda $$ = $$ \pm $$6<br><br> When $$\lambda $$ = +6<br><br> then A = $$\left[ {\matrix{ 6 &amp; { - 4} \cr 0 &amp; 2 \cr } } \right]$$<br><br> $$ \Rightarrow $$ A<sup>2</sup> = $$\left[ {\matrix{ {36} &amp; { - 32} \cr 0 &amp; 4 \cr } } \right]$$<br><br> For $$\lambda $$ = -6<br><br> A = $$\left[ {\matrix{ { - 6} &amp; 4 \cr 0 &amp; { - 2} \cr } } \right]$$<br><br> $$ \Rightarrow $$ A<sup>2</sup> = $$\left[ {\matrix{ {36} &amp; { - 32} \cr 0 &amp; 4 \cr } } \right]$$
mcq
jee-main-2018-online-15th-april-morning-slot
jgExl7kan7jrpclX
maths
matrices-and-determinants
expansion-of-determinant
If $$\left| {\matrix{ {x - 4} &amp; {2x} &amp; {2x} \cr {2x} &amp; {x - 4} &amp; {2x} \cr {2x} &amp; {2x} &amp; {x - 4} \cr } } \right| = \left( {A + Bx} \right){\left( {x - A} \right)^2}$$ <br/><br/>then the ordered pair (A, B) is equal to :
[{"identifier": "A", "content": "(4, 5)"}, {"identifier": "B", "content": "(-4, -5)"}, {"identifier": "C", "content": "(-4, 3)"}, {"identifier": "D", "content": "(-4, 5)"}]
["D"]
null
$$\left| {\matrix{ {x - 4} &amp; {2x} &amp; {2x} \cr {2x} &amp; {x - 4} &amp; {2x} \cr {2x} &amp; {2x} &amp; {x - 4} \cr } } \right|$$ <br><br>Applying c<sub>1</sub> $$ \to $$ c<sub>1</sub> + c<sub>2</sub> + c<sub>3</sub> <br><br>$$ = \,\,\,\,\left| {\matrix{ {5x - 4} &amp; {2x} &amp; {2x} \cr {5x - 4} &amp; {x - 4} &amp; {2x} \cr {5x - 4} &amp; {2x} &amp; {x - 4} \cr } } \right|$$ <br><br>Taking common (5x $$-$$ 4) from c<sub>1</sub> <br><br>$$ = \,\,\,\,\left( {5x - 4} \right)\left| {\matrix{ 1 &amp; {2x} &amp; {2x} \cr 1 &amp; {x - 4} &amp; {2x} \cr 1 &amp; {2x} &amp; {x - 4} \cr } } \right|$$ <br><br>Apply R<sub>2</sub> $$ \to $$R<sub>2</sub> $$-$$ R<sub>1</sub> and R<sub>3</sub> $$ \to $$R<sub>3</sub> $$-$$ R<sub>1</sub> <br><br>$$ = \,\,\,\,\left( {5x - 4} \right)\left| {\matrix{ 1 &amp; {2x} &amp; {2x} \cr 0 &amp; { - \left( {x + 4} \right)} &amp; 0 \cr 0 &amp; 0 &amp; { - \left( {x + 4} \right)} \cr } } \right|$$ <br><br>$$ = \,\,\,\,\left( {5x - 4} \right){\left( {x + 4} \right)^2}$$ <br><br>So, (A + Bx) (x $$-$$ A)<sup>2</sup> = (5x $$-$$ 4) (x + 4)<sup>2</sup> <br><br>By comparing both sides we get, A = $$-$$ 4 and B = 5
mcq
jee-main-2018-offline
fP5s0hXTeIEiyzNQRTlYJ
maths
matrices-and-determinants
expansion-of-determinant
If   $$A = \left[ {\matrix{ {{e^t}} &amp; {{e^{ - t}}\cos t} &amp; {{e^{ - t}}\sin t} \cr {{e^t}} &amp; { - {e^{ - t}}\cos t - {e^{ - t}}\sin t} &amp; { - {e^{ - t}}\sin t + {e^{ - t}}co{\mathop{\rm s}\nolimits} t} \cr {{e^t}} &amp; {2{e^{ - t}}\sin t} &amp; { - 2{e^{ - t}}\cos t} \cr } } \right]$$ <br/><br/>then A is :
[{"identifier": "A", "content": "invertible for all t$$ \\in $$<b>R</b>."}, {"identifier": "B", "content": "invertible only if t $$=$$ $$\\pi $$"}, {"identifier": "C", "content": "not invertible for any t$$ \\in $$<b>R</b>"}, {"identifier": "D", "content": "invertible only if t $$=$$ $${\\pi \\over 2}$$."}]
["A"]
null
$$A = \left[ {\matrix{ {{e^t}} &amp; {{e^{ - t}}\cos t} &amp; {{e^{ - t}}\sin t} \cr {{e^t}} &amp; { - {e^{ - t}}\cos t - {e^{ - t}}\sin t} &amp; { - {e^{ - t}}\sin t + {e^{ - t}}co{\mathop{\rm s}\nolimits} t} \cr {{e^t}} &amp; {2{e^{ - t}}\sin t} &amp; { - 2{e^{ - t}}\cos t} \cr } } \right]$$ <br><br>$$\left| A \right| = {e^t}.\,{e^{ - t}}.{e^{ - t}}\left| {\matrix{ 1 &amp; {\cos t} &amp; {\sin t} \cr 1 &amp; { - \cos t - \sin t} &amp; { - \sin t + \cos t} \cr 1 &amp; {2\sin t} &amp; { - 2\cos t} \cr } } \right|$$ <br><br>Apply operations R<sub>2</sub> &lt; R<sub>2</sub> $$-$$R<sub>1</sub>, R<sub>3</sub> &lt; R<sub>3</sub> $$-$$ R<sub>1</sub>, R<sub>1</sub> &lt; R<sub>1</sub> <br><br>$$\left| A \right| = {e^{ - t}}\left| {\matrix{ 1 &amp; {\cos t} &amp; {\sin t} \cr 0 &amp; { - \sin t - 2\cos t} &amp; { - 2\sin t + \cos t} \cr 0 &amp; {2\sin t - \cos t} &amp; { - 2\cos t - \sin t} \cr } } \right|$$ <br><br>Open the determinant by R<sub>1</sub> <br><br>$$\left| A \right| = 5{e^{ - t}}$$ <br><br>Invertible for all t $$ \in $$ R
mcq
jee-main-2019-online-9th-january-evening-slot
8OQG5ZHmm0j8UPp8rP3rsa0w2w9jxb4ij7c
maths
matrices-and-determinants
expansion-of-determinant
A value of $$\theta \in \left( {0,{\pi \over 3}} \right)$$, for which <br/>$$\left| {\matrix{ {1 + {{\cos }^2}\theta } &amp; {{{\sin }^2}\theta } &amp; {4\cos 6\theta } \cr {{{\cos }^2}\theta } &amp; {1 + {{\sin }^2}\theta } &amp; {4\cos 6\theta } \cr {{{\cos }^2}\theta } &amp; {{{\sin }^2}\theta } &amp; {1 + 4\cos 6\theta } \cr } } \right| = 0$$, is :
[{"identifier": "A", "content": "$${\\pi \\over {18}}$$"}, {"identifier": "B", "content": "$${\\pi \\over {9}}$$"}, {"identifier": "C", "content": "$${{7\\pi } \\over {24}}$$"}, {"identifier": "D", "content": "$${{7\\pi } \\over {36}}$$"}]
["B"]
null
$$\left| {\matrix{ {1 + {{\cos }^2}\theta } &amp; {{{\sin }^2}\theta } &amp; {4\cos 6\theta } \cr {{{\cos }^2}\theta } &amp; {1 + {{\sin }^2}\theta } &amp; {4\cos 6\theta } \cr {{{\cos }^2}\theta } &amp; {{{\sin }^2}\theta } &amp; {1 + 4\cos 6\theta } \cr } } \right| = 0$$<br><br> R<sub>1</sub> $$ \to $$ R<sub>1</sub> - R<sub>2</sub>, R<sub>2</sub> $$ \to $$ R<sub>2</sub> - <sub>R3</sub><br><br> $$ \Rightarrow \left| {\matrix{ 1 &amp; { - 1} &amp; 0 \cr 0 &amp; 1 &amp; { - 1} \cr {{{\cos }^2}\theta } &amp; {{{\sin }^2}\theta } &amp; {1 + 4\cos 6\theta } \cr } } \right| = 0$$<br><br> C<sub>2</sub> $$ \to $$ C<sub>2</sub> + C<sub>1</sub><br><br> $$ \Rightarrow \left| {\matrix{ 1 &amp; 0 &amp; 0 \cr 0 &amp; 1 &amp; { - 1} \cr {{{\cos }^2}\theta } &amp; 1 &amp; {1 + 4\cos 6\theta } \cr } } \right| = 0$$<br><br> $$ \Rightarrow 1 + 4\cos 6\theta + 1 = 0$$<br><br> $$ \Rightarrow 2\cos 6\theta = - 1 \Rightarrow \cos 6\theta = - {1 \over 2}$$ = $$\cos {{2\pi } \over 3}$$<br><br> $$ \Rightarrow 6\theta = 2n\pi \pm {{2\pi } \over 3}$$<br><br> $$ \Rightarrow \theta = {{n\pi } \over 3} \pm {\pi \over 9}\,\,\,n \in 1$$<br><br> $$ \Rightarrow \theta = {\pi \over 9},{{2\pi } \over 9},{{4\pi } \over 9}$$
mcq
jee-main-2019-online-12th-april-evening-slot
NvW5EmQOQ4vTpvOt9L3rsa0w2w9jx65olji
maths
matrices-and-determinants
expansion-of-determinant
If $$B = \left[ {\matrix{ 5 &amp; {2\alpha } &amp; 1 \cr 0 &amp; 2 &amp; 1 \cr \alpha &amp; 3 &amp; { - 1} \cr } } \right]$$ is the inverse of a 3 × 3 matrix A, then the sum of all values of $$\alpha $$ for which det(A) + 1 = 0, is :
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "- 1"}, {"identifier": "C", "content": "0"}, {"identifier": "D", "content": "1"}]
["D"]
null
Given |A| + 1 = 0 <br><br>$$ \Rightarrow $$ |A| = -1 <br><br>$$\left| B \right| = \left| {{A^{ - 1}}} \right| = {1 \over {\left| A \right|}} = - 1$$<br><br> $$\left| {\matrix{ 5 &amp; {2\alpha } &amp; 1 \cr 0 &amp; 2 &amp; 1 \cr \alpha &amp; 3 &amp; { - 1} \cr } } \right| $$ = -1 <br><br>$$ \Rightarrow $$ $$ 5( - 2 - 3) + 2\alpha (\alpha ) + 1( - 2\alpha ) = - 1$$<br><br> $$ \Rightarrow $$ $$2{\alpha ^2} - 2\alpha - 24 = 0$$<br><br> $$ \therefore $$ sum of value of $$\alpha $$ = $${{ - ( - 2)} \over 2} = 1$$
mcq
jee-main-2019-online-12th-april-morning-slot
72ZcOZKf5Yr1mCFPHU3rsa0w2w9jx23i3gx
maths
matrices-and-determinants
expansion-of-determinant
The sum of the real roots of the equation <br/>$$\left| {\matrix{ x &amp; { - 6} &amp; { - 1} \cr 2 &amp; { - 3x} &amp; {x - 3} \cr { - 3} &amp; {2x} &amp; {x + 2} \cr } } \right| = 0$$, is equal to :
[{"identifier": "A", "content": "- 4"}, {"identifier": "B", "content": "0"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "6"}]
["B"]
null
x(-3x $$ \times $$ (x + 2) - 2x(x - 3)) + (– 6) (2(x + 2) + 3 (x – 3)) + (–1) (4x + 3 (–3x))<br><br> $$ \Rightarrow $$ – 5x<sup>3</sup> + 30x –30 + 5x = 0<br><br> $$ \Rightarrow $$ x<sup>3</sup> – 7x + 6 = 0<br><br> $$ \therefore $$ sum of roots = 0
mcq
jee-main-2019-online-10th-april-evening-slot
2QtHVXivwg1Ceho7jC3rsa0w2w9jwxkqlfg
maths
matrices-and-determinants
expansion-of-determinant
If $${\Delta _1} = \left| {\matrix{ x &amp; {\sin \theta } &amp; {\cos \theta } \cr { - \sin \theta } &amp; { - x} &amp; 1 \cr {\cos \theta } &amp; 1 &amp; x \cr } } \right|$$ and <br/>$${\Delta _2} = \left| {\matrix{ x &amp; {\sin 2\theta } &amp; {\cos 2\theta } \cr { - \sin 2\theta } &amp; { - x} &amp; 1 \cr {\cos 2\theta } &amp; 1 &amp; x \cr } } \right|$$, $$x \ne 0$$ ; <br/><br/> then for all $$\theta \in \left( {0,{\pi \over 2}} \right)$$ :
[{"identifier": "A", "content": "$${\\Delta _1} - {\\Delta _2}$$ = x (cos 2$$\\theta $$ \u2013 cos 4$$\\theta $$)"}, {"identifier": "B", "content": "$${\\Delta _1} + {\\Delta _2}$$ = - 2x<sup>3</sup>"}, {"identifier": "C", "content": "$${\\Delta _1} + {\\Delta _2}$$ = \u2013 2(x<sup>3</sup> + x \u20131)"}, {"identifier": "D", "content": "$${\\Delta _1} - {\\Delta _2}$$ = - 2x<sup>3</sup>"}]
["B"]
null
$${\Delta _1} = \left| {\matrix{ x &amp; {\sin \theta } &amp; {\cos \theta } \cr { - \sin \theta } &amp; { - x} &amp; 1 \cr {\cos \theta } &amp; 1 &amp; x \cr } } \right|$$<br><br> = x(–x<sup>2</sup> –1) – sin$$\theta $$(–xsin$$\theta $$ – cos$$\theta $$) + cos$$\theta $$(–sin$$\theta $$+ xcos$$\theta $$)<br><br> = –x<sup>3</sup> – x + xsin<sup>2</sup>$$\theta $$ + sin$$\theta $$cos$$\theta $$ – cos$$\theta $$sin$$\theta $$ + xcos<sup>2</sup>$$\theta $$<br><br> = –x<sup>3</sup> – x + x = –x<sup>3</sup><br><br> Similarly $${\Delta _2} = - {x^3}$$<br><br> $${\Delta _1} + {\Delta _2} = - 2{x^3}$$
mcq
jee-main-2019-online-10th-april-morning-slot
MGCkKbAWU9TkkCJ1F318hoxe66ijvwp7qik
maths
matrices-and-determinants
expansion-of-determinant
Let $$\alpha $$ and $$\beta $$ be the roots of the equation x<sup>2</sup> + x + 1 = 0. Then for y $$ \ne $$ 0 in R,<br/> $$$\left| {\matrix{ {y + 1} &amp; \alpha &amp; \beta \cr \alpha &amp; {y + \beta } &amp; 1 \cr \beta &amp; 1 &amp; {y + \alpha } \cr } } \right|$$$ is equal to
[{"identifier": "A", "content": "y(y<sup>2</sup> \u2013 1)"}, {"identifier": "B", "content": "y(y<sup>2</sup> \u2013 3)"}, {"identifier": "C", "content": "y<sup>3</sup>"}, {"identifier": "D", "content": "y<sup>3</sup> \u2013 1"}]
["C"]
null
$$\alpha $$ and $$\beta $$ are the roots of the equation x<sup>2</sup> + x + 1 = 0. <br><br>$$ \therefore $$ $$\alpha $$ = $$\omega $$ and $$\beta $$ = $${\omega ^2}$$ <br><br>$$\left| {\matrix{ {y + 1} &amp; \alpha &amp; \beta \cr \alpha &amp; {y + \beta } &amp; 1 \cr \beta &amp; 1 &amp; {y + \alpha } \cr } } \right|$$ <br><br>= $$\left| {\matrix{ {y + 1} &amp; \omega &amp; {{\omega ^2}} \cr \omega &amp; {y + {\omega ^2}} &amp; 1 \cr {{\omega ^2}} &amp; 1 &amp; {y + \omega } \cr } } \right|$$ <br><br>C<sub>1</sub> $$ \to $$ C<sub>1</sub> + C<sub>2</sub> + C<sub>3</sub> <br><br>= $$\left| {\matrix{ {y + 1 + \omega + {\omega ^2}} &amp; \omega &amp; {{\omega ^2}} \cr {y + 1 + \omega + {\omega ^2}} &amp; {y + {\omega ^2}} &amp; 1 \cr {y + 1 + \omega + {\omega ^2}} &amp; 1 &amp; {y + \omega } \cr } } \right|$$ <br><br>= $$\left| {\matrix{ y &amp; \omega &amp; {{\omega ^2}} \cr y &amp; {y + {\omega ^2}} &amp; 1 \cr y &amp; 1 &amp; {y + \omega } \cr } } \right|$$ <br><br>As $$1 + \omega + {\omega ^2}$$ = 0 <br><br>= $$y\left| {\matrix{ 1 &amp; \omega &amp; {{\omega ^2}} \cr 1 &amp; {y + {\omega ^2}} &amp; 1 \cr 1 &amp; 1 &amp; {y + \omega } \cr } } \right|$$ <br><br>R<sub>2</sub> $$ \to $$ R<sub>2</sub> - R<sub>1</sub> <br>R<sub>3</sub> $$ \to $$ R<sub>3</sub> - R<sub>1</sub> <br><br>= $$y\left| {\matrix{ 1 &amp; \omega &amp; {{\omega ^2}} \cr 0 &amp; {y + {\omega ^2} - \omega } &amp; {1 - {\omega ^2}} \cr 0 &amp; {1 - \omega } &amp; {y + \omega - {\omega ^2}} \cr } } \right|$$ <br><br>= y$$\left[ {\left( {y + {\omega ^2} - \omega } \right)\left( {y + \omega - {\omega ^2}} \right) - \left( {1 - {\omega ^2}} \right)\left( {1 - \omega } \right)} \right]$$ <br><br>= y(y<sup>2</sup>) = y<sup>3</sup>
mcq
jee-main-2019-online-9th-april-morning-slot
JRTEaKMvpR1dXBveR2RUC
maths
matrices-and-determinants
expansion-of-determinant
Let the number 2,b,c be in an A.P. and<br/> A = $$\left[ {\matrix{ 1 &amp; 1 &amp; 1 \cr 2 &amp; b &amp; c \cr 4 &amp; {{b^2}} &amp; {{c^2}} \cr } } \right]$$. If det(A) $$ \in $$ [2, 16], then c lies in the interval :
[{"identifier": "A", "content": "[2, 3)"}, {"identifier": "B", "content": "[4, 6]"}, {"identifier": "C", "content": "(2 + 2<sup>3/4</sup>, 4)"}, {"identifier": "D", "content": "[3, 2 + 2<sup>3/4</sup>]"}]
["B"]
null
2, b, c are in AP. <br><br>Let common difference = d <br><br>$$ \therefore $$ b = 2 + d and c = 2 + 2d <br><br>|A| = $$\left[ {\matrix{ 1 &amp; 1 &amp; 1 \cr 2 &amp; b &amp; c \cr 4 &amp; {{b^2}} &amp; {{c^2}} \cr } } \right]$$ <br><br>C<sub>2</sub> = C<sub>2</sub> - C<sub>1</sub> <br><br>C<sub>3</sub> = C<sub>3</sub> - C<sub>1</sub> <br><br>= $$\left| {\matrix{ 1 &amp; 0 &amp; 0 \cr 2 &amp; {b - 2} &amp; {c - 2} \cr 4 &amp; {{b^2} - 4} &amp; {{c^2} - 4} \cr } } \right|$$ <br><br>= $$\left( {b - 2} \right)\left( {c - 2} \right)\left| {\matrix{ 1 &amp; 0 &amp; 0 \cr 2 &amp; 1 &amp; 1 \cr 4 &amp; {b + 2} &amp; {c + 2} \cr } } \right|$$ <br><br>= $$\left( {b - 2} \right)\left( {c - 2} \right)\left[ {c + 2 - b - 2} \right]$$ <br><br>= $$\left( {b - 2} \right)\left( {c - 2} \right)\left( {c - b} \right)$$ <br><br>[ As b = 2 + d and c = 2 + 2d, then b - 2 = 4, c - 2 = 2d and c - b = d] <br><br>= (d) (2d) (d) <br><br>= 2d<sup>3</sup> <br><br>Given |A| $$ \in $$ [2, 16] <br><br>$$ \therefore $$ 2d<sup>3</sup> $$ \in $$ [2, 16] <br><br>$$ \Rightarrow $$ d<sup>3</sup> $$ \in $$ [1, 8] <br><br>$$ \Rightarrow $$ d $$ \in $$ [1, 2] <br><br>As c = 2 + 2d <br><br>then c $$ \in $$ [4, 6]
mcq
jee-main-2019-online-8th-april-evening-slot
FIXxORXt1C1lR1l1ZhxXD
maths
matrices-and-determinants
expansion-of-determinant
If   A = $$\left[ {\matrix{ 1 &amp; {\sin \theta } &amp; 1 \cr { - \sin \theta } &amp; 1 &amp; {\sin \theta } \cr { - 1} &amp; { - \sin \theta } &amp; 1 \cr } } \right]$$; <br/><br/>then for all $$\theta $$ $$ \in $$ $$\left( {{{3\pi } \over 4},{{5\pi } \over 4}} \right)$$, det (A) lies in the interval :
[{"identifier": "A", "content": "$$\\left( {{3 \\over 2},3} \\right]$$"}, {"identifier": "B", "content": "$$\\left( {0,{3 \\over 2}} \\right]$$"}, {"identifier": "C", "content": "$$\\left[ {{5 \\over 2},4} \\right)$$"}, {"identifier": "D", "content": "$$\\left( {1,{5 \\over 2}} \\right]$$"}]
["A"]
null
$$\left| A \right| = \left| {\matrix{ 1 &amp; {\sin \theta } &amp; 1 \cr { - \sin \theta } &amp; 1 &amp; {\sin \theta } \cr { - 1} &amp; { - \sin \theta } &amp; 1 \cr } } \right|$$ <br><br>= 2(1 + sin<sup>2</sup>$$\theta $$) <br><br>$$\theta $$ $$ \in $$ $$\left( {{{3\pi } \over 4},{{5\pi } \over 4}} \right) \Rightarrow {1 \over {\sqrt 2 }} &lt; \sin \theta &lt; {1 \over {\sqrt 2 }}$$ <br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;$$ \Rightarrow $$&nbsp;&nbsp;0 $$ \le $$ sin<sup>2</sup>$$\theta $$ &lt; $${1 \over 2}$$ <br><br>$$ \therefore $$&nbsp;&nbsp;$$\left| A \right| \in \left[ {2,3} \right)$$
mcq
jee-main-2019-online-12th-january-evening-slot
o5MdSV4OLnSSysFVE1ztM
maths
matrices-and-determinants
expansion-of-determinant
If  $$\left| {\matrix{ {a - b - c} &amp; {2a} &amp; {2a} \cr {2b} &amp; {b - c - a} &amp; {2b} \cr {2c} &amp; {2c} &amp; {c - a - b} \cr } } \right|$$ <br/><br/>      = (a + b + c) (x + a + b + c)<sup>2</sup>, x $$ \ne $$ 0, <br/><br/>then x is equal to :
[{"identifier": "A", "content": "\u20132(a + b + c)"}, {"identifier": "B", "content": "2(a + b + c)"}, {"identifier": "C", "content": "abc"}, {"identifier": "D", "content": "\u2013(a + b + c)"}]
["A"]
null
$$\left| {\matrix{ {a - b - c} &amp; {2a} &amp; {2a} \cr {2b} &amp; {b - c - a} &amp; {2b} \cr {2c} &amp; {2c} &amp; {c - a - b} \cr } } \right|$$ <br><br>R<sub>1</sub> $$ \to $$ R<sub>1</sub> + R<sub>2</sub> + R<sub>3</sub> <br><br>$$ = \left| {\matrix{ {a + b + c} &amp; {a + b + c} &amp; {a + b + c} \cr {2b} &amp; {b - c - a} &amp; {2b} \cr {2c} &amp; {2c} &amp; {c - a - b} \cr } } \right|$$ <br><br>$$ = \left( {a + b + c} \right)\left| {\matrix{ 1 &amp; 0 &amp; 0 \cr {2b} &amp; { - \left( {a + b + c} \right)} &amp; 0 \cr {2c} &amp; {2c} &amp; {c - a - b} \cr } } \right|$$ <br><br>$$=$$ (a + b + c) (a + b + c)<sup>2</sup> <br><br>$$ \Rightarrow $$&nbsp;&nbsp;x $$=$$ $$-$$ 2(a + b + c)
mcq
jee-main-2019-online-11th-january-evening-slot
jeywfxj9iOKHSYmfc5TKS
maths
matrices-and-determinants
expansion-of-determinant
Let A = $$\left[ {\matrix{ 2 &amp; b &amp; 1 \cr b &amp; {{b^2} + 1} &amp; b \cr 1 &amp; b &amp; 2 \cr } } \right]$$ where b &gt; 0. <br/><br/>Then the minimum value of $${{\det \left( A \right)} \over b}$$ is -
[{"identifier": "A", "content": "$$\\sqrt 3 $$"}, {"identifier": "B", "content": "$$-$$ $$2\\sqrt 3 $$"}, {"identifier": "C", "content": "$$ - \\sqrt 3 $$"}, {"identifier": "D", "content": "$$2\\sqrt 3 $$"}]
["D"]
null
A = $$\left[ {\matrix{ 2 &amp; b &amp; 1 \cr b &amp; {{b^2} + 1} &amp; b \cr 1 &amp; b &amp; 2 \cr } } \right]$$ (b &gt; 0) <br><br>$$\left| A \right|$$ = 2(2b<sup>2</sup> + 2 $$-$$ b<sup>2</sup>) $$-$$ b(2b $$-$$ b) + 1(b<sub>2</sub> $$-$$ b<sub>2</sub> $$-$$ 1) <br><br>$$\left| A \right|$$ = 2(b<sup>2</sup> + 2) $$-$$ b<sup>2</sup> $$-$$ 1 <br><br>$$\left| A \right|$$ = b<sup>2</sup> + 3 <br><br>$${{\left| A \right|} \over b} = b + {3 \over b} \Rightarrow {{b + {3 \over b}} \over 2} \ge \sqrt 3 $$ <br><br>$$b + {3 \over b} \ge 2\sqrt 3 $$
mcq
jee-main-2019-online-10th-january-evening-slot
gZOLcTTnTzFV5f4sTVG6J
maths
matrices-and-determinants
expansion-of-determinant
Let  d $$ \in $$ R, and  <br/><br/>$$A = \left[ {\matrix{ { - 2} &amp; {4 + d} &amp; {\left( {\sin \theta } \right) - 2} \cr 1 &amp; {\left( {\sin \theta } \right) + 2} &amp; d \cr 5 &amp; {\left( {2\sin \theta } \right) - d} &amp; {\left( { - \sin \theta } \right) + 2 + 2d} \cr } } \right],$$ <br/><br/>$$\theta \in \left[ {0,2\pi } \right]$$ If the minimum value of det(A) is 8, then a value of d is -
[{"identifier": "A", "content": "$$-$$ 7"}, {"identifier": "B", "content": "$$2\\left( {\\sqrt 2 + 2} \\right)$$ "}, {"identifier": "C", "content": "$$-$$ 5"}, {"identifier": "D", "content": "$$2\\left( {\\sqrt 2 + 1} \\right)$$"}]
["C"]
null
$$\det A = \left| {\matrix{ { - 2} &amp; {4 + d} &amp; {\sin \theta - 2} \cr 1 &amp; {\sin \theta + 2} &amp; d \cr 5 &amp; {2\sin \theta - d} &amp; { - \sin \theta + 2 + 2d} \cr } } \right|$$ <br><br>(R<sub>1</sub> $$ \to $$ R<sub>1</sub> + R<sub>3</sub> $$-$$ 2R<sub>2</sub>) <br><br>$$ = \left| {\matrix{ 1 &amp; 0 &amp; 0 \cr 1 &amp; {\sin \theta + 2} &amp; d \cr 5 &amp; {2\sin \theta - d} &amp; {2 + 2d - \sin \theta } \cr } } \right|$$ <br><br>= (2 + sin $$\theta $$) ( 2 + 2d $$-$$ sin$$\theta $$) $$-$$ d(2sin$$\theta $$ $$-$$ d) <br><br>= 4 + 4d $$-$$ 2sin$$\theta $$ + 2sin$$\theta $$ + 2dsin$$\theta $$ $$-$$ sin<sup>2</sup>$$\theta $$ $$-$$ 2dsin$$\theta $$ + d<sup>2</sup> <br><br>d<sup>2</sup> + 4d + 4 $$-$$ sin<sup>2</sup>$$\theta $$ <br><br>= (d + 2)<sup>2</sup> $$-$$ sin<sup>2</sup>$$\theta $$ <br><br>For a given d, minimum value of <br><br>det(A) = (d + 2)<sup>2</sup> $$-$$ 1 = 8 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;d = 1 or $$-$$ 5
mcq
jee-main-2019-online-10th-january-morning-slot
HLdljjorhu7gjuwSpEjgy2xukf0wdn0c
maths
matrices-and-determinants
expansion-of-determinant
If $$\Delta $$ = $$\left| {\matrix{ {x - 2} &amp; {2x - 3} &amp; {3x - 4} \cr {2x - 3} &amp; {3x - 4} &amp; {4x - 5} \cr {3x - 5} &amp; {5x - 8} &amp; {10x - 17} \cr } } \right|$$ = <br/><br/>Ax<sup>3</sup> + Bx<sup>2</sup> + Cx + D, then B + C is equal to :
[{"identifier": "A", "content": "-1"}, {"identifier": "B", "content": "-3"}, {"identifier": "C", "content": "9"}, {"identifier": "D", "content": "1"}]
["B"]
null
$$\Delta $$ = $$\left| {\matrix{ {x - 2} &amp; {2x - 3} &amp; {3x - 4} \cr {2x - 3} &amp; {3x - 4} &amp; {4x - 5} \cr {3x - 5} &amp; {5x - 8} &amp; {10x - 17} \cr } } \right|$$ <br><br>R<sub>2</sub> $$ \to $$ R<sub>2</sub> – R<sub>1</sub> <br>R<sub>3</sub> $$ \to $$ R<sub>3</sub> – R<sub>2</sub> <br><br>= $$\left| {\matrix{ {x - 2} &amp; {2x - 3} &amp; {3x - 4} \cr {x - 1} &amp; {x - 1} &amp; {x - 1} \cr {x - 2} &amp; {2\left( {x - 2} \right)} &amp; {6\left( {x - 2} \right)} \cr } } \right|$$ <br><br>= $$\left( {x - 1} \right)\left( {x - 2} \right)\left| {\matrix{ {x - 2} &amp; {2x - 3} &amp; {3x - 4} \cr 1 &amp; 1 &amp; 1 \cr 1 &amp; 2 &amp; 6 \cr } } \right|$$ <br><br>C<sub>1</sub> $$ \to $$ C<sub>1</sub> - C<sub>2</sub> <br>C<sub>2</sub> $$ \to $$ C<sub>2</sub> - C<sub>3</sub> <br><br>= $$\left( {x - 1} \right)\left( {x - 2} \right)\left| {\matrix{ { - x + 1} &amp; { - x + 1} &amp; {3x - 4} \cr 0 &amp; 0 &amp; 1 \cr { - 1} &amp; { - 4} &amp; 6 \cr } } \right|$$ <br><br>= -(x - 1)(x - 2)[-4(1 - x) + 1(1 - x)] <br><br>= -(x<sup>2</sup> - 3x + 2)[3x - 3] <br><br>= -3x<sup>3</sup> + 9x<sup>2</sup> - 6x + 3x<sup>2</sup> - 9x + 6 <br><br>= -3x<sup>3</sup> + 12x<sup>2</sup> - 15x + 6 = Ax<sup>3</sup> + Bx<sup>2</sup> + Cx + D <br><br>$$ \therefore $$ A = -3, B = 12, C = -15 <br><br>$$ \therefore $$ B + C = 12 – 15 = – 3
mcq
jee-main-2020-online-3rd-september-morning-slot
Mq79PZTU58QxMIUvbvjgy2xukg0cuvx2
maths
matrices-and-determinants
expansion-of-determinant
Let $$\theta = {\pi \over 5}$$ and $$A = \left[ {\matrix{ {\cos \theta } &amp; {\sin \theta } \cr { - \sin \theta } &amp; {\cos \theta } \cr } } \right]$$. <br/><br/> If B = A + A<sup>4</sup> , then det (B) :
[{"identifier": "A", "content": "lies in (1, 2)"}, {"identifier": "B", "content": "lies in (2, 3)."}, {"identifier": "C", "content": "is zero.\n"}, {"identifier": "D", "content": "is one."}]
["A"]
null
$$A = \left[ {\matrix{ {\cos \theta } &amp; {\sin \theta } \cr { - \sin \theta } &amp; {\cos \theta } \cr } } \right]$$ <br><br>A<sup>2</sup> = $$\left[ {\matrix{ {\cos \theta } &amp; {\sin \theta } \cr { - \sin \theta } &amp; {\cos \theta } \cr } } \right]$$$$\left[ {\matrix{ {\cos \theta } &amp; {\sin \theta } \cr { - \sin \theta } &amp; {\cos \theta } \cr } } \right]$$ <br><br>$$ \Rightarrow $$ A<sup>2</sup> = $$\left[ {\matrix{ {\cos 2\theta } &amp; {\sin 2\theta } \cr { - \sin 2\theta } &amp; {\cos 2\theta } \cr } } \right]$$ <br><br>Similarly, A<sup>n</sup> = $$\left[ {\matrix{ {\cos n\theta } &amp; {\sin n\theta } \cr { - \sin n\theta } &amp; {\cos n\theta } \cr } } \right]$$ <br><br>$$ \therefore $$ B = A + A<sup>4</sup> <br><br>= $$\left[ {\matrix{ {\cos \theta } &amp; {\sin \theta } \cr { - \sin \theta } &amp; {\cos \theta } \cr } } \right]$$ + $$\left[ {\matrix{ {\cos 4\theta } &amp; {\sin 4\theta } \cr { - \sin 4\theta } &amp; {\cos 4\theta } \cr } } \right]$$ <br><br>= $$\left[ {\matrix{ {\cos 4\theta + \cos \theta } &amp; {\sin 4\theta + \sin \theta } \cr { - \sin 4\theta - \sin \theta } &amp; {\cos 4\theta + \cos \theta } \cr } } \right]$$ <br><br>detB = (cos4$$\theta $$ + cos$$\theta $$)<sup>2</sup> + (sin4$$\theta $$ + sin$$\theta $$)<sup>2</sup> <br><br>= cos<sup>2</sup>4$$\theta $$ + cos<sup>2</sup>$$\theta $$ + 2cos4$$\theta $$ cos$$\theta $$ <br>+ sin<sup>2</sup>4$$\theta $$ + sin2$$\theta $$ + 2sin4$$\theta $$ –sin$$\theta $$ <br><br>= 2 + 2 ( cos4$$\theta $$ cos$$\theta $$ + sin4$$\theta $$ sin$$\theta $$) <br><br>$$ \Rightarrow $$ detB = 2 + 2 cos3$$\theta $$ <br><br>at $$\theta $$ = $${\pi \over 5}$$ <br><br>detB = 2 + 2cos $${{3\pi } \over 5}$$ <br><br> = 2(1 - sin18) <br><br>= 2(1 - $${{\sqrt 5 - 1} \over 4}$$) <br><br>= 2$$\left( {{{5 - \sqrt 5 } \over 4}} \right)$$ <br><br>= $${{{5 - \sqrt 5 } \over 2}}$$ $$ \simeq $$ 1.385 <br><br>$$ \therefore $$ detB $$ \in $$ (1, 2)
mcq
jee-main-2020-online-6th-september-evening-slot
hqjDMffUsigfBYiX0jjgy2xukfuvg3xv
maths
matrices-and-determinants
expansion-of-determinant
Let m and M be respectively the minimum and maximum values of <br/><br/>$$\left| {\matrix{ {{{\cos }^2}x} &amp; {1 + {{\sin }^2}x} &amp; {\sin 2x} \cr {1 + {{\cos }^2}x} &amp; {{{\sin }^2}x} &amp; {\sin 2x} \cr {{{\cos }^2}x} &amp; {{{\sin }^2}x} &amp; {1 + \sin 2x} \cr } } \right|$$ <br/><br/>Then the ordered pair (m, M) is equal to :
[{"identifier": "A", "content": "(\u20133, \u20131)"}, {"identifier": "B", "content": "(\u20134, \u20131)"}, {"identifier": "C", "content": "(1, 3)"}, {"identifier": "D", "content": "(\u20133, 3)"}]
["A"]
null
$$\left| {\matrix{ {{{\cos }^2}x} &amp; {1 + {{\sin }^2}x} &amp; {\sin 2x} \cr {1 + {{\cos }^2}x} &amp; {{{\sin }^2}x} &amp; {\sin 2x} \cr {{{\cos }^2}x} &amp; {{{\sin }^2}x} &amp; {1 + \sin 2x} \cr } } \right|$$ <br><br>R<sub>1</sub> $$ \to $$ R<sub>1</sub> – R<sub>2</sub>, R<sub>2</sub> $$ \to $$ R<sub>2</sub> – R<sub>3</sub> <br><br>$$\left| {\matrix{ { - 1} &amp; 1 &amp; 0 \cr 1 &amp; 0 &amp; { - 1} \cr {{{\cos }^2}x} &amp; {{{\sin }^2}x} &amp; {1 + \sin 2x} \cr } } \right|$$ <br><br>= –1(sin<sup>2</sup> x) – 1(1 + sin2x + cos<sup>2</sup> x) <br><br>= - sin2x - 2 <br><br>$$ \therefore $$ minimum value when sin2x = 1 <br><br>m = - 2 - 1 = -3 <br><br>$$ \therefore $$ Maximum value when sin2x = –1 <br><br> M = -2 + 1 = -1 <br><br>$$ \therefore $$ (m, M) = (–3, –1)
mcq
jee-main-2020-online-6th-september-morning-slot
iTnghvwMsdwXFONHFgjgy2xukfg6qaw0
maths
matrices-and-determinants
expansion-of-determinant
If the minimum and the maximum values of the function $$f:\left[ {{\pi \over 4},{\pi \over 2}} \right] \to R$$, defined by <br/> $$f\left( \theta \right) = \left| {\matrix{ { - {{\sin }^2}\theta } &amp; { - 1 - {{\sin }^2}\theta } &amp; 1 \cr { - {{\cos }^2}\theta } &amp; { - 1 - {{\cos }^2}\theta } &amp; 1 \cr {12} &amp; {10} &amp; { - 2} \cr } } \right|$$ are m and M respectively, then the ordered pair (m,M) is equal to :
[{"identifier": "A", "content": "$$\\left( {0,2\\sqrt 2 } \\right)$$"}, {"identifier": "B", "content": "(-4, 0)\n"}, {"identifier": "C", "content": "(-4, 4)"}, {"identifier": "D", "content": "(0, 4)"}]
["B"]
null
Given <br>$$f\left( \theta \right) = \left| {\matrix{ { - {{\sin }^2}\theta } &amp; { - 1 - {{\sin }^2}\theta } &amp; 1 \cr { - {{\cos }^2}\theta } &amp; { - 1 - {{\cos }^2}\theta } &amp; 1 \cr {12} &amp; {10} &amp; { - 2} \cr } } \right|$$ <br><br>C<sub>1</sub> $$ \to $$ C<sub>1</sub> – C<sub>2</sub> , C<sub>3</sub> $$ \to $$ C<sub>3</sub> + C<sub>2</sub> <br><br>= $$\left| {\matrix{ 1 &amp; { - 1 - {{\sin }^2}\theta } &amp; { - {{\sin }^2}\theta } \cr 1 &amp; { - 1 - {{\cos }^2}\theta } &amp; { - {{\cos }^2}\theta } \cr 2 &amp; {10} &amp; 8 \cr } } \right|$$ <br><br>C<sub>2</sub> $$ \to $$ C<sub>2</sub> – C<sub>3</sub> <br><br>= $$\left| {\matrix{ 1 &amp; { - 1} &amp; { - {{\sin }^2}\theta } \cr 1 &amp; { - 1} &amp; { - {{\cos }^2}\theta } \cr 2 &amp; 2 &amp; 8 \cr } } \right|$$ <br><br>= 1(2cos<sup>2</sup>$$\theta $$ – 8) + (8 + 2cos<sup>2</sup>$$\theta $$) – 4sin<sup>2</sup>$$\theta $$ <br><br>= 4cos<sup>2</sup>$$\theta $$ - 4cos<sup>2</sup>$$\theta $$ <br><br>= 4 cos 2$$\theta $$ <br><br>$$\theta $$ $$ \in $$ $$\left[ {{\pi \over 4},{\pi \over 2}} \right]$$ <br><br>$$ \Rightarrow $$ 2$$\theta $$ $$ \in $$ $$\left[ {{\pi \over 2},{\pi }} \right]$$ <br><br>$$ \Rightarrow $$ cos 2$$\theta $$ $$ \in $$ [-1, 0] <br><br>$$ \Rightarrow $$ 4cos 2$$\theta $$ $$ \in $$ [-4, 0] <br><br>$$ \Rightarrow $$ $$f\left( \theta \right)$$ $$ \in $$ [-4, 0] <br><br>$$ \therefore $$ (m, M) = (–4, 0)
mcq
jee-main-2020-online-5th-september-morning-slot
ySPeAUbfr63EfeVlQdjgy2xukfqb5abj
maths
matrices-and-determinants
expansion-of-determinant
If a + x = b + y = c + z + 1, where a, b, c, x, y, z<br/> are non-zero distinct real numbers, then <br/>$$\left| {\matrix{ x &amp; {a + y} &amp; {x + a} \cr y &amp; {b + y} &amp; {y + b} \cr z &amp; {c + y} &amp; {z + c} \cr } } \right|$$ is equal to :
[{"identifier": "A", "content": "y(b \u2013 a)"}, {"identifier": "B", "content": "y(a \u2013 b)"}, {"identifier": "C", "content": "y(a \u2013 c)"}, {"identifier": "D", "content": "0"}]
["B"]
null
$$\left| {\matrix{ x &amp; {a + y} &amp; {x + a} \cr y &amp; {b + y} &amp; {y + b} \cr z &amp; {c + y} &amp; {z + c} \cr } } \right|$$ <br><br>C<sub>3</sub> $$ \to $$ C<sub>3</sub> – C<sub>1</sub> <br><br>= $$\left| {\matrix{ x &amp; {a + y} &amp; a \cr y &amp; {b + y} &amp; b \cr z &amp; {c + y} &amp; c \cr } } \right|$$ <br><br>C<sub>2</sub> $$ \to $$ C<sub>2</sub> – C<sub>3</sub> <br><br>= $$\left| {\matrix{ x &amp; y &amp; a \cr y &amp; y &amp; b \cr z &amp; y &amp; c \cr } } \right|$$ <br><br>R<sub>3</sub> $$ \to $$ R<sub>3</sub> – R<sub>1</sub>, R<sub>2</sub> $$ \to $$ R<sub>2</sub> – R<sub>1</sub> <br><br>= $$\left| {\matrix{ x &amp; y &amp; a \cr {y - x} &amp; 0 &amp; {b - a} \cr {z - x} &amp; 0 &amp; {c - a} \cr } } \right|$$ <br><br>= (–y)[(y – x) (c – a) – (b – a) (z – x)] <br><br>Given, a + x = b + y = c + z + 1 <br><br>= (–y)[(a – b) (c – a) + (a – b) (a – c – 1)] <br><br>= (–y)[(a – b) (c – a) + (a – b) (a – c) + b – a) <br><br>= –y(b – a) = y(a – b)
mcq
jee-main-2020-online-5th-september-evening-slot
t8IVACMgbcUbnsFcWz1klt7w2kq
maths
matrices-and-determinants
expansion-of-determinant
Let A be a 3 $$\times$$ 3 matrix with det(A) = 4. Let R<sub>i</sub> denote the i<sup>th</sup> row of A. If a matrix B is obtained by performing the operation R<sub>2</sub> $$ \to $$ 2R<sub>2</sub> + 5R<sub>3</sub> on 2A, then det(B) is equal to :
[{"identifier": "A", "content": "64"}, {"identifier": "B", "content": "16"}, {"identifier": "C", "content": "128"}, {"identifier": "D", "content": "80"}]
["A"]
null
$$A = \left[ {\matrix{ {{R_{11}}} &amp; {{R_{12}}} &amp; {{R_{13}}} \cr {{R_{21}}} &amp; {{R_{22}}} &amp; {{R_{23}}} \cr {{R_{31}}} &amp; {{R_{32}}} &amp; {{R_{33}}} \cr } } \right]$$<br><br>$$2A = \left[ {\matrix{ {2{R_{11}}} &amp; {2{R_{12}}} &amp; {2{R_{13}}} \cr {2{R_{21}}} &amp; {2{R_{22}}} &amp; {2{R_{23}}} \cr {2{R_{31}}} &amp; {2{R_{32}}} &amp; {2{R_{33}}} \cr } } \right]$$<br><br>$${R_2} \to 2{R_2} + 5{R_3}$$<br><br>$$B = \left[ {\matrix{ {2{R_{11}}} &amp; {2{R_{12}}} &amp; {2{R_{13}}} \cr {4{R_{21}} + 10{R_{31}}} &amp; {4{R_{22}} + 10{R_{32}}} &amp; {4{R_{23}} + 10{R_{33}}} \cr {2{R_{31}}} &amp; {2{R_{32}}} &amp; {2{R_{33}}} \cr } } \right]$$<br><br>$${R_2} \to {R_2} - 5{R_3}$$<br><br>$$B = \left[ {\matrix{ {2{R_{11}}} &amp; {2{R_{12}}} &amp; {2{R_{13}}} \cr {4{R_{21}}} &amp; {4{R_{22}}} &amp; {4{R_{23}}} \cr {2{R_{31}}} &amp; {2{R_{32}}} &amp; {2{R_{33}}} \cr } } \right]$$<br><br>$$\left| B \right| = \left[ {\matrix{ {2{R_{11}}} &amp; {2{R_{12}}} &amp; {2{R_{13}}} \cr {4{R_{21}}} &amp; {4{R_{22}}} &amp; {4{R_{23}}} \cr {2{R_{31}}} &amp; {2{R_{32}}} &amp; {2{R_{33}}} \cr } } \right]$$<br><br>$$\left| B \right| = 2 \times 2 \times 4\left| {\matrix{ {{R_{11}}} &amp; {{R_{12}}} &amp; {{R_{13}}} \cr {{R_{21}}} &amp; {{R_{22}}} &amp; {{R_{23}}} \cr {{R_{31}}} &amp; {{R_{32}}} &amp; {{R_{33}}} \cr } } \right|$$<br><br>$$ = 16 \times 4$$<br><br>$$ = 64$$
mcq
jee-main-2021-online-25th-february-evening-slot
5wV2M9p2j0ePQcEpT21klugwy2o
maths
matrices-and-determinants
expansion-of-determinant
The value of $$\left| {\matrix{ {(a + 1)(a + 2)} &amp; {a + 2} &amp; 1 \cr {(a + 2)(a + 3)} &amp; {a + 3} &amp; 1 \cr {(a + 3)(a + 4)} &amp; {a + 4} &amp; 1 \cr } } \right|$$ is :
[{"identifier": "A", "content": "$$-$$2"}, {"identifier": "B", "content": "0"}, {"identifier": "C", "content": "(a + 2)(a + 3)(a + 4)"}, {"identifier": "D", "content": "(a + 1)(a + 2)(a + 3)"}]
["A"]
null
Given, $$\Delta $$ = $$\left| {\matrix{ {(a + 1)(a + 2)} &amp; {a + 2} &amp; 1 \cr {(a + 2)(a + 3)} &amp; {a + 3} &amp; 1 \cr {(a + 3)(a + 4)} &amp; {a + 4} &amp; 1 \cr } } \right|$$ <br><br>R<sub>2</sub> $$ \to $$ R<sub>2</sub> $$-$$ R<sub>1</sub> and R<sub>3</sub> $$ \to $$ R<sub>3</sub> $$-$$ R<sub>1</sub><br><br>$$\Delta$$ = $$\left| {\matrix{ {(a + 1)(a + 2)} &amp; {a + 2} &amp; 1 \cr {(a + 2)(a + 3 - a - 1)} &amp; 1 &amp; 0 \cr {{a^2} + 7a + 12 - {a^2} - 3a - 2} &amp; 2 &amp; 0 \cr } } \right|$$<br><br>$$ = \left| {\matrix{ {{a^2} + 3a + 2} &amp; {a + 2} &amp; 1 \cr {2(a + 2)} &amp; 1 &amp; 0 \cr {4a + 10} &amp; 2 &amp; 0 \cr } } \right|$$<br><br>$$ = 4(a + 2) - 4a - 10$$<br><br>$$ = 4a + 8 - 4a - 10 = - 2$$
mcq
jee-main-2021-online-26th-february-morning-slot
A4GUzTtASNdDS8C3KA1kmknd2bm
maths
matrices-and-determinants
expansion-of-determinant
If x, y, z are in arithmetic progression with common difference d, x $$\ne$$ 3d, and the determinant of the matrix $$\left[ {\matrix{ 3 &amp; {4\sqrt 2 } &amp; x \cr 4 &amp; {5\sqrt 2 } &amp; y \cr 5 &amp; k &amp; z \cr } } \right]$$ is zero, then the value of k<sup>2</sup> is :
[{"identifier": "A", "content": "72"}, {"identifier": "B", "content": "12"}, {"identifier": "C", "content": "36"}, {"identifier": "D", "content": "6"}]
["A"]
null
$$\left| {\matrix{ 3 &amp; {4\sqrt 2 } &amp; x \cr 4 &amp; {5\sqrt 2 } &amp; y \cr 5 &amp; k &amp; z \cr } } \right| = 0$$<br><br>$${R_1} \to {R_1} + {R_3} - 2{R_2}$$<br><br>$$ \Rightarrow $$ $$\left| {\matrix{ 0 &amp; {4\sqrt 2 - k - 10\sqrt 2 } &amp; 0 \cr 4 &amp; {5\sqrt 2 } &amp; y \cr 5 &amp; k &amp; z \cr } } \right| = 0$$ { $$ \because $$ 2y = x + z}<br><br>$$ \Rightarrow (k - 6\sqrt 2 )(4z - 5y) = 0$$<br><br>$$ \Rightarrow $$ k = $$6\sqrt 2 $$ or 4z = 5y (Not possible $$ \because $$ x, y, z in A.P.)<br><br>So, k<sup>2</sup> = 72<br><br>$$ \therefore $$ Option (A)
mcq
jee-main-2021-online-17th-march-evening-shift
J4wCNBxubchEpe31cN1kmko0m1s
maths
matrices-and-determinants
expansion-of-determinant
If 1, log<sub>10</sub>(4<sup>x</sup> $$-$$ 2) and log<sub>10</sub>$$\left( {{4^x} + {{18} \over 5}} \right)$$ are in arithmetic progression for a real number x, then the value of the determinant $$\left| {\matrix{ {2\left( {x - {1 \over 2}} \right)} &amp; {x - 1} &amp; {{x^2}} \cr 1 &amp; 0 &amp; x \cr x &amp; 1 &amp; 0 \cr } } \right|$$ is equal to :
[]
null
2
1, $$lo{g_{10}}({4^x} - 2),\,lo{g_{10}}\left( {{4^x} + {{18} \over 5}} \right)$$ in AP.<br><br>$$ \therefore $$ 2$$ \times $$$$lo{g_{10}}({4^x} - 2) = 1 + \,lo{g_{10}}\left( {{4^x} + {{18} \over 5}} \right)$$ <br><br>$$lo{g_{10}}{({4^x} - 2)^2} = \,lo{g_{10}}\left( {10.\left( {{4^x} + {{18} \over 5}} \right)} \right)$$<br><br>$${({4^x} - 2)^2} = 10.\left( {{4^x} + {{18} \over 5}} \right)$$<br><br>$${({4^x})^2} + 4 - {4.4^x} = {10.4^x} + 36$$<br><br>$${({4^x})^2} - {14.4^x} - 32 = 0$$<br><br>$${({4^x})^2} + {2.4^x} - {16.4^x} - 32 = 0$$<br><br>$${4^x}({4^x} + 2) - 16.({4^x} + 2) = 0$$<br><br>$$({4^x} + 2)({4^x} - 16) = 0$$<br><br>4<sup>x</sup> = -2 (Not Possible) <br><br>Or 4<sup>x</sup> = 16 <br><br>$$ \Rightarrow $$ x = 2<br><br>Therefore $$\left| {\matrix{ {2(x - 1/2)} &amp; {x - 1} &amp; {{x^2}} \cr 1 &amp; 0 &amp; x \cr x &amp; 1 &amp; 0 \cr } } \right|$$<br><br>$$ = \left| {\matrix{ 3 &amp; 1 &amp; 4 \cr 1 &amp; 0 &amp; 2 \cr 2 &amp; 1 &amp; 0 \cr } } \right|$$<br><br>$$ = 3( - 2) - 1(0 - 4) + 4(1 - 0)$$<br><br>$$ = - 6 + 4 + 4 = 2$$
integer
jee-main-2021-online-17th-march-evening-shift
0v6oV602XmCfWdoQV31kmli3lt0
maths
matrices-and-determinants
expansion-of-determinant
The solutions of the equation $$\left| {\matrix{ {1 + {{\sin }^2}x} &amp; {{{\sin }^2}x} &amp; {{{\sin }^2}x} \cr {{{\cos }^2}x} &amp; {1 + {{\cos }^2}x} &amp; {{{\cos }^2}x} \cr {4\sin 2x} &amp; {4\sin 2x} &amp; {1 + 4\sin 2x} \cr } } \right| = 0,(0 &lt; x &lt; \pi )$$, are
[{"identifier": "A", "content": "$${\\pi \\over {12}},{\\pi \\over 6}$$"}, {"identifier": "B", "content": "$${\\pi \\over 6},{{5\\pi } \\over 6}$$"}, {"identifier": "C", "content": "$${{5\\pi } \\over {12}},{{7\\pi } \\over {12}}$$"}, {"identifier": "D", "content": "$${{7\\pi } \\over {12}},{{11\\pi } \\over {12}}$$"}]
["D"]
null
By using C<sub>1</sub> $$ \to $$ C<sub>1</sub> $$-$$ C<sub>2</sub> and C<sub>3</sub> $$ \to $$ C<sub>3</sub> $$-$$ C<sub>2</sub> we get<br><br>$$\left| {\matrix{ 1 &amp; {{{\sin }^2}x} &amp; 0 \cr { - 1} &amp; {1 + {{\cos }^2}x} &amp; { - 1} \cr 0 &amp; {4\sin 2x} &amp; 1 \cr } } \right| = 0$$<br><br>Expanding by R<sub>1</sub> we get<br><br>$$1(1 + {\cos ^2}x + 4\sin 2x) - {\sin ^2}x( - 1) = 0$$<br><br>$$ \Rightarrow 2 + 4\sin 2x = 0$$<br><br>$$ \Rightarrow \sin 2x = {{ - 1} \over 2}$$<br><br>$$ \Rightarrow 2x = n\pi + {( - 1)^n}\left( {{{ - \pi } \over 6}} \right),n \in Z$$<br><br>$$ \therefore $$ $$2x = {{7\pi } \over 6},{{11\pi } \over 6} $$<br><br>$$\Rightarrow x = {{7\pi } \over {12}},{{11\pi } \over 2}$$
mcq
jee-main-2021-online-18th-march-morning-shift
b29ZvX12aHiapPJUir1kmm46ruq
maths
matrices-and-determinants
expansion-of-determinant
Let I be an identity matrix of order 2 $$\times$$ 2 and P = $$\left[ {\matrix{ 2 &amp; { - 1} \cr 5 &amp; { - 3} \cr } } \right]$$. Then the value of n$$\in$$N for which P<sup>n</sup> = 5I $$-$$ 8P is equal to ____________.
[]
null
6
$$P = \left[ {\matrix{ 2 &amp; { - 1} \cr 5 &amp; { - 3} \cr } } \right]$$<br><br>$$\left| {\matrix{ {2 - \lambda } &amp; { - 1} \cr 5 &amp; { - 3 - \lambda } \cr } } \right| = 0$$<br><br>$$ \Rightarrow $$ $$\lambda$$<sup>2</sup> + $$\lambda$$ $$-$$ 1 = 0<br><br>$$ \Rightarrow $$ P<sup>2</sup> + P $$-$$ I = 0<br><br>$$ \Rightarrow $$ P<sup>2</sup> = I $$-$$ P<br><br>$$ \Rightarrow $$ P<sup>4</sup> = I + P<sup>2</sup> $$-$$ 2P<br><br>$$ \Rightarrow $$ P<sup>4</sup> = 2I $$-$$ 3P<br><br>Now, P<sup>4</sup> . P<sup>2</sup> = (2I $$-$$ 3P)(I $$-$$ P) = 2I $$-$$ 5P + 3P<sup>2</sup><br><br>$$ \Rightarrow $$ P<sup>6</sup> = 5I $$-$$ 8P<br><br>So n = 6
integer
jee-main-2021-online-18th-march-evening-shift
1krq1a1sm
maths
matrices-and-determinants
expansion-of-determinant
Let a, b, c, d in arithmetic progression with common difference $$\lambda$$. If $$\left| {\matrix{ {x + a - c} &amp; {x + b} &amp; {x + a} \cr {x - 1} &amp; {x + c} &amp; {x + b} \cr {x - b + d} &amp; {x + d} &amp; {x + c} \cr } } \right| = 2$$, then value of $$\lambda$$<sup>2</sup> is equal to ________________.
[]
null
1
$$\left| {\matrix{ {x + a - c} &amp; {x + b} &amp; {x + a} \cr {x - 1} &amp; {x + c} &amp; {x + b} \cr {x - b + d} &amp; {x + d} &amp; {x + c} \cr } } \right| = 2$$<br><br>$${C_2} \to {C_2} - {C_3}$$<br><br>$$ \Rightarrow \left| {\matrix{ {x - 2\lambda } &amp; \lambda &amp; {x + a} \cr {x - 1} &amp; \lambda &amp; {x + b} \cr {x + 2\lambda } &amp; \lambda &amp; {x + c} \cr } } \right| = 2$$<br><br>$${R_2} \to {R_2} - {R_1},{R_3} \to {R_3} - {R_1}$$<br><br>$$ \Rightarrow \left| {\matrix{ {x - 2\lambda } &amp; 1 &amp; {x + a} \cr {2\lambda - 1} &amp; 0 &amp; \lambda \cr {4\lambda } &amp; 0 &amp; {2\lambda } \cr } } \right| = 2$$<br><br>$$ \Rightarrow 1(4{\lambda ^2} - 4{\lambda ^2} + 2\lambda ) = 2$$<br><br>$$ \Rightarrow {\lambda ^2} = 1$$
integer
jee-main-2021-online-20th-july-morning-shift
1krzmszlz
maths
matrices-and-determinants
expansion-of-determinant
The number of distinct real roots <br/><br/>of $$\left| {\matrix{ {\sin x} &amp; {\cos x} &amp; {\cos x} \cr {\cos x} &amp; {\sin x} &amp; {\cos x} \cr {\cos x} &amp; {\cos x} &amp; {\sin x} \cr } } \right| = 0$$ in the interval $$ - {\pi \over 4} \le x \le {\pi \over 4}$$ is :
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "3"}]
["B"]
null
$$\left| {\matrix{ {\sin x} &amp; {\cos x} &amp; {\cos x} \cr {\cos x} &amp; {\sin x} &amp; {\cos x} \cr {\cos x} &amp; {\cos x} &amp; {\sin x} \cr } } \right| = 0, - {\pi \over 4} \le x \le {\pi \over 4}$$<br><br>Apply : $${R_1} \to {R_1} - {R_2}$$ &amp; $${R_2} \to {R_2} - {R_3}$$<br><br>$$ \Rightarrow $$ $$\left| {\matrix{ {\sin x - \cos x} &amp; {\cos x - \sin x} &amp; 0 \cr 0 &amp; {\sin x - \cos x} &amp; {\cos x - \sin x} \cr {\cos x} &amp; {\cos x} &amp; {\sin x} \cr } } \right| = 0$$<br><br>$$ \Rightarrow $$ $${(\sin x - \cos x)^2}\left| {\matrix{ 1 &amp; { - 1} &amp; 0 \cr 0 &amp; 1 &amp; { - 1} \cr {\cos x} &amp; {\cos x} &amp; {\sin x} \cr } } \right| = 0$$<br><br>$$ \Rightarrow $$ $${(\sin x - \cos x)^2}(\sin x + 2\cos x) = 0$$<br><br>$$\therefore$$ $$x = {\pi \over 4}$$
mcq
jee-main-2021-online-25th-july-evening-shift
1ks0ch3dj
maths
matrices-and-determinants
expansion-of-determinant
Let $$f(x) = \left| {\matrix{ {{{\sin }^2}x} &amp; { - 2 + {{\cos }^2}x} &amp; {\cos 2x} \cr {2 + {{\sin }^2}x} &amp; {{{\cos }^2}x} &amp; {\cos 2x} \cr {{{\sin }^2}x} &amp; {{{\cos }^2}x} &amp; {1 + \cos 2x} \cr } } \right|,x \in [0,\pi ]$$. Then the maximum value of f(x) is equal to ______________.
[]
null
6
$$\left| {\matrix{ { - 2} &amp; { - 2} &amp; 0 \cr 2 &amp; 0 &amp; { - 1} \cr {{{\sin }^2}x} &amp; {{{\cos }^2}x} &amp; {1 + \cos 2x} \cr } } \right|\left( \matrix{ {R_1} \to {R_1} - {R_2} \hfill \cr \&amp; \,{R_2} \to {R_2} - {R_3} \hfill \cr} \right)$$<br><br>= $$ - 2({\cos ^2}x) + 2(2 + 2\cos 2x + {\sin ^2}x)$$<br><br>= $$4 + 4\cos 2x - 2({\cos ^2}x - {\sin ^2}x)$$<br><br>$$ \therefore $$ $$f(x) = 4 + \underbrace {2\cos 2x}_{\max = 1}$$<br><br>$$ \Rightarrow $$ $$f{(x)_{\max }} = 4 + 2 = 6$$
integer
jee-main-2021-online-27th-july-morning-shift
1ktfw40qs
maths
matrices-and-determinants
expansion-of-determinant
Let $$A = \left( {\matrix{ {[x + 1]} &amp; {[x + 2]} &amp; {[x + 3]} \cr {[x]} &amp; {[x + 3]} &amp; {[x + 3]} \cr {[x]} &amp; {[x + 2]} &amp; {[x + 4]} \cr } } \right)$$, where [t] denotes the greatest integer less than or equal to t. If det(A) = 192, then the set of values of x is the interval :
[{"identifier": "A", "content": "[68, 69)"}, {"identifier": "B", "content": "[62, 63)"}, {"identifier": "C", "content": "[65, 66)"}, {"identifier": "D", "content": "[60, 61)"}]
["B"]
null
$$\left| {\matrix{ {[x + 1]} &amp; {[x + 2]} &amp; {[x + 3]} \cr {[x]} &amp; {[x + 3]} &amp; {[x + 3]} \cr {[x]} &amp; {[x + 2]} &amp; {[x + 4]} \cr } } \right| = 192$$<br><br>R<sub>1</sub> $$\to$$ R<sub>1</sub> $$-$$ R<sub>3</sub> &amp; R<sub>2</sub> $$\to$$ R<sub>2</sub> $$-$$ R<sub>3</sub><br><br>$$\left[ {\matrix{ 1 &amp; 0 &amp; { - 1} \cr 0 &amp; 1 &amp; { - 1} \cr {[x]} &amp; {[x] + 2} &amp; {[x] + 4} \cr } } \right] = 192$$<br><br>$$2[x] + 6 + [x] = 192 \Rightarrow [x] = 62$$
mcq
jee-main-2021-online-27th-august-evening-shift
1ktirfw8s
maths
matrices-and-determinants
expansion-of-determinant
If $${a_r} = \cos {{2r\pi } \over 9} + i\sin {{2r\pi } \over 9}$$, r = 1, 2, 3, ....., i = $$\sqrt { - 1} $$, then<br/> the determinant $$\left| {\matrix{ {{a_1}} &amp; {{a_2}} &amp; {{a_3}} \cr {{a_4}} &amp; {{a_5}} &amp; {{a_6}} \cr {{a_7}} &amp; {{a_8}} &amp; {{a_9}} \cr } } \right|$$ is equal to :
[{"identifier": "A", "content": "a<sub>2</sub>a<sub>6</sub> $$-$$ a<sub>4</sub>a<sub>8</sub>"}, {"identifier": "B", "content": "a<sub>9</sub>"}, {"identifier": "C", "content": "a<sub>1</sub>a<sub>9</sub> $$-$$ a<sub>3</sub>a<sub>7</sub>"}, {"identifier": "D", "content": "a<sub>5</sub>"}]
["C"]
null
$${a_r} = {e^{{{i2\pi r} \over 9}}}$$, r = 1, 2, 3, ......, a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>, ..... are in G.P.<br><br>$$\left| {\matrix{ {{a_1}} &amp; {{a_2}} &amp; {{a_3}} \cr {{a_n}} &amp; {{a_5}} &amp; {{a_6}} \cr {{a_7}} &amp; {{a_8}} &amp; {{a_9}} \cr } } \right| = \left| {\matrix{ {{a_1}} &amp; {a_1^2} &amp; {a_1^3} \cr {a_1^4} &amp; {a_1^5} &amp; {a_1^6} \cr {a_1^7} &amp; {a_1^8} &amp; {a_1^9} \cr } } \right| $$ <br><br>$$= {a_1}\,.\,a_1^4\,.\,a_1^7\left| {\matrix{ 1 &amp; {{a_1}} &amp; {a_1^2} \cr 1 &amp; {{a_1}} &amp; {a_1^2} \cr 1 &amp; {{a_1}} &amp; {a_1^2} \cr } } \right| = 0$$<br><br>Now, $${a_1}{a_9} - {a_3}{a_7} = {a_1}^{10} - {a_1}^{10} = 0$$
mcq
jee-main-2021-online-31st-august-morning-shift
1l5vzbklz
maths
matrices-and-determinants
expansion-of-determinant
<p>Let $$A = \left[ {\matrix{ 1 &amp; { - 2} &amp; \alpha \cr \alpha &amp; 2 &amp; { - 1} \cr } } \right]$$ and $$B = \left[ {\matrix{ 2 &amp; \alpha \cr { - 1} &amp; 2 \cr 4 &amp; { - 5} \cr } } \right],\,\alpha \in C$$. Then the absolute value of the sum of all values of $$\alpha$$ for which det(AB) = 0 is :</p>
[{"identifier": "A", "content": "3"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "5"}]
["A"]
null
<p>Given,</p> <p>$$A = \left[ {\matrix{ 1 & { - 2} & \alpha \cr \alpha & 2 & { - 1} \cr } } \right]$$</p> <p>and $$B = \left[ {\matrix{ 2 & \alpha \cr { - 1} & 2 \cr 4 & { - 5} \cr } } \right]$$</p> <p>$$AB = \left[ {\matrix{ 1 & { - 2} & \alpha \cr \alpha & 2 & { - 1} \cr } } \right]\left[ {\matrix{ 2 & \alpha \cr { - 1} & 2 \cr 4 & { - 5} \cr } } \right]$$</p> <p>$$ = \left[ {\matrix{ {4 + 4\alpha } & { - 4\alpha - 4} \cr {2\alpha - 6} & {{\alpha ^2} + 9} \cr } } \right]$$</p> <p>Given,</p> <p>$$|AB| = 0$$</p> <p>$$\therefore$$ $$\left| {\matrix{ {4 + 4\alpha } & { - 4\alpha - 4} \cr {2\alpha - 6} & {{\alpha ^2} + 9} \cr } } \right| = 0$$</p> <p>$$ \Rightarrow (4\alpha + 4)\left| {\matrix{ 1 & { - 1} \cr {2\alpha - 6} & {{\alpha ^2} + 9} \cr } } \right| = 0$$</p> <p>$$ \Rightarrow (4\alpha + 4)({\alpha ^2} + 9 + 2\alpha - 6) = 0$$</p> <p>$$ \Rightarrow (4\alpha + 4)({\alpha ^2} + 2\alpha + 3) = 0$$</p> <p>$$\therefore$$ $$\alpha - = - 1$$</p> <p>or $${\alpha ^2} + 2\alpha + 3 = 0$$</p> <p>$${\alpha _1} + {\alpha _2} = - 2$$</p> <p>$$\therefore$$ Sum of all values of $$\alpha = - 1 - 2 = - 3$$</p> <p>$$\therefore$$ Absolute value of $$\alpha = | - 3| = 3$$</p>
mcq
jee-main-2022-online-30th-june-morning-shift
1l6p3o4ow
maths
matrices-and-determinants
expansion-of-determinant
<p>Let p and p + 2 be prime numbers and let</p> <p>$$ \Delta=\left|\begin{array}{ccc} \mathrm{p} ! &amp; (\mathrm{p}+1) ! &amp; (\mathrm{p}+2) ! \\ (\mathrm{p}+1) ! &amp; (\mathrm{p}+2) ! &amp; (\mathrm{p}+3) ! \\ (\mathrm{p}+2) ! &amp; (\mathrm{p}+3) ! &amp; (\mathrm{p}+4) ! \end{array}\right| $$</p> <p>Then the sum of the maximum values of $$\alpha$$ and $$\beta$$, such that $$\mathrm{p}^{\alpha}$$ and $$(\mathrm{p}+2)^{\beta}$$ divide $$\Delta$$, is __________.</p>
[]
null
4
<p>$$\Delta = \left| {\matrix{ {p!} & {(p + 1)!} & {(p + 2)!} \cr {(p + 1)!} & {(p + 2)!} & {(p + 3)!} \cr {(p + 2)!} & {(p + 3)!} & {(p + 4)!} \cr } } \right|$$</p> <p>$$ = p!\,.\,(p + 1)!\,.\,(p + 2)!\left| {\matrix{ 1 & {(p + 1)} & {(p + 1)(p + 2)} \cr 1 & {(p + 2)} & {(p + 2)(p + 3)} \cr 1 & {(p + 3)} & {(p + 3)(p + 4)} \cr } } \right|$$</p> <p>$$ = p!\,.\,(p + 1)!\,.\,(p + 2)!\left| {\matrix{ 1 & {p + 1} & {{p^2} + 3p + 2} \cr 0 & 1 & {2p + 4} \cr 0 & 1 & {2p + 6} \cr } } \right|$$</p> <p>$$ = 2(p!)\,.\,\left( {(p + 1)!} \right)\,.\,\left( {(p + 2)!} \right)$$</p> <p>$$ = 2(p + 1)\,.\,{(p!)^2}\,.\,\left( {(p + 2)!} \right)$$</p> <p>$$ = 2{(p + 1)^2}\,.\,{(p!)^3}\,.\,\left( {(p + 2)!} \right)$$</p> <p>$$\therefore$$ Maximum value of $$\alpha$$ is 3 and $$\beta$$ is 1.</p> <p>$$\therefore$$ $$\alpha + \beta = 4$$</p>
integer
jee-main-2022-online-29th-july-morning-shift
1ldv34755
maths
matrices-and-determinants
expansion-of-determinant
<p>Let $$\mathrm{A_1,A_2,A_3}$$ be the three A.P. with the same common difference d and having their first terms as $$\mathrm{A,A+1,A+2}$$, respectively. Let a, b, c be the $$\mathrm{7^{th},9^{th},17^{th}}$$ terms of $$\mathrm{A_1,A_2,A_3}$$, respective such that $$\left| {\matrix{ a &amp; 7 &amp; 1 \cr {2b} &amp; {17} &amp; 1 \cr c &amp; {17} &amp; 1 \cr } } \right| + 70 = 0$$.</p> <p>If $$a=29$$, then the sum of first 20 terms of an AP whose first term is $$c-a-b$$ and common difference is $$\frac{d}{12}$$, is equal to ___________.</p>
[]
null
495
$a=A+6 d$ <br/><br/> $$ \begin{aligned} & b=A+8 d+1 \\\\ & c=A+16 d+2 \\\\ & \left|\begin{array}{ccc} a & 7 & 1 \\ 26 & 17 & 1 \\ c & 17 & 1 \end{array}\right|=-70 \\\\ & \Rightarrow\left|\begin{array}{ccc} A+6 d & 7 & 1 \\ 2 A+16 d+2 & 17 & 1 \\ A+16 d+2 & 17 & 1 \end{array}\right|=-70 \\\\ & R_{3} \rightarrow R_{3}-R_{2}, \quad R_{2} \rightarrow R_{2}-R_{1} \\\\ & \Rightarrow\left|\begin{array}{ccc} A+6 d & 7 & 1 \\ A+10 d+2 & 10 & 0 \\ -A & 0 & 0 \end{array}\right|=-70 \end{aligned} $$ <br/><br/> $$ \begin{aligned} \Rightarrow \quad & A=-7 \\\\ & a=A+6 d=29 \Rightarrow d=6 \\\\ & b=-7+48+1=42 \\\\ & c=-7+96+2=91 \\\\ & c-a-b=91-29-42=20 \\\\ & \text { Sum }=\frac{20}{2}\left[2 \times 20+19 \times \frac{6}{12}\right]=10\left[40+\frac{19}{2}\right]=495 \end{aligned} $$
integer
jee-main-2023-online-25th-january-morning-shift
1lgrghmb3
maths
matrices-and-determinants
expansion-of-determinant
<p>Let $$\mathrm{D}_{\mathrm{k}}=\left|\begin{array}{ccc}1 &amp; 2 k &amp; 2 k-1 \\ n &amp; n^{2}+n+2 &amp; n^{2} \\ n &amp; n^{2}+n &amp; n^{2}+n+2\end{array}\right|$$. If $$\sum_\limits{k=1}^{n} \mathrm{D}_{\mathrm{k}}=96$$, then $$n$$ is equal to _____________.</p>
[]
null
6
$$ \begin{aligned} & \sum_{k=1}^n D_k=\left|\begin{array}{ccc} \sum 1 & 2 \sum k & 2 \sum k-\sum 1 \\ n & n^2+n+2 & n^2 \\ n & n^2+n & n^2+n+2 \end{array}\right| \\\\ & =\left|\begin{array}{ccc} n & n(n+1) & n^2 \\ n & n^2+n+2 & n^2 \\ n & n^2+n & n^2+n+2 \end{array}\right| \\\\ & =\left|\begin{array}{ccc} 0 & -2 & 0 \\ 0 & 2 & -n-2 \\ n & n^2+n & n^2+n+2 \end{array}\right| \\\\ & =2((-n)(-n-2))=96 \\\\ & \Rightarrow n^2+2 n=48 \\\\ & \Rightarrow n=6,-8 \\\\ & \Rightarrow n=6 \end{aligned} $$
integer
jee-main-2023-online-12th-april-morning-shift
1lgsverwb
maths
matrices-and-determinants
expansion-of-determinant
<p>$$\left|\begin{array}{ccc}x+1 &amp; x &amp; x \\ x &amp; x+\lambda &amp; x \\ x &amp; x &amp; x+\lambda^{2}\end{array}\right|=\frac{9}{8}(103 x+81)$$, then $$\lambda, \frac{\lambda}{3}$$ are the roots of the equation :</p>
[{"identifier": "A", "content": "$$4 x^{2}+24 x-27=0$$"}, {"identifier": "B", "content": "$$4 x^{2}-24 x+27=0$$"}, {"identifier": "C", "content": "$$4 x^{2}-24 x-27=0$$"}, {"identifier": "D", "content": "$$4 x^{2}+24 x+27=0$$"}]
["B"]
null
$$\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^{2}\end{array}\right|=\frac{9}{8}(103 x+81)$$ <br/><br/>Put $x=0$ <br/><br/>$$ \begin{aligned} & \left|\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda^2 \end{array}\right|=\frac{9}{8} \times 81 \\\\ & \lambda^3=\frac{3^6}{2^3} \end{aligned} $$ <br/><br/>$$ \begin{aligned} & \Rightarrow \lambda=\frac{9}{2} \\\\ & \Rightarrow \frac{\lambda}{3}=\frac{3}{2} \end{aligned} $$ <br/><br/>$$ \begin{aligned} & \text { Equation: } x^2-\left(\frac{9}{2}+\frac{3}{2}\right) x+\frac{9}{2} \times \frac{3}{2}=0 \\\\ & \Rightarrow 4 x^2-24 x+27=0 \end{aligned} $$
mcq
jee-main-2023-online-11th-april-evening-shift
jaoe38c1lscntluu
maths
matrices-and-determinants
expansion-of-determinant
<p>The values of $$\alpha$$, for which $$\left|\begin{array}{ccc}1 &amp; \frac{3}{2} &amp; \alpha+\frac{3}{2} \\ 1 &amp; \frac{1}{3} &amp; \alpha+\frac{1}{3} \\ 2 \alpha+3 &amp; 3 \alpha+1 &amp; 0\end{array}\right|=0$$, lie in the interval</p>
[{"identifier": "A", "content": "$$(-2,1)$$\n"}, {"identifier": "B", "content": "$$\\left(-\\frac{3}{2}, \\frac{3}{2}\\right)$$\n"}, {"identifier": "C", "content": "$$(-3,0)$$\n"}, {"identifier": "D", "content": "$$(0,3)$$"}]
["C"]
null
<p>$$\left|\begin{array}{ccc} 1 & \frac{3}{2} & \alpha+\frac{3}{2} \\ 1 & \frac{1}{3} & \alpha+\frac{1}{3} \\ 2 \alpha+3 & 3 \alpha+1 & 0 \end{array}\right|=0$$</p> <p>$$\begin{aligned} & \Rightarrow(2 \alpha+3)\left\{\frac{7 \alpha}{6}\right\}-(3 \alpha+1)\left\{\frac{-7}{6}\right\}=0 \\ & \Rightarrow(2 \alpha+3) \cdot \frac{7 \alpha}{6}+(3 \alpha+1) \cdot \frac{7}{6}=0 \\ & \Rightarrow 2 \alpha^2+3 \alpha+3 \alpha+1=0 \\ & \Rightarrow 2 \alpha^2+6 \alpha+1=0 \\ & \Rightarrow \alpha=\frac{-3+\sqrt{7}}{2}, \frac{-3-\sqrt{7}}{2} \end{aligned}$$</p> <p>Hence option (C) is correct.</p>
mcq
jee-main-2024-online-27th-january-evening-shift
jaoe38c1lseyky4c
maths
matrices-and-determinants
expansion-of-determinant
<p>$$\text { Let } A=\left[\begin{array}{lll} 1 &amp; 0 &amp; 0 \\ 0 &amp; \alpha &amp; \beta \\ 0 &amp; \beta &amp; \alpha \end{array}\right] \text { and }|2 \mathrm{~A}|^3=2^{21} \text { where } \alpha, \beta \in Z \text {, Then a value of } \alpha \text { is }$$</p>
[{"identifier": "A", "content": "9"}, {"identifier": "B", "content": "17"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "5"}]
["D"]
null
<p>$$\begin{aligned} & |\mathrm{A}|=\alpha^2-\beta^2 \\ & |2 \mathrm{~A}|^3=2^{21} \Rightarrow|\mathrm{A}|=2^4 \\ & \alpha^2-\beta^2=16 \\ & (\alpha+\beta)(\alpha-\beta)=16 \Rightarrow \alpha=4 \text { or } 5 \end{aligned}$$</p>
mcq
jee-main-2024-online-29th-january-morning-shift
lvc57b13
maths
matrices-and-determinants
expansion-of-determinant
<p>For $$\alpha, \beta \in \mathbb{R}$$ and a natural number $$n$$, let $$A_r=\left|\begin{array}{ccc}r &amp; 1 &amp; \frac{n^2}{2}+\alpha \\ 2 r &amp; 2 &amp; n^2-\beta \\ 3 r-2 &amp; 3 &amp; \frac{n(3 n-1)}{2}\end{array}\right|$$. Then $$2 A_{10}-A_8$$ is</p>
[{"identifier": "A", "content": "$$4 \\alpha+2 \\beta$$\n"}, {"identifier": "B", "content": "0"}, {"identifier": "C", "content": "$$2 n$$\n"}, {"identifier": "D", "content": "$$2 \\alpha+4 \\beta$$"}]
["A"]
null
<p>$$A_r=\left|\begin{array}{ccc} r & 1 & \frac{n^2}{2}+\alpha \\ 2 r & 2 & n^2-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2} \end{array}\right|$$</p> <p>$${A_r} = 2\left| {\matrix{ r & 1 & {{{{n^2}} \over 2} + \alpha } \cr {2r} & 2 & {{{{n^2}} \over 2} - \beta } \cr {3r - 2} & 3 & {{{n(3n - 1)} \over 2}} \cr } } \right|$$</p> <p>$$R_1 \rightarrow R_1-R_2$$</p> <p>$$ = 2\left| {\matrix{ 0 & 1 & {\alpha + {\beta \over 2}} \cr r & 2 & {{{{n^2}} \over 2} - \beta } \cr {3r - 2} & 3 & {{{n(3n - 1)} \over 2}} \cr } } \right|$$</p> <p>$$\begin{aligned} & =2\left(\alpha+\frac{\beta}{2}\right)(3 r-3 r+2) \\ & A_r=4 \alpha+2 \beta \\ & 2 A_{10}-A_8=4 \alpha+2 \beta \end{aligned}$$</p>
mcq
jee-main-2024-online-6th-april-morning-shift
L5OkUKHe1Wo61y8B
maths
matrices-and-determinants
inverse-of-a-matrix
Let $$A = \left( {\matrix{ 1 &amp; { - 1} &amp; 1 \cr 2 &amp; 1 &amp; { - 3} \cr 1 &amp; 1 &amp; 1 \cr } } \right).$$ and $$10$$ $$B = \left( {\matrix{ 4 &amp; 2 &amp; 2 \cr { - 5} &amp; 0 &amp; \alpha \cr 1 &amp; { - 2} &amp; 3 \cr } } \right)$$. if $$B$$ is <p>the inverse of matrix $$A$$, then $$\alpha $$ is</p>
[{"identifier": "A", "content": "$$5$$"}, {"identifier": "B", "content": "$$-1$$ "}, {"identifier": "C", "content": "$$2$$ "}, {"identifier": "D", "content": "$$-2$$"}]
["A"]
null
Given that $$10B$$ $$\,\,\, = \left[ {\matrix{ 4 &amp; 2 &amp; 2 \cr { - 5} &amp; 0 &amp; \alpha \cr 1 &amp; { - 2} &amp; 3 \cr } } \right]$$ <br><br>$$ \Rightarrow B = {1 \over {10}}\left[ {\matrix{ 4 &amp; 2 &amp; 2 \cr { - 5} &amp; 0 &amp; \alpha \cr 1 &amp; { - 2} &amp; 3 \cr } } \right]$$ <br><br>Also since, $$B = {A^{ - 1}} \Rightarrow AB = I$$ <br><br>$$ \Rightarrow {1 \over {10}}\left[ {\matrix{ 1 &amp; { - 1} &amp; 1 \cr 2 &amp; 1 &amp; { - 3} \cr 1 &amp; 1 &amp; 1 \cr } } \right]\left[ {\matrix{ 4 &amp; 2 &amp; 2 \cr { - 5} &amp; 0 &amp; \alpha \cr 1 &amp; { - 2} &amp; 3 \cr } } \right] = \left[ {\matrix{ 1 &amp; 0 &amp; 0 \cr 0 &amp; 1 &amp; 0 \cr 0 &amp; 0 &amp; 1 \cr } } \right]$$ <br><br>$$ \Rightarrow {1 \over {10}}\left[ {\matrix{ {10} &amp; 0 &amp; {5 - 2} \cr 0 &amp; {10} &amp; { - 5 + \alpha } \cr 0 &amp; 0 &amp; {5 + \alpha } \cr } } \right] = \left[ {\matrix{ 1 &amp; 0 &amp; 0 \cr 0 &amp; 1 &amp; 0 \cr 0 &amp; 0 &amp; 1 \cr } } \right]$$ <br><br>$$ \Rightarrow {{5 - \alpha } \over {10}} = 0$$ <br><br>$$ \Rightarrow \alpha = 5$$
mcq
aieee-2004
BrIRgABjKyBYb3DI
maths
matrices-and-determinants
inverse-of-a-matrix
Let $$A = \left( {\matrix{ 0 &amp; 0 &amp; { - 1} \cr 0 &amp; { - 1} &amp; 0 \cr { - 1} &amp; 0 &amp; 0 \cr } } \right)$$. The only correct <p>statement about the matrix $$A$$ is</p>
[{"identifier": "A", "content": "$${A^2} = 1$$ "}, {"identifier": "B", "content": "$$A=(-1)I,$$ where $$I$$ is a unit matrix "}, {"identifier": "C", "content": "$${A^{ - 1}}$$ does not exist "}, {"identifier": "D", "content": "$$A$$ is a zero matrix"}]
["A"]
null
$$A = \left[ {\matrix{ 0 &amp; 0 &amp; { - 1} \cr 0 &amp; { - 1} &amp; 0 \cr { - 1} &amp; 0 &amp; 0 \cr } } \right]$$ <br><br>clearly $$\,\,\,A \ne 0.\,$$ Also $$\,\,\left| A \right| = - 1 \ne 0$$ <br><br>$$\therefore$$ $${A^{ - 1}}\,\,$$ exists, further <br><br>$$\left( { - 1} \right)I = \left[ {\matrix{ { - 1} &amp; 0 &amp; 0 \cr 0 &amp; { - 1} &amp; 0 \cr 0 &amp; 0 &amp; { - 1} \cr } } \right] \ne A$$ <br><br>Also $${A^2} = \left[ {\matrix{ 0 &amp; 0 &amp; { - 1} \cr 0 &amp; { - 1} &amp; 0 \cr { - 1} &amp; 0 &amp; 0 \cr } } \right]\left[ {\matrix{ 0 &amp; 0 &amp; { - 1} \cr 0 &amp; { - 1} &amp; 0 \cr { - 1} &amp; 0 &amp; 0 \cr } } \right]$$ <br><br>$$ = \left[ {\matrix{ 1 &amp; 0 &amp; 0 \cr 0 &amp; 1 &amp; 0 \cr 0 &amp; 0 &amp; 1 \cr } } \right] = I$$
mcq
aieee-2004
gVRbAj7S0qPH4tAt
maths
matrices-and-determinants
inverse-of-a-matrix
If $${A^2} - A + 1 = 0$$, then the inverse of $$A$$ is :
[{"identifier": "A", "content": "$$A+I$$ "}, {"identifier": "B", "content": "$$A$$ "}, {"identifier": "C", "content": "$$A-I$$ "}, {"identifier": "D", "content": "$$I-A$$"}]
["D"]
null
Given $${A^2} - A + I = 0$$ <br><br>$${A^{ - 1}}{A^2} - {A^{ - 1}}A + {A^{ - 1}}.I = {A^{ - 1}}.0$$ <br><br>(Multiplying $$\,\,\,{A^{ - 1}}$$ on both sides) <br><br>$$ \Rightarrow A - 1 + {A^{ - 1}} = 0$$ <br><br>or $${A^{ - 1}} = 1 - A$$
mcq
aieee-2005
NZE3QvqIskeDsv0i
maths
matrices-and-determinants
inverse-of-a-matrix
If $$A$$ is a $$3 \times 3$$ non-singular matrix such that $$AA'=A'A$$ and <br/>$$B = {A^{ - 1}}A',$$ then $$BB'$$ equals:
[{"identifier": "A", "content": "$${B^{ - 1}}$$ "}, {"identifier": "B", "content": "$$\\left( {{B^{ - 1}}} \\right)'$$"}, {"identifier": "C", "content": "$$I+B$$ "}, {"identifier": "D", "content": "$$I$$ "}]
["D"]
null
$$BB' = B\left( {{A^{ - 1}}A'} \right)' = B\left( {A'} \right)'\left( {{A^{ - 1}}} \right)' = BA\left( {{A^{ - 1}}} \right)'$$ <br><br>$$ = \left( {{A^{ - 1}}A'} \right)\left( {A\left( {{A^{ - 1}}} \right)'} \right)$$ <br><br>$$ = {A^{ - 1}}A.A'.\left( {{A^{ - 1}}} \right)'\,\,\,\,\,\,$$ $$\left\{ {} \right.$$ as $$\,\,\,\,\,\,$$ $$AA' = A'A$$ $$\left. \, \right\}$$ <br><br>$$ = I\left( {{A^{ - 1}}A} \right)'$$ <br><br>$$ = I.I = {I^2} = I$$
mcq
jee-main-2014-offline
WdAPCKhiSFPJAR2URgL8E
maths
matrices-and-determinants
inverse-of-a-matrix
Let A be a 3 $$ \times $$ 3 matrix such that A<sup>2</sup> $$-$$ 5A + 7I = 0 <br/><br/><b>Statement - I :</b>   <br/><br/>A<sup>$$-$$1</sup> = $${1 \over 7}$$ (5I $$-$$ A). <br/><br/><b>Statement - II :</b> <br/><br/>The polynomial A<sup>3</sup> $$-$$ 2A<sup>2</sup> $$-$$ 3A + I can be reduced to 5(A $$-$$ 4I). <br/><br/>Then :
[{"identifier": "A", "content": "Statement-I is true, but Statement-II is false."}, {"identifier": "B", "content": "Statement-I is false, but Statement-II is true."}, {"identifier": "C", "content": "Both the statements are true."}, {"identifier": "D", "content": "Both the statements are false"}]
["C"]
null
Given, <br><br>A<sup>2</sup> $$-$$ 5A + 7I = 0 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;A<sup>2</sup> $$-$$ 5A = $$-$$ 7I <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;AAA<sup>$$-$$1</sup> $$-$$ 5AA<sup>$$-$$1</sup> = $$-$$ 7IA<sup>$$-$$1</sup> <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;AI $$-$$ 5I = $$-$$ 7A<sup>$$-$$1</sup> <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;A $$-$$ 5I = $$-$$ 7A<sup>$$-$$1</sup> <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;A<sup>$$-$$1</sup> = $${1 \over 7}$$(5I $$-$$ A) <br><br>Hence, statement 1 is true. <br><br>Now A<sup>3</sup> $$-$$ 2A<sup>2</sup> $$-$$ 3A + I <br><br>=&nbsp;&nbsp;&nbsp;A(A<sup>2</sup>) $$-$$ 2A<sup>2</sup> $$-$$ 3A + I <br><br>=&nbsp;&nbsp;&nbsp;A(5A $$-$$ 7I) $$-$$ 2A<sup>2</sup> $$-$$ 3A + I <br><br>=&nbsp;&nbsp;&nbsp;5A<sup>2</sup> $$-$$ 7A $$-$$ 2A<sup>2</sup> $$-$$ 3A + I <br><br>=&nbsp;&nbsp;&nbsp;3A<sup>2</sup> $$-$$ 10A + I <br><br>=&nbsp;&nbsp;&nbsp;3(5A $$-$$ 7I) $$-$$ 10A + I <br><br>=&nbsp;&nbsp;&nbsp;15A $$-$$ 21A $$-$$ 10A + I <br><br>=&nbsp;&nbsp;&nbsp;5A $$-$$ 20I <br><br>=&nbsp;&nbsp;&nbsp;5(A $$-$$ 4I) <br><br>So, statement 2 is also correct.
mcq
jee-main-2016-online-10th-april-morning-slot
G13VIQ4UxGankd46IX9Mu
maths
matrices-and-determinants
inverse-of-a-matrix
Suppose A is any 3$$ \times $$ 3 non-singular matrix and ( A $$-$$ 3I) (A $$-$$ 5I) = O where I = I<sub>3</sub> and O = O<sub>3</sub>. If $$\alpha $$A + $$\beta $$A<sup>-1</sup> = 4I, then $$\alpha $$ + $$\beta $$ is equal to :
[{"identifier": "A", "content": "8"}, {"identifier": "B", "content": "7"}, {"identifier": "C", "content": "13"}, {"identifier": "D", "content": "12"}]
["A"]
null
Given, <br><br>( A $$-$$ 3I) (A $$-$$ 5I) = O <br><br>$$ \Rightarrow $$ A<sup>2</sup> - 8A + 15I = O <br><br>Multiplying both sides by A<sup>- 1</sup>, we get, <br><br>A<sup>- 1</sup>A.A - 8A<sup>- 1</sup>A + 15A<sup>- 1</sup>I = A<sup>- 1</sup>O <br><br>$$ \Rightarrow $$ A - 8I + 15A<sup>- 1</sup> = O <br><br>$$ \Rightarrow $$ A + 15A<sup>- 1</sup> = 8I <br><br>$$ \Rightarrow $$$${A \over 2} + {{15{A^{ - 1}}} \over 2} = 4I$$ <br><br>Comparing with the equation $$\alpha $$A + $$\beta $$A<sup>-1</sup> = 4I, we get <br><br>$$\alpha $$ = $${1 \over 2}$$ and $$\beta $$ = $${15 \over 2}$$ <br><br>$$ \therefore $$ $$\alpha $$ + $$\beta $$ = $${1 \over 2}$$ + $${15 \over 2}$$ = $${16 \over 2}$$ = 8
mcq
jee-main-2018-online-15th-april-evening-slot
1dHMda3zohOtFwklZhLEe
maths
matrices-and-determinants
inverse-of-a-matrix
If $$A = \left[ {\matrix{ {\cos \theta } &amp; { - \sin \theta } \cr {\sin \theta } &amp; {\cos \theta } \cr } } \right]$$, then the matrix A<sup>–50</sup> when $$\theta $$ = $$\pi \over 12$$, is equal to :
[{"identifier": "A", "content": "$$\\left[ {\\matrix{\n { {{\\sqrt 3 } \\over 2}} &amp; { - {1 \\over 2}} \\cr \n {{{ 1} \\over 2}} &amp; {{{\\sqrt 3 } \\over 2}} \\cr \n\n } } \\right]$$"}, {"identifier": "B", "content": "$$\\left[ {\\matrix{\n {{1 \\over 2}} &amp; -{{{\\sqrt 3 } \\over 2}} \\cr \n {{{\\sqrt 3 } \\over 2}} &amp; {{{ - 1} \\over 2}} \\cr \n\n } } \\right]$$"}, {"identifier": "C", "content": "$$\\left[ {\\matrix{\n {{{\\sqrt 3 } \\over 2}} &amp; {{1 \\over 2}} \\cr \n -{{1 \\over 2}} &amp; {{{\\sqrt 3 } \\over 2}} \\cr \n\n } } \\right]$$"}, {"identifier": "D", "content": "$$\\left[ {\\matrix{\n {{1 \\over 2}} &amp; {{{\\sqrt 3 } \\over 2}} \\cr \n {-{{\\sqrt 3 } \\over 2}} &amp; {{{ 1} \\over 2}} \\cr \n\n } } \\right]$$"}]
["C"]
null
(A<sup>$$-$$50</sup>) = (A<sup>$$-$$1</sup>)<sup>50</sup> <br><br>We know, <br><br>A<sup>$$-$$1</sup> = $${{adjA} \over {\left| A \right|}}$$ <br><br>$$\left| A \right|$$ = cos<sup>2</sup>$$\theta $$ + sin<sup>2</sup>$$\theta $$ = 1 <br><br>cofactor of A = $$\left[ {\matrix{ {\cos \theta } &amp; { - \sin \theta } \cr {\sin \theta } &amp; {\cos \theta } \cr } } \right]$$ <br><br>Adjoint of A = Transpose of cofactor matrix <br><br>$$ \therefore $$&nbsp;&nbsp;Adj A = $$\left[ {\matrix{ {\cos \theta } &amp; {\sin \theta } \cr { - \sin \theta } &amp; {\cos \theta } \cr } } \right]$$ <br><br>$$ \therefore $$&nbsp;&nbsp;A<sup>$$-$$1</sup> = $$\left[ {\matrix{ {\cos \theta } &amp; {\sin \theta } \cr { - \sin \theta } &amp; {\cos \theta } \cr } } \right]$$ <br><br>$$ \therefore $$&nbsp;&nbsp;(A<sup>$$-$$1</sup>)<sup>2</sup> = $$\left[ {\matrix{ {\cos \theta } &amp; {\sin \theta } \cr { - \sin \theta } &amp; {\cos \theta } \cr } } \right]\left[ {\matrix{ {\cos \theta } &amp; {\sin \theta } \cr { - \sin \theta } &amp; {\cos \theta } \cr } } \right]$$ <br><br>= $$\left[ {\matrix{ {\cos 2\theta } &amp; {\sin 2\theta } \cr { - \sin 2\theta } &amp; {\cos 2\theta } \cr } } \right]$$ <br><br>Similarly, <br><br>(A<sup>$$-$$1</sup>)<sup>3</sup> = $$\left[ {\matrix{ {\cos 3\theta } &amp; {\sin 3\theta } \cr { - \sin 3\theta } &amp; {\cos 3\theta } \cr } } \right]$$ <br><br>: <br><br>: <br><br>: <br><br>(A<sup>$$-$$1</sup>)<sup>50</sup> = $$\left[ {\matrix{ {\cos 50\theta } &amp; {\sin 50\theta } \cr { - \sin 50\theta } &amp; {\cos 50\theta } \cr } } \right]$$ <br><br>when $$\theta $$ = $${\pi \over {12}}$$ then <br><br>$${A^{ - 50}}$$ = $$\left[ {\matrix{ {\cos {{25\pi } \over 6}} &amp; {\sin {{25\pi } \over 6}} \cr { - \sin {{25\pi } \over 6}} &amp; {\cos {{25\pi } \over 6}} \cr } } \right]$$ <br><br>= $$\left[ {\matrix{ {{{\sqrt 3 } \over 2}} &amp; {{1 \over 2}} \cr { - {1 \over 2}} &amp; {{{\sqrt 3 } \over 2}} \cr } } \right]$$ <br><br><u>Note:</u> <br><br>$$\cos {{25\pi } \over 6} = \cos \left( {4\pi + {\pi \over 6}} \right) = \cos {\pi \over 6} = {{\sqrt 3 } \over 2}$$
mcq
jee-main-2019-online-9th-january-morning-slot
FDEz8mcROZKQr1vuUT18hoxe66ijvwpuwxp
maths
matrices-and-determinants
inverse-of-a-matrix
If $$\left[ {\matrix{ 1 &amp; 1 \cr 0 &amp; 1 \cr } } \right]\left[ {\matrix{ 1 &amp; 2 \cr 0 &amp; 1 \cr } } \right]$$$$\left[ {\matrix{ 1 &amp; 3 \cr 0 &amp; 1 \cr } } \right]$$....$$\left[ {\matrix{ 1 &amp; {n - 1} \cr 0 &amp; 1 \cr } } \right] = \left[ {\matrix{ 1 &amp; {78} \cr 0 &amp; 1 \cr } } \right]$$, <br/><br/>then the inverse of $$\left[ {\matrix{ 1 &amp; n \cr 0 &amp; 1 \cr } } \right]$$ is
[{"identifier": "A", "content": "$$\\left[ {\\matrix{\n 1 &amp; { 0} \\cr \n {12} &amp; 1 \\cr \n\n } } \\right]$$"}, {"identifier": "B", "content": "$$\\left[ {\\matrix{\n 1 &amp; { 0} \\cr \n {13} &amp; 1 \\cr \n\n } } \\right]$$"}, {"identifier": "C", "content": "$$\\left[ {\\matrix{\n 1 &amp; { - 13} \\cr \n 0 &amp; 1 \\cr \n\n } } \\right]$$"}, {"identifier": "D", "content": "$$\\left[ {\\matrix{\n 1 &amp; { - 12} \\cr \n 0 &amp; 1 \\cr \n\n } } \\right]$$"}]
["C"]
null
Given<br><br> $$\left[ {\matrix{ 1 &amp; 1 \cr 0 &amp; 1 \cr } } \right]\left[ {\matrix{ 1 &amp; 2 \cr 0 &amp; 1 \cr } } \right]$$$$\left[ {\matrix{ 1 &amp; 3 \cr 0 &amp; 1 \cr } } \right]$$....$$\left[ {\matrix{ 1 &amp; {n - 1} \cr 0 &amp; 1 \cr } } \right] = \left[ {\matrix{ 1 &amp; {78} \cr 0 &amp; 1 \cr } } \right]$$ <br><br>$$ \Rightarrow $$ $$\left[ {\matrix{ 1 &amp; 3 \cr 0 &amp; 1 \cr } } \right]\left[ {\matrix{ 1 &amp; 3 \cr 0 &amp; 1 \cr } } \right].....\left[ {\matrix{ 1 &amp; {n - 1} \cr 0 &amp; 1 \cr } } \right]$$ = $$\left[ {\matrix{ 1 &amp; {78} \cr 0 &amp; 1 \cr } } \right]$$ <br><br>$$ \Rightarrow $$ $$\left[ {\matrix{ 1 &amp; 6 \cr 0 &amp; 1 \cr } } \right].....\left[ {\matrix{ 1 &amp; {n - 1} \cr 0 &amp; 1 \cr } } \right]$$ = $$\left[ {\matrix{ 1 &amp; {78} \cr 0 &amp; 1 \cr } } \right]$$ <br><br>$$ \Rightarrow $$ $$\left[ {\matrix{ 1 &amp; {1 + 2 + 3} \cr 0 &amp; 1 \cr } } \right].....\left[ {\matrix{ 1 &amp; {n - 1} \cr 0 &amp; 1 \cr } } \right]$$ = $$\left[ {\matrix{ 1 &amp; {78} \cr 0 &amp; 1 \cr } } \right]$$ <br>. <br>. <br>. <br>. <br>$$ \Rightarrow $$ $$\left[ {\matrix{ 1 &amp; {1 + 2 + 3 + .... + \left( {n - 1} \right)} \cr 0 &amp; 1 \cr } } \right]$$ = $$\left[ {\matrix{ 1 &amp; {78} \cr 0 &amp; 1 \cr } } \right]$$ <br><br>By comparing both sides we get, <br><br>1 + 2 + 3 + ........+ (n - 1) = 78 <br><br>$$ \Rightarrow $$ $${{n\left( {n - 1} \right)} \over 2}$$ = 78 <br><br>$$ \Rightarrow $$ n = 13, - 12(not possible) <br><br>$$ \therefore $$ The inverse of $$\left[ {\matrix{ 1 &amp; 13 \cr 0 &amp; 1 \cr } } \right]$$ = $$\left[ {\matrix{ 1 &amp; -13 \cr 0 &amp; 1 \cr } } \right]$$
mcq
jee-main-2019-online-9th-april-morning-slot
rvBAr0Vg54rfbOxUni1klrhw2ua
maths
matrices-and-determinants
inverse-of-a-matrix
Let P = $$\left[ {\matrix{ 3 &amp; { - 1} &amp; { - 2} \cr 2 &amp; 0 &amp; \alpha \cr 3 &amp; { - 5} &amp; 0 \cr } } \right]$$, where $$\alpha $$ $$ \in $$ R. Suppose Q = [ q<sub>ij</sub>] is a matrix satisfying PQ = kl<sub>3</sub> for some non-zero k $$ \in $$ R. <br/>If q<sub>23</sub> = $$ - {k \over 8}$$ and |Q| = $${{{k^2}} \over 2}$$, then a<sup>2</sup> + k<sup>2</sup> is equal to ______.
[]
null
17
As $$PQ = kI \Rightarrow Q = k{P^{ - 1}}I$$<br><br>now $$Q = {k \over {|P|}}(adjP)I $$ <br><br>$$\Rightarrow Q = {k \over {(20 + 12\alpha )}}\left[ {\matrix{ - &amp; - &amp; - \cr - &amp; - &amp; {( - 3\alpha - 4)} \cr - &amp; - &amp; - \cr } } \right]\left[ {\matrix{ 1 &amp; 0 &amp; 0 \cr 0 &amp; 1 &amp; 0 \cr 0 &amp; 0 &amp; 1 \cr } } \right]$$<br><br>$$ \because $$ $${q_{23}} = {{ - k} \over 8} $$ <br><br>$$\Rightarrow {k \over {(20 + 12\alpha )}}( - 3\alpha - 4) = {{ - k} \over 8} $$ <br><br>$$\Rightarrow 2(3\alpha + 4) = 5 + 3\alpha $$<br><br>$$3\alpha = - 3 \Rightarrow \alpha = - 1$$<br><br>also $$|Q| = {{{k^3}|I|} \over {|P|}} \Rightarrow {{{k^2}} \over 2} = {{{k^3}} \over {(20 + 12\alpha )}}$$<br><br>$$ \Rightarrow $$ $$(20 + 12\alpha ) = 2k \Rightarrow 8 = 2k \Rightarrow k = 4$$
integer
jee-main-2021-online-24th-february-morning-slot
vTciYbdTPPnzWP11Sg1kls5jz0i
maths
matrices-and-determinants
inverse-of-a-matrix
If $$A = \left[ {\matrix{ 0 &amp; { - \tan \left( {{\theta \over 2}} \right)} \cr {\tan \left( {{\theta \over 2}} \right)} &amp; 0 \cr } } \right]$$ and <br/>$$({I_2} + A){({I_2} - A)^{ - 1}} = \left[ {\matrix{ a &amp; { - b} \cr b &amp; a \cr } } \right]$$, then $$13({a^2} + {b^2})$$ is equal to
[]
null
13
$$A = \left[ {\matrix{ 0 &amp; { - \tan {\theta \over 2}} \cr {\tan {\theta \over 2}} &amp; 0 \cr } } \right]$$<br><br>$$ \Rightarrow I + A = \left[ {\matrix{ 1 &amp; { - \tan {\theta \over 2}} \cr {\tan {\theta \over 2}} &amp; 1 \cr } } \right]$$<br><br>$$ \Rightarrow I - A = \left[ {\matrix{ 1 &amp; {\tan {\theta \over 2}} \cr { - \tan {\theta \over 2}} &amp; 1 \cr } } \right]$$ { $$\therefore$$ $$\left| {I - A} \right| = {\sec ^2}\theta /2$$}<br><br>$$ \Rightarrow {(I - A)^{ - 1}} = {1 \over {{{\sec }^2}{\theta \over 2}}}\left[ {\matrix{ 1 &amp; { - \tan {\theta \over 2}} \cr {\tan {\theta \over 2}} &amp; 1 \cr } } \right]$$<br><br>$$ \Rightarrow (1 + A){(I - A)^{ - 1}} $$ <br><br>$$= {1 \over {{{\sec }^2}{\theta \over 2}}}\left[ {\matrix{ 1 &amp; { - \tan {\theta \over 2}} \cr {\tan {\theta \over 2}} &amp; 1 \cr } } \right]\left[ {\matrix{ 1 &amp; { - \tan {\theta \over 2}} \cr {\tan {\theta \over 2}} &amp; 1 \cr } } \right]$$<br><br>$$ = {1 \over {{{\sec }^2}{\theta \over 2}}}\left[ {\matrix{ {1 - {{\tan }^2}{\theta \over 2}} &amp; { - 2\tan {\theta \over 2}} \cr {2\tan {\theta \over 2}} &amp; {1 - {{\tan }^2}{\theta \over 2}} \cr } } \right]$$<br><br>$$a = {{1 - {{\tan }^2}{\theta \over 2}} \over {{{\sec }^2}{\theta \over 2}}}$$<br><br>$$b = {{2\tan {\theta \over 2}} \over {{{\sec }^2}{\theta \over 2}}}$$<br><br>$$\therefore$$ $${a^2} + {b^2} = 1$$ <br><br>$$ \Rightarrow $$ $$13({a^2} + {b^2})$$ = 13
integer
jee-main-2021-online-25th-february-morning-slot
1ks088t6b
maths
matrices-and-determinants
inverse-of-a-matrix
Let $$A = \left[ {\matrix{ 1 &amp; 2 \cr { - 1} &amp; 4 \cr } } \right]$$. If A<sup>$$-$$1</sup> = $$\alpha$$I + $$\beta$$A, $$\alpha$$, $$\beta$$ $$\in$$ R, I is a 2 $$\times$$ 2 identity matrix then 4($$\alpha$$ $$-$$ $$\beta$$) is equal to :
[{"identifier": "A", "content": "5"}, {"identifier": "B", "content": "$${8 \\over 3}$$"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "4"}]
["D"]
null
$$A = \left[ {\matrix{ 1 &amp; 2 \cr { - 1} &amp; 4 \cr } } \right],|A| = 6$$<br><br>$${A^{ - 1}} = {{adjA} \over {|A|}} = {1 \over 6}\left[ {\matrix{ 4 &amp; { - 2} \cr 1 &amp; 1 \cr } } \right] = \left[ {\matrix{ {{2 \over 3}} &amp; { - {1 \over 3}} \cr {{1 \over 6}} &amp; {{1 \over 6}} \cr } } \right]$$<br><br>$$\left[ {\matrix{ {{2 \over 3}} &amp; { - {1 \over 3}} \cr {{1 \over 6}} &amp; {{1 \over 6}} \cr } } \right] = \left[ {\matrix{ \alpha &amp; 0 \cr 0 &amp; \alpha \cr } } \right] + \left[ {\matrix{ \beta &amp; {2\beta } \cr { - \beta } &amp; {4\beta } \cr } } \right]$$<br><br>$$\left. \matrix{ \alpha + \beta = {2 \over 3} \hfill \cr \beta = - {1 \over 6} \hfill \cr} \right\} \Rightarrow \alpha = {2 \over 3} + {1 \over 6} = {5 \over 6}$$<br><br>$$ \therefore $$ $$4(\alpha - \beta ) = 4(1) = 4$$
mcq
jee-main-2021-online-27th-july-morning-shift
1l58gzk5u
maths
matrices-and-determinants
inverse-of-a-matrix
<p>Let $$X = \left[ {\matrix{ 0 &amp; 1 &amp; 0 \cr 0 &amp; 0 &amp; 1 \cr 0 &amp; 0 &amp; 0 \cr } } \right],\,Y = \alpha I + \beta X + \gamma {X^2}$$ and $$Z = {\alpha ^2}I - \alpha \beta X + ({\beta ^2} - \alpha \gamma ){X^2}$$, $$\alpha$$, $$\beta$$, $$\gamma$$ $$\in$$ R. If $${Y^{ - 1}} = \left[ {\matrix{ {{1 \over 5}} &amp; {{{ - 2} \over 5}} &amp; {{1 \over 5}} \cr 0 &amp; {{1 \over 5}} &amp; {{{ - 2} \over 5}} \cr 0 &amp; 0 &amp; {{1 \over 5}} \cr } } \right]$$, then ($$\alpha$$ $$-$$ $$\beta$$ + $$\gamma$$)<sup>2</sup> is equal to ____________.</p>
[]
null
100
<p>$$\because$$ $$X = \left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr 0 & 0 & 0 \cr } } \right]$$</p> <p>$$\therefore$$ $${X^2} = \left[ {\matrix{ 0 & 0 & 1 \cr 0 & 0 & 0 \cr 0 & 0 & 0 \cr } } \right]$$</p> <p>$$\therefore$$ $$Y = \alpha I + \beta X + \gamma {X^2}\left[ {\matrix{ \alpha & \beta & \gamma \cr 0 & \alpha & \beta \cr 0 & 0 & \alpha \cr } } \right]$$</p> <p>$$\because$$ $$Y\,.\,{Y^{ - 1}} = I$$</p> <p>$$\therefore$$ $$\left[ {\matrix{ \alpha & \beta & \gamma \cr 0 & \alpha & \beta \cr 0 & 0 & \alpha \cr } } \right]\left[ {\matrix{ {{1 \over 5}} & {{{ - 2} \over 5}} & {{1 \over 5}} \cr 0 & {{1 \over 5}} & {{{ - 2} \over 5}} \cr 0 & 0 & {{1 \over 5}} \cr } } \right]\left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right]$$</p> <p>$$\therefore$$ $$\left[ {\matrix{ {{\alpha \over 5}} & {{{\beta - 2\alpha } \over 5}} & {{{\alpha - 2\beta + \gamma } \over 5}} \cr 0 & {{\alpha \over 5}} & {{{\beta - 2\alpha } \over 5}} \cr 0 & 0 & {{\alpha \over 5}} \cr } } \right] = \left[ {\matrix{ 0 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right]$$</p> <p>$$\therefore$$ $$\alpha$$ = 5, $$\beta$$ = 10, $$\gamma$$ =15</p> <p>$$\therefore$$ ($$\alpha$$ $$-$$ $$\beta$$ + $$\gamma$$)<sup>2</sup> = 100</p>
integer
jee-main-2022-online-26th-june-evening-shift
1l6i06330
maths
matrices-and-determinants
inverse-of-a-matrix
<p>The number of matrices $$A=\left(\begin{array}{ll}a &amp; b \\ c &amp; d\end{array}\right)$$, where $$a, b, c, d \in\{-1,0,1,2,3, \ldots \ldots, 10\}$$, such that $$A=A^{-1}$$, is ___________.</p>
[]
null
50
<p>$$\because$$ $$A = \left[ {\matrix{ a & b \cr c & d \cr } } \right]$$ then $${A^2} = \left[ {\matrix{ {{a^2} + bc} & {b(a + d)} \cr {c(a + d)} & {bc + {d^2}} \cr } } \right]$$</p> <p>For A<sup>$$-$$1</sup> must exist $$ad - bc \ne 0$$ ...... (i)</p> <p>and $$A = {A^{ - 1}} \Rightarrow {A^2} = I$$</p> <p>$$\therefore$$ $${a^2} + bc = {d^2} + bc = 1$$ ...... (ii)</p> <p>and $$b(a + d) = c(a + d) = 0$$ ...... (iii)</p> <p>Case I : When a = d = 0, then possible values of (b, c) are (1, 1), ($$-$$1, 1) and (1, $$-$$1) and ($$-$$1, 1).</p> <p>Total four matrices are possible.</p> <p>Case II : When a = $$-$$d then (a, d) be (1, $$-$$1) or ($$-$$1, 1).</p> <p>Then total possible values of (b, c) are $$(12 + 11) \times 2 = 46$$.</p> <p>$$\therefore$$ Total possible matrices $$= 46 + 4 = 50$$.</p>
integer
jee-main-2022-online-26th-july-evening-shift
1ldu5socp
maths
matrices-and-determinants
inverse-of-a-matrix
<p>Let $$A = \left[ {\matrix{ {{1 \over {\sqrt {10} }}} &amp; {{3 \over {\sqrt {10} }}} \cr {{{ - 3} \over {\sqrt {10} }}} &amp; {{1 \over {\sqrt {10} }}} \cr } } \right]$$ and $$B = \left[ {\matrix{ 1 &amp; { - i} \cr 0 &amp; 1 \cr } } \right]$$, where $$i = \sqrt { - 1} $$. If $$\mathrm{M=A^T B A}$$, then the inverse of the matrix $$\mathrm{AM^{2023}A^T}$$ is</p>
[{"identifier": "A", "content": "$$\\left[ {\\matrix{\n 1 & { - 2023i} \\cr \n 0 & 1 \\cr \n\n } } \\right]$$"}, {"identifier": "B", "content": "$$\\left[ {\\matrix{\n 1 & 0 \\cr \n {2023i} & 1 \\cr \n\n } } \\right]$$"}, {"identifier": "C", "content": "$$\\left[ {\\matrix{\n 1 & {2023i} \\cr \n 0 & 1 \\cr \n\n } } \\right]$$"}, {"identifier": "D", "content": "$$\\left[ {\\matrix{\n 1 & 0 \\cr \n { - 2023i} & 1 \\cr \n\n } } \\right]$$"}]
["C"]
null
$$ \begin{aligned} & \mathrm{AA}^{\mathrm{T}}=\left[\begin{array}{cc} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{array}\right]\left[\begin{array}{cc} \frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] = I \\\\\ & \mathrm{B}^2=\left[\begin{array}{cc} 1 & -\mathrm{i} \\ 0 & 1 \end{array}\right]\left[\begin{array}{cc} 1 & -\mathrm{i} \\ 0 & 1 \end{array}\right]=\left[\begin{array}{cc} 1 & -2 \mathrm{i} \\ 0 & 1 \end{array}\right] \\\\ & \mathrm{B}^3=\left[\begin{array}{cc} 1 & -3 \mathrm{i} \\ 0 & 1 \end{array}\right] \end{aligned} $$ <br/><br/>Similarly, <br/><br/>$$ \begin{aligned} & \mathrm{B}^{2023}=\left[\begin{array}{cc} 1 & -2023 \mathrm{i} \\ 0 & 1 \end{array}\right] \\\\ & \mathrm{M}=\mathrm{A}^{\mathrm{T}} \mathrm{BA} \\\\ & \mathrm{M}^2=\mathrm{M} \cdot \mathrm{M}=\mathrm{A}^{\mathrm{T}} \mathrm{BA} \mathrm{A}^{\mathrm{T}} \mathrm{BA}=\mathrm{A}^{\mathrm{T}} \mathrm{B}^2 \mathrm{~A} \\\\ & \mathrm{M}^3=\mathrm{M}^2 \cdot \mathrm{M}=\mathrm{A}^{\mathrm{T}} \mathrm{B}^2 \mathrm{AA}^{\mathrm{T}} \mathrm{BA}=\mathrm{A}^{\mathrm{T}} \mathrm{B}^3 \mathrm{~A} \end{aligned} $$ <br/><br/>Similarly, <br/><br/>$$ \begin{aligned} & \mathrm{M}^{2023}= \mathrm{A}^{\mathrm{T}} \mathrm{B}^{2023} \mathrm{~A} \\\\ & \mathrm{AM}^{2023} \mathrm{~A}^{\mathrm{T}}=\mathrm{AA}^{\mathrm{T}} \mathrm{B}^{2023} \mathrm{AA}^{\mathrm{T}} = \mathrm{I}.\mathrm{B}^{2023}.\mathrm{I}=\mathrm{B}^{2023} \\\\ & =\left[\begin{array}{cc} 1 & -2023 \mathrm{i} \\ 0 & 1 \end{array}\right] \end{aligned} $$ <br/><br/>$$ \therefore $$ $$ \text { Inverse of }\left(\mathrm{AM}^{2023} \mathrm{~A}^{\mathrm{T}}\right) \text { is }\left[\begin{array}{cc} 1 & 2023 i \\ 0 & 1 \end{array}\right] $$
mcq
jee-main-2023-online-25th-january-evening-shift
1lguucigm
maths
matrices-and-determinants
inverse-of-a-matrix
<p>Let $$\mathrm{A}$$ be a $$2 \times 2$$ matrix with real entries such that $$\mathrm{A}'=\alpha \mathrm{A}+\mathrm{I}$$, where $$\alpha \in \mathbb{R}-\{-1,1\}$$. If $$\operatorname{det}\left(A^{2}-A\right)=4$$, then the sum of all possible values of $$\alpha$$ is equal to :</p>
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "$$\\frac{3}{2}$$"}, {"identifier": "C", "content": "0"}, {"identifier": "D", "content": "$$\\frac{5}{2}$$"}]
["D"]
null
We have, $A^T=\alpha A+I$, where $A$ is $2 \times 2$ matrix and $\alpha \in R-\{-1,1\}$ <br/><br/>$$ \begin{aligned} \left(A^T\right)^T & =\alpha A^T+I \\\\ A & =\alpha A^T+I \\\\ A & =\alpha(\alpha A+I)+I \left[\because A^T=\alpha A+I\right]\\\\ A & =\alpha^2 A+(\alpha+1) I \\\\ A & \left(1-\alpha^2\right)=(\alpha+1) I \\\\ A & =\frac{(\alpha+1)}{(1-\alpha)(1+\alpha)} I \end{aligned} $$ <br/><br/>$$ \begin{aligned} A & =\frac{1}{1-\alpha} I ..........(i)\\\\ |A| & =\frac{1}{(1-\alpha)^2} ...........(ii) \end{aligned} $$ <br/><br/>Also, <br/><br/>$$ \begin{aligned} \left|A^2-A\right| & =4 \\\\ |A||A-I| & =4 \\\\ \frac{1}{(1-\alpha)^2}\left|\left(\frac{1}{1-\alpha}-1\right) I\right| & =4 \\\\ \frac{1}{(1-\alpha)^2}\left|\left(\frac{\alpha}{1-\alpha}\right) I\right| & =4 \\\\ \frac{1}{(1-\alpha)^2} \times \frac{\alpha^2}{(1-\alpha)^2} & =4 \\\\ \frac{\alpha^2}{(1-\alpha)^4} & =4 \\\\ \frac{\alpha}{(1-\alpha)^2} & = \pm 2 \\\\ 2(1-\alpha)^2 & = \pm \alpha \end{aligned} $$ <br/><br/>If $2(1-\alpha)^2=\alpha$, then $2 \alpha^2-5 \alpha+2=0$ <br/><br/>Sum of value of $\alpha=\frac{5}{2} \quad\left[\because\right.$ Sum of zero $\left.=\frac{\text {-Coefficient of } x}{\text { Coefficient of } x^2}\right]$ <br/><br/>If $2(1-\alpha)^2=-\alpha$, then $2 \alpha^2-3 \alpha+2=0$ <br/><br/>$\therefore$ No real value of $\alpha$ <br/><br/>Hence, sum of all values of $\alpha=\frac{5}{2}$
mcq
jee-main-2023-online-11th-april-morning-shift
1lgylvto4
maths
matrices-and-determinants
inverse-of-a-matrix
<p>If $$A=\left[\begin{array}{cc}1 &amp; 5 \\ \lambda &amp; 10\end{array}\right], \mathrm{A}^{-1}=\alpha \mathrm{A}+\beta \mathrm{I}$$ and $$\alpha+\beta=-2$$, then $$4 \alpha^{2}+\beta^{2}+\lambda^{2}$$ is equal to :</p>
[{"identifier": "A", "content": "12"}, {"identifier": "B", "content": "10"}, {"identifier": "C", "content": "19"}, {"identifier": "D", "content": "14"}]
["D"]
null
$$ \begin{aligned} & \mathrm{A}=\left[\begin{array}{cc} 1 & 5 \\ \lambda & 10 \end{array}\right] \\\\ & \Rightarrow|\mathrm{A}-x \mathrm{I}|=0 \\\\ & \Rightarrow\left|\begin{array}{cc} 1-x & 5 \\ \lambda & 10-x \end{array}\right|=0 \\\\ & \Rightarrow(1-x)(10-x)-5 \lambda=0 \\\\ & \Rightarrow 10-11 x+x^2-5 \lambda=0 \end{aligned} $$ <br/><br/>Also, $\Rightarrow \mathrm{A}^{-1}=\alpha \mathrm{A}+\beta \mathrm{I}$ <br/><br/>$$ \Rightarrow \alpha A^2+\beta A-I=0 $$ <br/><br/>and $A^2-11 A+(10-5 \lambda) I=0$ <br/><br/>On solving, we get <br/><br/>$$ \alpha=\frac{1}{5}, \beta=-\frac{11}{5} $$ <br/><br/>$$ \begin{aligned} & \text { So, } 5 \lambda-10=5 \Rightarrow \lambda=3 \\\\ & \therefore 4 \alpha^2+\beta^2+\lambda^2 \\\\ & =4\left(\frac{1}{25}\right)+\left(\frac{121}{25}\right)+9 \\\\ & =\frac{125}{25}+9=14 \end{aligned} $$
mcq
jee-main-2023-online-8th-april-evening-shift
lsbku1aw
maths
matrices-and-determinants
inverse-of-a-matrix
Consider the matrix $f(x)=\left[\begin{array}{ccc}\cos x &amp; -\sin x &amp; 0 \\ \sin x &amp; \cos x &amp; 0 \\ 0 &amp; 0 &amp; 1\end{array}\right]$. <br/><br/>Given below are two statements : <br/><br/>Statement I : $ f(-x)$ is the inverse of the matrix $f(x)$. <br/><br/>Statement II : $f(x) f(y)=f(x+y)$. <br/><br/>In the light of the above statements, choose the correct answer from the options given below :
[{"identifier": "A", "content": "Statement I is false but Statement II is true"}, {"identifier": "B", "content": "Both Statement I and Statement II are false"}, {"identifier": "C", "content": "Both Statement I and Statement II are true"}, {"identifier": "D", "content": "Statement I is true but Statement II is false"}]
["C"]
null
<p>$$\begin{aligned} & f(-x)=\left[\begin{array}{ccc} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{array}\right] \\ & f(x) \cdot f(-x)=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]=I \end{aligned}$$</p> <p>Hence statement- I is correct</p> <p>Now, checking statement II</p> <p>$$\begin{aligned} & f(y)=\left[\begin{array}{ccc} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{array}\right] \\ & f(x) \cdot f(y)=\left[\begin{array}{ccc} \cos (x+y) & -\sin (x+y) & 0 \\ \sin (x+y) & \cos (x+y) & 0 \\ 0 & 0 & 1 \end{array}\right] \\ & \Rightarrow f(x) \cdot f(y)=f(x+y) \end{aligned}$$</p> <p>Hence statement-II is also correct.</p>
mcq
jee-main-2024-online-27th-january-morning-shift
luxwcxug
maths
matrices-and-determinants
inverse-of-a-matrix
<p>Let $$B=\left[\begin{array}{ll}1 &amp; 3 \\ 1 &amp; 5\end{array}\right]$$ and $$A$$ be a $$2 \times 2$$ matrix such that $$A B^{-1}=A^{-1}$$. If $$B C B^{-1}=A$$ and $$C^4+\alpha C^2+\beta I=O$$, then $$2 \beta-\alpha$$ is equal to</p>
[{"identifier": "A", "content": "16"}, {"identifier": "B", "content": "10"}, {"identifier": "C", "content": "8"}, {"identifier": "D", "content": "2"}]
["B"]
null
<p>$$\begin{aligned} & B=\left[\begin{array}{ll} 1 & 3 \\ 1 & 5 \end{array}\right] \\ & A B^{-1}=A^{-1} \\ & \Rightarrow A^2=B \end{aligned}$$</p> <p>Also, $$B C B^{-1}=A$$</p> <p>$$\begin{aligned} \Rightarrow C & =B^{-1} A B \\ \Rightarrow C^4 & =\left(B^{-1} A B\right)\left(B^{-1} A B\right)\left(B^{-1} A B\right)\left(B^{-1} A B\right) \\ & =B^{-1} A^4 B \\ & =B^{-1} B^2 B \\ \Rightarrow \quad C^4 & =B^2 \end{aligned}$$</p> <p>Also, $$C^2=\left(B^{-1} A B\right)\left(B^{-1} A B\right)$$</p> <p>$$\begin{aligned} & =B^{-1} A^2 B \\ & =B^{-1} B B \end{aligned}$$</p> <p>$$\begin{aligned} & \Rightarrow C^2=B \\ & \Rightarrow C^4+\alpha C^2+\beta I=0 \\ & \Rightarrow B^2+\alpha B+\beta I=0 \\ & B^2=\left[\begin{array}{ll} 1 & 3 \\ 1 & 5 \end{array}\right]\left[\begin{array}{ll} 1 & 3 \\ 1 & 5 \end{array}\right]=\left[\begin{array}{ll} 4 & 18 \\ 6 & 28 \end{array}\right] \\ & \Rightarrow\left[\begin{array}{ll} 4 & 18 \\ 6 & 28 \end{array}\right]+\alpha\left[\begin{array}{ll} 1 & 3 \\ 1 & 5 \end{array}\right]+\left[\begin{array}{ll} \beta & 0 \\ 0 & \beta \end{array}\right]=\left[\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right] \\ & \Rightarrow 4+\alpha+\beta=0 \end{aligned}$$</p> <p>and $$18+3 \alpha=0$$</p> <p>$$\begin{aligned} & \Rightarrow \alpha=-6 \\ & \Rightarrow \beta=2 \\ & \Rightarrow 2 \beta-\alpha=10 \end{aligned}$$</p>
mcq
jee-main-2024-online-9th-april-evening-shift
lv2eqxv2
maths
matrices-and-determinants
inverse-of-a-matrix
<p>Let $$A$$ be a $$2 \times 2$$ symmetric matrix such that $$A\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 7\end{array}\right]$$ and the determinant of $$A$$ be 1 . If $$A^{-1}=\alpha A+\beta I$$, where $$I$$ is an identity matrix of order $$2 \times 2$$, then $$\alpha+\beta$$ equals _________.</p>
[]
null
5
<p>Let $$A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$$</p> <p>$$|A|=1 \Rightarrow a c-b^2=0 \quad \text{... (i)}$$</p> <p>$$\text { Given }\left[\begin{array}{ll} a & b \\ b & c \end{array}\right]\left[\begin{array}{l} 1 \\ 1 \end{array}\right]=\left[\begin{array}{l} 3 \\ 7 \end{array}\right]$$</p> <p>$$\begin{aligned} & \Rightarrow \quad a+b=3 \quad \text{... (ii)}\\ & \text { and } b+c=7 \quad \text{... (iii)} \end{aligned}$$</p> <p>from (i), (ii) and (iii) $$a=1, b=2, c=5$$</p> <p>$$\begin{aligned} \Rightarrow & A=\left[\begin{array}{ll} 1 & 2 \\ 2 & 5 \end{array}\right] \Rightarrow A^{-1}=\left[\begin{array}{cc} 5 & -2 \\ -2 & 1 \end{array}\right] \\ & \text { Given } A^{-1}=\alpha A+\beta I \\ \Rightarrow & {\left[\begin{array}{cc} 5 & -2 \\ -2 & 1 \end{array}\right]=\alpha\left[\begin{array}{ll} 1 & 2 \\ 2 & 5 \end{array}\right]+\beta\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] } \\ \Rightarrow & \alpha=-1 \text { and } \beta=6 \\ & \alpha+\beta=5 \end{aligned}$$</p>
integer
jee-main-2024-online-4th-april-evening-shift