question_id
stringlengths
8
35
subject
stringclasses
1 value
chapter
stringclasses
32 values
topic
stringclasses
178 values
question
stringlengths
26
9.64k
options
stringlengths
2
1.63k
correct_option
stringclasses
5 values
answer
stringclasses
293 values
explanation
stringlengths
13
9.38k
question_type
stringclasses
3 values
paper_id
stringclasses
149 values
47Y6lsuqMl34l2lIwhhip
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
If the length of the latus rectum of an ellipse is 4 units and the distance between a focus an its nearest vertex on the major axis is $${3 \over 2}$$ units, then its eccentricity is :
[{"identifier": "A", "content": "$${1 \\over 2}$$ "}, {"identifier": "B", "content": "$${1 \\over 3}$$"}, {"identifier": "C", "content": "$${2 \\over 3}$$"}, {"identifier": "D", "content": "$${1 \\over 9}$$"}]
["B"]
null
If the cordinate of focus and vertex are (ae, 0) and (a, 0) respectively, <br><br>then distance between focus and vertex, <br><br>a $$-$$ ae = $${3 \over 2}$$ (given) <br><br>$$ \Rightarrow $$ $$\,\,\,$$ a (1 $$-$$ e) = $${3 \over 2}$$ <br><br>Length of latus rectum, <br><br>$${{2{b^2}} \over a} = 4$$ <br><br>$$ \Rightarrow $$ $$\,\,\,$$ b<sup>2</sup> = 2a <br><br>$$ \Rightarrow $$ $$\,\,\,$$ a<sup>2</sup>(1 $$-$$ e<sup>2</sup>) = 2a&nbsp;&nbsp; [As b<sup>2</sup> = a<sup>2</sup> (1 $$-$$ e<sup>2</sup>)] <br><br>$$ \Rightarrow $$ $$\,\,\,$$ a (1 $$-$$ e) ( 1 + e) = 2 <br><br>Putting &nbsp;&nbsp; a (1 $$-$$ e) = $${3 \over 2}$$ <br><br>$$ \Rightarrow $$ $$\,\,\,$$ $${3 \over 2}$$ (1 + e) = 2 <br><br>$$ \Rightarrow $$ $$\,\,\,$$ 3 + 3e = 4 <br><br>$$ \Rightarrow $$ $$\,\,\,$$ e = $${1 \over 3}$$
mcq
jee-main-2018-online-16th-april-morning-slot
KbnTkPZf7qScCM6DN6YHH
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
Let S = $$\left\{ {\left( {x,y} \right) \in {R^2}:{{{y^2}} \over {1 + r}} - {{{x^2}} \over {1 - r}}} \right\};r \ne \pm 1.$$ Then S represents :
[{"identifier": "A", "content": "an ellipse whose eccentricity is&nbsp;$${1 \\over {\\sqrt {r + 1} }},$$&nbsp;where r &gt; 1"}, {"identifier": "B", "content": "an ellipse whose eccentricity is&nbsp;$${2 \\over {\\sqrt {r + 1} }},$$&nbsp;where 0 &lt; r &lt; 1"}, {"identifier": "C", "content": "an ellipse whose eccentricity is&nbsp;$${2 \\over {\\sqrt {r - 1} }},$$&nbsp;where 0 &lt; r &lt; 1"}, {"identifier": "D", "content": "an ellipse whose eccentricity is&nbsp;$$\\sqrt {{2 \\over {r + 1}}}$$,&nbsp;where r &gt; 1"}]
["D"]
null
$${{{y^2}} \over {1 + r}} - {{{x^2}} \over {1 - r}} = 1$$ <br><br>for r &gt; 1, &nbsp;&nbsp;&nbsp;&nbsp;$${{{y^2}} \over {1 + r}} + {{{x^2}} \over {1 - r}} = 1$$ <br><br>$$e = \sqrt {1 - \left( {{{r - 1} \over {r + 2}}} \right)} $$ <br><br>$$ = \sqrt {{{\left( {r + 1} \right) - \left( {r - 1} \right)} \over {\left( {r + 1} \right)}}} $$ <br><br>$$ = \sqrt {{2 \over {r + 1}}} = \sqrt {{2 \over {r + 1}}} $$
mcq
jee-main-2019-online-10th-january-evening-slot
N4CHAkYaudXunJ9Heb9Zh
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
Let the length of the latus rectum of an ellipse with its major axis along x-axis and centre at the origin, be 8. If the distance between the foci of this ellipse is equal to the length of its minor axis, then which one of the following points lies on it?
[{"identifier": "A", "content": "$$\\left( {4\\sqrt 2 ,2\\sqrt 3 } \\right)$$"}, {"identifier": "B", "content": "$$\\left( {4\\sqrt 3 ,2\\sqrt 3 } \\right)$$"}, {"identifier": "C", "content": "$$\\left( {4\\sqrt 3 ,2\\sqrt 2 } \\right)$$"}, {"identifier": "D", "content": "$$\\left( {4\\sqrt 2 ,2\\sqrt 2 } \\right)$$"}]
["C"]
null
$${{2{b^2}} \over a} = 8$$ and 2ae $$=$$ 2b <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$${b \over a}$$ = e and 1 $$-$$ e<sup>2</sup> = e<sup>2</sup> $$ \Rightarrow $$ e $$=$$ $${1 \over {\sqrt 2 }}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;b = 4$$\sqrt 2 $$ and a $$=$$ 8 <br><br>So equation of ellipse is $${{{x^2}} \over {64}} + {{{y^2}} \over {32}} = 1$$
mcq
jee-main-2019-online-11th-january-evening-slot
VkdvpRdbpHlWvtYoCNZTw
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
Let S and S' be the foci of an ellipse and B be any one of the extremities of its minor axis. If $$\Delta $$S'BS is a right angled triangle with right angle at B and area ($$\Delta $$S'BS) = 8 sq. units, then the length of a latus rectum of the ellipse is :
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "4$$\\sqrt 2 $$"}, {"identifier": "C", "content": "4"}, {"identifier": "D", "content": "2$$\\sqrt 2 $$"}]
["C"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263675/exam_images/bt2q58jwtsfdf5ghjlxc.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 12th January Evening Slot Mathematics - Ellipse Question 65 English Explanation"> <br>b<sup>2</sup> = a<sup>2</sup>e<sup>2</sup> . . . . . . (i) <br><br>$${1 \over 2}$$ S'B.SB = 8 <br><br>S'B.SB = 16 <br><br>a<sup>2</sup>e<sup>2</sup> + b<sup>2</sup> = 16 . . . . .(ii) <br><br>b<sup>2</sup> = a<sup>2</sup> (1 $$-$$ e<sup>2</sup>) . . . . .(iii) <br><br>using (i), (ii), (iii) a = 4 <br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;b = $$2\sqrt 2 $$ <br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;e = $${1 \over {\sqrt 2 }}$$ <br><br>$$ \therefore $$&nbsp;&nbsp;$$\ell $$ (L.R) $$=$$ $${{2{b^2}} \over a} = 4$$
mcq
jee-main-2019-online-12th-january-evening-slot
i63vRXUpIdgaQSbeWRu0J
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
In an ellipse, with centre at the origin, if the difference of the lengths of major axis and minor axis is 10 and one of the foci is at (0,5$$\sqrt 3$$), then the length of its latus rectum is :
[{"identifier": "A", "content": "5"}, {"identifier": "B", "content": "8"}, {"identifier": "C", "content": "10"}, {"identifier": "D", "content": "6"}]
["A"]
null
Focus (0, be) = (0, 5$$\sqrt 3$$) <br><br>$$ \therefore $$ be = 5$$\sqrt 3$$ <br><br>$$ \Rightarrow $$ b<sup>2</sup>e<sup>2</sup> = 75 <br><br>As here b &gt; a <br><br>so e<sup>2</sup> = $$1 - {{{a^2}} \over {{b^2}}}$$ <br><br>$$ \therefore $$ b<sup>2</sup>$$\left( {1 - {{{a^2}} \over {{b^2}}}} \right)$$ = 75 <br><br>$$ \Rightarrow $$ b<sup>2</sup> - a<sup>2</sup> = 75 .......(1) <br><br>Given that, <br><br>difference of the lengths of major axis and minor axis is 10. <br><br>$$ \therefore $$ 2b - 2a = 10 <br><br>$$ \Rightarrow $$ b - a = 5 .......(2) <br><br>From (1), <br><br>(b + a)(b - a) = 75 <br><br>$$ \Rightarrow $$ (b + a)5 = 75 <br><br>$$ \Rightarrow $$ (b + a) = 15 .......(3) <br><br>From (2) and (3) we get, <br><br>b = 10, a = 5 <br><br>$$ \therefore $$ Length of its latus rectum = $${{{2{a^2}} \over b}}$$ <br><br>= $${{2 \times 25} \over {10}}$$ = 5
mcq
jee-main-2019-online-8th-april-evening-slot
iduWy6AjPu6GT3dkEG3rsa0w2w9jxb09lba
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
An ellipse, with foci at (0, 2) and (0, –2) and minor axis of length 4, passes through which of the following points?
[{"identifier": "A", "content": "$$\\left( {2,\\sqrt 2 } \\right)$$"}, {"identifier": "B", "content": "$$\\left( {2,2\\sqrt 2 } \\right)$$"}, {"identifier": "C", "content": "$$\\left( {\\sqrt 2 ,2} \\right)$$"}, {"identifier": "D", "content": "$$\\left( {1,2\\sqrt 2 } \\right)$$"}]
["C"]
null
Let $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1(a &lt; b)$$ is the equation of ellipse, focii $$(0, \pm 2)$$<br><br> Given 2a = 4 $$ \Rightarrow $$ a = 2<br><br> e<sup>2</sup> = 1 - $${{{a^2}} \over {{b^2}}}$$ $$ \Rightarrow $$ b<sup>2</sup>e<sup>2</sup> = b<sup>2</sup> - a<sup>2</sup><br><br> 4 = b<sup>2</sup> - 4<br><br> b<sup>2</sup> = 8<br><br> $$ \because $$ equation of ellipse is $${{{x^2}} \over 4} + {{{y^2}} \over 8} = 1$$<br><br> then it passes through $$\left( {\sqrt 2 ,2} \right)$$
mcq
jee-main-2019-online-12th-april-evening-slot
S0LExgr96l5oy2q8S87k9k2k5e2uho9
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
If the distance between the foci of an ellipse is 6 and the distance between its directrices is 12, then the length of its latus rectum is :
[{"identifier": "A", "content": "$$\\sqrt 3 $$"}, {"identifier": "B", "content": "$$3\\sqrt 2 $$"}, {"identifier": "C", "content": "$${3 \\over {\\sqrt 2 }}$$"}, {"identifier": "D", "content": "$$2\\sqrt 3 $$"}]
["B"]
null
Distance between foci = 2ae = 6 <br><br>$$ \Rightarrow $$ ae = 3 .....(1) <br><br>Distance between directrices = $${{2a} \over e}$$ = 12 <br><br>$$ \Rightarrow $$ $${a \over e}$$ = 6 .....(2) <br><br>from (1) and (2) <br><br>a<sup>2</sup> = 18 <br><br>also a<sup>2</sup>e<sup>2</sup> = 9 <br><br>$$ \Rightarrow $$ 18e<sup>2</sup> = 9 <br><br>$$ \Rightarrow $$ e<sup>2</sup> = $${1 \over 2}$$ <br><br>We know e<sup>2</sup> = 1 - $${{{b^2}} \over {{a^2}}}$$ <br><br>$$ \therefore $$ $${1 \over 2}$$ = 1 - $${{{b^2}} \over {{a^2}}}$$ <br><br>$$ \Rightarrow $$ b<sup>2</sup> = 9 <br><br>$$ \therefore $$ Length of latus rectum = $${{2{b^2}} \over a}$$ <br><br>= $${{2 \times 9} \over {\sqrt {18} }}$$ <br><br>= $$3\sqrt 2 $$
mcq
jee-main-2020-online-7th-january-morning-slot
8tth7ZaouyPxK54n7Djgy2xukf7fuiug
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
Let $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ (a &gt; b) be a given ellipse, length of whose latus rectum is 10. If its eccentricity is the maximum value of the function, <br/>$$\phi \left( t \right) = {5 \over {12}} + t - {t^2}$$, then a<sup>2</sup> + b<sup>2</sup> is equal to :
[{"identifier": "A", "content": "145"}, {"identifier": "B", "content": "126"}, {"identifier": "C", "content": "135"}, {"identifier": "D", "content": "116"}]
["B"]
null
Given ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ (a &gt; b)<br><br>Length of latus rectum $$ = {{2{b^2}} \over a} = 10$$<br><br>$$\phi (t) = {5 \over {12}} + t - {t^2}$$<br><br>$$ = {8 \over {12}} - {\left( {t - {1 \over 2}} \right)^2}$$<br><br>$$ \therefore $$ $$\phi {(t)_{\max }} = {8 \over {12}} = {2 \over 3}$$<br><br>$$ \therefore $$ eccentricity (e) = $${2 \over 3}$$<br><br>Also, $${e^2} = 1 - {{{b^2}} \over {{a^2}}}$$<br><br>$$ \Rightarrow {4 \over 9} = 1 - {{{b^2}} \over {{a^2}}}$$<br><br>$$ \Rightarrow {{{b^2}} \over {{a^2}}} = {5 \over 9}$$<br><br>$$ \Rightarrow {{{b^2}} \over a} \times {1 \over a} = {5 \over 9}$$<br><br>$$ \Rightarrow {5 \over a} = {5 \over 9}$$<br><br>$$ \Rightarrow a = 9$$<br><br>$$ \therefore $$ $${b^2} = 5 \times 9 = 45$$<br><br>$$ \therefore $$ $${a^2} + {b^2} = 81 + 45 = 126$$
mcq
jee-main-2020-online-4th-september-morning-slot
1krua9jnn
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
Let $${E_1}:{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1,a &gt; b$$. Let E<sub>2</sub> be another ellipse such that it touches the end points of major axis of E<sub>1</sub> and the foci of E<sub>2</sub> are the end points of minor axis of E<sub>1</sub>. If E<sub>1</sub> and E<sub>2</sub> have same eccentricities, then its value is :
[{"identifier": "A", "content": "$${{ - 1 + \\sqrt 5 } \\over 2}$$"}, {"identifier": "B", "content": "$${{ - 1 + \\sqrt 8 } \\over 2}$$"}, {"identifier": "C", "content": "$${{ - 1 + \\sqrt 3 } \\over 2}$$"}, {"identifier": "D", "content": "$${{ - 1 + \\sqrt 6 } \\over 2}$$"}]
["A"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267797/exam_images/t9q8kuirdplfx1cvehdq.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 22th July Evening Shift Mathematics - Ellipse Question 44 English Explanation"><br>$${e^2} = 1 - {{{b^2}} \over {{a^2}}}$$<br><br>$${e^2} = 1 - {{{a^2}} \over {{c^2}}}$$<br><br>$$ \Rightarrow {{{b^2}} \over {{a^2}}} = {{{a^2}} \over {{c^2}}}$$<br><br>$$ \Rightarrow {c^2} = {{{a^4}} \over {{b^2}}} \Rightarrow c = {{{a^2}} \over b}$$<br><br>Also b = ce<br><br>$$ \Rightarrow c = {b \over e}$$<br><br>$${b \over e} = {{{a^2}} \over b}$$<br><br>$$ \Rightarrow e = {{{b^2}} \over {{a^2}}} = 1 - {e^2}$$<br><br>$$ \Rightarrow {e^2} + e - 1 = 0$$<br><br>$$ \Rightarrow e = {{ - 1 + \sqrt 5 } \over 2}$$
mcq
jee-main-2021-online-22th-july-evening-shift
1ks0744oi
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
A ray of light through (2, 1) is reflected at a point P on the y-axis and then passes through the point (5, 3). If this reflected ray is the directrix of an ellipse with eccentricity $${1 \over 3}$$ and the distance of the nearer focus from this directrix is $${8 \over {\sqrt {53} }}$$, then the equation of the other directrix can be :
[{"identifier": "A", "content": "11x + 7y + 8 = 0 or 11x + 7y $$-$$ 15 = 0"}, {"identifier": "B", "content": "11x $$-$$ 7y $$-$$ 8 = 0 or 11x + 7y + 15 = 0"}, {"identifier": "C", "content": "2x $$-$$ 7y + 29 = 0 or 2x $$-$$ 7y $$-$$ 7 = 0"}, {"identifier": "D", "content": "2x $$-$$ 7y $$-$$ 39 = 0 or 2x $$-$$ 7y $$-$$ 7 = 0"}]
["C"]
null
<picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266011/exam_images/bvecsk2e3t8vuavydyb4.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264268/exam_images/em5jdqg3jwdghbprqcnp.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263588/exam_images/ffu3bdx7j47o0huvdfzw.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 27th July Morning Shift Mathematics - Ellipse Question 40 English Explanation"></picture> <br><br>Equation of reflected Ray<br><br>$$y - 1 = {2 \over 7}(x + 2)$$<br><br>$$7x - 7 = 2x + 4$$<br><br>$$2x - 7y + 11 = 0$$<br><br>Let the equation of other directrix is <br><br>$$2x - 7y + \lambda $$ = 0<br><br>Distance of directrix from focus<br><br>$${a \over e} - e = {8 \over {\sqrt {53} }}$$<br><br>$$3a - {a \over 3} = {8 \over {\sqrt {53} }}$$ or $$a = {3 \over {\sqrt {53} }}$$<br><br>Distance from other focus $${a \over e} + ae$$<br><br>$$3a + {a \over 3} = {{10a} \over 3} = {{10} \over 3} \times {3 \over {\sqrt {53} }} = {{10} \over {\sqrt {53} }}$$<br><br>Distance between two directrix = $$ = {{2a} \over e}$$<br><br>$$ = 2 \times 3 \times {3 \over {\sqrt {53} }} = {{18} \over {\sqrt {53} }}$$<br><br>$$\left| {{{\lambda - 11} \over {\sqrt {53} }}} \right| = {{18} \over {\sqrt {53} }}$$<br><br>$$\lambda - 11 = 18$$ or $$-$$ 18<br><br>$$\lambda = 29$$ or $$-$$7<br><br>$$2x - 7y - 7 = 0$$ or $$2x - 7y + 29 = 0$$
mcq
jee-main-2021-online-27th-july-morning-shift
1ktenjau8
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
If x<sup>2</sup> + 9y<sup>2</sup> $$-$$ 4x + 3 = 0, x, y $$\in$$ R, then x and y respectively lie in the intervals :
[{"identifier": "A", "content": "$$\\left[ { - {1 \\over 3},{1 \\over 3}} \\right]$$ and $$\\left[ { - {1 \\over 3},{1 \\over 3}} \\right]$$"}, {"identifier": "B", "content": "$$\\left[ { - {1 \\over 3},{1 \\over 3}} \\right]$$ and [1, 3]"}, {"identifier": "C", "content": "[1, 3] and [1, 3]"}, {"identifier": "D", "content": "[1, 3] and $$\\left[ { - {1 \\over 3},{1 \\over 3}} \\right]$$"}]
["D"]
null
x<sup>2</sup> + 9y<sup>2</sup> $$-$$ 4x + 3 = 0<br><br>(x<sup>2</sup> $$-$$ 4x) + (9y<sup>2</sup>) + 3 = 0<br><br>(x<sup>2</sup> $$-$$ 4x + 4) + (9y<sup>2</sup>) + 3 $$-$$ 4 = 0<br><br>(x $$-$$ 2)<sup>2</sup> + (3y)<sup>2</sup> = 1<br><br>$${{{{(x - 2)}^2}} \over {{{(1)}^2}}} + {{{y^2}} \over {{{\left( {{1 \over 3}} \right)}^2}}} = 1$$ (equation of an ellipse).<br><br>As it is equation of an ellipse, x &amp; y can vary inside the ellipse.<br><br>So, $$x - 2 \in [ - 1,1]$$ and $$y \in \left[ { - {1 \over 3},{1 \over 3}} \right]$$<br><br>x $$\in$$ [1, 3] $$y \in \left[ { - {1 \over 3},{1 \over 3}} \right]$$
mcq
jee-main-2021-online-27th-august-morning-shift
1l57oi7dz
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
<p>Let the eccentricity of an ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, $$a &gt; b$$, be $${1 \over 4}$$. If this ellipse passes through the point $$\left( { - 4\sqrt {{2 \over 5}} ,3} \right)$$, then $${a^2} + {b^2}$$ is equal to :</p>
[{"identifier": "A", "content": "29"}, {"identifier": "B", "content": "31"}, {"identifier": "C", "content": "32"}, {"identifier": "D", "content": "34"}]
["B"]
null
<p>$${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$</p> <p>$$ \Rightarrow {{{{\left( { - 4\sqrt {{2 \over 5}} } \right)}^2}} \over {{a^2}}} + {{32} \over {{b^2}}} = 1$$</p> <p>$$ \Rightarrow {{32} \over {5{a^2}}} + {9 \over {{b^2}}} = 1$$ ..... (i)</p> <p>$${a^2}(1 - {e^2}) = {b^2}$$</p> <p>$${a^2}\left( {1 - {1 \over {16}}} \right) = {b^2}$$</p> <p>$$15{a^2} = 16{b^2} \Rightarrow {a^2} = {{16{b^2}} \over {15}}$$</p> <p>From (i)</p> <p>$${6 \over {{b^2}}} + {9 \over {{b^2}}} = 1 \Rightarrow {b^2} = 15$$ & $${a^2} = 16$$</p> <p>$${a^2} + {b^2} = 15 + 16 = 31$$</p>
mcq
jee-main-2022-online-27th-june-morning-shift
1l5b88py5
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
<p>Let the maximum area of the triangle that can be inscribed in the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over 4} = 1,\,a &gt; 2$$, having one of its vertices at one end of the major axis of the ellipse and one of its sides parallel to the y-axis, be $$6\sqrt 3 $$. Then the eccentricity of the ellipse is :</p>
[{"identifier": "A", "content": "$${{\\sqrt 3 } \\over 2}$$"}, {"identifier": "B", "content": "$${1 \\over 2}$$"}, {"identifier": "C", "content": "$${1 \\over {\\sqrt 2 }}$$"}, {"identifier": "D", "content": "$${{\\sqrt 3 } \\over 4}$$"}]
["A"]
null
<p>Given ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over 4} = 1,\,a &gt; 2$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l5v5uvjp/f35361f2-1b79-408c-b8ee-7c34d92e23d8/e7463d60-0905-11ed-a790-b11fa70c8a36/file-1l5v5uvjq.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l5v5uvjp/f35361f2-1b79-408c-b8ee-7c34d92e23d8/e7463d60-0905-11ed-a790-b11fa70c8a36/file-1l5v5uvjq.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 24th June Evening Shift Mathematics - Ellipse Question 28 English Explanation"></p> <p>$$\therefore$$ Let A($$\theta$$) be the area of $$\Delta$$ABB'</p> <p>Then $$A(\theta ) = {1 \over 2}4\sin \theta (a + a\cos \theta )$$</p> <p>$$A'(\theta ) = a(2\cos \theta + 2{\cos ^2}\theta )$$</p> <p>For maxima $$A'(\theta ) = 0$$</p> <p>$$ \Rightarrow \cos \theta = 1,\,\,\cos \theta = {1 \over 2}$$</p> <p>But for maximum area $$\cos \theta = {1 \over 2}$$</p> <p>$$\therefore$$ $$A(\theta ) = 6\sqrt 3 $$</p> <p>$$ \Rightarrow 2{{\sqrt 3 } \over 2}\left( {a + {a \over 2}} \right) = 6\sqrt 3 $$</p> <p>$$ \Rightarrow a = 4$$</p> <p>$$\therefore$$ $$e = \sqrt {1 - {{{b^2}} \over {{a^2}}}} = \sqrt {1 - {4 \over {16}}} = {{\sqrt 3 } \over 2}$$</p>
mcq
jee-main-2022-online-24th-june-evening-shift
1l5w08jcr
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
<p>Let the eccentricity of the ellipse $${x^2} + {a^2}{y^2} = 25{a^2}$$ be b times the eccentricity of the hyperbola $${x^2} - {a^2}{y^2} = 5$$, where a is the minimum distance between the curves y = e<sup>x</sup> and y = log<sub>e</sub>x. Then $${a^2} + {1 \over {{b^2}}}$$ is equal to :</p>
[{"identifier": "A", "content": "$${3 \\over 2}$$"}, {"identifier": "B", "content": "$${5 \\over 2}$$"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "5"}]
["D"]
null
<p>Given ellipse $${x^2} + {a^2}{y^2} = 25{a^2} \Rightarrow {{{x^2}} \over {25{a^2}}} + {{{y^2}} \over {25}} = 1$$</p> <p>eccentricity $$({e_1}) = \sqrt {1 - {{{b^2}} \over {{a^2}}}} $$</p> <p>$$ = \sqrt {1 - {{25} \over {25{a^2}}}} $$</p> <p>$$ = \sqrt {1 - {1 \over {{a^2}}}} $$</p> <p>$$ \Rightarrow e_1^2 = 1 - {1 \over {{a^2}}}$$</p> <p>Also, given hyperbola,</p> <p>$${x^2} - {a^2}{y^2} = 5$$</p> <p>$$ \Rightarrow {{{x^2}} \over 5} - {{{y^2}} \over {{5 \over {{a^2}}}}} = 1$$</p> <p>eccentricity $$({e_2}) = \sqrt {1 + {{{b^2}} \over {{a^2}}}} $$</p> <p>$$ = \sqrt {1 + {5 \over {5{a^2}}}} $$</p> <p>$$ = \sqrt {1 + {1 \over {{a^2}}}} $$</p> <p>$$ \Rightarrow e_2^2 = 1 + {1 \over {{a^2}}}$$</p> <p>Also given,</p> <p>$${e_1} = b \times {e_2}$$</p> <p>$$ \Rightarrow e_1^2 = {b^2} \times e_2^2$$</p> <p>$$ \Rightarrow 1 - {1 \over {{a^2}}} = {b^2}\left( {1 + {1 \over {{a^2}}}} \right)$$</p> <p>$$ \Rightarrow {{{a^2} - 1} \over {{a^2}}} = {{{b^2}({a^2} + 1)} \over {{a^2}}}$$</p> <p>$$ \Rightarrow {b^2} = {{{a^2} - 1} \over {{a^2} + 1}}$$</p> <p> <img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l60jx84m/7dfa7ac3-4b51-48a5-b102-580ffe2e0760/d3aa7060-0bfc-11ed-8671-c161c1aef925/file-1l60jx84n.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l60jx84m/7dfa7ac3-4b51-48a5-b102-580ffe2e0760/d3aa7060-0bfc-11ed-8671-c161c1aef925/file-1l60jx84n.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2022 (Online) 30th June Morning Shift Mathematics - Ellipse Question 26 English Explanation"></p> <p>$$y = \log _e^x$$ is inverse of $$y = {e^x}$$ so it is mirror image of each other with respect to y = x line.</p> <p>Slope of tangent to y = e<sup>x</sup> curve</p> <p>$${{dy} \over {dx}} = {e^x}$$</p> <p>Slope of tangent to $$y = \log _e^x$$ curve,</p> <p>$${{dy} \over {dx}} = {1 \over x}$$</p> <p>Both tangents are parallel to y = x line for minimum distance condition.</p> <p>$$\therefore$$ Slope of y = x line = Slope of both the tangent.</p> <p>$$\therefore$$ $${{dy} \over {dx}} = {e^x} = 1 \Rightarrow {e^x} = {e^0} = x = 0$$</p> <p>$$\therefore$$ $$y = {e^x} = {e^0} = 1$$</p> <p>and $${{dy} \over {dx}} = {1 \over x} = 1 \Rightarrow x = 1$$</p> <p>$$\therefore$$ $$y = \log _e^1 = 0$$</p> <p>$$\therefore$$ tangent at (0, 1) point of $$y = {e^x}$$ curve and tangent at (1, 0) point of $$y = \log _e^x$$ curve are parallel.</p> <p>$$\therefore$$ Minimum distance between point (0, 1) and (1, 0) is $$ = \sqrt {{1^2} + {1^2}} = \sqrt 2 $$</p> <p>$$\therefore$$ $$a = \sqrt 2 $$</p> <p>So, $${b^2} = {{{a^2} - 1} \over {{a^2} + 1}} = {{2 - 1} \over {2 + 1}} = {1 \over 3}$$</p> <p>$$\therefore$$ $${a^2} + {1 \over {{b^2}}} = 2 + {1 \over {1/3}} = 5$$</p>
mcq
jee-main-2022-online-30th-june-morning-shift
1l6f1l1fg
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
<p>If the ellipse $$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$$ meets the line $$\frac{x}{7}+\frac{y}{2 \sqrt{6}}=1$$ on the $$x$$-axis and the line $$\frac{x}{7}-\frac{y}{2 \sqrt{6}}=1$$ on the $$y$$-axis, then the eccentricity of the ellipse is :</p>
[{"identifier": "A", "content": "$$\\frac{5}{7}$$"}, {"identifier": "B", "content": "$$\\frac{2 \\sqrt{6}}{7}$$"}, {"identifier": "C", "content": "$$\\frac{3}{7}$$"}, {"identifier": "D", "content": "$$\\frac{2 \\sqrt{5}}{7}$$"}]
["A"]
null
<p>$${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ meets the line $${x \over 7} + {y \over {2\sqrt 6 }} = 1$$ on the x-axis</p> <p>So, $$a = 7$$</p> <p>and $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ meets the line $${x \over 7} - {y \over {2\sqrt 6 }} = 1$$ on the y-axis</p> <p>So, $$b = 2\sqrt 6 $$</p> <p>Therefore, $${e^2} = 1 - {{{b^2}} \over {{a^2}}} = 1 - {{24} \over {49}}$$</p> <p>$$e = {5 \over 7}$$</p>
mcq
jee-main-2022-online-25th-july-evening-shift
1l6jem0yd
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
<p>If the length of the latus rectum of the ellipse $$x^{2}+4 y^{2}+2 x+8 y-\lambda=0$$ is 4 , and $$l$$ is the length of its major axis, then $$\lambda+l$$ is equal to ____________.</p>
[]
null
75
<p>Equation of ellipse is : $${x^2} + 4{y^2} + 2x + 8y - \lambda = 0$$</p> <p>$${(x + 1)^2} + 4{(y + 1)^2} = \lambda + 5$$</p> <p>$${{{{(x + 1)}^2}} \over {\lambda + 5}} + {{{{(y + 1)}^2}} \over {\left( {{{\lambda + 5} \over 4}} \right)}} = 1$$</p> <p>Length of latus rectum $$ = {{2\,.\,\left( {{{\lambda + 5} \over 4}} \right)} \over {\sqrt {\lambda + 5} }} = 4$$.</p> <p>$$\therefore$$ $$\lambda = 59$$.</p> <p>Length of major axis $$ = 2\,.\,\sqrt {\lambda + 5} = 16 = l$$</p> <p>$$\therefore$$ $$\lambda + l = 75$$.</p>
integer
jee-main-2022-online-27th-july-morning-shift
1l6p1xv5r
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
<p>Let a line L pass through the point of intersection of the lines $$b x+10 y-8=0$$ and $$2 x-3 y=0, \mathrm{~b} \in \mathbf{R}-\left\{\frac{4}{3}\right\}$$. If the line $$\mathrm{L}$$ also passes through the point $$(1,1)$$ and touches the circle $$17\left(x^{2}+y^{2}\right)=16$$, then the eccentricity of the ellipse $$\frac{x^{2}}{5}+\frac{y^{2}}{\mathrm{~b}^{2}}=1$$ is :</p>
[{"identifier": "A", "content": "$$\n\\frac{2}{\\sqrt{5}}\n$$"}, {"identifier": "B", "content": "$$\\sqrt{\\frac{3}{5}}$$"}, {"identifier": "C", "content": "$$\\frac{1}{\\sqrt{5}}$$"}, {"identifier": "D", "content": "$$\\sqrt{\\frac{2}{5}}$$"}]
["B"]
null
<p>$${L_1}:bx + 10y - 8 = 0,\,{L_2}:2x - 3y = 0$$</p> <p>then $$L:(bx + 10y - 8) + \lambda (2x - 3y) = 0$$</p> <p>$$\because$$ It passes through $$(1,\,1)$$</p> <p>$$\therefore$$ $$b + 2 - \lambda = 0 \Rightarrow \lambda = b + 2$$</p> <p>and touches the circle $${x^2} + {y^2} = {{16} \over {17}}$$</p> <p>$$\left| {{{{8^2}} \over {{{(2\lambda + b)}^2} + {{(10 - 3\lambda )}^2}}}} \right| = {{16} \over {17}}$$</p> <p>$$ \Rightarrow 4{\lambda ^2} + {b^2} + 4b\lambda + 100 + 9{\lambda ^2} - 60\lambda = 68$$</p> <p>$$ \Rightarrow 13{(b + 2)^2} + {b^2} + 4b(b + 2) - 60(b + 2) + 32 = 0$$</p> <p>$$ \Rightarrow 18{b^2} = 36$$</p> <p>$$\therefore$$ $${b^2} = 2$$</p> <p>$$\therefore$$ Eccentricity of ellipse : $${{{x^2}} \over 5} + {{{y^2}} \over {{b^2}}} = 1$$ is</p> <p>$$\therefore$$ $$e = \sqrt {1 - {2 \over 5}} = \sqrt {{3 \over 5}} $$</p>
mcq
jee-main-2022-online-29th-july-morning-shift
1ldyc1pa5
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
<p>Let C be the largest circle centred at (2, 0) and inscribed in the ellipse $${{{x^2}} \over {36}} + {{{y^2}} \over {16}} = 1$$. If (1, $$\alpha$$) lies on C, then 10 $$\alpha^2$$ is equal to ____________</p>
[]
null
118
$\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$ <br/><br/> $r^{2}=(x-2)^{2}+y^{2}$ <br/><br/> Solving simultaneously <br/><br/> $-5 x^{2}+36 x+\left(9 r^{2}-180\right)=0$ <br/><br/> $D=0$ <br/><br/> $r^{2}=\frac{128}{10}$ <br/><br/> Distance between $(1, \alpha)$ and $(2,0)$ should be $r$ <br/><br/> $$ \begin{aligned} & 1+\alpha^{2}=\frac{128}{10} \\\\ & \alpha^{2}=\frac{118}{10} \\\\ &=118.00 \end{aligned} $$
integer
jee-main-2023-online-24th-january-morning-shift
lgnyuzc0
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
Let an ellipse with centre $(1,0)$ and latus rectum of length $\frac{1}{2}$ have its major axis along $\mathrm{x}$-axis. If its minor axis subtends an angle $60^{\circ}$ at the foci, then the square of the sum of the lengths of its minor and major axes is equal to ____________.
[]
null
9
<img src="https://app-content.cdn.examgoal.net/fly/@width/image/1lgrmkz0q/2a7d38c3-ba55-42ad-a453-25c4fef11776/8da18aa0-e0da-11ed-9ecd-e999028462e7/file-1lgrmkz0r.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1lgrmkz0q/2a7d38c3-ba55-42ad-a453-25c4fef11776/8da18aa0-e0da-11ed-9ecd-e999028462e7/file-1lgrmkz0r.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2023 (Online) 15th April Morning Shift Mathematics - Ellipse Question 16 English Explanation"><br>$$ \begin{aligned} &amp; \frac{2 b^2}{a}=\frac{1}{2}, \quad \tan 30^{\circ}=\frac{b}{a e} \\\\ &amp; b^2=\frac{a}{4}, \frac{1}{3}=\frac{b^2}{a^2-b^2} \Rightarrow a^2-b^2=3 b^2 \Rightarrow b^2=\frac{a^2}{4} \\\\ &amp; \Rightarrow \quad a=1, b^2=\frac{1}{4} \Rightarrow b=\frac{1}{2} \\\\ &amp; \Rightarrow \quad(2 a+2 b)^2=9 \end{aligned} $$
integer
jee-main-2023-online-15th-april-morning-shift
1lgxh2jrz
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
<p>Let the ellipse $$E:{x^2} + 9{y^2} = 9$$ intersect the positive x and y-axes at the points A and B respectively. Let the major axis of E be a diameter of the circle C. Let the line passing through A and B meet the circle C at the point P. If the area of the triangle with vertices A, P and the origin O is $${m \over n}$$, where m and n are coprime, then $$m - n$$ is equal to :</p>
[{"identifier": "A", "content": "15"}, {"identifier": "B", "content": "16"}, {"identifier": "C", "content": "17"}, {"identifier": "D", "content": "18"}]
["C"]
null
The given equation of the ellipse is <br><br>$$ \begin{aligned} &amp; x^2+9 y^2=9 ~..........(i)\\\\ &amp; \Rightarrow \frac{x^2}{9}+\frac{y^2}{1}=1 \end{aligned} $$ <br><br>Now, equation of line $A B$ is <br><br>$$ x+3 y=3 ~$$...........(ii) <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lnbcvqbx/b63739e8-c768-420d-a989-3fb42c2b49f4/96ca2bd0-627d-11ee-b4f9-75aabed442fa/file-6y3zli1lnbcvqby.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lnbcvqbx/b63739e8-c768-420d-a989-3fb42c2b49f4/96ca2bd0-627d-11ee-b4f9-75aabed442fa/file-6y3zli1lnbcvqby.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh; vertical-align: baseline;" alt="JEE Main 2023 (Online) 10th April Morning Shift Mathematics - Ellipse Question 10 English Explanation"> <br><br>Now, point of intersection of line $x+3 y=3$ and circle <br><br>$$ \begin{array}{lr} &amp;x^2+y^2=9 \\\\ &amp;\therefore (3-3 y)^2+y^2=9 \\\\ &amp;\Rightarrow 9-18 y+9 y^2+y^2=9 \\\\ &amp;\Rightarrow -18 y+10 y^2=0 \\\\ &amp;\Rightarrow 18 y=10 y^2 \\\\ &amp;\Rightarrow y=0, \frac{9}{5} \end{array} $$ <br><br>Now, from figure, we clearly see that vertices $A, P$ and $O$ makes a $\triangle A P O$, <br><br>whose area is $\frac{1}{2} \times$ Base $\times$ Height <br><br>$$ \begin{aligned} &amp; \text { Area }=\frac{1}{2} \times 3 \times \frac{9}{5}=\frac{27}{10}=\frac{m}{n} ~~~~[Given]\\\\ &amp; \therefore m=27, n=10 \\\\ &amp; \Rightarrow m-n=27-10=17 \end{aligned} $$
mcq
jee-main-2023-online-10th-april-morning-shift
1lh2yedyt
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
<p>In a group of 100 persons 75 speak English and 40 speak Hindi. Each person speaks at least one of the two languages. If the number of persons, who speak only English is $$\alpha$$ and the number of persons who speak only Hindi is $$\beta$$, then the eccentricity of the ellipse $$25\left(\beta^{2} x^{2}+\alpha^{2} y^{2}\right)=\alpha^{2} \beta^{2}$$ is :</p>
[{"identifier": "A", "content": "$$\\frac{\\sqrt{129}}{12}$$"}, {"identifier": "B", "content": "$$\\frac{3 \\sqrt{15}}{12}$$"}, {"identifier": "C", "content": "$$\\frac{\\sqrt{119}}{12}$$"}, {"identifier": "D", "content": "$$\\frac{\\sqrt{117}}{12}$$"}]
["C"]
null
Let $E$ be the person speak, English <br><br>$\therefore n(E)=75$ <br><br>and $H$ be the person speak Hindi <br><br>$\therefore n(H)=40$ <br><br>Let number of persons who speak both English and Hindi are $t$. <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lo75i5g8/e4ea036e-437d-4176-8624-2ce86ca94e2d/d2049270-73f9-11ee-b2c1-dbe2f99c6f1d/file-6y3zli1lo75i5g9.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lo75i5g8/e4ea036e-437d-4176-8624-2ce86ca94e2d/d2049270-73f9-11ee-b2c1-dbe2f99c6f1d/file-6y3zli1lo75i5g9.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh; vertical-align: baseline;" alt="JEE Main 2023 (Online) 6th April Evening Shift Mathematics - Ellipse Question 9 English Explanation"> <br>$\begin{array}{rlrl} &amp;\therefore \alpha+t+\beta =100 ........(i) \\\\ &amp; \alpha+t =75........(i) \\\\ &amp;\text { and }\beta+t =40 ........(iii)\end{array}$ <br><br>From Equations (i) and (ii), $\beta=25$ <br><br>From Equations (i) and (iii), $\alpha=60$ and from Eq. (i), $t=15$ <br><br>We have, equation of ellipse <br><br>$$ \begin{aligned} 25\left(\beta^2 x^2+\alpha^2 y^2\right) &amp; =\alpha^2 \beta^2 \\\\ \Rightarrow 25\left(\frac{x^2}{\alpha^2}+\frac{y^2}{\beta^2}\right) &amp; =1 \end{aligned} $$ <br><br>$\begin{aligned} &amp; \Rightarrow 25\left(\frac{x^2}{3600}+\frac{y^2}{625}\right)=1 \\\\ &amp; \Rightarrow \frac{x^2}{144}+\frac{y^2}{25}=1 \\\\ &amp; \therefore \text { Eccentricity, } e=\sqrt{1-\frac{b^2}{a^2}}=\sqrt{1-\frac{25}{144}}=\frac{\sqrt{119}}{12}\end{aligned}$
mcq
jee-main-2023-online-6th-april-evening-shift
lsapbol9
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, \mathrm{a}&gt;\mathrm{b}$ be an ellipse, whose eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latusrectum is $\sqrt{14}$. Then the square of the eccentricity of $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is :
[{"identifier": "A", "content": "3"}, {"identifier": "B", "content": "$${7 \\over 2}$$"}, {"identifier": "C", "content": "$${3 \\over 2}$$"}, {"identifier": "D", "content": "$${5 \\over 2}$$"}]
["C"]
null
<p> <p>Given the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ with $a > b$, the eccentricity $ e $ is given by the formula:</p> <p>$ e = \sqrt{1 - \left(\frac{b}{a}\right)^2} $</p> <p>It is provided that the eccentricity $ e $ is $ \frac{1}{\sqrt{2}} $ (given), so we can equate the two expressions for eccentricity:</p> <p>$ \frac{1}{\sqrt{2}} = \sqrt{1 - \left(\frac{b}{a}\right)^2} $</p> <p>Squaring both sides to eliminate the square root gives:</p> <p>$ \frac{1}{2} = 1 - \left(\frac{b}{a}\right)^2 $</p> <p>$ \left(\frac{b}{a}\right)^2 = 1 - \frac{1}{2} $</p> <p>$ \left(\frac{b}{a}\right)^2 = \frac{1}{2} $</p> <p>Taking the square root on both sides:</p> <p>$ \frac{b}{a} = \frac{1}{\sqrt{2}} $</p> <p>$ a = b\sqrt{2} $</p> <p>Now, for the ellipse, the length of the latus rectum is given by the formula:</p> <p>$ \text{Length of Latus Rectum (L)} = \frac{2b^2}{a} $</p> <p>It's provided that the length of the latus rectum $ L $ is $ \sqrt{14} $, so substitute the known values to find $ b $:</p> <p>$ \sqrt{14} = \frac{2b^2}{b\sqrt{2}} = \frac{2b}{\sqrt{2}} $</p> <p>$ b\sqrt{2} = \sqrt{14} $</p> <p>$ b^2 = \frac{14}{2} $</p> <p>$ b^2 = 7 $</p> <p>And since $ a = b\sqrt{2} $, we can find $ a^2 $:</p> <p>$ a^2 = (b\sqrt{2})^2 $</p> <p>$ a^2 = 7 \cdot 2 $</p> <p>$ a^2 = 14 $</p> <p>Now we have an ellipse with $ a^2 = 14 $ and $ b^2 = 7 $. The equation of a hyperbola similar to the given ellipse but with the terms subtracted is:</p> <p>$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $</p> <p>For the hyperbola, the square of the eccentricity $ e' $ is given by:</p> <p>$ (e')^2 = 1 + \frac{b^2}{a^2} $</p> <p>Substitute the values we've found for $ a^2 $ and $ b^2 $ into the formula for the square of the hyperbola's eccentricity:</p> <p>$ (e')^2 = 1 + \frac{b^2}{a^2} $</p> <p>$ (e')^2 = 1 + \frac{7}{14} $</p> <p>$ (e')^2 = 1 + \frac{1}{2} $</p> <p>$ (e')^2 = \frac{3}{2} $</p> <p>Therefore, the square of the eccentricity of the hyperbola is $ \frac{3}{2} $, which corresponds to option C.</p> </p>
mcq
jee-main-2024-online-1st-february-morning-shift
jaoe38c1lsd4d0vp
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
<p>Let $$P$$ be a parabola with vertex $$(2,3)$$ and directrix $$2 x+y=6$$. Let an ellipse $$E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a&gt;b$$, of eccentricity $$\frac{1}{\sqrt{2}}$$ pass through the focus of the parabola $$P$$. Then, the square of the length of the latus rectum of $$E$$, is</p>
[{"identifier": "A", "content": "$$\\frac{512}{25}$$\n"}, {"identifier": "B", "content": "$$\\frac{656}{25}$$\n"}, {"identifier": "C", "content": "$$\\frac{385}{8}$$\n"}, {"identifier": "D", "content": "$$\\frac{347}{8}$$"}]
["B"]
null
<p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lsjwesuo/97ad35c7-e930-402f-8ae3-bf6649f70495/50a78900-ca2d-11ee-8854-3b5a6c9e9092/file-6y3zli1lsjwesup.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lsjwesuo/97ad35c7-e930-402f-8ae3-bf6649f70495/50a78900-ca2d-11ee-8854-3b5a6c9e9092/file-6y3zli1lsjwesup.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 31st January Evening Shift Mathematics - Ellipse Question 5 English Explanation"></p> <p>$$\begin{aligned} &amp; \text { Slope of axis }=\frac{1}{2} \\ &amp; y-3=\frac{1}{2}(x-2) \\ &amp; \Rightarrow 2 y-6=x-2 \\ &amp; \Rightarrow 2 y-x-4=0 \\ &amp; 2 x+y-6=0 \\ &amp; 4 x+2 y-12=0 \\ &amp; \alpha+1.6=4 \Rightarrow \alpha=2.4 \\ &amp; \beta+2.8=6 \Rightarrow \beta=3.2 \end{aligned}$$</p> <p>Ellipse passes through $$(2.4,3.2)$$</p> <p>$$\Rightarrow \frac{\left(\frac{24}{10}\right)^2}{\mathrm{a}^2}+\frac{\left(\frac{32}{10}\right)^2}{\mathrm{~b}^2}=1$$ ..... (1)</p> <p>Also $$1-\frac{\mathrm{b}^2}{\mathrm{a}^2}=\frac{1}{2}=\frac{\mathrm{b}^2}{\mathrm{a}^2}=\frac{1}{2}$$</p> <p>$$\Rightarrow a^2=2 b^2$$</p> <p>Put in (1) $$\Rightarrow b^2=\frac{328}{25}$$</p> <p>$$\Rightarrow\left(\frac{2 \mathrm{~b}^2}{\mathrm{a}}\right)^2=\frac{4 \mathrm{~b}^2}{\mathrm{a}^2} \times \mathrm{b}^2=4 \times \frac{1}{2} \times \frac{328}{25}=\frac{656}{25} $$</p>
mcq
jee-main-2024-online-31st-january-evening-shift
1lsg4p9ak
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
<p>Let $$A(\alpha, 0)$$ and $$B(0, \beta)$$ be the points on the line $$5 x+7 y=50$$. Let the point $$P$$ divide the line segment $$A B$$ internally in the ratio $$7:3$$. Let $$3 x-25=0$$ be a directrix of the ellipse $$E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$ and the corresponding focus be $$S$$. If from $$S$$, the perpendicular on the $$x$$-axis passes through $$P$$, then the length of the latus rectum of $$E$$ is equal to,</p>
[{"identifier": "A", "content": "$$\\frac{25}{3}$$\n"}, {"identifier": "B", "content": "$$\\frac{25}{9}$$\n"}, {"identifier": "C", "content": "$$\\frac{32}{5}$$\n"}, {"identifier": "D", "content": "$$\\frac{32}{9}$$"}]
["C"]
null
<p>$$\left.\begin{array}{l} \mathrm{A}=(10,0) \\ \mathrm{B}=\left(0, \frac{50}{7}\right) \end{array}\right\} \mathrm{P}=(3,5)$$</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/6y3zli1lsoxo287/d8da4921-3aa3-467d-a404-6687dd0b31e6/268e3570-ccf2-11ee-a330-494dca5e9a63/file-6y3zli1lsoxo288.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/6y3zli1lsoxo287/d8da4921-3aa3-467d-a404-6687dd0b31e6/268e3570-ccf2-11ee-a330-494dca5e9a63/file-6y3zli1lsoxo288.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 40vh;vertical-align: baseline" alt="JEE Main 2024 (Online) 30th January Evening Shift Mathematics - Ellipse Question 4 English Explanation"></p> <p>$$\begin{aligned} &amp; \text { ae }=3 \\ &amp; \frac{\mathrm{a}}{\mathrm{e}}=\frac{25}{3} \\ &amp; \mathrm{a}=5 \\ &amp; \mathrm{~b}=4 \end{aligned}$$</p> <p>Length of $$L R=\frac{2 b^2}{a}=\frac{32}{5}$$</p>
mcq
jee-main-2024-online-30th-january-evening-shift
1lsgaam1v
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
<p>If the length of the minor axis of an ellipse is equal to half of the distance between the foci, then the eccentricity of the ellipse is :</p>
[{"identifier": "A", "content": "$$\\frac{1}{\\sqrt{3}}$$\n"}, {"identifier": "B", "content": "$$\\frac{2}{\\sqrt{5}}$$\n"}, {"identifier": "C", "content": "$$\\frac{\\sqrt{3}}{2}$$\n"}, {"identifier": "D", "content": "$$\\frac{\\sqrt{5}}{3}$$"}]
["B"]
null
<p>$$\begin{aligned} & 2 b=a e \\ & \frac{b}{a}=\frac{e}{2} \\ & e=\sqrt{1-\frac{e^2}{4}} \\ & e=\frac{2}{\sqrt{5}} \end{aligned}$$</p>
mcq
jee-main-2024-online-30th-january-morning-shift
luy6z5ey
maths
ellipse
question-based-on-basic-definition-and-parametric-representation
<p>Let $$f(x)=x^2+9, g(x)=\frac{x}{x-9}$$ and $$\mathrm{a}=f \circ g(10), \mathrm{b}=g \circ f(3)$$. If $$\mathrm{e}$$ and $$l$$ denote the eccentricity and the length of the latus rectum of the ellipse $$\frac{x^2}{\mathrm{a}}+\frac{y^2}{\mathrm{~b}}=1$$, then $$8 \mathrm{e}^2+l^2$$ is equal to.</p>
[{"identifier": "A", "content": "6"}, {"identifier": "B", "content": "12"}, {"identifier": "C", "content": "8"}, {"identifier": "D", "content": "16"}]
["C"]
null
<p>$$\begin{aligned} & g(10)=10 \\ & a=f(g(10))=f(10)=109 \\ & f(3)=18 \\ & b=g(f(3))=g(18)=2 \\ & \frac{x^2}{109}+\frac{y^2}{2}=1 \\ & e=\sqrt{1-\frac{2}{109}}=\sqrt{\frac{107}{109}} \\ & I=\frac{2 b^2}{a}=\frac{2 \times 2}{\sqrt{109}} \end{aligned}$$</p> <p>$$ \begin{aligned} 8 e^2+l^2 & =\frac{8 \times 107}{109}+\frac{16}{109} \\ & =8 \end{aligned} $$</p>
mcq
jee-main-2024-online-9th-april-morning-shift
U27dN3hfUPJ4eQBv
maths
ellipse
tangent-to-ellipse
The area (in sq. units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 5} = 1$$, is :
[{"identifier": "A", "content": "$${{27 \\over 2}}$$"}, {"identifier": "B", "content": "$$27$$ "}, {"identifier": "C", "content": "$${{27 \\over 4}}$$"}, {"identifier": "D", "content": "$$18$$"}]
["B"]
null
The end point of latus rectum of ellipse <br><br>$${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ in first quadrant is <br><br>$$\left( {ae,{{{b^2}} \over a}} \right)$$ and the tangent at this point <br><br>intersects $$x$$-axis at $$\left( {{a \over e},0} \right)$$ and <br><br>$$y$$-axis at $$(0,a).$$ <br><br>The given ellipse is $${{x{}^2} \over 9} + {{{y^2}} \over 5} = 1$$ <br><br>Then $${a^2} = 9,{b^2} = 5$$ <br><br>$$ \Rightarrow e = \sqrt {1 - {5 \over 9}} = {2 \over 3}$$ <br><br>$$\therefore$$ end point of latus rectum in first quadrant is <br><br>$$L\left( {2,\,\,5/3} \right)$$ <br><br>Equation of tangent at $$L$$ is $${{2x} \over 9} + {y \over 3} - 1$$ <br><br>It meets $$x$$-axis at $$A(9/2, 0)$$ <br><br>and $$y$$-axis at $$B(0,3)$$ <br><br>$$\therefore$$ Area of $$\Delta OAB = {1 \over 2} \times {9 \over 2} \times 3 = {{27} \over 4}$$ <br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1l91nk9em/51951291-ca13-4e57-8386-abbd403322ab/7e6fcbe0-47fc-11ed-8757-0f869593f41f/file-1l91nk9en.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1l91nk9em/51951291-ca13-4e57-8386-abbd403322ab/7e6fcbe0-47fc-11ed-8757-0f869593f41f/file-1l91nk9en.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2015 (Offline) Mathematics - Ellipse Question 74 English Explanation"><br>By symmetry area of quadrilateral <br><br>$$ = 4 \times \left( {Area\,\,\Delta OAB} \right) = 4 \times {{27} \over 4} = 27\,\,$$ sq. units.
mcq
jee-main-2015-offline
iFccnxCwYIpA22oysCVGk
maths
ellipse
tangent-to-ellipse
If the tangent at a point on the ellipse $${{{x^2}} \over {27}} + {{{y^2}} \over 3} = 1$$ meets the coordinate axes at A and B, and O is the origin, then the minimum area (in sq. units) of the triangle OAB is :
[{"identifier": "A", "content": "$${9 \\over 2}$$ "}, {"identifier": "B", "content": "$$3\\sqrt 3 $$ "}, {"identifier": "C", "content": "$$9\\sqrt 3 $$"}, {"identifier": "D", "content": "9"}]
["D"]
null
Equation of tangent to ellipse <br><br>$${x \over {\sqrt {27} }}$$ cos$$\theta $$ + $${y \over {\sqrt 3 }}$$sin$$\theta $$ = 1 <br><br>Area bounded by line and co-ordinate axis <br><br>$$\Delta $$ = $${1 \over 2}$$ . $${{\sqrt {27} } \over {\cos \theta }}.{{\sqrt 3 } \over {\sin \theta }}$$ = $${9 \over {\sin 2\theta }}$$ <br><br>$$\Delta $$ = will be minimum when sin 2$$\theta $$ = 1 <br><br>$$\Delta $$<sub>min</sub> = 9
mcq
jee-main-2016-online-9th-april-morning-slot
l3vZfVNMIwjFeXp51Twd0
maths
ellipse
tangent-to-ellipse
If tangents are drawn to the ellipse x2<sup></sup> + 2y<sup>2</sup> = 2 at all points on the ellipse other than its four vertices then the mid points of the tangents intercepted between the coordinate axes lie on the curve :
[{"identifier": "A", "content": "$${{{x^2}} \\over 2} + {{{y^2}} \\over 4} = 1$$"}, {"identifier": "B", "content": "$${1 \\over {2{x^2}}} + {1 \\over {4{y^2}}} = 1$$"}, {"identifier": "C", "content": "$${1 \\over {4{x^2}}} + {1 \\over {2{y^2}}} = 1$$"}, {"identifier": "D", "content": "$${{{x^2}} \\over 4} + {{{y^2}} \\over 2} = 1$$"}]
["B"]
null
Equation of general tangent on ellipse <br><br>$${x \over {a\,\sec \theta }} + {y \over {b\cos ec\theta }} = 1$$ <br><br>$$a = \sqrt 2 ,\,\,b = 1$$ <br><br>$$ \Rightarrow {x \over {\sqrt 2 \sec \theta }} + {y \over {\cos ec\theta }} = 1$$ <br><br>Let the midpoint be (h, k) <br><br>$$h = {{\sqrt 2 \sec \theta } \over 2} \Rightarrow \cos \theta = {1 \over {\sqrt 2 h}}$$ <br><br>and $$k = {{\cos ec\theta } \over 2} \Rightarrow \sin \theta = {1 \over {2k}}$$ <br><br>$$ \because $$&nbsp;&nbsp;$${\sin ^2}\theta + {\cos ^2}\theta = 1$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$${1 \over {2{h^2}}} + {1 \over {4{k^2}}} = 1$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;$${1 \over {2{x^2}}} + {1 \over {4{y^2}}} = 1$$
mcq
jee-main-2019-online-11th-january-morning-slot
wB61HjUIYDxES0iL8KNoT
maths
ellipse
tangent-to-ellipse
If the tangents on the ellipse 4x<sup>2 </sup>+ y<sup>2</sup> = 8 at the points (1, 2) and (a, b) are perpendicular to each other, then a<sup>2</sup> is equal to :
[{"identifier": "A", "content": "$${{2} \\over {17}}$$"}, {"identifier": "B", "content": "$${{64} \\over {17}}$$"}, {"identifier": "C", "content": "$${{128} \\over {17}}$$"}, {"identifier": "D", "content": "$${{4} \\over {17}}$$"}]
["A"]
null
Given, Equation of ellipse 4x<sup>2</sup> + y<sup>2</sup> = 8 <br><br>We know equation of tangent at any point (x<sub>1</sub>, y<sub>1</sub>) is <br><br>4xx<sub>1</sub> + yy<sub>1</sub> = 8 <br><br>$$ \therefore $$ Equation of tangent at point (1, 2) is <br><br>4x + 2y = 8 <br><br>$$ \Rightarrow $$ 2x + y = 4 <br><br>$$ \therefore $$ Slope of this tangent = -2 <br><br>Equation of tangent at point (a, b) is <br><br>4ax + by = 8 <br><br>Slope of this tangent = $$ - {{4a} \over b}$$ <br><br>As tangent at (1, 2) and (a, b) are perpendicular <br><br>$$ \therefore $$ $$\left( { - 2} \right)\left( { - {{4a} \over b}} \right) = - 1$$ <br><br>$$ \Rightarrow $$ b = -8$$a$$ <br><br>As point (a, b) lies on the ellipse <br><br>$$ \therefore $$ $$4{a^2} + {b^2} = 8$$ <br><br>$$ \Rightarrow $$ $$4{a^2} + 64{a^2} = 8$$ <br><br>$$ \Rightarrow $$ $${a^2} = {8 \over {68}}$$ = $${2 \over {17}}$$
mcq
jee-main-2019-online-8th-april-morning-slot
elcH9KhH29Dzdmnbd93rsa0w2w9jwy2n90l
maths
ellipse
tangent-to-ellipse
If the line x – 2y = 12 is tangent to the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ at the point $$\left( {3, - {9 \over 2}} \right)$$ , then the length of the latus rectum of the ellipse is :
[{"identifier": "A", "content": "5"}, {"identifier": "B", "content": "9"}, {"identifier": "C", "content": "$$8\\sqrt 3 $$"}, {"identifier": "D", "content": "$$12\\sqrt 2 $$"}]
["B"]
null
Equation of tangent at $$\left( {3, - {9 \over 2}} \right)$$ to $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ is<br><br> $${{3x} \over {{a^2}}} - {{{y^9}} \over {2{b^2}}} = 1$$ which is equivalent to x – 2y = 12<br><br> $${3 \over {{a^2}}} = {{ - 9} \over {2{b^2}( - 2)}} = {1 \over {12}}$$&nbsp;&nbsp; (On comparing)<br><br> $${a^2} = 3 \times 12$$ and $${b^2} = {{9 \times 12} \over 4}$$<br><br> $$ \Rightarrow $$ a = 6 and b = $$3\sqrt 3 $$<br><br> So latus rectum = $${{2{b^2}} \over a} = {{2 \times 27} \over 6} = 9$$
mcq
jee-main-2019-online-10th-april-morning-slot
wb1NBkz0GF74XdzTTH7k9k2k5fisi0x
maths
ellipse
tangent-to-ellipse
If 3x + 4y = 12$$\sqrt 2 $$ is a tangent to the ellipse <br/>$${{{x^2}} \over {{a^2}}} + {{{y^2}} \over 9} = 1$$ for some $$a$$ $$ \in $$ R, then the distance between the foci of the ellipse is :
[{"identifier": "A", "content": "$$2\\sqrt 5 $$"}, {"identifier": "B", "content": "$$2\\sqrt 7 $$"}, {"identifier": "C", "content": "4"}, {"identifier": "D", "content": "$$2\\sqrt 2 $$"}]
["B"]
null
3x + 4y = 12$$\sqrt 2 $$ <br><br>$$ \Rightarrow $$ y = $$ - {{3x} \over 4} + 3\sqrt 2 $$ is tangent to <br><br>$${{{x^2}} \over {{a^2}}} + {{{y^2}} \over 9} = 1$$ <br><br>$$ \therefore $$ c<sup>2</sup> = a<sup>2</sup>m<sup>2</sup> + b<sup>2</sup> <br><br>$$ \Rightarrow $$ $${\left( {3\sqrt 2 } \right)^2} = {a^2}{\left( { - {3 \over 4}} \right)^2} + 9$$ <br><br>$$ \Rightarrow $$ a<sup>2</sup> = 16 <br><br>Also e = $$\sqrt {1 - {{{b^2}} \over {{a^2}}}} $$ <br><br>= $$\sqrt {1 - {9 \over {16}}} $$ = $${{\sqrt 7 } \over 4}$$ <br><br>Distance between focii = 2ae <br><br>= $$2 \times 4 \times {{\sqrt 7 } \over 4}$$ <br><br>= $$2\sqrt 7 $$
mcq
jee-main-2020-online-7th-january-evening-slot
KQHl8wH8Lo2PgjuhB27k9k2k5k6z7ik
maths
ellipse
tangent-to-ellipse
The length of the minor axis (along y-axis) of an ellipse in the standard form is $${4 \over {\sqrt 3 }}$$. If this ellipse touches the line, x + 6y = 8; then its eccentricity is :
[{"identifier": "A", "content": "$${1 \\over 3}\\sqrt {{{11} \\over 3}} $$"}, {"identifier": "B", "content": "$${1 \\over 2}\\sqrt {{5 \\over 3}} $$"}, {"identifier": "C", "content": "$$\\sqrt {{5 \\over 6}} $$"}, {"identifier": "D", "content": "$${1 \\over 2}\\sqrt {{{11} \\over 3}} $$"}]
["D"]
null
Let the equation of ellipse <br><br>$${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, ($$a &gt; b$$) <br><br>Given 2b = $${4 \over {\sqrt 3 }}$$ <br><br>$$ \Rightarrow $$ b = $${2 \over {\sqrt 3 }}$$ <br><br>We know, Equation of tangent y = mx $$ \pm $$ $$\sqrt {{a^2}{m^2} + {b^2}} $$ ....(1) <br><br>Given tangent is x + 6y = 8 <br><br>$$ \Rightarrow $$ y = $$ - {1 \over 6}x + {8 \over 6}$$ .....(2) <br><br>By comparing (1) and (2), <br><br>m = $$ - {1 \over 6}$$ and $${{a^2}{m^2} + {b^2}}$$ = $${{16} \over 9}$$ <br><br>$$ \Rightarrow $$ $${{a^2}\left( {{1 \over {36}}} \right) + {4 \over 3}}$$ = $${{16} \over 9}$$ <br><br>$$ \Rightarrow $$ $${{a^2} = 16}$$ <br><br>$$ \therefore $$ e = $$\sqrt {1 - {{{b^2}} \over {{a^2}}}} $$ <br><br>= $$\sqrt {1 - {{{4 \over 3}} \over {16}}} $$ <br><br>= $$\sqrt {{{11} \over {12}}} $$ = $${1 \over 2}\sqrt {{{11} \over 3}} $$
mcq
jee-main-2020-online-9th-january-evening-slot
FSoSbtqGvvMHrcVzzNjgy2xukfw0csxo
maths
ellipse
tangent-to-ellipse
Which of the following points lies on the locus of the foot of perpedicular drawn upon any tangent to the ellipse, <br/>$${{{x^2}} \over 4} + {{{y^2}} \over 2} = 1$$ <br/>from any of its foci?
[{"identifier": "A", "content": "$$\\left( { - 1,\\sqrt 3 } \\right)$$"}, {"identifier": "B", "content": "$$\\left( { - 2,\\sqrt 3 } \\right)$$"}, {"identifier": "C", "content": "$$\\left( { - 1,\\sqrt 2 } \\right)$$"}, {"identifier": "D", "content": "$$\\left( {1,2 } \\right)$$"}]
["A"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264499/exam_images/jkfizacjmqkgdkpzypg0.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2020 (Online) 6th September Morning Slot Mathematics - Ellipse Question 50 English Explanation"> <br>Let foot of perpendicular is (h, k) <br><br>Given $${{{x^2}} \over 4} + {{{y^2}} \over 2} = 1$$ <br><br>$$ \therefore $$ a = 2, b = $$\sqrt 2 $$ <br><br>and e = $$\sqrt {1 - {2 \over 4}} $$ = $${1 \over {\sqrt 2 }}$$ <br><br>$$ \therefore $$ Focus(ae, 0) = $$\left( {\sqrt 2 ,0} \right)$$ <br><br>Equation of tangent <br><br>y = mx + $$\sqrt {{a^2}{m^2} + {b^2}} $$ <br><br>$$ \Rightarrow $$ y = mx + $$\sqrt {4{m^2} + 2} $$ <br><br>Passes through (h, k) <br><br>(k – mh)<sup>2</sup> = 4m<sup>2</sup> + 2 .....(1) <br><br>Line perpendicular to tangent will have slope $$ - {1 \over m}$$. <br><br>y - 0 = $$ - {1 \over m}\left( {x - \sqrt 2 } \right)$$ <br><br>my = -x + $${\sqrt 2 }$$ <br><br>$$ \therefore $$ (h + mk)<sup>2</sup> = 2 .....(2) <br><br>Add equation (1) and (2) <br><br>k<sup>2</sup>(1 + m<sup>2</sup>) + h<sup>2</sup> (1 + m<sup>2</sup>) = 4 (1 + m<sup>2</sup>) <br><br>h<sup>2</sup> + k<sup>2</sup> = 4 <br><br>x<sup>2</sup> + y<sup>2</sup> = 4 (Auxiliary circle) <br><br>$$ \therefore $$ $$\left( { - 1,\sqrt 3 } \right)$$ lies on the locus.
mcq
jee-main-2020-online-6th-september-morning-slot
oU8GEnTCtPB7pxk3bK1kmiwd8ea
maths
ellipse
tangent-to-ellipse
If the points of intersections of the ellipse $${{{x^2}} \over {16}} + {{{y^2}} \over {{b^2}}} = 1$$ and the <br/>circle x<sup>2</sup> + y<sup>2</sup> = 4b, b &gt; 4 lie on the curve y<sup>2</sup> = 3x<sup>2</sup>, then b is equal to :
[{"identifier": "A", "content": "12"}, {"identifier": "B", "content": "10"}, {"identifier": "C", "content": "6"}, {"identifier": "D", "content": "5"}]
["A"]
null
$${{{x^2}} \over {16}} + {{{y^2}} \over {{b^2}}} = 1$$ ... (1)<br><br>$${x^2} + {y^2} = 4b$$ .... (2)<br><br>$${y^2} = 3{x^2}$$ .... (3)<br><br>From eq (2) and (3) <br><br>x<sup>2</sup> = b and y<sup>2</sup> = 3b<br><br>From equation (1) <br><br>$${b \over {16}} + {{3b} \over {{b^2}}} = 1$$<br><br>$$ \Rightarrow {b^2} + 48 = 16b$$<br><br>$$ \Rightarrow b = 12$$
mcq
jee-main-2021-online-16th-march-evening-shift
30eir6NIWjeZA7OrQd1kmm3uurg
maths
ellipse
tangent-to-ellipse
Let a tangent be drawn to the ellipse $${{{x^2}} \over {27}} + {y^2} = 1$$ at $$(3\sqrt 3 \cos \theta ,\sin \theta )$$ where $$0 \in \left( {0,{\pi \over 2}} \right)$$. Then the value of $$\theta$$ such that the sum of intercepts on axes made by this tangent is minimum is equal to :
[{"identifier": "A", "content": "$${{\\pi \\over 6}}$$"}, {"identifier": "B", "content": "$${{\\pi \\over 3}}$$"}, {"identifier": "C", "content": "$${{\\pi \\over 8}}$$"}, {"identifier": "D", "content": "$${{\\pi \\over 4}}$$"}]
["A"]
null
Tangent = $${x \over {3\sqrt 3 }}\cos \theta + y\sin \theta = 1$$<br><br>x-intercept = $${3\sqrt 3 }$$ sec$$\theta$$<br><br>y-intercept = cosec$$\theta$$<br><br>sum = $${3\sqrt 3 }$$ sec$$\theta$$ + cosec$$\theta$$ = f($$\theta$$) $$\theta$$$$\in$$$$\left( {0,{\pi \over 2}} \right)$$<br><br>$$ \Rightarrow $$ f'($$\theta$$) = $${3\sqrt 3 }$$ sec$$\theta$$tan$$\theta$$ $$-$$ cosec$$\theta$$ cot$$\theta$$ = 0<br><br>$$ \Rightarrow $$ $${{3\sqrt 3 \sin \theta } \over {{{\cos }^2}\theta }} = {{\cos \theta } \over {\sin \theta }}$$<br><br>$$ \Rightarrow {\tan ^3}\theta = {\left( {{1 \over {\sqrt 3 }}} \right)^3}$$<br><br>$$ \Rightarrow \tan \theta = {1 \over {\sqrt 3 }}$$<br><br>$$ \Rightarrow $$ $$\theta$$ = $${{\pi \over 6}}$$<br><br>also f'($$\theta$$) changes sign $$-$$ to + hence minimum.
mcq
jee-main-2021-online-18th-march-evening-shift
1kryftyci
maths
ellipse
tangent-to-ellipse
Let E be an ellipse whose axes are parallel to the co-ordinates axes, having its center at (3, $$-$$4), one focus at (4, $$-$$4) and one vertex at (5, $$-$$4). If mx $$-$$ y = 4, m &gt; 0 is a tangent to the ellipse E, then the value of 5m<sup>2</sup> is equal to _____________.
[]
null
3
Given C(3, $$-$$4), S(4, $$-$$4)<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265485/exam_images/w9uwtpcdiyqyzwuecyz5.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 27th July Evening Shift Mathematics - Ellipse Question 42 English Explanation"><br><br>and A(5, $$-$$4)<br><br>Hence, a = 2 &amp; ae = 1<br><br>$$\Rightarrow$$ e = $${1 \over 2}$$<br><br>$$\Rightarrow$$ b<sup>2</sup> = 3<br><br>So, $$E:{{{{(x - 3)}^2}} \over 4} + {{{{(y + 4)}^2}} \over 3} = 1$$<br><br>Intersecting with given tangent.<br><br>$${{{x^2} - 6x + 9} \over 4} + {{{m^2}{x^2}} \over 3} = 1$$<br><br>Now, D = 0 (as it is tngent)<br><br>So, 5m<sup>2</sup> = 3.
integer
jee-main-2021-online-27th-july-evening-shift
1krznj2rx
maths
ellipse
tangent-to-ellipse
If a tangent to the ellipse x<sup>2</sup> + 4y<sup>2</sup> = 4 meets the tangents at the extremities of it major axis at B and C, then the circle with BC as diameter passes through the point :
[{"identifier": "A", "content": "$$(\\sqrt 3 ,0)$$"}, {"identifier": "B", "content": "$$(\\sqrt 2 ,0)$$"}, {"identifier": "C", "content": "(1, 1)"}, {"identifier": "D", "content": "($$-$$1, 1)"}]
["A"]
null
<picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265844/exam_images/giwajhglcafcfpltohbs.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265389/exam_images/vh731jsttbh5pqpbscn6.webp"><source media="(max-width: 680px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265221/exam_images/re6rjexoww28o7wilr3q.webp"><source media="(max-width: 860px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264404/exam_images/imtsetbtkqgas6ehwtgi.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267751/exam_images/nyqbrtkjlwrjf5y2h1f6.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 25th July Evening Shift Mathematics - Ellipse Question 41 English Explanation"></picture> <br><br>$${{{x^2}} \over 4} + {{{y^2}} \over 1} = 1$$<br><br>Equation of tangent i (cos$$\theta$$)x + 2sin$$\theta$$y = 2<br><br>$$B\left( { - 2,{{1 + \cos \theta } \over {\sin \theta }}} \right),C\left( {2,{{1 - \cos \theta } \over {\sin \theta }}} \right)$$<br><br>$$B\left( { - 2,\cot {\theta \over 2}} \right)$$<br><br>$$C\left( {2,\tan {\theta \over 2}} \right)$$<br><br>Equation of circle is <br><br>$$(x + 2)(x - 2) + \left( {y - \cot {\theta \over 2}} \right)\left( {y - \tan {\theta \over 2}} \right) = 0$$<br><br>$${x^2} - 4 + {y^2} - \left( {\tan {\theta \over 2} + \cot {\theta \over 2}} \right)y + 1 = 0$$<br><br>so, $$\left( {\sqrt 3 ,0} \right)$$ satisfying option (1)
mcq
jee-main-2021-online-25th-july-evening-shift
1ktbb0luj
maths
ellipse
tangent-to-ellipse
On the ellipse $${{{x^2}} \over 8} + {{{y^2}} \over 4} = 1$$ let P be a point in the second quadrant such that the tangent at P to the ellipse is perpendicular to the line x + 2y = 0. Let S and S' be the foci of the ellipse and e be its eccentricity. If A is the area of the triangle SPS' then, the value of (5 $$-$$ e<sup>2</sup>). A is :
[{"identifier": "A", "content": "6"}, {"identifier": "B", "content": "12"}, {"identifier": "C", "content": "14"}, {"identifier": "D", "content": "24"}]
["A"]
null
<img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263538/exam_images/ufp79zh4grekwjt1hqyc.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 26th August Morning Shift Mathematics - Ellipse Question 39 English Explanation"><br><br>Equation of tangent : y = 2x + 6 at P<br><br>$$\therefore$$ P($$-$$8/3, 2/3)<br><br>$$e = {1 \over {\sqrt 2 }}$$<br><br>S &amp; S' = ($$-$$2, 0) &amp; (2, 0)<br><br>Area of $$\Delta$$SPS' = $${1 \over 2} \times 4 \times {2 \over 3}$$<br><br>A = $${4 \over 3}$$<br><br>$$\therefore$$ (5 $$-$$ e<sup>2</sup>)A = $$\left( {5 - {1 \over 2}} \right)$$$${4 \over 3}$$ = 6
mcq
jee-main-2021-online-26th-august-morning-shift
1ktepisx4
maths
ellipse
tangent-to-ellipse
If the minimum area of the triangle formed by a tangent to the ellipse $${{{x^2}} \over {{b^2}}} + {{{y^2}} \over {4{a^2}}} = 1$$ and the co-ordinate axis is kab, then k is equal to _______________.
[]
null
2
Tangent <br><br>$${{x\cos \theta } \over b} + {{y\sin \theta } \over {2a}} = 1$$<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266918/exam_images/r8q6vmkbouo5l2gusylp.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 27th August Morning Shift Mathematics - Ellipse Question 38 English Explanation"><br><br>So, area $$(\Delta OAB) = {1 \over 2} \times {b \over {\cos \theta }} \times {{2a} \over {\sin \theta }}$$<br><br>$$ = {{2ab} \over {\sin 2\theta }} \ge 2ab$$<br><br>$$\Rightarrow$$ k = 2
integer
jee-main-2021-online-27th-august-morning-shift
1ktirkn2y
maths
ellipse
tangent-to-ellipse
The line $$12x\cos \theta + 5y\sin \theta = 60$$ is tangent to which of the following curves?
[{"identifier": "A", "content": "x<sup>2</sup> + y<sup>2</sup> = 169"}, {"identifier": "B", "content": "144x<sup>2</sup> + 25y<sup>2</sup> = 3600"}, {"identifier": "C", "content": "25x<sup>2</sup> + 12y<sup>2</sup> = 3600"}, {"identifier": "D", "content": "x<sup>2</sup> + y<sup>2</sup> = 60"}]
["B"]
null
$$12x\cos \theta + 5y\sin \theta = 60$$<br><br>$${{x\cos \theta } \over 5} + {{y\sin \theta } \over {12}} = 1$$<br><br>is tangent to $${{{x^2}} \over {25}} + {{{y^2}} \over {144}} = 1$$<br><br>$$144{x^2} + 25{y^2} = 3600$$
mcq
jee-main-2021-online-31st-august-morning-shift
1ktk7nk5w
maths
ellipse
tangent-to-ellipse
An angle of intersection of the curves, $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ and x<sup>2</sup> + y<sup>2</sup> = ab, a &gt; b, is :
[{"identifier": "A", "content": "$${\\tan ^{ - 1}}\\left( {{{a + b} \\over {\\sqrt {ab} }}} \\right)$$"}, {"identifier": "B", "content": "$${\\tan ^{ - 1}}\\left( {{{a - b} \\over {2\\sqrt {ab} }}} \\right)$$"}, {"identifier": "C", "content": "$${\\tan ^{ - 1}}\\left( {{{a - b} \\over {\\sqrt {ab} }}} \\right)$$"}, {"identifier": "D", "content": "$${\\tan ^{ - 1}}\\left( {2\\sqrt {ab} } \\right)$$"}]
["C"]
null
$${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1,{x^2} + {y^2} = ab$$<br><br>$${{2{x_1}} \over {{a^2}}} + {{2{y_1}y'} \over {{b^2}}} = 0$$<br><br>$$ \Rightarrow {y_1}' = {{ - {x_1}} \over {{a^2}}}{{{b^2}} \over {{y_1}}}$$ .... (1)<br><br>$$\therefore$$ $$2{x_1} + 2{y_1}y' = 0$$<br><br>$$ \Rightarrow {y_2}' = {{ - {x_1}} \over {{y_1}}}$$ ..... (2)<br><br>Here (x<sub>1</sub>y<sub>1</sub>) is point of intersection of both curves<br><br>$$\therefore$$ $$x_1^2 = {{{a^2}b} \over {a + b}},y_1^2 = {{a{b^2}} \over {a + b}}$$<br><br>$$\therefore$$ $$\tan \theta = \left| {{{{y_1}' - {y_2}'} \over {1 + {y_1}'{y_2}'}}} \right| = \left| {{{{{ - {x_1}{b^2}} \over {{a^2}{y_1}}} + {{{x_1}} \over {{y_1}}}} \over {1 + {{x_1^2{b^2}} \over {{a^2}y_1^2}}}}} \right|$$<br><br>$$\tan \theta = \left| {{{ - {b^2}{x_1}{y_1} + {a^2}{x_1}{y_1}} \over {{a^2}y_1^2 + {b^2}x_1^2}}} \right|$$<br><br>$$\tan \theta = \left| {{{a - b} \over {\sqrt {ab} }}} \right|$$
mcq
jee-main-2021-online-31st-august-evening-shift
1ktoa2pph
maths
ellipse
tangent-to-ellipse
Let $$\theta$$ be the acute angle between the tangents to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 1} = 1$$ and the circle $${x^2} + {y^2} = 3$$ at their point of intersection in the first quadrant. Then tan$$\theta$$ is equal to :
[{"identifier": "A", "content": "$${5 \\over {2\\sqrt 3 }}$$"}, {"identifier": "B", "content": "$${2 \\over {\\sqrt 3 }}$$"}, {"identifier": "C", "content": "$${4 \\over {\\sqrt 3 }}$$"}, {"identifier": "D", "content": "2"}]
["B"]
null
The point of intersection of the curves $${{{x^2}} \over 9} + {{{y^2}} \over 1} = 1$$ and $${x^2} + {y^2} = 3$$ in the first quadrant is $$\left( {{3 \over 2},{{\sqrt 3 } \over 2}} \right)$$<br><br>Now slope of tangent to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 1} = 1$$ at $$\left( {{3 \over 2},{{\sqrt 3 } \over 2}} \right)$$ is <br><br>$${m_1} = - {1 \over {3\sqrt 3 }}$$<br><br>And slope of tangent to the circle at $$\left( {{3 \over 2},{{\sqrt 3 } \over 2}} \right)$$ is m<sub>2</sub> $$ = - \sqrt 3 $$<br><br>So, if angle between both curves is $$\theta$$ then<br><br>$$\tan \theta = \left| {{{{m_1} - {m_2}} \over {1 + {m_1}{m_2}}}} \right| = \left| {{{ - {1 \over {3\sqrt 3 }} + \sqrt 3 } \over {1 + \left( { - {1 \over {3\sqrt 3 }}\left( { - \sqrt 3 } \right)} \right)}}} \right|$$<br><br>$$ = {2 \over {\sqrt 3 }}$$<br><br>Option (b)
mcq
jee-main-2021-online-1st-september-evening-shift
1l5c2eqeg
maths
ellipse
tangent-to-ellipse
<p>If two tangents drawn from a point ($$\alpha$$, $$\beta$$) lying on the ellipse 25x<sup>2</sup> + 4y<sup>2</sup> = 1 to the parabola y<sup>2</sup> = 4x are such that the slope of one tangent is four times the other, then the value of (10$$\alpha$$ + 5)<sup>2</sup> + (16$$\beta$$<sup>2</sup> + 50)<sup>2</sup> equals ___________.</p>
[]
null
2929
$\because(\alpha, \beta)$ lies on the given ellipse, $25 \alpha^{2}+4 \beta^{2}=1\quad\quad...(i)$ <br/><br/> Tangent to the parabola, $y=m x+\frac{1}{m}$ passes through $(\alpha, \beta)$. So, $\alpha m^{2}-\beta m+1=0$ has roots $m_{1}$ and $4 m_{1}$, <br/><br/> $$ m_{1}+4 m_{1}=\frac{\beta}{\alpha} \text { and } m_{1} \cdot 4 m_{1}=\frac{1}{\alpha} $$ <br/><br/> Gives that $4 \beta^{2}=25 \alpha \quad\quad...(ii)$ <br/><br/> from (i) and (ii) <br/><br/> $25\left(\alpha^{2}+\alpha\right)=1\quad\quad...(iii)$ <br/><br/> Now, $(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$ <br/><br/> $=25(2 \alpha+1)^{2}+2500(2 \alpha+1)^{2}$ <br/><br/> $=2525\left(4 \alpha^{2}+4 \alpha+1\right)$ from equation (iii) <br/><br/> $=2525\left(\frac{4}{25}+1\right)$ <br/><br/> $=2929$
integer
jee-main-2022-online-24th-june-morning-shift
1l6hyqio5
maths
ellipse
tangent-to-ellipse
<p>The acute angle between the pair of tangents drawn to the ellipse $$2 x^{2}+3 y^{2}=5$$ from the point $$(1,3)$$ is :</p>
[{"identifier": "A", "content": "$$\\tan ^{-1}\\left(\\frac{16}{7 \\sqrt{5}}\\right)$$"}, {"identifier": "B", "content": "$$\\tan ^{-1}\\left(\\frac{24}{7 \\sqrt{5}}\\right)$$"}, {"identifier": "C", "content": "$$\\tan ^{-1}\\left(\\frac{32}{7 \\sqrt{5}}\\right)$$"}, {"identifier": "D", "content": "$$\\tan ^{-1}\\left(\\frac{3+8 \\sqrt{5}}{35}\\right)$$"}]
["B"]
null
<p>$$2{x^2} + 3{y^2} = 5$$</p> <p>Equation of tangent having slope m.</p> <p>$$y = mx\, \pm \,\sqrt {{5 \over 2}{m^2} + {5 \over 3}} $$</p> <p>which passes through $$(1,3)$$</p> <p>$$3 = m\, \pm \sqrt {{5 \over 2}{m^2} + {5 \over 3}} $$</p> <p>$${5 \over 2}{m^2} + {5 \over 3} = 9 + {m^2} - 6m$$</p> <p>$${3 \over 2}{m^2} + 6m - {{22} \over 3} = 0$$</p> <p>$$9{m^2} + 36m - 44 = 0$$</p> <p>$${m_1} + {m_2} = - 4,\,{m_1}{m_2} = - {{44} \over 9}$$</p> <p>$${({m_1} - {m_2})^2} = 16 + 4 \times {{44} \over 9} = {{320} \over 9}$$</p> <p>Acute angle between the tangents is given by</p> <p>$$\alpha = {\tan ^{ - 1}}\left| {{{{m_1} - {m_2}} \over {1 + {m_1}{m_2}}}} \right|$$</p> <p>$$ = {\tan ^{ - 1}}\left| {{{{{8\sqrt 5 } \over 3}} \over {1 - {{44} \over 9}}}} \right|$$</p> <p>$$ = {\tan ^{ - 1}}\left( {{{24\sqrt 5 } \over {35}}} \right)$$</p> <p>$$\alpha = {\tan ^{ - 1}}\left( {{{24} \over {7\sqrt 5 }}} \right)$$</p>
mcq
jee-main-2022-online-26th-july-evening-shift
1l6nozbu0
maths
ellipse
tangent-to-ellipse
<p>Let the tangents at the points $$\mathrm{P}$$ and $$\mathrm{Q}$$ on the ellipse $$\frac{x^{2}}{2}+\frac{y^{2}}{4}=1$$ meet at the point $$R(\sqrt{2}, 2 \sqrt{2}-2)$$. If $$\mathrm{S}$$ is the focus of the ellipse on its negative major axis, then $$\mathrm{SP}^{2}+\mathrm{SQ}^{2}$$ is equal to ___________.</p>
[]
null
13
<p>$$E \equiv {{{x^2}} \over 2} + {{{y^2}} \over 4} = 1$$</p> <p>$$\eqalign{ & T \equiv y = mx\, \pm \,\sqrt {2{m^2} + 4} \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \downarrow \left( {\sqrt 2 ,2\sqrt 2 - 2} \right) \cr} $$</p> <p>$$ \Rightarrow \left( {2\sqrt 2 - 2 - m\sqrt 2 } \right) = \pm \,\sqrt {2{m^2} + 4} $$</p> <p>$$ \Rightarrow 2{m^2} - 2m\sqrt 2 \left( {2\sqrt {2 - 2} } \right) + 4(3 - 2\sqrt 2 ) = 2{m^2} + 4$$</p> <p>$$ \Rightarrow - 2\sqrt 2 m(2\sqrt 2 - 2) = 4 - 12 + 8\sqrt 2 $$</p> <p>$$ \Rightarrow - 4\sqrt 2 m(\sqrt 2 - 1) = 8(\sqrt 2 - 1)$$</p> <p>$$ \Rightarrow m = - \sqrt 2 $$ and $$m \to \infty $$</p> <p>$$\therefore$$ Tangents are $$x = \sqrt 2 $$ and $$y = - \sqrt 2 x + \sqrt 8 $$</p> <p>$$\therefore$$ $$P(\sqrt 2 ,0)$$ and $$Q(1,\sqrt 2 )$$</p> <p>and $$S = (0, - \sqrt 2 )$$</p> <p>$$\therefore$$ $${(PS)^2} + {(QS)^2} = 4 + 9 = 13$$</p>
integer
jee-main-2022-online-28th-july-evening-shift
1ldo7lgc4
maths
ellipse
tangent-to-ellipse
<p>The line $$x=8$$ is the directrix of the ellipse $$\mathrm{E}:\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$$ with the corresponding focus $$(2,0)$$. If the tangent to $$\mathrm{E}$$ at the point $$\mathrm{P}$$ in the first quadrant passes through the point $$(0,4\sqrt3)$$ and intersects the $$x$$-axis at $$\mathrm{Q}$$, then $$(3\mathrm{PQ})^{2}$$ is equal to ____________.</p>
[]
null
39
$\begin{aligned} & \frac{a}{e}=8 \\\\ & a e=2 .(1) \\\\ & 8 e=\frac{2}{e} \\\\ & e^2=\frac{1}{4} \Rightarrow e=\frac{1}{2} \\\\ & a=4 \\\\ & b^2=a^2\left(1-e^2\right) \\\\ & =16\left(\frac{3}{4}\right)=12 \\\\ & \frac{x \cos \theta}{4}+\frac{y \sin \theta}{2 \sqrt{3}}=1 \\\\ & \sin \theta=\frac{1}{2} \\\\ & \theta=30^{\circ}\end{aligned}$ <br/><br/>$\begin{aligned} & \mathrm{P}(2 \sqrt{3}, \sqrt{3}) \\\\ & \mathrm{Q}\left(\frac{8}{\sqrt{3}}, 0\right) \\\\ & (3 \mathrm{PQ})^2=39\end{aligned}$
integer
jee-main-2023-online-1st-february-evening-shift
1ldyc4xu3
maths
ellipse
tangent-to-ellipse
<p>Let a tangent to the curve $$9{x^2} + 16{y^2} = 144$$ intersect the coordinate axes at the points A and B. Then, the minimum length of the line segment AB is ________</p>
[]
null
7
<p>Given curve,</p> <p>$$9{x^2} + 16{y^2} = 144$$</p> <p>$$ \Rightarrow {{{x^2}} \over {16}} + {{{y^2}} \over 9} = 1$$</p> <p>$$ \Rightarrow {{{x^2}} \over {{4^2}}} + {{{y^2}} \over {{3^2}}} = 1$$</p> <p>$$\therefore$$ a = 4 and b = 3</p> <p>So, general point on the ellipse is $$ = (4\cos \theta ,3\sin \theta )$$</p> <p>We know,</p> <p>Equation of tangent to a given ellipse at its point $$(a\cos\theta ,b\sin \theta )$$ is</p> <p>$${{x\cos \theta } \over a} + {{y\sin \theta } \over b} = 1$$</p> <p>$$\therefore$$ Here equation of tangent at point $$(4\cos \theta ,3\sin \theta )$$ is</p> <p>$${{x\cos \theta } \over 4} + {{y\sin \theta } \over 3} = 1$$</p> <p>When this tangent cut's x axis then y = 0.</p> <p>$$\therefore$$ $${{x\cos \theta } \over 4} + 0 = 1$$</p> <p>$$ \Rightarrow x = 4\sec \theta $$</p> <p>$$\therefore$$ Point of intersection at x axis is $$A(4\sec \theta ,0)$$.</p> <p>When this tangent cut's y axis then x = 0.</p> <p>$$\therefore$$ $$0 + {{y\sin \theta } \over 3} = 1$$</p> <p>$$ \Rightarrow y = 3\cos ec\theta $$</p> <p>$$\therefore$$ Point of intersection at y axis is $$B(0,3\cos ec\theta )$$</p> <p>$$\therefore$$ Length of AB</p> <p>$$ = \sqrt {{{(4\sec \theta - 0)}^2} + {{(0 - 3\cos ec\theta )}^2}} $$</p> <p>$$ = \sqrt {16{{\sec }^2}\theta + 9\cos e{c^2}\theta } $$</p> <p>$$ = \sqrt {16(1 + {{\tan }^2}\theta ) + 9(1 + {{\cot }^2}\theta )} $$</p> <p>$$ = \sqrt {25 + 16{{\tan }^2}\theta + 9{{\cot }^2}\theta } $$</p> <p>We know, $$AM \ge GM$$</p> <p>$$\therefore$$ $${{16{{\tan }^2}\theta + 9{{\cot }^2}\theta } \over 2} \ge \sqrt {(16{{\tan }^2}\theta )(9{{\cot }^2}\theta )} $$</p> <p>$$ \Rightarrow 16{\tan ^2}\theta + 9{\cot ^2}\theta \ge 2(4\tan \theta )(3\cot \theta )$$</p> <p>$$ \Rightarrow 16{\tan ^2}\theta + 9{\cot ^2}\theta \ge 2 \times 4 \times 3$$</p> <p>$$ \Rightarrow 16{\tan ^2}\theta + 9{\cot ^2}\theta \ge 24$$</p> <p>$$\therefore$$ $$AB = \sqrt {25 + 16{{\tan }^2}\theta + 9{{\cot }^2}\theta } $$</p> <p>$$ \ge \sqrt {25 + 24} $$</p> <p>$$ \ge \sqrt {49} $$</p> <p>$$ \ge 7$$</p> <p>$$\therefore$$ Minimum length of $$AB = 7$$.</p>
integer
jee-main-2023-online-24th-january-morning-shift
1lgsu9jda
maths
ellipse
tangent-to-ellipse
<p>If the radius of the largest circle with centre (2,0) inscribed in the ellipse $$x^2+4y^2=36$$ is r, then 12r$$^2$$ is equal to :</p>
[{"identifier": "A", "content": "72"}, {"identifier": "B", "content": "92"}, {"identifier": "C", "content": "115"}, {"identifier": "D", "content": "69"}]
["B"]
null
The given ellipse has the equation : <br/><br/>$$x^2+4y^2=36$$ <br/><br/>We can rewrite this as : <br/><br/>$$\frac{x^2}{6^2} + \frac{y^2}{(6/2)^2} = 1$$ <br/><br/>This shows that it is an ellipse centered at (0,0) with semi-major axis a = 6 along the x-axis and semi-minor axis b = 3 along the y-axis. <br/><br/>The equation of a circle with center (2,0) and radius r is : <br/><br/>$$(x-2)^2 + y^2 = r^2$$ <br/><br/>Substituting y^2 from the ellipse equation into the circle equation gives us : <br/><br/>$$x^2 - 4x + 4 + \frac{36 - x^2}{4} = r^2$$ <br/><br/>Solving this equation leads to : <br/><br/>$$3x^2 - 16x + 52 - 4r^2 = 0$$ <br/><br/>For the roots of this quadratic equation to be real (which they must be, since they represent real intersection points), the discriminant (D) must be greater than or equal to zero : <br/><br/>$$D = b^2 - 4ac = (-16)^2 - 4\times3\times(52 - 4r^2) = 256 - 12\times52 + 48r^2$$ <br/><br/>Setting D = 0 gives the minimum value for r (the radius of the inscribed circle) : <br/><br/>$$256 - 624 + 48r^2 = 0$$ <br/><br/>$$48r^2 = 368$$ <br/><br/>$$r^2 = \frac{368}{48} = \frac{23}{3}$$ <br/><br/>And we're asked for the value of 12r<sup>2</sup>, so : <br/><br/>$$12r^2 = 12 \times \frac{23}{3} = 92$$ <br/><br/>So, the correct answer is Option B : 92.
mcq
jee-main-2023-online-11th-april-evening-shift
TXeVoSP3SOStAzKB
maths
functions
classification-of-functions
A function $$f$$ from the set of natural numbers to integers defined by $$$f\left( n \right) = \left\{ {\matrix{ {{{n - 1} \over 2},\,when\,n\,is\,odd} \cr { - {n \over 2},\,when\,n\,is\,even} \cr } } \right.$$$ is
[{"identifier": "A", "content": "neither one -one nor onto"}, {"identifier": "B", "content": "one-one but not onto"}, {"identifier": "C", "content": "onto but not one-one"}, {"identifier": "D", "content": "one-one and onto both"}]
["D"]
null
We have $$f:N \to I$$ <br><br>If $$x$$ and $$y$$ are two even natural numbers, <br><br>then $$f\left( x \right) = f\left( y \right) \Rightarrow {{ - x} \over 2} = {{ - y} \over 2} \Rightarrow x = y$$ <br><br>Again if $$x$$ and $$y$$ are two odd natural numbers then <br><br>$$f\left( x \right) = f\left( y \right) \Rightarrow {{x - 1} \over 2} = {{y - 1} \over 2} \Rightarrow x = y$$ <br><br>$$\therefore$$ $$f$$ is onto. <br><br>Also each negative integer is an image of even natural number and each positive integer is an image of odd natural number. <br><br>$$\therefore$$ $$f$$ is onto. <br><br>Hence $$f$$ is one one and onto both.
mcq
aieee-2003
yihWYw1MdWfWneMT
maths
functions
classification-of-functions
If $$f:R \to S$$, defined by <br/>$$f\left( x \right) = \sin x - \sqrt 3 \cos x + 1$$, <br/>is onto, then the interval of $$S$$ is
[{"identifier": "A", "content": "[-1, 3]"}, {"identifier": "B", "content": "[-1, 1]"}, {"identifier": "C", "content": "[0, 1]"}, {"identifier": "D", "content": "[0, 3]"}]
["A"]
null
$$f\left( x \right)$$ is onto <br><br>$$\therefore$$ $$S=$$ range of $$f(x)$$ <br><br>Now $$f\left( x \right) = \sin \,x - \sqrt 3 \,\cos \,x + 1$$ <br><br>$$ = 2\sin \left( {x - {\pi \over 3}} \right) + 1$$ <br><br>As $$1 - \le \sin \left( {x - {\pi \over 3}} \right) \le 1$$ <br><br>$$ - 1 \le 2\sin \left( {x - {\pi \over 3}} \right) + 1 \le 3$$ <br><br>$$\therefore$$ $$f\left( x \right) \in \left[ { - 1,3} \right] = S$$
mcq
aieee-2004
TmvD2W4ixwMufq70
maths
functions
classification-of-functions
Let $$f:( - 1,1) \to B$$, be a function defined by <br/>$$f\left( x \right) = {\tan ^{ - 1}}{{2x} \over {1 - {x^2}}}$$, <br/>then $$f$$ is both one-one and onto when B is the interval
[{"identifier": "A", "content": "$$\\left( {0,{\\pi \\over 2}} \\right)$$"}, {"identifier": "B", "content": "$$\\left[ {0,{\\pi \\over 2}} \\right)$$"}, {"identifier": "C", "content": "$$\\left[ { - {\\pi \\over 2},{\\pi \\over 2}} \\right]$$"}, {"identifier": "D", "content": "$$\\left( { - {\\pi \\over 2},{\\pi \\over 2}} \\right)$$"}]
["D"]
null
Given $$\,\,f\left( x \right) = {\tan ^{ - 1}}\left( {{{2x} \over {1 - {x^2}}}} \right) = 2{\tan ^{ - 1}}x$$ <br><br>for $$x \in \left( { - 1,1} \right)$$ <br><br>If$$\,\,x \in \left( { - 1,1} \right) \Rightarrow {\tan ^{ - 1}}x \in \left( {{{ - \pi } \over 4},{\pi \over 4}} \right)$$ <br><br>$$ \Rightarrow 2{\tan ^{ - 1}}x \in \left( {{{ - \pi } \over 2},{\pi \over 2}} \right)$$ <br><br>Clearly, range of $$f\left( x \right) = \left( { - {\pi \over 2},{\pi \over 2}} \right)$$ <br><br>For $$f$$ to be onto, co-domain $$=$$ range <br><br>$$\therefore$$ Co-domain of function $$ = B = \left( { - {\pi \over 2},{\pi \over 2}} \right).$$
mcq
aieee-2005
Jh1LdFJkemGj6fH0
maths
functions
classification-of-functions
Let $$f:N \to Y$$ be a function defined as f(x) = 4x + 3 where <br/>Y = { y $$ \in $$ N, y = 4x + 3 for some x $$ \in $$ N }. <br/>Show that f is invertible and its inverse is
[{"identifier": "A", "content": "$$g\\left( y \\right) = {{3y + 4} \\over 4}$$"}, {"identifier": "B", "content": "$$g\\left( y \\right) = 4 + {{y + 3} \\over 4}$$"}, {"identifier": "C", "content": "$$g\\left( y \\right) = {{y + 3} \\over 4}$$"}, {"identifier": "D", "content": "$$g\\left( y \\right) = {{y - 3} \\over 4}$$"}]
["D"]
null
Clearly $$f$$ is one one and onto, so invertible <br><br>Also $$f\left( x \right) = 4x + 3 = y \Rightarrow x = {{y - 3} \over 4}$$ <br><br>$$\therefore$$ $$\,\,\,\,g\left( y \right) = {{y - 3} \over 4}$$
mcq
aieee-2008
tP4DY9Co6Tlcreny
maths
functions
classification-of-functions
Let $$f\left( x \right) = {\left( {x + 1} \right)^2} - 1,x \ge - 1$$ <br/><br/><b>Statement - 1 :</b> The set $$\left\{ {x:f\left( x \right) = {f^{ - 1}}\left( x \right)} \right\} = \left\{ {0, - 1} \right\}$$. <br/><br/><b>Statement - 2 :</b> $$f$$ is a bijection.
[{"identifier": "A", "content": "Statement - 1 is true, Statement - 2 is true; Statement - 2 is a correct explanation for Statement - 1"}, {"identifier": "B", "content": "Statement - 1 is true, Statement - 2 is true; Statement - 2 is <b>not</b> a correct explanation for Statement - 1"}, {"identifier": "C", "content": "Statement - 1 is true, Statement - 2 is false"}, {"identifier": "D", "content": "Statement - 1 is false, Statement - 2 is true"}]
["C"]
null
Given that $$f\left( x \right) = {\left( {x + 1} \right)^2} - 1,\,x \ge - 1$$ <br><br>Clearly $${D_f} = \left[ { -1 ,\infty } \right)$$ but co-domain is not given <br><br>$$\therefore$$ $$f(x)$$ need not be necessarily onto. <br><br>But if $$f(x)$$ is onto then as $$f\left( x \right)$$ is one one also, <br><br>$$(x+1)$$ being something $$+ve,$$ $${f^{ - 1}}\left( x \right)$$ will exist where <br><br>$${\left( {x + 1} \right)^2} - 1 = y$$ <br><br>$$ \Rightarrow x + 1 = \sqrt {y + 1} $$ <br><br>$$\,\,\,\,\,$$ $$\left( { + ve} \right.$$ square root as $$x + 1 \ge 0$$$$\left. {} \right)$$ <br><br>$$ \Rightarrow x = - 1 + \sqrt {y + 1} $$ <br><br>$$ \Rightarrow {f^{ - 1}}\left( x \right) = \sqrt {x + 1} - 1$$ <br><br>Then $$\,\,\,\,\,\,\,\,$$ $$f\left( x \right) = {f^{ - 1}}\left( x \right)$$ <br><br>$$ \Rightarrow {\left( {x + 1} \right)^2} - 1 = \sqrt {x + 1} - 1$$ <br><br>$$ \Rightarrow {\left( {x + 1} \right)^2} = \sqrt {x + 1} $$ <br><br>$$ \Rightarrow {\left( {x + 1} \right)^4} = \left( {x + 1} \right)$$ <br><br>$$ \Rightarrow \left( {x + 1} \right)\left[ {{{\left( {x + 1} \right)}^3} - 1} \right] = 0$$ <br><br>$$ \Rightarrow x = - 1,0$$ <br><br>$$\therefore$$ The statement -$$1$$ is correct but statement- $$2$$ is false.
mcq
aieee-2009
PjsG1USbhMNW1Hsh
maths
functions
classification-of-functions
For real x, let f(x) = x<sup>3</sup> + 5x + 1, then
[{"identifier": "A", "content": "f is one-one but not onto R"}, {"identifier": "B", "content": "f is onto R but not one-one"}, {"identifier": "C", "content": "f is one-one and onto R"}, {"identifier": "D", "content": "f is neither one-one nor onto R"}]
["C"]
null
Given that $$f\left( x \right) = {x^3} + 5x + 1$$ <br><br>$$\therefore$$ $$\,\,\,\,\,$$ $$f'\left( x \right) = 3{x^2} + 5 &gt; 0,\,\,\,\forall x \in R$$ <br><br>$$ \Rightarrow f\left( x \right)\,\,$$ is strictly increasing on $$R$$ <br><br>$$ \Rightarrow f\left( x \right)$$ is one one <br><br>$$\therefore$$ $$\,\,\,\,\,\,\,$$ Being a polynomial $$f(x)$$ is cont. and inc. <br><br>on $$R$$ with $$\mathop {\lim }\limits_{x \to \infty } \,f\left( x \right) = - \infty $$ <br><br>and $$\mathop {\lim }\limits_{x \to \infty } \,f\left( x \right) = \infty $$ <br><br>$$\therefore$$ $$\,\,\,\,\,\,\,$$ Range of $$f = \left( { - \infty ,\infty } \right) = R$$ <br><br>Hence $$f$$ is onto also, So, $$f$$ is one and onto $$R.$$
mcq
aieee-2009
KGE8ikCoX9SUExIo
maths
functions
classification-of-functions
The function $$f:R \to \left[ { - {1 \over 2},{1 \over 2}} \right]$$ defined as <br/><br/>$$f\left( x \right) = {x \over {1 + {x^2}}}$$, is
[{"identifier": "A", "content": "invertible"}, {"identifier": "B", "content": "injective but not surjective. "}, {"identifier": "C", "content": "surjective but not injective"}, {"identifier": "D", "content": "neither injective nor surjective."}]
["C"]
null
$$f\left( x \right) = {x \over {1 + {x^2}}}$$ <br><br>$$ \therefore $$ $$f\left( {{1 \over x}} \right) = {{{1 \over x}} \over {1 + {1 \over {{x^2}}}}} = {x \over {1 + {x^2}}} = f\left( x \right)$$ <br><br>$$ \therefore $$ f(x) is many-one function. <br><br>Now let y = f(x) = $${x \over {1 + {x^2}}}$$ <br><br>$$ \Rightarrow $$ y + x<sup>2</sup>y = x <br><br>$$ \Rightarrow $$ yx - x + y = 0 <br><br>As x $$ \in $$ R <br><br>$$ \therefore $$ (-1)<sup>2</sup> - 4(y)(y) $$ \ge $$ 0 <br><br>$$ \Rightarrow $$ 1 - 4y<sup>2</sup> $$ \ge $$ 0 <br><br>$$ \Rightarrow $$ y $$ \in $$ $$\left[ { - {1 \over 2},{1 \over 2}} \right]$$ <br><br>$$ \therefore $$ Range = Codomain = $$\left[ { - {1 \over 2},{1 \over 2}} \right]$$ <br><br>So, f(x) is surjective. <br><br>$$ \therefore $$ f(x) is surjective but not injective
mcq
jee-main-2017-offline
igQxD7UV54aBTe7EncVNQ
maths
functions
classification-of-functions
The function f : <b>N</b> $$ \to $$ <b>N</b> defined by f (x) = x $$-$$ 5 $$\left[ {{x \over 5}} \right],$$ Where <b>N</b> is the set of natural numbers and [x] denotes the greatest integer less than or equal to x, is :
[{"identifier": "A", "content": "one-one and onto"}, {"identifier": "B", "content": "one-one but not onto."}, {"identifier": "C", "content": "onto but not one-one."}, {"identifier": "D", "content": "neither one-one nor onto."}]
["D"]
null
f(1) = 1 - 5$$\left[ {{1 \over 5}} \right]$$ = 1 <br><br>f(6) = 6 - 5$$\left[ {{6 \over 5}} \right]$$ = 1 <br><br>So, this function is many to one. <br><br>f(10) = 10 - 5$$\left[ {{10 \over 5}} \right]$$ = 0 which is not present in the set of natural numbers. <br><br>So this function is neither one-one nor onto.
mcq
jee-main-2017-online-9th-april-morning-slot
i3Uk81JW5dW81psdZCrdJ
maths
functions
classification-of-functions
Let A = {x $$ \in $$ <b>R</b> : x is not a positive integer}. <br/><br/>Define a function $$f$$ : A $$ \to $$Β Β <b>R</b> Β Β asΒ Β $$f(x)$$ = $${{2x} \over {x - 1}}$$, <br/><br/>then $$f$$ is :
[{"identifier": "A", "content": "not injective"}, {"identifier": "B", "content": "neither injective nor surjective"}, {"identifier": "C", "content": "surjective but not injective "}, {"identifier": "D", "content": "injective but not surjective"}]
["D"]
null
f(x) = $${{2x} \over {x - 1}}$$ <br><br>f(x) = 2 + $${2 \over {x - 1}}$$ <br><br>f'(x) = $$-$$ $${2 \over {{{\left( {x - 1} \right)}^2}}}$$ &lt; 0 $$\forall $$ x $$ \in $$ R <br><br>Hence f(x) is strictly decreasing <br><br>So, f(x) is one-one <br><br><b>Range : </b> Let y = $${{2x} \over {x - 1}}$$ <br><br>xy $$-$$ y = 2x <br><br>$$ \Rightarrow $$&nbsp;&nbsp;x(y $$-$$ 2) = y <br><br>$$ \Rightarrow $$&nbsp;&nbsp;x = $${y \over {y - 2}}$$ <br><br>given that x $$ \in $$ R : x is not a +ve integer <br><br>$$ \therefore $$&nbsp;&nbsp;$${y \over {y - 2}} \ne $$ N&nbsp;&nbsp;&nbsp;&nbsp;(N $$ \to $$&nbsp;Natural number) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;y $$ \ne $$ Ny $$-$$ 2N <br><br>$$ \Rightarrow $$&nbsp;&nbsp;y $$ \ne $$ $${{2N} \over {N - 1}}$$ <br><br>So range $$ \notin $$ R (in to function)
mcq
jee-main-2019-online-9th-january-evening-slot
0WUFs0GDVAFUAg9aXVS3o
maths
functions
classification-of-functions
The number of functions f from {1, 2, 3, ...., 20} onto {1, 2, 3, ...., 20} such that f(k) is a multiple of 3, whenever k is a multiple of 4, is :
[{"identifier": "A", "content": "6<sup>5</sup> $$ \\times $$ (15)!"}, {"identifier": "B", "content": "5<sup>6</sup> $$ \\times $$ 15"}, {"identifier": "C", "content": "(15)! $$ \\times $$ 6!"}, {"identifier": "D", "content": "5! $$ \\times $$ 6!"}]
["C"]
null
Given that $f(k)$ is a multiple of 3 whenever $k$ is a multiple of 4, we need to consider how to map elements from the domain {1, 2, 3, ..., 20} to the codomain {1, 2, 3, ..., 20} following this rule. <br/><br/>1. We first consider the subset of the domain that consists of multiples of 4: {4, 8, 12, 16, 20}. There are 5 elements in this subset. <br/><br/>2. We then consider the subset of the codomain that consists of multiples of 3: {3, 6, 9, 12, 15, 18}. There are 6 elements in this subset. <br/><br/>3. According to the given condition, each of the 5 multiples of 4 must be mapped to a multiple of 3. This can be done in ${ }^6C_5 \cdot 5! = 6!$ ways, considering that there are 6 options for each of the 5 multiples of 4 (each choice constitutes a combination), and we then consider the permutations of these 5 choices. <br/><br/>4. The remaining 15 elements in the domain (20 original elements minus the 5 multiples of 4) can be mapped onto the remaining 15 elements in the codomain (20 original elements minus the 6 multiples of 3, plus one multiple of 3 that has been assigned to a multiple of 4). This can be done in $15!$ ways. <br/><br/>So, combining these two cases, the total number of onto functions $f$ is $6! \times 15!$, which corresponds to option C.
mcq
jee-main-2019-online-11th-january-evening-slot
pBqVHNcxP55bNHm9oo93G
maths
functions
classification-of-functions
Let a function f : (0, $$\infty $$) $$ \to $$ (0, $$\infty $$) be defined by f(x) = $$\left| {1 - {1 \over x}} \right|$$. Then f is :
[{"identifier": "A", "content": "not injective but it is surjective"}, {"identifier": "B", "content": "neiter injective nor surjective"}, {"identifier": "C", "content": "injective only"}, {"identifier": "D", "content": "both injective as well as surjective"}]
["B"]
null
$$f\left( x \right) = \left| {1 - {1 \over x}} \right| = {{\left| {x - 1} \right|} \over x} = \left\{ {\matrix{ {{{1 - x} \over x}} &amp; {0 &lt; x \le 1} \cr {{{x - 1} \over x}} &amp; {x \ge 1} \cr } } \right.$$ <br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266122/exam_images/w8mp3onrybrng94fquzf.webp" style="max-width: 100%; height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 11th January Evening Slot Mathematics - Functions Question 110 English Explanation"> <br>$$ \Rightarrow $$&nbsp;&nbsp;f(x) is not injective <br><br>but range of function is $$\left[ {0,\infty } \right)$$ <br><br><b>Remarks :</b>&nbsp;&nbsp;If co-domain is $$\left[ {0,\infty } \right)$$, then f(x) will be surjective.
mcq
jee-main-2019-online-11th-january-evening-slot
dfuBeaBmWfo5qPrwGI18hoxe66ijvwpyj7h
maths
functions
classification-of-functions
If the function Ζ’ : R – {1, –1} $$ \to $$ A defined by <br/> Ζ’(x) = $${{{x^2}} \over {1 - {x^2}}}$$ , is surjective, then A is equal to
[{"identifier": "A", "content": "R \u2013 (\u20131, 0)"}, {"identifier": "B", "content": "R \u2013 {\u20131}"}, {"identifier": "C", "content": "R \u2013 [\u20131, 0)"}, {"identifier": "D", "content": "[0, $$\\infty $$)"}]
["C"]
null
Let Ζ’(x) = $${{{x^2}} \over {1 - {x^2}}}$$ = y <br><br>$$ \Rightarrow $$ $$y\left( {1 - {x^2}} \right) = {x^2}$$ <br><br>$$ \Rightarrow $$ $${x^2} = {y \over {1 + y}}$$ <br><br>As $${x^2}$$ is always $$ \ge $$ 0. <br><br>$$ \therefore $$ $${y \over {1 + y}}$$ $$ \ge $$ 0 <br><br> y $$ \in $$ $$\left( { - \infty , - 1} \right) \cup \left[ {0,\left. \infty \right)} \right.$$ <br><br>For surjective function co-domain = Range <br><br>$$ \therefore $$ A is R – [–1, 0).
mcq
jee-main-2019-online-9th-april-morning-slot
uCRfvNgdGc6yDuxSnqjgy2xukfqfns2t
maths
functions
classification-of-functions
Let A = {a, b, c} and B = {1, 2, 3, 4}. Then the number of elements in the set <br/>C = {f : A $$ \to $$ B | 2 $$ \in $$ f(A) and f is not one-one} is ______.
[]
null
19
The desired functions will contain either one element or two elements in its codomain of which '2' always belongs to f(A). <br><br><b>Case 1 :</b> When 2 is the image of all element of set A. <br><br>Number of ways this is possible = 1 <br><br><b>Case 2 :</b> When one image is 2 and other one image is one of {1, 3, 4}. <br><br>Number of ways we can choose one of {1, 3, 4} is = <sup>3</sup>C<sub>1</sub>. <br><br>Now divide 3 elements {a, b, c} of set A into two parts. <br>We can do this $${{3!} \over {2!1!}}$$ ways. <br><br>Now map one part of set A into the element 2 of set B and map other part of set A into one of {1, 3, 4} of set B. <br>We can do that 2! ways. <br><br>So number of functions in this case <br>= <sup>3</sup>C<sub>1</sub> $$ \times $$ $${{3!} \over {2!1!}}$$ $$ \times $$ 2! = 18 <br><br>$$ \therefore $$ Total number of functions = 1 + 18 = 19
integer
jee-main-2020-online-5th-september-evening-slot
tXk6WTp3s2gOZF5efd1kls4q62e
maths
functions
classification-of-functions
Let f, g : N $$ \to $$ N such that f(n + 1) = f(n) + f(1) $$\forall $$ n$$\in$$N and g be any arbitrary function. Which of the following statements is NOT true?
[{"identifier": "A", "content": "If g is onto, then fog is one-one"}, {"identifier": "B", "content": "f is one-one"}, {"identifier": "C", "content": "If f is onto, then f(n) = n $$\\forall $$n$$\\in$$N"}, {"identifier": "D", "content": "If fog is one-one, then g is one-one"}]
["A"]
null
$$f(n + 1) = f(n) + 1$$<br><br>$$f(2) = 2f(1)$$<br><br>$$f(3) = 3f(1)$$<br><br>$$f(4) = 4f(1)$$<br><br>.....<br><br>$$f(n) = nf(1)$$<br><br>$$f(x)$$ is one-one
mcq
jee-main-2021-online-25th-february-morning-slot
G6M026PNBglYe91OIP1klt7gk5q
maths
functions
classification-of-functions
Let x denote the total number of one-one functions from a set A with 3 elements to a set B with 5 elements and y denote the total number of one-one functions form the set A to the set A $$\times$$ B. Then :
[{"identifier": "A", "content": "2y = 273x"}, {"identifier": "B", "content": "y = 91x"}, {"identifier": "C", "content": "2y = 91x"}, {"identifier": "D", "content": "y = 273x"}]
["C"]
null
Number of elements in A = 3<br><br>Number of elements in B = 5<br><br>Number of elements in A $$\times$$ B = 15<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264770/exam_images/jzoaua9vt8av712nmhev.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 25th February Evening Shift Mathematics - Functions Question 88 English Explanation 1"><br><br>Number of one-one function<br><br>x = 5 $$\times$$ 4 $$\times$$ 3<br><br>x = 60<br><br><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266205/exam_images/qm3llf0rmyqukfzhahci.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 25th February Evening Shift Mathematics - Functions Question 88 English Explanation 2"><br><br>Number of one-one function<br><br>y = 15 $$\times$$ 14 $$\times$$ 13<br><br>y = 15 $$\times$$ 4 $$\times$$ $${{14} \over 4}$$ $$\times$$ 13<br><br>y = 60 $$\times$$ $${7 \over 2}$$ $$\times$$ 13<br><br>2y = (13)(7x)<br><br>2y = 91x
mcq
jee-main-2021-online-25th-february-evening-slot
ogppq1ohbkBSL5dMSx1kluwzw9x
maths
functions
classification-of-functions
Let $$A = \{ 1,2,3,....,10\} $$ and $$f:A \to A$$ be defined as<br/><br/>$$f(k) = \left\{ {\matrix{ {k + 1} &amp; {if\,k\,is\,odd} \cr k &amp; {if\,k\,is\,even} \cr } } \right.$$<br/><br/>Then the number of possible functions $$g:A \to A$$ such that $$gof = f$$ is :
[{"identifier": "A", "content": "5<sup>5</sup>"}, {"identifier": "B", "content": "10<sup>5</sup>"}, {"identifier": "C", "content": "5!"}, {"identifier": "D", "content": "<sup>10</sup>C<sub>5</sub>"}]
["B"]
null
<picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265048/exam_images/wt80rncxso0qezuj3tvv.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266951/exam_images/y5zg7fnmudxcxu7h9gyf.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734264384/exam_images/yrhufchc5jsgfnpsyljo.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 26th February Evening Shift Mathematics - Functions Question 87 English Explanation 1"></picture> <br><br>f(1) = 2<br><br>f(2) = 2<br><br>f(3) = 4<br><br>f(4) = 4<br><br>f(5) = 6<br><br>f(6) = 6<br><br>f(7) = 8<br><br>f(8) = 8<br><br>f(9) = 10<br><br>f(10) = 10<br><br>$$ \therefore $$ f(1) = f(2) = 2<br><br>f(3) = f(4) = 4<br><br>f(5) = f(6) = 6<br><br>f(7) = f(8) = 8<br><br>f(9) = f(10) = 10<br><br>Given, g(f(x)) = f(x)<br><br>when x = 1, g(f(1)) = f(1) $$ \Rightarrow $$ g(2) = 2<br><br>when, x = 2, g(f(2)) = f(2) $$ \Rightarrow $$ g(2) = 2<br><br>$$ \therefore $$ x = 1, 2, g(2) = 2<br><br>Similarly, at x = 3, 4, g(4) = 4<br><br>at x = 5, 6, g(6) = 6<br><br>at x = 7, 8, g(8) = 8<br><br>at x = 9, 10, g(10) = 10<br><br> <picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266114/exam_images/lpbgi28osadvhp2mzckg.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265162/exam_images/kuhwk8m2iozvbagdkggp.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734267806/exam_images/hs7csruvmcfyqi6fwypv.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2021 (Online) 26th February Evening Shift Mathematics - Functions Question 87 English Explanation 2"></picture> <br><br>Here, you can see for even terms mapping is fixed. But far odd terms 1, 3, 5, 7, 9 we can map to any one of the 10 elements.<br><br>$$ \therefore $$ For 1, number of functions = 10<br><br>For 3, number of functions = 10<br><br>$$\eqalign{ &amp; . \cr &amp; . \cr &amp; . \cr &amp; \cr} $$<br>for 9, number of functions = 10<br><br>$$ \therefore $$ Total number of functions = 10 $$\times$$ 10 $$\times$$ 10 $$\times$$ 10 $$\times$$ 10 = 10<sup>5</sup>
mcq
jee-main-2021-online-26th-february-evening-slot
1kruaeehj
maths
functions
classification-of-functions
Let A = {0, 1, 2, 3, 4, 5, 6, 7}. Then the number of bijective functions f : A $$\to$$ A such that f(1) + f(2) = 3 $$-$$ f(3) is equal to
[]
null
720
f(1) + f(2) = 3 $$-$$ f(3)<br><br>$$\Rightarrow$$ f(1) + f(2) = 3 + f(3) = 3<br><br>The only possibility is : 0 + 1 + 2 = 3<br><br>$$\Rightarrow$$ Elements 1, 2, 3 in the domain can be mapped with 0, 1, 2 only.<br><br>So number of bijective functions.<br><br>$$\left| \!{\underline {\, 3 \,}} \right. $$ $$\times$$ $$\left| \!{\underline {\, 5 \,}} \right. $$ = 720
integer
jee-main-2021-online-22th-july-evening-shift
1krvzt6at
maths
functions
classification-of-functions
Let g : N $$\to$$ N be defined as<br/><br/>g(3n + 1) = 3n + 2,<br/><br/>g(3n + 2) = 3n + 3,<br/><br/>g(3n + 3) = 3n + 1, for all n $$\ge$$ 0. <br/><br/>Then which of the following statements is true?
[{"identifier": "A", "content": "There exists an onto function f : N $$\\to$$ N such that fog = f"}, {"identifier": "B", "content": "There exists a one-one function f : N $$\\to$$ N such that fog = f"}, {"identifier": "C", "content": "gogog = g"}, {"identifier": "D", "content": "There exists a function : f : N $$\\to$$ N such that gof = f"}]
["A"]
null
g : N $$\to$$ N <br><br>g(3n + 1) = 3n + 2,<br><br>g(3n + 2) = 3n + 3,<br><br>g(3n + 3) = 3n + 1<br><br>$$g(x) = \left[ {\matrix{ {x + 1} &amp; {x = 3k + 1} \cr {x + 1} &amp; {x = 3k + 2} \cr {x - 2} &amp; {x = 3k + 3} \cr } } \right.$$<br><br>$$g\left( {g(x)} \right) = \left[ {\matrix{ {x + 2} &amp; {x = 3k + 1} \cr {x - 1} &amp; {x = 3k + 2} \cr {x - 1} &amp; {x = 3k + 3} \cr } } \right.$$<br><br>$$g\left( {g\left( {g\left( x \right)} \right)} \right) = \left[ {\matrix{ x &amp; {x = 3k + 1} \cr x &amp; {x = 3k + 2} \cr x &amp; {x = 3k + 3} \cr } } \right.$$<br><br>If f : N $$\to$$ N, if is a one-one function such that f(g(x)) = f(x) $$\Rightarrow$$ g(x) = x, which is not the case<br><br>If f : N $$\to$$ N f is an onto function<br><br>such that f(g(x)) = f(x),<br><br>one possibility is <br><br>$$f(x) = \left[ {\matrix{ x &amp; {x = 3n + 1} \cr x &amp; {x = 3n + 2} \cr x &amp; {x = 3n + 3} \cr } } \right.$$ n$$\in$$N<sub>0</sub><br><br>Here f(x) is onto, also f(g(x)) = f(x) $$\forall$$ x$$\in$$N
mcq
jee-main-2021-online-25th-july-morning-shift
1l55j9tyq
maths
functions
classification-of-functions
<p>Let S = {1, 2, 3, 4}. Then the number of elements in the set { f : S $$\times$$ S $$\to$$ S : f is onto and f (a, b) = f (b, a) $$\ge$$ a $$\forall$$ (a, b) $$\in$$ S $$\times$$ S } is ______________.</p>
[]
null
37
There are 16 ordered pairs in $S \times S$. We write all these ordered pairs in 4 sets as follows. <br/><br/> $A=\{(1,1)\}$ <br/><br/> $B=\{(1,4),(2,4),(3,4)(4,4),(4,3),(4,2),(4,1)\}$ <br/><br/> $C=\{(1,3),(2,3),(3,3),(3,2),(3,1)\}$ <br/><br/> $D=\{(1,2),(2,2),(2,1)\}$ <br/><br/> All elements of set $B$ have image 4 and only element of $A$ has image 1. <br/><br/> All elements of set $C$ have image 3 or 4 and all elements of set $D$ have image 2 or 3 or 4 . <br/><br/> We will solve this question in two cases. <br/><br/> <b>Case I</b>: When no element of set $C$ has image 3. <br/><br/> Number of onto functions $=2$ (when elements of set $D$ have images 2 or 3$)$ <br/><br/> <b>Case II</b>: When atleast one element of set $C$ has image 3.<br/><br/> Number of onto functions $=\left(2^{3}-1\right)(1+2+2)$ <br/><br/> $$ =35 $$ <br/><br/> Total number of functions $=37$
integer
jee-main-2022-online-28th-june-evening-shift
1l56640do
maths
functions
classification-of-functions
<p>Let a function f : N $$\to$$ N be defined by</p> <p>$$f(n) = \left[ {\matrix{ {2n,} &amp; {n = 2,4,6,8,......} \cr {n - 1,} &amp; {n = 3,7,11,15,......} \cr {{{n + 1} \over 2},} &amp; {n = 1,5,9,13,......} \cr } } \right.$$</p> <p>then, f is</p>
[{"identifier": "A", "content": "one-one but not onto"}, {"identifier": "B", "content": "onto but not one-one"}, {"identifier": "C", "content": "neither one-one nor onto"}, {"identifier": "D", "content": "one-one and onto"}]
["D"]
null
<p>When n = 1, 5, 9, 13 then $${{n + 1} \over 2}$$ will give all odd numbers.</p> <p>When n = 3, 7, 11, 15 .....</p> <p>n $$-$$ 1 will be even but not divisible by 4</p> <p>When n = 2, 4, 6, 8 .....</p> <p>Then 2n will give all multiples of 4</p> <p>So range will be N.</p> <p>And no two values of n give same y, so function is one-one and onto.</p>
mcq
jee-main-2022-online-28th-june-morning-shift
1l5c1z1fa
maths
functions
classification-of-functions
<p>The number of one-one functions f : {a, b, c, d} $$\to$$ {0, 1, 2, ......, 10} such <br/><br/>that 2f(a) $$-$$ f(b) + 3f(c) + f(d) = 0 is ___________.</p>
[]
null
31
<p>Given one-one function</p> <p>$$f:\{ a,b,c,d\} \to \{ 0,1,2,\,\,....\,\,10\} $$</p> <p>and $$2f(a) - f(b) + 3f(c) + f(d) = 0$$</p> <p>$$ \Rightarrow 3f(c) + 2f(a) + f(d) = f(b)$$</p> <p>Case I:</p> <p>(1) Now let $$f(c) = 0$$ and $$f(a) = 1$$ then</p> <p>$$3 \times 0 + 2 \times 1 + f(d) = f(b)$$</p> <p>$$ \Rightarrow 2 + f(d) = f(b)$$</p> <p>Now possible value of $$f(d) = 2,3,4,5,6,7,$$ and $$8$$.</p> <p>f(d) can't be 9 and 10 as if $$f(d) = 9$$ or 10 then $$f(b) = 2 + 9 = 11$$ or $$f(b) = 2 + 10 = 12$$, which is not possible as here any function's maximum value can be 10.</p> <p>$$\therefore$$ Total possible functions when $$f(c) = 0$$ and $$f(a) = 1$$ are = 7</p> <p>(2) When $$f(c) = 0$$ and $$f(a) = 2$$ then</p> <p>$$3 \times 0 + 2 \times 2 + f(d) = f(b)$$</p> <p>$$ \Rightarrow 4 + f(d) = f(b)$$</p> <p>$$\therefore$$ possible value of $$f(d) = 1,3,4,5,6$$</p> <p>$$\therefore$$ Total possible functions in this case = 5</p> <p>(3) When $$f(c) = 0$$ and $$f(a) = 3$$ then</p> <p>$$3 \times 0 + 2 \times 3 + f(d) = f(b)$$</p> <p>$$ \Rightarrow 6 + f(d) = f(b)$$</p> <p>$$\therefore$$ Possible value of $$f(d) = 1,2,4$$</p> <p>$$\therefore$$ Total possible functions in this case = 3</p> <p>(4) When $$f(c) = 0$$ and $$f(a) = 4$$ then</p> <p>$$3 \times 0 + 2 \times 4 + f(d) = f(b)$$</p> <p>$$ \Rightarrow 8 + f(d) = f(b)$$</p> <p>$$\therefore$$ Possible value of $$f(d) = 1,2$$</p> <p>$$\therefore$$ Total possible functions in this case = 2</p> <p>(5) When $$f(c) = 0$$ and $$f(a) = 5$$ then</p> <p>$$3 \times 0 + 2 \times 5 + f(d) = f(b)$$</p> <p>$$ \Rightarrow 10 + f(d) = f(b)$$</p> <p>Possible value of f(d) can be 0 but f(c) is already zero. So, no value to f(d) can satisfy.</p> <p>$$\therefore$$ No function is possible in this case.</p> <p>$$\therefore$$ Total possible functions when $$f(c) = 0$$ and $$f(a) = 1,2,3$$ and $$4$$ are $$ = 7 + 5 + 3 + 2 = 17$$</p> <p>Case II:</p> <p>(1) When $$f(c) = 1$$ and $$f(a) = 0$$ then</p> <p>$$3 \times 1 + 2 \times 0 + f(d) = f(b)$$</p> <p>$$ \Rightarrow 3 + f(d) = f(b)$$</p> <p>$$\therefore$$ Possible value of $$f(d) = 2,3,4,5,6,7$$</p> <p>$$\therefore$$ Total possible functions in this case = 6</p> <p>(2) When $$f(c) = 1$$ and $$f(a) = 2$$ then</p> <p>$$3 \times 1 + 2 \times 2 + f(d) = f(b)$$</p> <p>$$ \Rightarrow 7 + f(d) = f(b)$$</p> <p>$$\therefore$$ Possible value of $$f(d) = 0,3$$</p> <p>$$\therefore$$ Total possible functions in this case = 2</p> <p>(3) When $$f(c) = 1$$ and $$f(a) = 3$$ then</p> <p>$$3 \times 1 + 2 \times 3 + f(d) = f(b)$$</p> <p>$$ \Rightarrow 9 + f(d) = f(b)$$</p> <p>$$\therefore$$ Possible value of $$f(d) = 0$$</p> <p>$$\therefore$$ Total possible functions in this case = 1</p> <p>$$\therefore$$ Total possible functions when $$f(c) = 1$$ and $$f(a) = 0,2$$ and $$3$$ are</p> <p>$$ = 6 + 2 + 1 = 9$$</p> <p>Case III:</p> <p>(1) When $$f(c) = 2$$ and $$f(a) = 0$$ then</p> <p>$$3 \times 2 + 2 \times 0 + f(d) = f(b)$$</p> <p>$$ \Rightarrow 6 + f(d) = f(b)$$</p> <p>$$\therefore$$ Possible values of $$f(d) = 1,3,4$$</p> <p>$$\therefore$$ Total possible functions in this case = 3</p> <p>(2) When $$f(c) = 2$$ and $$f(a) = 1$$ then,</p> <p>$$3 \times 2 + 2 \times 1 + f(d) = f(b)$$</p> <p>$$ \Rightarrow 8 + f(d) = f(b)$$</p> <p>$$\therefore$$ Possible values of $$f(d) = 0$$</p> <p>$$\therefore$$ Total possible function in this case = 1</p> <p>$$\therefore$$ Total possible functions when $$f(c) = 2$$ and $$f(a) = 0,1$$ are</p> <p>$$ = 3 + 1 = 4$$</p> <p>Case IV:</p> <p>(1) When $$f(c) = 3$$ and $$f(a) = 0$$ then</p> <p>$$3 \times 3 + 2 \times 0 + f(d) = f(b)$$</p> <p>$$ \Rightarrow 9 + f(d) = f(b)$$</p> <p>$$\therefore$$ Possible values of $$f(d) = 1$$</p> <p>$$\therefore$$ Total one-one functions from four cases</p> <p>$$ = 17 + 9 + 4 + 1 = 31$$</p>
integer
jee-main-2022-online-24th-june-morning-shift
1l6dusstk
maths
functions
classification-of-functions
<p>The total number of functions,</p> <p>$$ f:\{1,2,3,4\} \rightarrow\{1,2,3,4,5,6\} $$ such that $$f(1)+f(2)=f(3)$$, is equal to : </p>
[{"identifier": "A", "content": "60"}, {"identifier": "B", "content": "90"}, {"identifier": "C", "content": "108"}, {"identifier": "D", "content": "126"}]
["B"]
null
<p>Given, $$f(1) + f(2) = f(3)$$</p> <p>It means $$f(1),f(2)$$ and $$f(3)$$ are dependent on each other. But there is no condition on $$f(4)$$, so $$f(4)$$ can be $$f(4) = 1,2,3,4,5,6$$.</p> <p>For $$f(1),f(2)$$ and we have to find how many functions possible which will satisfy the condition $$f(1) + f(2) = f(3)$$</p> <p>Case 1 :</p> <p>When $$f(3) = 2$$ then possible values of $$f(1)$$ and $$f(2)$$ which satisfy $$f(1) + f(2) = f(3)$$ is $$f(1) = 1$$ and $$f(2) = 1$$.</p> <p>And $$f(4)$$ can be = 1, 2, 3, 4, 5, 6</p> <p>$$\therefore$$ Total possible functions $$=1\times6=6$$</p> <p>Case 2 :</p> <p>When $$f(3) = 3$$ then possible values</p> <p>(1) $$f(1) = 1$$ and $$f(2) = 2$$</p> <p>(2) $$f(1) = 2$$ and $$f(2) = 1$$</p> <p>And $$f(4)$$ can be = 1, 2, 3, 4, 5, 6.</p> <p>$$\therefore$$ Total functions $$ = 2 \times 6 = 12$$</p> <p>Case 3 :</p> <p>When $$f(3) = 4$$ then</p> <p>(1) $$f(1) = 1$$ and $$f(2) = 3$$</p> <p>(2) $$f(1) = 2$$ and $$f(2) = 2$$</p> <p>(3) $$f(1) = 3$$ and $$f(2) = 1$$</p> <p>And $$f(4)$$ can be = 1, 2, 3, 4, 5, 6</p> <p>$$\therefore$$ Total functions $$ = 3 \times 6 = 18$$</p> <p>Case 4 :</p> <p>When $$f(3) = 5$$ then</p> <p>(1) $$f(1) = 1$$ and $$f(4) = 4$$</p> <p>(2) $$f(1) = 2$$ and $$f(4) = 3$$</p> <p>(3) $$f(1) = 3$$ and $$f(4) = 2$$</p> <p>(4) $$f(1) = 4$$ and $$f(4) = 1$$</p> <p>And $$f(4)$$ can be = 1, 2, 3, 4, 5 and 6</p> <p>$$\therefore$$ Total functions $$ = 4 \times 6 = 24$$</p> <p>Case 5 :</p> <p>When $$f(3) = 6$$ then</p> <p>(1) $$f(1) = 1$$ and $$f(2) = 5$$</p> <p>(2) $$f(1) = 2$$ and $$f(2) = 4$$</p> <p>(3) $$f(1) = 3$$ and $$f(2) = 3$$</p> <p>(4) $$f(1) = 4$$ and $$f(2) = 2$$</p> <p>(5) $$f(1) = 5$$ and $$f(2) = 1$$</p> <p>And $$f(4)$$ can be = 1, 2, 3, 4, 5 and 6</p> <p>$$\therefore$$ Total possible functions $$ = 5 \times 6 = 30$$</p> <p>$$\therefore$$ Total functions from those 5 cases we get</p> <p>$$ = 6 + 12 + 18 + 24 + 30$$</p> <p>$$ = 90$$</p>
mcq
jee-main-2022-online-25th-july-morning-shift
1l6f0troy
maths
functions
classification-of-functions
<p>The number of bijective functions $$f:\{1,3,5,7, \ldots, 99\} \rightarrow\{2,4,6,8, \ldots .100\}$$, such that $$f(3) \geq f(9) \geq f(15) \geq f(21) \geq \ldots . . f(99)$$, is ____________.</p>
[{"identifier": "A", "content": "$${ }^{50} P_{17}$$"}, {"identifier": "B", "content": "$${ }^{50} P_{33}$$"}, {"identifier": "C", "content": "$$33 ! \\times 17$$!"}, {"identifier": "D", "content": "$$\\frac{50!}{2}$$"}]
["B"]
null
<p>As function is one-one and onto, out of 50 elements of domain set 17 elements are following restriction $$f(3) > f(9) > f(15)\,.......\, > f(99)$$</p> <p>So number of ways $$ = {}^{50}{C_{17}}\,.\,1\,.\,33!$$</p> <p>$$ = {}^{50}{P_{33}}$$</p>
mcq
jee-main-2022-online-25th-july-evening-shift
1l6klddyv
maths
functions
classification-of-functions
<p>The number of functions $$f$$, from the set $$\mathrm{A}=\left\{x \in \mathbf{N}: x^{2}-10 x+9 \leq 0\right\}$$ to the set $$\mathrm{B}=\left\{\mathrm{n}^{2}: \mathrm{n} \in \mathbf{N}\right\}$$ such that $$f(x) \leq(x-3)^{2}+1$$, for every $$x \in \mathrm{A}$$, is ___________.</p>
[]
null
1440
<p>$$A = \left\{ {\matrix{ {x \in N,} & {{x^2} - 10x + 9 \le 0} \cr } } \right\}$$</p> <p>$$ = \{ 1,2,3,\,....,\,9\} $$</p> <p>$$B = \{ 1,4,9,16,\,.....\} $$</p> <p>$$f(x) \le {(x - 3)^2} + 1$$</p> <p>$$f(1) \le 5,\,f(2) \le 2,\,\,..........\,f(9) \le 37$$</p> <p>$$x = 1$$ has 2 choices</p> <p>$$x = 2$$ has 1 choice</p> <p>$$x = 3$$ has 1 choice</p> <p>$$x = 4$$ has 1 choice</p> <p>$$x = 5$$ has 2 choices</p> <p>$$x = 6$$ has 3 choices</p> <p>$$x = 7$$ has 4 choices</p> <p>$$x = 8$$ has 5 choices</p> <p>$$x = 9$$ has 6 choices</p> <p>$$\therefore$$ Total functions = $$2\times1\times1\times1\times2\times3\times4\times5\times6=1440$$</p>
integer
jee-main-2022-online-27th-july-evening-shift
1ldr7zkxa
maths
functions
classification-of-functions
<p>Let $$S=\{1,2,3,4,5,6\}$$. Then the number of one-one functions $$f: \mathrm{S} \rightarrow \mathrm{P}(\mathrm{S})$$, where $$\mathrm{P}(\mathrm{S})$$ denote the power set of $$\mathrm{S}$$, such that $$f(n) \subset f(\mathrm{~m})$$ where $$n &lt; m$$ is ____________.</p>
[]
null
3240
<p>$$\because S={1,2,3,4,5,6}$$ and $$P(S) = \{ \phi ,\{ 1\} ,\{ 2\} ,....,\{ 1,2,3,4,5,6\} \} $$</p> <p>$$f(n)$$ corresponding a set having m elements which belongs to P(S), should be a subset of $$f(n+1)$$, so $$f(n+1)$$ should be a subset of P(S) having at least $$m+1$$ elements.</p> <p>Now, if f(1) has one element then f(2) has 3, f(3) has 3 and so on and f(6) has 6 elements. Total number of possible functions = 6! = 720 .... (1) <br><br>If f(1) has no elements (i.e. null set $$\phi$$) then</p> <p><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1leq0kxw4/6ceb3c53-46ad-4822-99ec-6ae534f92aed/4c82d540-b85f-11ed-9fed-b1659a6c339b/file-1leq0kxw5.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1leq0kxw4/6ceb3c53-46ad-4822-99ec-6ae534f92aed/4c82d540-b85f-11ed-9fed-b1659a6c339b/file-1leq0kxw5.png" loading="lazy" style="max-width: 100%; height: auto; display: block; margin: 0px auto; max-height: 40vh;" alt="JEE Main 2023 (Online) 30th January Morning Shift Mathematics - Functions Question 42 English Explanation"></p> <p>Each index number represents the number of elements in respective rows</p> <p>Taking every series of arrow and counting number of such possible functions (sets)</p> <p>$$ = {}^6{C_2} \times {}^4{C_1} \times {}^3{C_1} \times {}^2{C_1} + {}^6{C_1} \times {}^5{C_2} \times {}^3{C_1} \times {}^2{C_1} + {}^6{C_1} \times {}^5{C_1} \times {}^4{C_2} \times {}^2{C_1} + {}^6{C_1} \times {}^5{C_1} \times {}^4{C_1} \times {}^3{C_2} + {}^6{C_1} \times {}^5{C_1} \times {}^4{C_1} \times {}^3{C_1} \times {}^2{C_2} + {}^6{C_1} \times {}^5{C_1} \times {}^4{C_1} \times {}^3{C_1} \times {}^2{C_1}$$</p> <p>$$ = 2520$$ ..........(2)</p> <p>From (1) and (2) : Total number of functions</p> <p>= 2520 + 720 = 3240</p>
integer
jee-main-2023-online-30th-january-morning-shift
1ldsvim1d
maths
functions
classification-of-functions
<p>Let $$f:R \to R$$ be a function such that $$f(x) = {{{x^2} + 2x + 1} \over {{x^2} + 1}}$$. Then</p>
[{"identifier": "A", "content": "$$f(x)$$ is many-one in $$( - \\infty , - 1)$$"}, {"identifier": "B", "content": "$$f(x)$$ is one-one in $$( - \\infty ,\\infty )$$"}, {"identifier": "C", "content": "$$f(x)$$ is one-one in $$[1,\\infty )$$ but not in $$( - \\infty ,\\infty )$$"}, {"identifier": "D", "content": "$$f(x)$$ is many-one in $$(1,\\infty )$$"}]
["C"]
null
<p>$$f(x) = {{{x^2} + 2x + 1} \over {({x^2} + 1)}}$$</p> <p>$$ \Rightarrow f'(x) = {{({x^2} + 1)(2x + 2) - ({x^2} + 2x + 1)(2x)} \over {{{({x^2} + 1)}^2}}}$$</p> <p>$$ \Rightarrow f'(x) = {{2 - 2{x^2}} \over {{{({x^2} + 1)}^2}}}$$</p> <p>$$ = {{2\left( {1 + x} \right)\left( {1 - x} \right)} \over {{{\left( {{x^2} + 1} \right)}^2}}}$$</p> <p>$$ \therefore $$ $$f'(x) = 0$$ at x = 1 and x = -1. So, x = 1 and x = -1 are point of maxima/minima.</p> <p><b>Option A :</b> $$f(x)$$ is many-one in $$( - \infty , - 1)$$. <br/><br/>As x = -1 is a point of maxima/minima. So it is a boundary point in the range $$( - \infty , - 1)$$. So, $$f(x)$$ is one-one in $$( - \infty , - 1)$$. <br/><br/>$$ \therefore $$ Option A is incorrect.</p> <p><b>Option B :</b> $$f(x)$$ is one-one in $$( - \infty ,\infty )$$. <br/><br/>As, x = 1 and x = -1 are point of maxima/minima which is present inside the range $$( - \infty ,\infty )$$. So, $$f(x)$$ is many-one function in $$( - \infty ,\infty )$$. <br/><br/>$$ \therefore $$ Option B is incorrect.</p> <p><b>Option C :</b> $$f(x)$$ is one-one in $$[1,\infty )$$ but not in $$( - \infty ,\infty )$$. <br/><br/>As x = 1 is a point of maxima/minima. So it is a boundary point in the range $$[1,\infty )$$. So, $$f(x)$$ is one-one in $$[1,\infty )$$. <br/><br/>As, x = 1 and x = -1 are point of maxima/minima which is present inside the range $$( - \infty ,\infty )$$. So, $$f(x)$$ is many-one function in $$( - \infty ,\infty )$$ . <br/><br/>$$ \therefore $$ Option C is correct.</p> <p><b>Option D :</b> $$f(x)$$ is many-one in $$(1,\infty )$$. <br/><br/>As x = 1 is a point of maxima/minima. So it is a boundary point in the range $$[1,\infty )$$. So, $$f(x)$$ is one-one in $$[1,\infty )$$. <br/><br/>$$ \therefore $$ Option D is incorrect.</p> <p><b>Note :</b></p> <p><b>Methods to Check One-One Function :</b> <br/><br/>(i) If a function is one-one, any line parallel to $x$-axis cuts the graph of the function maximum at one point. <br/><br/>(ii) Any continuous function which is entirely increasing or decreasing (no maxima/minima is present) in whole domain will always be one-one function. </p>
mcq
jee-main-2023-online-29th-january-morning-shift
1ldu4e543
maths
functions
classification-of-functions
<p>The number of functions</p> <p>$$f:\{ 1,2,3,4\} \to \{ a \in Z|a| \le 8\} $$</p> <p>satisfying $$f(n) + {1 \over n}f(n + 1) = 1,\forall n \in \{ 1,2,3\} $$ is</p>
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "3"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "4"}]
["A"]
null
$\because f:\{1,2,3,4\} \rightarrow\{a \in \mathbb{Z}:|9| \leq 8\}$ <br/><br/> and $f(n)+\frac{1}{n} f(n+1)=1$ <br/><br/> $\Rightarrow n f(n)+f(n+1)=n \quad \ldots$ (i) <br/><br/> $\therefore f(1)+f(2)=1 \Rightarrow f(2)=1-f(1)$ <br/><br/> But $f(1) \in[-8,8]$ <br/><br/> Hence, $f(2) \in[-8,8] \Rightarrow f(1) \in[-7,8] \quad\ldots(\mathrm{A})$ <br/><br/> and $2 f(2)+f(3)=2 \Rightarrow f(3)=2 f(1)$ <br/><br/> $\therefore 2 f(1) \in[-8,8] \Rightarrow f(1) \in[-4,4] \quad\ldots(\mathrm{B})$ <br/><br/> and $3 f(3)+f(4)=3 \Rightarrow f(4)=3-6 f(1)$ <br/><br/> $\therefore f(1) \in\left[-\frac{5}{6}, \frac{11}{6}\right]\quad...(C)$ <br/><br/> From (A), (B) and (C) : $f(1)=0$ or 1 <br/><br/> $\therefore$ Only two functions are possible.
mcq
jee-main-2023-online-25th-january-evening-shift
1lgsw4p1x
maths
functions
classification-of-functions
<p>Let $$\mathrm{A}=\{1,2,3,4,5\}$$ and $$\mathrm{B}=\{1,2,3,4,5,6\}$$. Then the number of functions $$f: \mathrm{A} \rightarrow \mathrm{B}$$ satisfying $$f(1)+f(2)=f(4)-1$$ is equal to __________.</p>
[]
null
360
Given that the function $$f : A \rightarrow B$$ satisfies the condition $$f(1) + f(2) = f(4) - 1$$, where the set $$A = \{1, 2, 3, 4, 5\}$$ and the set $$B = \{1, 2, 3, 4, 5, 6\}$$. <br/><br/>We want to find out how many such functions exist. <br/><br/>First, observe that the condition $$f(1) + f(2) = f(4) - 1$$ can be rewritten as $$f(1) + f(2) + 1 = f(4)$$. So, the sum of $$f(1), f(2),$$ and 1 is equal to $$f(4)$$. Since $$f(4)$$ is a value in set B, it can take values from 1 to 6. <br/><br/>The maximum value of $$f(1) + f(2) + 1$$ can be $$6 + 6 + 1 = 13$$, but this is more than 6 (the maximum value of $$f(4)$$), so it's not possible. Thus, the maximum value of $$f(4)$$ in this case can be 6. <br/><br/>Let's now analyze the number of functions for each value of $$f(4)$$ from 3 to 6 (we start from 3 because $$f(1)$$ and $$f(2)$$ take values from set B and their minimum sum plus 1 is 3): <br/><br/>1. When $$f(4) = 6$$, then $$f(1) + f(2) = 5$$. The pairs $$(f(1), f(2))$$ that satisfy this equation are $$(1, 4), (2, 3), (3, 2), (4, 1)$$. For each of these 4 cases, the functions $$f(3)$$ and $$f(5)$$ can each take 6 values from set B, resulting in $$4 \times 6 \times 6 = 144$$ functions. <br/><br/>2. When $$f(4) = 5$$, then $$f(1) + f(2) = 4$$. The pairs $$(f(1), f(2))$$ that satisfy this equation are $$(1, 3), (2, 2), (3, 1)$$. For each of these 3 cases, the functions $$f(3)$$ and $$f(5)$$ can each take 6 values from set B, resulting in $$3 \times 6 \times 6 = 108$$ functions. <br/><br/>3. When $$f(4) = 4$$, then $$f(1) + f(2) = 3$$. The pairs $$(f(1), f(2))$$ that satisfy this equation are $$(1, 2), (2, 1)$$. For each of these 2 cases, the functions $$f(3)$$ and $$f(5)$$ can each take 6 values from set B, resulting in $$2 \times 6 \times 6 = 72$$ functions. <br/><br/>4. When $$f(4) = 3$$, then $$f(1) + f(2) = 2$$. The only pair $$(f(1), f(2))$$ that satisfies this equation is $$(1, 1)$$. For this case, the functions $$f(3)$$ and $$f(5)$$ can each take 6 values from set B, resulting in $$1 \times 6 \times 6 = 36$$ functions. <br/><br/>Adding the numbers of functions from all these cases, we get a total of $$144 + 108 + 72 + 36 = 360$$ functions from $$A$$ to $$B$$ that satisfy the given condition. <br/><br/>Therefore, the number of functions $$f : A \rightarrow B$$ satisfying the condition $$f(1) + f(2) = f(4) - 1$$ is 360.
integer
jee-main-2023-online-11th-april-evening-shift
1lgyoqd24
maths
functions
classification-of-functions
<p>Let $$\mathrm{R}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$$ and $$\mathrm{S}=\{1,2,3,4\}$$. Total number of onto functions $$f: \mathrm{R} \rightarrow \mathrm{S}$$ such that $$f(\mathrm{a}) \neq 1$$, is equal to ______________.</p>
[]
null
180
Total number of onto functions <br/><br/>$$ \begin{aligned} & =\frac{5 !}{3 ! 2 !} \times 4 ! \\\\ & =\frac{5 \times 4}{2} \times 24=240 \end{aligned} $$ <br/><br/>When $f(a)=1$, number of onto functions <br/><br/>$$ \begin{aligned} & =4 !+\frac{4 !}{2 ! 2 !} \times 3 ! \\\\ & =24+36=60 \end{aligned} $$ <br/><br/>So, required number of onto functions <br/><br/>$=240-60=180$
integer
jee-main-2023-online-8th-april-evening-shift
lsbl9xjw
maths
functions
classification-of-functions
The function $f: \mathbf{N}-\{1\} \rightarrow \mathbf{N}$; defined by $f(\mathrm{n})=$ the highest prime factor of $\mathrm{n}$, is :
[{"identifier": "A", "content": "one-one only"}, {"identifier": "B", "content": "neither one-one nor onto"}, {"identifier": "C", "content": "onto only"}, {"identifier": "D", "content": "both one-one and onto"}]
["B"]
null
<p>$$\begin{aligned} & \mathrm{f}: \mathrm{N}-\{1\} \rightarrow \mathrm{N} \\ & \mathrm{f}(\mathrm{n})=\text { The highest prime factor of } \mathrm{n} . \\ & \mathrm{f}(2)=2 \\ & \mathrm{f}(4)=2 \\ & \Rightarrow \text { many one } \\ & 4 \text { is not image of any element } \\ & \Rightarrow \text { into } \end{aligned}$$</p> <p>Hence many one and into</p> <p>Neither one-one nor onto.</p>
mcq
jee-main-2024-online-27th-january-morning-shift
1lsgcodrp
maths
functions
classification-of-functions
<p>Let $$\mathrm{A}=\{1,2,3, \ldots, 7\}$$ and let $$\mathrm{P}(\mathrm{A})$$ denote the power set of $$\mathrm{A}$$. If the number of functions $$f: \mathrm{A} \rightarrow \mathrm{P}(\mathrm{A})$$ such that $$\mathrm{a} \in f(\mathrm{a}), \forall \mathrm{a} \in \mathrm{A}$$ is $$\mathrm{m}^{\mathrm{n}}, \mathrm{m}$$ and $$\mathrm{n} \in \mathrm{N}$$ and $$\mathrm{m}$$ is least, then $$\mathrm{m}+\mathrm{n}$$ is equal to _________.</p>
[]
null
44
<p>$$\begin{aligned} & f: A \rightarrow P(A) \\ & a \in f(a) \end{aligned}$$</p> <p>That means '$$a$$' will connect with subset which contain element '$$a$$'.</p> <p>Total options for 1 will be $$2^6$$. (Because $$2^6$$ subsets contains 1)</p> <p>Similarly, for every other element</p> <p>Hence, total is $$2^6 \times 2^6 \times 2^6 \times 2^6 \times 2^6 \times 2^6 \times 2^6=2^{42}$$</p> <p>Ans. $$2+42=44$$</p>
integer
jee-main-2024-online-30th-january-morning-shift
luxwdqq9
maths
functions
classification-of-functions
<p>Let $$A=\{(x, y): 2 x+3 y=23, x, y \in \mathbb{N}\}$$ and $$B=\{x:(x, y) \in A\}$$. Then the number of one-one functions from $$A$$ to $$B$$ is equal to _________.</p>
[]
null
24
<p>$$\begin{aligned} & A=\{(x, y) ; 2 x+3 y=23, x, y \in N\} \\ & A=\{(1,7),(4,5),(7,3),(10,1)\} \\ & B=\{x:(x, y) \in A\} \\ & B=\{1,4,7,10\} \end{aligned}$$</p> <p>So, total number of one-one functions from A to B is $$4!=24$$</p>
integer
jee-main-2024-online-9th-april-evening-shift
lv7v4o17
maths
functions
classification-of-functions
<p>Let $$A=\{1,3,7,9,11\}$$ and $$B=\{2,4,5,7,8,10,12\}$$. Then the total number of one-one maps $$f: A \rightarrow B$$, such that $$f(1)+f(3)=14$$, is :</p>
[{"identifier": "A", "content": "120"}, {"identifier": "B", "content": "180"}, {"identifier": "C", "content": "240"}, {"identifier": "D", "content": "480"}]
["C"]
null
<p>$$f(1)+f(3)=14$$</p> <p>Case I</p> <p>$$\begin{aligned} & f(1)=2, f(3)=12 \\ & f(1)=12, f(3)=2 \end{aligned}$$</p> <p>Total one-one function</p> <p>$$\begin{aligned} & =2 \times 5 \times 4 \times 3 \\ & =120 \end{aligned}$$</p> <p>Case II</p> <p>$$\begin{aligned} & f(1)=4, f(3)=10 \\ & f(1)=10, f(3)=4 \end{aligned}$$</p> <p>Total one-one function</p> <p>$$\begin{aligned} & =2 \times 5 \times 4 \times 3 \\ & =120 \\ & \text { Total cases }=120+120=240 \end{aligned}$$</p>
mcq
jee-main-2024-online-5th-april-morning-shift
lvc57nwe
maths
functions
classification-of-functions
<p>The function $$f(x)=\frac{x^2+2 x-15}{x^2-4 x+9}, x \in \mathbb{R}$$ is</p>
[{"identifier": "A", "content": "both one-one and onto.\n"}, {"identifier": "B", "content": "onto but not one-one.\n"}, {"identifier": "C", "content": "neither one-one nor onto.\n"}, {"identifier": "D", "content": "one-one but not onto."}]
["C"]
null
<p>The function $ f(x)=\frac{x^2+2x-15}{x^2-4x+9}, x \in \mathbb{R} $ can be simplified to $ f(x)=\frac{(x-3)(x+5)}{x^2-4x+9} $.</p> <p>For $ x=3 $ and $ x=-5 $, $ f(x) $ equals 0. Therefore, $ f(x) $ is not one-one as it yields the same output for different input values.</p> <p>The range of $ f(x) $ is $ [-2, 1.6] $, indicating that $ f(x) $ does not cover all possible real values. Consequently, $ f(x) $ is not onto.</p> <p>Thus, the function is neither one-one nor onto.</p>
mcq
jee-main-2024-online-6th-april-morning-shift
q6wg32x7mKUhAZRYfi7cS
maths
functions
composite-functions
For x $$ \in $$ <b>R</b>, x $$ \ne $$ 0, Let f<sub>0</sub>(x) = $${1 \over {1 - x}}$$ and <br/>f<sub>n+1</sub> (x) = f<sub>0</sub>(f<sub>n</sub>(x)), n = 0, 1, 2, . . . . <br/><br/>Then the value of f<sub>100</sub><sub></sub>(3) + f<sub>1</sub>$$\left( {{2 \over 3}} \right)$$ + f<sub>2</sub>$$\left( {{3 \over 2}} \right)$$ is equal to :
[{"identifier": "A", "content": "$${8 \\over 3}$$"}, {"identifier": "B", "content": "$${5 \\over 3}$$"}, {"identifier": "C", "content": "$${4 \\over 3}$$"}, {"identifier": "D", "content": "$${1 \\over 3}$$"}]
["B"]
null
As&nbsp;&nbsp;&nbsp;f<sub>n+1</sub>(x) = f<sub>0</sub>(f<sub>n</sub>(x)) <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;f<sub>1</sub>(x) = f<sub>0+1</sub>(x) = f<sub>0</sub>(f<sub>0</sub>(x)) = $${1 \over {1 - {1 \over {1 - x}}}}$$ = $${{x - 1} \over x}$$ <br><br>f<sub>2</sub>(x) = f<sub>1+1</sub>(x) = f<sub>0</sub>(f<sub>1</sub>(x)) = $${1 \over {1 - {{x - 1} \over x}}}$$ = x <br><br>f<sub>3</sub>(x) = f<sub>2+1</sub>(x) = f<sub>0</sub>(f<sub>2</sub>(x)) = $${1 \over {1 - x}}$$ <br><br>f<sub>4</sub>(x) = f<sub>3+1</sub>(x) = f<sub>0</sub>(f<sub>3</sub>(x)) = $${1 \over {1 - {1 \over {1 - x}}}}$$ = $${{x - 1} \over x}$$ <br><br>$$ \therefore $$ f<sub>0</sub>(x) = f<sub>3</sub>(x) = f<sub>6</sub>(x) = . . . . . = $${1 \over {1 - x}}$$ <br><br>f<sub>1</sub>(x) = f<sub>4</sub>(x) = f<sub>7</sub>(x) = . . . . . .= $${{x - 1} \over x}$$ <br><br>f<sub>2</sub>(x) = f<sub>5</sub>(x) = f<sub>8</sub>(x) = . . . . . . = x <br><br>So, f<sub>100</sub>(3) = $${{3 - 1} \over 3}$$ = $${2 \over 3}$$ <br><br>f<sub>1</sub>$$\left( {{2 \over 3}} \right)$$ = $${{{2 \over 3} - 1} \over {{2 \over 3}}}$$ = $$-$$ $${1 \over 2}$$ <br><br>f<sub>2</sub>$$\left( {{3 \over 2}} \right)$$ = $${{3 \over 2}}$$ <br><br>$$ \therefore $$ &nbsp;&nbsp;&nbsp;f<sub>100</sub>(3) + f<sub>1</sub>$$\left( {{2 \over 3}} \right)$$ + f<sub>2</sub>$$\left( {{3 \over 2}} \right)$$ <br><br>= $${2 \over 3}$$ $$-$$ $${1 \over 2}$$ + $${3 \over 2}$$ <br><br>= $${5 \over 3}$$
mcq
jee-main-2016-online-9th-april-morning-slot
g5GINXf1pcMuUqCs3v0PL
maths
functions
composite-functions
Let f(x) = 2<sup>10</sup>.x + 1 and g(x)=3<sup>10</sup>.x $$-$$ 1. If (fog) (x) = x, then x is equal to :
[{"identifier": "A", "content": "$${{{3^{10}} - 1} \\over {{3^{10}} - {2^{ - 10}}}}$$"}, {"identifier": "B", "content": "$${{{2^{10}} - 1} \\over {{2^{10}} - {3^{ - 10}}}}$$"}, {"identifier": "C", "content": "$${{1 - {3^{ - 10}}} \\over {{2^{10}} - {3^{ - 10}}}}$$"}, {"identifier": "D", "content": "$${{1 - {2^{ - 10}}} \\over {{3^{10}} - {2^{ - 10}}}}$$"}]
["D"]
null
(fog) (x) &nbsp;&nbsp;=&nbsp;&nbsp; x <br><br>$$ \Rightarrow $$$$\,\,\,$$ f (g(x))&nbsp;&nbsp; =&nbsp;&nbsp; x <br><br>$$ \Rightarrow $$$$\,\,\,$$ f (3<sup>10</sup>. x $$-$$ 1) &nbsp;&nbsp;=&nbsp;&nbsp; x &nbsp;&nbsp; [ as &nbsp;&nbsp; g(x) = 3<sup>10</sup>. x $$-$$ 1] <br><br>$$ \Rightarrow $$$$\,\,\,$$ 2<sup>10</sup> . (3<sup>10</sup> . x $$-$$ 1) + 1 &nbsp;&nbsp;=&nbsp;&nbsp; x <br><br>$$ \Rightarrow $$$$\,\,\,$$ 3<sup>10</sup> . x $$-$$ 1 + 2<sup>$$-$$10</sup> &nbsp;&nbsp;=&nbsp;&nbsp; x . 2<sup>$$-$$10</sup> &nbsp; [dividing by 2<sup>10</sup>] <br><br>$$ \Rightarrow $$$$\,\,\,$$3<sup>10</sup> . x $$-$$ 2<sup>$$-$$10</sup> . x &nbsp;&nbsp;=&nbsp;&nbsp; 1 $$-$$ 2<sup>$$-$$10</sup> <br><br>$$ \Rightarrow $$$$\,\,\,$$ x (3<sup>10</sup> $$-$$ 2<sup>$$-$$ 10</sup>) &nbsp;&nbsp;=&nbsp;&nbsp; 1$$-$$ 2<sup>$$-$$10</sup> <br><br>$$ \Rightarrow $$ $$\,\,\,$$ x = $${{1 - {2^{ - 10}}} \over {{3^{10}} - {2^{ - 10}}}}$$
mcq
jee-main-2017-online-8th-april-morning-slot
ZRBU7jlXwR6K9rsXplsf6
maths
functions
composite-functions
For $$x \in R - \left\{ {0,1} \right\}$$, Let f<sub>1</sub>(x) = $$1\over x$$, f<sub>2</sub> (x) = 1 – x <br/><br/>and f<sub>3</sub> (x) = $$1 \over {1 - x}$$ be three given <br/><br/> functions. If a function, J(x) satisfies <br/><br/>(f<sub>2</sub> o J o f<sub>1</sub>) (x) = f<sub>3</sub> (x) then J(x) is equal to :
[{"identifier": "A", "content": "f<sub>1</sub> (x)"}, {"identifier": "B", "content": "$$1 \\over x$$ f<sub>3</sub> (x)"}, {"identifier": "C", "content": "f<sub>2</sub> (x)"}, {"identifier": "D", "content": "f<sub>3</sub> (x)"}]
["D"]
null
Given, <br><br>f<sub>1</sub>(x) = $${1 \over x}$$ <br><br>f<sub>2</sub>(x) = 1 $$-$$ x <br><br>f<sub>3</sub>(x) = $${1 \over {1 - x}}$$ <br><br>(f<sub>2</sub> $$ \cdot $$ J $$ \cdot $$ f<sub>1</sub>) (x) = f<sub>3</sub>(x) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;f<sub>2</sub> {J(f<sub>1</sub>(x))} = f<sub>3</sub>(x) <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;f<sub>2</sub>{J ($${1 \over x}$$)} = $${1 \over {1 - x}}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;1 $$-$$ J($${1 \over x}$$) = $${1 \over {1 - x}}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;J($${{1 \over x}}$$) = 1 $$-$$ $${{1 \over {1 - x}}}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;J ($${{1 \over { x}}}$$) = $${{ - x} \over {1 - x}}$$ = $${x \over {x - 1}}$$ <br><br>Put x inplace of $${1 \over x}$$ <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;J(x) = $${{{1 \over x}} \over {{1 \over x} - 1}}$$ <br><br>= $${1 \over {1 - x}} = {f_3}\left( x \right)$$
mcq
jee-main-2019-online-9th-january-morning-slot
obRwtmqr5ZJkly6xfb5WH
maths
functions
composite-functions
Let N be the set of natural numbers and two functions f and g be defined as f, g : N $$ \to $$ N such that <br/><br/>f(n) = $$\left\{ {\matrix{ {{{n + 1} \over 2};} &amp; {if\,\,n\,\,is\,\,odd} \cr {{n \over 2};} &amp; {if\,\,n\,\,is\,\,even} \cr } \,\,} \right.$$; <br/><br/>Β Β Β Β Β Β and g(n) = n $$-$$($$-$$ 1)<sup>n</sup>. <br/><br/>Then fog is -
[{"identifier": "A", "content": "neither one-one nor onto"}, {"identifier": "B", "content": "onto but not one-one"}, {"identifier": "C", "content": "both one-one and onto"}, {"identifier": "D", "content": "one-one but not onto"}]
["B"]
null
f(x) = $$\left\{ {\matrix{ {{{n + 1} \over 2};} &amp; {if\,\,n\,\,is\,\,odd} \cr {{n \over 2};} &amp; {if\,\,n\,\,is\,\,even} \cr } \,\,} \right.$$; <br><br>g(x) = n $$-$$ ($$-$$ 1)<sup>n</sup> $$\left\{ {\matrix{ {n + 1;\,\,\,\,n\,\,is\,\,odd} \cr {n - 1;\,\,\,\,n\,\,is\,\,even} \cr } } \right.$$ <br><br>f(g(n)) = $$\left\{ {\matrix{ {{n \over 2};\,\,\,\,n\,\,is\,\,even} \cr {{{n + 1} \over 2};\,\,\,\,n\,\,is\,\,odd} \cr } } \right.$$ <br><br>$$ \therefore $$&nbsp;&nbsp;many one but onto
mcq
jee-main-2019-online-10th-january-evening-slot
9RGTj3z7ViLdFImDSD3rsa0w2w9jwxrfvb9
maths
functions
composite-functions
Let f(x) = x<sup>2</sup> , x $$ \in $$ R. For any A $$ \subseteq $$ R, define g (A) = { x $$ \in $$ R : f(x) $$ \in $$ A}. If S = [0,4], then which one of the following statements is not true ?
[{"identifier": "A", "content": "g(f(S)) $$ \\ne $$ S "}, {"identifier": "B", "content": "f(g(S)) = S"}, {"identifier": "C", "content": "f(g(S)) $$ \\ne $$ f(S)"}, {"identifier": "D", "content": "g(f(S)) = g(S)"}]
["D"]
null
f(x) = x<sup>2</sup>&nbsp;&nbsp;&nbsp; x $$ \in $$ R<br><br> g(A) = {x $$ \in $$ R : f(x) $$ \in $$ A} S $$ \equiv $$ [0, 4]<br><br> g(S) = {x $$ \in $$ R : f(x) $$ \in $$ S}<br><br> = {x $$ \in $$ R : 0 $$ \le $$ x<sup>2</sup> $$ \le $$ 4}<br><br> = {x $$ \in $$ R : –2 $$ \le $$ x $$ \le $$ 2}<br><br> $$ \therefore $$ g(S) $$ \ne $$ S<br><br> $$ \therefore $$ f(g(S)) $$ \ne $$ f(S)<br><br> g(f(S)) = {x $$ \in $$ R : f(x) $$ \in $$ f(S)}<br><br> = {x $$ \in $$ R : x<sup>2</sup> $$ \in $$ S<sup>2</sup>}<br><br> = {x $$ \in $$ R : 0 $$ \le $$ x<sup>2</sup> $$ \le $$ 16}<br><br> = {x $$ \in $$ R : –4 $$ \le $$ x $$ \le $$ 4}<br><br> $$ \therefore $$ g(f(S)) $$ \ne $$ g(S)<br><br> $$ \therefore $$ g(f(S)) = g(S) is incorrect
mcq
jee-main-2019-online-10th-april-morning-slot
YES7TxcXPLt3WXthh83rsa0w2w9jwy29l0i
maths
functions
composite-functions
Let f(x) = e<sup>x</sup> – x and g(x) = x<sup>2</sup> – x, $$\forall $$ x $$ \in $$ R. Then the set of all x $$ \in $$ R, where the function h(x) = (fog) (x) is increasing, is :
[{"identifier": "A", "content": "[0, $$\\infty $$)"}, {"identifier": "B", "content": "$$\\left[ { - 1, - {1 \\over 2}} \\right] \\cup \\left[ {{1 \\over 2},\\infty } \\right)$$"}, {"identifier": "C", "content": "$$\\left[ { - {1 \\over 2},0} \\right] \\cup \\left[ {1,\\infty } \\right)$$"}, {"identifier": "D", "content": "$$\\left[ {0,{1 \\over 2}} \\right] \\cup \\left[ {1,\\infty } \\right)$$"}]
["D"]
null
f(x) = ex – x, g(x) = x<sup>2</sup> – x<br><br> f(g(x)) = e<sup>(x<sup>2</sup> - x)</sup> - (x<sup>2</sup> - x)<br><br> If f(g(x)) is increasing function<br><br> (f (g(x)))<sup>x</sup> = $${e^{\left( {{x^2} - x} \right)}} \times (2x - 1) - 2x + 1$$<br><br> $$ \Rightarrow \mathop {(2x - 1)}\limits_A \mathop {[{e^{\left( {{x^2} - x} \right)}} - 1]}\limits_B $$<br><br> A &amp; B are either both positive or negative<br><br> <picture><source media="(max-width: 320px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734265461/exam_images/ptsqro56x6slhf2pox2l.webp"><source media="(max-width: 500px)" srcset="https://res.cloudinary.com/dckxllbjy/image/upload/v1734263348/exam_images/zagaiqzxpahbwihv2stm.webp"><img src="https://res.cloudinary.com/dckxllbjy/image/upload/v1734266416/exam_images/zvq4sh4mjcxsga2twdtf.webp" style="max-width: 100%;height: auto;display: block;margin: 0 auto;" loading="lazy" alt="JEE Main 2019 (Online) 10th April Morning Slot Mathematics - Functions Question 103 English Explanation"></picture> for (f (g(x)))<sup>'</sup> $$ \ge $$ 0,<br><br> $$x \in \left[ {0,{1 \over 2}} \right] \cup \left[ {1,\infty } \right)$$
mcq
jee-main-2019-online-10th-april-morning-slot
l6ARTWKmS9no4QtJ6Q3rsa0w2w9jx5c382k
maths
functions
composite-functions
For x $$ \in $$ (0, 3/2), let f(x) = $$\sqrt x $$ , g(x) = tan x and h(x) = $${{1 - {x^2}} \over {1 + {x^2}}}$$. If $$\phi $$ (x) = ((hof)og)(x), then $$\phi \left( {{\pi \over 3}} \right)$$ is equal to :
[{"identifier": "A", "content": "$$\\tan {{7\\pi } \\over {12}}$$"}, {"identifier": "B", "content": "$$\\tan {{11\\pi } \\over {12}}$$"}, {"identifier": "C", "content": "$$\\tan {\\pi \\over {12}}$$"}, {"identifier": "D", "content": "$$\\tan {{5\\pi } \\over {12}}$$"}]
["B"]
null
$$\phi \left( x \right) = \left( {\left( {hof} \right)og} \right)(x) = h\left( {\sqrt {\tan x} } \right)$$<br><br> $$ \Rightarrow \phi (x) = {{1 - \tan x} \over {1 + \tan x}} = \tan \left( {{\pi \over 4} - 4} \right)$$<br><br> $$ \therefore $$ $$\phi \left( {{\pi \over 3}} \right) = \tan \left( {{\pi \over 4} - {\pi \over 3}} \right)$$<br><br> $$ \Rightarrow \tan \left( { - {\pi \over {12}}} \right) = \tan {{11\pi } \over {12}}$$
mcq
jee-main-2019-online-12th-april-morning-slot
mH9qMoWcAAQdKfLocU7k9k2k5e36adj
maths
functions
composite-functions
If g(x) = x<sup>2</sup> + x - 1 and<br/> (goΖ’) (x) = 4x<sup>2</sup> - 10x + 5, then Ζ’$$\left( {{5 \over 4}} \right)$$ is equal to:
[{"identifier": "A", "content": "$${1 \\over 2}$$"}, {"identifier": "B", "content": "$${3 \\over 2}$$"}, {"identifier": "C", "content": "-$${1 \\over 2}$$"}, {"identifier": "D", "content": "-$${3 \\over 2}$$"}]
["C"]
null
Given, (goΖ’) (x) = 4x<sup>2</sup> - 10x + 5 <br><br>$$ \Rightarrow $$ g(f(x)) = 4x<sup>2</sup> - 10x + 5 <br><br>$$ \therefore $$ g(f($${5 \over 4}$$)) = $$4 \times {{25} \over {16}} - {{50} \over 4} + 5$$ = $$ - {5 \over 4}$$ ...(1) <br><br>Also given, g(x) = x<sup>2</sup> + x - 1 <br><br>$$ \therefore $$ g(f(x)) = f<sup>2</sup>(x) + f(x) –1 <br><br>$$ \Rightarrow $$ g(f($${5 \over 4}$$)) = f<sup>2</sup>($${5 \over 4}$$) + f($${5 \over 4}$$) –1 ....(2) <br><br>from (1) &amp; (2) <br><br>f<sup>2</sup>($${5 \over 4}$$) + f($${5 \over 4}$$) –1 = $$ - {5 \over 4}$$ <br><br>$$ \Rightarrow $$ f<sup>2</sup>($${5 \over 4}$$) + f($${5 \over 4}$$) + $${1 \over 4}$$ = 0 <br><br>$$ \Rightarrow $$ (f($${5 \over 4}$$) + $${1 \over 2}$$)<sup>2</sup> = 0 <br><br>$$ \Rightarrow $$ f($${5 \over 4}$$) = -$${1 \over 2}$$
mcq
jee-main-2020-online-7th-january-morning-slot
CRBJuTU7aMZV61IoHjjgy2xukg390lo1
maths
functions
composite-functions
For a suitably chosen real constant a, let a<br/><br/> function, $$f:R - \left\{ { - a} \right\} \to R$$ be defined by<br/><br/> $$f(x) = {{a - x} \over {a + x}}$$. Further suppose that for any real number $$x \ne - a$$ and $$f(x) \ne - a$$,<br/><br/> (fof)(x) = x. Then $$f\left( { - {1 \over 2}} \right)$$ is equal to :
[{"identifier": "A", "content": "$$ {1 \\over 3}$$"}, {"identifier": "B", "content": "\u20133"}, {"identifier": "C", "content": "$$ - {1 \\over 3}$$"}, {"identifier": "D", "content": "3"}]
["D"]
null
Given, $$f(x) = {{a - x} \over {a + x}}$$ <br><br>and (fof)(x) = x <br><br>$$ \Rightarrow $$ f(f(x)) = $${{a - f\left( x \right)} \over {a + f\left( x \right)}}$$ = x<br><br>$$ \Rightarrow $$ $${{a - \left( {{{a - x} \over {a + x}}} \right)} \over {a + \left( {{{a - x} \over {a + x}}} \right)}}$$ = x <br><br>$$ \Rightarrow $$ $${{{a^2} + ax - a + x} \over {{a^2} + ax + a + x}}$$ = x <br><br>$$ \Rightarrow $$ (a<sup>2</sup> – a) + x(a + 1) = (a<sup>2</sup> + a)x + x<sup>2</sup>(a – 1) <br><br>$$ \Rightarrow $$ a(a – 1) + x(1 – a<sup>2</sup>) – x<sup>2</sup>(a – 1) = 0 <br><br>$$ \Rightarrow $$ a = 1 <br><br>$$ \therefore $$ f(x) = $${{1 - x} \over {1 + x}}$$ <br><br>So, $$f\left( { - {1 \over 2}} \right)$$ = $${{1 + {1 \over 2}} \over {1 - {1 \over 2}}}$$ = 3
mcq
jee-main-2020-online-6th-september-evening-slot
CctLvYFl1Ev2YXQG8W1klrexqta
maths
functions
composite-functions
Let f : R β†’ R be defined as f (x) = 2x – 1 and g : R - {1} β†’ R be defined as g(x) = $${{x - {1 \over 2}} \over {x - 1}}$$. Then the composition function f(g(x)) is :
[{"identifier": "A", "content": "one-one but not onto"}, {"identifier": "B", "content": "onto but not one-one"}, {"identifier": "C", "content": "both one-one and onto"}, {"identifier": "D", "content": "neither one-one nor onto"}]
["A"]
null
Given, f(x) = 2x $$-$$ 1; f : R $$\to$$ R<br><br>$$g(x) = {{x - 1/2} \over {x - 1}};g:R - \{ 1) \to R$$<br><br>$$f[g(x)] = 2g(x) - 1$$<br><br>$$ = 2 \times \left( {{{x - {1 \over 2}} \over {x - 1}}} \right) - 1 = 2 \times \left( {{{2x - 1} \over {2(x - 1)}}} \right) - 1$$<br><br>$$ = {{2x - 1} \over {x - 1}} - 1 = {{2x - 1 - x + 1} \over {x - 1}} = {x \over {x - 1}}$$<br><br>$$\therefore$$ $$f[g(x)] = 1 + {1 \over {x - 1}}$$<br><br>Now, draw the graph of $$1 + {1 \over {x - 1'}}$$<br><br><img src="https://app-content.cdn.examgoal.net/fly/@width/image/1kxodylbv/0599df3d-1cd0-46d8-af57-05e82c944997/6012ada0-66ea-11ec-ad63-8320eb85293b/file-1kxodylbw.png?format=png" data-orsrc="https://app-content.cdn.examgoal.net/image/1kxodylbv/0599df3d-1cd0-46d8-af57-05e82c944997/6012ada0-66ea-11ec-ad63-8320eb85293b/file-1kxodylbw.png" loading="lazy" style="max-width: 100%;height: auto;display: block;margin: 0 auto;max-height: 80vh" alt="JEE Main 2021 (Online) 24th February Morning Shift Mathematics - Functions Question 92 English Explanation"><br>$$\because$$ Any horizontal line does not cut the graph at more than one points, so it is one-one and here, co-domain and range are not equal, so it is into.<br><br>Hence, the required function is one-one into.
mcq
jee-main-2021-online-24th-february-morning-slot
pDG9X0KeEGgr6xvj4v1kmlj1fg6
maths
functions
composite-functions
If the functions are defined as $$f(x) = \sqrt x $$ and $$g(x) = \sqrt {1 - x} $$, then what is the common domain of the following functions :<br/><br/>f + g, f $$-$$ g, f/g, g/f, g $$-$$ f where $$(f \pm g)(x) = f(x) \pm g(x),(f/g)x = {{f(x)} \over {g(x)}}$$
[{"identifier": "A", "content": "$$0 \\le x \\le 1$$"}, {"identifier": "B", "content": "$$0 \\le x &lt; 1$$"}, {"identifier": "C", "content": "$$0 &lt; x &lt; 1$$"}, {"identifier": "D", "content": "$$0 &lt; x \\le 1$$"}]
["C"]
null
$$f + g = \sqrt x + \sqrt {1 - x} $$<br><br>$$ \Rightarrow x \ge 0$$ &amp; $$1 - x \ge 0 \Rightarrow x \in [0,1]$$<br><br>$$f - g = \sqrt x - \sqrt {1 - x} $$<br><br>$$ \Rightarrow x \ge 0$$ &amp; $$1 - x \ge 0 \Rightarrow x \in [0,1]$$<br><br>$$f/g = {{\sqrt x } \over {\sqrt {1 - x} }}$$<br><br>$$ \Rightarrow x \ge 0$$ &amp; $$1 - x &gt; 0 \Rightarrow x \in [0,1)$$<br><br>$$g/f = {{\sqrt {1 - x} } \over {\sqrt x }}$$<br><br>$$ \Rightarrow 1 - x \ge 0$$ &amp; $$x &gt; 0 \Rightarrow x \in (0,1]$$<br><br>$$g - f = \sqrt {1 - x} - \sqrt x $$<br><br>$$ \Rightarrow 1 - x \ge 0$$ &amp; $$x \ge 0 \Rightarrow x \in [0,1]$$<br><br>$$ \Rightarrow $$ $$x \in (0,1)$$
mcq
jee-main-2021-online-18th-march-morning-shift
1krrqrepo
maths
functions
composite-functions
Let $$f:R - \left\{ {{\alpha \over 6}} \right\} \to R$$ be defined by $$f(x) = {{5x + 3} \over {6x - \alpha }}$$. Then the value of $$\alpha$$ for which (fof)(x) = x, for all $$x \in R - \left\{ {{\alpha \over 6}} \right\}$$, is :
[{"identifier": "A", "content": "No such $$\\alpha$$ exists"}, {"identifier": "B", "content": "5"}, {"identifier": "C", "content": "8"}, {"identifier": "D", "content": "6"}]
["B"]
null
$$f(x) = {{5x + 3} \over {6x - \alpha }} = y$$ ..... (i)<br><br>$$5x + 3 = 6xy - \alpha y$$<br><br>$$x(6y - 5) = \alpha y + 3$$<br><br>$$x = {{\alpha y + 3} \over {6y - 5}}$$<br><br>$${f^{ - 1}}(x) = {{\alpha x + 3} \over {6x - 5}}$$ ...... (ii)<br><br>fo $$f(x) = x$$<br><br>$$f(x) = {f^{ - 1}}(x)$$<br><br>From eq<sup>n</sup> (i) &amp; (ii)<br><br>Clearly $$(\alpha = 5)$$
mcq
jee-main-2021-online-20th-july-evening-shift
1krzn2o7b
maths
functions
composite-functions
Consider function f : A $$\to$$ B and g : B $$\to$$ C (A, B, C $$ \subseteq $$ R) such that (gof)<sup>$$-$$1</sup> exists, then :
[{"identifier": "A", "content": "f and g both are one-one"}, {"identifier": "B", "content": "f and g both are onto"}, {"identifier": "C", "content": "f is one-one and g is onto"}, {"identifier": "D", "content": "f is onto and g is one-one"}]
["C"]
null
$$\therefore$$ (gof)<sup>$$-$$1</sup> exist $$\Rightarrow$$ gof is bijective<br><br>$$\Rightarrow$$ 'f' must be one-one and 'g' must be ONTO.
mcq
jee-main-2021-online-25th-july-evening-shift
1l54ug8v8
maths
functions
composite-functions
<p>Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If $$f(g(x)) = 8{x^2} - 2x$$ and $$g(f(x)) = 4{x^2} + 6x + 1$$, then the value of $$f(2) + g(2)$$ is _________.</p>
[]
null
18
$f(g(x))=8 x^{2}-2 x$ $$ g(f(x))=4 x^{2}+6 x+1 $$ <br/><br/> let $f(x)=c x^{2}+d x+e$ <br/><br/> $g(x)=a x+b$ <br/><br/> $f(g(x))=c(a x+b)^{2}+d(a x+b)+e \equiv 8 x^{2}-2 x$ <br/><br/> $g(f(x))=a\left(c x^{2}+d x+e\right)+b \equiv 4 x^{2}+6 x+1$ <br/><br/> $\therefore \quad a c=4 \quad a d=6 \quad a e+b=1$ <br/><br/> $a^{2} c=8 \quad 2 a b c+a d=-2 \quad c b^{2}+b d+e=0$ <br/><br/> By solving <br/><br/> $a=2 \quad b=-1$ <br/><br/> $c=2 \quad d=3 \quad e=1$ <br/><br/> $\therefore \quad f(x)=2 x^{2}+3 x+1$ <br/><br/> $g(x)=2 x-1$ <br/><br/> $f(2)+g(2)=2(2)^{2}+3(2)+1+2(2)-1$ <br/><br/> $=18$
integer
jee-main-2022-online-29th-june-evening-shift
1l56rupn7
maths
functions
composite-functions
<p>Let S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Define f : S $$\to$$ S as</p> <p>$$f(n) = \left\{ {\matrix{ {2n} &amp; , &amp; {if\,n = 1,2,3,4,5} \cr {2n - 11} &amp; , &amp; {if\,n = 6,7,8,9,10} \cr } } \right.$$.</p> <p>Let g : S $$\to$$ S be a function such that $$fog(n) = \left\{ {\matrix{ {n + 1} &amp; , &amp; {if\,n\,\,is\,odd} \cr {n - 1} &amp; , &amp; {if\,n\,\,is\,even} \cr } } \right.$$.</p> <p>Then $$g(10)g(1) + g(2) + g(3) + g(4) + g(5))$$ is equal to _____________.<p></p></p>
[]
null
190
<p>$$\because$$ $$f(n) = \left\{ {\matrix{ {2n,} & {n = 1,2,3,4,5} \cr {2n - 11,} & {n = 6,7,8,9,10} \cr} } \right.$$</p> <p>$$\therefore$$ f(1) = 2, f(2) = 4, ......, f(5) = 10</p> <p>and f(6) = 1, f(7) = 3, f(8) = 5, ......, f(10) = 9</p> <p>Now, $$f(g(n)) = \left\{ {\matrix{ {n + 1,} & {if\,n\,is\,odd} \cr {n - 1,} & {if\,n\,is\,even} \cr } } \right.$$</p> <p>$$\therefore$$ $$\matrix{ {f(g(10)) = 9} & { \Rightarrow g(10) = 10} \cr {f(g(1)) = 2} & { \Rightarrow g(1) = 1} \cr {f(g(2)) = 1} & { \Rightarrow g(2) = 6} \cr {f(g(3)) = 4} & { \Rightarrow g(3) = 2} \cr {f(g(4)) = 3} & { \Rightarrow g(4) = 7} \cr {f(g(5)) = 6} & { \Rightarrow g(5) = 3} \cr } $$</p> <p>$$\therefore$$ $$g(10)g(1) + g(2) + g(3) + g(4) + g(5)) = 190$$</p>
integer
jee-main-2022-online-27th-june-evening-shift
1l587b7lt
maths
functions
composite-functions
<p>Let $$f(x) = {{x - 1} \over {x + 1}},\,x \in R - \{ 0, - 1,1\} $$. If $${f^{n + 1}}(x) = f({f^n}(x))$$ for all n $$\in$$ N, then $${f^6}(6) + {f^7}(7)$$ is equal to :</p>
[{"identifier": "A", "content": "$${7 \\over 6}$$"}, {"identifier": "B", "content": "$$ - {3 \\over 2}$$"}, {"identifier": "C", "content": "$${7 \\over {12}}$$"}, {"identifier": "D", "content": "$$ - {{11} \\over {12}}$$"}]
["B"]
null
<p>Given,</p> <p>$$f(x) = {{x - 1} \over {x + 1}}$$</p> <p>Also given,</p> <p>$${f^{n + 1}}(x) = f({f^n}(x))$$ ..... (1)</p> <p>$$\therefore$$ For $$n = 1$$</p> <p>$${f^{1 + 1}}(x) = f({f^1}(x))$$</p> <p>$$ \Rightarrow {f^2}(x) = f(f(x))$$</p> <p>$$ = f\left( {{{x - 1} \over {x + 1}}} \right)$$</p> <p>$$ = {{{{x - 1} \over {x + 1}} - 1} \over {{{x - 1} \over {x + 1}} + 1}}$$</p> <p>$$ = {{{{x - 1 - x - 1} \over {x + 1}}} \over {{{x - 1 + x + 1} \over {x + 1}}}}$$</p> <p>$$ = {{ - 2} \over {2x}}$$</p> <p>$$ = - {1 \over x}$$</p> <p>From equation (1), when n = 2</p> <p>$${f^{2 + 1}}(x) = f({f^2}(x))$$</p> <p>$$ \Rightarrow {f^3}(x) = f({f^2}(x))$$</p> <p>$$ = f\left( { - {1 \over x}} \right)$$</p> <p>$$ = {{ - {1 \over x} - 1} \over { - {1 \over x} + 1}}$$</p> <p>$$ = {{{{ - 1 - x} \over x}} \over {{{ - 1 + x} \over x}}}$$</p> <p>$$ = {{ - 1 - x} \over { - 1 + x}} = {{ - (x + 1)} \over {x - 1}}$$</p> <p>Similarly,</p> <p>$${f^4}(x) = f({f^3}(x))$$</p> <p>$$ = f\left( {{{ - x + 1} \over {x - 1}}} \right)$$</p> <p>$$ = {{{{ - (x + 1)} \over {x - 1}} - 1} \over {{{ - (x + 1)} \over {x - 1}} + 1}}$$</p> <p>$$ = {{{{ - x - 1 - x + 1} \over {x - 1}}} \over {{{ - x - 1 + x - 1} \over {x - 1}}}}$$</p> <p>$$ = {{ - 2x} \over { - 2}} = x$$</p> <p>$$\therefore$$ $${f^5}(x) = f({f^4}(x))$$</p> <p>$$ = f(x)$$</p> <p>$$ = {{x - 1} \over {x + 1}}$$</p> <p>$${f^6}(x) = f({f^5}(x))$$</p> <p>$$ = f\left( {{{x - 1} \over {x + 1}}} \right)$$</p> <p>$$ = - {1 \over x}$$ (Already calculated earlier)</p> <p>$${f^7}(x) = f({f^6}(x))$$</p> <p>$$ = f\left( { - {1 \over x}} \right)$$</p> <p>$$ = {{ - {1 \over x} - 1} \over { - {1 \over x} + 1}}$$</p> <p>$$ = {{ - (x + 1)} \over {x - 1}}$$</p> <p>$$\therefore$$ $${f^6}(6) = - {1 \over 6}$$</p> <p>and $${f^7}(7) = {{ - (7 + 1)} \over {7 - 1}} = - {8 \over 6}$$</p> <p>So, $${f^6}(6) + {f^7}(7)$$</p> <p>$$ = - {1 \over 6} - {8 \over 6}$$</p> <p>$$ = - {3 \over 2}$$</p>
mcq
jee-main-2022-online-26th-june-morning-shift
1l58ex9ng
maths
functions
composite-functions
<p>Let f : R $$\to$$ R be defined as f (x) = x $$-$$ 1 and g : R $$-$$ {1, $$-$$1} $$\to$$ R be defined as $$g(x) = {{{x^2}} \over {{x^2} - 1}}$$.</p> <p>Then the function fog is :</p>
[{"identifier": "A", "content": "one-one but not onto"}, {"identifier": "B", "content": "onto but not one-one"}, {"identifier": "C", "content": "both one-one and onto"}, {"identifier": "D", "content": "neither one-one nor onto"}]
["D"]
null
<p>$$f:R \to R$$ defined as</p> <p>$$f(x) = x - 1$$ and $$g:R \to \{ 1, - 1\} \to R,\,g(x) = {{{x^2}} \over {{x^2} - 1}}$$</p> <p>Now $$fog(x) = {{{x^2}} \over {{x^2} - 1}} - 1 = {1 \over {{x^2} - 1}}$$</p> <p>$$\therefore$$ Domain of $$fog(x) = R - \{ - 1,1\} $$</p> <p>And range of $$fog(x) = ( - \infty , - 1] \cup (0,\infty )$$</p> <p>Now, $${d \over {dx}}(fog(x)) = {{ - 1} \over {{x^2} - 1}}\,.\,2x = {{2x} \over {1 - {x^2}}}$$</p> <p>$$\therefore$$ $${d \over {dx}}(fog(x)) > 0$$ for $${{2x} \over {(1 - x)(1 + x)}} > 0$$</p> <p>$$ \Rightarrow {x \over {(x - 1)(x + 1)}} < 0$$</p> <p>$$\therefore$$ $$x \in ( - \infty , - 1) \cup (0,1)$$</p> <p>and $${d \over {dx}}(fog(x)) < 0$$ for $$x \in ( - 1,0) \cup (1,\infty )$$</p> <p>$$\therefore$$ $$fog(x)$$ is neither one-one nor onto.</p>
mcq
jee-main-2022-online-26th-june-evening-shift