repo_name
stringlengths
7
94
repo_path
stringlengths
4
237
repo_head_hexsha
stringlengths
40
40
content
stringlengths
10
680k
apis
stringlengths
2
840k
lokal-profil/isfdb_site
edit/editpublisher.py
0ce20d6347849926d4eda961ea9249c31519eea5
#!_PYTHONLOC # # (C) COPYRIGHT 2004-2021 Al von Ruff and Ahasuerus # ALL RIGHTS RESERVED # # The copyright notice above does not evidence any actual or # intended publication of such source code. # # Version: $Revision$ # Date: $Date$ from isfdblib import * from isfdblib_help import * from isfdblib_print import * from isfdb import * from SQLparsing import * from login import User if __name__ == '__main__': publisherID = SESSION.Parameter(0, 'int') record = SQLGetPublisher(publisherID) if not record: SESSION.DisplayError('Record Does Not Exist') PrintPreSearch('Publisher Editor') PrintNavBar('edit/editpublisher.cgi', publisherID) help = HelpPublisher() printHelpBox('publisher', 'EditPublisher') print '<form id="data" METHOD="POST" ACTION="/cgi-bin/edit/submitpublisher.cgi">' print '<table border="0">' print '<tbody id="tagBody">' # Limit the ability to edit publisher names to moderators user = User() user.load() display_only = 1 if SQLisUserModerator(user.id): display_only = 0 printfield("Publisher Name", "publisher_name", help, record[PUBLISHER_NAME], display_only) trans_publisher_names = SQLloadTransPublisherNames(record[PUBLISHER_ID]) printmultiple(trans_publisher_names, "Transliterated Name", "trans_publisher_names", help) webpages = SQLloadPublisherWebpages(record[PUBLISHER_ID]) printWebPages(webpages, 'publisher', help) printtextarea('Note', 'publisher_note', help, SQLgetNotes(record[PUBLISHER_NOTE])) printtextarea('Note to Moderator', 'mod_note', help, '') print '</tbody>' print '</table>' print '<p>' print '<input NAME="publisher_id" VALUE="%d" TYPE="HIDDEN">' % publisherID print '<input TYPE="SUBMIT" VALUE="Submit Data" tabindex="1">' print '</form>' print '<p>' PrintPostSearch(0, 0, 0, 0, 0, 0)
[]
vj-codes/dispatch
src/dispatch/incident_cost/views.py
f9354781956380cac290be02fb987eb50ddc1a5d
from fastapi import APIRouter, Depends, HTTPException from sqlalchemy.orm import Session from dispatch.database.core import get_db from dispatch.database.service import common_parameters, search_filter_sort_paginate from dispatch.auth.permissions import SensitiveProjectActionPermission, PermissionsDependency from .models import ( IncidentCostCreate, IncidentCostPagination, IncidentCostRead, IncidentCostUpdate, ) from .service import create, delete, get, update router = APIRouter() @router.get("", response_model=IncidentCostPagination) def get_incident_costs(*, common: dict = Depends(common_parameters)): """ Get all incident costs, or only those matching a given search term. """ return search_filter_sort_paginate(model="IncidentCost", **common) @router.get("/{incident_cost_id}", response_model=IncidentCostRead) def get_incident_cost(*, db_session: Session = Depends(get_db), incident_cost_id: int): """ Get an incident cost by id. """ incident_cost = get(db_session=db_session, incident_cost_id=incident_cost_id) if not incident_cost: raise HTTPException(status_code=404, detail="An incident cost with this id does not exist.") return incident_cost @router.post( "", response_model=IncidentCostRead, dependencies=[Depends(PermissionsDependency([SensitiveProjectActionPermission]))], ) def create_incident_cost( *, db_session: Session = Depends(get_db), incident_cost_in: IncidentCostCreate ): """ Create an incident cost. """ incident_cost = create(db_session=db_session, incident_cost_in=incident_cost_in) return incident_cost @router.put( "/{incident_cost_id}", response_model=IncidentCostRead, dependencies=[Depends(PermissionsDependency([SensitiveProjectActionPermission]))], ) def update_incident_cost( *, db_session: Session = Depends(get_db), incident_cost_id: int, incident_cost_in: IncidentCostUpdate, ): """ Update an incident cost by id. """ incident_cost = get(db_session=db_session, incident_cost_id=incident_cost_id) if not incident_cost: raise HTTPException(status_code=404, detail="An incident cost with this id does not exist.") incident_cost = update( db_session=db_session, incident_cost=incident_cost, incident_cost_in=incident_cost_in, ) return incident_cost @router.delete( "/{incident_cost_id}", dependencies=[Depends(PermissionsDependency([SensitiveProjectActionPermission]))], ) def delete_incident_cost(*, db_session: Session = Depends(get_db), incident_cost_id: int): """ Delete an incident cost, returning only an HTTP 200 OK if successful. """ incident_cost = get(db_session=db_session, incident_cost_id=incident_cost_id) if not incident_cost: raise HTTPException(status_code=404, detail="An incident cost with this id does not exist.") delete(db_session=db_session, incident_cost_id=incident_cost_id)
[((17, 9, 17, 20), 'fastapi.APIRouter', 'APIRouter', ({}, {}), '()', False, 'from fastapi import APIRouter, Depends, HTTPException\n'), ((21, 41, 21, 67), 'fastapi.Depends', 'Depends', ({(21, 49, 21, 66): 'common_parameters'}, {}), '(common_parameters)', False, 'from fastapi import APIRouter, Depends, HTTPException\n'), ((25, 11, 25, 70), 'dispatch.database.service.search_filter_sort_paginate', 'search_filter_sort_paginate', (), '', False, 'from dispatch.database.service import common_parameters, search_filter_sort_paginate\n'), ((29, 47, 29, 62), 'fastapi.Depends', 'Depends', ({(29, 55, 29, 61): 'get_db'}, {}), '(get_db)', False, 'from fastapi import APIRouter, Depends, HTTPException\n'), ((45, 29, 45, 44), 'fastapi.Depends', 'Depends', ({(45, 37, 45, 43): 'get_db'}, {}), '(get_db)', False, 'from fastapi import APIRouter, Depends, HTTPException\n'), ((61, 26, 61, 41), 'fastapi.Depends', 'Depends', ({(61, 34, 61, 40): 'get_db'}, {}), '(get_db)', False, 'from fastapi import APIRouter, Depends, HTTPException\n'), ((83, 50, 83, 65), 'fastapi.Depends', 'Depends', ({(83, 58, 83, 64): 'get_db'}, {}), '(get_db)', False, 'from fastapi import APIRouter, Depends, HTTPException\n'), ((35, 14, 35, 100), 'fastapi.HTTPException', 'HTTPException', (), '', False, 'from fastapi import APIRouter, Depends, HTTPException\n'), ((70, 14, 70, 100), 'fastapi.HTTPException', 'HTTPException', (), '', False, 'from fastapi import APIRouter, Depends, HTTPException\n'), ((89, 14, 89, 100), 'fastapi.HTTPException', 'HTTPException', (), '', False, 'from fastapi import APIRouter, Depends, HTTPException\n'), ((42, 26, 42, 83), 'dispatch.auth.permissions.PermissionsDependency', 'PermissionsDependency', ({(42, 48, 42, 82): '[SensitiveProjectActionPermission]'}, {}), '([SensitiveProjectActionPermission])', False, 'from dispatch.auth.permissions import SensitiveProjectActionPermission, PermissionsDependency\n'), ((57, 26, 57, 83), 'dispatch.auth.permissions.PermissionsDependency', 'PermissionsDependency', ({(57, 48, 57, 82): '[SensitiveProjectActionPermission]'}, {}), '([SensitiveProjectActionPermission])', False, 'from dispatch.auth.permissions import SensitiveProjectActionPermission, PermissionsDependency\n'), ((81, 26, 81, 83), 'dispatch.auth.permissions.PermissionsDependency', 'PermissionsDependency', ({(81, 48, 81, 82): '[SensitiveProjectActionPermission]'}, {}), '([SensitiveProjectActionPermission])', False, 'from dispatch.auth.permissions import SensitiveProjectActionPermission, PermissionsDependency\n')]
Lunga001/pmg-cms-2
tests/views/test_admin_committee_questions.py
10cea3979711716817b0ba2a41987df73f2c7642
import os from urllib.parse import urlparse, parse_qs from builtins import str from tests import PMGLiveServerTestCase from pmg.models import db, Committee, CommitteeQuestion from tests.fixtures import dbfixture, UserData, CommitteeData, MembershipData from flask import escape from io import BytesIO class TestAdminCommitteeQuestions(PMGLiveServerTestCase): def setUp(self): super().setUp() self.fx = dbfixture.data(UserData) self.fx.setup() self.user = self.fx.UserData.admin def tearDown(self): self.delete_created_objects() self.fx.teardown() super().tearDown() def test_upload_committee_question_document_with_old_format(self): """ Upload committee question document (/admin/committee-question/upload) """ url = "/admin/committee-question/upload" data = {} path = self.get_absolute_file_path( "../data/committee_questions/RNW190-200303.docx" ) with open(path, "rb") as f: data["file"] = (f, "RNW190-200303.docx") response = self.make_request( url, self.user, data=data, method="POST", headers={"Referer": "/somethingelse"}, content_type="multipart/form-data", ) self.assertEqual(302, response.status_code) response_url = urlparse(response.location) response_query = parse_qs(response_url.query) self.assertIn("id", response_query, "Question ID must be in response query") created_question_id = int(response_query["id"][0]) response = self.make_request( "%s?%s" % (response_url.path, response_url.query), self.user, follow_redirects=True, ) self.assertEqual(200, response.status_code) # Test that the question that was created contains the correct data question = CommitteeQuestion.query.get(created_question_id) self.assertEqual( question.question, "Whether her Office has initiated the drafting of a Bill that seeks to protect and promote the rights of persons with disabilities; if not, (a) why not and (b) what steps does her Office intend taking in this regard; if so, on what date does she envisage that the Bill will be introduced in the National Assembly?", ) self.assertEqual( question.minister.name, "Minister in The Presidency for Women, Youth and Persons with Disabilities", ) self.assertEqual(question.asked_by_name, "Mr S Ngcobo") self.assertEqual( question.answer, "<p>Yes</p><p>(b) The Department is in the process of preparing the drafting of a Bill which will be submitted to Cabinet for approval before it will be tabled in Parliament during the 2021/2022 financial year.</p>", ) self.assertEqual(question.code, "NW190") # Delete the question that was created self.created_objects.append(question) def test_upload_committee_question_document_with_new_format(self): """ Upload committee question document (/admin/committee-question/upload) """ url = "/admin/committee-question/upload" data = {} path = self.get_absolute_file_path( "../data/committee_questions/RNW104-2020-02-28.docx" ) with open(path, "rb") as f: data["file"] = (f, "RNW104-2020-02-28.docx") response = self.make_request( url, self.user, data=data, method="POST", headers={"Referer": "/admin/committee-question/"}, content_type="multipart/form-data", ) self.assertEqual(302, response.status_code) response_url = urlparse(response.location) response_query = parse_qs(response_url.query) self.assertIn("id", response_query, "Question ID must be in response query") created_question_id = int(response_query["id"][0]) response = self.make_request( "%s?%s" % (response_url.path, response_url.query), self.user, follow_redirects=True, ) self.assertEqual(200, response.status_code) # Test that the question that was created contains the correct data question = CommitteeQuestion.query.get(created_question_id) self.assertEqual( question.question, "What (a) is the number of (i) residential properties, (ii) business erven’, (iii) government buildings and (iv) agricultural properties owned by her department in the Lephalale Local Municipality which are (aa) vacant, (bb) occupied and (cc) earmarked for disposal and (b) total amount does her department owe the municipality in outstanding rates and services?", ) self.assertEqual( question.minister.name, "Minister of Public Works and Infrastructure", ) self.assertEqual(question.asked_by_name, "Ms S J Graham") self.assertEqual( question.answer, "<p><strong>The Minister of Public Works and</strong><strong> Infrastructure: </strong></p><ol><li>The Department of Public Works and Infrastructure (DPWI) has informed me that in the Lephalale Local Municipality the Department owns (i) 183 residential properties (ii) one business erven (iii) 132 government buildings and (iv) 5 agricultural properties. DPWI informed me that (aa) 8 land parcels are vacant and (bb) only one property is unutilised. </li></ol><p>(cc) DPWI has not earmarked any properties for disposal in the Lephalale Local Municipality.</p><ol><li>In August 2019 the Department started a Government Debt Project engaging directly with municipalities and Eskom to verify and reconcile accounts and the project. DPWI, on behalf of client departments, owed the Lephalale Local Municipality, as per accounts received on 17 February 2020, R 334,989.69 which relates current consumption. </li></ol>", ) self.assertEqual(question.code, "NW104") # Delete the question that was created self.created_objects.append(question) def test_upload_committee_question_document_with_navigable_string_error(self): """ Upload committee question document (/admin/committee-question/upload) """ url = "/admin/committee-question/upload" data = {} path = self.get_absolute_file_path( "../data/committee_questions/RNW1153-200619.docx" ) with open(path, "rb") as f: data["file"] = (f, "RNW1153-200619.docx") response = self.make_request( url, self.user, data=data, method="POST", headers={"Referer": "/admin/committee-question/"}, content_type="multipart/form-data", ) self.assertEqual(302, response.status_code) response_url = urlparse(response.location) response_query = parse_qs(response_url.query) self.assertIn("id", response_query, "Question ID must be in response query") created_question_id = int(response_query["id"][0]) response = self.make_request( "%s?%s" % (response_url.path, response_url.query), self.user, follow_redirects=True, ) self.assertEqual(200, response.status_code) # Test that the question that was created contains the correct data question = CommitteeQuestion.query.get(created_question_id) self.assertIn( "(1)Whether, with reference to her reply to question 937 on 4 June 2020", question.question, ) self.assertEqual( question.minister.name, "Minister in The Presidency for Women, Youth and Persons with Disabilities", ) self.assertEqual(question.asked_by_name, "Ms T Breedt") self.assertIn( "There were no deviations from the standard supply chain management procedures", question.answer, ) self.assertEqual(question.code, "NW1153") # Delete the question that was created self.created_objects.append(question) def get_absolute_file_path(self, relative_path): dir_name = os.path.dirname(__file__) return os.path.join(dir_name, relative_path)
[((15, 18, 15, 42), 'tests.fixtures.dbfixture.data', 'dbfixture.data', ({(15, 33, 15, 41): 'UserData'}, {}), '(UserData)', False, 'from tests.fixtures import dbfixture, UserData, CommitteeData, MembershipData\n'), ((45, 23, 45, 50), 'urllib.parse.urlparse', 'urlparse', ({(45, 32, 45, 49): 'response.location'}, {}), '(response.location)', False, 'from urllib.parse import urlparse, parse_qs\n'), ((46, 25, 46, 53), 'urllib.parse.parse_qs', 'parse_qs', ({(46, 34, 46, 52): 'response_url.query'}, {}), '(response_url.query)', False, 'from urllib.parse import urlparse, parse_qs\n'), ((59, 19, 59, 67), 'pmg.models.CommitteeQuestion.query.get', 'CommitteeQuestion.query.get', ({(59, 47, 59, 66): 'created_question_id'}, {}), '(created_question_id)', False, 'from pmg.models import db, Committee, CommitteeQuestion\n'), ((100, 23, 100, 50), 'urllib.parse.urlparse', 'urlparse', ({(100, 32, 100, 49): 'response.location'}, {}), '(response.location)', False, 'from urllib.parse import urlparse, parse_qs\n'), ((101, 25, 101, 53), 'urllib.parse.parse_qs', 'parse_qs', ({(101, 34, 101, 52): 'response_url.query'}, {}), '(response_url.query)', False, 'from urllib.parse import urlparse, parse_qs\n'), ((113, 19, 113, 67), 'pmg.models.CommitteeQuestion.query.get', 'CommitteeQuestion.query.get', ({(113, 47, 113, 66): 'created_question_id'}, {}), '(created_question_id)', False, 'from pmg.models import db, Committee, CommitteeQuestion\n'), ((152, 23, 152, 50), 'urllib.parse.urlparse', 'urlparse', ({(152, 32, 152, 49): 'response.location'}, {}), '(response.location)', False, 'from urllib.parse import urlparse, parse_qs\n'), ((153, 25, 153, 53), 'urllib.parse.parse_qs', 'parse_qs', ({(153, 34, 153, 52): 'response_url.query'}, {}), '(response_url.query)', False, 'from urllib.parse import urlparse, parse_qs\n'), ((165, 19, 165, 67), 'pmg.models.CommitteeQuestion.query.get', 'CommitteeQuestion.query.get', ({(165, 47, 165, 66): 'created_question_id'}, {}), '(created_question_id)', False, 'from pmg.models import db, Committee, CommitteeQuestion\n'), ((185, 19, 185, 44), 'os.path.dirname', 'os.path.dirname', ({(185, 35, 185, 43): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((186, 15, 186, 52), 'os.path.join', 'os.path.join', ({(186, 28, 186, 36): 'dir_name', (186, 38, 186, 51): 'relative_path'}, {}), '(dir_name, relative_path)', False, 'import os\n')]
tiaotiao/applets
audioanalysis_demo/test_audio_analysis.py
c583a4405ed18c7d74bfba49884525c43d114398
import sys, wave import AudioAnalysis FILE_NAME = "snippet.wav" def testWavWrite(): try: f = wave.open(FILE_NAME, "rb") except Exception, e: print e print "File type is not wav!" return c = wave.open("cnv_" + FILE_NAME, "wb") print f.getnchannels() print f.getsampwidth() print f.getframerate() print f.getnframes() #print f.getparams() total = f.getnframes() read_count = total / 2 c.setnchannels(f.getnchannels()) c.setsampwidth(f.getsampwidth()) c.setframerate(f.getframerate()) c.setnframes(read_count) c.setcomptype(f.getcomptype(), f.getcompname()) frames = f.readframes(read_count) print len(frames) print "bytes per frame: ", len(frames) / read_count #for b in frames: # i = int(b.encode("hex"), 16) # print b.encode("hex") #print '#' * (i / 10) c.writeframes(frames) print "----------" f.close() c.close() def process(p): print p def testAudioAnalysis(): a = AudioAnalysis.AudioAnalysis(FILE_NAME) print a.getFilename() print a.getFileType() a.setFrameInterval(0.01) print a.analysePower(process) print a.getPowerMin(), "\tgetPowerMin" print a.getPowerMax(), "\tgetPowerMax" print a.getSamplePowerMin(), "\tgetSamplePowerMin" print a.getSamplePowerMax(), "\tgetSamplePowerMax" print a.getFrameRate(), "\tgetFrameRate" print a.getSampleWidth(), "\tgetSampleWidth" print a.getDuration(), "\tgetDuration" print a.getFrameInterval(), "\tgetFrameInterval" print a.getSamples(), "\tgetSamples" powers = a.getFramePower() for p in powers: print "%04lf" % p[0], "%-6d" % p[1] ,'#' * (p[1] / 100) def main(): f = open(FILE_NAME, "rb") if not f: print "Open file failed!" return try: w = wave.open(f) except Exception, e: print e print "File type is not wav!" return print "get channels\t", w.getnchannels() # channels, single or double print "frame rate\t", w.getframerate() # rate, frames per sec print "samp width\t", w.getsampwidth() # maybe: channels * width = bytes per frame print "get n frames\t", w.getnframes() # total frames print "comp type\t", w.getcomptype() # compress print "params\t", w.getparams() total = w.getnframes() read_count = 100 frames = w.readframes(read_count) print "len(frames)\t", len(frames) print "bytes per frame\t", len(frames) / read_count #for b in frames: #i = int(b.encode("hex"), 16) #print b.encode("hex") #print '#' * (i / 10) print "----------" w.close() f.close() if __name__ == "__main__": main() #testAudioAnalysis() #testWavWrite()
[]
xaedes/python-symbolic-logic-to-gate
syloga/transform/evaluation.py
a0dc9be9e04290008cf709fac789d224ab8c14b0
from syloga.core.map_expression_args import map_expression_args from syloga.utils.identity import identity from syloga.ast.BooleanNot import BooleanNot from syloga.ast.BooleanValue import BooleanValue from syloga.ast.BooleanOr import BooleanOr from syloga.ast.BooleanAnd import BooleanAnd from syloga.ast.BooleanNand import BooleanNand from syloga.ast.BooleanNor import BooleanNor from syloga.ast.BooleanXor import BooleanXor from syloga.ast.BreakOut import BreakOut # from syloga.core.assert_equality_by_table import assert_equality_by_table def evaluate_expr(expression): recurse = evaluate_expr # result = assert_equality_by_table result = identity #arg_is_value = lambda arg: isinstance(arg, (BooleanValue, bool)) arg_is_value = lambda arg: type(arg) in [BooleanValue, bool] def arg_is_value(arg): is_value = type(arg) in [BooleanValue, bool] #print("is arg a value? " + str(type(arg)) + " " + str(arg)) #print("is_value", is_value) return is_value args_are_values = lambda args: all(map(arg_is_value, args)) get_value = lambda arg: arg if type(arg) == bool else arg.value is_true = lambda val: val == True is_false = lambda val: val == False #print("looking at " + str(type(expression))) if type(expression) == BooleanNot: assert(len(expression.args) == 1) arg = recurse(expression.args[0]); if arg_is_value(arg): return result(BooleanValue(not get_value(arg))) else: return result(BooleanNot(arg)) elif type(expression) == BooleanOr: args = list(map(recurse, expression.args)) arg_values = [get_value(arg) for arg in args if arg_is_value(arg)] args_wo_neutral = list(filter(lambda x: not(arg_is_value(x) and is_false(get_value(x))),args)) if args_are_values(args): return result(BooleanValue(any(arg_values))) elif any(map(is_true,arg_values)): return result(BooleanValue(True)) elif len(args) == 1: return result(recurse(args[0])) elif len(args_wo_neutral) < len(args): return result(recurse(BooleanOr(*args_wo_neutral))) else: return result(BooleanOr(*args)) elif type(expression) == BooleanAnd: args = list(map(recurse, expression.args)) #print(expression.args) #print(args) #negated_atom_values = [not get_value(arg) for arg in args if arg_is_value(arg)] arg_values = [get_value(arg) for arg in args if arg_is_value(arg)] args_wo_neutral = list(filter(lambda x: not(arg_is_value(x) and is_true(get_value(x))),args)) #print(arg_values) if args_are_values(args): return result(BooleanValue(all(map(is_true,arg_values)))) elif any(map(is_false,arg_values)): return result(BooleanValue(False)) elif len(args) == 1: return result(recurse(args[0])) elif len(args_wo_neutral) < len(args): return result(recurse(BooleanAnd(*args_wo_neutral))) else: return result(BooleanAnd(*args)) elif type(expression) == BooleanNand: return result(recurse(BooleanNot(BooleanAnd(*expression.args)))) elif type(expression) == BooleanNor: return result(recurse(BooleanNot(BooleanOr(*expression.args)))) elif type(expression) == BooleanXor: args = list(map(recurse, expression.args)) arg_values = [get_value(arg) for arg in args if arg_is_value(arg)] non_value_args = [arg for arg in args if not arg_is_value(arg)] if len(args) == 0: raise ValueError("args are missing") elif len(args) == 1: return result(args[0]) elif len(arg_values) == 0: return result(BooleanXor(*non_value_args)) elif len(arg_values) == 1: if is_true(arg_values[0]): return result(BooleanXor(arg_values[0], *non_value_args)) else: return result(recurse(BooleanXor(*non_value_args))) elif len(arg_values) > 1: evaluated = is_true(arg_values[0]) for a in arg_values[1:]: evaluated ^= is_true(a) evaluated = bool(evaluated) return result(recurse(BooleanXor(evaluated, *non_value_args))) elif type(expression) == BreakOut: expr = recurse(expression.expr) if arg_is_value(expr): return result(BooleanValue(expr)) else: return result(BreakOut(expr)) else: return result(map_expression_args(recurse, expression, recurse_collection=True))
[((42, 26, 42, 41), 'syloga.ast.BooleanNot.BooleanNot', 'BooleanNot', ({(42, 37, 42, 40): 'arg'}, {}), '(arg)', False, 'from syloga.ast.BooleanNot import BooleanNot\n'), ((53, 26, 53, 44), 'syloga.ast.BooleanValue.BooleanValue', 'BooleanValue', ({(53, 39, 53, 43): '(True)'}, {}), '(True)', False, 'from syloga.ast.BooleanValue import BooleanValue\n'), ((77, 26, 77, 45), 'syloga.ast.BooleanValue.BooleanValue', 'BooleanValue', ({(77, 39, 77, 44): '(False)'}, {}), '(False)', False, 'from syloga.ast.BooleanValue import BooleanValue\n'), ((62, 26, 62, 42), 'syloga.ast.BooleanOr.BooleanOr', 'BooleanOr', ({(62, 36, 62, 41): '*args'}, {}), '(*args)', False, 'from syloga.ast.BooleanOr import BooleanOr\n'), ((89, 41, 89, 69), 'syloga.ast.BooleanAnd.BooleanAnd', 'BooleanAnd', ({(89, 52, 89, 68): '*expression.args'}, {}), '(*expression.args)', False, 'from syloga.ast.BooleanAnd import BooleanAnd\n'), ((59, 34, 59, 61), 'syloga.ast.BooleanOr.BooleanOr', 'BooleanOr', ({(59, 44, 59, 60): '*args_wo_neutral'}, {}), '(*args_wo_neutral)', False, 'from syloga.ast.BooleanOr import BooleanOr\n'), ((86, 26, 86, 43), 'syloga.ast.BooleanAnd.BooleanAnd', 'BooleanAnd', ({(86, 37, 86, 42): '*args'}, {}), '(*args)', False, 'from syloga.ast.BooleanAnd import BooleanAnd\n'), ((92, 41, 92, 68), 'syloga.ast.BooleanOr.BooleanOr', 'BooleanOr', ({(92, 51, 92, 67): '*expression.args'}, {}), '(*expression.args)', False, 'from syloga.ast.BooleanOr import BooleanOr\n'), ((132, 22, 132, 87), 'syloga.core.map_expression_args.map_expression_args', 'map_expression_args', (), '', False, 'from syloga.core.map_expression_args import map_expression_args\n'), ((83, 34, 83, 62), 'syloga.ast.BooleanAnd.BooleanAnd', 'BooleanAnd', ({(83, 45, 83, 61): '*args_wo_neutral'}, {}), '(*args_wo_neutral)', False, 'from syloga.ast.BooleanAnd import BooleanAnd\n'), ((127, 26, 127, 44), 'syloga.ast.BooleanValue.BooleanValue', 'BooleanValue', ({(127, 39, 127, 43): 'expr'}, {}), '(expr)', False, 'from syloga.ast.BooleanValue import BooleanValue\n'), ((129, 26, 129, 40), 'syloga.ast.BreakOut.BreakOut', 'BreakOut', ({(129, 35, 129, 39): 'expr'}, {}), '(expr)', False, 'from syloga.ast.BreakOut import BreakOut\n'), ((107, 26, 107, 53), 'syloga.ast.BooleanXor.BooleanXor', 'BooleanXor', ({(107, 37, 107, 52): '*non_value_args'}, {}), '(*non_value_args)', False, 'from syloga.ast.BooleanXor import BooleanXor\n'), ((111, 30, 111, 72), 'syloga.ast.BooleanXor.BooleanXor', 'BooleanXor', ({(111, 41, 111, 54): 'arg_values[0]', (111, 56, 111, 71): '*non_value_args'}, {}), '(arg_values[0], *non_value_args)', False, 'from syloga.ast.BooleanXor import BooleanXor\n'), ((113, 38, 113, 65), 'syloga.ast.BooleanXor.BooleanXor', 'BooleanXor', ({(113, 49, 113, 64): '*non_value_args'}, {}), '(*non_value_args)', False, 'from syloga.ast.BooleanXor import BooleanXor\n'), ((121, 34, 121, 72), 'syloga.ast.BooleanXor.BooleanXor', 'BooleanXor', ({(121, 45, 121, 54): 'evaluated', (121, 56, 121, 71): '*non_value_args'}, {}), '(evaluated, *non_value_args)', False, 'from syloga.ast.BooleanXor import BooleanXor\n')]
Idematica/django-oscar
oscar/apps/customer/mixins.py
242a0654210d63ba75f798788916c8b2f7abb7fb
from django.conf import settings from django.contrib.auth import authenticate, login as auth_login from django.contrib.sites.models import get_current_site from django.db.models import get_model from oscar.apps.customer.signals import user_registered from oscar.core.loading import get_class from oscar.core.compat import get_user_model User = get_user_model() CommunicationEventType = get_model('customer', 'CommunicationEventType') Dispatcher = get_class('customer.utils', 'Dispatcher') class PageTitleMixin(object): """ Passes page_title and active_tab into context, which makes it quite useful for the accounts views. Dynamic page titles are possible by overriding get_page_title. """ page_title = None active_tab = None # Use a method that can be overridden and customised def get_page_title(self): return self.page_title def get_context_data(self, **kwargs): ctx = super(PageTitleMixin, self).get_context_data(**kwargs) ctx.setdefault('page_title', self.get_page_title()) ctx.setdefault('active_tab', self.active_tab) return ctx class RegisterUserMixin(object): communication_type_code = 'REGISTRATION' def register_user(self, form): """ Create a user instance and send a new registration email (if configured to). """ user = form.save() if getattr(settings, 'OSCAR_SEND_REGISTRATION_EMAIL', True): self.send_registration_email(user) # Raise signal user_registered.send_robust(sender=self, user=user) # We have to authenticate before login try: user = authenticate( username=user.email, password=form.cleaned_data['password1']) except User.MultipleObjectsReturned: # Handle race condition where the registration request is made # multiple times in quick succession. This leads to both requests # passing the uniqueness check and creating users (as the first one # hasn't committed when the second one runs the check). We retain # the first one and delete the dupes. users = User.objects.filter(email=user.email) user = users[0] for u in users[1:]: u.delete() auth_login(self.request, user) return user def send_registration_email(self, user): code = self.communication_type_code ctx = {'user': user, 'site': get_current_site(self.request)} messages = CommunicationEventType.objects.get_and_render( code, ctx) if messages and messages['body']: Dispatcher().dispatch_user_messages(user, messages)
[((9, 7, 9, 23), 'oscar.core.compat.get_user_model', 'get_user_model', ({}, {}), '()', False, 'from oscar.core.compat import get_user_model\n'), ((10, 25, 10, 72), 'django.db.models.get_model', 'get_model', ({(10, 35, 10, 45): '"""customer"""', (10, 47, 10, 71): '"""CommunicationEventType"""'}, {}), "('customer', 'CommunicationEventType')", False, 'from django.db.models import get_model\n'), ((11, 13, 11, 54), 'oscar.core.loading.get_class', 'get_class', ({(11, 23, 11, 39): '"""customer.utils"""', (11, 41, 11, 53): '"""Dispatcher"""'}, {}), "('customer.utils', 'Dispatcher')", False, 'from oscar.core.loading import get_class\n'), ((49, 8, 49, 59), 'oscar.apps.customer.signals.user_registered.send_robust', 'user_registered.send_robust', (), '', False, 'from oscar.apps.customer.signals import user_registered\n'), ((67, 8, 67, 38), 'django.contrib.auth.login', 'auth_login', ({(67, 19, 67, 31): 'self.request', (67, 33, 67, 37): 'user'}, {}), '(self.request, user)', True, 'from django.contrib.auth import authenticate, login as auth_login\n'), ((53, 19, 55, 56), 'django.contrib.auth.authenticate', 'authenticate', (), '', False, 'from django.contrib.auth import authenticate, login as auth_login\n'), ((74, 23, 74, 53), 'django.contrib.sites.models.get_current_site', 'get_current_site', ({(74, 40, 74, 52): 'self.request'}, {}), '(self.request)', False, 'from django.contrib.sites.models import get_current_site\n')]
vfloeser/TumorDelivery
plot_integral.py
a48252c17b50397b1f51be21c0cf65ade87e9000
from parameters import * from library_time import * from paths import * import numpy as np import pylab as plt import matplotlib.pyplot as mplt mplt.rc('text', usetex=True) mplt.rcParams.update({'font.size': 16}) import logging, getopt, sys import time import os ########################################################################################## # C O N F I G U R A T I O N ########################################################################################## # activate ylim for w var1 = w1 var3 = w3 var5 = w5 var10 = w10 var25 = w25 mode = "w" # u or w ########################################################################################## # M A I N ########################################################################################## if __name__ == "__main__": if not os.path.exists('plots'): os.makedirs('plots') print('Created folder plots!') if not os.path.exists('plots/integral'): os.makedirs('plots/integral') print('Created folder plots/integral!') t = np.linspace(tmin, tmax, Nt) r = np.linspace(0,R,Nr) Ivar1 = np.zeros(Nt) Ivar3 = np.zeros(Nt) Ivar5 = np.zeros(Nt) Ivar10 = np.zeros(Nt) Ivar25 = np.zeros(Nt) for i in range(Nt): # /1000000 because of units Ivar1[i] = integrate(var1, i,r, Nt)/1000000 Ivar3[i] = integrate(var3, i,r, Nt)/1000000 Ivar5[i] = integrate(var5, i,r, Nt)/1000000 Ivar10[i] = integrate(var10, i,r, Nt)/1000000 Ivar25[i] = integrate(var25, i,r, Nt)/1000000 mplt.plot(t, Ivar1, label=r'$\alpha = 1$') mplt.plot(t, Ivar3, label=r'$\alpha = 3$') mplt.plot(t, Ivar5, label=r'$\alpha = 5$') mplt.plot(t, Ivar10, label=r'$\alpha = 10$') mplt.plot(t, Ivar25, label=r'$\alpha = 25$') mplt.xlim(tmin, tmax) mplt.yscale('log') mplt.xlabel(r'$t\quad [h]$') mplt.ylabel(r'$\bar{'+mode+'}\quad [\mu mol]$') ########################################################################################## # lim for w, because some values dont make sense mplt.ylim(1e-11, 3e2) # lim for w, because some values dont make sense ########################################################################################## mplt.legend(loc=1, bbox_to_anchor=(1, 0.9)) mplt.tight_layout() mplt.savefig('plots/integral/int'+mode+'.pdf', format='pdf') mplt.show()
[((8, 0, 8, 28), 'matplotlib.pyplot.rc', 'mplt.rc', (), '', True, 'import matplotlib.pyplot as mplt\n'), ((9, 0, 9, 39), 'matplotlib.pyplot.rcParams.update', 'mplt.rcParams.update', ({(9, 21, 9, 38): "{'font.size': 16}"}, {}), "({'font.size': 16})", True, 'import matplotlib.pyplot as mplt\n'), ((40, 8, 40, 35), 'numpy.linspace', 'np.linspace', ({(40, 20, 40, 24): 'tmin', (40, 26, 40, 30): 'tmax', (40, 32, 40, 34): 'Nt'}, {}), '(tmin, tmax, Nt)', True, 'import numpy as np\n'), ((41, 8, 41, 27), 'numpy.linspace', 'np.linspace', ({(41, 20, 41, 21): '0', (41, 22, 41, 23): 'R', (41, 24, 41, 26): 'Nr'}, {}), '(0, R, Nr)', True, 'import numpy as np\n'), ((43, 13, 43, 25), 'numpy.zeros', 'np.zeros', ({(43, 22, 43, 24): 'Nt'}, {}), '(Nt)', True, 'import numpy as np\n'), ((44, 13, 44, 25), 'numpy.zeros', 'np.zeros', ({(44, 22, 44, 24): 'Nt'}, {}), '(Nt)', True, 'import numpy as np\n'), ((45, 13, 45, 25), 'numpy.zeros', 'np.zeros', ({(45, 22, 45, 24): 'Nt'}, {}), '(Nt)', True, 'import numpy as np\n'), ((46, 13, 46, 25), 'numpy.zeros', 'np.zeros', ({(46, 22, 46, 24): 'Nt'}, {}), '(Nt)', True, 'import numpy as np\n'), ((47, 13, 47, 25), 'numpy.zeros', 'np.zeros', ({(47, 22, 47, 24): 'Nt'}, {}), '(Nt)', True, 'import numpy as np\n'), ((56, 4, 56, 46), 'matplotlib.pyplot.plot', 'mplt.plot', (), '', True, 'import matplotlib.pyplot as mplt\n'), ((57, 4, 57, 46), 'matplotlib.pyplot.plot', 'mplt.plot', (), '', True, 'import matplotlib.pyplot as mplt\n'), ((58, 4, 58, 46), 'matplotlib.pyplot.plot', 'mplt.plot', (), '', True, 'import matplotlib.pyplot as mplt\n'), ((59, 4, 59, 48), 'matplotlib.pyplot.plot', 'mplt.plot', (), '', True, 'import matplotlib.pyplot as mplt\n'), ((60, 4, 60, 48), 'matplotlib.pyplot.plot', 'mplt.plot', (), '', True, 'import matplotlib.pyplot as mplt\n'), ((61, 4, 61, 25), 'matplotlib.pyplot.xlim', 'mplt.xlim', ({(61, 14, 61, 18): 'tmin', (61, 20, 61, 24): 'tmax'}, {}), '(tmin, tmax)', True, 'import matplotlib.pyplot as mplt\n'), ((62, 4, 62, 22), 'matplotlib.pyplot.yscale', 'mplt.yscale', ({(62, 16, 62, 21): '"""log"""'}, {}), "('log')", True, 'import matplotlib.pyplot as mplt\n'), ((63, 4, 63, 32), 'matplotlib.pyplot.xlabel', 'mplt.xlabel', ({(63, 16, 63, 31): '"""$t\\\\quad [h]$"""'}, {}), "('$t\\\\quad [h]$')", True, 'import matplotlib.pyplot as mplt\n'), ((64, 4, 64, 51), 'matplotlib.pyplot.ylabel', 'mplt.ylabel', ({(64, 16, 64, 50): "('$\\\\bar{' + mode + '}\\\\quad [\\\\mu mol]$')"}, {}), "('$\\\\bar{' + mode + '}\\\\quad [\\\\mu mol]$')", True, 'import matplotlib.pyplot as mplt\n'), ((67, 4, 67, 25), 'matplotlib.pyplot.ylim', 'mplt.ylim', ({(67, 14, 67, 19): '(1e-11)', (67, 21, 67, 24): '(300.0)'}, {}), '(1e-11, 300.0)', True, 'import matplotlib.pyplot as mplt\n'), ((70, 4, 70, 47), 'matplotlib.pyplot.legend', 'mplt.legend', (), '', True, 'import matplotlib.pyplot as mplt\n'), ((71, 4, 71, 23), 'matplotlib.pyplot.tight_layout', 'mplt.tight_layout', ({}, {}), '()', True, 'import matplotlib.pyplot as mplt\n'), ((72, 4, 72, 64), 'matplotlib.pyplot.savefig', 'mplt.savefig', (), '', True, 'import matplotlib.pyplot as mplt\n'), ((73, 4, 73, 15), 'matplotlib.pyplot.show', 'mplt.show', ({}, {}), '()', True, 'import matplotlib.pyplot as mplt\n'), ((33, 11, 33, 34), 'os.path.exists', 'os.path.exists', ({(33, 26, 33, 33): '"""plots"""'}, {}), "('plots')", False, 'import os\n'), ((34, 8, 34, 28), 'os.makedirs', 'os.makedirs', ({(34, 20, 34, 27): '"""plots"""'}, {}), "('plots')", False, 'import os\n'), ((36, 11, 36, 43), 'os.path.exists', 'os.path.exists', ({(36, 26, 36, 42): '"""plots/integral"""'}, {}), "('plots/integral')", False, 'import os\n'), ((37, 8, 37, 37), 'os.makedirs', 'os.makedirs', ({(37, 20, 37, 36): '"""plots/integral"""'}, {}), "('plots/integral')", False, 'import os\n')]
wangjeaf/CSSCheckStyle
tests/unit/combiner/Try.py
d1b1ed89c61ca80d65f398ec4a07d73789197b04
from helper import * def doTest(): msg = doCssFileCompress('_test.css') equal(msg, '@import (url-here);.test,.test2,.test3,.test4,.test5{_width:100px;*height:100px}.test6{display:none;_width:100px;*height:100px}', 'totally compressed') msg = doCssFileCompress('_test_different_order.css') equal(msg, '.test1,.test2,.test3,.test4,.test5{*display:none;_display:inline-block;width:100px;height:200px;border:1px solid #FFF}', 'totally compressed') msg = doCssFileCompress('_with_margin.css') equal(msg, '.test,.test2,.test3,.test4,.test5{_width:100px;*height:100px;margin:20px 10px 10px}.test6{display:none;_width:100px;*height:100px}', 'margin compress ok') msg = doCssFileCompress('_just_margin.css') equal(msg, '.test,.test2,.test3,.test4{margin:20px 10px 10px}', 'just margin compress ok') msg = doCssFileCompress('_with_padding.css') equal(msg, '.test,.test2,.test3,.test4,.test5{_width:100px;*height:100px;padding:20px 10px 10px}.test6{display:none;_width:100px;*height:100px}', 'padding compress ok') msg = doCssFileCompress('_just_padding.css') equal(msg, '.test,.test2,.test3,.test4{padding:20px 10px 10px}', 'just padding compress ok')
[]
desdelgado/rheology-data-toolkit
tests/tests.py
054b1659c914b8eed86239d27a746e26404395ec
import sys, os sys.path.append("C:/Users/Delgado/Documents/Research/rheology-data-toolkit/rheodata/extractors") import h5py import pandas as pd from antonpaar import AntonPaarExtractor as APE from ARES_G2 import ARES_G2Extractor # %% sys.path.append("C:/Users/Delgado/Documents/Research/rheology-data-toolkit/rheodata") from data_converter import rheo_data_transformer import unittest extractor = APE() #converter = data_converter() class TestAntonPaar(unittest.TestCase): def setUp(self): self.multi_file_test = "C:/Users/Delgado/Documents/Research/rheology-data-toolkit/tests/test_data/Anton_Paar/excel_test_data/two_tests_Steady State Viscosity Curve-LO50C_excel.xlsx" self.modified_dict, self.raw_data_dict, self.cols, self.units = extractor.import_rheo_data(self.multi_file_test) # Inilize the class to convert self.converter = rheo_data_transformer(self.modified_dict, self.raw_data_dict, self.cols, self.units) self.converter.load_to_hdf("test") def test_modified_output_isdictionary(self): self.assertIsInstance(self.modified_dict, dict) def test_modified_output_dictionary_contains_pandas(self): """ Test if the output is a dictonary of pandas dataframes'""" for value in self.modified_dict.values(): self.assertIsInstance(value, pd.DataFrame) def test_raw_output_isdictionary(self): self.assertIsInstance(self.raw_data_dict, dict) def test_raw_output_dictionary_contains_pandas(self): """ Test if the output is a dictonary of pandas dataframes'""" for value in self.raw_data_dict.values(): self.assertIsInstance(value, pd.DataFrame) def test_project_name_added_raw_data(self): """ Test if the output is a dictonary of pandas dataframes'""" for df in self.raw_data_dict.values(): self.assertEqual(df.iloc[0,0], "Project:") def test_hdf5_created(self): name, ext = os.path.splitext("test.hdf5") self.assertEqual(ext, ".hdf5") def test_project_subfolders_added(self): f = h5py.File('test.hdf5', "r") project_keys = list(f['Project'].keys()) f.close() self.assertListEqual(project_keys, ['Steady State Viscosity Curve-75C','Steady State Viscosity Curve-LO80C', ]) def test_analyze_cols(self): temp_df = extractor.make_analyze_dataframes(self.multi_file_test) for test_key in temp_df.keys(): test_cols = list(temp_df[test_key].columns) parsed_cols = list(self.cols[test_key]) self.assertListEqual(test_cols, parsed_cols) # TODO Write test for saving a file if __name__ == '__main__': unittest.main()
[((2, 0, 2, 96), 'sys.path.append', 'sys.path.append', ({(2, 16, 2, 95): '"""C:/Users/Delgado/Documents/Research/rheology-data-toolkit/rheodata/extractors"""'}, {}), "(\n 'C:/Users/Delgado/Documents/Research/rheology-data-toolkit/rheodata/extractors'\n )", False, 'import sys, os\n'), ((9, 0, 9, 85), 'sys.path.append', 'sys.path.append', ({(9, 16, 9, 84): '"""C:/Users/Delgado/Documents/Research/rheology-data-toolkit/rheodata"""'}, {}), "(\n 'C:/Users/Delgado/Documents/Research/rheology-data-toolkit/rheodata')", False, 'import sys, os\n'), ((14, 12, 14, 17), 'antonpaar.AntonPaarExtractor', 'APE', ({}, {}), '()', True, 'from antonpaar import AntonPaarExtractor as APE\n'), ((73, 4, 73, 19), 'unittest.main', 'unittest.main', ({}, {}), '()', False, 'import unittest\n'), ((25, 25, 25, 109), 'data_converter.rheo_data_transformer', 'rheo_data_transformer', ({(25, 47, 25, 65): 'self.modified_dict', (25, 67, 25, 85): 'self.raw_data_dict', (25, 87, 25, 96): 'self.cols', (25, 98, 25, 108): 'self.units'}, {}), '(self.modified_dict, self.raw_data_dict, self.cols,\n self.units)', False, 'from data_converter import rheo_data_transformer\n'), ((52, 20, 52, 49), 'os.path.splitext', 'os.path.splitext', ({(52, 37, 52, 48): '"""test.hdf5"""'}, {}), "('test.hdf5')", False, 'import sys, os\n'), ((56, 12, 56, 39), 'h5py.File', 'h5py.File', ({(56, 22, 56, 33): '"""test.hdf5"""', (56, 35, 56, 38): '"""r"""'}, {}), "('test.hdf5', 'r')", False, 'import h5py\n')]
reiterl/openslides-backend
openslides_backend/action/topic/delete.py
d36667f00087ae8baf25853d4cef18a5e6dc7b3b
from ...models.models import Topic from ..default_schema import DefaultSchema from ..generics import DeleteAction from ..register import register_action @register_action("topic.delete") class TopicDelete(DeleteAction): """ Action to delete simple topics that can be shown in the agenda. """ model = Topic() schema = DefaultSchema(Topic()).get_delete_schema()
[]
Dr3xler/CookieConsentChecker
main.py
816cdfb9d9dc741c57dbcd5e9c9ef59837196631
from core import file_handling as file_h, driver_handling as driver_h from website_handling import website_check as wc from cookie_handling import cookie_compare websites = file_h.website_reader() driver = driver_h.webdriver_setup() try: wc.load_with_addon(driver, websites) except: print('ERROR: IN FIREFOX USAGE WITH ADDONS') finally: wc.close_driver_session(driver) # driver need to be reloaded because we need a new session without addons driver = driver_h.webdriver_setup() try: wc.load_without_addon(driver, websites) except: print('ERROR: IN VANILLA FIREFOX VERSION') finally: wc.close_driver_session(driver) cookie_compare.compare(websites)
[((5, 11, 5, 34), 'core.file_handling.website_reader', 'file_h.website_reader', ({}, {}), '()', True, 'from core import file_handling as file_h, driver_handling as driver_h\n'), ((6, 9, 6, 35), 'core.driver_handling.webdriver_setup', 'driver_h.webdriver_setup', ({}, {}), '()', True, 'from core import file_handling as file_h, driver_handling as driver_h\n'), ((21, 9, 21, 35), 'core.driver_handling.webdriver_setup', 'driver_h.webdriver_setup', ({}, {}), '()', True, 'from core import file_handling as file_h, driver_handling as driver_h\n'), ((30, 0, 30, 32), 'cookie_handling.cookie_compare.compare', 'cookie_compare.compare', ({(30, 23, 30, 31): 'websites'}, {}), '(websites)', False, 'from cookie_handling import cookie_compare\n'), ((13, 4, 13, 40), 'website_handling.website_check.load_with_addon', 'wc.load_with_addon', ({(13, 23, 13, 29): 'driver', (13, 31, 13, 39): 'websites'}, {}), '(driver, websites)', True, 'from website_handling import website_check as wc\n'), ((17, 4, 17, 35), 'website_handling.website_check.close_driver_session', 'wc.close_driver_session', ({(17, 28, 17, 34): 'driver'}, {}), '(driver)', True, 'from website_handling import website_check as wc\n'), ((24, 4, 24, 43), 'website_handling.website_check.load_without_addon', 'wc.load_without_addon', ({(24, 26, 24, 32): 'driver', (24, 34, 24, 42): 'websites'}, {}), '(driver, websites)', True, 'from website_handling import website_check as wc\n'), ((28, 4, 28, 35), 'website_handling.website_check.close_driver_session', 'wc.close_driver_session', ({(28, 28, 28, 34): 'driver'}, {}), '(driver)', True, 'from website_handling import website_check as wc\n')]
photonbec/PyPBEC
PyPBEC/OpticalMedium.py
fd68fa3e6206671e731bc0c2973af1f67d704f05
import numpy as np from scipy import constants as sc from scipy.interpolate import interp1d from pathlib import Path from scipy.special import erf as Erf import pandas as pd import sys import os import csv class OpticalMedium(): available_media = list() available_media.append("Rhodamine6G") def __init__(self, optical_medium): """ Initiazies an optical medium object. Parameters: optical_medium (str): Optical medium """ if not type(optical_medium) == str: raise Exception("optical_medium is expected to be a string") if not optical_medium in self.available_media: raise Exception(optical_medium+" is an unknown optical medium") if optical_medium == "Rhodamine6G": self.medium = Rhodamine6G() def get_rates(self, lambdas, **kwargs): """ Calculates the rates of absorption and emission, for a specific optical medium. Parameters: lambdas (list, or other iterable): Wavelength points where the rates are to be calculated. Wavelength is in meters other medium specific arguments """ return self.medium.get_rates(lambdas=lambdas, **kwargs) class Rhodamine6G(OpticalMedium): def __init__(self): pass def get_rates(self, lambdas, dye_concentration, n): """ Rates for Rhodamine 6G Parameters: lambdas (list, or other iterable): Wavelength points where the rates are to be calculated. Wavelength is in meters dye_concentration (float): In mM (milimolar) 1 mM = 1 mol / m^3 n (float): index of refraction """ # absorption data min_wavelength = 480 max_wavelength = 650 absorption_spectrum_datafile = Path("data") / 'absorption_cross_sections_R6G_in_EthyleneGlycol_corrected.csv' absorption_spectrum_datafile = Path(os.path.dirname(os.path.abspath(__file__))) / absorption_spectrum_datafile raw_data2 = pd.read_csv(absorption_spectrum_datafile) initial_index = raw_data2.iloc[(raw_data2['wavelength (nm)']-min_wavelength).abs().argsort()].index[0] raw_data2 = raw_data2.iloc[initial_index:].reset_index(drop=True) final_index = raw_data2.iloc[(raw_data2['wavelength (nm)']-max_wavelength).abs().argsort()].index[0] raw_data2 = raw_data2.iloc[:final_index].reset_index(drop=True) absorption_data = raw_data2 absorption_data_normalized = absorption_data['absorption cross-section (m^2)'].values / np.max(absorption_data['absorption cross-section (m^2)'].values) absorption_spectrum = np.squeeze(np.array([[absorption_data['wavelength (nm)'].values], [absorption_data_normalized]], dtype=float)) interpolated_absorption_spectrum = interp1d(absorption_spectrum[0,:], absorption_spectrum[1,:], kind='cubic') # emission data fluorescence_spectrum_datafile = Path("data") / 'fluorescence_spectrum_R6G_in_EthyleneGlycol_corrected.csv' fluorescence_spectrum_datafile = Path(os.path.dirname(os.path.abspath(__file__))) / fluorescence_spectrum_datafile raw_data = pd.read_csv(fluorescence_spectrum_datafile) initial_index = raw_data.iloc[(raw_data['wavelength (nm)']-min_wavelength).abs().argsort()].index[0] raw_data = raw_data.iloc[initial_index:].reset_index(drop=True) final_index = raw_data.iloc[(raw_data['wavelength (nm)']-max_wavelength).abs().argsort()].index[0] raw_data = raw_data.iloc[:final_index].reset_index(drop=True) fluorescence_data = raw_data fluorescence_data_normalized = fluorescence_data['fluorescence (arb. units)'].values / np.max(fluorescence_data['fluorescence (arb. units)'].values) emission_spectrum = np.squeeze(np.array([[fluorescence_data['wavelength (nm)'].values], [fluorescence_data_normalized]], dtype=float)) interpolated_emission_spectrum = interp1d(emission_spectrum[0,:], emission_spectrum[1,:], kind='cubic') # Uses both datasets if np.min(1e9*np.array(lambdas)) < 480 or np.max(1e9*np.array(lambdas)) > 650: raise Exception('*** Restrict wavelength to the range between 480 and 650 nm ***') temperature = 300 lamZPL = 545e-9 n_mol_per_vol= dye_concentration*sc.Avogadro peak_Xsectn = 2.45e-20*n_mol_per_vol*sc.c/n wpzl = 2*np.pi*sc.c/lamZPL/1e12 def freq(wl): return 2*np.pi*sc.c/wl/1e12 def single_exp_func(det): f_p = 2*np.pi*sc.c/(wpzl+det)*1e-3 f_m = 2*np.pi*sc.c/(wpzl-det)*1e-3 return (0.5*interpolated_absorption_spectrum(f_p)) + (0.5*interpolated_emission_spectrum(f_m)) def Err(det): return Erf(det*1e12) def single_adjust_func(det): return ((1+Err(det))/2.0*single_exp_func(det)) + ((1-Err(det))/2.0*single_exp_func(-1.0*det)*np.exp(sc.h/(2*np.pi*sc.k*temperature)*det*1e12)) emission_rates = np.array([single_adjust_func(-1.0*freq(a_l)+wpzl) for a_l in lambdas])*peak_Xsectn absorption_rates = np.array([single_adjust_func(freq(a_l)-wpzl) for a_l in lambdas])*peak_Xsectn return absorption_rates, emission_rates
[((78, 14, 78, 55), 'pandas.read_csv', 'pd.read_csv', ({(78, 26, 78, 54): 'absorption_spectrum_datafile'}, {}), '(absorption_spectrum_datafile)', True, 'import pandas as pd\n'), ((86, 37, 86, 111), 'scipy.interpolate.interp1d', 'interp1d', (), '', False, 'from scipy.interpolate import interp1d\n'), ((91, 13, 91, 56), 'pandas.read_csv', 'pd.read_csv', ({(91, 25, 91, 55): 'fluorescence_spectrum_datafile'}, {}), '(fluorescence_spectrum_datafile)', True, 'import pandas as pd\n'), ((99, 35, 99, 105), 'scipy.interpolate.interp1d', 'interp1d', (), '', False, 'from scipy.interpolate import interp1d\n'), ((76, 33, 76, 45), 'pathlib.Path', 'Path', ({(76, 38, 76, 44): '"""data"""'}, {}), "('data')", False, 'from pathlib import Path\n'), ((84, 90, 84, 154), 'numpy.max', 'np.max', ({(84, 97, 84, 153): "absorption_data['absorption cross-section (m^2)'].values"}, {}), "(absorption_data['absorption cross-section (m^2)'].values)", True, 'import numpy as np\n'), ((85, 35, 85, 133), 'numpy.array', 'np.array', (), '', True, 'import numpy as np\n'), ((89, 36, 89, 48), 'pathlib.Path', 'Path', ({(89, 41, 89, 47): '"""data"""'}, {}), "('data')", False, 'from pathlib import Path\n'), ((97, 89, 97, 150), 'numpy.max', 'np.max', ({(97, 96, 97, 149): "fluorescence_data['fluorescence (arb. units)'].values"}, {}), "(fluorescence_data['fluorescence (arb. units)'].values)", True, 'import numpy as np\n'), ((98, 33, 98, 135), 'numpy.array', 'np.array', (), '', True, 'import numpy as np\n'), ((118, 10, 118, 23), 'scipy.special.erf', 'Erf', ({(118, 14, 118, 22): '(det * 1000000000000.0)'}, {}), '(det * 1000000000000.0)', True, 'from scipy.special import erf as Erf\n'), ((77, 54, 77, 79), 'os.path.abspath', 'os.path.abspath', ({(77, 70, 77, 78): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((90, 56, 90, 81), 'os.path.abspath', 'os.path.abspath', ({(90, 72, 90, 80): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((120, 96, 120, 144), 'numpy.exp', 'np.exp', ({(120, 103, 120, 143): '(sc.h / (2 * np.pi * sc.k * temperature) * det * 1000000000000.0)'}, {}), '(sc.h / (2 * np.pi * sc.k * temperature) * det * 1000000000000.0)', True, 'import numpy as np\n'), ((102, 16, 102, 33), 'numpy.array', 'np.array', ({(102, 25, 102, 32): 'lambdas'}, {}), '(lambdas)', True, 'import numpy as np\n'), ((102, 55, 102, 72), 'numpy.array', 'np.array', ({(102, 64, 102, 71): 'lambdas'}, {}), '(lambdas)', True, 'import numpy as np\n')]
dslowikowski/commcare-hq
corehq/apps/appstore/urls.py
ad8885cf8dab69dc85cb64f37aeaf06106124797
from django.conf.urls.defaults import url, include, patterns from corehq.apps.appstore.dispatcher import AppstoreDispatcher store_urls = patterns('corehq.apps.appstore.views', url(r'^$', 'appstore_default', name="appstore_interfaces_default"), AppstoreDispatcher.url_pattern(), ) urlpatterns = patterns('corehq.apps.appstore.views', url(r'^$', 'appstore', name='appstore'), url(r'^api/', 'appstore_api', name='appstore_api'), url(r'^store/', include(store_urls)), url(r'^(?P<domain>[\w\.-]+)/info/$', 'project_info', name='project_info'), url(r'^deployments/$', 'deployments', name='deployments'), url(r'^deployments/api/$', 'deployments_api', name='deployments_api'), url(r'^deployments/(?P<domain>[\w\.-]+)/info/$', 'deployment_info', name='deployment_info'), url(r'^(?P<domain>[\w\.-]+)/approve/$', 'approve_app', name='approve_appstore_app'), url(r'^(?P<domain>[\w\.-]+)/copy/$', 'copy_snapshot', name='domain_copy_snapshot'), url(r'^(?P<domain>[\w\.-]+)/importapp/$', 'import_app', name='import_app_from_snapshot'), url(r'^(?P<domain>[\w\.-]+)/image/$', 'project_image', name='appstore_project_image'), url(r'^(?P<domain>[\w\.-]+)/multimedia/$', 'media_files', name='media_files'), )
[((5, 4, 5, 70), 'django.conf.urls.defaults.url', 'url', (), '', False, 'from django.conf.urls.defaults import url, include, patterns\n'), ((6, 4, 6, 36), 'corehq.apps.appstore.dispatcher.AppstoreDispatcher.url_pattern', 'AppstoreDispatcher.url_pattern', ({}, {}), '()', False, 'from corehq.apps.appstore.dispatcher import AppstoreDispatcher\n'), ((10, 4, 10, 43), 'django.conf.urls.defaults.url', 'url', (), '', False, 'from django.conf.urls.defaults import url, include, patterns\n'), ((11, 4, 11, 54), 'django.conf.urls.defaults.url', 'url', (), '', False, 'from django.conf.urls.defaults import url, include, patterns\n'), ((14, 4, 14, 77), 'django.conf.urls.defaults.url', 'url', (), '', False, 'from django.conf.urls.defaults import url, include, patterns\n'), ((16, 4, 16, 61), 'django.conf.urls.defaults.url', 'url', (), '', False, 'from django.conf.urls.defaults import url, include, patterns\n'), ((17, 4, 17, 73), 'django.conf.urls.defaults.url', 'url', (), '', False, 'from django.conf.urls.defaults import url, include, patterns\n'), ((18, 4, 18, 95), 'django.conf.urls.defaults.url', 'url', (), '', False, 'from django.conf.urls.defaults import url, include, patterns\n'), ((20, 4, 20, 87), 'django.conf.urls.defaults.url', 'url', (), '', False, 'from django.conf.urls.defaults import url, include, patterns\n'), ((21, 4, 21, 86), 'django.conf.urls.defaults.url', 'url', (), '', False, 'from django.conf.urls.defaults import url, include, patterns\n'), ((22, 4, 22, 92), 'django.conf.urls.defaults.url', 'url', (), '', False, 'from django.conf.urls.defaults import url, include, patterns\n'), ((23, 4, 23, 89), 'django.conf.urls.defaults.url', 'url', (), '', False, 'from django.conf.urls.defaults import url, include, patterns\n'), ((24, 4, 24, 81), 'django.conf.urls.defaults.url', 'url', (), '', False, 'from django.conf.urls.defaults import url, include, patterns\n'), ((12, 20, 12, 39), 'django.conf.urls.defaults.include', 'include', ({(12, 28, 12, 38): 'store_urls'}, {}), '(store_urls)', False, 'from django.conf.urls.defaults import url, include, patterns\n')]
fengkaibit/faster-rcnn_vgg16_fpn
faster-rcnn-vgg16-fpn/model/fpn.py
354efd4b5f4d4a42e9c92f48501e02cd7f0c0cdb
from __future__ import absolute_import import torch from torch.nn import functional class FPN(torch.nn.Module): def __init__(self, out_channels): super(FPN, self).__init__() self.out_channels = out_channels self.P5 = torch.nn.MaxPool2d(kernel_size=1, stride=2, padding=0) self.P4_conv1 = torch.nn.Conv2d(512, self.out_channels, kernel_size=1, stride=1, padding=0) self.P4_conv2 = torch.nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1) self.P3_conv1 = torch.nn.Conv2d(512, self.out_channels, kernel_size=1, stride=1, padding=0) self.P3_conv2 = torch.nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1) self.P2_conv1 = torch.nn.Conv2d(256, self.out_channels, kernel_size=1, stride=1, padding=0) self.P2_conv2 = torch.nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1) normal_init(self.P4_conv1, 0, 0.01) normal_init(self.P4_conv2, 0, 0.01) normal_init(self.P3_conv1, 0, 0.01) normal_init(self.P3_conv2, 0, 0.01) normal_init(self.P2_conv1, 0, 0.01) normal_init(self.P2_conv2, 0, 0.01) def forward(self, C2, C3, C4): p4_out = self.P4_conv1(C4) p5_out = self.P5(p4_out) p3_out = self._upsample_add(p4_out, self.P3_conv1(C3)) p2_out = self._upsample_add(p3_out, self.P2_conv1(C2)) p4_out = self.P4_conv2(p4_out) p3_out = self.P3_conv2(p3_out) p2_out = self.P2_conv2(p2_out) return p2_out, p3_out, p4_out, p5_out def _upsample_add(self, x, y): '''Upsample and add two feature maps. Args: x: (Variable) top feature map to be upsampled. y: (Variable) lateral feature map. Returns: (Variable) added feature map. Note in PyTorch, when input size is odd, the upsampled feature map with `F.upsample(..., scale_factor=2, mode='nearest')` maybe not equal to the lateral feature map size. e.g. original input size: [N,_,15,15] -> conv2d feature map size: [N,_,8,8] -> upsampled feature map size: [N,_,16,16] So we choose bilinear upsample which supports arbitrary output sizes. ''' _,_,H,W = y.size() return functional.interpolate(x, size=(H,W), mode='bilinear') + y def normal_init(m, mean, stddev, truncated=False): """ weight initalizer: truncated normal and random normal. """ # x is a parameter if truncated: m.weight.data.normal_().fmod_(2).mul_(stddev).add_(mean) # not a perfect approximation else: m.weight.data.normal_(mean, stddev) m.bias.data.zero_()
[((10, 18, 10, 72), 'torch.nn.MaxPool2d', 'torch.nn.MaxPool2d', (), '', False, 'import torch\n'), ((12, 24, 12, 99), 'torch.nn.Conv2d', 'torch.nn.Conv2d', (), '', False, 'import torch\n'), ((13, 24, 13, 86), 'torch.nn.Conv2d', 'torch.nn.Conv2d', ({(13, 40, 13, 57): 'self.out_channels', (13, 59, 13, 76): 'self.out_channels', (13, 78, 13, 79): '3', (13, 81, 13, 82): '1', (13, 84, 13, 85): '1'}, {}), '(self.out_channels, self.out_channels, 3, 1, 1)', False, 'import torch\n'), ((15, 24, 15, 99), 'torch.nn.Conv2d', 'torch.nn.Conv2d', (), '', False, 'import torch\n'), ((16, 24, 16, 86), 'torch.nn.Conv2d', 'torch.nn.Conv2d', ({(16, 40, 16, 57): 'self.out_channels', (16, 59, 16, 76): 'self.out_channels', (16, 78, 16, 79): '3', (16, 81, 16, 82): '1', (16, 84, 16, 85): '1'}, {}), '(self.out_channels, self.out_channels, 3, 1, 1)', False, 'import torch\n'), ((18, 24, 18, 99), 'torch.nn.Conv2d', 'torch.nn.Conv2d', (), '', False, 'import torch\n'), ((19, 24, 19, 86), 'torch.nn.Conv2d', 'torch.nn.Conv2d', ({(19, 40, 19, 57): 'self.out_channels', (19, 59, 19, 76): 'self.out_channels', (19, 78, 19, 79): '3', (19, 81, 19, 82): '1', (19, 84, 19, 85): '1'}, {}), '(self.out_channels, self.out_channels, 3, 1, 1)', False, 'import torch\n'), ((61, 15, 61, 69), 'torch.nn.functional.interpolate', 'functional.interpolate', (), '', False, 'from torch.nn import functional\n')]
bowlofstew/client
test/setups/finders/finders_test.py
0d5ae42aaf9863e3871828b6df06170aad17c560
import unittest from biicode.common.settings.version import Version from mock import patch from biicode.client.setups.finders.finders import gnu_version from biicode.client.setups.rpi_cross_compiler import find_gnu_arm from biicode.client.workspace.bii_paths import get_biicode_env_folder_path GCC_VERSION_MAC = '''Configured with: --prefix=/Applications/Xcode.app/Contents/Developer/usr --with-gxx-include-dir=/usr/include/c++/4.2.1 Apple LLVM version 5.1 (clang-503.0.38) (based on LLVM 3.4svn) Target: x86_64-apple-darwin13.1.0 Thread model: posix''' GCC_VERSION_UBUNTU = '''gcc (Ubuntu/Linaro 4.8.1-10ubuntu9) 4.8.1 Copyright (C) 2013 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. ''' GCC_VERSION_WIN = '''gcc (GCC) 4.8.1 Copyright (C) 2013 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.''' class FindersTest(unittest.TestCase): @patch('biicode.client.setups.finders.finders.execute') def test_gnu_version_detection(self, execute_mock): execute_mock.return_value = ("", GCC_VERSION_MAC) self.assertEquals(gnu_version('gnu'), Version('4.2.1')) execute_mock.return_value = ("", GCC_VERSION_UBUNTU) self.assertEquals(gnu_version('gnu'), Version('4.8.1')) execute_mock.return_value = ("", GCC_VERSION_WIN) self.assertEquals(gnu_version('gnu'), Version('4.8.1')) @patch('os.path.exists') def test_find_gnu_arm(self, exists): exists.return_value = False self.assertEqual((None, None), find_gnu_arm()) exists.return_value = True c_path, cpp_path = find_gnu_arm() inst_path = get_biicode_env_folder_path().replace('\\', '/') c_path = c_path.replace('\\', '/') cpp_path = cpp_path.replace('\\', '/') inst_path = '%s/raspberry_cross_compilers/arm-bcm2708/'\ 'arm-bcm2708hardfp-linux-gnueabi/bin/'\ 'arm-bcm2708hardfp-linux-gnueabi' % inst_path self.assertTrue(cpp_path.endswith('%s-g++' % inst_path)) self.assertTrue(c_path.endswith('%s-gcc' % inst_path))
[((28, 5, 28, 59), 'mock.patch', 'patch', ({(28, 11, 28, 58): '"""biicode.client.setups.finders.finders.execute"""'}, {}), "('biicode.client.setups.finders.finders.execute')", False, 'from mock import patch\n'), ((37, 5, 37, 28), 'mock.patch', 'patch', ({(37, 11, 37, 27): '"""os.path.exists"""'}, {}), "('os.path.exists')", False, 'from mock import patch\n'), ((43, 27, 43, 41), 'biicode.client.setups.rpi_cross_compiler.find_gnu_arm', 'find_gnu_arm', ({}, {}), '()', False, 'from biicode.client.setups.rpi_cross_compiler import find_gnu_arm\n'), ((31, 26, 31, 44), 'biicode.client.setups.finders.finders.gnu_version', 'gnu_version', ({(31, 38, 31, 43): '"""gnu"""'}, {}), "('gnu')", False, 'from biicode.client.setups.finders.finders import gnu_version\n'), ((31, 46, 31, 62), 'biicode.common.settings.version.Version', 'Version', ({(31, 54, 31, 61): '"""4.2.1"""'}, {}), "('4.2.1')", False, 'from biicode.common.settings.version import Version\n'), ((33, 26, 33, 44), 'biicode.client.setups.finders.finders.gnu_version', 'gnu_version', ({(33, 38, 33, 43): '"""gnu"""'}, {}), "('gnu')", False, 'from biicode.client.setups.finders.finders import gnu_version\n'), ((33, 46, 33, 62), 'biicode.common.settings.version.Version', 'Version', ({(33, 54, 33, 61): '"""4.8.1"""'}, {}), "('4.8.1')", False, 'from biicode.common.settings.version import Version\n'), ((35, 26, 35, 44), 'biicode.client.setups.finders.finders.gnu_version', 'gnu_version', ({(35, 38, 35, 43): '"""gnu"""'}, {}), "('gnu')", False, 'from biicode.client.setups.finders.finders import gnu_version\n'), ((35, 46, 35, 62), 'biicode.common.settings.version.Version', 'Version', ({(35, 54, 35, 61): '"""4.8.1"""'}, {}), "('4.8.1')", False, 'from biicode.common.settings.version import Version\n'), ((40, 39, 40, 53), 'biicode.client.setups.rpi_cross_compiler.find_gnu_arm', 'find_gnu_arm', ({}, {}), '()', False, 'from biicode.client.setups.rpi_cross_compiler import find_gnu_arm\n'), ((44, 20, 44, 49), 'biicode.client.workspace.bii_paths.get_biicode_env_folder_path', 'get_biicode_env_folder_path', ({}, {}), '()', False, 'from biicode.client.workspace.bii_paths import get_biicode_env_folder_path\n')]
mintmachine/arweave-python-client
setup.py
69e8e2d32090de5fd276efdb9b9103d91b4182f6
from distutils.core import setup setup( name="arweave-python-client", packages = ['arweave'], # this must be the same as the name above version="1.0.15.dev0", description="Client interface for sending transactions on the Arweave permaweb", author="Mike Hibbert", author_email="[email protected]", url="https://github.com/MikeHibbert/arweave-python-client", download_url="https://github.com/MikeHibbert/arweave-python-client", keywords=['arweave', 'crypto'], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], install_requires=[ 'arrow', 'python-jose', 'pynacl', 'pycryptodome', 'cryptography', 'requests', 'psutil' ], )
[((3, 0, 27, 1), 'distutils.core.setup', 'setup', (), '', False, 'from distutils.core import setup\n')]
syonoki/exchange_calendars
exchange_calendars/extensions/exchange_calendar_krx.py
639ab0f88a874af99bb601824a8ffef2572820d4
""" Last update: 2018-10-26 """ from exchange_calendars.extensions.calendar_extension import ExtendedExchangeCalendar from pandas import ( Timestamp, ) from pandas.tseries.holiday import ( Holiday, previous_friday, ) from exchange_calendars.exchange_calendar import HolidayCalendar from datetime import time from itertools import chain from pytz import timezone KRNewYearsDay = Holiday( 'New Years Day', month=1, day=1) KRIndependenceDay = Holiday( 'Independence Day', month=3, day=1 ) KRArbourDay = Holiday( 'Arbour Day', month=4, day=5, end_date=Timestamp('2006-01-01'), ) KRLabourDay = Holiday( 'Labour Day', month=5, day=1 ) KRChildrensDay = Holiday( 'Labour Day', month=5, day=5 ) # 현충일 KRMemorialDay = Holiday( 'Memorial Day', month=6, day=6 ) # 제헌절 KRConstitutionDay = Holiday( 'Constitution Day', month=7, day=17, end_date=Timestamp('2008-01-01') ) # 광복절 KRLiberationDay = Holiday( 'Liberation Day', month=8, day=15 ) # 개천절 KRNationalFoundationDay = Holiday( 'NationalFoundationDay', month=10, day=3 ) Christmas = Holiday( 'Christmas', month=12, day=25 ) # 한글날 KRHangulProclamationDay = Holiday( 'Hangul Proclamation Day', month=10, day=9, start_date=Timestamp('2013-01-01') ) # KRX 연말 휴장 KRXEndOfYearClosing = Holiday( 'KRX Year-end Closing', month=12, day=31, observance=previous_friday, start_date=Timestamp('2001-01-01') ) KRXEndOfYearClosing2000 = [ Timestamp('2000-12-27', tz='UTC'), Timestamp('2000-12-28', tz='UTC'), Timestamp('2000-12-29', tz='UTC'), Timestamp('2000-12-30', tz='UTC'), ] # Lunar New Year KRLunarNewYear = [ # 2000 Timestamp('2000-02-04', tz='UTC'), # 2001 Timestamp('2001-01-23', tz='UTC'), Timestamp('2001-01-24', tz='UTC'), Timestamp('2001-01-25', tz='UTC'), # 2002 Timestamp('2002-02-11', tz='UTC'), Timestamp('2002-02-12', tz='UTC'), Timestamp('2002-02-13', tz='UTC'), # 2003 Timestamp('2003-01-31', tz='UTC'), # 2004 Timestamp('2004-01-21', tz='UTC'), Timestamp('2004-01-22', tz='UTC'), Timestamp('2004-01-23', tz='UTC'), # 2005 Timestamp('2005-02-08', tz='UTC'), Timestamp('2005-02-09', tz='UTC'), Timestamp('2005-02-10', tz='UTC'), # 2006 Timestamp('2006-01-28', tz='UTC'), Timestamp('2006-01-29', tz='UTC'), Timestamp('2006-01-30', tz='UTC'), # 2007 Timestamp('2007-02-19', tz='UTC'), # 2008 Timestamp('2008-02-06', tz='UTC'), Timestamp('2008-02-07', tz='UTC'), Timestamp('2008-02-08', tz='UTC'), # 2009 Timestamp('2009-01-25', tz='UTC'), Timestamp('2009-01-26', tz='UTC'), Timestamp('2009-01-27', tz='UTC'), # 2010 Timestamp('2010-02-13', tz='UTC'), Timestamp('2010-02-14', tz='UTC'), Timestamp('2010-02-15', tz='UTC'), # 2011 Timestamp('2011-02-02', tz='UTC'), Timestamp('2011-02-03', tz='UTC'), Timestamp('2011-02-04', tz='UTC'), # 2012 Timestamp('2012-01-23', tz='UTC'), Timestamp('2012-01-24', tz='UTC'), # 2013 Timestamp('2013-02-11', tz='UTC'), # 2014 Timestamp('2014-01-30', tz='UTC'), Timestamp('2014-01-31', tz='UTC'), # 2015 Timestamp('2015-02-18', tz='UTC'), Timestamp('2015-02-19', tz='UTC'), Timestamp('2015-02-20', tz='UTC'), # 2016 Timestamp('2016-02-07', tz='UTC'), Timestamp('2016-02-08', tz='UTC'), Timestamp('2016-02-09', tz='UTC'), Timestamp('2016-02-10', tz='UTC'), # 2017 Timestamp('2017-01-27', tz='UTC'), Timestamp('2017-01-28', tz='UTC'), Timestamp('2017-01-29', tz='UTC'), Timestamp('2017-01-30', tz='UTC'), # 2018 Timestamp('2018-02-15', tz='UTC'), Timestamp('2018-02-16', tz='UTC'), Timestamp('2018-02-17', tz='UTC'), # 2019 Timestamp('2019-02-04', tz='UTC'), Timestamp('2019-02-05', tz='UTC'), Timestamp('2019-02-06', tz='UTC'), # 2020 Timestamp('2020-01-24', tz='UTC'), Timestamp('2020-01-25', tz='UTC'), Timestamp('2020-01-26', tz='UTC'), Timestamp('2020-01-27', tz='UTC'), # 2021 Timestamp('2021-02-11', tz='UTC'), Timestamp('2021-02-12', tz='UTC'), # 2022 Timestamp('2022-01-31', tz='UTC'), Timestamp('2022-02-01', tz='UTC'), Timestamp('2022-02-02', tz='UTC'), ] # Election Days KRElectionDays = [ Timestamp('2000-04-13', tz='UTC'), # National Assembly Timestamp('2002-06-13', tz='UTC'), # Regional election Timestamp('2002-12-19', tz='UTC'), # Presidency Timestamp('2004-04-15', tz='UTC'), # National Assembly Timestamp('2006-05-31', tz='UTC'), # Regional election Timestamp('2007-12-19', tz='UTC'), # Presidency Timestamp('2008-04-09', tz='UTC'), # National Assembly Timestamp('2010-06-02', tz='UTC'), # Local election Timestamp('2012-04-11', tz='UTC'), # National Assembly Timestamp('2012-12-19', tz='UTC'), # Presidency Timestamp('2014-06-04', tz='UTC'), # Local election Timestamp('2016-04-13', tz='UTC'), # National Assembly Timestamp('2017-05-09', tz='UTC'), # Presidency Timestamp('2018-06-13', tz='UTC'), # Local election Timestamp('2020-04-15', tz='UTC'), # National Assembly Timestamp('2022-03-09', tz='UTC'), # Presidency Timestamp('2022-06-01', tz='UTC'), # Local election ] # Buddha's birthday KRBuddhasBirthday = [ Timestamp('2000-05-11', tz='UTC'), Timestamp('2001-05-01', tz='UTC'), Timestamp('2003-05-08', tz='UTC'), Timestamp('2004-05-26', tz='UTC'), Timestamp('2005-05-15', tz='UTC'), Timestamp('2006-05-05', tz='UTC'), Timestamp('2007-05-24', tz='UTC'), Timestamp('2008-05-12', tz='UTC'), Timestamp('2009-05-02', tz='UTC'), Timestamp('2010-05-21', tz='UTC'), Timestamp('2011-05-10', tz='UTC'), Timestamp('2012-05-28', tz='UTC'), Timestamp('2013-05-17', tz='UTC'), Timestamp('2014-05-06', tz='UTC'), Timestamp('2015-05-25', tz='UTC'), Timestamp('2016-05-14', tz='UTC'), Timestamp('2017-05-03', tz='UTC'), Timestamp('2018-05-22', tz='UTC'), Timestamp('2020-04-30', tz='UTC'), Timestamp('2021-05-19', tz='UTC'), ] # Harvest Moon Day KRHarvestMoonDay = [ # 2000 Timestamp('2000-09-11', tz='UTC'), Timestamp('2000-09-12', tz='UTC'), Timestamp('2000-09-13', tz='UTC'), # 2001 Timestamp('2001-10-01', tz='UTC'), Timestamp('2001-10-02', tz='UTC'), # 2002 Timestamp('2002-09-20', tz='UTC'), # 2003 Timestamp('2003-09-10', tz='UTC'), Timestamp('2003-09-11', tz='UTC'), Timestamp('2003-09-12', tz='UTC'), # 2004 Timestamp('2004-09-27', tz='UTC'), Timestamp('2004-09-28', tz='UTC'), Timestamp('2004-09-29', tz='UTC'), # 2005 Timestamp('2005-09-17', tz='UTC'), Timestamp('2005-09-18', tz='UTC'), Timestamp('2005-09-19', tz='UTC'), # 2006 Timestamp('2006-10-05', tz='UTC'), Timestamp('2006-10-06', tz='UTC'), Timestamp('2006-10-07', tz='UTC'), # 2007 Timestamp('2007-09-24', tz='UTC'), Timestamp('2007-09-25', tz='UTC'), Timestamp('2007-09-26', tz='UTC'), # 2008 Timestamp('2008-09-13', tz='UTC'), Timestamp('2008-09-14', tz='UTC'), Timestamp('2008-09-15', tz='UTC'), # 2009 Timestamp('2009-10-02', tz='UTC'), Timestamp('2009-10-03', tz='UTC'), Timestamp('2009-10-04', tz='UTC'), # 2010 Timestamp('2010-09-21', tz='UTC'), Timestamp('2010-09-22', tz='UTC'), Timestamp('2010-09-23', tz='UTC'), # 2011 Timestamp('2011-09-12', tz='UTC'), Timestamp('2011-09-13', tz='UTC'), # 2012 Timestamp('2012-10-01', tz='UTC'), # 2013 Timestamp('2013-09-18', tz='UTC'), Timestamp('2013-09-19', tz='UTC'), Timestamp('2013-09-20', tz='UTC'), # 2014 Timestamp('2014-09-08', tz='UTC'), Timestamp('2014-09-09', tz='UTC'), Timestamp('2014-09-10', tz='UTC'), # 2015 Timestamp('2015-09-28', tz='UTC'), Timestamp('2015-09-29', tz='UTC'), # 2016 Timestamp('2016-09-14', tz='UTC'), Timestamp('2016-09-15', tz='UTC'), Timestamp('2016-09-16', tz='UTC'), # 2017 Timestamp('2017-10-03', tz='UTC'), Timestamp('2017-10-04', tz='UTC'), Timestamp('2017-10-05', tz='UTC'), Timestamp('2017-10-06', tz='UTC'), # 2018 Timestamp('2018-09-23', tz='UTC'), Timestamp('2018-09-24', tz='UTC'), Timestamp('2018-09-25', tz='UTC'), Timestamp('2018-09-26', tz='UTC'), # 2019 Timestamp('2019-09-12', tz='UTC'), Timestamp('2019-09-13', tz='UTC'), # 2020 Timestamp('2020-09-30', tz='UTC'), Timestamp('2020-10-01', tz='UTC'), Timestamp('2020-10-02', tz='UTC'), # 2021 Timestamp('2021-09-20', tz='UTC'), Timestamp('2021-09-21', tz='UTC'), Timestamp('2021-09-22', tz='UTC'), # 2022 Timestamp('2022-09-09', tz='UTC'), Timestamp('2022-09-12', tz='UTC'), # 대체휴일 ] # 대체휴일 KRSubstitutionHolidayForChildrensDay2018 = [ Timestamp('2018-05-07', tz='UTC') ] # 임시공휴일 KRCelebrationForWorldCupHosting = [ Timestamp('2002-07-01', tz='UTC') ] KRSeventyYearsFromIndependenceDay = [ Timestamp('2015-08-14', tz='UTC') ] KRTemporaryHolidayForChildrensDay2016 = [ Timestamp('2016-05-06', tz='UTC') ] KRTemporaryHolidayForHarvestMoonDay2017 = [ Timestamp('2017-10-02', tz='UTC') ] KRTemporaryHolidayForChildrenDay2018 = [ Timestamp('2018-05-07', tz='UTC') ] KRTemporaryHolidayForChildrenDay2019 = [ Timestamp('2019-05-06', tz='UTC') ] KRTemporaryHolidayForLiberationDay2020 = [ Timestamp('2020-08-17', tz='UTC') ] KRTemporaryHoliday2021 = [ Timestamp('2021-08-16', tz='UTC'), # 광복절 대체휴일 Timestamp('2021-10-04', tz='UTC'), # 개천절 대체휴일 Timestamp('2021-10-11', tz='UTC'), # 한글날 대체휴일 ] KRTemporaryHoliday2022 = [ Timestamp('2022-10-10', tz='UTC'), # 한글날 대체휴일 ] # 잘 모르겠는 휴장일 HolidaysNeedToCheck = [ Timestamp('2000-01-03', tz='UTC') ] HolidaysBefore1999 = [ Timestamp('1990-01-01', tz='UTC'), Timestamp('1990-01-02', tz='UTC'), Timestamp('1990-01-03', tz='UTC'), Timestamp('1990-01-29', tz='UTC'), Timestamp('1990-03-01', tz='UTC'), Timestamp('1990-04-05', tz='UTC'), Timestamp('1990-05-02', tz='UTC'), Timestamp('1990-06-06', tz='UTC'), Timestamp('1990-07-17', tz='UTC'), Timestamp('1990-08-15', tz='UTC'), Timestamp('1990-09-03', tz='UTC'), Timestamp('1990-10-01', tz='UTC'), Timestamp('1990-10-03', tz='UTC'), Timestamp('1990-10-09', tz='UTC'), Timestamp('1990-12-25', tz='UTC'), Timestamp('1991-01-01', tz='UTC'), Timestamp('1991-01-02', tz='UTC'), Timestamp('1991-02-14', tz='UTC'), Timestamp('1991-02-15', tz='UTC'), Timestamp('1991-03-01', tz='UTC'), Timestamp('1991-04-05', tz='UTC'), Timestamp('1991-05-21', tz='UTC'), Timestamp('1991-06-06', tz='UTC'), Timestamp('1991-07-17', tz='UTC'), Timestamp('1991-08-15', tz='UTC'), Timestamp('1991-09-23', tz='UTC'), Timestamp('1991-10-03', tz='UTC'), Timestamp('1991-12-25', tz='UTC'), Timestamp('1991-12-30', tz='UTC'), Timestamp('1992-01-01', tz='UTC'), Timestamp('1992-09-10', tz='UTC'), Timestamp('1992-09-11', tz='UTC'), Timestamp('1992-10-03', tz='UTC'), Timestamp('1992-12-25', tz='UTC'), Timestamp('1992-12-29', tz='UTC'), Timestamp('1992-12-30', tz='UTC'), Timestamp('1992-12-31', tz='UTC'), Timestamp('1993-01-01', tz='UTC'), Timestamp('1993-01-22', tz='UTC'), Timestamp('1993-03-01', tz='UTC'), Timestamp('1993-04-05', tz='UTC'), Timestamp('1993-05-05', tz='UTC'), Timestamp('1993-05-28', tz='UTC'), Timestamp('1993-07-17', tz='UTC'), Timestamp('1993-09-29', tz='UTC'), Timestamp('1993-09-30', tz='UTC'), Timestamp('1993-10-01', tz='UTC'), Timestamp('1993-12-29', tz='UTC'), Timestamp('1993-12-30', tz='UTC'), Timestamp('1993-12-31', tz='UTC'), Timestamp('1994-01-02', tz='UTC'), Timestamp('1994-02-09', tz='UTC'), Timestamp('1994-02-10', tz='UTC'), Timestamp('1994-02-11', tz='UTC'), Timestamp('1994-03-01', tz='UTC'), Timestamp('1994-04-05', tz='UTC'), Timestamp('1994-05-05', tz='UTC'), Timestamp('1994-06-06', tz='UTC'), Timestamp('1994-07-17', tz='UTC'), Timestamp('1994-08-15', tz='UTC'), Timestamp('1994-09-19', tz='UTC'), Timestamp('1994-09-20', tz='UTC'), Timestamp('1994-09-21', tz='UTC'), Timestamp('1994-10-03', tz='UTC'), Timestamp('1994-12-29', tz='UTC'), Timestamp('1994-12-30', tz='UTC'), Timestamp('1995-01-02', tz='UTC'), Timestamp('1995-01-30', tz='UTC'), Timestamp('1995-01-31', tz='UTC'), Timestamp('1995-02-01', tz='UTC'), Timestamp('1995-03-01', tz='UTC'), Timestamp('1995-05-01', tz='UTC'), Timestamp('1995-05-05', tz='UTC'), Timestamp('1995-06-06', tz='UTC'), Timestamp('1995-06-27', tz='UTC'), Timestamp('1995-07-17', tz='UTC'), Timestamp('1995-08-15', tz='UTC'), Timestamp('1995-09-08', tz='UTC'), Timestamp('1995-09-09', tz='UTC'), Timestamp('1995-10-03', tz='UTC'), Timestamp('1995-12-22', tz='UTC'), Timestamp('1995-12-25', tz='UTC'), Timestamp('1995-12-28', tz='UTC'), Timestamp('1995-12-29', tz='UTC'), Timestamp('1995-12-30', tz='UTC'), Timestamp('1995-12-31', tz='UTC'), Timestamp('1996-01-01', tz='UTC'), Timestamp('1996-01-02', tz='UTC'), Timestamp('1996-02-19', tz='UTC'), Timestamp('1996-02-20', tz='UTC'), Timestamp('1996-03-01', tz='UTC'), Timestamp('1996-04-05', tz='UTC'), Timestamp('1996-04-11', tz='UTC'), Timestamp('1996-05-01', tz='UTC'), Timestamp('1996-05-05', tz='UTC'), Timestamp('1996-05-24', tz='UTC'), Timestamp('1996-06-06', tz='UTC'), Timestamp('1996-07-17', tz='UTC'), Timestamp('1996-08-15', tz='UTC'), Timestamp('1996-09-26', tz='UTC'), Timestamp('1996-09-27', tz='UTC'), Timestamp('1996-09-28', tz='UTC'), Timestamp('1996-10-03', tz='UTC'), Timestamp('1996-12-25', tz='UTC'), Timestamp('1996-12-30', tz='UTC'), Timestamp('1996-12-31', tz='UTC'), Timestamp('1997-01-01', tz='UTC'), Timestamp('1997-01-02', tz='UTC'), Timestamp('1997-02-07', tz='UTC'), Timestamp('1997-02-08', tz='UTC'), Timestamp('1997-03-01', tz='UTC'), Timestamp('1997-04-05', tz='UTC'), Timestamp('1997-05-05', tz='UTC'), Timestamp('1997-05-14', tz='UTC'), Timestamp('1997-06-06', tz='UTC'), Timestamp('1997-07-17', tz='UTC'), Timestamp('1997-08-15', tz='UTC'), Timestamp('1997-09-16', tz='UTC'), Timestamp('1997-09-17', tz='UTC'), Timestamp('1997-10-03', tz='UTC'), Timestamp('1997-12-25', tz='UTC'), Timestamp('1998-01-01', tz='UTC'), Timestamp('1998-01-02', tz='UTC'), Timestamp('1998-01-27', tz='UTC'), Timestamp('1998-01-28', tz='UTC'), Timestamp('1998-01-29', tz='UTC'), Timestamp('1998-03-01', tz='UTC'), Timestamp('1998-04-05', tz='UTC'), Timestamp('1998-05-01', tz='UTC'), Timestamp('1998-05-03', tz='UTC'), Timestamp('1998-05-05', tz='UTC'), Timestamp('1998-06-04', tz='UTC'), Timestamp('1998-06-06', tz='UTC'), Timestamp('1998-07-17', tz='UTC'), Timestamp('1998-08-15', tz='UTC'), Timestamp('1998-10-03', tz='UTC'), Timestamp('1998-10-04', tz='UTC'), Timestamp('1998-10-05', tz='UTC'), Timestamp('1998-10-06', tz='UTC'), Timestamp('1998-12-25', tz='UTC'), Timestamp('1998-12-31', tz='UTC'), Timestamp('1999-01-01', tz='UTC'), Timestamp('1999-02-15', tz='UTC'), Timestamp('1999-02-16', tz='UTC'), Timestamp('1999-02-17', tz='UTC'), Timestamp('1999-03-01', tz='UTC'), Timestamp('1999-04-05', tz='UTC'), Timestamp('1999-05-05', tz='UTC'), Timestamp('1999-05-22', tz='UTC'), Timestamp('1999-06-06', tz='UTC'), Timestamp('1999-07-17', tz='UTC'), Timestamp('1999-09-23', tz='UTC'), Timestamp('1999-09-24', tz='UTC'), Timestamp('1999-09-25', tz='UTC'), Timestamp('1999-10-03', tz='UTC'), Timestamp('1999-12-29', tz='UTC'), Timestamp('1999-12-30', tz='UTC'), Timestamp('1999-12-31', tz='UTC'), ] class KRXExchangeCalendar(ExtendedExchangeCalendar): """ Exchange calendars for KRX Open Time: 9:00 AM, Asia/Seoul Close Time: 3:30 PM, Asia/Seoul (3:00 PM until 2016/07/31) """ @property def name(self): return "KRX" @property def tz(self): # return timezone('Asia/Seoul') return timezone('UTC') @property def open_time(self): return time(9, 0) @property def open_times(self): return [(None, time(9, 0))] @property def close_time(self): return time(15, 30) @property def close_times(self): return [(None, time(15, 30))] @property def regular_holidays(self): return HolidayCalendar([ KRNewYearsDay, KRIndependenceDay, KRArbourDay, KRLabourDay, KRChildrensDay, KRMemorialDay, KRConstitutionDay, KRLiberationDay, KRNationalFoundationDay, Christmas, KRHangulProclamationDay, KRXEndOfYearClosing ]) @property def special_closes(self): return [] @property def adhoc_holidays(self): return list(chain( KRXEndOfYearClosing2000, KRLunarNewYear, KRElectionDays, KRBuddhasBirthday, KRHarvestMoonDay, KRSubstitutionHolidayForChildrensDay2018, KRCelebrationForWorldCupHosting, KRSeventyYearsFromIndependenceDay, KRTemporaryHolidayForChildrensDay2016, KRTemporaryHolidayForHarvestMoonDay2017, KRTemporaryHolidayForChildrenDay2018, KRTemporaryHolidayForChildrenDay2019, HolidaysNeedToCheck, KRTemporaryHolidayForLiberationDay2020, KRTemporaryHoliday2021, HolidaysBefore1999, )) def __hash__(self): return hash(self.name) def __eq__(self, other): return self.__class__ == other.__class__
[((19, 16, 22, 10), 'pandas.tseries.holiday.Holiday', 'Holiday', (), '', False, 'from pandas.tseries.holiday import Holiday, previous_friday\n'), ((24, 20, 28, 1), 'pandas.tseries.holiday.Holiday', 'Holiday', (), '', False, 'from pandas.tseries.holiday import Holiday, previous_friday\n'), ((37, 14, 41, 1), 'pandas.tseries.holiday.Holiday', 'Holiday', (), '', False, 'from pandas.tseries.holiday import Holiday, previous_friday\n'), ((43, 17, 47, 1), 'pandas.tseries.holiday.Holiday', 'Holiday', (), '', False, 'from pandas.tseries.holiday import Holiday, previous_friday\n'), ((50, 16, 54, 1), 'pandas.tseries.holiday.Holiday', 'Holiday', (), '', False, 'from pandas.tseries.holiday import Holiday, previous_friday\n'), ((65, 18, 69, 1), 'pandas.tseries.holiday.Holiday', 'Holiday', (), '', False, 'from pandas.tseries.holiday import Holiday, previous_friday\n'), ((72, 26, 76, 1), 'pandas.tseries.holiday.Holiday', 'Holiday', (), '', False, 'from pandas.tseries.holiday import Holiday, previous_friday\n'), ((78, 12, 82, 1), 'pandas.tseries.holiday.Holiday', 'Holiday', (), '', False, 'from pandas.tseries.holiday import Holiday, previous_friday\n'), ((102, 4, 102, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((103, 4, 103, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((104, 4, 104, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((105, 4, 105, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((111, 4, 111, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((113, 4, 113, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((114, 4, 114, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((115, 4, 115, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((117, 4, 117, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((118, 4, 118, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((119, 4, 119, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((121, 4, 121, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((123, 4, 123, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((124, 4, 124, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((125, 4, 125, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((128, 4, 128, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((129, 4, 129, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((130, 4, 130, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((133, 4, 133, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((134, 4, 134, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((135, 4, 135, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((138, 4, 138, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((141, 4, 141, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((142, 4, 142, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((143, 4, 143, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((146, 4, 146, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((147, 4, 147, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((148, 4, 148, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((151, 4, 151, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((152, 4, 152, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((153, 4, 153, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((156, 4, 156, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((157, 4, 157, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((158, 4, 158, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((161, 4, 161, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((162, 4, 162, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((165, 4, 165, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((168, 4, 168, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((169, 4, 169, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((172, 4, 172, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((173, 4, 173, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((174, 4, 174, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((177, 4, 177, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((178, 4, 178, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((179, 4, 179, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((180, 4, 180, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((183, 4, 183, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((184, 4, 184, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((185, 4, 185, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((186, 4, 186, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((189, 4, 189, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((190, 4, 190, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((191, 4, 191, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((194, 4, 194, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((195, 4, 195, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((196, 4, 196, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((199, 4, 199, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((200, 4, 200, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((201, 4, 201, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((202, 4, 202, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((205, 4, 205, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((206, 4, 206, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((209, 4, 209, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((210, 4, 210, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((211, 4, 211, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((216, 4, 216, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((217, 4, 217, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((218, 4, 218, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((219, 4, 219, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((220, 4, 220, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((221, 4, 221, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((222, 4, 222, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((223, 4, 223, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((224, 4, 224, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((225, 4, 225, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((226, 4, 226, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((227, 4, 227, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((228, 4, 228, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((229, 4, 229, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((230, 4, 230, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((231, 4, 231, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((232, 4, 232, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((237, 4, 237, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((238, 4, 238, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((239, 4, 239, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((240, 4, 240, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((241, 4, 241, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((242, 4, 242, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((243, 4, 243, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((244, 4, 244, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((245, 4, 245, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((246, 4, 246, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((247, 4, 247, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((248, 4, 248, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((249, 4, 249, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((250, 4, 250, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((251, 4, 251, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((252, 4, 252, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((253, 4, 253, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((254, 4, 254, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((255, 4, 255, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((256, 4, 256, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((262, 4, 262, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((263, 4, 263, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((264, 4, 264, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((266, 4, 266, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((267, 4, 267, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((269, 4, 269, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((271, 4, 271, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((272, 4, 272, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((273, 4, 273, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((275, 4, 275, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((276, 4, 276, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((277, 4, 277, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((279, 4, 279, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((280, 4, 280, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((281, 4, 281, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((283, 4, 283, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((284, 4, 284, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((285, 4, 285, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((287, 4, 287, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((288, 4, 288, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((289, 4, 289, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((291, 4, 291, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((292, 4, 292, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((293, 4, 293, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((295, 4, 295, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((296, 4, 296, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((297, 4, 297, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((299, 4, 299, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((300, 4, 300, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((301, 4, 301, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((303, 4, 303, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((304, 4, 304, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((306, 4, 306, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((308, 4, 308, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((309, 4, 309, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((310, 4, 310, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((312, 4, 312, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((313, 4, 313, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((314, 4, 314, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((316, 4, 316, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((317, 4, 317, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((319, 4, 319, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((320, 4, 320, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((321, 4, 321, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((323, 4, 323, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((324, 4, 324, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((325, 4, 325, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((326, 4, 326, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((328, 4, 328, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((329, 4, 329, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((330, 4, 330, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((331, 4, 331, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((333, 4, 333, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((334, 4, 334, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((336, 4, 336, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((337, 4, 337, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((338, 4, 338, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((340, 4, 340, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((341, 4, 341, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((342, 4, 342, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((344, 4, 344, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((345, 4, 345, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((350, 4, 350, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((355, 4, 355, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((359, 4, 359, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((363, 4, 363, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((367, 4, 367, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((371, 4, 371, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((375, 4, 375, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((379, 4, 379, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((382, 4, 382, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((383, 4, 383, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((384, 4, 384, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((388, 4, 388, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((393, 4, 393, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((397, 4, 397, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((398, 4, 398, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((399, 4, 399, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((400, 4, 400, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((401, 4, 401, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((402, 4, 402, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((403, 4, 403, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((404, 4, 404, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((405, 4, 405, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((406, 4, 406, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((407, 4, 407, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((408, 4, 408, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((409, 4, 409, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((410, 4, 410, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((411, 4, 411, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((412, 4, 412, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((413, 4, 413, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((414, 4, 414, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((415, 4, 415, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((416, 4, 416, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((417, 4, 417, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((418, 4, 418, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((419, 4, 419, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((420, 4, 420, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((421, 4, 421, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((422, 4, 422, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((423, 4, 423, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((424, 4, 424, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((425, 4, 425, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((426, 4, 426, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((427, 4, 427, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((428, 4, 428, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((429, 4, 429, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((430, 4, 430, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((431, 4, 431, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((432, 4, 432, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((433, 4, 433, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((434, 4, 434, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((435, 4, 435, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((436, 4, 436, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((437, 4, 437, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((438, 4, 438, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((439, 4, 439, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((440, 4, 440, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((441, 4, 441, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((442, 4, 442, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((443, 4, 443, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((444, 4, 444, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((445, 4, 445, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((446, 4, 446, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((447, 4, 447, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((448, 4, 448, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((449, 4, 449, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((450, 4, 450, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((451, 4, 451, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((452, 4, 452, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((453, 4, 453, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((454, 4, 454, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((455, 4, 455, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((456, 4, 456, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((457, 4, 457, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((458, 4, 458, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((459, 4, 459, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((460, 4, 460, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((461, 4, 461, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((462, 4, 462, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((463, 4, 463, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((464, 4, 464, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((465, 4, 465, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((466, 4, 466, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((467, 4, 467, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((468, 4, 468, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((469, 4, 469, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((470, 4, 470, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((471, 4, 471, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((472, 4, 472, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((473, 4, 473, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((474, 4, 474, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((475, 4, 475, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((476, 4, 476, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((477, 4, 477, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((478, 4, 478, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((479, 4, 479, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((480, 4, 480, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((481, 4, 481, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((482, 4, 482, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((483, 4, 483, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((484, 4, 484, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((485, 4, 485, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((486, 4, 486, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((487, 4, 487, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((488, 4, 488, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((489, 4, 489, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((490, 4, 490, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((491, 4, 491, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((492, 4, 492, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((493, 4, 493, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((494, 4, 494, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((495, 4, 495, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((496, 4, 496, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((497, 4, 497, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((498, 4, 498, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((499, 4, 499, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((500, 4, 500, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((501, 4, 501, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((502, 4, 502, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((503, 4, 503, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((504, 4, 504, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((505, 4, 505, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((506, 4, 506, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((507, 4, 507, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((508, 4, 508, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((509, 4, 509, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((510, 4, 510, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((511, 4, 511, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((512, 4, 512, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((513, 4, 513, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((514, 4, 514, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((515, 4, 515, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((516, 4, 516, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((517, 4, 517, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((518, 4, 518, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((519, 4, 519, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((520, 4, 520, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((521, 4, 521, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((522, 4, 522, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((523, 4, 523, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((524, 4, 524, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((525, 4, 525, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((526, 4, 526, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((527, 4, 527, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((528, 4, 528, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((529, 4, 529, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((530, 4, 530, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((531, 4, 531, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((532, 4, 532, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((533, 4, 533, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((534, 4, 534, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((535, 4, 535, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((536, 4, 536, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((537, 4, 537, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((538, 4, 538, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((539, 4, 539, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((540, 4, 540, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((541, 4, 541, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((542, 4, 542, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((543, 4, 543, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((544, 4, 544, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((545, 4, 545, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((546, 4, 546, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((547, 4, 547, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((548, 4, 548, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((549, 4, 549, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((550, 4, 550, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((551, 4, 551, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((552, 4, 552, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((553, 4, 553, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((554, 4, 554, 37), 'pandas.Timestamp', 'Timestamp', (), '', False, 'from pandas import Timestamp\n'), ((34, 13, 34, 36), 'pandas.Timestamp', 'Timestamp', ({(34, 23, 34, 35): '"""2006-01-01"""'}, {}), "('2006-01-01')", False, 'from pandas import Timestamp\n'), ((61, 13, 61, 36), 'pandas.Timestamp', 'Timestamp', ({(61, 23, 61, 35): '"""2008-01-01"""'}, {}), "('2008-01-01')", False, 'from pandas import Timestamp\n'), ((89, 15, 89, 38), 'pandas.Timestamp', 'Timestamp', ({(89, 25, 89, 37): '"""2013-01-01"""'}, {}), "('2013-01-01')", False, 'from pandas import Timestamp\n'), ((98, 15, 98, 38), 'pandas.Timestamp', 'Timestamp', ({(98, 25, 98, 37): '"""2001-01-01"""'}, {}), "('2001-01-01')", False, 'from pandas import Timestamp\n'), ((574, 15, 574, 30), 'pytz.timezone', 'timezone', ({(574, 24, 574, 29): '"""UTC"""'}, {}), "('UTC')", False, 'from pytz import timezone\n'), ((578, 15, 578, 25), 'datetime.time', 'time', ({(578, 20, 578, 21): '(9)', (578, 23, 578, 24): '(0)'}, {}), '(9, 0)', False, 'from datetime import time\n'), ((586, 15, 586, 27), 'datetime.time', 'time', ({(586, 20, 586, 22): '(15)', (586, 24, 586, 26): '(30)'}, {}), '(15, 30)', False, 'from datetime import time\n'), ((594, 15, 607, 10), 'exchange_calendars.exchange_calendar.HolidayCalendar', 'HolidayCalendar', ({(594, 31, 607, 9): '[KRNewYearsDay, KRIndependenceDay, KRArbourDay, KRLabourDay, KRChildrensDay,\n KRMemorialDay, KRConstitutionDay, KRLiberationDay,\n KRNationalFoundationDay, Christmas, KRHangulProclamationDay,\n KRXEndOfYearClosing]'}, {}), '([KRNewYearsDay, KRIndependenceDay, KRArbourDay, KRLabourDay,\n KRChildrensDay, KRMemorialDay, KRConstitutionDay, KRLiberationDay,\n KRNationalFoundationDay, Christmas, KRHangulProclamationDay,\n KRXEndOfYearClosing])', False, 'from exchange_calendars.exchange_calendar import HolidayCalendar\n'), ((615, 20, 632, 9), 'itertools.chain', 'chain', ({(616, 12, 616, 35): 'KRXEndOfYearClosing2000', (617, 12, 617, 26): 'KRLunarNewYear', (618, 12, 618, 26): 'KRElectionDays', (619, 12, 619, 29): 'KRBuddhasBirthday', (620, 12, 620, 28): 'KRHarvestMoonDay', (621, 12, 621, 52): 'KRSubstitutionHolidayForChildrensDay2018', (622, 12, 622, 43): 'KRCelebrationForWorldCupHosting', (623, 12, 623, 45): 'KRSeventyYearsFromIndependenceDay', (624, 12, 624, 49): 'KRTemporaryHolidayForChildrensDay2016', (625, 12, 625, 51): 'KRTemporaryHolidayForHarvestMoonDay2017', (626, 12, 626, 48): 'KRTemporaryHolidayForChildrenDay2018', (627, 12, 627, 48): 'KRTemporaryHolidayForChildrenDay2019', (628, 12, 628, 31): 'HolidaysNeedToCheck', (629, 12, 629, 50): 'KRTemporaryHolidayForLiberationDay2020', (630, 12, 630, 34): 'KRTemporaryHoliday2021', (631, 12, 631, 30): 'HolidaysBefore1999'}, {}), '(KRXEndOfYearClosing2000, KRLunarNewYear, KRElectionDays,\n KRBuddhasBirthday, KRHarvestMoonDay,\n KRSubstitutionHolidayForChildrensDay2018,\n KRCelebrationForWorldCupHosting, KRSeventyYearsFromIndependenceDay,\n KRTemporaryHolidayForChildrensDay2016,\n KRTemporaryHolidayForHarvestMoonDay2017,\n KRTemporaryHolidayForChildrenDay2018,\n KRTemporaryHolidayForChildrenDay2019, HolidaysNeedToCheck,\n KRTemporaryHolidayForLiberationDay2020, KRTemporaryHoliday2021,\n HolidaysBefore1999)', False, 'from itertools import chain\n'), ((582, 23, 582, 33), 'datetime.time', 'time', ({(582, 28, 582, 29): '(9)', (582, 31, 582, 32): '(0)'}, {}), '(9, 0)', False, 'from datetime import time\n'), ((590, 23, 590, 35), 'datetime.time', 'time', ({(590, 28, 590, 30): '(15)', (590, 32, 590, 34): '(30)'}, {}), '(15, 30)', False, 'from datetime import time\n')]
ameldocena/StratifiedAggregation
utilities.py
0031fea120bff00c739eb6c3d654a5c6d3f094bb
import random import numpy #import tensorflow as tf #import torch from abc import abstractmethod from sklearn.decomposition import PCA from aggregators import FedAvg, MultiKrum, AlignedAvg, TrimmedMean, Median, StratifiedAggr class SelectionStrategy: # Unchanged from original work @abstractmethod def select_round_workers(self, workers, poisoned_workers, kwargs): """ :param workers: list(int). All workers available for learning :param poisoned_workers: list(int). All workers that are poisoned :param kwargs: dict """ raise NotImplementedError("select_round_workers() not implemented") class RandomSelectionStrategy(SelectionStrategy): # Unchanged from original work """ Randomly selects workers out of the list of all workers """ def select_round_workers(self, workers, poisoned_workers, kwargs): #The poisoned_workers here are not used return random.sample(workers, kwargs["NUM_WORKERS_PER_ROUND"]) #returns a list of sampled worker ids # class StratifiedRandomSelection(SelectionStrategy): # #We first stratify: Each stratum will be a list of workers # #Then within each stratum, we randomly select # #We would need the list of workers and the information about their skews def select_aggregator(args, name, KWARGS={}): #Creates an Aggregator object as selected if name == "FedAvg": return FedAvg(args, name, KWARGS) elif name == "AlignedAvg": return AlignedAvg(args, name, KWARGS) elif name == "AlignedAvgImpute": KWARGS.update({"use_impute":"filter","align":"fusion"}) return AlignedAvg(args, name, **KWARGS) elif name == "MultiKrum": return MultiKrum(args, name, KWARGS) elif name == "TrimmedMean": return TrimmedMean(args, name, KWARGS) elif name == "Median": return Median(args, name, KWARGS) elif (name == "StratKrum") or (name == "StratTrimMean") or (name == "StratMedian") or (name == "StratFedAvg"): #We may have to change the class name to StratifiedAggregation return StratifiedAggr(args, name, KWARGS) else: raise NotImplementedError(f"Unrecognized Aggregator Name: {name}") def calculate_pca_of_gradients(logger, gradients, num_components): # Unchanged from original work pca = PCA(n_components=num_components) logger.info("Computing {}-component PCA of gradients".format(num_components)) return pca.fit_transform(gradients) #So this is here after all def calculate_model_gradient( model_1, model_2): # Minor change from original work """ Calculates the gradient (parameter difference) between two Torch models. :param logger: loguru.logger (NOW REMOVED) :param model_1: torch.nn :param model_2: torch.nn """ model_1_parameters = list(dict(model_1.state_dict())) model_2_parameters = list(dict(model_2.state_dict())) return calculate_parameter_gradients(model_1_parameters, model_2_parameters) def calculate_parameter_gradients(params_1, params_2): # Minor change from original work """ Calculates the gradient (parameter difference) between two sets of Torch parameters. :param logger: loguru.logger (NOW REMOVED) :param params_1: dict :param params_2: dict """ #logger.debug("Shape of model_1_parameters: {}".format(str(len(params_1)))) #logger.debug("Shape of model_2_parameters: {}".format(str(len(params_2)))) return numpy.array([x for x in numpy.subtract(params_1, params_2)]) # #Inserted # def convert2TF(torch_tensor): # # Converts a pytorch tensor into a Tensorflow. # # We first convert torch into numpy, then to tensorflow. # # Arg: torch_tensor - a Pytorch tensor object # np_tensor = torch_tensor.numpy().astype(float) # return tf.convert_to_tensor(np_tensor) # # def convert2Torch(tf_tensor): # #Converts a TF tensor to Torch # #Arg: tf_tensor - a TF tensor # np_tensor = tf.make_ndarray(tf_tensor) # return torch.from_numpy(np_tensor) def count_poisoned_stratum(stratified_workers, poisoned_workers): if len(poisoned_workers) > 0: print("\nPoisoned workers:", len(poisoned_workers), poisoned_workers) for stratum in stratified_workers: intersect = list(set(stratified_workers[stratum]).intersection(poisoned_workers)) print("Count poisoned workers per stratum:", len(intersect), intersect) print("Stratum: {}. Propn to total poisoned: {}. Propn to subpopn in stratum: {}".format(stratum, len(intersect)/len(poisoned_workers), len(intersect)/len(stratified_workers[stratum]))) else: print("No poisoned workers") def generate_uniform_weights(random_workers): """ This function generates uniform weights for each stratum in random_workers :param random_workers: :return: """ strata_weights = dict() weight = 1.0 / len(list(random_workers.keys())) for stratum in random_workers: strata_weights[stratum] = weight return strata_weights
[((59, 10, 59, 42), 'sklearn.decomposition.PCA', 'PCA', (), '', False, 'from sklearn.decomposition import PCA\n'), ((28, 15, 28, 70), 'random.sample', 'random.sample', ({(28, 29, 28, 36): 'workers', (28, 38, 28, 69): "kwargs['NUM_WORKERS_PER_ROUND']"}, {}), "(workers, kwargs['NUM_WORKERS_PER_ROUND'])", False, 'import random\n'), ((39, 15, 39, 41), 'aggregators.FedAvg', 'FedAvg', ({(39, 22, 39, 26): 'args', (39, 28, 39, 32): 'name', (39, 34, 39, 40): 'KWARGS'}, {}), '(args, name, KWARGS)', False, 'from aggregators import FedAvg, MultiKrum, AlignedAvg, TrimmedMean, Median, StratifiedAggr\n'), ((41, 15, 41, 45), 'aggregators.AlignedAvg', 'AlignedAvg', ({(41, 26, 41, 30): 'args', (41, 32, 41, 36): 'name', (41, 38, 41, 44): 'KWARGS'}, {}), '(args, name, KWARGS)', False, 'from aggregators import FedAvg, MultiKrum, AlignedAvg, TrimmedMean, Median, StratifiedAggr\n'), ((44, 15, 44, 47), 'aggregators.AlignedAvg', 'AlignedAvg', ({(44, 26, 44, 30): 'args', (44, 32, 44, 36): 'name'}, {}), '(args, name, **KWARGS)', False, 'from aggregators import FedAvg, MultiKrum, AlignedAvg, TrimmedMean, Median, StratifiedAggr\n'), ((92, 35, 92, 69), 'numpy.subtract', 'numpy.subtract', ({(92, 50, 92, 58): 'params_1', (92, 60, 92, 68): 'params_2'}, {}), '(params_1, params_2)', False, 'import numpy\n'), ((46, 15, 46, 44), 'aggregators.MultiKrum', 'MultiKrum', ({(46, 25, 46, 29): 'args', (46, 31, 46, 35): 'name', (46, 37, 46, 43): 'KWARGS'}, {}), '(args, name, KWARGS)', False, 'from aggregators import FedAvg, MultiKrum, AlignedAvg, TrimmedMean, Median, StratifiedAggr\n'), ((48, 15, 48, 46), 'aggregators.TrimmedMean', 'TrimmedMean', ({(48, 27, 48, 31): 'args', (48, 33, 48, 37): 'name', (48, 39, 48, 45): 'KWARGS'}, {}), '(args, name, KWARGS)', False, 'from aggregators import FedAvg, MultiKrum, AlignedAvg, TrimmedMean, Median, StratifiedAggr\n'), ((50, 15, 50, 41), 'aggregators.Median', 'Median', ({(50, 22, 50, 26): 'args', (50, 28, 50, 32): 'name', (50, 34, 50, 40): 'KWARGS'}, {}), '(args, name, KWARGS)', False, 'from aggregators import FedAvg, MultiKrum, AlignedAvg, TrimmedMean, Median, StratifiedAggr\n'), ((53, 15, 53, 49), 'aggregators.StratifiedAggr', 'StratifiedAggr', ({(53, 30, 53, 34): 'args', (53, 36, 53, 40): 'name', (53, 42, 53, 48): 'KWARGS'}, {}), '(args, name, KWARGS)', False, 'from aggregators import FedAvg, MultiKrum, AlignedAvg, TrimmedMean, Median, StratifiedAggr\n')]
b1naryth1ef/mmo
game/player.py
400f66b0ac76896af2d7108ff3540c42614a32f0
from sprites import PlayerSprite import time class Player(object): def __init__(self, name, game): self.name = name self.pos = [50, 50] self.do_blit = False self.game = game self.surf = game.SCREEN self.lastMove = 99999999999 self.velo_def = [0, 0] self.velo_x = 0 self.velo_y = 0 self.sprite = PlayerSprite(self) self.moving = [False, False, False, False] def tick(self): if self.do_blit: self.game.reDraw = True self.sprite.display(self.surf.screen) #self.surface.screen.blit(self.image, self.pos) self.do_blit = False # print self.lastMove - time.time() if True in self.moving and abs(self.lastMove - time.time()) >= .08: self.lastMove = time.time() if self.moving[0]: self.move(x=-1) if self.moving[1]: self.move(x=1)#down if self.moving[2]: self.move(y=-1)#left if self.moving[3]: self.move(y=1)#right def move(self, x=0, y=0): self.pos[1]+=x*10 self.pos[0]+=y*10 self.do_blit = True if y < 0 and self.sprite.dir == 1: self.sprite.flip() elif y > 0 and self.sprite.dir == -1: self.sprite.flip()
[((18, 22, 18, 40), 'sprites.PlayerSprite', 'PlayerSprite', ({(18, 35, 18, 39): 'self'}, {}), '(self)', False, 'from sprites import PlayerSprite\n'), ((30, 28, 30, 39), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((29, 55, 29, 66), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n')]
cbarrick/toys
toys/layers/pool.py
0368036ddb7594c0b6e7cdc704aeec918786e58a
from typing import Sequence import torch from torch import nn class MaxPool2d(nn.Module): def __init__(self, kernel_size, **kwargs): super().__init__() stride = kwargs.setdefault('stride', kernel_size) padding = kwargs.setdefault('padding', 0) dilation = kwargs.setdefault('dilation', 1) return_indices = kwargs.setdefault('return_indices', False) ceil_mode = kwargs.setdefault('ceil_mode', False) self.pool = nn.MaxPool2d(kernel_size, stride=stride, padding=padding, dilation=dilation, return_indices=return_indices, ceil_mode=ceil_mode) def forward(self, x): (*batch, height, width, channels) = x.shape x = x.view(-1, height, width, channels) x = torch.einsum('nhwc->nchw', [x]) x = self.pool(x) x = torch.einsum('nchw->nhwc', [x]) (_, new_height, new_width, _) = x.shape x = x.contiguous() x = x.view(*batch, new_height, new_width, channels) return x
[((16, 20, 18, 63), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', (), '', False, 'from torch import nn\n'), ((23, 12, 23, 43), 'torch.einsum', 'torch.einsum', ({(23, 25, 23, 37): '"""nhwc->nchw"""', (23, 39, 23, 42): '[x]'}, {}), "('nhwc->nchw', [x])", False, 'import torch\n'), ((25, 12, 25, 43), 'torch.einsum', 'torch.einsum', ({(25, 25, 25, 37): '"""nchw->nhwc"""', (25, 39, 25, 42): '[x]'}, {}), "('nchw->nhwc', [x])", False, 'import torch\n')]
vvladych/forecastmgmt
src/forecastmgmt/ui/masterdata/person_window.py
9eea272d00bb42031f49b5bb5af01388ecce31cf
from gi.repository import Gtk from masterdata_abstract_window import MasterdataAbstractWindow from person_add_mask import PersonAddMask from person_list_mask import PersonListMask class PersonWindow(MasterdataAbstractWindow): def __init__(self, main_window): super(PersonWindow, self).__init__(main_window, PersonListMask(), PersonAddMask(main_window, self.add_working_area))
[((11, 56, 11, 72), 'person_list_mask.PersonListMask', 'PersonListMask', ({}, {}), '()', False, 'from person_list_mask import PersonListMask\n'), ((11, 74, 11, 123), 'person_add_mask.PersonAddMask', 'PersonAddMask', ({(11, 88, 11, 99): 'main_window', (11, 101, 11, 122): 'self.add_working_area'}, {}), '(main_window, self.add_working_area)', False, 'from person_add_mask import PersonAddMask\n')]
SeockHwa/Segmentation_mobileV3
fastseg/model/utils.py
01d90eeb32232346b8ed071eaf5d03322049be11
import torch.nn as nn from .efficientnet import EfficientNet_B4, EfficientNet_B0 from .mobilenetv3 import MobileNetV3_Large, MobileNetV3_Small def get_trunk(trunk_name): """Retrieve the pretrained network trunk and channel counts""" if trunk_name == 'efficientnet_b4': backbone = EfficientNet_B4(pretrained=True) s2_ch = 24 s4_ch = 32 high_level_ch = 1792 elif trunk_name == 'efficientnet_b0': backbone = EfficientNet_B0(pretrained=True) s2_ch = 16 s4_ch = 24 high_level_ch = 1280 elif trunk_name == 'mobilenetv3_large': backbone = MobileNetV3_Large(pretrained=True) s2_ch = 16 s4_ch = 24 high_level_ch = 960 elif trunk_name == 'mobilenetv3_small': backbone = MobileNetV3_Small(pretrained=True) s2_ch = 16 s4_ch = 16 high_level_ch = 576 else: raise ValueError('unknown backbone {}'.format(trunk_name)) return backbone, s2_ch, s4_ch, high_level_ch class ConvBnRelu(nn.Module): """Convenience layer combining a Conv2d, BatchNorm2d, and a ReLU activation. Original source of this code comes from https://github.com/lingtengqiu/Deeperlab-pytorch/blob/master/seg_opr/seg_oprs.py """ def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, norm_layer=nn.BatchNorm2d): super(ConvBnRelu, self).__init__() self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=False) self.bn = norm_layer(out_planes, eps=1e-5) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) return x
[((41, 20, 42, 73), 'torch.nn.Conv2d', 'nn.Conv2d', (), '', True, 'import torch.nn as nn\n'), ((44, 20, 44, 41), 'torch.nn.ReLU', 'nn.ReLU', (), '', True, 'import torch.nn as nn\n')]
06needhamt/intellij-community
python/testData/inspections/PyTypeCheckerInspection/ModuleTypeParameter/a.py
63d7b8030e4fdefeb4760e511e289f7e6b3a5c5b
import module from types import ModuleType def foo(m: ModuleType): pass def bar(m): return m.__name__ foo(module) bar(module)
[]
proofdock/chaos-azure
tests/webapp/test_webapp_actions.py
85302f8be18153862656c587988eafb5dd37ddf7
from unittest.mock import patch, MagicMock from pdchaosazure.webapp.actions import stop, restart, delete from tests.data import config_provider, secrets_provider, webapp_provider @patch('pdchaosazure.webapp.actions.fetch_webapps', autospec=True) @patch('pdchaosazure.webapp.actions.client.init', autospec=True) def test_happily_stop_webapp(init, fetch): config = config_provider.provide_default_config() secrets = secrets_provider.provide_secrets_public() webapp = webapp_provider.default() client = MagicMock() init.return_value = client resource_list = [webapp] fetch.return_value = resource_list f = "where resourceGroup=~'rg'" stop(f, config, secrets) fetch.assert_called_with(f, config, secrets) client.web_apps.stop.assert_called_with(webapp['resourceGroup'], webapp['name']) @patch('pdchaosazure.webapp.actions.fetch_webapps', autospec=True) @patch('pdchaosazure.webapp.actions.client.init', autospec=True) def test_happily_restart_webapp(init, fetch): config = config_provider.provide_default_config() secrets = secrets_provider.provide_secrets_public() webapp = webapp_provider.default() client = MagicMock() init.return_value = client resource_list = [webapp] fetch.return_value = resource_list f = "where resourceGroup=~'rg'" restart(f, config, secrets) fetch.assert_called_with(f, config, secrets) client.web_apps.restart.assert_called_with(webapp['resourceGroup'], webapp['name']) @patch('pdchaosazure.webapp.actions.fetch_webapps', autospec=True) @patch('pdchaosazure.webapp.actions.client.init', autospec=True) def test_happily_delete_webapp(init, fetch): webapp = webapp_provider.default() config = config_provider.provide_default_config() secrets = secrets_provider.provide_secrets_public() client = MagicMock() init.return_value = client resource_list = [webapp] fetch.return_value = resource_list f = "where resourceGroup=~'rg'" delete(f, config, secrets) fetch.assert_called_with(f, config, secrets) client.web_apps.delete.assert_called_with(webapp['resourceGroup'], webapp['name'])
[((7, 1, 7, 66), 'unittest.mock.patch', 'patch', (), '', False, 'from unittest.mock import patch, MagicMock\n'), ((8, 1, 8, 64), 'unittest.mock.patch', 'patch', (), '', False, 'from unittest.mock import patch, MagicMock\n'), ((26, 1, 26, 66), 'unittest.mock.patch', 'patch', (), '', False, 'from unittest.mock import patch, MagicMock\n'), ((27, 1, 27, 64), 'unittest.mock.patch', 'patch', (), '', False, 'from unittest.mock import patch, MagicMock\n'), ((45, 1, 45, 66), 'unittest.mock.patch', 'patch', (), '', False, 'from unittest.mock import patch, MagicMock\n'), ((46, 1, 46, 64), 'unittest.mock.patch', 'patch', (), '', False, 'from unittest.mock import patch, MagicMock\n'), ((10, 13, 10, 53), 'tests.data.config_provider.provide_default_config', 'config_provider.provide_default_config', ({}, {}), '()', False, 'from tests.data import config_provider, secrets_provider, webapp_provider\n'), ((11, 14, 11, 55), 'tests.data.secrets_provider.provide_secrets_public', 'secrets_provider.provide_secrets_public', ({}, {}), '()', False, 'from tests.data import config_provider, secrets_provider, webapp_provider\n'), ((12, 13, 12, 38), 'tests.data.webapp_provider.default', 'webapp_provider.default', ({}, {}), '()', False, 'from tests.data import config_provider, secrets_provider, webapp_provider\n'), ((14, 13, 14, 24), 'unittest.mock.MagicMock', 'MagicMock', ({}, {}), '()', False, 'from unittest.mock import patch, MagicMock\n'), ((20, 4, 20, 28), 'pdchaosazure.webapp.actions.stop', 'stop', ({(20, 9, 20, 10): 'f', (20, 12, 20, 18): 'config', (20, 20, 20, 27): 'secrets'}, {}), '(f, config, secrets)', False, 'from pdchaosazure.webapp.actions import stop, restart, delete\n'), ((29, 13, 29, 53), 'tests.data.config_provider.provide_default_config', 'config_provider.provide_default_config', ({}, {}), '()', False, 'from tests.data import config_provider, secrets_provider, webapp_provider\n'), ((30, 14, 30, 55), 'tests.data.secrets_provider.provide_secrets_public', 'secrets_provider.provide_secrets_public', ({}, {}), '()', False, 'from tests.data import config_provider, secrets_provider, webapp_provider\n'), ((31, 13, 31, 38), 'tests.data.webapp_provider.default', 'webapp_provider.default', ({}, {}), '()', False, 'from tests.data import config_provider, secrets_provider, webapp_provider\n'), ((33, 13, 33, 24), 'unittest.mock.MagicMock', 'MagicMock', ({}, {}), '()', False, 'from unittest.mock import patch, MagicMock\n'), ((39, 4, 39, 31), 'pdchaosazure.webapp.actions.restart', 'restart', ({(39, 12, 39, 13): 'f', (39, 15, 39, 21): 'config', (39, 23, 39, 30): 'secrets'}, {}), '(f, config, secrets)', False, 'from pdchaosazure.webapp.actions import stop, restart, delete\n'), ((48, 13, 48, 38), 'tests.data.webapp_provider.default', 'webapp_provider.default', ({}, {}), '()', False, 'from tests.data import config_provider, secrets_provider, webapp_provider\n'), ((49, 13, 49, 53), 'tests.data.config_provider.provide_default_config', 'config_provider.provide_default_config', ({}, {}), '()', False, 'from tests.data import config_provider, secrets_provider, webapp_provider\n'), ((50, 14, 50, 55), 'tests.data.secrets_provider.provide_secrets_public', 'secrets_provider.provide_secrets_public', ({}, {}), '()', False, 'from tests.data import config_provider, secrets_provider, webapp_provider\n'), ((52, 13, 52, 24), 'unittest.mock.MagicMock', 'MagicMock', ({}, {}), '()', False, 'from unittest.mock import patch, MagicMock\n'), ((58, 4, 58, 30), 'pdchaosazure.webapp.actions.delete', 'delete', ({(58, 11, 58, 12): 'f', (58, 14, 58, 20): 'config', (58, 22, 58, 29): 'secrets'}, {}), '(f, config, secrets)', False, 'from pdchaosazure.webapp.actions import stop, restart, delete\n')]
lbesnard/subimporter
utils.py
66affbca2acdb3c25e70dac23290b5e7b956c2d7
def stringifySong(song): return f"<'{song['title']}' by '{song['artist']}' in '{song['album']}'>"
[]
leewujung/echopype-lfs-test
echopype/model/modelbase.py
b76dcf42631d0ac9cef0efeced9be4afdc15e659
""" echopype data model that keeps tracks of echo data and its connection to data files. """ import os import warnings import datetime as dt from echopype.utils import uwa import numpy as np import xarray as xr class ModelBase(object): """Class for manipulating echo data that is already converted to netCDF.""" def __init__(self, file_path=""): self.file_path = file_path # this passes the input through file name test self.noise_est_range_bin_size = 5 # meters per tile for noise estimation self.noise_est_ping_size = 30 # number of pings per tile for noise estimation self.MVBS_range_bin_size = 5 # meters per tile for MVBS self.MVBS_ping_size = 30 # number of pings per tile for MVBS self.Sv = None # calibrated volume backscattering strength self.Sv_path = None # path to save calibrated results self.Sv_clean = None # denoised volume backscattering strength self.TS = None # calibrated target strength self.TS_path = None # path to save TS calculation results self.MVBS = None # mean volume backscattering strength self._salinity = None self._temperature = None self._pressure = None self._sound_speed = None self._sample_thickness = None self._range = None self._seawater_absorption = None @property def salinity(self): return self._salinity @salinity.setter def salinity(self, sal): self._salinity = sal @property def pressure(self): return self._pressure @pressure.setter def pressure(self, pres): self._pressure = pres @property def temperature(self): return self._temperature @temperature.setter def temperature(self, t): self._temperature = t @property def sample_thickness(self): return self._sample_thickness @sample_thickness.setter def sample_thickness(self, sth): self._sample_thickness = sth @property def range(self): return self._range @range.setter def range(self, rr): self._range = rr @property def seawater_absorption(self): return self._seawater_absorption @seawater_absorption.setter def seawater_absorption(self, absorption): self._seawater_absorption.values = absorption @property def sound_speed(self): return self._sound_speed @sound_speed.setter def sound_speed(self, ss): if isinstance(self._sound_speed, xr.DataArray): self._sound_speed.values = ss else: self._sound_speed = ss @property def file_path(self): return self._file_path @file_path.setter def file_path(self, p): self._file_path = p # Load netCDF groups if file format is correct pp = os.path.basename(p) _, ext = os.path.splitext(pp) supported_ext_list = ['.raw', '.01A'] if ext in supported_ext_list: print('Data file in manufacturer format, please convert to .nc first.') elif ext == '.nc': self.toplevel = xr.open_dataset(self.file_path) # Get .nc filenames for storing processed data if computation is performed self.Sv_path = os.path.join(os.path.dirname(self.file_path), os.path.splitext(os.path.basename(self.file_path))[0] + '_Sv.nc') self.Sv_clean_path = os.path.join(os.path.dirname(self.file_path), os.path.splitext(os.path.basename(self.file_path))[0] + '_Sv_clean.nc') self.TS_path = os.path.join(os.path.dirname(self.file_path), os.path.splitext(os.path.basename(self.file_path))[0] + '_TS.nc') self.MVBS_path = os.path.join(os.path.dirname(self.file_path), os.path.splitext(os.path.basename(self.file_path))[0] + '_MVBS.nc') # Raise error if the file format convention does not match if self.toplevel.sonar_convention_name != 'SONAR-netCDF4': raise ValueError('netCDF file convention not recognized.') self.toplevel.close() else: raise ValueError('Data file format not recognized.') def calc_sound_speed(self, src='file'): """Base method to be overridden for calculating sound_speed for different sonar models """ # issue warning when subclass methods not available print("Sound speed calculation has not been implemented for this sonar model!") def calc_seawater_absorption(self, src='file'): """Base method to be overridden for calculating seawater_absorption for different sonar models """ # issue warning when subclass methods not available print("Seawater absorption calculation has not been implemented for this sonar model!") def calc_sample_thickness(self): """Base method to be overridden for calculating sample_thickness for different sonar models. """ # issue warning when subclass methods not available print('Sample thickness calculation has not been implemented for this sonar model!') def calc_range(self): """Base method to be overridden for calculating range for different sonar models. """ # issue warning when subclass methods not available print('Range calculation has not been implemented for this sonar model!') def recalculate_environment(self, ss=True, sa=True, st=True, r=True): """ Recalculates sound speed, seawater absorption, sample thickness, and range using salinity, temperature, and pressure Parameters ---------- ss : bool Whether to calcualte sound speed. Defaults to `True` sa : bool Whether to calcualte seawater absorption. Defaults to `True` st : bool Whether to calcualte sample thickness. Defaults to `True` r : bool Whether to calcualte range. Defaults to `True` """ s, t, p = self.salinity, self.temperature, self.pressure if s is not None and t is not None and p is not None: if ss: self.sound_speed = self.calc_sound_speed(src='user') if sa: self.seawater_absorption = self.calc_seawater_absorption(src='user') if st: self.sample_thickness = self.calc_sample_thickness() if r: self.range = self.calc_range() elif s is None: print("Salinity was not provided. Environment was not recalculated") elif t is None: print("Temperature was not provided. Environment was not recalculated") else: print("Pressure was not provided. Environment was not recalculated") def calibrate(self): """Base method to be overridden for volume backscatter calibration and echo-integration for different sonar models. """ # issue warning when subclass methods not available print('Calibration has not been implemented for this sonar model!') def calibrate_TS(self): """Base method to be overridden for target strength calibration and echo-integration for different sonar models. """ # issue warning when subclass methods not available print('Target strength calibration has not been implemented for this sonar model!') def validate_path(self, save_path, save_postfix): """Creates a directory if it doesnt exist. Returns a valid save path. """ def _assemble_path(): file_in = os.path.basename(self.file_path) file_name, file_ext = os.path.splitext(file_in) return file_name + save_postfix + file_ext if save_path is None: save_dir = os.path.dirname(self.file_path) file_out = _assemble_path() else: path_ext = os.path.splitext(save_path)[1] # If given save_path is file, split into directory and file if path_ext != '': save_dir, file_out = os.path.split(save_path) if save_dir == '': # save_path is only a filename without directory save_dir = os.path.dirname(self.file_path) # use directory from input file # If given save_path is a directory, get a filename from input .nc file else: save_dir = save_path file_out = _assemble_path() # Create folder if not already exists if save_dir == '': # TODO: should we use '.' instead of os.getcwd()? save_dir = os.getcwd() # explicit about path to current directory if not os.path.exists(save_dir): os.mkdir(save_dir) return os.path.join(save_dir, file_out) @staticmethod def get_tile_params(r_data_sz, p_data_sz, r_tile_sz, p_tile_sz, sample_thickness): """Obtain ping_time and range_bin parameters associated with groupby and groupby_bins operations. These parameters are used in methods remove_noise(), noise_estimates(), get_MVBS(). Parameters ---------- r_data_sz : int number of range_bin entries in data p_data_sz : int number of ping_time entries in data r_tile_sz : float tile size along the range_bin dimension [m] p_tile_sz : int tile size along the ping_time dimension [number of pings] sample_thickness : float thickness of each data sample, determined by sound speed and pulse duration Returns ------- r_tile_sz : int modified tile size along the range dimension [m], determined by sample_thickness r_tile_bin_edge : list of int bin edges along the range_bin dimension for :py:func:`xarray.DataArray.groupby_bins` operation p_tile_bin_edge : list of int bin edges along the ping_time dimension for :py:func:`xarray.DataArray.groupby_bins` operation """ # Adjust noise_est_range_bin_size because range_bin_size may be an inconvenient value num_r_per_tile = np.round(r_tile_sz / sample_thickness).astype(int) # num of range_bin per tile r_tile_sz = num_r_per_tile * sample_thickness # Total number of range_bin and ping tiles num_tile_range_bin = np.ceil(r_data_sz / num_r_per_tile).astype(int) if np.mod(p_data_sz, p_tile_sz) == 0: num_tile_ping = np.ceil(p_data_sz / p_tile_sz).astype(int) + 1 else: num_tile_ping = np.ceil(p_data_sz / p_tile_sz).astype(int) # Tile bin edges along range # ... -1 to make sure each bin has the same size because of the right-inclusive and left-exclusive bins r_tile_bin_edge = [np.arange(x.values + 1) * y.values - 1 for x, y in zip(num_tile_range_bin, num_r_per_tile)] p_tile_bin_edge = np.arange(num_tile_ping + 1) * p_tile_sz - 1 return r_tile_sz, r_tile_bin_edge, p_tile_bin_edge def _get_proc_Sv(self, source_path=None, source_postfix='_Sv'): """Private method to return calibrated Sv either from memory or _Sv.nc file. This method is called by remove_noise(), noise_estimates() and get_MVBS(). """ if self.Sv is None: # calibration not yet performed Sv_path = self.validate_path(save_path=source_path, # wrangle _Sv path save_postfix=source_postfix) if os.path.exists(Sv_path): # _Sv exists self.Sv = xr.open_dataset(Sv_path) # load _Sv file else: # if path specification given but file do not exist: if (source_path is not None) or (source_postfix != '_Sv'): print('%s no calibrated data found in specified path: %s' % (dt.datetime.now().strftime('%H:%M:%S'), Sv_path)) else: print('%s data has not been calibrated. ' % dt.datetime.now().strftime('%H:%M:%S')) print(' performing calibration now and operate from Sv in memory.') self.calibrate() # calibrate, have Sv in memory return self.Sv def remove_noise(self, source_postfix='_Sv', source_path=None, noise_est_range_bin_size=None, noise_est_ping_size=None, SNR=0, Sv_threshold=None, save=False, save_postfix='_Sv_clean', save_path=None): """Remove noise by using noise estimates obtained from the minimum mean calibrated power level along each column of tiles. See method noise_estimates() for details of noise estimation. Reference: De Robertis & Higginbottom, 2017, ICES Journal of Marine Sciences Parameters ---------- source_postfix : str postfix of the Sv file used to remove noise from, default to '_Sv' source_path : str path of Sv file used to remove noise from, can be one of the following: - None (default): use Sv in RAWFILENAME_Sv.nc in the same folder as the raw data file, or when RAWFILENAME_Sv.nc doesn't exist, perform self.calibrate() and use the resulted self.Sv - path to a directory: RAWFILENAME_Sv.nc in the specified directory - path to a specific file: the specified file, e.g., ./another_directory/some_other_filename.nc noise_est_range_bin_size : float, optional Meters per tile for noise estimation [m] noise_est_ping_size : int, optional Number of pings per tile for noise estimation SNR : int, optional Minimum signal-to-noise ratio (remove values below this after general noise removal). Sv_threshold : int, optional Minimum Sv threshold [dB] (remove values below this after general noise removal) save : bool, optional Whether to save the denoised Sv (``Sv_clean``) into a new .nc file. Default to ``False``. save_postfix : str Filename postfix, default to '_Sv_clean' save_path : str Full filename to save to, overwriting the RAWFILENAME_Sv_clean.nc default """ # Check params if (noise_est_range_bin_size is not None) and (self.noise_est_range_bin_size != noise_est_range_bin_size): self.noise_est_range_bin_size = noise_est_range_bin_size if (noise_est_ping_size is not None) and (self.noise_est_ping_size != noise_est_ping_size): self.noise_est_ping_size = noise_est_ping_size # Get calibrated Sv if self.Sv is not None: print('%s Remove noise from Sv stored in memory.' % dt.datetime.now().strftime('%H:%M:%S')) print_src = False else: print_src = True proc_data = self._get_proc_Sv(source_path=source_path, source_postfix=source_postfix) if print_src: print('%s Remove noise from Sv stored in: %s' % (dt.datetime.now().strftime('%H:%M:%S'), self.Sv_path)) # Get tile indexing parameters self.noise_est_range_bin_size, range_bin_tile_bin_edge, ping_tile_bin_edge = \ self.get_tile_params(r_data_sz=proc_data.range_bin.size, p_data_sz=proc_data.ping_time.size, r_tile_sz=self.noise_est_range_bin_size, p_tile_sz=self.noise_est_ping_size, sample_thickness=self.sample_thickness) # Get TVG and ABS for compensating for transmission loss range_meter = self.range TVG = np.real(20 * np.log10(range_meter.where(range_meter >= 1, other=1))) ABS = 2 * self.seawater_absorption * range_meter # Function for use with apply def remove_n(x, rr): p_c_lin = 10 ** ((x.Sv - x.ABS - x.TVG) / 10) nn = 10 * np.log10(p_c_lin.mean(dim='ping_time').groupby_bins('range_bin', rr).mean().min( dim='range_bin_bins')) + x.ABS + x.TVG # Return values where signal is [SNR] dB above noise and at least [Sv_threshold] dB if not Sv_threshold: return x.Sv.where(x.Sv > (nn + SNR), other=np.nan) else: return x.Sv.where((x.Sv > (nn + SNR)) & (x > Sv_threshold), other=np.nan) # Groupby noise removal operation proc_data.coords['ping_idx'] = ('ping_time', np.arange(proc_data.Sv['ping_time'].size)) ABS.name = 'ABS' TVG.name = 'TVG' pp = xr.merge([proc_data, ABS]) pp = xr.merge([pp, TVG]) # check if number of range_bin per tile the same for all freq channels if np.unique([np.array(x).size for x in range_bin_tile_bin_edge]).size == 1: Sv_clean = pp.groupby_bins('ping_idx', ping_tile_bin_edge).\ map(remove_n, rr=range_bin_tile_bin_edge[0]) Sv_clean = Sv_clean.drop_vars(['ping_idx']) else: tmp_clean = [] cnt = 0 for key, val in pp.groupby('frequency'): # iterate over different frequency channel tmp = val.groupby_bins('ping_idx', ping_tile_bin_edge). \ map(remove_n, rr=range_bin_tile_bin_edge[cnt]) cnt += 1 tmp_clean.append(tmp) clean_val = np.array([zz.values for zz in xr.align(*tmp_clean, join='outer')]) Sv_clean = xr.DataArray(clean_val, coords={'frequency': proc_data['frequency'].values, 'ping_time': tmp_clean[0]['ping_time'].values, 'range_bin': tmp_clean[0]['range_bin'].values}, dims=['frequency', 'ping_time', 'range_bin']) # Set up DataSet Sv_clean.name = 'Sv' Sv_clean = Sv_clean.to_dataset() Sv_clean['noise_est_range_bin_size'] = ('frequency', self.noise_est_range_bin_size) Sv_clean.attrs['noise_est_ping_size'] = self.noise_est_ping_size # Attach calculated range into data set Sv_clean['range'] = (('frequency', 'range_bin'), self.range.T) # Save as object attributes as a netCDF file self.Sv_clean = Sv_clean # TODO: now adding the below so that MVBS can be calculated directly # from the cleaned Sv without saving and loading Sv_clean from disk. # However this is not explicit to the user. A better way to do this # is to change get_MVBS() to first check existence of self.Sv_clean # when `_Sv_clean` is specified as the source_postfix. if not print_src: # remove noise from Sv stored in memory self.Sv = Sv_clean.copy() if save: self.Sv_clean_path = self.validate_path(save_path=save_path, save_postfix=save_postfix) print('%s saving denoised Sv to %s' % (dt.datetime.now().strftime('%H:%M:%S'), self.Sv_clean_path)) Sv_clean.to_netcdf(self.Sv_clean_path) # Close opened resources proc_data.close() def noise_estimates(self, source_postfix='_Sv', source_path=None, noise_est_range_bin_size=None, noise_est_ping_size=None): """Obtain noise estimates from the minimum mean calibrated power level along each column of tiles. The tiles here are defined by class attributes noise_est_range_bin_size and noise_est_ping_size. This method contains redundant pieces of code that also appear in method remove_noise(), but this method can be used separately to determine the exact tile size for noise removal before noise removal is actually performed. Parameters ---------- source_postfix : str postfix of the Sv file used to calculate noise estimates from, default to '_Sv' source_path : str path of Sv file used to calculate noise estimates from, can be one of the following: - None (default): use Sv in RAWFILENAME_Sv.nc in the same folder as the raw data file, or when RAWFILENAME_Sv.nc doesn't exist, perform self.calibrate() and use the resulted self.Sv - path to a directory: RAWFILENAME_Sv.nc in the specified directory - path to a specific file: the specified file, e.g., ./another_directory/some_other_filename.nc noise_est_range_bin_size : float meters per tile for noise estimation [m] noise_est_ping_size : int number of pings per tile for noise estimation Returns ------- noise_est : xarray DataSet noise estimates as a DataArray with dimension [ping_time x range_bin] ping_time and range_bin are taken from the first element of each tile along each of the dimensions """ # Check params if (noise_est_range_bin_size is not None) and (self.noise_est_range_bin_size != noise_est_range_bin_size): self.noise_est_range_bin_size = noise_est_range_bin_size if (noise_est_ping_size is not None) and (self.noise_est_ping_size != noise_est_ping_size): self.noise_est_ping_size = noise_est_ping_size # Use calibrated data to calculate noise removal proc_data = self._get_proc_Sv() # Get tile indexing parameters self.noise_est_range_bin_size, range_bin_tile_bin_edge, ping_tile_bin_edge = \ self.get_tile_params(r_data_sz=proc_data.range_bin.size, p_data_sz=proc_data.ping_time.size, r_tile_sz=self.noise_est_range_bin_size, p_tile_sz=self.noise_est_ping_size, sample_thickness=self.sample_thickness) # Values for noise estimates range_meter = self.range TVG = np.real(20 * np.log10(range_meter.where(range_meter >= 1, other=1))) ABS = 2 * self.seawater_absorption * range_meter # Noise estimates proc_data['power_cal'] = 10 ** ((proc_data.Sv - ABS - TVG) / 10) # check if number of range_bin per tile the same for all freq channels if np.unique([np.array(x).size for x in range_bin_tile_bin_edge]).size == 1: noise_est = 10 * np.log10(proc_data['power_cal'].coarsen( ping_time=self.noise_est_ping_size, range_bin=int(np.unique(self.noise_est_range_bin_size / self.sample_thickness)), boundary='pad').mean().min(dim='range_bin')) else: range_bin_coarsen_idx = (self.noise_est_range_bin_size / self.sample_thickness).astype(int) tmp_noise = [] for r_bin in range_bin_coarsen_idx: freq = r_bin.frequency.values tmp_da = 10 * np.log10(proc_data['power_cal'].sel(frequency=freq).coarsen( ping_time=self.noise_est_ping_size, range_bin=r_bin.values, boundary='pad').mean().min(dim='range_bin')) tmp_da.name = 'noise_est' tmp_noise.append(tmp_da) # Construct a dataArray TODO: this can probably be done smarter using xarray native functions noise_val = np.array([zz.values for zz in xr.align(*tmp_noise, join='outer')]) noise_est = xr.DataArray(noise_val, coords={'frequency': proc_data['frequency'].values, 'ping_time': tmp_noise[0]['ping_time'].values}, dims=['frequency', 'ping_time']) noise_est = noise_est.to_dataset(name='noise_est') noise_est['noise_est_range_bin_size'] = ('frequency', self.noise_est_range_bin_size) noise_est.attrs['noise_est_ping_size'] = self.noise_est_ping_size # Close opened resources proc_data.close() return noise_est def get_MVBS(self, source_postfix='_Sv', source_path=None, MVBS_range_bin_size=None, MVBS_ping_size=None, save=False, save_postfix='_MVBS', save_path=None): """Calculate Mean Volume Backscattering Strength (MVBS). The calculation uses class attributes MVBS_ping_size and MVBS_range_bin_size to calculate and save MVBS as a new attribute to the calling EchoData instance. MVBS is an xarray DataArray with dimensions ``ping_time`` and ``range_bin`` that are from the first elements of each tile along the corresponding dimensions in the original Sv or Sv_clean DataArray. Parameters ---------- source_postfix : str postfix of the Sv file used to calculate MVBS, default to '_Sv' source_path : str path of Sv file used to calculate MVBS, can be one of the following: - None (default): use Sv in RAWFILENAME_Sv.nc in the same folder as the raw data file, or when RAWFILENAME_Sv.nc doesn't exist, perform self.calibrate() and use the resulted self.Sv - path to a directory: RAWFILENAME_Sv.nc in the specified directory - path to a specific file: the specified file, e.g., ./another_directory/some_other_filename.nc MVBS_range_bin_size : float, optional meters per tile for calculating MVBS [m] MVBS_ping_size : int, optional number of pings per tile for calculating MVBS save : bool, optional whether to save the calculated MVBS into a new .nc file, default to ``False`` save_postfix : str Filename postfix, default to '_MVBS' save_path : str Full filename to save to, overwriting the RAWFILENAME_MVBS.nc default """ # Check params if (MVBS_range_bin_size is not None) and (self.MVBS_range_bin_size != MVBS_range_bin_size): self.MVBS_range_bin_size = MVBS_range_bin_size if (MVBS_ping_size is not None) and (self.MVBS_ping_size != MVBS_ping_size): self.MVBS_ping_size = MVBS_ping_size # Get Sv by validating path and calibrate if not already done if self.Sv is not None: print('%s use Sv stored in memory to calculate MVBS' % dt.datetime.now().strftime('%H:%M:%S')) print_src = False else: print_src = True proc_data = self._get_proc_Sv(source_path=source_path, source_postfix=source_postfix) if print_src: if self.Sv_path is not None: print('%s Sv source used to calculate MVBS: %s' % (dt.datetime.now().strftime('%H:%M:%S'), self.Sv_path)) else: print('%s Sv source used to calculate MVBS: memory' % dt.datetime.now().strftime('%H:%M:%S')) # Get tile indexing parameters self.MVBS_range_bin_size, range_bin_tile_bin_edge, ping_tile_bin_edge = \ self.get_tile_params(r_data_sz=proc_data.range_bin.size, p_data_sz=proc_data.ping_time.size, r_tile_sz=self.MVBS_range_bin_size, p_tile_sz=self.MVBS_ping_size, sample_thickness=self.sample_thickness) # Calculate MVBS Sv_linear = 10 ** (proc_data.Sv / 10) # convert to linear domain before averaging # check if number of range_bin per tile the same for all freq channels if np.unique([np.array(x).size for x in range_bin_tile_bin_edge]).size == 1: MVBS = 10 * np.log10(Sv_linear.coarsen( ping_time=self.MVBS_ping_size, range_bin=int(np.unique(self.MVBS_range_bin_size / self.sample_thickness)), boundary='pad').mean()) MVBS.coords['range_bin'] = ('range_bin', np.arange(MVBS['range_bin'].size)) else: range_bin_coarsen_idx = (self.MVBS_range_bin_size / self.sample_thickness).astype(int) tmp_MVBS = [] for r_bin in range_bin_coarsen_idx: freq = r_bin.frequency.values tmp_da = 10 * np.log10(Sv_linear.sel(frequency=freq).coarsen( ping_time=self.MVBS_ping_size, range_bin=r_bin.values, boundary='pad').mean()) tmp_da.coords['range_bin'] = ('range_bin', np.arange(tmp_da['range_bin'].size)) tmp_da.name = 'MVBS' tmp_MVBS.append(tmp_da) # Construct a dataArray TODO: this can probably be done smarter using xarray native functions MVBS_val = np.array([zz.values for zz in xr.align(*tmp_MVBS, join='outer')]) MVBS = xr.DataArray(MVBS_val, coords={'frequency': Sv_linear['frequency'].values, 'ping_time': tmp_MVBS[0]['ping_time'].values, 'range_bin': np.arange(MVBS_val.shape[2])}, dims=['frequency', 'ping_time', 'range_bin']).dropna(dim='range_bin', how='all') # Set MVBS attributes MVBS.name = 'MVBS' MVBS = MVBS.to_dataset() MVBS['MVBS_range_bin_size'] = ('frequency', self.MVBS_range_bin_size) MVBS.attrs['MVBS_ping_size'] = self.MVBS_ping_size # Save results in object and as a netCDF file self.MVBS = MVBS if save: self.MVBS_path = self.validate_path(save_path=save_path, save_postfix=save_postfix) print('%s saving MVBS to %s' % (dt.datetime.now().strftime('%H:%M:%S'), self.MVBS_path)) MVBS.to_netcdf(self.MVBS_path) # Close opened resources proc_data.close()
[((106, 13, 106, 32), 'os.path.basename', 'os.path.basename', ({(106, 30, 106, 31): 'p'}, {}), '(p)', False, 'import os\n'), ((107, 17, 107, 37), 'os.path.splitext', 'os.path.splitext', ({(107, 34, 107, 36): 'pp'}, {}), '(pp)', False, 'import os\n'), ((229, 15, 229, 47), 'os.path.join', 'os.path.join', ({(229, 28, 229, 36): 'save_dir', (229, 38, 229, 46): 'file_out'}, {}), '(save_dir, file_out)', False, 'import os\n'), ((384, 13, 384, 39), 'xarray.merge', 'xr.merge', ({(384, 22, 384, 38): '[proc_data, ABS]'}, {}), '([proc_data, ABS])', True, 'import xarray as xr\n'), ((385, 13, 385, 32), 'xarray.merge', 'xr.merge', ({(385, 22, 385, 31): '[pp, TVG]'}, {}), '([pp, TVG])', True, 'import xarray as xr\n'), ((203, 22, 203, 54), 'os.path.basename', 'os.path.basename', ({(203, 39, 203, 53): 'self.file_path'}, {}), '(self.file_path)', False, 'import os\n'), ((204, 34, 204, 59), 'os.path.splitext', 'os.path.splitext', ({(204, 51, 204, 58): 'file_in'}, {}), '(file_in)', False, 'import os\n'), ((208, 23, 208, 54), 'os.path.dirname', 'os.path.dirname', ({(208, 39, 208, 53): 'self.file_path'}, {}), '(self.file_path)', False, 'import os\n'), ((225, 23, 225, 34), 'os.getcwd', 'os.getcwd', ({}, {}), '()', False, 'import os\n'), ((226, 15, 226, 39), 'os.path.exists', 'os.path.exists', ({(226, 30, 226, 38): 'save_dir'}, {}), '(save_dir)', False, 'import os\n'), ((227, 12, 227, 30), 'os.mkdir', 'os.mkdir', ({(227, 21, 227, 29): 'save_dir'}, {}), '(save_dir)', False, 'import os\n'), ((266, 11, 266, 39), 'numpy.mod', 'np.mod', ({(266, 18, 266, 27): 'p_data_sz', (266, 29, 266, 38): 'p_tile_sz'}, {}), '(p_data_sz, p_tile_sz)', True, 'import numpy as np\n'), ((286, 15, 286, 38), 'os.path.exists', 'os.path.exists', ({(286, 30, 286, 37): 'Sv_path'}, {}), '(Sv_path)', False, 'import os\n'), ((381, 53, 381, 94), 'numpy.arange', 'np.arange', ({(381, 63, 381, 93): "proc_data.Sv['ping_time'].size"}, {}), "(proc_data.Sv['ping_time'].size)", True, 'import numpy as np\n'), ((400, 23, 404, 81), 'xarray.DataArray', 'xr.DataArray', (), '', True, 'import xarray as xr\n'), ((509, 24, 512, 64), 'xarray.DataArray', 'xr.DataArray', (), '', True, 'import xarray as xr\n'), ((113, 28, 113, 59), 'xarray.open_dataset', 'xr.open_dataset', ({(113, 44, 113, 58): 'self.file_path'}, {}), '(self.file_path)', True, 'import xarray as xr\n'), ((211, 23, 211, 50), 'os.path.splitext', 'os.path.splitext', ({(211, 40, 211, 49): 'save_path'}, {}), '(save_path)', False, 'import os\n'), ((214, 37, 214, 61), 'os.path.split', 'os.path.split', ({(214, 51, 214, 60): 'save_path'}, {}), '(save_path)', False, 'import os\n'), ((261, 25, 261, 63), 'numpy.round', 'np.round', ({(261, 34, 261, 62): 'r_tile_sz / sample_thickness'}, {}), '(r_tile_sz / sample_thickness)', True, 'import numpy as np\n'), ((265, 29, 265, 64), 'numpy.ceil', 'np.ceil', ({(265, 37, 265, 63): 'r_data_sz / num_r_per_tile'}, {}), '(r_data_sz / num_r_per_tile)', True, 'import numpy as np\n'), ((274, 26, 274, 54), 'numpy.arange', 'np.arange', ({(274, 36, 274, 53): '(num_tile_ping + 1)'}, {}), '(num_tile_ping + 1)', True, 'import numpy as np\n'), ((287, 26, 287, 50), 'xarray.open_dataset', 'xr.open_dataset', ({(287, 42, 287, 49): 'Sv_path'}, {}), '(Sv_path)', True, 'import xarray as xr\n'), ((593, 53, 593, 86), 'numpy.arange', 'np.arange', ({(593, 63, 593, 85): "MVBS['range_bin'].size"}, {}), "(MVBS['range_bin'].size)", True, 'import numpy as np\n'), ((116, 40, 116, 71), 'os.path.dirname', 'os.path.dirname', ({(116, 56, 116, 70): 'self.file_path'}, {}), '(self.file_path)', False, 'import os\n'), ((118, 46, 118, 77), 'os.path.dirname', 'os.path.dirname', ({(118, 62, 118, 76): 'self.file_path'}, {}), '(self.file_path)', False, 'import os\n'), ((120, 40, 120, 71), 'os.path.dirname', 'os.path.dirname', ({(120, 56, 120, 70): 'self.file_path'}, {}), '(self.file_path)', False, 'import os\n'), ((122, 42, 122, 73), 'os.path.dirname', 'os.path.dirname', ({(122, 58, 122, 72): 'self.file_path'}, {}), '(self.file_path)', False, 'import os\n'), ((216, 31, 216, 62), 'os.path.dirname', 'os.path.dirname', ({(216, 47, 216, 61): 'self.file_path'}, {}), '(self.file_path)', False, 'import os\n'), ((269, 28, 269, 58), 'numpy.ceil', 'np.ceil', ({(269, 36, 269, 57): 'p_data_sz / p_tile_sz'}, {}), '(p_data_sz / p_tile_sz)', True, 'import numpy as np\n'), ((273, 27, 273, 50), 'numpy.arange', 'np.arange', ({(273, 37, 273, 49): '(x.values + 1)'}, {}), '(x.values + 1)', True, 'import numpy as np\n'), ((603, 59, 603, 94), 'numpy.arange', 'np.arange', ({(603, 69, 603, 93): "tmp_da['range_bin'].size"}, {}), "(tmp_da['range_bin'].size)", True, 'import numpy as np\n'), ((267, 28, 267, 58), 'numpy.ceil', 'np.ceil', ({(267, 36, 267, 57): '(p_data_sz / p_tile_sz)'}, {}), '(p_data_sz / p_tile_sz)', True, 'import numpy as np\n'), ((399, 54, 399, 88), 'xarray.align', 'xr.align', (), '', True, 'import xarray as xr\n'), ((508, 54, 508, 88), 'xarray.align', 'xr.align', (), '', True, 'import xarray as xr\n'), ((608, 53, 608, 86), 'xarray.align', 'xr.align', (), '', True, 'import xarray as xr\n'), ((345, 65, 345, 82), 'datetime.datetime.now', 'dt.datetime.now', ({}, {}), '()', True, 'import datetime as dt\n'), ((387, 22, 387, 33), 'numpy.array', 'np.array', ({(387, 31, 387, 32): 'x'}, {}), '(x)', True, 'import numpy as np\n'), ((490, 22, 490, 33), 'numpy.array', 'np.array', ({(490, 31, 490, 32): 'x'}, {}), '(x)', True, 'import numpy as np\n'), ((563, 68, 563, 85), 'datetime.datetime.now', 'dt.datetime.now', ({}, {}), '()', True, 'import datetime as dt\n'), ((588, 22, 588, 33), 'numpy.array', 'np.array', ({(588, 31, 588, 32): 'x'}, {}), '(x)', True, 'import numpy as np\n'), ((117, 57, 117, 89), 'os.path.basename', 'os.path.basename', ({(117, 74, 117, 88): 'self.file_path'}, {}), '(self.file_path)', False, 'import os\n'), ((119, 63, 119, 95), 'os.path.basename', 'os.path.basename', ({(119, 80, 119, 94): 'self.file_path'}, {}), '(self.file_path)', False, 'import os\n'), ((121, 57, 121, 89), 'os.path.basename', 'os.path.basename', ({(121, 74, 121, 88): 'self.file_path'}, {}), '(self.file_path)', False, 'import os\n'), ((123, 59, 123, 91), 'os.path.basename', 'os.path.basename', ({(123, 76, 123, 90): 'self.file_path'}, {}), '(self.file_path)', False, 'import os\n'), ((354, 19, 354, 36), 'datetime.datetime.now', 'dt.datetime.now', ({}, {}), '()', True, 'import datetime as dt\n'), ((427, 52, 427, 69), 'datetime.datetime.now', 'dt.datetime.now', ({}, {}), '()', True, 'import datetime as dt\n'), ((576, 22, 576, 39), 'datetime.datetime.now', 'dt.datetime.now', ({}, {}), '()', True, 'import datetime as dt\n'), ((612, 53, 612, 81), 'numpy.arange', 'np.arange', ({(612, 63, 612, 80): 'MVBS_val.shape[2]'}, {}), '(MVBS_val.shape[2])', True, 'import numpy as np\n'), ((625, 45, 625, 62), 'datetime.datetime.now', 'dt.datetime.now', ({}, {}), '()', True, 'import datetime as dt\n'), ((294, 65, 294, 82), 'datetime.datetime.now', 'dt.datetime.now', ({}, {}), '()', True, 'import datetime as dt\n'), ((573, 23, 573, 40), 'datetime.datetime.now', 'dt.datetime.now', ({}, {}), '()', True, 'import datetime as dt\n'), ((292, 27, 292, 44), 'datetime.datetime.now', 'dt.datetime.now', ({}, {}), '()', True, 'import datetime as dt\n'), ((591, 30, 591, 89), 'numpy.unique', 'np.unique', ({(591, 40, 591, 88): '(self.MVBS_range_bin_size / self.sample_thickness)'}, {}), '(self.MVBS_range_bin_size / self.sample_thickness)', True, 'import numpy as np\n'), ((493, 30, 493, 94), 'numpy.unique', 'np.unique', ({(493, 40, 493, 93): '(self.noise_est_range_bin_size / self.sample_thickness)'}, {}), '(self.noise_est_range_bin_size / self.sample_thickness)', True, 'import numpy as np\n')]
abondar24/OpenCVBase
Python/face_detect_camera/managers.py
9b23e3b31304e77ad1135d90efb41e3dc069194a
import cv2 import numpy as np import time class CaptureManager(object): def __init__(self, capture, preview_window_manager=None, should_mirror_preview = False): self.preview_window_manager = preview_window_manager self.should_mirror_preview = should_mirror_preview self._capture = capture self._channel = 0 self._entered_frame = False self._frame = None self._frames_elapsed = long(0) self._fps_est = None @property def channel(self): return self._channel @channel.setter def channel(self): return self._channel @property def frame(self): if self._entered_frame and self._frame is None: _, self._frame = self._capture.retrieve(channel=self.channel) return self._frame def enter_frame(self): # capture the next frame assert not self._entered_frame, 'previous enter_frame() had no matching exit_frame()' if self._capture is not None: self._entered_frame = self._capture.grab() def exit_frame(self): # draw to window, write to files, release the frame # frame is retrievable or not if self.frame is None: self._entered_frame = False return if self._frames_elapsed == 0: self._start_time = time.time() else: time_elapsed = time.time() - self._start_time self._fps_est = self._frames_elapsed / time_elapsed self._frames_elapsed += 1 # draw if self.preview_window_manager is not None: if self.should_mirror_preview: mirrored_frame = np.fliplr(self._frame).copy() self.preview_window_manager.show(mirrored_frame) else: self.preview_window_manager.show(self._frame) # release the frame self._frame = None self._entered_frame = False class WindowManager(object): def __init__(self, window_name, keypress_callback = None): self.keypress_callback = keypress_callback self._window_name = window_name self._is_window_created = False @property def is_window_created(self): return self._is_window_created def create_window(self): cv2.namedWindow(self._window_name) self._is_window_created = True def show(self, frame): cv2.imshow(self._window_name, frame) def destroy_window(self): cv2.destroyWindow(self._window_name) self._is_window_created = False def process_events(self): keykode = cv2.waitKey(1) if self.keypress_callback is not None and keykode != -1: keykode &= 0xFF self.keypress_callback(keykode)
[((81, 8, 81, 42), 'cv2.namedWindow', 'cv2.namedWindow', ({(81, 24, 81, 41): 'self._window_name'}, {}), '(self._window_name)', False, 'import cv2\n'), ((85, 8, 85, 44), 'cv2.imshow', 'cv2.imshow', ({(85, 19, 85, 36): 'self._window_name', (85, 38, 85, 43): 'frame'}, {}), '(self._window_name, frame)', False, 'import cv2\n'), ((88, 8, 88, 44), 'cv2.destroyWindow', 'cv2.destroyWindow', ({(88, 26, 88, 43): 'self._window_name'}, {}), '(self._window_name)', False, 'import cv2\n'), ((92, 18, 92, 32), 'cv2.waitKey', 'cv2.waitKey', ({(92, 30, 92, 31): '1'}, {}), '(1)', False, 'import cv2\n'), ((49, 31, 49, 42), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((51, 27, 51, 38), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((58, 33, 58, 55), 'numpy.fliplr', 'np.fliplr', ({(58, 43, 58, 54): 'self._frame'}, {}), '(self._frame)', True, 'import numpy as np\n')]
micaelverissimo/lifelong_ringer
ELLA/ELLA.py
d2e7173ce08d1c087e811f6451cae1cb0e381076
""" Alpha version of a version of ELLA that plays nicely with sklearn @author: Paul Ruvolo """ from math import log import numpy as np from scipy.special import logsumexp from scipy.linalg import sqrtm, inv, norm from sklearn.linear_model import LinearRegression, Ridge, LogisticRegression, Lasso import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score, explained_variance_score class ELLA(object): """ The ELLA model """ def __init__(self, d, k, base_learner, base_learner_kwargs = {}, mu = 1, lam = 1, k_init = False): """ Initializes a new model for the given base_learner. d: the number of parameters for the base learner k: the number of latent model components base_learner: the base learner to use (currently can only be LinearRegression, Ridge, or LogisticRegression). base_learner_kwargs: keyword arguments to base learner (for instance to specify regularization strength) mu: hyperparameter for sparsity lam: L2 penalty on L mu: the L_1 penalty to use lam: the L_2 penalty to use NOTE: currently only binary logistic regression is supported """ self.d = d self.k = k self.L = np.random.randn(d,k) self.A = np.zeros((d * k, d * k)) self.b = np.zeros((d * k, 1)) self.S = np.zeros((k, 0)) self.T = 0 self.mu = mu self.lam = lam self.k_init = k_init if base_learner in [LinearRegression, Ridge]: self.perf_metric = explained_variance_score elif base_learner in [LogisticRegression]: self.perf_metric = accuracy_score else: raise Exception("Unsupported Base Learner") self.base_learner = base_learner self.base_learner_kwargs = base_learner_kwargs def fit(self, X, y, task_id): """ Fit the model to a new batch of training data. The task_id must start at 0 and increase by one each time this function is called. Currently you cannot add new data to old tasks. X: the training data y: the trianing labels task_id: the id of the task """ self.T += 1 single_task_model = self.base_learner(fit_intercept = False, **self.base_learner_kwargs).fit(X, y) D_t = self.get_hessian(single_task_model, X, y) D_t_sqrt = sqrtm(D_t) theta_t = single_task_model.coef_ sparse_encode = Lasso(alpha = self.mu / (X.shape[0] * 2.0), fit_intercept = False, tol=1e9, max_iter=50000).fit(D_t_sqrt.dot(self.L), D_t_sqrt.dot(theta_t.T)) if self.k_init and task_id < self.k: sparse_coeffs = np.zeros((self.k,)) sparse_coeffs[task_id] = 1.0 else: sparse_coeffs = sparse_encode.coef_ self.S = np.hstack((self.S, np.matrix(sparse_coeffs).T)) self.A += np.kron(self.S[:,task_id].dot(self.S[:,task_id].T), D_t) self.b += np.kron(self.S[:,task_id].T, np.mat(theta_t).dot(D_t)).T L_vectorized = inv(self.A / self.T + self.lam * np.eye(self.d * self.k, self.d * self.k)).dot(self.b) / self.T self.L = L_vectorized.reshape((self.k, self.d)).T self.revive_dead_components() def revive_dead_components(self): """ re-initailizes any components that have decayed to 0 """ for i,val in enumerate(np.sum(self.L, axis = 0)): if abs(val) < 10 ** -8: self.L[:, i] = np.random.randn(self.d,) def predict(self, X, task_id): """ Output ELLA's predictions for the specified data on the specified task_id. If using a continuous model (Ridge and LinearRegression) the result is the prediction. If using a classification model (LogisticRgerssion) the output is currently a probability. """ if self.base_learner == LinearRegression or self.base_learner == Ridge: return X.dot(self.L.dot(self.S[:, task_id])) elif self.base_learner == LogisticRegression: return 1. / (1.0 + np.exp(-X.dot(self.L.dot(self.S[:, task_id])))) > 0.5 def predict_probs(self, X, task_id): """ Output ELLA's predictions for the specified data on the specified task_id. If using a continuous model (Ridge and LinearRegression) the result is the prediction. If using a classification model (LogisticRgerssion) the output is currently a probability. """ if self.base_learner == LinearRegression or self.base_learner == Ridge: raise Exception("This base learner does not support predicting probabilities") elif self.base_learner == LogisticRegression: return np.exp(self.predict_logprobs(X, task_id)) def predict_logprobs(self, X, task_id): """ Output ELLA's predictions for the specified data on the specified task_id. If using a continuous model (Ridge and LinearRegression) the result is the prediction. If using a classification model (LogisticRgerssion) the output is currently a probability. """ if self.base_learner == LinearRegression or self.base_learner == Ridge: raise Exception("This base learner does not support predicting probabilities") elif self.base_learner == LogisticRegression: return -logsumexp(np.hstack((np.zeros((X.shape[0], 1)), -X.dot(self.L.dot(self.S[:, task_id])))), axis = 1) def score(self, X, y, task_id): """ Output the score for ELLA's model on the specified testing data. If using a continuous model (Ridge and LinearRegression) the score is explained variance. If using a classification model (LogisticRegression) the score is accuracy. """ return self.perf_metric(self.predict(X, task_id), y) def get_hessian(self, model, X, y): """ ELLA requires that each single task learner provide the Hessian of the loss function evaluated around the optimal single task parameters. This funciton implements this for the base learners that are currently supported """ theta_t = model.coef_ if self.base_learner == LinearRegression: return X.T.dot(X)/(2.0 * X.shape[0]) elif self.base_learner == Ridge: return X.T.dot(X)/(2.0 * X.shape[0]) + model.alpha * np.eye(self.d, self.d) elif self.base_learner == LogisticRegression: preds = 1. / (1.0 + np.exp(-X.dot(theta_t.T))) base = np.tile(preds * (1 - preds), (1, X.shape[1])) hessian = (np.multiply(X, base)).T.dot(X) / (2.0 * X.shape[0]) return hessian + np.eye(self.d,self.d) / (2.0 * model.C)
[((32, 17, 32, 37), 'numpy.random.randn', 'np.random.randn', ({(32, 33, 32, 34): 'd', (32, 35, 32, 36): 'k'}, {}), '(d, k)', True, 'import numpy as np\n'), ((33, 17, 33, 41), 'numpy.zeros', 'np.zeros', ({(33, 26, 33, 40): '(d * k, d * k)'}, {}), '((d * k, d * k))', True, 'import numpy as np\n'), ((34, 17, 34, 37), 'numpy.zeros', 'np.zeros', ({(34, 26, 34, 36): '(d * k, 1)'}, {}), '((d * k, 1))', True, 'import numpy as np\n'), ((35, 17, 35, 33), 'numpy.zeros', 'np.zeros', ({(35, 26, 35, 32): '(k, 0)'}, {}), '((k, 0))', True, 'import numpy as np\n'), ((62, 19, 62, 29), 'scipy.linalg.sqrtm', 'sqrtm', ({(62, 25, 62, 28): 'D_t'}, {}), '(D_t)', False, 'from scipy.linalg import sqrtm, inv, norm\n'), ((69, 28, 69, 47), 'numpy.zeros', 'np.zeros', ({(69, 37, 69, 46): '(self.k,)'}, {}), '((self.k,))', True, 'import numpy as np\n'), ((82, 31, 82, 55), 'numpy.sum', 'np.sum', (), '', True, 'import numpy as np\n'), ((65, 24, 66, 77), 'sklearn.linear_model.Lasso', 'Lasso', (), '', False, 'from sklearn.linear_model import LinearRegression, Ridge, LogisticRegression, Lasso\n'), ((84, 31, 84, 55), 'numpy.random.randn', 'np.random.randn', ({(84, 47, 84, 53): 'self.d'}, {}), '(self.d)', True, 'import numpy as np\n'), ((73, 36, 73, 60), 'numpy.matrix', 'np.matrix', ({(73, 46, 73, 59): 'sparse_coeffs'}, {}), '(sparse_coeffs)', True, 'import numpy as np\n'), ((139, 19, 139, 64), 'numpy.tile', 'np.tile', ({(139, 27, 139, 46): 'preds * (1 - preds)', (139, 48, 139, 63): '(1, X.shape[1])'}, {}), '(preds * (1 - preds), (1, X.shape[1]))', True, 'import numpy as np\n'), ((75, 47, 75, 62), 'numpy.mat', 'np.mat', ({(75, 54, 75, 61): 'theta_t'}, {}), '(theta_t)', True, 'import numpy as np\n'), ((136, 65, 136, 87), 'numpy.eye', 'np.eye', ({(136, 72, 136, 78): 'self.d', (136, 80, 136, 86): 'self.d'}, {}), '(self.d, self.d)', True, 'import numpy as np\n'), ((141, 29, 141, 50), 'numpy.eye', 'np.eye', ({(141, 36, 141, 42): 'self.d', (141, 43, 141, 49): 'self.d'}, {}), '(self.d, self.d)', True, 'import numpy as np\n'), ((76, 56, 76, 96), 'numpy.eye', 'np.eye', ({(76, 63, 76, 78): '(self.d * self.k)', (76, 80, 76, 95): '(self.d * self.k)'}, {}), '(self.d * self.k, self.d * self.k)', True, 'import numpy as np\n'), ((117, 41, 117, 66), 'numpy.zeros', 'np.zeros', ({(117, 50, 117, 65): '(X.shape[0], 1)'}, {}), '((X.shape[0], 1))', True, 'import numpy as np\n'), ((140, 23, 140, 43), 'numpy.multiply', 'np.multiply', ({(140, 35, 140, 36): 'X', (140, 38, 140, 42): 'base'}, {}), '(X, base)', True, 'import numpy as np\n')]
Myst1c-a/phen-cogs
webhook/utils.py
672f9022ddbbd9a84b0a05357347e99e64a776fc
""" MIT License Copyright (c) 2020-present phenom4n4n Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import re import discord from redbot.core.commands import Context USER_MENTIONS = discord.AllowedMentions.none() USER_MENTIONS.users = True WEBHOOK_RE = re.compile( r"discord(?:app)?.com/api/webhooks/(?P<id>[0-9]{17,21})/(?P<token>[A-Za-z0-9\.\-\_]{60,68})" ) async def _monkeypatch_send(ctx: Context, content: str = None, **kwargs) -> discord.Message: self = ctx.bot.get_cog("Webhook") original_kwargs = kwargs.copy() try: webhook = await self.get_webhook(ctx=ctx) kwargs["username"] = ctx.author.display_name kwargs["avatar_url"] = ctx.author.avatar_url kwargs["wait"] = True return await webhook.send(content, **kwargs) except Exception: return await super(Context, ctx).send(content, **original_kwargs) class FakeResponse: def __init__(self): self.status = 403 self.reason = "Forbidden"
[((30, 16, 30, 46), 'discord.AllowedMentions.none', 'discord.AllowedMentions.none', ({}, {}), '()', False, 'import discord\n'), ((33, 13, 35, 1), 're.compile', 're.compile', ({(34, 4, 34, 96): '"""discord(?:app)?.com/api/webhooks/(?P<id>[0-9]{17,21})/(?P<token>[A-Za-z0-9\\\\.\\\\-\\\\_]{60,68})"""'}, {}), "(\n 'discord(?:app)?.com/api/webhooks/(?P<id>[0-9]{17,21})/(?P<token>[A-Za-z0-9\\\\.\\\\-\\\\_]{60,68})'\n )", False, 'import re\n')]
jwise/pebble-caltrain
scripts/generate.py
770497cb38205827fee2e4e4cfdd79bcf60ceb65
__author__ = 'katharine' import csv import struct import time import datetime def generate_files(source_dir, target_dir): stops_txt = [x for x in csv.DictReader(open("%s/stops.txt" % source_dir, 'rb')) if x['location_type'] == '0'] print "%d stops" % len(stops_txt) name_replacements = ( ('Caltrain', ''), ('Station', ''), ('Mt View', 'Mountain View'), ('So. San Francisco', 'South SF'), ('South San Francisco', 'South SF'), ) stop_parent_map = {} stop_name_map = {} stop_map = {} stops = [] for s in stops_txt: if s['parent_station'] != '' and s['parent_station'] in stop_parent_map: stop_map[int(s['stop_code'])] = stop_parent_map[s['parent_station']] continue for replacement in name_replacements: s['stop_name'] = s['stop_name'].replace(*replacement) s['stop_name'] = s['stop_name'].rstrip() if s['stop_name'] in stop_name_map: stop_map[int(s['stop_code'])] = stop_name_map[s['stop_name']] continue stop_map[int(s['stop_code'])] = len(stops) stop_parent_map[s['parent_station']] = len(stops) stop_name_map[s['stop_name']] = len(stops) stops.append({ 'name': s['stop_name'], 'zone': int(s['zone_id']) if s['zone_id'] != '' else 0, 'lat': float(s['stop_lat']), 'lon': float(s['stop_lon']) }) with open('%s/stops.dat' % target_dir, 'wb') as f: f.write(struct.pack('<B', len(stops))) for stop in stops: f.write(struct.pack('<B18sii', stop['zone'], stop['name'], int(stop['lat'] * 1000000), int(stop['lon'] * 1000000))) calendar_txt = list(csv.DictReader(open("%s/calendar.txt" % source_dir, 'rb'))) cal = [] cal_map = {} for i, x in enumerate(calendar_txt): cal_map[x['service_id']] = len(cal) end_time = datetime.datetime.strptime(x['end_date'], '%Y%m%d') + datetime.timedelta(1, hours=2) cal.append({ 'id': cal_map[x['service_id']], 'start': time.mktime(time.strptime(x['start_date'], '%Y%m%d')), 'end': time.mktime(end_time.timetuple()), 'days': ( (int(x['monday']) << 0) | (int(x['tuesday']) << 1) | (int(x['wednesday']) << 2) | (int(x['thursday']) << 3) | (int(x['friday']) << 4) | (int(x['saturday']) << 5) | (int(x['sunday']) << 6) ) }) calendar_dates_txt = list(csv.DictReader(open("%s/calendar_dates.txt" % source_dir, 'rb'))) for i, x in enumerate(calendar_dates_txt): if x['service_id'] in cal_map: # XXX: Would be nice to find a way to mark special dates. But # we can't, right now. Oh well. continue cal_map[x['service_id']] = len(cal) start_time = datetime.datetime.strptime(x['date'], '%Y%m%d') end_time = start_time + datetime.timedelta(1, hours=2) cal.append({ 'id': cal_map[x['service_id']], 'start': time.mktime(start_time.timetuple()), 'end': time.mktime(end_time.timetuple()), 'days': 0x7F, }) with open('%s/calendar.dat' % target_dir, 'wb') as f: f.write(struct.pack('<B', len(cal))) for c in cal: f.write(struct.pack('<IIB', int(c['start']), int(c['end']), c['days'])) trips_txt = list(csv.DictReader(open("%s/trips.txt" % source_dir, "rb"))) tr = [] tr_map = {} # These shouldn't be hardcoded, and should instead be inferred from routes.txt. route_map = { "BABY BULLET": 0, "LIMITED": 1, "LOCAL": 2, "SHUTTLE": 3, "Bu-130": 0, "Li-130": 1, "Lo-130": 2, "TaSj-130": 3, "Sp-130": 2, # XXX: Special Event Extra Service } short_name_replacements = ( ('Tamien SJ shuttle', ''), ('S', ''), ('shuttle', ''), ) for i, trip in enumerate(trips_txt): for replacement in short_name_replacements: trip['trip_short_name'] = trip['trip_short_name'].replace(*replacement) tr.append({ 'direction': int(not int(trip['direction_id'])), # We picked opposing values for north/south. 'route': route_map[trip['route_id']], 'service': cal_map[trip['service_id']], 'trip_name': int(trip['trip_short_name'])}), tr_map[trip['trip_id']] = i with open('%s/trips.dat' % target_dir, 'wb') as f: f.write(struct.pack('<H', len(tr))) for t in tr: f.write(struct.pack('<HBBB', t['trip_name'], t['direction'], t['route'], t['service'])) times_txt = list(csv.DictReader(open("%s/stop_times.txt" % source_dir))) tm = sorted([{ 'time': (int(x['arrival_time'].split(':')[0])*60 + int(x['arrival_time'].split(':')[1])), 'stop': stop_map[int(x['stop_id'])], 'sequence': int(x['stop_sequence']), 'trip': tr_map[x['trip_id']] } for x in times_txt], key=lambda y: y['time']) with open('%s/times.dat' % target_dir, 'wb') as f: f.write(struct.pack('<H', len(tm))) for t in tm: f.write(struct.pack('<HHBB', t['trip'], t['time'], t['stop'], t['sequence'])) stop_times = [sorted([i for i, x in enumerate(tm) if x['stop'] == stop], key=lambda t: tm[t]['time']) for stop, s in enumerate(stops)] lengths = [len(x) for x in stop_times] with open('%s/stop_index.dat' % target_dir, 'wb') as f: f.write(struct.pack('<B', len(lengths))) counter = len(lengths)*4 + 1 for l in lengths: f.write(struct.pack('<HH', counter, l)) counter += l*2 for s in stop_times: for x in s: f.write(struct.pack('<H', x)) trip_stops = [sorted([i for i, x in enumerate(tm) if x['trip'] == trip], key=lambda k: tm[k]['stop']) for trip, s in enumerate(tr)] lengths = map(len, trip_stops) with open('%s/trip_index.dat' % target_dir, 'wb') as f: f.write(struct.pack('<H', len(lengths))) counter = len(lengths) * 3 + 2 data_start = counter for l in lengths: f.write(struct.pack('<HB', counter, l)) counter += l*2 if data_start != f.tell(): raise Exception("%d != %d" % (counter, f.tell())) for s in trip_stops: for x in s: f.write(struct.pack('<H', x)) if f.tell() != counter: raise Exception("Not the expected length!") if __name__ == "__main__": import sys generate_files(sys.argv[1], sys.argv[2])
[]
gerardroche/sublime-phpunit
tests/test_is_valid_php_version_file_version.py
73e96ec5e4ac573c5d5247cf87c38e8243da906b
from PHPUnitKit.tests import unittest from PHPUnitKit.plugin import is_valid_php_version_file_version class TestIsValidPhpVersionFileVersion(unittest.TestCase): def test_invalid_values(self): self.assertFalse(is_valid_php_version_file_version('')) self.assertFalse(is_valid_php_version_file_version(' ')) self.assertFalse(is_valid_php_version_file_version('foobar')) self.assertFalse(is_valid_php_version_file_version('masterfoo')) self.assertFalse(is_valid_php_version_file_version('.')) self.assertFalse(is_valid_php_version_file_version('x')) self.assertFalse(is_valid_php_version_file_version('x.x')) self.assertFalse(is_valid_php_version_file_version('x.x.x')) self.assertFalse(is_valid_php_version_file_version('x')) self.assertFalse(is_valid_php_version_file_version('snapshot')) def test_master_branch_version(self): self.assertTrue(is_valid_php_version_file_version('master')) def test_specific_semver_versions(self): self.assertTrue(is_valid_php_version_file_version('5.0.0')) self.assertTrue(is_valid_php_version_file_version('5.0.1')) self.assertTrue(is_valid_php_version_file_version('5.0.7')) self.assertTrue(is_valid_php_version_file_version('5.0.30')) self.assertTrue(is_valid_php_version_file_version('5.0.32')) self.assertTrue(is_valid_php_version_file_version('5.1.0')) self.assertTrue(is_valid_php_version_file_version('5.1.1')) self.assertTrue(is_valid_php_version_file_version('5.1.3')) self.assertTrue(is_valid_php_version_file_version('5.1.27')) self.assertTrue(is_valid_php_version_file_version('7.0.0')) self.assertTrue(is_valid_php_version_file_version('7.1.19')) def test_minor_versions(self): self.assertTrue(is_valid_php_version_file_version('5.6')) self.assertTrue(is_valid_php_version_file_version('7.1')) self.assertTrue(is_valid_php_version_file_version('7.2')) def test_major_dot_x_versions(self): self.assertTrue(is_valid_php_version_file_version('5.x')) self.assertTrue(is_valid_php_version_file_version('6.x')) self.assertTrue(is_valid_php_version_file_version('7.x')) self.assertTrue(is_valid_php_version_file_version('8.x')) def test_major_dot_minor_dot_x_versions(self): self.assertTrue(is_valid_php_version_file_version('7.0.x')) self.assertTrue(is_valid_php_version_file_version('7.1.x')) self.assertTrue(is_valid_php_version_file_version('7.2.x')) def test_snapshot_versions(self): self.assertTrue(is_valid_php_version_file_version('5.4snapshot')) self.assertTrue(is_valid_php_version_file_version('5.5snapshot')) self.assertTrue(is_valid_php_version_file_version('5.6snapshot')) self.assertTrue(is_valid_php_version_file_version('7.0snapshot')) self.assertTrue(is_valid_php_version_file_version('7.1snapshot')) self.assertTrue(is_valid_php_version_file_version('7.0.0snapshot')) self.assertTrue(is_valid_php_version_file_version('7.1.0snapshot')) self.assertTrue(is_valid_php_version_file_version('7.1.1snapshot'))
[((9, 25, 9, 62), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(9, 59, 9, 61): '""""""'}, {}), "('')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((10, 25, 10, 63), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(10, 59, 10, 62): '""" """'}, {}), "(' ')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((11, 25, 11, 68), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(11, 59, 11, 67): '"""foobar"""'}, {}), "('foobar')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((12, 25, 12, 71), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(12, 59, 12, 70): '"""masterfoo"""'}, {}), "('masterfoo')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((13, 25, 13, 63), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(13, 59, 13, 62): '"""."""'}, {}), "('.')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((14, 25, 14, 63), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(14, 59, 14, 62): '"""x"""'}, {}), "('x')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((15, 25, 15, 65), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(15, 59, 15, 64): '"""x.x"""'}, {}), "('x.x')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((16, 25, 16, 67), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(16, 59, 16, 66): '"""x.x.x"""'}, {}), "('x.x.x')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((17, 25, 17, 63), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(17, 59, 17, 62): '"""x"""'}, {}), "('x')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((18, 25, 18, 70), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(18, 59, 18, 69): '"""snapshot"""'}, {}), "('snapshot')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((21, 24, 21, 67), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(21, 58, 21, 66): '"""master"""'}, {}), "('master')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((24, 24, 24, 66), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(24, 58, 24, 65): '"""5.0.0"""'}, {}), "('5.0.0')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((25, 24, 25, 66), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(25, 58, 25, 65): '"""5.0.1"""'}, {}), "('5.0.1')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((26, 24, 26, 66), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(26, 58, 26, 65): '"""5.0.7"""'}, {}), "('5.0.7')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((27, 24, 27, 67), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(27, 58, 27, 66): '"""5.0.30"""'}, {}), "('5.0.30')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((28, 24, 28, 67), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(28, 58, 28, 66): '"""5.0.32"""'}, {}), "('5.0.32')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((29, 24, 29, 66), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(29, 58, 29, 65): '"""5.1.0"""'}, {}), "('5.1.0')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((30, 24, 30, 66), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(30, 58, 30, 65): '"""5.1.1"""'}, {}), "('5.1.1')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((31, 24, 31, 66), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(31, 58, 31, 65): '"""5.1.3"""'}, {}), "('5.1.3')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((32, 24, 32, 67), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(32, 58, 32, 66): '"""5.1.27"""'}, {}), "('5.1.27')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((33, 24, 33, 66), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(33, 58, 33, 65): '"""7.0.0"""'}, {}), "('7.0.0')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((34, 24, 34, 67), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(34, 58, 34, 66): '"""7.1.19"""'}, {}), "('7.1.19')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((37, 24, 37, 64), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(37, 58, 37, 63): '"""5.6"""'}, {}), "('5.6')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((38, 24, 38, 64), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(38, 58, 38, 63): '"""7.1"""'}, {}), "('7.1')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((39, 24, 39, 64), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(39, 58, 39, 63): '"""7.2"""'}, {}), "('7.2')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((42, 24, 42, 64), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(42, 58, 42, 63): '"""5.x"""'}, {}), "('5.x')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((43, 24, 43, 64), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(43, 58, 43, 63): '"""6.x"""'}, {}), "('6.x')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((44, 24, 44, 64), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(44, 58, 44, 63): '"""7.x"""'}, {}), "('7.x')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((45, 24, 45, 64), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(45, 58, 45, 63): '"""8.x"""'}, {}), "('8.x')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((48, 24, 48, 66), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(48, 58, 48, 65): '"""7.0.x"""'}, {}), "('7.0.x')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((49, 24, 49, 66), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(49, 58, 49, 65): '"""7.1.x"""'}, {}), "('7.1.x')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((50, 24, 50, 66), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(50, 58, 50, 65): '"""7.2.x"""'}, {}), "('7.2.x')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((53, 24, 53, 72), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(53, 58, 53, 71): '"""5.4snapshot"""'}, {}), "('5.4snapshot')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((54, 24, 54, 72), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(54, 58, 54, 71): '"""5.5snapshot"""'}, {}), "('5.5snapshot')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((55, 24, 55, 72), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(55, 58, 55, 71): '"""5.6snapshot"""'}, {}), "('5.6snapshot')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((56, 24, 56, 72), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(56, 58, 56, 71): '"""7.0snapshot"""'}, {}), "('7.0snapshot')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((57, 24, 57, 72), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(57, 58, 57, 71): '"""7.1snapshot"""'}, {}), "('7.1snapshot')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((58, 24, 58, 74), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(58, 58, 58, 73): '"""7.0.0snapshot"""'}, {}), "('7.0.0snapshot')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((59, 24, 59, 74), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(59, 58, 59, 73): '"""7.1.0snapshot"""'}, {}), "('7.1.0snapshot')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n'), ((60, 24, 60, 74), 'PHPUnitKit.plugin.is_valid_php_version_file_version', 'is_valid_php_version_file_version', ({(60, 58, 60, 73): '"""7.1.1snapshot"""'}, {}), "('7.1.1snapshot')", False, 'from PHPUnitKit.plugin import is_valid_php_version_file_version\n')]
cul-it/arxiv-rss
feed/tests/test_consts.py
40c0e859528119cc8ba3700312cb8df095d95cdd
import pytest from feed.consts import FeedVersion from feed.utils import randomize_case from feed.errors import FeedVersionError # FeedVersion.supported def test_feed_version_supported(): assert FeedVersion.supported() == { FeedVersion.RSS_2_0, FeedVersion.ATOM_1_0, } # FeedVersion.get def test_feed_version_get_supported(): # RSS full version assert ( FeedVersion.get(randomize_case(FeedVersion.RSS_2_0.lower())) == FeedVersion.RSS_2_0 ) # RSS only number assert FeedVersion.get("2.0") == FeedVersion.RSS_2_0 # Atom full version assert ( FeedVersion.get(randomize_case(FeedVersion.ATOM_1_0.lower())) == FeedVersion.ATOM_1_0 ) # Atom only number assert FeedVersion.get("1.0", atom=True) == FeedVersion.ATOM_1_0 def test_feed_version_get_unsupported(): # RSS 0.91 full version rss_0_91 = randomize_case(FeedVersion.RSS_0_91) with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get(rss_0_91) ex: FeedVersionError = excinfo.value assert ex.version == rss_0_91 assert ex.supported == FeedVersion.supported() # RSS 0.91 only number with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get("0.91") ex: FeedVersionError = excinfo.value assert ex.version == "RSS 0.91" assert ex.supported == FeedVersion.supported() # RSS 1.0 full version rss_1_0 = randomize_case(FeedVersion.RSS_1_0) with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get(rss_1_0) ex: FeedVersionError = excinfo.value assert ex.version == rss_1_0 assert ex.supported == FeedVersion.supported() # RSS 1.0 only number with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get("1.0") ex: FeedVersionError = excinfo.value assert ex.version == "RSS 1.0" assert ex.supported == FeedVersion.supported() def test_feed_version_get_invalid(): # RSS for version, test in [ ("RSS 3.3", "3.3"), ("RSS 0.1", "0.1"), ("RSS 1.1", "RSS 1.1"), ("RSS 2.1", "RSS 2.1"), ]: with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get(test) ex: FeedVersionError = excinfo.value assert ex.version == version assert ex.supported == FeedVersion.supported() # Atom for version, test, prefere in [ ("Atom 0.1", "0.1", True), ("Atom 0.91", "0.91", True), ("Atom 2.0", "2.0", True), ("Atom 0.1", "Atom 0.1", False), ("Atom 0.91", "Atom 0.91", False), ("Atom 2.0", "Atom 2.0", False), ]: with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get(test, atom=prefere) ex: FeedVersionError = excinfo.value assert ex.version == version assert ex.supported == FeedVersion.supported() # Nonsense for version in ["foo", "bar", "baz"]: with pytest.raises(FeedVersionError) as excinfo: FeedVersion.get(version) ex: FeedVersionError = excinfo.value assert ex.version == version assert ex.supported == FeedVersion.supported() def test_is_property(): # RSS assert FeedVersion.RSS_0_91.is_rss assert FeedVersion.RSS_1_0.is_rss assert FeedVersion.RSS_2_0.is_rss assert not FeedVersion.RSS_0_91.is_atom assert not FeedVersion.RSS_1_0.is_atom assert not FeedVersion.RSS_2_0.is_atom # Atom assert FeedVersion.ATOM_1_0.is_atom assert not FeedVersion.ATOM_1_0.is_rss
[((41, 15, 41, 51), 'feed.utils.randomize_case', 'randomize_case', ({(41, 30, 41, 50): 'FeedVersion.RSS_0_91'}, {}), '(FeedVersion.RSS_0_91)', False, 'from feed.utils import randomize_case\n'), ((58, 14, 58, 49), 'feed.utils.randomize_case', 'randomize_case', ({(58, 29, 58, 48): 'FeedVersion.RSS_1_0'}, {}), '(FeedVersion.RSS_1_0)', False, 'from feed.utils import randomize_case\n'), ((12, 11, 12, 34), 'feed.consts.FeedVersion.supported', 'FeedVersion.supported', ({}, {}), '()', False, 'from feed.consts import FeedVersion\n'), ((28, 11, 28, 33), 'feed.consts.FeedVersion.get', 'FeedVersion.get', ({(28, 27, 28, 32): '"""2.0"""'}, {}), "('2.0')", False, 'from feed.consts import FeedVersion\n'), ((36, 11, 36, 44), 'feed.consts.FeedVersion.get', 'FeedVersion.get', (), '', False, 'from feed.consts import FeedVersion\n'), ((42, 9, 42, 40), 'pytest.raises', 'pytest.raises', ({(42, 23, 42, 39): 'FeedVersionError'}, {}), '(FeedVersionError)', False, 'import pytest\n'), ((43, 8, 43, 33), 'feed.consts.FeedVersion.get', 'FeedVersion.get', ({(43, 24, 43, 32): 'rss_0_91'}, {}), '(rss_0_91)', False, 'from feed.consts import FeedVersion\n'), ((47, 27, 47, 50), 'feed.consts.FeedVersion.supported', 'FeedVersion.supported', ({}, {}), '()', False, 'from feed.consts import FeedVersion\n'), ((50, 9, 50, 40), 'pytest.raises', 'pytest.raises', ({(50, 23, 50, 39): 'FeedVersionError'}, {}), '(FeedVersionError)', False, 'import pytest\n'), ((51, 8, 51, 31), 'feed.consts.FeedVersion.get', 'FeedVersion.get', ({(51, 24, 51, 30): '"""0.91"""'}, {}), "('0.91')", False, 'from feed.consts import FeedVersion\n'), ((55, 27, 55, 50), 'feed.consts.FeedVersion.supported', 'FeedVersion.supported', ({}, {}), '()', False, 'from feed.consts import FeedVersion\n'), ((59, 9, 59, 40), 'pytest.raises', 'pytest.raises', ({(59, 23, 59, 39): 'FeedVersionError'}, {}), '(FeedVersionError)', False, 'import pytest\n'), ((60, 8, 60, 32), 'feed.consts.FeedVersion.get', 'FeedVersion.get', ({(60, 24, 60, 31): 'rss_1_0'}, {}), '(rss_1_0)', False, 'from feed.consts import FeedVersion\n'), ((64, 27, 64, 50), 'feed.consts.FeedVersion.supported', 'FeedVersion.supported', ({}, {}), '()', False, 'from feed.consts import FeedVersion\n'), ((67, 9, 67, 40), 'pytest.raises', 'pytest.raises', ({(67, 23, 67, 39): 'FeedVersionError'}, {}), '(FeedVersionError)', False, 'import pytest\n'), ((68, 8, 68, 30), 'feed.consts.FeedVersion.get', 'FeedVersion.get', ({(68, 24, 68, 29): '"""1.0"""'}, {}), "('1.0')", False, 'from feed.consts import FeedVersion\n'), ((72, 27, 72, 50), 'feed.consts.FeedVersion.supported', 'FeedVersion.supported', ({}, {}), '()', False, 'from feed.consts import FeedVersion\n'), ((83, 13, 83, 44), 'pytest.raises', 'pytest.raises', ({(83, 27, 83, 43): 'FeedVersionError'}, {}), '(FeedVersionError)', False, 'import pytest\n'), ((84, 12, 84, 33), 'feed.consts.FeedVersion.get', 'FeedVersion.get', ({(84, 28, 84, 32): 'test'}, {}), '(test)', False, 'from feed.consts import FeedVersion\n'), ((88, 31, 88, 54), 'feed.consts.FeedVersion.supported', 'FeedVersion.supported', ({}, {}), '()', False, 'from feed.consts import FeedVersion\n'), ((99, 13, 99, 44), 'pytest.raises', 'pytest.raises', ({(99, 27, 99, 43): 'FeedVersionError'}, {}), '(FeedVersionError)', False, 'import pytest\n'), ((100, 12, 100, 47), 'feed.consts.FeedVersion.get', 'FeedVersion.get', (), '', False, 'from feed.consts import FeedVersion\n'), ((104, 31, 104, 54), 'feed.consts.FeedVersion.supported', 'FeedVersion.supported', ({}, {}), '()', False, 'from feed.consts import FeedVersion\n'), ((108, 13, 108, 44), 'pytest.raises', 'pytest.raises', ({(108, 27, 108, 43): 'FeedVersionError'}, {}), '(FeedVersionError)', False, 'import pytest\n'), ((109, 12, 109, 36), 'feed.consts.FeedVersion.get', 'FeedVersion.get', ({(109, 28, 109, 35): 'version'}, {}), '(version)', False, 'from feed.consts import FeedVersion\n'), ((113, 31, 113, 54), 'feed.consts.FeedVersion.supported', 'FeedVersion.supported', ({}, {}), '()', False, 'from feed.consts import FeedVersion\n'), ((24, 39, 24, 66), 'feed.consts.FeedVersion.RSS_2_0.lower', 'FeedVersion.RSS_2_0.lower', ({}, {}), '()', False, 'from feed.consts import FeedVersion\n'), ((32, 39, 32, 67), 'feed.consts.FeedVersion.ATOM_1_0.lower', 'FeedVersion.ATOM_1_0.lower', ({}, {}), '()', False, 'from feed.consts import FeedVersion\n')]
teklager/djangocms-cascade
cmsplugin_cascade/migrations/0007_add_proxy_models.py
adc461f7054c6c0f88bc732aefd03b157df2f514
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cmsplugin_cascade', '0006_bootstrapgallerypluginmodel'), ] operations = [ ]
[]
ralphwetzel/theonionbox
theonionbox/tob/credits.py
9812fce48153955e179755ea7a58413c3bee182f
Credits = [ ('Bootstrap', 'https://getbootstrap.com', 'The Bootstrap team', 'MIT'), ('Bottle', 'http://bottlepy.org', 'Marcel Hellkamp', 'MIT'), ('Cheroot', 'https://github.com/cherrypy/cheroot', 'CherryPy Team', 'BSD 3-Clause "New" or "Revised" License'), ('Click', 'https://github.com/pallets/click', 'Pallets', 'BSD 3-Clause "New" or "Revised" License'), ('ConfigUpdater', 'https://github.com/pyscaffold/configupdater', 'Florian Wilhelm', 'MIT'), ('Glide', 'https://github.com/glidejs/glide', '@jedrzejchalubek', 'MIT'), ('JQuery', 'https://jquery.com', 'The jQuery Foundation', 'MIT'), ('jquery.pep.js', 'http://pep.briangonzalez.org', '@briangonzalez', 'MIT'), ('js-md5', 'https://github.com/emn178/js-md5', '@emn178', 'MIT'), ('PySocks', 'https://github.com/Anorov/PySocks', '@Anorov', 'Custom DAN HAIM'), ('RapydScript-NG', 'https://github.com/kovidgoyal/rapydscript-ng', '@kovidgoyal', 'BSD 2-Clause "Simplified" License'), ('Requests', 'https://requests.kennethreitz.org', 'Kenneth Reitz', 'Apache License, Version 2.0'), ('scrollMonitor', 'https://github.com/stutrek/scrollmonitor', '@stutrek', 'MIT'), ('Smoothie Charts', 'https://github.com/joewalnes/smoothie', '@drewnoakes', 'MIT'), ('stem', 'https://stem.torproject.org', 'Damian Johnson and The Tor Project', 'GNU LESSER GENERAL PUBLIC LICENSE') ]
[]
Ubpa/LearnTF
turorials/Google/projects/01_02_TextClassification/01_02_main.py
2c9f5d790a9911a860da1e0db4c7bb56a9eee5cb
#---------------- # 01_02 文本分类 #---------------- # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib.pyplot as plt # TensorFlow's version : 1.12.0 print('TensorFlow\'s version : ', tf.__version__) #---------------- # 1 下载 IMDB 数据集 #---------------- imdb = keras.datasets.imdb (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000) #---------------- # 2 探索数据 #---------------- # Training entries: 25000, labels: 25000 print("Training entries: {}, labels: {}".format(len(train_data), len(train_labels))) print(train_data[0]) # (218, 189) print(len(train_data[0]), len(train_data[1])) # A dictionary mapping words to an integer index word_index = imdb.get_word_index() # The first indices are reserved word_index = {k:(v+3) for k,v in word_index.items()} word_index["<PAD>"] = 0 word_index["<START>"] = 1 word_index["<UNK>"] = 2 # unknown word_index["<UNUSED>"] = 3 reverse_word_index = dict([(value, key) for (key, value) in word_index.items()]) def decode_review(text): return ' '.join([reverse_word_index.get(i, '?') for i in text]) decode_review(train_data[0]) #---------------- # 3 准备数据 #---------------- train_data = keras.preprocessing.sequence.pad_sequences(train_data, value=word_index["<PAD>"], padding='post', maxlen=256) test_data = keras.preprocessing.sequence.pad_sequences(test_data, value=word_index["<PAD>"], padding='post', maxlen=256) # (256, 256) print((len(train_data[0]), len(train_data[1]))) print(train_data[0]) #---------------- # 4 构建模型 #---------------- # input shape is the vocabulary count used for the movie reviews (10,000 words) vocab_size = 10000 model = keras.Sequential() model.add(keras.layers.Embedding(vocab_size, 16)) model.add(keras.layers.GlobalAveragePooling1D()) model.add(keras.layers.Dense(16, activation=tf.nn.relu)) model.add(keras.layers.Dense(1, activation=tf.nn.sigmoid)) model.summary() model.compile(optimizer=tf.train.AdamOptimizer(), loss='binary_crossentropy', metrics=['accuracy']) #---------------- # 5 创建验证集 #---------------- x_val = train_data[:10000] partial_x_train = train_data[10000:] y_val = train_labels[:10000] partial_y_train = train_labels[10000:] #---------------- # 6 训练模型 #---------------- history = model.fit(partial_x_train, partial_y_train, epochs=40, batch_size=512, validation_data=(x_val, y_val), verbose=1) #---------------- # 7 评估模型 #---------------- results = model.evaluate(test_data, test_labels) print(results) #---------------- # 8 创建准确率和损失随时间变化的图 #---------------- history_dict = history.history # dict_keys(['loss', 'val_loss', 'val_acc', 'acc']) print(history_dict.keys()) acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(1, len(acc) + 1) # loss # "bo" is for "blue dot" plt.plot(epochs, loss, 'bo', label='Training loss') # b is for "solid blue line" plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() # acc plt.clf() # clear figure acc_values = history_dict['acc'] val_acc_values = history_dict['val_acc'] plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.legend() plt.show()
[((57, 13, 60, 67), 'tensorflow.keras.preprocessing.sequence.pad_sequences', 'keras.preprocessing.sequence.pad_sequences', (), '', False, 'from tensorflow import keras\n'), ((62, 12, 65, 66), 'tensorflow.keras.preprocessing.sequence.pad_sequences', 'keras.preprocessing.sequence.pad_sequences', (), '', False, 'from tensorflow import keras\n'), ((79, 8, 79, 26), 'tensorflow.keras.Sequential', 'keras.Sequential', ({}, {}), '()', False, 'from tensorflow import keras\n'), ((139, 0, 139, 51), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((141, 0, 141, 56), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((142, 0, 142, 41), 'matplotlib.pyplot.title', 'plt.title', ({(142, 10, 142, 40): '"""Training and validation loss"""'}, {}), "('Training and validation loss')", True, 'import matplotlib.pyplot as plt\n'), ((143, 0, 143, 20), 'matplotlib.pyplot.xlabel', 'plt.xlabel', ({(143, 11, 143, 19): '"""Epochs"""'}, {}), "('Epochs')", True, 'import matplotlib.pyplot as plt\n'), ((144, 0, 144, 18), 'matplotlib.pyplot.ylabel', 'plt.ylabel', ({(144, 11, 144, 17): '"""Loss"""'}, {}), "('Loss')", True, 'import matplotlib.pyplot as plt\n'), ((145, 0, 145, 12), 'matplotlib.pyplot.legend', 'plt.legend', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((147, 0, 147, 10), 'matplotlib.pyplot.show', 'plt.show', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((151, 0, 151, 9), 'matplotlib.pyplot.clf', 'plt.clf', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((155, 0, 155, 49), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((156, 0, 156, 54), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((157, 0, 157, 45), 'matplotlib.pyplot.title', 'plt.title', ({(157, 10, 157, 44): '"""Training and validation accuracy"""'}, {}), "('Training and validation accuracy')", True, 'import matplotlib.pyplot as plt\n'), ((158, 0, 158, 20), 'matplotlib.pyplot.xlabel', 'plt.xlabel', ({(158, 11, 158, 19): '"""Epochs"""'}, {}), "('Epochs')", True, 'import matplotlib.pyplot as plt\n'), ((159, 0, 159, 22), 'matplotlib.pyplot.ylabel', 'plt.ylabel', ({(159, 11, 159, 21): '"""Accuracy"""'}, {}), "('Accuracy')", True, 'import matplotlib.pyplot as plt\n'), ((160, 0, 160, 12), 'matplotlib.pyplot.legend', 'plt.legend', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((162, 0, 162, 10), 'matplotlib.pyplot.show', 'plt.show', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((80, 10, 80, 48), 'tensorflow.keras.layers.Embedding', 'keras.layers.Embedding', ({(80, 33, 80, 43): 'vocab_size', (80, 45, 80, 47): '(16)'}, {}), '(vocab_size, 16)', False, 'from tensorflow import keras\n'), ((81, 10, 81, 47), 'tensorflow.keras.layers.GlobalAveragePooling1D', 'keras.layers.GlobalAveragePooling1D', ({}, {}), '()', False, 'from tensorflow import keras\n'), ((82, 10, 82, 55), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (), '', False, 'from tensorflow import keras\n'), ((83, 10, 83, 57), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (), '', False, 'from tensorflow import keras\n'), ((87, 24, 87, 48), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ({}, {}), '()', True, 'import tensorflow as tf\n')]
12xiaoni/text-label
backend/api/urls.py
7456c5e73d32bcfc81a02be7e0d748f162934d35
from django.urls import include, path from .views import (annotation, auto_labeling, comment, example, example_state, health, label, project, tag, task) from .views.tasks import category, relation, span, text urlpatterns_project = [ path( route='category-types', view=label.CategoryTypeList.as_view(), name='category_types' ), path( route='category-types/<int:label_id>', view=label.CategoryTypeDetail.as_view(), name='category_type' ), path( route='span-types', view=label.SpanTypeList.as_view(), name='span_types' ), path( route='span-types/<int:label_id>', view=label.SpanTypeDetail.as_view(), name='span_type' ), path( route='category-type-upload', view=label.CategoryTypeUploadAPI.as_view(), name='category_type_upload' ), path( route='span-type-upload', view=label.SpanTypeUploadAPI.as_view(), name='span_type_upload' ), path( route='examples', view=example.ExampleList.as_view(), name='example_list' ), path( route='examples/<int:example_id>', view=example.ExampleDetail.as_view(), name='example_detail' ), path( route='relation_types', view=label.RelationTypeList.as_view(), name='relation_types_list' ), path( route='relation_type-upload', view=label.RelationTypeUploadAPI.as_view(), name='relation_type-upload' ), path( route='relation_types/<int:relation_type_id>', view=label.RelationTypeDetail.as_view(), name='relation_type_detail' ), path( route='annotation_relations', view=relation.RelationList.as_view(), name='relation_types_list' ), path( route='annotation_relation-upload', view=relation.RelationUploadAPI.as_view(), name='annotation_relation-upload' ), path( route='annotation_relations/<int:annotation_relation_id>', view=relation.RelationDetail.as_view(), name='annotation_relation_detail' ), path( route='approval/<int:example_id>', view=annotation.ApprovalAPI.as_view(), name='approve_labels' ), path( route='examples/<int:example_id>/categories', view=category.CategoryListAPI.as_view(), name='category_list' ), path( route='examples/<int:example_id>/categories/<int:annotation_id>', view=category.CategoryDetailAPI.as_view(), name='category_detail' ), path( route='examples/<int:example_id>/spans', view=span.SpanListAPI.as_view(), name='span_list' ), path( route='examples/<int:example_id>/spans/<int:annotation_id>', view=span.SpanDetailAPI.as_view(), name='span_detail' ), path( route='examples/<int:example_id>/texts', view=text.TextLabelListAPI.as_view(), name='text_list' ), path( route='examples/<int:example_id>/texts/<int:annotation_id>', view=text.TextLabelDetailAPI.as_view(), name='text_detail' ), path( route='tags', view=tag.TagList.as_view(), name='tag_list' ), path( route='tags/<int:tag_id>', view=tag.TagDetail.as_view(), name='tag_detail' ), path( route='examples/<int:example_id>/comments', view=comment.CommentListDoc.as_view(), name='comment_list_doc' ), path( route='comments', view=comment.CommentListProject.as_view(), name='comment_list_project' ), path( route='examples/<int:example_id>/comments/<int:comment_id>', view=comment.CommentDetail.as_view(), name='comment_detail' ), path( route='examples/<int:example_id>/states', view=example_state.ExampleStateList.as_view(), name='example_state_list' ), path( route='auto-labeling-templates', view=auto_labeling.AutoLabelingTemplateListAPI.as_view(), name='auto_labeling_templates' ), path( route='auto-labeling-templates/<str:option_name>', view=auto_labeling.AutoLabelingTemplateDetailAPI.as_view(), name='auto_labeling_template' ), path( route='auto-labeling-configs', view=auto_labeling.AutoLabelingConfigList.as_view(), name='auto_labeling_configs' ), path( route='auto-labeling-configs/<int:config_id>', view=auto_labeling.AutoLabelingConfigDetail.as_view(), name='auto_labeling_config' ), path( route='auto-labeling-config-testing', view=auto_labeling.AutoLabelingConfigTest.as_view(), name='auto_labeling_config_test' ), path( route='examples/<int:example_id>/auto-labeling', view=auto_labeling.AutoLabelingAnnotation.as_view(), name='auto_labeling_annotation' ), path( route='auto-labeling-parameter-testing', view=auto_labeling.AutoLabelingConfigParameterTest.as_view(), name='auto_labeling_parameter_testing' ), path( route='auto-labeling-template-testing', view=auto_labeling.AutoLabelingTemplateTest.as_view(), name='auto_labeling_template_test' ), path( route='auto-labeling-mapping-testing', view=auto_labeling.AutoLabelingMappingTest.as_view(), name='auto_labeling_mapping_test' ) ] urlpatterns = [ path( route='health', view=health.Health.as_view(), name='health' ), path( route='projects', view=project.ProjectList.as_view(), name='project_list' ), path( route='tasks/status/<task_id>', view=task.TaskStatus.as_view(), name='task_status' ), path( route='projects/<int:project_id>', view=project.ProjectDetail.as_view(), name='project_detail' ), path('projects/<int:project_id>/', include(urlpatterns_project)) ]
[((211, 39, 211, 67), 'django.urls.include', 'include', ({(211, 47, 211, 66): 'urlpatterns_project'}, {}), '(urlpatterns_project)', False, 'from django.urls import include, path\n')]
d-sot/nwb-jupyter-widgets
nwbwidgets/test/test_base.py
f9bf5c036c39f29e26b3cdb78198cccfa1b13cef
import numpy as np import matplotlib.pyplot as plt import pandas as pd from pynwb import TimeSeries from datetime import datetime from dateutil.tz import tzlocal from pynwb import NWBFile from ipywidgets import widgets from pynwb.core import DynamicTable from pynwb.file import Subject from nwbwidgets.view import default_neurodata_vis_spec from pynwb import ProcessingModule from pynwb.behavior import Position, SpatialSeries from nwbwidgets.base import show_neurodata_base,processing_module, nwb2widget, show_text_fields, \ fig2widget, vis2widget, show_fields, show_dynamic_table, df2accordion, lazy_show_over_data import unittest import pytest def test_show_neurodata_base(): start_time = datetime(2017, 4, 3, 11, tzinfo=tzlocal()) create_date = datetime(2017, 4, 15, 12, tzinfo=tzlocal()) nwbfile = NWBFile(session_description='demonstrate NWBFile basics', identifier='NWB123', session_start_time=start_time, file_create_date=create_date, related_publications='https://doi.org/10.1088/1741-2552/aaa904', experimenter='Dr. Pack') assert isinstance(show_neurodata_base(nwbfile,default_neurodata_vis_spec), widgets.Widget) def test_show_text_fields(): data = np.random.rand(160,3) ts = TimeSeries(name='test_timeseries', data=data, unit='m', starting_time=0.0, rate=1.0) assert isinstance(show_text_fields(ts), widgets.Widget) class ProcessingModuleTestCase(unittest.TestCase): def setUp(self): spatial_series = SpatialSeries(name='position', data=np.linspace(0, 1, 20), rate=50., reference_frame='starting gate') self.position = Position(spatial_series=spatial_series) def test_processing_module(self): start_time = datetime(2020, 1, 29, 11, tzinfo=tzlocal()) nwbfile = NWBFile(session_description='Test Session', identifier='NWBPM', session_start_time=start_time) behavior_module = ProcessingModule(name='behavior', description='preprocessed behavioral data') nwbfile.add_processing_module(behavior_module) nwbfile.processing['behavior'].add(self.position) processing_module(nwbfile.processing['behavior'], default_neurodata_vis_spec) def test_nwb2widget(self): nwb2widget(self.position, default_neurodata_vis_spec) def test_fig2widget(): data = np.random.rand(160, 3) fig = plt.figure(figsize=(10, 5)) plt.plot(data) assert isinstance(fig2widget(fig), widgets.Widget) class Test_vis2widget: def test_vis2widget_input_widget(self): wg = widgets.IntSlider( value=7, min=0, max=10, step=1, description='Test:', disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='d') assert isinstance(vis2widget(wg), widgets.Widget) def test_vis2widget_input_figure(self): data = np.random.rand(160,3) fig=plt.figure(figsize=(10, 5)) plt.plot(data) assert isinstance(vis2widget(fig), widgets.Widget) def test_vis2widget_input_other(self): data = np.random.rand(160,3) with pytest.raises(ValueError, match="unsupported vis type"): vis2widget(data) def test_show_subject(): node = Subject(age='8', sex='m', species='macaque') show_fields(node) def test_show_dynamic_table(): d = {'col1': [1, 2], 'col2': [3, 4]} DT = DynamicTable.from_dataframe(df=pd.DataFrame(data=d), name='Test Dtable', table_description='no description') show_dynamic_table(DT) def test_df2accordion(): df = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), columns=['a', 'b', 'c']) def func_fig(data): fig=plt.figure(figsize=(10, 5)) plt.plot(data) return fig df2accordion(df=df,by='a',func=func_fig) def test_df2accordion_single(): df = pd.DataFrame(np.array([1]), columns=['a']) def func_fig(data): fig=plt.figure(figsize=(10, 5)) plt.plot(data) return fig df2accordion(df=df,by='a',func=func_fig) def test_lazy_show_over_data(): list_ = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] def func_fig(data): fig=plt.figure(figsize=(10, 5)) plt.plot(data) return fig assert isinstance(lazy_show_over_data(list_=list_,func_=func_fig),widgets.Widget)
[((24, 14, 29, 46), 'pynwb.NWBFile', 'NWBFile', (), '', False, 'from pynwb import NWBFile\n'), ((35, 11, 35, 32), 'numpy.random.rand', 'np.random.rand', ({(35, 26, 35, 29): '160', (35, 30, 35, 31): '3'}, {}), '(160, 3)', True, 'import numpy as np\n'), ((36, 9, 36, 93), 'pynwb.TimeSeries', 'TimeSeries', (), '', False, 'from pynwb import TimeSeries\n'), ((71, 11, 71, 33), 'numpy.random.rand', 'np.random.rand', ({(71, 26, 71, 29): '160', (71, 31, 71, 32): '3'}, {}), '(160, 3)', True, 'import numpy as np\n'), ((72, 10, 72, 37), 'matplotlib.pyplot.figure', 'plt.figure', (), '', True, 'import matplotlib.pyplot as plt\n'), ((73, 4, 73, 18), 'matplotlib.pyplot.plot', 'plt.plot', ({(73, 13, 73, 17): 'data'}, {}), '(data)', True, 'import matplotlib.pyplot as plt\n'), ((111, 11, 111, 55), 'pynwb.file.Subject', 'Subject', (), '', False, 'from pynwb.file import Subject\n'), ((112, 4, 112, 21), 'nwbwidgets.base.show_fields', 'show_fields', ({(112, 16, 112, 20): 'node'}, {}), '(node)', False, 'from nwbwidgets.base import show_neurodata_base, processing_module, nwb2widget, show_text_fields, fig2widget, vis2widget, show_fields, show_dynamic_table, df2accordion, lazy_show_over_data\n'), ((120, 4, 120, 26), 'nwbwidgets.base.show_dynamic_table', 'show_dynamic_table', ({(120, 23, 120, 25): 'DT'}, {}), '(DT)', False, 'from nwbwidgets.base import show_neurodata_base, processing_module, nwb2widget, show_text_fields, fig2widget, vis2widget, show_fields, show_dynamic_table, df2accordion, lazy_show_over_data\n'), ((130, 4, 130, 44), 'nwbwidgets.base.df2accordion', 'df2accordion', (), '', False, 'from nwbwidgets.base import show_neurodata_base, processing_module, nwb2widget, show_text_fields, fig2widget, vis2widget, show_fields, show_dynamic_table, df2accordion, lazy_show_over_data\n'), ((140, 4, 140, 44), 'nwbwidgets.base.df2accordion', 'df2accordion', (), '', False, 'from nwbwidgets.base import show_neurodata_base, processing_module, nwb2widget, show_text_fields, fig2widget, vis2widget, show_fields, show_dynamic_table, df2accordion, lazy_show_over_data\n'), ((31, 22, 31, 77), 'nwbwidgets.base.show_neurodata_base', 'show_neurodata_base', ({(31, 42, 31, 49): 'nwbfile', (31, 50, 31, 76): 'default_neurodata_vis_spec'}, {}), '(nwbfile, default_neurodata_vis_spec)', False, 'from nwbwidgets.base import show_neurodata_base, processing_module, nwb2widget, show_text_fields, fig2widget, vis2widget, show_fields, show_dynamic_table, df2accordion, lazy_show_over_data\n'), ((37, 22, 37, 42), 'nwbwidgets.base.show_text_fields', 'show_text_fields', ({(37, 39, 37, 41): 'ts'}, {}), '(ts)', False, 'from nwbwidgets.base import show_neurodata_base, processing_module, nwb2widget, show_text_fields, fig2widget, vis2widget, show_fields, show_dynamic_table, df2accordion, lazy_show_over_data\n'), ((47, 24, 47, 63), 'pynwb.behavior.Position', 'Position', (), '', False, 'from pynwb.behavior import Position, SpatialSeries\n'), ((52, 18, 54, 52), 'pynwb.NWBFile', 'NWBFile', (), '', False, 'from pynwb import NWBFile\n'), ((56, 26, 57, 98), 'pynwb.ProcessingModule', 'ProcessingModule', (), '', False, 'from pynwb import ProcessingModule\n'), ((62, 8, 62, 85), 'nwbwidgets.base.processing_module', 'processing_module', ({(62, 26, 62, 56): "nwbfile.processing['behavior']", (62, 58, 62, 84): 'default_neurodata_vis_spec'}, {}), "(nwbfile.processing['behavior'], default_neurodata_vis_spec)", False, 'from nwbwidgets.base import show_neurodata_base, processing_module, nwb2widget, show_text_fields, fig2widget, vis2widget, show_fields, show_dynamic_table, df2accordion, lazy_show_over_data\n'), ((66, 8, 66, 61), 'nwbwidgets.base.nwb2widget', 'nwb2widget', ({(66, 19, 66, 32): 'self.position', (66, 34, 66, 60): 'default_neurodata_vis_spec'}, {}), '(self.position, default_neurodata_vis_spec)', False, 'from nwbwidgets.base import show_neurodata_base, processing_module, nwb2widget, show_text_fields, fig2widget, vis2widget, show_fields, show_dynamic_table, df2accordion, lazy_show_over_data\n'), ((75, 22, 75, 37), 'nwbwidgets.base.fig2widget', 'fig2widget', ({(75, 33, 75, 36): 'fig'}, {}), '(fig)', False, 'from nwbwidgets.base import show_neurodata_base, processing_module, nwb2widget, show_text_fields, fig2widget, vis2widget, show_fields, show_dynamic_table, df2accordion, lazy_show_over_data\n'), ((81, 13, 91, 31), 'ipywidgets.widgets.IntSlider', 'widgets.IntSlider', (), '', False, 'from ipywidgets import widgets\n'), ((97, 15, 97, 36), 'numpy.random.rand', 'np.random.rand', ({(97, 30, 97, 33): '160', (97, 34, 97, 35): '3'}, {}), '(160, 3)', True, 'import numpy as np\n'), ((99, 12, 99, 39), 'matplotlib.pyplot.figure', 'plt.figure', (), '', True, 'import matplotlib.pyplot as plt\n'), ((100, 8, 100, 22), 'matplotlib.pyplot.plot', 'plt.plot', ({(100, 17, 100, 21): 'data'}, {}), '(data)', True, 'import matplotlib.pyplot as plt\n'), ((105, 15, 105, 36), 'numpy.random.rand', 'np.random.rand', ({(105, 30, 105, 33): '160', (105, 34, 105, 35): '3'}, {}), '(160, 3)', True, 'import numpy as np\n'), ((124, 22, 124, 65), 'numpy.array', 'np.array', ({(124, 31, 124, 64): '[[1, 2, 3], [4, 5, 6], [7, 8, 9]]'}, {}), '([[1, 2, 3], [4, 5, 6], [7, 8, 9]])', True, 'import numpy as np\n'), ((127, 12, 127, 39), 'matplotlib.pyplot.figure', 'plt.figure', (), '', True, 'import matplotlib.pyplot as plt\n'), ((128, 8, 128, 22), 'matplotlib.pyplot.plot', 'plt.plot', ({(128, 17, 128, 21): 'data'}, {}), '(data)', True, 'import matplotlib.pyplot as plt\n'), ((134, 22, 134, 35), 'numpy.array', 'np.array', ({(134, 31, 134, 34): '[1]'}, {}), '([1])', True, 'import numpy as np\n'), ((137, 12, 137, 39), 'matplotlib.pyplot.figure', 'plt.figure', (), '', True, 'import matplotlib.pyplot as plt\n'), ((138, 8, 138, 22), 'matplotlib.pyplot.plot', 'plt.plot', ({(138, 17, 138, 21): 'data'}, {}), '(data)', True, 'import matplotlib.pyplot as plt\n'), ((146, 12, 146, 39), 'matplotlib.pyplot.figure', 'plt.figure', (), '', True, 'import matplotlib.pyplot as plt\n'), ((147, 8, 147, 22), 'matplotlib.pyplot.plot', 'plt.plot', ({(147, 17, 147, 21): 'data'}, {}), '(data)', True, 'import matplotlib.pyplot as plt\n'), ((149, 22, 149, 69), 'nwbwidgets.base.lazy_show_over_data', 'lazy_show_over_data', (), '', False, 'from nwbwidgets.base import show_neurodata_base, processing_module, nwb2widget, show_text_fields, fig2widget, vis2widget, show_fields, show_dynamic_table, df2accordion, lazy_show_over_data\n'), ((21, 49, 21, 58), 'dateutil.tz.tzlocal', 'tzlocal', ({}, {}), '()', False, 'from dateutil.tz import tzlocal\n'), ((22, 51, 22, 60), 'dateutil.tz.tzlocal', 'tzlocal', ({}, {}), '()', False, 'from dateutil.tz import tzlocal\n'), ((93, 26, 93, 40), 'nwbwidgets.base.vis2widget', 'vis2widget', ({(93, 37, 93, 39): 'wg'}, {}), '(wg)', False, 'from nwbwidgets.base import show_neurodata_base, processing_module, nwb2widget, show_text_fields, fig2widget, vis2widget, show_fields, show_dynamic_table, df2accordion, lazy_show_over_data\n'), ((102, 26, 102, 41), 'nwbwidgets.base.vis2widget', 'vis2widget', ({(102, 37, 102, 40): 'fig'}, {}), '(fig)', False, 'from nwbwidgets.base import show_neurodata_base, processing_module, nwb2widget, show_text_fields, fig2widget, vis2widget, show_fields, show_dynamic_table, df2accordion, lazy_show_over_data\n'), ((106, 13, 106, 68), 'pytest.raises', 'pytest.raises', (), '', False, 'import pytest\n'), ((107, 12, 107, 28), 'nwbwidgets.base.vis2widget', 'vis2widget', ({(107, 23, 107, 27): 'data'}, {}), '(data)', False, 'from nwbwidgets.base import show_neurodata_base, processing_module, nwb2widget, show_text_fields, fig2widget, vis2widget, show_fields, show_dynamic_table, df2accordion, lazy_show_over_data\n'), ((117, 40, 117, 60), 'pandas.DataFrame', 'pd.DataFrame', (), '', True, 'import pandas as pd\n'), ((44, 40, 44, 61), 'numpy.linspace', 'np.linspace', ({(44, 52, 44, 53): '0', (44, 55, 44, 56): '1', (44, 58, 44, 60): '20'}, {}), '(0, 1, 20)', True, 'import numpy as np\n'), ((51, 54, 51, 63), 'dateutil.tz.tzlocal', 'tzlocal', ({}, {}), '()', False, 'from dateutil.tz import tzlocal\n')]
orikad/subliminal
subliminal/video.py
5bd87a505f7a4cad2a3a872128110450c69da4f0
# -*- coding: utf-8 -*- from __future__ import division from datetime import datetime, timedelta import logging import os from guessit import guessit logger = logging.getLogger(__name__) #: Video extensions VIDEO_EXTENSIONS = ('.3g2', '.3gp', '.3gp2', '.3gpp', '.60d', '.ajp', '.asf', '.asx', '.avchd', '.avi', '.bik', '.bix', '.box', '.cam', '.dat', '.divx', '.dmf', '.dv', '.dvr-ms', '.evo', '.flc', '.fli', '.flic', '.flv', '.flx', '.gvi', '.gvp', '.h264', '.m1v', '.m2p', '.m2ts', '.m2v', '.m4e', '.m4v', '.mjp', '.mjpeg', '.mjpg', '.mkv', '.moov', '.mov', '.movhd', '.movie', '.movx', '.mp4', '.mpe', '.mpeg', '.mpg', '.mpv', '.mpv2', '.mxf', '.nsv', '.nut', '.ogg', '.ogm' '.ogv', '.omf', '.ps', '.qt', '.ram', '.rm', '.rmvb', '.swf', '.ts', '.vfw', '.vid', '.video', '.viv', '.vivo', '.vob', '.vro', '.wm', '.wmv', '.wmx', '.wrap', '.wvx', '.wx', '.x264', '.xvid') class Video(object): """Base class for videos. Represent a video, existing or not. :param str name: name or path of the video. :param str format: format of the video (HDTV, WEB-DL, BluRay, ...). :param str release_group: release group of the video. :param str resolution: resolution of the video stream (480p, 720p, 1080p or 1080i). :param str video_codec: codec of the video stream. :param str audio_codec: codec of the main audio stream. :param str imdb_id: IMDb id of the video. :param dict hashes: hashes of the video file by provider names. :param int size: size of the video file in bytes. :param set subtitle_languages: existing subtitle languages. """ def __init__(self, name, format=None, release_group=None, resolution=None, video_codec=None, audio_codec=None, imdb_id=None, hashes=None, size=None, subtitle_languages=None): #: Name or path of the video self.name = name #: Format of the video (HDTV, WEB-DL, BluRay, ...) self.format = format #: Release group of the video self.release_group = release_group #: Resolution of the video stream (480p, 720p, 1080p or 1080i) self.resolution = resolution #: Codec of the video stream self.video_codec = video_codec #: Codec of the main audio stream self.audio_codec = audio_codec #: IMDb id of the video self.imdb_id = imdb_id #: Hashes of the video file by provider names self.hashes = hashes or {} #: Size of the video file in bytes self.size = size #: Existing subtitle languages self.subtitle_languages = subtitle_languages or set() @property def exists(self): """Test whether the video exists""" return os.path.exists(self.name) @property def age(self): """Age of the video""" if self.exists: return datetime.utcnow() - datetime.utcfromtimestamp(os.path.getmtime(self.name)) return timedelta() @classmethod def fromguess(cls, name, guess): """Create an :class:`Episode` or a :class:`Movie` with the given `name` based on the `guess`. :param str name: name of the video. :param dict guess: guessed data. :raise: :class:`ValueError` if the `type` of the `guess` is invalid """ if guess['type'] == 'episode': return Episode.fromguess(name, guess) if guess['type'] == 'movie': return Movie.fromguess(name, guess) raise ValueError('The guess must be an episode or a movie guess') @classmethod def fromname(cls, name, options=None): """Shortcut for :meth:`fromguess` with a `guess` guessed from the `name`. :param str name: name of the video. """ if options is not None: return cls.fromguess(name, guessit(name, options=options)) else: return cls.fromguess(name, guessit(name)) def __repr__(self): return '<%s [%r]>' % (self.__class__.__name__, self.name) def __hash__(self): return hash(self.name) class Episode(Video): """Episode :class:`Video`. :param str series: series of the episode. :param int season: season number of the episode. :param int episode: episode number of the episode. :param str title: title of the episode. :param int year: year of the series. :param bool original_series: whether the series is the first with this name. :param int tvdb_id: TVDB id of the episode. :param \*\*kwargs: additional parameters for the :class:`Video` constructor. """ def __init__(self, name, series, season, episode, title=None, year=None, original_series=True, tvdb_id=None, series_tvdb_id=None, series_imdb_id=None, **kwargs): super(Episode, self).__init__(name, **kwargs) #: Series of the episode self.series = series #: Season number of the episode self.season = season #: Episode number of the episode self.episode = episode #: Title of the episode self.title = title #: Year of series self.year = year #: The series is the first with this name self.original_series = original_series #: TVDB id of the episode self.tvdb_id = tvdb_id #: TVDB id of the series self.series_tvdb_id = series_tvdb_id #: IMDb id of the series self.series_imdb_id = series_imdb_id @classmethod def fromguess(cls, name, guess): if guess['type'] != 'episode': raise ValueError('The guess must be an episode guess') if 'title' not in guess or 'episode' not in guess: raise ValueError('Insufficient data to process the guess') return cls(name, guess['title'], guess.get('season', 1), guess['episode'], title=guess.get('episode_title'), year=guess.get('year'), format=guess.get('format'), original_series='year' not in guess, release_group=guess.get('release_group'), resolution=guess.get('screen_size'), video_codec=guess.get('video_codec'), audio_codec=guess.get('audio_codec')) @classmethod def fromname(cls, name): return cls.fromguess(name, guessit(name, {'type': 'episode'})) def __repr__(self): if self.year is None: return '<%s [%r, %dx%d]>' % (self.__class__.__name__, self.series, self.season, self.episode) return '<%s [%r, %d, %dx%d]>' % (self.__class__.__name__, self.series, self.year, self.season, self.episode) class Movie(Video): """Movie :class:`Video`. :param str title: title of the movie. :param int year: year of the movie. :param \*\*kwargs: additional parameters for the :class:`Video` constructor. """ def __init__(self, name, title, year=None, **kwargs): super(Movie, self).__init__(name, **kwargs) #: Title of the movie self.title = title #: Year of the movie self.year = year @classmethod def fromguess(cls, name, guess): if guess['type'] != 'movie': raise ValueError('The guess must be a movie guess') if 'title' not in guess: raise ValueError('Insufficient data to process the guess') return cls(name, guess['title'], format=guess.get('format'), release_group=guess.get('release_group'), resolution=guess.get('screen_size'), video_codec=guess.get('video_codec'), audio_codec=guess.get('audio_codec'), year=guess.get('year')) @classmethod def fromname(cls, name): return cls.fromguess(name, guessit(name, {'type': 'movie'})) def __repr__(self): if self.year is None: return '<%s [%r]>' % (self.__class__.__name__, self.title) return '<%s [%r, %d]>' % (self.__class__.__name__, self.title, self.year)
[((9, 9, 9, 36), 'logging.getLogger', 'logging.getLogger', ({(9, 27, 9, 35): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((73, 15, 73, 40), 'os.path.exists', 'os.path.exists', ({(73, 30, 73, 39): 'self.name'}, {}), '(self.name)', False, 'import os\n'), ((81, 15, 81, 26), 'datetime.timedelta', 'timedelta', ({}, {}), '()', False, 'from datetime import datetime, timedelta\n'), ((178, 35, 178, 69), 'guessit.guessit', 'guessit', ({(178, 43, 178, 47): 'name', (178, 49, 178, 68): "{'type': 'episode'}"}, {}), "(name, {'type': 'episode'})", False, 'from guessit import guessit\n'), ((218, 35, 218, 67), 'guessit.guessit', 'guessit', ({(218, 43, 218, 47): 'name', (218, 49, 218, 66): "{'type': 'movie'}"}, {}), "(name, {'type': 'movie'})", False, 'from guessit import guessit\n'), ((79, 19, 79, 36), 'datetime.datetime.utcnow', 'datetime.utcnow', ({}, {}), '()', False, 'from datetime import datetime, timedelta\n'), ((108, 39, 108, 69), 'guessit.guessit', 'guessit', (), '', False, 'from guessit import guessit\n'), ((110, 39, 110, 52), 'guessit.guessit', 'guessit', ({(110, 47, 110, 51): 'name'}, {}), '(name)', False, 'from guessit import guessit\n'), ((79, 65, 79, 92), 'os.path.getmtime', 'os.path.getmtime', ({(79, 82, 79, 91): 'self.name'}, {}), '(self.name)', False, 'import os\n')]
juniorosorio47/client-order
backend/app/migrations/0001_initial.py
ec429436d822d07d0ec1e0be0c2615087eec6e65
# Generated by Django 3.2.7 on 2021-10-18 23:21 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Client', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=120)), ], ), migrations.CreateModel( name='Order', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('total', models.DecimalField(decimal_places=2, default=0.0, max_digits=20)), ('timestamp', models.DateTimeField(auto_now_add=True)), ('client', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='app.client')), ], ), migrations.CreateModel( name='Product', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=120)), ('price', models.DecimalField(decimal_places=2, default=0.0, max_digits=20)), ('inventory', models.IntegerField(default=0)), ('user', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='OrderProduct', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('quantity', models.IntegerField(default=1)), ('order', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='app.order')), ('product', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='app.product')), ], options={ 'unique_together': {('order', 'product')}, }, ), migrations.AddField( model_name='order', name='products', field=models.ManyToManyField(through='app.OrderProduct', to='app.Product'), ), migrations.AddField( model_name='order', name='user', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL), ), ]
[((13, 8, 13, 65), 'django.db.migrations.swappable_dependency', 'migrations.swappable_dependency', ({(13, 40, 13, 64): 'settings.AUTH_USER_MODEL'}, {}), '(settings.AUTH_USER_MODEL)', False, 'from django.db import migrations, models\n'), ((58, 18, 58, 86), 'django.db.models.ManyToManyField', 'models.ManyToManyField', (), '', False, 'from django.db import migrations, models\n'), ((63, 18, 63, 133), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import migrations, models\n'), ((20, 23, 20, 115), 'django.db.models.BigAutoField', 'models.BigAutoField', (), '', False, 'from django.db import migrations, models\n'), ((21, 25, 21, 57), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import migrations, models\n'), ((27, 23, 27, 115), 'django.db.models.BigAutoField', 'models.BigAutoField', (), '', False, 'from django.db import migrations, models\n'), ((28, 26, 28, 91), 'django.db.models.DecimalField', 'models.DecimalField', (), '', False, 'from django.db import migrations, models\n'), ((29, 30, 29, 69), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import migrations, models\n'), ((30, 27, 30, 130), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import migrations, models\n'), ((36, 23, 36, 115), 'django.db.models.BigAutoField', 'models.BigAutoField', (), '', False, 'from django.db import migrations, models\n'), ((37, 25, 37, 57), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import migrations, models\n'), ((38, 26, 38, 91), 'django.db.models.DecimalField', 'models.DecimalField', (), '', False, 'from django.db import migrations, models\n'), ((39, 30, 39, 60), 'django.db.models.IntegerField', 'models.IntegerField', (), '', False, 'from django.db import migrations, models\n'), ((40, 25, 40, 140), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import migrations, models\n'), ((46, 23, 46, 115), 'django.db.models.BigAutoField', 'models.BigAutoField', (), '', False, 'from django.db import migrations, models\n'), ((47, 29, 47, 59), 'django.db.models.IntegerField', 'models.IntegerField', (), '', False, 'from django.db import migrations, models\n'), ((48, 26, 48, 104), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import migrations, models\n'), ((49, 28, 49, 108), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import migrations, models\n')]
vadam5/NeMo
nemo/collections/nlp/models/machine_translation/mt_enc_dec_config.py
3c5db09539293c3c19a6bb7437011f91261119af
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Any, Optional, Tuple from omegaconf.omegaconf import MISSING from nemo.collections.nlp.data.machine_translation.machine_translation_dataset import TranslationDataConfig from nemo.collections.nlp.models.enc_dec_nlp_model import EncDecNLPModelConfig from nemo.collections.nlp.modules.common.token_classifier import TokenClassifierConfig from nemo.collections.nlp.modules.common.tokenizer_utils import TokenizerConfig from nemo.collections.nlp.modules.common.transformer.transformer import ( NeMoTransformerConfig, NeMoTransformerEncoderConfig, ) from nemo.core.config.modelPT import ModelConfig, OptimConfig, SchedConfig @dataclass class MTSchedConfig(SchedConfig): name: str = 'InverseSquareRootAnnealing' warmup_ratio: Optional[float] = None last_epoch: int = -1 # TODO: Refactor this dataclass to to support more optimizers (it pins the optimizer to Adam-like optimizers). @dataclass class MTOptimConfig(OptimConfig): name: str = 'adam' lr: float = 1e-3 betas: Tuple[float, float] = (0.9, 0.98) weight_decay: float = 0.0 sched: Optional[MTSchedConfig] = MTSchedConfig() @dataclass class MTEncDecModelConfig(EncDecNLPModelConfig): # machine translation configurations num_val_examples: int = 3 num_test_examples: int = 3 max_generation_delta: int = 10 label_smoothing: Optional[float] = 0.0 beam_size: int = 4 len_pen: float = 0.0 src_language: str = 'en' tgt_language: str = 'en' find_unused_parameters: Optional[bool] = True shared_tokenizer: Optional[bool] = True preproc_out_dir: Optional[str] = None # network architecture configuration encoder_tokenizer: Any = MISSING encoder: Any = MISSING decoder_tokenizer: Any = MISSING decoder: Any = MISSING head: TokenClassifierConfig = TokenClassifierConfig(log_softmax=True) # dataset configurations train_ds: Optional[TranslationDataConfig] = TranslationDataConfig( src_file_name=MISSING, tgt_file_name=MISSING, tokens_in_batch=512, clean=True, shuffle=True, cache_ids=False, use_cache=False, ) validation_ds: Optional[TranslationDataConfig] = TranslationDataConfig( src_file_name=MISSING, tgt_file_name=MISSING, tokens_in_batch=512, clean=False, shuffle=False, cache_ids=False, use_cache=False, ) test_ds: Optional[TranslationDataConfig] = TranslationDataConfig( src_file_name=MISSING, tgt_file_name=MISSING, tokens_in_batch=512, clean=False, shuffle=False, cache_ids=False, use_cache=False, ) optim: Optional[OptimConfig] = MTOptimConfig() @dataclass class AAYNBaseConfig(MTEncDecModelConfig): # Attention is All You Need Base Configuration encoder_tokenizer: TokenizerConfig = TokenizerConfig(library='yttm') decoder_tokenizer: TokenizerConfig = TokenizerConfig(library='yttm') encoder: NeMoTransformerEncoderConfig = NeMoTransformerEncoderConfig( library='nemo', model_name=None, pretrained=False, hidden_size=512, inner_size=2048, num_layers=6, num_attention_heads=8, ffn_dropout=0.1, attn_score_dropout=0.1, attn_layer_dropout=0.1, ) decoder: NeMoTransformerConfig = NeMoTransformerConfig( library='nemo', model_name=None, pretrained=False, inner_size=2048, num_layers=6, num_attention_heads=8, ffn_dropout=0.1, attn_score_dropout=0.1, attn_layer_dropout=0.1, )
[((70, 34, 70, 73), 'nemo.collections.nlp.modules.common.token_classifier.TokenClassifierConfig', 'TokenClassifierConfig', (), '', False, 'from nemo.collections.nlp.modules.common.token_classifier import TokenClassifierConfig\n'), ((73, 48, 81, 5), 'nemo.collections.nlp.data.machine_translation.machine_translation_dataset.TranslationDataConfig', 'TranslationDataConfig', (), '', False, 'from nemo.collections.nlp.data.machine_translation.machine_translation_dataset import TranslationDataConfig\n'), ((82, 53, 90, 5), 'nemo.collections.nlp.data.machine_translation.machine_translation_dataset.TranslationDataConfig', 'TranslationDataConfig', (), '', False, 'from nemo.collections.nlp.data.machine_translation.machine_translation_dataset import TranslationDataConfig\n'), ((91, 47, 99, 5), 'nemo.collections.nlp.data.machine_translation.machine_translation_dataset.TranslationDataConfig', 'TranslationDataConfig', (), '', False, 'from nemo.collections.nlp.data.machine_translation.machine_translation_dataset import TranslationDataConfig\n'), ((107, 41, 107, 72), 'nemo.collections.nlp.modules.common.tokenizer_utils.TokenizerConfig', 'TokenizerConfig', (), '', False, 'from nemo.collections.nlp.modules.common.tokenizer_utils import TokenizerConfig\n'), ((108, 41, 108, 72), 'nemo.collections.nlp.modules.common.tokenizer_utils.TokenizerConfig', 'TokenizerConfig', (), '', False, 'from nemo.collections.nlp.modules.common.tokenizer_utils import TokenizerConfig\n'), ((110, 44, 121, 5), 'nemo.collections.nlp.modules.common.transformer.transformer.NeMoTransformerEncoderConfig', 'NeMoTransformerEncoderConfig', (), '', False, 'from nemo.collections.nlp.modules.common.transformer.transformer import NeMoTransformerConfig, NeMoTransformerEncoderConfig\n'), ((123, 37, 133, 5), 'nemo.collections.nlp.modules.common.transformer.transformer.NeMoTransformerConfig', 'NeMoTransformerConfig', (), '', False, 'from nemo.collections.nlp.modules.common.transformer.transformer import NeMoTransformerConfig, NeMoTransformerEncoderConfig\n')]
MaxSherry/ssr-command-client
shadowsocksr_cli/main.py
e52ea0a74e2a1bbdd7e816e0e2670d66ebdbf159
""" @author: tyrantlucifer @contact: [email protected] @blog: https://tyrantlucifer.com @file: main.py @time: 2021/2/18 21:36 @desc: shadowsocksr-cli入口函数 """ import argparse import traceback from shadowsocksr_cli.functions import * def get_parser(): parser = argparse.ArgumentParser(description=color.blue("The shadowsocksr command client based Python."), epilog=color.yellow('Powered by ') + color.green('tyrantlucifer') + color.yellow( ". If you have any questions,you can send e-mails to ") + color.green( "[email protected]")) parser.add_argument("-l", "--list", action="store_true", help="show ssr list") parser.add_argument("-p", "--port", default=1080, metavar="local_port", type=int, help="assign local proxy port,use with -s") parser.add_argument("-s", "--start", metavar="ssr_id", type=int, help="start ssr proxy") parser.add_argument("-S", "--stop", nargs='?', const=-1, metavar="ssr_id", type=int, help="stop ssr proxy") parser.add_argument("-u", "--update", action="store_true", help="update ssr list") parser.add_argument("-v", "--version", action="store_true", help="display version") parser.add_argument("--generate-clash", action="store_true", help="generate clash config yaml") parser.add_argument("--display-json", metavar="ssr_id", type=int, help="display ssr json info") parser.add_argument("--test-speed", type=int, metavar="ssr_id", help="test ssr nodes download and upload speed") parser.add_argument("--fast-node", action="store_true", help="find most fast by delay and start ssr proxy") parser.add_argument("--setting-url", metavar="ssr_subscribe_url", help="setting ssr subscribe url") parser.add_argument("--setting-address", metavar="ssr_local_address", help="setting ssr local address") parser.add_argument("--list-url", action="store_true", help="list ssr subscribe url") parser.add_argument("--add-url", metavar="ssr_subscribe_url", help="add ssr subscribe url") parser.add_argument("--remove-url", metavar="ssr_subscribe_url", help="remove ssr subscribe url") parser.add_argument("--list-address", action="store_true", help="list ssr local address") parser.add_argument("--parse-url", metavar="ssr_url", help="pares ssr url") parser.add_argument("--append-ssr", metavar="ssr_file_path", help="append ssr nodes from file") parser.add_argument("-b", action="store_true", help="append_ssr file is base64") parser.add_argument("--clear-ssr", metavar="ssr_id", nargs="?", const="fail", help="if ssr_id is not empty, clear ssr node by ssr_id, else clear fail nodes") parser.add_argument("-all", action="store_true", help="clear all ssr node") parser.add_argument("--add-ssr", metavar="ssr_url", help="add ssr node") parser.add_argument("--test-again", metavar="ssr_node_id", type=int, help="test ssr node again") parser.add_argument("--print-qrcode", metavar="ssr_node_id", type=int, help="print ssr node qrcode") parser.add_argument("--http", metavar="action[start stop status]", help="Manager local http server") parser.add_argument("--http-port", metavar="http server port", default=80, type=int, help="assign local http server port") parser.add_argument("--setting-global-proxy", action="store_true", help="setting system global proxy,only support on " + color.red('Ubuntu Desktop')) parser.add_argument("--setting-pac-proxy", action="store_true", help="setting system pac proxy,only support on " + color.red('Ubuntu Desktop')) parser.add_argument("--close-system-proxy", action="store_true", help="close system proxy,only support on " + color.red('Ubuntu Desktop')) return parser def main(): parser = get_parser() args = parser.parse_args() if args.list: DisplayShadowsocksr.display_shadowsocksr_list() elif args.update: UpdateConfigurations.update_subscribe() elif args.fast_node: HandleShadowsocksr.select_fast_node(args.port) elif args.start is not None: HandleShadowsocksr.start(ssr_id=args.start, local_port=args.port) elif args.stop is not None: HandleShadowsocksr.stop(ssr_id=args.stop, local_port=args.port) elif args.version: DisplayShadowsocksr.display_version() elif args.setting_url: UpdateConfigurations.reset_subscribe_url(args.setting_url) elif args.append_ssr: if not os.path.isfile(args.append_ssr): logger.error(f'append_ssr file {args.append_ssr} is not exists') return with open(args.append_ssr, 'r', encoding='UTF-8') as f: txt = f.read() if args.b: txt = ParseShadowsocksr.base64_decode(txt) ssr_set = set() for line in txt.splitlines(): for ssr in re.findall(r'ssr://[0-9a-zA-Z=-_/+]+', line): ssr_set.add(ssr) for ssr in ssr_set: try: UpdateConfigurations.append_ssr_node(ssr) except Exception as e: logger.error(f'add ssr node error {ssr}') logger.error(traceback.format_exc()) elif args.clear_ssr: UpdateConfigurations.clear_ssr_nodes(args.clear_ssr, args.all) elif args.setting_address: UpdateConfigurations.update_local_address(args.setting_address) elif args.list_url: DisplayShadowsocksr.display_subscribe_url() elif args.add_url: UpdateConfigurations.add_subscribe_url(args.add_url) elif args.remove_url: UpdateConfigurations.remove_subscribe_url(args.remove_url) elif args.list_address: DisplayShadowsocksr.display_local_address() elif args.parse_url: DisplayShadowsocksr.display_shadowsocksr_json_by_url(args.parse_url) elif args.add_ssr: UpdateConfigurations.add_shadowsocksr_by_url(args.add_ssr) elif args.test_again is not None: UpdateConfigurations.update_shadowsocksr_connect_status(ssr_id=args.test_again) elif args.print_qrcode is not None: DisplayShadowsocksr.display_qrcode(ssr_id=args.print_qrcode) elif args.setting_global_proxy: UpdateSystemProxy.open_global_proxy(args.port, args.http_port) elif args.setting_pac_proxy: UpdateSystemProxy.open_pac_proxy(args.port, args.http_port) elif args.close_system_proxy: UpdateSystemProxy.close_proxy(args.port, args.http_port) elif args.test_speed is not None: DisplayShadowsocksr.display_shadowsocksr_speed(ssr_id=args.test_speed) elif args.display_json is not None: DisplayShadowsocksr.display_shadowsocksr_json(ssr_id=args.display_json) elif args.generate_clash: GenerateClashConfig.generate_clash_config() elif args.http: HandleHttpServer.handle_http_server(args.http, args.port, args.http_port) else: parser.print_help() if __name__ == "__main__": main()
[((93, 29, 93, 51), 'traceback.format_exc', 'traceback.format_exc', ({}, {}), '()', False, 'import traceback\n')]
jcjveraa/EDDN
examples/Python 2.7/Client_Complete.py
d0cbae6b7a2cac180dd414cbc324c2d84c867cd8
import zlib import zmq import simplejson import sys, os, datetime, time """ " Configuration """ __relayEDDN = 'tcp://eddn.edcd.io:9500' #__timeoutEDDN = 600000 # 10 minuts __timeoutEDDN = 60000 # 1 minut # Set False to listen to production stream; True to listen to debug stream __debugEDDN = False; # Set to False if you do not want verbose logging __logVerboseFile = os.path.dirname(__file__) + '/Logs_Verbose_EDDN_%DATE%.htm' #__logVerboseFile = False # Set to False if you do not want JSON logging __logJSONFile = os.path.dirname(__file__) + '/Logs_JSON_EDDN_%DATE%.log' #__logJSONFile = False # A sample list of authorised softwares __authorisedSoftwares = [ "EDCE", "ED-TD.SPACE", "EliteOCR", "Maddavo's Market Share", "RegulatedNoise", "RegulatedNoise__DJ", "E:D Market Connector [Windows]" ] # Used this to excludes yourself for example has you don't want to handle your own messages ^^ __excludedSoftwares = [ 'My Awesome Market Uploader' ] """ " Start """ def date(__format): d = datetime.datetime.utcnow() return d.strftime(__format) __oldTime = False def echoLog(__str): global __oldTime, __logVerboseFile if __logVerboseFile != False: __logVerboseFileParsed = __logVerboseFile.replace('%DATE%', str(date('%Y-%m-%d'))) if __logVerboseFile != False and not os.path.exists(__logVerboseFileParsed): f = open(__logVerboseFileParsed, 'w') f.write('<style type="text/css">html { white-space: pre; font-family: Courier New,Courier,Lucida Sans Typewriter,Lucida Typewriter,monospace; }</style>') f.close() if (__oldTime == False) or (__oldTime != date('%H:%M:%S')): __oldTime = date('%H:%M:%S') __str = str(__oldTime) + ' | ' + str(__str) else: __str = ' ' + ' | ' + str(__str) print __str sys.stdout.flush() if __logVerboseFile != False: f = open(__logVerboseFileParsed, 'a') f.write(__str + '\n') f.close() def echoLogJSON(__json): global __logJSONFile if __logJSONFile != False: __logJSONFileParsed = __logJSONFile.replace('%DATE%', str(date('%Y-%m-%d'))) f = open(__logJSONFileParsed, 'a') f.write(str(__json) + '\n') f.close() def main(): echoLog('Starting EDDN Subscriber') echoLog('') context = zmq.Context() subscriber = context.socket(zmq.SUB) subscriber.setsockopt(zmq.SUBSCRIBE, "") subscriber.setsockopt(zmq.RCVTIMEO, __timeoutEDDN) while True: try: subscriber.connect(__relayEDDN) echoLog('Connect to ' + __relayEDDN) echoLog('') echoLog('') poller = zmq.Poller() poller.register(subscriber, zmq.POLLIN) while True: socks = dict(poller.poll(__timeoutEDDN)) if socks: if socks.get(subscriber) == zmq.POLLIN: __message = subscriber.recv(zmq.NOBLOCK) __message = zlib.decompress(__message) __json = simplejson.loads(__message) __converted = False # Handle commodity v1 if __json['$schemaRef'] == 'https://eddn.edcd.io/schemas/commodity/1' + ('/test' if (__debugEDDN == True) else ''): echoLogJSON(__message) echoLog('Receiving commodity-v1 message...') echoLog(' - Converting to v3...') __temp = {} __temp['$schemaRef'] = 'https://eddn.edcd.io/schemas/commodity/3' + ('/test' if (__debugEDDN == True) else '') __temp['header'] = __json['header'] __temp['message'] = {} __temp['message']['systemName'] = __json['message']['systemName'] __temp['message']['stationName'] = __json['message']['stationName'] __temp['message']['timestamp'] = __json['message']['timestamp'] __temp['message']['commodities'] = [] __commodity = {} if 'itemName' in __json['message']: __commodity['name'] = __json['message']['itemName'] if 'buyPrice' in __json['message']: __commodity['buyPrice'] = __json['message']['buyPrice'] if 'stationStock' in __json['message']: __commodity['supply'] = __json['message']['stationStock'] if 'supplyLevel' in __json['message']: __commodity['supplyLevel'] = __json['message']['supplyLevel'] if 'sellPrice' in __json['message']: __commodity['sellPrice'] = __json['message']['sellPrice'] if 'demand' in __json['message']: __commodity['demand'] = __json['message']['demand'] if'demandLevel' in __json['message']: __commodity['demandLevel'] = __json['message']['demandLevel'] __temp['message']['commodities'].append(__commodity) __json = __temp del __temp, __commodity __converted = True # Handle commodity v3 if __json['$schemaRef'] == 'https://eddn.edcd.io/schemas/commodity/3' + ('/test' if (__debugEDDN == True) else ''): if __converted == False: echoLogJSON(__message) echoLog('Receiving commodity-v3 message...') __authorised = False __excluded = False if __json['header']['softwareName'] in __authorisedSoftwares: __authorised = True if __json['header']['softwareName'] in __excludedSoftwares: __excluded = True echoLog(' - Software: ' + __json['header']['softwareName'] + ' / ' + __json['header']['softwareVersion']) echoLog(' - ' + 'AUTHORISED' if (__authorised == True) else ('EXCLUDED' if (__excluded == True) else 'UNAUTHORISED') ) if __authorised == True and __excluded == False: # Do what you want with the data... # Have fun ! # For example echoLog(' - Timestamp: ' + __json['message']['timestamp']) echoLog(' - Uploader ID: ' + __json['header']['uploaderID']) echoLog(' - System Name: ' + __json['message']['systemName']) echoLog(' - Station Name: ' + __json['message']['stationName']) for __commodity in __json['message']['commodities']: echoLog(' - Name: ' + __commodity['name']) echoLog(' - Buy Price: ' + str(__commodity['buyPrice'])) echoLog(' - Supply: ' + str(__commodity['supply']) + ((' (' + __commodity['supplyLevel'] + ')') if 'supplyLevel' in __commodity else '') ) echoLog(' - Sell Price: ' + str(__commodity['sellPrice'])) echoLog(' - Demand: ' + str(__commodity['demand']) + ((' (' + __commodity['demandLevel'] + ')') if 'demandLevel' in __commodity else '') ) # End example del __authorised, __excluded echoLog('') echoLog('') del __converted else: print 'Disconnect from ' + __relayEDDN + ' (After timeout)' echoLog('') echoLog('') sys.stdout.flush() subscriber.disconnect(__relayEDDN) break except zmq.ZMQError, e: subscriber.disconnect(__relayEDDN) echoLog('') echoLog('Disconnect from ' + __relayEDDN + ' (After receiving ZMQError)') echoLog('ZMQSocketException: ' + str(e)) echoLog('') time.sleep(10) if __name__ == '__main__': main()
[]
nadkkka/H8PW
zad1.py
21b5d28bb42af163e7dad43368d21b550ae66618
def repleace_pattern(t,s,r): assert len(t) > 0 assert len(s) > 0 assert len(r) > 0 assert len(t) >= len(s) n = len(t) m = len(s) k = len(r) idx = -1 for i in range(0, n): if t[i] == s[0]: pattern = True for j in range(1,m): if t[i+j] != s[j]: pattern = False break if(pattern): idx=i break result = t print(idx) if(idx!=-1): result = [*t[0:idx],*r,*t[idx+m:n]] return result print (repleace_pattern([1,2,3,1,2,3,4],[1,2,3,4],[9,0]))
[]
Matjordan/mycroft-core
mycroft/client/enclosure/weather.py
8b64930f3b3dae671535fc3b096ce9d846c54f6d
# Copyright 2017 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class EnclosureWeather: """ Listens for Enclosure API commands to display indicators of the weather. Performs the associated command on Arduino by writing on the Serial port. """ def __init__(self, bus, writer): self.bus = bus self.writer = writer self.__init_events() def __init_events(self): self.bus.on('enclosure.weather.display', self.display) def display(self, event=None): if event and event.data: # Convert img_code to icon img_code = event.data.get("img_code", None) icon = None if img_code == 0: # sunny icon = "IICEIBMDNLMDIBCEAA" elif img_code == 1: # partly cloudy icon = "IIEEGBGDHLHDHBGEEA" elif img_code == 2: # cloudy icon = "IIIBMDMDODODODMDIB" elif img_code == 3: # light rain icon = "IIMAOJOFPBPJPFOBMA" elif img_code == 4: # raining icon = "IIMIOFOBPFPDPJOFMA" elif img_code == 5: # storming icon = "IIAAIIMEODLBJAAAAA" elif img_code == 6: # snowing icon = "IIJEKCMBPHMBKCJEAA" elif img_code == 7: # wind/mist icon = "IIABIBIBIJIJJGJAGA" temp = event.data.get("temp", None) if icon is not None and temp is not None: icon = "x=2," + icon msg = "weather.display=" + str(temp) + "," + str(icon) self.writer.write(msg)
[]
cnwangfeng/algorithm-reference-library
tests/processing_components/test_image_iterators.py
9605eb01652fbfcb9ff003cc12b44c84093b7fb1
"""Unit tests for image iteration """ import logging import unittest import numpy from data_models.polarisation import PolarisationFrame from processing_components.image.iterators import image_raster_iter, image_channel_iter, image_null_iter from processing_components.image.operations import create_empty_image_like from processing_components.simulation.testing_support import create_test_image log = logging.getLogger(__name__) class TestImageIterators(unittest.TestCase): def test_raster(self): m31original = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) assert numpy.max(numpy.abs(m31original.data)), "Original is empty" for nraster in [1, 2, 4, 8, 9]: m31model = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) for patch in image_raster_iter(m31model, facets=nraster): assert patch.data.shape[3] == (m31model.data.shape[3] // nraster), \ "Number of pixels in each patch: %d not as expected: %d" % (patch.data.shape[3], (m31model.data.shape[3] // nraster)) assert patch.data.shape[2] == (m31model.data.shape[2] // nraster), \ "Number of pixels in each patch: %d not as expected: %d" % (patch.data.shape[2], (m31model.data.shape[2] // nraster)) patch.data *= 2.0 diff = m31model.data - 2.0 * m31original.data assert numpy.max(numpy.abs(m31model.data)), "Raster is empty for %d" % nraster assert numpy.max(numpy.abs(diff)) == 0.0, "Raster set failed for %d" % nraster def test_raster_exception(self): m31original = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) assert numpy.max(numpy.abs(m31original.data)), "Original is empty" for nraster, overlap in [(-1, -1), (-1, 0), (2, 128), (1e6, 127)]: with self.assertRaises(AssertionError) as context: m31model = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) for patch in image_raster_iter(m31model, facets=nraster, overlap=overlap): patch.data *= 2.0 def test_raster_overlap(self): m31original = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) assert numpy.max(numpy.abs(m31original.data)), "Original is empty" flat = create_empty_image_like(m31original) for nraster, overlap in [(1, 0), (1, 16), (4, 8), (4, 16), (8, 8), (16, 4), (9, 5)]: m31model = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) for patch, flat_patch in zip(image_raster_iter(m31model, facets=nraster, overlap=overlap), image_raster_iter(flat, facets=nraster, overlap=overlap)): patch.data *= 2.0 flat_patch.data[...] += 1.0 assert numpy.max(numpy.abs(m31model.data)), "Raster is empty for %d" % nraster def test_raster_overlap_linear(self): m31original = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) assert numpy.max(numpy.abs(m31original.data)), "Original is empty" flat = create_empty_image_like(m31original) for nraster, overlap in [(1, 0), (1, 16), (4, 8), (4, 16), (8, 8), (16, 4), (9, 5)]: m31model = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) for patch, flat_patch in zip(image_raster_iter(m31model, facets=nraster, overlap=overlap, taper='linear'), image_raster_iter(flat, facets=nraster, overlap=overlap)): patch.data *= 2.0 flat_patch.data[...] += 1.0 assert numpy.max(numpy.abs(m31model.data)), "Raster is empty for %d" % nraster def test_raster_overlap_quadratic(self): m31original = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) assert numpy.max(numpy.abs(m31original.data)), "Original is empty" flat = create_empty_image_like(m31original) for nraster, overlap in [(1, 0), (1, 16), (4, 8), (4, 16), (8, 8), (16, 4), (9, 5)]: m31model = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) for patch, flat_patch in zip(image_raster_iter(m31model, facets=nraster, overlap=overlap, taper='quadratic'), image_raster_iter(flat, facets=nraster, overlap=overlap)): patch.data *= 2.0 flat_patch.data[...] += 1.0 assert numpy.max(numpy.abs(m31model.data)), "Raster is empty for %d" % nraster def test_raster_overlap_tukey(self): m31original = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) assert numpy.max(numpy.abs(m31original.data)), "Original is empty" flat = create_empty_image_like(m31original) for nraster, overlap in [(1, 0), (1, 16), (4, 8), (4, 16), (8, 8), (16, 4), (9, 5)]: m31model = create_test_image(polarisation_frame=PolarisationFrame('stokesI')) for patch, flat_patch in zip(image_raster_iter(m31model, facets=nraster, overlap=overlap, taper='tukey'), image_raster_iter(flat, facets=nraster, overlap=overlap)): patch.data *= 2.0 flat_patch.data[...] += 1.0 assert numpy.max(numpy.abs(m31model.data)), "Raster is empty for %d" % nraster def test_channelise(self): m31cube = create_test_image(polarisation_frame=PolarisationFrame('stokesI'), frequency=numpy.linspace(1e8,1.1e8, 128)) for subimages in [128, 16, 8, 2, 1]: for slab in image_channel_iter(m31cube, subimages=subimages): assert slab.data.shape[0] == 128 // subimages def test_null(self): m31cube = create_test_image(polarisation_frame=PolarisationFrame('stokesI'), frequency=numpy.linspace(1e8, 1.1e8, 128)) for i, im in enumerate(image_null_iter(m31cube)): assert i<1, "Null iterator returns more than one value" if __name__ == '__main__': unittest.main()
[((17, 6, 17, 33), 'logging.getLogger', 'logging.getLogger', ({(17, 24, 17, 32): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((133, 4, 133, 19), 'unittest.main', 'unittest.main', ({}, {}), '()', False, 'import unittest\n'), ((57, 15, 57, 51), 'processing_components.image.operations.create_empty_image_like', 'create_empty_image_like', ({(57, 39, 57, 50): 'm31original'}, {}), '(m31original)', False, 'from processing_components.image.operations import create_empty_image_like\n'), ((72, 15, 72, 51), 'processing_components.image.operations.create_empty_image_like', 'create_empty_image_like', ({(72, 39, 72, 50): 'm31original'}, {}), '(m31original)', False, 'from processing_components.image.operations import create_empty_image_like\n'), ((88, 15, 88, 51), 'processing_components.image.operations.create_empty_image_like', 'create_empty_image_like', ({(88, 39, 88, 50): 'm31original'}, {}), '(m31original)', False, 'from processing_components.image.operations import create_empty_image_like\n'), ((104, 15, 104, 51), 'processing_components.image.operations.create_empty_image_like', 'create_empty_image_like', ({(104, 39, 104, 50): 'm31original'}, {}), '(m31original)', False, 'from processing_components.image.operations import create_empty_image_like\n'), ((24, 25, 24, 52), 'numpy.abs', 'numpy.abs', ({(24, 35, 24, 51): 'm31original.data'}, {}), '(m31original.data)', False, 'import numpy\n'), ((28, 25, 28, 68), 'processing_components.image.iterators.image_raster_iter', 'image_raster_iter', (), '', False, 'from processing_components.image.iterators import image_raster_iter, image_channel_iter, image_null_iter\n'), ((44, 25, 44, 52), 'numpy.abs', 'numpy.abs', ({(44, 35, 44, 51): 'm31original.data'}, {}), '(m31original.data)', False, 'import numpy\n'), ((56, 25, 56, 52), 'numpy.abs', 'numpy.abs', ({(56, 35, 56, 51): 'm31original.data'}, {}), '(m31original.data)', False, 'import numpy\n'), ((71, 25, 71, 52), 'numpy.abs', 'numpy.abs', ({(71, 35, 71, 51): 'm31original.data'}, {}), '(m31original.data)', False, 'import numpy\n'), ((87, 25, 87, 52), 'numpy.abs', 'numpy.abs', ({(87, 35, 87, 51): 'm31original.data'}, {}), '(m31original.data)', False, 'import numpy\n'), ((103, 25, 103, 52), 'numpy.abs', 'numpy.abs', ({(103, 35, 103, 51): 'm31original.data'}, {}), '(m31original.data)', False, 'import numpy\n'), ((121, 24, 121, 72), 'processing_components.image.iterators.image_channel_iter', 'image_channel_iter', (), '', False, 'from processing_components.image.iterators import image_raster_iter, image_channel_iter, image_null_iter\n'), ((128, 31, 128, 55), 'processing_components.image.iterators.image_null_iter', 'image_null_iter', ({(128, 47, 128, 54): 'm31cube'}, {}), '(m31cube)', False, 'from processing_components.image.iterators import image_raster_iter, image_channel_iter, image_null_iter\n'), ((23, 59, 23, 87), 'data_models.polarisation.PolarisationFrame', 'PolarisationFrame', ({(23, 77, 23, 86): '"""stokesI"""'}, {}), "('stokesI')", False, 'from data_models.polarisation import PolarisationFrame\n'), ((38, 29, 38, 53), 'numpy.abs', 'numpy.abs', ({(38, 39, 38, 52): 'm31model.data'}, {}), '(m31model.data)', False, 'import numpy\n'), ((43, 59, 43, 87), 'data_models.polarisation.PolarisationFrame', 'PolarisationFrame', ({(43, 77, 43, 86): '"""stokesI"""'}, {}), "('stokesI')", False, 'from data_models.polarisation import PolarisationFrame\n'), ((50, 29, 50, 89), 'processing_components.image.iterators.image_raster_iter', 'image_raster_iter', (), '', False, 'from processing_components.image.iterators import image_raster_iter, image_channel_iter, image_null_iter\n'), ((55, 59, 55, 87), 'data_models.polarisation.PolarisationFrame', 'PolarisationFrame', ({(55, 77, 55, 86): '"""stokesI"""'}, {}), "('stokesI')", False, 'from data_models.polarisation import PolarisationFrame\n'), ((61, 41, 61, 101), 'processing_components.image.iterators.image_raster_iter', 'image_raster_iter', (), '', False, 'from processing_components.image.iterators import image_raster_iter, image_channel_iter, image_null_iter\n'), ((62, 41, 62, 97), 'processing_components.image.iterators.image_raster_iter', 'image_raster_iter', (), '', False, 'from processing_components.image.iterators import image_raster_iter, image_channel_iter, image_null_iter\n'), ((66, 29, 66, 53), 'numpy.abs', 'numpy.abs', ({(66, 39, 66, 52): 'm31model.data'}, {}), '(m31model.data)', False, 'import numpy\n'), ((70, 59, 70, 87), 'data_models.polarisation.PolarisationFrame', 'PolarisationFrame', ({(70, 77, 70, 86): '"""stokesI"""'}, {}), "('stokesI')", False, 'from data_models.polarisation import PolarisationFrame\n'), ((76, 41, 77, 74), 'processing_components.image.iterators.image_raster_iter', 'image_raster_iter', (), '', False, 'from processing_components.image.iterators import image_raster_iter, image_channel_iter, image_null_iter\n'), ((78, 41, 78, 97), 'processing_components.image.iterators.image_raster_iter', 'image_raster_iter', (), '', False, 'from processing_components.image.iterators import image_raster_iter, image_channel_iter, image_null_iter\n'), ((82, 29, 82, 53), 'numpy.abs', 'numpy.abs', ({(82, 39, 82, 52): 'm31model.data'}, {}), '(m31model.data)', False, 'import numpy\n'), ((86, 59, 86, 87), 'data_models.polarisation.PolarisationFrame', 'PolarisationFrame', ({(86, 77, 86, 86): '"""stokesI"""'}, {}), "('stokesI')", False, 'from data_models.polarisation import PolarisationFrame\n'), ((92, 41, 93, 77), 'processing_components.image.iterators.image_raster_iter', 'image_raster_iter', (), '', False, 'from processing_components.image.iterators import image_raster_iter, image_channel_iter, image_null_iter\n'), ((94, 41, 94, 97), 'processing_components.image.iterators.image_raster_iter', 'image_raster_iter', (), '', False, 'from processing_components.image.iterators import image_raster_iter, image_channel_iter, image_null_iter\n'), ((98, 29, 98, 53), 'numpy.abs', 'numpy.abs', ({(98, 39, 98, 52): 'm31model.data'}, {}), '(m31model.data)', False, 'import numpy\n'), ((102, 59, 102, 87), 'data_models.polarisation.PolarisationFrame', 'PolarisationFrame', ({(102, 77, 102, 86): '"""stokesI"""'}, {}), "('stokesI')", False, 'from data_models.polarisation import PolarisationFrame\n'), ((108, 41, 109, 73), 'processing_components.image.iterators.image_raster_iter', 'image_raster_iter', (), '', False, 'from processing_components.image.iterators import image_raster_iter, image_channel_iter, image_null_iter\n'), ((110, 41, 110, 97), 'processing_components.image.iterators.image_raster_iter', 'image_raster_iter', (), '', False, 'from processing_components.image.iterators import image_raster_iter, image_channel_iter, image_null_iter\n'), ((114, 29, 114, 53), 'numpy.abs', 'numpy.abs', ({(114, 39, 114, 52): 'm31model.data'}, {}), '(m31model.data)', False, 'import numpy\n'), ((117, 55, 117, 83), 'data_models.polarisation.PolarisationFrame', 'PolarisationFrame', ({(117, 73, 117, 82): '"""stokesI"""'}, {}), "('stokesI')", False, 'from data_models.polarisation import PolarisationFrame\n'), ((118, 50, 118, 80), 'numpy.linspace', 'numpy.linspace', ({(118, 65, 118, 68): '100000000.0', (118, 69, 118, 74): '110000000.0', (118, 76, 118, 79): '128'}, {}), '(100000000.0, 110000000.0, 128)', False, 'import numpy\n'), ((125, 55, 125, 83), 'data_models.polarisation.PolarisationFrame', 'PolarisationFrame', ({(125, 73, 125, 82): '"""stokesI"""'}, {}), "('stokesI')", False, 'from data_models.polarisation import PolarisationFrame\n'), ((126, 46, 126, 77), 'numpy.linspace', 'numpy.linspace', ({(126, 61, 126, 64): '100000000.0', (126, 66, 126, 71): '110000000.0', (126, 73, 126, 76): '128'}, {}), '(100000000.0, 110000000.0, 128)', False, 'import numpy\n'), ((27, 60, 27, 88), 'data_models.polarisation.PolarisationFrame', 'PolarisationFrame', ({(27, 78, 27, 87): '"""stokesI"""'}, {}), "('stokesI')", False, 'from data_models.polarisation import PolarisationFrame\n'), ((39, 29, 39, 44), 'numpy.abs', 'numpy.abs', ({(39, 39, 39, 43): 'diff'}, {}), '(diff)', False, 'import numpy\n'), ((60, 60, 60, 88), 'data_models.polarisation.PolarisationFrame', 'PolarisationFrame', ({(60, 78, 60, 87): '"""stokesI"""'}, {}), "('stokesI')", False, 'from data_models.polarisation import PolarisationFrame\n'), ((75, 60, 75, 88), 'data_models.polarisation.PolarisationFrame', 'PolarisationFrame', ({(75, 78, 75, 87): '"""stokesI"""'}, {}), "('stokesI')", False, 'from data_models.polarisation import PolarisationFrame\n'), ((91, 60, 91, 88), 'data_models.polarisation.PolarisationFrame', 'PolarisationFrame', ({(91, 78, 91, 87): '"""stokesI"""'}, {}), "('stokesI')", False, 'from data_models.polarisation import PolarisationFrame\n'), ((107, 60, 107, 88), 'data_models.polarisation.PolarisationFrame', 'PolarisationFrame', ({(107, 78, 107, 87): '"""stokesI"""'}, {}), "('stokesI')", False, 'from data_models.polarisation import PolarisationFrame\n'), ((49, 64, 49, 92), 'data_models.polarisation.PolarisationFrame', 'PolarisationFrame', ({(49, 82, 49, 91): '"""stokesI"""'}, {}), "('stokesI')", False, 'from data_models.polarisation import PolarisationFrame\n')]
alisure-fork/Video-Swin-Transformer
a_other_video/MCL-Motion-Focused-Contrastive-Learning/sts/motion_sts.py
aa0a31bd4df0ad2cebdcfb2ad53df712fce79809
import cv2 import numpy as np from scipy import ndimage def compute_motion_boudary(flow_clip): mx = np.array([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]) my = np.array([[-1, -1, -1], [0, 0, 0], [1, 1, 1]]) dx_all = [] dy_all = [] mb_x = 0 mb_y = 0 for flow_img in flow_clip: d_x = ndimage.convolve(flow_img, mx) d_y = ndimage.convolve(flow_img, my) dx_all.append(d_x) dy_all.append(d_y) mb_x += d_x mb_y += d_y dx_all = np.array(dx_all) dy_all = np.array(dy_all) return dx_all, dy_all, mb_x, mb_y def zero_boundary(frame_mag): frame_mag[:8, :] = 0 frame_mag[:, :8] = 0 frame_mag[-8:, :] = 0 frame_mag[:, -8:] = 0 return frame_mag def motion_mag_downsample(mag, size, input_size): block_size = input_size // size mask = np.zeros((size,size)) for i in range(size): for j in range(size): x_start = i * block_size x_end = x_start + block_size y_start = j * block_size y_end = y_start + block_size tmp_block = mag[x_start:x_end, y_start:y_end] block_mean = np.mean(tmp_block) mask[i, j] = block_mean return mask def motion_sts(flow_clip, size, input_size): dx_all, dy_all, dx_sum, dy_sum = compute_motion_boudary(flow_clip) mag, ang = cv2.cartToPolar(dx_sum, dy_sum, angleInDegrees=True) mag_down = motion_mag_downsample(mag, size, input_size) return mag_down
[((7, 9, 7, 55), 'numpy.array', 'np.array', ({(7, 18, 7, 54): '[[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]'}, {}), '([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]])', True, 'import numpy as np\n'), ((8, 9, 8, 55), 'numpy.array', 'np.array', ({(8, 18, 8, 54): '[[-1, -1, -1], [0, 0, 0], [1, 1, 1]]'}, {}), '([[-1, -1, -1], [0, 0, 0], [1, 1, 1]])', True, 'import numpy as np\n'), ((24, 13, 24, 29), 'numpy.array', 'np.array', ({(24, 22, 24, 28): 'dx_all'}, {}), '(dx_all)', True, 'import numpy as np\n'), ((25, 13, 25, 29), 'numpy.array', 'np.array', ({(25, 22, 25, 28): 'dy_all'}, {}), '(dy_all)', True, 'import numpy as np\n'), ((40, 11, 40, 32), 'numpy.zeros', 'np.zeros', ({(40, 20, 40, 31): '(size, size)'}, {}), '((size, size))', True, 'import numpy as np\n'), ((57, 15, 57, 67), 'cv2.cartToPolar', 'cv2.cartToPolar', (), '', False, 'import cv2\n'), ((15, 14, 15, 44), 'scipy.ndimage.convolve', 'ndimage.convolve', ({(15, 31, 15, 39): 'flow_img', (15, 41, 15, 43): 'mx'}, {}), '(flow_img, mx)', False, 'from scipy import ndimage\n'), ((16, 14, 16, 44), 'scipy.ndimage.convolve', 'ndimage.convolve', ({(16, 31, 16, 39): 'flow_img', (16, 41, 16, 43): 'my'}, {}), '(flow_img, my)', False, 'from scipy import ndimage\n'), ((50, 25, 50, 43), 'numpy.mean', 'np.mean', ({(50, 33, 50, 42): 'tmp_block'}, {}), '(tmp_block)', True, 'import numpy as np\n')]
MSLNZ/msl-qt
tests/test_button.py
33abbb4807b54e3a06dbe9c0f9b343802ece9b97
import os import sys import pytest from msl.qt import convert, Button, QtWidgets, QtCore, Qt def test_text(): b = Button(text='hello') assert b.text() == 'hello' assert b.icon().isNull() assert b.toolButtonStyle() == Qt.ToolButtonTextOnly def test_icon(): path = os.path.dirname(__file__) + '/gamma.png' gamma_size = QtCore.QSize(191, 291) int_val = QtWidgets.QStyle.SP_DriveNetIcon icon = convert.to_qicon(int_val) sizes = icon.availableSizes() if sys.platform == 'win32': assert len(sizes) > 1 b = Button(icon=int_val) assert b.text() == '' assert not b.icon().isNull() assert b.iconSize() == sizes[0] assert b.toolButtonStyle() == Qt.ToolButtonIconOnly b = Button(icon=path) assert b.text() == '' assert not b.icon().isNull() assert b.iconSize() == gamma_size assert b.toolButtonStyle() == Qt.ToolButtonIconOnly b = Button(icon=convert.icon_to_base64(convert.to_qicon(path))) assert b.text() == '' assert not b.icon().isNull() assert b.iconSize() == gamma_size assert b.toolButtonStyle() == Qt.ToolButtonIconOnly def test_icon_size(): int_val = QtWidgets.QStyle.SP_DriveNetIcon icon = convert.to_qicon(int_val) sizes = icon.availableSizes() if sys.platform == 'win32': assert len(sizes) > 1 # # specify the size to the get_icon function # b = Button(icon=convert.to_qicon(int_val)) assert b.text() == '' assert b.toolButtonStyle() == Qt.ToolButtonIconOnly assert b.iconSize() == sizes[0] b = Button(icon=convert.to_qicon(int_val, size=789)) assert b.iconSize() == QtCore.QSize(789, 789) b = Button(icon=convert.to_qicon(int_val, size=3.0)) # specifying a scale factor will use the largest available size assert b.iconSize() == QtCore.QSize(3*sizes[-1].width(), 3*sizes[-1].height()) b = Button(icon=convert.to_qicon(int_val, size=QtCore.QSize(50, 50))) assert b.iconSize() == QtCore.QSize(50, 50) for size in [(256,), (256, 256, 256)]: with pytest.raises(ValueError, match='(width, height)'): Button(icon=convert.to_qicon(int_val, size=size)) # # use the icon_size kwarg # b = Button(icon=convert.to_qicon(int_val), icon_size=1234) assert b.iconSize() == QtCore.QSize(1234, 1234) b = Button(icon=convert.to_qicon(int_val), icon_size=3.0) # specifying a scale factor will use the largest available size assert b.iconSize() == QtCore.QSize(3*sizes[-1].width(), 3*sizes[-1].height()) b = Button(icon=convert.to_qicon(int_val), icon_size=(312, 312)) assert b.iconSize() == QtCore.QSize(312, 312) b = Button(icon=convert.to_qicon(int_val), icon_size=QtCore.QSize(500, 500)) assert b.iconSize() == QtCore.QSize(500, 500) for size in [(256,), (256, 256, 256)]: with pytest.raises(ValueError, match='(width, height)'): Button(icon=convert.to_qicon(int_val), icon_size=size) def test_text_and_icon(): b = Button(text='hello', icon=QtWidgets.QStyle.SP_DriveNetIcon) assert b.text() == 'hello' assert not b.icon().isNull() assert b.toolButtonStyle() == Qt.ToolButtonTextUnderIcon b = Button(text='world', icon=QtWidgets.QStyle.SP_DriveNetIcon, is_text_under_icon=False) assert b.text() == 'world' assert not b.icon().isNull() assert b.toolButtonStyle() == Qt.ToolButtonTextBesideIcon def test_tooltip(): b = Button(tooltip='hello') assert b.text() == '' assert b.icon().isNull() assert b.toolTip() == 'hello' assert b.toolButtonStyle() == Qt.ToolButtonIconOnly
[((10, 8, 10, 28), 'msl.qt.Button', 'Button', (), '', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((18, 17, 18, 39), 'msl.qt.QtCore.QSize', 'QtCore.QSize', ({(18, 30, 18, 33): '191', (18, 35, 18, 38): '291'}, {}), '(191, 291)', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((21, 11, 21, 36), 'msl.qt.convert.to_qicon', 'convert.to_qicon', ({(21, 28, 21, 35): 'int_val'}, {}), '(int_val)', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((26, 8, 26, 28), 'msl.qt.Button', 'Button', (), '', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((32, 8, 32, 25), 'msl.qt.Button', 'Button', (), '', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((47, 11, 47, 36), 'msl.qt.convert.to_qicon', 'convert.to_qicon', ({(47, 28, 47, 35): 'int_val'}, {}), '(int_val)', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((98, 8, 98, 67), 'msl.qt.Button', 'Button', (), '', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((103, 8, 103, 93), 'msl.qt.Button', 'Button', (), '', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((110, 8, 110, 31), 'msl.qt.Button', 'Button', (), '', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((17, 11, 17, 36), 'os.path.dirname', 'os.path.dirname', ({(17, 27, 17, 35): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((62, 27, 62, 49), 'msl.qt.QtCore.QSize', 'QtCore.QSize', ({(62, 40, 62, 43): '(789)', (62, 45, 62, 48): '(789)'}, {}), '(789, 789)', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((69, 27, 69, 47), 'msl.qt.QtCore.QSize', 'QtCore.QSize', ({(69, 40, 69, 42): '(50)', (69, 44, 69, 46): '(50)'}, {}), '(50, 50)', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((80, 27, 80, 51), 'msl.qt.QtCore.QSize', 'QtCore.QSize', ({(80, 40, 80, 44): '(1234)', (80, 46, 80, 50): '(1234)'}, {}), '(1234, 1234)', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((87, 27, 87, 49), 'msl.qt.QtCore.QSize', 'QtCore.QSize', ({(87, 40, 87, 43): '(312)', (87, 45, 87, 48): '(312)'}, {}), '(312, 312)', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((90, 27, 90, 49), 'msl.qt.QtCore.QSize', 'QtCore.QSize', ({(90, 40, 90, 43): '(500)', (90, 45, 90, 48): '(500)'}, {}), '(500, 500)', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((56, 20, 56, 45), 'msl.qt.convert.to_qicon', 'convert.to_qicon', ({(56, 37, 56, 44): 'int_val'}, {}), '(int_val)', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((61, 20, 61, 55), 'msl.qt.convert.to_qicon', 'convert.to_qicon', (), '', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((64, 20, 64, 55), 'msl.qt.convert.to_qicon', 'convert.to_qicon', (), '', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((72, 13, 72, 63), 'pytest.raises', 'pytest.raises', (), '', False, 'import pytest\n'), ((79, 20, 79, 45), 'msl.qt.convert.to_qicon', 'convert.to_qicon', ({(79, 37, 79, 44): 'int_val'}, {}), '(int_val)', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((82, 20, 82, 45), 'msl.qt.convert.to_qicon', 'convert.to_qicon', ({(82, 37, 82, 44): 'int_val'}, {}), '(int_val)', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((86, 20, 86, 45), 'msl.qt.convert.to_qicon', 'convert.to_qicon', ({(86, 37, 86, 44): 'int_val'}, {}), '(int_val)', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((89, 20, 89, 45), 'msl.qt.convert.to_qicon', 'convert.to_qicon', ({(89, 37, 89, 44): 'int_val'}, {}), '(int_val)', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((89, 57, 89, 79), 'msl.qt.QtCore.QSize', 'QtCore.QSize', ({(89, 70, 89, 73): '500', (89, 75, 89, 78): '500'}, {}), '(500, 500)', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((93, 13, 93, 63), 'pytest.raises', 'pytest.raises', (), '', False, 'import pytest\n'), ((38, 43, 38, 65), 'msl.qt.convert.to_qicon', 'convert.to_qicon', ({(38, 60, 38, 64): 'path'}, {}), '(path)', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((68, 51, 68, 71), 'msl.qt.QtCore.QSize', 'QtCore.QSize', ({(68, 64, 68, 66): '50', (68, 68, 68, 70): '50'}, {}), '(50, 50)', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((73, 24, 73, 60), 'msl.qt.convert.to_qicon', 'convert.to_qicon', (), '', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n'), ((94, 24, 94, 49), 'msl.qt.convert.to_qicon', 'convert.to_qicon', ({(94, 41, 94, 48): 'int_val'}, {}), '(int_val)', False, 'from msl.qt import convert, Button, QtWidgets, QtCore, Qt\n')]
MateusBarboza99/Python-03-
Exercicios/ex028.py
9c6df88aaa8ba83d385b92722ed1df5873df3a77
from random import randint from time import sleep computador = randint(0, 5) # Faz o computador "PENSAR" print('-=-' * 20) print('Vou Pensar em Um Número Entre 0 e 5. Tente Adivinhar Paçoca...') print('-=-' * 20) jogador = int(input('Em que Número eu Pensei? ')) # Jogador tenta Adivinhar print('PROCESSANDO........') sleep(3) if jogador == computador: print('PARABÊNS! Você conseguiu me Vencer Paçoca') else: print('GANHEI! Eu Pensei no Número {} e não no {}!'.format(computador, jogador))
[((3, 13, 3, 26), 'random.randint', 'randint', ({(3, 21, 3, 22): '0', (3, 24, 3, 25): '5'}, {}), '(0, 5)', False, 'from random import randint\n'), ((9, 0, 9, 8), 'time.sleep', 'sleep', ({(9, 6, 9, 7): '(3)'}, {}), '(3)', False, 'from time import sleep\n')]
manas1410/Miscellaneous-Development
Student Database/input_details.py
8ffd2b586cb05b12ed0855d97c3015c8bb2a6c01
from tkinter import* import tkinter.font as font import sqlite3 name2='' regis2='' branch2='' def main(): inp=Tk() inp.geometry("430x300") inp.title("Enter The Details") inp.iconbitmap("logo/spectrumlogo.ico") f=font.Font(family='Bookman Old Style',size=15,weight='bold') f1=font.Font(family='Bookman Old Style',size=20,weight='bold') global n2 global reg2 global b2 det=Label(inp,text=" Enter The Details\n",font=f1,fg='magenta') det.grid(row=0,column=0,columnspan=2) n1=Label(inp,text=" Name:",font=f) n1.grid(row=1,column=0) n2=Entry(inp,width=40) n2.grid(row=1,column=1) reg1=Label(inp,text="Registration ID:",font=f) reg1.grid(row=2,column=0) reg2=Entry(inp,width=40) reg2.grid(row=2,column=1) b1=Label(inp,text=" Branch:",font=f) b1.grid(row=3,column=0) b2=Entry(inp,width=40) b2.grid(row=3,column=1) invalid=Label(inp,text=' ',fg='red') invalid.grid(row=4,columnspan=2) def submit(): name2=n2.get() regis2=reg2.get() branch2=b2.get() l=[name2,regis2,branch2] if (None in l or "" in l): invalid['text']="Please fill all the fields" else: db=sqlite3.connect("mark_list.db") #cursor c=db.cursor() #insert into tabels c.execute("""UPDATE mark_list SET name=? WHERE name=?""",(name2,' ')) c.execute("""UPDATE mark_list SET registration_no=? WHERE registration_no=?""",(regis2,' ')) c.execute("""UPDATE mark_list SET branch=? WHERE branch=?""",(branch2,' ')) #commit_changes db.commit() #close connection db.close() inp.destroy() import subject subject.main() def back(): db=sqlite3.connect("mark_list.db") #cursor c=db.cursor() c.execute("""DELETE from mark_list where name=' '""") #commit_changes db.commit() #close connection db.close() inp.destroy() import welcome welcome.main() #buttons sub1=Button(inp,text="Submit",borderwidth=3,padx=40,font=f,bg='green',command=submit) sub1.grid(row=5,column=0,columnspan=2) back1=Button(inp,text="Back",borderwidth=3,padx=20,font=f,bg='red',command=back) back1.grid(row=6,column=0,columnspan=2) inp.mainloop() if __name__=='__main__': main()
[((14, 6, 14, 65), 'tkinter.font.Font', 'font.Font', (), '', True, 'import tkinter.font as font\n'), ((15, 7, 15, 66), 'tkinter.font.Font', 'font.Font', (), '', True, 'import tkinter.font as font\n'), ((79, 11, 79, 42), 'sqlite3.connect', 'sqlite3.connect', ({(79, 27, 79, 41): '"""mark_list.db"""'}, {}), "('mark_list.db')", False, 'import sqlite3\n'), ((91, 8, 91, 22), 'welcome.main', 'welcome.main', ({}, {}), '()', False, 'import welcome\n'), ((58, 15, 58, 46), 'sqlite3.connect', 'sqlite3.connect', ({(58, 31, 58, 45): '"""mark_list.db"""'}, {}), "('mark_list.db')", False, 'import sqlite3\n'), ((76, 12, 76, 26), 'subject.main', 'subject.main', ({}, {}), '()', False, 'import subject\n')]
jakezimmerTHT/py_IQS5xx
IQS5xx/IQS5xx.py
5f90be17ea0429eeeb3726c7647f0b7ad1fb7b06
import unittest import time import logging logging.basicConfig() from intelhex import IntelHex import Adafruit_GPIO.I2C as i2c from gpiozero import OutputDevice from gpiozero import DigitalInputDevice from ctypes import c_uint8, c_uint16, c_uint32, cast, pointer, POINTER from ctypes import create_string_buffer, Structure from fcntl import ioctl import struct import Adafruit_PureIO.smbus as smbus from Adafruit_PureIO.smbus import make_i2c_rdwr_data from IQS5xx_Defs import * def bytesToHexString(bytes): if isinstance(bytes, basestring): return ''.join('{:02x} '.format(ord(c)) for c in bytes) if isinstance(bytes, bytearray): return ''.join('{:02x} '.format(b) for b in bytes) raise ValueError("Must pass bytesToHexString() a string or bytearray") IQS5xx_DEFAULT_ADDRESS = 0x74 IQS5xx_MAX_ADDRESS = 0x78 CHECKSUM_DESCRIPTOR_START = 0x83C0 CHECKSUM_DESCRIPTOR_END = 0x83FF APP_START_ADDRESS = 0x8400 APP_END_ADDRESS = 0xBDFF #inclusive NV_SETTINGS_START = 0xBE00 NV_SETTINGS_END = 0xBFFF #inclusive FLASH_PADDING = 0x00 BLOCK_SIZE = 64 APP_SIZE_BLOCKS = (((APP_END_ADDRESS+1) - APP_START_ADDRESS) / BLOCK_SIZE) NV_SETTINGS_SIZE_BLOCKS = (((NV_SETTINGS_END+1) - NV_SETTINGS_START) / BLOCK_SIZE) BL_CMD_READ_VERSION = 0x00 BL_CMD_READ_64_BYTES = 0x01 BL_CMD_EXECUTE_APP = 0x02 # Write only, 0 bytes BL_CMD_RUN_CRC = 0x03 BL_CRC_FAIL = 0x01 BL_CRC_PASS = 0x00 BL_VERSION = 0x0200 def swapEndianess(uint16): return ((uint16 & 0xFF) << 8) | ((uint16 & 0xFF00) >> 8) def writeBytes(self, data): self._bus.write_bytes(self._address, bytes(data)) i2c.Device.writeBytes = writeBytes def readBytes(self, data): return self._bus.read_bytes(self._address, data) i2c.Device.readBytes = readBytes def writeRawListReadRawList(self, data, readLength): self.writeBytes(data) # This isn't using a repeat start return self.readBytes(readLength) i2c.Device.writeRawListReadRawList = writeRawListReadRawList def writeBytes_16BitAddress(self, address, data): addressBytes = struct.pack('>H', address) dataBytes = bytearray(data) bytes = addressBytes + dataBytes self.writeBytes(bytes) i2c.Device.writeBytes_16BitAddress = writeBytes_16BitAddress def readBytes_16BitAddress(self, address, length): assert self._bus._device is not None, 'Bus must be opened before operations are made against it!' # Build ctypes values to marshall between ioctl and Python. reg = c_uint16(swapEndianess(address)) result = create_string_buffer(length) # Build ioctl request. request = make_i2c_rdwr_data([ (self._address, 0, 2, cast(pointer(reg), POINTER(c_uint8))), # Write cmd register. (self._address, smbus.I2C_M_RD, length, cast(result, POINTER(c_uint8))) # Read data. ]) # Make ioctl call and return result data. ioctl(self._bus._device.fileno(), smbus.I2C_RDWR, request) return bytearray(result.raw) # Use .raw instead of .value which will stop at a null byte! i2c.Device.readBytes_16BitAddress = readBytes_16BitAddress def readByte_16BitAddress(self, address): result = self.readBytes_16BitAddress(address, 1) result = struct.unpack('>B', result)[0] return result i2c.Device.readByte_16BitAddress = readByte_16BitAddress def writeByte_16BitAddress(self, address, value, mask=0xFF): if mask is not 0xFF: register = self.readByte_16BitAddress(address) register &= ~mask register |= (value & mask) value = register format = '>HB' if (value > 0) else '>Hb' bytes = struct.pack(format, address, value) self.writeBytes(bytes) i2c.Device.writeByte_16BitAddress = writeByte_16BitAddress class IQS5xx(object): def __init__(self, resetPin, readyPin, address=IQS5xx_DEFAULT_ADDRESS): self.address = address self._resetPinNum = resetPin self._readyPinNum = readyPin self._resetPin = OutputDevice(pin=self._resetPinNum, active_high=False, initial_value=True) self._readypin = DigitalInputDevice(pin=self._readyPinNum, active_state=True, pull_up=None) def begin(self): self.releaseReset() time.sleep(0.01) self.waitUntilReady() self.acknowledgeReset() time.sleep(0.01) self.acknowledgeReset() time.sleep(0.01) self.endSession() time.sleep(0.020) @property def address(self): return self.__address @address.setter def address(self, value): if (value < IQS5xx_DEFAULT_ADDRESS) or (value > IQS5xx_MAX_ADDRESS): raise ValueError("Invalid I2C Address. Use something in the range [%x, %x]" %(IQS5xx_DEFAULT_ADDRESS, IQS5xx_MAX_ADDRESS)) self.__address = value self._device = i2c.get_i2c_device(value) self._logger = logging.getLogger('IQS5xx.Address.{0:#0X}'.format(value)) def readUniqueID(self): return bytesToHexString(self._device.readBytes_16BitAddress(0xF000, 12)) def setupComplete(self): self._device.writeByte_16BitAddress(SystemConfig0_adr, SETUP_COMPLETE, SETUP_COMPLETE) def setManualControl(self): self._device.writeByte_16BitAddress(SystemConfig0_adr, MANUAL_CONTROL, MANUAL_CONTROL) self._device.writeByte_16BitAddress(SystemControl0_adr, 0x00, 0x07) # active mode def setTXPinMappings(self, pinList): assert isinstance(pinList, list), "TX pinList must be a list of integers" assert 0 <= len(pinList) <= 15, "TX pinList must be between 0 and 15 long" self._device.writeBytes_16BitAddress(TxMapping_adr, pinList) self._device.writeByte_16BitAddress(TotalTx_adr, len(pinList)) def setRXPinMappings(self, pinList): assert isinstance(pinList, list), "RX pinList must be a list of integers" assert 0 <= len(pinList) <= 10, "RX pinList must be between 0 and 15 long" self._device.writeBytes_16BitAddress(RxMapping_adr, pinList) self._device.writeByte_16BitAddress(TotalRx_adr, len(pinList)) def enableChannel(self, txChannel, rxChannel, enabled): assert 0 <= txChannel < 15, "txChannel must be less than 15" assert 0 <= rxChannel < 10, "rxChannel must be less than 10" registerAddy = ActiveChannels_adr + (txChannel * 2) if rxChannel >= 8: mask = 1 << (rxChannel - 8) else: registerAddy += 1 mask = 1 << rxChannel value = mask if enabled else 0x00 self._device.writeByte_16BitAddress(registerAddy, value, mask) def setTXRXChannelCount(self, tx_count, rx_count): assert 0 <= txChannel <= 15, "tx_count must be less or equal tp 15" assert 0 <= rxChannel <= 10, "rx_count must be less than or equal to 10" self._device.writeByte_16BitAddress(TotalTx_adr, txChannel) self._device.writeByte_16BitAddress(TotalRx_adr, rxChannel) def swapXY(self, swapped): value = SWITCH_XY_AXIS if swapped else 0x00 self._device.writeByte_16BitAddress(XYConfig0_adr, value, SWITCH_XY_AXIS) def setAtiGlobalC(self, globalC): self._device.writeByte_16BitAddress(GlobalATIC_adr, globalC) def setChannel_ATI_C_Adjustment(self, txChannel, rxChannel, adjustment): assert 0 <= txChannel < 15, "txChannel must be less than 15" assert 0 <= rxChannel < 10, "rxChannel must be less than 10" registerAddy = ATICAdjust_adr + (txChannel * 10) + rxChannel self._device.writeByte_16BitAddress(registerAddy, adjustment) def setTouchMultipliers(self, set, clear): self._device.writeByte_16BitAddress(GlobalTouchSet_adr, set) self._device.writeByte_16BitAddress(GlobalTouchClear_adr, clear) def rxFloat(self, floatWhenInactive): value = RX_FLOAT if floatWhenInactive else 0x00 self._device.writeByte_16BitAddress(HardwareSettingsA_adr, value, RX_FLOAT) def runAtiAlgorithm(self): self._device.writeByte_16BitAddress(SystemControl0_adr, AUTO_ATI, AUTO_ATI) def acknowledgeReset(self): self._device.writeByte_16BitAddress(SystemControl0_adr, ACK_RESET, ACK_RESET) def atiErrorDetected(self): reg = self._device.readByte_16BitAddress(SystemInfo0_adr) return bool(reg & ATI_ERROR) def reseed(self): self._device.writeByte_16BitAddress(SystemControl0_adr, RESEED, RESEED) def endSession(self): self._device.writeByte_16BitAddress(EndWindow_adr, 0x00) time.sleep(0.001) def readVersionNumbers(self): bytes = self._device.readBytes_16BitAddress(ProductNumber_adr, 6) fields = struct.unpack(">HHBB",bytes) return {"product":fields[0], "project":fields[1], "major":fields[2], "minor":fields[3]} def bootloaderAvailable(self): BOOTLOADER_AVAILABLE = 0xA5 NO_BOOTLOADER = 0xEE result = self._device.readByte_16BitAddress(BLStatus_adr) # result = ord(result) if result == BOOTLOADER_AVAILABLE: return True elif result == NO_BOOTLOADER: return False else: raise ValueError("Unexpected value returned for bootloader status: {0:#0X}".format(result)) def holdReset(self, millis=None): self._resetPin.on() if millis != None: time.sleep(millis/1000.0) self.releaseReset() def releaseReset(self): self._resetPin.off() def isReady(self): return self._readypin.is_active def waitUntilReady(self, timeout=None): self._readypin.wait_for_active(timeout) def updateFirmware(self, hexFilePath, newDeviceAddress=None): hexFile = IntelHex(source = hexFilePath) hexFile.padding = FLASH_PADDING appBinary = hexFile.tobinarray(start=APP_START_ADDRESS, end=NV_SETTINGS_END) crcBinary = hexFile.tobinarray(start=CHECKSUM_DESCRIPTOR_START, end=CHECKSUM_DESCRIPTOR_END) if newDeviceAddress: self._logger.debug("Modifying the last byte in NV settings to change Device I2C Addrress to {0:#0X}".format(newDeviceAddress)) if (newDeviceAddress < IQS5xx_DEFAULT_ADDRESS) or (newDeviceAddress > IQS5xx_MAX_ADDRESS): raise ValueError("Invalid I2C Address. Use something in the range [%x, %x]" %(IQS5xx_DEFAULT_ADDRESS, IQS5xx_MAX_ADDRESS)) appBinary[-1] = newDeviceAddress # Step 1 - Enter Bootloader self._logger.debug("Entering Bootloader") bootloaderAddress = 0x40 ^ self.address bootloaderDevice = i2c.get_i2c_device(bootloaderAddress) self.holdReset(100) bootloaderEntered = False for i in range(10): try: version = bootloaderDevice.readU16(BL_CMD_READ_VERSION, little_endian=False) bootloaderEntered = True except: pass if not bootloaderEntered: raise IOError("Timeout while trying to enter bootlaoder") self._logger.debug("Bootloader entered successfully") # Step 2 - Read and verify the bootloader version number self._logger.debug("Reading Bootloader version") if version != BL_VERSION: raise Exception("Incompatible bootloader version detected: {0:#0X}".format(version)) self._logger.debug("Bootloader version is compatible: 0x%02X",version) # Step 3 - Write the new application firmware and settings self._logger.debug("Starting to write Application and NV settings") for blockNum in range(APP_SIZE_BLOCKS + NV_SETTINGS_SIZE_BLOCKS): blockAddress = APP_START_ADDRESS + (blockNum * BLOCK_SIZE) self._logger.debug('Writing 64-byte block {0}/{1} at address {2:#0X}'.format(blockNum+1, APP_SIZE_BLOCKS + NV_SETTINGS_SIZE_BLOCKS ,blockAddress)) data = bytearray(BLOCK_SIZE + 2) data[0] = (blockAddress >> 8) & 0xFF data[1] = blockAddress & 0xFF data[2:] = appBinary[blockNum*BLOCK_SIZE : (blockNum+1)*BLOCK_SIZE] bootloaderDevice.writeBytes(data) time.sleep(.010) # give the device time to write to flash # Step 4 - Write the checksum descriptor section self._logger.debug("Writing CRC section") blockAddress = CHECKSUM_DESCRIPTOR_START data = bytearray(BLOCK_SIZE + 2) data[0] = (blockAddress >> 8) & 0xFF data[1] = blockAddress & 0xFF data[2:] = crcBinary[0:] bootloaderDevice.writeBytes(data) time.sleep(0.010) # give the device time to write to flash # Step 5 - Perform CRC and read back settins section time.sleep(0.1) self._logger.debug("Performing CRC calculation") bootloaderDevice.writeRaw8(BL_CMD_RUN_CRC) time.sleep(0.2) crcStatus = bootloaderDevice.readRaw8() if crcStatus != BL_CRC_PASS: raise Exception("CRC Failure") self._logger.debug("CRC Success") self._logger.debug("Reading back NV settings and comparing") for blockNum in range(NV_SETTINGS_SIZE_BLOCKS): blockAddress = NV_SETTINGS_START + (blockNum * BLOCK_SIZE) self._logger.debug('Reading 64-byte block {0}/{1} at address {2:#0X}'.format(blockNum+1, NV_SETTINGS_SIZE_BLOCKS, blockAddress)) data = bytearray(3) data[0] = BL_CMD_READ_64_BYTES data[1] = (blockAddress >> 8) & 0xFF data[2] = blockAddress & 0xFF reply = bootloaderDevice.writeRawListReadRawList(data, BLOCK_SIZE) expectedReply = appBinary[(APP_SIZE_BLOCKS+blockNum)*BLOCK_SIZE : (APP_SIZE_BLOCKS+blockNum+1)*BLOCK_SIZE].tostring() if reply != expectedReply: raise Exception("Unexpected values while reading back NV Setting: {0} \nExpected values: {1}".format(bytesToHexString(reply), bytesToHexString(expectedReply))) self._logger.debug("NV Settings match expected values") # Step 6 - Execute application self._logger.debug("Execute Application") bootloaderDevice.writeRaw8(BL_CMD_EXECUTE_APP) if newDeviceAddress: self.address = newDeviceAddress class TestIQS5xx(unittest.TestCase): hexFile = "IQS550_B000_Trackpad_40_15_2_2_BL.HEX" possibleAddresses = [0x74, 0x75, 0x76, 0x77] desiredAddress = 0x74 device = None def setUp(self): if not self.__class__.device: self.__class__.device = IQS5xx(17, 27) for address in self.__class__.possibleAddresses: self.__class__.device.address = address self.__class__.device._logger.setLevel(logging.DEBUG) try: self.__class__.device.waitUntilReady(1) self.__class__.device.bootloaderAvailable() break except: if address == self.__class__.possibleAddresses[-1]: raise IOError("Couldn't communicate with the controller") if self.__class__.device.address != self.__class__.desiredAddress: self.__class__.device.updateFirmware(self.__class__.hexFile, newDeviceAddress=self.__class__.desiredAddress) def tearDown(self): if self.__class__.device.address != self.__class__.desiredAddress: print("Cleaning up by reprogramming the controller to the default address") self.__class__.device.updateFirmware(self.__class__.hexFile, newDeviceAddress=self.__class__.desiredAddress) def test_bootloaderAvailable(self): self.assertTrue(self.__class__.device.bootloaderAvailable()) # @unittest.skip # def test_update(self): # self.__class__.device.updateFirmware(self.__class__.hexFile) # # @unittest.skip # def test_update_and_changeaddress(self): # newAddy = 0x77 # self.__class__.device.updateFirmware(self.__class__.hexFile, newDeviceAddress=newAddy) # self.assertEqual(self.__class__.device.address, newAddy) # time.sleep(0.1) # self.assertTrue(self.__class__.device.bootloaderAvailable()) if __name__ == '__main__': unittest.main()
[((4, 0, 4, 21), 'logging.basicConfig', 'logging.basicConfig', ({}, {}), '()', False, 'import logging\n'), ((69, 19, 69, 45), 'struct.pack', 'struct.pack', ({(69, 31, 69, 35): '""">H"""', (69, 37, 69, 44): 'address'}, {}), "('>H', address)", False, 'import struct\n'), ((79, 13, 79, 41), 'ctypes.create_string_buffer', 'create_string_buffer', ({(79, 34, 79, 40): 'length'}, {}), '(length)', False, 'from ctypes import create_string_buffer, Structure\n'), ((103, 12, 103, 47), 'struct.pack', 'struct.pack', ({(103, 24, 103, 30): 'format', (103, 32, 103, 39): 'address', (103, 41, 103, 46): 'value'}, {}), '(format, address, value)', False, 'import struct\n'), ((383, 4, 383, 19), 'unittest.main', 'unittest.main', ({}, {}), '()', False, 'import unittest\n'), ((92, 13, 92, 40), 'struct.unpack', 'struct.unpack', ({(92, 27, 92, 31): '""">B"""', (92, 33, 92, 39): 'result'}, {}), "('>B', result)", False, 'import struct\n'), ((112, 25, 112, 99), 'gpiozero.OutputDevice', 'OutputDevice', (), '', False, 'from gpiozero import OutputDevice\n'), ((113, 25, 113, 99), 'gpiozero.DigitalInputDevice', 'DigitalInputDevice', (), '', False, 'from gpiozero import DigitalInputDevice\n'), ((117, 8, 117, 24), 'time.sleep', 'time.sleep', ({(117, 19, 117, 23): '(0.01)'}, {}), '(0.01)', False, 'import time\n'), ((120, 8, 120, 24), 'time.sleep', 'time.sleep', ({(120, 19, 120, 23): '(0.01)'}, {}), '(0.01)', False, 'import time\n'), ((122, 8, 122, 24), 'time.sleep', 'time.sleep', ({(122, 19, 122, 23): '(0.01)'}, {}), '(0.01)', False, 'import time\n'), ((124, 8, 124, 25), 'time.sleep', 'time.sleep', ({(124, 19, 124, 24): '(0.02)'}, {}), '(0.02)', False, 'import time\n'), ((135, 23, 135, 48), 'Adafruit_GPIO.I2C.get_i2c_device', 'i2c.get_i2c_device', ({(135, 42, 135, 47): 'value'}, {}), '(value)', True, 'import Adafruit_GPIO.I2C as i2c\n'), ((215, 8, 215, 25), 'time.sleep', 'time.sleep', ({(215, 19, 215, 24): '(0.001)'}, {}), '(0.001)', False, 'import time\n'), ((219, 17, 219, 45), 'struct.unpack', 'struct.unpack', ({(219, 31, 219, 38): '""">HHBB"""', (219, 39, 219, 44): 'bytes'}, {}), "('>HHBB', bytes)", False, 'import struct\n'), ((250, 18, 250, 48), 'intelhex.IntelHex', 'IntelHex', (), '', False, 'from intelhex import IntelHex\n'), ((264, 27, 264, 64), 'Adafruit_GPIO.I2C.get_i2c_device', 'i2c.get_i2c_device', ({(264, 46, 264, 63): 'bootloaderAddress'}, {}), '(bootloaderAddress)', True, 'import Adafruit_GPIO.I2C as i2c\n'), ((303, 8, 303, 25), 'time.sleep', 'time.sleep', ({(303, 19, 303, 24): '(0.01)'}, {}), '(0.01)', False, 'import time\n'), ((306, 8, 306, 23), 'time.sleep', 'time.sleep', ({(306, 19, 306, 22): '(0.1)'}, {}), '(0.1)', False, 'import time\n'), ((309, 8, 309, 23), 'time.sleep', 'time.sleep', ({(309, 19, 309, 22): '(0.2)'}, {}), '(0.2)', False, 'import time\n'), ((237, 12, 237, 37), 'time.sleep', 'time.sleep', ({(237, 23, 237, 36): '(millis / 1000.0)'}, {}), '(millis / 1000.0)', False, 'import time\n'), ((293, 12, 293, 28), 'time.sleep', 'time.sleep', ({(293, 23, 293, 27): '(0.01)'}, {}), '(0.01)', False, 'import time\n'), ((82, 35, 82, 47), 'ctypes.pointer', 'pointer', ({(82, 43, 82, 46): 'reg'}, {}), '(reg)', False, 'from ctypes import c_uint8, c_uint16, c_uint32, cast, pointer, POINTER\n'), ((82, 49, 82, 65), 'ctypes.POINTER', 'POINTER', ({(82, 57, 82, 64): 'c_uint8'}, {}), '(c_uint8)', False, 'from ctypes import c_uint8, c_uint16, c_uint32, cast, pointer, POINTER\n'), ((83, 61, 83, 77), 'ctypes.POINTER', 'POINTER', ({(83, 69, 83, 76): 'c_uint8'}, {}), '(c_uint8)', False, 'from ctypes import c_uint8, c_uint16, c_uint32, cast, pointer, POINTER\n')]
IBCNServices/StardogStreamReasoning
code/loader/lock.py
646db9cec7bd06ac8bfa75952b9a41773f35544d
import threading class RWLock: """Synchronization object used in a solution of so-called second readers-writers problem. In this problem, many readers can simultaneously access a share, and a writer has an exclusive access to this share. Additionally, the following constraints should be met: 1) no reader should be kept waiting if the share is currently opened for reading unless a writer is also waiting for the share, 2) no writer should be kept waiting for the share longer than absolutely necessary. The implementation is based on [1, secs. 4.2.2, 4.2.6, 4.2.7] with a modification -- adding an additional lock (C{self.__readers_queue}) -- in accordance with [2]. Sources: [1] A.B. Downey: "The little book of semaphores", Version 2.1.5, 2008 [2] P.J. Courtois, F. Heymans, D.L. Parnas: "Concurrent Control with 'Readers' and 'Writers'", Communications of the ACM, 1971 (via [3]) [3] http://en.wikipedia.org/wiki/Readers-writers_problem """ def __init__(self): self.__read_switch = _LightSwitch() self.__write_switch = _LightSwitch() self.__no_readers = threading.Lock() self.__no_writers = threading.Lock() self.__readers_queue = threading.Lock() """A lock giving an even higher priority to the writer in certain cases (see [2] for a discussion)""" def reader_acquire(self): self.__readers_queue.acquire() self.__no_readers.acquire() self.__read_switch.acquire(self.__no_writers) self.__no_readers.release() self.__readers_queue.release() def reader_release(self): self.__read_switch.release(self.__no_writers) def writer_acquire(self): self.__write_switch.acquire(self.__no_readers) self.__no_writers.acquire() def writer_release(self): self.__no_writers.release() self.__write_switch.release(self.__no_readers) class _LightSwitch: """An auxiliary "light switch"-like object. The first thread turns on the "switch", the last one turns it off (see [1, sec. 4.2.2] for details).""" def __init__(self): self.__counter = 0 self.__mutex = threading.Lock() def acquire(self, lock): self.__mutex.acquire() self.__counter += 1 if self.__counter == 1: lock.acquire() self.__mutex.release() def release(self, lock): self.__mutex.acquire() self.__counter -= 1 if self.__counter == 0: lock.release() self.__mutex.release()
[((28, 22, 28, 38), 'threading.Lock', 'threading.Lock', ({}, {}), '()', False, 'import threading\n'), ((29, 22, 29, 38), 'threading.Lock', 'threading.Lock', ({}, {}), '()', False, 'import threading\n'), ((30, 25, 30, 41), 'threading.Lock', 'threading.Lock', ({}, {}), '()', False, 'import threading\n'), ((58, 17, 58, 33), 'threading.Lock', 'threading.Lock', ({}, {}), '()', False, 'import threading\n')]
Loodoor/UnamedPy
src/pyfmodex/channel_group.py
7d154c3a652992b3c1f28050f0353451f57b2a2d
from .fmodobject import * from .globalvars import dll as _dll from .globalvars import get_class class ChannelGroup(FmodObject): def add_dsp(self, dsp): check_type(dsp, get_class("DSP")) c_ptr = c_void_p() self._call_fmod("FMOD_ChannelGroup_AddDSP", d._ptr, byref(c_ptr)) return get_class("DSPConnection")(c_ptr) def add_group(self, group): check_type(group, ChannelGroup) self._call_fmod("FMOD_ChannelGroup_AddGroup", group._ptr) @property def _occlusion(self): direct = c_float() reverb = c_float() self._call_fmod("FMOD_ChannelGroup_Get3DOcclusion", byref(direct), byref(reverb)) return direct.value, reverb.value @_occlusion.setter def _occlusion(self, occs): self._call_fmod("FMOD_ChannelGroup_Set3DOcclusion", c_float(occs[0]), c_float(occs[1])) @property def direct_occlusion(self): return self._occlusion[0] @direct_occlusion.setter def direct_occlusion(self, occ): self._occlusion = (occ, self._occlusion[1]) @property def reverb_occlusion(self): return self._occlusion[1] @reverb_occlusion.setter def reverb_occlusion(self, occ): self._occlusion = (self._occlusion[0], occ) def get_channel(self, idx): c_ptr = c_void_p() self._call_fmod("FMOD_ChannelGroup_GetChannel", idx, byref(c_ptr)) return channel.Channel(c_ptr) @property def dsp_head(self): dsp_ptr = c_void_p() self._call_fmod("FMOD_ChannelGroup_GetDSPHead", byref(dsp_ptr)) return get_class("DSP")(dsp_ptr) def get_group(self, idx): grp_ptr = c_void_p() self._call_fmod("FMOD_ChannelGroup_GetGroup", idx) return ChannelGroup(grp_ptr) @property def mute(self): mute = c_bool() self._call_fmod("FMOD_ChannelGroup_GetMute", byref(mute)) return mute.value @mute.setter def mute(self, m): self._call_fmod("FMOD_Channel_SetMute", m) @property def name(self): buf = create_string_buffer(512) self._call_fmod("FMOD_ChannelGroup_GetName", buf, 512) return buf.value @property def num_channels(self): num = c_int() self._call_fmod("FMOD_ChannelGroup_GetNumChannels", byref(num)) return num.value @property def num_groups(self): num = c_int() self._call_fmod("FMOD_ChannelGroup_GetNumGroups", byref(num)) return num.value @property def parent_group(self): grp_ptr = c_void_p() self._call_fmod("FMOD_ChannelGroup_GetParentGroup", byref(grp_ptr)) return ChannelGroup(grp_ptr) @property def paused(self): paused = c_bool() self._call_fmod("FMOD_ChannelGroup_GetPaused", byref(paused)) return paused.value @paused.setter def paused(self, p): self._call_fmod("FMOD_ChannelGroup_SetPaused", p) @property def pitch(self): pitch = c_float() self._call_fmod("FMOD_ChannelGroup_GetPitch", byref(pitch)) return pitch.value @property def pitch(self, p): self._call_fmod("FMOD_ChannelGroup_SetPitch", p) def get_spectrum(self, numvalues, channeloffset, window): arr = c_float * numvalues arri = arr() self._call_fmod("FMOD_ChannelGroup_GetSpectrum", byref(arri), numvalues, channeloffset, window) return list(arri) @property def system_object(self): sptr = c_void_p() self._call_fmod("FMOD_channelGroup_GetSystemObject", byref(sptr)) return get_class("System")(sptr, False) @property def volume(self): vol = c_float() self._call_fmod("FMOD_ChannelGroup_GetVolume", byref(vol)) return vol.value @volume.setter def volume(self, vol): self._call_fmod("FMOD_ChannelGroup_SetVolume", c_float(vol)) def get_wave_data(self, numvalues, channeloffset): arr = c_float * numvalues arri = arr() self._call_fmod("FMOD_ChannelGroup_GetWaveData", byref(arri), numvalues, channeloffset) return list(arri) def override_3d_attributes(self, pos=0, vel=0): self._call_fmod("FMOD_ChannelGroup_Override3DAttributes", pos, vel) def override_frequency(self, freq): self._call_fmod("FMOD_ChannelGroup_OverrideFrequency", c_float(freq)) def override_pan(self, pan): self._call_fmod("FMOD_ChannelGroup_OverridePan", c_float(pan)) def override_reverb_properties(self, props): check_type(props, REVERB_CHANNELPROPERTIES) self._call_fmod("FMOD_ChannelGroup_OverrideReverbProperties", props) def override_speaker_mix(self, frontleft, frontright, center, lfe, backleft, backright, sideleft, sideright): self._call_fmod("FMOD_ChannelGroup_OverrideSpeakerMix", frontleft, frontright, center, lfe, backleft, backright, sideleft, sideright) def override_volume(self, vol): self._call_fmod("FMOD_ChannelGroup_OverrideVolume", c_float(vol)) def release(self): self._call_fmod("FMOD_ChannelGroup_Release") def stop(self): self._call_fmod("FMOD_ChannelGroup_Stop") @property def reverb_properties(self): props = REVERB_CHANNELPROPERTIES() ckresult(_dll.FMOD_ChannelGroup_GetReverbProperties(self._ptr, byref(props))) return props @reverb_properties.setter def reverb_properties(self, props): check_type(props, REVERB_CHANNELPROPERTIES) ckresult(_dll.FMOD_ChannelGroup_SetReverbProperties(self._ptr, byref(props)))
[]
siddhi117/ADB_Homework
program.py
1751b3cc2d5ec1584efdf7f8961507bc29179e49
import sqlite3 from bottle import route, run,debug,template,request,redirect @route('/todo') def todo_list(): conn = sqlite3.connect('todo.db') c = conn.cursor() c.execute("SELECT id, task FROM todo WHERE status LIKE '1'") result = c.fetchall() c.close() output = template('make_table', rows=result) return output @route('/new', method='GET') def new_item(): if request.GET.save: new = request.GET.task.strip() conn = sqlite3.connect('todo.db') c = conn.cursor() c.execute("INSERT INTO todo (task,status) VALUES (?,?)", (new,1)) new_id = c.lastrowid conn.commit() c.close() redirect('/todo') #return '<p>The new task was inserted into the database, the ID is %s</p>' % new_id else: return template('new_task.tpl') @route('/do_insert' , method='GET') def get_id(): redirect('/new') @route('/edit/<no:int>', method='GET') def edit_item(no): if request.GET.save: edit = request.GET.task.strip() status = request.GET.status.strip() if status == 'open': status = 1 else: status = 0 conn = sqlite3.connect('todo.db') c = conn.cursor() c.execute("UPDATE todo SET task = ?, status = ? WHERE id LIKE ?", (edit, status, no)) conn.commit() return '<p>The item number %s was successfully updated</p>' % no else: conn = sqlite3.connect('todo.db') c = conn.cursor() c.execute("SELECT task FROM todo WHERE id LIKE ?", (str(no))) cur_data = c.fetchone() return template('edit_task', old=cur_data, no=no) @route('/find_edit' , method='GET') def get_id(): id_edit = request.GET.editdata.strip() redirect('/edit/' + id_edit) @route('/delete/<no:int>', method='GET') def delete_item(no): conn = sqlite3.connect('todo.db') c = conn.cursor() c.execute("DELETE FROM todo WHERE id LIKE ?", (str(no))) conn.commit() redirect('/todo') @route('/find_delete' , method='GET') def get_id(): id_delete = request.GET.deletedata.strip() redirect('/delete/' + id_delete) debug(True) run(reloader=True)
[((4, 1, 4, 15), 'bottle.route', 'route', ({(4, 7, 4, 14): '"""/todo"""'}, {}), "('/todo')", False, 'from bottle import route, run, debug, template, request, redirect\n'), ((16, 1, 16, 28), 'bottle.route', 'route', (), '', False, 'from bottle import route, run, debug, template, request, redirect\n'), ((32, 1, 32, 35), 'bottle.route', 'route', (), '', False, 'from bottle import route, run, debug, template, request, redirect\n'), ((38, 1, 38, 38), 'bottle.route', 'route', (), '', False, 'from bottle import route, run, debug, template, request, redirect\n'), ((59, 1, 59, 35), 'bottle.route', 'route', (), '', False, 'from bottle import route, run, debug, template, request, redirect\n'), ((65, 1, 65, 40), 'bottle.route', 'route', (), '', False, 'from bottle import route, run, debug, template, request, redirect\n'), ((73, 1, 73, 37), 'bottle.route', 'route', (), '', False, 'from bottle import route, run, debug, template, request, redirect\n'), ((79, 0, 79, 11), 'bottle.debug', 'debug', ({(79, 6, 79, 10): '(True)'}, {}), '(True)', False, 'from bottle import route, run, debug, template, request, redirect\n'), ((80, 0, 80, 18), 'bottle.run', 'run', (), '', False, 'from bottle import route, run, debug, template, request, redirect\n'), ((6, 11, 6, 37), 'sqlite3.connect', 'sqlite3.connect', ({(6, 27, 6, 36): '"""todo.db"""'}, {}), "('todo.db')", False, 'import sqlite3\n'), ((11, 13, 11, 48), 'bottle.template', 'template', (), '', False, 'from bottle import route, run, debug, template, request, redirect\n'), ((34, 4, 34, 20), 'bottle.redirect', 'redirect', ({(34, 13, 34, 19): '"""/new"""'}, {}), "('/new')", False, 'from bottle import route, run, debug, template, request, redirect\n'), ((61, 14, 61, 42), 'bottle.request.GET.editdata.strip', 'request.GET.editdata.strip', ({}, {}), '()', False, 'from bottle import route, run, debug, template, request, redirect\n'), ((62, 4, 62, 32), 'bottle.redirect', 'redirect', ({(62, 13, 62, 31): "('/edit/' + id_edit)"}, {}), "('/edit/' + id_edit)", False, 'from bottle import route, run, debug, template, request, redirect\n'), ((67, 14, 67, 40), 'sqlite3.connect', 'sqlite3.connect', ({(67, 30, 67, 39): '"""todo.db"""'}, {}), "('todo.db')", False, 'import sqlite3\n'), ((71, 7, 71, 24), 'bottle.redirect', 'redirect', ({(71, 16, 71, 23): '"""/todo"""'}, {}), "('/todo')", False, 'from bottle import route, run, debug, template, request, redirect\n'), ((75, 16, 75, 46), 'bottle.request.GET.deletedata.strip', 'request.GET.deletedata.strip', ({}, {}), '()', False, 'from bottle import route, run, debug, template, request, redirect\n'), ((76, 4, 76, 36), 'bottle.redirect', 'redirect', ({(76, 13, 76, 35): "('/delete/' + id_delete)"}, {}), "('/delete/' + id_delete)", False, 'from bottle import route, run, debug, template, request, redirect\n'), ((19, 14, 19, 38), 'bottle.request.GET.task.strip', 'request.GET.task.strip', ({}, {}), '()', False, 'from bottle import route, run, debug, template, request, redirect\n'), ((20, 15, 20, 41), 'sqlite3.connect', 'sqlite3.connect', ({(20, 31, 20, 40): '"""todo.db"""'}, {}), "('todo.db')", False, 'import sqlite3\n'), ((26, 8, 26, 25), 'bottle.redirect', 'redirect', ({(26, 17, 26, 24): '"""/todo"""'}, {}), "('/todo')", False, 'from bottle import route, run, debug, template, request, redirect\n'), ((29, 15, 29, 39), 'bottle.template', 'template', ({(29, 24, 29, 38): '"""new_task.tpl"""'}, {}), "('new_task.tpl')", False, 'from bottle import route, run, debug, template, request, redirect\n'), ((41, 15, 41, 39), 'bottle.request.GET.task.strip', 'request.GET.task.strip', ({}, {}), '()', False, 'from bottle import route, run, debug, template, request, redirect\n'), ((42, 17, 42, 43), 'bottle.request.GET.status.strip', 'request.GET.status.strip', ({}, {}), '()', False, 'from bottle import route, run, debug, template, request, redirect\n'), ((47, 15, 47, 41), 'sqlite3.connect', 'sqlite3.connect', ({(47, 31, 47, 40): '"""todo.db"""'}, {}), "('todo.db')", False, 'import sqlite3\n'), ((53, 15, 53, 41), 'sqlite3.connect', 'sqlite3.connect', ({(53, 31, 53, 40): '"""todo.db"""'}, {}), "('todo.db')", False, 'import sqlite3\n'), ((57, 15, 57, 57), 'bottle.template', 'template', (), '', False, 'from bottle import route, run, debug, template, request, redirect\n')]
censoredplanet/censoredplanet-analysis
pipeline/metadata/maxmind.py
f5e5d82f890e47599bc0baa9a9390f3c5147a6f7
"""Module to initialize Maxmind databases and lookup IP metadata.""" import logging import os from typing import Optional, Tuple, NamedTuple import geoip2.database from pipeline.metadata.mmdb_reader import mmdb_reader MAXMIND_CITY = 'GeoLite2-City.mmdb' MAXMIND_ASN = 'GeoLite2-ASN.mmdb' # Tuple(netblock, asn, as_name, country) # ex: ("1.0.0.1/24", 13335, "CLOUDFLARENET", "AU") MaxmindReturnValues = NamedTuple('MaxmindReturnValues', [('netblock', Optional[str]), ('asn', int), ('as_name', Optional[str]), ('country', Optional[str])]) class MaxmindIpMetadata(): """Lookup database for Maxmind ASN and country metadata.""" def __init__(self, maxmind_folder: str) -> None: """Create a Maxmind Database. Args: maxmind_folder: a folder containing maxmind files. Either a gcs filepath or a local system folder. """ maxmind_city_path = os.path.join(maxmind_folder, MAXMIND_CITY) maxmind_asn_path = os.path.join(maxmind_folder, MAXMIND_ASN) self.maxmind_city = mmdb_reader(maxmind_city_path) self.maxmind_asn = mmdb_reader(maxmind_asn_path) def lookup(self, ip: str) -> MaxmindReturnValues: """Lookup metadata infomation about an IP. Args: ip: string of the format 1.1.1.1 (ipv4 only) Returns: MaxmindReturnValues Raises: KeyError: when the IP's ASN can't be found """ (asn, as_name, netblock) = self._get_maxmind_asn(ip) country = self._get_country_code(ip) if not asn: raise KeyError(f"No Maxmind entry for {ip}") return MaxmindReturnValues(netblock, asn, as_name, country) def _get_country_code(self, vp_ip: str) -> Optional[str]: """Get country code for IP address. Args: vp_ip: IP address of vantage point (as string) Returns: 2-letter ISO country code """ try: vp_info = self.maxmind_city.city(vp_ip) return vp_info.country.iso_code except (ValueError, geoip2.errors.AddressNotFoundError) as e: logging.warning('Maxmind: %s\n', e) return None def _get_maxmind_asn( self, vp_ip: str) -> Tuple[Optional[int], Optional[str], Optional[str]]: """Get ASN information for IP address. Args: vp_ip: IP address of vantage point (as string) Returns: Tuple containing AS num, AS org, and netblock """ try: vp_info = self.maxmind_asn.asn(vp_ip) asn = vp_info.autonomous_system_number as_name = vp_info.autonomous_system_organization if vp_info.network: netblock: Optional[str] = vp_info.network.with_prefixlen else: netblock = None return asn, as_name, netblock except (ValueError, geoip2.errors.AddressNotFoundError) as e: logging.warning('Maxmind: %s\n', e) return None, None, None class FakeMaxmindIpMetadata(MaxmindIpMetadata): """A fake lookup table for testing MaxmindIpMetadata.""" # pylint: disable=super-init-not-called def __init__(self) -> None: pass # pylint: disable=no-self-use def lookup(self, _: str) -> MaxmindReturnValues: return MaxmindReturnValues('101.103.0.0/16', 1221, 'ASN-TELSTRA', 'AU')
[((16, 22, 19, 62), 'typing.NamedTuple', 'NamedTuple', ({(16, 33, 16, 54): '"""MaxmindReturnValues"""', (17, 33, 19, 61): "[('netblock', Optional[str]), ('asn', int), ('as_name', Optional[str]), (\n 'country', Optional[str])]"}, {}), "('MaxmindReturnValues', [('netblock', Optional[str]), ('asn', int\n ), ('as_name', Optional[str]), ('country', Optional[str])])", False, 'from typing import Optional, Tuple, NamedTuple\n'), ((32, 24, 32, 66), 'os.path.join', 'os.path.join', ({(32, 37, 32, 51): 'maxmind_folder', (32, 53, 32, 65): 'MAXMIND_CITY'}, {}), '(maxmind_folder, MAXMIND_CITY)', False, 'import os\n'), ((33, 23, 33, 64), 'os.path.join', 'os.path.join', ({(33, 36, 33, 50): 'maxmind_folder', (33, 52, 33, 63): 'MAXMIND_ASN'}, {}), '(maxmind_folder, MAXMIND_ASN)', False, 'import os\n'), ((35, 24, 35, 54), 'pipeline.metadata.mmdb_reader.mmdb_reader', 'mmdb_reader', ({(35, 36, 35, 53): 'maxmind_city_path'}, {}), '(maxmind_city_path)', False, 'from pipeline.metadata.mmdb_reader import mmdb_reader\n'), ((36, 23, 36, 52), 'pipeline.metadata.mmdb_reader.mmdb_reader', 'mmdb_reader', ({(36, 35, 36, 51): 'maxmind_asn_path'}, {}), '(maxmind_asn_path)', False, 'from pipeline.metadata.mmdb_reader import mmdb_reader\n'), ((70, 6, 70, 41), 'logging.warning', 'logging.warning', ({(70, 22, 70, 37): '"""Maxmind: %s\n"""', (70, 39, 70, 40): 'e'}, {}), "('Maxmind: %s\\n', e)", False, 'import logging\n'), ((93, 6, 93, 41), 'logging.warning', 'logging.warning', ({(93, 22, 93, 37): '"""Maxmind: %s\n"""', (93, 39, 93, 40): 'e'}, {}), "('Maxmind: %s\\n', e)", False, 'import logging\n')]
huyvo/gevent-websocket-py3.5
examples/plot_graph.py
b2eb3b5cfb020ac976ac0970508589020dce03ad
from __future__ import print_function """ This example generates random data and plots a graph in the browser. Run it using Gevent directly using: $ python plot_graph.py Or with an Gunicorn wrapper: $ gunicorn -k "geventwebsocket.gunicorn.workers.GeventWebSocketWorker" \ plot_graph:resource """ import gevent import random from geventwebsocket import WebSocketServer, WebSocketApplication, Resource from geventwebsocket._compat import range_type class PlotApplication(WebSocketApplication): def on_open(self): for i in range_type(10000): self.ws.send("0 %s %s\n" % (i, random.random())) gevent.sleep(0.1) def on_close(self, reason): print("Connection Closed!!!", reason) def static_wsgi_app(environ, start_response): start_response("200 OK", [("Content-Type", "text/html")]) return open("plot_graph.html").readlines() resource = Resource([ ('/', static_wsgi_app), ('/data', PlotApplication) ]) if __name__ == "__main__": server = WebSocketServer(('', 8000), resource, debug=True) server.serve_forever()
[((36, 11, 39, 2), 'geventwebsocket.Resource', 'Resource', ({(36, 20, 39, 1): "[('/', static_wsgi_app), ('/data', PlotApplication)]"}, {}), "([('/', static_wsgi_app), ('/data', PlotApplication)])", False, 'from geventwebsocket import WebSocketServer, WebSocketApplication, Resource\n'), ((42, 13, 42, 62), 'geventwebsocket.WebSocketServer', 'WebSocketServer', (), '', False, 'from geventwebsocket import WebSocketServer, WebSocketApplication, Resource\n'), ((23, 17, 23, 34), 'geventwebsocket._compat.range_type', 'range_type', ({(23, 28, 23, 33): '(10000)'}, {}), '(10000)', False, 'from geventwebsocket._compat import range_type\n'), ((25, 12, 25, 29), 'gevent.sleep', 'gevent.sleep', ({(25, 25, 25, 28): '(0.1)'}, {}), '(0.1)', False, 'import gevent\n'), ((24, 43, 24, 58), 'random.random', 'random.random', ({}, {}), '()', False, 'import random\n')]
deephyper/NASBigData
nas_big_data/combo/best/combo_4gpu_8_agebo/predict.py
18f083a402b80b1d006eada00db7287ff1802592
import os import numpy as np import tensorflow as tf from nas_big_data.combo.load_data import load_data_npz_gz from deephyper.nas.run.util import create_dir from deephyper.nas.train_utils import selectMetric os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(i) for i in range(4)]) HERE = os.path.dirname(os.path.abspath(__file__)) fname = HERE.split("/")[-1] output_dir = "logs" create_dir(output_dir) X_test, y_test = load_data_npz_gz(test=True) dependencies = { "r2":selectMetric("r2") } model = tf.keras.models.load_model(f"best_model_{fname}.h5", custom_objects=dependencies) model.compile( metrics=["mse", "mae", selectMetric("r2")] ) score = model.evaluate(X_test, y_test) score_names = ["loss", "mse", "mae", "r2"] print("score:") output = " ".join([f"{sn}:{sv:.3f}" for sn,sv in zip(score_names, score)]) print(output)
[((14, 0, 14, 22), 'deephyper.nas.run.util.create_dir', 'create_dir', ({(14, 11, 14, 21): 'output_dir'}, {}), '(output_dir)', False, 'from deephyper.nas.run.util import create_dir\n'), ((16, 17, 16, 44), 'nas_big_data.combo.load_data.load_data_npz_gz', 'load_data_npz_gz', (), '', False, 'from nas_big_data.combo.load_data import load_data_npz_gz\n'), ((22, 8, 22, 89), 'tensorflow.keras.models.load_model', 'tf.keras.models.load_model', (), '', True, 'import tensorflow as tf\n'), ((11, 23, 11, 48), 'os.path.abspath', 'os.path.abspath', ({(11, 39, 11, 47): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((19, 10, 19, 28), 'deephyper.nas.train_utils.selectMetric', 'selectMetric', ({(19, 23, 19, 27): '"""r2"""'}, {}), "('r2')", False, 'from deephyper.nas.train_utils import selectMetric\n'), ((24, 27, 24, 45), 'deephyper.nas.train_utils.selectMetric', 'selectMetric', ({(24, 40, 24, 44): '"""r2"""'}, {}), "('r2')", False, 'from deephyper.nas.train_utils import selectMetric\n')]
duncan-r/SHIP
ship/utils/utilfunctions.py
2c4c22c77f9c18ea545d3bce70a36aebbd18256a
""" Summary: Utility Functions that could be helpful in any part of the API. All functions that are likely to be called across a number of classes and Functions in the API should be grouped here for convenience. Author: Duncan Runnacles Created: 01 Apr 2016 Copyright: Duncan Runnacles 2016 TODO: This module, like a lot of other probably, needs reviewing for how 'Pythonic' t is. There are a lot of places where generators, comprehensions, maps, etc should be used to speed things up and make them a bit clearer. More importantly there are a lot of places using '==' compare that should be using 'in' etc. This could cause bugs and must be fixed soon. Updates: """ from __future__ import unicode_literals import re import os import operator import logging logger = logging.getLogger(__name__) """logging references with a __name__ set to this module.""" # def resolveSeDecorator(se_vals, path): # """Decorator function for replacing Scen/Evt placholders. # # Checks fro scenario and event placeholders in the return value of a # function and replaces them with corresponding values if found. # # Args: # se_vals(dict): standard scenario/event dictionary in the format: # {'scenario': { # """ # def seDecorator(func): # def seWrapper(*args, **kwargs): # result = func(*args, **kwargs) # # if '~' in result: # # Check for scenarion stuff # for key, val in self.se_vals['scenario'].items(): # temp = '~' + key + '~' # if temp in result: # result = result.replace(temp, val) # # Check for event stuff # for key, val in self.se_vals['event'].items(): # temp = '~' + key + '~' # if temp in result: # result = result.replace(temp, val) # return result # return seWrapper # return seDecorator def formatFloat(value, no_of_dps, ignore_empty_str=True): """Format a float as a string to given number of decimal places. Args: value(float): the value to format. no_of_dps(int): number of decimal places to format to. ignore_empty_str(True): return a stripped blank string if set to True. Return: str - the formatted float. Raises: ValueError - if value param is not type float. """ if ignore_empty_str and not isNumeric(value) and str(value).strip() == '': return str(value).strip() if not isNumeric(value): raise ValueError decimal_format = '%0.' + str(no_of_dps) + 'f' value = decimal_format % float(value) return value def checkFileType(file_path, ext): """Checks a file to see that it has the right extension. Args: file_path (str): The file path to check. ext (List): list containing the extension types to match the file against. Returns: True if the extension matches the ext variable given or False if not. """ file_ext = os.path.splitext(file_path)[1] logger.info('File ext = ' + file_ext) for e in ext: if e == file_ext: return True else: return False def isNumeric(s): """Tests if string is a number or not. Simply tries to convert it and catches the error if launched. Args: s (str): string to test number compatibility. Returns: Bool - True if number. False if not. """ try: float(s) return True except (ValueError, TypeError): return False def encodeStr(value): try: value = unicode(value, "utf-8") return value except (UnicodeDecodeError, NameError, TypeError): return value def isString(value): """Tests a given value to see if it is an instance of basestring or not. Note: This function should be used whenever testing this as it accounts for both Python 2.7+ and 3.2+ variations of string. Args: value: the variable to test. Returns: Bool - True if value is a unicode str (basestring type) """ try: return isinstance(value, basestring) except NameError: return isinstance(value, str) # if not isinstance(value, basestring): # return False # # return True def isList(value): """Test a given value to see if it is a list or not. Args: value: the variable to test for list type. Returns: True if value is of type list; False otherwise. """ if not isinstance(value, list): return False return True def arrayToString(self, str_array): """Convert a list to a String Creates one string by adding each part of the array to one string using ', '.join() Args: str_array (List): to convert into single string. Returns: str - representaion of the array joined together. Raises: ValueError: if not contents of list are instances of basestring. """ if not isinstance(str_array[0], basestring): raise ValueError('Array values are not strings') out_string = '' out_string = ', '.join(str_array) return out_string def findSubstringInList(substr, the_list): """Returns a list containing the indices that a substring was found at. Uses a generator to quickly find all indices that str appears in. Args: substr (str): the sub string to search for. the_list (List): a list containing the strings to search. Returns: tuple - containing: * a list with the indices that the substring was found in (this list can be empty if no matches were found). * an integer containing the number of elements it was found in. """ indices = [i for i, s in enumerate(the_list) if substr in s] return indices, len(indices) def findMax(val1, val2): """Returns tuple containing min, max of two values Args: val1: first integer or float. val2: second integer or float. Returns: tuple - containing: * lower value * higher value * False if not same or True if the same. """ if val1 == val2: return val1, val2, True elif val1 > val2: return val2, val1, False else: return val1, val2, False def fileExtensionWithoutPeriod(filepath, name_only=False): """Extracts the extension without '.' from filepath. The extension will always be converted to lower case before returning. Args: filepath (str): A full filepath if name_only=False. Otherwise a file name with extension if name_only=True. name_only (bool): True if filepath is only filename.extension. """ if name_only: file, ext = os.path.splitext(filepath) else: path, filename = os.path.split(filepath) file, ext = os.path.splitext(filename) ext = ext[1:] return ext.lower() def findWholeWord(w): """Find a whole word amoungst a string.""" return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search def convertRunOptionsToSEDict(options): """Converts tuflow command line options to scenario/event dict. Tuflow uses command line option (e.g. -s1 blah -e1 blah) to set scenario values which can either be provided on the command line or through the FMP run form. The TuflowLoader can use these arguments but requires a slightly different setup. This function converts the command line string into the scenarion and event dictionary expected by the TuflowLoader. Args: options(str): command line options. Return: dict - {'scenario': {'s1': blah}, 'event': {'e1': blah}} Raises: AttributeError: if both -s and -s1 or -e and -e1 occurr in the options string. -x and -x1 are treated as the same variable by tuflow and one of the values would be ignored. """ if ' -s ' in options and ' -s1 ' in options: raise AttributeError if ' -e ' in options and ' -e2 ' in options: raise AttributeError outvals = {'scenario': {}, 'event': {}} vals = options.split(" ") for i in range(len(vals)): if vals[i].startswith('-s'): outvals['scenario'][vals[i][1:]] = vals[i + 1] elif vals[i].startswith('-e'): outvals['event'][vals[i][1:]] = vals[i + 1] return outvals def getSEResolvedFilename(filename, se_vals): """Replace a tuflow placeholder filename with the scenario/event values. Replaces all of the placholder values (e.g. ~s1~_~e1~) in a tuflow filename with the corresponding values provided in the run options string. If the run options flags are not found in the filename their values will be appended to the end of the string. The setup of the returned filename is always the same: - First replace all placeholders with corresponding flag values. - s1 == s and e1 == e. - Append additional e values to end with '_' before first and '+' before others. - Append additional s values to end with '_' before first and '+' before others. Args: filename(str): the filename to update. se_vals(str): the run options string containing the 's' and 'e' flags and their corresponding values. Return: str - the updated filename. """ if not 'scenario' in se_vals.keys(): se_vals['scenario'] = {} if not 'event' in se_vals.keys(): se_vals['event'] = {} # Format the key value pairs into a list and combine the scenario and # event list together and sort them into e, e1, e2, s, s1, s2 order. scen_keys = ['-' + a for a in se_vals['scenario'].keys()] scen_vals = se_vals['scenario'].values() event_keys = ['-' + a for a in se_vals['event'].keys()] event_vals = se_vals['event'].values() scen = [list(a) for a in zip(scen_keys, scen_vals)] event = [list(a) for a in zip(event_keys, event_vals)] se_vals = scen + event vals = sorted(se_vals, key=operator.itemgetter(0)) # Build a new filename by replacing or adding the flag values outname = filename in_e = False for v in vals: placeholder = ''.join(['~', v[0][1:], '~']) if placeholder in filename: outname = outname.replace(placeholder, v[1]) elif v[0] == '-e1' and '~e~' in filename and not '-e' in se_vals: outname = outname.replace('~e~', v[1]) elif v[0] == '-s1' and '~s~' in filename and not '-s' in se_vals: outname = outname.replace('~s~', v[1]) # DEBUG - CHECK THIS IS TRUE! elif v[0] == '-e' and '~e1~' in filename: outname = outname.replace('~e1~', v[1]) elif v[0] == '-s' and '~s1~' in filename: outname = outname.replace('~s1~', v[1]) else: if v[0].startswith('-e'): if not in_e: prefix = '_' else: prefix = '+' in_e = True elif v[0].startswith('-s'): if in_e: prefix = '_' else: prefix = '+' in_e = False outname += prefix + v[1] return outname def enum(*sequential, **named): """Creates a new enum using the values handed to it. Taken from Alec Thomas on StackOverflow: http://stackoverflow.com/questions/36932/how-can-i-represent-an-enum-in-python Examples: Can be created and accessed using: >>> Numbers = enum('ZERO', 'ONE', 'TWO') >>> Numbers.ZERO 0 >>> Numbers.ONE 1 Or reverse the process o get the name from the value: >>> Numbers.reverse_mapping['three'] 'THREE' """ enums = dict(zip(sequential, range(len(sequential))), **named) reverse = dict((value, key) for key, value in enums.items()) enums['reverse_mapping'] = reverse return type(str('Enum'), (), enums) class FileQueue(object): """Queueing class for storing data to go into the database """ def __init__(self): self.items = [] def isEmpty(self): """Returns True if list is empty """ return self.items == [] def enqueue(self, item): """Add an item to the queue """ self.items.insert(0, item) def dequeue(self): """Pop an item from the front of the queue. """ return self.items.pop() def size(self): """Get the size of the queue """ return len(self.items) class LoadStack(object): """Stack class for loading logic.""" def __init__(self, max_size=-1): self.items = [] self.max_size = max_size def isEmpty(self): """Return True if stack is empty.""" return self.items == [] def add(self, item): """Add an item to the stack. Args: item: the item to add to the stack. Raises: IndexError: if max_size has been set and adding another item would make the stack bigger than max size. """ if not self.max_size == -1: if len(self.items) + 1 > self.max_size: raise IndexError self.items.append(item) def pop(self): """Get an item From the stack. Return: item from the top of the stack. Raises: IndexError: if the stack is empty. """ if len(self.items) == 0: raise IndexError return self.items.pop() def peek(self): """See what the next item on the stack is, but don't remove it. Return: item from the top of the stack. Raises: IndexError: if the stack is empty. """ if len(self.items) == 0: raise IndexError return self.items[-1] def size(self): """Return the number of items in the stack.""" return len(self.items)
[((37, 9, 37, 36), 'logging.getLogger', 'logging.getLogger', ({(37, 27, 37, 35): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((105, 15, 105, 42), 'os.path.splitext', 'os.path.splitext', ({(105, 32, 105, 41): 'file_path'}, {}), '(file_path)', False, 'import os\n'), ((253, 20, 253, 46), 'os.path.splitext', 'os.path.splitext', ({(253, 37, 253, 45): 'filepath'}, {}), '(filepath)', False, 'import os\n'), ((255, 25, 255, 48), 'os.path.split', 'os.path.split', ({(255, 39, 255, 47): 'filepath'}, {}), '(filepath)', False, 'import os\n'), ((256, 20, 256, 46), 'os.path.splitext', 'os.path.splitext', ({(256, 37, 256, 45): 'filename'}, {}), '(filename)', False, 'import os\n'), ((342, 31, 342, 53), 'operator.itemgetter', 'operator.itemgetter', ({(342, 51, 342, 52): '0'}, {}), '(0)', False, 'import operator\n')]
goneri/ansible-navigator
src/ansible_navigator/ui_framework/content_defs.py
59c5c4e9758404bcf363face09cf46c325b01ad3
"""Definitions of UI content objects.""" from dataclasses import asdict from dataclasses import dataclass from enum import Enum from typing import Dict from typing import Generic from typing import TypeVar from ..utils.compatibility import TypeAlias from ..utils.serialize import SerializationFormat class ContentView(Enum): """The content view.""" FULL = "full" NORMAL = "normal" T = TypeVar("T") # pylint:disable=invalid-name # https://github.com/PyCQA/pylint/pull/5221 DictType: TypeAlias = Dict[str, T] @dataclass class ContentBase(Generic[T]): r"""The base class for all content dataclasses presented in the UI. It should be noted, that while the return type is defined as ``T`` for the serialization functions below, mypy will not catch in incorrect definition of ``T`` at this time. This is because of how ``asdict()`` is typed: @overload def asdict(obj: Any) -> dict[str, Any]: ... @overload def asdict(obj: Any, \*, dict_factory: Callable[[list[tuple[str, Any]]], _T]) -> _T: ... Which result in mypy believing the outcome of asdict is dict[str, Any] and letting it silently pass through an incorrect ``T``. ``Mypy`` identifies this as a known issue: https://mypy.readthedocs.io/en/stable/additional_features.html#caveats-known-issues """ def asdict( self, content_view: ContentView, serialization_format: SerializationFormat, ) -> DictType: """Convert thy self into a dictionary. :param content_view: The content view :param serialization_format: The serialization format :returns: A dictionary created from self """ converter_map = { (ContentView.FULL, SerializationFormat.JSON): self.serialize_json_full, (ContentView.FULL, SerializationFormat.YAML): self.serialize_yaml_full, (ContentView.NORMAL, SerializationFormat.JSON): self.serialize_json_normal, (ContentView.NORMAL, SerializationFormat.YAML): self.serialize_yaml_normal, } try: dump_self_as_dict = converter_map[content_view, serialization_format] except KeyError: return asdict(self) else: return dump_self_as_dict() def serialize_json_full(self) -> DictType: """Provide dictionary for ``JSON`` with all attributes. :returns: A dictionary created from self """ return asdict(self) def serialize_json_normal(self) -> DictType: """Provide dictionary for ``JSON`` with curated attributes. :returns: A dictionary created from self """ return asdict(self) def serialize_yaml_full(self) -> DictType: """Provide dictionary for ``YAML`` with all attributes. :returns: A dictionary created from self """ return asdict(self) def serialize_yaml_normal(self) -> DictType: """Provide dictionary for ``JSON`` with curated attributes. :returns: A dictionary created from self """ return asdict(self) def get(self, attribute: str): """Allow this dataclass to be treated like a dictionary. This is a work around until the UI fully supports dataclasses at which time this can be removed. Default is intentionally not implemented as a safeguard to enure this is not more work than necessary to remove in the future and will only return attributes in existence. :param attribute: The attribute to get :returns: The gotten attribute """ return getattr(self, attribute)
[((21, 4, 21, 16), 'typing.TypeVar', 'TypeVar', ({(21, 12, 21, 15): '"""T"""'}, {}), "('T')", False, 'from typing import TypeVar\n'), ((74, 15, 74, 27), 'dataclasses.asdict', 'asdict', ({(74, 22, 74, 26): 'self'}, {}), '(self)', False, 'from dataclasses import asdict\n'), ((81, 15, 81, 27), 'dataclasses.asdict', 'asdict', ({(81, 22, 81, 26): 'self'}, {}), '(self)', False, 'from dataclasses import asdict\n'), ((88, 15, 88, 27), 'dataclasses.asdict', 'asdict', ({(88, 22, 88, 26): 'self'}, {}), '(self)', False, 'from dataclasses import asdict\n'), ((95, 15, 95, 27), 'dataclasses.asdict', 'asdict', ({(95, 22, 95, 26): 'self'}, {}), '(self)', False, 'from dataclasses import asdict\n'), ((65, 19, 65, 31), 'dataclasses.asdict', 'asdict', ({(65, 26, 65, 30): 'self'}, {}), '(self)', False, 'from dataclasses import asdict\n')]
SWuchterl/cmssw
FWCore/MessageService/test/u28_cerr_cfg.py
769b4a7ef81796579af7d626da6039dfa0347b8e
# u28_cerr_cfg.py: # # Non-regression test configuration file for MessageLogger service: # distinct threshold level for linked destination, where # import FWCore.ParameterSet.Config as cms process = cms.Process("TEST") import FWCore.Framework.test.cmsExceptionsFatal_cff process.options = FWCore.Framework.test.cmsExceptionsFatal_cff.options process.load("FWCore.MessageService.test.Services_cff") process.MessageLogger = cms.Service("MessageLogger", categories = cms.untracked.vstring('preEventProcessing'), destinations = cms.untracked.vstring('cerr'), statistics = cms.untracked.vstring('cerr_stats'), cerr_stats = cms.untracked.PSet( threshold = cms.untracked.string('WARNING'), output = cms.untracked.string('cerr') ), u28_output = cms.untracked.PSet( threshold = cms.untracked.string('INFO'), noTimeStamps = cms.untracked.bool(True), preEventProcessing = cms.untracked.PSet( limit = cms.untracked.int32(0) ) ) ) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(3) ) process.source = cms.Source("EmptySource") process.sendSomeMessages = cms.EDAnalyzer("UnitTestClient_A") process.p = cms.Path(process.sendSomeMessages)
[((9, 10, 9, 29), 'FWCore.ParameterSet.Config.Process', 'cms.Process', ({(9, 22, 9, 28): '"""TEST"""'}, {}), "('TEST')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((37, 17, 37, 42), 'FWCore.ParameterSet.Config.Source', 'cms.Source', ({(37, 28, 37, 41): '"""EmptySource"""'}, {}), "('EmptySource')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((39, 27, 39, 61), 'FWCore.ParameterSet.Config.EDAnalyzer', 'cms.EDAnalyzer', ({(39, 42, 39, 60): '"""UnitTestClient_A"""'}, {}), "('UnitTestClient_A')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((41, 12, 41, 46), 'FWCore.ParameterSet.Config.Path', 'cms.Path', ({(41, 21, 41, 45): 'process.sendSomeMessages'}, {}), '(process.sendSomeMessages)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((17, 17, 17, 60), 'FWCore.ParameterSet.Config.untracked.vstring', 'cms.untracked.vstring', ({(17, 39, 17, 59): '"""preEventProcessing"""'}, {}), "('preEventProcessing')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((18, 19, 18, 48), 'FWCore.ParameterSet.Config.untracked.vstring', 'cms.untracked.vstring', ({(18, 41, 18, 47): '"""cerr"""'}, {}), "('cerr')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((19, 17, 19, 52), 'FWCore.ParameterSet.Config.untracked.vstring', 'cms.untracked.vstring', ({(19, 39, 19, 51): '"""cerr_stats"""'}, {}), "('cerr_stats')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((34, 12, 34, 34), 'FWCore.ParameterSet.Config.untracked.int32', 'cms.untracked.int32', ({(34, 32, 34, 33): '3'}, {}), '(3)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((21, 20, 21, 51), 'FWCore.ParameterSet.Config.untracked.string', 'cms.untracked.string', ({(21, 41, 21, 50): '"""WARNING"""'}, {}), "('WARNING')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((22, 17, 22, 45), 'FWCore.ParameterSet.Config.untracked.string', 'cms.untracked.string', ({(22, 38, 22, 44): '"""cerr"""'}, {}), "('cerr')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((25, 20, 25, 48), 'FWCore.ParameterSet.Config.untracked.string', 'cms.untracked.string', ({(25, 41, 25, 47): '"""INFO"""'}, {}), "('INFO')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((26, 23, 26, 47), 'FWCore.ParameterSet.Config.untracked.bool', 'cms.untracked.bool', ({(26, 42, 26, 46): 'True'}, {}), '(True)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((28, 20, 28, 42), 'FWCore.ParameterSet.Config.untracked.int32', 'cms.untracked.int32', ({(28, 40, 28, 41): '0'}, {}), '(0)', True, 'import FWCore.ParameterSet.Config as cms\n')]
Revibe-Music/core-services
content/browse/utils.py
6b11cf16ad2c35d948f3a5c0e7a161e5b7cfc1b2
""" Created:04 Mar. 2020 Author: Jordan Prechac """ from revibe._helpers import const from administration.utils import retrieve_variable from content.models import Song, Album, Artist from content.serializers import v1 as cnt_ser_v1 # ----------------------------------------------------------------------------- # _DEFAULT_LIMIT = 50 # limit_variable = retrieve_variable() # try: # limit_variable = int(limit_variable) # _DEFAULT_LIMIT = max(min(limit_variable, 100), 10) # except ValueError as ve: # print("Could not read browse section default limit variable") # print(ve) def _DEFAULT_LIMIT(): limit_variable = retrieve_variable("browse_section_default_limit", 50) try: limit_variable = int(limit_variable) return max(min(limit_variable, 100), 10) except ValueError as ve: print("Could not read browse section default limit variable") print(ve) return 50 _name = "name" _type = "type" _results = "results" _endpoint = "endpoint" def _browse_song(annotation, limit=None, platform=const.REVIBE_STRING, **options): limit = limit if limit else _DEFAULT_LIMIT() songs = Song.display_objects.filter(platform=platform).annotate(count=annotation).order_by('-count')[:limit] options[_results] = cnt_ser_v1.SongSerializer(songs, many=True).data return options def _browse_album(annotation, limit=None, **options): limit = limit if limit else _DEFAULT_LIMIT() albums = Album.display_objects.filter(platform=const.REVIBE_STRING).annotate(count=annotation).order_by('-count')[:limit] options[_results] = cnt_ser_v1.AlbumSerializer(albums, many=True).data return options def _browse_artist(annotation, limit=None, **options): limit = limit if limit else _DEFAULT_LIMIT() artists = Artist.display_objects.filter(platform=const.REVIBE_STRING).annotate(count=annotation).order_by('-count')[:limit] options[_results] = cnt_ser_v1.ArtistSerializer(artists, many=True).data return options
[((23, 21, 23, 74), 'administration.utils.retrieve_variable', 'retrieve_variable', ({(23, 39, 23, 69): '"""browse_section_default_limit"""', (23, 71, 23, 73): '50'}, {}), "('browse_section_default_limit', 50)", False, 'from administration.utils import retrieve_variable\n'), ((42, 24, 42, 67), 'content.serializers.v1.SongSerializer', 'cnt_ser_v1.SongSerializer', (), '', True, 'from content.serializers import v1 as cnt_ser_v1\n'), ((49, 24, 49, 69), 'content.serializers.v1.AlbumSerializer', 'cnt_ser_v1.AlbumSerializer', (), '', True, 'from content.serializers import v1 as cnt_ser_v1\n'), ((56, 24, 56, 71), 'content.serializers.v1.ArtistSerializer', 'cnt_ser_v1.ArtistSerializer', (), '', True, 'from content.serializers import v1 as cnt_ser_v1\n'), ((41, 12, 41, 58), 'content.models.Song.display_objects.filter', 'Song.display_objects.filter', (), '', False, 'from content.models import Song, Album, Artist\n'), ((48, 13, 48, 71), 'content.models.Album.display_objects.filter', 'Album.display_objects.filter', (), '', False, 'from content.models import Song, Album, Artist\n'), ((55, 14, 55, 73), 'content.models.Artist.display_objects.filter', 'Artist.display_objects.filter', (), '', False, 'from content.models import Song, Album, Artist\n')]
vasetrendafilov/ComputerVision
Segmentation/model.py
5fcbe57fb1609ef44733aed0fab8c69d71fae21f
""" Authors: Elena Vasileva, Zoran Ivanovski E-mail: [email protected], [email protected] Course: Mashinski vid, FEEIT, Spring 2021 Date: 09.03.2021 Description: function library model operations: construction, loading, saving Python version: 3.6 """ # python imports from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate from keras.models import Model, model_from_json def load_model(model_path, weights_path): """ loads a pre-trained model configuration and calculated weights :param model_path: path of the serialized model configuration file (.json) [string] :param weights_path: path of the serialized model weights file (.h5) [string] :return: model - keras model object """ # --- load model configuration --- json_file = open(model_path, 'r') model_json = json_file.read() json_file.close() model = model_from_json(model_json) # load model architecture model.load_weights(weights_path) # load weights return model def construct_model_unet_orig(input_shape): """ construct semantic segmentation model architecture (encoder-decoder) :param input_shape: list of input dimensions (height, width, depth) [tuple] :return: model - Keras model object """ input = Input(shape=input_shape) # --- encoder --- conv1 = Conv2D(filters=64, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(input) conv11 = Conv2D(filters=64, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1) pool1 = MaxPool2D(pool_size=(2, 2))(conv11) conv2 = Conv2D(filters=128, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1) conv22 = Conv2D(filters=128, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2) pool2 = MaxPool2D(pool_size=(2, 2))(conv22) conv3 = Conv2D(filters=256, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2) conv33 = Conv2D(filters=256, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3) pool3 = MaxPool2D(pool_size=(2, 2))(conv33) conv4 = Conv2D(filters=512, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3) conv44 = Conv2D(filters=512, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4) pool4 = MaxPool2D(pool_size=(2, 2))(conv44) # --- decoder --- conv5 = Conv2D(filters=1024, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4) conv55 = Conv2D(filters=512, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5) up1 = UpSampling2D(size=(2, 2))(conv55) merge1 = Concatenate(axis=3)([conv44, up1]) deconv1 = Conv2DTranspose(filters=512, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(merge1) deconv11 = Conv2DTranspose(filters=256, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(deconv1) up2 = UpSampling2D(size=(2, 2))(deconv11) merge2 = Concatenate(axis=3)([conv33, up2]) deconv2 = Conv2DTranspose(filters=256, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(merge2) deconv22 = Conv2DTranspose(filters=128, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(deconv2) up3 = UpSampling2D(size=(2, 2))(deconv22) merge3 = Concatenate(axis=3)([conv22, up3]) deconv3 = Conv2DTranspose(filters=128, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(merge3) deconv33 = Conv2DTranspose(filters=64, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(deconv3) up4 = UpSampling2D(size=(2, 2))(deconv33) merge4 = Concatenate(axis=3)([conv11, up4]) deconv4 = Conv2DTranspose(filters=64, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(merge4) deconv44 = Conv2DTranspose(filters=64, kernel_size=3, activation='relu', padding='same', kernel_initializer='he_normal')(deconv4) output = Conv2DTranspose(filters=input_shape[2], kernel_size=1, padding='same', activation='sigmoid')(deconv44) model = Model(input=input, output=output) return model
[((29, 12, 29, 39), 'keras.models.model_from_json', 'model_from_json', ({(29, 28, 29, 38): 'model_json'}, {}), '(model_json)', False, 'from keras.models import Model, model_from_json\n'), ((43, 12, 43, 36), 'keras.layers.Input', 'Input', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((90, 12, 90, 45), 'keras.models.Model', 'Model', (), '', False, 'from keras.models import Model, model_from_json\n'), ((47, 12, 47, 112), 'keras.layers.Conv2D', 'Conv2D', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((48, 13, 48, 113), 'keras.layers.Conv2D', 'Conv2D', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((49, 12, 49, 39), 'keras.layers.MaxPool2D', 'MaxPool2D', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((51, 12, 51, 113), 'keras.layers.Conv2D', 'Conv2D', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((52, 13, 52, 114), 'keras.layers.Conv2D', 'Conv2D', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((53, 12, 53, 39), 'keras.layers.MaxPool2D', 'MaxPool2D', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((55, 12, 55, 113), 'keras.layers.Conv2D', 'Conv2D', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((56, 13, 56, 114), 'keras.layers.Conv2D', 'Conv2D', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((57, 12, 57, 39), 'keras.layers.MaxPool2D', 'MaxPool2D', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((59, 12, 59, 113), 'keras.layers.Conv2D', 'Conv2D', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((60, 13, 60, 114), 'keras.layers.Conv2D', 'Conv2D', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((61, 12, 61, 39), 'keras.layers.MaxPool2D', 'MaxPool2D', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((65, 12, 65, 114), 'keras.layers.Conv2D', 'Conv2D', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((66, 13, 66, 114), 'keras.layers.Conv2D', 'Conv2D', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((68, 10, 68, 35), 'keras.layers.UpSampling2D', 'UpSampling2D', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((69, 13, 69, 32), 'keras.layers.Concatenate', 'Concatenate', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((70, 14, 70, 124), 'keras.layers.Conv2DTranspose', 'Conv2DTranspose', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((71, 15, 71, 125), 'keras.layers.Conv2DTranspose', 'Conv2DTranspose', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((73, 10, 73, 35), 'keras.layers.UpSampling2D', 'UpSampling2D', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((74, 13, 74, 32), 'keras.layers.Concatenate', 'Concatenate', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((75, 14, 75, 124), 'keras.layers.Conv2DTranspose', 'Conv2DTranspose', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((76, 15, 76, 125), 'keras.layers.Conv2DTranspose', 'Conv2DTranspose', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((78, 10, 78, 35), 'keras.layers.UpSampling2D', 'UpSampling2D', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((79, 13, 79, 32), 'keras.layers.Concatenate', 'Concatenate', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((80, 14, 80, 124), 'keras.layers.Conv2DTranspose', 'Conv2DTranspose', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((81, 15, 81, 124), 'keras.layers.Conv2DTranspose', 'Conv2DTranspose', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((83, 10, 83, 35), 'keras.layers.UpSampling2D', 'UpSampling2D', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((84, 13, 84, 32), 'keras.layers.Concatenate', 'Concatenate', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((85, 14, 85, 123), 'keras.layers.Conv2DTranspose', 'Conv2DTranspose', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((86, 15, 86, 124), 'keras.layers.Conv2DTranspose', 'Conv2DTranspose', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n'), ((88, 13, 88, 105), 'keras.layers.Conv2DTranspose', 'Conv2DTranspose', (), '', False, 'from keras.layers import Conv2D, Conv2DTranspose, MaxPool2D, UpSampling2D, Input, Concatenate\n')]
Rog3rSm1th/PolyglotOfCode
Day24_Python/part1.py
a70f50b5c882139727cbdf75144a8346cb6c538b
#!/usr/bin/env python3 #-*- coding: utf-8 -*- from itertools import combinations def solve(packages, groups): total = sum(packages) result = 9999999999999999 # we should use `for i in range(1, len(packages) - 2)` but it would # make the computation significantly slower for i in range(1, 7): for c in combinations(packages, i): if sum(c) == total / groups: quantum_entanglement = reduce(lambda a, b: a * b, list(c)) result = min(result, quantum_entanglement) return result packages = [int(num) for num in open('input.txt')] print(solve(packages, 3))
[((14, 17, 14, 42), 'itertools.combinations', 'combinations', ({(14, 30, 14, 38): 'packages', (14, 40, 14, 41): 'i'}, {}), '(packages, i)', False, 'from itertools import combinations\n')]
atomicparade/photo-album
generate-album.py
437bc18bb00da5ce27216d03b48b78d60a0ad3fd
import configparser import math import re import urllib from pathlib import Path from PIL import Image def get_images(image_directory, thumbnail_directory, thumbnail_size): thumbnail_directory = Path(thumbnail_directory) for file in [file for file in thumbnail_directory.glob('*')]: file.unlink() thumbnail_directory.mkdir(mode=0o755, exist_ok=True) files = [file for file in Path(image_directory).glob('*')] images = [] for file in files: thumbnail_name = Path(thumbnail_directory, file.stem + '.jpg') image = Image.open(file) image.thumbnail(thumbnail_size) top_left = (0, 0) if image.width < thumbnail_size[0]: top_left = (math.floor(abs(image.width - thumbnail_size[0]) / 2), top_left[1]) if image.height < thumbnail_size[1]: top_left = (top_left[0], math.floor(abs(image.height - thumbnail_size[1]) / 2)) final_image = Image.new('RGB', thumbnail_size, (0, 0, 0)) final_image.paste(image, top_left) final_image.save(thumbnail_name, 'jpeg') if '_' in file.stem: description = file.stem.split('_', maxsplit=1)[1] else: description = file.stem images.append({ 'path': str(file), 'thumbnail': thumbnail_name, 'description': description, 'stem': file.stem }) def get_image_file_number(image): if re.match(r'^(\d+)', image['stem']) is not None: return int(re.split(r'^(\d+)', image['stem'])[1]) else: return 999 images = sorted(images, key=get_image_file_number) return images def write_html(file, images, page_title, thumbnail_size): file.write(f'''\ <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <title>{page_title}</title> <link rel="stylesheet" type="text/css" href="album.css"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> </head> <body> <h1>{page_title}</h1> <div id="album"> \ ''') # write thumbnails for image, idx in zip(images, range(1, len(images) + 1)): thumbnail_path = urllib.parse.quote(str(image['thumbnail']).replace('\\', '/')) file.write(f'''\ <p id="thumbnail-{idx}" class="thumbnail"><img src="{thumbnail_path}" alt="{image['description']}" width="{thumbnail_size[0]}" height="{thumbnail_size[1]}"></p>\ ''') file.write(f'''\ <div id="large-view"> <p id="instructions" class="image">Hover over an image</p> ''') # write images for image, idx in zip(images, range(1, len(images) + 1)): image_path = urllib.parse.quote(str(image['path']).replace('\\', '/')) file.write(f'''\ <p id="image-{idx}" class="image"><img src="{image_path}" alt="{image['description']}"><br>{image['description']}</p> ''') file.write(f'''\ </div> </div> </body> </html> ''') def write_css(file, images): file.write('''\ @media print { body { font-family: sans-serif; } .thumbnail { display: none; } #instructions { display: none; } .image img { max-width: 100%; margin-bottom: 1em; } } @media screen and (max-width: 768px), /* Tablets and smartphones */ screen and (hover: none) { body { background: #333; color: #eee; font-family: sans-serif; margin: 1em; padding: 0; } h1 { margin-top: 0; } .thumbnail { display: none; } #instructions { display: none; } .image:nth-child(2) img { margin-top: 0; } .image img { max-width: calc(100vw - 3em); } } @media screen and (min-width: 769px) and (hover: hover), /* IE10 and IE11 (they don't support (hover: hover) */ screen and (min-width: 769px) and (-ms-high-contrast: none), screen and (min-width: 769px) and (-ms-high-contrast: active) { body { background: #333; color: #eee; font-family: sans-serif; margin: 2em 60% 2em 4em; padding: 0; } .album { display: flex; flex-direction: row; flex-wrap: wrap; } .thumbnail { display: inline-block;; margin: 0 .5em .2em 0; } .image { background: #333; display: none; position: fixed; top: 2em; left: 40%; text-align: center; height: 90vh; width: calc(60% - 4em); } .image img { display: block; max-height: 92%; max-width: 100%; margin: 0 auto; } #instructions { display: block; top: 4em; } ''') if len(images) > 0: for idx in range(1, len(images) + 1): file.write(f'''\ #thumbnail-{idx}:hover ~ #large-view #image-{idx}\ ''') if idx < len(images): file.write('''\ , ''') file.write('''\ { display: block; } ''') file.write('''\ } ''') def main(): config = configparser.ConfigParser() config.read('./config') image_directory = config['settings']['image_directory'] output_css = config['settings']['output_css'] output_html = config['settings']['output_html'] page_title = config['settings']['page_title'] thumbnail_directory = config['settings']['thumbnail_directory'] thumbnail_width = int(config['settings']['thumbnail_width']) thumbnail_height = int(config['settings']['thumbnail_height']) thumbnail_size = (thumbnail_width, thumbnail_height) out_html = open(output_html, 'w') out_css = open(output_css, 'w') images = get_images(image_directory, thumbnail_directory, thumbnail_size) write_html(out_html, images, page_title, thumbnail_size) write_css(out_css, images) out_html.close() out_css.close() if __name__ == '__main__': main()
[((9, 26, 9, 51), 'pathlib.Path', 'Path', ({(9, 31, 9, 50): 'thumbnail_directory'}, {}), '(thumbnail_directory)', False, 'from pathlib import Path\n'), ((234, 13, 234, 40), 'configparser.ConfigParser', 'configparser.ConfigParser', ({}, {}), '()', False, 'import configparser\n'), ((21, 25, 21, 70), 'pathlib.Path', 'Path', ({(21, 30, 21, 49): 'thumbnail_directory', (21, 51, 21, 69): "file.stem + '.jpg'"}, {}), "(thumbnail_directory, file.stem + '.jpg')", False, 'from pathlib import Path\n'), ((23, 16, 23, 32), 'PIL.Image.open', 'Image.open', ({(23, 27, 23, 31): 'file'}, {}), '(file)', False, 'from PIL import Image\n'), ((34, 22, 34, 65), 'PIL.Image.new', 'Image.new', ({(34, 32, 34, 37): '"""RGB"""', (34, 39, 34, 53): 'thumbnail_size', (34, 55, 34, 64): '(0, 0, 0)'}, {}), "('RGB', thumbnail_size, (0, 0, 0))", False, 'from PIL import Image\n'), ((51, 11, 51, 45), 're.match', 're.match', ({(51, 20, 51, 29): '"""^(\\\\d+)"""', (51, 31, 51, 44): "image['stem']"}, {}), "('^(\\\\d+)', image['stem'])", False, 'import re\n'), ((16, 30, 16, 51), 'pathlib.Path', 'Path', ({(16, 35, 16, 50): 'image_directory'}, {}), '(image_directory)', False, 'from pathlib import Path\n'), ((52, 23, 52, 57), 're.split', 're.split', ({(52, 32, 52, 41): '"""^(\\\\d+)"""', (52, 43, 52, 56): "image['stem']"}, {}), "('^(\\\\d+)', image['stem'])", False, 'import re\n')]
LSSTDESC/sims_TruthCatalog
tests/test_sne_truth.py
348f5d231997eed387aaa6e3fd4218c126e14cdb
""" Unit tests for SNIa truth catalog code. """ import os import unittest import sqlite3 import numpy as np import pandas as pd from desc.sims_truthcatalog import SNeTruthWriter, SNSynthPhotFactory class SNSynthPhotFactoryTestCase(unittest.TestCase): """ Test case class for SNIa synthetic photometry factory class. """ def test_SNSythPhotFactory(self): """ Test some flux calculations using the underlying SNObject and SyntheticPhotometry classes. """ sp_factory = SNSynthPhotFactory(z=0.6322702169418335, t0=61719.9950436545, x0=4.2832710977804034e-06, x1=-1.207738485943195, c=-0.0069750402968899936, snra=55.26407314527358, sndec=-40.81575605788344) mjds = (61689.150791, 61697.354470, 61712.258685) bands = ('z', 'i', 'r') fluxes = (2.6401569864737633, 71.18561504923377, 1048.0327802379868) for mjd, band, flux in zip(mjds, bands, fluxes): sp = sp_factory.create(mjd) self.assertAlmostEqual(sp.calcFlux(band), flux) class SNeTruthWriterTestCase(unittest.TestCase): """ Test case class for SNIa truth catalog generation class. """ def setUp(self): self.outfile = 'test_sne_truth_cat.db' self.data_dir = os.path.join(os.environ['SIMS_TRUTHCATALOG_DIR'], 'data') sn_db_file = os.path.join(self.data_dir, 'sne_cosmoDC2_v1.1.4_MS_DDF_small.db') self.sne_truth_writer = SNeTruthWriter(self.outfile, sn_db_file) def tearDown(self): if os.path.isfile(self.outfile): os.remove(self.outfile) def test_truth_summary(self): """Test that the truth_summary columns are filled out as expected.""" self.sne_truth_writer.write() with sqlite3.connect(self.outfile) as conn: df = pd.read_sql('select * from truth_summary', conn) zeros = np.zeros(len(df)) ones = np.ones(len(df)) np.testing.assert_equal(df['is_variable'], ones) np.testing.assert_equal(df['is_pointsource'], ones) for band in 'ugrizy': flux_col = f'flux_{band}' np.testing.assert_equal(df[flux_col], zeros) flux_col += '_noMW' np.testing.assert_equal(df[flux_col], zeros) def test_auxiliary_truth(self): """ Test that the columns from the sne_params table are transcribed correctly. """ self.sne_truth_writer.write_auxiliary_truth() with sqlite3.connect(self.outfile) as conn: df = pd.read_sql('select * from sn_auxiliary_info', conn) np.testing.assert_equal(self.sne_truth_writer.sne_df['snid_in'], df['id'].to_numpy()) np.testing.assert_equal(self.sne_truth_writer.sne_df['galaxy_id'], df['host_galaxy'].to_numpy()) np.testing.assert_equal(self.sne_truth_writer.sne_df['snra_in'], df['ra'].to_numpy()) np.testing.assert_equal(self.sne_truth_writer.sne_df['t0_in'], df['t0'].to_numpy()) np.testing.assert_equal(self.sne_truth_writer.sne_df['z_in'], df['redshift'].to_numpy()) def test_variability_truth(self): """ Test some expected values for a SNIa in the test SNe catalog using a small opsim db table. """ opsim_db_file = os.path.join(self.data_dir, 'minion_1016_desc_dithered_v4_small.db') self.sne_truth_writer.write_variability_truth(opsim_db_file, max_rows=60) with sqlite3.connect(self.outfile) as conn: df = pd.read_sql('select * from sn_variability_truth', conn) my_object = 'MS_10195_1375' self.assertIn(my_object, df['id'].to_list()) my_df = df.query(f'id == "{my_object}"') for visit in (1425850, 1433860, 1495410): self.assertIn(visit, my_df['obsHistID'].to_list()) if __name__ == '__main__': unittest.main()
[((105, 4, 105, 19), 'unittest.main', 'unittest.main', ({}, {}), '()', False, 'import unittest\n'), ((21, 21, 27, 65), 'desc.sims_truthcatalog.SNSynthPhotFactory', 'SNSynthPhotFactory', (), '', False, 'from desc.sims_truthcatalog import SNeTruthWriter, SNSynthPhotFactory\n'), ((42, 24, 43, 44), 'os.path.join', 'os.path.join', ({(42, 37, 42, 72): "os.environ['SIMS_TRUTHCATALOG_DIR']", (43, 37, 43, 43): '"""data"""'}, {}), "(os.environ['SIMS_TRUTHCATALOG_DIR'], 'data')", False, 'import os\n'), ((44, 21, 45, 72), 'os.path.join', 'os.path.join', ({(44, 34, 44, 47): 'self.data_dir', (45, 34, 45, 71): '"""sne_cosmoDC2_v1.1.4_MS_DDF_small.db"""'}, {}), "(self.data_dir, 'sne_cosmoDC2_v1.1.4_MS_DDF_small.db')", False, 'import os\n'), ((46, 32, 46, 72), 'desc.sims_truthcatalog.SNeTruthWriter', 'SNeTruthWriter', ({(46, 47, 46, 59): 'self.outfile', (46, 61, 46, 71): 'sn_db_file'}, {}), '(self.outfile, sn_db_file)', False, 'from desc.sims_truthcatalog import SNeTruthWriter, SNSynthPhotFactory\n'), ((49, 11, 49, 39), 'os.path.isfile', 'os.path.isfile', ({(49, 26, 49, 38): 'self.outfile'}, {}), '(self.outfile)', False, 'import os\n'), ((59, 8, 59, 56), 'numpy.testing.assert_equal', 'np.testing.assert_equal', ({(59, 32, 59, 49): "df['is_variable']", (59, 51, 59, 55): 'ones'}, {}), "(df['is_variable'], ones)", True, 'import numpy as np\n'), ((60, 8, 60, 59), 'numpy.testing.assert_equal', 'np.testing.assert_equal', ({(60, 32, 60, 52): "df['is_pointsource']", (60, 54, 60, 58): 'ones'}, {}), "(df['is_pointsource'], ones)", True, 'import numpy as np\n'), ((91, 24, 92, 77), 'os.path.join', 'os.path.join', ({(91, 37, 91, 50): 'self.data_dir', (92, 37, 92, 76): '"""minion_1016_desc_dithered_v4_small.db"""'}, {}), "(self.data_dir, 'minion_1016_desc_dithered_v4_small.db')", False, 'import os\n'), ((50, 12, 50, 35), 'os.remove', 'os.remove', ({(50, 22, 50, 34): 'self.outfile'}, {}), '(self.outfile)', False, 'import os\n'), ((55, 13, 55, 42), 'sqlite3.connect', 'sqlite3.connect', ({(55, 29, 55, 41): 'self.outfile'}, {}), '(self.outfile)', False, 'import sqlite3\n'), ((56, 17, 56, 65), 'pandas.read_sql', 'pd.read_sql', ({(56, 29, 56, 58): '"""select * from truth_summary"""', (56, 60, 56, 64): 'conn'}, {}), "('select * from truth_summary', conn)", True, 'import pandas as pd\n'), ((63, 12, 63, 56), 'numpy.testing.assert_equal', 'np.testing.assert_equal', ({(63, 36, 63, 48): 'df[flux_col]', (63, 50, 63, 55): 'zeros'}, {}), '(df[flux_col], zeros)', True, 'import numpy as np\n'), ((65, 12, 65, 56), 'numpy.testing.assert_equal', 'np.testing.assert_equal', ({(65, 36, 65, 48): 'df[flux_col]', (65, 50, 65, 55): 'zeros'}, {}), '(df[flux_col], zeros)', True, 'import numpy as np\n'), ((73, 13, 73, 42), 'sqlite3.connect', 'sqlite3.connect', ({(73, 29, 73, 41): 'self.outfile'}, {}), '(self.outfile)', False, 'import sqlite3\n'), ((74, 17, 74, 69), 'pandas.read_sql', 'pd.read_sql', ({(74, 29, 74, 62): '"""select * from sn_auxiliary_info"""', (74, 64, 74, 68): 'conn'}, {}), "('select * from sn_auxiliary_info', conn)", True, 'import pandas as pd\n'), ((95, 13, 95, 42), 'sqlite3.connect', 'sqlite3.connect', ({(95, 29, 95, 41): 'self.outfile'}, {}), '(self.outfile)', False, 'import sqlite3\n'), ((96, 17, 96, 72), 'pandas.read_sql', 'pd.read_sql', ({(96, 29, 96, 65): '"""select * from sn_variability_truth"""', (96, 67, 96, 71): 'conn'}, {}), "('select * from sn_variability_truth', conn)", True, 'import pandas as pd\n')]
gikoluo/djaodjin-saas
testsite/management/commands/load_test_transactions.py
badd7894ac327191008a1b3a0ebd0d07b55908c3
# Copyright (c) 2018, DjaoDjin inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import datetime, logging, random from django.conf import settings from django.core.management.base import BaseCommand from django.db.utils import IntegrityError from django.template.defaultfilters import slugify from django.utils.timezone import utc from saas.backends.razorpay_processor import RazorpayBackend from saas.models import Plan, Transaction, get_broker from saas.utils import datetime_or_now from saas.settings import PROCESSOR_ID LOGGER = logging.getLogger(__name__) class Command(BaseCommand): """ Load the database with random transactions (testing purposes). """ USE_OF_SERVICE = 0 PAY_BALANCE = 1 REDEEM = 2 REFUND = 3 CHARGEBACK = 4 WRITEOFF = 5 FIRST_NAMES = ( 'Anthony', 'Alexander', 'Alexis', 'Alicia', 'Ashley', 'Benjamin', 'Bruce', 'Chloe', 'Christopher', 'Daniel', 'David', 'Edward', 'Emily', 'Emma', 'Ethan', 'Grace', 'Isabella', 'Jacob', 'James', 'Jayden', 'Jennifer', 'John', 'Julia', 'Lily', 'Lucie', 'Luis', 'Matthew', 'Michael', 'Olivia', 'Ryan', 'Samantha', 'Samuel', 'Scott', 'Sophia', 'Williom', ) LAST_NAMES = ( 'Smith', 'Johnson', 'Williams', 'Jones', 'Brown', 'Davis', 'Miller', 'Wilson', 'Moore', 'Taylor', 'Anderson', 'Thomas', 'Jackson', 'White', 'Harris', 'Martin', 'Thompson', 'Garcia', 'Martinez', 'Robinson', 'Clark', 'Rogriguez', 'Lewis', 'Lee', 'Walker', 'Hall', 'Allen', 'Young', 'Hernandez', 'King', 'Wright', 'Lopez', 'Hill', 'Green', 'Baker', 'Gonzalez', 'Nelson', 'Mitchell', 'Perez', 'Roberts', 'Turner', 'Philips', 'Campbell', 'Parker', 'Collins', 'Stewart', 'Sanchez', 'Morris', 'Rogers', 'Reed', 'Cook', 'Bell', 'Cooper', 'Richardson', 'Cox', 'Ward', 'Peterson', ) def add_arguments(self, parser): parser.add_argument('--provider', action='store', dest='provider', default=settings.SAAS['BROKER']['GET_INSTANCE'], help='create sample subscribers on this provider') def handle(self, *args, **options): #pylint: disable=too-many-locals,too-many-statements from saas.managers.metrics import month_periods # avoid import loop from saas.models import (Charge, ChargeItem, Organization, Plan, Subscription) RazorpayBackend.bypass_api = True now = datetime.datetime.utcnow().replace(tzinfo=utc) from_date = now from_date = datetime.datetime( year=from_date.year, month=from_date.month, day=1) if args: from_date = datetime.datetime.strptime( args[0], '%Y-%m-%d') # Create a set of 3 plans broker = get_broker() Plan.objects.get_or_create( slug='basic', defaults={ 'title': "Basic", 'description': "Basic Plan", 'period_amount': 24900, 'broker_fee_percent': 0, 'period_type': 4, 'advance_discount': 1000, 'organization': broker, 'is_active': True }) Plan.objects.get_or_create( slug='medium', defaults={ 'title': "Medium", 'description': "Medium Plan", 'period_amount': 24900, 'broker_fee_percent': 0, 'period_type': 4, 'organization': broker, 'is_active': True }) Plan.objects.get_or_create( slug='premium', defaults={ 'title': "Premium", 'description': "Premium Plan", 'period_amount': 18900, 'broker_fee_percent': 0, 'period_type': 4, 'advance_discount': 81, 'organization': broker, 'is_active': True }) # Create Income transactions that represents a growing bussiness. provider = Organization.objects.get(slug=options['provider']) processor = Organization.objects.get(pk=PROCESSOR_ID) for end_period in month_periods(from_date=from_date): nb_new_customers = random.randint(0, 9) for _ in range(nb_new_customers): queryset = Plan.objects.filter( organization=provider, period_amount__gt=0) plan = queryset[random.randint(0, queryset.count() - 1)] created = False trials = 0 while not created: try: first_name = self.FIRST_NAMES[random.randint( 0, len(self.FIRST_NAMES)-1)] last_name = self.LAST_NAMES[random.randint( 0, len(self.LAST_NAMES)-1)] full_name = '%s %s' % (first_name, last_name) slug = slugify('demo%d' % random.randint(1, 1000)) customer, created = Organization.objects.get_or_create( slug=slug, full_name=full_name) #pylint: disable=catching-non-exception except IntegrityError: trials = trials + 1 if trials > 10: raise RuntimeError( 'impossible to create a new customer after 10 trials.') Organization.objects.filter(pk=customer.id).update( created_at=end_period) subscription = Subscription.objects.create( organization=customer, plan=plan, ends_at=now + datetime.timedelta(days=31)) Subscription.objects.filter( pk=subscription.id).update(created_at=end_period) # Insert some churn in % churn_rate = 2 all_subscriptions = Subscription.objects.filter( plan__organization=provider) nb_churn_customers = (all_subscriptions.count() * churn_rate // 100) subscriptions = random.sample(list(all_subscriptions), all_subscriptions.count() - nb_churn_customers) for subscription in subscriptions: nb_periods = random.randint(1, 6) transaction_item = Transaction.objects.new_subscription_order( subscription, nb_natural_periods=nb_periods, created_at=end_period) if transaction_item.dest_amount < 50: continue transaction_item.orig_amount = transaction_item.dest_amount transaction_item.orig_unit = transaction_item.dest_unit transaction_item.save() charge = Charge.objects.create( created_at=transaction_item.created_at, amount=transaction_item.dest_amount, customer=subscription.organization, description='Charge for %d periods' % nb_periods, last4=1241, exp_date=datetime_or_now(), processor=processor, processor_key=str(transaction_item.pk), # XXX We can't do that yet because of # ``PROCESSOR_BACKEND.charge_distribution(self)`` # unit=transaction_item.dest_unit, state=Charge.CREATED) charge.created_at = transaction_item.created_at charge.save() ChargeItem.objects.create( invoiced=transaction_item, charge=charge) charge.payment_successful() churned = all_subscriptions.exclude( pk__in=[subscription.pk for subscription in subscriptions]) for subscription in churned: subscription.ends_at = end_period subscription.save() self.stdout.write("%d new and %d churned customers at %s" % ( nb_new_customers, nb_churn_customers, end_period))
[((39, 9, 39, 36), 'logging.getLogger', 'logging.getLogger', ({(39, 27, 39, 35): '__name__'}, {}), '(__name__)', False, 'import datetime, logging, random\n'), ((168, 20, 169, 62), 'datetime.datetime', 'datetime.datetime', (), '', False, 'import datetime, logging, random\n'), ((174, 17, 174, 29), 'saas.models.get_broker', 'get_broker', ({}, {}), '()', False, 'from saas.models import Plan, Transaction, get_broker\n'), ((175, 8, 186, 10), 'saas.models.Plan.objects.get_or_create', 'Plan.objects.get_or_create', (), '', False, 'from saas.models import Charge, ChargeItem, Organization, Plan, Subscription\n'), ((187, 8, 197, 10), 'saas.models.Plan.objects.get_or_create', 'Plan.objects.get_or_create', (), '', False, 'from saas.models import Charge, ChargeItem, Organization, Plan, Subscription\n'), ((198, 8, 209, 10), 'saas.models.Plan.objects.get_or_create', 'Plan.objects.get_or_create', (), '', False, 'from saas.models import Charge, ChargeItem, Organization, Plan, Subscription\n'), ((212, 19, 212, 69), 'saas.models.Organization.objects.get', 'Organization.objects.get', (), '', False, 'from saas.models import Charge, ChargeItem, Organization, Plan, Subscription\n'), ((213, 20, 213, 61), 'saas.models.Organization.objects.get', 'Organization.objects.get', (), '', False, 'from saas.models import Charge, ChargeItem, Organization, Plan, Subscription\n'), ((214, 26, 214, 60), 'saas.managers.metrics.month_periods', 'month_periods', (), '', False, 'from saas.managers.metrics import month_periods\n'), ((171, 24, 172, 36), 'datetime.datetime.strptime', 'datetime.datetime.strptime', ({(172, 16, 172, 23): 'args[0]', (172, 25, 172, 35): '"""%Y-%m-%d"""'}, {}), "(args[0], '%Y-%m-%d')", False, 'import datetime, logging, random\n'), ((215, 31, 215, 51), 'random.randint', 'random.randint', ({(215, 46, 215, 47): '0', (215, 49, 215, 50): '9'}, {}), '(0, 9)', False, 'import datetime, logging, random\n'), ((247, 32, 248, 44), 'saas.models.Subscription.objects.filter', 'Subscription.objects.filter', (), '', False, 'from saas.models import Charge, ChargeItem, Organization, Plan, Subscription\n'), ((166, 14, 166, 40), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ({}, {}), '()', False, 'import datetime, logging, random\n'), ((217, 27, 218, 63), 'saas.models.Plan.objects.filter', 'Plan.objects.filter', (), '', False, 'from saas.models import Charge, ChargeItem, Organization, Plan, Subscription\n'), ((254, 29, 254, 49), 'random.randint', 'random.randint', ({(254, 44, 254, 45): '1', (254, 47, 254, 48): '6'}, {}), '(1, 6)', False, 'import datetime, logging, random\n'), ((255, 35, 257, 42), 'saas.models.Transaction.objects.new_subscription_order', 'Transaction.objects.new_subscription_order', (), '', False, 'from saas.models import Plan, Transaction, get_broker\n'), ((278, 16, 279, 61), 'saas.models.ChargeItem.objects.create', 'ChargeItem.objects.create', (), '', False, 'from saas.models import Charge, ChargeItem, Organization, Plan, Subscription\n'), ((230, 44, 231, 63), 'saas.models.Organization.objects.get_or_create', 'Organization.objects.get_or_create', (), '', False, 'from saas.models import Charge, ChargeItem, Organization, Plan, Subscription\n'), ((238, 16, 238, 59), 'saas.models.Organization.objects.filter', 'Organization.objects.filter', (), '', False, 'from saas.models import Charge, ChargeItem, Organization, Plan, Subscription\n'), ((243, 16, 244, 39), 'saas.models.Subscription.objects.filter', 'Subscription.objects.filter', (), '', False, 'from saas.models import Charge, ChargeItem, Organization, Plan, Subscription\n'), ((269, 29, 269, 46), 'saas.utils.datetime_or_now', 'datetime_or_now', ({}, {}), '()', False, 'from saas.utils import datetime_or_now\n'), ((242, 34, 242, 61), 'datetime.timedelta', 'datetime.timedelta', (), '', False, 'import datetime, logging, random\n'), ((229, 50, 229, 73), 'random.randint', 'random.randint', ({(229, 65, 229, 66): '1', (229, 68, 229, 72): '1000'}, {}), '(1, 1000)', False, 'import datetime, logging, random\n')]
magic282/SEASS
seq2seq_pt/s2s/xutils.py
b780bf45b47d15145a148e5992bcd157c119d338
import sys import struct def save_sf_model(model): name_dicts = {'encoder.word_lut.weight': 'SrcWordEmbed_Embed_W', 'encoder.forward_gru.linear_input.weight': 'EncGRUL2R_GRU_W', 'encoder.forward_gru.linear_input.bias': 'EncGRUL2R_GRU_B', 'encoder.forward_gru.linear_hidden.weight': 'EncGRUL2R_GRU_U', 'encoder.backward_gru.linear_input.weight': 'EncGRUR2L_GRU_W', 'encoder.backward_gru.linear_input.bias': 'EncGRUR2L_GRU_B', 'encoder.backward_gru.linear_hidden.weight': 'EncGRUR2L_GRU_U', 'decoder.word_lut.weight': 'TrgWordEmbed_Embed_W', 'decoder.rnn.layers.0.linear_input.weight': 'DecGRU_GRU_W', 'decoder.rnn.layers.0.linear_input.bias': 'DecGRU_GRU_B', 'decoder.rnn.layers.0.linear_hidden.weight': 'DecGRU_GRU_U', 'decoder.attn.linear_pre.weight': 'Alignment_ConcatAtt_W', 'decoder.attn.linear_pre.bias': 'Alignment_ConcatAtt_B', 'decoder.attn.linear_q.weight': 'Alignment_ConcatAtt_U', 'decoder.attn.linear_v.weight': 'Alignment_ConcatAtt_v', 'decoder.readout.weight': 'Readout_Linear_W', 'decoder.readout.bias': 'Readout_Linear_b', 'decIniter.initer.weight': 'DecInitial_Linear_W', 'decIniter.initer.bias': 'DecInitial_Linear_b', 'generator.0.weight': 'Scoring_Linear_W', 'generator.0.bias': 'Scoring_Linear_b', } nParams = sum([p.nelement() for p in model.parameters()]) # logger.info('* number of parameters: %d' % nParams) b_count = 0 of = open('model', 'wb') for name, param in model.named_parameters(): # logger.info('[{0}] [{1}] [{2}]'.format(name, param.size(), param.nelement())) SF_name = name_dicts[name] # print(SF_name) byte_name = bytes(SF_name, 'utf-16-le') name_size = len(byte_name) byte_name_size = name_size.to_bytes(4, sys.byteorder) of.write(byte_name_size) of.write(byte_name) b_count += len(byte_name_size) b_count += len(byte_name) d = param.data.cpu() if param.dim() == 1: d = d.unsqueeze(0) elif not SF_name.endswith('Embed_W'): d = d.transpose(0, 1).contiguous() for dim in d.size(): dim_byte = dim.to_bytes(4, sys.byteorder) of.write(dim_byte) b_count += len(dim_byte) datas = d.view(-1).numpy().tolist() float_array = struct.pack('f' * len(datas), *datas) b_count += len(float_array) of.write(float_array) of.close() # print('Total write {0} bytes'.format(b_count))
[]
Novartis/Project-Mona-Lisa
pml-services/pml_storage.py
f8fcef5b434470e2a17e97fceaef46615eda1b31
# Copyright 2017 Novartis Institutes for BioMedical Research Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. from __future__ import print_function import boto3 from boto3.dynamodb.conditions import Key from random import randint import os import base64 class PMLStorage: """ Project Mona Lisa Storage class. """ def __init__(self, storage_name): self.storage_name = storage_name def get_bucket(self): """ Returns: (obj): The boto3 AWS S3 bucket object. """ s3 = boto3.resource('s3', region_name='TODO') return s3.Bucket(self.storage_name) def get_item_from_storage(self, item_key): """ Get method for a image data in ML-PRJ image storage. Args: bucket_name (str): name for the storage. item_key (str): key or filename for the item in storage. Returns: item (obj) """ # get the image data in the S3 bucket img_obj = self.get_bucket().Object(item_key) return str(img_obj.get()['Body'].read()) def post_item_in_storage(self, key, body, type='png'): """ Posting collected image data in storage. Args: key (str): The unique key. body (obj): the bulk data to be stored. type (str): file suffix. The default is 'png'. Returns: bool: True if successful, otherwise, an error will be thrown. """ self.get_bucket().put_object( Key=key+str('.')+type, Body=body, ServerSideEncryption='AES256', ContentType='img/'+type, ) return True def download_imgs(self, load_fns, save_dir): """ Downloads all files in <load_fns> from storage to the directory <save_dir>. Args: load_fns (list(str)): A list of strings of the filenames of the files to be downloaded. save_dir (str): A string of the source directory to save the files. Formatted as: /full/path/to/dir ... without a '/' character at the end of the <save_dir>. Returns: bool: True if successful, otherwise, an error will be thrown. """ print('downloading images from s3 . . .') bucket = self.get_bucket() pre_existing_fns = os.listdir(save_dir) count = 0 for filename in load_fns: count += 1 print(count) if filename in pre_existing_fns: continue bucket.download_file(filename, save_dir + '/' + filename) return True def get_all_filenames(self): """ Gets all filenames in storage. Returns: list(str): A list of all of the filenames in the bucket, as a list of strings. """ iterobjs = self.get_bucket().objects.all() filenames = [obj.key for obj in iterobjs] return filenames def remove_items(self, filenames): """ Removes, from storage, all files from <filenames>. Args: filenames list(str): List of filenames, where each filename is a string, of the filename contained in the bucket. Returns: bool: True if successful, otherwise an error is thrown. """ bucket = self.get_bucket() fn_objects = [{'Key': fn} for fn in filenames] bucket.delete_objects( Delete={ 'Objects': fn_objects } ) return True
[((23, 13, 23, 53), 'boto3.resource', 'boto3.resource', (), '', False, 'import boto3\n'), ((78, 27, 78, 47), 'os.listdir', 'os.listdir', ({(78, 38, 78, 46): 'save_dir'}, {}), '(save_dir)', False, 'import os\n')]
Nightleaf0512/PythonCryptoCurriencyPriceChecker
binan.py
9531d4a6978d280b4ca759d7ba24d3edf77fe5b2
from binance.client import Client import PySimpleGUI as sg api_key = "your_binance_apikey" secret_key = "your_binance_secretkey" client = Client(api_key=api_key, api_secret=secret_key) # price def get_price(coin): return round(float(client.get_symbol_ticker(symbol=f"{coin}USDT")['price']), 5) def column_layout_price(coin): col =[[sg.Text(f"{get_price(coin)}", font=("Arial", 9, 'bold'), size=(10,1), pad=(15,10), key=coin)]] return col # 24h percentchange def price_change_24h(coin): return round(float(client.get_ticker(symbol=f"{coin}USDT")["priceChangePercent"]), 2) def column_layout_change(coin): if price_change_24h(coin) == 0: return [[sg.Text(f"{price_change_24h(coin)}%", font=("Arial", 9, 'bold'), size=(7,1), pad=(40,10), text_color="black", key=f"{coin}change")]] elif price_change_24h(coin) > 0: return [[sg.Text(f"+{price_change_24h(coin)}%", font=("Arial", 9, 'bold'), size=(7,1), pad=(40,10), text_color="green", key=f"{coin}change")]] return [[sg.Text(f"{price_change_24h(coin)}%", font=("Arial", 9, 'bold'), size=(7,1), pad=(40,10), text_color="red", key=f"{coin}change")]] def update_24h_change(coin): if price_change_24h(coin) == 0: window[f"{coin}change"].update(f"+{price_change_24h(coin)}%", text_color="black") elif price_change_24h(coin) > 0: window[f"{coin}change"].update(f"+{price_change_24h(coin)}%", text_color="green") elif price_change_24h(coin) < 0: window[f"{coin}change"].update(f"{price_change_24h(coin)}%", text_color="red") # GUI sg.theme('DefaultNoMoreNagging') # Tabs def tabs(coin): tab_layout = [[sg.Image("{}.png".format(coin), size=(50,50)), sg.Text("Price", font=("Arial", 10, 'bold'), size=(7,1), pad=(40,40)), sg.Text("24h change", font=("Arial", 10, 'bold'), size=(10,1), pad=(10,40))], [sg.Text(f"{coin}/USDT", font=("Arial", 9, 'bold')), sg.Column(column_layout_price(coin)), sg.Column(column_layout_change(coin))]] return tab_layout # Layout layout = [[sg.Text("Crypto Currencies", font=("Arial", 10, 'bold'))], [sg.TabGroup([[sg.Tab("BTC", tabs("BTC"), border_width="18"), sg.Tab("XRP", tabs("XRP"), border_width="18"), sg.Tab("DOGE", tabs("DOGE"), border_width="18")]])]] window = sg.Window("NightLeaf Crypto", layout) def coin_window(*coins): for coin in coins: globals()[f"{coin}_last_price"] = 1 while True: event,values = window.read(timeout=600) if event == sg.WIN_CLOSED: break for coin in coins: update_24h_change(coin) price = get_price(coin) if price != globals()[f"{coin}_last_price"]: if price > globals()[f"{coin}_last_price"]: window[f"{coin}"].update(f"{price} 🠕", text_color="green") elif price < globals()[f"{coin}_last_price"]: window[f"{coin}"].update(f"{price} 🠗", text_color="red") globals()[f"{coin}_last_price"] = price a_list =["BTC", "XRP", "DOGE"] coin_window(*a_list)
[((6, 9, 6, 55), 'binance.client.Client', 'Client', (), '', False, 'from binance.client import Client\n'), ((36, 0, 36, 32), 'PySimpleGUI.theme', 'sg.theme', ({(36, 9, 36, 31): '"""DefaultNoMoreNagging"""'}, {}), "('DefaultNoMoreNagging')", True, 'import PySimpleGUI as sg\n'), ((49, 9, 49, 46), 'PySimpleGUI.Window', 'sg.Window', ({(49, 19, 49, 37): '"""NightLeaf Crypto"""', (49, 39, 49, 45): 'layout'}, {}), "('NightLeaf Crypto', layout)", True, 'import PySimpleGUI as sg\n'), ((46, 11, 46, 67), 'PySimpleGUI.Text', 'sg.Text', (), '', True, 'import PySimpleGUI as sg\n'), ((41, 19, 41, 88), 'PySimpleGUI.Text', 'sg.Text', (), '', True, 'import PySimpleGUI as sg\n'), ((41, 90, 41, 165), 'PySimpleGUI.Text', 'sg.Text', (), '', True, 'import PySimpleGUI as sg\n'), ((42, 19, 42, 69), 'PySimpleGUI.Text', 'sg.Text', (), '', True, 'import PySimpleGUI as sg\n')]
nlkhagva/saleor
saleor/graphql/ushop/bulk_mutations.py
0d75807d08ac49afcc904733724ac870e8359c10
import graphene from ...unurshop.ushop import models from ..core.mutations import BaseBulkMutation, ModelBulkDeleteMutation class UshopBulkDelete(ModelBulkDeleteMutation): class Arguments: ids = graphene.List( graphene.ID, required=True, description="List of ushop IDs to delete." ) class Meta: description = "Deletes shops." model = models.Shop permissions = ("page.manage_pages",) class UshopBulkPublish(BaseBulkMutation): class Arguments: ids = graphene.List( graphene.ID, required=True, description="List of ushop IDs to (un)publish." ) is_published = graphene.Boolean( required=True, description="Determine if ushops will be published or not." ) class Meta: description = "Publish ushops." model = models.Shop permissions = ("page.manage_pages",) @classmethod def bulk_action(cls, queryset, is_published): queryset.update(is_published=is_published)
[((9, 14, 11, 9), 'graphene.List', 'graphene.List', (), '', False, 'import graphene\n'), ((21, 14, 23, 9), 'graphene.List', 'graphene.List', (), '', False, 'import graphene\n'), ((24, 23, 26, 9), 'graphene.Boolean', 'graphene.Boolean', (), '', False, 'import graphene\n')]
alvinajacquelyn/COMP0016_2
src/main/NLP/STRING_MATCH/scopus_ha_module_match.py
fd57706a992e1e47af7c802320890e93a15fc0c7
import os, sys, re import json import pandas as pd import pymongo from main.LOADERS.publication_loader import PublicationLoader from main.MONGODB_PUSHERS.mongodb_pusher import MongoDbPusher from main.NLP.PREPROCESSING.preprocessor import Preprocessor class ScopusStringMatch_HAmodule(): def __init__(self): self.loader = PublicationLoader() self.mongodb_pusher = MongoDbPusher() self.preprocessor = Preprocessor() def __progress(self, count, total, custom_text, suffix=''): """ Visualises progress for a process given a current count and a total count """ bar_len = 60 filled_len = int(round(bar_len * count / float(total))) percents = round(100.0 * count / float(total), 1) bar = '*' * filled_len + '-' * (bar_len - filled_len) sys.stdout.write('[%s] %s%s %s %s\r' %(bar, percents, '%', custom_text, suffix)) sys.stdout.flush() def __read_keywords(self, data: dict) -> None: """ Given a set of publications in a dictionary, performs pre-processing for all string type data fields. Performs look-up on HA keyword occurences in a document. Results are pushed to MongoDB (backed-up in JSON file - scopus_matches.json). """ resulting_data = {} counter = 0 keywords = self.preprocessor.preprocess_keywords("main/HA_KEYWORDS/HA_Keywords.csv") num_publications = len(data) num_keywords = len(keywords) for doi, publication in data.items(): # visualise the progress on a commandline self.__progress(counter, num_publications, "processing scopus_matches.json") counter += 1 description = self.preprocessor.tokenize(publication["Description"]) ha_occurences = {} # accumulator for HA Keywords found in a given document for n in range(num_keywords): ha_num = n + 1 ha = "HA " + str(ha_num) if ha_num < num_keywords else "Misc" # clean and process the string for documenting occurences ha_occurences[ha] = {"Word_Found": []} for keyword in keywords[n]: if keyword in description: ha_occurences[ha]["Word_Found"].append(keyword) if len(ha_occurences[ha]["Word_Found"]) == 0: ha_occurences.pop(ha, None) # clear out empty occurences resulting_data[doi] = {"DOI": doi, "Related_HA": ha_occurences} print() self.mongodb_pusher.matched_scopus(resulting_data) # push the processed data to MongoDB print() # Record the same data locally, acts as a backup with open('main/NLP/STRING_MATCH/HA_MODULE_RESULTS/scopus_matches_modules.json', 'w') as outfile: json.dump(resulting_data, outfile) def run(self): """ Controller method for self class Loads modules from a pre-loaded pickle file """ data = self.loader.load_all() self.__read_keywords(data)
[((14, 22, 14, 41), 'main.LOADERS.publication_loader.PublicationLoader', 'PublicationLoader', ({}, {}), '()', False, 'from main.LOADERS.publication_loader import PublicationLoader\n'), ((15, 30, 15, 45), 'main.MONGODB_PUSHERS.mongodb_pusher.MongoDbPusher', 'MongoDbPusher', ({}, {}), '()', False, 'from main.MONGODB_PUSHERS.mongodb_pusher import MongoDbPusher\n'), ((16, 28, 16, 42), 'main.NLP.PREPROCESSING.preprocessor.Preprocessor', 'Preprocessor', ({}, {}), '()', False, 'from main.NLP.PREPROCESSING.preprocessor import Preprocessor\n'), ((27, 8, 27, 88), 'sys.stdout.write', 'sys.stdout.write', ({(27, 25, 27, 87): "('[%s] %s%s %s %s\\r' % (bar, percents, '%', custom_text, suffix))"}, {}), "('[%s] %s%s %s %s\\r' % (bar, percents, '%', custom_text,\n suffix))", False, 'import os, sys, re\n'), ((28, 8, 28, 26), 'sys.stdout.flush', 'sys.stdout.flush', ({}, {}), '()', False, 'import os, sys, re\n'), ((65, 12, 65, 46), 'json.dump', 'json.dump', ({(65, 22, 65, 36): 'resulting_data', (65, 38, 65, 45): 'outfile'}, {}), '(resulting_data, outfile)', False, 'import json\n')]
Cyberdeep/archerysec
tools/urls.py
a4b1a0c4f736bd70bdea693c7a7c479a69bb0f7d
# _ # /\ | | # / \ _ __ ___| |__ ___ _ __ _ _ # / /\ \ | '__/ __| '_ \ / _ \ '__| | | | # / ____ \| | | (__| | | | __/ | | |_| | # /_/ \_\_| \___|_| |_|\___|_| \__, | # __/ | # |___/ # Copyright (C) 2017-2018 ArcherySec # This file is part of ArcherySec Project. from django.conf.urls import url from tools import views app_name = 'tools' urlpatterns = [ url(r'^sslscan/$', views.sslscan, name='sslscan'), url(r'^sslscan_result/$', views.sslscan_result, name='sslscan_result'), ]
[((18, 4, 20, 23), 'django.conf.urls.url', 'url', (), '', False, 'from django.conf.urls import url\n'), ((21, 4, 23, 30), 'django.conf.urls.url', 'url', (), '', False, 'from django.conf.urls import url\n')]
erigones/esdc-ce
api/vm/base/utils.py
2e39211a8f5132d66e574d3a657906c7d3c406fe
from core.celery.config import ERIGONES_TASK_USER from que.tasks import execute, get_task_logger from vms.models import SnapshotDefine, Snapshot, BackupDefine, Backup, IPAddress logger = get_task_logger(__name__) def is_vm_missing(vm, msg): """ Check failed command output and return True if VM is not on compute node. """ check_str = vm.hostname + ': No such zone configured' return check_str in msg def vm_delete_snapshots_of_removed_disks(vm): """ This helper function deletes snapshots for VM with changing disk IDs. Bug #chili-363 ++ Bug #chili-220 - removing snapshot and backup definitions for removed disks. """ removed_disk_ids = [Snapshot.get_real_disk_id(i) for i in vm.create_json_update_disks().get('remove_disks', [])] if removed_disk_ids: Snapshot.objects.filter(vm=vm, disk_id__in=removed_disk_ids).delete() SnapshotDefine.objects.filter(vm=vm, disk_id__in=removed_disk_ids).delete() Backup.objects.filter(vm=vm, disk_id__in=removed_disk_ids, last=True).update(last=False) BackupDefine.objects.filter(vm=vm, disk_id__in=removed_disk_ids).delete() return removed_disk_ids def _reset_allowed_ip_usage(vm, ip): """Helper function used below. It sets the IP usage back to VM [1] only if other VMs, which use the address in allowed_ips are in notcreated state.""" if all(other_vm.is_notcreated() for other_vm in ip.vms.exclude(uuid=vm.uuid)): ip.usage = IPAddress.VM ip.save() def _is_ip_ok(ip_queryset, vm_ip, vm_network_uuid): """Helper function used below. Return True if vm_ip (string) is "dhcp" or is found in the IPAddress queryset and has the expected usage flag and subnet uuid.""" if vm_ip == 'dhcp': return True return any(ip.ip == vm_ip and ip.subnet.uuid == vm_network_uuid and ip.usage == IPAddress.VM_REAL for ip in ip_queryset) def vm_update_ipaddress_usage(vm): """ This helper function is responsible for updating IPAddress.usage and IPAddress.vm of server IPs (#chili-615,1029), by removing association from IPs that, are not set on any NIC and: - when a VM is deleted all IP usages are set to IPAddress.VM (in DB) and - when a VM is created or updated all IP usages are set to IPAddress.VM_REAL (on hypervisor) and Always call this function _only_ after vm.json_active is synced with vm.json!!! In order to properly understand this code you have understand the association between an IPAddress and Vm model. This function may raise a ValueError if the VM and IP address were not properly associated (e.g. via vm_define_nic). """ current_ips = set(vm.json_active_get_ips(primary_ips=True, allowed_ips=False)) current_ips.update(vm.json_get_ips(primary_ips=True, allowed_ips=False)) current_allowed_ips = set(vm.json_active_get_ips(primary_ips=False, allowed_ips=True)) current_allowed_ips.update(vm.json_get_ips(primary_ips=False, allowed_ips=True)) # Return old IPs back to IP pool, so they can be used again vm.ipaddress_set.exclude(ip__in=current_ips).update(vm=None, usage=IPAddress.VM) # Remove association of removed vm.allowed_ips for ip in vm.allowed_ips.exclude(ip__in=current_allowed_ips): ip.vms.remove(vm) _reset_allowed_ip_usage(vm, ip) if vm.is_notcreated(): # Server was deleted from hypervisor vm.ipaddress_set.filter(usage=IPAddress.VM_REAL).update(usage=IPAddress.VM) for ip in vm.allowed_ips.filter(usage=IPAddress.VM_REAL): _reset_allowed_ip_usage(vm, ip) return # Server was updated or created vm.ipaddress_set.filter(usage=IPAddress.VM).update(usage=IPAddress.VM_REAL) vm.allowed_ips.filter(usage=IPAddress.VM).update(usage=IPAddress.VM_REAL) # The VM configuration may be changed directly on the hypervisor, thus the VM could have # new NICs and IP addresses which configuration bypassed our API - issue #168. vm_ips = vm.ipaddress_set.select_related('subnet').filter(usage=IPAddress.VM_REAL) vm_allowed_ips = vm.allowed_ips.select_related('subnet').filter(usage=IPAddress.VM_REAL) # For issue #168 we have to check the VM<->IPAddress association in a loop for each NIC, because we need to # match the NIC.network_uuid with a Subnet. for nic_id, nic in enumerate(vm.json_active_get_nics(), 1): network_uuid = nic.get('network_uuid', None) if network_uuid: ip = nic.get('ip', '') allowed_ips = nic.get('allowed_ips', []) if ip: logger.debug('VM: %s | NIC ID: %s | NIC network: %s | IP address: %s', vm, nic_id, network_uuid, ip) if not _is_ip_ok(vm_ips, ip, network_uuid): raise ValueError('VM %s NIC ID %s IP address %s is not properly associated with VM!' % (vm, nic_id, ip)) for ip in allowed_ips: logger.debug('VM: %s | NIC ID: %s | NIC network: %s | IP address: %s', vm, nic_id, network_uuid, ip) if not _is_ip_ok(vm_allowed_ips, ip, network_uuid): raise ValueError('VM %s NIC ID %s allowed IP address %s is not properly associated with VM!' % (vm, nic_id, ip)) else: raise ValueError('VM %s NIC ID %s does not have a network uuid!' % (vm, nic_id)) def vm_deploy(vm, force_stop=False): """ Internal API call used for finishing VM deploy; Actually cleaning the json and starting the VM. """ if force_stop: # VM is running without OS -> stop cmd = 'vmadm stop %s -F >/dev/null 2>/dev/null; vmadm get %s 2>/dev/null' % (vm.uuid, vm.uuid) else: # VM is stopped and deployed -> start cmd = 'vmadm start %s >/dev/null 2>/dev/null; vmadm get %s 2>/dev/null' % (vm.uuid, vm.uuid) msg = 'Deploy server' lock = 'vmadm deploy ' + vm.uuid meta = { 'output': { 'returncode': 'returncode', 'stderr': 'message', 'stdout': 'json' }, 'replace_stderr': ((vm.uuid, vm.hostname),), 'msg': msg, 'vm_uuid': vm.uuid } callback = ('api.vm.base.tasks.vm_deploy_cb', {'vm_uuid': vm.uuid}) return execute(ERIGONES_TASK_USER, None, cmd, meta=meta, lock=lock, callback=callback, queue=vm.node.fast_queue, nolog=True, ping_worker=False, check_user_tasks=False) def vm_reset(vm): """ Internal API call used for VM reboots in emergency situations. """ cmd = 'vmadm stop %s -F; vmadm start %s' % (vm.uuid, vm.uuid) return execute(ERIGONES_TASK_USER, None, cmd, callback=False, queue=vm.node.fast_queue, nolog=True, check_user_tasks=False) def vm_update(vm): """ Internal API used for updating VM if there were changes in json detected. """ logger.info('Running PUT vm_manage(%s), because something (vnc port?) has changed', vm) from api.vm.base.views import vm_manage from api.utils.request import get_dummy_request from api.utils.views import call_api_view request = get_dummy_request(vm.dc, method='PUT', system_user=True) res = call_api_view(request, 'PUT', vm_manage, vm.hostname) if res.status_code == 201: logger.warn('PUT vm_manage(%s) was successful: %s', vm, res.data) else: logger.error('PUT vm_manage(%s) failed: %s (%s): %s', vm, res.status_code, res.status_text, res.data)
[((5, 9, 5, 34), 'que.tasks.get_task_logger', 'get_task_logger', ({(5, 25, 5, 33): '__name__'}, {}), '(__name__)', False, 'from que.tasks import execute, get_task_logger\n'), ((138, 11, 139, 99), 'que.tasks.execute', 'execute', (), '', False, 'from que.tasks import execute, get_task_logger\n'), ((147, 11, 148, 42), 'que.tasks.execute', 'execute', (), '', False, 'from que.tasks import execute, get_task_logger\n'), ((159, 14, 159, 70), 'api.utils.request.get_dummy_request', 'get_dummy_request', (), '', False, 'from api.utils.request import get_dummy_request\n'), ((160, 10, 160, 63), 'api.utils.views.call_api_view', 'call_api_view', ({(160, 24, 160, 31): 'request', (160, 33, 160, 38): '"""PUT"""', (160, 40, 160, 49): 'vm_manage', (160, 51, 160, 62): 'vm.hostname'}, {}), "(request, 'PUT', vm_manage, vm.hostname)", False, 'from api.utils.views import call_api_view\n'), ((22, 24, 22, 52), 'vms.models.Snapshot.get_real_disk_id', 'Snapshot.get_real_disk_id', ({(22, 50, 22, 51): 'i'}, {}), '(i)', False, 'from vms.models import SnapshotDefine, Snapshot, BackupDefine, Backup, IPAddress\n'), ((24, 8, 24, 68), 'vms.models.Snapshot.objects.filter', 'Snapshot.objects.filter', (), '', False, 'from vms.models import SnapshotDefine, Snapshot, BackupDefine, Backup, IPAddress\n'), ((25, 8, 25, 74), 'vms.models.SnapshotDefine.objects.filter', 'SnapshotDefine.objects.filter', (), '', False, 'from vms.models import SnapshotDefine, Snapshot, BackupDefine, Backup, IPAddress\n'), ((26, 8, 26, 77), 'vms.models.Backup.objects.filter', 'Backup.objects.filter', (), '', False, 'from vms.models import SnapshotDefine, Snapshot, BackupDefine, Backup, IPAddress\n'), ((27, 8, 27, 72), 'vms.models.BackupDefine.objects.filter', 'BackupDefine.objects.filter', (), '', False, 'from vms.models import SnapshotDefine, Snapshot, BackupDefine, Backup, IPAddress\n')]
Coalin/Daily-LeetCode-Exercise
993_Cousins-in-Binary-Tree.py
a064dcdc3a82314be4571d342c4807291a24f69f
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def isCousins(self, root: TreeNode, x: int, y: int) -> bool: x_depth = None x_parent = None x_found = 0 y_depth = None y_parent = None y_found = 0 def dfs(node, parent, depth): nonlocal x_depth, x_parent, x_found, y_depth, y_found, y_parent if not node: return if node.val == x: x_depth = depth x_parent = parent x_found = 1 elif node.val == y: y_depth = depth y_parent = parent y_found = 1 if x_found and y_found: return dfs(node.left, node, depth+1) if x_found and y_found: return dfs(node.right, node, depth+1) dfs(root, None, 0) return x_depth == y_depth and x_parent != y_parent
[]
mattcongy/itshop
docker-images/taigav2/taiga-back/tests/integration/test_tasks_tags.py
6be025a9eaa7fe7f495b5777d1f0e5a3184121c9
# -*- coding: utf-8 -*- # Copyright (C) 2014-2016 Andrey Antukh <[email protected]> # Copyright (C) 2014-2016 Jesús Espino <[email protected]> # Copyright (C) 2014-2016 David Barragán <[email protected]> # Copyright (C) 2014-2016 Alejandro Alonso <[email protected]> # Copyright (C) 2014-2016 Anler Hernández <[email protected]> # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from unittest import mock from collections import OrderedDict from django.core.urlresolvers import reverse from taiga.base.utils import json from .. import factories as f import pytest pytestmark = pytest.mark.django_db def test_api_task_add_new_tags_with_error(client): project = f.ProjectFactory.create() task = f.create_task(project=project, status__project=project, milestone=None, user_story=None) f.MembershipFactory.create(project=project, user=task.owner, is_admin=True) url = reverse("tasks-detail", kwargs={"pk": task.pk}) data = { "tags": [], "version": task.version } client.login(task.owner) data["tags"] = [1] response = client.json.patch(url, json.dumps(data)) assert response.status_code == 400, response.data assert "tags" in response.data data["tags"] = [["back"]] response = client.json.patch(url, json.dumps(data)) assert response.status_code == 400, response.data assert "tags" in response.data data["tags"] = [["back", "#cccc"]] response = client.json.patch(url, json.dumps(data)) assert response.status_code == 400, response.data assert "tags" in response.data data["tags"] = [[1, "#ccc"]] response = client.json.patch(url, json.dumps(data)) assert response.status_code == 400, response.data assert "tags" in response.data def test_api_task_add_new_tags_without_colors(client): project = f.ProjectFactory.create() task = f.create_task(project=project, status__project=project, milestone=None, user_story=None) f.MembershipFactory.create(project=project, user=task.owner, is_admin=True) url = reverse("tasks-detail", kwargs={"pk": task.pk}) data = { "tags": [ ["back", None], ["front", None], ["ux", None] ], "version": task.version } client.login(task.owner) response = client.json.patch(url, json.dumps(data)) assert response.status_code == 200, response.data tags_colors = OrderedDict(project.tags_colors) assert not tags_colors.keys() project.refresh_from_db() tags_colors = OrderedDict(project.tags_colors) assert "back" in tags_colors and "front" in tags_colors and "ux" in tags_colors def test_api_task_add_new_tags_with_colors(client): project = f.ProjectFactory.create() task = f.create_task(project=project, status__project=project, milestone=None, user_story=None) f.MembershipFactory.create(project=project, user=task.owner, is_admin=True) url = reverse("tasks-detail", kwargs={"pk": task.pk}) data = { "tags": [ ["back", "#fff8e7"], ["front", None], ["ux", "#fabada"] ], "version": task.version } client.login(task.owner) response = client.json.patch(url, json.dumps(data)) assert response.status_code == 200, response.data tags_colors = OrderedDict(project.tags_colors) assert not tags_colors.keys() project.refresh_from_db() tags_colors = OrderedDict(project.tags_colors) assert "back" in tags_colors and "front" in tags_colors and "ux" in tags_colors assert tags_colors["back"] == "#fff8e7" assert tags_colors["ux"] == "#fabada" def test_api_create_new_task_with_tags(client): project = f.ProjectFactory.create(tags_colors=[["front", "#aaaaaa"], ["ux", "#fabada"]]) status = f.TaskStatusFactory.create(project=project) project.default_task_status = status project.save() f.MembershipFactory.create(project=project, user=project.owner, is_admin=True) url = reverse("tasks-list") data = { "subject": "Test user story", "project": project.id, "tags": [ ["back", "#fff8e7"], ["front", "#bbbbbb"], ["ux", None] ] } client.login(project.owner) response = client.json.post(url, json.dumps(data)) assert response.status_code == 201, response.data task_tags_colors = OrderedDict(response.data["tags"]) assert task_tags_colors["back"] == "#fff8e7" assert task_tags_colors["front"] == "#aaaaaa" assert task_tags_colors["ux"] == "#fabada" tags_colors = OrderedDict(project.tags_colors) project.refresh_from_db() tags_colors = OrderedDict(project.tags_colors) assert tags_colors["back"] == "#fff8e7" assert tags_colors["ux"] == "#fabada" assert tags_colors["front"] == "#aaaaaa"
[((37, 10, 37, 57), 'django.core.urlresolvers.reverse', 'reverse', (), '', False, 'from django.core.urlresolvers import reverse\n'), ((70, 10, 70, 57), 'django.core.urlresolvers.reverse', 'reverse', (), '', False, 'from django.core.urlresolvers import reverse\n'), ((86, 18, 86, 50), 'collections.OrderedDict', 'OrderedDict', ({(86, 30, 86, 49): 'project.tags_colors'}, {}), '(project.tags_colors)', False, 'from collections import OrderedDict\n'), ((91, 18, 91, 50), 'collections.OrderedDict', 'OrderedDict', ({(91, 30, 91, 49): 'project.tags_colors'}, {}), '(project.tags_colors)', False, 'from collections import OrderedDict\n'), ((99, 10, 99, 57), 'django.core.urlresolvers.reverse', 'reverse', (), '', False, 'from django.core.urlresolvers import reverse\n'), ((114, 18, 114, 50), 'collections.OrderedDict', 'OrderedDict', ({(114, 30, 114, 49): 'project.tags_colors'}, {}), '(project.tags_colors)', False, 'from collections import OrderedDict\n'), ((119, 18, 119, 50), 'collections.OrderedDict', 'OrderedDict', ({(119, 30, 119, 49): 'project.tags_colors'}, {}), '(project.tags_colors)', False, 'from collections import OrderedDict\n'), ((131, 10, 131, 31), 'django.core.urlresolvers.reverse', 'reverse', ({(131, 18, 131, 30): '"""tasks-list"""'}, {}), "('tasks-list')", False, 'from django.core.urlresolvers import reverse\n'), ((148, 23, 148, 57), 'collections.OrderedDict', 'OrderedDict', ({(148, 35, 148, 56): "response.data['tags']"}, {}), "(response.data['tags'])", False, 'from collections import OrderedDict\n'), ((154, 18, 154, 50), 'collections.OrderedDict', 'OrderedDict', ({(154, 30, 154, 49): 'project.tags_colors'}, {}), '(project.tags_colors)', False, 'from collections import OrderedDict\n'), ((158, 18, 158, 50), 'collections.OrderedDict', 'OrderedDict', ({(158, 30, 158, 49): 'project.tags_colors'}, {}), '(project.tags_colors)', False, 'from collections import OrderedDict\n'), ((46, 38, 46, 54), 'taiga.base.utils.json.dumps', 'json.dumps', ({(46, 49, 46, 53): 'data'}, {}), '(data)', False, 'from taiga.base.utils import json\n'), ((51, 38, 51, 54), 'taiga.base.utils.json.dumps', 'json.dumps', ({(51, 49, 51, 53): 'data'}, {}), '(data)', False, 'from taiga.base.utils import json\n'), ((56, 38, 56, 54), 'taiga.base.utils.json.dumps', 'json.dumps', ({(56, 49, 56, 53): 'data'}, {}), '(data)', False, 'from taiga.base.utils import json\n'), ((61, 38, 61, 54), 'taiga.base.utils.json.dumps', 'json.dumps', ({(61, 49, 61, 53): 'data'}, {}), '(data)', False, 'from taiga.base.utils import json\n'), ((82, 38, 82, 54), 'taiga.base.utils.json.dumps', 'json.dumps', ({(82, 49, 82, 53): 'data'}, {}), '(data)', False, 'from taiga.base.utils import json\n'), ((111, 38, 111, 54), 'taiga.base.utils.json.dumps', 'json.dumps', ({(111, 49, 111, 53): 'data'}, {}), '(data)', False, 'from taiga.base.utils import json\n'), ((145, 37, 145, 53), 'taiga.base.utils.json.dumps', 'json.dumps', ({(145, 48, 145, 52): 'data'}, {}), '(data)', False, 'from taiga.base.utils import json\n')]
satchelwu/PaddleOCR2Pytorch
pytorchocr/postprocess/cls_postprocess.py
6941565cfd4c45470cc3bf9d434c8c32267a33ef
import torch class ClsPostProcess(object): """ Convert between text-label and text-index """ def __init__(self, label_list, **kwargs): super(ClsPostProcess, self).__init__() self.label_list = label_list def __call__(self, preds, label=None, *args, **kwargs): if isinstance(preds, torch.Tensor): preds = preds.numpy() pred_idxs = preds.argmax(axis=1) decode_out = [(self.label_list[idx], preds[i, idx]) for i, idx in enumerate(pred_idxs)] if label is None: return decode_out label = [(self.label_list[idx], 1.0) for idx in label] return decode_out, label
[]
aba-ai-learning/Single-Human-Parsing-LIP
inference_folder.py
b1c0c91cef34dabf598231127886b669838fc085
#!/usr/local/bin/python3 # -*- coding: utf-8 -*- import os import argparse import logging import numpy as np from PIL import Image import matplotlib import matplotlib.pyplot as plt import torch import torch.nn as nn from torchvision import transforms import cv2 import tqdm from net.pspnet import PSPNet models = { 'squeezenet': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=512, deep_features_size=256, backend='squeezenet'), 'densenet': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=1024, deep_features_size=512, backend='densenet'), 'resnet18': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=512, deep_features_size=256, backend='resnet18'), 'resnet34': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=512, deep_features_size=256, backend='resnet34'), 'resnet50': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet50'), 'resnet101': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet101'), 'resnet152': lambda: PSPNet(sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet152') } parser = argparse.ArgumentParser(description="Pyramid Scene Parsing Network") parser.add_argument('--models-path', type=str, default='./checkpoints', help='Path for storing model snapshots') parser.add_argument('--backend', type=str, default='densenet', help='Feature extractor') parser.add_argument('--num-classes', type=int, default=20, help="Number of classes.") args = parser.parse_args() def build_network(snapshot, backend): epoch = 0 backend = backend.lower() net = models[backend]() net = nn.DataParallel(net) if snapshot is not None: _, epoch = os.path.basename(snapshot).split('_') if not epoch == 'last': epoch = int(epoch) net.load_state_dict(torch.load( snapshot, map_location=torch.device('cpu'))) logging.info( "Snapshot for epoch {} loaded from {}".format(epoch, snapshot)) if torch.cuda.is_available(): net = net.cuda() return net, epoch def get_transform(): transform_image_list = [ # transforms.Resize((192, 256), 3), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] return transforms.Compose(transform_image_list) def show_image(img, pred): fig, axes = plt.subplots(1, 2) ax0, ax1 = axes ax0.get_xaxis().set_ticks([]) ax0.get_yaxis().set_ticks([]) ax1.get_xaxis().set_ticks([]) ax1.get_yaxis().set_ticks([]) classes = np.array(('Background', # always index 0 'Hat', 'Hair', 'Glove', 'Sunglasses', 'UpperClothes', 'Dress', 'Coat', 'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', 'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe',)) colormap = [(0, 0, 0), (1, 0.25, 0), (0, 0.25, 0), (0.5, 0, 0.25), (1, 1, 1), (1, 0.75, 0), (0, 0, 0.5), (0.5, 0.25, 0), (0.75, 0, 0.25), (1, 0, 0.25), (0, 0.5, 0), (0.5, 0.5, 0), (0.25, 0, 0.5), (1, 0, 0.75), (0, 0.5, 0.5), (0.25, 0.5, 0.5), (1, 0, 0), (1, 0.25, 0), (0, 0.75, 0), (0.5, 0.75, 0), ] cmap = matplotlib.colors.ListedColormap(colormap) bounds = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N) h, w, _ = pred.shape def denormalize(img, mean, std): c, _, _ = img.shape for idx in range(c): img[idx, :, :] = img[idx, :, :] * std[idx] + mean[idx] return img img = denormalize(img.cpu().numpy(), [0.485, 0.456, 0.406], [ 0.229, 0.224, 0.225]) img = img.transpose(1, 2, 0).reshape((h, w, 3)) pred = pred.reshape((h, w)) # show image ax0.set_title('img') ax0.imshow(img) ax1.set_title('pred') mappable = ax1.imshow(pred, cmap=cmap, norm=norm) # colorbar legend cbar = plt.colorbar(mappable, ax=axes, shrink=0.7, ) cbar.ax.get_yaxis().set_ticks([]) for j, lab in enumerate(classes): cbar.ax.text(2.3, (j + 0.45) / 20.0, lab, ha='left', va='center', ) plt.savefig(fname="./result.jpg") print('result saved to ./result.jpg') plt.show() def main(): # --------------- model --------------- # snapshot = os.path.join(args.models_path, args.backend, 'PSPNet_last') net, starting_epoch = build_network(snapshot, args.backend) net.eval() # ------------ load image ------------ # data_transform = get_transform() imgfolder = 'ACGPN/ACGPN_testdata/test_img/' savefolder = 'ACGPN/ACGPN_testdata/test_humanparse/' if not os.path.exists(savefolder): os.mkdir(savefolder) imglist = os.listdir(imgfolder) for imgname in tqdm.tqdm(imglist): imgpath = os.path.join(imgfolder, imgname) print(imgpath) img = Image.open(imgpath) img = data_transform(img) if torch.cuda.is_available(): img = img.cuda() with torch.no_grad(): pred, _ = net(img.unsqueeze(dim=0)) pred = pred.squeeze(dim=0) pred = pred.cpu().numpy().transpose(1, 2, 0) pred = np.asarray(np.argmax(pred, axis=2), dtype=np.uint8).reshape((256, 192, 1)) pred_3 = np.repeat(pred, 3, axis = 2) savepath = os.path.join(savefolder, imgname) cv2.imwrite(savepath, pred_3) if __name__ == '__main__': main()
[((28, 9, 28, 77), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (), '', False, 'import argparse\n'), ((42, 10, 42, 30), 'torch.nn.DataParallel', 'nn.DataParallel', ({(42, 26, 42, 29): 'net'}, {}), '(net)', True, 'import torch.nn as nn\n'), ((51, 7, 51, 32), 'torch.cuda.is_available', 'torch.cuda.is_available', ({}, {}), '()', False, 'import torch\n'), ((62, 11, 62, 51), 'torchvision.transforms.Compose', 'transforms.Compose', ({(62, 30, 62, 50): 'transform_image_list'}, {}), '(transform_image_list)', False, 'from torchvision import transforms\n'), ((66, 16, 66, 34), 'matplotlib.pyplot.subplots', 'plt.subplots', ({(66, 29, 66, 30): '1', (66, 32, 66, 33): '2'}, {}), '(1, 2)', True, 'import matplotlib.pyplot as plt\n'), ((73, 14, 78, 65), 'numpy.array', 'np.array', ({(73, 23, 78, 64): "('Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'UpperClothes',\n 'Dress', 'Coat', 'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt',\n 'Face', 'Left-arm', 'Right-arm', 'Left-leg', 'Right-leg', 'Left-shoe',\n 'Right-shoe')"}, {}), "(('Background', 'Hat', 'Hair', 'Glove', 'Sunglasses',\n 'UpperClothes', 'Dress', 'Coat', 'Socks', 'Pants', 'Jumpsuits', 'Scarf',\n 'Skirt', 'Face', 'Left-arm', 'Right-arm', 'Left-leg', 'Right-leg',\n 'Left-shoe', 'Right-shoe'))", True, 'import numpy as np\n'), ((85, 11, 85, 53), 'matplotlib.colors.ListedColormap', 'matplotlib.colors.ListedColormap', ({(85, 44, 85, 52): 'colormap'}, {}), '(colormap)', False, 'import matplotlib\n'), ((88, 11, 88, 57), 'matplotlib.colors.BoundaryNorm', 'matplotlib.colors.BoundaryNorm', ({(88, 42, 88, 48): 'bounds', (88, 50, 88, 56): 'cmap.N'}, {}), '(bounds, cmap.N)', False, 'import matplotlib\n'), ((109, 11, 109, 56), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (), '', True, 'import matplotlib.pyplot as plt\n'), ((114, 4, 114, 37), 'matplotlib.pyplot.savefig', 'plt.savefig', (), '', True, 'import matplotlib.pyplot as plt\n'), ((116, 4, 116, 14), 'matplotlib.pyplot.show', 'plt.show', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((121, 15, 121, 74), 'os.path.join', 'os.path.join', ({(121, 28, 121, 44): 'args.models_path', (121, 46, 121, 58): 'args.backend', (121, 60, 121, 73): '"""PSPNet_last"""'}, {}), "(args.models_path, args.backend, 'PSPNet_last')", False, 'import os\n'), ((131, 14, 131, 35), 'os.listdir', 'os.listdir', ({(131, 25, 131, 34): 'imgfolder'}, {}), '(imgfolder)', False, 'import os\n'), ((132, 19, 132, 37), 'tqdm.tqdm', 'tqdm.tqdm', ({(132, 29, 132, 36): 'imglist'}, {}), '(imglist)', False, 'import tqdm\n'), ((19, 26, 19, 112), 'net.pspnet.PSPNet', 'PSPNet', (), '', False, 'from net.pspnet import PSPNet\n'), ((20, 24, 20, 109), 'net.pspnet.PSPNet', 'PSPNet', (), '', False, 'from net.pspnet import PSPNet\n'), ((21, 24, 21, 108), 'net.pspnet.PSPNet', 'PSPNet', (), '', False, 'from net.pspnet import PSPNet\n'), ((22, 24, 22, 108), 'net.pspnet.PSPNet', 'PSPNet', (), '', False, 'from net.pspnet import PSPNet\n'), ((23, 24, 23, 110), 'net.pspnet.PSPNet', 'PSPNet', (), '', False, 'from net.pspnet import PSPNet\n'), ((24, 25, 24, 112), 'net.pspnet.PSPNet', 'PSPNet', (), '', False, 'from net.pspnet import PSPNet\n'), ((25, 25, 25, 112), 'net.pspnet.PSPNet', 'PSPNet', (), '', False, 'from net.pspnet import PSPNet\n'), ((59, 8, 59, 29), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ({}, {}), '()', False, 'from torchvision import transforms\n'), ((60, 8, 60, 74), 'torchvision.transforms.Normalize', 'transforms.Normalize', ({(60, 29, 60, 50): '[0.485, 0.456, 0.406]', (60, 52, 60, 73): '[0.229, 0.224, 0.225]'}, {}), '([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])', False, 'from torchvision import transforms\n'), ((129, 11, 129, 37), 'os.path.exists', 'os.path.exists', ({(129, 26, 129, 36): 'savefolder'}, {}), '(savefolder)', False, 'import os\n'), ((130, 8, 130, 28), 'os.mkdir', 'os.mkdir', ({(130, 17, 130, 27): 'savefolder'}, {}), '(savefolder)', False, 'import os\n'), ((133, 18, 133, 50), 'os.path.join', 'os.path.join', ({(133, 31, 133, 40): 'imgfolder', (133, 42, 133, 49): 'imgname'}, {}), '(imgfolder, imgname)', False, 'import os\n'), ((135, 14, 135, 33), 'PIL.Image.open', 'Image.open', ({(135, 25, 135, 32): 'imgpath'}, {}), '(imgpath)', False, 'from PIL import Image\n'), ((137, 11, 137, 36), 'torch.cuda.is_available', 'torch.cuda.is_available', ({}, {}), '()', False, 'import torch\n'), ((140, 13, 140, 28), 'torch.no_grad', 'torch.no_grad', ({}, {}), '()', False, 'import torch\n'), ((147, 21, 147, 49), 'numpy.repeat', 'np.repeat', (), '', True, 'import numpy as np\n'), ((149, 23, 149, 56), 'os.path.join', 'os.path.join', ({(149, 36, 149, 46): 'savefolder', (149, 48, 149, 55): 'imgname'}, {}), '(savefolder, imgname)', False, 'import os\n'), ((150, 12, 150, 41), 'cv2.imwrite', 'cv2.imwrite', ({(150, 24, 150, 32): 'savepath', (150, 34, 150, 40): 'pred_3'}, {}), '(savepath, pred_3)', False, 'import cv2\n'), ((44, 19, 44, 45), 'os.path.basename', 'os.path.basename', ({(44, 36, 44, 44): 'snapshot'}, {}), '(snapshot)', False, 'import os\n'), ((48, 35, 48, 54), 'torch.device', 'torch.device', ({(48, 48, 48, 53): '"""cpu"""'}, {}), "('cpu')", False, 'import torch\n'), ((144, 30, 144, 53), 'numpy.argmax', 'np.argmax', (), '', True, 'import numpy as np\n')]
shuvoxcd01/Policy-Evaluation
src/random_policy.py
6bfdfdaa67e1dd67edb75fcf5b4664f2584345ac
from src.gridworld_mdp import GridWorld class EquiprobableRandomPolicy: def __init__(self): self.world_model = GridWorld() def get_prob(self, selected_action, state): assert state in self.world_model.states assert selected_action in self.world_model.actions num_all_possible_actions = 0 times_selected_action_chosen = 0 for next_state in self.world_model.states: for action in self.world_model.actions: if self.world_model.reward_fn(state, action, next_state) == -1: num_all_possible_actions += 1 if action == selected_action: times_selected_action_chosen += 1 if not num_all_possible_actions: return 0 prob = times_selected_action_chosen / num_all_possible_actions return prob
[((6, 27, 6, 38), 'src.gridworld_mdp.GridWorld', 'GridWorld', ({}, {}), '()', False, 'from src.gridworld_mdp import GridWorld\n')]
Rubiel1/sktime
sktime/classification/feature_based/_summary_classifier.py
2fd2290fb438224f11ddf202148917eaf9b73a87
# -*- coding: utf-8 -*- """Summary Classifier. Pipeline classifier using the basic summary statistics and an estimator. """ __author__ = ["MatthewMiddlehurst"] __all__ = ["SummaryClassifier"] import numpy as np from sklearn.ensemble import RandomForestClassifier from sktime.base._base import _clone_estimator from sktime.classification.base import BaseClassifier from sktime.transformations.series.summarize import SummaryTransformer class SummaryClassifier(BaseClassifier): """Summary statistic classifier. This classifier simply transforms the input data using the SummaryTransformer transformer and builds a provided estimator using the transformed data. Parameters ---------- summary_functions : str, list, tuple, default=("mean", "std", "min", "max") Either a string, or list or tuple of strings indicating the pandas summary functions that are used to summarize each column of the dataset. Must be one of ("mean", "min", "max", "median", "sum", "skew", "kurt", "var", "std", "mad", "sem", "nunique", "count"). summary_quantiles : str, list, tuple or None, default=(0.25, 0.5, 0.75) Optional list of series quantiles to calculate. If None, no quantiles are calculated. estimator : sklearn classifier, default=None An sklearn estimator to be built using the transformed data. Defaults to a Random Forest with 200 trees. n_jobs : int, default=1 The number of jobs to run in parallel for both `fit` and `predict`. ``-1`` means using all processors. random_state : int or None, default=None Seed for random, integer. Attributes ---------- n_classes_ : int Number of classes. Extracted from the data. classes_ : ndarray of shape (n_classes) Holds the label for each class. See Also -------- SummaryTransformer Examples -------- >>> from sktime.classification.feature_based import SummaryClassifier >>> from sklearn.ensemble import RandomForestClassifier >>> from sktime.datasets import load_unit_test >>> X_train, y_train = load_unit_test(split="train", return_X_y=True) >>> X_test, y_test = load_unit_test(split="test", return_X_y=True) >>> clf = SummaryClassifier(estimator=RandomForestClassifier(n_estimators=10)) >>> clf.fit(X_train, y_train) SummaryClassifier(...) >>> y_pred = clf.predict(X_test) """ _tags = { "capability:multivariate": True, "capability:multithreading": True, } def __init__( self, summary_functions=("mean", "std", "min", "max"), summary_quantiles=(0.25, 0.5, 0.75), estimator=None, n_jobs=1, random_state=None, ): self.summary_functions = summary_functions self.summary_quantiles = summary_quantiles self.estimator = estimator self.n_jobs = n_jobs self.random_state = random_state self._transformer = None self._estimator = None self._transform_atts = 0 super(SummaryClassifier, self).__init__() def _fit(self, X, y): """Fit a pipeline on cases (X,y), where y is the target variable. Parameters ---------- X : 3D np.array of shape = [n_instances, n_dimensions, series_length] The training data. y : array-like, shape = [n_instances] The class labels. Returns ------- self : Reference to self. Notes ----- Changes state by creating a fitted model that updates attributes ending in "_" and sets is_fitted flag to True. """ self._transformer = SummaryTransformer( summary_function=self.summary_functions, quantiles=self.summary_quantiles, ) self._estimator = _clone_estimator( RandomForestClassifier(n_estimators=200) if self.estimator is None else self.estimator, self.random_state, ) m = getattr(self._estimator, "n_jobs", None) if m is not None: self._estimator.n_jobs = self._threads_to_use X_t = self._transformer.fit_transform(X, y) if X_t.shape[0] > len(y): X_t = X_t.to_numpy().reshape((len(y), -1)) self._transform_atts = X_t.shape[1] self._estimator.fit(X_t, y) return self def _predict(self, X): """Predict class values of n instances in X. Parameters ---------- X : 3D np.array of shape = [n_instances, n_dimensions, series_length] The data to make predictions for. Returns ------- y : array-like, shape = [n_instances] Predicted class labels. """ X_t = self._transformer.transform(X) if X_t.shape[1] < self._transform_atts: X_t = X_t.to_numpy().reshape((-1, self._transform_atts)) return self._estimator.predict(X_t) def _predict_proba(self, X): """Predict class probabilities for n instances in X. Parameters ---------- X : 3D np.array of shape = [n_instances, n_dimensions, series_length] The data to make predict probabilities for. Returns ------- y : array-like, shape = [n_instances, n_classes_] Predicted probabilities using the ordering in classes_. """ X_t = self._transformer.transform(X) if X_t.shape[1] < self._transform_atts: X_t = X_t.to_numpy().reshape((-1, self._transform_atts)) m = getattr(self._estimator, "predict_proba", None) if callable(m): return self._estimator.predict_proba(X_t) else: dists = np.zeros((X.shape[0], self.n_classes_)) preds = self._estimator.predict(X_t) for i in range(0, X.shape[0]): dists[i, self._class_dictionary[preds[i]]] = 1 return dists
[((113, 28, 116, 9), 'sktime.transformations.series.summarize.SummaryTransformer', 'SummaryTransformer', (), '', False, 'from sktime.transformations.series.summarize import SummaryTransformer\n'), ((181, 20, 181, 59), 'numpy.zeros', 'np.zeros', ({(181, 29, 181, 58): '(X.shape[0], self.n_classes_)'}, {}), '((X.shape[0], self.n_classes_))', True, 'import numpy as np\n'), ((119, 12, 119, 52), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', (), '', False, 'from sklearn.ensemble import RandomForestClassifier\n')]
skumaravelan/tech-interview-questions
coding/reverse_bits/starter.py
637dfbf131123c77a8e2e4e45ba420355dcb381f
class Solution: # @param n, an integer # @return an integer def reverseBits(self, n):
[]
valenciarichards/hypernews-portal
Topics/Submitting data/POST Request With Several Keys/main.py
0b6c4d8aefe4f8fc7dc90d6542716e98f52515b3
from django.shortcuts import redirect from django.views import View class TodoView(View): all_todos = [] def post(self, request, *args, **kwargs): todo = request.POST.get("todo") important = request.POST.get("important") if todo not in self.all_todos: if important: self.all_todos = [todo] + self.all_todos else: self.all_todos.append(todo) return redirect("/")
[((16, 15, 16, 28), 'django.shortcuts.redirect', 'redirect', ({(16, 24, 16, 27): '"""/"""'}, {}), "('/')", False, 'from django.shortcuts import redirect\n')]
quarckster/pypeln
pypeln/thread/api/to_iterable_thread_test.py
f4160d0f4d4718b67f79a0707d7261d249459a4b
import typing as tp from unittest import TestCase import hypothesis as hp from hypothesis import strategies as st import pypeln as pl import cytoolz as cz MAX_EXAMPLES = 10 T = tp.TypeVar("T") @hp.given(nums=st.lists(st.integers())) @hp.settings(max_examples=MAX_EXAMPLES) def test_from_to_iterable(nums: tp.List[int]): nums_pl = nums nums_pl = pl.thread.from_iterable(nums_pl) nums_pl = cz.partition_all(10, nums_pl) nums_pl = pl.thread.map(sum, nums_pl) nums_pl = pl.thread.to_iterable(nums_pl) nums_pl = list(nums_pl) nums_py = nums nums_py = cz.partition_all(10, nums_py) nums_py = map(sum, nums_py) nums_py = list(nums_py) assert nums_py == nums_pl
[((10, 4, 10, 19), 'typing.TypeVar', 'tp.TypeVar', ({(10, 15, 10, 18): '"""T"""'}, {}), "('T')", True, 'import typing as tp\n'), ((14, 1, 14, 39), 'hypothesis.settings', 'hp.settings', (), '', True, 'import hypothesis as hp\n'), ((18, 14, 18, 46), 'pypeln.thread.from_iterable', 'pl.thread.from_iterable', ({(18, 38, 18, 45): 'nums_pl'}, {}), '(nums_pl)', True, 'import pypeln as pl\n'), ((19, 14, 19, 43), 'cytoolz.partition_all', 'cz.partition_all', ({(19, 31, 19, 33): '10', (19, 35, 19, 42): 'nums_pl'}, {}), '(10, nums_pl)', True, 'import cytoolz as cz\n'), ((20, 14, 20, 41), 'pypeln.thread.map', 'pl.thread.map', ({(20, 28, 20, 31): 'sum', (20, 33, 20, 40): 'nums_pl'}, {}), '(sum, nums_pl)', True, 'import pypeln as pl\n'), ((21, 14, 21, 44), 'pypeln.thread.to_iterable', 'pl.thread.to_iterable', ({(21, 36, 21, 43): 'nums_pl'}, {}), '(nums_pl)', True, 'import pypeln as pl\n'), ((25, 14, 25, 43), 'cytoolz.partition_all', 'cz.partition_all', ({(25, 31, 25, 33): '10', (25, 35, 25, 42): 'nums_py'}, {}), '(10, nums_py)', True, 'import cytoolz as cz\n'), ((13, 24, 13, 37), 'hypothesis.strategies.integers', 'st.integers', ({}, {}), '()', True, 'from hypothesis import strategies as st\n')]
sem-onyalo/dnn-training-monitoring-flask
app/datastore/test.py
6a81e06a6871b0d6e890f9fd92f4ab79ac8ee639
import json from app.model import TrainMetrics, TrainPlots class DatastoreTest: def getRuns(self): return [ "20211210T132017", "20211209T132017", "20211208T132017" ] def getEvals(self, run): return [40, 30, 20, 10] def getHyperparameters(self, run): return json.loads(TEST_HYPERPARAMETERS) def getSummary(self, run, eval): return json.loads(TEST_SUMMARY) def getMetrics(self, run, eval): header = ["Epoch", "Epochs", "Mini-Batch", "Mini-Batches", "Discriminator Loss: Real", "Discriminator Loss: Fake", "GAN Loss"] items = list() items.append([1, 100, 1, 234, 0.304, 2.544, 0.487]) items.append([1, 100, 2, 234, 0.239, 1.219, 0.880]) items.append([1, 100, 3, 234, 0.239, 1.219, 0.880]) trainMetrics = TrainMetrics(header, items) return trainMetrics def getPlots(self, run, eval): plots = TrainPlots() plots.loss = TEST_PLOT_LOSS plots.image = TEST_PLOT_IMAGE plots.target = TEST_PLOT_TARGET return plots TEST_SUMMARY = ''' { "Epoch":10, "Real Accuracy":"1%", "Fake Accuracy":"99%", "Elapsed Time":"0:06:30.957221" } ''' TEST_HYPERPARAMETERS = ''' { "Epochs": 100, "Batch Size": 256, "Eval Frequency": 10, "Batches Per Epoch": 234, "Half Batch": 128, "Latent Dim": 100, "Conv Filters": [256, 256], "Conv Layer Kernel Size": "(3, 3)", "Conv Transpose Filters": [256, 256], "Conv Transpose Layer Kernel Size": "(4, 4)", "Generator Input Filters": 256, "Generator Output Layer Kernel Size": "(7, 7)", "Adam Learning Rate": 0.0002, "Adam Beta 1": 0.5, "Kernel Init Std Dev": 0.02, "Leaky Relu Alpha": 0.2, "Dropout Rate": 0.4 } ''' TEST_PLOT_LOSS = "" TEST_PLOT_IMAGE = "" TEST_PLOT_TARGET = ""
[((17, 15, 17, 47), 'json.loads', 'json.loads', ({(17, 26, 17, 46): 'TEST_HYPERPARAMETERS'}, {}), '(TEST_HYPERPARAMETERS)', False, 'import json\n'), ((20, 15, 20, 39), 'json.loads', 'json.loads', ({(20, 26, 20, 38): 'TEST_SUMMARY'}, {}), '(TEST_SUMMARY)', False, 'import json\n'), ((29, 23, 29, 50), 'app.model.TrainMetrics', 'TrainMetrics', ({(29, 36, 29, 42): 'header', (29, 44, 29, 49): 'items'}, {}), '(header, items)', False, 'from app.model import TrainMetrics, TrainPlots\n'), ((34, 16, 34, 28), 'app.model.TrainPlots', 'TrainPlots', ({}, {}), '()', False, 'from app.model import TrainMetrics, TrainPlots\n')]
fkleinTUI/pyBinSim
pybinsim/pose.py
5320f62422e0a92154272f8167b87cabdcafe27f
import logging from collections import namedtuple logger = logging.getLogger("pybinsim.Pose") class Orientation(namedtuple('Orientation', ['yaw', 'pitch', 'roll'])): pass class Position(namedtuple('Position', ['x', 'y', 'z'])): pass class Custom(namedtuple('CustomValues', ['a', 'b', 'c'])): pass class Pose: def __init__(self, orientation, position, custom=Custom(0, 0, 0)): self.orientation = orientation self.position = position self.custom = custom def create_key(self): value_list = list(self.orientation) + list(self.position) + list(self.custom) return ','.join([str(x) for x in value_list]) @staticmethod def from_filterValueList(filter_value_list): # 'old' format: orientation - position if len(filter_value_list) == 6: orientation = Orientation(filter_value_list[0], filter_value_list[1], filter_value_list[2]) position = Position(filter_value_list[3], filter_value_list[4], filter_value_list[5]) return Pose(orientation, position) # 'new' format: orientation - position - custom if len(filter_value_list) == 9: orientation = Orientation(filter_value_list[0], filter_value_list[1], filter_value_list[2]) position = Position(filter_value_list[3], filter_value_list[4], filter_value_list[5]) custom = Custom(filter_value_list[6], filter_value_list[7], filter_value_list[8]) return Pose(orientation, position, custom) raise RuntimeError("Unable to parse filter list: {}".format(filter_value_list))
[((4, 9, 4, 43), 'logging.getLogger', 'logging.getLogger', ({(4, 27, 4, 42): '"""pybinsim.Pose"""'}, {}), "('pybinsim.Pose')", False, 'import logging\n'), ((7, 18, 7, 69), 'collections.namedtuple', 'namedtuple', ({(7, 29, 7, 42): '"""Orientation"""', (7, 44, 7, 68): "['yaw', 'pitch', 'roll']"}, {}), "('Orientation', ['yaw', 'pitch', 'roll'])", False, 'from collections import namedtuple\n'), ((11, 15, 11, 54), 'collections.namedtuple', 'namedtuple', ({(11, 26, 11, 36): '"""Position"""', (11, 38, 11, 53): "['x', 'y', 'z']"}, {}), "('Position', ['x', 'y', 'z'])", False, 'from collections import namedtuple\n'), ((15, 13, 15, 56), 'collections.namedtuple', 'namedtuple', ({(15, 24, 15, 38): '"""CustomValues"""', (15, 40, 15, 55): "['a', 'b', 'c']"}, {}), "('CustomValues', ['a', 'b', 'c'])", False, 'from collections import namedtuple\n')]
madelinetharp/morphocut-server
morphocut_server/extensions.py
a82ad5916adbd168816f7b26432b4a98d978c299
from flask_sqlalchemy import SQLAlchemy from flask_redis import FlaskRedis from flask_migrate import Migrate # from flask_rq2 import RQ from rq import Queue from morphocut_server.worker import redis_conn database = SQLAlchemy() redis_store = FlaskRedis() migrate = Migrate() redis_queue = Queue(connection=redis_conn) flask_rq = None
[((10, 11, 10, 23), 'flask_sqlalchemy.SQLAlchemy', 'SQLAlchemy', ({}, {}), '()', False, 'from flask_sqlalchemy import SQLAlchemy\n'), ((11, 14, 11, 26), 'flask_redis.FlaskRedis', 'FlaskRedis', ({}, {}), '()', False, 'from flask_redis import FlaskRedis\n'), ((12, 10, 12, 19), 'flask_migrate.Migrate', 'Migrate', ({}, {}), '()', False, 'from flask_migrate import Migrate\n'), ((13, 14, 13, 42), 'rq.Queue', 'Queue', (), '', False, 'from rq import Queue\n')]
aleonlein/acq4
acq4/drivers/ThorlabsMFC1/tmcm.py
4b1fcb9ad2c5e8d4595a2b9cf99d50ece0c0f555
from __future__ import print_function """ Low-level serial communication for Trinamic TMCM-140-42-SE controller (used internally for the Thorlabs MFC1) """ import serial, struct, time, collections try: # this is nicer because it provides deadlock debugging information from acq4.util.Mutex import RecursiveMutex as RLock except ImportError: from threading import RLock try: from ..SerialDevice import SerialDevice, TimeoutError, DataError except ValueError: ## relative imports not allowed when running from command prompt, so ## we adjust sys.path when running the script for testing if __name__ == '__main__': import sys, os sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from SerialDevice import SerialDevice, TimeoutError, DataError def threadsafe(method): # decorator for automatic mutex lock/unlock def lockMutex(self, *args, **kwds): with self.lock: return method(self, *args, **kwds) return lockMutex COMMANDS = { 'rol': 2, 'ror': 1, 'mvp': 4, 'mst': 3, 'rfs': 13, 'sco': 30, 'cco': 32, 'gco': 31, 'sap': 5, 'gap': 6, 'stap': 7, 'rsap': 8, 'sgp': 9, 'ggp': 10, 'stgp': 11, 'rsgp': 12, 'sio': 14, 'gio': 15, 'calc': 19, 'comp': 20, 'jc': 21, 'ja': 22, 'csub': 23, 'rsub': 24, 'wait': 27, 'stop': 28, 'sco': 30, 'gco': 31, 'cco': 32, 'calcx': 33, 'aap': 34, 'agp': 35, 'aco': 39, 'sac': 29, 'stop_application': 128, 'run_application': 129, 'step_application': 130, 'reset_application': 131, 'start_download': 132, 'stop_download': 133, 'get_application_status': 135, 'get_firmware_version': 136, 'restore_factory_settings': 137, } PARAMETERS = { # negative values indicate read-only parameters 'target_position': 0, 'actual_position': 1, 'target_speed': 2, 'actual_speed': 3, 'maximum_speed': 4, 'maximum_acceleration': 5, 'maximum_current': 6, 'standby_current': 7, 'target_pos_reached': 8, 'ref_switch_status': 9, 'right_limit_switch_status': 10, 'left_limit_switch_status': 11, 'right_limit_switch_disable': 12, 'left_limit_switch_disable': 13, 'minimum_speed': -130, 'acceleration': -135, 'ramp_mode': 138, 'microstep_resolution': 140, 'soft_stop_flag': 149, 'ramp_divisor': 153, 'pulse_divisor': 154, 'referencing_mode': 193, 'referencing_search_speed': 194, 'referencing_switch_speed': 195, 'distance_end_switches': 196, 'mixed_decay_threshold': 203, 'freewheeling': 204, 'stall_detection_threshold': 205, 'actual_load_value': 206, 'driver_error_flags': -208, 'encoder_position': 209, 'encoder_prescaler': 210, 'fullstep_threshold': 211, 'maximum_encoder_deviation': 212, 'power_down_delay': 214, 'absolute_encoder_value': -215, } GLOBAL_PARAMETERS = { 'eeprom_magic': 64, 'baud_rate': 65, 'serial_address': 66, 'ascii_mode': 67, 'eeprom_lock': 73, 'auto_start_mode': 77, 'tmcl_code_protection': 81, 'coordinate_storage': 84, 'tmcl_application_status': 128, 'download_mode': 129, 'tmcl_program_counter': 130, 'tick_timer': 132, 'random_number': -133, } OPERATORS = { 'add': 0, 'sub': 1, 'mul': 2, 'div': 3, 'mod': 4, 'and': 5, 'or': 6, 'xor': 7, 'not': 8, 'load': 9, 'swap': 10, } CONDITIONS = { 'ze': 0, 'nz': 1, 'eq': 2, 'ne': 3, 'gt': 4, 'ge': 5, 'lt': 6, 'le': 7, 'eto': 8, 'eal': 9, 'esd': 12, } STATUS = { 1: "Wrong checksum", 2: "Invalid command", 3: "Wrong type", 4: "Invalid value", 5: "Configuration EEPROM locked", 6: "Command not available", } class TMCMError(Exception): def __init__(self, status): self.status = status msg = STATUS[status] Exception.__init__(self, msg) class TMCM140(SerialDevice): def __init__(self, port, baudrate=9600, module_addr=1): """ port: serial COM port (eg. COM3 or /dev/ttyACM0) baudrate: 9600 by default module_addr: 1 by default """ self.lock = RLock(debug=True) self.port = port assert isinstance(module_addr, int) assert module_addr > 0 self.module_addr = module_addr self.module_str = chr(module_addr+64) self._waiting_for_reply = False SerialDevice.__init__(self, port=self.port, baudrate=baudrate) @threadsafe def command(self, cmd, type, motor, value): """Send a command to the controller and return the reply. If an error is returned from the controller then raise an exception. """ self._send_cmd(cmd, type, motor, value) return self._get_reply() def rotate(self, velocity): """Begin rotating motor. velocity: -2047 to +2047 negative values turn left; positive values turn right. """ assert isinstance(velocity, int) assert -2047 <= velocity <= 2047 if velocity < 0: direction = 'l' velocity = -velocity else: direction = 'r' self.command('ro'+direction, 0, 0, velocity) def stop(self): """Stop the motor. Note: does not stop currently running programs. """ self.command('mst', 0, 0, 0) def move(self, pos, relative=False, velocity=None): """Rotate until reaching *pos*. pos: The target position relative: If True, then *pos* is interpreted as relative to the current position velocity: Optionally set the target velocity before moving """ assert isinstance(pos, int) assert -2**32 <= pos < 2**32 if velocity is not None: assert isinstance(velocity, int) assert 0 <= velocity < 2048 raise NotImplementedError() type = 1 if relative else 0 self.command('mvp', type, 0, pos) def get_param(self, param): pnum = abs(PARAMETERS[param]) return self.command('gap', pnum, 0, 0)[4] def __getitem__(self, param): return self.get_param(param) def set_param(self, param, value, **kwds): """Set a parameter value. If valus is 'accum' then the parameter is set from the accumulator register. """ pnum = PARAMETERS[param] if pnum < 0: raise TypeError("Parameter %s is read-only." % param) if pnum in (PARAMETERS['maximum_current'], PARAMETERS['standby_current']) and value > 100: if kwds.get('force', False) is not True: raise Exception("Refusing to set current > 100 (this can damage the motor). " "To override, use force=True.") if value == 'accum': self.command('aap', pnum, 0, 0) else: self.command('sap', pnum, 0, value) @threadsafe def set_params(self, **kwds): """Set multiple parameters. The driver is thread-locked until all parameters are set. """ for param, value in kwds.items(): self.set_param(param, value) def __setitem__(self, param, value): return self.set_param(param, value) def get_global(self, param): """Return a global parameter or copy global to accumulator. Use param='gpX' to refer to general-purpose variables. """ if param.startswith('gp'): pnum = int(param[2:]) bank = 2 else: pnum = abs(GLOBAL_PARAMETERS[param]) bank = 0 return self.command('ggp', pnum, bank, 0)[4] def set_global(self, param, value): if param.startswith('gp'): pnum = int(param[2:]) bank = 2 else: pnum = GLOBAL_PARAMETERS[param] bank = 0 if pnum < 0: raise TypeError("Parameter %s is read-only." % param) if value == 'accum': self.command('agp', pnum, bank, 0) else: self.command('sgp', pnum, bank, value) def stop_program(self): """Stop the currently running TMCL program. """ self.command('stop_application', 0, 0, 0) def start_program(self, address=None): """Start running TMCL program code from the given address (in bytes?), or from the current address if None. """ if address is None: self.command('run_application', 0, 0, 0) else: self.command('run_application', 1, 0, address) def start_download(self, address=0): """Begin loading TMCL commands into EEPROM . """ self.command('start_download', 0, 0, address) def stop_download(self): """Finish loading TMCL commands into EEPROM. """ self.command('stop_download', 0, 0, 0) def write_program(self, address=0): return ProgramManager(self, address) def program_status(self): """Return current program status: 0=stop, 1=run, 2=step, 3=reset """ return self.command('get_application_status', 0, 0, 0)[4] def calc(self, op, value): opnum = OPERATORS[op] if opnum > 9: raise TypeError("Operator %s invalid for calc" % op) self.command('calc', opnum, 0, value) def calcx(self, op): opnum = OPERATORS[op] self.command('calcx', opnum, 0, 0) def comp(self, val): self.command('comp', 0, 0, val) def jump(self, *args): """Program jump to *addr* (instruction index). Usage: jump(address) jump(cond, address) Where *cond* may be ze, nz, eq, ne, gt, ge, lt, le, eto, eal, or esd. """ if len(args) == 1: assert isinstance(args[0], int) self.command('ja', 0, 0, args[0]) else: cnum = CONDITIONS[args[0]] self.command('jc', cnum, 0, args[1]) def _send_cmd(self, cmd, type, motor, value): """Send a command to the controller. """ if self._waiting_for_reply: raise Exception("Cannot send command; previous reply has not been " "received yet.") cmd_num = COMMANDS[cmd] assert isinstance(type, int) assert isinstance(motor, int) # Try packing the value first as unsigned, then signed. (the overlapping # integer ranges have identical bit representation, so there is no # ambiguity) try: cmd = struct.pack('>BBBBI', self.module_addr, cmd_num, type, motor, value) except struct.error: cmd = struct.pack('>BBBBi', self.module_addr, cmd_num, type, motor, value) chksum = sum(bytearray(cmd)) % 256 out = cmd + struct.pack('B', chksum) self.write(out) self._waiting_for_reply = True def _get_reply(self): """Read and parse a reply from the controller. Raise an exception if an error was reported. """ if not self._waiting_for_reply: raise Exception("No reply expected.") try: d = self.read(9) finally: self._waiting_for_reply = False d2 = self.readAll() if len(d2) > 0: raise Exception("Error: extra data while reading reply.") parts = struct.unpack('>BBBBiB', d) reply_addr, module_addr, status, cmd_num, value, chksum = parts if chksum != sum(bytearray(d[:-1])) % 256: raise Exception("Invalid checksum reading from controller.") if status < 100: raise TMCMError(status) return parts class ProgramManager(object): def __init__(self, mcm, start=0): self.mcm = mcm self.start = start self.count = 0 def __enter__(self): self.mcm.lock.acquire() self.mcm.start_download(self.start) return self def __exit__(self, *args): # insert an extra stop to ensure the program can't leak # into previously written code. self.mcm.command('stop', 0, 0, 0) self.mcm.stop_download() self.mcm.lock.release() def __getattr__(self, name): self.count += 1 return getattr(self.mcm, name)
[((202, 20, 202, 37), 'threading.RLock', 'RLock', (), '', False, 'from threading import RLock\n'), ((209, 8, 209, 70), 'SerialDevice.SerialDevice.__init__', 'SerialDevice.__init__', (), '', False, 'from SerialDevice import SerialDevice, TimeoutError, DataError\n'), ((430, 16, 430, 43), 'struct.unpack', 'struct.unpack', ({(430, 30, 430, 39): '""">BBBBiB"""', (430, 41, 430, 42): 'd'}, {}), "('>BBBBiB', d)", False, 'import serial, struct, time, collections\n'), ((404, 18, 404, 86), 'struct.pack', 'struct.pack', ({(404, 30, 404, 38): '""">BBBBI"""', (404, 40, 404, 56): 'self.module_addr', (404, 58, 404, 65): 'cmd_num', (404, 67, 404, 71): 'type', (404, 73, 404, 78): 'motor', (404, 80, 404, 85): 'value'}, {}), "('>BBBBI', self.module_addr, cmd_num, type, motor, value)", False, 'import serial, struct, time, collections\n'), ((409, 20, 409, 44), 'struct.pack', 'struct.pack', ({(409, 32, 409, 35): '"""B"""', (409, 37, 409, 43): 'chksum'}, {}), "('B', chksum)", False, 'import serial, struct, time, collections\n'), ((406, 18, 406, 86), 'struct.pack', 'struct.pack', ({(406, 30, 406, 38): '""">BBBBi"""', (406, 40, 406, 56): 'self.module_addr', (406, 58, 406, 65): 'cmd_num', (406, 67, 406, 71): 'type', (406, 73, 406, 78): 'motor', (406, 80, 406, 85): 'value'}, {}), "('>BBBBi', self.module_addr, cmd_num, type, motor, value)", False, 'import serial, struct, time, collections\n'), ((23, 53, 23, 78), 'os.path.dirname', 'os.path.dirname', ({(23, 69, 23, 77): '__file__'}, {}), '(__file__)', False, 'import sys, os\n')]
brianleungwh/signals
tests/generators/ios/test_core_data.py
d28d2722d681d390ebd21cd668d0b19f2f184451
import unittest from signals.generators.ios.core_data import get_current_version, get_core_data_from_folder class CoreDataTestCase(unittest.TestCase): def test_get_current_version(self): version_name = get_current_version('./tests/files/doubledummy.xcdatamodeld') self.assertEqual(version_name, 'dummy 2.xcdatamodel') version_name = get_current_version('./tests/files/dummy.xcdatamodeld') self.assertEqual(version_name, 'dummy.xcdatamodel') def test_get_core_data_from_folder(self): xcdatamodeld_path = './tests/files/doubledummy.xcdatamodeld' contents_path = xcdatamodeld_path + '/dummy 2.xcdatamodel/contents' self.assertEqual(get_core_data_from_folder(xcdatamodeld_path), contents_path) xcdatamodeld_path = './tests/files/dummy.xcdatamodeld' contents_path = xcdatamodeld_path + '/dummy.xcdatamodel/contents' self.assertEqual(get_core_data_from_folder(xcdatamodeld_path), contents_path)
[((7, 23, 7, 84), 'signals.generators.ios.core_data.get_current_version', 'get_current_version', ({(7, 43, 7, 83): '"""./tests/files/doubledummy.xcdatamodeld"""'}, {}), "('./tests/files/doubledummy.xcdatamodeld')", False, 'from signals.generators.ios.core_data import get_current_version, get_core_data_from_folder\n'), ((9, 23, 9, 78), 'signals.generators.ios.core_data.get_current_version', 'get_current_version', ({(9, 43, 9, 77): '"""./tests/files/dummy.xcdatamodeld"""'}, {}), "('./tests/files/dummy.xcdatamodeld')", False, 'from signals.generators.ios.core_data import get_current_version, get_core_data_from_folder\n'), ((15, 25, 15, 69), 'signals.generators.ios.core_data.get_core_data_from_folder', 'get_core_data_from_folder', ({(15, 51, 15, 68): 'xcdatamodeld_path'}, {}), '(xcdatamodeld_path)', False, 'from signals.generators.ios.core_data import get_current_version, get_core_data_from_folder\n'), ((19, 25, 19, 69), 'signals.generators.ios.core_data.get_core_data_from_folder', 'get_core_data_from_folder', ({(19, 51, 19, 68): 'xcdatamodeld_path'}, {}), '(xcdatamodeld_path)', False, 'from signals.generators.ios.core_data import get_current_version, get_core_data_from_folder\n')]
hudalao/mcmc
mcmc/plot_graph.py
148d9fbb9ebd85ee5bfd3601d80ebbd96bc25791
# commend the lines for plotting using import matplotlib.pyplot as plt import networkx as nx def plot_graph(G, N, time_point, posi): #setting up for graph plotting #setting the positions for all nodes pos = {} for ii in range(N): pos[ii] = posi[ii] # plt.figure(time_point + 1) elarge=[(u,v) for (u,v,d) in G[time_point].edges(data=True) if d['weight'] >0.5] esmall=[(u,v) for (u,v,d) in G[time_point].edges(data=True) if d['weight'] <=0.5] # nodes # nx.draw_networkx_nodes(G[time_point],pos,node_size=200) # edges # nx.draw_networkx_edges(G[time_point],pos,edgelist=elarge,width=3) # nx.draw_networkx_edges(G[time_point],pos,edgelist=esmall,width=3,alpha=0.5,edge_color='b',style='dashed') # labels # nx.draw_networkx_labels(G[time_point],pos,font_size=10,font_family='sans-serif')
[]
mishrakeshav/Competitive-Programming
Number Theory/Sieve_of_Eratosthenes.py
b25dcfeec0fb9a9c71bf3a05644b619f4ca83dd2
from sys import stdin input = stdin.readline N = int(input()) primes = [1]*(N+1) primes[0] = 0 primes[1] = 0 for i in range(2,int(N**0.5)+1): if primes[i]: for j in range(i*i,N+1,i): primes[j] = 0 for i in range(N+1): if primes[i]: print(i,end = " ")
[]
kruton/powerline
powerline/lib/tree_watcher.py
f6ddb95da5f41b8285cffd1d17c1ef46dc08a7d6
# vim:fileencoding=utf-8:noet from __future__ import (unicode_literals, absolute_import, print_function) __copyright__ = '2013, Kovid Goyal <kovid at kovidgoyal.net>' __docformat__ = 'restructuredtext en' import sys import os import errno from time import sleep from powerline.lib.monotonic import monotonic from powerline.lib.inotify import INotify, INotifyError class NoSuchDir(ValueError): pass class BaseDirChanged(ValueError): pass class DirTooLarge(ValueError): def __init__(self, bdir): ValueError.__init__(self, 'The directory {0} is too large to monitor. Try increasing the value in /proc/sys/fs/inotify/max_user_watches'.format(bdir)) def realpath(path): return os.path.abspath(os.path.realpath(path)) class INotifyTreeWatcher(INotify): is_dummy = False def __init__(self, basedir, ignore_event=None): super(INotifyTreeWatcher, self).__init__() self.basedir = realpath(basedir) self.watch_tree() self.modified = True self.ignore_event = (lambda path, name: False) if ignore_event is None else ignore_event def watch_tree(self): self.watched_dirs = {} self.watched_rmap = {} try: self.add_watches(self.basedir) except OSError as e: if e.errno == errno.ENOSPC: raise DirTooLarge(self.basedir) def add_watches(self, base, top_level=True): ''' Add watches for this directory and all its descendant directories, recursively. ''' base = realpath(base) # There may exist a link which leads to an endless # add_watches loop or to maximum recursion depth exceeded if not top_level and base in self.watched_dirs: return try: is_dir = self.add_watch(base) except OSError as e: if e.errno == errno.ENOENT: # The entry could have been deleted between listdir() and # add_watch(). if top_level: raise NoSuchDir('The dir {0} does not exist'.format(base)) return if e.errno == errno.EACCES: # We silently ignore entries for which we dont have permission, # unless they are the top level dir if top_level: raise NoSuchDir('You do not have permission to monitor {0}'.format(base)) return raise else: if is_dir: try: files = os.listdir(base) except OSError as e: if e.errno in (errno.ENOTDIR, errno.ENOENT): # The dir was deleted/replaced between the add_watch() # and listdir() if top_level: raise NoSuchDir('The dir {0} does not exist'.format(base)) return raise for x in files: self.add_watches(os.path.join(base, x), top_level=False) elif top_level: # The top level dir is a file, not good. raise NoSuchDir('The dir {0} does not exist'.format(base)) def add_watch(self, path): import ctypes bpath = path if isinstance(path, bytes) else path.encode(self.fenc) wd = self._add_watch(self._inotify_fd, ctypes.c_char_p(bpath), # Ignore symlinks and watch only directories self.DONT_FOLLOW | self.ONLYDIR | self.MODIFY | self.CREATE | self.DELETE | self.MOVE_SELF | self.MOVED_FROM | self.MOVED_TO | self.ATTRIB | self.DELETE_SELF) if wd == -1: eno = ctypes.get_errno() if eno == errno.ENOTDIR: return False raise OSError(eno, 'Failed to add watch for: {0}: {1}'.format(path, self.os.strerror(eno))) self.watched_dirs[path] = wd self.watched_rmap[wd] = path return True def process_event(self, wd, mask, cookie, name): if wd == -1 and (mask & self.Q_OVERFLOW): # We missed some INOTIFY events, so we dont # know the state of any tracked dirs. self.watch_tree() self.modified = True return path = self.watched_rmap.get(wd, None) if path is not None: self.modified = not self.ignore_event(path, name) if mask & self.CREATE: # A new sub-directory might have been created, monitor it. try: self.add_watch(os.path.join(path, name)) except OSError as e: if e.errno == errno.ENOENT: # Deleted before add_watch() pass elif e.errno == errno.ENOSPC: raise DirTooLarge(self.basedir) else: raise if (mask & self.DELETE_SELF or mask & self.MOVE_SELF) and path == self.basedir: raise BaseDirChanged('The directory %s was moved/deleted' % path) def __call__(self): self.read() ret = self.modified self.modified = False return ret class DummyTreeWatcher(object): is_dummy = True def __init__(self, basedir): self.basedir = realpath(basedir) def __call__(self): return False class TreeWatcher(object): def __init__(self, expire_time=10): self.watches = {} self.last_query_times = {} self.expire_time = expire_time * 60 def watch(self, path, logger=None, ignore_event=None): path = realpath(path) try: w = INotifyTreeWatcher(path, ignore_event=ignore_event) except (INotifyError, DirTooLarge) as e: if logger is not None and not isinstance(e, INotifyError): logger.warn('Failed to watch path: {0} with error: {1}'.format(path, e)) w = DummyTreeWatcher(path) self.watches[path] = w return w def is_actually_watched(self, path): w = self.watches.get(path, None) return not getattr(w, 'is_dummy', True) def expire_old_queries(self): pop = [] now = monotonic() for path, lt in self.last_query_times.items(): if now - lt > self.expire_time: pop.append(path) for path in pop: del self.last_query_times[path] def __call__(self, path, logger=None, ignore_event=None): path = realpath(path) self.expire_old_queries() self.last_query_times[path] = monotonic() w = self.watches.get(path, None) if w is None: try: self.watch(path, logger=logger, ignore_event=ignore_event) except NoSuchDir: pass return True try: return w() except BaseDirChanged: self.watches.pop(path, None) return True except DirTooLarge as e: if logger is not None: logger.warn(str(e)) self.watches[path] = DummyTreeWatcher(path) return False if __name__ == '__main__': w = INotifyTreeWatcher(sys.argv[-1]) w() print ('Monitoring', sys.argv[-1], 'press Ctrl-C to stop') try: while True: if w(): print (sys.argv[-1], 'changed') sleep(1) except KeyboardInterrupt: raise SystemExit(0)
[((30, 24, 30, 46), 'os.path.realpath', 'os.path.realpath', ({(30, 41, 30, 45): 'path'}, {}), '(path)', False, 'import os\n'), ((178, 8, 178, 19), 'powerline.lib.monotonic.monotonic', 'monotonic', ({}, {}), '()', False, 'from powerline.lib.monotonic import monotonic\n'), ((188, 32, 188, 43), 'powerline.lib.monotonic.monotonic', 'monotonic', ({}, {}), '()', False, 'from powerline.lib.monotonic import monotonic\n'), ((97, 41, 97, 63), 'ctypes.c_char_p', 'ctypes.c_char_p', ({(97, 57, 97, 62): 'bpath'}, {}), '(bpath)', False, 'import ctypes\n'), ((105, 9, 105, 27), 'ctypes.get_errno', 'ctypes.get_errno', ({}, {}), '()', False, 'import ctypes\n'), ((216, 3, 216, 11), 'time.sleep', 'sleep', ({(216, 9, 216, 10): '(1)'}, {}), '(1)', False, 'from time import sleep\n'), ((79, 13, 79, 29), 'os.listdir', 'os.listdir', ({(79, 24, 79, 28): 'base'}, {}), '(base)', False, 'import os\n'), ((89, 22, 89, 43), 'os.path.join', 'os.path.join', ({(89, 35, 89, 39): 'base', (89, 41, 89, 42): 'x'}, {}), '(base, x)', False, 'import os\n'), ((126, 20, 126, 44), 'os.path.join', 'os.path.join', ({(126, 33, 126, 37): 'path', (126, 39, 126, 43): 'name'}, {}), '(path, name)', False, 'import os\n')]
PrashantKumar-sudo/qibuild
python/qisys/test/fake_interact.py
a16ce425cf25127ceff29507feeeeca37af23351
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2012-2019 SoftBank Robotics. All rights reserved. # Use of this source code is governed by a BSD-style license (see the COPYING file). """ Fake Interact """ from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function class FakeInteract(object): """ A class to tests code depending on qisys.interact """ def __init__(self): """ FakeInteract Init """ self.answers_type = None self.answer_index = -1 self._answers = None self.questions = list() self.editor = None @property def answers(self): """ Answers Getter """ if self._answers is None: raise Exception("FakeInteract not initialized") return self._answers @answers.setter def answers(self, value): """ Answers Setter """ if isinstance(value, dict): self.answers_type = "dict" elif isinstance(value, list): self.answers_type = "list" else: raise Exception("Unknow answer type: " + type(value)) self._answers = value def find_answer(self, message, choices=None, default=None): """ Find Answer """ keys = self.answers.keys() for key in keys: if key in message.lower(): if not choices: return self.answers[key] answer = self.answers[key] if answer in choices: return answer else: mess = "Would answer %s\n" % answer mess += "But choices are: %s\n" % choices raise Exception(mess) if default is not None: return default mess = "Could not find answer for\n :: %s\n" % message mess += "Known keys are: %s" % ", ".join(keys) raise Exception(mess) def ask_choice(self, choices, message, **_unused): """ Ask Choice """ print("::", message) for choice in choices: print("* ", choice) answer = self._get_answer(message, choices) print(">", answer) return answer def ask_yes_no(self, message, default=False): """ Ask Yes / No """ print("::", message,) if default: print("(Y/n)") else: print("(y/N)") answer = self._get_answer(message, default=default) print(">", answer) return answer def ask_path(self, message): """ Ask Path """ print("::", message) answer = self._get_answer(message) print(">", answer) return answer def ask_string(self, message): """ Ask String """ print("::", message) answer = self._get_answer(message) print(">", answer) return answer def ask_program(self, message): """ Ask Program """ print("::", message) answer = self._get_answer(message) print(">", answer) return answer def get_editor(self): """ Return the Editor """ return self.editor def _get_answer(self, message, choices=None, default=None): """ Get an Answer """ question = dict() question['message'] = message question['choices'] = choices question['default'] = default self.questions.append(question) if self.answers_type == "dict": return self.find_answer(message, choices=choices, default=default) self.answer_index += 1 return self.answers[self.answer_index]
[]
kowalej/muse-lsl
muselsl/cli.py
9086f2588bee3b2858b0ff853b7a08cdcd0e7612
#!/usr/bin/python import sys import argparse class main: def __init__(self): parser = argparse.ArgumentParser( description='Python package for streaming, recording, and visualizing EEG data from the Muse 2016 headset.', usage='''muselsl <command> [<args>] Available commands: list List available Muse devices. -b --backend BLE backend to use. can be auto, bluemuse, gatt or bgapi. -i --interface The interface to use, 'hci0' for gatt or a com port for bgapi. stream Start an LSL stream from Muse headset. -a --address Device MAC address. -n --name Device name (e.g. Muse-41D2). -b --backend BLE backend to use. can be auto, bluemuse, gatt or bgapi. -i --interface The interface to use, 'hci0' for gatt or a com port for bgapi. view Visualize EEG data from an LSL stream. -w --window Window length to display in seconds. -s --scale Scale in uV. -r --refresh Refresh rate in seconds. -f --figure Window size. -v --version Viewer version (1 or 2) - 1 is the default stable version, 2 is in development (and takes no arguments). record Record EEG data from an LSL stream. -d --duration Duration of the recording in seconds. -f --filename Name of the recording file. -dj --dejitter Whether to apply dejitter correction to timestamps. record_direct Record data directly from Muse headset (no LSL). -a --address Device MAC address. -n --name Device name (e.g. Muse-41D2). -b --backend BLE backend to use. can be auto, bluemuse, gatt or bgapi. -i --interface The interface to use, 'hci0' for gatt or a com port for bgapi. ''') parser.add_argument('command', help='Command to run.') # parse_args defaults to [1:] for args, but you need to # exclude the rest of the args too, or validation will fail args = parser.parse_args(sys.argv[1:2]) if not hasattr(self, args.command): print('Incorrect usage. See help below.') parser.print_help() exit(1) # use dispatch pattern to invoke method with same name getattr(self, args.command)() def list(self): parser = argparse.ArgumentParser( description='List available Muse devices.') parser.add_argument("-b", "--backend", dest="backend", type=str, default="auto", help="BLE backend to use. Can be auto, bluemuse, gatt or bgapi.") parser.add_argument("-i", "--interface", dest="interface", type=str, default=None, help="The interface to use, 'hci0' for gatt or a com port for bgapi.") args = parser.parse_args(sys.argv[2:]) from . import list_muses list_muses(args.backend, args.interface) def stream(self): parser = argparse.ArgumentParser( description='Start an LSL stream from Muse headset.') parser.add_argument("-a", "--address", dest="address", type=str, default=None, help="Device MAC address.") parser.add_argument("-n", "--name", dest="name", type=str, default=None, help="Name of the device.") parser.add_argument("-b", "--backend", dest="backend", type=str, default="auto", help="BLE backend to use. Can be auto, bluemuse, gatt or bgapi.") parser.add_argument("-i", "--interface", dest="interface", type=str, default=None, help="The interface to use, 'hci0' for gatt or a com port for bgapi.") args = parser.parse_args(sys.argv[2:]) from . import stream stream(args.address, args.backend, args.interface, args.name) def record(self): parser = argparse.ArgumentParser( description='Record data from an LSL stream.') parser.add_argument("-d", "--duration", dest="duration", type=int, default=60, help="Duration of the recording in seconds.") parser.add_argument("-f", "--filename", dest="filename", type=str, default=None, help="Name of the recording file.") parser.add_argument("-dj", "--dejitter", dest="dejitter", type=bool, default=True, help="Whether to apply dejitter correction to timestamps.") args = parser.parse_args(sys.argv[2:]) from . import record record(args.duration, args.filename, args.dejitter) def record_direct(self): parser = argparse.ArgumentParser( description='Record directly from Muse without LSL.') parser.add_argument("-a", "--address", dest="address", type=str, default=None, help="Device MAC address.") parser.add_argument("-n", "--name", dest="name", type=str, default=None, help="Name of the device.") parser.add_argument("-b", "--backend", dest="backend", type=str, default="auto", help="BLE backend to use. Can be auto, bluemuse, gatt or bgapi.") parser.add_argument("-i", "--interface", dest="interface", type=str, default=None, help="The interface to use, 'hci0' for gatt or a com port for bgapi.") parser.add_argument("-d", "--duration", dest="duration", type=int, default=60, help="Duration of the recording in seconds.") parser.add_argument("-f", "--filename", dest="filename", type=str, default=None, help="Name of the recording file.") args = parser.parse_args(sys.argv[2:]) from . import record_direct record_direct(args.address, args.backend, args.interface, args.name, args.duration, args.filename) def view(self): parser = argparse.ArgumentParser( description='View EEG data from an LSL stream.') parser.add_argument("-w", "--window", dest="window", type=float, default=5., help="Window length to display in seconds.") parser.add_argument("-s", "--scale", dest="scale", type=float, default=100, help="Scale in uV.") parser.add_argument("-r", "--refresh", dest="refresh", type=float, default=0.2, help="Refresh rate in seconds.") parser.add_argument("-f", "--figure", dest="figure", type=str, default="15x6", help="Window size.") parser.add_argument("-v", "--version", dest="version", type=int, default=1, help="Viewer version (1 or 2) - 1 is the default stable version, 2 is in development (and takes no arguments).") args = parser.parse_args(sys.argv[2:]) from . import view view(args.window, args.scale, args.refresh, args.figure, args.version)
[((6, 17, 37, 12), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (), '', False, 'import argparse\n'), ((53, 17, 54, 55), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (), '', False, 'import argparse\n'), ((66, 17, 67, 65), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (), '', False, 'import argparse\n'), ((86, 17, 87, 58), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (), '', False, 'import argparse\n'), ((102, 17, 103, 65), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (), '', False, 'import argparse\n'), ((128, 17, 129, 60), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (), '', False, 'import argparse\n')]
Quantum-OCS/QuOCS-pyside2interface
src/quocspyside2interface/gui/freegradients/GeneralSettingsNM.py
69436666a67da6884aed1ddd087b7062dcd2ad90
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # Copyright 2021- QuOCS Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ from qtpy import QtWidgets from quocspyside2interface.gui.uiclasses.GeneralSettingsNMUI import Ui_Form from quocspyside2interface.gui.freegradients.StoppingCriteriaNM import StoppingCriteriaNM from quocspyside2interface.logic.OptimalAlgorithmDictionaries.NelderMeadDictionary import NelderMeadDictionary class GeneralSettingsNM(QtWidgets.QWidget, Ui_Form): def __init__(self, loaded_dictionary=None): super().__init__() self.setupUi(self) nm_dictionary, stopping_criteria_dictionary = None, None if loaded_dictionary is not None: nm_dictionary = loaded_dictionary["general_settings"] stopping_criteria_dictionary = loaded_dictionary["stopping_criteria"] # Nelder Mead Dictionary self.nelder_mead_dictionary = NelderMeadDictionary(loaded_dictionary=nm_dictionary) # Create widget self.stopping_criteria_form = StoppingCriteriaNM(loaded_dictionary=stopping_criteria_dictionary) # Connection self.is_adaptive_checkbox.stateChanged.connect(self.set_is_adaptive) self._initialization() def _initialization(self): self.is_adaptive_checkbox.setChecked(self.nelder_mead_dictionary.is_adaptive) self.stopping_criteria_scroll_area.setWidget(self.stopping_criteria_form) def set_is_adaptive(self): self.nelder_mead_dictionary.is_adaptive = self.is_adaptive_checkbox.isChecked() def get_dictionary(self): return {"dsm_settings": {"general_settings": self.nelder_mead_dictionary.get_dictionary(), "stopping_criteria": self.stopping_criteria_form.get_dictionary()}}
[((33, 38, 33, 91), 'quocspyside2interface.logic.OptimalAlgorithmDictionaries.NelderMeadDictionary.NelderMeadDictionary', 'NelderMeadDictionary', (), '', False, 'from quocspyside2interface.logic.OptimalAlgorithmDictionaries.NelderMeadDictionary import NelderMeadDictionary\n'), ((35, 38, 35, 104), 'quocspyside2interface.gui.freegradients.StoppingCriteriaNM.StoppingCriteriaNM', 'StoppingCriteriaNM', (), '', False, 'from quocspyside2interface.gui.freegradients.StoppingCriteriaNM import StoppingCriteriaNM\n')]
divyamamgai/integrations-extras
pulsar/datadog_checks/pulsar/check.py
8c40a9cf870578687cc224ee91d3c70cd3a435a4
from datadog_checks.base import ConfigurationError, OpenMetricsBaseCheck EVENT_TYPE = SOURCE_TYPE_NAME = 'pulsar' class PulsarCheck(OpenMetricsBaseCheck): """ PulsarCheck derives from AgentCheck that provides the required check method """ def __init__(self, name, init_config, instances=None): instance = instances[0] url = instance.get('prometheus_url') if url is None: raise ConfigurationError("Unable to find prometheus_url in config file.") self.NAMESPACE = 'kesque.pulsar' self.metrics_mapper = { 'pulsar_consumer_available_permits': 'consumer.available_permits', 'pulsar_consumer_blocked_on_unacked_messages': 'consumer.blocked_on_unacked_messages', 'pulsar_consumer_msg_rate_out': 'consumer.msg_rate_out', 'pulsar_consumer_msg_rate_redeliver': 'consumer.msg_rate_redeliver', 'pulsar_consumer_msg_throughput_out': 'consumer.msg_throughput_out', 'pulsar_consumer_unacked_messages': 'consumer.unacked_messages', 'pulsar_consumers_count': 'consumers_count', 'pulsar_entry_size_count': 'entry_size_count', 'pulsar_entry_size_le_100_kb': 'entry_size_le_100_kb', 'pulsar_entry_size_le_128': 'entry_size_le_128', 'pulsar_entry_size_le_16_kb': 'entry_size_le_16_kb', 'pulsar_entry_size_le_1_kb': 'entry_size_le_1_kb', 'pulsar_entry_size_le_1_mb': 'entry_size_le_1_mb', 'pulsar_entry_size_le_2_kb': 'entry_size_le_2_kb', 'pulsar_entry_size_le_4_kb': 'entry_size_le_4_kb', 'pulsar_entry_size_le_512': 'entry_size_le_512', 'pulsar_entry_size_le_overflow': 'entry_size_le_overflow', 'pulsar_entry_size_sum': 'entry_size_sum', 'pulsar_in_bytes_total': 'in_bytes_total', 'pulsar_in_messages_total': 'in_messages_total', 'pulsar_msg_backlog': 'msg_backlog', 'pulsar_out_bytes_total': 'out_bytes_total', 'pulsar_out_messages_total': 'out_messages_total', 'pulsar_producers_count': 'producers_count', 'pulsar_rate_in': 'rate_in', 'pulsar_rate_out': 'rate_out', 'pulsar_replication_backlog': 'replication.backlog', 'pulsar_replication_rate_in': 'replication.rate_in', 'pulsar_replication_rate_out': 'replication.rate_out', 'pulsar_replication_throughput_in': 'replication.throughput_in', 'pulsar_replication_throughput_out': 'replication.throughput_out', 'pulsar_storage_backlog_quota_limit': 'storage.backlog_quota_limit', 'pulsar_storage_backlog_size': 'storage.backlog_size', 'pulsar_storage_read_rate': 'storage.read_rate', 'pulsar_storage_offloaded_size': 'storage.offloaded_size', 'pulsar_storage_size': 'storage.size', 'pulsar_storage_write_latency_count': 'storage.write_latency_count', 'pulsar_storage_write_latency_le_0_5': 'storage.write_latency_le_0_5', 'pulsar_storage_write_latency_le_1': 'storage.write_latency_le_1', 'pulsar_storage_write_latency_le_10': 'storage.write_latency_le_10', 'pulsar_storage_write_latency_le_100': 'storage.write_latency_le_100', 'pulsar_storage_write_latency_le_1000': 'storage.write_latency_le_1000', 'pulsar_storage_write_latency_le_20': 'storage.write_latency_le_20', 'pulsar_storage_write_latency_le_200': 'storage.write_latency_le_200', 'pulsar_storage_write_latency_le_5': 'storage.write_latency_le_5', 'pulsar_storage_write_latency_le_50': 'storage.write_latency_le_50', 'pulsar_storage_write_latency_overflow': 'storage.write_latency_overflow', 'pulsar_storage_write_latency_sum': 'storage.write_latency_sum', 'pulsar_storage_write_rate': 'storage.write_rate', 'pulsar_subscription_back_log': 'subscription.back_log', 'pulsar_subscription_back_log_no_delayed': 'subscription.back_log_no_delayed', 'pulsar_subscription_blocked_on_unacked_messages': 'subscription.blocked_on_unacked_messages', 'pulsar_subscription_delayed': 'subscription.delayed', 'pulsar_subscription_msg_rate_out': 'subscription.msg_rate_out', 'pulsar_subscription_msg_rate_redeliver': 'subscription.msg_rate_redeliver', 'pulsar_subscription_msg_throughput_out': 'subscription.msg_throughput_out', 'pulsar_subscription_unacked_messages': 'subscription.unacked_messages', 'pulsar_subscriptions_count': 'subscriptions.count', 'pulsar_throughput_in': 'throughput_in', 'pulsar_throughput_out': 'throughput_out', 'pulsar_topics_count': 'topics_count', 'scrape_duration_seconds': 'scrape_duration_seconds', 'scrape_samples_post_metric_relabeling': 'scrape_samples_post_metric_relabeling', 'scrape_samples_scraped': 'scrape_samples_scraped', 'topic_load_times': 'topic_load_times', 'topic_load_times_count': 'topic_load_times_count', 'topic_load_times_sum': 'topic_load_times_sum', 'up': 'broker.up', } instance.update( { 'prometheus_url': url, 'namespace': self.NAMESPACE, 'metrics': [self.metrics_mapper], 'send_distribution_counts_as_monotonic': instance.get('send_distribution_counts_as_monotonic', True), 'send_distribution_sums_as_monotonic': instance.get('send_distribution_sums_as_monotonic', True), } ) super(PulsarCheck, self).__init__(name, init_config, instances)
[((15, 18, 15, 85), 'datadog_checks.base.ConfigurationError', 'ConfigurationError', ({(15, 37, 15, 84): '"""Unable to find prometheus_url in config file."""'}, {}), "('Unable to find prometheus_url in config file.')", False, 'from datadog_checks.base import ConfigurationError, OpenMetricsBaseCheck\n')]
HowToBeCalculated/Hands-On-Blockchain-for-Python-Developers
Chapter11/publish_horoscope1_in_another_ipns.py
f9634259dd3dc509f36a5ccf3a5182c0d2ec79c4
import ipfsapi c = ipfsapi.connect() peer_id = c.key_list()['Keys'][1]['Id'] c.name_publish('QmYjYGKXqo36GDt6f6qvp9qKAsrc72R9y88mQSLvogu8Ub', key='another_key') result = c.cat('/ipns/' + peer_id) print(result)
[((4, 4, 4, 21), 'ipfsapi.connect', 'ipfsapi.connect', ({}, {}), '()', False, 'import ipfsapi\n')]
NiumXp/Magie
magie/window.py
f0dc1d135274b5453fde659ba46f09f4b303c099
import pygame class Window: def __init__(self, title: str, dimension: tuple): self.surface = None self.initial_title = title self.initial_dimension = dimension @property def title(self) -> str: """Returns the title of the window.""" return pygame.display.get_caption() @title.setter def title(self, new_title: str): """Sets the window title.""" pygame.display.set_caption(new_title) def set_title(self, new_title: str): """Alias for `Window.title = ...`.""" self.title = new_title @property def width(self) -> int: """Alias for Window.get_width.""" return self.get_width() @property def height(self) -> int: """Alias for Window.get_height.""" return self.get_height() @property def size(self) -> tuple: """Alias for Window.get_size.""" return self.get_size() def get_width(self) -> int: """Returns the widget of the window.""" if self.surface: return self.surface.get_width() return self.initial_dimension[0] def get_height(self) -> int: """Returns the height of the window.""" if self.surface: return self.surface.get_height() return self.initial_dimension[1] def get_size(self) -> tuple: """Returns the size of the size.""" if self.surface: return self.surface.get_size() return self.initial_dimension def build(self): """Build the window.""" self.surface = pygame.display.set_mode(self.initial_dimension) self.set_title(self.initial_title) return self
[((14, 15, 14, 43), 'pygame.display.get_caption', 'pygame.display.get_caption', ({}, {}), '()', False, 'import pygame\n'), ((19, 8, 19, 45), 'pygame.display.set_caption', 'pygame.display.set_caption', ({(19, 35, 19, 44): 'new_title'}, {}), '(new_title)', False, 'import pygame\n'), ((60, 23, 60, 70), 'pygame.display.set_mode', 'pygame.display.set_mode', ({(60, 47, 60, 69): 'self.initial_dimension'}, {}), '(self.initial_dimension)', False, 'import pygame\n')]
dwillmer/fastats
tests/optimize/test_newton_raphson_hypo.py
5915423714b32ed7e953e1e3a311fe50c3f30943
from hypothesis import given, assume, settings from hypothesis.strategies import floats from numpy import cos from pytest import approx from fastats.optimise.newton_raphson import newton_raphson def func(x): return x**3 - x - 1 def less_or_equal(x, compared_to, rel=1e-6): return ((x < compared_to) or ((x - compared_to) == approx(0.0, rel=rel)) or (x == approx(x, rel=rel))) nr_func = newton_raphson(1, 1e-6, root=func, return_callable=True) @given(floats(min_value=0.01, max_value=3.5)) def test_minimal(x): """ Tests that the value output from the solver is less than or equal to the value of the objective. """ eps = 1e-12 value = nr_func(x, eps) assume(func(x) > 0.0) assert less_or_equal(value, compared_to=func(x)) def cos_func(x): return cos(x) - 2 * x nr_cos = newton_raphson(0.5, 1e-6, root=cos_func, return_callable=True) @given(floats(min_value=0.3, max_value=0.8)) @settings(deadline=None) def test_cos_minus_2x(x): value = nr_cos(x, 1e-6) assert less_or_equal(value, compared_to=cos_func(x)) if __name__ == '__main__': import pytest pytest.main([__file__])
[((20, 10, 20, 66), 'fastats.optimise.newton_raphson.newton_raphson', 'newton_raphson', (), '', False, 'from fastats.optimise.newton_raphson import newton_raphson\n'), ((42, 9, 42, 71), 'fastats.optimise.newton_raphson.newton_raphson', 'newton_raphson', (), '', False, 'from fastats.optimise.newton_raphson import newton_raphson\n'), ((46, 1, 46, 24), 'hypothesis.settings', 'settings', (), '', False, 'from hypothesis import given, assume, settings\n'), ((23, 7, 23, 44), 'hypothesis.strategies.floats', 'floats', (), '', False, 'from hypothesis.strategies import floats\n'), ((45, 7, 45, 43), 'hypothesis.strategies.floats', 'floats', (), '', False, 'from hypothesis.strategies import floats\n'), ((54, 4, 54, 27), 'pytest.main', 'pytest.main', ({(54, 16, 54, 26): '[__file__]'}, {}), '([__file__])', False, 'import pytest\n'), ((39, 11, 39, 17), 'numpy.cos', 'cos', ({(39, 15, 39, 16): 'x'}, {}), '(x)', False, 'from numpy import cos\n'), ((16, 37, 16, 57), 'pytest.approx', 'approx', (), '', False, 'from pytest import approx\n'), ((17, 21, 17, 39), 'pytest.approx', 'approx', (), '', False, 'from pytest import approx\n')]
sequery/Face-Recognition-Project
faceRecognition.py
84d29322228e140c3d18c9c4d169819375a8e256
import cv2 import os import numpy as np # This module contains all common functions that are called in tester.py file # Given an image below function returns rectangle for face detected alongwith gray scale image def faceDetection(test_img): gray_img = cv2.cvtColor(test_img, cv2.COLOR_BGR2GRAY) # convert color image to grayscale face_haar_cascade = cv2.CascadeClassifier('HaarCascade/haarcascade_frontalface_default.xml') # Load haar classifier faces = face_haar_cascade.detectMultiScale(gray_img, scaleFactor=1.32, minNeighbors=5) # detectMultiScale returns rectangles return faces, gray_img # Given a directory below function returns part of gray_img which is face alongwith its label/ID def labels_for_training_data(directory): faces = [] faceID = [] for path, subdirnames, filenames in os.walk(directory): for filename in filenames: if filename.startswith("."): print("Skipping system file") # Skipping files that startwith . continue id = os.path.basename(path) # fetching subdirectory names img_path = os.path.join(path, filename) # fetching image path print("img_path:", img_path) print("id:", id) test_img = cv2.imread(img_path) # loading each image one by one if test_img is None: print("Image not loaded properly") continue faces_rect, gray_img = faceDetection( test_img) # Calling faceDetection function to return faces detected in particular image if len(faces_rect) != 1: continue # Since we are assuming only single person images are being fed to classifier (x, y, w, h) = faces_rect[0] roi_gray = gray_img[y:y + w, x:x + h] # cropping region of interest i.e. face area from grayscale image faces.append(roi_gray) faceID.append(int(id)) return faces, faceID # Below function trains haar classifier and takes faces,faceID returned by previous function as its arguments def train_classifier(faces, faceID): face_recognizer = cv2.face.LBPHFaceRecognizer_create() face_recognizer.train(faces, np.array(faceID)) return face_recognizer # Below function draws bounding boxes around detected face in image def draw_rect(test_img, face): (x, y, w, h) = face cv2.rectangle(test_img, (x, y), (x + w, y + h), (255, 0, 0), thickness=5) # Below function writes name of person for detected label def put_text(test_img, text, x, y): cv2.putText(test_img, text, (x, y), cv2.FONT_HERSHEY_DUPLEX, 2, (255, 0, 0), 4)
[((11, 15, 11, 57), 'cv2.cvtColor', 'cv2.cvtColor', ({(11, 28, 11, 36): 'test_img', (11, 38, 11, 56): 'cv2.COLOR_BGR2GRAY'}, {}), '(test_img, cv2.COLOR_BGR2GRAY)', False, 'import cv2\n'), ((12, 24, 12, 96), 'cv2.CascadeClassifier', 'cv2.CascadeClassifier', ({(12, 46, 12, 95): '"""HaarCascade/haarcascade_frontalface_default.xml"""'}, {}), "('HaarCascade/haarcascade_frontalface_default.xml')", False, 'import cv2\n'), ((24, 40, 24, 58), 'os.walk', 'os.walk', ({(24, 48, 24, 57): 'directory'}, {}), '(directory)', False, 'import os\n'), ((51, 22, 51, 58), 'cv2.face.LBPHFaceRecognizer_create', 'cv2.face.LBPHFaceRecognizer_create', ({}, {}), '()', False, 'import cv2\n'), ((59, 4, 59, 77), 'cv2.rectangle', 'cv2.rectangle', (), '', False, 'import cv2\n'), ((64, 4, 64, 83), 'cv2.putText', 'cv2.putText', ({(64, 16, 64, 24): 'test_img', (64, 26, 64, 30): 'text', (64, 32, 64, 38): '(x, y)', (64, 40, 64, 63): 'cv2.FONT_HERSHEY_DUPLEX', (64, 65, 64, 66): '(2)', (64, 68, 64, 79): '(255, 0, 0)', (64, 81, 64, 82): '(4)'}, {}), '(test_img, text, (x, y), cv2.FONT_HERSHEY_DUPLEX, 2, (255, 0, 0), 4)', False, 'import cv2\n'), ((52, 33, 52, 49), 'numpy.array', 'np.array', ({(52, 42, 52, 48): 'faceID'}, {}), '(faceID)', True, 'import numpy as np\n'), ((30, 17, 30, 39), 'os.path.basename', 'os.path.basename', ({(30, 34, 30, 38): 'path'}, {}), '(path)', False, 'import os\n'), ((31, 23, 31, 51), 'os.path.join', 'os.path.join', ({(31, 36, 31, 40): 'path', (31, 42, 31, 50): 'filename'}, {}), '(path, filename)', False, 'import os\n'), ((34, 23, 34, 43), 'cv2.imread', 'cv2.imread', ({(34, 34, 34, 42): 'img_path'}, {}), '(img_path)', False, 'import cv2\n')]
hsiehkl/pdffigures2
evaluation/datasets/build_dataset_images.py
9ff2978a097f3d500dcb840d31587c26d994cb68
import argparse from os import listdir, mkdir from os.path import join, isdir from subprocess import call import sys import datasets from shutil import which """ Script to use pdftoppm to turn the pdfs into single images per page """ def get_images(pdf_dir, output_dir, dpi, mono=True): if which("pdftoppm") is None: raise ValueError("Requires executable pdftopmm to be on the PATH") if not isdir(output_dir): print("Making %s to store rasterized PDF pages" % output_dir) mkdir(output_dir) if not isdir(pdf_dir): raise ValueError(pdf_dir + " is not a directory") pdf_doc_ids = [x.split(".pdf")[0] for x in listdir(pdf_dir)] already_have = set() for filename in listdir(output_dir): if "-page" not in filename: raise ValueError() doc_id = filename.split("-page")[0] if doc_id not in pdf_doc_ids: raise ValueError("doc id %s in output dir not found in pdfs" % doc_id) already_have.add(doc_id) if len(already_have) != 0: print("Already have %d docs" % len(already_have)) num_pdfs = len(listdir(pdf_dir)) for (i, pdfname) in enumerate(listdir(pdf_dir)): if not pdfname.endswith(".pdf"): raise ValueError() doc_id = pdfname[:-4] if doc_id in already_have: continue print("Creating images for pdf %s (%d / %d)" % (pdfname, i + 1, num_pdfs)) if (mono): args = ["pdftoppm", "-gray", "-r", str(dpi), "-aa", "no", "-aaVector", "no", "-cropbox", join(pdf_dir, pdfname), join(output_dir, doc_id + "-page")] else: args = ["pdftoppm", "-jpeg", "-r", str(dpi), "-cropbox", join(pdf_dir, pdfname), join(output_dir, doc_id + "-page")] retcode = call(args) if retcode != 0: raise ValueError("Bad return code for <%s> (%d)", " ".join(args), retcode) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Cache rasterized page images for a dataset') parser.add_argument("dataset", choices=datasets.DATASETS.keys(), help="target dataset") parser.add_argument("color", choices=["gray", "color"], help="kind of images to render") args = parser.parse_args() dataset = datasets.get_dataset(args.dataset) print("Running on dataset: " + dataset.name) if args.color == "gray": get_images(dataset.pdf_dir, dataset.page_images_gray_dir, dataset.IMAGE_DPI, True) elif args.color == "color": get_images(dataset.pdf_dir, dataset.page_images_color_dir, dataset.COLOR_IMAGE_DPI, False) else: exit(1)
[((29, 20, 29, 39), 'os.listdir', 'listdir', ({(29, 28, 29, 38): 'output_dir'}, {}), '(output_dir)', False, 'from os import listdir, mkdir\n'), ((60, 13, 60, 94), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (), '', False, 'import argparse\n'), ((65, 14, 65, 48), 'datasets.get_dataset', 'datasets.get_dataset', ({(65, 35, 65, 47): 'args.dataset'}, {}), '(args.dataset)', False, 'import datasets\n'), ((16, 7, 16, 24), 'shutil.which', 'which', ({(16, 13, 16, 23): '"""pdftoppm"""'}, {}), "('pdftoppm')", False, 'from shutil import which\n'), ((19, 11, 19, 28), 'os.path.isdir', 'isdir', ({(19, 17, 19, 27): 'output_dir'}, {}), '(output_dir)', False, 'from os.path import join, isdir\n'), ((21, 8, 21, 25), 'os.mkdir', 'mkdir', ({(21, 14, 21, 24): 'output_dir'}, {}), '(output_dir)', False, 'from os import listdir, mkdir\n'), ((23, 11, 23, 25), 'os.path.isdir', 'isdir', ({(23, 17, 23, 24): 'pdf_dir'}, {}), '(pdf_dir)', False, 'from os.path import join, isdir\n'), ((40, 19, 40, 35), 'os.listdir', 'listdir', ({(40, 27, 40, 34): 'pdf_dir'}, {}), '(pdf_dir)', False, 'from os import listdir, mkdir\n'), ((41, 34, 41, 50), 'os.listdir', 'listdir', ({(41, 42, 41, 49): 'pdf_dir'}, {}), '(pdf_dir)', False, 'from os import listdir, mkdir\n'), ((55, 18, 55, 28), 'subprocess.call', 'call', ({(55, 23, 55, 27): 'args'}, {}), '(args)', False, 'from subprocess import call\n'), ((26, 47, 26, 63), 'os.listdir', 'listdir', ({(26, 55, 26, 62): 'pdf_dir'}, {}), '(pdf_dir)', False, 'from os import listdir, mkdir\n'), ((61, 43, 61, 67), 'datasets.DATASETS.keys', 'datasets.DATASETS.keys', ({}, {}), '()', False, 'import datasets\n'), ((51, 18, 51, 40), 'os.path.join', 'join', ({(51, 23, 51, 30): 'pdf_dir', (51, 32, 51, 39): 'pdfname'}, {}), '(pdf_dir, pdfname)', False, 'from os.path import join, isdir\n'), ((51, 42, 51, 76), 'os.path.join', 'join', ({(51, 47, 51, 57): 'output_dir', (51, 59, 51, 75): "(doc_id + '-page')"}, {}), "(output_dir, doc_id + '-page')", False, 'from os.path import join, isdir\n'), ((54, 18, 54, 40), 'os.path.join', 'join', ({(54, 23, 54, 30): 'pdf_dir', (54, 32, 54, 39): 'pdfname'}, {}), '(pdf_dir, pdfname)', False, 'from os.path import join, isdir\n'), ((54, 42, 54, 76), 'os.path.join', 'join', ({(54, 47, 54, 57): 'output_dir', (54, 59, 54, 75): "(doc_id + '-page')"}, {}), "(output_dir, doc_id + '-page')", False, 'from os.path import join, isdir\n')]
utkarshdeorah/sympy
sympy/physics/__init__.py
dcdf59bbc6b13ddbc329431adf72fcee294b6389
""" A module that helps solving problems in physics. """ from . import units from .matrices import mgamma, msigma, minkowski_tensor, mdft __all__ = [ 'units', 'mgamma', 'msigma', 'minkowski_tensor', 'mdft', ]
[]
avr8082/Hadoop
py.py
64b2036e752ac01b9e2256e20b659b1b56a274c9
printf("Hello world")
[]