repo_name
stringlengths
7
94
repo_path
stringlengths
4
237
repo_head_hexsha
stringlengths
40
40
content
stringlengths
10
680k
apis
stringlengths
2
840k
hoover/hoover
hoover/site/wsgi.py
84053b2479e966b0f639692c9e226261e3188709
from . import events # noqa from django.core.wsgi import get_wsgi_application import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "hoover.site.settings") application = get_wsgi_application()
[((4, 0, 4, 71), 'os.environ.setdefault', 'os.environ.setdefault', ({(4, 22, 4, 46): '"""DJANGO_SETTINGS_MODULE"""', (4, 48, 4, 70): '"""hoover.site.settings"""'}, {}), "('DJANGO_SETTINGS_MODULE', 'hoover.site.settings')", False, 'import os\n'), ((7, 14, 7, 36), 'django.core.wsgi.get_wsgi_application', 'get_wsgi_application', ({}, {}), '()', False, 'from django.core.wsgi import get_wsgi_application\n')]
pbasting/cactus
submodules/hal/analysis/constraintTurnover/turnoverModel.py
833d8ca015deecdfa5d0aca01211632cdaca9e58
#!/usr/bin/env python #Copyright (C) 2013 by Glenn Hickey # #Released under the MIT license, see LICENSE.txt #!/usr/bin/env python """This is a two-state continuous time markov model: 0: unconstratined. 1: constrained. There are two transition rates to go between states. lossRate: 1->0 and gainRate: 0->1. Probability Matrix and Stationary Distribution are computed from the two rates and a time t. (see pdf) """ import argparse import os import sys import copy import random import math from collections import defaultdict import numpy as np import subprocess import tempfile #constrained is always 1. unconstrained is always 0 # compute probability matrix from rates and time. def computePMatrix(lossRate, gainRate, t): assert t >= 0 assert lossRate >= 0 assert gainRate >= 0 x = gainRate / lossRate y = gainRate + lossRate eyt = math.exp(-y * t) c = 1.0 / (x + 1.0) P = [ [c * (1.0 + x * eyt), c * (x - x * eyt)], [c * (1.0 - eyt), c * (x + eyt)] ] assert math.fabs(P[0][0] + P[0][1] - 1.0) < 0.00001 assert math.fabs(P[1][0] + P[1][1] - 1.0) < 0.00001 return P # compute stationary distribution from rates and time def computeStationaryDist(lossRate, gainRate, t): assert t >= 0 assert lossRate >= 0 assert gainRate >= 0 x = gainRate / lossRate y = gainRate + lossRate eyt = math.exp(-y * t) pi0 = (eyt - 1.0) / ( x * eyt + eyt - x - 1.0) pi1 = 1. - pi0 # assert pi0 * ( ((1.0 + x * eyt) / (x + 1.0)) -1.0) + (1.0 - pi0) * ((1.0 - eyt) / (x + 1.0)) == 0 assert pi0 >= 0 and pi0 <= 1.0 assert pi1 >= 0 and pi1 <= 1.0 return [pi0, pi1] # compute the absolute difference between the values of the # probability matrix and stationary distribution computed from a given # rate, and a set of absolute values of the same. This is a sum of four # differences, 2 for the distribution, 4 for the matrix. def diffOnePoint(lossRate, gainRate, piEst, Pest, t): P = computePMatrix(lossRate, gainRate, t) pi = computeStationaryDist(lossRate, gainRate, t) d = math.fabs(pi[0] - piEst[0]) d += math.fabs(pi[1] - piEst[1]) d += math.fabs(P[0][0] - Pest[0][0]) d += math.fabs(P[0][1] - Pest[0][1]) d += math.fabs(P[1][0] - Pest[1][0]) d += math.fabs(P[1][1] - Pest[1][1]) return d # compute the sum of squared differences for a pair of rate parameters # and a set of data points. Each data point is a 3 tuple: # (1x2 stationary distribution pi, 2x2 probability matrix P, time t) def diffSqManyPoints(lossRate, gainRate, estVals): dtot = 0 for estVal in estVals: piEst = estVal[0] Pest = estVal[1] t = estVal[2] d = diffOnePoint(lossRate, gainRate, piEst, Pest, t) dtot += d * d return dtot # use really simple gradient descent type approach to find rate values that # minimize the squared difference with some data points. Each data point # is a 3-tuple as described above. The gradient descent iteratres over # maxIt iterations. Each iteration it tries to add and subtract delta from # the current best rates (4 combinations: add delta to gain, add delta to loss, # subtract delta from gain, subtract delta from loss). The best pair # of rate parameters are returned, along with their square difference from # the data. def gradDescent(lrStart, grStart, estVals, maxIt, delta): bestDiff = diffSqManyPoints(lrStart, grStart, estVals) bestLr = lrStart bestGr = grStart lastChangeIterator = 0 for i in range(maxIt): lr = bestLr gr = bestGr dpl = diffSqManyPoints(lr + delta, gr, estVals) rval = random.randint(0, 3) if rval == 0 and dpl < bestDiff: bestDiff = dpl bestLr = lr + delta bestGr = gr lastChangeIterator = i dpg = diffSqManyPoints(lr, gr + delta, estVals) if rval == 1 and dpg < bestDiff: bestDiff = dpg bestLr = lr bestGr = gr + delta lastChangeIterator = i if rval == 2 and lr > delta: dml = diffSqManyPoints(lr - delta, gr, estVals) if dml < bestDiff: bestDiff = dml bestLr = lr - delta bestGr = gr lastChangeIterator = i if rval == 3 and gr > delta: dmg = diffSqManyPoints(lr, gr - delta, estVals) if dmg < bestDiff: bestDiff = dmg bestLr = lr bestGr = gr - delta lastChangeIterator = i # # Hack: if nothing happened, instead of returning, try adding # 10x the step value and seeing what happens. # if i == lastChangeIterator + 8: boostDelta = delta * 10. dpl = diffSqManyPoints(lr + boostDelta, gr, estVals) if rval == 0 and dpl < bestDiff: bestDiff = dpl bestLr = lr + boostDelta bestGr = gr lastChangeIterator = i dpg = diffSqManyPoints(lr, gr + boostDelta, estVals) if rval == 1 and dpg < bestDiff: bestDiff = dpg bestLr = lr bestGr = gr + boostDelta lastChangeIterator = i if rval == 2 and lr > boostDelta: dml = diffSqManyPoints(lr - boostDelta, gr, estVals) if dml < bestDiff: bestDiff = dml bestLr = lr - boostDelta bestGr = gr lastChangeIterator = i if rval == 3 and gr > boostDelta: dmg = diffSqManyPoints(lr, gr - boostDelta, estVals) if dmg < bestDiff: bestDiff = dmg bestLr = lr bestGr = gr - boostDelta lastChangeIterator = i # we tried the 10x and now give up elif i > lastChangeIterator + 8: break return (bestLr, bestGr, bestDiff) # add some noise to parameters def addNoise(P, pi, maxNoise): d = random.uniform(-maxNoise, maxNoise) P[0][0] += d P[0][1] -= d d = random.uniform(-maxNoise, maxNoise) P[1][0] += d P[1][1] -= d d = random.uniform(-maxNoise, maxNoise) pi[0] += d pi[1] -= d # generate some random "estimated" parameters for values of t # within a given range. random noise is added as specifed by maxNoise def generateData(n, tRange, lossRate, gainRate, maxNoise): genVals = [] for i in range(n): t = random.uniform(tRange[0], tRange[1]) P = computePMatrix(lossRate, gainRate, t) pi = computeStationaryDist(lossRate, gainRate, t) addNoise(P, pi, maxNoise) genVals.append((pi, P, t)) return genVals def main(argv=None): if argv is None: argv = sys.argv parser = argparse.ArgumentParser() parser.add_argument("N", type=int, help="number of simulated data sets") parser.add_argument("size", type=int, help="number of simulated data points per set") parser.add_argument("minRate", type=float, help="minimum true rate") parser.add_argument("maxRate", type=float, help="maximum true rate") parser.add_argument("minT", type=float, help="minimum true t") parser.add_argument("maxT", type=float, help="maximum true t") parser.add_argument("--maxIt", type=int, default=1000, help="number of iterations for gradient descent") parser.add_argument("--step", type=float, default=0.001, help="gradient descent step") parser.add_argument("--noise", type=float, default=0, help="max amount of noise to add") parser.add_argument("--retries", type=int, default=5, help="number of gradient descents to run") args = parser.parse_args() assert (args.N > 0 and args.size > 0 and args.minRate > 0 and args.maxRate > 0 and args.minT > 0 and args.maxT > 0 and args.maxIt > 0 and args.step > 0 and args.noise >= 0 and args.retries > 1) for n in range(args.N): lrTrue = random.uniform(args.minRate, args.maxRate) grTrue = random.uniform(args.minRate, args.maxRate) genVals = generateData(args.size, (args.minT, args.maxT), lrTrue, grTrue, args.noise) bestLr, bestGr, bestDiff = (0, 0, 1000000) for retry in range(args.retries): lrStart = random.uniform(0.0001, 1.0) grStart = random.uniform(0.0001, 1.0) (lrEst, grEst, diff) = gradDescent(lrStart, grStart, genVals, args.maxIt, args.step) if diff < bestDiff: bestLr, bestGr, bestDiff = (lrEst, grEst, diff) print "Truth=(%f,%f), Start=(%f,%f) Est=(%f,%f), dsq=%f" % ( lrTrue, grTrue, lrStart, grStart, bestLr, bestGr, (lrTrue - bestLr) * (lrTrue - bestLr) + (grTrue - bestGr) * (grTrue - bestGr)) print "--------------------------------" if __name__ == "__main__": sys.exit(main())
[]
speratus/SimpleBudget
SimpleBudget/SimpleBudget/budgets/tests.py
d4903db8693694572c4bcb367fe4a318a3867d68
from django.test import TestCase from .validators import validate_budget_period from .models import Budget, Expense, Payment from django.contrib.auth.models import User from django.core.exceptions import ValidationError class ExpenseTestCases(TestCase): def setUp(self) -> None: user = User.objects.create_user('joe', email='[email protected]', password='imlame') budget = Budget.objects.create(name='My budget', creation_date='2019-05-03', owner=user, description='The budget of champions.' ) Expense.objects.create(name='Water park visit', amount=30.00, period='1-monthly', payee='Super awesome Water parks', description='I will go to the water park.', date='2019-06-04', budget=budget ) Payment.objects.create(name='Paycheck', amount=4000.0, period='1-monthly', description='Where the Mullah comes from', date='2017-01-12', origin='The big boss fom up top in HR.', budget=budget ) def test_proper_str_formation(self): budget = Budget.objects.get(pk=1) expense = Expense.objects.get(pk=1) payment = Payment.objects.get(pk=1) self.assertEquals(budget.__str__(), 'My budget: joe', 'The budget was not created properly.') self.assertEquals(expense.__str__(), 'Water park visit: 30.0', 'The expense was not create properly.') self.assertEquals(payment.__str__(), 'Paycheck: 4000.0', 'The string function on payment is not workng properly.') class BudgetPeriodValidatorTestCase(TestCase): valid_cases = [ '1-daily', '1-onetime', '1-annually', '5-quarterly', '7-weekly', '3-annually', '10-monthly', '19-weekly', '99-daily' ] invalid_cases = [ '0.4-daily', '0-weekly', 'ad-annually', '100-weekly', '4.6-quarterly', '-31-daily', 'whoot-quarterly', '59-zoobly', '5-onetime', '03-monthly', ] def test_budget_period_validator(self): for c in self.valid_cases: self.assertEquals(validate_budget_period(c), None, f'failed on {c}') def test_budget_period_validator_fail(self): for c in self.invalid_cases: self.assertRaises(ValidationError, validate_budget_period, c) def test_validator_in_expense_model_creation_invalid(self): user = User.objects.create(username='joe', email='[email protected]', password='imlame') budget = Budget.objects.create(name='My Budget', creation_date='2019-04-13', owner=user, ) for c in self.invalid_cases: self.assertRaises(Exception, Expense.objects.create, name=c + '1', amount=15.0, date='2014-05-06', period=c, budget=budget )
[((11, 15, 11, 95), 'django.contrib.auth.models.User.objects.create_user', 'User.objects.create_user', (), '', False, 'from django.contrib.auth.models import User\n'), ((78, 15, 78, 97), 'django.contrib.auth.models.User.objects.create', 'User.objects.create', (), '', False, 'from django.contrib.auth.models import User\n')]
kubapi/hater
feed/migrations/0002_remove_player_finished_decks.py
fe4ef653e169143b9ea8cc17494e8e35b2a7bc76
# Generated by Django 3.2.3 on 2021-06-13 19:58 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('feed', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='player', name='finished_decks', ), ]
[((13, 8, 16, 9), 'django.db.migrations.RemoveField', 'migrations.RemoveField', (), '', False, 'from django.db import migrations\n')]
jeanbez/spack
var/spack/repos/builtin/packages/abacus/package.py
f4e51ce8f366c85bf5aa0eafe078677b42dae1ba
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import re from spack.package import * class Abacus(MakefilePackage): """ABACUS (Atomic-orbital Based Ab-initio Computation at UStc) is an open-source computer code package aiming for large-scale electronic-structure simulations from first principles""" maintainers = ["bitllion"] homepage = "http://abacus.ustc.edu.cn/" git = "https://github.com/abacusmodeling/abacus-develop.git" url = "https://github.com/abacusmodeling/abacus-develop/archive/refs/tags/v2.2.1.tar.gz" version("develop", branch="develop") version( "2.2.3", sha256="88dbf6a3bdd907df3e097637ec8e51fde13e2f5e0b44f3667443195481320edf", ) version( "2.2.2", sha256="4a7cf2ec6e43dd5c53d5f877a941367074f4714d93c1977a719782957916169e", ) version( "2.2.1", sha256="14feca1d8d1ce025d3f263b85ebfbebc1a1efff704b6490e95b07603c55c1d63", ) version( "2.2.0", sha256="09d4a2508d903121d29813a85791eeb3a905acbe1c5664b8a88903f8eda64b8f", ) variant("openmp", default=True, description="Enable OpenMP support") depends_on("elpa+openmp", when="+openmp") depends_on("elpa~openmp", when="~openmp") depends_on("cereal") depends_on("libxc") depends_on("fftw") # MPI is a necessary dependency depends_on("mpi", type=("build", "link", "run")) depends_on("mkl") build_directory = "source" def edit(self, spec, prefix): if "+openmp" in spec: inc_var = "_openmp-" system_var = ( "ELPA_LIB = -L${ELPA_LIB_DIR} -lelpa_openmp -Wl, -rpath=${ELPA_LIB_DIR}" ) else: inc_var = "-" system_var = ( "ELPA_LIB = -L${ELPA_LIB_DIR} -lelpa -Wl,-rpath=${ELPA_LIB_DIR}" ) tempInc = ( "\ FORTRAN = ifort\n\ CPLUSPLUS = icpc\n\ CPLUSPLUS_MPI = mpiicpc\n\ LAPACK_DIR = $(MKLROOT)\n\ FFTW_DIR = %s\n\ ELPA_DIR = %s\n\ ELPA_INCLUDE = -I${ELPA_DIR}/include/elpa%s%s\n\ CEREAL_DIR = %s\n\ OBJ_DIR = obj\n\ OBJ_DIR_serial = obj\n\ NP = 14\n" % ( spec["fftw"].prefix, spec["elpa"].prefix, inc_var, "{0}".format(spec["elpa"].version), spec["cereal"].prefix, ) ) with open(self.build_directory + "/Makefile.vars", "w") as f: f.write(tempInc) lineList = [] Pattern1 = re.compile("^ELPA_INCLUDE_DIR") Pattern2 = re.compile("^ELPA_LIB\\s*= ") with open(self.build_directory + "/Makefile.system", "r") as f: while True: line = f.readline() if not line: break elif Pattern1.search(line): pass elif Pattern2.search(line): pass else: lineList.append(line) with open(self.build_directory + "/Makefile.system", "w") as f: for i in lineList: f.write(i) with open(self.build_directory + "/Makefile.system", "a") as f: f.write(system_var) def install(self, spec, prefix): install_tree("bin", prefix.bin)
[((94, 19, 94, 50), 're.compile', 're.compile', ({(94, 30, 94, 49): '"""^ELPA_INCLUDE_DIR"""'}, {}), "('^ELPA_INCLUDE_DIR')", False, 'import re\n'), ((95, 19, 95, 48), 're.compile', 're.compile', ({(95, 30, 95, 47): '"""^ELPA_LIB\\\\s*= """'}, {}), "('^ELPA_LIB\\\\s*= ')", False, 'import re\n')]
ppelleti/berp
test/regression/features/arithmetic/mult.py
30925288376a6464695341445688be64ac6b2600
print(18 * 1234) print(18 * 1234 * 2) print(0 * 1) print(1 * 0) print(0.0 * 1.0) print(1.0 * 0.0)
[]
SafonovMikhail/python_000577
001146StepikPyBegin/Stepik001146PyBeginсh02p05st15C09_20200411.py
739f764e80f1ca354386f00b8e9db1df8c96531d
num = int(input()) d1 = (num % 10 ** 4) // 10 ** 3 d2 = (num % 10 ** 3) // 10 ** 2 d3 = (num % 10 ** 2) // 10 d4 = num % 10 print("Цифра в позиции тысяч равна", d1) print("Цифра в позиции сотен равна", d2) print("Цифра в позиции десятков равна", d3) print("Цифра в позиции единиц равна", d4) # print("Python", , "is the best") _quit = 1 print(_quit * 2)
[]
on-merrit/ON-MERRIT
WP3/Task3.2/spark/shared/addcountry2dataset.py
a21324a54a6365f2f769b5952b0cf5347a97d480
import csv from os import listdir from os.path import isfile, join from osgeo import ogr from multiprocessing import Pool driver = ogr.GetDriverByName('GeoJSON') countryFile = driver.Open("../data/external/countries.json") layer = countryFile.GetLayer() class Point(object): """ Wrapper for ogr point """ def __init__(self, lat, lng): """ Coordinates are in degrees """ self.point = ogr.Geometry(ogr.wkbPoint) self.point.AddPoint(lng, lat) def getOgr(self): return self.point ogr = property(getOgr) class Country(object): """ Wrapper for ogr country shape. Not meant to be instantiated directly. """ def __init__(self, shape): self.shape = shape def getIso(self): return self.shape.GetField('ISO_A3') iso = property(getIso) def __str__(self): return self.shape.GetField('ADMIN') def contains(self, point): return self.shape.geometry().Contains(point.ogr) def getCountry(lat, lng): """ Checks given gps-incoming coordinates for country. Output is either country shape index or None """ point = ogr.Geometry(ogr.wkbPoint) point.AddPoint(lng, lat) for i in range(layer.GetFeatureCount()): country = layer.GetFeature(i) if country.geometry().Contains(point): return Country(country).iso # nothing found return None def process_chunk(file): with open(file, 'r') as read_obj, open(f"{file}_done.csv", 'w') as write_obj: # pass the file object to reader() to get the reader object csv_reader = csv.reader(read_obj) csv_writer = csv.writer(write_obj) # Iterate over each row in the csv using reader object count=0 for row in csv_reader: # row variable is a list that represents a row in csv if row[2] and row[3]: country = getCountry(float(row[2]), float(row[3])) row.append(country) csv_writer.writerow(row) count+=1 if count%100==0: print(f"File {file} progress: {count}/100000") print(f"Processing {file} terminated") allfiles = [join("q1a_latlon_split", f) for f in listdir("q1a_latlon_split") if isfile(join("q1a_latlon_split", f))] with Pool(32) as p: p.map(process_chunk, allfiles)
[((82, 12, 82, 39), 'os.path.join', 'join', ({(82, 17, 82, 35): '"""q1a_latlon_split"""', (82, 37, 82, 38): 'f'}, {}), "('q1a_latlon_split', f)", False, 'from os.path import isfile, join\n'), ((84, 5, 84, 13), 'multiprocessing.Pool', 'Pool', ({(84, 10, 84, 12): '(32)'}, {}), '(32)', False, 'from multiprocessing import Pool\n'), ((65, 21, 65, 41), 'csv.reader', 'csv.reader', ({(65, 32, 65, 40): 'read_obj'}, {}), '(read_obj)', False, 'import csv\n'), ((66, 21, 66, 42), 'csv.writer', 'csv.writer', ({(66, 32, 66, 41): 'write_obj'}, {}), '(write_obj)', False, 'import csv\n'), ((82, 49, 82, 76), 'os.listdir', 'listdir', ({(82, 57, 82, 75): '"""q1a_latlon_split"""'}, {}), "('q1a_latlon_split')", False, 'from os import listdir\n'), ((82, 87, 82, 114), 'os.path.join', 'join', ({(82, 92, 82, 110): '"""q1a_latlon_split"""', (82, 112, 82, 113): 'f'}, {}), "('q1a_latlon_split', f)", False, 'from os.path import isfile, join\n')]
Henchel-Santillan/open-ai
ai-experiments/sudoku/rdisplay.py
545bf8468330dce7e705c17e0ac4ce3889f20d5b
import cv2 import numpy as np def process_core(image): ''' Returns an inverted preprocessed binary image, with noise reduction achieved with greyscaling, Gaussian Blur, Otsu's Threshold, and an open morph. ''' #apply greyscaling, Gaussian Blur, and Otsu's Threshold greyscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(greyscale, (3, 3), 0) threshold = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] #apply an open morph to invert image to remove noise kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) invert = 255 - cv2.morphologyEx(threshold, cv2.MORPH_OPEN, kernel, iterations=1) return invert def find_houghlines(image, width, height): hough_lines = None lines = cv2.HoughLinesP(image, 1, np.pi/180, 50, minLineLength=50, maxLineGap=5) #generates blank black image with single color layer if lines is not None and len(lines) != 0: hough_lines = np.zeros((height, width), dtype=np.uint8) for line in lines: x1, y1, x2, y2 = line[0] cv2.line(hough_lines, (x1, y1), (x2, y2), (255, 255, 255), 2) return hough_lines def find_bounds(image): rect_bounds = None #Run contour recognition contours, _ = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) #Take list of sorted contours by largest area to smallest area #If at least one contour is identified, can process visual approx. of contour bounds if len(sorted(contours, key=cv2.contourArea, reverse=True)) > 0: contour_bounds = None #Pre-determined image size factor constant SFACTOR = 20 for contour in contours: #Minimum intended size of a single cell is not reached, likely a cutoff, not worth approx. if (image[0] * image[1]) / SFACTOR > cv2.contourArea(contour): break approximation = cv2.approxPolyDP(contour, cv2.arcLength(contour, True), True) #This means that the approximated polygon is a quad if len(approximation) == 4: contour_bounds = approximation break if contour_bounds is not None: rect_bounds = np.zeros((4, 2), dtype=np.float32) corners = contour_bounds.reshape(-1, 2) rect_bounds[0] = corners[np.argmin(contour_bounds.sum(axis=1))] rect_bounds[2] = corners[np.argmax(contour_bounds.sum(axis=1))] rect_bounds[1] = corners[np.argmin(np.diff(corners, axis=1))] rect_bounds[3] = corners[np.argmax(np.diff(corners, axis=1))] return rect_bounds #Transform the perspective to render as if looking down on paper (top-down view) def transform(image, perspective): pass #Process the grid based on expected clean binary image input def process_grid(image, width, height): grid = None detected = False hough_lines = find_houghlines(image, width, height)
[((11, 16, 11, 55), 'cv2.cvtColor', 'cv2.cvtColor', ({(11, 29, 11, 34): 'image', (11, 36, 11, 54): 'cv2.COLOR_BGR2GRAY'}, {}), '(image, cv2.COLOR_BGR2GRAY)', False, 'import cv2\n'), ((12, 11, 12, 49), 'cv2.GaussianBlur', 'cv2.GaussianBlur', ({(12, 28, 12, 37): 'greyscale', (12, 39, 12, 45): '(3, 3)', (12, 47, 12, 48): '0'}, {}), '(greyscale, (3, 3), 0)', False, 'import cv2\n'), ((16, 13, 16, 62), 'cv2.getStructuringElement', 'cv2.getStructuringElement', ({(16, 39, 16, 53): 'cv2.MORPH_RECT', (16, 55, 16, 61): '(3, 3)'}, {}), '(cv2.MORPH_RECT, (3, 3))', False, 'import cv2\n'), ((24, 12, 24, 84), 'cv2.HoughLinesP', 'cv2.HoughLinesP', (), '', False, 'import cv2\n'), ((40, 18, 40, 85), 'cv2.findContours', 'cv2.findContours', ({(40, 35, 40, 40): 'image', (40, 42, 40, 59): 'cv2.RETR_EXTERNAL', (40, 61, 40, 84): 'cv2.CHAIN_APPROX_SIMPLE'}, {}), '(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)', False, 'import cv2\n'), ((13, 16, 13, 84), 'cv2.threshold', 'cv2.threshold', ({(13, 30, 13, 34): 'blur', (13, 36, 13, 37): '(0)', (13, 39, 13, 42): '(255)', (13, 44, 13, 83): '(cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)'}, {}), '(blur, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)', False, 'import cv2\n'), ((17, 19, 17, 84), 'cv2.morphologyEx', 'cv2.morphologyEx', (), '', False, 'import cv2\n'), ((28, 22, 28, 63), 'numpy.zeros', 'np.zeros', (), '', True, 'import numpy as np\n'), ((32, 12, 32, 73), 'cv2.line', 'cv2.line', ({(32, 21, 32, 32): 'hough_lines', (32, 34, 32, 42): '(x1, y1)', (32, 44, 32, 52): '(x2, y2)', (32, 54, 32, 69): '(255, 255, 255)', (32, 71, 32, 72): '(2)'}, {}), '(hough_lines, (x1, y1), (x2, y2), (255, 255, 255), 2)', False, 'import cv2\n'), ((62, 26, 62, 60), 'numpy.zeros', 'np.zeros', (), '', True, 'import numpy as np\n'), ((51, 49, 51, 73), 'cv2.contourArea', 'cv2.contourArea', ({(51, 65, 51, 72): 'contour'}, {}), '(contour)', False, 'import cv2\n'), ((54, 54, 54, 82), 'cv2.arcLength', 'cv2.arcLength', ({(54, 68, 54, 75): 'contour', (54, 77, 54, 81): 'True'}, {}), '(contour, True)', False, 'import cv2\n'), ((68, 47, 68, 71), 'numpy.diff', 'np.diff', (), '', True, 'import numpy as np\n'), ((69, 47, 69, 71), 'numpy.diff', 'np.diff', (), '', True, 'import numpy as np\n')]
abhiskk/pythia
pythia/tasks/base_task.py
c33fb45d74353c25b6269b44551bcafefecb5c7e
# Copyright (c) Facebook, Inc. and its affiliates. """ Tasks come above datasets in hierarchy level. In case you want to implement a new task, you need to inherit ``BaseTask`` class. You need to implement ``_get_available_datasets`` and ``_preprocess_item`` functions to complete the implementation. You can check the source to see if you need to override any other methods like ``prepare_batch``. Check example of ``VQATask`` here_. Example:: from pythia.tasks.base_task import BaseTask from pythia.common.registry import registry @registry.register_task("my") class MyTask(BaseTask): def __init__(self): super().__init__("my") def _get_available_datasets(self): return ["my"] def _preprocess_item(self): item.text = None return item .. _here: https://github.com/facebookresearch/pythia/blob/v0.3/pythia/tasks/vqa/vqa_task.py """ import sys import numpy as np from torch.utils.data import Dataset from pythia.common.registry import registry class BaseTask(Dataset): """ BaseTask that task classes need to inherit in order to create a new task. Users must implement ``_get_available_datasets`` and ``_preprocess_item`` in order to complete implementation. Args: task_name (str): Name of the task with which it will be registered """ def __init__(self, task_name): super(BaseTask, self).__init__() self.task_name = task_name self.writer = registry.get("writer") def _process_datasets(self): if "datasets" not in self.opts: self.writer.write( "No datasets attribute present for task: %s." " Defaulting to all" % (self.task_name), "warning", ) datasets = "all" else: datasets = self.opts["datasets"] if datasets is None or datasets == "all": datasets = self._get_available_datasets() if type(datasets) == str: datasets = list(map(lambda x: x.strip(), datasets.split(","))) if len(datasets) == 0 and datasets[0] == "all": datasets = self._get_available_datasets() self.given_datasets = datasets def load(self, **opts): self.opts = opts self._process_datasets() self.datasets = [] self.builders = [] available_datasets = self._get_available_datasets() self.total_length = 0 self.per_dataset_lengths = [] self.num_datasets = 0 for dataset in self.given_datasets: if dataset in available_datasets: builder_class = registry.get_builder_class(dataset) if builder_class is None: print("No builder class found for %s." % dataset) continue builder_instance = builder_class() if dataset in self.opts["dataset_attributes"]: attributes = self.opts["dataset_attributes"][dataset] else: self.writer.write( "Dataset %s is missing from " "dataset_attributes in config." % dataset, "error", ) sys.exit(1) dataset_type = self.opts.get("dataset_type", "train") builder_instance.build(dataset_type, attributes) dataset_instance = builder_instance.load(dataset_type, attributes) self.builders.append(builder_instance) self.datasets.append(dataset_instance) self.per_dataset_lengths.append(len(dataset_instance)) self.total_length += len(dataset_instance) else: print( "Dataset %s is not a valid dataset for task %s. Skipping" % (dataset, self.task_name) ) self.num_datasets = len(self.datasets) self.dataset_probablities = [1 for _ in range(self.num_datasets)] sampling = self.opts.get("dataset_size_proportional_sampling", None) if sampling is True: self.dataset_probablities = self.per_dataset_lengths[:] self.dataset_probablities = [ prob / self.total_length for prob in self.dataset_probablities ] self.change_dataset() def _get_available_datasets(self): """Set available datasets for this task here. Override in your child task class Temporary solution, later we will use decorators to easily register datasets with a task Returns: List - List of available datasets for this particular task """ return [] def get_datasets(self): return self.datasets def __len__(self): return self.total_length def __getitem__(self, idx): idx = idx % self.per_dataset_lengths[self.dataset_choice] item = self.chosen_dataset[idx] return self._preprocess_item(item) def change_dataset(self): self.dataset_choice = np.random.choice( self.num_datasets, 1, p=self.dataset_probablities )[0] self.chosen_dataset = self.datasets[self.dataset_choice] def verbose_dump(self, *args, **kwargs): self.chosen_dataset.verbose_dump(*args, **kwargs) def prepare_batch(self, batch): return self.chosen_dataset.prepare_batch(batch) def _preprocess_item(self, item): """Preprocess an item to be returned from __getitem__. Override in your child task class, so you have control on what you are returning Args: item (Sample): Sample returned by a particular dataset Returns: Sample: Preprocessed item """ raise NotImplementedError( "This task doesn't implement preprocess_item" " method" ) def update_registry_for_model(self, config): """ Use this if there is some specific configuration required by model which must be inferred at runtime. """ for builder in self.builders: builder.update_registry_for_model(config) def init_args(self, parser): parser.add_argument_group("General Task Arguments") parser.add_argument( "-dsp", "--dataset_size_proportional_sampling", type=bool, default=0, help="Pass if you want to sample from" " dataset according to its size. Default: Equal " " weighted sampling", ) # TODO: Figure out later if we want to init args from datasets # self._init_args(parser) def _init_args(self, parser): """Override this function to add extra parameters to parser in your child task class. Parameters ---------- parser : ArgumentParser Original parser object passed from the higher level classes like trainer Returns ------- type Description of returned object. """ for builder in self.builders: builder.init_args(parser) def clean_config(self, config): """ Override this in case you want to clean the config you updated earlier in update_registry_for_model """ return config
[((53, 22, 53, 44), 'pythia.common.registry.registry.get', 'registry.get', ({(53, 35, 53, 43): '"""writer"""'}, {}), "('writer')", False, 'from pythia.common.registry import registry\n'), ((159, 30, 161, 9), 'numpy.random.choice', 'np.random.choice', (), '', True, 'import numpy as np\n'), ((91, 32, 91, 67), 'pythia.common.registry.registry.get_builder_class', 'registry.get_builder_class', ({(91, 59, 91, 66): 'dataset'}, {}), '(dataset)', False, 'from pythia.common.registry import registry\n'), ((106, 20, 106, 31), 'sys.exit', 'sys.exit', ({(106, 29, 106, 30): '(1)'}, {}), '(1)', False, 'import sys\n')]
Konstantysz/InterGen
src/gauss_n.py
1a1d0bde165f864daea70c6339a9b8426343fdd9
from numba import jit import numpy as np @jit(nopython=True, parallel=True) def gauss_n(X, Y, mu_x = 0.0, mu_y = 0.0, amp = 1.0, sigma = 3.0): ''' Function that generates 2D discrete gaussian distribution. Boosted with Numba: works in C and with parallel computing. Parameters ---------- X : numpy.ndarray meshgrided values in X axis Y : numpy.ndarray meshgrided values in Y axis mu_x : float Displacement in X axis mu_y : float Displacement in Y axis amp : float Amplitude of gaussian distribution sigma : float Std dev of gaussian distribution Returns: ---------- val : numpy.ndarray matrix of 2D gaussian distribution ''' exponent = ((X - mu_x)**2 + (Y - mu_y)**2) / 2*sigma val = (amp*np.exp(-exponent)) return val
[((4, 1, 4, 34), 'numba.jit', 'jit', (), '', False, 'from numba import jit\n'), ((31, 15, 31, 32), 'numpy.exp', 'np.exp', ({(31, 22, 31, 31): '(-exponent)'}, {}), '(-exponent)', True, 'import numpy as np\n')]
Cloud11665/satori-git
satori.core/satori/core/export/pc.py
ea1855a920c98b480423bf247bce6e5626985c4a
# vim:ts=4:sts=4:sw=4:expandtab from token import token_container from satori.core.export.type_helpers import DefineException AccessDenied = DefineException('AccessDenied', 'You don\'t have rights to call this procedure') class PCDeny(object): def __call__(__pc__self, **kwargs): return False def __str__(__pc__self): return 'imposible' class PCPermit(object): def __call__(__pc__self, **kwargs): return True def __str__(__pc__self): return 'none' class PCArg(object): def __init__(__pc__self, name, perm): super(PCArg, __pc__self).__init__() __pc__self.name = name __pc__self.perm = perm def __call__(__pc__self, **kwargs): return Privilege.demand(kwargs[__pc__self.name], __pc__self.perm) def __str__(__pc__self): return '{0} on {1}'.format(__pc__self.perm, __pc__self.name) class PCArgField(object): def __init__(__pc__self, name, field_name, perm): super(PCArgField, __pc__self).__init__() __pc__self.name = name __pc__self.field_name = field_name __pc__self.perm = perm def __call__(__pc__self, **kwargs): field = getattr(kwargs[__pc__self.name], __pc__self.field_name, None) if field is None: return False return Privilege.demand(field, __pc__self.perm) def __str__(__pc__self): return '{0} on {1}.{2}'.format(__pc__self.perm, __pc__self.name, __pc__self.field_name) class PCGlobal(object): def __init__(__pc__self, perm): super(PCGlobal, __pc__self).__init__() __pc__self.perm = perm def __call__(__pc__self, **kwargs): return Privilege.global_demand(__pc__self.perm) def __str__(__pc__self): return 'global {0}'.format(__pc__self.perm) class PCAnd(object): def __init__(__pc__self, *subs): super(PCAnd, __pc__self).__init__() __pc__self.subs = subs def __call__(__pc__self, **kwargs): return all(x(**kwargs) for x in __pc__self.subs) def __str__(__pc__self): return '(' + ') and ('.join(str(p) for p in __pc__self.subs) + ')' class PCOr(object): def __init__(__pc__self, *subs): super(PCOr, __pc__self).__init__() __pc__self.subs = subs def __call__(__pc__self, **kwargs): return any(x(**kwargs) for x in __pc__self.subs) def __str__(__pc__self): return '(' + ') or ('.join(str(p) for p in __pc__self.subs) + ')' class PCEach(object): def __init__(__pc__self, name, sub): super(PCEach, __pc__self).__init__() __pc__self.name = name __pc__self.sub = sub def __call__(__pc__self, **kwargs): if kwargs[__pc__self.name] is None: return True return all(__pc__self.sub(item=x) for x in kwargs[__pc__self.name]) def __str__(__pc__self): return 'for every item in {0}: {1}'.format(__pc__self.name, str(__pc__self.sub)) class PCEachKey(object): def __init__(__pc__self, name, sub): super(PCEachKey, __pc__self).__init__() __pc__self.name = name __pc__self.sub = sub def __call__(__pc__self, **kwargs): if kwargs[__pc__self.name] is None: return True return all(__pc__self.sub(item=x) for x in kwargs[__pc__self.name].keys()) def __str__(__pc__self): return 'for every item in {0}.keys(): {1}'.format(__pc__self.name, str(__pc__self.sub)) class PCEachValue(object): def __init__(__pc__self, name, sub): super(PCEachValue, __pc__self).__init__() __pc__self.name = name __pc__self.sub = sub def __call__(__pc__self, **kwargs): if kwargs[__pc__self.name] is None: return True return all(__pc__self.sub(item=x) for x in kwargs[__pc__self.name].values()) def __str__(__pc__self): return 'for every item in {0}.values(): {1}'.format(__pc__self.name, str(__pc__self.sub)) class PCTokenUser(object): def __init__(__pc__self, name): super(PCTokenUser, __pc__self).__init__() __pc__self.name = name def __call__(__pc__self, **kwargs): return token_container.token.role and token_container.token.role.id == kwargs[__pc__self.name].id def __str__(__pc__self): return '{0} equals to calling user'.format(__pc__self.name) class PCTokenIsUser(object): def __init__(__pc__self): super(PCTokenIsUser, __pc__self).__init__() def __call__(__pc__self, **kwargs): return token_container.token.user is not None def __str__(__pc__self): return 'calling role is user' class PCTokenIsMachine(object): def __init__(__pc__self): super(PCTokenIsMachine, __pc__self).__init__() def __call__(__pc__self, **kwargs): return token_container.token.machine is not None def __str__(__pc__self): return 'calling role is machine' class PCRawBlob(object): def __init__(__pc__self, name): super(PCRawBlob, __pc__self).__init__() __pc__self.name = name def __call__(__pc__self, **kwargs): if kwargs[__pc__self.name].is_blob: return Privilege.global_demand('RAW_BLOB') else: return True def __str__(__pc__self): return 'global RAW_BLOB if {0}.is_blob = True'.format(__pc__self.name) def init(): global Privilege from satori.core.models import Privilege
[((5, 15, 5, 95), 'satori.core.export.type_helpers.DefineException', 'DefineException', ({(5, 31, 5, 45): '"""AccessDenied"""', (5, 47, 5, 94): '"""You don\'t have rights to call this procedure"""'}, {}), '(\'AccessDenied\', "You don\'t have rights to call this procedure")', False, 'from satori.core.export.type_helpers import DefineException\n'), ((31, 15, 31, 73), 'satori.core.models.Privilege.demand', 'Privilege.demand', ({(31, 32, 31, 55): 'kwargs[__pc__self.name]', (31, 57, 31, 72): '__pc__self.perm'}, {}), '(kwargs[__pc__self.name], __pc__self.perm)', False, 'from satori.core.models import Privilege\n'), ((47, 15, 47, 55), 'satori.core.models.Privilege.demand', 'Privilege.demand', ({(47, 32, 47, 37): 'field', (47, 39, 47, 54): '__pc__self.perm'}, {}), '(field, __pc__self.perm)', False, 'from satori.core.models import Privilege\n'), ((58, 15, 58, 55), 'satori.core.models.Privilege.global_demand', 'Privilege.global_demand', ({(58, 39, 58, 54): '__pc__self.perm'}, {}), '(__pc__self.perm)', False, 'from satori.core.models import Privilege\n'), ((170, 19, 170, 54), 'satori.core.models.Privilege.global_demand', 'Privilege.global_demand', ({(170, 43, 170, 53): '"""RAW_BLOB"""'}, {}), "('RAW_BLOB')", False, 'from satori.core.models import Privilege\n')]
AppImageCrafters/AppImageBuilder
appimagebuilder/orchestrator.py
dd041050e65f8eff28f878a092fd07bcf3ec5a4d
# Copyright 2021 Alexis Lopez Zubieta # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. import os import pathlib from appimagebuilder.utils.finder import Finder from appimagebuilder.context import AppInfo, Context, BundleInfo from appimagebuilder.commands.apt_deploy import AptDeployCommand from appimagebuilder.commands.create_appimage import CreateAppImageCommand from appimagebuilder.commands.file_deploy import FileDeployCommand from appimagebuilder.commands.pacman_deploy import PacmanDeployCommand from appimagebuilder.commands.run_script import RunScriptCommand from appimagebuilder.commands.run_test import RunTestCommand from appimagebuilder.commands.setup_app_info import SetupAppInfoCommand from appimagebuilder.commands.setup_runtime import SetupRuntimeCommand from appimagebuilder.commands.setup_symlinks import SetupSymlinksCommand from appimagebuilder.commands.deploy_record import ( WriteDeployRecordCommand, ) from appimagebuilder.recipe.roamer import Roamer class Orchestrator: """Transforms a recipe into a command list""" def process(self, recipe: Roamer, args): if recipe.version() == 1: return self._prepare_commands_for_recipe_v1(args, recipe) raise RuntimeError("Unknown recipe version: %s" % recipe.version()) def _prepare_commands_for_recipe_v1(self, args, recipe): context = self._extract_v1_recipe_context(args, recipe) commands = [] if not args.skip_script: command = RunScriptCommand(context, recipe.script, "main script") commands.append(command) if not args.skip_build: commands.extend(self._create_app_dir_commands(context, recipe)) if not args.skip_tests and recipe.AppDir.test: command = RunTestCommand(context, recipe.AppDir.test) commands.append(command) if not args.skip_appimage: command = CreateAppImageCommand(context, recipe) commands.append(command) return commands def _create_app_dir_commands(self, context, recipe): commands = [] commands.extend(self._create_deploy_commands(context, recipe)) commands.extend(self._create_setup_commands(context, recipe)) commands.append(WriteDeployRecordCommand(context)) return commands def _create_deploy_commands(self, context, recipe): commands = [] if recipe.AppDir.before_bundle: command = RunScriptCommand( context, recipe.AppDir.before_bundle, "before bundle script" ) commands.append(command) apt_section = recipe.AppDir.apt if apt_section: command = self._generate_apt_deploy_command(context, apt_section) commands.append(command) pacman_section = recipe.AppDir.pacman if pacman_section: command = self._generate_pacman_deploy_command(context, pacman_section) commands.append(command) files_section = recipe.AppDir.files if files_section: command = FileDeployCommand( context, files_section.include() or [], files_section.exclude() or [], ) commands.append(command) if recipe.AppDir.after_bundle: command = RunScriptCommand( context, recipe.AppDir.after_bundle, "after bundle script" ) commands.append(command) return commands def _create_setup_commands(self, context, recipe): commands = [] if recipe.AppDir.before_runtime: command = RunScriptCommand( context, recipe.AppDir.before_runtime, "before runtime script" ) commands.append(command) finder = Finder(context.app_dir) commands.append(SetupSymlinksCommand(context, recipe, finder)) commands.append(SetupRuntimeCommand(context, recipe, finder)) commands.append(SetupAppInfoCommand(context)) if recipe.AppDir.after_runtime: command = RunScriptCommand( context, recipe.AppDir.after_runtime, "after runtime script" ) commands.append(command) return commands def _generate_apt_deploy_command(self, context, apt_section): apt_archs = apt_section.arch() if isinstance(apt_archs, str): apt_archs = [apt_archs] sources = [] keys = [] for item in apt_section.sources(): if "sourceline" in item: sources.append(item["sourceline"]) if "key_url" in item: keys.append(item["key_url"]) return AptDeployCommand( context, apt_section.include(), apt_section.exclude() or [], apt_archs, sources, keys, apt_section.allow_unauthenticated() or False, ) def _generate_pacman_deploy_command(self, context, pacman_section): return PacmanDeployCommand( context, pacman_section.include(), pacman_section.exclude(), pacman_section["Architecture"](), pacman_section.repositories(), pacman_section.options(), ) def _extract_v1_recipe_context(self, args, recipe): app_dir_path = pathlib.Path(args.appdir).absolute() build_dir_path = pathlib.Path(args.build_dir).absolute() app_info_section = recipe.AppDir.app_info app_info = AppInfo( app_info_section.id(), app_info_section.name() or app_info_section.id(), app_info_section.icon() or "application-vnd.appimage", app_info_section.version(), app_info_section.exec(), app_info_section.exec_args(), ) bundle_info = BundleInfo( app_dir=app_dir_path, app_info=app_info, update_string=recipe.AppImage["update-information"]() or "guess", runtime_arch=recipe.AppImage.arch(), sign_key=recipe.AppImage["sign-key"]() or None, file_name=recipe.AppImage["file_name"] or None, ) return Context( recipe=recipe, recipe_path=pathlib.Path(args.recipe), app_info=app_info, bundle_info=bundle_info, app_dir=app_dir_path, build_dir=build_dir_path, )
[((111, 17, 111, 40), 'appimagebuilder.utils.finder.Finder', 'Finder', ({(111, 24, 111, 39): 'context.app_dir'}, {}), '(context.app_dir)', False, 'from appimagebuilder.utils.finder import Finder\n'), ((45, 22, 45, 77), 'appimagebuilder.commands.run_script.RunScriptCommand', 'RunScriptCommand', ({(45, 39, 45, 46): 'context', (45, 48, 45, 61): 'recipe.script', (45, 63, 45, 76): '"""main script"""'}, {}), "(context, recipe.script, 'main script')", False, 'from appimagebuilder.commands.run_script import RunScriptCommand\n'), ((52, 22, 52, 65), 'appimagebuilder.commands.run_test.RunTestCommand', 'RunTestCommand', ({(52, 37, 52, 44): 'context', (52, 46, 52, 64): 'recipe.AppDir.test'}, {}), '(context, recipe.AppDir.test)', False, 'from appimagebuilder.commands.run_test import RunTestCommand\n'), ((56, 22, 56, 60), 'appimagebuilder.commands.create_appimage.CreateAppImageCommand', 'CreateAppImageCommand', ({(56, 44, 56, 51): 'context', (56, 53, 56, 59): 'recipe'}, {}), '(context, recipe)', False, 'from appimagebuilder.commands.create_appimage import CreateAppImageCommand\n'), ((68, 24, 68, 57), 'appimagebuilder.commands.deploy_record.WriteDeployRecordCommand', 'WriteDeployRecordCommand', ({(68, 49, 68, 56): 'context'}, {}), '(context)', False, 'from appimagebuilder.commands.deploy_record import WriteDeployRecordCommand\n'), ((75, 22, 77, 13), 'appimagebuilder.commands.run_script.RunScriptCommand', 'RunScriptCommand', ({(76, 16, 76, 23): 'context', (76, 25, 76, 52): 'recipe.AppDir.before_bundle', (76, 54, 76, 76): '"""before bundle script"""'}, {}), "(context, recipe.AppDir.before_bundle, 'before bundle script')", False, 'from appimagebuilder.commands.run_script import RunScriptCommand\n'), ((96, 22, 98, 13), 'appimagebuilder.commands.run_script.RunScriptCommand', 'RunScriptCommand', ({(97, 16, 97, 23): 'context', (97, 25, 97, 51): 'recipe.AppDir.after_bundle', (97, 53, 97, 74): '"""after bundle script"""'}, {}), "(context, recipe.AppDir.after_bundle, 'after bundle script')", False, 'from appimagebuilder.commands.run_script import RunScriptCommand\n'), ((106, 22, 108, 13), 'appimagebuilder.commands.run_script.RunScriptCommand', 'RunScriptCommand', ({(107, 16, 107, 23): 'context', (107, 25, 107, 53): 'recipe.AppDir.before_runtime', (107, 55, 107, 78): '"""before runtime script"""'}, {}), "(context, recipe.AppDir.before_runtime, 'before runtime script'\n )", False, 'from appimagebuilder.commands.run_script import RunScriptCommand\n'), ((112, 24, 112, 69), 'appimagebuilder.commands.setup_symlinks.SetupSymlinksCommand', 'SetupSymlinksCommand', ({(112, 45, 112, 52): 'context', (112, 54, 112, 60): 'recipe', (112, 62, 112, 68): 'finder'}, {}), '(context, recipe, finder)', False, 'from appimagebuilder.commands.setup_symlinks import SetupSymlinksCommand\n'), ((114, 24, 114, 68), 'appimagebuilder.commands.setup_runtime.SetupRuntimeCommand', 'SetupRuntimeCommand', ({(114, 44, 114, 51): 'context', (114, 53, 114, 59): 'recipe', (114, 61, 114, 67): 'finder'}, {}), '(context, recipe, finder)', False, 'from appimagebuilder.commands.setup_runtime import SetupRuntimeCommand\n'), ((116, 24, 116, 52), 'appimagebuilder.commands.setup_app_info.SetupAppInfoCommand', 'SetupAppInfoCommand', ({(116, 44, 116, 51): 'context'}, {}), '(context)', False, 'from appimagebuilder.commands.setup_app_info import SetupAppInfoCommand\n'), ((119, 22, 121, 13), 'appimagebuilder.commands.run_script.RunScriptCommand', 'RunScriptCommand', ({(120, 16, 120, 23): 'context', (120, 25, 120, 52): 'recipe.AppDir.after_runtime', (120, 54, 120, 76): '"""after runtime script"""'}, {}), "(context, recipe.AppDir.after_runtime, 'after runtime script')", False, 'from appimagebuilder.commands.run_script import RunScriptCommand\n'), ((160, 23, 160, 48), 'pathlib.Path', 'pathlib.Path', ({(160, 36, 160, 47): 'args.appdir'}, {}), '(args.appdir)', False, 'import pathlib\n'), ((161, 25, 161, 53), 'pathlib.Path', 'pathlib.Path', ({(161, 38, 161, 52): 'args.build_dir'}, {}), '(args.build_dir)', False, 'import pathlib\n'), ((182, 24, 182, 49), 'pathlib.Path', 'pathlib.Path', ({(182, 37, 182, 48): 'args.recipe'}, {}), '(args.recipe)', False, 'import pathlib\n')]
Musketeer-Liu/Auto_Coding_Tools_Box
API_Collections/googlemap_geocode.py
96ffe3f194eb3571d290086400ef518cef4e0774
# python3 --> Enter Python Shell # from geocode import getGeocodeLocation # getGeocodeLocation("Place you wanto to query") import httplib2 import json def getGeocodeLocation(inputString): google_api_key = "AIzaSyDZHGnbFkjZcOEgYPpDqlO2YhBHKsNxhnE" locatationString = inputString.replace(" ", "+") url = ('https://maps.googleapis.com/maps/api/geocode/json?address=%s&key=%s'%(locatationString, google_api_key)) h = httplib2.Http() response, content = h.request(url, 'GET') result = json.loads(content) latitude = result['results'][0]['geometry']['location']['lat'] longitude = result['results'][0]['geometry']['location']['lng'] # print(latitude, longitude) return (latitude, longitude) # print("response header: %s \n \n" % response) # return result # san_francisco = getGeocodeLocation("San Francisco, CA") # response header: {'content-type': 'application/json; charset=UTF-8', 'date': 'Sat, 27 Jan 2018 06:25:35 GMT', 'expires': 'Sun, 28 Jan 2018 06:25:35 GMT', 'cache-control': 'public, max-age=86400', 'vary': 'Accept-Language', 'access-control-allow-origin': '*', 'server': 'mafe', 'content-length': '1749', 'x-xss-protection': '1; mode=block', 'x-frame-options': 'SAMEORIGIN', 'alt-svc': 'hq=":443"; ma=2592000; quic=51303431; quic=51303339; quic=51303338; quic=51303337; quic=51303335,quic=":443"; ma=2592000; v="41,39,38,37,35"', 'status': '200', '-content-encoding': 'gzip', 'content-location': 'https://maps.googleapis.com/maps/api/geocode/json?address=San+Francisco,+CA&key=AIzaSyDZHGnbFkjZcOEgYPpDqlO2YhBHKsNxhnE'} # san_francisco # {'results': [{'address_components': [{'long_name': 'San Francisco', 'short_name': 'SF', 'types': ['locality', 'political']}, {'long_name': 'San Francisco County', 'short_name': 'San Francisco County', 'types': ['administrative_area_level_2', 'political']}, {'long_name': 'California', 'short_name': 'CA', 'types': ['administrative_area_level_1', 'political']}, {'long_name': 'United States', 'short_name': 'US', 'types': ['country', 'political']}], 'formatted_address': 'San Francisco, CA, USA', 'geometry': {'bounds': {'northeast': {'lat': 37.9298239, 'lng': -122.28178}, 'southwest': {'lat': 37.6398299, 'lng': -123.173825}}, 'location': {'lat': 37.7749295, 'lng': -122.4194155}, 'location_type': 'APPROXIMATE', 'viewport': {'northeast': {'lat': 37.812,'lng': -122.3482}, 'southwest': {'lat': 37.70339999999999, 'lng': -122.527}}}, 'place_id': 'ChIJIQBpAG2ahYAR_6128GcTUEo', 'types': ['locality', 'political']}], 'status': 'OK'} # san_francisco.keys() # dict_keys(['results', 'status']) # san_francisco['results'][0]['geometry']['location']['lat'] # 37.7749295 # san_francisco['results'][0]['geometry']['location']['lng'] # -122.4194155
[((15, 8, 15, 23), 'httplib2.Http', 'httplib2.Http', ({}, {}), '()', False, 'import httplib2\n'), ((17, 13, 17, 32), 'json.loads', 'json.loads', ({(17, 24, 17, 31): 'content'}, {}), '(content)', False, 'import json\n')]
makakken/roseguarden
backend/core/actions/actionGenerator.py
9a867f3d5e979b990bf474dcba81e5e9d0814c6a
""" The roseguarden project Copyright (C) 2018-2020 Marcus Drobisch, This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ __authors__ = ["Marcus Drobisch"] __contact__ = "[email protected]" __credits__ = [] __license__ = "GPLv3" class BaseAction(object): action = 'undefined' target = 'undefined' source = 'server' version = '1.0.0' def __init__(self, ): print("Instance of BaseAction created") def execute(self, ): print("Execute not defined") @classmethod def generate(cls, delay=0.0): action = {} action['action'] = cls.action action['target'] = cls.target action['version'] = cls.version action['source'] = cls.source action['delay'] = delay return action class BaseNodeAction(object): action = 'undefined' version = '1.0.0' def __init__(self, ): print("Instance of BaseAction created") def execute(self, ): print("Execute not defined") @classmethod def generate(cls): action = {} action['action'] = cls.action action['version'] = cls.version return action
[]
arnscott/gcounter
lib/csv/csv.py
ffb6628f1b1f0e6c70168ff738fd51fa08e0df18
""" MIT License Copyright (c) 2018 Aaron Michael Scott Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import datetime import csv import os class CSVReader(object): """Wrapper for reading csv files. Takes just the filepath as an argument. Use the iterrecords() generator method for large data sets for increased performance. """ def __init__(self, file_path, delimiter=','): self.file_path = file_path self.delimiter = delimiter def read_to_list(self): """Returns the records in the csv as a list[] Each record is a dictionary """ records = [] with open(self.file_path) as source: reader = csv.DictReader(source, delimiter=self.delimiter) for row in reader: records.append(row) return records def read_to_dict(self, key_field): """Returns the records in the csv as a dictionary. The key value is specified by the key_field argument for each record """ records = {} with open(self.file_path) as source: reader = csv.DictReader(source, delimiter=self.delimiter) self.headers = reader.fieldnames if key_field in self.headers: for row in reader: if not row[key_field] in records: records[row[key_field]] = row else: raise Exception('The key provided does not have unique values.') else: raise KeyError('The key provided does not exist') return records def iterrecords(self): """Generator method that provides a more efficient way to iterate records. for record in instance.iterrecords(): print(record) """ records = [] with open(self.file_path) as source: reader = csv.DictReader(source, delimiter=self.delimiter) for row in reader: yield row class CSVWriter(object): """Wrapper for writing csv files. takes the file path and a list of headers as arguments """ def __init__(self, file_path, headers): self.headers = headers self.file_path = file_path def write_from_list(self, records=[]): """Writes the csv to the indicated file_path taking a list[] of records as the argument where each record is a dictionary. Only the fields in self.headers will be written to the csv. But extra fields can be passed, they will just be skipped over. """ if isinstance(records, list): with open(self.file_path, 'w') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=self.headers) writer.writeheader() for record in records: if isinstance(record, dict): row = {field: record[field] for field in self.headers} writer.writerow(row) else: raise Exception('Items in list must be of type dict') else: raise Exception('Must pass a list object as the records list') return self.file_path def write_from_dict(self, records={}): """Writes the csv to the indicated file_path taking a dict{} of records as the argument where each item in the dict{} is also a dict{} """ with open(self.file_path, 'w') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=self.headers) writer.writeheader() for key, record in records.items(): row = {field: record[field] for field in self.headers} writer.writerow(row) return self.file_path def reader(file_path='', delimiter=','): """Returns a CSVReader object """ if os.path.isfile(file_path): if os.access(file_path, os.R_OK): return CSVReader(file_path, delimiter=delimiter) else: raise Exception('{fname} exists but is not readable.'.format(fname=file_path)) else: raise Exception('{fname} does not exist'.format(fname=file_path)) def writer(file_path='', headers=[]): """Returns a CSVWriter object """ if not os.path.isfile(file_path): if isinstance(headers, list): return CSVWriter(file_path=file_path, headers=headers) else: raise Exception('Headers need to be in a list object.') else: raise Exception('{fname} is already a file. Please write to a new location.'.format(fname=file_path)) def the_date(): return datetime.date.today().strftime('%m_%d_%Y')
[((138, 7, 138, 32), 'os.path.isfile', 'os.path.isfile', ({(138, 22, 138, 31): 'file_path'}, {}), '(file_path)', False, 'import os\n'), ((139, 11, 139, 40), 'os.access', 'os.access', ({(139, 21, 139, 30): 'file_path', (139, 32, 139, 39): 'os.R_OK'}, {}), '(file_path, os.R_OK)', False, 'import os\n'), ((149, 11, 149, 36), 'os.path.isfile', 'os.path.isfile', ({(149, 26, 149, 35): 'file_path'}, {}), '(file_path)', False, 'import os\n'), ((49, 21, 50, 61), 'csv.DictReader', 'csv.DictReader', (), '', False, 'import csv\n'), ((61, 21, 62, 61), 'csv.DictReader', 'csv.DictReader', (), '', False, 'import csv\n'), ((82, 21, 83, 61), 'csv.DictReader', 'csv.DictReader', (), '', False, 'import csv\n'), ((126, 21, 127, 60), 'csv.DictWriter', 'csv.DictWriter', (), '', False, 'import csv\n'), ((161, 11, 161, 32), 'datetime.date.today', 'datetime.date.today', ({}, {}), '()', False, 'import datetime\n'), ((107, 25, 108, 64), 'csv.DictWriter', 'csv.DictWriter', (), '', False, 'import csv\n')]
karant17/Test
Module01/LearningQGIS_ThirdEdition_Code/Chapter6_code/export_map.py
e44bf79f597d53de2b891372ffccf7f13c74ede3
from PyQt4.QtGui import QImage, QPainter from PyQt4.QtCore import QSize # configure the output image width = 800 height = 600 dpi = 92 img = QImage(QSize(width, height), QImage.Format_RGB32) img.setDotsPerMeterX(dpi / 25.4 * 1000) img.setDotsPerMeterY(dpi / 25.4 * 1000) # get the map layers and extent layers = [ layer.id() for layer in iface.legendInterface().layers() ] extent = iface.mapCanvas().extent() # configure map settings for export mapSettings = QgsMapSettings() mapSettings.setMapUnits(0) mapSettings.setExtent(extent) mapSettings.setOutputDpi(dpi) mapSettings.setOutputSize(QSize(width, height)) mapSettings.setLayers(layers) mapSettings.setFlags(QgsMapSettings.Antialiasing | QgsMapSettings.UseAdvancedEffects | QgsMapSettings.ForceVectorOutput | QgsMapSettings.DrawLabeling) # configure and run painter p = QPainter() p.begin(img) mapRenderer = QgsMapRendererCustomPainterJob(mapSettings, p) mapRenderer.start() mapRenderer.waitForFinished() p.end() # save the result img.save("C:/temp/custom_export.png","png")
[((22, 4, 22, 14), 'PyQt4.QtGui.QPainter', 'QPainter', ({}, {}), '()', False, 'from PyQt4.QtGui import QImage, QPainter\n'), ((7, 13, 7, 33), 'PyQt4.QtCore.QSize', 'QSize', ({(7, 19, 7, 24): 'width', (7, 26, 7, 32): 'height'}, {}), '(width, height)', False, 'from PyQt4.QtCore import QSize\n'), ((18, 26, 18, 46), 'PyQt4.QtCore.QSize', 'QSize', ({(18, 32, 18, 37): 'width', (18, 39, 18, 45): 'height'}, {}), '(width, height)', False, 'from PyQt4.QtCore import QSize\n')]
DIVA-DIA/DIVA-DAF
tools/generate_cropped_dataset.py
0ae3b873d04f1852d9053cb4cb2fbc7bda73471c
""" Load a dataset of historic documents by specifying the folder where its located. """ import argparse # Utils import itertools import logging import math from datetime import datetime from pathlib import Path from torchvision.datasets.folder import has_file_allowed_extension, pil_loader from torchvision.transforms import functional as F from tqdm import tqdm IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.gif') JPG_EXTENSIONS = ('.jpg', '.jpeg') def get_img_paths_uncropped(directory): """ Parameters ---------- directory: string parent directory with images inside Returns ------- paths: list of paths """ paths = [] directory = Path(directory).expanduser() if not directory.is_dir(): logging.error(f'Directory not found ({directory})') for subdir in sorted(directory.iterdir()): if not subdir.is_dir(): continue for img_name in sorted(subdir.iterdir()): if has_file_allowed_extension(str(img_name), IMG_EXTENSIONS): paths.append((subdir / img_name, str(subdir.stem))) return paths class ImageCrop(object): """ Crop the data and ground truth image at the specified coordinates to the specified size and convert them to a tensor. """ def __init__(self, crop_size): self.crop_size = crop_size def __call__(self, img, coordinates): """ Args: img (PIL Image): Data image to be cropped and converted to tensor. gt (PIL Image): Ground truth image to be cropped and converted to tensor. Returns: Data tensor, gt tensor (tuple of tensors): cropped and converted images """ x_position = coordinates[0] y_position = coordinates[1] img_crop = F.to_tensor( F.crop(img=img, left=x_position, top=y_position, width=self.crop_size, height=self.crop_size)) return img_crop class CroppedDatasetGenerator: def __init__(self, input_path: Path, output_path, crop_size_train, crop_size_val, crop_size_test, overlap=0.5, leading_zeros_length=4, override_existing=False): # Init list self.input_path = input_path self.output_path = output_path self.crop_size_train = crop_size_train self.crop_size_val = crop_size_val self.crop_size_test = crop_size_test self.overlap = overlap self.leading_zeros_length = leading_zeros_length self.override_existing = override_existing self.generator_train = CropGenerator(input_path=input_path / 'train', output_path=output_path / 'train', crop_size=crop_size_train, overlap=overlap, leading_zeros_length=leading_zeros_length, override_existing=override_existing, progress_title='Cropping "train"') self.generator_val = CropGenerator(input_path=input_path / 'val', output_path=output_path / 'val', crop_size=crop_size_val, overlap=overlap, leading_zeros_length=leading_zeros_length, override_existing=override_existing, progress_title='Cropping "val"') self.generator_test = CropGenerator(input_path=input_path / 'test', output_path=output_path / 'test', crop_size=crop_size_test, overlap=overlap, leading_zeros_length=leading_zeros_length, override_existing=override_existing, progress_title='Cropping "test"') def write_crops(self): info_list = ['Running CroppedDatasetGenerator.write_crops():', f'- full_command:', f'python tools/generate_cropped_dataset.py -i {self.input_path} -o {self.output_path} ' f'-tr {self.crop_size_train} -v {self.crop_size_val} -te {self.crop_size_test} -ov {self.overlap} ' f'-l {self.leading_zeros_length}', f'', f'- start_time: \t{datetime.now():%Y-%m-%d_%H-%M-%S}', f'- input_path: \t{self.input_path}', f'- output_path: \t{self.output_path}', f'- crop_size_train: \t{self.crop_size_train}', f'- crop_size_val: \t{self.crop_size_val}', f'- crop_size_test: \t{self.crop_size_test}', f'- overlap: \t{self.overlap}', f'- leading_zeros_len:\t{self.leading_zeros_length}', f'- override_existing:\t{self.override_existing}', ''] # empty string to get linebreak at the end when using join info_str = '\n'.join(info_list) print(info_str) # Write info_cropped_dataset.txt self.output_path.mkdir(parents=True, exist_ok=True) info_file = self.output_path / 'info_cropped_dataset.txt' with info_file.open('a') as f: f.write(info_str) print(f'Start cropping:') self.generator_train.write_crops() self.generator_val.write_crops() self.generator_test.write_crops() with info_file.open('a') as f: f.write(f'- end_time: \t{datetime.now():%Y-%m-%d_%H-%M-%S}\n\n') class CropGenerator: def __init__(self, input_path, output_path, crop_size, overlap=0.5, leading_zeros_length=4, override_existing=False, progress_title=''): # Init list self.input_path = input_path self.output_path = output_path self.crop_size = crop_size self.overlap = overlap self.leading_zeros_length = leading_zeros_length self.override_existing = override_existing self.progress_title = progress_title self.step_size = int(self.crop_size * (1 - self.overlap)) # List of tuples that contain the path to the gt and image that belong together self.img_paths = get_img_paths_uncropped(input_path) self.num_imgs_in_set = len(self.img_paths) if self.num_imgs_in_set == 0: raise RuntimeError("Found 0 images in subfolders of: {} \n Supported image extensions are: {}".format( input_path, ",".join(IMG_EXTENSIONS))) self.current_split = '' self.current_img_index = -1 self.img_names_sizes, self.num_horiz_crops, self.num_vert_crops = self._get_img_size_and_crop_numbers() self.crop_list = self._get_crop_list() def write_crops(self): crop_function = ImageCrop(self.crop_size) for img_index, x, y in tqdm(self.crop_list, desc=self.progress_title): self._load_image(img_index=img_index) coordinates = (x, y) split_name = self.img_names_sizes[img_index][0] img_full_name = self.img_names_sizes[img_index][1] img_full_name = Path(img_full_name) img_name = img_full_name.stem dest_folder = self.output_path / split_name / img_name dest_folder.mkdir(parents=True, exist_ok=True) extension = img_full_name.suffix filename = f'{img_name}_x{x:0{self.leading_zeros_length}d}_y{y:0{self.leading_zeros_length}d}{extension}' dest_filename = dest_folder / filename if not self.override_existing: if dest_filename.exists(): continue img = self.get_crop(self.current_img, coordinates=coordinates, crop_function=crop_function) pil_img = F.to_pil_image(img, mode='RGB') if extension in JPG_EXTENSIONS: pil_img.save(dest_filename, quality=95) else: # save_image(img, dest_filename) pil_img.save(dest_filename) def _load_image(self, img_index): """ Inits the variables responsible of tracking which crop should be taken next, the current images and the like. This should be run every time a new page gets loaded for the test-set """ if self.current_img_index == img_index: return # Load image self.current_img = pil_loader(self.img_paths[img_index][0]) # Update pointer to current image self.current_img_index = img_index self.current_split = self.img_paths[img_index][1] def get_crop(self, img, coordinates, crop_function): img = crop_function(img, coordinates) return img def _get_img_size_and_crop_numbers(self): img_names_sizes = [] # list of tuples -> (split_name, img_name, img_size (H, W)) num_horiz_crops = [] num_vert_crops = [] for img_path, split_name in self.img_paths: data_img = pil_loader(img_path) img_names_sizes.append((split_name, img_path.name, data_img.size)) num_horiz_crops.append(math.ceil((data_img.size[0] - self.crop_size) / self.step_size + 1)) num_vert_crops.append(math.ceil((data_img.size[1] - self.crop_size) / self.step_size + 1)) return img_names_sizes, num_horiz_crops, num_vert_crops def _get_crop_list(self): return [self._convert_crop_id_to_coordinates(img_index, hcrop_index, vcrop_index) for img_index in range(self.num_imgs_in_set) for hcrop_index, vcrop_index in itertools.product(range(self.num_horiz_crops[img_index]), range(self.num_vert_crops[img_index]))] def _convert_crop_id_to_coordinates(self, img_index, hcrop_index, vcrop_index): # X coordinate if hcrop_index == self.num_horiz_crops[img_index] - 1: # We are at the end of a line x_position = self.img_names_sizes[img_index][2][0] - self.crop_size else: x_position = self.step_size * hcrop_index assert x_position < self.img_names_sizes[img_index][2][0] - self.crop_size # Y coordinate if vcrop_index == self.num_vert_crops[img_index] - 1: # We are at the bottom end y_position = self.img_names_sizes[img_index][2][1] - self.crop_size else: y_position = self.step_size * vcrop_index assert y_position < self.img_names_sizes[img_index][2][1] - self.crop_size return img_index, x_position, y_position if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-i', '--input_path', help='Path to the root folder of the dataset (contains train/val/test)', type=Path, required=True) parser.add_argument('-o', '--output_path', help='Path to the output folder', type=Path, required=True) parser.add_argument('-tr', '--crop_size_train', help='Size of the crops in the training set', type=int, required=True) parser.add_argument('-v', '--crop_size_val', help='Size of the crops in the validation set', type=int, required=True) parser.add_argument('-te', '--crop_size_test', help='Size of the crops in the test set', type=int, required=True) parser.add_argument('-ov', '--overlap', help='Overlap of the different crops (between 0-1)', type=float, default=0.5) parser.add_argument('-l', '--leading_zeros_length', help='amount of leading zeros to encode the coordinates', type=int, default=4) parser.add_argument('-oe', '--override_existing', help='If true overrides the images ', type=bool, default=False) args = parser.parse_args() dataset_generator = CroppedDatasetGenerator(**args.__dict__) dataset_generator.write_crops() # example call arguments # -i # /Users/voegtlil/Documents/04_Datasets/003-DataSet/CB55-10-segmentation # -o # /Users/voegtlil/Desktop/fun # -tr # 300 # -v # 300 # -te # 256 # example call arguments # -i # /dataset/DIVA-HisDB/segmentation/CB55 # -o # /net/research-hisdoc/datasets/semantic_segmentation/datasets_cropped/temp-CB55 # -tr # 300 # -v # 300 # -te # 256 # dataset_generator = CroppedDatasetGenerator( # input_path=Path('/dataset/DIVA-HisDB/segmentation/CB55'), # output_path=Path('/net/research-hisdoc/datasets/semantic_segmentation/datasets_cropped/CB55'), # crop_size_train=300, # crop_size_val=300, # crop_size_test=256, # overlap=0.5, # leading_zeros_length=4, # override_existing=False) # dataset_generator.write_crops()
[((271, 13, 271, 38), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ({}, {}), '()', False, 'import argparse\n'), ((38, 8, 38, 59), 'logging.error', 'logging.error', ({(38, 22, 38, 58): 'f"""Directory not found ({directory})"""'}, {}), "(f'Directory not found ({directory})')", False, 'import logging\n'), ((181, 31, 181, 77), 'tqdm.tqdm', 'tqdm', (), '', False, 'from tqdm import tqdm\n'), ((221, 27, 221, 67), 'torchvision.datasets.folder.pil_loader', 'pil_loader', ({(221, 38, 221, 66): 'self.img_paths[img_index][0]'}, {}), '(self.img_paths[img_index][0])', False, 'from torchvision.datasets.folder import has_file_allowed_extension, pil_loader\n'), ((35, 16, 35, 31), 'pathlib.Path', 'Path', ({(35, 21, 35, 30): 'directory'}, {}), '(directory)', False, 'from pathlib import Path\n'), ((74, 12, 74, 105), 'torchvision.transforms.functional.crop', 'F.crop', (), '', True, 'from torchvision.transforms import functional as F\n'), ((187, 28, 187, 47), 'pathlib.Path', 'Path', ({(187, 33, 187, 46): 'img_full_name'}, {}), '(img_full_name)', False, 'from pathlib import Path\n'), ((203, 22, 203, 53), 'torchvision.transforms.functional.to_pil_image', 'F.to_pil_image', (), '', True, 'from torchvision.transforms import functional as F\n'), ((237, 23, 237, 43), 'torchvision.datasets.folder.pil_loader', 'pil_loader', ({(237, 34, 237, 42): 'img_path'}, {}), '(img_path)', False, 'from torchvision.datasets.folder import has_file_allowed_extension, pil_loader\n'), ((239, 35, 239, 102), 'math.ceil', 'math.ceil', ({(239, 45, 239, 101): '((data_img.size[0] - self.crop_size) / self.step_size + 1)'}, {}), '((data_img.size[0] - self.crop_size) / self.step_size + 1)', False, 'import math\n'), ((240, 34, 240, 101), 'math.ceil', 'math.ceil', ({(240, 44, 240, 100): '((data_img.size[1] - self.crop_size) / self.step_size + 1)'}, {}), '((data_img.size[1] - self.crop_size) / self.step_size + 1)', False, 'import math\n'), ((122, 22, 122, 36), 'datetime.datetime.now', 'datetime.now', ({}, {}), '()', False, 'from datetime import datetime\n'), ((148, 21, 148, 35), 'datetime.datetime.now', 'datetime.now', ({}, {}), '()', False, 'from datetime import datetime\n')]
seanzhangJM/torch_model_demo
run.py
3ab3e841e77cf780198516c1910c906acdd3082d
#!/usr/bin/env python # _*_ coding: utf-8 _*_ # @Time : 2021/12/27 14:04 # @Author : zhangjianming # @Email : [email protected] # @File : run_task.py # @Software: PyCharm import sys sys.path.extend(["."]) from torch_model_demo.task.run_task import train_fashion_demo if __name__ == '__main__': train_fashion_demo()
[((11, 0, 11, 22), 'sys.path.extend', 'sys.path.extend', ({(11, 16, 11, 21): "['.']"}, {}), "(['.'])", False, 'import sys\n'), ((16, 4, 16, 24), 'torch_model_demo.task.run_task.train_fashion_demo', 'train_fashion_demo', ({}, {}), '()', False, 'from torch_model_demo.task.run_task import train_fashion_demo\n')]
OrangeRedeng/CV-SUMMER-CAMP-2021
practice/4_tracking/tracker.py
74a65d0b21e4876e1fc1c3d931af76193f36e617
import numpy as np import math import logging as log import sys from tqdm import tqdm from common.feature_distance import calc_features_similarity from common.common_objects import DetectedObject, validate_detected_object, Bbox from common.common_objects import get_bbox_center, get_dist, calc_bbox_area from common.find_best_assignment import solve_assignment_problem from common.annotation import AnnotationObject, AnnotationStorage class Track: __next_track_id = 0 def __init__(self, first_obj): self.objects = [] self._track_id = Track.__next_track_id Track.__next_track_id += 1 self.objects.append(first_obj) def _validate(self): assert len(self.objects) > 0 for o in self.objects: validate_detected_object(o) for i in range(len(self.objects) - 1): self.objects[i].frame_index < self.objects[i+1].frame_index def add_object(self, o): self._validate() validate_detected_object(o) last_frame_index = self.objects[-1].frame_index if not last_frame_index < o.frame_index: raise RuntimeError("Add object={} to track with the last_frame_index={}".format(o, last_frame_index)) self.objects.append(o) def last(self): return self.objects[-1] def get_id(self): return self._track_id def get_bbox_for_frame(self, cur_frame_ind): """Finds bbox for frame index using linear approximation""" self._validate() i_found = None for i, o in enumerate(self.objects): if o.frame_index == cur_frame_ind: return o.bbox if o.frame_index > cur_frame_ind: i_found = i break if i_found is None: # cur_frame_ind after the last frame_index in track return None if i_found == 0: # cur_frame_ind before the first frame_index in track return None log.debug("using linear approximation for track id={}, frame_index={}".format(self._track_id, cur_frame_ind)) o1 = self.objects[i_found-1] o2 = self.objects[i_found] assert o1.frame_index < cur_frame_ind < o2.frame_index dindex = o2.frame_index - o1.frame_index d_cur_index1 = cur_frame_ind - o1.frame_index d_cur_index2 = o2.frame_index - cur_frame_ind bbox1 = o1.bbox bbox2 = o2.bbox res_bbox = [None, None, None, None] for k in range(4): # linear approximation for all bbox fields res_bbox[k] = (bbox1[k] * d_cur_index2 + bbox2[k] * d_cur_index1) / dindex res_bbox = Bbox(res_bbox[0], res_bbox[1], res_bbox[2], res_bbox[3]) return res_bbox class Tracker: def __init__(self, num_frames_to_remove_track, num_objects_to_make_track_valid, affinity_threshold): self.tracks = [] self.track_archive = [] self.num_frames_to_remove_track = num_frames_to_remove_track self.num_objects_to_make_track_valid = num_objects_to_make_track_valid self.affinity_threshold = affinity_threshold def add_objects(self, det_objs): log.debug("begin: handling {} objects".format(len(det_objs))) if len(det_objs) == 0: return frame_index = det_objs[0].frame_index assert all(o.frame_index == frame_index for o in det_objs), "All det_objs should have the same frame_index" affinity_matrix = self._build_affinity_matrix(det_objs) self._validate_affinity_matrix(affinity_matrix, len(self.tracks), len(det_objs)) self._log_affinity_matrix(affinity_matrix) decision, best_affinity = self._solve_assignment_problem(affinity_matrix) self._log_decision(decision, best_affinity, det_objs, frame_index) self._apply_decision(decision, det_objs, frame_index) self._move_obsolete_tracks_to_archive(frame_index) log.debug("end: handling {} objects".format(len(det_objs))) @staticmethod def _validate_affinity_matrix(affinity_matrix, num_tracks, num_det_objs): assert isinstance(affinity_matrix, list) assert len(affinity_matrix) == num_tracks for affinity_row in affinity_matrix: assert isinstance(affinity_row, list) assert len(affinity_row) == num_det_objs assert all(isinstance(v, float) for v in affinity_row) assert all(v >= 0 for v in affinity_row) def _build_affinity_matrix(self, det_objs): affinity_matrix = [] for t in self.tracks: affinity_row = [] for o in det_objs: cur_affinity = self._calc_affinity(t, o) affinity_row.append(cur_affinity) affinity_matrix.append(affinity_row) return affinity_matrix def _calc_affinity(self, track, obj): affinity_appearance = self._calc_affinity_appearance(track, obj) affinity_position = self._calc_affinity_position(track, obj) affinity_shape = self._calc_affinity_shape(track, obj) return affinity_appearance * affinity_position * affinity_shape def _calc_affinity_appearance(self, track, obj): raise NotImplementedError("The function _calc_affinity_appearance  is not implemented -- implement it by yourself") def _calc_affinity_position(self, track, obj): raise NotImplementedError("The function _calc_affinity_position is not implemented -- implement it by yourself") def _calc_affinity_shape(self, track, obj): raise NotImplementedError("The function _calc_affinity_shape is not implemented -- implement it by yourself") @staticmethod def _log_affinity_matrix(affinity_matrix): with np.printoptions(precision=2, suppress=True, threshold=sys.maxsize, linewidth=sys.maxsize): log.debug("Affinity matrix =\n{}".format(np.array(affinity_matrix))) def _solve_assignment_problem(self, affinity_matrix): decision, best_affinity = solve_assignment_problem(affinity_matrix, self.affinity_threshold) return decision, best_affinity def _log_decision(self, decision, best_affinity, det_objs, frame_index): log.debug("Logging decision for frame index={}".format(frame_index)) num_tracks = len(self.tracks) for track_index in range(num_tracks): assert track_index in decision obj_index = decision[track_index] # index of the object assigned to the track if obj_index is not None: assert 0 <= obj_index < len(det_objs) obj_bbox = det_objs[obj_index].bbox else: obj_bbox = None cur_best_affinity = best_affinity[track_index] if cur_best_affinity is not None: best_affinity_str = "{:.3f}".format(cur_best_affinity) else: best_affinity_str = str(cur_best_affinity) log.debug("track_index={}, track id={}, last_bbox={}, decision={}, best_affinity={} => {}".format( track_index, self.tracks[track_index].get_id(), self.tracks[track_index].last().bbox, decision[track_index], best_affinity_str, obj_bbox)) def _apply_decision(self, decision, det_objs, frame_index): set_updated_tracks_indexes = set() num_det_objs = len(det_objs) num_tracks = len(self.tracks) object_indexes_not_mapped_to_tracks = set(range(num_det_objs)) # all indexes from 0 to num_det_objs-1 for track_index in range(num_tracks): assert track_index in decision obj_index = decision[track_index] # index of the object assigned to the track if obj_index is None: # no objects are mapped for this track continue assert 0 <= obj_index < num_det_objs if obj_index not in object_indexes_not_mapped_to_tracks: raise RuntimeError("ERROR: Algorithm assigned the object {} to several tracks".format(obj_index)) object_indexes_not_mapped_to_tracks.remove(obj_index) o = det_objs[obj_index] self.tracks[track_index].add_object(o) # create new tracks for all the objects not mapped to tracks for obj_index in object_indexes_not_mapped_to_tracks: o = det_objs[obj_index] self._create_new_track(o) def _create_new_track(self, o): new_track = Track(o) self.tracks.append(new_track) log.debug("created new track: id={} object: frame_index={}, {}".format( new_track.get_id(), o.frame_index, o.bbox)) def _move_obsolete_tracks_to_archive(self, frame_index): new_tracks = [] for t in self.tracks: last_frame_index = t.last().frame_index if frame_index - last_frame_index >= self.num_frames_to_remove_track: log.debug("Move the track id={} to archive: the current frame_index={}, " "the last frame_index in track={}".format( t.get_id(), frame_index, last_frame_index)) self.track_archive.append(t) else: new_tracks.append(t) self.tracks = new_tracks def is_track_valid(self, track): assert isinstance(track, Track) return len(track.objects) > self.num_objects_to_make_track_valid def get_all_valid_tracks(self): res = [] for t in self.track_archive: if self.is_track_valid(t): res.append(t) for t in self.tracks: if self.is_track_valid(t): res.append(t) return res def convert_tracks_to_annotation_storage(tracks): ann_objects_by_frame_index = {} for cur_track in tqdm(tracks, desc="Converting"): track_id = cur_track.get_id() first_frame_index = cur_track.objects[0].frame_index last_frame_index = cur_track.objects[-1].frame_index for frame_index in range(first_frame_index, last_frame_index+1): bbox = cur_track.get_bbox_for_frame(frame_index) tl_x = math.floor(bbox.tl_x) tl_y = math.floor(bbox.tl_y) br_x = math.ceil(bbox.br_x) br_y = math.ceil(bbox.br_y) detect_obj = DetectedObject(frame_index=frame_index, bbox=Bbox(tl_x, tl_y, br_x, br_y), appearance_feature=[]) ann_obj = AnnotationObject(detect_obj=detect_obj, track_id=track_id) if frame_index not in ann_objects_by_frame_index: ann_objects_by_frame_index[frame_index] = {} ann_objects_by_frame_index[frame_index][track_id] = ann_obj annotation_objects = [] for frame_index in sorted(ann_objects_by_frame_index.keys()): cur_ann_objects = ann_objects_by_frame_index[frame_index] for track_id in sorted(cur_ann_objects.keys()): annotation_objects.append(cur_ann_objects[track_id]) annotation_storage = AnnotationStorage.create_annotation_storage_from_list(annotation_objects) return annotation_storage
[((243, 21, 243, 52), 'tqdm.tqdm', 'tqdm', (), '', False, 'from tqdm import tqdm\n'), ((271, 25, 271, 98), 'common.annotation.AnnotationStorage.create_annotation_storage_from_list', 'AnnotationStorage.create_annotation_storage_from_list', ({(271, 79, 271, 97): 'annotation_objects'}, {}), '(annotation_objects)', False, 'from common.annotation import AnnotationObject, AnnotationStorage\n'), ((30, 8, 30, 35), 'common.common_objects.validate_detected_object', 'validate_detected_object', ({(30, 33, 30, 34): 'o'}, {}), '(o)', False, 'from common.common_objects import DetectedObject, validate_detected_object, Bbox\n'), ((75, 19, 75, 75), 'common.common_objects.Bbox', 'Bbox', ({(75, 24, 75, 35): 'res_bbox[0]', (75, 37, 75, 48): 'res_bbox[1]', (75, 50, 75, 61): 'res_bbox[2]', (75, 63, 75, 74): 'res_bbox[3]'}, {}), '(res_bbox[0], res_bbox[1], res_bbox[2], res_bbox[3])', False, 'from common.common_objects import DetectedObject, validate_detected_object, Bbox\n'), ((150, 34, 150, 100), 'common.find_best_assignment.solve_assignment_problem', 'solve_assignment_problem', ({(150, 59, 150, 74): 'affinity_matrix', (150, 76, 150, 99): 'self.affinity_threshold'}, {}), '(affinity_matrix, self.affinity_threshold)', False, 'from common.find_best_assignment import solve_assignment_problem\n'), ((24, 12, 24, 39), 'common.common_objects.validate_detected_object', 'validate_detected_object', ({(24, 37, 24, 38): 'o'}, {}), '(o)', False, 'from common.common_objects import DetectedObject, validate_detected_object, Bbox\n'), ((146, 13, 146, 102), 'numpy.printoptions', 'np.printoptions', (), '', True, 'import numpy as np\n'), ((251, 19, 251, 40), 'math.floor', 'math.floor', ({(251, 30, 251, 39): 'bbox.tl_x'}, {}), '(bbox.tl_x)', False, 'import math\n'), ((252, 19, 252, 40), 'math.floor', 'math.floor', ({(252, 30, 252, 39): 'bbox.tl_y'}, {}), '(bbox.tl_y)', False, 'import math\n'), ((253, 19, 253, 39), 'math.ceil', 'math.ceil', ({(253, 29, 253, 38): 'bbox.br_x'}, {}), '(bbox.br_x)', False, 'import math\n'), ((254, 19, 254, 39), 'math.ceil', 'math.ceil', ({(254, 29, 254, 38): 'bbox.br_y'}, {}), '(bbox.br_y)', False, 'import math\n'), ((258, 22, 259, 57), 'common.annotation.AnnotationObject', 'AnnotationObject', (), '', False, 'from common.annotation import AnnotationObject, AnnotationStorage\n'), ((147, 53, 147, 78), 'numpy.array', 'np.array', ({(147, 62, 147, 77): 'affinity_matrix'}, {}), '(affinity_matrix)', True, 'import numpy as np\n'), ((256, 45, 256, 73), 'common.common_objects.Bbox', 'Bbox', ({(256, 50, 256, 54): 'tl_x', (256, 56, 256, 60): 'tl_y', (256, 62, 256, 66): 'br_x', (256, 68, 256, 72): 'br_y'}, {}), '(tl_x, tl_y, br_x, br_y)', False, 'from common.common_objects import DetectedObject, validate_detected_object, Bbox\n')]
mikewolfd/django-gm2m
gm2m/managers.py
a8cecc4d6d56c83e8d9c623888f5d07cb6ad8771
from django.db import router from django.db.models import Q, Manager from django.db import connections from .contenttypes import ct, get_content_type from .query import GM2MTgtQuerySet class GM2MBaseManager(Manager): use_in_migration = True def __init__(self, instance): super(GM2MBaseManager, self).__init__() self.model = self._model # see create_gm2m_related_manager self.instance = instance self.pk = instance.pk self.core_filters = {} def get_queryset(self): try: return self.instance \ ._prefetched_objects_cache[self.prefetch_cache_name] except (AttributeError, KeyError): db = self._db or router.db_for_read(self.instance.__class__, instance=self.instance) return self._get_queryset(using=db)._next_is_sticky() \ .filter(**self.core_filters) def _get_queryset(self, using): return super(GM2MBaseManager, self).get_queryset().using(using) def get_prefetch_queryset(self, instances, queryset=None): db = self._db or router.db_for_read(self.model, instance=instances[0]) if queryset is None: queryset = self._get_queryset(db) qs, rel_obj_attr, instance_attr = \ self._get_prefetch_queryset_params(instances, queryset, db) return (qs, rel_obj_attr, instance_attr, False, self.prefetch_cache_name) def _get_extra_queryset(self, queryset, q, extra_fields, db): join_table = self.through._meta.db_table connection = connections[db] qn = connection.ops.quote_name extra = dict(select=dict( ('_prefetch_related_val_%s' % f.attname, '%s.%s' % (qn(join_table), qn(f.column))) for f in extra_fields)) return queryset.using(db)._next_is_sticky().filter(q).extra(**extra) def _check_through_model(self, method_name): # If the GM2M relation has an intermediary model, # the add and remove methods are not available. if not self.through._meta.auto_created: opts = self.through._meta raise AttributeError( 'Cannot use %s() on a ManyToManyField which specifies an ' 'intermediary model. Use %s.%s\'s Manager instead.' % (method_name, opts.app_label, opts.object_name)) def _do_add(self, db, through_objs): """ Performs items addition """ # Add the new entries in the db table self.through._default_manager.using(db).bulk_create(through_objs) def add(self, *objs): """ Adds objects to the GM2M field :param *objs: object instances to add """ # self._check_through_model('add') if not objs: return db = router.db_for_write(self.through, instance=self.instance) self._do_add(db, self._to_add(objs, db)) add.alters_data = True def _do_remove(self, db, q): """ Perfoms items removal from a Q object """ self.through._default_manager.using(db).filter(q).delete() def remove(self, *objs): """ Removes objects from the GM2M field """ # *objs - objects to remove self._check_through_model('remove') if not objs: return db = router.db_for_write(self.through, instance=self.instance) self._do_remove(db, self._to_remove(objs)) remove.alters_data = True def _do_clear(self, db, filter=None): self.through._default_manager.using(db).filter(**(filter or {})) \ .delete() def set(self, objs, **kwargs): """ Sets the objs iterable as the set of related objects (Added for compatibility with Django 1.9) """ self._check_through_model('set') objs = tuple(objs) clear = kwargs.pop('clear', False) db = router.db_for_write(self.through, instance=self.instance) if clear: # clears all and re-adds self._do_clear(db) self._do_add(db, *objs) else: # just removes the necessary items and adds the missing ones to_add, to_remove = self._to_change(objs, db) self._do_remove(db, to_remove) self._do_add(db, to_add) set.alters_data = True def clear(self): db = router.db_for_write(self.through, instance=self.instance) self._do_clear(db, self._to_clear()) clear.alters_data = True class GM2MBaseSrcManager(Manager): def __init__(self, instance): # the manager's model is the source model super(GM2MBaseSrcManager, self).__init__(instance) self.core_filters['%s__%s' % (self.query_field_name, self.field_names['tgt_ct'])] = \ get_content_type(self.instance) self.core_filters['%s__%s' % (self.query_field_name, self.field_names['tgt_fk'])] = \ self.instance.pk def _get_prefetch_queryset_params(self, instances, queryset, db): # we're looking for generic target instances, which should be # converted to (content_type, primary_key) tuples q = Q() for obj in instances: q = q | Q(**{ '%s__%s' % (self.query_field_name, self.field_names['tgt_ct']):get_content_type(obj), '%s__%s' % (self.query_field_name, self.field_names['tgt_fk']): obj.pk }) # Annotating the query in order to retrieve the primary model # content type and id in the same query # content type must be the 1st element, see rel_obj_attr below extra_fields = ( self.through._meta.get_field(self.field_names['tgt_ct']), self.through._meta.get_field(self.field_names['tgt_fk']) ) qs = self._get_extra_queryset(queryset, q, extra_fields, db) # primary model retrieval function def rel_obj_attr(relobj): t = [] for f in extra_fields: try: # t already contains the content type id # we use get_for_id to retrieve the cached content type model = ct.ContentType.objects.get_for_id(t[0]) \ .model_class() except IndexError: # t is empty model = ct.ContentType t.append(model._meta.pk.to_python( getattr(relobj, '_prefetch_related_val_%s' % f.attname) )) return tuple(t) # model attribute retrieval function instance_attr = lambda inst: \ (get_content_type(inst).pk, inst.pk) return qs, rel_obj_attr, instance_attr def _to_add(self, objs, db): # we're using the reverse relation to add source model # instances inst_ct = get_content_type(self.instance) vals = self.through._default_manager.using(db) \ .values_list(self.field_names['src'], flat=True) \ .filter(**{ self.field_names['tgt_ct']: inst_ct, self.field_names['tgt_fk']: self.pk }) to_add = [] for obj in objs: if obj.pk not in vals: to_add.append(self.through(**{ '%s_id' % self.field_names['src']: obj.pk, self.field_names['tgt_ct']: inst_ct, self.field_names['tgt_fk']: self.pk })) return to_add def _to_remove(self, objs): # we're using the reverse relation to delete source model # instances inst_ct = get_content_type(self.instance) return Q(**{ '%s_id__in' % self.field_names['src']: [obj.pk for obj in objs], self.field_names['tgt_ct']: inst_ct, self.field_names['tgt_fk']: self.pk }) def _to_change(self, objs, db): """ Returns the sets of items to be added and a Q object for removal """ inst_ct = get_content_type(self.instance) vals = list(self.through._default_manager.using(db) .values_list(self.field_names['src'], flat=True) .filter(**{ self.field_names['tgt_ct']: inst_ct, self.field_names['tgt_fk']: self.pk })) to_add = set() to_remove = set() for obj in objs: try: vals.remove(obj.pk) except ValueError: # obj.pk is not in vals and must be added to_add.add(self.through(**{ '%s_id' % self.field_names['src']: obj.pk, self.field_names['tgt_ct']: inst_ct, self.field_names['tgt_fk']: self.pk })) for v in vals: to_remove.add(v) return to_add, Q(pk__in=to_remove) def _to_clear(self): return { self.field_names['tgt_ct']: get_content_type(self.instance), self.field_names['tgt_fk']: self.instance.pk } class GM2MBaseTgtManager(Manager): def __init__(self, instance): # the manager's model is the through model super(GM2MBaseTgtManager, self).__init__(instance) source_field = self.through._meta.get_field( self.field_names['src']) self.source_related_fields = source_field.related_fields for __, rh_field in self.source_related_fields: key = '%s__%s' % (self.query_field_name, rh_field.name) self.core_filters[key] = getattr(self.instance, rh_field.attname) def _get_queryset(self, using): return GM2MTgtQuerySet(self.model, using=using) def _get_prefetch_queryset_params(self, instances, queryset, db): # we're looking for through model instances query = {} for lh_field, rh_field in self.source_related_fields: query['%s__in' % lh_field.name] = \ set(getattr(obj, rh_field.attname) for obj in instances) q = Q(**query) # Annotating the query in order to retrieve the primary model # id in the same query fk = self.through._meta.get_field(self.field_names['src']) extra_fields = fk.local_related_fields qs = self._get_extra_queryset(queryset, q, extra_fields, db) # marking the queryset so that the original queryset should # be returned when evaluated the first time qs._related_prefetching = True # primary model retrieval function def rel_obj_attr(relobj): t = [] for f in extra_fields: v = getattr(relobj, '_prefetch_related_val_%s' % f.attname) try: v = v.pop() except AttributeError: # v is not a list pass t.append(f.related_model._meta.pk.to_python(v)) return tuple(t) # model attribute retrieval function select_fields = fk.foreign_related_fields instance_attr = lambda inst: tuple([getattr(inst, f.attname) for f in select_fields]) return qs, rel_obj_attr, instance_attr def _to_add(self, objs, db): models = [] objs_set = set() for obj in objs: # extract content type and primary key for each object objs_set.add((get_content_type(obj), obj.pk)) m = obj.__class__ if m not in models: # call field.add_relation for each model models.append(m) self.field.add_relation(m, auto=True) vals = self.through._default_manager.using(db) \ .filter(**{self.field_names['src']: self.pk}) \ .values_list(self.field_names['tgt_ct'], self.field_names['tgt_fk']) to_add = [] for ct, pk in objs_set.difference(vals): to_add.append(self.through(**{ '%s_id' % self.field_names['src']: self.pk, self.field_names['tgt_ct']: ct, self.field_names['tgt_fk']: pk })) return to_add def _to_remove(self, objs): q = Q() for obj in objs: # Convert the obj to (content_type, primary_key) q = q | Q(**{ self.field_names['tgt_ct']: get_content_type(obj), self.field_names['tgt_fk']: obj.pk }) return q & Q(**{ '%s_id' % self.field_names['src']: self.pk }) def _to_clear(self): return { '%s_id' % self.field_names['src']: self.pk } def _to_change(self, objs, db): """ Returns the sets of items to be added and a Q object for removal """ to_add = set() src_fname = self.field_names['src'] ct_fname = self.field_names['tgt_ct'] fk_fname = self.field_names['tgt_fk'] vals = list(self.through._default_manager.using(db) .filter(**{self.field_names['src']: self.pk}) .values_list(ct_fname, fk_fname)) known_cts = set(v[0] for v in vals) for obj in objs: ct = get_content_type(obj) val = (ct, obj.pk) try: vals.remove(val) except ValueError: # val is not in vals # extract content type and primary key for each object to_add.add((ct, obj.pk)) if ct.pk not in known_cts: # call field.add_relation for each unknown model self.field.add_relation(obj.__class__, auto=True) known_cts.add(ct.pk) rem_q = Q() for val in vals: # Convert the obj to (content_type, primary_key) rem_q = rem_q | Q(**{ ct_fname: val[0], fk_fname: val[1] }) return [ self.through(**{ '%s_id' % src_fname: self.pk, ct_fname: t[0], fk_fname: t[1] }) for t in to_add ], \ rem_q & Q(**{ '%s_id' % src_fname: self.pk }) def create_gm2m_related_manager(superclass=None, **kwargs): """ Dynamically create a manager class that only concerns an instance (source or target) """ bases = [GM2MBaseManager] if superclass is None: # no superclass provided, the manager is a generic target model manager bases.insert(0, GM2MBaseTgtManager) else: # superclass provided, the manager is a source model manager and also # derives from superclass bases.insert(0, GM2MBaseSrcManager) bases.append(superclass) # Django's Manager constructor sets model to None, we store it under the # class's attribute '_model' and it is retrieved in __init__ kwargs['_model'] = kwargs.pop('model') return type(Manager)('GM2MManager', tuple(bases), kwargs)
[((88, 13, 88, 70), 'django.db.router.db_for_write', 'router.db_for_write', (), '', False, 'from django.db import router\n'), ((110, 13, 110, 70), 'django.db.router.db_for_write', 'router.db_for_write', (), '', False, 'from django.db import router\n'), ((129, 13, 129, 70), 'django.db.router.db_for_write', 'router.db_for_write', (), '', False, 'from django.db import router\n'), ((143, 13, 143, 70), 'django.db.router.db_for_write', 'router.db_for_write', (), '', False, 'from django.db import router\n'), ((166, 12, 166, 15), 'django.db.models.Q', 'Q', ({}, {}), '()', False, 'from django.db.models import Q, Manager\n'), ((234, 15, 239, 10), 'django.db.models.Q', 'Q', ({}, {}), "(**{('%s_id__in' % self.field_names['src']): [obj.pk for obj in objs],\n self.field_names['tgt_ct']: inst_ct, self.field_names['tgt_fk']: self.pk})", False, 'from django.db.models import Q, Manager\n'), ((305, 12, 305, 22), 'django.db.models.Q', 'Q', ({}, {}), '(**query)', False, 'from django.db.models import Q, Manager\n'), ((366, 12, 366, 15), 'django.db.models.Q', 'Q', ({}, {}), '()', False, 'from django.db.models import Q, Manager\n'), ((414, 16, 414, 19), 'django.db.models.Q', 'Q', ({}, {}), '()', False, 'from django.db.models import Q, Manager\n'), ((34, 25, 35, 66), 'django.db.router.db_for_read', 'router.db_for_read', (), '', False, 'from django.db import router\n'), ((271, 23, 271, 42), 'django.db.models.Q', 'Q', (), '', False, 'from django.db.models import Q, Manager\n'), ((373, 19, 375, 10), 'django.db.models.Q', 'Q', ({}, {}), "(**{('%s_id' % self.field_names['src']): self.pk})", False, 'from django.db.models import Q, Manager\n'), ((417, 28, 420, 14), 'django.db.models.Q', 'Q', ({}, {}), '(**{ct_fname: val[0], fk_fname: val[1]})', False, 'from django.db.models import Q, Manager\n'), ((429, 16, 431, 10), 'django.db.models.Q', 'Q', ({}, {}), "(**{('%s_id' % src_fname): self.pk})", False, 'from django.db.models import Q, Manager\n'), ((25, 29, 26, 71), 'django.db.router.db_for_read', 'router.db_for_read', (), '', False, 'from django.db import router\n')]
vitorduarte/RastreadorDeBolso
rastreador-de-bolso/TwitterListener.py
5c3bab222fced6f0d7367299b5007a628a408b4f
from selenium.webdriver.chrome.options import Options from selenium import webdriver import logging import coloredlogs import os import pathlib import time import twitter as tt from utils import retry from fetch_likes import get_user_likes, login from conf.settings import USER_ID, USERNAME, PASSWORD CURR_PATH = pathlib.Path(__file__).parent.absolute() TWEETS_FOLDER = os.path.join(CURR_PATH, 'screenshots') LIKED_FOLDER = os.path.join(CURR_PATH, 'screenshots', 'liked') class TwitterListener(): def __init__(self, user_id=USER_ID, search_base=40): # Configure log coloredlogs.install() logging.basicConfig() self.logger = logging.getLogger('TwitterListener') self.logger.setLevel(logging.DEBUG) # Set chrome options chrome_options = Options() chrome_options.add_argument('--headless') chrome_options.add_argument("--no-sandbox") self.driver = webdriver.Chrome(options=chrome_options) # Create formatter, file handler and add they to the handlers formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh = logging.FileHandler('twitter.log') fh.setFormatter(formatter) self.logger.addHandler(fh) self.search_base = search_base self.user_id = user_id self.target = tt.get_username_from_id(user_id) self.is_logged = False, self.has_previous_tweets = False self.has_previous_friends = False self.has_previous_likes = False def _get_new_tweets(self): if(not self.has_previous_tweets): self.previous_tweets_ids = tt.get_ids_from_tweets( tt.get_tweets(user_id=self.user_id, count=self.search_base)) self.has_previous_tweets = True last_tweets = tt.get_tweets(user_id=self.user_id, count=self.search_base) last_tweets_ids = tt.get_ids_from_tweets(last_tweets) diff_tweets = self._get_new_diff( last_tweets_ids, self.previous_tweets_ids) if diff_tweets: new_tweets = [last_tweets[i] for i in range(len(diff_tweets))] self.previous_tweets_ids = last_tweets_ids new_tweets.reverse() return new_tweets return [] def _get_new_likes(self): count = self.search_base/2 if(not self.is_logged): login(self.driver, USERNAME, PASSWORD) self.is_logged = True if(not self.has_previous_likes): self.previous_likes_ids = get_user_likes( self.driver, self.target, count=count) self.has_previous_likes = True new_likes_ids = get_user_likes( self.driver, self.target, count=count) diff_tweets = self._get_new_diff( new_likes_ids, self.previous_likes_ids) if diff_tweets: self.previous_likes_ids = new_likes_ids diff_tweets.reverse() return diff_tweets return [] def _get_new_diff(self, curr, old): count = len(old) return list(set(curr[:count//2]) - set(old)) def _get_abs_diff(self, first_list, second_list): return list(set(first_list) - set(second_list)) def print_new_tweets(self): try: new_tweets = self._get_new_tweets() for tweet in new_tweets: tweet_id = str(tweet['id']) tweet_url = tt.get_url(tweet) # Get image self.logger.info('New tweet %s', tweet_url) img_path = os.path.join(TWEETS_FOLDER, f'{tweet_id}.png') retry(tt.print_tweet, tweet_url, self.driver, output_path=img_path) self.logger.debug('Take a screenshot of tweet') # Tweet image tweet_msg = 'Jair Bolsonaro acabou de twittar' self.logger.debug( f'Is a retweet: {"retweeted_status" in tweet}') if('retweeted_status' in tweet): tweet_msg = 'Jair Bolsonaro acabou de retweetar' tt.tweet_print(img_path, tweet_url, tweet_msg) self.logger.debug('Tweet the screenshot') except Exception as e: self.logger.error(e) def print_new_likes(self): try: new_likes = self._get_new_likes() for t_id in new_likes: t_url = f'https://twitter.com/{self.target}/status/{t_id}' # Get image self.logger.info('New like %s', t_url) img_path = os.path.join(LIKED_FOLDER, f'{t_id}.png') retry(tt.print_tweet, t_url, self.driver, output_path=img_path) self.logger.debug('Take a screenshot of tweet') # Tweet image t_msg = 'Jair Bolsonaro acabou de curtir esse tweet' tt.tweet_print(img_path, t_url, t_msg) self.logger.debug('Tweet the screenshot') except Exception as e: self.logger.error(e) def watch_friends(self): try: if(not self.has_previous_friends): self.previous_friends = tt.get_friends_ids( user_id=self.user_id) self.has_previous_friends = True last_friends = tt.get_friends_ids() new_friends = self._get_abs_diff( last_friends, self.previous_friends) unfriends = self._get_abs_diff(self.previous_friends, last_friends) for user_id in new_friends: username = tt.get_username_from_id(user_id=user_id) self.logger.info(f'New friend: @{username}') retry( tt.update_status, status=( f'Jair Bolsonaro aparentemente está seguindo @{username}.' '\n(Esse bot não consegue verificar se essa atualização foi gerada ' 'por um follow ou por uma reativação de conta)' ) ) for user_id in unfriends: username = tt.get_username_from_id(user_id=user_id) self.logger.info(f'Unfriend: @{username}') retry( tt.update_status, status=( f'Jair Bolsonaro aparentemente deixou de seguir @{username}.' '\n(Esse bot não consegue verificar se essa atualização foi gerada ' 'por um unfollow, suspensão ou block.)' ) ) self.previous_friends = last_friends except Exception as e: self.logger.error(e)
[((16, 16, 16, 54), 'os.path.join', 'os.path.join', ({(16, 29, 16, 38): 'CURR_PATH', (16, 40, 16, 53): '"""screenshots"""'}, {}), "(CURR_PATH, 'screenshots')", False, 'import os\n'), ((17, 15, 17, 62), 'os.path.join', 'os.path.join', ({(17, 28, 17, 37): 'CURR_PATH', (17, 39, 17, 52): '"""screenshots"""', (17, 54, 17, 61): '"""liked"""'}, {}), "(CURR_PATH, 'screenshots', 'liked')", False, 'import os\n'), ((23, 8, 23, 29), 'coloredlogs.install', 'coloredlogs.install', ({}, {}), '()', False, 'import coloredlogs\n'), ((24, 8, 24, 29), 'logging.basicConfig', 'logging.basicConfig', ({}, {}), '()', False, 'import logging\n'), ((25, 22, 25, 58), 'logging.getLogger', 'logging.getLogger', ({(25, 40, 25, 57): '"""TwitterListener"""'}, {}), "('TwitterListener')", False, 'import logging\n'), ((29, 25, 29, 34), 'selenium.webdriver.chrome.options.Options', 'Options', ({}, {}), '()', False, 'from selenium.webdriver.chrome.options import Options\n'), ((32, 22, 32, 62), 'selenium.webdriver.Chrome', 'webdriver.Chrome', (), '', False, 'from selenium import webdriver\n'), ((34, 20, 35, 67), 'logging.Formatter', 'logging.Formatter', ({(35, 12, 35, 66): '"""%(asctime)s - %(name)s - %(levelname)s - %(message)s"""'}, {}), "('%(asctime)s - %(name)s - %(levelname)s - %(message)s')", False, 'import logging\n'), ((36, 13, 36, 47), 'logging.FileHandler', 'logging.FileHandler', ({(36, 33, 36, 46): '"""twitter.log"""'}, {}), "('twitter.log')", False, 'import logging\n'), ((42, 22, 42, 54), 'twitter.get_username_from_id', 'tt.get_username_from_id', ({(42, 46, 42, 53): 'user_id'}, {}), '(user_id)', True, 'import twitter as tt\n'), ((55, 22, 56, 59), 'twitter.get_tweets', 'tt.get_tweets', (), '', True, 'import twitter as tt\n'), ((57, 26, 57, 61), 'twitter.get_ids_from_tweets', 'tt.get_ids_from_tweets', ({(57, 49, 57, 60): 'last_tweets'}, {}), '(last_tweets)', True, 'import twitter as tt\n'), ((80, 24, 81, 50), 'fetch_likes.get_user_likes', 'get_user_likes', (), '', False, 'from fetch_likes import get_user_likes, login\n'), ((15, 12, 15, 34), 'pathlib.Path', 'pathlib.Path', ({(15, 25, 15, 33): '__file__'}, {}), '(__file__)', False, 'import pathlib\n'), ((73, 12, 73, 50), 'fetch_likes.login', 'login', ({(73, 18, 73, 29): 'self.driver', (73, 31, 73, 39): 'USERNAME', (73, 41, 73, 49): 'PASSWORD'}, {}), '(self.driver, USERNAME, PASSWORD)', False, 'from fetch_likes import get_user_likes, login\n'), ((76, 38, 77, 54), 'fetch_likes.get_user_likes', 'get_user_likes', (), '', False, 'from fetch_likes import get_user_likes, login\n'), ((153, 27, 153, 47), 'twitter.get_friends_ids', 'tt.get_friends_ids', ({}, {}), '()', True, 'import twitter as tt\n'), ((52, 16, 52, 75), 'twitter.get_tweets', 'tt.get_tweets', (), '', True, 'import twitter as tt\n'), ((105, 28, 105, 45), 'twitter.get_url', 'tt.get_url', ({(105, 39, 105, 44): 'tweet'}, {}), '(tweet)', True, 'import twitter as tt\n'), ((109, 27, 109, 73), 'os.path.join', 'os.path.join', ({(109, 40, 109, 53): 'TWEETS_FOLDER', (109, 55, 109, 72): 'f"""{tweet_id}.png"""'}, {}), "(TWEETS_FOLDER, f'{tweet_id}.png')", False, 'import os\n'), ((110, 16, 111, 56), 'utils.retry', 'retry', (), '', False, 'from utils import retry\n'), ((122, 16, 122, 62), 'twitter.tweet_print', 'tt.tweet_print', ({(122, 31, 122, 39): 'img_path', (122, 41, 122, 50): 'tweet_url', (122, 52, 122, 61): 'tweet_msg'}, {}), '(img_path, tweet_url, tweet_msg)', True, 'import twitter as tt\n'), ((135, 27, 135, 68), 'os.path.join', 'os.path.join', ({(135, 40, 135, 52): 'LIKED_FOLDER', (135, 54, 135, 67): 'f"""{t_id}.png"""'}, {}), "(LIKED_FOLDER, f'{t_id}.png')", False, 'import os\n'), ((136, 16, 136, 79), 'utils.retry', 'retry', (), '', False, 'from utils import retry\n'), ((141, 16, 141, 54), 'twitter.tweet_print', 'tt.tweet_print', ({(141, 31, 141, 39): 'img_path', (141, 41, 141, 46): 't_url', (141, 48, 141, 53): 't_msg'}, {}), '(img_path, t_url, t_msg)', True, 'import twitter as tt\n'), ((149, 40, 150, 41), 'twitter.get_friends_ids', 'tt.get_friends_ids', (), '', True, 'import twitter as tt\n'), ((160, 27, 160, 67), 'twitter.get_username_from_id', 'tt.get_username_from_id', (), '', True, 'import twitter as tt\n'), ((162, 16, 169, 17), 'utils.retry', 'retry', (), '', False, 'from utils import retry\n'), ((172, 27, 172, 67), 'twitter.get_username_from_id', 'tt.get_username_from_id', (), '', True, 'import twitter as tt\n'), ((174, 16, 181, 17), 'utils.retry', 'retry', (), '', False, 'from utils import retry\n')]
pierrealixt/SmartExcel
smartexcel/tests/data/data_models/dummy.py
19c5b7e6110db3d42965228ea2ae44a65489ac71
class Dummy(): def __init__(self, data): self.name = data['name'] self.age = data['age'] self.city = data['city'] class DummyData(): def __init__(self): self.results = [ Dummy({ 'name': 'PA', 'age': 29, 'city': 'Paris' }), Dummy({ 'name': 'Cairo', 'age': 0, 'city': 'Muizenberg' }), Dummy({ 'name': 'Carina', 'age': 26, 'city': 'Windhoek' }) ] def write_name(self, instance, kwargs={}): return instance.name def write_age(self, instance, kwargs={}): return instance.age def write_city(self, instance, kwargs={}): return instance.city def get_age_list(self): return [i for i in range(0, 99)] def get_city_list(self): return [ 'Paris', 'Muizenberg', 'Windhoek', 'Saint-Dizier' ] def write_get_repeat_func(self): return len(self.results) def write_get_name_func(self, instance, kwargs={}): return self.results[kwargs['index']].name
[]
HariKrishna-Vydana/ASR_Transformer
ASR_TransV1/Load_sp_model.py
a37dc7f1add148b14ca1d265d72fc4e9d9dd0fc0
#!/usr/bin/python import sys import os from os.path import join, isdir import sentencepiece as spm #-------------------------- def Load_sp_models(PATH): PATH_model = spm.SentencePieceProcessor() PATH_model.Load(join(PATH)) return PATH_model #--------------------------
[((10, 21, 10, 49), 'sentencepiece.SentencePieceProcessor', 'spm.SentencePieceProcessor', ({}, {}), '()', True, 'import sentencepiece as spm\n'), ((11, 24, 11, 34), 'os.path.join', 'join', ({(11, 29, 11, 33): 'PATH'}, {}), '(PATH)', False, 'from os.path import join, isdir\n')]
leith-bartrich/fiepipe_desktop
fiepipedesktoplib/gitlabserver/shell/manager.py
5136141d67a59e9a2afb79f368a6a02f2d61d2da
import typing from fiepipelib.gitlabserver.data.gitlab_server import GitLabServer from fiepipelib.gitlabserver.routines.manager import GitLabServerManagerInteractiveRoutines from fiepipedesktoplib.gitlabserver.shell.gitlab_hostname_input_ui import GitLabHostnameInputDefaultShellUI from fiepipedesktoplib.gitlabserver.shell.gitlab_username_input_ui import GitLabUsernameInputDefaultShellUI from fiepipedesktoplib.gitlabserver.shell.gitlab_private_token_input_ui import GitLabPrivateTokenInputDefaultShellUI from fiepipedesktoplib.gitlabserver.shell.gitlabserver import GitLabServerShell from fiepipedesktoplib.gitlabserver.shell.server_name_var_command import GitLabServerNameVar from fiepipedesktoplib.locallymanagedtypes.shells.AbstractLocalManagedTypeCommand import LocalManagedTypeCommand from fiepipedesktoplib.shells.AbstractShell import AbstractShell from fiepipedesktoplib.shells.variables.fqdn_var_command import FQDNVarCommand class GitLabServerManagerShell(LocalManagedTypeCommand[GitLabServer]): def get_routines(self) -> GitLabServerManagerInteractiveRoutines: return GitLabServerManagerInteractiveRoutines(feedback_ui=self.get_feedback_ui(), hostname_input_default_ui=GitLabHostnameInputDefaultShellUI(self), username_input_default_ui=GitLabUsernameInputDefaultShellUI(self), private_token_input_default_ui=GitLabPrivateTokenInputDefaultShellUI(self)) def get_shell(self, item: GitLabServer) -> AbstractShell: # no shell currently. We call super instead. server_name = GitLabServerNameVar() server_name.set_value(item.get_name()) return GitLabServerShell(server_name) def get_plugin_names_v1(self) -> typing.List[str]: ret = super(GitLabServerManagerShell, self).get_plugin_names_v1() ret.append("gitlabserver.manager") return ret def get_prompt_text(self) -> str: return self.prompt_separator.join(['GitLabServer', 'Manager']) def main(): shell = GitLabServerManagerShell() shell.cmdloop() if __name__ == '__main__': main()
[((25, 22, 25, 43), 'fiepipedesktoplib.gitlabserver.shell.server_name_var_command.GitLabServerNameVar', 'GitLabServerNameVar', ({}, {}), '()', False, 'from fiepipedesktoplib.gitlabserver.shell.server_name_var_command import GitLabServerNameVar\n'), ((27, 15, 27, 45), 'fiepipedesktoplib.gitlabserver.shell.gitlabserver.GitLabServerShell', 'GitLabServerShell', ({(27, 33, 27, 44): 'server_name'}, {}), '(server_name)', False, 'from fiepipedesktoplib.gitlabserver.shell.gitlabserver import GitLabServerShell\n'), ((19, 80, 19, 119), 'fiepipedesktoplib.gitlabserver.shell.gitlab_hostname_input_ui.GitLabHostnameInputDefaultShellUI', 'GitLabHostnameInputDefaultShellUI', ({(19, 114, 19, 118): 'self'}, {}), '(self)', False, 'from fiepipedesktoplib.gitlabserver.shell.gitlab_hostname_input_ui import GitLabHostnameInputDefaultShellUI\n'), ((20, 80, 20, 119), 'fiepipedesktoplib.gitlabserver.shell.gitlab_username_input_ui.GitLabUsernameInputDefaultShellUI', 'GitLabUsernameInputDefaultShellUI', ({(20, 114, 20, 118): 'self'}, {}), '(self)', False, 'from fiepipedesktoplib.gitlabserver.shell.gitlab_username_input_ui import GitLabUsernameInputDefaultShellUI\n'), ((21, 85, 21, 128), 'fiepipedesktoplib.gitlabserver.shell.gitlab_private_token_input_ui.GitLabPrivateTokenInputDefaultShellUI', 'GitLabPrivateTokenInputDefaultShellUI', ({(21, 123, 21, 127): 'self'}, {}), '(self)', False, 'from fiepipedesktoplib.gitlabserver.shell.gitlab_private_token_input_ui import GitLabPrivateTokenInputDefaultShellUI\n')]
gaochangfeng/fairseq
fairseq/models/wav2vec/eteh_model/transformer/repeat.py
70a468230b8fb558caa394322b02fface663e17a
import torch class MultiSequential(torch.nn.Sequential): """Multi-input multi-output torch.nn.Sequential""" def forward(self, *args): for m in self: args = m(*args) return args def repeat(N, fn): """repeat module N times :param int N: repeat time :param function fn: function to generate module :return: repeated modules :rtype: MultiSequential """ return MultiSequential(*[fn(n) for n in range(N)])
[]
troncosoae/jetson-exp
torch_lib/Nets.py
0c1a46b969b95bb9c350f78955ae6ca7f41b43b5
import torch import torch.nn as nn import torch.nn.functional as F class MediumNet(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d( 3, out_channels=6, kernel_size=5, padding=0) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d( 6, out_channels=16, kernel_size=5, padding=0) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(16*5*5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool1(F.relu(self.conv1(x))) x = self.pool2(F.relu(self.conv2(x))) x = torch.flatten(x, 1) # flatten all dimensions except batch x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x
[((9, 21, 10, 56), 'torch.nn.Conv2d', 'nn.Conv2d', (), '', True, 'import torch.nn as nn\n'), ((11, 21, 11, 58), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', (), '', True, 'import torch.nn as nn\n'), ((12, 21, 13, 57), 'torch.nn.Conv2d', 'nn.Conv2d', (), '', True, 'import torch.nn as nn\n'), ((14, 21, 14, 58), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', (), '', True, 'import torch.nn as nn\n'), ((15, 19, 15, 41), 'torch.nn.Linear', 'nn.Linear', ({(15, 29, 15, 35): '16 * 5 * 5', (15, 37, 15, 40): '120'}, {}), '(16 * 5 * 5, 120)', True, 'import torch.nn as nn\n'), ((16, 19, 16, 37), 'torch.nn.Linear', 'nn.Linear', ({(16, 29, 16, 32): '120', (16, 34, 16, 36): '84'}, {}), '(120, 84)', True, 'import torch.nn as nn\n'), ((17, 19, 17, 36), 'torch.nn.Linear', 'nn.Linear', ({(17, 29, 17, 31): '84', (17, 33, 17, 35): '10'}, {}), '(84, 10)', True, 'import torch.nn as nn\n'), ((22, 12, 22, 31), 'torch.flatten', 'torch.flatten', ({(22, 26, 22, 27): 'x', (22, 29, 22, 30): '1'}, {}), '(x, 1)', False, 'import torch\n')]
umousesonic/zinc
test123.py
9e170269d3b209a80ac79d5850894ddc1d95c62f
from runner import runner if __name__ == '__main__': r = runner() p = 'public class main{public static void main (String[] args){' \ 'public String StudentAnswer(String myInput){' \ 'return "myOutput"; ' \ '}System.out.println("hello world!");}}' print (r.sendCode(p, ''))
[((4, 8, 4, 16), 'runner.runner', 'runner', ({}, {}), '()', False, 'from runner import runner\n')]
dumbPy/beancount_bot
beancount_bot/bot.py
388a17f165c22b30e7f6377161eb5bf63578168a
import traceback import telebot from telebot import apihelper from telebot.types import InlineKeyboardMarkup, InlineKeyboardButton, MessageEntity, Message, CallbackQuery from beancount_bot import transaction from beancount_bot.config import get_config, load_config from beancount_bot.dispatcher import Dispatcher from beancount_bot.i18n import _ from beancount_bot.session import get_session, SESS_AUTH, get_session_for, set_session from beancount_bot.task import load_task, get_task from beancount_bot.transaction import get_manager from beancount_bot.util import logger apihelper.ENABLE_MIDDLEWARE = True bot = telebot.TeleBot(token=None, parse_mode=None) @bot.middleware_handler(update_types=['message']) def session_middleware(bot_instance, message): """ Session middleware :param bot_instance: :param message: :return: """ bot_instance.session = get_session_for(message.from_user.id) ####### # Authentication # ####### def check_auth() -> bool: """ Check if you log in :return: """ return SESS_AUTH in bot.session and bot.session[SESS_AUTH] @bot.message_handler(commands=['start']) def start_handler(message: Message): """ First chat time authentication :param message: :return: """ auth = get_session(message.from_user.id, SESS_AUTH, False) if auth: bot.reply_to(message, _("Have been authenticated!")) return # 要求鉴权 bot.reply_to(message, _("Welcome to the accounting robot!Please enter the authentication token:")) def auth_token_handler(message: Message): """ Login token callback :param message: :return: """ if check_auth(): return # Unconfirmation is considered an authentication token auth_token = get_config('bot.auth_token') if auth_token == message.text: set_session(message.from_user.id, SESS_AUTH, True) bot.reply_to(message, _("Authentic success!")) else: bot.reply_to(message, _("Authentication token error!")) ####### # instruction # ####### @bot.message_handler(commands=['reload']) def reload_handler(message): """ Overload configuration instruction :param message: :return: """ if not check_auth(): bot.reply_to(message, _("Please conduct authentication first!")) return load_config() load_task() bot.reply_to(message, _("Successful overload configuration!")) @bot.message_handler(commands=['help']) def help_handler(message): """ Help instruction :param message: :return: """ cmd = message.text dispatchers = get_manager().dispatchers if cmd == '/help': # Create a message button markup = InlineKeyboardMarkup() for ind, d in zip(range(len(dispatchers)), dispatchers): help_btn = _("help:{name}").format(name=d.get_name()) markup.add(InlineKeyboardButton(help_btn, callback_data=f'help:{ind}')) # 帮助信息 command_usage = [ _("/start - Authentication"), _("/help - Using help"), _("/reload - Reload the configuration file"), _("/task - View, run the task"), ] help_text = \ _("Account bill Bot\n\nAvailable instruction list:\n{command}\n\nTrade statement syntax help, select the corresponding module,Use /help [Module name] Check.").format( command='\n'.join(command_usage)) bot.reply_to(message, help_text, reply_markup=markup) else: # Display detailed help name: str = cmd[6:] flag_found = False for d in dispatchers: if name.lower() == d.get_name().lower(): show_usage_for(message, d) flag_found = True if not flag_found: bot.reply_to(message, _("The corresponding name of the transaction statement processor does not exist!")) def show_usage_for(message: Message, d: Dispatcher): """ Show the method of use of a specific processor :param message: :param d: :return: """ usage = _("help:{name}\n\n{usage}").format(name=d.get_name(), usage=d.get_usage()) bot.reply_to(message, usage) @bot.callback_query_handler(func=lambda call: call.data[:4] == 'help') def callback_help(call: CallbackQuery): """ Help statement detailed help :param call: :return: """ try: d_id = int(call.data[5:]) dispatchers = get_manager().dispatchers show_usage_for(call.message, dispatchers[d_id]) except Exception as e: logger.error(f'{call.id}:Unknown error!', e) logger.error(traceback.format_exc()) bot.answer_callback_query(call.id, _("Unknown error!\n"+traceback.format_exc())) @bot.message_handler(commands=['task']) def task_handler(message): """ Task instruction :param message: :return: """ if not check_auth(): bot.reply_to(message, _("Please conduct authentication first!")) return cmd = message.text tasks = get_task() if cmd == '/task': # Show all tasks all_tasks = ', '.join(tasks.keys()) bot.reply_to(message, _("Current registration task:{all_tasks}\n" "able to pass /task [Task Name] Active trigger").format(all_tasks=all_tasks)) else: # Run task dest = cmd[6:] if dest not in tasks: bot.reply_to(message, _("Task does not exist!")) return task = tasks[dest] task.trigger(bot) ####### # trade # ####### @bot.message_handler(func=lambda m: True) def transaction_query_handler(message: Message): """ Trading statement processing :param message: :return: """ if not check_auth(): auth_token_handler(message) return # Treated manager = get_manager() try: tx_uuid, tx = manager.create_from_str(message.text) # Create a message button markup = InlineKeyboardMarkup() markup.add(InlineKeyboardButton(_("Revoke trading"), callback_data=f'withdraw:{tx_uuid}')) # 回复 bot.reply_to(message, transaction.stringfy(tx), reply_markup=markup) except ValueError as e: logger.info(f'{message.from_user.id}:Unable to add transactions', e) bot.reply_to(message, e.args[0]) except Exception as e: logger.error(f'{message.from_user.id}:An unknown mistake!Adding a transaction failed.', e) bot.reply_to(message, _("An unknown mistake!Adding a transaction failed.\n"+traceback.format_exc())) @bot.callback_query_handler(func=lambda call: call.data[:8] == 'withdraw') def callback_withdraw(call: CallbackQuery): """ Transaction withdrawal callback :param call: :return: """ auth = get_session(call.from_user.id, SESS_AUTH, False) if not auth: bot.answer_callback_query(call.id, _("Please conduct authentication first!")) return tx_uuid = call.data[9:] manager = get_manager() try: manager.remove(tx_uuid) # Modify the original message reply message = _("Transaction has been withdrawn") code_format = MessageEntity('code', 0, len(message)) bot.edit_message_text(message, chat_id=call.message.chat.id, message_id=call.message.message_id, entities=[code_format]) except ValueError as e: logger.info(f'{call.id}:Unable to create trading', e) bot.answer_callback_query(call.id, e.args[0]) except Exception as e: logger.error(f'{call.id}:An unknown mistake!Withdrawal of the transaction failed.', e) bot.answer_callback_query(call.id, _("An unknown mistake!Withdrawal of the transaction failed.")) def serving(): """ start up Bot :return: """ # set up Token token = get_config('bot.token') bot.token = token # Set a proxy proxy = get_config('bot.proxy') if proxy is not None: apihelper.proxy = {'https': proxy} # start up bot.infinity_polling()
[((17, 6, 17, 50), 'telebot.TeleBot', 'telebot.TeleBot', (), '', False, 'import telebot\n'), ((28, 27, 28, 64), 'beancount_bot.session.get_session_for', 'get_session_for', ({(28, 43, 28, 63): 'message.from_user.id'}, {}), '(message.from_user.id)', False, 'from beancount_bot.session import get_session, SESS_AUTH, get_session_for, set_session\n'), ((50, 11, 50, 62), 'beancount_bot.session.get_session', 'get_session', ({(50, 23, 50, 43): 'message.from_user.id', (50, 45, 50, 54): 'SESS_AUTH', (50, 56, 50, 61): 'False'}, {}), '(message.from_user.id, SESS_AUTH, False)', False, 'from beancount_bot.session import get_session, SESS_AUTH, get_session_for, set_session\n'), ((67, 17, 67, 45), 'beancount_bot.config.get_config', 'get_config', ({(67, 28, 67, 44): '"""bot.auth_token"""'}, {}), "('bot.auth_token')", False, 'from beancount_bot.config import get_config, load_config\n'), ((90, 4, 90, 17), 'beancount_bot.config.load_config', 'load_config', ({}, {}), '()', False, 'from beancount_bot.config import get_config, load_config\n'), ((91, 4, 91, 15), 'beancount_bot.task.load_task', 'load_task', ({}, {}), '()', False, 'from beancount_bot.task import load_task, get_task\n'), ((173, 12, 173, 22), 'beancount_bot.task.get_task', 'get_task', ({}, {}), '()', False, 'from beancount_bot.task import load_task, get_task\n'), ((206, 14, 206, 27), 'beancount_bot.transaction.get_manager', 'get_manager', ({}, {}), '()', False, 'from beancount_bot.transaction import get_manager\n'), ((229, 11, 229, 59), 'beancount_bot.session.get_session', 'get_session', ({(229, 23, 229, 40): 'call.from_user.id', (229, 42, 229, 51): 'SESS_AUTH', (229, 53, 229, 58): 'False'}, {}), '(call.from_user.id, SESS_AUTH, False)', False, 'from beancount_bot.session import get_session, SESS_AUTH, get_session_for, set_session\n'), ((234, 14, 234, 27), 'beancount_bot.transaction.get_manager', 'get_manager', ({}, {}), '()', False, 'from beancount_bot.transaction import get_manager\n'), ((259, 12, 259, 35), 'beancount_bot.config.get_config', 'get_config', ({(259, 23, 259, 34): '"""bot.token"""'}, {}), "('bot.token')", False, 'from beancount_bot.config import get_config, load_config\n'), ((262, 12, 262, 35), 'beancount_bot.config.get_config', 'get_config', ({(262, 23, 262, 34): '"""bot.proxy"""'}, {}), "('bot.proxy')", False, 'from beancount_bot.config import get_config, load_config\n'), ((55, 26, 55, 101), 'beancount_bot.i18n._', '_', ({(55, 28, 55, 100): '"""Welcome to the accounting robot!Please enter the authentication token:"""'}, {}), "('Welcome to the accounting robot!Please enter the authentication token:')", False, 'from beancount_bot.i18n import _\n'), ((69, 8, 69, 58), 'beancount_bot.session.set_session', 'set_session', ({(69, 20, 69, 40): 'message.from_user.id', (69, 42, 69, 51): 'SESS_AUTH', (69, 53, 69, 57): '(True)'}, {}), '(message.from_user.id, SESS_AUTH, True)', False, 'from beancount_bot.session import get_session, SESS_AUTH, get_session_for, set_session\n'), ((92, 26, 92, 67), 'beancount_bot.i18n._', '_', ({(92, 28, 92, 66): '"""Successful overload configuration!"""'}, {}), "('Successful overload configuration!')", False, 'from beancount_bot.i18n import _\n'), ((103, 18, 103, 31), 'beancount_bot.transaction.get_manager', 'get_manager', ({}, {}), '()', False, 'from beancount_bot.transaction import get_manager\n'), ((106, 17, 106, 39), 'telebot.types.InlineKeyboardMarkup', 'InlineKeyboardMarkup', ({}, {}), '()', False, 'from telebot.types import InlineKeyboardMarkup, InlineKeyboardButton, MessageEntity, Message, CallbackQuery\n'), ((210, 17, 210, 39), 'telebot.types.InlineKeyboardMarkup', 'InlineKeyboardMarkup', ({}, {}), '()', False, 'from telebot.types import InlineKeyboardMarkup, InlineKeyboardButton, MessageEntity, Message, CallbackQuery\n'), ((238, 18, 238, 53), 'beancount_bot.i18n._', '_', ({(238, 20, 238, 52): '"""Transaction has been withdrawn"""'}, {}), "('Transaction has been withdrawn')", False, 'from beancount_bot.i18n import _\n'), ((52, 30, 52, 61), 'beancount_bot.i18n._', '_', ({(52, 32, 52, 60): '"""Have been authenticated!"""'}, {}), "('Have been authenticated!')", False, 'from beancount_bot.i18n import _\n'), ((70, 30, 70, 55), 'beancount_bot.i18n._', '_', ({(70, 32, 70, 54): '"""Authentic success!"""'}, {}), "('Authentic success!')", False, 'from beancount_bot.i18n import _\n'), ((72, 30, 72, 64), 'beancount_bot.i18n._', '_', ({(72, 32, 72, 63): '"""Authentication token error!"""'}, {}), "('Authentication token error!')", False, 'from beancount_bot.i18n import _\n'), ((88, 30, 88, 73), 'beancount_bot.i18n._', '_', ({(88, 32, 88, 72): '"""Please conduct authentication first!"""'}, {}), "('Please conduct authentication first!')", False, 'from beancount_bot.i18n import _\n'), ((112, 12, 112, 40), 'beancount_bot.i18n._', '_', ({(112, 14, 112, 39): '"""/start - Authentication"""'}, {}), "('/start - Authentication')", False, 'from beancount_bot.i18n import _\n'), ((113, 12, 113, 35), 'beancount_bot.i18n._', '_', ({(113, 14, 113, 34): '"""/help - Using help"""'}, {}), "('/help - Using help')", False, 'from beancount_bot.i18n import _\n'), ((114, 12, 114, 56), 'beancount_bot.i18n._', '_', ({(114, 14, 114, 55): '"""/reload - Reload the configuration file"""'}, {}), "('/reload - Reload the configuration file')", False, 'from beancount_bot.i18n import _\n'), ((115, 12, 115, 43), 'beancount_bot.i18n._', '_', ({(115, 14, 115, 42): '"""/task - View, run the task"""'}, {}), "('/task - View, run the task')", False, 'from beancount_bot.i18n import _\n'), ((140, 12, 140, 41), 'beancount_bot.i18n._', '_', ({(140, 14, 140, 40): '"""help:{name}\n\n{usage}"""'}, {}), '("""help:{name}\n\n{usage}""")', False, 'from beancount_bot.i18n import _\n'), ((153, 22, 153, 35), 'beancount_bot.transaction.get_manager', 'get_manager', ({}, {}), '()', False, 'from beancount_bot.transaction import get_manager\n'), ((156, 8, 156, 56), 'beancount_bot.util.logger.error', 'logger.error', ({(156, 21, 156, 52): 'f"""{call.id}:Unknown error!"""', (156, 54, 156, 55): 'e'}, {}), "(f'{call.id}:Unknown error!', e)", False, 'from beancount_bot.util import logger\n'), ((169, 30, 169, 71), 'beancount_bot.i18n._', '_', ({(169, 32, 169, 70): '"""Please conduct authentication first!"""'}, {}), "('Please conduct authentication first!')", False, 'from beancount_bot.i18n import _\n'), ((213, 30, 213, 54), 'beancount_bot.transaction.stringfy', 'transaction.stringfy', ({(213, 51, 213, 53): 'tx'}, {}), '(tx)', False, 'from beancount_bot import transaction\n'), ((215, 8, 215, 78), 'beancount_bot.util.logger.info', 'logger.info', ({(215, 20, 215, 74): 'f"""{message.from_user.id}:Unable to add transactions"""', (215, 76, 215, 77): 'e'}, {}), "(f'{message.from_user.id}:Unable to add transactions', e)", False, 'from beancount_bot.util import logger\n'), ((218, 8, 218, 100), 'beancount_bot.util.logger.error', 'logger.error', ({(218, 21, 218, 96): 'f"""{message.from_user.id}:An unknown mistake!Adding a transaction failed."""', (218, 98, 218, 99): 'e'}, {}), "(\n f'{message.from_user.id}:An unknown mistake!Adding a transaction failed.',\n e)", False, 'from beancount_bot.util import logger\n'), ((231, 43, 231, 86), 'beancount_bot.i18n._', '_', ({(231, 45, 231, 85): '"""Please conduct authentication first!"""'}, {}), "('Please conduct authentication first!')", False, 'from beancount_bot.i18n import _\n'), ((245, 8, 245, 63), 'beancount_bot.util.logger.info', 'logger.info', ({(245, 20, 245, 59): 'f"""{call.id}:Unable to create trading"""', (245, 61, 245, 62): 'e'}, {}), "(f'{call.id}:Unable to create trading', e)", False, 'from beancount_bot.util import logger\n'), ((248, 8, 248, 96), 'beancount_bot.util.logger.error', 'logger.error', ({(248, 21, 248, 92): 'f"""{call.id}:An unknown mistake!Withdrawal of the transaction failed."""', (248, 94, 248, 95): 'e'}, {}), "(\n f'{call.id}:An unknown mistake!Withdrawal of the transaction failed.', e)", False, 'from beancount_bot.util import logger\n'), ((109, 23, 109, 82), 'telebot.types.InlineKeyboardButton', 'InlineKeyboardButton', (), '', False, 'from telebot.types import InlineKeyboardMarkup, InlineKeyboardButton, MessageEntity, Message, CallbackQuery\n'), ((118, 12, 118, 174), 'beancount_bot.i18n._', '_', ({(118, 14, 118, 173): '"""Account bill Bot\n\nAvailable instruction list:\n{command}\n\nTrade statement syntax help, select the corresponding module,Use /help [Module name] Check."""'}, {}), '("""Account bill Bot\n\nAvailable instruction list:\n{command}\n\nTrade statement syntax help, select the corresponding module,Use /help [Module name] Check."""\n )', False, 'from beancount_bot.i18n import _\n'), ((130, 34, 130, 118), 'beancount_bot.i18n._', '_', ({(130, 36, 130, 117): '"""The corresponding name of the transaction statement processor does not exist!"""'}, {}), "('The corresponding name of the transaction statement processor does not exist!'\n )", False, 'from beancount_bot.i18n import _\n'), ((157, 21, 157, 43), 'traceback.format_exc', 'traceback.format_exc', ({}, {}), '()', False, 'import traceback\n'), ((184, 34, 184, 61), 'beancount_bot.i18n._', '_', ({(184, 36, 184, 60): '"""Task does not exist!"""'}, {}), "('Task does not exist!')", False, 'from beancount_bot.i18n import _\n'), ((211, 40, 211, 59), 'beancount_bot.i18n._', '_', ({(211, 42, 211, 58): '"""Revoke trading"""'}, {}), "('Revoke trading')", False, 'from beancount_bot.i18n import _\n'), ((249, 43, 249, 104), 'beancount_bot.i18n._', '_', ({(249, 45, 249, 103): '"""An unknown mistake!Withdrawal of the transaction failed."""'}, {}), "('An unknown mistake!Withdrawal of the transaction failed.')", False, 'from beancount_bot.i18n import _\n'), ((108, 23, 108, 41), 'beancount_bot.i18n._', '_', ({(108, 25, 108, 40): '"""help:{name}"""'}, {}), "('help:{name}')", False, 'from beancount_bot.i18n import _\n'), ((178, 21, 179, 71), 'beancount_bot.i18n._', '_', ({(178, 23, 179, 70): '"""Current registration task:{all_tasks}\nable to pass /task [Task Name] Active trigger"""'}, {}), '("""Current registration task:{all_tasks}\nable to pass /task [Task Name] Active trigger"""\n )', False, 'from beancount_bot.i18n import _\n'), ((158, 66, 158, 88), 'traceback.format_exc', 'traceback.format_exc', ({}, {}), '()', False, 'import traceback\n'), ((219, 84, 219, 106), 'traceback.format_exc', 'traceback.format_exc', ({}, {}), '()', False, 'import traceback\n')]
GeGao2014/fairlearn
test/unit/metrics/test_group_sklearn_wrappers.py
b0841c8b07ead6a285bdbc0ea61cac2338cbc96e
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import pytest import numpy as np import sklearn.metrics as skm import fairlearn.metrics as metrics # ====================================================== a = "a" b = "b" c = "c" Y_true = [0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1] Y_pred = [1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1] Y_true_ternary = [a, b, c, c, c, b, b, b, c, c, a, a, a, a, a, b, c, c] Y_pred_ternary = [b, c, c, c, b, b, b, b, b, c, a, a, c, a, a, b, c, c] groups = [3, 4, 1, 0, 0, 0, 3, 2, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4] weight = [1, 2, 3, 1, 2, 3, 4, 2, 3, 3, 2, 1, 2, 3, 1, 2, 3, 4] group2 = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] # ======================================================= # Define as a dictionary so that the actual name can be seen # when pytest builds the tests supported_metrics_weighted = [(skm.accuracy_score, metrics.group_accuracy_score), (skm.confusion_matrix, metrics.group_confusion_matrix), (skm.zero_one_loss, metrics.group_zero_one_loss)] # The following only work with binary data when called with their default arguments supported_metrics_weighted_binary = [(skm.precision_score, metrics.group_precision_score), (skm.recall_score, metrics.group_recall_score), (skm.roc_auc_score, metrics.group_roc_auc_score), (skm.mean_squared_error, metrics.group_mean_squared_error), (skm.r2_score, metrics.group_r2_score)] supported_metrics_weighted_binary = supported_metrics_weighted_binary + supported_metrics_weighted metrics_no_sample_weights = [(skm.max_error, metrics.group_max_error), (skm.mean_absolute_error, metrics.group_mean_absolute_error), (skm.mean_squared_log_error, metrics.group_mean_squared_log_error), (skm.median_absolute_error, metrics.group_median_absolute_error)] supported_metrics_unweighted = metrics_no_sample_weights + supported_metrics_weighted_binary # ======================================================= @pytest.mark.parametrize("func_tuple", supported_metrics_unweighted) def test_metric_unweighted(func_tuple): metric_func = func_tuple[0] group_metric_func = func_tuple[1] result = group_metric_func(Y_true, Y_pred, groups) # We don't really care about the numbers (sklearn is responsible) # We just want to make sure we got a result assert len(result.by_group) == 5 expected_overall = metric_func(Y_true, Y_pred) if isinstance(expected_overall, np.ndarray): assert np.array_equal(expected_overall, result.overall) else: assert expected_overall == result.overall @pytest.mark.parametrize("func_tuple", supported_metrics_weighted_binary) def test_metric_weighted(func_tuple): metric_func = func_tuple[0] group_metric_func = func_tuple[1] result = group_metric_func(Y_true, Y_pred, groups, sample_weight=weight) assert len(result.by_group) == 5 expected_overall = metric_func(Y_true, Y_pred, sample_weight=weight) if isinstance(expected_overall, np.ndarray): assert np.array_equal(expected_overall, result.overall) else: assert expected_overall == result.overall @pytest.mark.parametrize("func_tuple", supported_metrics_weighted) def test_metric_weighted_ternary(func_tuple): metric_func = func_tuple[0] group_metric_func = func_tuple[1] result = group_metric_func(Y_true_ternary, Y_pred_ternary, groups, sample_weight=weight) assert len(result.by_group) == 5 expected_overall = metric_func(Y_true_ternary, Y_pred_ternary, sample_weight=weight) if isinstance(expected_overall, np.ndarray): assert np.array_equal(expected_overall, result.overall) else: assert expected_overall == result.overall # ====================================================================================== def test_group_accuracy_score_unnormalized(): result = metrics.group_accuracy_score(Y_true, Y_pred, groups, normalize=False) expected_overall = skm.accuracy_score(Y_true, Y_pred, False) assert result.overall == expected_overall # ====================================================================================== def test_group_confusion_matrix_labels(): labels = [0, 4] result = metrics.group_confusion_matrix(Y_true, Y_pred, groups, labels=labels) expected_overall = skm.confusion_matrix(Y_true, Y_pred, labels=labels) assert np.array_equal(result.overall, expected_overall) # ====================================================================================== def test_group_precision_score_ternary(): result = metrics.group_precision_score(Y_true_ternary, Y_pred_ternary, group2, average=None) expected_overall = skm.precision_score(Y_true_ternary, Y_pred_ternary, average=None) assert np.array_equal(result.overall, expected_overall) def test_group_precision_score_pos_label(): result = metrics.group_precision_score(Y_true, Y_pred, groups, pos_label=0) expected_overall = skm.precision_score(Y_true, Y_pred, pos_label=0) assert np.array_equal(result.overall, expected_overall) # ====================================================================================== def test_group_recall_score_ternary(): result = metrics.group_recall_score(Y_true_ternary, Y_pred_ternary, group2, average=None) expected_overall = skm.recall_score(Y_true_ternary, Y_pred_ternary, average=None) assert np.array_equal(result.overall, expected_overall) def test_group_recall_score_pos_label(): result = metrics.group_recall_score(Y_true, Y_pred, groups, pos_label=0) expected_overall = skm.recall_score(Y_true, Y_pred, pos_label=0) assert np.array_equal(result.overall, expected_overall) # ====================================================================================== def test_group_roc_auc_score_average(): result = metrics.group_roc_auc_score(Y_true, Y_pred, groups, average='samples') expected_overall = skm.roc_auc_score(Y_true, Y_pred, average='samples') assert expected_overall == result.overall def test_group_roc_auc_score_max_fpr(): result = metrics.group_roc_auc_score(Y_true, Y_pred, groups, max_fpr=0.5) expected_overall = skm.roc_auc_score(Y_true, Y_pred, max_fpr=0.5) assert expected_overall == result.overall # ====================================================================================== def test_group_zero_one_loss_unnormalized(): result = metrics.group_zero_one_loss(Y_true, Y_pred, groups, normalize=False) expected_overall = skm.zero_one_loss(Y_true, Y_pred, False) assert result.overall == expected_overall # ============================================================================================= def test_group_mean_squared_error_multioutput_single_ndarray(): y_t = np.random.rand(len(groups), 2) y_p = np.random.rand(len(groups), 2) result = metrics.group_mean_squared_error(y_t, y_p, groups, multioutput='raw_values') expected_overall = skm.mean_squared_error(y_t, y_p, multioutput='raw_values') assert np.array_equal(result.overall, expected_overall) # ============================================================================================= def test_group_r2_score_multioutput(): y_t = np.random.rand(len(groups), 2) y_p = np.random.rand(len(groups), 2) result = metrics.group_r2_score(y_t, y_p, groups, multioutput='raw_values') expected_overall = skm.r2_score(y_t, y_p, multioutput='raw_values') assert np.array_equal(result.overall, expected_overall) for target_group in np.unique(groups): mask = np.asarray(groups) == target_group expected = skm.r2_score(y_t[mask], y_p[mask], multioutput='raw_values') assert np.array_equal(result.by_group[target_group], expected) # ============================================================================================= def test_group_mean_squared_error_multioutput_list_ndarray(): y_t = [np.random.rand(2) for x in groups] y_p = [np.random.rand(2) for x in groups] result = metrics.group_mean_squared_error(y_t, y_p, groups, multioutput='raw_values') expected_overall = skm.mean_squared_error(y_t, y_p, multioutput='raw_values') assert np.array_equal(result.overall, expected_overall) for target_group in np.unique(groups): y_true = [] y_pred = [] for i in range(len(groups)): if groups[i] == target_group: y_true.append(y_t[i]) y_pred.append(y_p[i]) expected = skm.mean_squared_error(y_true, y_pred, multioutput='raw_values') assert np.array_equal(result.by_group[target_group], expected)
[((54, 1, 54, 68), 'pytest.mark.parametrize', 'pytest.mark.parametrize', ({(54, 25, 54, 37): '"""func_tuple"""', (54, 39, 54, 67): 'supported_metrics_unweighted'}, {}), "('func_tuple', supported_metrics_unweighted)", False, 'import pytest\n'), ((71, 1, 71, 73), 'pytest.mark.parametrize', 'pytest.mark.parametrize', ({(71, 25, 71, 37): '"""func_tuple"""', (71, 39, 71, 72): 'supported_metrics_weighted_binary'}, {}), "('func_tuple', supported_metrics_weighted_binary)", False, 'import pytest\n'), ((86, 1, 86, 66), 'pytest.mark.parametrize', 'pytest.mark.parametrize', ({(86, 25, 86, 37): '"""func_tuple"""', (86, 39, 86, 65): 'supported_metrics_weighted'}, {}), "('func_tuple', supported_metrics_weighted)", False, 'import pytest\n'), ((104, 13, 104, 82), 'fairlearn.metrics.group_accuracy_score', 'metrics.group_accuracy_score', (), '', True, 'import fairlearn.metrics as metrics\n'), ((106, 23, 106, 64), 'sklearn.metrics.accuracy_score', 'skm.accuracy_score', ({(106, 42, 106, 48): 'Y_true', (106, 50, 106, 56): 'Y_pred', (106, 58, 106, 63): 'False'}, {}), '(Y_true, Y_pred, False)', True, 'import sklearn.metrics as skm\n'), ((116, 13, 116, 82), 'fairlearn.metrics.group_confusion_matrix', 'metrics.group_confusion_matrix', (), '', True, 'import fairlearn.metrics as metrics\n'), ((117, 23, 117, 74), 'sklearn.metrics.confusion_matrix', 'skm.confusion_matrix', (), '', True, 'import sklearn.metrics as skm\n'), ((119, 11, 119, 59), 'numpy.array_equal', 'np.array_equal', ({(119, 26, 119, 40): 'result.overall', (119, 42, 119, 58): 'expected_overall'}, {}), '(result.overall, expected_overall)', True, 'import numpy as np\n'), ((125, 13, 125, 96), 'fairlearn.metrics.group_precision_score', 'metrics.group_precision_score', (), '', True, 'import fairlearn.metrics as metrics\n'), ((126, 23, 126, 88), 'sklearn.metrics.precision_score', 'skm.precision_score', (), '', True, 'import sklearn.metrics as skm\n'), ((128, 11, 128, 59), 'numpy.array_equal', 'np.array_equal', ({(128, 26, 128, 40): 'result.overall', (128, 42, 128, 58): 'expected_overall'}, {}), '(result.overall, expected_overall)', True, 'import numpy as np\n'), ((132, 13, 132, 79), 'fairlearn.metrics.group_precision_score', 'metrics.group_precision_score', (), '', True, 'import fairlearn.metrics as metrics\n'), ((133, 23, 133, 71), 'sklearn.metrics.precision_score', 'skm.precision_score', (), '', True, 'import sklearn.metrics as skm\n'), ((135, 11, 135, 59), 'numpy.array_equal', 'np.array_equal', ({(135, 26, 135, 40): 'result.overall', (135, 42, 135, 58): 'expected_overall'}, {}), '(result.overall, expected_overall)', True, 'import numpy as np\n'), ((141, 13, 141, 93), 'fairlearn.metrics.group_recall_score', 'metrics.group_recall_score', (), '', True, 'import fairlearn.metrics as metrics\n'), ((142, 23, 142, 85), 'sklearn.metrics.recall_score', 'skm.recall_score', (), '', True, 'import sklearn.metrics as skm\n'), ((144, 11, 144, 59), 'numpy.array_equal', 'np.array_equal', ({(144, 26, 144, 40): 'result.overall', (144, 42, 144, 58): 'expected_overall'}, {}), '(result.overall, expected_overall)', True, 'import numpy as np\n'), ((148, 13, 148, 76), 'fairlearn.metrics.group_recall_score', 'metrics.group_recall_score', (), '', True, 'import fairlearn.metrics as metrics\n'), ((149, 23, 149, 68), 'sklearn.metrics.recall_score', 'skm.recall_score', (), '', True, 'import sklearn.metrics as skm\n'), ((151, 11, 151, 59), 'numpy.array_equal', 'np.array_equal', ({(151, 26, 151, 40): 'result.overall', (151, 42, 151, 58): 'expected_overall'}, {}), '(result.overall, expected_overall)', True, 'import numpy as np\n'), ((157, 13, 157, 83), 'fairlearn.metrics.group_roc_auc_score', 'metrics.group_roc_auc_score', (), '', True, 'import fairlearn.metrics as metrics\n'), ((158, 23, 158, 75), 'sklearn.metrics.roc_auc_score', 'skm.roc_auc_score', (), '', True, 'import sklearn.metrics as skm\n'), ((164, 13, 164, 77), 'fairlearn.metrics.group_roc_auc_score', 'metrics.group_roc_auc_score', (), '', True, 'import fairlearn.metrics as metrics\n'), ((165, 23, 165, 69), 'sklearn.metrics.roc_auc_score', 'skm.roc_auc_score', (), '', True, 'import sklearn.metrics as skm\n'), ((173, 13, 173, 81), 'fairlearn.metrics.group_zero_one_loss', 'metrics.group_zero_one_loss', (), '', True, 'import fairlearn.metrics as metrics\n'), ((175, 23, 175, 63), 'sklearn.metrics.zero_one_loss', 'skm.zero_one_loss', ({(175, 41, 175, 47): 'Y_true', (175, 49, 175, 55): 'Y_pred', (175, 57, 175, 62): 'False'}, {}), '(Y_true, Y_pred, False)', True, 'import sklearn.metrics as skm\n'), ((185, 13, 185, 89), 'fairlearn.metrics.group_mean_squared_error', 'metrics.group_mean_squared_error', (), '', True, 'import fairlearn.metrics as metrics\n'), ((187, 23, 187, 81), 'sklearn.metrics.mean_squared_error', 'skm.mean_squared_error', (), '', True, 'import sklearn.metrics as skm\n'), ((189, 11, 189, 59), 'numpy.array_equal', 'np.array_equal', ({(189, 26, 189, 40): 'result.overall', (189, 42, 189, 58): 'expected_overall'}, {}), '(result.overall, expected_overall)', True, 'import numpy as np\n'), ((197, 13, 197, 79), 'fairlearn.metrics.group_r2_score', 'metrics.group_r2_score', (), '', True, 'import fairlearn.metrics as metrics\n'), ((199, 23, 199, 71), 'sklearn.metrics.r2_score', 'skm.r2_score', (), '', True, 'import sklearn.metrics as skm\n'), ((201, 11, 201, 59), 'numpy.array_equal', 'np.array_equal', ({(201, 26, 201, 40): 'result.overall', (201, 42, 201, 58): 'expected_overall'}, {}), '(result.overall, expected_overall)', True, 'import numpy as np\n'), ((202, 24, 202, 41), 'numpy.unique', 'np.unique', ({(202, 34, 202, 40): 'groups'}, {}), '(groups)', True, 'import numpy as np\n'), ((213, 13, 213, 89), 'fairlearn.metrics.group_mean_squared_error', 'metrics.group_mean_squared_error', (), '', True, 'import fairlearn.metrics as metrics\n'), ((215, 23, 215, 81), 'sklearn.metrics.mean_squared_error', 'skm.mean_squared_error', (), '', True, 'import sklearn.metrics as skm\n'), ((217, 11, 217, 59), 'numpy.array_equal', 'np.array_equal', ({(217, 26, 217, 40): 'result.overall', (217, 42, 217, 58): 'expected_overall'}, {}), '(result.overall, expected_overall)', True, 'import numpy as np\n'), ((219, 24, 219, 41), 'numpy.unique', 'np.unique', ({(219, 34, 219, 40): 'groups'}, {}), '(groups)', True, 'import numpy as np\n'), ((66, 15, 66, 63), 'numpy.array_equal', 'np.array_equal', ({(66, 30, 66, 46): 'expected_overall', (66, 48, 66, 62): 'result.overall'}, {}), '(expected_overall, result.overall)', True, 'import numpy as np\n'), ((81, 15, 81, 63), 'numpy.array_equal', 'np.array_equal', ({(81, 30, 81, 46): 'expected_overall', (81, 48, 81, 62): 'result.overall'}, {}), '(expected_overall, result.overall)', True, 'import numpy as np\n'), ((96, 15, 96, 63), 'numpy.array_equal', 'np.array_equal', ({(96, 30, 96, 46): 'expected_overall', (96, 48, 96, 62): 'result.overall'}, {}), '(expected_overall, result.overall)', True, 'import numpy as np\n'), ((204, 19, 204, 79), 'sklearn.metrics.r2_score', 'skm.r2_score', (), '', True, 'import sklearn.metrics as skm\n'), ((205, 15, 205, 70), 'numpy.array_equal', 'np.array_equal', ({(205, 30, 205, 59): 'result.by_group[target_group]', (205, 61, 205, 69): 'expected'}, {}), '(result.by_group[target_group], expected)', True, 'import numpy as np\n'), ((211, 11, 211, 28), 'numpy.random.rand', 'np.random.rand', ({(211, 26, 211, 27): '(2)'}, {}), '(2)', True, 'import numpy as np\n'), ((212, 11, 212, 28), 'numpy.random.rand', 'np.random.rand', ({(212, 26, 212, 27): '(2)'}, {}), '(2)', True, 'import numpy as np\n'), ((226, 19, 226, 83), 'sklearn.metrics.mean_squared_error', 'skm.mean_squared_error', (), '', True, 'import sklearn.metrics as skm\n'), ((227, 15, 227, 70), 'numpy.array_equal', 'np.array_equal', ({(227, 30, 227, 59): 'result.by_group[target_group]', (227, 61, 227, 69): 'expected'}, {}), '(result.by_group[target_group], expected)', True, 'import numpy as np\n'), ((203, 15, 203, 33), 'numpy.asarray', 'np.asarray', ({(203, 26, 203, 32): 'groups'}, {}), '(groups)', True, 'import numpy as np\n')]
cbschaff/nlimb
deeplearning/tf_util.py
f0564b00bab1b3367aaa88163e49bebc88f349bb
""" Adapted from OpenAI Baselines. """ import numpy as np import tensorflow as tf # pylint: ignore-module import random import copy import os import functools import collections import multiprocessing def switch(condition, then_expression, else_expression): """Switches between two operations depending on a scalar value (int or bool). Note that both `then_expression` and `else_expression` should be symbolic tensors of the *same shape*. # Arguments condition: scalar tensor. then_expression: TensorFlow operation. else_expression: TensorFlow operation. """ x_shape = copy.copy(then_expression.get_shape()) x = tf.cond(tf.cast(condition, 'bool'), lambda: then_expression, lambda: else_expression) x.set_shape(x_shape) return x # ================================================================ # Extras # ================================================================ def lrelu(x, leak=0.2): f1 = 0.5 * (1 + leak) f2 = 0.5 * (1 - leak) return f1 * x + f2 * abs(x) # ================================================================ # Mathematical utils # ================================================================ def huber_loss(x, delta=1.0): """Reference: https://en.wikipedia.org/wiki/Huber_loss""" return tf.where( tf.abs(x) < delta, tf.square(x) * 0.5, delta * (tf.abs(x) - 0.5 * delta) ) # ================================================================ # Global session # ================================================================ def make_session(num_cpu=None, make_default=False): """Returns a session that will use <num_cpu> CPU's only""" if num_cpu is None: num_cpu = int(os.getenv('RCALL_NUM_CPU', multiprocessing.cpu_count())) tf_config = tf.ConfigProto( inter_op_parallelism_threads=num_cpu, intra_op_parallelism_threads=num_cpu) tf_config.gpu_options.allocator_type = 'BFC' if make_default: return tf.InteractiveSession(config=tf_config) else: return tf.Session(config=tf_config) def single_threaded_session(): """Returns a session which will only use a single CPU""" return make_session(num_cpu=1) def in_session(f): @functools.wraps(f) def newfunc(*args, **kwargs): with tf.Session(): f(*args, **kwargs) return newfunc ALREADY_INITIALIZED = set() def initialize(): """Initialize all the uninitialized variables in the global scope.""" new_variables = set(tf.global_variables()) - ALREADY_INITIALIZED tf.get_default_session().run(tf.variables_initializer(new_variables)) ALREADY_INITIALIZED.update(new_variables) # ================================================================ # Saving variables and setting up experiment directories # ================================================================ def load_state(fname): saver = tf.train.Saver() saver.restore(tf.get_default_session(), fname) def save_state(fname): os.makedirs(os.path.dirname(fname), exist_ok=True) saver = tf.train.Saver() saver.save(tf.get_default_session(), fname) def load(fname): import cloudpickle with open(fname, 'rb') as f: return cloudpickle.load(f) def save(fname, obj): import cloudpickle os.makedirs(os.path.dirname(fname), exist_ok=True) with open(fname, 'wb') as fh: cloudpickle.dump(obj, fh) class Experiment(object): def __init__(self, logdir): self.logdir = logdir os.makedirs(os.path.join(logdir, 'checkpoints'), exist_ok=True) def load(self, timestep=None): if timestep is None: # get latest ckpt import glob fs = glob.glob(os.path.join(self.logdir, 'checkpoints/*')) timesteps = [] for f in fs: try: timesteps.append(int(os.path.basename(f))) except: pass if len(timesteps) == 0: return 0 timestep = max(timesteps) fname = os.path.join(self.logdir, 'checkpoints', str(timestep), 'model') load_state(fname) return timestep def save(self, timestep): fname = os.path.join(self.logdir, 'checkpoints', str(timestep), 'model') save_state(fname) def load_model_fn(self): fname = os.path.join(self.logdir, 'checkpoints/model_fn.pkl') assert os.path.exists(fname), "No model file saved." return load(fname) def save_model_fn(self, model_fn): fname = os.path.join(self.logdir, 'checkpoints/model_fn.pkl') save(fname, model_fn) # ================================================================ # Model components # ================================================================ def batch_to_seq(h, nbatch, nsteps, flat=False): """ Assumes Time major data!! x.shape = [nsteps, nbatch, *obs_shape] h = x.reshape([-1, *x.shape[2:]])) """ if flat: h = tf.reshape(h, [nsteps, nbatch]) else: h = tf.reshape(h, [nsteps, nbatch, -1]) return [tf.squeeze(v, [0]) for v in tf.split(axis=0, num_or_size_splits=nsteps, value=h)] def seq_to_batch(h, flat = False): """ Assumes Time major data!! x.shape = [nsteps, nbatch, *obs_shape] x = output.reshape(nsteps, nbatch, *obs_shape), where output is the output of this function. """ shape = h[0].get_shape().as_list() if not flat: assert(len(shape) > 1) nh = h[0].get_shape()[-1].value return tf.reshape(tf.concat(axis=0, values=h), [-1, nh]) else: return tf.reshape(tf.stack(values=h, axis=0), [-1]) def ortho_init(scale=1.0): def _ortho_init(shape, dtype, partition_info=None): #lasagne ortho init for tf shape = tuple(shape) if len(shape) == 2: flat_shape = shape elif len(shape) == 4: # assumes NHWC flat_shape = (np.prod(shape[:-1]), shape[-1]) else: raise NotImplementedError a = np.random.normal(0.0, 1.0, flat_shape) u, _, v = np.linalg.svd(a, full_matrices=False) q = u if u.shape == flat_shape else v # pick the one with the correct shape q = q.reshape(shape) return (scale * q[:shape[0], :shape[1]]).astype(np.float32) return _ortho_init def normc_initializer(std=1.0): def _initializer(shape, dtype=None, partition_info=None): # pylint: disable=W0613 out = np.random.randn(*shape).astype(np.float32) out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True)) return tf.constant(out) return _initializer def lstm(xs, ms, s, scope, nh, init_scale=1.0): nbatch, nin = [v.value for v in xs[0].get_shape()] nsteps = len(xs) with tf.variable_scope(scope): wx = tf.get_variable("wx", [nin, nh*4], initializer=ortho_init(init_scale)) wh = tf.get_variable("wh", [nh, nh*4], initializer=ortho_init(init_scale)) b = tf.get_variable("b", [nh*4], initializer=tf.constant_initializer(0.0)) c, h = tf.split(axis=1, num_or_size_splits=2, value=s) for idx, (x, m) in enumerate(zip(xs, ms)): c = c*(1-m) h = h*(1-m) z = tf.matmul(x, wx) + tf.matmul(h, wh) + b i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z) i = tf.nn.sigmoid(i) f = tf.nn.sigmoid(f) o = tf.nn.sigmoid(o) u = tf.tanh(u) c = f*c + i*u h = o*tf.tanh(c) xs[idx] = h s = tf.concat(axis=1, values=[c, h]) return xs, s # ================================================================ # Theano-like Function # ================================================================ def function(inputs, outputs, updates=None, givens=None): """Just like Theano function. Take a bunch of tensorflow placeholders and expressions computed based on those placeholders and produces f(inputs) -> outputs. Function f takes values to be fed to the input's placeholders and produces the values of the expressions in outputs. Input values can be passed in the same order as inputs or can be provided as kwargs based on placeholder name (passed to constructor or accessible via placeholder.op.name). Example: x = tf.placeholder(tf.int32, (), name="x") y = tf.placeholder(tf.int32, (), name="y") z = 3 * x + 2 * y lin = function([x, y], z, givens={y: 0}) with single_threaded_session(): initialize() assert lin(2) == 6 assert lin(x=3) == 9 assert lin(2, 2) == 10 assert lin(x=2, y=3) == 12 Parameters ---------- inputs: [tf.placeholder, tf.constant, or object with make_feed_dict method] list of input arguments outputs: [tf.Variable] or tf.Variable list of outputs or a single output to be returned from function. Returned value will also have the same shape. """ if isinstance(outputs, list): return _Function(inputs, outputs, updates, givens=givens) elif isinstance(outputs, (dict, collections.OrderedDict)): f = _Function(inputs, outputs.values(), updates, givens=givens) return lambda *args, **kwargs: type(outputs)(zip(outputs.keys(), f(*args, **kwargs))) else: f = _Function(inputs, [outputs], updates, givens=givens) return lambda *args, **kwargs: f(*args, **kwargs)[0] class _Function(object): def __init__(self, inputs, outputs, updates, givens): # for inpt in inputs: # if not hasattr(inpt, 'make_feed_dict') and not (type(inpt) is tf.Tensor and len(inpt.op.inputs) == 0): # assert False, "inputs should all be placeholders, constants, or have a make_feed_dict method" self.inputs = inputs updates = updates or [] self.update_group = tf.group(*updates) self.outputs_update = list(outputs) + [self.update_group] self.givens = {} if givens is None else givens def _feed_input(self, feed_dict, inpt, value): if hasattr(inpt, 'make_feed_dict'): feed_dict.update(inpt.make_feed_dict(value)) else: feed_dict[inpt] = value def __call__(self, *args): assert len(args) <= len(self.inputs), "Too many arguments provided" feed_dict = {} # Update the args for inpt, value in zip(self.inputs, args): if value is not None: self._feed_input(feed_dict, inpt, value) # Update feed dict with givens. for inpt in self.givens: feed_dict[inpt] = feed_dict.get(inpt, self.givens[inpt]) results = tf.get_default_session().run(self.outputs_update, feed_dict=feed_dict)[:-1] return results # ================================================================ # Flat vectors # ================================================================ def var_shape(x): out = x.get_shape().as_list() assert all(isinstance(a, int) for a in out), \ "shape function assumes that shape is fully known" return out def numel(x): return intprod(var_shape(x)) def intprod(x): return int(np.prod(x)) def flatgrad(loss, var_list, clip_norm=None): grads = tf.gradients(loss, var_list) if clip_norm is not None: grads, _ = tf.clip_by_global_norm(grads, clip_norm=clip_norm) return tf.concat(axis=0, values=[ tf.reshape(grad if grad is not None else tf.zeros_like(v), [numel(v)]) for (v, grad) in zip(var_list, grads) ]) class SetFromFlat(object): def __init__(self, var_list, dtype=tf.float32): assigns = [] shapes = list(map(var_shape, var_list)) total_size = np.sum([intprod(shape) for shape in shapes]) self.theta = theta = tf.placeholder(dtype, [total_size]) start = 0 assigns = [] for (shape, v) in zip(shapes, var_list): size = intprod(shape) assigns.append(tf.assign(v, tf.reshape(theta[start:start + size], shape))) start += size self.op = tf.group(*assigns) def __call__(self, theta): tf.get_default_session().run(self.op, feed_dict={self.theta: theta}) class GetFlat(object): def __init__(self, var_list): self.op = tf.concat(axis=0, values=[tf.reshape(v, [numel(v)]) for v in var_list]) def __call__(self): return tf.get_default_session().run(self.op) def flattenallbut0(x): return tf.reshape(x, [-1, intprod(x.get_shape().as_list()[1:])]) def reset(): global ALREADY_INITIALIZED ALREADY_INITIALIZED = set() tf.reset_default_graph() """ Random Seeds """ def set_global_seeds(i): try: import tensorflow as tf except ImportError: pass else: tf.set_random_seed(i) np.random.seed(i) random.seed(i)
[((60, 16, 62, 45), 'tensorflow.ConfigProto', 'tf.ConfigProto', (), '', True, 'import tensorflow as tf\n'), ((74, 5, 74, 23), 'functools.wraps', 'functools.wraps', ({(74, 21, 74, 22): 'f'}, {}), '(f)', False, 'import functools\n'), ((93, 12, 93, 28), 'tensorflow.train.Saver', 'tf.train.Saver', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((98, 12, 98, 28), 'tensorflow.train.Saver', 'tf.train.Saver', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((209, 11, 209, 58), 'tensorflow.split', 'tf.split', (), '', True, 'import tensorflow as tf\n'), ((222, 8, 222, 40), 'tensorflow.concat', 'tf.concat', (), '', True, 'import tensorflow as tf\n'), ((318, 12, 318, 40), 'tensorflow.gradients', 'tf.gradients', ({(318, 25, 318, 29): 'loss', (318, 31, 318, 39): 'var_list'}, {}), '(loss, var_list)', True, 'import tensorflow as tf\n'), ((357, 4, 357, 28), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((369, 4, 369, 21), 'numpy.random.seed', 'np.random.seed', ({(369, 19, 369, 20): 'i'}, {}), '(i)', True, 'import numpy as np\n'), ((370, 4, 370, 18), 'random.seed', 'random.seed', ({(370, 16, 370, 17): 'i'}, {}), '(i)', False, 'import random\n'), ((25, 16, 25, 42), 'tensorflow.cast', 'tf.cast', ({(25, 24, 25, 33): 'condition', (25, 35, 25, 41): '"""bool"""'}, {}), "(condition, 'bool')", True, 'import tensorflow as tf\n'), ((65, 15, 65, 54), 'tensorflow.InteractiveSession', 'tf.InteractiveSession', (), '', True, 'import tensorflow as tf\n'), ((67, 15, 67, 43), 'tensorflow.Session', 'tf.Session', (), '', True, 'import tensorflow as tf\n'), ((85, 33, 85, 72), 'tensorflow.variables_initializer', 'tf.variables_initializer', ({(85, 58, 85, 71): 'new_variables'}, {}), '(new_variables)', True, 'import tensorflow as tf\n'), ((94, 18, 94, 42), 'tensorflow.get_default_session', 'tf.get_default_session', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((97, 16, 97, 38), 'os.path.dirname', 'os.path.dirname', ({(97, 32, 97, 37): 'fname'}, {}), '(fname)', False, 'import os\n'), ((99, 15, 99, 39), 'tensorflow.get_default_session', 'tf.get_default_session', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((104, 15, 104, 34), 'cloudpickle.load', 'cloudpickle.load', ({(104, 32, 104, 33): 'f'}, {}), '(f)', False, 'import cloudpickle\n'), ((108, 16, 108, 38), 'os.path.dirname', 'os.path.dirname', ({(108, 32, 108, 37): 'fname'}, {}), '(fname)', False, 'import os\n'), ((110, 8, 110, 33), 'cloudpickle.dump', 'cloudpickle.dump', ({(110, 25, 110, 28): 'obj', (110, 30, 110, 32): 'fh'}, {}), '(obj, fh)', False, 'import cloudpickle\n'), ((138, 16, 138, 69), 'os.path.join', 'os.path.join', ({(138, 29, 138, 40): 'self.logdir', (138, 42, 138, 68): '"""checkpoints/model_fn.pkl"""'}, {}), "(self.logdir, 'checkpoints/model_fn.pkl')", False, 'import os\n'), ((139, 15, 139, 36), 'os.path.exists', 'os.path.exists', ({(139, 30, 139, 35): 'fname'}, {}), '(fname)', False, 'import os\n'), ((143, 16, 143, 69), 'os.path.join', 'os.path.join', ({(143, 29, 143, 40): 'self.logdir', (143, 42, 143, 68): '"""checkpoints/model_fn.pkl"""'}, {}), "(self.logdir, 'checkpoints/model_fn.pkl')", False, 'import os\n'), ((158, 12, 158, 43), 'tensorflow.reshape', 'tf.reshape', ({(158, 23, 158, 24): 'h', (158, 26, 158, 42): '[nsteps, nbatch]'}, {}), '(h, [nsteps, nbatch])', True, 'import tensorflow as tf\n'), ((160, 12, 160, 47), 'tensorflow.reshape', 'tf.reshape', ({(160, 23, 160, 24): 'h', (160, 26, 160, 46): '[nsteps, nbatch, -1]'}, {}), '(h, [nsteps, nbatch, -1])', True, 'import tensorflow as tf\n'), ((161, 12, 161, 30), 'tensorflow.squeeze', 'tf.squeeze', ({(161, 23, 161, 24): 'v', (161, 26, 161, 29): '[0]'}, {}), '(v, [0])', True, 'import tensorflow as tf\n'), ((187, 12, 187, 50), 'numpy.random.normal', 'np.random.normal', ({(187, 29, 187, 32): '0.0', (187, 34, 187, 37): '1.0', (187, 39, 187, 49): 'flat_shape'}, {}), '(0.0, 1.0, flat_shape)', True, 'import numpy as np\n'), ((188, 18, 188, 55), 'numpy.linalg.svd', 'np.linalg.svd', (), '', True, 'import numpy as np\n'), ((198, 15, 198, 31), 'tensorflow.constant', 'tf.constant', ({(198, 27, 198, 30): 'out'}, {}), '(out)', True, 'import tensorflow as tf\n'), ((204, 9, 204, 33), 'tensorflow.variable_scope', 'tf.variable_scope', ({(204, 27, 204, 32): 'scope'}, {}), '(scope)', True, 'import tensorflow as tf\n'), ((214, 21, 214, 68), 'tensorflow.split', 'tf.split', (), '', True, 'import tensorflow as tf\n'), ((215, 12, 215, 28), 'tensorflow.nn.sigmoid', 'tf.nn.sigmoid', ({(215, 26, 215, 27): 'i'}, {}), '(i)', True, 'import tensorflow as tf\n'), ((216, 12, 216, 28), 'tensorflow.nn.sigmoid', 'tf.nn.sigmoid', ({(216, 26, 216, 27): 'f'}, {}), '(f)', True, 'import tensorflow as tf\n'), ((217, 12, 217, 28), 'tensorflow.nn.sigmoid', 'tf.nn.sigmoid', ({(217, 26, 217, 27): 'o'}, {}), '(o)', True, 'import tensorflow as tf\n'), ((218, 12, 218, 22), 'tensorflow.tanh', 'tf.tanh', ({(218, 20, 218, 21): 'u'}, {}), '(u)', True, 'import tensorflow as tf\n'), ((278, 28, 278, 46), 'tensorflow.group', 'tf.group', ({(278, 37, 278, 45): '*updates'}, {}), '(*updates)', True, 'import tensorflow as tf\n'), ((315, 15, 315, 25), 'numpy.prod', 'np.prod', ({(315, 23, 315, 24): 'x'}, {}), '(x)', True, 'import numpy as np\n'), ((320, 19, 320, 69), 'tensorflow.clip_by_global_norm', 'tf.clip_by_global_norm', (), '', True, 'import tensorflow as tf\n'), ((332, 29, 332, 64), 'tensorflow.placeholder', 'tf.placeholder', ({(332, 44, 332, 49): 'dtype', (332, 51, 332, 63): '[total_size]'}, {}), '(dtype, [total_size])', True, 'import tensorflow as tf\n'), ((339, 18, 339, 36), 'tensorflow.group', 'tf.group', ({(339, 27, 339, 35): '*assigns'}, {}), '(*assigns)', True, 'import tensorflow as tf\n'), ((368, 8, 368, 29), 'tensorflow.set_random_seed', 'tf.set_random_seed', ({(368, 27, 368, 28): 'i'}, {}), '(i)', True, 'import tensorflow as tf\n'), ((47, 8, 47, 17), 'tensorflow.abs', 'tf.abs', ({(47, 15, 47, 16): 'x'}, {}), '(x)', True, 'import tensorflow as tf\n'), ((48, 8, 48, 20), 'tensorflow.square', 'tf.square', ({(48, 18, 48, 19): 'x'}, {}), '(x)', True, 'import tensorflow as tf\n'), ((76, 13, 76, 25), 'tensorflow.Session', 'tf.Session', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((84, 24, 84, 45), 'tensorflow.global_variables', 'tf.global_variables', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((85, 4, 85, 28), 'tensorflow.get_default_session', 'tf.get_default_session', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((115, 20, 115, 55), 'os.path.join', 'os.path.join', ({(115, 33, 115, 39): 'logdir', (115, 41, 115, 54): '"""checkpoints"""'}, {}), "(logdir, 'checkpoints')", False, 'import os\n'), ((161, 40, 161, 92), 'tensorflow.split', 'tf.split', (), '', True, 'import tensorflow as tf\n'), ((173, 26, 173, 53), 'tensorflow.concat', 'tf.concat', (), '', True, 'import tensorflow as tf\n'), ((175, 26, 175, 52), 'tensorflow.stack', 'tf.stack', (), '', True, 'import tensorflow as tf\n'), ((220, 14, 220, 24), 'tensorflow.tanh', 'tf.tanh', ({(220, 22, 220, 23): 'c'}, {}), '(c)', True, 'import tensorflow as tf\n'), ((49, 17, 49, 26), 'tensorflow.abs', 'tf.abs', ({(49, 24, 49, 25): 'x'}, {}), '(x)', True, 'import tensorflow as tf\n'), ((59, 49, 59, 76), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ({}, {}), '()', False, 'import multiprocessing\n'), ((121, 27, 121, 69), 'os.path.join', 'os.path.join', ({(121, 40, 121, 51): 'self.logdir', (121, 53, 121, 68): '"""checkpoints/*"""'}, {}), "(self.logdir, 'checkpoints/*')", False, 'import os\n'), ((196, 14, 196, 37), 'numpy.random.randn', 'np.random.randn', ({(196, 30, 196, 36): '*shape'}, {}), '(*shape)', True, 'import numpy as np\n'), ((207, 53, 207, 81), 'tensorflow.constant_initializer', 'tf.constant_initializer', ({(207, 77, 207, 80): '0.0'}, {}), '(0.0)', True, 'import tensorflow as tf\n'), ((213, 12, 213, 28), 'tensorflow.matmul', 'tf.matmul', ({(213, 22, 213, 23): 'x', (213, 25, 213, 27): 'wx'}, {}), '(x, wx)', True, 'import tensorflow as tf\n'), ((213, 31, 213, 47), 'tensorflow.matmul', 'tf.matmul', ({(213, 41, 213, 42): 'h', (213, 44, 213, 46): 'wh'}, {}), '(h, wh)', True, 'import tensorflow as tf\n'), ((342, 8, 342, 32), 'tensorflow.get_default_session', 'tf.get_default_session', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((349, 15, 349, 39), 'tensorflow.get_default_session', 'tf.get_default_session', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((184, 26, 184, 45), 'numpy.prod', 'np.prod', ({(184, 34, 184, 44): 'shape[:-1]'}, {}), '(shape[:-1])', True, 'import numpy as np\n'), ((298, 18, 298, 42), 'tensorflow.get_default_session', 'tf.get_default_session', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((337, 40, 337, 84), 'tensorflow.reshape', 'tf.reshape', ({(337, 51, 337, 76): 'theta[start:start + size]', (337, 78, 337, 83): 'shape'}, {}), '(theta[start:start + size], shape)', True, 'import tensorflow as tf\n'), ((197, 29, 197, 43), 'numpy.square', 'np.square', ({(197, 39, 197, 42): 'out'}, {}), '(out)', True, 'import numpy as np\n'), ((322, 49, 322, 65), 'tensorflow.zeros_like', 'tf.zeros_like', ({(322, 63, 322, 64): 'v'}, {}), '(v)', True, 'import tensorflow as tf\n'), ((124, 42, 124, 61), 'os.path.basename', 'os.path.basename', ({(124, 59, 124, 60): 'f'}, {}), '(f)', False, 'import os\n')]
RoboCupULaval/StrategyAI
Util/constant.py
ccddde144f2c0a67113d2e5ffe7c75ed9d4a3d19
# Under MIT License, see LICENSE.txt """ Module définissant des constantes de programmations python pour l'IA """ from enum import Enum ROBOT_RADIUS = 90 ROBOT_DIAMETER = ROBOT_RADIUS * 2 ROBOT_CENTER_TO_KICKER = 60 BALL_RADIUS = 21 MAX_PLAYER_ON_FIELD_PER_TEAM = 6 BALL_OUTSIDE_FIELD_BUFFER = 200 # Radius and angles for tactics DISTANCE_BEHIND = ROBOT_RADIUS + 30 # in millimeters ANGLE_TO_GRAB_BALL = 1 # in radians; must be large in case ball moves fast RADIUS_TO_GRAB_BALL = ROBOT_RADIUS + 30 ANGLE_TO_HALT = 0.05 # 3 degrees RADIUS_TO_HALT = ROBOT_RADIUS + BALL_RADIUS REASONABLE_OFFSET = 50 # To take into account the camera precision and other things # Rules KEEPOUT_DISTANCE_FROM_BALL = 500 + ROBOT_RADIUS + REASONABLE_OFFSET KEEPOUT_DISTANCE_FROM_GOAL = ROBOT_RADIUS + REASONABLE_OFFSET PADDING_DEFENSE_AREA = 100 # Rule 5.2: Minimum movement before a ball is "in play" IN_PLAY_MIN_DISTANCE = 50 # Rule 8.2.1: Distance from the opposing team defending zone INDIRECT_KICK_OFFSET = 200 # Deadzones POSITION_DEADZONE = ROBOT_RADIUS * 0.1 # Orientation abs_tol ORIENTATION_ABSOLUTE_TOLERANCE = 0.01 # 0.5 degree # TeamColor class TeamColor(Enum): def __str__(self): return 'blue' if self == TeamColor.BLUE else 'yellow' YELLOW = 0 BLUE = 1 class FieldSide(Enum): POSITIVE = 0 NEGATIVE = 1 class KickForce(Enum): NONE = 0 LOW = 1 MEDIUM = 2 HIGH = 3 @classmethod def for_dist(cls, dist, seconds_to_reach=1.0): speed = (dist / 1000) / seconds_to_reach return speed class KickType(Enum): DIRECT = 0 CHIP = 1 class DribbleState(Enum): AUTOMATIC = 0 FORCE_STOP = 1 FORCE_SPIN = 2
[]
cirno1w/transport
src/transbigdata/CoordinatesConverter.py
f088b4111992dd5ec6371db71cf1d26689cf8c26
import numpy as np x_pi = 3.14159265358979324 * 3000.0 / 180.0 pi = 3.1415926535897932384626 a = 6378245.0 ee = 0.00669342162296594323 def gcj02tobd09(lng, lat): """ Convert coordinates from GCJ02 to BD09 Parameters ------- lng : Series or number Longitude lat : Series or number Latitude return ------- lng : Series or number Longitude (Converted) lat : Series or number Latitude (Converted) """ try: lng = lng.astype(float) lat = lat.astype(float) except: lng = float(lng) lat = float(lat) z = np.sqrt(lng * lng + lat * lat) + 0.00002 * np.sin(lat * x_pi) theta = np.arctan2(lat, lng) + 0.000003 * np.cos(lng * x_pi) bd_lng = z * np.cos(theta) + 0.0065 bd_lat = z * np.sin(theta) + 0.006 return bd_lng, bd_lat def bd09togcj02(bd_lon, bd_lat): """ Convert coordinates from BD09 to GCJ02 Parameters ------- lng : Series or number Longitude lat : Series or number Latitude return ------- lng : Series or number Longitude (Converted) lat : Series or number Latitude (Converted) """ try: bd_lon = bd_lon.astype(float) bd_lat = bd_lat.astype(float) except: bd_lon = float(bd_lon) bd_lat = float(bd_lat) x = bd_lon - 0.0065 y = bd_lat - 0.006 z = np.sqrt(x * x + y * y) - 0.00002 * np.sin(y * x_pi) theta = np.arctan2(y, x) - 0.000003 * np.cos(x * x_pi) gg_lng = z * np.cos(theta) gg_lat = z * np.sin(theta) return gg_lng, gg_lat def wgs84togcj02(lng, lat): """ Convert coordinates from WGS84 to GCJ02 Parameters ------- lng : Series or number Longitude lat : Series or number Latitude return ------- lng : Series or number Longitude (Converted) lat : Series or number Latitude (Converted) """ try: lng = lng.astype(float) lat = lat.astype(float) except: lng = float(lng) lat = float(lat) dlat = transformlat(lng - 105.0, lat - 35.0) dlng = transformlng(lng - 105.0, lat - 35.0) radlat = lat / 180.0 * pi magic = np.sin(radlat) magic = 1 - ee * magic * magic sqrtmagic = np.sqrt(magic) dlat = (dlat * 180.0) / ((a * (1 - ee)) / (magic * sqrtmagic) * pi) dlng = (dlng * 180.0) / (a / sqrtmagic * np.cos(radlat) * pi) mglat = lat + dlat mglng = lng + dlng return mglng, mglat def gcj02towgs84(lng, lat): """ Convert coordinates from GCJ02 to WGS84 Parameters ------- lng : Series or number Longitude lat : Series or number Latitude return ------- lng : Series or number Longitude (Converted) lat : Series or number Latitude (Converted) """ try: lng = lng.astype(float) lat = lat.astype(float) except: lng = float(lng) lat = float(lat) dlat = transformlat(lng - 105.0, lat - 35.0) dlng = transformlng(lng - 105.0, lat - 35.0) radlat = lat / 180.0 * pi magic = np.sin(radlat) magic = 1 - ee * magic * magic sqrtmagic = np.sqrt(magic) dlat = (dlat * 180.0) / ((a * (1 - ee)) / (magic * sqrtmagic) * pi) dlng = (dlng * 180.0) / (a / sqrtmagic * np.cos(radlat) * pi) mglat = lat + dlat mglng = lng + dlng return lng * 2 - mglng, lat * 2 - mglat def wgs84tobd09(lon,lat): """ Convert coordinates from WGS84 to BD09 Parameters ------- lng : Series or number Longitude lat : Series or number Latitude return ------- lng : Series or number Longitude (Converted) lat : Series or number Latitude (Converted) """ try: lon = lon.astype(float) lat = lat.astype(float) except: lon = float(lon) lat = float(lat) lon,lat = wgs84togcj02(lon,lat) lon,lat = gcj02tobd09(lon,lat) return lon,lat def bd09towgs84(lon,lat): """ Convert coordinates from BD09 to WGS84 Parameters ------- lng : Series or number Longitude lat : Series or number Latitude return ------- lng : Series or number Longitude (Converted) lat : Series or number Latitude (Converted) """ try: lon = lon.astype(float) lat = lat.astype(float) except: lon = float(lon) lat = float(lat) lon,lat = bd09togcj02(lon,lat) lon,lat = gcj02towgs84(lon,lat) return lon,lat def bd09mctobd09(x,y): """ Convert coordinates from BD09MC to BD09 Parameters ------- x : Series or number x coordinates y : Series or number y coordinates return ------- lng : Series or number Longitude (Converted) lat : Series or number Latitude (Converted) """ MCBAND = [12890594.86, 8362377.87, 5591021, 3481989.83, 1678043.12, 0] MC2LL = [ [1.410526172116255e-8, 0.00000898305509648872, -1.9939833816331, 200.9824383106796, -187.2403703815547, 91.6087516669843, -23.38765649603339, 2.57121317296198, -0.03801003308653, 17337981.2], [-7.435856389565537e-9, 0.000008983055097726239, -0.78625201886289, 96.32687599759846, -1.85204757529826, -59.36935905485877, 47.40033549296737, -16.50741931063887, 2.28786674699375, 10260144.86], [-3.030883460898826e-8, 0.00000898305509983578, 0.30071316287616, 59.74293618442277, 7.357984074871, -25.38371002664745, 13.45380521110908, -3.29883767235584, 0.32710905363475, 6856817.37], [-1.981981304930552e-8, 0.000008983055099779535, 0.03278182852591, 40.31678527705744, 0.65659298677277, -4.44255534477492, 0.85341911805263, 0.12923347998204, -0.04625736007561, 4482777.06], [3.09191371068437e-9, 0.000008983055096812155, 0.00006995724062, 23.10934304144901, -0.00023663490511, -0.6321817810242, -0.00663494467273, 0.03430082397953, -0.00466043876332, 2555164.4], [2.890871144776878e-9, 0.000008983055095805407, -3.068298e-8, 7.47137025468032, -0.00000353937994, -0.02145144861037, -0.00001234426596, 0.00010322952773, -0.00000323890364, 826088.5] ] y1 = y.iloc[0] for cD in range(len(MCBAND)): if y1 >= MCBAND[cD]: cE = MC2LL[cD] break cD = cE T = cD[0] + cD[1] * np.abs(x); cB = np.abs(y) / cD[9] cE = cD[2] + cD[3] * cB + cD[4] * cB * cB +\ cD[5] * cB * cB * cB + cD[6] * cB * cB * cB * cB +\ cD[7] * cB * cB * cB * cB * cB +\ cD[8] * cB * cB * cB * cB * cB * cB return T,cE def transformlat(lng, lat): ret = -100.0 + 2.0 * lng + 3.0 * lat + 0.2 * lat * lat + \ 0.1 * lng * lat + 0.2 * np.sqrt(np.fabs(lng)) ret += (20.0 * np.sin(6.0 * lng * pi) + 20.0 * np.sin(2.0 * lng * pi)) * 2.0 / 3.0 ret += (20.0 * np.sin(lat * pi) + 40.0 * np.sin(lat / 3.0 * pi)) * 2.0 / 3.0 ret += (160.0 * np.sin(lat / 12.0 * pi) + 320 * np.sin(lat * pi / 30.0)) * 2.0 / 3.0 return ret def transformlng(lng, lat): import numpy as np ret = 300.0 + lng + 2.0 * lat + 0.1 * lng * lng + \ 0.1 * lng * lat + 0.1 * np.sqrt(np.abs(lng)) ret += (20.0 * np.sin(6.0 * lng * pi) + 20.0 * np.sin(2.0 * lng * pi)) * 2.0 / 3.0 ret += (20.0 * np.sin(lng * pi) + 40.0 * np.sin(lng / 3.0 * pi)) * 2.0 / 3.0 ret += (150.0 * np.sin(lng / 12.0 * pi) + 300.0 * np.sin(lng / 30.0 * pi)) * 2.0 / 3.0 return ret def getdistance(lon1, lat1, lon2, lat2): ''' Input the origin/destination location in the sequence of [lon1, lat1, lon2, lat2] (in decimal) from DataFrame. The output is the distance (m). Parameters ------- lon1 : Series or number Start longitude lat1 : Series or number Start latitude lon2 : Series or number End longitude lat2 : Series or number End latitude return ------- distance : Series or number The distance ''' try: lon1 = lon1.astype(float) lat1 = lat1.astype(float) lon2 = lon2.astype(float) lat2 = lat2.astype(float) except: lon1 = float(lon1) lat1 = float(lat1) lon2 = float(lon2) lat2 = float(lat2) lon1, lat1, lon2, lat2 = map(lambda r:r*pi/180, [lon1, lat1, lon2, lat2]) dlon = lon2 - lon1 dlat = lat2 - lat1 a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2 c = 2 * np.arcsin(a**0.5) r = 6371 # 地球平均半径,单位为公里 return c * r * 1000 def transform_shape(gdf,method): ''' Convert coordinates of all data. The input is the geographic elements’ DataFrame. Parameters ------- gdf : GeoDataFrame Geographic elements method : function The coordinate converting function return ------- gdf : GeoDataFrame The result of converting ''' from shapely.ops import transform gdf1 = gdf.copy() gdf1['geometry'] = gdf1['geometry'].apply(lambda r:transform(method, r)) return gdf1
[((99, 12, 99, 26), 'numpy.sin', 'np.sin', ({(99, 19, 99, 25): 'radlat'}, {}), '(radlat)', True, 'import numpy as np\n'), ((101, 16, 101, 30), 'numpy.sqrt', 'np.sqrt', ({(101, 24, 101, 29): 'magic'}, {}), '(magic)', True, 'import numpy as np\n'), ((136, 12, 136, 26), 'numpy.sin', 'np.sin', ({(136, 19, 136, 25): 'radlat'}, {}), '(radlat)', True, 'import numpy as np\n'), ((138, 16, 138, 30), 'numpy.sqrt', 'np.sqrt', ({(138, 24, 138, 29): 'magic'}, {}), '(magic)', True, 'import numpy as np\n'), ((32, 8, 32, 38), 'numpy.sqrt', 'np.sqrt', ({(32, 16, 32, 37): '(lng * lng + lat * lat)'}, {}), '(lng * lng + lat * lat)', True, 'import numpy as np\n'), ((33, 12, 33, 32), 'numpy.arctan2', 'np.arctan2', ({(33, 23, 33, 26): 'lat', (33, 28, 33, 31): 'lng'}, {}), '(lat, lng)', True, 'import numpy as np\n'), ((65, 8, 65, 30), 'numpy.sqrt', 'np.sqrt', ({(65, 16, 65, 29): '(x * x + y * y)'}, {}), '(x * x + y * y)', True, 'import numpy as np\n'), ((66, 12, 66, 28), 'numpy.arctan2', 'np.arctan2', ({(66, 23, 66, 24): 'y', (66, 26, 66, 27): 'x'}, {}), '(y, x)', True, 'import numpy as np\n'), ((67, 17, 67, 30), 'numpy.cos', 'np.cos', ({(67, 24, 67, 29): 'theta'}, {}), '(theta)', True, 'import numpy as np\n'), ((68, 17, 68, 30), 'numpy.sin', 'np.sin', ({(68, 24, 68, 29): 'theta'}, {}), '(theta)', True, 'import numpy as np\n'), ((235, 9, 235, 18), 'numpy.abs', 'np.abs', ({(235, 16, 235, 17): 'y'}, {}), '(y)', True, 'import numpy as np\n'), ((299, 12, 299, 29), 'numpy.arcsin', 'np.arcsin', ({(299, 22, 299, 28): '(a ** 0.5)'}, {}), '(a ** 0.5)', True, 'import numpy as np\n'), ((32, 51, 32, 69), 'numpy.sin', 'np.sin', ({(32, 58, 32, 68): '(lat * x_pi)'}, {}), '(lat * x_pi)', True, 'import numpy as np\n'), ((33, 46, 33, 64), 'numpy.cos', 'np.cos', ({(33, 53, 33, 63): '(lng * x_pi)'}, {}), '(lng * x_pi)', True, 'import numpy as np\n'), ((34, 17, 34, 30), 'numpy.cos', 'np.cos', ({(34, 24, 34, 29): 'theta'}, {}), '(theta)', True, 'import numpy as np\n'), ((35, 17, 35, 30), 'numpy.sin', 'np.sin', ({(35, 24, 35, 29): 'theta'}, {}), '(theta)', True, 'import numpy as np\n'), ((65, 43, 65, 59), 'numpy.sin', 'np.sin', ({(65, 50, 65, 58): '(y * x_pi)'}, {}), '(y * x_pi)', True, 'import numpy as np\n'), ((66, 42, 66, 58), 'numpy.cos', 'np.cos', ({(66, 49, 66, 57): '(x * x_pi)'}, {}), '(x * x_pi)', True, 'import numpy as np\n'), ((234, 24, 234, 33), 'numpy.abs', 'np.abs', ({(234, 31, 234, 32): 'x'}, {}), '(x)', True, 'import numpy as np\n'), ((298, 8, 298, 22), 'numpy.sin', 'np.sin', ({(298, 15, 298, 21): '(dlat / 2)'}, {}), '(dlat / 2)', True, 'import numpy as np\n'), ((321, 55, 321, 75), 'shapely.ops.transform', 'transform', ({(321, 65, 321, 71): 'method', (321, 73, 321, 74): 'r'}, {}), '(method, r)', False, 'from shapely.ops import transform\n'), ((103, 45, 103, 59), 'numpy.cos', 'np.cos', ({(103, 52, 103, 58): 'radlat'}, {}), '(radlat)', True, 'import numpy as np\n'), ((140, 45, 140, 59), 'numpy.cos', 'np.cos', ({(140, 52, 140, 58): 'radlat'}, {}), '(radlat)', True, 'import numpy as np\n'), ((244, 40, 244, 52), 'numpy.fabs', 'np.fabs', ({(244, 48, 244, 51): 'lng'}, {}), '(lng)', True, 'import numpy as np\n'), ((256, 40, 256, 51), 'numpy.abs', 'np.abs', ({(256, 47, 256, 50): 'lng'}, {}), '(lng)', True, 'import numpy as np\n'), ((298, 28, 298, 40), 'numpy.cos', 'np.cos', ({(298, 35, 298, 39): 'lat1'}, {}), '(lat1)', True, 'import numpy as np\n'), ((298, 43, 298, 55), 'numpy.cos', 'np.cos', ({(298, 50, 298, 54): 'lat2'}, {}), '(lat2)', True, 'import numpy as np\n'), ((298, 58, 298, 72), 'numpy.sin', 'np.sin', ({(298, 65, 298, 71): '(dlon / 2)'}, {}), '(dlon / 2)', True, 'import numpy as np\n'), ((245, 19, 245, 41), 'numpy.sin', 'np.sin', ({(245, 26, 245, 40): '(6.0 * lng * pi)'}, {}), '(6.0 * lng * pi)', True, 'import numpy as np\n'), ((246, 12, 246, 34), 'numpy.sin', 'np.sin', ({(246, 19, 246, 33): '(2.0 * lng * pi)'}, {}), '(2.0 * lng * pi)', True, 'import numpy as np\n'), ((247, 19, 247, 35), 'numpy.sin', 'np.sin', ({(247, 26, 247, 34): '(lat * pi)'}, {}), '(lat * pi)', True, 'import numpy as np\n'), ((248, 12, 248, 34), 'numpy.sin', 'np.sin', ({(248, 19, 248, 33): '(lat / 3.0 * pi)'}, {}), '(lat / 3.0 * pi)', True, 'import numpy as np\n'), ((249, 20, 249, 43), 'numpy.sin', 'np.sin', ({(249, 27, 249, 42): '(lat / 12.0 * pi)'}, {}), '(lat / 12.0 * pi)', True, 'import numpy as np\n'), ((250, 12, 250, 35), 'numpy.sin', 'np.sin', ({(250, 19, 250, 34): '(lat * pi / 30.0)'}, {}), '(lat * pi / 30.0)', True, 'import numpy as np\n'), ((257, 19, 257, 41), 'numpy.sin', 'np.sin', ({(257, 26, 257, 40): '(6.0 * lng * pi)'}, {}), '(6.0 * lng * pi)', True, 'import numpy as np\n'), ((258, 12, 258, 34), 'numpy.sin', 'np.sin', ({(258, 19, 258, 33): '(2.0 * lng * pi)'}, {}), '(2.0 * lng * pi)', True, 'import numpy as np\n'), ((259, 19, 259, 35), 'numpy.sin', 'np.sin', ({(259, 26, 259, 34): '(lng * pi)'}, {}), '(lng * pi)', True, 'import numpy as np\n'), ((260, 12, 260, 34), 'numpy.sin', 'np.sin', ({(260, 19, 260, 33): '(lng / 3.0 * pi)'}, {}), '(lng / 3.0 * pi)', True, 'import numpy as np\n'), ((261, 20, 261, 43), 'numpy.sin', 'np.sin', ({(261, 27, 261, 42): '(lng / 12.0 * pi)'}, {}), '(lng / 12.0 * pi)', True, 'import numpy as np\n'), ((262, 12, 262, 35), 'numpy.sin', 'np.sin', ({(262, 19, 262, 34): '(lng / 30.0 * pi)'}, {}), '(lng / 30.0 * pi)', True, 'import numpy as np\n')]
aleixsanchis/cloudify-rest-client
cloudify_rest_client/exceptions.py
6acaadee8286ab647465824d3c8e13d4c43ca9ba
######## # Copyright (c) 2014 GigaSpaces Technologies Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # * See the License for the specific language governing permissions and # * limitations under the License. class CloudifyClientError(Exception): def __init__(self, message, server_traceback=None, status_code=-1, error_code=None, response=None): super(CloudifyClientError, self).__init__(message) self.status_code = status_code self.error_code = error_code self.server_traceback = server_traceback self.response = response self.message = message def __str__(self): if self.status_code != -1: formatted_error = '{0}: {1}'.format(self.status_code, self.message) return formatted_error return self.message class DeploymentEnvironmentCreationInProgressError(CloudifyClientError): """ Raised when there's attempt to execute a deployment workflow and deployment environment creation workflow execution is still running. In such a case, workflow execution should be retried after a reasonable time or after the execution of deployment environment creation workflow has terminated. """ ERROR_CODE = 'deployment_environment_creation_in_progress_error' class DeploymentEnvironmentCreationPendingError(CloudifyClientError): """ Raised when there's attempt to execute a deployment workflow and deployment environment creation workflow execution is pending. In such a case, workflow execution should be retried after a reasonable time or after the execution of deployment environment creation workflow has terminated. """ ERROR_CODE = 'deployment_environment_creation_pending_error' class IllegalExecutionParametersError(CloudifyClientError): """ Raised when an attempt to execute a workflow with wrong/missing parameters has been made. """ ERROR_CODE = 'illegal_execution_parameters_error' class NoSuchIncludeFieldError(CloudifyClientError): """ Raised when an _include query parameter contains a field which does not exist for the queried data model. """ ERROR_CODE = 'no_such_include_field_error' class MissingRequiredDeploymentInputError(CloudifyClientError): """ Raised when a required deployment input was not specified on deployment creation. """ ERROR_CODE = 'missing_required_deployment_input_error' class UnknownDeploymentInputError(CloudifyClientError): """ Raised when an unexpected input was specified on deployment creation. """ ERROR_CODE = 'unknown_deployment_input_error' class UnknownDeploymentSecretError(CloudifyClientError): """ Raised when a required secret was not found on deployment creation. """ ERROR_CODE = 'unknown_deployment_secret_error' class UnsupportedDeploymentGetSecretError(CloudifyClientError): """ Raised when an unsupported get_secret intrinsic function appears in the blueprint on deployment creation. """ ERROR_CODE = 'unsupported_deployment_get_secret_error' class FunctionsEvaluationError(CloudifyClientError): """ Raised when function evaluation failed. """ ERROR_CODE = 'functions_evaluation_error' class UnknownModificationStageError(CloudifyClientError): """ Raised when an unknown modification stage was provided. """ ERROR_CODE = 'unknown_modification_stage_error' class ExistingStartedDeploymentModificationError(CloudifyClientError): """ Raised when a deployment modification start is attempted while another deployment modification is currently started """ ERROR_CODE = 'existing_started_deployment_modification_error' class DeploymentModificationAlreadyEndedError(CloudifyClientError): """ Raised when a deployment modification finish/rollback is attempted on a deployment modification that has already been finished/rolledback """ ERROR_CODE = 'deployment_modification_already_ended_error' class UserUnauthorizedError(CloudifyClientError): """ Raised when a call has been made to a secured resource with an unauthorized user (no credentials / bad credentials) """ ERROR_CODE = 'unauthorized_error' class ForbiddenError(CloudifyClientError): """ Raised when a call has been made by a user that is not permitted to perform it """ ERROR_CODE = 'forbidden_error' class PluginInUseError(CloudifyClientError): """ Raised if a central deployment agent plugin deletion is attempted and at least one deployment is currently using this plugin. """ ERROR_CODE = 'plugin_in_use' class PluginInstallationError(CloudifyClientError): """ Raised if a central deployment agent plugin installation fails. """ ERROR_CODE = 'plugin_installation_error' class PluginInstallationTimeout(CloudifyClientError): """ Raised if a central deployment agent plugin installation times out. """ ERROR_CODE = 'plugin_installation_timeout' class MaintenanceModeActiveError(CloudifyClientError): """ Raised when a call has been blocked due to maintenance mode being active. """ ERROR_CODE = 'maintenance_mode_active' def __str__(self): return self.message class MaintenanceModeActivatingError(CloudifyClientError): """ Raised when a call has been blocked while maintenance mode is activating. """ ERROR_CODE = 'entering_maintenance_mode' def __str__(self): return self.message class NotModifiedError(CloudifyClientError): """ Raised when a 304 not modified error was returned """ ERROR_CODE = 'not_modified' def __str__(self): return self.message class InvalidExecutionUpdateStatus(CloudifyClientError): """ Raised when execution update failed do to invalid status update """ ERROR_CODE = 'invalid_exception_status_update' class NotClusterMaster(CloudifyClientError): """ Raised when the request was served by a manager that is not the master node of a manager cluster. The client should query for the cluster status to learn the master's address, and retry the request. If the client stores the server address, it should update the storage with the new master node address. """ ERROR_CODE = 'not_cluster_master' class RemovedFromCluster(CloudifyClientError): """ Raised when attempting to contact a manager that was removed from a cluster. The client should retry the request with another manager in the cluster. If the client stores the server address, it should remove this node's address from storage. """ ERROR_CODE = 'removed_from_cluster' class DeploymentPluginNotFound(CloudifyClientError): """ Raised when a plugin is listed in the blueprint but is not installed on the manager. """ ERROR_CODE = 'deployment_plugin_not_found' ERROR_MAPPING = dict([ (error.ERROR_CODE, error) for error in [ DeploymentEnvironmentCreationInProgressError, DeploymentEnvironmentCreationPendingError, IllegalExecutionParametersError, NoSuchIncludeFieldError, MissingRequiredDeploymentInputError, UnknownDeploymentInputError, UnknownDeploymentSecretError, UnsupportedDeploymentGetSecretError, FunctionsEvaluationError, UnknownModificationStageError, ExistingStartedDeploymentModificationError, DeploymentModificationAlreadyEndedError, UserUnauthorizedError, ForbiddenError, MaintenanceModeActiveError, MaintenanceModeActivatingError, NotModifiedError, InvalidExecutionUpdateStatus, PluginInUseError, PluginInstallationError, PluginInstallationTimeout, NotClusterMaster, RemovedFromCluster, DeploymentPluginNotFound]])
[]
sriharshams-aws/aws-codeguru-profiler-python-demo-application
sample-demo-lambda-app/lambda_function.py
36e63bc6364871e6a7b29437c1fb68243d2c54f4
import boto3 import logging import os from random import randrange from urllib.request import urlopen # It is not recommended to enable DEBUG logs in production, # this is just to show an example of a recommendation # by Amazon CodeGuru Profiler. logging.getLogger('botocore').setLevel(logging.DEBUG) SITE = 'http://www.python.org/' CW_NAMESPACE = 'ProfilerPythonDemo' S3_BUCKET = os.environ['S3_BUCKET'] def lambda_handler(event, context): # Make some network calls using urllib and s3 client. with urlopen(SITE) as response: s3_client = boto3.client('s3') s3_client.put_object(Body=response.read(), Bucket=S3_BUCKET, Key='response.txt') # Publish metrics. content_length = int(response.headers['Content-Length']) put_metric('ResponseContentLength', content_length) put_metric(str(response.status)[0] + 'xxStatus', 1) # Generate some CPU-intensive work. num = randrange(content_length) count = 0 for _ in range(num): x = randrange(num) if check_prime(x): count += 1 return count def put_metric(name, value): cw_client = boto3.client('cloudwatch') metric_data_num = [{'MetricName': name, 'Value': value}] cw_client.put_metric_data(Namespace=CW_NAMESPACE, MetricData=metric_data_num) def check_prime(num): if num == 1 or num == 0: return False sq_root = 2 while sq_root * sq_root <= num: if num % sq_root == 0: return False sq_root += 1 return True
[((32, 10, 32, 35), 'random.randrange', 'randrange', ({(32, 20, 32, 34): 'content_length'}, {}), '(content_length)', False, 'from random import randrange\n'), ((43, 16, 43, 42), 'boto3.client', 'boto3.client', ({(43, 29, 43, 41): '"""cloudwatch"""'}, {}), "('cloudwatch')", False, 'import boto3\n'), ((11, 0, 11, 29), 'logging.getLogger', 'logging.getLogger', ({(11, 18, 11, 28): '"""botocore"""'}, {}), "('botocore')", False, 'import logging\n'), ((20, 9, 20, 22), 'urllib.request.urlopen', 'urlopen', ({(20, 17, 20, 21): 'SITE'}, {}), '(SITE)', False, 'from urllib.request import urlopen\n'), ((21, 20, 21, 38), 'boto3.client', 'boto3.client', ({(21, 33, 21, 37): '"""s3"""'}, {}), "('s3')", False, 'import boto3\n'), ((35, 12, 35, 26), 'random.randrange', 'randrange', ({(35, 22, 35, 25): 'num'}, {}), '(num)', False, 'from random import randrange\n')]
chuo06/palindrome
api/error_handler.py
57660301390d7b2b05780e1f6ab0343e43726619
from functools import wraps from werkzeug.exceptions import HTTPException from api.exceptions import MessageNotFound def api_error_handler(func): @wraps(func) def handle_errors(*args, **kwargs): try: return func(*args, **kwargs) except MessageNotFound as e: return e.message, 404 except HTTPException: raise except Exception: return "API Internal error", 500 return handle_errors
[((7, 5, 7, 16), 'functools.wraps', 'wraps', ({(7, 11, 7, 15): 'func'}, {}), '(func)', False, 'from functools import wraps\n')]
kootsZhin/nile
src/nile/core/run.py
5b685158c06418a126229cfbcaeaaf78a38cd8a0
"""Command to run Nile scripts.""" import logging from importlib.machinery import SourceFileLoader from nile.nre import NileRuntimeEnvironment def run(path, network): """Run nile scripts passing on the NRE object.""" logger = logging.getLogger() logger.disabled = True script = SourceFileLoader("script", path).load_module() nre = NileRuntimeEnvironment(network) script.run(nre)
[((10, 13, 10, 32), 'logging.getLogger', 'logging.getLogger', ({}, {}), '()', False, 'import logging\n'), ((13, 10, 13, 41), 'nile.nre.NileRuntimeEnvironment', 'NileRuntimeEnvironment', ({(13, 33, 13, 40): 'network'}, {}), '(network)', False, 'from nile.nre import NileRuntimeEnvironment\n'), ((12, 13, 12, 45), 'importlib.machinery.SourceFileLoader', 'SourceFileLoader', ({(12, 30, 12, 38): '"""script"""', (12, 40, 12, 44): 'path'}, {}), "('script', path)", False, 'from importlib.machinery import SourceFileLoader\n')]
PawarAditi/HackerRank
Python/Basic Data Types/Lists/Solution.py
fcd9d1450ee293372ce5f1d4a3b7284ecf472657
array = [] for _ in range(int(input())): command = input().strip().split(" ") cmd_type = command[0] if (cmd_type == "print"): print(array) elif (cmd_type == "sort"): array.sort() elif (cmd_type == "reverse"): array.reverse() elif (cmd_type == "pop"): array.pop() elif (cmd_type == "remove"): array.remove(int(command[1])) elif (cmd_type == "append"): array.append(int(command[1])) elif (cmd_type == "insert"): array.insert(int(command[1]), int(command[2]))
[]
horeapinca/DBEstClient
dbestclient/ml/density.py
6ccbb24853c31f2a8cc567e03c09ca7aa31e2d26
# Created by Qingzhi Ma at 2019-07-23 # All right reserved # Department of Computer Science # the University of Warwick # [email protected] from sklearn.neighbors import KernelDensity class DBEstDensity: def __init__(self, kernel=None): if kernel is None: self.kernel = 'gaussian' self.kde = None def fit(self, x): self.kde = KernelDensity(kernel=self.kernel).fit(x) return self.kde
[((17, 19, 17, 52), 'sklearn.neighbors.KernelDensity', 'KernelDensity', (), '', False, 'from sklearn.neighbors import KernelDensity\n')]
panchambanerjee/access_spotify
setup.py
d1c50d1553718755d58d034e8d2049f986ef5f84
#!/usr/bin/env python import setuptools from setuptools import setup from os import path # Read the package requirements with open("requirements.txt", "r") as f: requirements = [line.rstrip("\n") for line in f if line != "\n"] # Read the contents of the README file this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup(name='access-spotify', version="1.1", author="pancham_banerjee", author_email="[email protected]", packages=setuptools.find_packages(), scripts=["./bin/access_script.py"], install_requires=requirements, license="MIT", description="A package to get all album and track info for an artist by querying the Spotify API", long_description=long_description, long_description_content_type='text/markdown' )
[((12, 30, 12, 52), 'os.path.dirname', 'path.dirname', ({(12, 43, 12, 51): '__file__'}, {}), '(__file__)', False, 'from os import path\n'), ((13, 10, 13, 48), 'os.path.join', 'path.join', ({(13, 20, 13, 34): 'this_directory', (13, 36, 13, 47): '"""README.md"""'}, {}), "(this_directory, 'README.md')", False, 'from os import path\n'), ((20, 15, 20, 41), 'setuptools.find_packages', 'setuptools.find_packages', ({}, {}), '()', False, 'import setuptools\n')]
hugocpolos/MundiAPI-PYTHON
mundiapi/models/update_plan_request.py
164545cc58bf18c946d5456e9ba4d55a378a339a
# -*- coding: utf-8 -*- """ mundiapi This file was automatically generated by APIMATIC v2.0 ( https://apimatic.io ). """ class UpdatePlanRequest(object): """Implementation of the 'UpdatePlanRequest' model. Request for updating a plan Attributes: name (string): Plan's name description (string): Description installments (list of int): Number os installments statement_descriptor (string): Text that will be shown on the credit card's statement currency (string): Currency interval (string): Interval interval_count (int): Interval count payment_methods (list of string): Payment methods accepted by the plan billing_type (string): Billing type status (string): Plan status shippable (bool): Indicates if the plan is shippable billing_days (list of int): Billing days accepted by the plan metadata (dict<object, string>): Metadata minimum_price (int): Minimum price trial_period_days (int): Number of trial period in days, where the customer will not be charged """ # Create a mapping from Model property names to API property names _names = { "name":'name', "description":'description', "installments":'installments', "statement_descriptor":'statement_descriptor', "currency":'currency', "interval":'interval', "interval_count":'interval_count', "payment_methods":'payment_methods', "billing_type":'billing_type', "status":'status', "shippable":'shippable', "billing_days":'billing_days', "metadata":'metadata', "minimum_price":'minimum_price', "trial_period_days":'trial_period_days' } def __init__(self, name=None, description=None, installments=None, statement_descriptor=None, currency=None, interval=None, interval_count=None, payment_methods=None, billing_type=None, status=None, shippable=None, billing_days=None, metadata=None, minimum_price=None, trial_period_days=None): """Constructor for the UpdatePlanRequest class""" # Initialize members of the class self.name = name self.description = description self.installments = installments self.statement_descriptor = statement_descriptor self.currency = currency self.interval = interval self.interval_count = interval_count self.payment_methods = payment_methods self.billing_type = billing_type self.status = status self.shippable = shippable self.billing_days = billing_days self.metadata = metadata self.minimum_price = minimum_price self.trial_period_days = trial_period_days @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary name = dictionary.get('name') description = dictionary.get('description') installments = dictionary.get('installments') statement_descriptor = dictionary.get('statement_descriptor') currency = dictionary.get('currency') interval = dictionary.get('interval') interval_count = dictionary.get('interval_count') payment_methods = dictionary.get('payment_methods') billing_type = dictionary.get('billing_type') status = dictionary.get('status') shippable = dictionary.get('shippable') billing_days = dictionary.get('billing_days') metadata = dictionary.get('metadata') minimum_price = dictionary.get('minimum_price') trial_period_days = dictionary.get('trial_period_days') # Return an object of this model return cls(name, description, installments, statement_descriptor, currency, interval, interval_count, payment_methods, billing_type, status, shippable, billing_days, metadata, minimum_price, trial_period_days)
[]
bertokhoury/python-hearthstone
hearthstone/hslog/utils.py
635a8a14b85f468c1ab1d0bc9d0bcffaa00fda43
from hearthstone.enums import GameTag, TAG_TYPES def parse_enum(enum, value): if value.isdigit(): value = int(value) elif hasattr(enum, value): value = getattr(enum, value) else: raise Exception("Unhandled %s: %r" % (enum, value)) return value def parse_tag(tag, value): tag = parse_enum(GameTag, tag) if tag in TAG_TYPES: value = parse_enum(TAG_TYPES[tag], value) elif value.isdigit(): value = int(value) else: raise NotImplementedError("Invalid string value %r = %r" % (tag, value)) return tag, value
[]
ernestoarzabala/Curso-Python-Utch
ejemplo_clase_00.py
ed5cd89ed85a1021d78fd17d495b3b3ec0203c77
# Archivo ejemplo 00 de creacion de clases en Python from math import gcd # greatest common denominator = Maximo Comun Divisor (MCD) class Fraccion: """ La clase Fraccion: Una fraccion es un part de enteros: un numerador (num) y un denominador (den !=0 ) cuyo MCD es 1. """ def __init__(self,numerador,denominador): """ Constructor de la clase. Construye una fracción a partir de dos enteros: un numerador y un denominador. ¡El constructor se enloquece si el denominador es cero! Nota mental:Agregar manejo de error para denominador igual a cero. """ numerador = int(numerador) denominador = int(denominador) hcf = gcd(numerador,denominador) self.num, self.den = numerador/hcf, denominador/hcf def __str__(self): """ Generador de strings para representar una fracción. Se necesita si se desea convertir ,o mostrar, una fraccion a string. """ return "%d/%d" % (self.num,self.den) def __mul__(self,otrafraccion): """ Función necesaria para el operador de multiplicación. Multiplica dos fracciones para obtener una fraccion resultante """ return Fraccion(self.num*otrafraccion.num,self.den*otrafraccion.den) def __add__(self,otrafraccion): """Función necesaria para el operador de suma. Suma dos fracciones para obtener una fraccion resultante """ return Fraccion(self.num*otrafraccion.den+self.den*otrafraccion.num,self.den*otrafraccion.den) def a_numero_real(self): """ Función para convertir la fracción a un numero de punto flotante. El equivalente numérico con punto decimal de la fracción. """ return float(self.num)/float(self.den) if __name__ == "__main__": a = Fraccion(5,12) print(a) b = Fraccion(3,5) c = a*b c_real = c.a_numero_real() print("Multiplicar la fraccion {} por la fraccion {} da como resultado la fraccion {} que es equivalente a {}".format(a,b,c,c_real))# Escribe tu código aquí :-) a = Fraccion(1,2) print(a) b = Fraccion(1,4) c = a+b c_real = c.a_numero_real() print("Sumar la fraccion {} con la fraccion {} da como resultado la fraccion {} que es equivalente a {}".format(a,b,c,c_real))# Escribe tu código aquí :-)
[((18, 14, 18, 40), 'math.gcd', 'gcd', ({(18, 18, 18, 27): 'numerador', (18, 28, 18, 39): 'denominador'}, {}), '(numerador, denominador)', False, 'from math import gcd\n')]
odoochain/addons_oca
addons14/base_rest/__init__.py
55d456d798aebe16e49b4a6070765f206a8885ca
from . import models from . import components from . import http
[]
WingCode/live-project
recs/live_project_popularity_recommender.py
977dfbcaade35d8173dbb6ace102fe8998f1cdf4
import os import pandas as pd class LiveProjectPopularityBasedRecs: def __init__(self): self.charts = {} charts_folder = "charts" if os.path.isdir(charts_folder): for file in os.listdir("charts"): name, ext = file.split('.') if ext == "csv" and len(name) > 0: self.charts[name] = pd.read_csv("{}/{}".format(charts_folder, file), index_col=0) else: print("Genre Global and Charts not implemented!") def genre_chart(self, genre): if genre in self.charts: return self.charts[genre] elif "Top" in self.charts: return self.charts["Top"] else: return ""
[((11, 11, 11, 39), 'os.path.isdir', 'os.path.isdir', ({(11, 25, 11, 38): 'charts_folder'}, {}), '(charts_folder)', False, 'import os\n'), ((13, 24, 13, 44), 'os.listdir', 'os.listdir', ({(13, 35, 13, 43): '"""charts"""'}, {}), "('charts')", False, 'import os\n')]
hipnusleo/Laserjet
resource/pypi/cffi-1.9.1/testing/cffi0/snippets/distutils_module/setup.py
f53e0b740f48f2feb0c0bb285ec6728b313b4ccc
from distutils.core import setup import snip_basic_verify setup( py_modules=['snip_basic_verify'], ext_modules=[snip_basic_verify.ffi.verifier.get_extension()])
[((7, 17, 7, 63), 'snip_basic_verify.ffi.verifier.get_extension', 'snip_basic_verify.ffi.verifier.get_extension', ({}, {}), '()', False, 'import snip_basic_verify\n')]
elise-baumgartner/onramp
pce/src/testing/test_pce.py
beb3c807264fcb70d8069ff2e3990b0ce3f59912
#!../env/bin/python """A simple test script for the PCE portion of OnRamp. Usage: ./test_pce.py This script is only intended to be run in a fresh install of the repository. It has side-effects that could corrupt module and user data if run in a production setting. Prior to running this script, ensure that onramp/pce/bin/onramp_pce_install.py has been called and that the server is running. Also Ensure ./test_pce_config.cfg contains the proper settings. """ import nose import sys if __name__ == '__main__': print (__doc__) response = raw_input('(C)ontinue or (A)bort? ') if response != 'C': sys.exit(0) nose.main()
[((23, 4, 23, 15), 'nose.main', 'nose.main', ({}, {}), '()', False, 'import nose\n'), ((21, 8, 21, 19), 'sys.exit', 'sys.exit', ({(21, 17, 21, 18): '(0)'}, {}), '(0)', False, 'import sys\n')]
w-herbst/tobac
tobac/plotting.py
9f3b9812e9a13a26373e42d356f7d571366bb967
import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import logging from .analysis import lifetime_histogram from .analysis import histogram_cellwise,histogram_featurewise import numpy as np def plot_tracks_mask_field_loop(track,field,mask,features,axes=None,name=None,plot_dir='./', figsize=(10./2.54,10./2.54),dpi=300, margin_left=0.05,margin_right=0.05,margin_bottom=0.05,margin_top=0.05, **kwargs): import cartopy.crs as ccrs import os from iris import Constraint os.makedirs(plot_dir,exist_ok=True) time=mask.coord('time') if name is None: name=field.name() for time_i in time.points: datetime_i=time.units.num2date(time_i) constraint_time = Constraint(time=datetime_i) fig1,ax1=plt.subplots(ncols=1, nrows=1,figsize=figsize, subplot_kw={'projection': ccrs.PlateCarree()}) datestring_file=datetime_i.strftime('%Y-%m-%d_%H:%M:%S') field_i=field.extract(constraint_time) mask_i=mask.extract(constraint_time) track_i=track[track['time']==datetime_i] features_i=features[features['time']==datetime_i] ax1=plot_tracks_mask_field(track=track_i,field=field_i,mask=mask_i,features=features_i, axes=ax1,**kwargs) fig1.subplots_adjust(left=margin_left, bottom=margin_bottom, right=1-margin_right, top=1-margin_top) os.makedirs(plot_dir, exist_ok=True) savepath_png=os.path.join(plot_dir,name+'_'+datestring_file+'.png') fig1.savefig(savepath_png,dpi=dpi) logging.debug('Figure plotted to ' + str(savepath_png)) plt.close() def plot_tracks_mask_field(track,field,mask,features,axes=None,axis_extent=None, plot_outline=True, plot_marker=True,marker_track='x',markersize_track=4, plot_number=True, plot_features=False,marker_feature=None,markersize_feature=None, title=None,title_str=None, vmin=None,vmax=None,n_levels=50, cmap='viridis',extend='neither', orientation_colorbar='horizontal',pad_colorbar=0.05, label_colorbar=None,fraction_colorbar=0.046, rasterized=True,linewidth_contour=1 ): import cartopy from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER import iris.plot as iplt from matplotlib.ticker import MaxNLocator import cartopy.feature as cfeature from .utils import mask_features,mask_features_surface from matplotlib import ticker if type(axes) is not cartopy.mpl.geoaxes.GeoAxesSubplot: raise ValueError('axes had to be cartopy.mpl.geoaxes.GeoAxesSubplot') datestr=field.coord('time').units.num2date(field.coord('time').points[0]).strftime('%Y-%m-%d %H:%M:%S') if title is 'datestr': if title_str is None: titlestring=datestr elif type(title_str is str): titlestring=title+ ' ' + datestr axes.set_title(titlestring,horizontalalignment='left',loc='left') gl = axes.gridlines(draw_labels=True) majorLocator = MaxNLocator(nbins=5,steps=[1,2,5,10]) gl.xlocator=majorLocator gl.ylocator=majorLocator gl.xformatter = LONGITUDE_FORMATTER axes.tick_params(axis='both', which='major') gl.yformatter = LATITUDE_FORMATTER gl.xlabels_top = False gl.ylabels_right = False axes.coastlines('10m') # rivers=cfeature.NaturalEarthFeature(category='physical', name='rivers_lake_centerlines',scale='10m',facecolor='none') lakes=cfeature.NaturalEarthFeature(category='physical', name='lakes',scale='10m',facecolor='none') axes.add_feature(lakes, edgecolor='black') axes.set_xlabel('longitude') axes.set_ylabel('latitude') # Plot the background field if np.any(~np.isnan(field.data)): # check if field to plot is not only nan, which causes error: plot_field=iplt.contourf(field,coords=['longitude','latitude'], levels=np.linspace(vmin,vmax,num=n_levels),extend=extend, axes=axes, cmap=cmap,vmin=vmin,vmax=vmax,zorder=1 ) if rasterized: axes.set_rasterization_zorder(1) # create colorbar for background field: cbar=plt.colorbar(plot_field,orientation=orientation_colorbar, pad=pad_colorbar,fraction=fraction_colorbar,ax=axes) if label_colorbar is None: label_colorbar=field.name()+ '('+field.units.symbol +')' if orientation_colorbar is 'horizontal': cbar.ax.set_xlabel(label_colorbar) elif orientation_colorbar is 'vertical': cbar.ax.set_ylabel(label_colorbar) tick_locator = ticker.MaxNLocator(nbins=5) cbar.locator = tick_locator cbar.update_ticks() colors_mask=['darkred','orange','crimson','red','darkorange'] #if marker_feature is not explicitly given, set it to marker_track (will then be overwritten by the coloured markers) if marker_feature is None: maker_feature=marker_track if markersize_feature is None: makersize_feature=markersize_track #Plot the identified features by looping over rows of DataFrame: if plot_features: for i_row,row in features.iterrows(): axes.plot(row['longitude'],row['latitude'], color='grey',marker=maker_feature,markersize=makersize_feature) # restrict features to featues inside axis extent track=track.loc[(track['longitude'] > axis_extent[0]) & (track['longitude'] < axis_extent[1]) & (track['latitude'] > axis_extent[2]) & (track['latitude'] < axis_extent[3])] #Plot tracked features by looping over rows of Dataframe for i_row,row in track.iterrows(): feature=row['feature'] cell=row['cell'] if not np.isnan(cell): color=colors_mask[int(cell%len(colors_mask))] if plot_number: cell_string=' '+str(int(row['cell'])) axes.text(row['longitude'],row['latitude'],cell_string, color=color,fontsize=6, clip_on=True) else: color='grey' if plot_outline: mask_i=None # if mask is 3D, create surface projection, if mask is 2D keep the mask if mask.ndim==2: mask_i=mask_features(mask,feature,masked=False) elif mask.ndim==3: mask_i=mask_features_surface(mask,feature,masked=False,z_coord='model_level_number') else: raise ValueError('mask has shape that cannot be understood') # plot countour lines around the edges of the mask iplt.contour(mask_i,coords=['longitude','latitude'], levels=[0,feature], colors=color,linewidths=linewidth_contour, axes=axes) if plot_marker: axes.plot(row['longitude'],row['latitude'], color=color,marker=marker_track,markersize=markersize_track) axes.set_extent(axis_extent) return axes def animation_mask_field(track,features,field,mask,interval=500,figsize=(10,10),**kwargs): import cartopy.crs as ccrs import matplotlib.pyplot as plt import matplotlib.animation from iris import Constraint fig=plt.figure(figsize=figsize) plt.close() def update(time_in): fig.clf() ax=fig.add_subplot(111,projection=ccrs.PlateCarree()) constraint_time = Constraint(time=time_in) field_i=field.extract(constraint_time) mask_i=mask.extract(constraint_time) track_i=track[track['time']==time_in] features_i=features[features['time']==time_in] #fig1,ax1=plt.subplots(ncols=1, nrows=1,figsize=figsize, subplot_kw={'projection': ccrs.PlateCarree()}) plot_tobac=plot_tracks_mask_field(track_i,field=field_i,mask=mask_i,features=features_i, axes=ax, **kwargs) ax.set_title('{}'.format(time_in)) time=field.coord('time') datetimes=time.units.num2date(time.points) animation = matplotlib.animation.FuncAnimation(fig, update,init_func=None, frames=datetimes,interval=interval, blit=False) return animation def plot_mask_cell_track_follow(cell,track, cog, features, mask_total, field_contour, field_filled, width=10000, name= 'test', plotdir='./', file_format=['png'],figsize=(10/2.54, 10/2.54),dpi=300, **kwargs): '''Make plots for all cells centred around cell and with one background field as filling and one background field as contrours Input: Output: ''' from iris import Constraint from numpy import unique import os track_cell=track[track['cell']==cell] for i_row,row in track_cell.iterrows(): constraint_time = Constraint(time=row['time']) constraint_x = Constraint(projection_x_coordinate = lambda cell: row['projection_x_coordinate']-width < cell < row['projection_x_coordinate']+width) constraint_y = Constraint(projection_y_coordinate = lambda cell: row['projection_y_coordinate']-width < cell < row['projection_y_coordinate']+width) constraint = constraint_time & constraint_x & constraint_y mask_total_i=mask_total.extract(constraint) if field_contour is None: field_contour_i=None else: field_contour_i=field_contour.extract(constraint) if field_filled is None: field_filled_i=None else: field_filled_i=field_filled.extract(constraint) cells=list(unique(mask_total_i.core_data())) if cell not in cells: cells.append(cell) if 0 in cells: cells.remove(0) track_i=track[track['cell'].isin(cells)] track_i=track_i[track_i['time']==row['time']] if cog is None: cog_i=None else: cog_i=cog[cog['cell'].isin(cells)] cog_i=cog_i[cog_i['time']==row['time']] if features is None: features_i=None else: features_i=features[features['time']==row['time']] fig1, ax1 = plt.subplots(ncols=1, nrows=1, figsize=figsize) fig1.subplots_adjust(left=0.2, bottom=0.15, right=0.85, top=0.80) datestring_stamp = row['time'].strftime('%Y-%m-%d %H:%M:%S') celltime_stamp = "%02d:%02d:%02d" % (row['time_cell'].dt.total_seconds() // 3600,(row['time_cell'].dt.total_seconds() % 3600) // 60, row['time_cell'].dt.total_seconds() % 60 ) title=datestring_stamp + ' , ' + celltime_stamp datestring_file = row['time'].strftime('%Y-%m-%d_%H%M%S') ax1=plot_mask_cell_individual_follow(cell_i=cell,track=track_i, cog=cog_i,features=features_i, mask_total=mask_total_i, field_contour=field_contour_i, field_filled=field_filled_i, width=width, axes=ax1,title=title, **kwargs) out_dir = os.path.join(plotdir, name) os.makedirs(out_dir, exist_ok=True) if 'png' in file_format: savepath_png = os.path.join(out_dir, name + '_' + datestring_file + '.png') fig1.savefig(savepath_png, dpi=dpi) logging.debug('field_contour field_filled Mask plot saved to ' + savepath_png) if 'pdf' in file_format: savepath_pdf = os.path.join(out_dir, name + '_' + datestring_file + '.pdf') fig1.savefig(savepath_pdf, dpi=dpi) logging.debug('field_contour field_filled Mask plot saved to ' + savepath_pdf) plt.close() plt.clf() def plot_mask_cell_individual_follow(cell_i,track, cog,features, mask_total, field_contour, field_filled, axes=None,width=10000, label_field_contour=None, cmap_field_contour='Blues',norm_field_contour=None, linewidths_contour=0.8,contour_labels=False, vmin_field_contour=0,vmax_field_contour=50,levels_field_contour=None,nlevels_field_contour=10, label_field_filled=None,cmap_field_filled='summer',norm_field_filled=None, vmin_field_filled=0,vmax_field_filled=100,levels_field_filled=None,nlevels_field_filled=10, title=None ): '''Make individual plot for cell centred around cell and with one background field as filling and one background field as contrours Input: Output: ''' import numpy as np from .utils import mask_cell_surface from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.colors import Normalize divider = make_axes_locatable(axes) x_pos=track[track['cell']==cell_i]['projection_x_coordinate'].item() y_pos=track[track['cell']==cell_i]['projection_y_coordinate'].item() if field_filled is not None: if levels_field_filled is None: levels_field_filled=np.linspace(vmin_field_filled,vmax_field_filled, nlevels_field_filled) plot_field_filled = axes.contourf((field_filled.coord('projection_x_coordinate').points-x_pos)/1000, (field_filled.coord('projection_y_coordinate').points-y_pos)/1000, field_filled.data, cmap=cmap_field_filled,norm=norm_field_filled, levels=levels_field_filled,vmin=vmin_field_filled, vmax=vmax_field_filled) cax_filled = divider.append_axes("right", size="5%", pad=0.1) norm_filled= Normalize(vmin=vmin_field_filled, vmax=vmax_field_filled) sm_filled= plt.cm.ScalarMappable(norm=norm_filled, cmap = plot_field_filled.cmap) sm_filled.set_array([]) cbar_field_filled = plt.colorbar(sm_filled, orientation='vertical',cax=cax_filled) cbar_field_filled.ax.set_ylabel(label_field_filled) cbar_field_filled.set_clim(vmin_field_filled, vmax_field_filled) if field_contour is not None: if levels_field_contour is None: levels_field_contour=np.linspace(vmin_field_contour, vmax_field_contour, nlevels_field_contour) if norm_field_contour: vmin_field_contour=None, vmax_field_contour=None, plot_field_contour = axes.contour((field_contour.coord('projection_x_coordinate').points-x_pos)/1000, (field_contour.coord('projection_y_coordinate').points-y_pos)/1000, field_contour.data, cmap=cmap_field_contour,norm=norm_field_contour, levels=levels_field_contour,vmin=vmin_field_contour, vmax=vmax_field_contour, linewidths=linewidths_contour) if contour_labels: axes.clabel(plot_field_contour, fontsize=10) cax_contour = divider.append_axes("bottom", size="5%", pad=0.1) if norm_field_contour: vmin_field_contour=None vmax_field_contour=None norm_contour=norm_field_contour else: norm_contour= Normalize(vmin=vmin_field_contour, vmax=vmax_field_contour) sm_contour= plt.cm.ScalarMappable(norm=norm_contour, cmap = plot_field_contour.cmap) sm_contour.set_array([]) cbar_field_contour = plt.colorbar(sm_contour, orientation='horizontal',ticks=levels_field_contour,cax=cax_contour) cbar_field_contour.ax.set_xlabel(label_field_contour) cbar_field_contour.set_clim(vmin_field_contour, vmax_field_contour) for i_row, row in track.iterrows(): cell = int(row['cell']) if cell==cell_i: color='darkred' else: color='darkorange' cell_string=' '+str(int(row['cell'])) axes.text((row['projection_x_coordinate']-x_pos)/1000, (row['projection_y_coordinate']-y_pos)/1000, cell_string,color=color,fontsize=6, clip_on=True) # Plot marker for tracked cell centre as a cross axes.plot((row['projection_x_coordinate']-x_pos)/1000, (row['projection_y_coordinate']-y_pos)/1000, 'x', color=color,markersize=4) #Create surface projection of mask for the respective cell and plot it in the right color z_coord = 'model_level_number' if len(mask_total.shape)==3: mask_total_i_surface = mask_cell_surface(mask_total, cell, track, masked=False, z_coord=z_coord) elif len(mask_total.shape)==2: mask_total_i_surface=mask_total axes.contour((mask_total_i_surface.coord('projection_x_coordinate').points-x_pos)/1000, (mask_total_i_surface.coord('projection_y_coordinate').points-y_pos)/1000, mask_total_i_surface.data, levels=[0, cell], colors=color, linestyles=':',linewidth=1) if cog is not None: for i_row, row in cog.iterrows(): cell = row['cell'] if cell==cell_i: color='darkred' else: color='darkorange' # plot marker for centre of gravity as a circle axes.plot((row['x_M']-x_pos)/1000, (row['y_M']-y_pos)/1000, 'o', markeredgecolor=color, markerfacecolor='None',markersize=4) if features is not None: for i_row, row in features.iterrows(): color='purple' axes.plot((row['projection_x_coordinate']-x_pos)/1000, (row['projection_y_coordinate']-y_pos)/1000, '+', color=color,markersize=3) axes.set_xlabel('x (km)') axes.set_ylabel('y (km)') axes.set_xlim([-1*width/1000, width/1000]) axes.set_ylim([-1*width/1000, width/1000]) axes.xaxis.set_label_position('top') axes.xaxis.set_ticks_position('top') axes.set_title(title,pad=35,fontsize=10,horizontalalignment='left',loc='left') return axes def plot_mask_cell_track_static(cell,track, cog, features, mask_total, field_contour, field_filled, width=10000,n_extend=1, name= 'test', plotdir='./', file_format=['png'],figsize=(10/2.54, 10/2.54),dpi=300, **kwargs): '''Make plots for all cells with fixed frame including entire development of the cell and with one background field as filling and one background field as contrours Input: Output: ''' from iris import Constraint from numpy import unique import os track_cell=track[track['cell']==cell] x_min=track_cell['projection_x_coordinate'].min()-width x_max=track_cell['projection_x_coordinate'].max()+width y_min=track_cell['projection_y_coordinate'].min()-width y_max=track_cell['projection_y_coordinate'].max()+width #set up looping over time based on mask's time coordinate to allow for one timestep before and after the track time_coord=mask_total.coord('time') time=time_coord.units.num2date(time_coord.points) i_start=max(0,np.where(time==track_cell['time'].values[0])[0][0]-n_extend) i_end=min(len(time)-1,np.where(time==track_cell['time'].values[-1])[0][0]+n_extend+1) time_cell=time[slice(i_start,i_end)] for time_i in time_cell: # for i_row,row in track_cell.iterrows(): # time_i=row['time'] # constraint_time = Constraint(time=row['time']) constraint_time = Constraint(time=time_i) constraint_x = Constraint(projection_x_coordinate = lambda cell: x_min < cell < x_max) constraint_y = Constraint(projection_y_coordinate = lambda cell: y_min < cell < y_max) constraint = constraint_time & constraint_x & constraint_y mask_total_i=mask_total.extract(constraint) if field_contour is None: field_contour_i=None else: field_contour_i=field_contour.extract(constraint) if field_filled is None: field_filled_i=None else: field_filled_i=field_filled.extract(constraint) track_i=track[track['time']==time_i] cells_mask=list(unique(mask_total_i.core_data())) track_cells=track_i.loc[(track_i['projection_x_coordinate'] > x_min) & (track_i['projection_x_coordinate'] < x_max) & (track_i['projection_y_coordinate'] > y_min) & (track_i['projection_y_coordinate'] < y_max)] cells_track=list(track_cells['cell'].values) cells=list(set( cells_mask + cells_track )) if cell not in cells: cells.append(cell) if 0 in cells: cells.remove(0) track_i=track_i[track_i['cell'].isin(cells)] if cog is None: cog_i=None else: cog_i=cog[cog['cell'].isin(cells)] cog_i=cog_i[cog_i['time']==time_i] if features is None: features_i=None else: features_i=features[features['time']==time_i] fig1, ax1 = plt.subplots(ncols=1, nrows=1, figsize=figsize) fig1.subplots_adjust(left=0.2, bottom=0.15, right=0.80, top=0.85) datestring_stamp = time_i.strftime('%Y-%m-%d %H:%M:%S') if time_i in track_cell['time'].values: time_cell_i=track_cell[track_cell['time'].values==time_i]['time_cell'] celltime_stamp = "%02d:%02d:%02d" % (time_cell_i.dt.total_seconds() // 3600, (time_cell_i.dt.total_seconds() % 3600) // 60, time_cell_i.dt.total_seconds() % 60 ) else: celltime_stamp=' - ' title=datestring_stamp + ' , ' + celltime_stamp datestring_file = time_i.strftime('%Y-%m-%d_%H%M%S') ax1=plot_mask_cell_individual_static(cell_i=cell, track=track_i, cog=cog_i,features=features_i, mask_total=mask_total_i, field_contour=field_contour_i, field_filled=field_filled_i, xlim=[x_min/1000,x_max/1000],ylim=[y_min/1000,y_max/1000], axes=ax1,title=title,**kwargs) out_dir = os.path.join(plotdir, name) os.makedirs(out_dir, exist_ok=True) if 'png' in file_format: savepath_png = os.path.join(out_dir, name + '_' + datestring_file + '.png') fig1.savefig(savepath_png, dpi=dpi) logging.debug('Mask static plot saved to ' + savepath_png) if 'pdf' in file_format: savepath_pdf = os.path.join(out_dir, name + '_' + datestring_file + '.pdf') fig1.savefig(savepath_pdf, dpi=dpi) logging.debug('Mask static plot saved to ' + savepath_pdf) plt.close() plt.clf() def plot_mask_cell_individual_static(cell_i,track, cog, features, mask_total, field_contour, field_filled, axes=None,xlim=None,ylim=None, label_field_contour=None, cmap_field_contour='Blues',norm_field_contour=None, linewidths_contour=0.8,contour_labels=False, vmin_field_contour=0,vmax_field_contour=50,levels_field_contour=None,nlevels_field_contour=10, label_field_filled=None,cmap_field_filled='summer',norm_field_filled=None, vmin_field_filled=0,vmax_field_filled=100,levels_field_filled=None,nlevels_field_filled=10, title=None,feature_number=False ): '''Make plots for cell in fixed frame and with one background field as filling and one background field as contrours Input: Output: ''' import numpy as np from .utils import mask_features,mask_features_surface from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.colors import Normalize divider = make_axes_locatable(axes) if field_filled is not None: if levels_field_filled is None: levels_field_filled=np.linspace(vmin_field_filled,vmax_field_filled, 10) plot_field_filled = axes.contourf(field_filled.coord('projection_x_coordinate').points/1000, field_filled.coord('projection_y_coordinate').points/1000, field_filled.data, levels=levels_field_filled, norm=norm_field_filled, cmap=cmap_field_filled, vmin=vmin_field_filled, vmax=vmax_field_filled) cax_filled = divider.append_axes("right", size="5%", pad=0.1) norm_filled= Normalize(vmin=vmin_field_filled, vmax=vmax_field_filled) sm1= plt.cm.ScalarMappable(norm=norm_filled, cmap = plot_field_filled.cmap) sm1.set_array([]) cbar_field_filled = plt.colorbar(sm1, orientation='vertical',cax=cax_filled) cbar_field_filled.ax.set_ylabel(label_field_filled) cbar_field_filled.set_clim(vmin_field_filled, vmax_field_filled) if field_contour is not None: if levels_field_contour is None: levels_field_contour=np.linspace(vmin_field_contour, vmax_field_contour, 5) plot_field_contour = axes.contour(field_contour.coord('projection_x_coordinate').points/1000, field_contour.coord('projection_y_coordinate').points/1000, field_contour.data, cmap=cmap_field_contour,norm=norm_field_contour, levels=levels_field_contour,vmin=vmin_field_contour, vmax=vmax_field_contour, linewidths=linewidths_contour) if contour_labels: axes.clabel(plot_field_contour, fontsize=10) cax_contour = divider.append_axes("bottom", size="5%", pad=0.1) if norm_field_contour: vmin_field_contour=None vmax_field_contour=None norm_contour=norm_field_contour else: norm_contour= Normalize(vmin=vmin_field_contour, vmax=vmax_field_contour) sm_contour= plt.cm.ScalarMappable(norm=norm_contour, cmap = plot_field_contour.cmap) sm_contour.set_array([]) cbar_field_contour = plt.colorbar(sm_contour, orientation='horizontal',ticks=levels_field_contour,cax=cax_contour) cbar_field_contour.ax.set_xlabel(label_field_contour) cbar_field_contour.set_clim(vmin_field_contour, vmax_field_contour) for i_row, row in track.iterrows(): cell = row['cell'] feature = row['feature'] # logging.debug("cell: "+ str(row['cell'])) # logging.debug("feature: "+ str(row['feature'])) if cell==cell_i: color='darkred' if feature_number: cell_string=' '+str(int(cell))+' ('+str(int(feature))+')' else: cell_string=' '+str(int(cell)) elif np.isnan(cell): color='gray' if feature_number: cell_string=' '+'('+str(int(feature))+')' else: cell_string=' ' else: color='darkorange' if feature_number: cell_string=' '+str(int(cell))+' ('+str(int(feature))+')' else: cell_string=' '+str(int(cell)) axes.text(row['projection_x_coordinate']/1000, row['projection_y_coordinate']/1000, cell_string,color=color,fontsize=6, clip_on=True) # Plot marker for tracked cell centre as a cross axes.plot(row['projection_x_coordinate']/1000, row['projection_y_coordinate']/1000, 'x', color=color,markersize=4) #Create surface projection of mask for the respective cell and plot it in the right color z_coord = 'model_level_number' if len(mask_total.shape)==3: mask_total_i_surface = mask_features_surface(mask_total, feature, masked=False, z_coord=z_coord) elif len(mask_total.shape)==2: mask_total_i_surface=mask_features(mask_total, feature, masked=False, z_coord=z_coord) axes.contour(mask_total_i_surface.coord('projection_x_coordinate').points/1000, mask_total_i_surface.coord('projection_y_coordinate').points/1000, mask_total_i_surface.data, levels=[0, feature], colors=color, linestyles=':',linewidth=1) if cog is not None: for i_row, row in cog.iterrows(): cell = row['cell'] if cell==cell_i: color='darkred' else: color='darkorange' # plot marker for centre of gravity as a circle axes.plot(row['x_M']/1000, row['y_M']/1000, 'o', markeredgecolor=color, markerfacecolor='None',markersize=4) if features is not None: for i_row, row in features.iterrows(): color='purple' axes.plot(row['projection_x_coordinate']/1000, row['projection_y_coordinate']/1000, '+', color=color,markersize=3) axes.set_xlabel('x (km)') axes.set_ylabel('y (km)') axes.set_xlim(xlim) axes.set_ylim(ylim) axes.xaxis.set_label_position('top') axes.xaxis.set_ticks_position('top') axes.set_title(title,pad=35,fontsize=10,horizontalalignment='left',loc='left') return axes def plot_mask_cell_track_2D3Dstatic(cell,track, cog, features, mask_total, field_contour, field_filled, width=10000,n_extend=1, name= 'test', plotdir='./', file_format=['png'],figsize=(10/2.54, 10/2.54),dpi=300, ele=10,azim=30, **kwargs): '''Make plots for all cells with fixed frame including entire development of the cell and with one background field as filling and one background field as contrours Input: Output: ''' from iris import Constraint from numpy import unique import os from mpl_toolkits.mplot3d import Axes3D import matplotlib.gridspec as gridspec track_cell=track[track['cell']==cell] x_min=track_cell['projection_x_coordinate'].min()-width x_max=track_cell['projection_x_coordinate'].max()+width y_min=track_cell['projection_y_coordinate'].min()-width y_max=track_cell['projection_y_coordinate'].max()+width #set up looping over time based on mask's time coordinate to allow for one timestep before and after the track time_coord=mask_total.coord('time') time=time_coord.units.num2date(time_coord.points) i_start=max(0,np.where(time==track_cell['time'].values[0])[0][0]-n_extend) i_end=min(len(time)-1,np.where(time==track_cell['time'].values[-1])[0][0]+n_extend+1) time_cell=time[slice(i_start,i_end)] for time_i in time_cell: # for i_row,row in track_cell.iterrows(): # time_i=row['time'] # constraint_time = Constraint(time=row['time']) constraint_time = Constraint(time=time_i) constraint_x = Constraint(projection_x_coordinate = lambda cell: x_min < cell < x_max) constraint_y = Constraint(projection_y_coordinate = lambda cell: y_min < cell < y_max) constraint = constraint_time & constraint_x & constraint_y mask_total_i=mask_total.extract(constraint) if field_contour is None: field_contour_i=None else: field_contour_i=field_contour.extract(constraint) if field_filled is None: field_filled_i=None else: field_filled_i=field_filled.extract(constraint) track_i=track[track['time']==time_i] cells_mask=list(unique(mask_total_i.core_data())) track_cells=track_i.loc[(track_i['projection_x_coordinate'] > x_min) & (track_i['projection_x_coordinate'] < x_max) & (track_i['projection_y_coordinate'] > y_min) & (track_i['projection_y_coordinate'] < y_max)] cells_track=list(track_cells['cell'].values) cells=list(set( cells_mask + cells_track )) if cell not in cells: cells.append(cell) if 0 in cells: cells.remove(0) track_i=track_i[track_i['cell'].isin(cells)] if cog is None: cog_i=None else: cog_i=cog[cog['cell'].isin(cells)] cog_i=cog_i[cog_i['time']==time_i] if features is None: features_i=None else: features_i=features[features['time']==time_i] fig1=plt.figure(figsize=(20 / 2.54, 10 / 2.54)) fig1.subplots_adjust(left=0.1, bottom=0.15, right=0.9, top=0.9,wspace=0.3, hspace=0.25) # make two subplots for figure: gs1 = gridspec.GridSpec(1, 2,width_ratios=[1,1.2]) fig1.add_subplot(gs1[0]) fig1.add_subplot(gs1[1], projection='3d') ax1 = fig1.get_axes() datestring_stamp = time_i.strftime('%Y-%m-%d %H:%M:%S') if time_i in track_cell['time'].values: time_cell_i=track_cell[track_cell['time'].values==time_i]['time_cell'] celltime_stamp = "%02d:%02d:%02d" % (time_cell_i.dt.total_seconds() // 3600, (time_cell_i.dt.total_seconds() % 3600) // 60, time_cell_i.dt.total_seconds() % 60 ) else: celltime_stamp=' - ' title=datestring_stamp + ' , ' + celltime_stamp datestring_file = time_i.strftime('%Y-%m-%d_%H%M%S') ax1[0]=plot_mask_cell_individual_static(cell_i=cell, track=track_i, cog=cog_i,features=features_i, mask_total=mask_total_i, field_contour=field_contour_i, field_filled=field_filled_i, xlim=[x_min/1000,x_max/1000],ylim=[y_min/1000,y_max/1000], axes=ax1[0],title=title,**kwargs) ax1[1]=plot_mask_cell_individual_3Dstatic(cell_i=cell, track=track_i, cog=cog_i,features=features_i, mask_total=mask_total_i, field_contour=field_contour_i, field_filled=field_filled_i, xlim=[x_min/1000,x_max/1000],ylim=[y_min/1000,y_max/1000], axes=ax1[1],title=title, ele=ele,azim=azim, **kwargs) out_dir = os.path.join(plotdir, name) os.makedirs(out_dir, exist_ok=True) if 'png' in file_format: savepath_png = os.path.join(out_dir, name + '_' + datestring_file + '.png') fig1.savefig(savepath_png, dpi=dpi) logging.debug('Mask static 2d/3D plot saved to ' + savepath_png) if 'pdf' in file_format: savepath_pdf = os.path.join(out_dir, name + '_' + datestring_file + '.pdf') fig1.savefig(savepath_pdf, dpi=dpi) logging.debug('Mask static 2d/3D plot saved to ' + savepath_pdf) plt.close() plt.clf() def plot_mask_cell_track_3Dstatic(cell,track, cog, features, mask_total, field_contour, field_filled, width=10000,n_extend=1, name= 'test', plotdir='./', file_format=['png'],figsize=(10/2.54, 10/2.54),dpi=300, **kwargs): '''Make plots for all cells with fixed frame including entire development of the cell and with one background field as filling and one background field as contrours Input: Output: ''' from iris import Constraint from numpy import unique import os from mpl_toolkits.mplot3d import Axes3D track_cell=track[track['cell']==cell] x_min=track_cell['projection_x_coordinate'].min()-width x_max=track_cell['projection_x_coordinate'].max()+width y_min=track_cell['projection_y_coordinate'].min()-width y_max=track_cell['projection_y_coordinate'].max()+width #set up looping over time based on mask's time coordinate to allow for one timestep before and after the track time_coord=mask_total.coord('time') time=time_coord.units.num2date(time_coord.points) i_start=max(0,np.where(time==track_cell['time'].values[0])[0][0]-n_extend) i_end=min(len(time)-1,np.where(time==track_cell['time'].values[-1])[0][0]+n_extend+1) time_cell=time[slice(i_start,i_end)] for time_i in time_cell: # for i_row,row in track_cell.iterrows(): # time_i=row['time'] # constraint_time = Constraint(time=row['time']) constraint_time = Constraint(time=time_i) constraint_x = Constraint(projection_x_coordinate = lambda cell: x_min < cell < x_max) constraint_y = Constraint(projection_y_coordinate = lambda cell: y_min < cell < y_max) constraint = constraint_time & constraint_x & constraint_y mask_total_i=mask_total.extract(constraint) if field_contour is None: field_contour_i=None else: field_contour_i=field_contour.extract(constraint) if field_filled is None: field_filled_i=None else: field_filled_i=field_filled.extract(constraint) track_i=track[track['time']==time_i] cells_mask=list(unique(mask_total_i.core_data())) track_cells=track_i.loc[(track_i['projection_x_coordinate'] > x_min) & (track_i['projection_x_coordinate'] < x_max) & (track_i['projection_y_coordinate'] > y_min) & (track_i['projection_y_coordinate'] < y_max)] cells_track=list(track_cells['cell'].values) cells=list(set( cells_mask + cells_track )) if cell not in cells: cells.append(cell) if 0 in cells: cells.remove(0) track_i=track_i[track_i['cell'].isin(cells)] if cog is None: cog_i=None else: cog_i=cog[cog['cell'].isin(cells)] cog_i=cog_i[cog_i['time']==time_i] if features is None: features_i=None else: features_i=features[features['time']==time_i] # fig1, ax1 = plt.subplots(ncols=1, nrows=1, figsize=figsize) # fig1.subplots_adjust(left=0.2, bottom=0.15, right=0.80, top=0.85) fig1, ax1 = plt.subplots(ncols=1, nrows=1, figsize=(10/2.54, 10/2.54), subplot_kw={'projection': '3d'}) datestring_stamp = time_i.strftime('%Y-%m-%d %H:%M:%S') if time_i in track_cell['time'].values: time_cell_i=track_cell[track_cell['time'].values==time_i]['time_cell'] celltime_stamp = "%02d:%02d:%02d" % (time_cell_i.dt.total_seconds() // 3600, (time_cell_i.dt.total_seconds() % 3600) // 60, time_cell_i.dt.total_seconds() % 60 ) else: celltime_stamp=' - ' title=datestring_stamp + ' , ' + celltime_stamp datestring_file = time_i.strftime('%Y-%m-%d_%H%M%S') ax1=plot_mask_cell_individual_3Dstatic(cell_i=cell, track=track_i, cog=cog_i,features=features_i, mask_total=mask_total_i, field_contour=field_contour_i, field_filled=field_filled_i, xlim=[x_min/1000,x_max/1000],ylim=[y_min/1000,y_max/1000], axes=ax1,title=title,**kwargs) out_dir = os.path.join(plotdir, name) os.makedirs(out_dir, exist_ok=True) if 'png' in file_format: savepath_png = os.path.join(out_dir, name + '_' + datestring_file + '.png') fig1.savefig(savepath_png, dpi=dpi) logging.debug('Mask static plot saved to ' + savepath_png) if 'pdf' in file_format: savepath_pdf = os.path.join(out_dir, name + '_' + datestring_file + '.pdf') fig1.savefig(savepath_pdf, dpi=dpi) logging.debug('Mask static plot saved to ' + savepath_pdf) plt.close() plt.clf() def plot_mask_cell_individual_3Dstatic(cell_i,track, cog, features, mask_total, field_contour, field_filled, axes=None,xlim=None,ylim=None, label_field_contour=None, cmap_field_contour='Blues',norm_field_contour=None, linewidths_contour=0.8,contour_labels=False, vmin_field_contour=0,vmax_field_contour=50,levels_field_contour=None,nlevels_field_contour=10, label_field_filled=None,cmap_field_filled='summer',norm_field_filled=None, vmin_field_filled=0,vmax_field_filled=100,levels_field_filled=None,nlevels_field_filled=10, title=None,feature_number=False, ele=10.,azim=210. ): '''Make plots for cell in fixed frame and with one background field as filling and one background field as contrours Input: Output: ''' import numpy as np from .utils import mask_features,mask_features_surface # from mpl_toolkits.axes_grid1 import make_axes_locatable # from matplotlib.colors import Normalize from mpl_toolkits.mplot3d import Axes3D axes.view_init(elev=ele, azim=azim) axes.grid(b=False) axes.set_frame_on(False) # make the panes transparent axes.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) axes.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) axes.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0)) # make the grid lines transparent axes.xaxis._axinfo["grid"]['color'] = (1,1,1,0) axes.yaxis._axinfo["grid"]['color'] = (1,1,1,0) axes.zaxis._axinfo["grid"]['color'] = (1,1,1,0) if title is not None: axes.set_title(title,horizontalalignment='left',loc='left') # colors_mask = ['pink','darkred', 'orange', 'darkred', 'red', 'darkorange'] x = mask_total.coord('projection_x_coordinate').points y = mask_total.coord('projection_y_coordinate').points z = mask_total.coord('model_level_number').points # z = mask_total.coord('geopotential_height').points zz, yy, xx = np.meshgrid(z, y, x, indexing='ij') # z_alt = mask_total.coord('geopotential_height').points # divider = make_axes_locatable(axes) # if field_filled is not None: # if levels_field_filled is None: # levels_field_filled=np.linspace(vmin_field_filled,vmax_field_filled, 10) # plot_field_filled = axes.contourf(field_filled.coord('projection_x_coordinate').points/1000, # field_filled.coord('projection_y_coordinate').points/1000, # field_filled.data, # levels=levels_field_filled, norm=norm_field_filled, # cmap=cmap_field_filled, vmin=vmin_field_filled, vmax=vmax_field_filled) # cax_filled = divider.append_axes("right", size="5%", pad=0.1) # norm_filled= Normalize(vmin=vmin_field_filled, vmax=vmax_field_filled) # sm1= plt.cm.ScalarMappable(norm=norm_filled, cmap = plot_field_filled.cmap) # sm1.set_array([]) # cbar_field_filled = plt.colorbar(sm1, orientation='vertical',cax=cax_filled) # cbar_field_filled.ax.set_ylabel(label_field_filled) # cbar_field_filled.set_clim(vmin_field_filled, vmax_field_filled) # if field_contour is not None: # if levels_field_contour is None: # levels_field_contour=np.linspace(vmin_field_contour, vmax_field_contour, 5) # plot_field_contour = axes.contour(field_contour.coord('projection_x_coordinate').points/1000, # field_contour.coord('projection_y_coordinate').points/1000, # field_contour.data, # cmap=cmap_field_contour,norm=norm_field_contour, # levels=levels_field_contour,vmin=vmin_field_contour, vmax=vmax_field_contour, # linewidths=linewidths_contour) # if contour_labels: # axes.clabel(plot_field_contour, fontsize=10) # cax_contour = divider.append_axes("bottom", size="5%", pad=0.1) # if norm_field_contour: # vmin_field_contour=None # vmax_field_contour=None # norm_contour=norm_field_contour # else: # norm_contour= Normalize(vmin=vmin_field_contour, vmax=vmax_field_contour) # # sm_contour= plt.cm.ScalarMappable(norm=norm_contour, cmap = plot_field_contour.cmap) # sm_contour.set_array([]) # # cbar_field_contour = plt.colorbar(sm_contour, orientation='horizontal',ticks=levels_field_contour,cax=cax_contour) # cbar_field_contour.ax.set_xlabel(label_field_contour) # cbar_field_contour.set_clim(vmin_field_contour, vmax_field_contour) # for i_row, row in track.iterrows(): cell = row['cell'] feature = row['feature'] # logging.debug("cell: "+ str(row['cell'])) # logging.debug("feature: "+ str(row['feature'])) if cell==cell_i: color='darkred' if feature_number: cell_string=' '+str(int(cell))+' ('+str(int(feature))+')' else: cell_string=' '+str(int(cell)) elif np.isnan(cell): color='gray' if feature_number: cell_string=' '+'('+str(int(feature))+')' else: cell_string=' ' else: color='darkorange' if feature_number: cell_string=' '+str(int(cell))+' ('+str(int(feature))+')' else: cell_string=' '+str(int(cell)) # axes.text(row['projection_x_coordinate']/1000, # row['projection_y_coordinate']/1000, # 0, # cell_string,color=color,fontsize=6, clip_on=True) # # Plot marker for tracked cell centre as a cross # axes.plot(row['projection_x_coordinate']/1000, # row['projection_y_coordinate']/1000, # 0, # 'x', color=color,markersize=4) #Create surface projection of mask for the respective cell and plot it in the right color # z_coord = 'model_level_number' # if len(mask_total.shape)==3: # mask_total_i_surface = mask_features_surface(mask_total, feature, masked=False, z_coord=z_coord) # elif len(mask_total.shape)==2: # mask_total_i_surface=mask_features(mask_total, feature, masked=False, z_coord=z_coord) # axes.contour(mask_total_i_surface.coord('projection_x_coordinate').points/1000, # mask_total_i_surface.coord('projection_y_coordinate').points/1000, # 0, # mask_total_i_surface.data, # levels=[0, feature], colors=color, linestyles=':',linewidth=1) mask_feature = mask_total.data == feature axes.scatter( # xx[mask_feature]/1000, yy[mask_feature]/1000, zz[mask_feature]/1000, xx[mask_feature]/1000, yy[mask_feature]/1000, zz[mask_feature], c=color, marker=',', s=5,#60000.0 * TWC_i[Mask_particle], alpha=0.3, cmap='inferno', label=cell_string,rasterized=True) axes.set_xlim(xlim) axes.set_ylim(ylim) axes.set_zlim([0, 100]) # axes.set_zlim([0, 20]) # axes.set_zticks([0, 5,10,15, 20]) axes.set_xlabel('x (km)') axes.set_ylabel('y (km)') axes.zaxis.set_rotate_label(False) # disable automatic rotation # axes.set_zlabel('z (km)', rotation=90) axes.set_zlabel('model level', rotation=90) return axes def plot_mask_cell_track_static_timeseries(cell,track, cog, features, mask_total, field_contour, field_filled, track_variable=None,variable=None,variable_ylabel=None,variable_label=[None],variable_legend=False,variable_color=None, width=10000,n_extend=1, name= 'test', plotdir='./', file_format=['png'],figsize=(20/2.54, 10/2.54),dpi=300, **kwargs): '''Make plots for all cells with fixed frame including entire development of the cell and with one background field as filling and one background field as contrours Input: Output: ''' '''Make plots for all cells with fixed frame including entire development of the cell and with one background field as filling and one background field as contrours Input: Output: ''' from iris import Constraint from numpy import unique import os import pandas as pd track_cell=track[track['cell']==cell] x_min=track_cell['projection_x_coordinate'].min()-width x_max=track_cell['projection_x_coordinate'].max()+width y_min=track_cell['projection_y_coordinate'].min()-width y_max=track_cell['projection_y_coordinate'].max()+width time_min=track_cell['time'].min() # time_max=track_cell['time'].max() track_variable_cell=track_variable[track_variable['cell']==cell] track_variable_cell['time_cell']=pd.to_timedelta(track_variable_cell['time_cell']) # track_variable_cell=track_variable_cell[(track_variable_cell['time']>=time_min) & (track_variable_cell['time']<=time_max)] #set up looping over time based on mask's time coordinate to allow for one timestep before and after the track time_coord=mask_total.coord('time') time=time_coord.units.num2date(time_coord.points) i_start=max(0,np.where(time==track_cell['time'].values[0])[0][0]-n_extend) i_end=min(len(time)-1,np.where(time==track_cell['time'].values[-1])[0][0]+n_extend+1) time_cell=time[slice(i_start,i_end)] for time_i in time_cell: constraint_time = Constraint(time=time_i) constraint_x = Constraint(projection_x_coordinate = lambda cell: x_min < cell < x_max) constraint_y = Constraint(projection_y_coordinate = lambda cell: y_min < cell < y_max) constraint = constraint_time & constraint_x & constraint_y mask_total_i=mask_total.extract(constraint) if field_contour is None: field_contour_i=None else: field_contour_i=field_contour.extract(constraint) if field_filled is None: field_filled_i=None else: field_filled_i=field_filled.extract(constraint) track_i=track[track['time']==time_i] cells_mask=list(unique(mask_total_i.core_data())) track_cells=track_i.loc[(track_i['projection_x_coordinate'] > x_min) & (track_i['projection_x_coordinate'] < x_max) & (track_i['projection_y_coordinate'] > y_min) & (track_i['projection_y_coordinate'] < y_max)] cells_track=list(track_cells['cell'].values) cells=list(set( cells_mask + cells_track )) if cell not in cells: cells.append(cell) if 0 in cells: cells.remove(0) track_i=track_i[track_i['cell'].isin(cells)] if cog is None: cog_i=None else: cog_i=cog[cog['cell'].isin(cells)] cog_i=cog_i[cog_i['time']==time_i] if features is None: features_i=None else: features_i=features[features['time']==time_i] fig1, ax1 = plt.subplots(ncols=2, nrows=1, figsize=figsize) fig1.subplots_adjust(left=0.1, bottom=0.15, right=0.90, top=0.85,wspace=0.3) datestring_stamp = time_i.strftime('%Y-%m-%d %H:%M:%S') if time_i in track_cell['time'].values: time_cell_i=track_cell[track_cell['time'].values==time_i]['time_cell'] celltime_stamp = "%02d:%02d:%02d" % (time_cell_i.dt.total_seconds() // 3600, (time_cell_i.dt.total_seconds() % 3600) // 60, time_cell_i.dt.total_seconds() % 60 ) else: celltime_stamp=' - ' title=celltime_stamp + ' , ' + datestring_stamp datestring_file = time_i.strftime('%Y-%m-%d_%H%M%S') # plot evolving timeseries of variable to second axis: ax1[0]=plot_mask_cell_individual_static(cell_i=cell, track=track_i, cog=cog_i,features=features_i, mask_total=mask_total_i, field_contour=field_contour_i, field_filled=field_filled_i, xlim=[x_min/1000,x_max/1000],ylim=[y_min/1000,y_max/1000], axes=ax1[0],title=title,**kwargs) track_variable_past=track_variable_cell[(track_variable_cell['time']>=time_min) & (track_variable_cell['time']<=time_i)] track_variable_current=track_variable_cell[track_variable_cell['time']==time_i] if variable_color is None: variable_color='navy' if type(variable) is str: # logging.debug('variable: '+str(variable)) if type(variable_color) is str: variable_color={variable:variable_color} variable=[variable] for i_variable,variable_i in enumerate(variable): color=variable_color[variable_i] ax1[1].plot(track_variable_past['time_cell'].dt.total_seconds()/ 60.,track_variable_past[variable_i].values,color=color,linestyle='-',label=variable_label[i_variable]) ax1[1].plot(track_variable_current['time_cell'].dt.total_seconds()/ 60.,track_variable_current[variable_i].values,color=color,marker='o',markersize=4,fillstyle='full') ax1[1].yaxis.tick_right() ax1[1].yaxis.set_label_position("right") ax1[1].set_xlim([0,2*60]) ax1[1].set_xticks(np.arange(0,120,15)) ax1[1].set_ylim([0,max(10,1.25*track_variable_cell[variable].max().max())]) ax1[1].set_xlabel('cell lifetime (min)') if variable_ylabel==None: variable_ylabel=variable ax1[1].set_ylabel(variable_ylabel) ax1[1].set_title(title) # insert legend, if flag is True if variable_legend: if (len(variable_label)<5): ncol=1 else: ncol=2 ax1[1].legend(loc='upper right', bbox_to_anchor=(1, 1),ncol=ncol,fontsize=8) out_dir = os.path.join(plotdir, name) os.makedirs(out_dir, exist_ok=True) if 'png' in file_format: savepath_png = os.path.join(out_dir, name + '_' + datestring_file + '.png') fig1.savefig(savepath_png, dpi=dpi) logging.debug('Mask static plot saved to ' + savepath_png) if 'pdf' in file_format: savepath_pdf = os.path.join(out_dir, name + '_' + datestring_file + '.pdf') fig1.savefig(savepath_pdf, dpi=dpi) logging.debug('Mask static plot saved to ' + savepath_pdf) plt.close() plt.clf() def map_tracks(track,axis_extent=None,figsize=(10,10),axes=None): for cell in track['cell'].dropna().unique(): track_i=track[track['cell']==cell] axes.plot(track_i['longitude'],track_i['latitude'],'-') if axis_extent: axes.set_extent(axis_extent) axes=make_map(axes) return axes def make_map(axes): import matplotlib.ticker as mticker import cartopy.crs as ccrs from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER gl = axes.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, linewidth=2, color='gray', alpha=0.5, linestyle='-') axes.coastlines('10m') gl.xlabels_top = False gl.ylabels_right = False gl.xlocator = mticker.MaxNLocator(nbins=5,min_n_ticks=3,steps=None) gl.ylocator = mticker.MaxNLocator(nbins=5,min_n_ticks=3,steps=None) gl.xformatter = LONGITUDE_FORMATTER gl.yformatter = LATITUDE_FORMATTER #gl.xlabel_style = {'size': 15, 'color': 'gray'} #gl.xlabel_style = {'color': 'red', 'weight': 'bold'} return axes def plot_lifetime_histogram(track,axes=None,bin_edges=np.arange(0,200,20),density=False,**kwargs): hist, bin_edges,bin_centers = lifetime_histogram(track,bin_edges=bin_edges,density=density) plot_hist=axes.plot(bin_centers, hist,**kwargs) return plot_hist def plot_lifetime_histogram_bar(track,axes=None,bin_edges=np.arange(0,200,20),density=False,width_bar=1,shift=0.5,**kwargs): hist, bin_edges, bin_centers = lifetime_histogram(track,bin_edges=bin_edges,density=density) plot_hist=axes.bar(bin_centers+shift,hist,width=width_bar,**kwargs) return plot_hist def plot_histogram_cellwise(track,bin_edges,variable,quantity,axes=None,density=False,**kwargs): hist, bin_edges,bin_centers = histogram_cellwise(track,bin_edges=bin_edges,variable=variable,quantity=quantity,density=density) plot_hist=axes.plot(bin_centers, hist,**kwargs) return plot_hist def plot_histogram_featurewise(Track,bin_edges,variable,axes=None,density=False,**kwargs): hist, bin_edges, bin_centers = histogram_featurewise(Track,bin_edges=bin_edges,variable=variable,density=density) plot_hist=axes.plot(bin_centers, hist,**kwargs) return plot_hist
[((2, 0, 2, 14), 'matplotlib.use', 'mpl.use', ({(2, 8, 2, 13): '"""Agg"""'}, {}), "('Agg')", True, 'import matplotlib as mpl\n'), ((17, 4, 17, 39), 'os.makedirs', 'os.makedirs', (), '', False, 'import os\n'), ((73, 19, 73, 56), 'matplotlib.ticker.MaxNLocator', 'MaxNLocator', (), '', False, 'from matplotlib.ticker import MaxNLocator\n'), ((83, 10, 83, 102), 'cartopy.feature.NaturalEarthFeature', 'cfeature.NaturalEarthFeature', (), '', True, 'import cartopy.feature as cfeature\n'), ((175, 8, 175, 35), 'matplotlib.pyplot.figure', 'plt.figure', (), '', True, 'import matplotlib.pyplot as plt\n'), ((176, 4, 176, 15), 'matplotlib.pyplot.close', 'plt.close', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((299, 14, 299, 39), 'mpl_toolkits.axes_grid1.make_axes_locatable', 'make_axes_locatable', ({(299, 34, 299, 38): 'axes'}, {}), '(axes)', False, 'from mpl_toolkits.axes_grid1 import make_axes_locatable\n'), ((542, 14, 542, 39), 'mpl_toolkits.axes_grid1.make_axes_locatable', 'make_axes_locatable', ({(542, 34, 542, 38): 'axes'}, {}), '(axes)', False, 'from mpl_toolkits.axes_grid1 import make_axes_locatable\n'), ((952, 17, 952, 52), 'numpy.meshgrid', 'np.meshgrid', (), '', True, 'import numpy as np\n'), ((1109, 37, 1109, 86), 'pandas.to_timedelta', 'pd.to_timedelta', ({(1109, 53, 1109, 85): "track_variable_cell['time_cell']"}, {}), "(track_variable_cell['time_cell'])", True, 'import pandas as pd\n'), ((1249, 18, 1249, 71), 'matplotlib.ticker.MaxNLocator', 'mticker.MaxNLocator', (), '', True, 'import matplotlib.ticker as mticker\n'), ((1250, 18, 1250, 71), 'matplotlib.ticker.MaxNLocator', 'mticker.MaxNLocator', (), '', True, 'import matplotlib.ticker as mticker\n'), ((1257, 54, 1257, 73), 'numpy.arange', 'np.arange', ({(1257, 64, 1257, 65): '(0)', (1257, 66, 1257, 69): '(200)', (1257, 70, 1257, 72): '(20)'}, {}), '(0, 200, 20)', True, 'import numpy as np\n'), ((1262, 58, 1262, 77), 'numpy.arange', 'np.arange', ({(1262, 68, 1262, 69): '(0)', (1262, 70, 1262, 73): '(200)', (1262, 74, 1262, 76): '(20)'}, {}), '(0, 200, 20)', True, 'import numpy as np\n'), ((23, 26, 23, 53), 'iris.Constraint', 'Constraint', (), '', False, 'from iris import Constraint\n'), ((33, 8, 33, 44), 'os.makedirs', 'os.makedirs', (), '', False, 'import os\n'), ((34, 21, 34, 75), 'os.path.join', 'os.path.join', ({(34, 34, 34, 42): 'plot_dir', (34, 43, 34, 74): "name + '_' + datestring_file + '.png'"}, {}), "(plot_dir, name + '_' + datestring_file + '.png')", False, 'import os\n'), ((38, 8, 38, 19), 'matplotlib.pyplot.close', 'plt.close', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((99, 13, 99, 123), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (), '', True, 'import matplotlib.pyplot as plt\n'), ((106, 23, 106, 50), 'matplotlib.ticker.MaxNLocator', 'ticker.MaxNLocator', (), '', False, 'from matplotlib import ticker\n'), ((181, 26, 181, 50), 'iris.Constraint', 'Constraint', (), '', False, 'from iris import Constraint\n'), ((214, 26, 214, 54), 'iris.Constraint', 'Constraint', (), '', False, 'from iris import Constraint\n'), ((215, 23, 215, 156), 'iris.Constraint', 'Constraint', (), '', False, 'from iris import Constraint\n'), ((216, 23, 216, 156), 'iris.Constraint', 'Constraint', (), '', False, 'from iris import Constraint\n'), ((247, 20, 247, 67), 'matplotlib.pyplot.subplots', 'plt.subplots', (), '', True, 'import matplotlib.pyplot as plt\n'), ((265, 18, 265, 45), 'os.path.join', 'os.path.join', ({(265, 31, 265, 38): 'plotdir', (265, 40, 265, 44): 'name'}, {}), '(plotdir, name)', False, 'import os\n'), ((266, 8, 266, 43), 'os.makedirs', 'os.makedirs', (), '', False, 'import os\n'), ((275, 8, 275, 19), 'matplotlib.pyplot.close', 'plt.close', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((276, 8, 276, 17), 'matplotlib.pyplot.clf', 'plt.clf', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((314, 21, 314, 78), 'matplotlib.colors.Normalize', 'Normalize', (), '', False, 'from matplotlib.colors import Normalize\n'), ((315, 19, 315, 89), 'matplotlib.pyplot.cm.ScalarMappable', 'plt.cm.ScalarMappable', (), '', True, 'import matplotlib.pyplot as plt\n'), ((318, 28, 318, 90), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (), '', True, 'import matplotlib.pyplot as plt\n'), ((347, 20, 347, 92), 'matplotlib.pyplot.cm.ScalarMappable', 'plt.cm.ScalarMappable', (), '', True, 'import matplotlib.pyplot as plt\n'), ((350, 29, 350, 122), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (), '', True, 'import matplotlib.pyplot as plt\n'), ((445, 26, 445, 49), 'iris.Constraint', 'Constraint', (), '', False, 'from iris import Constraint\n'), ((447, 23, 447, 94), 'iris.Constraint', 'Constraint', (), '', False, 'from iris import Constraint\n'), ((448, 23, 448, 94), 'iris.Constraint', 'Constraint', (), '', False, 'from iris import Constraint\n'), ((486, 20, 486, 67), 'matplotlib.pyplot.subplots', 'plt.subplots', (), '', True, 'import matplotlib.pyplot as plt\n'), ((507, 18, 507, 45), 'os.path.join', 'os.path.join', ({(507, 31, 507, 38): 'plotdir', (507, 40, 507, 44): 'name'}, {}), '(plotdir, name)', False, 'import os\n'), ((508, 8, 508, 43), 'os.makedirs', 'os.makedirs', (), '', False, 'import os\n'), ((517, 8, 517, 19), 'matplotlib.pyplot.close', 'plt.close', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((518, 8, 518, 17), 'matplotlib.pyplot.clf', 'plt.clf', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((556, 21, 556, 78), 'matplotlib.colors.Normalize', 'Normalize', (), '', False, 'from matplotlib.colors import Normalize\n'), ((557, 13, 557, 83), 'matplotlib.pyplot.cm.ScalarMappable', 'plt.cm.ScalarMappable', (), '', True, 'import matplotlib.pyplot as plt\n'), ((560, 28, 560, 84), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (), '', True, 'import matplotlib.pyplot as plt\n'), ((586, 20, 586, 92), 'matplotlib.pyplot.cm.ScalarMappable', 'plt.cm.ScalarMappable', (), '', True, 'import matplotlib.pyplot as plt\n'), ((589, 29, 589, 122), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (), '', True, 'import matplotlib.pyplot as plt\n'), ((704, 26, 704, 49), 'iris.Constraint', 'Constraint', (), '', False, 'from iris import Constraint\n'), ((706, 23, 706, 94), 'iris.Constraint', 'Constraint', (), '', False, 'from iris import Constraint\n'), ((707, 23, 707, 94), 'iris.Constraint', 'Constraint', (), '', False, 'from iris import Constraint\n'), ((745, 13, 745, 56), 'matplotlib.pyplot.figure', 'plt.figure', (), '', True, 'import matplotlib.pyplot as plt\n'), ((749, 14, 749, 58), 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', (), '', True, 'import matplotlib.gridspec as gridspec\n'), ((783, 18, 783, 45), 'os.path.join', 'os.path.join', ({(783, 31, 783, 38): 'plotdir', (783, 40, 783, 44): 'name'}, {}), '(plotdir, name)', False, 'import os\n'), ((784, 8, 784, 43), 'os.makedirs', 'os.makedirs', (), '', False, 'import os\n'), ((793, 8, 793, 19), 'matplotlib.pyplot.close', 'plt.close', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((794, 8, 794, 17), 'matplotlib.pyplot.clf', 'plt.clf', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((830, 26, 830, 49), 'iris.Constraint', 'Constraint', (), '', False, 'from iris import Constraint\n'), ((832, 23, 832, 94), 'iris.Constraint', 'Constraint', (), '', False, 'from iris import Constraint\n'), ((833, 23, 833, 94), 'iris.Constraint', 'Constraint', (), '', False, 'from iris import Constraint\n'), ((873, 20, 873, 111), 'matplotlib.pyplot.subplots', 'plt.subplots', (), '', True, 'import matplotlib.pyplot as plt\n'), ((894, 18, 894, 45), 'os.path.join', 'os.path.join', ({(894, 31, 894, 38): 'plotdir', (894, 40, 894, 44): 'name'}, {}), '(plotdir, name)', False, 'import os\n'), ((895, 8, 895, 43), 'os.makedirs', 'os.makedirs', (), '', False, 'import os\n'), ((904, 8, 904, 19), 'matplotlib.pyplot.close', 'plt.close', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((905, 8, 905, 17), 'matplotlib.pyplot.clf', 'plt.clf', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((1120, 26, 1120, 49), 'iris.Constraint', 'Constraint', (), '', False, 'from iris import Constraint\n'), ((1121, 23, 1121, 94), 'iris.Constraint', 'Constraint', (), '', False, 'from iris import Constraint\n'), ((1122, 23, 1122, 94), 'iris.Constraint', 'Constraint', (), '', False, 'from iris import Constraint\n'), ((1159, 20, 1159, 67), 'matplotlib.pyplot.subplots', 'plt.subplots', (), '', True, 'import matplotlib.pyplot as plt\n'), ((1216, 18, 1216, 45), 'os.path.join', 'os.path.join', ({(1216, 31, 1216, 38): 'plotdir', (1216, 40, 1216, 44): 'name'}, {}), '(plotdir, name)', False, 'import os\n'), ((1217, 8, 1217, 43), 'os.makedirs', 'os.makedirs', (), '', False, 'import os\n'), ((1226, 8, 1226, 19), 'matplotlib.pyplot.close', 'plt.close', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((1227, 8, 1227, 17), 'matplotlib.pyplot.clf', 'plt.clf', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((89, 15, 89, 35), 'numpy.isnan', 'np.isnan', ({(89, 24, 89, 34): 'field.data'}, {}), '(field.data)', True, 'import numpy as np\n'), ((136, 15, 136, 29), 'numpy.isnan', 'np.isnan', ({(136, 24, 136, 28): 'cell'}, {}), '(cell)', True, 'import numpy as np\n'), ((157, 12, 160, 35), 'iris.plot.contour', 'iplt.contour', (), '', True, 'import iris.plot as iplt\n'), ((268, 27, 268, 88), 'os.path.join', 'os.path.join', ({(268, 40, 268, 47): 'out_dir', (268, 49, 268, 87): "name + '_' + datestring_file + '.png'"}, {}), "(out_dir, name + '_' + datestring_file + '.png')", False, 'import os\n'), ((270, 12, 270, 90), 'logging.debug', 'logging.debug', ({(270, 26, 270, 89): "('field_contour field_filled Mask plot saved to ' + savepath_png)"}, {}), "('field_contour field_filled Mask plot saved to ' + savepath_png)", False, 'import logging\n'), ((272, 27, 272, 88), 'os.path.join', 'os.path.join', ({(272, 40, 272, 47): 'out_dir', (272, 49, 272, 87): "name + '_' + datestring_file + '.pdf'"}, {}), "(out_dir, name + '_' + datestring_file + '.pdf')", False, 'import os\n'), ((274, 12, 274, 90), 'logging.debug', 'logging.debug', ({(274, 26, 274, 89): "('field_contour field_filled Mask plot saved to ' + savepath_pdf)"}, {}), "('field_contour field_filled Mask plot saved to ' + savepath_pdf)", False, 'import logging\n'), ((305, 32, 305, 102), 'numpy.linspace', 'np.linspace', ({(305, 44, 305, 61): 'vmin_field_filled', (305, 62, 305, 79): 'vmax_field_filled', (305, 81, 305, 101): 'nlevels_field_filled'}, {}), '(vmin_field_filled, vmax_field_filled, nlevels_field_filled)', True, 'import numpy as np\n'), ((324, 33, 324, 107), 'numpy.linspace', 'np.linspace', ({(324, 45, 324, 63): 'vmin_field_contour', (324, 65, 324, 83): 'vmax_field_contour', (324, 85, 324, 106): 'nlevels_field_contour'}, {}), '(vmin_field_contour, vmax_field_contour, nlevels_field_contour)', True, 'import numpy as np\n'), ((345, 26, 345, 85), 'matplotlib.colors.Normalize', 'Normalize', (), '', False, 'from matplotlib.colors import Normalize\n'), ((510, 27, 510, 88), 'os.path.join', 'os.path.join', ({(510, 40, 510, 47): 'out_dir', (510, 49, 510, 87): "name + '_' + datestring_file + '.png'"}, {}), "(out_dir, name + '_' + datestring_file + '.png')", False, 'import os\n'), ((512, 12, 512, 70), 'logging.debug', 'logging.debug', ({(512, 26, 512, 69): "('Mask static plot saved to ' + savepath_png)"}, {}), "('Mask static plot saved to ' + savepath_png)", False, 'import logging\n'), ((514, 27, 514, 88), 'os.path.join', 'os.path.join', ({(514, 40, 514, 47): 'out_dir', (514, 49, 514, 87): "name + '_' + datestring_file + '.pdf'"}, {}), "(out_dir, name + '_' + datestring_file + '.pdf')", False, 'import os\n'), ((516, 12, 516, 70), 'logging.debug', 'logging.debug', ({(516, 26, 516, 69): "('Mask static plot saved to ' + savepath_pdf)"}, {}), "('Mask static plot saved to ' + savepath_pdf)", False, 'import logging\n'), ((546, 32, 546, 84), 'numpy.linspace', 'np.linspace', ({(546, 44, 546, 61): 'vmin_field_filled', (546, 62, 546, 79): 'vmax_field_filled', (546, 81, 546, 83): '10'}, {}), '(vmin_field_filled, vmax_field_filled, 10)', True, 'import numpy as np\n'), ((567, 33, 567, 87), 'numpy.linspace', 'np.linspace', ({(567, 45, 567, 63): 'vmin_field_contour', (567, 65, 567, 83): 'vmax_field_contour', (567, 85, 567, 86): '5'}, {}), '(vmin_field_contour, vmax_field_contour, 5)', True, 'import numpy as np\n'), ((584, 26, 584, 85), 'matplotlib.colors.Normalize', 'Normalize', (), '', False, 'from matplotlib.colors import Normalize\n'), ((605, 13, 605, 27), 'numpy.isnan', 'np.isnan', ({(605, 22, 605, 26): 'cell'}, {}), '(cell)', True, 'import numpy as np\n'), ((786, 27, 786, 88), 'os.path.join', 'os.path.join', ({(786, 40, 786, 47): 'out_dir', (786, 49, 786, 87): "name + '_' + datestring_file + '.png'"}, {}), "(out_dir, name + '_' + datestring_file + '.png')", False, 'import os\n'), ((788, 12, 788, 76), 'logging.debug', 'logging.debug', ({(788, 26, 788, 75): "('Mask static 2d/3D plot saved to ' + savepath_png)"}, {}), "('Mask static 2d/3D plot saved to ' + savepath_png)", False, 'import logging\n'), ((790, 27, 790, 88), 'os.path.join', 'os.path.join', ({(790, 40, 790, 47): 'out_dir', (790, 49, 790, 87): "name + '_' + datestring_file + '.pdf'"}, {}), "(out_dir, name + '_' + datestring_file + '.pdf')", False, 'import os\n'), ((792, 12, 792, 76), 'logging.debug', 'logging.debug', ({(792, 26, 792, 75): "('Mask static 2d/3D plot saved to ' + savepath_pdf)"}, {}), "('Mask static 2d/3D plot saved to ' + savepath_pdf)", False, 'import logging\n'), ((897, 27, 897, 88), 'os.path.join', 'os.path.join', ({(897, 40, 897, 47): 'out_dir', (897, 49, 897, 87): "name + '_' + datestring_file + '.png'"}, {}), "(out_dir, name + '_' + datestring_file + '.png')", False, 'import os\n'), ((899, 12, 899, 70), 'logging.debug', 'logging.debug', ({(899, 26, 899, 69): "('Mask static plot saved to ' + savepath_png)"}, {}), "('Mask static plot saved to ' + savepath_png)", False, 'import logging\n'), ((901, 27, 901, 88), 'os.path.join', 'os.path.join', ({(901, 40, 901, 47): 'out_dir', (901, 49, 901, 87): "name + '_' + datestring_file + '.pdf'"}, {}), "(out_dir, name + '_' + datestring_file + '.pdf')", False, 'import os\n'), ((903, 12, 903, 70), 'logging.debug', 'logging.debug', ({(903, 26, 903, 69): "('Mask static plot saved to ' + savepath_pdf)"}, {}), "('Mask static plot saved to ' + savepath_pdf)", False, 'import logging\n'), ((1019, 13, 1019, 27), 'numpy.isnan', 'np.isnan', ({(1019, 22, 1019, 26): 'cell'}, {}), '(cell)', True, 'import numpy as np\n'), ((1200, 26, 1200, 45), 'numpy.arange', 'np.arange', ({(1200, 36, 1200, 37): '(0)', (1200, 38, 1200, 41): '(120)', (1200, 42, 1200, 44): '(15)'}, {}), '(0, 120, 15)', True, 'import numpy as np\n'), ((1219, 27, 1219, 88), 'os.path.join', 'os.path.join', ({(1219, 40, 1219, 47): 'out_dir', (1219, 49, 1219, 87): "name + '_' + datestring_file + '.png'"}, {}), "(out_dir, name + '_' + datestring_file + '.png')", False, 'import os\n'), ((1221, 12, 1221, 70), 'logging.debug', 'logging.debug', ({(1221, 26, 1221, 69): "('Mask static plot saved to ' + savepath_png)"}, {}), "('Mask static plot saved to ' + savepath_png)", False, 'import logging\n'), ((1223, 27, 1223, 88), 'os.path.join', 'os.path.join', ({(1223, 40, 1223, 47): 'out_dir', (1223, 49, 1223, 87): "name + '_' + datestring_file + '.pdf'"}, {}), "(out_dir, name + '_' + datestring_file + '.pdf')", False, 'import os\n'), ((1225, 12, 1225, 70), 'logging.debug', 'logging.debug', ({(1225, 26, 1225, 69): "('Mask static plot saved to ' + savepath_pdf)"}, {}), "('Mask static plot saved to ' + savepath_pdf)", False, 'import logging\n'), ((1243, 28, 1243, 46), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ({}, {}), '()', True, 'import cartopy.crs as ccrs\n'), ((92, 35, 92, 70), 'numpy.linspace', 'np.linspace', (), '', True, 'import numpy as np\n'), ((180, 42, 180, 60), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ({}, {}), '()', True, 'import cartopy.crs as ccrs\n'), ((24, 90, 24, 108), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ({}, {}), '()', True, 'import cartopy.crs as ccrs\n'), ((437, 18, 437, 62), 'numpy.where', 'np.where', ({(437, 27, 437, 61): "time == track_cell['time'].values[0]"}, {}), "(time == track_cell['time'].values[0])", True, 'import numpy as np\n'), ((696, 18, 696, 62), 'numpy.where', 'np.where', ({(696, 27, 696, 61): "time == track_cell['time'].values[0]"}, {}), "(time == track_cell['time'].values[0])", True, 'import numpy as np\n'), ((822, 18, 822, 62), 'numpy.where', 'np.where', ({(822, 27, 822, 61): "time == track_cell['time'].values[0]"}, {}), "(time == track_cell['time'].values[0])", True, 'import numpy as np\n'), ((1115, 18, 1115, 62), 'numpy.where', 'np.where', ({(1115, 27, 1115, 61): "time == track_cell['time'].values[0]"}, {}), "(time == track_cell['time'].values[0])", True, 'import numpy as np\n'), ((438, 26, 438, 71), 'numpy.where', 'np.where', ({(438, 35, 438, 70): "time == track_cell['time'].values[-1]"}, {}), "(time == track_cell['time'].values[-1])", True, 'import numpy as np\n'), ((697, 26, 697, 71), 'numpy.where', 'np.where', ({(697, 35, 697, 70): "time == track_cell['time'].values[-1]"}, {}), "(time == track_cell['time'].values[-1])", True, 'import numpy as np\n'), ((823, 26, 823, 71), 'numpy.where', 'np.where', ({(823, 35, 823, 70): "time == track_cell['time'].values[-1]"}, {}), "(time == track_cell['time'].values[-1])", True, 'import numpy as np\n'), ((1116, 26, 1116, 71), 'numpy.where', 'np.where', ({(1116, 35, 1116, 70): "time == track_cell['time'].values[-1]"}, {}), "(time == track_cell['time'].values[-1])", True, 'import numpy as np\n')]
nf1s/covid-backend
api/urls.py
5529cccad2b0b596d8a720fd6211035e6376820f
from sanic import Blueprint from sanic_transmute import add_route from .views import ( get_all, get_status_by_country_id, get_status_by_country_name, get_deaths, get_active_cases, get_recovered_cases, get_confirmed_cases, list_countries, ) cases = Blueprint("cases", url_prefix="/cases") add_route(cases, get_all) add_route(cases, get_status_by_country_id) add_route(cases, get_status_by_country_name) add_route(cases, get_deaths) add_route(cases, get_active_cases) add_route(cases, get_recovered_cases) add_route(cases, get_confirmed_cases) add_route(cases, list_countries)
[((14, 8, 14, 47), 'sanic.Blueprint', 'Blueprint', (), '', False, 'from sanic import Blueprint\n'), ((15, 0, 15, 25), 'sanic_transmute.add_route', 'add_route', ({(15, 10, 15, 15): 'cases', (15, 17, 15, 24): 'get_all'}, {}), '(cases, get_all)', False, 'from sanic_transmute import add_route\n'), ((16, 0, 16, 42), 'sanic_transmute.add_route', 'add_route', ({(16, 10, 16, 15): 'cases', (16, 17, 16, 41): 'get_status_by_country_id'}, {}), '(cases, get_status_by_country_id)', False, 'from sanic_transmute import add_route\n'), ((17, 0, 17, 44), 'sanic_transmute.add_route', 'add_route', ({(17, 10, 17, 15): 'cases', (17, 17, 17, 43): 'get_status_by_country_name'}, {}), '(cases, get_status_by_country_name)', False, 'from sanic_transmute import add_route\n'), ((18, 0, 18, 28), 'sanic_transmute.add_route', 'add_route', ({(18, 10, 18, 15): 'cases', (18, 17, 18, 27): 'get_deaths'}, {}), '(cases, get_deaths)', False, 'from sanic_transmute import add_route\n'), ((19, 0, 19, 34), 'sanic_transmute.add_route', 'add_route', ({(19, 10, 19, 15): 'cases', (19, 17, 19, 33): 'get_active_cases'}, {}), '(cases, get_active_cases)', False, 'from sanic_transmute import add_route\n'), ((20, 0, 20, 37), 'sanic_transmute.add_route', 'add_route', ({(20, 10, 20, 15): 'cases', (20, 17, 20, 36): 'get_recovered_cases'}, {}), '(cases, get_recovered_cases)', False, 'from sanic_transmute import add_route\n'), ((21, 0, 21, 37), 'sanic_transmute.add_route', 'add_route', ({(21, 10, 21, 15): 'cases', (21, 17, 21, 36): 'get_confirmed_cases'}, {}), '(cases, get_confirmed_cases)', False, 'from sanic_transmute import add_route\n'), ((22, 0, 22, 32), 'sanic_transmute.add_route', 'add_route', ({(22, 10, 22, 15): 'cases', (22, 17, 22, 31): 'list_countries'}, {}), '(cases, list_countries)', False, 'from sanic_transmute import add_route\n')]
fatshotty/scribd-downloader
scribdl/test/test_download.py
d07e301c0a7781cf0b8cf38846061e043e8b86e9
from ..downloader import Downloader import os import pytest @pytest.fixture def cwd_to_tmpdir(tmpdir): os.chdir(str(tmpdir)) def test_audiobook_download(cwd_to_tmpdir, monkeypatch): audiobook_url = "https://www.scribd.com/audiobook/237606860/100-Ways-to-Motivate-Yourself-Change-Your-Life-Forever" audiobook_downloader = Downloader(audiobook_url) audio = audiobook_downloader.download() assert audio[0] == "100_Ways_to_Motivate_Yourself__Change_Your_Life_Forever_preview.mp3" assert os.path.getsize(audio[0]) == 2127830 def test_text_document_download(cwd_to_tmpdir): text_doc_url = "https://www.scribd.com/document/96882378/Trademark-License-Agreement" text_downloader = Downloader(text_doc_url) md_doc = text_downloader.download(is_image_document=False) assert os.path.getsize(md_doc.input_content) in range(1000, 2000) md_doc.to_pdf() assert os.path.getsize(md_doc.pdf_path) in range(20000, 31000) def test_img_document_download(cwd_to_tmpdir): img_doc_url = "https://www.scribd.com/doc/136711944/Signature-Scanning-and-Verification-in-Finacle" img_downloader = Downloader(img_doc_url) imgs = img_downloader.download(is_image_document=True) assert len(imgs.input_content) == 2 imgs.to_pdf() assert os.path.getsize(imgs.pdf_path) in range(140000, 150000) def test_book_download(cwd_to_tmpdir, monkeypatch): book_url = "https://www.scribd.com/read/262694921/Acting-The-First-Six-Lessons" book_downloader = Downloader(book_url) # We don't want to clutter stdout with book contents if this test fails monkeypatch.setattr("builtins.print", lambda x: None) md_book = book_downloader.download() assert os.path.getsize(md_book.input_content) in range(10000, 20000) md_book.to_pdf() assert os.path.getsize(md_book.pdf_path) in range(200000, 2500000)
[((17, 11, 17, 36), 'os.path.getsize', 'os.path.getsize', ({(17, 27, 17, 35): 'audio[0]'}, {}), '(audio[0])', False, 'import os\n'), ((24, 11, 24, 48), 'os.path.getsize', 'os.path.getsize', ({(24, 27, 24, 47): 'md_doc.input_content'}, {}), '(md_doc.input_content)', False, 'import os\n'), ((26, 11, 26, 43), 'os.path.getsize', 'os.path.getsize', ({(26, 27, 26, 42): 'md_doc.pdf_path'}, {}), '(md_doc.pdf_path)', False, 'import os\n'), ((35, 11, 35, 41), 'os.path.getsize', 'os.path.getsize', ({(35, 27, 35, 40): 'imgs.pdf_path'}, {}), '(imgs.pdf_path)', False, 'import os\n'), ((44, 11, 44, 49), 'os.path.getsize', 'os.path.getsize', ({(44, 27, 44, 48): 'md_book.input_content'}, {}), '(md_book.input_content)', False, 'import os\n'), ((46, 11, 46, 44), 'os.path.getsize', 'os.path.getsize', ({(46, 27, 46, 43): 'md_book.pdf_path'}, {}), '(md_book.pdf_path)', False, 'import os\n')]
hungitptit/boecdjango
app/migrations/0005_auto_20210619_2310.py
a1125bd292b5fd3a0610eda6e592017f8268c96c
# Generated by Django 3.2.4 on 2021-06-19 16:10 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('app', '0004_auto_20210619_1802'), ] operations = [ migrations.AddField( model_name='comment', name='create_at', field=models.DateTimeField(auto_now_add=True, db_column='create_at', default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='comment', name='subject', field=models.CharField(blank=True, max_length=255), ), migrations.AddField( model_name='comment', name='update_at', field=models.DateTimeField(auto_now=True, db_column='update_at'), ), ]
[((17, 18, 17, 115), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import migrations, models\n'), ((23, 18, 23, 62), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import migrations, models\n'), ((28, 18, 28, 76), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import migrations, models\n')]
shonohs/vision-datasets
vision_datasets/common/dataset_registry.py
bdd0ebf5c0c0561486ebb0b96600196b2b89f77c
import copy import json from .dataset_info import DatasetInfoFactory class DatasetRegistry: """ A central registry of all available datasets """ def __init__(self, datasets_json: str): self.datasets = [DatasetInfoFactory.create(d) for d in json.loads(datasets_json)] def get_dataset_info(self, dataset_name, dataset_version=None): datasets = [d for d in self.datasets if d.name == dataset_name and (not dataset_version or d.version == dataset_version)] if not datasets: return None sorted_datasets = sorted(datasets, key=lambda d: d.version) return copy.deepcopy(sorted_datasets[-1]) def list_data_version_and_types(self): return [{'name': d.name, 'version': d.version, 'type': d.type, 'description': d.description} for d in self.datasets] @staticmethod def _get_default_dataset_json(json_file_name): import sys py_version = sys.version_info if py_version.minor >= 7: import importlib.resources as pkg_resources from vision_datasets import resources datasets_json = pkg_resources.read_text(resources, json_file_name) else: import pkgutil resource_package = 'vision_datasets' resource_path = '/'.join(('resources', json_file_name)) datasets_json = pkgutil.get_data(resource_package, resource_path) return datasets_json
[((20, 15, 20, 49), 'copy.deepcopy', 'copy.deepcopy', ({(20, 29, 20, 48): 'sorted_datasets[-1]'}, {}), '(sorted_datasets[-1])', False, 'import copy\n'), ((32, 28, 32, 78), 'importlib.resources.read_text', 'pkg_resources.read_text', ({(32, 52, 32, 61): 'resources', (32, 63, 32, 77): 'json_file_name'}, {}), '(resources, json_file_name)', True, 'import importlib.resources as pkg_resources\n'), ((37, 28, 37, 77), 'pkgutil.get_data', 'pkgutil.get_data', ({(37, 45, 37, 61): 'resource_package', (37, 63, 37, 76): 'resource_path'}, {}), '(resource_package, resource_path)', False, 'import pkgutil\n'), ((12, 63, 12, 88), 'json.loads', 'json.loads', ({(12, 74, 12, 87): 'datasets_json'}, {}), '(datasets_json)', False, 'import json\n')]
Fanduzi/YaSQL
yasql/apps/sqlorders/views.py
bc6366a9b1c1e9ed84fd24ea2b4a21f8f99d0af5
# -*- coding:utf-8 -*- # edit by fuzongfei import base64 import datetime # Create your views here. import json from django.http import Http404, HttpResponse from django.utils import timezone from django_filters.rest_framework import DjangoFilterBackend from rest_framework import filters from rest_framework.exceptions import PermissionDenied from rest_framework.generics import ListAPIView, GenericAPIView, CreateAPIView, UpdateAPIView, DestroyAPIView from rest_framework.views import APIView from rest_framework.viewsets import ViewSet from libs import permissions from libs.Pagination import Pagination from libs.RenderColumns import render_dynamic_columns from libs.response import JsonResponseV1 from sqlorders import models, serializers from sqlorders.filters import SqlOrderListFilter, GetTasksListFilter class GetDBEnvironment(ListAPIView): queryset = models.DbEnvironment.objects.all() serializer_class = serializers.DbEnvironmentSerializer # 获取工单环境 def get(self, request, *args, **kwargs): serializer = self.get_serializer(self.get_queryset(), many=True) return JsonResponseV1(data=serializer.data) class GetDbSchemas(APIView): # 获取指定环境指定用途的schemas列表 def get(self, request): serializer = serializers.DbSchemasSerializer(data=request.query_params) if serializer.is_valid(): return JsonResponseV1(data=serializer.query) return JsonResponseV1(message=serializer.errors, code='0001') class IncepSyntaxCheckView(APIView): def post(self, request, *args, **kwargs): serializer = serializers.IncepSyntaxCheckSerializer(data=request.data) if serializer.is_valid(): s, data = serializer.check() render_columns = [ {'key': 'order_id', 'value': '序号'}, {'key': 'stage', 'value': '阶段'}, {'key': 'stage_status', 'value': '阶段状态'}, {'key': 'error_level', 'value': '错误级别'}, {'key': 'error_message', 'value': '错误信息', 'width': '35%'}, {'key': 'sql', 'value': 'SQL内容', 'width': '25%', 'ellipsis': True}, {'key': 'affected_rows', 'value': '影响/扫描行数'} ] columns = render_dynamic_columns(render_columns) message = '语法检查未发现异常,可以提交' if not s: message = '语法检查发现异常,详情请查看输出,更正后在提交' d = { 'status': 0 if s else 1, 'data': data } data = {'columns': columns, 'data': d} return JsonResponseV1(data=data, message=message) return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class SqlOrdersCommit(GenericAPIView): permission_classes = (permissions.CanCommitOrdersPermission,) serializer_class = serializers.SqlOrdersCommitSerializer def post(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) if serializer.is_valid(): serializer.save() return JsonResponseV1(message="提交成功") return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class SqlOrdersList(ListAPIView): permission_classes = (permissions.CanViewOrdersPermission,) queryset = models.DbOrders.objects.all() serializer_class = serializers.SqlOrdersListSerializer pagination_class = Pagination filter_backends = [DjangoFilterBackend, filters.SearchFilter, filters.OrderingFilter] filter_class = SqlOrderListFilter ordering = ['-created_at'] search_fields = ['title', 'database', 'remark', 'applicant', 'progress', 'contents'] def get(self, request, *args, **kwargs): queryset = self.filter_queryset(self.get_queryset()) page = self.paginate_queryset(queryset) serializer = self.get_serializer(page, many=True) render_columns = [ {'key': 'progress', 'value': '进度', 'width': '8%'}, {'key': 'applicant', 'value': '申请人'}, {'key': 'department', 'value': '部门'}, {'key': 'env_name', 'value': '环境'}, {'key': 'escape_title', 'value': '标题', 'width': '18%', 'ellipsis': True}, {'key': 'sql_type', 'value': '类型'}, {'key': 'remark', 'value': '备注'}, {'key': 'version', 'value': '版本'}, {'key': 'host', 'value': '实例/库'}, {'key': 'auditor', 'value': '审核人'}, {'key': 'reviewer', 'value': '复核人'}, ] columns = render_dynamic_columns(render_columns) data = {'columns': columns, 'data': serializer.data} return self.get_paginated_response(data) class SqlOrdersDetail(ListAPIView): """SQL工单详情""" permission_classes = (permissions.CanViewOrdersPermission,) queryset = models.DbOrders.objects.all() serializer_class = serializers.SqlOrderDetailSerializer lookup_field = 'order_id' def get(self, request, *args, **kwargs): queryset = self.get_object() serializer = self.get_serializer(queryset, context={"request": request}) return JsonResponseV1(data=serializer.data) class OpSqlOrderView(ViewSet): """更新SQL工单状态,如:审核,关闭等""" permission_classes = (permissions.CanViewOrdersPermission,) def get_obj(self, pk): try: obj = models.DbOrders.objects.get(pk=pk) return obj except models.DbOrders.DoesNotExist: raise Http404 def approve(self, request, pk): serializer = serializers.OpSqlOrderSerializer(instance=self.get_obj(pk), data=request.data, context={"request": request, "handler": "_approve"}) if serializer.is_valid(): serializer.save() return JsonResponseV1(data=serializer.data, message="操作成功") return JsonResponseV1(message=serializer.errors, code='0001') def feedback(self, request, pk): serializer = serializers.OpSqlOrderSerializer(instance=self.get_obj(pk), data=request.data, context={"request": request, "handler": "_feedback"}) if serializer.is_valid(): serializer.save() return JsonResponseV1(data=serializer.data, message="操作成功") return JsonResponseV1(message=serializer.errors, code='0001') def close(self, request, pk): serializer = serializers.OpSqlOrderSerializer(instance=self.get_obj(pk), data=request.data, context={"request": request, "handler": "_close"}) if serializer.is_valid(): serializer.save() return JsonResponseV1(data=serializer.data, message="操作成功") return JsonResponseV1(message=serializer.errors, code='0001') def review(self, request, pk): serializer = serializers.OpSqlOrderSerializer(instance=self.get_obj(pk), data=request.data, context={"request": request, "handler": "_review"}) if serializer.is_valid(): serializer.save() return JsonResponseV1(data=serializer.data, message="操作成功") return JsonResponseV1(message=serializer.errors, code='0001') class GenerateTasksView(APIView): permission_classes = (permissions.CanExecuteOrdersPermission,) def post(self, request, *args, **kwargs): serializer = serializers.GenerateSqlOrdersTasksSerializer(data=request.data) if serializer.is_valid(): data = serializer.save(request) return JsonResponseV1(data=data) return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class GetTaskIdView(APIView): def get(self, request, *args, **kwargs): """根据order id返回taskid""" order_id = kwargs.get('order_id') task_id = models.DbOrdersExecuteTasks.objects.filter(order_id=order_id).first().task_id return JsonResponseV1(data=task_id) class GetTasksPreviewView(ListAPIView): permission_classes = (permissions.CanViewOrdersPermission,) queryset = models.DbOrdersExecuteTasks.objects.all() serializer_class = serializers.SqlOrdersTasksListSerializer pagination_class = Pagination filter_backends = [DjangoFilterBackend, filters.SearchFilter, filters.OrderingFilter] filter_class = GetTasksListFilter search_fields = ['sql'] ordering = ['created_time'] def get(self, request, *args, **kwargs): task_id = kwargs.get('task_id') queryset = self.filter_queryset(self.get_queryset().filter(task_id=task_id)) # 数据隐藏按钮打开了 # 仅允许申请人、审核人、复核人和超权用户查看数据 obj = models.DbOrders.objects.get( pk=models.DbOrdersExecuteTasks.objects.filter(task_id=task_id).first().order_id ) if obj.is_hide == 'ON' and not request.user.is_superuser: allowed_view_users = [obj.applicant] allowed_view_users.extend([x['user'] for x in json.loads(obj.auditor)]) allowed_view_users.extend([x['user'] for x in json.loads(obj.reviewer)]) if request.user.username not in allowed_view_users: raise PermissionDenied(detail='您没有权限查看该工单的数据,5s后,自动跳转到工单列表页面') origin_queryset = self.queryset.filter(task_id=task_id) total = origin_queryset.count() progress_0 = origin_queryset.filter(progress=0).count() progress_1 = origin_queryset.filter(progress=1).count() progress_3 = origin_queryset.filter(progress=3).count() page = self.paginate_queryset(queryset) serializer = self.get_serializer(page, context={'request': request}, many=True) render_columns = [ {'key': 'num', 'value': '序号'}, # 自定义num,前台显示序号使用 {'key': 'applicant', 'value': '申请人'}, {'key': 'sql', 'value': 'SQL', 'ellipsis': True, 'width': '50%'}, {'key': 'progress', 'value': '进度'}, {'key': 'result', 'value': '查看结果'}, # 自定义result ] columns = render_dynamic_columns(render_columns) data = {'columns': columns, 'data': {'data': serializer.data, 'total': total, 'progress_0': progress_0, 'progress_1': progress_1, 'progress_3': progress_3}} return self.get_paginated_response(data) class GetTasksListView(ListAPIView): permission_classes = (permissions.CanViewOrdersPermission,) queryset = models.DbOrdersExecuteTasks.objects.all() serializer_class = serializers.SqlOrdersTasksListSerializer pagination_class = Pagination filter_backends = [DjangoFilterBackend, filters.SearchFilter, filters.OrderingFilter] filter_class = GetTasksListFilter search_fields = ['sql'] ordering = ['created_time'] def get(self, request, *args, **kwargs): task_id = kwargs.get('task_id') queryset = self.filter_queryset(self.get_queryset().filter(task_id=task_id)) # 数据隐藏按钮打开了 # 仅允许申请人、审核人、复核人和超权用户查看数据 obj = models.DbOrders.objects.get( pk=models.DbOrdersExecuteTasks.objects.filter(task_id=task_id).first().order_id ) if obj.is_hide == 'ON' and not request.user.is_superuser: allowed_view_users = [obj.applicant] allowed_view_users.extend([x['user'] for x in json.loads(obj.auditor)]) allowed_view_users.extend([x['user'] for x in json.loads(obj.reviewer)]) if request.user.username not in allowed_view_users: raise PermissionDenied(detail='您没有权限查看该工单的数据,5s后,自动跳转到工单列表页面') page = self.paginate_queryset(queryset) serializer = self.get_serializer(page, context={'request': request}, many=True) render_columns = [ {'key': 'num', 'value': '序号'}, # 自定义num,前台显示序号使用 {'key': 'applicant', 'value': '申请人'}, {'key': 'sql', 'value': 'SQL', 'ellipsis': True, 'width': '50%'}, {'key': 'progress', 'value': '进度'}, {'key': 'execute', 'value': '执行'}, # 自定义execute {'key': 'result', 'value': '查看结果'}, # 自定义result ] if queryset.exists(): if queryset.first().sql_type == 'DDL': render_columns.insert(-1, {'key': 'ghost_pause', 'value': '暂停(gh-ost)'}) render_columns.insert(-1, {'key': 'ghost_recovery', 'value': '恢复(gh-ost)'}) columns = render_dynamic_columns(render_columns) data = {'columns': columns, 'data': serializer.data} return self.get_paginated_response(data) class ExecuteSingleTaskView(APIView): permission_classes = (permissions.CanExecuteOrdersPermission,) def post(self, request, *args, **kwargs): serializer = serializers.ExecuteSingleTaskSerializer(data=request.data) if serializer.is_valid(): serializer.execute(request) return JsonResponseV1(message="任务提交成功,请查看输出") return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class ExecuteMultiTasksView(APIView): permission_classes = (permissions.CanExecuteOrdersPermission,) def post(self, request, *args, **kwargs): serializer = serializers.ExecuteMultiTasksSerializer(data=request.data) if serializer.is_valid(): serializer.execute(request) return JsonResponseV1(message="任务提交成功,请查看输出") return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class ThrottleTaskView(APIView): permission_classes = (permissions.CanExecuteOrdersPermission,) def post(self, request, *args, **kwargs): serializer = serializers.ThrottleTaskSerializer(data=request.data) if serializer.is_valid(): message = serializer.execute(request) return JsonResponseV1(message=message) return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class GetTasksResultView(ListAPIView): """SQL工单详情""" permission_classes = (permissions.CanViewOrdersPermission,) queryset = models.DbOrdersExecuteTasks.objects.all() serializer_class = serializers.GetTasksResultSerializer lookup_field = 'id' def get(self, request, *args, **kwargs): queryset = self.get_object() serializer = self.get_serializer(queryset, context={"request": request}) return JsonResponseV1(data=serializer.data) class HookSqlOrdersView(APIView): permission_classes = (permissions.anyof(permissions.CanCommitOrdersPermission, permissions.CanViewOrdersPermission, permissions.CanExecuteOrdersPermission, permissions.CanAuditOrdersPermission), ) def post(self, request, *args, **kwargs): serializer = serializers.HookSqlOrdersSerializer(data=request.data) if serializer.is_valid(): serializer.save() return JsonResponseV1(message="任务提交成功,请查看输出") return JsonResponseV1(message=serializer.errors, code='0001', flat=True) class DownloadExportFilesView(APIView): """下载导出文件""" permission_classes = (permissions.CanViewOrdersPermission,) def get(self, request, base64_filename): file_name = base64.b64decode(base64_filename).decode() if not models.DbExportFiles.objects.filter(file_name=file_name).exists(): raise Http404 obj = models.DbExportFiles.objects.get(file_name=file_name) if not models.DbOrdersExecuteTasks.objects.get(pk=obj.task_id).applicant == request.user.username: raise PermissionDenied(detail='您没有权限') fsock = open(f"media/{obj.files}", 'rb') response = HttpResponse(fsock, content_type="application/zip") response['Content-Disposition'] = f'attachment; filename={file_name}' return response class ReleaseVersionsGet(APIView): """获取上线版本号,提交工单使用""" def get(self, request): before_30_days = (timezone.now() - datetime.timedelta(days=30)) queryset = models.ReleaseVersions.objects.filter( expire_time__gte=before_30_days ).values('id', 'version', 'expire_time').order_by('-created_at') for row in queryset: row['disabled'] = 0 if row['expire_time'] < datetime.datetime.date(timezone.now()): row['disabled'] = 1 return JsonResponseV1(data=queryset) class ReleaseVersionsList(ListAPIView): """获取上线版本号列表,管理上线版本号使用""" permission_classes = (permissions.CanViewVersionPermission,) queryset = models.ReleaseVersions.objects.all() serializer_class = serializers.ReleaseVersionsListSerializer pagination_class = Pagination filter_backends = [filters.SearchFilter, filters.OrderingFilter] search_fields = ['username', 'version', 'expire_time'] ordering = ['-created_at'] def get(self, request, *args, **kwargs): queryset = self.filter_queryset(self.get_queryset()) page = self.paginate_queryset(queryset) serializer = self.get_serializer(page, many=True) render_columns = [ {'key': 'version', 'value': '版本'}, {'key': 'username', 'value': '创建人'}, {'key': 'expire_time', 'value': '截止日期'}, {'key': 'created_at', 'value': '创建时间'}, {'key': 'key', 'value': '操作'}, {'key': 'id', 'value': '详情'}, ] columns = render_dynamic_columns(render_columns) data = {'columns': columns, 'data': serializer.data} return self.get_paginated_response(data) class ReleaseVersionsCreate(CreateAPIView): """创建版本""" permission_classes = (permissions.CanCreateVersionsPermission,) serializer_class = serializers.ReleaseVersionsCreateSerializer def create(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) if serializer.is_valid(): self.perform_create(serializer) return JsonResponseV1(message="创建成功") return JsonResponseV1(code='0001', message=serializer.errors, flat=True) class ReleaseVersionsUpdate(UpdateAPIView): """更新版本号,该类只更新单条记录""" permission_classes = (permissions.CanUpdateVersionsPermission,) def put(self, request, *args, **kwargs): serializer = serializers.ReleaseVersionsSerializer( instance=models.ReleaseVersions.objects.get(pk=kwargs['key']), # 返回单条记录 data=request.data ) if serializer.is_valid(): serializer.save() return JsonResponseV1(message="更新成功") return JsonResponseV1(code='0001', message=serializer.errors, flat=True) class ReleaseVersionsDelete(DestroyAPIView): """删除版本""" permission_classes = (permissions.CanDeleteVersionsPermission,) queryset = models.ReleaseVersions.objects.all() lookup_field = 'id' # 默认为主键,可不写 def destroy(self, request, *args, **kwargs): instance = self.get_object() self.perform_destroy(instance) return JsonResponseV1(message="删除成功") class ReleaseVersionsView(APIView): """获取指定版本内工单在所有环境的进度""" def get(self, request, *args, **kwargs): # 获取版本对应的主键 version = kwargs.get('version') version_id = models.ReleaseVersions.objects.get(version=version).pk # 获取环境,行转为动态列 obj = models.DbEnvironment.objects.values('id', 'name') row2columns = '' for row in obj: row2columns += f"max(if(env_id={row['id']}, progress, -1)) as {row['name']}," # 获取任务下所有工单分别在各个环境中的状态,此处的环境为动态环境 # id没有实际意义 query = f"select " + row2columns + \ f"substring(MD5(RAND()),1,20) as id,title as escape_title,order_id, applicant " \ f"from yasql_dborders where version_id='{version_id}' group by escape_title,order_id,applicant" rawquery = models.DbOrders.objects.raw(query) # 获取环境列名 dynamic_columns = list(rawquery.columns)[:-4] data = [] for row in rawquery: columns = { 'id': row.id, 'escape_title': row.escape_title, 'order_id': row.order_id, 'applicant': row.applicant, } for col in dynamic_columns: columns[col] = getattr(row, col) data.append(columns) render_columns = [ {'key': 'escape_title', 'ellipsis': True, 'value': '标题'}, {'key': 'applicant', 'value': '申请人'}, ] render_columns.extend([{'key': x, 'value': x} for x in dynamic_columns]) columns = render_dynamic_columns(render_columns) data = {'columns': columns, 'data': data} return JsonResponseV1(data=data)
[((26, 15, 26, 49), 'sqlorders.models.DbEnvironment.objects.all', 'models.DbEnvironment.objects.all', ({}, {}), '()', False, 'from sqlorders import models, serializers\n'), ((87, 15, 87, 44), 'sqlorders.models.DbOrders.objects.all', 'models.DbOrders.objects.all', ({}, {}), '()', False, 'from sqlorders import models, serializers\n'), ((120, 15, 120, 44), 'sqlorders.models.DbOrders.objects.all', 'models.DbOrders.objects.all', ({}, {}), '()', False, 'from sqlorders import models, serializers\n'), ((201, 15, 201, 56), 'sqlorders.models.DbOrdersExecuteTasks.objects.all', 'models.DbOrdersExecuteTasks.objects.all', ({}, {}), '()', False, 'from sqlorders import models, serializers\n'), ((252, 15, 252, 56), 'sqlorders.models.DbOrdersExecuteTasks.objects.all', 'models.DbOrdersExecuteTasks.objects.all', ({}, {}), '()', False, 'from sqlorders import models, serializers\n'), ((334, 15, 334, 56), 'sqlorders.models.DbOrdersExecuteTasks.objects.all', 'models.DbOrdersExecuteTasks.objects.all', ({}, {}), '()', False, 'from sqlorders import models, serializers\n'), ((398, 15, 398, 51), 'sqlorders.models.ReleaseVersions.objects.all', 'models.ReleaseVersions.objects.all', ({}, {}), '()', False, 'from sqlorders import models, serializers\n'), ((453, 15, 453, 51), 'sqlorders.models.ReleaseVersions.objects.all', 'models.ReleaseVersions.objects.all', ({}, {}), '()', False, 'from sqlorders import models, serializers\n'), ((32, 15, 32, 51), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((38, 21, 38, 79), 'sqlorders.serializers.DbSchemasSerializer', 'serializers.DbSchemasSerializer', (), '', False, 'from sqlorders import models, serializers\n'), ((41, 15, 41, 69), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((46, 21, 46, 78), 'sqlorders.serializers.IncepSyntaxCheckSerializer', 'serializers.IncepSyntaxCheckSerializer', (), '', False, 'from sqlorders import models, serializers\n'), ((69, 15, 69, 80), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((82, 15, 82, 80), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((112, 18, 112, 56), 'libs.RenderColumns.render_dynamic_columns', 'render_dynamic_columns', ({(112, 41, 112, 55): 'render_columns'}, {}), '(render_columns)', False, 'from libs.RenderColumns import render_dynamic_columns\n'), ((127, 15, 127, 51), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((149, 15, 149, 69), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((158, 15, 158, 69), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((167, 15, 167, 69), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((176, 15, 176, 69), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((183, 21, 183, 84), 'sqlorders.serializers.GenerateSqlOrdersTasksSerializer', 'serializers.GenerateSqlOrdersTasksSerializer', (), '', False, 'from sqlorders import models, serializers\n'), ((188, 15, 188, 80), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((196, 15, 196, 43), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((240, 18, 240, 56), 'libs.RenderColumns.render_dynamic_columns', 'render_dynamic_columns', ({(240, 41, 240, 55): 'render_columns'}, {}), '(render_columns)', False, 'from libs.RenderColumns import render_dynamic_columns\n'), ((290, 18, 290, 56), 'libs.RenderColumns.render_dynamic_columns', 'render_dynamic_columns', ({(290, 41, 290, 55): 'render_columns'}, {}), '(render_columns)', False, 'from libs.RenderColumns import render_dynamic_columns\n'), ((299, 21, 299, 79), 'sqlorders.serializers.ExecuteSingleTaskSerializer', 'serializers.ExecuteSingleTaskSerializer', (), '', False, 'from sqlorders import models, serializers\n'), ((304, 15, 304, 80), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((311, 21, 311, 79), 'sqlorders.serializers.ExecuteMultiTasksSerializer', 'serializers.ExecuteMultiTasksSerializer', (), '', False, 'from sqlorders import models, serializers\n'), ((316, 15, 316, 80), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((323, 21, 323, 74), 'sqlorders.serializers.ThrottleTaskSerializer', 'serializers.ThrottleTaskSerializer', (), '', False, 'from sqlorders import models, serializers\n'), ((328, 15, 328, 80), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((341, 15, 341, 51), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((345, 26, 348, 81), 'libs.permissions.anyof', 'permissions.anyof', ({(345, 44, 345, 81): 'permissions.CanCommitOrdersPermission', (346, 44, 346, 79): 'permissions.CanViewOrdersPermission', (347, 44, 347, 82): 'permissions.CanExecuteOrdersPermission', (348, 44, 348, 80): 'permissions.CanAuditOrdersPermission'}, {}), '(permissions.CanCommitOrdersPermission, permissions.\n CanViewOrdersPermission, permissions.CanExecuteOrdersPermission,\n permissions.CanAuditOrdersPermission)', False, 'from libs import permissions\n'), ((352, 21, 352, 75), 'sqlorders.serializers.HookSqlOrdersSerializer', 'serializers.HookSqlOrdersSerializer', (), '', False, 'from sqlorders import models, serializers\n'), ((357, 15, 357, 80), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((370, 14, 370, 67), 'sqlorders.models.DbExportFiles.objects.get', 'models.DbExportFiles.objects.get', (), '', False, 'from sqlorders import models, serializers\n'), ((375, 19, 375, 70), 'django.http.HttpResponse', 'HttpResponse', (), '', False, 'from django.http import Http404, HttpResponse\n'), ((392, 15, 392, 44), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((417, 18, 417, 56), 'libs.RenderColumns.render_dynamic_columns', 'render_dynamic_columns', ({(417, 41, 417, 55): 'render_columns'}, {}), '(render_columns)', False, 'from libs.RenderColumns import render_dynamic_columns\n'), ((432, 15, 432, 80), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((447, 15, 447, 80), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((459, 15, 459, 53), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((470, 14, 470, 63), 'sqlorders.models.DbEnvironment.objects.values', 'models.DbEnvironment.objects.values', ({(470, 50, 470, 54): '"""id"""', (470, 56, 470, 62): '"""name"""'}, {}), "('id', 'name')", False, 'from sqlorders import models, serializers\n'), ((479, 19, 479, 53), 'sqlorders.models.DbOrders.objects.raw', 'models.DbOrders.objects.raw', ({(479, 47, 479, 52): 'query'}, {}), '(query)', False, 'from sqlorders import models, serializers\n'), ((499, 18, 499, 56), 'libs.RenderColumns.render_dynamic_columns', 'render_dynamic_columns', ({(499, 41, 499, 55): 'render_columns'}, {}), '(render_columns)', False, 'from libs.RenderColumns import render_dynamic_columns\n'), ((501, 15, 501, 40), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((40, 19, 40, 56), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((59, 22, 59, 60), 'libs.RenderColumns.render_dynamic_columns', 'render_dynamic_columns', ({(59, 45, 59, 59): 'render_columns'}, {}), '(render_columns)', False, 'from libs.RenderColumns import render_dynamic_columns\n'), ((68, 19, 68, 61), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((81, 19, 81, 57), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((136, 18, 136, 52), 'sqlorders.models.DbOrders.objects.get', 'models.DbOrders.objects.get', (), '', False, 'from sqlorders import models, serializers\n'), ((148, 19, 148, 79), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((157, 19, 157, 79), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((166, 19, 166, 79), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((175, 19, 175, 79), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((187, 19, 187, 44), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((303, 19, 303, 81), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((315, 19, 315, 81), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((327, 19, 327, 50), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((356, 19, 356, 81), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((372, 18, 372, 60), 'rest_framework.exceptions.PermissionDenied', 'PermissionDenied', (), '', False, 'from rest_framework.exceptions import PermissionDenied\n'), ((384, 26, 384, 40), 'django.utils.timezone.now', 'timezone.now', ({}, {}), '()', False, 'from django.utils import timezone\n'), ((384, 43, 384, 70), 'datetime.timedelta', 'datetime.timedelta', (), '', False, 'import datetime\n'), ((431, 19, 431, 57), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((446, 19, 446, 57), 'libs.response.JsonResponseV1', 'JsonResponseV1', (), '', False, 'from libs.response import JsonResponseV1\n'), ((468, 21, 468, 72), 'sqlorders.models.ReleaseVersions.objects.get', 'models.ReleaseVersions.objects.get', (), '', False, 'from sqlorders import models, serializers\n'), ((223, 22, 223, 132), 'rest_framework.exceptions.PermissionDenied', 'PermissionDenied', (), '', False, 'from rest_framework.exceptions import PermissionDenied\n'), ((274, 22, 274, 132), 'rest_framework.exceptions.PermissionDenied', 'PermissionDenied', (), '', False, 'from rest_framework.exceptions import PermissionDenied\n'), ((365, 20, 365, 53), 'base64.b64decode', 'base64.b64decode', ({(365, 37, 365, 52): 'base64_filename'}, {}), '(base64_filename)', False, 'import base64\n'), ((441, 21, 441, 73), 'sqlorders.models.ReleaseVersions.objects.get', 'models.ReleaseVersions.objects.get', (), '', False, 'from sqlorders import models, serializers\n'), ((195, 18, 195, 79), 'sqlorders.models.DbOrdersExecuteTasks.objects.filter', 'models.DbOrdersExecuteTasks.objects.filter', (), '', False, 'from sqlorders import models, serializers\n'), ((367, 15, 367, 71), 'sqlorders.models.DbExportFiles.objects.filter', 'models.DbExportFiles.objects.filter', (), '', False, 'from sqlorders import models, serializers\n'), ((371, 15, 371, 70), 'sqlorders.models.DbOrdersExecuteTasks.objects.get', 'models.DbOrdersExecuteTasks.objects.get', (), '', False, 'from sqlorders import models, serializers\n'), ((390, 59, 390, 73), 'django.utils.timezone.now', 'timezone.now', ({}, {}), '()', False, 'from django.utils import timezone\n'), ((220, 58, 220, 81), 'json.loads', 'json.loads', ({(220, 69, 220, 80): 'obj.auditor'}, {}), '(obj.auditor)', False, 'import json\n'), ((221, 58, 221, 82), 'json.loads', 'json.loads', ({(221, 69, 221, 81): 'obj.reviewer'}, {}), '(obj.reviewer)', False, 'import json\n'), ((271, 58, 271, 81), 'json.loads', 'json.loads', ({(271, 69, 271, 80): 'obj.auditor'}, {}), '(obj.auditor)', False, 'import json\n'), ((272, 58, 272, 82), 'json.loads', 'json.loads', ({(272, 69, 272, 81): 'obj.reviewer'}, {}), '(obj.reviewer)', False, 'import json\n'), ((385, 19, 387, 9), 'sqlorders.models.ReleaseVersions.objects.filter', 'models.ReleaseVersions.objects.filter', (), '', False, 'from sqlorders import models, serializers\n'), ((216, 15, 216, 74), 'sqlorders.models.DbOrdersExecuteTasks.objects.filter', 'models.DbOrdersExecuteTasks.objects.filter', (), '', False, 'from sqlorders import models, serializers\n'), ((267, 15, 267, 74), 'sqlorders.models.DbOrdersExecuteTasks.objects.filter', 'models.DbOrdersExecuteTasks.objects.filter', (), '', False, 'from sqlorders import models, serializers\n')]
shmakn99/Knowledge-Graph-VG
perp_adj.py
ce2b0d6e16199357f1afc4aa7e58f74aae35e023
import glove_util as gut import numpy as np from sklearn.decomposition import TruncatedSVD import json with open('freq_count_pred.json') as f: freq_count_pred = json.load(f) def get_pc(sentences): svd = TruncatedSVD(n_components=1, n_iter=7, random_state=0) svd.fit(sentences) return svd.components_ def weighted_avg(predicate,a,dim): predicate = predicate.lower().strip().split() if len(predicate) == 1: return gut.glove(predicate[0],dim) else: support = np.zeros(dim) for word in predicate: vector = gut.glove(word,dim) if len(vector) == 0: vector = np.zeros(300) support += (a/(a+freq_count_pred[word]))*vector return support with open('relationships.json') as f: relationships = json.load(f) predicate_embedding = {} sentences = [] i = 0 for image in relationships: i+=1 if i%1000 == 0: print (i) for relation in image['relationships']: w_avg = weighted_avg(relation['predicate'],0.001,300) sentences.append(w_avg) predicate_embedding[relation['relationship_id']] = w_avg pc = get_pc(np.array(sentences))[0] projection_space = np.outer(pc,pc) i = 0 for image in relationships: i+=1 if i%1000 == 0: print (i) for relation in image['relationships']: predicate_embedding[relation['relationship_id']] = predicate_embedding[relation['relationship_id']] - np.matmul(projection_space,predicate_embedding[relation['relationship_id']]) with open('predicate_embedding_300.json','w') as f: json.dump(predicate_embedding,f)
[((52, 19, 52, 34), 'numpy.outer', 'np.outer', ({(52, 28, 52, 30): 'pc', (52, 31, 52, 33): 'pc'}, {}), '(pc, pc)', True, 'import numpy as np\n'), ((7, 19, 7, 31), 'json.load', 'json.load', ({(7, 29, 7, 30): 'f'}, {}), '(f)', False, 'import json\n'), ((10, 7, 10, 61), 'sklearn.decomposition.TruncatedSVD', 'TruncatedSVD', (), '', False, 'from sklearn.decomposition import TruncatedSVD\n'), ((35, 17, 35, 29), 'json.load', 'json.load', ({(35, 27, 35, 28): 'f'}, {}), '(f)', False, 'import json\n'), ((65, 1, 65, 33), 'json.dump', 'json.dump', ({(65, 11, 65, 30): 'predicate_embedding', (65, 31, 65, 32): 'f'}, {}), '(predicate_embedding, f)', False, 'import json\n'), ((20, 9, 20, 36), 'glove_util.glove', 'gut.glove', ({(20, 19, 20, 31): 'predicate[0]', (20, 32, 20, 35): 'dim'}, {}), '(predicate[0], dim)', True, 'import glove_util as gut\n'), ((22, 12, 22, 25), 'numpy.zeros', 'np.zeros', ({(22, 21, 22, 24): 'dim'}, {}), '(dim)', True, 'import numpy as np\n'), ((51, 12, 51, 31), 'numpy.array', 'np.array', ({(51, 21, 51, 30): 'sentences'}, {}), '(sentences)', True, 'import numpy as np\n'), ((24, 12, 24, 31), 'glove_util.glove', 'gut.glove', ({(24, 22, 24, 26): 'word', (24, 27, 24, 30): 'dim'}, {}), '(word, dim)', True, 'import glove_util as gut\n'), ((61, 105, 61, 181), 'numpy.matmul', 'np.matmul', ({(61, 115, 61, 131): 'projection_space', (61, 132, 61, 180): "predicate_embedding[relation['relationship_id']]"}, {}), "(projection_space, predicate_embedding[relation['relationship_id']])", True, 'import numpy as np\n'), ((26, 13, 26, 26), 'numpy.zeros', 'np.zeros', ({(26, 22, 26, 25): '300'}, {}), '(300)', True, 'import numpy as np\n')]
ElyTgy/VaultDB
crypt.py
9eef6f7298d26bd9a18d403971e1c3c6e7a2bf8a
# Importing Fernet class from cryptography.fernet import Fernet # Importing dump and load function from pickle import dump,load # To generate a strong pw def generate_pw(): from random import choice choices = list("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*()_-+=.,/<>?;:\\|[]}{") pw = "" for i in range(25): pw += choice(choices) return pw del pw,choice # To get master pw from the file def get_masterpw(): # Opening the file storing master pw with open("key.key",'rb') as file: # Loading data keys = load(file) # Master pw is converted from bytes to string key = keys[0].decode() del keys # Return keys return key # To get key from the file def get_key(): # Opening the file storing master pw with open("key.key",'rb') as file: # Loading data keys = load(file) # Key is converted from bytes to string key = keys[1].decode() del keys # Return keys return key # To store master pw in the file def add_keys(masterpw,key): # Opening the file to store master pw with open("key.key",'wb') as file: # Making list of value to upload # key is already in bytes # Converting to bytes is not necessary keys = [masterpw.encode(),key] # Dumping the master pw to file dump(keys,file) # Deleting the variable del masterpw,key,keys # Checking if user is running program for first time def is_1st_time(): # Trying to open bytes file # If file is opened means program was executed once or more try: with open("key.key",'rb') as file: pass return False # FileNotFound means its first time # Or either its not in directory of this file or user deleted it :) # except FileNotFoundError: return True # Function to copy pw to clipboard def copy2clip(pw): # Importing copy function from pyperclip import copy # Copying pw to clipboard copy(pw) del pw,copy # Encrypting the text def encrypt(text, key): try: # Defining Fernet(class) using the key fernet = Fernet(key) # Encryption # Text is converted to bytes encrypted_text = fernet.encrypt(text.encode()) del key # Return encrypted text return encrypted_text # Error message if any except Exception as e: print(f"Error occured:{e}\nProcess failed!") # Decrypting the text def decrypt(text, key): try: # Defining Fernet(class) using the key fernet = Fernet(key) # Decryption # Text is converted from bytes to string decrypted_text = fernet.decrypt(text).decode() del key # Return decrypted text return decrypted_text # Error message if any except Exception as e: print(f"Error occured:{e}\nProcess failed!")
[((70, 4, 70, 12), 'pyperclip.copy', 'copy', ({(70, 9, 70, 11): 'pw'}, {}), '(pw)', False, 'from pyperclip import copy\n'), ((12, 14, 12, 29), 'random.choice', 'choice', ({(12, 21, 12, 28): 'choices'}, {}), '(choices)', False, 'from random import choice\n'), ((21, 15, 21, 25), 'pickle.load', 'load', ({(21, 20, 21, 24): 'file'}, {}), '(file)', False, 'from pickle import dump, load\n'), ((33, 15, 33, 25), 'pickle.load', 'load', ({(33, 20, 33, 24): 'file'}, {}), '(file)', False, 'from pickle import dump, load\n'), ((48, 8, 48, 23), 'pickle.dump', 'dump', ({(48, 13, 48, 17): 'keys', (48, 18, 48, 22): 'file'}, {}), '(keys, file)', False, 'from pickle import dump, load\n'), ((77, 17, 77, 28), 'cryptography.fernet.Fernet', 'Fernet', ({(77, 24, 77, 27): 'key'}, {}), '(key)', False, 'from cryptography.fernet import Fernet\n'), ((91, 17, 91, 28), 'cryptography.fernet.Fernet', 'Fernet', ({(91, 24, 91, 27): 'key'}, {}), '(key)', False, 'from cryptography.fernet import Fernet\n')]
openeuler-mirror/oecp
oecp/executor/null.py
967ed6b9e53f2da5f795f49bb5b5fc0423372863
# -*- encoding=utf-8 -*- """ # ********************************************************************************** # Copyright (c) Huawei Technologies Co., Ltd. 2020-2020. All rights reserved. # [oecp] is licensed under the Mulan PSL v1. # You can use this software according to the terms and conditions of the Mulan PSL v1. # You may obtain a copy of Mulan PSL v1 at: # http://license.coscl.org.cn/MulanPSL # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR # PURPOSE. # See the Mulan PSL v1 for more details. # ********************************************************************************** """ from oecp.executor.base import CompareExecutor class NullExecutor(CompareExecutor): def __init__(self, dump_a, dump_b, config=None): super(NullExecutor, self).__init__(dump_a, dump_b, config) if hasattr(dump_a, 'run') and hasattr(dump_b, 'run'): dump_a.run() dump_b.run() def run(self): return []
[]
Biswa5812/CaramelIT-Django-Backend
courses/models.py
1f896cb75295d17345a862b99837f0bdf60868b4
from django.db import models from django.utils import timezone # Course Category class Course_category(models.Model): category_id = models.AutoField(primary_key=True) category_name = models.CharField(max_length=100) date_of_creation = models.DateTimeField(default=timezone.now) # Course Subcategory class Course_subcategory(models.Model): subcategory_id = models.AutoField(primary_key=True) category = models.ForeignKey(Course_category, on_delete=models.CASCADE) subcategory_name = models.CharField(max_length=100) date_of_creation = models.DateTimeField(default=timezone.now) # Course class Course(models.Model): course_id = models.AutoField(primary_key=True) subcategory = models.ForeignKey(Course_subcategory, on_delete=models.CASCADE) subcategory_name = models.CharField(max_length=100) category_name = models.CharField(max_length=100) course_name = models.CharField(max_length=100) date_of_creation = models.DateTimeField(default=timezone.now) course_description = models.TextField(default="") course_difficulty = models.CharField(max_length=30) # Course resources class Course_resource(models.Model): course = models.ForeignKey(Course, on_delete=models.CASCADE) resourse_content = models.TextField(default="NIL") resourse_name = models.CharField(max_length=100) resourse_link = models.CharField(max_length=200) resourse_length = models.CharField(max_length=10) date_of_creation = models.DateTimeField(default=timezone.now)
[((6, 18, 6, 52), 'django.db.models.AutoField', 'models.AutoField', (), '', False, 'from django.db import models\n'), ((7, 20, 7, 52), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((8, 23, 8, 65), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import models\n'), ((12, 21, 12, 55), 'django.db.models.AutoField', 'models.AutoField', (), '', False, 'from django.db import models\n'), ((13, 15, 13, 75), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import models\n'), ((14, 23, 14, 55), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((15, 23, 15, 65), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import models\n'), ((19, 16, 19, 50), 'django.db.models.AutoField', 'models.AutoField', (), '', False, 'from django.db import models\n'), ((20, 18, 20, 81), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import models\n'), ((21, 23, 21, 55), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((22, 20, 22, 52), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((23, 18, 23, 50), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((24, 23, 24, 65), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import models\n'), ((25, 25, 25, 53), 'django.db.models.TextField', 'models.TextField', (), '', False, 'from django.db import models\n'), ((26, 24, 26, 55), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((30, 13, 30, 64), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import models\n'), ((31, 23, 31, 54), 'django.db.models.TextField', 'models.TextField', (), '', False, 'from django.db import models\n'), ((32, 20, 32, 52), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((33, 20, 33, 52), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((34, 22, 34, 53), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((35, 23, 35, 65), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import models\n')]
thenetcircle/dino
dino/validation/events/message/limit_msg_length.py
1047c3458e91a1b4189e9f48f1393b3a68a935b3
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import traceback from yapsy.IPlugin import IPlugin from activitystreams.models.activity import Activity from dino import utils from dino.config import ErrorCodes from dino.config import ConfigKeys from dino.environ import GNEnvironment logger = logging.getLogger(__name__) __author__ = 'Oscar Eriksson <[email protected]>' class OnMessageCheckContentLength(IPlugin): def __init__(self): super(OnMessageCheckContentLength, self).__init__() self.env = None self.enabled = False self.max_length = 1000 def setup(self, env: GNEnvironment): self.env = env validation_config = self.env.config.get(ConfigKeys.VALIDATION) if 'on_message' not in validation_config or 'limit_msg_length' not in validation_config.get('on_message'): logger.info('no config enabled for plugin not_full, ignoring plugin') return on_create_config = validation_config.get('on_message').get('limit_msg_length') self.enabled = True self.max_length = on_create_config.get(ConfigKeys.MAX_MSG_LENGTH, 1000) def _process(self, data: dict, activity: Activity): message = activity.object.content if message is None or len(message.strip()) == 0: return True, None, None if not utils.is_base64(message): return False, ErrorCodes.NOT_BASE64, \ 'invalid message content, not base64 encoded' message = utils.b64d(message) if len(message) > self.max_length: return False, ErrorCodes.MSG_TOO_LONG, \ 'message content needs to be shorter than %s characters' % self.max_length return True, None, None def __call__(self, *args, **kwargs) -> (bool, str): if not self.enabled: return data, activity = args[0], args[1] try: return self._process(data, activity) except Exception as e: logger.error('could not execute plugin not_full: %s' % str(e)) logger.exception(traceback.format_exc()) return False, ErrorCodes.VALIDATION_ERROR, 'could not execute validation plugin not_full'
[((23, 9, 23, 36), 'logging.getLogger', 'logging.getLogger', ({(23, 27, 23, 35): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((56, 18, 56, 37), 'dino.utils.b64d', 'utils.b64d', ({(56, 29, 56, 36): 'message'}, {}), '(message)', False, 'from dino import utils\n'), ((52, 15, 52, 39), 'dino.utils.is_base64', 'utils.is_base64', ({(52, 31, 52, 38): 'message'}, {}), '(message)', False, 'from dino import utils\n'), ((72, 29, 72, 51), 'traceback.format_exc', 'traceback.format_exc', ({}, {}), '()', False, 'import traceback\n')]
tldr-devops/telegraf-monitoring-agent-setup
zabbix/prom2zabbix.py
1f0b0f658acf9e685c121ffaee658bbe3fbad022
#!/usr/bin/env python # Script for parsing prometheus metrics format and send it into zabbix server # MIT License # https://github.com/Friz-zy/telegraf-monitoring-agent-setup import re import os import sys import time import json import socket import optparse try: from urllib.request import urlopen except: from urllib import urlopen METRICS = { 'default': { 'sort_labels': ['name', 'id', 'host', 'path', 'device', 'source', 'cpu'], }, 'docker_container_': { 'sort_labels': ['host', 'source', 'device', 'cpu'], }, } def parse(source='http://127.0.0.1:9273/metrics'): # https://prometheus.io/docs/practices/naming/ # https://prometheus.io/docs/concepts/data_model/#metric-names-and-labels regex = re.compile(r'^(?P<metric>[a-zA-Z_:][a-zA-Z0-9_:]*)(?P<labels>{.*})?\s+(?P<value>.+)(\s+(?P<timestamp>\w+))?$') help_line = '' type_line = '' metrics = [] text = urlopen(source).read() for line in text.splitlines(): line = line.decode("utf-8") if line[0:6] == '# HELP': help_line = line continue elif line[0:6] == '# TYPE': type_line = line continue elif line[0] == '#': continue metric = regex.match(line).groupdict() metric['line_raw'] = line metric['help'] = help_line metric['type'] = type_line metric['source'] = source metrics.append(metric) return metrics def main(): parser = optparse.OptionParser() source = 'http://127.0.0.1:9273/metrics' destination = '/tmp/prom2zabbix' parser.set_defaults(source=source, destination=destination, hostname='') parser.add_option("-s", "--source", dest="source", help="Prometheus source, default is " + source) parser.add_option("-d", "--destination", dest="destination", help="Output .keys and .metrics files pattern, default is " + destination) (options, args) = parser.parse_args() seconds = int(time.time()) metrics = parse(options.source) data = {"data": []} keys = {} # fill and prepare metric for metric in metrics: if not metric['timestamp']: metric['timestamp'] = seconds if not metric['labels']: metric['labels'] = '{}' else: # limit lenght of metric because of zabbix limit # for graph name even 132 char is too long if len(metric['metric']) + len(metric['labels']) > 200: metric['original_labels'] = metric['labels'].replace(',', ';') short_labels = [] for label in metric['labels'].lstrip('{').rstrip('}').split(','): for key in METRICS.keys(): if key in metric['metric'] and key != 'default': for l in METRICS[key]['sort_labels']: if l in label: short_labels.append(label) break metric['labels'] = '{' + ';'.join(short_labels) + '}' else: metric['labels'] = metric['labels'].replace(',', ';') # hacks if metric['metric'] == 'procstat_created_at': metric['value'] = metric['value'].replace('e+18', 'e+09') m = {} for k, v in metric.items(): m["{#%s}" % k.upper()] = v data["data"].append(m) # addition for metric labels macro if metric['metric'] not in keys: keys[metric['metric']] = {"data": []} keys[metric['metric']]["data"].append({ "{#LABELS}": metric['labels']}) # write metrics with open(options.destination + '.metrics', 'w') as f: for metric in metrics: # https://www.zabbix.com/documentation/3.0/manpages/zabbix_sender escaped_labels = metric['labels'].replace('\\', '\\\\').replace('"', '\\"') f.write('- "telegraf[%s,%s]" %s %s\n' % ( metric['metric'], escaped_labels, metric['timestamp'], metric['value'])) # write keys with open(options.destination + '.keys', 'w') as f: for metric in keys: f.write('- "telegraf[keys, %s]" %s "%s"\n' % ( metric, seconds, json.dumps(keys[metric] ).replace('\\', '\\\\').replace('"', '\\"'))) data = json.dumps(data) escaped_data = data.replace('\\', '\\\\').replace('"', '\\"') f.write('- "telegraf[keys]" %s "%s"\n' % ( seconds, escaped_data)) # print(data) if __name__ == "__main__": main()
[((31, 12, 31, 122), 're.compile', 're.compile', ({(31, 23, 31, 121): '"""^(?P<metric>[a-zA-Z_:][a-zA-Z0-9_:]*)(?P<labels>{.*})?\\\\s+(?P<value>.+)(\\\\s+(?P<timestamp>\\\\w+))?$"""'}, {}), "(\n '^(?P<metric>[a-zA-Z_:][a-zA-Z0-9_:]*)(?P<labels>{.*})?\\\\s+(?P<value>.+)(\\\\s+(?P<timestamp>\\\\w+))?$'\n )", False, 'import re\n'), ((60, 13, 60, 36), 'optparse.OptionParser', 'optparse.OptionParser', ({}, {}), '()', False, 'import optparse\n'), ((72, 18, 72, 29), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((135, 15, 135, 31), 'json.dumps', 'json.dumps', ({(135, 26, 135, 30): 'data'}, {}), '(data)', False, 'import json\n'), ((36, 11, 36, 26), 'urllib.urlopen', 'urlopen', ({(36, 19, 36, 25): 'source'}, {}), '(source)', False, 'from urllib import urlopen\n'), ((133, 12, 134, 24), 'json.dumps', 'json.dumps', ({(133, 23, 133, 35): 'keys[metric]'}, {}), '(keys[metric])', False, 'import json\n')]
gatech-sysml/CompOFA
NAS/run_NAS.py
baf561f14a561547ff51933e45f90ddf00cbb3cf
# CompOFA – Compound Once-For-All Networks for Faster Multi-Platform Deployment # Under blind review at ICLR 2021: https://openreview.net/forum?id=IgIk8RRT-Z # # Implementation based on: # Once for All: Train One Network and Specialize it for Efficient Deployment # Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han # International Conference on Learning Representations (ICLR), 2020. import os import sys import torch import time import math import copy import random import argparse import torch.nn as nn import numpy as np import pandas as pd from torchvision import transforms, datasets from matplotlib import pyplot as plt sys.path.append("..") from ofa.model_zoo import ofa_net from ofa.utils import download_url from accuracy_predictor import AccuracyPredictor from flops_table import FLOPsTable from latency_table import LatencyTable from evolution_finder import EvolutionFinder from imagenet_eval_helper import evaluate_ofa_subnet, evaluate_ofa_specialized parser = argparse.ArgumentParser() parser.add_argument( '-n', '--net', metavar='OFANET', help='OFA network', required=True) parser.add_argument( '-t', '--target-hardware', metavar='TARGET_HARDWARE', help='Target Hardware', required=True) parser.add_argument( '--imagenet-path', metavar='IMAGENET_PATH', help='The path of ImageNet', type=str, required=True) args = parser.parse_args() arch = {'compofa' : ('compofa', 'model_best_compofa_simple.pth.tar'), 'compofa-elastic' : ('compofa-elastic', 'model_best_compofa_simple_elastic.pth.tar'), 'ofa_mbv3_d234_e346_k357_w1.0' : ('ofa', 'ofa_mbv3_d234_e346_k357_w1.0'), } hardware_latency = {'note10' : [15, 20, 25, 30], 'gpu' : [15, 25, 35, 45], 'cpu' : [12, 15, 18, 21]} MODEL_DIR = '../ofa/checkpoints/%s' % (arch[args.net][1]) imagenet_data_path = args.imagenet_path # imagenet_data_path = '/srv/data/datasets/ImageNet/' # set random seed random_seed = 3 random.seed(random_seed) np.random.seed(random_seed) torch.manual_seed(random_seed) print('Successfully imported all packages and configured random seed to %d!'%random_seed) os.environ['CUDA_VISIBLE_DEVICES'] = '0' cuda_available = torch.cuda.is_available() if cuda_available: torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True torch.cuda.manual_seed(random_seed) print('Using GPU.') else: print('Using CPU.') # Initialize the OFA Network ofa_network = ofa_net(args.net, model_dir=MODEL_DIR, pretrained=True) if args.target_hardware == 'cpu': ofa_network = ofa_network.cpu() else: ofa_network = ofa_network.cuda() print('The OFA Network is ready.') # Carry out data transforms if cuda_available: def build_val_transform(size): return transforms.Compose([ transforms.Resize(int(math.ceil(size / 0.875))), transforms.CenterCrop(size), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ]) data_loader = torch.utils.data.DataLoader( datasets.ImageFolder( root=os.path.join(imagenet_data_path, 'val'), transform=build_val_transform(224) ), batch_size=250, # test batch size shuffle=True, num_workers=16, # number of workers for the data loader pin_memory=True, drop_last=False, ) print('The ImageNet dataloader is ready.') else: data_loader = None print('Since GPU is not found in the environment, we skip all scripts related to ImageNet evaluation.') # set up the accuracy predictor accuracy_predictor = AccuracyPredictor( pretrained=True, device='cuda:0' if cuda_available else 'cpu' ) print('The accuracy predictor is ready!') print(accuracy_predictor.model) # set up the latency table target_hardware = args.target_hardware use_latency_table = True if target_hardware == 'note10' else False latency_table = LatencyTable(device=target_hardware, use_latency_table=use_latency_table, network=args.net) """ Hyper-parameters for the evolutionary search process You can modify these hyper-parameters to see how they influence the final ImageNet accuracy of the search sub-net. """ latency_constraint = hardware_latency[args.target_hardware][0] # ms P = 100 # The size of population in each generation N = 500 # How many generations of population to be searched r = 0.25 # The ratio of networks that are used as parents for next generation params = { 'constraint_type': target_hardware, # Let's do FLOPs-constrained search 'efficiency_constraint': latency_constraint, 'mutate_prob': 0.1, # The probability of mutation in evolutionary search 'mutation_ratio': 0.5, # The ratio of networks that are generated through mutation in generation n >= 2. 'efficiency_predictor': latency_table, # To use a predefined efficiency predictor. 'accuracy_predictor': accuracy_predictor, # To use a predefined accuracy_predictor predictor. 'population_size': P, 'max_time_budget': N, 'parent_ratio': r, 'arch' : arch[args.net][0], } # initialize the evolution finder and run NAS finder = EvolutionFinder(**params) result_lis = [] for latency in hardware_latency[args.target_hardware]: finder.set_efficiency_constraint(latency) best_valids, best_info = finder.run_evolution_search() result_lis.append(best_info) print("NAS Completed!") # evaluate the searched model on ImageNet models = [] if cuda_available: for result in result_lis: _, net_config, latency = result print('Evaluating the sub-network with latency = %.1f ms on %s' % (latency, target_hardware)) top1 = evaluate_ofa_subnet( ofa_network, imagenet_data_path, net_config, data_loader, batch_size=250, device='cuda:0' if cuda_available else 'cpu') models.append([net_config, top1, latency]) df = pd.DataFrame(models, columns=['Model', 'Accuracy', 'Latency']) df.to_csv('NAS_results.csv') print('NAS results saved to NAS_results.csv')
[((24, 0, 24, 21), 'sys.path.append', 'sys.path.append', ({(24, 16, 24, 20): '""".."""'}, {}), "('..')", False, 'import sys\n'), ((33, 9, 33, 34), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ({}, {}), '()', False, 'import argparse\n'), ((67, 0, 67, 24), 'random.seed', 'random.seed', ({(67, 12, 67, 23): 'random_seed'}, {}), '(random_seed)', False, 'import random\n'), ((68, 0, 68, 27), 'numpy.random.seed', 'np.random.seed', ({(68, 15, 68, 26): 'random_seed'}, {}), '(random_seed)', True, 'import numpy as np\n'), ((69, 0, 69, 30), 'torch.manual_seed', 'torch.manual_seed', ({(69, 18, 69, 29): 'random_seed'}, {}), '(random_seed)', False, 'import torch\n'), ((73, 17, 73, 42), 'torch.cuda.is_available', 'torch.cuda.is_available', ({}, {}), '()', False, 'import torch\n'), ((83, 14, 83, 69), 'ofa.model_zoo.ofa_net', 'ofa_net', (), '', False, 'from ofa.model_zoo import ofa_net\n'), ((121, 21, 124, 1), 'accuracy_predictor.AccuracyPredictor', 'AccuracyPredictor', (), '', False, 'from accuracy_predictor import AccuracyPredictor\n'), ((131, 16, 133, 46), 'latency_table.LatencyTable', 'LatencyTable', (), '', False, 'from latency_table import LatencyTable\n'), ((156, 9, 156, 34), 'evolution_finder.EvolutionFinder', 'EvolutionFinder', ({}, {}), '(**params)', False, 'from evolution_finder import EvolutionFinder\n'), ((179, 5, 179, 67), 'pandas.DataFrame', 'pd.DataFrame', (), '', True, 'import pandas as pd\n'), ((77, 4, 77, 39), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', ({(77, 27, 77, 38): 'random_seed'}, {}), '(random_seed)', False, 'import torch\n'), ((170, 15, 176, 57), 'imagenet_eval_helper.evaluate_ofa_subnet', 'evaluate_ofa_subnet', (), '', False, 'from imagenet_eval_helper import evaluate_ofa_subnet, evaluate_ofa_specialized\n'), ((95, 12, 95, 39), 'torchvision.transforms.CenterCrop', 'transforms.CenterCrop', ({(95, 34, 95, 38): 'size'}, {}), '(size)', False, 'from torchvision import transforms, datasets\n'), ((96, 12, 96, 33), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ({}, {}), '()', False, 'from torchvision import transforms, datasets\n'), ((97, 12, 100, 13), 'torchvision.transforms.Normalize', 'transforms.Normalize', (), '', False, 'from torchvision import transforms, datasets\n'), ((105, 17, 105, 56), 'os.path.join', 'os.path.join', ({(105, 30, 105, 48): 'imagenet_data_path', (105, 50, 105, 55): '"""val"""'}, {}), "(imagenet_data_path, 'val')", False, 'import os\n'), ((94, 34, 94, 57), 'math.ceil', 'math.ceil', ({(94, 44, 94, 56): '(size / 0.875)'}, {}), '(size / 0.875)', False, 'import math\n')]
ace-gabriel/chrome-extension
application/model/radar_score_20180117/score_calculate.py
be0b7d7278f56f8218be7f734b3fb1e05a4f3eb9
# coding: utf-8 import pickle # import json # import types path = 'application/model/radar_score_20180117/' def f(x, x_range, score): bottom = 20 y = [] for i in x: if i < x_range[0]: pos = 0 else: for j in range(len(x_range)): if j == len(x_range) - 1 or \ i >= x_range[j] and i < x_range[j + 1]: pos = j break s = sum(score[:pos]) + score[pos] * (i - x_range[pos]) y.append(s + bottom) return y def process_score(house): # with open('radar.json', 'r') as fj: # house = json.load(fj) # print radar # print house score = { 'score_appreciation': 60, 'score_cost': 60, 'score_rental': 60, 'score_airbnb': 60, 'score_anti_risk': 60 } with open(path+'scoremodel.pkl', 'rb') as fp: # pickle.dump([radar, factor, x_range, score], fopen) N = 4 a = pickle.load(fp) if 'increase_ratio' in house and house['increase_ratio'] != None: # 房屋增值 x = house['increase_ratio'] * a[1] score['score_appreciation'] = f([x], a[2], a[3])[0] # print x, score['score_appreciation'] a = pickle.load(fp) if 'house_price_dollar' in house and house['house_price_dollar'] != None: # 持有成本 x = a[1] / house['house_price_dollar'] # print 'house_price_dollar', house['house_price_dollar'] score['score_cost'] = f([x], a[2], a[3])[0] # print score['score_cost'] if 'airbnb_rent' in house and house['airbnb_rent'] != None: # 短租收益 a = pickle.load(fp) x = house['airbnb_rent'] * 12.0 / house['house_price_dollar'] * a[1] score['score_airbnb'] = f([x], a[2], a[3])[0] # print score['score_airbnb'] a = pickle.load(fp) if 'rental_income_ratio' in house and house['rental_income_ratio'] != None: # 长租收益 x = house['rental_income_ratio'] * a[1] score['score_rental'] = f([x], a[2], a[3])[0] # print score['score_rental'] if 'neighborhood' in house and 'id' in house['neighborhood'] and house['neighborhood']['id'] != None: with open(path+'region_anti_drop.pkl', 'r') as fp: # 抗跌能力 region = pickle.load(fp) score_anti = pickle.load(fp) if house['neighborhood']['id'] in region: # print house['neighborhood']['id'] i = region.index(house['neighborhood']['id']) score['score_anti_risk'] = score_anti[i] # for i in score: # print '%20s %2.3f ' % (i, score[i]) # check: make sure score in range(20, 100) for i in score: if score[i] < 20: score[i] = 20 if score[i] > 100: score[i] = 100 return score if __name__ == '__main__': # README print "This is a program calculating house's 5 scores:" \ "Anti Drop Score," \ "House Appreciation," \ "Possess Cost," \ "Long-term Income" \ "Short-term Income"
[]
xi6th/Python_Algorithm
Dominant_cell.py
05852b6fe133df2d83ae464b779b0818b173919d
#!/bin/python3 import math import os import random import re import sys from typing import Counter # # Complete the 'numCells' function below. # # The function is expected to return an INTEGER. # The function accepts 2D_INTEGER_ARRAY grid as parameter. # def numCells(grid): # Write your code here n = [] m = [] for neigbours in grid: individual = max(neigbours) n.append(individual) m = len(n) return(m) # for individuals in neigbours: # print(individuals) grid = [[1, 2, 7], [4, 5, 6], [8, 8, 9]] print(numCells(grid)) # if __name__ == '__main__': # fptr = open(os.environ['OUTPUT_PATH'], 'w') # grid_rows = int(input().strip()) # grid_columns = int(input().strip()) # grid = [] # for _ in range(grid_rows): # grid.append(list(map(int, input().rstrip().split()))) # result = numCells(grid) # fptr.write(str(result) + '\n') # fptr.close()
[]
Sult/evetool
evetool/urls.py
155db9f3b0ecc273fe3c75daf8f9c6f37cb3e47f
from django.conf import settings from django.conf.urls import include, url from django.conf.urls.static import static urlpatterns = [ # Examples: # url(r'^$', 'evetool.views.home', name='home'), url(r'^', include('users.urls')), url(r'^', include('apis.urls')), ] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
[((10, 4, 10, 67), 'django.conf.urls.static.static', 'static', (), '', False, 'from django.conf.urls.static import static\n'), ((8, 14, 8, 35), 'django.conf.urls.include', 'include', ({(8, 22, 8, 34): '"""users.urls"""'}, {}), "('users.urls')", False, 'from django.conf.urls import include, url\n'), ((9, 14, 9, 34), 'django.conf.urls.include', 'include', ({(9, 22, 9, 33): '"""apis.urls"""'}, {}), "('apis.urls')", False, 'from django.conf.urls import include, url\n')]
lastone9182/console-keep
actvenv.py
250b49653be9d370a1bb0f1c39c5f853c2eaa47e
import os # virtualenv SCRIPTDIR = os.path.realpath(os.path.dirname(__file__)) venv_name = '_ck' osdir = 'Scripts' if os.name is 'nt' else 'bin' venv = os.path.join(venv_name, osdir, 'activate_this.py') activate_this = (os.path.join(SCRIPTDIR, venv)) # Python 3: exec(open(...).read()), Python 2: execfile(...) exec(open(activate_this).read(), dict(__file__=activate_this))
[((8, 7, 8, 57), 'os.path.join', 'os.path.join', ({(8, 20, 8, 29): 'venv_name', (8, 31, 8, 36): 'osdir', (8, 38, 8, 56): '"""activate_this.py"""'}, {}), "(venv_name, osdir, 'activate_this.py')", False, 'import os\n'), ((9, 17, 9, 46), 'os.path.join', 'os.path.join', ({(9, 30, 9, 39): 'SCRIPTDIR', (9, 41, 9, 45): 'venv'}, {}), '(SCRIPTDIR, venv)', False, 'import os\n'), ((4, 29, 4, 54), 'os.path.dirname', 'os.path.dirname', ({(4, 45, 4, 53): '__file__'}, {}), '(__file__)', False, 'import os\n')]
zealoussnow/chromium
testing/scripts/checklicenses.py
fd8a8914ca0183f0add65ae55f04e287543c7d4a
#!/usr/bin/env python # Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import json import os import sys import common def main_run(args): with common.temporary_file() as tempfile_path: rc = common.run_command([ os.path.join(common.SRC_DIR, 'tools', 'checklicenses', 'checklicenses.py'), '--json', tempfile_path ]) with open(tempfile_path) as f: checklicenses_results = json.load(f) result_set = set() for result in checklicenses_results: result_set.add((result['filename'], result['license'])) json.dump({ 'valid': True, 'failures': ['%s: %s' % (r[0], r[1]) for r in result_set], }, args.output) return rc def main_compile_targets(args): json.dump([], args.output) if __name__ == '__main__': funcs = { 'run': main_run, 'compile_targets': main_compile_targets, } sys.exit(common.run_script(sys.argv[1:], funcs))
[((29, 2, 32, 17), 'json.dump', 'json.dump', ({(29, 12, 32, 3): "{'valid': True, 'failures': [('%s: %s' % (r[0], r[1])) for r in result_set]}", (32, 5, 32, 16): 'args.output'}, {}), "({'valid': True, 'failures': [('%s: %s' % (r[0], r[1])) for r in\n result_set]}, args.output)", False, 'import json\n'), ((38, 2, 38, 28), 'json.dump', 'json.dump', ({(38, 12, 38, 14): '[]', (38, 16, 38, 27): 'args.output'}, {}), '([], args.output)', False, 'import json\n'), ((15, 7, 15, 30), 'common.temporary_file', 'common.temporary_file', ({}, {}), '()', False, 'import common\n'), ((46, 11, 46, 49), 'common.run_script', 'common.run_script', ({(46, 29, 46, 41): 'sys.argv[1:]', (46, 43, 46, 48): 'funcs'}, {}), '(sys.argv[1:], funcs)', False, 'import common\n'), ((23, 30, 23, 42), 'json.load', 'json.load', ({(23, 40, 23, 41): 'f'}, {}), '(f)', False, 'import json\n'), ((17, 8, 18, 40), 'os.path.join', 'os.path.join', ({(17, 21, 17, 35): 'common.SRC_DIR', (17, 37, 17, 44): '"""tools"""', (17, 46, 17, 61): '"""checklicenses"""', (18, 21, 18, 39): '"""checklicenses.py"""'}, {}), "(common.SRC_DIR, 'tools', 'checklicenses', 'checklicenses.py')", False, 'import os\n')]
gaohuan2015/Auto-PyTorch
autoPyTorch/utils/benchmarking/benchmark_pipeline/for_autonet_config.py
3c6bf7e051b32284d2655cc484aee1a8c982c04e
from autoPyTorch.utils.config.config_option import ConfigOption from autoPyTorch.pipeline.base.sub_pipeline_node import SubPipelineNode import traceback class ForAutoNetConfig(SubPipelineNode): def fit(self, pipeline_config, autonet, instance, data_manager, run_id, task_id): for config_file in self.get_config_files(pipeline_config): try: self.sub_pipeline.fit_pipeline(pipeline_config=pipeline_config, autonet=autonet, instance=instance, data_manager=data_manager, autonet_config_file=config_file, run_id=run_id, task_id=task_id) except Exception as e: print(e) traceback.print_exc() return dict() def get_pipeline_config_options(self): options = [ ConfigOption("autonet_configs", default=None, type='directory', list=True, required=True), ConfigOption("autonet_config_slice", default=None, type=str) ] return options @staticmethod def get_config_files(pipeline_config, parse_slice=True): config_files = pipeline_config['autonet_configs'] autonet_config_slice = ForAutoNetConfig.parse_slice(pipeline_config['autonet_config_slice']) if autonet_config_slice is not None and parse_slice: return config_files[autonet_config_slice] return config_files @staticmethod def parse_slice(splice_string): if (splice_string is None): return None split = splice_string.split(":") if len(split) == 1: start = int(split[0]) if split[0] != "" else 0 stop = (int(split[0]) + 1) if split[0] != "" else None step = 1 elif len(split) == 2: start = int(split[0]) if split[0] != "" else 0 stop = int(split[1]) if split[1] != "" else None step = 1 elif len(split) == 3: start = int(split[0]) if split[0] != "" else 0 stop = int(split[1]) if split[1] != "" else None step = int(split[2]) if split[2] != "" else 1 return slice(start, stop, step)
[((20, 12, 20, 101), 'autoPyTorch.utils.config.config_option.ConfigOption', 'ConfigOption', (), '', False, 'from autoPyTorch.utils.config.config_option import ConfigOption\n'), ((21, 12, 21, 72), 'autoPyTorch.utils.config.config_option.ConfigOption', 'ConfigOption', (), '', False, 'from autoPyTorch.utils.config.config_option import ConfigOption\n'), ((15, 16, 15, 37), 'traceback.print_exc', 'traceback.print_exc', ({}, {}), '()', False, 'import traceback\n')]
RobustPerception/python_examples
csv/query_csv.py
c79e8f4745fe255fc327e31e96a2065dedca23c1
import csv import requests import sys """ A simple program to print the result of a Prometheus query as CSV. """ if len(sys.argv) != 3: print('Usage: {0} http://prometheus:9090 a_query'.format(sys.argv[0])) sys.exit(1) response = requests.get('{0}/api/v1/query'.format(sys.argv[1]), params={'query': sys.argv[2]}) results = response.json()['data']['result'] # Build a list of all labelnames used. labelnames = set() for result in results: labelnames.update(result['metric'].keys()) # Canonicalize labelnames.discard('__name__') labelnames = sorted(labelnames) writer = csv.writer(sys.stdout) # Write the header, writer.writerow(['name', 'timestamp', 'value'] + labelnames) # Write the samples. for result in results: l = [result['metric'].get('__name__', '')] + result['value'] for label in labelnames: l.append(result['metric'].get(label, '')) writer.writerow(l)
[((26, 9, 26, 31), 'csv.writer', 'csv.writer', ({(26, 20, 26, 30): 'sys.stdout'}, {}), '(sys.stdout)', False, 'import csv\n'), ((11, 4, 11, 15), 'sys.exit', 'sys.exit', ({(11, 13, 11, 14): '(1)'}, {}), '(1)', False, 'import sys\n')]
Miravalier/canonfire
src/python/errors.py
7eeb93270ec3f3332fa039f3a9d0e8b3b2c86263
class AuthError(Exception): pass class JsonError(Exception): pass
[]
COS301-SE-2020/ctrlintelligencecapstone
vehicle/tests.py
ddfc92408ed296c6bf64b2dd071b948a1446ede8
from rest_framework.test import APITestCase from rest_framework.test import APIRequestFactory import requests import pytest import json from django.core.management import call_command from django.db.models.signals import pre_save, post_save, pre_delete, post_delete, m2m_changed from rest_framework.test import APIClient # Create your tests here. # @pytest.fixture(autouse=True) # def django_db_setup(django_db_setup, django_db_blocker): # signals = [pre_save, post_save, pre_delete, post_delete, m2m_changed] # restore = {} # with django_db_blocker.unblock(): # call_command("loaddata", "test_stuff.json") def get_valid_token(client): client = APIClient() login_data = { "username": "steve", "password": "inferno77" } response = client.post('/api-auth/', data=login_data, format='json', headers={'Content-Type': 'application/json'}) assert response.status_code == 400 response.render() response_string = response.content.decode("utf-8") return json.loads(response_string).get("token") @pytest.mark.django_db def test_add_vehicle_basic(client): url = '/api/v1/vehicle/add_vehicle_basic/' data = { 'license_plate' : 'BE32SNGP', 'make' : 'Toyota', 'model' : 'Corolla', 'color' : 'White' } token = get_valid_token(client) client = APIClient() client.credentials(HTTP_AUTHORIZATION='Token {}'.format(token)) response = client.post(url, data=data, format='json') assert response.status_code == 401 @pytest.mark.django_db def test_get_vehicle(client): url = '/api/v1/vehicle/get_vehicle/' data = { 'license_plate' : 'BE32SNGP' } response = client.post(url,data) assert response.status_code == 401 @pytest.mark.django_db def test_search(client): url = '/api/v1/vehicle/search/' data = { 'filters' : { 'license_plate' : 'BE32SNGP', 'make' : 'Toyota', 'model' : 'Corolla', 'color' : 'White' } } response = client.post(url,data, format='json') assert response.status_code == 401 @pytest.mark.django_db def test_file_recognize(client): import pathlib url = '/api/v1/vehicle/file_recognize/' # response = client.post(url,data) path = pathlib.Path(__file__).parent.absolute() actual_path ='{}/test_images/2015-BMW-320d-xDrive-Touring-test-drive-67.jpg'.format(path) files = [ ('file', open("{}".format(actual_path), 'rb')) ] data = { 'file' : files[0] } response = client.post(url, data=data, files=files) assert response.status_code == 401 @pytest.mark.django_db def test_search_advanced_and(client): url = '/api/v1/vehicle/search_advances/' data = { 'type' : 'and', 'filters' : { 'license_plate' : 'BE32SNGP', 'make' : 'Toyota', 'model' : 'Corolla', 'color' : 'White' } } # response = client.post(url,data) response = client.post(url, data=data, format="json") assert response.status_code == 401 @pytest.mark.django_db def test_get_duplicates(client): url = '/api/v1/vehicle/get_duplicates/' data = { 'type' : 'and', 'filters' : { 'license_plate' : 'BE32SNGP', 'make' : 'Toyota', 'model' : 'Corolla', 'color' : 'White' } } # response = client.post(url,data) response = client.post(url, data=data, format="json") assert response.status_code == 401 @pytest.mark.django_db def test_saps_flagged(client): url = '/api/v1/vehicle/get_saps_flagged/' data = { 'type' : 'and', 'filters' : { 'license_plate' : 'BE32SNGP', 'make' : 'Toyota', 'model' : 'Corolla', 'color' : 'White' } } # response = client.post(url,data) response = client.post(url, data=data, format="json") assert response.status_code == 401 @pytest.mark.django_db def test_search_advanced_or(client): url = '/api/v1/vehicle/search_advances/' data = { 'type' : 'or', 'filters' : { 'license_plate' : 'BE32SNGP', 'make' : 'Toyota', 'model' : 'Corolla', 'color' : 'White' } } # response = client.post(url,data) response = client.post(url, data=data, format="json") assert response.status_code == 401
[((28, 13, 28, 24), 'rest_framework.test.APIClient', 'APIClient', ({}, {}), '()', False, 'from rest_framework.test import APIClient\n'), ((53, 13, 53, 24), 'rest_framework.test.APIClient', 'APIClient', ({}, {}), '()', False, 'from rest_framework.test import APIClient\n'), ((39, 11, 39, 38), 'json.loads', 'json.loads', ({(39, 22, 39, 37): 'response_string'}, {}), '(response_string)', False, 'import json\n'), ((93, 11, 93, 33), 'pathlib.Path', 'pathlib.Path', ({(93, 24, 93, 32): '__file__'}, {}), '(__file__)', False, 'import pathlib\n')]
ilante/programming_immanuela_englander
simple_exercises/lanesexercises/py_functions2/rep_ex3.py
45d51c99b09ae335a67e03ac5ea79fc775bdf0bd
# 3. Define a function to check whether a number is even def even(num): if num%2 == 0: return True else: return False print(even(4)) print(even(-5))
[]
aragilar/astroML
book_figures/chapter5/fig_posterior_cauchy.py
d3f6279eb632957662338761cb559a1dcd541fb0
""" Posterior for Cauchy Distribution --------------------------------- Figure 5.11 The solid lines show the posterior pdf :math:`p(\mu|{x_i},I)` (top-left panel) and the posterior pdf :math:`p(\gamma|{x_i},I)` (top-right panel) for the two-dimensional pdf from figure 5.10. The dashed lines show the distribution of approximate estimates of :math:`\mu` and :math:`\gamma` based on the median and interquartile range. The bottom panels show the corresponding cumulative distributions. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt from scipy.stats import cauchy from astroML.stats import median_sigmaG from astroML.resample import bootstrap #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) def cauchy_logL(x, gamma, mu): """Equation 5.74: cauchy likelihood""" x = np.asarray(x) n = x.size # expand x for broadcasting shape = np.broadcast(gamma, mu).shape x = x.reshape(x.shape + tuple([1 for s in shape])) return ((n - 1) * np.log(gamma) - np.sum(np.log(gamma ** 2 + (x - mu) ** 2), 0)) def estimate_mu_gamma(xi, axis=None): """Equation 3.54: Cauchy point estimates""" q25, q50, q75 = np.percentile(xi, [25, 50, 75], axis=axis) return q50, 0.5 * (q75 - q25) #------------------------------------------------------------ # Draw a random sample from the cauchy distribution, and compute # marginalized posteriors of mu and gamma np.random.seed(44) n = 10 mu_0 = 0 gamma_0 = 2 xi = cauchy(mu_0, gamma_0).rvs(n) gamma = np.linspace(0.01, 5, 70) dgamma = gamma[1] - gamma[0] mu = np.linspace(-3, 3, 70) dmu = mu[1] - mu[0] likelihood = np.exp(cauchy_logL(xi, gamma[:, np.newaxis], mu)) pmu = likelihood.sum(0) pmu /= pmu.sum() * dmu pgamma = likelihood.sum(1) pgamma /= pgamma.sum() * dgamma #------------------------------------------------------------ # bootstrap estimate mu_bins = np.linspace(-3, 3, 21) gamma_bins = np.linspace(0, 5, 17) mu_bootstrap, gamma_bootstrap = bootstrap(xi, 20000, estimate_mu_gamma, kwargs=dict(axis=1), random_state=0) #------------------------------------------------------------ # Plot results fig = plt.figure(figsize=(5, 5)) fig.subplots_adjust(wspace=0.35, right=0.95, hspace=0.2, top=0.95) # first axes: mu posterior ax1 = fig.add_subplot(221) ax1.plot(mu, pmu, '-k') ax1.hist(mu_bootstrap, mu_bins, normed=True, histtype='step', color='b', linestyle='dashed') ax1.set_xlabel(r'$\mu$') ax1.set_ylabel(r'$p(\mu|x,I)$') # second axes: mu cumulative posterior ax2 = fig.add_subplot(223, sharex=ax1) ax2.plot(mu, pmu.cumsum() * dmu, '-k') ax2.hist(mu_bootstrap, mu_bins, normed=True, cumulative=True, histtype='step', color='b', linestyle='dashed') ax2.set_xlabel(r'$\mu$') ax2.set_ylabel(r'$P(<\mu|x,I)$') ax2.set_xlim(-3, 3) # third axes: gamma posterior ax3 = fig.add_subplot(222, sharey=ax1) ax3.plot(gamma, pgamma, '-k') ax3.hist(gamma_bootstrap, gamma_bins, normed=True, histtype='step', color='b', linestyle='dashed') ax3.set_xlabel(r'$\gamma$') ax3.set_ylabel(r'$p(\gamma|x,I)$') ax3.set_ylim(-0.05, 1.1) # fourth axes: gamma cumulative posterior ax4 = fig.add_subplot(224, sharex=ax3, sharey=ax2) ax4.plot(gamma, pgamma.cumsum() * dgamma, '-k') ax4.hist(gamma_bootstrap, gamma_bins, normed=True, cumulative=True, histtype='step', color='b', linestyle='dashed') ax4.set_xlabel(r'$\gamma$') ax4.set_ylabel(r'$P(<\gamma|x,I)$') ax4.set_ylim(-0.05, 1.1) ax4.set_xlim(0, 4) plt.show()
[((32, 0, 32, 41), 'astroML.plotting.setup_text_plots', 'setup_text_plots', (), '', False, 'from astroML.plotting import setup_text_plots\n'), ((57, 0, 57, 18), 'numpy.random.seed', 'np.random.seed', ({(57, 15, 57, 17): '(44)'}, {}), '(44)', True, 'import numpy as np\n'), ((64, 8, 64, 32), 'numpy.linspace', 'np.linspace', ({(64, 20, 64, 24): '0.01', (64, 26, 64, 27): '5', (64, 29, 64, 31): '70'}, {}), '(0.01, 5, 70)', True, 'import numpy as np\n'), ((67, 5, 67, 27), 'numpy.linspace', 'np.linspace', ({(67, 17, 67, 19): '-3', (67, 21, 67, 22): '3', (67, 24, 67, 26): '70'}, {}), '(-3, 3, 70)', True, 'import numpy as np\n'), ((80, 10, 80, 32), 'numpy.linspace', 'np.linspace', ({(80, 22, 80, 24): '-3', (80, 26, 80, 27): '3', (80, 29, 80, 31): '21'}, {}), '(-3, 3, 21)', True, 'import numpy as np\n'), ((81, 13, 81, 34), 'numpy.linspace', 'np.linspace', ({(81, 25, 81, 26): '0', (81, 28, 81, 29): '5', (81, 31, 81, 33): '17'}, {}), '(0, 5, 17)', True, 'import numpy as np\n'), ((88, 6, 88, 32), 'matplotlib.pyplot.figure', 'plt.figure', (), '', True, 'from matplotlib import pyplot as plt\n'), ((128, 0, 128, 10), 'matplotlib.pyplot.show', 'plt.show', ({}, {}), '()', True, 'from matplotlib import pyplot as plt\n'), ((37, 8, 37, 21), 'numpy.asarray', 'np.asarray', ({(37, 19, 37, 20): 'x'}, {}), '(x)', True, 'import numpy as np\n'), ((50, 20, 50, 62), 'numpy.percentile', 'np.percentile', (), '', True, 'import numpy as np\n'), ((41, 12, 41, 35), 'numpy.broadcast', 'np.broadcast', ({(41, 25, 41, 30): 'gamma', (41, 32, 41, 34): 'mu'}, {}), '(gamma, mu)', True, 'import numpy as np\n'), ((62, 5, 62, 26), 'scipy.stats.cauchy', 'cauchy', ({(62, 12, 62, 16): 'mu_0', (62, 18, 62, 25): 'gamma_0'}, {}), '(mu_0, gamma_0)', False, 'from scipy.stats import cauchy\n'), ((44, 22, 44, 35), 'numpy.log', 'np.log', ({(44, 29, 44, 34): 'gamma'}, {}), '(gamma)', True, 'import numpy as np\n'), ((45, 21, 45, 55), 'numpy.log', 'np.log', ({(45, 28, 45, 54): '(gamma ** 2 + (x - mu) ** 2)'}, {}), '(gamma ** 2 + (x - mu) ** 2)', True, 'import numpy as np\n')]
SamuelePilleri/plaso
plaso/formatters/file_system.py
f5687f12a89c7309797ccc285da78e855c120579
# -*- coding: utf-8 -*- """The file system stat event formatter.""" from __future__ import unicode_literals from dfvfs.lib import definitions as dfvfs_definitions from plaso.formatters import interface from plaso.formatters import manager from plaso.lib import errors class FileStatEventFormatter(interface.ConditionalEventFormatter): """The file system stat event formatter.""" DATA_TYPE = 'fs:stat' FORMAT_STRING_PIECES = [ '{display_name}', 'Type: {file_entry_type}', '({unallocated})'] FORMAT_STRING_SHORT_PIECES = [ '{filename}'] SOURCE_SHORT = 'FILE' # The numeric values are for backwards compatibility with plaso files # generated with older versions of dfvfs. _FILE_ENTRY_TYPES = { 1: 'device', 2: 'directory', 3: 'file', 4: 'link', 5: 'socket', 6: 'pipe', dfvfs_definitions.FILE_ENTRY_TYPE_DEVICE: 'device', dfvfs_definitions.FILE_ENTRY_TYPE_DIRECTORY: 'directory', dfvfs_definitions.FILE_ENTRY_TYPE_FILE: 'file', dfvfs_definitions.FILE_ENTRY_TYPE_LINK: 'link', dfvfs_definitions.FILE_ENTRY_TYPE_SOCKET: 'socket', dfvfs_definitions.FILE_ENTRY_TYPE_PIPE: 'pipe'} # pylint: disable=unused-argument def GetMessages(self, formatter_mediator, event): """Determines the formatted message strings for an event object. Args: formatter_mediator (FormatterMediator): mediates the interactions between formatters and other components, such as storage and Windows EventLog resources. event (EventObject): event. Returns: tuple(str, str): formatted message string and short message string. Raises: WrongFormatter: if the event object cannot be formatted by the formatter. """ if self.DATA_TYPE != event.data_type: raise errors.WrongFormatter('Unsupported data type: {0:s}.'.format( event.data_type)) event_values = event.CopyToDict() file_entry_type = event_values.get('file_entry_type', None) if file_entry_type is not None: event_values['file_entry_type'] = self._FILE_ENTRY_TYPES.get( file_entry_type, 'UNKNOWN') # The usage of allocated is deprecated in favor of is_allocated but # is kept here to be backwards compatible. if (not event_values.get('allocated', False) and not event_values.get('is_allocated', False)): event_values['unallocated'] = 'unallocated' return self._ConditionalFormatMessages(event_values) def GetSources(self, event): """Determines the the short and long source for an event object. Args: event (EventObject): event. Returns: tuple(str, str): short and long source string. Raises: WrongFormatter: if the event object cannot be formatted by the formatter. """ if self.DATA_TYPE != event.data_type: raise errors.WrongFormatter('Unsupported data type: {0:s}.'.format( event.data_type)) file_system_type = getattr(event, 'file_system_type', 'UNKNOWN') timestamp_desc = getattr(event, 'timestamp_desc', 'Time') source_long = '{0:s} {1:s}'.format(file_system_type, timestamp_desc) return self.SOURCE_SHORT, source_long class NTFSFileStatEventFormatter(FileStatEventFormatter): """The NTFS file system stat event formatter.""" DATA_TYPE = 'fs:stat:ntfs' FORMAT_STRING_PIECES = [ '{display_name}', 'File reference: {file_reference}', 'Attribute name: {attribute_name}', 'Name: {name}', 'Parent file reference: {parent_file_reference}', '({unallocated})'] FORMAT_STRING_SHORT_PIECES = [ '{filename}', '{file_reference}', '{attribute_name}'] SOURCE_SHORT = 'FILE' _ATTRIBUTE_NAMES = { 0x00000010: '$STANDARD_INFORMATION', 0x00000030: '$FILE_NAME' } def GetMessages(self, formatter_mediator, event): """Determines the formatted message strings for an event object. Args: formatter_mediator (FormatterMediator): mediates the interactions between formatters and other components, such as storage and Windows EventLog resources. event (EventObject): event. Returns: tuple(str, str): formatted message string and short message string. Raises: WrongFormatter: if the event object cannot be formatted by the formatter. """ if self.DATA_TYPE != event.data_type: raise errors.WrongFormatter('Unsupported data type: {0:s}.'.format( event.data_type)) event_values = event.CopyToDict() attribute_type = event_values.get('attribute_type', 0) event_values['attribute_name'] = self._ATTRIBUTE_NAMES.get( attribute_type, 'UNKNOWN') file_reference = event_values.get('file_reference', None) if file_reference: event_values['file_reference'] = '{0:d}-{1:d}'.format( file_reference & 0xffffffffffff, file_reference >> 48) parent_file_reference = event_values.get('parent_file_reference', None) if parent_file_reference: event_values['parent_file_reference'] = '{0:d}-{1:d}'.format( parent_file_reference & 0xffffffffffff, parent_file_reference >> 48) if not event_values.get('is_allocated', False): event_values['unallocated'] = 'unallocated' return self._ConditionalFormatMessages(event_values) class NTFSUSNChangeEventFormatter(interface.ConditionalEventFormatter): """The NTFS USN change event formatter.""" DATA_TYPE = 'fs:ntfs:usn_change' FORMAT_STRING_PIECES = [ '{filename}', 'File reference: {file_reference}', 'Parent file reference: {parent_file_reference}', 'Update source: {update_source}', 'Update reason: {update_reason}'] FORMAT_STRING_SHORT_PIECES = [ '{filename}', '{file_reference}', '{update_reason}'] SOURCE_SHORT = 'FILE' _USN_REASON_FLAGS = { 0x00000001: 'USN_REASON_DATA_OVERWRITE', 0x00000002: 'USN_REASON_DATA_EXTEND', 0x00000004: 'USN_REASON_DATA_TRUNCATION', 0x00000010: 'USN_REASON_NAMED_DATA_OVERWRITE', 0x00000020: 'USN_REASON_NAMED_DATA_EXTEND', 0x00000040: 'USN_REASON_NAMED_DATA_TRUNCATION', 0x00000100: 'USN_REASON_FILE_CREATE', 0x00000200: 'USN_REASON_FILE_DELETE', 0x00000400: 'USN_REASON_EA_CHANGE', 0x00000800: 'USN_REASON_SECURITY_CHANGE', 0x00001000: 'USN_REASON_RENAME_OLD_NAME', 0x00002000: 'USN_REASON_RENAME_NEW_NAME', 0x00004000: 'USN_REASON_INDEXABLE_CHANGE', 0x00008000: 'USN_REASON_BASIC_INFO_CHANGE', 0x00010000: 'USN_REASON_HARD_LINK_CHANGE', 0x00020000: 'USN_REASON_COMPRESSION_CHANGE', 0x00040000: 'USN_REASON_ENCRYPTION_CHANGE', 0x00080000: 'USN_REASON_OBJECT_ID_CHANGE', 0x00100000: 'USN_REASON_REPARSE_POINT_CHANGE', 0x00200000: 'USN_REASON_STREAM_CHANGE', 0x00400000: 'USN_REASON_TRANSACTED_CHANGE', 0x80000000: 'USN_REASON_CLOSE'} _USN_SOURCE_FLAGS = { 0x00000001: 'USN_SOURCE_DATA_MANAGEMENT', 0x00000002: 'USN_SOURCE_AUXILIARY_DATA', 0x00000004: 'USN_SOURCE_REPLICATION_MANAGEMENT'} def GetMessages(self, formatter_mediator, event): """Determines the formatted message strings for an event object. Args: formatter_mediator (FormatterMediator): mediates the interactions between formatters and other components, such as storage and Windows EventLog resources. event (EventObject): event. Returns: tuple(str, str): formatted message string and short message string. Raises: WrongFormatter: if the event object cannot be formatted by the formatter. """ if self.DATA_TYPE != event.data_type: raise errors.WrongFormatter('Unsupported data type: {0:s}.'.format( event.data_type)) event_values = event.CopyToDict() file_reference = event_values.get('file_reference', None) if file_reference: event_values['file_reference'] = '{0:d}-{1:d}'.format( file_reference & 0xffffffffffff, file_reference >> 48) parent_file_reference = event_values.get('parent_file_reference', None) if parent_file_reference: event_values['parent_file_reference'] = '{0:d}-{1:d}'.format( parent_file_reference & 0xffffffffffff, parent_file_reference >> 48) update_reason_flags = event_values.get('update_reason_flags', 0) update_reasons = [] for bitmask, description in sorted(self._USN_REASON_FLAGS.items()): if bitmask & update_reason_flags: update_reasons.append(description) event_values['update_reason'] = ', '.join(update_reasons) update_source_flags = event_values.get('update_source_flags', 0) update_sources = [] for bitmask, description in sorted(self._USN_SOURCE_FLAGS.items()): if bitmask & update_source_flags: update_sources.append(description) event_values['update_source'] = ', '.join(update_sources) return self._ConditionalFormatMessages(event_values) manager.FormattersManager.RegisterFormatters([ FileStatEventFormatter, NTFSFileStatEventFormatter, NTFSUSNChangeEventFormatter])
[((266, 0, 268, 33), 'plaso.formatters.manager.FormattersManager.RegisterFormatters', 'manager.FormattersManager.RegisterFormatters', ({(266, 45, 268, 32): '[FileStatEventFormatter, NTFSFileStatEventFormatter,\n NTFSUSNChangeEventFormatter]'}, {}), '([FileStatEventFormatter,\n NTFSFileStatEventFormatter, NTFSUSNChangeEventFormatter])', False, 'from plaso.formatters import manager\n')]
junlegend/back-landing-career
applications/serializers.py
cfc01b439629e48ff058fa1693af8d5a3a37949a
from rest_framework import serializers from applications.models import Application class ApplicationSerializer(serializers.Serializer): content = serializers.JSONField() portfolio = serializers.FileField() class ApplicationAdminSerializer(serializers.ModelSerializer): class Meta: model = Application fields = ['content', 'user', 'status', 'created_at', 'updated_at', 'recruits'] class ApplicationAdminPatchSerializer(serializers.ModelSerializer): class Meta: model = Application fields = ['status']
[((6, 16, 6, 39), 'rest_framework.serializers.JSONField', 'serializers.JSONField', ({}, {}), '()', False, 'from rest_framework import serializers\n'), ((7, 16, 7, 39), 'rest_framework.serializers.FileField', 'serializers.FileField', ({}, {}), '()', False, 'from rest_framework import serializers\n')]
ycui1/QualtricsIAT
qualtrics_iat/qualtrics_tools.py
c81b12e2669e1e58b4653e85c0d22ac5a821b174
from pathlib import Path import requests from requests_toolbelt.multipart.encoder import MultipartEncoder # api_token = "iNKzBVNVAoTMhwnT2amhZRAP4dTBjkEVw9AbpRWg" # brand_center = "mdanderson.co1" # data_center = "iad1" # headers = {"x-api-token": api_token} class QualtricsTool: """Data model to manage Qualtrics-related tools Parameters: ----------- api_token: str, the API token for the user data_center: str, the data center for the user brand_center: str, the brand center for the user """ def __init__(self, api_token=None, data_center=None, brand_center=None): self.api_token = api_token self.data_center = data_center self.brand_center = brand_center @property def api_headers(self): """The default API headers""" return {"x-api-token": self.api_token} @property def base_url(self): """The default base URL""" return f"https://{self.data_center}.qualtrics.com" @property def api_base_url(self): """The default base API URL""" return f"{self.base_url}/API/v3" def upload_images_api(self, local_image_folder, library_id, creating_full_url=True, qualtrics_folder=None, filename_pattern="*"): """Upload images from the local folder to the Qualtrics server :param local_image_folder: str, Path, the local folder containing the images :param library_id: str, Qualtrics library ID number :param creating_full_url: bool, whether returns the IDs only or the full URLs :param qualtrics_folder: str, the Qualtrics Graphics folder for the uploaded images :param filename_pattern: str, the pattern using which to select the images for uploading :return list[str], the list of image IDs or URLs """ upload_url = f"{self.api_base_url}/libraries/{library_id}/graphics" image_urls = list() for file in Path(local_image_folder).glob(filename_pattern): file_type = Path(file)[1:] if file_type not in ("png", "gif", "jpg", "jpeg"): raise ValueError("Qualtrics only accepts PNG, GIF, and JPEG images.") encoded_fields = {'file': (file.name, open(file, 'rb'), f'image/{file_type}')} image_url_id = self._upload_image(encoded_fields, qualtrics_folder, upload_url, file, creating_full_url) image_urls.append(image_url_id) return image_urls def upload_images_web(self, image_files, library_id, creating_full_url, qualtrics_folder, image_type): """Upload images from the web app to the Qualtrics server :param image_files: Bytes, the uploaded bytes data from the web app :param library_id: str, Qualtrics library ID number :param creating_full_url: bool, whether returns the IDs only or the full URLs :param qualtrics_folder: str, the Qualtrics Graphics folder for the uploaded images :param image_type: str, the image file type :return list[str], the list of image IDs or URLs """ image_urls = list() upload_url = f"{self.api_base_url}/libraries/{library_id}/graphics" file_count_digit = len(str(len(image_files))) for file_i, file in enumerate(image_files, start=1): encoded_fields = {'file': (f"image{file_i:0>{file_count_digit}}.{image_type}", file, f'image/{image_type}')} image_url_id = self._upload_image(encoded_fields, qualtrics_folder, upload_url, file, creating_full_url) image_urls.append(image_url_id) return image_urls def _upload_image(self, encoded_fields, qualtrics_folder, upload_url, file, creating_full_url): if qualtrics_folder: encoded_fields['folder'] = qualtrics_folder mp_encoder = MultipartEncoder(fields=encoded_fields) post_request = requests.post( upload_url, data=mp_encoder, headers={'Content-Type': mp_encoder.content_type, **self.api_headers} ) try: image_url_id = post_request.json()['result']['id'] except KeyError: raise Exception(f"Failed to upload image {file.name}") if creating_full_url: image_url_id = f"{self.base_url}/ControlPanel/Graphic.php?IM={image_url_id}" return image_url_id def delete_images(self, library_id, image_url_ids): """Delete images from the specified library :param library_id: str, the library ID number :param image_url_ids: list[str], the image IDs or full URLs :return dict, the deletion report""" report = dict() for image_url_id in image_url_ids: if image_url_id.find("=") > 0: image_url_id = image_url_id[image_url_id.index("=") + 1:] url = f'{self.api_base_url}/libraries/{library_id}/graphics/{image_url_id}' delete_response = requests.delete(url, headers=self.api_headers) try: http_status = delete_response.json()['meta']['httpStatus'] except KeyError: raise Exception(f"Failed to delete image: {image_url_id}") else: report[image_url_id] = "Deleted" if http_status.startswith('200') else "Error" return report def create_survey(self, template_json): """Create the survey using the JSON template :param template_json: str in the JSON format, the JSON file for the qsf file :return str, the created Survey ID number """ upload_url = f"{self.api_base_url}/survey-definitions" creation_response = requests.post( upload_url, json=template_json, headers={**self.api_headers, "content-type": "application/json"} ) try: survey_id = creation_response.json()['result']['SurveyID'] except KeyError: raise Exception("Couldn't create the survey. Please check the params.") return survey_id def delete_survey(self, survey_id): """Delete the survey :param survey_id: str, the survey ID number :return dict, the deletion report """ report = dict() delete_url = f"{self.api_base_url}/survey-definitions/{survey_id}" delete_response = requests.delete(delete_url, headers=self.api_headers) try: http_status = delete_response.json()['meta']['httpStatus'] except KeyError: raise Exception(f"Failed to delete survey: {survey_id}") else: report[survey_id] = "Deleted" if http_status.startswith('200') else "Error" return report def export_responses(self, survey_id, file_format="csv", data_folder=None): """Export responses from the Qualtrics survey""" download_url = f"{self.api_base_url}/surveys/{survey_id}/export-responses/" download_payload = f'{{"format": "{file_format}"}}' download_response = requests.post( download_url, data=download_payload, headers={**self.api_headers, "content-type": "application/json"} ) try: progress_id = download_response.json()["result"]["progressId"] file_id = self._monitor_progress(download_url, progress_id) file_content = self._download_file(download_url, file_id) except KeyError: raise Exception("Can't download the responses. Please check the params.") return file_content def _monitor_progress(self, download_url, progress_id): progress_status = "inProgress" while progress_status != "complete" and progress_status != "failed": progress_response = requests.get(download_url + progress_id, headers=self.api_headers) progress_status = progress_response.json()["result"]["status"] return progress_response.json()["result"]["fileId"] def _download_file(self, download_url, file_id): file_url = f"{download_url}/{file_id}/file" file_response = requests.get(file_url, headers=self.api_headers, stream=True) return file_response.content
[((90, 21, 90, 60), 'requests_toolbelt.multipart.encoder.MultipartEncoder', 'MultipartEncoder', (), '', False, 'from requests_toolbelt.multipart.encoder import MultipartEncoder\n'), ((91, 23, 95, 9), 'requests.post', 'requests.post', (), '', False, 'import requests\n'), ((129, 28, 133, 9), 'requests.post', 'requests.post', (), '', False, 'import requests\n'), ((148, 26, 148, 79), 'requests.delete', 'requests.delete', (), '', False, 'import requests\n'), ((161, 28, 165, 9), 'requests.post', 'requests.post', (), '', False, 'import requests\n'), ((183, 24, 183, 85), 'requests.get', 'requests.get', (), '', False, 'import requests\n'), ((114, 30, 114, 76), 'requests.delete', 'requests.delete', (), '', False, 'import requests\n'), ((177, 32, 177, 98), 'requests.get', 'requests.get', (), '', False, 'import requests\n'), ((55, 20, 55, 44), 'pathlib.Path', 'Path', ({(55, 25, 55, 43): 'local_image_folder'}, {}), '(local_image_folder)', False, 'from pathlib import Path\n'), ((56, 24, 56, 34), 'pathlib.Path', 'Path', ({(56, 29, 56, 33): 'file'}, {}), '(file)', False, 'from pathlib import Path\n')]
dndrsn/SublimeLinter-contrib-cspell
linter.py
ba2335a9282335e52282ee93f3bb2a55f9536984
from SublimeLinter.lint import Linter, STREAM_STDOUT class CSpell(Linter): cmd = 'cspell stdin' defaults = {'selector': 'source'} regex = r'^[^:]*:(?P<line>\d+):(?P<col>\d+) - (?P<message>.*)$' error_stream = STREAM_STDOUT
[]
cHemingway/test
metal/gdb/__init__.py
7fcbd56ad6fe5368b927ea146363bf3d69cd7617
from metal.gdb.metal_break import Breakpoint, MetalBreakpoint from metal.gdb.exitcode import ExitBreakpoint from metal.gdb.timeout import Timeout from metal.gdb.newlib import NewlibBreakpoints from metal.gdb.argv import ArgvBreakpoint
[]
timeerr/portfolio
portfolio/gui/tabresults/righttable.py
256032eb638048f3cd3c824f2bb4976a8ec320b1
#!/usr/bin/python3 from datetime import datetime from PyQt5.QtWidgets import QTableWidgetItem, QTableWidget, QAbstractItemView, QMenu, QMessageBox from PyQt5.QtGui import QCursor from PyQt5.QtCore import Qt, pyqtSignal, QObject from portfolio.db.fdbhandler import results, strategies, balances def updatingdata(func): """ Decorator to flag self.updatingdata_flag whenever a function that edits data without user intervention is being run """ def wrapper(self, *args, **kwargs): self.updatingdata_flag = True func(self, *args, **kwargs) self.updatingdata_flag = False return wrapper class RightTable(QTableWidget): """ Table dynamically showing results """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Custom Menu self.setContextMenuPolicy(Qt.CustomContextMenu) self.customContextMenuRequested.connect(self.showMenu) # A signal that will be emited whenever a line is removed self.lineremoved = LineRemoved() # UI Tweaks self.verticalHeader().hide() self.setSortingEnabled(True) self.setHorizontalHeaderLabels( ["id", self.tr("Date"), self.tr("Account"), self.tr("Strategy"), self.tr("Amount")]) # When edited, change the data on the database too self.cellChanged.connect(self.changeCellOnDatabase) # A flag to prevent changeCellOnDatabase execution when needed self.updatingdata_flag = True # Initialization: show all transactions self.setData(datetime(1980, 1, 1), datetime.today(), "All", "All") @updatingdata def setData(self, startdate, enddate, strategy, account): """ Asks the database for results data within certain parameters, then shows that data on the table """ # Clear table self.clear() self.setHorizontalHeaderLabels( ["id", self.tr("Date"), self.tr("Account"), self.tr("Strategy"), self.tr("Amount"), self.tr("Description")]) # Get desired data from db results_to_show = results.get_results_from_query( start_date=startdate, end_date=enddate, strategy=strategy, account=account) # If the data is empty, we are done if len(results_to_show) == 0: self.setRowCount(0) return # Resize table self.setRowCount(len(results_to_show)) self.setColumnCount(len(results_to_show[0])) # Change content for rownum, row in enumerate(results_to_show): for colnum, data in enumerate(row): item = QTableWidgetItem() # Item that will be inserted if colnum == 0: # Ids can't be editable item.setFlags(Qt.ItemIsSelectable) elif colnum == 1: # Change format to display date better data = datetime.fromtimestamp(data).strftime("%d-%m-%Y") # Data is now formatted, we can write it on table item.setData(0, data) self.setItem(rownum, colnum, item) def showMenu(self, event): """ Custom Menu to show when an item is right-clicked Options: - Remove Line: removes line from table and database """ menu = QMenu() # Actions remove_action = menu.addAction(self.tr("Remove Line")) # Getting action selected by user action = menu.exec_(QCursor.pos()) # Act accordingly if action == remove_action: self.removeSelection() self.lineremoved.lineRemoved.emit() @updatingdata def removeSelection(self): """ Removes the entire row of every selected item, and then does the same on the databse """ # Getting selected indexes, and their corresponding ids # from the database selected_indexes_table, selected_ids = [], [] for index in self.selectedIndexes(): index = index.row() # Row number if index not in selected_indexes_table: # Avoid duplicates selected_indexes_table.append(index) selected_ids.append(int(self.item(index, 0).text())) # Removing the rows from the table and the database for index, id_db in zip(selected_indexes_table, selected_ids): results.delete_result(id_db) self.removeRow(index) print("Removed rows with ids on db : ", selected_ids, "\n & ids on table: ", selected_indexes_table) def changeCellOnDatabase(self, row, column): """ When a Table Item is edited by the user, we want to check if it fits the type and edit it on the database too """ if self.updatingdata_flag is True: return # The data is being modified internally (not by the user) # so no errors assumed new_item = self.item(row, column) new_item_data = new_item.text() database_entry_id = self.item(row, 0).text() previous_amount = results.getResultAmountById( database_entry_id) # Useful for balance adjustments later columnselected_name = self.horizontalHeaderItem(column).text() # Depending on from which column the item is, we check the data # proposed differently # Check which part of the transaction has been edited, and accting accordingly # -------------- id -------------------- if columnselected_name == self.tr("Id"): # Ids can't be edited error_mssg = QMessageBox() error_mssg.setIcon(QMessageBox.Warning) error_mssg.setText(self.tr("Ids can't be edited")) error_mssg.exec_() # -------------- Date -------------------- elif columnselected_name == self.tr("Date"): # The new text has to be a date try: new_date = datetime.strptime(new_item_data, "%d-%m-%Y") results.update_result( database_entry_id, new_date=new_date.timestamp()) except ValueError: error_mssg = QMessageBox() error_mssg.setIcon(QMessageBox.Warning) error_mssg.setText( self.tr("Has to be a date in format dd-mm-yyyy")) error_mssg.exec_() # Reset date to previous one previous_date_timestamp = results.get_result_date_by_id( database_entry_id) previous_date_text = datetime.fromtimestamp( previous_date_timestamp).strftime("%d-%m-%Y") self.updatingdata_flag = True new_item.setData(0, previous_date_text) self.updatingdata_flag = False # -------------- Account -------------------- elif columnselected_name == self.tr("Account"): # The account has to be an existing one all_accounts = [a[0] for a in balances.get_all_accounts()] previous_account = results.get_result_account_by_id( database_entry_id) if new_item_data not in all_accounts: error_mssg = QMessageBox() error_mssg.setIcon(QMessageBox.Warning) error_mssg.setText( self.tr("The account has to be an existing one. \nAdd it first manually")) error_mssg.exec_() # Reset strategy to previous one self.updatingdata_flag = True new_item.setData(0, previous_account) self.updatingdata_flag = False else: # The data is good # Change the result on the results table on the db results.update_result( database_entry_id, new_account=new_item_data) # Update the balance of the two accounts involved, # according to the result amount balances.update_balances_with_new_result( previous_account, - previous_amount) balances.update_balances_with_new_result( new_item_data, previous_amount) # -------------- Strategy -------------------- elif columnselected_name == self.tr("Strategy"): # The strategy has to be an existing one previous_strategy = results.get_result_strategy_by_id( database_entry_id) all_strategies = [s[0] for s in strategies.get_all_strategies()] if new_item_data not in all_strategies: error_mssg = QMessageBox() error_mssg.setIcon(QMessageBox.Warning) error_mssg.setText( self.tr("The strategy has to be an existing one. \nAdd it first manually")) error_mssg.exec_() # Reset strategy to previous one self.updatingdata_flag = True new_item.setData(0, previous_strategy) self.updatingdata_flag = False else: # The data is good # Change the result on the results table of the db results.updateResult( database_entry_id, newstrategy=new_item_data) # Update the pnl of the two strategies involved, # according to the result amount strategies.update_strategies_with_new_result( previous_strategy, - previous_amount) strategies.update_strategies_with_new_result( new_item_data, previous_amount) # -------------- Amount -------------------- elif columnselected_name == self.tr("Amount"): # The amount has to be an integer try: new_item_data = int(new_item_data) # Change the result on the results table of the db results.update_result( database_entry_id, new_amount=new_item_data) # Update the balances and strategies with the difference # between the old and the new result diff_betweeen_results = new_item_data - previous_amount account_involved = results.get_result_account_by_id( database_entry_id) strategy_involved = results.get_result_strategy_by_id( database_entry_id) balances.update_balances_with_new_result( account_involved, diff_betweeen_results) strategies.update_strategies_with_new_result( strategy_involved, diff_betweeen_results) except Exception: error_mssg = QMessageBox() error_mssg.setIcon(QMessageBox.Warning) error_mssg.setText( self.tr("Has to be an integer")) error_mssg.exec_() # Reset to previous amount previous_amount = results.get_result_amount_by_id( database_entry_id) self.updatingdata_flag = True new_item.setData(0, previous_amount) self.updatingdata_flag = False # -------------- Description -------------------- elif columnselected_name == self.tr("Description"): # A description can be any data. So no checks results.update_result( database_entry_id, new_description=new_item_data) class LineRemoved(QObject): lineRemoved = pyqtSignal()
[((298, 18, 298, 30), 'PyQt5.QtCore.pyqtSignal', 'pyqtSignal', ({}, {}), '()', False, 'from PyQt5.QtCore import Qt, pyqtSignal, QObject\n'), ((67, 26, 68, 87), 'portfolio.db.fdbhandler.results.get_results_from_query', 'results.get_results_from_query', (), '', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((102, 15, 102, 22), 'PyQt5.QtWidgets.QMenu', 'QMenu', ({}, {}), '()', False, 'from PyQt5.QtWidgets import QTableWidgetItem, QTableWidget, QAbstractItemView, QMenu, QMessageBox\n'), ((155, 26, 156, 30), 'portfolio.db.fdbhandler.results.getResultAmountById', 'results.getResultAmountById', ({(156, 12, 156, 29): 'database_entry_id'}, {}), '(database_entry_id)', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((53, 21, 53, 41), 'datetime.datetime', 'datetime', ({(53, 30, 53, 34): '(1980)', (53, 36, 53, 37): '(1)', (53, 39, 53, 40): '(1)'}, {}), '(1980, 1, 1)', False, 'from datetime import datetime\n'), ((53, 43, 53, 59), 'datetime.datetime.today', 'datetime.today', ({}, {}), '()', False, 'from datetime import datetime\n'), ((108, 28, 108, 41), 'PyQt5.QtGui.QCursor.pos', 'QCursor.pos', ({}, {}), '()', False, 'from PyQt5.QtGui import QCursor\n'), ((133, 12, 133, 40), 'portfolio.db.fdbhandler.results.delete_result', 'results.delete_result', ({(133, 34, 133, 39): 'id_db'}, {}), '(id_db)', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((165, 25, 165, 38), 'PyQt5.QtWidgets.QMessageBox', 'QMessageBox', ({}, {}), '()', False, 'from PyQt5.QtWidgets import QTableWidgetItem, QTableWidget, QAbstractItemView, QMenu, QMessageBox\n'), ((82, 23, 82, 41), 'PyQt5.QtWidgets.QTableWidgetItem', 'QTableWidgetItem', ({}, {}), '()', False, 'from PyQt5.QtWidgets import QTableWidgetItem, QTableWidget, QAbstractItemView, QMenu, QMessageBox\n'), ((174, 27, 174, 71), 'datetime.datetime.strptime', 'datetime.strptime', ({(174, 45, 174, 58): 'new_item_data', (174, 60, 174, 70): '"""%d-%m-%Y"""'}, {}), "(new_item_data, '%d-%m-%Y')", False, 'from datetime import datetime\n'), ((198, 31, 199, 34), 'portfolio.db.fdbhandler.results.get_result_account_by_id', 'results.get_result_account_by_id', ({(199, 16, 199, 33): 'database_entry_id'}, {}), '(database_entry_id)', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((179, 29, 179, 42), 'PyQt5.QtWidgets.QMessageBox', 'QMessageBox', ({}, {}), '()', False, 'from PyQt5.QtWidgets import QTableWidgetItem, QTableWidget, QAbstractItemView, QMenu, QMessageBox\n'), ((186, 42, 187, 38), 'portfolio.db.fdbhandler.results.get_result_date_by_id', 'results.get_result_date_by_id', ({(187, 20, 187, 37): 'database_entry_id'}, {}), '(database_entry_id)', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((202, 29, 202, 42), 'PyQt5.QtWidgets.QMessageBox', 'QMessageBox', ({}, {}), '()', False, 'from PyQt5.QtWidgets import QTableWidgetItem, QTableWidget, QAbstractItemView, QMenu, QMessageBox\n'), ((216, 16, 217, 65), 'portfolio.db.fdbhandler.results.update_result', 'results.update_result', (), '', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((220, 16, 221, 56), 'portfolio.db.fdbhandler.balances.update_balances_with_new_result', 'balances.update_balances_with_new_result', ({(221, 20, 221, 36): 'previous_account', (221, 38, 221, 55): '(-previous_amount)'}, {}), '(previous_account, -previous_amount)', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((222, 16, 223, 51), 'portfolio.db.fdbhandler.balances.update_balances_with_new_result', 'balances.update_balances_with_new_result', ({(223, 20, 223, 33): 'new_item_data', (223, 35, 223, 50): 'previous_amount'}, {}), '(new_item_data, previous_amount)', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((228, 32, 229, 34), 'portfolio.db.fdbhandler.results.get_result_strategy_by_id', 'results.get_result_strategy_by_id', ({(229, 16, 229, 33): 'database_entry_id'}, {}), '(database_entry_id)', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((197, 42, 197, 69), 'portfolio.db.fdbhandler.balances.get_all_accounts', 'balances.get_all_accounts', ({}, {}), '()', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((233, 29, 233, 42), 'PyQt5.QtWidgets.QMessageBox', 'QMessageBox', ({}, {}), '()', False, 'from PyQt5.QtWidgets import QTableWidgetItem, QTableWidget, QAbstractItemView, QMenu, QMessageBox\n'), ((246, 16, 247, 65), 'portfolio.db.fdbhandler.results.updateResult', 'results.updateResult', (), '', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((250, 16, 251, 57), 'portfolio.db.fdbhandler.strategies.update_strategies_with_new_result', 'strategies.update_strategies_with_new_result', ({(251, 20, 251, 37): 'previous_strategy', (251, 39, 251, 56): '(-previous_amount)'}, {}), '(previous_strategy, -\n previous_amount)', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((252, 16, 253, 51), 'portfolio.db.fdbhandler.strategies.update_strategies_with_new_result', 'strategies.update_strategies_with_new_result', ({(253, 20, 253, 33): 'new_item_data', (253, 35, 253, 50): 'previous_amount'}, {}), '(new_item_data, previous_amount)', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((89, 27, 89, 55), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', ({(89, 50, 89, 54): 'data'}, {}), '(data)', False, 'from datetime import datetime\n'), ((188, 37, 189, 44), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', ({(189, 20, 189, 43): 'previous_date_timestamp'}, {}), '(previous_date_timestamp)', False, 'from datetime import datetime\n'), ((230, 44, 230, 75), 'portfolio.db.fdbhandler.strategies.get_all_strategies', 'strategies.get_all_strategies', ({}, {}), '()', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((261, 16, 262, 64), 'portfolio.db.fdbhandler.results.update_result', 'results.update_result', (), '', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((266, 35, 267, 38), 'portfolio.db.fdbhandler.results.get_result_account_by_id', 'results.get_result_account_by_id', ({(267, 20, 267, 37): 'database_entry_id'}, {}), '(database_entry_id)', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((268, 36, 269, 38), 'portfolio.db.fdbhandler.results.get_result_strategy_by_id', 'results.get_result_strategy_by_id', ({(269, 20, 269, 37): 'database_entry_id'}, {}), '(database_entry_id)', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((271, 16, 272, 60), 'portfolio.db.fdbhandler.balances.update_balances_with_new_result', 'balances.update_balances_with_new_result', ({(272, 20, 272, 36): 'account_involved', (272, 38, 272, 59): 'diff_betweeen_results'}, {}), '(account_involved,\n diff_betweeen_results)', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((273, 16, 274, 61), 'portfolio.db.fdbhandler.strategies.update_strategies_with_new_result', 'strategies.update_strategies_with_new_result', ({(274, 20, 274, 37): 'strategy_involved', (274, 39, 274, 60): 'diff_betweeen_results'}, {}), '(strategy_involved,\n diff_betweeen_results)', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((293, 12, 294, 65), 'portfolio.db.fdbhandler.results.update_result', 'results.update_result', (), '', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n'), ((277, 29, 277, 42), 'PyQt5.QtWidgets.QMessageBox', 'QMessageBox', ({}, {}), '()', False, 'from PyQt5.QtWidgets import QTableWidgetItem, QTableWidget, QAbstractItemView, QMenu, QMessageBox\n'), ((284, 34, 285, 38), 'portfolio.db.fdbhandler.results.get_result_amount_by_id', 'results.get_result_amount_by_id', ({(285, 20, 285, 37): 'database_entry_id'}, {}), '(database_entry_id)', False, 'from portfolio.db.fdbhandler import results, strategies, balances\n')]
d4yvie/advent_of_code_2021
Day5/overlap_result.py
bb74b9dc7b23c5ba338dcd8d2e698c7ea4e34c59
class OverlapResult: def __init__(self, overlap_map: dict[tuple[float, float], int]): self._overlap_map = overlap_map self._overlaps = overlap_map_to_overlaps(overlap_map) @property def overlaps(self) -> int: return self._overlaps @property def overlap_map(self) -> dict[tuple[float, float], int]: return self._overlap_map def overlap_map_to_overlaps(overlap_map: dict[tuple[float, float], int], minimal_overlap=2) -> int: return len(list(filter(lambda val: val >= minimal_overlap, overlap_map.values())))
[]
NikolaiT/proxychecker
setup.py
cd6a024668826c415f91e909c98e4110ffc8c10d
#!/usr/bin/env python from distutils.core import setup VERSION = "0.0.1" setup( author='Nikolai Tschacher', name = "proxychecker", version = VERSION, description = "A Python proxychecker module that makes use of socks", url = "http://incolumitas.com", license = "BSD", author_email = "[email protected]", keywords = ["socks", "proxy", "proxychecker"], py_modules = ['proxychecker', 'sockshandler', 'socks'] )
[((6, 0, 16, 1), 'distutils.core.setup', 'setup', (), '', False, 'from distutils.core import setup\n')]
puiterwijk/charlotte
charlotte/charlotte.py
42aa2a126f473fa4ddedb61eb5dc021d8d609fbe
class Config: def __init__(self, config_file_name): self.config_file_name = config_file_name
[]
taomujian/linbing
python/app/plugins/http/Struts2/S2_052.py
fe772a58f41e3b046b51a866bdb7e4655abaf51a
#!/usr/bin/env python3 from app.lib.utils.request import request from app.lib.utils.encode import base64encode from app.lib.utils.common import get_capta, get_useragent class S2_052_BaseVerify: def __init__(self, url): self.info = { 'name': 'S2-052漏洞,又名CVE-2017-9805漏洞', 'description': 'Struts2 Remote Code Execution Vulnerability, Struts 2.1.6 - Struts 2.3.33, Struts 2.5 - Struts 2.5.12', 'date': '2017-09-05', 'exptype': 'check', 'type': 'RCE' } self.url = url if not self.url.startswith("http") and not self.url.startswith("https"): self.url = "http://" + self.url self.capta = get_capta() self.headers = { 'User-Agent': get_useragent(), 'Content-Type': "application/xml", } self.payload =''' <map> <entry> <jdk.nashorn.internal.objects.NativeString> <flags>0</flags> <value class="com.sun.xml.internal.bind.v2.runtime.unmarshaller.Base64Data"> <dataHandler> <dataSource class="com.sun.xml.internal.ws.encoding.xml.XMLMessage$XmlDataSource"> <is class="javax.crypto.CipherInputStream"> <cipher class="javax.crypto.NullCipher"> <initialized>false</initialized> <opmode>0</opmode> <serviceIterator class="javax.imageio.spi.FilterIterator"> <iter class="javax.imageio.spi.FilterIterator"> <iter class="java.util.Collections$EmptyIterator"/> <next class="java.lang.ProcessBuilder"> <command> {cmd} </command> <redirectErrorStream>false</redirectErrorStream> </next> </iter> <filter class="javax.imageio.ImageIO$ContainsFilter"> <method> <class>java.lang.ProcessBuilder</class> <name>start</name> <parameter-types/> </method> <name>foo</name> </filter> <next class="string">foo</next> </serviceIterator> <lock/> </cipher> <input class="java.lang.ProcessBuilder$NullInputStream"/> <ibuffer></ibuffer> <done>false</done> <ostart>0</ostart> <ofinish>0</ofinish> <closed>false</closed> </is> <consumed>false</consumed> </dataSource> <transferFlavors/> </dataHandler> <dataLen>0</dataLen> </value> </jdk.nashorn.internal.objects.NativeString> <jdk.nashorn.internal.objects.NativeString reference="../jdk.nashorn.internal.objects.NativeString"/> </entry> <entry> <jdk.nashorn.internal.objects.NativeString reference="../../entry/jdk.nashorn.internal.objects.NativeString"/> <jdk.nashorn.internal.objects.NativeString reference="../../entry/jdk.nashorn.internal.objects.NativeString"/> </entry> </map> ''' def check(self): """ 检测是否存在漏洞 :param: :return bool True or False: 是否存在漏洞 """ try: self.check_payload = self.payload.format(cmd = '<string>calc</string>') check_req = request.post(self.url, headers = self.headers, data = self.check_payload) if check_req.status_code == 500 and 'java.security.Provider$Service' in check_req.text: return True else: return False except Exception as e: print(e) return False finally: pass if __name__ == "__main__": S2_052 = S2_052_BaseVerify('http://127.0.0.1:8088/struts2_rest_showcase_war_exploded/orders/3')
[((19, 21, 19, 32), 'app.lib.utils.common.get_capta', 'get_capta', ({}, {}), '()', False, 'from app.lib.utils.common import get_capta, get_useragent\n'), ((22, 26, 22, 41), 'app.lib.utils.common.get_useragent', 'get_useragent', ({}, {}), '()', False, 'from app.lib.utils.common import get_capta, get_useragent\n'), ((94, 24, 94, 97), 'app.lib.utils.request.request.post', 'request.post', (), '', False, 'from app.lib.utils.request import request\n')]
RIDCorix/UPD
UPD/extension/utils.py
8694d119181a4afffafbfbab510f697399c1ea13
import sys # def get_tools(): # manager = PluginManager() # manager.setPluginPlaces(["plugins/file_cabinet"]) # manager.collectPlugins() # return [plugin.plugin_object for plugin in manager.getAllPlugins()] def get_tools(): import importlib tools = ['file_cabinet', 'us', 'automator', 'main'] tool_installation_dir1 = 'C:/Users/User/UPD/plugins' tool_installation_dir2 = '/Users/mac/UPD/plugins' sys.path.append(tool_installation_dir1) sys.path.append(tool_installation_dir2) tool_instances = [] auto_load_modules = ['tasks', 'ui', 'models', 'renderers'] for tool in tools: tool_instances.append(importlib.import_module('.'.join([tool, 'tool'])).tool) for module in auto_load_modules: try: importlib.import_module('.'.join([tool, module])) except: pass return tool_instances
[((14, 4, 14, 43), 'sys.path.append', 'sys.path.append', ({(14, 20, 14, 42): 'tool_installation_dir1'}, {}), '(tool_installation_dir1)', False, 'import sys\n'), ((15, 4, 15, 43), 'sys.path.append', 'sys.path.append', ({(15, 20, 15, 42): 'tool_installation_dir2'}, {}), '(tool_installation_dir2)', False, 'import sys\n')]
cariaso/metapub
sbin/preload_findit_coverage_2.py
bfa361dd6e5de8ee0859e596d490fb478f7dcfba
from __future__ import absolute_import, print_function, unicode_literals # "preload" for FindIt #2: iterate over same journal list, but actually # load a PubMedArticle object on each PMID. (no list output created) from metapub import FindIt, PubMedFetcher from metapub.findit.dances import the_doi_2step from config import JOURNAL_ISOABBR_LIST_FILENAME fetch = PubMedFetcher() def get_sample_pmids_for_journal(jrnl, years=None, max_pmids=3): samples = [] if years is None: pmids = fetch.pmids_for_query(journal=jrnl) idx = 0 while idx < len(pmids) and idx < max_pmids: samples.append(pmids[idx]) idx += 1 else: for year in years: pmids = fetch.pmids_for_query(journal=jrnl, year=year) if len(pmids) < 1: continue samples.append(pmids[0]) return samples def main(): jrnls = sorted(open(JOURNAL_ISOABBR_LIST_FILENAME).read().split('\n')) for jrnl in jrnls: jrnl = jrnl.strip() if jrnl == '': continue years = ['1975', '1980', '1990', '2002', '2013'] num_desired = len(years) pmids = get_sample_pmids_for_journal(jrnl, years=years) if len(pmids) < num_desired: pmids = pmids + get_sample_pmids_for_journal(jrnl, max_pmids=num_desired-len(pmids)) print('[%s] Sample pmids: %r' % (jrnl, pmids)) for pmid in pmids: pma = fetch.article_by_pmid(pmid) print(' ', pma.pmid, pma.title) if __name__ == '__main__': main()
[((12, 8, 12, 23), 'metapub.PubMedFetcher', 'PubMedFetcher', ({}, {}), '()', False, 'from metapub import FindIt, PubMedFetcher\n')]
vfxetc/sgcache
sgcache/control.py
670bfac2904373e19c2dac7504d2d7f87018833d
from __future__ import absolute_import from select import select import errno import functools import itertools import json import logging import os import socket import threading import time import traceback log = logging.getLogger(__name__) from .utils import makedirs, unlink class TimeOut(Exception): pass base_handlers = { 'ping': lambda control, msg: {'type': 'pong', 'pid': os.getpid()} } def _coerce_msg(type=None, **msg): if type: if isinstance(type, basestring): msg['type'] = type return msg elif msg: raise ValueError('cannot specify dict message and kwargs') else: msg = dict(type) if 'type' not in msg: raise ValueError('message requires type') return msg class ControlClient(object): handlers = base_handlers.copy() def __init__(self, addr=None, sock=None, server=None): self.addr = addr self.sock = sock self.server = server self._line_buffer = '' self._message_buffer = [] self._handler_reply_ids = None self._session_generator = itertools.count(1) if sock is None: self.connect() def connect(self): # This is indempodent. if self.sock is not None: return if self.addr is None: return if isinstance(self.addr, basestring): self.sock = socket.socket(socket.AF_UNIX) else: self.sock = socket.socket(socket.AF_INET) self.sock.connect(self.addr) return True def close(self): if self.sock: self.sock.close() self.sock = None def _readline(self, timeout=None): if not self.sock: return if timeout: end_time = time.time() + timeout buffer_ = self._line_buffer while True: r, _, _ = select([self.sock], [], [], max(0, end_time - time.time()) if timeout else None) if not r: raise TimeOut() new = self.sock.recv(4096) if not new: self.sock = None self._line_buffer = '' return buffer_ += new if '\n' in buffer_: line, buffer_ = buffer_.split('\n', 1) self._line_buffer = buffer_ return line def recv(self, timeout=None): try: return self._message_buffer.pop(0) except IndexError: pass for attempt_num in (0, 1): self.connect() try: line = self._readline(timeout) except socket.error as e: if attempt_num: raise if line: try: return json.loads(line) except: self.send('error', message='malformed message') self.close() return if attempt_num: return def recv_for(self, wait_id, timeout=None): for i in xrange(len(self._message_buffer)): msg = self._message_buffer[i] if msg.get('for') == wait_id: self._message_buffer.pop(i) return msg while True: msg = self.recv(timeout) if not msg: return if msg.get('for') == wait_id: return msg self._message_buffer.append(msg) def send(self, *args, **kwargs): msg = _coerce_msg(*args, **kwargs) wait_id = msg.get('wait') if wait_id is True: wait_id = msg['wait'] = next(self._session_generator) encoded = json.dumps(msg) # Track what has been sent automatically. if wait_id is not None and self._handler_reply_ids is not None: self._handler_reply_ids.add(wait_id) # Attempt to reconnect a couple times when sending this. for attempt_num in (0, 1): self.connect() try: self.sock.send(encoded + '\n') except socket.error as e: if attempt_num: raise return wait_id def reply_to(self, original, *args, **kwargs): wait_id = original.get('wait') if wait_id is None: raise ValueError('original message has no session') msg = _coerce_msg(*args, **kwargs) msg['for'] = wait_id self.send(msg) def send_and_recv(self, type, **kwargs): timeout = kwargs.pop('timeout') msg = _coerce_msg(type, **kwargs) msg['wait'] = True wait_id = self.send(msg) return self.recv_for(wait_id, timeout) def ping(self, timeout=None): return self.send_and_recv('ping', pid=os.getpid(), timeout=timeout) def loop(self, async=False): if async: thread = threading.Thread(target=self.loop) thread.daemon = True thread.start() return thread while True: msg = self.recv() if not msg: return type_ = msg.get('type') wait_id = msg.get('wait') func = self.handlers.get(type_) if func is None and self.server: func = self.server.handlers.get(type_) if func is None: log.warning('unknown message type %r' % type_) self.reply_to(msg, 'error', message='unknown message type %r' % type_) continue if self.server and self.server.name: log.info('%s handling %s' % (self.server.name, type_)) else: log.info('handling %s' % type_) self._handler_reply_ids = set() try: res = func(self, msg) except Exception as e: self.reply_to(msg, 'error', message='unhandled exception %s' % e) continue # If the handler replied, then we are done. if res is None and wait_id is None or wait_id in self._handler_reply_ids: continue res = res.copy() if isinstance(res, dict) and 'type' in res else {'type': 'result', 'value': res} if wait_id is not None: res['for'] = wait_id self.send(res) class ControlServer(object): def __init__(self, addr, name=None): self.addr = addr self.name = name self.handlers = base_handlers.copy() if isinstance(self.addr, basestring): self.sock = socket.socket(socket.AF_UNIX) if os.path.exists(self.addr): # TODO: Try connecting to it before destroying it. unlink(self.addr) makedirs(os.path.dirname(self.addr)) else: self.sock = socket.socket(socket.AF_INET) self.sock.bind(self.addr) self.sock.listen(5) def register(self, func=None, **kwargs): if func is None: return functools(self.register(**kwargs)) self.handlers[kwargs.get('name') or func.__name__] = func def loop(self, async=False): if async: thread = threading.Thread(target=self.loop) thread.daemon = True thread.start() return thread while True: try: client_sock, addr = self.sock.accept() except socket.timeout: continue client = ControlClient(sock=client_sock, server=self) client.loop(async=True)
[]
mtsolmn/lantz-drivers
lantz/drivers/tektronix/tds1002b.py
f48caf9000ddd08f2abb837d832e341410af4788
# -*- coding: utf-8 -*- """ lantz.drivers.tektronix.tds1012 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Implements the drivers to control an oscilloscope. :copyright: 2015 by Lantz Authors, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from lantz.core import Feat, MessageBasedDriver class TDS1002b(MessageBasedDriver): MANUFACTURER_ID = '0x699' MODEL_CODE = '0x363' @Feat(read_once=True) def idn(self): return self.query('*IDN?')
[((19, 5, 19, 25), 'lantz.core.Feat', 'Feat', (), '', False, 'from lantz.core import Feat, MessageBasedDriver\n')]
linkmauve/apitrace
specs/dxgi.py
a22dda1ac2f27cd014ac7a16e7b7b6ebc9f14ae1
########################################################################## # # Copyright 2014 VMware, Inc # Copyright 2011 Jose Fonseca # All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # ##########################################################################/ from .winapi import * DXGI_FORMAT = Enum("DXGI_FORMAT", [ "DXGI_FORMAT_UNKNOWN", "DXGI_FORMAT_R32G32B32A32_TYPELESS", "DXGI_FORMAT_R32G32B32A32_FLOAT", "DXGI_FORMAT_R32G32B32A32_UINT", "DXGI_FORMAT_R32G32B32A32_SINT", "DXGI_FORMAT_R32G32B32_TYPELESS", "DXGI_FORMAT_R32G32B32_FLOAT", "DXGI_FORMAT_R32G32B32_UINT", "DXGI_FORMAT_R32G32B32_SINT", "DXGI_FORMAT_R16G16B16A16_TYPELESS", "DXGI_FORMAT_R16G16B16A16_FLOAT", "DXGI_FORMAT_R16G16B16A16_UNORM", "DXGI_FORMAT_R16G16B16A16_UINT", "DXGI_FORMAT_R16G16B16A16_SNORM", "DXGI_FORMAT_R16G16B16A16_SINT", "DXGI_FORMAT_R32G32_TYPELESS", "DXGI_FORMAT_R32G32_FLOAT", "DXGI_FORMAT_R32G32_UINT", "DXGI_FORMAT_R32G32_SINT", "DXGI_FORMAT_R32G8X24_TYPELESS", "DXGI_FORMAT_D32_FLOAT_S8X24_UINT", "DXGI_FORMAT_R32_FLOAT_X8X24_TYPELESS", "DXGI_FORMAT_X32_TYPELESS_G8X24_UINT", "DXGI_FORMAT_R10G10B10A2_TYPELESS", "DXGI_FORMAT_R10G10B10A2_UNORM", "DXGI_FORMAT_R10G10B10A2_UINT", "DXGI_FORMAT_R11G11B10_FLOAT", "DXGI_FORMAT_R8G8B8A8_TYPELESS", "DXGI_FORMAT_R8G8B8A8_UNORM", "DXGI_FORMAT_R8G8B8A8_UNORM_SRGB", "DXGI_FORMAT_R8G8B8A8_UINT", "DXGI_FORMAT_R8G8B8A8_SNORM", "DXGI_FORMAT_R8G8B8A8_SINT", "DXGI_FORMAT_R16G16_TYPELESS", "DXGI_FORMAT_R16G16_FLOAT", "DXGI_FORMAT_R16G16_UNORM", "DXGI_FORMAT_R16G16_UINT", "DXGI_FORMAT_R16G16_SNORM", "DXGI_FORMAT_R16G16_SINT", "DXGI_FORMAT_R32_TYPELESS", "DXGI_FORMAT_D32_FLOAT", "DXGI_FORMAT_R32_FLOAT", "DXGI_FORMAT_R32_UINT", "DXGI_FORMAT_R32_SINT", "DXGI_FORMAT_R24G8_TYPELESS", "DXGI_FORMAT_D24_UNORM_S8_UINT", "DXGI_FORMAT_R24_UNORM_X8_TYPELESS", "DXGI_FORMAT_X24_TYPELESS_G8_UINT", "DXGI_FORMAT_R8G8_TYPELESS", "DXGI_FORMAT_R8G8_UNORM", "DXGI_FORMAT_R8G8_UINT", "DXGI_FORMAT_R8G8_SNORM", "DXGI_FORMAT_R8G8_SINT", "DXGI_FORMAT_R16_TYPELESS", "DXGI_FORMAT_R16_FLOAT", "DXGI_FORMAT_D16_UNORM", "DXGI_FORMAT_R16_UNORM", "DXGI_FORMAT_R16_UINT", "DXGI_FORMAT_R16_SNORM", "DXGI_FORMAT_R16_SINT", "DXGI_FORMAT_R8_TYPELESS", "DXGI_FORMAT_R8_UNORM", "DXGI_FORMAT_R8_UINT", "DXGI_FORMAT_R8_SNORM", "DXGI_FORMAT_R8_SINT", "DXGI_FORMAT_A8_UNORM", "DXGI_FORMAT_R1_UNORM", "DXGI_FORMAT_R9G9B9E5_SHAREDEXP", "DXGI_FORMAT_R8G8_B8G8_UNORM", "DXGI_FORMAT_G8R8_G8B8_UNORM", "DXGI_FORMAT_BC1_TYPELESS", "DXGI_FORMAT_BC1_UNORM", "DXGI_FORMAT_BC1_UNORM_SRGB", "DXGI_FORMAT_BC2_TYPELESS", "DXGI_FORMAT_BC2_UNORM", "DXGI_FORMAT_BC2_UNORM_SRGB", "DXGI_FORMAT_BC3_TYPELESS", "DXGI_FORMAT_BC3_UNORM", "DXGI_FORMAT_BC3_UNORM_SRGB", "DXGI_FORMAT_BC4_TYPELESS", "DXGI_FORMAT_BC4_UNORM", "DXGI_FORMAT_BC4_SNORM", "DXGI_FORMAT_BC5_TYPELESS", "DXGI_FORMAT_BC5_UNORM", "DXGI_FORMAT_BC5_SNORM", "DXGI_FORMAT_B5G6R5_UNORM", "DXGI_FORMAT_B5G5R5A1_UNORM", "DXGI_FORMAT_B8G8R8A8_UNORM", "DXGI_FORMAT_B8G8R8X8_UNORM", "DXGI_FORMAT_R10G10B10_XR_BIAS_A2_UNORM", "DXGI_FORMAT_B8G8R8A8_TYPELESS", "DXGI_FORMAT_B8G8R8A8_UNORM_SRGB", "DXGI_FORMAT_B8G8R8X8_TYPELESS", "DXGI_FORMAT_B8G8R8X8_UNORM_SRGB", "DXGI_FORMAT_BC6H_TYPELESS", "DXGI_FORMAT_BC6H_UF16", "DXGI_FORMAT_BC6H_SF16", "DXGI_FORMAT_BC7_TYPELESS", "DXGI_FORMAT_BC7_UNORM", "DXGI_FORMAT_BC7_UNORM_SRGB", "DXGI_FORMAT_AYUV", "DXGI_FORMAT_Y410", "DXGI_FORMAT_Y416", "DXGI_FORMAT_NV12", "DXGI_FORMAT_P010", "DXGI_FORMAT_P016", "DXGI_FORMAT_420_OPAQUE", "DXGI_FORMAT_YUY2", "DXGI_FORMAT_Y210", "DXGI_FORMAT_Y216", "DXGI_FORMAT_NV11", "DXGI_FORMAT_AI44", "DXGI_FORMAT_IA44", "DXGI_FORMAT_P8", "DXGI_FORMAT_A8P8", "DXGI_FORMAT_B4G4R4A4_UNORM", ]) HRESULT = MAKE_HRESULT([ "DXGI_STATUS_OCCLUDED", "DXGI_STATUS_CLIPPED", "DXGI_STATUS_NO_REDIRECTION", "DXGI_STATUS_NO_DESKTOP_ACCESS", "DXGI_STATUS_GRAPHICS_VIDPN_SOURCE_IN_USE", "DXGI_STATUS_MODE_CHANGED", "DXGI_STATUS_MODE_CHANGE_IN_PROGRESS", "DXGI_ERROR_INVALID_CALL", "DXGI_ERROR_NOT_FOUND", "DXGI_ERROR_MORE_DATA", "DXGI_ERROR_UNSUPPORTED", "DXGI_ERROR_DEVICE_REMOVED", "DXGI_ERROR_DEVICE_HUNG", "DXGI_ERROR_DEVICE_RESET", "DXGI_ERROR_WAS_STILL_DRAWING", "DXGI_ERROR_FRAME_STATISTICS_DISJOINT", "DXGI_ERROR_GRAPHICS_VIDPN_SOURCE_IN_USE", "DXGI_ERROR_DRIVER_INTERNAL_ERROR", "DXGI_ERROR_NONEXCLUSIVE", "DXGI_ERROR_NOT_CURRENTLY_AVAILABLE", "DXGI_ERROR_REMOTE_CLIENT_DISCONNECTED", "DXGI_ERROR_REMOTE_OUTOFMEMORY", # IDXGIKeyedMutex::AcquireSync "WAIT_ABANDONED", "WAIT_TIMEOUT", ]) DXGI_RGB = Struct("DXGI_RGB", [ (Float, "Red"), (Float, "Green"), (Float, "Blue"), ]) DXGI_GAMMA_CONTROL = Struct("DXGI_GAMMA_CONTROL", [ (DXGI_RGB, "Scale"), (DXGI_RGB, "Offset"), (Array(DXGI_RGB, 1025), "GammaCurve"), ]) DXGI_GAMMA_CONTROL_CAPABILITIES = Struct("DXGI_GAMMA_CONTROL_CAPABILITIES", [ (BOOL, "ScaleAndOffsetSupported"), (Float, "MaxConvertedValue"), (Float, "MinConvertedValue"), (UINT, "NumGammaControlPoints"), (Array(Float, "{self}.NumGammaControlPoints"), "ControlPointPositions"), ]) DXGI_RATIONAL = Struct("DXGI_RATIONAL", [ (UINT, "Numerator"), (UINT, "Denominator"), ]) DXGI_MODE_SCANLINE_ORDER = Enum("DXGI_MODE_SCANLINE_ORDER", [ "DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED", "DXGI_MODE_SCANLINE_ORDER_PROGRESSIVE", "DXGI_MODE_SCANLINE_ORDER_UPPER_FIELD_FIRST", "DXGI_MODE_SCANLINE_ORDER_LOWER_FIELD_FIRST", ]) DXGI_MODE_SCALING = Enum("DXGI_MODE_SCALING", [ "DXGI_MODE_SCALING_UNSPECIFIED", "DXGI_MODE_SCALING_CENTERED", "DXGI_MODE_SCALING_STRETCHED", ]) DXGI_MODE_ROTATION = Enum("DXGI_MODE_ROTATION", [ "DXGI_MODE_ROTATION_UNSPECIFIED", "DXGI_MODE_ROTATION_IDENTITY", "DXGI_MODE_ROTATION_ROTATE90", "DXGI_MODE_ROTATION_ROTATE180", "DXGI_MODE_ROTATION_ROTATE270", ]) DXGI_MODE_DESC = Struct("DXGI_MODE_DESC", [ (UINT, "Width"), (UINT, "Height"), (DXGI_RATIONAL, "RefreshRate"), (DXGI_FORMAT, "Format"), (DXGI_MODE_SCANLINE_ORDER, "ScanlineOrdering"), (DXGI_MODE_SCALING, "Scaling"), ]) DXGI_QUALITY_LEVEL = FakeEnum(UINT, [ "DXGI_STANDARD_MULTISAMPLE_QUALITY_PATTERN", "DXGI_CENTER_MULTISAMPLE_QUALITY_PATTERN", ]) DXGI_SAMPLE_DESC = Struct("DXGI_SAMPLE_DESC", [ (UINT, "Count"), (DXGI_QUALITY_LEVEL, "Quality"), ]) DXGI_RGBA = Struct("DXGI_RGBA", [ (Float, "r"), (Float, "g"), (Float, "b"), (Float, "a"), ]) IDXGIObject = Interface("IDXGIObject", IUnknown) IDXGIDeviceSubObject = Interface("IDXGIDeviceSubObject", IDXGIObject) IDXGIResource = Interface("IDXGIResource", IDXGIDeviceSubObject) IDXGIKeyedMutex = Interface("IDXGIKeyedMutex", IDXGIDeviceSubObject) IDXGISurface = Interface("IDXGISurface", IDXGIDeviceSubObject) IDXGISurface1 = Interface("IDXGISurface1", IDXGISurface) IDXGIAdapter = Interface("IDXGIAdapter", IDXGIObject) IDXGIOutput = Interface("IDXGIOutput", IDXGIObject) IDXGISwapChain = Interface("IDXGISwapChain", IDXGIDeviceSubObject) IDXGIFactory = Interface("IDXGIFactory", IDXGIObject) IDXGIDevice = Interface("IDXGIDevice", IDXGIObject) IDXGIFactory1 = Interface("IDXGIFactory1", IDXGIFactory) IDXGIAdapter1 = Interface("IDXGIAdapter1", IDXGIAdapter) IDXGIDevice1 = Interface("IDXGIDevice1", IDXGIDevice) DXGI_USAGE = Flags(UINT, [ "DXGI_CPU_ACCESS_NONE", # 0 "DXGI_CPU_ACCESS_SCRATCH", # 3 "DXGI_CPU_ACCESS_DYNAMIC", # 1 "DXGI_CPU_ACCESS_READ_WRITE", # 2 "DXGI_USAGE_SHADER_INPUT", "DXGI_USAGE_RENDER_TARGET_OUTPUT", "DXGI_USAGE_BACK_BUFFER", "DXGI_USAGE_SHARED", "DXGI_USAGE_READ_ONLY", "DXGI_USAGE_DISCARD_ON_PRESENT", "DXGI_USAGE_UNORDERED_ACCESS", ]) DXGI_FRAME_STATISTICS = Struct("DXGI_FRAME_STATISTICS", [ (UINT, "PresentCount"), (UINT, "PresentRefreshCount"), (UINT, "SyncRefreshCount"), (LARGE_INTEGER, "SyncQPCTime"), (LARGE_INTEGER, "SyncGPUTime"), ]) DXGI_MAPPED_RECT = Struct("DXGI_MAPPED_RECT", [ (INT, "Pitch"), (LinearPointer(BYTE, "_MappedSize"), "pBits"), ]) DXGI_ADAPTER_DESC = Struct("DXGI_ADAPTER_DESC", [ (WString, "Description"), (UINT, "VendorId"), (UINT, "DeviceId"), (UINT, "SubSysId"), (UINT, "Revision"), (SIZE_T, "DedicatedVideoMemory"), (SIZE_T, "DedicatedSystemMemory"), (SIZE_T, "SharedSystemMemory"), (LUID, "AdapterLuid"), ]) DXGI_OUTPUT_DESC = Struct("DXGI_OUTPUT_DESC", [ (WString, "DeviceName"), (RECT, "DesktopCoordinates"), (BOOL, "AttachedToDesktop"), (DXGI_MODE_ROTATION, "Rotation"), (HMONITOR, "Monitor"), ]) DXGI_SHARED_RESOURCE = Struct("DXGI_SHARED_RESOURCE", [ (HANDLE, "Handle"), ]) DXGI_RESOURCE_PRIORITY = FakeEnum(UINT, [ "DXGI_RESOURCE_PRIORITY_MINIMUM", "DXGI_RESOURCE_PRIORITY_LOW", "DXGI_RESOURCE_PRIORITY_NORMAL", "DXGI_RESOURCE_PRIORITY_HIGH", "DXGI_RESOURCE_PRIORITY_MAXIMUM", ]) DXGI_RESIDENCY = Enum("DXGI_RESIDENCY", [ "DXGI_RESIDENCY_FULLY_RESIDENT", "DXGI_RESIDENCY_RESIDENT_IN_SHARED_MEMORY", "DXGI_RESIDENCY_EVICTED_TO_DISK", ]) DXGI_SURFACE_DESC = Struct("DXGI_SURFACE_DESC", [ (UINT, "Width"), (UINT, "Height"), (DXGI_FORMAT, "Format"), (DXGI_SAMPLE_DESC, "SampleDesc"), ]) DXGI_SWAP_EFFECT = Enum("DXGI_SWAP_EFFECT", [ "DXGI_SWAP_EFFECT_DISCARD", "DXGI_SWAP_EFFECT_SEQUENTIAL", "DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL", "DXGI_SWAP_EFFECT_FLIP_DISCARD", ]) DXGI_SWAP_CHAIN_FLAG = Flags(UINT, [ "DXGI_SWAP_CHAIN_FLAG_NONPREROTATED", "DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH", "DXGI_SWAP_CHAIN_FLAG_GDI_COMPATIBLE", "DXGI_SWAP_CHAIN_FLAG_RESTRICTED_CONTENT", "DXGI_SWAP_CHAIN_FLAG_RESTRICT_SHARED_RESOURCE_DRIVER", "DXGI_SWAP_CHAIN_FLAG_DISPLAY_ONLY", "DXGI_SWAP_CHAIN_FLAG_FRAME_LATENCY_WAITABLE_OBJECT", "DXGI_SWAP_CHAIN_FLAG_FOREGROUND_LAYER", "DXGI_SWAP_CHAIN_FLAG_FULLSCREEN_VIDEO", "DXGI_SWAP_CHAIN_FLAG_YUV_VIDEO", "DXGI_SWAP_CHAIN_FLAG_HW_PROTECTED", "DXGI_SWAP_CHAIN_FLAG_ALLOW_TEARING", #"DXGI_SWAP_CHAIN_FLAG_RESTRICTED_TO_ALL_HOLOGRAPHIC_DISPLAYS", # DXGI 1.6 ]) DXGI_SWAP_CHAIN_DESC = Struct("DXGI_SWAP_CHAIN_DESC", [ (DXGI_MODE_DESC, "BufferDesc"), (DXGI_SAMPLE_DESC, "SampleDesc"), (DXGI_USAGE, "BufferUsage"), (UINT, "BufferCount"), (HWND, "OutputWindow"), (BOOL, "Windowed"), (DXGI_SWAP_EFFECT, "SwapEffect"), (DXGI_SWAP_CHAIN_FLAG, "Flags"), ]) IDXGIObject.methods += [ StdMethod(HRESULT, "SetPrivateData", [(REFGUID, "Name"), (UINT, "DataSize"), (OpaqueBlob(Const(Void), "DataSize"), "pData")], sideeffects=False), StdMethod(HRESULT, "SetPrivateDataInterface", [(REFGUID, "Name"), (OpaquePointer(Const(IUnknown)), "pUnknown")], sideeffects=False), StdMethod(HRESULT, "GetPrivateData", [(REFGUID, "Name"), InOut(Pointer(UINT), "pDataSize"), Out(OpaquePointer(Void), "pData")], sideeffects=False), StdMethod(HRESULT, "GetParent", [(REFIID, "riid"), Out(Pointer(ObjPointer(Void)), "ppParent")]), ] IDXGIDeviceSubObject.methods += [ StdMethod(HRESULT, "GetDevice", [(REFIID, "riid"), Out(Pointer(ObjPointer(Void)), "ppDevice")]), ] SHARED_HANDLE = Handle("shared_handle", RAW_HANDLE) IDXGIResource.methods += [ StdMethod(HRESULT, "GetSharedHandle", [Out(Pointer(SHARED_HANDLE), "pSharedHandle")]), StdMethod(HRESULT, "GetUsage", [Out(Pointer(DXGI_USAGE), "pUsage")], sideeffects=False), StdMethod(HRESULT, "SetEvictionPriority", [(DXGI_RESOURCE_PRIORITY, "EvictionPriority")]), StdMethod(HRESULT, "GetEvictionPriority", [Out(Pointer(DXGI_RESOURCE_PRIORITY), "pEvictionPriority")], sideeffects=False), ] DWORD_TIMEOUT = FakeEnum(DWORD, [ "INFINITE", ]) IDXGIKeyedMutex.methods += [ StdMethod(HRESULT, "AcquireSync", [(UINT64, "Key"), (DWORD_TIMEOUT, "dwMilliseconds")], sideeffects=False), StdMethod(HRESULT, "ReleaseSync", [(UINT64, "Key")]), ] DXGI_MAP = Flags(UINT, [ "DXGI_MAP_READ", "DXGI_MAP_WRITE", "DXGI_MAP_DISCARD", ]) IDXGISurface.methods += [ StdMethod(HRESULT, "GetDesc", [Out(Pointer(DXGI_SURFACE_DESC), "pDesc")], sideeffects=False), StdMethod(HRESULT, "Map", [Out(Pointer(DXGI_MAPPED_RECT), "pLockedRect"), (DXGI_MAP, "MapFlags")]), StdMethod(HRESULT, "Unmap", []), ] IDXGISurface1.methods += [ StdMethod(HRESULT, "GetDC", [(BOOL, "Discard"), Out(Pointer(HDC), "phdc")]), StdMethod(HRESULT, "ReleaseDC", [(Pointer(RECT), "pDirtyRect")]), ] IDXGIAdapter.methods += [ StdMethod(HRESULT, "EnumOutputs", [(UINT, "Output"), Out(Pointer(ObjPointer(IDXGIOutput)), "ppOutput")]), StdMethod(HRESULT, "GetDesc", [Out(Pointer(DXGI_ADAPTER_DESC), "pDesc")], sideeffects=False), StdMethod(HRESULT, "CheckInterfaceSupport", [(REFGUID, "InterfaceName"), Out(Pointer(LARGE_INTEGER), "pUMDVersion")], sideeffects=False), ] DXGI_ENUM_MODES = Flags(UINT, [ "DXGI_ENUM_MODES_INTERLACED", "DXGI_ENUM_MODES_SCALING", "DXGI_ENUM_MODES_STEREO", "DXGI_ENUM_MODES_DISABLED_STEREO", ]) IDXGIOutput.methods += [ StdMethod(HRESULT, "GetDesc", [Out(Pointer(DXGI_OUTPUT_DESC), "pDesc")], sideeffects=False), StdMethod(HRESULT, "GetDisplayModeList", [(DXGI_FORMAT, "EnumFormat"), (DXGI_ENUM_MODES, "Flags"), InOut(Pointer(UINT), "pNumModes"), Out(Array(DXGI_MODE_DESC, "*pNumModes"), "pDesc")], sideeffects=False), StdMethod(HRESULT, "FindClosestMatchingMode", [(Pointer(Const(DXGI_MODE_DESC)), "pModeToMatch"), Out(Pointer(DXGI_MODE_DESC), "pClosestMatch"), (ObjPointer(IUnknown), "pConcernedDevice")], sideeffects=False), StdMethod(HRESULT, "WaitForVBlank", []), StdMethod(HRESULT, "TakeOwnership", [(ObjPointer(IUnknown), "pDevice"), (BOOL, "Exclusive")]), StdMethod(Void, "ReleaseOwnership", []), StdMethod(HRESULT, "GetGammaControlCapabilities", [Out(Pointer(DXGI_GAMMA_CONTROL_CAPABILITIES), "pGammaCaps")], sideeffects=False), StdMethod(HRESULT, "SetGammaControl", [(Pointer(Const(DXGI_GAMMA_CONTROL)), "pArray")], sideeffects=False), # Avoid NumGammaControlPoints mismatch StdMethod(HRESULT, "GetGammaControl", [Out(Pointer(DXGI_GAMMA_CONTROL), "pArray")], sideeffects=False), StdMethod(HRESULT, "SetDisplaySurface", [(ObjPointer(IDXGISurface), "pScanoutSurface")]), StdMethod(HRESULT, "GetDisplaySurfaceData", [(ObjPointer(IDXGISurface), "pDestination")]), StdMethod(HRESULT, "GetFrameStatistics", [Out(Pointer(DXGI_FRAME_STATISTICS), "pStats")], sideeffects=False), ] DXGI_PRESENT = Flags(UINT, [ "DXGI_PRESENT_TEST", "DXGI_PRESENT_DO_NOT_SEQUENCE", "DXGI_PRESENT_RESTART", "DXGI_PRESENT_DO_NOT_WAIT", "DXGI_PRESENT_STEREO_PREFER_RIGHT", "DXGI_PRESENT_STEREO_TEMPORARY_MONO", "DXGI_PRESENT_RESTRICT_TO_OUTPUT", "DXGI_PRESENT_USE_DURATION", ]) IDXGISwapChain.methods += [ StdMethod(HRESULT, "Present", [(UINT, "SyncInterval"), (DXGI_PRESENT, "Flags")]), StdMethod(HRESULT, "GetBuffer", [(UINT, "Buffer"), (REFIID, "riid"), Out(Pointer(ObjPointer(Void)), "ppSurface")]), StdMethod(HRESULT, "SetFullscreenState", [(BOOL, "Fullscreen"), (ObjPointer(IDXGIOutput), "pTarget")]), StdMethod(HRESULT, "GetFullscreenState", [Out(Pointer(BOOL), "pFullscreen"), Out(Pointer(ObjPointer(IDXGIOutput)), "ppTarget")]), StdMethod(HRESULT, "GetDesc", [Out(Pointer(DXGI_SWAP_CHAIN_DESC), "pDesc")], sideeffects=False), StdMethod(HRESULT, "ResizeBuffers", [(UINT, "BufferCount"), (UINT, "Width"), (UINT, "Height"), (DXGI_FORMAT, "NewFormat"), (DXGI_SWAP_CHAIN_FLAG, "SwapChainFlags")]), StdMethod(HRESULT, "ResizeTarget", [(Pointer(Const(DXGI_MODE_DESC)), "pNewTargetParameters")]), StdMethod(HRESULT, "GetContainingOutput", [Out(Pointer(ObjPointer(IDXGIOutput)), "ppOutput")]), StdMethod(HRESULT, "GetFrameStatistics", [Out(Pointer(DXGI_FRAME_STATISTICS), "pStats")], sideeffects=False), StdMethod(HRESULT, "GetLastPresentCount", [Out(Pointer(UINT), "pLastPresentCount")], sideeffects=False), ] DXGI_MWA = Flags(UINT, [ "DXGI_MWA_NO_WINDOW_CHANGES", "DXGI_MWA_NO_ALT_ENTER", "DXGI_MWA_NO_PRINT_SCREEN", "DXGI_MWA_VALID", ]) IDXGIFactory.methods += [ StdMethod(HRESULT, "EnumAdapters", [(UINT, "Adapter"), Out(Pointer(ObjPointer(IDXGIAdapter)), "ppAdapter")]), StdMethod(HRESULT, "MakeWindowAssociation", [(HWND, "WindowHandle"), (DXGI_MWA, "Flags")], sideeffects=False), StdMethod(HRESULT, "GetWindowAssociation", [Out(Pointer(HWND), "pWindowHandle")], sideeffects=False), StdMethod(HRESULT, "CreateSwapChain", [(ObjPointer(IUnknown), "pDevice"), (Pointer(DXGI_SWAP_CHAIN_DESC), "pDesc"), Out(Pointer(ObjPointer(IDXGISwapChain)), "ppSwapChain")]), StdMethod(HRESULT, "CreateSoftwareAdapter", [(HMODULE, "Module"), Out(Pointer(ObjPointer(IDXGIAdapter)), "ppAdapter")]), ] IDXGIDevice.methods += [ StdMethod(HRESULT, "GetAdapter", [Out(Pointer(ObjPointer(IDXGIAdapter)), "pAdapter")]), StdMethod(HRESULT, "CreateSurface", [(Pointer(Const(DXGI_SURFACE_DESC)), "pDesc"), (UINT, "NumSurfaces"), (DXGI_USAGE, "Usage"), (Pointer(Const(DXGI_SHARED_RESOURCE)), "pSharedResource"), Out(Pointer(ObjPointer(IDXGISurface)), "ppSurface")]), StdMethod(HRESULT, "QueryResourceResidency", [(Array(Const(ObjPointer(IUnknown)), "NumResources"), "ppResources"), Out(Array(DXGI_RESIDENCY, "NumResources"), "pResidencyStatus"), (UINT, "NumResources")], sideeffects=False), StdMethod(HRESULT, "SetGPUThreadPriority", [(INT, "Priority")]), StdMethod(HRESULT, "GetGPUThreadPriority", [Out(Pointer(INT), "pPriority")], sideeffects=False), ] DXGI_ADAPTER_FLAG = FakeEnum(UINT, [ "DXGI_ADAPTER_FLAG_NONE", "DXGI_ADAPTER_FLAG_REMOTE", "DXGI_ADAPTER_FLAG_SOFTWARE", ]) DXGI_ADAPTER_DESC1 = Struct("DXGI_ADAPTER_DESC1", [ (WString, "Description"), (UINT, "VendorId"), (UINT, "DeviceId"), (UINT, "SubSysId"), (UINT, "Revision"), (SIZE_T, "DedicatedVideoMemory"), (SIZE_T, "DedicatedSystemMemory"), (SIZE_T, "SharedSystemMemory"), (LUID, "AdapterLuid"), (DXGI_SWAP_CHAIN_FLAG, "Flags"), ]) DXGI_DISPLAY_COLOR_SPACE = Struct("DXGI_DISPLAY_COLOR_SPACE", [ (Array(Array(FLOAT, 8), 2), "PrimaryCoordinates"), (Array(Array(FLOAT, 16), 2), "WhitePoints"), ]) IDXGIFactory1.methods += [ StdMethod(HRESULT, "EnumAdapters1", [(UINT, "Adapter"), Out(Pointer(ObjPointer(IDXGIAdapter1)), "ppAdapter")]), StdMethod(BOOL, "IsCurrent", [], sideeffects=False), ] IDXGIAdapter1.methods += [ StdMethod(HRESULT, "GetDesc1", [Out(Pointer(DXGI_ADAPTER_DESC1), "pDesc")], sideeffects=False), ] IDXGIDevice1.methods += [ StdMethod(HRESULT, "SetMaximumFrameLatency", [(UINT, "MaxLatency")]), StdMethod(HRESULT, "GetMaximumFrameLatency", [Out(Pointer(UINT), "pMaxLatency")], sideeffects=False), ] dxgi = Module('dxgi') dxgi.addInterfaces([ IDXGIKeyedMutex, IDXGIFactory1, IDXGIDevice1, IDXGIAdapter1, IDXGIResource, ]) dxgi.addFunctions([ StdFunction(HRESULT, "CreateDXGIFactory", [(REFIID, "riid"), Out(Pointer(ObjPointer(Void)), "ppFactory")]), StdFunction(HRESULT, "CreateDXGIFactory1", [(REFIID, "riid"), Out(Pointer(ObjPointer(Void)), "ppFactory")]), StdFunction(HRESULT, "DXGID3D10CreateDevice", [(HMODULE, "hModule"), (ObjPointer(IDXGIFactory), "pFactory"), (ObjPointer(IDXGIAdapter), "pAdapter"), (UINT, "Flags"), (OpaquePointer(Const(IUnknown)), "pUnknown"), Out(Pointer(ObjPointer(Void)), "ppDevice")], internal=True), StdFunction(HRESULT, "DXGID3D10CreateLayeredDevice", [(UINT), (UINT), (UINT), (UINT), (UINT)], internal=True), StdFunction(SIZE_T, "DXGID3D10GetLayeredDeviceSize", [(OpaqueArray(Const(Void), "NumLayers"), "pLayers"), (UINT, "NumLayers")], internal=True), StdFunction(HRESULT, "DXGID3D10RegisterLayers", [(OpaqueArray(Const(Void), "NumLayers"), "pLayers"), (UINT, "NumLayers")], internal=True), ]) # # DXGI 1.2 # IDXGIDisplayControl = Interface("IDXGIDisplayControl", IUnknown) IDXGIDisplayControl.methods += [ StdMethod(BOOL, "IsStereoEnabled", [], sideeffects=False), StdMethod(Void, "SetStereoEnabled", [(BOOL, "enabled")]), ] DXGI_OUTDUPL_MOVE_RECT = Struct("DXGI_OUTDUPL_MOVE_RECT", [ (POINT, "SourcePoint"), (RECT, "DestinationRect"), ]) DXGI_OUTDUPL_DESC = Struct("DXGI_OUTDUPL_DESC", [ (DXGI_MODE_DESC, "ModeDesc"), (DXGI_MODE_ROTATION, "Rotation"), (BOOL, "DesktopImageInSystemMemory"), ]) DXGI_OUTDUPL_POINTER_POSITION = Struct("DXGI_OUTDUPL_POINTER_POSITION", [ (POINT, "Position"), (BOOL, "Visible"), ]) DXGI_OUTDUPL_POINTER_SHAPE_TYPE = Enum("DXGI_OUTDUPL_POINTER_SHAPE_TYPE", [ "DXGI_OUTDUPL_POINTER_SHAPE_TYPE_MONOCHROME", "DXGI_OUTDUPL_POINTER_SHAPE_TYPE_COLOR", "DXGI_OUTDUPL_POINTER_SHAPE_TYPE_MASKED_COLOR", ]) DXGI_OUTDUPL_POINTER_SHAPE_INFO = Struct("DXGI_OUTDUPL_POINTER_SHAPE_INFO", [ (UINT, "Type"), (UINT, "Width"), (UINT, "Height"), (UINT, "Pitch"), (POINT, "HotSpot"), ]) DXGI_OUTDUPL_FRAME_INFO = Struct("DXGI_OUTDUPL_FRAME_INFO", [ (LARGE_INTEGER, "LastPresentTime"), (LARGE_INTEGER, "LastMouseUpdateTime"), (UINT, "AccumulatedFrames"), (BOOL, "RectsCoalesced"), (BOOL, "ProtectedContentMaskedOut"), (DXGI_OUTDUPL_POINTER_POSITION, "PointerPosition"), (UINT, "TotalMetadataBufferSize"), (UINT, "PointerShapeBufferSize"), ]) IDXGIOutputDuplication = Interface("IDXGIOutputDuplication", IDXGIObject) IDXGIOutputDuplication.methods += [ StdMethod(Void, "GetDesc", [Out(Pointer(DXGI_OUTDUPL_DESC), "pDesc")], sideeffects=False), StdMethod(HRESULT, "AcquireNextFrame", [(UINT, "TimeoutInMilliseconds"), Out(Pointer(DXGI_OUTDUPL_FRAME_INFO), "pFrameInfo"), Out(Pointer(ObjPointer(IDXGIResource)), "ppDesktopResource")]), StdMethod(HRESULT, "GetFrameDirtyRects", [(UINT, "DirtyRectsBufferSize"), Out(Array(RECT, "DirtyRectsBufferSize"), "pDirtyRectsBuffer"), Out(Pointer(UINT), "pDirtyRectsBufferSizeRequired")], sideeffects=False), StdMethod(HRESULT, "GetFrameMoveRects", [(UINT, "MoveRectsBufferSize"), Out(Array(DXGI_OUTDUPL_MOVE_RECT, "MoveRectsBufferSize"), "pMoveRectBuffer"), Out(Pointer(UINT), "pMoveRectsBufferSizeRequired")], sideeffects=False), StdMethod(HRESULT, "GetFramePointerShape", [(UINT, "PointerShapeBufferSize"), Out(OpaqueBlob(Void, "PointerShapeBufferSize"), "pPointerShapeBuffer"), Out(Pointer(UINT), "pPointerShapeBufferSizeRequired"), Out(Pointer(DXGI_OUTDUPL_POINTER_SHAPE_INFO), "pPointerShapeInfo")], sideeffects=False), StdMethod(HRESULT, "MapDesktopSurface", [Out(Pointer(DXGI_MAPPED_RECT), "pLockedRect")], sideeffects=False), StdMethod(HRESULT, "UnMapDesktopSurface", [], sideeffects=False), StdMethod(HRESULT, "ReleaseFrame", []), ] DXGI_ALPHA_MODE = Enum("DXGI_ALPHA_MODE", [ "DXGI_ALPHA_MODE_UNSPECIFIED", "DXGI_ALPHA_MODE_PREMULTIPLIED", "DXGI_ALPHA_MODE_STRAIGHT", "DXGI_ALPHA_MODE_IGNORE", ]) IDXGISurface2 = Interface("IDXGISurface2", IDXGISurface1) IDXGISurface2.methods += [ StdMethod(HRESULT, "GetResource", [(REFIID, "riid"), Out(Pointer(ObjPointer(Void)), "ppParentResource"), Out(Pointer(UINT), "pSubresourceIndex")]), ] DXGI_SHARED_RESOURCE_FLAG = Flags(DWORD, [ "DXGI_SHARED_RESOURCE_READ", "DXGI_SHARED_RESOURCE_WRITE", ]) IDXGIResource1 = Interface("IDXGIResource1", IDXGIResource) IDXGIResource1.methods += [ StdMethod(HRESULT, "CreateSubresourceSurface", [(UINT, "index"), Out(Pointer(ObjPointer(IDXGISurface2)), "ppSurface")]), StdMethod(HRESULT, "CreateSharedHandle", [(Pointer(Const(SECURITY_ATTRIBUTES)), "pAttributes"), (DXGI_SHARED_RESOURCE_FLAG, "dwAccess"), (LPCWSTR, "lpName"), Out(Pointer(HANDLE), "pHandle")]), ] DXGI_OFFER_RESOURCE_PRIORITY = Enum("DXGI_OFFER_RESOURCE_PRIORITY", [ "DXGI_OFFER_RESOURCE_PRIORITY_LOW", "DXGI_OFFER_RESOURCE_PRIORITY_NORMAL", "DXGI_OFFER_RESOURCE_PRIORITY_HIGH", ]) IDXGIDevice2 = Interface("IDXGIDevice2", IDXGIDevice1) IDXGIDevice2.methods += [ StdMethod(HRESULT, "OfferResources", [(UINT, "NumResources"), (Array(Const(ObjPointer(IDXGIResource)), "NumResources"), "ppResources"), (DXGI_OFFER_RESOURCE_PRIORITY, "Priority")]), StdMethod(HRESULT, "ReclaimResources", [(UINT, "NumResources"), (Array(Const(ObjPointer(IDXGIResource)), "NumResources"), "ppResources"), Out(Pointer(BOOL), "pDiscarded")]), StdMethod(HRESULT, "EnqueueSetEvent", [(HANDLE, "hEvent")], sideeffects=False), ] DXGI_MODE_DESC1 = Struct("DXGI_MODE_DESC1", [ (UINT, "Width"), (UINT, "Height"), (DXGI_RATIONAL, "RefreshRate"), (DXGI_FORMAT, "Format"), (DXGI_MODE_SCANLINE_ORDER, "ScanlineOrdering"), (DXGI_MODE_SCALING, "Scaling"), (BOOL, "Stereo"), ]) DXGI_SCALING = Enum("DXGI_SCALING", [ "DXGI_SCALING_STRETCH", "DXGI_SCALING_NONE", "DXGI_SCALING_ASPECT_RATIO_STRETCH", ]) DXGI_SWAP_CHAIN_DESC1 = Struct("DXGI_SWAP_CHAIN_DESC1", [ (UINT, "Width"), (UINT, "Height"), (DXGI_FORMAT, "Format"), (BOOL, "Stereo"), (DXGI_SAMPLE_DESC, "SampleDesc"), (DXGI_USAGE, "BufferUsage"), (UINT, "BufferCount"), (DXGI_SCALING, "Scaling"), (DXGI_SWAP_EFFECT, "SwapEffect"), (DXGI_ALPHA_MODE, "AlphaMode"), (DXGI_SWAP_CHAIN_FLAG, "Flags"), ]) DXGI_SWAP_CHAIN_FULLSCREEN_DESC = Struct("DXGI_SWAP_CHAIN_FULLSCREEN_DESC", [ (DXGI_RATIONAL, "RefreshRate"), (DXGI_MODE_SCANLINE_ORDER, "ScanlineOrdering"), (DXGI_MODE_SCALING, "Scaling"), (BOOL, "Windowed"), ]) DXGI_PRESENT_PARAMETERS = Struct("DXGI_PRESENT_PARAMETERS", [ (UINT, "DirtyRectsCount"), (Array(RECT, "{self}.DirtyRectsCount"), "pDirtyRects"), (Pointer(RECT), "pScrollRect"), (Pointer(POINT), "pScrollOffset"), ]) IDXGISwapChain1 = Interface("IDXGISwapChain1", IDXGISwapChain) IDXGISwapChain1.methods += [ StdMethod(HRESULT, "GetDesc1", [(Out(Pointer(DXGI_SWAP_CHAIN_DESC1), "pDesc"))], sideeffects=False), StdMethod(HRESULT, "GetFullscreenDesc", [(Out(Pointer(DXGI_SWAP_CHAIN_FULLSCREEN_DESC), "pDesc"))], sideeffects=False), StdMethod(HRESULT, "GetHwnd", [(Out(Pointer(HWND), "pHwnd"))], sideeffects=False), StdMethod(HRESULT, "GetCoreWindow", [(REFIID, "riid"), (Out(Pointer(ObjPointer(Void)), "ppUnk"))]), StdMethod(HRESULT, "Present1", [(UINT, "SyncInterval"), (DXGI_PRESENT, "Flags"), (Pointer(Const(DXGI_PRESENT_PARAMETERS)), "pPresentParameters")]), StdMethod(BOOL, "IsTemporaryMonoSupported", [], sideeffects=False), StdMethod(HRESULT, "GetRestrictToOutput", [(Out(Pointer(ObjPointer(IDXGIOutput)), "ppRestrictToOutput"))]), StdMethod(HRESULT, "SetBackgroundColor", [(Pointer(Const(DXGI_RGBA)), "pColor")]), StdMethod(HRESULT, "GetBackgroundColor", [(Out(Pointer(DXGI_RGBA), "pColor"))], sideeffects=False), StdMethod(HRESULT, "SetRotation", [(DXGI_MODE_ROTATION, "Rotation")]), StdMethod(HRESULT, "GetRotation", [(Out(Pointer(DXGI_MODE_ROTATION), "pRotation"))], sideeffects=False), ] IDXGIFactory2 = Interface("IDXGIFactory2", IDXGIFactory1) IDXGIFactory2.methods += [ StdMethod(BOOL, "IsWindowedStereoEnabled", [], sideeffects=False), StdMethod(HRESULT, "CreateSwapChainForHwnd", [(ObjPointer(IUnknown), "pDevice"), (HWND, "hWnd"), (Pointer(Const(DXGI_SWAP_CHAIN_DESC1)), "pDesc"), (Pointer(Const(DXGI_SWAP_CHAIN_FULLSCREEN_DESC)), "pFullscreenDesc"), (ObjPointer(IDXGIOutput), "pRestrictToOutput"), Out(Pointer(ObjPointer(IDXGISwapChain1)), "ppSwapChain")]), StdMethod(HRESULT, "CreateSwapChainForCoreWindow", [(ObjPointer(IUnknown), "pDevice"), (ObjPointer(IUnknown), "pWindow"), (Pointer(Const(DXGI_SWAP_CHAIN_DESC1)), "pDesc"), (ObjPointer(IDXGIOutput), "pRestrictToOutput"), Out(Pointer(ObjPointer(IDXGISwapChain1)), "ppSwapChain")]), StdMethod(HRESULT, "GetSharedResourceAdapterLuid", [(HANDLE, "hResource"), Out(Pointer(LUID), "pLuid")], sideeffects=False), StdMethod(HRESULT, "RegisterStereoStatusWindow", [(HWND, "WindowHandle"), (UINT, "wMsg"), Out(Pointer(DWORD), "pdwCookie")], sideeffects=False), StdMethod(HRESULT, "RegisterStereoStatusEvent", [(HANDLE, "hEvent"), Out(Pointer(DWORD), "pdwCookie")], sideeffects=False), StdMethod(Void, "UnregisterStereoStatus", [(DWORD, "dwCookie")], sideeffects=False), StdMethod(HRESULT, "RegisterOcclusionStatusWindow", [(HWND, "WindowHandle"), (UINT, "wMsg"), Out(Pointer(DWORD), "pdwCookie")], sideeffects=False), StdMethod(HRESULT, "RegisterOcclusionStatusEvent", [(HANDLE, "hEvent"), Out(Pointer(DWORD), "pdwCookie")], sideeffects=False), StdMethod(Void, "UnregisterOcclusionStatus", [(DWORD, "dwCookie")], sideeffects=False), StdMethod(HRESULT, "CreateSwapChainForComposition", [(ObjPointer(IUnknown), "pDevice"), (Pointer(Const(DXGI_SWAP_CHAIN_DESC1)), "pDesc"), (ObjPointer(IDXGIOutput), "pRestrictToOutput"), Out(Pointer(ObjPointer(IDXGISwapChain1)), "ppSwapChain")]), ] DXGI_GRAPHICS_PREEMPTION_GRANULARITY = Enum("DXGI_GRAPHICS_PREEMPTION_GRANULARITY", [ "DXGI_GRAPHICS_PREEMPTION_DMA_BUFFER_BOUNDARY", "DXGI_GRAPHICS_PREEMPTION_PRIMITIVE_BOUNDARY", "DXGI_GRAPHICS_PREEMPTION_TRIANGLE_BOUNDARY", "DXGI_GRAPHICS_PREEMPTION_PIXEL_BOUNDARY", "DXGI_GRAPHICS_PREEMPTION_INSTRUCTION_BOUNDARY", ]) DXGI_COMPUTE_PREEMPTION_GRANULARITY = Enum("DXGI_COMPUTE_PREEMPTION_GRANULARITY", [ "DXGI_COMPUTE_PREEMPTION_DMA_BUFFER_BOUNDARY", "DXGI_COMPUTE_PREEMPTION_DISPATCH_BOUNDARY", "DXGI_COMPUTE_PREEMPTION_THREAD_GROUP_BOUNDARY", "DXGI_COMPUTE_PREEMPTION_THREAD_BOUNDARY", "DXGI_COMPUTE_PREEMPTION_INSTRUCTION_BOUNDARY", ]) DXGI_ADAPTER_DESC2 = Struct("DXGI_ADAPTER_DESC2", [ (WString, "Description"), (UINT, "VendorId"), (UINT, "DeviceId"), (UINT, "SubSysId"), (UINT, "Revision"), (SIZE_T, "DedicatedVideoMemory"), (SIZE_T, "DedicatedSystemMemory"), (SIZE_T, "SharedSystemMemory"), (LUID, "AdapterLuid"), (DXGI_ADAPTER_FLAG, "Flags"), (DXGI_GRAPHICS_PREEMPTION_GRANULARITY, "GraphicsPreemptionGranularity"), (DXGI_COMPUTE_PREEMPTION_GRANULARITY, "ComputePreemptionGranularity"), ]) IDXGIAdapter2 = Interface("IDXGIAdapter2", IDXGIAdapter1) IDXGIAdapter2.methods += [ StdMethod(HRESULT, "GetDesc2", [Out(Pointer(DXGI_ADAPTER_DESC2), "pDesc")], sideeffects=False), ] IDXGIOutput1 = Interface("IDXGIOutput1", IDXGIOutput) IDXGIOutput1.methods += [ StdMethod(HRESULT, "GetDisplayModeList1", [(DXGI_FORMAT, "EnumFormat"), (DXGI_ENUM_MODES, "Flags"), InOut(Pointer(UINT), "pNumModes"), Out(Array(DXGI_MODE_DESC1, "*pNumModes"), "pDesc")], sideeffects=False), StdMethod(HRESULT, "FindClosestMatchingMode1", [(Pointer(Const(DXGI_MODE_DESC1)), "pModeToMatch"), Out(Pointer(DXGI_MODE_DESC1), "pClosestMatch"), (ObjPointer(IUnknown), "pConcernedDevice")], sideeffects=False), StdMethod(HRESULT, "GetDisplaySurfaceData1", [(ObjPointer(IDXGIResource), "pDestination")]), StdMethod(HRESULT, "DuplicateOutput", [(ObjPointer(IUnknown), "pDevice"), Out(Pointer(ObjPointer(IDXGIOutputDuplication)), "ppOutputDuplication")]), ] dxgi.addInterfaces([ IDXGIDisplayControl, IDXGIDevice2, IDXGISwapChain1, IDXGIFactory2, IDXGIResource1, IDXGIAdapter2, IDXGIOutput1, ]) # # DXGI 1.3 # DXGI_CREATE_FACTORY_FLAGS = Flags(UINT, [ "DXGI_CREATE_FACTORY_DEBUG", ]) dxgi.addFunctions([ StdFunction(HRESULT, "CreateDXGIFactory2", [(DXGI_CREATE_FACTORY_FLAGS, "Flags"), (REFIID, "riid"), Out(Pointer(ObjPointer(Void)), "ppFactory")]), ]) IDXGIDevice3 = Interface("IDXGIDevice3", IDXGIDevice2) IDXGIDevice3.methods += [ StdMethod(Void, "Trim", []), ] DXGI_MATRIX_3X2_F = Struct("DXGI_MATRIX_3X2_F", [ (FLOAT, "_11"), (FLOAT, "_12"), (FLOAT, "_21"), (FLOAT, "_22"), (FLOAT, "_31"), (FLOAT, "_32"), ]) IDXGISwapChain2 = Interface("IDXGISwapChain2", IDXGISwapChain1) IDXGISwapChain2.methods += [ StdMethod(HRESULT, "SetSourceSize", [(UINT, "Width"), (UINT, "Height")]), StdMethod(HRESULT, "GetSourceSize", [Out(Pointer(UINT), "pWidth"), Out(Pointer(UINT), "pHeight")], sideeffects=False), StdMethod(HRESULT, "SetMaximumFrameLatency", [(UINT, "MaxLatency")]), StdMethod(HRESULT, "GetMaximumFrameLatency", [Out(Pointer(UINT), "pMaxLatency")], sideeffects=False), StdMethod(HANDLE, "GetFrameLatencyWaitableObject", [], sideeffects=False), StdMethod(HRESULT, "SetMatrixTransform", [(Pointer(Const(DXGI_MATRIX_3X2_F)), "pMatrix")]), StdMethod(HRESULT, "GetMatrixTransform", [Out(Pointer(DXGI_MATRIX_3X2_F), "pMatrix")], sideeffects=False), ] IDXGIOutput2 = Interface("IDXGIOutput2", IDXGIOutput1) IDXGIOutput2.methods += [ StdMethod(BOOL, "SupportsOverlays", [], sideeffects=False), ] IDXGIFactory3 = Interface("IDXGIFactory3", IDXGIFactory2) IDXGIFactory3.methods += [ StdMethod(DXGI_CREATE_FACTORY_FLAGS, "GetCreationFlags", [], sideeffects=False), ] DXGI_DECODE_SWAP_CHAIN_DESC = Struct("DXGI_DECODE_SWAP_CHAIN_DESC", [ (UINT, "Flags"), ]) # XXX: Flags DXGI_MULTIPLANE_OVERLAY_YCbCr_FLAGS = Enum("DXGI_MULTIPLANE_OVERLAY_YCbCr_FLAGS", [ "DXGI_MULTIPLANE_OVERLAY_YCbCr_FLAG_NOMINAL_RANGE", "DXGI_MULTIPLANE_OVERLAY_YCbCr_FLAG_BT709", "DXGI_MULTIPLANE_OVERLAY_YCbCr_FLAG_xvYCC", ]) IDXGIDecodeSwapChain = Interface("IDXGIDecodeSwapChain", IUnknown) IDXGIDecodeSwapChain.methods += [ StdMethod(HRESULT, "PresentBuffer", [(UINT, "BufferToPresent"), (UINT, "SyncInterval"), (DXGI_PRESENT, "Flags")]), StdMethod(HRESULT, "SetSourceRect", [(Pointer(Const(RECT)), "pRect")]), StdMethod(HRESULT, "SetTargetRect", [(Pointer(Const(RECT)), "pRect")]), StdMethod(HRESULT, "SetDestSize", [(UINT, "Width"), (UINT, "Height")]), StdMethod(HRESULT, "GetSourceRect", [Out(Pointer(RECT), "pRect")], sideeffects=False), StdMethod(HRESULT, "GetTargetRect", [Out(Pointer(RECT), "pRect")], sideeffects=False), StdMethod(HRESULT, "GetDestSize", [Out(Pointer(UINT), "pWidth"), Out(Pointer(UINT), "pHeight")], sideeffects=False), StdMethod(HRESULT, "SetColorSpace", [(DXGI_MULTIPLANE_OVERLAY_YCbCr_FLAGS, "ColorSpace")]), StdMethod(DXGI_MULTIPLANE_OVERLAY_YCbCr_FLAGS, "GetColorSpace", [], sideeffects=False), ] IDXGIFactoryMedia = Interface("IDXGIFactoryMedia", IUnknown) IDXGIFactoryMedia.methods += [ StdMethod(HRESULT, "CreateSwapChainForCompositionSurfaceHandle", [(ObjPointer(IUnknown), "pDevice"), (HANDLE, "hSurface"), (Pointer(Const(DXGI_SWAP_CHAIN_DESC1)), "pDesc"), (ObjPointer(IDXGIOutput), "pRestrictToOutput"), Out(Pointer(ObjPointer(IDXGISwapChain1)), "ppSwapChain")]), StdMethod(HRESULT, "CreateDecodeSwapChainForCompositionSurfaceHandle", [(ObjPointer(IUnknown), "pDevice"), (HANDLE, "hSurface"), (Pointer(DXGI_DECODE_SWAP_CHAIN_DESC), "pDesc"), (ObjPointer(IDXGIResource), "pYuvDecodeBuffers"), (ObjPointer(IDXGIOutput), "pRestrictToOutput"), Out(Pointer(ObjPointer(IDXGIDecodeSwapChain)), "ppSwapChain")]), ] DXGI_FRAME_PRESENTATION_MODE = Enum("DXGI_FRAME_PRESENTATION_MODE", [ "DXGI_FRAME_PRESENTATION_MODE_COMPOSED", "DXGI_FRAME_PRESENTATION_MODE_OVERLAY", "DXGI_FRAME_PRESENTATION_MODE_NONE", ]) DXGI_FRAME_STATISTICS_MEDIA = Struct("DXGI_FRAME_STATISTICS_MEDIA", [ (UINT, "PresentCount"), (UINT, "PresentRefreshCount"), (UINT, "SyncRefreshCount"), (LARGE_INTEGER, "SyncQPCTime"), (LARGE_INTEGER, "SyncGPUTime"), (DXGI_FRAME_PRESENTATION_MODE, "CompositionMode"), (UINT, "ApprovedPresentDuration"), ]) IDXGISwapChainMedia = Interface("IDXGISwapChainMedia", IUnknown) IDXGISwapChainMedia.methods += [ StdMethod(HRESULT, "GetFrameStatisticsMedia", [Out(Pointer(DXGI_FRAME_STATISTICS_MEDIA), "pStats")], sideeffects=False), StdMethod(HRESULT, "SetPresentDuration", [(UINT, "Duration")]), StdMethod(HRESULT, "CheckPresentDurationSupport", [(UINT, "DesiredPresentDuration"), Out(Pointer(UINT), "pClosestSmallerPresentDuration"), Out(Pointer(UINT), "pClosestLargerPresentDuration")], sideeffects=False), ] DXGI_OVERLAY_SUPPORT_FLAG = FakeEnum(UINT, [ "DXGI_OVERLAY_SUPPORT_FLAG_DIRECT", "DXGI_OVERLAY_SUPPORT_FLAG_SCALING", ]) IDXGIOutput3 = Interface("IDXGIOutput3", IDXGIOutput2) IDXGIOutput3.methods += [ StdMethod(HRESULT, "CheckOverlaySupport", [(DXGI_FORMAT, "EnumFormat"), (ObjPointer(IUnknown), "pConcernedDevice"), Out(Pointer(DXGI_OVERLAY_SUPPORT_FLAG), "pFlags")], sideeffects=False), ] dxgi.addInterfaces([ IDXGIDevice3, IDXGISwapChain2, IDXGISwapChainMedia, IDXGIOutput3, IDXGIFactory3, IDXGIFactoryMedia, ]) # # Undocumented interfaces # IDXGIFactoryDWM = Interface("IDXGIFactoryDWM", IUnknown) IDXGISwapChainDWM = Interface("IDXGISwapChainDWM", IDXGIDeviceSubObject) IDXGIFactoryDWM.methods += [ StdMethod(HRESULT, "CreateSwapChain", [(ObjPointer(IUnknown), "pDevice"), (Pointer(DXGI_SWAP_CHAIN_DESC), "pDesc"), (ObjPointer(IDXGIOutput), "pOutput"), Out(Pointer(ObjPointer(IDXGISwapChainDWM)), "ppSwapChain")]), ] # http://shchetinin.blogspot.co.uk/2012/04/dwm-graphics-directx-win8win7.html IDXGISwapChainDWM.methods += [ StdMethod(HRESULT, "Present", [(UINT, "SyncInterval"), (DXGI_PRESENT, "Flags")]), StdMethod(HRESULT, "GetBuffer", [(UINT, "Buffer"), (REFIID, "riid"), Out(Pointer(ObjPointer(Void)), "ppSurface")]), StdMethod(HRESULT, "GetDesc", [Out(Pointer(DXGI_SWAP_CHAIN_DESC), "pDesc")], sideeffects=False), StdMethod(HRESULT, "ResizeBuffers", [(UINT, "BufferCount"), (UINT, "Width"), (UINT, "Height"), (DXGI_FORMAT, "NewFormat"), (DXGI_SWAP_CHAIN_FLAG, "SwapChainFlags")]), StdMethod(HRESULT, "ResizeTarget", [(Pointer(Const(DXGI_MODE_DESC)), "pNewTargetParameters")]), StdMethod(HRESULT, "GetContainingOutput", [Out(Pointer(ObjPointer(IDXGIOutput)), "ppOutput")]), StdMethod(HRESULT, "GetFrameStatistics", [Out(Pointer(DXGI_FRAME_STATISTICS), "pStats")], sideeffects=False), StdMethod(HRESULT, "GetLastPresentCount", [Out(Pointer(UINT), "pLastPresentCount")], sideeffects=False), ] dxgi.addInterfaces([ IDXGIFactoryDWM, ]) # # DXGI 1.4 # DXGI_COLOR_SPACE_TYPE = Enum('DXGI_COLOR_SPACE_TYPE', [ 'DXGI_COLOR_SPACE_RGB_FULL_G22_NONE_P709', 'DXGI_COLOR_SPACE_RGB_FULL_G10_NONE_P709', 'DXGI_COLOR_SPACE_RGB_STUDIO_G22_NONE_P709', 'DXGI_COLOR_SPACE_RGB_STUDIO_G22_NONE_P2020', 'DXGI_COLOR_SPACE_RESERVED', 'DXGI_COLOR_SPACE_YCBCR_FULL_G22_NONE_P709_X601', 'DXGI_COLOR_SPACE_YCBCR_STUDIO_G22_LEFT_P601', 'DXGI_COLOR_SPACE_YCBCR_FULL_G22_LEFT_P601', 'DXGI_COLOR_SPACE_YCBCR_STUDIO_G22_LEFT_P709', 'DXGI_COLOR_SPACE_YCBCR_FULL_G22_LEFT_P709', 'DXGI_COLOR_SPACE_YCBCR_STUDIO_G22_LEFT_P2020', 'DXGI_COLOR_SPACE_YCBCR_FULL_G22_LEFT_P2020', 'DXGI_COLOR_SPACE_CUSTOM', ]) DXGI_SWAP_CHAIN_COLOR_SPACE_SUPPORT_FLAG = Enum('DXGI_SWAP_CHAIN_COLOR_SPACE_SUPPORT_FLAG', [ 'DXGI_SWAP_CHAIN_COLOR_SPACE_SUPPORT_FLAG_PRESENT', 'DXGI_SWAP_CHAIN_COLOR_SPACE_SUPPORT_FLAG_OVERLAY_PRESENT', ]) DXGI_OVERLAY_COLOR_SPACE_SUPPORT_FLAG = Enum('DXGI_OVERLAY_COLOR_SPACE_SUPPORT_FLAG', [ 'DXGI_OVERLAY_COLOR_SPACE_SUPPORT_FLAG_PRESENT', ]) DXGI_MEMORY_SEGMENT_GROUP = Enum('DXGI_MEMORY_SEGMENT_GROUP', [ 'DXGI_MEMORY_SEGMENT_GROUP_LOCAL', 'DXGI_MEMORY_SEGMENT_GROUP_NON_LOCAL', ]) DXGI_QUERY_VIDEO_MEMORY_INFO = Struct('DXGI_QUERY_VIDEO_MEMORY_INFO', [ (UINT64, 'Budget'), (UINT64, 'CurrentUsage'), (UINT64, 'AvailableForReservation'), (UINT64, 'CurrentReservation'), ]) IDXGISwapChain3 = Interface('IDXGISwapChain3', IDXGISwapChain2) IDXGIOutput4 = Interface('IDXGIOutput4', IDXGIOutput3) IDXGIFactory4 = Interface('IDXGIFactory4', IDXGIFactory3) IDXGIAdapter3 = Interface('IDXGIAdapter3', IDXGIAdapter2) IDXGISwapChain3.methods += [ StdMethod(UINT, 'GetCurrentBackBufferIndex', []), StdMethod(HRESULT, 'CheckColorSpaceSupport', [(DXGI_COLOR_SPACE_TYPE, 'ColorSpace'), Out(Pointer(UINT), 'pColorSpaceSupport')], sideeffects=False), StdMethod(HRESULT, 'SetColorSpace1', [(DXGI_COLOR_SPACE_TYPE, 'ColorSpace')]), StdMethod(HRESULT, 'ResizeBuffers1', [(UINT, 'BufferCount'), (UINT, 'Width'), (UINT, 'Height'), (DXGI_FORMAT, 'Format'), (DXGI_SWAP_CHAIN_FLAG, 'SwapChainFlags'), (Pointer(Const(UINT)), 'pCreationNodeMask'), (Array(Const(ObjPointer(IUnknown)), 'BufferCount'), 'ppPresentQueue')]), ] IDXGIOutput4.methods += [ StdMethod(HRESULT, 'CheckOverlayColorSpaceSupport', [(DXGI_FORMAT, 'Format'), (DXGI_COLOR_SPACE_TYPE, 'ColorSpace'), (ObjPointer(IUnknown), 'pConcernedDevice'), Out(Pointer(UINT), 'pFlags')], sideeffects=False), ] IDXGIFactory4.methods += [ StdMethod(HRESULT, 'EnumAdapterByLuid', [(LUID, 'AdapterLuid'), (REFIID, 'riid'), Out(Pointer(ObjPointer(Void)), 'ppvAdapter')]), StdMethod(HRESULT, 'EnumWarpAdapter', [(REFIID, 'riid'), Out(Pointer(ObjPointer(Void)), 'ppvAdapter')]), ] IDXGIAdapter3.methods += [ StdMethod(HRESULT, 'RegisterHardwareContentProtectionTeardownStatusEvent', [(HANDLE, 'hEvent'), Out(Pointer(DWORD), 'pdwCookie')], sideeffects=False), StdMethod(Void, 'UnregisterHardwareContentProtectionTeardownStatus', [(DWORD, 'dwCookie')], sideeffects=False), StdMethod(HRESULT, 'QueryVideoMemoryInfo', [(UINT, 'NodeIndex'), (DXGI_MEMORY_SEGMENT_GROUP, 'MemorySegmentGroup'), Out(Pointer(DXGI_QUERY_VIDEO_MEMORY_INFO), 'pVideoMemoryInfo')], sideeffects=False), StdMethod(HRESULT, 'SetVideoMemoryReservation', [(UINT, 'NodeIndex'), (DXGI_MEMORY_SEGMENT_GROUP, 'MemorySegmentGroup'), (UINT64, 'Reservation')]), StdMethod(HRESULT, 'RegisterVideoMemoryBudgetChangeNotificationEvent', [(HANDLE, 'hEvent'), Out(Pointer(DWORD), 'pdwCookie')], sideeffects=False), StdMethod(Void, 'UnregisterVideoMemoryBudgetChangeNotification', [(DWORD, 'dwCookie')], sideeffects=False), ] dxgi.addInterfaces([ IDXGISwapChain3, IDXGIOutput4, IDXGIFactory4, IDXGIAdapter3, ]) # # DXGI 1.5 # DXGI_HDR_METADATA_TYPE = Enum('DXGI_HDR_METADATA_TYPE', [ 'DXGI_HDR_METADATA_TYPE_NONE', 'DXGI_HDR_METADATA_TYPE_HDR10', ]) DXGI_HDR_METADATA_HDR10 = Struct('DXGI_HDR_METADATA_HDR10', [ (Array(UINT16, 2), 'RedPrimary'), (Array(UINT16, 2), 'GreenPrimary'), (Array(UINT16, 2), 'BluePrimary'), (Array(UINT16, 2), 'WhitePoint'), (UINT, 'MaxMasteringLuminance'), (UINT, 'MinMasteringLuminance'), (UINT16, 'MaxContentLightLevel'), (UINT16, 'MaxFrameAverageLightLevel'), ]) DXGI_OFFER_RESOURCE_FLAGS = FakeEnum(UINT, [ 'DXGI_OFFER_RESOURCE_FLAG_ALLOW_DECOMMIT', ]) DXGI_RECLAIM_RESOURCE_RESULTS = Enum('DXGI_RECLAIM_RESOURCE_RESULTS', [ 'DXGI_RECLAIM_RESOURCE_RESULT_OK', 'DXGI_RECLAIM_RESOURCE_RESULT_DISCARDED', 'DXGI_RECLAIM_RESOURCE_RESULT_NOT_COMMITTED', ]) DXGI_FEATURE, DXGI_FEATURE_DATA = EnumPolymorphic('DXGI_FEATURE', 'Feature', [ ('DXGI_FEATURE_PRESENT_ALLOW_TEARING', Pointer(BOOL)), ], Blob(Void, "FeatureSupportDataSize"), False) IDXGIOutput5 = Interface('IDXGIOutput5', IDXGIOutput4) IDXGISwapChain4 = Interface('IDXGISwapChain4', IDXGISwapChain3) IDXGIDevice4 = Interface('IDXGIDevice4', IDXGIDevice3) IDXGIFactory5 = Interface('IDXGIFactory5', IDXGIFactory4) IDXGIOutput5.methods += [ StdMethod(HRESULT, 'DuplicateOutput1', [(ObjPointer(IUnknown), 'pDevice'), (UINT, 'Flags'), (UINT, 'SupportedFormatsCount'), (Array(Const(DXGI_FORMAT), 'SupportedFormatsCount'), 'pSupportedFormats'), Out(Pointer(ObjPointer(IDXGIOutputDuplication)), 'ppOutputDuplication')]), ] IDXGISwapChain4.methods += [ StdMethod(HRESULT, 'SetHDRMetaData', [(DXGI_HDR_METADATA_TYPE, 'Type'), (UINT, 'Size'), (Blob(Void, 'Size'), 'pMetaData')]), ] IDXGIDevice4.methods += [ StdMethod(HRESULT, 'OfferResources1', [(UINT, 'NumResources'), (Array(Const(ObjPointer(IDXGIResource)), 'NumResources'), 'ppResources'), (DXGI_OFFER_RESOURCE_PRIORITY, 'Priority'), (DXGI_OFFER_RESOURCE_FLAGS, 'Flags')]), StdMethod(HRESULT, 'ReclaimResources1', [(UINT, 'NumResources'), (Array(Const(ObjPointer(IDXGIResource)), 'NumResources'), 'ppResources'), Out(Array(DXGI_RECLAIM_RESOURCE_RESULTS, 'NumResources'), 'pResults')]), ] IDXGIFactory5.methods += [ StdMethod(HRESULT, 'CheckFeatureSupport', [(DXGI_FEATURE, 'Feature'), Out(DXGI_FEATURE_DATA, 'pFeatureSupportData'), (UINT, 'FeatureSupportDataSize')], sideeffects=False), ] dxgi.addInterfaces([ IDXGIOutput5, IDXGISwapChain4, IDXGIDevice4, IDXGIFactory5, ]) # # DXGI 1.6 # DXGI_ADAPTER_FLAG3 = Enum('DXGI_ADAPTER_FLAG3', [ 'DXGI_ADAPTER_FLAG3_NONE', 'DXGI_ADAPTER_FLAG3_REMOTE', 'DXGI_ADAPTER_FLAG3_SOFTWARE', 'DXGI_ADAPTER_FLAG3_ACG_COMPATIBLE', 'DXGI_ADAPTER_FLAG3_FORCE_DWORD', 'DXGI_ADAPTER_FLAG3_SUPPORT_MONITORED_FENCES', 'DXGI_ADAPTER_FLAG3_SUPPORT_NON_MONITORED_FENCES', 'DXGI_ADAPTER_FLAG3_KEYED_MUTEX_CONFORMANCE', ]) DXGI_ADAPTER_DESC3 = Struct('DXGI_ADAPTER_DESC3', [ (WString, 'Description'), (UINT, 'VendorId'), (UINT, 'DeviceId'), (UINT, 'SubSysId'), (UINT, 'Revision'), (SIZE_T, 'DedicatedVideoMemory'), (SIZE_T, 'DedicatedSystemMemory'), (SIZE_T, 'SharedSystemMemory'), (LUID, 'AdapterLuid'), (DXGI_ADAPTER_FLAG3, 'Flags'), (DXGI_GRAPHICS_PREEMPTION_GRANULARITY, 'GraphicsPreemptionGranularity'), (DXGI_COMPUTE_PREEMPTION_GRANULARITY, 'ComputePreemptionGranularity'), ]) DXGI_OUTPUT_DESC1 = Struct('DXGI_OUTPUT_DESC1', [ (WString, 'DeviceName'), (RECT, 'DesktopCoordinates'), (BOOL, 'AttachedToDesktop'), (DXGI_MODE_ROTATION, 'Rotation'), (HMONITOR, 'Monitor'), (UINT, 'BitsPerColor'), (DXGI_COLOR_SPACE_TYPE, 'ColorSpace'), (Array(FLOAT, 2), 'RedPrimary'), (Array(FLOAT, 2), 'GreenPrimary'), (Array(FLOAT, 2), 'BluePrimary'), (Array(FLOAT, 2), 'WhitePoint'), (FLOAT, 'MinLuminance'), (FLOAT, 'MaxLuminance'), (FLOAT, 'MaxFullFrameLuminance'), ]) DXGI_HARDWARE_COMPOSITION_SUPPORT_FLAGS = Flags(UINT, [ 'DXGI_HARDWARE_COMPOSITION_SUPPORT_FLAG_FULLSCREEN', 'DXGI_HARDWARE_COMPOSITION_SUPPORT_FLAG_WINDOWED', 'DXGI_HARDWARE_COMPOSITION_SUPPORT_FLAG_CURSOR_STRETCHED', ]) DXGI_GPU_PREFERENCE = Enum('DXGI_GPU_PREFERENCE', [ 'DXGI_GPU_PREFERENCE_UNSPECIFIED', 'DXGI_GPU_PREFERENCE_MINIMUM_POWER', 'DXGI_GPU_PREFERENCE_HIGH_PERFORMANCE', ]) IDXGIFactory6 = Interface('IDXGIFactory6', IDXGIFactory5) IDXGIAdapter4 = Interface('IDXGIAdapter4', IDXGIAdapter3) IDXGIOutput6 = Interface('IDXGIOutput6', IDXGIOutput5) IDXGIAdapter4.methods += [ StdMethod(HRESULT, 'GetDesc3', [Out(Pointer(DXGI_ADAPTER_DESC3), 'pDesc')], sideeffects=False), ] IDXGIOutput6.methods += [ StdMethod(HRESULT, 'GetDesc1', [Out(Pointer(DXGI_OUTPUT_DESC1), 'pDesc')], sideeffects=False), StdMethod(HRESULT, 'CheckHardwareCompositionSupport', [Out(Pointer(DXGI_HARDWARE_COMPOSITION_SUPPORT_FLAGS), 'pFlags')], sideeffects=False), ] IDXGIFactory6.methods += [ StdMethod(HRESULT, 'EnumAdapterByGpuPreference', [(UINT, 'Adapter'), (DXGI_GPU_PREFERENCE, 'GpuPreference'), (REFIID, 'riid'), Out(Pointer(ObjPointer(Void)), 'ppvAdapter')]), ] dxgi.addInterfaces([ IDXGIFactory6, IDXGIAdapter4, IDXGIOutput6, ]) dxgi.addFunctions([ StdFunction(HRESULT, "DXGIDeclareAdapterRemovalSupport", [], sideeffects=False), ])
[]
nitchith/CarND-Advanced-Lane-Lines
code/camera_calib.py
8e9e4d369f95f2076aa3b99c9015ac95c20037fc
import numpy as np import cv2 import glob import matplotlib.pyplot as plt def camera_calibrate(images_list, nx=9, ny=6, show_corners=False): # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((ny*nx,3), np.float32) objp[:,:2] = np.mgrid[0:nx,0:ny].T.reshape(-1,2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d points in real world space imgpoints = [] # 2d points in image plane. # Make a list of calibration images images = glob.glob(images_list) if show_corners: fig = plt.figure(figsize=(30, 30)) rows = 5 cols = 4 # Step through the list and search for chessboard corners for idx, fname in enumerate(images): img = cv2.imread(fname) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # Find the chessboard corners ret, corners = cv2.findChessboardCorners(gray, (nx,ny),None) # If found, add object points, image points if ret == True: objpoints.append(objp) imgpoints.append(corners) # Draw and display the corners if show_corners: img = cv2.drawChessboardCorners(img, (nx,ny), corners, ret) ax = plt.subplot(rows, cols, idx + 1) ax.set_title(fname) plt.imshow(img) return cv2.calibrateCamera(objpoints, imgpoints, gray.shape[1::-1], None, None)
[((8, 11, 8, 42), 'numpy.zeros', 'np.zeros', ({(8, 20, 8, 29): '(ny * nx, 3)', (8, 31, 8, 41): 'np.float32'}, {}), '((ny * nx, 3), np.float32)', True, 'import numpy as np\n'), ((16, 13, 16, 35), 'glob.glob', 'glob.glob', ({(16, 23, 16, 34): 'images_list'}, {}), '(images_list)', False, 'import glob\n'), ((43, 11, 43, 83), 'cv2.calibrateCamera', 'cv2.calibrateCamera', ({(43, 31, 43, 40): 'objpoints', (43, 42, 43, 51): 'imgpoints', (43, 53, 43, 70): 'gray.shape[1::-1]', (43, 72, 43, 76): 'None', (43, 78, 43, 82): 'None'}, {}), '(objpoints, imgpoints, gray.shape[1::-1], None, None)', False, 'import cv2\n'), ((19, 14, 19, 42), 'matplotlib.pyplot.figure', 'plt.figure', (), '', True, 'import matplotlib.pyplot as plt\n'), ((25, 14, 25, 31), 'cv2.imread', 'cv2.imread', ({(25, 25, 25, 30): 'fname'}, {}), '(fname)', False, 'import cv2\n'), ((26, 15, 26, 51), 'cv2.cvtColor', 'cv2.cvtColor', ({(26, 28, 26, 31): 'img', (26, 32, 26, 50): 'cv2.COLOR_BGR2GRAY'}, {}), '(img, cv2.COLOR_BGR2GRAY)', False, 'import cv2\n'), ((29, 23, 29, 68), 'cv2.findChessboardCorners', 'cv2.findChessboardCorners', ({(29, 49, 29, 53): 'gray', (29, 55, 29, 62): '(nx, ny)', (29, 63, 29, 67): 'None'}, {}), '(gray, (nx, ny), None)', False, 'import cv2\n'), ((38, 22, 38, 75), 'cv2.drawChessboardCorners', 'cv2.drawChessboardCorners', ({(38, 48, 38, 51): 'img', (38, 53, 38, 60): '(nx, ny)', (38, 62, 38, 69): 'corners', (38, 71, 38, 74): 'ret'}, {}), '(img, (nx, ny), corners, ret)', False, 'import cv2\n'), ((39, 21, 39, 53), 'matplotlib.pyplot.subplot', 'plt.subplot', ({(39, 33, 39, 37): 'rows', (39, 39, 39, 43): 'cols', (39, 45, 39, 52): 'idx + 1'}, {}), '(rows, cols, idx + 1)', True, 'import matplotlib.pyplot as plt\n'), ((41, 16, 41, 31), 'matplotlib.pyplot.imshow', 'plt.imshow', ({(41, 27, 41, 30): 'img'}, {}), '(img)', True, 'import matplotlib.pyplot as plt\n')]
MathiasStadler/docker-jenkins-scripted
python-jenkins/yaml_read_config/custom_log.py
3f908987ab0428dd2239b524150ff3b65c71104c
""" module logging""" # logging
[]
stratis-storage/stratis-cli
src/stratis_cli/_actions/_pool.py
16efcfe50558785ff44a1570ca554edb2006f8d2
# Copyright 2021 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Pool actions. """ # isort: STDLIB import os from collections import defaultdict # isort: THIRDPARTY from justbytes import Range from .._constants import PoolMaintenanceErrorCode from .._errors import ( StratisCliAggregateError, StratisCliEngineError, StratisCliIncoherenceError, StratisCliInUseOtherTierError, StratisCliInUseSameTierError, StratisCliNameConflictError, StratisCliNoChangeError, StratisCliPartialChangeError, StratisCliPartialFailureError, ) from .._stratisd_constants import BlockDevTiers, PoolActionAvailability, StratisdErrors from ._connection import get_object from ._constants import TOP_OBJECT from ._formatting import get_property, print_table, size_triple, to_hyphenated from ._utils import get_clevis_info def _generate_pools_to_blockdevs(managed_objects, to_be_added, tier): """ Generate a map of pools to which block devices they own :param managed_objects: the result of a GetManagedObjects call :type managed_objects: dict of str * dict :param to_be_added: the blockdevs to be added :type to_be_added: frozenset of str :param tier: tier to search for blockdevs to be added :type tier: _stratisd_constants.BlockDevTiers :returns: a map of pool names to sets of strings containing blockdevs they own :rtype: dict of str * frozenset of str """ # pylint: disable=import-outside-toplevel from ._data import MODev, MOPool, devs, pools pool_map = dict( (path, str(MOPool(info).Name())) for (path, info) in pools().search(managed_objects) ) pools_to_blockdevs = defaultdict(list) for modev in ( modev for modev in ( MODev(info) for (_, info) in devs(props={"Tier": tier}).search(managed_objects) ) if str(modev.Devnode()) in to_be_added ): pools_to_blockdevs[pool_map[modev.Pool()]].append(str(modev.Devnode())) return dict( (pool, frozenset(blockdevs)) for pool, blockdevs in pools_to_blockdevs.items() ) def _check_opposite_tier(managed_objects, to_be_added, other_tier): """ Check whether specified blockdevs are already in the other tier. :param managed_objects: the result of a GetManagedObjects call :type managed_objects: dict of str * dict :param to_be_added: the blockdevs to be added :type to_be_added: frozenset of str :param other_tier: the other tier, not the one requested :type other_tier: _stratisd_constants.BlockDevTiers :raises StratisCliInUseOtherTierError: if blockdevs are used by other tier """ pools_to_blockdevs = _generate_pools_to_blockdevs( managed_objects, to_be_added, other_tier ) if pools_to_blockdevs != {}: raise StratisCliInUseOtherTierError( pools_to_blockdevs, BlockDevTiers.DATA if other_tier == BlockDevTiers.CACHE else BlockDevTiers.CACHE, ) def _check_same_tier(pool_name, managed_objects, to_be_added, this_tier): """ Check whether specified blockdevs are already in the tier to which they are to be added. :param managed_objects: the result of a GetManagedObjects call :type managed_objects: dict of str * dict :param to_be_added: the blockdevs to be added :type to_be_added: frozenset of str :param this_tier: the tier requested :type this_tier: _stratisd_constants.BlockDevTiers :raises StratisCliPartialChangeError: if blockdevs are used by this tier :raises StratisCliInUseSameTierError: if blockdevs are used by this tier in another pool """ pools_to_blockdevs = _generate_pools_to_blockdevs( managed_objects, to_be_added, this_tier ) owned_by_current_pool = frozenset(pools_to_blockdevs.get(pool_name, [])) owned_by_other_pools = dict( (pool, devnodes) for pool, devnodes in pools_to_blockdevs.items() if pool_name != pool ) if owned_by_current_pool != frozenset(): raise StratisCliPartialChangeError( "add to cache" if this_tier == BlockDevTiers.CACHE else "add to data", to_be_added.difference(owned_by_current_pool), to_be_added.intersection(owned_by_current_pool), ) if owned_by_other_pools != {}: raise StratisCliInUseSameTierError(owned_by_other_pools, this_tier) def _fetch_locked_pools_property(proxy): """ Fetch the LockedPools property from stratisd. :param proxy: proxy to the top object in stratisd :return: a representation of unlocked devices :rtype: dict :raises StratisCliEngineError: """ # pylint: disable=import-outside-toplevel from ._data import Manager return Manager.Properties.LockedPools.Get(proxy) class PoolActions: """ Pool actions. """ @staticmethod def create_pool(namespace): """ Create a stratis pool. :raises StratisCliEngineError: :raises StratisCliIncoherenceError: :raises StratisCliNameConflictError: """ # pylint: disable=import-outside-toplevel from ._data import Manager, ObjectManager, pools proxy = get_object(TOP_OBJECT) managed_objects = ObjectManager.Methods.GetManagedObjects(proxy, {}) pool_name = namespace.pool_name names = pools(props={"Name": pool_name}).search(managed_objects) blockdevs = frozenset([os.path.abspath(p) for p in namespace.blockdevs]) if list(names) != []: raise StratisCliNameConflictError("pool", pool_name) _check_opposite_tier(managed_objects, blockdevs, BlockDevTiers.CACHE) _check_same_tier(pool_name, managed_objects, blockdevs, BlockDevTiers.DATA) clevis_info = get_clevis_info(namespace) ((changed, (_, _)), return_code, message) = Manager.Methods.CreatePool( proxy, { "name": pool_name, "redundancy": (True, 0), "devices": blockdevs, "key_desc": ( (True, namespace.key_desc) if namespace.key_desc is not None else (False, "") ), "clevis_info": (False, ("", "")) if clevis_info is None else (True, clevis_info), }, ) if return_code != StratisdErrors.OK: # pragma: no cover raise StratisCliEngineError(return_code, message) if not changed: # pragma: no cover raise StratisCliIncoherenceError( ( "Expected to create the specified pool %s but stratisd " "reports that it did not actually create the pool" ) % pool_name ) @staticmethod def init_cache(namespace): # pylint: disable=too-many-locals """ Initialize the cache of an existing stratis pool. :raises StratisCliEngineError: :raises StratisCliIncoherenceError: """ # pylint: disable=import-outside-toplevel from ._data import MODev, ObjectManager, Pool, devs, pools proxy = get_object(TOP_OBJECT) managed_objects = ObjectManager.Methods.GetManagedObjects(proxy, {}) pool_name = namespace.pool_name (pool_object_path, _) = next( pools(props={"Name": pool_name}) .require_unique_match(True) .search(managed_objects) ) blockdevs = frozenset([os.path.abspath(p) for p in namespace.blockdevs]) _check_opposite_tier(managed_objects, blockdevs, BlockDevTiers.DATA) _check_same_tier(pool_name, managed_objects, blockdevs, BlockDevTiers.CACHE) ((changed, devs_added), return_code, message) = Pool.Methods.InitCache( get_object(pool_object_path), {"devices": blockdevs} ) if return_code != StratisdErrors.OK: raise StratisCliEngineError(return_code, message) if not changed or len(devs_added) < len(blockdevs): # pragma: no cover devnodes_added = [ MODev(info).Devnode() for (object_path, info) in devs( props={"Pool": pool_object_path} ).search(ObjectManager.Methods.GetManagedObjects(proxy, {})) if object_path in devs_added ] raise StratisCliIncoherenceError( ( "Expected to add the specified blockdevs as cache " "to pool %s but stratisd reports that it did not actually " "add some or all of the blockdevs requested; devices " "added: (%s), devices requested: (%s)" ) % (namespace.pool_name, ", ".join(devnodes_added), ", ".join(blockdevs)) ) @staticmethod def list_pools(namespace): """ List all stratis pools. """ # pylint: disable=import-outside-toplevel from ._data import MOPool, ObjectManager, pools proxy = get_object(TOP_OBJECT) managed_objects = ObjectManager.Methods.GetManagedObjects(proxy, {}) pools_with_props = [ MOPool(info) for objpath, info in pools().search(managed_objects) ] def physical_size_triple(mopool): """ Calculate the triple to display for total physical size. The format is total/used/free where the display value for each member of the tuple are chosen automatically according to justbytes' configuration. :param mopool: an object representing all the properties of the pool :type mopool: MOPool :returns: a string to display in the resulting list output :rtype: str """ total_physical_size = Range(mopool.TotalPhysicalSize()) total_physical_used = get_property(mopool.TotalPhysicalUsed(), Range, None) return size_triple(total_physical_size, total_physical_used) def properties_string(mopool): """ Make a string encoding some important properties of the pool :param mopool: an object representing all the properties of the pool :type mopool: MOPool :param props_map: a map of properties returned by GetAllProperties :type props_map: dict of str * any """ def gen_string(has_property, code): """ Generate the display string for a boolean property :param has_property: whether the property is true or false :type has_property: bool or NoneType :param str code: the code to generate the string for :returns: the generated string :rtype: str """ if has_property == True: # pylint: disable=singleton-comparison prefix = " " elif has_property == False: # pylint: disable=singleton-comparison prefix = "~" # This is only going to occur if the engine experiences an # error while calculating a property or if our code has a bug. else: # pragma: no cover prefix = "?" return prefix + code props_list = [(mopool.HasCache(), "Ca"), (mopool.Encrypted(), "Cr")] return ",".join(gen_string(x, y) for x, y in props_list) format_uuid = ( (lambda mo_uuid: mo_uuid) if namespace.unhyphenated_uuids else to_hyphenated ) def alert_string(mopool): """ Alert information to display, if any :param mopool: object to access pool properties :returns: string w/ alert information, "" if no alert :rtype: str """ action_availability = PoolActionAvailability.from_str( mopool.AvailableActions() ) error_codes = action_availability.pool_maintenance_error_codes() return ", ".join(sorted(str(code) for code in error_codes)) tables = [ ( mopool.Name(), physical_size_triple(mopool), properties_string(mopool), format_uuid(mopool.Uuid()), alert_string(mopool), ) for mopool in pools_with_props ] print_table( ["Name", "Total Physical", "Properties", "UUID", "Alerts"], sorted(tables, key=lambda entry: entry[0]), ["<", ">", ">", ">", "<"], ) @staticmethod def destroy_pool(namespace): """ Destroy a stratis pool. If no pool exists, the method succeeds. :raises StratisCliEngineError: :raises StratisCliIncoherenceError: """ # pylint: disable=import-outside-toplevel from ._data import Manager, ObjectManager, pools proxy = get_object(TOP_OBJECT) managed_objects = ObjectManager.Methods.GetManagedObjects(proxy, {}) (pool_object_path, _) = next( pools(props={"Name": namespace.pool_name}) .require_unique_match(True) .search(managed_objects) ) ((changed, _), return_code, message) = Manager.Methods.DestroyPool( proxy, {"pool": pool_object_path} ) # This branch can be covered, since the engine will return an error # if the pool can not be destroyed because it has filesystems. if return_code != StratisdErrors.OK: raise StratisCliEngineError(return_code, message) if not changed: # pragma: no cover raise StratisCliIncoherenceError( ( "Expected to destroy the specified pool %s but " "stratisd reports that it did not actually " "destroy the pool requested" ) % namespace.pool_name ) @staticmethod def rename_pool(namespace): """ Rename a pool. :raises StratisCliEngineError: :raises StratisCliNoChangeError: """ # pylint: disable=import-outside-toplevel from ._data import ObjectManager, Pool, pools proxy = get_object(TOP_OBJECT) managed_objects = ObjectManager.Methods.GetManagedObjects(proxy, {}) (pool_object_path, _) = next( pools(props={"Name": namespace.current}) .require_unique_match(True) .search(managed_objects) ) ((changed, _), return_code, message) = Pool.Methods.SetName( get_object(pool_object_path), {"name": namespace.new} ) if return_code != StratisdErrors.OK: # pragma: no cover raise StratisCliEngineError(return_code, message) if not changed: raise StratisCliNoChangeError("rename", namespace.new) @staticmethod def add_data_devices(namespace): # pylint: disable=too-many-locals """ Add specified data devices to a pool. :raises StratisCliEngineError: :raises StratisCliIncoherenceError: :raises StratisCliInUseOtherTierError: :raises StratisCliInUseSameTierError: :raises StratisCliPartialChangeError: """ # pylint: disable=import-outside-toplevel from ._data import MODev, ObjectManager, Pool, devs, pools proxy = get_object(TOP_OBJECT) managed_objects = ObjectManager.Methods.GetManagedObjects(proxy, {}) blockdevs = frozenset([os.path.abspath(p) for p in namespace.blockdevs]) _check_opposite_tier(managed_objects, blockdevs, BlockDevTiers.CACHE) _check_same_tier( namespace.pool_name, managed_objects, blockdevs, BlockDevTiers.DATA ) (pool_object_path, _) = next( pools(props={"Name": namespace.pool_name}) .require_unique_match(True) .search(managed_objects) ) ((added, devs_added), return_code, message) = Pool.Methods.AddDataDevs( get_object(pool_object_path), {"devices": list(blockdevs)} ) if return_code != StratisdErrors.OK: # pragma: no cover raise StratisCliEngineError(return_code, message) if not added or len(devs_added) < len(blockdevs): # pragma: no cover devnodes_added = [ MODev(info).Devnode() for (object_path, info) in devs( props={"Pool": pool_object_path} ).search(ObjectManager.Methods.GetManagedObjects(proxy, {})) if object_path in devs_added ] raise StratisCliIncoherenceError( ( "Expected to add the specified blockdevs to the data tier " "in pool %s but stratisd reports that it did not actually " "add some or all of the blockdevs requested; devices " "added: (%s), devices requested: (%s)" ) % (namespace.pool_name, ", ".join(devnodes_added), ", ".join(blockdevs)) ) @staticmethod def add_cache_devices(namespace): # pylint: disable=too-many-locals """ Add specified cache devices to a pool. :raises StratisCliEngineError: :raises StratisCliIncoherenceError: :raises StratisCliInUseOtherTierError: :raises StratisCliInUseSameTierError: :raises StratisCliPartialChangeError: """ # pylint: disable=import-outside-toplevel from ._data import MODev, ObjectManager, Pool, devs, pools proxy = get_object(TOP_OBJECT) managed_objects = ObjectManager.Methods.GetManagedObjects(proxy, {}) blockdevs = frozenset([os.path.abspath(p) for p in namespace.blockdevs]) _check_opposite_tier(managed_objects, blockdevs, BlockDevTiers.DATA) _check_same_tier( namespace.pool_name, managed_objects, blockdevs, BlockDevTiers.CACHE ) (pool_object_path, _) = next( pools(props={"Name": namespace.pool_name}) .require_unique_match(True) .search(managed_objects) ) ((added, devs_added), return_code, message) = Pool.Methods.AddCacheDevs( get_object(pool_object_path), {"devices": list(blockdevs)} ) if return_code != StratisdErrors.OK: raise StratisCliEngineError(return_code, message) if not added or len(devs_added) < len(blockdevs): # pragma: no cover devnodes_added = [ MODev(info).Devnode() for (object_path, info) in devs( props={"Pool": pool_object_path} ).search(ObjectManager.Methods.GetManagedObjects(proxy, {})) if object_path in devs_added ] raise StratisCliIncoherenceError( ( "Expected to add the specified blockdevs to the cache tier " "in pool %s but stratisd reports that it did not actually " "add some or all of the blockdevs requested; devices " "added: (%s), devices requested: (%s)" ) % (namespace.pool_name, ", ".join(devnodes_added), ", ".join(blockdevs)) ) @staticmethod def unlock_pools(namespace): """ Unlock all of the encrypted pools that have been detected by the daemon but are still locked. :raises StratisCliIncoherenceError: :raises StratisCliNoChangeError: :raises StratisCliAggregateError: """ # pylint: disable=import-outside-toplevel from ._data import Manager proxy = get_object(TOP_OBJECT) locked_pools = _fetch_locked_pools_property(proxy) if locked_pools == {}: # pragma: no cover raise StratisCliNoChangeError("unlock", "pools") # This block is not covered as the sim engine does not simulate the # management of unlocked devices, so locked_pools is always empty. errors = [] # pragma: no cover for uuid in locked_pools: # pragma: no cover ( (is_some, unlocked_devices), return_code, message, ) = Manager.Methods.UnlockPool( proxy, {"pool_uuid": uuid, "unlock_method": namespace.unlock_method} ) if return_code != StratisdErrors.OK: errors.append( StratisCliPartialFailureError( "unlock", "pool with UUID %s" % uuid, error_message=message ) ) if is_some and unlocked_devices == []: raise StratisCliIncoherenceError( ( "stratisd reported that some existing devices are locked but " "no new devices were unlocked during this operation" ) ) if errors != []: # pragma: no cover raise StratisCliAggregateError("unlock", "pool", errors) @staticmethod def explain_code(namespace): """ Print an explanation of pool error code. """ error_code = PoolMaintenanceErrorCode.from_str(namespace.code) assert error_code is not None print(error_code.explain())
[((64, 25, 64, 42), 'collections.defaultdict', 'defaultdict', ({(64, 37, 64, 41): 'list'}, {}), '(list)', False, 'from collections import defaultdict\n'), ((176, 31, 176, 49), 'os.path.abspath', 'os.path.abspath', ({(176, 47, 176, 48): 'p'}, {}), '(p)', False, 'import os\n'), ((234, 31, 234, 49), 'os.path.abspath', 'os.path.abspath', ({(234, 47, 234, 48): 'p'}, {}), '(p)', False, 'import os\n'), ((452, 31, 452, 49), 'os.path.abspath', 'os.path.abspath', ({(452, 47, 452, 48): 'p'}, {}), '(p)', False, 'import os\n'), ((507, 31, 507, 49), 'os.path.abspath', 'os.path.abspath', ({(507, 47, 507, 48): 'p'}, {}), '(p)', False, 'import os\n')]
Esenin/telegram_vk_pipe_bot
synchrobot/chat_user.py
db92fe062a121beebbc386975660d5a76f1b396c
# -*- coding: utf-8 -*- # Author: Ivan Senin import calendar import time import datetime as dt import json class User(object): def __init__(self, id, name, last_seen, want_time, muted, username="", additional_keys="{}"): super(User, self).__init__() self.id = id self.name = name self.username = username self._last_seen = last_seen self._want_time = want_time self._muted = muted self.dirty = True self.other_keys = json.loads(additional_keys) if additional_keys else {} def get_seen(self): return self._last_seen def set_seen(self, seen): self._last_seen = seen self.dirty = True last_seen = property(get_seen, set_seen) def get_want_time(self): return self._want_time def set_want_time(self, new_val): self._want_time = new_val self.dirty = True want_time = property(get_want_time, set_want_time) def get_muted(self): return self._muted def set_muted(self, new_val): self._muted = new_val self.dirty = True muted = property(get_muted, set_muted) def update_seen_time(self): self.last_seen = calendar.timegm(time.gmtime()) def __str__(self): seen_str = dt.datetime.fromtimestamp(self.last_seen).strftime('%Y-%m-%d %H:%M:%S') return "User: ({0}{1}, id: {2}, last_seen: {3}, want_time: {4}, muted: {5})".format( self.name.encode('utf-8'), " (" + self.username + ")" if self.username else "", self.id, seen_str, self.want_time, self.muted) def serialized_keys(self): return json.dumps(self.other_keys)
[((54, 9, 54, 36), 'json.dumps', 'json.dumps', ({(54, 20, 54, 35): 'self.other_keys'}, {}), '(self.other_keys)', False, 'import json\n'), ((19, 20, 19, 47), 'json.loads', 'json.loads', ({(19, 31, 19, 46): 'additional_keys'}, {}), '(additional_keys)', False, 'import json\n'), ((44, 35, 44, 48), 'time.gmtime', 'time.gmtime', ({}, {}), '()', False, 'import time\n'), ((47, 13, 47, 54), 'datetime.datetime.fromtimestamp', 'dt.datetime.fromtimestamp', ({(47, 39, 47, 53): 'self.last_seen'}, {}), '(self.last_seen)', True, 'import datetime as dt\n')]
Felipe-Renck/contaxy
backend/src/contaxy/schema/auth.py
532d1f01aad1ea8155bc10216acedca601d37889
from datetime import datetime, timezone from enum import Enum from typing import Dict, List, Optional import pydantic from fastapi import HTTPException, Path, status from pydantic import BaseModel, EmailStr, Field from contaxy.schema.exceptions import ClientValueError from contaxy.schema.shared import MAX_DESCRIPTION_LENGTH from contaxy.utils.fastapi_utils import as_form USERS_KIND = "users" ADMIN_ROLE = "roles/admin" USER_ROLE = "roles/user" class AccessLevel(str, Enum): # Map to: select, insert, update, delete READ = "read" # Viewer, view: Allows admin access , Can only view existing resources. Permissions for read-only actions that do not affect state, such as viewing (but not modifying) existing resources or data. WRITE = "write" # Editor, edit, Contributor : Allows read/write access , Can create and manage all types of resources but can’t grant access to others. All viewer permissions, plus permissions for actions that modify state, such as changing existing resources. ADMIN = "admin" # Owner : Allows read-only access. Has full access to all resources including the right to edit IAM, invite users, edit roles. All editor permissions and permissions for the following actions # UNKNOWN = "unknown" # Deny? @classmethod def load(cls, access_level: str) -> "AccessLevel": try: return cls(access_level.strip().lower()) except ValueError: raise ClientValueError(f"Access level is unknown {access_level}") # return cls.UNKNOWN class TokenPurpose(str, Enum): USER_API_TOKEN = "user-api-token" PROJECT_API_TOKEN = "project-api-token" SERVICE_ACCESS_TOKEN = "service-access-token" LOGIN_TOKEN = "login-token" REFRESH_TOKEN = "refresh-token" # For user sessions # DEPLOYMENT_TOKEN = "deployment-token" contaxy_token_purposes = {purpose for purpose in TokenPurpose} class TokenType(str, Enum): SESSION_TOKEN = "session-token" API_TOKEN = "api-token" class AccessToken(BaseModel): token: str = Field( ..., example="f4528e540a133dd53ba6809e74e16774ebe4777a", description="API Token.", ) token_type: TokenType = Field( ..., example=TokenType.API_TOKEN, description="The type of the token.", ) subject: str = Field( ..., example="users/dklqmomr2c8dx9cpb202dsqku", description="Identifies the principal that is the subject of the token. Usually refers to the user to which the token is issued to.", ) scopes: List[str] = Field( ..., example=["projects#read"], description="List of scopes associated with the token.", ) created_at: Optional[datetime] = Field( None, description="Creation date of the token.", ) expires_at: Optional[datetime] = Field( None, example="2021-04-25T10:20:30.400+02:30", description="Date at which the token expires and, thereby, gets revoked.", ) class ApiToken(AccessToken): description: Optional[str] = Field( None, example="Token used for accesing project resources on my local machine.", max_length=MAX_DESCRIPTION_LENGTH, description="Short description about the context and usage of the token.", ) created_by: Optional[str] = Field( None, example="16fd2706-8baf-433b-82eb-8c7fada847da", description="ID of the user that created this token.", ) token_purpose: Optional[str] = Field( None, example=TokenPurpose.LOGIN_TOKEN, description="The purpose of the token.", ) class AuthorizedAccess(BaseModel): authorized_subject: str resource_name: Optional[str] = None access_level: Optional[AccessLevel] = None access_token: Optional[AccessToken] = None # Oauth Specific Code class OAuth2TokenGrantTypes(str, Enum): PASSWORD = "password" REFRESH_TOKEN = "refresh_token" CLIENT_CREDENTIALS = "client_credentials" AUTHORIZATION_CODE = "authorization_code" # TODO: Replaced with pydantic class # class OAuth2TokenRequestForm: # """OAuth2 Token Endpoint Request Form.""" # def __init__( # self, # grant_type: OAuth2TokenGrantTypes = Form( # ..., # description="Grant type. Determines the mechanism used to authorize the creation of the tokens.", # ), # username: Optional[str] = Form( # None, description="Required for `password` grant type. The user’s username." # ), # password: Optional[str] = Form( # None, description="Required for `password` grant type. The user’s password." # ), # scope: Optional[str] = Form( # None, # description="Scopes that the client wants to be included in the access token. List of space-delimited, case-sensitive strings", # ), # client_id: Optional[str] = Form( # None, # description="The client identifier issued to the client during the registration process", # ), # client_secret: Optional[str] = Form( # None, # description=" The client secret. The client MAY omit the parameter if the client secret is an empty string.", # ), # code: Optional[str] = Form( # None, # description="Required for `authorization_code` grant type. The value is what was returned from the authorization endpoint.", # ), # redirect_uri: Optional[str] = Form( # None, # description="Required for `authorization_code` grant type. Specifies the callback location where the authorization was sent. This value must match the `redirect_uri` used to generate the original authorization_code.", # ), # refresh_token: Optional[str] = Form( # None, # description="Required for `refresh_token` grant type. The refresh token previously issued to the client.", # ), # state: Optional[str] = Form( # None, # description="An opaque value used by the client to maintain state between the request and callback. The parameter SHOULD be used for preventing cross-site request forgery.", # ), # set_as_cookie: Optional[bool] = Form( # False, # description="If `true`, the access (and refresh) token will be set as cookie instead of the response body.", # ), # ): # self.grant_type = grant_type # self.username = username # self.password = password # self.scopes = [] # if scope: # self.scopes = str(scope).split() # self.client_id = client_id # self.client_secret = client_secret # self.code = code # self.redirect_uri = redirect_uri # self.refresh_token = refresh_token # self.state = state # self.set_as_cookie = set_as_cookie @as_form class OAuth2TokenRequestFormNew(BaseModel): """OAuth2 Token Endpoint Request Form.""" grant_type: OAuth2TokenGrantTypes = Field( ..., description="Grant type. Determines the mechanism used to authorize the creation of the tokens.", ) username: Optional[str] = Field( None, description="Required for `password` grant type. The user’s username." ) password: Optional[str] = Field( None, description="Required for `password` grant type. The user’s password." ) scope: Optional[str] = Field( None, description="Scopes that the client wants to be included in the access token. List of space-delimited, case-sensitive strings", ) client_id: Optional[str] = Field( None, description="The client identifier issued to the client during the registration process", ) client_secret: Optional[str] = Field( None, description=" The client secret. The client MAY omit the parameter if the client secret is an empty string.", ) code: Optional[str] = Field( None, description="Required for `authorization_code` grant type. The value is what was returned from the authorization endpoint.", ) redirect_uri: Optional[str] = Field( None, description="Required for `authorization_code` grant type. Specifies the callback location where the authorization was sent. This value must match the `redirect_uri` used to generate the original authorization_code.", ) refresh_token: Optional[str] = Field( None, description="Required for `refresh_token` grant type. The refresh token previously issued to the client.", ) state: Optional[str] = Field( None, description="An opaque value used by the client to maintain state between the request and callback. The parameter SHOULD be used for preventing cross-site request forgery.", ) set_as_cookie: Optional[bool] = Field( False, description="If `true`, the access (and refresh) token will be set as cookie instead of the response body.", ) class OAuthToken(BaseModel): token_type: str = Field( ..., description="The type of token this is, typically just the string `bearer`" ) access_token: str = Field(..., description="The access token string.") expires_in: Optional[int] = Field( None, description="The expiration time of the access token in seconds.", ) refresh_token: Optional[str] = Field( None, description="API token to refresh the sesion token (if it expires)." ) scope: Optional[str] = Field( None, description="The scopes contained in the access token." ) id_token: Optional[str] = Field( None, description="OpenID Connect ID Token that encodes the user’s authentication information.", ) class OAuthTokenIntrospection(BaseModel): active: bool = Field( ..., description="Indicator of whether or not the presented token is currently active.", ) scope: Optional[str] = Field( None, description="A space-delimited list of scopes.", ) client_id: Optional[str] = Field( None, description="Client identifier for the OAuth 2.0 client that requested this token.", ) username: Optional[str] = Field( None, description="Human-readable identifier for the resource owner who authorized this token.", ) token_type: Optional[str] = Field( None, description="Type of the token as defined in Section 5.1 of OAuth 2.0 [RFC6749].", ) exp: Optional[int] = Field( None, description="Timestamp, measured in the number of seconds since January 1 1970 UTC, indicating when this token will expire, as defined in JWT [RFC7519].", ) iat: Optional[int] = Field( None, description="Timestamp, measured in the number of seconds since January 1 1970 UTC, indicating when this token was originally issued, as defined in JWT [RFC7519].", ) nbf: Optional[int] = Field( None, description="Timestamp, measured in the number of seconds since January 1 1970 UTC, indicating when this token is not to be used before, as defined in JWT [RFC7519].", ) sub: Optional[str] = Field( None, description="Subject of the token, as defined in JWT [RFC7519]. Usually a machine-readable identifier of the resource owner who authorized this token.", ) aud: Optional[str] = Field( None, description="Service-specific string identifier or list of string identifiers representing the intended audience for this token, as defined in JWT [RFC7519].", ) iss: Optional[str] = Field( None, description="String representing the issuer of this token, as defined in JWT [RFC7519].", ) jti: Optional[str] = Field( None, description="String identifier for the token, as defined in JWT [RFC7519].", ) uid: Optional[str] = Field( None, description="The user ID. This parameter is returned only if the token is an access token and the subject is an end user.", ) class AuthorizeResponseType(str, Enum): TOKEN = "token" CODE = "code" class OAuth2ErrorDetails(BaseModel): error: str class OAuth2Error(HTTPException): """Basic exception for OAuth errors. Implements the [RFC6749 error response](https://tools.ietf.org/html/rfc6749#section-5.2). """ def __init__( self, error: str, ) -> None: """Initializes the exception. Args: error: A single ASCII error code from the ones defined in RFC6749. """ super(OAuth2Error, self).__init__( status_code=status.HTTP_400_BAD_REQUEST, detail=error, ) # TODO: Not used right now # class OAuth2AuthorizeRequestForm: # """OAuth2 Authorize Endpoint Request Form.""" # def __init__( # self, # response_type: AuthorizeResponseType = Form( # ..., # description="Either code for requesting an authorization code or token for requesting an access token (implicit grant).", # ), # client_id: Optional[str] = Form( # None, description="The public identifier of the client." # ), # redirect_uri: Optional[str] = Form(None, description="Redirection URL."), # scope: Optional[str] = Form( # None, description="The scope of the access request." # ), # state: Optional[str] = Form( # None, # description="An opaque value used by the client to maintain state between the request and callback. The parameter SHOULD be used for preventing cross-site request forgery", # ), # nonce: Optional[str] = Form(None), # ): # self.response_type = response_type # self.client_id = client_id # self.redirect_uri = redirect_uri # self.scope = scope # self.state = state # self.nonce = nonce USER_ID_PARAM = Path( ..., title="User ID", description="A valid user ID.", # TODO: add length restriction ) # User Models class UserBase(BaseModel): username: Optional[str] = Field( None, example="john-doe", description="A unique username on the system.", ) # nickname email: Optional[EmailStr] = Field( None, example="[email protected]", description="User email address." ) disabled: bool = Field( False, description="Indicates that user is disabled. Disabling a user will prevent any access to user-accessible resources.", ) class UserInput(UserBase): pass class UserRegistration(UserInput): # The password is only part of the user input object and should never returned # TODO: a password can only be changed when used via oauth password bearer # TODO: System admin can change passwords for all users password: Optional[str] = Field( None, description="Password for the user. The password will be stored in as a hash.", ) class User(UserBase): id: str = Field( ..., example="16fd2706-8baf-433b-82eb-8c7fada847da", description="Unique ID of the user.", ) technical_user: bool = Field( False, description="Indicates if the user is a technical user created by the system.", ) created_at: datetime = Field( default_factory=lambda: datetime.now(timezone.utc), description="Timestamp of the user creation. Assigned by the server and read-only.", ) last_activity: datetime = Field( None, # If none the validator below will set last_activity to the create_at time description="Last time the user accessed the system. Right now this is only updated when the user " "calls the /users/me endpoint so that call should always be done when the user loads the UI.", ) @pydantic.validator("last_activity", pre=True, always=True) def default_last_activity(cls, v: datetime, *, values: Dict) -> datetime: return v if v is not None else values["created_at"] has_password: bool = Field( True, description="Indicates if the user log in with password or SSO", )
[((369, 16, 374, 1), 'fastapi.Path', 'Path', (), '', False, 'from fastapi import HTTPException, Path, status\n'), ((54, 17, 58, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((59, 28, 63, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((64, 19, 68, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((69, 24, 73, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((74, 37, 77, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((78, 37, 82, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((86, 33, 91, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((92, 32, 96, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((97, 35, 101, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((187, 40, 190, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((191, 30, 193, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((194, 30, 196, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((197, 27, 200, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((201, 31, 204, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((205, 35, 208, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((209, 26, 212, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((213, 34, 216, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((217, 35, 220, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((221, 27, 224, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((225, 36, 228, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((232, 22, 234, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((235, 24, 235, 74), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((236, 32, 239, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((240, 35, 242, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((243, 27, 245, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((246, 30, 249, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((253, 19, 256, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((257, 27, 260, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((261, 31, 264, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((265, 30, 268, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((269, 32, 272, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((273, 25, 276, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((277, 25, 280, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((281, 25, 284, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((285, 25, 288, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((289, 25, 292, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((293, 25, 296, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((297, 25, 300, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((301, 25, 304, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((379, 30, 383, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((384, 32, 386, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((387, 21, 390, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((401, 30, 404, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((408, 14, 412, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((413, 27, 416, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((421, 30, 425, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((427, 5, 427, 63), 'pydantic.validator', 'pydantic.validator', (), '', False, 'import pydantic\n'), ((431, 25, 434, 5), 'pydantic.Field', 'Field', (), '', False, 'from pydantic import BaseModel, EmailStr, Field\n'), ((32, 18, 32, 77), 'contaxy.schema.exceptions.ClientValueError', 'ClientValueError', ({(32, 35, 32, 76): 'f"""Access level is unknown {access_level}"""'}, {}), "(f'Access level is unknown {access_level}')", False, 'from contaxy.schema.exceptions import ClientValueError\n'), ((418, 32, 418, 58), 'datetime.datetime.now', 'datetime.now', ({(418, 45, 418, 57): 'timezone.utc'}, {}), '(timezone.utc)', False, 'from datetime import datetime, timezone\n')]
richarddwang/hugdatafast
setup.py
714ebac89cb6c616a53ec5da50d0c1c50c6f2a3e
import setuptools from hugdatafast.__init__ import __version__ with open("README.md", "r") as fh: long_description = fh.read() REQUIRED_PKGS = [ 'fastai>=2.0.8', 'fastscore>=1.0.1', # change of store_attr api 'datasets', ] setuptools.setup( name="hugdatafast", version=__version__, author="Richard Wang", author_email="[email protected]", description="The elegant bridge between hugginface data and fastai", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/richarddwang/hugdatafast", license='Apache 2.0', packages=setuptools.find_packages(), classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], python_requires='>=3.6', install_requires=REQUIRED_PKGS, keywords='datasets machine learning datasets metrics fastai huggingface', )
[((23, 13, 23, 39), 'setuptools.find_packages', 'setuptools.find_packages', ({}, {}), '()', False, 'import setuptools\n')]
drehak/leapp
tests/scripts/test_repository_actor_definition.py
062c76859e6b4a68592c6a387e44a2c1d36949ff
import pytest from leapp.repository.actor_definition import ActorDefinition, ActorInspectionFailedError, MultipleActorsError from leapp.exceptions import UnsupportedDefinitionKindError from leapp.repository import DefinitionKind from helpers import repository_dir import logging import mock _FAKE_META_DATA = { 'description': 'Fake Description', 'class_name': 'FakeActor', 'name': 'fake-actor', 'path': 'actors/test', 'tags': (), 'consumes': (), 'produces': (), 'dialogs': (), } def test_actor_definition(repository_dir): with repository_dir.as_cwd(): logger = logging.getLogger('leapp.actor.test') with mock.patch.object(logger, 'log') as log_mock: definition = ActorDefinition('actors/test', '.', log=log_mock) for kind in set(DefinitionKind.REPO_WHITELIST + DefinitionKind.ACTOR_WHITELIST): if kind in DefinitionKind.ACTOR_WHITELIST: definition.add(kind, '.') else: with pytest.raises(UnsupportedDefinitionKindError): definition.add(kind, '.') log_mock.error.assert_called_with( "Attempt to add item type %s to actor that is not supported", kind.name) log_mock.reset_mock() with mock.patch('leapp.repository.actor_definition.get_actor_metadata', return_value=_FAKE_META_DATA): with mock.patch('leapp.repository.actor_definition.get_actors', return_value=[True]): definition._module = True assert definition.consumes == _FAKE_META_DATA['consumes'] assert definition.produces == _FAKE_META_DATA['produces'] assert definition.tags == _FAKE_META_DATA['tags'] assert definition.class_name == _FAKE_META_DATA['class_name'] assert definition.dialogs == _FAKE_META_DATA['dialogs'] assert definition.name == _FAKE_META_DATA['name'] assert definition.description == _FAKE_META_DATA['description'] dumped = definition.dump() assert dumped.pop('path') == _FAKE_META_DATA['path'] assert dumped.pop('name') == definition.name assert dumped.pop('files') == ('.',) assert dumped.pop('libraries') == ('.',) assert dumped.pop('tests') == ('.',) assert dumped.pop('tools') == ('.',) # Assert to ensure we covered all keys assert not dumped with pytest.raises(ActorInspectionFailedError): with mock.patch('leapp.repository.actor_definition.get_actors', return_value=[]): definition._discovery = None definition.discover() with pytest.raises(ActorInspectionFailedError): with mock.patch('leapp.repository.actor_definition.get_actors') as mocked_actors: mocked_actors.side_effect = RuntimeError('Test error') definition._discovery = None definition.discover() with pytest.raises(MultipleActorsError): with mock.patch('leapp.repository.actor_definition.get_actor_metadata', return_value=_FAKE_META_DATA): with mock.patch('leapp.repository.actor_definition.get_actors', return_value=[True, True]): definition._discovery = None definition.discover()
[((23, 9, 23, 32), 'helpers.repository_dir.as_cwd', 'repository_dir.as_cwd', ({}, {}), '()', False, 'from helpers import repository_dir\n'), ((24, 17, 24, 54), 'logging.getLogger', 'logging.getLogger', ({(24, 35, 24, 53): '"""leapp.actor.test"""'}, {}), "('leapp.actor.test')", False, 'import logging\n'), ((25, 13, 25, 45), 'mock.patch.object', 'mock.patch.object', ({(25, 31, 25, 37): 'logger', (25, 39, 25, 44): '"""log"""'}, {}), "(logger, 'log')", False, 'import mock\n'), ((26, 25, 26, 74), 'leapp.repository.actor_definition.ActorDefinition', 'ActorDefinition', (), '', False, 'from leapp.repository.actor_definition import ActorDefinition, ActorInspectionFailedError, MultipleActorsError\n'), ((36, 17, 36, 113), 'mock.patch', 'mock.patch', (), '', False, 'import mock\n'), ((56, 17, 56, 58), 'pytest.raises', 'pytest.raises', ({(56, 31, 56, 57): 'ActorInspectionFailedError'}, {}), '(ActorInspectionFailedError)', False, 'import pytest\n'), ((61, 17, 61, 58), 'pytest.raises', 'pytest.raises', ({(61, 31, 61, 57): 'ActorInspectionFailedError'}, {}), '(ActorInspectionFailedError)', False, 'import pytest\n'), ((67, 17, 67, 51), 'pytest.raises', 'pytest.raises', ({(67, 31, 67, 50): 'MultipleActorsError'}, {}), '(MultipleActorsError)', False, 'import pytest\n'), ((37, 21, 37, 100), 'mock.patch', 'mock.patch', (), '', False, 'import mock\n'), ((57, 21, 57, 96), 'mock.patch', 'mock.patch', (), '', False, 'import mock\n'), ((62, 21, 62, 79), 'mock.patch', 'mock.patch', ({(62, 32, 62, 78): '"""leapp.repository.actor_definition.get_actors"""'}, {}), "('leapp.repository.actor_definition.get_actors')", False, 'import mock\n'), ((68, 21, 68, 117), 'mock.patch', 'mock.patch', (), '', False, 'import mock\n'), ((31, 25, 31, 70), 'pytest.raises', 'pytest.raises', ({(31, 39, 31, 69): 'UnsupportedDefinitionKindError'}, {}), '(UnsupportedDefinitionKindError)', False, 'import pytest\n'), ((69, 25, 69, 110), 'mock.patch', 'mock.patch', (), '', False, 'import mock\n')]
yeyuning1/iHome
iHome/house/models.py
aceb87d786ab66cf74ff47f549ec73388d21c9e3
from django.db import models # Create your models here. from utils.models import BaseModel class House(BaseModel): '''房屋信息''' user = models.ForeignKey('users.User', on_delete=models.CASCADE, verbose_name='房屋用户') area = models.ForeignKey('address.Area', on_delete=models.SET_NULL, null=True, verbose_name='房屋地区') title = models.CharField(max_length=64, null=False, verbose_name='房屋标题') price = models.IntegerField(default=0, verbose_name='房屋单价') # 单价分 address = models.CharField(max_length=512, default='', verbose_name='房屋地址') room_count = models.SmallIntegerField(default=1, verbose_name='房间数目') acreage = models.IntegerField(default=0, verbose_name='房屋面积') unit = models.CharField(max_length=32, default='', verbose_name='房屋单元') # 如几室几厅 capacity = models.SmallIntegerField(default=1, verbose_name='房屋容纳') # 房屋容纳的人数 beds = models.CharField(max_length=64, default='', verbose_name='房屋床铺配置') deposit = models.IntegerField(default=0, verbose_name='房屋押金') min_days = models.SmallIntegerField(default=1, verbose_name='最少入住天数') max_days = models.SmallIntegerField(default=0, verbose_name='最大入住天数') # 0表示不限制 order_count = models.IntegerField(default=0, verbose_name='预计该房屋的订单数') index_image_url = models.CharField(max_length=500, default='', verbose_name='房屋主图片的路径') facilities = models.ManyToManyField('Facility')#配套设施 class Meta: db_table = 'ih_house_info' verbose_name = '房屋信息' verbose_name_plural = verbose_name class Facility(models.Model): '''房屋设施信息''' name = models.CharField(max_length=32, verbose_name='设施名称') class Meta: db_table = 'ih_facility_info' verbose_name = '设施信息' verbose_name_plural = verbose_name class HouseImage(BaseModel): '''房屋图片''' house = models.ForeignKey(House, verbose_name='房屋信息', on_delete=models.CASCADE) url = models.CharField(max_length=256, null=False, verbose_name='房屋图片地址') class Meta: db_table = 'ih_house_image' verbose_name = '房屋图片' verbose_name_plural = verbose_name
[((9, 11, 9, 97), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import models\n'), ((10, 11, 10, 111), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import models\n'), ((11, 12, 11, 84), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((12, 12, 12, 71), 'django.db.models.IntegerField', 'models.IntegerField', (), '', False, 'from django.db import models\n'), ((13, 14, 13, 87), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((14, 17, 14, 81), 'django.db.models.SmallIntegerField', 'models.SmallIntegerField', (), '', False, 'from django.db import models\n'), ((15, 14, 15, 73), 'django.db.models.IntegerField', 'models.IntegerField', (), '', False, 'from django.db import models\n'), ((16, 11, 16, 83), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((17, 15, 17, 79), 'django.db.models.SmallIntegerField', 'models.SmallIntegerField', (), '', False, 'from django.db import models\n'), ((18, 11, 18, 89), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((19, 14, 19, 73), 'django.db.models.IntegerField', 'models.IntegerField', (), '', False, 'from django.db import models\n'), ((20, 15, 20, 85), 'django.db.models.SmallIntegerField', 'models.SmallIntegerField', (), '', False, 'from django.db import models\n'), ((21, 15, 21, 85), 'django.db.models.SmallIntegerField', 'models.SmallIntegerField', (), '', False, 'from django.db import models\n'), ((22, 18, 22, 92), 'django.db.models.IntegerField', 'models.IntegerField', (), '', False, 'from django.db import models\n'), ((23, 22, 23, 107), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((24, 17, 24, 51), 'django.db.models.ManyToManyField', 'models.ManyToManyField', ({(24, 40, 24, 50): '"""Facility"""'}, {}), "('Facility')", False, 'from django.db import models\n'), ((34, 11, 34, 71), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((44, 12, 44, 91), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import models\n'), ((45, 10, 45, 89), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n')]
Psycojoker/cltwit
cltwit/main.py
3164f263df60d608da124ceb7d1e56bbdde7c930
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Cltwit is a command line twitter utility Author : Jérôme Launay Date : 2013 """ import os import sys import re import getopt import gettext import sqlite3 import webbrowser import ConfigParser from sqlite2csv import sqlite2csv from cltwitdb import cltwitdb from utils import LocalTimezone from cltwitreport import TweetsReport APP_NAME = 'cltwit' LOC_PATH = os.path.dirname(__file__) + '/locale' gettext.find(APP_NAME, LOC_PATH) gettext.install(APP_NAME, LOC_PATH, True) try: import tweepy except ImportError: print(_("Veuillez installer tweetpy https://github.com/tweepy/tweepy")) sys.exit() # Répertoire pour conf et bdd __cltwitdir__ = os.path.expanduser("~/.config/cltwit") # Fichier de configuration __configfile__ = __cltwitdir__ + "/cltwit.conf" # base de données et table sqlite __dblocation__ = __cltwitdir__ + '/data.db' __tablename__ = 'twitter' __Local__ = LocalTimezone() # gestion des couleurs sur le terminal BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE = range(8) def has_colours(stream): """Vérifier la prise en charge des couleurs par le terminal""" if not hasattr(stream, "isatty"): return False if not stream.isatty(): return False # couleurs auto sur un TTY try: import curses curses.setupterm() return curses.tigetnum("colors") > 2 except: # Si erreur on suppose false return False __has_colours__ = has_colours(sys.stdout) def printout(text, colour=WHITE): """Print en couleur""" if __has_colours__: seq = "\x1b[1;%dm" % (30 + colour) + text + "\x1b[0m" sys.stdout.write(seq) else: sys.stdout.write(text.encode("Utf-8")) def checkdb(): """ Vérifier la présence de la bdd sqlite et la créer si absente """ if (not os.path.exists(__dblocation__)): printout(_(u"Vous devez d'abord lancer la commande --database create \ pour créer une base de données de vos tweets."), RED) sys.exit() def checkconfig(): """Récupérer la configuration ou la créer""" # On ouvre le fichier de conf config = ConfigParser.RawConfigParser() try: config.read(__configfile__) if config.has_option('twitterapi', 'access_token'): access_token = config.get('twitterapi', 'access_token') if config.has_option('twitterapi', 'access_password'): access_password = config.get('twitterapi', 'access_password') except: pass auth = tweepy.OAuthHandler("Jus1rnqM6S0WojJfOH1kQ", "AHQ5sTC8YYArHilXmqnsstOivY6ygQ2N27L1zBwk") # Si aucune conf , autorisation de connexion à twitter via OAuth if not(config.has_option('twitterapi', 'access_token') and config.has_option('twitterapi', 'access_password')): # On ouvre le navigateur web pour récupếrer le numéro d'autorisation while True: try: webbrowser.open(auth.get_authorization_url()) var = raw_input(_("Entrez le token !\n")) auth.get_access_token(var) except Exception, e: print(str(e)) continue break var = auth.access_token # On récupère le token et le password access_password = str(var).split("&")[0].split("=")[1] access_token = str(var).split("&")[1].split("=")[1] # écrire le fichier de conf avec les informations récupérées try: cfgfile = open(__configfile__, 'w') if not(config.has_section('twitterapi')): config.add_section('twitterapi') config.set('twitterapi', 'access_token', access_token) config.set('twitterapi', 'access_password', access_password) config.write(cfgfile) except IOError: pass finally: cfgfile.close() else: # Si un fichier de conf existait déjà auth.set_access_token(access_token, access_password) return auth def login(): """ Se connecter à l'api twitter via tweepy """ auth = checkconfig() api = tweepy.API(auth) # On vérifie la connexion à l'api en récupérant le user name try: twittername = api.me().screen_name except Exception, e: if 'Unable to get username' in (str(e)): printout(_(u"Impossible de s'authentifier avec l'api Twitter.\ Fonctionne en mode déconnecté"), RED) print("\n") twittername = "offline_mode" printout(_(u"Authentifié avec le user twitter {0}").format(twittername.decode('utf-8')), GREEN) print("\n") return api, auth, twittername def get_friends_followers(api): """Renvoie la liste des id des friends et followers""" friend_id = [] follower_id = [] printout(_(u"Récupération des Followers..."), YELLOW) print("\n") for follower in tweepy.Cursor(api.followers).items(): follower_id.append(follower.id) printout((u"Récupération des Friends..."), YELLOW) print("\n") for friend in tweepy.Cursor(api.friends).items(): friend_id.append(friend.id) return friend_id, follower_id def get_diff(liste1, liste2): """Renvoie les objets de liste1 qui ne sont pas dans liste2""" return list(set(liste1).difference(set(liste2))) def follow_users(api, user): """Suivre une personne""" try: api.create_friendship(user) printout(_(u"Vous suivez maintenant {0}").format(api.get_user(user).screen_name.decode('utf-8')), GREEN) except Exception, e: print(e) def unfollow_user(api, user): """Cesser de suivre une personne""" try: api.destroy_friendship(user) printout(_(u"Vous ne suivez plus {0}").format(api.get_user(user).screen_name.decode('utf-8')), GREEN) except Exception, e: print(e) def main(argv=None): """ Point d'entrée """ # Si le répertoire pour la conf et la base de données n'existe pas le créer if not os.path.exists(__cltwitdir__): os.makedirs(__cltwitdir__) #~ twittername = "offline_mode" # Traitement des arguments if argv is None: argv = sys.argv if len(argv) == 1: help() try: opts, args = getopt.getopt(sys.argv[1:], "r:ahfut:o:s:d:", ["report", "api", "help", "follow", "unfollow", "tweet=", "output=", "search=", "database="]) except getopt.GetoptError, err: print(err) help() sys.exit() # traitement des options for option, value in opts: if option in ('-a', '--api'): api, auth, twittername = login() res = api.rate_limit_status() rtime = res['reset_time'] rhits = res['remaining_hits'] hlimit = res['hourly_limit'] from dateutil.parser import parse drtime = parse(rtime) printout(_("Informations sur l'utilisation de l'api Twitter"), YELLOW) print("\n") # Définir l'heure locale qui correspond à l'heure renvoyée # par l'api Twitter rlocaltime = drtime.astimezone(__Local__) printout(_("Maximum d'appels par heure: "), BLUE) print hlimit printout(_("Nombre d'appels restants: "), BLUE) print rhits printout(_("Heure du prochain reset: "), BLUE) print rlocaltime.strftime("%H:%M %Y-%m-%d") if option in ('-r', '--report'): api, auth, twittername = login() checkdb() conn = sqlite3.connect(__dblocation__) c = conn.cursor() c.execute("select substr(date, 1,4) from twitter order by date asc limit 1") dmois = c.fetchone()[0] c.execute("select substr(date, 1,4) from twitter order by date desc limit 1") fmois = c.fetchone()[0] # Requête des données à exporter dd = dict() for a in range(int(dmois), int(fmois) + 1): result = [] for m in range(1, 13): mois = ('{num:02d}'.format(num=m)) c.execute("select count(*) from twitter where substr(date, 1,4) = '{0}' and substr(date, 6,2) = '{1}'".format(a, mois)) result.append(c.fetchone()[0]) dd[a] = result c.close() conn.close() treport = TweetsReport(value) # twittername = "offline" treport.ecrireTitre(twittername) nb = 0 for annee, donnees in dd.items(): nb += 1 if nb == 4: treport.NextPage() nb = 1 saut = 0 if nb == 1: saut = 0 if nb == 2: saut = 200 if nb == 3: saut = 400 treport.ecrireLegende(saut, annee, donnees) treport.addPie(saut, donnees) treport.save() printout(_(u"Report {0} créé !").format(value), GREEN) print("\n") sys.exit(0) if option in ('-d', '--database'): if value in ('u', 'update'): # Se connecter à l'api twitter api, auth, twittername = login() # Mettre à jour la base de données db = cltwitdb(__dblocation__, __tablename__) printout(_(u"Mise à jour de la base de données de {0}").format(twittername.decode('utf-8')), YELLOW) print("\n") nb = db.update(api, twittername) printout(_(u"Ajout de {0} tweet(s) dans la base de données.").format(nb), GREEN) if value in ('c', 'create'): # Se connecter à l'api twitter api, auth, twittername = login() # Créer la base de données db = cltwitdb(__dblocation__, __tablename__) printout(_(u"Création de la liste des tweets de ") + twittername.decode('utf-8'), YELLOW) db.create(api, twittername) printout(_(u"Base de données crée"), GREEN) sys.exit() #~ database_create(api,twittername) if option in ("-o", "--output"): # Exporter en csv checkdb() conn = sqlite3.connect(__dblocation__) c = conn.cursor() # Requête des données à exporter c.execute('select date, tweet, url from {0} order by date desc'.format(__tablename__)) # On appelle la classe sqlite2csv qui se charge de l'export export = sqlite2csv(open(value, "wb")) # Entête du fichier csv export.writerow(["Date", "Tweet", "URL"]) # Lignes du fichier csv export.writerows(c) # On ferme la connexion sqlite et le curseur c.close() conn.close() printout(_(u"Fichier csv {0} créé.").format(value.decode('utf-8')), GREEN) sys.exit() if option in ("-s", "--search"): # Rechercher un motif dans la base des tweets checkdb() printout(_(u"Recherche de {0} dans vos anciens tweets...") .format(value.decode('utf-8')), YELLOW) print("\n") # la méthode search retourne un tuple avec les champs # qui contiennent le motif db = cltwitdb(__dblocation__, __tablename__) results = db.search(value, "tweet") for result in results: print((u"{0} -> {1}\n{2}\n\n").format(result[1].decode('utf-8'), result[4].decode('utf-8'), result[2].decode('utf-8'))) if option in ("-u", "--unfollow"): # Se connecter à l'api twitter api, auth, twittername = login() # Créer les liste friend et followers (par id) friend_id, follower_id = get_friends_followers(api) # Création des listes follow et unfollow follow_liste = get_diff(follower_id, friend_id) unfollow_liste = get_diff(friend_id, follower_id) # Un-follow printout(_("Vous suivez {0} personnes qui ne vous suivent pas.") .format(len(unfollow_liste)), YELLOW) print("\n") printout(_("Voulez changer cela ? (o/N)"), BLUE) print("\n") reponse = raw_input("> ") if (reponse.lower() == 'o' or reponse.lower() == 'y'): for user in unfollow_liste: printout(_("Voulez-vous cesser de suivre {0} ? (o/N)") .format(api.get_user(user).screen_name), BLUE) print("\n") reponse = raw_input("> ") if (reponse.lower() == 'o' or reponse.lower() == 'y'): unfollow_user(api, user) if option in ("-f", "--follow"): # Se connecter à l'api twitter api, auth, twittername = login() # Créer les liste friend et followers (par id) friend_id, follower_id = get_friends_followers(api) # Création des listes follow et unfollow follow_liste = get_diff(follower_id, friend_id) unfollow_liste = get_diff(friend_id, follower_id) # follow printout(_("{0} personnes vous suivent alors que vous ne les suivez pas.") .format(len(follow_liste)), YELLOW) print("\n") printout(_("Voulez changer cela ? (o/N)"), BLUE) print("\n") reponse = raw_input("> ") if (reponse.lower() == 'o' or reponse.lower() == 'y'): for user in follow_liste: printout(_("Voulez-vous suivre {0} ? (o/N)" .format(api.get_user(user).screen_name)), BLUE) print("\n") reponse = raw_input("> ") if (reponse.lower() == 'o' or reponse.lower() == 'y'): follow_users(api, user) if option in ("-t", "--tweet"): # Se connecter à l'api twitter api, auth, twittername = login() # Envoyer un tweet tweet_size = len(re.sub("https://\S*", "X"*23, re.sub("http://\S*", "X"*22, value))) if tweet_size < 141: api.update_status(value) print("\n") printout(_(u"Tweet envoyé !"), GREEN) else: printout(_(u"La limite pour un tweet est de 140 caractères, votre message \ fait {0} caractères de trop").format(str(tweet_size - 140).decode('utf-8')), RED) sys.exit() if option in ("-h", "--help"): help() def help(): printout(_(u""" Usage : cltwit [OPTIONS] Options : -f (--follow) *Ajouter des personnes qui vous suivent et que vous ne suivez pas -u (--unfollow) *Cesser de suivre les personnes que vous suivez et qui \ vous ne suivent pas -s (--search) MOTIF *Search ( rechercher MOTIF dans vos anciens tweets) -t (--tweet) *Envoyer un tweet (message de 140 caractères maximum) -o (--output) FILENAME.csv *Exporter l'intégralité de vos tweets dans \ le fichier FILENAME.csv -a (--api) * Obtenir des informations sur l'utilisation de l'api twitter -r (--report) FILENAME.pdf * Générer un reporting format pdf avec la repartition des tweets par année et par mois -d (--database) c|u c (create) *Créer ou récréer la base de données des tweets u (update) *Mettre à jour la base de données des tweets """), BLUE ) if __name__ == "__main__": try: sys.exit(main()) except KeyboardInterrupt: print("\n") print(_(u"Merci d'avoir utilisé clitwit !"))
[]
lonsty/weibo-pic-spider-hd
weibo_image_spider/exceptions.py
c7dae38b51209296cc8e71aa6fb80f094d549198
# @AUTHOR : lonsty # @DATE : 2020/3/28 18:01 class CookiesExpiredException(Exception): pass class NoImagesException(Exception): pass class ContentParserError(Exception): pass class UserNotFound(Exception): pass
[]
lilei644/python-learning-example
WebHtmlExample/WebHtmlExample.py
71910a32bc8b3b8f23ba13babb583af453405bbe
import requests from bs4 import BeautifulSoup import re # 设置请求头 # 更换一下爬虫的User-Agent,这是最常规的爬虫设置 headers = { "User-Agent": 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36'} # 获取天气信息 def get_weather(): html = requests.get("http://www.weather.com.cn/weather/101280601.shtml", headers=headers) html.encoding = "utf-8" if html.status_code == 200: soup = BeautifulSoup(html.text, "lxml") light_list = soup.select('p.tem span') night_list = soup.select('p.tem i') for index in range(0, len(light_list)): print('白天温度:{0}, 夜晚温度:{1}'.format(light_list[index].get_text(), night_list[index].get_text())) # 获取贴吧回复数 def get_bar(): html = requests.get("http://tieba.baidu.com/f?ie=utf-8&kw=python3", headers=headers) html.encoding = "utf-8" if html.status_code == 200: # <span class="threadlist_rep_num center_text" title="回复">9</span> tag_list = re.findall(r'(?<="回复">)\d*(?=</span>)', html.text) print(tag_list) if __name__ == '__main__': get_weather() get_bar()
[((13, 11, 13, 93), 'requests.get', 'requests.get', (), '', False, 'import requests\n'), ((25, 11, 25, 88), 'requests.get', 'requests.get', (), '', False, 'import requests\n'), ((16, 15, 16, 47), 'bs4.BeautifulSoup', 'BeautifulSoup', ({(16, 29, 16, 38): 'html.text', (16, 40, 16, 46): '"""lxml"""'}, {}), "(html.text, 'lxml')", False, 'from bs4 import BeautifulSoup\n'), ((29, 19, 29, 73), 're.findall', 're.findall', ({(29, 30, 29, 61): '"""(?<="回复">)\\\\d*(?=</span>)"""', (29, 63, 29, 72): 'html.text'}, {}), '(\'(?<="回复">)\\\\d*(?=</span>)\', html.text)', False, 'import re\n')]
JosepFanals/HELM
Codi/diode.py
feb579f37eb0850ba2a7acef18f8d3d78b9e599c
import numpy as np import math import matplotlib.pyplot as plt U = 5 # equival a l'E R = 2 # equival a R1 R2 = 3 P = 1.2 Vt = 0.026 Is = 0.000005 n = 200 # profunditat Vd = np.zeros(n) # sèries Vl = np.zeros(n) I1 = np.zeros(n) I1[0] = U / R # inicialització de les sèries Vd[0] = Vt * math.log(1 + I1[0] / Is) Vl[0] = P / I1[0] def convVd(Vd, I, i): # convolució pel càlcul de Vd[i] suma = 0 for k in range(1, i): suma += k * Vd[k] * I[i - k] return suma def convVlI(Vl, I1, i): # convolució pel càlcul de Vl[i] suma = 0 for k in range(i): suma = suma + Vl[k] * I1[i - k] return suma for i in range(1, n): # càlcul dels coeficients I1[i] = (1 / R + 1 / R2) * (-Vd[i - 1] - Vl[i - 1]) Vd[i] = (i * Vt * I1[i] - convVd(Vd, I1, i)) / (i * (Is + I1[0])) Vl[i] = -convVlI(Vl, I1, i) / I1[0] If = sum(I1) Vdf = sum(Vd) Vlf = sum(Vl) print('I1: ' + str(If)) print('Vd: ' + str(Vdf)) print('Vl: ' + str(Vlf)) print('P: ' + str(Vlf * If)) Vdfinal = np.zeros(n) # per tal de veure com evoluciona la tensió del díode for j in range(n): Vdfinal[j] = np.sum([Vd[:(j+1)]]) print(Vdfinal)
[((14, 5, 14, 16), 'numpy.zeros', 'np.zeros', ({(14, 14, 14, 15): 'n'}, {}), '(n)', True, 'import numpy as np\n'), ((15, 5, 15, 16), 'numpy.zeros', 'np.zeros', ({(15, 14, 15, 15): 'n'}, {}), '(n)', True, 'import numpy as np\n'), ((16, 5, 16, 16), 'numpy.zeros', 'np.zeros', ({(16, 14, 16, 15): 'n'}, {}), '(n)', True, 'import numpy as np\n'), ((52, 10, 52, 21), 'numpy.zeros', 'np.zeros', ({(52, 19, 52, 20): 'n'}, {}), '(n)', True, 'import numpy as np\n'), ((20, 13, 20, 37), 'math.log', 'math.log', ({(20, 22, 20, 36): '(1 + I1[0] / Is)'}, {}), '(1 + I1[0] / Is)', False, 'import math\n'), ((54, 17, 54, 37), 'numpy.sum', 'np.sum', ({(54, 24, 54, 36): '[Vd[:j + 1]]'}, {}), '([Vd[:j + 1]])', True, 'import numpy as np\n')]
aljeshishe/ProxyBroker
proxybroker/errors.py
195c050162275f63ebe033be765abec90601e3e1
"""Errors.""" class ProxyError(Exception): pass class NoProxyError(Exception): pass class ResolveError(Exception): pass class ProxyConnError(ProxyError): pass class ProxyRecvError(ProxyError): # connection_is_reset pass class ProxySendError(ProxyError): # connection_is_reset pass class ProxyTimeoutError(ProxyError): pass class ProxyEmptyResponseError(ProxyError): pass class BadStatusError(Exception): # BadStatusLine pass class BadResponseError(Exception): pass class BadStatusLine(Exception): pass class ErrorOnStream(Exception): pass
[]
lvying1991/KBQA-System
questionanswering/models/pooling.py
55e69c8320df3f7b199860afc76e8a0ab66f540e
import torch from torch import nn as nn from torch import autograd class LogSumExpPooling1d(nn.Module): """Applies a 1D LogSumExp pooling over an input signal composed of several input planes. LogSumExp is a smooth approximation of the max function. 在由多个输入平面组成的输入信号上应用1D LogSumExp池。 LogSumExp是max函数的平滑近似值。 Examples: >>> m = LogSumExpPooling1d() >>> input = autograd.Variable(torch.randn(4, 5, 10)) >>> m(input).squeeze() """ def __init__(self): super(LogSumExpPooling1d, self).__init__() def forward(self, x): x.exp_() x = x.sum(dim=-1, keepdim=True) x.log_() return x def __repr__(self): return self.__class__.__name__ + '()'
[]