repo_name
stringlengths
7
94
repo_path
stringlengths
4
237
repo_head_hexsha
stringlengths
40
40
content
stringlengths
10
680k
apis
stringlengths
2
840k
UKPLab/cdcr-beyond-corpus-tailored
python/handwritten_baseline/pipeline/model/feature_extr/debug.py
52bf98692c7464f25628baea24addd1a988f9a1f
import pprint from typing import Optional, List, Tuple, Set, Dict import numpy as np from overrides import overrides from python.handwritten_baseline.pipeline.data.base import Dataset from python.handwritten_baseline.pipeline.model.feature_extr import DEBUG_EXTR from python.handwritten_baseline.pipeline.model.feature_extr.base_mixin import FeatureExtractorMixin class DebugFeatureExtractor(FeatureExtractorMixin): """ Returns constant or random feature value for testing purposes. """ def __init__(self, strategy: str, num_features: int, use_cache: bool, features_to_select: Optional[List[str]]): super(DebugFeatureExtractor, self).__init__(DEBUG_EXTR, use_cache, features_to_select) self.strategy = strategy self.num_features = num_features @overrides def _transform(self, dataset: Dataset, pairs: List[Tuple[Tuple, Tuple]], unique_mentions: Set[Tuple]): if self.strategy == "random": return np.random.normal(0, 1, (len(pairs), self.num_features)) elif self.strategy == "zero": return np.zeros((len(pairs), self.num_features)) elif self.strategy == "mix": num_zero_features = self.num_features // 2 print(f"Generating {num_zero_features} zero features and {self.num_features - num_zero_features} random features.") zero_features = np.zeros((len(pairs), num_zero_features)) random_features = np.random.normal(0, 1, (len(pairs), self.num_features - num_zero_features)) feature_matrix = np.hstack([zero_features, random_features]) np.random.shuffle(np.transpose(feature_matrix)) return feature_matrix @overrides def _get_plain_names_of_all_features(self) -> List[str]: return [str(i) for i in range(self.num_features)] @classmethod @overrides def from_params(cls, config: Dict): strategy = config.pop("strategy") num_features = config.pop("num_features") use_cache = config.pop("use_cache", False) features_to_select = config.pop("features_to_select", None) obj = DebugFeatureExtractor(strategy, num_features, use_cache, features_to_select) if config: raise ValueError("Leftover configuration: " + pprint.pformat(config)) return obj
[((36, 29, 36, 72), 'numpy.hstack', 'np.hstack', ({(36, 39, 36, 71): '[zero_features, random_features]'}, {}), '([zero_features, random_features])', True, 'import numpy as np\n'), ((54, 58, 54, 80), 'pprint.pformat', 'pprint.pformat', ({(54, 73, 54, 79): 'config'}, {}), '(config)', False, 'import pprint\n'), ((37, 30, 37, 58), 'numpy.transpose', 'np.transpose', ({(37, 43, 37, 57): 'feature_matrix'}, {}), '(feature_matrix)', True, 'import numpy as np\n')]
cyberixae/kunquat
kunquat/tracker/errorbase.py
06ae72b2c1519686cc510ce887d9d45a5c3fa3a3
# -*- coding: utf-8 -*- # # Author: Tomi Jylhä-Ollila, Finland 2014 # # This file is part of Kunquat. # # CC0 1.0 Universal, http://creativecommons.org/publicdomain/zero/1.0/ # # To the extent possible under law, Kunquat Affirmers have waived all # copyright and related or neighboring rights to Kunquat. # from __future__ import print_function import sys import traceback import os _ERROR_BRIEF = 'Kunquat Tracker encountered an error.' _SUBMIT_INFO = \ '''Please submit an issue to Kunquat issue tracker at https://github.com/kunquat/kunquat/issues with the following information attached.''' def get_error_details(eclass, einst, trace): details_list = traceback.format_exception(eclass, einst, trace) return ''.join(details_list) def print_error_msg(eclass, einst, trace): details = get_error_details(eclass, einst, trace) print('\n{}\n{}\n\n{}'.format(_ERROR_BRIEF, _SUBMIT_INFO, details), file=sys.stderr) def log_error(eclass, einst, trace): pass # TODO: implement once we decide where to write def setup_basic_error_handler(): sys.excepthook = _basic_handler def _basic_handler(eclass, einst, trace): print_error_msg(eclass, einst, trace) log_error(eclass, einst, trace) os.abort()
[((28, 19, 28, 67), 'traceback.format_exception', 'traceback.format_exception', ({(28, 46, 28, 52): 'eclass', (28, 54, 28, 59): 'einst', (28, 61, 28, 66): 'trace'}, {}), '(eclass, einst, trace)', False, 'import traceback\n'), ((49, 4, 49, 14), 'os.abort', 'os.abort', ({}, {}), '()', False, 'import os\n')]
dtklinh/Protein-Rigid-Domains-Estimation
venv/lib/python3.5/site-packages/igraph/test/atlas.py
a27152ef5437eb87ee31c317091356c4787f82a4
import warnings import unittest from igraph import * class TestBase(unittest.TestCase): def testPageRank(self): for idx, g in enumerate(self.__class__.graphs): try: pr = g.pagerank() except Exception as ex: self.assertTrue(False, msg="PageRank calculation threw exception for graph #%d: %s" % (idx, ex)) raise if g.vcount() == 0: self.assertEqual([], pr) continue self.assertAlmostEqual(1.0, sum(pr), places=5, \ msg="PageRank sum is not 1.0 for graph #%d (%r)" % (idx, pr)) self.assertTrue(min(pr) >= 0, \ msg="Minimum PageRank is less than 0 for graph #%d (%r)" % (idx, pr)) def testEigenvectorCentrality(self): # Temporarily turn off the warning handler because g.evcent() will print # a warning for DAGs warnings.simplefilter("ignore") try: for idx, g in enumerate(self.__class__.graphs): try: ec, eval = g.evcent(return_eigenvalue=True) except Exception as ex: self.assertTrue(False, msg="Eigenvector centrality threw exception for graph #%d: %s" % (idx, ex)) raise if g.vcount() == 0: self.assertEqual([], ec) continue if not g.is_connected(): # Skip disconnected graphs; this will be fixed in igraph 0.7 continue n = g.vcount() if abs(eval) < 1e-4: self.assertTrue(min(ec) >= -1e-10, msg="Minimum eigenvector centrality is smaller than 0 for graph #%d" % idx) self.assertTrue(max(ec) <= 1, msg="Maximum eigenvector centrality is greater than 1 for graph #%d" % idx) continue self.assertAlmostEqual(max(ec), 1, places=7, \ msg="Maximum eigenvector centrality is %r (not 1) for graph #%d (%r)" % \ (max(ec), idx, ec)) self.assertTrue(min(ec) >= 0, \ msg="Minimum eigenvector centrality is less than 0 for graph #%d" % idx) ec2 = [sum(ec[u.index] for u in v.predecessors()) for v in g.vs] for i in range(n): self.assertAlmostEqual(ec[i] * eval, ec2[i], places=7, \ msg="Eigenvector centrality in graph #%d seems to be invalid "\ "for vertex %d" % (idx, i)) finally: # Reset the warning handler warnings.resetwarnings() def testHubScore(self): for idx, g in enumerate(self.__class__.graphs): sc = g.hub_score() if g.vcount() == 0: self.assertEqual([], sc) continue self.assertAlmostEqual(max(sc), 1, places=7, \ msg="Maximum authority score is not 1 for graph #%d" % idx) self.assertTrue(min(sc) >= 0, \ msg="Minimum hub score is less than 0 for graph #%d" % idx) def testAuthorityScore(self): for idx, g in enumerate(self.__class__.graphs): sc = g.authority_score() if g.vcount() == 0: self.assertEqual([], sc) continue self.assertAlmostEqual(max(sc), 1, places=7, \ msg="Maximum authority score is not 1 for graph #%d" % idx) self.assertTrue(min(sc) >= 0, \ msg="Minimum authority score is less than 0 for graph #%d" % idx) class GraphAtlasTests(TestBase): graphs = [Graph.Atlas(i) for i in range(1253)] class IsoclassTests(TestBase): graphs = [Graph.Isoclass(3, i, directed=True) for i in range(16)] + \ [Graph.Isoclass(4, i, directed=True) for i in range(218)] def suite(): atlas_suite = unittest.makeSuite(GraphAtlasTests) isoclass_suite = unittest.makeSuite(IsoclassTests) return unittest.TestSuite([atlas_suite, isoclass_suite]) def test(): runner = unittest.TextTestRunner() runner.run(suite()) if __name__ == "__main__": test()
[((101, 18, 101, 53), 'unittest.makeSuite', 'unittest.makeSuite', ({(101, 37, 101, 52): 'GraphAtlasTests'}, {}), '(GraphAtlasTests)', False, 'import unittest\n'), ((102, 21, 102, 54), 'unittest.makeSuite', 'unittest.makeSuite', ({(102, 40, 102, 53): 'IsoclassTests'}, {}), '(IsoclassTests)', False, 'import unittest\n'), ((103, 11, 103, 60), 'unittest.TestSuite', 'unittest.TestSuite', ({(103, 30, 103, 59): '[atlas_suite, isoclass_suite]'}, {}), '([atlas_suite, isoclass_suite])', False, 'import unittest\n'), ((106, 13, 106, 38), 'unittest.TextTestRunner', 'unittest.TextTestRunner', ({}, {}), '()', False, 'import unittest\n'), ((28, 8, 28, 39), 'warnings.simplefilter', 'warnings.simplefilter', ({(28, 30, 28, 38): '"""ignore"""'}, {}), "('ignore')", False, 'import warnings\n'), ((67, 12, 67, 36), 'warnings.resetwarnings', 'warnings.resetwarnings', ({}, {}), '()', False, 'import warnings\n')]
momipsl/pycspr
pycspr/types/cl.py
82c1ca003525a3d205d2aa3b7da5d1ecd275e9b5
import dataclasses import enum class CLType(enum.Enum): """Enumeration over set of CL types. """ BOOL = 0 I32 = 1 I64 = 2 U8 = 3 U32 = 4 U64 = 5 U128 = 6 U256 = 7 U512 = 8 UNIT = 9 STRING = 10 KEY = 11 UREF = 12 OPTION = 13 LIST = 14 BYTE_ARRAY = 15 RESULT = 16 MAP = 17 TUPLE_1 = 18 TUPLE_2 = 19 TUPLE_3 = 20 ANY = 21 PUBLIC_KEY = 22 # Set of types considered to be simple. CL_TYPES_SIMPLE = { CLType.BOOL, CLType.I32, CLType.I64, CLType.KEY, CLType.PUBLIC_KEY, CLType.STRING, CLType.U8, CLType.U32, CLType.U64, CLType.U128, CLType.U256, CLType.U512, CLType.UNIT, CLType.UREF, } @dataclasses.dataclass class CLTypeInfo(): """Encapsulates CL type information associated with a value. """ # Associated type within CSPR type system. typeof: CLType @property def type_tag(self) -> int: """Returns a tag used when encoding/decoding.""" return self.typeof.value @dataclasses.dataclass class CLTypeInfoForByteArray(CLTypeInfo): """Encapsulates CL type information associated with a byte array value. """ # Size of associated byte array value. size: int @dataclasses.dataclass class CLTypeInfoForList(CLTypeInfo): """Encapsulates CL type information associated with a list value. """ # Inner type within CSPR type system. inner_type_info: CLTypeInfo @dataclasses.dataclass class CLTypeInfoForMap(CLTypeInfo): """Encapsulates CL type information associated with a byte array value. """ # Type info of map's key. key_type_info: CLType # Type info of map's value. value_type_info: CLTypeInfo @dataclasses.dataclass class CLTypeInfoForOption(CLTypeInfo): """Encapsulates CL type information associated with an optional value. """ # Inner type within CSPR type system. inner_type_info: CLTypeInfo @dataclasses.dataclass class CLTypeInfoForSimple(CLTypeInfo): """Encapsulates CL type information associated with a simple value. """ pass @dataclasses.dataclass class CLTypeInfoForTuple1(CLTypeInfo): """Encapsulates CL type information associated with a 1-ary tuple value value. """ # Type of first value within 1-ary tuple value. t0_type_info: CLTypeInfo @dataclasses.dataclass class CLTypeInfoForTuple2(CLTypeInfo): """Encapsulates CL type information associated with a 2-ary tuple value value. """ # Type of first value within 1-ary tuple value. t0_type_info: CLTypeInfo # Type of first value within 2-ary tuple value. t1_type_info: CLTypeInfo @dataclasses.dataclass class CLTypeInfoForTuple3(CLTypeInfo): """Encapsulates CL type information associated with a 3-ary tuple value value. """ # Type of first value within 1-ary tuple value. t0_type_info: CLTypeInfo # Type of first value within 2-ary tuple value. t1_type_info: CLTypeInfo # Type of first value within 3-ary tuple value. t2_type_info: CLTypeInfo @dataclasses.dataclass class CLValue(): """A CL value mapped from python type system. """ # Byte array representation of underlying data. bytes: bytes # Parsed pythonic representation of underlying data (for human convenience only). parsed: object # Type information used by a deserializer. type_info: CLTypeInfo
[]
nachocano/python-aiplatform
google/cloud/aiplatform_v1/types/env_var.py
1c6b998d9145309d79712f494a2b00b50a9a9bf4
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module(package="google.cloud.aiplatform.v1", manifest={"EnvVar",},) class EnvVar(proto.Message): r"""Represents an environment variable present in a Container or Python Module. Attributes: name (str): Required. Name of the environment variable. Must be a valid C identifier. value (str): Required. Variables that reference a $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not. """ name = proto.Field(proto.STRING, number=1) value = proto.Field(proto.STRING, number=2) __all__ = tuple(sorted(__protobuf__.manifest))
[((21, 15, 21, 88), 'proto.module', 'proto.module', (), '', False, 'import proto\n'), ((43, 11, 43, 46), 'proto.Field', 'proto.Field', (), '', False, 'import proto\n'), ((45, 12, 45, 47), 'proto.Field', 'proto.Field', (), '', False, 'import proto\n')]
MrCoolSpan/openbor
tools/borplay/packlib.py
846cfeb924906849c8a11e76c442e47286b707ea
# Copyright (c) 2009 Bryan Cain ("Plombo") # Class and functions to read .PAK files. import struct from cStringIO import StringIO class PackFileReader(object): ''' Represents a BOR packfile. ''' files = dict() # the index holding the location of each file packfile = None # the file object def __init__(self, fp): '''fp is a file path (string) or file-like object (file, StringIO, etc.) in binary read mode''' if isinstance(fp, str): self.packfile = open(fp, 'rb') else: self.packfile = fp self.read_index() # reads the packfile's index into self.files def read_index(self): f = self.packfile # read through file tmp = True # placeholder that doesn't evaluate to false while tmp: tmp = f.read(8192) # read index start postition and seek there f.seek(-4, 1) endpos = f.tell() f.seek(struct.unpack('<I', f.read(4))[0]) while f.tell() < endpos: ssize, fpos, fsize = struct.unpack('<III', f.read(12)) name = f.read(ssize-12).strip('\x00').replace('\\', '/').lower() self.files[name] = fpos, fsize # reads a file with its full path. def read_file(self, filename): '''Returns a file-like object for the file or None if the file isn't contained in this packfile. This method takes the full path starting with "data/" as a parameter.''' key = filename.replace('\\', '/').lower().strip('\x00').strip() if key not in self.files.keys(): return None start, size = self.files[key] self.packfile.seek(start) f = StringIO() bytesrem = size while bytesrem >= 8192: f.write(self.packfile.read(8192)) bytesrem -= 8192 if bytesrem: f.write(self.packfile.read(bytesrem)) f.seek(0) return f def find_file(self, filename): '''Returns a file-like object for the file or None if the file isn't contained in this packfile. This method searches for the file by its filename.''' filename = filename.lower().strip() start, size = None, None for key in self.files.keys(): if key.endswith(filename): return self.read_file(key) return None # file not found if it gets to this point def list_music_files(self): '''Lists the BOR files in the packfile.''' borfiles = [] for key in self.files.keys(): if key.endswith('.bor'): borfiles.append(key) borfiles.sort() for key in borfiles: print key def get_file(pak, borfile): '''Prevents a need to directly use PackFileReader when you only want to get one file, like in borplay and bor2wav. Returns a file-like object.''' rdr = PackFileReader(pak) if ('/' not in borfile) and ('\\' not in borfile): # only the filename is given; search for the file return rdr.find_file(borfile) else: # full path given return rdr.read_file(borfile) # For testing if __name__ == '__main__': rdr = PackFileReader('K:/BOR/OpenBOR/Paks/BOR.PAK') #keys = rdr.files.keys(); keys.sort() #print '\n'.join(keys) #print rdr.read_file('data/chars/yamazaki/yamazaki.txt').read() #print rdr.find_file('yamazaki.txt').read() rdr.list_music_files()
[]
magus0219/icloud-photo-downloader
artascope/src/web/app.py
6334530d971cf61089d031de99a38f204c201837
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Created by magus0219[[email protected]] on 2020/3/23 from types import FunctionType from flask import ( Flask, redirect, url_for, ) import artascope.src.web.lib.filter as module_filter from artascope.src.web.lib.content_processor import inject_version def index(): return redirect(url_for("task.get_task_list")) def create_app(): # create and configure the app app = Flask(__name__) app.jinja_env.filters.update( { key: val for key, val in module_filter.__dict__.items() if isinstance(val, FunctionType) } ) from . import user from . import task from . import scheduler # register blueprint app.register_blueprint(user.bp) app.register_blueprint(task.bp) app.register_blueprint(scheduler.bp) # register index app.add_url_rule("/", "index", index) # register context processor app.context_processor(inject_version) return app
[((21, 10, 21, 25), 'flask.Flask', 'Flask', ({(21, 16, 21, 24): '__name__'}, {}), '(__name__)', False, 'from flask import Flask, redirect, url_for\n'), ((16, 20, 16, 49), 'flask.url_for', 'url_for', ({(16, 28, 16, 48): '"""task.get_task_list"""'}, {}), "('task.get_task_list')", False, 'from flask import Flask, redirect, url_for\n'), ((25, 28, 25, 58), 'artascope.src.web.lib.filter.__dict__.items', 'module_filter.__dict__.items', ({}, {}), '()', True, 'import artascope.src.web.lib.filter as module_filter\n')]
KnowingNothing/akg-test
tests/common/test_op/scatter_nd.py
114d8626b824b9a31af50a482afc07ab7121862b
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """operator dsl function: scatter_nd""" import akg.tvm from akg.utils import validation_check as vc_util def scatter_nd(indices, updates, shape): """ Scatters input tensor updates to a new tensor according to indices. Args: indices(akg.tvm.Tensor): Tensor of type int32. updates(akg.tvm.Tensor): Tensor of type float16, float32, int32. shape(list, tuple): Specifies the shape of output tensor. Returns: Scattered tensor with same type as input tensor updates and shape specified by parameter shape. """ # check shapes dtype indices_shape = [x.value for x in indices.shape] data_shape = [x.value for x in updates.shape] vc_util.check_shape(indices_shape) vc_util.check_shape(data_shape) indices_dtype = indices.dtype if not indices_dtype in "int32": raise TypeError("indices_dtype only support int32 while dtype is %s" % indices_dtype) dtype = updates.dtype support_list = {"float16", "float32", "int32"} if not (dtype in support_list): raise TypeError("scatter_nd only support %s while dtype is %s" % (",".join(support_list), dtype)) n = indices.shape[0].value def pick(i, j, *indexes): return akg.tvm.expr.Select(j == indices[i][0], akg.tvm.const(1, updates.dtype), akg.tvm.const(0, updates.dtype)) * updates[(i,) + indexes] reducible = akg.tvm.compute([n] + list(shape), lambda *i: pick(i[0], i[1], *i[2:]), name="reduc") k = akg.tvm.reduce_axis((0, n)) res = akg.tvm.compute(shape, lambda *i: akg.tvm.sum(reducible[(k,) + i], axis=k)) return res
[((38, 4, 38, 38), 'akg.utils.validation_check.check_shape', 'vc_util.check_shape', ({(38, 24, 38, 37): 'indices_shape'}, {}), '(indices_shape)', True, 'from akg.utils import validation_check as vc_util\n'), ((39, 4, 39, 35), 'akg.utils.validation_check.check_shape', 'vc_util.check_shape', ({(39, 24, 39, 34): 'data_shape'}, {}), '(data_shape)', True, 'from akg.utils import validation_check as vc_util\n')]
adamnew123456/spc
spc/backend_utils.py
8809d1817f66cf8266f145aa0c2474b32dc1087a
""" Utility functions and classes shared by multiple backends """ from collections import namedtuple import logging from . import symbols from . import types LOGGER = logging.getLogger('spc.backend_utils') # NameContexts encapsulate both the function stack (which holds values) and # the symbol table context (which binds them) NameContext = namedtuple('NameContext', ['symbol_ctx', 'func_stack']) # While loops are identified by two labels - the start label, for re-running # the condition, and the end label, for exiting when the condition is false WhileLabels = namedtuple('WhileLabels', ['cond', 'exit']) # If conditions are identified by two labels - the else label, for when # the condition is false (to skip the then block) and the end label, for # when the condition is true (to skip the else block) IfLabels = namedtuple('IfLabels', ['else_body', 'end']) # Switch conditionals are handled sort of like if conditionals: # # (switch | # (case T1 B1) | jump-if-not T1, l1prime; ...; jump l4; l1prime: # (case T2 B2) | jump-if-not T2, l2prime; ...; jump l4; l2prime: # (else B3)) | ... # | l4: class SwitchLabels: """ Switch labels are similar to conditionals: (switch | (case T1 B1) | jump-if-not T1, case_lbl_1; ...; jump end; case_lbl_1: (case T2 B2) | jump-if-not T2, case_lbl_2; ...; jump end; case_lbl_2: (else B3) | ...; end_lbl: Since each case is processed in order, only the current case end label and the end switch label is available at any given time. """ def __init__(self, end_label): self.end_label = end_label self.case_end_label = None class CoercionContext: """ This is used to wrap up all the information needed to coerce values from one type to another. """ def __init__(self, backend, temp_context, code_templates): self.backend = backend self.temp_context = temp_context self.templates = code_templates def copy_with_context(self, new_context): """ Creates a copy of this object, but within a new temporary context. """ return CoercionContext(self.backend, new_context, self.templates) def coerce(self, input_offset, input_type, output_type): """ Coerces a value, located on the stack, from the given input type to the given output type. Returns the stack offset of the converted variable and the output type. Raises a TypeError if this is not possible. """ if input_type == output_type: return input_offset, output_type elif (input_type, output_type) == (types.Integer, types.Byte): return self._coerce_int_to_byte(input_offset), output_type elif (input_type, output_type) == (types.Byte, types.Integer): return self._coerce_byte_to_int(input_offset), output_type else: raise TypeError('Cannot coerce {} -> {}'.format(input_type, output_type)) def _coerce_int_to_byte(self, input_offset): """ Coerces an integer to a byte, returning the stack offset of the resulting byte. """ byte_size = self.backend._type_size(types.Byte) byte_align = self.backend._type_alignment(types.Byte) dest_offset = self.temp_context.add_temp(byte_size, byte_align) tmp_reg = self.templates.tmp_regs[0] self.backend._write_comment('Coercing int@{} to byte@{}', input_offset, dest_offset) self.templates.emit_load_stack_word(tmp_reg, input_offset) self.templates.emit_int_to_byte(tmp_reg) self.templates.emit_save_stack_byte(tmp_reg, dest_offset) return dest_offset def _coerce_byte_to_int(self, input_offset): """ Coerces a byte to an integer, returning the stack offset of the resulting integer. """ int_size = self.backend._type_size(types.Integer) int_align = self.backend._type_alignment(types.Integer) dest_offset = self.temp_context.add_temp(int_size, int_align) tmp_reg = self.templates.tmp_regs[0] self.backend._write_comment('Coercing byte@{} to int@{}', input_offset, dest_offset) self.templates.emit_load_stack_byte(tmp_reg, input_offset) self.templates.emit_byte_to_int(tmp_reg) self.templates.emit_save_stack_word(tmp_reg, dest_offset) return dest_offset class FunctionStack: """ Tracks where variables are on the function's stack. Note that this makes a number of assumptions about how things are stored: - All arguments are stored on the stack, in reverse order. This goes against the calling conventions for register rich architectures, like MIPS, but there are enough corner cases (like copying structs by value) that ignoring the calling convention is worthwhile for a non-optimizing compiler like this. - Locals and temporaries are stored on the stack, in order of creation. """ def __init__(self, backend): self.backend = backend self.local_offset = self._starting_locals_offset() self.param_offset = self._starting_param_offset() self.vars = {} def _starting_locals_offset(self): """ Returns the starting offset of the local variables on the stack. """ raise NotImplementedError def _starting_param_offset(self): """ Returns the starting offset of the parameter on the stack. """ raise NotImplementedError def _expand_stack(self, size): """ Emits code to expand the stack frame by the given size. """ raise NotImplementedError def _shrink_stack(self, size): """ Emits code to reduce the stack frame by the given size. """ raise NotImplementedError def pad_param(self, space): """ Adds blank space before the next parameter. """ self.param_offset += space def add_param(self, name, size, alignment): """ Adds a new parameter to the stack. """ self.param_offset = types.align_address(self.param_offset, alignment) self.vars[name] = self.param_offset self.param_offset += size self.backend._write_comment('Binding param "{}" to offset {}', name, self.vars[name]) def add_local(self, name, size, alignment): """ Adds a local variable to the stack. """ self.local_offset = ( types.align_address(self.local_offset - size, alignment, types.Alignment.Down)) self.vars[name] = self.local_offset self.backend._write_comment('Binding local "{}" to offset {}', name, self.vars[name]) def get_temp_context(self, backend): """ Returns a context which can be used for putting temporary values on the stack. When the context exits, the space used by the temporary variables is cleaned up. """ root = self class TemporaryContext: def __init__(self, start_offset): self.tmp_offset = start_offset self.total_tmp_size = 0 def __enter__(self): pass def __exit__(self, *exc_info): root._shrink_stack(self.total_tmp_size) def add_temp(self, size, alignment): """ Makes space for a new temporary, returning the $fp offset at which to write it. """ old_tmp_offset = self.tmp_offset self.tmp_offset = ( types.align_address(self.tmp_offset - size, alignment, types.Alignment.Down)) size_used = old_tmp_offset - self.tmp_offset self.total_tmp_size += size_used root._expand_stack(size_used) return self.tmp_offset def get_temp_context(self): """ Creates a temporary context, which starts at this temporary context. """ return TemporaryContext(self.tmp_offset) return TemporaryContext(self.local_offset) def expand_locals(self): """ Makes enough space for the local variables on the stack. """ self._expand_stack(self.locals_size()) def cleanup_locals(self): """ Cleans up the space used by the local variables on the stack. """ self._shrink_stack(self.locals_size()) def locals_size(self): """ Gets the size used by all the locals. """ return abs(self.local_offset) - abs(self._starting_locals_offset()) def __getitem__(self, name): """ Gets the offset to the variable on the stack, or a Register (if the name was bound to one of the first four parameters) """ return self.vars[name] class VerificationContext: """ Used to record all values and types defined all at once (i.e. inside the same declaration block), so that they can be verified all at once. "Verification" here means that their types are checked to be valid, which means different things for different types. """ def __init__(self): self.types = [] self.values = [] def add_value(self, name): """ Registers a new value to be verified. """ self.values.append(name) def add_type(self, name): """ Registers a new type to be defined. """ self.types.append(types) def verify(self, backend): """ Verifies all the definitions against the backend. """ backend._check_valid_types(backend.ctx_types[name] for name in self.types) backend._check_valid_types(backend.ctx_values[name] for name in self.values) class ContextMixin: """ Manages the symbol table contexts for this backend (as well as its function stack Depends upon the user of this mixin to inherit from BaseBackend in addition to this one. """ def __init__(self): self.parent_contexts = [] self.current_context = NameContext(symbols.Context(), None) self.verify_context = VerificationContext() def _register_file_ns(self, namespace): """ Replaces the current context, with one where the symbol context is expanded to contain the file's namespace. """ file_context = self.current_context.symbol_ctx.register(namespace) self.current_context = self.current_context._replace(symbol_ctx=file_context) @property def ctx_namespace(self): """ Gets the current namespace """ return self.current_context.symbol_ctx.search_path[0] @property def ctx_values(self): """ Returns the current context's value symbols. """ return self.current_context.symbol_ctx.values @property def ctx_types(self): """ Returns the current context's type symbols. """ return self.current_context.symbol_ctx.types @property def ctx_stack(self): """ Returns the current context's stack information. """ return self.current_context.func_stack def _value_is_defined(self, name): """ Returns True if the given variable is defined in the current scope, or False otherwise. This is for the static expression processor function, var-def? """ return (name in self.ctx_values and self.ctx_values.is_visible(name)) def _type_is_defined(self, name): """ Returns True if the given type is defined in the current scope, or False otherwise. This is for the static expression processor function, var-def? """ return (name in self.ctx_types and self.ctx_types.is_visible(name)) def _make_func_stack(self): raise NotImplementedError def _push_context(self): """ Pushes a new binding context. """ old_context = self.current_context self.parent_contexts.append(old_context) self.current_context = NameContext( self.current_context.symbol_ctx.enter(), self._make_func_stack()) def _pop_context(self): """ Loads the previous binding context. """ self.current_context = self.parent_contexts.pop() def _resolve_if_type_name(self, name): """ Resolves a type name into a concrete type. """ try: return types.resolve_name(name, self.ctx_types) except PermissionError as exn: self.error(self.line, self.col, 'Cannot resolve hidden type "{}"', str(exn)) except RecursionError: self.error(self.line, self.col, 'Type aliases too deep, when resolving "{}"', name) except KeyError as exn: self.error(self.line, self.col, 'Invalid type "{}"', str(exn)) def _verify_types(self): """ Verifies all the types across all this current context's symbols. """ self.verify_context.verify(self) self.verify_context = VerificationContext() class ThirtyTwoMixin: """ Defines some information about type sizes and alignment which 32-bit platforms have in common. Depends upon the user of this mixin to inherit from ContextMixin. """ def _type_alignment(self, type_obj): """ Returns alignment of the given type (1 for byte, 4 for word, etc.) """ type_obj = self._resolve_if_type_name(type_obj) if type_obj is types.Integer: return 4 elif type_obj is types.Byte: return 1 elif isinstance(type_obj, (types.PointerTo, types.FunctionPointer)): return 4 elif isinstance(type_obj, types.ArrayOf): return self._type_alignment(type_obj.type) elif isinstance(type_obj, types.Struct): # The alignment only concerns the first element of the struct - # the struct's internal alignment doesn't come into play # # Also, an OrderdDict's fields are not iterable, for whatever reason struct_types = list(type_obj.fields.values()) return self._type_alignment(struct_types[0]) else: raise TypeError('Not a compiler type: {}'.format(type_obj)) def _type_size(self, type_obj, depth=0): """ Returns the size of a type object in bytes. """ MAX_DEPTH = 100 if depth >= MAX_DEPTH: self.error(self.line, self.col, "Type nested too deeply - potential self-referential type") type_obj = self._resolve_if_type_name(type_obj) if type_obj is types.Integer: return 4 elif type_obj is types.Byte: return 1 elif isinstance(type_obj, (types.PointerTo, types.FunctionPointer)): return 4 elif isinstance(type_obj, types.ArrayOf): # To avoid wasting space on the last element, this pads all the # elements but the last base_size = self._type_size(type_obj.type, depth + 1) return self._array_offset(type_obj, type_obj.count - 1) + base_size elif isinstance(type_obj, types.Struct): last_field = list(type_obj.fields)[-1] last_field_type = type_obj.fields[last_field] last_field_offset = self._field_offset(type_obj, last_field) return last_field_offset + self._type_size(last_field_type, depth + 1) else: raise TypeError('Not a compiler type: {}'.format(type_obj)) class comment_after: """ Wraps a method - after the method executes, something is written to the log. """ def __init__(self, fmt, *args, **kwargs): self.fmt = fmt self.args = args self.kwargs = kwargs def __call__(self, func): def wrapper(parent, *args, **kwargs): x = func(parent, *args, **kwargs) parent._write_comment(self.fmt, *self.args, **self.kwargs) return x return wrapper
[((10, 9, 10, 47), 'logging.getLogger', 'logging.getLogger', ({(10, 27, 10, 46): '"""spc.backend_utils"""'}, {}), "('spc.backend_utils')", False, 'import logging\n'), ((14, 14, 14, 69), 'collections.namedtuple', 'namedtuple', ({(14, 25, 14, 38): '"""NameContext"""', (14, 40, 14, 68): "['symbol_ctx', 'func_stack']"}, {}), "('NameContext', ['symbol_ctx', 'func_stack'])", False, 'from collections import namedtuple\n'), ((18, 14, 18, 57), 'collections.namedtuple', 'namedtuple', ({(18, 25, 18, 38): '"""WhileLabels"""', (18, 40, 18, 56): "['cond', 'exit']"}, {}), "('WhileLabels', ['cond', 'exit'])", False, 'from collections import namedtuple\n'), ((23, 11, 23, 55), 'collections.namedtuple', 'namedtuple', ({(23, 22, 23, 32): '"""IfLabels"""', (23, 34, 23, 54): "['else_body', 'end']"}, {}), "('IfLabels', ['else_body', 'end'])", False, 'from collections import namedtuple\n')]
neuralaudio/hear-eval-kit
heareval/__init__.py
f92119592954544dfb417f8e9aea21eadb4a65d0
__version__ = "2021.0.6"
[]
tranlyvu/recommender
recommender_engine/similarity_measure/__init__.py
4985c355d54ee22ba48f4891077fd7e12bd21b47
""" recommender_engine ----- recommender_engine is a recommendation application using either item-based or user-based approaches :copyright: (c) 2016 - 2019 by Tran Ly Vu. All Rights Reserved. :license: Apache License 2.0 """ from .cosine import cosine from .euclidean_distance import euclidean_distance from .pearson_correlation import pearson_correlation name="similarity_measure" __all__ = ["cosine", "euclidean_distance", "pearson_correlation"] __author__ = "Tran Ly Vu ([email protected])" __copyright__ = "Copyright (c) 2016 - 2019 Tran Ly Vu. All Rights Reserved." __license__ = "Apache License 2.0" __credits__ = ["Tran Ly Vu"] __maintainer__ = "Tran Ly Vu" __email__ = "[email protected]" __status__ = "Beta"
[]
KoyanagiHitoshi/AtCoder
code/abc057_a_02.py
731892543769b5df15254e1f32b756190378d292
a,b=map(int,input().split()) print((a+b)%24)
[]
kopsh/python_cookbook
8/8_9.py
298c092cd20404a0755e2170776c44a04e8648ad
class CheckType: r""" 8.9 创建新的类或实例属性 使用描述器,实现参数类型检查 >>> @ParamAssert(a=int, b=list) ... class A: ... def __init__(self, a, b): ... self.a = a ... self.b = b >>> a = A(1, []) """ def __init__(self, name, expected_type): self.name = name self.expected_type = expected_type def __get__(self, instance, owner): if instance is None: return self else: return instance.__dict__[self.name] def __set__(self, instance, value): if not isinstance(value, self.expected_type): raise TypeError("{} cannot be assigned by {!r}, it`s type is {!r}".format(self.name, value, self.expected_type)) instance.__dict__[self.name] = value class ParamAssert: def __init__(self, **kwargs): self.kwargs = kwargs def __call__(self, cls): for name, expected_type in self.kwargs.items(): setattr(cls, name, CheckType(name, expected_type)) return cls class Integer: def __init__(self, name): self.name = name def __get__(self, instance, cls): if instance is None: return self else: return instance.__dict__.get(self.name, None) def __set__(self, instance, value): if not isinstance(value, int): raise TypeError("{} cannot be assigned by {!r}".format(self.name, value)) instance.__dict__[self.name] = value class Point: """ >>> p = Point(0, 0) >>> print(p.x) 0 >>> p.y = "1" Traceback (most recent call last): ... TypeError: y cannot be assigned by '1' """ x = Integer('x') y = Integer('y') def __init__(self, x, y): self.x = x self.y = y if __name__ == '__main__': import doctest doctest.testmod()
[((75, 4, 75, 21), 'doctest.testmod', 'doctest.testmod', ({}, {}), '()', False, 'import doctest\n')]
ediphy-dwild/gpytorch
test/examples/test_simple_gp_regression.py
559c78a6446237ed7cc8e1cc7cf4ed8bf31a3c8a
import math import torch import unittest import gpytorch from torch import optim from torch.autograd import Variable from gpytorch.kernels import RBFKernel from gpytorch.means import ConstantMean from gpytorch.likelihoods import GaussianLikelihood from gpytorch.random_variables import GaussianRandomVariable # Simple training data: let's try to learn a sine function train_x = Variable(torch.linspace(0, 1, 11)) train_y = Variable(torch.sin(train_x.data * (2 * math.pi))) test_x = Variable(torch.linspace(0, 1, 51)) test_y = Variable(torch.sin(test_x.data * (2 * math.pi))) class ExactGPModel(gpytorch.models.ExactGP): def __init__(self, train_inputs, train_targets, likelihood): super(ExactGPModel, self).__init__(train_inputs, train_targets, likelihood) self.mean_module = ConstantMean(constant_bounds=(-1, 1)) self.covar_module = RBFKernel(log_lengthscale_bounds=(-3, 3)) def forward(self, x): mean_x = self.mean_module(x) covar_x = self.covar_module(x) return GaussianRandomVariable(mean_x, covar_x) class TestSimpleGPRegression(unittest.TestCase): def test_posterior_latent_gp_and_likelihood_without_optimization(self): # We're manually going to set the hyperparameters to be ridiculous likelihood = GaussianLikelihood(log_noise_bounds=(-3, 3)) gp_model = ExactGPModel(train_x.data, train_y.data, likelihood) # Update bounds to accommodate extreme parameters gp_model.covar_module.set_bounds(log_lengthscale=(-10, 10)) likelihood.set_bounds(log_noise=(-10, 10)) # Update parameters gp_model.covar_module.initialize(log_lengthscale=-10) gp_model.mean_module.initialize(constant=0) likelihood.initialize(log_noise=-10) # Compute posterior distribution gp_model.eval() likelihood.eval() # Let's see how our model does, conditioned with weird hyperparams # The posterior should fit all the data function_predictions = likelihood(gp_model(train_x)) self.assertLess( torch.norm(function_predictions.mean().data - train_y.data), 1e-3, ) self.assertLess(torch.norm(function_predictions.var().data), 1e-3) # It shouldn't fit much else though test_function_predictions = gp_model(Variable(torch.Tensor([1.1]))) self.assertLess( torch.norm(test_function_predictions.mean().data - 0), 1e-4, ) self.assertLess(torch.norm(test_function_predictions.var().data - 1), 1e-4) def test_posterior_latent_gp_and_likelihood_with_optimization(self): # We're manually going to set the hyperparameters to something they shouldn't be likelihood = GaussianLikelihood(log_noise_bounds=(-3, 3)) gp_model = ExactGPModel(train_x.data, train_y.data, likelihood) mll = gpytorch.ExactMarginalLogLikelihood(likelihood, gp_model) gp_model.covar_module.initialize(log_lengthscale=1) gp_model.mean_module.initialize(constant=0) likelihood.initialize(log_noise=1) # Find optimal model hyperparameters gp_model.train() likelihood.train() optimizer = optim.Adam( list(gp_model.parameters()) + list(likelihood.parameters()), lr=0.1, ) optimizer.n_iter = 0 for _ in range(50): optimizer.zero_grad() output = gp_model(train_x) loss = -mll(output, train_y) loss.backward() optimizer.n_iter += 1 optimizer.step() # Test the model gp_model.eval() likelihood.eval() test_function_predictions = likelihood(gp_model(test_x)) mean_abs_error = torch.mean( torch.abs(test_y - test_function_predictions.mean()) ) self.assertLess(mean_abs_error.data.squeeze()[0], 0.05) def test_posterior_latent_gp_and_likelihood_fast_pred_var(self): with gpytorch.fast_pred_var(): # We're manually going to set the hyperparameters to # something they shouldn't be likelihood = GaussianLikelihood(log_noise_bounds=(-3, 3)) gp_model = ExactGPModel(train_x.data, train_y.data, likelihood) mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, gp_model) gp_model.covar_module.initialize(log_lengthscale=1) gp_model.mean_module.initialize(constant=0) likelihood.initialize(log_noise=1) # Find optimal model hyperparameters gp_model.train() likelihood.train() optimizer = optim.Adam( list(gp_model.parameters()) + list(likelihood.parameters()), lr=0.1, ) optimizer.n_iter = 0 for _ in range(50): optimizer.zero_grad() output = gp_model(train_x) loss = -mll(output, train_y) loss.backward() optimizer.n_iter += 1 optimizer.step() # Test the model gp_model.eval() likelihood.eval() # Set the cache test_function_predictions = likelihood(gp_model(train_x)) # Now bump up the likelihood to something huge # This will make it easy to calculate the variance likelihood.log_noise.data.fill_(3) test_function_predictions = likelihood(gp_model(train_x)) noise = likelihood.log_noise.exp() var_diff = (test_function_predictions.var() - noise).abs() self.assertLess(torch.max(var_diff.data / noise.data), 0.05) def test_posterior_latent_gp_and_likelihood_with_optimization_cuda(self): if torch.cuda.is_available(): # We're manually going to set the hyperparameters to # something they shouldn't be likelihood = GaussianLikelihood(log_noise_bounds=(-3, 3)).cuda() gp_model = ExactGPModel( train_x.data.cuda(), train_y.data.cuda(), likelihood ).cuda() mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, gp_model) gp_model.covar_module.initialize(log_lengthscale=1) gp_model.mean_module.initialize(constant=0) likelihood.initialize(log_noise=1) # Find optimal model hyperparameters gp_model.train() likelihood.train() optimizer = optim.Adam(gp_model.parameters(), lr=0.1) optimizer.n_iter = 0 for _ in range(50): optimizer.zero_grad() output = gp_model(train_x.cuda()) loss = -mll(output, train_y.cuda()) loss.backward() optimizer.n_iter += 1 optimizer.step() # Test the model gp_model.eval() likelihood.eval() test_function_predictions = likelihood(gp_model(test_x.cuda())) mean_abs_error = torch.mean( torch.abs(test_y.cuda() - test_function_predictions.mean()) ) self.assertLess(mean_abs_error.data.squeeze()[0], 0.05) if __name__ == '__main__': unittest.main()
[((14, 19, 14, 43), 'torch.linspace', 'torch.linspace', ({(14, 34, 14, 35): '0', (14, 37, 14, 38): '1', (14, 40, 14, 42): '11'}, {}), '(0, 1, 11)', False, 'import torch\n'), ((15, 19, 15, 58), 'torch.sin', 'torch.sin', ({(15, 29, 15, 57): 'train_x.data * (2 * math.pi)'}, {}), '(train_x.data * (2 * math.pi))', False, 'import torch\n'), ((17, 18, 17, 42), 'torch.linspace', 'torch.linspace', ({(17, 33, 17, 34): '0', (17, 36, 17, 37): '1', (17, 39, 17, 41): '51'}, {}), '(0, 1, 51)', False, 'import torch\n'), ((18, 18, 18, 56), 'torch.sin', 'torch.sin', ({(18, 28, 18, 55): 'test_x.data * (2 * math.pi)'}, {}), '(test_x.data * (2 * math.pi))', False, 'import torch\n'), ((187, 4, 187, 19), 'unittest.main', 'unittest.main', ({}, {}), '()', False, 'import unittest\n'), ((24, 27, 24, 64), 'gpytorch.means.ConstantMean', 'ConstantMean', (), '', False, 'from gpytorch.means import ConstantMean\n'), ((25, 28, 25, 69), 'gpytorch.kernels.RBFKernel', 'RBFKernel', (), '', False, 'from gpytorch.kernels import RBFKernel\n'), ((30, 15, 30, 54), 'gpytorch.random_variables.GaussianRandomVariable', 'GaussianRandomVariable', ({(30, 38, 30, 44): 'mean_x', (30, 46, 30, 53): 'covar_x'}, {}), '(mean_x, covar_x)', False, 'from gpytorch.random_variables import GaussianRandomVariable\n'), ((36, 21, 36, 65), 'gpytorch.likelihoods.GaussianLikelihood', 'GaussianLikelihood', (), '', False, 'from gpytorch.likelihoods import GaussianLikelihood\n'), ((71, 21, 71, 65), 'gpytorch.likelihoods.GaussianLikelihood', 'GaussianLikelihood', (), '', False, 'from gpytorch.likelihoods import GaussianLikelihood\n'), ((73, 14, 73, 71), 'gpytorch.ExactMarginalLogLikelihood', 'gpytorch.ExactMarginalLogLikelihood', ({(73, 50, 73, 60): 'likelihood', (73, 62, 73, 70): 'gp_model'}, {}), '(likelihood, gp_model)', False, 'import gpytorch\n'), ((148, 11, 148, 36), 'torch.cuda.is_available', 'torch.cuda.is_available', ({}, {}), '()', False, 'import torch\n'), ((105, 13, 105, 37), 'gpytorch.fast_pred_var', 'gpytorch.fast_pred_var', ({}, {}), '()', False, 'import gpytorch\n'), ((108, 25, 108, 69), 'gpytorch.likelihoods.GaussianLikelihood', 'GaussianLikelihood', (), '', False, 'from gpytorch.likelihoods import GaussianLikelihood\n'), ((110, 18, 110, 80), 'gpytorch.mlls.ExactMarginalLogLikelihood', 'gpytorch.mlls.ExactMarginalLogLikelihood', ({(110, 59, 110, 69): 'likelihood', (110, 71, 110, 79): 'gp_model'}, {}), '(likelihood, gp_model)', False, 'import gpytorch\n'), ((157, 18, 157, 80), 'gpytorch.mlls.ExactMarginalLogLikelihood', 'gpytorch.mlls.ExactMarginalLogLikelihood', ({(157, 59, 157, 69): 'likelihood', (157, 71, 157, 79): 'gp_model'}, {}), '(likelihood, gp_model)', False, 'import gpytorch\n'), ((61, 54, 61, 73), 'torch.Tensor', 'torch.Tensor', ({(61, 67, 61, 72): '[1.1]'}, {}), '([1.1])', False, 'import torch\n'), ((145, 28, 145, 65), 'torch.max', 'torch.max', ({(145, 38, 145, 64): '(var_diff.data / noise.data)'}, {}), '(var_diff.data / noise.data)', False, 'import torch\n'), ((151, 25, 151, 69), 'gpytorch.likelihoods.GaussianLikelihood', 'GaussianLikelihood', (), '', False, 'from gpytorch.likelihoods import GaussianLikelihood\n')]
snavinch/cybersource-rest-samples-python
samples/RiskManagement/Verification/customer-match-denied-parties-list.py
adb7a6b4b55dff6ac833295192d6677b53003c16
from CyberSource import * import os import json from importlib.machinery import SourceFileLoader config_file = os.path.join(os.getcwd(), "data", "Configuration.py") configuration = SourceFileLoader("module.name", config_file).load_module() # To delete None values in Input Request Json body def del_none(d): for key, value in list(d.items()): if value is None: del d[key] elif isinstance(value, dict): del_none(value) return d def customer_match_denied_parties_list(): clientReferenceInformationCode = "verification example" clientReferenceInformationComments = "Export-basic" clientReferenceInformationPartnerDeveloperId = "7891234" clientReferenceInformationPartnerSolutionId = "89012345" clientReferenceInformationPartner = Riskv1decisionsClientReferenceInformationPartner( developer_id = clientReferenceInformationPartnerDeveloperId, solution_id = clientReferenceInformationPartnerSolutionId ) clientReferenceInformation = Riskv1decisionsClientReferenceInformation( code = clientReferenceInformationCode, comments = clientReferenceInformationComments, partner = clientReferenceInformationPartner.__dict__ ) orderInformationBillToAddress1 = "901 Metro Centre Blvd" orderInformationBillToAdministrativeArea = "CA" orderInformationBillToCountry = "US" orderInformationBillToLocality = "Foster City" orderInformationBillToPostalCode = "94404" orderInformationBillToCompanyName = "A & C International Trade, Inc" orderInformationBillToCompany = Riskv1exportcomplianceinquiriesOrderInformationBillToCompany( name = orderInformationBillToCompanyName ) orderInformationBillToFirstName = "ANDREE" orderInformationBillToLastName = "AGNESE" orderInformationBillToEmail = "[email protected]" orderInformationBillTo = Riskv1exportcomplianceinquiriesOrderInformationBillTo( address1 = orderInformationBillToAddress1, administrative_area = orderInformationBillToAdministrativeArea, country = orderInformationBillToCountry, locality = orderInformationBillToLocality, postal_code = orderInformationBillToPostalCode, company = orderInformationBillToCompany.__dict__, first_name = orderInformationBillToFirstName, last_name = orderInformationBillToLastName, email = orderInformationBillToEmail ) orderInformationShipToCountry = "IN" orderInformationShipToFirstName = "DumbelDore" orderInformationShipToLastName = "Albus" orderInformationShipTo = Riskv1exportcomplianceinquiriesOrderInformationShipTo( country = orderInformationShipToCountry, first_name = orderInformationShipToFirstName, last_name = orderInformationShipToLastName ) orderInformationLineItems = [] orderInformationLineItems1 = Riskv1exportcomplianceinquiriesOrderInformationLineItems( unit_price = "120.50", quantity = 3, product_sku = "123456", product_name = "Qwe", product_code = "physical_software" ) orderInformationLineItems.append(orderInformationLineItems1.__dict__) orderInformation = Riskv1exportcomplianceinquiriesOrderInformation( bill_to = orderInformationBillTo.__dict__, ship_to = orderInformationShipTo.__dict__, line_items = orderInformationLineItems ) requestObj = ValidateExportComplianceRequest( client_reference_information = clientReferenceInformation.__dict__, order_information = orderInformation.__dict__ ) requestObj = del_none(requestObj.__dict__) requestObj = json.dumps(requestObj) try: config_obj = configuration.Configuration() client_config = config_obj.get_configuration() api_instance = VerificationApi(client_config) return_data, status, body = api_instance.validate_export_compliance(requestObj) print("\nAPI RESPONSE CODE : ", status) print("\nAPI RESPONSE BODY : ", body) return return_data except Exception as e: print("\nException when calling VerificationApi->validate_export_compliance: %s\n" % e) if __name__ == "__main__": customer_match_denied_parties_list()
[((6, 27, 6, 38), 'os.getcwd', 'os.getcwd', ({}, {}), '()', False, 'import os\n'), ((93, 17, 93, 39), 'json.dumps', 'json.dumps', ({(93, 28, 93, 38): 'requestObj'}, {}), '(requestObj)', False, 'import json\n'), ((7, 16, 7, 60), 'importlib.machinery.SourceFileLoader', 'SourceFileLoader', ({(7, 33, 7, 46): '"""module.name"""', (7, 48, 7, 59): 'config_file'}, {}), "('module.name', config_file)", False, 'from importlib.machinery import SourceFileLoader\n')]
Lucchese-Anthony/MonteCarloSimulation
SimulatePi.py
45a625b88dab6658b43b472d49d82aaeb1e847bd
import numpy as np import random import math import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib import style angle = np.linspace( 0 , 2 * np.pi , 150) radius = 1 x = radius * np.cos(angle) y = radius * np.sin(angle) #prints the circle style.use('fivethirtyeight') fig = plt.figure() axes = fig.add_subplot(1,1,1) axes.plot( x, y, color="red") inside = [] outside = [] def inCircle(x, y): return math.sqrt( (x**2) + (y**2) ) =< 1 def animate(i): x = random.uniform(1,-1) y = random.uniform(1,-1) if (inCircle(x, y)): point = axes.scatter(x, y, color="blue") inside.append(point) else: point = axes.scatter(x, y, color="red") outside.append(point) try: ratio = len(inside) / len(outside) print(ratio) except ZeroDivisionError: print(0) ani = animation.FuncAnimation(fig, animate, interval=5) plt.show()
[]
aarvanitii/adminWebsite
run.py
cf9a07c287571ebbc9954326806b578f6d19a11b
""" This is where the web application starts running """ from app.index import create_app app = create_app() if __name__ == "__main__": app.secret_key = 'mysecret' app.run(port=8080, host="0.0.0.0", debug=True)
[((5, 6, 5, 18), 'app.index.create_app', 'create_app', ({}, {}), '()', False, 'from app.index import create_app\n')]
jorgelmp/sistop-2022-1
tareas/3/GarciaFigueroaAlberto-GarciaEdgar/Proceso.py
5c3b7e5215247533446aa006affe6cc64a48d989
class Proceso: def __init__(self,tiempo_de_llegada,t,id): self.t=t self.tiempo_de_llegada=tiempo_de_llegada self.id=id self.inicio=0 self.fin=0 self.T=0 self.E=0 self.P=0 self.tRestantes = t
[]
Sourav692/FAANG-Interview-Preparation
Algo and DSA/LeetCode-Solutions-master/Python/smallest-greater-multiple-made-of-two-digits.py
f523e5c94d582328b3edc449ea16ac6ab28cdc81
# Time: sum(O(l * 2^l) for l in range(1, 11)) = O(20 * 2^10) = O(1) # Space: O(1) class Solution(object): def findInteger(self, k, digit1, digit2): """ :type k: int :type digit1: int :type digit2: int :rtype: int """ MAX_NUM_OF_DIGITS = 10 INT_MAX = 2**31-1 if digit1 < digit2: digit1, digit2 = digit2, digit1 total = 2 for l in xrange(1, MAX_NUM_OF_DIGITS+1): for mask in xrange(total): curr, bit = 0, total>>1 while bit: curr = curr*10 + (digit1 if mask&bit else digit2) bit >>= 1 if k < curr <= INT_MAX and curr%k == 0: return curr total <<= 1 return -1
[]
compoundpartners/js-people
aldryn_people/tests/test_plugins.py
a3744c3880f6626e677034a693f337c927baf886
# -*- coding: utf-8 -*- from __future__ import unicode_literals try: from django.core.urlresolvers import reverse except ImportError: # Django 2.0 from django.urls import reverse from django.utils.translation import force_text from cms import api from cms.utils.i18n import force_language from aldryn_people import DEFAULT_APP_NAMESPACE from ..models import Person, Group from ..cms_plugins import PeoplePlugin from . import DefaultApphookMixin, BasePeopleTest class TestPersonPlugins(DefaultApphookMixin, BasePeopleTest): def test_add_people_list_plugin_api(self): """ We add a person to the People Plugin and look her up """ name = 'Donald' Person.objects.create(name=name) plugin = api.add_plugin(self.placeholder, PeoplePlugin, self.language) plugin.people = Person.objects.all() self.assertEqual(force_text(plugin), force_text(plugin.pk)) self.page.publish(self.language) url = self.page.get_absolute_url() response = self.client.get(url, follow=True) self.assertContains(response, name) # This fails because of Sane Add Plugin (I suspect). This will be refactored # and re-enabled in a future commit. # def test_add_people_list_plugin_client(self): # """ # We log into the PeoplePlugin # """ # self.client.login( # username=self.su_username, password=self.su_password) # # plugin_data = { # 'plugin_type': 'PeoplePlugin', # 'plugin_language': self.language, # 'placeholder_id': self.placeholder.pk, # } # response = self.client.post(URL_CMS_PLUGIN_ADD, plugin_data) # self.assertEqual(response.status_code, 200) # self.assertTrue(CMSPlugin.objects.exists()) def test_hide_ungrouped(self): """ """ the_bradys = Group.objects.create(name="The Bradys") alice = Person.objects.create(name="Alice") bobby = Person.objects.create(name="Bobby") cindy = Person.objects.create(name="Cindy") # Alice is the housekeeper, not a real Brady. bobby.groups.add(the_bradys) cindy.groups.add(the_bradys) # Add a plugin where ungrouped people are not shown plugin = api.add_plugin(self.placeholder, PeoplePlugin, self.language) plugin.people = Person.objects.all() plugin.group_by_group = True plugin.show_ungrouped = False plugin.save() self.page.publish(self.language) url = self.page.get_absolute_url() response = self.client.get(url, follow=True) self.assertContains(response, bobby.name) self.assertContains(response, cindy.name) self.assertNotContains(response, alice.name) def test_show_ungrouped(self): """ """ the_bradys = Group.objects.create(name="The Bradys") alice = Person.objects.create(name="Alice") bobby = Person.objects.create(name="Bobby") cindy = Person.objects.create(name="Cindy") # Alice is the housekeeper, not a real Brady. bobby.groups.add(the_bradys) cindy.groups.add(the_bradys) # Now, add a new plugin where ungrouped people are shown plugin = api.add_plugin(self.placeholder, PeoplePlugin, self.language) plugin.people = Person.objects.all() plugin.group_by_group = True plugin.show_ungrouped = True plugin.save() self.page.publish(self.language) url = self.page.get_absolute_url() response = self.client.get(url, follow=True) self.assertContains(response, bobby.name) self.assertContains(response, cindy.name) self.assertContains(response, alice.name) class TestPeopleListPluginNoApphook(BasePeopleTest): def setUp(self): super(TestPeopleListPluginNoApphook, self).setUp() # we are testing only en self.person1.set_current_language('en') self.namespace = DEFAULT_APP_NAMESPACE def create_plugin(self, plugin_params=None): if plugin_params is None: plugin_params = {} with force_language('en'): plugin = api.add_plugin( self.placeholder, PeoplePlugin, 'en', **plugin_params) self.page.publish('en') return plugin def test_plugin_with_no_apphook_doesnot_breaks_page(self): self.create_plugin() url = self.page.get_absolute_url() response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertContains(response, self.person1.name) from ..cms_plugins import NAMESPACE_ERROR self.assertNotContains(response, NAMESPACE_ERROR[:20]) def test_plugin_with_no_apphook_shows_error_message(self): self.create_plugin() url = self.page.get_absolute_url() self.client.login(username=self.su_username, password=self.su_password) response = self.client.get(url, user=self.superuser) self.assertEqual(response.status_code, 200) self.assertContains(response, self.person1.name) from ..cms_plugins import NAMESPACE_ERROR self.assertContains(response, NAMESPACE_ERROR[:20]) def test_plugin_with_vcard_enabled_no_apphook(self): self.create_plugin(plugin_params={'show_vcard': True}) url = self.page.get_absolute_url() response = self.client.get(url) self.assertContains(response, self.person1.name) def test_plugin_with_vcard_disabled_no_apphook(self): self.create_plugin(plugin_params={'show_vcard': False}) url = self.page.get_absolute_url() response = self.client.get(url) self.assertContains(response, self.person1.name) def test_plugin_show_links_are_shown_if_enabled_and_apphook_page(self): with force_language('en'): app_page = self.create_apphook_page() list_plugin = api.add_plugin( placeholder=self.placeholder, plugin_type=PeoplePlugin, language='en', ) list_plugin.show_links = True list_plugin.save() self.page.publish('en') url = self.page.get_absolute_url() person_url = self.person1.get_absolute_url() # ensure that url is not the link to the home page and not app page app_page_len = len(app_page.get_absolute_url()) self.assertGreater(len(person_url), app_page_len) response = self.client.get(url, follow=True) self.assertContains(response, person_url) # ensure that url is not shown if not enabled for plugin. list_plugin.show_links = False list_plugin.save() self.page.publish('en') response = self.client.get(url, follow=True) self.assertNotContains(response, person_url) def test_plugin_with_vcard_enabled_with_apphook(self): vcard_kwargs = { 'slug': self.person1.slug } with force_language('en'): self.create_apphook_page() person_vcard_url = reverse( '{0}:download_vcard'.format(self.namespace), kwargs=vcard_kwargs) plugin = self.create_plugin(plugin_params={'show_vcard': True}) url = self.page.get_absolute_url() response = self.client.get(url, follow=True) self.assertContains(response, self.person1.name) self.assertContains(response, person_vcard_url) # test that vcard download link is not shown if disabled plugin.show_vcard = False plugin.save() self.page.publish('en') response = self.client.get(url, follow=True) self.assertContains(response, self.person1.name) self.assertNotContains(response, person_vcard_url)
[((29, 17, 29, 78), 'cms.api.add_plugin', 'api.add_plugin', ({(29, 32, 29, 48): 'self.placeholder', (29, 50, 29, 62): 'PeoplePlugin', (29, 64, 29, 77): 'self.language'}, {}), '(self.placeholder, PeoplePlugin, self.language)', False, 'from cms import api\n'), ((68, 17, 68, 78), 'cms.api.add_plugin', 'api.add_plugin', ({(68, 32, 68, 48): 'self.placeholder', (68, 50, 68, 62): 'PeoplePlugin', (68, 64, 68, 77): 'self.language'}, {}), '(self.placeholder, PeoplePlugin, self.language)', False, 'from cms import api\n'), ((93, 17, 93, 78), 'cms.api.add_plugin', 'api.add_plugin', ({(93, 32, 93, 48): 'self.placeholder', (93, 50, 93, 62): 'PeoplePlugin', (93, 64, 93, 77): 'self.language'}, {}), '(self.placeholder, PeoplePlugin, self.language)', False, 'from cms import api\n'), ((31, 25, 31, 43), 'django.utils.translation.force_text', 'force_text', ({(31, 36, 31, 42): 'plugin'}, {}), '(plugin)', False, 'from django.utils.translation import force_text\n'), ((31, 45, 31, 66), 'django.utils.translation.force_text', 'force_text', ({(31, 56, 31, 65): 'plugin.pk'}, {}), '(plugin.pk)', False, 'from django.utils.translation import force_text\n'), ((118, 13, 118, 33), 'cms.utils.i18n.force_language', 'force_language', ({(118, 28, 118, 32): '"""en"""'}, {}), "('en')", False, 'from cms.utils.i18n import force_language\n'), ((119, 21, 120, 70), 'cms.api.add_plugin', 'api.add_plugin', ({(120, 16, 120, 32): 'self.placeholder', (120, 34, 120, 46): 'PeoplePlugin', (120, 48, 120, 52): '"""en"""'}, {}), "(self.placeholder, PeoplePlugin, 'en', **plugin_params)", False, 'from cms import api\n'), ((157, 13, 157, 33), 'cms.utils.i18n.force_language', 'force_language', ({(157, 28, 157, 32): '"""en"""'}, {}), "('en')", False, 'from cms.utils.i18n import force_language\n'), ((159, 26, 163, 13), 'cms.api.add_plugin', 'api.add_plugin', (), '', False, 'from cms import api\n'), ((185, 13, 185, 33), 'cms.utils.i18n.force_language', 'force_language', ({(185, 28, 185, 32): '"""en"""'}, {}), "('en')", False, 'from cms.utils.i18n import force_language\n')]
xcnick/TurboTransformers
turbo_transformers/python/tests/__init__.py
48b6ba09af2219616c6b97cc5c09222408e080c2
# Copyright (C) 2020 THL A29 Limited, a Tencent company. # All rights reserved. # Licensed under the BSD 3-Clause License (the "License"); you may # not use this file except in compliance with the License. You may # obtain a copy of the License at # https://opensource.org/licenses/BSD-3-Clause # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" basis, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. # See the AUTHORS file for names of contributors.
[]
audreymychan/djsmile
generate_joke.py
8dc5d6337f1b32db8bf3dfbf13315ec25049ebb5
# This script contains the get_joke() function to generate a new dad joke import requests def get_joke(): """Return new joke string from icanhazdadjoke.com.""" url = "https://icanhazdadjoke.com/" response = requests.get(url, headers={'Accept': 'application/json'}) raw_joke = response.json() joke = raw_joke['joke'] return joke
[((9, 15, 9, 72), 'requests.get', 'requests.get', (), '', False, 'import requests\n')]
elihschiff/Rubber-Duck-Python
bot/tests/test_triggers/__init__.py
24dea3b64a8a46368cd8dd995c800375f355b55e
from .test_commands import all_commands all_triggers = all_commands from .test_quack import TestQuack all_triggers.append(TestQuack)
[]
Scout24/crassus
src/main/scripts/crassus_deployer_lambda.py
8e3d5ff073181cabaf0e764c3d8be18fc7d27992
from __future__ import print_function from crassus import Crassus from crassus.output_converter import OutputConverter def handler(event, context): crassus = Crassus(event, context) crassus.deploy() def cfn_output_converter(event, context): """ Convert an AWS CloudFormation output message to our defined ResultMessage format. """ output_converter = OutputConverter(event, context) output_converter.convert()
[((7, 14, 7, 37), 'crassus.Crassus', 'Crassus', ({(7, 22, 7, 27): 'event', (7, 29, 7, 36): 'context'}, {}), '(event, context)', False, 'from crassus import Crassus\n'), ((16, 23, 16, 54), 'crassus.output_converter.OutputConverter', 'OutputConverter', ({(16, 39, 16, 44): 'event', (16, 46, 16, 53): 'context'}, {}), '(event, context)', False, 'from crassus.output_converter import OutputConverter\n')]
tchamabe1979/exareme
Exareme-Docker/src/exareme/exareme-tools/madis/src/lib/pyreadline/clipboard/__init__.py
462983e4feec7808e1fd447d02901502588a8879
import sys success = False in_ironpython = "IronPython" in sys.version if in_ironpython: try: from ironpython_clipboard import GetClipboardText, SetClipboardText success = True except ImportError: pass else: try: from win32_clipboard import GetClipboardText, SetClipboardText success = True except ImportError: raise def send_data(lists): SetClipboardText(make_tab(lists)) def set_clipboard_text(toclipboard): SetClipboardText(str(toclipboard)) def make_tab(lists): if hasattr(lists, "tolist"): lists = lists.tolist() ut = [] for rad in lists: if type(rad) in [list, tuple]: ut.append("\t".join(["%s" % x for x in rad])) else: ut.append("%s" % rad) return "\n".join(ut) def make_list_of_list(txt): def make_num(x): try: return int(x) except ValueError: try: return float(x) except ValueError: try: return complex(x) except ValueError: return x return x ut = [] flag = False for rad in [x for x in txt.split("\r\n") if x != ""]: raden = [make_num(x) for x in rad.split("\t")] if str in map(type, raden): flag = True ut.append(raden) return ut, flag def get_clipboard_text_and_convert(paste_list=False): """Get txt from clipboard. if paste_list==True the convert tab separated data to list of lists. Enclose list of list in array() if all elements are numeric""" txt = GetClipboardText() if txt: if paste_list and "\t" in txt: array, flag = make_list_of_list(txt) if flag: txt = repr(array) else: txt = "array(%s)" % repr(array) txt = "".join([c for c in txt if c not in " \t\r\n"]) return txt
[((69, 10, 69, 28), 'win32_clipboard.GetClipboardText', 'GetClipboardText', ({}, {}), '()', False, 'from win32_clipboard import GetClipboardText, SetClipboardText\n')]
YujieLu10/tslam
mjrl/utils/train_agent.py
1341dbecdf02ee6b1b6cdd1a538272fffdea6ffd
import logging logging.disable(logging.CRITICAL) import math from tabulate import tabulate from mjrl.utils.make_train_plots import make_train_plots from mjrl.utils.gym_env import GymEnv from mjrl.samplers.core import sample_paths import numpy as np import torch import pickle import imageio import time as timer import os import copy import matplotlib.pyplot as plt try: import exptools from colorsys import hsv_to_rgb import pyvista as pv except ImportError: exptools = None def _load_latest_policy_and_logs(agent, *, policy_dir, logs_dir): """Loads the latest policy. Returns the next step number to begin with. """ assert os.path.isdir(policy_dir), str(policy_dir) assert os.path.isdir(logs_dir), str(logs_dir) log_csv_path = os.path.join(logs_dir, 'log.csv') if not os.path.exists(log_csv_path): return 0 # fresh start print("Reading: {}".format(log_csv_path)) agent.logger.read_log(log_csv_path) last_step = agent.logger.max_len - 1 if last_step <= 0: return 0 # fresh start # find latest policy/baseline i = last_step while i >= 0: policy_path = os.path.join(policy_dir, 'policy_{}.pickle'.format(i)) baseline_path = os.path.join(policy_dir, 'baseline_{}.pickle'.format(i)) if not os.path.isfile(policy_path): i = i -1 continue else: print("Loaded last saved iteration: {}".format(i)) with open(policy_path, 'rb') as fp: agent.policy = pickle.load(fp) with open(baseline_path, 'rb') as fp: agent.baseline = pickle.load(fp) # additional # global_status_path = os.path.join(policy_dir, 'global_status.pickle') # with open(global_status_path, 'rb') as fp: # agent.load_global_status( pickle.load(fp) ) agent.logger.shrink_to(i + 1) assert agent.logger.max_len == i + 1 return agent.logger.max_len # cannot find any saved policy raise RuntimeError("Log file exists, but cannot find any saved policy.") def save_voxel_visualization(obj_name, reset_mode_conf, reward_conf, obj_orientation, obj_relative_position, obj_scale, pc_frame, iternum, is_best_policy): uniform_gt_data = np.load("/home/jianrenw/prox/tslam/assets/uniform_gt/uniform_{}_o3d.npz".format(obj_name))['pcd'] data_scale = uniform_gt_data * obj_scale data_rotate = data_scale.copy() x = data_rotate[:, 0].copy() y = data_rotate[:, 1].copy() z = data_rotate[:, 2].copy() x_theta = obj_orientation[0] data_rotate[:, 0] = x data_rotate[:, 1] = y*math.cos(x_theta) - z*math.sin(x_theta) data_rotate[:, 2] = y*math.sin(x_theta) + z*math.cos(x_theta) x = data_rotate[:, 0].copy() y = data_rotate[:, 1].copy() z = data_rotate[:, 2].copy() y_theta = obj_orientation[1] data_rotate[:, 0] = x * math.cos(y_theta) + z * math.sin(y_theta) data_rotate[:, 1] = y data_rotate[:, 2] = z * math.cos(y_theta) - x * math.sin(y_theta) x = data_rotate[:, 0].copy() y = data_rotate[:, 1].copy() z = data_rotate[:, 2].copy() z_theta = obj_orientation[2] data_rotate[:, 0] = x * math.cos(z_theta) - y * math.sin(z_theta) data_rotate[:, 1] = x * math.sin(z_theta) + y * math.cos(z_theta) data_rotate[:, 2] = z data_trans = data_rotate.copy() data_trans[:, 0] += obj_relative_position[0] data_trans[:, 1] += obj_relative_position[1] data_trans[:, 2] += obj_relative_position[2] uniform_gt_data = data_trans.copy() data = pc_frame resolution = 0.01 sep_x = math.ceil(0.3 / resolution) sep_y = math.ceil(0.3 / resolution) sep_z = math.ceil(0.3 / resolution) x, y, z = np.indices((sep_x, sep_y, sep_z)) cube1 = (x<0) & (y <1) & (z<1) gtcube = (x<0) & (y <1) & (z<1) voxels = cube1 gt_voxels = gtcube # draw gt gt_map_list = [] for idx,val in enumerate(uniform_gt_data): idx_x = math.floor((val[0] + 0.15) / resolution) idx_y = math.floor((val[1] + 0.15) / resolution) idx_z = math.floor((val[2]) / resolution) # if idx_z > 6: # continue name = str(idx_x) + '_' + str(idx_y) + '_' + str(idx_z) if name not in gt_map_list: gt_map_list.append(name) cube = (x < idx_x + 1) & (y < idx_y + 1) & (z < idx_z + 1) & (x >= idx_x) & (y >= idx_y) & (z >= idx_z) # combine the objects into a single boolean array gt_voxels += cube # draw cuboids in the top left and bottom right corners, and a link between them map_list = [] for idx,val in enumerate(data): idx_x = math.floor((val[0] + 0.15) / resolution) idx_y = math.floor((val[1] + 0.15) / resolution) idx_z = math.floor((val[2]) / resolution) # if idx_z > 6: # continue name = str(idx_x) + '_' + str(idx_y) + '_' + str(idx_z) if name not in map_list and name in gt_map_list: map_list.append(name) cube = (x < idx_x + 1) & (y < idx_y + 1) & (z < idx_z + 1) & (x >= idx_x) & (y >= idx_y) & (z >= idx_z) # combine the objects into a single boolean array voxels += cube # gt_obj4:668 occupancy = len(map_list) / len(gt_map_list) # print(len(map_list) / sep_x / sep_y / sep_z ) is_best_reconstruct = True files = os.listdir('/home/jianrenw/prox/tslam/data/result/best_eval/{}/{}/{}/'.format(obj_name, reset_mode_conf, reward_conf)) for file in files: if "overlap" in file and "png" in file: file_str = str(file) previous_occup = file_str[(file_str.index("-")+1):file_str.index(".png")] if occupancy < float(previous_occup): is_best_reconstruct = False # obj_name = "obj{}".format(obj_name) # set the colors of each object vis_voxel = gt_voxels | voxels colors = np.empty(vis_voxel.shape, dtype=object) colors[gt_voxels] = 'white' colors[voxels] = 'cyan' # and plot everything ax = plt.figure().add_subplot(projection='3d') ax.set_zlim(1,30) ax.voxels(vis_voxel, facecolors=colors, edgecolor='g', alpha=.4, linewidth=.05) # plt.savefig('uniform_gtbox_{}.png'.format(step)) if is_best_policy or is_best_reconstruct: plt.savefig('/home/jianrenw/prox/tslam/data/result/best_eval/{}/{}/{}/bp{}_br{}_overlap-{}.png'.format(obj_name, reset_mode_conf, reward_conf, is_best_policy, is_best_reconstruct, occupancy)) plt.savefig('voxel/iter-{}-{}-overlap-{}.png'.format(iternum, obj_name, occupancy)) plt.close() ax = plt.figure().add_subplot(projection='3d') ax.set_zlim(1,30) ax.voxels(gt_voxels, facecolors=colors, edgecolor='g', alpha=.4, linewidth=.05) if is_best_policy or is_best_reconstruct: plt.savefig('/home/jianrenw/prox/tslam/data/result/best_eval/{}/{}/{}/gt.png'.format(obj_name, reset_mode_conf, reward_conf)) plt.savefig('voxel/iter-{}-{}-gt.png'.format(iternum, obj_name)) plt.close() ax = plt.figure().add_subplot(projection='3d') ax.set_zlim(1,30) ax.voxels(voxels, facecolors=colors, edgecolor='g', alpha=.4, linewidth=.05) if is_best_policy or is_best_reconstruct: plt.savefig('/home/jianrenw/prox/tslam/data/result/best_eval/{}/{}/{}/bp{}_br{}_exp.png'.format(obj_name, reset_mode_conf, reward_conf, is_best_policy, is_best_reconstruct)) plt.savefig('voxel/iter-{}-{}-exp.png'.format(iternum, obj_name)) plt.close() return is_best_reconstruct, occupancy def train_agent(job_name, agent, seed = 0, niter = 101, gamma = 0.995, gae_lambda = None, num_cpu = 16, sample_mode = 'trajectories', horizon= int(150), num_traj = 50, num_samples = 50000, # has precedence, used with sample_mode = 'samples' save_freq = 10, evaluation_rollouts = None, plot_keys = ['stoc_pol_mean'], env_kwargs= dict(), visualize_kwargs= dict(), sample_paths_kwargs= dict(), ): print("num_cpu{}".format(num_cpu)) np.random.seed(seed) if os.path.isdir(job_name) == False: os.mkdir(job_name) previous_dir = os.getcwd() obj_name = env_kwargs["obj_name"] reset_mode_conf = env_kwargs["reset_mode"] reward_conf = "cf{}knn{}voxel{}".format(env_kwargs["chamfer_r_factor"], env_kwargs["knn_r_factor"], env_kwargs["new_voxel_r_factor"]) os.chdir(job_name) # important! we are now in the directory to save data if os.path.isdir('iterations') == False: os.mkdir('iterations') if os.path.isdir('2dpointcloud') == False: os.mkdir('2dpointcloud') if os.path.isdir('pointcloudnpz') == False: os.mkdir('pointcloudnpz') if os.path.isdir('/home/jianrenw/prox/tslam/data/result/best_policy/{}/{}/{}'.format(obj_name, reset_mode_conf, reward_conf)) == False: os.makedirs('/home/jianrenw/prox/tslam/data/result/best_policy/{}/{}/{}'.format(obj_name, reset_mode_conf, reward_conf)) if os.path.isdir('/home/jianrenw/prox/tslam/data/result/best_eval/{}/{}/{}'.format(obj_name, reset_mode_conf, reward_conf)) == False: os.makedirs('/home/jianrenw/prox/tslam/data/result/best_eval/{}/{}/{}'.format(obj_name, reset_mode_conf, reward_conf)) if os.path.isdir('voxel') == False: os.mkdir('voxel') if os.path.isdir('logs') == False and agent.save_logs == True: os.mkdir('logs') best_policy = copy.deepcopy(agent.policy) best_perf = -1e8 train_curve = best_perf*np.ones(niter) mean_pol_perf = 0.0 e = GymEnv(agent.env.env_id, env_kwargs) # Load from any existing checkpoint, policy, statistics, etc. # Why no checkpointing.. :( i_start = _load_latest_policy_and_logs(agent, policy_dir='iterations', logs_dir='logs') if i_start: print("Resuming from an existing job folder ...") for i in range(i_start, niter): print("......................................................................................") print("ITERATION : %i " % i) is_best_policy = False if train_curve[i-1] > best_perf: if exptools: exptools.logging.logger.log_text("update best_policy") best_policy = copy.deepcopy(agent.policy) best_perf = train_curve[i-1] is_best_policy = True N = num_traj if sample_mode == 'trajectories' else num_samples stats = agent.train_step( N=N, sample_mode=sample_mode, horizon= horizon, gamma=gamma, gae_lambda=gae_lambda, num_cpu=num_cpu, env_kwargs= env_kwargs, sample_paths_kwargs= sample_paths_kwargs, ) train_curve[i] = stats[0] if evaluation_rollouts is not None and evaluation_rollouts > 0: print("Performing evaluation rollouts ........") eval_paths = sample_paths( num_traj=evaluation_rollouts, env=e.env_id, policy=agent.policy, eval_mode=True, base_seed=seed, num_cpu=num_cpu, env_kwargs= env_kwargs, **sample_paths_kwargs) mean_pol_perf = np.mean([np.sum(path['rewards']) for path in eval_paths]) if agent.save_logs: agent.logger.log_kv('eval_score', mean_pol_perf) if exptools: exptools.logging.logger.log_scalar('eval_score', mean_pol_perf, i) if exptools: env_infos = [path["env_infos"] for path in eval_paths] # a list of dict rewards = dict() total_points = list() if env_infos: # get decomposed reward statistics keys = [k for k in env_infos[0].keys() if "_p" in k[-2:] or "_r" in k[-2:] or "occupancy" in k] for k in keys: rewards[k] = list() for env_info in env_infos: rewards[k].append(env_info[k]) for env_info in env_infos: total_points.append(len(env_info["pointcloud"])) for k, v in rewards.items(): exptools.logging.logger.log_scalar_batch(k, v, i) exptools.logging.logger.log_scalar_batch("total_num_points", total_points, i) print(">>> finish evaluation rollouts") if (i % save_freq == 0 and i > 0): if agent.save_logs: agent.logger.save_log('logs/') make_train_plots(log=agent.logger.log, keys=plot_keys, save_loc='logs/') obj_orientation = env_kwargs["obj_orientation"] obj_relative_position = env_kwargs["obj_relative_position"] obj_scale = env_kwargs["obj_scale"] policy_file = 'policy_%i.pickle' % i baseline_file = 'baseline_%i.pickle' % i pickle.dump(agent.policy, open('iterations/' + policy_file, 'wb')) pickle.dump(agent.baseline, open('iterations/' + baseline_file, 'wb')) pickle.dump(best_policy, open('iterations/best_policy.pickle', 'wb')) pickle.dump(agent.global_status, open('iterations/global_status.pickle', 'wb')) # save videos and pointcloud and reconstruted mesh if exptools: video, env_infos = e.visualize_policy_offscreen( policy= agent.policy, **visualize_kwargs, ) # (T, C, H, W) video_explore, env_infos_explore = e.visualize_policy_explore( policy= agent.policy, **visualize_kwargs, ) # (T, C, H, W) pc_frame = np.array(env_infos[-1]["pointcloud"] if len(env_infos[-1]["pointcloud"]) > 0 else np.empty((0, 3))) # 3d voxel visualization is_best_reconstruct, occupancy = save_voxel_visualization(obj_name, reset_mode_conf, reward_conf, obj_orientation, obj_relative_position, obj_scale, pc_frame, i, is_best_policy) if is_best_policy or is_best_reconstruct: pickle.dump(best_policy, open('/home/jianrenw/prox/tslam/data/result/best_policy/{}/{}/{}/bp{}_br{}_best_policy.pickle'.format(obj_name, reset_mode_conf, reward_conf, is_best_policy, is_best_reconstruct), 'wb')) if is_best_policy or is_best_reconstruct: np.savez_compressed("pointcloudnpz/alpha_pointcloud_"+str(i)+".npz",pcd=pc_frame) np.savez_compressed("/home/jianrenw/prox/tslam/data/result/best_eval/{}/{}/{}/bp{}_br{}_alpha_pointcloud_overlap-{}.npz".format(obj_name, reset_mode_conf, reward_conf, is_best_policy, is_best_reconstruct, occupancy), pcd=pc_frame) # else: # np.savez_compressed("pointcloudnpz/pointcloud_"+str(i)+".npz",pcd=pc_frame) # pc_frames.append(pc_frame) ax = plt.axes() ax.scatter(pc_frame[:, 0], pc_frame[:, 1], cmap='viridis', linewidth=0.5) if is_best_policy or is_best_reconstruct: plt.savefig("2dpointcloud/alpha_{}.png".format('2dpointcloud' + str(i))) plt.savefig("/home/jianrenw/prox/tslam/data/result/best_eval/{}/{}/{}/bp{}_br{}_alpha_2dpointcloud_overlap-{}.png".format(obj_name, reset_mode_conf, reward_conf, is_best_policy, is_best_reconstruct, occupancy)) # else: # plt.savefig("2dpointcloud/{}.png".format('2dpointcloud' + str(i))) plt.close() # ======================================================= # if obj_name in ["airplane", "apple", "glass", "cup"]: exptools.logging.logger.record_image("rendered", video[-1], i) exptools.logging.logger.record_gif("rendered", video, i) # exptools.logging.logger.record_image("rendered_explore", video_explore[-1], i) # exptools.logging.logger.record_gif("rendered_explore", video_explore, i) # print results to console if i == 0: result_file = open('results.txt', 'w') print("Iter | Stoc Pol | Mean Pol | Best (Stoc) \n") result_file.write("Iter | Sampling Pol | Evaluation Pol | Best (Sampled) \n") result_file.close() result_file = open('results.txt', 'a') result_file.write("%4i %5.2f %5.2f %5.2f \n" % (i, train_curve[i], mean_pol_perf, best_perf)) result_file.close() if agent.save_logs: print_data = sorted(filter(lambda v: np.asarray(v[1]).size == 1, agent.logger.get_current_log().items())) print(tabulate(print_data)) if exptools: exptools.logging.logger.log_scalar("Iter", i, i) exptools.logging.logger.log_scalar("SamplingPol", train_curve[i], i) exptools.logging.logger.log_scalar("EvaluationPol", mean_pol_perf, i) exptools.logging.logger.log_scalar("BestSampled", best_perf, i) exptools.logging.logger.dump_data() # final save pickle.dump(best_policy, open('iterations/best_policy.pickle', 'wb')) if agent.save_logs: agent.logger.save_log('logs/') make_train_plots(log=agent.logger.log, keys=plot_keys, save_loc='logs/') os.chdir(previous_dir)
[((2, 0, 2, 33), 'logging.disable', 'logging.disable', ({(2, 16, 2, 32): 'logging.CRITICAL'}, {}), '(logging.CRITICAL)', False, 'import logging\n'), ((28, 11, 28, 36), 'os.path.isdir', 'os.path.isdir', ({(28, 25, 28, 35): 'policy_dir'}, {}), '(policy_dir)', False, 'import os\n'), ((29, 11, 29, 34), 'os.path.isdir', 'os.path.isdir', ({(29, 25, 29, 33): 'logs_dir'}, {}), '(logs_dir)', False, 'import os\n'), ((31, 19, 31, 52), 'os.path.join', 'os.path.join', ({(31, 32, 31, 40): 'logs_dir', (31, 42, 31, 51): '"""log.csv"""'}, {}), "(logs_dir, 'log.csv')", False, 'import os\n'), ((108, 12, 108, 39), 'math.ceil', 'math.ceil', ({(108, 22, 108, 38): '0.3 / resolution'}, {}), '(0.3 / resolution)', False, 'import math\n'), ((109, 12, 109, 39), 'math.ceil', 'math.ceil', ({(109, 22, 109, 38): '0.3 / resolution'}, {}), '(0.3 / resolution)', False, 'import math\n'), ((110, 12, 110, 39), 'math.ceil', 'math.ceil', ({(110, 22, 110, 38): '0.3 / resolution'}, {}), '(0.3 / resolution)', False, 'import math\n'), ((111, 14, 111, 47), 'numpy.indices', 'np.indices', ({(111, 25, 111, 46): '(sep_x, sep_y, sep_z)'}, {}), '((sep_x, sep_y, sep_z))', True, 'import numpy as np\n'), ((163, 13, 163, 52), 'numpy.empty', 'np.empty', (), '', True, 'import numpy as np\n'), ((175, 4, 175, 15), 'matplotlib.pyplot.close', 'plt.close', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((183, 4, 183, 15), 'matplotlib.pyplot.close', 'plt.close', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((191, 4, 191, 15), 'matplotlib.pyplot.close', 'plt.close', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((212, 4, 212, 24), 'numpy.random.seed', 'np.random.seed', ({(212, 19, 212, 23): 'seed'}, {}), '(seed)', True, 'import numpy as np\n'), ((215, 19, 215, 30), 'os.getcwd', 'os.getcwd', ({}, {}), '()', False, 'import os\n'), ((219, 4, 219, 22), 'os.chdir', 'os.chdir', ({(219, 13, 219, 21): 'job_name'}, {}), '(job_name)', False, 'import os\n'), ((227, 18, 227, 45), 'copy.deepcopy', 'copy.deepcopy', ({(227, 32, 227, 44): 'agent.policy'}, {}), '(agent.policy)', False, 'import copy\n'), ((231, 8, 231, 44), 'mjrl.utils.gym_env.GymEnv', 'GymEnv', ({(231, 15, 231, 31): 'agent.env.env_id', (231, 33, 231, 43): 'env_kwargs'}, {}), '(agent.env.env_id, env_kwargs)', False, 'from mjrl.utils.gym_env import GymEnv\n'), ((375, 4, 375, 26), 'os.chdir', 'os.chdir', ({(375, 13, 375, 25): 'previous_dir'}, {}), '(previous_dir)', False, 'import os\n'), ((32, 11, 32, 39), 'os.path.exists', 'os.path.exists', ({(32, 26, 32, 38): 'log_csv_path'}, {}), '(log_csv_path)', False, 'import os\n'), ((121, 16, 121, 56), 'math.floor', 'math.floor', ({(121, 27, 121, 55): '(val[0] + 0.15) / resolution'}, {}), '((val[0] + 0.15) / resolution)', False, 'import math\n'), ((122, 16, 122, 56), 'math.floor', 'math.floor', ({(122, 27, 122, 55): '(val[1] + 0.15) / resolution'}, {}), '((val[1] + 0.15) / resolution)', False, 'import math\n'), ((123, 16, 123, 49), 'math.floor', 'math.floor', ({(123, 27, 123, 48): 'val[2] / resolution'}, {}), '(val[2] / resolution)', False, 'import math\n'), ((136, 16, 136, 56), 'math.floor', 'math.floor', ({(136, 27, 136, 55): '(val[0] + 0.15) / resolution'}, {}), '((val[0] + 0.15) / resolution)', False, 'import math\n'), ((137, 16, 137, 56), 'math.floor', 'math.floor', ({(137, 27, 137, 55): '(val[1] + 0.15) / resolution'}, {}), '((val[1] + 0.15) / resolution)', False, 'import math\n'), ((138, 16, 138, 49), 'math.floor', 'math.floor', ({(138, 27, 138, 48): 'val[2] / resolution'}, {}), '(val[2] / resolution)', False, 'import math\n'), ((213, 7, 213, 30), 'os.path.isdir', 'os.path.isdir', ({(213, 21, 213, 29): 'job_name'}, {}), '(job_name)', False, 'import os\n'), ((214, 8, 214, 26), 'os.mkdir', 'os.mkdir', ({(214, 17, 214, 25): 'job_name'}, {}), '(job_name)', False, 'import os\n'), ((220, 7, 220, 34), 'os.path.isdir', 'os.path.isdir', ({(220, 21, 220, 33): '"""iterations"""'}, {}), "('iterations')", False, 'import os\n'), ((220, 45, 220, 67), 'os.mkdir', 'os.mkdir', ({(220, 54, 220, 66): '"""iterations"""'}, {}), "('iterations')", False, 'import os\n'), ((221, 7, 221, 36), 'os.path.isdir', 'os.path.isdir', ({(221, 21, 221, 35): '"""2dpointcloud"""'}, {}), "('2dpointcloud')", False, 'import os\n'), ((221, 47, 221, 71), 'os.mkdir', 'os.mkdir', ({(221, 56, 221, 70): '"""2dpointcloud"""'}, {}), "('2dpointcloud')", False, 'import os\n'), ((222, 7, 222, 37), 'os.path.isdir', 'os.path.isdir', ({(222, 21, 222, 36): '"""pointcloudnpz"""'}, {}), "('pointcloudnpz')", False, 'import os\n'), ((222, 48, 222, 73), 'os.mkdir', 'os.mkdir', ({(222, 57, 222, 72): '"""pointcloudnpz"""'}, {}), "('pointcloudnpz')", False, 'import os\n'), ((225, 7, 225, 29), 'os.path.isdir', 'os.path.isdir', ({(225, 21, 225, 28): '"""voxel"""'}, {}), "('voxel')", False, 'import os\n'), ((225, 40, 225, 57), 'os.mkdir', 'os.mkdir', ({(225, 49, 225, 56): '"""voxel"""'}, {}), "('voxel')", False, 'import os\n'), ((226, 67, 226, 83), 'os.mkdir', 'os.mkdir', ({(226, 76, 226, 82): '"""logs"""'}, {}), "('logs')", False, 'import os\n'), ((229, 28, 229, 42), 'numpy.ones', 'np.ones', ({(229, 36, 229, 41): 'niter'}, {}), '(niter)', True, 'import numpy as np\n'), ((374, 8, 374, 80), 'mjrl.utils.make_train_plots.make_train_plots', 'make_train_plots', (), '', False, 'from mjrl.utils.make_train_plots import make_train_plots\n'), ((48, 15, 48, 42), 'os.path.isfile', 'os.path.isfile', ({(48, 30, 48, 41): 'policy_path'}, {}), '(policy_path)', False, 'import os\n'), ((55, 27, 55, 42), 'pickle.load', 'pickle.load', ({(55, 39, 55, 41): 'fp'}, {}), '(fp)', False, 'import pickle\n'), ((57, 29, 57, 44), 'pickle.load', 'pickle.load', ({(57, 41, 57, 43): 'fp'}, {}), '(fp)', False, 'import pickle\n'), ((81, 26, 81, 43), 'math.cos', 'math.cos', ({(81, 35, 81, 42): 'x_theta'}, {}), '(x_theta)', False, 'import math\n'), ((81, 48, 81, 65), 'math.sin', 'math.sin', ({(81, 57, 81, 64): 'x_theta'}, {}), '(x_theta)', False, 'import math\n'), ((82, 26, 82, 43), 'math.sin', 'math.sin', ({(82, 35, 82, 42): 'x_theta'}, {}), '(x_theta)', False, 'import math\n'), ((82, 48, 82, 65), 'math.cos', 'math.cos', ({(82, 57, 82, 64): 'x_theta'}, {}), '(x_theta)', False, 'import math\n'), ((88, 28, 88, 45), 'math.cos', 'math.cos', ({(88, 37, 88, 44): 'y_theta'}, {}), '(y_theta)', False, 'import math\n'), ((88, 52, 88, 69), 'math.sin', 'math.sin', ({(88, 61, 88, 68): 'y_theta'}, {}), '(y_theta)', False, 'import math\n'), ((90, 28, 90, 45), 'math.cos', 'math.cos', ({(90, 37, 90, 44): 'y_theta'}, {}), '(y_theta)', False, 'import math\n'), ((90, 52, 90, 69), 'math.sin', 'math.sin', ({(90, 61, 90, 68): 'y_theta'}, {}), '(y_theta)', False, 'import math\n'), ((96, 28, 96, 45), 'math.cos', 'math.cos', ({(96, 37, 96, 44): 'z_theta'}, {}), '(z_theta)', False, 'import math\n'), ((96, 52, 96, 69), 'math.sin', 'math.sin', ({(96, 61, 96, 68): 'z_theta'}, {}), '(z_theta)', False, 'import math\n'), ((97, 28, 97, 45), 'math.sin', 'math.sin', ({(97, 37, 97, 44): 'z_theta'}, {}), '(z_theta)', False, 'import math\n'), ((97, 52, 97, 69), 'math.cos', 'math.cos', ({(97, 61, 97, 68): 'z_theta'}, {}), '(z_theta)', False, 'import math\n'), ((167, 9, 167, 21), 'matplotlib.pyplot.figure', 'plt.figure', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((177, 9, 177, 21), 'matplotlib.pyplot.figure', 'plt.figure', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((185, 9, 185, 21), 'matplotlib.pyplot.figure', 'plt.figure', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((226, 7, 226, 28), 'os.path.isdir', 'os.path.isdir', ({(226, 21, 226, 27): '"""logs"""'}, {}), "('logs')", False, 'import os\n'), ((247, 26, 247, 53), 'copy.deepcopy', 'copy.deepcopy', ({(247, 40, 247, 52): 'agent.policy'}, {}), '(agent.policy)', False, 'import copy\n'), ((266, 25, 274, 38), 'mjrl.samplers.core.sample_paths', 'sample_paths', (), '', False, 'from mjrl.samplers.core import sample_paths\n'), ((364, 12, 364, 60), 'exptools.logging.logger.log_scalar', 'exptools.logging.logger.log_scalar', ({(364, 47, 364, 53): '"""Iter"""', (364, 55, 364, 56): 'i', (364, 58, 364, 59): 'i'}, {}), "('Iter', i, i)", False, 'import exptools\n'), ((365, 12, 365, 80), 'exptools.logging.logger.log_scalar', 'exptools.logging.logger.log_scalar', ({(365, 47, 365, 60): '"""SamplingPol"""', (365, 62, 365, 76): 'train_curve[i]', (365, 78, 365, 79): 'i'}, {}), "('SamplingPol', train_curve[i], i)", False, 'import exptools\n'), ((366, 12, 366, 81), 'exptools.logging.logger.log_scalar', 'exptools.logging.logger.log_scalar', ({(366, 47, 366, 62): '"""EvaluationPol"""', (366, 64, 366, 77): 'mean_pol_perf', (366, 79, 366, 80): 'i'}, {}), "('EvaluationPol', mean_pol_perf, i)", False, 'import exptools\n'), ((367, 12, 367, 75), 'exptools.logging.logger.log_scalar', 'exptools.logging.logger.log_scalar', ({(367, 47, 367, 60): '"""BestSampled"""', (367, 62, 367, 71): 'best_perf', (367, 73, 367, 74): 'i'}, {}), "('BestSampled', best_perf, i)", False, 'import exptools\n'), ((368, 12, 368, 47), 'exptools.logging.logger.dump_data', 'exptools.logging.logger.dump_data', ({}, {}), '()', False, 'import exptools\n'), ((246, 25, 246, 79), 'exptools.logging.logger.log_text', 'exptools.logging.logger.log_text', ({(246, 58, 246, 78): '"""update best_policy"""'}, {}), "('update best_policy')", False, 'import exptools\n'), ((294, 16, 294, 93), 'exptools.logging.logger.log_scalar_batch', 'exptools.logging.logger.log_scalar_batch', ({(294, 57, 294, 75): '"""total_num_points"""', (294, 77, 294, 89): 'total_points', (294, 91, 294, 92): 'i'}, {}), "('total_num_points', total_points, i)", False, 'import exptools\n'), ((300, 16, 300, 88), 'mjrl.utils.make_train_plots.make_train_plots', 'make_train_plots', (), '', False, 'from mjrl.utils.make_train_plots import make_train_plots\n'), ((335, 21, 335, 31), 'matplotlib.pyplot.axes', 'plt.axes', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((342, 16, 342, 27), 'matplotlib.pyplot.close', 'plt.close', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((345, 16, 345, 78), 'exptools.logging.logger.record_image', 'exptools.logging.logger.record_image', ({(345, 53, 345, 63): '"""rendered"""', (345, 65, 345, 74): 'video[-1]', (345, 76, 345, 77): 'i'}, {}), "('rendered', video[-1], i)", False, 'import exptools\n'), ((346, 16, 346, 72), 'exptools.logging.logger.record_gif', 'exptools.logging.logger.record_gif', ({(346, 51, 346, 61): '"""rendered"""', (346, 63, 346, 68): 'video', (346, 70, 346, 71): 'i'}, {}), "('rendered', video, i)", False, 'import exptools\n'), ((362, 18, 362, 38), 'tabulate.tabulate', 'tabulate', ({(362, 27, 362, 37): 'print_data'}, {}), '(print_data)', False, 'from tabulate import tabulate\n'), ((275, 37, 275, 60), 'numpy.sum', 'np.sum', ({(275, 44, 275, 59): "path['rewards']"}, {}), "(path['rewards'])", True, 'import numpy as np\n'), ((278, 29, 278, 95), 'exptools.logging.logger.log_scalar', 'exptools.logging.logger.log_scalar', ({(278, 64, 278, 76): '"""eval_score"""', (278, 78, 278, 91): 'mean_pol_perf', (278, 93, 278, 94): 'i'}, {}), "('eval_score', mean_pol_perf, i)", False, 'import exptools\n'), ((293, 20, 293, 69), 'exptools.logging.logger.log_scalar_batch', 'exptools.logging.logger.log_scalar_batch', ({(293, 61, 293, 62): 'k', (293, 64, 293, 65): 'v', (293, 67, 293, 68): 'i'}, {}), '(k, v, i)', False, 'import exptools\n'), ((322, 109, 322, 125), 'numpy.empty', 'np.empty', ({(322, 118, 322, 124): '(0, 3)'}, {}), '((0, 3))', True, 'import numpy as np\n'), ((360, 49, 360, 65), 'numpy.asarray', 'np.asarray', ({(360, 60, 360, 64): 'v[1]'}, {}), '(v[1])', True, 'import numpy as np\n')]
NicsTr/pretix
src/tests/plugins/banktransfer/test_refund_export.py
e6d2380d9ed1836cc64a688b2be20d00a8500eab
import json from datetime import timedelta from decimal import Decimal import pytest from django.utils.timezone import now from pretix.base.models import Event, Order, OrderRefund, Organizer, Team, User from pretix.plugins.banktransfer.models import RefundExport from pretix.plugins.banktransfer.views import ( _row_key_func, _unite_transaction_rows, ) @pytest.fixture def env(): o = Organizer.objects.create(name='Dummy', slug='dummy') event = Event.objects.create( organizer=o, name='Dummy', slug='dummy', date_from=now(), plugins='pretix.plugins.banktransfer,pretix.plugins.paypal' ) user = User.objects.create_user('[email protected]', 'dummy') t = Team.objects.create(organizer=event.organizer, can_view_orders=True, can_change_orders=True) t.members.add(user) t.limit_events.add(event) order = Order.objects.create( code='1Z3AS', event=event, email='admin@localhost', status=Order.STATUS_PAID, datetime=now(), expires=now() + timedelta(days=10), total=23 ) refund = OrderRefund.objects.create( order=order, amount=Decimal("23"), provider='banktransfer', state=OrderRefund.REFUND_STATE_CREATED, info=json.dumps({ 'payer': "Abc Def", 'iban': "DE27520521540534534466", 'bic': "HELADEF1MEG", }) ) return event, user, refund url_prefixes = [ "/control/event/dummy/dummy/", "/control/organizer/dummy/" ] @pytest.mark.django_db @pytest.mark.parametrize("url_prefix", url_prefixes) def test_export_refunds_as_sepa_xml(client, env, url_prefix): client.login(email='[email protected]', password='dummy') r = client.post(f'{url_prefix}banktransfer/refunds/', {"unite_transactions": True}, follow=True) assert b"SEPA" in r.content r = client.get(f'{url_prefix}banktransfer/sepa-export/{RefundExport.objects.last().id}/') assert r.status_code == 200 r = client.post(f'{url_prefix}banktransfer/sepa-export/{RefundExport.objects.last().id}/', { "account_holder": "Fission Festival", "iban": "DE71720690050653667120", "bic": "GENODEF1AIL", }) assert "DE27520521540534534466" in "".join(str(part) for part in r.streaming_content) @pytest.mark.django_db @pytest.mark.parametrize("url_prefix", url_prefixes) def test_export_refunds(client, env, url_prefix): client.login(email='[email protected]', password='dummy') r = client.get(f'{url_prefix}banktransfer/refunds/') assert r.status_code == 200 r = client.post(f'{url_prefix}banktransfer/refunds/', {"unite_transactions": True}, follow=True) assert r.status_code == 200 refund = RefundExport.objects.last() assert refund is not None assert b"Download CSV" in r.content r = client.get(f'{url_prefix}banktransfer/export/{refund.id}/') assert r.status_code == 200 assert "DE27520521540534534466" in "".join(str(part) for part in r.streaming_content) def test_unite_transaction_rows(): rows = sorted([ { 'payer': "Abc Def", 'iban': 'DE12345678901234567890', 'bic': 'HARKE9000', 'id': "ROLLA-R-1", 'amount': Decimal("42.23"), }, { 'payer': "First Last", 'iban': 'DE111111111111111111111', 'bic': 'ikswez2020', 'id': "PARTY-R-1", 'amount': Decimal("6.50"), } ], key=_row_key_func) assert _unite_transaction_rows(rows) == rows rows = sorted(rows + [ { 'payer': "Abc Def", 'iban': 'DE12345678901234567890', 'bic': 'HARKE9000', 'id': "ROLLA-R-1", 'amount': Decimal("7.77"), }, { 'payer': "Another Last", 'iban': 'DE111111111111111111111', 'bic': 'ikswez2020', 'id': "PARTY-R-2", 'amount': Decimal("13.50"), } ], key=_row_key_func) assert _unite_transaction_rows(rows) == sorted([ { 'payer': "Abc Def", 'iban': 'DE12345678901234567890', 'bic': 'HARKE9000', 'id': "ROLLA-R-1", 'amount': Decimal("50.00"), }, { 'payer': 'Another Last, First Last', 'iban': 'DE111111111111111111111', 'bic': 'ikswez2020', 'id': 'PARTY-R-1, PARTY-R-2', 'amount': Decimal('20.00'), }], key=_row_key_func)
[((53, 1, 53, 52), 'pytest.mark.parametrize', 'pytest.mark.parametrize', ({(53, 25, 53, 37): '"""url_prefix"""', (53, 39, 53, 51): 'url_prefixes'}, {}), "('url_prefix', url_prefixes)", False, 'import pytest\n'), ((69, 1, 69, 52), 'pytest.mark.parametrize', 'pytest.mark.parametrize', ({(69, 25, 69, 37): '"""url_prefix"""', (69, 39, 69, 51): 'url_prefixes'}, {}), "('url_prefix', url_prefixes)", False, 'import pytest\n'), ((17, 8, 17, 60), 'pretix.base.models.Organizer.objects.create', 'Organizer.objects.create', (), '', False, 'from pretix.base.models import Event, Order, OrderRefund, Organizer, Team, User\n'), ((22, 11, 22, 65), 'pretix.base.models.User.objects.create_user', 'User.objects.create_user', ({(22, 36, 22, 55): '"""[email protected]"""', (22, 57, 22, 64): '"""dummy"""'}, {}), "('[email protected]', 'dummy')", False, 'from pretix.base.models import Event, Order, OrderRefund, Organizer, Team, User\n'), ((23, 8, 23, 100), 'pretix.base.models.Team.objects.create', 'Team.objects.create', (), '', False, 'from pretix.base.models import Event, Order, OrderRefund, Organizer, Team, User\n'), ((76, 13, 76, 40), 'pretix.plugins.banktransfer.models.RefundExport.objects.last', 'RefundExport.objects.last', ({}, {}), '()', False, 'from pretix.plugins.banktransfer.models import RefundExport\n'), ((102, 11, 102, 40), 'pretix.plugins.banktransfer.views._unite_transaction_rows', '_unite_transaction_rows', ({(102, 35, 102, 39): 'rows'}, {}), '(rows)', False, 'from pretix.plugins.banktransfer.views import _row_key_func, _unite_transaction_rows\n'), ((121, 11, 121, 40), 'pretix.plugins.banktransfer.views._unite_transaction_rows', '_unite_transaction_rows', ({(121, 35, 121, 39): 'rows'}, {}), '(rows)', False, 'from pretix.plugins.banktransfer.views import _row_key_func, _unite_transaction_rows\n'), ((20, 18, 20, 23), 'django.utils.timezone.now', 'now', ({}, {}), '()', False, 'from django.utils.timezone import now\n'), ((29, 17, 29, 22), 'django.utils.timezone.now', 'now', ({}, {}), '()', False, 'from django.utils.timezone import now\n'), ((34, 15, 34, 28), 'decimal.Decimal', 'Decimal', ({(34, 23, 34, 27): '"""23"""'}, {}), "('23')", False, 'from decimal import Decimal\n'), ((37, 13, 41, 10), 'json.dumps', 'json.dumps', ({(37, 24, 41, 9): "{'payer': 'Abc Def', 'iban': 'DE27520521540534534466', 'bic': 'HELADEF1MEG'}"}, {}), "({'payer': 'Abc Def', 'iban': 'DE27520521540534534466', 'bic':\n 'HELADEF1MEG'})", False, 'import json\n'), ((29, 32, 29, 37), 'django.utils.timezone.now', 'now', ({}, {}), '()', False, 'from django.utils.timezone import now\n'), ((29, 40, 29, 58), 'datetime.timedelta', 'timedelta', (), '', False, 'from datetime import timedelta\n'), ((91, 22, 91, 38), 'decimal.Decimal', 'Decimal', ({(91, 30, 91, 37): '"""42.23"""'}, {}), "('42.23')", False, 'from decimal import Decimal\n'), ((98, 22, 98, 37), 'decimal.Decimal', 'Decimal', ({(98, 30, 98, 36): '"""6.50"""'}, {}), "('6.50')", False, 'from decimal import Decimal\n'), ((58, 59, 58, 86), 'pretix.plugins.banktransfer.models.RefundExport.objects.last', 'RefundExport.objects.last', ({}, {}), '()', False, 'from pretix.plugins.banktransfer.models import RefundExport\n'), ((60, 60, 60, 87), 'pretix.plugins.banktransfer.models.RefundExport.objects.last', 'RefundExport.objects.last', ({}, {}), '()', False, 'from pretix.plugins.banktransfer.models import RefundExport\n'), ((110, 22, 110, 37), 'decimal.Decimal', 'Decimal', ({(110, 30, 110, 36): '"""7.77"""'}, {}), "('7.77')", False, 'from decimal import Decimal\n'), ((117, 22, 117, 38), 'decimal.Decimal', 'Decimal', ({(117, 30, 117, 37): '"""13.50"""'}, {}), "('13.50')", False, 'from decimal import Decimal\n'), ((127, 22, 127, 38), 'decimal.Decimal', 'Decimal', ({(127, 30, 127, 37): '"""50.00"""'}, {}), "('50.00')", False, 'from decimal import Decimal\n'), ((134, 22, 134, 38), 'decimal.Decimal', 'Decimal', ({(134, 30, 134, 37): '"""20.00"""'}, {}), "('20.00')", False, 'from decimal import Decimal\n')]
ICT4H/dcs-web
datawinners/alldata/urls.py
fb0f53fad4401cfac1c1789ff28b9d5bda40c975
# vim: ai ts=4 sts=4 et sw=4 encoding=utf-8 from django.conf.urls.defaults import patterns, url from datawinners.alldata.views import get_entity_list_by_type from datawinners.alldata.views import smart_phone_instruction from datawinners.alldata.views import index, reports from datawinners.alldata.views import failed_submissions urlpatterns = patterns('', url(r'^alldata/$', index, name="alldata_index"), url(r'^project/$', index), (r'^questionnaire/entities/(?P<entity_type>.+?)/$', get_entity_list_by_type), (r'^questionnaire/reports/$', reports), (r'^alldata/reports/$', reports), (r'^allfailedsubmissions/$', failed_submissions), url(r'^smartphoneinstruction$', smart_phone_instruction, name="smart_phone_instruction"), url(r'^smartphoneinstruction/(?P<project_id>.+?)/$', smart_phone_instruction, name="smart_phone_instruction"), )
[((9, 4, 9, 51), 'django.conf.urls.defaults.url', 'url', (), '', False, 'from django.conf.urls.defaults import patterns, url\n'), ((10, 4, 10, 29), 'django.conf.urls.defaults.url', 'url', ({(10, 8, 10, 21): '"""^project/$"""', (10, 23, 10, 28): 'index'}, {}), "('^project/$', index)", False, 'from django.conf.urls.defaults import patterns, url\n'), ((15, 4, 15, 92), 'django.conf.urls.defaults.url', 'url', (), '', False, 'from django.conf.urls.defaults import patterns, url\n'), ((16, 4, 16, 113), 'django.conf.urls.defaults.url', 'url', (), '', False, 'from django.conf.urls.defaults import patterns, url\n')]
NewLife1324/NewLifeUtils-Dev
NewLifeUtils/LoggerModule.py
d955ad801da879d2888506853b0d0141c15dfafc
from NewLifeUtils.ColorModule import ACC, MCC from NewLifeUtils.UtilsModule import hex_to_rgb from NewLifeUtils.FileModule import DataStorage, LogFile from NewLifeUtils.StringUtilModule import remove_csi from datetime import datetime import sys class Formatter(dict): def __init__(self, *args, date_format="%d-%m-%Y", time_format="%H:%M:%S", **kwargs): self.date_format = "%d-%m-%Y" self.time_format = "%H:%M:%S" dict.__init__(self, *args, **kwargs) def __missing__(self, key): if key == "time": return datetime.now().strftime(self.time_format) elif key == "date": return datetime.now().strftime(self.date_format) elif key.startswith("#"): if key == "#reset": return ACC.RESET elif key == "#under": return ACC.UNDERLINE elif key == "#nounder": return ACC.NO_UNDERLINE elif key == "#reverse": return ACC.REVERSE elif key == "#noreverse": return ACC.NO_REVERSE else: return ACC.customrgb(*hex_to_rgb(key)) else: return "{" + key + "}" def create_logger( pattern="[{time}] {tag}: {message}", tag_length=7, default_tag="Log", reader=False, reader_bg="#24416b", reader_fg="#a0dbf2", file_log=False, logfile=None, time_format = "%d-%m-%Y", data_format = "%H:%M:%S", ): def log(message, tag=""): if reader: if not any([message.endswith(i) for i in tuple(":> ")]): title = message + ": " else: title = message message = message.rstrip(" ") message = message.rstrip(":") message = message.rstrip(">") sys.stdout.write( f"{ACC.bcustomrgb(*hex_to_rgb(reader_bg))}{ACC.customrgb(*hex_to_rgb(reader_fg))}{title}{MCC.ERASE_NXT_LINE}" ) readed = input() sys.stdout.write(ACC.RESET + MCC.up() + MCC.ERASE_ALL_LINE) else: readed = None tag = ("{:<" + str(tag_length) + "}").format(tag if tag else default_tag) log_record = pattern.format_map( Formatter(tag=tag, message=message, input=readed, time_format = time_format, data_format = data_format) ) sys.stdout.write(ACC.RESET + log_record + ACC.RESET + "\n") if file_log: logfile.write(remove_csi(log_record) + "\n") return readed return log def cstm(pattern, **kwargs): sys.stdout.write( ACC.RESET + pattern.format_map(Formatter(**kwargs)) + ACC.RESET + "\n" ) def smart_format(pattern, **kwargs): return pattern.format_map(Formatter(**kwargs)) def init_from_cfg(): default_config = { "log_pattern": "{#81f059}[{time}] {#6bd130}{tag}{#fff}: {#1ed476}{message}", "wrn_pattern": "{#cfa529}[{time}] {#d7e356}{tag}{#fff}: {#b9c726}{message}", "err_pattern": "{#cf4729}[{time}] {#d93b18}{tag}{#fff}: {#cf2727}{message}", "tip_pattern": "{#9c1fd1}[{time}] {#471dc4}{tag}{#fff}: {#219ddb}{message}", "rea_pattern": "{#2141a3}[{time}] {#5a51db}{tag}{#fff}: {#2459d6}{message} {#fff}: {#24d0d6}{input}", "log_tag": "Log", "wrn_tag": "Warn", "err_tag": "Error", "tip_tag": "Tip", "rea_tag": "Reader", "date_format": "%d-%m-%Y", "time_format": "%H:%M:%S", "tag_length": 7, "file_log": True, "logtime": "%d-%m-%Y-%H", "logname": "log-{time}", } config = DataStorage("config.yml", "logger", default_config) if config["file_log"]: now = datetime.now() logname = config["logname"] logtime = config["logtime"] logfile = LogFile(f"{logname.format(time=now.strftime(logtime))}.log", "logs") else: logfile = None log = create_logger(pattern=config["log_pattern"], default_tag=config["log_tag"], file_log=config['file_log'], logfile=logfile, tag_length=config['tag_length']) wrn = create_logger(pattern=config["wrn_pattern"], default_tag=config["wrn_tag"], file_log=config['file_log'], logfile=logfile, tag_length=config['tag_length']) err = create_logger(pattern=config["err_pattern"], default_tag=config["err_tag"], file_log=config['file_log'], logfile=logfile, tag_length=config['tag_length']) tip = create_logger(pattern=config["tip_pattern"], default_tag=config["tip_tag"], file_log=config['file_log'], logfile=logfile, tag_length=config['tag_length']) rea = create_logger( pattern=config["rea_pattern"], default_tag=config["rea_tag"], reader=True ) return log, wrn, err, tip, rea log, wrn, err, tip, rea = init_from_cfg()
[((105, 13, 105, 64), 'NewLifeUtils.FileModule.DataStorage', 'DataStorage', ({(105, 25, 105, 37): '"""config.yml"""', (105, 39, 105, 47): '"""logger"""', (105, 49, 105, 63): 'default_config'}, {}), "('config.yml', 'logger', default_config)", False, 'from NewLifeUtils.FileModule import DataStorage, LogFile\n'), ((71, 8, 71, 67), 'sys.stdout.write', 'sys.stdout.write', ({(71, 25, 71, 66): "(ACC.RESET + log_record + ACC.RESET + '\\n')"}, {}), "(ACC.RESET + log_record + ACC.RESET + '\\n')", False, 'import sys\n'), ((107, 14, 107, 28), 'datetime.datetime.now', 'datetime.now', ({}, {}), '()', False, 'from datetime import datetime\n'), ((17, 19, 17, 33), 'datetime.datetime.now', 'datetime.now', ({}, {}), '()', False, 'from datetime import datetime\n'), ((73, 26, 73, 48), 'NewLifeUtils.StringUtilModule.remove_csi', 'remove_csi', ({(73, 37, 73, 47): 'log_record'}, {}), '(log_record)', False, 'from NewLifeUtils.StringUtilModule import remove_csi\n'), ((19, 19, 19, 33), 'datetime.datetime.now', 'datetime.now', ({}, {}), '()', False, 'from datetime import datetime\n'), ((62, 41, 62, 49), 'NewLifeUtils.ColorModule.MCC.up', 'MCC.up', ({}, {}), '()', False, 'from NewLifeUtils.ColorModule import ACC, MCC\n'), ((59, 35, 59, 56), 'NewLifeUtils.UtilsModule.hex_to_rgb', 'hex_to_rgb', ({(59, 46, 59, 55): 'reader_bg'}, {}), '(reader_bg)', False, 'from NewLifeUtils.UtilsModule import hex_to_rgb\n'), ((59, 74, 59, 95), 'NewLifeUtils.UtilsModule.hex_to_rgb', 'hex_to_rgb', ({(59, 85, 59, 94): 'reader_fg'}, {}), '(reader_fg)', False, 'from NewLifeUtils.UtilsModule import hex_to_rgb\n'), ((32, 38, 32, 53), 'NewLifeUtils.UtilsModule.hex_to_rgb', 'hex_to_rgb', ({(32, 49, 32, 52): 'key'}, {}), '(key)', False, 'from NewLifeUtils.UtilsModule import hex_to_rgb\n')]
elcolie/battleship
config/api_urls.py
71b0a963c5b24ae243a193749813fec321d5f4d8
from rest_framework import routers from boards.api.viewsets import BoardViewSet from fleets.api.viewsets import FleetViewSet from missiles.api.viewsets import MissileViewSet app_name = 'api' router = routers.DefaultRouter() router.register(r'boards', BoardViewSet, base_name='board') router.register(r'fleets', FleetViewSet, base_name='fleet') router.register(r'missiles', MissileViewSet, base_name='missile') urlpatterns = router.urls
[((8, 9, 8, 32), 'rest_framework.routers.DefaultRouter', 'routers.DefaultRouter', ({}, {}), '()', False, 'from rest_framework import routers\n')]
Alhassan20/mealpy
mealpy/evolutionary_based/MA.py
7ed365c5c495ad1c1e066662c90159b3d5e9b8e3
#!/usr/bin/env python # ------------------------------------------------------------------------------------------------------% # Created by "Thieu Nguyen" at 14:22, 11/04/2020 % # % # Email: [email protected] % # Homepage: https://www.researchgate.net/profile/Thieu_Nguyen6 % # Github: https://github.com/thieu1995 % # ------------------------------------------------------------------------------------------------------% import time import numpy as np from mealpy.optimizer import Optimizer class BaseMA(Optimizer): """ The original version of: Memetic Algorithm (MA) (On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms) Link: Clever Algorithms: Nature-Inspired Programming Recipes - Memetic Algorithm (MA) http://www.cleveralgorithms.com/nature-inspired/physical/memetic_algorithm.html """ ID_POS = 0 ID_FIT = 1 ID_BIT = 2 def __init__(self, problem: dict, epoch=1000, pop_size=100, pc=0.98, pm=0.025, p_local=0.5, max_local_gens=10, bits_per_param=16): """ Args: problem (dict): a dictionary of your problem epoch (int): maximum number of iterations, default = 1000 pop_size (int): number of population size, default = 100 pc (float): cross-over probability, default = 0.95 pm (float): mutation probability, default = 0.025 p_local (): max_local_gens (): bits_per_param (): """ super().__init__(problem) self.epoch = epoch self.pop_size = pop_size self.pc = pc self.pm = pm self.p_local = p_local self.max_local_gens = max_local_gens self.bits_per_param = bits_per_param self.bits_total = self.problem_size * self.bits_per_param def create_solution(self): position = np.random.uniform(self.lb, self.ub) fitness = self.get_fitness_position(position=position) bitstring = ''.join(["1" if np.random.uniform() < 0.5 else "0" for _ in range(0, self.bits_total)]) return [position, fitness, bitstring] def _decode__(self, bitstring=None): """ Decode the random bitstring into real number Args: bitstring (str): "11000000100101000101010" - bits_per_param = 16, 32 bit for 2 variable. eg. x1 and x2 Returns: list of real number (vector) """ vector = np.ones(self.problem_size) for idx in range(0, self.problem_size): param = bitstring[idx * self.bits_per_param: (idx + 1) * self.bits_per_param] # Select 16 bit every time vector[idx] = self.lb[idx] + ((self.ub[idx] - self.lb[idx]) / ((2.0 ** self.bits_per_param) - 1)) * int(param, 2) return vector def _crossover__(self, dad=None, mom=None): if np.random.uniform() >= self.pc: temp = [dad].copy() return temp[0] else: child = "" for idx in range(0, self.bits_total): if np.random.uniform() < 0.5: child += dad[idx] else: child += mom[idx] return child def _point_mutation__(self, bitstring=None): child = "" for bit in bitstring: if np.random.uniform() < self.pc: child += "0" if bit == "1" else "1" else: child += bit return child def create_next_generation(self, pop: list): ## Binary tournament children = [self.get_solution_kway_tournament_selection(pop, k_way=2, output=1)[0] for _ in range(self.pop_size)] ## Reproduction for idx in range(0, self.pop_size): ancient = pop[idx + 1] if idx % 2 == 0 else pop[idx - 1] if idx == self.pop_size - 1: ancient = pop[0] bitstring_new = self._crossover__(pop[idx][self.ID_BIT], ancient[self.ID_BIT]) bitstring_new = self._point_mutation__(bitstring_new) pos_new = self._decode__(bitstring_new) fit_new = self.get_fitness_position(pos_new) children[idx] = [pos_new, fit_new, bitstring_new] return children def _bits_climber__(self, child=None): current = child.copy() for idx in range(0, self.max_local_gens): child = current.copy() bitstring_new = self._point_mutation__(child[self.ID_BIT]) pos_new = self._decode__(bitstring_new) fit_new = self.get_fitness_position(pos_new) current = self.get_better_solution(child, [pos_new, fit_new, bitstring_new]) return current def train(self): pop = [self.create_solution() for _ in range(self.pop_size)] pop, g_best = self.get_global_best_solution(pop) self.history_list_g_best = [g_best] self.history_list_c_best = self.history_list_g_best.copy() for epoch in range(0, self.epoch): time_start = time.time() # Create next generations pop = self.create_next_generation(pop) # Searching in local for i in range(0, self.pop_size): if np.random.uniform() < self.p_local: pop[i] = self._bits_climber__(pop[i]) # Sort the population and update the global best solution pop = self.update_global_best_solution(pop) ## Additional information for the framework time_start = time.time() - time_start self.history_list_epoch_time.append(time_start) self.print_epoch(epoch + 1, time_start) self.history_list_pop.append(pop.copy()) ## Additional information for the framework self.solution = self.history_list_g_best[-1] self.save_data() return self.solution[self.ID_POS], self.solution[self.ID_FIT][self.ID_TAR]
[((50, 19, 50, 54), 'numpy.random.uniform', 'np.random.uniform', ({(50, 37, 50, 44): 'self.lb', (50, 46, 50, 53): 'self.ub'}, {}), '(self.lb, self.ub)', True, 'import numpy as np\n'), ((64, 17, 64, 43), 'numpy.ones', 'np.ones', ({(64, 25, 64, 42): 'self.problem_size'}, {}), '(self.problem_size)', True, 'import numpy as np\n'), ((71, 11, 71, 30), 'numpy.random.uniform', 'np.random.uniform', ({}, {}), '()', True, 'import numpy as np\n'), ((125, 25, 125, 36), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((86, 15, 86, 34), 'numpy.random.uniform', 'np.random.uniform', ({}, {}), '()', True, 'import numpy as np\n'), ((139, 25, 139, 36), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((77, 19, 77, 38), 'numpy.random.uniform', 'np.random.uniform', ({}, {}), '()', True, 'import numpy as np\n'), ((132, 19, 132, 38), 'numpy.random.uniform', 'np.random.uniform', ({}, {}), '()', True, 'import numpy as np\n'), ((52, 36, 52, 55), 'numpy.random.uniform', 'np.random.uniform', ({}, {}), '()', True, 'import numpy as np\n')]
OpenSourceEconomics/estimagic
src/estimagic/estimation/estimate_ml.py
85163b4cdc601d60d654c6ca1f42b9db17a130a3
from estimagic.inference.ml_covs import cov_cluster_robust from estimagic.inference.ml_covs import cov_hessian from estimagic.inference.ml_covs import cov_jacobian from estimagic.inference.ml_covs import cov_robust from estimagic.inference.ml_covs import cov_strata_robust from estimagic.inference.shared import calculate_inference_quantities from estimagic.inference.shared import check_is_optimized_and_derivative_case from estimagic.inference.shared import get_derivative_case from estimagic.inference.shared import get_internal_first_derivative from estimagic.inference.shared import transform_covariance from estimagic.optimization.optimize import maximize from estimagic.parameters.parameter_conversion import get_derivative_conversion_function from estimagic.parameters.process_constraints import process_constraints from estimagic.shared.check_option_dicts import check_numdiff_options from estimagic.shared.check_option_dicts import check_optimization_options def estimate_ml( loglike, params, optimize_options, *, constraints=None, logging=False, log_options=None, loglike_kwargs=None, derivative=None, derivative_kwargs=None, loglike_and_derivative=None, loglike_and_derivative_kwargs=None, numdiff_options=None, jacobian=None, jacobian_kwargs=None, hessian=False, hessian_kwargs=None, ci_level=0.95, n_samples=10_000, bounds_handling="raise", design_info=None, ): """Do a maximum likelihood (ml) estimation. This is a high level interface of our lower level functions for maximization, numerical differentiation and inference. It does the full workflow for maximum likelihood estimation with just one function call. While we have good defaults, you can still configure each aspect of each step via the optional arguments of this function. If you find it easier to do the "difficult" steps (mainly maximization and calculating numerical derivatives of a potentially noisy function) separately, you can do so and just provide those results as ``params``, ``jacobian`` and ``hessian``. The docstring is aspirational and not all options are supported yet. Args: loglike (callable): Likelihood function that takes a params DataFrame (and potentially other keyword arguments) and returns a dictionary that has at least the entries "value" (a scalar float) and "contributions" (a 1d numpy array or pandas Series) with the log likelihood contribution per individual. params (pd.DataFrame): DataFrame where the "value" column contains the estimated or start parameters of a likelihood model. See :ref:`params` for details. If the supplied parameters are estimated parameters, set optimize_options to False. optimize_options (dict or False): Keyword arguments that govern the numerical optimization. Valid entries are all arguments of :func:`~estimagic.optimization.optimize.minimize` except for criterion, derivative, criterion_and_derivative and params. If you pass False as optimize_options you signal that ``params`` are already the optimal parameters and no numerical optimization is needed. constraints (list): List with constraint dictionaries. See .. _link: ../../docs/source/how_to_guides/how_to_use_constraints.ipynb logging (pathlib.Path, str or False): Path to sqlite3 file (which typically has the file extension ``.db``. If the file does not exist, it will be created. The dashboard can only be used when logging is used. log_options (dict): Additional keyword arguments to configure the logging. - "fast_logging": A boolean that determines if "unsafe" settings are used to speed up write processes to the database. This should only be used for very short running criterion functions where the main purpose of the log is a real-time dashboard and it would not be catastrophic to get a corrupted database in case of a sudden system shutdown. If one evaluation of the criterion function (and gradient if applicable) takes more than 100 ms, the logging overhead is negligible. - "if_table_exists": (str) One of "extend", "replace", "raise". What to do if the tables we want to write to already exist. Default "extend". - "if_database_exists": (str): One of "extend", "replace", "raise". What to do if the database we want to write to already exists. Default "extend". loglike_kwargs (dict): Additional keyword arguments for loglike. derivative (callable): Function takes params and potentially other keyword arguments and calculates the first derivative of loglike. It can either return a numpy array or pandas Series/DataFrame with the derivative or a dictionary with derivatives of each output of loglike. If loglike returns a dict but derivative does not, it is your responsibility to make sure that the correct derivative for the numerical optimizers you are using is returned. derivative_kwargs (dict): Additional keyword arguments for loglike. loglike_and_derivative (callable): Return a tuple consisting of the result of loglike and the result of derivative. Only use this if you can exploit synergies in the calculation of loglike and derivative. loglike_and_derivative_kwargs (dict): Additional keyword arguments for loglike_and_derivative. numdiff_options (dict): Keyword arguments for the calculation of numerical derivatives for the calculation of standard errors. See :ref:`first_derivative` for details. jacobian (callable or pandas.DataFrame or False): A function that takes ``params`` and potentially other keyword arguments and returns the jacobian of loglike["contributions"] with respect to the params. Alternatively, you can pass a pandas.DataFrame with the Jacobian at the optimal parameters. This is only possible if you pass ``optimize_options=False``. Note that you only need to pass a Jacobian function if you have a closed form Jacobian but decided not to return it as part of ``derivative`` (e.g. because you use a scalar optimizer and can calculate a gradient in a way that is faster than calculating and summing the Jacobian). If you pass None, a numerical Jacobian will be calculated. If you pass ``False``, you signal that no Jacobian should be calculated. Thus, no result that requires the Jacobian will be calculated. jacobian_kwargs (dict): Additional keyword arguments for the Jacobian function. hessian (callable or pd.DataFrame): A function that takes ``params`` and potentially other keyword arguments and returns the Hessian of loglike["value"] with respect to the params. Alternatively, you can pass a pandas.DataFrame with the Hessian at the optimal parameters. This is only possible if you pass ``optimize_options=False``. If you pass None, a numerical Hessian will be calculated. If you pass ``False``, you signal that no Hessian should be calculated. Thus, no result that requires the Hessian will be calculated. hessian_kwargs (dict): Additional keyword arguments for the Hessian function. ci_level (float): Confidence level for the calculation of confidence intervals. The default is 0.95. n_samples (int): Number of samples used to transform the covariance matrix of the internal parameter vector into the covariance matrix of the external parameters. For background information about internal and external params see :ref:`implementation_of_constraints`. This is only used if you have specified constraints. bounds_handling (str): One of "clip", "raise", "ignore". Determines how bounds are handled. If "clip", confidence intervals are clipped at the bounds. Standard errors are only adjusted if a sampling step is necessary due to additional constraints. If "raise" and any lower or upper bound is binding, we raise an Error. If "ignore", boundary problems are simply ignored. design_info (pandas.DataFrame): DataFrame with one row per observation that contains some or all of the variables "psu" (primary sampling unit), "stratum" and "fpc" (finite population corrector). See :ref:`robust_likelihood_inference` for details. Returns: dict: The estimated parameters, standard errors and covariance matrix of the parameters. """ # ================================================================================== # Check and process inputs # ================================================================================== is_optimized = optimize_options is False check_optimization_options( optimize_options, usage="estimate_ml", algorithm_mandatory=True, ) jac_case = get_derivative_case(jacobian) hess_case = get_derivative_case(hessian) check_is_optimized_and_derivative_case(is_optimized, jac_case) check_is_optimized_and_derivative_case(is_optimized, hess_case) cov_cases = _get_cov_cases(jac_case, hess_case, design_info) check_numdiff_options(numdiff_options, "estimate_ml") numdiff_options = {} if numdiff_options in (None, False) else numdiff_options constraints = [] if constraints is None else constraints processed_constraints, _ = process_constraints(constraints, params) # ================================================================================== # Calculate estimates via maximization (if necessary) # ================================================================================== if is_optimized: estimates = params else: opt_res = maximize( criterion=loglike, criterion_kwargs=loglike_kwargs, params=params, constraints=constraints, derivative=derivative, derivative_kwargs=derivative_kwargs, criterion_and_derivative=loglike_and_derivative, criterion_and_derivative_kwargs=loglike_and_derivative_kwargs, logging=logging, log_options=log_options, **optimize_options, ) estimates = opt_res["solution_params"] # ================================================================================== # Calculate internal jacobian # ================================================================================== deriv_to_internal = get_derivative_conversion_function( params=params, constraints=constraints ) if jac_case == "pre-calculated": int_jac = deriv_to_internal(jacobian) elif jac_case == "closed-form": jacobian_kwargs = {} if jacobian_kwargs is None else jacobian_kwargs _jac = jacobian(estimates, **jacobian_kwargs) int_jac = deriv_to_internal(_jac) # switch to "numerical" even if jac_case == "skip" because jac is required for ml. elif jac_case == "numerical": options = numdiff_options.copy() options["key"] = "contributions" deriv_res = get_internal_first_derivative( func=loglike, params=estimates, constraints=constraints, func_kwargs=loglike_kwargs, numdiff_options=options, ) int_jac = deriv_res["derivative"] jac_numdiff_info = {k: v for k, v in deriv_res.items() if k != "derivative"} else: int_jac = None # ================================================================================== # Calculate internal Hessian (most of this is not yet implemented) # ================================================================================== if hess_case == "skip": int_hess = None elif hess_case == "numerical": raise NotImplementedError("Numerical Hessian calculation is not yet supported.") hess_numdiff_info = {} elif hess_case in ("closed-form", "pre-calculated") and constraints: raise NotImplementedError( "Closed-form or pre-calculated Hessians are not yet compatible with " "constraints." ) else: int_hess = hessian(estimates, **hessian_kwargs) # ================================================================================== # Calculate all available internal cov types # ================================================================================== int_covs = {} if "jacobian" in cov_cases: int_covs["cov_jacobian"] = cov_jacobian(int_jac) if "hessian" in cov_cases: int_covs["cov_hessian"] = cov_hessian(int_hess) if "robust" in cov_cases: int_covs["cov_robust"] = cov_robust(jac=int_jac, hess=int_hess) if "cluster_robust" in cov_cases: int_covs["cov_cluster_robust"] = cov_cluster_robust( jac=int_jac, hess=int_hess, design_info=design_info ) if "strata_robust" in cov_cases: int_covs["cov_strata_robust"] = cov_strata_robust( jac=int_jac, hess=int_hess, design_info=design_info ) # ================================================================================== # Calculate all available external covs and summaries # ================================================================================== covs = {} summaries = {} for case in cov_cases: cov = transform_covariance( params=estimates, internal_cov=int_covs[f"cov_{case}"], constraints=constraints, n_samples=n_samples, bounds_handling=bounds_handling, ) summary = calculate_inference_quantities( params=estimates, free_cov=cov, ci_level=ci_level, ) covs[f"cov_{case}"] = cov summaries[f"summary_{case}"] = summary # ================================================================================== # Calculate external jac and hess (if no transforming constraints) # ================================================================================== if not processed_constraints: ext_jac = int_jac ext_hess = int_hess else: ext_jac = "No external Jacobian defined due to constraints." ext_hess = "No external Hessian defined due to constraints." # ================================================================================== # Construct output # ================================================================================== out = { **summaries, **covs, "jacobian": ext_jac, "hessian": ext_hess, } if not is_optimized: out["optimize_res"] = opt_res if jac_case == "numerical": out["jacobian_numdiff_info"] = jac_numdiff_info if hess_case == "numerical": out["hessian_numdiff_info"] = hess_numdiff_info return out def _get_cov_cases(jac_case, hess_case, design_info): if jac_case == "skip" and hess_case == "skip": raise ValueError("Jacobian and Hessian cannot both be False.") elif jac_case == "skip" and hess_case != "skip": cases = ["hessian"] elif hess_case == "skip" and jac_case != "skip": cases = ["jacobian"] else: cases = ["jacobian", "hessian", "robust"] if design_info is not None: if "psu" in design_info: cases.append("cluster_robust") if {"strata", "psu", "fpc"}.issubset(design_info): cases.append("strata_robust") return cases
[((153, 4, 157, 5), 'estimagic.shared.check_option_dicts.check_optimization_options', 'check_optimization_options', (), '', False, 'from estimagic.shared.check_option_dicts import check_optimization_options\n'), ((159, 15, 159, 44), 'estimagic.inference.shared.get_derivative_case', 'get_derivative_case', ({(159, 35, 159, 43): 'jacobian'}, {}), '(jacobian)', False, 'from estimagic.inference.shared import get_derivative_case\n'), ((160, 16, 160, 44), 'estimagic.inference.shared.get_derivative_case', 'get_derivative_case', ({(160, 36, 160, 43): 'hessian'}, {}), '(hessian)', False, 'from estimagic.inference.shared import get_derivative_case\n'), ((162, 4, 162, 66), 'estimagic.inference.shared.check_is_optimized_and_derivative_case', 'check_is_optimized_and_derivative_case', ({(162, 43, 162, 55): 'is_optimized', (162, 57, 162, 65): 'jac_case'}, {}), '(is_optimized, jac_case)', False, 'from estimagic.inference.shared import check_is_optimized_and_derivative_case\n'), ((163, 4, 163, 67), 'estimagic.inference.shared.check_is_optimized_and_derivative_case', 'check_is_optimized_and_derivative_case', ({(163, 43, 163, 55): 'is_optimized', (163, 57, 163, 66): 'hess_case'}, {}), '(is_optimized, hess_case)', False, 'from estimagic.inference.shared import check_is_optimized_and_derivative_case\n'), ((167, 4, 167, 57), 'estimagic.shared.check_option_dicts.check_numdiff_options', 'check_numdiff_options', ({(167, 26, 167, 41): 'numdiff_options', (167, 43, 167, 56): '"""estimate_ml"""'}, {}), "(numdiff_options, 'estimate_ml')", False, 'from estimagic.shared.check_option_dicts import check_numdiff_options\n'), ((172, 31, 172, 71), 'estimagic.parameters.process_constraints.process_constraints', 'process_constraints', ({(172, 51, 172, 62): 'constraints', (172, 64, 172, 70): 'params'}, {}), '(constraints, params)', False, 'from estimagic.parameters.process_constraints import process_constraints\n'), ((200, 24, 202, 5), 'estimagic.parameters.parameter_conversion.get_derivative_conversion_function', 'get_derivative_conversion_function', (), '', False, 'from estimagic.parameters.parameter_conversion import get_derivative_conversion_function\n'), ((181, 18, 193, 9), 'estimagic.optimization.optimize.maximize', 'maximize', (), '', False, 'from estimagic.optimization.optimize import maximize\n'), ((249, 35, 249, 56), 'estimagic.inference.ml_covs.cov_jacobian', 'cov_jacobian', ({(249, 48, 249, 55): 'int_jac'}, {}), '(int_jac)', False, 'from estimagic.inference.ml_covs import cov_jacobian\n'), ((251, 34, 251, 55), 'estimagic.inference.ml_covs.cov_hessian', 'cov_hessian', ({(251, 46, 251, 54): 'int_hess'}, {}), '(int_hess)', False, 'from estimagic.inference.ml_covs import cov_hessian\n'), ((253, 33, 253, 71), 'estimagic.inference.ml_covs.cov_robust', 'cov_robust', (), '', False, 'from estimagic.inference.ml_covs import cov_robust\n'), ((255, 41, 257, 9), 'estimagic.inference.ml_covs.cov_cluster_robust', 'cov_cluster_robust', (), '', False, 'from estimagic.inference.ml_covs import cov_cluster_robust\n'), ((259, 40, 261, 9), 'estimagic.inference.ml_covs.cov_strata_robust', 'cov_strata_robust', (), '', False, 'from estimagic.inference.ml_covs import cov_strata_robust\n'), ((270, 14, 276, 9), 'estimagic.inference.shared.transform_covariance', 'transform_covariance', (), '', False, 'from estimagic.inference.shared import transform_covariance\n'), ((277, 18, 281, 9), 'estimagic.inference.shared.calculate_inference_quantities', 'calculate_inference_quantities', (), '', False, 'from estimagic.inference.shared import calculate_inference_quantities\n'), ((214, 20, 220, 9), 'estimagic.inference.shared.get_internal_first_derivative', 'get_internal_first_derivative', (), '', False, 'from estimagic.inference.shared import get_internal_first_derivative\n')]
NunoEdgarGFlowHub/neural_architecture_search_with_reinforcement_learning_appendix_a
neural_architecture_search_appendix_a.py
67e4876d428e5155f5526ee02875b0a89a52305d
import six import chainer import numpy as np import chainer.links as L import chainer.functions as F import nutszebra_chainer import functools from collections import defaultdict class Conv(nutszebra_chainer.Model): def __init__(self, in_channel, out_channel, filter_size=(3, 3), stride=(1, 1), pad=(1, 1)): super(Conv, self).__init__( conv=L.Convolution2D(in_channel, out_channel, filter_size, stride, pad), ) def weight_initialization(self): self.conv.W.data = self.weight_relu_initialization(self.conv) self.conv.b.data = self.bias_initialization(self.conv, constant=0) def __call__(self, x, train=False): return self.conv(x) def count_parameters(self): return functools.reduce(lambda a, b: a * b, self.conv.W.data.shape) class Conv_ReLU_BN(nutszebra_chainer.Model): def __init__(self, in_channel, out_channel, filter_size=(3, 3), stride=(1, 1), pad=(1, 1)): super(Conv_ReLU_BN, self).__init__( conv=L.Convolution2D(in_channel, out_channel, filter_size, stride, pad), bn=L.BatchNormalization(out_channel), ) def weight_initialization(self): self.conv.W.data = self.weight_relu_initialization(self.conv) self.conv.b.data = self.bias_initialization(self.conv, constant=0) def __call__(self, x, train=False): return self.bn(F.relu(self.conv(x)), test=not train) def count_parameters(self): return functools.reduce(lambda a, b: a * b, self.conv.W.data.shape) class AppendixA(nutszebra_chainer.Model): def __init__(self, category_num): super(AppendixA, self).__init__() out_channels = [36, 48, 36, 36, 48, 48, 48, 36, 36, 36, 36, 48, 48, 48, 48] # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 skip_connections = [[0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1], [0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] filters = [(3, 3), (3, 3), (3, 3), (5, 5), (3, 7), (7, 7), (7, 7), (7, 3), (7, 1), (7, 7), (5, 7), (7, 7), (7, 5), (7, 5), (7, 5)] modules = [] in_channel = 3 for i in six.moves.range(len(out_channels)): modules += [('conv{}'.format(i), Conv_ReLU_BN(in_channel, out_channels[i], filters[i], 1, 0))] in_channel = int(np.sum([out_channels[ii] for ii, s in enumerate(skip_connections) if s[i] == 1])) + out_channels[i] modules += [('linear', Conv(out_channels[-1], category_num, 1, 1, 0))] # register layers [self.add_link(*link) for link in modules] self.modules = modules self.category_num = category_num self.out_channels = out_channels self.skip_connections = skip_connections self.filters = filters self.name = 'appndix_a_{}'.format(category_num) def weight_initialization(self): [link.weight_initialization() for _, link in self.modules] def count_parameters(self): return int(np.sum([link.count_parameters() for _, link in self.modules])) @staticmethod def _zero_pads(x, pad, axis): if type(x.data) is not np.ndarray: pad.to_gpu() return F.concat((x, pad), axis=axis) @staticmethod def zero_pads(x, sizes): batch, channel, height, width = x.data.shape diff_height = sizes[2] - height diff_width = sizes[3] - width # pad along with height if diff_height >= 1: pad = chainer.Variable(np.zeros((batch, channel, diff_height, width), dtype=x.dtype), volatile=x.volatile) x = AppendixA._zero_pads(x, pad, axis=2) _, _, height, _ = x.data.shape # pad along with width if diff_width >= 1: pad = chainer.Variable(np.zeros((batch, channel, height, diff_width), dtype=x.dtype), volatile=x.volatile) x = AppendixA._zero_pads(x, pad, axis=3) return x def _max(a, b): return (max(a[0], b[0]), max(a[1], b[1]), max(a[2], b[2]), max(a[3], b[3])) @staticmethod def concatenate(X): sizes = (0, 0, 0, 0) for x in X: sizes = AppendixA._max(sizes, x.data.shape) X = [AppendixA.zero_pads(x, sizes) for x in X] return F.concat(X, axis=1) def __call__(self, x, train=False): x = [x] outputs = [] for i in six.moves.range(len(self.out_channels)): x = self['conv{}'.format(i)](self.concatenate(x), train=train) outputs.append(x) x = [outputs[ii] for ii, s in enumerate(self.skip_connections) if s[i] == 1] + [outputs[i]] x = outputs[-1] batch, channels, height, width = x.data.shape x = F.reshape(F.average_pooling_2d(x, (height, width)), (batch, channels, 1, 1)) return F.reshape(self.linear(x, train), (batch, self.category_num)) def calc_loss(self, y, t): loss = F.softmax_cross_entropy(y, t) return loss def accuracy(self, y, t, xp=np): y.to_cpu() t.to_cpu() indices = np.where((t.data == np.argmax(y.data, axis=1)) == True)[0] accuracy = defaultdict(int) for i in indices: accuracy[t.data[i]] += 1 indices = np.where((t.data == np.argmax(y.data, axis=1)) == False)[0] false_accuracy = defaultdict(int) false_y = np.argmax(y.data, axis=1) for i in indices: false_accuracy[(t.data[i], false_y[i])] += 1 return accuracy, false_accuracy
[((26, 15, 26, 75), 'functools.reduce', 'functools.reduce', ({(26, 32, 26, 50): '(lambda a, b: a * b)', (26, 52, 26, 74): 'self.conv.W.data.shape'}, {}), '(lambda a, b: a * b, self.conv.W.data.shape)', False, 'import functools\n'), ((45, 15, 45, 75), 'functools.reduce', 'functools.reduce', ({(45, 32, 45, 50): '(lambda a, b: a * b)', (45, 52, 45, 74): 'self.conv.W.data.shape'}, {}), '(lambda a, b: a * b, self.conv.W.data.shape)', False, 'import functools\n'), ((96, 15, 96, 44), 'chainer.functions.concat', 'F.concat', (), '', True, 'import chainer.functions as F\n'), ((123, 15, 123, 34), 'chainer.functions.concat', 'F.concat', (), '', True, 'import chainer.functions as F\n'), ((138, 15, 138, 44), 'chainer.functions.softmax_cross_entropy', 'F.softmax_cross_entropy', ({(138, 39, 138, 40): 'y', (138, 42, 138, 43): 't'}, {}), '(y, t)', True, 'import chainer.functions as F\n'), ((145, 19, 145, 35), 'collections.defaultdict', 'defaultdict', ({(145, 31, 145, 34): 'int'}, {}), '(int)', False, 'from collections import defaultdict\n'), ((149, 25, 149, 41), 'collections.defaultdict', 'defaultdict', ({(149, 37, 149, 40): 'int'}, {}), '(int)', False, 'from collections import defaultdict\n'), ((150, 18, 150, 43), 'numpy.argmax', 'np.argmax', (), '', True, 'import numpy as np\n'), ((134, 22, 134, 62), 'chainer.functions.average_pooling_2d', 'F.average_pooling_2d', ({(134, 43, 134, 44): 'x', (134, 46, 134, 61): '(height, width)'}, {}), '(x, (height, width))', True, 'import chainer.functions as F\n'), ((15, 17, 15, 83), 'chainer.links.Convolution2D', 'L.Convolution2D', ({(15, 33, 15, 43): 'in_channel', (15, 45, 15, 56): 'out_channel', (15, 58, 15, 69): 'filter_size', (15, 71, 15, 77): 'stride', (15, 79, 15, 82): 'pad'}, {}), '(in_channel, out_channel, filter_size, stride, pad)', True, 'import chainer.links as L\n'), ((33, 17, 33, 83), 'chainer.links.Convolution2D', 'L.Convolution2D', ({(33, 33, 33, 43): 'in_channel', (33, 45, 33, 56): 'out_channel', (33, 58, 33, 69): 'filter_size', (33, 71, 33, 77): 'stride', (33, 79, 33, 82): 'pad'}, {}), '(in_channel, out_channel, filter_size, stride, pad)', True, 'import chainer.links as L\n'), ((34, 15, 34, 48), 'chainer.links.BatchNormalization', 'L.BatchNormalization', ({(34, 36, 34, 47): 'out_channel'}, {}), '(out_channel)', True, 'import chainer.links as L\n'), ((105, 35, 105, 96), 'numpy.zeros', 'np.zeros', (), '', True, 'import numpy as np\n'), ((110, 35, 110, 96), 'numpy.zeros', 'np.zeros', (), '', True, 'import numpy as np\n'), ((144, 38, 144, 63), 'numpy.argmax', 'np.argmax', (), '', True, 'import numpy as np\n'), ((148, 38, 148, 63), 'numpy.argmax', 'np.argmax', (), '', True, 'import numpy as np\n')]
quizlet/abracadabra
test/test_proportions_delta.py
eda599bd02f14b96efdc521f53132d93c9100ede
import pytest from abra import Experiment, HypothesisTest def test_large_proportions_delta_expermiment(proportions_data_large): exp = Experiment(proportions_data_large, name='proportions-test') # run 'A/A' test test_aa = HypothesisTest( metric='metric', control='A', variation='A', hypothesis='larger', inference_method='proportions_delta' ) results_aa = exp.run_test(test_aa) assert results_aa.test_statistic == 'z' assert not results_aa.accept_hypothesis # run A/B test test_ab = HypothesisTest( metric='metric', control='A', variation='B', hypothesis='larger', inference_method='proportions_delta' ) results_ab = exp.run_test(test_ab) assert results_ab.test_statistic == 'z' assert results_ab.accept_hypothesis def test_proportions_delta_ab_unequal(proportions_data_small): exp = Experiment(proportions_data_small, name='proportions-test') # run A/B test test_ab = HypothesisTest( metric='metric', control='A', variation='F', hypothesis='unequal', inference_method='proportions_delta' ) results_ab = exp.run_test(test_ab) assert results_ab.test_statistic == 'z' assert results_ab.accept_hypothesis def test_proportions_delta_ab_larger(proportions_data_small): exp = Experiment(proportions_data_small, name='proportions-test') # run A/B test test_ab = HypothesisTest( metric='metric', control='A', variation='F', hypothesis='larger', inference_method='proportions_delta' ) results_ab = exp.run_test(test_ab) assert results_ab.accept_hypothesis def test_proportions_delta_ab_smaller(proportions_data_small): exp = Experiment(proportions_data_small, name='proportions-test') # run A/B test test_ab = HypothesisTest( metric='metric', control='A', variation='F', hypothesis='smaller', inference_method='proportions_delta' ) results_ab = exp.run_test(test_ab) assert not results_ab.accept_hypothesis def test_proportions_delta_aa(proportions_data_small): exp = Experiment(proportions_data_small, name='proportions-test') # run A/A test test_aa = HypothesisTest( metric='metric', control='A', variation='A', hypothesis='larger', inference_method='proportions_delta' ) results_aa = exp.run_test(test_aa) assert not results_aa.accept_hypothesis def test_proportions_delta_experiment_t(proportions_data_small): """Small sample sizes defautl to t-tests""" exp = Experiment(proportions_data_small.sample(29), name='proportions-test') test_aa = HypothesisTest( metric='metric', control='A', variation='A', hypothesis='unequal', inference_method='means_delta' ) results_aa = exp.run_test(test_aa) assert results_aa.test_statistic == 't'
[((6, 10, 6, 69), 'abra.Experiment', 'Experiment', (), '', False, 'from abra import Experiment, HypothesisTest\n'), ((9, 14, 14, 5), 'abra.HypothesisTest', 'HypothesisTest', (), '', False, 'from abra import Experiment, HypothesisTest\n'), ((21, 14, 26, 5), 'abra.HypothesisTest', 'HypothesisTest', (), '', False, 'from abra import Experiment, HypothesisTest\n'), ((34, 10, 34, 69), 'abra.Experiment', 'Experiment', (), '', False, 'from abra import Experiment, HypothesisTest\n'), ((37, 14, 42, 5), 'abra.HypothesisTest', 'HypothesisTest', (), '', False, 'from abra import Experiment, HypothesisTest\n'), ((49, 10, 49, 69), 'abra.Experiment', 'Experiment', (), '', False, 'from abra import Experiment, HypothesisTest\n'), ((52, 14, 57, 5), 'abra.HypothesisTest', 'HypothesisTest', (), '', False, 'from abra import Experiment, HypothesisTest\n'), ((62, 10, 62, 69), 'abra.Experiment', 'Experiment', (), '', False, 'from abra import Experiment, HypothesisTest\n'), ((65, 14, 70, 5), 'abra.HypothesisTest', 'HypothesisTest', (), '', False, 'from abra import Experiment, HypothesisTest\n'), ((76, 10, 76, 69), 'abra.Experiment', 'Experiment', (), '', False, 'from abra import Experiment, HypothesisTest\n'), ((79, 14, 84, 5), 'abra.HypothesisTest', 'HypothesisTest', (), '', False, 'from abra import Experiment, HypothesisTest\n'), ((93, 14, 98, 5), 'abra.HypothesisTest', 'HypothesisTest', (), '', False, 'from abra import Experiment, HypothesisTest\n')]
Build-The-Web/bootils
src/bootils/plugins/core/jsw.py
8ee88f4d0583352f58fbb89c018e7caef8f07ce3
# -*- coding: utf-8 -*- # pylint: disable= """ Tanuki Java Service Wrapper runtime environment. Debian JSW paths (Wheezy 3.5.3; Jessie 3.5.22):: /usr/sbin/wrapper – ELF executable /usr/share/wrapper/daemon.sh /usr/share/wrapper/make-wrapper-init.sh /usr/share/wrapper/wrapper.conf """ # Copyright © 2015 1&1 Group <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, unicode_literals, print_function from ..loader import PluginBase class JavaServiceWrapper(PluginBase): """Tanuki Java Service Wrapper runtime environment.""" def control_start(self, *args, **options): """Start a Java service.""" print("*** JSW START ***") return True # TODO: actually implement this def control_stop(self, *args, **options): """Stop a Java service.""" return False # TODO: actually implement this
[]
ChoKyuWon/SchoolProjects
MachineLearning/hw1/models/LinearRegression.py
71a5decefc85ae941ba2d537c4507ba8e615cc34
import numpy as np class LinearRegression: def __init__(self, num_features): self.num_features = num_features self.W = np.zeros((self.num_features, 1)) def train(self, x, y, epochs, batch_size, lr, optim): final_loss = None # loss of final epoch # Training should be done for 'epochs' times with minibatch size of 'batch_size' # The function 'train' should return the loss of final epoch # Loss of an epoch is calculated as an average of minibatch losses # ========================= EDIT HERE ======================== # xline 과 n번째 y가 매칭됨. f(xline)=yi final_loss=0 num_data=len(y) k=0 def dlossF(k, j): s=0 size = batch_size for Xi, Yi in zip(x[k:k+batch_size], y[k:k+batch_size]): fx=np.transpose(Xi).dot(self.W) s = s + (fx-Yi)*Xi[j] if (num_data - k) < batch_size: size = num_data - k return s/size for iterative in range(0, epochs): k = k + batch_size if k == num_data: k = batch_size grad = np.zeros((self.num_features, 1)) for j in range(0, self.num_features): grad[j] = dlossF(k, j) self.W = optim.update(self.W, grad, lr) # ============================================================ return final_loss def eval(self, x): pred = None # Evaluation Function # Given the input 'x', the function should return prediction for 'x' # ========================= EDIT HERE ======================== ylist=[] for xline in x: y = np.transpose(xline).dot(self.W) ylist.append(y[0]) pred = np.array(ylist) # ============================================================ return pred
[((6, 17, 6, 49), 'numpy.zeros', 'np.zeros', ({(6, 26, 6, 48): '(self.num_features, 1)'}, {}), '((self.num_features, 1))', True, 'import numpy as np\n'), ((56, 15, 56, 30), 'numpy.array', 'np.array', ({(56, 24, 56, 29): 'ylist'}, {}), '(ylist)', True, 'import numpy as np\n'), ((36, 19, 36, 51), 'numpy.zeros', 'np.zeros', ({(36, 28, 36, 50): '(self.num_features, 1)'}, {}), '((self.num_features, 1))', True, 'import numpy as np\n'), ((54, 16, 54, 35), 'numpy.transpose', 'np.transpose', ({(54, 29, 54, 34): 'xline'}, {}), '(xline)', True, 'import numpy as np\n'), ((26, 19, 26, 35), 'numpy.transpose', 'np.transpose', ({(26, 32, 26, 34): 'Xi'}, {}), '(Xi)', True, 'import numpy as np\n')]
aurmeneta/ramos-uc
apps/bc_scraper/actions/schedule.py
364ab3c5a55032ab7ffc08665a2da4c5ff04ae58
from copy import copy DEFAULT_SCHEDULE = {} for day in "lmwjvs": for mod in "12345678": DEFAULT_SCHEDULE[day + mod] = "'FREE'" def process_schedule(text_sc): """For a given schedule text in BC format, returns the SQL queries for inserting the full schedule and schedule info. Those queries have to format ID. """ ### Full Schedule data = text_sc.split("\nROW: ")[1:] # data rows -> day-day:module,module <> type <> room <><> schedule = copy(DEFAULT_SCHEDULE) for row in data: row = row.split("<>")[:2] horario = row[0].split(":") days = horario[0].split("-") modules = horario[1].split(",") for day in days: for mod in modules: if len(day) and len(mod): schedule[day.lower() + mod] = "'" + row[1] + "'" cols = ",".join(schedule.keys()) values = ",".join(schedule.values()) full_sc_query = ( f"INSERT INTO courses_fullschedule (section_id, {cols}) VALUES (%s, {values});" ) ### Info Schedule schedule_info = {"total": 0} for type in ["AYU", "CLAS", "LAB", "PRA", "SUP", "TAL", "TER", "TES"]: schedule_info[type] = list(schedule.values()).count("'" + type + "'") schedule_info["total"] += schedule_info[type] schedule_info[type] = str(schedule_info[type]) schedule_info["total"] = str(schedule_info["total"]) cols = ",".join(schedule_info.keys()) values = ",".join(schedule_info.values()) info_sc_query = ( f"INSERT INTO courses_scheduleinfo (section_id, {cols}) VALUES (%s, {values});" ) return full_sc_query, info_sc_query
[((17, 15, 17, 37), 'copy.copy', 'copy', ({(17, 20, 17, 36): 'DEFAULT_SCHEDULE'}, {}), '(DEFAULT_SCHEDULE)', False, 'from copy import copy\n')]
NunoEdgarGFlowHub/horizon
openstack_dashboard/dashboards/admin/volumes/views.py
73a0bbd43ea78ac5337f7d00977ec5f32452067e
# Copyright 2012 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Admin views for managing volumes and snapshots. """ from collections import OrderedDict from django.conf import settings from django.urls import reverse from django.urls import reverse_lazy from django.utils.translation import ugettext_lazy as _ from horizon import exceptions from horizon import forms from horizon import tables from horizon.utils import memoized from openstack_dashboard.api import cinder from openstack_dashboard.api import keystone from openstack_dashboard.dashboards.admin.volumes \ import forms as volumes_forms from openstack_dashboard.dashboards.admin.volumes \ import tables as volumes_tables from openstack_dashboard.dashboards.admin.volumes \ import tabs as volumes_tabs from openstack_dashboard.dashboards.project.volumes \ import views as volumes_views class VolumesView(tables.PagedTableMixin, volumes_views.VolumeTableMixIn, tables.DataTableView): table_class = volumes_tables.VolumesTable page_title = _("Volumes") FILTERS_MAPPING = {'bootable': {_('yes'): 'true', _('no'): 'false'}, 'encrypted': {_('yes'): True, _('no'): False}} def get_data(self): default_filters = {'all_tenants': True} filters = self.get_filters(default_filters.copy()) filter_first = getattr(settings, 'FILTER_DATA_FIRST', {}) volumes = [] self.table.needs_filter_first = False if filter_first.get('admin.volumes', False) and \ len(filters) == len(default_filters): self.table.needs_filter_first = True return volumes if 'project' in filters: # Keystone returns a tuple ([],false) where the first element is # tenant list that's why the 0 is hardcoded below tenants = keystone.tenant_list(self.request)[0] tenant_ids = [t.id for t in tenants if t.name == filters['project']] if not tenant_ids: return [] del filters['project'] for id in tenant_ids: filters['project_id'] = id volumes += self._get_volumes(search_opts=filters) else: volumes = self._get_volumes(search_opts=filters) attached_instance_ids = self._get_attached_instance_ids(volumes) instances = self._get_instances(search_opts={'all_tenants': True}, instance_ids=attached_instance_ids) volume_ids_with_snapshots = self._get_volumes_ids_with_snapshots( search_opts={'all_tenants': True}) self._set_volume_attributes( volumes, instances, volume_ids_with_snapshots) # Gather our tenants to correlate against IDs try: tenants, has_more = keystone.tenant_list(self.request) except Exception: tenants = [] msg = _('Unable to retrieve volume project information.') exceptions.handle(self.request, msg) tenant_dict = OrderedDict([(t.id, t) for t in tenants]) for volume in volumes: tenant_id = getattr(volume, "os-vol-tenant-attr:tenant_id", None) tenant = tenant_dict.get(tenant_id, None) volume.tenant_name = getattr(tenant, "name", None) return volumes def get_filters(self, filters): self.table = self._tables['volumes'] self.handle_server_filter(self.request, table=self.table) self.update_server_filter_action(self.request, table=self.table) filters = super(VolumesView, self).get_filters(filters, self.FILTERS_MAPPING) return filters class DetailView(volumes_views.DetailView): tab_group_class = volumes_tabs.VolumeDetailTabs def get_context_data(self, **kwargs): context = super(DetailView, self).get_context_data(**kwargs) table = volumes_tables.VolumesTable(self.request) context["actions"] = table.render_row_actions(context["volume"]) return context def get_search_opts(self, volume): search_opts = super(DetailView, self).get_search_opts(volume) search_opts['all_tenants'] = True return search_opts def get_redirect_url(self): return reverse('horizon:admin:volumes:index') class ManageVolumeView(forms.ModalFormView): form_class = volumes_forms.ManageVolume template_name = 'admin/volumes/manage_volume.html' form_id = "manage_volume_modal" submit_label = _("Manage") success_url = reverse_lazy('horizon:admin:volumes:index') submit_url = reverse_lazy('horizon:admin:volumes:manage') cancel_url = reverse_lazy("horizon:admin:volumes:index") page_title = _("Manage Volume") def get_context_data(self, **kwargs): context = super(ManageVolumeView, self).get_context_data(**kwargs) return context class UnmanageVolumeView(forms.ModalFormView): form_class = volumes_forms.UnmanageVolume template_name = 'admin/volumes/unmanage_volume.html' form_id = "unmanage_volume_modal" submit_label = _("Unmanage") success_url = reverse_lazy('horizon:admin:volumes:index') submit_url = 'horizon:admin:volumes:unmanage' cancel_url = reverse_lazy("horizon:admin:volumes:index") page_title = _("Unmanage Volume") def get_context_data(self, **kwargs): context = super(UnmanageVolumeView, self).get_context_data(**kwargs) args = (self.kwargs['volume_id'],) context['submit_url'] = reverse(self.submit_url, args=args) return context @memoized.memoized_method def get_data(self): try: volume_id = self.kwargs['volume_id'] volume = cinder.volume_get(self.request, volume_id) except Exception: exceptions.handle(self.request, _('Unable to retrieve volume details.'), redirect=self.success_url) return volume def get_initial(self): volume = self.get_data() return {'volume_id': self.kwargs["volume_id"], 'name': volume.name, 'host': getattr(volume, "os-vol-host-attr:host")} class MigrateVolumeView(forms.ModalFormView): form_class = volumes_forms.MigrateVolume template_name = 'admin/volumes/migrate_volume.html' form_id = "migrate_volume_modal" submit_label = _("Migrate") success_url = reverse_lazy('horizon:admin:volumes:index') submit_url = 'horizon:admin:volumes:migrate' cancel_url = reverse_lazy("horizon:admin:volumes:index") page_title = _("Migrate Volume") def get_context_data(self, **kwargs): context = super(MigrateVolumeView, self).get_context_data(**kwargs) args = (self.kwargs['volume_id'],) context['submit_url'] = reverse(self.submit_url, args=args) return context @memoized.memoized_method def get_data(self): try: volume_id = self.kwargs['volume_id'] volume = cinder.volume_get(self.request, volume_id) except Exception: exceptions.handle(self.request, _('Unable to retrieve volume details.'), redirect=self.success_url) return volume @memoized.memoized_method def get_hosts(self): try: return cinder.pool_list(self.request) except Exception: exceptions.handle(self.request, _('Unable to retrieve pools information.'), redirect=self.success_url) def get_initial(self): volume = self.get_data() return {'volume_id': self.kwargs["volume_id"], 'name': volume.name, 'current_host': getattr(volume, "os-vol-host-attr:host"), 'hosts': self.get_hosts()} class UpdateStatusView(forms.ModalFormView): form_class = volumes_forms.UpdateStatus modal_id = "update_volume_status_modal" template_name = 'admin/volumes/update_status.html' submit_label = _("Update Status") submit_url = "horizon:admin:volumes:update_status" success_url = reverse_lazy('horizon:admin:volumes:index') page_title = _("Update Volume Status") def get_context_data(self, **kwargs): context = super(UpdateStatusView, self).get_context_data(**kwargs) context["volume_id"] = self.kwargs['volume_id'] args = (self.kwargs['volume_id'],) context['submit_url'] = reverse(self.submit_url, args=args) return context @memoized.memoized_method def get_data(self): try: volume_id = self.kwargs['volume_id'] volume = cinder.volume_get(self.request, volume_id) except Exception: exceptions.handle(self.request, _('Unable to retrieve volume details.'), redirect=self.success_url) return volume def get_initial(self): volume = self.get_data() return {'volume_id': self.kwargs["volume_id"], 'status': volume.status}
[((45, 17, 45, 29), 'django.utils.translation.ugettext_lazy', '_', ({(45, 19, 45, 28): '"""Volumes"""'}, {}), "('Volumes')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((134, 19, 134, 30), 'django.utils.translation.ugettext_lazy', '_', ({(134, 21, 134, 29): '"""Manage"""'}, {}), "('Manage')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((135, 18, 135, 61), 'django.urls.reverse_lazy', 'reverse_lazy', ({(135, 31, 135, 60): '"""horizon:admin:volumes:index"""'}, {}), "('horizon:admin:volumes:index')", False, 'from django.urls import reverse_lazy\n'), ((136, 17, 136, 61), 'django.urls.reverse_lazy', 'reverse_lazy', ({(136, 30, 136, 60): '"""horizon:admin:volumes:manage"""'}, {}), "('horizon:admin:volumes:manage')", False, 'from django.urls import reverse_lazy\n'), ((137, 17, 137, 60), 'django.urls.reverse_lazy', 'reverse_lazy', ({(137, 30, 137, 59): '"""horizon:admin:volumes:index"""'}, {}), "('horizon:admin:volumes:index')", False, 'from django.urls import reverse_lazy\n'), ((138, 17, 138, 35), 'django.utils.translation.ugettext_lazy', '_', ({(138, 19, 138, 34): '"""Manage Volume"""'}, {}), "('Manage Volume')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((149, 19, 149, 32), 'django.utils.translation.ugettext_lazy', '_', ({(149, 21, 149, 31): '"""Unmanage"""'}, {}), "('Unmanage')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((150, 18, 150, 61), 'django.urls.reverse_lazy', 'reverse_lazy', ({(150, 31, 150, 60): '"""horizon:admin:volumes:index"""'}, {}), "('horizon:admin:volumes:index')", False, 'from django.urls import reverse_lazy\n'), ((152, 17, 152, 60), 'django.urls.reverse_lazy', 'reverse_lazy', ({(152, 30, 152, 59): '"""horizon:admin:volumes:index"""'}, {}), "('horizon:admin:volumes:index')", False, 'from django.urls import reverse_lazy\n'), ((153, 17, 153, 37), 'django.utils.translation.ugettext_lazy', '_', ({(153, 19, 153, 36): '"""Unmanage Volume"""'}, {}), "('Unmanage Volume')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((183, 19, 183, 31), 'django.utils.translation.ugettext_lazy', '_', ({(183, 21, 183, 30): '"""Migrate"""'}, {}), "('Migrate')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((184, 18, 184, 61), 'django.urls.reverse_lazy', 'reverse_lazy', ({(184, 31, 184, 60): '"""horizon:admin:volumes:index"""'}, {}), "('horizon:admin:volumes:index')", False, 'from django.urls import reverse_lazy\n'), ((186, 17, 186, 60), 'django.urls.reverse_lazy', 'reverse_lazy', ({(186, 30, 186, 59): '"""horizon:admin:volumes:index"""'}, {}), "('horizon:admin:volumes:index')", False, 'from django.urls import reverse_lazy\n'), ((187, 17, 187, 36), 'django.utils.translation.ugettext_lazy', '_', ({(187, 19, 187, 35): '"""Migrate Volume"""'}, {}), "('Migrate Volume')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((227, 19, 227, 37), 'django.utils.translation.ugettext_lazy', '_', ({(227, 21, 227, 36): '"""Update Status"""'}, {}), "('Update Status')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((229, 18, 229, 61), 'django.urls.reverse_lazy', 'reverse_lazy', ({(229, 31, 229, 60): '"""horizon:admin:volumes:index"""'}, {}), "('horizon:admin:volumes:index')", False, 'from django.urls import reverse_lazy\n'), ((230, 17, 230, 42), 'django.utils.translation.ugettext_lazy', '_', ({(230, 19, 230, 41): '"""Update Volume Status"""'}, {}), "('Update Volume Status')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((95, 22, 95, 63), 'collections.OrderedDict', 'OrderedDict', ({(95, 34, 95, 62): '[(t.id, t) for t in tenants]'}, {}), '([(t.id, t) for t in tenants])', False, 'from collections import OrderedDict\n'), ((117, 16, 117, 57), 'openstack_dashboard.dashboards.admin.volumes.tables.VolumesTable', 'volumes_tables.VolumesTable', ({(117, 44, 117, 56): 'self.request'}, {}), '(self.request)', True, 'from openstack_dashboard.dashboards.admin.volumes import tables as volumes_tables\n'), ((127, 15, 127, 53), 'django.urls.reverse', 'reverse', ({(127, 23, 127, 52): '"""horizon:admin:volumes:index"""'}, {}), "('horizon:admin:volumes:index')", False, 'from django.urls import reverse\n'), ((158, 32, 158, 67), 'django.urls.reverse', 'reverse', (), '', False, 'from django.urls import reverse\n'), ((192, 32, 192, 67), 'django.urls.reverse', 'reverse', (), '', False, 'from django.urls import reverse\n'), ((236, 32, 236, 67), 'django.urls.reverse', 'reverse', (), '', False, 'from django.urls import reverse\n'), ((47, 36, 47, 44), 'django.utils.translation.ugettext_lazy', '_', ({(47, 38, 47, 43): '"""yes"""'}, {}), "('yes')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((47, 54, 47, 61), 'django.utils.translation.ugettext_lazy', '_', ({(47, 56, 47, 60): '"""no"""'}, {}), "('no')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((48, 37, 48, 45), 'django.utils.translation.ugettext_lazy', '_', ({(48, 39, 48, 44): '"""yes"""'}, {}), "('yes')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((48, 53, 48, 60), 'django.utils.translation.ugettext_lazy', '_', ({(48, 55, 48, 59): '"""no"""'}, {}), "('no')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((89, 32, 89, 66), 'openstack_dashboard.api.keystone.tenant_list', 'keystone.tenant_list', ({(89, 53, 89, 65): 'self.request'}, {}), '(self.request)', False, 'from openstack_dashboard.api import keystone\n'), ((165, 21, 165, 63), 'openstack_dashboard.api.cinder.volume_get', 'cinder.volume_get', ({(165, 39, 165, 51): 'self.request', (165, 53, 165, 62): 'volume_id'}, {}), '(self.request, volume_id)', False, 'from openstack_dashboard.api import cinder\n'), ((199, 21, 199, 63), 'openstack_dashboard.api.cinder.volume_get', 'cinder.volume_get', ({(199, 39, 199, 51): 'self.request', (199, 53, 199, 62): 'volume_id'}, {}), '(self.request, volume_id)', False, 'from openstack_dashboard.api import cinder\n'), ((209, 19, 209, 49), 'openstack_dashboard.api.cinder.pool_list', 'cinder.pool_list', ({(209, 36, 209, 48): 'self.request'}, {}), '(self.request)', False, 'from openstack_dashboard.api import cinder\n'), ((243, 21, 243, 63), 'openstack_dashboard.api.cinder.volume_get', 'cinder.volume_get', ({(243, 39, 243, 51): 'self.request', (243, 53, 243, 62): 'volume_id'}, {}), '(self.request, volume_id)', False, 'from openstack_dashboard.api import cinder\n'), ((67, 22, 67, 56), 'openstack_dashboard.api.keystone.tenant_list', 'keystone.tenant_list', ({(67, 43, 67, 55): 'self.request'}, {}), '(self.request)', False, 'from openstack_dashboard.api import keystone\n'), ((92, 18, 92, 69), 'django.utils.translation.ugettext_lazy', '_', ({(92, 20, 92, 68): '"""Unable to retrieve volume project information."""'}, {}), "('Unable to retrieve volume project information.')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((93, 12, 93, 48), 'horizon.exceptions.handle', 'exceptions.handle', ({(93, 30, 93, 42): 'self.request', (93, 44, 93, 47): 'msg'}, {}), '(self.request, msg)', False, 'from horizon import exceptions\n'), ((168, 30, 168, 69), 'django.utils.translation.ugettext_lazy', '_', ({(168, 32, 168, 68): '"""Unable to retrieve volume details."""'}, {}), "('Unable to retrieve volume details.')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((202, 30, 202, 69), 'django.utils.translation.ugettext_lazy', '_', ({(202, 32, 202, 68): '"""Unable to retrieve volume details."""'}, {}), "('Unable to retrieve volume details.')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((212, 30, 212, 72), 'django.utils.translation.ugettext_lazy', '_', ({(212, 32, 212, 71): '"""Unable to retrieve pools information."""'}, {}), "('Unable to retrieve pools information.')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((246, 30, 246, 69), 'django.utils.translation.ugettext_lazy', '_', ({(246, 32, 246, 68): '"""Unable to retrieve volume details."""'}, {}), "('Unable to retrieve volume details.')", True, 'from django.utils.translation import ugettext_lazy as _\n')]
flowolf/yessssms
tests/__init__.py
438928967aca38d3d2bb07799d3723757e928553
"""Tests for YesssSMS."""
[]
bldr-cmd/bldr-cmd
bldr/dep/env.py
300750fbccc2987efd23f69b7b2d76d8563e2995
# This is used by Environment to populate its env # Due to circular dependencies it cannot reference other parts of bldr import toml def default(dotbldr_path: str) -> dict: dep = { 'config': toml.load(f"{dotbldr_path}/dependency.toml"), 'lock': toml.load(f"{dotbldr_path}/dependency.lock.toml") } return dep def save_lock(dotbldr_path: str, lock_env: dict): with open(f"{dotbldr_path}/dependency.lock.toml", 'w') as toml_file: return toml.dump(lock_env, toml_file) def save_config(dotbldr_path: str, config_env: dict): with open(f"{dotbldr_path}/dependency.toml", 'w') as toml_file: return toml.dump(config_env, toml_file)
[((7, 18, 7, 62), 'toml.load', 'toml.load', ({(7, 28, 7, 61): 'f"""{dotbldr_path}/dependency.toml"""'}, {}), "(f'{dotbldr_path}/dependency.toml')", False, 'import toml\n'), ((8, 16, 8, 65), 'toml.load', 'toml.load', ({(8, 26, 8, 64): 'f"""{dotbldr_path}/dependency.lock.toml"""'}, {}), "(f'{dotbldr_path}/dependency.lock.toml')", False, 'import toml\n'), ((14, 15, 14, 45), 'toml.dump', 'toml.dump', ({(14, 25, 14, 33): 'lock_env', (14, 35, 14, 44): 'toml_file'}, {}), '(lock_env, toml_file)', False, 'import toml\n'), ((18, 15, 18, 47), 'toml.dump', 'toml.dump', ({(18, 25, 18, 35): 'config_env', (18, 37, 18, 46): 'toml_file'}, {}), '(config_env, toml_file)', False, 'import toml\n')]
ijufumi/demo-python
rasa-sample/actions.py
b48bdebde172ca581a48346a77b12c30ff202e73
import re from typing import Any, Text, Dict, List from rasa_sdk import Action, Tracker from rasa_sdk.executor import CollectingDispatcher from rasa_sdk.events import SlotSet import lark_module class ActionHelloWorld(Action): state_map = {} def name(self) -> Text: return "action_hello_world" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: state = tracker.current_state() print("current_state: {}".format(state)) sender_id = state["sender_id"] if sender_id not in self.state_map: self.state_map[sender_id] = 0 self.state_map[sender_id] += 1 dispatcher.utter_message( text="Hello World!", json_message={"data": "hogeohge"}, # template="<div></div>", buttons=[{"title": "OK", "payload": "99!"}]) print("state: {}".format(self.state_map[sender_id])) return [] class ActionCustomButton(Action): def name(self) -> Text: return "action_custom_button" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message( text="Which ?", buttons=[{"title": "OK", "payload": "1"}, {"title": "NG", "payload": "2"}, {"title": "Unknown", "payload": "9"}]) return [] class ActionJsonMessage(Action): def name(self) -> Text: return "action_json_message" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: dispatcher.utter_message( text="Which ?", json_message={"data": { "key1": "value1", "key2": "value2", }} ) return [] class ActionConversation(Action): def name(self) -> Text: return "action_conversation" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: state = tracker.current_state() print("current_state: {}".format(state)) input_text = state['latest_message'].get('text') latest_bot = None for event in reversed(state['events']): if event['event'] == 'bot': data = event.get('data', {}).get('custom', {}).get('data', []) latest_bot = data[0] if len(data) > 0 else None break print("latest_bot: {}".format(latest_bot)) if not latest_bot: print("use utter_conversation_1") dispatcher.utter_message(template="utter_conversation_1", json_message={"data": {"key1": "value1", "key2": "value2"}}) else: if latest_bot == 'conversation_1': print("use utter_conversation_2") dispatcher.utter_message(template="utter_conversation_2", json_message={"data": ["conversation_2"]}) elif latest_bot == 'conversation_2': result = re.match("\\d+", input_text) if result: print("use utter_conversation_3") dispatcher.utter_message(template="utter_conversation_3", json_message={"data": ["conversation_3"]}) else: print("use utter_conversation_2") dispatcher.utter_message(template="utter_conversation_2", json_message={"data": ["conversation_2"]}) elif latest_bot == 'conversation_3': result = re.match("\\d+", input_text) if not result: print("use utter_conversation_3") dispatcher.utter_message(template="utter_conversation_3", json_message={"data": ["conversation_3"]}) else: dispatcher.utter_message(text="Bye", json_message={"data": ["conversation_3"]}) else: dispatcher.utter_message(text="Bye", json_message={"data": ["conversation_3"]}) return [] class ActionConversation2(Action): action_state = {} def name(self) -> Text: return "action_conversation2" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: state = tracker.current_state() sender_id = state.get("sender_id") current_action = self.action_state.get(sender_id) input_text = state['latest_message'].get('text') print("state: {}, current_action: {}".format(state, current_action)) if current_action: result = lark_module.execute(input_text) if result: dispatcher.utter_message(text=result, json_message={"data": ["step2"]}, elements=[{"data": ["step2"]}]) else: dispatcher.utter_message(text="Bye", json_message={"data": ["step3"]}) else: dispatcher.utter_message(text="Where are you from ?", json_message={"data": ["step3"]}) self.action_state[sender_id] = "get_start" return []
[((140, 21, 140, 52), 'lark_module.execute', 'lark_module.execute', ({(140, 41, 140, 51): 'input_text'}, {}), '(input_text)', False, 'import lark_module\n'), ((104, 25, 104, 53), 're.match', 're.match', ({(104, 34, 104, 40): '"""\\\\d+"""', (104, 42, 104, 52): 'input_text'}, {}), "('\\\\d+', input_text)", False, 'import re\n'), ((112, 25, 112, 53), 're.match', 're.match', ({(112, 34, 112, 40): '"""\\\\d+"""', (112, 42, 112, 52): 'input_text'}, {}), "('\\\\d+', input_text)", False, 'import re\n')]
plympton/newsdiffs
parsers/politico.py
2a055850bda850b9b6c28c989512d4e4b3e9b64e
from baseparser import BaseParser, grab_url, logger # Different versions of BeautifulSoup have different properties. # Some work with one site, some with another. # This is BeautifulSoup 3.2. from BeautifulSoup import BeautifulSoup # This is BeautifulSoup 4 import bs4 class PoliticoParser(BaseParser): domains = ['www.politico.com'] feeder_pat = '^http://www.politico.com/(news/stories|story)/' feeder_pages = ['http://www.politico.com/'] feeder_bs = bs4.BeautifulSoup def _parse(self, html): soup = bs4.BeautifulSoup(html) print_link = soup.findAll('a', text='Print')[0].get('href') html2 = grab_url(print_link) logger.debug('got html 2') # Now we have to switch back to bs3. Hilarious. # and the labeled encoding is wrong, so force utf-8. soup = BeautifulSoup(html2, convertEntities=BeautifulSoup.HTML_ENTITIES, fromEncoding='utf-8') self.meta = soup.findAll('meta') p_tags = soup.findAll('p')[1:] real_p_tags = [p for p in p_tags if not p.findAll(attrs={'class':"twitter-follow-button"})] self.title = soup.find('strong').getText() entity = soup.find('span', attrs={'class':'author'}) children = list(entity.childGenerator()) try: self.byline = 'By ' + children[1].getText() except IndexError: self.byline = '' self.date = children[-1].strip() self.body = '\n'+'\n\n'.join([p.getText() for p in real_p_tags])
[((20, 15, 20, 38), 'bs4.BeautifulSoup', 'bs4.BeautifulSoup', ({(20, 33, 20, 37): 'html'}, {}), '(html)', False, 'import bs4\n'), ((22, 16, 22, 36), 'baseparser.grab_url', 'grab_url', ({(22, 25, 22, 35): 'print_link'}, {}), '(print_link)', False, 'from baseparser import BaseParser, grab_url, logger\n'), ((23, 8, 23, 34), 'baseparser.logger.debug', 'logger.debug', ({(23, 21, 23, 33): '"""got html 2"""'}, {}), "('got html 2')", False, 'from baseparser import BaseParser, grab_url, logger\n'), ((26, 15, 27, 50), 'BeautifulSoup.BeautifulSoup', 'BeautifulSoup', (), '', False, 'from BeautifulSoup import BeautifulSoup\n')]
fairhopeweb/dolt
integration-tests/bats/server_multiclient_test.py
276b85b7b1287f883640ef3fcacb0bdb112749b2
import os import sys from queue import Queue from threading import Thread from helper.pytest import DoltConnection # Utility functions def print_err(e): print(e, file=sys.stderr) def query(dc, query_str): return dc.query(query_str, False) def query_with_expected_error(dc, non_error_msg , query_str): try: dc.query(query_str, False) raise Exception(non_error_msg) except: pass def row(pk, c1, c2): return {"pk":str(pk),"c1":str(c1),"c2":str(c2)} UPDATE_BRANCH_FAIL_MSG = "Failed to update branch" def commit_and_update_branch(dc, commit_message, expected_hashes, branch_name): expected_hash = "(" for i, eh in enumerate(expected_hashes): if i != 0: expected_hash += " or " expected_hash += "hash = %s" % eh expected_hash += ")" query_str = 'UPDATE dolt_branches SET hash = Commit("-m", "%s") WHERE name = "%s" AND %s' % (commit_message, branch_name, expected_hash) _, row_count = query(dc, query_str) if row_count != 1: raise Exception(UPDATE_BRANCH_FAIL_MSG) query(dc, 'SET @@repo1_head=HASHOF("%s");' % branch_name) def query_and_test_results(dc, query_str, expected): results, _ = query(dc, query_str) if results != expected: raise Exception("Unexpected results for query:\n\t%s\nExpected:\n\t%s\nActual:\n\t%s" % (query_str, str(), str(results))) def resolve_theirs(dc): query_str = "REPLACE INTO test (pk, c1, c2) SELECT their_pk, their_c1, their_c2 FROM dolt_conflicts_test WHERE their_pk IS NOT NULL;" query(dc, query_str) query_str = """DELETE FROM test WHERE pk in ( SELECT base_pk FROM dolt_conflicts_test WHERE their_pk IS NULL );""" query(dc, query_str) query(dc, "DELETE FROM dolt_conflicts_test") def create_branch(dc, branch_name): query_str = 'INSERT INTO dolt_branches (name, hash) VALUES ("%s", @@repo1_head);' % branch_name _, row_count = query(dc, query_str) if row_count != 1: raise Exception("Failed to create branch") # work functions def connect(dc): dc.connect() def create_tables(dc): query(dc, 'SET @@repo1_head=HASHOF("master");') query(dc, """ CREATE TABLE test ( pk INT NOT NULL, c1 INT, c2 INT, PRIMARY KEY(pk));""") commit_and_update_branch(dc, "Created tables", ["@@repo1_head"], "master") query_and_test_results(dc, "SHOW TABLES;", [{"Table": "test"}]) def duplicate_table_create(dc): query(dc, 'SET @@repo1_head=HASHOF("master");') query_with_expected_error(dc, "Should have failed creating duplicate table", """ CREATE TABLE test ( pk INT NOT NULL, c1 INT, c2 INT, PRIMARY KEY(pk));""") def seed_master(dc): query(dc, 'SET @@repo1_head=HASHOF("master");') _, row_count = query(dc, 'INSERT INTO test VALUES (0,0,0),(1,1,1),(2,2,2)') if row_count != 3: raise Exception("Failed to update rows") commit_and_update_branch(dc, "Seeded initial data", ["@@repo1_head"], "master") expected = [row(0,0,0), row(1,1,1), row(2,2,2)] query_and_test_results(dc, "SELECT pk, c1, c2 FROM test ORDER BY pk", expected) def modify_pk0_on_master_and_commit(dc): query(dc, 'SET @@repo1_head=HASHOF("master");') query(dc, "UPDATE test SET c1=1 WHERE pk=0;") commit_and_update_branch(dc, "set c1 to 1", ["@@repo1_head"], "master") def modify_pk0_on_master_no_commit(dc): query(dc, 'SET @@repo1_head=HASHOF("master");') query(dc, "UPDATE test SET c1=2 WHERE pk=0") def fail_to_commit(dc): try: commit_and_update_branch(dc, "Created tables", ["@@repo1_head"], "master") raise Exception("Failed to fail commit") except Exception as e: if str(e) != UPDATE_BRANCH_FAIL_MSG: raise e def commit_to_feature(dc): create_branch(dc, "feature") commit_and_update_branch(dc, "set c1 to 2", ["@@repo1_head"], "feature") def merge_resolve_commit(dc): query(dc, 'SET @@repo1_head=Merge("master");') query_and_test_results(dc, "SELECT * from dolt_conflicts;", [{"table": "test", "num_conflicts": "1"}]) resolve_theirs(dc) expected = [row(0,1,0), row(1,1,1), row(2,2,2)] query_and_test_results(dc, "SELECT pk, c1, c2 FROM test ORDER BY pk", expected) commit_and_update_branch(dc, "resolved conflicts", ['HASHOF("HEAD^1")', 'HASHOF("HEAD^2")'], "master") # test script MAX_SIMULTANEOUS_CONNECTIONS = 2 PORT_STR = sys.argv[1] CONNECTIONS = [None]*MAX_SIMULTANEOUS_CONNECTIONS for i in range(MAX_SIMULTANEOUS_CONNECTIONS): CONNECTIONS[i] = DoltConnection(port=int(PORT_STR), database="repo1", user='dolt', auto_commit=False) WORK_QUEUE = Queue() # work item run by workers class WorkItem(object): def __init__(self, dc, *work_funcs): self.dc = dc self.work_funcs = work_funcs self.exception = None # worker thread function def worker(): while True: try: item = WORK_QUEUE.get() for work_func in item.work_funcs: work_func(item.dc) WORK_QUEUE.task_done() except Exception as e: work_item.exception = e WORK_QUEUE.task_done() # start the worker threads for i in range(MAX_SIMULTANEOUS_CONNECTIONS): t = Thread(target=worker) t.daemon = True t.start() # This defines the actual test script. Each stage in the script has a list of work items. Each work item # in a stage should have a different connection associated with it. Each connections work is done in parallel # each of the work functions for a connection is executed in order. work_item_stages = [ [WorkItem(CONNECTIONS[0], connect, create_tables)], [WorkItem(CONNECTIONS[0], seed_master), WorkItem(CONNECTIONS[1], connect, duplicate_table_create)], [WorkItem(CONNECTIONS[0], modify_pk0_on_master_and_commit), WorkItem(CONNECTIONS[1], modify_pk0_on_master_no_commit)], [WorkItem(CONNECTIONS[1], fail_to_commit, commit_to_feature, merge_resolve_commit)] ] # Loop through the work item stages executing each stage by sending the work items for the stage to the worker threads # and then waiting for all of them to finish before moving on to the next one. Checks for an error after every stage. for stage, work_items in enumerate(work_item_stages): print("Running stage %d / %d" % (stage,len(work_item_stages))) for work_item in work_items: WORK_QUEUE.put(work_item) WORK_QUEUE.join() for work_item in work_items: if work_item.exception is not None: print_err(work_item.exception) sys.exit(1)
[((146, 13, 146, 20), 'queue.Queue', 'Queue', ({}, {}), '()', False, 'from queue import Queue\n'), ((172, 9, 172, 30), 'threading.Thread', 'Thread', (), '', False, 'from threading import Thread\n'), ((198, 12, 198, 23), 'sys.exit', 'sys.exit', ({(198, 21, 198, 22): '(1)'}, {}), '(1)', False, 'import sys\n')]
marik348/python-messenger
messenger/client/messenger.py
6c1916b0df439cd997cb6e9376221fe587c3f1c1
from requests import get, post, exceptions from datetime import datetime from PyQt5 import QtWidgets, QtCore from PyQt5.QtWidgets import QMessageBox from PyQt5.QtGui import QFont from qtwidgets import PasswordEdit from client_commands import (help_client, online, status, myself, reg, role, ban, unban) from client_content import (get_warning_messages, get_client_commands, get_message_box_text, get_message_style) from click_label import clickable from client_ui import Ui_Messenger from preferences import Preferences from style_sheet import load_stylesheet class Messenger(QtWidgets.QMainWindow, Ui_Messenger): """ The messenger object acts as the main object and is managed by client. Shows UI and is responsible for UX. UI is separated on 3 main parts, which have their indexes: 0 - Login form, 1 - Registration form, 2 - Chat. Every 5 seconds requests server status. Every second shows new messages, if user logged in. Under main label "Python Messenger" there is server status, which displays whether server is working, if yes, you can hover on it to see full server status. In case of disconnection from server it'll show server-off message and navigate to login form. It's possible to change server IP address in preferences menu. :param translate: properly shows all content :param password_line1: input line with icons to show/hide password entries on login form :param password_line2: input line with icons to show/hide password entries on registration form :param username: user nickname string :param password: user password string :param last_message_time: last time of getting messages, defaults to 0 :param max_text_len: maximum text message length to send in chat, defaults to 250 :param server_IP: server IPv4 string :param message_style: style for messages defined in :func:`get_message_style` :param warning_messages: dict of warning messages defined in :func:`get_warning_messages` :param message_box_text: dict of content for message box defined in :func:`get_message_box_text` :param client_commands: list of dicts with client-side commands defined in :func:`get_client_commands` :param run_client_command: dict, where key is the name of client command and value is the function of this command :param server_commands: list of dicts with server-side commands defined in :func:`get_server_commands` :param run_server_command: dict, where key is the name of server command and value is the function of this command :param timer_get_messages: timer, which every second runs :func:`get_messages` :param timer_get_status: timer, which every 5 seconds runs :func:`get_status` """ def __init__(self, parent=None): """Initialize messenger object.""" super().__init__(parent) self.setupUi(self) self.translate = QtCore.QCoreApplication.translate self.password_line1 = PasswordEdit(True, self.login_page) self.password_line2 = PasswordEdit(True, self.registration_page) self.modify_password_lines() # Connect buttons to the methods. self.send_button.pressed.connect(self.send) self.sign_up_button.pressed.connect(self.sign_up_user) self.login_button.pressed.connect(self.login_user) # Connect actions to the methods. self.action_shortcuts.triggered.connect(self.show_shortcuts_box) self.action_commands.triggered.connect(self.show_commands_box) self.action_about.triggered.connect(self.show_about_box) self.action_contacts.triggered.connect(self.show_contacts_box) self.action_preferences.triggered.connect(self.open_preferences_window) self.action_logout.triggered.connect(self.logout) self.action_close.triggered.connect(self.close) # Filter shortcuts and text overflow. self.plain_text_edit.installEventFilter(self) self.username = None self.password = None self.last_message_time = 0 self.max_text_len = 250 self.server_IP = '0.0.0.0:9000' # Load client content. self.message_style = get_message_style() self.warning_messages = get_warning_messages() self.message_box_text = get_message_box_text() # Load commands. self.client_commands = get_client_commands() self.run_client_command = {'close': self.close, 'logout': self.logout, 'reload': self.reload} self.server_commands = [] self.run_server_command = {} self.timer_get_messages = QtCore.QTimer() self.timer_get_messages.timeout.connect(self.get_messages) self.timer_get_messages.start(1000) self.timer_get_status = QtCore.QTimer() self.timer_get_status.timeout.connect(self.get_status) self.timer_get_status.start(5000) clickable(self.go_to_sign_up).connect(self.go_to_registration_form) clickable(self.go_to_login).connect(self.go_to_login_form) self.get_status() def eventFilter(self, obj, event): """ Filters Enter key press and message text length. If Enter key pressed, sends user's message. If length of message is above maximum, doesn't allow writing. """ if event.type() == QtCore.QEvent.KeyPress and obj is self.plain_text_edit: text = self.plain_text_edit.toPlainText() if event.key() == QtCore.Qt.Key_Return and self.plain_text_edit.hasFocus(): self.send() return True elif len(text) > self.max_text_len: text = text[:self.max_text_len] self.plain_text_edit.setPlainText(text) cursor = self.plain_text_edit.textCursor() cursor.setPosition(self.max_text_len) self.plain_text_edit.setTextCursor(cursor) return True return super().eventFilter(obj, event) def closeEvent(self, event): """ Shows question message box for acception or ignoring to close the messenger. Asks user does he really wants to close the messenger, if yes, than marks logout of user and closes the messenger. Otherwise, ignores closing messenger event. :param event: event to close the messenger """ reply = QMessageBox.question(self, 'Quit', self.message_box_text["close"], QMessageBox.Yes | QMessageBox.No, QMessageBox.Yes) # User closes the messenger and is logged in. if reply == QMessageBox.Yes and self.stacked_widget.currentIndex() == 2: try: post( f'http://{self.server_IP}/logout', json={"username": self.username}, verify=False ) except exceptions.RequestException as e: raise SystemExit event.accept() # User closes the messenger and is logged out. elif reply == QMessageBox.Yes: event.accept() else: event.ignore() def logout(self): """ Shows question message box for acception or ignoring to log out from account. Asks user does he really wants to log out, if yes, than marks logout and navigates to login form. Otherwise, ignores logout event. """ reply = QMessageBox.question(self, 'Logout', self.message_box_text["logout"], QMessageBox.Yes | QMessageBox.No, QMessageBox.Yes) if reply == QMessageBox.Yes: try: post( f'http://{self.server_IP}/logout', json={"username": self.username}, verify=False ) except exceptions.RequestException as e: self.show_server_off_box() self.clear_user_data() return self.go_to_login_form() self.clear_user_data() self.action_logout.setEnabled(False) self.action_commands.setEnabled(False) self.action_preferences.setEnabled(True) else: return def modify_password_lines(self): """Modifies and appears password lines.""" geometry = QtCore.QRect(60, 200, 291, 41) font = QFont() font.setPointSize(14) self.password_line1.setGeometry(geometry) self.password_line1.setFont(font) self.password_line1.setEchoMode(QtWidgets.QLineEdit.Password) self.password_line1.setObjectName("password_line1") self.password_line1.setPlaceholderText(self.translate("Messenger", "Password")) self.password_line2.setGeometry(geometry) self.password_line2.setFont(font) self.password_line2.setEchoMode(QtWidgets.QLineEdit.Password) self.password_line2.setObjectName("password_line2") self.password_line2.setPlaceholderText(self.translate("Messenger", "Enter Your Password")) def open_preferences_window(self): """Opens settings window.""" settings = Preferences(self) if settings.exec(): self.server_IP = settings.server_IP.text() def clear_user_data(self): """Clears user data after logout.""" self.username = None self.plain_text_edit.clear() self.text_browser.clear() self.last_message_time = 0 def reload(self): """Reloads all messages and deletes commands output.""" self.text_browser.clear() self.last_message_time = 0 def go_to_registration_form(self): """Navigates to registration menu.""" self.stacked_widget.setCurrentIndex(1) def go_to_login_form(self): """Navigates to login menu.""" self.stacked_widget.setCurrentIndex(0) def go_to_chat(self): """Navigates to chat.""" self.get_server_commands() self.stacked_widget.setCurrentIndex(2) self.action_logout.setEnabled(True) self.action_commands.setEnabled(True) self.action_preferences.setEnabled(False) self.plain_text_edit.setFocus() self.clear_credentials() def clear_credentials(self): """Clears login and password lines after log in or sign up.""" self.password_line1.clear() self.login_line1.clear() self.password_line2.clear() self.login_line2.clear() self.password = None def show_about_box(self): """Shows message box with content about messenger.""" QMessageBox.information(self, 'About', self.message_box_text["about"]) def show_contacts_box(self): """Shows message box with contacts information.""" QMessageBox.information(self, 'Contacts', self.message_box_text["contacts"]) def show_server_off_box(self): """Shows message box about server off information.""" QMessageBox.critical(self, 'Opsss...', self.message_box_text["server_is_off"]) self.go_to_login_form() def show_shortcuts_box(self): """Shows message box with shortcuts.""" QMessageBox.information(self, 'Shortcuts', self.message_box_text["shortcuts"]) def show_commands_box(self): """Shows message box with available commands.""" output = help_client(self.client_commands, self.server_commands, []) output = output.replace('=', '') QMessageBox.information(self, 'Commands', output) def sign_up_user(self): """ Registers user. Verifies correctness of login and password input. Sends request to sign up user. """ # Clear registration form. self.login_error2.setText(self.translate("Messenger", self.warning_messages['empty_str'])) self.password_error2.setText(self.translate("Messenger", self.warning_messages['empty_str'])) self.login_line2.setStyleSheet("border: 1px solid #B8B5B2") self.password_line2.setStyleSheet("border: 1px solid #B8B5B2") self.username = self.login_line2.text() self.password = self.password_line2.text() # Check that form isn't empty. if not self.username: if not self.password: self.login_error2.setText(self.translate("Messenger", self.warning_messages['login_required'])) self.password_error2.setText(self.translate("Messenger", self.warning_messages['password_required'])) self.login_line2.setStyleSheet("border: 1px solid red") self.password_line2.setStyleSheet("border: 1px solid red") return else: self.login_error2.setText(self.translate("Messenger", self.warning_messages['login_required'])) self.login_line2.setStyleSheet("border: 1px solid red") return else: if not self.password: self.password_error2.setText(self.translate("Messenger", self.warning_messages['password_required'])) self.password_line2.setStyleSheet("border: 1px solid red") return if not self.username.isalnum(): self.login_error2.setText(self.translate("Messenger", self.warning_messages['not_alphanumeric'])) self.login_error2.adjustSize() self.login_line2.setStyleSheet("border: 1px solid red") return try: response = post( f'http://{self.server_IP}/sign_up', auth=(self.username, self.password), verify=False ) except exceptions.RequestException as e: self.show_server_off_box() self.clear_credentials() return # Process bad request. if response.json()['login_out_of_range']: self.login_error2.setText(self.translate("Messenger", self.warning_messages['login_out_of_range'])) self.login_error2.adjustSize() self.login_line2.setStyleSheet("border: 1px solid red") return elif response.json()['password_out_of_range']: self.password_error2.setText(self.translate("Messenger", self.warning_messages['password_out_of_range'])) self.password_error2.adjustSize() self.password_line2.setStyleSheet("border: 1px solid red") return elif not response.json()['ok']: self.login_error2.setText(self.translate("Messenger", self.warning_messages['registered'])) self.login_error2.adjustSize() self.login_line2.setStyleSheet("border: 1px solid red") return self.go_to_chat() def login_user(self): """ Allows user to log in. Verifies correctness of login and password input. Sends request to authenticate user. """ # Clear login form. self.login_error1.setText(self.translate("Messenger", self.warning_messages['empty_str'])) self.password_error1.setText(self.translate("Messenger", self.warning_messages['empty_str'])) self.login_line1.setStyleSheet("border: 1px solid #B8B5B2") self.password_line1.setStyleSheet("border: 1px solid #B8B5B2") self.username = self.login_line1.text() self.password = self.password_line1.text() # Check that form isn't empty. if not self.username: if not self.password: self.login_error1.setText(self.translate("Messenger", self.warning_messages['login_required'])) self.password_error1.setText(self.translate("Messenger", self.warning_messages['password_required'])) self.login_line1.setStyleSheet("border: 1px solid red") self.password_line1.setStyleSheet("border: 1px solid red") return else: self.login_error1.setText(self.translate("Messenger", self.warning_messages['login_required'])) self.login_line1.setStyleSheet("border: 1px solid red") return else: if not self.password: self.password_error1.setText(self.translate("Messenger", self.warning_messages['password_required'])) self.password_line1.setStyleSheet("border: 1px solid red") return try: response = post( f'http://{self.server_IP}/auth', auth=(self.username, self.password), verify=False ) except exceptions.RequestException as e: self.show_server_off_box() self.clear_credentials() return # Process bad request. if not response.json()['exist']: self.login_error1.setText(self.translate("Messenger", self.warning_messages['invalid_login'])) self.login_line1.setStyleSheet("border: 1px solid red") return if not response.json()['match']: self.password_error1.setText(self.translate("Messenger", self.warning_messages['invalid_password'])) self.password_line1.setStyleSheet("border: 1px solid red") return if response.json()['banned']: self.login_error1.setText(self.translate("Messenger", self.warning_messages['banned'])) self.login_line1.setStyleSheet("border: 1px solid red") return self.go_to_chat() def get_server_commands(self): """Sends request to get available server-side commands for user.""" try: response = post( f'http://{self.server_IP}/command', json={"username": self.username, "command": 'help'}, verify=False ) except exceptions.RequestException as e: self.clear_user_data() self.show_server_off_box() return if not response.json()['ok']: self.show_text(response.json()['output'] + "<br>") self.plain_text_edit.clear() return self.server_commands = response.json()['output'] # Connect command name with function. for cmd in self.server_commands: if cmd['name'] != 'help': self.run_server_command[f"{cmd['name']}"] = globals()[cmd['name']] def send(self): """Separates and directs messages & commands to relevant function.""" self.plain_text_edit.setFocus() text = self.plain_text_edit.toPlainText() text = text.strip() # Validate text don't execute HTML. text = text.replace('</', '') text = text.replace('<', '') text = text.replace('>', '') if len(text) > self.max_text_len: text = text[:self.max_text_len] if not text: return elif text.startswith('/'): self.send_command(text[1:]) else: self.send_message(text) def send_message(self, text): """ Stores message on the server. :param text: text of message """ try: post( f'http://{self.server_IP}/send_message', json={"username": self.username, "text": text}, verify=False ) except exceptions.RequestException as e: self.clear_user_data() self.show_server_off_box() return self.plain_text_edit.clear() self.plain_text_edit.repaint() def send_command(self, cmd_string): """ Executes command. If it's client-side command, executes directly from client. If it's server-side command, sends command to execute on the server and processes the output. :param cmd_string: command with parameters to execute """ command = cmd_string.split()[0] args = cmd_string.split()[1:] if len(cmd_string) > 1 else None # Run client-side command. if command in [cmd['name'] for cmd in self.client_commands]: self.run_client_command.get(command)() self.plain_text_edit.clear() return # Invalid command name. elif command not in [cmd['name'] for cmd in self.server_commands]: self.show_text(f"<b>Error:</b> Command '/{command}' not found.<br>" f"Try '/help' to list all available commands :)<br>") self.plain_text_edit.clear() return # Process 'help' command. elif command == 'help': output = help_client(self.client_commands, self.server_commands, args) self.show_text(output) self.plain_text_edit.clear() return try: response = post( f'http://{self.server_IP}/command', json={"username": self.username, "command": cmd_string}, verify=False ) except exceptions.RequestException as e: self.clear_user_data() self.show_server_off_box() return if not response.json()['ok']: self.show_text("<b>Error:</b> " + response.json()['output'] + "<br>") self.plain_text_edit.clear() return # Assign command function & run it with output from server. run_command = self.run_server_command.get(command) output = run_command(response.json()['output'], args) self.show_text(output) self.plain_text_edit.clear() self.plain_text_edit.repaint() def get_messages(self): """Sends request to get new messages and appears them in style.""" if not self.stacked_widget.currentIndex() == 2: return try: response = get( f'http://{self.server_IP}/get_messages', params={'after': self.last_message_time}, verify=False ) data = response.json() except exceptions.RequestException as e: self.clear_user_data() self.show_server_off_box() return # Generate message. for message in data['messages']: # float -> datetime. beauty_time = datetime.fromtimestamp(message['time']) beauty_time = beauty_time.strftime('%d/%m %H:%M:%S') # User will see his messages from the right side. if message['username'] == self.username: self.show_text(self.message_style['begin'] + beauty_time + ' ' + message['username'] + self.message_style['middle'] + message['text'] + self.message_style['end']) self.last_message_time = message['time'] else: self.show_text(message['username'] + ' ' + beauty_time) self.show_text(message['text'] + "<br>") self.last_message_time = message['time'] def get_status(self): """Sends request to get server status.""" try: response = get( f'http://{self.server_IP}/status', verify=False ) status = response.json() # Server is off. except exceptions.RequestException as e: self.server_status.setText(self.translate("Messenger", '<p style="font-size:12px">' '<img src="images/server-is-off.png"> Offline</p>')) tool_tip = f"Can't connect to the server<br>" \ f"Maybe server isn't run or you've entered an invalid IP address in Preferences" self.server_status.setToolTip(tool_tip) return # Server is on. self.server_status.setText(self.translate("Messenger", '<p style="font-size:12px">' '<img src="images/server-is-on.png"> Online</p>')) tool_tip = f"Server is working<br>" \ f"Users online: {status['users_online']}<br>" \ f"Date and time: {status['time']}<br>" \ f"Registered users: {status['users_count']}<br>" \ f"Written messages: {status['messages_count']}" self.server_status.setToolTip(tool_tip) def show_text(self, text): """Shows given text in messenger chat.""" self.text_browser.append(text) self.text_browser.repaint() app = QtWidgets.QApplication([]) window = Messenger() app.setStyleSheet(load_stylesheet()) window.show() app.exec_()
[((626, 6, 626, 32), 'PyQt5.QtWidgets.QApplication', 'QtWidgets.QApplication', ({(626, 29, 626, 31): '[]'}, {}), '([])', False, 'from PyQt5 import QtWidgets, QtCore\n'), ((628, 18, 628, 35), 'style_sheet.load_stylesheet', 'load_stylesheet', ({}, {}), '()', False, 'from style_sheet import load_stylesheet\n'), ((56, 30, 56, 65), 'qtwidgets.PasswordEdit', 'PasswordEdit', ({(56, 43, 56, 47): 'True', (56, 49, 56, 64): 'self.login_page'}, {}), '(True, self.login_page)', False, 'from qtwidgets import PasswordEdit\n'), ((57, 30, 57, 72), 'qtwidgets.PasswordEdit', 'PasswordEdit', ({(57, 43, 57, 47): 'True', (57, 49, 57, 71): 'self.registration_page'}, {}), '(True, self.registration_page)', False, 'from qtwidgets import PasswordEdit\n'), ((84, 29, 84, 48), 'client_content.get_message_style', 'get_message_style', ({}, {}), '()', False, 'from client_content import get_warning_messages, get_client_commands, get_message_box_text, get_message_style\n'), ((85, 32, 85, 54), 'client_content.get_warning_messages', 'get_warning_messages', ({}, {}), '()', False, 'from client_content import get_warning_messages, get_client_commands, get_message_box_text, get_message_style\n'), ((86, 32, 86, 54), 'client_content.get_message_box_text', 'get_message_box_text', ({}, {}), '()', False, 'from client_content import get_warning_messages, get_client_commands, get_message_box_text, get_message_style\n'), ((89, 31, 89, 52), 'client_content.get_client_commands', 'get_client_commands', ({}, {}), '()', False, 'from client_content import get_warning_messages, get_client_commands, get_message_box_text, get_message_style\n'), ((96, 34, 96, 49), 'PyQt5.QtCore.QTimer', 'QtCore.QTimer', ({}, {}), '()', False, 'from PyQt5 import QtWidgets, QtCore\n'), ((100, 32, 100, 47), 'PyQt5.QtCore.QTimer', 'QtCore.QTimer', ({}, {}), '()', False, 'from PyQt5 import QtWidgets, QtCore\n'), ((146, 16, 147, 87), 'PyQt5.QtWidgets.QMessageBox.question', 'QMessageBox.question', ({(146, 37, 146, 41): 'self', (146, 43, 146, 49): '"""Quit"""', (146, 51, 146, 81): "self.message_box_text['close']", (147, 37, 147, 69): 'QMessageBox.Yes | QMessageBox.No', (147, 71, 147, 86): 'QMessageBox.Yes'}, {}), "(self, 'Quit', self.message_box_text['close'], \n QMessageBox.Yes | QMessageBox.No, QMessageBox.Yes)", False, 'from PyQt5.QtWidgets import QMessageBox\n'), ((177, 16, 178, 87), 'PyQt5.QtWidgets.QMessageBox.question', 'QMessageBox.question', ({(177, 37, 177, 41): 'self', (177, 43, 177, 51): '"""Logout"""', (177, 53, 177, 84): "self.message_box_text['logout']", (178, 37, 178, 69): 'QMessageBox.Yes | QMessageBox.No', (178, 71, 178, 86): 'QMessageBox.Yes'}, {}), "(self, 'Logout', self.message_box_text['logout'], \n QMessageBox.Yes | QMessageBox.No, QMessageBox.Yes)", False, 'from PyQt5.QtWidgets import QMessageBox\n'), ((202, 19, 202, 49), 'PyQt5.QtCore.QRect', 'QtCore.QRect', ({(202, 32, 202, 34): '60', (202, 36, 202, 39): '200', (202, 41, 202, 44): '291', (202, 46, 202, 48): '41'}, {}), '(60, 200, 291, 41)', False, 'from PyQt5 import QtWidgets, QtCore\n'), ((203, 15, 203, 22), 'PyQt5.QtGui.QFont', 'QFont', ({}, {}), '()', False, 'from PyQt5.QtGui import QFont\n'), ((221, 19, 221, 36), 'preferences.Preferences', 'Preferences', ({(221, 31, 221, 35): 'self'}, {}), '(self)', False, 'from preferences import Preferences\n'), ((272, 8, 272, 78), 'PyQt5.QtWidgets.QMessageBox.information', 'QMessageBox.information', ({(272, 32, 272, 36): 'self', (272, 38, 272, 45): '"""About"""', (272, 47, 272, 77): "self.message_box_text['about']"}, {}), "(self, 'About', self.message_box_text['about'])", False, 'from PyQt5.QtWidgets import QMessageBox\n'), ((277, 8, 277, 84), 'PyQt5.QtWidgets.QMessageBox.information', 'QMessageBox.information', ({(277, 32, 277, 36): 'self', (277, 38, 277, 48): '"""Contacts"""', (277, 50, 277, 83): "self.message_box_text['contacts']"}, {}), "(self, 'Contacts', self.message_box_text['contacts'])", False, 'from PyQt5.QtWidgets import QMessageBox\n'), ((282, 8, 282, 86), 'PyQt5.QtWidgets.QMessageBox.critical', 'QMessageBox.critical', ({(282, 29, 282, 33): 'self', (282, 35, 282, 45): '"""Opsss..."""', (282, 47, 282, 85): "self.message_box_text['server_is_off']"}, {}), "(self, 'Opsss...', self.message_box_text['server_is_off'])", False, 'from PyQt5.QtWidgets import QMessageBox\n'), ((288, 8, 288, 86), 'PyQt5.QtWidgets.QMessageBox.information', 'QMessageBox.information', ({(288, 32, 288, 36): 'self', (288, 38, 288, 49): '"""Shortcuts"""', (288, 51, 288, 85): "self.message_box_text['shortcuts']"}, {}), "(self, 'Shortcuts', self.message_box_text['shortcuts'])", False, 'from PyQt5.QtWidgets import QMessageBox\n'), ((293, 17, 293, 76), 'client_commands.help_client', 'help_client', ({(293, 29, 293, 49): 'self.client_commands', (293, 51, 293, 71): 'self.server_commands', (293, 73, 293, 75): '[]'}, {}), '(self.client_commands, self.server_commands, [])', False, 'from client_commands import help_client, online, status, myself, reg, role, ban, unban\n'), ((295, 8, 295, 57), 'PyQt5.QtWidgets.QMessageBox.information', 'QMessageBox.information', ({(295, 32, 295, 36): 'self', (295, 38, 295, 48): '"""Commands"""', (295, 50, 295, 56): 'output'}, {}), "(self, 'Commands', output)", False, 'from PyQt5.QtWidgets import QMessageBox\n'), ((339, 23, 343, 13), 'requests.post', 'post', (), '', False, 'from requests import get, post, exceptions\n'), ((404, 23, 408, 13), 'requests.post', 'post', (), '', False, 'from requests import get, post, exceptions\n'), ((434, 23, 437, 13), 'requests.post', 'post', (), '', False, 'from requests import get, post, exceptions\n'), ((485, 12, 489, 13), 'requests.post', 'post', (), '', False, 'from requests import get, post, exceptions\n'), ((533, 23, 536, 13), 'requests.post', 'post', (), '', False, 'from requests import get, post, exceptions\n'), ((562, 23, 566, 13), 'requests.get', 'get', (), '', False, 'from requests import get, post, exceptions\n'), ((576, 26, 576, 65), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', ({(576, 49, 576, 64): "message['time']"}, {}), "(message['time'])", False, 'from datetime import datetime\n'), ((594, 23, 597, 13), 'requests.get', 'get', (), '', False, 'from requests import get, post, exceptions\n'), ((104, 8, 104, 37), 'click_label.clickable', 'clickable', ({(104, 18, 104, 36): 'self.go_to_sign_up'}, {}), '(self.go_to_sign_up)', False, 'from click_label import clickable\n'), ((105, 8, 105, 35), 'click_label.clickable', 'clickable', ({(105, 18, 105, 34): 'self.go_to_login'}, {}), '(self.go_to_login)', False, 'from click_label import clickable\n'), ((152, 16, 155, 17), 'requests.post', 'post', (), '', False, 'from requests import get, post, exceptions\n'), ((182, 16, 185, 17), 'requests.post', 'post', (), '', False, 'from requests import get, post, exceptions\n'), ((527, 21, 527, 82), 'client_commands.help_client', 'help_client', ({(527, 33, 527, 53): 'self.client_commands', (527, 55, 527, 75): 'self.server_commands', (527, 77, 527, 81): 'args'}, {}), '(self.client_commands, self.server_commands, args)', False, 'from client_commands import help_client, online, status, myself, reg, role, ban, unban\n')]
sainjusajan/django-oscar
oscar/lib/python2.7/site-packages/prompt_toolkit/utils.py
466e8edc807be689b0a28c9e525c8323cc48b8e1
from __future__ import unicode_literals import inspect import os import signal import sys import threading import weakref from wcwidth import wcwidth from six.moves import range __all__ = ( 'Event', 'DummyContext', 'get_cwidth', 'suspend_to_background_supported', 'is_conemu_ansi', 'is_windows', 'in_main_thread', 'take_using_weights', 'test_callable_args', ) class Event(object): """ Simple event to which event handlers can be attached. For instance:: class Cls: def __init__(self): # Define event. The first parameter is the sender. self.event = Event(self) obj = Cls() def handler(sender): pass # Add event handler by using the += operator. obj.event += handler # Fire event. obj.event() """ def __init__(self, sender, handler=None): self.sender = sender self._handlers = [] if handler is not None: self += handler def __call__(self): " Fire event. " for handler in self._handlers: handler(self.sender) def fire(self): " Alias for just calling the event. " self() def __iadd__(self, handler): """ Add another handler to this callback. (Handler should be a callable that takes exactly one parameter: the sender object.) """ # Test handler. assert callable(handler) if not test_callable_args(handler, [None]): raise TypeError("%r doesn't take exactly one argument." % handler) # Add to list of event handlers. self._handlers.append(handler) return self def __isub__(self, handler): """ Remove a handler from this callback. """ self._handlers.remove(handler) return self # Cache of signatures. Improves the performance of `test_callable_args`. _signatures_cache = weakref.WeakKeyDictionary() def test_callable_args(func, args): """ Return True when this function can be called with the given arguments. """ assert isinstance(args, (list, tuple)) signature = getattr(inspect, 'signature', None) if signature is not None: # For Python 3, use inspect.signature. try: sig = _signatures_cache[func] except KeyError: sig = signature(func) _signatures_cache[func] = sig try: sig.bind(*args) except TypeError: return False else: return True else: # For older Python versions, fall back to using getargspec. spec = inspect.getargspec(func) # Drop the 'self' def drop_self(spec): args, varargs, varkw, defaults = spec if args[0:1] == ['self']: args = args[1:] return inspect.ArgSpec(args, varargs, varkw, defaults) spec = drop_self(spec) # When taking *args, always return True. if spec.varargs is not None: return True # Test whether the given amount of args is between the min and max # accepted argument counts. return len(spec.args) - len(spec.defaults or []) <= len(args) <= len(spec.args) class DummyContext(object): """ (contextlib.nested is not available on Py3) """ def __enter__(self): pass def __exit__(self, *a): pass class _CharSizesCache(dict): """ Cache for wcwidth sizes. """ def __missing__(self, string): # Note: We use the `max(0, ...` because some non printable control # characters, like e.g. Ctrl-underscore get a -1 wcwidth value. # It can be possible that these characters end up in the input # text. if len(string) == 1: result = max(0, wcwidth(string)) else: result = sum(max(0, wcwidth(c)) for c in string) # Cache for short strings. # (It's hard to tell what we can consider short...) if len(string) < 256: self[string] = result return result _CHAR_SIZES_CACHE = _CharSizesCache() def get_cwidth(string): """ Return width of a string. Wrapper around ``wcwidth``. """ return _CHAR_SIZES_CACHE[string] def suspend_to_background_supported(): """ Returns `True` when the Python implementation supports suspend-to-background. This is typically `False' on Windows systems. """ return hasattr(signal, 'SIGTSTP') def is_windows(): """ True when we are using Windows. """ return sys.platform.startswith('win') # E.g. 'win32', not 'darwin' or 'linux2' def is_conemu_ansi(): """ True when the ConEmu Windows console is used. """ return is_windows() and os.environ.get('ConEmuANSI', 'OFF') == 'ON' def in_main_thread(): """ True when the current thread is the main thread. """ return threading.current_thread().__class__.__name__ == '_MainThread' def take_using_weights(items, weights): """ Generator that keeps yielding items from the items list, in proportion to their weight. For instance:: # Getting the first 70 items from this generator should have yielded 10 # times A, 20 times B and 40 times C, all distributed equally.. take_using_weights(['A', 'B', 'C'], [5, 10, 20]) :param items: List of items to take from. :param weights: Integers representing the weight. (Numbers have to be integers, not floats.) """ assert isinstance(items, list) assert isinstance(weights, list) assert all(isinstance(i, int) for i in weights) assert len(items) == len(weights) assert len(items) > 0 already_taken = [0 for i in items] item_count = len(items) max_weight = max(weights) i = 0 while True: # Each iteration of this loop, we fill up until by (total_weight/max_weight). adding = True while adding: adding = False for item_i, item, weight in zip(range(item_count), items, weights): if already_taken[item_i] < i * weight / float(max_weight): yield item already_taken[item_i] += 1 adding = True i += 1
[((86, 20, 86, 47), 'weakref.WeakKeyDictionary', 'weakref.WeakKeyDictionary', ({}, {}), '()', False, 'import weakref\n'), ((187, 11, 187, 41), 'sys.platform.startswith', 'sys.platform.startswith', ({(187, 35, 187, 40): '"""win"""'}, {}), "('win')", False, 'import sys\n'), ((112, 15, 112, 39), 'inspect.getargspec', 'inspect.getargspec', ({(112, 34, 112, 38): 'func'}, {}), '(func)', False, 'import inspect\n'), ((119, 19, 119, 66), 'inspect.ArgSpec', 'inspect.ArgSpec', ({(119, 35, 119, 39): 'args', (119, 41, 119, 48): 'varargs', (119, 50, 119, 55): 'varkw', (119, 57, 119, 65): 'defaults'}, {}), '(args, varargs, varkw, defaults)', False, 'import inspect\n'), ((194, 28, 194, 63), 'os.environ.get', 'os.environ.get', ({(194, 43, 194, 55): '"""ConEmuANSI"""', (194, 57, 194, 62): '"""OFF"""'}, {}), "('ConEmuANSI', 'OFF')", False, 'import os\n'), ((153, 28, 153, 43), 'wcwidth.wcwidth', 'wcwidth', ({(153, 36, 153, 42): 'string'}, {}), '(string)', False, 'from wcwidth import wcwidth\n'), ((201, 11, 201, 37), 'threading.current_thread', 'threading.current_thread', ({}, {}), '()', False, 'import threading\n'), ((234, 44, 234, 61), 'six.moves.range', 'range', ({(234, 50, 234, 60): 'item_count'}, {}), '(item_count)', False, 'from six.moves import range\n'), ((155, 32, 155, 42), 'wcwidth.wcwidth', 'wcwidth', ({(155, 40, 155, 41): 'c'}, {}), '(c)', False, 'from wcwidth import wcwidth\n')]
hirnimeshrampuresoftware/py-lmdb
lmdb/cffi.py
9aa7560f8e1a89b437fb3fed7ea36f5888b7a963
# # Copyright 2013 The py-lmdb authors, all rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted only as authorized by the OpenLDAP # Public License. # # A copy of this license is available in the file LICENSE in the # top-level directory of the distribution or, alternatively, at # <http://www.OpenLDAP.org/license.html>. # # OpenLDAP is a registered trademark of the OpenLDAP Foundation. # # Individual files and/or contributed packages may be copyright by # other parties and/or subject to additional restrictions. # # This work also contains materials derived from public sources. # # Additional information about OpenLDAP can be obtained at # <http://www.openldap.org/>. # """ CPython/CFFI wrapper for OpenLDAP's "Lightning" MDB database. Please see https://lmdb.readthedocs.io/ """ from __future__ import absolute_import from __future__ import with_statement import errno import inspect import os import sys import threading is_win32 = sys.platform == 'win32' if is_win32: import msvcrt try: import __builtin__ except ImportError: import builtins as __builtin__ # type: ignore import lmdb try: from lmdb import _config except ImportError: _config = None # type: ignore __all__ = [ 'Cursor', 'Environment', 'Transaction', '_Database', 'enable_drop_gil', 'version', ] __all__ += [ 'BadDbiError', 'BadRslotError', 'BadTxnError', 'BadValsizeError', 'CorruptedError', 'CursorFullError', 'DbsFullError', 'DiskError', 'Error', 'IncompatibleError', 'InvalidError', 'InvalidParameterError', 'KeyExistsError', 'LockError', 'MapFullError', 'MapResizedError', 'MemoryError', 'NotFoundError', 'PageFullError', 'PageNotFoundError', 'PanicError', 'ReadersFullError', 'ReadonlyError', 'TlsFullError', 'TxnFullError', 'VersionMismatchError', ] # Handle moronic Python 3 mess. UnicodeType = getattr(__builtin__, 'unicode', str) BytesType = getattr(__builtin__, 'bytes', str) O_0755 = int('0755', 8) O_0111 = int('0111', 8) EMPTY_BYTES = UnicodeType().encode() # Used to track context across CFFI callbacks. _callbacks = threading.local() _CFFI_CDEF = ''' typedef int mode_t; typedef ... MDB_env; typedef struct MDB_txn MDB_txn; typedef struct MDB_cursor MDB_cursor; typedef unsigned int MDB_dbi; enum MDB_cursor_op { MDB_FIRST, MDB_FIRST_DUP, MDB_GET_BOTH, MDB_GET_BOTH_RANGE, MDB_GET_CURRENT, MDB_GET_MULTIPLE, MDB_LAST, MDB_LAST_DUP, MDB_NEXT, MDB_NEXT_DUP, MDB_NEXT_MULTIPLE, MDB_NEXT_NODUP, MDB_PREV, MDB_PREV_DUP, MDB_PREV_NODUP, MDB_SET, MDB_SET_KEY, MDB_SET_RANGE, ... }; typedef enum MDB_cursor_op MDB_cursor_op; struct MDB_val { size_t mv_size; void *mv_data; ...; }; typedef struct MDB_val MDB_val; struct MDB_stat { unsigned int ms_psize; unsigned int ms_depth; size_t ms_branch_pages; size_t ms_leaf_pages; size_t ms_overflow_pages; size_t ms_entries; ...; }; typedef struct MDB_stat MDB_stat; struct MDB_envinfo { void *me_mapaddr; size_t me_mapsize; size_t me_last_pgno; size_t me_last_txnid; unsigned int me_maxreaders; unsigned int me_numreaders; ...; }; typedef struct MDB_envinfo MDB_envinfo; typedef int (*MDB_cmp_func)(const MDB_val *a, const MDB_val *b); typedef void (*MDB_rel_func)(MDB_val *item, void *oldptr, void *newptr, void *relctx); char *mdb_strerror(int err); int mdb_env_create(MDB_env **env); int mdb_env_open(MDB_env *env, const char *path, unsigned int flags, mode_t mode); int mdb_env_copy2(MDB_env *env, const char *path, int flags); int mdb_env_copyfd2(MDB_env *env, int fd, int flags); int mdb_env_stat(MDB_env *env, MDB_stat *stat); int mdb_env_info(MDB_env *env, MDB_envinfo *stat); int mdb_env_get_maxkeysize(MDB_env *env); int mdb_env_sync(MDB_env *env, int force); void mdb_env_close(MDB_env *env); int mdb_env_set_flags(MDB_env *env, unsigned int flags, int onoff); int mdb_env_get_flags(MDB_env *env, unsigned int *flags); int mdb_env_get_path(MDB_env *env, const char **path); int mdb_env_set_mapsize(MDB_env *env, size_t size); int mdb_env_set_maxreaders(MDB_env *env, unsigned int readers); int mdb_env_get_maxreaders(MDB_env *env, unsigned int *readers); int mdb_env_set_maxdbs(MDB_env *env, MDB_dbi dbs); int mdb_txn_begin(MDB_env *env, MDB_txn *parent, unsigned int flags, MDB_txn **txn); int mdb_txn_commit(MDB_txn *txn); void mdb_txn_reset(MDB_txn *txn); int mdb_txn_renew(MDB_txn *txn); void mdb_txn_abort(MDB_txn *txn); size_t mdb_txn_id(MDB_txn *txn); int mdb_dbi_open(MDB_txn *txn, const char *name, unsigned int flags, MDB_dbi *dbi); int mdb_stat(MDB_txn *txn, MDB_dbi dbi, MDB_stat *stat); int mdb_drop(MDB_txn *txn, MDB_dbi dbi, int del_); int mdb_get(MDB_txn *txn, MDB_dbi dbi, MDB_val *key, MDB_val *data); int mdb_cursor_open(MDB_txn *txn, MDB_dbi dbi, MDB_cursor **cursor); void mdb_cursor_close(MDB_cursor *cursor); int mdb_cursor_del(MDB_cursor *cursor, unsigned int flags); int mdb_cursor_count(MDB_cursor *cursor, size_t *countp); int mdb_cursor_get(MDB_cursor *cursor, MDB_val *key, MDB_val*data, int op); typedef int (MDB_msg_func)(const char *msg, void *ctx); int mdb_reader_list(MDB_env *env, MDB_msg_func *func, void *ctx); int mdb_reader_check(MDB_env *env, int *dead); int mdb_dbi_flags(MDB_txn *txn, MDB_dbi dbi, unsigned int *flags); #define MDB_VERSION_MAJOR ... #define MDB_VERSION_MINOR ... #define MDB_VERSION_PATCH ... #define EACCES ... #define EAGAIN ... #define EINVAL ... #define ENOMEM ... #define ENOSPC ... #define MDB_BAD_RSLOT ... #define MDB_BAD_DBI ... #define MDB_BAD_TXN ... #define MDB_BAD_VALSIZE ... #define MDB_CORRUPTED ... #define MDB_CURSOR_FULL ... #define MDB_DBS_FULL ... #define MDB_INCOMPATIBLE ... #define MDB_INVALID ... #define MDB_KEYEXIST ... #define MDB_MAP_FULL ... #define MDB_MAP_RESIZED ... #define MDB_NOTFOUND ... #define MDB_PAGE_FULL ... #define MDB_PAGE_NOTFOUND ... #define MDB_PANIC ... #define MDB_READERS_FULL ... #define MDB_TLS_FULL ... #define MDB_TXN_FULL ... #define MDB_VERSION_MISMATCH ... #define MDB_APPEND ... #define MDB_APPENDDUP ... #define MDB_CP_COMPACT ... #define MDB_CREATE ... #define MDB_DUPFIXED ... #define MDB_DUPSORT ... #define MDB_INTEGERDUP ... #define MDB_INTEGERKEY ... #define MDB_MAPASYNC ... #define MDB_NODUPDATA ... #define MDB_NOLOCK ... #define MDB_NOMEMINIT ... #define MDB_NOMETASYNC ... #define MDB_NOOVERWRITE ... #define MDB_NORDAHEAD ... #define MDB_NOSUBDIR ... #define MDB_NOSYNC ... #define MDB_NOTLS ... #define MDB_RDONLY ... #define MDB_REVERSEKEY ... #define MDB_WRITEMAP ... // Helpers below inline MDB_vals. Avoids key alloc/dup on CPython, where // CFFI will use PyString_AS_STRING when passed as an argument. static int pymdb_del(MDB_txn *txn, MDB_dbi dbi, char *key_s, size_t keylen, char *val_s, size_t vallen); static int pymdb_put(MDB_txn *txn, MDB_dbi dbi, char *key_s, size_t keylen, char *val_s, size_t vallen, unsigned int flags); static int pymdb_get(MDB_txn *txn, MDB_dbi dbi, char *key_s, size_t keylen, MDB_val *val_out); static int pymdb_cursor_get(MDB_cursor *cursor, char *key_s, size_t key_len, char *data_s, size_t data_len, MDB_val *key, MDB_val *data, int op); static int pymdb_cursor_put(MDB_cursor *cursor, char *key_s, size_t keylen, char *val_s, size_t vallen, int flags); // Prefaults a range static void preload(int rc, void *x, size_t size); ''' _CFFI_CDEF_PATCHED = ''' int mdb_env_copy3(MDB_env *env, const char *path, unsigned int flags, MDB_txn *txn); int mdb_env_copyfd3(MDB_env *env, int fd, unsigned int flags, MDB_txn *txn); ''' _CFFI_VERIFY = ''' #include <sys/stat.h> #include "lmdb.h" #include "preload.h" // Helpers below inline MDB_vals. Avoids key alloc/dup on CPython, where // CFFI will use PyString_AS_STRING when passed as an argument. static int pymdb_get(MDB_txn *txn, MDB_dbi dbi, char *key_s, size_t keylen, MDB_val *val_out) { MDB_val key = {keylen, key_s}; int rc = mdb_get(txn, dbi, &key, val_out); return rc; } static int pymdb_put(MDB_txn *txn, MDB_dbi dbi, char *key_s, size_t keylen, char *val_s, size_t vallen, unsigned int flags) { MDB_val key = {keylen, key_s}; MDB_val val = {vallen, val_s}; return mdb_put(txn, dbi, &key, &val, flags); } static int pymdb_del(MDB_txn *txn, MDB_dbi dbi, char *key_s, size_t keylen, char *val_s, size_t vallen) { MDB_val key = {keylen, key_s}; MDB_val val = {vallen, val_s}; MDB_val *valptr; if(vallen == 0) { valptr = NULL; } else { valptr = &val; } return mdb_del(txn, dbi, &key, valptr); } static int pymdb_cursor_get(MDB_cursor *cursor, char *key_s, size_t key_len, char *data_s, size_t data_len, MDB_val *key, MDB_val *data, int op) { MDB_val tmp_key = {key_len, key_s}; MDB_val tmp_data = {data_len, data_s}; int rc = mdb_cursor_get(cursor, &tmp_key, &tmp_data, op); if(! rc) { *key = tmp_key; *data = tmp_data; } return rc; } static int pymdb_cursor_put(MDB_cursor *cursor, char *key_s, size_t keylen, char *val_s, size_t vallen, int flags) { MDB_val tmpkey = {keylen, key_s}; MDB_val tmpval = {vallen, val_s}; return mdb_cursor_put(cursor, &tmpkey, &tmpval, flags); } ''' if not lmdb._reading_docs(): import cffi # Try to use distutils-bundled CFFI configuration to avoid a recompile and # potential compile errors during first module import. _config_vars = _config.CONFIG if _config else { 'extra_compile_args': ['-w'], 'extra_sources': ['lib/mdb.c', 'lib/midl.c'], 'extra_include_dirs': ['lib'], 'extra_library_dirs': [], 'libraries': [] } _have_patched_lmdb = '-DHAVE_PATCHED_LMDB=1' in _config.CONFIG['extra_compile_args'] # type: ignore if _have_patched_lmdb: _CFFI_CDEF += _CFFI_CDEF_PATCHED _ffi = cffi.FFI() _ffi.cdef(_CFFI_CDEF) _lib = _ffi.verify(_CFFI_VERIFY, modulename='lmdb_cffi', ext_package='lmdb', sources=_config_vars['extra_sources'], extra_compile_args=_config_vars['extra_compile_args'], include_dirs=_config_vars['extra_include_dirs'], libraries=_config_vars['libraries'], library_dirs=_config_vars['extra_library_dirs']) @_ffi.callback("int(char *, void *)") def _msg_func(s, _): """mdb_msg_func() callback. Appends `s` to _callbacks.msg_func list. """ _callbacks.msg_func.append(_ffi.string(s).decode()) return 0 class Error(Exception): """Raised when an LMDB-related error occurs, and no more specific :py:class:`lmdb.Error` subclass exists.""" def __init__(self, what, code=0): self.what = what self.code = code self.reason = _ffi.string(_lib.mdb_strerror(code)) msg = what if code: msg = '%s: %s' % (what, self.reason) hint = getattr(self, 'MDB_HINT', None) if hint: msg += ' (%s)' % (hint,) Exception.__init__(self, msg) class KeyExistsError(Error): """Key/data pair already exists.""" MDB_NAME = 'MDB_KEYEXIST' class NotFoundError(Error): """No matching key/data pair found. Normally py-lmdb indicates a missing key by returning ``None``, or a user-supplied default value, however LMDB may return this error where py-lmdb does not know to convert it into a non-exceptional return. """ MDB_NAME = 'MDB_NOTFOUND' class PageNotFoundError(Error): """Request page not found.""" MDB_NAME = 'MDB_PAGE_NOTFOUND' class CorruptedError(Error): """Located page was of the wrong type.""" MDB_NAME = 'MDB_CORRUPTED' class PanicError(Error): """Update of meta page failed.""" MDB_NAME = 'MDB_PANIC' class VersionMismatchError(Error): """Database environment version mismatch.""" MDB_NAME = 'MDB_VERSION_MISMATCH' class InvalidError(Error): """File is not an MDB file.""" MDB_NAME = 'MDB_INVALID' class MapFullError(Error): """Environment map_size= limit reached.""" MDB_NAME = 'MDB_MAP_FULL' MDB_HINT = 'Please use a larger Environment(map_size=) parameter' class DbsFullError(Error): """Environment max_dbs= limit reached.""" MDB_NAME = 'MDB_DBS_FULL' MDB_HINT = 'Please use a larger Environment(max_dbs=) parameter' class ReadersFullError(Error): """Environment max_readers= limit reached.""" MDB_NAME = 'MDB_READERS_FULL' MDB_HINT = 'Please use a larger Environment(max_readers=) parameter' class TlsFullError(Error): """Thread-local storage keys full - too many environments open.""" MDB_NAME = 'MDB_TLS_FULL' class TxnFullError(Error): """Transaciton has too many dirty pages - transaction too big.""" MDB_NAME = 'MDB_TXN_FULL' MDB_HINT = 'Please do less work within your transaction' class CursorFullError(Error): """Internal error - cursor stack limit reached.""" MDB_NAME = 'MDB_CURSOR_FULL' class PageFullError(Error): """Internal error - page has no more space.""" MDB_NAME = 'MDB_PAGE_FULL' class MapResizedError(Error): """Database contents grew beyond environment map_size=.""" MDB_NAME = 'MDB_MAP_RESIZED' class IncompatibleError(Error): """Operation and DB incompatible, or DB flags changed.""" MDB_NAME = 'MDB_INCOMPATIBLE' class BadRslotError(Error): """Invalid reuse of reader locktable slot.""" MDB_NAME = 'MDB_BAD_RSLOT' class BadDbiError(Error): """The specified DBI was changed unexpectedly.""" MDB_NAME = 'MDB_BAD_DBI' class BadTxnError(Error): """Transaction cannot recover - it must be aborted.""" MDB_NAME = 'MDB_BAD_TXN' class BadValsizeError(Error): """Too big key/data, key is empty, or wrong DUPFIXED size.""" MDB_NAME = 'MDB_BAD_VALSIZE' class ReadonlyError(Error): """An attempt was made to modify a read-only database.""" MDB_NAME = 'EACCES' class InvalidParameterError(Error): """An invalid parameter was specified.""" MDB_NAME = 'EINVAL' class LockError(Error): """The environment was locked by another process.""" MDB_NAME = 'EAGAIN' class MemoryError(Error): """Out of memory.""" MDB_NAME = 'ENOMEM' class DiskError(Error): """No more disk space.""" MDB_NAME = 'ENOSPC' # Prepare _error_map, a mapping of integer MDB_ERROR_CODE to exception class. if not lmdb._reading_docs(): _error_map = {} for obj in list(globals().values()): if inspect.isclass(obj) and issubclass(obj, Error) and obj is not Error: _error_map[getattr(_lib, obj.MDB_NAME)] = obj del obj def _error(what, rc): """Lookup and instantiate the correct exception class for the error code `rc`, using :py:class:`Error` if no better class exists.""" return _error_map.get(rc, Error)(what, rc) class Some_LMDB_Resource_That_Was_Deleted_Or_Closed(object): """We need this because CFFI on PyPy treats None as cffi.NULL, instead of throwing an exception it feeds LMDB null pointers. That means simply replacing native handles with None during _invalidate() will cause NULL pointer dereferences. Instead use this class, and its weird name to cause a TypeError, with a very obvious string in the exception text. The only alternatives to this are inserting a check around every single use of a native handle to ensure the handle is still valid prior to calling LMDB, or doing no crash-safety checking at all. """ def __nonzero__(self): return 0 def __bool__(self): return False def __repr__(self): return "<This used to be a LMDB resource but it was deleted or closed>" _invalid = Some_LMDB_Resource_That_Was_Deleted_Or_Closed() def _mvbuf(mv): """Convert a MDB_val cdata to a CFFI buffer object.""" return _ffi.buffer(mv.mv_data, mv.mv_size) def _mvstr(mv): """Convert a MDB_val cdata to Python bytes.""" return _ffi.buffer(mv.mv_data, mv.mv_size)[:] def preload(mv): _lib.preload(0, mv.mv_data, mv.mv_size) def enable_drop_gil(): """Deprecated.""" def version(subpatch=False): """ Return a tuple of integers `(major, minor, patch)` describing the LMDB library version that the binding is linked against. The version of the binding itself is available from ``lmdb.__version__``. `subpatch`: If true, returns a 4 integer tuple consisting of the same plus an extra integer that represents any patches applied by py-lmdb itself (0 representing no patches). """ if subpatch: return (_lib.MDB_VERSION_MAJOR, _lib.MDB_VERSION_MINOR, _lib.MDB_VERSION_PATCH, 1 if _have_patched_lmdb else 0) return (_lib.MDB_VERSION_MAJOR, _lib.MDB_VERSION_MINOR, _lib.MDB_VERSION_PATCH) class Environment(object): """ Structure for a database environment. An environment may contain multiple databases, all residing in the same shared-memory map and underlying disk file. To write to the environment a :py:class:`Transaction` must be created. One simultaneous write transaction is allowed, however there is no limit on the number of read transactions even when a write transaction exists. This class is aliased to `lmdb.open`. It is a serious error to have open the same LMDB file in the same process at the same time. Failure to heed this may lead to data corruption and interpreter crash. Equivalent to `mdb_env_open() <http://lmdb.tech/doc/group__mdb.html#ga1fe2740e25b1689dc412e7b9faadba1b>`_ `path`: Location of directory (if `subdir=True`) or file prefix to store the database. `map_size`: Maximum size database may grow to; used to size the memory mapping. If database grows larger than ``map_size``, an exception will be raised and the user must close and reopen :py:class:`Environment`. On 64-bit there is no penalty for making this huge (say 1TB). Must be <2GB on 32-bit. .. note:: **The default map size is set low to encourage a crash**, so users can figure out a good value before learning about this option too late. `subdir`: If ``True``, `path` refers to a subdirectory to store the data and lock files in, otherwise it refers to a filename prefix. `readonly`: If ``True``, disallow any write operations. Note the lock file is still modified. If specified, the ``write`` flag to :py:meth:`begin` or :py:class:`Transaction` is ignored. `metasync`: If ``False``, flush system buffers to disk only once per transaction, omit the metadata flush. Defer that until the system flushes files to disk, or next commit or :py:meth:`sync`. This optimization maintains database integrity, but a system crash may undo the last committed transaction. I.e. it preserves the ACI (atomicity, consistency, isolation) but not D (durability) database property. `sync`: If ``False``, don't flush system buffers to disk when committing a transaction. This optimization means a system crash can corrupt the database or lose the last transactions if buffers are not yet flushed to disk. The risk is governed by how often the system flushes dirty buffers to disk and how often :py:meth:`sync` is called. However, if the filesystem preserves write order and `writemap=False`, transactions exhibit ACI (atomicity, consistency, isolation) properties and only lose D (durability). I.e. database integrity is maintained, but a system crash may undo the final transactions. Note that `sync=False, writemap=True` leaves the system with no hint for when to write transactions to disk, unless :py:meth:`sync` is called. `map_async=True, writemap=True` may be preferable. `mode`: File creation mode. `create`: If ``False``, do not create the directory `path` if it is missing. `readahead`: If ``False``, LMDB will disable the OS filesystem readahead mechanism, which may improve random read performance when a database is larger than RAM. `writemap`: If ``True``, use a writeable memory map unless `readonly=True`. This is faster and uses fewer mallocs, but loses protection from application bugs like wild pointer writes and other bad updates into the database. Incompatible with nested transactions. Processes with and without `writemap` on the same environment do not cooperate well. `meminit`: If ``False`` LMDB will not zero-initialize buffers prior to writing them to disk. This improves performance but may cause old heap data to be written saved in the unused portion of the buffer. Do not use this option if your application manipulates confidential data (e.g. plaintext passwords) in memory. This option is only meaningful when `writemap=False`; new pages are always zero-initialized when `writemap=True`. `map_async`: When ``writemap=True``, use asynchronous flushes to disk. As with ``sync=False``, a system crash can then corrupt the database or lose the last transactions. Calling :py:meth:`sync` ensures on-disk database integrity until next commit. `max_readers`: Maximum number of simultaneous read transactions. Can only be set by the first process to open an environment, as it affects the size of the lock file and shared memory area. Attempts to simultaneously start more than this many *read* transactions will fail. `max_dbs`: Maximum number of databases available. If 0, assume environment will be used as a single database. `max_spare_txns`: Read-only transactions to cache after becoming unused. Caching transactions avoids two allocations, one lock and linear scan of the shared environment per invocation of :py:meth:`begin`, :py:class:`Transaction`, :py:meth:`get`, :py:meth:`gets`, or :py:meth:`cursor`. Should match the process's maximum expected concurrent transactions (e.g. thread count). `lock`: If ``False``, don't do any locking. If concurrent access is anticipated, the caller must manage all concurrency itself. For proper operation the caller must enforce single-writer semantics, and must ensure that no readers are using old transactions while a writer is active. The simplest approach is to use an exclusive lock so that no readers may be active at all when a writer begins. """ def __init__(self, path, map_size=10485760, subdir=True, readonly=False, metasync=True, sync=True, map_async=False, mode=O_0755, create=True, readahead=True, writemap=False, meminit=True, max_readers=126, max_dbs=0, max_spare_txns=1, lock=True): self._max_spare_txns = max_spare_txns self._spare_txns = [] envpp = _ffi.new('MDB_env **') rc = _lib.mdb_env_create(envpp) if rc: raise _error("mdb_env_create", rc) self._env = envpp[0] self._deps = set() self._creating_db_in_readonly = False self.set_mapsize(map_size) rc = _lib.mdb_env_set_maxreaders(self._env, max_readers) if rc: raise _error("mdb_env_set_maxreaders", rc) rc = _lib.mdb_env_set_maxdbs(self._env, max_dbs) if rc: raise _error("mdb_env_set_maxdbs", rc) if create and subdir and not readonly: try: os.mkdir(path, mode) except EnvironmentError as e: if e.errno != errno.EEXIST: raise flags = _lib.MDB_NOTLS if not subdir: flags |= _lib.MDB_NOSUBDIR if readonly: flags |= _lib.MDB_RDONLY self.readonly = readonly if not metasync: flags |= _lib.MDB_NOMETASYNC if not sync: flags |= _lib.MDB_NOSYNC if map_async: flags |= _lib.MDB_MAPASYNC if not readahead: flags |= _lib.MDB_NORDAHEAD if writemap: flags |= _lib.MDB_WRITEMAP if not meminit: flags |= _lib.MDB_NOMEMINIT if not lock: flags |= _lib.MDB_NOLOCK if isinstance(path, UnicodeType): path = path.encode(sys.getfilesystemencoding()) rc = _lib.mdb_env_open(self._env, path, flags, mode & ~O_0111) if rc: raise _error(path, rc) with self.begin(db=object()) as txn: self._db = _Database( env=self, txn=txn, name=None, reverse_key=False, dupsort=False, create=True, integerkey=False, integerdup=False, dupfixed=False ) self._dbs = {None: self._db} def __enter__(self): return self def __exit__(self, _1, _2, _3): self.close() def __del__(self): self.close() _env = None _deps = None _spare_txns = None _dbs = None def set_mapsize(self, map_size): """Change the maximum size of the map file. This function will fail if any transactions are active in the current process. `map_size`: The new size in bytes. Equivalent to `mdb_env_set_mapsize() <http://lmdb.tech/doc/group__mdb.html#gaa2506ec8dab3d969b0e609cd82e619e5>`_ Warning: There's a data race in the underlying library that may cause catastrophic loss of data if you use this method. You are safe if one of the following are true: * Only one process accessing a particular LMDB file ever calls this method. * You use locking external to this library to ensure that only one process accessing the current LMDB file can be inside this function. """ rc = _lib.mdb_env_set_mapsize(self._env, map_size) if rc: raise _error("mdb_env_set_mapsize", rc) def close(self): """Close the environment, invalidating any open iterators, cursors, and transactions. Repeat calls to :py:meth:`close` have no effect. Equivalent to `mdb_env_close() <http://lmdb.tech/doc/group__mdb.html#ga4366c43ada8874588b6a62fbda2d1e95>`_ """ if self._env: if self._deps: while self._deps: self._deps.pop()._invalidate() self._deps = None if self._spare_txns: while self._spare_txns: _lib.mdb_txn_abort(self._spare_txns.pop()) self._spare_txns = None if self._dbs: self._dbs.clear() self._dbs = None self._db = None _lib.mdb_env_close(self._env) self._env = _invalid def path(self): """Directory path or file name prefix where this environment is stored. Equivalent to `mdb_env_get_path() <http://lmdb.tech/doc/group__mdb.html#gac699fdd8c4f8013577cb933fb6a757fe>`_ """ path = _ffi.new('char **') rc = _lib.mdb_env_get_path(self._env, path) if rc: raise _error("mdb_env_get_path", rc) return _ffi.string(path[0]).decode(sys.getfilesystemencoding()) def copy(self, path, compact=False, txn=None): """Make a consistent copy of the environment in the given destination directory. `compact`: If ``True``, perform compaction while copying: omit free pages and sequentially renumber all pages in output. This option consumes more CPU and runs more slowly than the default, but may produce a smaller output database. `txn`: If provided, the backup will be taken from the database with respect to that transaction, otherwise a temporary read-only transaction will be created. Note: this parameter being non-None is not available if the module was built with LMDB_PURE. Note: this parameter may be set only if compact=True. Equivalent to `mdb_env_copy2() or mdb_env_copy3() <http://lmdb.tech/doc/group__mdb.html#ga5d51d6130325f7353db0955dbedbc378>`_ """ flags = _lib.MDB_CP_COMPACT if compact else 0 if txn and not _have_patched_lmdb: raise TypeError("Non-patched LMDB doesn't support transaction with env.copy") if txn and not flags: raise TypeError("txn argument only compatible with compact=True") encoded = path.encode(sys.getfilesystemencoding()) if _have_patched_lmdb: rc = _lib.mdb_env_copy3(self._env, encoded, flags, txn._txn if txn else _ffi.NULL) if rc: raise _error("mdb_env_copy3", rc) else: rc = _lib.mdb_env_copy2(self._env, encoded, flags) if rc: raise _error("mdb_env_copy2", rc) def copyfd(self, fd, compact=False, txn=None): """Copy a consistent version of the environment to file descriptor `fd`. `compact`: If ``True``, perform compaction while copying: omit free pages and sequentially renumber all pages in output. This option consumes more CPU and runs more slowly than the default, but may produce a smaller output database. `txn`: If provided, the backup will be taken from the database with respect to that transaction, otherwise a temporary read-only transaction will be created. Note: this parameter being non-None is not available if the module was built with LMDB_PURE. Equivalent to `mdb_env_copyfd2() or mdb_env_copyfd3 <http://lmdb.tech/doc/group__mdb.html#ga5d51d6130325f7353db0955dbedbc378>`_ """ if txn and not _have_patched_lmdb: raise TypeError("Non-patched LMDB doesn't support transaction with env.copy") if is_win32: # Convert C library handle to kernel handle. fd = msvcrt.get_osfhandle(fd) flags = _lib.MDB_CP_COMPACT if compact else 0 if txn and not flags: raise TypeError("txn argument only compatible with compact=True") if _have_patched_lmdb: rc = _lib.mdb_env_copyfd3(self._env, fd, flags, txn._txn if txn else _ffi.NULL) if rc: raise _error("mdb_env_copyfd3", rc) else: rc = _lib.mdb_env_copyfd2(self._env, fd, flags) if rc: raise _error("mdb_env_copyfd2", rc) def sync(self, force=False): """Flush the data buffers to disk. Equivalent to `mdb_env_sync() <http://lmdb.tech/doc/group__mdb.html#ga85e61f05aa68b520cc6c3b981dba5037>`_ Data is always written to disk when :py:meth:`Transaction.commit` is called, but the operating system may keep it buffered. MDB always flushes the OS buffers upon commit as well, unless the environment was opened with `sync=False` or `metasync=False`. `force`: If ``True``, force a synchronous flush. Otherwise if the environment was opened with `sync=False` the flushes will be omitted, and with `map_async=True` they will be asynchronous. """ rc = _lib.mdb_env_sync(self._env, force) if rc: raise _error("mdb_env_sync", rc) def _convert_stat(self, st): """Convert a MDB_stat to a dict. """ return { "psize": st.ms_psize, "depth": st.ms_depth, "branch_pages": st.ms_branch_pages, "leaf_pages": st.ms_leaf_pages, "overflow_pages": st.ms_overflow_pages, "entries": st.ms_entries } def stat(self): """stat() Return some environment statistics for the default database as a dict: +--------------------+---------------------------------------+ | ``psize`` | Size of a database page in bytes. | +--------------------+---------------------------------------+ | ``depth`` | Height of the B-tree. | +--------------------+---------------------------------------+ | ``branch_pages`` | Number of internal (non-leaf) pages. | +--------------------+---------------------------------------+ | ``leaf_pages`` | Number of leaf pages. | +--------------------+---------------------------------------+ | ``overflow_pages`` | Number of overflow pages. | +--------------------+---------------------------------------+ | ``entries`` | Number of data items. | +--------------------+---------------------------------------+ Equivalent to `mdb_env_stat() <http://lmdb.tech/doc/group__mdb.html#gaf881dca452050efbd434cd16e4bae255>`_ """ st = _ffi.new('MDB_stat *') rc = _lib.mdb_env_stat(self._env, st) if rc: raise _error("mdb_env_stat", rc) return self._convert_stat(st) def info(self): """Return some nice environment information as a dict: +--------------------+---------------------------------------------+ | ``map_addr`` | Address of database map in RAM. | +--------------------+---------------------------------------------+ | ``map_size`` | Size of database map in RAM. | +--------------------+---------------------------------------------+ | ``last_pgno`` | ID of last used page. | +--------------------+---------------------------------------------+ | ``last_txnid`` | ID of last committed transaction. | +--------------------+---------------------------------------------+ | ``max_readers`` | Number of reader slots allocated in the | | | lock file. Equivalent to the value of | | | `maxreaders=` specified by the first | | | process opening the Environment. | +--------------------+---------------------------------------------+ | ``num_readers`` | Maximum number of reader slots in | | | simultaneous use since the lock file was | | | initialized. | +--------------------+---------------------------------------------+ Equivalent to `mdb_env_info() <http://lmdb.tech/doc/group__mdb.html#ga18769362c7e7d6cf91889a028a5c5947>`_ """ info = _ffi.new('MDB_envinfo *') rc = _lib.mdb_env_info(self._env, info) if rc: raise _error("mdb_env_info", rc) return { "map_addr": int(_ffi.cast('long', info.me_mapaddr)), "map_size": info.me_mapsize, "last_pgno": info.me_last_pgno, "last_txnid": info.me_last_txnid, "max_readers": info.me_maxreaders, "num_readers": info.me_numreaders } def flags(self): """Return a dict describing Environment constructor flags used to instantiate this environment.""" flags_ = _ffi.new('unsigned int[]', 1) rc = _lib.mdb_env_get_flags(self._env, flags_) if rc: raise _error("mdb_env_get_flags", rc) flags = flags_[0] return { 'subdir': not (flags & _lib.MDB_NOSUBDIR), 'readonly': bool(flags & _lib.MDB_RDONLY), 'metasync': not (flags & _lib.MDB_NOMETASYNC), 'sync': not (flags & _lib.MDB_NOSYNC), 'map_async': bool(flags & _lib.MDB_MAPASYNC), 'readahead': not (flags & _lib.MDB_NORDAHEAD), 'writemap': bool(flags & _lib.MDB_WRITEMAP), 'meminit': not (flags & _lib.MDB_NOMEMINIT), 'lock': not (flags & _lib.MDB_NOLOCK), } def max_key_size(self): """Return the maximum size in bytes of a record's key part. This matches the ``MDB_MAXKEYSIZE`` constant set at compile time.""" return _lib.mdb_env_get_maxkeysize(self._env) def max_readers(self): """Return the maximum number of readers specified during open of the environment by the first process. This is the same as `max_readers=` specified to the constructor if this process was the first to open the environment.""" readers_ = _ffi.new('unsigned int[]', 1) rc = _lib.mdb_env_get_maxreaders(self._env, readers_) if rc: raise _error("mdb_env_get_maxreaders", rc) return readers_[0] def readers(self): """Return a multi line Unicode string describing the current state of the reader lock table.""" _callbacks.msg_func = [] try: rc = _lib.mdb_reader_list(self._env, _msg_func, _ffi.NULL) if rc: raise _error("mdb_reader_list", rc) return UnicodeType().join(_callbacks.msg_func) finally: del _callbacks.msg_func def reader_check(self): """Search the reader lock table for stale entries, for example due to a crashed process. Returns the number of stale entries that were cleared. """ reaped = _ffi.new('int[]', 1) rc = _lib.mdb_reader_check(self._env, reaped) if rc: raise _error('mdb_reader_check', rc) return reaped[0] def open_db(self, key=None, txn=None, reverse_key=False, dupsort=False, create=True, integerkey=False, integerdup=False, dupfixed=False): """ Open a database, returning an instance of :py:class:`_Database`. Repeat :py:meth:`Environment.open_db` calls for the same name will return the same handle. As a special case, the main database is always open. Equivalent to `mdb_dbi_open() <http://lmdb.tech/doc/group__mdb.html#gac08cad5b096925642ca359a6d6f0562a>`_ Named databases are implemented by *storing a special descriptor in the main database*. All databases in an environment *share the same file*. Because the descriptor is present in the main database, attempts to create a named database will fail if a key matching the database's name already exists. Furthermore *the key is visible to lookups and enumerations*. If your main database keyspace conflicts with the names you use for named databases, then move the contents of your main database to another named database. :: >>> env = lmdb.open('/tmp/test', max_dbs=2) >>> with env.begin(write=True) as txn ... txn.put('somename', 'somedata') >>> # Error: database cannot share name of existing key! >>> subdb = env.open_db('somename') A newly created database will not exist if the transaction that created it aborted, nor if another process deleted it. The handle resides in the shared environment, it is not owned by the current transaction or process. Only one thread should call this function; it is not mutex-protected in a read-only transaction. The `dupsort`, `integerkey`, `integerdup`, and `dupfixed` parameters are ignored if the database already exists. The state of those settings are persistent and immutable per database. See :py:meth:`_Database.flags` to view the state of those options for an opened database. A consequence of the immutability of these flags is that the default non-named database will never have these flags set. Preexisting transactions, other than the current transaction and any parents, must not use the new handle, nor must their children. `key`: Bytestring database name. If ``None``, indicates the main database should be returned, otherwise indicates a named database should be created inside the main database. In other words, *a key representing the database will be visible in the main database, and the database name cannot conflict with any existing key.* `txn`: Transaction used to create the database if it does not exist. If unspecified, a temporarily write transaction is used. Do not call :py:meth:`open_db` from inside an existing transaction without supplying it here. Note the passed transaction must have `write=True`. `reverse_key`: If ``True``, keys are compared from right to left (e.g. DNS names). `dupsort`: Duplicate keys may be used in the database. (Or, from another perspective, keys may have multiple data items, stored in sorted order.) By default keys must be unique and may have only a single data item. `create`: If ``True``, create the database if it doesn't exist, otherwise raise an exception. `integerkey`: If ``True``, indicates keys in the database are C unsigned or ``size_t`` integers encoded in native byte order. Keys must all be either unsigned or ``size_t``, they cannot be mixed in a single database. `integerdup`: If ``True``, values in the database are C unsigned or ``size_t`` integers encode din native byte order. Implies `dupsort` and `dupfixed` are ``True``. `dupfixed`: If ``True``, values for each key in database are of fixed size, allowing each additional duplicate value for a key to be stored without a header indicating its size. Implies `dupsort` is ``True``. """ if isinstance(key, UnicodeType): raise TypeError('key must be bytes') if key is None and (reverse_key or dupsort or integerkey or integerdup or dupfixed): raise ValueError('May not set flags on the main database') db = self._dbs.get(key) if db: return db if integerdup: dupfixed = True if dupfixed: dupsort = True if txn: db = _Database(self, txn, key, reverse_key, dupsort, create, integerkey, integerdup, dupfixed) else: try: self._creating_db_in_readonly = True with self.begin(write=not self.readonly) as txn: db = _Database(self, txn, key, reverse_key, dupsort, create, integerkey, integerdup, dupfixed) finally: self._creating_db_in_readonly = False self._dbs[key] = db return db def begin(self, db=None, parent=None, write=False, buffers=False): """Shortcut for :py:class:`lmdb.Transaction`""" return Transaction(self, db, parent, write, buffers) class _Database(object): """ Internal database handle. This class is opaque, save a single method. Should not be constructed directly. Use :py:meth:`Environment.open_db` instead. """ def __init__(self, env, txn, name, reverse_key, dupsort, create, integerkey, integerdup, dupfixed): env._deps.add(self) self._deps = set() self._name = name flags = 0 if reverse_key: flags |= _lib.MDB_REVERSEKEY if dupsort: flags |= _lib.MDB_DUPSORT if create: flags |= _lib.MDB_CREATE if integerkey: flags |= _lib.MDB_INTEGERKEY if integerdup: flags |= _lib.MDB_INTEGERDUP if dupfixed: flags |= _lib.MDB_DUPFIXED dbipp = _ffi.new('MDB_dbi *') self._dbi = None rc = _lib.mdb_dbi_open(txn._txn, name or _ffi.NULL, flags, dbipp) if rc: raise _error("mdb_dbi_open", rc) self._dbi = dbipp[0] self._load_flags(txn) def _load_flags(self, txn): """Load MDB's notion of the database flags.""" flags_ = _ffi.new('unsigned int[]', 1) rc = _lib.mdb_dbi_flags(txn._txn, self._dbi, flags_) if rc: raise _error("mdb_dbi_flags", rc) self._flags = flags_[0] def flags(self, *args): """Return the database's associated flags as a dict of _Database constructor kwargs.""" if len(args) > 1: raise TypeError('flags takes 0 or 1 arguments') return { 'reverse_key': bool(self._flags & _lib.MDB_REVERSEKEY), 'dupsort': bool(self._flags & _lib.MDB_DUPSORT), 'integerkey': bool(self._flags & _lib.MDB_INTEGERKEY), 'integerdup': bool(self._flags & _lib.MDB_INTEGERDUP), 'dupfixed': bool(self._flags & _lib.MDB_DUPFIXED), } def _invalidate(self): self._dbi = _invalid open = Environment class Transaction(object): """ A transaction object. All operations require a transaction handle, transactions may be read-only or read-write. Write transactions may not span threads. Transaction objects implement the context manager protocol, so that reliable release of the transaction happens even in the face of unhandled exceptions: .. code-block:: python # Transaction aborts correctly: with env.begin(write=True) as txn: crash() # Transaction commits automatically: with env.begin(write=True) as txn: txn.put('a', 'b') Equivalent to `mdb_txn_begin() <http://lmdb.tech/doc/group__mdb.html#gad7ea55da06b77513609efebd44b26920>`_ `env`: Environment the transaction should be on. `db`: Default named database to operate on. If unspecified, defaults to the environment's main database. Can be overridden on a per-call basis below. `parent`: ``None``, or a parent transaction (see lmdb.h). `write`: Transactions are read-only by default. To modify the database, you must pass `write=True`. This flag is ignored if :py:class:`Environment` was opened with ``readonly=True``. `buffers`: If ``True``, indicates :py:func:`buffer` objects should be yielded instead of bytestrings. This setting applies to the :py:class:`Transaction` instance itself and any :py:class:`Cursors <Cursor>` created within the transaction. This feature significantly improves performance, since MDB has a zero-copy design, but it requires care when manipulating the returned buffer objects. The benefit of this facility is diminished when using small keys and values. """ # If constructor fails, then __del__ will attempt to access these # attributes. _env = _invalid _txn = _invalid _parent = None _write = False # Mutations occurred since transaction start. Required to know when Cursor # key/value must be refreshed. _mutations = 0 def __init__(self, env, db=None, parent=None, write=False, buffers=False): env._deps.add(self) self.env = env # hold ref self._db = db or env._db self._env = env._env self._key = _ffi.new('MDB_val *') self._val = _ffi.new('MDB_val *') self._to_py = _mvbuf if buffers else _mvstr self._deps = set() if parent: self._parent = parent parent_txn = parent._txn parent._deps.add(self) else: parent_txn = _ffi.NULL if write: if env.readonly: msg = 'Cannot start write transaction with read-only env' raise _error(msg, _lib.EACCES) txnpp = _ffi.new('MDB_txn **') rc = _lib.mdb_txn_begin(self._env, parent_txn, 0, txnpp) if rc: raise _error("mdb_txn_begin", rc) self._txn = txnpp[0] self._write = True else: try: # Exception catch in order to avoid racy 'if txns:' test if env._creating_db_in_readonly: # Don't use spare txns for creating a DB when read-only raise IndexError self._txn = env._spare_txns.pop() env._max_spare_txns += 1 rc = _lib.mdb_txn_renew(self._txn) if rc: while self._deps: self._deps.pop()._invalidate() _lib.mdb_txn_abort(self._txn) self._txn = _invalid self._invalidate() raise _error("mdb_txn_renew", rc) except IndexError: txnpp = _ffi.new('MDB_txn **') flags = _lib.MDB_RDONLY rc = _lib.mdb_txn_begin(self._env, parent_txn, flags, txnpp) if rc: raise _error("mdb_txn_begin", rc) self._txn = txnpp[0] def _invalidate(self): if self._txn: self.abort() self.env._deps.discard(self) self._parent = None self._env = _invalid def __del__(self): self.abort() def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): if exc_type: self.abort() else: self.commit() def id(self): """id() Return the transaction's ID. This returns the identifier associated with this transaction. For a read-only transaction, this corresponds to the snapshot being read; concurrent readers will frequently have the same transaction ID. """ return _lib.mdb_txn_id(self._txn) def stat(self, db): """stat(db) Return statistics like :py:meth:`Environment.stat`, except for a single DBI. `db` must be a database handle returned by :py:meth:`open_db`. """ st = _ffi.new('MDB_stat *') rc = _lib.mdb_stat(self._txn, db._dbi, st) if rc: raise _error('mdb_stat', rc) return self.env._convert_stat(st) def drop(self, db, delete=True): """Delete all keys in a named database and optionally delete the named database itself. Deleting the named database causes it to become unavailable, and invalidates existing cursors. Equivalent to `mdb_drop() <http://lmdb.tech/doc/group__mdb.html#gab966fab3840fc54a6571dfb32b00f2db>`_ """ while db._deps: db._deps.pop()._invalidate() rc = _lib.mdb_drop(self._txn, db._dbi, delete) self._mutations += 1 if rc: raise _error("mdb_drop", rc) if db._name in self.env._dbs: del self.env._dbs[db._name] def _cache_spare(self): # In order to avoid taking and maintaining a lock, a race is allowed # below which may result in more spare txns than desired. It seems # unlikely the race could ever result in a large amount of spare txns, # and in any case a correctly configured program should not be opening # more read-only transactions than there are configured spares. if self.env._max_spare_txns > 0: _lib.mdb_txn_reset(self._txn) self.env._spare_txns.append(self._txn) self.env._max_spare_txns -= 1 self._txn = _invalid self._invalidate() return True return False def commit(self): """Commit the pending transaction. Equivalent to `mdb_txn_commit() <http://lmdb.tech/doc/group__mdb.html#ga846fbd6f46105617ac9f4d76476f6597>`_ """ while self._deps: self._deps.pop()._invalidate() if self._write or not self._cache_spare(): rc = _lib.mdb_txn_commit(self._txn) self._txn = _invalid if rc: raise _error("mdb_txn_commit", rc) self._invalidate() def abort(self): """Abort the pending transaction. Repeat calls to :py:meth:`abort` have no effect after a previously successful :py:meth:`commit` or :py:meth:`abort`, or after the associated :py:class:`Environment` has been closed. Equivalent to `mdb_txn_abort() <http://lmdb.tech/doc/group__mdb.html#ga73a5938ae4c3239ee11efa07eb22b882>`_ """ if self._txn: while self._deps: self._deps.pop()._invalidate() if self._write or not self._cache_spare(): rc = _lib.mdb_txn_abort(self._txn) self._txn = _invalid if rc: raise _error("mdb_txn_abort", rc) self._invalidate() def get(self, key, default=None, db=None): """Fetch the first value matching `key`, returning `default` if `key` does not exist. A cursor must be used to fetch all values for a key in a `dupsort=True` database. Equivalent to `mdb_get() <http://lmdb.tech/doc/group__mdb.html#ga8bf10cd91d3f3a83a34d04ce6b07992d>`_ """ rc = _lib.pymdb_get(self._txn, (db or self._db)._dbi, key, len(key), self._val) if rc: if rc == _lib.MDB_NOTFOUND: return default raise _error("mdb_cursor_get", rc) preload(self._val) return self._to_py(self._val) def put(self, key, value, dupdata=True, overwrite=True, append=False, db=None): """Store a record, returning ``True`` if it was written, or ``False`` to indicate the key was already present and `overwrite=False`. On success, the cursor is positioned on the new record. Equivalent to `mdb_put() <http://lmdb.tech/doc/group__mdb.html#ga4fa8573d9236d54687c61827ebf8cac0>`_ `key`: Bytestring key to store. `value`: Bytestring value to store. `dupdata`: If ``False`` and database was opened with `dupsort=True`, will return ``False`` if the key already has that value. In other words, this only affects the return value. `overwrite`: If ``False``, do not overwrite any existing matching key. If False and writing to a dupsort=True database, this will not add a value to the key and this function will return ``False``. `append`: If ``True``, append the pair to the end of the database without comparing its order first. Appending a key that is not greater than the highest existing key will fail and return ``False``. `db`: Named database to operate on. If unspecified, defaults to the database given to the :py:class:`Transaction` constructor. """ flags = 0 if not dupdata: flags |= _lib.MDB_NODUPDATA if not overwrite: flags |= _lib.MDB_NOOVERWRITE if append: flags |= _lib.MDB_APPEND rc = _lib.pymdb_put(self._txn, (db or self._db)._dbi, key, len(key), value, len(value), flags) self._mutations += 1 if rc: if rc == _lib.MDB_KEYEXIST: return False raise _error("mdb_put", rc) return True def replace(self, key, value, db=None): """Use a temporary cursor to invoke :py:meth:`Cursor.replace`. `db`: Named database to operate on. If unspecified, defaults to the database given to the :py:class:`Transaction` constructor. """ with Cursor(db or self._db, self) as curs: return curs.replace(key, value) def pop(self, key, db=None): """Use a temporary cursor to invoke :py:meth:`Cursor.pop`. `db`: Named database to operate on. If unspecified, defaults to the database given to the :py:class:`Transaction` constructor. """ with Cursor(db or self._db, self) as curs: return curs.pop(key) def delete(self, key, value=EMPTY_BYTES, db=None): """Delete a key from the database. Equivalent to `mdb_del() <http://lmdb.tech/doc/group__mdb.html#gab8182f9360ea69ac0afd4a4eaab1ddb0>`_ `key`: The key to delete. value: If the database was opened with dupsort=True and value is not the empty bytestring, then delete elements matching only this `(key, value)` pair, otherwise all values for key are deleted. Returns True if at least one key was deleted. """ if value is None: # for bug-compatibility with cpython impl value = EMPTY_BYTES rc = _lib.pymdb_del(self._txn, (db or self._db)._dbi, key, len(key), value, len(value)) self._mutations += 1 if rc: if rc == _lib.MDB_NOTFOUND: return False raise _error("mdb_del", rc) return True def cursor(self, db=None): """Shortcut for ``lmdb.Cursor(db, self)``""" return Cursor(db or self._db, self) class Cursor(object): """ Structure for navigating a database. Equivalent to `mdb_cursor_open() <http://lmdb.tech/doc/group__mdb.html#ga9ff5d7bd42557fd5ee235dc1d62613aa>`_ `db`: :py:class:`_Database` to navigate. `txn`: :py:class:`Transaction` to navigate. As a convenience, :py:meth:`Transaction.cursor` can be used to quickly return a cursor: :: >>> env = lmdb.open('/tmp/foo') >>> child_db = env.open_db('child_db') >>> with env.begin() as txn: ... cursor = txn.cursor() # Cursor on main database. ... cursor2 = txn.cursor(child_db) # Cursor on child database. Cursors start in an unpositioned state. If :py:meth:`iternext` or :py:meth:`iterprev` are used in this state, iteration proceeds from the start or end respectively. Iterators directly position using the cursor, meaning strange behavior results when multiple iterators exist on the same cursor. .. note:: From the perspective of the Python binding, cursors return to an 'unpositioned' state once any scanning or seeking method (e.g. :py:meth:`next`, :py:meth:`prev_nodup`, :py:meth:`set_range`) returns ``False`` or raises an exception. This is primarily to ensure safe, consistent semantics in the face of any error condition. When the Cursor returns to an unpositioned state, its :py:meth:`key` and :py:meth:`value` return empty strings to indicate there is no active position, although internally the LMDB cursor may still have a valid position. This may lead to slightly surprising behaviour when iterating the values for a `dupsort=True` database's keys, since methods such as :py:meth:`iternext_dup` will cause Cursor to appear unpositioned, despite it returning ``False`` only to indicate there are no more values for the current key. In that case, simply calling :py:meth:`next` would cause iteration to resume at the next available key. This behaviour may change in future. Iterator methods such as :py:meth:`iternext` and :py:meth:`iterprev` accept `keys` and `values` arguments. If both are ``True``, then the value of :py:meth:`item` is yielded on each iteration. If only `keys` is ``True``, :py:meth:`key` is yielded, otherwise only :py:meth:`value` is yielded. Prior to iteration, a cursor can be positioned anywhere in the database: :: >>> with env.begin() as txn: ... cursor = txn.cursor() ... if not cursor.set_range('5'): # Position at first key >= '5'. ... print('Not found!') ... else: ... for key, value in cursor: # Iterate from first key >= '5'. ... print((key, value)) Iteration is not required to navigate, and sometimes results in ugly or inefficient code. In cases where the iteration order is not obvious, or is related to the data being read, use of :py:meth:`set_key`, :py:meth:`set_range`, :py:meth:`key`, :py:meth:`value`, and :py:meth:`item` may be preferable: :: >>> # Record the path from a child to the root of a tree. >>> path = ['child14123'] >>> while path[-1] != 'root': ... assert cursor.set_key(path[-1]), \\ ... 'Tree is broken! Path: %s' % (path,) ... path.append(cursor.value()) """ def __init__(self, db, txn): db._deps.add(self) txn._deps.add(self) self.db = db # hold ref self.txn = txn # hold ref self._dbi = db._dbi self._txn = txn._txn self._key = _ffi.new('MDB_val *') self._val = _ffi.new('MDB_val *') self._valid = False self._to_py = txn._to_py curpp = _ffi.new('MDB_cursor **') self._cur = None rc = _lib.mdb_cursor_open(self._txn, self._dbi, curpp) if rc: raise _error("mdb_cursor_open", rc) self._cur = curpp[0] # If Transaction.mutations!=last_mutation, must MDB_GET_CURRENT to # refresh `key' and `val'. self._last_mutation = txn._mutations def _invalidate(self): if self._cur: _lib.mdb_cursor_close(self._cur) self.db._deps.discard(self) self.txn._deps.discard(self) self._cur = _invalid self._dbi = _invalid self._txn = _invalid def __del__(self): self._invalidate() def close(self): """Close the cursor, freeing its associated resources.""" self._invalidate() def __enter__(self): return self def __exit__(self, _1, _2, _3): self._invalidate() def key(self): """Return the current key.""" # Must refresh `key` and `val` following mutation. if self._last_mutation != self.txn._mutations: self._cursor_get(_lib.MDB_GET_CURRENT) return self._to_py(self._key) def value(self): """Return the current value.""" # Must refresh `key` and `val` following mutation. if self._last_mutation != self.txn._mutations: self._cursor_get(_lib.MDB_GET_CURRENT) preload(self._val) return self._to_py(self._val) def item(self): """Return the current `(key, value)` pair.""" # Must refresh `key` and `val` following mutation. if self._last_mutation != self.txn._mutations: self._cursor_get(_lib.MDB_GET_CURRENT) preload(self._val) return self._to_py(self._key), self._to_py(self._val) def _iter(self, op, keys, values): if not values: get = self.key elif not keys: get = self.value else: get = self.item cur = self._cur key = self._key val = self._val rc = 0 while self._valid: yield get() rc = _lib.mdb_cursor_get(cur, key, val, op) self._valid = not rc if rc: self._key.mv_size = 0 self._val.mv_size = 0 if rc != _lib.MDB_NOTFOUND: raise _error("mdb_cursor_get", rc) def iternext(self, keys=True, values=True): """Return a forward iterator that yields the current element before calling :py:meth:`next`, repeating until the end of the database is reached. As a convenience, :py:class:`Cursor` implements the iterator protocol by automatically returning a forward iterator when invoked: :: >>> # Equivalent: >>> it = iter(cursor) >>> it = cursor.iternext(keys=True, values=True) If the cursor is not yet positioned, it is moved to the first key in the database, otherwise iteration proceeds from the current position. """ if not self._valid: self.first() return self._iter(_lib.MDB_NEXT, keys, values) __iter__ = iternext def iternext_dup(self, keys=False, values=True): """Return a forward iterator that yields the current value ("duplicate") of the current key before calling :py:meth:`next_dup`, repeating until the last value of the current key is reached. Only meaningful for databases opened with `dupsort=True`. .. code-block:: python if not cursor.set_key("foo"): print("No values found for 'foo'") else: for idx, data in enumerate(cursor.iternext_dup()): print("%d'th value for 'foo': %s" % (idx, data)) """ return self._iter(_lib.MDB_NEXT_DUP, keys, values) def iternext_nodup(self, keys=True, values=False): """Return a forward iterator that yields the current value ("duplicate") of the current key before calling :py:meth:`next_nodup`, repeating until the end of the database is reached. Only meaningful for databases opened with `dupsort=True`. If the cursor is not yet positioned, it is moved to the first key in the database, otherwise iteration proceeds from the current position. .. code-block:: python for key in cursor.iternext_nodup(): print("Key '%s' has %d values" % (key, cursor.count())) """ if not self._valid: self.first() return self._iter(_lib.MDB_NEXT_NODUP, keys, values) def iterprev(self, keys=True, values=True): """Return a reverse iterator that yields the current element before calling :py:meth:`prev`, until the start of the database is reached. If the cursor is not yet positioned, it is moved to the last key in the database, otherwise iteration proceeds from the current position. :: >>> with env.begin() as txn: ... for i, (key, value) in enumerate(txn.cursor().iterprev()): ... print('%dth last item is (%r, %r)' % (1+i, key, value)) """ if not self._valid: self.last() return self._iter(_lib.MDB_PREV, keys, values) def iterprev_dup(self, keys=False, values=True): """Return a reverse iterator that yields the current value ("duplicate") of the current key before calling :py:meth:`prev_dup`, repeating until the first value of the current key is reached. Only meaningful for databases opened with `dupsort=True`. """ return self._iter(_lib.MDB_PREV_DUP, keys, values) def iterprev_nodup(self, keys=True, values=False): """Return a reverse iterator that yields the current value ("duplicate") of the current key before calling :py:meth:`prev_nodup`, repeating until the start of the database is reached. If the cursor is not yet positioned, it is moved to the last key in the database, otherwise iteration proceeds from the current position. Only meaningful for databases opened with `dupsort=True`. """ if not self._valid: self.last() return self._iter(_lib.MDB_PREV_NODUP, keys, values) def _cursor_get(self, op): rc = _lib.mdb_cursor_get(self._cur, self._key, self._val, op) self._valid = v = not rc self._last_mutation = self.txn._mutations if rc: self._key.mv_size = 0 self._val.mv_size = 0 if rc != _lib.MDB_NOTFOUND: if not (rc == _lib.EINVAL and op == _lib.MDB_GET_CURRENT): raise _error("mdb_cursor_get", rc) return v def _cursor_get_kv(self, op, k, v): rc = _lib.pymdb_cursor_get(self._cur, k, len(k), v, len(v), self._key, self._val, op) self._valid = v = not rc if rc: self._key.mv_size = 0 self._val.mv_size = 0 if rc != _lib.MDB_NOTFOUND: if not (rc == _lib.EINVAL and op == _lib.MDB_GET_CURRENT): raise _error("mdb_cursor_get", rc) return v def first(self): """Move to the first key in the database, returning ``True`` on success or ``False`` if the database is empty. If the database was opened with `dupsort=True` and the key contains duplicates, the cursor is positioned on the first value ("duplicate"). Equivalent to `mdb_cursor_get() <http://lmdb.tech/doc/group__mdb.html#ga48df35fb102536b32dfbb801a47b4cb0>`_ with `MDB_FIRST <http://lmdb.tech/doc/group__mdb.html#ga1206b2af8b95e7f6b0ef6b28708c9127>`_ """ return self._cursor_get(_lib.MDB_FIRST) def first_dup(self): """Move to the first value ("duplicate") for the current key, returning ``True`` on success or ``False`` if the database is empty. Only meaningful for databases opened with `dupsort=True`. Equivalent to `mdb_cursor_get() <http://lmdb.tech/doc/group__mdb.html#ga48df35fb102536b32dfbb801a47b4cb0>`_ with `MDB_FIRST_DUP <http://lmdb.tech/doc/group__mdb.html#ga1206b2af8b95e7f6b0ef6b28708c9127>`_ """ return self._cursor_get(_lib.MDB_FIRST_DUP) def last(self): """Move to the last key in the database, returning ``True`` on success or ``False`` if the database is empty. If the database was opened with `dupsort=True` and the key contains duplicates, the cursor is positioned on the last value ("duplicate"). Equivalent to `mdb_cursor_get() <http://lmdb.tech/doc/group__mdb.html#ga48df35fb102536b32dfbb801a47b4cb0>`_ with `MDB_LAST <http://lmdb.tech/doc/group__mdb.html#ga1206b2af8b95e7f6b0ef6b28708c9127>`_ """ return self._cursor_get(_lib.MDB_LAST) def last_dup(self): """Move to the last value ("duplicate") for the current key, returning ``True`` on success or ``False`` if the database is empty. Only meaningful for databases opened with `dupsort=True`. Equivalent to `mdb_cursor_get() <http://lmdb.tech/doc/group__mdb.html#ga48df35fb102536b32dfbb801a47b4cb0>`_ with `MDB_LAST_DUP <http://lmdb.tech/doc/group__mdb.html#ga1206b2af8b95e7f6b0ef6b28708c9127>`_ """ return self._cursor_get(_lib.MDB_LAST_DUP) def prev(self): """Move to the previous element, returning ``True`` on success or ``False`` if there is no previous item. For databases opened with `dupsort=True`, moves to the previous data item ("duplicate") for the current key if one exists, otherwise moves to the previous key. Equivalent to `mdb_cursor_get() <http://lmdb.tech/doc/group__mdb.html#ga48df35fb102536b32dfbb801a47b4cb0>`_ with `MDB_PREV <http://lmdb.tech/doc/group__mdb.html#ga1206b2af8b95e7f6b0ef6b28708c9127>`_ """ return self._cursor_get(_lib.MDB_PREV) def prev_dup(self): """Move to the previous value ("duplicate") of the current key, returning ``True`` on success or ``False`` if there is no previous value. Only meaningful for databases opened with `dupsort=True`. Equivalent to `mdb_cursor_get() <http://lmdb.tech/doc/group__mdb.html#ga48df35fb102536b32dfbb801a47b4cb0>`_ with `MDB_PREV_DUP <http://lmdb.tech/doc/group__mdb.html#ga1206b2af8b95e7f6b0ef6b28708c9127>`_ """ return self._cursor_get(_lib.MDB_PREV_DUP) def prev_nodup(self): """Move to the last value ("duplicate") of the previous key, returning ``True`` on success or ``False`` if there is no previous key. Only meaningful for databases opened with `dupsort=True`. Equivalent to `mdb_cursor_get() <http://lmdb.tech/doc/group__mdb.html#ga48df35fb102536b32dfbb801a47b4cb0>`_ with `MDB_PREV_NODUP <http://lmdb.tech/doc/group__mdb.html#ga1206b2af8b95e7f6b0ef6b28708c9127>`_ """ return self._cursor_get(_lib.MDB_PREV_NODUP) def next(self): """Move to the next element, returning ``True`` on success or ``False`` if there is no next element. For databases opened with `dupsort=True`, moves to the next value ("duplicate") for the current key if one exists, otherwise moves to the first value of the next key. Equivalent to `mdb_cursor_get() <http://lmdb.tech/doc/group__mdb.html#ga48df35fb102536b32dfbb801a47b4cb0>`_ with `MDB_NEXT <http://lmdb.tech/doc/group__mdb.html#ga1206b2af8b95e7f6b0ef6b28708c9127>`_ """ return self._cursor_get(_lib.MDB_NEXT) def next_dup(self): """Move to the next value ("duplicate") of the current key, returning ``True`` on success or ``False`` if there is no next value. Only meaningful for databases opened with `dupsort=True`. Equivalent to `mdb_cursor_get() <http://lmdb.tech/doc/group__mdb.html#ga48df35fb102536b32dfbb801a47b4cb0>`_ with `MDB_NEXT_DUP <http://lmdb.tech/doc/group__mdb.html#ga1206b2af8b95e7f6b0ef6b28708c9127>`_ """ return self._cursor_get(_lib.MDB_NEXT_DUP) def next_nodup(self): """Move to the first value ("duplicate") of the next key, returning ``True`` on success or ``False`` if there is no next key. Only meaningful for databases opened with `dupsort=True`. Equivalent to `mdb_cursor_get() <http://lmdb.tech/doc/group__mdb.html#ga48df35fb102536b32dfbb801a47b4cb0>`_ with `MDB_NEXT_NODUP <http://lmdb.tech/doc/group__mdb.html#ga1206b2af8b95e7f6b0ef6b28708c9127>`_ """ return self._cursor_get(_lib.MDB_NEXT_NODUP) def set_key(self, key): """Seek exactly to `key`, returning ``True`` on success or ``False`` if the exact key was not found. It is an error to :py:meth:`set_key` the empty bytestring. For databases opened with `dupsort=True`, moves to the first value ("duplicate") for the key. Equivalent to `mdb_cursor_get() <http://lmdb.tech/doc/group__mdb.html#ga48df35fb102536b32dfbb801a47b4cb0>`_ with `MDB_SET_KEY <http://lmdb.tech/doc/group__mdb.html#ga1206b2af8b95e7f6b0ef6b28708c9127>`_ """ return self._cursor_get_kv(_lib.MDB_SET_KEY, key, EMPTY_BYTES) def set_key_dup(self, key, value): """Seek exactly to `(key, value)`, returning ``True`` on success or ``False`` if the exact key and value was not found. It is an error to :py:meth:`set_key` the empty bytestring. Only meaningful for databases opened with `dupsort=True`. Equivalent to `mdb_cursor_get() <http://lmdb.tech/doc/group__mdb.html#ga48df35fb102536b32dfbb801a47b4cb0>`_ with `MDB_GET_BOTH <http://lmdb.tech/doc/group__mdb.html#ga1206b2af8b95e7f6b0ef6b28708c9127>`_ """ return self._cursor_get_kv(_lib.MDB_GET_BOTH, key, value) def get(self, key, default=None): """Equivalent to :py:meth:`set_key()`, except :py:meth:`value` is returned when `key` is found, otherwise `default`. """ if self._cursor_get_kv(_lib.MDB_SET_KEY, key, EMPTY_BYTES): return self.value() return default def getmulti(self, keys, dupdata=False, dupfixed_bytes=None, keyfixed=False): """Returns an iterable of `(key, value)` 2-tuples containing results for each key in the iterable `keys`. `keys`: Iterable to read keys from. `dupdata`: If ``True`` and database was opened with `dupsort=True`, read all duplicate values for each matching key. `dupfixed_bytes`: If database was opened with `dupsort=True` and `dupfixed=True`, accepts the size of each value, in bytes, and applies an optimization reducing the number of database lookups. `keyfixed`: If `dupfixed_bytes` is set and database key size is fixed, setting keyfixed=True will result in this function returning a memoryview to the results as a structured array of bytes. The structured array can be instantiated by passing the memoryview buffer to NumPy: .. code-block:: python key_bytes, val_bytes = 4, 8 dtype = np.dtype([(f'S{key_bytes}', f'S{val_bytes}}')]) arr = np.frombuffer( cur.getmulti(keys, dupdata=True, dupfixed_bytes=val_bytes, keyfixed=True) ) """ if dupfixed_bytes and dupfixed_bytes < 0: raise _error("dupfixed_bytes must be a positive integer.") elif (dupfixed_bytes or keyfixed) and not dupdata: raise _error("dupdata is required for dupfixed_bytes/key_bytes.") elif keyfixed and not dupfixed_bytes: raise _error("dupfixed_bytes is required for key_bytes.") if dupfixed_bytes: get_op = _lib.MDB_GET_MULTIPLE next_op = _lib.MDB_NEXT_MULTIPLE else: get_op = _lib.MDB_GET_CURRENT next_op = _lib.MDB_NEXT_DUP a = bytearray() lst = list() for key in keys: if self.set_key(key): while self._valid: self._cursor_get(get_op) preload(self._val) key = self._to_py(self._key) val = self._to_py(self._val) if dupfixed_bytes: gen = ( (key, val[i:i + dupfixed_bytes]) for i in range(0, len(val), dupfixed_bytes)) if keyfixed: for k, v in gen: a.extend(k + v) else: for k, v in gen: lst.append((k, v)) else: lst.append((key, val)) if dupdata: self._cursor_get(next_op) else: break if keyfixed: return memoryview(a) else: return lst def set_range(self, key): """Seek to the first key greater than or equal to `key`, returning ``True`` on success, or ``False`` to indicate key was past end of database. Behaves like :py:meth:`first` if `key` is the empty bytestring. For databases opened with `dupsort=True`, moves to the first value ("duplicate") for the key. Equivalent to `mdb_cursor_get() <http://lmdb.tech/doc/group__mdb.html#ga48df35fb102536b32dfbb801a47b4cb0>`_ with `MDB_SET_RANGE <http://lmdb.tech/doc/group__mdb.html#ga1206b2af8b95e7f6b0ef6b28708c9127>`_ """ if not key: return self.first() return self._cursor_get_kv(_lib.MDB_SET_RANGE, key, EMPTY_BYTES) def set_range_dup(self, key, value): """Seek to the first key/value pair greater than or equal to `key`, returning ``True`` on success, or ``False`` to indicate that `value` was past the last value of `key` or that `(key, value)` was past the end end of database. Only meaningful for databases opened with `dupsort=True`. Equivalent to `mdb_cursor_get() <http://lmdb.tech/doc/group__mdb.html#ga48df35fb102536b32dfbb801a47b4cb0>`_ with `MDB_GET_BOTH_RANGE <http://lmdb.tech/doc/group__mdb.html#ga1206b2af8b95e7f6b0ef6b28708c9127>`_ """ rc = self._cursor_get_kv(_lib.MDB_GET_BOTH_RANGE, key, value) # issue #126: MDB_GET_BOTH_RANGE does not satisfy its documentation, # and fails to update `key` and `value` on success. Therefore # explicitly call MDB_GET_CURRENT after MDB_GET_BOTH_RANGE. self._cursor_get(_lib.MDB_GET_CURRENT) return rc def delete(self, dupdata=False): """Delete the current element and move to the next, returning ``True`` on success or ``False`` if the database was empty. If `dupdata` is ``True``, delete all values ("duplicates") for the current key, otherwise delete only the currently positioned value. Only meaningful for databases opened with `dupsort=True`. Equivalent to `mdb_cursor_del() <http://lmdb.tech/doc/group__mdb.html#ga26a52d3efcfd72e5bf6bd6960bf75f95>`_ """ v = self._valid if v: flags = _lib.MDB_NODUPDATA if dupdata else 0 rc = _lib.mdb_cursor_del(self._cur, flags) self.txn._mutations += 1 if rc: raise _error("mdb_cursor_del", rc) self._cursor_get(_lib.MDB_GET_CURRENT) v = rc == 0 return v def count(self): """Return the number of values ("duplicates") for the current key. Only meaningful for databases opened with `dupsort=True`. Equivalent to `mdb_cursor_count() <http://lmdb.tech/doc/group__mdb.html#ga4041fd1e1862c6b7d5f10590b86ffbe2>`_ """ countp = _ffi.new('size_t *') rc = _lib.mdb_cursor_count(self._cur, countp) if rc: raise _error("mdb_cursor_count", rc) return countp[0] def put(self, key, val, dupdata=True, overwrite=True, append=False): """Store a record, returning ``True`` if it was written, or ``False`` to indicate the key was already present and `overwrite=False`. On success, the cursor is positioned on the key. Equivalent to `mdb_cursor_put() <http://lmdb.tech/doc/group__mdb.html#ga1f83ccb40011837ff37cc32be01ad91e>`_ `key`: Bytestring key to store. `val`: Bytestring value to store. `dupdata`: If ``False`` and database was opened with `dupsort=True`, will return ``False`` if the key already has that value. In other words, this only affects the return value. `overwrite`: If ``False``, do not overwrite the value for the key if it exists, just return ``False``. For databases opened with `dupsort=True`, ``False`` will always be returned if a duplicate key/value pair is inserted, regardless of the setting for `overwrite`. `append`: If ``True``, append the pair to the end of the database without comparing its order first. Appending a key that is not greater than the highest existing key will fail and return ``False``. """ flags = 0 if not dupdata: flags |= _lib.MDB_NODUPDATA if not overwrite: flags |= _lib.MDB_NOOVERWRITE if append: if self.txn._db._flags & _lib.MDB_DUPSORT: flags |= _lib.MDB_APPENDDUP else: flags |= _lib.MDB_APPEND rc = _lib.pymdb_cursor_put(self._cur, key, len(key), val, len(val), flags) self.txn._mutations += 1 if rc: if rc == _lib.MDB_KEYEXIST: return False raise _error("mdb_cursor_put", rc) self._cursor_get(_lib.MDB_GET_CURRENT) return True def putmulti(self, items, dupdata=True, overwrite=True, append=False): """Invoke :py:meth:`put` for each `(key, value)` 2-tuple from the iterable `items`. Elements must be exactly 2-tuples, they may not be of any other type, or tuple subclass. Returns a tuple `(consumed, added)`, where `consumed` is the number of elements read from the iterable, and `added` is the number of new entries added to the database. `added` may be less than `consumed` when `overwrite=False`. `items`: Iterable to read records from. `dupdata`: If ``True`` and database was opened with `dupsort=True`, add pair as a duplicate if the given key already exists. Otherwise overwrite any existing matching key. `overwrite`: If ``False``, do not overwrite the value for the key if it exists, just return ``False``. For databases opened with `dupsort=True`, ``False`` will always be returned if a duplicate key/value pair is inserted, regardless of the setting for `overwrite`. `append`: If ``True``, append records to the end of the database without comparing their order first. Appending a key that is not greater than the highest existing key will cause corruption. """ flags = 0 if not dupdata: flags |= _lib.MDB_NODUPDATA if not overwrite: flags |= _lib.MDB_NOOVERWRITE if append: if self.txn._db._flags & _lib.MDB_DUPSORT: flags |= _lib.MDB_APPENDDUP else: flags |= _lib.MDB_APPEND added = 0 skipped = 0 for key, value in items: rc = _lib.pymdb_cursor_put(self._cur, key, len(key), value, len(value), flags) self.txn._mutations += 1 added += 1 if rc: if rc == _lib.MDB_KEYEXIST: skipped += 1 else: raise _error("mdb_cursor_put", rc) self._cursor_get(_lib.MDB_GET_CURRENT) return added, added - skipped def replace(self, key, val): """Store a record, returning its previous value if one existed. Returns ``None`` if no previous value existed. This uses the best available mechanism to minimize the cost of a `set-and-return-previous` operation. For databases opened with `dupsort=True`, only the first data element ("duplicate") is returned if it existed, all data elements are removed and the new `(key, data)` pair is inserted. `key`: Bytestring key to store. `value`: Bytestring value to store. """ if self.db._flags & _lib.MDB_DUPSORT: if self._cursor_get_kv(_lib.MDB_SET_KEY, key, EMPTY_BYTES): preload(self._val) old = _mvstr(self._val) self.delete(True) else: old = None self.put(key, val) return old flags = _lib.MDB_NOOVERWRITE keylen = len(key) rc = _lib.pymdb_cursor_put(self._cur, key, keylen, val, len(val), flags) self.txn._mutations += 1 if not rc: return if rc != _lib.MDB_KEYEXIST: raise _error("mdb_cursor_put", rc) self._cursor_get(_lib.MDB_GET_CURRENT) preload(self._val) old = _mvstr(self._val) rc = _lib.pymdb_cursor_put(self._cur, key, keylen, val, len(val), 0) self.txn._mutations += 1 if rc: raise _error("mdb_cursor_put", rc) self._cursor_get(_lib.MDB_GET_CURRENT) return old def pop(self, key): """Fetch a record's value then delete it. Returns ``None`` if no previous value existed. This uses the best available mechanism to minimize the cost of a `delete-and-return-previous` operation. For databases opened with `dupsort=True`, the first data element ("duplicate") for the key will be popped. `key`: Bytestring key to delete. """ if self._cursor_get_kv(_lib.MDB_SET_KEY, key, EMPTY_BYTES): preload(self._val) old = _mvstr(self._val) rc = _lib.mdb_cursor_del(self._cur, 0) self.txn._mutations += 1 if rc: raise _error("mdb_cursor_del", rc) self._cursor_get(_lib.MDB_GET_CURRENT) return old def _iter_from(self, k, reverse): """Helper for centidb. Please do not rely on this interface, it may be removed in future. """ if not k and not reverse: found = self.first() else: found = self.set_range(k) if reverse: if not found: self.last() return self.iterprev() else: if not found: return iter(()) return self.iternext()
[((103, 13, 103, 30), 'threading.local', 'threading.local', ({}, {}), '()', False, 'import threading\n'), ((352, 7, 352, 27), 'lmdb._reading_docs', 'lmdb._reading_docs', ({}, {}), '()', False, 'import lmdb\n'), ((370, 11, 370, 21), 'cffi.FFI', 'cffi.FFI', ({}, {}), '()', False, 'import cffi\n'), ((513, 7, 513, 27), 'lmdb._reading_docs', 'lmdb._reading_docs', ({}, {}), '()', False, 'import lmdb\n'), ((516, 11, 516, 31), 'inspect.isclass', 'inspect.isclass', ({(516, 27, 516, 30): 'obj'}, {}), '(obj)', False, 'import inspect\n'), ((869, 43, 869, 70), 'sys.getfilesystemencoding', 'sys.getfilesystemencoding', ({}, {}), '()', False, 'import sys\n'), ((898, 30, 898, 57), 'sys.getfilesystemencoding', 'sys.getfilesystemencoding', ({}, {}), '()', False, 'import sys\n'), ((931, 17, 931, 41), 'msvcrt.get_osfhandle', 'msvcrt.get_osfhandle', ({(931, 38, 931, 40): 'fd'}, {}), '(fd)', False, 'import msvcrt\n'), ((745, 16, 745, 36), 'os.mkdir', 'os.mkdir', ({(745, 25, 745, 29): 'path', (745, 31, 745, 35): 'mode'}, {}), '(path, mode)', False, 'import os\n'), ((772, 31, 772, 58), 'sys.getfilesystemencoding', 'sys.getfilesystemencoding', ({}, {}), '()', False, 'import sys\n')]
AtomScott/image_folder_datasets
.virtual_documents/00_core.ipynb.py
935580929abc9d8ec9eeaf944a0d3c670a09d04d
# default_exp core #hide from nbdev.showdoc import * from fastcore.test import * # export import os import torch from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader import warnings import torchvision from torchvision.datasets import MNIST, ImageFolder from torchvision.transforms import ToTensor, Resize, Compose, CenterCrop, Normalize import pytorch_lightning as pl # from pytorch_lightning.metrics.functional import classification, f1 from pytorch_lightning.loggers import TensorBoardLogger import fastai.vision.augment import fastai.vision.data # from fastai.vision.data import ImageDataLoaders # from fastai.vision.augment import Resize #export class ImageFolderDataModule(pl.LightningDataModule): def __init__(self, data_dir, batch_size, transform): super().__init__() self.data_dir = data_dir self.batch_size = batch_size self.transform = transform # Compose([ # Resize(256, interpolation=2), # CenterCrop(224), # ToTensor(), # # TODO: check whether normalize is the same for imagenet and fractalDB # Normalize(mean=[0.485, 0.456, 0.406], # std=[0.229, 0.224, 0.225]) # ]) def prepare_data(self, stage=None): pass def setup(self, stage=None): data_dir = self.data_dir transform = self.transform self.dls = fastai.vision.data.ImageDataLoaders.from_folder(data_dir, item_tfms=fastai.vision.augment.Resize(224)) self.trainset = ImageFolder(os.path.join(data_dir, 'train'), transform) self.valset = ImageFolder(os.path.join(data_dir, 'valid'), transform) def train_dataloader(self): return DataLoader(self.trainset, batch_size=self.batch_size, shuffle=True) def val_dataloader(self): return DataLoader(self.valset, batch_size=self.batch_size, shuffle=False) def test_dataloader(self): pass data_dir = 'Datasets/cifar10' transform = Compose([ Resize(256, interpolation=2), CenterCrop(224), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) dm = ImageFolderDataModule(data_dir, 128, transform) dm.setup() for x,y in dm.train_dataloader(): test_eq(type(x), torch.Tensor) test_eq(type(y), torch.Tensor) break #export class CNNModule(pl.LightningModule): def __init__(self, model=None, pretrained=False, freeze_extractor=False, log_level=10, num_classes=None, weight_path=None): super().__init__() self.num_classes = num_classes self.pretrained = pretrained self.freeze_extractor = freeze_extractor assert model is not None, 'Select model from torchvision' assert num_classes is not None, 'Must configure number of classes with num_classes' if not model.startswith('resnet'): warnings.warn('models other than resnet variants may need different setup for finetuning to work.') # Prepare model for finetuning if weight_path is not None: param = torch.load(weight_path) backbone = eval(f'torchvision.models.{model}(pretrained={False})') backbone.load_state_dict(param) else: backbone = eval(f'torchvision.models.{model}(pretrained={pretrained})') num_filters = backbone.fc.in_features layers = list(backbone.children())[:-1] self.feature_extractor = torch.nn.Sequential(*layers) self.classifier = nn.Linear(num_filters, num_classes) def forward(self, x): if self.freeze_extractor: self.feature_extractor.eval() with torch.no_grad(): representations = self.feature_extractor(x).flatten(1) else: representations = self.feature_extractor(x).flatten(1) y = self.classifier(representations) return y def training_step(self, batch, batch_idx): x, y = batch y_hat = self(x) outputs = self.calculate_metrics(y_hat=y_hat, y=y) return outputs def training_epoch_end(self, outputs): avg_metrics = {} for metric in outputs[0].keys(): val = torch.stack([x[metric] for x in outputs]).mean() self.logger.experiment.add_scalar(f"{metric}/train", val, self.current_epoch) avg_metrics[metric] = val # epoch_dictionary = {'loss': avg_metrics['loss']} def validation_step(self, batch, batch_idx): x, y = batch y_hat = self(x) outputs = self.calculate_metrics(y_hat=y_hat, y=y) return outputs def validation_epoch_end(self, outputs): avg_metrics = {} for metric in outputs[0].keys(): val = torch.stack([x[metric] for x in outputs]).mean() self.logger.experiment.add_scalar(f"{metric}/validation", val, self.current_epoch) avg_metrics[metric] = val def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=0.02, weight_decay=1e-04) # > return torch.optim.SGF(self.parameters(), lr=self.lr, aldsfk'a) def calculate_metrics(self, y, y_hat): loss = F.cross_entropy(y_hat, y) y_pred = y_hat.argmax(dim=1) acc = classification.accuracy(y_pred, y) f1_score = f1(y_pred, y, self.num_classes) return { "loss":loss, "acc": acc, "f1": f1_score } def on_sanity_check_start(self): self.logger.disable() def on_sanity_check_end(self): self.logger.enable() modelname = 'resnet18' logger = TensorBoardLogger('tb_logs', name=modelname) trainer = pl.Trainer(gpus=1, checkpoint_callback=False, logger=logger, fast_dev_run=5) model = CNNModule(modelname, pretrained=True, num_classes=len(dm.trainset.classes)) test_eq(trainer.fit(model, dm), 1) weight_path = 'FractalDB-1000_resnet50_epoch90.pth' modelname = 'resnet50' logger = TensorBoardLogger('tb_logs', name=modelname) trainer = pl.Trainer(gpus=1, checkpoint_callback=False, logger=logger, fast_dev_run=5) model = CNNModule(modelname, pretrained=True, num_classes=len(dm.trainset.classes), weight_path=weight_path) test_eq(trainer.fit(model, dm), 1)
[((183, 9, 183, 53), 'pytorch_lightning.loggers.TensorBoardLogger', 'TensorBoardLogger', (), '', False, 'from pytorch_lightning.loggers import TensorBoardLogger\n'), ((184, 10, 184, 86), 'pytorch_lightning.Trainer', 'pl.Trainer', (), '', True, 'import pytorch_lightning as pl\n'), ((191, 9, 191, 53), 'pytorch_lightning.loggers.TensorBoardLogger', 'TensorBoardLogger', (), '', False, 'from pytorch_lightning.loggers import TensorBoardLogger\n'), ((192, 10, 192, 86), 'pytorch_lightning.Trainer', 'pl.Trainer', (), '', True, 'import pytorch_lightning as pl\n'), ((59, 15, 59, 82), 'torch.utils.data.DataLoader', 'DataLoader', (), '', False, 'from torch.utils.data import DataLoader\n'), ((62, 15, 62, 81), 'torch.utils.data.DataLoader', 'DataLoader', (), '', False, 'from torch.utils.data import DataLoader\n'), ((71, 8, 71, 36), 'torchvision.transforms.Resize', 'Resize', (), '', False, 'from torchvision.transforms import ToTensor, Resize, Compose, CenterCrop, Normalize\n'), ((72, 8, 72, 23), 'torchvision.transforms.CenterCrop', 'CenterCrop', ({(72, 19, 72, 22): '224'}, {}), '(224)', False, 'from torchvision.transforms import ToTensor, Resize, Compose, CenterCrop, Normalize\n'), ((73, 8, 73, 18), 'torchvision.transforms.ToTensor', 'ToTensor', ({}, {}), '()', False, 'from torchvision.transforms import ToTensor, Resize, Compose, CenterCrop, Normalize\n'), ((74, 8, 75, 51), 'torchvision.transforms.Normalize', 'Normalize', (), '', False, 'from torchvision.transforms import ToTensor, Resize, Compose, CenterCrop, Normalize\n'), ((114, 33, 114, 61), 'torch.nn.Sequential', 'torch.nn.Sequential', ({(114, 53, 114, 60): '*layers'}, {}), '(*layers)', False, 'import torch\n'), ((115, 26, 115, 61), 'torch.nn.Linear', 'nn.Linear', ({(115, 36, 115, 47): 'num_filters', (115, 49, 115, 60): 'num_classes'}, {}), '(num_filters, num_classes)', False, 'from torch import nn\n'), ((164, 15, 164, 40), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', ({(164, 31, 164, 36): 'y_hat', (164, 38, 164, 39): 'y'}, {}), '(y_hat, y)', True, 'from torch.nn import functional as F\n'), ((55, 36, 55, 67), 'os.path.join', 'os.path.join', ({(55, 49, 55, 57): 'data_dir', (55, 59, 55, 66): '"""train"""'}, {}), "(data_dir, 'train')", False, 'import os\n'), ((56, 34, 56, 65), 'os.path.join', 'os.path.join', ({(56, 47, 56, 55): 'data_dir', (56, 57, 56, 64): '"""valid"""'}, {}), "(data_dir, 'valid')", False, 'import os\n'), ((101, 12, 101, 111), 'warnings.warn', 'warnings.warn', ({(101, 26, 101, 110): '"""models other than resnet variants may need different setup for finetuning to work."""'}, {}), "(\n 'models other than resnet variants may need different setup for finetuning to work.'\n )", False, 'import warnings\n'), ((105, 20, 105, 43), 'torch.load', 'torch.load', ({(105, 31, 105, 42): 'weight_path'}, {}), '(weight_path)', False, 'import torch\n'), ((120, 17, 120, 32), 'torch.no_grad', 'torch.no_grad', ({}, {}), '()', False, 'import torch\n'), ((138, 18, 138, 59), 'torch.stack', 'torch.stack', ({(138, 30, 138, 58): '[x[metric] for x in outputs]'}, {}), '([x[metric] for x in outputs])', False, 'import torch\n'), ((154, 18, 154, 59), 'torch.stack', 'torch.stack', ({(154, 30, 154, 58): '[x[metric] for x in outputs]'}, {}), '([x[metric] for x in outputs])', False, 'import torch\n')]
pgorecki/python-ddd
src/modules/iam/module.py
0073ccce35c651be263f5d7d3d63f9a49bc0b78a
from seedwork.application.modules import BusinessModule from modules.iam.application.services import AuthenticationService class IdentityAndAccessModule(BusinessModule): def __init__(self, authentication_service: AuthenticationService): self.authentication_service = authentication_service # @staticmethod # def create(container): # assert False # """Factory method for creating a module by using dependencies from a DI container""" # return IdentityAndAccessModule( # logger=container.logger(), # authentication_service=container.authentication_service(), # )
[]
ufora/ufora
test_scripts/pyfora2/containerTests.py
04db96ab049b8499d6d6526445f4f9857f1b6c7e
# Copyright 2015 Ufora Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import pyfora import ufora.config.Setup as Setup import ufora.FORA.python.PurePython.DictTestCases as DictTestCases import ufora.FORA.python.PurePython.ListTestCases as ListTestCases import ufora.FORA.python.PurePython.TupleTestCases as TupleTestCases import ufora.FORA.python.PurePython.ExecutorTestCommon as ExecutorTestCommon import ufora.test.ClusterSimulation as ClusterSimulation class ExecutorSimulationTest( unittest.TestCase, ExecutorTestCommon.ExecutorTestCommon, DictTestCases.DictTestCases, ListTestCases.ListTestCases, TupleTestCases.TupleTestCases): @classmethod def setUpClass(cls): cls.config = Setup.config() cls.executor = None cls.simulation = ClusterSimulation.Simulator.createGlobalSimulator() cls.simulation.startService() cls.simulation.getDesirePublisher().desireNumberOfWorkers(1) @classmethod def tearDownClass(cls): cls.simulation.stopService() @classmethod def create_executor(cls, allowCached=True): if not allowCached: return pyfora.connect('http://localhost:30000') if cls.executor is None: cls.executor = pyfora.connect('http://localhost:30000') cls.executor.stayOpenOnExit = True return cls.executor if __name__ == '__main__': import ufora.config.Mainline as Mainline Mainline.UnitTestMainline()
[((58, 4, 58, 31), 'ufora.config.Mainline.UnitTestMainline', 'Mainline.UnitTestMainline', ({}, {}), '()', True, 'import ufora.config.Mainline as Mainline\n'), ((35, 21, 35, 35), 'ufora.config.Setup.config', 'Setup.config', ({}, {}), '()', True, 'import ufora.config.Setup as Setup\n'), ((37, 25, 37, 76), 'ufora.test.ClusterSimulation.Simulator.createGlobalSimulator', 'ClusterSimulation.Simulator.createGlobalSimulator', ({}, {}), '()', True, 'import ufora.test.ClusterSimulation as ClusterSimulation\n'), ((48, 19, 48, 59), 'pyfora.connect', 'pyfora.connect', ({(48, 34, 48, 58): '"""http://localhost:30000"""'}, {}), "('http://localhost:30000')", False, 'import pyfora\n'), ((51, 27, 51, 67), 'pyfora.connect', 'pyfora.connect', ({(51, 42, 51, 66): '"""http://localhost:30000"""'}, {}), "('http://localhost:30000')", False, 'import pyfora\n')]
quochungto/SIIM-COVID19-Detection
src/utils/torch_common.py
88bc10d7b01d277d223c4dddd4c223a782616611
import os import gc import random import numpy as np import torch def seed_everything(seed): os.environ['PYTHONHASHSEED'] = str(seed) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True def memory_cleanup(): """ Cleans up GPU memory https://github.com/huggingface/transformers/issues/1742 """ for obj in gc.get_objects(): if torch.is_tensor(obj): del obj gc.collect() torch.cuda.empty_cache()
[((9, 4, 9, 21), 'random.seed', 'random.seed', ({(9, 16, 9, 20): 'seed'}, {}), '(seed)', False, 'import random\n'), ((10, 4, 10, 24), 'numpy.random.seed', 'np.random.seed', ({(10, 19, 10, 23): 'seed'}, {}), '(seed)', True, 'import numpy as np\n'), ((11, 4, 11, 27), 'torch.manual_seed', 'torch.manual_seed', ({(11, 22, 11, 26): 'seed'}, {}), '(seed)', False, 'import torch\n'), ((12, 4, 12, 32), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', ({(12, 27, 12, 31): 'seed'}, {}), '(seed)', False, 'import torch\n'), ((22, 15, 22, 31), 'gc.get_objects', 'gc.get_objects', ({}, {}), '()', False, 'import gc\n'), ((26, 4, 26, 16), 'gc.collect', 'gc.collect', ({}, {}), '()', False, 'import gc\n'), ((27, 4, 27, 28), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ({}, {}), '()', False, 'import torch\n'), ((23, 11, 23, 31), 'torch.is_tensor', 'torch.is_tensor', ({(23, 27, 23, 30): 'obj'}, {}), '(obj)', False, 'import torch\n')]
marsven/conan-center-index
recipes/freeimage/all/conanfile.py
d8bb4ad617cee02d8664e8341fa32cdf702e4284
from conans import ConanFile, CMake, tools import os import shutil required_conan_version = ">=1.43.0" class FreeImageConan(ConanFile): name = "freeimage" description = "Open Source library project for developers who would like to support popular graphics image formats"\ "like PNG, BMP, JPEG, TIFF and others as needed by today's multimedia applications." homepage = "https://freeimage.sourceforge.io" url = "https://github.com/conan-io/conan-center-index" license = "FreeImage", "GPL-3.0-or-later", "GPL-2.0-or-later" topics = ("freeimage", "image", "decoding", "graphics") generators = "cmake", "cmake_find_package" settings = "os", "arch", "compiler", "build_type" options = { "shared": [True, False], "fPIC": [True, False], "with_jpeg": [False, "libjpeg", "libjpeg-turbo"], "with_png": [True, False], "with_tiff": [True, False], "with_jpeg2000": [True, False], "with_openexr": [True, False], "with_eigen": [True, False], "with_webp": [True, False], "with_raw": [True, False], "with_jxr": [True, False], } default_options = { "shared": False, "fPIC": True, "with_jpeg": "libjpeg", "with_png": True, "with_tiff": True, "with_jpeg2000": True, "with_openexr": True, "with_eigen": True, "with_webp": True, "with_raw": True, "with_jxr": True, } _cmake = None @property def _source_subfolder(self): return "source_subfolder" @property def _build_subfolder(self): return "build_subfolder" def export_sources(self): self.copy("CMakeLists.txt") for patch in self.conan_data.get("patches", {}).get(self.version, []): self.copy(patch["patch_file"]) def config_options(self): if self.settings.os == "Windows": del self.options.fPIC def configure(self): tools.check_min_cppstd(self, "11") if self.options.shared: del self.options.fPIC self.output.warn("G3 plugin and JPEGTransform are disabled.") if self.options.with_jpeg is not None: if self.options.with_tiff: self.options["libtiff"].jpeg = self.options.with_jpeg def requirements(self): self.requires("zlib/1.2.11") if self.options.with_jpeg == "libjpeg": self.requires("libjpeg/9d") elif self.options.with_jpeg == "libjpeg-turbo": self.requires("libjpeg-turbo/2.1.2") if self.options.with_jpeg2000: self.requires("openjpeg/2.4.0") if self.options.with_png: self.requires("libpng/1.6.37") if self.options.with_webp: self.requires("libwebp/1.2.2") if self.options.with_openexr: self.requires("openexr/2.5.7") if self.options.with_raw: self.requires("libraw/0.20.2") if self.options.with_jxr: self.requires("jxrlib/cci.20170615") if self.options.with_tiff: self.requires("libtiff/4.3.0") def source(self): tools.get(**self.conan_data["sources"][self.version], destination=self._source_subfolder, strip_root=True) def _configure_cmake(self): if self._cmake: return self._cmake self._cmake = CMake(self) self._cmake.definitions["WITH_JPEG"] = self.options.with_jpeg != False self._cmake.definitions["WITH_OPENJPEG"] = self.options.with_jpeg2000 self._cmake.definitions["WITH_PNG"] = self.options.with_png self._cmake.definitions["WITH_WEBP"] = self.options.with_webp self._cmake.definitions["WITH_OPENEXR"] = self.options.with_openexr self._cmake.definitions["WITH_RAW"] = self.options.with_raw self._cmake.definitions["WITH_JXR"] = self.options.with_jxr self._cmake.definitions["WITH_TIFF"] = self.options.with_tiff self._cmake.configure(build_dir=self._build_subfolder) return self._cmake def build(self): tools.rmdir(os.path.join(self._source_subfolder, "Source", "LibPNG")) tools.rmdir(os.path.join(self._source_subfolder, "Source", "LibTIFF4")) tools.rmdir(os.path.join(self._source_subfolder, "Source", "LibOpenJPEG")) tools.rmdir(os.path.join(self._source_subfolder, "Source", "LibJXR")) tools.rmdir(os.path.join(self._source_subfolder, "Source", "LibWebP")) tools.rmdir(os.path.join(self._source_subfolder, "Source", "LibRawLite")) tools.rmdir(os.path.join(self._source_subfolder, "Source", "OpenEXR")) for patch in self.conan_data.get("patches", {}).get(self.version, {}): tools.patch(**patch) cmake = self._configure_cmake() cmake.build() def package(self): cmake = self._configure_cmake() cmake.install() self.copy("license-fi.txt", dst="licenses", src=self._source_subfolder) self.copy("license-gplv3.txt", dst="licenses", src=self._source_subfolder) self.copy("license-gplv2.txt", dst="licenses", src=self._source_subfolder) def package_info(self): def imageformats_deps(): components = [] components.append("zlib::zlib") if self.options.with_jpeg: components.append("{0}::{0}".format(self.options.with_jpeg)) if self.options.with_jpeg2000: components.append("openjpeg::openjpeg") if self.options.with_png: components.append("libpng::libpng") if self.options.with_webp: components.append("libwebp::libwebp") if self.options.with_openexr: components.append("openexr::openexr") if self.options.with_raw: components.append("libraw::libraw") if self.options.with_jxr: components.append("jxrlib::jxrlib") if self.options.with_tiff: components.append("libtiff::libtiff") return components self.cpp_info.names["pkg_config"] = "freeimage" self.cpp_info.names["cmake_find_package"] = "FreeImage" self.cpp_info.names["cmake_find_package_multi"] = "FreeImage" self.cpp_info.components["FreeImage"].libs = ["freeimage"] self.cpp_info.components["FreeImage"].requires = imageformats_deps() self.cpp_info.components["FreeImagePlus"].libs = ["freeimageplus"] self.cpp_info.components["FreeImagePlus"].requires = ["FreeImage"] if not self.options.shared: self.cpp_info.components["FreeImage"].defines.append("FREEIMAGE_LIB")
[((65, 8, 65, 42), 'conans.tools.check_min_cppstd', 'tools.check_min_cppstd', ({(65, 31, 65, 35): 'self', (65, 37, 65, 41): '"""11"""'}, {}), "(self, '11')", False, 'from conans import ConanFile, CMake, tools\n'), ((95, 8, 96, 70), 'conans.tools.get', 'tools.get', (), '', False, 'from conans import ConanFile, CMake, tools\n'), ((101, 22, 101, 33), 'conans.CMake', 'CMake', ({(101, 28, 101, 32): 'self'}, {}), '(self)', False, 'from conans import ConanFile, CMake, tools\n'), ((114, 20, 114, 76), 'os.path.join', 'os.path.join', ({(114, 33, 114, 55): 'self._source_subfolder', (114, 57, 114, 65): '"""Source"""', (114, 67, 114, 75): '"""LibPNG"""'}, {}), "(self._source_subfolder, 'Source', 'LibPNG')", False, 'import os\n'), ((115, 20, 115, 78), 'os.path.join', 'os.path.join', ({(115, 33, 115, 55): 'self._source_subfolder', (115, 57, 115, 65): '"""Source"""', (115, 67, 115, 77): '"""LibTIFF4"""'}, {}), "(self._source_subfolder, 'Source', 'LibTIFF4')", False, 'import os\n'), ((116, 20, 116, 81), 'os.path.join', 'os.path.join', ({(116, 33, 116, 55): 'self._source_subfolder', (116, 57, 116, 65): '"""Source"""', (116, 67, 116, 80): '"""LibOpenJPEG"""'}, {}), "(self._source_subfolder, 'Source', 'LibOpenJPEG')", False, 'import os\n'), ((117, 20, 117, 76), 'os.path.join', 'os.path.join', ({(117, 33, 117, 55): 'self._source_subfolder', (117, 57, 117, 65): '"""Source"""', (117, 67, 117, 75): '"""LibJXR"""'}, {}), "(self._source_subfolder, 'Source', 'LibJXR')", False, 'import os\n'), ((118, 20, 118, 77), 'os.path.join', 'os.path.join', ({(118, 33, 118, 55): 'self._source_subfolder', (118, 57, 118, 65): '"""Source"""', (118, 67, 118, 76): '"""LibWebP"""'}, {}), "(self._source_subfolder, 'Source', 'LibWebP')", False, 'import os\n'), ((119, 20, 119, 80), 'os.path.join', 'os.path.join', ({(119, 33, 119, 55): 'self._source_subfolder', (119, 57, 119, 65): '"""Source"""', (119, 67, 119, 79): '"""LibRawLite"""'}, {}), "(self._source_subfolder, 'Source', 'LibRawLite')", False, 'import os\n'), ((120, 20, 120, 77), 'os.path.join', 'os.path.join', ({(120, 33, 120, 55): 'self._source_subfolder', (120, 57, 120, 65): '"""Source"""', (120, 67, 120, 76): '"""OpenEXR"""'}, {}), "(self._source_subfolder, 'Source', 'OpenEXR')", False, 'import os\n'), ((123, 12, 123, 32), 'conans.tools.patch', 'tools.patch', ({}, {}), '(**patch)', False, 'from conans import ConanFile, CMake, tools\n')]
myelin/appengine-python-standard
src/google/appengine/datastore/datastore_query.py
2a99acd114f7cdd66fbad9bfd185384eef847c84
#!/usr/bin/env python # # Copyright 2007 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """A thin wrapper around datastore query RPC calls. This provides wrappers around the internal only datastore_pb library and is designed to be the lowest-level API to be used by all Python datastore client libraries for executing queries. It provides a layer of protection so the actual RPC syntax can change without affecting client libraries. Any class, function, field or argument starting with an '_' is for INTERNAL use only and should not be used by developers! """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import base64 import collections import functools import pickle import six from google.appengine.api import cmp_compat from google.appengine.api import datastore_errors from google.appengine.api import datastore_types from google.appengine.datastore import datastore_index from google.appengine.datastore import datastore_pb from google.appengine.datastore import datastore_pbs from google.appengine.datastore import datastore_rpc from google.protobuf import message from google.appengine.datastore import entity_bytes_pb2 as entity_pb2 __all__ = ['Batch', 'Batcher', 'CompositeFilter', 'CompositeOrder', 'CorrelationFilter', 'Cursor', 'FetchOptions', 'FilterPredicate', 'Order', 'PropertyFilter', 'PropertyOrder', 'Query', 'QueryOptions', 'ResultsIterator', 'make_filter', 'apply_query', 'inject_results'] if datastore_pbs._CLOUD_DATASTORE_ENABLED: from google.appengine.datastore.datastore_pbs import googledatastore class _BaseComponent(object): """A base class for query components. Currently just implements basic == and != functions. """ def __eq__(self, other): if self.__class__ is not other.__class__: return NotImplemented return self is other or self.__dict__ == other.__dict__ def __ne__(self, other): equal = self.__eq__(other) if equal is NotImplemented: return equal return not equal def make_filter(name, op, values): """Constructs a FilterPredicate from the given name, op and values. Args: name: A non-empty string, the name of the property to filter. op: One of PropertyFilter._OPERATORS.keys(), the operator to use. values: A supported value, the value to compare against. Returns: if values is a list, a CompositeFilter that uses AND to combine all values, otherwise a PropertyFilter for the single value. Raises: datastore_errors.BadPropertyError: if the property name is invalid. datastore_errors.BadValueError: if the property did not validate correctly or the value was an empty list. Other exception types (like OverflowError): if the property value does not meet type-specific criteria. """ datastore_types.ValidateProperty(name, values) properties = datastore_types.ToPropertyPb(name, values) if isinstance(properties, list): filters = [PropertyFilter(op, prop) for prop in properties] return CompositeFilter(CompositeFilter.AND, filters) else: return PropertyFilter(op, properties) def _make_key_value_map(entity, property_names): """Extracts key values from the given entity. Args: entity: The entity_pb2.EntityProto to extract values from. property_names: The names of the properties from which to extract values. Returns: A dict mapping property names to a lists of key values. """ value_map = dict((six.ensure_text(name), []) for name in property_names) for prop in entity.property: prop_name = six.ensure_text(prop.name) if prop_name in value_map: value_map[prop_name].append( datastore_types.PropertyValueToKeyValue(prop.value)) key_prop = six.ensure_text(datastore_types.KEY_SPECIAL_PROPERTY) if key_prop in value_map: value_map[key_prop] = [datastore_types.ReferenceToKeyValue(entity.key)] return value_map class _PropertyComponent(_BaseComponent): """A component that operates on a specific set of properties.""" def _get_prop_names(self): """Returns a set of property names used by the filter.""" raise NotImplementedError class FilterPredicate(_PropertyComponent): """An abstract base class for all query filters. All sub-classes must be immutable as these are often stored without creating a defensive copy. """ def __call__(self, entity): """Applies the filter predicate to the given entity. Args: entity: the datastore_pb.EntityProto to test. Returns: True if the given entity matches the filter, False otherwise. """ return self._apply(_make_key_value_map(entity, self._get_prop_names())) def _apply(self, key_value_map): """Apply the given component to the comparable value map. A filter matches a list of values if at least one value in the list matches the filter, for example: 'prop: [1, 2]' matches both 'prop = 1' and 'prop = 2' but not 'prop = 3' Note: the values are actually represented as tuples whose first item encodes the type; see datastore_types.PropertyValueToKeyValue(). Args: key_value_map: A dict mapping property names to a list of comparable values. Return: A boolean indicating if the given map matches the filter. """ raise NotImplementedError def _prune(self, key_value_map): """Removes values from the given map that do not match the filter. When doing a scan in the datastore, only index values that match the filters are seen. When multiple values that point to the same entity are seen, the entity only appears where the first value is found. This function removes all values that don't match the query so that the first value in the map is the same one the datastore would see first. Args: key_value_map: the comparable value map from which to remove values. Does not need to contain values for all filtered properties. Returns: A value that evaluates to False if every value in a single list was completely removed. This effectively applies the filter but is less efficient than _apply(). """ raise NotImplementedError def _to_pb(self): """Internal only function to generate a pb.""" raise NotImplementedError( 'This filter only supports in memory operations (%r)' % self) def _to_pbs(self): """Internal only function to generate a list of pbs.""" return [self._to_pb()] def _to_pb_v1(self, adapter): """Internal only function to generate a v1 pb. Args: adapter: A datastore_rpc.AbstractAdapter """ raise NotImplementedError( 'This filter only supports in memory operations (%r)' % self) class _SinglePropertyFilter(FilterPredicate): """Base class for a filter that operates on a single property.""" def _get_prop_name(self): """Returns the name of the property being filtered.""" raise NotImplementedError def _apply_to_value(self, value): """Apply the filter to the given value. Args: value: The comparable value to check. Returns: A boolean indicating if the given value matches the filter. """ raise NotImplementedError def _get_prop_names(self): return set([self._get_prop_name()]) def _apply(self, value_map): for other_value in value_map[self._get_prop_name()]: if self._apply_to_value(other_value): return True return False def _prune(self, value_map): if self._get_prop_name() not in value_map: return True values = [value for value in value_map[self._get_prop_name()] if self._apply_to_value(value)] value_map[self._get_prop_name()] = values return bool(values) class PropertyFilter(_SinglePropertyFilter): """An immutable filter predicate that constrains a single property.""" _OPERATORS = { '<': datastore_pb.Query.Filter.LESS_THAN, '<=': datastore_pb.Query.Filter.LESS_THAN_OR_EQUAL, '>': datastore_pb.Query.Filter.GREATER_THAN, '>=': datastore_pb.Query.Filter.GREATER_THAN_OR_EQUAL, '=': datastore_pb.Query.Filter.EQUAL, } _OPERATORS_INVERSE = dict((value, key) for key, value in _OPERATORS.items()) _OPERATORS_TO_PYTHON_OPERATOR = { datastore_pb.Query.Filter.LESS_THAN: '<', datastore_pb.Query.Filter.LESS_THAN_OR_EQUAL: '<=', datastore_pb.Query.Filter.GREATER_THAN: '>', datastore_pb.Query.Filter.GREATER_THAN_OR_EQUAL: '>=', datastore_pb.Query.Filter.EQUAL: '==', } _INEQUALITY_OPERATORS = frozenset(['<', '<=', '>', '>=']) _INEQUALITY_OPERATORS_ENUM = frozenset([ datastore_pb.Query.Filter.LESS_THAN, datastore_pb.Query.Filter.LESS_THAN_OR_EQUAL, datastore_pb.Query.Filter.GREATER_THAN, datastore_pb.Query.Filter.GREATER_THAN_OR_EQUAL, ]) _UPPERBOUND_INEQUALITY_OPERATORS = frozenset(['<', '<=']) def __init__(self, op, value): """Constructor. Args: op: A string representing the operator to use. value: A entity_pb2.Property, the property and value to compare against. Raises: datastore_errors.BadArgumentError if op has an unsupported value or value is not an entity_pb2.Property. """ if op not in self._OPERATORS: raise datastore_errors.BadArgumentError('unknown operator: %r' % (op,)) if not isinstance(value, entity_pb2.Property): raise datastore_errors.BadArgumentError( 'value argument should be entity_pb2.Property (%r)' % (value,)) super(PropertyFilter, self).__init__() self._filter = datastore_pb.Query.Filter() self._filter.op = self._OPERATORS[op] self._filter.property.add().CopyFrom(value) @property def op(self): raw_op = self._filter.op return self._OPERATORS_INVERSE.get(raw_op, str(raw_op)) @property def value(self): return self._filter.property[0] def __repr__(self): prop = self.value name = prop.name value = datastore_types.FromPropertyPb(prop) if six.PY2 and isinstance(value, long): value = int(value) return '%s(%r, <%r, %r>)' % (self.__class__.__name__, six.ensure_str( self.op), six.ensure_str(name), value) def _get_prop_name(self): return self._filter.property[0].name def _apply_to_value(self, value): if not hasattr(self, '_cmp_value'): if self._filter.op == datastore_pb.Query.Filter.EXISTS: return True self._cmp_value = datastore_types.PropertyValueToKeyValue( self._filter.property[0].value) self._condition = ('value %s self._cmp_value' % self._OPERATORS_TO_PYTHON_OPERATOR[self._filter.op]) return eval(self._condition) def _has_inequality(self): """Returns True if the filter predicate contains inequalities filters.""" return self._filter.op in self._INEQUALITY_OPERATORS_ENUM @classmethod def _from_pb(cls, filter_pb): self = cls.__new__(cls) self._filter = filter_pb return self def _to_pb(self): """Returns the internal only pb representation.""" return self._filter def _to_pb_v1(self, adapter): """Returns a googledatastore.Filter representation of the filter. Args: adapter: A datastore_rpc.AbstractAdapter """ filter_pb = googledatastore.Filter() prop_filter_pb = filter_pb.property_filter adapter.get_query_converter()._v3_filter_to_v1_property_filter( self._filter, prop_filter_pb) return filter_pb def __getstate__(self): raise pickle.PicklingError( 'Pickling of datastore_query.PropertyFilter is unsupported.') def __eq__(self, other): if self.__class__ is not other.__class__: if other.__class__ is _PropertyRangeFilter: return [self._filter] == other._to_pbs() return NotImplemented return self._filter == other._filter class _PropertyRangeFilter(_SinglePropertyFilter): """A filter predicate that represents a range of values. Since we allow multi-valued properties there is a large difference between "x > 0 AND x < 1" and "0 < x < 1." An entity with x = [-1, 2] will match the first but not the second. Since the datastore only allows a single inequality filter, multiple in-equality filters are merged into a single range filter in the datastore (unlike equality filters). This class is used by datastore_query.CompositeFilter to implement the same logic. """ _start_key_value = None _end_key_value = None @datastore_rpc._positional(1) def __init__(self, start=None, start_incl=True, end=None, end_incl=True): """Constructs a range filter using start and end properties. Args: start: A entity_pb2.Property to use as a lower bound or None to indicate no lower bound. start_incl: A boolean that indicates if the lower bound is inclusive. end: A entity_pb2.Property to use as an upper bound or None to indicate no upper bound. end_incl: A boolean that indicates if the upper bound is inclusive. """ if start is not None and not isinstance(start, entity_pb2.Property): raise datastore_errors.BadArgumentError( 'start argument should be entity_pb2.Property (%r)' % (start,)) if end is not None and not isinstance(end, entity_pb2.Property): raise datastore_errors.BadArgumentError( 'start argument should be entity_pb2.Property (%r)' % (end,)) if start and end and start.name != end.name: raise datastore_errors.BadArgumentError( 'start and end arguments must be on the same property (%s != %s)' % (start.name, end.name)) if not start and not end: raise datastore_errors.BadArgumentError( 'Unbounded ranges are not supported.') super(_PropertyRangeFilter, self).__init__() self._start = start self._start_incl = start_incl self._end = end self._end_incl = end_incl @classmethod def from_property_filter(cls, prop_filter): op = prop_filter._filter.op if op == datastore_pb.Query.Filter.GREATER_THAN: return cls(start=prop_filter._filter.property[0], start_incl=False) elif op == datastore_pb.Query.Filter.GREATER_THAN_OR_EQUAL: return cls(start=prop_filter._filter.property[0]) elif op == datastore_pb.Query.Filter.LESS_THAN: return cls(end=prop_filter._filter.property[0], end_incl=False) elif op == datastore_pb.Query.Filter.LESS_THAN_OR_EQUAL: return cls(end=prop_filter._filter.property[0]) else: raise datastore_errors.BadArgumentError( 'Unsupported operator (%s)' % (op,)) def intersect(self, other): """Returns a filter representing the intersection of self and other.""" if isinstance(other, PropertyFilter): other = self.from_property_filter(other) elif not isinstance(other, _PropertyRangeFilter): raise datastore_errors.BadArgumentError( 'other argument should be a _PropertyRangeFilter (%r)' % (other,)) if other._get_prop_name() != self._get_prop_name(): raise datastore_errors.BadArgumentError( 'other argument must be on the same property (%s != %s)' % (other._get_prop_name(), self._get_prop_name())) start_source = None if other._start: if self._start: result = cmp_compat.cmp( self._get_start_key_value(), other._get_start_key_value()) if result == 0: result = cmp_compat.cmp(other._start_incl, self._start_incl) if result > 0: start_source = self elif result < 0: start_source = other else: start_source = other elif self._start: start_source = self end_source = None if other._end: if self._end: result = cmp_compat.cmp( self._get_end_key_value(), other._get_end_key_value()) if result == 0: result = cmp_compat.cmp(self._end_incl, other._end_incl) if result < 0: end_source = self elif result > 0: end_source = other else: end_source = other elif self._end: end_source = self if start_source: if end_source in (start_source, None): return start_source result = _PropertyRangeFilter(start=start_source._start, start_incl=start_source._start_incl, end=end_source._end, end_incl=end_source._end_incl) result._start_key_value = start_source._start_key_value result._end_key_value = end_source._end_key_value return result else: return end_source or self def _get_start_key_value(self): if self._start_key_value is None: self._start_key_value = datastore_types.PropertyValueToKeyValue( self._start.value) return self._start_key_value def _get_end_key_value(self): if self._end_key_value is None: self._end_key_value = datastore_types.PropertyValueToKeyValue( self._end.value) return self._end_key_value def _apply_to_value(self, value): """Apply the filter to the given value. Args: value: The comparable value to check. Returns: A boolean indicating if the given value matches the filter. """ if self._start: result = cmp_compat.cmp(self._get_start_key_value(), value) if result > 0 or (result == 0 and not self._start_incl): return False if self._end: result = cmp_compat.cmp(self._get_end_key_value(), value) if result < 0 or (result == 0 and not self._end_incl): return False return True def _get_prop_name(self): if self._start: return self._start.name if self._end: return self._end.name assert False def _to_pbs(self): pbs = [] if self._start: if self._start_incl: op = datastore_pb.Query.Filter.GREATER_THAN_OR_EQUAL else: op = datastore_pb.Query.Filter.GREATER_THAN pb = datastore_pb.Query.Filter() pb.op = op pb.property.add().CopyFrom(self._start) pbs.append(pb) if self._end: if self._end_incl: op = datastore_pb.Query.Filter.LESS_THAN_OR_EQUAL else: op = datastore_pb.Query.Filter.LESS_THAN pb = datastore_pb.Query.Filter() pb.op = op pb.property.add().CopyFrom(self._end) pbs.append(pb) return pbs def _to_pb_v1(self, adapter): """Returns a googledatastore.Filter representation of the filter. Args: adapter: A datastore_rpc.AbstractAdapter. """ filter_pb = googledatastore.Filter() composite_filter = filter_pb.composite_filter composite_filter.op = googledatastore.CompositeFilter.AND if self._start: if self._start_incl: op = googledatastore.PropertyFilter.GREATER_THAN_OR_EQUAL else: op = googledatastore.PropertyFilter.GREATER_THAN pb = composite_filter.filters.add().property_filter pb.op = op pb.property.name = self._start.name adapter.get_entity_converter().v3_property_to_v1_value( self._start, True, pb.value) if self._end: if self._end_incl: op = googledatastore.PropertyFilter.LESS_THAN_OR_EQUAL else: op = googledatastore.PropertyFilter.LESS_THAN pb = composite_filter.filters.add().property_filter pb.op = op pb.property.name = self._end.name adapter.get_entity_converter().v3_property_to_v1_value( self._end, True, pb.value) return filter_pb def __getstate__(self): raise pickle.PicklingError( 'Pickling of %r is unsupported.' % self) def __eq__(self, other): if self.__class__ is not other.__class__: return NotImplemented return (self._start == other._start and self._end == other._end and (self._start_incl == other._start_incl or self._start is None) and (self._end_incl == other._end_incl or self._end is None)) class _PropertyExistsFilter(FilterPredicate): """A FilterPredicate that matches entities containing specific properties. Only works as an in-memory filter. Used internally to filter out entities that don't have all properties in a given Order. """ def __init__(self, names): super(_PropertyExistsFilter, self).__init__() self._names = frozenset(names) def _apply(self, value_map): for name in self._names: if not value_map.get(name): return False return True def _get_prop_names(self): return self._names def _prune(self, _): raise NotImplementedError def __getstate__(self): raise pickle.PicklingError( 'Pickling of %r is unsupported.' % self) class CorrelationFilter(FilterPredicate): """A filter that isolates correlated values and applies a sub-filter on them. This filter assumes that every property used by the sub-filter should be grouped before being passed to the sub-filter. The default grouping puts each value in its own group. Consider: e = {a: [1, 2], b: [2, 1, 3], c: 4} A correlation filter with a sub-filter that operates on (a, b) will be tested against the following 3 sets of values: {a: 1, b: 2} {a: 2, b: 1} {b: 3} In this case CorrelationFilter('a = 2 AND b = 2') won't match this entity but CorrelationFilter('a = 2 AND b = 1') will. To apply an uncorrelated filter on c, the filter must be applied in parallel to the correlation filter. For example: CompositeFilter(AND, [CorrelationFilter('a = 2 AND b = 1'), 'c = 3']) If 'c = 3' was included in the correlation filter, c would be grouped as well. This would result in the following values: {a: 1, b: 2, c: 3} {a: 2, b: 1} {b: 3} If any set of correlated values match the sub-filter then the entity matches the correlation filter. """ def __init__(self, subfilter): """Constructor. Args: subfilter: A FilterPredicate to apply to the correlated values """ self._subfilter = subfilter @property def subfilter(self): return self._subfilter def __repr__(self): return '%s(%r)' % (self.__class__.__name__, self.subfilter) def _apply(self, value_map): base_map = dict((prop, []) for prop in self._get_prop_names()) value_maps = [] for prop in base_map: grouped = self._group_values(prop, value_map[prop]) while len(value_maps) < len(grouped): value_maps.append(base_map.copy()) for value, m in six.moves.zip(grouped, value_maps): m[prop] = value return self._apply_correlated(value_maps) def _apply_correlated(self, value_maps): """Applies sub-filter to the correlated value maps. The default implementation matches when any value_map in value_maps matches the sub-filter. Args: value_maps: A list of correlated value_maps. Returns: True if any the entity matches the correlation filter. """ for map in value_maps: if self._subfilter._apply(map): return True return False def _group_values(self, prop, values): """A function that groups the given values. Override this function to introduce custom grouping logic. The default implementation assumes each value belongs in its own group. Args: prop: The name of the property who's values are being grouped. values: A list of opaque values. Returns: A list of lists of grouped values. """ return [[value] for value in values] def _get_prop_names(self): return self._subfilter._get_prop_names() class CompositeFilter(FilterPredicate): """An immutable filter predicate that combines other predicates. This class proactively merges sub-filters that are combined using the same operator. For example: CompositeFilter(AND, [f1, f2, CompositeFilter(AND, [f3, f4]), f5, f6]) is equivalent to: CompositeFilter(AND, [f1, f2, f3, f4, f5, f6]) Currently filters can only be combined using an AND operator. """ AND = 'and' _OPERATORS = frozenset([AND]) def __init__(self, op, filters): """Constructor. Args: op: The operator to use to combine the given filters filters: A list of one or more filters to combine Raises: datastore_errors.BadArgumentError if op is not in CompsiteFilter.OPERATORS or filters is not a non-empty list containing only FilterPredicates. """ if not op in self._OPERATORS: raise datastore_errors.BadArgumentError('unknown operator (%s)' % (op,)) if not filters or not isinstance(filters, (list, tuple)): raise datastore_errors.BadArgumentError( 'filters argument should be a non-empty list (%r)' % (filters,)) super(CompositeFilter, self).__init__() self._op = op flattened = [] for f in filters: if isinstance(f, CompositeFilter) and f._op == self._op: flattened.extend(f._filters) elif isinstance(f, FilterPredicate): flattened.append(f) else: raise datastore_errors.BadArgumentError( 'filters argument must be a list of FilterPredicates, found (%r)' % (f,)) if op == self.AND: filters = flattened flattened = [] ineq_map = {} for f in filters: if (isinstance(f, _PropertyRangeFilter) or (isinstance(f, PropertyFilter) and f._has_inequality())): name = f._get_prop_name() index = ineq_map.get(name) if index is not None: range_filter = flattened[index] flattened[index] = range_filter.intersect(f) else: if isinstance(f, PropertyFilter): range_filter = _PropertyRangeFilter.from_property_filter(f) else: range_filter = f ineq_map[name] = len(flattened) flattened.append(range_filter) else: flattened.append(f) self._filters = tuple(flattened) @property def op(self): return self._op @property def filters(self): return self._filters def __repr__(self): op = self.op if op == self.AND: op = 'AND' else: op = str(op) return '%s(%s, %r)' % (self.__class__.__name__, op, list(self.filters)) def _get_prop_names(self): names = set() for f in self._filters: names |= f._get_prop_names() return names def _apply(self, value_map): if self._op == self.AND: for f in self._filters: if not f._apply(value_map): return False return True raise NotImplementedError def _prune(self, value_map): if self._op == self.AND: matches = collections.defaultdict(set) for f in self._filters: props = f._get_prop_names() local_value_map = dict((k, v) for k, v in value_map.items() if k in props) if not f._prune(local_value_map): return False for (prop, values) in local_value_map.items(): matches[prop].update(values) for prop, value_set in matches.items(): value_map[prop] = sorted(value_set) return True raise NotImplementedError def _to_pbs(self): """Returns the internal only pb representation.""" pbs = [] for f in self._filters: pbs.extend(f._to_pbs()) return pbs def _to_pb_v1(self, adapter): """Returns a googledatastore.Filter. Args: adapter: A datastore_rpc.AbstractAdapter """ if not self._filters: return None if len(self._filters) == 1: return self._filters[0]._to_pb_v1(adapter) pb = googledatastore.Filter() comp_pb = pb.composite_filter if self.op == self.AND: comp_pb.op = googledatastore.CompositeFilter.AND else: raise datastore_errors.BadArgumentError( 'Datastore V4 only supports CompositeFilter with AND operator.') for f in self._filters: comp_pb.filters.add().CopyFrom(f._to_pb_v1(adapter)) return pb def __eq__(self, other): if self.__class__ is other.__class__: return super(CompositeFilter, self).__eq__(other) if len(self._filters) == 1: result = self._filters[0].__eq__(other) if result is NotImplemented and hasattr(other, '__eq__'): return other.__eq__(self._filters[0]) return result return NotImplemented class _IgnoreFilter(_SinglePropertyFilter): """A filter that removes all entities with the given keys.""" def __init__(self, key_value_set): super(_IgnoreFilter, self).__init__() self._keys = key_value_set def _get_prop_name(self): return datastore_types.KEY_SPECIAL_PROPERTY def _apply_to_value(self, value): return value not in self._keys class _DedupingFilter(_IgnoreFilter): """A filter that removes duplicate keys.""" def __init__(self, key_value_set=None): super(_DedupingFilter, self).__init__(key_value_set or set()) def _apply_to_value(self, value): if super(_DedupingFilter, self)._apply_to_value(value): self._keys.add(value) return True return False class Order(_PropertyComponent): """A base class that represents a sort order on a query. All sub-classes must be immutable as these are often stored without creating a defensive copying. This class can be used as either the cmp or key arg in sorted() or list.sort(). To provide a stable ordering a trailing key ascending order is always used. """ @datastore_rpc._positional(1) def reversed(self, group_by=None): """Constructs an order representing the reverse of the current order. This function takes into account the effects of orders on properties not in the group_by clause of a query. For example, consider: SELECT A, First(B) ... GROUP BY A ORDER BY A, B Changing the order of B would effect which value is listed in the 'First(B)' column which would actually change the results instead of just reversing them. Args: group_by: If specified, only orders on properties in group_by will be reversed. Returns: A new order representing the reverse direction. """ raise NotImplementedError def _key(self, lhs_value_map): """Creates a key for the given value map.""" raise NotImplementedError def _cmp(self, lhs_value_map, rhs_value_map): """Compares the given value maps.""" raise NotImplementedError def _to_pb(self): """Internal only function to generate a filter pb.""" raise NotImplementedError def _to_pb_v1(self, adapter): """Internal only function to generate a v1 filter pb. Args: adapter: A datastore_rpc.AbstractAdapter """ raise NotImplementedError def key_for_filter(self, filter_predicate): if filter_predicate: return lambda x: self.key(x, filter_predicate) return self.key def cmp_for_filter(self, filter_predicate): if filter_predicate: return lambda x, y: self.cmp(x, y, filter_predicate) return self.cmp def key(self, entity, filter_predicate=None): """Constructs a "key" value for the given entity based on the current order. This function can be used as the key argument for list.sort() and sorted(). Args: entity: The entity_pb2.EntityProto to convert filter_predicate: A FilterPredicate used to prune values before comparing entities or None. Returns: A key value that identifies the position of the entity when sorted by the current order. """ names = self._get_prop_names() names.add(datastore_types.KEY_SPECIAL_PROPERTY) if filter_predicate is not None: names |= filter_predicate._get_prop_names() value_map = _make_key_value_map(entity, names) if filter_predicate is not None: filter_predicate._prune(value_map) return (self._key(value_map), value_map[datastore_types.KEY_SPECIAL_PROPERTY]) def cmp(self, lhs, rhs, filter_predicate=None): """Compares the given values taking into account any filters. This function can be used as the cmp argument for list.sort() and sorted(). This function is slightly more efficient that Order.key when comparing two entities, however it is much less efficient when sorting a list of entities. Args: lhs: An entity_pb2.EntityProto rhs: An entity_pb2.EntityProto filter_predicate: A FilterPredicate used to prune values before comparing entities or None. Returns: An integer <, = or > 0 representing the operator that goes in between lhs and rhs that to create a true statement. """ names = self._get_prop_names() if filter_predicate is not None: names |= filter_predicate._get_prop_names() lhs_value_map = _make_key_value_map(lhs, names) rhs_value_map = _make_key_value_map(rhs, names) if filter_predicate is not None: filter_predicate._prune(lhs_value_map) filter_predicate._prune(rhs_value_map) result = self._cmp(lhs_value_map, rhs_value_map) if result: return result if not lhs.HasField('key') and not rhs.HasField('key'): return 0 lhs_key = (lhs_value_map.get(datastore_types.KEY_SPECIAL_PROPERTY) or datastore_types.ReferenceToKeyValue(lhs.key)) rhs_key = (rhs_value_map.get(datastore_types.KEY_SPECIAL_PROPERTY) or datastore_types.ReferenceToKeyValue(rhs.key)) return cmp_compat.cmp(lhs_key, rhs_key) @cmp_compat.total_ordering_from_cmp class _ReverseOrder(_BaseComponent): """Reverses the comparison for the given object.""" def __init__(self, obj): """Constructor for _ReverseOrder. Args: obj: Any comparable and hashable object. """ super(_ReverseOrder, self).__init__() self._obj = obj def __hash__(self): return hash(self._obj) def __cmp__(self, other): assert self.__class__ == other.__class__, ( 'A datastore_query._ReverseOrder object can only be compared to ' 'an object of the same type.') return -cmp_compat.cmp(self._obj, other._obj) class PropertyOrder(Order): """An immutable class that represents a sort order for a single property.""" ASCENDING = datastore_pb.Query.Order.ASCENDING DESCENDING = datastore_pb.Query.Order.DESCENDING _DIRECTIONS = frozenset([ASCENDING, DESCENDING]) def __init__(self, prop, direction=ASCENDING): """Constructor. Args: prop: the name of the prop by which to sort. direction: the direction in which to sort the given prop. Raises: datastore_errors.BadArgumentError if the prop name or direction is invalid. """ datastore_types.ValidateString(prop, 'prop', datastore_errors.BadArgumentError) if not direction in self._DIRECTIONS: raise datastore_errors.BadArgumentError('unknown direction: %r' % (direction,)) super(PropertyOrder, self).__init__() self.__order = datastore_pb.Query.Order() self.__order.property = six.ensure_binary(prop, 'utf-8') self.__order.direction = direction @property def prop(self): return self.__order.property @property def direction(self): return self.__order.direction def __repr__(self): extra = '' if self.direction == self.DESCENDING: extra = ', DESCENDING' name = repr(six.ensure_str(self.prop))[1:-1] return '%s(<%s>%s)' % (self.__class__.__name__, name, extra) @datastore_rpc._positional(1) def reversed(self, group_by=None): if group_by and self.__order.property not in group_by: return self if self.__order.direction == self.ASCENDING: return PropertyOrder( six.ensure_text(self.__order.property), self.DESCENDING) else: return PropertyOrder( six.ensure_text(self.__order.property), self.ASCENDING) def _get_prop_names(self): return set([self.__order.property]) def _key(self, lhs_value_map): lhs_values = lhs_value_map[self.__order.property] if not lhs_values: raise datastore_errors.BadArgumentError( 'Missing value for property (%s)' % self.__order.property) if self.__order.direction == self.ASCENDING: return min(lhs_values) else: return _ReverseOrder(max(lhs_values)) def _cmp(self, lhs_value_map, rhs_value_map): lhs_values = lhs_value_map[self.__order.property] rhs_values = rhs_value_map[self.__order.property] if not lhs_values and not rhs_values: return 0 if not lhs_values: raise datastore_errors.BadArgumentError( 'LHS missing value for property (%s)' % self.__order.property) if not rhs_values: raise datastore_errors.BadArgumentError( 'RHS missing value for property (%s)' % self.__order.property) if self.__order.direction == self.ASCENDING: return cmp_compat.cmp(min(lhs_values), min(rhs_values)) else: return cmp_compat.cmp(max(rhs_values), max(lhs_values)) @classmethod def _from_pb(cls, order_pb): self = cls.__new__(cls) self.__order = order_pb return self def _to_pb(self): """Returns the internal only pb representation.""" return self.__order def _to_pb_v1(self, adapter): """Returns a googledatastore.PropertyOrder representation of the order. Args: adapter: A datastore_rpc.AbstractAdapter. """ v1_order = googledatastore.PropertyOrder() adapter.get_query_converter().v3_order_to_v1_order(self.__order, v1_order) return v1_order def __getstate__(self): raise pickle.PicklingError( 'Pickling of datastore_query.PropertyOrder is unsupported.') class CompositeOrder(Order): """An immutable class that represents a sequence of Orders. This class proactively flattens sub-orders that are of type CompositeOrder. For example: CompositeOrder([O1, CompositeOrder([02, 03]), O4]) is equivalent to: CompositeOrder([O1, 02, 03, O4]) """ def __init__(self, orders): """Constructor. Args: orders: A list of Orders which are applied in order. """ if not isinstance(orders, (list, tuple)): raise datastore_errors.BadArgumentError( 'orders argument should be list or tuple (%r)' % (orders,)) super(CompositeOrder, self).__init__() flattened = [] for order in orders: if isinstance(order, CompositeOrder): flattened.extend(order._orders) elif isinstance(order, Order): flattened.append(order) else: raise datastore_errors.BadArgumentError( 'orders argument should only contain Order (%r)' % (order,)) self._orders = tuple(flattened) @property def orders(self): return self._orders def __repr__(self): return '%s(%r)' % (self.__class__.__name__, list(self.orders)) @datastore_rpc._positional(1) def reversed(self, group_by=None): return CompositeOrder([order.reversed(group_by=group_by) for order in self._orders]) def _get_prop_names(self): names = set() for order in self._orders: names |= order._get_prop_names() return names def _key(self, lhs_value_map): result = [] for order in self._orders: result.append(order._key(lhs_value_map)) return tuple(result) def _cmp(self, lhs_value_map, rhs_value_map): for order in self._orders: result = order._cmp(lhs_value_map, rhs_value_map) if result != 0: return result return 0 def size(self): """Returns the number of sub-orders the instance contains.""" return len(self._orders) def _to_pbs(self): """Returns an ordered list of internal only pb representations.""" return [order._to_pb() for order in self._orders] def _to_pb_v1(self, adapter): """Returns an ordered list of googledatastore.PropertyOrder. Args: adapter: A datastore_rpc.AbstractAdapter """ return [order._to_pb_v1(adapter) for order in self._orders] def __eq__(self, other): if self.__class__ is other.__class__: return super(CompositeOrder, self).__eq__(other) if len(self._orders) == 1: result = self._orders[0].__eq__(other) if result is NotImplemented and hasattr(other, '__eq__'): return other.__eq__(self._orders[0]) return result return NotImplemented class FetchOptions(datastore_rpc.Configuration): """An immutable class that contains all options for fetching results. These options apply to any request that pulls results from a query. This class reserves the right to define configuration options of any name except those that start with 'user_'. External subclasses should only define function or variables with names that start with in 'user_'. Options are set by passing keyword arguments to the constructor corresponding to the configuration options defined below and in datastore_rpc.Configuration. This object can be used as the default config for a datastore_rpc.Connection but in that case some options will be ignored, see option documentation below for details. """ @datastore_rpc.ConfigOption def produce_cursors(value): """If a Cursor should be returned with the fetched results. Raises: datastore_errors.BadArgumentError if value is not a bool. """ if not isinstance(value, bool): raise datastore_errors.BadArgumentError( 'produce_cursors argument should be bool (%r)' % (value,)) return value @datastore_rpc.ConfigOption def offset(value): """The number of results to skip before returning the first result. Only applies to the first request it is used with and is ignored if present on datastore_rpc.Connection.config. Raises: datastore_errors.BadArgumentError if value is not a integer or is less than zero. """ datastore_types.ValidateInteger(value, 'offset', datastore_errors.BadArgumentError, zero_ok=True) return value @datastore_rpc.ConfigOption def batch_size(value): """The number of results to attempt to retrieve in a batch. Raises: datastore_errors.BadArgumentError if value is not a integer or is not greater than zero. """ datastore_types.ValidateInteger(value, 'batch_size', datastore_errors.BadArgumentError) return value class QueryOptions(FetchOptions): """An immutable class that contains all options for running a query. This class contains options that control execution process (deadline, batch_size, read_policy, etc) and what part of the query results are returned (keys_only, projection, offset, limit, etc) Options that control the contents of the query results are specified on the datastore_query.Query directly. This class reserves the right to define configuration options of any name except those that start with 'user_'. External subclasses should only define function or variables with names that start with in 'user_'. Options are set by passing keyword arguments to the constructor corresponding to the configuration options defined below and in FetchOptions and datastore_rpc.Configuration. This object can be used as the default config for a datastore_rpc.Connection but in that case some options will be ignored, see below for details. """ ORDER_FIRST = datastore_pb.Query.ORDER_FIRST ANCESTOR_FIRST = datastore_pb.Query.ANCESTOR_FIRST FILTER_FIRST = datastore_pb.Query.FILTER_FIRST _HINTS = frozenset([ORDER_FIRST, ANCESTOR_FIRST, FILTER_FIRST]) @datastore_rpc.ConfigOption def keys_only(value): """If the query should only return keys. Raises: datastore_errors.BadArgumentError if value is not a bool. """ if not isinstance(value, bool): raise datastore_errors.BadArgumentError( 'keys_only argument should be bool (%r)' % (value,)) return value @datastore_rpc.ConfigOption def projection(value): """A list or tuple of property names to project. If None, the entire entity is returned. Specifying a projection: - may change the index requirements for the given query; - will cause a partial entity to be returned; - will cause only entities that contain those properties to be returned; A partial entities only contain the property name and value for properties in the projection (meaning and multiple will not be set). They will also only contain a single value for any multi-valued property. However, if a multi-valued property is specified in the order, an inequality property, or the projected properties, the entity will be returned multiple times. Once for each unique combination of values. However, projection queries are significantly faster than normal queries. Raises: datastore_errors.BadArgumentError if value is empty or not a list or tuple of strings. """ if isinstance(value, list): value = tuple(value) elif not isinstance(value, tuple): raise datastore_errors.BadArgumentError( 'projection argument should be a list or tuple (%r)' % (value,)) if not value: raise datastore_errors.BadArgumentError( 'projection argument cannot be empty') for prop in value: if not isinstance(prop, six.string_types + (six.binary_type,)): raise datastore_errors.BadArgumentError( 'projection argument should contain only strings (%r)' % (prop,)) return value @datastore_rpc.ConfigOption def limit(value): """Limit on the number of results to return. Raises: datastore_errors.BadArgumentError if value is not an integer or is less than zero. """ datastore_types.ValidateInteger(value, 'limit', datastore_errors.BadArgumentError, zero_ok=True) return value @datastore_rpc.ConfigOption def prefetch_size(value): """Number of results to attempt to return on the initial request. Raises: datastore_errors.BadArgumentError if value is not an integer or is not greater than zero. """ datastore_types.ValidateInteger(value, 'prefetch_size', datastore_errors.BadArgumentError, zero_ok=True) return value @datastore_rpc.ConfigOption def start_cursor(value): """Cursor to use a start position. Ignored if present on datastore_rpc.Connection.config. Raises: datastore_errors.BadArgumentError if value is not a Cursor. """ if not isinstance(value, Cursor): raise datastore_errors.BadArgumentError( 'start_cursor argument should be datastore_query.Cursor (%r)' % (value,)) return value @datastore_rpc.ConfigOption def end_cursor(value): """Cursor to use as an end position. Ignored if present on datastore_rpc.Connection.config. Raises: datastore_errors.BadArgumentError if value is not a Cursor. """ if not isinstance(value, Cursor): raise datastore_errors.BadArgumentError( 'end_cursor argument should be datastore_query.Cursor (%r)' % (value,)) return value @datastore_rpc.ConfigOption def hint(value): """Hint on how the datastore should plan the query. Raises: datastore_errors.BadArgumentError if value is not a known hint. """ if value not in QueryOptions._HINTS: raise datastore_errors.BadArgumentError('Unknown query hint (%r)' % (value,)) return value class Cursor(_BaseComponent): """An immutable class that represents a relative position in a query. The position denoted by a Cursor is relative to a result in a query even if the result has been removed from the given query. Usually to position immediately after the last result returned by a batch. A cursor should only be used on a query with an identical signature to the one that produced it or on a query with its sort order reversed. """ @datastore_rpc._positional(1) def __init__(self, urlsafe=None, _cursor_bytes=None): """Constructor. A Cursor constructed with no arguments points the first result of any query. If such a Cursor is used as an end_cursor no results will ever be returned. """ super(Cursor, self).__init__() if urlsafe is not None: if _cursor_bytes is not None: raise datastore_errors.BadArgumentError( 'Can only specify one of urlsafe and _cursor_bytes') _cursor_bytes = self._urlsafe_to_bytes(urlsafe) if _cursor_bytes is not None: self.__cursor_bytes = _cursor_bytes else: self.__cursor_bytes = six.binary_type() def __repr__(self): arg = six.ensure_str(self.to_websafe_string()) if arg: arg = '<%s>' % arg return '%s(%s)' % (self.__class__.__name__, arg) def reversed(self): """DEPRECATED. It is no longer necessary to call reversed() on cursors. A cursor returned by a query may also be used in a query whose sort order has been reversed. This method returns a copy of the original cursor. """ return Cursor(_cursor_bytes=self.__cursor_bytes) def to_bytes(self): """Serialize cursor as a byte string.""" return self.__cursor_bytes @staticmethod def from_bytes(cursor): """Gets a Cursor given its byte string serialized form. The serialized form of a cursor may change in a non-backwards compatible way. In this case cursors must be regenerated from a new Query request. Args: cursor: A serialized cursor as returned by .to_bytes. Returns: A Cursor. Raises: datastore_errors.BadValueError if the cursor argument does not represent a serialized cursor. """ return Cursor(_cursor_bytes=cursor) def urlsafe(self): """Serialize cursor as a websafe string. Returns: A base64-encoded serialized cursor. """ return base64.urlsafe_b64encode(self.to_bytes()) to_websafe_string = urlsafe @staticmethod def from_websafe_string(cursor): """Gets a Cursor given its websafe serialized form. The serialized form of a cursor may change in a non-backwards compatible way. In this case cursors must be regenerated from a new Query request. Args: cursor: A serialized cursor as returned by .to_websafe_string. Returns: A Cursor. Raises: datastore_errors.BadValueError if the cursor argument is not a string type of does not represent a serialized cursor. """ decoded_bytes = Cursor._urlsafe_to_bytes(cursor) return Cursor.from_bytes(decoded_bytes) @staticmethod def _urlsafe_to_bytes(cursor): if not isinstance(cursor, six.string_types + (six.binary_type,)): raise datastore_errors.BadValueError( 'cursor argument should be str or unicode (%r)' % (cursor,)) try: decoded_bytes = base64.urlsafe_b64decode( six.ensure_binary(cursor, 'ascii')) except (ValueError, TypeError) as e: raise datastore_errors.BadValueError( 'Invalid cursor %s. Details: %s' % (cursor, e)) return decoded_bytes def advance(self, offset, query, conn): """Advances a Cursor by the given offset. Args: offset: The amount to advance the current query. query: A Query identical to the one this cursor was created from. conn: The datastore_rpc.Connection to use. Returns: A new cursor that is advanced by offset using the given query. """ datastore_types.ValidateInteger(offset, 'offset', datastore_errors.BadArgumentError) if not isinstance(query, Query): raise datastore_errors.BadArgumentError( 'query argument should be datastore_query.Query (%r)' % (query,)) query_options = QueryOptions( start_cursor=self, offset=offset, limit=0, produce_cursors=True) return query.run(conn, query_options).next_batch( Batcher.AT_LEAST_OFFSET).cursor(0) def __setstate__(self, state): if '_Cursor__compiled_cursor' in state: self.__cursor_bytes = state['_Cursor__compiled_cursor'].SerializeToString() else: self.__dict__ = state class _QueryKeyFilter(_BaseComponent): """A class that implements the key filters available on a Query.""" @datastore_rpc._positional(1) def __init__(self, app=None, namespace=None, kind=None, ancestor=None): """Constructs a _QueryKeyFilter. If app/namespace and ancestor are not defined, the app/namespace set in the environment is used. Args: app: a string representing the required app id or None. namespace: a string representing the required namespace or None. kind: a string representing the required kind or None. ancestor: a entity_pb2.Reference representing the required ancestor or None. Raises: datastore_erros.BadArgumentError if app and ancestor.app() do not match or an unexpected type is passed in for any argument. """ if kind is not None: datastore_types.ValidateString( kind, 'kind', datastore_errors.BadArgumentError) if ancestor is not None: if not isinstance(ancestor, entity_pb2.Reference): raise datastore_errors.BadArgumentError( 'ancestor argument should be entity_pb2.Reference (%r)' % (ancestor,)) ancestor_app = six.ensure_binary(ancestor.app) if app is None: app = ancestor_app elif six.ensure_binary(app) != ancestor_app: raise datastore_errors.BadArgumentError( 'ancestor argument should match app ("%r" != "%r")' % (ancestor.app, app)) ancestor_namespace = six.ensure_binary(ancestor.name_space) if namespace is None: namespace = ancestor_namespace elif six.ensure_binary(namespace) != ancestor_namespace: raise datastore_errors.BadArgumentError( 'ancestor argument should match namespace ("%r" != "%r")' % (six.ensure_binary(namespace), ancestor_namespace)) pb = entity_pb2.Reference() pb.CopyFrom(ancestor) ancestor = pb self.__ancestor = ancestor self.__path = list(ancestor.path.element) else: self.__ancestor = None self.__path = None super(_QueryKeyFilter, self).__init__() self.__app = six.ensure_text(datastore_types.ResolveAppId(app), 'utf-8') self.__namespace = ( six.ensure_text(datastore_types.ResolveNamespace(namespace), 'utf-8')) self.__kind = kind @property def app(self): return self.__app @property def namespace(self): return self.__namespace @property def kind(self): return self.__kind @property def ancestor(self): return self.__ancestor def __call__(self, entity_or_reference): """Apply the filter. Accepts either an entity or a reference to avoid the need to extract keys from entities when we have a list of entities (which is a common case). Args: entity_or_reference: Either an entity_pb2.EntityProto or entity_pb2.Reference. """ if isinstance(entity_or_reference, entity_pb2.Reference): key = entity_or_reference elif isinstance(entity_or_reference, entity_pb2.EntityProto): key = entity_or_reference.key else: raise datastore_errors.BadArgumentError( 'entity_or_reference argument must be an entity_pb2.EntityProto ' + six.ensure_str('or entity_pb2.Reference (%r)' % (entity_or_reference), 'utf-8')) return (six.ensure_text(key.app, 'utf-8') == self.__app and six.ensure_text(key.name_space, 'utf-8') == self.__namespace and (not self.__kind or key.path.element[-1].type == self.__kind) and (not self.__path or key.path.element[0:len(self.__path)] == self.__path)) def _to_pb(self): """Returns an internal pb representation.""" pb = datastore_pb.Query() pb.app = self.__app datastore_types.SetNamespace(pb, self.__namespace) if self.__kind is not None: pb.kind = self.__kind if self.__ancestor: ancestor = pb.ancestor ancestor.CopyFrom(self.__ancestor) return pb def _to_pb_v1(self, adapter): """Returns a v1 internal proto representation of the query key filter. Args: adapter: A datastore_rpc.AbstractAdapter. Returns: A tuple (googledatastore.RunQueryRequest, googledatastore.Filter). The second tuple value is a Filter representing the ancestor portion of the query. If there is no ancestor constraint, this value will be None """ pb = googledatastore.RunQueryRequest() partition_id = pb.partition_id partition_id.project_id = ( adapter.get_entity_converter().app_to_project_id(self.__app)) if self.__namespace: partition_id.namespace_id = self.__namespace if self.__kind is not None: pb.query.kind.add().name = self.__kind ancestor_filter = None if self.__ancestor: ancestor_filter = googledatastore.Filter() ancestor_prop_filter = ancestor_filter.property_filter ancestor_prop_filter.op = ( googledatastore.PropertyFilter.HAS_ANCESTOR) prop_pb = ancestor_prop_filter.property prop_pb.name = datastore_types.KEY_SPECIAL_PROPERTY adapter.get_entity_converter().v3_to_v1_key( self.ancestor, ancestor_prop_filter.value.key_value) return pb, ancestor_filter class _BaseQuery(_BaseComponent): """A base class for query implementations.""" def run(self, conn, query_options=None): """Runs the query using provided datastore_rpc.Connection. Args: conn: The datastore_rpc.Connection to use query_options: Optional query options to use Returns: A Batcher that implicitly fetches query results asynchronously. Raises: datastore_errors.BadArgumentError if any of the arguments are invalid. """ return Batcher(query_options, self.run_async(conn, query_options)) def run_async(self, conn, query_options=None): """Runs the query using the provided datastore_rpc.Connection. Args: conn: the datastore_rpc.Connection on which to run the query. query_options: Optional QueryOptions with which to run the query. Returns: An async object that can be used to grab the first Batch. Additional batches can be retrieved by calling Batch.next_batch/next_batch_async. Raises: datastore_errors.BadArgumentError if any of the arguments are invalid. """ raise NotImplementedError def __getstate__(self): raise pickle.PicklingError( 'Pickling of %r is unsupported.' % self) class Query(_BaseQuery): """An immutable class that represents a query signature. A query signature consists of a source of entities (specified as app, namespace and optionally kind and ancestor) as well as a FilterPredicate, grouping and a desired ordering. """ @datastore_rpc._positional(1) def __init__(self, app=None, namespace=None, kind=None, ancestor=None, filter_predicate=None, group_by=None, order=None, read_time_us=None): """Constructor. Args: app: Optional app to query, derived from the environment if not specified. namespace: Optional namespace to query, derived from the environment if not specified. kind: Optional kind to query. ancestor: Optional ancestor to query, an entity_pb2.Reference. filter_predicate: Optional FilterPredicate by which to restrict the query. group_by: Optional list of properties to group the results by. order: Optional Order in which to return results. read_time_us: Optional timestamp to read the storage from. Internal use only. Raises: datastore_errors.BadArgumentError if any argument is invalid. """ super(Query, self).__init__() if filter_predicate is not None and not isinstance(filter_predicate, FilterPredicate): raise datastore_errors.BadArgumentError( 'filter_predicate should be datastore_query.FilterPredicate (%r)' % (filter_predicate,)) if isinstance(order, CompositeOrder): if order.size() == 0: order = None elif isinstance(order, Order): order = CompositeOrder([order]) elif order is not None: raise datastore_errors.BadArgumentError( 'order should be Order (%r)' % (order,)) if group_by is not None: if isinstance(group_by, list): group_by = tuple(group_by) elif not isinstance(group_by, tuple): raise datastore_errors.BadArgumentError( 'group_by argument should be a list or tuple (%r)' % (group_by,)) if not group_by: raise datastore_errors.BadArgumentError( 'group_by argument cannot be empty') for prop in group_by: if not isinstance(prop, six.string_types + (six.binary_type,)): raise datastore_errors.BadArgumentError( 'group_by argument should contain only strings (%r)' % (prop,)) self._key_filter = _QueryKeyFilter(app=app, namespace=namespace, kind=kind, ancestor=ancestor) self._order = order self._filter_predicate = filter_predicate self._group_by = group_by self._read_time_us = read_time_us @property def app(self): return self._key_filter.app @property def namespace(self): return self._key_filter.namespace @property def kind(self): return self._key_filter.kind @property def ancestor(self): return self._key_filter.ancestor @property def filter_predicate(self): return self._filter_predicate @property def order(self): return self._order @property def group_by(self): return self._group_by @property def read_time_us(self): return self._read_time_us def __repr__(self): args = [] args.append('app=%r' % six.ensure_str(self.app)) ns = self.namespace if ns: args.append('namespace=%r' % six.ensure_str(ns)) kind = self.kind if kind is not None: args.append('kind=%r' % six.ensure_str(kind)) ancestor = self.ancestor if ancestor is not None: websafe = base64.urlsafe_b64encode(ancestor.SerializeToString()) args.append('ancestor=<%s>' % six.ensure_str(websafe)) filter_predicate = self.filter_predicate if filter_predicate is not None: args.append('filter_predicate=%r' % filter_predicate) order = self.order if order is not None: args.append('order=%r' % order) group_by = self.group_by if group_by is not None: args.append('group_by=%r' % (tuple(six.ensure_str(x) for x in group_by),)) read_time_us = self.read_time_us if read_time_us is not None: args.append('read_time_us=%r' % (read_time_us,)) return '%s(%s)' % (self.__class__.__name__, ', '.join(args)) def run_async(self, conn, query_options=None): if not isinstance(conn, datastore_rpc.BaseConnection): raise datastore_errors.BadArgumentError( 'conn should be a datastore_rpc.BaseConnection (%r)' % (conn,)) if not QueryOptions.is_configuration(query_options): query_options = QueryOptions(config=query_options) start_cursor = query_options.start_cursor if not start_cursor and query_options.produce_cursors: start_cursor = Cursor() if conn._api_version == datastore_rpc._CLOUD_DATASTORE_V1: req = self._to_pb_v1(conn, query_options) else: req = self._to_pb(conn, query_options) return Batch.create_async(self, query_options, conn, req, start_cursor=start_cursor) @classmethod def _from_pb(cls, query_pb): kind = query_pb.HasField('kind') and query_pb.kind or None ancestor = query_pb.HasField('ancestor') and query_pb.ancestor or None filter_predicate = None if query_pb.filter: filter_predicate = CompositeFilter( CompositeFilter.AND, [PropertyFilter._from_pb(filter_pb) for filter_pb in query_pb.filter]) order = None if query_pb.order: order = CompositeOrder( [PropertyOrder._from_pb(order_pb) for order_pb in query_pb.order]) group_by = None if query_pb.group_by_property_name: group_by = tuple( six.ensure_text(name) for name in query_pb.group_by_property_name) read_time_us = None if query_pb.HasField('read_time_us'): read_time_us = query_pb.read_time_us return Query( app=query_pb.app, namespace=query_pb.name_space, kind=kind, ancestor=ancestor, filter_predicate=filter_predicate, order=order, group_by=group_by, read_time_us=read_time_us) def _to_pb_v1(self, conn, query_options): """Returns a googledatastore.RunQueryRequest.""" v1_req, v1_ancestor_filter = self._key_filter._to_pb_v1(conn.adapter) v1_query = v1_req.query if self.filter_predicate: filter_predicate_pb = self._filter_predicate._to_pb_v1(conn.adapter) if self.filter_predicate and v1_ancestor_filter: comp_filter_pb = v1_query.filter.composite_filter comp_filter_pb.op = googledatastore.CompositeFilter.AND comp_filter_pb.filters.add().CopyFrom(filter_predicate_pb) comp_filter_pb.filters.add().CopyFrom(v1_ancestor_filter) elif self.filter_predicate: v1_query.filter.CopyFrom(filter_predicate_pb) elif v1_ancestor_filter: v1_query.filter.CopyFrom(v1_ancestor_filter) if self._order: for order in self._order._to_pb_v1(conn.adapter): v1_query.order.add().CopyFrom(order) if QueryOptions.keys_only(query_options, conn.config): prop_ref_pb = v1_query.projection.add().property prop_ref_pb.name = datastore_pbs.PROPERTY_NAME_KEY projection = QueryOptions.projection(query_options, conn.config) self._validate_projection_and_group_by(projection, self._group_by) if projection: for prop in projection: prop_ref_pb = v1_query.projection.add().property prop_ref_pb.name = prop if self._group_by: for group_by in self._group_by: v1_query.distinct_on.add().name = group_by limit = QueryOptions.limit(query_options, conn.config) if limit is not None: v1_query.limit.value = limit count = QueryOptions.batch_size(query_options, conn.config) if count is None: count = QueryOptions.prefetch_size(query_options, conn.config) if count is not None: pass if query_options.offset: v1_query.offset = query_options.offset if query_options.start_cursor is not None: v1_query.start_cursor = query_options.start_cursor.to_bytes() if query_options.end_cursor is not None: v1_query.end_cursor = query_options.end_cursor.to_bytes() conn._set_request_read_policy(v1_req, query_options) conn._set_request_transaction(v1_req) return v1_req def _to_pb(self, conn, query_options): """Returns the internal only pb representation.""" pb = self._key_filter._to_pb() if self._filter_predicate: for f in self._filter_predicate._to_pbs(): pb.filter.add().CopyFrom(f) if self._order: for order in self._order._to_pbs(): pb.order.add().CopyFrom(order) if QueryOptions.keys_only(query_options, conn.config): pb.keys_only = True projection = QueryOptions.projection(query_options, conn.config) self._validate_projection_and_group_by(projection, self._group_by) if projection: pb.property_name.extend(projection) if self._group_by: pb.group_by_property_name.extend(self._group_by) if QueryOptions.produce_cursors(query_options, conn.config): pb.compile = True limit = QueryOptions.limit(query_options, conn.config) if limit is not None: pb.limit = limit count = QueryOptions.prefetch_size(query_options, conn.config) if count is None: count = QueryOptions.batch_size(query_options, conn.config) if count is not None: pb.count = count if query_options.offset: pb.offset = query_options.offset if query_options.start_cursor is not None: try: pb.compiled_cursor.ParseFromString( query_options.start_cursor.to_bytes()) except message.DecodeError: raise datastore_errors.BadValueError('invalid cursor') if query_options.end_cursor is not None: try: pb.end_compiled_cursor.ParseFromString( query_options.end_cursor.to_bytes()) except message.DecodeError: raise datastore_errors.BadValueError('invalid cursor') if ((query_options.hint == QueryOptions.ORDER_FIRST and len(pb.order)) or (query_options.hint == QueryOptions.ANCESTOR_FIRST and pb.HasField('ancestor')) or (query_options.hint == QueryOptions.FILTER_FIRST and pb.filter)): pb.hint = query_options.hint if self.read_time_us is not None: pb.read_time_us = self.read_time_us conn._set_request_read_policy(pb, query_options) conn._set_request_transaction(pb) return pb def _validate_projection_and_group_by(self, projection, group_by): """Validates that a query's projection and group by match. Args: projection: A set of string property names in the projection. group_by: A set of string property names in the group by. Raises: datastore_errors.BadRequestError: if the projection and group by sets are not equal. """ if projection: if group_by: extra = set(projection) - set(group_by) if extra: raise datastore_errors.BadRequestError( 'projections includes properties not in the group_by argument: %s' % extra) elif group_by: raise datastore_errors.BadRequestError( 'cannot specify group_by without a projection') def apply_query(query, entities, _key=None): """Performs the given query on a set of in-memory results. This function can perform queries impossible in the datastore (e.g a query with multiple inequality filters on different properties) because all operations are done in memory. For queries that can also be executed on the the datastore, the results produced by this function may not use the same implicit ordering as the datastore. To ensure compatibility, explicit ordering must be used (e.g. 'ORDER BY ineq_prop, ..., __key__'). Order by __key__ should always be used when a consistent result is desired (unless there is a sort order on another globally unique property). Args: query: a datastore_query.Query to apply entities: a list of results, of arbitrary type, on which to apply the query. _key: a function that takes an element of the result array as an argument and must return an entity_pb2.EntityProto. If not specified, the identity function is used (and entities must be a list of entity_pb2.EntityProto). Returns: A subset of entities, filtered and ordered according to the query. """ if not isinstance(query, Query): raise datastore_errors.BadArgumentError( 'query argument must be a datastore_query.Query (%r)' % (query,)) if not isinstance(entities, list): raise datastore_errors.BadArgumentError( 'entities argument must be a list (%r)' % (entities,)) key = _key or (lambda x: x) filtered_results = [r for r in entities if query._key_filter(key(r))] if not query._order: if query._filter_predicate: return [r for r in filtered_results if query._filter_predicate(key(r))] return filtered_results names = query._order._get_prop_names() if query._filter_predicate: names |= query._filter_predicate._get_prop_names() exists_filter = _PropertyExistsFilter(names) value_maps = [] for result in filtered_results: value_map = _make_key_value_map(key(result), names) if exists_filter._apply(value_map) and ( not query._filter_predicate or query._filter_predicate._prune(value_map)): value_map['__result__'] = result value_maps.append(value_map) value_maps.sort(key=functools.cmp_to_key(query._order._cmp)) return [value_map['__result__'] for value_map in value_maps] class _AugmentedQuery(_BaseQuery): """A query that combines a datastore query with in-memory filters/results.""" @datastore_rpc._positional(2) def __init__(self, query, in_memory_results=None, in_memory_filter=None, max_filtered_count=None): """Constructor for _AugmentedQuery. Do not call directly. Use the utility functions instead (e.g. datastore_query.inject_results) Args: query: A datastore_query.Query object to augment. in_memory_results: a list of pre- sorted and filtered result to add to the stream of datastore results or None . in_memory_filter: a set of in-memory filters to apply to the datastore results or None. max_filtered_count: the maximum number of datastore entities that will be filtered out by in_memory_filter if known. """ if not isinstance(query, Query): raise datastore_errors.BadArgumentError( 'query argument should be datastore_query.Query (%r)' % (query,)) if (in_memory_filter is not None and not isinstance(in_memory_filter, FilterPredicate)): raise datastore_errors.BadArgumentError( 'in_memory_filter argument should be ' + six.ensure_str( 'datastore_query.FilterPredicate (%r)' % (in_memory_filter,), 'utf-8')) if (in_memory_results is not None and not isinstance(in_memory_results, list)): raise datastore_errors.BadArgumentError( 'in_memory_results argument should be a list of' + six.ensure_str('datastore_pv.EntityProto (%r)' % (in_memory_results,), 'utf-8')) datastore_types.ValidateInteger(max_filtered_count, 'max_filtered_count', empty_ok=True, zero_ok=True) self._query = query self._max_filtered_count = max_filtered_count self._in_memory_filter = in_memory_filter self._in_memory_results = in_memory_results @property def app(self): return self._query._key_filter.app @property def namespace(self): return self._query._key_filter.namespace @property def kind(self): return self._query._key_filter.kind @property def ancestor(self): return self._query._key_filter.ancestor @property def filter_predicate(self): return self._query._filter_predicate @property def order(self): return self._query._order @property def group_by(self): return self._query._group_by def run_async(self, conn, query_options=None): if not isinstance(conn, datastore_rpc.BaseConnection): raise datastore_errors.BadArgumentError( 'conn should be a datastore_rpc.BaseConnection (%r)' % (conn,)) if not QueryOptions.is_configuration(query_options): query_options = QueryOptions(config=query_options) if self._query._order: changes = {'keys_only': False} else: changes = {} if self._in_memory_filter or self._in_memory_results: in_memory_offset = query_options.offset in_memory_limit = query_options.limit if in_memory_limit is not None: if self._in_memory_filter is None: changes['limit'] = in_memory_limit elif self._max_filtered_count is not None: changes['limit'] = in_memory_limit + self._max_filtered_count else: changes['limit'] = None if in_memory_offset: changes['offset'] = None if changes.get('limit', None) is not None: changes['limit'] += in_memory_offset else: in_memory_offset = None else: in_memory_offset = None in_memory_limit = None modified_query_options = QueryOptions(config=query_options, **changes) if conn._api_version == datastore_rpc._CLOUD_DATASTORE_V1: req = self._query._to_pb_v1(conn, modified_query_options) else: req = self._query._to_pb(conn, modified_query_options) start_cursor = query_options.start_cursor if not start_cursor and query_options.produce_cursors: start_cursor = Cursor() return _AugmentedBatch.create_async(self, modified_query_options, conn, req, in_memory_offset=in_memory_offset, in_memory_limit=in_memory_limit, start_cursor=start_cursor) @datastore_rpc._positional(1) def inject_results(query, updated_entities=None, deleted_keys=None): """Creates a query object that will inject changes into results. Args: query: The datastore_query.Query to augment updated_entities: A list of entity_pb2.EntityProto's that have been updated and should take priority over any values returned by query. deleted_keys: A list of entity_pb2.Reference's for entities that have been deleted and should be removed from query results. Returns: A datastore_query.AugmentedQuery if in memory filtering is required, query otherwise. """ if not isinstance(query, Query): raise datastore_errors.BadArgumentError( 'query argument should be datastore_query.Query (%r)' % (query,)) overridden_keys = set() if deleted_keys is not None: if not isinstance(deleted_keys, list): raise datastore_errors.BadArgumentError( 'deleted_keys argument must be a list (%r)' % (deleted_keys,)) deleted_keys = list(six.moves.filter(query._key_filter, deleted_keys)) for key in deleted_keys: overridden_keys.add(datastore_types.ReferenceToKeyValue(key)) if updated_entities is not None: if not isinstance(updated_entities, list): raise datastore_errors.BadArgumentError( 'updated_entities argument must be a list (%r)' % (updated_entities,)) updated_entities = list( six.moves.filter(query._key_filter, updated_entities)) for entity in updated_entities: overridden_keys.add(datastore_types.ReferenceToKeyValue(entity.key)) updated_entities = apply_query(query, updated_entities) else: updated_entities = [] if not overridden_keys: return query return _AugmentedQuery(query, in_memory_filter=_IgnoreFilter(overridden_keys), in_memory_results=updated_entities, max_filtered_count=len(overridden_keys)) class _BatchShared(object): """Data shared among the batches of a query.""" def __init__(self, query, query_options, conn, augmented_query=None, initial_offset=None): self.__query = query self.__query_options = query_options self.__conn = conn self.__augmented_query = augmented_query self.__was_first_result_processed = False if initial_offset is None: initial_offset = query_options.offset or 0 self.__expected_offset = initial_offset self.__remaining_limit = query_options.limit @property def query(self): return self.__query @property def query_options(self): return self.__query_options @property def conn(self): return self.__conn @property def augmented_query(self): return self.__augmented_query @property def keys_only(self): return self.__keys_only @property def compiled_query(self): return self.__compiled_query @property def expected_offset(self): return self.__expected_offset @property def remaining_limit(self): return self.__remaining_limit @property def index_list(self): """Returns the list of indexes used by the query. Possibly None when the adapter does not implement pb_to_index. """ return self.__index_list def process_batch(self, batch): if self.conn._api_version == datastore_rpc._CLOUD_DATASTORE_V1: skipped_results = batch.skipped_results num_results = len(batch.entity_results) else: skipped_results = batch.skipped_results num_results = len(batch.result) self.__expected_offset -= skipped_results if self.__remaining_limit is not None: self.__remaining_limit -= num_results if not self.__was_first_result_processed: self.__was_first_result_processed = True if self.conn._api_version == datastore_rpc._CLOUD_DATASTORE_V1: result_type = batch.entity_result_type self.__keys_only = result_type == googledatastore.EntityResult.KEY_ONLY self.__compiled_query = None self.__index_list = None else: self.__keys_only = batch.keys_only if batch.HasField('compiled_query'): self.__compiled_query = batch.compiled_query else: self.__compiled_query = None try: self.__index_list = [ self.__conn.adapter.pb_to_index(index_pb) for index_pb in batch.index ] except NotImplementedError: self.__index_list = None class Batch(object): """A batch of results returned by a query. This class contains a batch of results returned from the datastore and relevant metadata. This metadata includes: query: The query that produced this batch query_options: The QueryOptions used to run the query. This does not contained any options passed to the .next_batch() call that created the current batch. start_cursor, end_cursor: These are the cursors that can be used with a query to re-fetch this batch. They can also be used to find all entities before or after the given batch (by use start_cursor as an end cursor or vice versa). start_cursor can also be advanced to point to a position within the batch using Cursor.advance(). skipped_results: the number of result skipped because of the offset given to the request that generated it. This can be set either on the original Query.run() request or in subsequent .next_batch() calls. more_results: If this is true there are more results that can be retrieved either by .next_batch() or Batcher.next(). This class is also able to fetch the next batch of the query using .next_batch(). As batches of results must be fetched serially, .next_batch() can only be called once. Additional calls to .next_batch() will return None. When there are no more batches .next_batch() will return None as well. Note that batches returned by iterating over Batcher will always return None for .next_batch() as the Bather handles fetching the next batch automatically. A Batch typically represents the result of a single RPC request. The datastore operates on a "best effort" basis so the batch returned by .next_batch() or Query.run_async().get_result() may not have satisfied the requested offset or number of results (specified through FetchOptions.offset and FetchOptions.batch_size respectively). To satisfy these restrictions additional batches may be needed (with FetchOptions that specify the remaining offset or results needed). The Batcher class hides these limitations. """ __skipped_cursor = None __end_cursor = None @classmethod @datastore_rpc._positional(5) def create_async(cls, query, query_options, conn, req, start_cursor): batch_shared = _BatchShared(query, query_options, conn) batch0 = cls(batch_shared, start_cursor=start_cursor) return batch0._make_query_rpc_call(query_options, req) @datastore_rpc._positional(2) def __init__(self, batch_shared, start_cursor=Cursor()): """Constructor. This class is constructed in stages (one when an RPC is sent and another when an rpc is completed) and should not be constructed directly!! Use Query.run_async().get_result() to create a Batch or Query.run() to use a batcher. This constructor does not perform verification. Args: batch_shared: Data shared between batches for a a single query run. start_cursor: Optional cursor pointing before this batch. """ self._batch_shared = batch_shared self.__start_cursor = start_cursor @property def query_options(self): """The QueryOptions used to retrieve the first batch.""" return self._batch_shared.query_options @property def query(self): """The query the current batch came from.""" return self._batch_shared.query @property def results(self): """A list of entities in this batch.""" return self.__results @property def keys_only(self): """Whether the entities in this batch only contain keys.""" return self._batch_shared.keys_only @property def index_list(self): """Returns the list of indexes used to peform this batch's query. Possibly None when the adapter does not implement pb_to_index. """ return self._batch_shared.index_list @property def start_cursor(self): """A cursor that points to the position just before the current batch.""" return self.__start_cursor @property def end_cursor(self): """A cursor that points to the position just after the current batch.""" return self.__end_cursor @property def skipped_results(self): """The number of results skipped because of an offset in the request. An offset is satisfied before any results are returned. The start_cursor points to the position in the query before the skipped results. """ return self._skipped_results @property def more_results(self): """Whether more results can be retrieved from the query.""" return self.__more_results def next_batch(self, fetch_options=None): """Synchronously get the next batch or None if there are no more batches. Args: fetch_options: Optional fetch options to use when fetching the next batch. Merged with both the fetch options on the original call and the connection. Returns: A new Batch of results or None if either the next batch has already been fetched or there are no more results. """ async_ = self.next_batch_async(fetch_options) if async_ is None: return None return async_.get_result() def _compiled_query(self): return self._batch_shared.compiled_query def cursor(self, index): """Gets the cursor that points just after the result at index - 1. The index is relative to first result in .results. Since start_cursor points to the position before the first skipped result, the range of indexes this function supports is limited to [-skipped_results, len(results)]. For example, using start_cursor=batch.cursor(i) and end_cursor=batch.cursor(j) will return the results found in batch.results[i:j]. Note that any result added in the range (i-1, j] will appear in the new query's results. Warning: Any index in the range (-skipped_results, 0) may cause continuation to miss or duplicate results if outside a transaction. Args: index: An int, the index relative to the first result before which the cursor should point. Returns: A Cursor that points to a position just after the result index - 1, which if used as a start_cursor will cause the first result to be batch.result[index]. """ if not isinstance(index, six.integer_types): raise datastore_errors.BadArgumentError( 'index argument should be an integer (%r)' % (index,)) if not -self._skipped_results <= index <= len(self.__results): raise datastore_errors.BadArgumentError( 'index argument must be in the inclusive range [%d, %d]' % (-self._skipped_results, len(self.__results))) if index == -self._skipped_results: return self.__start_cursor elif (index == 0 and self.__skipped_cursor): return self.__skipped_cursor elif index > 0 and self.__result_cursors: return self.__result_cursors[index - 1] elif index == len(self.__results): return self.__end_cursor else: return self.__start_cursor.advance(index + self._skipped_results, self._batch_shared.query, self._batch_shared.conn) def next_batch_async(self, fetch_options=None): """Asynchronously get the next batch or None if there are no more batches. Args: fetch_options: Optional fetch options to use when fetching the next batch. Merged with both the fetch options on the original call and the connection. Returns: An async object that can be used to get the next Batch or None if either the next batch has already been fetched or there are no more results. """ if not self.__datastore_cursor: return None fetch_options, next_batch = self._make_next_batch(fetch_options) if (fetch_options is not None and not FetchOptions.is_configuration(fetch_options)): raise datastore_errors.BadArgumentError('Invalid fetch options.') config = self._batch_shared.query_options.merge(fetch_options) conn = next_batch._batch_shared.conn requested_offset = 0 if fetch_options is not None and fetch_options.offset is not None: requested_offset = fetch_options.offset if conn._api_version == datastore_rpc._CLOUD_DATASTORE_V1: if self._batch_shared.expected_offset != requested_offset: raise datastore_errors.BadArgumentError( 'Cannot request the next batch with a different offset than ' ' expected. Expected: %s, Got: %s.' % (self._batch_shared.expected_offset, requested_offset)) limit = self._batch_shared.remaining_limit next_options = QueryOptions(offset=self._batch_shared.expected_offset, limit=limit, start_cursor=self.__datastore_cursor) config = config.merge(next_options) result = next_batch._make_query_rpc_call( config, self._batch_shared.query._to_pb_v1(conn, config)) else: result = next_batch._make_next_rpc_call(config, self._to_pb(fetch_options)) self.__datastore_cursor = None return result def _to_pb(self, fetch_options=None): req = datastore_pb.NextRequest() if FetchOptions.produce_cursors(fetch_options, self._batch_shared.query_options, self._batch_shared.conn.config): req.compile = True count = FetchOptions.batch_size(fetch_options, self._batch_shared.query_options, self._batch_shared.conn.config) if count is not None: req.count = count if fetch_options is not None and fetch_options.offset: req.offset = fetch_options.offset req.cursor.CopyFrom(self.__datastore_cursor) return req def _extend(self, next_batch): """Combines the current batch with the next one. Called by batcher.""" self.__datastore_cursor = next_batch.__datastore_cursor next_batch.__datastore_cursor = None self.__more_results = next_batch.__more_results if not self.__results: self.__skipped_cursor = next_batch.__skipped_cursor self.__results.extend(next_batch.__results) self.__result_cursors.extend(next_batch.__result_cursors) self.__end_cursor = next_batch.__end_cursor self._skipped_results += next_batch._skipped_results def _make_query_rpc_call(self, config, req): """Makes a RunQuery call that will modify the instance. Args: config: The datastore_rpc.Configuration to use for the call. req: The request to send with the call. Returns: A UserRPC object that can be used to fetch the result of the RPC. """ _api_version = self._batch_shared.conn._api_version if _api_version == datastore_rpc._CLOUD_DATASTORE_V1: return self._batch_shared.conn._make_rpc_call( config, 'RunQuery', req, googledatastore.RunQueryResponse(), self.__v1_run_query_response_hook) return self._batch_shared.conn._make_rpc_call(config, 'RunQuery', req, datastore_pb.QueryResult(), self.__query_result_hook) def _make_next_rpc_call(self, config, req): """Makes a Next call that will modify the instance. Args: config: The datastore_rpc.Configuration to use for the call. req: The request to send with the call. Returns: A UserRPC object that can be used to fetch the result of the RPC. """ return self._batch_shared.conn._make_rpc_call(config, 'Next', req, datastore_pb.QueryResult(), self.__query_result_hook) _need_index_header = 'The suggested index for this query is:' def __v1_run_query_response_hook(self, rpc): try: self._batch_shared.conn.check_rpc_success(rpc) except datastore_errors.NeedIndexError: raise batch = rpc.response.batch self._batch_shared.process_batch(batch) if batch.skipped_cursor: self.__skipped_cursor = Cursor(_cursor_bytes=batch.skipped_cursor) self.__result_cursors = [Cursor(_cursor_bytes=result.cursor) for result in batch.entity_results if result.cursor] if batch.end_cursor: self.__end_cursor = Cursor(_cursor_bytes=batch.end_cursor) self._skipped_results = batch.skipped_results if batch.more_results == googledatastore.QueryResultBatch.NOT_FINISHED: self.__more_results = True self.__datastore_cursor = self.__end_cursor or self.__skipped_cursor if self.__datastore_cursor == self.__start_cursor: raise datastore_errors.Timeout( 'The query was not able to make progress.') else: self._end() self.__results = self._process_v1_results(batch.entity_results) return self def __query_result_hook(self, rpc): """Internal method used as get_result_hook for RunQuery/Next operation.""" try: self._batch_shared.conn.check_rpc_success(rpc) except datastore_errors.NeedIndexError as exc: if isinstance(rpc.request, datastore_pb.Query): _, kind, ancestor, props = datastore_index.CompositeIndexForQuery( rpc.request) props = datastore_index.GetRecommendedIndexProperties(props) yaml = datastore_index.IndexYamlForQuery(kind, ancestor, props) xml = datastore_index.IndexXmlForQuery(kind, ancestor, props) raise datastore_errors.NeedIndexError( '\n'.join([str(exc), self._need_index_header, yaml]), original_message=str(exc), header=self._need_index_header, yaml_index=yaml, xml_index=xml) raise query_result = rpc.response self._batch_shared.process_batch(query_result) if query_result.HasField('skipped_results_compiled_cursor'): self.__skipped_cursor = Cursor( _cursor_bytes=query_result.skipped_results_compiled_cursor .SerializeToString()) self.__result_cursors = [ Cursor(_cursor_bytes=result.SerializeToString()) for result in query_result.result_compiled_cursor ] if query_result.HasField('compiled_cursor'): self.__end_cursor = Cursor( _cursor_bytes=query_result.compiled_cursor.SerializeToString()) self._skipped_results = query_result.skipped_results if query_result.more_results: self.__datastore_cursor = query_result.cursor self.__more_results = True else: self._end() self.__results = self._process_results(query_result.result) return self def _end(self): """Changes the internal state so that no more batches can be produced.""" self.__datastore_cursor = None self.__more_results = False def _make_next_batch(self, fetch_options): """Creates the object to store the next batch. Args: fetch_options: The datastore_query.FetchOptions passed in by the user or None. Returns: A tuple containing the fetch options that should be used internally and the object that should be used to contain the next batch. """ return fetch_options, Batch(self._batch_shared, start_cursor=self.__end_cursor) def _process_results(self, results): """Converts the datastore results into results returned to the user. Args: results: A list of entity_pb2.EntityProto's returned by the datastore Returns: A list of results that should be returned to the user. """ converter = self._batch_shared.conn.adapter.pb_to_query_result return [converter(result, self._batch_shared.query_options) for result in results] def _process_v1_results(self, results): """Converts the datastore results into results returned to the user. Args: results: A list of googledatastore.EntityResults. Returns: A list of results that should be returned to the user. """ converter = self._batch_shared.conn.adapter.pb_v1_to_query_result return [converter(result.entity, self._batch_shared.query_options) for result in results] def __getstate__(self): raise pickle.PicklingError( 'Pickling of datastore_query.Batch is unsupported.') class _AugmentedBatch(Batch): """A batch produced by a datastore_query._AugmentedQuery.""" @classmethod @datastore_rpc._positional(5) def create_async(cls, augmented_query, query_options, conn, req, in_memory_offset, in_memory_limit, start_cursor): initial_offset = 0 if in_memory_offset is not None else None batch_shared = _BatchShared(augmented_query._query, query_options, conn, augmented_query, initial_offset=initial_offset) batch0 = cls(batch_shared, in_memory_offset=in_memory_offset, in_memory_limit=in_memory_limit, start_cursor=start_cursor) return batch0._make_query_rpc_call(query_options, req) @datastore_rpc._positional(2) def __init__(self, batch_shared, in_memory_offset=None, in_memory_limit=None, next_index=0, start_cursor=Cursor()): """A Constructor for datastore_query._AugmentedBatch. Constructed by datastore_query._AugmentedQuery. Should not be called directly. """ super(_AugmentedBatch, self).__init__(batch_shared, start_cursor=start_cursor) self.__in_memory_offset = in_memory_offset self.__in_memory_limit = in_memory_limit self.__next_index = next_index @property def query(self): """The query the current batch came from.""" return self._batch_shared.augmented_query def cursor(self, index): raise NotImplementedError def _extend(self, next_batch): super(_AugmentedBatch, self)._extend(next_batch) self.__in_memory_limit = next_batch.__in_memory_limit self.__in_memory_offset = next_batch.__in_memory_offset self.__next_index = next_batch.__next_index def _process_v1_results(self, results): """Process V4 results by converting to V3 and calling _process_results.""" v3_results = [] is_projection = bool(self.query_options.projection) for v1_result in results: v3_entity = entity_pb2.EntityProto() self._batch_shared.conn.adapter.get_entity_converter().v1_to_v3_entity( v1_result.entity, v3_entity, is_projection) v3_results.append(v3_entity) return self._process_results(v3_results) def _process_results(self, results): in_memory_filter = self._batch_shared.augmented_query._in_memory_filter if in_memory_filter: results = list(filter(in_memory_filter, results)) in_memory_results = self._batch_shared.augmented_query._in_memory_results if in_memory_results and self.__next_index < len(in_memory_results): original_query = super(_AugmentedBatch, self).query if original_query._order: if results: next_result = in_memory_results[self.__next_index] next_key = original_query._order.key(next_result) i = 0 while i < len(results): result = results[i] result_key = original_query._order.key(result) while next_key <= result_key: results.insert(i, next_result) i += 1 self.__next_index += 1 if self.__next_index >= len(in_memory_results): break next_result = in_memory_results[self.__next_index] next_key = original_query._order.key(next_result) i += 1 elif results or not super(_AugmentedBatch, self).more_results: results = in_memory_results + results self.__next_index = len(in_memory_results) if self.__in_memory_offset: assert not self._skipped_results offset = min(self.__in_memory_offset, len(results)) if offset: self._skipped_results += offset self.__in_memory_offset -= offset results = results[offset:] if self.__in_memory_limit is not None: results = results[:self.__in_memory_limit] self.__in_memory_limit -= len(results) if self.__in_memory_limit <= 0: self._end() return super(_AugmentedBatch, self)._process_results(results) def _make_next_batch(self, fetch_options): in_memory_offset = FetchOptions.offset(fetch_options) augmented_query = self._batch_shared.augmented_query if in_memory_offset and (augmented_query._in_memory_filter or augmented_query._in_memory_results): fetch_options = FetchOptions(offset=0) else: in_memory_offset = None return (fetch_options, _AugmentedBatch(self._batch_shared, in_memory_offset=in_memory_offset, in_memory_limit=self.__in_memory_limit, start_cursor=self.end_cursor, next_index=self.__next_index)) class Batcher(object): """A class that implements the Iterator interface for Batches. Typically constructed by a call to Query.run(). The class hides the "best effort" nature of the datastore by potentially making multiple requests to the datastore and merging the resulting batches. This is accomplished efficiently by prefetching results and mixing both non-blocking and blocking calls to the datastore as needed. Iterating through batches is almost always more efficient than pulling all results at once as RPC latency is hidden by asynchronously prefetching results. The batches produce by this class cannot be used to fetch the next batch (through Batch.next_batch()) as before the current batch is returned the request for the next batch has already been sent. """ ASYNC_ONLY = None AT_LEAST_OFFSET = 0 AT_LEAST_ONE = object() def __init__(self, query_options, first_async_batch): """Constructor. Although this class can be manually constructed, it is preferable to use Query.run(query_options). Args: query_options: The QueryOptions used to create the first batch. first_async_batch: The first batch produced by Query.run_async(query_options). """ self.__next_batch = first_async_batch self.__initial_offset = QueryOptions.offset(query_options) or 0 self.__skipped_results = 0 def next(self): """Get the next batch. See .next_batch().""" return self.next_batch(self.AT_LEAST_ONE) def __next__(self): return self.next() def next_batch(self, min_batch_size): """Get the next batch. The batch returned by this function cannot be used to fetch the next batch (through Batch.next_batch()). Instead this function will always return None. To retrieve the next batch use .next() or .next_batch(N). This function may return a batch larger than min_to_fetch, but will never return smaller unless there are no more results. Special values can be used for min_batch_size: ASYNC_ONLY - Do not perform any synchrounous fetches from the datastore even if the this produces a batch with no results. AT_LEAST_OFFSET - Only pull enough results to satifiy the offset. AT_LEAST_ONE - Pull batches until at least one result is returned. Args: min_batch_size: The minimum number of results to retrieve or one of (ASYNC_ONLY, AT_LEAST_OFFSET, AT_LEAST_ONE) Returns: The next Batch of results. """ if min_batch_size in (Batcher.ASYNC_ONLY, Batcher.AT_LEAST_OFFSET, Batcher.AT_LEAST_ONE): exact = False else: exact = True datastore_types.ValidateInteger(min_batch_size, 'min_batch_size', datastore_errors.BadArgumentError) if not self.__next_batch: raise StopIteration batch = self.__next_batch.get_result() self.__next_batch = None self.__skipped_results += batch.skipped_results if min_batch_size is not Batcher.ASYNC_ONLY: if min_batch_size is Batcher.AT_LEAST_ONE: min_batch_size = 1 needed_results = min_batch_size - len(batch.results) while (batch.more_results and (self.__skipped_results < self.__initial_offset or needed_results > 0)): if batch.query_options.batch_size: batch_size = max(batch.query_options.batch_size, needed_results) elif exact: batch_size = needed_results else: batch_size = None self.__next_batch = batch.next_batch_async(FetchOptions( offset=max(0, self.__initial_offset - self.__skipped_results), batch_size=batch_size)) next_batch = self.__next_batch.get_result() self.__next_batch = None self.__skipped_results += next_batch.skipped_results needed_results = max(0, needed_results - len(next_batch.results)) batch._extend(next_batch) self.__next_batch = batch.next_batch_async() return batch def __getstate__(self): raise pickle.PicklingError( 'Pickling of datastore_query.Batcher is unsupported.') def __iter__(self): return self class ResultsIterator(six.Iterator): """An iterator over the results from Batches obtained from a Batcher. ResultsIterator implements Python's iterator protocol, so results can be accessed with the for-statement: > it = ResultsIterator(Query(kind='Person').run()) > for person in it: > print 'Hi, %s!' % person['name'] At any time ResultsIterator.cursor() can be used to grab the Cursor that points just after the last result returned by the iterator. """ __current_batch = None __current_pos = 0 __last_cursor = None def __init__(self, batcher): """Constructor. Args: batcher: A datastore_query.Batcher """ if not isinstance(batcher, Batcher): raise datastore_errors.BadArgumentError( 'batcher argument should be datastore_query.Batcher (%r)' % (batcher,)) self.__batcher = batcher def index_list(self): """Returns the list of indexes used to perform the query. Possibly None when the adapter does not implement pb_to_index. """ return self._ensure_current_batch().index_list def cursor(self): """Returns a cursor that points just after the last result returned. If next() throws an exception, this function returns the end_cursor from the last successful batch or throws the same exception if no batch was successful. """ return (self.__last_cursor or self._ensure_current_batch().cursor(self.__current_pos)) def _ensure_current_batch(self): if not self.__current_batch: self.__current_batch = self.__batcher.next_batch(Batcher.AT_LEAST_OFFSET) self.__current_pos = 0 return self.__current_batch def _compiled_query(self): """Returns the compiled query associated with the iterator. Internal only do not use. """ return self._ensure_current_batch()._compiled_query() def __next__(self): """Returns the next query result.""" while (not self.__current_batch or self.__current_pos >= len(self.__current_batch.results)): try: next_batch = self.__batcher.next_batch(Batcher.AT_LEAST_OFFSET) except: if self.__current_batch: self.__last_cursor = self.__current_batch.end_cursor raise self.__current_pos = 0 self.__current_batch = next_batch result = self.__current_batch.results[self.__current_pos] self.__current_pos += 1 return result def __iter__(self): return self def next(self): return self.__next__()
[((2463, 1, 2463, 29), 'google.appengine.datastore.datastore_rpc._positional', 'datastore_rpc._positional', ({(2463, 27, 2463, 28): '(1)'}, {}), '(1)', False, 'from google.appengine.datastore import datastore_rpc\n'), ((118, 2, 118, 48), 'google.appengine.api.datastore_types.ValidateProperty', 'datastore_types.ValidateProperty', ({(118, 35, 118, 39): 'name', (118, 41, 118, 47): 'values'}, {}), '(name, values)', False, 'from google.appengine.api import datastore_types\n'), ((119, 15, 119, 57), 'google.appengine.api.datastore_types.ToPropertyPb', 'datastore_types.ToPropertyPb', ({(119, 44, 119, 48): 'name', (119, 50, 119, 56): 'values'}, {}), '(name, values)', False, 'from google.appengine.api import datastore_types\n'), ((152, 13, 152, 66), 'six.ensure_text', 'six.ensure_text', ({(152, 29, 152, 65): 'datastore_types.KEY_SPECIAL_PROPERTY'}, {}), '(datastore_types.KEY_SPECIAL_PROPERTY)', False, 'import six\n'), ((428, 3, 428, 31), 'google.appengine.datastore.datastore_rpc._positional', 'datastore_rpc._positional', ({(428, 29, 428, 30): '(1)'}, {}), '(1)', False, 'from google.appengine.datastore import datastore_rpc\n'), ((1000, 3, 1000, 31), 'google.appengine.datastore.datastore_rpc._positional', 'datastore_rpc._positional', ({(1000, 29, 1000, 30): '(1)'}, {}), '(1)', False, 'from google.appengine.datastore import datastore_rpc\n'), ((1187, 3, 1187, 31), 'google.appengine.datastore.datastore_rpc._positional', 'datastore_rpc._positional', ({(1187, 29, 1187, 30): '(1)'}, {}), '(1)', False, 'from google.appengine.datastore import datastore_rpc\n'), ((1298, 3, 1298, 31), 'google.appengine.datastore.datastore_rpc._positional', 'datastore_rpc._positional', ({(1298, 29, 1298, 30): '(1)'}, {}), '(1)', False, 'from google.appengine.datastore import datastore_rpc\n'), ((1571, 3, 1571, 31), 'google.appengine.datastore.datastore_rpc._positional', 'datastore_rpc._positional', ({(1571, 29, 1571, 30): '(1)'}, {}), '(1)', False, 'from google.appengine.datastore import datastore_rpc\n'), ((1705, 3, 1705, 31), 'google.appengine.datastore.datastore_rpc._positional', 'datastore_rpc._positional', ({(1705, 29, 1705, 30): '(1)'}, {}), '(1)', False, 'from google.appengine.datastore import datastore_rpc\n'), ((1904, 3, 1904, 31), 'google.appengine.datastore.datastore_rpc._positional', 'datastore_rpc._positional', ({(1904, 29, 1904, 30): '(1)'}, {}), '(1)', False, 'from google.appengine.datastore import datastore_rpc\n'), ((2331, 3, 2331, 31), 'google.appengine.datastore.datastore_rpc._positional', 'datastore_rpc._positional', ({(2331, 29, 2331, 30): '(2)'}, {}), '(2)', False, 'from google.appengine.datastore import datastore_rpc\n'), ((2646, 3, 2646, 31), 'google.appengine.datastore.datastore_rpc._positional', 'datastore_rpc._positional', ({(2646, 29, 2646, 30): '(5)'}, {}), '(5)', False, 'from google.appengine.datastore import datastore_rpc\n'), ((2653, 3, 2653, 31), 'google.appengine.datastore.datastore_rpc._positional', 'datastore_rpc._positional', ({(2653, 29, 2653, 30): '(2)'}, {}), '(2)', False, 'from google.appengine.datastore import datastore_rpc\n'), ((3054, 3, 3054, 31), 'google.appengine.datastore.datastore_rpc._positional', 'datastore_rpc._positional', ({(3054, 29, 3054, 30): '(5)'}, {}), '(5)', False, 'from google.appengine.datastore import datastore_rpc\n'), ((3070, 3, 3070, 31), 'google.appengine.datastore.datastore_rpc._positional', 'datastore_rpc._positional', ({(3070, 29, 3070, 30): '(2)'}, {}), '(2)', False, 'from google.appengine.datastore import datastore_rpc\n'), ((146, 16, 146, 42), 'six.ensure_text', 'six.ensure_text', ({(146, 32, 146, 41): 'prop.name'}, {}), '(prop.name)', False, 'import six\n'), ((334, 19, 334, 46), 'google.appengine.datastore.datastore_pb.Query.Filter', 'datastore_pb.Query.Filter', ({}, {}), '()', False, 'from google.appengine.datastore import datastore_pb\n'), ((351, 12, 351, 48), 'google.appengine.api.datastore_types.FromPropertyPb', 'datastore_types.FromPropertyPb', ({(351, 43, 351, 47): 'prop'}, {}), '(prop)', False, 'from google.appengine.api import datastore_types\n'), ((392, 16, 392, 40), 'google.appengine.datastore.datastore_pbs.googledatastore.Filter', 'googledatastore.Filter', ({}, {}), '()', False, 'from google.appengine.datastore.datastore_pbs import googledatastore\n'), ((399, 10, 400, 69), 'pickle.PicklingError', 'pickle.PicklingError', ({(400, 8, 400, 68): '"""Pickling of datastore_query.PropertyFilter is unsupported."""'}, {}), "(\n 'Pickling of datastore_query.PropertyFilter is unsupported.')", False, 'import pickle\n'), ((605, 16, 605, 40), 'google.appengine.datastore.datastore_pbs.googledatastore.Filter', 'googledatastore.Filter', ({}, {}), '()', False, 'from google.appengine.datastore.datastore_pbs import googledatastore\n'), ((633, 10, 634, 48), 'pickle.PicklingError', 'pickle.PicklingError', ({(634, 8, 634, 47): "('Pickling of %r is unsupported.' % self)"}, {}), "('Pickling of %r is unsupported.' % self)", False, 'import pickle\n'), ((672, 10, 673, 48), 'pickle.PicklingError', 'pickle.PicklingError', ({(673, 8, 673, 47): "('Pickling of %r is unsupported.' % self)"}, {}), "('Pickling of %r is unsupported.' % self)", False, 'import pickle\n'), ((938, 9, 938, 33), 'google.appengine.datastore.datastore_pbs.googledatastore.Filter', 'googledatastore.Filter', ({}, {}), '()', False, 'from google.appengine.datastore.datastore_pbs import googledatastore\n'), ((1117, 11, 1117, 43), 'google.appengine.api.cmp_compat.cmp', 'cmp_compat.cmp', ({(1117, 26, 1117, 33): 'lhs_key', (1117, 35, 1117, 42): 'rhs_key'}, {}), '(lhs_key, rhs_key)', False, 'from google.appengine.api import cmp_compat\n'), ((1161, 4, 1163, 69), 'google.appengine.api.datastore_types.ValidateString', 'datastore_types.ValidateString', ({(1161, 35, 1161, 39): 'prop', (1162, 35, 1162, 41): '"""prop"""', (1163, 35, 1163, 68): 'datastore_errors.BadArgumentError'}, {}), "(prop, 'prop', datastore_errors.BadArgumentError)", False, 'from google.appengine.api import datastore_types\n'), ((1168, 19, 1168, 45), 'google.appengine.datastore.datastore_pb.Query.Order', 'datastore_pb.Query.Order', ({}, {}), '()', False, 'from google.appengine.datastore import datastore_pb\n'), ((1169, 28, 1169, 60), 'six.ensure_binary', 'six.ensure_binary', ({(1169, 46, 1169, 50): 'prop', (1169, 52, 1169, 59): '"""utf-8"""'}, {}), "(prop, 'utf-8')", False, 'import six\n'), ((1250, 15, 1250, 46), 'google.appengine.datastore.datastore_pbs.googledatastore.PropertyOrder', 'googledatastore.PropertyOrder', ({}, {}), '()', False, 'from google.appengine.datastore.datastore_pbs import googledatastore\n'), ((1255, 10, 1256, 68), 'pickle.PicklingError', 'pickle.PicklingError', ({(1256, 8, 1256, 67): '"""Pickling of datastore_query.PropertyOrder is unsupported."""'}, {}), "(\n 'Pickling of datastore_query.PropertyOrder is unsupported.')", False, 'import pickle\n'), ((1392, 4, 1395, 49), 'google.appengine.api.datastore_types.ValidateInteger', 'datastore_types.ValidateInteger', (), '', False, 'from google.appengine.api import datastore_types\n'), ((1406, 4, 1408, 70), 'google.appengine.api.datastore_types.ValidateInteger', 'datastore_types.ValidateInteger', ({(1406, 36, 1406, 41): 'value', (1407, 36, 1407, 48): '"""batch_size"""', (1408, 36, 1408, 69): 'datastore_errors.BadArgumentError'}, {}), "(value, 'batch_size', datastore_errors.\n BadArgumentError)", False, 'from google.appengine.api import datastore_types\n'), ((1497, 4, 1500, 49), 'google.appengine.api.datastore_types.ValidateInteger', 'datastore_types.ValidateInteger', (), '', False, 'from google.appengine.api import datastore_types\n'), ((1511, 4, 1514, 49), 'google.appengine.api.datastore_types.ValidateInteger', 'datastore_types.ValidateInteger', (), '', False, 'from google.appengine.api import datastore_types\n'), ((1682, 4, 1684, 70), 'google.appengine.api.datastore_types.ValidateInteger', 'datastore_types.ValidateInteger', ({(1682, 36, 1682, 42): 'offset', (1683, 36, 1683, 44): '"""offset"""', (1684, 36, 1684, 69): 'datastore_errors.BadArgumentError'}, {}), "(offset, 'offset', datastore_errors.\n BadArgumentError)", False, 'from google.appengine.api import datastore_types\n'), ((1813, 9, 1813, 29), 'google.appengine.datastore.datastore_pb.Query', 'datastore_pb.Query', ({}, {}), '()', False, 'from google.appengine.datastore import datastore_pb\n'), ((1816, 4, 1816, 54), 'google.appengine.api.datastore_types.SetNamespace', 'datastore_types.SetNamespace', ({(1816, 33, 1816, 35): 'pb', (1816, 37, 1816, 53): 'self.__namespace'}, {}), '(pb, self.__namespace)', False, 'from google.appengine.api import datastore_types\n'), ((1835, 9, 1835, 42), 'google.appengine.datastore.datastore_pbs.googledatastore.RunQueryRequest', 'googledatastore.RunQueryRequest', ({}, {}), '()', False, 'from google.appengine.datastore.datastore_pbs import googledatastore\n'), ((1892, 10, 1893, 48), 'pickle.PicklingError', 'pickle.PicklingError', ({(1893, 8, 1893, 47): "('Pickling of %r is unsupported.' % self)"}, {}), "('Pickling of %r is unsupported.' % self)", False, 'import pickle\n'), ((2281, 10, 2282, 73), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(2282, 8, 2282, 72): "('query argument must be a datastore_query.Query (%r)' % (query,))"}, {}), "(\n 'query argument must be a datastore_query.Query (%r)' % (query,))", False, 'from google.appengine.api import datastore_errors\n'), ((2285, 10, 2286, 62), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(2286, 8, 2286, 61): "('entities argument must be a list (%r)' % (entities,))"}, {}), "('entities argument must be a list (%r)' %\n (entities,))", False, 'from google.appengine.api import datastore_errors\n'), ((2363, 4, 2366, 49), 'google.appengine.api.datastore_types.ValidateInteger', 'datastore_types.ValidateInteger', (), '', False, 'from google.appengine.api import datastore_types\n'), ((2479, 10, 2480, 73), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(2480, 8, 2480, 72): "('query argument should be datastore_query.Query (%r)' % (query,))"}, {}), "(\n 'query argument should be datastore_query.Query (%r)' % (query,))", False, 'from google.appengine.api import datastore_errors\n'), ((2847, 10, 2847, 36), 'google.appengine.datastore.datastore_pb.NextRequest', 'datastore_pb.NextRequest', ({}, {}), '()', False, 'from google.appengine.datastore import datastore_pb\n'), ((3046, 10, 3047, 60), 'pickle.PicklingError', 'pickle.PicklingError', ({(3047, 8, 3047, 59): '"""Pickling of datastore_query.Batch is unsupported."""'}, {}), "('Pickling of datastore_query.Batch is unsupported.')", False, 'import pickle\n'), ((3298, 10, 3299, 62), 'pickle.PicklingError', 'pickle.PicklingError', ({(3299, 8, 3299, 61): '"""Pickling of datastore_query.Batcher is unsupported."""'}, {}), "('Pickling of datastore_query.Batcher is unsupported.')", False, 'import pickle\n'), ((154, 27, 154, 74), 'google.appengine.api.datastore_types.ReferenceToKeyValue', 'datastore_types.ReferenceToKeyValue', ({(154, 63, 154, 73): 'entity.key'}, {}), '(entity.key)', False, 'from google.appengine.api import datastore_types\n'), ((328, 12, 328, 77), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(328, 46, 328, 76): "('unknown operator: %r' % (op,))"}, {}), "('unknown operator: %r' % (op,))", False, 'from google.appengine.api import datastore_errors\n'), ((330, 12, 331, 73), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(331, 10, 331, 72): "('value argument should be entity_pb2.Property (%r)' % (value,))"}, {}), "(\n 'value argument should be entity_pb2.Property (%r)' % (value,))", False, 'from google.appengine.api import datastore_errors\n'), ((365, 24, 366, 41), 'google.appengine.api.datastore_types.PropertyValueToKeyValue', 'datastore_types.PropertyValueToKeyValue', ({(366, 10, 366, 40): 'self._filter.property[0].value'}, {}), '(self._filter.property[0].value)', False, 'from google.appengine.api import datastore_types\n'), ((441, 12, 442, 73), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(442, 10, 442, 72): "('start argument should be entity_pb2.Property (%r)' % (start,))"}, {}), "(\n 'start argument should be entity_pb2.Property (%r)' % (start,))", False, 'from google.appengine.api import datastore_errors\n'), ((444, 12, 445, 71), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(445, 10, 445, 70): "('start argument should be entity_pb2.Property (%r)' % (end,))"}, {}), "(\n 'start argument should be entity_pb2.Property (%r)' % (end,))", False, 'from google.appengine.api import datastore_errors\n'), ((447, 12, 449, 33), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(448, 10, 449, 32): "('start and end arguments must be on the same property (%s != %s)' % (start\n .name, end.name))"}, {}), "(\n 'start and end arguments must be on the same property (%s != %s)' % (\n start.name, end.name))", False, 'from google.appengine.api import datastore_errors\n'), ((451, 12, 452, 48), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(452, 10, 452, 47): '"""Unbounded ranges are not supported."""'}, {}), "('Unbounded ranges are not supported.')", False, 'from google.appengine.api import datastore_errors\n'), ((537, 30, 538, 28), 'google.appengine.api.datastore_types.PropertyValueToKeyValue', 'datastore_types.PropertyValueToKeyValue', ({(538, 10, 538, 27): 'self._start.value'}, {}), '(self._start.value)', False, 'from google.appengine.api import datastore_types\n'), ((543, 28, 544, 26), 'google.appengine.api.datastore_types.PropertyValueToKeyValue', 'datastore_types.PropertyValueToKeyValue', ({(544, 10, 544, 25): 'self._end.value'}, {}), '(self._end.value)', False, 'from google.appengine.api import datastore_types\n'), ((582, 11, 582, 38), 'google.appengine.datastore.datastore_pb.Query.Filter', 'datastore_pb.Query.Filter', ({}, {}), '()', False, 'from google.appengine.datastore import datastore_pb\n'), ((592, 11, 592, 38), 'google.appengine.datastore.datastore_pb.Query.Filter', 'datastore_pb.Query.Filter', ({}, {}), '()', False, 'from google.appengine.datastore import datastore_pb\n'), ((735, 22, 735, 56), 'six.moves.zip', 'six.moves.zip', ({(735, 36, 735, 43): 'grouped', (735, 45, 735, 55): 'value_maps'}, {}), '(grouped, value_maps)', False, 'import six\n'), ((803, 12, 803, 78), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(803, 46, 803, 77): "('unknown operator (%s)' % (op,))"}, {}), "('unknown operator (%s)' % (op,))", False, 'from google.appengine.api import datastore_errors\n'), ((805, 12, 806, 74), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(806, 10, 806, 73): "('filters argument should be a non-empty list (%r)' % (filters,))"}, {}), "(\n 'filters argument should be a non-empty list (%r)' % (filters,))", False, 'from google.appengine.api import datastore_errors\n'), ((897, 16, 897, 44), 'collections.defaultdict', 'collections.defaultdict', ({(897, 40, 897, 43): 'set'}, {}), '(set)', False, 'import collections\n'), ((943, 12, 944, 74), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(944, 10, 944, 73): '"""Datastore V4 only supports CompositeFilter with AND operator."""'}, {}), "(\n 'Datastore V4 only supports CompositeFilter with AND operator.')", False, 'from google.appengine.api import datastore_errors\n'), ((1113, 15, 1113, 59), 'google.appengine.api.datastore_types.ReferenceToKeyValue', 'datastore_types.ReferenceToKeyValue', ({(1113, 51, 1113, 58): 'lhs.key'}, {}), '(lhs.key)', False, 'from google.appengine.api import datastore_types\n'), ((1115, 15, 1115, 59), 'google.appengine.api.datastore_types.ReferenceToKeyValue', 'datastore_types.ReferenceToKeyValue', ({(1115, 51, 1115, 58): 'rhs.key'}, {}), '(rhs.key)', False, 'from google.appengine.api import datastore_types\n'), ((1140, 12, 1140, 49), 'google.appengine.api.cmp_compat.cmp', 'cmp_compat.cmp', ({(1140, 27, 1140, 36): 'self._obj', (1140, 38, 1140, 48): 'other._obj'}, {}), '(self._obj, other._obj)', False, 'from google.appengine.api import cmp_compat\n'), ((1165, 12, 1166, 59), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1165, 46, 1166, 58): "('unknown direction: %r' % (direction,))"}, {}), "('unknown direction: %r' % (direction,))", False, 'from google.appengine.api import datastore_errors\n'), ((1205, 12, 1206, 68), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1206, 10, 1206, 67): "('Missing value for property (%s)' % self.__order.property)"}, {}), "('Missing value for property (%s)' % self.\n __order.property)", False, 'from google.appengine.api import datastore_errors\n'), ((1221, 12, 1222, 72), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1222, 10, 1222, 71): "('LHS missing value for property (%s)' % self.__order.property)"}, {}), "('LHS missing value for property (%s)' %\n self.__order.property)", False, 'from google.appengine.api import datastore_errors\n'), ((1225, 12, 1226, 72), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1226, 10, 1226, 71): "('RHS missing value for property (%s)' % self.__order.property)"}, {}), "('RHS missing value for property (%s)' %\n self.__order.property)", False, 'from google.appengine.api import datastore_errors\n'), ((1276, 12, 1277, 69), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1277, 10, 1277, 68): "('orders argument should be list or tuple (%r)' % (orders,))"}, {}), "(\n 'orders argument should be list or tuple (%r)' % (orders,))", False, 'from google.appengine.api import datastore_errors\n'), ((1377, 12, 1378, 68), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1378, 10, 1378, 67): "('produce_cursors argument should be bool (%r)' % (value,))"}, {}), "(\n 'produce_cursors argument should be bool (%r)' % (value,))", False, 'from google.appengine.api import datastore_errors\n'), ((1446, 12, 1447, 62), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1447, 10, 1447, 61): "('keys_only argument should be bool (%r)' % (value,))"}, {}), "('keys_only argument should be bool (%r)' %\n (value,))", False, 'from google.appengine.api import datastore_errors\n'), ((1480, 12, 1481, 48), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1481, 10, 1481, 47): '"""projection argument cannot be empty"""'}, {}), "('projection argument cannot be empty')", False, 'from google.appengine.api import datastore_errors\n'), ((1527, 12, 1529, 19), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1528, 10, 1529, 18): "('start_cursor argument should be datastore_query.Cursor (%r)' % (value,))"}, {}), "(\n 'start_cursor argument should be datastore_query.Cursor (%r)' % (value,))", False, 'from google.appengine.api import datastore_errors\n'), ((1542, 12, 1544, 19), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1543, 10, 1544, 18): "('end_cursor argument should be datastore_query.Cursor (%r)' % (value,))"}, {}), "(\n 'end_cursor argument should be datastore_query.Cursor (%r)' % (value,))", False, 'from google.appengine.api import datastore_errors\n'), ((1555, 12, 1556, 55), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1555, 46, 1556, 54): "('Unknown query hint (%r)' % (value,))"}, {}), "('Unknown query hint (%r)' % (value,))", False, 'from google.appengine.api import datastore_errors\n'), ((1588, 28, 1588, 45), 'six.binary_type', 'six.binary_type', ({}, {}), '()', False, 'import six\n'), ((1660, 12, 1661, 70), 'google.appengine.api.datastore_errors.BadValueError', 'datastore_errors.BadValueError', ({(1661, 10, 1661, 69): "('cursor argument should be str or unicode (%r)' % (cursor,))"}, {}), "(\n 'cursor argument should be str or unicode (%r)' % (cursor,))", False, 'from google.appengine.api import datastore_errors\n'), ((1686, 12, 1687, 75), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1687, 10, 1687, 74): "('query argument should be datastore_query.Query (%r)' % (query,))"}, {}), "(\n 'query argument should be datastore_query.Query (%r)' % (query,))", False, 'from google.appengine.api import datastore_errors\n'), ((1724, 6, 1725, 58), 'google.appengine.api.datastore_types.ValidateString', 'datastore_types.ValidateString', ({(1725, 10, 1725, 14): 'kind', (1725, 16, 1725, 22): '"""kind"""', (1725, 24, 1725, 57): 'datastore_errors.BadArgumentError'}, {}), "(kind, 'kind', datastore_errors.BadArgumentError)", False, 'from google.appengine.api import datastore_types\n'), ((1734, 21, 1734, 52), 'six.ensure_binary', 'six.ensure_binary', ({(1734, 39, 1734, 51): 'ancestor.app'}, {}), '(ancestor.app)', False, 'import six\n'), ((1743, 27, 1743, 65), 'six.ensure_binary', 'six.ensure_binary', ({(1743, 45, 1743, 64): 'ancestor.name_space'}, {}), '(ancestor.name_space)', False, 'import six\n'), ((1753, 11, 1753, 33), 'google.appengine.datastore.entity_bytes_pb2.Reference', 'entity_pb2.Reference', ({}, {}), '()', True, 'from google.appengine.datastore import entity_bytes_pb2 as entity_pb2\n'), ((1763, 33, 1763, 66), 'google.appengine.api.datastore_types.ResolveAppId', 'datastore_types.ResolveAppId', ({(1763, 62, 1763, 65): 'app'}, {}), '(app)', False, 'from google.appengine.api import datastore_types\n'), ((1765, 24, 1765, 67), 'google.appengine.api.datastore_types.ResolveNamespace', 'datastore_types.ResolveNamespace', ({(1765, 57, 1765, 66): 'namespace'}, {}), '(namespace)', False, 'from google.appengine.api import datastore_types\n'), ((1845, 24, 1845, 48), 'google.appengine.datastore.datastore_pbs.googledatastore.Filter', 'googledatastore.Filter', ({}, {}), '()', False, 'from google.appengine.datastore.datastore_pbs import googledatastore\n'), ((1930, 12, 1932, 30), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1931, 10, 1932, 29): "('filter_predicate should be datastore_query.FilterPredicate (%r)' % (\n filter_predicate,))"}, {}), "(\n 'filter_predicate should be datastore_query.FilterPredicate (%r)' % (\n filter_predicate,))", False, 'from google.appengine.api import datastore_errors\n'), ((2027, 12, 2028, 73), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(2028, 10, 2028, 72): "('conn should be a datastore_rpc.BaseConnection (%r)' % (conn,))"}, {}), "(\n 'conn should be a datastore_rpc.BaseConnection (%r)' % (conn,))", False, 'from google.appengine.api import datastore_errors\n'), ((2324, 22, 2324, 61), 'functools.cmp_to_key', 'functools.cmp_to_key', ({(2324, 43, 2324, 60): 'query._order._cmp'}, {}), '(query._order._cmp)', False, 'import functools\n'), ((2349, 12, 2350, 75), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(2350, 10, 2350, 74): "('query argument should be datastore_query.Query (%r)' % (query,))"}, {}), "(\n 'query argument should be datastore_query.Query (%r)' % (query,))", False, 'from google.appengine.api import datastore_errors\n'), ((2402, 12, 2403, 73), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(2403, 10, 2403, 72): "('conn should be a datastore_rpc.BaseConnection (%r)' % (conn,))"}, {}), "(\n 'conn should be a datastore_rpc.BaseConnection (%r)' % (conn,))", False, 'from google.appengine.api import datastore_errors\n'), ((2486, 12, 2487, 72), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(2487, 10, 2487, 71): "('deleted_keys argument must be a list (%r)' % (deleted_keys,))"}, {}), "(\n 'deleted_keys argument must be a list (%r)' % (deleted_keys,))", False, 'from google.appengine.api import datastore_errors\n'), ((2488, 24, 2488, 73), 'six.moves.filter', 'six.moves.filter', ({(2488, 41, 2488, 58): 'query._key_filter', (2488, 60, 2488, 72): 'deleted_keys'}, {}), '(query._key_filter, deleted_keys)', False, 'import six\n'), ((2494, 12, 2495, 80), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(2495, 10, 2495, 79): "('updated_entities argument must be a list (%r)' % (updated_entities,))"}, {}), "(\n 'updated_entities argument must be a list (%r)' % (updated_entities,))", False, 'from google.appengine.api import datastore_errors\n'), ((2499, 8, 2499, 61), 'six.moves.filter', 'six.moves.filter', ({(2499, 25, 2499, 42): 'query._key_filter', (2499, 44, 2499, 60): 'updated_entities'}, {}), '(query._key_filter, updated_entities)', False, 'import six\n'), ((2770, 12, 2771, 64), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(2771, 10, 2771, 63): "('index argument should be an integer (%r)' % (index,))"}, {}), "(\n 'index argument should be an integer (%r)' % (index,))", False, 'from google.appengine.api import datastore_errors\n'), ((2815, 12, 2815, 71), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(2815, 46, 2815, 70): '"""Invalid fetch options."""'}, {}), "('Invalid fetch options.')", False, 'from google.appengine.api import datastore_errors\n'), ((2897, 50, 2897, 76), 'google.appengine.datastore.datastore_pb.QueryResult', 'datastore_pb.QueryResult', ({}, {}), '()', False, 'from google.appengine.datastore import datastore_pb\n'), ((2911, 50, 2911, 76), 'google.appengine.datastore.datastore_pb.QueryResult', 'datastore_pb.QueryResult', ({}, {}), '()', False, 'from google.appengine.datastore import datastore_pb\n'), ((3106, 18, 3106, 42), 'google.appengine.datastore.entity_bytes_pb2.EntityProto', 'entity_pb2.EntityProto', ({}, {}), '()', True, 'from google.appengine.datastore import entity_bytes_pb2 as entity_pb2\n'), ((3253, 6, 3255, 72), 'google.appengine.api.datastore_types.ValidateInteger', 'datastore_types.ValidateInteger', ({(3253, 38, 3253, 52): 'min_batch_size', (3254, 38, 3254, 54): '"""min_batch_size"""', (3255, 38, 3255, 71): 'datastore_errors.BadArgumentError'}, {}), "(min_batch_size, 'min_batch_size',\n datastore_errors.BadArgumentError)", False, 'from google.appengine.api import datastore_types\n'), ((3330, 12, 3332, 21), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(3331, 10, 3332, 20): "('batcher argument should be datastore_query.Batcher (%r)' % (batcher,))"}, {}), "(\n 'batcher argument should be datastore_query.Batcher (%r)' % (batcher,))", False, 'from google.appengine.api import datastore_errors\n'), ((142, 20, 142, 41), 'six.ensure_text', 'six.ensure_text', ({(142, 36, 142, 40): 'name'}, {}), '(name)', False, 'import six\n'), ((149, 10, 149, 61), 'google.appengine.api.datastore_types.PropertyValueToKeyValue', 'datastore_types.PropertyValueToKeyValue', ({(149, 50, 149, 60): 'prop.value'}, {}), '(prop.value)', False, 'from google.appengine.api import datastore_types\n'), ((354, 58, 355, 16), 'six.ensure_str', 'six.ensure_str', ({(355, 8, 355, 15): 'self.op'}, {}), '(self.op)', False, 'import six\n'), ((355, 18, 355, 38), 'six.ensure_str', 'six.ensure_str', ({(355, 33, 355, 37): 'name'}, {}), '(name)', False, 'import six\n'), ((480, 12, 481, 76), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(481, 10, 481, 75): "('other argument should be a _PropertyRangeFilter (%r)' % (other,))"}, {}), "(\n 'other argument should be a _PropertyRangeFilter (%r)' % (other,))", False, 'from google.appengine.api import datastore_errors\n'), ((1184, 16, 1184, 41), 'six.ensure_str', 'six.ensure_str', ({(1184, 31, 1184, 40): 'self.prop'}, {}), '(self.prop)', False, 'import six\n'), ((1194, 10, 1194, 48), 'six.ensure_text', 'six.ensure_text', ({(1194, 26, 1194, 47): 'self.__order.property'}, {}), '(self.__order.property)', False, 'import six\n'), ((1197, 10, 1197, 48), 'six.ensure_text', 'six.ensure_text', ({(1197, 26, 1197, 47): 'self.__order.property'}, {}), '(self.__order.property)', False, 'import six\n'), ((1477, 12, 1478, 74), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1478, 10, 1478, 73): "('projection argument should be a list or tuple (%r)' % (value,))"}, {}), "(\n 'projection argument should be a list or tuple (%r)' % (value,))", False, 'from google.appengine.api import datastore_errors\n'), ((1484, 14, 1485, 77), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1485, 12, 1485, 76): "('projection argument should contain only strings (%r)' % (prop,))"}, {}), "(\n 'projection argument should contain only strings (%r)' % (prop,))", False, 'from google.appengine.api import datastore_errors\n'), ((1582, 14, 1583, 64), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1583, 12, 1583, 63): '"""Can only specify one of urlsafe and _cursor_bytes"""'}, {}), "(\n 'Can only specify one of urlsafe and _cursor_bytes')", False, 'from google.appengine.api import datastore_errors\n'), ((1665, 10, 1665, 44), 'six.ensure_binary', 'six.ensure_binary', ({(1665, 28, 1665, 34): 'cursor', (1665, 36, 1665, 43): '"""ascii"""'}, {}), "(cursor, 'ascii')", False, 'import six\n'), ((1667, 12, 1668, 57), 'google.appengine.api.datastore_errors.BadValueError', 'datastore_errors.BadValueError', ({(1668, 10, 1668, 56): "('Invalid cursor %s. Details: %s' % (cursor, e))"}, {}), "('Invalid cursor %s. Details: %s' % (cursor, e))", False, 'from google.appengine.api import datastore_errors\n'), ((1730, 14, 1732, 24), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1731, 12, 1732, 23): "('ancestor argument should be entity_pb2.Reference (%r)' % (ancestor,))"}, {}), "(\n 'ancestor argument should be entity_pb2.Reference (%r)' % (ancestor,))", False, 'from google.appengine.api import datastore_errors\n'), ((1805, 12, 1805, 45), 'six.ensure_text', 'six.ensure_text', ({(1805, 28, 1805, 35): 'key.app', (1805, 37, 1805, 44): '"""utf-8"""'}, {}), "(key.app, 'utf-8')", False, 'import six\n'), ((1806, 12, 1806, 52), 'six.ensure_text', 'six.ensure_text', ({(1806, 28, 1806, 42): 'key.name_space', (1806, 44, 1806, 51): '"""utf-8"""'}, {}), "(key.name_space, 'utf-8')", False, 'import six\n'), ((1952, 14, 1953, 48), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1953, 12, 1953, 47): '"""group_by argument cannot be empty"""'}, {}), "('group_by argument cannot be empty')", False, 'from google.appengine.api import datastore_errors\n'), ((2000, 27, 2000, 51), 'six.ensure_str', 'six.ensure_str', ({(2000, 42, 2000, 50): 'self.app'}, {}), '(self.app)', False, 'import six\n'), ((2253, 12, 2254, 57), 'google.appengine.api.datastore_errors.BadRequestError', 'datastore_errors.BadRequestError', ({(2254, 10, 2254, 56): '"""cannot specify group_by without a projection"""'}, {}), "('cannot specify group_by without a projection'\n )", False, 'from google.appengine.api import datastore_errors\n'), ((2490, 26, 2490, 66), 'google.appengine.api.datastore_types.ReferenceToKeyValue', 'datastore_types.ReferenceToKeyValue', ({(2490, 62, 2490, 65): 'key'}, {}), '(key)', False, 'from google.appengine.api import datastore_types\n'), ((2501, 26, 2501, 73), 'google.appengine.api.datastore_types.ReferenceToKeyValue', 'datastore_types.ReferenceToKeyValue', ({(2501, 62, 2501, 72): 'entity.key'}, {}), '(entity.key)', False, 'from google.appengine.api import datastore_types\n'), ((2827, 14, 2830, 69), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(2828, 12, 2830, 68): "('Cannot request the next batch with a different offset than expected. Expected: %s, Got: %s.'\n % (self._batch_shared.expected_offset, requested_offset))"}, {}), "(\n 'Cannot request the next batch with a different offset than expected. Expected: %s, Got: %s.'\n % (self._batch_shared.expected_offset, requested_offset))", False, 'from google.appengine.api import datastore_errors\n'), ((2893, 35, 2893, 69), 'google.appengine.datastore.datastore_pbs.googledatastore.RunQueryResponse', 'googledatastore.RunQueryResponse', ({}, {}), '()', False, 'from google.appengine.datastore.datastore_pbs import googledatastore\n'), ((2944, 14, 2945, 55), 'google.appengine.api.datastore_errors.Timeout', 'datastore_errors.Timeout', ({(2945, 12, 2945, 54): '"""The query was not able to make progress."""'}, {}), "('The query was not able to make progress.')", False, 'from google.appengine.api import datastore_errors\n'), ((494, 19, 494, 70), 'google.appengine.api.cmp_compat.cmp', 'cmp_compat.cmp', ({(494, 34, 494, 51): 'other._start_incl', (494, 53, 494, 69): 'self._start_incl'}, {}), '(other._start_incl, self._start_incl)', False, 'from google.appengine.api import cmp_compat\n'), ((510, 19, 510, 66), 'google.appengine.api.cmp_compat.cmp', 'cmp_compat.cmp', ({(510, 34, 510, 48): 'self._end_incl', (510, 50, 510, 65): 'other._end_incl'}, {}), '(self._end_incl, other._end_incl)', False, 'from google.appengine.api import cmp_compat\n'), ((821, 14, 823, 17), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(822, 12, 823, 16): "('filters argument must be a list of FilterPredicates, found (%r)' % (f,))"}, {}), "(\n 'filters argument must be a list of FilterPredicates, found (%r)' % (f,))", False, 'from google.appengine.api import datastore_errors\n'), ((1287, 14, 1288, 72), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1288, 12, 1288, 71): "('orders argument should only contain Order (%r)' % (order,))"}, {}), "(\n 'orders argument should only contain Order (%r)' % (order,))", False, 'from google.appengine.api import datastore_errors\n'), ((1738, 11, 1738, 33), 'six.ensure_binary', 'six.ensure_binary', ({(1738, 29, 1738, 32): 'app'}, {}), '(app)', False, 'import six\n'), ((1739, 14, 1741, 32), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1740, 12, 1741, 31): '(\'ancestor argument should match app ("%r" != "%r")\' % (ancestor.app, app))'}, {}), '(\n \'ancestor argument should match app ("%r" != "%r")\' % (ancestor.app, app))', False, 'from google.appengine.api import datastore_errors\n'), ((1747, 11, 1747, 39), 'six.ensure_binary', 'six.ensure_binary', ({(1747, 29, 1747, 38): 'namespace'}, {}), '(namespace)', False, 'import six\n'), ((1941, 12, 1942, 50), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1942, 10, 1942, 49): "('order should be Order (%r)' % (order,))"}, {}), "('order should be Order (%r)' % (order,))", False, 'from google.appengine.api import datastore_errors\n'), ((1949, 14, 1950, 77), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1950, 12, 1950, 76): "('group_by argument should be a list or tuple (%r)' % (group_by,))"}, {}), "(\n 'group_by argument should be a list or tuple (%r)' % (group_by,))", False, 'from google.appengine.api import datastore_errors\n'), ((1956, 16, 1957, 77), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(1957, 14, 1957, 76): "('group_by argument should contain only strings (%r)' % (prop,))"}, {}), "(\n 'group_by argument should contain only strings (%r)' % (prop,))", False, 'from google.appengine.api import datastore_errors\n'), ((2003, 35, 2003, 53), 'six.ensure_str', 'six.ensure_str', ({(2003, 50, 2003, 52): 'ns'}, {}), '(ns)', False, 'import six\n'), ((2006, 30, 2006, 50), 'six.ensure_str', 'six.ensure_str', ({(2006, 45, 2006, 49): 'kind'}, {}), '(kind)', False, 'import six\n'), ((2010, 36, 2010, 59), 'six.ensure_str', 'six.ensure_str', ({(2010, 51, 2010, 58): 'websafe'}, {}), '(websafe)', False, 'import six\n'), ((2066, 10, 2066, 31), 'six.ensure_text', 'six.ensure_text', ({(2066, 26, 2066, 30): 'name'}, {}), '(name)', False, 'import six\n'), ((2209, 14, 2209, 62), 'google.appengine.api.datastore_errors.BadValueError', 'datastore_errors.BadValueError', ({(2209, 45, 2209, 61): '"""invalid cursor"""'}, {}), "('invalid cursor')", False, 'from google.appengine.api import datastore_errors\n'), ((2217, 14, 2217, 62), 'google.appengine.api.datastore_errors.BadValueError', 'datastore_errors.BadValueError', ({(2217, 45, 2217, 61): '"""invalid cursor"""'}, {}), "('invalid cursor')", False, 'from google.appengine.api import datastore_errors\n'), ((2249, 16, 2251, 22), 'google.appengine.api.datastore_errors.BadRequestError', 'datastore_errors.BadRequestError', ({(2250, 14, 2251, 21): "('projections includes properties not in the group_by argument: %s' % extra)"}, {}), "(\n 'projections includes properties not in the group_by argument: %s' % extra)", False, 'from google.appengine.api import datastore_errors\n'), ((2354, 51, 2356, 43), 'six.ensure_str', 'six.ensure_str', ({(2355, 14, 2356, 33): "('datastore_query.FilterPredicate (%r)' % (in_memory_filter,))", (2356, 35, 2356, 42): '"""utf-8"""'}, {}), "('datastore_query.FilterPredicate (%r)' % (in_memory_filter,),\n 'utf-8')", False, 'import six\n'), ((2361, 10, 2362, 55), 'six.ensure_str', 'six.ensure_str', ({(2361, 25, 2362, 45): "('datastore_pv.EntityProto (%r)' % (in_memory_results,))", (2362, 47, 2362, 54): '"""utf-8"""'}, {}), "('datastore_pv.EntityProto (%r)' % (in_memory_results,), 'utf-8')", False, 'import six\n'), ((2958, 35, 2959, 24), 'google.appengine.datastore.datastore_index.CompositeIndexForQuery', 'datastore_index.CompositeIndexForQuery', ({(2959, 12, 2959, 23): 'rpc.request'}, {}), '(rpc.request)', False, 'from google.appengine.datastore import datastore_index\n'), ((2961, 16, 2961, 68), 'google.appengine.datastore.datastore_index.GetRecommendedIndexProperties', 'datastore_index.GetRecommendedIndexProperties', ({(2961, 62, 2961, 67): 'props'}, {}), '(props)', False, 'from google.appengine.datastore import datastore_index\n'), ((2962, 15, 2962, 71), 'google.appengine.datastore.datastore_index.IndexYamlForQuery', 'datastore_index.IndexYamlForQuery', ({(2962, 49, 2962, 53): 'kind', (2962, 55, 2962, 63): 'ancestor', (2962, 65, 2962, 70): 'props'}, {}), '(kind, ancestor, props)', False, 'from google.appengine.datastore import datastore_index\n'), ((2963, 14, 2963, 69), 'google.appengine.datastore.datastore_index.IndexXmlForQuery', 'datastore_index.IndexXmlForQuery', ({(2963, 47, 2963, 51): 'kind', (2963, 53, 2963, 61): 'ancestor', (2963, 63, 2963, 68): 'props'}, {}), '(kind, ancestor, props)', False, 'from google.appengine.datastore import datastore_index\n'), ((472, 12, 473, 46), 'google.appengine.api.datastore_errors.BadArgumentError', 'datastore_errors.BadArgumentError', ({(473, 10, 473, 45): "('Unsupported operator (%s)' % (op,))"}, {}), "('Unsupported operator (%s)' % (op,))", False, 'from google.appengine.api import datastore_errors\n'), ((1802, 10, 1803, 56), 'six.ensure_str', 'six.ensure_str', ({(1802, 25, 1803, 46): "('or entity_pb2.Reference (%r)' % entity_or_reference)", (1803, 48, 1803, 55): '"""utf-8"""'}, {}), "('or entity_pb2.Reference (%r)' % entity_or_reference, 'utf-8')", False, 'import six\n'), ((1750, 13, 1750, 41), 'six.ensure_binary', 'six.ensure_binary', ({(1750, 31, 1750, 40): 'namespace'}, {}), '(namespace)', False, 'import six\n'), ((2019, 41, 2019, 58), 'six.ensure_str', 'six.ensure_str', ({(2019, 56, 2019, 57): 'x'}, {}), '(x)', False, 'import six\n')]
Neklaustares-tPtwP/torchflare
tests/Metrics/test_recall.py
7af6b01ef7c26f0277a041619081f6df4eb1e42c
# flake8: noqa import warnings import pytest import torch from sklearn.exceptions import UndefinedMetricWarning from sklearn.metrics import recall_score from torchflare.metrics.recall_meter import Recall from torchflare.metrics.meters import _BaseInputHandler torch.manual_seed(42) def test_binary_inputs(): def _test(num_classes, threshold, multilabel, average): rc = Recall(num_classes=num_classes, threshold=threshold, multilabel=multilabel, average=average,) outputs = torch.randn(100, 1) targets = torch.randint(0, 2, size=(100,)) bs = _BaseInputHandler(num_classes=num_classes, average=average, threshold=0.5, multilabel=multilabel,) np_outputs, np_targets = bs._compute(outputs=outputs, targets=targets) rc.accumulate(outputs=outputs, targets=targets) rec_val = rc.value assert rc.case_type == "binary" rec_skm = recall_score(np_targets.numpy(), np_outputs.numpy(), average="binary") assert rec_skm == pytest.approx(rec_val.item()) rc.reset() bs = 16 iters = targets.shape[0] // bs + 1 for i in range(iters): idx = i * bs rc.accumulate(outputs=outputs[idx : idx + bs], targets=targets[idx : idx + bs]) m_rc = rc.value assert rec_skm == pytest.approx(m_rc.item()) for _ in range(10): _test(num_classes=2, threshold=0.5, multilabel=False, average="macro") _test(num_classes=2, threshold=0.5, multilabel=False, average="micro") def test_multiclass_inputs(): def _test(num_classes, threshold, multilabel, average): rc = Recall(num_classes=num_classes, threshold=threshold, multilabel=multilabel, average=average,) outputs = torch.randn(100, 4) targets = torch.randint(0, 4, size=(100,)) bs = _BaseInputHandler(num_classes=num_classes, average=average, threshold=0.5, multilabel=multilabel,) np_outputs, np_targets = bs._compute(outputs=outputs, targets=targets) rc.accumulate(outputs=outputs, targets=targets) rec_val = rc.value assert rc.case_type == "multiclass" with warnings.catch_warnings(): warnings.simplefilter("ignore", category=UndefinedMetricWarning) rec_skm = recall_score(np_targets.numpy(), np_outputs.numpy(), average=average) assert rec_skm == pytest.approx(rec_val.item()) rc.reset() bs = 16 iters = targets.shape[0] // bs + 1 for i in range(iters): idx = i * bs rc.accumulate(outputs=outputs[idx : idx + bs], targets=targets[idx : idx + bs]) rec_m = rc.value assert rec_skm == pytest.approx(rec_m.item()) for _ in range(10): _test(num_classes=4, threshold=0.5, multilabel=False, average="macro") _test(num_classes=4, threshold=0.5, multilabel=False, average="micro") def test_multilabel_inputs(): def _test(num_classes, threshold, multilabel, average): rc = Recall(num_classes=num_classes, threshold=threshold, multilabel=multilabel, average=average,) outputs = torch.randn(100, 4) targets = torch.randint(0, 2, size=(100, 4)) bs = _BaseInputHandler(num_classes=num_classes, average=average, threshold=0.5, multilabel=multilabel,) np_outputs, np_targets = bs._compute(outputs=outputs, targets=targets) rc.accumulate(outputs=outputs, targets=targets) rec_val = rc.value assert rc.case_type == "multilabel" with warnings.catch_warnings(): warnings.simplefilter("ignore", category=UndefinedMetricWarning) rec_skm = recall_score(np_targets, np_outputs, average=average) assert rec_skm == pytest.approx(rec_val.item()) rc.reset() bs = 16 iters = targets.shape[0] // bs + 1 for i in range(iters): idx = i * bs rc.accumulate( outputs=outputs[idx : idx + bs], targets=targets[idx : idx + bs], ) m_rc = rc.value assert rec_skm == pytest.approx(m_rc.item()) for _ in range(10): _test(num_classes=4, threshold=0.5, multilabel=True, average="macro") _test(num_classes=4, threshold=0.5, multilabel=True, average="micro")
[((12, 0, 12, 21), 'torch.manual_seed', 'torch.manual_seed', ({(12, 18, 12, 20): '(42)'}, {}), '(42)', False, 'import torch\n'), ((18, 13, 18, 106), 'torchflare.metrics.recall_meter.Recall', 'Recall', (), '', False, 'from torchflare.metrics.recall_meter import Recall\n'), ((19, 18, 19, 37), 'torch.randn', 'torch.randn', ({(19, 30, 19, 33): '100', (19, 35, 19, 36): '1'}, {}), '(100, 1)', False, 'import torch\n'), ((20, 18, 20, 50), 'torch.randint', 'torch.randint', (), '', False, 'import torch\n'), ((22, 13, 22, 111), 'torchflare.metrics.meters._BaseInputHandler', '_BaseInputHandler', (), '', False, 'from torchflare.metrics.meters import _BaseInputHandler\n'), ((52, 13, 52, 106), 'torchflare.metrics.recall_meter.Recall', 'Recall', (), '', False, 'from torchflare.metrics.recall_meter import Recall\n'), ((54, 18, 54, 37), 'torch.randn', 'torch.randn', ({(54, 30, 54, 33): '100', (54, 35, 54, 36): '4'}, {}), '(100, 4)', False, 'import torch\n'), ((55, 18, 55, 50), 'torch.randint', 'torch.randint', (), '', False, 'import torch\n'), ((57, 13, 57, 111), 'torchflare.metrics.meters._BaseInputHandler', '_BaseInputHandler', (), '', False, 'from torchflare.metrics.meters import _BaseInputHandler\n'), ((91, 13, 91, 106), 'torchflare.metrics.recall_meter.Recall', 'Recall', (), '', False, 'from torchflare.metrics.recall_meter import Recall\n'), ((93, 18, 93, 37), 'torch.randn', 'torch.randn', ({(93, 30, 93, 33): '100', (93, 35, 93, 36): '4'}, {}), '(100, 4)', False, 'import torch\n'), ((94, 18, 94, 52), 'torch.randint', 'torch.randint', (), '', False, 'import torch\n'), ((96, 13, 96, 111), 'torchflare.metrics.meters._BaseInputHandler', '_BaseInputHandler', (), '', False, 'from torchflare.metrics.meters import _BaseInputHandler\n'), ((65, 13, 65, 38), 'warnings.catch_warnings', 'warnings.catch_warnings', ({}, {}), '()', False, 'import warnings\n'), ((66, 12, 66, 76), 'warnings.simplefilter', 'warnings.simplefilter', (), '', False, 'import warnings\n'), ((104, 13, 104, 38), 'warnings.catch_warnings', 'warnings.catch_warnings', ({}, {}), '()', False, 'import warnings\n'), ((105, 12, 105, 76), 'warnings.simplefilter', 'warnings.simplefilter', (), '', False, 'import warnings\n'), ((107, 22, 107, 75), 'sklearn.metrics.recall_score', 'recall_score', (), '', False, 'from sklearn.metrics import recall_score\n')]
davesque/parsing.py
parsing/tests/test_utils.py
ff8b20e53b94e79571971ef23f0e5091e2786566
from __future__ import unicode_literals import unittest from ..utils import compose, flatten, truncate, join, unary, equals class TestEquals(unittest.TestCase): def test_it_should_return_a_function_that_compares_against_x(self): self.assertTrue(equals(234)(234)) self.assertFalse(equals(234)(123)) class TestUnary(unittest.TestCase): def test_it_should_convert_a_function_into_a_unary_version_of_itself(self): self.assertEqual(unary(lambda x, y: x + y)([1, 2]), 3) class TestJoin(unittest.TestCase): def test_it_should_join_a_sequence_into_a_string(self): self.assertEqual(join(list('arst')), 'arst') self.assertEqual(join(map(str, [1, 2, 3, 4])), '1234') class TestTruncate(unittest.TestCase): def test_it_should_truncate_a_string(self): self.assertEqual(truncate('arst'), 'arst') self.assertEqual(truncate('arstarstar'), 'arstarstar') self.assertEqual(truncate('arstarstars'), 'arstarstar...') self.assertEqual(truncate('arstarstarstarstarstarstarstarst'), 'arstarstar...') class TestCompose(unittest.TestCase): def test_it_should_compose_the_given_functions(self): f = compose( lambda x: x + 1, lambda x: x * 2, lambda x: x ** 3, ) self.assertEqual(f(1), 3) self.assertEqual(f(2), 17) self.assertEqual(f(3), 55) class TestFlatten(unittest.TestCase): def test_it_should_flatten_an_arbitrarily_nested_list(self): self.assertEqual( flatten([1, 2, [3, 4, [5, 6]]]), [1, 2, 3, 4, 5, 6], ) heavily_nested = reduce(lambda a, i: (a, i), range(1000)) self.assertEqual( flatten(heavily_nested), list(range(1000)), )
[]
prash-kr-meena/GoogleR
Array/Final450/Move_Negative_Nums_To_One_End/relative_order_matters/move_negative_nums_to_one_end--insertion_sort_modified.py
27aca71e51cc2442e604e07ab00406a98d8d63a4
from Utils.Array import input_array # Time : O(n2) # Space : O(1) Constant space """ Ill be having 2 pointers here one of them will move through the array looking for -ve numbers to operate on and another will be pointing to the correct location where i can put the -ve elements, after i find them also this same location will denote the starting of the 1st +ve number in the array, --> as we will be going to move them forward Finally when you find a -ve number, store it temporarily do the swapping, to move all the +ve numbers forward by one step to, make place for the stored -ve number then finally put that number in its correct position and move the pointer to store future -ve numbers """ def rearrange_via_modified_insertion_sort(A): # walking_index = 0 index_to_place_nums = 0 # for placing -ve nums that i find for walking_index in range(0, len(A)): # go through the array if A[walking_index] >= 0: # +ve num, so move on continue # -ve num found_num = A[walking_index] # temporary storage # move all the +ve numbers, before it forward by one step ptr = walking_index - 1 while ptr >= index_to_place_nums: # till it reaches the first +ve number A[ptr + 1] = A[ptr] ptr -= 1 # go back one step # reached, now put the -ve found, at its correct position A[index_to_place_nums] = found_num index_to_place_nums += 1 # updating, for the index of next -ve number if __name__ == "__main__": arr = input_array() rearrange_via_modified_insertion_sort(arr) print(arr) """ 12 11 -13 -5 6 -7 5 -3 -6 -1 2 -3 4 5 6 -7 8 9 2 3 -1 -4 -6 # Reverse 4 3 2 1 0 -1 -2 -3 # Reverse containing 0 """
[((43, 10, 43, 23), 'Utils.Array.input_array', 'input_array', ({}, {}), '()', False, 'from Utils.Array import input_array\n')]
zhtsh/test-examples
python_test/test_epoll/test_epoll.py
ed5a45bf8546a9bd7fc35e38f9679be385d0d9e6
# coding=utf8 import socket import select from datetime import datetime from datetime import timedelta EOL = b'\n\n' response = b'HTTP/1.0 200 OK\nDate: Mon, 1 Jan 1996 01:01:01 GMT\n' response += b'Content-Type: text/plain\nContent-Length: 13\n\n' response += b'Hello, world!\n' # 创建套接字对象并绑定监听端口 serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) serversocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) serversocket.bind(('0.0.0.0', 8080)) serversocket.listen(1) serversocket.setblocking(0) # 创建epoll对象,并注册socket对象的 epoll可读事件 epoll = select.epoll() epoll.register(serversocket.fileno(), select.EPOLLIN) try: connections = {} requests = {} responses = {} while True: # 主循环,epoll的系统调用,一旦有网络IO事件发生,poll调用返回。这是和select系统调用的关键区别 events = epoll.poll(1) # 通过事件通知获得监听的文件描述符,进而处理 for fileno, event in events: # 注册监听的socket对象可读,获取连接,并注册连接的可读事件 if fileno == serversocket.fileno(): connection, address = serversocket.accept() connection.setblocking(0) epoll.register(connection.fileno(), select.EPOLLIN) connections[connection.fileno()] = connection requests[connection.fileno()] = b'' responses[connection.fileno()] = response elif event & select.EPOLLIN: # 连接对象可读,处理客户端发生的信息,并注册连接对象可写 try: requests[fileno] += connections[fileno].recv(1024) if EOL in requests[fileno]: epoll.modify(fileno, event | select.EPOLLOUT) print(requests[fileno]) except Exception as e: print(e) epoll.unregister(fileno) del connections[fileno] elif event & select.EPOLLOUT: # 连接对象可写事件发生,发送数据到客户端 try: byteswritten = connections[fileno].send(responses[fileno]) # responses[fileno] = responses[fileno][byteswritten:] # if len(responses[fileno]) == 0: # epoll.modify(fileno, 0) # connections[fileno].shutdown(socket.SHUT_RDWR) except Exception as e: print(e) # epoll.modify(fileno, 0) epoll.unregister(fileno) del connections[fileno] elif event & select.EPOLLHUP: epoll.unregister(fileno) connections[fileno].close() del connections[fileno] finally: epoll.unregister(serversocket.fileno()) epoll.close() serversocket.close()
[((14, 15, 14, 64), 'socket.socket', 'socket.socket', ({(14, 29, 14, 43): 'socket.AF_INET', (14, 45, 14, 63): 'socket.SOCK_STREAM'}, {}), '(socket.AF_INET, socket.SOCK_STREAM)', False, 'import socket\n'), ((21, 8, 21, 22), 'select.epoll', 'select.epoll', ({}, {}), '()', False, 'import select\n')]
Kehvarl/AdventOfCode2019
20.2-Donut/Donut2.py
f72cfeefdfbde365bc9a5b722d5875d556379cf2
import collections from pprint import pprint example1 = open("input.txt", "r").read() # grid = [[val for val in line] for line in example1.split("\n")] grid = example1.split("\n") length = 0 for line in grid: length = max(len(line), length) out = [] for line in grid: out.append(line[::-1].zfill(length)[::-1]) grid = out scanned = [] neighbors = [(0, 1), (0, -1), (1, 0), (-1, 0)] def find_dot(dot_x, dot_y): for (_dx, _dy) in neighbors: if 0 <= dot_x + _dx < len(grid[0]) and 0 <= dot_y + _dy < len(grid): if grid[dot_y + _dy][dot_x + _dx] == ".": return (dot_x + _dx, dot_y + _dy), (dot_x - _dx, dot_y - _dy) # (dot), (tag) return False # Find portals # For each portal: # Inner edge: recurse # Outer edge: return portals = {} portal_links = {} height = len(grid) - 1 width = len(grid[0]) - 1 for y in range(len(grid)): for x in range(len(grid[0])): if grid[y][x].isalpha(): portal = find_dot(x, y) if portal: dot, (tag_x, tag_y) = portal dot_x, dot_y = dot edge = dot_x == 2 or dot_x == width - 2 or dot_y == 2 or dot_y == height - 2 tag = "".join(sorted(grid[y][x] + grid[tag_y][tag_x])) if not portals.get(tag): portals[tag] = [] portals[tag].append(((x, y), dot, edge)) gx, gy, sx, sy = (0, 0, 0, 0) for link in portals: ends = portals[link] if len(ends) == 2: (a, (a_x, a_y), a_edge), (b, (b_x, b_y), b_edge) = ends portal_links[a] = (b_x, b_y, a_edge, link) portal_links[b] = (a_x, a_y, b_edge, link) elif link == "ZZ": goal, (gx, gy), ge = ends[0] elif link == "AA": start, (sx, sy), se = ends[0] pprint(portals) print(portal_links) bfs = collections.deque([((sx, sy), 0, 0)]) seen = {(sx, sy, 0)} running = True while running: pos, level, dist = bfs.popleft() if pos == (gx, gy) and level == 0: print(dist) running = False break for neighbor in neighbors: dx, dy = neighbor tx, ty = pos tx, ty = tx + dx, ty + dy t_level = level if (tx, ty) in portal_links: px, py, p_edge, link = portal_links[(tx, ty)] # print(link, (tx, ty), (px, py), p_edge) if p_edge and t_level > 0: t_level -= 1 tx, ty = px, py elif not p_edge: t_level += 1 tx, ty = px, py if (tx, ty, t_level) in seen: continue seen.add((tx, ty, t_level)) if grid[ty][tx] == '.': p = (tx, ty) s = (p, t_level, dist + 1) bfs.append(s) print("complete")
[((68, 0, 68, 15), 'pprint.pprint', 'pprint', ({(68, 7, 68, 14): 'portals'}, {}), '(portals)', False, 'from pprint import pprint\n'), ((71, 6, 71, 43), 'collections.deque', 'collections.deque', ({(71, 24, 71, 42): '[((sx, sy), 0, 0)]'}, {}), '([((sx, sy), 0, 0)])', False, 'import collections\n')]
idaks/OpenRefine-Provenance-Tools
OR_Client_Library/openrefine_client/tests/test_history.py
cc469c3eb8e56c8b0f4616cc501546db3c4176ea
#!/usr/bin/env python """ test_history.py """ # Copyright (c) 2011 Paul Makepeace, Real Programmers. All rights reserved. import unittest from OR_Client_Library.openrefine_client.google.refine.history import * class HistoryTest(unittest.TestCase): def test_init(self): response = { u"code": "ok", u"historyEntry": { u"id": 1303851435223, u"description": "Split 4 cells", u"time": "2011-04-26T16:45:08Z" } } he = response['historyEntry'] entry = HistoryEntry(he['id'], he['time'], he['description']) self.assertEqual(entry.id, 1303851435223) self.assertEqual(entry.description, 'Split 4 cells') self.assertEqual(entry.time, '2011-04-26T16:45:08Z') if __name__ == '__main__': unittest.main()
[((31, 4, 31, 19), 'unittest.main', 'unittest.main', ({}, {}), '()', False, 'import unittest\n')]
Remmeauth/remme-core-cli
tests/batch/test_get_batch.py
94cc09fe9d2e718b45273dde68d6c672c4773f6a
""" Provide tests for command line interface's get batch command. """ import json import pytest from click.testing import CliRunner from cli.constants import ( DEV_BRANCH_NODE_IP_ADDRESS_FOR_TESTING, FAILED_EXIT_FROM_COMMAND_CODE, PASSED_EXIT_FROM_COMMAND_CODE, ) from cli.entrypoint import cli from cli.utils import dict_to_pretty_json BATCH_IDENTIFIER_PRESENTED_ON_THE_TEST_NODE = 'ccb529856e538325b435c6a75261702d1bdb52d3873b29189a722330cda628a6' \ '62028a7b39d1f5475cb78f5fc12efb986a35553ce8f1b63580b97fc6ab9e9655' def test_get_batch(): """ Case: get a batch by identifier. Expect: batch is returned. """ runner = CliRunner() result = runner.invoke(cli, [ 'batch', 'get', '--id', BATCH_IDENTIFIER_PRESENTED_ON_THE_TEST_NODE, '--node-url', DEV_BRANCH_NODE_IP_ADDRESS_FOR_TESTING, ]) assert PASSED_EXIT_FROM_COMMAND_CODE == result.exit_code assert isinstance(json.loads(result.output), dict) def test_get_batch_with_invalid_id(): """ Case: get a batch by its invalid identifier. Expect: the following identifier is invalid error message. """ invalid_batch_id = 'abcefg' runner = CliRunner() result = runner.invoke(cli, [ 'batch', 'get', '--id', invalid_batch_id, '--node-url', DEV_BRANCH_NODE_IP_ADDRESS_FOR_TESTING, ]) expected_error_message = { 'errors': { 'id': [ f'The following identifier `{invalid_batch_id}` is invalid.', ], }, } assert FAILED_EXIT_FROM_COMMAND_CODE == result.exit_code assert dict_to_pretty_json(expected_error_message) in result.output def test_get_batch_without_node_url(mocker): """ Case: get a batch by its identifier without passing node URL. Expect: batch is returned from a node on localhost. """ batch_id = '6f200995e766da7218ec2a3d0aeabbe1151128063cdf4e954cd08390a879b28e' \ '085a06f8708d2e6bb34f6501e8ddc981f0353627c1d4f90c80a656a8090c8751' expected_result = { "data": { "header": { "signer_public_key": "03d425d2d17b64e3ef8fee028089a567fbb05bd556f98c0b6fb62bc5750ea62b8f", "transaction_ids": [ "5a84ff8747e16d15a988a8b13134d24981a6b516bb41042e6ea95c47f6c9429c" "1c6fdf787ca2ea7fb8725b2bc2d0cd6aa3836aadfe85354deb714e048d41b4d7", ], }, "header_signature": "57692f2bcc9be7fe2b59c052d5938eb92bd7be8a36487c1c7efc2c5758bf108e" "232892987e898071e5ea13b4cbe283e96ac45d8f63cd9065522df7b85b050977", "transactions": [ { "header": { "batcher_public_key": "03d425d2d17b64e3ef8fee028089a567fbb05bd556f98c0b6fb62bc5750ea62b8f", "family_name": "sawtooth_settings", "family_version": "1.0", "inputs": [ "000000a87cb5eafdcca6a8cde0fb0dec1400c5ab274474a6aa82c1c0cbf0fbcaf64c0b", "000000a87cb5eafdcca6a8cde0fb0dec1400c5ab274474a6aa82c12840f169a04216b7", ], "outputs": [ "000000a87cb5eafdcca6a8cde0fb0dec1400c5ab274474a6aa82c1c0cbf0fbcaf64c0b", ], "signer_public_key": "03d425d2d17b64e3ef8fee028089a567fbb05bd556f98c0b6fb62bc5750ea62b8f", }, "header_signature": "5a84ff8747e16d15a988a8b13134d24981a6b516bb41042e6ea95c47f6c9429c" "1c6fdf787ca2ea7fb8725b2bc2d0cd6aa3836aadfe85354deb714e048d41b4d7", "payload": "CAESgAEKJnNhd3Rvb3RoLnNldHRpbmdzLnZvdGUuYyaXplZF9rZXlzEkIwM2Q0MjVkMmQxN2I2NGUzZWY4Zm" "VlMDI4MDg5YTU2N2ZiYjA1YmQ1NTZmOThjMGI2ZmIJjNMGVhNjJiOGYaEjB4ZDU0NzJhOTY1NWJkYTNmNg==", }, ], }, } mock_get_batch_by_id = mocker.patch('cli.batch.service.loop.run_until_complete') mock_get_batch_by_id.return_value = expected_result runner = CliRunner() result = runner.invoke(cli, [ 'batch', 'get', '--id', batch_id, ]) assert PASSED_EXIT_FROM_COMMAND_CODE == result.exit_code assert expected_result.get('data') == json.loads(result.output).get('result') def test_get_batch_with_invalid_node_url(): """ Case: get a batch by its identifier by passing an invalid node URL. Expect: the following node URL is invalid error message. """ invalid_node_url = 'my-node-url.com' runner = CliRunner() result = runner.invoke(cli, [ 'batch', 'get', '--id', BATCH_IDENTIFIER_PRESENTED_ON_THE_TEST_NODE, '--node-url', invalid_node_url, ]) expected_error_message = { 'errors': f'Please check if your node running at http://{invalid_node_url}:8080.', } assert FAILED_EXIT_FROM_COMMAND_CODE == result.exit_code assert dict_to_pretty_json(expected_error_message) in result.output @pytest.mark.parametrize('node_url_with_protocol', ['http://masternode.com', 'https://masternode.com']) def test_get_batch_node_url_with_protocol(node_url_with_protocol): """ Case: get a batch by its identifier by passing node URL with an explicit protocol. Expect: the following node URL contains a protocol error message. """ runner = CliRunner() result = runner.invoke(cli, [ 'batch', 'get', '--id', BATCH_IDENTIFIER_PRESENTED_ON_THE_TEST_NODE, '--node-url', node_url_with_protocol, ]) expected_error = { 'errors': { 'node_url': [ f'Pass the following node URL `{node_url_with_protocol}` without protocol (http, https, etc.).', ], }, } assert FAILED_EXIT_FROM_COMMAND_CODE == result.exit_code assert dict_to_pretty_json(expected_error) in result.output
[((152, 1, 152, 103), 'pytest.mark.parametrize', 'pytest.mark.parametrize', ({(152, 25, 152, 49): '"""node_url_with_protocol"""', (152, 51, 152, 102): "['http://masternode.com', 'https://masternode.com']"}, {}), "('node_url_with_protocol', ['http://masternode.com',\n 'https://masternode.com'])", False, 'import pytest\n'), ((26, 13, 26, 24), 'click.testing.CliRunner', 'CliRunner', ({}, {}), '()', False, 'from click.testing import CliRunner\n'), ((47, 13, 47, 24), 'click.testing.CliRunner', 'CliRunner', ({}, {}), '()', False, 'from click.testing import CliRunner\n'), ((115, 13, 115, 24), 'click.testing.CliRunner', 'CliRunner', ({}, {}), '()', False, 'from click.testing import CliRunner\n'), ((134, 13, 134, 24), 'click.testing.CliRunner', 'CliRunner', ({}, {}), '()', False, 'from click.testing import CliRunner\n'), ((158, 13, 158, 24), 'click.testing.CliRunner', 'CliRunner', ({}, {}), '()', False, 'from click.testing import CliRunner\n'), ((37, 22, 37, 47), 'json.loads', 'json.loads', ({(37, 33, 37, 46): 'result.output'}, {}), '(result.output)', False, 'import json\n'), ((66, 11, 66, 54), 'cli.utils.dict_to_pretty_json', 'dict_to_pretty_json', ({(66, 31, 66, 53): 'expected_error_message'}, {}), '(expected_error_message)', False, 'from cli.utils import dict_to_pretty_json\n'), ((149, 11, 149, 54), 'cli.utils.dict_to_pretty_json', 'dict_to_pretty_json', ({(149, 31, 149, 53): 'expected_error_message'}, {}), '(expected_error_message)', False, 'from cli.utils import dict_to_pretty_json\n'), ((177, 11, 177, 46), 'cli.utils.dict_to_pretty_json', 'dict_to_pretty_json', ({(177, 31, 177, 45): 'expected_error'}, {}), '(expected_error)', False, 'from cli.utils import dict_to_pretty_json\n'), ((124, 42, 124, 67), 'json.loads', 'json.loads', ({(124, 53, 124, 66): 'result.output'}, {}), '(result.output)', False, 'import json\n')]
pbielak/graph-barlow-twins
experiments/scripts/preprocess_dataset.py
f8e20134afed4f17ffcecf8f48764df362ffdcad
import sys from gssl.datasets import load_dataset from gssl.inductive.datasets import load_ppi from gssl.utils import seed def main(): seed() # Read dataset name dataset_name = sys.argv[1] # Load dataset if dataset_name == "PPI": load_ppi() else: load_dataset(name=dataset_name) if __name__ == "__main__": main()
[((9, 4, 9, 10), 'gssl.utils.seed', 'seed', ({}, {}), '()', False, 'from gssl.utils import seed\n'), ((16, 8, 16, 18), 'gssl.inductive.datasets.load_ppi', 'load_ppi', ({}, {}), '()', False, 'from gssl.inductive.datasets import load_ppi\n'), ((18, 8, 18, 39), 'gssl.datasets.load_dataset', 'load_dataset', (), '', False, 'from gssl.datasets import load_dataset\n')]
LukoninDmitryPy/agro_site-2
agro_site/orders/migrations/0001_initial.py
eab7694d42104774e5ce6db05a79f11215db6ae3
# Generated by Django 2.2.16 on 2022-04-12 13:28 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.db.models.expressions import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('sales_backend', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Chat', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('type', models.CharField(choices=[('D', 'Dialog'), ('C', 'Chat')], default='D', max_length=1, verbose_name='Тип')), ('members', models.ManyToManyField(to=settings.AUTH_USER_MODEL, verbose_name='Участник')), ], ), migrations.CreateModel( name='Order', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('address', models.CharField(max_length=250)), ('postal_code', models.CharField(max_length=20)), ('city', models.CharField(max_length=100)), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('paid', models.BooleanField(default=False)), ('status_order', models.CharField(choices=[('В обработке', 'В обработке'), ('Заказ собран', 'Заказ собран'), ('Заказ отправлен', 'Заказ отправлен')], default='В обработке', max_length=20)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='user', to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name_plural': 'Заказы', 'ordering': ('-created',), }, ), migrations.CreateModel( name='OrderItem', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('price', models.DecimalField(decimal_places=2, max_digits=10)), ('quantity', models.PositiveIntegerField(default=1)), ('order', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='items', to='orders.Order')), ('product', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='order_items', to='sales_backend.Product')), ('seller', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='seller', to=settings.AUTH_USER_MODEL)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='order_users', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Message', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('message', models.TextField(verbose_name='Сообщение')), ('pub_date', models.DateTimeField(default=django.utils.timezone.now, verbose_name='Дата сообщения')), ('is_readed', models.BooleanField(default=False, verbose_name='Прочитано')), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='Пользователь')), ('chat', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='orders.Chat', verbose_name='Чат')), ], options={ 'ordering': ['pub_date'], }, ), migrations.AddConstraint( model_name='orderitem', constraint=models.CheckConstraint(check=models.Q(_negated=True, user=django.db.models.expressions.F('seller')), name='dont_buy_yourself'), ), ]
[((16, 8, 16, 65), 'django.db.migrations.swappable_dependency', 'migrations.swappable_dependency', ({(16, 40, 16, 64): 'settings.AUTH_USER_MODEL'}, {}), '(settings.AUTH_USER_MODEL)', False, 'from django.db import migrations, models\n'), ((23, 23, 23, 112), 'django.db.models.AutoField', 'models.AutoField', (), '', False, 'from django.db import migrations, models\n'), ((24, 25, 24, 133), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import migrations, models\n'), ((25, 28, 25, 112), 'django.db.models.ManyToManyField', 'models.ManyToManyField', (), '', False, 'from django.db import migrations, models\n'), ((31, 23, 31, 112), 'django.db.models.AutoField', 'models.AutoField', (), '', False, 'from django.db import migrations, models\n'), ((32, 28, 32, 60), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import migrations, models\n'), ((33, 32, 33, 63), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import migrations, models\n'), ((34, 25, 34, 57), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import migrations, models\n'), ((35, 28, 35, 67), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import migrations, models\n'), ((36, 28, 36, 63), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import migrations, models\n'), ((37, 25, 37, 59), 'django.db.models.BooleanField', 'models.BooleanField', (), '', False, 'from django.db import migrations, models\n'), ((38, 33, 38, 283), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import migrations, models\n'), ((39, 25, 39, 137), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import migrations, models\n'), ((49, 23, 49, 112), 'django.db.models.AutoField', 'models.AutoField', (), '', False, 'from django.db import migrations, models\n'), ((50, 26, 50, 78), 'django.db.models.DecimalField', 'models.DecimalField', (), '', False, 'from django.db import migrations, models\n'), ((51, 29, 51, 67), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', (), '', False, 'from django.db import migrations, models\n'), ((52, 26, 52, 129), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import migrations, models\n'), ((53, 28, 53, 146), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import migrations, models\n'), ((54, 27, 54, 141), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import migrations, models\n'), ((55, 25, 55, 144), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import migrations, models\n'), ((61, 23, 61, 112), 'django.db.models.AutoField', 'models.AutoField', (), '', False, 'from django.db import migrations, models\n'), ((62, 28, 62, 79), 'django.db.models.TextField', 'models.TextField', (), '', False, 'from django.db import migrations, models\n'), ((63, 29, 63, 128), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import migrations, models\n'), ((64, 30, 64, 99), 'django.db.models.BooleanField', 'models.BooleanField', (), '', False, 'from django.db import migrations, models\n'), ((65, 27, 65, 159), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import migrations, models\n'), ((66, 25, 66, 128), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import migrations, models\n')]
FakeYou/flask-microblog
app/forms.py
021b786417a2ae1aaa957661beb25d381a7efdb2
from flask.ext.wtf import Form from wtforms import StringField, BooleanField, PasswordField from wtforms.validators import InputRequired, Email, EqualTo, Length class LoginForm(Form): nickname = StringField('nickname', validators=[InputRequired()]) password = PasswordField('password', validators=[InputRequired()]) remember_me = BooleanField('remember_me', default=False) class RegisterForm(Form): nickname = StringField('nickname', validators=[InputRequired()]) email = StringField('email', validators=[InputRequired(), Email()]) password = PasswordField('password', validators=[InputRequired(), EqualTo('confirm', message='Password must match')]) confirm = PasswordField('confirm password') class NewPostForm(Form): body = StringField('body', validators=[InputRequired(), Length(max=140)])
[((8, 18, 8, 60), 'wtforms.BooleanField', 'BooleanField', (), '', False, 'from wtforms import StringField, BooleanField, PasswordField\n'), ((15, 14, 15, 47), 'wtforms.PasswordField', 'PasswordField', ({(15, 28, 15, 46): '"""confirm password"""'}, {}), "('confirm password')", False, 'from wtforms import StringField, BooleanField, PasswordField\n'), ((6, 51, 6, 66), 'wtforms.validators.InputRequired', 'InputRequired', ({}, {}), '()', False, 'from wtforms.validators import InputRequired, Email, EqualTo, Length\n'), ((7, 53, 7, 68), 'wtforms.validators.InputRequired', 'InputRequired', ({}, {}), '()', False, 'from wtforms.validators import InputRequired, Email, EqualTo, Length\n'), ((11, 51, 11, 66), 'wtforms.validators.InputRequired', 'InputRequired', ({}, {}), '()', False, 'from wtforms.validators import InputRequired, Email, EqualTo, Length\n'), ((12, 45, 12, 60), 'wtforms.validators.InputRequired', 'InputRequired', ({}, {}), '()', False, 'from wtforms.validators import InputRequired, Email, EqualTo, Length\n'), ((12, 62, 12, 69), 'wtforms.validators.Email', 'Email', ({}, {}), '()', False, 'from wtforms.validators import InputRequired, Email, EqualTo, Length\n'), ((13, 53, 13, 68), 'wtforms.validators.InputRequired', 'InputRequired', ({}, {}), '()', False, 'from wtforms.validators import InputRequired, Email, EqualTo, Length\n'), ((14, 53, 14, 102), 'wtforms.validators.EqualTo', 'EqualTo', (), '', False, 'from wtforms.validators import InputRequired, Email, EqualTo, Length\n'), ((18, 43, 18, 58), 'wtforms.validators.InputRequired', 'InputRequired', ({}, {}), '()', False, 'from wtforms.validators import InputRequired, Email, EqualTo, Length\n'), ((18, 60, 18, 75), 'wtforms.validators.Length', 'Length', (), '', False, 'from wtforms.validators import InputRequired, Email, EqualTo, Length\n')]
Jimmy01240397/balsn-2021-writeup
ais3-pre-exam-2022-writeup/Misc/JeetQode/chall/problems/astmath.py
91b71dfbddc1c214552280b12979a82ee1c3cb7e
from problem import Problem from typing import Any, Tuple from random import randint import ast import json def gen_num(): return str(randint(1, 9)) def gen_op(): return "+-*/"[randint(0, 3)] def gen_expr(depth): if randint(0, depth) == 0: l = gen_expr(depth + 1) r = gen_expr(depth + 1) op = gen_op() return f"({l}{op}{r})" return f"({gen_num()})" class ASTMath(Problem): @property def name(self) -> str: return "AST Math" @property def desciption(self) -> str: return """ Input: An AST of Python's arithmetic expression (only +,-,*,/) Output: Result number Examples: Input: {"body": {"left": {"value": 1, "kind": null, "lineno": 1, "col_offset": 0, "end_lineno": 1, "end_col_offset": 1}, "op": "<_ast.Add object at 0x7f0387ccde20>", "right": {"value": 2, "kind": null, "lineno": 1, "col_offset": 2, "end_lineno": 1, "end_col_offset": 3}, "lineno": 1, "col_offset": 0, "end_lineno": 1, "end_col_offset": 3}} Output: 3 Input: {"body": {"left": {"left": {"value": 8, "kind": null, "lineno": 1, "col_offset": 1, "end_lineno": 1, "end_col_offset": 2}, "op": "<_ast.Mult object at 0x7f20eb76aee0>", "right": {"value": 7, "kind": null, "lineno": 1, "col_offset": 3, "end_lineno": 1, "end_col_offset": 4}, "lineno": 1, "col_offset": 1, "end_lineno": 1, "end_col_offset": 4}, "op": "<_ast.Sub object at 0x7f20eb76ae80>", "right": {"left": {"value": 6, "kind": null, "lineno": 1, "col_offset": 7, "end_lineno": 1, "end_col_offset": 8}, "op": "<_ast.Mult object at 0x7f20eb76aee0>", "right": {"value": 3, "kind": null, "lineno": 1, "col_offset": 9, "end_lineno": 1, "end_col_offset": 10}, "lineno": 1, "col_offset": 7, "end_lineno": 1, "end_col_offset": 10}, "lineno": 1, "col_offset": 0, "end_lineno": 1, "end_col_offset": 11}} Output: 38 """ @property def rounds(self) -> int: return 10 def dumps(self, x): return json.dumps( x, default=lambda x: x.__dict__ if len(x.__dict__) else str(x) ) def generate_testcase(self) -> Tuple[bool, Any]: l = gen_expr(1) r = gen_expr(1) op = gen_op() expr = f"{l}{op}{r}" try: result = eval(expr) except ZeroDivisionError: return self.generate_testcase() return ast.parse(expr, mode="eval"), result
[((9, 15, 9, 28), 'random.randint', 'randint', ({(9, 23, 9, 24): '(1)', (9, 26, 9, 27): '(9)'}, {}), '(1, 9)', False, 'from random import randint\n'), ((17, 7, 17, 24), 'random.randint', 'randint', ({(17, 15, 17, 16): '(0)', (17, 18, 17, 23): 'depth'}, {}), '(0, depth)', False, 'from random import randint\n'), ((13, 18, 13, 31), 'random.randint', 'randint', ({(13, 26, 13, 27): '(0)', (13, 29, 13, 30): '(3)'}, {}), '(0, 3)', False, 'from random import randint\n'), ((62, 15, 62, 43), 'ast.parse', 'ast.parse', (), '', False, 'import ast\n')]
RebeccaHirst/Pyllusion
pyllusion/movement/movement_circles.py
9944076e38bced0eabb49c607482b71809150bdb
import numpy as np from .movement_matrix import movement_matrix from ..image import image_circles def movement_circles(n=50, duration=2, fps=30, width=500, height=500, **kwargs): """ >>> import pyllusion as ill >>> >>> images = ill.movement_circles(n=50, duration=4, fps=30, color="black", size=0.05) >>> #ill.images_to_gif(images, path="mygif.gif", fps=30) """ n_frames = int(duration * fps) x, y = movement_matrix(n_frames=n_frames, **kwargs) # Generate PIL images images = [] for i in range(n_frames): images.append( image_circles(width=width, height=height, n=n, x=x[i], y=y[i], **kwargs) ) return images
[]
hzwfl2/Semantic-consistent-Embedding
sce.py
d3712cc6f27febbf654e1eb8c43c0b48376a9be1
#%% import matplotlib.pyplot as plt import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC,LinearSVC from torch import device from torch.optim import optimizer from torch.utils.data import DataLoader, Dataset from read_data import create_data #%% class my_dataset(Dataset): def __init__(self,data,attribute_label): super(my_dataset,self).__init__() self.data=data self.attribute_label=attribute_label def __len__(self): return self.data.shape[0] def __getitem__(self, index): batch_data=self.data[index] batch_label=self.attribute_label[index] return batch_data,batch_label #%% device=torch.device('cuda') np.random.seed(904) def pre_model(model, traindata, train_attributelabel, testdata, testlabel, attribute_matrix): model_dict = {'rf': RandomForestClassifier(n_estimators=100),'NB': GaussianNB(),'SVC_linear': SVC(kernel='linear'),'LinearSVC':LinearSVC()} res_list = [] for i in range(train_attributelabel.shape[1]): clf = model_dict[model] if max(train_attributelabel[:, i]) != 0: clf.fit(traindata, train_attributelabel[:, i]) res = clf.predict(testdata) else: res = np.zeros(testdata.shape[0]) res_list.append(res.T) test_pre_attribute = np.mat(np.row_stack(res_list)).T label_lis = [] for i in range(test_pre_attribute.shape[0]): pre_res = test_pre_attribute[i, :] loc = (np.sum(np.square(attribute_matrix - pre_res), axis=1)).argmin() label_lis.append(np.unique(testlabel)[loc]) label_lis = np.mat(np.row_stack(label_lis)) return test_pre_attribute,label_lis, testlabel #%% def off_diagonal(x): n, m = x.shape assert n == m return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten() #%% class Embedding_Net(nn.Module): def __init__(self,dim,lambda_): super(Embedding_Net,self).__init__() self.l11=nn.Linear(6,dim[0]) self.l12=nn.Linear(dim[0],dim[1]) self.l13=nn.Linear(2*dim[1],6) self.l21=nn.Linear(4,dim[0]) self.l22=nn.Linear(dim[0],dim[1]) self.l23=nn.Linear(2*dim[1],4) self.bn1=nn.BatchNorm1d(dim[0]) self.bn2=nn.BatchNorm1d(dim[1]) self.lambda_=lambda_ def compability_loss(self,z1,z2): N,D=z1.shape c=self.bn2(z1).T @ self.bn2(z2)/N on_diag=torch.diagonal(c).add_(-1).pow_(2).sum() off_diag=off_diagonal(c).pow_(2).sum() loss=on_diag+self.lambda_[3]*off_diag return loss def compute_loss(self,z1,z2,x,a,x_,a_): loss_R1=self.lambda_[0]*F.mse_loss(a,a_) loss_R2=self.lambda_[1]*F.mse_loss(x,x_) loss_CM=self.compability_loss(z1,z2) loss_CM=self.lambda_[2]*loss_CM loss=loss_R1+loss_R2+loss_CM return loss_R1,loss_R2,loss_CM,loss def transform(self,x,a): z1=self.l11(x) z1=torch.relu(self.bn1(z1)) z1=self.l12(z1) z2=self.l21(a) z2=torch.relu(self.bn1(z2)) z2=self.l22(z2) return z1,z2 def reconstruction(self,z1,z2): f1=torch.cat([z1,z2],dim=1) f2=torch.cat([z2,z1],dim=1) x_=self.l13(f1) a_=torch.sigmoid(self.l23(f2)) return x_,a_ def forward(self,x,a): z1,z2=self.transform(x,a) x_,a_=self.reconstruction(z1,z2) loss_R1,loss_R2,loss_CM,loss=self.compute_loss(z1,z2,x,a,x_,a_) package={'z1':z1,'z2':z2,'x':x,'x_':x_,'r1':loss_R1, 'r2':loss_R2,'cm':loss_CM,'loss':loss} return package #%% datapath='data/classData.csv' modes=['NB'] #'rf' test_classes={'test_class':[2,3]} for key,value in test_classes.items(): print('========================================{}:[{}:{}]========================================='.format(modes,key,value)) df = pd.read_csv(datapath) df['fault_type'] = df['G'].astype('str') + df['C'].astype('str') + df['B'].astype('str') + df['A'].astype('str') traindata,trainlabel,train_attributelabel, train_attributematrix,testdata,testlabel,test_attributelabel,test_attributematrix,attribute_matrix=create_data(df,value) _,y_pre,y_true=pre_model(modes[0], traindata, train_attributelabel, testdata, testlabel, test_attributematrix) original_acc=accuracy_score(y_pre,y_true) traindata=torch.from_numpy(traindata).float().to(device) label=torch.from_numpy(trainlabel.squeeze()).long().to(device) testdata=torch.from_numpy(testdata).float().to(device) batch_size=400 trainset=my_dataset(traindata,torch.from_numpy(train_attributelabel).float().to(device)) train_loader=DataLoader(trainset,batch_size=batch_size,shuffle=True) lambda_=[1,1e-5,1,0.25] dim=[6,12] model=Embedding_Net(dim,lambda_=lambda_) model.to(device) optimizer=optim.RMSprop(model.parameters(),lr=1e-2) L1,L2,L3,L=[],[],[],[] model.train() accs=[] best_acc=0 for epoch in range(200): model.train() for batch,(batch_data,batch_label) in enumerate(train_loader): optimizer.zero_grad() package=model(batch_data,batch_label) loss_R1,loss_R2,loss_CM,loss=package['r1'],package['r2'],package['cm'],package['loss'] loss.backward() optimizer.step() L1.append(loss_R1.item()) L2.append(loss_R2.item()) L3.append(loss_CM.item()) L.append(loss.item()) model.eval() with torch.no_grad(): train_package=model(traindata,torch.from_numpy(train_attributelabel).float().to(device)) f_train=train_package['z1'] f_train=torch.cat([f_train,traindata],dim=1).detach().cpu().numpy() test_package=model(testdata,torch.from_numpy(test_attributelabel).float().to(device)) f_test=test_package['z1'] f_test=torch.cat([f_test,testdata],dim=1).detach().cpu().numpy() test_preattribute,label_lis, testlabel=pre_model(modes[0], f_train, train_attributelabel, f_test, testlabel, test_attributematrix) acc=accuracy_score(label_lis, testlabel) accs.append(acc) if acc>best_acc: best_acc=acc print('epoch:{:d}, best_acc:{:.4f}'.format(epoch,best_acc)) print('finished! FDAT:{:.4f}, SCE:{:.4f}'.format(original_acc,best_acc)) # %%
[((36, 7, 36, 27), 'torch.device', 'torch.device', ({(36, 20, 36, 26): '"""cuda"""'}, {}), "('cuda')", False, 'import torch\n'), ((38, 0, 38, 19), 'numpy.random.seed', 'np.random.seed', ({(38, 15, 38, 18): '(904)'}, {}), '(904)', True, 'import numpy as np\n'), ((140, 9, 140, 30), 'pandas.read_csv', 'pd.read_csv', ({(140, 21, 140, 29): 'datapath'}, {}), '(datapath)', True, 'import pandas as pd\n'), ((142, 146, 142, 167), 'read_data.create_data', 'create_data', ({(142, 158, 142, 160): 'df', (142, 161, 142, 166): 'value'}, {}), '(df, value)', False, 'from read_data import create_data\n'), ((145, 17, 145, 45), 'sklearn.metrics.accuracy_score', 'accuracy_score', ({(145, 32, 145, 37): 'y_pre', (145, 38, 145, 44): 'y_true'}, {}), '(y_pre, y_true)', False, 'from sklearn.metrics import accuracy_score\n'), ((153, 17, 153, 72), 'torch.utils.data.DataLoader', 'DataLoader', (), '', False, 'from torch.utils.data import DataLoader, Dataset\n'), ((41, 24, 41, 64), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', (), '', False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((41, 71, 41, 83), 'sklearn.naive_bayes.GaussianNB', 'GaussianNB', ({}, {}), '()', False, 'from sklearn.naive_bayes import GaussianNB\n'), ((41, 98, 41, 118), 'sklearn.svm.SVC', 'SVC', (), '', False, 'from sklearn.svm import SVC, LinearSVC\n'), ((41, 131, 41, 142), 'sklearn.svm.LinearSVC', 'LinearSVC', ({}, {}), '()', False, 'from sklearn.svm import SVC, LinearSVC\n'), ((59, 23, 59, 46), 'numpy.row_stack', 'np.row_stack', ({(59, 36, 59, 45): 'label_lis'}, {}), '(label_lis)', True, 'import numpy as np\n'), ((73, 17, 73, 36), 'torch.nn.Linear', 'nn.Linear', ({(73, 27, 73, 28): '6', (73, 29, 73, 35): 'dim[0]'}, {}), '(6, dim[0])', True, 'import torch.nn as nn\n'), ((74, 17, 74, 41), 'torch.nn.Linear', 'nn.Linear', ({(74, 27, 74, 33): 'dim[0]', (74, 34, 74, 40): 'dim[1]'}, {}), '(dim[0], dim[1])', True, 'import torch.nn as nn\n'), ((75, 17, 75, 38), 'torch.nn.Linear', 'nn.Linear', ({(75, 27, 75, 35): '2 * dim[1]', (75, 36, 75, 37): '6'}, {}), '(2 * dim[1], 6)', True, 'import torch.nn as nn\n'), ((77, 17, 77, 36), 'torch.nn.Linear', 'nn.Linear', ({(77, 27, 77, 28): '4', (77, 29, 77, 35): 'dim[0]'}, {}), '(4, dim[0])', True, 'import torch.nn as nn\n'), ((78, 17, 78, 41), 'torch.nn.Linear', 'nn.Linear', ({(78, 27, 78, 33): 'dim[0]', (78, 34, 78, 40): 'dim[1]'}, {}), '(dim[0], dim[1])', True, 'import torch.nn as nn\n'), ((79, 17, 79, 38), 'torch.nn.Linear', 'nn.Linear', ({(79, 27, 79, 35): '2 * dim[1]', (79, 36, 79, 37): '4'}, {}), '(2 * dim[1], 4)', True, 'import torch.nn as nn\n'), ((81, 17, 81, 39), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', ({(81, 32, 81, 38): 'dim[0]'}, {}), '(dim[0])', True, 'import torch.nn as nn\n'), ((82, 17, 82, 39), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', ({(82, 32, 82, 38): 'dim[1]'}, {}), '(dim[1])', True, 'import torch.nn as nn\n'), ((117, 11, 117, 35), 'torch.cat', 'torch.cat', (), '', False, 'import torch\n'), ((118, 11, 118, 35), 'torch.cat', 'torch.cat', (), '', False, 'import torch\n'), ((50, 18, 50, 45), 'numpy.zeros', 'np.zeros', ({(50, 27, 50, 44): 'testdata.shape[0]'}, {}), '(testdata.shape[0])', True, 'import numpy as np\n'), ((52, 32, 52, 54), 'numpy.row_stack', 'np.row_stack', ({(52, 45, 52, 53): 'res_list'}, {}), '(res_list)', True, 'import numpy as np\n'), ((99, 32, 99, 48), 'torch.nn.functional.mse_loss', 'F.mse_loss', ({(99, 43, 99, 44): 'a', (99, 45, 99, 47): 'a_'}, {}), '(a, a_)', True, 'import torch.nn.functional as F\n'), ((100, 32, 100, 48), 'torch.nn.functional.mse_loss', 'F.mse_loss', ({(100, 43, 100, 44): 'x', (100, 45, 100, 47): 'x_'}, {}), '(x, x_)', True, 'import torch.nn.functional as F\n'), ((184, 13, 184, 28), 'torch.no_grad', 'torch.no_grad', ({}, {}), '()', False, 'import torch\n'), ((194, 16, 194, 52), 'sklearn.metrics.accuracy_score', 'accuracy_score', ({(194, 31, 194, 40): 'label_lis', (194, 42, 194, 51): 'testlabel'}, {}), '(label_lis, testlabel)', False, 'from sklearn.metrics import accuracy_score\n'), ((58, 25, 58, 45), 'numpy.unique', 'np.unique', ({(58, 35, 58, 44): 'testlabel'}, {}), '(testlabel)', True, 'import numpy as np\n'), ((57, 22, 57, 59), 'numpy.square', 'np.square', ({(57, 32, 57, 58): 'attribute_matrix - pre_res'}, {}), '(attribute_matrix - pre_res)', True, 'import numpy as np\n'), ((147, 14, 147, 41), 'torch.from_numpy', 'torch.from_numpy', ({(147, 31, 147, 40): 'traindata'}, {}), '(traindata)', False, 'import torch\n'), ((150, 13, 150, 39), 'torch.from_numpy', 'torch.from_numpy', ({(150, 30, 150, 38): 'testdata'}, {}), '(testdata)', False, 'import torch\n'), ((152, 34, 152, 72), 'torch.from_numpy', 'torch.from_numpy', ({(152, 51, 152, 71): 'train_attributelabel'}, {}), '(train_attributelabel)', False, 'import torch\n'), ((92, 16, 92, 33), 'torch.diagonal', 'torch.diagonal', ({(92, 31, 92, 32): 'c'}, {}), '(c)', False, 'import torch\n'), ((185, 42, 185, 80), 'torch.from_numpy', 'torch.from_numpy', ({(185, 59, 185, 79): 'train_attributelabel'}, {}), '(train_attributelabel)', False, 'import torch\n'), ((189, 40, 189, 77), 'torch.from_numpy', 'torch.from_numpy', ({(189, 57, 189, 76): 'test_attributelabel'}, {}), '(test_attributelabel)', False, 'import torch\n'), ((187, 20, 187, 56), 'torch.cat', 'torch.cat', (), '', False, 'import torch\n'), ((191, 19, 191, 53), 'torch.cat', 'torch.cat', (), '', False, 'import torch\n')]
colirain/GraphSAGE
graphsage/partition_predict.py
a63145ff18f87cb69340c7b457c34839e9124086
import tensorflow as tf import numpy as np from graphsage.models import FCPartition from graphsage.partition_train import construct_placeholders from graphsage.utils import load_graph_data, load_embedded_data, load_embedded_idmap flags = tf.app.flags FLAGS = flags.FLAGS # flags.DEFINE_integer('dim_1', 128, 'Size of output dim (final is 2x this, if using concat)') # DIR = 'trained_models' # MODEL = 'partition' # with tf.Session() as sess: # new_saver = tf.train.import_meta_graph(DIR+'/'+MODEL+'.ckpt.meta') # new_saver.restore(sess, tf.train.latest_checkpoint(DIR + '/./')) # new_saver.run() # print(new_saver) def predict(train_data, id_map): num_classes = 3 placeholders = construct_placeholders(num_classes) placeholders['features'] = train_data # feed_dict = dict() # train_data = train_data.astype('float32') # feed_dict.update({placeholders['features']: train_data}) dim = [] # print("f:{}".format(len(train_data[0]))) dim.append(len(train_data[0])) dim.append(FLAGS.dim_1) dim.append(num_classes) model = FCPartition(placeholders, dim) sess = tf.Session() model.load(sess) results = model.predict() results_np = results.eval(session=sess) # print(results.eval(session=sess)) # print(results_np.shape) id_map = id_map.astype('int') results_np = np.expand_dims(results_np, axis=1) results_np = np.insert(results_np, 0, id_map, axis=1) results_np = results_np[results_np[:,0].argsort()] print(results_np) np.save(FLAGS.outDir+'/predict_predict.npy', results_np) def main(): print("load data ...") train_data = load_embedded_data(FLAGS.train_prefix) id_map = load_embedded_idmap(FLAGS.train_prefix) predict(train_data, id_map) if __name__ == '__main__': main()
[((29, 19, 29, 54), 'graphsage.partition_train.construct_placeholders', 'construct_placeholders', ({(29, 42, 29, 53): 'num_classes'}, {}), '(num_classes)', False, 'from graphsage.partition_train import construct_placeholders\n'), ((39, 12, 39, 42), 'graphsage.models.FCPartition', 'FCPartition', ({(39, 24, 39, 36): 'placeholders', (39, 38, 39, 41): 'dim'}, {}), '(placeholders, dim)', False, 'from graphsage.models import FCPartition\n'), ((40, 11, 40, 23), 'tensorflow.Session', 'tf.Session', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((47, 17, 47, 51), 'numpy.expand_dims', 'np.expand_dims', (), '', True, 'import numpy as np\n'), ((48, 17, 48, 57), 'numpy.insert', 'np.insert', (), '', True, 'import numpy as np\n'), ((51, 4, 51, 60), 'numpy.save', 'np.save', ({(51, 12, 51, 47): "(FLAGS.outDir + '/predict_predict.npy')", (51, 49, 51, 59): 'results_np'}, {}), "(FLAGS.outDir + '/predict_predict.npy', results_np)", True, 'import numpy as np\n'), ((56, 17, 56, 55), 'graphsage.utils.load_embedded_data', 'load_embedded_data', ({(56, 36, 56, 54): 'FLAGS.train_prefix'}, {}), '(FLAGS.train_prefix)', False, 'from graphsage.utils import load_graph_data, load_embedded_data, load_embedded_idmap\n'), ((57, 13, 57, 52), 'graphsage.utils.load_embedded_idmap', 'load_embedded_idmap', ({(57, 33, 57, 51): 'FLAGS.train_prefix'}, {}), '(FLAGS.train_prefix)', False, 'from graphsage.utils import load_graph_data, load_embedded_data, load_embedded_idmap\n')]
AmmarQaseem/CPI-Pipeline-test
scripts/generate_XML_files/DS1/annotatedsen_to_xml.py
3866883c54d7bd77753ee4b72997949bdcf76359
#!/usr/bin/env python # -*- coding: UTF-8 -*- """ Copyright (c) 2015, Elham Abbasian <[email protected]>, Kersten Doering <[email protected]> This parser reads annotated sentences (output from get_relations.py) in a tab-separated format to generate a unified XML format (Tikk et al., 2010. A comprehensive benchmark of kernel methods to extract protein-protein interactions from literature. PLoS Comput. Biol). """ # module to make use of regular expressions import re # set the default encoding to utf8 and ignore all decoding/encoding steps. # (ToDo: check whether the encoding command is needed - debug) import sys reload(sys) sys.setdefaultencoding("utf-8") # optparse - Parser for command-line options from optparse import OptionParser # import this function to add quotation arround the input text and ignore the extra quotations inside the sentence text #from xml.sax.saxutils import escape # (ToDo: not needed - debug) from xml.sax.saxutils import quoteattr ### MAIN PART OF THE SCRIPT ### if __name__=="__main__": # configure parsing of command-line arguments parser= OptionParser() parser.add_option("-i", "--input", dest="i", help='name of the input file',default="training_dataset_sorted.csv") parser.add_option("-o", "--output", dest="o", help='name of the output file',default="DS1.xml") (options,args)=parser.parse_args() # save parameters in an extra variable input_file= options.i output_file = options.o # open input file with annotated sentences infile = open(input_file,"r") # open output file outfile = open(output_file,"w") #example for the input format: #18227838-359 The mood stabilizers <compound-id="28486,3028194">lithium</compound-id> and <compound-id="3121">valproate</compound-id> activate the <protein-id="P29323">ERK</protein-id> pathway in prefrontal cortex and hippocampus and potentiate <protein-id="P29323">ERK</protein-id> pathway-mediated neurite growth, neuronal survival and hippocampal neurogenesis. lithium__ERK__no_interaction valproate__ERK__interaction #example for the output format """ <?xml version="1.0" encoding="UTF-8"> <corpus source="DS1"> <document id="DS1.d0" origId="18227838"> <sentence id="DS1.d0.s0" origId="18227838-359" text="The mood stabilizers lithium and valproate activate the ERK pathway in prefrontal cortex and hippocampus and potentiate ERK pathway-mediated neurite growth, neuronal survival and hippocampal neurogenesis."/> <entity id="DS1.d0.s0.e0" origId="28486,3028194" charOffset="x1-y1" type="compound" text="lithium"/> <entity id="DS1.d0.s0.e1" origId="3121" charOffset="x2-y2" type="compound" text="valproate"/> <entity id="DS1.d0.s0.e2" origId="P29323" charOffset="x3-y3" type="protein" text="ERK"/> <interaction id="DS1.d0.s0.i0" e1="DS1.do.s0.e0" e2="DS1.do.s0.e2" type="no_interaction" directed="False" /> <interaction id="DS1.d0.s0.i1" e1="DS1.do.s0.e1" e2="DS1.do.s0.e2" type="interaction" directed="False" /> </sentence> [...] </document> [...] </corpus> """ # add XML header and define corpus source outfile.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>"+"\n") outfile.write("<corpus source=\"DS1\">"+"\n") # variable to store and compare the last read PubMed ID to notice whether there are multiple sentences with the same PubMed ID or not # the document ID refers to the PubMed ID (origID) pre_pmid="" # doc_num counts the number of created documents doc_num =0 # read lines in CSV file for line in infile : # tab-separated format temp = line.strip().split("\t") # get PubMed ID, sentences ID, and the sentence itself # (ToDo: use a split command instead of this regular expression - debug) curr_pmid = re.match('(\d{8})',temp[0]).group(0) pmid_sent_num = temp[0] sentence_text = temp[1] # find all annotated proteins and compounds by matching their tags pro_positions= [(a.start(), a.end()) for a in list(re.finditer('<protein-id="(.*?)">(.*?)</protein-id>',sentence_text))] cmp_positions = [(a.start(), a.end()) for a in list(re.finditer('<compound-id="(.*?)">(.*?)</compound-id>',sentence_text))] # join the two lists positions = pro_positions + cmp_positions positions.sort() #Initialize the list with the number of identified tags entity_list =[] entity_list=[0]*len(positions) # iterate over all identified positions of the identified tags for i in range(len(positions)): # initialze the second dimension of the list with a length of four (entity_type,entity_id,entity_text,entity_charoffset) entity_list[i]=[0]*4 # store these four elements with grouping in the regular expression obj = re.match('<(protein|compound)-id="(.*?)">(.*?)</(protein-id|compound-id)>',sentence_text[positions[i][0]:positions[i][1]]) entity_list[i][0]=obj.group(1) #entity_type entity_list[i][1]=obj.group(2) #entity_id entity_list[i][2]=obj.group(3) #entity_text entity_list[i][2]=entity_list[i][2].replace("[","(").replace("]",")") # the entity_charoffset will be assign later after having the pure sentence text generated (without any tags) # the sentence without any tags will be generated by deleting all tags via text concatenation # initialize (ToDo: initialization like this not needed - debug) pur_sent_text = sentence_text # enumerate over the list of positions (index, value) for i,e in reversed(list(enumerate(positions))): pur_sent_text = pur_sent_text[0:positions[i][0]]+entity_list[i][2]+pur_sent_text[positions[i][1]:] # get the character offset of all identified synonyms # decode the sentences to UTF8 to prevent the usage of more than one character for special letters, symbols, etc. # make use of a list of repeated synonyms and synonym positions repeated_syn_pos =[] rep_syn =[] for i in range(len(entity_list)) : # check whether this is the fist occurrence of the current synonym if not entity_list[i][2] in rep_syn : # get the list of positions of all occurences of the current synonym u_pur_sent_text = pur_sent_text.decode("utf8") charoffset_value = [(a.start(), a.end()) for a in list(re.finditer(re.escape(entity_list[i][2]),u_pur_sent_text))] # check whether it occures only once such that the charoffsetone directly be assigned if len(charoffset_value) == 1 : entity_list[i][3] = str(charoffset_value[0][0])+"-"+str(charoffset_value[0][1]) else: # if it occures more than one time, the charoffset has to be assigned according to the first pair of positions entity_list[i][3] = str(charoffset_value[0][0])+"-"+str(charoffset_value[0][1]) # append this synonym to the rep_syn list to store all repeated synonyms in this sentence rep_syn.append(entity_list[i][2]) # delete the fist pair of positions from the list charoffset_value = charoffset_value[1:] # add the rest of positions pairs for the current synonym to another list for j in range(len(charoffset_value)): repeated_syn_pos.append([entity_list[i][2],charoffset_value[j][0],charoffset_value[j][1]]) else: # this case refers to at least the second occurrence of the synonym # for each repeated synonym, assign the first position pair from the repeated_syn_pos list for k in range(len(repeated_syn_pos)): if repeated_syn_pos[k][0] == entity_list[i][2]: break entity_list[i][3] = str(repeated_syn_pos[k][1])+"-"+str(repeated_syn_pos[k][2]) # get pairs and their interaction status (separated by a double underscore) listof_int_noint = temp[2:] interaction_list=[0]*len(listof_int_noint) for i in range(len(listof_int_noint)): interaction_list[i]=listof_int_noint[i].split('__') # interaction/no_interaction corresponds to True/False TF_int_list=[0]*len(interaction_list) for intid in range(len(interaction_list)) : if interaction_list[intid][2]=="interaction" : TF_int_list[intid]="True" else : TF_int_list[intid]="False" # debug: # print TF_int_list # build XML structure # check whether the PubMed ID changed in comparision to the last parsed sentence if curr_pmid == pre_pmid : # if this is the case, only the sentence ID has to be increased sent_num +=1 # add sentence ID using the current document number # (doc_num has to be decreased by one, because this index is automatically increased after each sentence) # all openning and closing squared brackets ([,]) should be replaced with round brackets, because they will make problems in the tokenization step of the (preprocessing) pipeline pur_sent_text = pur_sent_text.replace("[","(").replace("]",")") outfile.write(" <sentence id=\"DS1.d"+str(doc_num-1)+".s"+str(sent_num)+"\" origId=\""+str(pmid_sent_num)+"\" text="+quoteattr(pur_sent_text)+">"+"\n") # build entity tags according to the list identified tags from the CSV file (entity_list) for i in range(0,len(entity_list)) : outfile.write(" <entity id=\"DS1.d"+str(doc_num-1)+".s"+str(sent_num)+".e"+str(i)+"\" origId=\""+entity_list[i][1]+"\" charOffset=\""+entity_list[i][3]+"\" type=\""+entity_list[i][0]+"\" text=\""+entity_list[i][2]+"\"/>"+"\n") # insert types of interaction for each pair of entities # get the index of the synonym interactions in entity_list origId = "DS1.d"+str(doc_num-1)+".s"+str(sent_num) for int_id in range(len(interaction_list)) : for ent_id in range(len(entity_list)): if interaction_list[int_id][0] in entity_list[ent_id]: break first_entity=ent_id for k in range(len(entity_list)): if interaction_list[int_id][1] in entity_list[k]: break second_entity=k outfile.write(" <pair e1=\""+origId+".e"+str(first_entity)+"\" e2=\""+origId+".e"+str(second_entity)+"\" id=\""+origId+".i"+str(int_id)+"\" interaction=\""+TF_int_list[int_id]+"\" />"+"\n") # close sentence tag outfile.write(" </sentence>\n") # if the current PubMed ID changed in comparison to the last parsed sentences else : if not doc_num == 0 : outfile.write(" </document>\n") sent_num =0 # a new document tag has to be opened and the sentences can be added outfile.write(" <document id=\"DS1.d"+str(doc_num)+"\" origId=\""+str(curr_pmid)+"\">"+"\n") # replace squared brackets ([,]) with round brackets pur_sent_text = pur_sent_text.replace("[","(").replace("]",")") outfile.write(" <sentence id=\"DS1.d"+str(doc_num)+".s"+str(sent_num)+"\" origId=\""+str(pmid_sent_num)+"\" text="+quoteattr(pur_sent_text)+">"+"\n") # now have to make entity tags according to entity_list data. for i in range(0,len(entity_list)) : outfile.write(" <entity id=\"DS1.d"+str(doc_num)+".s"+str(sent_num)+".e"+str(i)+"\" origId=\""+entity_list[i][1]+"\" charOffset=\""+entity_list[i][3]+"\" type=\""+entity_list[i][0]+"\" text=\""+entity_list[i][2]+"\"/>"+"\n") # build entity tags origId = "DS1.d"+str(doc_num)+".s"+str(sent_num) for int_id in range(len(interaction_list)) : for ent_id in range(len(entity_list)): if interaction_list[int_id][0] in entity_list[ent_id]: break first_entity=ent_id for k in range(len(entity_list)): if interaction_list[int_id][1] in entity_list[k]: break second_entity=k outfile.write(" <pair e1=\""+origId+".e"+str(first_entity)+"\" e2=\""+origId+".e"+str(second_entity)+"\" id=\""+origId+".i"+str(int_id)+"\" interaction=\""+TF_int_list[int_id]+"\" />"+"\n") # close sentence tag outfile.write(" </sentence>\n") # set new PubMed ID as the last parsed document ID and increase document index pre_pmid = curr_pmid doc_num+=1 # close document tag outfile.write("</document>\n") # close corpus tag outfile.write("</corpus>\n") # close files infile.close() outfile.close()
[((17, 0, 17, 31), 'sys.setdefaultencoding', 'sys.setdefaultencoding', ({(17, 23, 17, 30): '"""utf-8"""'}, {}), "('utf-8')", False, 'import sys\n'), ((29, 12, 29, 26), 'optparse.OptionParser', 'OptionParser', ({}, {}), '()', False, 'from optparse import OptionParser\n'), ((96, 18, 96, 140), 're.match', 're.match', ({(96, 27, 96, 92): '"""<(protein|compound)-id="(.*?)">(.*?)</(protein-id|compound-id)>"""', (96, 93, 96, 139): 'sentence_text[positions[i][0]:positions[i][1]]'}, {}), '(\'<(protein|compound)-id="(.*?)">(.*?)</(protein-id|compound-id)>\',\n sentence_text[positions[i][0]:positions[i][1]])', False, 'import re\n'), ((79, 20, 79, 47), 're.match', 're.match', ({(79, 29, 79, 38): '"""(\\\\d{8})"""', (79, 39, 79, 46): 'temp[0]'}, {}), "('(\\\\d{8})', temp[0])", False, 'import re\n'), ((83, 60, 83, 127), 're.finditer', 're.finditer', ({(83, 72, 83, 112): '"""<protein-id="(.*?)">(.*?)</protein-id>"""', (83, 113, 83, 126): 'sentence_text'}, {}), '(\'<protein-id="(.*?)">(.*?)</protein-id>\', sentence_text)', False, 'import re\n'), ((84, 61, 84, 130), 're.finditer', 're.finditer', ({(84, 73, 84, 115): '"""<compound-id="(.*?)">(.*?)</compound-id>"""', (84, 116, 84, 129): 'sentence_text'}, {}), '(\'<compound-id="(.*?)">(.*?)</compound-id>\', sentence_text)', False, 'import re\n'), ((168, 136, 168, 160), 'xml.sax.saxutils.quoteattr', 'quoteattr', ({(168, 146, 168, 159): 'pur_sent_text'}, {}), '(pur_sent_text)', False, 'from xml.sax.saxutils import quoteattr\n'), ((199, 134, 199, 158), 'xml.sax.saxutils.quoteattr', 'quoteattr', ({(199, 144, 199, 157): 'pur_sent_text'}, {}), '(pur_sent_text)', False, 'from xml.sax.saxutils import quoteattr\n'), ((120, 83, 120, 111), 're.escape', 're.escape', ({(120, 93, 120, 110): 'entity_list[i][2]'}, {}), '(entity_list[i][2])', False, 'import re\n')]
SergeyDorokhov/python_training
tests/test_add_contact.py
e15e561fe7ad055048643adcfc88b3f2d55530ca
def test_add_contact(app, db, json_contacts, check_ui): contact = json_contacts list_before = db.get_contact_list() contact.id_contact = app.contact.get_next_id(list_before) app.contact.create(contact) assert len(list_before) + 1 == len(db.get_contact_list()) list_after = db.get_contact_list() list_before.append(contact) assert sorted(list_before) == sorted(list_after) if check_ui: assert sorted(list_after) == sorted(app.contact.get_list())
[]
eamanu/asoc_members
website/members/urls.py
bf2e99e9c63c60a59bdfd10ca1812d78851cbde6
from django.conf import settings from django.conf.urls.static import static from django.urls import path from members import views urlpatterns = [ path('solicitud-alta/', views.signup_initial, name='signup'), path('solicitud-alta/persona/', views.signup_form_person, name='signup_person'), path('solicitud-alta/organizacion', views.signup_form_organization, name='signup_organization'), path('solicitud-alta/gracias', views.signup_thankyou, name='signup_thankyou'), path('reportes/', views.reports_main, name='reports_main'), path('reportes/deudas', views.report_debts, name='report_debts'), path('reportes/completos', views.report_complete, name='report_complete'), path('reportes/incompletos', views.report_missing, name='report_missing'), path('reportes/ingcuotas', views.report_income_quotas, name='report_income_quotas'), path('reportes/ingdinero', views.report_income_money, name='report_income_money'), path('reportes/miembros', views.members_list, name="members_list"), path('reportes/miembros/<pk>/', views.member_detail, name='member_detail'), ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[((24, 4, 24, 65), 'django.conf.urls.static.static', 'static', (), '', False, 'from django.conf.urls.static import static\n'), ((8, 4, 8, 64), 'django.urls.path', 'path', (), '', False, 'from django.urls import path\n'), ((9, 4, 9, 83), 'django.urls.path', 'path', (), '', False, 'from django.urls import path\n'), ((10, 4, 11, 68), 'django.urls.path', 'path', (), '', False, 'from django.urls import path\n'), ((12, 4, 12, 81), 'django.urls.path', 'path', (), '', False, 'from django.urls import path\n'), ((14, 4, 14, 62), 'django.urls.path', 'path', (), '', False, 'from django.urls import path\n'), ((15, 4, 15, 68), 'django.urls.path', 'path', (), '', False, 'from django.urls import path\n'), ((16, 4, 16, 77), 'django.urls.path', 'path', (), '', False, 'from django.urls import path\n'), ((17, 4, 17, 77), 'django.urls.path', 'path', (), '', False, 'from django.urls import path\n'), ((18, 4, 18, 87), 'django.urls.path', 'path', (), '', False, 'from django.urls import path\n'), ((19, 4, 19, 85), 'django.urls.path', 'path', (), '', False, 'from django.urls import path\n'), ((22, 4, 22, 70), 'django.urls.path', 'path', (), '', False, 'from django.urls import path\n'), ((23, 4, 23, 78), 'django.urls.path', 'path', (), '', False, 'from django.urls import path\n')]
vais-ral/CCPi-ML
Benchmarking/Keras/Tensorflow/TF_dataforcomparisongraphss.py
ca9baeb0dd5db3a97ac8ab9e33e03aeae42ebfa4
# -*- coding: utf-8 -*- """ Created on Wed Jul 18 14:04:03 2018 @author: zyv57124 """ import scipy.io as sio import tensorflow as tf from tensorflow import keras import numpy as np import matplotlib import matplotlib.pyplot as plt from tensorflow.python.training import gradient_descent from time import time class TimingCallback(keras.callbacks.Callback): def __init__(self): self.logs=[] def on_epoch_begin(self, epoch, logs={}): self.starttime=time() def on_epoch_end(self, epoch, logs={}): self.logs.append(time()-self.starttime) #Load data ------------------------------------------------------ def loadMATData(file1): return sio.loadmat(file1) #Load Data------------------------------------------------------- data = loadMATData('ex3data1.mat') features = data['X'] labels = data['y'] filter = labels ==10 labels[filter] = 0 #shuffle data--------------------------------------------------- ran = np.arange(features.shape[0]) np.random.shuffle(ran) features = features[ran] labels = labels[ran] training_features = features[:3500] training_labels = labels[:3500] test_features = features[3501:] test_labels = labels[3501:] for i in np.arange(0,500, 10): #TF Neaural Network Builder-------------------------------------- model = keras.Sequential([ keras.layers.Dense(400, activation=tf.nn.relu), keras.layers.Dense(25, activation=tf.nn.relu), keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.01), loss='sparse_categorical_crossentropy', metrics=['accuracy']) predictions = model.predict(test_features) cb=TimingCallback() history = model.fit(training_features, training_labels, batch_size=i+1, epochs=100, verbose=2, callbacks=[cb]) #Store eoch number and loss values in .txt file loss_data = (history.history['loss']) f = open("TF_loss_data_batchnum_"+str(i+1)+".txt","w") for xx in range(1,len(loss_data)+1): if xx==1: delta_loss = 'Nan' else: delta_loss = (loss_data[xx-2] - loss_data[xx-1]) #Epoch #Loss #Batch size #Time #Change in loss f.write(str(xx) + "," + str(loss_data[xx-1]) + "," + str(i+1) + "," + str(cb.logs[xx-1]) + "," + str(delta_loss) + "\n" ) f.close()
[((72, 6, 72, 34), 'numpy.arange', 'np.arange', ({(72, 16, 72, 33): 'features.shape[0]'}, {}), '(features.shape[0])', True, 'import numpy as np\n'), ((74, 0, 74, 22), 'numpy.random.shuffle', 'np.random.shuffle', ({(74, 18, 74, 21): 'ran'}, {}), '(ran)', True, 'import numpy as np\n'), ((92, 9, 92, 29), 'numpy.arange', 'np.arange', ({(92, 19, 92, 20): '(0)', (92, 21, 92, 24): '(500)', (92, 26, 92, 28): '(10)'}, {}), '(0, 500, 10)', True, 'import numpy as np\n'), ((46, 11, 46, 29), 'scipy.io.loadmat', 'sio.loadmat', ({(46, 23, 46, 28): 'file1'}, {}), '(file1)', True, 'import scipy.io as sio\n'), ((36, 19, 36, 25), 'time.time', 'time', ({}, {}), '()', False, 'from time import time\n'), ((100, 12, 100, 58), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (), '', False, 'from tensorflow import keras\n'), ((102, 12, 102, 57), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (), '', False, 'from tensorflow import keras\n'), ((104, 12, 104, 60), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (), '', False, 'from tensorflow import keras\n'), ((110, 28, 110, 81), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', (), '', True, 'import tensorflow as tf\n'), ((40, 21, 40, 27), 'time.time', 'time', ({}, {}), '()', False, 'from time import time\n')]
aurimas13/Python-stuff
Exercise_8.py
a6e89e9f6088a6ab29da5b57830e4b7750427454
# Solution of Exercise 8 - Exercise_8.py # # Uploaded by Aurimas A. Nausedas on 11/23/20. # Updated by Aurimas A. Nausedas on 11/06/21. formatter = "%r %r %r %r" print formatter % (1, 2, 3, 4) print formatter % ("one", "two", "three", "four") print formatter % (True, False, False, True) print formatter % (formatter, formatter, formatter, formatter) print formatter % ( "I had this thing.", "That you could type up right.", "But it didn't sing.", "So I said goodnight." )
[]
MCFrank16/python-algo
Easy/two-numbers-sum/solution-1.py
dd48f6c5b9f4a941a18fc4620164c807c0e1d35e
# solution 1: Brute Force # time complexity: O(n^2) # space complexity: O(1) def twoNumberSum(arr, n): for i in range(len(arr) - 1): firstNum = arr[i] for j in range(i + 1, len(arr)): secondNum = arr[j] if firstNum + secondNum == n: return [firstNum, secondNum] return [] print(twoNumberSum([3,5,-4,8,11,1,-1,6], 10))
[]
maurizi/cac-tripplanner
python/cac_tripplanner/destinations/migrations/0021_event.py
3f4f1f1edc9be9e52c74eb3e124b6697429a79d6
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-11-28 17:32 from __future__ import unicode_literals import ckeditor.fields import destinations.models from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('destinations', '0020_auto_20170203_1251'), ] operations = [ migrations.CreateModel( name='Event', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('website_url', models.URLField(blank=True, null=True)), ('description', ckeditor.fields.RichTextField()), ('start_date', models.DateTimeField()), ('end_date', models.DateTimeField()), ('image', models.ImageField(help_text=b'The small image. Will be displayed at 310x155.', null=True, upload_to=destinations.models.generate_filename)), ('wide_image', models.ImageField(help_text=b'The large image. Will be displayed at 680x400.', null=True, upload_to=destinations.models.generate_filename)), ('published', models.BooleanField(default=False)), ('priority', models.IntegerField(default=9999)), ('destination', models.ForeignKey(null=True, blank=True, on_delete=django.db.models.deletion.SET_NULL, to='destinations.Destination')), ], options={ 'ordering': ['priority', '-start_date'], }, ), ]
[((21, 23, 21, 112), 'django.db.models.AutoField', 'models.AutoField', (), '', False, 'from django.db import migrations, models\n'), ((22, 25, 22, 56), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import migrations, models\n'), ((23, 32, 23, 70), 'django.db.models.URLField', 'models.URLField', (), '', False, 'from django.db import migrations, models\n'), ((25, 31, 25, 53), 'django.db.models.DateTimeField', 'models.DateTimeField', ({}, {}), '()', False, 'from django.db import migrations, models\n'), ((26, 29, 26, 51), 'django.db.models.DateTimeField', 'models.DateTimeField', ({}, {}), '()', False, 'from django.db import migrations, models\n'), ((27, 26, 27, 164), 'django.db.models.ImageField', 'models.ImageField', (), '', False, 'from django.db import migrations, models\n'), ((28, 31, 28, 169), 'django.db.models.ImageField', 'models.ImageField', (), '', False, 'from django.db import migrations, models\n'), ((29, 30, 29, 64), 'django.db.models.BooleanField', 'models.BooleanField', (), '', False, 'from django.db import migrations, models\n'), ((30, 29, 30, 62), 'django.db.models.IntegerField', 'models.IntegerField', (), '', False, 'from django.db import migrations, models\n'), ((31, 32, 31, 149), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import migrations, models\n')]
elpidakon/CRESCENDDI
data_extraction/scripts/bnf_adr_extraction.py
ab9e65621d331689f4aaeeb08902f29d90b7d1b9
# Kontsioti, Maskell, Dutta & Pirmohamed, A reference set of clinically relevant # adverse drug-drug interactions (2021) # Code to extract single-drug side effect data from the BNF website from bs4 import BeautifulSoup import urllib import os, csv import numpy as np import pandas as pd import re from tqdm import tqdm URL_BEGINNING = 'https://bnf.nice.org.uk/drug/' print('beginning scrape for individual drugs...') # Fetch the HTML containing the full list of APIs. r = urllib.request.urlopen(URL_BEGINNING).read() soup1 = BeautifulSoup(r, 'lxml') # Extract the full URL list. URL_list = [] for s in soup1.find_all('div', {'class': 'span11'}): for ai in s(href=True): temp = URL_BEGINNING + ai['href'] URL_list.append(temp) print(URL_list) # Create an empty dataframe for storing the extracted data for APIs. scraped_API_count = 0 scraped_API = pd.DataFrame(np.nan, index = range(0,160000), columns = ['API', 'AE', 'Frequency'], dtype = str) row_count = 0 # Empty list to store API mappings to their drug class (if applicable). API_to_drugclass = [] # Scrape individual drug (API) side effects. HIGHEST_API_ID = len(URL_list) for id in tqdm(range(0, HIGHEST_API_ID)): # Try to fetch the HTML for each API. try: l = urllib.request.urlopen(URL_list[id]).read() # If the page returns a 404 error, skip this id. except urllib.error.HTTPError as e: if e.getcode() == 404: continue raise # Add one to the count of succesfully scraped products. scraped_API_count += 1 soup2 = BeautifulSoup(l, 'lxml') API = soup2.find('h1', id= '').span.getText() # Extract the relevant information to a dataframe. # In case the API contains a side effect section. if soup2.find('section', {'id':'sideEffects'}): ae_list = soup2.find_all('span', {'class': 'sideEffect'}) for a in ae_list: adv_event = a.getText() scraped_API.at[row_count, 'API'] = API scraped_API.at[row_count,'AE'] = adv_event freq = a.parent.parent.parent.h4.getText() scraped_API.at[row_count, 'Frequency'] = freq row_count += 1 # Check if the drug belongs to a specific drug class. If yes, extract # the drug class name and the link to the corresponding webpage. if soup2.find('section', {'id':'sideEffects'}).find('a', href = re.compile(r'.*/drug-class/.*')): temp = [] temp.append(API) drug_class = soup2.find('a', href = re.compile(r'.*/drug-class/.*')).span.getText() temp.append(drug_class) li = soup2.find('section', {'id':'sideEffects'}).find('a', href = re.compile(r'.*/drug-class/.*'))['href'] drug_class_link = 'https://bnf.nice.org.uk' + str(li) temp.append(drug_class_link) API_to_drugclass.append(temp) # In case the API does not contain a side effect section. else: adv_event = 'NO AEs MENTIONED' scraped_API.at[row_count, 'API'] = API scraped_API.at[row_count,'AE'] = adv_event scraped_API.at[row_count,'Frequency'] = '' row_count += 1 # Remove empty rows from the dataframe that contains the extracted data. scraped_API_dropna = scraped_API[~scraped_API.isin(['n']).any(axis=1)] # Remove spaces at the beginning and at the end of the text fields. scraped_API_dropna['API'] = scraped_API_dropna['API'].str.strip() scraped_API_dropna['AE'] = scraped_API_dropna['AE'].str.strip() scraped_API_dropna['Frequency'] = scraped_API_dropna['Frequency'].str.strip() print('BNF individual side effects succesfully scraped.') print('beginning scrape for drug classes...') # Create a dataframe with drug names, drug classes and related URLs (where applicable). API_class_df = pd.DataFrame(API_to_drugclass, columns = ['API','Drug_Class','Link']) # Create a list with all the links for the drug class webpages. class_links = API_class_df['Link'].unique().tolist() # Scrape drug class side effects. HIGHEST_DRUG_CLASS_ID = len(class_links) scraped_class_count = 0 # Create an empty dataframe for storing the extracted data for drug classes. scraped_class = pd.DataFrame(np.nan, index = range(0,160000), columns = ['Drug_Class', 'AE', 'Frequency'], dtype = str) row_count_2 = 0 for id in tqdm(range(0, HIGHEST_DRUG_CLASS_ID)): # Try to fetch the HTML for each drug class. try: l = urllib.request.urlopen(class_links[id]).read() # If the page returns a 404 error, skip this id. except urllib.error.HTTPError as e: if e.getcode() == 404: continue raise # Add one to the count of succesfully scraped drug classes. scraped_class_count += 1 soup3 = BeautifulSoup(l, 'lxml') # Extract the drug class name. class_name = soup3.find('h1', id= '').span.getText() # Extract the relevant information to a dataframe. class_ae_list = soup3.find_all('span', {'class': 'sideEffect'}) for a in class_ae_list: adv_event = a.getText() scraped_class.at[row_count_2, 'Drug_Class'] = class_name scraped_class.at[row_count_2,'AE'] = adv_event freq = a.parent.parent.parent.h4.getText() scraped_class.at[row_count_2, 'Frequency'] = freq row_count_2 += 1 # Remove empty rows from the dataframe that contains the extracted data. scraped_class_dropna = scraped_class[~scraped_class.isin(['n']).any(axis=1)] # Remove spaces at the beginning and at the end of the text fields. scraped_class_dropna['Drug_Class'] = scraped_class_dropna['Drug_Class'].str.strip() scraped_class_dropna['AE'] = scraped_class_dropna['AE'].str.strip() scraped_class_dropna['Frequency'] = scraped_class_dropna['Frequency'].str.strip() print('BNF drug class side effects succesfully scraped.') print('combine extracted data...') ## Combine both tables by adding drug class side effects to the individual ## ingredients of each drug class. # Create a dictionary that contains all drug classes as keys and side effects # with associated frequencies as values. AEs_by_class_dict = scraped_class_dropna.groupby('Drug_Class')[['AE', 'Frequency']].apply(lambda g: list(map(tuple, g.values.tolist()))).to_dict() # Remove URL column API_class_df.drop(columns = 'Link', inplace = True) # Create a dataframe with drug class as the index of APIs (if available) # and add their drug class side effects and associated frequencies. API_class_df['Drug_Class'] = API_class_df['Drug_Class'].str.strip() API_class_df.set_index('Drug_Class', inplace = True) API_class_df['AE_freq_tuple'] = API_class_df.index.to_series().map(AEs_by_class_dict) API_class_df.reset_index(inplace=True) # Create a new dataframe to store drug class side effect data for each API. AEs_from_class_df = API_class_df.explode('AE_freq_tuple').reset_index(drop=True) AEs_from_class_df[['AE', 'Frequency']] = pd.DataFrame(AEs_from_class_df['AE_freq_tuple'].tolist(), index = AEs_from_class_df.index) AEs_from_class_df['from_drug_class'] = 'Yes' AEs_from_class_df.drop(columns = ['AE_freq_tuple','Drug_Class'], inplace = True) # Fill NAs in Frequency column if no side effects are mentioned. scraped_API_dropna.loc[scraped_API_dropna.AE == 'NO AEs MENTIONED', 'Frequency'] = 'N/A' # Fill NAs in drug class indicator if no side effects are mentioned. Otherwise, put 'No'. scraped_API_dropna['from_drug_class'] = np.where(scraped_API_dropna['AE'] == 'NO AEs MENTIONED', 'N/A', 'No') # Concatenate the two dataframes to get a final one. final_df = pd.concat([scraped_API_dropna, AEs_from_class_df]) # Remove any rows that do not contain side effects. final_df = final_df[final_df.AE != 'NO AEs MENTIONED'] # Convert dataframe to lowercase. final_df = final_df.apply(lambda x: x.astype(str).str.lower()) # Sort alphabetically. final_df = final_df.sort_values(by=['API', 'from_drug_class']) # Remove any duplicates. final_df.drop_duplicates(subset = ['API', 'AE', 'Frequency'], keep = 'first', inplace = True) # Rename columns. final_df.columns = ['Drug_name', 'AE', 'Frequency', 'from_drug_class'] FILE_NAME = 'data_extraction/output/bnf_single_data.csv' print('saving to file...') # Save the dataset to a csv file. final_df.to_csv(FILE_NAME, index=False, encoding = "utf-8")
[((19, 8, 19, 32), 'bs4.BeautifulSoup', 'BeautifulSoup', ({(19, 22, 19, 23): 'r', (19, 25, 19, 31): '"""lxml"""'}, {}), "(r, 'lxml')", False, 'from bs4 import BeautifulSoup\n'), ((98, 15, 98, 84), 'pandas.DataFrame', 'pd.DataFrame', (), '', True, 'import pandas as pd\n'), ((174, 40, 174, 109), 'numpy.where', 'np.where', ({(174, 49, 174, 95): "scraped_API_dropna['AE'] == 'NO AEs MENTIONED'", (174, 97, 174, 102): '"""N/A"""', (174, 104, 174, 108): '"""No"""'}, {}), "(scraped_API_dropna['AE'] == 'NO AEs MENTIONED', 'N/A', 'No')", True, 'import numpy as np\n'), ((177, 11, 177, 61), 'pandas.concat', 'pd.concat', ({(177, 21, 177, 60): '[scraped_API_dropna, AEs_from_class_df]'}, {}), '([scraped_API_dropna, AEs_from_class_df])', True, 'import pandas as pd\n'), ((54, 12, 54, 36), 'bs4.BeautifulSoup', 'BeautifulSoup', ({(54, 26, 54, 27): 'l', (54, 29, 54, 35): '"""lxml"""'}, {}), "(l, 'lxml')", False, 'from bs4 import BeautifulSoup\n'), ((125, 12, 125, 36), 'bs4.BeautifulSoup', 'BeautifulSoup', ({(125, 26, 125, 27): 'l', (125, 29, 125, 35): '"""lxml"""'}, {}), "(l, 'lxml')", False, 'from bs4 import BeautifulSoup\n'), ((18, 4, 18, 41), 'urllib.request.urlopen', 'urllib.request.urlopen', ({(18, 27, 18, 40): 'URL_BEGINNING'}, {}), '(URL_BEGINNING)', False, 'import urllib\n'), ((44, 12, 44, 48), 'urllib.request.urlopen', 'urllib.request.urlopen', ({(44, 35, 44, 47): 'URL_list[id]'}, {}), '(URL_list[id])', False, 'import urllib\n'), ((69, 72, 69, 103), 're.compile', 're.compile', ({(69, 83, 69, 102): '""".*/drug-class/.*"""'}, {}), "('.*/drug-class/.*')", False, 'import re\n'), ((115, 12, 115, 51), 'urllib.request.urlopen', 'urllib.request.urlopen', ({(115, 35, 115, 50): 'class_links[id]'}, {}), '(class_links[id])', False, 'import urllib\n'), ((74, 78, 74, 109), 're.compile', 're.compile', ({(74, 89, 74, 108): '""".*/drug-class/.*"""'}, {}), "('.*/drug-class/.*')", False, 'import re\n'), ((72, 48, 72, 79), 're.compile', 're.compile', ({(72, 59, 72, 78): '""".*/drug-class/.*"""'}, {}), "('.*/drug-class/.*')", False, 'import re\n')]
nicoknoll/howimetcorona
core/forms.py
c55198118b2c31ee8b76c023b5a9fc4454cc1e08
from django import forms class BaseFileForm(forms.Form): # we try to minify the file to only submit the data points_file = forms.FileField( required=False, widget=forms.FileInput(attrs={'required': 'required'}), label="Location History File (.json)" ) points_data = forms.CharField(widget=forms.HiddenInput(), required=False) def clean(self): points_file = self.cleaned_data.get('points_file') points_data = self.cleaned_data.get('points_data') if not points_file and not points_data: raise forms.ValidationError({'points_file': 'File is required.'}) return self.cleaned_data class ReportForm(BaseFileForm): symptoms_at = forms.DateField(widget=forms.TextInput(attrs={ 'placeholder': 'YYYY-MM-DD', 'pattern': '[0-9]{4}-[0-9]{1,2}-[0-9]{1,2}', 'title': 'YYYY-MM-DD' })) is_verified = forms.BooleanField(required=False) class CheckForm(BaseFileForm): pass class DeleteForm(forms.Form): delete_token = forms.CharField(label="Delete token")
[((29, 18, 29, 52), 'django.forms.BooleanField', 'forms.BooleanField', (), '', False, 'from django import forms\n'), ((37, 19, 37, 56), 'django.forms.CharField', 'forms.CharField', (), '', False, 'from django import forms\n'), ((8, 15, 8, 62), 'django.forms.FileInput', 'forms.FileInput', (), '', False, 'from django import forms\n'), ((11, 41, 11, 60), 'django.forms.HiddenInput', 'forms.HiddenInput', ({}, {}), '()', False, 'from django import forms\n'), ((18, 18, 18, 77), 'django.forms.ValidationError', 'forms.ValidationError', ({(18, 40, 18, 76): "{'points_file': 'File is required.'}"}, {}), "({'points_file': 'File is required.'})", False, 'from django import forms\n'), ((24, 41, 28, 6), 'django.forms.TextInput', 'forms.TextInput', (), '', False, 'from django import forms\n')]
autiwg/bartender
bartender/drinks/generators.py
1c26aefb777a01ce527745c543e60b11a972fe5d
from django.utils import timezone from django.utils.text import slugify def generate_billed_document_path(instance, filename): cur_time = timezone.now() return f"{cur_time.strftime('%Y/%m')}/{slugify(instance.name)}-{cur_time.strftime('%d.%m.%Y %H:%M')}.csv"
[((6, 15, 6, 29), 'django.utils.timezone.now', 'timezone.now', ({}, {}), '()', False, 'from django.utils import timezone\n'), ((8, 43, 8, 65), 'django.utils.text.slugify', 'slugify', ({(8, 51, 8, 64): 'instance.name'}, {}), '(instance.name)', False, 'from django.utils.text import slugify\n')]
AMReX-Astro/wdmerger
papers/wdmerger_I/plots/sponge.py
9f575efacc8d373b6d2961f731e30bf59ee15ffd
# This Python program is used to create a plot displaying the sponge # function we use in the CASTRO hydrodynamics for the wdmerger problem. import numpy as np import matplotlib.pyplot as plt def sponge(r): sp rs = 0.75 rt = 0.85 r = np.linspace(0.0, 1.0, 1000) f = np.zeros(len(r)) idx = np.where(r < rs) f[idx] = 0.0 idx = np.where(r < rt) idx = np.where(r[idx] >= rs) f[idx] = 0.5 * (1.0 - np.cos(np.pi * (r[idx] - rs) / (rt - rs))) idx = np.where(r >= rt) f[idx] = 1.0 plt.plot(r, 1.0 - f, linewidth=4.0) plt.xlabel('Radius', fontsize=20) plt.ylabel(r'$1 - f_S$', fontsize=20) plt.xlim([0.0, 1.0]) plt.ylim([-0.05, 1.05]) plt.tick_params(labelsize=16) plt.tight_layout() plt.savefig('sponge.eps')
[((13, 4, 13, 31), 'numpy.linspace', 'np.linspace', ({(13, 16, 13, 19): '0.0', (13, 21, 13, 24): '1.0', (13, 26, 13, 30): '1000'}, {}), '(0.0, 1.0, 1000)', True, 'import numpy as np\n'), ((16, 6, 16, 22), 'numpy.where', 'np.where', ({(16, 15, 16, 21): 'r < rs'}, {}), '(r < rs)', True, 'import numpy as np\n'), ((19, 6, 19, 22), 'numpy.where', 'np.where', ({(19, 15, 19, 21): 'r < rt'}, {}), '(r < rt)', True, 'import numpy as np\n'), ((20, 6, 20, 28), 'numpy.where', 'np.where', ({(20, 15, 20, 27): 'r[idx] >= rs'}, {}), '(r[idx] >= rs)', True, 'import numpy as np\n'), ((23, 6, 23, 23), 'numpy.where', 'np.where', ({(23, 15, 23, 22): 'r >= rt'}, {}), '(r >= rt)', True, 'import numpy as np\n'), ((26, 0, 26, 35), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((27, 0, 27, 33), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (), '', True, 'import matplotlib.pyplot as plt\n'), ((28, 0, 28, 37), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (), '', True, 'import matplotlib.pyplot as plt\n'), ((30, 0, 30, 20), 'matplotlib.pyplot.xlim', 'plt.xlim', ({(30, 9, 30, 19): '[0.0, 1.0]'}, {}), '([0.0, 1.0])', True, 'import matplotlib.pyplot as plt\n'), ((31, 0, 31, 23), 'matplotlib.pyplot.ylim', 'plt.ylim', ({(31, 9, 31, 22): '[-0.05, 1.05]'}, {}), '([-0.05, 1.05])', True, 'import matplotlib.pyplot as plt\n'), ((33, 0, 33, 29), 'matplotlib.pyplot.tick_params', 'plt.tick_params', (), '', True, 'import matplotlib.pyplot as plt\n'), ((35, 0, 35, 18), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((37, 0, 37, 25), 'matplotlib.pyplot.savefig', 'plt.savefig', ({(37, 12, 37, 24): '"""sponge.eps"""'}, {}), "('sponge.eps')", True, 'import matplotlib.pyplot as plt\n'), ((21, 22, 21, 63), 'numpy.cos', 'np.cos', ({(21, 29, 21, 62): '(np.pi * (r[idx] - rs) / (rt - rs))'}, {}), '(np.pi * (r[idx] - rs) / (rt - rs))', True, 'import numpy as np\n')]
JenFuChen/NKUST
Python/110-1/Midterm Additional HW/005.py
bd80a449eddfdaf75709379d2e904ff70d409666
# 005 印出菱形 while(1): level = int(input()) if(level <= 0): break L = 2*level-1 mid = int((L - 1) / 2) inspa = mid * 2 - 1 for i in range(L): spa = level - i - 1 if spa >= 0: print(" " * spa, end='') print('*', end='') if spa < 0: spa = -spa print(" " * spa, end='') print('*', end='') if(i > 0 and i <= mid): for j in range(i*2-1): print(" ", end='') print('*', end='') if(i > 0 and i > mid and i != L-1): inspa = inspa - 2 for j in range(inspa): print(" ", end='') print('*', end='') print()
[]
davisidarta/dynamo-release
dynamo/plot/pseudotime.py
0dbd769f52ea07f3cdaa8fb31022ceb89938c382
import numpy as np from ..tools.utils import update_dict from .utils import save_fig def plot_direct_graph(adata, layout=None, figsize=[6, 4], save_show_or_return='show', save_kwargs={}, ): df_mat = adata.uns["df_mat"] import matplotlib.pyplot as plt import networkx as nx edge_color = "gray" G = nx.from_pandas_edgelist( df_mat, source="source", target="target", edge_attr="weight", create_using=nx.DiGraph(), ) G.nodes() W = [] for n, nbrs in G.adj.items(): for nbr, eattr in nbrs.items(): W.append(eattr["weight"]) options = { "width": 300, "arrowstyle": "-|>", "arrowsize": 1000, } plt.figure(figsize=figsize) if layout is None: # pos : dictionary, optional # A dictionary with nodes as keys and positions as values. # If not specified a spring layout positioning will be computed. # See :py:mod:`networkx.drawing.layout` for functions that # compute node positions. g = nx.draw( G, with_labels=True, node_color="skyblue", node_size=100, edge_color=edge_color, width=W / np.max(W) * 5, edge_cmap=plt.cm.Blues, options=options, ) else: raise Exception("layout", layout, " is not supported.") if save_show_or_return == "save": s_kwargs = {"path": None, "prefix": 'plot_direct_graph', "dpi": None, "ext": 'pdf', "transparent": True, "close": True, "verbose": True} s_kwargs = update_dict(s_kwargs, save_kwargs) save_fig(**s_kwargs) elif save_show_or_return == "show": plt.tight_layout() plt.show() elif save_show_or_return == "return": return g
[((38, 4, 38, 31), 'matplotlib.pyplot.figure', 'plt.figure', (), '', True, 'import matplotlib.pyplot as plt\n'), ((24, 21, 24, 33), 'networkx.DiGraph', 'nx.DiGraph', ({}, {}), '()', True, 'import networkx as nx\n'), ((66, 8, 66, 26), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((67, 8, 67, 18), 'matplotlib.pyplot.show', 'plt.show', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((52, 22, 52, 31), 'numpy.max', 'np.max', ({(52, 29, 52, 30): 'W'}, {}), '(W)', True, 'import numpy as np\n')]
joshualyguessennd/ocean.py
ocean_lib/web3_internal/utils.py
23274698df4aae078d53b12d768c721af16f6e80
# Copyright 2018 Ocean Protocol Foundation # SPDX-License-Identifier: Apache-2.0 import json import logging import os from collections import namedtuple import eth_account import eth_keys import eth_utils from eth_keys import KeyAPI from eth_utils import big_endian_to_int from ocean_lib.web3_internal.web3_provider import Web3Provider from web3 import Web3 Signature = namedtuple("Signature", ("v", "r", "s")) logger = logging.getLogger(__name__) def generate_multi_value_hash(types, values): """ Return the hash of the given list of values. This is equivalent to packing and hashing values in a solidity smart contract hence the use of `soliditySha3`. :param types: list of solidity types expressed as strings :param values: list of values matching the `types` list :return: bytes """ assert len(types) == len(values) return Web3.soliditySha3(types, values) def prepare_prefixed_hash(msg_hash): """ :param msg_hash: :return: """ return generate_multi_value_hash( ["string", "bytes32"], ["\x19Ethereum Signed Message:\n32", msg_hash] ) def add_ethereum_prefix_and_hash_msg(text): """ This method of adding the ethereum prefix seems to be used in web3.personal.sign/ecRecover. :param text: str any str to be signed / used in recovering address from a signature :return: hash of prefixed text according to the recommended ethereum prefix """ prefixed_msg = f"\x19Ethereum Signed Message:\n{len(text)}{text}" return Web3.sha3(text=prefixed_msg) def get_public_key_from_address(web3, account): """ :param web3: :param account: :return: """ _hash = web3.sha3(text="verify signature.") signature = web3.personal.sign(_hash, account.address, account.password) signature = split_signature(web3, web3.toBytes(hexstr=signature)) signature_vrs = Signature( signature.v % 27, big_endian_to_int(signature.r), big_endian_to_int(signature.s) ) prefixed_hash = prepare_prefixed_hash(_hash) pub_key = KeyAPI.PublicKey.recover_from_msg_hash( prefixed_hash, KeyAPI.Signature(vrs=signature_vrs) ) assert ( pub_key.to_checksum_address() == account.address ), "recovered address does not match signing address." return pub_key def to_32byte_hex(web3, val): """ :param web3: :param val: :return: """ return web3.toBytes(val).rjust(32, b"\0") def split_signature(web3, signature): """ :param web3: :param signature: signed message hash, hex str :return: """ assert len(signature) == 65, ( f"invalid signature, " f"expecting bytes of length 65, got {len(signature)}" ) v = web3.toInt(signature[-1]) r = to_32byte_hex(web3, int.from_bytes(signature[:32], "big")) s = to_32byte_hex(web3, int.from_bytes(signature[32:64], "big")) if v != 27 and v != 28: v = 27 + v % 2 return Signature(v, r, s) def get_wallet(index): name = "PARITY_ADDRESS" if not index else f"PARITY_ADDRESS{index}" pswrd_name = "PARITY_PASSWORD" if not index else f"PARITY_PASSWORD{index}" key_name = "PARITY_KEY" if not index else f"PARITY_KEY{index}" encrypted_key_name = ( "PARITY_ENCRYPTED_KEY" if not index else f"PARITY_ENCRYPTED_KEY{index}" ) keyfile_name = "PARITY_KEYFILE" if not index else f"PARITY_KEYFILE{index}" address = os.getenv(name) if not address: return None pswrd = os.getenv(pswrd_name) key = os.getenv(key_name) encr_key = os.getenv(encrypted_key_name) key_file = os.getenv(keyfile_name) if key_file and not encr_key: with open(key_file) as _file: encr_key = json.loads(_file.read()) from ocean_lib.web3_internal.wallet import Wallet return Wallet( Web3Provider.get_web3(), private_key=key, encrypted_key=encr_key, address=Web3.toChecksumAddress(address), password=pswrd, ) def privateKeyToAddress(private_key: str) -> str: return eth_account.Account().privateKeyToAccount(private_key).address def privateKeyToPublicKey(private_key: str): private_key_bytes = eth_utils.decode_hex(private_key) private_key_object = eth_keys.keys.PrivateKey(private_key_bytes) return private_key_object.public_key
[((16, 12, 16, 52), 'collections.namedtuple', 'namedtuple', ({(16, 23, 16, 34): '"""Signature"""', (16, 36, 16, 51): "('v', 'r', 's')"}, {}), "('Signature', ('v', 'r', 's'))", False, 'from collections import namedtuple\n'), ((18, 9, 18, 36), 'logging.getLogger', 'logging.getLogger', ({(18, 27, 18, 35): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((32, 11, 32, 43), 'web3.Web3.soliditySha3', 'Web3.soliditySha3', ({(32, 29, 32, 34): 'types', (32, 36, 32, 42): 'values'}, {}), '(types, values)', False, 'from web3 import Web3\n'), ((54, 11, 54, 39), 'web3.Web3.sha3', 'Web3.sha3', (), '', False, 'from web3 import Web3\n'), ((118, 14, 118, 29), 'os.getenv', 'os.getenv', ({(118, 24, 118, 28): 'name'}, {}), '(name)', False, 'import os\n'), ((122, 12, 122, 33), 'os.getenv', 'os.getenv', ({(122, 22, 122, 32): 'pswrd_name'}, {}), '(pswrd_name)', False, 'import os\n'), ((123, 10, 123, 29), 'os.getenv', 'os.getenv', ({(123, 20, 123, 28): 'key_name'}, {}), '(key_name)', False, 'import os\n'), ((124, 15, 124, 44), 'os.getenv', 'os.getenv', ({(124, 25, 124, 43): 'encrypted_key_name'}, {}), '(encrypted_key_name)', False, 'import os\n'), ((125, 15, 125, 38), 'os.getenv', 'os.getenv', ({(125, 25, 125, 37): 'keyfile_name'}, {}), '(keyfile_name)', False, 'import os\n'), ((146, 24, 146, 57), 'eth_utils.decode_hex', 'eth_utils.decode_hex', ({(146, 45, 146, 56): 'private_key'}, {}), '(private_key)', False, 'import eth_utils\n'), ((147, 25, 147, 68), 'eth_keys.keys.PrivateKey', 'eth_keys.keys.PrivateKey', ({(147, 50, 147, 67): 'private_key_bytes'}, {}), '(private_key_bytes)', False, 'import eth_keys\n'), ((68, 26, 68, 56), 'eth_utils.big_endian_to_int', 'big_endian_to_int', ({(68, 44, 68, 55): 'signature.r'}, {}), '(signature.r)', False, 'from eth_utils import big_endian_to_int\n'), ((68, 58, 68, 88), 'eth_utils.big_endian_to_int', 'big_endian_to_int', ({(68, 76, 68, 87): 'signature.s'}, {}), '(signature.s)', False, 'from eth_utils import big_endian_to_int\n'), ((72, 23, 72, 58), 'eth_keys.KeyAPI.Signature', 'KeyAPI.Signature', (), '', False, 'from eth_keys import KeyAPI\n'), ((133, 8, 133, 31), 'ocean_lib.web3_internal.web3_provider.Web3Provider.get_web3', 'Web3Provider.get_web3', ({}, {}), '()', False, 'from ocean_lib.web3_internal.web3_provider import Web3Provider\n'), ((136, 16, 136, 47), 'web3.Web3.toChecksumAddress', 'Web3.toChecksumAddress', ({(136, 39, 136, 46): 'address'}, {}), '(address)', False, 'from web3 import Web3\n'), ((142, 11, 142, 32), 'eth_account.Account', 'eth_account.Account', ({}, {}), '()', False, 'import eth_account\n')]
JimmyLamothe/autofront
autofront/__init__.py
d179e54411f5d53046a5fa52b4430e09b01ebaca
import autofront.autofront as autofront import autofront.utilities as utilities initialize = autofront.initialize add = autofront.add run = autofront.run get_display = utilities.get_display
[]
ketsonroberto/PBDO
src/main.py
cdc1c5275bc17753be5c06a216f92391b6f1f1ab
# THIS IS A FILE TO TEST THE CODE. DO NOT USE IT AS PART OF THE CODE. import matplotlib.pyplot as plt import numpy as np from StochasticMechanics import Stochastic from scipy.optimize import minimize from Performance import PerformanceOpt from Hazards import Stationary from Building import * from BuildingProperties import * from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from scipy import optimize freq = np.linspace(0.00001, 20, 500) gamma = np.ones((ndof)) * [0.5] nu = np.ones((ndof)) * [0.5] alpha = np.ones((ndof)) * [1] m = np.ones((ndof)) * [1] c = np.ones((ndof)) * [1] k = np.ones((ndof)) * [200] a = np.ones((ndof)) * [0.8] #0.01 ksi = np.ones((ndof)) * [0.05] # ksi = [0.05, 0.05] im_max = 30 B_max = 1 # S1 = np.ones(ndof) # Ps = Stationary(power_spectrum_object='white_noise', ndof=ndof) # power_spectrum = Ps.power_spectrum_excitation(freq=freq, S0=S1) # Von Karman Ps = Stationary(power_spectrum_object='windpsd', ndof=ndof) power_spectrum, U = Ps.power_spectrum_excitation(u10=6.2371, freq=freq, z=z) # plt.semilogy(freq/(2*np.pi), power_spectrum[:,0]) # plt.show() # columns["area"] = 0.001 # columns.update({"area": 0.001}) ks = [] ms = [] msf = [] #cost = [] nlc = 100 lc = np.linspace(0.05, 2, nlc) # fig, (ax1, ax2, ax3) = plt.subplots(1, 3) # fig.suptitle('Mass and Stiffness') # ax1.plot(lc,ms) # ax1.plot(lc,msf) # ax2.plot(lc,ks) # ax3.plot(ks,cost) # plt.show() columns = update_columns(columns=columns, lx=0.4, ly=0.4) Building = Structure(building, columns, slabs, core, concrete, steel) k_story = Building.stiffness_story() m_story = Building.mass_storey(top_story=False) m_story_f = Building.mass_storey(top_story=True) k = np.ones(ndof) * [k_story] m = np.ones(ndof) * [m_story] m[-1] = m_story_f length = 0.3 size_col = np.ones(ndof) * [length] Sto = Stochastic(power_spectrum=power_spectrum, model='bouc_wen', ndof=ndof, freq=freq) #Opt = PerformanceOpt(power_spectrum=power_spectrum, model='bouc_wen', freq=freq, tol=1e-5, maxiter=100, # design_life=1) # design_life = 50 # total_cost = Opt.objective_function(size_col=size_col, ksi=ksi, im_max=im_max, B_max=B_max, gamma=gamma, nu=nu, # alpha=alpha, a=a) #CostFailure = Costs(building=building, columns=columns, slabs=slabs, core=core, concrete=concrete, # steel=steel, cost=cost) #size_col = np.ones(ndof) * [0.5] #size_col = np.array([1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]) #size_col = np.array([0.1, 0.2, 0.3]) args=[ksi, im_max, B_max, gamma, nu, alpha, a] sizea = 0.1 sizeb = 1 wa = 0.1 wb=100 npar = 10 nw = 10 X = np.zeros((npar * nw, 3 * ndof + 1)) y = np.zeros((npar * nw, 2 * ndof)) ct=0 ct1=0 for kk in range(npar): size_col = sizea+(sizeb-sizea)*np.random.rand(ndof) M, C, K, m, c, k = Sto.get_MCK(size_col=size_col, args=args, columns=columns) for i in range(nw): im = wa + (wb - wa) * np.random.rand(1)[0] idd = 0 for j in np.arange(0, 3 * ndof, 3): X[ct, j] = m[idd] X[ct, j + 1] = c[idd] X[ct, j + 2] = k[idd] idd = idd + 1 X[ct, -1] = im ct = ct + 1 Ps = Stationary(power_spectrum_object='windpsd', ndof=ndof) power_spectrum, ub = Ps.power_spectrum_excitation(u10=im, freq=freq, z=z) Var, Vard = Sto.statistical_linearization(M=M, C=C, K=K, power_sp=power_spectrum, tol=0.01, maxiter=100, gamma=gamma, nu=nu, alpha=alpha, a=a) idd = 0 for j in np.arange(0, 2 * ndof, 2): y[ct1, j] = Var[idd][0] y[ct1, j + 1] = Vard[idd][0] idd = idd + 1 ct1 = ct1 + 1 print(np.shape(y)) from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import (RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct, ConstantKernel) kernels_U = [None, ConstantKernel(1.0, (1e-4, 1e4)) * RBF(1, (1e-4, 1e4)), 1.0 * RationalQuadratic(length_scale=1.0, alpha=0.1), 1.0 * ExpSineSquared(length_scale=1.0, periodicity=1, length_scale_bounds=(1.0e-5, 100.0), periodicity_bounds=(1.0, 10.0)), ConstantKernel(0.1, (0.01, 10.0)) * (DotProduct(sigma_0=1.0, sigma_0_bounds=(0.0, 10.0)) ** 2), 1.0 * Matern(length_scale=1.0, nu=1.5)] gp = GaussianProcessRegressor(kernel=kernels_U[0], n_restarts_optimizer=10, normalize_y=False) gp.fit(X, y) r2 = gp.score(X, y) print(r2) yp = gp.predict(np.array(X[2].reshape(1, -1))) val = X[2] val[-1]=100.0 print(val) yp = gp.predict(val.reshape(1, -1)) print(yp) #print(np.shape(X)) #print(np.shape(y)) #nn_architecture = [ # {"input_dim": 10, "output_dim": 25, "activation": "relu"}, # {"input_dim": 25, "output_dim": 50, "activation": "relu"}, # {"input_dim": 50, "output_dim": 50, "activation": "relu"}, # {"input_dim": 50, "output_dim": 25, "activation": "relu"}, # {"input_dim": 25, "output_dim": 6, "activation": "relu"}, #] #from neural import NeuralNets #from sklearn.model_selection import train_test_split #NN = NeuralNets(nn_architecture) #TEST_SIZE = 0.1 #X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=TEST_SIZE, random_state=132) ##print(X_train) #params_values, cost_history = NN.train(X=np.transpose(X_train), Y=np.transpose(y_train), epochs=1000, # learning_rate=1, verbose=True) """ b0 = np.linspace(0.1, 0.5, 20) cost_f = [] cost_i = [] cost_t = [] mm = [] pp = [] args=[ksi, im_max, B_max, gamma, nu, alpha, a] for i in range(len(b0)): Cf = CostFailure.cost_damage(b=b0[i], col_size=size_col[0], L=columns["height"], ncolumns=columns["quantity"], dry_wall_area=dry_wall_area) Ci = CostFailure.initial_cost_stiffness(col_size=b0[i], par0=25.55133, par1=0.33127) scol = np.array([b0[i], b0[i]]) Ct = Opt.objective_function(size_col=scol, args=args) #mom, phi = Building.compression(col_size=b0[i], L=columns["height"]) cost_f.append(Cf) cost_i.append(Ci) cost_t.append(Ct) fig = plt.figure() plt.plot(b0, cost_t,'-o') plt.show() #fig = plt.figure() #plt.plot(phi, mom,'-o') #plt.show() """ """ b0 = np.linspace(0.05,0.5,5) b1 = np.linspace(0.05,0.5,5) B0, B1 = np.meshgrid(b0, b1) args=[ksi, im_max, B_max, gamma, nu, alpha, a] tc = np.zeros((5, 5)) for i in range(len(b0)): print(i) for j in range(len(b1)): size_col = np.array([b0[i], b1[j]]) resp = Opt.objective_function(size_col=size_col, args=args) tc[i,j] = resp Z = tc.reshape(B0.shape) Z = np.array(Z) nd = np.unravel_index(np.argmin(Z, axis=None), Z.shape) print([B0[nd], B1[nd]]) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') surf = ax.plot_surface(B0, B1, np.log(Z), cmap=plt.cm.get_cmap('plasma'),linewidth=0, antialiased=False) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') fig.colorbar(surf, shrink=0.5, aspect=5) plt.show() """ #size_col = np.ones(ndof) * [0.2] #args=[ksi, im_max, B_max, gamma, nu, alpha, a] ##args = {"ksi": ksi, "im_max": im_max, "B_max": B_max, "gamma": gamma, "nu": nu, "alpha": alpha, "a": a} #bnds = [] #for i in range(ndof): # bnds.append((0.1, 1)) #bnds=tuple(bnds) ###from scipy import optimize ###res = optimize.fmin(Opt.objective_function, x0=size_col) #res = minimize(Opt.objective_function, x0=size_col, args=args, bounds=bnds) ###from scipy.optimize import basinhopping ###minimizer_kwargs = {"method": "BFGS", "args": args} ###ret = basinhopping(Opt.objective_function, x0=size_col, minimizer_kwargs=minimizer_kwargs, niter=200) #print(res) ### Global methods. ###from scipy.optimize import rosen, shgo ###from scipy.optimize import dual_annealing ###ret = dual_annealing(Opt.objective_function, bounds=bnds) ###print((ret.x, ret.fun)) #c = Opt.linear_damping(m=m, k=k, ksi=ksi) #M, C, K = Opt.create_mck(m=m, c=c, k=k, gamma=gamma, nu=nu, alpha=alpha, a=a) #financial_loss_rate = Opt.stochastic_financial_loss(M=M, C=C, K=K, stiff=k, im_max=im_max, # B_max=B_max, size_col=size_col, Nim=1, NB=1, gamma=gamma, nu=nu, # alpha=alpha, a=a)
[((15, 7, 15, 36), 'numpy.linspace', 'np.linspace', ({(15, 19, 15, 26): '1e-05', (15, 28, 15, 30): '20', (15, 32, 15, 35): '500'}, {}), '(1e-05, 20, 500)', True, 'import numpy as np\n'), ((36, 5, 36, 59), 'Hazards.Stationary', 'Stationary', (), '', False, 'from Hazards import Stationary\n'), ((50, 5, 50, 30), 'numpy.linspace', 'np.linspace', ({(50, 17, 50, 21): '0.05', (50, 23, 50, 24): '2', (50, 26, 50, 29): 'nlc'}, {}), '(0.05, 2, nlc)', True, 'import numpy as np\n'), ((74, 6, 74, 87), 'StochasticMechanics.Stochastic', 'Stochastic', (), '', False, 'from StochasticMechanics import Stochastic\n'), ((97, 4, 97, 39), 'numpy.zeros', 'np.zeros', ({(97, 13, 97, 38): '(npar * nw, 3 * ndof + 1)'}, {}), '((npar * nw, 3 * ndof + 1))', True, 'import numpy as np\n'), ((98, 4, 98, 35), 'numpy.zeros', 'np.zeros', ({(98, 13, 98, 34): '(npar * nw, 2 * ndof)'}, {}), '((npar * nw, 2 * ndof))', True, 'import numpy as np\n'), ((151, 5, 151, 94), 'sklearn.gaussian_process.GaussianProcessRegressor', 'GaussianProcessRegressor', (), '', False, 'from sklearn.gaussian_process import GaussianProcessRegressor\n'), ((17, 8, 17, 23), 'numpy.ones', 'np.ones', ({(17, 17, 17, 21): 'ndof'}, {}), '(ndof)', True, 'import numpy as np\n'), ((18, 5, 18, 20), 'numpy.ones', 'np.ones', ({(18, 14, 18, 18): 'ndof'}, {}), '(ndof)', True, 'import numpy as np\n'), ((19, 8, 19, 23), 'numpy.ones', 'np.ones', ({(19, 17, 19, 21): 'ndof'}, {}), '(ndof)', True, 'import numpy as np\n'), ((21, 4, 21, 19), 'numpy.ones', 'np.ones', ({(21, 13, 21, 17): 'ndof'}, {}), '(ndof)', True, 'import numpy as np\n'), ((22, 4, 22, 19), 'numpy.ones', 'np.ones', ({(22, 13, 22, 17): 'ndof'}, {}), '(ndof)', True, 'import numpy as np\n'), ((23, 4, 23, 19), 'numpy.ones', 'np.ones', ({(23, 13, 23, 17): 'ndof'}, {}), '(ndof)', True, 'import numpy as np\n'), ((24, 4, 24, 19), 'numpy.ones', 'np.ones', ({(24, 13, 24, 17): 'ndof'}, {}), '(ndof)', True, 'import numpy as np\n'), ((25, 6, 25, 21), 'numpy.ones', 'np.ones', ({(25, 15, 25, 19): 'ndof'}, {}), '(ndof)', True, 'import numpy as np\n'), ((67, 4, 67, 17), 'numpy.ones', 'np.ones', ({(67, 12, 67, 16): 'ndof'}, {}), '(ndof)', True, 'import numpy as np\n'), ((68, 4, 68, 17), 'numpy.ones', 'np.ones', ({(68, 12, 68, 16): 'ndof'}, {}), '(ndof)', True, 'import numpy as np\n'), ((72, 11, 72, 24), 'numpy.ones', 'np.ones', ({(72, 19, 72, 23): 'ndof'}, {}), '(ndof)', True, 'import numpy as np\n'), ((134, 6, 134, 17), 'numpy.shape', 'np.shape', ({(134, 15, 134, 16): 'y'}, {}), '(y)', True, 'import numpy as np\n'), ((110, 17, 110, 42), 'numpy.arange', 'np.arange', ({(110, 27, 110, 28): '(0)', (110, 30, 110, 38): '(3 * ndof)', (110, 40, 110, 41): '(3)'}, {}), '(0, 3 * ndof, 3)', True, 'import numpy as np\n'), ((119, 13, 119, 67), 'Hazards.Stationary', 'Stationary', (), '', False, 'from Hazards import Stationary\n'), ((126, 17, 126, 42), 'numpy.arange', 'np.arange', ({(126, 27, 126, 28): '(0)', (126, 30, 126, 38): '(2 * ndof)', (126, 40, 126, 41): '(2)'}, {}), '(0, 2 * ndof, 2)', True, 'import numpy as np\n'), ((142, 13, 142, 45), 'sklearn.gaussian_process.kernels.ConstantKernel', 'ConstantKernel', ({(142, 28, 142, 31): '(1.0)', (142, 33, 142, 44): '(0.0001, 10000.0)'}, {}), '(1.0, (0.0001, 10000.0))', False, 'from sklearn.gaussian_process.kernels import RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct, ConstantKernel\n'), ((142, 48, 142, 67), 'sklearn.gaussian_process.kernels.RBF', 'RBF', ({(142, 52, 142, 53): '(1)', (142, 55, 142, 66): '(0.0001, 10000.0)'}, {}), '(1, (0.0001, 10000.0))', False, 'from sklearn.gaussian_process.kernels import RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct, ConstantKernel\n'), ((143, 17, 143, 63), 'sklearn.gaussian_process.kernels.RationalQuadratic', 'RationalQuadratic', (), '', False, 'from sklearn.gaussian_process.kernels import RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct, ConstantKernel\n'), ((144, 17, 146, 63), 'sklearn.gaussian_process.kernels.ExpSineSquared', 'ExpSineSquared', (), '', False, 'from sklearn.gaussian_process.kernels import RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct, ConstantKernel\n'), ((147, 11, 147, 44), 'sklearn.gaussian_process.kernels.ConstantKernel', 'ConstantKernel', ({(147, 26, 147, 29): '(0.1)', (147, 31, 147, 43): '(0.01, 10.0)'}, {}), '(0.1, (0.01, 10.0))', False, 'from sklearn.gaussian_process.kernels import RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct, ConstantKernel\n'), ((149, 17, 149, 49), 'sklearn.gaussian_process.kernels.Matern', 'Matern', (), '', False, 'from sklearn.gaussian_process.kernels import RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct, ConstantKernel\n'), ((102, 35, 102, 55), 'numpy.random.rand', 'np.random.rand', ({(102, 50, 102, 54): 'ndof'}, {}), '(ndof)', True, 'import numpy as np\n'), ((148, 14, 148, 65), 'sklearn.gaussian_process.kernels.DotProduct', 'DotProduct', (), '', False, 'from sklearn.gaussian_process.kernels import RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct, ConstantKernel\n'), ((107, 30, 107, 47), 'numpy.random.rand', 'np.random.rand', ({(107, 45, 107, 46): '(1)'}, {}), '(1)', True, 'import numpy as np\n')]
erelcan/categorical-embedder
categorical_embedder/embedders/core/aux/custom_object_handler.py
376b8779500af2aa459c879f8e525f2ef25d6b31
from categorical_embedder.embedders.core.aux.custom_layers import get_custom_layer_class from categorical_embedder.embedders.core.aux.loss_factory import get_loss_function def prepare_custom_objects(custom_object_info): custom_objects = {} custom_objects.update(_prepare_custom_layers(custom_object_info["layer_info"])) if not custom_object_info["has_implicit_loss"]: custom_objects.update(_prepare_custom_loss(custom_object_info["loss_info"])) return custom_objects def _prepare_custom_layers(layer_info): custom_layers = {} for layer_name in layer_info: custom_layers[layer_name] = get_custom_layer_class(layer_name) return custom_layers def _prepare_custom_loss(loss_info): return {"loss": get_loss_function(loss_info)}
[((16, 36, 16, 70), 'categorical_embedder.embedders.core.aux.custom_layers.get_custom_layer_class', 'get_custom_layer_class', ({(16, 59, 16, 69): 'layer_name'}, {}), '(layer_name)', False, 'from categorical_embedder.embedders.core.aux.custom_layers import get_custom_layer_class\n'), ((21, 20, 21, 48), 'categorical_embedder.embedders.core.aux.loss_factory.get_loss_function', 'get_loss_function', ({(21, 38, 21, 47): 'loss_info'}, {}), '(loss_info)', False, 'from categorical_embedder.embedders.core.aux.loss_factory import get_loss_function\n')]
charliebr30/osprofiler
osprofiler/cmd/shell.py
cffca4e29e373e3f09f2ffdd458761183a851569
# Copyright 2014 Mirantis Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Command-line interface to the OpenStack Profiler. """ import argparse import inspect import sys from oslo_config import cfg import osprofiler from osprofiler.cmd import cliutils from osprofiler.cmd import commands from osprofiler import exc from osprofiler import opts class OSProfilerShell(object): def __init__(self, argv): args = self._get_base_parser().parse_args(argv) opts.set_defaults(cfg.CONF) if not (args.os_auth_token and args.ceilometer_url): if not args.os_username: raise exc.CommandError( "You must provide a username via either --os-username or " "via env[OS_USERNAME]") if not args.os_password: raise exc.CommandError( "You must provide a password via either --os-password or " "via env[OS_PASSWORD]") if self._no_project_and_domain_set(args): # steer users towards Keystone V3 API raise exc.CommandError( "You must provide a project_id via either --os-project-id " "or via env[OS_PROJECT_ID] and a domain_name via either " "--os-user-domain-name or via env[OS_USER_DOMAIN_NAME] or " "a domain_id via either --os-user-domain-id or via " "env[OS_USER_DOMAIN_ID]") if not args.os_auth_url: raise exc.CommandError( "You must provide an auth url via either --os-auth-url or " "via env[OS_AUTH_URL]") args.func(args) def _get_base_parser(self): parser = argparse.ArgumentParser( prog="osprofiler", description=__doc__.strip(), add_help=True ) parser.add_argument("-v", "--version", action="version", version=osprofiler.__version__) self._append_ceilometer_args(parser) self._append_identity_args(parser) self._append_subcommands(parser) return parser def _append_ceilometer_args(self, parent_parser): parser = parent_parser.add_argument_group("ceilometer") parser.add_argument( "--ceilometer-url", default=cliutils.env("CEILOMETER_URL"), help="Defaults to env[CEILOMETER_URL].") parser.add_argument( "--ceilometer-api-version", default=cliutils.env("CEILOMETER_API_VERSION", default="2"), help="Defaults to env[CEILOMETER_API_VERSION] or 2.") def _append_identity_args(self, parent_parser): # FIXME(fabgia): identity related parameters should be passed by the # Keystone client itself to avoid constant update in all the services # clients. When this fix is merged this method can be made obsolete. # Bug: https://bugs.launchpad.net/python-keystoneclient/+bug/1332337 parser = parent_parser.add_argument_group("identity") parser.add_argument("-k", "--insecure", default=False, action="store_true", help="Explicitly allow osprofiler to " "perform \"insecure\" SSL (https) requests. " "The server's certificate will " "not be verified against any certificate " "authorities. This option should be used with " "caution.") # User related options parser.add_argument("--os-username", default=cliutils.env("OS_USERNAME"), help="Defaults to env[OS_USERNAME].") parser.add_argument("--os-user-id", default=cliutils.env("OS_USER_ID"), help="Defaults to env[OS_USER_ID].") parser.add_argument("--os-password", default=cliutils.env("OS_PASSWORD"), help="Defaults to env[OS_PASSWORD].") # Domain related options parser.add_argument("--os-user-domain-id", default=cliutils.env("OS_USER_DOMAIN_ID"), help="Defaults to env[OS_USER_DOMAIN_ID].") parser.add_argument("--os-user-domain-name", default=cliutils.env("OS_USER_DOMAIN_NAME"), help="Defaults to env[OS_USER_DOMAIN_NAME].") parser.add_argument("--os-project-domain-id", default=cliutils.env("OS_PROJECT_DOMAIN_ID"), help="Defaults to env[OS_PROJECT_DOMAIN_ID].") parser.add_argument("--os-project-domain-name", default=cliutils.env("OS_PROJECT_DOMAIN_NAME"), help="Defaults to env[OS_PROJECT_DOMAIN_NAME].") # Project V3 or Tenant V2 related options parser.add_argument("--os-project-id", default=cliutils.env("OS_PROJECT_ID"), help="Another way to specify tenant ID. " "This option is mutually exclusive with " " --os-tenant-id. " "Defaults to env[OS_PROJECT_ID].") parser.add_argument("--os-project-name", default=cliutils.env("OS_PROJECT_NAME"), help="Another way to specify tenant name. " "This option is mutually exclusive with " " --os-tenant-name. " "Defaults to env[OS_PROJECT_NAME].") parser.add_argument("--os-tenant-id", default=cliutils.env("OS_TENANT_ID"), help="This option is mutually exclusive with " " --os-project-id. " "Defaults to env[OS_PROJECT_ID].") parser.add_argument("--os-tenant-name", default=cliutils.env("OS_TENANT_NAME"), help="Defaults to env[OS_TENANT_NAME].") # Auth related options parser.add_argument("--os-auth-url", default=cliutils.env("OS_AUTH_URL"), help="Defaults to env[OS_AUTH_URL].") parser.add_argument("--os-auth-token", default=cliutils.env("OS_AUTH_TOKEN"), help="Defaults to env[OS_AUTH_TOKEN].") parser.add_argument("--os-cacert", metavar="<ca-certificate-file>", dest="os_cacert", default=cliutils.env("OS_CACERT"), help="Path of CA TLS certificate(s) used to verify" " the remote server\"s certificate. Without this " "option ceilometer looks for the default system CA" " certificates.") parser.add_argument("--os-cert", help="Path of certificate file to use in SSL " "connection. This file can optionally be " "prepended with the private key.") parser.add_argument("--os-key", help="Path of client key to use in SSL " "connection. This option is not necessary " "if your key is prepended to your cert file.") # Service Catalog related options parser.add_argument("--os-service-type", default=cliutils.env("OS_SERVICE_TYPE"), help="Defaults to env[OS_SERVICE_TYPE].") parser.add_argument("--os-endpoint-type", default=cliutils.env("OS_ENDPOINT_TYPE"), help="Defaults to env[OS_ENDPOINT_TYPE].") parser.add_argument("--os-region-name", default=cliutils.env("OS_REGION_NAME"), help="Defaults to env[OS_REGION_NAME].") def _append_subcommands(self, parent_parser): subcommands = parent_parser.add_subparsers(help="<subcommands>") for group_cls in commands.BaseCommand.__subclasses__(): group_parser = subcommands.add_parser(group_cls.group_name) subcommand_parser = group_parser.add_subparsers() for name, callback in inspect.getmembers( group_cls(), predicate=inspect.ismethod): command = name.replace("_", "-") desc = callback.__doc__ or "" help_message = desc.strip().split("\n")[0] arguments = getattr(callback, "arguments", []) command_parser = subcommand_parser.add_parser( command, help=help_message, description=desc) for (args, kwargs) in arguments: command_parser.add_argument(*args, **kwargs) command_parser.set_defaults(func=callback) def _no_project_and_domain_set(self, args): if not (args.os_project_id or (args.os_project_name and (args.os_user_domain_name or args.os_user_domain_id)) or (args.os_tenant_id or args.os_tenant_name)): return True else: return False def main(args=None): if args is None: args = sys.argv[1:] try: OSProfilerShell(args) except exc.CommandError as e: print(e.message) return 1 if __name__ == "__main__": main()
[((38, 8, 38, 35), 'osprofiler.opts.set_defaults', 'opts.set_defaults', ({(38, 26, 38, 34): 'cfg.CONF'}, {}), '(cfg.CONF)', False, 'from osprofiler import opts\n'), ((208, 25, 208, 62), 'osprofiler.cmd.commands.BaseCommand.__subclasses__', 'commands.BaseCommand.__subclasses__', ({}, {}), '()', False, 'from osprofiler.cmd import commands\n'), ((42, 22, 44, 43), 'osprofiler.exc.CommandError', 'exc.CommandError', ({(43, 20, 44, 42): '"""You must provide a username via either --os-username or via env[OS_USERNAME]"""'}, {}), "(\n 'You must provide a username via either --os-username or via env[OS_USERNAME]'\n )", False, 'from osprofiler import exc\n'), ((47, 22, 49, 43), 'osprofiler.exc.CommandError', 'exc.CommandError', ({(48, 20, 49, 42): '"""You must provide a password via either --os-password or via env[OS_PASSWORD]"""'}, {}), "(\n 'You must provide a password via either --os-password or via env[OS_PASSWORD]'\n )", False, 'from osprofiler import exc\n'), ((53, 22, 58, 45), 'osprofiler.exc.CommandError', 'exc.CommandError', ({(54, 20, 58, 44): '"""You must provide a project_id via either --os-project-id or via env[OS_PROJECT_ID] and a domain_name via either --os-user-domain-name or via env[OS_USER_DOMAIN_NAME] or a domain_id via either --os-user-domain-id or via env[OS_USER_DOMAIN_ID]"""'}, {}), "(\n 'You must provide a project_id via either --os-project-id or via env[OS_PROJECT_ID] and a domain_name via either --os-user-domain-name or via env[OS_USER_DOMAIN_NAME] or a domain_id via either --os-user-domain-id or via env[OS_USER_DOMAIN_ID]'\n )", False, 'from osprofiler import exc\n'), ((61, 22, 63, 43), 'osprofiler.exc.CommandError', 'exc.CommandError', ({(62, 20, 63, 42): '"""You must provide an auth url via either --os-auth-url or via env[OS_AUTH_URL]"""'}, {}), "(\n 'You must provide an auth url via either --os-auth-url or via env[OS_AUTH_URL]'\n )", False, 'from osprofiler import exc\n'), ((87, 40, 87, 70), 'osprofiler.cmd.cliutils.env', 'cliutils.env', ({(87, 53, 87, 69): '"""CEILOMETER_URL"""'}, {}), "('CEILOMETER_URL')", False, 'from osprofiler.cmd import cliutils\n'), ((91, 20, 91, 71), 'osprofiler.cmd.cliutils.env', 'cliutils.env', (), '', False, 'from osprofiler.cmd import cliutils\n'), ((112, 36, 112, 63), 'osprofiler.cmd.cliutils.env', 'cliutils.env', ({(112, 49, 112, 62): '"""OS_USERNAME"""'}, {}), "('OS_USERNAME')", False, 'from osprofiler.cmd import cliutils\n'), ((116, 36, 116, 62), 'osprofiler.cmd.cliutils.env', 'cliutils.env', ({(116, 49, 116, 61): '"""OS_USER_ID"""'}, {}), "('OS_USER_ID')", False, 'from osprofiler.cmd import cliutils\n'), ((120, 36, 120, 63), 'osprofiler.cmd.cliutils.env', 'cliutils.env', ({(120, 49, 120, 62): '"""OS_PASSWORD"""'}, {}), "('OS_PASSWORD')", False, 'from osprofiler.cmd import cliutils\n'), ((125, 36, 125, 69), 'osprofiler.cmd.cliutils.env', 'cliutils.env', ({(125, 49, 125, 68): '"""OS_USER_DOMAIN_ID"""'}, {}), "('OS_USER_DOMAIN_ID')", False, 'from osprofiler.cmd import cliutils\n'), ((129, 36, 129, 71), 'osprofiler.cmd.cliutils.env', 'cliutils.env', ({(129, 49, 129, 70): '"""OS_USER_DOMAIN_NAME"""'}, {}), "('OS_USER_DOMAIN_NAME')", False, 'from osprofiler.cmd import cliutils\n'), ((133, 36, 133, 72), 'osprofiler.cmd.cliutils.env', 'cliutils.env', ({(133, 49, 133, 71): '"""OS_PROJECT_DOMAIN_ID"""'}, {}), "('OS_PROJECT_DOMAIN_ID')", False, 'from osprofiler.cmd import cliutils\n'), ((137, 36, 137, 74), 'osprofiler.cmd.cliutils.env', 'cliutils.env', ({(137, 49, 137, 73): '"""OS_PROJECT_DOMAIN_NAME"""'}, {}), "('OS_PROJECT_DOMAIN_NAME')", False, 'from osprofiler.cmd import cliutils\n'), ((142, 36, 142, 65), 'osprofiler.cmd.cliutils.env', 'cliutils.env', ({(142, 49, 142, 64): '"""OS_PROJECT_ID"""'}, {}), "('OS_PROJECT_ID')", False, 'from osprofiler.cmd import cliutils\n'), ((149, 36, 149, 67), 'osprofiler.cmd.cliutils.env', 'cliutils.env', ({(149, 49, 149, 66): '"""OS_PROJECT_NAME"""'}, {}), "('OS_PROJECT_NAME')", False, 'from osprofiler.cmd import cliutils\n'), ((156, 36, 156, 64), 'osprofiler.cmd.cliutils.env', 'cliutils.env', ({(156, 49, 156, 63): '"""OS_TENANT_ID"""'}, {}), "('OS_TENANT_ID')", False, 'from osprofiler.cmd import cliutils\n'), ((162, 36, 162, 66), 'osprofiler.cmd.cliutils.env', 'cliutils.env', ({(162, 49, 162, 65): '"""OS_TENANT_NAME"""'}, {}), "('OS_TENANT_NAME')", False, 'from osprofiler.cmd import cliutils\n'), ((167, 36, 167, 63), 'osprofiler.cmd.cliutils.env', 'cliutils.env', ({(167, 49, 167, 62): '"""OS_AUTH_URL"""'}, {}), "('OS_AUTH_URL')", False, 'from osprofiler.cmd import cliutils\n'), ((171, 36, 171, 65), 'osprofiler.cmd.cliutils.env', 'cliutils.env', ({(171, 49, 171, 64): '"""OS_AUTH_TOKEN"""'}, {}), "('OS_AUTH_TOKEN')", False, 'from osprofiler.cmd import cliutils\n'), ((177, 36, 177, 61), 'osprofiler.cmd.cliutils.env', 'cliutils.env', ({(177, 49, 177, 60): '"""OS_CACERT"""'}, {}), "('OS_CACERT')", False, 'from osprofiler.cmd import cliutils\n'), ((195, 36, 195, 67), 'osprofiler.cmd.cliutils.env', 'cliutils.env', ({(195, 49, 195, 66): '"""OS_SERVICE_TYPE"""'}, {}), "('OS_SERVICE_TYPE')", False, 'from osprofiler.cmd import cliutils\n'), ((199, 36, 199, 68), 'osprofiler.cmd.cliutils.env', 'cliutils.env', ({(199, 49, 199, 67): '"""OS_ENDPOINT_TYPE"""'}, {}), "('OS_ENDPOINT_TYPE')", False, 'from osprofiler.cmd import cliutils\n'), ((203, 36, 203, 66), 'osprofiler.cmd.cliutils.env', 'cliutils.env', ({(203, 49, 203, 65): '"""OS_REGION_NAME"""'}, {}), "('OS_REGION_NAME')", False, 'from osprofiler.cmd import cliutils\n')]
patrickkwang/bmt-lite
bmt/util.py
bf97f6155702a8eb38daf5a45df34b0ce1cb1a4b
"""Utilities.""" from functools import wraps import re from typing import Callable, List, Optional, TypeVar, Union from .data import ( all_classes, all_slots, ) def pascal_to_snake(s: str, sep: str = "_") -> str: """Convert Pascal case to snake case. Assumes that a) all words are either all-lowercase or all-uppercase b) all 1-letter words are lowercase c) there are no adjacent 1-letter words d) there are no adjacent uppercase words Examples: PhenotypicFeature -> phenotypic_feature RNAProduct -> RNA_product FeedACamel -> feed_a_camel Optionally specify `sep` (default "_"). """ # add an underscore before each capital letter underscored = re.sub( r"(?<!^)(?=[A-Z])", sep, s, ) # collapse any adjacent one-letter words collapsed = re.sub( r"(?<![a-zA-Z])[A-Z](?:_[A-Z](?=$|_))+", lambda match: match.group(0).replace("_", ""), underscored, ) # lower-case any words containing only one uppercase letter lowercased = re.sub( r"(?<![A-Z])[A-Z](?![A-Z])", lambda match: match.group(0).lower(), collapsed, ) return lowercased def snake_to_pascal(s: str, sep: str = "_") -> str: """Convert snake case to Pascal case. This is the inverse of pascal_to_snake() when its assumptions are true. Optionally specify `sep` (default "_"). """ return re.sub( fr"(?:^|{sep})([a-zA-Z])", lambda match: match.group(1).upper(), s ) def guess_casing(s: str) -> str: """Guess snake case or Pascal case.""" if "_" in s: return "snake" if any(c.isupper() for c in s): return "pascal" return "snake" def normalize(s: str) -> str: """Normalize string input.""" if s.startswith("biolink:"): s = s[8:] if "_" in s: # it's snake case return s.replace("_", " ") if " " in s: return s return pascal_to_snake(s, " ") T = TypeVar("T") def listify(func: Callable) -> Callable: """Expand function to take list of arguments.""" @wraps(func) def wrapper(arg: Union[T, List[T]], **kwargs) -> Union[T, List[T]]: """Apply function to each element in list.""" if isinstance(arg, list): return [ func(el, **kwargs) for el in arg ] else: return func(arg, **kwargs) return wrapper @listify def format(s: str, case: Optional[str] = None, **kwargs) -> str: """Format space-case string as biolink CURIE.""" if isinstance(case, str) and case.lower() == "pascal": return "biolink:" + snake_to_pascal(s, " ") elif isinstance(case, str) and case.lower() == "snake": return "biolink:" + s.replace(" ", "_") else: return "biolink:" + s def with_formatting(): """Add format conversions to method.""" def decorator(func: Callable) -> Callable: """Generate decorator.""" @wraps(func) def wrapper(self, s: str, *args, formatted=False, **kwargs): """Wrap in format conversions.""" case = guess_casing(s) normalized = normalize(s) output: Union[str, List[str]] = func(self, normalized, *args, **kwargs) if formatted: if normalized in all_classes: output = format(output, case="pascal") elif normalized in all_slots: output = format(output, case="snake") else: output = format(output, case=case) return output return wrapper return decorator
[((84, 4, 84, 16), 'typing.TypeVar', 'TypeVar', ({(84, 12, 84, 15): '"""T"""'}, {}), "('T')", False, 'from typing import Callable, List, Optional, TypeVar, Union\n'), ((28, 18, 32, 5), 're.sub', 're.sub', ({(29, 8, 29, 26): '"""(?<!^)(?=[A-Z])"""', (30, 8, 30, 11): 'sep', (31, 8, 31, 9): 's'}, {}), "('(?<!^)(?=[A-Z])', sep, s)", False, 'import re\n'), ((89, 5, 89, 16), 'functools.wraps', 'wraps', ({(89, 11, 89, 15): 'func'}, {}), '(func)', False, 'from functools import wraps\n'), ((117, 9, 117, 20), 'functools.wraps', 'wraps', ({(117, 15, 117, 19): 'func'}, {}), '(func)', False, 'from functools import wraps\n')]
jlevitt/py-to-json
src/py_to_json/__init__.py
26bb68926f5ada601e965f42980e438c9718be73
# # OMNIVORE CONFIDENTIAL # __________________ # # [2013] - [2019] Omnivore Technologies # All Rights Reserved. # # NOTICE: All information contained herein is, and remains # the property of Omnivore Technologies and its suppliers, # if any. The intellectual and technical concepts contained # herein are proprietary to Omnivore Technologies # and its suppliers and may be covered by U.S. and Foreign Patents, # patents in process, and are protected by trade secret or copyright law. # Dissemination of this information or reproduction of this material # is strictly forbidden unless prior written permission is obtained # from Omnivore Technologies. #
[]
brettkoonce/sktime
sktime/utils/time_series.py
6336247bad0dac8692aa4b911c267f401dea4163
__author__ = ["Markus Löning"] __all__ = [ "compute_relative_to_n_timepoints", "time_series_slope", "fit_trend", "remove_trend", "add_trend" ] import numpy as np from sklearn.utils import check_array from sktime.utils.validation.forecasting import check_time_index def compute_relative_to_n_timepoints(n_timepoints, n="sqrt"): """ Get number of intervals from number of time points for various allowed input arguments. Helpful to compute number of intervals relative to time series length, e.g. using floats or functions. Parameters ---------- n_timepoints : int n : {int, float, str, callable} Returns ------- n_intervals_ : int Computed number of intervals """ # check input: n_timepoints if not np.issubdtype(type(n_timepoints), np.dtype(int).type): raise ValueError( f"`n_timepoints` must be an integer, but found: " f"{type(n_timepoints)}") if not n_timepoints >= 1: raise ValueError( f"`n_timepoints` must be >= 1, but found: {n_timepoints}") # compute number of splits allowed_strings = ["sqrt", "log"] # integer if np.issubdtype(type(n), np.dtype(int).type): if not n <= n_timepoints: raise ValueError( f"If `n_intervals` is an integer, it must be smaller " f"than `n_timepoints`, but found: `n_intervals`={n} " f"and `n_timepoints`={n_timepoints}") if n < 1: raise ValueError(f"If `n_intervals` is an integer, " f"`n_intervals` must be >= 1, but found: {n}") n_intervals_ = n # function elif callable(n): n_intervals_ = n(n_timepoints) # string elif isinstance(n, str): if n not in allowed_strings: raise ValueError( f"If `n_intervals` is a string, `n_intervals` must be " f"in {allowed_strings}, but found: {n}") str_func_map = { "sqrt": np.sqrt, "log": np.log } func = str_func_map[n] n_intervals_ = func(n_timepoints) # float elif isinstance(n, float): if not (0 < n <= 1): raise ValueError( f"If `n_intervals` is a float, `n_intervals` must be > 0 " f"and <= 1, but found: {n}") n_intervals_ = n * n_timepoints else: raise ValueError( f"`n_intervals` must be either one of the allowed string options " f"in " f"{allowed_strings}, an integer or a float number.") # make sure n_intervals is an integer and there is at least one interval n_intervals_ = np.maximum(1, np.int(n_intervals_)) return n_intervals_ def time_series_slope(y): """ Compute slope of time series (y) using ordinary least squares. Parameters ---------- y : array_like Time-series. axis : int Axis along which the time-series slope is computed. Returns ------- slope : float Slope of time-series. """ y = np.asarray(y).ravel() len_series = len(y) if len_series < 2: return 0 else: x = np.arange(len_series) # time index x_mean = (len_series - 1) / 2 # faster than x.mean() return (np.mean(x * y) - x_mean * np.mean(y)) / ( np.mean(x ** 2) - x_mean ** 2) def fit_trend(x, order=0): """Fit linear regression with polynomial terms of given order x : array_like, shape=[n_samples, n_obs] Time series data, each sample is fitted separately order : int The polynomial order of the trend, zero is constant (mean), one is linear trend, two is quadratic trend, and so on. Returns ------- coefs : ndarray, shape=[n_samples, order + 1] Fitted coefficients of polynomial order for each sample, one column means order zero, two columns mean order 1 (linear), three columns mean order 2 (quadratic), etc See Also ------- add_trend remove_trend """ x = check_array(x) if order == 0: coefs = np.mean(x, axis=1).reshape(-1, 1) else: n_obs = x.shape[1] index = np.arange(n_obs) poly_terms = np.vander(index, N=order + 1) # linear least squares fitting using numpy's optimised routine, # assuming samples in columns # coefs = np.linalg.pinv(poly_terms).dot(x.T).T coefs, _, _, _ = np.linalg.lstsq(poly_terms, x.T, rcond=None) # returning fitted coefficients in expected format with samples in rows coefs = coefs.T return coefs def remove_trend(x, coefs, time_index=None): """Remove trend from an array with a trend of given order along axis 0 or 1 Parameters ---------- x : array_like, shape=[n_samples, n_obs] Time series data, each sample is de-trended separately coefs : ndarray, shape=[n_samples, order + 1] Fitted coefficients for each sample, single column means order zero, two columns mean order 1 (linear), three columns mean order 2 (quadratic), etc time_index : array-like, shape=[n_obs], optional (default=None) Time series index for which to add the trend components Returns ------- xt : ndarray The de-trended series is the residual of the linear regression of the data on the trend of given order. See Also -------- fit_trend add_trend References ---------- Adapted from statsmodels (0.9.0), see https://www.statsmodels.org/dev/_modules/statsmodels/tsa/tsatools.html #detrend """ x = check_array(x) # infer order from shape of given coefficients order = coefs.shape[1] - 1 # special case, remove mean if order == 0: xt = x - coefs return xt else: if time_index is None: # if no time index is given, create range index n_obs = x.shape[1] time_index = np.arange(n_obs) else: # validate given time index time_index = check_time_index(time_index) if not len(time_index) == x.shape[1]: raise ValueError( 'Length of passed index does not match length of passed x') poly_terms = np.vander(time_index, N=order + 1) xt = x - np.dot(poly_terms, coefs.T).T return xt def add_trend(x, coefs, time_index=None): """Add trend to array for given fitted coefficients along axis 0 or 1, inverse function to `remove_trend()` Parameters ---------- x : array_like, shape=[n_samples, n_obs] Time series data, each sample is treated separately coefs : array-like, shape=[n_samples, order + 1] fitted coefficients of polynomial order for each sample, one column means order zero, two columns mean order 1 (linear), three columns mean order 2 (quadratic), etc time_index : array-like, shape=[n_obs], optional (default=None) Time series index for which to add the trend components Returns ------- xt : ndarray The series with added trend. See Also ------- fit_trend remove_trend """ x = check_array(x) # infer order from shape of given coefficients order = coefs.shape[1] - 1 # special case, add mean if order == 0: xt = x + coefs else: if time_index is None: n_obs = x.shape[1] time_index = np.arange(n_obs) else: # validate given time index time_index = check_time_index(time_index) if not len(time_index) == x.shape[1]: raise ValueError( 'Length of passed index does not match length of passed x') poly_terms = np.vander(time_index, N=order + 1) xt = x + np.dot(poly_terms, coefs.T).T return xt
[((142, 8, 142, 22), 'sklearn.utils.check_array', 'check_array', ({(142, 20, 142, 21): 'x'}, {}), '(x)', False, 'from sklearn.utils import check_array\n'), ((194, 8, 194, 22), 'sklearn.utils.check_array', 'check_array', ({(194, 20, 194, 21): 'x'}, {}), '(x)', False, 'from sklearn.utils import check_array\n'), ((247, 8, 247, 22), 'sklearn.utils.check_array', 'check_array', ({(247, 20, 247, 21): 'x'}, {}), '(x)', False, 'from sklearn.utils import check_array\n'), ((89, 33, 89, 53), 'numpy.int', 'np.int', ({(89, 40, 89, 52): 'n_intervals_'}, {}), '(n_intervals_)', True, 'import numpy as np\n'), ((115, 12, 115, 33), 'numpy.arange', 'np.arange', ({(115, 22, 115, 32): 'len_series'}, {}), '(len_series)', True, 'import numpy as np\n'), ((149, 16, 149, 32), 'numpy.arange', 'np.arange', ({(149, 26, 149, 31): 'n_obs'}, {}), '(n_obs)', True, 'import numpy as np\n'), ((150, 21, 150, 50), 'numpy.vander', 'np.vander', (), '', True, 'import numpy as np\n'), ((155, 25, 155, 69), 'numpy.linalg.lstsq', 'np.linalg.lstsq', (), '', True, 'import numpy as np\n'), ((216, 21, 216, 55), 'numpy.vander', 'np.vander', (), '', True, 'import numpy as np\n'), ((269, 21, 269, 55), 'numpy.vander', 'np.vander', (), '', True, 'import numpy as np\n'), ((46, 30, 46, 43), 'numpy.dtype', 'np.dtype', ({(46, 39, 46, 42): 'int'}, {}), '(int)', True, 'import numpy as np\n'), ((109, 8, 109, 21), 'numpy.asarray', 'np.asarray', ({(109, 19, 109, 20): 'y'}, {}), '(y)', True, 'import numpy as np\n'), ((208, 25, 208, 41), 'numpy.arange', 'np.arange', ({(208, 35, 208, 40): 'n_obs'}, {}), '(n_obs)', True, 'import numpy as np\n'), ((211, 25, 211, 53), 'sktime.utils.validation.forecasting.check_time_index', 'check_time_index', ({(211, 42, 211, 52): 'time_index'}, {}), '(time_index)', False, 'from sktime.utils.validation.forecasting import check_time_index\n'), ((259, 25, 259, 41), 'numpy.arange', 'np.arange', ({(259, 35, 259, 40): 'n_obs'}, {}), '(n_obs)', True, 'import numpy as np\n'), ((263, 25, 263, 53), 'sktime.utils.validation.forecasting.check_time_index', 'check_time_index', ({(263, 42, 263, 52): 'time_index'}, {}), '(time_index)', False, 'from sktime.utils.validation.forecasting import check_time_index\n'), ((34, 45, 34, 58), 'numpy.dtype', 'np.dtype', ({(34, 54, 34, 57): 'int'}, {}), '(int)', True, 'import numpy as np\n'), ((117, 16, 117, 30), 'numpy.mean', 'np.mean', ({(117, 24, 117, 29): '(x * y)'}, {}), '(x * y)', True, 'import numpy as np\n'), ((118, 20, 118, 35), 'numpy.mean', 'np.mean', ({(118, 28, 118, 34): '(x ** 2)'}, {}), '(x ** 2)', True, 'import numpy as np\n'), ((145, 16, 145, 34), 'numpy.mean', 'np.mean', (), '', True, 'import numpy as np\n'), ((217, 17, 217, 44), 'numpy.dot', 'np.dot', ({(217, 24, 217, 34): 'poly_terms', (217, 36, 217, 43): 'coefs.T'}, {}), '(poly_terms, coefs.T)', True, 'import numpy as np\n'), ((270, 17, 270, 44), 'numpy.dot', 'np.dot', ({(270, 24, 270, 34): 'poly_terms', (270, 36, 270, 43): 'coefs.T'}, {}), '(poly_terms, coefs.T)', True, 'import numpy as np\n'), ((117, 42, 117, 52), 'numpy.mean', 'np.mean', ({(117, 50, 117, 51): 'y'}, {}), '(y)', True, 'import numpy as np\n')]
Hanjun-Dai/sdvae
prog_vae/prog_encoder/prog_encoder.py
bd26ea949c496419634fd2cf4802fc8e19a9194c
#!/usr/bin/env python from __future__ import print_function import os import sys import csv import numpy as np import math import random from collections import defaultdict import torch from torch.autograd import Variable from torch.nn.parameter import Parameter import torch.nn as nn import torch.nn.functional as F import torch.optim as optim sys.path.append( '%s/../prog_common' % os.path.dirname(os.path.realpath(__file__)) ) from prog_util import DECISION_DIM from cmd_args import cmd_args from pytorch_initializer import weights_init sys.path.append( '%s/../cfg_parser' % os.path.dirname(os.path.realpath(__file__)) ) import cfg_parser as parser class CNNEncoder(nn.Module): def __init__(self, max_len, latent_dim): super(CNNEncoder, self).__init__() self.latent_dim = latent_dim self.max_len = max_len self.conv1 = nn.Conv1d(DECISION_DIM, cmd_args.c1, cmd_args.c1) self.conv2 = nn.Conv1d(cmd_args.c1, cmd_args.c2, cmd_args.c2) self.conv3 = nn.Conv1d(cmd_args.c2, cmd_args.c3, cmd_args.c3) self.last_conv_size = max_len - cmd_args.c1 + 1 - cmd_args.c2 + 1 - cmd_args.c3 + 1 self.w1 = nn.Linear(self.last_conv_size * cmd_args.c3, cmd_args.dense) self.mean_w = nn.Linear(cmd_args.dense, latent_dim) self.log_var_w = nn.Linear(cmd_args.dense, latent_dim) weights_init(self) def forward(self, x_cpu): if cmd_args.mode == 'cpu': batch_input = Variable(torch.from_numpy(x_cpu)) else: batch_input = Variable(torch.from_numpy(x_cpu).cuda()) h1 = self.conv1(batch_input) h1 = F.relu(h1) h2 = self.conv2(h1) h2 = F.relu(h2) h3 = self.conv3(h2) h3 = F.relu(h3) # h3 = torch.transpose(h3, 1, 2).contiguous() flatten = h3.view(x_cpu.shape[0], -1) h = self.w1(flatten) h = F.relu(h) z_mean = self.mean_w(h) z_log_var = self.log_var_w(h) return (z_mean, z_log_var) if __name__ == '__main__': pass
[((33, 21, 33, 70), 'torch.nn.Conv1d', 'nn.Conv1d', ({(33, 31, 33, 43): 'DECISION_DIM', (33, 45, 33, 56): 'cmd_args.c1', (33, 58, 33, 69): 'cmd_args.c1'}, {}), '(DECISION_DIM, cmd_args.c1, cmd_args.c1)', True, 'import torch.nn as nn\n'), ((34, 21, 34, 69), 'torch.nn.Conv1d', 'nn.Conv1d', ({(34, 31, 34, 42): 'cmd_args.c1', (34, 44, 34, 55): 'cmd_args.c2', (34, 57, 34, 68): 'cmd_args.c2'}, {}), '(cmd_args.c1, cmd_args.c2, cmd_args.c2)', True, 'import torch.nn as nn\n'), ((35, 21, 35, 69), 'torch.nn.Conv1d', 'nn.Conv1d', ({(35, 31, 35, 42): 'cmd_args.c2', (35, 44, 35, 55): 'cmd_args.c3', (35, 57, 35, 68): 'cmd_args.c3'}, {}), '(cmd_args.c2, cmd_args.c3, cmd_args.c3)', True, 'import torch.nn as nn\n'), ((38, 18, 38, 78), 'torch.nn.Linear', 'nn.Linear', ({(38, 28, 38, 61): 'self.last_conv_size * cmd_args.c3', (38, 63, 38, 77): 'cmd_args.dense'}, {}), '(self.last_conv_size * cmd_args.c3, cmd_args.dense)', True, 'import torch.nn as nn\n'), ((39, 22, 39, 59), 'torch.nn.Linear', 'nn.Linear', ({(39, 32, 39, 46): 'cmd_args.dense', (39, 48, 39, 58): 'latent_dim'}, {}), '(cmd_args.dense, latent_dim)', True, 'import torch.nn as nn\n'), ((40, 25, 40, 62), 'torch.nn.Linear', 'nn.Linear', ({(40, 35, 40, 49): 'cmd_args.dense', (40, 51, 40, 61): 'latent_dim'}, {}), '(cmd_args.dense, latent_dim)', True, 'import torch.nn as nn\n'), ((41, 8, 41, 26), 'pytorch_initializer.weights_init', 'weights_init', ({(41, 21, 41, 25): 'self'}, {}), '(self)', False, 'from pytorch_initializer import weights_init\n'), ((50, 13, 50, 23), 'torch.nn.functional.relu', 'F.relu', ({(50, 20, 50, 22): 'h1'}, {}), '(h1)', True, 'import torch.nn.functional as F\n'), ((52, 13, 52, 23), 'torch.nn.functional.relu', 'F.relu', ({(52, 20, 52, 22): 'h2'}, {}), '(h2)', True, 'import torch.nn.functional as F\n'), ((54, 13, 54, 23), 'torch.nn.functional.relu', 'F.relu', ({(54, 20, 54, 22): 'h3'}, {}), '(h3)', True, 'import torch.nn.functional as F\n'), ((59, 12, 59, 21), 'torch.nn.functional.relu', 'F.relu', ({(59, 19, 59, 20): 'h'}, {}), '(h)', True, 'import torch.nn.functional as F\n'), ((19, 55, 19, 81), 'os.path.realpath', 'os.path.realpath', ({(19, 72, 19, 80): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((24, 54, 24, 80), 'os.path.realpath', 'os.path.realpath', ({(24, 71, 24, 79): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((45, 35, 45, 58), 'torch.from_numpy', 'torch.from_numpy', ({(45, 52, 45, 57): 'x_cpu'}, {}), '(x_cpu)', False, 'import torch\n'), ((47, 35, 47, 58), 'torch.from_numpy', 'torch.from_numpy', ({(47, 52, 47, 57): 'x_cpu'}, {}), '(x_cpu)', False, 'import torch\n')]
JosephRedfern/VarienseVMU
pyvmu/messages.py
e27c05a83124e024cd049b10f7d682f7f41a5c73
from collections import namedtuple Accelerometer = namedtuple('Accelerometer', ["timestamp", "x", "y", "z"]) Magnetometer = namedtuple('Magnetometer', ['timestamp', 'x', 'y', 'z']) Gyroscope = namedtuple('Gyroscope', ['timestamp', 'x', 'y', 'z']) Euler = namedtuple('Euler', ['timestamp', 'x', 'y', 'z']) Quaternion = namedtuple('Quaternion', ['timestamp', 'w', 'x', 'y', 'z']) Heading = namedtuple('Heading', ['timestamp', 'h']) Status = namedtuple('Status', ['magnetometer_enabled', 'gyroscope_enabled', 'accelerometer_enabled', 'gyroscope_resolution', 'accelerometer_resolution', 'low_output_rate', 'heading_streaming', 'euler_streaming', 'magnetometer_streaming', 'quaternions_streaming', 'gyroscope_streaming', 'accelerometer_streaming'])
[((3, 16, 3, 73), 'collections.namedtuple', 'namedtuple', ({(3, 27, 3, 42): '"""Accelerometer"""', (3, 44, 3, 72): "['timestamp', 'x', 'y', 'z']"}, {}), "('Accelerometer', ['timestamp', 'x', 'y', 'z'])", False, 'from collections import namedtuple\n'), ((4, 15, 4, 71), 'collections.namedtuple', 'namedtuple', ({(4, 26, 4, 40): '"""Magnetometer"""', (4, 42, 4, 70): "['timestamp', 'x', 'y', 'z']"}, {}), "('Magnetometer', ['timestamp', 'x', 'y', 'z'])", False, 'from collections import namedtuple\n'), ((5, 12, 5, 65), 'collections.namedtuple', 'namedtuple', ({(5, 23, 5, 34): '"""Gyroscope"""', (5, 36, 5, 64): "['timestamp', 'x', 'y', 'z']"}, {}), "('Gyroscope', ['timestamp', 'x', 'y', 'z'])", False, 'from collections import namedtuple\n'), ((6, 8, 6, 57), 'collections.namedtuple', 'namedtuple', ({(6, 19, 6, 26): '"""Euler"""', (6, 28, 6, 56): "['timestamp', 'x', 'y', 'z']"}, {}), "('Euler', ['timestamp', 'x', 'y', 'z'])", False, 'from collections import namedtuple\n'), ((8, 13, 8, 72), 'collections.namedtuple', 'namedtuple', ({(8, 24, 8, 36): '"""Quaternion"""', (8, 38, 8, 71): "['timestamp', 'w', 'x', 'y', 'z']"}, {}), "('Quaternion', ['timestamp', 'w', 'x', 'y', 'z'])", False, 'from collections import namedtuple\n'), ((10, 10, 10, 51), 'collections.namedtuple', 'namedtuple', ({(10, 21, 10, 30): '"""Heading"""', (10, 32, 10, 50): "['timestamp', 'h']"}, {}), "('Heading', ['timestamp', 'h'])", False, 'from collections import namedtuple\n'), ((12, 9, 23, 58), 'collections.namedtuple', 'namedtuple', ({(12, 20, 12, 28): '"""Status"""', (12, 30, 23, 57): "['magnetometer_enabled', 'gyroscope_enabled', 'accelerometer_enabled',\n 'gyroscope_resolution', 'accelerometer_resolution', 'low_output_rate',\n 'heading_streaming', 'euler_streaming', 'magnetometer_streaming',\n 'quaternions_streaming', 'gyroscope_streaming', 'accelerometer_streaming']"}, {}), "('Status', ['magnetometer_enabled', 'gyroscope_enabled',\n 'accelerometer_enabled', 'gyroscope_resolution',\n 'accelerometer_resolution', 'low_output_rate', 'heading_streaming',\n 'euler_streaming', 'magnetometer_streaming', 'quaternions_streaming',\n 'gyroscope_streaming', 'accelerometer_streaming'])", False, 'from collections import namedtuple\n')]
Pythobit/python-projects
scripts/Caesar-Cipher/CaesarCipher.py
1a6ee3f0f417846626dfa021af49c999771a0199
from __future__ import print_function import os import string import argparse try: maketrans = string.maketrans # python2 except AttributeError: maketrans = str.maketrans # python3 def caeser_cipher(string_: str, offset: int, decode: bool, file_: string) -> None: """Caeser Cipher implementation, reads file or string. Also decodes. Default implementation is ROT13 encoding. To decode, specify the same offset you used to encode and your ciphertext / file. :param string_: string to encode / decode :param offset: # of chars to rotate by :param decode: decode instead of encode :param file_: file to read in then encode/decode """ if file_ and os.path.exists(file_): with open(file_, "r") as f: string_ = f.read() if decode: offset *= -1 lower_offset_alphabet = ( string.ascii_lowercase[offset:] + string.ascii_lowercase[:offset] ) lower_translation_table = maketrans(string.ascii_lowercase, lower_offset_alphabet) upper_offset_alphabet = ( string.ascii_uppercase[offset:] + string.ascii_uppercase[:offset] ) upper_translation_table = maketrans(string.ascii_uppercase, upper_offset_alphabet) lower_converted = string_.translate(lower_translation_table) final_converted = lower_converted.translate(upper_translation_table) if file_: extension = "dec" if decode else "enc" with open("{}.{}".format(file_, extension), "w") as f: print(final_converted, file=f) else: print(final_converted) def check_offset_range(value: int) -> int: """Validates that value is in the allowable range. :param value: integer to validate :return: valid integer :raises: argparse.ArgumentTypeError """ value = int(value) if value < -25 or value > 25: raise argparse.ArgumentTypeError("{} is an invalid offset".format(value)) return value if __name__ == "__main__": parser = argparse.ArgumentParser( description="Simple Caeser Cipher Encoder and Decoder" ) parser.add_argument( "-d", "--decode", action="store_true", dest="decode", help="decode ciphertext (offset should equal what was used to encode)", default=False, ) parser.add_argument( "-o", "--offset", dest="offset", default=13, type=check_offset_range, help="number of characters to shift", ) group = parser.add_mutually_exclusive_group(required=True) group.add_argument("-f", "--file", dest="file", help="file to encode", default=None) group.add_argument( "-s", "--string", dest="string", help="string to encode", default=None ) args = parser.parse_args() caeser_cipher(args.string, args.offset, args.decode, args.file)
[((62, 13, 64, 5), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (), '', False, 'import argparse\n'), ((21, 17, 21, 38), 'os.path.exists', 'os.path.exists', ({(21, 32, 21, 37): 'file_'}, {}), '(file_)', False, 'import os\n')]
BuildAMovement/whistler-kobocat
onadata/libs/permissions.py
7f61dd0761bb0aa5b27c909bcff8c29453d3311d
from collections import defaultdict from django.contrib.contenttypes.models import ContentType from guardian.shortcuts import ( assign_perm, remove_perm, get_perms, get_users_with_perms) from onadata.apps.api.models import OrganizationProfile from onadata.apps.main.models.user_profile import UserProfile from onadata.apps.logger.models import XForm from onadata.apps.api.models import Project # Userprofile Permissions CAN_ADD_USERPROFILE = 'add_userprofile' CAN_CHANGE_USERPROFILE = 'change_userprofile' CAN_DELETE_USERPROFILE = 'delete_userprofile' CAN_ADD_XFORM_TO_PROFILE = 'can_add_xform' CAN_VIEW_PROFILE = 'view_profile' # Organization Permissions CAN_VIEW_ORGANIZATION_PROFILE = 'view_organizationprofile' CAN_ADD_ORGANIZATION_PROFILE = 'add_organizationprofile' CAN_ADD_ORGANIZATION_XFORM = 'can_add_xform' CAN_CHANGE_ORGANIZATION_PROFILE = 'change_organizationprofile' CAN_DELETE_ORGANIZATION_PROFILE = 'delete_organizationprofile' IS_ORGANIZATION_OWNER = 'is_org_owner' # Xform Permissions CAN_CHANGE_XFORM = 'change_xform' CAN_ADD_XFORM = 'add_xform' CAN_DELETE_XFORM = 'delete_xform' CAN_VIEW_XFORM = 'view_xform' CAN_ADD_SUBMISSIONS = 'report_xform' CAN_TRANSFER_OWNERSHIP = 'transfer_xform' CAN_MOVE_TO_FOLDER = 'move_xform' # Project Permissions CAN_VIEW_PROJECT = 'view_project' CAN_CHANGE_PROJECT = 'change_project' CAN_TRANSFER_PROJECT_OWNERSHIP = 'transfer_project' CAN_DELETE_PROJECT = 'delete_project' CAN_ADD_DATADICTIONARY = 'add_datadictionary' CAN_CHANGE_DATADICTIONARY = 'change_datadictionary' CAN_DELETE_DATADICTIONARY = 'delete_datadictionary' class Role(object): class_to_permissions = None permissions = None name = None @classmethod def _remove_obj_permissions(self, user, obj): content_type = ContentType.objects.get( model=obj.__class__.__name__.lower(), app_label=obj.__class__._meta.app_label ) object_permissions = user.userobjectpermission_set.filter( object_pk=obj.pk, content_type=content_type) for perm in object_permissions: remove_perm(perm.permission.codename, user, obj) @classmethod def add(cls, user, obj): cls._remove_obj_permissions(user, obj) for codename, klass in cls.permissions: if type(obj) == klass: assign_perm(codename, user, obj) @classmethod def has_role(cls, permissions, obj): """Check that permission correspond to this role for this object. :param permissions: A list of permissions. :param obj: An object to get the permissions of. """ perms_for_role = set(cls.class_to_permissions[type(obj)]) return perms_for_role.issubset(set(permissions)) @classmethod def user_has_role(cls, user, obj): """Check that a user has this role. :param user: A user object. :param obj: An object to get the permissions of. """ return user.has_perms(cls.class_to_permissions[type(obj)], obj) class ReadOnlyRole(Role): name = 'readonly' permissions = ( (CAN_VIEW_ORGANIZATION_PROFILE, OrganizationProfile), (CAN_VIEW_XFORM, XForm), (CAN_VIEW_PROJECT, Project), ) class DataEntryRole(Role): name = 'dataentry' permissions = ( (CAN_ADD_SUBMISSIONS, XForm), (CAN_ADD_XFORM, Project), (CAN_VIEW_ORGANIZATION_PROFILE, OrganizationProfile), (CAN_VIEW_PROJECT, Project), (CAN_VIEW_XFORM, XForm), ) class EditorRole(Role): name = 'editor' permissions = ( (CAN_ADD_SUBMISSIONS, XForm), (CAN_ADD_XFORM, Project), (CAN_CHANGE_PROJECT, Project), (CAN_CHANGE_XFORM, XForm), (CAN_VIEW_ORGANIZATION_PROFILE, OrganizationProfile), (CAN_VIEW_PROJECT, Project), (CAN_VIEW_XFORM, XForm), ) class ManagerRole(Role): name = 'manager' permissions = ( (CAN_ADD_SUBMISSIONS, XForm), (CAN_ADD_XFORM, XForm), (CAN_ADD_XFORM_TO_PROFILE, OrganizationProfile), (CAN_ADD_XFORM_TO_PROFILE, UserProfile), (CAN_CHANGE_PROJECT, Project), (CAN_CHANGE_XFORM, XForm), (CAN_DELETE_PROJECT, Project), (CAN_VIEW_ORGANIZATION_PROFILE, OrganizationProfile), (CAN_VIEW_PROFILE, UserProfile), (CAN_VIEW_PROJECT, Project), (CAN_VIEW_XFORM, XForm), ) class MemberRole(Role): """This is a role for a member of an organization. """ name = 'member' class OwnerRole(Role): """This is a role for an owner of a dataset, organization, or project. """ name = 'owner' permissions = ( (CAN_ADD_SUBMISSIONS, XForm), (CAN_ADD_XFORM, Project), (CAN_ADD_XFORM, XForm), (CAN_VIEW_XFORM, XForm), (CAN_ADD_DATADICTIONARY, XForm), (CAN_CHANGE_DATADICTIONARY, XForm), (CAN_DELETE_DATADICTIONARY, XForm), (CAN_ADD_SUBMISSIONS, XForm), (CAN_DELETE_XFORM, XForm), (CAN_MOVE_TO_FOLDER, XForm), (CAN_TRANSFER_OWNERSHIP, XForm), (CAN_CHANGE_XFORM, XForm), (CAN_ADD_XFORM_TO_PROFILE, UserProfile), (CAN_ADD_USERPROFILE, UserProfile), (CAN_CHANGE_USERPROFILE, UserProfile), (CAN_DELETE_USERPROFILE, UserProfile), (CAN_ADD_XFORM_TO_PROFILE, UserProfile), (CAN_VIEW_PROFILE, UserProfile), (CAN_VIEW_ORGANIZATION_PROFILE, OrganizationProfile), (CAN_ADD_ORGANIZATION_PROFILE, OrganizationProfile), (CAN_ADD_ORGANIZATION_XFORM, OrganizationProfile), (CAN_CHANGE_ORGANIZATION_PROFILE, OrganizationProfile), (CAN_DELETE_ORGANIZATION_PROFILE, OrganizationProfile), (IS_ORGANIZATION_OWNER, OrganizationProfile), (CAN_ADD_XFORM_TO_PROFILE, OrganizationProfile), (CAN_VIEW_ORGANIZATION_PROFILE, OrganizationProfile), (CAN_CHANGE_PROJECT, Project), (CAN_CHANGE_XFORM, XForm), (CAN_DELETE_PROJECT, Project), (CAN_DELETE_XFORM, XForm), (CAN_MOVE_TO_FOLDER, XForm), (CAN_TRANSFER_OWNERSHIP, XForm), (CAN_TRANSFER_PROJECT_OWNERSHIP, Project), (CAN_VIEW_ORGANIZATION_PROFILE, OrganizationProfile), (CAN_VIEW_PROFILE, UserProfile), (CAN_VIEW_PROJECT, Project), (CAN_VIEW_XFORM, XForm), (CAN_ADD_DATADICTIONARY, XForm), (CAN_CHANGE_DATADICTIONARY, XForm), (CAN_DELETE_DATADICTIONARY, XForm), (CAN_ADD_SUBMISSIONS, XForm), ) ROLES_ORDERED = [ReadOnlyRole, DataEntryRole, EditorRole, ManagerRole, OwnerRole] ROLES = {role.name: role for role in ROLES_ORDERED} # Memoize a class to permissions dict. for role in ROLES.values(): role.class_to_permissions = defaultdict(list) [role.class_to_permissions[k].append(p) for p, k in role.permissions] def is_organization(obj): try: obj.organizationprofile return True except OrganizationProfile.DoesNotExist: return False def get_role(permissions, obj): for role in reversed(ROLES_ORDERED): if role.has_role(permissions, obj): return role.name def get_role_in_org(user, organization): perms = get_perms(user, organization) if 'is_org_owner' in perms: return OwnerRole.name else: return get_role(perms, organization) or MemberRole.name def get_object_users_with_permissions(obj, exclude=None, serializable=False): """Returns users, roles and permissions for a object. When called with with `serializable=True`, return usernames (strings) instead of User objects, which cannot be serialized by REST Framework. """ result = [] if obj: users_with_perms = get_users_with_perms( obj, attach_perms=True, with_group_users=False).items() result = [{ 'user': user if not serializable else user.username, 'role': get_role(permissions, obj), 'permissions': permissions} for user, permissions in users_with_perms if not is_organization( UserProfile.objects.get_or_create(user=user)[0] ) ] return result
[((210, 32, 210, 49), 'collections.defaultdict', 'defaultdict', ({(210, 44, 210, 48): 'list'}, {}), '(list)', False, 'from collections import defaultdict\n'), ((229, 12, 229, 41), 'guardian.shortcuts.get_perms', 'get_perms', ({(229, 22, 229, 26): 'user', (229, 28, 229, 40): 'organization'}, {}), '(user, organization)', False, 'from guardian.shortcuts import assign_perm, remove_perm, get_perms, get_users_with_perms\n'), ((65, 12, 65, 60), 'guardian.shortcuts.remove_perm', 'remove_perm', ({(65, 24, 65, 48): 'perm.permission.codename', (65, 50, 65, 54): 'user', (65, 56, 65, 59): 'obj'}, {}), '(perm.permission.codename, user, obj)', False, 'from guardian.shortcuts import assign_perm, remove_perm, get_perms, get_users_with_perms\n'), ((73, 16, 73, 48), 'guardian.shortcuts.assign_perm', 'assign_perm', ({(73, 28, 73, 36): 'codename', (73, 38, 73, 42): 'user', (73, 44, 73, 47): 'obj'}, {}), '(codename, user, obj)', False, 'from guardian.shortcuts import assign_perm, remove_perm, get_perms, get_users_with_perms\n'), ((245, 27, 246, 59), 'guardian.shortcuts.get_users_with_perms', 'get_users_with_perms', (), '', False, 'from guardian.shortcuts import assign_perm, remove_perm, get_perms, get_users_with_perms\n'), ((253, 16, 253, 60), 'onadata.apps.main.models.user_profile.UserProfile.objects.get_or_create', 'UserProfile.objects.get_or_create', (), '', False, 'from onadata.apps.main.models.user_profile import UserProfile\n')]
gauborg/lane-finding-gborgaonkar
lanelines.py
466313a0da7c245e25f0987afa953300501d5322
# Self-Driving Car Engineer Nanodegree # # ## Project: **Finding Lane Lines on the Road** # ## Import Packages #importing some useful packages import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np import cv2 import math import moviepy image = mpimg.imread('test_images/solidWhiteRight.jpg') #printing out some stats and plotting print('This image is:', type(image), 'with dimensions:', image.shape) plt.imshow(image) # if you wanted to show a single color channel image called 'gray', for example, call as plt.imshow(gray, cmap='gray') # ## Ideas for Lane Detection Pipeline # **Some OpenCV functions (beyond those introduced in the lesson) that might be useful for this project are:** # # `cv2.inRange()` for color selection # `cv2.fillPoly()` for regions selection # `cv2.line()` to draw lines on an image given endpoints # `cv2.addWeighted()` to coadd / overlay two images # `cv2.cvtColor()` to grayscale or change color # `cv2.imwrite()` to output images to file # `cv2.bitwise_and()` to apply a mask to an image # # **Check out the OpenCV documentation to learn about these and discover even more awesome functionality!** import math def grayscale(img): """Applies the Grayscale transform This will return an image with only one color channel but NOTE: to see the returned image as grayscale (assuming your grayscaled image is called 'gray') you should call plt.imshow(gray, cmap='gray')""" return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Or use BGR2GRAY if you read an image with cv2.imread() # return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) def canny(img, low_threshold, high_threshold): """Applies the Canny transform""" return cv2.Canny(img, low_threshold, high_threshold) def gaussian_blur(img, kernel_size): """Applies a Gaussian Noise kernel""" return cv2.GaussianBlur(img, (kernel_size, kernel_size), 0) def region_of_interest(img, vertices): """ Applies an image mask. Only keeps the region of the image defined by the polygon formed from `vertices`. The rest of the image is set to black. `vertices` should be a numpy array of integer points. """ #defining a blank mask to start with mask = np.zeros_like(img) #defining a 3 channel or 1 channel color to fill the mask with depending on the input image if len(img.shape) > 2: channel_count = img.shape[2] # i.e. 3 or 4 depending on your image ignore_mask_color = (255,) * channel_count else: ignore_mask_color = 255 #filling pixels inside the polygon defined by "vertices" with the fill color cv2.fillPoly(mask, vertices, ignore_mask_color) #returning the image only where mask pixels are nonzero masked_image = cv2.bitwise_and(img, mask) return masked_image def draw_lines(img, lines, color=[255, 0, 0], thickness=5): """ NOTE: this is the function you might want to use as a starting point once you want to average/extrapolate the line segments you detect to map out the full extent of the lane (going from the result shown in raw-lines-example.mp4 to that shown in P1_example.mp4). Think about things like separating line segments by their slope ((y2-y1)/(x2-x1)) to decide which segments are part of the left line vs. the right line. Then, you can average the position of each of the lines and extrapolate to the top and bottom of the lane. This function draws `lines` with `color` and `thickness`. Lines are drawn on the image inplace (mutates the image). If you want to make the lines semi-transparent, think about combining this function with the weighted_img() function below """ # lists to store the slopes of lines which match our criteria left_slope = [] right_slope = [] # lists to store the calculate b intercepts of these lines left_b = [] right_b = [] for line in lines: for x1,y1,x2,y2 in line: slope = ((y2-y1)/(x2-x1)) # only select lines with specific slope range if(((slope < 0.8) and (slope > 0.5)) or ((slope > -0.8) and (slope < -0.5))): # check where the endpoints lie on the image... if (x1 < (img.shape[1]/2) and x2 < (img.shape[1]/2)): left_slope.append(slope) left_b.append(y1-slope*x1) left_b.append(y2-slope*x2) else: right_slope.append(slope) right_b.append(y1-slope*x1) right_b.append(y2-slope*x2) try: # we calculate average slope to draw the line avg_left_slope = sum(left_slope)/len(left_slope) avg_right_slope = sum(right_slope)/len(right_slope) avg_left_b = sum(left_b)/len(left_b) avg_right_b = sum(right_b)/len(right_b) # Y co-ordinate of the lane line will definitely be at the bottom of the image y1 = img.shape[0] y2 = 320 y3 = 320 y4 = img.shape[0] # X co-ordinate can be calculated by using the eqn of the line and y co-ordinate x1 = (y1 - avg_left_b)/avg_left_slope x2 = (y2 - avg_left_b)/avg_left_slope x3 = (y3 - avg_right_b)/avg_right_slope x4 = (y4 - avg_right_b)/avg_right_slope # draw the lines, converting values to integer for pixels cv2.line(img, (int(x1), int(y1)), (int(x2), int(y2)), color, thickness) cv2.line(img, (int(x3), int(y3)), (int(x4), int(y4)), color, thickness) except ZeroDivisionError as error: pass def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap): """ `img` should be the output of a Canny transform. Returns an image with hough lines drawn. """ lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap) line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) draw_lines(line_img, lines) return line_img # Python 3 has support for cool math symbols. def weighted_img(img, initial_img, α=0.8, β=1., γ=0.): """ `img` is the output of the hough_lines(), An image with lines drawn on it. Should be a blank image (all black) with lines drawn on it. `initial_img` should be the image before any processing. The result image is computed as follows: initial_img * α + img * β + γ NOTE: initial_img and img must be the same shape! """ return cv2.addWeighted(initial_img, α, img, β, γ) # ## Test Images # # Build your pipeline to work on the images in the directory "test_images" # **You should make sure your pipeline works well on these images before you try the videos.** import os directory = os.listdir("test_images/") # TODO: Build your pipeline that will draw lane lines on the test_images # then save them to the test_images_output directory. def lanelines(image): # 1. Grayscaling gray = grayscale(image) # 2. Gaussian Blur blur = gaussian_blur(gray, 5) # 3. Canny Detection canny_edges = canny(blur, 50, 150) # 4. Region Masking vertices = np.array([[(0,image.shape[0]),(460,320),(500,320),(image.shape[1],image.shape[0])]], dtype=np.int32) selected_region = region_of_interest(canny_edges, vertices) mpimg.imsave(os.path.join("test_images_output/" + "output-" + i), selected_region) # image.save(os.path.join("test_images_output/" + i + "-canny-region-output"), format=None, dpi=(540, 960)) # Hough Transform Parameters- Identify lane lines in the masked region # execute Hough Transform lines_image = hough_lines(selected_region, 2, np.pi/180, 25, 20, 10) weighted_image = weighted_img(lines_image, image) return weighted_image for i in directory: image = mpimg.imread(os.path.join("test_images/", i)) weighted_image = lanelines(image) mpimg.imsave(os.path.join("test_images_output/" + "output+" + i), weighted_image) # ## Test on Videos # # You know what's cooler than drawing lanes over images? Drawing lanes over video! # # We can test our solution on two provided videos: # `solidWhiteRight.mp4` # `solidYellowLeft.mp4` # # # **If you get an error that looks like this:** # ``` # NeedDownloadError: Need ffmpeg exe. # You can download it by calling: # imageio.plugins.ffmpeg.download() # Import everything needed to edit/save/watch video clips import imageio from moviepy.editor import VideoFileClip def process_image(image): # NOTE: The output you return should be a color image (3 channel) for processing video below # TODO: put your pipeline here, # you should return the final output (image where lines are drawn on lanes) result = lanelines(image) return result white_output = 'test_videos_output/solidWhiteRight.mp4' ## To speed up the testing process you may want to try your pipeline on a shorter subclip of the video ## To do so add .subclip(start_second,end_second) to the end of the line below ## Where start_second and end_second are integer values representing the start and end of the subclip ## You may also uncomment the following line for a subclip of the first 5 seconds ##clip1 = VideoFileClip("test_videos/solidWhiteRight.mp4").subclip(0,5) clip1 = VideoFileClip("test_videos/solidWhiteRight.mp4") white_clip = clip1.fl_image(process_image) # NOTE: this function expects color images!! white_clip.write_videofile(white_output, audio=False) yellow_output = 'test_videos_output/solidYellowLeft.mp4' clip2 = VideoFileClip('test_videos/solidYellowLeft.mp4') yellow_clip = clip2.fl_image(process_image) yellow_clip.write_videofile(yellow_output, audio=False) challenge_output = 'test_videos_output/challenge.mp4' clip3 = VideoFileClip('test_videos/challenge.mp4') challenge_clip = clip3.fl_image(process_image) challenge_clip.write_videofile(challenge_output, audio=False)
[((16, 8, 16, 55), 'matplotlib.image.imread', 'mpimg.imread', ({(16, 21, 16, 54): '"""test_images/solidWhiteRight.jpg"""'}, {}), "('test_images/solidWhiteRight.jpg')", True, 'import matplotlib.image as mpimg\n'), ((20, 0, 20, 17), 'matplotlib.pyplot.imshow', 'plt.imshow', ({(20, 11, 20, 16): 'image'}, {}), '(image)', True, 'import matplotlib.pyplot as plt\n'), ((188, 12, 188, 38), 'os.listdir', 'os.listdir', ({(188, 23, 188, 37): '"""test_images/"""'}, {}), "('test_images/')", False, 'import os\n'), ((259, 8, 259, 56), 'moviepy.editor.VideoFileClip', 'VideoFileClip', ({(259, 22, 259, 55): '"""test_videos/solidWhiteRight.mp4"""'}, {}), "('test_videos/solidWhiteRight.mp4')", False, 'from moviepy.editor import VideoFileClip\n'), ((265, 8, 265, 56), 'moviepy.editor.VideoFileClip', 'VideoFileClip', ({(265, 22, 265, 55): '"""test_videos/solidYellowLeft.mp4"""'}, {}), "('test_videos/solidYellowLeft.mp4')", False, 'from moviepy.editor import VideoFileClip\n'), ((272, 8, 272, 50), 'moviepy.editor.VideoFileClip', 'VideoFileClip', ({(272, 22, 272, 49): '"""test_videos/challenge.mp4"""'}, {}), "('test_videos/challenge.mp4')", False, 'from moviepy.editor import VideoFileClip\n'), ((45, 11, 45, 48), 'cv2.cvtColor', 'cv2.cvtColor', ({(45, 24, 45, 27): 'img', (45, 29, 45, 47): 'cv2.COLOR_RGB2GRAY'}, {}), '(img, cv2.COLOR_RGB2GRAY)', False, 'import cv2\n'), ((51, 11, 51, 56), 'cv2.Canny', 'cv2.Canny', ({(51, 21, 51, 24): 'img', (51, 26, 51, 39): 'low_threshold', (51, 41, 51, 55): 'high_threshold'}, {}), '(img, low_threshold, high_threshold)', False, 'import cv2\n'), ((55, 11, 55, 63), 'cv2.GaussianBlur', 'cv2.GaussianBlur', ({(55, 28, 55, 31): 'img', (55, 33, 55, 59): '(kernel_size, kernel_size)', (55, 61, 55, 62): '(0)'}, {}), '(img, (kernel_size, kernel_size), 0)', False, 'import cv2\n'), ((67, 11, 67, 29), 'numpy.zeros_like', 'np.zeros_like', ({(67, 25, 67, 28): 'img'}, {}), '(img)', True, 'import numpy as np\n'), ((77, 4, 77, 51), 'cv2.fillPoly', 'cv2.fillPoly', ({(77, 17, 77, 21): 'mask', (77, 23, 77, 31): 'vertices', (77, 33, 77, 50): 'ignore_mask_color'}, {}), '(mask, vertices, ignore_mask_color)', False, 'import cv2\n'), ((80, 19, 80, 45), 'cv2.bitwise_and', 'cv2.bitwise_and', ({(80, 35, 80, 38): 'img', (80, 40, 80, 44): 'mask'}, {}), '(img, mask)', False, 'import cv2\n'), ((161, 15, 161, 72), 'numpy.zeros', 'np.zeros', (), '', True, 'import numpy as np\n'), ((179, 11, 179, 56), 'cv2.addWeighted', 'cv2.addWeighted', ({(179, 27, 179, 38): 'initial_img', (179, 40, 179, 42): 'α', (179, 44, 179, 47): 'img', (179, 49, 179, 51): 'β', (179, 53, 179, 55): 'γ'}, {}), '(initial_img, α, img, β, γ)', False, 'import cv2\n'), ((204, 15, 204, 115), 'numpy.array', 'np.array', (), '', True, 'import numpy as np\n'), ((160, 56, 160, 68), 'numpy.array', 'np.array', ({(160, 65, 160, 67): '[]'}, {}), '([])', True, 'import numpy as np\n'), ((207, 17, 207, 68), 'os.path.join', 'os.path.join', ({(207, 30, 207, 67): "('test_images_output/' + 'output-' + i)"}, {}), "('test_images_output/' + 'output-' + i)", False, 'import os\n'), ((219, 25, 219, 56), 'os.path.join', 'os.path.join', ({(219, 38, 219, 52): '"""test_images/"""', (219, 54, 219, 55): 'i'}, {}), "('test_images/', i)", False, 'import os\n'), ((221, 17, 221, 68), 'os.path.join', 'os.path.join', ({(221, 30, 221, 67): "('test_images_output/' + 'output+' + i)"}, {}), "('test_images_output/' + 'output+' + i)", False, 'import os\n')]
phobson/zict
zict/zip.py
666c7cd9fd4667cc8831a35cf958fd51788acd3e
try: from collections.abc import MutableMapping except ImportError: from collections import MutableMapping import zipfile class Zip(MutableMapping): """Mutable Mapping interface to a Zip file Keys must be strings, values must be bytes Parameters ---------- filename: string mode: string, ('r', 'w', 'a'), defaults to 'a' Examples -------- >>> z = Zip('myfile.zip') # doctest: +SKIP >>> z['x'] = b'123' # doctest: +SKIP >>> z['x'] # doctest: +SKIP b'123' >>> z.flush() # flush and write metadata to disk # doctest: +SKIP """ def __init__(self, filename, mode="a"): self.filename = filename self.mode = mode self._file = None @property def file(self): if self.mode == "closed": raise OSError("File closed") if not self._file or not self._file.fp: self._file = zipfile.ZipFile(self.filename, mode=self.mode) return self._file def __getitem__(self, key): return self.file.read(key) def __setitem__(self, key, value): self.file.writestr(key, value) def keys(self): return (zi.filename for zi in self.file.filelist) def values(self): return map(self.file.read, self.keys()) def items(self): return ((zi.filename, self.file.read(zi.filename)) for zi in self.file.filelist) def __iter__(self): return self.keys() def __delitem__(self, key): raise NotImplementedError("Not supported by stdlib zipfile") def __len__(self): return len(self.file.filelist) def flush(self): self.file.fp.flush() self.file.close() def close(self): self.flush() self.mode = "closed" def __enter__(self): return self def __exit__(self, type, value, traceback): self.close()
[((37, 25, 37, 71), 'zipfile.ZipFile', 'zipfile.ZipFile', (), '', False, 'import zipfile\n')]
containers-kraken/neutron-lbaas
neutron_lbaas/drivers/driver_mixins.py
43fbc34cc90512e33202bc4187ccf712dda6a782
# Copyright 2014 A10 Networks # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import abc from neutron.plugins.common import constants from oslo_log import log as logging import six from neutron_lbaas.db.loadbalancer import models from neutron_lbaas.services.loadbalancer import constants as lb_const from neutron_lbaas.services.loadbalancer import data_models LOG = logging.getLogger(__name__) @six.add_metaclass(abc.ABCMeta) class BaseManagerMixin(object): def __init__(self, driver): self.driver = driver @abc.abstractproperty def db_delete_method(self): pass @abc.abstractmethod def create(self, context, obj): pass @abc.abstractmethod def update(self, context, obj_old, obj): pass @abc.abstractmethod def delete(self, context, obj): pass def successful_completion(self, context, obj, delete=False, lb_create=False): """ Sets the provisioning_status of the load balancer and obj to ACTIVE. Should be called last in the implementor's BaseManagerMixin methods for successful runs. :param context: neutron context :param obj: instance of a neutron_lbaas.services.loadbalancer.data_model :param delete: set True if being called from a delete method. Will most likely result in the obj being deleted from the db. :param lb_create: set True if this is being called after a successful load balancer create. """ LOG.debug("Starting successful_completion method after a successful " "driver action.") obj_sa_cls = data_models.DATA_MODEL_TO_SA_MODEL_MAP[obj.__class__] if delete: # Check if driver is responsible for vip allocation. If the driver # is responsible, then it is also responsible for cleaning it up. # At this point, the VIP should already be cleaned up, so we are # just doing neutron lbaas db cleanup. if (obj == obj.root_loadbalancer and self.driver.load_balancer.allocates_vip): # NOTE(blogan): this is quite dumb to do but it is necessary # so that a false negative pep8 error does not get thrown. An # "unexpected-keyword-argument" pep8 error occurs bc # self.db_delete_method is a @property method that returns a # method. kwargs = {'delete_vip_port': False} self.db_delete_method(context, obj.id, **kwargs) else: self.db_delete_method(context, obj.id) if obj == obj.root_loadbalancer and delete: # Load balancer was deleted and no longer exists return lb_op_status = None lb_p_status = constants.ACTIVE if obj == obj.root_loadbalancer: # only set the status to online if this an operation on the # load balancer lb_op_status = lb_const.ONLINE # Update the load balancer's vip address and vip port id if the driver # was responsible for allocating the vip. if (self.driver.load_balancer.allocates_vip and lb_create and isinstance(obj, data_models.LoadBalancer)): self.driver.plugin.db.update_loadbalancer( context, obj.id, {'vip_address': obj.vip_address, 'vip_port_id': obj.vip_port_id}) self.driver.plugin.db.update_status( context, models.LoadBalancer, obj.root_loadbalancer.id, provisioning_status=lb_p_status, operating_status=lb_op_status) if obj == obj.root_loadbalancer or delete: # Do not want to update the status of the load balancer again # Or the obj was deleted from the db so no need to update the # statuses return obj_op_status = lb_const.ONLINE if isinstance(obj, data_models.HealthMonitor): # Health Monitor does not have an operating status obj_op_status = None LOG.debug("Updating object of type {0} with id of {1} to " "provisioning_status = {2}, operating_status = {3}".format( obj.__class__, obj.id, constants.ACTIVE, obj_op_status)) self.driver.plugin.db.update_status( context, obj_sa_cls, obj.id, provisioning_status=constants.ACTIVE, operating_status=obj_op_status) def failed_completion(self, context, obj): """ Sets the provisioning status of the obj to ERROR. If obj is a loadbalancer it will be set to ERROR, otherwise set to ACTIVE. Should be called whenever something goes wrong (raised exception) in an implementor's BaseManagerMixin methods. :param context: neutron context :param obj: instance of a neutron_lbaas.services.loadbalancer.data_model """ LOG.debug("Starting failed_completion method after a failed driver " "action.") if isinstance(obj, data_models.LoadBalancer): LOG.debug("Updating load balancer {0} to provisioning_status = " "{1}, operating_status = {2}.".format( obj.root_loadbalancer.id, constants.ERROR, lb_const.OFFLINE)) self.driver.plugin.db.update_status( context, models.LoadBalancer, obj.root_loadbalancer.id, provisioning_status=constants.ERROR, operating_status=lb_const.OFFLINE) return obj_sa_cls = data_models.DATA_MODEL_TO_SA_MODEL_MAP[obj.__class__] LOG.debug("Updating object of type {0} with id of {1} to " "provisioning_status = {2}, operating_status = {3}".format( obj.__class__, obj.id, constants.ERROR, lb_const.OFFLINE)) self.driver.plugin.db.update_status( context, obj_sa_cls, obj.id, provisioning_status=constants.ERROR, operating_status=lb_const.OFFLINE) LOG.debug("Updating load balancer {0} to " "provisioning_status = {1}".format(obj.root_loadbalancer.id, constants.ACTIVE)) self.driver.plugin.db.update_status( context, models.LoadBalancer, obj.root_loadbalancer.id, provisioning_status=constants.ACTIVE) def update_vip(self, context, loadbalancer_id, vip_address, vip_port_id=None): lb_update = {'vip_address': vip_address} if vip_port_id: lb_update['vip_port_id'] = vip_port_id self.driver.plugin.db.update_loadbalancer(context, loadbalancer_id, lb_update) @six.add_metaclass(abc.ABCMeta) class BaseRefreshMixin(object): @abc.abstractmethod def refresh(self, context, obj): pass @six.add_metaclass(abc.ABCMeta) class BaseStatsMixin(object): @abc.abstractmethod def stats(self, context, obj): pass
[((25, 6, 25, 33), 'oslo_log.log.getLogger', 'logging.getLogger', ({(25, 24, 25, 32): '__name__'}, {}), '(__name__)', True, 'from oslo_log import log as logging\n'), ((28, 1, 28, 31), 'six.add_metaclass', 'six.add_metaclass', ({(28, 19, 28, 30): 'abc.ABCMeta'}, {}), '(abc.ABCMeta)', False, 'import six\n'), ((170, 1, 170, 31), 'six.add_metaclass', 'six.add_metaclass', ({(170, 19, 170, 30): 'abc.ABCMeta'}, {}), '(abc.ABCMeta)', False, 'import six\n'), ((178, 1, 178, 31), 'six.add_metaclass', 'six.add_metaclass', ({(178, 19, 178, 30): 'abc.ABCMeta'}, {}), '(abc.ABCMeta)', False, 'import six\n')]
miguelsousa/hTools2
Lib/hTools2/modules/ftp.py
eab400677c1b21bb2519a7354a142e167c2b39ba
# [h] hTools2.modules.ftp """Tools to connect to a FTP server, upload files etc.""" # This module uses the `ftplib` library to handle FTP connection and upload. # http://docs.python.org/library/ftplib.html import os from ftplib import FTP def connect_to_server(url, login, password, folder, verbose=False): """Connects to the FTP server using the given connection settings. Use the given ``url``, ``login`` and ``password`` information to make a connection. Move to the given ``folder`` (if it exists), and return a ``FTP`` object. To get to the lower level details about the FTP connection, use the optional parameter ``verbose=True``. """ # create FTP connection ftp = FTP(url, login, password) if verbose == True: print "%s" % ftp.getwelcome() # move to folder ftp.cwd(folder) if verbose == True: ftp.retrlines('LIST') print return ftp def upload_file(filePath, FTPconnection): """Upload the file at ``file_path`` to a FTP server, using the given ``ftp_connection``.""" file = open(filePath, 'rb') fileName = os.path.split(filePath)[1] FTPconnection.storbinary('STOR ' + fileName, file) file.close()
[]
MRsoymilk/toy-car
network/pytorch2onnx.py
5bd51bf231781a17e1d7acb4654c3d4b6adbed41
import Net import configparser import torch from PIL import Image config = configparser.ConfigParser() config.read('./config.ini') MODEL = config.get("Network", "Model") transformations = Net.transformations net = Net.Net() net.eval() net.load_state_dict(torch.load(MODEL)) image = Image.open("./html/rwby.jpg") image = transformations(image).float() image = torch.autograd.Variable(image[None, ...]) torch.onnx.export( net, image, MODEL.split('pth')[0] + 'onnx', export_params=True, output_names=['toy-car'] ) print("finish")
[((6, 9, 6, 36), 'configparser.ConfigParser', 'configparser.ConfigParser', ({}, {}), '()', False, 'import configparser\n'), ((11, 6, 11, 15), 'Net.Net', 'Net.Net', ({}, {}), '()', False, 'import Net\n'), ((16, 8, 16, 37), 'PIL.Image.open', 'Image.open', ({(16, 19, 16, 36): '"""./html/rwby.jpg"""'}, {}), "('./html/rwby.jpg')", False, 'from PIL import Image\n'), ((18, 8, 18, 49), 'torch.autograd.Variable', 'torch.autograd.Variable', ({(18, 32, 18, 48): 'image[None, ...]'}, {}), '(image[None, ...])', False, 'import torch\n'), ((14, 20, 14, 37), 'torch.load', 'torch.load', ({(14, 31, 14, 36): 'MODEL'}, {}), '(MODEL)', False, 'import torch\n')]
player1537-forks/spack
var/spack/repos/builtin/packages/r-gridextra/package.py
822b7632222ec5a91dc7b7cda5fc0e08715bd47c
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RGridextra(RPackage): """Miscellaneous Functions for "Grid" Graphics. Provides a number of user-level functions to work with "grid" graphics, notably to arrange multiple grid-based plots on a page, and draw tables.""" cran = "gridExtras" version('2.3', sha256='81b60ce6f237ec308555471ae0119158b115463df696d2eca9b177ded8988e3b') version('2.2.1', sha256='44fe455a5bcdf48a4ece7a542f83e7749cf251dc1df6ae7634470240398c6818') depends_on('r-gtable', type=('build', 'run'))
[]
Magnety/tuFramework
tuframework/training/network_training/competitions_with_custom_Trainers/MMS/nnUNetTrainerV2_MMS.py
b31cb34d476ef306b52da955021f93c91c14ddf4
import torch from tuframework.network_architecture.generic_UNet import Generic_UNet from tuframework.network_architecture.initialization import InitWeights_He from tuframework.training.network_training.tuframework_variants.data_augmentation.tuframeworkTrainerV2_insaneDA import \ tuframeworkTrainerV2_insaneDA from tuframework.utilities.nd_softmax import softmax_helper from torch import nn class tuframeworkTrainerV2_MMS(tuframeworkTrainerV2_insaneDA): def setup_DA_params(self): super().setup_DA_params() self.data_aug_params["p_rot"] = 0.7 self.data_aug_params["p_eldef"] = 0.1 self.data_aug_params["p_scale"] = 0.3 self.data_aug_params["independent_scale_factor_for_each_axis"] = True self.data_aug_params["p_independent_scale_per_axis"] = 0.3 self.data_aug_params["do_additive_brightness"] = True self.data_aug_params["additive_brightness_mu"] = 0 self.data_aug_params["additive_brightness_sigma"] = 0.2 self.data_aug_params["additive_brightness_p_per_sample"] = 0.3 self.data_aug_params["additive_brightness_p_per_channel"] = 1 self.data_aug_params["elastic_deform_alpha"] = (0., 300.) self.data_aug_params["elastic_deform_sigma"] = (9., 15.) self.data_aug_params['gamma_range'] = (0.5, 1.6) def initialize_network(self): if self.threeD: conv_op = nn.Conv3d dropout_op = nn.Dropout3d norm_op = nn.BatchNorm3d else: conv_op = nn.Conv2d dropout_op = nn.Dropout2d norm_op = nn.BatchNorm2d norm_op_kwargs = {'eps': 1e-5, 'affine': True} dropout_op_kwargs = {'p': 0, 'inplace': True} net_nonlin = nn.LeakyReLU net_nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True} self.network = Generic_UNet(self.num_input_channels, self.base_num_features, self.num_classes, len(self.net_num_pool_op_kernel_sizes), self.conv_per_stage, 2, conv_op, norm_op, norm_op_kwargs, dropout_op, dropout_op_kwargs, net_nonlin, net_nonlin_kwargs, True, False, lambda x: x, InitWeights_He(1e-2), self.net_num_pool_op_kernel_sizes, self.net_conv_kernel_sizes, False, True, True) if torch.cuda.is_available(): self.network.cuda() self.network.inference_apply_nonlin = softmax_helper """def run_training(self): from batchviewer import view_batch a = next(self.tr_gen) view_batch(a['data']) import IPython;IPython.embed()"""
[((52, 11, 52, 36), 'torch.cuda.is_available', 'torch.cuda.is_available', ({}, {}), '()', False, 'import torch\n'), ((50, 93, 50, 113), 'tuframework.network_architecture.initialization.InitWeights_He', 'InitWeights_He', ({(50, 108, 50, 112): '0.01'}, {}), '(0.01)', False, 'from tuframework.network_architecture.initialization import InitWeights_He\n')]
romsok24/epiphany
ansible/playbooks/roles/repository/files/download-requirements/src/command/yum.py
f058984939561fc8d51288765976118ae12e6c32
from typing import List from src.command.command import Command class Yum(Command): """ Interface for `yum` """ def __init__(self, retries: int): super().__init__('yum', retries) def update(self, enablerepo: str, package: str = None, disablerepo: str = '*', assume_yes: bool = True): """ Interface for `yum update` :param enablerepo: :param package: :param disablerepo: :param assume_yes: if set to True, -y flag will be used """ update_parameters: List[str] = ['update'] update_parameters.append('-y' if assume_yes else '') if package is not None: update_parameters.append(package) update_parameters.append(f'--disablerepo={disablerepo}') update_parameters.append(f'--enablerepo={enablerepo}') self.run(update_parameters) def install(self, package: str, assume_yes: bool = True): """ Interface for `yum install -y` :param package: packaged to be installed :param assume_yes: if set to True, -y flag will be used """ no_ask: str = '-y' if assume_yes else '' self.run(['install', no_ask, package]) def remove(self, package: str, assume_yes: bool = True): """ Interface for `yum remove -y` :param package: packaged to be removed :param assume_yes: if set to True, -y flag will be used """ no_ask: str = '-y' if assume_yes else '' self.run(['remove', no_ask, package]) def is_repo_enabled(self, repo: str) -> bool: output = self.run(['repolist', 'enabled']).stdout if repo in output: return True return False def find_rhel_repo_id(self, patterns: List[str]) -> List[str]: output = self.run(['repolist', 'all']).stdout repos: List[str] = [] for line in output.split('\n'): for pattern in patterns: if pattern in line: repos.append(pattern) return repos def accept_keys(self): # to accept import of repo's GPG key (for repo_gpgcheck=1) self.run(['-y', 'repolist']) def is_repo_available(self, repo: str) -> bool: retval = self.run(['-q', '--disablerepo=*', f'--enablerepo={repo}', 'repoinfo']).returncode if retval == 0: return True return False def makecache(self, fast: bool = True, assume_yes: bool = True): args: List[str] = ['makecache'] args.append('-y' if assume_yes else '') if fast: args.append('fast') self.run(args) def list_all_repo_info(self) -> List[str]: args: List[str] = ['repolist', '-v', 'all'] return self._run_and_filter(args)
[]
jtagcat/koroonakaart
build/generate_confirmed_cases_by_counties.py
16a6eb24a19b286589b063742b03a123315feefc
from build.chart_data_functions import get_confirmed_cases_by_county from build.chart_data_functions import get_county_by_day from build.constants import CONFIRMED_CASES_BY_COUNTIES_PATH from build.constants import COUNTY_MAPPING from build.constants import COUNTY_POPULATION from build.constants import DATE_SETTINGS from build.constants import TEST_RESULTS_PATH from build.constants import TODAY_DMYHM from build.constants import YESTERDAY_YMD from build.utils import analyze_memory from build.utils import analyze_time from build.utils import logger from build.utils import read_json_from_file from build.utils import save_as_json import pandas as pd @analyze_time @analyze_memory def main(): # Log status logger.info("Loading local data files") test_results = read_json_from_file(TEST_RESULTS_PATH) # Log status logger.info("Calculating main statistics") # Create date ranges for charts case_dates = pd.date_range(start=DATE_SETTINGS["firstCaseDate"], end=YESTERDAY_YMD) # Get data for each chart logger.info("Calculating data for charts") county_by_day = get_county_by_day( test_results, case_dates, COUNTY_MAPPING, COUNTY_POPULATION ) confirmed_cases_by_county = get_confirmed_cases_by_county( test_results, COUNTY_MAPPING ) del county_by_day["mapPlayback"] del county_by_day["mapPlayback10k"] # Create dictionary for final JSON logger.info("Compiling final JSON") final_json = { "updatedOn": TODAY_DMYHM, "dataConfirmedCasesByCounties": confirmed_cases_by_county, "countyByDay": county_by_day, } # Dump JSON output save_as_json(CONFIRMED_CASES_BY_COUNTIES_PATH, final_json) # Log finish time logger.info("Finished update process") if __name__ == "__main__": main()
[((22, 4, 22, 43), 'build.utils.logger.info', 'logger.info', ({(22, 16, 22, 42): '"""Loading local data files"""'}, {}), "('Loading local data files')", False, 'from build.utils import logger\n'), ((23, 19, 23, 57), 'build.utils.read_json_from_file', 'read_json_from_file', ({(23, 39, 23, 56): 'TEST_RESULTS_PATH'}, {}), '(TEST_RESULTS_PATH)', False, 'from build.utils import read_json_from_file\n'), ((26, 4, 26, 46), 'build.utils.logger.info', 'logger.info', ({(26, 16, 26, 45): '"""Calculating main statistics"""'}, {}), "('Calculating main statistics')", False, 'from build.utils import logger\n'), ((29, 17, 29, 87), 'pandas.date_range', 'pd.date_range', (), '', True, 'import pandas as pd\n'), ((32, 4, 32, 46), 'build.utils.logger.info', 'logger.info', ({(32, 16, 32, 45): '"""Calculating data for charts"""'}, {}), "('Calculating data for charts')", False, 'from build.utils import logger\n'), ((33, 20, 35, 5), 'build.chart_data_functions.get_county_by_day', 'get_county_by_day', ({(34, 8, 34, 20): 'test_results', (34, 22, 34, 32): 'case_dates', (34, 34, 34, 48): 'COUNTY_MAPPING', (34, 50, 34, 67): 'COUNTY_POPULATION'}, {}), '(test_results, case_dates, COUNTY_MAPPING, COUNTY_POPULATION)', False, 'from build.chart_data_functions import get_county_by_day\n'), ((36, 32, 38, 5), 'build.chart_data_functions.get_confirmed_cases_by_county', 'get_confirmed_cases_by_county', ({(37, 8, 37, 20): 'test_results', (37, 22, 37, 36): 'COUNTY_MAPPING'}, {}), '(test_results, COUNTY_MAPPING)', False, 'from build.chart_data_functions import get_confirmed_cases_by_county\n'), ((44, 4, 44, 39), 'build.utils.logger.info', 'logger.info', ({(44, 16, 44, 38): '"""Compiling final JSON"""'}, {}), "('Compiling final JSON')", False, 'from build.utils import logger\n'), ((52, 4, 52, 62), 'build.utils.save_as_json', 'save_as_json', ({(52, 17, 52, 49): 'CONFIRMED_CASES_BY_COUNTIES_PATH', (52, 51, 52, 61): 'final_json'}, {}), '(CONFIRMED_CASES_BY_COUNTIES_PATH, final_json)', False, 'from build.utils import save_as_json\n'), ((55, 4, 55, 42), 'build.utils.logger.info', 'logger.info', ({(55, 16, 55, 41): '"""Finished update process"""'}, {}), "('Finished update process')", False, 'from build.utils import logger\n')]