repo_name
stringlengths
7
94
repo_path
stringlengths
4
237
repo_head_hexsha
stringlengths
40
40
content
stringlengths
10
680k
apis
stringlengths
2
840k
hanrui1sensetime/mmdeploy
mmdeploy/backend/tensorrt/init_plugins.py
f2594c624b67910e55e24418832bd96685425b2f
# Copyright (c) OpenMMLab. All rights reserved. import ctypes import glob import logging import os def get_ops_path() -> str: """Get path of the TensorRT plugin library. Returns: str: A path of the TensorRT plugin library. """ wildcard = os.path.abspath( os.path.join( os.path.dirname(__file__), '../../../build/lib/libmmdeploy_tensorrt_ops.so')) paths = glob.glob(wildcard) lib_path = paths[0] if len(paths) > 0 else '' return lib_path def load_tensorrt_plugin() -> bool: """Load TensorRT plugins library. Returns: bool: True if TensorRT plugin library is successfully loaded. """ lib_path = get_ops_path() success = False if os.path.exists(lib_path): ctypes.CDLL(lib_path) logging.info(f'Successfully loaded tensorrt plugins from {lib_path}') success = True else: logging.warning(f'Could not load the library of tensorrt plugins. \ Because the file does not exist: {lib_path}') return success
[((19, 12, 19, 31), 'glob.glob', 'glob.glob', ({(19, 22, 19, 30): 'wildcard'}, {}), '(wildcard)', False, 'import glob\n'), ((32, 7, 32, 31), 'os.path.exists', 'os.path.exists', ({(32, 22, 32, 30): 'lib_path'}, {}), '(lib_path)', False, 'import os\n'), ((33, 8, 33, 29), 'ctypes.CDLL', 'ctypes.CDLL', ({(33, 20, 33, 28): 'lib_path'}, {}), '(lib_path)', False, 'import ctypes\n'), ((34, 8, 34, 77), 'logging.info', 'logging.info', ({(34, 21, 34, 76): 'f"""Successfully loaded tensorrt plugins from {lib_path}"""'}, {}), "(f'Successfully loaded tensorrt plugins from {lib_path}')", False, 'import logging\n'), ((37, 8, 38, 57), 'logging.warning', 'logging.warning', ({(37, 24, 38, 56): 'f"""Could not load the library of tensorrt plugins. Because the file does not exist: {lib_path}"""'}, {}), "(\n f'Could not load the library of tensorrt plugins. Because the file does not exist: {lib_path}'\n )", False, 'import logging\n'), ((16, 12, 16, 37), 'os.path.dirname', 'os.path.dirname', ({(16, 28, 16, 36): '__file__'}, {}), '(__file__)', False, 'import os\n')]
dmitryvinn/ReAgent
reagent/test/world_model/test_seq2reward.py
f98825b9d021ec353a1f9087840a05fea259bf42
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import logging import os import random import unittest from typing import Optional import numpy as np import pytorch_lightning as pl import torch import torch.nn as nn from parameterized import parameterized from reagent.core import types as rlt from reagent.core.parameters import ( NormalizationData, NormalizationParameters, ProblemDomain, Seq2RewardTrainerParameters, ) from reagent.gym.envs import Gym from reagent.gym.utils import create_df_from_replay_buffer from reagent.models.seq2reward_model import Seq2RewardNetwork from reagent.net_builder.value.fully_connected import FullyConnected from reagent.prediction.predictor_wrapper import ( Seq2RewardWithPreprocessor, Seq2RewardPlanShortSeqWithPreprocessor, FAKE_STATE_ID_LIST_FEATURES, FAKE_STATE_ID_SCORE_LIST_FEATURES, ) from reagent.preprocessing.identify_types import DO_NOT_PREPROCESS from reagent.preprocessing.preprocessor import Preprocessor from reagent.training.utils import gen_permutations from reagent.training.world_model.compress_model_trainer import CompressModelTrainer from reagent.training.world_model.seq2reward_trainer import get_Q, Seq2RewardTrainer from torch.utils.data import DataLoader logger = logging.getLogger(__name__) SEED = 0 STRING_GAME_TESTS = [(False,), (True,)] class FakeStepPredictionNetwork(nn.Module): def __init__(self, look_ahead_steps): super().__init__() self.look_ahead_steps = look_ahead_steps def forward(self, state: torch.Tensor): """ Given the current state, predict the probability of experiencing next n steps (1 <=n <= look_ahead_steps) For the test purpose, it outputs fixed fake numbers """ batch_size, _ = state.shape return torch.ones(batch_size, self.look_ahead_steps).float() class FakeSeq2RewardNetwork(nn.Module): def forward( self, state: rlt.FeatureData, action: rlt.FeatureData, valid_reward_len: Optional[torch.Tensor] = None, ): """ Mimic I/O of Seq2RewardNetwork but return fake reward Reward is the concatenation of action indices, independent of state. For example, when seq_len = 3, batch_size = 1, action_num = 2, acc_reward = tensor( [[ 0.], [ 1.], [ 10.], [ 11.], [100.], [101.], [110.], [111.]] ) Input action shape: seq_len, batch_size, num_action Output acc_reward shape: batch_size, 1 """ # pyre-fixme[9]: action has type `FeatureData`; used as `Tensor`. action = action.float_features.transpose(0, 1) action_indices = torch.argmax(action, dim=2).tolist() acc_reward = torch.tensor( list(map(lambda x: float("".join(map(str, x))), action_indices)) ).reshape(-1, 1) logger.info(f"acc_reward: {acc_reward}") return rlt.Seq2RewardOutput(acc_reward=acc_reward) def create_string_game_data( dataset_size=10000, training_data_ratio=0.9, filter_short_sequence=False ): SEQ_LEN = 6 NUM_ACTION = 2 NUM_MDP_PER_BATCH = 5 env = Gym(env_name="StringGame-v0", set_max_steps=SEQ_LEN) df = create_df_from_replay_buffer( env=env, problem_domain=ProblemDomain.DISCRETE_ACTION, desired_size=dataset_size, multi_steps=None, ds="2020-10-10", ) if filter_short_sequence: batch_size = NUM_MDP_PER_BATCH time_diff = torch.ones(SEQ_LEN, batch_size) valid_step = SEQ_LEN * torch.ones(batch_size, dtype=torch.int64)[:, None] not_terminal = torch.Tensor( [0 if i == SEQ_LEN - 1 else 1 for i in range(SEQ_LEN)] ) not_terminal = torch.transpose(not_terminal.tile(NUM_MDP_PER_BATCH, 1), 0, 1) else: batch_size = NUM_MDP_PER_BATCH * SEQ_LEN time_diff = torch.ones(SEQ_LEN, batch_size) valid_step = torch.arange(SEQ_LEN, 0, -1).tile(NUM_MDP_PER_BATCH)[:, None] not_terminal = torch.transpose( torch.tril(torch.ones(SEQ_LEN, SEQ_LEN), diagonal=-1).tile( NUM_MDP_PER_BATCH, 1 ), 0, 1, ) num_batches = int(dataset_size / SEQ_LEN / NUM_MDP_PER_BATCH) batches = [None for _ in range(num_batches)] batch_count, batch_seq_count = 0, 0 batch_reward = torch.zeros(SEQ_LEN, batch_size) batch_action = torch.zeros(SEQ_LEN, batch_size, NUM_ACTION) batch_state = torch.zeros(SEQ_LEN, batch_size, NUM_ACTION) for mdp_id in sorted(set(df.mdp_id)): mdp = df[df["mdp_id"] == mdp_id].sort_values("sequence_number", ascending=True) if len(mdp) != SEQ_LEN: continue all_step_reward = torch.Tensor(list(mdp["reward"])) all_step_state = torch.Tensor([list(s.values()) for s in mdp["state_features"]]) all_step_action = torch.zeros_like(all_step_state) all_step_action[torch.arange(SEQ_LEN), [int(a) for a in mdp["action"]]] = 1.0 for j in range(SEQ_LEN): if filter_short_sequence and j > 0: break reward = torch.zeros_like(all_step_reward) reward[: SEQ_LEN - j] = all_step_reward[-(SEQ_LEN - j) :] batch_reward[:, batch_seq_count] = reward state = torch.zeros_like(all_step_state) state[: SEQ_LEN - j] = all_step_state[-(SEQ_LEN - j) :] batch_state[:, batch_seq_count] = state action = torch.zeros_like(all_step_action) action[: SEQ_LEN - j] = all_step_action[-(SEQ_LEN - j) :] batch_action[:, batch_seq_count] = action batch_seq_count += 1 if batch_seq_count == batch_size: batches[batch_count] = rlt.MemoryNetworkInput( reward=batch_reward, action=rlt.FeatureData(float_features=batch_action), state=rlt.FeatureData(float_features=batch_state), next_state=rlt.FeatureData( float_features=torch.zeros_like(batch_state) ), # fake, not used anyway not_terminal=not_terminal, time_diff=time_diff, valid_step=valid_step, step=None, ) batch_count += 1 batch_seq_count = 0 batch_reward = torch.zeros_like(batch_reward) batch_action = torch.zeros_like(batch_action) batch_state = torch.zeros_like(batch_state) assert batch_count == num_batches num_training_batches = int(training_data_ratio * num_batches) training_data = DataLoader( batches[:num_training_batches], collate_fn=lambda x: x[0] ) eval_data = DataLoader(batches[num_training_batches:], collate_fn=lambda x: x[0]) return training_data, eval_data def train_seq2reward_model(training_data, learning_rate=0.01, num_epochs=5): SEQ_LEN, batch_size, NUM_ACTION = next( iter(training_data) ).action.float_features.shape assert SEQ_LEN == 6 and NUM_ACTION == 2 seq2reward_network = Seq2RewardNetwork( state_dim=NUM_ACTION, action_dim=NUM_ACTION, num_hiddens=64, num_hidden_layers=2, ) trainer_param = Seq2RewardTrainerParameters( learning_rate=learning_rate, multi_steps=SEQ_LEN, action_names=["0", "1"], gamma=1.0, view_q_value=True, ) trainer = Seq2RewardTrainer( seq2reward_network=seq2reward_network, params=trainer_param ) pl.seed_everything(SEED) pl_trainer = pl.Trainer(max_epochs=num_epochs, deterministic=True) pl_trainer.fit(trainer, training_data) return trainer def eval_seq2reward_model(eval_data, seq2reward_trainer): SEQ_LEN, batch_size, NUM_ACTION = next(iter(eval_data)).action.float_features.shape initial_state = torch.Tensor([[0, 0]]) initial_state_q_values = torch.squeeze( get_Q( seq2reward_trainer.seq2reward_network, initial_state, seq2reward_trainer.all_permut, ) ) total_mse_loss = 0 total_q_values = torch.zeros(NUM_ACTION) total_action_distribution = torch.zeros(NUM_ACTION) for idx, batch in enumerate(eval_data): ( mse_loss, _, q_values, action_distribution, ) = seq2reward_trainer.validation_step(batch, idx) total_mse_loss += mse_loss total_q_values += torch.tensor(q_values) total_action_distribution += torch.tensor(action_distribution) N_eval = len(eval_data) eval_mse_loss = total_mse_loss / N_eval eval_q_values = total_q_values / N_eval eval_action_distribution = total_action_distribution / N_eval return ( initial_state_q_values, eval_mse_loss, eval_q_values, eval_action_distribution, ) def train_seq2reward_compress_model( training_data, seq2reward_network, learning_rate=0.1, num_epochs=5 ): SEQ_LEN, batch_size, NUM_ACTION = next( iter(training_data) ).action.float_features.shape assert SEQ_LEN == 6 and NUM_ACTION == 2 compress_net_builder = FullyConnected(sizes=[8, 8]) state_normalization_data = NormalizationData( dense_normalization_parameters={ 0: NormalizationParameters(feature_type=DO_NOT_PREPROCESS), 1: NormalizationParameters(feature_type=DO_NOT_PREPROCESS), } ) compress_model_network = compress_net_builder.build_value_network( state_normalization_data, output_dim=NUM_ACTION, ) trainer_param = Seq2RewardTrainerParameters( learning_rate=0.0, multi_steps=SEQ_LEN, action_names=["0", "1"], compress_model_learning_rate=learning_rate, gamma=1.0, view_q_value=True, ) trainer = CompressModelTrainer( compress_model_network=compress_model_network, seq2reward_network=seq2reward_network, params=trainer_param, ) pl.seed_everything(SEED) pl_trainer = pl.Trainer(max_epochs=num_epochs, deterministic=True) pl_trainer.fit(trainer, training_data) return trainer def eval_seq2reward_compress_model(eval_data, compress_model_trainer): SEQ_LEN, batch_size, NUM_ACTION = next(iter(eval_data)).action.float_features.shape total_mse_loss = 0 total_q_values = torch.zeros(NUM_ACTION) total_action_distribution = torch.zeros(NUM_ACTION) for idx, batch in enumerate(eval_data): ( mse_loss, q_values, action_distribution, _, ) = compress_model_trainer.validation_step(batch, idx) total_mse_loss += mse_loss total_q_values += torch.tensor(q_values) total_action_distribution += torch.tensor(action_distribution) N_eval = len(eval_data) eval_mse_loss = total_mse_loss / N_eval eval_q_values = total_q_values / N_eval eval_action_distribution = total_action_distribution / N_eval return eval_mse_loss, eval_q_values, eval_action_distribution class TestSeq2Reward(unittest.TestCase): def test_seq2reward_with_preprocessor_plan_short_sequence(self): self._test_seq2reward_with_preprocessor(plan_short_sequence=True) def test_seq2reward_with_preprocessor_plan_full_sequence(self): self._test_seq2reward_with_preprocessor(plan_short_sequence=False) def _test_seq2reward_with_preprocessor(self, plan_short_sequence): state_dim = 4 action_dim = 2 seq_len = 3 model = FakeSeq2RewardNetwork() state_normalization_parameters = { i: NormalizationParameters( feature_type=DO_NOT_PREPROCESS, mean=0.0, stddev=1.0 ) for i in range(1, state_dim) } state_preprocessor = Preprocessor(state_normalization_parameters, False) if plan_short_sequence: step_prediction_model = FakeStepPredictionNetwork(seq_len) model_with_preprocessor = Seq2RewardPlanShortSeqWithPreprocessor( model, step_prediction_model, state_preprocessor, seq_len, action_dim, ) else: model_with_preprocessor = Seq2RewardWithPreprocessor( model, state_preprocessor, seq_len, action_dim, ) input_prototype = rlt.ServingFeatureData( float_features_with_presence=state_preprocessor.input_prototype(), id_list_features=FAKE_STATE_ID_LIST_FEATURES, id_score_list_features=FAKE_STATE_ID_SCORE_LIST_FEATURES, ) q_values = model_with_preprocessor(input_prototype) if plan_short_sequence: # When planning for 1, 2, and 3 steps ahead, # the expected q values are respectively: # [0, 1], [1, 11], [11, 111] # Weighting the expected q values by predicted step # probabilities [0.33, 0.33, 0.33], we have [4, 41] expected_q_values = torch.tensor([[4.0, 41.0]]) else: expected_q_values = torch.tensor([[11.0, 111.0]]) assert torch.all(expected_q_values == q_values) def test_get_Q(self): NUM_ACTION = 2 MULTI_STEPS = 3 BATCH_SIZE = 2 STATE_DIM = 4 all_permut = gen_permutations(MULTI_STEPS, NUM_ACTION) seq2reward_network = FakeSeq2RewardNetwork() state = torch.zeros(BATCH_SIZE, STATE_DIM) q_values = get_Q(seq2reward_network, state, all_permut) expected_q_values = torch.tensor([[11.0, 111.0], [11.0, 111.0]]) logger.info(f"q_values: {q_values}") assert torch.all(expected_q_values == q_values) def test_gen_permutations_seq_len_1_action_6(self): SEQ_LEN = 1 NUM_ACTION = 6 expected_outcome = torch.tensor([[0], [1], [2], [3], [4], [5]]) self._test_gen_permutations(SEQ_LEN, NUM_ACTION, expected_outcome) def test_gen_permutations_seq_len_3_num_action_2(self): SEQ_LEN = 3 NUM_ACTION = 2 expected_outcome = torch.tensor( [ [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ] ) self._test_gen_permutations(SEQ_LEN, NUM_ACTION, expected_outcome) def _test_gen_permutations(self, SEQ_LEN, NUM_ACTION, expected_outcome): # expected shape: SEQ_LEN, PERM_NUM, ACTION_DIM result = gen_permutations(SEQ_LEN, NUM_ACTION) assert result.shape == (SEQ_LEN, NUM_ACTION ** SEQ_LEN, NUM_ACTION) outcome = torch.argmax(result.transpose(0, 1), dim=-1) assert torch.all(outcome == expected_outcome) @parameterized.expand(STRING_GAME_TESTS) @unittest.skipIf("SANDCASTLE" in os.environ, "Skipping long test on sandcastle.") def test_seq2reward_on_string_game_v0(self, filter_short_sequence): np.random.seed(SEED) random.seed(SEED) torch.manual_seed(SEED) training_data, eval_data = create_string_game_data( filter_short_sequence=filter_short_sequence ) seq2reward_trainer = train_seq2reward_model(training_data) ( initial_state_q_values, eval_mse_loss, eval_q_values, eval_action_distribution, ) = eval_seq2reward_model(eval_data, seq2reward_trainer) assert abs(initial_state_q_values[0].item() - 10) < 1.0 assert abs(initial_state_q_values[1].item() - 5) < 1.0 if filter_short_sequence: assert eval_mse_loss < 0.1 else: # Same short sequences may have different total rewards due to the missing # states and actions in previous steps, so the trained network is not able # to reduce the mse loss to values close to zero. assert eval_mse_loss < 10 compress_model_trainer = train_seq2reward_compress_model( training_data, seq2reward_trainer.seq2reward_network ) ( compress_eval_mse_loss, compress_eval_q_values, compress_eval_action_distribution, ) = eval_seq2reward_compress_model(eval_data, compress_model_trainer) assert compress_eval_mse_loss < 1e-5 assert torch.all(eval_q_values - compress_eval_q_values < 1e-5) assert torch.all( eval_action_distribution - compress_eval_action_distribution < 1e-5 )
[((39, 9, 39, 36), 'logging.getLogger', 'logging.getLogger', ({(39, 27, 39, 35): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((105, 10, 105, 62), 'reagent.gym.envs.Gym', 'Gym', (), '', False, 'from reagent.gym.envs import Gym\n'), ((106, 9, 112, 5), 'reagent.gym.utils.create_df_from_replay_buffer', 'create_df_from_replay_buffer', (), '', False, 'from reagent.gym.utils import create_df_from_replay_buffer\n'), ((137, 19, 137, 51), 'torch.zeros', 'torch.zeros', ({(137, 31, 137, 38): 'SEQ_LEN', (137, 40, 137, 50): 'batch_size'}, {}), '(SEQ_LEN, batch_size)', False, 'import torch\n'), ((138, 19, 138, 63), 'torch.zeros', 'torch.zeros', ({(138, 31, 138, 38): 'SEQ_LEN', (138, 40, 138, 50): 'batch_size', (138, 52, 138, 62): 'NUM_ACTION'}, {}), '(SEQ_LEN, batch_size, NUM_ACTION)', False, 'import torch\n'), ((139, 18, 139, 62), 'torch.zeros', 'torch.zeros', ({(139, 30, 139, 37): 'SEQ_LEN', (139, 39, 139, 49): 'batch_size', (139, 51, 139, 61): 'NUM_ACTION'}, {}), '(SEQ_LEN, batch_size, NUM_ACTION)', False, 'import torch\n'), ((189, 20, 191, 5), 'torch.utils.data.DataLoader', 'DataLoader', (), '', False, 'from torch.utils.data import DataLoader\n'), ((192, 16, 192, 85), 'torch.utils.data.DataLoader', 'DataLoader', (), '', False, 'from torch.utils.data import DataLoader\n'), ((202, 25, 207, 5), 'reagent.models.seq2reward_model.Seq2RewardNetwork', 'Seq2RewardNetwork', (), '', False, 'from reagent.models.seq2reward_model import Seq2RewardNetwork\n'), ((209, 20, 215, 5), 'reagent.core.parameters.Seq2RewardTrainerParameters', 'Seq2RewardTrainerParameters', (), '', False, 'from reagent.core.parameters import NormalizationData, NormalizationParameters, ProblemDomain, Seq2RewardTrainerParameters\n'), ((217, 14, 219, 5), 'reagent.training.world_model.seq2reward_trainer.Seq2RewardTrainer', 'Seq2RewardTrainer', (), '', False, 'from reagent.training.world_model.seq2reward_trainer import get_Q, Seq2RewardTrainer\n'), ((221, 4, 221, 28), 'pytorch_lightning.seed_everything', 'pl.seed_everything', ({(221, 23, 221, 27): 'SEED'}, {}), '(SEED)', True, 'import pytorch_lightning as pl\n'), ((222, 17, 222, 70), 'pytorch_lightning.Trainer', 'pl.Trainer', (), '', True, 'import pytorch_lightning as pl\n'), ((231, 20, 231, 42), 'torch.Tensor', 'torch.Tensor', ({(231, 33, 231, 41): '[[0, 0]]'}, {}), '([[0, 0]])', False, 'import torch\n'), ((241, 21, 241, 44), 'torch.zeros', 'torch.zeros', ({(241, 33, 241, 43): 'NUM_ACTION'}, {}), '(NUM_ACTION)', False, 'import torch\n'), ((242, 32, 242, 55), 'torch.zeros', 'torch.zeros', ({(242, 44, 242, 54): 'NUM_ACTION'}, {}), '(NUM_ACTION)', False, 'import torch\n'), ((275, 27, 275, 55), 'reagent.net_builder.value.fully_connected.FullyConnected', 'FullyConnected', (), '', False, 'from reagent.net_builder.value.fully_connected import FullyConnected\n'), ((287, 20, 294, 5), 'reagent.core.parameters.Seq2RewardTrainerParameters', 'Seq2RewardTrainerParameters', (), '', False, 'from reagent.core.parameters import NormalizationData, NormalizationParameters, ProblemDomain, Seq2RewardTrainerParameters\n'), ((296, 14, 300, 5), 'reagent.training.world_model.compress_model_trainer.CompressModelTrainer', 'CompressModelTrainer', (), '', False, 'from reagent.training.world_model.compress_model_trainer import CompressModelTrainer\n'), ((302, 4, 302, 28), 'pytorch_lightning.seed_everything', 'pl.seed_everything', ({(302, 23, 302, 27): 'SEED'}, {}), '(SEED)', True, 'import pytorch_lightning as pl\n'), ((303, 17, 303, 70), 'pytorch_lightning.Trainer', 'pl.Trainer', (), '', True, 'import pytorch_lightning as pl\n'), ((312, 21, 312, 44), 'torch.zeros', 'torch.zeros', ({(312, 33, 312, 43): 'NUM_ACTION'}, {}), '(NUM_ACTION)', False, 'import torch\n'), ((313, 32, 313, 55), 'torch.zeros', 'torch.zeros', ({(313, 44, 313, 54): 'NUM_ACTION'}, {}), '(NUM_ACTION)', False, 'import torch\n'), ((429, 5, 429, 44), 'parameterized.parameterized.expand', 'parameterized.expand', ({(429, 26, 429, 43): 'STRING_GAME_TESTS'}, {}), '(STRING_GAME_TESTS)', False, 'from parameterized import parameterized\n'), ((430, 5, 430, 85), 'unittest.skipIf', 'unittest.skipIf', ({(430, 21, 430, 47): "('SANDCASTLE' in os.environ)", (430, 49, 430, 84): '"""Skipping long test on sandcastle."""'}, {}), "('SANDCASTLE' in os.environ, 'Skipping long test on sandcastle.'\n )", False, 'import unittest\n'), ((95, 15, 95, 58), 'reagent.core.types.Seq2RewardOutput', 'rlt.Seq2RewardOutput', (), '', True, 'from reagent.core import types as rlt\n'), ((116, 20, 116, 51), 'torch.ones', 'torch.ones', ({(116, 31, 116, 38): 'SEQ_LEN', (116, 40, 116, 50): 'batch_size'}, {}), '(SEQ_LEN, batch_size)', False, 'import torch\n'), ((124, 20, 124, 51), 'torch.ones', 'torch.ones', ({(124, 31, 124, 38): 'SEQ_LEN', (124, 40, 124, 50): 'batch_size'}, {}), '(SEQ_LEN, batch_size)', False, 'import torch\n'), ((147, 26, 147, 58), 'torch.zeros_like', 'torch.zeros_like', ({(147, 43, 147, 57): 'all_step_state'}, {}), '(all_step_state)', False, 'import torch\n'), ((233, 8, 237, 9), 'reagent.training.world_model.seq2reward_trainer.get_Q', 'get_Q', ({(234, 12, 234, 49): 'seq2reward_trainer.seq2reward_network', (235, 12, 235, 25): 'initial_state', (236, 12, 236, 41): 'seq2reward_trainer.all_permut'}, {}), '(seq2reward_trainer.seq2reward_network, initial_state,\n seq2reward_trainer.all_permut)', False, 'from reagent.training.world_model.seq2reward_trainer import get_Q, Seq2RewardTrainer\n'), ((251, 26, 251, 48), 'torch.tensor', 'torch.tensor', ({(251, 39, 251, 47): 'q_values'}, {}), '(q_values)', False, 'import torch\n'), ((252, 37, 252, 70), 'torch.tensor', 'torch.tensor', ({(252, 50, 252, 69): 'action_distribution'}, {}), '(action_distribution)', False, 'import torch\n'), ((322, 26, 322, 48), 'torch.tensor', 'torch.tensor', ({(322, 39, 322, 47): 'q_values'}, {}), '(q_values)', False, 'import torch\n'), ((323, 37, 323, 70), 'torch.tensor', 'torch.tensor', ({(323, 50, 323, 69): 'action_distribution'}, {}), '(action_distribution)', False, 'import torch\n'), ((351, 29, 351, 80), 'reagent.preprocessing.preprocessor.Preprocessor', 'Preprocessor', ({(351, 42, 351, 72): 'state_normalization_parameters', (351, 74, 351, 79): 'False'}, {}), '(state_normalization_parameters, False)', False, 'from reagent.preprocessing.preprocessor import Preprocessor\n'), ((384, 15, 384, 55), 'torch.all', 'torch.all', ({(384, 25, 384, 54): '(expected_q_values == q_values)'}, {}), '(expected_q_values == q_values)', False, 'import torch\n'), ((391, 21, 391, 62), 'reagent.training.utils.gen_permutations', 'gen_permutations', ({(391, 38, 391, 49): 'MULTI_STEPS', (391, 51, 391, 61): 'NUM_ACTION'}, {}), '(MULTI_STEPS, NUM_ACTION)', False, 'from reagent.training.utils import gen_permutations\n'), ((393, 16, 393, 50), 'torch.zeros', 'torch.zeros', ({(393, 28, 393, 38): 'BATCH_SIZE', (393, 40, 393, 49): 'STATE_DIM'}, {}), '(BATCH_SIZE, STATE_DIM)', False, 'import torch\n'), ((394, 19, 394, 63), 'reagent.training.world_model.seq2reward_trainer.get_Q', 'get_Q', ({(394, 25, 394, 43): 'seq2reward_network', (394, 45, 394, 50): 'state', (394, 52, 394, 62): 'all_permut'}, {}), '(seq2reward_network, state, all_permut)', False, 'from reagent.training.world_model.seq2reward_trainer import get_Q, Seq2RewardTrainer\n'), ((395, 28, 395, 72), 'torch.tensor', 'torch.tensor', ({(395, 41, 395, 71): '[[11.0, 111.0], [11.0, 111.0]]'}, {}), '([[11.0, 111.0], [11.0, 111.0]])', False, 'import torch\n'), ((397, 15, 397, 55), 'torch.all', 'torch.all', ({(397, 25, 397, 54): '(expected_q_values == q_values)'}, {}), '(expected_q_values == q_values)', False, 'import torch\n'), ((402, 27, 402, 71), 'torch.tensor', 'torch.tensor', ({(402, 40, 402, 70): '[[0], [1], [2], [3], [4], [5]]'}, {}), '([[0], [1], [2], [3], [4], [5]])', False, 'import torch\n'), ((408, 27, 419, 9), 'torch.tensor', 'torch.tensor', ({(409, 12, 418, 13): '[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0\n ], [1, 1, 1]]'}, {}), '([[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0,\n 1], [1, 1, 0], [1, 1, 1]])', False, 'import torch\n'), ((424, 17, 424, 54), 'reagent.training.utils.gen_permutations', 'gen_permutations', ({(424, 34, 424, 41): 'SEQ_LEN', (424, 43, 424, 53): 'NUM_ACTION'}, {}), '(SEQ_LEN, NUM_ACTION)', False, 'from reagent.training.utils import gen_permutations\n'), ((427, 15, 427, 53), 'torch.all', 'torch.all', ({(427, 25, 427, 52): '(outcome == expected_outcome)'}, {}), '(outcome == expected_outcome)', False, 'import torch\n'), ((432, 8, 432, 28), 'numpy.random.seed', 'np.random.seed', ({(432, 23, 432, 27): 'SEED'}, {}), '(SEED)', True, 'import numpy as np\n'), ((433, 8, 433, 25), 'random.seed', 'random.seed', ({(433, 20, 433, 24): 'SEED'}, {}), '(SEED)', False, 'import random\n'), ((434, 8, 434, 31), 'torch.manual_seed', 'torch.manual_seed', ({(434, 26, 434, 30): 'SEED'}, {}), '(SEED)', False, 'import torch\n'), ((467, 15, 467, 71), 'torch.all', 'torch.all', ({(467, 25, 467, 70): '(eval_q_values - compress_eval_q_values < 1e-05)'}, {}), '(eval_q_values - compress_eval_q_values < 1e-05)', False, 'import torch\n'), ((468, 15, 470, 9), 'torch.all', 'torch.all', ({(469, 12, 469, 79): '(eval_action_distribution - compress_eval_action_distribution < 1e-05)'}, {}), '(eval_action_distribution - compress_eval_action_distribution < 1e-05)', False, 'import torch\n'), ((154, 21, 154, 54), 'torch.zeros_like', 'torch.zeros_like', ({(154, 38, 154, 53): 'all_step_reward'}, {}), '(all_step_reward)', False, 'import torch\n'), ((158, 20, 158, 52), 'torch.zeros_like', 'torch.zeros_like', ({(158, 37, 158, 51): 'all_step_state'}, {}), '(all_step_state)', False, 'import torch\n'), ((162, 21, 162, 54), 'torch.zeros_like', 'torch.zeros_like', ({(162, 38, 162, 53): 'all_step_action'}, {}), '(all_step_action)', False, 'import torch\n'), ((183, 27, 183, 57), 'torch.zeros_like', 'torch.zeros_like', ({(183, 44, 183, 56): 'batch_reward'}, {}), '(batch_reward)', False, 'import torch\n'), ((184, 27, 184, 57), 'torch.zeros_like', 'torch.zeros_like', ({(184, 44, 184, 56): 'batch_action'}, {}), '(batch_action)', False, 'import torch\n'), ((185, 26, 185, 55), 'torch.zeros_like', 'torch.zeros_like', ({(185, 43, 185, 54): 'batch_state'}, {}), '(batch_state)', False, 'import torch\n'), ((346, 15, 348, 13), 'reagent.core.parameters.NormalizationParameters', 'NormalizationParameters', (), '', False, 'from reagent.core.parameters import NormalizationData, NormalizationParameters, ProblemDomain, Seq2RewardTrainerParameters\n'), ((355, 38, 361, 13), 'reagent.prediction.predictor_wrapper.Seq2RewardPlanShortSeqWithPreprocessor', 'Seq2RewardPlanShortSeqWithPreprocessor', ({(356, 16, 356, 21): 'model', (357, 16, 357, 37): 'step_prediction_model', (358, 16, 358, 34): 'state_preprocessor', (359, 16, 359, 23): 'seq_len', (360, 16, 360, 26): 'action_dim'}, {}), '(model, step_prediction_model,\n state_preprocessor, seq_len, action_dim)', False, 'from reagent.prediction.predictor_wrapper import Seq2RewardWithPreprocessor, Seq2RewardPlanShortSeqWithPreprocessor, FAKE_STATE_ID_LIST_FEATURES, FAKE_STATE_ID_SCORE_LIST_FEATURES\n'), ((363, 38, 368, 13), 'reagent.prediction.predictor_wrapper.Seq2RewardWithPreprocessor', 'Seq2RewardWithPreprocessor', ({(364, 16, 364, 21): 'model', (365, 16, 365, 34): 'state_preprocessor', (366, 16, 366, 23): 'seq_len', (367, 16, 367, 26): 'action_dim'}, {}), '(model, state_preprocessor, seq_len, action_dim)', False, 'from reagent.prediction.predictor_wrapper import Seq2RewardWithPreprocessor, Seq2RewardPlanShortSeqWithPreprocessor, FAKE_STATE_ID_LIST_FEATURES, FAKE_STATE_ID_SCORE_LIST_FEATURES\n'), ((381, 32, 381, 59), 'torch.tensor', 'torch.tensor', ({(381, 45, 381, 58): '[[4.0, 41.0]]'}, {}), '([[4.0, 41.0]])', False, 'import torch\n'), ((383, 32, 383, 61), 'torch.tensor', 'torch.tensor', ({(383, 45, 383, 60): '[[11.0, 111.0]]'}, {}), '([[11.0, 111.0]])', False, 'import torch\n'), ((58, 15, 58, 60), 'torch.ones', 'torch.ones', ({(58, 26, 58, 36): 'batch_size', (58, 38, 58, 59): 'self.look_ahead_steps'}, {}), '(batch_size, self.look_ahead_steps)', False, 'import torch\n'), ((90, 25, 90, 52), 'torch.argmax', 'torch.argmax', (), '', False, 'import torch\n'), ((117, 31, 117, 72), 'torch.ones', 'torch.ones', (), '', False, 'import torch\n'), ((278, 15, 278, 70), 'reagent.core.parameters.NormalizationParameters', 'NormalizationParameters', (), '', False, 'from reagent.core.parameters import NormalizationData, NormalizationParameters, ProblemDomain, Seq2RewardTrainerParameters\n'), ((279, 15, 279, 70), 'reagent.core.parameters.NormalizationParameters', 'NormalizationParameters', (), '', False, 'from reagent.core.parameters import NormalizationData, NormalizationParameters, ProblemDomain, Seq2RewardTrainerParameters\n'), ((125, 21, 125, 49), 'torch.arange', 'torch.arange', ({(125, 34, 125, 41): 'SEQ_LEN', (125, 43, 125, 44): '(0)', (125, 46, 125, 48): '(-1)'}, {}), '(SEQ_LEN, 0, -1)', False, 'import torch\n'), ((148, 24, 148, 45), 'torch.arange', 'torch.arange', ({(148, 37, 148, 44): 'SEQ_LEN'}, {}), '(SEQ_LEN)', False, 'import torch\n'), ((171, 23, 171, 67), 'reagent.core.types.FeatureData', 'rlt.FeatureData', (), '', True, 'from reagent.core import types as rlt\n'), ((172, 22, 172, 65), 'reagent.core.types.FeatureData', 'rlt.FeatureData', (), '', True, 'from reagent.core import types as rlt\n'), ((127, 23, 127, 51), 'torch.ones', 'torch.ones', ({(127, 34, 127, 41): 'SEQ_LEN', (127, 43, 127, 50): 'SEQ_LEN'}, {}), '(SEQ_LEN, SEQ_LEN)', False, 'import torch\n'), ((174, 35, 174, 64), 'torch.zeros_like', 'torch.zeros_like', ({(174, 52, 174, 63): 'batch_state'}, {}), '(batch_state)', False, 'import torch\n')]
grossmann-group/pyomo-MINLP-benchmarking
models_SHOT_convex/syn30m03hfsg.py
714f0a0dffd61675649a805683c0627af6b4929e
# MINLP written by GAMS Convert at 01/15/21 11:37:33 # # Equation counts # Total E G L N X C B # 1486 571 111 804 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 865 685 180 0 0 0 0 0 # FX 0 0 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 3373 3193 180 0 # # Reformulation has removed 1 variable and 1 equation from pyomo.environ import * model = m = ConcreteModel() m.x2 = Var(within=Reals,bounds=(0,40),initialize=0) m.x3 = Var(within=Reals,bounds=(0,40),initialize=0) m.x4 = Var(within=Reals,bounds=(0,40),initialize=0) m.x5 = Var(within=Reals,bounds=(0,None),initialize=0) m.x6 = Var(within=Reals,bounds=(0,None),initialize=0) m.x7 = Var(within=Reals,bounds=(0,None),initialize=0) m.x8 = Var(within=Reals,bounds=(0,None),initialize=0) m.x9 = Var(within=Reals,bounds=(0,None),initialize=0) m.x10 = Var(within=Reals,bounds=(0,None),initialize=0) m.x11 = Var(within=Reals,bounds=(0,None),initialize=0) m.x12 = Var(within=Reals,bounds=(0,None),initialize=0) m.x13 = Var(within=Reals,bounds=(0,None),initialize=0) m.x14 = Var(within=Reals,bounds=(0,None),initialize=0) m.x15 = Var(within=Reals,bounds=(0,None),initialize=0) m.x16 = Var(within=Reals,bounds=(0,None),initialize=0) m.x17 = Var(within=Reals,bounds=(0,None),initialize=0) m.x18 = Var(within=Reals,bounds=(0,None),initialize=0) m.x19 = Var(within=Reals,bounds=(0,None),initialize=0) m.x20 = Var(within=Reals,bounds=(0,None),initialize=0) m.x21 = Var(within=Reals,bounds=(0,None),initialize=0) m.x22 = Var(within=Reals,bounds=(0,None),initialize=0) m.x23 = Var(within=Reals,bounds=(0,None),initialize=0) m.x24 = Var(within=Reals,bounds=(0,None),initialize=0) m.x25 = Var(within=Reals,bounds=(0,None),initialize=0) m.x26 = Var(within=Reals,bounds=(0,None),initialize=0) m.x27 = Var(within=Reals,bounds=(0,None),initialize=0) m.x28 = Var(within=Reals,bounds=(0,None),initialize=0) m.x29 = Var(within=Reals,bounds=(0,None),initialize=0) m.x30 = Var(within=Reals,bounds=(0,None),initialize=0) m.x31 = Var(within=Reals,bounds=(0,None),initialize=0) m.x32 = Var(within=Reals,bounds=(0,None),initialize=0) m.x33 = Var(within=Reals,bounds=(0,None),initialize=0) m.x34 = Var(within=Reals,bounds=(0,None),initialize=0) m.x35 = Var(within=Reals,bounds=(0,30),initialize=0) m.x36 = Var(within=Reals,bounds=(0,30),initialize=0) m.x37 = Var(within=Reals,bounds=(0,30),initialize=0) m.x38 = Var(within=Reals,bounds=(0,None),initialize=0) m.x39 = Var(within=Reals,bounds=(0,None),initialize=0) m.x40 = Var(within=Reals,bounds=(0,None),initialize=0) m.x41 = Var(within=Reals,bounds=(0,None),initialize=0) m.x42 = Var(within=Reals,bounds=(0,None),initialize=0) m.x43 = Var(within=Reals,bounds=(0,None),initialize=0) m.x44 = Var(within=Reals,bounds=(0,None),initialize=0) m.x45 = Var(within=Reals,bounds=(0,None),initialize=0) m.x46 = Var(within=Reals,bounds=(0,None),initialize=0) m.x47 = Var(within=Reals,bounds=(0,None),initialize=0) m.x48 = Var(within=Reals,bounds=(0,None),initialize=0) m.x49 = Var(within=Reals,bounds=(0,None),initialize=0) m.x50 = Var(within=Reals,bounds=(0,None),initialize=0) m.x51 = Var(within=Reals,bounds=(0,None),initialize=0) m.x52 = Var(within=Reals,bounds=(0,None),initialize=0) m.x53 = Var(within=Reals,bounds=(0,None),initialize=0) m.x54 = Var(within=Reals,bounds=(0,None),initialize=0) m.x55 = Var(within=Reals,bounds=(0,None),initialize=0) m.x56 = Var(within=Reals,bounds=(0,None),initialize=0) m.x57 = Var(within=Reals,bounds=(0,None),initialize=0) m.x58 = Var(within=Reals,bounds=(0,None),initialize=0) m.x59 = Var(within=Reals,bounds=(0,None),initialize=0) m.x60 = Var(within=Reals,bounds=(0,None),initialize=0) m.x61 = Var(within=Reals,bounds=(0,None),initialize=0) m.x62 = Var(within=Reals,bounds=(0,None),initialize=0) m.x63 = Var(within=Reals,bounds=(0,None),initialize=0) m.x64 = Var(within=Reals,bounds=(0,None),initialize=0) m.x65 = Var(within=Reals,bounds=(0,None),initialize=0) m.x66 = Var(within=Reals,bounds=(0,None),initialize=0) m.x67 = Var(within=Reals,bounds=(0,None),initialize=0) m.x68 = Var(within=Reals,bounds=(0,None),initialize=0) m.x69 = Var(within=Reals,bounds=(0,None),initialize=0) m.x70 = Var(within=Reals,bounds=(0,None),initialize=0) m.x71 = Var(within=Reals,bounds=(0,None),initialize=0) m.x72 = Var(within=Reals,bounds=(0,None),initialize=0) m.x73 = Var(within=Reals,bounds=(0,None),initialize=0) m.x74 = Var(within=Reals,bounds=(0,None),initialize=0) m.x75 = Var(within=Reals,bounds=(0,None),initialize=0) m.x76 = Var(within=Reals,bounds=(0,None),initialize=0) m.x77 = Var(within=Reals,bounds=(0,None),initialize=0) m.x78 = Var(within=Reals,bounds=(0,None),initialize=0) m.x79 = Var(within=Reals,bounds=(0,None),initialize=0) m.x80 = Var(within=Reals,bounds=(0,None),initialize=0) m.x81 = Var(within=Reals,bounds=(0,None),initialize=0) m.x82 = Var(within=Reals,bounds=(0,None),initialize=0) m.x83 = Var(within=Reals,bounds=(0,None),initialize=0) m.x84 = Var(within=Reals,bounds=(0,None),initialize=0) m.x85 = Var(within=Reals,bounds=(0,None),initialize=0) m.x86 = Var(within=Reals,bounds=(0,20),initialize=0) m.x87 = Var(within=Reals,bounds=(0,20),initialize=0) m.x88 = Var(within=Reals,bounds=(0,20),initialize=0) m.x89 = Var(within=Reals,bounds=(0,20),initialize=0) m.x90 = Var(within=Reals,bounds=(0,20),initialize=0) m.x91 = Var(within=Reals,bounds=(0,20),initialize=0) m.x92 = Var(within=Reals,bounds=(0,None),initialize=0) m.x93 = Var(within=Reals,bounds=(0,None),initialize=0) m.x94 = Var(within=Reals,bounds=(0,None),initialize=0) m.x95 = Var(within=Reals,bounds=(0,None),initialize=0) m.x96 = Var(within=Reals,bounds=(0,None),initialize=0) m.x97 = Var(within=Reals,bounds=(0,None),initialize=0) m.x98 = Var(within=Reals,bounds=(0,None),initialize=0) m.x99 = Var(within=Reals,bounds=(0,None),initialize=0) m.x100 = Var(within=Reals,bounds=(0,None),initialize=0) m.x101 = Var(within=Reals,bounds=(0,None),initialize=0) m.x102 = Var(within=Reals,bounds=(0,None),initialize=0) m.x103 = Var(within=Reals,bounds=(0,None),initialize=0) m.x104 = Var(within=Reals,bounds=(0,None),initialize=0) m.x105 = Var(within=Reals,bounds=(0,None),initialize=0) m.x106 = Var(within=Reals,bounds=(0,None),initialize=0) m.x107 = Var(within=Reals,bounds=(0,None),initialize=0) m.x108 = Var(within=Reals,bounds=(0,None),initialize=0) m.x109 = Var(within=Reals,bounds=(0,None),initialize=0) m.x110 = Var(within=Reals,bounds=(0,None),initialize=0) m.x111 = Var(within=Reals,bounds=(0,None),initialize=0) m.x112 = Var(within=Reals,bounds=(0,None),initialize=0) m.x113 = Var(within=Reals,bounds=(0,None),initialize=0) m.x114 = Var(within=Reals,bounds=(0,None),initialize=0) m.x115 = Var(within=Reals,bounds=(0,None),initialize=0) m.x116 = Var(within=Reals,bounds=(0,None),initialize=0) m.x117 = Var(within=Reals,bounds=(0,None),initialize=0) m.x118 = Var(within=Reals,bounds=(0,None),initialize=0) m.x119 = Var(within=Reals,bounds=(0,None),initialize=0) m.x120 = Var(within=Reals,bounds=(0,None),initialize=0) m.x121 = Var(within=Reals,bounds=(0,None),initialize=0) m.x122 = Var(within=Reals,bounds=(0,None),initialize=0) m.x123 = Var(within=Reals,bounds=(0,None),initialize=0) m.x124 = Var(within=Reals,bounds=(0,None),initialize=0) m.x125 = Var(within=Reals,bounds=(0,None),initialize=0) m.x126 = Var(within=Reals,bounds=(0,None),initialize=0) m.x127 = Var(within=Reals,bounds=(0,None),initialize=0) m.x128 = Var(within=Reals,bounds=(0,None),initialize=0) m.x129 = Var(within=Reals,bounds=(0,None),initialize=0) m.x130 = Var(within=Reals,bounds=(0,None),initialize=0) m.x131 = Var(within=Reals,bounds=(0,None),initialize=0) m.x132 = Var(within=Reals,bounds=(0,None),initialize=0) m.x133 = Var(within=Reals,bounds=(0,None),initialize=0) m.x134 = Var(within=Reals,bounds=(0,None),initialize=0) m.x135 = Var(within=Reals,bounds=(0,None),initialize=0) m.x136 = Var(within=Reals,bounds=(0,None),initialize=0) m.x137 = Var(within=Reals,bounds=(0,None),initialize=0) m.x138 = Var(within=Reals,bounds=(0,None),initialize=0) m.x139 = Var(within=Reals,bounds=(0,None),initialize=0) m.x140 = Var(within=Reals,bounds=(0,None),initialize=0) m.x141 = Var(within=Reals,bounds=(0,None),initialize=0) m.x142 = Var(within=Reals,bounds=(0,None),initialize=0) m.x143 = Var(within=Reals,bounds=(0,None),initialize=0) m.x144 = Var(within=Reals,bounds=(0,None),initialize=0) m.x145 = Var(within=Reals,bounds=(0,None),initialize=0) m.x146 = Var(within=Reals,bounds=(0,None),initialize=0) m.x147 = Var(within=Reals,bounds=(0,None),initialize=0) m.x148 = Var(within=Reals,bounds=(0,None),initialize=0) m.x149 = Var(within=Reals,bounds=(0,None),initialize=0) m.x150 = Var(within=Reals,bounds=(0,None),initialize=0) m.x151 = Var(within=Reals,bounds=(0,None),initialize=0) m.x152 = Var(within=Reals,bounds=(0,None),initialize=0) m.x153 = Var(within=Reals,bounds=(0,None),initialize=0) m.x154 = Var(within=Reals,bounds=(0,None),initialize=0) m.x155 = Var(within=Reals,bounds=(0,None),initialize=0) m.x156 = Var(within=Reals,bounds=(0,None),initialize=0) m.x157 = Var(within=Reals,bounds=(0,None),initialize=0) m.x158 = Var(within=Reals,bounds=(0,None),initialize=0) m.x159 = Var(within=Reals,bounds=(0,None),initialize=0) m.x160 = Var(within=Reals,bounds=(0,None),initialize=0) m.x161 = Var(within=Reals,bounds=(0,None),initialize=0) m.x162 = Var(within=Reals,bounds=(0,None),initialize=0) m.x163 = Var(within=Reals,bounds=(0,None),initialize=0) m.x164 = Var(within=Reals,bounds=(0,None),initialize=0) m.x165 = Var(within=Reals,bounds=(0,None),initialize=0) m.x166 = Var(within=Reals,bounds=(0,None),initialize=0) m.x167 = Var(within=Reals,bounds=(0,None),initialize=0) m.x168 = Var(within=Reals,bounds=(0,None),initialize=0) m.x169 = Var(within=Reals,bounds=(0,None),initialize=0) m.x170 = Var(within=Reals,bounds=(0,30),initialize=0) m.x171 = Var(within=Reals,bounds=(0,30),initialize=0) m.x172 = Var(within=Reals,bounds=(0,30),initialize=0) m.x173 = Var(within=Reals,bounds=(0,None),initialize=0) m.x174 = Var(within=Reals,bounds=(0,None),initialize=0) m.x175 = Var(within=Reals,bounds=(0,None),initialize=0) m.x176 = Var(within=Reals,bounds=(0,None),initialize=0) m.x177 = Var(within=Reals,bounds=(0,None),initialize=0) m.x178 = Var(within=Reals,bounds=(0,None),initialize=0) m.x179 = Var(within=Reals,bounds=(0,None),initialize=0) m.x180 = Var(within=Reals,bounds=(0,None),initialize=0) m.x181 = Var(within=Reals,bounds=(0,None),initialize=0) m.x182 = Var(within=Reals,bounds=(0,None),initialize=0) m.x183 = Var(within=Reals,bounds=(0,None),initialize=0) m.x184 = Var(within=Reals,bounds=(0,None),initialize=0) m.x185 = Var(within=Reals,bounds=(0,None),initialize=0) m.x186 = Var(within=Reals,bounds=(0,None),initialize=0) m.x187 = Var(within=Reals,bounds=(0,None),initialize=0) m.x188 = Var(within=Reals,bounds=(0,None),initialize=0) m.x189 = Var(within=Reals,bounds=(0,None),initialize=0) m.x190 = Var(within=Reals,bounds=(0,None),initialize=0) m.x191 = Var(within=Reals,bounds=(0,None),initialize=0) m.x192 = Var(within=Reals,bounds=(0,None),initialize=0) m.x193 = Var(within=Reals,bounds=(0,None),initialize=0) m.x194 = Var(within=Reals,bounds=(0,None),initialize=0) m.x195 = Var(within=Reals,bounds=(0,None),initialize=0) m.x196 = Var(within=Reals,bounds=(0,None),initialize=0) m.x197 = Var(within=Reals,bounds=(0,None),initialize=0) m.x198 = Var(within=Reals,bounds=(0,None),initialize=0) m.x199 = Var(within=Reals,bounds=(0,None),initialize=0) m.x200 = Var(within=Reals,bounds=(0,None),initialize=0) m.x201 = Var(within=Reals,bounds=(0,None),initialize=0) m.x202 = Var(within=Reals,bounds=(0,None),initialize=0) m.x203 = Var(within=Reals,bounds=(0,None),initialize=0) m.x204 = Var(within=Reals,bounds=(0,None),initialize=0) m.x205 = Var(within=Reals,bounds=(0,None),initialize=0) m.x206 = Var(within=Reals,bounds=(0,None),initialize=0) m.x207 = Var(within=Reals,bounds=(0,None),initialize=0) m.x208 = Var(within=Reals,bounds=(0,None),initialize=0) m.x209 = Var(within=Reals,bounds=(0,None),initialize=0) m.x210 = Var(within=Reals,bounds=(0,None),initialize=0) m.x211 = Var(within=Reals,bounds=(0,None),initialize=0) m.x212 = Var(within=Reals,bounds=(0,None),initialize=0) m.x213 = Var(within=Reals,bounds=(0,None),initialize=0) m.x214 = Var(within=Reals,bounds=(0,None),initialize=0) m.x215 = Var(within=Reals,bounds=(0,None),initialize=0) m.x216 = Var(within=Reals,bounds=(0,None),initialize=0) m.x217 = Var(within=Reals,bounds=(0,None),initialize=0) m.x218 = Var(within=Reals,bounds=(0,None),initialize=0) m.x219 = Var(within=Reals,bounds=(0,None),initialize=0) m.x220 = Var(within=Reals,bounds=(0,None),initialize=0) m.x221 = Var(within=Reals,bounds=(0,None),initialize=0) m.x222 = Var(within=Reals,bounds=(0,None),initialize=0) m.x223 = Var(within=Reals,bounds=(0,None),initialize=0) m.x224 = Var(within=Reals,bounds=(0,None),initialize=0) m.x225 = Var(within=Reals,bounds=(0,None),initialize=0) m.x226 = Var(within=Reals,bounds=(0,None),initialize=0) m.x227 = Var(within=Reals,bounds=(0,None),initialize=0) m.x228 = Var(within=Reals,bounds=(0,None),initialize=0) m.x229 = Var(within=Reals,bounds=(0,None),initialize=0) m.x230 = Var(within=Reals,bounds=(0,None),initialize=0) m.x231 = Var(within=Reals,bounds=(0,None),initialize=0) m.x232 = Var(within=Reals,bounds=(0,None),initialize=0) m.x233 = Var(within=Reals,bounds=(0,None),initialize=0) m.x234 = Var(within=Reals,bounds=(0,None),initialize=0) m.x235 = Var(within=Reals,bounds=(0,None),initialize=0) m.x236 = Var(within=Reals,bounds=(0,None),initialize=0) m.x237 = Var(within=Reals,bounds=(0,None),initialize=0) m.x238 = Var(within=Reals,bounds=(0,None),initialize=0) m.x239 = Var(within=Reals,bounds=(0,None),initialize=0) m.x240 = Var(within=Reals,bounds=(0,None),initialize=0) m.x241 = Var(within=Reals,bounds=(0,None),initialize=0) m.x242 = Var(within=Reals,bounds=(0,None),initialize=0) m.x243 = Var(within=Reals,bounds=(0,None),initialize=0) m.x244 = Var(within=Reals,bounds=(0,None),initialize=0) m.x245 = Var(within=Reals,bounds=(0,None),initialize=0) m.x246 = Var(within=Reals,bounds=(0,None),initialize=0) m.x247 = Var(within=Reals,bounds=(0,None),initialize=0) m.x248 = Var(within=Reals,bounds=(0,None),initialize=0) m.x249 = Var(within=Reals,bounds=(0,None),initialize=0) m.x250 = Var(within=Reals,bounds=(0,None),initialize=0) m.x251 = Var(within=Reals,bounds=(0,None),initialize=0) m.x252 = Var(within=Reals,bounds=(0,None),initialize=0) m.x253 = Var(within=Reals,bounds=(0,None),initialize=0) m.x254 = Var(within=Reals,bounds=(0,None),initialize=0) m.x255 = Var(within=Reals,bounds=(0,None),initialize=0) m.x256 = Var(within=Reals,bounds=(0,None),initialize=0) m.x257 = Var(within=Reals,bounds=(0,None),initialize=0) m.x258 = Var(within=Reals,bounds=(0,None),initialize=0) m.x259 = Var(within=Reals,bounds=(0,None),initialize=0) m.x260 = Var(within=Reals,bounds=(0,None),initialize=0) m.x261 = Var(within=Reals,bounds=(0,None),initialize=0) m.x262 = Var(within=Reals,bounds=(0,None),initialize=0) m.x263 = Var(within=Reals,bounds=(0,None),initialize=0) m.x264 = Var(within=Reals,bounds=(0,None),initialize=0) m.x265 = Var(within=Reals,bounds=(0,None),initialize=0) m.x266 = Var(within=Reals,bounds=(0,None),initialize=0) m.x267 = Var(within=Reals,bounds=(0,None),initialize=0) m.x268 = Var(within=Reals,bounds=(0,None),initialize=0) m.x269 = Var(within=Reals,bounds=(0,None),initialize=0) m.x270 = Var(within=Reals,bounds=(0,None),initialize=0) m.x271 = Var(within=Reals,bounds=(0,None),initialize=0) m.x272 = Var(within=Reals,bounds=(0,None),initialize=0) m.x273 = Var(within=Reals,bounds=(0,None),initialize=0) m.x274 = Var(within=Reals,bounds=(0,None),initialize=0) m.x275 = Var(within=Reals,bounds=(0,None),initialize=0) m.x276 = Var(within=Reals,bounds=(0,None),initialize=0) m.x277 = Var(within=Reals,bounds=(0,None),initialize=0) m.x278 = Var(within=Reals,bounds=(0,None),initialize=0) m.x279 = Var(within=Reals,bounds=(0,None),initialize=0) m.x280 = Var(within=Reals,bounds=(0,None),initialize=0) m.x281 = Var(within=Reals,bounds=(0,None),initialize=0) m.x282 = Var(within=Reals,bounds=(0,None),initialize=0) m.x283 = Var(within=Reals,bounds=(0,None),initialize=0) m.x284 = Var(within=Reals,bounds=(0,None),initialize=0) m.x285 = Var(within=Reals,bounds=(0,None),initialize=0) m.x286 = Var(within=Reals,bounds=(0,None),initialize=0) m.x287 = Var(within=Reals,bounds=(0,None),initialize=0) m.x288 = Var(within=Reals,bounds=(0,None),initialize=0) m.x289 = Var(within=Reals,bounds=(0,None),initialize=0) m.x290 = Var(within=Reals,bounds=(0,None),initialize=0) m.x291 = Var(within=Reals,bounds=(0,None),initialize=0) m.x292 = Var(within=Reals,bounds=(0,None),initialize=0) m.x293 = Var(within=Reals,bounds=(0,None),initialize=0) m.x294 = Var(within=Reals,bounds=(0,None),initialize=0) m.x295 = Var(within=Reals,bounds=(0,None),initialize=0) m.x296 = Var(within=Reals,bounds=(0,None),initialize=0) m.x297 = Var(within=Reals,bounds=(0,None),initialize=0) m.x298 = Var(within=Reals,bounds=(0,None),initialize=0) m.x299 = Var(within=Reals,bounds=(0,None),initialize=0) m.x300 = Var(within=Reals,bounds=(0,None),initialize=0) m.x301 = Var(within=Reals,bounds=(0,None),initialize=0) m.x302 = Var(within=Reals,bounds=(0,None),initialize=0) m.x303 = Var(within=Reals,bounds=(0,None),initialize=0) m.x304 = Var(within=Reals,bounds=(0,None),initialize=0) m.x305 = Var(within=Reals,bounds=(0,None),initialize=0) m.x306 = Var(within=Reals,bounds=(0,None),initialize=0) m.x307 = Var(within=Reals,bounds=(0,None),initialize=0) m.x308 = Var(within=Reals,bounds=(0,None),initialize=0) m.x309 = Var(within=Reals,bounds=(0,None),initialize=0) m.x310 = Var(within=Reals,bounds=(0,None),initialize=0) m.x311 = Var(within=Reals,bounds=(0,None),initialize=0) m.x312 = Var(within=Reals,bounds=(0,None),initialize=0) m.x313 = Var(within=Reals,bounds=(0,None),initialize=0) m.x314 = Var(within=Reals,bounds=(0,None),initialize=0) m.x315 = Var(within=Reals,bounds=(0,None),initialize=0) m.x316 = Var(within=Reals,bounds=(0,None),initialize=0) m.x317 = Var(within=Reals,bounds=(0,None),initialize=0) m.x318 = Var(within=Reals,bounds=(0,None),initialize=0) m.x319 = Var(within=Reals,bounds=(0,None),initialize=0) m.x320 = Var(within=Reals,bounds=(0,None),initialize=0) m.x321 = Var(within=Reals,bounds=(0,None),initialize=0) m.x322 = Var(within=Reals,bounds=(0,None),initialize=0) m.x323 = Var(within=Reals,bounds=(0,None),initialize=0) m.x324 = Var(within=Reals,bounds=(0,None),initialize=0) m.x325 = Var(within=Reals,bounds=(0,None),initialize=0) m.x326 = Var(within=Reals,bounds=(0,None),initialize=0) m.x327 = Var(within=Reals,bounds=(0,None),initialize=0) m.x328 = Var(within=Reals,bounds=(0,None),initialize=0) m.x329 = Var(within=Reals,bounds=(0,None),initialize=0) m.x330 = Var(within=Reals,bounds=(0,None),initialize=0) m.x331 = Var(within=Reals,bounds=(0,None),initialize=0) m.x332 = Var(within=Reals,bounds=(0,None),initialize=0) m.x333 = Var(within=Reals,bounds=(0,None),initialize=0) m.x334 = Var(within=Reals,bounds=(0,None),initialize=0) m.x335 = Var(within=Reals,bounds=(0,None),initialize=0) m.x336 = Var(within=Reals,bounds=(0,None),initialize=0) m.x337 = Var(within=Reals,bounds=(0,None),initialize=0) m.x338 = Var(within=Reals,bounds=(0,None),initialize=0) m.x339 = Var(within=Reals,bounds=(0,None),initialize=0) m.x340 = Var(within=Reals,bounds=(0,None),initialize=0) m.x341 = Var(within=Reals,bounds=(0,None),initialize=0) m.x342 = Var(within=Reals,bounds=(0,None),initialize=0) m.x343 = Var(within=Reals,bounds=(0,None),initialize=0) m.x344 = Var(within=Reals,bounds=(0,None),initialize=0) m.x345 = Var(within=Reals,bounds=(0,None),initialize=0) m.x346 = Var(within=Reals,bounds=(0,None),initialize=0) m.x347 = Var(within=Reals,bounds=(0,None),initialize=0) m.x348 = Var(within=Reals,bounds=(0,None),initialize=0) m.x349 = Var(within=Reals,bounds=(0,None),initialize=0) m.x350 = Var(within=Reals,bounds=(0,None),initialize=0) m.x351 = Var(within=Reals,bounds=(0,None),initialize=0) m.x352 = Var(within=Reals,bounds=(0,None),initialize=0) m.x353 = Var(within=Reals,bounds=(0,None),initialize=0) m.x354 = Var(within=Reals,bounds=(0,None),initialize=0) m.x355 = Var(within=Reals,bounds=(0,None),initialize=0) m.x356 = Var(within=Reals,bounds=(0,None),initialize=0) m.x357 = Var(within=Reals,bounds=(0,None),initialize=0) m.x358 = Var(within=Reals,bounds=(0,None),initialize=0) m.x359 = Var(within=Reals,bounds=(0,None),initialize=0) m.x360 = Var(within=Reals,bounds=(0,None),initialize=0) m.x361 = Var(within=Reals,bounds=(0,None),initialize=0) m.x362 = Var(within=Reals,bounds=(0,None),initialize=0) m.x363 = Var(within=Reals,bounds=(0,None),initialize=0) m.x364 = Var(within=Reals,bounds=(0,None),initialize=0) m.x365 = Var(within=Reals,bounds=(0,None),initialize=0) m.x366 = Var(within=Reals,bounds=(0,None),initialize=0) m.x367 = Var(within=Reals,bounds=(0,None),initialize=0) m.x368 = Var(within=Reals,bounds=(0,None),initialize=0) m.x369 = Var(within=Reals,bounds=(0,None),initialize=0) m.x370 = Var(within=Reals,bounds=(0,None),initialize=0) m.x371 = Var(within=Reals,bounds=(0,None),initialize=0) m.x372 = Var(within=Reals,bounds=(0,None),initialize=0) m.x373 = Var(within=Reals,bounds=(0,None),initialize=0) m.x374 = Var(within=Reals,bounds=(0,None),initialize=0) m.x375 = Var(within=Reals,bounds=(0,None),initialize=0) m.x376 = Var(within=Reals,bounds=(0,None),initialize=0) m.x377 = Var(within=Reals,bounds=(0,None),initialize=0) m.x378 = Var(within=Reals,bounds=(0,None),initialize=0) m.x379 = Var(within=Reals,bounds=(0,None),initialize=0) m.x380 = Var(within=Reals,bounds=(0,None),initialize=0) m.x381 = Var(within=Reals,bounds=(0,None),initialize=0) m.x382 = Var(within=Reals,bounds=(0,None),initialize=0) m.x383 = Var(within=Reals,bounds=(0,None),initialize=0) m.x384 = Var(within=Reals,bounds=(0,None),initialize=0) m.x385 = Var(within=Reals,bounds=(0,None),initialize=0) m.x386 = Var(within=Reals,bounds=(0,None),initialize=0) m.x387 = Var(within=Reals,bounds=(0,None),initialize=0) m.x388 = Var(within=Reals,bounds=(0,None),initialize=0) m.x389 = Var(within=Reals,bounds=(0,None),initialize=0) m.x390 = Var(within=Reals,bounds=(0,None),initialize=0) m.x391 = Var(within=Reals,bounds=(0,None),initialize=0) m.x392 = Var(within=Reals,bounds=(0,None),initialize=0) m.x393 = Var(within=Reals,bounds=(0,None),initialize=0) m.x394 = Var(within=Reals,bounds=(0,None),initialize=0) m.x395 = Var(within=Reals,bounds=(0,None),initialize=0) m.x396 = Var(within=Reals,bounds=(0,None),initialize=0) m.x397 = Var(within=Reals,bounds=(0,None),initialize=0) m.x398 = Var(within=Reals,bounds=(0,None),initialize=0) m.x399 = Var(within=Reals,bounds=(0,None),initialize=0) m.x400 = Var(within=Reals,bounds=(0,None),initialize=0) m.x401 = Var(within=Reals,bounds=(0,None),initialize=0) m.x402 = Var(within=Reals,bounds=(0,None),initialize=0) m.x403 = Var(within=Reals,bounds=(0,None),initialize=0) m.x404 = Var(within=Reals,bounds=(0,None),initialize=0) m.x405 = Var(within=Reals,bounds=(0,None),initialize=0) m.x406 = Var(within=Reals,bounds=(0,None),initialize=0) m.x407 = Var(within=Reals,bounds=(0,None),initialize=0) m.x408 = Var(within=Reals,bounds=(0,None),initialize=0) m.x409 = Var(within=Reals,bounds=(0,None),initialize=0) m.x410 = Var(within=Reals,bounds=(0,None),initialize=0) m.x411 = Var(within=Reals,bounds=(0,None),initialize=0) m.x412 = Var(within=Reals,bounds=(0,None),initialize=0) m.x413 = Var(within=Reals,bounds=(0,None),initialize=0) m.x414 = Var(within=Reals,bounds=(0,None),initialize=0) m.x415 = Var(within=Reals,bounds=(0,None),initialize=0) m.x416 = Var(within=Reals,bounds=(0,None),initialize=0) m.x417 = Var(within=Reals,bounds=(0,None),initialize=0) m.x418 = Var(within=Reals,bounds=(0,None),initialize=0) m.x419 = Var(within=Reals,bounds=(0,None),initialize=0) m.x420 = Var(within=Reals,bounds=(0,None),initialize=0) m.x421 = Var(within=Reals,bounds=(0,None),initialize=0) m.x422 = Var(within=Reals,bounds=(0,None),initialize=0) m.x423 = Var(within=Reals,bounds=(0,None),initialize=0) m.x424 = Var(within=Reals,bounds=(0,None),initialize=0) m.x425 = Var(within=Reals,bounds=(0,None),initialize=0) m.x426 = Var(within=Reals,bounds=(0,None),initialize=0) m.x427 = Var(within=Reals,bounds=(0,None),initialize=0) m.x428 = Var(within=Reals,bounds=(0,None),initialize=0) m.x429 = Var(within=Reals,bounds=(0,None),initialize=0) m.x430 = Var(within=Reals,bounds=(0,None),initialize=0) m.x431 = Var(within=Reals,bounds=(0,None),initialize=0) m.x432 = Var(within=Reals,bounds=(0,None),initialize=0) m.x433 = Var(within=Reals,bounds=(0,None),initialize=0) m.x434 = Var(within=Reals,bounds=(0,None),initialize=0) m.x435 = Var(within=Reals,bounds=(0,None),initialize=0) m.x436 = Var(within=Reals,bounds=(0,None),initialize=0) m.x437 = Var(within=Reals,bounds=(0,None),initialize=0) m.x438 = Var(within=Reals,bounds=(0,None),initialize=0) m.x439 = Var(within=Reals,bounds=(0,None),initialize=0) m.x440 = Var(within=Reals,bounds=(0,None),initialize=0) m.x441 = Var(within=Reals,bounds=(0,None),initialize=0) m.x442 = Var(within=Reals,bounds=(0,None),initialize=0) m.x443 = Var(within=Reals,bounds=(0,None),initialize=0) m.x444 = Var(within=Reals,bounds=(0,None),initialize=0) m.x445 = Var(within=Reals,bounds=(0,None),initialize=0) m.x446 = Var(within=Reals,bounds=(0,None),initialize=0) m.x447 = Var(within=Reals,bounds=(0,None),initialize=0) m.x448 = Var(within=Reals,bounds=(0,None),initialize=0) m.x449 = Var(within=Reals,bounds=(0,None),initialize=0) m.x450 = Var(within=Reals,bounds=(0,None),initialize=0) m.x451 = Var(within=Reals,bounds=(0,None),initialize=0) m.x452 = Var(within=Reals,bounds=(0,None),initialize=0) m.x453 = Var(within=Reals,bounds=(0,None),initialize=0) m.x454 = Var(within=Reals,bounds=(0,None),initialize=0) m.x455 = Var(within=Reals,bounds=(0,None),initialize=0) m.x456 = Var(within=Reals,bounds=(0,None),initialize=0) m.x457 = Var(within=Reals,bounds=(0,None),initialize=0) m.x458 = Var(within=Reals,bounds=(0,None),initialize=0) m.x459 = Var(within=Reals,bounds=(0,None),initialize=0) m.x460 = Var(within=Reals,bounds=(0,None),initialize=0) m.x461 = Var(within=Reals,bounds=(0,None),initialize=0) m.x462 = Var(within=Reals,bounds=(0,None),initialize=0) m.x463 = Var(within=Reals,bounds=(0,None),initialize=0) m.x464 = Var(within=Reals,bounds=(0,None),initialize=0) m.x465 = Var(within=Reals,bounds=(0,None),initialize=0) m.x466 = Var(within=Reals,bounds=(0,None),initialize=0) m.x467 = Var(within=Reals,bounds=(0,None),initialize=0) m.x468 = Var(within=Reals,bounds=(0,None),initialize=0) m.x469 = Var(within=Reals,bounds=(0,None),initialize=0) m.x470 = Var(within=Reals,bounds=(0,None),initialize=0) m.x471 = Var(within=Reals,bounds=(0,None),initialize=0) m.x472 = Var(within=Reals,bounds=(0,None),initialize=0) m.x473 = Var(within=Reals,bounds=(0,None),initialize=0) m.x474 = Var(within=Reals,bounds=(0,None),initialize=0) m.x475 = Var(within=Reals,bounds=(0,None),initialize=0) m.x476 = Var(within=Reals,bounds=(0,None),initialize=0) m.x477 = Var(within=Reals,bounds=(0,None),initialize=0) m.x478 = Var(within=Reals,bounds=(0,None),initialize=0) m.x479 = Var(within=Reals,bounds=(0,None),initialize=0) m.x480 = Var(within=Reals,bounds=(0,None),initialize=0) m.x481 = Var(within=Reals,bounds=(0,None),initialize=0) m.x482 = Var(within=Reals,bounds=(0,None),initialize=0) m.x483 = Var(within=Reals,bounds=(0,None),initialize=0) m.x484 = Var(within=Reals,bounds=(0,None),initialize=0) m.x485 = Var(within=Reals,bounds=(0,None),initialize=0) m.x486 = Var(within=Reals,bounds=(0,None),initialize=0) m.x487 = Var(within=Reals,bounds=(0,None),initialize=0) m.x488 = Var(within=Reals,bounds=(0,None),initialize=0) m.x489 = Var(within=Reals,bounds=(0,None),initialize=0) m.x490 = Var(within=Reals,bounds=(0,None),initialize=0) m.x491 = Var(within=Reals,bounds=(0,None),initialize=0) m.x492 = Var(within=Reals,bounds=(0,None),initialize=0) m.x493 = Var(within=Reals,bounds=(0,None),initialize=0) m.x494 = Var(within=Reals,bounds=(0,None),initialize=0) m.x495 = Var(within=Reals,bounds=(0,None),initialize=0) m.x496 = Var(within=Reals,bounds=(0,None),initialize=0) m.x497 = Var(within=Reals,bounds=(0,None),initialize=0) m.x498 = Var(within=Reals,bounds=(0,None),initialize=0) m.x499 = Var(within=Reals,bounds=(0,None),initialize=0) m.x500 = Var(within=Reals,bounds=(0,None),initialize=0) m.x501 = Var(within=Reals,bounds=(0,None),initialize=0) m.x502 = Var(within=Reals,bounds=(0,None),initialize=0) m.x503 = Var(within=Reals,bounds=(0,None),initialize=0) m.x504 = Var(within=Reals,bounds=(0,None),initialize=0) m.x505 = Var(within=Reals,bounds=(0,None),initialize=0) m.x506 = Var(within=Reals,bounds=(0,None),initialize=0) m.x507 = Var(within=Reals,bounds=(0,None),initialize=0) m.x508 = Var(within=Reals,bounds=(0,None),initialize=0) m.x509 = Var(within=Reals,bounds=(0,None),initialize=0) m.x510 = Var(within=Reals,bounds=(0,None),initialize=0) m.x511 = Var(within=Reals,bounds=(0,None),initialize=0) m.x512 = Var(within=Reals,bounds=(0,None),initialize=0) m.x513 = Var(within=Reals,bounds=(0,None),initialize=0) m.x514 = Var(within=Reals,bounds=(0,None),initialize=0) m.x515 = Var(within=Reals,bounds=(0,None),initialize=0) m.x516 = Var(within=Reals,bounds=(0,None),initialize=0) m.x517 = Var(within=Reals,bounds=(0,None),initialize=0) m.x518 = Var(within=Reals,bounds=(0,None),initialize=0) m.x519 = Var(within=Reals,bounds=(0,None),initialize=0) m.x520 = Var(within=Reals,bounds=(0,None),initialize=0) m.x521 = Var(within=Reals,bounds=(0,None),initialize=0) m.x522 = Var(within=Reals,bounds=(0,None),initialize=0) m.x523 = Var(within=Reals,bounds=(0,None),initialize=0) m.x524 = Var(within=Reals,bounds=(0,None),initialize=0) m.x525 = Var(within=Reals,bounds=(0,None),initialize=0) m.x526 = Var(within=Reals,bounds=(0,None),initialize=0) m.x527 = Var(within=Reals,bounds=(0,None),initialize=0) m.x528 = Var(within=Reals,bounds=(0,None),initialize=0) m.x529 = Var(within=Reals,bounds=(0,None),initialize=0) m.x530 = Var(within=Reals,bounds=(0,None),initialize=0) m.x531 = Var(within=Reals,bounds=(0,None),initialize=0) m.x532 = Var(within=Reals,bounds=(0,None),initialize=0) m.x533 = Var(within=Reals,bounds=(0,None),initialize=0) m.x534 = Var(within=Reals,bounds=(0,None),initialize=0) m.x535 = Var(within=Reals,bounds=(0,None),initialize=0) m.x536 = Var(within=Reals,bounds=(0,None),initialize=0) m.x537 = Var(within=Reals,bounds=(0,None),initialize=0) m.x538 = Var(within=Reals,bounds=(0,None),initialize=0) m.x539 = Var(within=Reals,bounds=(0,None),initialize=0) m.x540 = Var(within=Reals,bounds=(0,None),initialize=0) m.x541 = Var(within=Reals,bounds=(0,None),initialize=0) m.x542 = Var(within=Reals,bounds=(0,None),initialize=0) m.x543 = Var(within=Reals,bounds=(0,None),initialize=0) m.x544 = Var(within=Reals,bounds=(0,None),initialize=0) m.x545 = Var(within=Reals,bounds=(0,None),initialize=0) m.x546 = Var(within=Reals,bounds=(0,None),initialize=0) m.x547 = Var(within=Reals,bounds=(0,None),initialize=0) m.x548 = Var(within=Reals,bounds=(0,None),initialize=0) m.x549 = Var(within=Reals,bounds=(0,None),initialize=0) m.x550 = Var(within=Reals,bounds=(0,None),initialize=0) m.x551 = Var(within=Reals,bounds=(0,None),initialize=0) m.x552 = Var(within=Reals,bounds=(0,None),initialize=0) m.x553 = Var(within=Reals,bounds=(0,None),initialize=0) m.x554 = Var(within=Reals,bounds=(0,None),initialize=0) m.x555 = Var(within=Reals,bounds=(0,None),initialize=0) m.x556 = Var(within=Reals,bounds=(0,None),initialize=0) m.x557 = Var(within=Reals,bounds=(0,None),initialize=0) m.x558 = Var(within=Reals,bounds=(0,None),initialize=0) m.x559 = Var(within=Reals,bounds=(0,None),initialize=0) m.x560 = Var(within=Reals,bounds=(0,None),initialize=0) m.x561 = Var(within=Reals,bounds=(0,None),initialize=0) m.x562 = Var(within=Reals,bounds=(0,None),initialize=0) m.x563 = Var(within=Reals,bounds=(0,None),initialize=0) m.x564 = Var(within=Reals,bounds=(0,None),initialize=0) m.x565 = Var(within=Reals,bounds=(0,None),initialize=0) m.x566 = Var(within=Reals,bounds=(0,None),initialize=0) m.x567 = Var(within=Reals,bounds=(0,None),initialize=0) m.x568 = Var(within=Reals,bounds=(0,None),initialize=0) m.x569 = Var(within=Reals,bounds=(0,None),initialize=0) m.x570 = Var(within=Reals,bounds=(0,None),initialize=0) m.x571 = Var(within=Reals,bounds=(0,None),initialize=0) m.x572 = Var(within=Reals,bounds=(0,None),initialize=0) m.x573 = Var(within=Reals,bounds=(0,None),initialize=0) m.x574 = Var(within=Reals,bounds=(0,None),initialize=0) m.x575 = Var(within=Reals,bounds=(0,None),initialize=0) m.x576 = Var(within=Reals,bounds=(0,None),initialize=0) m.x577 = Var(within=Reals,bounds=(0,None),initialize=0) m.x578 = Var(within=Reals,bounds=(0,None),initialize=0) m.x579 = Var(within=Reals,bounds=(0,None),initialize=0) m.x580 = Var(within=Reals,bounds=(0,None),initialize=0) m.x581 = Var(within=Reals,bounds=(0,None),initialize=0) m.x582 = Var(within=Reals,bounds=(0,None),initialize=0) m.x583 = Var(within=Reals,bounds=(0,None),initialize=0) m.x584 = Var(within=Reals,bounds=(0,None),initialize=0) m.x585 = Var(within=Reals,bounds=(0,None),initialize=0) m.x586 = Var(within=Reals,bounds=(0,None),initialize=0) m.x587 = Var(within=Reals,bounds=(0,None),initialize=0) m.x588 = Var(within=Reals,bounds=(0,None),initialize=0) m.x589 = Var(within=Reals,bounds=(0,None),initialize=0) m.x590 = Var(within=Reals,bounds=(0,None),initialize=0) m.x591 = Var(within=Reals,bounds=(0,None),initialize=0) m.x592 = Var(within=Reals,bounds=(0,None),initialize=0) m.x593 = Var(within=Reals,bounds=(0,None),initialize=0) m.x594 = Var(within=Reals,bounds=(0,None),initialize=0) m.x595 = Var(within=Reals,bounds=(0,None),initialize=0) m.b596 = Var(within=Binary,bounds=(0,1),initialize=0) m.b597 = Var(within=Binary,bounds=(0,1),initialize=0) m.b598 = Var(within=Binary,bounds=(0,1),initialize=0) m.b599 = Var(within=Binary,bounds=(0,1),initialize=0) m.b600 = Var(within=Binary,bounds=(0,1),initialize=0) m.b601 = Var(within=Binary,bounds=(0,1),initialize=0) m.b602 = Var(within=Binary,bounds=(0,1),initialize=0) m.b603 = Var(within=Binary,bounds=(0,1),initialize=0) m.b604 = Var(within=Binary,bounds=(0,1),initialize=0) m.b605 = Var(within=Binary,bounds=(0,1),initialize=0) m.b606 = Var(within=Binary,bounds=(0,1),initialize=0) m.b607 = Var(within=Binary,bounds=(0,1),initialize=0) m.b608 = Var(within=Binary,bounds=(0,1),initialize=0) m.b609 = Var(within=Binary,bounds=(0,1),initialize=0) m.b610 = Var(within=Binary,bounds=(0,1),initialize=0) m.b611 = Var(within=Binary,bounds=(0,1),initialize=0) m.b612 = Var(within=Binary,bounds=(0,1),initialize=0) m.b613 = Var(within=Binary,bounds=(0,1),initialize=0) m.b614 = Var(within=Binary,bounds=(0,1),initialize=0) m.b615 = Var(within=Binary,bounds=(0,1),initialize=0) m.b616 = Var(within=Binary,bounds=(0,1),initialize=0) m.b617 = Var(within=Binary,bounds=(0,1),initialize=0) m.b618 = Var(within=Binary,bounds=(0,1),initialize=0) m.b619 = Var(within=Binary,bounds=(0,1),initialize=0) m.b620 = Var(within=Binary,bounds=(0,1),initialize=0) m.b621 = Var(within=Binary,bounds=(0,1),initialize=0) m.b622 = Var(within=Binary,bounds=(0,1),initialize=0) m.b623 = Var(within=Binary,bounds=(0,1),initialize=0) m.b624 = Var(within=Binary,bounds=(0,1),initialize=0) m.b625 = Var(within=Binary,bounds=(0,1),initialize=0) m.b626 = Var(within=Binary,bounds=(0,1),initialize=0) m.b627 = Var(within=Binary,bounds=(0,1),initialize=0) m.b628 = Var(within=Binary,bounds=(0,1),initialize=0) m.b629 = Var(within=Binary,bounds=(0,1),initialize=0) m.b630 = Var(within=Binary,bounds=(0,1),initialize=0) m.b631 = Var(within=Binary,bounds=(0,1),initialize=0) m.b632 = Var(within=Binary,bounds=(0,1),initialize=0) m.b633 = Var(within=Binary,bounds=(0,1),initialize=0) m.b634 = Var(within=Binary,bounds=(0,1),initialize=0) m.b635 = Var(within=Binary,bounds=(0,1),initialize=0) m.b636 = Var(within=Binary,bounds=(0,1),initialize=0) m.b637 = Var(within=Binary,bounds=(0,1),initialize=0) m.b638 = Var(within=Binary,bounds=(0,1),initialize=0) m.b639 = Var(within=Binary,bounds=(0,1),initialize=0) m.b640 = Var(within=Binary,bounds=(0,1),initialize=0) m.b641 = Var(within=Binary,bounds=(0,1),initialize=0) m.b642 = Var(within=Binary,bounds=(0,1),initialize=0) m.b643 = Var(within=Binary,bounds=(0,1),initialize=0) m.b644 = Var(within=Binary,bounds=(0,1),initialize=0) m.b645 = Var(within=Binary,bounds=(0,1),initialize=0) m.b646 = Var(within=Binary,bounds=(0,1),initialize=0) m.b647 = Var(within=Binary,bounds=(0,1),initialize=0) m.b648 = Var(within=Binary,bounds=(0,1),initialize=0) m.b649 = Var(within=Binary,bounds=(0,1),initialize=0) m.b650 = Var(within=Binary,bounds=(0,1),initialize=0) m.b651 = Var(within=Binary,bounds=(0,1),initialize=0) m.b652 = Var(within=Binary,bounds=(0,1),initialize=0) m.b653 = Var(within=Binary,bounds=(0,1),initialize=0) m.b654 = Var(within=Binary,bounds=(0,1),initialize=0) m.b655 = Var(within=Binary,bounds=(0,1),initialize=0) m.b656 = Var(within=Binary,bounds=(0,1),initialize=0) m.b657 = Var(within=Binary,bounds=(0,1),initialize=0) m.b658 = Var(within=Binary,bounds=(0,1),initialize=0) m.b659 = Var(within=Binary,bounds=(0,1),initialize=0) m.b660 = Var(within=Binary,bounds=(0,1),initialize=0) m.b661 = Var(within=Binary,bounds=(0,1),initialize=0) m.b662 = Var(within=Binary,bounds=(0,1),initialize=0) m.b663 = Var(within=Binary,bounds=(0,1),initialize=0) m.b664 = Var(within=Binary,bounds=(0,1),initialize=0) m.b665 = Var(within=Binary,bounds=(0,1),initialize=0) m.b666 = Var(within=Binary,bounds=(0,1),initialize=0) m.b667 = Var(within=Binary,bounds=(0,1),initialize=0) m.b668 = Var(within=Binary,bounds=(0,1),initialize=0) m.b669 = Var(within=Binary,bounds=(0,1),initialize=0) m.b670 = Var(within=Binary,bounds=(0,1),initialize=0) m.b671 = Var(within=Binary,bounds=(0,1),initialize=0) m.b672 = Var(within=Binary,bounds=(0,1),initialize=0) m.b673 = Var(within=Binary,bounds=(0,1),initialize=0) m.b674 = Var(within=Binary,bounds=(0,1),initialize=0) m.b675 = Var(within=Binary,bounds=(0,1),initialize=0) m.b676 = Var(within=Binary,bounds=(0,1),initialize=0) m.b677 = Var(within=Binary,bounds=(0,1),initialize=0) m.b678 = Var(within=Binary,bounds=(0,1),initialize=0) m.b679 = Var(within=Binary,bounds=(0,1),initialize=0) m.b680 = Var(within=Binary,bounds=(0,1),initialize=0) m.b681 = Var(within=Binary,bounds=(0,1),initialize=0) m.b682 = Var(within=Binary,bounds=(0,1),initialize=0) m.b683 = Var(within=Binary,bounds=(0,1),initialize=0) m.b684 = Var(within=Binary,bounds=(0,1),initialize=0) m.b685 = Var(within=Binary,bounds=(0,1),initialize=0) m.b686 = Var(within=Binary,bounds=(0,1),initialize=0) m.b687 = Var(within=Binary,bounds=(0,1),initialize=0) m.b688 = Var(within=Binary,bounds=(0,1),initialize=0) m.b689 = Var(within=Binary,bounds=(0,1),initialize=0) m.b690 = Var(within=Binary,bounds=(0,1),initialize=0) m.b691 = Var(within=Binary,bounds=(0,1),initialize=0) m.b692 = Var(within=Binary,bounds=(0,1),initialize=0) m.b693 = Var(within=Binary,bounds=(0,1),initialize=0) m.b694 = Var(within=Binary,bounds=(0,1),initialize=0) m.b695 = Var(within=Binary,bounds=(0,1),initialize=0) m.b696 = Var(within=Binary,bounds=(0,1),initialize=0) m.b697 = Var(within=Binary,bounds=(0,1),initialize=0) m.b698 = Var(within=Binary,bounds=(0,1),initialize=0) m.b699 = Var(within=Binary,bounds=(0,1),initialize=0) m.b700 = Var(within=Binary,bounds=(0,1),initialize=0) m.b701 = Var(within=Binary,bounds=(0,1),initialize=0) m.b702 = Var(within=Binary,bounds=(0,1),initialize=0) m.b703 = Var(within=Binary,bounds=(0,1),initialize=0) m.b704 = Var(within=Binary,bounds=(0,1),initialize=0) m.b705 = Var(within=Binary,bounds=(0,1),initialize=0) m.b706 = Var(within=Binary,bounds=(0,1),initialize=0) m.b707 = Var(within=Binary,bounds=(0,1),initialize=0) m.b708 = Var(within=Binary,bounds=(0,1),initialize=0) m.b709 = Var(within=Binary,bounds=(0,1),initialize=0) m.b710 = Var(within=Binary,bounds=(0,1),initialize=0) m.b711 = Var(within=Binary,bounds=(0,1),initialize=0) m.b712 = Var(within=Binary,bounds=(0,1),initialize=0) m.b713 = Var(within=Binary,bounds=(0,1),initialize=0) m.b714 = Var(within=Binary,bounds=(0,1),initialize=0) m.b715 = Var(within=Binary,bounds=(0,1),initialize=0) m.b716 = Var(within=Binary,bounds=(0,1),initialize=0) m.b717 = Var(within=Binary,bounds=(0,1),initialize=0) m.b718 = Var(within=Binary,bounds=(0,1),initialize=0) m.b719 = Var(within=Binary,bounds=(0,1),initialize=0) m.b720 = Var(within=Binary,bounds=(0,1),initialize=0) m.b721 = Var(within=Binary,bounds=(0,1),initialize=0) m.b722 = Var(within=Binary,bounds=(0,1),initialize=0) m.b723 = Var(within=Binary,bounds=(0,1),initialize=0) m.b724 = Var(within=Binary,bounds=(0,1),initialize=0) m.b725 = Var(within=Binary,bounds=(0,1),initialize=0) m.b726 = Var(within=Binary,bounds=(0,1),initialize=0) m.b727 = Var(within=Binary,bounds=(0,1),initialize=0) m.b728 = Var(within=Binary,bounds=(0,1),initialize=0) m.b729 = Var(within=Binary,bounds=(0,1),initialize=0) m.b730 = Var(within=Binary,bounds=(0,1),initialize=0) m.b731 = Var(within=Binary,bounds=(0,1),initialize=0) m.b732 = Var(within=Binary,bounds=(0,1),initialize=0) m.b733 = Var(within=Binary,bounds=(0,1),initialize=0) m.b734 = Var(within=Binary,bounds=(0,1),initialize=0) m.b735 = Var(within=Binary,bounds=(0,1),initialize=0) m.b736 = Var(within=Binary,bounds=(0,1),initialize=0) m.b737 = Var(within=Binary,bounds=(0,1),initialize=0) m.b738 = Var(within=Binary,bounds=(0,1),initialize=0) m.b739 = Var(within=Binary,bounds=(0,1),initialize=0) m.b740 = Var(within=Binary,bounds=(0,1),initialize=0) m.b741 = Var(within=Binary,bounds=(0,1),initialize=0) m.b742 = Var(within=Binary,bounds=(0,1),initialize=0) m.b743 = Var(within=Binary,bounds=(0,1),initialize=0) m.b744 = Var(within=Binary,bounds=(0,1),initialize=0) m.b745 = Var(within=Binary,bounds=(0,1),initialize=0) m.b746 = Var(within=Binary,bounds=(0,1),initialize=0) m.b747 = Var(within=Binary,bounds=(0,1),initialize=0) m.b748 = Var(within=Binary,bounds=(0,1),initialize=0) m.b749 = Var(within=Binary,bounds=(0,1),initialize=0) m.b750 = Var(within=Binary,bounds=(0,1),initialize=0) m.b751 = Var(within=Binary,bounds=(0,1),initialize=0) m.b752 = Var(within=Binary,bounds=(0,1),initialize=0) m.b753 = Var(within=Binary,bounds=(0,1),initialize=0) m.b754 = Var(within=Binary,bounds=(0,1),initialize=0) m.b755 = Var(within=Binary,bounds=(0,1),initialize=0) m.b756 = Var(within=Binary,bounds=(0,1),initialize=0) m.b757 = Var(within=Binary,bounds=(0,1),initialize=0) m.b758 = Var(within=Binary,bounds=(0,1),initialize=0) m.b759 = Var(within=Binary,bounds=(0,1),initialize=0) m.b760 = Var(within=Binary,bounds=(0,1),initialize=0) m.b761 = Var(within=Binary,bounds=(0,1),initialize=0) m.b762 = Var(within=Binary,bounds=(0,1),initialize=0) m.b763 = Var(within=Binary,bounds=(0,1),initialize=0) m.b764 = Var(within=Binary,bounds=(0,1),initialize=0) m.b765 = Var(within=Binary,bounds=(0,1),initialize=0) m.b766 = Var(within=Binary,bounds=(0,1),initialize=0) m.b767 = Var(within=Binary,bounds=(0,1),initialize=0) m.b768 = Var(within=Binary,bounds=(0,1),initialize=0) m.b769 = Var(within=Binary,bounds=(0,1),initialize=0) m.b770 = Var(within=Binary,bounds=(0,1),initialize=0) m.b771 = Var(within=Binary,bounds=(0,1),initialize=0) m.b772 = Var(within=Binary,bounds=(0,1),initialize=0) m.b773 = Var(within=Binary,bounds=(0,1),initialize=0) m.b774 = Var(within=Binary,bounds=(0,1),initialize=0) m.b775 = Var(within=Binary,bounds=(0,1),initialize=0) m.x776 = Var(within=Reals,bounds=(None,None),initialize=0) m.x777 = Var(within=Reals,bounds=(None,None),initialize=0) m.x778 = Var(within=Reals,bounds=(None,None),initialize=0) m.x779 = Var(within=Reals,bounds=(None,None),initialize=0) m.x780 = Var(within=Reals,bounds=(None,None),initialize=0) m.x781 = Var(within=Reals,bounds=(None,None),initialize=0) m.x782 = Var(within=Reals,bounds=(None,None),initialize=0) m.x783 = Var(within=Reals,bounds=(None,None),initialize=0) m.x784 = Var(within=Reals,bounds=(None,None),initialize=0) m.x785 = Var(within=Reals,bounds=(None,None),initialize=0) m.x786 = Var(within=Reals,bounds=(None,None),initialize=0) m.x787 = Var(within=Reals,bounds=(None,None),initialize=0) m.x788 = Var(within=Reals,bounds=(None,None),initialize=0) m.x789 = Var(within=Reals,bounds=(None,None),initialize=0) m.x790 = Var(within=Reals,bounds=(None,None),initialize=0) m.x791 = Var(within=Reals,bounds=(None,None),initialize=0) m.x792 = Var(within=Reals,bounds=(None,None),initialize=0) m.x793 = Var(within=Reals,bounds=(None,None),initialize=0) m.x794 = Var(within=Reals,bounds=(None,None),initialize=0) m.x795 = Var(within=Reals,bounds=(None,None),initialize=0) m.x796 = Var(within=Reals,bounds=(None,None),initialize=0) m.x797 = Var(within=Reals,bounds=(None,None),initialize=0) m.x798 = Var(within=Reals,bounds=(None,None),initialize=0) m.x799 = Var(within=Reals,bounds=(None,None),initialize=0) m.x800 = Var(within=Reals,bounds=(None,None),initialize=0) m.x801 = Var(within=Reals,bounds=(None,None),initialize=0) m.x802 = Var(within=Reals,bounds=(None,None),initialize=0) m.x803 = Var(within=Reals,bounds=(None,None),initialize=0) m.x804 = Var(within=Reals,bounds=(None,None),initialize=0) m.x805 = Var(within=Reals,bounds=(None,None),initialize=0) m.x806 = Var(within=Reals,bounds=(None,None),initialize=0) m.x807 = Var(within=Reals,bounds=(None,None),initialize=0) m.x808 = Var(within=Reals,bounds=(None,None),initialize=0) m.x809 = Var(within=Reals,bounds=(None,None),initialize=0) m.x810 = Var(within=Reals,bounds=(None,None),initialize=0) m.x811 = Var(within=Reals,bounds=(None,None),initialize=0) m.x812 = Var(within=Reals,bounds=(None,None),initialize=0) m.x813 = Var(within=Reals,bounds=(None,None),initialize=0) m.x814 = Var(within=Reals,bounds=(None,None),initialize=0) m.x815 = Var(within=Reals,bounds=(None,None),initialize=0) m.x816 = Var(within=Reals,bounds=(None,None),initialize=0) m.x817 = Var(within=Reals,bounds=(None,None),initialize=0) m.x818 = Var(within=Reals,bounds=(None,None),initialize=0) m.x819 = Var(within=Reals,bounds=(None,None),initialize=0) m.x820 = Var(within=Reals,bounds=(None,None),initialize=0) m.x821 = Var(within=Reals,bounds=(None,None),initialize=0) m.x822 = Var(within=Reals,bounds=(None,None),initialize=0) m.x823 = Var(within=Reals,bounds=(None,None),initialize=0) m.x824 = Var(within=Reals,bounds=(None,None),initialize=0) m.x825 = Var(within=Reals,bounds=(None,None),initialize=0) m.x826 = Var(within=Reals,bounds=(None,None),initialize=0) m.x827 = Var(within=Reals,bounds=(None,None),initialize=0) m.x828 = Var(within=Reals,bounds=(None,None),initialize=0) m.x829 = Var(within=Reals,bounds=(None,None),initialize=0) m.x830 = Var(within=Reals,bounds=(None,None),initialize=0) m.x831 = Var(within=Reals,bounds=(None,None),initialize=0) m.x832 = Var(within=Reals,bounds=(None,None),initialize=0) m.x833 = Var(within=Reals,bounds=(None,None),initialize=0) m.x834 = Var(within=Reals,bounds=(None,None),initialize=0) m.x835 = Var(within=Reals,bounds=(None,None),initialize=0) m.x836 = Var(within=Reals,bounds=(None,None),initialize=0) m.x837 = Var(within=Reals,bounds=(None,None),initialize=0) m.x838 = Var(within=Reals,bounds=(None,None),initialize=0) m.x839 = Var(within=Reals,bounds=(None,None),initialize=0) m.x840 = Var(within=Reals,bounds=(None,None),initialize=0) m.x841 = Var(within=Reals,bounds=(None,None),initialize=0) m.x842 = Var(within=Reals,bounds=(None,None),initialize=0) m.x843 = Var(within=Reals,bounds=(None,None),initialize=0) m.x844 = Var(within=Reals,bounds=(None,None),initialize=0) m.x845 = Var(within=Reals,bounds=(None,None),initialize=0) m.x846 = Var(within=Reals,bounds=(None,None),initialize=0) m.x847 = Var(within=Reals,bounds=(None,None),initialize=0) m.x848 = Var(within=Reals,bounds=(None,None),initialize=0) m.x849 = Var(within=Reals,bounds=(None,None),initialize=0) m.x850 = Var(within=Reals,bounds=(None,None),initialize=0) m.x851 = Var(within=Reals,bounds=(None,None),initialize=0) m.x852 = Var(within=Reals,bounds=(None,None),initialize=0) m.x853 = Var(within=Reals,bounds=(None,None),initialize=0) m.x854 = Var(within=Reals,bounds=(None,None),initialize=0) m.x855 = Var(within=Reals,bounds=(None,None),initialize=0) m.x856 = Var(within=Reals,bounds=(None,None),initialize=0) m.x857 = Var(within=Reals,bounds=(None,None),initialize=0) m.x858 = Var(within=Reals,bounds=(None,None),initialize=0) m.x859 = Var(within=Reals,bounds=(None,None),initialize=0) m.x860 = Var(within=Reals,bounds=(None,None),initialize=0) m.x861 = Var(within=Reals,bounds=(None,None),initialize=0) m.x862 = Var(within=Reals,bounds=(None,None),initialize=0) m.x863 = Var(within=Reals,bounds=(None,None),initialize=0) m.x864 = Var(within=Reals,bounds=(None,None),initialize=0) m.x865 = Var(within=Reals,bounds=(None,None),initialize=0) m.obj = Objective(expr= - m.x2 - m.x3 - m.x4 + 5*m.x20 + 10*m.x21 + 5*m.x22 - 2*m.x35 - m.x36 - 2*m.x37 - 10*m.x86 - 5*m.x87 - 5*m.x88 - 5*m.x89 - 5*m.x90 - 5*m.x91 + 40*m.x110 + 30*m.x111 + 15*m.x112 + 15*m.x113 + 20*m.x114 + 25*m.x115 + 10*m.x116 + 30*m.x117 + 40*m.x118 + 30*m.x119 + 20*m.x120 + 20*m.x121 + 35*m.x122 + 50*m.x123 + 20*m.x124 + 20*m.x125 + 30*m.x126 + 35*m.x127 + 25*m.x128 + 50*m.x129 + 10*m.x130 + 15*m.x131 + 20*m.x132 + 20*m.x133 + 30*m.x155 + 40*m.x156 + 40*m.x157 - m.x170 - m.x171 - m.x172 + 80*m.x194 + 90*m.x195 + 120*m.x196 + 285*m.x197 + 390*m.x198 + 350*m.x199 + 290*m.x200 + 405*m.x201 + 190*m.x202 + 280*m.x203 + 400*m.x204 + 430*m.x205 + 290*m.x206 + 300*m.x207 + 240*m.x208 + 350*m.x209 + 250*m.x210 + 300*m.x211 - 5*m.b686 - 4*m.b687 - 6*m.b688 - 8*m.b689 - 7*m.b690 - 6*m.b691 - 6*m.b692 - 9*m.b693 - 4*m.b694 - 10*m.b695 - 9*m.b696 - 5*m.b697 - 6*m.b698 - 10*m.b699 - 6*m.b700 - 7*m.b701 - 7*m.b702 - 4*m.b703 - 4*m.b704 - 3*m.b705 - 2*m.b706 - 5*m.b707 - 6*m.b708 - 7*m.b709 - 2*m.b710 - 5*m.b711 - 2*m.b712 - 4*m.b713 - 7*m.b714 - 4*m.b715 - 3*m.b716 - 9*m.b717 - 3*m.b718 - 7*m.b719 - 2*m.b720 - 9*m.b721 - 3*m.b722 - m.b723 - 9*m.b724 - 2*m.b725 - 6*m.b726 - 3*m.b727 - 4*m.b728 - 8*m.b729 - m.b730 - 2*m.b731 - 5*m.b732 - 2*m.b733 - 3*m.b734 - 4*m.b735 - 3*m.b736 - 5*m.b737 - 7*m.b738 - 6*m.b739 - 2*m.b740 - 8*m.b741 - 4*m.b742 - m.b743 - 4*m.b744 - m.b745 - 2*m.b746 - 5*m.b747 - 2*m.b748 - 9*m.b749 - 2*m.b750 - 9*m.b751 - 5*m.b752 - 8*m.b753 - 4*m.b754 - 2*m.b755 - 3*m.b756 - 8*m.b757 - 10*m.b758 - 6*m.b759 - 3*m.b760 - 4*m.b761 - 8*m.b762 - 7*m.b763 - 7*m.b764 - 3*m.b765 - 9*m.b766 - 4*m.b767 - 8*m.b768 - 6*m.b769 - 2*m.b770 - m.b771 - 3*m.b772 - 8*m.b773 - 3*m.b774 - 4*m.b775, sense=maximize) m.c2 = Constraint(expr= m.x2 - m.x5 - m.x8 == 0) m.c3 = Constraint(expr= m.x3 - m.x6 - m.x9 == 0) m.c4 = Constraint(expr= m.x4 - m.x7 - m.x10 == 0) m.c5 = Constraint(expr= - m.x11 - m.x14 + m.x17 == 0) m.c6 = Constraint(expr= - m.x12 - m.x15 + m.x18 == 0) m.c7 = Constraint(expr= - m.x13 - m.x16 + m.x19 == 0) m.c8 = Constraint(expr= m.x17 - m.x20 - m.x23 == 0) m.c9 = Constraint(expr= m.x18 - m.x21 - m.x24 == 0) m.c10 = Constraint(expr= m.x19 - m.x22 - m.x25 == 0) m.c11 = Constraint(expr= m.x23 - m.x26 - m.x29 - m.x32 == 0) m.c12 = Constraint(expr= m.x24 - m.x27 - m.x30 - m.x33 == 0) m.c13 = Constraint(expr= m.x25 - m.x28 - m.x31 - m.x34 == 0) m.c14 = Constraint(expr= m.x38 - m.x47 - m.x50 == 0) m.c15 = Constraint(expr= m.x39 - m.x48 - m.x51 == 0) m.c16 = Constraint(expr= m.x40 - m.x49 - m.x52 == 0) m.c17 = Constraint(expr= m.x44 - m.x53 - m.x56 - m.x59 == 0) m.c18 = Constraint(expr= m.x45 - m.x54 - m.x57 - m.x60 == 0) m.c19 = Constraint(expr= m.x46 - m.x55 - m.x58 - m.x61 == 0) m.c20 = Constraint(expr= m.x68 - m.x80 - m.x83 == 0) m.c21 = Constraint(expr= m.x69 - m.x81 - m.x84 == 0) m.c22 = Constraint(expr= m.x70 - m.x82 - m.x85 == 0) m.c23 = Constraint(expr= - m.x71 - m.x89 + m.x92 == 0) m.c24 = Constraint(expr= - m.x72 - m.x90 + m.x93 == 0) m.c25 = Constraint(expr= - m.x73 - m.x91 + m.x94 == 0) m.c26 = Constraint(expr= m.x74 - m.x95 - m.x98 == 0) m.c27 = Constraint(expr= m.x75 - m.x96 - m.x99 == 0) m.c28 = Constraint(expr= m.x76 - m.x97 - m.x100 == 0) m.c29 = Constraint(expr= m.x77 - m.x101 - m.x104 - m.x107 == 0) m.c30 = Constraint(expr= m.x78 - m.x102 - m.x105 - m.x108 == 0) m.c31 = Constraint(expr= m.x79 - m.x103 - m.x106 - m.x109 == 0) m.c32 = Constraint(expr= m.x134 - m.x137 == 0) m.c33 = Constraint(expr= m.x135 - m.x138 == 0) m.c34 = Constraint(expr= m.x136 - m.x139 == 0) m.c35 = Constraint(expr= m.x137 - m.x140 - m.x143 == 0) m.c36 = Constraint(expr= m.x138 - m.x141 - m.x144 == 0) m.c37 = Constraint(expr= m.x139 - m.x142 - m.x145 == 0) m.c38 = Constraint(expr= - m.x146 - m.x149 + m.x152 == 0) m.c39 = Constraint(expr= - m.x147 - m.x150 + m.x153 == 0) m.c40 = Constraint(expr= - m.x148 - m.x151 + m.x154 == 0) m.c41 = Constraint(expr= m.x152 - m.x155 - m.x158 == 0) m.c42 = Constraint(expr= m.x153 - m.x156 - m.x159 == 0) m.c43 = Constraint(expr= m.x154 - m.x157 - m.x160 == 0) m.c44 = Constraint(expr= m.x158 - m.x161 - m.x164 - m.x167 == 0) m.c45 = Constraint(expr= m.x159 - m.x162 - m.x165 - m.x168 == 0) m.c46 = Constraint(expr= m.x160 - m.x163 - m.x166 - m.x169 == 0) m.c47 = Constraint(expr= m.x173 - m.x182 - m.x185 == 0) m.c48 = Constraint(expr= m.x174 - m.x183 - m.x186 == 0) m.c49 = Constraint(expr= m.x175 - m.x184 - m.x187 == 0) m.c50 = Constraint(expr= m.x179 - m.x188 - m.x191 - m.x194 == 0) m.c51 = Constraint(expr= m.x180 - m.x189 - m.x192 - m.x195 == 0) m.c52 = Constraint(expr= m.x181 - m.x190 - m.x193 - m.x196 == 0) m.c53 = Constraint(expr=(m.x224/(0.001 + 0.999*m.b596) - log(1 + m.x212/(0.001 + 0.999*m.b596)))*(0.001 + 0.999*m.b596) <= 0) m.c54 = Constraint(expr=(m.x225/(0.001 + 0.999*m.b597) - log(1 + m.x213/(0.001 + 0.999*m.b597)))*(0.001 + 0.999*m.b597) <= 0) m.c55 = Constraint(expr=(m.x226/(0.001 + 0.999*m.b598) - log(1 + m.x214/(0.001 + 0.999*m.b598)))*(0.001 + 0.999*m.b598) <= 0) m.c56 = Constraint(expr= m.x215 == 0) m.c57 = Constraint(expr= m.x216 == 0) m.c58 = Constraint(expr= m.x217 == 0) m.c59 = Constraint(expr= m.x227 == 0) m.c60 = Constraint(expr= m.x228 == 0) m.c61 = Constraint(expr= m.x229 == 0) m.c62 = Constraint(expr= m.x5 - m.x212 - m.x215 == 0) m.c63 = Constraint(expr= m.x6 - m.x213 - m.x216 == 0) m.c64 = Constraint(expr= m.x7 - m.x214 - m.x217 == 0) m.c65 = Constraint(expr= m.x11 - m.x224 - m.x227 == 0) m.c66 = Constraint(expr= m.x12 - m.x225 - m.x228 == 0) m.c67 = Constraint(expr= m.x13 - m.x226 - m.x229 == 0) m.c68 = Constraint(expr= m.x212 - 40*m.b596 <= 0) m.c69 = Constraint(expr= m.x213 - 40*m.b597 <= 0) m.c70 = Constraint(expr= m.x214 - 40*m.b598 <= 0) m.c71 = Constraint(expr= m.x215 + 40*m.b596 <= 40) m.c72 = Constraint(expr= m.x216 + 40*m.b597 <= 40) m.c73 = Constraint(expr= m.x217 + 40*m.b598 <= 40) m.c74 = Constraint(expr= m.x224 - 3.71357206670431*m.b596 <= 0) m.c75 = Constraint(expr= m.x225 - 3.71357206670431*m.b597 <= 0) m.c76 = Constraint(expr= m.x226 - 3.71357206670431*m.b598 <= 0) m.c77 = Constraint(expr= m.x227 + 3.71357206670431*m.b596 <= 3.71357206670431) m.c78 = Constraint(expr= m.x228 + 3.71357206670431*m.b597 <= 3.71357206670431) m.c79 = Constraint(expr= m.x229 + 3.71357206670431*m.b598 <= 3.71357206670431) m.c80 = Constraint(expr=(m.x230/(0.001 + 0.999*m.b599) - 1.2*log(1 + m.x218/(0.001 + 0.999*m.b599)))*(0.001 + 0.999* m.b599) <= 0) m.c81 = Constraint(expr=(m.x231/(0.001 + 0.999*m.b600) - 1.2*log(1 + m.x219/(0.001 + 0.999*m.b600)))*(0.001 + 0.999* m.b600) <= 0) m.c82 = Constraint(expr=(m.x232/(0.001 + 0.999*m.b601) - 1.2*log(1 + m.x220/(0.001 + 0.999*m.b601)))*(0.001 + 0.999* m.b601) <= 0) m.c83 = Constraint(expr= m.x221 == 0) m.c84 = Constraint(expr= m.x222 == 0) m.c85 = Constraint(expr= m.x223 == 0) m.c86 = Constraint(expr= m.x233 == 0) m.c87 = Constraint(expr= m.x234 == 0) m.c88 = Constraint(expr= m.x235 == 0) m.c89 = Constraint(expr= m.x8 - m.x218 - m.x221 == 0) m.c90 = Constraint(expr= m.x9 - m.x219 - m.x222 == 0) m.c91 = Constraint(expr= m.x10 - m.x220 - m.x223 == 0) m.c92 = Constraint(expr= m.x14 - m.x230 - m.x233 == 0) m.c93 = Constraint(expr= m.x15 - m.x231 - m.x234 == 0) m.c94 = Constraint(expr= m.x16 - m.x232 - m.x235 == 0) m.c95 = Constraint(expr= m.x218 - 40*m.b599 <= 0) m.c96 = Constraint(expr= m.x219 - 40*m.b600 <= 0) m.c97 = Constraint(expr= m.x220 - 40*m.b601 <= 0) m.c98 = Constraint(expr= m.x221 + 40*m.b599 <= 40) m.c99 = Constraint(expr= m.x222 + 40*m.b600 <= 40) m.c100 = Constraint(expr= m.x223 + 40*m.b601 <= 40) m.c101 = Constraint(expr= m.x230 - 4.45628648004517*m.b599 <= 0) m.c102 = Constraint(expr= m.x231 - 4.45628648004517*m.b600 <= 0) m.c103 = Constraint(expr= m.x232 - 4.45628648004517*m.b601 <= 0) m.c104 = Constraint(expr= m.x233 + 4.45628648004517*m.b599 <= 4.45628648004517) m.c105 = Constraint(expr= m.x234 + 4.45628648004517*m.b600 <= 4.45628648004517) m.c106 = Constraint(expr= m.x235 + 4.45628648004517*m.b601 <= 4.45628648004517) m.c107 = Constraint(expr= - 0.75*m.x236 + m.x260 == 0) m.c108 = Constraint(expr= - 0.75*m.x237 + m.x261 == 0) m.c109 = Constraint(expr= - 0.75*m.x238 + m.x262 == 0) m.c110 = Constraint(expr= m.x239 == 0) m.c111 = Constraint(expr= m.x240 == 0) m.c112 = Constraint(expr= m.x241 == 0) m.c113 = Constraint(expr= m.x263 == 0) m.c114 = Constraint(expr= m.x264 == 0) m.c115 = Constraint(expr= m.x265 == 0) m.c116 = Constraint(expr= m.x26 - m.x236 - m.x239 == 0) m.c117 = Constraint(expr= m.x27 - m.x237 - m.x240 == 0) m.c118 = Constraint(expr= m.x28 - m.x238 - m.x241 == 0) m.c119 = Constraint(expr= m.x38 - m.x260 - m.x263 == 0) m.c120 = Constraint(expr= m.x39 - m.x261 - m.x264 == 0) m.c121 = Constraint(expr= m.x40 - m.x262 - m.x265 == 0) m.c122 = Constraint(expr= m.x236 - 4.45628648004517*m.b602 <= 0) m.c123 = Constraint(expr= m.x237 - 4.45628648004517*m.b603 <= 0) m.c124 = Constraint(expr= m.x238 - 4.45628648004517*m.b604 <= 0) m.c125 = Constraint(expr= m.x239 + 4.45628648004517*m.b602 <= 4.45628648004517) m.c126 = Constraint(expr= m.x240 + 4.45628648004517*m.b603 <= 4.45628648004517) m.c127 = Constraint(expr= m.x241 + 4.45628648004517*m.b604 <= 4.45628648004517) m.c128 = Constraint(expr= m.x260 - 3.34221486003388*m.b602 <= 0) m.c129 = Constraint(expr= m.x261 - 3.34221486003388*m.b603 <= 0) m.c130 = Constraint(expr= m.x262 - 3.34221486003388*m.b604 <= 0) m.c131 = Constraint(expr= m.x263 + 3.34221486003388*m.b602 <= 3.34221486003388) m.c132 = Constraint(expr= m.x264 + 3.34221486003388*m.b603 <= 3.34221486003388) m.c133 = Constraint(expr= m.x265 + 3.34221486003388*m.b604 <= 3.34221486003388) m.c134 = Constraint(expr=(m.x266/(0.001 + 0.999*m.b605) - 1.5*log(1 + m.x242/(0.001 + 0.999*m.b605)))*(0.001 + 0.999* m.b605) <= 0) m.c135 = Constraint(expr=(m.x267/(0.001 + 0.999*m.b606) - 1.5*log(1 + m.x243/(0.001 + 0.999*m.b606)))*(0.001 + 0.999* m.b606) <= 0) m.c136 = Constraint(expr=(m.x268/(0.001 + 0.999*m.b607) - 1.5*log(1 + m.x244/(0.001 + 0.999*m.b607)))*(0.001 + 0.999* m.b607) <= 0) m.c137 = Constraint(expr= m.x245 == 0) m.c138 = Constraint(expr= m.x246 == 0) m.c139 = Constraint(expr= m.x247 == 0) m.c140 = Constraint(expr= m.x272 == 0) m.c141 = Constraint(expr= m.x273 == 0) m.c142 = Constraint(expr= m.x274 == 0) m.c143 = Constraint(expr= m.x29 - m.x242 - m.x245 == 0) m.c144 = Constraint(expr= m.x30 - m.x243 - m.x246 == 0) m.c145 = Constraint(expr= m.x31 - m.x244 - m.x247 == 0) m.c146 = Constraint(expr= m.x41 - m.x266 - m.x272 == 0) m.c147 = Constraint(expr= m.x42 - m.x267 - m.x273 == 0) m.c148 = Constraint(expr= m.x43 - m.x268 - m.x274 == 0) m.c149 = Constraint(expr= m.x242 - 4.45628648004517*m.b605 <= 0) m.c150 = Constraint(expr= m.x243 - 4.45628648004517*m.b606 <= 0) m.c151 = Constraint(expr= m.x244 - 4.45628648004517*m.b607 <= 0) m.c152 = Constraint(expr= m.x245 + 4.45628648004517*m.b605 <= 4.45628648004517) m.c153 = Constraint(expr= m.x246 + 4.45628648004517*m.b606 <= 4.45628648004517) m.c154 = Constraint(expr= m.x247 + 4.45628648004517*m.b607 <= 4.45628648004517) m.c155 = Constraint(expr= m.x266 - 2.54515263975353*m.b605 <= 0) m.c156 = Constraint(expr= m.x267 - 2.54515263975353*m.b606 <= 0) m.c157 = Constraint(expr= m.x268 - 2.54515263975353*m.b607 <= 0) m.c158 = Constraint(expr= m.x272 + 2.54515263975353*m.b605 <= 2.54515263975353) m.c159 = Constraint(expr= m.x273 + 2.54515263975353*m.b606 <= 2.54515263975353) m.c160 = Constraint(expr= m.x274 + 2.54515263975353*m.b607 <= 2.54515263975353) m.c161 = Constraint(expr= - m.x248 + m.x278 == 0) m.c162 = Constraint(expr= - m.x249 + m.x279 == 0) m.c163 = Constraint(expr= - m.x250 + m.x280 == 0) m.c164 = Constraint(expr= - 0.5*m.x254 + m.x278 == 0) m.c165 = Constraint(expr= - 0.5*m.x255 + m.x279 == 0) m.c166 = Constraint(expr= - 0.5*m.x256 + m.x280 == 0) m.c167 = Constraint(expr= m.x251 == 0) m.c168 = Constraint(expr= m.x252 == 0) m.c169 = Constraint(expr= m.x253 == 0) m.c170 = Constraint(expr= m.x257 == 0) m.c171 = Constraint(expr= m.x258 == 0) m.c172 = Constraint(expr= m.x259 == 0) m.c173 = Constraint(expr= m.x281 == 0) m.c174 = Constraint(expr= m.x282 == 0) m.c175 = Constraint(expr= m.x283 == 0) m.c176 = Constraint(expr= m.x32 - m.x248 - m.x251 == 0) m.c177 = Constraint(expr= m.x33 - m.x249 - m.x252 == 0) m.c178 = Constraint(expr= m.x34 - m.x250 - m.x253 == 0) m.c179 = Constraint(expr= m.x35 - m.x254 - m.x257 == 0) m.c180 = Constraint(expr= m.x36 - m.x255 - m.x258 == 0) m.c181 = Constraint(expr= m.x37 - m.x256 - m.x259 == 0) m.c182 = Constraint(expr= m.x44 - m.x278 - m.x281 == 0) m.c183 = Constraint(expr= m.x45 - m.x279 - m.x282 == 0) m.c184 = Constraint(expr= m.x46 - m.x280 - m.x283 == 0) m.c185 = Constraint(expr= m.x248 - 4.45628648004517*m.b608 <= 0) m.c186 = Constraint(expr= m.x249 - 4.45628648004517*m.b609 <= 0) m.c187 = Constraint(expr= m.x250 - 4.45628648004517*m.b610 <= 0) m.c188 = Constraint(expr= m.x251 + 4.45628648004517*m.b608 <= 4.45628648004517) m.c189 = Constraint(expr= m.x252 + 4.45628648004517*m.b609 <= 4.45628648004517) m.c190 = Constraint(expr= m.x253 + 4.45628648004517*m.b610 <= 4.45628648004517) m.c191 = Constraint(expr= m.x254 - 30*m.b608 <= 0) m.c192 = Constraint(expr= m.x255 - 30*m.b609 <= 0) m.c193 = Constraint(expr= m.x256 - 30*m.b610 <= 0) m.c194 = Constraint(expr= m.x257 + 30*m.b608 <= 30) m.c195 = Constraint(expr= m.x258 + 30*m.b609 <= 30) m.c196 = Constraint(expr= m.x259 + 30*m.b610 <= 30) m.c197 = Constraint(expr= m.x278 - 15*m.b608 <= 0) m.c198 = Constraint(expr= m.x279 - 15*m.b609 <= 0) m.c199 = Constraint(expr= m.x280 - 15*m.b610 <= 0) m.c200 = Constraint(expr= m.x281 + 15*m.b608 <= 15) m.c201 = Constraint(expr= m.x282 + 15*m.b609 <= 15) m.c202 = Constraint(expr= m.x283 + 15*m.b610 <= 15) m.c203 = Constraint(expr=(m.x314/(0.001 + 0.999*m.b611) - 1.25*log(1 + m.x284/(0.001 + 0.999*m.b611)))*(0.001 + 0.999* m.b611) <= 0) m.c204 = Constraint(expr=(m.x315/(0.001 + 0.999*m.b612) - 1.25*log(1 + m.x285/(0.001 + 0.999*m.b612)))*(0.001 + 0.999* m.b612) <= 0) m.c205 = Constraint(expr=(m.x316/(0.001 + 0.999*m.b613) - 1.25*log(1 + m.x286/(0.001 + 0.999*m.b613)))*(0.001 + 0.999* m.b613) <= 0) m.c206 = Constraint(expr= m.x287 == 0) m.c207 = Constraint(expr= m.x288 == 0) m.c208 = Constraint(expr= m.x289 == 0) m.c209 = Constraint(expr= m.x320 == 0) m.c210 = Constraint(expr= m.x321 == 0) m.c211 = Constraint(expr= m.x322 == 0) m.c212 = Constraint(expr= m.x47 - m.x284 - m.x287 == 0) m.c213 = Constraint(expr= m.x48 - m.x285 - m.x288 == 0) m.c214 = Constraint(expr= m.x49 - m.x286 - m.x289 == 0) m.c215 = Constraint(expr= m.x62 - m.x314 - m.x320 == 0) m.c216 = Constraint(expr= m.x63 - m.x315 - m.x321 == 0) m.c217 = Constraint(expr= m.x64 - m.x316 - m.x322 == 0) m.c218 = Constraint(expr= m.x284 - 3.34221486003388*m.b611 <= 0) m.c219 = Constraint(expr= m.x285 - 3.34221486003388*m.b612 <= 0) m.c220 = Constraint(expr= m.x286 - 3.34221486003388*m.b613 <= 0) m.c221 = Constraint(expr= m.x287 + 3.34221486003388*m.b611 <= 3.34221486003388) m.c222 = Constraint(expr= m.x288 + 3.34221486003388*m.b612 <= 3.34221486003388) m.c223 = Constraint(expr= m.x289 + 3.34221486003388*m.b613 <= 3.34221486003388) m.c224 = Constraint(expr= m.x314 - 1.83548069293539*m.b611 <= 0) m.c225 = Constraint(expr= m.x315 - 1.83548069293539*m.b612 <= 0) m.c226 = Constraint(expr= m.x316 - 1.83548069293539*m.b613 <= 0) m.c227 = Constraint(expr= m.x320 + 1.83548069293539*m.b611 <= 1.83548069293539) m.c228 = Constraint(expr= m.x321 + 1.83548069293539*m.b612 <= 1.83548069293539) m.c229 = Constraint(expr= m.x322 + 1.83548069293539*m.b613 <= 1.83548069293539) m.c230 = Constraint(expr=(m.x326/(0.001 + 0.999*m.b614) - 0.9*log(1 + m.x290/(0.001 + 0.999*m.b614)))*(0.001 + 0.999* m.b614) <= 0) m.c231 = Constraint(expr=(m.x327/(0.001 + 0.999*m.b615) - 0.9*log(1 + m.x291/(0.001 + 0.999*m.b615)))*(0.001 + 0.999* m.b615) <= 0) m.c232 = Constraint(expr=(m.x328/(0.001 + 0.999*m.b616) - 0.9*log(1 + m.x292/(0.001 + 0.999*m.b616)))*(0.001 + 0.999* m.b616) <= 0) m.c233 = Constraint(expr= m.x293 == 0) m.c234 = Constraint(expr= m.x294 == 0) m.c235 = Constraint(expr= m.x295 == 0) m.c236 = Constraint(expr= m.x332 == 0) m.c237 = Constraint(expr= m.x333 == 0) m.c238 = Constraint(expr= m.x334 == 0) m.c239 = Constraint(expr= m.x50 - m.x290 - m.x293 == 0) m.c240 = Constraint(expr= m.x51 - m.x291 - m.x294 == 0) m.c241 = Constraint(expr= m.x52 - m.x292 - m.x295 == 0) m.c242 = Constraint(expr= m.x65 - m.x326 - m.x332 == 0) m.c243 = Constraint(expr= m.x66 - m.x327 - m.x333 == 0) m.c244 = Constraint(expr= m.x67 - m.x328 - m.x334 == 0) m.c245 = Constraint(expr= m.x290 - 3.34221486003388*m.b614 <= 0) m.c246 = Constraint(expr= m.x291 - 3.34221486003388*m.b615 <= 0) m.c247 = Constraint(expr= m.x292 - 3.34221486003388*m.b616 <= 0) m.c248 = Constraint(expr= m.x293 + 3.34221486003388*m.b614 <= 3.34221486003388) m.c249 = Constraint(expr= m.x294 + 3.34221486003388*m.b615 <= 3.34221486003388) m.c250 = Constraint(expr= m.x295 + 3.34221486003388*m.b616 <= 3.34221486003388) m.c251 = Constraint(expr= m.x326 - 1.32154609891348*m.b614 <= 0) m.c252 = Constraint(expr= m.x327 - 1.32154609891348*m.b615 <= 0) m.c253 = Constraint(expr= m.x328 - 1.32154609891348*m.b616 <= 0) m.c254 = Constraint(expr= m.x332 + 1.32154609891348*m.b614 <= 1.32154609891348) m.c255 = Constraint(expr= m.x333 + 1.32154609891348*m.b615 <= 1.32154609891348) m.c256 = Constraint(expr= m.x334 + 1.32154609891348*m.b616 <= 1.32154609891348) m.c257 = Constraint(expr=(m.x338/(0.001 + 0.999*m.b617) - log(1 + m.x269/(0.001 + 0.999*m.b617)))*(0.001 + 0.999*m.b617) <= 0) m.c258 = Constraint(expr=(m.x339/(0.001 + 0.999*m.b618) - log(1 + m.x270/(0.001 + 0.999*m.b618)))*(0.001 + 0.999*m.b618) <= 0) m.c259 = Constraint(expr=(m.x340/(0.001 + 0.999*m.b619) - log(1 + m.x271/(0.001 + 0.999*m.b619)))*(0.001 + 0.999*m.b619) <= 0) m.c260 = Constraint(expr= m.x275 == 0) m.c261 = Constraint(expr= m.x276 == 0) m.c262 = Constraint(expr= m.x277 == 0) m.c263 = Constraint(expr= m.x341 == 0) m.c264 = Constraint(expr= m.x342 == 0) m.c265 = Constraint(expr= m.x343 == 0) m.c266 = Constraint(expr= m.x41 - m.x269 - m.x275 == 0) m.c267 = Constraint(expr= m.x42 - m.x270 - m.x276 == 0) m.c268 = Constraint(expr= m.x43 - m.x271 - m.x277 == 0) m.c269 = Constraint(expr= m.x68 - m.x338 - m.x341 == 0) m.c270 = Constraint(expr= m.x69 - m.x339 - m.x342 == 0) m.c271 = Constraint(expr= m.x70 - m.x340 - m.x343 == 0) m.c272 = Constraint(expr= m.x269 - 2.54515263975353*m.b617 <= 0) m.c273 = Constraint(expr= m.x270 - 2.54515263975353*m.b618 <= 0) m.c274 = Constraint(expr= m.x271 - 2.54515263975353*m.b619 <= 0) m.c275 = Constraint(expr= m.x275 + 2.54515263975353*m.b617 <= 2.54515263975353) m.c276 = Constraint(expr= m.x276 + 2.54515263975353*m.b618 <= 2.54515263975353) m.c277 = Constraint(expr= m.x277 + 2.54515263975353*m.b619 <= 2.54515263975353) m.c278 = Constraint(expr= m.x338 - 1.26558121681553*m.b617 <= 0) m.c279 = Constraint(expr= m.x339 - 1.26558121681553*m.b618 <= 0) m.c280 = Constraint(expr= m.x340 - 1.26558121681553*m.b619 <= 0) m.c281 = Constraint(expr= m.x341 + 1.26558121681553*m.b617 <= 1.26558121681553) m.c282 = Constraint(expr= m.x342 + 1.26558121681553*m.b618 <= 1.26558121681553) m.c283 = Constraint(expr= m.x343 + 1.26558121681553*m.b619 <= 1.26558121681553) m.c284 = Constraint(expr= - 0.9*m.x296 + m.x344 == 0) m.c285 = Constraint(expr= - 0.9*m.x297 + m.x345 == 0) m.c286 = Constraint(expr= - 0.9*m.x298 + m.x346 == 0) m.c287 = Constraint(expr= m.x299 == 0) m.c288 = Constraint(expr= m.x300 == 0) m.c289 = Constraint(expr= m.x301 == 0) m.c290 = Constraint(expr= m.x347 == 0) m.c291 = Constraint(expr= m.x348 == 0) m.c292 = Constraint(expr= m.x349 == 0) m.c293 = Constraint(expr= m.x53 - m.x296 - m.x299 == 0) m.c294 = Constraint(expr= m.x54 - m.x297 - m.x300 == 0) m.c295 = Constraint(expr= m.x55 - m.x298 - m.x301 == 0) m.c296 = Constraint(expr= m.x71 - m.x344 - m.x347 == 0) m.c297 = Constraint(expr= m.x72 - m.x345 - m.x348 == 0) m.c298 = Constraint(expr= m.x73 - m.x346 - m.x349 == 0) m.c299 = Constraint(expr= m.x296 - 15*m.b620 <= 0) m.c300 = Constraint(expr= m.x297 - 15*m.b621 <= 0) m.c301 = Constraint(expr= m.x298 - 15*m.b622 <= 0) m.c302 = Constraint(expr= m.x299 + 15*m.b620 <= 15) m.c303 = Constraint(expr= m.x300 + 15*m.b621 <= 15) m.c304 = Constraint(expr= m.x301 + 15*m.b622 <= 15) m.c305 = Constraint(expr= m.x344 - 13.5*m.b620 <= 0) m.c306 = Constraint(expr= m.x345 - 13.5*m.b621 <= 0) m.c307 = Constraint(expr= m.x346 - 13.5*m.b622 <= 0) m.c308 = Constraint(expr= m.x347 + 13.5*m.b620 <= 13.5) m.c309 = Constraint(expr= m.x348 + 13.5*m.b621 <= 13.5) m.c310 = Constraint(expr= m.x349 + 13.5*m.b622 <= 13.5) m.c311 = Constraint(expr= - 0.6*m.x302 + m.x350 == 0) m.c312 = Constraint(expr= - 0.6*m.x303 + m.x351 == 0) m.c313 = Constraint(expr= - 0.6*m.x304 + m.x352 == 0) m.c314 = Constraint(expr= m.x305 == 0) m.c315 = Constraint(expr= m.x306 == 0) m.c316 = Constraint(expr= m.x307 == 0) m.c317 = Constraint(expr= m.x353 == 0) m.c318 = Constraint(expr= m.x354 == 0) m.c319 = Constraint(expr= m.x355 == 0) m.c320 = Constraint(expr= m.x56 - m.x302 - m.x305 == 0) m.c321 = Constraint(expr= m.x57 - m.x303 - m.x306 == 0) m.c322 = Constraint(expr= m.x58 - m.x304 - m.x307 == 0) m.c323 = Constraint(expr= m.x74 - m.x350 - m.x353 == 0) m.c324 = Constraint(expr= m.x75 - m.x351 - m.x354 == 0) m.c325 = Constraint(expr= m.x76 - m.x352 - m.x355 == 0) m.c326 = Constraint(expr= m.x302 - 15*m.b623 <= 0) m.c327 = Constraint(expr= m.x303 - 15*m.b624 <= 0) m.c328 = Constraint(expr= m.x304 - 15*m.b625 <= 0) m.c329 = Constraint(expr= m.x305 + 15*m.b623 <= 15) m.c330 = Constraint(expr= m.x306 + 15*m.b624 <= 15) m.c331 = Constraint(expr= m.x307 + 15*m.b625 <= 15) m.c332 = Constraint(expr= m.x350 - 9*m.b623 <= 0) m.c333 = Constraint(expr= m.x351 - 9*m.b624 <= 0) m.c334 = Constraint(expr= m.x352 - 9*m.b625 <= 0) m.c335 = Constraint(expr= m.x353 + 9*m.b623 <= 9) m.c336 = Constraint(expr= m.x354 + 9*m.b624 <= 9) m.c337 = Constraint(expr= m.x355 + 9*m.b625 <= 9) m.c338 = Constraint(expr=(m.x356/(0.001 + 0.999*m.b626) - 1.1*log(1 + m.x308/(0.001 + 0.999*m.b626)))*(0.001 + 0.999* m.b626) <= 0) m.c339 = Constraint(expr=(m.x357/(0.001 + 0.999*m.b627) - 1.1*log(1 + m.x309/(0.001 + 0.999*m.b627)))*(0.001 + 0.999* m.b627) <= 0) m.c340 = Constraint(expr=(m.x358/(0.001 + 0.999*m.b628) - 1.1*log(1 + m.x310/(0.001 + 0.999*m.b628)))*(0.001 + 0.999* m.b628) <= 0) m.c341 = Constraint(expr= m.x311 == 0) m.c342 = Constraint(expr= m.x312 == 0) m.c343 = Constraint(expr= m.x313 == 0) m.c344 = Constraint(expr= m.x359 == 0) m.c345 = Constraint(expr= m.x360 == 0) m.c346 = Constraint(expr= m.x361 == 0) m.c347 = Constraint(expr= m.x59 - m.x308 - m.x311 == 0) m.c348 = Constraint(expr= m.x60 - m.x309 - m.x312 == 0) m.c349 = Constraint(expr= m.x61 - m.x310 - m.x313 == 0) m.c350 = Constraint(expr= m.x77 - m.x356 - m.x359 == 0) m.c351 = Constraint(expr= m.x78 - m.x357 - m.x360 == 0) m.c352 = Constraint(expr= m.x79 - m.x358 - m.x361 == 0) m.c353 = Constraint(expr= m.x308 - 15*m.b626 <= 0) m.c354 = Constraint(expr= m.x309 - 15*m.b627 <= 0) m.c355 = Constraint(expr= m.x310 - 15*m.b628 <= 0) m.c356 = Constraint(expr= m.x311 + 15*m.b626 <= 15) m.c357 = Constraint(expr= m.x312 + 15*m.b627 <= 15) m.c358 = Constraint(expr= m.x313 + 15*m.b628 <= 15) m.c359 = Constraint(expr= m.x356 - 3.04984759446376*m.b626 <= 0) m.c360 = Constraint(expr= m.x357 - 3.04984759446376*m.b627 <= 0) m.c361 = Constraint(expr= m.x358 - 3.04984759446376*m.b628 <= 0) m.c362 = Constraint(expr= m.x359 + 3.04984759446376*m.b626 <= 3.04984759446376) m.c363 = Constraint(expr= m.x360 + 3.04984759446376*m.b627 <= 3.04984759446376) m.c364 = Constraint(expr= m.x361 + 3.04984759446376*m.b628 <= 3.04984759446376) m.c365 = Constraint(expr= - 0.9*m.x317 + m.x416 == 0) m.c366 = Constraint(expr= - 0.9*m.x318 + m.x417 == 0) m.c367 = Constraint(expr= - 0.9*m.x319 + m.x418 == 0) m.c368 = Constraint(expr= - m.x374 + m.x416 == 0) m.c369 = Constraint(expr= - m.x375 + m.x417 == 0) m.c370 = Constraint(expr= - m.x376 + m.x418 == 0) m.c371 = Constraint(expr= m.x323 == 0) m.c372 = Constraint(expr= m.x324 == 0) m.c373 = Constraint(expr= m.x325 == 0) m.c374 = Constraint(expr= m.x377 == 0) m.c375 = Constraint(expr= m.x378 == 0) m.c376 = Constraint(expr= m.x379 == 0) m.c377 = Constraint(expr= m.x419 == 0) m.c378 = Constraint(expr= m.x420 == 0) m.c379 = Constraint(expr= m.x421 == 0) m.c380 = Constraint(expr= m.x62 - m.x317 - m.x323 == 0) m.c381 = Constraint(expr= m.x63 - m.x318 - m.x324 == 0) m.c382 = Constraint(expr= m.x64 - m.x319 - m.x325 == 0) m.c383 = Constraint(expr= m.x86 - m.x374 - m.x377 == 0) m.c384 = Constraint(expr= m.x87 - m.x375 - m.x378 == 0) m.c385 = Constraint(expr= m.x88 - m.x376 - m.x379 == 0) m.c386 = Constraint(expr= m.x110 - m.x416 - m.x419 == 0) m.c387 = Constraint(expr= m.x111 - m.x417 - m.x420 == 0) m.c388 = Constraint(expr= m.x112 - m.x418 - m.x421 == 0) m.c389 = Constraint(expr= m.x317 - 1.83548069293539*m.b629 <= 0) m.c390 = Constraint(expr= m.x318 - 1.83548069293539*m.b630 <= 0) m.c391 = Constraint(expr= m.x319 - 1.83548069293539*m.b631 <= 0) m.c392 = Constraint(expr= m.x323 + 1.83548069293539*m.b629 <= 1.83548069293539) m.c393 = Constraint(expr= m.x324 + 1.83548069293539*m.b630 <= 1.83548069293539) m.c394 = Constraint(expr= m.x325 + 1.83548069293539*m.b631 <= 1.83548069293539) m.c395 = Constraint(expr= m.x374 - 20*m.b629 <= 0) m.c396 = Constraint(expr= m.x375 - 20*m.b630 <= 0) m.c397 = Constraint(expr= m.x376 - 20*m.b631 <= 0) m.c398 = Constraint(expr= m.x377 + 20*m.b629 <= 20) m.c399 = Constraint(expr= m.x378 + 20*m.b630 <= 20) m.c400 = Constraint(expr= m.x379 + 20*m.b631 <= 20) m.c401 = Constraint(expr= m.x416 - 20*m.b629 <= 0) m.c402 = Constraint(expr= m.x417 - 20*m.b630 <= 0) m.c403 = Constraint(expr= m.x418 - 20*m.b631 <= 0) m.c404 = Constraint(expr= m.x419 + 20*m.b629 <= 20) m.c405 = Constraint(expr= m.x420 + 20*m.b630 <= 20) m.c406 = Constraint(expr= m.x421 + 20*m.b631 <= 20) m.c407 = Constraint(expr=(m.x422/(0.001 + 0.999*m.b632) - log(1 + m.x329/(0.001 + 0.999*m.b632)))*(0.001 + 0.999*m.b632) <= 0) m.c408 = Constraint(expr=(m.x423/(0.001 + 0.999*m.b633) - log(1 + m.x330/(0.001 + 0.999*m.b633)))*(0.001 + 0.999*m.b633) <= 0) m.c409 = Constraint(expr=(m.x424/(0.001 + 0.999*m.b634) - log(1 + m.x331/(0.001 + 0.999*m.b634)))*(0.001 + 0.999*m.b634) <= 0) m.c410 = Constraint(expr= m.x335 == 0) m.c411 = Constraint(expr= m.x336 == 0) m.c412 = Constraint(expr= m.x337 == 0) m.c413 = Constraint(expr= m.x425 == 0) m.c414 = Constraint(expr= m.x426 == 0) m.c415 = Constraint(expr= m.x427 == 0) m.c416 = Constraint(expr= m.x65 - m.x329 - m.x335 == 0) m.c417 = Constraint(expr= m.x66 - m.x330 - m.x336 == 0) m.c418 = Constraint(expr= m.x67 - m.x331 - m.x337 == 0) m.c419 = Constraint(expr= m.x113 - m.x422 - m.x425 == 0) m.c420 = Constraint(expr= m.x114 - m.x423 - m.x426 == 0) m.c421 = Constraint(expr= m.x115 - m.x424 - m.x427 == 0) m.c422 = Constraint(expr= m.x329 - 1.32154609891348*m.b632 <= 0) m.c423 = Constraint(expr= m.x330 - 1.32154609891348*m.b633 <= 0) m.c424 = Constraint(expr= m.x331 - 1.32154609891348*m.b634 <= 0) m.c425 = Constraint(expr= m.x335 + 1.32154609891348*m.b632 <= 1.32154609891348) m.c426 = Constraint(expr= m.x336 + 1.32154609891348*m.b633 <= 1.32154609891348) m.c427 = Constraint(expr= m.x337 + 1.32154609891348*m.b634 <= 1.32154609891348) m.c428 = Constraint(expr= m.x422 - 0.842233385663186*m.b632 <= 0) m.c429 = Constraint(expr= m.x423 - 0.842233385663186*m.b633 <= 0) m.c430 = Constraint(expr= m.x424 - 0.842233385663186*m.b634 <= 0) m.c431 = Constraint(expr= m.x425 + 0.842233385663186*m.b632 <= 0.842233385663186) m.c432 = Constraint(expr= m.x426 + 0.842233385663186*m.b633 <= 0.842233385663186) m.c433 = Constraint(expr= m.x427 + 0.842233385663186*m.b634 <= 0.842233385663186) m.c434 = Constraint(expr=(m.x428/(0.001 + 0.999*m.b635) - 0.7*log(1 + m.x362/(0.001 + 0.999*m.b635)))*(0.001 + 0.999* m.b635) <= 0) m.c435 = Constraint(expr=(m.x429/(0.001 + 0.999*m.b636) - 0.7*log(1 + m.x363/(0.001 + 0.999*m.b636)))*(0.001 + 0.999* m.b636) <= 0) m.c436 = Constraint(expr=(m.x430/(0.001 + 0.999*m.b637) - 0.7*log(1 + m.x364/(0.001 + 0.999*m.b637)))*(0.001 + 0.999* m.b637) <= 0) m.c437 = Constraint(expr= m.x365 == 0) m.c438 = Constraint(expr= m.x366 == 0) m.c439 = Constraint(expr= m.x367 == 0) m.c440 = Constraint(expr= m.x431 == 0) m.c441 = Constraint(expr= m.x432 == 0) m.c442 = Constraint(expr= m.x433 == 0) m.c443 = Constraint(expr= m.x80 - m.x362 - m.x365 == 0) m.c444 = Constraint(expr= m.x81 - m.x363 - m.x366 == 0) m.c445 = Constraint(expr= m.x82 - m.x364 - m.x367 == 0) m.c446 = Constraint(expr= m.x116 - m.x428 - m.x431 == 0) m.c447 = Constraint(expr= m.x117 - m.x429 - m.x432 == 0) m.c448 = Constraint(expr= m.x118 - m.x430 - m.x433 == 0) m.c449 = Constraint(expr= m.x362 - 1.26558121681553*m.b635 <= 0) m.c450 = Constraint(expr= m.x363 - 1.26558121681553*m.b636 <= 0) m.c451 = Constraint(expr= m.x364 - 1.26558121681553*m.b637 <= 0) m.c452 = Constraint(expr= m.x365 + 1.26558121681553*m.b635 <= 1.26558121681553) m.c453 = Constraint(expr= m.x366 + 1.26558121681553*m.b636 <= 1.26558121681553) m.c454 = Constraint(expr= m.x367 + 1.26558121681553*m.b637 <= 1.26558121681553) m.c455 = Constraint(expr= m.x428 - 0.572481933717686*m.b635 <= 0) m.c456 = Constraint(expr= m.x429 - 0.572481933717686*m.b636 <= 0) m.c457 = Constraint(expr= m.x430 - 0.572481933717686*m.b637 <= 0) m.c458 = Constraint(expr= m.x431 + 0.572481933717686*m.b635 <= 0.572481933717686) m.c459 = Constraint(expr= m.x432 + 0.572481933717686*m.b636 <= 0.572481933717686) m.c460 = Constraint(expr= m.x433 + 0.572481933717686*m.b637 <= 0.572481933717686) m.c461 = Constraint(expr=(m.x434/(0.001 + 0.999*m.b638) - 0.65*log(1 + m.x368/(0.001 + 0.999*m.b638)))*(0.001 + 0.999* m.b638) <= 0) m.c462 = Constraint(expr=(m.x435/(0.001 + 0.999*m.b639) - 0.65*log(1 + m.x369/(0.001 + 0.999*m.b639)))*(0.001 + 0.999* m.b639) <= 0) m.c463 = Constraint(expr=(m.x436/(0.001 + 0.999*m.b640) - 0.65*log(1 + m.x370/(0.001 + 0.999*m.b640)))*(0.001 + 0.999* m.b640) <= 0) m.c464 = Constraint(expr=(m.x434/(0.001 + 0.999*m.b638) - 0.65*log(1 + m.x380/(0.001 + 0.999*m.b638)))*(0.001 + 0.999* m.b638) <= 0) m.c465 = Constraint(expr=(m.x435/(0.001 + 0.999*m.b639) - 0.65*log(1 + m.x381/(0.001 + 0.999*m.b639)))*(0.001 + 0.999* m.b639) <= 0) m.c466 = Constraint(expr=(m.x436/(0.001 + 0.999*m.b640) - 0.65*log(1 + m.x382/(0.001 + 0.999*m.b640)))*(0.001 + 0.999* m.b640) <= 0) m.c467 = Constraint(expr= m.x371 == 0) m.c468 = Constraint(expr= m.x372 == 0) m.c469 = Constraint(expr= m.x373 == 0) m.c470 = Constraint(expr= m.x383 == 0) m.c471 = Constraint(expr= m.x384 == 0) m.c472 = Constraint(expr= m.x385 == 0) m.c473 = Constraint(expr= m.x437 == 0) m.c474 = Constraint(expr= m.x438 == 0) m.c475 = Constraint(expr= m.x439 == 0) m.c476 = Constraint(expr= m.x83 - m.x368 - m.x371 == 0) m.c477 = Constraint(expr= m.x84 - m.x369 - m.x372 == 0) m.c478 = Constraint(expr= m.x85 - m.x370 - m.x373 == 0) m.c479 = Constraint(expr= m.x92 - m.x380 - m.x383 == 0) m.c480 = Constraint(expr= m.x93 - m.x381 - m.x384 == 0) m.c481 = Constraint(expr= m.x94 - m.x382 - m.x385 == 0) m.c482 = Constraint(expr= m.x119 - m.x434 - m.x437 == 0) m.c483 = Constraint(expr= m.x120 - m.x435 - m.x438 == 0) m.c484 = Constraint(expr= m.x121 - m.x436 - m.x439 == 0) m.c485 = Constraint(expr= m.x368 - 1.26558121681553*m.b638 <= 0) m.c486 = Constraint(expr= m.x369 - 1.26558121681553*m.b639 <= 0) m.c487 = Constraint(expr= m.x370 - 1.26558121681553*m.b640 <= 0) m.c488 = Constraint(expr= m.x371 + 1.26558121681553*m.b638 <= 1.26558121681553) m.c489 = Constraint(expr= m.x372 + 1.26558121681553*m.b639 <= 1.26558121681553) m.c490 = Constraint(expr= m.x373 + 1.26558121681553*m.b640 <= 1.26558121681553) m.c491 = Constraint(expr= m.x380 - 33.5*m.b638 <= 0) m.c492 = Constraint(expr= m.x381 - 33.5*m.b639 <= 0) m.c493 = Constraint(expr= m.x382 - 33.5*m.b640 <= 0) m.c494 = Constraint(expr= m.x383 + 33.5*m.b638 <= 33.5) m.c495 = Constraint(expr= m.x384 + 33.5*m.b639 <= 33.5) m.c496 = Constraint(expr= m.x385 + 33.5*m.b640 <= 33.5) m.c497 = Constraint(expr= m.x434 - 2.30162356062425*m.b638 <= 0) m.c498 = Constraint(expr= m.x435 - 2.30162356062425*m.b639 <= 0) m.c499 = Constraint(expr= m.x436 - 2.30162356062425*m.b640 <= 0) m.c500 = Constraint(expr= m.x437 + 2.30162356062425*m.b638 <= 2.30162356062425) m.c501 = Constraint(expr= m.x438 + 2.30162356062425*m.b639 <= 2.30162356062425) m.c502 = Constraint(expr= m.x439 + 2.30162356062425*m.b640 <= 2.30162356062425) m.c503 = Constraint(expr= - m.x386 + m.x440 == 0) m.c504 = Constraint(expr= - m.x387 + m.x441 == 0) m.c505 = Constraint(expr= - m.x388 + m.x442 == 0) m.c506 = Constraint(expr= m.x389 == 0) m.c507 = Constraint(expr= m.x390 == 0) m.c508 = Constraint(expr= m.x391 == 0) m.c509 = Constraint(expr= m.x443 == 0) m.c510 = Constraint(expr= m.x444 == 0) m.c511 = Constraint(expr= m.x445 == 0) m.c512 = Constraint(expr= m.x95 - m.x386 - m.x389 == 0) m.c513 = Constraint(expr= m.x96 - m.x387 - m.x390 == 0) m.c514 = Constraint(expr= m.x97 - m.x388 - m.x391 == 0) m.c515 = Constraint(expr= m.x122 - m.x440 - m.x443 == 0) m.c516 = Constraint(expr= m.x123 - m.x441 - m.x444 == 0) m.c517 = Constraint(expr= m.x124 - m.x442 - m.x445 == 0) m.c518 = Constraint(expr= m.x386 - 9*m.b641 <= 0) m.c519 = Constraint(expr= m.x387 - 9*m.b642 <= 0) m.c520 = Constraint(expr= m.x388 - 9*m.b643 <= 0) m.c521 = Constraint(expr= m.x389 + 9*m.b641 <= 9) m.c522 = Constraint(expr= m.x390 + 9*m.b642 <= 9) m.c523 = Constraint(expr= m.x391 + 9*m.b643 <= 9) m.c524 = Constraint(expr= m.x440 - 9*m.b641 <= 0) m.c525 = Constraint(expr= m.x441 - 9*m.b642 <= 0) m.c526 = Constraint(expr= m.x442 - 9*m.b643 <= 0) m.c527 = Constraint(expr= m.x443 + 9*m.b641 <= 9) m.c528 = Constraint(expr= m.x444 + 9*m.b642 <= 9) m.c529 = Constraint(expr= m.x445 + 9*m.b643 <= 9) m.c530 = Constraint(expr= - m.x392 + m.x446 == 0) m.c531 = Constraint(expr= - m.x393 + m.x447 == 0) m.c532 = Constraint(expr= - m.x394 + m.x448 == 0) m.c533 = Constraint(expr= m.x395 == 0) m.c534 = Constraint(expr= m.x396 == 0) m.c535 = Constraint(expr= m.x397 == 0) m.c536 = Constraint(expr= m.x449 == 0) m.c537 = Constraint(expr= m.x450 == 0) m.c538 = Constraint(expr= m.x451 == 0) m.c539 = Constraint(expr= m.x98 - m.x392 - m.x395 == 0) m.c540 = Constraint(expr= m.x99 - m.x393 - m.x396 == 0) m.c541 = Constraint(expr= m.x100 - m.x394 - m.x397 == 0) m.c542 = Constraint(expr= m.x125 - m.x446 - m.x449 == 0) m.c543 = Constraint(expr= m.x126 - m.x447 - m.x450 == 0) m.c544 = Constraint(expr= m.x127 - m.x448 - m.x451 == 0) m.c545 = Constraint(expr= m.x392 - 9*m.b644 <= 0) m.c546 = Constraint(expr= m.x393 - 9*m.b645 <= 0) m.c547 = Constraint(expr= m.x394 - 9*m.b646 <= 0) m.c548 = Constraint(expr= m.x395 + 9*m.b644 <= 9) m.c549 = Constraint(expr= m.x396 + 9*m.b645 <= 9) m.c550 = Constraint(expr= m.x397 + 9*m.b646 <= 9) m.c551 = Constraint(expr= m.x446 - 9*m.b644 <= 0) m.c552 = Constraint(expr= m.x447 - 9*m.b645 <= 0) m.c553 = Constraint(expr= m.x448 - 9*m.b646 <= 0) m.c554 = Constraint(expr= m.x449 + 9*m.b644 <= 9) m.c555 = Constraint(expr= m.x450 + 9*m.b645 <= 9) m.c556 = Constraint(expr= m.x451 + 9*m.b646 <= 9) m.c557 = Constraint(expr=(m.x452/(0.001 + 0.999*m.b647) - 0.75*log(1 + m.x398/(0.001 + 0.999*m.b647)))*(0.001 + 0.999* m.b647) <= 0) m.c558 = Constraint(expr=(m.x453/(0.001 + 0.999*m.b648) - 0.75*log(1 + m.x399/(0.001 + 0.999*m.b648)))*(0.001 + 0.999* m.b648) <= 0) m.c559 = Constraint(expr=(m.x454/(0.001 + 0.999*m.b649) - 0.75*log(1 + m.x400/(0.001 + 0.999*m.b649)))*(0.001 + 0.999* m.b649) <= 0) m.c560 = Constraint(expr= m.x401 == 0) m.c561 = Constraint(expr= m.x402 == 0) m.c562 = Constraint(expr= m.x403 == 0) m.c563 = Constraint(expr= m.x455 == 0) m.c564 = Constraint(expr= m.x456 == 0) m.c565 = Constraint(expr= m.x457 == 0) m.c566 = Constraint(expr= m.x101 - m.x398 - m.x401 == 0) m.c567 = Constraint(expr= m.x102 - m.x399 - m.x402 == 0) m.c568 = Constraint(expr= m.x103 - m.x400 - m.x403 == 0) m.c569 = Constraint(expr= m.x128 - m.x452 - m.x455 == 0) m.c570 = Constraint(expr= m.x129 - m.x453 - m.x456 == 0) m.c571 = Constraint(expr= m.x130 - m.x454 - m.x457 == 0) m.c572 = Constraint(expr= m.x398 - 3.04984759446376*m.b647 <= 0) m.c573 = Constraint(expr= m.x399 - 3.04984759446376*m.b648 <= 0) m.c574 = Constraint(expr= m.x400 - 3.04984759446376*m.b649 <= 0) m.c575 = Constraint(expr= m.x401 + 3.04984759446376*m.b647 <= 3.04984759446376) m.c576 = Constraint(expr= m.x402 + 3.04984759446376*m.b648 <= 3.04984759446376) m.c577 = Constraint(expr= m.x403 + 3.04984759446376*m.b649 <= 3.04984759446376) m.c578 = Constraint(expr= m.x452 - 1.04900943706034*m.b647 <= 0) m.c579 = Constraint(expr= m.x453 - 1.04900943706034*m.b648 <= 0) m.c580 = Constraint(expr= m.x454 - 1.04900943706034*m.b649 <= 0) m.c581 = Constraint(expr= m.x455 + 1.04900943706034*m.b647 <= 1.04900943706034) m.c582 = Constraint(expr= m.x456 + 1.04900943706034*m.b648 <= 1.04900943706034) m.c583 = Constraint(expr= m.x457 + 1.04900943706034*m.b649 <= 1.04900943706034) m.c584 = Constraint(expr=(m.x458/(0.001 + 0.999*m.b650) - 0.8*log(1 + m.x404/(0.001 + 0.999*m.b650)))*(0.001 + 0.999* m.b650) <= 0) m.c585 = Constraint(expr=(m.x459/(0.001 + 0.999*m.b651) - 0.8*log(1 + m.x405/(0.001 + 0.999*m.b651)))*(0.001 + 0.999* m.b651) <= 0) m.c586 = Constraint(expr=(m.x460/(0.001 + 0.999*m.b652) - 0.8*log(1 + m.x406/(0.001 + 0.999*m.b652)))*(0.001 + 0.999* m.b652) <= 0) m.c587 = Constraint(expr= m.x407 == 0) m.c588 = Constraint(expr= m.x408 == 0) m.c589 = Constraint(expr= m.x409 == 0) m.c590 = Constraint(expr= m.x461 == 0) m.c591 = Constraint(expr= m.x462 == 0) m.c592 = Constraint(expr= m.x463 == 0) m.c593 = Constraint(expr= m.x104 - m.x404 - m.x407 == 0) m.c594 = Constraint(expr= m.x105 - m.x405 - m.x408 == 0) m.c595 = Constraint(expr= m.x106 - m.x406 - m.x409 == 0) m.c596 = Constraint(expr= m.x131 - m.x458 - m.x461 == 0) m.c597 = Constraint(expr= m.x132 - m.x459 - m.x462 == 0) m.c598 = Constraint(expr= m.x133 - m.x460 - m.x463 == 0) m.c599 = Constraint(expr= m.x404 - 3.04984759446376*m.b650 <= 0) m.c600 = Constraint(expr= m.x405 - 3.04984759446376*m.b651 <= 0) m.c601 = Constraint(expr= m.x406 - 3.04984759446376*m.b652 <= 0) m.c602 = Constraint(expr= m.x407 + 3.04984759446376*m.b650 <= 3.04984759446376) m.c603 = Constraint(expr= m.x408 + 3.04984759446376*m.b651 <= 3.04984759446376) m.c604 = Constraint(expr= m.x409 + 3.04984759446376*m.b652 <= 3.04984759446376) m.c605 = Constraint(expr= m.x458 - 1.11894339953103*m.b650 <= 0) m.c606 = Constraint(expr= m.x459 - 1.11894339953103*m.b651 <= 0) m.c607 = Constraint(expr= m.x460 - 1.11894339953103*m.b652 <= 0) m.c608 = Constraint(expr= m.x461 + 1.11894339953103*m.b650 <= 1.11894339953103) m.c609 = Constraint(expr= m.x462 + 1.11894339953103*m.b651 <= 1.11894339953103) m.c610 = Constraint(expr= m.x463 + 1.11894339953103*m.b652 <= 1.11894339953103) m.c611 = Constraint(expr=(m.x464/(0.001 + 0.999*m.b653) - 0.85*log(1 + m.x410/(0.001 + 0.999*m.b653)))*(0.001 + 0.999* m.b653) <= 0) m.c612 = Constraint(expr=(m.x465/(0.001 + 0.999*m.b654) - 0.85*log(1 + m.x411/(0.001 + 0.999*m.b654)))*(0.001 + 0.999* m.b654) <= 0) m.c613 = Constraint(expr=(m.x466/(0.001 + 0.999*m.b655) - 0.85*log(1 + m.x412/(0.001 + 0.999*m.b655)))*(0.001 + 0.999* m.b655) <= 0) m.c614 = Constraint(expr= m.x413 == 0) m.c615 = Constraint(expr= m.x414 == 0) m.c616 = Constraint(expr= m.x415 == 0) m.c617 = Constraint(expr= m.x467 == 0) m.c618 = Constraint(expr= m.x468 == 0) m.c619 = Constraint(expr= m.x469 == 0) m.c620 = Constraint(expr= m.x107 - m.x410 - m.x413 == 0) m.c621 = Constraint(expr= m.x108 - m.x411 - m.x414 == 0) m.c622 = Constraint(expr= m.x109 - m.x412 - m.x415 == 0) m.c623 = Constraint(expr= m.x134 - m.x464 - m.x467 == 0) m.c624 = Constraint(expr= m.x135 - m.x465 - m.x468 == 0) m.c625 = Constraint(expr= m.x136 - m.x466 - m.x469 == 0) m.c626 = Constraint(expr= m.x410 - 3.04984759446376*m.b653 <= 0) m.c627 = Constraint(expr= m.x411 - 3.04984759446376*m.b654 <= 0) m.c628 = Constraint(expr= m.x412 - 3.04984759446376*m.b655 <= 0) m.c629 = Constraint(expr= m.x413 + 3.04984759446376*m.b653 <= 3.04984759446376) m.c630 = Constraint(expr= m.x414 + 3.04984759446376*m.b654 <= 3.04984759446376) m.c631 = Constraint(expr= m.x415 + 3.04984759446376*m.b655 <= 3.04984759446376) m.c632 = Constraint(expr= m.x464 - 1.18887736200171*m.b653 <= 0) m.c633 = Constraint(expr= m.x465 - 1.18887736200171*m.b654 <= 0) m.c634 = Constraint(expr= m.x466 - 1.18887736200171*m.b655 <= 0) m.c635 = Constraint(expr= m.x467 + 1.18887736200171*m.b653 <= 1.18887736200171) m.c636 = Constraint(expr= m.x468 + 1.18887736200171*m.b654 <= 1.18887736200171) m.c637 = Constraint(expr= m.x469 + 1.18887736200171*m.b655 <= 1.18887736200171) m.c638 = Constraint(expr=(m.x482/(0.001 + 0.999*m.b656) - log(1 + m.x470/(0.001 + 0.999*m.b656)))*(0.001 + 0.999*m.b656) <= 0) m.c639 = Constraint(expr=(m.x483/(0.001 + 0.999*m.b657) - log(1 + m.x471/(0.001 + 0.999*m.b657)))*(0.001 + 0.999*m.b657) <= 0) m.c640 = Constraint(expr=(m.x484/(0.001 + 0.999*m.b658) - log(1 + m.x472/(0.001 + 0.999*m.b658)))*(0.001 + 0.999*m.b658) <= 0) m.c641 = Constraint(expr= m.x473 == 0) m.c642 = Constraint(expr= m.x474 == 0) m.c643 = Constraint(expr= m.x475 == 0) m.c644 = Constraint(expr= m.x485 == 0) m.c645 = Constraint(expr= m.x486 == 0) m.c646 = Constraint(expr= m.x487 == 0) m.c647 = Constraint(expr= m.x140 - m.x470 - m.x473 == 0) m.c648 = Constraint(expr= m.x141 - m.x471 - m.x474 == 0) m.c649 = Constraint(expr= m.x142 - m.x472 - m.x475 == 0) m.c650 = Constraint(expr= m.x146 - m.x482 - m.x485 == 0) m.c651 = Constraint(expr= m.x147 - m.x483 - m.x486 == 0) m.c652 = Constraint(expr= m.x148 - m.x484 - m.x487 == 0) m.c653 = Constraint(expr= m.x470 - 1.18887736200171*m.b656 <= 0) m.c654 = Constraint(expr= m.x471 - 1.18887736200171*m.b657 <= 0) m.c655 = Constraint(expr= m.x472 - 1.18887736200171*m.b658 <= 0) m.c656 = Constraint(expr= m.x473 + 1.18887736200171*m.b656 <= 1.18887736200171) m.c657 = Constraint(expr= m.x474 + 1.18887736200171*m.b657 <= 1.18887736200171) m.c658 = Constraint(expr= m.x475 + 1.18887736200171*m.b658 <= 1.18887736200171) m.c659 = Constraint(expr= m.x482 - 0.78338879230327*m.b656 <= 0) m.c660 = Constraint(expr= m.x483 - 0.78338879230327*m.b657 <= 0) m.c661 = Constraint(expr= m.x484 - 0.78338879230327*m.b658 <= 0) m.c662 = Constraint(expr= m.x485 + 0.78338879230327*m.b656 <= 0.78338879230327) m.c663 = Constraint(expr= m.x486 + 0.78338879230327*m.b657 <= 0.78338879230327) m.c664 = Constraint(expr= m.x487 + 0.78338879230327*m.b658 <= 0.78338879230327) m.c665 = Constraint(expr=(m.x488/(0.001 + 0.999*m.b659) - 1.2*log(1 + m.x476/(0.001 + 0.999*m.b659)))*(0.001 + 0.999* m.b659) <= 0) m.c666 = Constraint(expr=(m.x489/(0.001 + 0.999*m.b660) - 1.2*log(1 + m.x477/(0.001 + 0.999*m.b660)))*(0.001 + 0.999* m.b660) <= 0) m.c667 = Constraint(expr=(m.x490/(0.001 + 0.999*m.b661) - 1.2*log(1 + m.x478/(0.001 + 0.999*m.b661)))*(0.001 + 0.999* m.b661) <= 0) m.c668 = Constraint(expr= m.x479 == 0) m.c669 = Constraint(expr= m.x480 == 0) m.c670 = Constraint(expr= m.x481 == 0) m.c671 = Constraint(expr= m.x491 == 0) m.c672 = Constraint(expr= m.x492 == 0) m.c673 = Constraint(expr= m.x493 == 0) m.c674 = Constraint(expr= m.x143 - m.x476 - m.x479 == 0) m.c675 = Constraint(expr= m.x144 - m.x477 - m.x480 == 0) m.c676 = Constraint(expr= m.x145 - m.x478 - m.x481 == 0) m.c677 = Constraint(expr= m.x149 - m.x488 - m.x491 == 0) m.c678 = Constraint(expr= m.x150 - m.x489 - m.x492 == 0) m.c679 = Constraint(expr= m.x151 - m.x490 - m.x493 == 0) m.c680 = Constraint(expr= m.x476 - 1.18887736200171*m.b659 <= 0) m.c681 = Constraint(expr= m.x477 - 1.18887736200171*m.b660 <= 0) m.c682 = Constraint(expr= m.x478 - 1.18887736200171*m.b661 <= 0) m.c683 = Constraint(expr= m.x479 + 1.18887736200171*m.b659 <= 1.18887736200171) m.c684 = Constraint(expr= m.x480 + 1.18887736200171*m.b660 <= 1.18887736200171) m.c685 = Constraint(expr= m.x481 + 1.18887736200171*m.b661 <= 1.18887736200171) m.c686 = Constraint(expr= m.x488 - 0.940066550763924*m.b659 <= 0) m.c687 = Constraint(expr= m.x489 - 0.940066550763924*m.b660 <= 0) m.c688 = Constraint(expr= m.x490 - 0.940066550763924*m.b661 <= 0) m.c689 = Constraint(expr= m.x491 + 0.940066550763924*m.b659 <= 0.940066550763924) m.c690 = Constraint(expr= m.x492 + 0.940066550763924*m.b660 <= 0.940066550763924) m.c691 = Constraint(expr= m.x493 + 0.940066550763924*m.b661 <= 0.940066550763924) m.c692 = Constraint(expr= - 0.75*m.x494 + m.x518 == 0) m.c693 = Constraint(expr= - 0.75*m.x495 + m.x519 == 0) m.c694 = Constraint(expr= - 0.75*m.x496 + m.x520 == 0) m.c695 = Constraint(expr= m.x497 == 0) m.c696 = Constraint(expr= m.x498 == 0) m.c697 = Constraint(expr= m.x499 == 0) m.c698 = Constraint(expr= m.x521 == 0) m.c699 = Constraint(expr= m.x522 == 0) m.c700 = Constraint(expr= m.x523 == 0) m.c701 = Constraint(expr= m.x161 - m.x494 - m.x497 == 0) m.c702 = Constraint(expr= m.x162 - m.x495 - m.x498 == 0) m.c703 = Constraint(expr= m.x163 - m.x496 - m.x499 == 0) m.c704 = Constraint(expr= m.x173 - m.x518 - m.x521 == 0) m.c705 = Constraint(expr= m.x174 - m.x519 - m.x522 == 0) m.c706 = Constraint(expr= m.x175 - m.x520 - m.x523 == 0) m.c707 = Constraint(expr= m.x494 - 0.940066550763924*m.b662 <= 0) m.c708 = Constraint(expr= m.x495 - 0.940066550763924*m.b663 <= 0) m.c709 = Constraint(expr= m.x496 - 0.940066550763924*m.b664 <= 0) m.c710 = Constraint(expr= m.x497 + 0.940066550763924*m.b662 <= 0.940066550763924) m.c711 = Constraint(expr= m.x498 + 0.940066550763924*m.b663 <= 0.940066550763924) m.c712 = Constraint(expr= m.x499 + 0.940066550763924*m.b664 <= 0.940066550763924) m.c713 = Constraint(expr= m.x518 - 0.705049913072943*m.b662 <= 0) m.c714 = Constraint(expr= m.x519 - 0.705049913072943*m.b663 <= 0) m.c715 = Constraint(expr= m.x520 - 0.705049913072943*m.b664 <= 0) m.c716 = Constraint(expr= m.x521 + 0.705049913072943*m.b662 <= 0.705049913072943) m.c717 = Constraint(expr= m.x522 + 0.705049913072943*m.b663 <= 0.705049913072943) m.c718 = Constraint(expr= m.x523 + 0.705049913072943*m.b664 <= 0.705049913072943) m.c719 = Constraint(expr=(m.x524/(0.001 + 0.999*m.b665) - 1.5*log(1 + m.x500/(0.001 + 0.999*m.b665)))*(0.001 + 0.999* m.b665) <= 0) m.c720 = Constraint(expr=(m.x525/(0.001 + 0.999*m.b666) - 1.5*log(1 + m.x501/(0.001 + 0.999*m.b666)))*(0.001 + 0.999* m.b666) <= 0) m.c721 = Constraint(expr=(m.x526/(0.001 + 0.999*m.b667) - 1.5*log(1 + m.x502/(0.001 + 0.999*m.b667)))*(0.001 + 0.999* m.b667) <= 0) m.c722 = Constraint(expr= m.x503 == 0) m.c723 = Constraint(expr= m.x504 == 0) m.c724 = Constraint(expr= m.x505 == 0) m.c725 = Constraint(expr= m.x530 == 0) m.c726 = Constraint(expr= m.x531 == 0) m.c727 = Constraint(expr= m.x532 == 0) m.c728 = Constraint(expr= m.x164 - m.x500 - m.x503 == 0) m.c729 = Constraint(expr= m.x165 - m.x501 - m.x504 == 0) m.c730 = Constraint(expr= m.x166 - m.x502 - m.x505 == 0) m.c731 = Constraint(expr= m.x176 - m.x524 - m.x530 == 0) m.c732 = Constraint(expr= m.x177 - m.x525 - m.x531 == 0) m.c733 = Constraint(expr= m.x178 - m.x526 - m.x532 == 0) m.c734 = Constraint(expr= m.x500 - 0.940066550763924*m.b665 <= 0) m.c735 = Constraint(expr= m.x501 - 0.940066550763924*m.b666 <= 0) m.c736 = Constraint(expr= m.x502 - 0.940066550763924*m.b667 <= 0) m.c737 = Constraint(expr= m.x503 + 0.940066550763924*m.b665 <= 0.940066550763924) m.c738 = Constraint(expr= m.x504 + 0.940066550763924*m.b666 <= 0.940066550763924) m.c739 = Constraint(expr= m.x505 + 0.940066550763924*m.b667 <= 0.940066550763924) m.c740 = Constraint(expr= m.x524 - 0.994083415506506*m.b665 <= 0) m.c741 = Constraint(expr= m.x525 - 0.994083415506506*m.b666 <= 0) m.c742 = Constraint(expr= m.x526 - 0.994083415506506*m.b667 <= 0) m.c743 = Constraint(expr= m.x530 + 0.994083415506506*m.b665 <= 0.994083415506506) m.c744 = Constraint(expr= m.x531 + 0.994083415506506*m.b666 <= 0.994083415506506) m.c745 = Constraint(expr= m.x532 + 0.994083415506506*m.b667 <= 0.994083415506506) m.c746 = Constraint(expr= - m.x506 + m.x536 == 0) m.c747 = Constraint(expr= - m.x507 + m.x537 == 0) m.c748 = Constraint(expr= - m.x508 + m.x538 == 0) m.c749 = Constraint(expr= - 0.5*m.x512 + m.x536 == 0) m.c750 = Constraint(expr= - 0.5*m.x513 + m.x537 == 0) m.c751 = Constraint(expr= - 0.5*m.x514 + m.x538 == 0) m.c752 = Constraint(expr= m.x509 == 0) m.c753 = Constraint(expr= m.x510 == 0) m.c754 = Constraint(expr= m.x511 == 0) m.c755 = Constraint(expr= m.x515 == 0) m.c756 = Constraint(expr= m.x516 == 0) m.c757 = Constraint(expr= m.x517 == 0) m.c758 = Constraint(expr= m.x539 == 0) m.c759 = Constraint(expr= m.x540 == 0) m.c760 = Constraint(expr= m.x541 == 0) m.c761 = Constraint(expr= m.x167 - m.x506 - m.x509 == 0) m.c762 = Constraint(expr= m.x168 - m.x507 - m.x510 == 0) m.c763 = Constraint(expr= m.x169 - m.x508 - m.x511 == 0) m.c764 = Constraint(expr= m.x170 - m.x512 - m.x515 == 0) m.c765 = Constraint(expr= m.x171 - m.x513 - m.x516 == 0) m.c766 = Constraint(expr= m.x172 - m.x514 - m.x517 == 0) m.c767 = Constraint(expr= m.x179 - m.x536 - m.x539 == 0) m.c768 = Constraint(expr= m.x180 - m.x537 - m.x540 == 0) m.c769 = Constraint(expr= m.x181 - m.x538 - m.x541 == 0) m.c770 = Constraint(expr= m.x506 - 0.940066550763924*m.b668 <= 0) m.c771 = Constraint(expr= m.x507 - 0.940066550763924*m.b669 <= 0) m.c772 = Constraint(expr= m.x508 - 0.940066550763924*m.b670 <= 0) m.c773 = Constraint(expr= m.x509 + 0.940066550763924*m.b668 <= 0.940066550763924) m.c774 = Constraint(expr= m.x510 + 0.940066550763924*m.b669 <= 0.940066550763924) m.c775 = Constraint(expr= m.x511 + 0.940066550763924*m.b670 <= 0.940066550763924) m.c776 = Constraint(expr= m.x512 - 30*m.b668 <= 0) m.c777 = Constraint(expr= m.x513 - 30*m.b669 <= 0) m.c778 = Constraint(expr= m.x514 - 30*m.b670 <= 0) m.c779 = Constraint(expr= m.x515 + 30*m.b668 <= 30) m.c780 = Constraint(expr= m.x516 + 30*m.b669 <= 30) m.c781 = Constraint(expr= m.x517 + 30*m.b670 <= 30) m.c782 = Constraint(expr= m.x536 - 15*m.b668 <= 0) m.c783 = Constraint(expr= m.x537 - 15*m.b669 <= 0) m.c784 = Constraint(expr= m.x538 - 15*m.b670 <= 0) m.c785 = Constraint(expr= m.x539 + 15*m.b668 <= 15) m.c786 = Constraint(expr= m.x540 + 15*m.b669 <= 15) m.c787 = Constraint(expr= m.x541 + 15*m.b670 <= 15) m.c788 = Constraint(expr=(m.x566/(0.001 + 0.999*m.b671) - 1.25*log(1 + m.x542/(0.001 + 0.999*m.b671)))*(0.001 + 0.999* m.b671) <= 0) m.c789 = Constraint(expr=(m.x567/(0.001 + 0.999*m.b672) - 1.25*log(1 + m.x543/(0.001 + 0.999*m.b672)))*(0.001 + 0.999* m.b672) <= 0) m.c790 = Constraint(expr=(m.x568/(0.001 + 0.999*m.b673) - 1.25*log(1 + m.x544/(0.001 + 0.999*m.b673)))*(0.001 + 0.999* m.b673) <= 0) m.c791 = Constraint(expr= m.x545 == 0) m.c792 = Constraint(expr= m.x546 == 0) m.c793 = Constraint(expr= m.x547 == 0) m.c794 = Constraint(expr= m.x569 == 0) m.c795 = Constraint(expr= m.x570 == 0) m.c796 = Constraint(expr= m.x571 == 0) m.c797 = Constraint(expr= m.x182 - m.x542 - m.x545 == 0) m.c798 = Constraint(expr= m.x183 - m.x543 - m.x546 == 0) m.c799 = Constraint(expr= m.x184 - m.x544 - m.x547 == 0) m.c800 = Constraint(expr= m.x197 - m.x566 - m.x569 == 0) m.c801 = Constraint(expr= m.x198 - m.x567 - m.x570 == 0) m.c802 = Constraint(expr= m.x199 - m.x568 - m.x571 == 0) m.c803 = Constraint(expr= m.x542 - 0.705049913072943*m.b671 <= 0) m.c804 = Constraint(expr= m.x543 - 0.705049913072943*m.b672 <= 0) m.c805 = Constraint(expr= m.x544 - 0.705049913072943*m.b673 <= 0) m.c806 = Constraint(expr= m.x545 + 0.705049913072943*m.b671 <= 0.705049913072943) m.c807 = Constraint(expr= m.x546 + 0.705049913072943*m.b672 <= 0.705049913072943) m.c808 = Constraint(expr= m.x547 + 0.705049913072943*m.b673 <= 0.705049913072943) m.c809 = Constraint(expr= m.x566 - 0.666992981045719*m.b671 <= 0) m.c810 = Constraint(expr= m.x567 - 0.666992981045719*m.b672 <= 0) m.c811 = Constraint(expr= m.x568 - 0.666992981045719*m.b673 <= 0) m.c812 = Constraint(expr= m.x569 + 0.666992981045719*m.b671 <= 0.666992981045719) m.c813 = Constraint(expr= m.x570 + 0.666992981045719*m.b672 <= 0.666992981045719) m.c814 = Constraint(expr= m.x571 + 0.666992981045719*m.b673 <= 0.666992981045719) m.c815 = Constraint(expr=(m.x572/(0.001 + 0.999*m.b674) - 0.9*log(1 + m.x548/(0.001 + 0.999*m.b674)))*(0.001 + 0.999* m.b674) <= 0) m.c816 = Constraint(expr=(m.x573/(0.001 + 0.999*m.b675) - 0.9*log(1 + m.x549/(0.001 + 0.999*m.b675)))*(0.001 + 0.999* m.b675) <= 0) m.c817 = Constraint(expr=(m.x574/(0.001 + 0.999*m.b676) - 0.9*log(1 + m.x550/(0.001 + 0.999*m.b676)))*(0.001 + 0.999* m.b676) <= 0) m.c818 = Constraint(expr= m.x551 == 0) m.c819 = Constraint(expr= m.x552 == 0) m.c820 = Constraint(expr= m.x553 == 0) m.c821 = Constraint(expr= m.x575 == 0) m.c822 = Constraint(expr= m.x576 == 0) m.c823 = Constraint(expr= m.x577 == 0) m.c824 = Constraint(expr= m.x185 - m.x548 - m.x551 == 0) m.c825 = Constraint(expr= m.x186 - m.x549 - m.x552 == 0) m.c826 = Constraint(expr= m.x187 - m.x550 - m.x553 == 0) m.c827 = Constraint(expr= m.x200 - m.x572 - m.x575 == 0) m.c828 = Constraint(expr= m.x201 - m.x573 - m.x576 == 0) m.c829 = Constraint(expr= m.x202 - m.x574 - m.x577 == 0) m.c830 = Constraint(expr= m.x548 - 0.705049913072943*m.b674 <= 0) m.c831 = Constraint(expr= m.x549 - 0.705049913072943*m.b675 <= 0) m.c832 = Constraint(expr= m.x550 - 0.705049913072943*m.b676 <= 0) m.c833 = Constraint(expr= m.x551 + 0.705049913072943*m.b674 <= 0.705049913072943) m.c834 = Constraint(expr= m.x552 + 0.705049913072943*m.b675 <= 0.705049913072943) m.c835 = Constraint(expr= m.x553 + 0.705049913072943*m.b676 <= 0.705049913072943) m.c836 = Constraint(expr= m.x572 - 0.480234946352917*m.b674 <= 0) m.c837 = Constraint(expr= m.x573 - 0.480234946352917*m.b675 <= 0) m.c838 = Constraint(expr= m.x574 - 0.480234946352917*m.b676 <= 0) m.c839 = Constraint(expr= m.x575 + 0.480234946352917*m.b674 <= 0.480234946352917) m.c840 = Constraint(expr= m.x576 + 0.480234946352917*m.b675 <= 0.480234946352917) m.c841 = Constraint(expr= m.x577 + 0.480234946352917*m.b676 <= 0.480234946352917) m.c842 = Constraint(expr=(m.x578/(0.001 + 0.999*m.b677) - log(1 + m.x527/(0.001 + 0.999*m.b677)))*(0.001 + 0.999*m.b677) <= 0) m.c843 = Constraint(expr=(m.x579/(0.001 + 0.999*m.b678) - log(1 + m.x528/(0.001 + 0.999*m.b678)))*(0.001 + 0.999*m.b678) <= 0) m.c844 = Constraint(expr=(m.x580/(0.001 + 0.999*m.b679) - log(1 + m.x529/(0.001 + 0.999*m.b679)))*(0.001 + 0.999*m.b679) <= 0) m.c845 = Constraint(expr= m.x533 == 0) m.c846 = Constraint(expr= m.x534 == 0) m.c847 = Constraint(expr= m.x535 == 0) m.c848 = Constraint(expr= m.x581 == 0) m.c849 = Constraint(expr= m.x582 == 0) m.c850 = Constraint(expr= m.x583 == 0) m.c851 = Constraint(expr= m.x176 - m.x527 - m.x533 == 0) m.c852 = Constraint(expr= m.x177 - m.x528 - m.x534 == 0) m.c853 = Constraint(expr= m.x178 - m.x529 - m.x535 == 0) m.c854 = Constraint(expr= m.x203 - m.x578 - m.x581 == 0) m.c855 = Constraint(expr= m.x204 - m.x579 - m.x582 == 0) m.c856 = Constraint(expr= m.x205 - m.x580 - m.x583 == 0) m.c857 = Constraint(expr= m.x527 - 0.994083415506506*m.b677 <= 0) m.c858 = Constraint(expr= m.x528 - 0.994083415506506*m.b678 <= 0) m.c859 = Constraint(expr= m.x529 - 0.994083415506506*m.b679 <= 0) m.c860 = Constraint(expr= m.x533 + 0.994083415506506*m.b677 <= 0.994083415506506) m.c861 = Constraint(expr= m.x534 + 0.994083415506506*m.b678 <= 0.994083415506506) m.c862 = Constraint(expr= m.x535 + 0.994083415506506*m.b679 <= 0.994083415506506) m.c863 = Constraint(expr= m.x578 - 0.690184503917672*m.b677 <= 0) m.c864 = Constraint(expr= m.x579 - 0.690184503917672*m.b678 <= 0) m.c865 = Constraint(expr= m.x580 - 0.690184503917672*m.b679 <= 0) m.c866 = Constraint(expr= m.x581 + 0.690184503917672*m.b677 <= 0.690184503917672) m.c867 = Constraint(expr= m.x582 + 0.690184503917672*m.b678 <= 0.690184503917672) m.c868 = Constraint(expr= m.x583 + 0.690184503917672*m.b679 <= 0.690184503917672) m.c869 = Constraint(expr= - 0.9*m.x554 + m.x584 == 0) m.c870 = Constraint(expr= - 0.9*m.x555 + m.x585 == 0) m.c871 = Constraint(expr= - 0.9*m.x556 + m.x586 == 0) m.c872 = Constraint(expr= m.x557 == 0) m.c873 = Constraint(expr= m.x558 == 0) m.c874 = Constraint(expr= m.x559 == 0) m.c875 = Constraint(expr= m.x587 == 0) m.c876 = Constraint(expr= m.x588 == 0) m.c877 = Constraint(expr= m.x589 == 0) m.c878 = Constraint(expr= m.x188 - m.x554 - m.x557 == 0) m.c879 = Constraint(expr= m.x189 - m.x555 - m.x558 == 0) m.c880 = Constraint(expr= m.x190 - m.x556 - m.x559 == 0) m.c881 = Constraint(expr= m.x206 - m.x584 - m.x587 == 0) m.c882 = Constraint(expr= m.x207 - m.x585 - m.x588 == 0) m.c883 = Constraint(expr= m.x208 - m.x586 - m.x589 == 0) m.c884 = Constraint(expr= m.x554 - 15*m.b680 <= 0) m.c885 = Constraint(expr= m.x555 - 15*m.b681 <= 0) m.c886 = Constraint(expr= m.x556 - 15*m.b682 <= 0) m.c887 = Constraint(expr= m.x557 + 15*m.b680 <= 15) m.c888 = Constraint(expr= m.x558 + 15*m.b681 <= 15) m.c889 = Constraint(expr= m.x559 + 15*m.b682 <= 15) m.c890 = Constraint(expr= m.x584 - 13.5*m.b680 <= 0) m.c891 = Constraint(expr= m.x585 - 13.5*m.b681 <= 0) m.c892 = Constraint(expr= m.x586 - 13.5*m.b682 <= 0) m.c893 = Constraint(expr= m.x587 + 13.5*m.b680 <= 13.5) m.c894 = Constraint(expr= m.x588 + 13.5*m.b681 <= 13.5) m.c895 = Constraint(expr= m.x589 + 13.5*m.b682 <= 13.5) m.c896 = Constraint(expr= - 0.6*m.x560 + m.x590 == 0) m.c897 = Constraint(expr= - 0.6*m.x561 + m.x591 == 0) m.c898 = Constraint(expr= - 0.6*m.x562 + m.x592 == 0) m.c899 = Constraint(expr= m.x563 == 0) m.c900 = Constraint(expr= m.x564 == 0) m.c901 = Constraint(expr= m.x565 == 0) m.c902 = Constraint(expr= m.x593 == 0) m.c903 = Constraint(expr= m.x594 == 0) m.c904 = Constraint(expr= m.x595 == 0) m.c905 = Constraint(expr= m.x191 - m.x560 - m.x563 == 0) m.c906 = Constraint(expr= m.x192 - m.x561 - m.x564 == 0) m.c907 = Constraint(expr= m.x193 - m.x562 - m.x565 == 0) m.c908 = Constraint(expr= m.x209 - m.x590 - m.x593 == 0) m.c909 = Constraint(expr= m.x210 - m.x591 - m.x594 == 0) m.c910 = Constraint(expr= m.x211 - m.x592 - m.x595 == 0) m.c911 = Constraint(expr= m.x560 - 15*m.b683 <= 0) m.c912 = Constraint(expr= m.x561 - 15*m.b684 <= 0) m.c913 = Constraint(expr= m.x562 - 15*m.b685 <= 0) m.c914 = Constraint(expr= m.x563 + 15*m.b683 <= 15) m.c915 = Constraint(expr= m.x564 + 15*m.b684 <= 15) m.c916 = Constraint(expr= m.x565 + 15*m.b685 <= 15) m.c917 = Constraint(expr= m.x590 - 9*m.b683 <= 0) m.c918 = Constraint(expr= m.x591 - 9*m.b684 <= 0) m.c919 = Constraint(expr= m.x592 - 9*m.b685 <= 0) m.c920 = Constraint(expr= m.x593 + 9*m.b683 <= 9) m.c921 = Constraint(expr= m.x594 + 9*m.b684 <= 9) m.c922 = Constraint(expr= m.x595 + 9*m.b685 <= 9) m.c923 = Constraint(expr= 5*m.b686 + m.x776 == 0) m.c924 = Constraint(expr= 4*m.b687 + m.x777 == 0) m.c925 = Constraint(expr= 6*m.b688 + m.x778 == 0) m.c926 = Constraint(expr= 8*m.b689 + m.x779 == 0) m.c927 = Constraint(expr= 7*m.b690 + m.x780 == 0) m.c928 = Constraint(expr= 6*m.b691 + m.x781 == 0) m.c929 = Constraint(expr= 6*m.b692 + m.x782 == 0) m.c930 = Constraint(expr= 9*m.b693 + m.x783 == 0) m.c931 = Constraint(expr= 4*m.b694 + m.x784 == 0) m.c932 = Constraint(expr= 10*m.b695 + m.x785 == 0) m.c933 = Constraint(expr= 9*m.b696 + m.x786 == 0) m.c934 = Constraint(expr= 5*m.b697 + m.x787 == 0) m.c935 = Constraint(expr= 6*m.b698 + m.x788 == 0) m.c936 = Constraint(expr= 10*m.b699 + m.x789 == 0) m.c937 = Constraint(expr= 6*m.b700 + m.x790 == 0) m.c938 = Constraint(expr= 7*m.b701 + m.x791 == 0) m.c939 = Constraint(expr= 7*m.b702 + m.x792 == 0) m.c940 = Constraint(expr= 4*m.b703 + m.x793 == 0) m.c941 = Constraint(expr= 4*m.b704 + m.x794 == 0) m.c942 = Constraint(expr= 3*m.b705 + m.x795 == 0) m.c943 = Constraint(expr= 2*m.b706 + m.x796 == 0) m.c944 = Constraint(expr= 5*m.b707 + m.x797 == 0) m.c945 = Constraint(expr= 6*m.b708 + m.x798 == 0) m.c946 = Constraint(expr= 7*m.b709 + m.x799 == 0) m.c947 = Constraint(expr= 2*m.b710 + m.x800 == 0) m.c948 = Constraint(expr= 5*m.b711 + m.x801 == 0) m.c949 = Constraint(expr= 2*m.b712 + m.x802 == 0) m.c950 = Constraint(expr= 4*m.b713 + m.x803 == 0) m.c951 = Constraint(expr= 7*m.b714 + m.x804 == 0) m.c952 = Constraint(expr= 4*m.b715 + m.x805 == 0) m.c953 = Constraint(expr= 3*m.b716 + m.x806 == 0) m.c954 = Constraint(expr= 9*m.b717 + m.x807 == 0) m.c955 = Constraint(expr= 3*m.b718 + m.x808 == 0) m.c956 = Constraint(expr= 7*m.b719 + m.x809 == 0) m.c957 = Constraint(expr= 2*m.b720 + m.x810 == 0) m.c958 = Constraint(expr= 9*m.b721 + m.x811 == 0) m.c959 = Constraint(expr= 3*m.b722 + m.x812 == 0) m.c960 = Constraint(expr= m.b723 + m.x813 == 0) m.c961 = Constraint(expr= 9*m.b724 + m.x814 == 0) m.c962 = Constraint(expr= 2*m.b725 + m.x815 == 0) m.c963 = Constraint(expr= 6*m.b726 + m.x816 == 0) m.c964 = Constraint(expr= 3*m.b727 + m.x817 == 0) m.c965 = Constraint(expr= 4*m.b728 + m.x818 == 0) m.c966 = Constraint(expr= 8*m.b729 + m.x819 == 0) m.c967 = Constraint(expr= m.b730 + m.x820 == 0) m.c968 = Constraint(expr= 2*m.b731 + m.x821 == 0) m.c969 = Constraint(expr= 5*m.b732 + m.x822 == 0) m.c970 = Constraint(expr= 2*m.b733 + m.x823 == 0) m.c971 = Constraint(expr= 3*m.b734 + m.x824 == 0) m.c972 = Constraint(expr= 4*m.b735 + m.x825 == 0) m.c973 = Constraint(expr= 3*m.b736 + m.x826 == 0) m.c974 = Constraint(expr= 5*m.b737 + m.x827 == 0) m.c975 = Constraint(expr= 7*m.b738 + m.x828 == 0) m.c976 = Constraint(expr= 6*m.b739 + m.x829 == 0) m.c977 = Constraint(expr= 2*m.b740 + m.x830 == 0) m.c978 = Constraint(expr= 8*m.b741 + m.x831 == 0) m.c979 = Constraint(expr= 4*m.b742 + m.x832 == 0) m.c980 = Constraint(expr= m.b743 + m.x833 == 0) m.c981 = Constraint(expr= 4*m.b744 + m.x834 == 0) m.c982 = Constraint(expr= m.b745 + m.x835 == 0) m.c983 = Constraint(expr= 2*m.b746 + m.x836 == 0) m.c984 = Constraint(expr= 5*m.b747 + m.x837 == 0) m.c985 = Constraint(expr= 2*m.b748 + m.x838 == 0) m.c986 = Constraint(expr= 9*m.b749 + m.x839 == 0) m.c987 = Constraint(expr= 2*m.b750 + m.x840 == 0) m.c988 = Constraint(expr= 9*m.b751 + m.x841 == 0) m.c989 = Constraint(expr= 5*m.b752 + m.x842 == 0) m.c990 = Constraint(expr= 8*m.b753 + m.x843 == 0) m.c991 = Constraint(expr= 4*m.b754 + m.x844 == 0) m.c992 = Constraint(expr= 2*m.b755 + m.x845 == 0) m.c993 = Constraint(expr= 3*m.b756 + m.x846 == 0) m.c994 = Constraint(expr= 8*m.b757 + m.x847 == 0) m.c995 = Constraint(expr= 10*m.b758 + m.x848 == 0) m.c996 = Constraint(expr= 6*m.b759 + m.x849 == 0) m.c997 = Constraint(expr= 3*m.b760 + m.x850 == 0) m.c998 = Constraint(expr= 4*m.b761 + m.x851 == 0) m.c999 = Constraint(expr= 8*m.b762 + m.x852 == 0) m.c1000 = Constraint(expr= 7*m.b763 + m.x853 == 0) m.c1001 = Constraint(expr= 7*m.b764 + m.x854 == 0) m.c1002 = Constraint(expr= 3*m.b765 + m.x855 == 0) m.c1003 = Constraint(expr= 9*m.b766 + m.x856 == 0) m.c1004 = Constraint(expr= 4*m.b767 + m.x857 == 0) m.c1005 = Constraint(expr= 8*m.b768 + m.x858 == 0) m.c1006 = Constraint(expr= 6*m.b769 + m.x859 == 0) m.c1007 = Constraint(expr= 2*m.b770 + m.x860 == 0) m.c1008 = Constraint(expr= m.b771 + m.x861 == 0) m.c1009 = Constraint(expr= 3*m.b772 + m.x862 == 0) m.c1010 = Constraint(expr= 8*m.b773 + m.x863 == 0) m.c1011 = Constraint(expr= 3*m.b774 + m.x864 == 0) m.c1012 = Constraint(expr= 4*m.b775 + m.x865 == 0) m.c1013 = Constraint(expr= m.b596 - m.b597 <= 0) m.c1014 = Constraint(expr= m.b596 - m.b598 <= 0) m.c1015 = Constraint(expr= m.b597 - m.b598 <= 0) m.c1016 = Constraint(expr= m.b599 - m.b600 <= 0) m.c1017 = Constraint(expr= m.b599 - m.b601 <= 0) m.c1018 = Constraint(expr= m.b600 - m.b601 <= 0) m.c1019 = Constraint(expr= m.b602 - m.b603 <= 0) m.c1020 = Constraint(expr= m.b602 - m.b604 <= 0) m.c1021 = Constraint(expr= m.b603 - m.b604 <= 0) m.c1022 = Constraint(expr= m.b605 - m.b606 <= 0) m.c1023 = Constraint(expr= m.b605 - m.b607 <= 0) m.c1024 = Constraint(expr= m.b606 - m.b607 <= 0) m.c1025 = Constraint(expr= m.b608 - m.b609 <= 0) m.c1026 = Constraint(expr= m.b608 - m.b610 <= 0) m.c1027 = Constraint(expr= m.b609 - m.b610 <= 0) m.c1028 = Constraint(expr= m.b611 - m.b612 <= 0) m.c1029 = Constraint(expr= m.b611 - m.b613 <= 0) m.c1030 = Constraint(expr= m.b612 - m.b613 <= 0) m.c1031 = Constraint(expr= m.b614 - m.b615 <= 0) m.c1032 = Constraint(expr= m.b614 - m.b616 <= 0) m.c1033 = Constraint(expr= m.b615 - m.b616 <= 0) m.c1034 = Constraint(expr= m.b617 - m.b618 <= 0) m.c1035 = Constraint(expr= m.b617 - m.b619 <= 0) m.c1036 = Constraint(expr= m.b618 - m.b619 <= 0) m.c1037 = Constraint(expr= m.b620 - m.b621 <= 0) m.c1038 = Constraint(expr= m.b620 - m.b622 <= 0) m.c1039 = Constraint(expr= m.b621 - m.b622 <= 0) m.c1040 = Constraint(expr= m.b623 - m.b624 <= 0) m.c1041 = Constraint(expr= m.b623 - m.b625 <= 0) m.c1042 = Constraint(expr= m.b624 - m.b625 <= 0) m.c1043 = Constraint(expr= m.b626 - m.b627 <= 0) m.c1044 = Constraint(expr= m.b626 - m.b628 <= 0) m.c1045 = Constraint(expr= m.b627 - m.b628 <= 0) m.c1046 = Constraint(expr= m.b629 - m.b630 <= 0) m.c1047 = Constraint(expr= m.b629 - m.b631 <= 0) m.c1048 = Constraint(expr= m.b630 - m.b631 <= 0) m.c1049 = Constraint(expr= m.b632 - m.b633 <= 0) m.c1050 = Constraint(expr= m.b632 - m.b634 <= 0) m.c1051 = Constraint(expr= m.b633 - m.b634 <= 0) m.c1052 = Constraint(expr= m.b635 - m.b636 <= 0) m.c1053 = Constraint(expr= m.b635 - m.b637 <= 0) m.c1054 = Constraint(expr= m.b636 - m.b637 <= 0) m.c1055 = Constraint(expr= m.b638 - m.b639 <= 0) m.c1056 = Constraint(expr= m.b638 - m.b640 <= 0) m.c1057 = Constraint(expr= m.b639 - m.b640 <= 0) m.c1058 = Constraint(expr= m.b641 - m.b642 <= 0) m.c1059 = Constraint(expr= m.b641 - m.b643 <= 0) m.c1060 = Constraint(expr= m.b642 - m.b643 <= 0) m.c1061 = Constraint(expr= m.b644 - m.b645 <= 0) m.c1062 = Constraint(expr= m.b644 - m.b646 <= 0) m.c1063 = Constraint(expr= m.b645 - m.b646 <= 0) m.c1064 = Constraint(expr= m.b647 - m.b648 <= 0) m.c1065 = Constraint(expr= m.b647 - m.b649 <= 0) m.c1066 = Constraint(expr= m.b648 - m.b649 <= 0) m.c1067 = Constraint(expr= m.b650 - m.b651 <= 0) m.c1068 = Constraint(expr= m.b650 - m.b652 <= 0) m.c1069 = Constraint(expr= m.b651 - m.b652 <= 0) m.c1070 = Constraint(expr= m.b653 - m.b654 <= 0) m.c1071 = Constraint(expr= m.b653 - m.b655 <= 0) m.c1072 = Constraint(expr= m.b654 - m.b655 <= 0) m.c1073 = Constraint(expr= m.b656 - m.b657 <= 0) m.c1074 = Constraint(expr= m.b656 - m.b658 <= 0) m.c1075 = Constraint(expr= m.b657 - m.b658 <= 0) m.c1076 = Constraint(expr= m.b659 - m.b660 <= 0) m.c1077 = Constraint(expr= m.b659 - m.b661 <= 0) m.c1078 = Constraint(expr= m.b660 - m.b661 <= 0) m.c1079 = Constraint(expr= m.b662 - m.b663 <= 0) m.c1080 = Constraint(expr= m.b662 - m.b664 <= 0) m.c1081 = Constraint(expr= m.b663 - m.b664 <= 0) m.c1082 = Constraint(expr= m.b665 - m.b666 <= 0) m.c1083 = Constraint(expr= m.b665 - m.b667 <= 0) m.c1084 = Constraint(expr= m.b666 - m.b667 <= 0) m.c1085 = Constraint(expr= m.b668 - m.b669 <= 0) m.c1086 = Constraint(expr= m.b668 - m.b670 <= 0) m.c1087 = Constraint(expr= m.b669 - m.b670 <= 0) m.c1088 = Constraint(expr= m.b671 - m.b672 <= 0) m.c1089 = Constraint(expr= m.b671 - m.b673 <= 0) m.c1090 = Constraint(expr= m.b672 - m.b673 <= 0) m.c1091 = Constraint(expr= m.b674 - m.b675 <= 0) m.c1092 = Constraint(expr= m.b674 - m.b676 <= 0) m.c1093 = Constraint(expr= m.b675 - m.b676 <= 0) m.c1094 = Constraint(expr= m.b677 - m.b678 <= 0) m.c1095 = Constraint(expr= m.b677 - m.b679 <= 0) m.c1096 = Constraint(expr= m.b678 - m.b679 <= 0) m.c1097 = Constraint(expr= m.b680 - m.b681 <= 0) m.c1098 = Constraint(expr= m.b680 - m.b682 <= 0) m.c1099 = Constraint(expr= m.b681 - m.b682 <= 0) m.c1100 = Constraint(expr= m.b683 - m.b684 <= 0) m.c1101 = Constraint(expr= m.b683 - m.b685 <= 0) m.c1102 = Constraint(expr= m.b684 - m.b685 <= 0) m.c1103 = Constraint(expr= m.b686 + m.b687 <= 1) m.c1104 = Constraint(expr= m.b686 + m.b688 <= 1) m.c1105 = Constraint(expr= m.b686 + m.b687 <= 1) m.c1106 = Constraint(expr= m.b687 + m.b688 <= 1) m.c1107 = Constraint(expr= m.b686 + m.b688 <= 1) m.c1108 = Constraint(expr= m.b687 + m.b688 <= 1) m.c1109 = Constraint(expr= m.b689 + m.b690 <= 1) m.c1110 = Constraint(expr= m.b689 + m.b691 <= 1) m.c1111 = Constraint(expr= m.b689 + m.b690 <= 1) m.c1112 = Constraint(expr= m.b690 + m.b691 <= 1) m.c1113 = Constraint(expr= m.b689 + m.b691 <= 1) m.c1114 = Constraint(expr= m.b690 + m.b691 <= 1) m.c1115 = Constraint(expr= m.b692 + m.b693 <= 1) m.c1116 = Constraint(expr= m.b692 + m.b694 <= 1) m.c1117 = Constraint(expr= m.b692 + m.b693 <= 1) m.c1118 = Constraint(expr= m.b693 + m.b694 <= 1) m.c1119 = Constraint(expr= m.b692 + m.b694 <= 1) m.c1120 = Constraint(expr= m.b693 + m.b694 <= 1) m.c1121 = Constraint(expr= m.b695 + m.b696 <= 1) m.c1122 = Constraint(expr= m.b695 + m.b697 <= 1) m.c1123 = Constraint(expr= m.b695 + m.b696 <= 1) m.c1124 = Constraint(expr= m.b696 + m.b697 <= 1) m.c1125 = Constraint(expr= m.b695 + m.b697 <= 1) m.c1126 = Constraint(expr= m.b696 + m.b697 <= 1) m.c1127 = Constraint(expr= m.b698 + m.b699 <= 1) m.c1128 = Constraint(expr= m.b698 + m.b700 <= 1) m.c1129 = Constraint(expr= m.b698 + m.b699 <= 1) m.c1130 = Constraint(expr= m.b699 + m.b700 <= 1) m.c1131 = Constraint(expr= m.b698 + m.b700 <= 1) m.c1132 = Constraint(expr= m.b699 + m.b700 <= 1) m.c1133 = Constraint(expr= m.b701 + m.b702 <= 1) m.c1134 = Constraint(expr= m.b701 + m.b703 <= 1) m.c1135 = Constraint(expr= m.b701 + m.b702 <= 1) m.c1136 = Constraint(expr= m.b702 + m.b703 <= 1) m.c1137 = Constraint(expr= m.b701 + m.b703 <= 1) m.c1138 = Constraint(expr= m.b702 + m.b703 <= 1) m.c1139 = Constraint(expr= m.b704 + m.b705 <= 1) m.c1140 = Constraint(expr= m.b704 + m.b706 <= 1) m.c1141 = Constraint(expr= m.b704 + m.b705 <= 1) m.c1142 = Constraint(expr= m.b705 + m.b706 <= 1) m.c1143 = Constraint(expr= m.b704 + m.b706 <= 1) m.c1144 = Constraint(expr= m.b705 + m.b706 <= 1) m.c1145 = Constraint(expr= m.b707 + m.b708 <= 1) m.c1146 = Constraint(expr= m.b707 + m.b709 <= 1) m.c1147 = Constraint(expr= m.b707 + m.b708 <= 1) m.c1148 = Constraint(expr= m.b708 + m.b709 <= 1) m.c1149 = Constraint(expr= m.b707 + m.b709 <= 1) m.c1150 = Constraint(expr= m.b708 + m.b709 <= 1) m.c1151 = Constraint(expr= m.b710 + m.b711 <= 1) m.c1152 = Constraint(expr= m.b710 + m.b712 <= 1) m.c1153 = Constraint(expr= m.b710 + m.b711 <= 1) m.c1154 = Constraint(expr= m.b711 + m.b712 <= 1) m.c1155 = Constraint(expr= m.b710 + m.b712 <= 1) m.c1156 = Constraint(expr= m.b711 + m.b712 <= 1) m.c1157 = Constraint(expr= m.b713 + m.b714 <= 1) m.c1158 = Constraint(expr= m.b713 + m.b715 <= 1) m.c1159 = Constraint(expr= m.b713 + m.b714 <= 1) m.c1160 = Constraint(expr= m.b714 + m.b715 <= 1) m.c1161 = Constraint(expr= m.b713 + m.b715 <= 1) m.c1162 = Constraint(expr= m.b714 + m.b715 <= 1) m.c1163 = Constraint(expr= m.b716 + m.b717 <= 1) m.c1164 = Constraint(expr= m.b716 + m.b718 <= 1) m.c1165 = Constraint(expr= m.b716 + m.b717 <= 1) m.c1166 = Constraint(expr= m.b717 + m.b718 <= 1) m.c1167 = Constraint(expr= m.b716 + m.b718 <= 1) m.c1168 = Constraint(expr= m.b717 + m.b718 <= 1) m.c1169 = Constraint(expr= m.b719 + m.b720 <= 1) m.c1170 = Constraint(expr= m.b719 + m.b721 <= 1) m.c1171 = Constraint(expr= m.b719 + m.b720 <= 1) m.c1172 = Constraint(expr= m.b720 + m.b721 <= 1) m.c1173 = Constraint(expr= m.b719 + m.b721 <= 1) m.c1174 = Constraint(expr= m.b720 + m.b721 <= 1) m.c1175 = Constraint(expr= m.b722 + m.b723 <= 1) m.c1176 = Constraint(expr= m.b722 + m.b724 <= 1) m.c1177 = Constraint(expr= m.b722 + m.b723 <= 1) m.c1178 = Constraint(expr= m.b723 + m.b724 <= 1) m.c1179 = Constraint(expr= m.b722 + m.b724 <= 1) m.c1180 = Constraint(expr= m.b723 + m.b724 <= 1) m.c1181 = Constraint(expr= m.b725 + m.b726 <= 1) m.c1182 = Constraint(expr= m.b725 + m.b727 <= 1) m.c1183 = Constraint(expr= m.b725 + m.b726 <= 1) m.c1184 = Constraint(expr= m.b726 + m.b727 <= 1) m.c1185 = Constraint(expr= m.b725 + m.b727 <= 1) m.c1186 = Constraint(expr= m.b726 + m.b727 <= 1) m.c1187 = Constraint(expr= m.b728 + m.b729 <= 1) m.c1188 = Constraint(expr= m.b728 + m.b730 <= 1) m.c1189 = Constraint(expr= m.b728 + m.b729 <= 1) m.c1190 = Constraint(expr= m.b729 + m.b730 <= 1) m.c1191 = Constraint(expr= m.b728 + m.b730 <= 1) m.c1192 = Constraint(expr= m.b729 + m.b730 <= 1) m.c1193 = Constraint(expr= m.b731 + m.b732 <= 1) m.c1194 = Constraint(expr= m.b731 + m.b733 <= 1) m.c1195 = Constraint(expr= m.b731 + m.b732 <= 1) m.c1196 = Constraint(expr= m.b732 + m.b733 <= 1) m.c1197 = Constraint(expr= m.b731 + m.b733 <= 1) m.c1198 = Constraint(expr= m.b732 + m.b733 <= 1) m.c1199 = Constraint(expr= m.b734 + m.b735 <= 1) m.c1200 = Constraint(expr= m.b734 + m.b736 <= 1) m.c1201 = Constraint(expr= m.b734 + m.b735 <= 1) m.c1202 = Constraint(expr= m.b735 + m.b736 <= 1) m.c1203 = Constraint(expr= m.b734 + m.b736 <= 1) m.c1204 = Constraint(expr= m.b735 + m.b736 <= 1) m.c1205 = Constraint(expr= m.b737 + m.b738 <= 1) m.c1206 = Constraint(expr= m.b737 + m.b739 <= 1) m.c1207 = Constraint(expr= m.b737 + m.b738 <= 1) m.c1208 = Constraint(expr= m.b738 + m.b739 <= 1) m.c1209 = Constraint(expr= m.b737 + m.b739 <= 1) m.c1210 = Constraint(expr= m.b738 + m.b739 <= 1) m.c1211 = Constraint(expr= m.b740 + m.b741 <= 1) m.c1212 = Constraint(expr= m.b740 + m.b742 <= 1) m.c1213 = Constraint(expr= m.b740 + m.b741 <= 1) m.c1214 = Constraint(expr= m.b741 + m.b742 <= 1) m.c1215 = Constraint(expr= m.b740 + m.b742 <= 1) m.c1216 = Constraint(expr= m.b741 + m.b742 <= 1) m.c1217 = Constraint(expr= m.b743 + m.b744 <= 1) m.c1218 = Constraint(expr= m.b743 + m.b745 <= 1) m.c1219 = Constraint(expr= m.b743 + m.b744 <= 1) m.c1220 = Constraint(expr= m.b744 + m.b745 <= 1) m.c1221 = Constraint(expr= m.b743 + m.b745 <= 1) m.c1222 = Constraint(expr= m.b744 + m.b745 <= 1) m.c1223 = Constraint(expr= m.b746 + m.b747 <= 1) m.c1224 = Constraint(expr= m.b746 + m.b748 <= 1) m.c1225 = Constraint(expr= m.b746 + m.b747 <= 1) m.c1226 = Constraint(expr= m.b747 + m.b748 <= 1) m.c1227 = Constraint(expr= m.b746 + m.b748 <= 1) m.c1228 = Constraint(expr= m.b747 + m.b748 <= 1) m.c1229 = Constraint(expr= m.b749 + m.b750 <= 1) m.c1230 = Constraint(expr= m.b749 + m.b751 <= 1) m.c1231 = Constraint(expr= m.b749 + m.b750 <= 1) m.c1232 = Constraint(expr= m.b750 + m.b751 <= 1) m.c1233 = Constraint(expr= m.b749 + m.b751 <= 1) m.c1234 = Constraint(expr= m.b750 + m.b751 <= 1) m.c1235 = Constraint(expr= m.b752 + m.b753 <= 1) m.c1236 = Constraint(expr= m.b752 + m.b754 <= 1) m.c1237 = Constraint(expr= m.b752 + m.b753 <= 1) m.c1238 = Constraint(expr= m.b753 + m.b754 <= 1) m.c1239 = Constraint(expr= m.b752 + m.b754 <= 1) m.c1240 = Constraint(expr= m.b753 + m.b754 <= 1) m.c1241 = Constraint(expr= m.b755 + m.b756 <= 1) m.c1242 = Constraint(expr= m.b755 + m.b757 <= 1) m.c1243 = Constraint(expr= m.b755 + m.b756 <= 1) m.c1244 = Constraint(expr= m.b756 + m.b757 <= 1) m.c1245 = Constraint(expr= m.b755 + m.b757 <= 1) m.c1246 = Constraint(expr= m.b756 + m.b757 <= 1) m.c1247 = Constraint(expr= m.b758 + m.b759 <= 1) m.c1248 = Constraint(expr= m.b758 + m.b760 <= 1) m.c1249 = Constraint(expr= m.b758 + m.b759 <= 1) m.c1250 = Constraint(expr= m.b759 + m.b760 <= 1) m.c1251 = Constraint(expr= m.b758 + m.b760 <= 1) m.c1252 = Constraint(expr= m.b759 + m.b760 <= 1) m.c1253 = Constraint(expr= m.b761 + m.b762 <= 1) m.c1254 = Constraint(expr= m.b761 + m.b763 <= 1) m.c1255 = Constraint(expr= m.b761 + m.b762 <= 1) m.c1256 = Constraint(expr= m.b762 + m.b763 <= 1) m.c1257 = Constraint(expr= m.b761 + m.b763 <= 1) m.c1258 = Constraint(expr= m.b762 + m.b763 <= 1) m.c1259 = Constraint(expr= m.b764 + m.b765 <= 1) m.c1260 = Constraint(expr= m.b764 + m.b766 <= 1) m.c1261 = Constraint(expr= m.b764 + m.b765 <= 1) m.c1262 = Constraint(expr= m.b765 + m.b766 <= 1) m.c1263 = Constraint(expr= m.b764 + m.b766 <= 1) m.c1264 = Constraint(expr= m.b765 + m.b766 <= 1) m.c1265 = Constraint(expr= m.b767 + m.b768 <= 1) m.c1266 = Constraint(expr= m.b767 + m.b769 <= 1) m.c1267 = Constraint(expr= m.b767 + m.b768 <= 1) m.c1268 = Constraint(expr= m.b768 + m.b769 <= 1) m.c1269 = Constraint(expr= m.b767 + m.b769 <= 1) m.c1270 = Constraint(expr= m.b768 + m.b769 <= 1) m.c1271 = Constraint(expr= m.b770 + m.b771 <= 1) m.c1272 = Constraint(expr= m.b770 + m.b772 <= 1) m.c1273 = Constraint(expr= m.b770 + m.b771 <= 1) m.c1274 = Constraint(expr= m.b771 + m.b772 <= 1) m.c1275 = Constraint(expr= m.b770 + m.b772 <= 1) m.c1276 = Constraint(expr= m.b771 + m.b772 <= 1) m.c1277 = Constraint(expr= m.b773 + m.b774 <= 1) m.c1278 = Constraint(expr= m.b773 + m.b775 <= 1) m.c1279 = Constraint(expr= m.b773 + m.b774 <= 1) m.c1280 = Constraint(expr= m.b774 + m.b775 <= 1) m.c1281 = Constraint(expr= m.b773 + m.b775 <= 1) m.c1282 = Constraint(expr= m.b774 + m.b775 <= 1) m.c1283 = Constraint(expr= m.b596 - m.b686 <= 0) m.c1284 = Constraint(expr= - m.b596 + m.b597 - m.b687 <= 0) m.c1285 = Constraint(expr= - m.b596 - m.b597 + m.b598 - m.b688 <= 0) m.c1286 = Constraint(expr= m.b599 - m.b689 <= 0) m.c1287 = Constraint(expr= - m.b599 + m.b600 - m.b690 <= 0) m.c1288 = Constraint(expr= - m.b599 - m.b600 + m.b601 - m.b691 <= 0) m.c1289 = Constraint(expr= m.b602 - m.b692 <= 0) m.c1290 = Constraint(expr= - m.b602 + m.b603 - m.b693 <= 0) m.c1291 = Constraint(expr= - m.b602 - m.b603 + m.b604 - m.b694 <= 0) m.c1292 = Constraint(expr= m.b605 - m.b695 <= 0) m.c1293 = Constraint(expr= - m.b605 + m.b606 - m.b696 <= 0) m.c1294 = Constraint(expr= - m.b605 - m.b606 + m.b607 - m.b697 <= 0) m.c1295 = Constraint(expr= m.b608 - m.b698 <= 0) m.c1296 = Constraint(expr= - m.b608 + m.b609 - m.b699 <= 0) m.c1297 = Constraint(expr= - m.b608 - m.b609 + m.b610 - m.b700 <= 0) m.c1298 = Constraint(expr= m.b611 - m.b701 <= 0) m.c1299 = Constraint(expr= - m.b611 + m.b612 - m.b702 <= 0) m.c1300 = Constraint(expr= - m.b611 - m.b612 + m.b613 - m.b703 <= 0) m.c1301 = Constraint(expr= m.b614 - m.b704 <= 0) m.c1302 = Constraint(expr= - m.b614 + m.b615 - m.b705 <= 0) m.c1303 = Constraint(expr= - m.b614 - m.b615 + m.b616 - m.b706 <= 0) m.c1304 = Constraint(expr= m.b617 - m.b707 <= 0) m.c1305 = Constraint(expr= - m.b617 + m.b618 - m.b708 <= 0) m.c1306 = Constraint(expr= - m.b617 - m.b618 + m.b619 - m.b709 <= 0) m.c1307 = Constraint(expr= m.b620 - m.b710 <= 0) m.c1308 = Constraint(expr= - m.b620 + m.b621 - m.b711 <= 0) m.c1309 = Constraint(expr= - m.b620 - m.b621 + m.b622 - m.b712 <= 0) m.c1310 = Constraint(expr= m.b623 - m.b713 <= 0) m.c1311 = Constraint(expr= - m.b623 + m.b624 - m.b714 <= 0) m.c1312 = Constraint(expr= - m.b623 - m.b624 + m.b625 - m.b715 <= 0) m.c1313 = Constraint(expr= m.b626 - m.b716 <= 0) m.c1314 = Constraint(expr= - m.b626 + m.b627 - m.b717 <= 0) m.c1315 = Constraint(expr= - m.b626 - m.b627 + m.b628 - m.b718 <= 0) m.c1316 = Constraint(expr= m.b629 - m.b719 <= 0) m.c1317 = Constraint(expr= - m.b629 + m.b630 - m.b720 <= 0) m.c1318 = Constraint(expr= - m.b629 - m.b630 + m.b631 - m.b721 <= 0) m.c1319 = Constraint(expr= m.b632 - m.b722 <= 0) m.c1320 = Constraint(expr= - m.b632 + m.b633 - m.b723 <= 0) m.c1321 = Constraint(expr= - m.b632 - m.b633 + m.b634 - m.b724 <= 0) m.c1322 = Constraint(expr= m.b635 - m.b725 <= 0) m.c1323 = Constraint(expr= - m.b635 + m.b636 - m.b726 <= 0) m.c1324 = Constraint(expr= - m.b635 - m.b636 + m.b637 - m.b727 <= 0) m.c1325 = Constraint(expr= m.b638 - m.b728 <= 0) m.c1326 = Constraint(expr= - m.b638 + m.b639 - m.b729 <= 0) m.c1327 = Constraint(expr= - m.b638 - m.b639 + m.b640 - m.b730 <= 0) m.c1328 = Constraint(expr= m.b641 - m.b731 <= 0) m.c1329 = Constraint(expr= - m.b641 + m.b642 - m.b732 <= 0) m.c1330 = Constraint(expr= - m.b641 - m.b642 + m.b643 - m.b733 <= 0) m.c1331 = Constraint(expr= m.b644 - m.b734 <= 0) m.c1332 = Constraint(expr= - m.b644 + m.b645 - m.b735 <= 0) m.c1333 = Constraint(expr= - m.b644 - m.b645 + m.b646 - m.b736 <= 0) m.c1334 = Constraint(expr= m.b647 - m.b737 <= 0) m.c1335 = Constraint(expr= - m.b647 + m.b648 - m.b738 <= 0) m.c1336 = Constraint(expr= - m.b647 - m.b648 + m.b649 - m.b739 <= 0) m.c1337 = Constraint(expr= m.b650 - m.b740 <= 0) m.c1338 = Constraint(expr= - m.b650 + m.b651 - m.b741 <= 0) m.c1339 = Constraint(expr= - m.b650 - m.b651 + m.b652 - m.b742 <= 0) m.c1340 = Constraint(expr= m.b653 - m.b743 <= 0) m.c1341 = Constraint(expr= - m.b653 + m.b654 - m.b744 <= 0) m.c1342 = Constraint(expr= - m.b653 - m.b654 + m.b655 - m.b745 <= 0) m.c1343 = Constraint(expr= m.b656 - m.b746 <= 0) m.c1344 = Constraint(expr= - m.b656 + m.b657 - m.b747 <= 0) m.c1345 = Constraint(expr= - m.b656 - m.b657 + m.b658 - m.b748 <= 0) m.c1346 = Constraint(expr= m.b659 - m.b749 <= 0) m.c1347 = Constraint(expr= - m.b659 + m.b660 - m.b750 <= 0) m.c1348 = Constraint(expr= - m.b659 - m.b660 + m.b661 - m.b751 <= 0) m.c1349 = Constraint(expr= m.b662 - m.b752 <= 0) m.c1350 = Constraint(expr= - m.b662 + m.b663 - m.b753 <= 0) m.c1351 = Constraint(expr= - m.b662 - m.b663 + m.b664 - m.b754 <= 0) m.c1352 = Constraint(expr= m.b665 - m.b755 <= 0) m.c1353 = Constraint(expr= - m.b665 + m.b666 - m.b756 <= 0) m.c1354 = Constraint(expr= - m.b665 - m.b666 + m.b667 - m.b757 <= 0) m.c1355 = Constraint(expr= m.b668 - m.b758 <= 0) m.c1356 = Constraint(expr= - m.b668 + m.b669 - m.b759 <= 0) m.c1357 = Constraint(expr= - m.b668 - m.b669 + m.b670 - m.b760 <= 0) m.c1358 = Constraint(expr= m.b671 - m.b761 <= 0) m.c1359 = Constraint(expr= - m.b671 + m.b672 - m.b762 <= 0) m.c1360 = Constraint(expr= - m.b671 - m.b672 + m.b673 - m.b763 <= 0) m.c1361 = Constraint(expr= m.b674 - m.b764 <= 0) m.c1362 = Constraint(expr= - m.b674 + m.b675 - m.b765 <= 0) m.c1363 = Constraint(expr= - m.b674 - m.b675 + m.b676 - m.b766 <= 0) m.c1364 = Constraint(expr= m.b677 - m.b767 <= 0) m.c1365 = Constraint(expr= - m.b677 + m.b678 - m.b768 <= 0) m.c1366 = Constraint(expr= - m.b677 - m.b678 + m.b679 - m.b769 <= 0) m.c1367 = Constraint(expr= m.b680 - m.b770 <= 0) m.c1368 = Constraint(expr= - m.b680 + m.b681 - m.b771 <= 0) m.c1369 = Constraint(expr= - m.b680 - m.b681 + m.b682 - m.b772 <= 0) m.c1370 = Constraint(expr= m.b683 - m.b773 <= 0) m.c1371 = Constraint(expr= - m.b683 + m.b684 - m.b774 <= 0) m.c1372 = Constraint(expr= - m.b683 - m.b684 + m.b685 - m.b775 <= 0) m.c1373 = Constraint(expr= m.b596 + m.b599 == 1) m.c1374 = Constraint(expr= m.b597 + m.b600 == 1) m.c1375 = Constraint(expr= m.b598 + m.b601 == 1) m.c1376 = Constraint(expr= - m.b602 + m.b611 + m.b614 >= 0) m.c1377 = Constraint(expr= - m.b603 + m.b612 + m.b615 >= 0) m.c1378 = Constraint(expr= - m.b604 + m.b613 + m.b616 >= 0) m.c1379 = Constraint(expr= - m.b611 + m.b629 >= 0) m.c1380 = Constraint(expr= - m.b612 + m.b630 >= 0) m.c1381 = Constraint(expr= - m.b613 + m.b631 >= 0) m.c1382 = Constraint(expr= - m.b614 + m.b632 >= 0) m.c1383 = Constraint(expr= - m.b615 + m.b633 >= 0) m.c1384 = Constraint(expr= - m.b616 + m.b634 >= 0) m.c1385 = Constraint(expr= - m.b605 + m.b617 >= 0) m.c1386 = Constraint(expr= - m.b606 + m.b618 >= 0) m.c1387 = Constraint(expr= - m.b607 + m.b619 >= 0) m.c1388 = Constraint(expr= - m.b617 + m.b635 + m.b638 >= 0) m.c1389 = Constraint(expr= - m.b618 + m.b636 + m.b639 >= 0) m.c1390 = Constraint(expr= - m.b619 + m.b637 + m.b640 >= 0) m.c1391 = Constraint(expr= - m.b608 + m.b620 + m.b623 + m.b626 >= 0) m.c1392 = Constraint(expr= - m.b609 + m.b621 + m.b624 + m.b627 >= 0) m.c1393 = Constraint(expr= - m.b610 + m.b622 + m.b625 + m.b628 >= 0) m.c1394 = Constraint(expr= - m.b620 + m.b638 >= 0) m.c1395 = Constraint(expr= - m.b621 + m.b639 >= 0) m.c1396 = Constraint(expr= - m.b622 + m.b640 >= 0) m.c1397 = Constraint(expr= - m.b623 + m.b641 + m.b644 >= 0) m.c1398 = Constraint(expr= - m.b624 + m.b642 + m.b645 >= 0) m.c1399 = Constraint(expr= - m.b625 + m.b643 + m.b646 >= 0) m.c1400 = Constraint(expr= - m.b626 + m.b647 + m.b650 + m.b653 >= 0) m.c1401 = Constraint(expr= - m.b627 + m.b648 + m.b651 + m.b654 >= 0) m.c1402 = Constraint(expr= - m.b628 + m.b649 + m.b652 + m.b655 >= 0) m.c1403 = Constraint(expr= m.b596 + m.b599 - m.b602 >= 0) m.c1404 = Constraint(expr= m.b597 + m.b600 - m.b603 >= 0) m.c1405 = Constraint(expr= m.b598 + m.b601 - m.b604 >= 0) m.c1406 = Constraint(expr= m.b596 + m.b599 - m.b605 >= 0) m.c1407 = Constraint(expr= m.b597 + m.b600 - m.b606 >= 0) m.c1408 = Constraint(expr= m.b598 + m.b601 - m.b607 >= 0) m.c1409 = Constraint(expr= m.b596 + m.b599 - m.b608 >= 0) m.c1410 = Constraint(expr= m.b597 + m.b600 - m.b609 >= 0) m.c1411 = Constraint(expr= m.b598 + m.b601 - m.b610 >= 0) m.c1412 = Constraint(expr= m.b602 - m.b611 >= 0) m.c1413 = Constraint(expr= m.b603 - m.b612 >= 0) m.c1414 = Constraint(expr= m.b604 - m.b613 >= 0) m.c1415 = Constraint(expr= m.b602 - m.b614 >= 0) m.c1416 = Constraint(expr= m.b603 - m.b615 >= 0) m.c1417 = Constraint(expr= m.b604 - m.b616 >= 0) m.c1418 = Constraint(expr= m.b605 - m.b617 >= 0) m.c1419 = Constraint(expr= m.b606 - m.b618 >= 0) m.c1420 = Constraint(expr= m.b607 - m.b619 >= 0) m.c1421 = Constraint(expr= m.b608 - m.b620 >= 0) m.c1422 = Constraint(expr= m.b609 - m.b621 >= 0) m.c1423 = Constraint(expr= m.b610 - m.b622 >= 0) m.c1424 = Constraint(expr= m.b608 - m.b623 >= 0) m.c1425 = Constraint(expr= m.b609 - m.b624 >= 0) m.c1426 = Constraint(expr= m.b610 - m.b625 >= 0) m.c1427 = Constraint(expr= m.b608 - m.b626 >= 0) m.c1428 = Constraint(expr= m.b609 - m.b627 >= 0) m.c1429 = Constraint(expr= m.b610 - m.b628 >= 0) m.c1430 = Constraint(expr= m.b611 - m.b629 >= 0) m.c1431 = Constraint(expr= m.b612 - m.b630 >= 0) m.c1432 = Constraint(expr= m.b613 - m.b631 >= 0) m.c1433 = Constraint(expr= m.b614 - m.b632 >= 0) m.c1434 = Constraint(expr= m.b615 - m.b633 >= 0) m.c1435 = Constraint(expr= m.b616 - m.b634 >= 0) m.c1436 = Constraint(expr= m.b617 - m.b635 >= 0) m.c1437 = Constraint(expr= m.b618 - m.b636 >= 0) m.c1438 = Constraint(expr= m.b619 - m.b637 >= 0) m.c1439 = Constraint(expr= m.b617 - m.b638 >= 0) m.c1440 = Constraint(expr= m.b618 - m.b639 >= 0) m.c1441 = Constraint(expr= m.b619 - m.b640 >= 0) m.c1442 = Constraint(expr= m.b623 - m.b641 >= 0) m.c1443 = Constraint(expr= m.b624 - m.b642 >= 0) m.c1444 = Constraint(expr= m.b625 - m.b643 >= 0) m.c1445 = Constraint(expr= m.b623 - m.b644 >= 0) m.c1446 = Constraint(expr= m.b624 - m.b645 >= 0) m.c1447 = Constraint(expr= m.b625 - m.b646 >= 0) m.c1448 = Constraint(expr= m.b626 - m.b647 >= 0) m.c1449 = Constraint(expr= m.b627 - m.b648 >= 0) m.c1450 = Constraint(expr= m.b628 - m.b649 >= 0) m.c1451 = Constraint(expr= m.b626 - m.b650 >= 0) m.c1452 = Constraint(expr= m.b627 - m.b651 >= 0) m.c1453 = Constraint(expr= m.b628 - m.b652 >= 0) m.c1454 = Constraint(expr= m.b626 - m.b653 >= 0) m.c1455 = Constraint(expr= m.b627 - m.b654 >= 0) m.c1456 = Constraint(expr= m.b628 - m.b655 >= 0) m.c1457 = Constraint(expr= - m.b653 + m.b656 + m.b659 >= 0) m.c1458 = Constraint(expr= - m.b654 + m.b657 + m.b660 >= 0) m.c1459 = Constraint(expr= - m.b655 + m.b658 + m.b661 >= 0) m.c1460 = Constraint(expr= - m.b662 + m.b671 + m.b674 >= 0) m.c1461 = Constraint(expr= - m.b663 + m.b672 + m.b675 >= 0) m.c1462 = Constraint(expr= - m.b664 + m.b673 + m.b676 >= 0) m.c1463 = Constraint(expr= - m.b665 + m.b677 >= 0) m.c1464 = Constraint(expr= - m.b666 + m.b678 >= 0) m.c1465 = Constraint(expr= - m.b667 + m.b679 >= 0) m.c1466 = Constraint(expr= m.b653 - m.b656 >= 0) m.c1467 = Constraint(expr= m.b654 - m.b657 >= 0) m.c1468 = Constraint(expr= m.b655 - m.b658 >= 0) m.c1469 = Constraint(expr= m.b653 - m.b659 >= 0) m.c1470 = Constraint(expr= m.b654 - m.b660 >= 0) m.c1471 = Constraint(expr= m.b655 - m.b661 >= 0) m.c1472 = Constraint(expr= m.b662 - m.b671 >= 0) m.c1473 = Constraint(expr= m.b663 - m.b672 >= 0) m.c1474 = Constraint(expr= m.b664 - m.b673 >= 0) m.c1475 = Constraint(expr= m.b662 - m.b674 >= 0) m.c1476 = Constraint(expr= m.b663 - m.b675 >= 0) m.c1477 = Constraint(expr= m.b664 - m.b676 >= 0) m.c1478 = Constraint(expr= m.b665 - m.b677 >= 0) m.c1479 = Constraint(expr= m.b666 - m.b678 >= 0) m.c1480 = Constraint(expr= m.b667 - m.b679 >= 0) m.c1481 = Constraint(expr= m.b668 - m.b680 >= 0) m.c1482 = Constraint(expr= m.b669 - m.b681 >= 0) m.c1483 = Constraint(expr= m.b670 - m.b682 >= 0) m.c1484 = Constraint(expr= m.b668 - m.b683 >= 0) m.c1485 = Constraint(expr= m.b669 - m.b684 >= 0) m.c1486 = Constraint(expr= m.b670 - m.b685 >= 0)
[]
sartography/star-drive
backend/tests/test_resources.py
c0f33378d42913c3e677e07f74eb46d7b2b82a0a
import unittest from flask import json from tests.base_test import BaseTest from app import db, elastic_index from app.model.resource import Resource from app.model.resource_category import ResourceCategory from app.model.resource_change_log import ResourceChangeLog from app.model.user import Role class TestResources(BaseTest, unittest.TestCase): def test_resource_basics(self): self.construct_resource() r = db.session.query(Resource).first() self.assertIsNotNone(r) r_id = r.id rv = self.app.get('/api/resource/%i' % r_id, follow_redirects=True, content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(response["id"], r_id) self.assertEqual(response["title"], 'A+ Resource') self.assertEqual(response["description"], 'A delightful Resource destined to create rejoicing') def test_modify_resource_basics(self): self.construct_resource() r = db.session.query(Resource).first() self.assertIsNotNone(r) r_id = r.id rv = self.app.get('/api/resource/%i' % r_id, content_type="application/json") response = json.loads(rv.get_data(as_text=True)) response['title'] = 'Edwarardos Lemonade and Oil Change' response['description'] = 'Better fluids for you and your car.' response['website'] = 'http://sartography.com' orig_date = response['last_updated'] rv = self.app.put('/api/resource/%i' % r_id, data=self.jsonify(response), content_type="application/json", follow_redirects=True, headers=self.logged_in_headers()) self.assert_success(rv) rv = self.app.get('/api/resource/%i' % r_id, content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(response['title'], 'Edwarardos Lemonade and Oil Change') self.assertEqual(response['description'], 'Better fluids for you and your car.') self.assertEqual(response['website'], 'http://sartography.com') self.assertNotEqual(orig_date, response['last_updated']) def test_delete_resource(self): r = self.construct_resource() r_id = r.id rv = self.app.get('api/resource/%i' % r_id, content_type="application/json") self.assert_success(rv) rv = self.app.delete('api/resource/%i' % r_id, content_type="application/json", headers=self.logged_in_headers()) self.assert_success(rv) rv = self.app.get('api/resource/%i' % r_id, content_type="application/json") self.assertEqual(404, rv.status_code) def test_delete_resource_with_admin_note_and_no_elastic_record(self): r = self.construct_resource() r_id = r.id rv = self.app.get('api/resource/%i' % r_id, content_type="application/json") self.assert_success(rv) self.construct_admin_note(user=self.construct_user(), resource=r) elastic_index.remove_document(r, 'Resource') rv = self.app.delete('api/resource/%i' % r_id, content_type="application/json", headers=self.logged_in_headers()) self.assert_success(rv) rv = self.app.get('api/resource/%i' % r_id, content_type="application/json") self.assertEqual(404, rv.status_code) def test_create_resource(self): resource = {'title': "Resource of Resources", 'description': "You need this resource in your life.", 'organization_name': "Resource Org"} rv = self.app.post('api/resource', data=self.jsonify(resource), content_type="application/json", follow_redirects=True, headers=self.logged_in_headers()) self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(response['title'], 'Resource of Resources') self.assertEqual(response['description'], 'You need this resource in your life.') self.assertIsNotNone(response['id']) def test_get_resource_by_category(self): c = self.construct_category() r = self.construct_resource() cr = ResourceCategory(resource=r, category=c, type='resource') db.session.add(cr) db.session.commit() rv = self.app.get( '/api/category/%i/resource' % c.id, content_type="application/json", headers=self.logged_in_headers()) self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(1, len(response)) self.assertEqual(r.id, response[0]["resource_id"]) self.assertEqual(r.description, response[0]["resource"]["description"]) def test_get_resource_by_category_includes_category_details(self): c = self.construct_category(name="c1") c2 = self.construct_category(name="c2") r = self.construct_resource() cr = ResourceCategory(resource=r, category=c, type='resource') cr2 = ResourceCategory(resource=r, category=c2, type='resource') db.session.add_all([cr, cr2]) db.session.commit() rv = self.app.get( '/api/category/%i/resource' % c.id, content_type="application/json", headers=self.logged_in_headers()) self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(r.id, response[0]["resource_id"]) self.assertEqual(2, len(response[0]["resource"]["resource_categories"])) self.assertEqual( "c1", response[0]["resource"]["resource_categories"][0]["category"] ["name"]) def test_category_resource_count(self): c = self.construct_category() r = self.construct_resource() cr = ResourceCategory(resource=r, category=c, type='resource') db.session.add(cr) db.session.commit() rv = self.app.get( '/api/category/%i' % c.id, content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(1, response["resource_count"]) def test_get_category_by_resource(self): c = self.construct_category() r = self.construct_resource() cr = ResourceCategory(resource=r, category=c, type='resource') db.session.add(cr) db.session.commit() rv = self.app.get( '/api/resource/%i/category' % r.id, content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(1, len(response)) self.assertEqual(c.id, response[0]["id"]) self.assertEqual(c.name, response[0]["category"]["name"]) def test_add_category_to_resource(self): c = self.construct_category() r = self.construct_resource() rc_data = {"resource_id": r.id, "category_id": c.id} rv = self.app.post( '/api/resource_category', data=self.jsonify(rc_data), content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(c.id, response["category_id"]) self.assertEqual(r.id, response["resource_id"]) def test_set_all_categories_on_resource(self): c1 = self.construct_category(name="c1") c2 = self.construct_category(name="c2") c3 = self.construct_category(name="c3") r = self.construct_resource() rc_data = [ { "category_id": c1.id }, { "category_id": c2.id }, { "category_id": c3.id }, ] rv = self.app.post( '/api/resource/%i/category' % r.id, data=self.jsonify(rc_data), content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(3, len(response)) rc_data = [{"category_id": c1.id}] rv = self.app.post( '/api/resource/%i/category' % r.id, data=self.jsonify(rc_data), content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(1, len(response)) def test_remove_category_from_resource(self): self.test_add_category_to_resource() rv = self.app.delete('/api/resource_category/%i' % 1) self.assert_success(rv) rv = self.app.get( '/api/resource/%i/category' % 1, content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(0, len(response)) def test_resource_change_log_types(self): u = self.construct_user(email="[email protected]", role=Role.admin) r = {'id': 258, 'title': "A Resource that is Super and Great", 'description': "You need this resource in your life."} rv = self.app.post('api/resource', data=self.jsonify(r), content_type="application/json", follow_redirects=True, headers=self.logged_in_headers()) self.assert_success(rv) logs = ResourceChangeLog.query.all() self.assertIsNotNone(logs[-1].resource_id) self.assertIsNotNone(logs[-1].user_id) self.assertEqual(logs[-1].type, 'create') rv = self.app.get('api/resource/%i' % r['id'], content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) response['title'] = 'Super Great Resource' rv = self.app.put('/api/resource/%i' % r['id'], data=self.jsonify(response), content_type="application/json", follow_redirects=True, headers=self.logged_in_headers(user=u)) self.assert_success(rv) rv = self.app.get('/api/resource/%i' % r['id'], content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(response['title'], 'Super Great Resource') logs = ResourceChangeLog.query.all() self.assertIsNotNone(logs[-1].resource_id) self.assertIsNotNone(logs[-1].user_id) self.assertEqual(logs[-1].type, 'edit') rv = self.app.delete('api/resource/%i' % r['id'], content_type="application/json", headers=self.logged_in_headers()) self.assert_success(rv) logs = ResourceChangeLog.query.all() self.assertIsNotNone(logs[-1].resource_id) self.assertIsNotNone(logs[-1].user_id) self.assertEqual(logs[-1].type, 'delete') def test_get_resource_change_log_by_resource(self): r = self.construct_resource() u = self.construct_user(email="[email protected]", role=Role.admin) rv = self.app.get('api/resource/%i' % r.id, content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) response['title'] = 'Super Great Resource' rv = self.app.put('/api/resource/%i' % r.id, data=self.jsonify(response), content_type="application/json", follow_redirects=True, headers=self.logged_in_headers(user=u)) self.assert_success(rv) rv = self.app.get('/api/resource/%i/change_log' % r.id, content_type="application/json", headers=self.logged_in_headers()) self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(response[-1]['user_id'], u.id) def test_get_resource_change_log_by_user(self): r = self.construct_resource() u = self.construct_user(email="[email protected]", role=Role.admin) rv = self.app.get('api/resource/%i' % r.id, content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) response['title'] = 'Super Great Resource' rv = self.app.put('/api/resource/%i' % r.id, data=self.jsonify(response), content_type="application/json", follow_redirects=True, headers=self.logged_in_headers(user=u)) self.assert_success(rv) rv = self.app.get('/api/user/%i/resource_change_log' % u.id, content_type="application/json", headers=self.logged_in_headers()) self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(response[-1]['resource_id'], r.id) def test_covid19_resource_lists(self): self.construct_resource(covid19_categories=['COVID-19_for_Autism', 'Free_educational_resources']) self.construct_resource(covid19_categories=['COVID-19_for_Autism', 'Edu-tainment', 'Free_educational_resources']) self.construct_resource(covid19_categories=['COVID-19_for_Autism', 'Edu-tainment', 'Supports_with_Living']) self.construct_resource(covid19_categories=['COVID-19_for_Autism', 'Edu-tainment', 'Visual_Aids']) self.construct_resource(covid19_categories=['COVID-19_for_Autism', 'Edu-tainment', 'Health_and_Telehealth']) rv = self.app.get('api/resource/covid19/COVID-19_for_Autism', content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(len(response), 5) rv = self.app.get('api/resource/covid19/Edu-tainment', content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(len(response), 4) rv = self.app.get('api/resource/covid19/Free_educational_resources', content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(len(response), 2) rv = self.app.get('api/resource/covid19/Supports_with_Living', content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(len(response), 1) rv = self.app.get('api/resource/covid19/Visual_Aids', content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(len(response), 1) rv = self.app.get('api/resource/covid19/Health_and_Telehealth', content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(len(response), 1) def test_is_uva_education_content(self): self.construct_resource(is_draft=True, title='Autism at UVA', is_uva_education_content=True) self.construct_resource(is_draft=False, title='Healthy Eating', is_uva_education_content=True) self.construct_resource(is_draft=True, title='Autism and the Arts', is_uva_education_content=False) self.construct_resource(is_draft=False, title='Autism One', is_uva_education_content=True) self.construct_resource(is_draft=False, title='Two', is_uva_education_content=False) rv = self.app.get('api/resource/education', content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(len(response), 2) rv = self.app.get('api/resource', content_type="application/json") self.assert_success(rv) response = json.loads(rv.get_data(as_text=True)) self.assertEqual(len(response), 5)
[((70, 8, 70, 52), 'app.elastic_index.remove_document', 'elastic_index.remove_document', ({(70, 38, 70, 39): 'r', (70, 41, 70, 51): '"""Resource"""'}, {}), "(r, 'Resource')", False, 'from app import db, elastic_index\n'), ((91, 13, 91, 70), 'app.model.resource_category.ResourceCategory', 'ResourceCategory', (), '', False, 'from app.model.resource_category import ResourceCategory\n'), ((92, 8, 92, 26), 'app.db.session.add', 'db.session.add', ({(92, 23, 92, 25): 'cr'}, {}), '(cr)', False, 'from app import db, elastic_index\n'), ((93, 8, 93, 27), 'app.db.session.commit', 'db.session.commit', ({}, {}), '()', False, 'from app import db, elastic_index\n'), ((108, 13, 108, 70), 'app.model.resource_category.ResourceCategory', 'ResourceCategory', (), '', False, 'from app.model.resource_category import ResourceCategory\n'), ((109, 14, 109, 72), 'app.model.resource_category.ResourceCategory', 'ResourceCategory', (), '', False, 'from app.model.resource_category import ResourceCategory\n'), ((110, 8, 110, 37), 'app.db.session.add_all', 'db.session.add_all', ({(110, 27, 110, 36): '[cr, cr2]'}, {}), '([cr, cr2])', False, 'from app import db, elastic_index\n'), ((111, 8, 111, 27), 'app.db.session.commit', 'db.session.commit', ({}, {}), '()', False, 'from app import db, elastic_index\n'), ((128, 13, 128, 70), 'app.model.resource_category.ResourceCategory', 'ResourceCategory', (), '', False, 'from app.model.resource_category import ResourceCategory\n'), ((129, 8, 129, 26), 'app.db.session.add', 'db.session.add', ({(129, 23, 129, 25): 'cr'}, {}), '(cr)', False, 'from app import db, elastic_index\n'), ((130, 8, 130, 27), 'app.db.session.commit', 'db.session.commit', ({}, {}), '()', False, 'from app import db, elastic_index\n'), ((140, 13, 140, 70), 'app.model.resource_category.ResourceCategory', 'ResourceCategory', (), '', False, 'from app.model.resource_category import ResourceCategory\n'), ((141, 8, 141, 26), 'app.db.session.add', 'db.session.add', ({(141, 23, 141, 25): 'cr'}, {}), '(cr)', False, 'from app import db, elastic_index\n'), ((142, 8, 142, 27), 'app.db.session.commit', 'db.session.commit', ({}, {}), '()', False, 'from app import db, elastic_index\n'), ((218, 15, 218, 44), 'app.model.resource_change_log.ResourceChangeLog.query.all', 'ResourceChangeLog.query.all', ({}, {}), '()', False, 'from app.model.resource_change_log import ResourceChangeLog\n'), ((236, 15, 236, 44), 'app.model.resource_change_log.ResourceChangeLog.query.all', 'ResourceChangeLog.query.all', ({}, {}), '()', False, 'from app.model.resource_change_log import ResourceChangeLog\n'), ((245, 15, 245, 44), 'app.model.resource_change_log.ResourceChangeLog.query.all', 'ResourceChangeLog.query.all', ({}, {}), '()', False, 'from app.model.resource_change_log import ResourceChangeLog\n'), ((17, 12, 17, 38), 'app.db.session.query', 'db.session.query', ({(17, 29, 17, 37): 'Resource'}, {}), '(Resource)', False, 'from app import db, elastic_index\n'), ((31, 12, 31, 38), 'app.db.session.query', 'db.session.query', ({(31, 29, 31, 37): 'Resource'}, {}), '(Resource)', False, 'from app import db, elastic_index\n')]
reubenjacob/kolibri
kolibri/core/auth/management/commands/sync.py
028bb2ad63e438c832ff657d37f7b05c3400f2da
import json import logging import math import re from contextlib import contextmanager from django.core.management import call_command from django.core.management.base import CommandError from morango.models import Filter from morango.models import InstanceIDModel from morango.models import ScopeDefinition from morango.sync.controller import MorangoProfileController from ..utils import create_superuser_and_provision_device from ..utils import get_baseurl from ..utils import get_client_and_server_certs from ..utils import get_dataset_id from ..utils import get_single_user_sync_filter from ..utils import provision_single_user_device from kolibri.core.auth.constants.morango_sync import PROFILE_FACILITY_DATA from kolibri.core.auth.constants.morango_sync import ScopeDefinitions from kolibri.core.auth.constants.morango_sync import State from kolibri.core.auth.management.utils import get_facility from kolibri.core.auth.management.utils import run_once from kolibri.core.auth.models import dataset_cache from kolibri.core.logger.utils.data import bytes_for_humans from kolibri.core.tasks.exceptions import UserCancelledError from kolibri.core.tasks.management.commands.base import AsyncCommand from kolibri.core.utils.lock import db_lock from kolibri.utils import conf DATA_PORTAL_SYNCING_BASE_URL = conf.OPTIONS["Urls"]["DATA_PORTAL_SYNCING_BASE_URL"] TRANSFER_MESSAGE = "{records_transferred}/{records_total}, {transfer_total}" logger = logging.getLogger(__name__) class Command(AsyncCommand): help = "Allow the syncing of facility data with Kolibri Data Portal or another Kolibri device." def add_arguments(self, parser): parser.add_argument( "--facility", action="store", type=str, help="ID of facility to sync" ) parser.add_argument( "--baseurl", type=str, default=DATA_PORTAL_SYNCING_BASE_URL, dest="baseurl" ) parser.add_argument("--noninteractive", action="store_true") parser.add_argument( "--chunk-size", type=int, default=500, help="Chunk size of records to send/retrieve per request", ) parser.add_argument( "--no-push", action="store_true", help="Do not push data to the server" ) parser.add_argument( "--no-pull", action="store_true", help="Do not pull data from the server" ) parser.add_argument( "--username", type=str, help="username of superuser or facility admin on server we are syncing with", ) parser.add_argument( "--password", type=str, help="password of superuser or facility admin on server we are syncing with", ) parser.add_argument( "--user", type=str, help="for single-user syncing, the user ID of the account to be synced", ) parser.add_argument( "--no-provision", action="store_true", help="do not create a facility and temporary superuser", ) # parser.add_argument("--scope-id", type=str, default=FULL_FACILITY) def handle_async(self, *args, **options): # noqa C901 ( baseurl, facility_id, chunk_size, username, password, user_id, no_push, no_pull, noninteractive, no_provision, ) = ( options["baseurl"], options["facility"], options["chunk_size"], options["username"], options["password"], options["user"], options["no_push"], options["no_pull"], options["noninteractive"], options["no_provision"], ) PORTAL_SYNC = baseurl == DATA_PORTAL_SYNCING_BASE_URL # validate url that is passed in if not PORTAL_SYNC: baseurl = get_baseurl(baseurl) # call this in case user directly syncs without migrating database if not ScopeDefinition.objects.filter(): call_command("loaddata", "scopedefinitions") dataset_cache.clear() dataset_cache.activate() # try to connect to server controller = MorangoProfileController(PROFILE_FACILITY_DATA) network_connection = controller.create_network_connection(baseurl) # if instance_ids are equal, this means device is trying to sync with itself, which we don't allow if ( InstanceIDModel.get_or_create_current_instance()[0].id == network_connection.server_info["instance_id"] ): raise CommandError( "Device can not sync with itself. Please recheck base URL and try again." ) if user_id: # it's a single-user sync if not facility_id: raise CommandError( "Facility ID must be specified in order to do single-user syncing" ) if not re.match("[a-f0-9]{32}", user_id): raise CommandError("User ID must be a 32-character UUID (no dashes)") dataset_id = get_dataset_id( baseurl, identifier=facility_id, noninteractive=True ) client_cert, server_cert, username = get_client_and_server_certs( username, password, dataset_id, network_connection, user_id=user_id, noninteractive=noninteractive, ) scopes = [client_cert.scope_definition_id, server_cert.scope_definition_id] if len(set(scopes)) != 2: raise CommandError( "To do a single-user sync, one device must have a single-user certificate, and the other a full-facility certificate." ) elif PORTAL_SYNC: # do portal sync setup facility = get_facility( facility_id=facility_id, noninteractive=noninteractive ) # check for the certs we own for the specific facility client_cert = ( facility.dataset.get_owned_certificates() .filter(scope_definition_id=ScopeDefinitions.FULL_FACILITY) .first() ) if not client_cert: raise CommandError( "This device does not own a certificate for Facility: {}".format( facility.name ) ) # get primary partition scope_params = json.loads(client_cert.scope_params) dataset_id = scope_params["dataset_id"] # check if the server already has a cert for this facility server_certs = network_connection.get_remote_certificates( dataset_id, scope_def_id=ScopeDefinitions.FULL_FACILITY ) # if necessary, push a cert up to the server server_cert = ( server_certs[0] if server_certs else network_connection.push_signed_client_certificate_chain( local_parent_cert=client_cert, scope_definition_id=ScopeDefinitions.FULL_FACILITY, scope_params=scope_params, ) ) else: # do P2P setup dataset_id = get_dataset_id( baseurl, identifier=facility_id, noninteractive=noninteractive ) client_cert, server_cert, username = get_client_and_server_certs( username, password, dataset_id, network_connection, noninteractive=noninteractive, ) logger.info("Syncing has been initiated (this may take a while)...") sync_session_client = network_connection.create_sync_session( client_cert, server_cert, chunk_size=chunk_size ) try: # pull from server if not no_pull: self._handle_pull( sync_session_client, noninteractive, dataset_id, client_cert, server_cert, user_id=user_id, ) # and push our own data to server if not no_push: self._handle_push( sync_session_client, noninteractive, dataset_id, client_cert, server_cert, user_id=user_id, ) if not no_provision: with self._lock(): if user_id: provision_single_user_device(user_id) else: create_superuser_and_provision_device( username, dataset_id, noninteractive=noninteractive ) except UserCancelledError: if self.job: self.job.extra_metadata.update(sync_state=State.CANCELLED) self.job.save_meta() logger.info("Syncing has been cancelled.") return network_connection.close() if self.job: self.job.extra_metadata.update(sync_state=State.COMPLETED) self.job.save_meta() dataset_cache.deactivate() logger.info("Syncing has been completed.") @contextmanager def _lock(self): cancellable = False # job can't be cancelled while locked if self.job: cancellable = self.job.cancellable self.job.save_as_cancellable(cancellable=False) with db_lock(): yield if self.job: self.job.save_as_cancellable(cancellable=cancellable) def _raise_cancel(self, *args, **kwargs): if self.is_cancelled() and (not self.job or self.job.cancellable): raise UserCancelledError() def _handle_pull( self, sync_session_client, noninteractive, dataset_id, client_cert, server_cert, user_id, ): """ :type sync_session_client: morango.sync.syncsession.SyncSessionClient :type noninteractive: bool :type dataset_id: str """ sync_client = sync_session_client.get_pull_client() sync_client.signals.queuing.connect(self._raise_cancel) sync_client.signals.transferring.connect(self._raise_cancel) self._queueing_tracker_adapter( sync_client.signals.queuing, "Remotely preparing data", State.REMOTE_QUEUING, noninteractive, ) self._transfer_tracker_adapter( sync_client.signals.transferring, "Receiving data ({})".format(TRANSFER_MESSAGE), State.PULLING, noninteractive, ) self._queueing_tracker_adapter( sync_client.signals.dequeuing, "Locally integrating received data", State.LOCAL_DEQUEUING, noninteractive, ) self._session_tracker_adapter( sync_client.signals.session, "Creating pull transfer session", "Completed pull transfer session", ) if not user_id: # full-facility sync sync_client.initialize(Filter(dataset_id)) else: # single-user sync client_is_single_user = ( client_cert.scope_definition_id == ScopeDefinitions.SINGLE_USER ) filt = get_single_user_sync_filter( dataset_id, user_id, is_read=client_is_single_user ) sync_client.initialize(Filter(filt)) sync_client.run() with self._lock(): sync_client.finalize() def _handle_push( self, sync_session_client, noninteractive, dataset_id, client_cert, server_cert, user_id, ): """ :type sync_session_client: morango.sync.syncsession.SyncSessionClient :type noninteractive: bool :type dataset_id: str """ sync_client = sync_session_client.get_push_client() sync_client.signals.transferring.connect(self._raise_cancel) self._queueing_tracker_adapter( sync_client.signals.queuing, "Locally preparing data to send", State.LOCAL_QUEUING, noninteractive, ) self._transfer_tracker_adapter( sync_client.signals.transferring, "Sending data ({})".format(TRANSFER_MESSAGE), State.PUSHING, noninteractive, ) self._queueing_tracker_adapter( sync_client.signals.dequeuing, "Remotely integrating data", State.REMOTE_DEQUEUING, noninteractive, ) self._session_tracker_adapter( sync_client.signals.session, "Creating push transfer session", "Completed push transfer session", ) with self._lock(): if not user_id: # full-facility sync sync_client.initialize(Filter(dataset_id)) else: # single-user sync client_is_single_user = ( client_cert.scope_definition_id == ScopeDefinitions.SINGLE_USER ) filt = get_single_user_sync_filter( dataset_id, user_id, is_read=not client_is_single_user ) sync_client.initialize(Filter(filt)) sync_client.run() # we can't cancel remotely integrating data if self.job: self.job.save_as_cancellable(cancellable=False) # allow server timeout since remotely integrating data can take a while and the request # could timeout. In that case, we'll assume everything is good. sync_client.finalize(allow_server_timeout=True) def _update_all_progress(self, progress_fraction, progress): """ Override parent progress update callback to report from the progress tracker we're sent """ if self.job: self.job.update_progress(progress_fraction, 1.0) self.job.extra_metadata.update(progress.extra_data) self.job.save_meta() def _session_tracker_adapter(self, signal_group, started_msg, completed_msg): """ Attaches a signal handler to session creation signals :type signal_group: morango.sync.syncsession.SyncSignalGroup :type started_msg: str :type completed_msg: str """ @run_once def session_creation(transfer_session): """ A session is created individually for pushing and pulling """ logger.info(started_msg) if self.job: self.job.extra_metadata.update(sync_state=State.SESSION_CREATION) @run_once def session_destruction(transfer_session): if transfer_session.records_total == 0: logger.info("There are no records to transfer") logger.info(completed_msg) signal_group.started.connect(session_creation) signal_group.completed.connect(session_destruction) def _transfer_tracker_adapter( self, signal_group, message, sync_state, noninteractive ): """ Attaches a signal handler to pushing/pulling signals :type signal_group: morango.sync.syncsession.SyncSignalGroup :type message: str :type sync_state: str :type noninteractive: bool """ tracker = self.start_progress(total=100) def stats_msg(transfer_session): transfer_total = ( transfer_session.bytes_sent + transfer_session.bytes_received ) return message.format( records_transferred=transfer_session.records_transferred, records_total=transfer_session.records_total, transfer_total=bytes_for_humans(transfer_total), ) def stats(transfer_session): logger.info(stats_msg(transfer_session)) def handler(transfer_session): """ :type transfer_session: morango.models.core.TransferSession """ progress = ( 100 * transfer_session.records_transferred / float(transfer_session.records_total) ) tracker.update_progress( increment=math.ceil(progress - tracker.progress), message=stats_msg(transfer_session), extra_data=dict( bytes_sent=transfer_session.bytes_sent, bytes_received=transfer_session.bytes_received, sync_state=sync_state, ), ) if noninteractive or tracker.progressbar is None: signal_group.started.connect(stats) signal_group.in_progress.connect(stats) signal_group.connect(handler) # log one more time at end to capture in logging output signal_group.completed.connect(stats) def _queueing_tracker_adapter( self, signal_group, message, sync_state, noninteractive ): """ Attaches a signal handler to queuing/dequeuing signals :type signal_group: morango.sync.syncsession.SyncSignalGroup :type message: str :type sync_state: str :type noninteractive: bool """ tracker = self.start_progress(total=2) def started(transfer_session): dataset_cache.clear() if noninteractive or tracker.progressbar is None: logger.info(message) def handler(transfer_session): tracker.update_progress( message=message, extra_data=dict(sync_state=sync_state) ) if noninteractive or tracker.progressbar is None: signal_group.started.connect(started) signal_group.started.connect(started) signal_group.started.connect(handler) signal_group.completed.connect(handler)
[((36, 9, 36, 36), 'logging.getLogger', 'logging.getLogger', ({(36, 27, 36, 35): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((120, 8, 120, 29), 'kolibri.core.auth.models.dataset_cache.clear', 'dataset_cache.clear', ({}, {}), '()', False, 'from kolibri.core.auth.models import dataset_cache\n'), ((121, 8, 121, 32), 'kolibri.core.auth.models.dataset_cache.activate', 'dataset_cache.activate', ({}, {}), '()', False, 'from kolibri.core.auth.models import dataset_cache\n'), ((124, 21, 124, 68), 'morango.sync.controller.MorangoProfileController', 'MorangoProfileController', ({(124, 46, 124, 67): 'PROFILE_FACILITY_DATA'}, {}), '(PROFILE_FACILITY_DATA)', False, 'from morango.sync.controller import MorangoProfileController\n'), ((265, 8, 265, 34), 'kolibri.core.auth.models.dataset_cache.deactivate', 'dataset_cache.deactivate', ({}, {}), '()', False, 'from kolibri.core.auth.models import dataset_cache\n'), ((117, 15, 117, 47), 'morango.models.ScopeDefinition.objects.filter', 'ScopeDefinition.objects.filter', ({}, {}), '()', False, 'from morango.models import ScopeDefinition\n'), ((118, 12, 118, 56), 'django.core.management.call_command', 'call_command', ({(118, 25, 118, 35): '"""loaddata"""', (118, 37, 118, 55): '"""scopedefinitions"""'}, {}), "('loaddata', 'scopedefinitions')", False, 'from django.core.management import call_command\n'), ((132, 18, 134, 13), 'django.core.management.base.CommandError', 'CommandError', ({(133, 16, 133, 89): '"""Device can not sync with itself. Please recheck base URL and try again."""'}, {}), "(\n 'Device can not sync with itself. Please recheck base URL and try again.')", False, 'from django.core.management.base import CommandError\n'), ((276, 13, 276, 22), 'kolibri.core.utils.lock.db_lock', 'db_lock', ({}, {}), '()', False, 'from kolibri.core.utils.lock import db_lock\n'), ((284, 18, 284, 38), 'kolibri.core.tasks.exceptions.UserCancelledError', 'UserCancelledError', ({}, {}), '()', False, 'from kolibri.core.tasks.exceptions import UserCancelledError\n'), ((516, 12, 516, 33), 'kolibri.core.auth.models.dataset_cache.clear', 'dataset_cache.clear', ({}, {}), '()', False, 'from kolibri.core.auth.models import dataset_cache\n'), ((139, 22, 141, 17), 'django.core.management.base.CommandError', 'CommandError', ({(140, 20, 140, 86): '"""Facility ID must be specified in order to do single-user syncing"""'}, {}), "('Facility ID must be specified in order to do single-user syncing'\n )", False, 'from django.core.management.base import CommandError\n'), ((142, 19, 142, 52), 're.match', 're.match', ({(142, 28, 142, 42): '"""[a-f0-9]{32}"""', (142, 44, 142, 51): 'user_id'}, {}), "('[a-f0-9]{32}', user_id)", False, 'import re\n'), ((143, 22, 143, 85), 'django.core.management.base.CommandError', 'CommandError', ({(143, 35, 143, 84): '"""User ID must be a 32-character UUID (no dashes)"""'}, {}), "('User ID must be a 32-character UUID (no dashes)')", False, 'from django.core.management.base import CommandError\n'), ((161, 22, 163, 17), 'django.core.management.base.CommandError', 'CommandError', ({(162, 20, 162, 138): '"""To do a single-user sync, one device must have a single-user certificate, and the other a full-facility certificate."""'}, {}), "(\n 'To do a single-user sync, one device must have a single-user certificate, and the other a full-facility certificate.'\n )", False, 'from django.core.management.base import CommandError\n'), ((166, 23, 168, 13), 'kolibri.core.auth.management.utils.get_facility', 'get_facility', (), '', False, 'from kolibri.core.auth.management.utils import get_facility\n'), ((184, 27, 184, 63), 'json.loads', 'json.loads', ({(184, 38, 184, 62): 'client_cert.scope_params'}, {}), '(client_cert.scope_params)', False, 'import json\n'), ((331, 35, 331, 53), 'morango.models.Filter', 'Filter', ({(331, 42, 331, 52): 'dataset_id'}, {}), '(dataset_id)', False, 'from morango.models import Filter\n'), ((340, 35, 340, 47), 'morango.models.Filter', 'Filter', ({(340, 42, 340, 46): 'filt'}, {}), '(filt)', False, 'from morango.models import Filter\n'), ((129, 12, 129, 60), 'morango.models.InstanceIDModel.get_or_create_current_instance', 'InstanceIDModel.get_or_create_current_instance', ({}, {}), '()', False, 'from morango.models import InstanceIDModel\n'), ((391, 39, 391, 57), 'morango.models.Filter', 'Filter', ({(391, 46, 391, 56): 'dataset_id'}, {}), '(dataset_id)', False, 'from morango.models import Filter\n'), ((400, 39, 400, 51), 'morango.models.Filter', 'Filter', ({(400, 46, 400, 50): 'filt'}, {}), '(filt)', False, 'from morango.models import Filter\n'), ((468, 31, 468, 63), 'kolibri.core.logger.utils.data.bytes_for_humans', 'bytes_for_humans', ({(468, 48, 468, 62): 'transfer_total'}, {}), '(transfer_total)', False, 'from kolibri.core.logger.utils.data import bytes_for_humans\n'), ((484, 26, 484, 64), 'math.ceil', 'math.ceil', ({(484, 36, 484, 63): '(progress - tracker.progress)'}, {}), '(progress - tracker.progress)', False, 'import math\n')]
RezaFirouzii/fum-delta-vision
warp.py
0a8ad1d434006a9aee0a12c1f021c0bca0bc87e2
import math import imageio import cv2 as cv import numpy as np import transformer def fix_rotation(img): img_copy = img.copy() img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) rows, cols = img.shape img = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 15, 9) kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (3, 3)) img = cv.morphologyEx(img, cv.MORPH_OPEN, kernel) img = cv.medianBlur(img, 3) contours, hierarchy = cv.findContours(img, cv.RETR_LIST, cv.CHAIN_APPROX_NONE) roi = max(contours, key=cv.contourArea) x, y, w, h = cv.boundingRect(roi) corners = [[x, y], [x + w, y], [x, y + h], [x + w, y + h]] src = np.float32(corners) # src = np.reshape(src, (len(src), 1, 2)) # perimeter = cv.arcLength(src, True) # corners = cv.approxPolyDP(src, perimeter // 10, True) # corners = np.vstack(corners) dst = np.float32([[0, 0], [cols, 0], [0, rows], [cols, rows]]) matrix = cv.getPerspectiveTransform(src, dst) rotated_img = cv.warpPerspective(img_copy, matrix, (cols, rows)) cv.imshow('', rotated_img) D1 = 105 D2 = 175 D3 = 275 if __name__ == "__main__": cap = cv.VideoCapture('samples/delta.mp4') if not cap.isOpened(): raise IOError("Video was not opened!") mse = 0 count = 0 reader = imageio.get_reader('samples/delta.mp4') fps = reader.get_meta_data()['fps'] writer = imageio.get_writer('samples/result.mp4', fps=fps) while True: res, frame = cap.read() if not res: break mean_error = 0 holes_count = 0 img = frame.copy() cv.imshow('dfa', img) frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) frame_copy = frame.copy() # frame = cv.adaptiveThreshold(frame, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 15, 9) # kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (3, 3)) # frame = cv.morphologyEx(frame, cv.MORPH_OPEN, kernel) # frame = cv.medianBlur(frame, 3) # contours, hierarchy = cv.findContours(frame, cv.RETR_LIST, cv.CHAIN_APPROX_NONE) # roi = max(contours, key=cv.contourArea) # x, y, w, h = cv.boundingRect(roi) x, y, w, h = 115, 0, 445, 360 img = img[y: y+h, x: x+w] img = transformer.rotate_along_axis(img, theta=40) frame_copy = frame_copy[y: y+h, x: x+w] frame_copy = transformer.rotate_along_axis(frame_copy, theta=40) # cv.imshow('', frame_copy) # cv.rectangle(frame_copy, (x, y), (x + w, y + h), (0, 255, 0), 2) # cv.drawContours(frame_copy, roi, -1, (0, 0, 255), 2) # res, mask = cv.threshold(frame_copy, 0, 255, cv.THRESH_BINARY) # frame_copy = cv.bitwise_and(frame_copy, frame_copy, mask=mask) # corners = cv.goodFeaturesToTrack(frame_copy, 1000, 0.0001, 1) # corners = list(sorted(corners, key=lambda x: x[0][1])) # print(corners[-1], corners[-2]) # print() # corners = np.array([[38, 293], [407, 293]]) # for item in corners: # # x, y = map(int, item.ravel()) # x, y = item # cv.circle(img, (x, y), 5, (0, 0, 255), -1) src = np.float32([[0, 0], [w, 0], [38, 293], [407, 293]]) dst = np.float32([[0, 0], [w, 0], [30, h], [w - 30, h]]) matrix = cv.getPerspectiveTransform(src, dst) img = cv.warpPerspective(img, matrix, (w, h)) cv.imshow('', img) img_copy = img.copy() img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) img = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 15, 9) kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (3, 3)) img = cv.morphologyEx(img, cv.MORPH_OPEN, kernel) img = cv.medianBlur(img, 3) origin = (w // 2 + 4, h // 2 + 2) o1, o2 = origin r = w // 2 + 1 ORIGIN = (0, 0) R = 300 # mm contours, hierarchy = cv.findContours(img, cv.RETR_LIST, cv.CHAIN_APPROX_NONE) contours = list(filter(lambda x: 50 < cv.contourArea(x) < 175, contours)) factor = 0.1 smooth_contours = [] for i in range(len(contours)): epsilon = factor * cv.arcLength(contours[i], True) approx = cv.approxPolyDP(contours[i], epsilon, True) x, y, width, height = cv.boundingRect(approx) area = width*height if len(approx) == 4 and 75 < area < 200: smooth_contours.append(contours[i]) center, radius = cv.minEnclosingCircle(approx) radius = int(radius) center = tuple(map(int, center)) x, y = center X = ((x - o1) * R) / r Y = ((y - o2) * R) / r X, Y = round(X, 2), round(Y, 2) cv.circle(img_copy, center, radius, (0, 255, 0), 2) cv.putText(img_copy, str((X, Y)), center, cv.FONT_HERSHEY_SIMPLEX, 0.3, (255, 0, 255, 255), 1, cv.LINE_AA) e1, e2, e3 = map(lambda d: abs(math.hypot(X, Y) - d), [D1, D2, D3]) error = min(e1, e2, e3) if error < 10: mean_error += error ** 2 holes_count += 1 cv.circle(img_copy, origin, 4, (0, 0, 255), -1) # cv.line(img_copy, origin, (origin[0], origin[1]), (255, 0, 255), 2) mean_error /= holes_count mse += mean_error count += 1 cv.imshow("Final", img_copy) writer.append_data(img_copy) # cv.imshow("Chg", img) if cv.waitKey(30) == 27: break print("E:", mse / count, "N:", count) writer.close() cap.release() cv.destroyAllWindows()
[((9, 10, 9, 45), 'cv2.cvtColor', 'cv.cvtColor', ({(9, 22, 9, 25): 'img', (9, 27, 9, 44): 'cv.COLOR_BGR2GRAY'}, {}), '(img, cv.COLOR_BGR2GRAY)', True, 'import cv2 as cv\n'), ((11, 10, 11, 96), 'cv2.adaptiveThreshold', 'cv.adaptiveThreshold', ({(11, 31, 11, 34): 'img', (11, 36, 11, 39): '255', (11, 41, 11, 66): 'cv.ADAPTIVE_THRESH_MEAN_C', (11, 68, 11, 88): 'cv.THRESH_BINARY_INV', (11, 90, 11, 92): '15', (11, 94, 11, 95): '9'}, {}), '(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.\n THRESH_BINARY_INV, 15, 9)', True, 'import cv2 as cv\n'), ((13, 13, 13, 63), 'cv2.getStructuringElement', 'cv.getStructuringElement', ({(13, 38, 13, 54): 'cv.MORPH_ELLIPSE', (13, 56, 13, 62): '(3, 3)'}, {}), '(cv.MORPH_ELLIPSE, (3, 3))', True, 'import cv2 as cv\n'), ((14, 10, 14, 53), 'cv2.morphologyEx', 'cv.morphologyEx', ({(14, 26, 14, 29): 'img', (14, 31, 14, 44): 'cv.MORPH_OPEN', (14, 46, 14, 52): 'kernel'}, {}), '(img, cv.MORPH_OPEN, kernel)', True, 'import cv2 as cv\n'), ((16, 10, 16, 31), 'cv2.medianBlur', 'cv.medianBlur', ({(16, 24, 16, 27): 'img', (16, 29, 16, 30): '3'}, {}), '(img, 3)', True, 'import cv2 as cv\n'), ((18, 26, 18, 82), 'cv2.findContours', 'cv.findContours', ({(18, 42, 18, 45): 'img', (18, 47, 18, 59): 'cv.RETR_LIST', (18, 61, 18, 81): 'cv.CHAIN_APPROX_NONE'}, {}), '(img, cv.RETR_LIST, cv.CHAIN_APPROX_NONE)', True, 'import cv2 as cv\n'), ((21, 17, 21, 37), 'cv2.boundingRect', 'cv.boundingRect', ({(21, 33, 21, 36): 'roi'}, {}), '(roi)', True, 'import cv2 as cv\n'), ((23, 10, 23, 29), 'numpy.float32', 'np.float32', ({(23, 21, 23, 28): 'corners'}, {}), '(corners)', True, 'import numpy as np\n'), ((29, 10, 29, 66), 'numpy.float32', 'np.float32', ({(29, 21, 29, 65): '[[0, 0], [cols, 0], [0, rows], [cols, rows]]'}, {}), '([[0, 0], [cols, 0], [0, rows], [cols, rows]])', True, 'import numpy as np\n'), ((31, 13, 31, 49), 'cv2.getPerspectiveTransform', 'cv.getPerspectiveTransform', ({(31, 40, 31, 43): 'src', (31, 45, 31, 48): 'dst'}, {}), '(src, dst)', True, 'import cv2 as cv\n'), ((32, 18, 32, 68), 'cv2.warpPerspective', 'cv.warpPerspective', ({(32, 37, 32, 45): 'img_copy', (32, 47, 32, 53): 'matrix', (32, 55, 32, 67): '(cols, rows)'}, {}), '(img_copy, matrix, (cols, rows))', True, 'import cv2 as cv\n'), ((33, 4, 33, 30), 'cv2.imshow', 'cv.imshow', ({(33, 14, 33, 16): '""""""', (33, 18, 33, 29): 'rotated_img'}, {}), "('', rotated_img)", True, 'import cv2 as cv\n'), ((41, 10, 41, 46), 'cv2.VideoCapture', 'cv.VideoCapture', ({(41, 26, 41, 45): '"""samples/delta.mp4"""'}, {}), "('samples/delta.mp4')", True, 'import cv2 as cv\n'), ((48, 13, 48, 52), 'imageio.get_reader', 'imageio.get_reader', ({(48, 32, 48, 51): '"""samples/delta.mp4"""'}, {}), "('samples/delta.mp4')", False, 'import imageio\n'), ((50, 13, 50, 62), 'imageio.get_writer', 'imageio.get_writer', (), '', False, 'import imageio\n'), ((164, 4, 164, 26), 'cv2.destroyAllWindows', 'cv.destroyAllWindows', ({}, {}), '()', True, 'import cv2 as cv\n'), ((61, 8, 61, 29), 'cv2.imshow', 'cv.imshow', ({(61, 18, 61, 23): '"""dfa"""', (61, 25, 61, 28): 'img'}, {}), "('dfa', img)", True, 'import cv2 as cv\n'), ((62, 16, 62, 53), 'cv2.cvtColor', 'cv.cvtColor', ({(62, 28, 62, 33): 'frame', (62, 35, 62, 52): 'cv.COLOR_BGR2GRAY'}, {}), '(frame, cv.COLOR_BGR2GRAY)', True, 'import cv2 as cv\n'), ((75, 14, 75, 58), 'transformer.rotate_along_axis', 'transformer.rotate_along_axis', (), '', False, 'import transformer\n'), ((77, 21, 77, 72), 'transformer.rotate_along_axis', 'transformer.rotate_along_axis', (), '', False, 'import transformer\n'), ((95, 14, 95, 65), 'numpy.float32', 'np.float32', ({(95, 25, 95, 64): '[[0, 0], [w, 0], [38, 293], [407, 293]]'}, {}), '([[0, 0], [w, 0], [38, 293], [407, 293]])', True, 'import numpy as np\n'), ((96, 14, 96, 64), 'numpy.float32', 'np.float32', ({(96, 25, 96, 63): '[[0, 0], [w, 0], [30, h], [w - 30, h]]'}, {}), '([[0, 0], [w, 0], [30, h], [w - 30, h]])', True, 'import numpy as np\n'), ((97, 17, 97, 53), 'cv2.getPerspectiveTransform', 'cv.getPerspectiveTransform', ({(97, 44, 97, 47): 'src', (97, 49, 97, 52): 'dst'}, {}), '(src, dst)', True, 'import cv2 as cv\n'), ((98, 14, 98, 53), 'cv2.warpPerspective', 'cv.warpPerspective', ({(98, 33, 98, 36): 'img', (98, 38, 98, 44): 'matrix', (98, 46, 98, 52): '(w, h)'}, {}), '(img, matrix, (w, h))', True, 'import cv2 as cv\n'), ((99, 8, 99, 26), 'cv2.imshow', 'cv.imshow', ({(99, 18, 99, 20): '""""""', (99, 22, 99, 25): 'img'}, {}), "('', img)", True, 'import cv2 as cv\n'), ((102, 14, 102, 49), 'cv2.cvtColor', 'cv.cvtColor', ({(102, 26, 102, 29): 'img', (102, 31, 102, 48): 'cv.COLOR_BGR2GRAY'}, {}), '(img, cv.COLOR_BGR2GRAY)', True, 'import cv2 as cv\n'), ((103, 14, 103, 100), 'cv2.adaptiveThreshold', 'cv.adaptiveThreshold', ({(103, 35, 103, 38): 'img', (103, 40, 103, 43): '255', (103, 45, 103, 70): 'cv.ADAPTIVE_THRESH_MEAN_C', (103, 72, 103, 92): 'cv.THRESH_BINARY_INV', (103, 94, 103, 96): '15', (103, 98, 103, 99): '9'}, {}), '(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.\n THRESH_BINARY_INV, 15, 9)', True, 'import cv2 as cv\n'), ((105, 17, 105, 67), 'cv2.getStructuringElement', 'cv.getStructuringElement', ({(105, 42, 105, 58): 'cv.MORPH_ELLIPSE', (105, 60, 105, 66): '(3, 3)'}, {}), '(cv.MORPH_ELLIPSE, (3, 3))', True, 'import cv2 as cv\n'), ((106, 14, 106, 57), 'cv2.morphologyEx', 'cv.morphologyEx', ({(106, 30, 106, 33): 'img', (106, 35, 106, 48): 'cv.MORPH_OPEN', (106, 50, 106, 56): 'kernel'}, {}), '(img, cv.MORPH_OPEN, kernel)', True, 'import cv2 as cv\n'), ((107, 14, 107, 35), 'cv2.medianBlur', 'cv.medianBlur', ({(107, 28, 107, 31): 'img', (107, 33, 107, 34): '3'}, {}), '(img, 3)', True, 'import cv2 as cv\n'), ((116, 30, 116, 86), 'cv2.findContours', 'cv.findContours', ({(116, 46, 116, 49): 'img', (116, 51, 116, 63): 'cv.RETR_LIST', (116, 65, 116, 85): 'cv.CHAIN_APPROX_NONE'}, {}), '(img, cv.RETR_LIST, cv.CHAIN_APPROX_NONE)', True, 'import cv2 as cv\n'), ((149, 8, 149, 55), 'cv2.circle', 'cv.circle', ({(149, 18, 149, 26): 'img_copy', (149, 28, 149, 34): 'origin', (149, 36, 149, 37): '(4)', (149, 39, 149, 50): '(0, 0, 255)', (149, 52, 149, 54): '(-1)'}, {}), '(img_copy, origin, 4, (0, 0, 255), -1)', True, 'import cv2 as cv\n'), ((155, 8, 155, 36), 'cv2.imshow', 'cv.imshow', ({(155, 18, 155, 25): '"""Final"""', (155, 27, 155, 35): 'img_copy'}, {}), "('Final', img_copy)", True, 'import cv2 as cv\n'), ((123, 21, 123, 64), 'cv2.approxPolyDP', 'cv.approxPolyDP', ({(123, 37, 123, 48): 'contours[i]', (123, 50, 123, 57): 'epsilon', (123, 59, 123, 63): 'True'}, {}), '(contours[i], epsilon, True)', True, 'import cv2 as cv\n'), ((125, 34, 125, 57), 'cv2.boundingRect', 'cv.boundingRect', ({(125, 50, 125, 56): 'approx'}, {}), '(approx)', True, 'import cv2 as cv\n'), ((158, 11, 158, 25), 'cv2.waitKey', 'cv.waitKey', ({(158, 22, 158, 24): '(30)'}, {}), '(30)', True, 'import cv2 as cv\n'), ((122, 31, 122, 62), 'cv2.arcLength', 'cv.arcLength', ({(122, 44, 122, 55): 'contours[i]', (122, 57, 122, 61): '(True)'}, {}), '(contours[i], True)', True, 'import cv2 as cv\n'), ((130, 33, 130, 62), 'cv2.minEnclosingCircle', 'cv.minEnclosingCircle', ({(130, 55, 130, 61): 'approx'}, {}), '(approx)', True, 'import cv2 as cv\n'), ((140, 16, 140, 67), 'cv2.circle', 'cv.circle', ({(140, 26, 140, 34): 'img_copy', (140, 36, 140, 42): 'center', (140, 44, 140, 50): 'radius', (140, 52, 140, 63): '(0, 255, 0)', (140, 65, 140, 66): '(2)'}, {}), '(img_copy, center, radius, (0, 255, 0), 2)', True, 'import cv2 as cv\n'), ((117, 46, 117, 63), 'cv2.contourArea', 'cv.contourArea', ({(117, 61, 117, 62): 'x'}, {}), '(x)', True, 'import cv2 as cv\n'), ((143, 47, 143, 63), 'math.hypot', 'math.hypot', ({(143, 58, 143, 59): 'X', (143, 61, 143, 62): 'Y'}, {}), '(X, Y)', False, 'import math\n')]
sdss/ObserverTools
sdssobstools/boss_data.py
7f9949341edc91a79dac69d79e24af09e8558ffa
#!/usr/bin/env python3 """ A tool to grab a single BOSS image and pull a few items from its header. It is used in bin/sloan_log.py, but it could be used directly as well. """ import argparse from pathlib import Path from astropy.time import Time import fitsio class BOSSRaw: """A class to parse raw data from APOGEE. The purpose of collecting this raw data is to future-proof things that need these ouptuts in case things like autoschedulers change, which many libraries depend on. This will hopefully help SDSS-V logging""" def __init__(self, fil): self.fil = fil header = fitsio.read_header(fil) self.dither = header['MGDPOS'] if not self.dither: # This key started working instead during SDSS-V self.dither = header['POINTING'][0] self.exp_time = int(header['EXPTIME']) self.isot = Time(header['DATE-OBS']) # UTC self.plate_id = header['PLATEID'] self.cart_id = header['CARTID'] self.exp_id = int(str(fil).split('-')[-1].split('.')[0]) self.lead = header['PLATETYP'] if 'Closed' in header['HARTMANN']: self.hartmann = 'Closed' self.flavor = header['FLAVOR'].capitalize() elif 'Out' in header['HARTMANN']: self.hartmann = 'Open' self.flavor = header['FLAVOR'].capitalize() self.hart_resids = [] else: self.hartmann = header['HARTMANN'] self.flavor = 'Hart' # self.seeing = header['SEEING'] # self.img_type = header['IMAGETYP'] def main(): parser = argparse.ArgumentParser() parser.add_argument('-t', '--today', action='store_true') args = parser.parse_args() parser.add_argument('-m', '--mjd', help='If not today (-t), the mjd to search') parser.add_argument('-v', '--verbose', action='count', default=1, help='Show details, can be stacked') if args.today: mjd_today = int(Time.now().sjd) data_dir = '/data/spectro/{}/'.format(mjd_today) elif args.mjd: data_dir = '/data/spectro/{}/'.format(args.mjd) else: raise Exception('No date specified') for path in Path(data_dir).rglob('sdR*.fit.gz'): print(path) if __name__ == '__main__': main()
[((47, 13, 47, 38), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ({}, {}), '()', False, 'import argparse\n'), ((20, 17, 20, 40), 'fitsio.read_header', 'fitsio.read_header', ({(20, 36, 20, 39): 'fil'}, {}), '(fil)', False, 'import fitsio\n'), ((26, 20, 26, 44), 'astropy.time.Time', 'Time', ({(26, 25, 26, 43): "header['DATE-OBS']"}, {}), "(header['DATE-OBS'])", False, 'from astropy.time import Time\n'), ((62, 16, 62, 30), 'pathlib.Path', 'Path', ({(62, 21, 62, 29): 'data_dir'}, {}), '(data_dir)', False, 'from pathlib import Path\n'), ((55, 24, 55, 34), 'astropy.time.Time.now', 'Time.now', ({}, {}), '()', False, 'from astropy.time import Time\n')]
bryan-lima/exercicios-livro-introd-prog-python-3ed
capitulo-08/ex13b.py
b6bc26dced9728510865704a80cb0d97f81f756b
# Altere o Programa 8.20 de forma que o usuário tenha três chances de acertar o número # O programa termina se o usuário acertar ou errar três vezes # Programa 8.20 do livro, página 184 # Programa 8.20 - Adivinhando o número # # import random # # n = random.randint(1, 10) # x = int(input('Escolha um número entre 1 e 10: ')) # if x == n: # print('Você acertou!') # else: # print('Você errou.') import random numberRandom = random.randint(1, 10) counter = 0 while True: chosenNumber = int(input('\nEscolha um número entre 1 e 10: ')) counter += 1 if chosenNumber == numberRandom: print(f'Parabéns! Você acertou na {counter}ª de 3 tentativas!') break else: print(f'Você errou!') if counter < 3: print(f'Resta(m) {3 - counter} tentativa(s).') else: print('Suas tentativas acabaram! Mais sorte na próxima vez.') print(f'O número sorteado foi {numberRandom}.') break
[((18, 15, 18, 36), 'random.randint', 'random.randint', ({(18, 30, 18, 31): '1', (18, 33, 18, 35): '10'}, {}), '(1, 10)', False, 'import random\n')]
mariusfrinken/slogviz
slogviz/config.py
0557eda336c257245eefe75699eb2479eb672ca1
# -*- coding: utf-8 -*- """This sub module provides a global variable to check for checking if the non-interactive argument was set Exported variable: interactive -- False, if the main the non-interactive argument was set, True, if it was not set """ global interactive interactive = True;
[]
shb84/ATM76
setup.py
433179bde8935abeaf2ace52fe17dedb7a313487
import setuptools # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setuptools.setup( name="atm76", version="0.1.0", author="Steven H. Berguin", author_email="[email protected]", description="Differentiable 1976 Atmosphere", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/shb84/ATM76.git", packages=setuptools.find_packages(), package_data={}, install_requires=["numpy>=1.16", "genn"], include_package_data=True, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.7', )
[((7, 20, 7, 42), 'os.path.dirname', 'path.dirname', ({(7, 33, 7, 41): '__file__'}, {}), '(__file__)', False, 'from os import path\n'), ((9, 10, 9, 38), 'os.path.join', 'path.join', ({(9, 20, 9, 24): 'here', (9, 26, 9, 37): '"""README.md"""'}, {}), "(here, 'README.md')", False, 'from os import path\n'), ((21, 13, 21, 39), 'setuptools.find_packages', 'setuptools.find_packages', ({}, {}), '()', False, 'import setuptools\n')]
indigos33k3r/god-eye
agent/check_plugins/download_speed.py
b2af5ca6dbbd1b302dd5cda1fd0f0c0eee009e76
import logging import asyncio from agent.check_plugins import AbstractCheckPlugin # Do khong biet dung thu vien asyncio ntn ca nen em dung thu vien request # python import requests import sys import time from datetime import datetime logger = logging.getLogger(__name__) class Download(AbstractCheckPlugin): @asyncio.coroutine def __call__(self, client, dnode): logger.info('Test download speed : running...') start = time.clock() r = requests.get('http://{}'.format(dnode), stream=True) total_length = int(r.headers.get('content-length')) if total_length is None: logger.error("Empty file!") else: array_speed = [] start_chunk = time.clock() for chunk in r.iter_content(1024): # 1kB1024 1MB 1048576 end_chunk = time.clock() delta = end_chunk - start_chunk start_chunk = end_chunk if delta <= 0: break else: array_speed.append(1//delta) # kB / s end = time.clock() yield from self._queue.put(self.get_result(dnode, start, end, total_length, array_speed)) @asyncio.coroutine def get_result(self, url, start, end, total_length, array_speed): """Download and processing data. Args: url (str): url file download. start (float): It's time which started download. end (float): It's time which finished download. total_length (int): size of file download (Byte) array_speed (list): list download speeds for each 1024 Byte (kB/s) Returns: list with item 0 : json format for influxdb """ download_speed = total_length // (time.clock() - start) accelerationS = self.acceleration(array_speed) mean_deviationS = self.mean_deviation(array_speed, download_speed) logger.info("Test download speed done!") #TODO Bỏ time, để kiểm tra xem db có ghi đc dữ liệu hay chưa return [self.output([self._snode, url, datetime.now(), download_speed, mean_deviationS, accelerationS])] def acceleration(self, array_speed): """Caculate acceleration. By get the highest speed in the first cycle. Args: array_speed (list): list download times for each 1024 Byte Returns: acceleration (kB/s) : the deviation between highest speed and first byte speed """ if len(array_speed) == 0: return 0 speed_before = array_speed[0] for speed in array_speed: if speed < speed_before: break else: speed_before = speed return speed_before - array_speed[0] def mean_deviation(self, array_speed, download_speed): """The mean deviation each downloads with download_speed. Args: array_speed (list): list download speeds for each kB. download_speed (kB/s): mean download speed. Returns: mean_deviation (kB/s) """ if len(array_speed) == 0: return 0 sum = 0 for speed in array_speed: sum += abs(speed - download_speed) return sum//len(array_speed) def output(self, my_array): """Reformat my_array for inserting into influxdb. Args: my_array (list): [self._snode, url, str(datetime.now()), download_speed, mean_deviationS, accelerationS] Returns: json format for influxdb """ return { "measurement": "download_speed", "tags": { "snode": "{}".format(my_array[0]), "dnode": "{}".format(my_array[1]) }, # "time": "{}".format(my_array[2]), "fields": { "speed": my_array[3], "mean_deviation": my_array[4], "acceleration": my_array[5] } }
[((12, 9, 12, 36), 'logging.getLogger', 'logging.getLogger', ({(12, 27, 12, 35): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((20, 16, 20, 28), 'time.clock', 'time.clock', ({}, {}), '()', False, 'import time\n'), ((27, 26, 27, 38), 'time.clock', 'time.clock', ({}, {}), '()', False, 'import time\n'), ((37, 18, 37, 30), 'time.clock', 'time.clock', ({}, {}), '()', False, 'import time\n'), ((29, 28, 29, 40), 'time.clock', 'time.clock', ({}, {}), '()', False, 'import time\n'), ((55, 42, 55, 54), 'time.clock', 'time.clock', ({}, {}), '()', False, 'import time\n'), ((60, 47, 60, 61), 'datetime.datetime.now', 'datetime.now', ({}, {}), '()', False, 'from datetime import datetime\n')]
AyemunHossain/Django
Setup Rich Text Editor/mysite/main/urls.py
0b1ed21fd6bd2906a4a1a220c029a2193658320f
from django.urls import path from . import views app_name = "main" urlpatterns = [ path("",views.homepage,name="homepage") ]
[((7, 4, 7, 43), 'django.urls.path', 'path', (), '', False, 'from django.urls import path\n')]
jcordell/keras-optimization
GA/train.py
cbda84bcf3b31928d829af4afc82af1886877341
""" Utility used by the Network class to actually train. Based on: https://github.com/fchollet/keras/blob/master/examples/mnist_mlp.py """ from keras.datasets import mnist, cifar10 from keras.models import Sequential from keras.layers import Dense, Dropout from keras.utils.np_utils import to_categorical from keras.callbacks import EarlyStopping import data_parser import numpy as np from keras.optimizers import Adadelta, Adam, rmsprop from sklearn.metrics import mean_squared_error # Helper: Early stopping. early_stopper = EarlyStopping(patience=5) def get_cifar10(): """Retrieve the CIFAR dataset and process the data.""" # Set defaults. nb_classes = 10 batch_size = 64 input_shape = (3072,) # Get the data. (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train = x_train.reshape(50000, 3072) x_test = x_test.reshape(10000, 3072) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 # convert class vectors to binary class matrices y_train = to_categorical(y_train, nb_classes) y_test = to_categorical(y_test, nb_classes) return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test) def get_mnist(): """Retrieve the MNIST dataset and process the data.""" # Set defaults. nb_classes = 10 batch_size = 128 input_shape = (784,) # Get the data. (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 784) x_test = x_test.reshape(10000, 784) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 # convert class vectors to binary class matrices y_train = to_categorical(y_train, nb_classes) y_test = to_categorical(y_test, nb_classes) return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test) def get_dbtt(): data = data_parser.parse("DBTT_Data22.csv") data_lwr = data_parser.parse("CD_LWR_clean8.csv") X = ["N_log(eff fl p =.05)", "N_log(eff fl p =.4)", "N_log(eff fl p =.5)", "N(Cu)", "N(Ni)", "N(Mn)", "N(P)", "N(Si)", "N( C )", "N_log(eff fl p =.1)", "N_log(eff fl p =.2)", "N_log(eff fl p =.3)", "N(Temp)"] Y = "CD delta sigma" data.set_x_features(X) data.set_y_feature(Y) data_lwr.set_y_feature(Y) data_lwr.set_x_features(X) data.add_exclusive_filter("Alloy", '=', 29) data.add_exclusive_filter("Alloy", '=', 8) data.add_exclusive_filter("Alloy", '=', 1) data.add_exclusive_filter("Alloy", '=', 2) data.add_exclusive_filter("Alloy", '=', 14) data_lwr.add_exclusive_filter("Alloy", '=', 29) data_lwr.add_exclusive_filter("Alloy", '=', 14) x_test = np.array(data_lwr.get_x_data()) y_test = np.array(data_lwr.get_y_data()) x_train = np.array(data.get_x_data()) y_train = np.array(data.get_y_data()) #print("Training with", np.shape(y_train)[0], "data points") nb_classes = -1 batch_size = np.shape(y_train)[0] input_shape = (13,) # normalize y columns y_train = y_train/758.92 return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test) def compile_model(network, nb_classes, input_shape): """Compile a sequential model. Args: network (dict): the parameters of the network Returns: a compiled network. """ # Get our network parameters. nb_layers = network['nb_layers'] nb_neurons = network['nb_neurons'] activation = network['activation'] optimizer = network['optimizer'] learning_rate = network['learning_rate'] model = Sequential() # Add each layer. for i in range(nb_layers): # Need input shape for first layer. if i == 0: print(nb_neurons) model.add(Dense(units=nb_neurons, activation=activation, input_shape=input_shape)) else: print(nb_neurons) model.add(Dense(nb_neurons, activation=activation)) model.add(Dropout(0.2)) # hard-coded dropout # Output layer. if(nb_classes == -1): model.add(Dense(1, activation='linear')) ADAM = Adam(lr=learning_rate) model.compile(loss='mean_squared_error', metrics=['accuracy'], optimizer=ADAM) else: model.add(Dense(nb_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model def train_and_score(network, dataset): """Train the model, return test loss. Args: network (dict): the parameters of the network dataset (str): Dataset to use for training/evaluating """ if dataset == 'cifar10': nb_classes, batch_size, input_shape, x_train, \ x_test, y_train, y_test = get_cifar10() elif dataset == 'mnist': nb_classes, batch_size, input_shape, x_train, \ x_test, y_train, y_test = get_mnist() elif dataset == 'dbtt': nb_classes, batch_size, input_shape, x_train, \ x_test, y_train, y_test = get_dbtt() model = compile_model(network, nb_classes, input_shape) if dataset == 'dbtt': model.fit(x_train, y_train, epochs=10, batch_size=1406, verbose=0) y_predict = model.predict(x_test) * 758.92 # todo way to not hardcode this? rms = np.sqrt(mean_squared_error(y_test, y_predict)) print(rms) return rms else: model.fit(x_train, y_train, batch_size=batch_size, epochs=10000, # using early stopping, so no real limit verbose=0, validation_data=(x_test, y_test), callbacks=[early_stopper]) score = model.evaluate(x_test, y_test, verbose=0) return score[1] # 1 is accuracy. 0 is loss.
[((19, 16, 19, 41), 'keras.callbacks.EarlyStopping', 'EarlyStopping', (), '', False, 'from keras.callbacks import EarlyStopping\n'), ((29, 43, 29, 62), 'keras.datasets.cifar10.load_data', 'cifar10.load_data', ({}, {}), '()', False, 'from keras.datasets import mnist, cifar10\n'), ((38, 14, 38, 49), 'keras.utils.np_utils.to_categorical', 'to_categorical', ({(38, 29, 38, 36): 'y_train', (38, 38, 38, 48): 'nb_classes'}, {}), '(y_train, nb_classes)', False, 'from keras.utils.np_utils import to_categorical\n'), ((39, 13, 39, 47), 'keras.utils.np_utils.to_categorical', 'to_categorical', ({(39, 28, 39, 34): 'y_test', (39, 36, 39, 46): 'nb_classes'}, {}), '(y_test, nb_classes)', False, 'from keras.utils.np_utils import to_categorical\n'), ((51, 43, 51, 60), 'keras.datasets.mnist.load_data', 'mnist.load_data', ({}, {}), '()', False, 'from keras.datasets import mnist, cifar10\n'), ((60, 14, 60, 49), 'keras.utils.np_utils.to_categorical', 'to_categorical', ({(60, 29, 60, 36): 'y_train', (60, 38, 60, 48): 'nb_classes'}, {}), '(y_train, nb_classes)', False, 'from keras.utils.np_utils import to_categorical\n'), ((61, 13, 61, 47), 'keras.utils.np_utils.to_categorical', 'to_categorical', ({(61, 28, 61, 34): 'y_test', (61, 36, 61, 46): 'nb_classes'}, {}), '(y_test, nb_classes)', False, 'from keras.utils.np_utils import to_categorical\n'), ((66, 11, 66, 47), 'data_parser.parse', 'data_parser.parse', ({(66, 29, 66, 46): '"""DBTT_Data22.csv"""'}, {}), "('DBTT_Data22.csv')", False, 'import data_parser\n'), ((67, 15, 67, 53), 'data_parser.parse', 'data_parser.parse', ({(67, 33, 67, 52): '"""CD_LWR_clean8.csv"""'}, {}), "('CD_LWR_clean8.csv')", False, 'import data_parser\n'), ((114, 12, 114, 24), 'keras.models.Sequential', 'Sequential', ({}, {}), '()', False, 'from keras.models import Sequential\n'), ((90, 17, 90, 34), 'numpy.shape', 'np.shape', ({(90, 26, 90, 33): 'y_train'}, {}), '(y_train)', True, 'import numpy as np\n'), ((131, 15, 131, 37), 'keras.optimizers.Adam', 'Adam', (), '', False, 'from keras.optimizers import Adadelta, Adam, rmsprop\n'), ((125, 18, 125, 30), 'keras.layers.Dropout', 'Dropout', ({(125, 26, 125, 29): '(0.2)'}, {}), '(0.2)', False, 'from keras.layers import Dense, Dropout\n'), ((130, 18, 130, 47), 'keras.layers.Dense', 'Dense', (), '', False, 'from keras.layers import Dense, Dropout\n'), ((134, 18, 134, 57), 'keras.layers.Dense', 'Dense', (), '', False, 'from keras.layers import Dense, Dropout\n'), ((163, 22, 163, 59), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', ({(163, 41, 163, 47): 'y_test', (163, 49, 163, 58): 'y_predict'}, {}), '(y_test, y_predict)', False, 'from sklearn.metrics import mean_squared_error\n'), ((121, 22, 121, 93), 'keras.layers.Dense', 'Dense', (), '', False, 'from keras.layers import Dense, Dropout\n'), ((124, 22, 124, 62), 'keras.layers.Dense', 'Dense', (), '', False, 'from keras.layers import Dense, Dropout\n')]
rolandgeider/OpenSlides
tests/integration/agenda/test_models.py
331141c17cb23da26e377d4285efdb4a50753a59
from openslides.agenda.models import Item from openslides.core.models import CustomSlide from openslides.utils.test import TestCase class TestItemManager(TestCase): def test_get_root_and_children_db_queries(self): """ Test that get_root_and_children needs only one db query. """ for i in range(10): CustomSlide.objects.create(title='item{}'.format(i)) with self.assertNumQueries(1): Item.objects.get_root_and_children()
[((15, 12, 15, 48), 'openslides.agenda.models.Item.objects.get_root_and_children', 'Item.objects.get_root_and_children', ({}, {}), '()', False, 'from openslides.agenda.models import Item\n')]
mbjahnoon/ssl_context_builder
ssl_context_builder/http_impl/requests_wrapper/secure_session.py
e73530f900b56710c705675e8e657f0bd17f7c07
import weakref import os import requests import ssl from ssl import SSLContext import logging from ssl_context_builder.builder.builder import SslContextBuilder from ssl_context_builder.http_impl.requests_wrapper.ssl_adapter import SslAdapter class RequestsSecureSession: def __init__(self, ssl_context: SSLContext): """ This class create a wrapper for the requests.Session object It does the following: 1. Disable session env_vars consuming 2. Load certificates provided with the ssl_context 3. Except ssl_context to control the TLS communication @param ssl_context: SSLContext """ self.cert_file_path = self._create_cert_file(ssl_context) # see note inside the function why not using tempfile self._ssl_context = ssl_context self.session = requests.Session() self.session.trust_env = False self.session.verify = self.cert_file_path self.session.mount('https://', SslAdapter(ssl_context)) self._finalizer = weakref.finalize( self, self._cleanup, self.cert_file_path, self.session, warn_message="Implicitly cleaning up {!r}".format(self)) def __enter__(self): return self def __exit__(self, exc, value, tb): self.cleanup() def cleanup(self): # Non throw function """ Delete the cert file and close the session @return: """ if self._finalizer.detach(): try: os.remove(self.cert_file_path) except: logging.warning(f"Couldn't delete certs file {self.cert_file_path}") try: self.session.close() except: logging.warning("Couldn't close session") @staticmethod def _cleanup(name, session, warn_message): try: os.remove(name) except: logging.warning(f"Couldn't delete certs file {name}") try: session.close() except: logging.warning("Couldn't close session") logging.warning(warn_message) @classmethod def _create_cert_file(cls, ssl_context: SSLContext): """ This create a CA bundle file extracted from the ssl_context The reason we are creating a real file and deleting it is that this file is being opened later on in the requests flow. This means we have to close the file before it is being used tempfile is being destroyed when closed. @param ssl_context: ssl_context @return: path to the created ca_bundle file """ path = "certs.pem" if os.path.exists(path): path = cls._generate_cert_file_path("certs") with open(path, mode="a+") as certs_file: certs = "" for der in ssl_context.get_ca_certs(True): certs += f"{ssl.DER_cert_to_PEM_cert(der)}\n" certs_file.write(certs) return path @classmethod def _generate_cert_file_path(cls, file_name: str, num=1): file_name_candidate = f"{file_name}({num}).pem" if os.path.exists(file_name_candidate): return cls._generate_cert_file_path(file_name, num + 1) return file_name_candidate
[((25, 23, 25, 41), 'requests.Session', 'requests.Session', ({}, {}), '()', False, 'import requests\n'), ((66, 8, 66, 37), 'logging.warning', 'logging.warning', ({(66, 24, 66, 36): 'warn_message'}, {}), '(warn_message)', False, 'import logging\n'), ((79, 11, 79, 31), 'os.path.exists', 'os.path.exists', ({(79, 26, 79, 30): 'path'}, {}), '(path)', False, 'import os\n'), ((91, 11, 91, 46), 'os.path.exists', 'os.path.exists', ({(91, 26, 91, 45): 'file_name_candidate'}, {}), '(file_name_candidate)', False, 'import os\n'), ((28, 39, 28, 62), 'ssl_context_builder.http_impl.requests_wrapper.ssl_adapter.SslAdapter', 'SslAdapter', ({(28, 50, 28, 61): 'ssl_context'}, {}), '(ssl_context)', False, 'from ssl_context_builder.http_impl.requests_wrapper.ssl_adapter import SslAdapter\n'), ((59, 12, 59, 27), 'os.remove', 'os.remove', ({(59, 22, 59, 26): 'name'}, {}), '(name)', False, 'import os\n'), ((47, 16, 47, 46), 'os.remove', 'os.remove', ({(47, 26, 47, 45): 'self.cert_file_path'}, {}), '(self.cert_file_path)', False, 'import os\n'), ((61, 12, 61, 65), 'logging.warning', 'logging.warning', ({(61, 28, 61, 64): 'f"""Couldn\'t delete certs file {name}"""'}, {}), '(f"Couldn\'t delete certs file {name}")', False, 'import logging\n'), ((65, 12, 65, 53), 'logging.warning', 'logging.warning', ({(65, 28, 65, 52): '"""Couldn\'t close session"""'}, {}), '("Couldn\'t close session")', False, 'import logging\n'), ((49, 16, 49, 84), 'logging.warning', 'logging.warning', ({(49, 32, 49, 83): 'f"""Couldn\'t delete certs file {self.cert_file_path}"""'}, {}), '(f"Couldn\'t delete certs file {self.cert_file_path}")', False, 'import logging\n'), ((54, 16, 54, 57), 'logging.warning', 'logging.warning', ({(54, 32, 54, 56): '"""Couldn\'t close session"""'}, {}), '("Couldn\'t close session")', False, 'import logging\n'), ((84, 28, 84, 57), 'ssl.DER_cert_to_PEM_cert', 'ssl.DER_cert_to_PEM_cert', ({(84, 53, 84, 56): 'der'}, {}), '(der)', False, 'import ssl\n')]
jiaqiangwjq/python_workhouse
tiny_scripts/select_cifar_10.py
c0e739d8bc8ea3d318a0f916e9d79b1f4d4acad9
''' Selected cifar-10. The .csv file format: class_index,data_index 3,0 8,1 8,2 ... ''' import pickle import pandas as pd file = 'E:\pycharm\LEARN\data\cifar-10\cifar-10-batches-py\\test_batch' with open(file, 'rb') as f: dict = pickle.load(f, encoding='bytes') dict.keys() batch_label = dict[b'batch_label'] labels = dict[b'labels'] data = dict[b'data'] filenames = dict[b'filenames'] length = len(labels) data_index = [i for i in range(length)] class_index = labels csv_dict = {'class_index': class_index, 'data_index': data_index} df = pd.DataFrame(csv_dict) df.to_csv('selected_cifar10.csv', index=False)
[((32, 5, 32, 27), 'pandas.DataFrame', 'pd.DataFrame', ({(32, 18, 32, 26): 'csv_dict'}, {}), '(csv_dict)', True, 'import pandas as pd\n'), ((18, 11, 18, 43), 'pickle.load', 'pickle.load', (), '', False, 'import pickle\n')]
disqus/codebox
codebox/scripts/fixture.py
9f8e1a9c08c6a79bf3519782be483ff9763c4b4e
# Ghetto Fixtures from codebox import app from codebox.apps.auth.models import User from codebox.apps.snippets.models import Snippet from codebox.apps.organizations.models import Organization, OrganizationMember from flask import g client = app.test_client() _ctx = app.test_request_context() _ctx.push() app.preprocess_request() g.redis.flushdb() User.objects.create(pk=1, name='zeeg') Organization.objects.create(pk='disqus', name='DISQUS') OrganizationMember.objects.create(org='disqus', user=1) # Create sample snippets # plaintext Snippet.objects.create(org='disqus', user=1, lang='text', text = "Hello World!") # python Snippet.objects.create(org='disqus', user=1, lang='python', text = "print 'Disqus was here'") # html Snippet.objects.create(org='disqus', user=1, lang='html', text = '<h1>Look its HTML!</h1>') # javascript Snippet.objects.create(org='disqus', user=1, lang='javascript', text = "document.write('Di-squs')")
[((9, 9, 9, 26), 'codebox.app.test_client', 'app.test_client', ({}, {}), '()', False, 'from codebox import app\n'), ((10, 7, 10, 33), 'codebox.app.test_request_context', 'app.test_request_context', ({}, {}), '()', False, 'from codebox import app\n'), ((12, 0, 12, 24), 'codebox.app.preprocess_request', 'app.preprocess_request', ({}, {}), '()', False, 'from codebox import app\n'), ((13, 0, 13, 17), 'flask.g.redis.flushdb', 'g.redis.flushdb', ({}, {}), '()', False, 'from flask import g\n'), ((15, 0, 15, 38), 'codebox.apps.auth.models.User.objects.create', 'User.objects.create', (), '', False, 'from codebox.apps.auth.models import User\n'), ((17, 0, 17, 55), 'codebox.apps.organizations.models.Organization.objects.create', 'Organization.objects.create', (), '', False, 'from codebox.apps.organizations.models import Organization, OrganizationMember\n'), ((19, 0, 19, 55), 'codebox.apps.organizations.models.OrganizationMember.objects.create', 'OrganizationMember.objects.create', (), '', False, 'from codebox.apps.organizations.models import Organization, OrganizationMember\n'), ((24, 0, 24, 80), 'codebox.apps.snippets.models.Snippet.objects.create', 'Snippet.objects.create', (), '', False, 'from codebox.apps.snippets.models import Snippet\n'), ((26, 0, 26, 93), 'codebox.apps.snippets.models.Snippet.objects.create', 'Snippet.objects.create', (), '', False, 'from codebox.apps.snippets.models import Snippet\n'), ((28, 0, 28, 91), 'codebox.apps.snippets.models.Snippet.objects.create', 'Snippet.objects.create', (), '', False, 'from codebox.apps.snippets.models import Snippet\n'), ((30, 0, 30, 99), 'codebox.apps.snippets.models.Snippet.objects.create', 'Snippet.objects.create', (), '', False, 'from codebox.apps.snippets.models import Snippet\n')]
akashkj/commcare-hq
corehq/apps/linked_domain/tests/test_views.py
b00a62336ec26cea1477dfb8c048c548cc462831
from unittest.mock import Mock, patch from django.test import SimpleTestCase from corehq.apps.domain.exceptions import DomainDoesNotExist from corehq.apps.linked_domain.exceptions import ( DomainLinkAlreadyExists, DomainLinkError, DomainLinkNotAllowed, ) from corehq.apps.linked_domain.views import link_domains class LinkDomainsTests(SimpleTestCase): @classmethod def setUpClass(cls): super(LinkDomainsTests, cls).setUpClass() cls.upstream_domain = 'upstream' cls.downstream_domain = 'downstream' def test_exception_raised_if_domain_does_not_exist(self): def mock_handler(domain): return domain != self.downstream_domain with patch('corehq.apps.linked_domain.views.domain_exists') as mock_domainexists,\ self.assertRaises(DomainDoesNotExist): mock_domainexists.side_effect = mock_handler link_domains(Mock(), self.upstream_domain, self.downstream_domain) def test_exception_raised_if_domain_link_already_exists(self): with patch('corehq.apps.linked_domain.views.domain_exists', return_value=True),\ patch('corehq.apps.linked_domain.views.get_active_domain_link', return_value=Mock()),\ self.assertRaises(DomainLinkAlreadyExists): link_domains(Mock(), self.upstream_domain, self.downstream_domain) def test_exception_raised_if_domain_link_error_raised(self): def mock_handler(downstream, upstream): raise DomainLinkError with patch('corehq.apps.linked_domain.views.domain_exists', return_value=True),\ patch('corehq.apps.linked_domain.views.get_active_domain_link', return_value=None),\ patch('corehq.apps.linked_domain.views.DomainLink.link_domains') as mock_linkdomains,\ self.assertRaises(DomainLinkError): mock_linkdomains.side_effect = mock_handler link_domains(Mock(), self.upstream_domain, self.downstream_domain) def test_exception_raised_if_user_is_not_admin_in_both_domains(self): with patch('corehq.apps.linked_domain.views.domain_exists', return_value=True),\ patch('corehq.apps.linked_domain.views.get_active_domain_link', return_value=None),\ patch('corehq.apps.linked_domain.views.user_has_admin_access_in_all_domains', return_value=False),\ self.assertRaises(DomainLinkNotAllowed): link_domains(Mock(), self.upstream_domain, self.downstream_domain) def test_successful(self): with patch('corehq.apps.linked_domain.views.domain_exists', return_value=True),\ patch('corehq.apps.linked_domain.views.get_active_domain_link', return_value=None),\ patch('corehq.apps.linked_domain.views.DomainLink.link_domains', return_value=True),\ patch('corehq.apps.linked_domain.views.user_has_admin_access_in_all_domains', return_value=True): domain_link = link_domains(Mock(), self.upstream_domain, self.downstream_domain) self.assertIsNotNone(domain_link)
[((26, 13, 26, 67), 'unittest.mock.patch', 'patch', ({(26, 19, 26, 66): '"""corehq.apps.linked_domain.views.domain_exists"""'}, {}), "('corehq.apps.linked_domain.views.domain_exists')", False, 'from unittest.mock import Mock, patch\n'), ((32, 13, 32, 86), 'unittest.mock.patch', 'patch', (), '', False, 'from unittest.mock import Mock, patch\n'), ((41, 13, 41, 86), 'unittest.mock.patch', 'patch', (), '', False, 'from unittest.mock import Mock, patch\n'), ((42, 13, 42, 95), 'unittest.mock.patch', 'patch', (), '', False, 'from unittest.mock import Mock, patch\n'), ((43, 13, 43, 77), 'unittest.mock.patch', 'patch', ({(43, 19, 43, 76): '"""corehq.apps.linked_domain.views.DomainLink.link_domains"""'}, {}), "('corehq.apps.linked_domain.views.DomainLink.link_domains')", False, 'from unittest.mock import Mock, patch\n'), ((49, 13, 49, 86), 'unittest.mock.patch', 'patch', (), '', False, 'from unittest.mock import Mock, patch\n'), ((50, 13, 50, 95), 'unittest.mock.patch', 'patch', (), '', False, 'from unittest.mock import Mock, patch\n'), ((51, 13, 51, 110), 'unittest.mock.patch', 'patch', (), '', False, 'from unittest.mock import Mock, patch\n'), ((56, 13, 56, 86), 'unittest.mock.patch', 'patch', (), '', False, 'from unittest.mock import Mock, patch\n'), ((57, 13, 57, 95), 'unittest.mock.patch', 'patch', (), '', False, 'from unittest.mock import Mock, patch\n'), ((58, 13, 58, 96), 'unittest.mock.patch', 'patch', (), '', False, 'from unittest.mock import Mock, patch\n'), ((59, 13, 59, 109), 'unittest.mock.patch', 'patch', (), '', False, 'from unittest.mock import Mock, patch\n'), ((29, 25, 29, 31), 'unittest.mock.Mock', 'Mock', ({}, {}), '()', False, 'from unittest.mock import Mock, patch\n'), ((35, 25, 35, 31), 'unittest.mock.Mock', 'Mock', ({}, {}), '()', False, 'from unittest.mock import Mock, patch\n'), ((46, 25, 46, 31), 'unittest.mock.Mock', 'Mock', ({}, {}), '()', False, 'from unittest.mock import Mock, patch\n'), ((53, 25, 53, 31), 'unittest.mock.Mock', 'Mock', ({}, {}), '()', False, 'from unittest.mock import Mock, patch\n'), ((60, 39, 60, 45), 'unittest.mock.Mock', 'Mock', ({}, {}), '()', False, 'from unittest.mock import Mock, patch\n'), ((33, 90, 33, 96), 'unittest.mock.Mock', 'Mock', ({}, {}), '()', False, 'from unittest.mock import Mock, patch\n')]
Vamsi-TM/jubilant-train
LanguageBasics/functions/import_eg.py
a3ca0216e161ead4f59d923a36587098790beb5d
import function_exercise_01 as st st.sandwich_toppings('meatballs', 'salad')
[((3, 0, 3, 42), 'function_exercise_01.sandwich_toppings', 'st.sandwich_toppings', ({(3, 21, 3, 32): '"""meatballs"""', (3, 34, 3, 41): '"""salad"""'}, {}), "('meatballs', 'salad')", True, 'import function_exercise_01 as st\n')]
golnazads/adsabs-pyingest
pyingest/parsers/zenodo.py
37b37dd9e0d8a6e5cc34c59d30acd14e3381b48e
#!/usr/bin/python # # from __future__ import absolute_import import json import re import logging from .datacite import DataCiteParser class WrongPublisherException(Exception): pass class ZenodoParser(DataCiteParser): def get_references(self, r): # as of version 3.1 of datacite schema, "References" is not an # allowed description type so Lars is shoving the references # in a section labeled as "Other" as a json structure references = [] for s in self._array(r.get('descriptions', {}).get('description', [])): t = s.get('@descriptionType') c = self._text(s) if t == 'References': # XXX not supported yet, but one can only hope... references = c.split('\n') elif t == 'Other': try: j = json.loads(c) references = j.get('references', []) except ValueError: logging.warning(u'Ignoring unparsable "Other" description element: %s\n' % c) return references def get_abstract(self, r): abs = super(ZenodoParser, self).get_abstract(r) abs = re.sub(r'\s*<p>', '', abs) abs = re.sub(r'</p>\s*$', '', abs) return abs def parse(self, fp, **kwargs): """Parses Zenodo's flavor of DataCite 3.1 schema, returns ADS tagged format""" doc = super(self.__class__, self).parse(fp, **kwargs) # r = self._resource return doc # publisher pub = doc.get('source') if pub != 'Zenodo' and pub != 'ZENODO': raise WrongPublisherException("Found publisher field of \"%s\" rather than Zenodo" % pub) else: doc['source'] = 'ZENODO' return doc # # if __name__ == "__main__": # # # allows program to print utf-8 encoded output sensibly # import codecs # sys.stdout = codecs.getwriter('utf-8')(sys.stdout) # sys.stderr = codecs.getwriter('utf-8')(sys.stderr) # # parser = ZenodoParser() # for file in sys.argv[1:]: # d = None # with open(file, 'r') as fp: # d = parser.parse(fp) # print json.dumps(d, indent=2)
[((39, 14, 39, 40), 're.sub', 're.sub', ({(39, 21, 39, 30): '"""\\\\s*<p>"""', (39, 32, 39, 34): '""""""', (39, 36, 39, 39): 'abs'}, {}), "('\\\\s*<p>', '', abs)", False, 'import re\n'), ((40, 14, 40, 42), 're.sub', 're.sub', ({(40, 21, 40, 32): '"""</p>\\\\s*$"""', (40, 34, 40, 36): '""""""', (40, 38, 40, 41): 'abs'}, {}), "('</p>\\\\s*$', '', abs)", False, 'import re\n'), ((31, 24, 31, 37), 'json.loads', 'json.loads', ({(31, 35, 31, 36): 'c'}, {}), '(c)', False, 'import json\n'), ((34, 20, 34, 97), 'logging.warning', 'logging.warning', ({(34, 36, 34, 96): '(u\'Ignoring unparsable "Other" description element: %s\\n\' % c)'}, {}), '(u\'Ignoring unparsable "Other" description element: %s\\n\' % c)', False, 'import logging\n')]
AmeyaDaddikar/vjtichain
src/fullnode.py
2a9b68d475fe5cc2babdf3f5b463a685e8423f05
import json import time from functools import lru_cache from multiprocessing import Pool, Process from threading import Thread, Timer from typing import Any, Dict, List from datetime import datetime import hashlib import inspect import requests import waitress from bottle import BaseTemplate, Bottle, request, response, static_file, template, error import utils.constants as consts from core import Block, BlockChain, SingleOutput, Transaction, TxIn, TxOut, genesis_block from authority import Authority from utils.logger import logger, iplogger from utils.storage import get_block_from_db, get_wallet_from_db, read_header_list_from_db from utils.utils import compress, decompress, dhash from wallet import Wallet app = Bottle() BaseTemplate.defaults["get_url"] = app.get_url LINE_PROFILING = False BLOCKCHAIN = BlockChain() PEER_LIST: List[Dict[str, Any]] = [] MY_WALLET = Wallet() miner = Authority() def mining_thread_task(): while True: if not miner.is_mining() and not consts.NO_MINING: miner.start_mining(BLOCKCHAIN.mempool, BLOCKCHAIN.active_chain, MY_WALLET) time.sleep(consts.MINING_INTERVAL_THRESHOLD // 2) def send_to_all_peers(url, data): def request_task(peers, url, data): for peer in peers: try: requests.post(get_peer_url(peer) + url, data=data, timeout=(5, 1)) except Exception as e: logger.debug("Server: Requests: Error while sending data in process" + str(peer)) Process(target=request_task, args=(PEER_LIST, url, data), daemon=True).start() def start_mining_thread(): time.sleep(5) Thread(target=mining_thread_task, name="Miner", daemon=True).start() def fetch_peer_list() -> List[Dict[str, Any]]: try: r = requests.post(consts.SEED_SERVER_URL, data={"port": consts.MINER_SERVER_PORT}) peer_list = json.loads(r.text) return peer_list except Exception as e: logger.error("Could not connect to DNS Seed") return [] def get_peer_url(peer: Dict[str, Any]) -> str: return "http://" + str(peer["ip"]) + ":" + str(peer["port"]) def greet_peer(peer: Dict[str, Any]) -> bool: try: url = get_peer_url(peer) data = {"port": consts.MINER_SERVER_PORT, "version": consts.MINER_VERSION, "blockheight": BLOCKCHAIN.active_chain.length} # Send a POST request to the peer r = requests.post(url + "/greetpeer", data=data) data = json.loads(r.text) # Update the peer data in the peer list with the new data received from the peer. if data.get("blockheight", None): peer.update(data) else: logger.debug("Main: Peer data does not have Block Height") return False return True except Exception as e: logger.debug("Main: Could not greet peer" + str(e)) return False def receive_block_from_peer(peer: Dict[str, Any], header_hash) -> Block: r = requests.post(get_peer_url(peer) + "/getblock", data={"headerhash": header_hash}) return Block.from_json(decompress(r.text)).object() def check_block_with_peer(peer, hhash): r = requests.post(get_peer_url(peer) + "/checkblock", data={"headerhash": hhash}) result = json.loads(r.text) if result: return True return False def get_block_header_hash(height): return dhash(BLOCKCHAIN.active_chain.header_list[height]) def sync(max_peer): fork_height = BLOCKCHAIN.active_chain.length r = requests.post(get_peer_url(max_peer) + "/getblockhashes", data={"myheight": fork_height}) hash_list = json.loads(decompress(r.text.encode())) for hhash in hash_list: block = receive_block_from_peer(max_peer, hhash) if not BLOCKCHAIN.add_block(block): logger.error("Sync: Block received is invalid, Cannot Sync") break return # Periodically sync with all the peers def sync_with_peers(): try: PEER_LIST = fetch_peer_list() new_peer_list = [] for peer in PEER_LIST: if greet_peer(peer): new_peer_list.append(peer) PEER_LIST = new_peer_list if PEER_LIST: max_peer = max(PEER_LIST, key=lambda k: k["blockheight"]) logger.debug(f"Sync: Syncing with {get_peer_url(max_peer)}, he seems to have height {max_peer['blockheight']}") sync(max_peer) except Exception as e: logger.error("Sync: Error: " + str(e)) Timer(consts.MINING_INTERVAL_THRESHOLD * 2, sync_with_peers).start() def check_balance(pub_key: str) -> int: current_balance = 0 for x, utxo_list in BLOCKCHAIN.active_chain.utxo.utxo.items(): tx_out = utxo_list[0] if tx_out.address == pub_key: current_balance += int(tx_out.amount) return int(current_balance) def send_bounty(receiver_public_keys: List[str], amounts: List[int]): current_balance = check_balance(MY_WALLET.public_key) for key in receiver_public_keys: if len(key) < consts.PUBLIC_KEY_LENGTH: logger.debug("Invalid Public Key Length") return False total_amount = sum(amounts) if current_balance < total_amount: logger.debug("Insuficient balance") elif MY_WALLET.public_key in receiver_public_keys: logger.debug("Cannot send to myself") else: transaction = create_transaction(receiver_public_keys, amounts, MY_WALLET.public_key, message="Authority: Faucet Money") transaction.sign(MY_WALLET) logger.info("Wallet: Attempting to Send Transaction") try: r = requests.post( "http://0.0.0.0:" + str(consts.MINER_SERVER_PORT) + "/newtransaction", data=compress(transaction.to_json()), timeout=(5, 1), ) if r.status_code == 400: logger.info("Wallet: Could not Send Transaction. Invalid Transaction") else: logger.info("Wallet: Transaction Sent, Wait for it to be Mined") return True except Exception as e: logger.error("Wallet: Could not Send Transaction. Try Again." + str(e)) return False def create_transaction(receiver_public_keys: List[str], amounts: List[int], sender_public_key, message="") -> Transaction: vout = {} vin = {} current_amount = 0 total_amount = sum(amounts) i = 0 for so, utxo_list in BLOCKCHAIN.active_chain.utxo.utxo.items(): tx_out = utxo_list[0] if current_amount >= total_amount: break if tx_out.address == sender_public_key: current_amount += tx_out.amount vin[i] = TxIn(payout=SingleOutput.from_json(so), pub_key=sender_public_key, sig="") i += 1 for i, address in enumerate(receiver_public_keys): vout[i] = TxOut(amount=amounts[i], address=address) change = (current_amount - total_amount) if change > 0: vout[i + 1] = TxOut(amount=change, address=sender_public_key) tx = Transaction(version=consts.MINER_VERSION, locktime=0, timestamp=int(time.time()), vin=vin, vout=vout, message=message) return tx def get_ip(request): return request.environ.get("HTTP_X_FORWARDED_FOR") or request.environ.get("REMOTE_ADDR") def log_ip(request, fname): client_ip = get_ip(request) iplogger.info(f"{client_ip} : Called function {fname}") @app.post("/checkBalance") def checkingbalance(): log_ip(request, inspect.stack()[0][3]) data = request.json public_key = data["public_key"] logger.debug(public_key) current_balance = check_balance(public_key) return str(current_balance) @app.post("/makeTransaction") def make_transaction(): log_ip(request, inspect.stack()[0][3]) data = request.json bounty = int(data["bounty"]) receiver_public_key = data["receiver_public_key"] sender_public_key = data["sender_public_key"] message = "No Message" if "message" in data: message = data["message"] if len(receiver_public_key) < consts.PUBLIC_KEY_LENGTH: logger.debug("Invalid Receiver Public Key") response.status = 400 return "Invalid Receiver Public Key" current_balance = check_balance(sender_public_key) if current_balance < bounty: logger.debug("Insufficient Balance to make Transaction") response.status = 400 return "Insufficient Balance to make Transaction, need more " + str(bounty - current_balance) elif sender_public_key == receiver_public_key: logger.debug("Someone trying to send money to himself") response.status = 400 return "Cannot send money to youself" else: transaction = create_transaction([receiver_public_key], [bounty], sender_public_key, message=message) data = {} data["send_this"] = transaction.to_json() transaction.vin = {} data["sign_this"] = transaction.to_json() return json.dumps(data) @app.post("/sendTransaction") def send_transaction(): log_ip(request, inspect.stack()[0][3]) data = request.json transaction = Transaction.from_json(data["transaction"]).object() sig = data["signature"] transaction.add_sign(sig) logger.debug(transaction) logger.info("Wallet: Attempting to Send Transaction") try: r = requests.post( "http://0.0.0.0:" + str(consts.MINER_SERVER_PORT) + "/newtransaction", data=compress(transaction.to_json()), timeout=(5, 1), ) if r.status_code == 400: response.status = 400 logger.error("Wallet: Could not Send Transaction. Invalid transaction") return "Try Again" except Exception as e: response.status = 400 logger.error("Wallet: Could not Send Transaction. Try Again." + str(e)) return "Try Again" else: logger.info("Wallet: Transaction Sent, Wait for it to be Mined") return "Done" @app.post("/transactionHistory") def transaction_history(): log_ip(request, inspect.stack()[0][3]) data = request.json public_key = data["public_key"] tx_hist = BLOCKCHAIN.active_chain.transaction_history.get(public_key) return json.dumps(tx_hist) @app.post("/greetpeer") def greet_peer_f(): log_ip(request, inspect.stack()[0][3]) try: peer = {} peer["port"] = request.forms.get("port") peer["ip"] = request.remote_addr peer["time"] = time.time() peer["version"] = request.forms.get("version") peer["blockheight"] = request.forms.get("blockheight") ADD_ENTRY = True for entry in PEER_LIST: ip = entry["ip"] port = entry["port"] if ip == peer["ip"] and port == peer["port"]: ADD_ENTRY = False if ADD_ENTRY: PEER_LIST.append(peer) logger.debug("Server: Greet, A new peer joined, Adding to List") except Exception as e: logger.debug("Server: Greet Error: " + str(e)) pass data = {"version": consts.MINER_VERSION, "blockheight": BLOCKCHAIN.active_chain.length} response.content_type = "application/json" return json.dumps(data) @lru_cache(maxsize=128) def cached_get_block(headerhash: str) -> str: if headerhash: db_block = get_block_from_db(headerhash) if db_block: return compress(db_block) else: logger.error("ERROR CALLED GETBLOCK FOR NON EXISTENT BLOCK") return "Invalid Hash" @app.post("/getblock") def getblock(): log_ip(request, inspect.stack()[0][3]) hhash = request.forms.get("headerhash") return cached_get_block(hhash) @app.post("/checkblock") def checkblock(): log_ip(request, inspect.stack()[0][3]) headerhash = request.forms.get("headerhash") if get_block_from_db(headerhash): return json.dumps(True) return json.dumps(False) @app.post("/getblockhashes") def send_block_hashes(): log_ip(request, inspect.stack()[0][3]) peer_height = int(request.forms.get("myheight")) hash_list = [] for i in range(peer_height, BLOCKCHAIN.active_chain.length): hash_list.append(dhash(BLOCKCHAIN.active_chain.header_list[i])) return compress(json.dumps(hash_list)).decode() @lru_cache(maxsize=16) def process_new_block(request_data: bytes) -> str: global BLOCKCHAIN block_json = decompress(request_data) if block_json: try: block = Block.from_json(block_json).object() # Check if block already exists if get_block_from_db(dhash(block.header)): logger.info("Server: Received block exists, doing nothing") return "Block already Received Before" if BLOCKCHAIN.add_block(block): logger.info("Server: Received a New Valid Block, Adding to Chain") logger.debug("Server: Sending new block to peers") # Broadcast block to other peers send_to_all_peers("/newblock", request_data) # TODO Make new chain/ orphan set for Block that is not added except Exception as e: logger.error("Server: New Block: invalid block received " + str(e)) return "Invalid Block Received" # Kill Miner t = Timer(1, miner.stop_mining) t.start() return "Block Received" logger.error("Server: Invalid Block Received") return "Invalid Block" @app.post("/newblock") def received_new_block(): log_ip(request, inspect.stack()[0][3]) return process_new_block(request.body.read()) @lru_cache(maxsize=16) def process_new_transaction(request_data: bytes) -> str: global BLOCKCHAIN transaction_json = decompress(request_data) if transaction_json: try: tx = Transaction.from_json(transaction_json).object() # Add transaction to Mempool if tx not in BLOCKCHAIN.mempool: if BLOCKCHAIN.active_chain.is_transaction_valid(tx): logger.debug("Valid Transaction received, Adding to Mempool") BLOCKCHAIN.mempool.add(tx) # Broadcast block to other peers send_to_all_peers("/newtransaction", request_data) else: logger.debug("The transation is not valid, not added to Mempool") return False, "Not Valid Transaction" else: return True, "Transaction Already received" except Exception as e: logger.error("Server: New Transaction: Invalid tx received: " + str(e)) return False, "Not Valid Transaction" return True, "Done" # Transactions for all active chains @app.post("/newtransaction") def received_new_transaction(): log_ip(request, inspect.stack()[0][3]) result, message = process_new_transaction(request.body.read()) if result: response.status = 200 else: response.status = 400 return message question = '''What is greater than God, more evil than the devil, the poor have it, the rich need it, and if you eat it, you'll die?''' actual_answer = "nothing" @app.get("/") def home(): log_ip(request, inspect.stack()[0][3]) message = "" message_type = "info" return template("index.html", message=message, message_type=message_type, question=question) with open('uuids.json', 'r') as file: uuid_json = file.read() valid_ids = set(json.loads(uuid_json)) @app.post("/") def puzzle(): log_ip(request, inspect.stack()[0][3]) message = "" message_type = "info" uuid = request.forms.get("uuid") pubkey = request.forms.get("pubkey") amounts = [300] if uuid in valid_ids: logger.debug("Valid Answer, Rewarding " + pubkey) message = "Well Done!" if check_balance(MY_WALLET.public_key) >= sum(amounts): result = send_bounty([pubkey], amounts) if result: message = "Your reward is being sent, please wait for it to be mined!" valid_ids.remove(uuid) else: message = "Some Error Occured, Contact Admin." message_type = "warning" else: message = "Invalid Unique ID!" message_type = "danger" return template("index.html", message=message, message_type=message_type, question=question) @app.get('/about') def about(): return template("about.html") # @app.get("/wallet") # def wallet(): # log_ip(request, inspect.stack()[0][3]) # return template("wallet.html", message="", message_type="", pubkey=MY_WALLET.public_key) # @app.post("/wallet") # def wallet_post(): # log_ip(request, inspect.stack()[0][3]) # number = int(request.forms.get("number")) # message = "" # message_type = "info" # try: # receivers = [] # amounts = [] # total_amount = 0 # for i in range(0, number): # receiver = str(request.forms.get("port" + str(i))) # bounty = int(request.forms.get("amount" + str(i))) # publickey = "" # if len(receiver) < 10: # wallet = get_wallet_from_db(receiver) # if wallet is not None: # publickey = wallet[1] # else: # message = "Error with the Receiver Port ID, try again." # message_type = "danger" # return template("wallet.html", message=message, message_type=message_type, pubkey=MY_WALLET.public_key) # else: # publickey = receiver # total_amount += bounty # receivers.append(publickey) # amounts.append(bounty) # if check_balance(MY_WALLET.public_key) >= total_amount: # result = send_bounty(receivers, amounts) # if result: # message = "Your transaction is sent, please wait for it to be mined!" # else: # message = "Some Error Occured, Contact Admin." # message_type = "warning" # else: # message = "You have Insufficient Balance!" # message_type = "warning" # return template("wallet.html", message=message, message_type=message_type, pubkey=MY_WALLET.public_key) # except Exception as e: # logger.error(e) # message = "Some Error Occured. Please try again later." # message_type = "danger" # return template("wallet.html", message=message, message_type=message_type, pubkey=MY_WALLET.public_key) @app.get("/checkmybalance") def checkblance(): log_ip(request, inspect.stack()[0][3]) return str(check_balance(MY_WALLET.public_key)) @app.route("/static/<filename:path>", name="static") def serve_static(filename): log_ip(request, inspect.stack()[0][3]) return static_file(filename, root="static") @app.get("/favicon.ico") def get_favicon(): log_ip(request, inspect.stack()[0][3]) return static_file("favicon.ico", root="static") @app.get("/info") def sendinfo(): log_ip(request, inspect.stack()[0][3]) s = ( "No. of Blocks: " + str(BLOCKCHAIN.active_chain.length) + "<br>" + dhash(BLOCKCHAIN.active_chain.header_list[-1]) + "<br>" + "Balance " + str(check_balance(MY_WALLET.public_key)) + "<br>Public Key: <br>" + str(get_wallet_from_db(consts.MINER_SERVER_PORT)[1]) ) return s def render_block_header(hdr): html = "<table>" html += "<tr><th>" + "Height" + "</th>" html += "<td>" + str(hdr.height) + "</td></tr>" html += "<tr><th>" + "Block Hash" + "</th>" html += "<td>" + dhash(hdr) + "</td></tr>" html += "<tr><th>" + "Prev Block Hash" + "</th>" html += "<td>" + str(hdr.prev_block_hash) + "</td></tr>" html += "<tr><th>" + "Merkle Root" + "</th>" html += "<td>" + str(hdr.merkle_root) + "</td></tr>" html += "<tr><th>" + "Timestamp" + "</th>" html += ( "<td>" + str(datetime.fromtimestamp(hdr.timestamp).strftime("%d-%m-%Y %H:%M:%S")) + " (" + str(hdr.timestamp) + ")</td></tr>" ) # get block block = Block.from_json(get_block_from_db(dhash(hdr))).object() html += "<tr><th>" + "Transactions" + "</th>" html += "<td>" + str(len(block.transactions)) + "</td></tr>" # for i, transaction in enumerate(block.transactions): # s = "coinbase: " + str(transaction.is_coinbase) + ", fees: " + str(transaction.fees) # html += "<tr><th>Transaction " + str(i) + "</th><td>" + str(s) + "</td></tr>" html += "</table>" return str(html) @app.get("/chains") def visualize_chain(): log_ip(request, inspect.stack()[0][3]) data = [] start = BLOCKCHAIN.active_chain.length - 10 if BLOCKCHAIN.active_chain.length > 10 else 0 headers = [] hdr_list = BLOCKCHAIN.active_chain.header_list if len(hdr_list) > 200: hdr_list = BLOCKCHAIN.active_chain.header_list[:100] + BLOCKCHAIN.active_chain.header_list[-100:] for hdr in hdr_list: d = {} d["hash"] = dhash(hdr)[-5:] d["time"] = hdr.timestamp d["data"] = render_block_header(hdr) headers.append(d) data.append(headers) return template("chains.html", data=data, start=start) @app.get("/explorer") def explorer(): log_ip(request, inspect.stack()[0][3]) prev = int(request.query.prev or 0) if prev < 0: prev = 0 hdr_list = list(reversed(BLOCKCHAIN.active_chain.header_list)) indexes = [i for i in range(prev * 8, (prev + 1) * 8) if i < len(hdr_list)] blocks = [Block.from_json(get_block_from_db(dhash(hdr_list[i]))).object() for i in indexes] transactions = list(BLOCKCHAIN.mempool) return template("explorer.html", blocks=blocks, transactions=transactions, prev=prev) @app.route("/block/<blockhash>", name="transaction") def block(blockhash): log_ip(request, inspect.stack()[0][3]) try: block = Block.from_json(get_block_from_db(blockhash)).object() except Exception as e: logger.debug("BLOCK/blockhash: " + str(e)) return template("error.html") return template("block.html", block=block) @app.route("/transaction/<blockhash>/<txhash>", name="transaction") def transaction(blockhash, txhash): log_ip(request, inspect.stack()[0][3]) try: block = Block.from_json(get_block_from_db(blockhash)).object() tx = None for t in block.transactions: if t.hash() == txhash: tx = t except Exception as e: logger.debug("Transaction/bhash/tx: " + str(e)) return template("error.html") return template("transaction.html", tx=tx, block=block) @app.route("/address/<pubkey:re:.+>", name="account") def account(pubkey): log_ip(request, inspect.stack()[0][3]) balance = check_balance(pubkey) tx_hist = BLOCKCHAIN.active_chain.transaction_history.get(pubkey) return template("account.html", tx_hist=tx_hist, balance=balance, pubkey=pubkey) @app.post("/mining") def mining(): log_ip(request, inspect.stack()[0][3]) password = request.body.read().decode("utf-8") hashed = b"\x11`\x1e\xdd\xd1\xb6\x80\x0f\xd4\xb0t\x90\x9b\xd3]\xa0\xcc\x1d\x04$\x8b\xb1\x19J\xaa!T5-\x9eJ\xfcI5\xc0\xbb\xf5\xb1\x9d\xba\xbef@\xa1)\xcf\x9b]c(R\x91\x0e\x9dMM\xb6\x94\xa9\xe2\x94il\x15" dk = hashlib.pbkdf2_hmac("sha512", password.encode("utf-8"), b"forgeteverythingthatyouthinkyouknow", 200000) if hashed == dk: consts.NO_MINING = not consts.NO_MINING logger.info("Mining: " + str(not consts.NO_MINING)) return "Mining Toggled, " + "NOT MINING" if consts.NO_MINING else "MINING" else: return "Password Mismatch," + "NOT MINING" if consts.NO_MINING else "MINING" @app.route("/<url:re:.+>") @error(403) @error(404) @error(505) def error_handle(url="url", error="404"): log_ip(request, inspect.stack()[0][3]) return template("error.html") if __name__ == "__main__": try: if consts.NEW_BLOCKCHAIN: logger.info("FullNode: Starting New Chain from Genesis") BLOCKCHAIN.add_block(genesis_block) else: # Restore Blockchain logger.info("FullNode: Restoring Existing Chain") header_list = read_header_list_from_db() BLOCKCHAIN.build_from_header_list(header_list) # Sync with all my peers sync_with_peers() # Start mining Thread Thread(target=start_mining_thread, daemon=True).start() if consts.NO_MINING: logger.info("FullNode: Not Mining") # Start server if LINE_PROFILING: from wsgi_lineprof.middleware import LineProfilerMiddleware with open("lineprof" + str(consts.MINER_SERVER_PORT) + ".log", "w") as f: app = LineProfilerMiddleware(app, stream=f, async_stream=True) waitress.serve(app, host="0.0.0.0", threads=16, port=consts.MINER_SERVER_PORT) else: waitress.serve(app, host="0.0.0.0", threads=16, port=consts.MINER_SERVER_PORT) except KeyboardInterrupt: miner.stop_mining()
[((22, 6, 22, 14), 'bottle.Bottle', 'Bottle', ({}, {}), '()', False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((27, 13, 27, 25), 'core.BlockChain', 'BlockChain', ({}, {}), '()', False, 'from core import Block, BlockChain, SingleOutput, Transaction, TxIn, TxOut, genesis_block\n'), ((31, 12, 31, 20), 'wallet.Wallet', 'Wallet', ({}, {}), '()', False, 'from wallet import Wallet\n'), ((33, 8, 33, 19), 'authority.Authority', 'Authority', ({}, {}), '()', False, 'from authority import Authority\n'), ((327, 1, 327, 23), 'functools.lru_cache', 'lru_cache', (), '', False, 'from functools import lru_cache\n'), ((364, 1, 364, 22), 'functools.lru_cache', 'lru_cache', (), '', False, 'from functools import lru_cache\n'), ((401, 1, 401, 22), 'functools.lru_cache', 'lru_cache', (), '', False, 'from functools import lru_cache\n'), ((698, 1, 698, 11), 'bottle.error', 'error', ({(698, 7, 698, 10): '(403)'}, {}), '(403)', False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((699, 1, 699, 11), 'bottle.error', 'error', ({(699, 7, 699, 10): '(404)'}, {}), '(404)', False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((700, 1, 700, 11), 'bottle.error', 'error', ({(700, 7, 700, 10): '(505)'}, {}), '(505)', False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((55, 4, 55, 17), 'time.sleep', 'time.sleep', ({(55, 15, 55, 16): '(5)'}, {}), '(5)', False, 'import time\n'), ((99, 13, 99, 31), 'json.loads', 'json.loads', ({(99, 24, 99, 30): 'r.text'}, {}), '(r.text)', False, 'import json\n'), ((106, 11, 106, 61), 'utils.utils.dhash', 'dhash', ({(106, 17, 106, 60): 'BLOCKCHAIN.active_chain.header_list[height]'}, {}), '(BLOCKCHAIN.active_chain.header_list[height])', False, 'from utils.utils import compress, decompress, dhash\n'), ((211, 4, 211, 59), 'utils.logger.iplogger.info', 'iplogger.info', ({(211, 18, 211, 58): 'f"""{client_ip} : Called function {fname}"""'}, {}), "(f'{client_ip} : Called function {fname}')", False, 'from utils.logger import logger, iplogger\n'), ((219, 4, 219, 28), 'utils.logger.logger.debug', 'logger.debug', ({(219, 17, 219, 27): 'public_key'}, {}), '(public_key)', False, 'from utils.logger import logger, iplogger\n'), ((268, 4, 268, 29), 'utils.logger.logger.debug', 'logger.debug', ({(268, 17, 268, 28): 'transaction'}, {}), '(transaction)', False, 'from utils.logger import logger, iplogger\n'), ((269, 4, 269, 57), 'utils.logger.logger.info', 'logger.info', ({(269, 16, 269, 56): '"""Wallet: Attempting to Send Transaction"""'}, {}), "('Wallet: Attempting to Send Transaction')", False, 'from utils.logger import logger, iplogger\n'), ((295, 11, 295, 30), 'json.dumps', 'json.dumps', ({(295, 22, 295, 29): 'tx_hist'}, {}), '(tx_hist)', False, 'import json\n'), ((324, 11, 324, 27), 'json.dumps', 'json.dumps', ({(324, 22, 324, 26): 'data'}, {}), '(data)', False, 'import json\n'), ((341, 12, 341, 43), 'bottle.request.forms.get', 'request.forms.get', ({(341, 30, 341, 42): '"""headerhash"""'}, {}), "('headerhash')", False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((348, 17, 348, 48), 'bottle.request.forms.get', 'request.forms.get', ({(348, 35, 348, 47): '"""headerhash"""'}, {}), "('headerhash')", False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((349, 7, 349, 36), 'utils.storage.get_block_from_db', 'get_block_from_db', ({(349, 25, 349, 35): 'headerhash'}, {}), '(headerhash)', False, 'from utils.storage import get_block_from_db, get_wallet_from_db, read_header_list_from_db\n'), ((351, 11, 351, 28), 'json.dumps', 'json.dumps', ({(351, 22, 351, 27): '(False)'}, {}), '(False)', False, 'import json\n'), ((367, 17, 367, 41), 'utils.utils.decompress', 'decompress', ({(367, 28, 367, 40): 'request_data'}, {}), '(request_data)', False, 'from utils.utils import compress, decompress, dhash\n'), ((391, 4, 391, 50), 'utils.logger.logger.error', 'logger.error', ({(391, 17, 391, 49): '"""Server: Invalid Block Received"""'}, {}), "('Server: Invalid Block Received')", False, 'from utils.logger import logger, iplogger\n'), ((404, 23, 404, 47), 'utils.utils.decompress', 'decompress', ({(404, 34, 404, 46): 'request_data'}, {}), '(request_data)', False, 'from utils.utils import compress, decompress, dhash\n'), ((450, 11, 450, 96), 'bottle.template', 'template', (), '', False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((455, 16, 455, 37), 'json.loads', 'json.loads', ({(455, 27, 455, 36): 'uuid_json'}, {}), '(uuid_json)', False, 'import json\n'), ((463, 11, 463, 36), 'bottle.request.forms.get', 'request.forms.get', ({(463, 29, 463, 35): '"""uuid"""'}, {}), "('uuid')", False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((464, 13, 464, 40), 'bottle.request.forms.get', 'request.forms.get', ({(464, 31, 464, 39): '"""pubkey"""'}, {}), "('pubkey')", False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((482, 11, 482, 96), 'bottle.template', 'template', (), '', False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((487, 11, 487, 33), 'bottle.template', 'template', ({(487, 20, 487, 32): '"""about.html"""'}, {}), "('about.html')", False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((553, 11, 553, 47), 'bottle.static_file', 'static_file', (), '', False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((559, 11, 559, 52), 'bottle.static_file', 'static_file', (), '', False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((633, 11, 633, 58), 'bottle.template', 'template', (), '', False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((646, 11, 646, 89), 'bottle.template', 'template', (), '', False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((657, 11, 657, 46), 'bottle.template', 'template', (), '', False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((672, 11, 672, 59), 'bottle.template', 'template', (), '', False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((680, 11, 680, 84), 'bottle.template', 'template', (), '', False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((703, 11, 703, 33), 'bottle.template', 'template', ({(703, 20, 703, 32): '"""error.html"""'}, {}), "('error.html')", False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((40, 8, 40, 57), 'time.sleep', 'time.sleep', ({(40, 19, 40, 56): '(consts.MINING_INTERVAL_THRESHOLD // 2)'}, {}), '(consts.MINING_INTERVAL_THRESHOLD // 2)', False, 'import time\n'), ((61, 12, 61, 90), 'requests.post', 'requests.post', (), '', False, 'import requests\n'), ((62, 20, 62, 38), 'json.loads', 'json.loads', ({(62, 31, 62, 37): 'r.text'}, {}), '(r.text)', False, 'import json\n'), ((78, 12, 78, 56), 'requests.post', 'requests.post', (), '', False, 'import requests\n'), ((79, 15, 79, 33), 'json.loads', 'json.loads', ({(79, 26, 79, 32): 'r.text'}, {}), '(r.text)', False, 'import json\n'), ((157, 8, 157, 43), 'utils.logger.logger.debug', 'logger.debug', ({(157, 21, 157, 42): '"""Insuficient balance"""'}, {}), "('Insuficient balance')", False, 'from utils.logger import logger, iplogger\n'), ((196, 18, 196, 59), 'core.TxOut', 'TxOut', (), '', False, 'from core import Block, BlockChain, SingleOutput, Transaction, TxIn, TxOut, genesis_block\n'), ((199, 22, 199, 69), 'core.TxOut', 'TxOut', (), '', False, 'from core import Block, BlockChain, SingleOutput, Transaction, TxIn, TxOut, genesis_block\n'), ((206, 11, 206, 54), 'bottle.request.environ.get', 'request.environ.get', ({(206, 31, 206, 53): '"""HTTP_X_FORWARDED_FOR"""'}, {}), "('HTTP_X_FORWARDED_FOR')", False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((206, 58, 206, 92), 'bottle.request.environ.get', 'request.environ.get', ({(206, 78, 206, 91): '"""REMOTE_ADDR"""'}, {}), "('REMOTE_ADDR')", False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((237, 8, 237, 51), 'utils.logger.logger.debug', 'logger.debug', ({(237, 21, 237, 50): '"""Invalid Receiver Public Key"""'}, {}), "('Invalid Receiver Public Key')", False, 'from utils.logger import logger, iplogger\n'), ((244, 8, 244, 64), 'utils.logger.logger.debug', 'logger.debug', ({(244, 21, 244, 63): '"""Insufficient Balance to make Transaction"""'}, {}), "('Insufficient Balance to make Transaction')", False, 'from utils.logger import logger, iplogger\n'), ((285, 8, 285, 72), 'utils.logger.logger.info', 'logger.info', ({(285, 20, 285, 71): '"""Wallet: Transaction Sent, Wait for it to be Mined"""'}, {}), "('Wallet: Transaction Sent, Wait for it to be Mined')", False, 'from utils.logger import logger, iplogger\n'), ((303, 23, 303, 48), 'bottle.request.forms.get', 'request.forms.get', ({(303, 41, 303, 47): '"""port"""'}, {}), "('port')", False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((305, 23, 305, 34), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((306, 26, 306, 54), 'bottle.request.forms.get', 'request.forms.get', ({(306, 44, 306, 53): '"""version"""'}, {}), "('version')", False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((307, 30, 307, 62), 'bottle.request.forms.get', 'request.forms.get', ({(307, 48, 307, 61): '"""blockheight"""'}, {}), "('blockheight')", False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((330, 19, 330, 48), 'utils.storage.get_block_from_db', 'get_block_from_db', ({(330, 37, 330, 47): 'headerhash'}, {}), '(headerhash)', False, 'from utils.storage import get_block_from_db, get_wallet_from_db, read_header_list_from_db\n'), ((350, 15, 350, 31), 'json.dumps', 'json.dumps', ({(350, 26, 350, 30): '(True)'}, {}), '(True)', False, 'import json\n'), ((357, 22, 357, 51), 'bottle.request.forms.get', 'request.forms.get', ({(357, 40, 357, 50): '"""myheight"""'}, {}), "('myheight')", False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((388, 12, 388, 39), 'threading.Timer', 'Timer', ({(388, 18, 388, 19): '1', (388, 21, 388, 38): 'miner.stop_mining'}, {}), '(1, miner.stop_mining)', False, 'from threading import Thread, Timer\n'), ((398, 29, 398, 48), 'bottle.request.body.read', 'request.body.read', ({}, {}), '()', False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((430, 46, 430, 65), 'bottle.request.body.read', 'request.body.read', ({}, {}), '()', False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((468, 8, 468, 57), 'utils.logger.logger.debug', 'logger.debug', ({(468, 21, 468, 56): "('Valid Answer, Rewarding ' + pubkey)"}, {}), "('Valid Answer, Rewarding ' + pubkey)", False, 'from utils.logger import logger, iplogger\n'), ((51, 4, 51, 74), 'multiprocessing.Process', 'Process', (), '', False, 'from multiprocessing import Pool, Process\n'), ((56, 4, 56, 64), 'threading.Thread', 'Thread', (), '', False, 'from threading import Thread, Timer\n'), ((65, 8, 65, 53), 'utils.logger.logger.error', 'logger.error', ({(65, 21, 65, 52): '"""Could not connect to DNS Seed"""'}, {}), "('Could not connect to DNS Seed')", False, 'from utils.logger import logger, iplogger\n'), ((84, 12, 84, 70), 'utils.logger.logger.debug', 'logger.debug', ({(84, 25, 84, 69): '"""Main: Peer data does not have Block Height"""'}, {}), "('Main: Peer data does not have Block Height')", False, 'from utils.logger import logger, iplogger\n'), ((116, 12, 116, 72), 'utils.logger.logger.error', 'logger.error', ({(116, 25, 116, 71): '"""Sync: Block received is invalid, Cannot Sync"""'}, {}), "('Sync: Block received is invalid, Cannot Sync')", False, 'from utils.logger import logger, iplogger\n'), ((137, 4, 137, 64), 'threading.Timer', 'Timer', ({(137, 10, 137, 46): '(consts.MINING_INTERVAL_THRESHOLD * 2)', (137, 48, 137, 63): 'sync_with_peers'}, {}), '(consts.MINING_INTERVAL_THRESHOLD * 2, sync_with_peers)', False, 'from threading import Thread, Timer\n'), ((153, 12, 153, 53), 'utils.logger.logger.debug', 'logger.debug', ({(153, 25, 153, 52): '"""Invalid Public Key Length"""'}, {}), "('Invalid Public Key Length')", False, 'from utils.logger import logger, iplogger\n'), ((159, 8, 159, 45), 'utils.logger.logger.debug', 'logger.debug', ({(159, 21, 159, 44): '"""Cannot send to myself"""'}, {}), "('Cannot send to myself')", False, 'from utils.logger import logger, iplogger\n'), ((163, 8, 163, 61), 'utils.logger.logger.info', 'logger.info', ({(163, 20, 163, 60): '"""Wallet: Attempting to Send Transaction"""'}, {}), "('Wallet: Attempting to Send Transaction')", False, 'from utils.logger import logger, iplogger\n'), ((248, 8, 248, 63), 'utils.logger.logger.debug', 'logger.debug', ({(248, 21, 248, 62): '"""Someone trying to send money to himself"""'}, {}), "('Someone trying to send money to himself')", False, 'from utils.logger import logger, iplogger\n'), ((257, 15, 257, 31), 'json.dumps', 'json.dumps', ({(257, 26, 257, 30): 'data'}, {}), '(data)', False, 'import json\n'), ((264, 18, 264, 60), 'core.Transaction.from_json', 'Transaction.from_json', ({(264, 40, 264, 59): "data['transaction']"}, {}), "(data['transaction'])", False, 'from core import Block, BlockChain, SingleOutput, Transaction, TxIn, TxOut, genesis_block\n'), ((278, 12, 278, 83), 'utils.logger.logger.error', 'logger.error', ({(278, 25, 278, 82): '"""Wallet: Could not Send Transaction. Invalid transaction"""'}, {}), "('Wallet: Could not Send Transaction. Invalid transaction')", False, 'from utils.logger import logger, iplogger\n'), ((317, 12, 317, 76), 'utils.logger.logger.debug', 'logger.debug', ({(317, 25, 317, 75): '"""Server: Greet, A new peer joined, Adding to List"""'}, {}), "('Server: Greet, A new peer joined, Adding to List')", False, 'from utils.logger import logger, iplogger\n'), ((332, 19, 332, 37), 'utils.utils.compress', 'compress', ({(332, 28, 332, 36): 'db_block'}, {}), '(db_block)', False, 'from utils.utils import compress, decompress, dhash\n'), ((334, 12, 334, 72), 'utils.logger.logger.error', 'logger.error', ({(334, 25, 334, 71): '"""ERROR CALLED GETBLOCK FOR NON EXISTENT BLOCK"""'}, {}), "('ERROR CALLED GETBLOCK FOR NON EXISTENT BLOCK')", False, 'from utils.logger import logger, iplogger\n'), ((360, 25, 360, 70), 'utils.utils.dhash', 'dhash', ({(360, 31, 360, 69): 'BLOCKCHAIN.active_chain.header_list[i]'}, {}), '(BLOCKCHAIN.active_chain.header_list[i])', False, 'from utils.utils import compress, decompress, dhash\n'), ((586, 21, 586, 31), 'utils.utils.dhash', 'dhash', ({(586, 27, 586, 30): 'hdr'}, {}), '(hdr)', False, 'from utils.utils import compress, decompress, dhash\n'), ((628, 20, 628, 30), 'utils.utils.dhash', 'dhash', ({(628, 26, 628, 29): 'hdr'}, {}), '(hdr)', False, 'from utils.utils import compress, decompress, dhash\n'), ((656, 15, 656, 37), 'bottle.template', 'template', ({(656, 24, 656, 36): '"""error.html"""'}, {}), "('error.html')", False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((671, 15, 671, 37), 'bottle.template', 'template', ({(671, 24, 671, 36): '"""error.html"""'}, {}), "('error.html')", False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((686, 15, 686, 34), 'bottle.request.body.read', 'request.body.read', ({}, {}), '()', False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((709, 12, 709, 68), 'utils.logger.logger.info', 'logger.info', ({(709, 24, 709, 67): '"""FullNode: Starting New Chain from Genesis"""'}, {}), "('FullNode: Starting New Chain from Genesis')", False, 'from utils.logger import logger, iplogger\n'), ((713, 12, 713, 61), 'utils.logger.logger.info', 'logger.info', ({(713, 24, 713, 60): '"""FullNode: Restoring Existing Chain"""'}, {}), "('FullNode: Restoring Existing Chain')", False, 'from utils.logger import logger, iplogger\n'), ((714, 26, 714, 52), 'utils.storage.read_header_list_from_db', 'read_header_list_from_db', ({}, {}), '()', False, 'from utils.storage import get_block_from_db, get_wallet_from_db, read_header_list_from_db\n'), ((723, 12, 723, 47), 'utils.logger.logger.info', 'logger.info', ({(723, 24, 723, 46): '"""FullNode: Not Mining"""'}, {}), "('FullNode: Not Mining')", False, 'from utils.logger import logger, iplogger\n'), ((733, 12, 733, 90), 'waitress.serve', 'waitress.serve', (), '', False, 'import waitress\n'), ((94, 27, 94, 45), 'utils.utils.decompress', 'decompress', ({(94, 38, 94, 44): 'r.text'}, {}), '(r.text)', False, 'from utils.utils import compress, decompress, dhash\n'), ((201, 77, 201, 88), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((216, 20, 216, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((226, 20, 226, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((262, 20, 262, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((291, 20, 291, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((300, 20, 300, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((340, 20, 340, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((347, 20, 347, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((356, 20, 356, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((361, 20, 361, 41), 'json.dumps', 'json.dumps', ({(361, 31, 361, 40): 'hash_list'}, {}), '(hash_list)', False, 'import json\n'), ((372, 33, 372, 52), 'utils.utils.dhash', 'dhash', ({(372, 39, 372, 51): 'block.header'}, {}), '(block.header)', False, 'from utils.utils import compress, decompress, dhash\n'), ((373, 16, 373, 75), 'utils.logger.logger.info', 'logger.info', ({(373, 28, 373, 74): '"""Server: Received block exists, doing nothing"""'}, {}), "('Server: Received block exists, doing nothing')", False, 'from utils.logger import logger, iplogger\n'), ((376, 16, 376, 82), 'utils.logger.logger.info', 'logger.info', ({(376, 28, 376, 81): '"""Server: Received a New Valid Block, Adding to Chain"""'}, {}), "('Server: Received a New Valid Block, Adding to Chain')", False, 'from utils.logger import logger, iplogger\n'), ((378, 16, 378, 66), 'utils.logger.logger.debug', 'logger.debug', ({(378, 29, 378, 65): '"""Server: Sending new block to peers"""'}, {}), "('Server: Sending new block to peers')", False, 'from utils.logger import logger, iplogger\n'), ((397, 20, 397, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((429, 20, 429, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((447, 20, 447, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((459, 20, 459, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((546, 20, 546, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((552, 20, 552, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((558, 20, 558, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((564, 20, 564, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((574, 14, 574, 58), 'utils.storage.get_wallet_from_db', 'get_wallet_from_db', ({(574, 33, 574, 57): 'consts.MINER_SERVER_PORT'}, {}), '(consts.MINER_SERVER_PORT)', False, 'from utils.storage import get_block_from_db, get_wallet_from_db, read_header_list_from_db\n'), ((619, 20, 619, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((638, 20, 638, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((651, 20, 651, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((662, 20, 662, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((677, 20, 677, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((685, 20, 685, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((702, 20, 702, 35), 'inspect.stack', 'inspect.stack', ({}, {}), '()', False, 'import inspect\n'), ((721, 8, 721, 55), 'threading.Thread', 'Thread', (), '', False, 'from threading import Thread, Timer\n'), ((730, 22, 730, 78), 'wsgi_lineprof.middleware.LineProfilerMiddleware', 'LineProfilerMiddleware', (), '', False, 'from wsgi_lineprof.middleware import LineProfilerMiddleware\n'), ((731, 16, 731, 94), 'waitress.serve', 'waitress.serve', (), '', False, 'import waitress\n'), ((171, 16, 171, 86), 'utils.logger.logger.info', 'logger.info', ({(171, 28, 171, 85): '"""Wallet: Could not Send Transaction. Invalid Transaction"""'}, {}), "('Wallet: Could not Send Transaction. Invalid Transaction')", False, 'from utils.logger import logger, iplogger\n'), ((173, 16, 173, 80), 'utils.logger.logger.info', 'logger.info', ({(173, 28, 173, 79): '"""Wallet: Transaction Sent, Wait for it to be Mined"""'}, {}), "('Wallet: Transaction Sent, Wait for it to be Mined')", False, 'from utils.logger import logger, iplogger\n'), ((192, 33, 192, 59), 'core.SingleOutput.from_json', 'SingleOutput.from_json', ({(192, 56, 192, 58): 'so'}, {}), '(so)', False, 'from core import Block, BlockChain, SingleOutput, Transaction, TxIn, TxOut, genesis_block\n'), ((370, 20, 370, 47), 'core.Block.from_json', 'Block.from_json', ({(370, 36, 370, 46): 'block_json'}, {}), '(block_json)', False, 'from core import Block, BlockChain, SingleOutput, Transaction, TxIn, TxOut, genesis_block\n'), ((407, 17, 407, 56), 'core.Transaction.from_json', 'Transaction.from_json', ({(407, 39, 407, 55): 'transaction_json'}, {}), '(transaction_json)', False, 'from core import Block, BlockChain, SingleOutput, Transaction, TxIn, TxOut, genesis_block\n'), ((411, 20, 411, 81), 'utils.logger.logger.debug', 'logger.debug', ({(411, 33, 411, 80): '"""Valid Transaction received, Adding to Mempool"""'}, {}), "('Valid Transaction received, Adding to Mempool')", False, 'from utils.logger import logger, iplogger\n'), ((416, 20, 416, 85), 'utils.logger.logger.debug', 'logger.debug', ({(416, 33, 416, 84): '"""The transation is not valid, not added to Mempool"""'}, {}), "('The transation is not valid, not added to Mempool')", False, 'from utils.logger import logger, iplogger\n'), ((604, 46, 604, 56), 'utils.utils.dhash', 'dhash', ({(604, 52, 604, 55): 'hdr'}, {}), '(hdr)', False, 'from utils.utils import compress, decompress, dhash\n'), ((653, 32, 653, 60), 'utils.storage.get_block_from_db', 'get_block_from_db', ({(653, 50, 653, 59): 'blockhash'}, {}), '(blockhash)', False, 'from utils.storage import get_block_from_db, get_wallet_from_db, read_header_list_from_db\n'), ((664, 32, 664, 60), 'utils.storage.get_block_from_db', 'get_block_from_db', ({(664, 50, 664, 59): 'blockhash'}, {}), '(blockhash)', False, 'from utils.storage import get_block_from_db, get_wallet_from_db, read_header_list_from_db\n'), ((644, 48, 644, 66), 'utils.utils.dhash', 'dhash', ({(644, 54, 644, 65): 'hdr_list[i]'}, {}), '(hdr_list[i])', False, 'from utils.utils import compress, decompress, dhash\n'), ((569, 10, 569, 56), 'utils.utils.dhash', 'dhash', ({(569, 16, 569, 55): 'BLOCKCHAIN.active_chain.header_list[-1]'}, {}), '(BLOCKCHAIN.active_chain.header_list[-1])', False, 'from utils.utils import compress, decompress, dhash\n'), ((597, 14, 597, 51), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', ({(597, 37, 597, 50): 'hdr.timestamp'}, {}), '(hdr.timestamp)', False, 'from datetime import datetime\n')]
alexus37/MasterThesisCode
deepexplain/tf/v1_x/main.py
a7eada603686de75968acc8586fd307a91b0491b
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.python.framework import ops from collections import OrderedDict import warnings, logging from deepexplain.tf.v1_x import constants from deepexplain.tf.v1_x.baseClasses import GradientBasedMethod from deepexplain.tf.v1_x.methods import DeepLIFTRescale, EpsilonLRP from deepexplain.tf.v1_x.utils import original_grad from deepexplain.tf.v1_x.methods import DummyZero, Saliency, GradientXInput, IntegratedGradients, EpsilonLRP, DeepLIFTRescale, Occlusion, ShapleySampling attribution_methods = OrderedDict({ 'zero': (DummyZero, 0), 'saliency': (Saliency, 1), 'grad*input': (GradientXInput, 2), 'intgrad': (IntegratedGradients, 3), 'elrp': (EpsilonLRP, 4), 'deeplift': (DeepLIFTRescale, 5), 'occlusion': (Occlusion, 6), 'shapley_sampling': (ShapleySampling, 7) }) print(f'Using tf version = {tf.__version__}') @ops.RegisterGradient("DeepExplainGrad") def deepexplain_grad(op, grad): # constants._ENABLED_METHOD_CLASS, _GRAD_OVERRIDE_CHECKFLAG constants._GRAD_OVERRIDE_CHECKFLAG = 1 if constants._ENABLED_METHOD_CLASS is not None \ and issubclass(constants._ENABLED_METHOD_CLASS, GradientBasedMethod): return constants._ENABLED_METHOD_CLASS.nonlinearity_grad_override(op, grad) else: return original_grad(op, grad) class DeepExplain(object): def __init__(self, graph=None, session=tf.compat.v1.get_default_session()): self.method = None self.batch_size = None self.session = session self.graph = session.graph if graph is None else graph self.graph_context = self.graph.as_default() self.override_context = self.graph.gradient_override_map(self.get_override_map()) self.keras_phase_placeholder = None self.context_on = False if self.session is None: raise RuntimeError('DeepExplain: could not retrieve a session. Use DeepExplain(session=your_session).') def __enter__(self): # Override gradient of all ops created in context self.graph_context.__enter__() self.override_context.__enter__() self.context_on = True return self def __exit__(self, type, value, traceback): self.graph_context.__exit__(type, value, traceback) self.override_context.__exit__(type, value, traceback) self.context_on = False def get_explainer(self, method, T, X, **kwargs): if not self.context_on: raise RuntimeError('Explain can be called only within a DeepExplain context.') # global constants._ENABLED_METHOD_CLASS, _GRAD_OVERRIDE_CHECKFLAG self.method = method if self.method in attribution_methods: method_class, method_flag = attribution_methods[self.method] else: raise RuntimeError('Method must be in %s' % list(attribution_methods.keys())) if isinstance(X, list): for x in X: if 'tensor' not in str(type(x)).lower(): raise RuntimeError('If a list, X must contain only Tensorflow Tensor objects') else: if 'tensor' not in str(type(X)).lower(): raise RuntimeError('X must be a Tensorflow Tensor object or a list of them') if 'tensor' not in str(type(T)).lower(): raise RuntimeError('T must be a Tensorflow Tensor object') # logging.info('DeepExplain: running "%s" explanation method (%d)' % (self.method, method_flag)) self._check_ops() constants._GRAD_OVERRIDE_CHECKFLAG = 0 constants._ENABLED_METHOD_CLASS = method_class method = constants._ENABLED_METHOD_CLASS(T, X, self.session, keras_learning_phase=self.keras_phase_placeholder, **kwargs) if (issubclass(constants._ENABLED_METHOD_CLASS, DeepLIFTRescale) or issubclass(constants._ENABLED_METHOD_CLASS, EpsilonLRP)) \ and constants._GRAD_OVERRIDE_CHECKFLAG == 0: warnings.warn('DeepExplain detected you are trying to use an attribution method that requires ' 'gradient override but the original gradient was used instead. You might have forgot to ' '(re)create your graph within the DeepExlain context. Results are not reliable!') constants._ENABLED_METHOD_CLASS = None constants._GRAD_OVERRIDE_CHECKFLAG = 0 self.keras_phase_placeholder = None return method def explain(self, method, T, X, xs, ys=None, batch_size=None, **kwargs): explainer = self.get_explainer(method, T, X, **kwargs) return explainer.run(xs, ys, batch_size) @staticmethod def get_override_map(): return dict((a, 'DeepExplainGrad') for a in constants.SUPPORTED_ACTIVATIONS) def _check_ops(self): """ Heuristically check if any op is in the list of unsupported activation functions. This does not cover all cases where explanation methods would fail, and must be improved in the future. Also, check if the placeholder named 'keras_learning_phase' exists in the graph. This is used by Keras and needs to be passed in feed_dict. :return: """ g = tf.compat.v1.get_default_graph() for op in g.get_operations(): if len(op.inputs) > 0 and not op.name.startswith('gradients'): if op.type in constants.UNSUPPORTED_ACTIVATIONS: warnings.warn('Detected unsupported activation (%s). ' 'This might lead to unexpected or wrong results.' % op.type) elif 'keras_learning_phase' in op.name: self.keras_phase_placeholder = op.outputs[0]
[((16, 22, 25, 2), 'collections.OrderedDict', 'OrderedDict', ({(16, 34, 25, 1): "{'zero': (DummyZero, 0), 'saliency': (Saliency, 1), 'grad*input': (\n GradientXInput, 2), 'intgrad': (IntegratedGradients, 3), 'elrp': (\n EpsilonLRP, 4), 'deeplift': (DeepLIFTRescale, 5), 'occlusion': (\n Occlusion, 6), 'shapley_sampling': (ShapleySampling, 7)}"}, {}), "({'zero': (DummyZero, 0), 'saliency': (Saliency, 1),\n 'grad*input': (GradientXInput, 2), 'intgrad': (IntegratedGradients, 3),\n 'elrp': (EpsilonLRP, 4), 'deeplift': (DeepLIFTRescale, 5), 'occlusion':\n (Occlusion, 6), 'shapley_sampling': (ShapleySampling, 7)})", False, 'from collections import OrderedDict\n'), ((29, 1, 29, 40), 'tensorflow.python.framework.ops.RegisterGradient', 'ops.RegisterGradient', ({(29, 22, 29, 39): '"""DeepExplainGrad"""'}, {}), "('DeepExplainGrad')", False, 'from tensorflow.python.framework import ops\n'), ((35, 15, 35, 83), 'deepexplain.tf.v1_x.constants._ENABLED_METHOD_CLASS.nonlinearity_grad_override', 'constants._ENABLED_METHOD_CLASS.nonlinearity_grad_override', ({(35, 74, 35, 76): 'op', (35, 78, 35, 82): 'grad'}, {}), '(op, grad)', False, 'from deepexplain.tf.v1_x import constants\n'), ((37, 15, 37, 38), 'deepexplain.tf.v1_x.utils.original_grad', 'original_grad', ({(37, 29, 37, 31): 'op', (37, 33, 37, 37): 'grad'}, {}), '(op, grad)', False, 'from deepexplain.tf.v1_x.utils import original_grad\n'), ((41, 43, 41, 77), 'tensorflow.compat.v1.get_default_session', 'tf.compat.v1.get_default_session', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((89, 17, 92, 48), 'deepexplain.tf.v1_x.constants._ENABLED_METHOD_CLASS', 'constants._ENABLED_METHOD_CLASS', (), '', False, 'from deepexplain.tf.v1_x import constants\n'), ((120, 12, 120, 44), 'tensorflow.compat.v1.get_default_graph', 'tf.compat.v1.get_default_graph', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((96, 12, 98, 109), 'warnings.warn', 'warnings.warn', ({(96, 26, 98, 108): '"""DeepExplain detected you are trying to use an attribution method that requires gradient override but the original gradient was used instead. You might have forgot to (re)create your graph within the DeepExlain context. Results are not reliable!"""'}, {}), "(\n 'DeepExplain detected you are trying to use an attribution method that requires gradient override but the original gradient was used instead. You might have forgot to (re)create your graph within the DeepExlain context. Results are not reliable!'\n )", False, 'import warnings, logging\n'), ((124, 20, 125, 96), 'warnings.warn', 'warnings.warn', ({(124, 34, 125, 95): "('Detected unsupported activation (%s). This might lead to unexpected or wrong results.'\n % op.type)"}, {}), "(\n 'Detected unsupported activation (%s). This might lead to unexpected or wrong results.'\n % op.type)", False, 'import warnings, logging\n')]
robinupham/cnn_lensing
util/mem_usage.py
f5d4defc7e2c5b7a23744051da904526d04c27c8
""" Get the memory usage of a Keras model. From https://stackoverflow.com/a/46216013. """ def get_model_memory_usage(batch_size, model): """ Get the memory usage of a Keras model in GB. From https://stackoverflow.com/a/46216013. """ import numpy as np try: from keras import backend as K except ImportError: from tensorflow.keras import backend as K shapes_mem_count = 0 internal_model_mem_count = 0 for l in model.layers: layer_type = l.__class__.__name__ if layer_type == 'Model': internal_model_mem_count += get_model_memory_usage(batch_size, l) single_layer_mem = 1 out_shape = l.output_shape if isinstance(out_shape, list): out_shape = out_shape[0] for s in out_shape: if s is None: continue single_layer_mem *= s shapes_mem_count += single_layer_mem trainable_count = np.sum([K.count_params(p) for p in model.trainable_weights]) non_trainable_count = np.sum([K.count_params(p) for p in model.non_trainable_weights]) number_size = 4.0 if K.floatx() == 'float16': number_size = 2.0 if K.floatx() == 'float64': number_size = 8.0 total_memory = number_size * (batch_size * shapes_mem_count + trainable_count + non_trainable_count) gbytes = np.round(total_memory / (1024.0 ** 3), 3) + internal_model_mem_count return gbytes
[((40, 7, 40, 17), 'tensorflow.keras.backend.floatx', 'K.floatx', ({}, {}), '()', True, 'from tensorflow.keras import backend as K\n'), ((42, 7, 42, 17), 'tensorflow.keras.backend.floatx', 'K.floatx', ({}, {}), '()', True, 'from tensorflow.keras import backend as K\n'), ((46, 13, 46, 54), 'numpy.round', 'np.round', ({(46, 22, 46, 50): '(total_memory / 1024.0 ** 3)', (46, 52, 46, 53): '(3)'}, {}), '(total_memory / 1024.0 ** 3, 3)', True, 'import numpy as np\n'), ((36, 30, 36, 47), 'tensorflow.keras.backend.count_params', 'K.count_params', ({(36, 45, 36, 46): 'p'}, {}), '(p)', True, 'from tensorflow.keras import backend as K\n'), ((37, 34, 37, 51), 'tensorflow.keras.backend.count_params', 'K.count_params', ({(37, 49, 37, 50): 'p'}, {}), '(p)', True, 'from tensorflow.keras import backend as K\n')]
glemaitre/hexrd
hexrd/distortion/distortionabc.py
b68b1ba72e0f480d29bdaae2adbd6c6e2380cc7c
import abc class DistortionABC(metaclass=abc.ABCMeta): maptype = None @abc.abstractmethod def apply(self, xy_in): """Apply distortion mapping""" pass @abc.abstractmethod def apply_inverse(self, xy_in): """Apply inverse distortion mapping""" pass
[]
statisticianinstilettos/recommender_metrics
setup.py
82091ec53eb8b3527f95755006237658deb03c18
import io import os from setuptools import setup def read(file_name): """Read a text file and return the content as a string.""" with io.open(os.path.join(os.path.dirname(__file__), file_name), encoding='utf-8') as f: return f.read() setup( name='recmetrics', url='https://github.com/statisticianinstilettos/recommender_metrics', author='Claire Longo', author_email='[email protected]', packages=['recmetrics'], install_requires=['funcsigs', 'numpy', 'pandas', 'plotly', 'scikit-learn', 'seaborn'], license='MIT', version='0.1.4', description='Evaluation metrics for recommender systems', long_description=read("README.md"), long_description_content_type="text/markdown", )
[((9, 30, 9, 55), 'os.path.dirname', 'os.path.dirname', ({(9, 46, 9, 54): '__file__'}, {}), '(__file__)', False, 'import os\n')]
wj-Mcat/model-getting-started
run_classifier.py
abe8c9df10b45841eeb38e859e680a37ec03fe8a
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT finetuning runner.""" from __future__ import annotations, absolute_import import os from typing import Dict, List from transformers import ( AutoTokenizer, BertTokenizer, BertForSequenceClassification, BertConfig, Trainer, TrainingArguments, PreTrainedTokenizer ) from transformers.configuration_utils import PretrainedConfig from src.schema import ( InputExample, InputFeatures, Config ) from src.data_process import ( AgNewsDataProcessor ) from config import create_logger logger = create_logger() def convert_single_example( example_index: int, example: InputExample, label2id: Dict[str, int], max_seq_length: int, tokenizer: BertTokenizer ) -> InputFeatures: """Converts a single `InputExample` into a single `InputFeatures`. example_index: 用于展示example中的前几例数据 """ parameters = { "text":example.text_a, "add_special_tokens":True, "padding":True, "max_length":max_seq_length, "return_attention_mask":True, "return_token_type_ids":True, "return_length":True, "verbose":True } if example.text_b: parameters['text_pair'] = example.text_b feature = tokenizer(**parameters) input_feature = InputFeatures( input_ids=feature['token_ids'], attention_mask=feature['attention_mask'], segment_ids=feature['token_type_ids'], label_id=label2id[example.label], is_real_example=True ) if example_index < 5: logger.info(f'*************************** Example {example_index} ***************************') logger.info(example) logger.info(input_feature) logger.info('*************************** Example End ***************************') return input_feature def create_bert_for_sequence_classification_model(config: Config): bert_config: BertConfig = BertConfig.from_pretrained(config.pretrained_model_name) bert_config.num_labels = config.num_labels model = BertForSequenceClassification(bert_config) return model def create_model(config: Config): """Creates a classification model.""" models = { "bert-for-sequence-classification": create_bert_for_sequence_classification_model, } return models[config.model_name](config) def convert_examples_to_features( examples, label_list: List[str], max_seq_length: int, tokenizer: PreTrainedTokenizer ): """Convert a set of `InputExample`s to a list of `InputFeatures`.""" label2id = {label: index for index, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): if ex_index % 200 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) feature = convert_single_example(ex_index, example, label2id, max_seq_length, tokenizer) features.append(feature) return features class SequenceClassificationTrainer(Trainer): def compute_loss(self, model, inputs, return_outputs=False): labels = inputs.pop("labels") outputs = model(**inputs) return outputs.loss def main(): # processors need to be updated processors = { 'agnews-processor': AgNewsDataProcessor, } config: Config = Config.instance() if not config.do_train and not config.do_eval and not config.do_predict: raise ValueError( "At least one of `do_train`, `do_eval` or `do_predict' must be True.") bert_config = PretrainedConfig.from_pretrained(config.pretrained_model_name) # 根据不同的任务,处理不同的数据集 task_name = config.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]() label_list = processor.get_labels() tokenizer = AutoTokenizer.from_pretrained(config.pretrained_model_name) train_examples = None num_train_steps = None num_warmup_steps = None if config.do_train: train_examples: List[InputExample] = processor.get_train_examples(config.data_dir) train_dataset_loader = num_train_steps = int( len(train_examples) / config.train_batch_size * config.epochs ) num_warmup_steps = int(num_train_steps * config.warmup_proportion) model = create_model(config=config) training_arguments = TrainingArguments( output_dir=config.output_dir, overwrite_output_dir=True, ) trainer = SequenceClassificationTrainer( model=model, ) # If TPU is not available, this will fall back to normal Estimator on CPU # or GPUs if config.do_train: train_file = os.path.join(config.output_dir, "train.tf_record") file_based_convert_examples_to_features( train_examples, label_list, config.max_seq_length, tokenizer, train_file) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", config.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=train_file, seq_length=config.max_seq_length, is_training=True, drop_remainder=True) estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) if config.do_eval: eval_examples = processor.get_dev_examples(config.data_dir) num_actual_eval_examples = len(eval_examples) if config.use_tpu: # TPU requires a fixed batch size for all batches, therefore the number # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored # later on. These do NOT count towards the metric (all tf.metrics # support a per-instance weight, and these get a weight of 0.0). while len(eval_examples) % config.eval_batch_size != 0: eval_examples.append(PaddingInputExample()) eval_file = os.path.join(config.output_dir, "eval.tf_record") file_based_convert_examples_to_features( eval_examples, label_list, config.max_seq_length, tokenizer, eval_file) tf.logging.info("***** Running evaluation *****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(eval_examples), num_actual_eval_examples, len(eval_examples) - num_actual_eval_examples) tf.logging.info(" Batch size = %d", config.eval_batch_size) # This tells the estimator to run through the entire set. eval_steps = None # However, if running eval on the TPU, you will need to specify the # number of steps. if config.use_tpu: assert len(eval_examples) % config.eval_batch_size == 0 eval_steps = int(len(eval_examples) // config.eval_batch_size) eval_drop_remainder = True if config.use_tpu else False eval_input_fn = file_based_input_fn_builder( input_file=eval_file, seq_length=config.max_seq_length, is_training=False, drop_remainder=eval_drop_remainder) result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps) output_eval_file = os.path.join(config.output_dir, "eval_results.txt") with tf.gfile.GFile(output_eval_file, "w") as writer: tf.logging.info("***** Eval results *****") for key in sorted(result.keys()): tf.logging.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if config.do_predict: predict_examples = processor.get_test_examples(config.data_dir) num_actual_predict_examples = len(predict_examples) if config.use_tpu: # TPU requires a fixed batch size for all batches, therefore the number # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored # later on. while len(predict_examples) % config.predict_batch_size != 0: predict_examples.append(PaddingInputExample()) predict_file = os.path.join(config.output_dir, "predict.tf_record") file_based_convert_examples_to_features(predict_examples, label_list, config.max_seq_length, tokenizer, predict_file) tf.logging.info("***** Running prediction*****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(predict_examples), num_actual_predict_examples, len(predict_examples) - num_actual_predict_examples) tf.logging.info(" Batch size = %d", config.predict_batch_size) predict_drop_remainder = True if config.use_tpu else False predict_input_fn = file_based_input_fn_builder( input_file=predict_file, seq_length=config.max_seq_length, is_training=False, drop_remainder=predict_drop_remainder) result = estimator.predict(input_fn=predict_input_fn) output_predict_file = os.path.join(config.output_dir, "test_results.tsv") with tf.gfile.GFile(output_predict_file, "w") as writer: num_written_lines = 0 tf.logging.info("***** Predict results *****") for (i, prediction) in enumerate(result): probabilities = prediction["probabilities"] if i >= num_actual_predict_examples: break output_line = "\t".join( str(class_probability) for class_probability in probabilities) + "\n" writer.write(output_line) num_written_lines += 1 assert num_written_lines == num_actual_predict_examples if __name__ == "__main__": main()
[]
TobyChen320/DS-Unit-3-Sprint-2-SQL-and-Databases
module2-sql-for-analysis/rpg_db.py
306d2252b3756a501e2412fcb5eddbdebc16a362
import sqlite3 import os import psycopg2 from dotenv import load_dotenv load_dotenv() DB_NAME2 = os.getenv("DB_NAME3") DB_USER2 = os.getenv("DB_USER3") DB_PASS2 = os.getenv("DB_PASS3") DB_HOST2 = os.getenv("DB_HOST3") conn = psycopg2.connect(dbname=DB_NAME2, user=DB_USER2, password=DB_PASS2, host=DB_HOST2) cursor = conn.cursor() sl_conn = sqlite3.connect("rpg_db.sqlite3") sl_cursor = sl_conn.cursor() characters = sl_cursor.execute('SELECT * FROM charactercreator_character LIMIT 10').fetchall() print(characters) create_character_table_query = ''' CREATE TABLE IF NOT EXISTS rpg_characters ( character_id SERIAL PRIMARY KEY, name VARCHAR(30), level INT, exp INT, hp INT, strength INT, intelligence INT, dexterity INT, wisdom INT ) ''' cursor.execute(create_character_table_query) conn.commit() for character in characters: insert_query = f''' INSERT INTO rpg_characters (character_id, name, level, exp, hp, strength, intelligence, dexterity, wisdom) VALUES {character} ''' cursor.execute(insert_query) conn.commit() cursor.close() conn.close()
[((6, 0, 6, 13), 'dotenv.load_dotenv', 'load_dotenv', ({}, {}), '()', False, 'from dotenv import load_dotenv\n'), ((8, 11, 8, 32), 'os.getenv', 'os.getenv', ({(8, 21, 8, 31): '"""DB_NAME3"""'}, {}), "('DB_NAME3')", False, 'import os\n'), ((9, 11, 9, 32), 'os.getenv', 'os.getenv', ({(9, 21, 9, 31): '"""DB_USER3"""'}, {}), "('DB_USER3')", False, 'import os\n'), ((10, 11, 10, 32), 'os.getenv', 'os.getenv', ({(10, 21, 10, 31): '"""DB_PASS3"""'}, {}), "('DB_PASS3')", False, 'import os\n'), ((11, 11, 11, 32), 'os.getenv', 'os.getenv', ({(11, 21, 11, 31): '"""DB_HOST3"""'}, {}), "('DB_HOST3')", False, 'import os\n'), ((13, 7, 16, 38), 'psycopg2.connect', 'psycopg2.connect', (), '', False, 'import psycopg2\n'), ((20, 10, 20, 43), 'sqlite3.connect', 'sqlite3.connect', ({(20, 26, 20, 42): '"""rpg_db.sqlite3"""'}, {}), "('rpg_db.sqlite3')", False, 'import sqlite3\n')]
moff-wildfire/sws-battlefy
sws_comp_wiki_gen.py
04b12b54f91e450980c2c57eed57f0504abec1bb
import battlefy_data import battlefy_wiki_linkings from datetime import datetime from operator import itemgetter from pathlib import Path import calcup_roster_tracking def create_sidebar(data, wiki_name): sidebar = '{{Infobox league' + '\n' sidebar += '|liquipediatier=' + '\n' sidebar += '|name=' + data['name'] + '\n' sidebar += '|shortname=' + data['name'] + '\n' sidebar += '|tickername=' + data['name'] + '\n' sidebar += '|image=' + '\n' sidebar += '|icon=' + '\n' sidebar += '|series=' + '\n' sidebar += '|organizer=' + data['organization']['name'] + '\n' sidebar += '|organizer-link=' + '\n' sidebar += '|sponsor=' + '\n' sidebar += '|localcurrency=' + '\n' sidebar += '|prizepool=' + data['prizes'] + '\n' sidebar += '|type=Online' + '\n' sidebar += '|platform=' + data['platform'] + '\n' sidebar += '|country=' + '\n' sidebar += '|format=' + '\n' sidebar += '|patch=' + '\n' sidebar += '|sdate=' + datetime.strptime(data['checkInStartTime'], '%Y-%m-%dT%H:%M:%S.%fZ').strftime( '%Y-%m-%d') + '\n' try: sidebar += '|edate=' + datetime.strptime(data['lastCompletedMatchAt'], '%Y-%m-%dT%H:%M:%S.%fZ').strftime( '%Y-%m-%d') + '\n' except KeyError: sidebar += '|edate=\n' sidebar += '|web=' + '\n' sidebar += '|bracket=https://battlefy.com/' + data['organization']['slug'] + '/' + data['slug'] + '/' \ + data['_id'] + '/bracket-list' + '\n' sidebar += '|rulebook=' + '\n' sidebar += '|twitter=' + '\n' sidebar += '|twitch=' + '\n' sidebar += '|instagram=' + '\n' sidebar += '|discord=' + '\n' sidebar += '|map1=' + '\n' sidebar += '|map2=' + '\n' sidebar += '|map3=' + '\n' sidebar += '|map4=' + '\n' sidebar += '|map5=' + '\n' sidebar += '|team_number=' + str(len(data['teams'])) + '\n' sidebar += '|previous=' + '\n' sidebar += '|next=' + '\n' sidebar += '}}\n' sidebar += '{{Upcoming matches tournament|' + wiki_name + '}}\n' return sidebar def create_event_format(data): event_format = '' for stage in data['stages']: event_format += '* ' + stage['name'] + '\n' if stage['bracket']['type'] == "swiss": event_format += '** ' + str(stage['bracket']['roundsCount']) + '-round ' + stage['bracket']['type'] + '\n' elif stage['bracket']['type'] == "elimination": numGames = 0 rounds = 0 for match in stage['bracket']['series']: if match['numGames'] != numGames: if rounds: event_format += '** ' + str(rounds) + '-round ' \ + stage['bracket']['seriesStyle'] + str(numGames) + '\n' rounds = 1 numGames = match['numGames'] else: rounds += 1 if rounds: event_format += '** ' + str(rounds) + '-round ' \ + stage['bracket']['seriesStyle'] + str(numGames) + '\n' return event_format def rank_teams(data, bw_teams, sort_place=True, break_ties=False): for stage in data['stages']: for place, standing in enumerate(stage['standings']): if 'place' in standing: if 'place' not in data['teams'][standing['team']['_id']]: data['teams'][standing['team']['_id']]['place'] = len(stage['standings']) + place else: if break_ties: data['teams'][standing['team']['_id']]['place'] = \ standing['place'] + (1 - 1 / data['teams'][standing['team']['_id']]['place']) else: data['teams'][standing['team']['_id']]['place'] = standing['place'] else: data['teams'][standing['team']['_id']]['place'] = len(stage['standings']) + place teams = list() for team_id in data['teams']: if 'place' in data['teams'][team_id]: place = data['teams'][team_id]['place'] else: place = 0 team_info = bw_teams.get_team_info(data['teams'][team_id]['persistentTeamID'], data['teams'][team_id]['name']) teams.append((team_id, data['teams'][team_id]['name'], place, data['teams'][team_id]['persistentTeamID'], team_info['name'] )) if sort_place: teams = sorted(teams, key=itemgetter(2, 4, 0)) else: teams = sorted(teams, key=itemgetter(4, 0)) return teams def create_participants(data, bw_players, bw_teams, dynamic=[], sort_place=True): header = '{{TeamCardToggleButton}}\n' teams_ordered = '' # Use prior rounds as a tiebreaker for when multiple teams have the same place at the end teams = rank_teams(data, bw_teams, sort_place) dynamic_idx = 0 if dynamic: header += '{{tabs dynamic\n' header += '|name' + str(dynamic_idx+1) + '=' + dynamic[dynamic_idx]['tab_name'] + '\n' header += '|This=1\n' header += '|content' + str(dynamic_idx+1) + '=' + '\n' header += '{{TeamCard columns start|cols=5|height=250}}\n' for team_num, team in enumerate(teams): if dynamic: if team_num == dynamic[dynamic_idx]['count']: teams_ordered += '{{TeamCard columns end}}\n' dynamic_idx += 1 teams_ordered += '|name' + str(dynamic_idx + 1) + '=' + dynamic[dynamic_idx]['tab_name'] + '\n' teams_ordered += '|content' + str(dynamic_idx+1) + '=' + '\n' teams_ordered += '{{TeamCard columns start|cols=5|height=250}}\n' else: if team_num == 0: teams_ordered += '{{TeamCard columns start|cols=5|height=250}}\n' teams_table = '{{TeamCard\n' team_info = bw_teams.get_team_info(team[3], team[1]) teams_table += '|team=' + team_info['name'] + '\n' teams_table += '|image=' + team_info['image'] + '\n' for idx, player in enumerate(data['teams'][team[0]]['players']): player_tag = 'p' + str(idx + 1) if player['_id'] in calcup_roster_tracking.eventid_to_missing_userid: player['userID'] = calcup_roster_tracking.eventid_to_missing_userid[player['_id']] player_info = bw_players.get_player_info(player['userID'], player['inGameName']) teams_table += '|' + player_tag + '=' + player_info['name'] \ + ' |' + player_tag + 'flag=' + player_info['flag'] if player_info['link']: teams_table += ' |' + player_tag + 'link=' + player_info['link'] teams_table += '\n' # teams_table += '|c= |cflag=\n' # teams_table += '|qualifier=\n' teams_table += '}}\n' teams_ordered += teams_table footer = '{{TeamCard columns end}}\n' if dynamic: footer += '}}\n' return header + teams_ordered + footer def create_swiss_table(stage, bw_teams): dropped_style = 'drop' swiss_table = '{{SwissTableLeague|rounds=' + str(stage['bracket']['roundsCount']) + '|diff=false\n' for i in range(stage['bracket']['teamsCount']): swiss_table += '|pbg' + str(i + 1) + '=down' if (i + 1) % 8 == 0: swiss_table += '\n' if '\n' not in swiss_table[-1]: swiss_table += '\n' for rank, record in enumerate(stage['standings']): if record['disqualified']: swiss_table += '|bg' + str(rank + 1) + '=' + dropped_style + '' else: swiss_table += '|bg' + str(rank + 1) + '=down' team_info = bw_teams.get_team_info(record['team']['persistentTeamID'], record['team']['name']) swiss_table += '|team' + str(rank + 1) + '=' + team_info['teamteamplate'] swiss_table += '|temp_tie' + str(rank+1) + '=' + "{:7.3f}".format(record['opponentsMatchWinPercentage']) + '\n' swiss_table += '}}\n' return swiss_table def create_swiss_matches(matches, teams, bw_teams): swiss_match_table = '' rounds = dict() for match in matches: match_line = create_match_maps(match, teams, bw_teams) if not match_line: continue try: rounds[str(match['roundNumber'])].append(match_line) except KeyError: rounds[str(match['roundNumber'])] = list() rounds[str(match['roundNumber'])].append(match_line) for i in range(1, len(rounds) + 1): if i == 1: swiss_match_table += '{{box|start|padding=2em}}\n' else: swiss_match_table += '{{box|break|padding=2em}}\n' swiss_match_table += '====={{HiddenSort|Round ' + str(i) + '}}=====\n' swiss_match_table += '{{MatchListStart|width=450px|title=Round ' + str(i) + ' Matches|matchsection=Round ' \ + str(i) + '|hide=false}}\n' for match in rounds[str(i)]: swiss_match_table += match swiss_match_table += '{{MatchListEnd}}\n' swiss_match_table += '{{box|end}}\n' return swiss_match_table def create_elim_bracket(stage, teams, bw_teams): if stage['bracket']['style'] == 'single': bracket = '{{' + str(stage['bracket']['teamsCount']) + 'SETeamBracket\n' elif stage['bracket']['style'] == 'double': bracket = '{{' + str(stage['bracket']['teamsCount']) + 'DETeamBracket\n' else: print('Unknown stage style: ' + stage['bracket']['style']) return # todo handle double elimination brackets # set up team number trackers team_previous_round = dict() # set up round-match count trackers round_max_win_match_count = [1] * (len(stage['bracket']['series']) + 1) round_max_win_match_count[0] = 0 round_max_loss_match_count = [1] * (len(stage['bracket']['series']) + 1) round_max_loss_match_count[0] = 0 # matches = sorted(stage['matches'], key=itemgetter('matchNumber')) matches = stage['matches'] for match in matches: # TODO: this will need to get updated for non SE16 templates # In DE brackets D means the team dropped down from the previous round # In DE brackest W means the team won the previous round # So there are rounds where D vs L happen such as R2D1 vs R2W5 and R2D2 vs R2W6 # Might want to key off match['inConsolationBracket'] # May also just need to keep track of match['next'] and build up the D and W that way instead # Default first round to D and then future bracket type is defined by match['next'] # Not exactly sure how to address round_team_number, in a 8 team DE the third winners bracket round is # called the 4th round and in a 16 team DE the 4th winners bracket round is called the 6th round # https://liquipedia.net/rainbowsix/Template:4DETeamBracket/doc # https://liquipedia.net/rainbowsix/Template:8DETeamBracket/doc # https://liquipedia.net/rainbowsix/Template:16DETeamBracket/doc # if match['matchType'] == 'winner': # round_max_win_match_count[match['roundNumber']] = max(match['matchNumber'], # round_max_win_match_count[match['roundNumber']]) # elif match['matchType'] == 'loser': # round_max_loss_match_count[match['roundNumber']] = max(match['matchNumber'], # round_max_loss_match_count[match['roundNumber']]) if not 'teamID' in match['top']: continue if match['top']['teamID'] in team_previous_round: if team_previous_round[match['top']['teamID']]: bracket_type = 'W' else: bracket_type = 'D' else: bracket_type = 'D' if match['matchType'] == 'winner': round_match_offset = -2 * round_max_win_match_count[match['roundNumber'] - 1] else: round_match_offset = -2 * round_max_loss_match_count[match['roundNumber'] - 1] \ + (round_max_win_match_count[match['roundNumber']] - round_max_win_match_count[match['roundNumber'] - 1]) * 2 # Increment for next time if match['matchType'] == 'winner': round_max_win_match_count[match['roundNumber']] = max(match['matchNumber'], round_max_win_match_count[match['roundNumber']]) elif match['matchType'] == 'loser': round_max_loss_match_count[match['roundNumber']] = max(match['matchNumber'], round_max_loss_match_count[match['roundNumber']]) bracket_indicator = '|R' + str(match['roundNumber']) + bracket_type \ + str(match['matchNumber'] * 2 - 1 + round_match_offset) if 'teamID' in match['top']: team_name = bw_teams.get_team_info(teams[match['top']['teamID']]['persistentTeamID'], teams[match['top']['teamID']]['name'])['teamteamplate'] bracket += bracket_indicator + 'team=' + team_name + ' ' else: bracket += bracket_indicator + 'literal=BYE ' if 'score' in match['top']: bracket += bracket_indicator + 'score=' + str(match['top']['score']) + ' ' if 'winner' in match['top'] and match['top']['winner']: bracket += bracket_indicator + 'win=1 ' team_previous_round[match['top']['teamID']] = True else: team_previous_round[match['top']['teamID']] = False bracket += '\n' if 'teamID' in match['bottom']: if match['bottom']['teamID'] in team_previous_round: if team_previous_round[match['bottom']['teamID']]: bracket_type = 'W' else: bracket_type = 'D' else: bracket_type = 'D' else: bracket_type = 'D' bracket_indicator = '|R' + str(match['roundNumber']) + bracket_type \ + str(match['matchNumber'] * 2 + round_match_offset) if 'teamID' in match['bottom']: team_name = bw_teams.get_team_info(teams[match['bottom']['teamID']]['persistentTeamID'], teams[match['bottom']['teamID']]['name'])['teamteamplate'] bracket += bracket_indicator + 'team=' + team_name + ' ' else: bracket += bracket_indicator + 'literal=BYE ' if 'score' in match['bottom']: bracket += bracket_indicator + 'score=' + str(match['bottom']['score']) + ' ' if 'winner' in match['bottom'] and match['bottom']['winner']: bracket += bracket_indicator + 'win=2 ' team_previous_round[match['bottom']['teamID']] = True elif 'teamID' in match['bottom']: team_previous_round[match['bottom']['teamID']] = False bracket += '\n' bracket += '}}\n' return bracket def create_match_maps(match, teams, bw_teams): match_line = '' if not match['isComplete']: return match_line match_line = '{{MatchMaps\n' match_line += '|date=\n' if 'teamID' in match['top']: team_top = bw_teams.get_team_info(teams[match['top']['teamID']]['persistentTeamID'], teams[match['top']['teamID']]['name']) elif match['isBye']: team_top = bw_teams.get_team_info('0', 'BYE') if 'teamID' in match['bottom']: team_bot = bw_teams.get_team_info(teams[match['bottom']['teamID']]['persistentTeamID'], teams[match['bottom']['teamID']]['name']) elif match['isBye']: team_bot = bw_teams.get_team_info('0', 'BYE') match_line += '|team1=' + team_top['teamteamplate'] match_line += '|team2=' + team_bot['teamteamplate'] if 'isTie' in match and match['isTie']: match_line += '|winner=0\n' elif 'winner' in match['top'] and match['top']['winner']: match_line += '|winner=1\n' elif 'winner' in match['bottom'] and match['bottom']['winner']: match_line += '|winner=2\n' else: match_line += '|winner=0\n' if match['isBye']: match_line += '|walkover=1' match_line += '|games1=' if match['top']['winner']: match_line += 'W' else: match_line += 'FF' match_line += '|games2=' if 'winner' in match['bottom'] and match['bottom']['winner']: match_line += 'W' else: match_line += 'FF' else: match_line += '|games1=' + str(match['top']['score']) match_line += '|games2=' + str(match['bottom']['score']) + '\n' match_line += '|details={{BracketMatchSummary\n' match_line += '|date=|finished=true\n' match_line += '|twitch= |youtube=\n' match_line += '|vod=\n' match_line += '}}\n' match_line += '}}\n' return match_line def create_round_robin_tables(stage, teams, bw_teams, wiki_name, include_matches=True): tables = '' for idx, group in enumerate(stage['groups']): if idx == 1: tables += '{{box|start|padding=2em}}\n' else: tables += '{{box|break|padding=2em}}\n' tables += '===={{HiddenSort|Group ' + group['name'] + '}}====\n' tables += '{{GroupTableLeague|title=Group ' + group['name'] + '|width=450px|show_p=false|date=|ties=true\n' tables += '|tournament=' + wiki_name + '\n' group_header = '' group_table = '' for pos, standing_id in enumerate(group['standingIDs']): group_header += '|pbg' + str(pos + 1) + '=down' for standing in stage['standings']: if standing_id == standing['_id']: # if standing['disqualified']: # has_drop = True team_info = bw_teams.get_team_info(teams[standing['team']['_id']]['persistentTeamID'], teams[standing['team']['_id']]['name']) group_table += '|bg' + str(pos + 1) + '=down|team' + str(pos + 1) + "=" \ + team_info['teamteamplate'] + '\n' group_header += '|tiebreaker1=series\n' tables += group_header tables += group_table tables += "}}\n" if include_matches: match_table = '{{MatchListStart|title=Group ' + group['name'] + ' Matches|width=450px|hide=true}}\n' for match in group['matches']: match_line = create_match_maps(match, teams, bw_teams) match_table += match_line tables += match_table tables += '{{MatchListEnd}}\n' tables += '{{box|end}}\n' return tables def create_prize_pool(prize): prize_pool = prize + '\n' prize_pool += '{{prize pool start}}\n' prize_pool += '{{prize pool slot |place=1 |usdprize=0 |tbd |lastvs1= |lastscore1= |lastvsscore1=}}\n' prize_pool += '{{prize pool slot |place=2 |usdprize=0 |tbd |lastvs1= |lastscore1= |lastvsscore1=}}\n' prize_pool += '{{prize pool slot |place=3-4 |usdprize=0\n' prize_pool += '|tbd |lastvs1= |lastscore1= |lastvsscore1=\n' prize_pool += '|tbd |lastvs2= |lastscore2= |lastvsscore2=\n' prize_pool += '}}\n' prize_pool += '{{prize pool slot |place=5-8 |usdprize=0\n' prize_pool += '|tbd |lastvs1= |lastscore1= |lastvsscore1=\n' prize_pool += '|tbd |lastvs2= |lastscore2= |lastvsscore2=\n' prize_pool += '|tbd |lastvs3= |lastscore3= |lastvsscore3=\n' prize_pool += '|tbd |lastvs4= |lastscore4= |lastvsscore4=\n' prize_pool += '}}\n' prize_pool += '{{Prize pool end}}\n' return prize_pool def main(): ccs_winter_minor_id = '5ff3354193edb53839d44d55' ccs_winter_minor_wiki = 'Calrissian_Cup/Winter/Minor' ccs_winter_major_id = '60019f8ebcc5ed46373408a1' ccs_winter_major_wiki = 'Calrissian_Cup/Winter/Major' ccs_spring_minor_id = '603c00fbfe4fb811b3168f5b' ccs_spring_minor_wiki = 'Calrissian_Cup/Spring/Minor' ccs_spring_major_id = '6061b764f68d8733c8455fcf' ccs_spring_major_wiki = 'Calrissian_Cup/Spring/Major' ccs_summer_minor_id = '60b41961d35b1411a7b31d64' ccs_summer_minor_wiki = 'Calrissian_Cup/Summer/Minor' ccs_summer_major_id = '60dd319012cb9c33c2f63868' ccs_summer_major_wiki = 'Calrissian_Cup/Summer/Major' ccs_fall_minor_id = '60fa26043ba15d73719669bd' ccs_fall_minor_wiki = 'Calrissian_Cup/Fall/Minor' ccs_fall_major_id = '61314505635fe17a14eafe03' ccs_fall_major_wiki = 'Calrissian_Cup/Fall/Major' ccs_championship_id = '6150dd2b0dd060282bebb0eb' ccs_championship_wiki = 'Calrissian_Cup/Championship' world_cup_id = '611dac6ecb6f6260d5f30b6e' world_cup_wiki = 'World_Cup' twin_suns_tourny_id = '60806876938bed74f6edea9e' twin_suns_wiki = 'Twin_Suns_Tournament' gsl_s1_id = '5ff4b388fd124e11b18e185d' gsl_s1_wiki = 'Global_Squadrons_League/2021/Season_1' tournament_id = world_cup_id wiki_name = world_cup_wiki participant_tabs = [ # {'tab_name': 'Top 16', # 'count': 16}, # {'tab_name': 'Top 32', # 'count': 32}, # {'tab_name': 'Other Notable Participants', # 'count': -1}, ] bw_teams = battlefy_wiki_linkings.BattlefyWikiTeamLinkings() bw_players = battlefy_wiki_linkings.BattlefyWikiPlayerLinkings() event_data = battlefy_data.BattlefyData(tournament_id) event_data.load_tournament_data() # FORCE REDUCE TEAMS event_data.reduce_teams() event_path = event_data.get_tournament_data_path() event_path.mkdir(parents=True, exist_ok=True) filename = Path.joinpath(event_path, event_data.tournament_data['name'] + '.wiki') with open(filename, 'w+', newline='\n', encoding='utf-8') as f: display = '{{DISPLAYTITLE:' + event_data.tournament_data['name'] + '}}\n' f.write(display) sidebar = create_sidebar(event_data.tournament_data, wiki_name) f.write(sidebar) f.write('==About==\n') f.write('===Format===\n') event_format = create_event_format(event_data.tournament_data) f.write(event_format) f.write('===Broadcast Talent===\n') f.write('===Prize Pool===\n') prize_pool = create_prize_pool(event_data.tournament_data['prizes']) f.write(prize_pool) f.write('==Participants==\n') teams = create_participants(event_data.tournament_data, bw_players, bw_teams, dynamic=participant_tabs, sort_place=True) f.write(teams) f.write('==Results==\n') for stage in event_data.tournament_data['stages']: if stage['bracket']['type'] == 'swiss': f.write('===Swiss Stage===\n') f.write('====Swiss Standings====\n') swiss_table = create_swiss_table(stage, bw_teams) f.write(swiss_table) f.write('====Swiss Match Results====\n') swiss_matches = create_swiss_matches(stage['matches'], event_data.tournament_data['teams'], bw_teams) f.write(swiss_matches) elif stage['bracket']['type'] == 'elimination': f.write('===Playoffs===\n') bracket = create_elim_bracket(stage, event_data.tournament_data['teams'], bw_teams) f.write(bracket) elif stage['bracket']['type'] == 'roundrobin': f.write('===' + stage['name'] + '===\n') round_robin_tables = create_round_robin_tables(stage, event_data.tournament_data['teams'], bw_teams, wiki_name, include_matches=True) f.write(round_robin_tables) else: print('Unsupported bracket type of: ' + stage['bracket']['type']) if __name__ == '__main__': main()
[((510, 15, 510, 64), 'battlefy_wiki_linkings.BattlefyWikiTeamLinkings', 'battlefy_wiki_linkings.BattlefyWikiTeamLinkings', ({}, {}), '()', False, 'import battlefy_wiki_linkings\n'), ((511, 17, 511, 68), 'battlefy_wiki_linkings.BattlefyWikiPlayerLinkings', 'battlefy_wiki_linkings.BattlefyWikiPlayerLinkings', ({}, {}), '()', False, 'import battlefy_wiki_linkings\n'), ((513, 17, 513, 58), 'battlefy_data.BattlefyData', 'battlefy_data.BattlefyData', ({(513, 44, 513, 57): 'tournament_id'}, {}), '(tournament_id)', False, 'import battlefy_data\n'), ((521, 15, 521, 86), 'pathlib.Path.joinpath', 'Path.joinpath', ({(521, 29, 521, 39): 'event_path', (521, 41, 521, 85): "event_data.tournament_data['name'] + '.wiki'"}, {}), "(event_path, event_data.tournament_data['name'] + '.wiki')", False, 'from pathlib import Path\n'), ((112, 34, 112, 53), 'operator.itemgetter', 'itemgetter', ({(112, 45, 112, 46): '2', (112, 48, 112, 49): '4', (112, 51, 112, 52): '0'}, {}), '(2, 4, 0)', False, 'from operator import itemgetter\n'), ((114, 34, 114, 50), 'operator.itemgetter', 'itemgetter', ({(114, 45, 114, 46): '4', (114, 48, 114, 49): '0'}, {}), '(4, 0)', False, 'from operator import itemgetter\n'), ((29, 27, 29, 95), 'datetime.datetime.strptime', 'datetime.strptime', ({(29, 45, 29, 69): "data['checkInStartTime']", (29, 71, 29, 94): '"""%Y-%m-%dT%H:%M:%S.%fZ"""'}, {}), "(data['checkInStartTime'], '%Y-%m-%dT%H:%M:%S.%fZ')", False, 'from datetime import datetime\n'), ((32, 31, 32, 103), 'datetime.datetime.strptime', 'datetime.strptime', ({(32, 49, 32, 77): "data['lastCompletedMatchAt']", (32, 79, 32, 102): '"""%Y-%m-%dT%H:%M:%S.%fZ"""'}, {}), "(data['lastCompletedMatchAt'], '%Y-%m-%dT%H:%M:%S.%fZ')", False, 'from datetime import datetime\n')]
DeadZombie14/chillMagicCarPygame
utilidades/texto.py
756bb6d27939bed3c2834222d03096e90f05a788
import pygame class Texto: def __init__(self, screen, text, x, y, text_size = 20, fuente = 'Calibri', italic = False, bold= False, subrayado= False, color = (250, 240, 230), bg = [] ): self.screen = screen fg = color self.coord = x, y #load font, prepare values font = pygame.font.Font(None, 80) size = font.size(text) # Font a_sys_font = pygame.font.SysFont(fuente, text_size) # Cursiva if italic: a_sys_font.set_bold(1) # Negritas if bold: a_sys_font.set_bold(1) # Subrayado if subrayado: a_sys_font.set_underline(1) # Construccion del texto if len(bg) > 1: # Si hay fondo de texto ren = a_sys_font.render(text, 1, fg, bg) else: # Si no, transparente ren = a_sys_font.render(text, 1, fg) # self.size = x+size[0], y self.text_rect = ren.get_rect() self.text_rect.center = (x,y) self.image = ren, (x,y) screen.blit(ren, (x, y)) # Cursiva if italic: a_sys_font.set_bold(0) # Negritas if bold: a_sys_font.set_bold(0) # Subrayado if subrayado: a_sys_font.set_underline(0) # self.image.blit(ren, self.text_rect) # self.text_rect = (x, y),ren.get_size() # text = str(self.counter) # label = self.myfont.render(text, 1, (255,0,0)) # text_rect = label.get_rect() # text_rect.center = (50,50) # self.image.blit(label, text_rect) pass def getProperties(self): return self.text_rect def redraw(self): self.screen.blit(self.image[0], self.image[1]) pass ##################### EJEMPLO DE USO ############################## # texto1 = Texto(screen, 'Hola', 10, 10) class TextArea(): def __init__(self, screen, text, x, y, fuente='Calibri', text_size = 20, color=pygame.Color('black')): self.coord = x, y font = pygame.font.SysFont(fuente, text_size) words = [word.split(' ') for word in text.splitlines()] # 2D array where each row is a list of words. space = font.size(' ')[0] # The width of a space. max_width, max_height = screen.get_size() pos = x,y for line in words: for word in line: word_surface = font.render(word, 0, color) word_width, word_height = word_surface.get_size() if x + word_width >= max_width: x = pos[0] # Reset the x. y += word_height # Start on new row. screen.blit(word_surface, (x, y)) x += word_width + space x = pos[0] # Reset the x. y += word_height # Start on new row. self.size = word_width, word_height pass def getProperties(self): return self.size, self.coord ##################### EJEMPLO DE USO ############################## # textarea1 = Textarea(screen, 'Hola mundo que tal estas hoy')
[((13, 15, 13, 41), 'pygame.font.Font', 'pygame.font.Font', ({(13, 32, 13, 36): 'None', (13, 38, 13, 40): '80'}, {}), '(None, 80)', False, 'import pygame\n'), ((17, 21, 17, 59), 'pygame.font.SysFont', 'pygame.font.SysFont', ({(17, 41, 17, 47): 'fuente', (17, 49, 17, 58): 'text_size'}, {}), '(fuente, text_size)', False, 'import pygame\n'), ((76, 83, 76, 104), 'pygame.Color', 'pygame.Color', ({(76, 96, 76, 103): '"""black"""'}, {}), "('black')", False, 'import pygame\n'), ((78, 15, 78, 53), 'pygame.font.SysFont', 'pygame.font.SysFont', ({(78, 35, 78, 41): 'fuente', (78, 43, 78, 52): 'text_size'}, {}), '(fuente, text_size)', False, 'import pygame\n')]
MighTy-Weaver/Inefficient-AC-detection
training_xgboost_model.py
8229f19accd1569ba7b48f77f71783173393d9ed
# This is the code to train the xgboost model with cross-validation for each unique room in the dataset. # Models are dumped into ./models and results are dumped into two csv files in the current work directory. import argparse import json import math import os import pickle import warnings from typing import Tuple import numpy as np import pandas as pd import xgboost as xgb from hyperopt import fmin, tpe, hp, STATUS_OK, Trials from imblearn.over_sampling import SMOTE from numpy.random import RandomState from sklearn.metrics import r2_score, mean_squared_error from sklearn.model_selection import train_test_split from sklearn.utils import compute_sample_weight from tqdm import tqdm from xgboost import DMatrix, cv # Set up an argument parser to decide the metric function parser = argparse.ArgumentParser() parser.add_argument("--metric", choices=['R2', 'RMSE'], type=str, required=False, default='R2', help="The evaluation metric you want to use to train the XGBoost model") parser.add_argument("--log", choices=[0, 1, 100], type=int, required=False, default=0, help="Whether to print out the training progress") parser.add_argument("--SMOTE", choices=[0, 1], type=int, required=False, default=1, help="Whether use the SMOTE or not") parser.add_argument("--SMOGN", choices=[0, 1], type=int, required=False, default=0, help="Whether use the SMOGN or not") parser.add_argument("--SampleWeight", choices=[0, 1], type=int, required=False, default=0, help="Whether use the sample weight") args = parser.parse_args() # Ignore all the warnings and set pandas to display every column and row everytime we print a dataframe warnings.filterwarnings('ignore') pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) assert args.SMOTE != args.SMOGN, "Can't use SMOTE and SMOGN at the same time!" # Load the data with a positive AC electricity consumption value, and drop the time data as we don't need them data = pd.read_csv("summer_data_compiled.csv", index_col=0) data = data[data.AC > 0].drop(['Time', 'Date', 'Hour'], axis=1).reset_index(drop=True) # Create some directory to store the models and future analysis figures. # log_folder_name = "Test_{}_{}".format(args.metric, datetime.now().strftime("%Y_%m_%d_%H_%M_%S")) log_folder_name = "Test_R2_HYPEROPT" log_folder_name = log_folder_name + "_SMOTE" if args.SMOTE else log_folder_name log_folder_name = log_folder_name + "_SMOGN" if args.SMOGN else log_folder_name log_folder_name = log_folder_name + "_SW" if args.SampleWeight else log_folder_name previous_parameter_folder = "Test_R2_HYPEROPT" assert log_folder_name != previous_parameter_folder, "Previous folder name exists" if not os.path.exists('./{}/'.format(log_folder_name)): os.mkdir('./{}'.format(log_folder_name)) os.mkdir('./{}/models/'.format(log_folder_name)) os.mkdir('./{}/trntst_models/'.format(log_folder_name)) # Define our evaluation functions def RMSE(predt: np.ndarray, dtrain: DMatrix) -> Tuple[str, float]: truth_value = dtrain.get_label() root_squard_error = math.sqrt(mean_squared_error(truth_value, predt)) return "RMSE", root_squard_error def R2(predt: np.ndarray, dtrain: DMatrix) -> Tuple[str, float]: truth_value = dtrain.get_label() r2_value = r2_score(truth_value, predt) return "R2", r2_value def fobjective(space): param_dict_tunning = {'max_depth': int(space['max_depth']), 'learning_rate': space['learning_rate'], 'colsample_bytree': space['colsample_bytree'], 'min_child_weight': int(space['min_child_weight']), 'reg_alpha': int(space['reg_alpha']), 'reg_lambda': space['reg_lambda'], 'subsample': space['subsample'], 'min_split_loss': space['min_split_loss'], 'objective': 'reg:squarederror'} xgb_cv_result = xgb.cv(dtrain=data_matrix, params=param_dict_tunning, nfold=5, early_stopping_rounds=30, as_pandas=True, num_boost_round=200, seed=seed, metrics='rmse', maximize=False, shuffle=True) return {"loss": (xgb_cv_result["test-rmse-mean"]).tail(1).iloc[0], "status": STATUS_OK} eval_dict = {'RMSE': RMSE, 'R2': R2} print("Start Training The Models") # Create two dataframes to store the result during the training and after the training. error_csv = pd.DataFrame( columns=['room', 'train-{}-mean'.format(args.metric), 'train-{}-std'.format(args.metric), 'train-rmse-mean', 'train-rmse-std', 'test-{}-mean'.format(args.metric), 'test-{}-std'.format(args.metric), 'test-rmse-mean', 'test-rmse-std']) prediction_csv = pd.DataFrame(columns=['room', 'observation', 'prediction']) room_list = data['Location'].unique() # ranging through all the rooms and do the training and cross-validation for each room. for room in tqdm(room_list): seed = 2030 + room # Four rooms have low quality data and we delete them manually if room == 309 or room == 312 or room == 826 or room == 917 or room == 1001: continue # We extract the data of particular room and run the SMOTE algorithm on it. room_data = data[data.Location == room].drop(['Location'], axis=1).reset_index(drop=True) if args.SMOTE: # Label all the AC data by 0.75, all AC above 0.75 will be marked as 1, otherwise 0. Split into X and y room_data['SMOTE_split'] = (room_data['AC'] > 0.75).astype('int') X = room_data.drop(['SMOTE_split'], axis=1) y = room_data['SMOTE_split'] # Run the SMOTE algorithm and retrieve the result. model_smote = SMOTE(random_state=621, k_neighbors=3) room_data_smote, smote_split = model_smote.fit_resample(X, y) # concat the result from SMOTE and split the result into X and y for training. room_data_smote = pd.concat([room_data_smote, smote_split], axis=1) y = room_data_smote['AC'] X = room_data_smote.drop(['AC', 'SMOTE_split'], axis=1) elif args.SMOGN: if len(room_data) < 500: room_data['SMOTE_split'] = (room_data['AC'] > 0.75).astype('int') X = room_data.drop(['SMOTE_split'], axis=1) y = room_data['SMOTE_split'] # Run the SMOTE algorithm and retrieve the result. model_smote = SMOTE(random_state=621, k_neighbors=3) room_data_smote, smote_split = model_smote.fit_resample(X, y) # concat the result from SMOTE and split the result into X and y for training. room_data_smote = pd.concat([room_data_smote, smote_split], axis=1) y = room_data_smote['AC'] X = room_data_smote.drop(['AC', 'SMOTE_split'], axis=1) else: room_data = pd.read_csv('./SMOGN_processed/{}.csv'.format(room), index_col=0) y = room_data['AC'] X = room_data.drop(['AC'], axis=1) else: y = pd.DataFrame(room_data['AC'].fillna(method='pad')) X = room_data.drop(['AC'], axis=1).fillna(method='pad') if args.SampleWeight: class_sample = pd.cut(y, bins=15) weight = compute_sample_weight(class_weight="balanced", y=class_sample) X = X.to_numpy() # Build another full data matrix for the built-in cross validation function to work. data_matrix = DMatrix(data=X, label=y, weight=weight) if args.SampleWeight else DMatrix(data=X, label=y) # Cross_validation with hyper-parameter tuning space = {'max_depth': hp.quniform("max_depth", 3, 10, 1), 'learning_rate': hp.uniform("learning_rate", 0.1, 3), 'colsample_bytree': hp.uniform("colsample_bytree", 0.5, 1), 'min_child_weight': hp.quniform("min_child_weight", 1, 20, 1), 'reg_alpha': hp.quniform("reg_alpha", 0, 100, 1), 'reg_lambda': hp.uniform("reg_lambda", 0, 2), 'subsample': hp.uniform("subsample", 0.5, 1), 'min_split_loss': hp.uniform("min_split_loss", 0, 9)} if os.path.exists('./{}/models/{}_parameter.npy'.format(previous_parameter_folder, room)): best_param_dict = np.load('./{}/models/{}_parameter.npy'.format(previous_parameter_folder, room), allow_pickle=True).item() np.save('./{}/models/{}_parameter.npy'.format(log_folder_name, room), best_param_dict) else: trials = Trials() best_hyperparams = fmin(fn=fobjective, space=space, algo=tpe.suggest, max_evals=400, trials=trials, rstate=RandomState(seed)) # setup our training parameters and a model variable as model checkpoint best_param_dict = {'objective': 'reg:squarederror', 'max_depth': int(best_hyperparams['max_depth']), 'reg_alpha': best_hyperparams['reg_alpha'], 'reg_lambda': best_hyperparams['reg_lambda'], 'min_child_weight': best_hyperparams['min_child_weight'], 'colsample_bytree': best_hyperparams['colsample_bytree'], 'learning_rate': best_hyperparams['learning_rate'], 'subsample': best_hyperparams['subsample'], 'min_split_loss': best_hyperparams['min_split_loss']} np.save('./{}/models/{}_parameter.npy'.format(log_folder_name, room), best_param_dict) # Use the built-in cv function to do the cross validation, still with ten folds, this will return us the results. xgb_cv_result = cv(dtrain=data_matrix, params=best_param_dict, nfold=5, early_stopping_rounds=30, as_pandas=True, num_boost_round=200, seed=seed, shuffle=True, feval=eval_dict[args.metric], maximize=True) xgb_cv_result['room'] = room error_csv.loc[len(error_csv)] = xgb_cv_result.loc[len(xgb_cv_result) - 1] # Use one training_testing for ploting, and save both ground truth and prediction value into the dataframe X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=seed) d_train = DMatrix(X_train, label=y_train) d_test = DMatrix(X_test, label=y_test) watchlist = [(d_test, 'eval'), (d_train, 'train')] xgb_model_train_test = xgb.train(params=best_param_dict, dtrain=d_train, num_boost_round=200, evals=watchlist, verbose_eval=args.log, xgb_model=None, feval=eval_dict[args.metric], maximize=True) prediction = np.array(xgb_model_train_test.predict(d_test)).tolist() real = np.array(y_test).tolist() prediction_csv.loc[len(prediction_csv)] = {'room': room, 'observation': json.dumps(real), 'prediction': json.dumps(prediction)} # Dump the error dataframes into csv files. error_csv.to_csv('./{}/error.csv'.format(log_folder_name), index=False) prediction_csv.to_csv('./{}/prediction.csv'.format(log_folder_name), index=False) # Develop a model using the whole orignial dataset, and save the model xgb_model_full = xgb.train(params=best_param_dict, dtrain=data_matrix, num_boost_round=200, evals=watchlist, verbose_eval=args.log, xgb_model=None, feval=eval_dict[args.metric], maximize=True) # Save all the models we trained for future use pickle.dump(xgb_model_train_test, open('./{}/trntst_models/{}.pickle.bat'.format(log_folder_name, room), 'wb')) pickle.dump(xgb_model_full, open('./{}/models/{}.pickle.bat'.format(log_folder_name, room), 'wb')) print("Training finished!")
[((25, 9, 25, 34), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ({}, {}), '()', False, 'import argparse\n'), ((37, 0, 37, 33), 'warnings.filterwarnings', 'warnings.filterwarnings', ({(37, 24, 37, 32): '"""ignore"""'}, {}), "('ignore')", False, 'import warnings\n'), ((38, 0, 38, 42), 'pandas.set_option', 'pd.set_option', ({(38, 14, 38, 35): '"""display.max_columns"""', (38, 37, 38, 41): 'None'}, {}), "('display.max_columns', None)", True, 'import pandas as pd\n'), ((39, 0, 39, 39), 'pandas.set_option', 'pd.set_option', ({(39, 14, 39, 32): '"""display.max_rows"""', (39, 34, 39, 38): 'None'}, {}), "('display.max_rows', None)", True, 'import pandas as pd\n'), ((44, 7, 44, 59), 'pandas.read_csv', 'pd.read_csv', (), '', True, 'import pandas as pd\n'), ((103, 17, 103, 76), 'pandas.DataFrame', 'pd.DataFrame', (), '', True, 'import pandas as pd\n'), ((108, 12, 108, 27), 'tqdm.tqdm', 'tqdm', ({(108, 17, 108, 26): 'room_list'}, {}), '(room_list)', False, 'from tqdm import tqdm\n'), ((73, 15, 73, 43), 'sklearn.metrics.r2_score', 'r2_score', ({(73, 24, 73, 35): 'truth_value', (73, 37, 73, 42): 'predt'}, {}), '(truth_value, predt)', False, 'from sklearn.metrics import r2_score, mean_squared_error\n'), ((88, 20, 90, 83), 'xgboost.cv', 'xgb.cv', (), '', True, 'import xgboost as xgb\n'), ((192, 20, 194, 92), 'xgboost.cv', 'cv', (), '', False, 'from xgboost import DMatrix, cv\n'), ((200, 39, 200, 95), 'sklearn.model_selection.train_test_split', 'train_test_split', (), '', False, 'from sklearn.model_selection import train_test_split\n'), ((201, 14, 201, 45), 'xgboost.DMatrix', 'DMatrix', (), '', False, 'from xgboost import DMatrix, cv\n'), ((202, 13, 202, 42), 'xgboost.DMatrix', 'DMatrix', (), '', False, 'from xgboost import DMatrix, cv\n'), ((206, 27, 207, 120), 'xgboost.train', 'xgb.train', (), '', True, 'import xgboost as xgb\n'), ((220, 21, 221, 114), 'xgboost.train', 'xgb.train', (), '', True, 'import xgboost as xgb\n'), ((67, 34, 67, 72), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', ({(67, 53, 67, 64): 'truth_value', (67, 66, 67, 71): 'predt'}, {}), '(truth_value, predt)', False, 'from sklearn.metrics import r2_score, mean_squared_error\n'), ((124, 22, 124, 60), 'imblearn.over_sampling.SMOTE', 'SMOTE', (), '', False, 'from imblearn.over_sampling import SMOTE\n'), ((128, 26, 128, 75), 'pandas.concat', 'pd.concat', (), '', True, 'import pandas as pd\n'), ((154, 23, 154, 41), 'pandas.cut', 'pd.cut', (), '', True, 'import pandas as pd\n'), ((155, 17, 155, 79), 'sklearn.utils.compute_sample_weight', 'compute_sample_weight', (), '', False, 'from sklearn.utils import compute_sample_weight\n'), ((160, 18, 160, 57), 'xgboost.DMatrix', 'DMatrix', (), '', False, 'from xgboost import DMatrix, cv\n'), ((160, 84, 160, 108), 'xgboost.DMatrix', 'DMatrix', (), '', False, 'from xgboost import DMatrix, cv\n'), ((163, 26, 163, 60), 'hyperopt.hp.quniform', 'hp.quniform', ({(163, 38, 163, 49): '"""max_depth"""', (163, 51, 163, 52): '(3)', (163, 54, 163, 56): '(10)', (163, 58, 163, 59): '(1)'}, {}), "('max_depth', 3, 10, 1)", False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((164, 30, 164, 65), 'hyperopt.hp.uniform', 'hp.uniform', ({(164, 41, 164, 56): '"""learning_rate"""', (164, 58, 164, 61): '(0.1)', (164, 63, 164, 64): '(3)'}, {}), "('learning_rate', 0.1, 3)", False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((165, 33, 165, 71), 'hyperopt.hp.uniform', 'hp.uniform', ({(165, 44, 165, 62): '"""colsample_bytree"""', (165, 64, 165, 67): '(0.5)', (165, 69, 165, 70): '(1)'}, {}), "('colsample_bytree', 0.5, 1)", False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((166, 33, 166, 74), 'hyperopt.hp.quniform', 'hp.quniform', ({(166, 45, 166, 63): '"""min_child_weight"""', (166, 65, 166, 66): '(1)', (166, 68, 166, 70): '(20)', (166, 72, 166, 73): '(1)'}, {}), "('min_child_weight', 1, 20, 1)", False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((167, 26, 167, 61), 'hyperopt.hp.quniform', 'hp.quniform', ({(167, 38, 167, 49): '"""reg_alpha"""', (167, 51, 167, 52): '(0)', (167, 54, 167, 57): '(100)', (167, 59, 167, 60): '(1)'}, {}), "('reg_alpha', 0, 100, 1)", False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((168, 27, 168, 57), 'hyperopt.hp.uniform', 'hp.uniform', ({(168, 38, 168, 50): '"""reg_lambda"""', (168, 52, 168, 53): '(0)', (168, 55, 168, 56): '(2)'}, {}), "('reg_lambda', 0, 2)", False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((169, 26, 169, 57), 'hyperopt.hp.uniform', 'hp.uniform', ({(169, 37, 169, 48): '"""subsample"""', (169, 50, 169, 53): '(0.5)', (169, 55, 169, 56): '(1)'}, {}), "('subsample', 0.5, 1)", False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((170, 31, 170, 65), 'hyperopt.hp.uniform', 'hp.uniform', ({(170, 42, 170, 58): '"""min_split_loss"""', (170, 60, 170, 61): '(0)', (170, 63, 170, 64): '(9)'}, {}), "('min_split_loss', 0, 9)", False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((177, 17, 177, 25), 'hyperopt.Trials', 'Trials', ({}, {}), '()', False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((212, 76, 212, 92), 'json.dumps', 'json.dumps', ({(212, 87, 212, 91): 'real'}, {}), '(real)', False, 'import json\n'), ((213, 61, 213, 83), 'json.dumps', 'json.dumps', ({(213, 72, 213, 82): 'prediction'}, {}), '(prediction)', False, 'import json\n'), ((210, 11, 210, 27), 'numpy.array', 'np.array', ({(210, 20, 210, 26): 'y_test'}, {}), '(y_test)', True, 'import numpy as np\n'), ((138, 26, 138, 64), 'imblearn.over_sampling.SMOTE', 'SMOTE', (), '', False, 'from imblearn.over_sampling import SMOTE\n'), ((142, 30, 142, 79), 'pandas.concat', 'pd.concat', (), '', True, 'import pandas as pd\n'), ((179, 39, 179, 56), 'numpy.random.RandomState', 'RandomState', ({(179, 51, 179, 55): 'seed'}, {}), '(seed)', False, 'from numpy.random import RandomState\n')]
editorconfig/editorconfig-core-py
setup.py
f43312abcf6888b78ca80f1e95bfa627281746ad
import os from setuptools import setup # Read the version g = {} with open(os.path.join("editorconfig", "version.py"), "rt") as fp: exec(fp.read(), g) v = g['VERSION'] version = ".".join(str(x) for x in v[:3]) if v[3] != "final": version += "-" + v[3] setup( name='EditorConfig', version=version, author='EditorConfig Team', packages=['editorconfig'], url='http://editorconfig.org/', license='python', description='EditorConfig File Locator and Interpreter for Python', long_description=open('README.rst').read(), entry_points = { 'console_scripts': [ 'editorconfig = editorconfig.__main__:main', ] }, classifiers=[ 'License :: OSI Approved :: Python Software Foundation License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: Implementation :: PyPy', ], )
[((6, 10, 6, 52), 'os.path.join', 'os.path.join', ({(6, 23, 6, 37): '"""editorconfig"""', (6, 39, 6, 51): '"""version.py"""'}, {}), "('editorconfig', 'version.py')", False, 'import os\n')]
wangzy0327/hadoop-cluster-docker
multi_group_memory_contrast.py
cf1de6bf458ade132ad5a688e4f8f9b9968a704a
import numpy as np import matplotlib.pyplot as plt t = np.arange(0,375,6.5) # MEM_1 = [0.031, 0.034, 0.034, 0.034, 0.031, 0.034, 0.034, 0.034, 0.031, 0.033, 0.035, 0.034, 0.031, 0.033, 0.034, 0.034, 0.031, 0.033, 0.034, 0.034, 0.031, 0.033, 0.034, 0.034, 0.031, 0.033, 0.034, 0.034, 0.031, 0.031, 0.031, 0.031, 0.031, 0.031] # MEM_2 = [0.031, 0.033, 0.045, 0.054, 0.057, 0.068, 0.068, 0.066, 0.071, 0.071, 0.077, 0.079, 0.089, 0.083, 0.079, 0.073, 0.07, 0.076, 0.076, 0.083, 0.086, 0.083, 0.078, 0.074, 0.071, 0.073, 0.073, 0.073, 0.071, 0.071, 0.071, 0.071, 0.071, 0.071] # MEM_3 = [0.032, 0.034, 0.049, 0.073, 0.082, 0.099, 0.121, 0.132, 0.133, 0.123, 0.109, 0.111, 0.114, 0.114, 0.116, 0.132, 0.148, 0.139, 0.13, 0.116, 0.112, 0.113, 0.114, 0.114, 0.112, 0.112, 0.112, 0.112, 0.112, 0.112, 0.112, 0.112, 0.112, 0.112] # MEM_4 = [0.032, 0.035, 0.05, 0.073, 0.105, 0.126, 0.149, 0.17, 0.176, 0.18, 0.171, 0.151, 0.145, 0.152, 0.153, 0.166, 0.177, 0.173, 0.166, 0.152, 0.152, 0.148, 0.148, 0.148, 0.148, 0.148, 0.148, 0.148, 0.148, 0.148, 0.148, 0.148, 0.148, 0.148] # MEM_5 = [0.032, 0.034, 0.049, 0.068, 0.106, 0.141, 0.166, 0.194, 0.221, 0.238, 0.235, 0.213, 0.185, 0.185, 0.189, 0.193, 0.197, 0.2, 0.201, 0.201, 0.197, 0.19, 0.19, 0.19, 0.19, 0.19, 0.19, 0.19, 0.19, 0.19, 0.19, 0.190, 0.190, 0.190] # MEM_6 = [0.032, 0.034, 0.049, 0.069, 0.102, 0.133, 0.179, 0.193, 0.233, 0.264, 0.299, 0.297, 0.279, 0.237, 0.226, 0.226, 0.228, 0.231, 0.232, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23, 0.23] # MEM_7 = [0.03, 0.032, 0.047, 0.066, 0.098, 0.131, 0.169, 0.219, 0.234, 0.281, 0.314, 0.344, 0.337, 0.318, 0.271, 0.264, 0.263, 0.264, 0.265, 0.266, 0.267, 0.267, 0.267, 0.267, 0.267, 0.267, 0.267, 0.267, 0.267, 0.267, 0.267, 0.267, 0.267, 0.267] MEM_1 = [0.038, 0.039, 0.04, 0.042, 0.047, 0.048, 0.05, 0.044, 0.038, 0.038, 0.039, 0.044, 0.048, 0.048, 0.048, 0.038, 0.041, 0.041, 0.047, 0.051, 0.049, 0.047, 0.038, 0.04, 0.04, 0.046, 0.052, 0.049, 0.045, 0.038, 0.038, 0.038, 0.043, 0.048, 0.048, 0.048, 0.04, 0.038, 0.04, 0.039, 0.046, 0.05, 0.049, 0.045, 0.039, 0.039, 0.042, 0.042, 0.048, 0.052, 0.05, 0.047, 0.041, 0.039, 0.039, 0.039, 0.039, 0.039] MEM_2 = [0.041, 0.049, 0.056, 0.064, 0.084, 0.091, 0.096, 0.088, 0.081, 0.076, 0.076, 0.078, 0.088, 0.102, 0.103, 0.094, 0.085, 0.076, 0.077, 0.084, 0.093, 0.097, 0.092, 0.082, 0.076, 0.076, 0.079, 0.085, 0.092, 0.088, 0.085, 0.076, 0.076, 0.076, 0.077, 0.077, 0.077, 0.076, 0.077, 0.077, 0.077, 0.076, 0.077, 0.077, 0.077, 0.076, 0.077, 0.077, 0.077, 0.076, 0.077, 0.077, 0.077, 0.076, 0.077, 0.077, 0.077, 0.077] MEM_3 = [0.077, 0.077, 0.086, 0.091, 0.108, 0.129, 0.137, 0.14, 0.126, 0.121, 0.117, 0.115, 0.125, 0.139, 0.142, 0.143, 0.126, 0.122, 0.115, 0.114, 0.118, 0.122, 0.122, 0.118, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113, 0.113] MEM_4 = [0.117, 0.117, 0.128, 0.141, 0.162, 0.191, 0.19, 0.189, 0.166, 0.16, 0.155, 0.158, 0.169, 0.182, 0.178, 0.174, 0.159, 0.156, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153, 0.153] MEM_5 = [0.154, 0.154, 0.166, 0.173, 0.195, 0.227, 0.232, 0.239, 0.207, 0.197, 0.195, 0.194, 0.205, 0.21, 0.209, 0.198, 0.191, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188, 0.188] MEM_6 = [0.179, 0.179, 0.195, 0.203, 0.231, 0.267, 0.269, 0.266, 0.238, 0.222, 0.218, 0.214, 0.22, 0.227, 0.226, 0.223, 0.218, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214, 0.214] MEM_7 = [0.204, 0.205, 0.226, 0.23, 0.251, 0.302, 0.327, 0.32, 0.305, 0.273, 0.257, 0.256, 0.256, 0.257, 0.257, 0.258, 0.256, 0.256, 0.257, 0.257, 0.258, 0.256, 0.256, 0.257, 0.257, 0.258, 0.256, 0.256, 0.257, 0.257, 0.258, 0.256, 0.256, 0.257, 0.257, 0.258, 0.256, 0.256, 0.257, 0.257, 0.258, 0.256, 0.256, 0.257, 0.257, 0.258, 0.256, 0.256, 0.257, 0.257, 0.258, 0.256, 0.256, 0.257, 0.257, 0.258, 0.257, 0.257] font1 = { 'family' : 'Times New Roman', 'weight' : 'normal', 'size' : 28, } font2 = { 'family' : 'Times New Roman', 'weight' : 'normal', 'size' : 20, } plt.title('processing Memory% Analysis',font1) l1, = plt.plot(t,MEM_1,color='green',marker="o",label='1 hadoop group') l2, = plt.plot(t,MEM_2,color='darkorange',marker="o",label='2 hadoop group') l3, = plt.plot(t,MEM_3,color='yellow',marker="o",label='3 hadoop group') l4, = plt.plot(t,MEM_4,color='greenyellow',marker="o",label='4 hadoop group') l5, = plt.plot(t,MEM_5,color='springgreen',marker="o",label='5 hadoop group') l6, = plt.plot(t,MEM_6,color='darkslategrey',marker="o",label='6 hadoop group') l7, = plt.plot(t,MEM_7,color='red',marker="o",label='7 hadoop group') #l2, = plt.plot(x2,multi,color='red',label='multi hadoop group') # color: darkorange lightcoral darkgoldenrod yellow greenyellow springgreen darkslategrey deepskyblue fushsia blue x_ticks = np.arange(0,380,30) y_ticks = np.arange(0,0.6,0.1) plt.legend(handles=[l1,l2,l3,l4,l5,l6,l7],labels=['1-hadoop-group-MEM','2-hadoop-group-MEM','3-hadoop-group-MEM','4-hadoop-group-MEM','5-hadoop-group-MEM','6-hadoop-group-MEM','7-hadoop-group-MEM'],loc="best") plt.xlabel('time unit(seconds)',font2) plt.ylabel('hadoop occupy MEM unit(% 62G)',font2) plt.xticks(x_ticks) plt.yticks(y_ticks) #plt.savefig('.MEM%.png') plt.show()
[((4, 4, 4, 24), 'numpy.arange', 'np.arange', ({(4, 14, 4, 15): '0', (4, 16, 4, 19): '375', (4, 20, 4, 23): '6.5'}, {}), '(0, 375, 6.5)', True, 'import numpy as np\n'), ((33, 0, 33, 46), 'matplotlib.pyplot.title', 'plt.title', ({(33, 10, 33, 39): '"""processing Memory% Analysis"""', (33, 40, 33, 45): 'font1'}, {}), "('processing Memory% Analysis', font1)", True, 'import matplotlib.pyplot as plt\n'), ((34, 6, 34, 71), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((35, 6, 35, 76), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((36, 6, 36, 72), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((37, 6, 37, 77), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((38, 6, 38, 77), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((39, 6, 39, 79), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((40, 6, 40, 69), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((45, 10, 45, 29), 'numpy.arange', 'np.arange', ({(45, 20, 45, 21): '0', (45, 22, 45, 25): '380', (45, 26, 45, 28): '30'}, {}), '(0, 380, 30)', True, 'import numpy as np\n'), ((46, 10, 46, 30), 'numpy.arange', 'np.arange', ({(46, 20, 46, 21): '0', (46, 22, 46, 25): '0.6', (46, 26, 46, 29): '0.1'}, {}), '(0, 0.6, 0.1)', True, 'import numpy as np\n'), ((48, 0, 48, 209), 'matplotlib.pyplot.legend', 'plt.legend', (), '', True, 'import matplotlib.pyplot as plt\n'), ((49, 0, 49, 38), 'matplotlib.pyplot.xlabel', 'plt.xlabel', ({(49, 11, 49, 31): '"""time unit(seconds)"""', (49, 32, 49, 37): 'font2'}, {}), "('time unit(seconds)', font2)", True, 'import matplotlib.pyplot as plt\n'), ((50, 0, 50, 49), 'matplotlib.pyplot.ylabel', 'plt.ylabel', ({(50, 11, 50, 42): '"""hadoop occupy MEM unit(% 62G)"""', (50, 43, 50, 48): 'font2'}, {}), "('hadoop occupy MEM unit(% 62G)', font2)", True, 'import matplotlib.pyplot as plt\n'), ((52, 0, 52, 19), 'matplotlib.pyplot.xticks', 'plt.xticks', ({(52, 11, 52, 18): 'x_ticks'}, {}), '(x_ticks)', True, 'import matplotlib.pyplot as plt\n'), ((53, 0, 53, 19), 'matplotlib.pyplot.yticks', 'plt.yticks', ({(53, 11, 53, 18): 'y_ticks'}, {}), '(y_ticks)', True, 'import matplotlib.pyplot as plt\n'), ((57, 0, 57, 10), 'matplotlib.pyplot.show', 'plt.show', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n')]
josephburnett/vaping
vaping/config.py
16f9092f0b3c1692e6d1a040f746e1277e197353
import re import munge def parse_interval(val): """ converts a string to float of seconds .5 = 500ms 90 = 1m30s **Arguments** - val (`str`) """ re_intv = re.compile(r"([\d\.]+)([a-zA-Z]+)") val = val.strip() total = 0.0 for match in re_intv.findall(val): unit = match[1] count = float(match[0]) if unit == "s": total += count elif unit == "m": total += count * 60 elif unit == "ms": total += count / 1000 elif unit == "h": total += count * 3600 elif unit == "d": total += count * 86400 else: raise ValueError("unknown unit from interval string '%s'" % val) return total class Config(munge.Config): """ Vaping config manager """ defaults = { "config": { "vaping": {"home_dir": None, "pidfile": "vaping.pid", "plugin_path": [],}, }, "config_dir": "~/.vaping", "codec": "yaml", }
[((16, 14, 16, 49), 're.compile', 're.compile', ({(16, 25, 16, 48): '"""([\\\\d\\\\.]+)([a-zA-Z]+)"""'}, {}), "('([\\\\d\\\\.]+)([a-zA-Z]+)')", False, 'import re\n')]
Rubiel1/sktime
sktime/annotation/tests/test_all_annotators.py
2fd2290fb438224f11ddf202148917eaf9b73a87
# -*- coding: utf-8 -*- """Tests for sktime annotators.""" import pandas as pd import pytest from sktime.registry import all_estimators from sktime.utils._testing.estimator_checks import _make_args ALL_ANNOTATORS = all_estimators(estimator_types="series-annotator", return_names=False) @pytest.mark.parametrize("Estimator", ALL_ANNOTATORS) def test_output_type(Estimator): """Test annotator output type.""" estimator = Estimator.create_test_instance() args = _make_args(estimator, "fit") estimator.fit(*args) args = _make_args(estimator, "predict") y_pred = estimator.predict(*args) assert isinstance(y_pred, pd.Series)
[((10, 17, 10, 87), 'sktime.registry.all_estimators', 'all_estimators', (), '', False, 'from sktime.registry import all_estimators\n'), ((13, 1, 13, 53), 'pytest.mark.parametrize', 'pytest.mark.parametrize', ({(13, 25, 13, 36): '"""Estimator"""', (13, 38, 13, 52): 'ALL_ANNOTATORS'}, {}), "('Estimator', ALL_ANNOTATORS)", False, 'import pytest\n'), ((18, 11, 18, 39), 'sktime.utils._testing.estimator_checks._make_args', '_make_args', ({(18, 22, 18, 31): 'estimator', (18, 33, 18, 38): '"""fit"""'}, {}), "(estimator, 'fit')", False, 'from sktime.utils._testing.estimator_checks import _make_args\n'), ((20, 11, 20, 43), 'sktime.utils._testing.estimator_checks._make_args', '_make_args', ({(20, 22, 20, 31): 'estimator', (20, 33, 20, 42): '"""predict"""'}, {}), "(estimator, 'predict')", False, 'from sktime.utils._testing.estimator_checks import _make_args\n')]
AlexMassin/mlh-react-vr-website
raspberry-pi-camera/cam.py
dc08788ccdecc9923b8dbfd31fa452cb83d214ae
picamera import PiCamera from time import sleep import boto3 import os.path import subprocess s3 = boto3.client('s3') bucket = 'cambucket21' camera = PiCamera() #camera.resolution(1920,1080) x = 0 camerafile = x while True: if (x == 6): x = 1 else: x = x + 1 camera.start_preview() camera.start_recording('/home/pi/' + str(x) + '.h264') sleep(2) camera.stop_recording() camera.stop_preview() subprocess.Popen("MP4Box -add " + str(x) + ".h264 " + str(x) +".mp4", shell=True) sleep(1) s3.upload_file('/home/pi/' + str(x) + '.mp4',bucket,'/home/pi/' + str(x) + '.mp4')
[]
Mikma03/InfoShareacademy_Python_Courses
Part_3_advanced/m04_datetime_and_timedelta/datetime_formats/example_1.py
3df1008c8c92831bebf1625f960f25b39d6987e6
from datetime import datetime def run_example(): moment_in_time = datetime.fromordinal(256) print(moment_in_time) print(moment_in_time.toordinal()) print(moment_in_time.weekday()) print(moment_in_time.isoweekday()) other_moment = datetime.fromtimestamp(16_000_000) print(other_moment) print(other_moment.timestamp()) print(other_moment.isocalendar()) if __name__ == "__main__": run_example()
[((5, 21, 5, 46), 'datetime.datetime.fromordinal', 'datetime.fromordinal', ({(5, 42, 5, 45): '256'}, {}), '(256)', False, 'from datetime import datetime\n'), ((11, 19, 11, 53), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', ({(11, 42, 11, 52): '16000000'}, {}), '(16000000)', False, 'from datetime import datetime\n')]
mxmpl/pykaldi
examples/scripts/segmentation/nnet3-segmenter.py
0570307138c5391cc47b019450d08bcb9686dd98
#!/usr/bin/env python from __future__ import print_function from kaldi.segmentation import NnetSAD, SegmentationProcessor from kaldi.nnet3 import NnetSimpleComputationOptions from kaldi.util.table import SequentialMatrixReader # Construct SAD model = NnetSAD.read_model("final.raw") post = NnetSAD.read_average_posteriors("post_output.vec") transform = NnetSAD.make_sad_transform(post) graph = NnetSAD.make_sad_graph() decodable_opts = NnetSimpleComputationOptions() decodable_opts.extra_left_context = 79 decodable_opts.extra_right_context = 21 decodable_opts.extra_left_context_initial = 0 decodable_opts.extra_right_context_final = 0 decodable_opts.frames_per_chunk = 150 decodable_opts.acoustic_scale = 0.3 sad = NnetSAD(model, transform, graph, decodable_opts=decodable_opts) seg = SegmentationProcessor(target_labels=[2]) # Define feature pipeline as a Kaldi rspecifier feats_rspec = "ark:compute-mfcc-feats --config=mfcc.conf scp:wav.scp ark:- |" # Segment with SequentialMatrixReader(feats_rspec) as f, open ("segments", "w") as s: for key, feats in f: out = sad.segment(feats) segments, stats = seg.process(out["alignment"]) seg.write(key, segments, s) print("segments:", segments, flush=True) print("stats:", stats, flush=True) print("global stats:", seg.stats, flush=True)
[((10, 8, 10, 39), 'kaldi.segmentation.NnetSAD.read_model', 'NnetSAD.read_model', ({(10, 27, 10, 38): '"""final.raw"""'}, {}), "('final.raw')", False, 'from kaldi.segmentation import NnetSAD, SegmentationProcessor\n'), ((11, 7, 11, 57), 'kaldi.segmentation.NnetSAD.read_average_posteriors', 'NnetSAD.read_average_posteriors', ({(11, 39, 11, 56): '"""post_output.vec"""'}, {}), "('post_output.vec')", False, 'from kaldi.segmentation import NnetSAD, SegmentationProcessor\n'), ((12, 12, 12, 44), 'kaldi.segmentation.NnetSAD.make_sad_transform', 'NnetSAD.make_sad_transform', ({(12, 39, 12, 43): 'post'}, {}), '(post)', False, 'from kaldi.segmentation import NnetSAD, SegmentationProcessor\n'), ((13, 8, 13, 32), 'kaldi.segmentation.NnetSAD.make_sad_graph', 'NnetSAD.make_sad_graph', ({}, {}), '()', False, 'from kaldi.segmentation import NnetSAD, SegmentationProcessor\n'), ((14, 17, 14, 47), 'kaldi.nnet3.NnetSimpleComputationOptions', 'NnetSimpleComputationOptions', ({}, {}), '()', False, 'from kaldi.nnet3 import NnetSimpleComputationOptions\n'), ((21, 6, 21, 69), 'kaldi.segmentation.NnetSAD', 'NnetSAD', (), '', False, 'from kaldi.segmentation import NnetSAD, SegmentationProcessor\n'), ((22, 6, 22, 46), 'kaldi.segmentation.SegmentationProcessor', 'SegmentationProcessor', (), '', False, 'from kaldi.segmentation import NnetSAD, SegmentationProcessor\n'), ((28, 5, 28, 40), 'kaldi.util.table.SequentialMatrixReader', 'SequentialMatrixReader', ({(28, 28, 28, 39): 'feats_rspec'}, {}), '(feats_rspec)', False, 'from kaldi.util.table import SequentialMatrixReader\n')]
HeegyuKim/CurseFilter
src/dataset.py
dc4a64aebd997706553c24e919a88e19a3c92dd3
from cProfile import label from matplotlib.pyplot import text import pandas as pd import numpy as np from tokenizers import Tokenizer import torch from torch.utils.data import Dataset, DataLoader from typing import Dict, Any, Tuple from datasets import load_dataset class DataFrameDataset(Dataset): def __init__(self, tokenizer: Tokenizer, df: pd.DataFrame, text_column: str, label_column: str, max_length: int = 256, padding: str = "max_length") -> None: super().__init__() inputs = tokenizer(df[text_column].to_list(), padding=padding, max_length=max_length, truncation=True, return_tensors="pt") self.input_ids = inputs["input_ids"] self.attention_masks = inputs["attention_mask"] dtype = np.int64 if len(df[label_column].unique()) > 2 else np.float32 self.labels = torch.from_numpy(df[label_column].values.astype(dtype)) def __len__(self): return self.input_ids.shape[0] def __getitem__(self, index: Any) -> Dict: return self.input_ids[index], self.attention_masks[index], self.labels[index] def dataloader(self, **kwargs) -> DataLoader: return DataLoader(self, **kwargs) class DataFrameStudentDataset(DataFrameDataset): def __init__(self, teacher_model: torch.nn.Module, teacher_tokenizer: Tokenizer, student_tokenizer: Tokenizer, df: pd.DataFrame, text_column: str, label_column: str, max_length: int = 256, padding: str = "max_length", device: str = 'cuda') -> None: super().__init__(student_tokenizer, df, text_column, label_column, max_length, padding) teacher_ds = DataFrameDataset( teacher_tokenizer, df, text_column, label_column, max_length, padding ) teacher_model = teacher_model.to(device) with torch.no_grad(): soft_labels = [self._get_soft_label(teacher_model, teacher_ds, i, device) for i in range(len(self))] self.soft_labels = torch.stack(soft_labels) def __getitem__(self, index: Any) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: return *super().__getitem__(index), self.soft_labels[index] def _get_soft_label(self, model, teacher_ds, index, device): ids, mask, _ = teacher_ds[index] ids = ids.unsqueeze(0).to(device) mask = mask.unsqueeze(0).to(device) return model(ids, mask).cpu().squeeze(0) class ApeachDataset(Dataset): def __init__(self, split: str, tokenizer: Tokenizer, max_length: int = 256, padding: str = "max_length") -> None: super().__init__() dataset = load_dataset("jason9693/APEACH") texts = dataset[split]['text'] inputs = tokenizer(texts, padding=padding, max_length=max_length, truncation=True, return_tensors="pt") self.input_ids = inputs["input_ids"] self.attention_masks = inputs["attention_mask"] labels = dataset[split]['class'] self.labels = torch.tensor(labels, dtype=torch.float32) def __len__(self): return self.input_ids.shape[0] def __getitem__(self, index: Any) -> Dict: return self.input_ids[index], self.attention_masks[index], self.labels[index] def dataloader(self, **kwargs) -> DataLoader: return DataLoader(self, **kwargs) class ApeachStudentDataset(ApeachDataset): def __init__(self, teacher_model: torch.nn.Module, split: str, teacher_tokenizer: Tokenizer, student_tokenizer: Tokenizer, max_length: int = 256, padding: str = "max_length", device: str="cuda") -> None: super().__init__(split, student_tokenizer, max_length, padding) teacher_ds = ApeachDataset(split, teacher_tokenizer, max_length, padding) teacher_model = teacher_model.to(device) with torch.no_grad(): soft_labels = [self._get_soft_label(teacher_model, teacher_ds, i, device) for i in range(len(self))] self.soft_labels = torch.stack(soft_labels) def __getitem__(self, index: Any) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: return *super().__getitem__(index), self.soft_labels[index] def _get_soft_label(self, model, teacher_ds, index, device): ids, mask, _ = teacher_ds[index] ids = ids.unsqueeze(0).to(device) mask = mask.unsqueeze(0).to(device) return model(ids, mask).cpu().squeeze(0)
[((34, 15, 34, 41), 'torch.utils.data.DataLoader', 'DataLoader', ({(34, 26, 34, 30): 'self'}, {}), '(self, **kwargs)', False, 'from torch.utils.data import Dataset, DataLoader\n'), ((84, 18, 84, 50), 'datasets.load_dataset', 'load_dataset', ({(84, 31, 84, 49): '"""jason9693/APEACH"""'}, {}), "('jason9693/APEACH')", False, 'from datasets import load_dataset\n'), ((92, 22, 92, 63), 'torch.tensor', 'torch.tensor', (), '', False, 'import torch\n'), ((100, 15, 100, 41), 'torch.utils.data.DataLoader', 'DataLoader', ({(100, 26, 100, 30): 'self'}, {}), '(self, **kwargs)', False, 'from torch.utils.data import Dataset, DataLoader\n'), ((62, 13, 62, 28), 'torch.no_grad', 'torch.no_grad', ({}, {}), '()', False, 'import torch\n'), ((65, 31, 65, 55), 'torch.stack', 'torch.stack', ({(65, 43, 65, 54): 'soft_labels'}, {}), '(soft_labels)', False, 'import torch\n'), ((117, 13, 117, 28), 'torch.no_grad', 'torch.no_grad', ({}, {}), '()', False, 'import torch\n'), ((120, 31, 120, 55), 'torch.stack', 'torch.stack', ({(120, 43, 120, 54): 'soft_labels'}, {}), '(soft_labels)', False, 'import torch\n')]
stko/Schnipsl
helper_tools/raspi_OMX-Player_Howto_demo.py
824572c657e48f18950f584b9529661ff5bb8069
#!/usr/bin/python # mp4museum.org by julius schmiedel 2019 import os import sys import glob from subprocess import Popen, PIPE import RPi.GPIO as GPIO FNULL = open(os.devnull, "w") # setup GPIO pin GPIO.setmode(GPIO.BOARD) GPIO.setup(11, GPIO.IN, pull_up_down = GPIO.PUD_DOWN) GPIO.setup(13, GPIO.IN, pull_up_down = GPIO.PUD_DOWN) # functions to be called by event listener def buttonPause(channel): player.stdin.write("p") def buttonNext(channel): player.stdin.write("q") # add event listener GPIO.add_event_detect(11, GPIO.FALLING, callback = buttonPause, bouncetime = 234) GPIO.add_event_detect(13, GPIO.FALLING, callback = buttonNext, bouncetime = 1234) # please do not remove my logo screen player = Popen(['omxplayer', '--adev', 'both', '/home/pi/mp4museum.mp4'],stdin=PIPE,stdout=FNULL) player.wait() # the loop while(1): for files in sorted(glob.glob(r'/media/*/*.mp4')): player = Popen(['omxplayer','--adev', 'both',files],stdin=PIPE,stdout=FNULL) player.wait()
[((14, 0, 14, 24), 'RPi.GPIO.setmode', 'GPIO.setmode', ({(14, 13, 14, 23): 'GPIO.BOARD'}, {}), '(GPIO.BOARD)', True, 'import RPi.GPIO as GPIO\n'), ((15, 0, 15, 53), 'RPi.GPIO.setup', 'GPIO.setup', (), '', True, 'import RPi.GPIO as GPIO\n'), ((16, 0, 16, 53), 'RPi.GPIO.setup', 'GPIO.setup', (), '', True, 'import RPi.GPIO as GPIO\n'), ((26, 0, 26, 81), 'RPi.GPIO.add_event_detect', 'GPIO.add_event_detect', (), '', True, 'import RPi.GPIO as GPIO\n'), ((27, 0, 27, 81), 'RPi.GPIO.add_event_detect', 'GPIO.add_event_detect', (), '', True, 'import RPi.GPIO as GPIO\n'), ((30, 9, 30, 97), 'subprocess.Popen', 'Popen', (), '', False, 'from subprocess import Popen, PIPE\n'), ((35, 21, 35, 49), 'glob.glob', 'glob.glob', ({(35, 31, 35, 48): '"""/media/*/*.mp4"""'}, {}), "('/media/*/*.mp4')", False, 'import glob\n'), ((36, 11, 36, 78), 'subprocess.Popen', 'Popen', (), '', False, 'from subprocess import Popen, PIPE\n')]
zeyu2001/ICT1002-Python
dash_app/compare_alg.py
76a2c8ad3e3c4a3c873a9259e2a11488c33f2bf7
""" Comparison between the efficiency of the Boyer-Moore algorithm and the naive substring search algorithm. The runtimes for both algorithms are plotted on the same axes. """ import matplotlib.pyplot as plt import numpy as np import string import time import random from bm_alg import boyer_moore_match, naive_match # number of test cases for each iteration TEST_CASES = 100 # test cases generated based on this pattern (vary_n) PATTERN = 'ICT1002 is a really great module!' # test cases generated based on this text (vary_m) TEXT = PATTERN * 50 def generate_test_cases(pattern, length, k): """ Generates <k> test cases with text of length <length> containing <pattern> Args: pattern (str): A pattern within the text. length (int): The length of the pattern k (int): The number of test cases Returns: A list of test cases, i.e. strings that contain <pattern> """ result = [] for _ in range(k): text = pattern while len(text) < length: direction = random.choice((0, 1)) # 0 --> Left if direction == 0: text = random.choice(string.ascii_lowercase) + text # 1 --> Right else: text = text + random.choice(string.ascii_lowercase) result.append(text) return result def vary_n(max_n): x = [n for n in range(1, max_n + 1)] y_bm = [] y_naive = [] for n in x: print('n =', n) bm_result = [] naive_result = [] if n >= len(PATTERN): # generate test cases of length n, which contain PATTERN test_cases = generate_test_cases(PATTERN, n, TEST_CASES) else: # generate test cases of length n, which do not (and can not possibly) contain PATTERN test_cases = generate_test_cases('', n, TEST_CASES) for test_case in test_cases: start = time.time() naive_match(test_case, PATTERN) naive_result.append(time.time() - start) start = time.time() boyer_moore_match(test_case, PATTERN) bm_result.append(time.time() - start) # obtain median runtime (mean is affected by outliers) y_naive.append(sorted(naive_result)[TEST_CASES // 2]) y_bm.append(sorted(bm_result)[TEST_CASES // 2]) plt.plot(x, y_naive, label="Naive Algorithm") plt.plot(x, y_bm, label="Boyer-Moore Algorithm") plt.xlabel("n") plt.ylabel("Runtime") plt.title("Substring Search Algorithm Efficiency") plt.legend() plt.show() def vary_m(max_m): x = [m for m in range(1, max_m + 1)] y_bm = [] y_naive = [] for m in x: print('m =', m) bm_result = [] naive_result = [] # generate test cases of length n test_cases = generate_test_cases('', m, TEST_CASES) for test_case in test_cases: start = time.time() naive_match(TEXT, test_case) naive_result.append(time.time() - start) start = time.time() boyer_moore_match(TEXT, test_case) bm_result.append(time.time() - start) # obtain median runtime (mean is affected by outliers) y_naive.append(sorted(naive_result)[TEST_CASES // 2]) y_bm.append(sorted(bm_result)[TEST_CASES // 2]) plt.plot(x, y_naive, label="Naive Algorithm") plt.plot(x, y_bm, label="Boyer-Moore Algorithm") plt.xlabel("m") plt.ylabel("Runtime") plt.title("Substring Search Algorithm Efficiency") plt.legend() plt.show() def main(): done = False print("m = Length of pattern\nn = Length of text\n") print("1. Constant m, vary n") print("2. Constant n, vary m") print("3. Quit\n") while not done: choice = input("Your choice: ") if choice == '1': max_n = input("Upper limit of n: ") while not (max_n.isnumeric() and int(max_n) > 1): print("That is not a valid number.") max_n = input("Upper limit of n: ") vary_n(int(max_n)) elif choice == '2': max_m = input("Upper limit of m: ") while not (max_m.isnumeric() and int(max_m) > 1): print("That is not a valid number.") max_m = input("Upper limit of m: ") vary_m(int(max_m)) elif choice == '3': done = True else: print("That is not a valid option.") if __name__ == '__main__': main()
[((84, 4, 84, 49), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((85, 4, 85, 52), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((86, 4, 86, 19), 'matplotlib.pyplot.xlabel', 'plt.xlabel', ({(86, 15, 86, 18): '"""n"""'}, {}), "('n')", True, 'import matplotlib.pyplot as plt\n'), ((87, 4, 87, 25), 'matplotlib.pyplot.ylabel', 'plt.ylabel', ({(87, 15, 87, 24): '"""Runtime"""'}, {}), "('Runtime')", True, 'import matplotlib.pyplot as plt\n'), ((88, 4, 88, 54), 'matplotlib.pyplot.title', 'plt.title', ({(88, 14, 88, 53): '"""Substring Search Algorithm Efficiency"""'}, {}), "('Substring Search Algorithm Efficiency')", True, 'import matplotlib.pyplot as plt\n'), ((89, 4, 89, 16), 'matplotlib.pyplot.legend', 'plt.legend', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((90, 4, 90, 14), 'matplotlib.pyplot.show', 'plt.show', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((119, 4, 119, 49), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((120, 4, 120, 52), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((121, 4, 121, 19), 'matplotlib.pyplot.xlabel', 'plt.xlabel', ({(121, 15, 121, 18): '"""m"""'}, {}), "('m')", True, 'import matplotlib.pyplot as plt\n'), ((122, 4, 122, 25), 'matplotlib.pyplot.ylabel', 'plt.ylabel', ({(122, 15, 122, 24): '"""Runtime"""'}, {}), "('Runtime')", True, 'import matplotlib.pyplot as plt\n'), ((123, 4, 123, 54), 'matplotlib.pyplot.title', 'plt.title', ({(123, 14, 123, 53): '"""Substring Search Algorithm Efficiency"""'}, {}), "('Substring Search Algorithm Efficiency')", True, 'import matplotlib.pyplot as plt\n'), ((124, 4, 124, 16), 'matplotlib.pyplot.legend', 'plt.legend', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((125, 4, 125, 14), 'matplotlib.pyplot.show', 'plt.show', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((39, 24, 39, 45), 'random.choice', 'random.choice', ({(39, 38, 39, 44): '(0, 1)'}, {}), '((0, 1))', False, 'import random\n'), ((72, 20, 72, 31), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((73, 12, 73, 43), 'bm_alg.naive_match', 'naive_match', ({(73, 24, 73, 33): 'test_case', (73, 35, 73, 42): 'PATTERN'}, {}), '(test_case, PATTERN)', False, 'from bm_alg import boyer_moore_match, naive_match\n'), ((76, 20, 76, 31), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((77, 12, 77, 49), 'bm_alg.boyer_moore_match', 'boyer_moore_match', ({(77, 30, 77, 39): 'test_case', (77, 41, 77, 48): 'PATTERN'}, {}), '(test_case, PATTERN)', False, 'from bm_alg import boyer_moore_match, naive_match\n'), ((107, 20, 107, 31), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((108, 12, 108, 40), 'bm_alg.naive_match', 'naive_match', ({(108, 24, 108, 28): 'TEXT', (108, 30, 108, 39): 'test_case'}, {}), '(TEXT, test_case)', False, 'from bm_alg import boyer_moore_match, naive_match\n'), ((111, 20, 111, 31), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((112, 12, 112, 46), 'bm_alg.boyer_moore_match', 'boyer_moore_match', ({(112, 30, 112, 34): 'TEXT', (112, 36, 112, 45): 'test_case'}, {}), '(TEXT, test_case)', False, 'from bm_alg import boyer_moore_match, naive_match\n'), ((43, 23, 43, 60), 'random.choice', 'random.choice', ({(43, 37, 43, 59): 'string.ascii_lowercase'}, {}), '(string.ascii_lowercase)', False, 'import random\n'), ((47, 30, 47, 67), 'random.choice', 'random.choice', ({(47, 44, 47, 66): 'string.ascii_lowercase'}, {}), '(string.ascii_lowercase)', False, 'import random\n'), ((74, 32, 74, 43), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((78, 29, 78, 40), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((109, 32, 109, 43), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((113, 29, 113, 40), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n')]
GMKanat/PP2_spring
TSIS_3/3774.py
423617d559c5690f689741aaa152b9fee5082baf
ans = dict() pairs = dict() def create_tree(p): if p in ans: return ans[p] else: try: res = 0 if p in pairs: for ch in pairs[p]: res += create_tree(ch) + 1 ans[p] = res return res except: pass n = int(input()) for i in range(0, n-1): child, parent = input().split() if parent in pairs: pairs[parent].append(child) else: pairs[parent] = [child] if n > 0: for k in pairs: create_tree(k) for key in sorted(ans.keys()): print(key, ans[key])
[]
Dorijan-Cirkveni/Miniprojects
italicizer.py
2109275c9c1b9f5e7a286604cbb1b7966dff9798
def italicize(s): b = False res = '' for e in s: if e == '"': if b: res += '{\\i}' + e else: res += e + '{i}' b=not b else: res += e return res def main(): F=open('test_in.txt','r') X=F.read() F.close() print(italicize(X)) return if __name__ == "__main__": main()
[]
WPRDC/neighborhood-simulacrum
maps/views.py
46892dfdbc8bc3201e31fee4ee991c49b208753e
import json from typing import Type, TYPE_CHECKING from django.core.exceptions import ObjectDoesNotExist from django.utils.decorators import method_decorator from django.views.decorators.cache import cache_page from rest_framework import viewsets, filters from rest_framework.exceptions import NotFound from rest_framework.negotiation import BaseContentNegotiation from rest_framework.permissions import IsAuthenticatedOrReadOnly, AllowAny from rest_framework.request import Request from rest_framework.response import Response from rest_framework.views import APIView from indicators.models import Variable, DataViz from indicators.utils import get_geog_model from indicators.views import GeoJSONRenderer from maps.models import DataLayer from maps.serializers import DataLayerSerializer, DataLayerDetailsSerializer from profiles.settings import VIEW_CACHE_TTL if TYPE_CHECKING: from geo.models import AdminRegion from indicators.models.viz import MiniMap class DataLayerViewSet(viewsets.ModelViewSet): queryset = DataLayer.objects.all() serializer_class = DataLayerSerializer permission_classes = [IsAuthenticatedOrReadOnly, ] filter_backends = [filters.SearchFilter, ] def get_serializer_class(self): if self.action == 'list': return DataLayerSerializer return DataLayerDetailsSerializer media_type = 'application/geo+json' format = 'geojson' def render(self, data, media_type=None, renderer_context=None): return json.dumps(data) class GeoJSONContentNegotiation(BaseContentNegotiation): """ Custom content negotiation scheme for GeoJSON files. `GeoJSONRenderer` is used for downloading geojson files `JSONRenderer` is used for ajax calls. """ def select_parser(self, request, parsers): return super(GeoJSONContentNegotiation, self).select_parser(request, parsers) def select_renderer(self, request: Request, renderers, format_suffix=None): renderer = renderers[0] if request.query_params.get('download', False): renderer = GeoJSONRenderer() return renderer, renderer.media_type class GeoJSONDataLayerView(APIView): permission_classes = [AllowAny, ] content_negotiation_class = GeoJSONContentNegotiation @method_decorator(cache_page(VIEW_CACHE_TTL)) def get(self, request: Request, map_slug=None): try: data_layer: DataLayer = DataLayer.objects.get(slug=map_slug) geojson = data_layer.as_geojson() except KeyError as e: # when the geog is wrong todo: make 400 malformed with info on available geo types raise NotFound except ObjectDoesNotExist as e: raise NotFound if request.query_params.get('download', False): headers = { 'Content-Disposition': f'attachment; filename="{map_slug}.geojson"' } return Response(geojson, headers=headers, content_type='application/geo+json') return Response(geojson)
[((28, 15, 28, 38), 'maps.models.DataLayer.objects.all', 'DataLayer.objects.all', ({}, {}), '()', False, 'from maps.models import DataLayer\n'), ((42, 15, 42, 31), 'json.dumps', 'json.dumps', ({(42, 26, 42, 30): 'data'}, {}), '(data)', False, 'import json\n'), ((84, 15, 84, 32), 'rest_framework.response.Response', 'Response', ({(84, 24, 84, 31): 'geojson'}, {}), '(geojson)', False, 'from rest_framework.response import Response\n'), ((67, 22, 67, 48), 'django.views.decorators.cache.cache_page', 'cache_page', ({(67, 33, 67, 47): 'VIEW_CACHE_TTL'}, {}), '(VIEW_CACHE_TTL)', False, 'from django.views.decorators.cache import cache_page\n'), ((59, 23, 59, 40), 'indicators.views.GeoJSONRenderer', 'GeoJSONRenderer', ({}, {}), '()', False, 'from indicators.views import GeoJSONRenderer\n'), ((70, 36, 70, 72), 'maps.models.DataLayer.objects.get', 'DataLayer.objects.get', (), '', False, 'from maps.models import DataLayer\n'), ((82, 19, 82, 90), 'rest_framework.response.Response', 'Response', (), '', False, 'from rest_framework.response import Response\n')]
Kuree/magma
magma/operators.py
be2439aa897768c5810be72e3a55a6f772ac83cf
from magma import _BitType, BitType, BitsType, UIntType, SIntType class MantleImportError(RuntimeError): pass class UndefinedOperatorError(RuntimeError): pass def raise_mantle_import_error_unary(self): raise MantleImportError( "Operators are not defined until mantle has been imported") def raise_mantle_import_error_binary(self, other): raise MantleImportError( "Operators are not defined until mantle has been imported") def define_raise_undefined_operator_error(type_str, operator, type_): if type_ == "unary": def wrapped(self): raise UndefinedOperatorError( f"{operator} is undefined for {type_str}") else: assert type_ == "binary" def wrapped(self, other): raise UndefinedOperatorError( f"{operator} is undefined for {type_str}") return wrapped for op in ("__eq__", "__ne__"): setattr(_BitType, op, raise_mantle_import_error_binary) for op in ( "__and__", "__or__", "__xor__", "__invert__", "__add__", "__sub__", "__mul__", "__div__", "__lt__", # __le__ skipped because it's used for assignment on inputs # "__le__", "__gt__", "__ge__" ): if op == "__invert__": setattr(_BitType, op, define_raise_undefined_operator_error("_BitType", op, "unary")) else: setattr( _BitType, op, define_raise_undefined_operator_error("_BitType", op, "binary")) for op in ("__and__", "__or__", "__xor__", "__invert__" ): if op == "__invert__": setattr(BitType, op, raise_mantle_import_error_unary) else: setattr(BitType, op, raise_mantle_import_error_binary) for op in ("__and__", "__or__", "__xor__", "__invert__", "__lshift__", "__rshift__", ): if op == "__invert__": setattr(BitsType, op, raise_mantle_import_error_unary) else: setattr(BitsType, op, raise_mantle_import_error_binary) for op in ("__add__", "__sub__", "__mul__", "__div__", "__lt__", # __le__ skipped because it's used for assignment on inputs # "__le__", "__gt__", "__ge__" ): setattr(BitsType, op, define_raise_undefined_operator_error("BitsType", op, "binary")) for op in ("__add__", "__sub__", "__mul__", "__div__", "__lt__", # __le__ skipped because it's used for assignment on inputs # "__le__", "__gt__", "__ge__" ): setattr(SIntType, op, raise_mantle_import_error_binary) setattr(UIntType, op, raise_mantle_import_error_binary)
[]
bquantump/sultan
src/sultan/result.py
a46e8dc9b09385a7226f6151134ae2417166f25d
import subprocess import sys import time import traceback from queue import Queue from sultan.core import Base from sultan.echo import Echo from threading import Thread class Result(Base): """ Class that encompasses the result of a POpen command. """ def __init__(self, process, commands, context, streaming=False, exception=None, halt_on_nonzero=False): super(Result, self).__init__() self._process = process self._commands = commands self._context = context self._exception = exception self.__echo = Echo() self._streaming = streaming self.rc = None self._halt_on_nonzero=halt_on_nonzero if process and streaming: self.is_complete = False self.__stdout = Queue() self.__stderr = Queue() self.__stdin = Queue() self._stdout_t = Thread(target=self.read_output, args=(process.stdout, self.__stdout)) self._stderr_t = Thread(target=self.read_output, args=(process.stderr, self.__stderr)) self._stdin_t = Thread(target=self.write_input) self._wait_t = Thread(target=self.wait_on_process) for t in (self._stdout_t, self._stderr_t, self._stdin_t, self._wait_t): t.daemon = True t.start() else: self.is_complete = True try: stdout, stderr = process.communicate() except: stdout, stderr = None, None try: self.rc = process.returncode except: pass self.__stdout = stdout.strip().splitlines() if stdout else [] self.__stderr = stderr.strip().splitlines() if stderr else [] if self._halt_on_nonzero and self.rc != 0: print(self.stderr) raise subprocess.CalledProcessError(self.rc, ''.join(self._commands), self.stderr) # self.dump_exception() def read_output(self, pipe, q): for line in iter(pipe.readline, b''): if line: q.put(line.strip()) elif self.is_complete: break else: time.sleep(0.1) pipe.close() def write_input(self): for line in iter(self.__stdin.get, None): if line.endswith("\n"): self._process.stdin.write(line) else: self._process.stdin.write(line + "\n") def wait_on_process(self): self.rc = self._process.wait() self.__stdin.put(None) self.is_complete = True for t in (self._stdout_t, self._stderr_t, self._stdin_t): t.join() if self._halt_on_nonzero and self.rc != 0: self.dump_exception() sys.exit() def dump_exception(self): if not self._exception: try: raise subprocess.CalledProcessError(self.rc, ''.join(self._commands), self.stderr) except subprocess.CalledProcessError as e: self._exception = e self.__echo.critical("Unable to run '%s'" % self._commands) # traceback self.print_traceback() # standard out self.print_stdout() # standard error self.print_stderr() # print debug information self.__display_exception_debug_information() if self._halt_on_nonzero: raise self._exception def __display_exception_debug_information(self): def echo_debug_info(key): if self._context and len(self._context) > 0: self.__echo.warn("\t - %s: %s" % (key, self._context[0].get(key, 'N/A'))) self.__echo.warn("The following are additional information that can be used to debug this exception.") self.__echo.warn("The following is the context used to run:") echo_debug_info('cwd') echo_debug_info('sudo') echo_debug_info('user') echo_debug_info('hostname') echo_debug_info('env') echo_debug_info('logging') echo_debug_info('executable') echo_debug_info('ssh_config') echo_debug_info('src') def __str__(self): return '\n'.join(self.stdout) def __format_line(self, msg): return '| %s' % msg def __format_lines_error(self, lines): for line in lines: self.__echo.critical(self.__format_line(line)) def __format_lines_info(self, lines): for line in lines: self.__echo.info(self.__format_line(line)) @property def stdout(self): """ Converts stdout string to a list. """ if self._streaming: stdout = [] while not self.__stdout.empty(): try: line = self.__stdout.get_nowait() stdout.append(line) except: pass else: stdout = self.__stdout return stdout @property def stderr(self): """ Converts stderr string to a list. """ if self._streaming: stderr = [] while not self.__stderr.empty(): try: line = self.__stderr.get_nowait() stderr.append(line) except: pass else: stderr = self.__stderr return stderr def stdin(self, line): """ Sends input to stdin. """ if self._streaming: self.__stdin.put(line) @property def traceback(self): """ Converts traceback string to a list. """ if self._exception: return traceback.format_exc().split("\n") else: return [] @property def is_success(self): """ Returns if the result of the command was a success. True for success, False for failure. """ return self.is_complete and self.rc == 0 @property def is_failure(self): """ Returns if the result of the command was a failure. True for failure, False for succes. """ return self.is_complete and not self.rc == 0 @property def has_exception(self): ''' Returns True if self._exception is not empty. ''' return bool(self._exception) def print_stdout(self, always_print=False): """ Prints the stdout to console - if there is any stdout, otherwise does nothing. :param always_print: print the stdout, even if there is nothing in the buffer (default: false) """ if self.__stdout or always_print: self.__echo.info("---------------" + "-" * 100) self.__format_lines_info(self.stdout) self.__echo.info("---------------" + "-" * 100) def print_stderr(self, always_print=False): """ Prints the stderr to console - if there is any stdout, otherwise does nothing. :param always_print: print the stderr, even if there is nothing in the buffer (default: false) """ if self.__stderr or always_print: self.__echo.critical("--{ STDERR }---" + "-" * 100) self.__format_lines_error(self.stderr) self.__echo.critical("---------------" + "-" * 100) def print_traceback(self, always_print=False): """ Prints the traceback to console - if there is any traceback, otherwise does nothing. :param always_print: print the traceback, even if there is nothing in the buffer (default: false) """ if self._exception or always_print: self.__echo.critical("--{ TRACEBACK }" + "-" * 100) self.__format_lines_error(self.traceback) self.__echo.critical("---------------" + "-" * 100)
[((23, 22, 23, 28), 'sultan.echo.Echo', 'Echo', ({}, {}), '()', False, 'from sultan.echo import Echo\n'), ((91, 8, 91, 18), 'sys.exit', 'sys.exit', ({}, {}), '()', False, 'import sys\n'), ((30, 28, 30, 35), 'queue.Queue', 'Queue', ({}, {}), '()', False, 'from queue import Queue\n'), ((31, 28, 31, 35), 'queue.Queue', 'Queue', ({}, {}), '()', False, 'from queue import Queue\n'), ((32, 27, 32, 34), 'queue.Queue', 'Queue', ({}, {}), '()', False, 'from queue import Queue\n'), ((34, 29, 34, 98), 'threading.Thread', 'Thread', (), '', False, 'from threading import Thread\n'), ((35, 29, 35, 98), 'threading.Thread', 'Thread', (), '', False, 'from threading import Thread\n'), ((36, 28, 36, 59), 'threading.Thread', 'Thread', (), '', False, 'from threading import Thread\n'), ((37, 27, 37, 62), 'threading.Thread', 'Thread', (), '', False, 'from threading import Thread\n'), ((71, 16, 71, 31), 'time.sleep', 'time.sleep', ({(71, 27, 71, 30): '(0.1)'}, {}), '(0.1)', False, 'import time\n'), ((200, 19, 200, 41), 'traceback.format_exc', 'traceback.format_exc', ({}, {}), '()', False, 'import traceback\n')]
orenovadia/great_expectations
great_expectations/cli/datasource.py
76ef0c4e066227f8b589a1ee6ac885618f65906e
import os import click from .util import cli_message from great_expectations.render import DefaultJinjaPageView from great_expectations.version import __version__ as __version__ def add_datasource(context): cli_message( """ ========== Datasources ========== See <blue>https://docs.greatexpectations.io/en/latest/core_concepts/datasource.html?utm_source=cli&utm_medium=init&utm_campaign={0:s}</blue> for more information about datasources. """.format(__version__.replace(".", "_")) ) data_source_selection = click.prompt( msg_prompt_choose_data_source, type=click.Choice(["1", "2", "3", "4"]), show_choices=False ) cli_message(data_source_selection) if data_source_selection == "1": # pandas path = click.prompt( msg_prompt_filesys_enter_base_path, # default='/data/', type=click.Path( exists=False, file_okay=False, dir_okay=True, readable=True ), show_default=True ) if path.startswith("./"): path = path[2:] if path.endswith("/"): basenamepath = path[:-1] else: basenamepath = path default_data_source_name = os.path.basename(basenamepath) + "__dir" data_source_name = click.prompt( msg_prompt_datasource_name, default=default_data_source_name, show_default=True ) context.add_datasource(data_source_name, "pandas", base_directory=os.path.join("..", path)) elif data_source_selection == "2": # sqlalchemy data_source_name = click.prompt( msg_prompt_datasource_name, default="mydb", show_default=True) cli_message(msg_sqlalchemy_config_connection.format( data_source_name)) drivername = click.prompt("What is the driver for the sqlalchemy connection?", default="postgres", show_default=True) host = click.prompt("What is the host for the sqlalchemy connection?", default="localhost", show_default=True) port = click.prompt("What is the port for the sqlalchemy connection?", default="5432", show_default=True) username = click.prompt("What is the username for the sqlalchemy connection?", default="postgres", show_default=True) password = click.prompt("What is the password for the sqlalchemy connection?", default="", show_default=False, hide_input=True) database = click.prompt("What is the database name for the sqlalchemy connection?", default="postgres", show_default=True) credentials = { "drivername": drivername, "host": host, "port": port, "username": username, "password": password, "database": database } context.add_profile_credentials(data_source_name, **credentials) context.add_datasource( data_source_name, "sqlalchemy", profile=data_source_name) elif data_source_selection == "3": # Spark path = click.prompt( msg_prompt_filesys_enter_base_path, default='/data/', type=click.Path( exists=True, file_okay=False, dir_okay=True, readable=True ), show_default=True ) if path.startswith("./"): path = path[2:] if path.endswith("/"): basenamepath = path[:-1] default_data_source_name = os.path.basename(basenamepath) data_source_name = click.prompt( msg_prompt_datasource_name, default=default_data_source_name, show_default=True) context.add_datasource(data_source_name, "spark", base_directory=path) # if data_source_selection == "5": # dbt # dbt_profile = click.prompt(msg_prompt_dbt_choose_profile) # log_message(msg_dbt_go_to_notebook, color="blue") # context.add_datasource("dbt", "dbt", profile=dbt_profile) if data_source_selection == "4": # None of the above cli_message(msg_unknown_data_source) print("Skipping datasource configuration. You can add a datasource later by editing the great_expectations.yml file.") return None if data_source_name != None: cli_message( """ ========== Profiling ========== Would you like to profile '{0:s}' to create candidate expectations and documentation? Please note: As of v0.7.0, profiling is still a beta feature in Great Expectations. This generation of profilers will evaluate the entire data source (without sampling) and may be very time consuming. As a rule of thumb, we recommend starting with data smaller than 100MB. To learn more about profiling, visit <blue>https://docs.greatexpectations.io/en/latest/guides/profiling.html?utm_source=cli&utm_medium=init&utm_campaign={1:s}</blue>. """.format(data_source_name, __version__.replace(".", "_")) ) if click.confirm("Proceed?", default=True ): profiling_results = context.profile_datasource( data_source_name, max_data_assets=20 ) print("\nDone.\n\nProfiling results are saved here:") for profiling_result in profiling_results: data_asset_name = profiling_result[1]['meta']['data_asset_name'] expectation_suite_name = profiling_result[1]['meta']['expectation_suite_name'] run_id = profiling_result[1]['meta']['run_id'] print(" {0:s}".format(context.get_validation_location( data_asset_name, expectation_suite_name, run_id)['filepath'])) cli_message( """ ========== Data Documentation ========== To generate documentation from the data you just profiled, the profiling results should be moved from great_expectations/uncommitted (ignored by git) to great_expectations/fixtures. Before committing, please make sure that this data does not contain sensitive information! To learn more: <blue>https://docs.greatexpectations.io/en/latest/guides/data_documentation.html?utm_source=cli&utm_medium=init&utm_campaign={0:s}</blue> """.format(__version__.replace(".", "_")) ) if click.confirm("Move the profiled data and build HTML documentation?", default=True ): cli_message("\nMoving files...") for profiling_result in profiling_results: data_asset_name = profiling_result[1]['meta']['data_asset_name'] expectation_suite_name = profiling_result[1]['meta']['expectation_suite_name'] run_id = profiling_result[1]['meta']['run_id'] context.move_validation_to_fixtures( data_asset_name, expectation_suite_name, run_id) cli_message("\nDone.") cli_message("\nBuilding documentation...") context.render_full_static_site() cli_message( """ To view the generated data documentation, open this file in a web browser: <green>great_expectations/uncommitted/documentation/index.html</green> """) else: cli_message( "Okay, skipping HTML documentation for now.`." ) else: cli_message( "Okay, skipping profiling for now. You can always do this later by running `great_expectations profile`." ) if data_source_selection == "1": # Pandas cli_message(msg_filesys_go_to_notebook) elif data_source_selection == "2": # SQL cli_message(msg_sqlalchemy_go_to_notebook) elif data_source_selection == "3": # Spark cli_message(msg_spark_go_to_notebook) msg_prompt_choose_data_source = """ Configure a datasource: 1. Pandas DataFrame 2. Relational database (SQL) 3. Spark DataFrame 4. Skip datasource configuration """ # msg_prompt_dbt_choose_profile = """ # Please specify the name of the dbt profile (from your ~/.dbt/profiles.yml file Great Expectations \ # should use to connect to the database # """ # msg_dbt_go_to_notebook = """ # To create expectations for your dbt models start Jupyter and open notebook # great_expectations/notebooks/using_great_expectations_with_dbt.ipynb - # it will walk you through next steps. # """ msg_prompt_filesys_enter_base_path = """ Enter the path of the root directory where the data files are stored. (The path may be either absolute or relative to current directory.) """ msg_prompt_datasource_name = """ Give your new data source a short name. """ msg_sqlalchemy_config_connection = """ Great Expectations relies on sqlalchemy to connect to relational databases. Please make sure that you have it installed. Next, we will configure database credentials and store them in the "{0:s}" section of this config file: great_expectations/uncommitted/credentials/profiles.yml: """ msg_unknown_data_source = """ We are looking for more types of data types to support. Please create a GitHub issue here: https://github.com/great-expectations/great_expectations/issues/new In the meantime you can see what Great Expectations can do on CSV files. To create expectations for your CSV files start Jupyter and open notebook great_expectations/notebooks/using_great_expectations_with_pandas.ipynb - it will walk you through configuring the database connection and next steps. """ msg_filesys_go_to_notebook = """ To create expectations for your data, start Jupyter and open a tutorial notebook: To launch with jupyter notebooks: <green>jupyter notebook great_expectations/notebooks/create_expectations.ipynb</green> To launch with jupyter lab: <green>jupyter lab great_expectations/notebooks/create_expectations.ipynb</green> """ msg_sqlalchemy_go_to_notebook = """ To create expectations for your data start Jupyter and open the notebook that will walk you through next steps. To launch with jupyter notebooks: <green>jupyter notebook great_expectations/notebooks/create_expectations.ipynb</green> To launch with jupyter lab: <green>jupyter lab great_expectations/notebooks/create_expectations.ipynb</green> """ msg_spark_go_to_notebook = """ To create expectations for your data start Jupyter and open the notebook that will walk you through next steps. To launch with jupyter notebooks: <green>jupyter notebook great_expectations/notebooks/create_expectations.ipynb</green> To launch with jupyter lab: <green>jupyter lab great_expectations/notebooks/create_expectations.ipynb</green> """
[((46, 27, 50, 9), 'click.prompt', 'click.prompt', (), '', False, 'import click\n'), ((135, 11, 137, 26), 'click.confirm', 'click.confirm', (), '', False, 'import click\n'), ((15, 11, 15, 40), 'great_expectations.version.__version__.replace', '__version__.replace', ({(15, 31, 15, 34): '"""."""', (15, 36, 15, 39): '"""_"""'}, {}), "('.', '_')", True, 'from great_expectations.version import __version__ as __version__\n'), ((19, 13, 19, 47), 'click.Choice', 'click.Choice', ({(19, 26, 19, 46): "['1', '2', '3', '4']"}, {}), "(['1', '2', '3', '4'])", False, 'import click\n'), ((45, 35, 45, 65), 'os.path.basename', 'os.path.basename', ({(45, 52, 45, 64): 'basenamepath'}, {}), '(basenamepath)', False, 'import os\n'), ((56, 27, 57, 74), 'click.prompt', 'click.prompt', (), '', False, 'import click\n'), ((62, 21, 63, 52), 'click.prompt', 'click.prompt', (), '', False, 'import click\n'), ((64, 15, 65, 46), 'click.prompt', 'click.prompt', (), '', False, 'import click\n'), ((66, 15, 67, 46), 'click.prompt', 'click.prompt', (), '', False, 'import click\n'), ((68, 19, 69, 50), 'click.prompt', 'click.prompt', (), '', False, 'import click\n'), ((70, 19, 71, 68), 'click.prompt', 'click.prompt', (), '', False, 'import click\n'), ((72, 19, 73, 50), 'click.prompt', 'click.prompt', (), '', False, 'import click\n'), ((164, 15, 166, 30), 'click.confirm', 'click.confirm', (), '', False, 'import click\n'), ((29, 17, 34, 13), 'click.Path', 'click.Path', (), '', False, 'import click\n'), ((53, 46, 53, 70), 'os.path.join', 'os.path.join', ({(53, 59, 53, 63): '""".."""', (53, 65, 53, 69): 'path'}, {}), "('..', path)", False, 'import os\n'), ((105, 35, 105, 65), 'os.path.basename', 'os.path.basename', ({(105, 52, 105, 64): 'basenamepath'}, {}), '(basenamepath)', False, 'import os\n'), ((106, 27, 107, 92), 'click.prompt', 'click.prompt', (), '', False, 'import click\n'), ((133, 41, 133, 70), 'great_expectations.version.__version__.replace', '__version__.replace', ({(133, 61, 133, 64): '"""."""', (133, 66, 133, 69): '"""_"""'}, {}), "('.', '_')", True, 'from great_expectations.version import __version__ as __version__\n'), ((162, 11, 162, 40), 'great_expectations.version.__version__.replace', '__version__.replace', ({(162, 31, 162, 34): '"""."""', (162, 36, 162, 39): '"""_"""'}, {}), "('.', '_')", True, 'from great_expectations.version import __version__ as __version__\n'), ((92, 17, 97, 13), 'click.Path', 'click.Path', (), '', False, 'import click\n')]
rgb-24bit/code-library
python/crawler/downloader.py
8da8336e241e1428b2b46c6939bd5e9eadcf3e68
# -*- coding: utf-8 -*- """ Provide download function by request """ from datetime import datetime import logging import time import urllib.parse import requests from bs4 import BeautifulSoup class Throttle(object): """Throttle downloading by sleeping between requests to same domain.""" def __init__(self, delay): # amount of delay between downloads for each domain self.delay = delay # timestamp of when a domain was last accessed self.domains = {} def wait(self, url): domain = urllib.parse.urlparse(url).netloc last_accessed = self.domains.get(domain) if self.delay > 0 and last_accessed is not None: sleep_secs = self.delay - (datetime.now() - last_accessed).seconds if sleep_secs > 0: time.sleep(sleep_secs) self.domains[domain] = datetime.now() class Downloader(object): """Convenient download of web pages or caller to call api. Args: delay: Interval between downloads (seconds) num_retries: Number of retries when downloading errors timeout: Download timeout """ def __init__(self, delay=5, user_agent='awsl', proxies=None, num_retries=1, timeout=60, cache=None, auth=None): self.session = requests.Session() self.session.headers.update({'user-agent': user_agent}) self.session.proxies = proxies self.session.auth = auth self.throttle = Throttle(delay) self.num_retries = num_retries self.timeout = timeout self.cache = cache def get_from_cache(self, request): """Try to get the result of the request from the cache.""" result = None if self.cache: result = self.cache.get(request.url) if result and self.num_retries > 0 and 500 <= result['code'] < 600: result = None return result def prepare_request(self, url, params=None): """Build requests based on the provided url and parameters.""" request = requests.Request('GET', url, params=params) return self.session.prepare_request(request) def send_request(self, request, num_retries): """Send request and return response object.""" self.throttle.wait(request.url) try: logging.info('Downloading: %s' % request.url) response = self.session.send(request, timeout=self.timeout) response.raise_for_status() except requests.exceptions.HTTPError as e: logging.warn('Download error: %s' % e) if num_retries > 0 and 500 <= response.status_code < 600: return self.send_request(request, num_retries - 1) except requests.exceptions.RequestException: logging.error('Download faild: %s' % request.url) response = None return response def text(self, url, params=None, encoding=None): """Download web content in text format or html.""" request = self.prepare_request(url, params) result = self.get_from_cache(request) if result is None: response = self.send_request(request, self.num_retries) if response: if encoding: response.encoding = encoding result = {'text': response.text, 'code': response.status_code} if self.cache: self.cache[request.url] = result return result['text'] def json(self, url, params=None): """Access the api and return the json object.""" request = self.prepare_request(url, params) result = self.get_from_cache(request) if result is None: response = self.send_request(request, self.num_retries) if response: result = {'json': response.json(), 'code': response.status_code} if self.cache: self.cache[request.url] = result return result['json']
[((32, 31, 32, 45), 'datetime.datetime.now', 'datetime.now', ({}, {}), '()', False, 'from datetime import datetime\n'), ((45, 23, 45, 41), 'requests.Session', 'requests.Session', ({}, {}), '()', False, 'import requests\n'), ((65, 18, 65, 61), 'requests.Request', 'requests.Request', (), '', False, 'import requests\n'), ((72, 12, 72, 57), 'logging.info', 'logging.info', ({(72, 25, 72, 56): "('Downloading: %s' % request.url)"}, {}), "('Downloading: %s' % request.url)", False, 'import logging\n'), ((31, 16, 31, 38), 'time.sleep', 'time.sleep', ({(31, 27, 31, 37): 'sleep_secs'}, {}), '(sleep_secs)', False, 'import time\n'), ((76, 12, 76, 50), 'logging.warn', 'logging.warn', ({(76, 25, 76, 49): "('Download error: %s' % e)"}, {}), "('Download error: %s' % e)", False, 'import logging\n'), ((80, 12, 80, 61), 'logging.error', 'logging.error', ({(80, 26, 80, 60): "('Download faild: %s' % request.url)"}, {}), "('Download faild: %s' % request.url)", False, 'import logging\n'), ((29, 39, 29, 53), 'datetime.datetime.now', 'datetime.now', ({}, {}), '()', False, 'from datetime import datetime\n')]
pisskidney/leetcode
medium/151.py
08c19cbf3d7afc897908ea05db4ad11a5487f523
#!/usr/bin/python class Solution(object): def reverseWords(self, s): if s == '': return s res = [] i = len(s) - 2 while i >= -1: if s[i] == ' ' or i == -1: word = '' j = i + 1 while j < len(s) and s[j] != ' ': word += s[j] j += 1 if word: res.append(word) i -= 1 return ' '.join(res) s = Solution() print s.reverseWords('a x')
[]
ecederstrand/python-keycloak
src/keycloak/connection.py
77686a2764a3fcba092d78e02f42a58c7214c30e
# -*- coding: utf-8 -*- # # The MIT License (MIT) # # Copyright (C) 2017 Marcos Pereira <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. try: from urllib.parse import urljoin except ImportError: from urlparse import urljoin import requests from requests.adapters import HTTPAdapter from .exceptions import KeycloakConnectionError class ConnectionManager(object): """ Represents a simple server connection. :param base_url: (str) The server URL. :param headers: (dict) The header parameters of the requests to the server. :param timeout: (int) Timeout to use for requests to the server. :param verify: (bool) Verify server SSL. :param proxies: (dict) The proxies servers requests is sent by. """ def __init__(self, base_url, headers={}, timeout=60, verify=True, proxies=None): self._base_url = base_url self._headers = headers self._timeout = timeout self._verify = verify self._s = requests.Session() self._s.auth = lambda x: x # don't let requests add auth headers # retry once to reset connection with Keycloak after tomcat's ConnectionTimeout # see https://github.com/marcospereirampj/python-keycloak/issues/36 for protocol in ("https://", "http://"): adapter = HTTPAdapter(max_retries=1) # adds POST to retry whitelist allowed_methods = set(adapter.max_retries.allowed_methods) allowed_methods.add("POST") adapter.max_retries.allowed_methods = frozenset(allowed_methods) self._s.mount(protocol, adapter) if proxies: self._s.proxies.update(proxies) def __del__(self): self._s.close() @property def base_url(self): """Return base url in use for requests to the server.""" return self._base_url @base_url.setter def base_url(self, value): """ """ self._base_url = value @property def timeout(self): """Return timeout in use for request to the server.""" return self._timeout @timeout.setter def timeout(self, value): """ """ self._timeout = value @property def verify(self): """Return verify in use for request to the server.""" return self._verify @verify.setter def verify(self, value): """ """ self._verify = value @property def headers(self): """Return header request to the server.""" return self._headers @headers.setter def headers(self, value): """ """ self._headers = value def param_headers(self, key): """ Return a specific header parameter. :param key: (str) Header parameters key. :returns: If the header parameters exist, return its value. """ return self.headers.get(key) def clean_headers(self): """Clear header parameters.""" self.headers = {} def exist_param_headers(self, key): """Check if the parameter exists in the header. :param key: (str) Header parameters key. :returns: If the header parameters exist, return True. """ return self.param_headers(key) is not None def add_param_headers(self, key, value): """Add a single parameter inside the header. :param key: (str) Header parameters key. :param value: (str) Value to be added. """ self.headers[key] = value def del_param_headers(self, key): """Remove a specific parameter. :param key: (str) Key of the header parameters. """ self.headers.pop(key, None) def raw_get(self, path, **kwargs): """Submit get request to the path. :param path: (str) Path for request. :returns: Response the request. :raises: HttpError Can't connect to server. """ try: return self._s.get( urljoin(self.base_url, path), params=kwargs, headers=self.headers, timeout=self.timeout, verify=self.verify, ) except Exception as e: raise KeycloakConnectionError("Can't connect to server (%s)" % e) def raw_post(self, path, data, **kwargs): """Submit post request to the path. :param path: (str) Path for request. :param data: (dict) Payload for request. :returns: Response the request. :raises: HttpError Can't connect to server. """ try: return self._s.post( urljoin(self.base_url, path), params=kwargs, data=data, headers=self.headers, timeout=self.timeout, verify=self.verify, ) except Exception as e: raise KeycloakConnectionError("Can't connect to server (%s)" % e) def raw_put(self, path, data, **kwargs): """Submit put request to the path. :param path: (str) Path for request. :param data: (dict) Payload for request. :returns: Response the request. :raises: HttpError Can't connect to server. """ try: return self._s.put( urljoin(self.base_url, path), params=kwargs, data=data, headers=self.headers, timeout=self.timeout, verify=self.verify, ) except Exception as e: raise KeycloakConnectionError("Can't connect to server (%s)" % e) def raw_delete(self, path, data={}, **kwargs): """Submit delete request to the path. :param path: (str) Path for request. :param data: (dict) Payload for request. :returns: Response the request. :raises: HttpError Can't connect to server. """ try: return self._s.delete( urljoin(self.base_url, path), params=kwargs, data=data, headers=self.headers, timeout=self.timeout, verify=self.verify, ) except Exception as e: raise KeycloakConnectionError("Can't connect to server (%s)" % e)
[((51, 18, 51, 36), 'requests.Session', 'requests.Session', ({}, {}), '()', False, 'import requests\n'), ((57, 22, 57, 48), 'requests.adapters.HTTPAdapter', 'HTTPAdapter', (), '', False, 'from requests.adapters import HTTPAdapter\n'), ((157, 16, 157, 44), 'urlparse.urljoin', 'urljoin', ({(157, 24, 157, 37): 'self.base_url', (157, 39, 157, 43): 'path'}, {}), '(self.base_url, path)', False, 'from urlparse import urljoin\n'), ((176, 16, 176, 44), 'urlparse.urljoin', 'urljoin', ({(176, 24, 176, 37): 'self.base_url', (176, 39, 176, 43): 'path'}, {}), '(self.base_url, path)', False, 'from urlparse import urljoin\n'), ((196, 16, 196, 44), 'urlparse.urljoin', 'urljoin', ({(196, 24, 196, 37): 'self.base_url', (196, 39, 196, 43): 'path'}, {}), '(self.base_url, path)', False, 'from urlparse import urljoin\n'), ((216, 16, 216, 44), 'urlparse.urljoin', 'urljoin', ({(216, 24, 216, 37): 'self.base_url', (216, 39, 216, 43): 'path'}, {}), '(self.base_url, path)', False, 'from urlparse import urljoin\n')]
Valokoodari/advent-of-code
2020/23.py
c664987f739e0b07ddad34bad87d56768556a5a5
#!venv/bin/python3 cs = [int(c) for c in open("inputs/23.in", "r").readline().strip()] def f(cs, ts): p,cc = {n: cs[(i+1)%len(cs)] for i,n in enumerate(cs)},cs[-1] for _ in range(ts): cc,dc = p[cc],p[cc]-1 if p[cc]-1 > 0 else max(p.keys()) hc,p[cc] = [p[cc], p[p[cc]], p[p[p[cc]]]],p[p[p[p[cc]]]] while dc in hc: dc -= 1 if dc < 1: dc = max(p.keys()) p[dc],p[hc[-1]] = hc[0],p[dc] a,n = [],1 for _ in range(8): n = p[n] a.append(str(n)) return "".join(a), p[1] * p[p[1]] print("Part 1:", f(cs.copy(), 100)[0]) print("Part 2:", f(cs.copy() + [i for i in range(10, 1000001)], 10000000)[1])
[]
jakewright/home-automation-device-registry
run.py
b073966b1dc259a6997c47f8d369f51dee9cbbf3
# Import the application from device_registry import app # Run the application in debug mode app.run(host='0.0.0.0', port=int(app.config['PORT']), debug=True)
[]
Abrosimov-a-a/dvc
dvc/utils/stage.py
93280c937b9160003afb0d2f3fd473c03d6d9673
import yaml from ruamel.yaml import YAML from ruamel.yaml.error import YAMLError try: from yaml import CSafeLoader as SafeLoader except ImportError: from yaml import SafeLoader from dvc.exceptions import StageFileCorruptedError from dvc.utils.compat import open def load_stage_file(path): with open(path, "r", encoding="utf-8") as fd: return parse_stage(fd.read(), path) def parse_stage(text, path): try: return yaml.load(text, Loader=SafeLoader) or {} except yaml.error.YAMLError as exc: raise StageFileCorruptedError(path, cause=exc) def parse_stage_for_update(text, path): """Parses text into Python structure. Unlike `parse_stage()` this returns ordered dicts, values have special attributes to store comments and line breaks. This allows us to preserve all of those upon dump. This one is, however, several times slower than simple `parse_stage()`. """ try: yaml = YAML() return yaml.load(text) or {} except YAMLError as exc: raise StageFileCorruptedError(path, cause=exc) def dump_stage_file(path, data): with open(path, "w", encoding="utf-8") as fd: yaml = YAML() yaml.default_flow_style = False yaml.dump(data, fd)
[((15, 9, 15, 42), 'dvc.utils.compat.open', 'open', (), '', False, 'from dvc.utils.compat import open\n'), ((36, 15, 36, 21), 'ruamel.yaml.YAML', 'YAML', ({}, {}), '()', False, 'from ruamel.yaml import YAML\n'), ((43, 9, 43, 42), 'dvc.utils.compat.open', 'open', (), '', False, 'from dvc.utils.compat import open\n'), ((44, 15, 44, 21), 'ruamel.yaml.YAML', 'YAML', ({}, {}), '()', False, 'from ruamel.yaml import YAML\n'), ((23, 14, 23, 54), 'dvc.exceptions.StageFileCorruptedError', 'StageFileCorruptedError', (), '', False, 'from dvc.exceptions import StageFileCorruptedError\n'), ((39, 14, 39, 54), 'dvc.exceptions.StageFileCorruptedError', 'StageFileCorruptedError', (), '', False, 'from dvc.exceptions import StageFileCorruptedError\n')]
Arguel/old-projects
CAMPODETIRO/test.py
2e5f594a6303b2e137acf555569eca98aab08054
entrada = input("palabra") listaDeLetras = [] for i in entrada: listaDeLetras.append(i)
[]
fire-breathing-rubber-lemons/cs207-FinalProject
demos/nn_classification_demo.py
92d1d7d70637e2478effb01c9ce56199e0f873c9
import numpy as np from pyad.nn import NeuralNet from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split np.random.seed(0) data = load_breast_cancer() X_train, X_test, y_train, y_test = train_test_split( data.data, data.target, train_size=0.8, random_state=0 ) nn = NeuralNet(loss_fn='cross_entropy') nn.add_layer(X_train.shape[1], 100, activation='linear') nn.add_layer(100, 100, activation='logistic') nn.add_layer(100, 1 + np.max(y_train), activation='linear') nn.train( X_train, y_train, X_test, y_test, batch_size=1, learning_rate=1e-3, epochs=20 ) print('Predictions:', nn.predict(X_test))
[((6, 0, 6, 17), 'numpy.random.seed', 'np.random.seed', ({(6, 15, 6, 16): '(0)'}, {}), '(0)', True, 'import numpy as np\n'), ((7, 7, 7, 27), 'sklearn.datasets.load_breast_cancer', 'load_breast_cancer', ({}, {}), '()', False, 'from sklearn.datasets import load_breast_cancer\n'), ((9, 35, 11, 1), 'sklearn.model_selection.train_test_split', 'train_test_split', (), '', False, 'from sklearn.model_selection import train_test_split\n'), ((13, 5, 13, 39), 'pyad.nn.NeuralNet', 'NeuralNet', (), '', False, 'from pyad.nn import NeuralNet\n'), ((16, 22, 16, 37), 'numpy.max', 'np.max', ({(16, 29, 16, 36): 'y_train'}, {}), '(y_train)', True, 'import numpy as np\n')]
zobclub/chapter8
mgatemp.py
fbd9e8711747b7446f75b472bae1465fe0ab495c
from microbit import * I2CADR = 0x0E DIE_TEMP = 0x0F while True: i2c.write(I2CADR, bytearray([DIE_TEMP])) d = i2c.read(I2CADR, 1) x = d[0] if x >=128: x -= 256 x += 10 print(x) sleep(500)
[]
splovyt/SFPython-Project-Night
utils/nlp.py
50f20f581e074401d59d91457bac2a69631bef61
import ssl import nltk from textblob import TextBlob from nltk.corpus import stopwords # set SSL try: _create_unverified_https_context = ssl._create_unverified_context except AttributeError: pass else: ssl._create_default_https_context = _create_unverified_https_context # download noun data (if required) nltk.download('brown') nltk.download('punkt') nltk.download('stopwords') def extract_nouns(sentence): """Extract the nouns from a sentence using the 'textblob' library.""" blob = TextBlob(sentence) return blob.noun_phrases def remove_stopwords(sentence): """Remove stopwords from a sentence and return the list of words.""" blob = TextBlob(sentence) return [word for word in blob.words if word not in stopwords.words('english') and len(word)>2]
[((17, 0, 17, 22), 'nltk.download', 'nltk.download', ({(17, 14, 17, 21): '"""brown"""'}, {}), "('brown')", False, 'import nltk\n'), ((18, 0, 18, 22), 'nltk.download', 'nltk.download', ({(18, 14, 18, 21): '"""punkt"""'}, {}), "('punkt')", False, 'import nltk\n'), ((19, 0, 19, 26), 'nltk.download', 'nltk.download', ({(19, 14, 19, 25): '"""stopwords"""'}, {}), "('stopwords')", False, 'import nltk\n'), ((23, 11, 23, 29), 'textblob.TextBlob', 'TextBlob', ({(23, 20, 23, 28): 'sentence'}, {}), '(sentence)', False, 'from textblob import TextBlob\n'), ((28, 11, 28, 29), 'textblob.TextBlob', 'TextBlob', ({(28, 20, 28, 28): 'sentence'}, {}), '(sentence)', False, 'from textblob import TextBlob\n'), ((29, 55, 29, 81), 'nltk.corpus.stopwords.words', 'stopwords.words', ({(29, 71, 29, 80): '"""english"""'}, {}), "('english')", False, 'from nltk.corpus import stopwords\n')]
akshedu/toolbox
toolbox/core/management/commands/celery_beat_resource_scraper.py
7c647433b68f1098ee4c8623f836f74785dc970c
from django_celery_beat.models import PeriodicTask, IntervalSchedule from django.core.management.base import BaseCommand from django.db import IntegrityError class Command(BaseCommand): def handle(self, *args, **options): try: schedule_channel, created = IntervalSchedule.objects.get_or_create( every=4, period=IntervalSchedule.HOURS, ) except IntegrityError as e: pass try: schedule_video, created = IntervalSchedule.objects.get_or_create( every=6, period=IntervalSchedule.HOURS, ) except IntegrityError as e: pass try: PeriodicTask.objects.create( interval=schedule_channel, name='Scrape Channels', task='toolbox.scraper.tasks.scrape_youtube_channels', ) except IntegrityError as e: pass try: PeriodicTask.objects.create( interval=schedule_video, name='Scrape Videos', task='toolbox.scraper.tasks.scrape_youtube_videos', ) except IntegrityError as e: pass
[((10, 40, 13, 33), 'django_celery_beat.models.IntervalSchedule.objects.get_or_create', 'IntervalSchedule.objects.get_or_create', (), '', False, 'from django_celery_beat.models import PeriodicTask, IntervalSchedule\n'), ((18, 38, 21, 33), 'django_celery_beat.models.IntervalSchedule.objects.get_or_create', 'IntervalSchedule.objects.get_or_create', (), '', False, 'from django_celery_beat.models import PeriodicTask, IntervalSchedule\n'), ((26, 12, 30, 13), 'django_celery_beat.models.PeriodicTask.objects.create', 'PeriodicTask.objects.create', (), '', False, 'from django_celery_beat.models import PeriodicTask, IntervalSchedule\n'), ((35, 12, 39, 13), 'django_celery_beat.models.PeriodicTask.objects.create', 'PeriodicTask.objects.create', (), '', False, 'from django_celery_beat.models import PeriodicTask, IntervalSchedule\n')]
zhusonghe/PaddleClas-1
ppcls/data/preprocess/__init__.py
e2e492f9c78ed5084cc50d7c45eef4cc41e1eeaf
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ppcls.data.preprocess.ops.autoaugment import ImageNetPolicy as RawImageNetPolicy from ppcls.data.preprocess.ops.randaugment import RandAugment as RawRandAugment from ppcls.data.preprocess.ops.timm_autoaugment import RawTimmAutoAugment from ppcls.data.preprocess.ops.cutout import Cutout from ppcls.data.preprocess.ops.hide_and_seek import HideAndSeek from ppcls.data.preprocess.ops.random_erasing import RandomErasing from ppcls.data.preprocess.ops.grid import GridMask from ppcls.data.preprocess.ops.operators import DecodeImage from ppcls.data.preprocess.ops.operators import ResizeImage from ppcls.data.preprocess.ops.operators import CropImage from ppcls.data.preprocess.ops.operators import RandCropImage from ppcls.data.preprocess.ops.operators import RandFlipImage from ppcls.data.preprocess.ops.operators import NormalizeImage from ppcls.data.preprocess.ops.operators import ToCHWImage from ppcls.data.preprocess.ops.operators import AugMix from ppcls.data.preprocess.batch_ops.batch_operators import MixupOperator, CutmixOperator, OpSampler, FmixOperator import numpy as np from PIL import Image def transform(data, ops=[]): """ transform """ for op in ops: data = op(data) return data class AutoAugment(RawImageNetPolicy): """ ImageNetPolicy wrapper to auto fit different img types """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __call__(self, img): if not isinstance(img, Image.Image): img = np.ascontiguousarray(img) img = Image.fromarray(img) img = super().__call__(img) if isinstance(img, Image.Image): img = np.asarray(img) return img class RandAugment(RawRandAugment): """ RandAugment wrapper to auto fit different img types """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __call__(self, img): if not isinstance(img, Image.Image): img = np.ascontiguousarray(img) img = Image.fromarray(img) img = super().__call__(img) if isinstance(img, Image.Image): img = np.asarray(img) return img class TimmAutoAugment(RawTimmAutoAugment): """ TimmAutoAugment wrapper to auto fit different img tyeps. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __call__(self, img): if not isinstance(img, Image.Image): img = np.ascontiguousarray(img) img = Image.fromarray(img) img = super().__call__(img) if isinstance(img, Image.Image): img = np.asarray(img) return img
[((54, 18, 54, 43), 'numpy.ascontiguousarray', 'np.ascontiguousarray', ({(54, 39, 54, 42): 'img'}, {}), '(img)', True, 'import numpy as np\n'), ((55, 18, 55, 38), 'PIL.Image.fromarray', 'Image.fromarray', ({(55, 34, 55, 37): 'img'}, {}), '(img)', False, 'from PIL import Image\n'), ((60, 18, 60, 33), 'numpy.asarray', 'np.asarray', ({(60, 29, 60, 32): 'img'}, {}), '(img)', True, 'import numpy as np\n'), ((73, 18, 73, 43), 'numpy.ascontiguousarray', 'np.ascontiguousarray', ({(73, 39, 73, 42): 'img'}, {}), '(img)', True, 'import numpy as np\n'), ((74, 18, 74, 38), 'PIL.Image.fromarray', 'Image.fromarray', ({(74, 34, 74, 37): 'img'}, {}), '(img)', False, 'from PIL import Image\n'), ((79, 18, 79, 33), 'numpy.asarray', 'np.asarray', ({(79, 29, 79, 32): 'img'}, {}), '(img)', True, 'import numpy as np\n'), ((92, 18, 92, 43), 'numpy.ascontiguousarray', 'np.ascontiguousarray', ({(92, 39, 92, 42): 'img'}, {}), '(img)', True, 'import numpy as np\n'), ((93, 18, 93, 38), 'PIL.Image.fromarray', 'Image.fromarray', ({(93, 34, 93, 37): 'img'}, {}), '(img)', False, 'from PIL import Image\n'), ((98, 18, 98, 33), 'numpy.asarray', 'np.asarray', ({(98, 29, 98, 32): 'img'}, {}), '(img)', True, 'import numpy as np\n')]
scheeloong/lindaedynamics_icml2018
src/scalar_net/visualisations.py
d03b450e254d33b019161a3cd015e44aafe407cb
# required modules import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib import cm from matplotlib.colors import Normalize from mpl_toolkits.mplot3d import Axes3D from matplotlib.animation import FuncAnimation # two-dimesional version def plot_mse_loss_surface_2d(fig, ax, x, y, v=0.0, l2=0.0, w1_range=(-2, 2), w2_range=(2, -2)): # create weight space n_w = 100 w1 = np.linspace(w1_range[0], w1_range[1], num=n_w) # weight 1 w2 = np.linspace(w2_range[0], w2_range[1], num=n_w) # weight 2 ws_x, ws_y = np.meshgrid(w1, w2) cost_ws = np.zeros((n_w, n_w)) # initialize cost matrix # Fill the cost matrix for each combination of weights for i in range(n_w): for j in range(n_w): y_pred = ws_x[i, j] * ws_y[i, j] * x y_true = y cost_ws[i, j] = 0.5 * (y_true - y_pred)**2 + \ 0.5 * l2 * (ws_x[i, j]**2 + ws_y[i, j]**2) + 0.5 * v * (ws_x[i, j]*ws_y[i, j])**2 # compute gradients dy, dx = np.gradient(cost_ws) # plot vector space skip = (slice(None, None, 5), slice(None, None, 5)) # fig, ax = plt.subplots(figsize=(8, 8)) #ax.contour(ws_x, ws_y, cost_ws, 200) im = ax.imshow(cost_ws, extent=[ws_x.min(), ws_x.max( ), ws_y.min(), ws_y.max()], cmap=cm.coolwarm) ax.quiver(ws_x[skip], ws_y[skip], -dx[skip], dy[skip], cost_ws[skip]) cbar = fig.colorbar(im, ax=ax) # ax.set(aspect=1, title='Loss Surface') cbar.ax.set_ylabel('$Loss$', fontsize=15) ax.set_xlabel('$w_1$', fontsize=15) ax.set_ylabel('$w_2$', fontsize=15) # ax.grid() # add saddle point ax.scatter(0, 0, label='Saddle point', c='red', marker='*') # ax.scatter(0,0, c='black', marker=r'$\rightarrow$', label='Negative gradient') settings = (x, y, v, l2, w1_range, w2_range) return ax, settings # three-dimensional version def plot_mse_loss_surface_3d(ax, x, y, v=0.0, l2=0.0, w1_range=(-2, 2), w2_range=(2, -2), angle=30): # create weight space n_w = 100 w1 = np.linspace(w1_range[0], w1_range[1], num=n_w) # weight 1 w2 = np.linspace(w2_range[0], w2_range[1], num=n_w) # weight 2 ws_x, ws_y = np.meshgrid(w1, w2) cost_ws = np.zeros((n_w, n_w)) # initialize cost matrix # Fill the cost matrix for each combination of weights for i in range(n_w): for j in range(n_w): y_pred = ws_x[i, j] * ws_y[i, j] * x y_true = y cost_ws[i, j] = 0.5 * (y_true - y_pred)**2 + \ 0.5 * l2 * (ws_x[i, j]**2 + ws_y[i, j]**2) + 0.5 * v * (ws_x[i, j]*ws_y[i, j])**2 X = ws_x Y = ws_y Z = cost_ws #fig, ax = plt.subplots(figsize=(8, 8)) #ax = fig.add_subplot(1,1,1, projection='3d') # fourth dimention - colormap # create colormap according to x-value (can use any 50x50 array) color_dimension = Z # change to desired fourth dimension minn, maxx = color_dimension.min(), color_dimension.max() norm = Normalize(minn, maxx) m = plt.cm.ScalarMappable(norm=norm, cmap='jet') m.set_array([]) fcolors = m.to_rgba(color_dimension) # plot # fig = plt.figure(figsize=(8, 8)) # ax = fig.gca(projection='3d') ax.set_zlim(0, 50) ax.plot([0], [0], 'ro', c='red', marker='*', label='Saddle point') ax.plot_surface(X, Y, Z, rstride=1, cstride=1, facecolors=fcolors, vmin=minn, vmax=maxx, shade=False, alpha=1) ax.set_xlabel('$w_1$', fontsize=20) ax.set_ylabel('$w_2$', fontsize=20) ax.set_zlabel('$Loss$', fontsize=20) settings = (x, y, v, l2, w1_range, w2_range) ax.view_init(angle, 10) return ax, settings def plot_global_minimum_manifold_2d(ax, settings): # retieve cached settings x, y, v, l2, w1_range, w2_range = settings n_w = 1000 man_w1 = np.linspace(w1_range[0], w1_range[1], num=n_w) man_w2 = np.linspace(w2_range[0], w2_range[1], num=n_w) man_ws_x, man_ws_y = np.meshgrid(man_w1, man_w2) loss = 0.5 * y *(1 - man_ws_x * man_ws_y * x)**2 + \ 0.5 * l2 * (man_ws_x**2 + man_ws_y**2) + 0.5 * v * (man_ws_x * man_ws_y)**2 min_loss = np.min(loss) manifold_indices = loss < min_loss + 1e-5 manifold_x = man_ws_x[manifold_indices] manifold_y = man_ws_y[manifold_indices] # plot manifold of global minima ax.scatter(manifold_y, manifold_x, s=0.1, c='cyan', label='Manifold of global minima') def plot_global_minimum_manifold_3d(ax, settings): # retieve cached settings x, y, v, l2, w1_range, w2_range = settings n_w = 1000 man_w1 = np.linspace(w1_range[0], w1_range[1], num=n_w) man_w2 = np.linspace(w2_range[0], w2_range[1], num=n_w) man_ws_x, man_ws_y = np.meshgrid(man_w1, man_w2) loss = 0.5 * y * (1 - man_ws_x * man_ws_y * x)**2 + \ 0.5 * l2 * (man_ws_x**2 + man_ws_y**2) + 0.5 * v * (man_ws_x*man_ws_y)**2 min_loss = np.min(loss) manifold_indices = loss < min_loss + 1e-5 manifold_x = man_ws_x[manifold_indices] manifold_y = man_ws_y[manifold_indices] pos = np.where(np.abs(np.diff(manifold_y)) >= 0.1)[0]+1 x = np.insert(manifold_x, pos, np.nan) y = np.insert(manifold_y, pos, np.nan) # plot manifold of global minima #ax.scatter(manifold_y, manifold_x, 0, s=0.5, c='cyan', # label='Manifold of global minima') ax.plot(y, x, c='cyan', label='Manifold of global minima') def plot_optimiser_trajectory_2d(ax, weights, **kwargs): w1_vals = weights['w1'] w2_vals = weights['w2'] ax.plot(w1_vals, w2_vals, **kwargs) def plot_optimiser_trajectory_3d(ax, settings, weights, **kwargs): x, y, v, l2, _, _ = settings w1_vals = np.array(weights['w1']) w2_vals = np.array(weights['w2']) loss = 0.5 * y * (1 - w1_vals * w2_vals * x)**2 + \ 0.5 * l2 * (w1_vals**2 + w2_vals**2) + 0.5 * v * (w1_vals*w2_vals)**2 ax.plot(w1_vals, w2_vals, loss, **kwargs) def plot_optimiser_trajectory(x, y, weights, dim='2d', angle=45, manifold=False, **kwargs): if dim == '3d': ax, settings = plot_mse_loss_surface_3d(x, y, angle=angle) if manifold: plot_global_minimum_manifold_3d(ax, settings) plot_optimiser_trajectory_3d(ax, settings, weights, **kwargs) else: ax, settings = plot_mse_loss_surface_2d(x, y) if manifold: plot_global_minimum_manifold_2d(ax, settings) plot_optimiser_trajectory_2d(ax, weights, **kwargs) def plot_weight_norm(ax, weights, **kwargs): w1_vals = np.array(weights['w1']) w2_vals = np.array(weights['w2']) epochs = np.arange(0, len(w1_vals), 1) norms = np.sqrt(w1_vals**2 + w2_vals**2) ax.set_xlabel('Epoch', fontsize=12) ax.set_ylabel('Weight norm', fontsize=12) ax.plot(epochs, norms, linewidth=2.0, **kwargs) def animate_optimiser_trajectory_2d(i, ax, weights, **kwargs): w1_vals = weights['w1'] w2_vals = weights['w2'] ax.plot(w1_vals[:i], w2_vals[:i], **kwargs) return ax def animate_optimiser_trajectory_3d(i, ax, settings, weights, **kwargs): x, y, v, l2, _, _ = settings w1_vals = np.array(weights['w1']) w2_vals = np.array(weights['w2']) loss = 0.5 * y * (1 - w1_vals * w2_vals * x)**2 + \ 0.5 * l2 * (w1_vals**2 + w2_vals**2) + 0.5 * v * (w1_vals*w2_vals)**2 ax.plot(w1_vals[:i], w2_vals[:i], loss[:i], **kwargs) return ax def plot_optimiser_loss(x, y, v, l2, weights, **kwargs): loss = [] epoch = np.arange(0, len(weights['w1'])) for w1, w2 in zip(weights['w1'], weights['w2']): loss_val = 0.5 * y * (1 - w1 * w2 * x)**2 + 0.5 * l2 * (w1**2 + w2**2) + 0.5 * v * (w1 * w2)**2 loss.append(loss_val) plt.plot(epoch, loss, **kwargs) plt.xlabel('Epoch') plt.ylabel('Loss') def plot_interpolated_trajectory_2d(ax, w1_a, w2_a, w1_b, w2_b, start=0, end=1, **kwargs): alpha = np.arange(start, end, 0.001) w1_path = [] w2_path = [] for a in alpha: ww1 = (1 - a) * w1_a + a * w1_b ww2 = (1 - a) * w2_a + a * w2_b w1_path.append(ww1) w2_path.append(ww2) ax.plot(w1_path, w2_path, **kwargs) def plot_interpolated_trajectory_3d(ax, settings, w1_a, w2_a, w1_b, w2_b, start=0, end=1, **kwargs): x, y, _, _ = settings alpha = np.arange(start, end, 0.001) w1_path = [] w2_path = [] loss = [] for a in alpha: ww1 = (1 - a) * w1_a + a * w1_b ww2 = (1 - a) * w2_a + a * w2_b loss_val = 0.5 * (y - ww1 * ww2 * x)**2 + 0.5 * l2 * (ww1**2 + ww2**2) loss.append(loss_val) w1_path.append(ww1) w2_path.append(ww2) ax.plot(w1_path, w2_path, loss, **kwargs) def plot_interpolated_loss(x, y, w1_a, w2_a, w1_b, w2_b, start=0, end=1, **kwargs): alpha = np.arange(start, end, 0.001) interpolated_loss = [] for a in alpha: ww1 = (1 - a) * w1_a + a * w1_b ww2 = (1 - a) * w2_a + a * w2_b loss_val = 0.5 * (y - ww1 * ww2 * x)**2 + 0.5 * l2 * (ww1**2 + ww2**2) interpolated_loss.append(loss_val) plt.plot(alpha, interpolated_loss, **kwargs) plt.xlabel(r'$\alpha$') plt.ylabel('Loss') def plot_learning_dynamics(ax, weights, **kwargs): epoch = np.arange(0, len(weights['w1'])) scores = [] for w1, w2 in zip(weights['w1'], weights['w2']): scores.append(w1 * w2) ax.plot(epoch, scores, **kwargs) def animate_learning_dynamics(i, ax, weights, y, **kwargs): n_epoch = len(weights['w1']) epoch = np.arange(1, n_epoch) scores = [] for w1, w2 in zip(weights['w1'], weights['w2']): scores.append(w1 * w2) ax.set_xlim((1, n_epoch)) ax.set_ylim((0, y)) ax.set_xlabel('Epoch', fontsize=15) ax.set_ylabel('$w_2 \cdot w_1$', fontsize=15) ax.plot(epoch[:i], scores[:i], **kwargs) return ax def animate_learning(weights, save=False, name='anim'): gs = gridspec.GridSpec(2, 4) gs.update(wspace=0.5) fig = plt.figure(figsize=(12, 8)) ax1 = fig.add_subplot(gs[0, :2], ) ax2 = fig.add_subplot(gs[0, 2:], projection='3d') ax3 = fig.add_subplot(gs[1, 1:3]) # ax1 = fig.add_subplot(2, 2, 1) # ax2 = fig.add_subplot(2, 2, 2, projection = '3d') # ax3 = fig.add_subplot(2, 2, 3) # ax4 = fig.add_subplot(2, 2, 4) ax1, settings = plot_mse_loss_surface_2d(ax1, 1, 1) ax2, settings = plot_mse_loss_surface_3d(ax2, 1, 1, angle=60) plot_global_minimum_manifold_2d(ax1, settings) plot_global_minimum_manifold_3d(ax2, settings) def update(i): animate_optimiser_trajectory_2d( i, ax1, settings, weights, 'Gradient descent') animate_optimiser_trajectory_3d( i, ax2, settings, weights, 'Gradient descent') animate_learning_dynamics(i, ax3, weights, 1) # animate_weight_norm(i, ax4, scalarNet.history) # suncAnimation will call the 'update' function for each frame anim = FuncAnimation(fig, update, frames=100, interval=5, save_count=50) # HTML(anim.to_html5_video()) if save: anim.save(name + '.gif', dpi=80, writer='imagemagick') plt.show()
[((15, 9, 15, 55), 'numpy.linspace', 'np.linspace', (), '', True, 'import numpy as np\n'), ((16, 9, 16, 55), 'numpy.linspace', 'np.linspace', (), '', True, 'import numpy as np\n'), ((17, 17, 17, 36), 'numpy.meshgrid', 'np.meshgrid', ({(17, 29, 17, 31): 'w1', (17, 33, 17, 35): 'w2'}, {}), '(w1, w2)', True, 'import numpy as np\n'), ((18, 14, 18, 34), 'numpy.zeros', 'np.zeros', ({(18, 23, 18, 33): '(n_w, n_w)'}, {}), '((n_w, n_w))', True, 'import numpy as np\n'), ((29, 13, 29, 33), 'numpy.gradient', 'np.gradient', ({(29, 25, 29, 32): 'cost_ws'}, {}), '(cost_ws)', True, 'import numpy as np\n'), ((59, 9, 59, 55), 'numpy.linspace', 'np.linspace', (), '', True, 'import numpy as np\n'), ((60, 9, 60, 55), 'numpy.linspace', 'np.linspace', (), '', True, 'import numpy as np\n'), ((61, 17, 61, 36), 'numpy.meshgrid', 'np.meshgrid', ({(61, 29, 61, 31): 'w1', (61, 33, 61, 35): 'w2'}, {}), '(w1, w2)', True, 'import numpy as np\n'), ((62, 14, 62, 34), 'numpy.zeros', 'np.zeros', ({(62, 23, 62, 33): '(n_w, n_w)'}, {}), '((n_w, n_w))', True, 'import numpy as np\n'), ((83, 11, 83, 32), 'matplotlib.colors.Normalize', 'Normalize', ({(83, 21, 83, 25): 'minn', (83, 27, 83, 31): 'maxx'}, {}), '(minn, maxx)', False, 'from matplotlib.colors import Normalize\n'), ((84, 8, 84, 52), 'matplotlib.pyplot.cm.ScalarMappable', 'plt.cm.ScalarMappable', (), '', True, 'import matplotlib.pyplot as plt\n'), ((111, 13, 111, 59), 'numpy.linspace', 'np.linspace', (), '', True, 'import numpy as np\n'), ((112, 13, 112, 59), 'numpy.linspace', 'np.linspace', (), '', True, 'import numpy as np\n'), ((113, 25, 113, 52), 'numpy.meshgrid', 'np.meshgrid', ({(113, 37, 113, 43): 'man_w1', (113, 45, 113, 51): 'man_w2'}, {}), '(man_w1, man_w2)', True, 'import numpy as np\n'), ((116, 15, 116, 27), 'numpy.min', 'np.min', ({(116, 22, 116, 26): 'loss'}, {}), '(loss)', True, 'import numpy as np\n'), ((131, 13, 131, 59), 'numpy.linspace', 'np.linspace', (), '', True, 'import numpy as np\n'), ((132, 13, 132, 59), 'numpy.linspace', 'np.linspace', (), '', True, 'import numpy as np\n'), ((133, 25, 133, 52), 'numpy.meshgrid', 'np.meshgrid', ({(133, 37, 133, 43): 'man_w1', (133, 45, 133, 51): 'man_w2'}, {}), '(man_w1, man_w2)', True, 'import numpy as np\n'), ((136, 15, 136, 27), 'numpy.min', 'np.min', ({(136, 22, 136, 26): 'loss'}, {}), '(loss)', True, 'import numpy as np\n'), ((142, 8, 142, 42), 'numpy.insert', 'np.insert', ({(142, 18, 142, 28): 'manifold_x', (142, 30, 142, 33): 'pos', (142, 35, 142, 41): 'np.nan'}, {}), '(manifold_x, pos, np.nan)', True, 'import numpy as np\n'), ((143, 8, 143, 42), 'numpy.insert', 'np.insert', ({(143, 18, 143, 28): 'manifold_y', (143, 30, 143, 33): 'pos', (143, 35, 143, 41): 'np.nan'}, {}), '(manifold_y, pos, np.nan)', True, 'import numpy as np\n'), ((160, 14, 160, 37), 'numpy.array', 'np.array', ({(160, 23, 160, 36): "weights['w1']"}, {}), "(weights['w1'])", True, 'import numpy as np\n'), ((161, 14, 161, 37), 'numpy.array', 'np.array', ({(161, 23, 161, 36): "weights['w2']"}, {}), "(weights['w2'])", True, 'import numpy as np\n'), ((181, 14, 181, 37), 'numpy.array', 'np.array', ({(181, 23, 181, 36): "weights['w1']"}, {}), "(weights['w1'])", True, 'import numpy as np\n'), ((182, 14, 182, 37), 'numpy.array', 'np.array', ({(182, 23, 182, 36): "weights['w2']"}, {}), "(weights['w2'])", True, 'import numpy as np\n'), ((184, 12, 184, 44), 'numpy.sqrt', 'np.sqrt', ({(184, 20, 184, 43): 'w1_vals ** 2 + w2_vals ** 2'}, {}), '(w1_vals ** 2 + w2_vals ** 2)', True, 'import numpy as np\n'), ((199, 14, 199, 37), 'numpy.array', 'np.array', ({(199, 23, 199, 36): "weights['w1']"}, {}), "(weights['w1'])", True, 'import numpy as np\n'), ((200, 14, 200, 37), 'numpy.array', 'np.array', ({(200, 23, 200, 36): "weights['w2']"}, {}), "(weights['w2'])", True, 'import numpy as np\n'), ((213, 4, 213, 35), 'matplotlib.pyplot.plot', 'plt.plot', ({(213, 13, 213, 18): 'epoch', (213, 20, 213, 24): 'loss'}, {}), '(epoch, loss, **kwargs)', True, 'import matplotlib.pyplot as plt\n'), ((214, 4, 214, 23), 'matplotlib.pyplot.xlabel', 'plt.xlabel', ({(214, 15, 214, 22): '"""Epoch"""'}, {}), "('Epoch')", True, 'import matplotlib.pyplot as plt\n'), ((215, 4, 215, 22), 'matplotlib.pyplot.ylabel', 'plt.ylabel', ({(215, 15, 215, 21): '"""Loss"""'}, {}), "('Loss')", True, 'import matplotlib.pyplot as plt\n'), ((219, 12, 219, 40), 'numpy.arange', 'np.arange', ({(219, 22, 219, 27): 'start', (219, 29, 219, 32): 'end', (219, 34, 219, 39): '0.001'}, {}), '(start, end, 0.001)', True, 'import numpy as np\n'), ((232, 12, 232, 40), 'numpy.arange', 'np.arange', ({(232, 22, 232, 27): 'start', (232, 29, 232, 32): 'end', (232, 34, 232, 39): '0.001'}, {}), '(start, end, 0.001)', True, 'import numpy as np\n'), ((247, 12, 247, 40), 'numpy.arange', 'np.arange', ({(247, 22, 247, 27): 'start', (247, 29, 247, 32): 'end', (247, 34, 247, 39): '0.001'}, {}), '(start, end, 0.001)', True, 'import numpy as np\n'), ((254, 4, 254, 48), 'matplotlib.pyplot.plot', 'plt.plot', ({(254, 13, 254, 18): 'alpha', (254, 20, 254, 37): 'interpolated_loss'}, {}), '(alpha, interpolated_loss, **kwargs)', True, 'import matplotlib.pyplot as plt\n'), ((255, 4, 255, 27), 'matplotlib.pyplot.xlabel', 'plt.xlabel', ({(255, 15, 255, 26): '"""$\\\\alpha$"""'}, {}), "('$\\\\alpha$')", True, 'import matplotlib.pyplot as plt\n'), ((256, 4, 256, 22), 'matplotlib.pyplot.ylabel', 'plt.ylabel', ({(256, 15, 256, 21): '"""Loss"""'}, {}), "('Loss')", True, 'import matplotlib.pyplot as plt\n'), ((269, 12, 269, 33), 'numpy.arange', 'np.arange', ({(269, 22, 269, 23): '1', (269, 25, 269, 32): 'n_epoch'}, {}), '(1, n_epoch)', True, 'import numpy as np\n'), ((282, 9, 282, 32), 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', ({(282, 27, 282, 28): '2', (282, 30, 282, 31): '4'}, {}), '(2, 4)', True, 'import matplotlib.gridspec as gridspec\n'), ((285, 10, 285, 37), 'matplotlib.pyplot.figure', 'plt.figure', (), '', True, 'import matplotlib.pyplot as plt\n'), ((310, 11, 310, 76), 'matplotlib.animation.FuncAnimation', 'FuncAnimation', (), '', False, 'from matplotlib.animation import FuncAnimation\n'), ((315, 4, 315, 14), 'matplotlib.pyplot.show', 'plt.show', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((141, 26, 141, 45), 'numpy.diff', 'np.diff', ({(141, 34, 141, 44): 'manifold_y'}, {}), '(manifold_y)', True, 'import numpy as np\n')]
kshithijiyer/qkeras
tests/qconvolutional_test.py
78ac608c6dcd84151792a986d03fe7afb17929cf
# Copyright 2019 Google LLC # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test layers from qconvolutional.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from numpy.testing import assert_allclose import pytest import tempfile from tensorflow.keras import backend as K from tensorflow.keras.layers import Activation from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import Input from tensorflow.keras.models import Model from tensorflow.keras.backend import clear_session from qkeras import binary from qkeras import ternary from qkeras import QActivation from qkeras import QDense from qkeras import QConv1D from qkeras import QConv2D from qkeras import QSeparableConv2D from qkeras import quantized_bits from qkeras import quantized_relu from qkeras.utils import model_save_quantized_weights from qkeras.utils import quantized_model_from_json from qkeras.utils import load_qmodel from qkeras import print_qstats from qkeras import extract_model_operations # TODO(hzhuang): # qoctave_conv test # qbatchnorm test def test_qnetwork(): x = x_in = Input((28, 28, 1), name='input') x = QSeparableConv2D( 32, (2, 2), strides=(2, 2), depthwise_quantizer=binary(alpha=1.0), pointwise_quantizer=quantized_bits(4, 0, 1, alpha=1.0), depthwise_activation=quantized_bits(6, 2, 1, alpha=1.0), bias_quantizer=quantized_bits(4, 0, 1), name='conv2d_0_m')( x) x = QActivation('quantized_relu(6,2,1)', name='act0_m')(x) x = QConv2D( 64, (3, 3), strides=(2, 2), kernel_quantizer=ternary(alpha=1.0), bias_quantizer=quantized_bits(4, 0, 1), name='conv2d_1_m', activation=quantized_relu(6, 3, 1))( x) x = QConv2D( 64, (2, 2), strides=(2, 2), kernel_quantizer=quantized_bits(6, 2, 1, alpha=1.0), bias_quantizer=quantized_bits(4, 0, 1), name='conv2d_2_m')( x) x = QActivation('quantized_relu(6,4,1)', name='act2_m')(x) x = Flatten(name='flatten')(x) x = QDense( 10, kernel_quantizer=quantized_bits(6, 2, 1, alpha=1.0), bias_quantizer=quantized_bits(4, 0, 1), name='dense')( x) x = Activation('softmax', name='softmax')(x) model = Model(inputs=[x_in], outputs=[x]) # reload the model to ensure saving/loading works json_string = model.to_json() clear_session() model = quantized_model_from_json(json_string) # generate same output for weights np.random.seed(42) for layer in model.layers: all_weights = [] for i, weights in enumerate(layer.get_weights()): input_size = np.prod(layer.input.shape.as_list()[1:]) if input_size is None: input_size = 576 * 10 # to avoid learning sizes shape = weights.shape assert input_size > 0, 'input size for {} {}'.format(layer.name, i) # he normal initialization with a scale factor of 2.0 all_weights.append( 10.0 * np.random.normal(0.0, np.sqrt(2.0 / input_size), shape)) if all_weights: layer.set_weights(all_weights) # apply quantizer to weights model_save_quantized_weights(model) all_weights = [] for layer in model.layers: for i, weights in enumerate(layer.get_weights()): w = np.sum(weights) all_weights.append(w) all_weights = np.array(all_weights) # test_qnetwork_weight_quantization all_weights_signature = np.array( [2., -6.75, -0.625, -2., -0.25, -56., 1.125, -1.625, -1.125]) assert all_weights.size == all_weights_signature.size assert np.all(all_weights == all_weights_signature) # test_qnetwork_forward: expected_output = np.array( [[0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 6.e-08, 1.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00], [ 0.e+00 ,0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 5.e-07, 1.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00 ,1.e+00, 0.e+00, 0.e+00, 0.e+00], [0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00 ,0.e+00, 0.e+00, 0.e+00, 0.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00]]).astype(np.float16) inputs = 2 * np.random.rand(10, 28, 28, 1) actual_output = model.predict(inputs).astype(np.float16) assert_allclose(actual_output, expected_output, rtol=1e-4) def test_qconv1d(): np.random.seed(33) x = Input((4, 4,)) y = QConv1D( 2, 1, kernel_quantizer=quantized_bits(6, 2, 1, alpha=1.0), bias_quantizer=quantized_bits(4, 0, 1), name='qconv1d')( x) model = Model(inputs=x, outputs=y) # Extract model operations model_ops = extract_model_operations(model) # Assertion about the number of operations for this Conv1D layer assert model_ops['qconv1d']['number_of_operations'] == 32 # Print qstats to make sure it works with Conv1D layer print_qstats(model) # reload the model to ensure saving/loading works # json_string = model.to_json() # clear_session() # model = quantized_model_from_json(json_string) for layer in model.layers: all_weights = [] for i, weights in enumerate(layer.get_weights()): input_size = np.prod(layer.input.shape.as_list()[1:]) if input_size is None: input_size = 10 * 10 shape = weights.shape assert input_size > 0, 'input size for {} {}'.format(layer.name, i) all_weights.append( 10.0 * np.random.normal(0.0, np.sqrt(2.0 / input_size), shape)) if all_weights: layer.set_weights(all_weights) # Save the model as an h5 file using Keras's model.save() fd, fname = tempfile.mkstemp('.h5') model.save(fname) del model # Delete the existing model # Return a compiled model identical to the previous one model = load_qmodel(fname) # Clean the created h5 file after loading the model os.close(fd) os.remove(fname) # apply quantizer to weights model_save_quantized_weights(model) inputs = np.random.rand(2, 4, 4) p = model.predict(inputs).astype(np.float16) y = np.array([[[-2.441, 3.816], [-3.807, -1.426], [-2.684, -1.317], [-1.659, 0.9834]], [[-4.99, 1.139], [-2.559, -1.216], [-2.285, 1.905], [-2.652, -0.467]]]).astype(np.float16) assert np.all(p == y) if __name__ == '__main__': pytest.main([__file__])
[((54, 13, 54, 45), 'tensorflow.keras.layers.Input', 'Input', (), '', False, 'from tensorflow.keras.layers import Input\n'), ((90, 10, 90, 43), 'tensorflow.keras.models.Model', 'Model', (), '', False, 'from tensorflow.keras.models import Model\n'), ((94, 2, 94, 17), 'tensorflow.keras.backend.clear_session', 'clear_session', ({}, {}), '()', False, 'from tensorflow.keras.backend import clear_session\n'), ((95, 10, 95, 48), 'qkeras.utils.quantized_model_from_json', 'quantized_model_from_json', ({(95, 36, 95, 47): 'json_string'}, {}), '(json_string)', False, 'from qkeras.utils import quantized_model_from_json\n'), ((98, 2, 98, 20), 'numpy.random.seed', 'np.random.seed', ({(98, 17, 98, 19): '(42)'}, {}), '(42)', True, 'import numpy as np\n'), ((114, 2, 114, 37), 'qkeras.utils.model_save_quantized_weights', 'model_save_quantized_weights', ({(114, 31, 114, 36): 'model'}, {}), '(model)', False, 'from qkeras.utils import model_save_quantized_weights\n'), ((123, 16, 123, 37), 'numpy.array', 'np.array', ({(123, 25, 123, 36): 'all_weights'}, {}), '(all_weights)', True, 'import numpy as np\n'), ((126, 26, 127, 67), 'numpy.array', 'np.array', ({(127, 6, 127, 66): '[2.0, -6.75, -0.625, -2.0, -0.25, -56.0, 1.125, -1.625, -1.125]'}, {}), '([2.0, -6.75, -0.625, -2.0, -0.25, -56.0, 1.125, -1.625, -1.125])', True, 'import numpy as np\n'), ((130, 9, 130, 53), 'numpy.all', 'np.all', ({(130, 16, 130, 52): '(all_weights == all_weights_signature)'}, {}), '(all_weights == all_weights_signature)', True, 'import numpy as np\n'), ((156, 2, 156, 60), 'numpy.testing.assert_allclose', 'assert_allclose', (), '', False, 'from numpy.testing import assert_allclose\n'), ((160, 2, 160, 20), 'numpy.random.seed', 'np.random.seed', ({(160, 17, 160, 19): '(33)'}, {}), '(33)', True, 'import numpy as np\n'), ((161, 6, 161, 20), 'tensorflow.keras.layers.Input', 'Input', ({(161, 12, 161, 19): '(4, 4)'}, {}), '((4, 4))', False, 'from tensorflow.keras.layers import Input\n'), ((168, 10, 168, 36), 'tensorflow.keras.models.Model', 'Model', (), '', False, 'from tensorflow.keras.models import Model\n'), ((171, 14, 171, 45), 'qkeras.extract_model_operations', 'extract_model_operations', ({(171, 39, 171, 44): 'model'}, {}), '(model)', False, 'from qkeras import extract_model_operations\n'), ((177, 2, 177, 21), 'qkeras.print_qstats', 'print_qstats', ({(177, 15, 177, 20): 'model'}, {}), '(model)', False, 'from qkeras import print_qstats\n'), ((197, 14, 197, 37), 'tempfile.mkstemp', 'tempfile.mkstemp', ({(197, 31, 197, 36): '""".h5"""'}, {}), "('.h5')", False, 'import tempfile\n'), ((202, 10, 202, 28), 'qkeras.utils.load_qmodel', 'load_qmodel', ({(202, 22, 202, 27): 'fname'}, {}), '(fname)', False, 'from qkeras.utils import load_qmodel\n'), ((205, 2, 205, 14), 'os.close', 'os.close', ({(205, 11, 205, 13): 'fd'}, {}), '(fd)', False, 'import os\n'), ((206, 2, 206, 18), 'os.remove', 'os.remove', ({(206, 12, 206, 17): 'fname'}, {}), '(fname)', False, 'import os\n'), ((209, 2, 209, 37), 'qkeras.utils.model_save_quantized_weights', 'model_save_quantized_weights', ({(209, 31, 209, 36): 'model'}, {}), '(model)', False, 'from qkeras.utils import model_save_quantized_weights\n'), ((211, 11, 211, 34), 'numpy.random.rand', 'np.random.rand', ({(211, 26, 211, 27): '2', (211, 29, 211, 30): '4', (211, 32, 211, 33): '4'}, {}), '(2, 4, 4)', True, 'import numpy as np\n'), ((217, 9, 217, 23), 'numpy.all', 'np.all', ({(217, 16, 217, 22): '(p == y)'}, {}), '(p == y)', True, 'import numpy as np\n'), ((221, 2, 221, 25), 'pytest.main', 'pytest.main', ({(221, 14, 221, 24): '[__file__]'}, {}), '([__file__])', False, 'import pytest\n'), ((64, 6, 64, 57), 'qkeras.QActivation', 'QActivation', (), '', False, 'from qkeras import QActivation\n'), ((80, 6, 80, 57), 'qkeras.QActivation', 'QActivation', (), '', False, 'from qkeras import QActivation\n'), ((81, 6, 81, 29), 'tensorflow.keras.layers.Flatten', 'Flatten', (), '', False, 'from tensorflow.keras.layers import Flatten\n'), ((88, 6, 88, 43), 'tensorflow.keras.layers.Activation', 'Activation', (), '', False, 'from tensorflow.keras.layers import Activation\n'), ((154, 15, 154, 44), 'numpy.random.rand', 'np.random.rand', ({(154, 30, 154, 32): '(10)', (154, 34, 154, 36): '(28)', (154, 38, 154, 40): '(28)', (154, 42, 154, 43): '(1)'}, {}), '(10, 28, 28, 1)', True, 'import numpy as np\n'), ((120, 10, 120, 25), 'numpy.sum', 'np.sum', ({(120, 17, 120, 24): 'weights'}, {}), '(weights)', True, 'import numpy as np\n'), ((133, 20, 153, 48), 'numpy.array', 'np.array', ({(134, 6, 153, 47): '[[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 6e-08, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5e-07, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, \n 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, \n 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0,\n 1.0, 0.0, 0.0, 0.0, 0.0]]'}, {}), '([[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 6e-08, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, \n 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5e-07, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, \n 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0]])', True, 'import numpy as np\n'), ((213, 6, 216, 36), 'numpy.array', 'np.array', ({(213, 15, 216, 35): '[[[-2.441, 3.816], [-3.807, -1.426], [-2.684, -1.317], [-1.659, 0.9834]], [\n [-4.99, 1.139], [-2.559, -1.216], [-2.285, 1.905], [-2.652, -0.467]]]'}, {}), '([[[-2.441, 3.816], [-3.807, -1.426], [-2.684, -1.317], [-1.659, \n 0.9834]], [[-4.99, 1.139], [-2.559, -1.216], [-2.285, 1.905], [-2.652, \n -0.467]]])', True, 'import numpy as np\n'), ((58, 26, 58, 43), 'qkeras.binary', 'binary', (), '', False, 'from qkeras import binary\n'), ((59, 26, 59, 60), 'qkeras.quantized_bits', 'quantized_bits', (), '', False, 'from qkeras import quantized_bits\n'), ((60, 27, 60, 61), 'qkeras.quantized_bits', 'quantized_bits', (), '', False, 'from qkeras import quantized_bits\n'), ((61, 21, 61, 44), 'qkeras.quantized_bits', 'quantized_bits', ({(61, 36, 61, 37): '4', (61, 39, 61, 40): '0', (61, 42, 61, 43): '1'}, {}), '(4, 0, 1)', False, 'from qkeras import quantized_bits\n'), ((68, 23, 68, 41), 'qkeras.ternary', 'ternary', (), '', False, 'from qkeras import ternary\n'), ((69, 21, 69, 44), 'qkeras.quantized_bits', 'quantized_bits', ({(69, 36, 69, 37): '4', (69, 39, 69, 40): '0', (69, 42, 69, 43): '1'}, {}), '(4, 0, 1)', False, 'from qkeras import quantized_bits\n'), ((71, 17, 71, 40), 'qkeras.quantized_relu', 'quantized_relu', ({(71, 32, 71, 33): '6', (71, 35, 71, 36): '3', (71, 38, 71, 39): '1'}, {}), '(6, 3, 1)', False, 'from qkeras import quantized_relu\n'), ((76, 23, 76, 57), 'qkeras.quantized_bits', 'quantized_bits', (), '', False, 'from qkeras import quantized_bits\n'), ((77, 21, 77, 44), 'qkeras.quantized_bits', 'quantized_bits', ({(77, 36, 77, 37): '4', (77, 39, 77, 40): '0', (77, 42, 77, 43): '1'}, {}), '(4, 0, 1)', False, 'from qkeras import quantized_bits\n'), ((84, 23, 84, 57), 'qkeras.quantized_bits', 'quantized_bits', (), '', False, 'from qkeras import quantized_bits\n'), ((85, 21, 85, 44), 'qkeras.quantized_bits', 'quantized_bits', ({(85, 36, 85, 37): '4', (85, 39, 85, 40): '0', (85, 42, 85, 43): '1'}, {}), '(4, 0, 1)', False, 'from qkeras import quantized_bits\n'), ((164, 23, 164, 57), 'qkeras.quantized_bits', 'quantized_bits', (), '', False, 'from qkeras import quantized_bits\n'), ((165, 21, 165, 44), 'qkeras.quantized_bits', 'quantized_bits', ({(165, 36, 165, 37): '4', (165, 39, 165, 40): '0', (165, 42, 165, 43): '1'}, {}), '(4, 0, 1)', False, 'from qkeras import quantized_bits\n'), ((109, 39, 109, 64), 'numpy.sqrt', 'np.sqrt', ({(109, 47, 109, 63): '(2.0 / input_size)'}, {}), '(2.0 / input_size)', True, 'import numpy as np\n'), ((193, 39, 193, 64), 'numpy.sqrt', 'np.sqrt', ({(193, 47, 193, 63): '(2.0 / input_size)'}, {}), '(2.0 / input_size)', True, 'import numpy as np\n')]
Lapis256/discord-ext-ui
discord/ext/ui/select.py
593de0a1107d2a0c26023587a2937f00ecec3ed1
from typing import Optional, List, TypeVar, Generic, Callable import discord.ui from .item import Item from .select_option import SelectOption from .custom import CustomSelect def _default_check(_: discord.Interaction) -> bool: return True C = TypeVar("C", bound=discord.ui.Select) class Select(Item, Generic[C]): def __init__( self, placeholder: Optional[str] = None, min_values: int = 1, max_values: int = 1, options: Optional[list] = None, cls: C = CustomSelect, custom_id: Optional[str] = None, ) -> None: self._placeholder: Optional[str] = placeholder self._min_values: int = min_values self._max_values: int = max_values self._options: list = [] if options is None else options self._row: Optional[int] = None self.cls: C = cls self._custom_id: Optional[str] = custom_id self.func: Optional[Callable] = None self.check_func: Callable[[discord.Interaction], bool] = _default_check def placeholder(self, placeholder: str) -> 'Select': self._placeholder = placeholder return self def min_values(self, min_values: int) -> 'Select': self._min_values = min_values return self def max_values(self, max_values: int) -> 'Select': self._max_values = max_values return self def options(self, options: List[SelectOption]) -> 'Select': self._options = options return self def row(self, row: int) -> 'Select': self._row = row return self def on_select(self, func: Callable) -> 'Select': self.func = func return self def custom_id(self, custom_id: str) -> 'Select': self._custom_id = custom_id return self def check(self, func: Callable[[discord.Interaction], bool]) -> 'Select': self.check_func = func return self def to_discord(self) -> C: return self.cls( placeholder=self._placeholder, min_values=self._min_values, max_values=self._max_values, options=[o.to_discord_select_option() for o in self._options], row=self._row, custom_id=self._custom_id, check_func=self.check_func, callback=self.func )
[((14, 4, 14, 41), 'typing.TypeVar', 'TypeVar', (), '', False, 'from typing import Optional, List, TypeVar, Generic, Callable\n')]
parag-may4/ucscsdk
ucscsdk/mometa/storage/StorageScsiLunRef.py
2ea762fa070330e3a4e2c21b46b157469555405b
"""This module contains the general information for StorageScsiLunRef ManagedObject.""" from ...ucscmo import ManagedObject from ...ucsccoremeta import UcscVersion, MoPropertyMeta, MoMeta from ...ucscmeta import VersionMeta class StorageScsiLunRefConsts(): pass class StorageScsiLunRef(ManagedObject): """This is StorageScsiLunRef class.""" consts = StorageScsiLunRefConsts() naming_props = set([u'id']) mo_meta = MoMeta("StorageScsiLunRef", "storageScsiLunRef", "scsi-lun-ref-[id]", VersionMeta.Version131a, "InputOutput", 0x1f, [], ["read-only"], [u'storageLunReplica', u'storageLunSnapshot', u'storageScsiLun', u'storageVirtualDrive'], [], ["Get"]) prop_meta = { "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version131a, MoPropertyMeta.INTERNAL, None, None, None, r"""((deleteAll|ignore|deleteNonPresent),){0,2}(deleteAll|ignore|deleteNonPresent){0,1}""", [], []), "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version131a, MoPropertyMeta.READ_ONLY, 0x2, 0, 256, None, [], []), "id": MoPropertyMeta("id", "id", "uint", VersionMeta.Version131a, MoPropertyMeta.NAMING, 0x4, None, None, None, [], []), "ls_dn": MoPropertyMeta("ls_dn", "lsDn", "string", VersionMeta.Version131a, MoPropertyMeta.READ_ONLY, None, 0, 256, None, [], []), "lun_name": MoPropertyMeta("lun_name", "lunName", "string", VersionMeta.Version131a, MoPropertyMeta.READ_ONLY, None, None, None, r"""[\-\.:_a-zA-Z0-9]{0,16}""", [], []), "pn_dn": MoPropertyMeta("pn_dn", "pnDn", "string", VersionMeta.Version141a, MoPropertyMeta.READ_ONLY, None, 0, 256, None, [], []), "profile_dn": MoPropertyMeta("profile_dn", "profileDn", "string", VersionMeta.Version131a, MoPropertyMeta.READ_ONLY, None, 0, 256, None, [], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version131a, MoPropertyMeta.READ_ONLY, 0x8, 0, 256, None, [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version131a, MoPropertyMeta.READ_WRITE, 0x10, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []), } prop_map = { "childAction": "child_action", "dn": "dn", "id": "id", "lsDn": "ls_dn", "lunName": "lun_name", "pnDn": "pn_dn", "profileDn": "profile_dn", "rn": "rn", "status": "status", } def __init__(self, parent_mo_or_dn, id, **kwargs): self._dirty_mask = 0 self.id = id self.child_action = None self.ls_dn = None self.lun_name = None self.pn_dn = None self.profile_dn = None self.status = None ManagedObject.__init__(self, "StorageScsiLunRef", parent_mo_or_dn, **kwargs)
[]
latrocinia/saxstools
saxstools/fullsaxs.py
8e88474f62466b745791c0ccbb07c80a959880f3
from __future__ import print_function, absolute_import, division from sys import stdout as _stdout from time import time as _time import numpy as np try: import pyfftw pyfftw.interfaces.cache.enable() pyfftw.interfaces.cache.set_keepalive_time(10) rfftn = pyfftw.interfaces.numpy_fft.rfftn irfftn = pyfftw.interfaces.numpy_fft.irfftn except ImportError: from numpy.fft import rfftn, irfftn from disvis import volume from disvis.points import dilate_points from disvis.libdisvis import (rotate_image3d, dilate_points_add, longest_distance) from powerfit.solutions import Solutions from saxstools.saxs_curve import scattering_curve, create_fifj_lookup_table from saxstools.helpers import coarse_grain from saxstools.libsaxstools import calc_chi2 from saxstools.kernels import Kernels as saxs_Kernels try: import pyopencl as cl import pyopencl.array as cl_array import disvis.pyclfft from disvis.kernels import Kernels from disvis import pyclfft except ImportError: pass class FullSAXS(object): def __init__(self): # parameters to be defined self._receptor = None self._ligand = None # parameters with standard values self.rotations = [[[1, 0, 0], [0, 1, 0], [0, 0, 1]]] self.weights = None self.voxelspacing = 1.0 self.interaction_radius = 2.5 self.max_clash = 100 self.min_interaction = 300 self.coarse_grain = True self.beads_per_residue = 2 # CPU or GPU self._queue = None # unchangeable self._data = {} self._q = None self._Iq = None self._sq = None @property def receptor(self): return self._receptor @receptor.setter def receptor(self, receptor): self._receptor = receptor.duplicate() @property def ligand(self): return self._ligand @ligand.setter def ligand(self, ligand): self._ligand = ligand.duplicate() @property def rotations(self): return self._rotations @rotations.setter def rotations(self, rotations): rotmat = np.asarray(rotations, dtype=np.float64) if rotmat.ndim != 3: raise ValueError("Input should be a list of rotation matrices.") self._rotations = rotmat @property def weights(self): return self._weights @weights.setter def weights(self, weights): self._weights = weights @property def interaction_radius(self): return self._interaction_radius @interaction_radius.setter def interaction_radius(self, radius): if radius <= 0: raise ValueError("Interaction radius should be bigger than zero") self._interaction_radius = radius @property def voxelspacing(self): return self._voxelspacing @voxelspacing.setter def voxelspacing(self, voxelspacing): self._voxelspacing = voxelspacing @property def max_clash(self): return self._max_clash @max_clash.setter def max_clash(self, max_clash): if max_clash < 0: raise ValueError("Maximum allowed clashing volume cannot be negative") self._max_clash = max_clash + 0.9 @property def min_interaction(self): return self._min_interaction @min_interaction.setter def min_interaction(self, min_interaction): if min_interaction < 1: raise ValueError("Minimum required interaction volume cannot be smaller than 1") self._min_interaction = min_interaction + 0.9 @property def queue(self): return self._queue @queue.setter def queue(self, queue): self._queue = queue @property def data(self): return self._data @property def saxsdata(self): return self._q, self._Iq, self._sq @saxsdata.setter def saxsdata(self, saxsdata): self._q, self._Iq, self._sq = saxsdata def _initialize(self): # check if requirements are set if any(x is None for x in (self.receptor, self.ligand)): raise ValueError("Not all requirements are met for a search") if self.weights is None: self.weights = np.ones(self.rotations.shape[0], dtype=np.float64) if len(self.weights) != len(self.rotations): raise ValueError("") d = self.data # determine size for grid shape = grid_shape(self.receptor.coor, self.ligand.coor, self.voxelspacing) # calculate the interaction surface and core of the receptor vdw_radii = self.receptor.vdw_radius radii = vdw_radii + self.interaction_radius d['rsurf'] = rsurface(self.receptor.coor, radii, shape, self.voxelspacing) d['rcore'] = rsurface(self.receptor.coor, vdw_radii, shape, self.voxelspacing) # keep track of some data for later calculations d['origin'] = np.asarray(d['rcore'].origin, dtype=np.float64) d['shape'] = d['rcore'].shape d['start'] = d['rcore'].start d['nrot'] = self.rotations.shape[0] # set ligand center to the origin of the receptor map # and make a grid of the ligand radii = self.ligand.vdw_radius d['lsurf'] = dilate_points((self.ligand.coor - self.ligand.center \ + self.receptor.center), radii, volume.zeros_like(d['rcore'])) d['im_center'] = np.asarray((self.receptor.center - d['rcore'].origin)/self.voxelspacing, dtype=np.float64) d['max_clash'] = self.max_clash/self.voxelspacing**3 d['min_interaction'] = self.min_interaction/self.voxelspacing**3 # SAXS data d['q'] = self._q d['targetIq'] = self._Iq d['sq'] = self._sq if self.coarse_grain: e1, xyz1 = coarse_grain(self.receptor, bpr=self.beads_per_residue) e2, xyz2 = coarse_grain(self.ligand, bpr=self.beads_per_residue) else: e1, xyz1 = self.receptor.elements, self.receptor.coor e2, xyz2 = self.ligand.elements, self.ligand.coor d['base_Iq'] = scattering_curve(self._q, e1, xyz1, bpr=self.beads_per_residue) d['base_Iq'] += scattering_curve(self._q, e2, xyz2, bpr=self.beads_per_residue) d['fifj'], d['rind'], d['lind'] = create_fifj_lookup_table(d['q'], e1, e2, bpr=self.beads_per_residue) d['rxyz'] = xyz1 d['lxyz'] = xyz2 - self.ligand.center d['chi2'] = np.zeros(d['rcore'].shape, dtype=np.float64) d['best_chi2'] = np.zeros_like(d['chi2']) def search(self): self._initialize() if self.queue is None: self._cpu_init() self._cpu_search() else: self._gpu_init() self._gpu_search() if _stdout.isatty(): print() d = self.data ind = d['best_chi2'] > 0 d['best_chi2'][ind] -= d['best_chi2'][ind].min() best_chi2 = volume.Volume(d['best_chi2'], voxelspacing=self.voxelspacing, origin=d['origin']) return Solutions(best_chi2, self.rotations, d['rot_ind']) def _cpu_init(self): self.cpu_data = {} c = self.cpu_data d = self.data c['rcore'] = d['rcore'].array c['rsurf'] = d['rsurf'].array c['im_lsurf'] = d['lsurf'].array c['lsurf'] = np.zeros_like(c['rcore']) c['clashvol'] = np.zeros_like(c['rcore']) c['intervol'] = np.zeros_like(c['rcore']) c['interspace'] = np.zeros_like(c['rcore'], dtype=np.int64) # complex arrays c['ft_shape'] = list(d['shape']) c['ft_shape'][-1] = d['shape'][-1]//2 + 1 c['ft_lsurf'] = np.zeros(c['ft_shape'], dtype=np.complex128) c['ft_rcore'] = np.zeros(c['ft_shape'], dtype=np.complex128) c['ft_rsurf'] = np.zeros(c['ft_shape'], dtype=np.complex128) # initial calculations c['ft_rcore'] = rfftn(c['rcore']) c['ft_rsurf'] = rfftn(c['rsurf']) c['rotmat'] = np.asarray(self.rotations, dtype=np.float64) c['weights'] = np.asarray(self.weights, dtype=np.float64) c['nrot'] = d['nrot'] c['shape'] = d['shape'] c['max_clash'] = d['max_clash'] c['min_interaction'] = d['min_interaction'] c['vlength'] = int(np.linalg.norm(self.ligand.coor - \ self.ligand.center, axis=1).max() + \ self.interaction_radius + 1.5)/self.voxelspacing c['origin'] = d['origin'] # SAXS arrays c['q'] = d['q'] c['targetIq'] = d['targetIq'] c['sq'] = d['sq'] c['base_Iq'] = d['base_Iq'] c['fifj'] = d['fifj'] c['rind'] = d['rind'] c['lind'] = d['lind'] c['rxyz'] = d['rxyz'] c['lxyz'] = d['lxyz'] c['chi2'] = d['chi2'] c['best_chi2'] = d['best_chi2'] c['rot_ind'] = np.zeros(d['shape'], dtype=np.int32) c['Iq'] = np.zeros_like(c['targetIq']) c['tmplxyz'] = np.zeros_like(c['lxyz']) def _cpu_search(self): d = self.data c = self.cpu_data time0 = _time() for n in xrange(c['rotmat'].shape[0]): # rotate ligand image rotate_image3d(c['im_lsurf'], c['vlength'], np.linalg.inv(c['rotmat'][n]), d['im_center'], c['lsurf']) c['ft_lsurf'] = rfftn(c['lsurf']).conj() c['clashvol'] = irfftn(c['ft_lsurf'] * c['ft_rcore'], s=c['shape']) c['intervol'] = irfftn(c['ft_lsurf'] * c['ft_rsurf'], s=c['shape']) np.logical_and(c['clashvol'] < c['max_clash'], c['intervol'] > c['min_interaction'], c['interspace']) print('Number of complexes to analyze: ', c['interspace'].sum()) c['chi2'].fill(0) calc_chi2(c['interspace'], c['q'], c['base_Iq'], c['rind'], c['rxyz'], c['lind'], (np.mat(c['rotmat'][n])*np.mat(c['lxyz']).T).T, c['origin'], self.voxelspacing, c['fifj'], c['targetIq'], c['sq'], c['chi2']) ind = c['chi2'] > c['best_chi2'] c['best_chi2'][ind] = c['chi2'][ind] c['rot_ind'][ind] = n if _stdout.isatty(): self._print_progress(n, c['nrot'], time0) d['best_chi2'] = c['best_chi2'] d['rot_ind'] = c['rot_ind'] def _print_progress(self, n, total, time0): m = n + 1 pdone = m/total t = _time() - time0 _stdout.write('\r{:d}/{:d} ({:.2%}, ETA: {:d}s) '\ .format(m, total, pdone, int(t/pdone - t))) _stdout.flush() def _gpu_init(self): self.gpu_data = {} g = self.gpu_data d = self.data q = self.queue g['rcore'] = cl_array.to_device(q, float32array(d['rcore'].array)) g['rsurf'] = cl_array.to_device(q, float32array(d['rsurf'].array)) g['im_lsurf'] = cl.image_from_array(q.context, float32array(d['lsurf'].array)) g['sampler'] = cl.Sampler(q.context, False, cl.addressing_mode.CLAMP, cl.filter_mode.LINEAR) g['lsurf'] = cl_array.zeros_like(g['rcore']) g['clashvol'] = cl_array.zeros_like(g['rcore']) g['intervol'] = cl_array.zeros_like(g['rcore']) g['interspace'] = cl_array.zeros(q, d['shape'], dtype=np.int32) # complex arrays g['ft_shape'] = list(d['shape']) g['ft_shape'][0] = d['shape'][0]//2 + 1 g['ft_rcore'] = cl_array.zeros(q, g['ft_shape'], dtype=np.complex64) g['ft_rsurf'] = cl_array.zeros_like(g['ft_rcore']) g['ft_lsurf'] = cl_array.zeros_like(g['ft_rcore']) g['ft_clashvol'] = cl_array.zeros_like(g['ft_rcore']) g['ft_intervol'] = cl_array.zeros_like(g['ft_rcore']) # allocate SAXS arrays g['q'] = cl_array.to_device(q, float32array(d['q'])) g['targetIq'] = cl_array.to_device(q, float32array(d['targetIq'])) g['sq'] = cl_array.to_device(q, float32array(d['sq'])) g['base_Iq'] = cl_array.to_device(q, float32array(d['base_Iq'])) g['fifj'] = cl_array.to_device(q, float32array(d['fifj'])) g['rind'] = cl_array.to_device(q, d['rind'].astype(np.int32)) g['lind'] = cl_array.to_device(q, d['lind'].astype(np.int32)) g_rxyz = np.zeros((d['rxyz'].shape[0], 4), dtype=np.float32) g_rxyz[:, :3] = d['rxyz'][:] g_lxyz = np.zeros((d['lxyz'].shape[0], 4), dtype=np.float32) g_lxyz[:, :3] = d['lxyz'][:] g['rxyz'] = cl_array.to_device(q, g_rxyz) g['lxyz'] = cl_array.to_device(q, g_lxyz) g['rot_lxyz'] = cl_array.zeros_like(g['lxyz']) g['chi2'] = cl_array.to_device(q, d['chi2'].astype(np.float32)) g['best_chi2'] = cl_array.to_device(q, d['best_chi2'].astype(np.float32)) g['rot_ind'] = cl_array.zeros(q, d['shape'], dtype=np.int32) g['origin'] = np.zeros(4, dtype=np.float32) g['origin'][:3] = d['origin'].astype(np.float32) g['voxelspacing'] = np.float32(self.voxelspacing) # kernels g['k'] = Kernels(q.context) g['saxs_k'] = saxs_Kernels(q.context) g['k'].rfftn = pyclfft.RFFTn(q.context, d['shape']) g['k'].irfftn = pyclfft.iRFFTn(q.context, d['shape']) g['k'].rfftn(q, g['rcore'], g['ft_rcore']) g['k'].rfftn(q, g['rsurf'], g['ft_rsurf']) g['nrot'] = d['nrot'] g['max_clash'] = d['max_clash'] g['min_interaction'] = d['min_interaction'] def _gpu_search(self): d = self.data g = self.gpu_data q = self.queue k = g['k'] time0 = _time() for n in xrange(g['nrot']): k.rotate_image3d(q, g['sampler'], g['im_lsurf'], self.rotations[n], g['lsurf'], d['im_center']) k.rfftn(q, g['lsurf'], g['ft_lsurf']) k.c_conj_multiply(q, g['ft_lsurf'], g['ft_rcore'], g['ft_clashvol']) k.irfftn(q, g['ft_clashvol'], g['clashvol']) k.c_conj_multiply(q, g['ft_lsurf'], g['ft_rsurf'], g['ft_intervol']) k.irfftn(q, g['ft_intervol'], g['intervol']) k.touch(q, g['clashvol'], g['max_clash'], g['intervol'], g['min_interaction'], g['interspace']) g['saxs_k'].rotate_points(q, g['lxyz'], self.rotations[n], g['rot_lxyz']) k.fill(q, g['chi2'], 0) g['saxs_k'].calc_chi2(q, g['interspace'], g['q'], g['base_Iq'], g['rind'], g['rxyz'], g['lind'], g['rot_lxyz'], g['origin'], g['voxelspacing'], g['fifj'], g['targetIq'], g['sq'], g['chi2']) g['saxs_k'].take_best(q, g['chi2'], g['best_chi2'], g['rot_ind'], n) if _stdout.isatty(): self._print_progress(n, g['nrot'], time0) self.queue.finish() d['best_chi2'] = g['best_chi2'].get() d['rot_ind'] = g['rot_ind'].get() def rsurface(points, radius, shape, voxelspacing): dimensions = [x*voxelspacing for x in shape] origin = volume_origin(points, dimensions) rsurf = volume.zeros(shape, voxelspacing, origin) rsurf = dilate_points(points, radius, rsurf) return rsurf def volume_origin(points, dimensions): center = points.mean(axis=0) origin = [(c - d/2.0) for c, d in zip(center, dimensions)] return origin def grid_restraints(restraints, voxelspacing, origin, lcenter): nrestraints = len(restraints) g_restraints = np.zeros((nrestraints, 8), dtype=np.float64) for n in range(nrestraints): r_sel, l_sel, mindis, maxdis = restraints[n] r_pos = (r_sel.center - origin)/voxelspacing l_pos = (l_sel.center - lcenter)/voxelspacing g_restraints[n, 0:3] = r_pos g_restraints[n, 3:6] = l_pos g_restraints[n, 6] = mindis/voxelspacing g_restraints[n, 7] = maxdis/voxelspacing return g_restraints def grid_shape(points1, points2, voxelspacing): shape = min_grid_shape(points1, points2, voxelspacing) shape = [volume.radix235(x) for x in shape] return shape def min_grid_shape(points1, points2, voxelspacing): # the minimal grid shape is the size of the fixed protein in # each dimension and the longest diameter is the scanning chain dimensions1 = points1.ptp(axis=0) dimension2 = longest_distance(points2) grid_shape = np.asarray(((dimensions1 + dimension2)/voxelspacing) + 10, dtype=np.int32)[::-1] return grid_shape def float32array(array_like): return np.asarray(array_like, dtype=np.float32)
[]
zehuilu/Learning-from-Sparse-Demonstrations
lib/generate_random_obs.py
4d652635c24f847fe51bc050773762b549ce41c0
#!/usr/bin/env python3 import os import sys import time sys.path.append(os.getcwd()+'/lib') import random from dataclasses import dataclass, field from ObsInfo import ObsInfo def generate_random_obs(num_obs: int, size_list: list, config_data): """ config_file_name = "config.json" json_file = open(config_file_name) config_data = json.load(json_file) size_list = [length, width, height] """ ObsList = [] if (num_obs > 0.5): for i in range(0, num_obs): # random center center = [random.uniform(config_data["LAB_SPACE_LIMIT"]["LIMIT_X"][0], config_data["LAB_SPACE_LIMIT"]["LIMIT_X"][1]), \ random.uniform(config_data["LAB_SPACE_LIMIT"]["LIMIT_Y"][0], config_data["LAB_SPACE_LIMIT"]["LIMIT_Y"][1]), \ random.uniform(config_data["LAB_SPACE_LIMIT"]["LIMIT_Z"][0], config_data["LAB_SPACE_LIMIT"]["LIMIT_Z"][1])] ObsList.append( ObsInfo(center, size_list) ) return ObsList
[((5, 16, 5, 27), 'os.getcwd', 'os.getcwd', ({}, {}), '()', False, 'import os\n'), ((26, 22, 26, 128), 'random.uniform', 'random.uniform', ({(26, 37, 26, 81): "config_data['LAB_SPACE_LIMIT']['LIMIT_X'][0]", (26, 83, 26, 127): "config_data['LAB_SPACE_LIMIT']['LIMIT_X'][1]"}, {}), "(config_data['LAB_SPACE_LIMIT']['LIMIT_X'][0], config_data[\n 'LAB_SPACE_LIMIT']['LIMIT_X'][1])", False, 'import random\n'), ((27, 16, 27, 122), 'random.uniform', 'random.uniform', ({(27, 31, 27, 75): "config_data['LAB_SPACE_LIMIT']['LIMIT_Y'][0]", (27, 77, 27, 121): "config_data['LAB_SPACE_LIMIT']['LIMIT_Y'][1]"}, {}), "(config_data['LAB_SPACE_LIMIT']['LIMIT_Y'][0], config_data[\n 'LAB_SPACE_LIMIT']['LIMIT_Y'][1])", False, 'import random\n'), ((28, 16, 28, 122), 'random.uniform', 'random.uniform', ({(28, 31, 28, 75): "config_data['LAB_SPACE_LIMIT']['LIMIT_Z'][0]", (28, 77, 28, 121): "config_data['LAB_SPACE_LIMIT']['LIMIT_Z'][1]"}, {}), "(config_data['LAB_SPACE_LIMIT']['LIMIT_Z'][0], config_data[\n 'LAB_SPACE_LIMIT']['LIMIT_Z'][1])", False, 'import random\n'), ((30, 28, 30, 54), 'ObsInfo.ObsInfo', 'ObsInfo', ({(30, 36, 30, 42): 'center', (30, 44, 30, 53): 'size_list'}, {}), '(center, size_list)', False, 'from ObsInfo import ObsInfo\n')]
Abucuyy/Uciha
userbot/helper_funcs/misc.py
726e9cd61eabf056064e40f7b322d8993161e52a
# TG-UserBot - A modular Telegram UserBot script for Python. # Copyright (C) 2019 Kandarp <https://github.com/kandnub> # # TG-UserBot is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # TG-UserBot is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with TG-UserBot. If not, see <https://www.gnu.org/licenses/>. from typing import Tuple, Union from telethon.tl import types from ..utils.client import UserBotClient from ..utils.helpers import get_chat_link ChatBannedRights = { 'until_date': 'Banned until:', 'view_messages': 'Read messages:', 'send_messages': 'Send messages:', 'send_media': 'Send media:', 'send_stickers': 'Send stickers:', 'send_gifs': 'Send GIFs:', 'send_games': 'Send games:', 'send_inline': 'Send inline messages:', 'embed_links': 'Send embed links:', 'send_polls': 'Send polls:', 'change_info': 'Change info:', 'invite_users': 'Add users:', 'pin_messages': 'Pin messages:' } ChatAdminRights = { 'change_info': 'Change chat info:', 'post_messages': 'Post messages:', 'edit_messages': 'Edit messages:', 'delete_messages': 'Delete messages:', 'ban_users': 'Ban users:', 'invite_users': 'Invite users:', 'pin_messages': 'Pin messages:', 'add_admins': 'Add new admins:' } async def parse_admin_rights(AdminRights: types.ChatAdminRights) -> str: text = [] for attr, string in ChatAdminRights.items(): right = getattr(AdminRights, attr, False) if right: text.append(f'{string} {right}') return '\n'.join(text) async def parse_banned_rights(BannedRights: types.ChatBannedRights) -> str: text = [] for attr, string in ChatBannedRights.items(): right = getattr(BannedRights, attr, False) if right: if attr == "until_date": text.append(f'{string} {right.ctime()} (UTC)') else: text.append(f'{string} {right}') return '\n'.join(text) async def get_entity_info( arg: Union[types.ChatFull, types.ChannelFull] ) -> Tuple[int, int, int, int, int, int]: creator, admins, bots, participants, kicked, banned = (None, None, None, None, None, None) full_chat = arg.full_chat if isinstance(full_chat, types.ChannelFull): if hasattr(full_chat, 'participants_count'): participants = full_chat.participants_count if hasattr(full_chat, 'admins_count'): admins = full_chat.admins_count if hasattr(full_chat, 'kicked_count'): kicked = full_chat.kicked_count if hasattr(full_chat, 'banned_count'): banned = full_chat.banned_count if hasattr(full_chat, 'bot_info'): bots = len(full_chat.bot_info) else: if hasattr(full_chat, 'bot_info'): bots = len(full_chat.bot_info) if hasattr(full_chat, 'participants'): admins, participants = 0, 0 for p in full_chat.participants.participants: if isinstance(p, types.ChatParticipantCreator): creator = p.user_id if isinstance(p, types.ChatParticipant): participants += 1 if isinstance(p, types.ChatParticipantAdmin): admins += 1 return creator, admins, bots, participants, kicked, banned async def unparse_info(client: UserBotClient, creator: int, admins: int, bots: int, users: int, kicked: int, banned: int) -> str: text = '' if creator: c = await client.get_entity(creator) text += f"\n**Creator:** {await get_chat_link(c)}" if users: text += f"\n**Participants:** {users}" if admins: text += f"\n**Admins:** {admins}" if bots: text += f"\n**Bots:** {bots}" if kicked: text += f"\n**Kicked:** {kicked}" if banned: text += f"\n**Banned:** {banned}" return text async def unparse_rights(title: str, rights: str) -> str: text = f"**{title}**" for l in rights.split('\n'): splat = l.split(':') text += f"\n **{splat[0]}:** `{':'.join(splat[1:])}`" return text async def resolve_channel(client: UserBotClient, channel: types.ChannelFull) -> str: text = '' default_banned_rights = None banned_rights = None admin_rights = None channel_type = "Channel" for c in channel.chats: if c.id == channel.full_chat.id: if c.megagroup: channel_type = "Megagroup" admin_rights = c.admin_rights banned_rights = c.banned_rights default_banned_rights = c.default_banned_rights break text += f"\n**{channel_type} ID:** `{channel.full_chat.id}`" info = await get_entity_info(channel) text += await unparse_info(client, *info) if admin_rights: parsed = await parse_admin_rights(admin_rights) unparsed = await unparse_rights("Admin rights:", parsed) text += f"\n{unparsed}" if banned_rights: parsed = await parse_banned_rights(banned_rights) unparsed = await unparse_rights("Banned rights:", parsed) text += f"\n{unparsed}" if default_banned_rights: parsed = await parse_banned_rights(default_banned_rights) unparsed = await unparse_rights("Default banned rights:", parsed) text += f"\n{unparsed}" return text async def resolve_chat(client: UserBotClient, chat: types.ChatFull) -> str: text = f"\n**Chat ID:** `{chat.full_chat.id}``" info = await get_entity_info(chat) text += await unparse_info(client, *info) admin_rights = None default_banned_rights = None for c in chat.chats: if c.id == chat.full_chat.id: admin_rights = c.admin_rights default_banned_rights = c.default_banned_rights break if admin_rights: parsed = await parse_admin_rights(admin_rights) unparsed = await unparse_rights("Admin rights:", parsed) text += f"\n{unparsed}" if default_banned_rights: parsed = await parse_banned_rights(default_banned_rights) unparsed = await unparse_rights("Default banned rights:", parsed) text += f"\n{unparsed}" return text
[]
HarryTheBird/gym-multilayerthinfilm
gym-multilayerthinfilm/utils.py
22eda96e71e95e9ea1b491fae633c4a32fadb023
import numpy as np def get_n_from_txt(filepath, points=None, lambda_min=400, lambda_max=700, complex_n=True): ntxt = np.loadtxt(filepath) if np.min(np.abs(ntxt[:, 0] - lambda_min)) > 25 or np.min(np.abs(ntxt[:, 0] - lambda_max)) > 25: print('No measurement data for refractive indicies are available within 25 nm in \n' + filepath) if points is None: points = lambda_max - lambda_min + 1 idxmin = np.argmin(np.abs(ntxt[:, 0] - lambda_min)) idxmax = np.argmin(np.abs(ntxt[:, 0] - lambda_max)) if idxmax == idxmin: if complex_n: indicies = np.vectorize(complex)(np.array([ntxt[idxmin, 1]]), np.array([ntxt[idxmin, 2]])) else: indicies = np.array([ntxt[idxmin, 1]]) else: xp = ntxt[idxmin:idxmax, 0] fpn = ntxt[idxmin:idxmax, 1] n = np.interp(np.linspace(lambda_min, lambda_max, points), xp, fpn) if complex_n: fpk = ntxt[idxmin:idxmax, 2].squeeze() k = np.interp(np.linspace(lambda_min, lambda_max, points), xp, fpk) indicies = np.vectorize(complex)(n, k) else: indicies = n return indicies def get_N(path_list, lambda_min, lambda_max, points=None, complex_n=False): n = [] for path in path_list: n.append(get_n_from_txt(path, points, lambda_min=lambda_min, lambda_max=lambda_max, complex_n=complex_n)) return np.vstack((n))
[((4, 11, 4, 31), 'numpy.loadtxt', 'np.loadtxt', ({(4, 22, 4, 30): 'filepath'}, {}), '(filepath)', True, 'import numpy as np\n'), ((32, 11, 32, 25), 'numpy.vstack', 'np.vstack', ({(32, 22, 32, 23): 'n'}, {}), '(n)', True, 'import numpy as np\n'), ((9, 23, 9, 54), 'numpy.abs', 'np.abs', ({(9, 30, 9, 53): 'ntxt[:, (0)] - lambda_min'}, {}), '(ntxt[:, (0)] - lambda_min)', True, 'import numpy as np\n'), ((10, 23, 10, 54), 'numpy.abs', 'np.abs', ({(10, 30, 10, 53): 'ntxt[:, (0)] - lambda_max'}, {}), '(ntxt[:, (0)] - lambda_max)', True, 'import numpy as np\n'), ((15, 23, 15, 50), 'numpy.array', 'np.array', ({(15, 32, 15, 49): '[ntxt[idxmin, 1]]'}, {}), '([ntxt[idxmin, 1]])', True, 'import numpy as np\n'), ((19, 22, 19, 65), 'numpy.linspace', 'np.linspace', ({(19, 34, 19, 44): 'lambda_min', (19, 46, 19, 56): 'lambda_max', (19, 58, 19, 64): 'points'}, {}), '(lambda_min, lambda_max, points)', True, 'import numpy as np\n'), ((5, 14, 5, 45), 'numpy.abs', 'np.abs', ({(5, 21, 5, 44): '(ntxt[:, (0)] - lambda_min)'}, {}), '(ntxt[:, (0)] - lambda_min)', True, 'import numpy as np\n'), ((5, 62, 5, 93), 'numpy.abs', 'np.abs', ({(5, 69, 5, 92): '(ntxt[:, (0)] - lambda_max)'}, {}), '(ntxt[:, (0)] - lambda_max)', True, 'import numpy as np\n'), ((13, 23, 13, 44), 'numpy.vectorize', 'np.vectorize', ({(13, 36, 13, 43): 'complex'}, {}), '(complex)', True, 'import numpy as np\n'), ((13, 45, 13, 72), 'numpy.array', 'np.array', ({(13, 54, 13, 71): '[ntxt[idxmin, 1]]'}, {}), '([ntxt[idxmin, 1]])', True, 'import numpy as np\n'), ((13, 74, 13, 101), 'numpy.array', 'np.array', ({(13, 83, 13, 100): '[ntxt[idxmin, 2]]'}, {}), '([ntxt[idxmin, 2]])', True, 'import numpy as np\n'), ((22, 26, 22, 69), 'numpy.linspace', 'np.linspace', ({(22, 38, 22, 48): 'lambda_min', (22, 50, 22, 60): 'lambda_max', (22, 62, 22, 68): 'points'}, {}), '(lambda_min, lambda_max, points)', True, 'import numpy as np\n'), ((23, 23, 23, 44), 'numpy.vectorize', 'np.vectorize', ({(23, 36, 23, 43): 'complex'}, {}), '(complex)', True, 'import numpy as np\n')]
joaopalmeiro/pyrocco
pyrocco/__init__.py
4144f56d654500c3ec49cb04c06b98296004eafe
__package_name__ = "pyrocco" __version__ = "0.1.0" __author__ = "João Palmeiro" __author_email__ = "[email protected]" __description__ = "A Python CLI to add the Party Parrot to a custom background image." __url__ = "https://github.com/joaopalmeiro/pyrocco"
[]
ingjrs01/adventofcode
2020/day08/machine.py
c5e4f0158dac0efc2dbfc10167f2700693b41fea
class Machine(): def __init__(self): self.pointer = 0 self.accum = 0 self.visited = [] def run(self,program): salir = False while (salir == False): if (self.pointer in self.visited): return False if (self.pointer >= len(program)): return True self.visited.append(self.pointer) incremento = 1 if (program[self.pointer][0] == "acc"): self.accum += program[self.pointer][1] if (program[self.pointer][0] == "jmp"): incremento = program[self.pointer][1] self.pointer += incremento return True def getVisited(self): return self.visited def getAccum(self): return self.accum
[]
BAOOOOOM/EduData
EduData/Task/__init__.py
affa465779cb94db00ed19291f8411229d342c0f
# coding: utf-8 # 2019/8/23 @ tongshiwei
[]
richardvecsey/python-basics
010-round.py
b66abef77bce2ddd6f2f39b631e1dd97a9aa2fac
""" Round a number -------------- Input (float) A floating point number (int) Number of decimals Default value is: 0 Output (float) Rounded number (int) Whether using the default decimals value, the return number will be the nearest integer """ number = 103.14159 # Rounding with 2 decimals number_rounded = round(number, 2) print('Rounding with 2 decimals') print('original number: {}, rounded: {}, type of rounded: {}' .format(number, number_rounded, type(number_rounded))) # Rounding with -2 decimals number_rounded = round(number, -2) print('\nRounding with -2 decimals') print('original number: {}, rounded: {}, type of rounded: {}' .format(number, number_rounded, type(number_rounded))) # Rounding with 0 decimals number_rounded = round(number, 0) print('\nRounding with 0 decimals') print('original number: {}, rounded: {}, type of rounded: {}' .format(number, number_rounded, type(number_rounded))) # Rounding with default # Result will be integer (!) number_rounded = round(number) print('\nRounding with default') print('original number: {}, rounded: {}, type of rounded: {}' .format(number, number_rounded, type(number_rounded)))
[]
Kleist/MusicPlayer
service.py
95f634d1e4d47e7b430e32ad9224d94ad0453c82
#!/usr/bin/env python3 import RPi.GPIO as GPIO from mfrc522 import SimpleMFRC522 import play import time class TagPlayer(object): def __init__(self): self._current = None self.reader = SimpleMFRC522() self._failed = 0 def step(self): id, text = self.reader.read_no_block() print(id,text) if id: self._failed = 0 if text != self._current: stripped_text = text.strip() print("Read text: \"{}\"".format(stripped_text)) play.play(stripped_text) self._current = text elif self._current: self._failed += 1 if self._failed > 2: self._current = None print("Stopping") play.stop() time.sleep(1) def main(): try: player = TagPlayer() while 1: player.step() finally: GPIO.cleanup() if __name__ == "__main__": main()
[((13, 22, 13, 37), 'mfrc522.SimpleMFRC522', 'SimpleMFRC522', ({}, {}), '()', False, 'from mfrc522 import SimpleMFRC522\n'), ((32, 8, 32, 21), 'time.sleep', 'time.sleep', ({(32, 19, 32, 20): '(1)'}, {}), '(1)', False, 'import time\n'), ((40, 8, 40, 22), 'RPi.GPIO.cleanup', 'GPIO.cleanup', ({}, {}), '()', True, 'import RPi.GPIO as GPIO\n'), ((24, 16, 24, 40), 'play.play', 'play.play', ({(24, 26, 24, 39): 'stripped_text'}, {}), '(stripped_text)', False, 'import play\n'), ((31, 16, 31, 27), 'play.stop', 'play.stop', ({}, {}), '()', False, 'import play\n')]
ckanesan/mypy
mypy/defaults.py
ffb3ce925e8bb3376e19f942c7d3a3806c9bba97
import os MYPY = False if MYPY: from typing_extensions import Final PYTHON2_VERSION = (2, 7) # type: Final PYTHON3_VERSION = (3, 6) # type: Final PYTHON3_VERSION_MIN = (3, 4) # type: Final CACHE_DIR = '.mypy_cache' # type: Final CONFIG_FILE = 'mypy.ini' # type: Final SHARED_CONFIG_FILES = ['setup.cfg', ] # type: Final USER_CONFIG_FILES = ['~/.config/mypy/config', '~/.mypy.ini', ] # type: Final if os.environ.get('XDG_CONFIG_HOME'): USER_CONFIG_FILES.insert(0, os.path.join(os.environ['XDG_CONFIG_HOME'], 'mypy/config')) CONFIG_FILES = [CONFIG_FILE, ] + SHARED_CONFIG_FILES + USER_CONFIG_FILES # type: Final # This must include all reporters defined in mypy.report. This is defined here # to make reporter names available without importing mypy.report -- this speeds # up startup. REPORTER_NAMES = ['linecount', 'any-exprs', 'linecoverage', 'memory-xml', 'cobertura-xml', 'xml', 'xslt-html', 'xslt-txt', 'html', 'txt'] # type: Final
[((14, 3, 14, 36), 'os.environ.get', 'os.environ.get', ({(14, 18, 14, 35): '"""XDG_CONFIG_HOME"""'}, {}), "('XDG_CONFIG_HOME')", False, 'import os\n'), ((15, 32, 15, 90), 'os.path.join', 'os.path.join', ({(15, 45, 15, 74): "os.environ['XDG_CONFIG_HOME']", (15, 76, 15, 89): '"""mypy/config"""'}, {}), "(os.environ['XDG_CONFIG_HOME'], 'mypy/config')", False, 'import os\n')]
elcolie/scikit-criteria
skcriteria/preprocessing/push_negatives.py
216674d699b60d68fefa98d44afd619943f3bb00
#!/usr/bin/env python # -*- coding: utf-8 -*- # License: BSD-3 (https://tldrlegal.com/license/bsd-3-clause-license-(revised)) # Copyright (c) 2016-2021, Cabral, Juan; Luczywo, Nadia # All rights reserved. # ============================================================================= # DOCS # ============================================================================= """Functionalities for remove negatives from criteria. In addition to the main functionality, an MCDA agnostic function is offered to push negatives values on an array along an arbitrary axis. """ # ============================================================================= # IMPORTS # ============================================================================= import numpy as np from ..core import SKCMatrixAndWeightTransformerABC from ..utils import doc_inherit # ============================================================================= # FUNCTIONS # ============================================================================= def push_negatives(arr, axis): r"""Increment the array until all the valuer are sean >= 0. If an array has negative values this function increment the values proportionally to made all the array positive along an axis. .. math:: \overline{X}_{ij} = \begin{cases} X_{ij} + min_{X_{ij}} & \text{if } X_{ij} < 0\\ X_{ij} & \text{otherwise} \end{cases} Parameters ---------- arr: :py:class:`numpy.ndarray` like. A array with values axis : :py:class:`int` optional Axis along which to operate. By default, flattened input is used. Returns ------- :py:class:`numpy.ndarray` array with all values >= 0. Examples -------- .. code-block:: pycon >>> from skcriteria.preprocess import push_negatives >>> mtx = [[1, 2], [3, 4]] >>> mtx_lt0 = [[-1, 2], [3, 4]] # has a negative value >>> push_negatives(mtx) # array without negatives don't be affected array([[1, 2], [3, 4]]) # all the array is incremented by 1 to eliminate the negative >>> push_negatives(mtx_lt0) array([[0, 3], [4, 5]]) # by column only the first one (with the negative value) is affected >>> push_negatives(mtx_lt0, axis=0) array([[0, 2], [4, 4]]) # by row only the first row (with the negative value) is affected >>> push_negatives(mtx_lt0, axis=1) array([[0, 3], [3, 4]]) """ arr = np.asarray(arr) mins = np.min(arr, axis=axis, keepdims=True) delta = (mins < 0) * mins return arr - delta class PushNegatives(SKCMatrixAndWeightTransformerABC): r"""Increment the matrix/weights until all the valuer are sean >= 0. If the matrix/weights has negative values this function increment the values proportionally to made all the matrix/weights positive along an axis. .. math:: \overline{X}_{ij} = \begin{cases} X_{ij} + min_{X_{ij}} & \text{if } X_{ij} < 0\\ X_{ij} & \text{otherwise} \end{cases} """ @doc_inherit(SKCMatrixAndWeightTransformerABC._transform_weights) def _transform_weights(self, weights): return push_negatives(weights, axis=None) @doc_inherit(SKCMatrixAndWeightTransformerABC._transform_matrix) def _transform_matrix(self, matrix): return push_negatives(matrix, axis=0)
[((85, 10, 85, 25), 'numpy.asarray', 'np.asarray', ({(85, 21, 85, 24): 'arr'}, {}), '(arr)', True, 'import numpy as np\n'), ((86, 11, 86, 48), 'numpy.min', 'np.min', (), '', True, 'import numpy as np\n')]
Ingenico/direct-sdk-python3
ingenico/direct/sdk/domain/customer_token.py
d2b30b8e8afb307153a1f19ac4c054d5344449ce
# -*- coding: utf-8 -*- # # This class was auto-generated from the API references found at # https://support.direct.ingenico.com/documentation/api/reference/ # from ingenico.direct.sdk.data_object import DataObject from ingenico.direct.sdk.domain.address import Address from ingenico.direct.sdk.domain.company_information import CompanyInformation from ingenico.direct.sdk.domain.personal_information_token import PersonalInformationToken class CustomerToken(DataObject): __billing_address = None __company_information = None __personal_information = None @property def billing_address(self) -> Address: """ | Object containing billing address details Type: :class:`ingenico.direct.sdk.domain.address.Address` """ return self.__billing_address @billing_address.setter def billing_address(self, value: Address): self.__billing_address = value @property def company_information(self) -> CompanyInformation: """ | Object containing company information Type: :class:`ingenico.direct.sdk.domain.company_information.CompanyInformation` """ return self.__company_information @company_information.setter def company_information(self, value: CompanyInformation): self.__company_information = value @property def personal_information(self) -> PersonalInformationToken: """ Type: :class:`ingenico.direct.sdk.domain.personal_information_token.PersonalInformationToken` """ return self.__personal_information @personal_information.setter def personal_information(self, value: PersonalInformationToken): self.__personal_information = value def to_dictionary(self): dictionary = super(CustomerToken, self).to_dictionary() if self.billing_address is not None: dictionary['billingAddress'] = self.billing_address.to_dictionary() if self.company_information is not None: dictionary['companyInformation'] = self.company_information.to_dictionary() if self.personal_information is not None: dictionary['personalInformation'] = self.personal_information.to_dictionary() return dictionary def from_dictionary(self, dictionary): super(CustomerToken, self).from_dictionary(dictionary) if 'billingAddress' in dictionary: if not isinstance(dictionary['billingAddress'], dict): raise TypeError('value \'{}\' is not a dictionary'.format(dictionary['billingAddress'])) value = Address() self.billing_address = value.from_dictionary(dictionary['billingAddress']) if 'companyInformation' in dictionary: if not isinstance(dictionary['companyInformation'], dict): raise TypeError('value \'{}\' is not a dictionary'.format(dictionary['companyInformation'])) value = CompanyInformation() self.company_information = value.from_dictionary(dictionary['companyInformation']) if 'personalInformation' in dictionary: if not isinstance(dictionary['personalInformation'], dict): raise TypeError('value \'{}\' is not a dictionary'.format(dictionary['personalInformation'])) value = PersonalInformationToken() self.personal_information = value.from_dictionary(dictionary['personalInformation']) return self
[((70, 20, 70, 29), 'ingenico.direct.sdk.domain.address.Address', 'Address', ({}, {}), '()', False, 'from ingenico.direct.sdk.domain.address import Address\n'), ((75, 20, 75, 40), 'ingenico.direct.sdk.domain.company_information.CompanyInformation', 'CompanyInformation', ({}, {}), '()', False, 'from ingenico.direct.sdk.domain.company_information import CompanyInformation\n'), ((80, 20, 80, 46), 'ingenico.direct.sdk.domain.personal_information_token.PersonalInformationToken', 'PersonalInformationToken', ({}, {}), '()', False, 'from ingenico.direct.sdk.domain.personal_information_token import PersonalInformationToken\n')]
pirate/macOS-global-autocomplete
inserter.py
4ba8c3efdd34e7b4c0044c50f47d21a1bafd9aac
import time import pykeyboard # TODO: Replace following two lines with the code that activate the application. print('Activate the application 3 seconds.') time.sleep(3) k = pykeyboard.PyKeyboard() k.press_key(k.left_key) time.sleep(1) # Hold down left key for 1 second. k.release_key(k.left_key)
[((8, 0, 8, 13), 'time.sleep', 'time.sleep', ({(8, 11, 8, 12): '(3)'}, {}), '(3)', False, 'import time\n'), ((10, 4, 10, 27), 'pykeyboard.PyKeyboard', 'pykeyboard.PyKeyboard', ({}, {}), '()', False, 'import pykeyboard\n'), ((12, 0, 12, 13), 'time.sleep', 'time.sleep', ({(12, 11, 12, 12): '(1)'}, {}), '(1)', False, 'import time\n')]
EleutherAI/megatron-3d
tools/corpora.py
be3014d47a127f08871d0ba6d6389363f2484397
import os import tarfile from abc import ABC, abstractmethod from glob import glob import shutil import random import zstandard """ This registry is for automatically downloading and extracting datasets. To register a class you need to inherit the DataDownloader class, provide name, filetype and url attributes, and (optionally) provide download / extract / exists / tokenize functions to check if the data exists, and, if it doesn't, download, extract and tokenize the data into the correct directory. When done, add it to the DATA_DOWNLOADERS dict. The function process_data runs the pre-processing for the selected dataset. """ DATA_DIR = os.environ.get('DATA_DIR', './data') GPT2_VOCAB_FP = f"{DATA_DIR}/gpt2-vocab.json" GPT2_VOCAB_URL = "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json" GPT2_MERGE_FP = f"{DATA_DIR}/gpt2-merges.txt" GPT2_MERGE_URL = "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt" class DataDownloader(ABC): """Dataset registry class to automatically download / extract datasets""" @property def base_dir(self): """base data directory""" return DATA_DIR @property @abstractmethod def name(self): """name of dataset""" pass @property @abstractmethod def filetype(self): """filetype of dataset""" pass @property @abstractmethod def url(self): """URL from which to download dataset""" pass def _extract_tar(self): self.path = os.path.join(self.base_dir, self.name) os.makedirs(self.path, exist_ok=True) tarfile_path = os.path.join(self.base_dir, os.path.basename(self.url)) with tarfile.open(tarfile_path, "r:gz") as dataset_tar: print(f'Extracting files from {tarfile_path}...') dataset_tar.extractall(self.path) def _extract_zstd(self, remove_zstd=True): self.path = os.path.join(self.base_dir, self.name) os.makedirs(self.path, exist_ok=True) zstd_file_path = os.path.join(self.base_dir, os.path.basename(self.url)) with open(zstd_file_path, 'rb') as compressed: decomp = zstandard.ZstdDecompressor() output_path = zstd_file_path.replace(".zst", "") with open(output_path, 'wb') as destination: decomp.copy_stream(compressed, destination) if remove_zstd: os.remove(zstd_file_path) return output_path def extract(self): """extracts dataset and moves to the correct data dir if necessary""" self._extract_tar() def exists(self): """Checks if the dataset is present""" return os.path.isdir(f"{self.base_dir}/{self.name}") def download(self): """downloads dataset""" os.makedirs(self.base_dir, exist_ok=True) os.system(f"wget {self.url} -O {os.path.join(self.base_dir, os.path.basename(self.url))}") def tokenize(self): parent_folder = os.path.join(self.base_dir, self.name) jsonl_filepath = os.path.join(parent_folder, os.path.basename(self.url)).replace(".zst", "") assert jsonl_filepath.endswith(".jsonl") os.system(f"python tools/preprocess_data.py \ --input {jsonl_filepath} \ --output-prefix {parent_folder}/{self.name} \ --vocab {GPT2_VOCAB_FP} \ --dataset-impl mmap \ --tokenizer-type GPT2BPETokenizer \ --merge-file {GPT2_MERGE_FP} \ --append-eod") def prepare(self): if not self.exists(): self.download() self.extract() self.tokenize() class Enron(DataDownloader): name = "enron" filetype = "jsonl.zst" url = "http://eaidata.bmk.sh/data/enron_emails.jsonl.zst" seed = 1 def exists(self): self.path = os.path.join(self.base_dir, self.name) return os.path.isfile(os.path.join(self.path, os.path.basename(self.url).replace(".zst", ""))) def extract(self, remove_zstd=True): self._extract_zstd(remove_zstd=remove_zstd) shutil.move(os.path.join(self.base_dir, os.path.basename(self.url).replace(".zst", "")), os.path.join(self.base_dir, self.name)) def maybe_download_gpt2_tokenizer_data(): if not os.path.isfile(GPT2_VOCAB_FP): os.system(f'wget {GPT2_VOCAB_URL} -O {GPT2_VOCAB_FP}') if not os.path.isfile(GPT2_MERGE_FP): os.system(f'wget {GPT2_MERGE_URL} -O {GPT2_MERGE_FP}') DATA_DOWNLOADERS = { "enron": Enron } def prepare_dataset(dataset_name): os.makedirs(DATA_DIR, exist_ok=True) maybe_download_gpt2_tokenizer_data() DownloaderClass = DATA_DOWNLOADERS.get(dataset_name, None) if DownloaderClass is None: raise NotImplementedError else: d = DownloaderClass() d.prepare()
[((18, 11, 18, 47), 'os.environ.get', 'os.environ.get', ({(18, 26, 18, 36): '"""DATA_DIR"""', (18, 38, 18, 46): '"""./data"""'}, {}), "('DATA_DIR', './data')", False, 'import os\n'), ((129, 4, 129, 40), 'os.makedirs', 'os.makedirs', (), '', False, 'import os\n'), ((52, 20, 52, 58), 'os.path.join', 'os.path.join', ({(52, 33, 52, 46): 'self.base_dir', (52, 48, 52, 57): 'self.name'}, {}), '(self.base_dir, self.name)', False, 'import os\n'), ((53, 8, 53, 45), 'os.makedirs', 'os.makedirs', (), '', False, 'import os\n'), ((60, 20, 60, 58), 'os.path.join', 'os.path.join', ({(60, 33, 60, 46): 'self.base_dir', (60, 48, 60, 57): 'self.name'}, {}), '(self.base_dir, self.name)', False, 'import os\n'), ((61, 8, 61, 45), 'os.makedirs', 'os.makedirs', (), '', False, 'import os\n'), ((78, 15, 78, 60), 'os.path.isdir', 'os.path.isdir', ({(78, 29, 78, 59): 'f"""{self.base_dir}/{self.name}"""'}, {}), "(f'{self.base_dir}/{self.name}')", False, 'import os\n'), ((82, 8, 82, 49), 'os.makedirs', 'os.makedirs', (), '', False, 'import os\n'), ((86, 24, 86, 62), 'os.path.join', 'os.path.join', ({(86, 37, 86, 50): 'self.base_dir', (86, 52, 86, 61): 'self.name'}, {}), '(self.base_dir, self.name)', False, 'import os\n'), ((89, 8, 96, 26), 'os.system', 'os.system', ({(89, 18, 96, 25): 'f"""python tools/preprocess_data.py --input {jsonl_filepath} --output-prefix {parent_folder}/{self.name} --vocab {GPT2_VOCAB_FP} --dataset-impl mmap --tokenizer-type GPT2BPETokenizer --merge-file {GPT2_MERGE_FP} --append-eod"""'}, {}), "(\n f'python tools/preprocess_data.py --input {jsonl_filepath} --output-prefix {parent_folder}/{self.name} --vocab {GPT2_VOCAB_FP} --dataset-impl mmap --tokenizer-type GPT2BPETokenizer --merge-file {GPT2_MERGE_FP} --append-eod'\n )", False, 'import os\n'), ((111, 20, 111, 58), 'os.path.join', 'os.path.join', ({(111, 33, 111, 46): 'self.base_dir', (111, 48, 111, 57): 'self.name'}, {}), '(self.base_dir, self.name)', False, 'import os\n'), ((119, 11, 119, 40), 'os.path.isfile', 'os.path.isfile', ({(119, 26, 119, 39): 'GPT2_VOCAB_FP'}, {}), '(GPT2_VOCAB_FP)', False, 'import os\n'), ((120, 8, 120, 62), 'os.system', 'os.system', ({(120, 18, 120, 61): 'f"""wget {GPT2_VOCAB_URL} -O {GPT2_VOCAB_FP}"""'}, {}), "(f'wget {GPT2_VOCAB_URL} -O {GPT2_VOCAB_FP}')", False, 'import os\n'), ((121, 11, 121, 40), 'os.path.isfile', 'os.path.isfile', ({(121, 26, 121, 39): 'GPT2_MERGE_FP'}, {}), '(GPT2_MERGE_FP)', False, 'import os\n'), ((122, 8, 122, 62), 'os.system', 'os.system', ({(122, 18, 122, 61): 'f"""wget {GPT2_MERGE_URL} -O {GPT2_MERGE_FP}"""'}, {}), "(f'wget {GPT2_MERGE_URL} -O {GPT2_MERGE_FP}')", False, 'import os\n'), ((54, 51, 54, 77), 'os.path.basename', 'os.path.basename', ({(54, 68, 54, 76): 'self.url'}, {}), '(self.url)', False, 'import os\n'), ((55, 13, 55, 47), 'tarfile.open', 'tarfile.open', ({(55, 26, 55, 38): 'tarfile_path', (55, 40, 55, 46): '"""r:gz"""'}, {}), "(tarfile_path, 'r:gz')", False, 'import tarfile\n'), ((62, 53, 62, 79), 'os.path.basename', 'os.path.basename', ({(62, 70, 62, 78): 'self.url'}, {}), '(self.url)', False, 'import os\n'), ((64, 21, 64, 49), 'zstandard.ZstdDecompressor', 'zstandard.ZstdDecompressor', ({}, {}), '()', False, 'import zstandard\n'), ((69, 12, 69, 37), 'os.remove', 'os.remove', ({(69, 22, 69, 36): 'zstd_file_path'}, {}), '(zstd_file_path)', False, 'import os\n'), ((116, 97, 116, 135), 'os.path.join', 'os.path.join', ({(116, 110, 116, 123): 'self.base_dir', (116, 125, 116, 134): 'self.name'}, {}), '(self.base_dir, self.name)', False, 'import os\n'), ((87, 53, 87, 79), 'os.path.basename', 'os.path.basename', ({(87, 70, 87, 78): 'self.url'}, {}), '(self.url)', False, 'import os\n'), ((83, 68, 83, 94), 'os.path.basename', 'os.path.basename', ({(83, 85, 83, 93): 'self.url'}, {}), '(self.url)', False, 'import os\n'), ((112, 54, 112, 80), 'os.path.basename', 'os.path.basename', ({(112, 71, 112, 79): 'self.url'}, {}), '(self.url)', False, 'import os\n'), ((116, 48, 116, 74), 'os.path.basename', 'os.path.basename', ({(116, 65, 116, 73): 'self.url'}, {}), '(self.url)', False, 'import os\n')]
aka256/othello-rl
othello_rl/qlearning/qlearning.py
ef5e78c6cf6b276e16b50086b53138ab968d728c
from logging import getLogger logger = getLogger(__name__) class QLearning: """ Q-Learning用のクラス Attributes ---------- alpha : float 学習率α gamma : float 割引率γ data : dict Q-Learningでの学習結果の保存用辞書 init_value : float dataの初期値 """ def __init__(self, alpha: float, gamma: float, data: dict = {}, init_value: float = 0) -> None: self.alpha = alpha self.gamma = gamma self.data = data self.init_value = init_value def get(self, s: int, a: int) -> float: """ dataから値の取得 Parameters ---------- s : int 状態 a : int 行動 Returns ------- value : float Q値, Q(s, a) """ return self.data.get((s, a), self.init_value) def __set(self, s: int, a: int, value: float) -> None: """ dataへの値の代入 Parameters ---------- s : int 状態 a : int 行動 value : float 代入するQ値, Q(s, a) """ self.data[(s, a)] = value def update(self, s: int, a: int, r: float, q: float, *q_old: float) -> float: """ Q値の更新 Parameters ---------- s : int 状態 a : int 行動 r : float 報酬 q : float Q(s_t+1, a) q_old : float Q(s, a) Returns ------ q_new : float updateされたQ値 """ if len(q_old) == 0: q_old = self.get(s, a) else: q_old = q_old[0] #print('alpha:{}, q_old:{}, r:{}, gamma:{}, q:{}'.format(self.alpha, q_old, r, self.gamma, q)) q_new = (1-self.alpha)*q_old+self.alpha*(r + self.gamma*q) self.__set(s, a, q_new) return q_new
[((3, 9, 3, 28), 'logging.getLogger', 'getLogger', ({(3, 19, 3, 27): '__name__'}, {}), '(__name__)', False, 'from logging import getLogger\n')]
loftwah/appscale
SearchService/test/unit/test_solr_interface.py
586fc1347ebc743d7a632de698f4dbfb09ae38d6
#!/usr/bin/env python import os import json import sys import unittest import urllib2 from flexmock import flexmock sys.path.append(os.path.join(os.path.dirname(__file__), "../../")) import solr_interface import search_exceptions class FakeSolrDoc(): def __init__(self): self.fields = [] class FakeDocument(): INDEX_NAME = "indexname" INDEX_LOCALE = "indexlocale" def __init__(self): self.fields = [] self.id = "id" self.language = "lang" class FakeSchema(): def __init__(self): self.fields = [] class FakeIndex(): def __init__(self): self.name = "name" self.schema = FakeSchema() class FakeIndexSpec(): def __init__(self): pass def namespace(self): return 'ns' def name(self): return self.name class FakeUpdate(): def __init__(self, name, field_type): self.name = name self.field_type = field_type class FakeConnection(): def __init__(self, is_good_code): self.code = 200 if not is_good_code: self.code = 500 def getcode(self): return self.code class TestSolrInterface(unittest.TestCase): """ A set of test cases for the solr interface module. """ def test_get_index_adapter(self): appscale_info = flexmock() appscale_info.should_receive("get_search_location").\ and_return("somelocation") solr = solr_interface.Solr() solr = flexmock(solr) flexmock(solr_interface) solr_interface.should_receive("get_index_name").and_return("index_ns_name") flexmock(urllib2) urllib2.should_receive("urlopen").and_return(FakeConnection(False)) self.assertRaises(search_exceptions.InternalError, solr._get_index_adapter, "app_id", "ns", "name") # Test the case of ValueError on a json.load. urllib2.should_receive("urlopen").and_return(FakeConnection(True)) flexmock(json) json.should_receive("load").and_raise(ValueError) self.assertRaises(search_exceptions.InternalError, solr._get_index_adapter, "app_id", "ns", "name") # Test a bad status from SOLR. dictionary = {'responseHeader':{'status': 1}} json.should_receive("load").and_return(dictionary) self.assertRaises(search_exceptions.InternalError, solr._get_index_adapter, "app_id", "ns", "name") fields = [{'name':"index_ns_name_"}] dictionary = {'responseHeader':{'status': 0}, "fields": fields} json.should_receive("load").and_return(dictionary) index = solr._get_index_adapter("app_id", "ns", "name") self.assertEquals(index.schema[0]['name'], "index_ns_name_") def test_update_schema(self): appscale_info = flexmock() appscale_info.should_receive("get_search_location").\ and_return("somelocation") solr = solr_interface.Solr() flexmock(urllib2) urllib2.should_receive("urlopen").and_return(FakeConnection(False)) updates = [] self.assertRaises(search_exceptions.InternalError, solr.update_schema, updates) updates = [{'name': 'name1', 'type':'type1'}] flexmock(json) json.should_receive("load").and_raise(ValueError) urllib2.should_receive("urlopen").and_return(FakeConnection(True)) self.assertRaises(search_exceptions.InternalError, solr.update_schema, updates) dictionary = {"responseHeader":{"status":1}} json.should_receive("load").and_return(dictionary) self.assertRaises(search_exceptions.InternalError, solr.update_schema, updates) dictionary = {"responseHeader":{"status":0}} json.should_receive("load").and_return(dictionary) solr.update_schema(updates) def test_to_solr_hash_map(self): appscale_info = flexmock() appscale_info.should_receive("get_search_location").\ and_return("somelocation") solr = solr_interface.Solr() self.assertNotEqual(solr.to_solr_hash_map(FakeIndex(), FakeDocument()), {}) def test_commit_update(self): appscale_info = flexmock() appscale_info.should_receive("get_search_location").\ and_return("somelocation") solr = solr_interface.Solr() flexmock(json) json.should_receive("loads").and_return({}) flexmock(urllib2) urllib2.should_receive("urlopen").and_return(FakeConnection(False)) self.assertRaises(search_exceptions.InternalError, solr.commit_update, {}) json.should_receive("load").and_raise(ValueError) urllib2.should_receive("urlopen").and_return(FakeConnection(True)) self.assertRaises(search_exceptions.InternalError, solr.commit_update, {}) dictionary = {'responseHeader':{'status': 1}} json.should_receive("load").and_return(dictionary).once() self.assertRaises(search_exceptions.InternalError, solr.commit_update, {}) dictionary = {'responseHeader':{'status': 0}} json.should_receive("load").and_return(dictionary).once() solr.commit_update({}) def test_update_document(self): appscale_info = flexmock() appscale_info.should_receive("get_search_location").\ and_return("somelocation") solr = solr_interface.Solr() solr = flexmock(solr) solr.should_receive("to_solr_doc").and_return(FakeSolrDoc()) solr.should_receive("_get_index_adapter").and_return(FakeIndex()) solr.should_receive("compute_updates").and_return([]) solr.should_receive("to_solr_hash_map").and_return(None) solr.should_receive("commit_update").and_return(None) solr.update_document("app_id", None, FakeIndexSpec()) solr.should_receive("compute_updates").and_return([1,2]) solr.should_receive("update_schema").twice() solr.update_document("app_id", None, FakeIndexSpec()) solr.should_receive("to_solr_hash_map").and_return(None).once() solr.update_document("app_id", None, FakeIndexSpec()) def test_json_loads_byteified(self): json_with_unicode = ( '{"key2": [{"\\u2611": 28, "\\u2616": ["\\u263a"]}, "second", "third"], ' '"key1": "value", ' '"\\u2604": {"\\u2708": "\\u2708"}}' ) parsed_obj = solr_interface.json_loads_byteified(json_with_unicode) def walk_and_check_type(obj): if isinstance(obj, dict): for key, value in obj.iteritems(): self.assertIsInstance(key, str) walk_and_check_type(value) elif isinstance(obj, list): for value in obj: walk_and_check_type(value) else: self.assertIsInstance(obj, (str, int)) walk_and_check_type(parsed_obj) self.assertEqual(parsed_obj, { 'key1': 'value', 'key2': [ {'\xe2\x98\x91': 28, '\xe2\x98\x96': ['\xe2\x98\xba']}, 'second', 'third' ], '\xe2\x98\x84': {'\xe2\x9c\x88': '\xe2\x9c\x88'} })
[((11, 29, 11, 54), 'os.path.dirname', 'os.path.dirname', ({(11, 45, 11, 53): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((62, 20, 62, 30), 'flexmock.flexmock', 'flexmock', ({}, {}), '()', False, 'from flexmock import flexmock\n'), ((65, 11, 65, 32), 'solr_interface.Solr', 'solr_interface.Solr', ({}, {}), '()', False, 'import solr_interface\n'), ((66, 11, 66, 25), 'flexmock.flexmock', 'flexmock', ({(66, 20, 66, 24): 'solr'}, {}), '(solr)', False, 'from flexmock import flexmock\n'), ((67, 4, 67, 28), 'flexmock.flexmock', 'flexmock', ({(67, 13, 67, 27): 'solr_interface'}, {}), '(solr_interface)', False, 'from flexmock import flexmock\n'), ((69, 4, 69, 21), 'flexmock.flexmock', 'flexmock', ({(69, 13, 69, 20): 'urllib2'}, {}), '(urllib2)', False, 'from flexmock import flexmock\n'), ((76, 4, 76, 18), 'flexmock.flexmock', 'flexmock', ({(76, 13, 76, 17): 'json'}, {}), '(json)', False, 'from flexmock import flexmock\n'), ((94, 20, 94, 30), 'flexmock.flexmock', 'flexmock', ({}, {}), '()', False, 'from flexmock import flexmock\n'), ((97, 11, 97, 32), 'solr_interface.Solr', 'solr_interface.Solr', ({}, {}), '()', False, 'import solr_interface\n'), ((99, 4, 99, 21), 'flexmock.flexmock', 'flexmock', ({(99, 13, 99, 20): 'urllib2'}, {}), '(urllib2)', False, 'from flexmock import flexmock\n'), ((106, 4, 106, 18), 'flexmock.flexmock', 'flexmock', ({(106, 13, 106, 17): 'json'}, {}), '(json)', False, 'from flexmock import flexmock\n'), ((122, 20, 122, 30), 'flexmock.flexmock', 'flexmock', ({}, {}), '()', False, 'from flexmock import flexmock\n'), ((125, 11, 125, 32), 'solr_interface.Solr', 'solr_interface.Solr', ({}, {}), '()', False, 'import solr_interface\n'), ((129, 20, 129, 30), 'flexmock.flexmock', 'flexmock', ({}, {}), '()', False, 'from flexmock import flexmock\n'), ((132, 11, 132, 32), 'solr_interface.Solr', 'solr_interface.Solr', ({}, {}), '()', False, 'import solr_interface\n'), ((134, 4, 134, 18), 'flexmock.flexmock', 'flexmock', ({(134, 13, 134, 17): 'json'}, {}), '(json)', False, 'from flexmock import flexmock\n'), ((137, 4, 137, 21), 'flexmock.flexmock', 'flexmock', ({(137, 13, 137, 20): 'urllib2'}, {}), '(urllib2)', False, 'from flexmock import flexmock\n'), ((154, 20, 154, 30), 'flexmock.flexmock', 'flexmock', ({}, {}), '()', False, 'from flexmock import flexmock\n'), ((157, 11, 157, 32), 'solr_interface.Solr', 'solr_interface.Solr', ({}, {}), '()', False, 'import solr_interface\n'), ((158, 11, 158, 25), 'flexmock.flexmock', 'flexmock', ({(158, 20, 158, 24): 'solr'}, {}), '(solr)', False, 'from flexmock import flexmock\n'), ((179, 17, 179, 71), 'solr_interface.json_loads_byteified', 'solr_interface.json_loads_byteified', ({(179, 53, 179, 70): 'json_with_unicode'}, {}), '(json_with_unicode)', False, 'import solr_interface\n'), ((68, 4, 68, 51), 'solr_interface.should_receive', 'solr_interface.should_receive', ({(68, 34, 68, 50): '"""get_index_name"""'}, {}), "('get_index_name')", False, 'import solr_interface\n'), ((70, 4, 70, 37), 'urllib2.should_receive', 'urllib2.should_receive', ({(70, 27, 70, 36): '"""urlopen"""'}, {}), "('urlopen')", False, 'import urllib2\n'), ((75, 4, 75, 37), 'urllib2.should_receive', 'urllib2.should_receive', ({(75, 27, 75, 36): '"""urlopen"""'}, {}), "('urlopen')", False, 'import urllib2\n'), ((77, 4, 77, 31), 'json.should_receive', 'json.should_receive', ({(77, 24, 77, 30): '"""load"""'}, {}), "('load')", False, 'import json\n'), ((83, 4, 83, 31), 'json.should_receive', 'json.should_receive', ({(83, 24, 83, 30): '"""load"""'}, {}), "('load')", False, 'import json\n'), ((89, 4, 89, 31), 'json.should_receive', 'json.should_receive', ({(89, 24, 89, 30): '"""load"""'}, {}), "('load')", False, 'import json\n'), ((100, 4, 100, 37), 'urllib2.should_receive', 'urllib2.should_receive', ({(100, 27, 100, 36): '"""urlopen"""'}, {}), "('urlopen')", False, 'import urllib2\n'), ((107, 4, 107, 31), 'json.should_receive', 'json.should_receive', ({(107, 24, 107, 30): '"""load"""'}, {}), "('load')", False, 'import json\n'), ((108, 4, 108, 37), 'urllib2.should_receive', 'urllib2.should_receive', ({(108, 27, 108, 36): '"""urlopen"""'}, {}), "('urlopen')", False, 'import urllib2\n'), ((113, 4, 113, 31), 'json.should_receive', 'json.should_receive', ({(113, 24, 113, 30): '"""load"""'}, {}), "('load')", False, 'import json\n'), ((118, 4, 118, 31), 'json.should_receive', 'json.should_receive', ({(118, 24, 118, 30): '"""load"""'}, {}), "('load')", False, 'import json\n'), ((135, 4, 135, 32), 'json.should_receive', 'json.should_receive', ({(135, 24, 135, 31): '"""loads"""'}, {}), "('loads')", False, 'import json\n'), ((138, 4, 138, 37), 'urllib2.should_receive', 'urllib2.should_receive', ({(138, 27, 138, 36): '"""urlopen"""'}, {}), "('urlopen')", False, 'import urllib2\n'), ((141, 4, 141, 31), 'json.should_receive', 'json.should_receive', ({(141, 24, 141, 30): '"""load"""'}, {}), "('load')", False, 'import json\n'), ((142, 4, 142, 37), 'urllib2.should_receive', 'urllib2.should_receive', ({(142, 27, 142, 36): '"""urlopen"""'}, {}), "('urlopen')", False, 'import urllib2\n'), ((146, 4, 146, 31), 'json.should_receive', 'json.should_receive', ({(146, 24, 146, 30): '"""load"""'}, {}), "('load')", False, 'import json\n'), ((150, 4, 150, 31), 'json.should_receive', 'json.should_receive', ({(150, 24, 150, 30): '"""load"""'}, {}), "('load')", False, 'import json\n')]
ppm-avinder/payabbhi-python
payabbhi/error.py
0f84f01349e365753f4b83eee584618e1a855567
class PayabbhiError(Exception): def __init__(self, description=None, http_status=None, field=None): self.description = description self.http_status = http_status self.field = field self._message = self.error_message() super(PayabbhiError, self).__init__(self._message) def error_message(self): msg = "message: " + self.description msg = (msg + ", http_code: " + str(self.http_status)) if self.http_status else msg msg = (msg + ", field: " + self.field) if self.field else msg return msg + "\n" class APIError(PayabbhiError): pass class APIConnectionError(PayabbhiError): pass class AuthenticationError(PayabbhiError): pass class InvalidRequestError(PayabbhiError): pass class GatewayError(PayabbhiError): pass class SignatureVerificationError(PayabbhiError): pass
[]
TsinghuaAI/CPM-2-Pretrain
src/mpu/__init__.py
33003865239e7ba13a12aabf9ec2735cef66bf3b
# coding=utf-8 # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Model parallel utility interface.""" from .cross_entropy import vocab_parallel_cross_entropy from .data import broadcast_data from .grads import clip_grad_norm from .initialize import destroy_model_parallel from .initialize import get_data_parallel_group from .initialize import get_data_parallel_rank from .initialize import get_data_parallel_world_size from .initialize import get_model_parallel_group from .initialize import get_model_parallel_rank from .initialize import get_model_parallel_src_rank from .initialize import get_model_parallel_world_size from .initialize import initialize_model_parallel from .initialize import model_parallel_is_initialized from .layers import ColumnParallelLinear from .layers import ParallelEmbedding from .layers import RowParallelLinear from .layers import VocabParallelEmbedding from .mappings import copy_to_model_parallel_region from .mappings import gather_from_model_parallel_region from .mappings import reduce_from_model_parallel_region from .mappings import scatter_to_model_parallel_region from .random import checkpoint from .random import partition_activations_in_checkpoint from .random import get_cuda_rng_tracker from .random import model_parallel_cuda_manual_seed from .transformer_enc_dec import ParallelTransformer, LayerNorm
[]
MateusMolina/lunoERP
djangosige/apps/cadastro/models/empresa.py
0880adb93b3a2d3169c6780efa60a229272f927a
# -*- coding: utf-8 -*- import os from django.db import models from django.db.models.signals import post_delete from django.dispatch import receiver from .base import Pessoa from djangosige.apps.login.models import Usuario from djangosige.configs.settings import MEDIA_ROOT def logo_directory_path(instance, filename): extension = os.path.splitext(filename)[1] return 'imagens/empresas/logo_{0}_{1}{2}'.format(instance.nome_razao_social, instance.id, extension) class Empresa(Pessoa): logo_file = models.ImageField( upload_to=logo_directory_path, default='imagens/logo.png', blank=True, null=True) cnae = models.CharField(max_length=10, blank=True, null=True) iest = models.CharField(max_length=32, null=True, blank=True) class Meta: verbose_name = "Empresa" @property def caminho_completo_logo(self): if self.logo_file.name != 'imagens/logo.png': return os.path.join(MEDIA_ROOT, self.logo_file.name) else: return '' def save(self, *args, **kwargs): # Deletar logo se ja existir um try: obj = Empresa.objects.get(id=self.id) if obj.logo_file != self.logo_file and obj.logo_file != 'imagens/logo.png': obj.logo_file.delete(save=False) except: pass super(Empresa, self).save(*args, **kwargs) def __unicode__(self): return u'%s' % self.nome_razao_social def __str__(self): return u'%s' % self.nome_razao_social # Deletar logo quando empresa for deletada @receiver(post_delete, sender=Empresa) def logo_post_delete_handler(sender, instance, **kwargs): # Nao deletar a imagem default 'logo.png' if instance.logo_file != 'imagens/logo.png': instance.logo_file.delete(False) class MinhaEmpresa(models.Model): m_empresa = models.ForeignKey( Empresa, on_delete=models.CASCADE, related_name='minha_empresa', blank=True, null=True) m_usuario = models.ForeignKey( Usuario, on_delete=models.CASCADE, related_name='empresa_usuario')
[((54, 1, 54, 38), 'django.dispatch.receiver', 'receiver', (), '', False, 'from django.dispatch import receiver\n'), ((20, 16, 21, 89), 'django.db.models.ImageField', 'models.ImageField', (), '', False, 'from django.db import models\n'), ((22, 11, 22, 65), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((23, 11, 23, 65), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((62, 16, 63, 95), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import models\n'), ((64, 16, 65, 74), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import models\n'), ((15, 16, 15, 42), 'os.path.splitext', 'os.path.splitext', ({(15, 33, 15, 41): 'filename'}, {}), '(filename)', False, 'import os\n'), ((31, 19, 31, 64), 'os.path.join', 'os.path.join', ({(31, 32, 31, 42): 'MEDIA_ROOT', (31, 44, 31, 63): 'self.logo_file.name'}, {}), '(MEDIA_ROOT, self.logo_file.name)', False, 'import os\n')]
silverriver/Stylized_Dialog
WDJN/eval/eval.py
559dd97c4ec9c91e94deb048f789684ef3f1f9fa
import os from nltk.translate.bleu_score import corpus_bleu from nltk.translate.bleu_score import SmoothingFunction import json from tqdm import tqdm, trange from random import sample import numpy as np import pickle import argparse import bert_eval_acc import svm_eval_acc smooth = SmoothingFunction() def eval_bleu(ref, pred): """ :param ref: list(list(list(any))), a list of reference sentences, each element of the list is a list of references :param pred: list(list(any)), a list of predictions :return: corpus bleu score """ return corpus_bleu(ref, pred, smoothing_function=smooth.method1) def eval_bleu_detail(ref, pred): """ :param ref: list(list(list(any))), a list of reference sentences, each element of the list is a list of references :param pred: list(list(any)), a list of predictions :return: corpus bleu score """ return corpus_bleu(ref, pred, weights=[1, 0, 0, 0], smoothing_function=smooth.method1),\ corpus_bleu(ref, pred, weights=[0, 1, 0, 0], smoothing_function=smooth.method1), \ corpus_bleu(ref, pred, weights=[0, 0, 1, 0], smoothing_function=smooth.method1), \ corpus_bleu(ref, pred, weights=[0, 0, 0, 1], smoothing_function=smooth.method1) def count_ngram(hyps_resp, n): """ Count the number of unique n-grams :param hyps_resp: list, a list of responses :param n: int, n-gram :return: the number of unique n-grams in hyps_resp """ if len(hyps_resp) == 0: print("ERROR, eval_distinct get empty input") return if type(hyps_resp[0]) != list: print("ERROR, eval_distinct takes in a list of <class 'list'>, get a list of {} instead".format( type(hyps_resp[0]))) return ngram = set() for resp in hyps_resp: if len(resp) < n: continue for i in range(len(resp) - n + 1): ngram.add(' '.join(resp[i: i + n])) return len(ngram) def eval_distinct_detail(hyps_resp): """ compute distinct score for the hyps_resp :param hyps_resp: list, a list of hyps responses :return: average distinct score for 1, 2-gram """ if len(hyps_resp) == 0: print("ERROR, eval_distinct get empty input") return if type(hyps_resp[0]) != list: print("ERROR, eval_distinct takes in a list of <class 'list'>, get a list of {} instead".format( type(hyps_resp[0]))) return hyps_resp = [[str(x) for x in l] for l in hyps_resp] hyps_resp = [(' '.join(i)).split() for i in hyps_resp] num_tokens = sum([len(i) for i in hyps_resp]) dist1 = count_ngram(hyps_resp, 1) / float(num_tokens) dist2 = count_ngram(hyps_resp, 2) / float(num_tokens) return dist1, dist2 def eval_f1(ref, pred): """ :param ref: list(list(list(any))), a list of reference sentences, each element of the list is a list of references :param pred: list(list(any)), a list of predictions :return: f1 score """ assert len(ref) == len(pred) > 0 precisions = [] recalls = [] for i, s in enumerate(pred): ref_set = set() for rs in ref[i]: for w in rs: ref_set.add(w) pred_set = set() for w in s: pred_set.add(w) p = 0 for w in s: if w in ref_set: p += 1 if len(s) > 0: p /= len(s) r = 0 for rs in ref[i]: for w in rs: if w in pred_set: r += 1 tot_l = sum([len(rs) for rs in ref[i]]) if tot_l > 0: r /= tot_l precisions.append(p) recalls.append(r) precision = sum(precisions) / len(precisions) recall = sum(recalls) / len(recalls) return 0.0 if precision == recall == 0 else 2 * precision * recall / (precision + recall) def calc_metrics_value(task, fn, n_sample=None): with open(fn) as f: res = [json.loads(i) for i in f.readlines()] s0_pred, s0_ref = [], [] s1_pred, s1_ref = [], [] for d in res: if d['style'] == 0: s0_ref.append([list(d['resp'])]) s0_pred.append(list(d['pred_style0'][0])) else: s1_ref.append([list(d['resp'])]) s1_pred.append(list(d['pred_style1'][0])) if n_sample: assert len(s0_ref) >= n_sample assert len(s1_ref) >= n_sample sampled_idxs = sample(range(len(s0_ref)), n_sample) s0_ref = [x for i, x in enumerate(s0_ref) if i in sampled_idxs] s0_pred = [x for i, x in enumerate(s0_pred) if i in sampled_idxs] sampled_idxs = sample(range(len(s1_ref)), n_sample) s1_ref = [x for i, x in enumerate(s1_ref) if i in sampled_idxs] s1_pred = [x for i, x in enumerate(s1_pred) if i in sampled_idxs] bleu_s0 = eval_bleu_detail(s0_ref, s0_pred) bleu_s1 = eval_bleu_detail(s1_ref, s1_pred) dist_s0 = eval_distinct_detail(s0_pred) dist_s1 = eval_distinct_detail(s1_pred) f1_s0 = eval_f1(s0_ref, s0_pred) f1_s1 = eval_f1(s1_ref, s1_pred) for k in range(1, 4): print('%d-gram BLEU:' % k, 's0', bleu_s0[k - 1] * 100, 's1', bleu_s1[k - 1] * 100, 'mean', (bleu_s0[k - 1] + bleu_s1[k - 1]) / 2 * 100) print('F1:', 's0', f1_s0 * 100, 's1', f1_s1 * 100, 'mean', (f1_s0 + f1_s1) / 2 * 100) print('Dist:', 's0', dist_s0[1] * 100, 's1', dist_s1[1] * 100, 'mean', (dist_s0[1] + dist_s1[1]) / 2 * 100) parser = argparse.ArgumentParser() parser.add_argument('--eval_file_path', help='path of the eval file', required=True) args = parser.parse_args() file_path = args.eval_file_path calc_metrics_value(None, file_path) print("Evaluating acc results:") bert_eval_acc.main(file_path) svm_eval_acc.main(file_path)
[((14, 9, 14, 28), 'nltk.translate.bleu_score.SmoothingFunction', 'SmoothingFunction', ({}, {}), '()', False, 'from nltk.translate.bleu_score import SmoothingFunction\n'), ((170, 9, 170, 34), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ({}, {}), '()', False, 'import argparse\n'), ((177, 0, 177, 29), 'bert_eval_acc.main', 'bert_eval_acc.main', ({(177, 19, 177, 28): 'file_path'}, {}), '(file_path)', False, 'import bert_eval_acc\n'), ((178, 0, 178, 28), 'svm_eval_acc.main', 'svm_eval_acc.main', ({(178, 18, 178, 27): 'file_path'}, {}), '(file_path)', False, 'import svm_eval_acc\n'), ((23, 11, 23, 68), 'nltk.translate.bleu_score.corpus_bleu', 'corpus_bleu', (), '', False, 'from nltk.translate.bleu_score import corpus_bleu\n'), ((31, 11, 31, 90), 'nltk.translate.bleu_score.corpus_bleu', 'corpus_bleu', (), '', False, 'from nltk.translate.bleu_score import corpus_bleu\n'), ((32, 11, 32, 90), 'nltk.translate.bleu_score.corpus_bleu', 'corpus_bleu', (), '', False, 'from nltk.translate.bleu_score import corpus_bleu\n'), ((33, 11, 33, 90), 'nltk.translate.bleu_score.corpus_bleu', 'corpus_bleu', (), '', False, 'from nltk.translate.bleu_score import corpus_bleu\n'), ((34, 11, 34, 90), 'nltk.translate.bleu_score.corpus_bleu', 'corpus_bleu', (), '', False, 'from nltk.translate.bleu_score import corpus_bleu\n'), ((128, 15, 128, 28), 'json.loads', 'json.loads', ({(128, 26, 128, 27): 'i'}, {}), '(i)', False, 'import json\n')]
olbjan/home-assistant-1
homeassistant/components/unifi/const.py
1adb45f74e96fc5eff137a3727647a7e428e123c
"""Constants for the UniFi component.""" import logging LOGGER = logging.getLogger(__package__) DOMAIN = "unifi" CONTROLLER_ID = "{host}-{site}" CONF_CONTROLLER = "controller" CONF_SITE_ID = "site" UNIFI_WIRELESS_CLIENTS = "unifi_wireless_clients" CONF_ALLOW_BANDWIDTH_SENSORS = "allow_bandwidth_sensors" CONF_BLOCK_CLIENT = "block_client" CONF_DETECTION_TIME = "detection_time" CONF_POE_CLIENTS = "poe_clients" CONF_TRACK_CLIENTS = "track_clients" CONF_TRACK_DEVICES = "track_devices" CONF_TRACK_WIRED_CLIENTS = "track_wired_clients" CONF_SSID_FILTER = "ssid_filter" DEFAULT_ALLOW_BANDWIDTH_SENSORS = False DEFAULT_POE_CLIENTS = True DEFAULT_TRACK_CLIENTS = True DEFAULT_TRACK_DEVICES = True DEFAULT_TRACK_WIRED_CLIENTS = True DEFAULT_DETECTION_TIME = 300 ATTR_MANUFACTURER = "Ubiquiti Networks"
[((4, 9, 4, 39), 'logging.getLogger', 'logging.getLogger', ({(4, 27, 4, 38): '__package__'}, {}), '(__package__)', False, 'import logging\n')]
Jahidul007/Python-Bootcamp
coding_intereview/1656. Design an Ordered Stream.py
3c870587465ff66c2c1871c8d3c4eea72463abda
class OrderedStream: def __init__(self, n: int): self.data = [None]*n self.ptr = 0 def insert(self, id: int, value: str) -> List[str]: id -= 1 self.data[id] = value if id > self.ptr: return [] while self.ptr < len(self.data) and self.data[self.ptr]: self.ptr += 1 return self.data[id:self.ptr] # Your OrderedStream object will be instantiated and called as such: # obj = OrderedStream(n) # param_1 = obj.insert(id,value)
[]
EQt/treelas
python/test/test_tree_dp.py
24a5cebf101180822198806c0a4131b0efb7a36d
import numpy as np from treelas import post_order, TreeInstance def test_demo_3x7_postord(): parent = np.array([0, 4, 5, 0, 3, 4, 7, 8, 5, 6, 7, 8, 9, 14, 17, 12, 15, 16, 19, 16, 17]) po = post_order(parent, include_root=True) expect = np.array([12, 11, 19, 20, 21, 14, 15, 18, 17, 16, 13, 10, 7, 8, 9, 3, 6, 2, 5, 4, 1], dtype='i4') - 1 assert (po == expect).all() def test_demo_3x7(): y = np.fromstring("0.62 0.73 0.71 1.5 1.17 0.43 1.08 0.62 " + "1.73 0.95 1.46 1.6 1.16 0.38 0.9 0.32 " + "-0.48 0.95 1.08 0.02 0.4", sep=" ") parent = np.array([0, 4, 5, 0, 3, 4, 7, 8, 5, 6, 7, 8, 9, 14, 17, 12, 15, 16, 19, 16, 17]) lam = 1.0 prob = TreeInstance(y, parent, lam=lam) assert prob.root == 0 assert prob.parent.dtype == np.int32 prob.solve() assert abs(prob.x.mean() - prob.y.mean()) < 1e-15 assert len(np.unique(prob.x)) == 2 assert max(np.abs(prob.dual[2:]) - lam) < 1e-12 assert max(np.abs(prob.gamma)) < 1e-15
[((6, 13, 7, 58), 'numpy.array', 'np.array', ({(6, 22, 7, 57): '[0, 4, 5, 0, 3, 4, 7, 8, 5, 6, 7, 8, 9, 14, 17, 12, 15, 16, 19, 16, 17]'}, {}), '([0, 4, 5, 0, 3, 4, 7, 8, 5, 6, 7, 8, 9, 14, 17, 12, 15, 16, 19, 16,\n 17])', True, 'import numpy as np\n'), ((8, 9, 8, 46), 'treelas.post_order', 'post_order', (), '', False, 'from treelas import post_order, TreeInstance\n'), ((15, 8, 17, 58), 'numpy.fromstring', 'np.fromstring', (), '', True, 'import numpy as np\n'), ((18, 13, 19, 58), 'numpy.array', 'np.array', ({(18, 22, 19, 57): '[0, 4, 5, 0, 3, 4, 7, 8, 5, 6, 7, 8, 9, 14, 17, 12, 15, 16, 19, 16, 17]'}, {}), '([0, 4, 5, 0, 3, 4, 7, 8, 5, 6, 7, 8, 9, 14, 17, 12, 15, 16, 19, 16,\n 17])', True, 'import numpy as np\n'), ((21, 11, 21, 43), 'treelas.TreeInstance', 'TreeInstance', (), '', False, 'from treelas import post_order, TreeInstance\n'), ((9, 13, 10, 66), 'numpy.array', 'np.array', (), '', True, 'import numpy as np\n'), ((26, 15, 26, 32), 'numpy.unique', 'np.unique', ({(26, 25, 26, 31): 'prob.x'}, {}), '(prob.x)', True, 'import numpy as np\n'), ((28, 15, 28, 33), 'numpy.abs', 'np.abs', ({(28, 22, 28, 32): 'prob.gamma'}, {}), '(prob.gamma)', True, 'import numpy as np\n'), ((27, 15, 27, 36), 'numpy.abs', 'np.abs', ({(27, 22, 27, 35): 'prob.dual[2:]'}, {}), '(prob.dual[2:])', True, 'import numpy as np\n')]
SD-CC-UFG/leonardo.fleury
lista01/rpc/ex01_cl.py
0a8dfc5752c739f5ff98890477355df8960ad730
import xmlrpc.client def main(): s = xmlrpc.client.ServerProxy('http://localhost:9991') nome = input("Nome: ") cargo = input("Cargo (programador, operador): ") salario = float(input("Salário: ")) print("\n\n{}".format(s.atualiza_salario(nome, cargo, salario))) if __name__ == '__main__': main()
[]
openshift-eng/art-dashboard-server
autocomplete/migrations/0001_initial.py
af4e78b3d2213c30038cf69de646f25fd57c9e3c
# Generated by Django 3.0.7 on 2020-07-27 19:23 import build.models from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='AutoCompleteRecord', fields=[ ('updated_at', build.models.UnixTimestampField(auto_created=True, null=True)), ('created_at', build.models.UnixTimestampField(auto_created=True, null=True)), ('log_autocomplete_record_id', models.AutoField(primary_key=True, serialize=False)), ('type', models.CharField(max_length=50)), ('value', models.CharField(max_length=300)), ], options={ 'db_table': 'log_autocomplete_record', }, ), ]
[((20, 47, 20, 98), 'django.db.models.AutoField', 'models.AutoField', (), '', False, 'from django.db import migrations, models\n'), ((21, 25, 21, 56), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import migrations, models\n'), ((22, 26, 22, 58), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import migrations, models\n')]
fcollman/pytorch-3dunet
unet3d/config.py
303336bfdc0234f075c70e0c59759d09bc4081b8
import argparse import os import torch import yaml DEFAULT_DEVICE = 'cuda:0' def load_config(): parser = argparse.ArgumentParser(description='UNet3D training') parser.add_argument('--config', type=str, help='Path to the YAML config file', required=True) args = parser.parse_args() config = _load_config_yaml(args.config) # Get a device to train on device = config.get('device', DEFAULT_DEVICE) config['device'] = torch.device(device if torch.cuda.is_available() else "cpu") return config def _load_config_yaml(config_file): return yaml.load(open(config_file, 'r'), Loader=yaml.FullLoader)
[((11, 13, 11, 67), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (), '', False, 'import argparse\n'), ((18, 46, 18, 71), 'torch.cuda.is_available', 'torch.cuda.is_available', ({}, {}), '()', False, 'import torch\n')]
gunpowder78/webdnn
src/graph_transpiler/webdnn/backend/webgl/optimize_rules/simplify_channel_mode_conversion/simplify_channel_mode_conversion.py
c659ea49007f91d178ce422a1eebe289516a71ee
from webdnn.backend.webgl.optimize_rules.simplify_channel_mode_conversion.simplify_nonsense_channel_mode_conversion import \ SimplifyNonsenseChannelModeConversion from webdnn.backend.webgl.optimize_rules.simplify_channel_mode_conversion.simplify_redundant_channel_mode_conversion import \ SimplifyRedundantChannelModeConversion from webdnn.graph.optimize_rule import OptimizeRuleGroup class SimplifyChannelModeConversion(OptimizeRuleGroup): def __init__(self): super(SimplifyChannelModeConversion, self).__init__([ SimplifyRedundantChannelModeConversion(), SimplifyNonsenseChannelModeConversion() ])
[((11, 12, 11, 52), 'webdnn.backend.webgl.optimize_rules.simplify_channel_mode_conversion.simplify_redundant_channel_mode_conversion.SimplifyRedundantChannelModeConversion', 'SimplifyRedundantChannelModeConversion', ({}, {}), '()', False, 'from webdnn.backend.webgl.optimize_rules.simplify_channel_mode_conversion.simplify_redundant_channel_mode_conversion import SimplifyRedundantChannelModeConversion\n'), ((12, 12, 12, 51), 'webdnn.backend.webgl.optimize_rules.simplify_channel_mode_conversion.simplify_nonsense_channel_mode_conversion.SimplifyNonsenseChannelModeConversion', 'SimplifyNonsenseChannelModeConversion', ({}, {}), '()', False, 'from webdnn.backend.webgl.optimize_rules.simplify_channel_mode_conversion.simplify_nonsense_channel_mode_conversion import SimplifyNonsenseChannelModeConversion\n')]
akuala/REPO.KUALA
script.video.F4mProxy/lib/flvlib/constants.py
ea9a157025530d2ce8fa0d88431c46c5352e89d4
""" The constants used in FLV files and their meanings. """ # Tag type (TAG_TYPE_AUDIO, TAG_TYPE_VIDEO, TAG_TYPE_SCRIPT) = (8, 9, 18) # Sound format (SOUND_FORMAT_PCM_PLATFORM_ENDIAN, SOUND_FORMAT_ADPCM, SOUND_FORMAT_MP3, SOUND_FORMAT_PCM_LITTLE_ENDIAN, SOUND_FORMAT_NELLYMOSER_16KHZ, SOUND_FORMAT_NELLYMOSER_8KHZ, SOUND_FORMAT_NELLYMOSER, SOUND_FORMAT_G711_A_LAW, SOUND_FORMAT_G711_MU_LAW) = range(9) (SOUND_FORMAT_AAC, SOUND_FORMAT_SPEEX) = range(10, 12) (SOUND_FORMAT_MP3_8KHZ, SOUND_FORMAT_DEVICE_SPECIFIC) = range(14, 16) sound_format_to_string = { SOUND_FORMAT_PCM_PLATFORM_ENDIAN: "Linear PCM, platform endian", SOUND_FORMAT_ADPCM: "ADPCM", SOUND_FORMAT_MP3: "MP3", SOUND_FORMAT_PCM_LITTLE_ENDIAN: "Linear PCM, little endian", SOUND_FORMAT_NELLYMOSER_16KHZ: "Nellymoser 16-kHz mono", SOUND_FORMAT_NELLYMOSER_8KHZ: "Nellymoser 8-kHz mono", SOUND_FORMAT_NELLYMOSER: "Nellymoser", SOUND_FORMAT_G711_A_LAW: "G.711 A-law logarithmic PCM", SOUND_FORMAT_G711_MU_LAW: "G.711 mu-law logarithmic PCM", SOUND_FORMAT_AAC: "AAC", SOUND_FORMAT_SPEEX: "Speex", SOUND_FORMAT_MP3_8KHZ: "MP3 8-kHz", SOUND_FORMAT_DEVICE_SPECIFIC: "Device-specific sound" } # Sound rate (SOUND_RATE_5_5_KHZ, SOUND_RATE_11_KHZ, SOUND_RATE_22_KHZ, SOUND_RATE_44_KHZ) = range(4) sound_rate_to_string = { SOUND_RATE_5_5_KHZ: "5.5-kHz", SOUND_RATE_11_KHZ: "11-kHz", SOUND_RATE_22_KHZ: "22-kHz", SOUND_RATE_44_KHZ: "44-kHz" } # Sound size (SOUND_SIZE_8_BIT, SOUND_SIZE_16_BIT) = range(2) sound_size_to_string = { SOUND_SIZE_8_BIT: "snd8Bit", SOUND_SIZE_16_BIT: "snd16Bit" } # Sound type (SOUND_TYPE_MONO, SOUND_TYPE_STEREO) = range(2) sound_type_to_string = { SOUND_TYPE_MONO: "sndMono", SOUND_TYPE_STEREO: "sndStereo" } # AAC packet type (AAC_PACKET_TYPE_SEQUENCE_HEADER, AAC_PACKET_TYPE_RAW) = range(2) aac_packet_type_to_string = { AAC_PACKET_TYPE_SEQUENCE_HEADER: "sequence header", AAC_PACKET_TYPE_RAW: "raw" } # Codec ID (CODEC_ID_JPEG, CODEC_ID_H263, CODEC_ID_SCREEN_VIDEO, CODEC_ID_VP6, CODEC_ID_VP6_WITH_ALPHA, CODEC_ID_SCREEN_VIDEO_V2, CODEC_ID_H264) = range(1, 8) codec_id_to_string = { CODEC_ID_JPEG: "JPEG", CODEC_ID_H263: "Sorenson H.263", CODEC_ID_SCREEN_VIDEO: "Screen video", CODEC_ID_VP6: "On2 VP6", CODEC_ID_VP6_WITH_ALPHA: "On2 VP6 with alpha channel", CODEC_ID_SCREEN_VIDEO_V2: "Screen video version 2", CODEC_ID_H264: "H.264" } # Frame type (FRAME_TYPE_KEYFRAME, FRAME_TYPE_INTERFRAME, FRAME_TYPE_DISPOSABLE_INTERFRAME, FRAME_TYPE_GENERATED_KEYFRAME, FRAME_TYPE_INFO_FRAME) = range(1, 6) frame_type_to_string = { FRAME_TYPE_KEYFRAME: "keyframe", FRAME_TYPE_INTERFRAME: "interframe", FRAME_TYPE_DISPOSABLE_INTERFRAME: "disposable interframe", FRAME_TYPE_GENERATED_KEYFRAME: "generated keyframe", FRAME_TYPE_INFO_FRAME: "video info/command frame" } # H.264 packet type (H264_PACKET_TYPE_SEQUENCE_HEADER, H264_PACKET_TYPE_NALU, H264_PACKET_TYPE_END_OF_SEQUENCE) = range(3) h264_packet_type_to_string = { H264_PACKET_TYPE_SEQUENCE_HEADER: "sequence header", H264_PACKET_TYPE_NALU: "NAL unit", H264_PACKET_TYPE_END_OF_SEQUENCE: "sequence end" } # Value type (VALUE_TYPE_NUMBER, VALUE_TYPE_BOOLEAN, VALUE_TYPE_STRING, VALUE_TYPE_OBJECT, VALUE_TYPE_MOVIECLIP, VALUE_TYPE_NULL, VALUE_TYPE_UNDEFINED, VALUE_TYPE_REFERENCE, VALUE_TYPE_ECMA_ARRAY) = range(9) (VALUE_TYPE_STRICT_ARRAY, VALUE_TYPE_DATE, VALUE_TYPE_LONGSTRING) = range(10, 13) value_type_to_string = { VALUE_TYPE_NUMBER: 'Number', VALUE_TYPE_BOOLEAN: 'Boolean', VALUE_TYPE_STRING: 'String', VALUE_TYPE_OBJECT: 'Object', VALUE_TYPE_MOVIECLIP: 'MovieClip', VALUE_TYPE_NULL: 'Null', VALUE_TYPE_UNDEFINED: 'Undefined', VALUE_TYPE_REFERENCE: 'Reference', VALUE_TYPE_ECMA_ARRAY: 'ECMA Array', VALUE_TYPE_STRICT_ARRAY: 'Strict Array', VALUE_TYPE_DATE: 'Date', VALUE_TYPE_LONGSTRING: 'Longstring' }
[]
Rogerwlk/Natural-Language-Processing
A2/semcor_chunk.py
e1c0499180cec49ac0060aad7f0da00b61cfac94
from nltk.corpus import semcor class semcor_chunk: def __init__(self, chunk): self.chunk = chunk #returns the synset if applicable, otherwise returns None def get_syn_set(self): try: synset = self.chunk.label().synset() return synset except AttributeError: try: synset = wn.synset(self.chunk.label()) return synset except: return None #returns a list of the words in the chunk def get_words(self): try: return self.chunk.leaves() except AttributeError: return self.chunk # if __name__ == "__main__": # s = semcor.tagged_sents(tag='sem')[0] # for chunk in s: # a = semcor_chunk(chunk) # print a.get_syn_set() # for chunk in s: # a = semcor_chunk(chunk) # print a.get_words()
[]
thoang3/graph_neural_network_benchmark
gnn_model.py
72dc031ed23c6684c43d6f2ace03425f9b69cee6
import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from load_cora import load_cora from baseline_model import create_ffn from utils import run_experiment from utils import display_learning_curves # Graph convolution layer class GraphConvLayer(layers.Layer): def __init__( self, hidden_units, dropout_rate=0.2, aggregation_type="mean", combination_type="concat", normalize=False, *args, **kwargs ): super(GraphConvLayer, self).__init__(*args, **kwargs) self._aggregation_type = aggregation_type self._combination_type = combination_type self._normalize = normalize self._ffn_prepare = create_ffn(hidden_units, dropout_rate) if self._combination_type == "gated": self._update_fn = layers.GRU( units=hidden_units, activation="tanh", recurrent_activation="sigmoid", dropout=dropout_rate, return_state=True, recurrent_dropout=dropout_rate ) else: self._update_fn = create_ffn(hidden_units, dropout_rate) def _prepare(self, node_representations, weights=None): # node_representations shape is [num_edges, embedding_dim] messages = self._ffn_prepare(node_representations) if weights is not None: messages = messages * tf.expand_dims(weights, -1) return messages def _aggregate(self, node_indices, neighbour_messages): # node_indices shape is [num_edges] # neighbour_messages shape: [num_edges, representation_dim] num_nodes = tf.math.reduce_max(node_indices) + 1 if self._aggregation_type == "sum": aggregated_message = tf.math.unsorted_segment_sum( neighbour_messages, node_indices, num_segments=num_nodes ) elif self._aggregation_type == "mean": aggregated_message = tf.math.unsorted_segment_mean( neighbour_messages, node_indices, num_segments=num_nodes ) elif self._aggregation_type == "max": aggregated_message = tf.math.unsorted_segment_max( neighbour_messages, node_indices, num_segments=num_nodes ) else: raise ValueError(f"Invalid aggregation type: {self._aggregation_type}.") return aggregated_message def _update(self, node_representations, aggregated_messages): # node_representations shape is [num_nodes, representation_dim] # aggregated_messages shape is [num_nodes, representation_dim] if self._combination_type == "gru": # Create a sequence of two elements for the GRU layer h = tf.stack([node_respresentations, aggregated_messages], axis=1) elif self._combination_type == "concat": # Concatenate the node_representations and aggregated_messages h = tf.concat([node_representations, aggregated_messages], axis=1) elif self._combination_type == "add": # Add node_representations and aggregated_messages h = node_representations + aggregated_messages else: raise ValueError(f"Invalid combination type: {self._combinatino_type}.") # Apply the processing function node_embeddings = self._update_fn(h) if self._combination_type == "gru": node_embeddings = tf.unstack(node_embeddings, axis=1)[-1] if self._normalize: node_embeddings = tf.nn.l2_normalize(node_embeddings, axis=-1) return node_embeddings def call(self, inputs): """Process the inputs to produce the node_embeddings. Args: Inputs: A tuple of three elements: node_representations, edges, edge_weights. Returns: node_embeddings of shape [num_nodes, representation_dim]. """ node_representations, edges, edge_weights = inputs # Get node_indices (source) and neighbour_indices (target) from edges node_indices, neighbour_indices = edges[0], edges[1] # neighbour_representations shape is [num_edges, representation_dim] neighbour_representations = tf.gather(node_representations, neighbour_indices) # Prepare the messages of the neighbours neighbour_messages = self._prepare(neighbour_representations, edge_weights) # Aggregate the neighbour messages aggregated_messages = self._aggregate(node_indices, neighbour_messages) # Update the node embedding with the neighbour messages return self._update(node_representations, aggregated_messages) class GNNNodeClassifier(tf.keras.Model): def __init__( self, graph_info, num_classes, hidden_units, aggregation_type="sum", combination_type="concat", dropout_rate=0.2, normalize=True, *args, **kwargs ): super(GNNNodeClassifier, self).__init__(*args, **kwargs) # Unpack graph_info node_features, edges, edge_weights = graph_info self._node_features = node_features self._edges = edges self._edge_weights = edge_weights # Set edge_weights to ones if not provided if self._edge_weights is None: self._edge_weights = tf.ones(shape=edges.shape[1]) # Scale edge_weights to sum to 1 self._edge_weights = self._edge_weights / tf.math.reduce_sum(self._edge_weights) # Create a process layer self._preprocess = create_ffn(hidden_units, dropout_rate, name="preprocess") # Create the 1st GraphConv layer self._conv1 = GraphConvLayer( hidden_units, dropout_rate, aggregation_type, combination_type, normalize, name="graph_conv1" ) # Create the 2nd GraphConv layer self._conv2 = GraphConvLayer( hidden_units, dropout_rate, aggregation_type, combination_type, normalize, name="graph_conv2" ) # Create a postprocess layer self._postprocess = create_ffn(hidden_units, dropout_rate, name="postprocess") # Create a compute logits layer self._compute_logits = layers.Dense(units=num_classes, name="logits") def call(self, input_node_indices): # Preprocess the node_features to produce node representations x = self._preprocess(self._node_features) # Apply the 1st graph conv layer x1 = self._conv1((x, self._edges, self._edge_weights)) # Skip connection x = x1 + x # Apply the 2nd graph conv layer x2 = self._conv2((x, self._edges, self._edge_weights)) # Skip connection x = x2 + x # Postprocess node embedding x = self._postprocess(x) # Fetch node embeddings for the input node_indices node_embeddings = tf.gather(x, input_node_indices) # Compute logits return self._compute_logits(node_embeddings) if __name__ == '__main__': papers, train_data, test_data, paper_idx, class_idx, citations, feature_names = load_cora(verbose=1) num_features = len(feature_names) num_classes = len(class_idx) hidden_units = [32, 32] learning_rate = 0.01 dropout_rate = 0.5 epochs = 300 batch_size = 256 # Create an edges array (sparse adjacency matrix) of shape [2, num_edges] edges = citations[["source", "target"]].to_numpy().T #print(edges) # Create an edge weights array of ones (default weights) edge_weights = tf.ones(shape=edges.shape[1]) # Create a node features array of shape [num_nodes, num_features] node_features = tf.cast( papers.sort_values("paper_id")[feature_names].to_numpy(), dtype=tf.float32) # Create graph info tuple with node_features, edges, and edge_weights graph_info = (node_features, edges, edge_weights) print("Edges shape: ", edges.shape) print("Nodes shape: ", node_features.shape) gnn_model = GNNNodeClassifier( graph_info=graph_info, num_classes=num_classes, hidden_units=hidden_units, dropout_rate=dropout_rate, name="gnn_model" ) print("GNN output shape: ", gnn_model([1, 10, 100])) gnn_model.summary() # Train the GNN model X_train = train_data.paper_id.to_numpy() y_train = train_data.subject history = run_experiment(gnn_model, X_train, y_train, batch_size, epochs, learning_rate) # Plot the learning curves display_learning_curves(history, figure_name="gnn.png") # Evaluate on test data X_test = test_data.paper_id.to_numpy() y_test = test_data.subject _, test_accuracy = gnn_model.evaluate(x=X_test, y=y_test, verbose=1) print(f"Test accuracy: {round(test_accuracy * 100, 2)}%")
[((199, 83, 199, 103), 'load_cora.load_cora', 'load_cora', (), '', False, 'from load_cora import load_cora\n'), ((214, 17, 214, 46), 'tensorflow.ones', 'tf.ones', (), '', True, 'import tensorflow as tf\n'), ((240, 12, 240, 90), 'utils.run_experiment', 'run_experiment', ({(240, 27, 240, 36): 'gnn_model', (240, 38, 240, 45): 'X_train', (240, 47, 240, 54): 'y_train', (240, 56, 240, 66): 'batch_size', (240, 68, 240, 74): 'epochs', (240, 76, 240, 89): 'learning_rate'}, {}), '(gnn_model, X_train, y_train, batch_size, epochs, learning_rate)', False, 'from utils import run_experiment\n'), ((243, 2, 243, 57), 'utils.display_learning_curves', 'display_learning_curves', (), '', False, 'from utils import display_learning_curves\n'), ((28, 24, 28, 62), 'baseline_model.create_ffn', 'create_ffn', ({(28, 35, 28, 47): 'hidden_units', (28, 49, 28, 61): 'dropout_rate'}, {}), '(hidden_units, dropout_rate)', False, 'from baseline_model import create_ffn\n'), ((115, 32, 115, 82), 'tensorflow.gather', 'tf.gather', ({(115, 42, 115, 62): 'node_representations', (115, 64, 115, 81): 'neighbour_indices'}, {}), '(node_representations, neighbour_indices)', True, 'import tensorflow as tf\n'), ((153, 23, 153, 80), 'baseline_model.create_ffn', 'create_ffn', (), '', False, 'from baseline_model import create_ffn\n'), ((173, 24, 173, 82), 'baseline_model.create_ffn', 'create_ffn', (), '', False, 'from baseline_model import create_ffn\n'), ((175, 27, 175, 73), 'tensorflow.keras.layers.Dense', 'layers.Dense', (), '', False, 'from tensorflow.keras import layers\n'), ((191, 22, 191, 54), 'tensorflow.gather', 'tf.gather', ({(191, 32, 191, 33): 'x', (191, 35, 191, 53): 'input_node_indices'}, {}), '(x, input_node_indices)', True, 'import tensorflow as tf\n'), ((30, 24, 37, 7), 'tensorflow.keras.layers.GRU', 'layers.GRU', (), '', False, 'from tensorflow.keras import layers\n'), ((39, 24, 39, 62), 'baseline_model.create_ffn', 'create_ffn', ({(39, 35, 39, 47): 'hidden_units', (39, 49, 39, 61): 'dropout_rate'}, {}), '(hidden_units, dropout_rate)', False, 'from baseline_model import create_ffn\n'), ((52, 16, 52, 48), 'tensorflow.math.reduce_max', 'tf.math.reduce_max', ({(52, 35, 52, 47): 'node_indices'}, {}), '(node_indices)', True, 'import tensorflow as tf\n'), ((54, 27, 58, 7), 'tensorflow.math.unsorted_segment_sum', 'tf.math.unsorted_segment_sum', (), '', True, 'import tensorflow as tf\n'), ((81, 10, 81, 72), 'tensorflow.stack', 'tf.stack', (), '', True, 'import tensorflow as tf\n'), ((97, 24, 97, 68), 'tensorflow.nn.l2_normalize', 'tf.nn.l2_normalize', (), '', True, 'import tensorflow as tf\n'), ((148, 27, 148, 56), 'tensorflow.ones', 'tf.ones', (), '', True, 'import tensorflow as tf\n'), ((150, 46, 150, 84), 'tensorflow.math.reduce_sum', 'tf.math.reduce_sum', ({(150, 65, 150, 83): 'self._edge_weights'}, {}), '(self._edge_weights)', True, 'import tensorflow as tf\n'), ((45, 28, 45, 55), 'tensorflow.expand_dims', 'tf.expand_dims', ({(45, 43, 45, 50): 'weights', (45, 52, 45, 54): '(-1)'}, {}), '(weights, -1)', True, 'import tensorflow as tf\n'), ((60, 27, 64, 7), 'tensorflow.math.unsorted_segment_mean', 'tf.math.unsorted_segment_mean', (), '', True, 'import tensorflow as tf\n'), ((84, 10, 84, 72), 'tensorflow.concat', 'tf.concat', (), '', True, 'import tensorflow as tf\n'), ((94, 24, 94, 59), 'tensorflow.unstack', 'tf.unstack', (), '', True, 'import tensorflow as tf\n'), ((66, 27, 70, 7), 'tensorflow.math.unsorted_segment_max', 'tf.math.unsorted_segment_max', (), '', True, 'import tensorflow as tf\n')]
jfarmer08/hassio
deps/lib/python3.5/site-packages/netdisco/discoverables/samsung_tv.py
792a6071a97bb33857c14c9937946233c620035c
"""Discover Samsung Smart TV services.""" from . import SSDPDiscoverable from ..const import ATTR_NAME # For some models, Samsung forces a [TV] prefix to the user-specified name. FORCED_NAME_PREFIX = '[TV]' class Discoverable(SSDPDiscoverable): """Add support for discovering Samsung Smart TV services.""" def get_entries(self): """Get all the Samsung RemoteControlReceiver entries.""" return self.find_by_st( "urn:samsung.com:device:RemoteControlReceiver:1") def info_from_entry(self, entry): """Get most important info, by default the description location.""" info = super().info_from_entry(entry) # Strip the forced prefix, if present if info[ATTR_NAME].startswith(FORCED_NAME_PREFIX): info[ATTR_NAME] = info[ATTR_NAME][len(FORCED_NAME_PREFIX):].strip() return info
[]
scrambler-crypto/pyecsca
pyecsca/sca/re/__init__.py
491abfb548455669abd470382a48dcd07b2eda87
"""Package for reverse-engineering.""" from .rpa import *
[]
Juhanostby/django-apotek-sapmi
sapmi/employees/migrations/0002_remove_employee_phone_alt.py
972a05ca9d54eed62b640572fcf582cc8751d15a
# Generated by Django 3.2.5 on 2021-12-21 19:42 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('employees', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='employee', name='phone_alt', ), ]
[((13, 8, 16, 9), 'django.db.migrations.RemoveField', 'migrations.RemoveField', (), '', False, 'from django.db import migrations\n')]
konrad2508/kokomi-discord-bot
src/model/exception/emote_fetch_error.py
5a9d459e92d552fa24ba3ada5188db19d93f0aaa
class EmoteFetchError(Exception): '''Exception stating that there was a problem while fetching emotes from a source.'''
[]
andremtsilva/dissertacao
src/sim/basicExample/main.py
7c039ffe871468be0215c482adb42830fff586aa
""" This is the most simple scenario with a basic topology, some users and a set of apps with only one service. @author: Isaac Lera """ import os import time import json import random import logging.config import networkx as nx import numpy as np from pathlib import Path from yafs.core import Sim from yafs.application import create_applications_from_json from yafs.topology import Topology from yafs.placement import JSONPlacement from yafs.path_routing import DeviceSpeedAwareRouting from yafs.distribution import deterministic_distribution from yafs.stats import Stats RANDOM_SEED = 1 def main(stop_time, it): folder_results = Path("results/") folder_results.mkdir(parents=True, exist_ok=True) folder_results = str(folder_results)+"/" """ TOPOLOGY """ # Fix position of nodes for drawing random.seed(RANDOM_SEED) np.random.seed(RANDOM_SEED) t = Topology() # You also can create a topology using JSONs files. Check out examples folder size = 3 t.G = nx.generators.binomial_tree(size) # In NX-lib there are a lot of Graphs generators # Definition of mandatory attributes of a Topology ## Attr. on edges # PR (link propagation) and BW (bandwith) are 1 unit attPR_BW = {x: 1 for x in t.G.edges()} nx.set_edge_attributes(t.G, name="PR", values=attPR_BW) nx.set_edge_attributes(t.G, name="BW", values=attPR_BW) ## Attr. on nodes # IPT attIPT = {x: random.randrange(100, 900, 100) for x in t.G.nodes()} nx.set_node_attributes(t.G, name="IPT", values=attIPT) # nx.write_gexf(t.G,folder_results+"graph_binomial_tree_%i"%size) # you can export the Graph in multiples format to view in tools like Gephi, and so on. nx.write_graphml(t.G,folder_results+"graph_binomial_tree_%i.graphml"%size) # Graph visualization pos = nx.spring_layout(t.G) nx.draw(t.G, pos, with_labels=True, edge_color='black', width=1, alpha=0.7) print(t.G.nodes()) # nodes id can be str or int print() print(nx.get_node_attributes(t.G, "IPT")) print() """ APPLICATION or SERVICES """ dataApp = json.load(open('data/appDefinition.json')) apps = create_applications_from_json(dataApp) # print(apps) """ SERVICE PLACEMENT """ placementJson = json.load(open('data/allocDefinition.json')) placement = JSONPlacement(name="Placement", json=placementJson) """ Defining ROUTING algorithm to define how path messages in the topology among modules """ selectorPath = DeviceSpeedAwareRouting() """ SIMULATION ENGINE """ s = Sim(t, default_results_path=folder_results+"sim_trace") """ Deploy services == APP's modules """ for aName in apps.keys(): s.deploy_app(apps[aName], placement, selectorPath) # Note: each app can have a different routing algorithm """ Deploy users """ userJSON = json.load(open('data/usersDefinition.json')) for user in userJSON["sources"]: app_name = user["app"] app = s.apps[app_name] msg = app.get_message(user["message"]) node = user["id_resource"] dist = deterministic_distribution(100, name="Deterministic") idDES = s.deploy_source(app_name, id_node=node, msg=msg, distribution=dist) """ RUNNING - last step """ logging.info(" Performing simulation: %i " % it) s.run(stop_time) # To test deployments put test_initial_deploy a TRUE s.print_debug_assignaments() if __name__ == '__main__': logging.config.fileConfig(os.getcwd() + '/logging.ini') nIterations = 1 # iteration for each experiment simulationDuration = 1000 # Iteration for each experiment changing the seed of randoms for iteration in range(nIterations): random.seed(iteration) logging.info("Running experiment it: - %i" % iteration) start_time = time.time() main(stop_time=simulationDuration, it=iteration) print("\n--- %s seconds ---" % (time.time() - start_time)) print("Simulation Done!") m = Stats(defaultPath="results/sim_trace") # print ("\tNetwork bytes transmitted:") # print (f"\t\t{m.bytes_transmitted():.1f}") # m.df_link.head(15) # from Stats class time_loops = [["M.USER.APP.0", "M.USER.APP.1", "M.USER.APP.2", "M.USER.APP.3"]] m.showResults2(10000, time_loops=time_loops) m.compute_times_df() print ("\t- Network saturation -") print() print ("\t\tAverage waiting messages : " f"{m.average_messages_not_transmitted()}") print() print ("\t\tPeak of waiting messages :" f"{m.peak_messages_not_transmitted()}") print() print(f"\t\tShow Loops: {m.showLoops(time_loops)}") print() print (f"\t\tTOTAL messages not transmitted:" f" {m.messages_not_transmitted()}") print() #print(m.df.head()) #print(m.df['time_latency']) #print(m.df_link.head()) print(m.get_df_modules())
[((30, 21, 30, 37), 'pathlib.Path', 'Path', ({(30, 26, 30, 36): '"""results/"""'}, {}), "('results/')", False, 'from pathlib import Path\n'), ((38, 4, 38, 28), 'random.seed', 'random.seed', ({(38, 16, 38, 27): 'RANDOM_SEED'}, {}), '(RANDOM_SEED)', False, 'import random\n'), ((39, 4, 39, 31), 'numpy.random.seed', 'np.random.seed', ({(39, 19, 39, 30): 'RANDOM_SEED'}, {}), '(RANDOM_SEED)', True, 'import numpy as np\n'), ((42, 8, 42, 18), 'yafs.topology.Topology', 'Topology', ({}, {}), '()', False, 'from yafs.topology import Topology\n'), ((46, 10, 46, 43), 'networkx.generators.binomial_tree', 'nx.generators.binomial_tree', ({(46, 38, 46, 42): 'size'}, {}), '(size)', True, 'import networkx as nx\n'), ((52, 4, 52, 59), 'networkx.set_edge_attributes', 'nx.set_edge_attributes', (), '', True, 'import networkx as nx\n'), ((53, 4, 53, 59), 'networkx.set_edge_attributes', 'nx.set_edge_attributes', (), '', True, 'import networkx as nx\n'), ((57, 4, 57, 58), 'networkx.set_node_attributes', 'nx.set_node_attributes', (), '', True, 'import networkx as nx\n'), ((60, 4, 60, 78), 'networkx.write_graphml', 'nx.write_graphml', ({(60, 21, 60, 24): 't.G', (60, 25, 60, 77): "(folder_results + 'graph_binomial_tree_%i.graphml' % size)"}, {}), "(t.G, folder_results + 'graph_binomial_tree_%i.graphml' % size)", True, 'import networkx as nx\n'), ((63, 10, 63, 31), 'networkx.spring_layout', 'nx.spring_layout', ({(63, 27, 63, 30): 't.G'}, {}), '(t.G)', True, 'import networkx as nx\n'), ((64, 4, 65, 22), 'networkx.draw', 'nx.draw', (), '', True, 'import networkx as nx\n'), ((76, 11, 76, 49), 'yafs.application.create_applications_from_json', 'create_applications_from_json', ({(76, 41, 76, 48): 'dataApp'}, {}), '(dataApp)', False, 'from yafs.application import create_applications_from_json\n'), ((84, 16, 84, 67), 'yafs.placement.JSONPlacement', 'JSONPlacement', (), '', False, 'from yafs.placement import JSONPlacement\n'), ((89, 19, 89, 44), 'yafs.path_routing.DeviceSpeedAwareRouting', 'DeviceSpeedAwareRouting', ({}, {}), '()', False, 'from yafs.path_routing import DeviceSpeedAwareRouting\n'), ((94, 8, 94, 63), 'yafs.core.Sim', 'Sim', (), '', False, 'from yafs.core import Sim\n'), ((146, 8, 146, 46), 'yafs.stats.Stats', 'Stats', (), '', False, 'from yafs.stats import Stats\n'), ((56, 17, 56, 48), 'random.randrange', 'random.randrange', ({(56, 34, 56, 37): '(100)', (56, 39, 56, 42): '(900)', (56, 44, 56, 47): '(100)'}, {}), '(100, 900, 100)', False, 'import random\n'), ((69, 10, 69, 44), 'networkx.get_node_attributes', 'nx.get_node_attributes', ({(69, 33, 69, 36): 't.G', (69, 38, 69, 43): '"""IPT"""'}, {}), "(t.G, 'IPT')", True, 'import networkx as nx\n'), ((111, 15, 111, 68), 'yafs.distribution.deterministic_distribution', 'deterministic_distribution', (), '', False, 'from yafs.distribution import deterministic_distribution\n'), ((135, 8, 135, 30), 'random.seed', 'random.seed', ({(135, 20, 135, 29): 'iteration'}, {}), '(iteration)', False, 'import random\n'), ((138, 21, 138, 32), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((128, 30, 128, 41), 'os.getcwd', 'os.getcwd', ({}, {}), '()', False, 'import os\n'), ((142, 40, 142, 51), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n')]
dbvis-ukon/coronavis
Backend/models/risklayerPrognosis.py
f00374ac655c9d68541183d28ede6fe5536581dc
from db import db class RisklayerPrognosis(db.Model): __tablename__ = 'risklayer_prognosis' datenbestand = db.Column(db.TIMESTAMP, primary_key=True, nullable=False) prognosis = db.Column(db.Float, nullable=False) # class RisklayerPrognosisSchema(SQLAlchemyAutoSchema): # class Meta: # strict = True # model = RisklayerPrognosis # # timestamp = fields.Timestamp(data_key="datenbestand") # prognosis = fields.Number(data_key="prognosis")
[((7, 19, 7, 76), 'db.db.Column', 'db.Column', (), '', False, 'from db import db\n'), ((8, 16, 8, 51), 'db.db.Column', 'db.Column', (), '', False, 'from db import db\n')]
smartfile/django-secureform
tests.py
3b7a8b90550327f370ea02c6886220b2db0517b5
import os import unittest os.environ['DJANGO_SETTINGS_MODULE'] = 'settings' import django if django.VERSION >= (1, 7): django.setup() from django import forms from django.db import models from django.forms.forms import NON_FIELD_ERRORS from django_secureform.forms import SecureForm def get_form_sname(form, name): for sname, v in form._secure_field_map.items(): if v and v == name: return sname raise KeyError(name) def get_form_honeypot(form): for sname, v in form._secure_field_map.items(): if v is None: return sname raise Exception('No honeypots found.') def get_form_secure_data(form): # We must copy over the security data. return form._meta.secure_field_name, form[form._meta.secure_field_name].value() class BasicForm(SecureForm): name = forms.CharField(required=True, max_length=16) class FormTestCase(unittest.TestCase): klass = BasicForm def setUp(self): self.form = self.klass() self.form.secure_data() def assertIn(self, value, iterable): self.assertTrue(value in iterable, '%s did not occur in %s' % (value, iterable)) def getForm(self, **kwargs): data = dict((get_form_secure_data(self.form), )) for n, v in kwargs.items(): data[get_form_sname(self.form, n)] = v return self.klass(data=data) class BasicTestCase(FormTestCase): def test_valid(self): post = self.getForm(name='foobar') self.assertTrue(post.is_valid()) def test_missing(self): post = self.getForm() self.assertFalse(post.is_valid()) self.assertIn('name', post._errors) def test_replay(self): post = self.getForm(name='foobar') post.is_valid() post = self.getForm(name='foobar') self.assertFalse(post.is_valid()) self.assertIn(NON_FIELD_ERRORS, post._errors) self.assertIn('This form has already been submitted.', post._errors[NON_FIELD_ERRORS]) def test_honeypot(self): honeypot = get_form_honeypot(self.form) data = dict((get_form_secure_data(self.form), )) data[honeypot] = 'mmm, hunny!' data[get_form_sname(self.form, 'name')] = 'foobar' post = self.klass(data=data) self.assertFalse(post.is_valid()) self.assertIn(NON_FIELD_ERRORS, post._errors) self.assertIn('Unexpected value in form field.', post._errors[NON_FIELD_ERRORS]) if __name__ == '__main__': unittest.main()
[((7, 4, 7, 18), 'django.setup', 'django.setup', ({}, {}), '()', False, 'import django\n'), ((35, 11, 35, 56), 'django.forms.CharField', 'forms.CharField', (), '', False, 'from django import forms\n'), ((86, 4, 86, 19), 'unittest.main', 'unittest.main', ({}, {}), '()', False, 'import unittest\n')]
hackerman-101/Hacktoberfest-2022
opencv/resizing.py
839f28293930987da55f8a2414efaa1cf9676cc9
import cv2 as cv import numpy as np cap = cv.VideoCapture(1) print(cap.get(cv.CAP_PROP_FRAME_WIDTH)) print(cap.get(cv.CAP_PROP_FRAME_HEIGHT)) cap.set(3,3000) cap.set(4,3000) print(cap.get(cv.CAP_PROP_FRAME_WIDTH)) print(cap.get(cv.CAP_PROP_FRAME_HEIGHT)) while (cap.isOpened()): ret , frame = cap.read() if (ret == True): cv.imshow("camVid", frame) if cv.waitKey(25) & 0xFF == ord('q'): break else: break cap.release() cv.destroyAllWindows()
[((4, 6, 4, 24), 'cv2.VideoCapture', 'cv.VideoCapture', ({(4, 22, 4, 23): '1'}, {}), '(1)', True, 'import cv2 as cv\n'), ((26, 0, 26, 22), 'cv2.destroyAllWindows', 'cv.destroyAllWindows', ({}, {}), '()', True, 'import cv2 as cv\n'), ((19, 8, 19, 34), 'cv2.imshow', 'cv.imshow', ({(19, 18, 19, 26): '"""camVid"""', (19, 28, 19, 33): 'frame'}, {}), "('camVid', frame)", True, 'import cv2 as cv\n'), ((20, 11, 20, 25), 'cv2.waitKey', 'cv.waitKey', ({(20, 22, 20, 24): '(25)'}, {}), '(25)', True, 'import cv2 as cv\n')]