repo_name
stringlengths
7
94
repo_path
stringlengths
4
237
repo_head_hexsha
stringlengths
40
40
content
stringlengths
10
680k
apis
stringlengths
2
840k
Miillky/automate_the_boring_stuff_with_python
Chapter 10/trackbackLog.py
284b074b0738c66f38b54fe0fc5f69b3446e7e43
import traceback try: raise Exception('This is the error message.') except: errorFile = open('./Chapter 10/errorInfo.txt', 'w') errorFile.write(traceback.format_exc()) errorFile.close() print('The traceback info was written to errorInfo.txt')
[((6, 20, 6, 42), 'traceback.format_exc', 'traceback.format_exc', ({}, {}), '()', False, 'import traceback\n')]
wuchiehhan/KDD2019-HandsOn-Tutorial
Module_III/PySparkNetworkSimilarityClass.py
0377ae4b2a74e9cc08b15c983e4e0f59ab02debe
# Databricks notebook source from pyspark.sql.types import * from pyspark.sql import functions as F import base64 import array # COMMAND ---------- # s is a base64 encoded float[] with first element being the magnitude def Base64ToFloatArray(s): arr = array.array('f', base64.b64decode(s)) return (arr[0], arr[1:]) def cosineSimilarity(s1, s2): (m1, v1) = Base64ToFloatArray(s1) (m2, v2) = Base64ToFloatArray(s2) if (m1 == 0) or (m2 == 0): return 0 else : return sum(x*y for x,y in zip(v1, v2))/(m1 * m2) # Register udf functions so that it could be used in dataframe # # Perform same computation as cosineSimilarity() # @F.udf("float") def udfCosineSimilarity(s1, s2): return cosineSimilarity(s1, s2) # COMMAND ---------- # MAGIC %md **NetworkSimilarity** class to compute Network Similarity # COMMAND ---------- # Parameters: # resource: resource stream path # container: container name in Azure Storage (AS) account # account: Azure Storage (AS) account # sas: complete 'Blob service SAS URL' of the shared access signature (sas) for the container # key: access key for the container, if sas is specified, key is ignored # # Note: # resource does not have header # you need to provide value for either sas or key # class NetworkSimilarity(AzureStorageAccess): # constructor def __init__(self, resource, container, account, sas='', key=''): AzureStorageAccess.__init__(self, container, account, sas, key) schema = StructType() schema.add(StructField('EntityId', LongType(), False)) schema.add(StructField('EntityType', StringType(), False)) schema.add(StructField('Data', StringType(), False)) self.df = spark.read.format('csv').options(header='false', delimiter='\t').schema(schema).load(self.getFullpath(resource)) def getDataframe(self): return self.df def raiseErrorIfNotFound(self, row, e): if row is None: raise KeyError('entity ' + str(e) + ' not found') def getSimilarity(self, e1, e2): df = self.df row1 = df.where(df.EntityId == e1).first() self.raiseErrorIfNotFound(row1, e1) row2 = df.where(df.EntityId == e2).first() self.raiseErrorIfNotFound(row2, e2) return cosineSimilarity(row1.Data, row2.Data) def getTopEntities(self, e, targetType = '', maxCount = 20, minScore = 0.0): df1 = self.df row1 = df1.where(df1.EntityId == e).first() self.raiseErrorIfNotFound(row1, e) if targetType == '': df2 = df1.where(df1.EntityId != e) else : df2 = df1.where((df1.EntityId != e) & (df1.EntityType == targetType)) df3 = df2.select(df2.EntityId, df2.EntityType, udfCosineSimilarity(F.lit(row1.Data), df2.Data).alias('Score')) return df3.where(df3.Score >= minScore).orderBy(df3.Score.desc()).limit(maxCount)
[((26, 1, 26, 15), 'pyspark.sql.functions.udf', 'F.udf', ({(26, 7, 26, 14): '"""float"""'}, {}), "('float')", True, 'from pyspark.sql import functions as F\n'), ((11, 25, 11, 44), 'base64.b64decode', 'base64.b64decode', ({(11, 42, 11, 43): 's'}, {}), '(s)', False, 'import base64\n'), ((82, 71, 82, 87), 'pyspark.sql.functions.lit', 'F.lit', ({(82, 77, 82, 86): 'row1.Data'}, {}), '(row1.Data)', True, 'from pyspark.sql import functions as F\n')]
vagnes/fizzbuzzgame
fizzbuzz.py
de72ffc5a21fbb3b1cfd930ef632b75697fa830f
print("Press q to quit") quit = False while quit is False: in_val = input("Please enter a positive integer.\n > ") if in_val is 'q': quit = True elif int(in_val) % 3 == 0 and int(in_val) % 5 == 0: print("FizzBuzz") elif int(in_val) % 5 == 0: print("Buzz") elif int(in_val) % 3 == 0: print("Fizz") else: pass
[]
muzudho/py-state-machine-practice
lesson10019_projects/pen/data/transition.py
e31c066f4cf142b6b6c5ff273b56a0f89428c59e
from lesson14_projects.pen.data.const import ( A, E_A, E_AN, E_IS, E_OVER, E_PEN, E_PIN, E_THAT, E_THIS, E_WAS, INIT, IS, PEN, THIS, ) pen_transition_doc_v19 = { "title": "This is a pen", "entry_state": INIT, "data": { INIT: { E_OVER: [INIT], E_THAT: [INIT], E_THIS: [INIT, THIS], THIS: { E_OVER: [INIT], E_WAS: [INIT], E_IS: [INIT, THIS, IS], IS: { E_OVER: [INIT], E_AN: [INIT], E_A: [INIT, THIS, IS, A], A: { E_OVER: [INIT], E_PIN: [INIT], E_PEN: [PEN], }, }, }, }, PEN: { E_OVER: None, }, }, }
[]
olesmith/SmtC
Animation/Main.py
dfae5097f02192b60aae05b9d02404fcfe893be3
import gd,os,time from Html import Animation_Html from Iteration import Animation_Iteration from Write import Animation_Write from Base import * from Canvas2 import * from Canvas2 import Canvas2 from Image import Image from HTML import HTML __Canvas__=None class Animation( Animation_Html, Animation_Iteration, Animation_Write, Base,HTML ): Convert_Bin="/usr/bin/convert" HTML_Root="http://127.0.0.1/Graphics" CGI_Root="http://127.0.0.1/cgi-bin/Graphics/Display.py" __Switches__={ "v": { "Attr": "Verbose", "Text": "Verbosity level. Augment to see more numbers...", "Type": None, }, "-clean": { "Attr": "Clean", "Text": "Remove PNGs generated", "Type": "int", }, "-rewrite": { "Attr": "Images_Rewrite", "Text": "Rewrite image file between iterations", "Type": None, }, "l": { "Attr": "Loop", "Text": "Animated GIF no of loops (passed to convert)", "Type": None, }, "d": { "Attr": "Delay", "Text": "Animated GIF delay (passed to convert)", "Type": None, }, "W": { "Attr": "W", "Text": "White background", "Type": "bool", }, } __Args__=[] Indent=" " W=False Verbose=1 Delay="5" Loop="0" Path="curves" Curve_Parms_Path="" FileName="Curve" Name="Curve" Parameters=["a","b","c"] Parameter_Names=["a","b","c"] Clean=0 #Clean up afterwords Iteration_Files=[] Images_Rewrite=1 def __init__(self,pmin,pmax,vals={}): self.Hash2Obj(vals) self.__Canvas__=Canvas2(vals,[ pmin,pmax ]) self.Canvas([ pmin,pmax ]).CLI2Obj() ##! ##! Overrride __str__ to print some useful info. ##! def __str__(self): text="Animation, Path: "+self.Path text+="\n\tFileName: "+self.FileName text+="\n\tParms: "+self.Curve_Parms_Path text+="\n\tLoop: "+self.Loop text+="\n\tDelay: "+self.Delay text+="\n\tClean: "+str(self.Clean) text+="\n"+str(self.Canvas()) return text ##! ##! Returns Canvas object, stored in self.__Canvas__ ##! def Canvas(self,pexts=[]): global __Canvas__ # Needed to modify global copy of __Canvas__ if (not __Canvas__): parms={ } __Canvas__=Canvas2(parms,pexts) return __Canvas__ def BackGround_Color(self): if (self.W): return "White" else: return "Black" def Initialize(self): self.Canvas().Resolution=self.Resolution self.Canvas().Image_Rewrite()
[((81, 24, 81, 51), 'Canvas2.Canvas2', 'Canvas2', ({(81, 32, 81, 36): 'vals', (81, 37, 81, 50): '[pmin, pmax]'}, {}), '(vals, [pmin, pmax])', False, 'from Canvas2 import Canvas2\n'), ((109, 23, 109, 43), 'Canvas2.Canvas2', 'Canvas2', ({(109, 31, 109, 36): 'parms', (109, 37, 109, 42): 'pexts'}, {}), '(parms, pexts)', False, 'from Canvas2 import Canvas2\n')]
junjungoal/pytorch_metric_learning
pytorch_metric_learning/miners/distance_weighted_miner.py
e56bb440d1ec63e13622025209135a788c6f51c1
#! /usr/bin/env python3 from .base_miner import BasePostGradientMiner import torch from ..utils import loss_and_miner_utils as lmu # adapted from # https://github.com/chaoyuaw/incubator-mxnet/blob/master/example/gluon/ # /embedding_learning/model.py class DistanceWeightedMiner(BasePostGradientMiner): def __init__(self, cutoff, nonzero_loss_cutoff, **kwargs): super().__init__(**kwargs) self.cutoff = cutoff self.nonzero_loss_cutoff = nonzero_loss_cutoff def mine(self, embeddings, labels): label_set = torch.unique(labels) n, d = embeddings.size() dist_mat = lmu.dist_mat(embeddings) dist_mat = dist_mat + torch.eye(dist_mat.size(0)).to(embeddings.device) # so that we don't get log(0). We mask the diagonal out later anyway # Cut off to avoid high variance. dist_mat = torch.max(dist_mat, torch.tensor(self.cutoff).to(dist_mat.device)) # Subtract max(log(distance)) for stability. # See the first equation from Section 4 of the paper log_weights = (2.0 - float(d)) * torch.log(dist_mat) - ( float(d - 3) / 2 ) * torch.log(1.0 - 0.25 * (dist_mat ** 2.0)) weights = torch.exp(log_weights - torch.max(log_weights)) # Sample only negative examples by setting weights of # the same-class examples to 0. mask = torch.ones(weights.size()).to(embeddings.device) for i in label_set: idx = (labels == i).nonzero() mask[torch.meshgrid(idx.squeeze(1), idx.squeeze(1))] = 0 weights = weights * mask * ((dist_mat < self.nonzero_loss_cutoff).float()) weights = weights / torch.sum(weights, dim=1, keepdim=True) np_weights = weights.cpu().numpy() return lmu.get_random_triplet_indices(labels, weights=np_weights)
[((18, 20, 18, 40), 'torch.unique', 'torch.unique', ({(18, 33, 18, 39): 'labels'}, {}), '(labels)', False, 'import torch\n'), ((42, 28, 42, 67), 'torch.sum', 'torch.sum', (), '', False, 'import torch\n'), ((29, 41, 29, 60), 'torch.log', 'torch.log', ({(29, 51, 29, 59): 'dist_mat'}, {}), '(dist_mat)', False, 'import torch\n'), ((31, 12, 31, 53), 'torch.log', 'torch.log', ({(31, 22, 31, 52): '(1.0 - 0.25 * dist_mat ** 2.0)'}, {}), '(1.0 - 0.25 * dist_mat ** 2.0)', False, 'import torch\n'), ((32, 42, 32, 64), 'torch.max', 'torch.max', ({(32, 52, 32, 63): 'log_weights'}, {}), '(log_weights)', False, 'import torch\n'), ((25, 39, 25, 64), 'torch.tensor', 'torch.tensor', ({(25, 52, 25, 63): 'self.cutoff'}, {}), '(self.cutoff)', False, 'import torch\n')]
cassie01/PumpLibrary
Keywords/__init__.py
c2a4884a36f4c6c6552fa942143ae5d21c120b41
# -*- coding: utf-8 -*- from .Alarm.alarm import Alarm from .DeliveryView.bolus import Bolus from .DeliveryView.info import Info from .DeliveryView.infusion import Infusion from .DeliveryView.infusion_parameter import InfusionParameter from .DeliveryView.priming import Priming from .HardwareControl.motor import Motor from .MenuSettings.device_report import DeviceReport from .MenuSettings.history_log import HistoryLog from .MenuSettings.infusion_setting import InfusionSetting from .MenuSettings.maintenance import Maintenance from .MenuSettings.safety_setting import SafetySetting from .MenuSettings.system_setting import SystemSetting from .SensorControl.sensor import Sensor __all__ = ["Alarm", "Bolus", "Info", "Infusion", "InfusionParameter", "Priming", "Motor", "DeviceReport", "HistoryLog", "InfusionSetting", "Maintenance", "SafetySetting", "SystemSetting", "Sensor", ]
[]
Azure/automl-devplat2-preview
src/responsibleai/rai_analyse/constants.py
05f327fe4c2504e9d49001ce26d8b49627214138
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- class DashboardInfo: MODEL_ID_KEY = "id" # To match Model schema MODEL_INFO_FILENAME = "model_info.json" RAI_INSIGHTS_MODEL_ID_KEY = "model_id" RAI_INSIGHTS_RUN_ID_KEY = "rai_insights_parent_run_id" RAI_INSIGHTS_PARENT_FILENAME = "rai_insights.json" class PropertyKeyValues: # The property to indicate the type of Run RAI_INSIGHTS_TYPE_KEY = "_azureml.responsibleai.rai_insights.type" RAI_INSIGHTS_TYPE_CONSTRUCT = "construction" RAI_INSIGHTS_TYPE_CAUSAL = "causal" RAI_INSIGHTS_TYPE_COUNTERFACTUAL = "counterfactual" RAI_INSIGHTS_TYPE_EXPLANATION = "explanation" RAI_INSIGHTS_TYPE_ERROR_ANALYSIS = "error_analysis" RAI_INSIGHTS_TYPE_GATHER = "gather" # Property to point at the model under examination RAI_INSIGHTS_MODEL_ID_KEY = "_azureml.responsibleai.rai_insights.model_id" # Property for tool runs to point at their constructor run RAI_INSIGHTS_CONSTRUCTOR_RUN_ID_KEY = ( "_azureml.responsibleai.rai_insights.constructor_run" ) # Property to record responsibleai version RAI_INSIGHTS_RESPONSIBLEAI_VERSION_KEY = ( "_azureml.responsibleai.rai_insights.responsibleai_version" ) # Property format to indicate presence of a tool RAI_INSIGHTS_TOOL_KEY_FORMAT = "_azureml.responsibleai.rai_insights.has_{0}" class RAIToolType: CAUSAL = "causal" COUNTERFACTUAL = "counterfactual" ERROR_ANALYSIS = "error_analysis" EXPLANATION = "explanation"
[]
goodboy/pulsar
pulsar/apps/data/redis/store.py
e4b42d94b7e262a165782747d65f8b39fb8d3ba9
from functools import partial from pulsar import Connection, Pool, get_actor from pulsar.utils.pep import to_string from pulsar.apps.data import RemoteStore from pulsar.apps.ds import redis_parser from .client import RedisClient, Pipeline, Consumer, ResponseError from .pubsub import RedisPubSub, RedisChannels class RedisStoreConnection(Connection): def __init__(self, *args, **kw): super().__init__(*args, **kw) self.parser = self._producer._parser_class() async def execute(self, *args, **options): consumer = self.current_consumer() await consumer.start((args, options)) result = await consumer.on_finished if isinstance(result, ResponseError): raise result.exception return result async def execute_pipeline(self, commands, raise_on_error=True): consumer = self.current_consumer() consumer.start((commands, raise_on_error, [])) result = await consumer.on_finished if isinstance(result, ResponseError): raise result.exception return result class RedisStore(RemoteStore): '''Redis :class:`.Store` implementation. ''' protocol_factory = partial(RedisStoreConnection, Consumer) supported_queries = frozenset(('filter', 'exclude')) def _init(self, namespace=None, parser_class=None, pool_size=50, decode_responses=False, **kwargs): self._decode_responses = decode_responses if not parser_class: actor = get_actor() pyparser = actor.cfg.redis_py_parser if actor else False parser_class = redis_parser(pyparser) self._parser_class = parser_class if namespace: self._urlparams['namespace'] = namespace self._pool = Pool(self.connect, pool_size=pool_size, loop=self._loop) if self._database is None: self._database = 0 self._database = int(self._database) self.loaded_scripts = set() @property def pool(self): return self._pool @property def namespace(self): '''The prefix namespace to append to all transaction on keys ''' n = self._urlparams.get('namespace') return '%s:' % n if n else '' def key(self): return (self._dns, self._encoding) def client(self): '''Get a :class:`.RedisClient` for the Store''' return RedisClient(self) def pipeline(self): '''Get a :class:`.Pipeline` for the Store''' return Pipeline(self) def pubsub(self, protocol=None): return RedisPubSub(self, protocol=protocol) def channels(self, protocol=None, **kw): return RedisChannels(self.pubsub(protocol=protocol), **kw) def ping(self): return self.client().ping() async def execute(self, *args, **options): connection = await self._pool.connect() with connection: result = await connection.execute(*args, **options) return result async def execute_pipeline(self, commands, raise_on_error=True): conn = await self._pool.connect() with conn: result = await conn.execute_pipeline(commands, raise_on_error) return result async def connect(self, protocol_factory=None): protocol_factory = protocol_factory or self.create_protocol if isinstance(self._host, tuple): host, port = self._host transport, connection = await self._loop.create_connection( protocol_factory, host, port) else: raise NotImplementedError('Could not connect to %s' % str(self._host)) if self._password: await connection.execute('AUTH', self._password) if self._database: await connection.execute('SELECT', self._database) return connection def flush(self): return self.execute('flushdb') def close(self): '''Close all open connections.''' return self._pool.close() def has_query(self, query_type): return query_type in self.supported_queries def basekey(self, meta, *args): key = '%s%s' % (self.namespace, meta.table_name) postfix = ':'.join((to_string(p) for p in args if p is not None)) return '%s:%s' % (key, postfix) if postfix else key def meta(self, meta): '''Extract model metadata for lua script stdnet/lib/lua/odm.lua''' # indices = dict(((idx.attname, idx.unique) for idx in meta.indices)) data = meta.as_dict() data['namespace'] = self.basekey(meta) return data class CompiledQuery: def __init__(self, pipe, query): self.pipe = pipe
[((38, 23, 38, 62), 'functools.partial', 'partial', ({(38, 31, 38, 51): 'RedisStoreConnection', (38, 53, 38, 61): 'Consumer'}, {}), '(RedisStoreConnection, Consumer)', False, 'from functools import partial\n'), ((51, 21, 51, 77), 'pulsar.Pool', 'Pool', (), '', False, 'from pulsar import Connection, Pool, get_actor\n'), ((45, 20, 45, 31), 'pulsar.get_actor', 'get_actor', ({}, {}), '()', False, 'from pulsar import Connection, Pool, get_actor\n'), ((47, 27, 47, 49), 'pulsar.apps.ds.redis_parser', 'redis_parser', ({(47, 40, 47, 48): 'pyparser'}, {}), '(pyparser)', False, 'from pulsar.apps.ds import redis_parser\n'), ((127, 28, 127, 40), 'pulsar.utils.pep.to_string', 'to_string', ({(127, 38, 127, 39): 'p'}, {}), '(p)', False, 'from pulsar.utils.pep import to_string\n')]
tschelbs18/fruitful
tasks/migrations/0005_auto_20200616_0123.py
66635cd521ffc0990275e32298419bfc2167b90b
# Generated by Django 3.0.7 on 2020-06-16 05:23 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('tasks', '0004_auto_20200616_0116'), ] operations = [ migrations.AddField( model_name='userreward', name='created_dt', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='userreward', name='last_updated_dt', field=models.DateTimeField(auto_now=True), ), migrations.AddField( model_name='usertask', name='created_dt', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='usertask', name='last_updated_dt', field=models.DateTimeField(auto_now=True), ), ]
[((17, 18, 17, 92), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import migrations, models\n'), ((23, 18, 23, 53), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import migrations, models\n'), ((28, 18, 28, 92), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import migrations, models\n'), ((34, 18, 34, 53), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import migrations, models\n')]
boschresearch/pcg_gazebo_pkgs
pcg_libraries/src/pcg_gazebo/parsers/types/vector.py
1c112d01847ca4f8da61ce9b273e13d13bc7eb73
# Copyright (c) 2019 - The Procedural Generation for Gazebo authors # For information on the respective copyright owner see the NOTICE file # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import XMLBase import collections class XMLVector(XMLBase): _NAME = '' def __init__(self, size=None): XMLBase.__init__(self) assert size is not None, 'Vector size cannot be None' assert isinstance(size, int), \ '[{}] Vector size input must be an integer, received={}'.format( self.xml_element_name, size) assert size > 0, '[{}] Size must be greater than zero'.format( self.xml_element_name) self._size = size self._value = [0 for _ in range(self._size)] def _set_value(self, value): assert isinstance(value, collections.Iterable), \ 'Input must be iterable, element={}, received={}, type={}'.format( self._NAME, value, type(value)) assert len(list(value)) == self._size, \ 'Input vector has the wrong size, element={}, received={}, ' \ 'size of received={}, expected length={}'.format( self._NAME, value, len(list(value)), self._size) for item in value: assert isinstance(item, float) or isinstance(item, int) self._value = list(value) def reset(self): self._value = [0 for _ in range(self._size)] XMLBase.reset(self) def is_valid(self): if not isinstance(self._value, list): print('Vector object must have a list as value') return False if len(self._value) != self._size: print('Normal value must be a list with 3 elements') return False for item in self._value: if not isinstance(item, float) and not isinstance(item, int): print('Each vector element must be a float or integer') return False return True def get_formatted_value_as_str(self): assert self.is_valid(), 'Invalid vector' output_str = ' '.join(['{}'] * self._size) return output_str.format(*[format(x, 'n') for x in self._value])
[]
uk-gov-mirror/alphagov.digitalmarketplace-briefs-frontend
tests/main/helpers/test_buyers_helpers.py
2325f01b1bdb13fb5b0afe7fe110c0be0c031da6
import mock import pytest from werkzeug.exceptions import NotFound import app.main.helpers as helpers from dmcontent.content_loader import ContentLoader from dmtestutils.api_model_stubs import BriefStub, FrameworkStub, LotStub content_loader = ContentLoader('tests/fixtures/content') content_loader.load_manifest('dos', 'data', 'edit_brief') questions_builder = content_loader.get_manifest('dos', 'edit_brief') class TestBuyersHelpers(object): def test_get_framework_and_lot(self): provided_lot = LotStub(slug='digital-specialists', allows_brief=True).response() data_api_client = mock.Mock() data_api_client.get_framework.return_value = FrameworkStub( slug='digital-outcomes-and-specialists-4', status='live', lots=[provided_lot], ).single_result_response() framework, lot = helpers.buyers_helpers.get_framework_and_lot('digital-outcomes-and-specialists-4', 'digital-specialists', data_api_client) assert framework['status'] == "live" assert framework['name'] == 'Digital Outcomes and Specialists 4' assert framework['slug'] == 'digital-outcomes-and-specialists-4' assert framework['clarificationQuestionsOpen'] is True assert lot == provided_lot def test_get_framework_and_lot_404s_for_wrong_framework_status(self): data_api_client = mock.Mock() data_api_client.get_framework.return_value = FrameworkStub( slug='digital-outcomes-and-specialists-4', status='open', lots=[ LotStub(slug='digital-specialists', allows_brief=True).response() ] ).single_result_response() with pytest.raises(NotFound): helpers.buyers_helpers.get_framework_and_lot( 'digital-outcomes-and-specialists-4', 'digital-specialists', data_api_client, allowed_statuses=['live'], ) def test_get_framework_and_lot_404s_if_allows_brief_required(self): data_api_client = mock.Mock() data_api_client.get_framework.return_value = FrameworkStub( slug='digital-outcomes-and-specialists-4', status='live', lots=[ LotStub(slug='digital-specialists', allows_brief=False).response() ] ).single_result_response() with pytest.raises(NotFound): helpers.buyers_helpers.get_framework_and_lot( 'digital-outcomes-and-specialists-4', 'digital-specialists', data_api_client, must_allow_brief=True, ) @pytest.mark.parametrize( ['framework', 'lot', 'user', 'result'], [ ('digital-outcomes-and-specialists-4', 'digital-specialists', 123, True), ('not-digital-outcomes-and-specialists', 'digital-specialists', 123, False), ('digital-outcomes-and-specialists-4', 'not-digital-specialists', 123, False), ('digital-outcomes-and-specialists-4', 'digital-specialists', 124, False), ] ) def test_is_brief_correct(self, framework, lot, user, result): brief = BriefStub(framework_slug='digital-outcomes-and-specialists-4', user_id=123, status='live').response() assert helpers.buyers_helpers.is_brief_correct(brief, framework, lot, user) is result @pytest.mark.parametrize( ['status', 'allow_withdrawn', 'result'], [ ('withdrawn', True, True), ('withdrawn', False, False), ('live', True, True), ('live', False, True), ] ) def test_if_brief_correct_allow_withdrawn(self, status, allow_withdrawn, result): brief = BriefStub(framework_slug='digital-outcomes-and-specialists-4', user_id=123, status=status).response() assert helpers.buyers_helpers.is_brief_correct( brief, 'digital-outcomes-and-specialists-4', 'digital-specialists', 123, allow_withdrawn=allow_withdrawn ) is result @pytest.mark.parametrize( 'allowed_statuses, result', [ (['live', 'closed'], True), (['closed'], False) ] ) def test_is_brief_correct_allowed_statuses(self, allowed_statuses, result): brief = BriefStub(framework_slug='digital-outcomes-and-specialists-4', user_id=123, status='live').response() assert helpers.buyers_helpers.is_brief_correct( brief, 'digital-outcomes-and-specialists-4', 'digital-specialists', 123, allowed_statuses=allowed_statuses ) is result def test_is_brief_associated_with_user(self): brief = BriefStub(user_id=123).response() assert helpers.buyers_helpers.is_brief_associated_with_user(brief, 123) is True assert helpers.buyers_helpers.is_brief_associated_with_user(brief, 234) is False def test_brief_can_be_edited(self): assert helpers.buyers_helpers.brief_can_be_edited(BriefStub(status='draft').response()) is True assert helpers.buyers_helpers.brief_can_be_edited(BriefStub(status='live').response()) is False def test_brief_is_withdrawn(self): assert helpers.buyers_helpers.brief_is_withdrawn(BriefStub(status='withdrawn').response()) is True assert helpers.buyers_helpers.brief_is_withdrawn(BriefStub(status='live').response()) is False def test_section_has_at_least_one_required_question(self): content = content_loader.get_manifest('dos', 'edit_brief').filter( {'lot': 'digital-specialists'} ) sections_with_required_questions = { 'section-1': True, 'section-2': True, 'section-4': False, 'section-5': True } for section in content.sections: assert helpers.buyers_helpers.section_has_at_least_one_required_question(section) \ == sections_with_required_questions[section.slug] def test_count_unanswered_questions(self): brief = { 'status': 'draft', 'frameworkSlug': 'dos', 'lotSlug': 'digital-specialists', 'required1': True } content = content_loader.get_manifest('dos', 'edit_brief').filter( {'lot': 'digital-specialists'} ) sections = content.summary(brief) unanswered_required, unanswered_optional = helpers.buyers_helpers.count_unanswered_questions(sections) assert unanswered_required == 2 assert unanswered_optional == 2 def test_add_unanswered_counts_to_briefs(self): briefs = [{ 'status': 'draft', 'frameworkSlug': 'dos', 'lotSlug': 'digital-specialists', 'required1': True }] assert helpers.buyers_helpers.add_unanswered_counts_to_briefs(briefs, content_loader) == [{ 'status': 'draft', 'frameworkSlug': 'dos', 'lotSlug': 'digital-specialists', 'required1': True, 'unanswered_required': 2, 'unanswered_optional': 2 }] def test_get_sorted_responses_for_brief(self): data_api_client = mock.Mock() data_api_client.find_brief_responses.return_value = { "briefResponses": [ {"id": "five", "niceToHaveRequirements": [True, True, True, True, True]}, {"id": "zero", "niceToHaveRequirements": [False, False, False, False, False]}, {"id": "three", "niceToHaveRequirements": [True, True, False, False, True]}, {"id": "five", "niceToHaveRequirements": [True, True, True, True, True]}, {"id": "four", "niceToHaveRequirements": [True, True, True, True, False]}, {"id": "one", "niceToHaveRequirements": [False, False, False, True, False]}, {"id": "four", "niceToHaveRequirements": [True, True, True, True, False]}, ] } brief = {"id": 1, "niceToHaveRequirements": ["Nice", "to", "have", "yes", "please"]} assert helpers.buyers_helpers.get_sorted_responses_for_brief(brief, data_api_client) == [ {'id': 'five', 'niceToHaveRequirements': [True, True, True, True, True]}, {'id': 'five', 'niceToHaveRequirements': [True, True, True, True, True]}, {'id': 'four', 'niceToHaveRequirements': [True, True, True, True, False]}, {'id': 'four', 'niceToHaveRequirements': [True, True, True, True, False]}, {'id': 'three', 'niceToHaveRequirements': [True, True, False, False, True]}, {"id": "one", "niceToHaveRequirements": [False, False, False, True, False]}, {'id': 'zero', 'niceToHaveRequirements': [False, False, False, False, False]} ] def test_get_sorted_responses_does_not_sort_if_no_nice_to_haves(self): data_api_client = mock.Mock() data_api_client.find_brief_responses.return_value = { "briefResponses": [ {"id": "five"}, {"id": "zero"}, {"id": "three"}, {"id": "five"} ] } brief = {"id": 1, "niceToHaveRequirements": []} assert helpers.buyers_helpers.get_sorted_responses_for_brief(brief, data_api_client) == [ {"id": "five"}, {"id": "zero"}, {"id": "three"}, {"id": "five"} ]
[((10, 17, 10, 56), 'dmcontent.content_loader.ContentLoader', 'ContentLoader', ({(10, 31, 10, 55): '"""tests/fixtures/content"""'}, {}), "('tests/fixtures/content')", False, 'from dmcontent.content_loader import ContentLoader\n'), ((71, 5, 79, 5), 'pytest.mark.parametrize', 'pytest.mark.parametrize', ({(72, 8, 72, 46): "['framework', 'lot', 'user', 'result']", (73, 8, 78, 9): "[('digital-outcomes-and-specialists-4', 'digital-specialists', 123, True),\n ('not-digital-outcomes-and-specialists', 'digital-specialists', 123, \n False), ('digital-outcomes-and-specialists-4',\n 'not-digital-specialists', 123, False), (\n 'digital-outcomes-and-specialists-4', 'digital-specialists', 124, False)]"}, {}), "(['framework', 'lot', 'user', 'result'], [(\n 'digital-outcomes-and-specialists-4', 'digital-specialists', 123, True),\n ('not-digital-outcomes-and-specialists', 'digital-specialists', 123, \n False), ('digital-outcomes-and-specialists-4',\n 'not-digital-specialists', 123, False), (\n 'digital-outcomes-and-specialists-4', 'digital-specialists', 124, False)])", False, 'import pytest\n'), ((85, 5, 93, 5), 'pytest.mark.parametrize', 'pytest.mark.parametrize', ({(86, 8, 86, 47): "['status', 'allow_withdrawn', 'result']", (87, 8, 92, 9): "[('withdrawn', True, True), ('withdrawn', False, False), ('live', True, \n True), ('live', False, True)]"}, {}), "(['status', 'allow_withdrawn', 'result'], [(\n 'withdrawn', True, True), ('withdrawn', False, False), ('live', True, \n True), ('live', False, True)])", False, 'import pytest\n'), ((100, 5, 105, 5), 'pytest.mark.parametrize', 'pytest.mark.parametrize', ({(101, 8, 101, 34): '"""allowed_statuses, result"""', (101, 36, 104, 9): "[(['live', 'closed'], True), (['closed'], False)]"}, {}), "('allowed_statuses, result', [(['live', 'closed'], \n True), (['closed'], False)])", False, 'import pytest\n'), ((18, 26, 18, 37), 'mock.Mock', 'mock.Mock', ({}, {}), '()', False, 'import mock\n'), ((25, 25, 27, 86), 'app.main.helpers.buyers_helpers.get_framework_and_lot', 'helpers.buyers_helpers.get_framework_and_lot', ({(25, 70, 25, 106): '"""digital-outcomes-and-specialists-4"""', (26, 70, 26, 91): '"""digital-specialists"""', (27, 70, 27, 85): 'data_api_client'}, {}), "(\n 'digital-outcomes-and-specialists-4', 'digital-specialists',\n data_api_client)", True, 'import app.main.helpers as helpers\n'), ((36, 26, 36, 37), 'mock.Mock', 'mock.Mock', ({}, {}), '()', False, 'import mock\n'), ((54, 26, 54, 37), 'mock.Mock', 'mock.Mock', ({}, {}), '()', False, 'import mock\n'), ((153, 51, 153, 110), 'app.main.helpers.buyers_helpers.count_unanswered_questions', 'helpers.buyers_helpers.count_unanswered_questions', ({(153, 101, 153, 109): 'sections'}, {}), '(sections)', True, 'import app.main.helpers as helpers\n'), ((175, 26, 175, 37), 'mock.Mock', 'mock.Mock', ({}, {}), '()', False, 'import mock\n'), ((200, 26, 200, 37), 'mock.Mock', 'mock.Mock', ({}, {}), '()', False, 'import mock\n'), ((45, 13, 45, 36), 'pytest.raises', 'pytest.raises', ({(45, 27, 45, 35): 'NotFound'}, {}), '(NotFound)', False, 'import pytest\n'), ((46, 12, 51, 13), 'app.main.helpers.buyers_helpers.get_framework_and_lot', 'helpers.buyers_helpers.get_framework_and_lot', (), '', True, 'import app.main.helpers as helpers\n'), ((63, 13, 63, 36), 'pytest.raises', 'pytest.raises', ({(63, 27, 63, 35): 'NotFound'}, {}), '(NotFound)', False, 'import pytest\n'), ((64, 12, 69, 13), 'app.main.helpers.buyers_helpers.get_framework_and_lot', 'helpers.buyers_helpers.get_framework_and_lot', (), '', True, 'import app.main.helpers as helpers\n'), ((83, 15, 83, 83), 'app.main.helpers.buyers_helpers.is_brief_correct', 'helpers.buyers_helpers.is_brief_correct', ({(83, 55, 83, 60): 'brief', (83, 62, 83, 71): 'framework', (83, 73, 83, 76): 'lot', (83, 78, 83, 82): 'user'}, {}), '(brief, framework, lot, user)', True, 'import app.main.helpers as helpers\n'), ((96, 15, 98, 9), 'app.main.helpers.buyers_helpers.is_brief_correct', 'helpers.buyers_helpers.is_brief_correct', (), '', True, 'import app.main.helpers as helpers\n'), ((108, 15, 110, 9), 'app.main.helpers.buyers_helpers.is_brief_correct', 'helpers.buyers_helpers.is_brief_correct', (), '', True, 'import app.main.helpers as helpers\n'), ((114, 15, 114, 79), 'app.main.helpers.buyers_helpers.is_brief_associated_with_user', 'helpers.buyers_helpers.is_brief_associated_with_user', ({(114, 68, 114, 73): 'brief', (114, 75, 114, 78): '(123)'}, {}), '(brief, 123)', True, 'import app.main.helpers as helpers\n'), ((115, 15, 115, 79), 'app.main.helpers.buyers_helpers.is_brief_associated_with_user', 'helpers.buyers_helpers.is_brief_associated_with_user', ({(115, 68, 115, 73): 'brief', (115, 75, 115, 78): '(234)'}, {}), '(brief, 234)', True, 'import app.main.helpers as helpers\n'), ((165, 15, 165, 93), 'app.main.helpers.buyers_helpers.add_unanswered_counts_to_briefs', 'helpers.buyers_helpers.add_unanswered_counts_to_briefs', ({(165, 70, 165, 76): 'briefs', (165, 78, 165, 92): 'content_loader'}, {}), '(briefs, content_loader)', True, 'import app.main.helpers as helpers\n'), ((189, 15, 189, 92), 'app.main.helpers.buyers_helpers.get_sorted_responses_for_brief', 'helpers.buyers_helpers.get_sorted_responses_for_brief', ({(189, 69, 189, 74): 'brief', (189, 76, 189, 91): 'data_api_client'}, {}), '(brief, data_api_client)', True, 'import app.main.helpers as helpers\n'), ((210, 15, 210, 92), 'app.main.helpers.buyers_helpers.get_sorted_responses_for_brief', 'helpers.buyers_helpers.get_sorted_responses_for_brief', ({(210, 69, 210, 74): 'brief', (210, 76, 210, 91): 'data_api_client'}, {}), '(brief, data_api_client)', True, 'import app.main.helpers as helpers\n'), ((17, 23, 17, 77), 'dmtestutils.api_model_stubs.LotStub', 'LotStub', (), '', False, 'from dmtestutils.api_model_stubs import BriefStub, FrameworkStub, LotStub\n'), ((19, 53, 23, 9), 'dmtestutils.api_model_stubs.FrameworkStub', 'FrameworkStub', (), '', False, 'from dmtestutils.api_model_stubs import BriefStub, FrameworkStub, LotStub\n'), ((81, 16, 81, 106), 'dmtestutils.api_model_stubs.BriefStub', 'BriefStub', (), '', False, 'from dmtestutils.api_model_stubs import BriefStub, FrameworkStub, LotStub\n'), ((95, 16, 95, 106), 'dmtestutils.api_model_stubs.BriefStub', 'BriefStub', (), '', False, 'from dmtestutils.api_model_stubs import BriefStub, FrameworkStub, LotStub\n'), ((107, 16, 107, 106), 'dmtestutils.api_model_stubs.BriefStub', 'BriefStub', (), '', False, 'from dmtestutils.api_model_stubs import BriefStub, FrameworkStub, LotStub\n'), ((113, 16, 113, 38), 'dmtestutils.api_model_stubs.BriefStub', 'BriefStub', (), '', False, 'from dmtestutils.api_model_stubs import BriefStub, FrameworkStub, LotStub\n'), ((138, 19, 138, 93), 'app.main.helpers.buyers_helpers.section_has_at_least_one_required_question', 'helpers.buyers_helpers.section_has_at_least_one_required_question', ({(138, 85, 138, 92): 'section'}, {}), '(section)', True, 'import app.main.helpers as helpers\n'), ((118, 58, 118, 83), 'dmtestutils.api_model_stubs.BriefStub', 'BriefStub', (), '', False, 'from dmtestutils.api_model_stubs import BriefStub, FrameworkStub, LotStub\n'), ((119, 58, 119, 82), 'dmtestutils.api_model_stubs.BriefStub', 'BriefStub', (), '', False, 'from dmtestutils.api_model_stubs import BriefStub, FrameworkStub, LotStub\n'), ((122, 57, 122, 86), 'dmtestutils.api_model_stubs.BriefStub', 'BriefStub', (), '', False, 'from dmtestutils.api_model_stubs import BriefStub, FrameworkStub, LotStub\n'), ((123, 57, 123, 81), 'dmtestutils.api_model_stubs.BriefStub', 'BriefStub', (), '', False, 'from dmtestutils.api_model_stubs import BriefStub, FrameworkStub, LotStub\n'), ((41, 16, 41, 70), 'dmtestutils.api_model_stubs.LotStub', 'LotStub', (), '', False, 'from dmtestutils.api_model_stubs import BriefStub, FrameworkStub, LotStub\n'), ((59, 16, 59, 71), 'dmtestutils.api_model_stubs.LotStub', 'LotStub', (), '', False, 'from dmtestutils.api_model_stubs import BriefStub, FrameworkStub, LotStub\n')]
devinrsmith/deephaven-core
Plot/src/test/java/io/deephaven/db/plot/example_plots/PlottingPQ.py
3a6930046faf1cd556f62a914ce1cfd7860147b9
import deephaven.TableTools as tt import deephaven.Plot as plt t = tt.emptyTable(50)\ .update("X = i + 5", "XLow = X -1", "XHigh = X + 1", "Y = Math.random() * 5", "YLow = Y - 1", "YHigh = Y + 1", "USym = i % 2 == 0 ? `AAPL` : `MSFT`") p = plt.plot("S1", t, "X", "Y").lineColor("black").show() p2 = plt.plot("S1", t, "X", "Y").plotStyle("bar").gradientVisible(True).show() p3 = plt.plot("S1", t, "X", "Y").plotStyle("scatter").pointColor("black").pointSize(2).show() p4 = plt.plot("S1", t, "X", "Y").plotStyle("area").seriesColor("red").show() p4 = plt.plot3d("S1", t, "X", "X", "Y").show() pBy = plt.plotBy("S1", t, "X", "Y", "USym").show() pBy = plt.plot3dBy("S1", t, "X", "X", "Y", "USym").show() cp = plt.catPlot("S1", t, "X", "Y").lineColor("black").show() cp2 = plt.catPlot("S1", t, "X", "Y").plotStyle("bar").gradientVisible(True).show() cp3 = plt.catPlot("S1", t, "X", "Y").plotStyle("scatter").pointColor("black").pointSize(2).show() cp4 = plt.catPlot("S1", t, "X", "Y").plotStyle("area").seriesColor("red").show() cp = plt.catPlot3d("S1", t, "X", "X", "Y").show() cpBy = plt.catPlotBy("S1", t, "X", "Y", "USym").show() cpBy = plt.catPlot3dBy("S1", t, "X", "X", "Y", "USym").show() pp = plt.piePlot("S1", t, "X", "Y") chp = plt.catHistPlot("S1", t, "X").show() hp = plt.histPlot("S1", t, "X", 5).show() hp = plt.histPlot("S1", t, "X", 0, 10, 5).show() ep = plt.errorBarXY("S1", t, "X", "XLow", "XHigh", "Y", "YLow", "YHigh").show() epBy = plt.errorBarXYBy("S1", t, "X", "XLow", "XHigh", "Y", "YLow", "YHigh", "USym").show() ep2 = plt.errorBarX("S1", t, "X", "XLow", "XHigh", "Y").show() epBy2 = plt.errorBarXBy("S1", t, "X", "XLow", "XHigh", "Y", "USym").show() ep3 = plt.errorBarY("S1", t, "X", "Y", "YLow", "YHigh").show() epBy3 = plt.errorBarYBy("S1", t, "X", "Y", "YLow", "YHigh", "USym").show() doubles = [3, 4, 3, 5, 4, 5] time = 1491946585000000000 t = tt.newTable(tt.col("USym", ["A", "B", "A", "B", "A", "B"]), tt.doubleCol("Open", doubles), tt.doubleCol("High", doubles), tt.doubleCol("Low", doubles), tt.doubleCol("Close", doubles)) t = t.updateView("Time = new DBDateTime(time + (MINUTE * i))") ohlc = plt.ohlcPlot("Test1", t, "Time", "Open", "High", "Low", "Close") ohlcPlotBy = plt.figure().newChart(0)\ .chartTitle("Chart Title")\ .newAxes()\ .xLabel("X")\ .yLabel("Y")\ .ohlcPlotBy("Test1", t, "Time", "Open", "High", "Low", "Close", "USym") categories = ["Samsung", "Others", "Nokia", "Apple", "MSFT"] valuesD = [27.8, 55.3, 16.8, 17.1, 23.1] valuesI = [27, 55, 16, 17, 15] ap = plt.plot("S1", valuesD, valuesI).show() ap = plt.plot3d("S1", valuesI, valuesI, valuesI).show() acp = plt.catPlot("S1", categories, valuesI).show() acp2 = plt.catPlot3d("S1", categories, categories, valuesD).show() achp = plt.catHistPlot("S1", categories).show() app = plt.figure().xLabel("X").yLabel("Y").piePlot("S1", categories, valuesI).pointLabelFormat("{0}").show() aep = plt.errorBarXY("S1", valuesD, valuesD, valuesD, valuesD, valuesD, valuesD).show() aep2 = plt.errorBarX("S1", valuesD, valuesD, valuesD, valuesD).show() aep3 = plt.errorBarY("S1", valuesD, valuesD, valuesD, valuesD).show() hp = plt.histPlot("S1", valuesD, 5).show() hp = plt.histPlot("S1", valuesD, 0, 10, 5).show() hp = plt.histPlot("S1", valuesI, 5).show()
[((32, 5, 32, 35), 'deephaven.Plot.piePlot', 'plt.piePlot', ({(32, 17, 32, 21): '"""S1"""', (32, 23, 32, 24): 't', (32, 26, 32, 29): '"""X"""', (32, 31, 32, 34): '"""Y"""'}, {}), "('S1', t, 'X', 'Y')", True, 'import deephaven.Plot as plt\n'), ((56, 7, 56, 71), 'deephaven.Plot.ohlcPlot', 'plt.ohlcPlot', ({(56, 20, 56, 27): '"""Test1"""', (56, 29, 56, 30): 't', (56, 32, 56, 38): '"""Time"""', (56, 40, 56, 46): '"""Open"""', (56, 48, 56, 54): '"""High"""', (56, 56, 56, 61): '"""Low"""', (56, 63, 56, 70): '"""Close"""'}, {}), "('Test1', t, 'Time', 'Open', 'High', 'Low', 'Close')", True, 'import deephaven.Plot as plt\n'), ((50, 16, 50, 62), 'deephaven.TableTools.col', 'tt.col', ({(50, 23, 50, 29): '"""USym"""', (50, 31, 50, 61): "['A', 'B', 'A', 'B', 'A', 'B']"}, {}), "('USym', ['A', 'B', 'A', 'B', 'A', 'B'])", True, 'import deephaven.TableTools as tt\n'), ((51, 16, 51, 45), 'deephaven.TableTools.doubleCol', 'tt.doubleCol', ({(51, 29, 51, 35): '"""Open"""', (51, 37, 51, 44): 'doubles'}, {}), "('Open', doubles)", True, 'import deephaven.TableTools as tt\n'), ((51, 47, 51, 76), 'deephaven.TableTools.doubleCol', 'tt.doubleCol', ({(51, 60, 51, 66): '"""High"""', (51, 68, 51, 75): 'doubles'}, {}), "('High', doubles)", True, 'import deephaven.TableTools as tt\n'), ((52, 16, 52, 44), 'deephaven.TableTools.doubleCol', 'tt.doubleCol', ({(52, 29, 52, 34): '"""Low"""', (52, 36, 52, 43): 'doubles'}, {}), "('Low', doubles)", True, 'import deephaven.TableTools as tt\n'), ((52, 46, 52, 76), 'deephaven.TableTools.doubleCol', 'tt.doubleCol', ({(52, 59, 52, 66): '"""Close"""', (52, 68, 52, 75): 'doubles'}, {}), "('Close', doubles)", True, 'import deephaven.TableTools as tt\n'), ((5, 4, 5, 21), 'deephaven.TableTools.emptyTable', 'tt.emptyTable', ({(5, 18, 5, 20): '50'}, {}), '(50)', True, 'import deephaven.TableTools as tt\n'), ((15, 5, 15, 39), 'deephaven.Plot.plot3d', 'plt.plot3d', ({(15, 16, 15, 20): '"""S1"""', (15, 22, 15, 23): 't', (15, 25, 15, 28): '"""X"""', (15, 30, 15, 33): '"""X"""', (15, 35, 15, 38): '"""Y"""'}, {}), "('S1', t, 'X', 'X', 'Y')", True, 'import deephaven.Plot as plt\n'), ((18, 6, 18, 43), 'deephaven.Plot.plotBy', 'plt.plotBy', ({(18, 17, 18, 21): '"""S1"""', (18, 23, 18, 24): 't', (18, 26, 18, 29): '"""X"""', (18, 31, 18, 34): '"""Y"""', (18, 36, 18, 42): '"""USym"""'}, {}), "('S1', t, 'X', 'Y', 'USym')", True, 'import deephaven.Plot as plt\n'), ((19, 6, 19, 51), 'deephaven.Plot.plot3dBy', 'plt.plot3dBy', ({(19, 19, 19, 23): '"""S1"""', (19, 25, 19, 26): 't', (19, 28, 19, 31): '"""X"""', (19, 34, 19, 37): '"""X"""', (19, 39, 19, 42): '"""Y"""', (19, 44, 19, 50): '"""USym"""'}, {}), "('S1', t, 'X', 'X', 'Y', 'USym')", True, 'import deephaven.Plot as plt\n'), ((26, 5, 26, 42), 'deephaven.Plot.catPlot3d', 'plt.catPlot3d', ({(26, 19, 26, 23): '"""S1"""', (26, 25, 26, 26): 't', (26, 28, 26, 31): '"""X"""', (26, 33, 26, 36): '"""X"""', (26, 38, 26, 41): '"""Y"""'}, {}), "('S1', t, 'X', 'X', 'Y')", True, 'import deephaven.Plot as plt\n'), ((28, 7, 28, 47), 'deephaven.Plot.catPlotBy', 'plt.catPlotBy', ({(28, 21, 28, 25): '"""S1"""', (28, 27, 28, 28): 't', (28, 30, 28, 33): '"""X"""', (28, 35, 28, 38): '"""Y"""', (28, 40, 28, 46): '"""USym"""'}, {}), "('S1', t, 'X', 'Y', 'USym')", True, 'import deephaven.Plot as plt\n'), ((30, 7, 30, 54), 'deephaven.Plot.catPlot3dBy', 'plt.catPlot3dBy', ({(30, 23, 30, 27): '"""S1"""', (30, 29, 30, 30): 't', (30, 32, 30, 35): '"""X"""', (30, 37, 30, 40): '"""X"""', (30, 42, 30, 45): '"""Y"""', (30, 47, 30, 53): '"""USym"""'}, {}), "('S1', t, 'X', 'X', 'Y', 'USym')", True, 'import deephaven.Plot as plt\n'), ((35, 6, 35, 35), 'deephaven.Plot.catHistPlot', 'plt.catHistPlot', ({(35, 22, 35, 26): '"""S1"""', (35, 28, 35, 29): 't', (35, 31, 35, 34): '"""X"""'}, {}), "('S1', t, 'X')", True, 'import deephaven.Plot as plt\n'), ((37, 5, 37, 34), 'deephaven.Plot.histPlot', 'plt.histPlot', ({(37, 18, 37, 22): '"""S1"""', (37, 24, 37, 25): 't', (37, 27, 37, 30): '"""X"""', (37, 32, 37, 33): '5'}, {}), "('S1', t, 'X', 5)", True, 'import deephaven.Plot as plt\n'), ((38, 5, 38, 41), 'deephaven.Plot.histPlot', 'plt.histPlot', ({(38, 18, 38, 22): '"""S1"""', (38, 24, 38, 25): 't', (38, 27, 38, 30): '"""X"""', (38, 32, 38, 33): '0', (38, 35, 38, 37): '10', (38, 39, 38, 40): '5'}, {}), "('S1', t, 'X', 0, 10, 5)", True, 'import deephaven.Plot as plt\n'), ((40, 5, 40, 72), 'deephaven.Plot.errorBarXY', 'plt.errorBarXY', ({(40, 20, 40, 24): '"""S1"""', (40, 26, 40, 27): 't', (40, 29, 40, 32): '"""X"""', (40, 34, 40, 40): '"""XLow"""', (40, 42, 40, 49): '"""XHigh"""', (40, 51, 40, 54): '"""Y"""', (40, 56, 40, 62): '"""YLow"""', (40, 64, 40, 71): '"""YHigh"""'}, {}), "('S1', t, 'X', 'XLow', 'XHigh', 'Y', 'YLow', 'YHigh')", True, 'import deephaven.Plot as plt\n'), ((41, 7, 41, 84), 'deephaven.Plot.errorBarXYBy', 'plt.errorBarXYBy', ({(41, 24, 41, 28): '"""S1"""', (41, 30, 41, 31): 't', (41, 33, 41, 36): '"""X"""', (41, 38, 41, 44): '"""XLow"""', (41, 46, 41, 53): '"""XHigh"""', (41, 55, 41, 58): '"""Y"""', (41, 60, 41, 66): '"""YLow"""', (41, 68, 41, 75): '"""YHigh"""', (41, 77, 41, 83): '"""USym"""'}, {}), "('S1', t, 'X', 'XLow', 'XHigh', 'Y', 'YLow', 'YHigh', 'USym')", True, 'import deephaven.Plot as plt\n'), ((42, 6, 42, 55), 'deephaven.Plot.errorBarX', 'plt.errorBarX', ({(42, 20, 42, 24): '"""S1"""', (42, 26, 42, 27): 't', (42, 29, 42, 32): '"""X"""', (42, 34, 42, 40): '"""XLow"""', (42, 42, 42, 49): '"""XHigh"""', (42, 51, 42, 54): '"""Y"""'}, {}), "('S1', t, 'X', 'XLow', 'XHigh', 'Y')", True, 'import deephaven.Plot as plt\n'), ((43, 8, 43, 67), 'deephaven.Plot.errorBarXBy', 'plt.errorBarXBy', ({(43, 24, 43, 28): '"""S1"""', (43, 30, 43, 31): 't', (43, 33, 43, 36): '"""X"""', (43, 38, 43, 44): '"""XLow"""', (43, 46, 43, 53): '"""XHigh"""', (43, 55, 43, 58): '"""Y"""', (43, 60, 43, 66): '"""USym"""'}, {}), "('S1', t, 'X', 'XLow', 'XHigh', 'Y', 'USym')", True, 'import deephaven.Plot as plt\n'), ((44, 6, 44, 55), 'deephaven.Plot.errorBarY', 'plt.errorBarY', ({(44, 20, 44, 24): '"""S1"""', (44, 26, 44, 27): 't', (44, 29, 44, 32): '"""X"""', (44, 34, 44, 37): '"""Y"""', (44, 39, 44, 45): '"""YLow"""', (44, 47, 44, 54): '"""YHigh"""'}, {}), "('S1', t, 'X', 'Y', 'YLow', 'YHigh')", True, 'import deephaven.Plot as plt\n'), ((45, 8, 45, 67), 'deephaven.Plot.errorBarYBy', 'plt.errorBarYBy', ({(45, 24, 45, 28): '"""S1"""', (45, 30, 45, 31): 't', (45, 33, 45, 36): '"""X"""', (45, 38, 45, 41): '"""Y"""', (45, 43, 45, 49): '"""YLow"""', (45, 51, 45, 58): '"""YHigh"""', (45, 60, 45, 66): '"""USym"""'}, {}), "('S1', t, 'X', 'Y', 'YLow', 'YHigh', 'USym')", True, 'import deephaven.Plot as plt\n'), ((70, 5, 70, 37), 'deephaven.Plot.plot', 'plt.plot', ({(70, 14, 70, 18): '"""S1"""', (70, 20, 70, 27): 'valuesD', (70, 29, 70, 36): 'valuesI'}, {}), "('S1', valuesD, valuesI)", True, 'import deephaven.Plot as plt\n'), ((71, 5, 71, 48), 'deephaven.Plot.plot3d', 'plt.plot3d', ({(71, 16, 71, 20): '"""S1"""', (71, 22, 71, 29): 'valuesI', (71, 31, 71, 38): 'valuesI', (71, 40, 71, 47): 'valuesI'}, {}), "('S1', valuesI, valuesI, valuesI)", True, 'import deephaven.Plot as plt\n'), ((73, 6, 73, 44), 'deephaven.Plot.catPlot', 'plt.catPlot', ({(73, 18, 73, 22): '"""S1"""', (73, 24, 73, 34): 'categories', (73, 36, 73, 43): 'valuesI'}, {}), "('S1', categories, valuesI)", True, 'import deephaven.Plot as plt\n'), ((74, 7, 74, 59), 'deephaven.Plot.catPlot3d', 'plt.catPlot3d', ({(74, 21, 74, 25): '"""S1"""', (74, 27, 74, 37): 'categories', (74, 39, 74, 49): 'categories', (74, 51, 74, 58): 'valuesD'}, {}), "('S1', categories, categories, valuesD)", True, 'import deephaven.Plot as plt\n'), ((76, 7, 76, 40), 'deephaven.Plot.catHistPlot', 'plt.catHistPlot', ({(76, 23, 76, 27): '"""S1"""', (76, 29, 76, 39): 'categories'}, {}), "('S1', categories)", True, 'import deephaven.Plot as plt\n'), ((80, 6, 80, 80), 'deephaven.Plot.errorBarXY', 'plt.errorBarXY', ({(80, 21, 80, 25): '"""S1"""', (80, 27, 80, 34): 'valuesD', (80, 36, 80, 43): 'valuesD', (80, 45, 80, 52): 'valuesD', (80, 54, 80, 61): 'valuesD', (80, 63, 80, 70): 'valuesD', (80, 72, 80, 79): 'valuesD'}, {}), "('S1', valuesD, valuesD, valuesD, valuesD, valuesD, valuesD)", True, 'import deephaven.Plot as plt\n'), ((81, 7, 81, 62), 'deephaven.Plot.errorBarX', 'plt.errorBarX', ({(81, 21, 81, 25): '"""S1"""', (81, 27, 81, 34): 'valuesD', (81, 36, 81, 43): 'valuesD', (81, 45, 81, 52): 'valuesD', (81, 54, 81, 61): 'valuesD'}, {}), "('S1', valuesD, valuesD, valuesD, valuesD)", True, 'import deephaven.Plot as plt\n'), ((82, 7, 82, 62), 'deephaven.Plot.errorBarY', 'plt.errorBarY', ({(82, 21, 82, 25): '"""S1"""', (82, 27, 82, 34): 'valuesD', (82, 36, 82, 43): 'valuesD', (82, 45, 82, 52): 'valuesD', (82, 54, 82, 61): 'valuesD'}, {}), "('S1', valuesD, valuesD, valuesD, valuesD)", True, 'import deephaven.Plot as plt\n'), ((85, 5, 85, 35), 'deephaven.Plot.histPlot', 'plt.histPlot', ({(85, 18, 85, 22): '"""S1"""', (85, 24, 85, 31): 'valuesD', (85, 33, 85, 34): '5'}, {}), "('S1', valuesD, 5)", True, 'import deephaven.Plot as plt\n'), ((86, 5, 86, 42), 'deephaven.Plot.histPlot', 'plt.histPlot', ({(86, 18, 86, 22): '"""S1"""', (86, 24, 86, 31): 'valuesD', (86, 33, 86, 34): '0', (86, 36, 86, 38): '10', (86, 40, 86, 41): '5'}, {}), "('S1', valuesD, 0, 10, 5)", True, 'import deephaven.Plot as plt\n'), ((87, 5, 87, 35), 'deephaven.Plot.histPlot', 'plt.histPlot', ({(87, 18, 87, 22): '"""S1"""', (87, 24, 87, 31): 'valuesI', (87, 33, 87, 34): '5'}, {}), "('S1', valuesI, 5)", True, 'import deephaven.Plot as plt\n'), ((9, 4, 9, 31), 'deephaven.Plot.plot', 'plt.plot', ({(9, 13, 9, 17): '"""S1"""', (9, 19, 9, 20): 't', (9, 22, 9, 25): '"""X"""', (9, 27, 9, 30): '"""Y"""'}, {}), "('S1', t, 'X', 'Y')", True, 'import deephaven.Plot as plt\n'), ((21, 5, 21, 35), 'deephaven.Plot.catPlot', 'plt.catPlot', ({(21, 17, 21, 21): '"""S1"""', (21, 23, 21, 24): 't', (21, 26, 21, 29): '"""X"""', (21, 31, 21, 34): '"""Y"""'}, {}), "('S1', t, 'X', 'Y')", True, 'import deephaven.Plot as plt\n'), ((10, 5, 10, 32), 'deephaven.Plot.plot', 'plt.plot', ({(10, 14, 10, 18): '"""S1"""', (10, 20, 10, 21): 't', (10, 23, 10, 26): '"""X"""', (10, 28, 10, 31): '"""Y"""'}, {}), "('S1', t, 'X', 'Y')", True, 'import deephaven.Plot as plt\n'), ((12, 5, 12, 32), 'deephaven.Plot.plot', 'plt.plot', ({(12, 14, 12, 18): '"""S1"""', (12, 20, 12, 21): 't', (12, 23, 12, 26): '"""X"""', (12, 28, 12, 31): '"""Y"""'}, {}), "('S1', t, 'X', 'Y')", True, 'import deephaven.Plot as plt\n'), ((22, 6, 22, 36), 'deephaven.Plot.catPlot', 'plt.catPlot', ({(22, 18, 22, 22): '"""S1"""', (22, 24, 22, 25): 't', (22, 27, 22, 30): '"""X"""', (22, 32, 22, 35): '"""Y"""'}, {}), "('S1', t, 'X', 'Y')", True, 'import deephaven.Plot as plt\n'), ((24, 6, 24, 36), 'deephaven.Plot.catPlot', 'plt.catPlot', ({(24, 18, 24, 22): '"""S1"""', (24, 24, 24, 25): 't', (24, 27, 24, 30): '"""X"""', (24, 32, 24, 35): '"""Y"""'}, {}), "('S1', t, 'X', 'Y')", True, 'import deephaven.Plot as plt\n'), ((11, 5, 11, 32), 'deephaven.Plot.plot', 'plt.plot', ({(11, 14, 11, 18): '"""S1"""', (11, 20, 11, 21): 't', (11, 23, 11, 26): '"""X"""', (11, 28, 11, 31): '"""Y"""'}, {}), "('S1', t, 'X', 'Y')", True, 'import deephaven.Plot as plt\n'), ((23, 6, 23, 36), 'deephaven.Plot.catPlot', 'plt.catPlot', ({(23, 18, 23, 22): '"""S1"""', (23, 24, 23, 25): 't', (23, 27, 23, 30): '"""X"""', (23, 32, 23, 35): '"""Y"""'}, {}), "('S1', t, 'X', 'Y')", True, 'import deephaven.Plot as plt\n'), ((78, 6, 78, 18), 'deephaven.Plot.figure', 'plt.figure', ({}, {}), '()', True, 'import deephaven.Plot as plt\n'), ((58, 13, 58, 25), 'deephaven.Plot.figure', 'plt.figure', ({}, {}), '()', True, 'import deephaven.Plot as plt\n')]
ahmedmagdyawaad/redhat-ci-dashboard
rhoci/test/routes.py
a9c0445add4e99bb44a8075752a62176968278df
# Copyright 2019 Arie Bregman # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import from flask import current_app as app from flask import render_template from flask import url_for import logging LOG = logging.getLogger(__name__) from rhoci.test import bp # noqa @bp.route('/index') @bp.route('/') def index(): """All tests.""" jenkins_url = app.config['custom']['jenkins']['url'] uf = url_for('api.all_tests') return render_template('tests/index.html', jenkins_url=jenkins_url, uf=uf) @bp.route('/class/<class_name>/name/<name>') def test(class_name, name): """Specific test summary.""" uf = url_for('api.test_to_jobs', class_name=class_name, test_name=name) return render_template('tests/test_to_jobs.html', uf=uf)
[((21, 6, 21, 33), 'logging.getLogger', 'logging.getLogger', ({(21, 24, 21, 32): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((26, 1, 26, 19), 'rhoci.test.bp.route', 'bp.route', ({(26, 10, 26, 18): '"""/index"""'}, {}), "('/index')", False, 'from rhoci.test import bp\n'), ((27, 1, 27, 14), 'rhoci.test.bp.route', 'bp.route', ({(27, 10, 27, 13): '"""/"""'}, {}), "('/')", False, 'from rhoci.test import bp\n'), ((37, 1, 37, 44), 'rhoci.test.bp.route', 'bp.route', ({(37, 10, 37, 43): '"""/class/<class_name>/name/<name>"""'}, {}), "('/class/<class_name>/name/<name>')", False, 'from rhoci.test import bp\n'), ((31, 9, 31, 33), 'flask.url_for', 'url_for', ({(31, 17, 31, 32): '"""api.all_tests"""'}, {}), "('api.all_tests')", False, 'from flask import url_for\n'), ((32, 11, 34, 33), 'flask.render_template', 'render_template', (), '', False, 'from flask import render_template\n'), ((40, 9, 40, 75), 'flask.url_for', 'url_for', (), '', False, 'from flask import url_for\n'), ((41, 11, 41, 60), 'flask.render_template', 'render_template', (), '', False, 'from flask import render_template\n')]
aarnaut/mitmproxy
mitmproxy/net/http/http1/__init__.py
a8b6f48374b28954f9d8fb5cabbc4fdcaebe9e3a
from .read import ( read_request_head, read_response_head, connection_close, expected_http_body_size, validate_headers, ) from .assemble import ( assemble_request, assemble_request_head, assemble_response, assemble_response_head, assemble_body, ) __all__ = [ "read_request_head", "read_response_head", "connection_close", "expected_http_body_size", "validate_headers", "assemble_request", "assemble_request_head", "assemble_response", "assemble_response_head", "assemble_body", ]
[]
alex-hutton/django-request-token
request_token/migrations/0009_requesttokenerror.py
299c4cb22ce3012c7ef995a648e5b1ea6b8a84d7
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2017-05-21 19:33 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('request_token', '0008_convert_token_data_to_jsonfield'), ] operations = [ migrations.CreateModel( name='RequestTokenErrorLog', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('error_type', models.CharField(help_text='The underlying type of error raised.', max_length=50)), ('error_message', models.CharField(help_text='The error message supplied.', max_length=200)), ('log', models.OneToOneField(help_text='The token use against which the error occurred.', on_delete=django.db.models.deletion.CASCADE, related_name='error', to='request_token.RequestTokenLog')), ('token', models.ForeignKey(help_text='The RequestToken that was used.', on_delete=django.db.models.deletion.CASCADE, related_name='errors', to='request_token.RequestToken')), ], ), ]
[((19, 23, 19, 112), 'django.db.models.AutoField', 'models.AutoField', (), '', False, 'from django.db import migrations, models\n'), ((20, 31, 20, 112), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import migrations, models\n'), ((21, 34, 21, 107), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import migrations, models\n'), ((22, 24, 22, 208), 'django.db.models.OneToOneField', 'models.OneToOneField', (), '', False, 'from django.db import migrations, models\n'), ((23, 26, 23, 189), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import migrations, models\n')]
ncodeitgithub1/python-get-hands-dirty-programs
01-basic-programs/04-lines.py
c9edb9e0bc9b2580737ca185935427343c550f01
#4 lines: Fibonacci, tuple assignment parents, babies = (1, 1) while babies < 100: print ('This generation has {0} babies'.format(babies)) parents, babies = (babies, parents + babies)
[]
EvgenySmekalin/winter
winter/controller.py
24b6a02f958478547a4a120324823743a1f7e1a1
import typing from .core import Component _Controller = typing.TypeVar('_Controller') _ControllerType = typing.Type[_Controller] ControllerFactory = typing.NewType('ControllerFactory', typing.Callable[[typing.Type], object]) _controller_factory: typing.Optional[ControllerFactory] = None def controller(controller_class: _ControllerType) -> _ControllerType: Component.register(controller_class) return controller_class def set_controller_factory(controller_factory: ControllerFactory) -> None: global _controller_factory _controller_factory = controller_factory def build_controller(controller_class: _ControllerType) -> _Controller: if _controller_factory is None: return controller_class() return _controller_factory(controller_class) def get_component(controller_class: _ControllerType) -> Component: return Component.get_by_cls(controller_class)
[((5, 14, 5, 43), 'typing.TypeVar', 'typing.TypeVar', ({(5, 29, 5, 42): '"""_Controller"""'}, {}), "('_Controller')", False, 'import typing\n'), ((7, 20, 7, 95), 'typing.NewType', 'typing.NewType', ({(7, 35, 7, 54): '"""ControllerFactory"""', (7, 56, 7, 94): 'typing.Callable[[typing.Type], object]'}, {}), "('ControllerFactory', typing.Callable[[typing.Type], object])", False, 'import typing\n')]
bobg/rules_go
go/def.bzl
fd11dd2768669dc2cc1f3a11f2b0b81d84e81c32
# Copyright 2014 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Public definitions for Go rules. All public Go rules, providers, and other definitions are imported and re-exported in this file. This allows the real location of definitions to change for easier maintenance. Definitions outside this file are private unless otherwise noted, and may change without notice. """ load( "//go/private:context.bzl", _go_context = "go_context", ) load( "//go/private:providers.bzl", _GoArchive = "GoArchive", _GoArchiveData = "GoArchiveData", _GoLibrary = "GoLibrary", _GoPath = "GoPath", _GoSDK = "GoSDK", _GoSource = "GoSource", ) load( "//go/private/rules:sdk.bzl", _go_sdk = "go_sdk", ) load( "//go/private:go_toolchain.bzl", _declare_toolchains = "declare_toolchains", _go_toolchain = "go_toolchain", ) load( "//go/private/rules:wrappers.bzl", _go_binary_macro = "go_binary_macro", _go_library_macro = "go_library_macro", _go_test_macro = "go_test_macro", ) load( "//go/private/rules:source.bzl", _go_source = "go_source", ) load( "//extras:embed_data.bzl", _go_embed_data = "go_embed_data", ) load( "//go/private/tools:path.bzl", _go_path = "go_path", ) load( "//go/private/rules:library.bzl", _go_tool_library = "go_tool_library", ) load( "//go/private/rules:nogo.bzl", _nogo = "nogo_wrapper", ) # TOOLS_NOGO is a list of all analysis passes in # golang.org/x/tools/go/analysis/passes. # This is not backward compatible, so use caution when depending on this -- # new analyses may discover issues in existing builds. TOOLS_NOGO = [ "@org_golang_x_tools//go/analysis/passes/asmdecl:go_default_library", "@org_golang_x_tools//go/analysis/passes/assign:go_default_library", "@org_golang_x_tools//go/analysis/passes/atomic:go_default_library", "@org_golang_x_tools//go/analysis/passes/atomicalign:go_default_library", "@org_golang_x_tools//go/analysis/passes/bools:go_default_library", "@org_golang_x_tools//go/analysis/passes/buildssa:go_default_library", "@org_golang_x_tools//go/analysis/passes/buildtag:go_default_library", # TODO(#2396): pass raw cgo sources to cgocall and re-enable. # "@org_golang_x_tools//go/analysis/passes/cgocall:go_default_library", "@org_golang_x_tools//go/analysis/passes/composite:go_default_library", "@org_golang_x_tools//go/analysis/passes/copylock:go_default_library", "@org_golang_x_tools//go/analysis/passes/ctrlflow:go_default_library", "@org_golang_x_tools//go/analysis/passes/deepequalerrors:go_default_library", "@org_golang_x_tools//go/analysis/passes/errorsas:go_default_library", "@org_golang_x_tools//go/analysis/passes/findcall:go_default_library", "@org_golang_x_tools//go/analysis/passes/httpresponse:go_default_library", "@org_golang_x_tools//go/analysis/passes/ifaceassert:go_default_library", "@org_golang_x_tools//go/analysis/passes/inspect:go_default_library", "@org_golang_x_tools//go/analysis/passes/loopclosure:go_default_library", "@org_golang_x_tools//go/analysis/passes/lostcancel:go_default_library", "@org_golang_x_tools//go/analysis/passes/nilfunc:go_default_library", "@org_golang_x_tools//go/analysis/passes/nilness:go_default_library", "@org_golang_x_tools//go/analysis/passes/pkgfact:go_default_library", "@org_golang_x_tools//go/analysis/passes/printf:go_default_library", "@org_golang_x_tools//go/analysis/passes/shadow:go_default_library", "@org_golang_x_tools//go/analysis/passes/shift:go_default_library", "@org_golang_x_tools//go/analysis/passes/sortslice:go_default_library", "@org_golang_x_tools//go/analysis/passes/stdmethods:go_default_library", "@org_golang_x_tools//go/analysis/passes/stringintconv:go_default_library", "@org_golang_x_tools//go/analysis/passes/structtag:go_default_library", "@org_golang_x_tools//go/analysis/passes/testinggoroutine:go_default_library", "@org_golang_x_tools//go/analysis/passes/tests:go_default_library", "@org_golang_x_tools//go/analysis/passes/unmarshal:go_default_library", "@org_golang_x_tools//go/analysis/passes/unreachable:go_default_library", "@org_golang_x_tools//go/analysis/passes/unsafeptr:go_default_library", "@org_golang_x_tools//go/analysis/passes/unusedresult:go_default_library", ] # Current version or next version to be tagged. Gazelle and other tools may # check this to determine compatibility. RULES_GO_VERSION = "0.30.0" declare_toolchains = _declare_toolchains go_context = _go_context go_embed_data = _go_embed_data go_sdk = _go_sdk go_tool_library = _go_tool_library go_toolchain = _go_toolchain nogo = _nogo # See go/providers.rst#GoLibrary for full documentation. GoLibrary = _GoLibrary # See go/providers.rst#GoSource for full documentation. GoSource = _GoSource # See go/providers.rst#GoPath for full documentation. GoPath = _GoPath # See go/providers.rst#GoArchive for full documentation. GoArchive = _GoArchive # See go/providers.rst#GoArchiveData for full documentation. GoArchiveData = _GoArchiveData # See go/providers.rst#GoSDK for full documentation. GoSDK = _GoSDK # See docs/go/core/rules.md#go_library for full documentation. go_library = _go_library_macro # See docs/go/core/rules.md#go_binary for full documentation. go_binary = _go_binary_macro # See docs/go/core/rules.md#go_test for full documentation. go_test = _go_test_macro # See docs/go/core/rules.md#go_test for full documentation. go_source = _go_source # See docs/go/core/rules.md#go_path for full documentation. go_path = _go_path def go_vet_test(*args, **kwargs): fail("The go_vet_test rule has been removed. Please migrate to nogo instead, which supports vet tests.") def go_rule(**kwargs): fail("The go_rule function has been removed. Use rule directly instead. See https://github.com/bazelbuild/rules_go/blob/master/go/toolchains.rst#writing-new-go-rules") def go_rules_dependencies(): _moved("go_rules_dependencies") def go_register_toolchains(**kwargs): _moved("go_register_toolchains") def go_download_sdk(**kwargs): _moved("go_download_sdk") def go_host_sdk(**kwargs): _moved("go_host_sdk") def go_local_sdk(**kwargs): _moved("go_local_sdk") def go_wrap_sdk(**kwargs): _moved("go_wrap_sdK") def _moved(name): fail(name + " has moved. Please load from " + " @io_bazel_rules_go//go:deps.bzl instead of def.bzl.")
[]
ayalapol/anyway
anyway/parsers/united.py
ebf2436a8f9b152ae8f4d051c129bac754cb8cc1
#!/usr/bin/env python # -*- coding: utf-8 -*- import calendar import csv from datetime import datetime import os from flask_sqlalchemy import SQLAlchemy from sqlalchemy import and_ from ..constants import CONST from ..models import AccidentMarker from ..utilities import init_flask, decode_hebrew, open_utf8 from ..import importmail from xml.dom import minidom import math import requests import logging ############################################################################################ # United.py is responsible for the parsing and deployment of "united hatzala" data to the DB ############################################################################################ PROVIDER_CODE = CONST.UNITED_HATZALA_CODE TIME_ZONE = 2 # convert IMS hours code to hours RAIN_DURATION_CODE_TO_HOURS = {"1": 6, "2": 12, "3": 18, "4": 24, "/": 24, "5": 1, "6": 2, "7": 3, "8": 9, "9": 15} WEATHER = {"0": 1, "1": 2, "3": 3, "4": 4, "5": 5, "7": 6, "8": 6, "9": 7, "10": 8, "11": 9, "12": 10, "17": 11, "18": 12, "19": 13, "20": 14, "21": 15, "22": 16, "23": 17, "24": 18, "25": 19, "26": 20, "27": 21, "28": 22, "29": 23, "30": 24, "31": 24, "32": 24, "33": 7, "34": 7, "35": 7, "36": 25, "37": 25, "38": 25, "39": 25, "40": 26, "41": 27, "42": 28, "43": 29, "44": 9, "45": 30, "46": 30, "47": 30, "48": 31, "49": 32, "50": 33, "51": 34, "52": 33, "53": 35, "54": 36, "55": 37, "56": 38, "57": 39, "58": 37, "59": 37, "61": 37, "60": 36, "62": 40, "63": 15, "64": 41, "65": 19, "66": 42, "67": 43, "68": 44, "69": 45, "70": 46, "71": 47, "72": 48, "73": 16, "74": 50, "75": 51, "76": 52, "77": 53, "78": 54, "79": 55, "80": 56, "81": 57, "82": 58, "83": 59, "84": 60, "85": 61, "86": 62, "87": 63, "88": 64, "89": 65, "90": 66, "91": 67, "92": 68, "93": 69, "94": 70, "95": 71, "96": 72, "97": 73, "98": 74, "99": 75} def retrieve_ims_xml(): # getting an xml document from the ims(israel meteorological service) website logging.basicConfig(level=logging.DEBUG) s = requests.session() r = s.get('http://www.ims.gov.il/ims/PublicXML/observ.xml') xml_doc = minidom.parseString(r.text) collection = xml_doc.documentElement return collection def parse_date(created): """ :param created: Date & Time string from csv :return: Python datetime object """ global time global hour DATE_FORMATS = ['%m/%d/%Y %I:%M:%S', '%Y-%m-%d %H:%M:%S', '%Y/%m/%d %I:%M:%S', '%d/%m/%Y %I:%M', '%Y/%m/%d %I:%M', '%m/%d/%Y %I:%M'] for date_format in DATE_FORMATS: try: if date_format == '%Y-%m-%d %H:%M:%S': time = datetime.strptime(str(created)[:-4], date_format) hour = time.strftime('%H') hour = int(hour) else: time = datetime.strptime(str(created)[:-3], date_format) hour = time.strftime('%H') hour = int(hour) if str(created).endswith('AM') else int(hour) + 12 break except ValueError: pass return datetime(time.year, time.month, time.day, hour, time.minute, 0) def is_nth_weekday(nth, daynum, year, month): # find if date is the nth occurrence of the daynum day of the week (ex: the forth sunday of april 2016) # start counting the daynum from monday = 0 return calendar.Calendar(nth).monthdatescalendar( year, month )[nth][daynum] def get_parent_object_node(node): while node.parentNode: node = node.parentNode if node.nodeName == "Object": return node def accident_time_zone_adjustment(created): # return accident time in UTC time # pylint: disable=unexpected-keyword-arg accident_date = parse_date(created) daylight_saving_time = is_nth_weekday(4, 4, accident_date.year, 3) winter_clock = is_nth_weekday(4, 6, accident_date.year, 10) # weather is given in UTC time # therefore in daylight_saving_time we deduct 3 hours from the local time and in winter clock 2 hours # [ accident_date = accident_date.replace(hour=accident_date.hour - TIME_ZONE) # if accident happend between april and september if accident_date.month < 10 & accident_date.month > 3: accident_date.replace(hour=accident_date.hour - 1) # if accident happend before the last sunday of october at 2:00 o'clock elif accident_date.month == 10 & ( winter_clock.day > accident_date.day | ( winter_clock.day == accident_date.day & accident_date.hour < 2)): accident_date.replace(hour=accident_date.hour - 1) # if accident happend after the last friday of march at 2:00 o'clock elif (accident_date.month == 3 & daylight_saving_time.day < accident_date.day | ( daylight_saving_time.day == accident_date.day & accident_date.hour >= 2)): accident_date.replace(hour=accident_date.hour - 1) # ] adate = ''.join( (str(accident_date.year), str(accident_date.month), str(accident_date.day), str(accident_date.hour))) return adate def all_station_in_date_frame(collection, created): # return the stations data in the time of the accident doc = minidom.Document() base = doc.createElement('accident_date') doc.appendChild(base) station_data_in_date = collection.getElementsByTagName('date_selected') station_data_in_date.sort() accident_date = accident_time_zone_adjustment(created) for station in enumerate(station_data_in_date): if accident_date in str(station.childNodes[0].nodeValue): base.appendChild(get_parent_object_node(station)) return base def find_station_by_coordinate(collection, latitude, longitude): station_place_in_xml = -1 min_distance = float("inf") # initialize big starting value so the distance will always be smaller than the initial station_data = collection.getElementsByTagName('surface_station') for i, station in enumerate(station_data): station_lon = station.getElementsByTagName('station_lon') assert len(station_lon) == 1 lon = float(station_lon[0].childNodes[0].nodeValue) lon_difference = (lon - float(longitude)) ** 2 station_lat = station.getElementsByTagName('station_lat') assert len(station_lat) == 1 lat = float(station_lat[0].childNodes[0].nodeValue) lat_difference = (lat - float(latitude)) ** 2 temp_dis = math.sqrt(lat_difference + lon_difference) if temp_dis < min_distance: min_distance = temp_dis station_place_in_xml = i return station_place_in_xml def convert_xml_values_to_numbers(rain): num_conv = rain[:2] # variable to help convert from string to number for char in num_conv: # in the xml number are in a three digits format (4-004), we delete the 0es before the number if char == '0': rain.replace(char, '') else: break rain_in_millimeters = float(rain) if rain_in_millimeters >= 990: # numbers that are higher then 990 in the xml code equals 0.(the last digit) for example 991 = 0.1 rain_in_millimeters *= 0.01 return rain_in_millimeters def get_weather_element(station, weather_data, tag): element = weather_data[station].getElementsByTagName(tag) if element: weather_element = element[0].childNodes[0].nodeValue else: weather_element = None return weather_element def process_weather_data(collection, latitude, longitude): weather = 1 # default weather is clear sky station = find_station_by_coordinate(collection, latitude, longitude) weather_data = collection.getElementsByTagName('surface_observation') wind_force = get_weather_element(station, weather_data, 'FF') rain = get_weather_element(station, weather_data, 'RRR') rain_duration = get_weather_element(station, weather_data, 'TR') # the duration of time in which the rain amount was measured weather_code = get_weather_element(station, weather_data, 'WW') if weather_code is not None: return WEATHER[weather_code.strip()] if wind_force is not None: if int(wind_force) > 8: weather = 76 # סופת רוחות elif int(wind_force) > 5: weather = 77 # רוחות חזקות if rain is not None and rain_duration is not None: rain_in_millimeters = convert_xml_values_to_numbers(rain) rain_hours = RAIN_DURATION_CODE_TO_HOURS[str(rain_duration).strip()] # rain amount is between 0.1 and 0.5 millimeter if 0.0 < rain_in_millimeters <= 0.5 or ( 0.0 < rain_in_millimeters / rain_hours <= 0.5): if weather == 76: weather = 80 # סופת רוחות, גשם קל elif weather == 77: weather = 84 # רוחות חזקות, גשם קל else: weather = 37 # גשם קל # average rain amount per hour is between 0.5 and 4.0 millimeters if 0.5 < rain_in_millimeters / rain_hours <= 4: if weather == 76: weather = 81 # גשם וסופת רוחות elif weather == 77: weather = 85 # גשם ורוחות חזקות else: weather = 15 # גשם # average rain amount per hour is between 4.0 and 8.0 millimeters elif 4 < rain_in_millimeters / rain_hours <= 8: if 76 == weather: weather = 82 # סופת רוחות, גשם שוטף if weather == 77: weather = 86 # רוחות חזקות, גשם שוטף else: weather = 78 # גשם שוטף # average rain amount per hour is more than 8.0 millimeters elif rain_in_millimeters / rain_hours > 8: if weather == 76: weather = 83 # סופת רוחות, גשם זלעפות if weather == 77: weather = 87 # רוחות חזקות, גשם זלעפות else: weather = 79 # גשם זלעפות return weather CSVMAP = [ {"id": 0, "time": 1, "lat": 2, "long": 3, "street": 4, "city": 6, "comment": 7, "type": 8, "casualties": 9}, {"id": 0, "time": 1, "type": 2, "long": 3, "lat": 4, "city": 5, "street": 6, "comment": 7, "casualties": 8}, ] def create_accidents(collection, file_location): """ :param file_location: local location of .csv :return: Yields a marker object with every iteration """ logging.info("\tReading accidents data from '%s'..." % file_location) with open_utf8(file_location, 'rU') as f: reader = csv.reader(f, delimiter=',', dialect=csv.excel_tab) for line, accident in enumerate(reader): if line == 0: # header format_version = 0 if "MissionID" in accident[0] else 1 continue if not accident: # empty line continue if line == 1 and accident[0] == "": logging.warn("\t\tEmpty File!") continue csvmap = CSVMAP[format_version] if accident[csvmap["lat"]] == "" or accident[csvmap["long"]] == "" or \ accident[csvmap["lat"]] is None or accident[csvmap["long"]] is None or \ accident[csvmap["lat"]] == "NULL" or accident[csvmap["long"]] == "NULL": logging.warn("\t\tMissing coordinates in line {0}. Moving on...".format(line + 1)) continue created = parse_date(accident[csvmap["time"]]) marker = {'id': accident[csvmap["id"]], 'latitude': accident[csvmap["lat"]], 'longitude': accident[csvmap["long"]], 'created': created, 'provider_code': PROVIDER_CODE, 'title': decode_hebrew(accident[csvmap["type"]], encoding="utf-8")[:100], 'address': decode_hebrew((accident[csvmap["street"]] + ' ' + accident[csvmap["city"]]), encoding="utf-8"), 'accident_severity': 2 if u"קשה" in decode_hebrew(accident[csvmap["type"]], encoding="utf-8") else 3, 'location_accuracy': 1, 'accident_type': 21, 'type': CONST.MARKER_TYPE_ACCIDENT, 'description': decode_hebrew(accident[csvmap["comment"]], encoding="utf-8"), 'weather': process_weather_data(collection, accident[csvmap["lat"]], accident[csvmap["long"]])} if format_version == 0: casualties = accident[csvmap["casualties"]] marker['road_intactness'] = casualties if casualties.isdigit() else 0 yield marker def import_to_db(collection, path): """ :param path: Local files directory ('united_path' on main() below) :return: length of DB entries after execution """ app = init_flask() db = SQLAlchemy(app) accidents = list(create_accidents(collection, path)) if not accidents: return 0 new_ids = [m["id"] for m in accidents if 0 == db.session.query(AccidentMarker).filter(and_(AccidentMarker.id == m["id"], AccidentMarker.provider_code == m["provider_code"])).count()] if not new_ids: logging.info("\t\tNothing loaded, all accidents already in DB") return 0 db.session.execute(AccidentMarker.__table__.insert(), [m for m in accidents if m["id"] in new_ids]) db.session.commit() return len(new_ids) def update_db(collection): """ :return: length of DB entries after execution """ app = init_flask() db = SQLAlchemy(app) united = db.session.query(AccidentMarker).filter(AccidentMarker.provider_code == 2) for accident in united: if not accident.weather: accident.weather = process_weather_data(collection, accident.latitude, accident.longitude) db.session.commit() logging.info("\tFinished commiting the changes") def main(light=True, username='', password='', lastmail=False): """ Calls importmail.py prior to importing to DB """ collection = retrieve_ims_xml() if not light: logging.info("Importing data from mail...") importmail.main(username, password, lastmail) united_path = "static/data/united/" total = 0 logging.info("Loading United accidents...") for united_file in os.listdir(united_path): if united_file.endswith(".csv"): total += import_to_db(collection, united_path + united_file) logging.info("\tImported {0} items".format(total)) update_db(collection)
[((45, 4, 45, 44), 'logging.basicConfig', 'logging.basicConfig', (), '', False, 'import logging\n'), ((46, 8, 46, 26), 'requests.session', 'requests.session', ({}, {}), '()', False, 'import requests\n'), ((48, 14, 48, 41), 'xml.dom.minidom.parseString', 'minidom.parseString', ({(48, 34, 48, 40): 'r.text'}, {}), '(r.text)', False, 'from xml.dom import minidom\n'), ((75, 11, 75, 74), 'datetime.datetime', 'datetime', ({(75, 20, 75, 29): 'time.year', (75, 31, 75, 41): 'time.month', (75, 43, 75, 51): 'time.day', (75, 53, 75, 57): 'hour', (75, 59, 75, 70): 'time.minute', (75, 72, 75, 73): '(0)'}, {}), '(time.year, time.month, time.day, hour, time.minute, 0)', False, 'from datetime import datetime\n'), ((128, 10, 128, 28), 'xml.dom.minidom.Document', 'minidom.Document', ({}, {}), '()', False, 'from xml.dom import minidom\n'), ((266, 4, 266, 73), 'logging.info', 'logging.info', ({(266, 17, 266, 72): '("\\tReading accidents data from \'%s\'..." % file_location)'}, {}), '("\\tReading accidents data from \'%s\'..." % file_location)', False, 'import logging\n'), ((310, 9, 310, 24), 'flask_sqlalchemy.SQLAlchemy', 'SQLAlchemy', ({(310, 20, 310, 23): 'app'}, {}), '(app)', False, 'from flask_sqlalchemy import SQLAlchemy\n'), ((332, 9, 332, 24), 'flask_sqlalchemy.SQLAlchemy', 'SQLAlchemy', ({(332, 20, 332, 23): 'app'}, {}), '(app)', False, 'from flask_sqlalchemy import SQLAlchemy\n'), ((338, 4, 338, 52), 'logging.info', 'logging.info', ({(338, 17, 338, 51): '"""\tFinished commiting the changes"""'}, {}), "('\\tFinished commiting the changes')", False, 'import logging\n'), ((352, 4, 352, 47), 'logging.info', 'logging.info', ({(352, 17, 352, 46): '"""Loading United accidents..."""'}, {}), "('Loading United accidents...')", False, 'import logging\n'), ((353, 23, 353, 46), 'os.listdir', 'os.listdir', ({(353, 34, 353, 45): 'united_path'}, {}), '(united_path)', False, 'import os\n'), ((158, 19, 158, 61), 'math.sqrt', 'math.sqrt', ({(158, 29, 158, 60): 'lat_difference + lon_difference'}, {}), '(lat_difference + lon_difference)', False, 'import math\n'), ((269, 17, 269, 68), 'csv.reader', 'csv.reader', (), '', False, 'import csv\n'), ((319, 8, 319, 71), 'logging.info', 'logging.info', ({(319, 21, 319, 70): '"""\t\tNothing loaded, all accidents already in DB"""'}, {}), "('\\t\\tNothing loaded, all accidents already in DB')", False, 'import logging\n'), ((348, 8, 348, 51), 'logging.info', 'logging.info', ({(348, 21, 348, 50): '"""Importing data from mail..."""'}, {}), "('Importing data from mail...')", False, 'import logging\n'), ((278, 16, 278, 47), 'logging.warn', 'logging.warn', ({(278, 29, 278, 46): '"""\t\tEmpty File!"""'}, {}), "('\\t\\tEmpty File!')", False, 'import logging\n'), ((81, 11, 81, 33), 'calendar.Calendar', 'calendar.Calendar', ({(81, 29, 81, 32): 'nth'}, {}), '(nth)', False, 'import calendar\n'), ((316, 63, 317, 99), 'sqlalchemy.and_', 'and_', ({(316, 68, 316, 96): "(AccidentMarker.id == m['id'])", (317, 48, 317, 98): "(AccidentMarker.provider_code == m['provider_code'])"}, {}), "(AccidentMarker.id == m['id'], AccidentMarker.provider_code == m[\n 'provider_code'])", False, 'from sqlalchemy import and_\n')]
joequant/libact
libact/query_strategies/tests/test_variance_reduction.py
4fbf4d59fd0d4e23858b264de2f35f674c50445b
import unittest from numpy.testing import assert_array_equal import numpy as np from libact.base.dataset import Dataset from libact.models import LogisticRegression from libact.query_strategies import VarianceReduction from .utils import run_qs class VarianceReductionTestCase(unittest.TestCase): """Variance reduction test case using artifitial dataset""" def setUp(self): self.X = [[-2, -1], [1, 1], [-1, -2], [-1, -1], [1, 2], [2, 1]] self.y = [0, 1, 0, 1, 0, 1] self.quota = 4 def test_variance_reduction(self): trn_ds = Dataset(self.X, np.concatenate([self.y[:2], [None] * (len(self.y) - 2)])) qs = VarianceReduction(trn_ds, model=LogisticRegression(), sigma=0.1) qseq = run_qs(trn_ds, qs, self.y, self.quota) assert_array_equal(qseq, np.array([4, 5, 2, 3])) if __name__ == '__main__': unittest.main()
[((29, 4, 29, 19), 'unittest.main', 'unittest.main', ({}, {}), '()', False, 'import unittest\n'), ((25, 33, 25, 55), 'numpy.array', 'np.array', ({(25, 42, 25, 54): '[4, 5, 2, 3]'}, {}), '([4, 5, 2, 3])', True, 'import numpy as np\n'), ((23, 45, 23, 65), 'libact.models.LogisticRegression', 'LogisticRegression', ({}, {}), '()', False, 'from libact.models import LogisticRegression\n')]
fgreg/hysds
hysds/log_utils.py
74a1019665b02f0f475cc4e7fc0a993dd71d7a53
from __future__ import unicode_literals from __future__ import print_function from __future__ import division from __future__ import absolute_import from builtins import open from builtins import str from future import standard_library standard_library.install_aliases() import os import re import json import copy import socket import msgpack import traceback import types import backoff from datetime import datetime from uuid import uuid4 from redis import BlockingConnectionPool, StrictRedis, RedisError from celery.utils.log import get_task_logger import hysds from hysds.celery import app from prov_es.model import get_uuid, ProvEsDocument # logger logger = get_task_logger(__name__) # redis connection pools JOB_STATUS_POOL = None JOB_INFO_POOL = None WORKER_STATUS_POOL = None EVENT_STATUS_POOL = None # job status key template JOB_STATUS_KEY_TMPL = "hysds-job-status-%s" # worker status key template WORKER_STATUS_KEY_TMPL = "hysds-worker-status-%s" # task worker key template TASK_WORKER_KEY_TMPL = "hysds-task-worker-%s" def backoff_max_value(): """Return max value for backoff.""" return app.conf.BACKOFF_MAX_VALUE def backoff_max_tries(): """Return max tries for backoff.""" return app.conf.BACKOFF_MAX_TRIES def hard_time_limit_gap(): """Return minimum gap time after soft time limit.""" return app.conf.HARD_TIME_LIMIT_GAP def ensure_hard_time_limit_gap(soft_time_limit, time_limit): """Ensure hard time limit gap.""" gap = hard_time_limit_gap() if soft_time_limit is not None and (time_limit is None or time_limit <= soft_time_limit+gap): time_limit = soft_time_limit + gap return soft_time_limit, time_limit def set_redis_job_status_pool(): """Set redis connection pool for job status.""" global JOB_STATUS_POOL if JOB_STATUS_POOL is None: JOB_STATUS_POOL = BlockingConnectionPool.from_url( app.conf.REDIS_JOB_STATUS_URL) def set_redis_job_info_pool(): """Set redis connection pool for job info metrics.""" global JOB_INFO_POOL if JOB_INFO_POOL is None: JOB_INFO_POOL = BlockingConnectionPool.from_url( app.conf.REDIS_JOB_INFO_URL) def set_redis_worker_status_pool(): """Set redis connection pool for worker status.""" global WORKER_STATUS_POOL if WORKER_STATUS_POOL is None: WORKER_STATUS_POOL = BlockingConnectionPool.from_url( app.conf.REDIS_JOB_STATUS_URL) def set_redis_event_status_pool(): """Set redis connection pool for event status.""" global EVENT_STATUS_POOL if EVENT_STATUS_POOL is None: EVENT_STATUS_POOL = BlockingConnectionPool.from_url( app.conf.REDIS_JOB_STATUS_URL) @backoff.on_exception(backoff.expo, RedisError, max_tries=backoff_max_tries, max_value=backoff_max_value) def log_task_worker(task_id, worker): """Log task worker for task ID in redis.""" set_redis_worker_status_pool() global WORKER_STATUS_POOL # set task worker for task ID r = StrictRedis(connection_pool=WORKER_STATUS_POOL) r.setex(TASK_WORKER_KEY_TMPL % task_id, app.conf.HYSDS_JOB_STATUS_EXPIRES, worker) @backoff.on_exception(backoff.expo, RedisError, max_tries=backoff_max_tries, max_value=backoff_max_value) def get_task_worker(task_id): """Retrieve task worker by task ID from redis.""" set_redis_worker_status_pool() global WORKER_STATUS_POOL # retrieve task worker r = StrictRedis(connection_pool=WORKER_STATUS_POOL) return r.get(TASK_WORKER_KEY_TMPL % task_id) @backoff.on_exception(backoff.expo, RedisError, max_tries=backoff_max_tries, max_value=backoff_max_value) def get_worker_status(worker): """Retrieve worker status by worker ID from redis.""" set_redis_worker_status_pool() global WORKER_STATUS_POOL # retrieve worker status r = StrictRedis(connection_pool=WORKER_STATUS_POOL) return r.get(WORKER_STATUS_KEY_TMPL % worker) @backoff.on_exception(backoff.expo, RedisError, max_tries=backoff_max_tries, max_value=backoff_max_value) def get_job_status(task_id): """Retrieve job status by task ID from redis.""" set_redis_job_status_pool() global JOB_STATUS_POOL # retrieve job status r = StrictRedis(connection_pool=JOB_STATUS_POOL) return r.get(JOB_STATUS_KEY_TMPL % task_id) @backoff.on_exception(backoff.expo, RedisError, max_tries=backoff_max_tries, max_value=backoff_max_value) def log_job_status(job): """Print job status.""" set_redis_job_status_pool() global JOB_STATUS_POOL job['resource'] = 'job' job['type'] = job.get('job', {}).get('type', 'unknown') job['@version'] = '1' job['@timestamp'] = "%sZ" % datetime.utcnow().isoformat() if 'tag' in job.get('job', {}): tags = job.setdefault('tags', []) if isinstance(tags, str): tags = [tags] tags.append(job['job']['tag']) job['tags'] = tags # send update to redis r = StrictRedis(connection_pool=JOB_STATUS_POOL) r.setex(JOB_STATUS_KEY_TMPL % job['uuid'], app.conf.HYSDS_JOB_STATUS_EXPIRES, job['status']) # for dedup r.rpush(app.conf.REDIS_JOB_STATUS_KEY, msgpack.dumps(job)) # for ES logger.info("job_status_json:%s" % json.dumps(job)) @backoff.on_exception(backoff.expo, RedisError, max_tries=backoff_max_tries, max_value=backoff_max_value) def log_job_info(job): """Print job info.""" set_redis_job_info_pool() global JOB_INFO_POOL filtered_info = {} for info in ('job_info', 'job_id', 'task_id', 'delivery_info', 'tag', 'priority', 'container_image_name', 'container_image_url', 'name'): if info in job: filtered_info[info] = job[info] job_info = {'type': 'job_info', '@version': '1', '@timestamp': "%sZ" % datetime.utcnow().isoformat(), 'job': filtered_info, 'job_type': job['type']} # send update to redis r = StrictRedis(connection_pool=JOB_INFO_POOL) r.rpush(app.conf.REDIS_JOB_INFO_KEY, msgpack.dumps(job_info)) logger.info("job_info_json:%s" % json.dumps(job_info)) @backoff.on_exception(backoff.expo, RedisError, max_tries=backoff_max_tries, max_value=backoff_max_value) def log_custom_event(event_type, event_status, event, tags=[], hostname=None): """Log custom event.""" set_redis_event_status_pool() global EVENT_STATUS_POOL uuid = str(uuid4()) if hostname is None: try: hostname = socket.getfqdn() except: try: hostname = socket.gethostbyname(socket.gethostname()) except: hostname = '' info = {'resource': 'event', 'type': event_type, 'status': event_status, '@timestamp': "%sZ" % datetime.utcnow().isoformat(), 'hostname': hostname, 'uuid': uuid, 'tags': tags, '@version': '1', 'event': event} # send update to redis r = StrictRedis(connection_pool=EVENT_STATUS_POOL) r.rpush(app.conf.REDIS_JOB_STATUS_KEY, msgpack.dumps(info)) logger.info("hysds.custom_event:%s" % json.dumps(info)) return uuid def log_prov_es(job, prov_es_info, prov_es_file): """Log PROV-ES document. Create temp PROV-ES document to populate attributes that only the worker has access to (e.g. PID).""" # create PROV-ES doc to generate attributes that only verdi know ps_id = "hysds:%s" % get_uuid(job['job_id']) bundle_id = "hysds:%s" % get_uuid('bundle-%s' % job['job_id']) doc = ProvEsDocument() # get bundle #bndl = doc.bundle(bundle_id) bndl = None # create sofware agent sa_label = "hysds:pge_wrapper/%s/%d/%s" % (job['job_info']['execute_node'], job['job_info']['pid'], datetime.utcnow().isoformat()) sa_id = "hysds:%s" % get_uuid(sa_label) doc.softwareAgent(sa_id, str(job['job_info']['pid']), job['job_info']['execute_node'], role=job.get('username', None), label=sa_label, bundle=bndl) # create processStep doc.processStep(ps_id, job['job_info']['cmd_start'], job['job_info']['cmd_end'], [], sa_id, None, [], [], bundle=bndl, prov_type="hysds:%s" % job['type']) # get json pd = json.loads(doc.serialize()) # update software agent and process step if 'bundle' in prov_es_info: if len(prov_es_info['bundle']) == 1: bundle_id_orig = list(prov_es_info['bundle'].keys())[0] # update software agent prov_es_info['bundle'][bundle_id_orig].setdefault( 'agent', {}).update(pd['bundle'][bundle_id]['agent']) # update wasAssociatedWith prov_es_info['bundle'][bundle_id_orig].setdefault( 'wasAssociatedWith', {}).update(pd['bundle'][bundle_id]['wasAssociatedWith']) # update activity if 'activity' in prov_es_info['bundle'][bundle_id_orig]: if len(prov_es_info['bundle'][bundle_id_orig]['activity']) == 1: ps_id_orig = list( prov_es_info['bundle'][bundle_id_orig]['activity'].keys())[0] prov_es_info['bundle'][bundle_id_orig]['activity'][ps_id_orig][ 'prov:startTime'] = pd['bundle'][bundle_id]['activity'][ps_id]['prov:startTime'] prov_es_info['bundle'][bundle_id_orig]['activity'][ps_id_orig][ 'prov:endTime'] = pd['bundle'][bundle_id]['activity'][ps_id]['prov:endTime'] prov_es_info['bundle'][bundle_id_orig]['activity'][ps_id_orig]['hysds:job_id'] = job['job_id'] prov_es_info['bundle'][bundle_id_orig]['activity'][ps_id_orig]['hysds:job_type'] = job['type'] prov_es_info['bundle'][bundle_id_orig]['activity'][ps_id_orig]['hysds:job_url'] = job['job_info']['job_url'] prov_es_info['bundle'][bundle_id_orig]['activity'][ps_id_orig]['hysds:mozart_url'] = app.conf.MOZART_URL if 'prov:type' not in prov_es_info['bundle'][bundle_id_orig]['activity'][ps_id_orig]: prov_es_info['bundle'][bundle_id_orig]['activity'][ps_id_orig][ 'prov:type'] = pd['bundle'][bundle_id]['activity'][ps_id]['prov:type'] # update wasAssociatedWith activity ids for waw_id in prov_es_info['bundle'][bundle_id_orig]['wasAssociatedWith']: if prov_es_info['bundle'][bundle_id_orig]['wasAssociatedWith'][waw_id]['prov:activity'] == ps_id: prov_es_info['bundle'][bundle_id_orig]['wasAssociatedWith'][waw_id]['prov:activity'] = ps_id_orig else: prov_es_info['bundle'][bundle_id_orig]['activity'].update( pd['bundle'][bundle_id]['activity']) else: prov_es_info['bundle'][bundle_id_orig]['activity'] = pd['bundle'][bundle_id]['activity'] else: # update software agent prov_es_info.setdefault('agent', {}).update(pd['agent']) # update wasAssociatedWith prov_es_info.setdefault('wasAssociatedWith', {}).update( pd['wasAssociatedWith']) # update process step if 'activity' in prov_es_info: if len(prov_es_info['activity']) == 1: ps_id_orig = list(prov_es_info['activity'].keys())[0] prov_es_info['activity'][ps_id_orig]['prov:startTime'] = pd['activity'][ps_id]['prov:startTime'] prov_es_info['activity'][ps_id_orig]['prov:endTime'] = pd['activity'][ps_id]['prov:endTime'] prov_es_info['activity'][ps_id_orig]['hysds:job_id'] = job['job_id'] prov_es_info['activity'][ps_id_orig]['hysds:job_type'] = job['type'] prov_es_info['activity'][ps_id_orig]['hysds:job_url'] = job['job_info']['job_url'] prov_es_info['activity'][ps_id_orig]['hysds:mozart_url'] = app.conf.MOZART_URL if 'prov:type' not in prov_es_info['activity'][ps_id_orig]: prov_es_info['activity'][ps_id_orig]['prov:type'] = pd['activity'][ps_id]['prov:type'] # update wasAssociatedWith activity ids for waw_id in prov_es_info['wasAssociatedWith']: if prov_es_info['wasAssociatedWith'][waw_id]['prov:activity'] == ps_id: prov_es_info['wasAssociatedWith'][waw_id]['prov:activity'] = ps_id_orig else: prov_es_info['activity'].update(pd['activity']) else: prov_es_info['activity'] = pd['activity'] # write prov with open(prov_es_file, 'w') as f: json.dump(prov_es_info, f, indent=2) def log_publish_prov_es(prov_es_info, prov_es_file, prod_path, pub_urls, prod_metrics, objectid): """Log publish step in PROV-ES document.""" # create PROV-ES doc doc = ProvEsDocument(namespaces=prov_es_info['prefix']) # get bundle #bndl = doc.bundle(bundle_id) bndl = None # add input entity execute_node = socket.getfqdn() prod_url = "file://%s%s" % (execute_node, prod_path) input_id = "hysds:%s" % get_uuid(prod_url) input_ent = doc.granule(input_id, None, [prod_url], [], None, None, None, label=os.path.basename(prod_url), bundle=bndl) # add output entity output_id = "hysds:%s" % get_uuid(pub_urls[0]) output_ent = doc.product(output_id, None, [pub_urls[0]], [], None, None, None, label=objectid, bundle=bndl) # software and algorithm algorithm = "eos:product_publishing" software_version = hysds.__version__ software_title = "%s v%s" % (hysds.__description__, software_version) software = "eos:HySDS-%s" % software_version software_location = hysds.__url__ doc.software(software, [algorithm], software_version, label=software_title, location=software_location, bundle=bndl) # create sofware agent pid = os.getpid() sa_label = "hysds:publish_dataset/%s/%d/%s" % (execute_node, pid, prod_metrics['time_start']) sa_id = "hysds:%s" % get_uuid(sa_label) doc.softwareAgent(sa_id, str(pid), execute_node, role="invoked", label=sa_label, bundle=bndl) # create processStep job_id = "publish_dataset-%s" % os.path.basename(prod_path) doc.processStep("hysds:%s" % get_uuid(job_id), prod_metrics['time_start'], prod_metrics['time_end'], [software], sa_id, None, [input_id], [output_id], label=job_id, bundle=bndl, prov_type="hysds:publish_dataset") # get json pd = json.loads(doc.serialize()) # update input entity orig_ent = prov_es_info.get('entity', {}).get(input_id, {}) pd['entity'][input_id].update(orig_ent) # update output entity for attr in orig_ent: if attr in ('prov:location', 'prov:label', 'prov:type'): continue pd['entity'][output_id][attr] = orig_ent[attr] # write prov with open(prov_es_file, 'w') as f: json.dump(pd, f, indent=2)
[((10, 0, 10, 34), 'future.standard_library.install_aliases', 'standard_library.install_aliases', ({}, {}), '()', False, 'from future import standard_library\n'), ((33, 9, 33, 34), 'celery.utils.log.get_task_logger', 'get_task_logger', ({(33, 25, 33, 33): '__name__'}, {}), '(__name__)', False, 'from celery.utils.log import get_task_logger\n'), ((112, 1, 115, 50), 'backoff.on_exception', 'backoff.on_exception', (), '', False, 'import backoff\n'), ((129, 1, 132, 50), 'backoff.on_exception', 'backoff.on_exception', (), '', False, 'import backoff\n'), ((144, 1, 147, 50), 'backoff.on_exception', 'backoff.on_exception', (), '', False, 'import backoff\n'), ((159, 1, 162, 50), 'backoff.on_exception', 'backoff.on_exception', (), '', False, 'import backoff\n'), ((174, 1, 177, 50), 'backoff.on_exception', 'backoff.on_exception', (), '', False, 'import backoff\n'), ((203, 1, 206, 50), 'backoff.on_exception', 'backoff.on_exception', (), '', False, 'import backoff\n'), ((230, 1, 233, 50), 'backoff.on_exception', 'backoff.on_exception', (), '', False, 'import backoff\n'), ((123, 8, 123, 55), 'redis.StrictRedis', 'StrictRedis', (), '', False, 'from redis import BlockingConnectionPool, StrictRedis, RedisError\n'), ((140, 8, 140, 55), 'redis.StrictRedis', 'StrictRedis', (), '', False, 'from redis import BlockingConnectionPool, StrictRedis, RedisError\n'), ((155, 8, 155, 55), 'redis.StrictRedis', 'StrictRedis', (), '', False, 'from redis import BlockingConnectionPool, StrictRedis, RedisError\n'), ((170, 8, 170, 52), 'redis.StrictRedis', 'StrictRedis', (), '', False, 'from redis import BlockingConnectionPool, StrictRedis, RedisError\n'), ((195, 8, 195, 52), 'redis.StrictRedis', 'StrictRedis', (), '', False, 'from redis import BlockingConnectionPool, StrictRedis, RedisError\n'), ((225, 8, 225, 50), 'redis.StrictRedis', 'StrictRedis', (), '', False, 'from redis import BlockingConnectionPool, StrictRedis, RedisError\n'), ((260, 8, 260, 54), 'redis.StrictRedis', 'StrictRedis', (), '', False, 'from redis import BlockingConnectionPool, StrictRedis, RedisError\n'), ((273, 10, 273, 26), 'prov_es.model.ProvEsDocument', 'ProvEsDocument', ({}, {}), '()', False, 'from prov_es.model import get_uuid, ProvEsDocument\n'), ((377, 10, 377, 59), 'prov_es.model.ProvEsDocument', 'ProvEsDocument', (), '', False, 'from prov_es.model import get_uuid, ProvEsDocument\n'), ((384, 19, 384, 35), 'socket.getfqdn', 'socket.getfqdn', ({}, {}), '()', False, 'import socket\n'), ((405, 10, 405, 21), 'os.getpid', 'os.getpid', ({}, {}), '()', False, 'import os\n'), ((81, 26, 82, 42), 'redis.BlockingConnectionPool.from_url', 'BlockingConnectionPool.from_url', ({(82, 12, 82, 41): 'app.conf.REDIS_JOB_STATUS_URL'}, {}), '(app.conf.REDIS_JOB_STATUS_URL)', False, 'from redis import BlockingConnectionPool, StrictRedis, RedisError\n'), ((90, 24, 91, 40), 'redis.BlockingConnectionPool.from_url', 'BlockingConnectionPool.from_url', ({(91, 12, 91, 39): 'app.conf.REDIS_JOB_INFO_URL'}, {}), '(app.conf.REDIS_JOB_INFO_URL)', False, 'from redis import BlockingConnectionPool, StrictRedis, RedisError\n'), ((99, 29, 100, 42), 'redis.BlockingConnectionPool.from_url', 'BlockingConnectionPool.from_url', ({(100, 12, 100, 41): 'app.conf.REDIS_JOB_STATUS_URL'}, {}), '(app.conf.REDIS_JOB_STATUS_URL)', False, 'from redis import BlockingConnectionPool, StrictRedis, RedisError\n'), ((108, 28, 109, 42), 'redis.BlockingConnectionPool.from_url', 'BlockingConnectionPool.from_url', ({(109, 12, 109, 41): 'app.conf.REDIS_JOB_STATUS_URL'}, {}), '(app.conf.REDIS_JOB_STATUS_URL)', False, 'from redis import BlockingConnectionPool, StrictRedis, RedisError\n'), ((199, 43, 199, 61), 'msgpack.dumps', 'msgpack.dumps', ({(199, 57, 199, 60): 'job'}, {}), '(job)', False, 'import msgpack\n'), ((226, 41, 226, 64), 'msgpack.dumps', 'msgpack.dumps', ({(226, 55, 226, 63): 'job_info'}, {}), '(job_info)', False, 'import msgpack\n'), ((240, 15, 240, 22), 'uuid.uuid4', 'uuid4', ({}, {}), '()', False, 'from uuid import uuid4\n'), ((261, 43, 261, 62), 'msgpack.dumps', 'msgpack.dumps', ({(261, 57, 261, 61): 'info'}, {}), '(info)', False, 'import msgpack\n'), ((271, 25, 271, 48), 'prov_es.model.get_uuid', 'get_uuid', ({(271, 34, 271, 47): "job['job_id']"}, {}), "(job['job_id'])", False, 'from prov_es.model import get_uuid, ProvEsDocument\n'), ((272, 29, 272, 66), 'prov_es.model.get_uuid', 'get_uuid', ({(272, 38, 272, 65): "('bundle-%s' % job['job_id'])"}, {}), "('bundle-%s' % job['job_id'])", False, 'from prov_es.model import get_uuid, ProvEsDocument\n'), ((283, 25, 283, 43), 'prov_es.model.get_uuid', 'get_uuid', ({(283, 34, 283, 42): 'sa_label'}, {}), '(sa_label)', False, 'from prov_es.model import get_uuid, ProvEsDocument\n'), ((284, 29, 284, 56), 'builtins.str', 'str', ({(284, 33, 284, 55): "job['job_info']['pid']"}, {}), "(job['job_info']['pid'])", False, 'from builtins import str\n'), ((368, 9, 368, 32), 'builtins.open', 'open', ({(368, 14, 368, 26): 'prov_es_file', (368, 28, 368, 31): '"""w"""'}, {}), "(prov_es_file, 'w')", False, 'from builtins import open\n'), ((369, 8, 369, 44), 'json.dump', 'json.dump', (), '', False, 'import json\n'), ((386, 28, 386, 46), 'prov_es.model.get_uuid', 'get_uuid', ({(386, 37, 386, 45): 'prod_url'}, {}), '(prod_url)', False, 'from prov_es.model import get_uuid, ProvEsDocument\n'), ((391, 29, 391, 50), 'prov_es.model.get_uuid', 'get_uuid', ({(391, 38, 391, 49): 'pub_urls[0]'}, {}), '(pub_urls[0])', False, 'from prov_es.model import get_uuid, ProvEsDocument\n'), ((408, 25, 408, 43), 'prov_es.model.get_uuid', 'get_uuid', ({(408, 34, 408, 42): 'sa_label'}, {}), '(sa_label)', False, 'from prov_es.model import get_uuid, ProvEsDocument\n'), ((409, 29, 409, 37), 'builtins.str', 'str', ({(409, 33, 409, 36): 'pid'}, {}), '(pid)', False, 'from builtins import str\n'), ((413, 36, 413, 63), 'os.path.basename', 'os.path.basename', ({(413, 53, 413, 62): 'prod_path'}, {}), '(prod_path)', False, 'import os\n'), ((433, 9, 433, 32), 'builtins.open', 'open', ({(433, 14, 433, 26): 'prov_es_file', (433, 28, 433, 31): '"""w"""'}, {}), "(prov_es_file, 'w')", False, 'from builtins import open\n'), ((434, 8, 434, 34), 'json.dump', 'json.dump', (), '', False, 'import json\n'), ((200, 39, 200, 54), 'json.dumps', 'json.dumps', ({(200, 50, 200, 53): 'job'}, {}), '(job)', False, 'import json\n'), ((227, 37, 227, 57), 'json.dumps', 'json.dumps', ({(227, 48, 227, 56): 'job_info'}, {}), '(job_info)', False, 'import json\n'), ((243, 23, 243, 39), 'socket.getfqdn', 'socket.getfqdn', ({}, {}), '()', False, 'import socket\n'), ((262, 42, 262, 58), 'json.dumps', 'json.dumps', ({(262, 53, 262, 57): 'info'}, {}), '(info)', False, 'import json\n'), ((388, 34, 388, 60), 'os.path.basename', 'os.path.basename', ({(388, 51, 388, 59): 'prod_url'}, {}), '(prod_url)', False, 'import os\n'), ((414, 33, 414, 49), 'prov_es.model.get_uuid', 'get_uuid', ({(414, 42, 414, 48): 'job_id'}, {}), '(job_id)', False, 'from prov_es.model import get_uuid, ProvEsDocument\n'), ((186, 32, 186, 49), 'datetime.datetime.utcnow', 'datetime.utcnow', ({}, {}), '()', False, 'from datetime import datetime\n'), ((220, 38, 220, 55), 'datetime.datetime.utcnow', 'datetime.utcnow', ({}, {}), '()', False, 'from datetime import datetime\n'), ((252, 34, 252, 51), 'datetime.datetime.utcnow', 'datetime.utcnow', ({}, {}), '()', False, 'from datetime import datetime\n'), ((282, 47, 282, 64), 'datetime.datetime.utcnow', 'datetime.utcnow', ({}, {}), '()', False, 'from datetime import datetime\n'), ((246, 48, 246, 68), 'socket.gethostname', 'socket.gethostname', ({}, {}), '()', False, 'import socket\n')]
CplusShen/aurora-horizon
openstack_dashboard/api/rest/swift.py
8df16b3b87097d5a19bae3752d4b341ac64bda75
# Copyright 2015, Rackspace, US, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """API for the swift service. """ import os from django import forms from django.http import StreamingHttpResponse from django.utils.http import urlunquote from django.views.decorators.csrf import csrf_exempt from django.views import generic import six from horizon import exceptions from openstack_dashboard import api from openstack_dashboard.api.rest import urls from openstack_dashboard.api.rest import utils as rest_utils from openstack_dashboard.api import swift @urls.register class Info(generic.View): """API for information about the Swift installation. """ url_regex = r'swift/info/$' @rest_utils.ajax() def get(self, request): """Get information about the Swift installation. """ capabilities = api.swift.swift_get_capabilities(request) return {'info': capabilities} @urls.register class Containers(generic.View): """API for swift container listing for an account """ url_regex = r'swift/containers/$' @rest_utils.ajax() def get(self, request): """Get the list of containers for this account TODO(neillc): Add pagination """ containers, has_more = api.swift.swift_get_containers(request) containers = [container.to_dict() for container in containers] return {'items': containers, 'has_more': has_more} @urls.register class Container(generic.View): """API for swift container level information """ url_regex = r'swift/containers/(?P<container>[^/]+)/metadata/$' @rest_utils.ajax() def get(self, request, container): """Get the container details """ return api.swift.swift_get_container(request, container).to_dict() @rest_utils.ajax() def post(self, request, container): metadata = {} if 'is_public' in request.DATA: metadata['is_public'] = request.DATA['is_public'] # This will raise an exception if the container already exists try: api.swift.swift_create_container(request, container, metadata=metadata) except exceptions.AlreadyExists as e: # 409 Conflict return rest_utils.JSONResponse(str(e), 409) return rest_utils.CreatedResponse( u'/api/swift/containers/%s' % container, ) @rest_utils.ajax() def delete(self, request, container): try: api.swift.swift_delete_container(request, container) except exceptions.Conflict as e: # It cannot be deleted if it's not empty. return rest_utils.JSONResponse(str(e), 409) @rest_utils.ajax(data_required=True) def put(self, request, container): metadata = {'is_public': request.DATA['is_public']} api.swift.swift_update_container(request, container, metadata=metadata) @urls.register class Objects(generic.View): """API for a list of swift objects """ url_regex = r'swift/containers/(?P<container>[^/]+)/objects/$' @rest_utils.ajax() def get(self, request, container): """Get object information. :param request: :param container: :return: """ path = request.GET.get('path') if path is not None: path = urlunquote(path) objects = api.swift.swift_get_objects( request, container, prefix=path ) # filter out the folder from the listing if we're filtering for # contents of a (pseudo) folder contents = [{ 'path': o.subdir if isinstance(o, swift.PseudoFolder) else o.name, 'name': o.name.split('/')[-1], 'bytes': o.bytes, 'is_subdir': isinstance(o, swift.PseudoFolder), 'is_object': not isinstance(o, swift.PseudoFolder), 'content_type': getattr(o, 'content_type', None) } for o in objects[0] if o.name != path] return {'items': contents} class UploadObjectForm(forms.Form): file = forms.FileField(required=False) @urls.register class Object(generic.View): """API for a single swift object or pseudo-folder """ url_regex = r'swift/containers/(?P<container>[^/]+)/object/' \ '(?P<object_name>.+)$' # note: not an AJAX request - the body will be raw file content @csrf_exempt def post(self, request, container, object_name): """Create or replace an object or pseudo-folder :param request: :param container: :param object_name: If the object_name (ie. POST path) ends in a '/' then a folder is created, rather than an object. Any file content passed along with the request will be ignored in that case. POST parameter: :param file: the file data for the upload. :return: """ form = UploadObjectForm(request.POST, request.FILES) if not form.is_valid(): raise rest_utils.AjaxError(500, 'Invalid request') data = form.clean() if object_name[-1] == '/': result = api.swift.swift_create_pseudo_folder( request, container, object_name ) else: result = api.swift.swift_upload_object( request, container, object_name, data['file'] ) return rest_utils.CreatedResponse( u'/api/swift/containers/%s/object/%s' % (container, result.name) ) @rest_utils.ajax() def delete(self, request, container, object_name): if object_name[-1] == '/': try: api.swift.swift_delete_folder(request, container, object_name) except exceptions.Conflict as e: # In case the given object is pseudo folder # It cannot be deleted if it's not empty. return rest_utils.JSONResponse(str(e), 409) else: api.swift.swift_delete_object(request, container, object_name) def get(self, request, container, object_name): """Get the object contents. """ obj = api.swift.swift_get_object( request, container, object_name ) # Add the original file extension back on if it wasn't preserved in the # name given to the object. filename = object_name.rsplit(api.swift.FOLDER_DELIMITER)[-1] if not os.path.splitext(obj.name)[1] and obj.orig_name: name, ext = os.path.splitext(obj.orig_name) filename = "%s%s" % (filename, ext) response = StreamingHttpResponse(obj.data) safe = filename.replace(",", "") if six.PY2: safe = safe.encode('utf-8') response['Content-Disposition'] = 'attachment; filename="%s"' % safe response['Content-Type'] = 'application/octet-stream' response['Content-Length'] = obj.bytes return response @urls.register class ObjectMetadata(generic.View): """API for a single swift object """ url_regex = r'swift/containers/(?P<container>[^/]+)/metadata/' \ '(?P<object_name>.+)$' @rest_utils.ajax() def get(self, request, container, object_name): return api.swift.swift_get_object( request, container_name=container, object_name=object_name, with_data=False ).to_dict() @urls.register class ObjectCopy(generic.View): """API to copy a swift object """ url_regex = r'swift/containers/(?P<container>[^/]+)/copy/' \ '(?P<object_name>.+)$' @rest_utils.ajax() def post(self, request, container, object_name): dest_container = request.DATA['dest_container'] dest_name = request.DATA['dest_name'] try: result = api.swift.swift_copy_object( request, container, object_name, dest_container, dest_name ) except exceptions.AlreadyExists as e: return rest_utils.JSONResponse(str(e), 409) return rest_utils.CreatedResponse( u'/api/swift/containers/%s/object/%s' % (dest_container, result.name) )
[((38, 5, 38, 22), 'openstack_dashboard.api.rest.utils.ajax', 'rest_utils.ajax', ({}, {}), '()', True, 'from openstack_dashboard.api.rest import utils as rest_utils\n'), ((52, 5, 52, 22), 'openstack_dashboard.api.rest.utils.ajax', 'rest_utils.ajax', ({}, {}), '()', True, 'from openstack_dashboard.api.rest import utils as rest_utils\n'), ((70, 5, 70, 22), 'openstack_dashboard.api.rest.utils.ajax', 'rest_utils.ajax', ({}, {}), '()', True, 'from openstack_dashboard.api.rest import utils as rest_utils\n'), ((76, 5, 76, 22), 'openstack_dashboard.api.rest.utils.ajax', 'rest_utils.ajax', ({}, {}), '()', True, 'from openstack_dashboard.api.rest import utils as rest_utils\n'), ((95, 5, 95, 22), 'openstack_dashboard.api.rest.utils.ajax', 'rest_utils.ajax', ({}, {}), '()', True, 'from openstack_dashboard.api.rest import utils as rest_utils\n'), ((103, 5, 103, 40), 'openstack_dashboard.api.rest.utils.ajax', 'rest_utils.ajax', (), '', True, 'from openstack_dashboard.api.rest import utils as rest_utils\n'), ((115, 5, 115, 22), 'openstack_dashboard.api.rest.utils.ajax', 'rest_utils.ajax', ({}, {}), '()', True, 'from openstack_dashboard.api.rest import utils as rest_utils\n'), ((147, 11, 147, 42), 'django.forms.FileField', 'forms.FileField', (), '', False, 'from django import forms\n'), ((200, 5, 200, 22), 'openstack_dashboard.api.rest.utils.ajax', 'rest_utils.ajax', ({}, {}), '()', True, 'from openstack_dashboard.api.rest import utils as rest_utils\n'), ((244, 5, 244, 22), 'openstack_dashboard.api.rest.utils.ajax', 'rest_utils.ajax', ({}, {}), '()', True, 'from openstack_dashboard.api.rest import utils as rest_utils\n'), ((261, 5, 261, 22), 'openstack_dashboard.api.rest.utils.ajax', 'rest_utils.ajax', ({}, {}), '()', True, 'from openstack_dashboard.api.rest import utils as rest_utils\n'), ((42, 23, 42, 64), 'openstack_dashboard.api.swift.swift_get_capabilities', 'api.swift.swift_get_capabilities', ({(42, 56, 42, 63): 'request'}, {}), '(request)', False, 'from openstack_dashboard import api\n'), ((58, 31, 58, 70), 'openstack_dashboard.api.swift.swift_get_containers', 'api.swift.swift_get_containers', ({(58, 62, 58, 69): 'request'}, {}), '(request)', False, 'from openstack_dashboard import api\n'), ((91, 15, 93, 9), 'openstack_dashboard.api.rest.utils.CreatedResponse', 'rest_utils.CreatedResponse', ({(92, 12, 92, 51): "(u'/api/swift/containers/%s' % container)"}, {}), "(u'/api/swift/containers/%s' % container)", True, 'from openstack_dashboard.api.rest import utils as rest_utils\n'), ((106, 8, 106, 79), 'openstack_dashboard.api.swift.swift_update_container', 'api.swift.swift_update_container', (), '', False, 'from openstack_dashboard import api\n'), ((127, 18, 131, 9), 'openstack_dashboard.api.swift.swift_get_objects', 'api.swift.swift_get_objects', (), '', False, 'from openstack_dashboard import api\n'), ((196, 15, 198, 9), 'openstack_dashboard.api.rest.utils.CreatedResponse', 'rest_utils.CreatedResponse', ({(197, 12, 197, 76): "(u'/api/swift/containers/%s/object/%s' % (container, result.name))"}, {}), "(u'/api/swift/containers/%s/object/%s' % (\n container, result.name))", True, 'from openstack_dashboard.api.rest import utils as rest_utils\n'), ((215, 14, 219, 9), 'openstack_dashboard.api.swift.swift_get_object', 'api.swift.swift_get_object', ({(216, 12, 216, 19): 'request', (217, 12, 217, 21): 'container', (218, 12, 218, 23): 'object_name'}, {}), '(request, container, object_name)', False, 'from openstack_dashboard import api\n'), ((227, 19, 227, 50), 'django.http.StreamingHttpResponse', 'StreamingHttpResponse', ({(227, 41, 227, 49): 'obj.data'}, {}), '(obj.data)', False, 'from django.http import StreamingHttpResponse\n'), ((275, 15, 278, 9), 'openstack_dashboard.api.rest.utils.CreatedResponse', 'rest_utils.CreatedResponse', ({(276, 12, 277, 65): "(u'/api/swift/containers/%s/object/%s' % (dest_container, result.name))"}, {}), "(u'/api/swift/containers/%s/object/%s' % (\n dest_container, result.name))", True, 'from openstack_dashboard.api.rest import utils as rest_utils\n'), ((85, 12, 86, 63), 'openstack_dashboard.api.swift.swift_create_container', 'api.swift.swift_create_container', (), '', False, 'from openstack_dashboard import api\n'), ((98, 12, 98, 64), 'openstack_dashboard.api.swift.swift_delete_container', 'api.swift.swift_delete_container', ({(98, 45, 98, 52): 'request', (98, 54, 98, 63): 'container'}, {}), '(request, container)', False, 'from openstack_dashboard import api\n'), ((125, 19, 125, 35), 'django.utils.http.urlunquote', 'urlunquote', ({(125, 30, 125, 34): 'path'}, {}), '(path)', False, 'from django.utils.http import urlunquote\n'), ((178, 18, 178, 62), 'openstack_dashboard.api.rest.utils.AjaxError', 'rest_utils.AjaxError', ({(178, 39, 178, 42): '(500)', (178, 44, 178, 61): '"""Invalid request"""'}, {}), "(500, 'Invalid request')", True, 'from openstack_dashboard.api.rest import utils as rest_utils\n'), ((183, 21, 187, 13), 'openstack_dashboard.api.swift.swift_create_pseudo_folder', 'api.swift.swift_create_pseudo_folder', ({(184, 16, 184, 23): 'request', (185, 16, 185, 25): 'container', (186, 16, 186, 27): 'object_name'}, {}), '(request, container, object_name)', False, 'from openstack_dashboard import api\n'), ((189, 21, 194, 13), 'openstack_dashboard.api.swift.swift_upload_object', 'api.swift.swift_upload_object', ({(190, 16, 190, 23): 'request', (191, 16, 191, 25): 'container', (192, 16, 192, 27): 'object_name', (193, 16, 193, 28): "data['file']"}, {}), "(request, container, object_name, data['file'])", False, 'from openstack_dashboard import api\n'), ((210, 12, 210, 74), 'openstack_dashboard.api.swift.swift_delete_object', 'api.swift.swift_delete_object', ({(210, 42, 210, 49): 'request', (210, 51, 210, 60): 'container', (210, 62, 210, 73): 'object_name'}, {}), '(request, container, object_name)', False, 'from openstack_dashboard import api\n'), ((225, 24, 225, 55), 'os.path.splitext', 'os.path.splitext', ({(225, 41, 225, 54): 'obj.orig_name'}, {}), '(obj.orig_name)', False, 'import os\n'), ((266, 21, 272, 13), 'openstack_dashboard.api.swift.swift_copy_object', 'api.swift.swift_copy_object', ({(267, 16, 267, 23): 'request', (268, 16, 268, 25): 'container', (269, 16, 269, 27): 'object_name', (270, 16, 270, 30): 'dest_container', (271, 16, 271, 25): 'dest_name'}, {}), '(request, container, object_name, dest_container,\n dest_name)', False, 'from openstack_dashboard import api\n'), ((74, 15, 74, 64), 'openstack_dashboard.api.swift.swift_get_container', 'api.swift.swift_get_container', ({(74, 45, 74, 52): 'request', (74, 54, 74, 63): 'container'}, {}), '(request, container)', False, 'from openstack_dashboard import api\n'), ((204, 16, 204, 78), 'openstack_dashboard.api.swift.swift_delete_folder', 'api.swift.swift_delete_folder', ({(204, 46, 204, 53): 'request', (204, 55, 204, 64): 'container', (204, 66, 204, 77): 'object_name'}, {}), '(request, container, object_name)', False, 'from openstack_dashboard import api\n'), ((246, 15, 251, 9), 'openstack_dashboard.api.swift.swift_get_object', 'api.swift.swift_get_object', (), '', False, 'from openstack_dashboard import api\n'), ((224, 15, 224, 41), 'os.path.splitext', 'os.path.splitext', ({(224, 32, 224, 40): 'obj.name'}, {}), '(obj.name)', False, 'import os\n')]
kuangliu/pytorch-ssd
datagen.py
02ed1cbe6962e791895ab1c455dc5ddfb87291b9
'''Load image/class/box from a annotation file. The annotation file is organized as: image_name #obj xmin ymin xmax ymax class_index .. ''' from __future__ import print_function import os import sys import os.path import random import numpy as np import torch import torch.utils.data as data import torchvision.transforms as transforms from encoder import DataEncoder from PIL import Image, ImageOps class ListDataset(data.Dataset): img_size = 300 def __init__(self, root, list_file, train, transform): ''' Args: root: (str) ditectory to images. list_file: (str) path to index file. train: (boolean) train or test. transform: ([transforms]) image transforms. ''' self.root = root self.train = train self.transform = transform self.fnames = [] self.boxes = [] self.labels = [] self.data_encoder = DataEncoder() with open(list_file) as f: lines = f.readlines() self.num_samples = len(lines) for line in lines: splited = line.strip().split() self.fnames.append(splited[0]) num_objs = int(splited[1]) box = [] label = [] for i in range(num_objs): xmin = splited[2+5*i] ymin = splited[3+5*i] xmax = splited[4+5*i] ymax = splited[5+5*i] c = splited[6+5*i] box.append([float(xmin),float(ymin),float(xmax),float(ymax)]) label.append(int(c)) self.boxes.append(torch.Tensor(box)) self.labels.append(torch.LongTensor(label)) def __getitem__(self, idx): '''Load a image, and encode its bbox locations and class labels. Args: idx: (int) image index. Returns: img: (tensor) image tensor. loc_target: (tensor) location targets, sized [8732,4]. conf_target: (tensor) label targets, sized [8732,]. ''' # Load image and bbox locations. fname = self.fnames[idx] img = Image.open(os.path.join(self.root, fname)) boxes = self.boxes[idx].clone() labels = self.labels[idx] # Data augmentation while training. if self.train: img, boxes = self.random_flip(img, boxes) img, boxes, labels = self.random_crop(img, boxes, labels) # Scale bbox locaitons to [0,1]. w,h = img.size boxes /= torch.Tensor([w,h,w,h]).expand_as(boxes) img = img.resize((self.img_size,self.img_size)) img = self.transform(img) # Encode loc & conf targets. loc_target, conf_target = self.data_encoder.encode(boxes, labels) return img, loc_target, conf_target def random_flip(self, img, boxes): '''Randomly flip the image and adjust the bbox locations. For bbox (xmin, ymin, xmax, ymax), the flipped bbox is: (w-xmax, ymin, w-xmin, ymax). Args: img: (PIL.Image) image. boxes: (tensor) bbox locations, sized [#obj, 4]. Returns: img: (PIL.Image) randomly flipped image. boxes: (tensor) randomly flipped bbox locations, sized [#obj, 4]. ''' if random.random() < 0.5: img = img.transpose(Image.FLIP_LEFT_RIGHT) w = img.width xmin = w - boxes[:,2] xmax = w - boxes[:,0] boxes[:,0] = xmin boxes[:,2] = xmax return img, boxes def random_crop(self, img, boxes, labels): '''Randomly crop the image and adjust the bbox locations. For more details, see 'Chapter2.2: Data augmentation' of the paper. Args: img: (PIL.Image) image. boxes: (tensor) bbox locations, sized [#obj, 4]. labels: (tensor) bbox labels, sized [#obj,]. Returns: img: (PIL.Image) cropped image. selected_boxes: (tensor) selected bbox locations. labels: (tensor) selected bbox labels. ''' imw, imh = img.size while True: min_iou = random.choice([None, 0.1, 0.3, 0.5, 0.7, 0.9]) if min_iou is None: return img, boxes, labels for _ in range(100): w = random.randrange(int(0.1*imw), imw) h = random.randrange(int(0.1*imh), imh) if h > 2*w or w > 2*h: continue x = random.randrange(imw - w) y = random.randrange(imh - h) roi = torch.Tensor([[x, y, x+w, y+h]]) center = (boxes[:,:2] + boxes[:,2:]) / 2 # [N,2] roi2 = roi.expand(len(center), 4) # [N,4] mask = (center > roi2[:,:2]) & (center < roi2[:,2:]) # [N,2] mask = mask[:,0] & mask[:,1] #[N,] if not mask.any(): continue selected_boxes = boxes.index_select(0, mask.nonzero().squeeze(1)) iou = self.data_encoder.iou(selected_boxes, roi) if iou.min() < min_iou: continue img = img.crop((x, y, x+w, y+h)) selected_boxes[:,0].add_(-x).clamp_(min=0, max=w) selected_boxes[:,1].add_(-y).clamp_(min=0, max=h) selected_boxes[:,2].add_(-x).clamp_(min=0, max=w) selected_boxes[:,3].add_(-y).clamp_(min=0, max=h) return img, selected_boxes, labels[mask] def __len__(self): return self.num_samples
[((42, 28, 42, 41), 'encoder.DataEncoder', 'DataEncoder', ({}, {}), '()', False, 'from encoder import DataEncoder\n'), ((79, 25, 79, 55), 'os.path.join', 'os.path.join', ({(79, 38, 79, 47): 'self.root', (79, 49, 79, 54): 'fname'}, {}), '(self.root, fname)', False, 'import os\n'), ((113, 11, 113, 26), 'random.random', 'random.random', ({}, {}), '()', False, 'import random\n'), ((139, 22, 139, 68), 'random.choice', 'random.choice', ({(139, 36, 139, 67): '[None, 0.1, 0.3, 0.5, 0.7, 0.9]'}, {}), '([None, 0.1, 0.3, 0.5, 0.7, 0.9])', False, 'import random\n'), ((63, 30, 63, 47), 'torch.Tensor', 'torch.Tensor', ({(63, 43, 63, 46): 'box'}, {}), '(box)', False, 'import torch\n'), ((64, 31, 64, 54), 'torch.LongTensor', 'torch.LongTensor', ({(64, 48, 64, 53): 'label'}, {}), '(label)', False, 'import torch\n'), ((90, 17, 90, 40), 'torch.Tensor', 'torch.Tensor', ({(90, 30, 90, 39): '[w, h, w, h]'}, {}), '([w, h, w, h])', False, 'import torch\n'), ((150, 20, 150, 45), 'random.randrange', 'random.randrange', ({(150, 37, 150, 44): 'imw - w'}, {}), '(imw - w)', False, 'import random\n'), ((151, 20, 151, 45), 'random.randrange', 'random.randrange', ({(151, 37, 151, 44): 'imh - h'}, {}), '(imh - h)', False, 'import random\n'), ((152, 22, 152, 54), 'torch.Tensor', 'torch.Tensor', ({(152, 35, 152, 53): '[[x, y, x + w, y + h]]'}, {}), '([[x, y, x + w, y + h]])', False, 'import torch\n')]
allenwang28/lingvo
lingvo/core/builder.py
26d3d6672d3f46d8f281c2aa9f57166ef6296738
# Lint as: python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A library to build composite layers. WARNING: The builder pattern is still experimental and we need to gain experience on when to use and when not to use. Please discuss w/ teammates before using it to build complicated layers. """ import functools from lingvo.core import activations from lingvo.core import builder_layers from lingvo.core import hyperparams from lingvo.core import layers from lingvo.core import py_utils from lingvo.core import tshape class Base: """Model builder with commonly used layers. A method in a builder class constructs a layer param. FProp of a layer constructed by a builder takes a tuple of tf.Tensor (one or more) and returns a tuple of tf.Tensor (one or more). Even though certain layers support FProp argument being None (e.g., Conv2DLayer), builder should not depend on such a support. The constructed layer is often a composition of multiple sub-layers connected in certain patterns. We expect to have a few methods to facilitate building these patterns. For example, _Seq() helps to build a sequential layer that calls its sub-layer one after another. TODO(zhifengc): Adds a more concrete example. """ @classmethod def Params(cls): """The params of this layer.""" p = hyperparams.InstantiableParams(cls) p.Define('deterministic_dropout', False, 'Used deterministic dropout or not.') p.Define( 'fprop_dtype', None, 'Activations datatype to use. To enable bfloat16 activations for ' 'layers built using model builder, set fprop_dtype to ' 'tf.bfloat16, which will be propagated to layers that support ' 'bfloat16 activations. Default is None, which will use float32 ' 'activations.') # SPMD partition related params. p.Define( 'device_mesh', None, 'A numpy.ndarray specifying the topology of a device mesh to place the ' 'computations onto. If device_mesh is None, it is assumed to be a ' 'single device. Here are some examples: ' 'np.array([0, 1, 2, 3, 4, 5, 6, 7]) which is a 1d mesh with 8 devices, ' 'np.array([[0, 1, 2, 3], [4, 5, 6, 7]]) which is 2d matrix of 8 ' 'devices.') p.Define( 'weight_split_dims_mapping', None, 'Relevant only if device_mesh above is not None. If not None, it ' 'specifies how weight of this layer or those of the sublayers should ' 'be sharded over device mesh. ') p.Define( 'activation_split_dims_mapping', None, 'Relevant only if device_mesh above is not None. If not None, it ' 'specifies how activation of this layer or those of the sublayers ' 'should be sharded over device mesh. ') return p @property def params(self): """Returns the params upon which this layer is built.""" return self._params def __init__(self, params): # Sub-classes should put some options common to many layers in __init__. self._params = params.Copy() ###################################################################### # Layers to compose multiple layers. # # Sub-classes are discouraged to override these composition method. ###################################################################### def _Rep(self, name, repeat, *subs): r"""Connects sub-layers sequentially and repeat multiple times. E.g., _Rep('foo', 2, sa, sb, sc) constructs a layer with 6 layers sequentially connected: [sa1, sb1, sc1, sa2, sb2, sc2]. sa1 and sa2 have the same structure as the given sa, but sa1 and sa2 do not share the same weight. Args: name: The layer name. repeat: Repeat \*subs this many times in the compose layer. *subs: A list of sub-layers. Returns: The param for the composed layer. """ iterations = [] for i in range(repeat): iterations.append(self._Seq('iter_%03d' % i, *[p.Copy() for p in subs])) return self._Seq(name, *iterations) def _Seq(self, name, *subs): """Connects sub-layers sequentially.""" return builder_layers.SequentialLayer.Params().Set( name=name, sub=list(subs)) def _Graph(self, name, input_endpoints, output_endpoints, *signature_sub_param_list): """Connects sub-layers into a data flow graph.""" return builder_layers.GraphLayer.Params().Set( name=name, input_endpoints=input_endpoints, output_endpoints=output_endpoints, sub=list(signature_sub_param_list)) def _Id(self, name): """Identity. (t_1, ..., t_n) -> (t1, ..., t_n).""" return self._Seq(name) def _Arg(self, name, index): """Picks index-th element. (t_1, ..., t_n) -> (t_{index},).""" return builder_layers.ArgIndexLayer.Params().Set(name=name, idx=[index]) def _Par(self, name, *subs): """y = (f1, f2, ..., fn)(x). We feed the input tuple to all sub-layers and concatenates their output tuples into one tuple. Args: name: The layer name. *subs: A list of sub-layers. Returns: The param for the composed layer. """ def ConcatTuples(tuples): # tuples is a list of tuples. return tuple(functools.reduce(lambda x, y: x + list(y), tuples, [])) def ConcatMeta(tuples): return py_utils.NestedMap( flops=0, out_shapes=tuple( functools.reduce(lambda x, y: x + list(y), tuples, []))) return builder_layers.ParallelLayer.Params().Set( name=name, sub=list(subs), merge=ConcatTuples, merge_meta=ConcatMeta) def _Fn(self, name, fn, fn_out=None, fn_flops=None): """y = fn(x). Applies a fn: tuple(Tensor) -> a single Tensor or tuple(Tensor) to the input tuple. Typically, fn is a very simple python function. This layer can be used for prototyping but we advice to implement the logic as a sub-class of BaseLayer for all established layers as FnLayer can't be serialized. Args: name: The layer name. fn: A lambda tuple(Tensor) -> tuple(Tensor). fn_out: A lambda tuple(tshape.Shape) -> output tuple(tshape.Shape) fn_flops: A lambda tuple(tshape.Shape) -> estimated flops of fn. If None, we assume flops == sum of elements in the inputs. Returns: The param for the composed layer. """ def FnMeta(*shapes): """A lambda tuple(tshape.Shape) -> NestedMap{flops, out_shapes}.""" if fn_out: out_shapes = fn_out(*shapes) if isinstance(out_shapes, tshape.Shape): out_shapes = (out_shapes,) else: out_shapes = shapes if fn_flops: flops = fn_flops(*shapes) else: flops = sum([s.size for s in shapes]) return py_utils.NestedMap(flops=flops, out_shapes=out_shapes) return builder_layers.FnLayer.Params().Set(name=name, fn=fn, fn_meta=FnMeta) def _Save(self, name): """Returns a layer from which the activation and gradient can be accessed.""" return layers.FetchLayer.Params().Set(name=name) def _AddFetches(self, name, body, fetches): """Fetches saved activations in the body sub-layer. E.g.: _AddFetches('foo', _Seq( 'stack', _Layer('layer1', ...), _Save('layer1_out', ...), _Layer('layer2', ...), _Save('layer2_out', ...), _Output('output', ...)), ['layer1_out', 'layer2_out']) The layer returns the stack's final output together with intermediate activations from layer1_out and layer2_out. Args: name: This layer's name. body: The sub-layer. fetches: A list of fetch names inside the sub-layer body. Returns: A layer whose outputs correspond to the activations of fetch points in the sub-layer body. [input1, input2, ..., inputN, fetch1, ..., fetchM]. """ return builder_layers.BranchLayer.Params().Set( name=name, body=body, fetches=fetches) def _Rematerialize(self, name, body): """Forces rematerialization on FProp of the body layer.""" return builder_layers.RematerializationLayer.Params().Set( name=name, body=body) def _BatchParallel(self, name, sub): """Splits the batch and compute the forward pass on multiple devices. Args: name: This layer's name. sub: The sub-layer. Returns: A BatchParallel layer which splits the batch and computes the forward pass on multiple devices. """ return builder_layers.BatchParallelLayer.Params().Set(name=name, sub=sub) def _PrintShape(self, name): """Print FProp input shape information.""" return builder_layers.PrintShapeLayer.Params().Set(name=name) def _CreateNestedMap(self, name, keys): """Returns a NestedMap with keys from fprop args.""" return builder_layers.CreateNestedMapLayer.Params().Set( name=name, keys=keys) ########################################################################### # Basic nn layers. # # The following method returns a layer param, whose FProp takes a single # Tensor and returns a single Tensor. # # These methods are designed to have minimal knobs. Sub-classes which needs to # be flexible can override these methods with different options. E.g., a # sub-class builder can override _BN() to tune the decay option. ########################################################################### def _BN(self, name, dims): """Batch norm.""" return layers.BatchNormLayer.Params().Set(name=name, dim=dims, decay=0.99) def _LN(self, name, dims, use_fused_layernorm=False): """Layer norm.""" return layers.LayerNorm.Params().Set( name=name, input_dim=dims, use_fused_layernorm=use_fused_layernorm, fprop_dtype=self.params.fprop_dtype) def _Dropout(self, name, keep_prob, noise_shape_broadcast_dims=None): """Returns a DropoutLayer Params.""" if self.params.deterministic_dropout: return layers.DeterministicDropoutLayer.Params().Set( name=name, keep_prob=keep_prob, noise_shape_broadcast_dims=noise_shape_broadcast_dims) return layers.DropoutLayer.Params().Set( name=name, keep_prob=keep_prob, noise_shape_broadcast_dims=noise_shape_broadcast_dims, fprop_dtype=self.params.fprop_dtype) def _Linear(self, name, idims, odims, device_mesh=None, weight_split_dims_mapping=None, qdomain=None): """Linear layer. y = matmul([..., idims], [idims, odims]).""" p = builder_layers.LinearLayer.Params() p.name = name p.input_dims = idims p.output_dims = odims p.fprop_dtype = self.params.fprop_dtype p.device_mesh = device_mesh p.weight_split_dims_mapping = weight_split_dims_mapping p.qdomain.default = qdomain return p def _Bias(self, name, dims, device_mesh=None, weight_split_dims_mapping=None): """Bias layer. The bias is added to the last dimension of the input.""" return builder_layers.BiasLayer.Params().Set( name=name, dims=dims, fprop_dtype=self.params.fprop_dtype, device_mesh=device_mesh, weight_split_dims_mapping=weight_split_dims_mapping) def _Activation(self, name, fn='RELU'): """Activation layer.""" return activations.ActivationLayer.Params().Set(activation=fn, name=name) def _FC(self, name, idims, odims, act='RELU'): """Feed-forward fully connected. y = act(matmul(x, w) + b).""" # pyformat: disable return self._Seq( name, self._Linear('linear', idims, odims), self._Bias('bias', odims), self._Activation('act', fn=act)) def _MLP(self, name, dims, act='RELU'): """Multiple layers of feed-forward fully connected. Args: name: The layer name. dims: A list of int. i-th layer has dims[i] as its input dimension, and dims[i+1] as its output dimensions. act: The activation function. Returns: The param for the composed layer. """ l = [] for n, (i, o) in enumerate(zip(dims[:-1], dims[1:])): l += [self._FC('l%03d' % n, i, o, act)] return self._Seq(name, *l) def _Conv2D(self, name, filter_shape, filter_stride): """Conv2D layer.""" return layers.Conv2DLayerNoPadding.Params().Set( name=name, filter_shape=filter_shape, filter_stride=filter_stride, fprop_dtype=self.params.fprop_dtype) def _Reshape(self, name, shape): """Reshape inputs to the shape provided.""" return builder_layers.ReshapeLayer.Params().Set(name=name, shape=shape)
[((54, 8, 54, 43), 'lingvo.core.hyperparams.InstantiableParams', 'hyperparams.InstantiableParams', ({(54, 39, 54, 42): 'cls'}, {}), '(cls)', False, 'from lingvo.core import hyperparams\n'), ((301, 8, 301, 43), 'lingvo.core.builder_layers.LinearLayer.Params', 'builder_layers.LinearLayer.Params', ({}, {}), '()', False, 'from lingvo.core import builder_layers\n'), ((200, 13, 200, 67), 'lingvo.core.py_utils.NestedMap', 'py_utils.NestedMap', (), '', False, 'from lingvo.core import py_utils\n'), ((122, 11, 122, 50), 'lingvo.core.builder_layers.SequentialLayer.Params', 'builder_layers.SequentialLayer.Params', ({}, {}), '()', False, 'from lingvo.core import builder_layers\n'), ((128, 11, 128, 45), 'lingvo.core.builder_layers.GraphLayer.Params', 'builder_layers.GraphLayer.Params', ({}, {}), '()', False, 'from lingvo.core import builder_layers\n'), ((140, 11, 140, 48), 'lingvo.core.builder_layers.ArgIndexLayer.Params', 'builder_layers.ArgIndexLayer.Params', ({}, {}), '()', False, 'from lingvo.core import builder_layers\n'), ((166, 11, 166, 48), 'lingvo.core.builder_layers.ParallelLayer.Params', 'builder_layers.ParallelLayer.Params', ({}, {}), '()', False, 'from lingvo.core import builder_layers\n'), ((202, 11, 202, 42), 'lingvo.core.builder_layers.FnLayer.Params', 'builder_layers.FnLayer.Params', ({}, {}), '()', False, 'from lingvo.core import builder_layers\n'), ((206, 11, 206, 37), 'lingvo.core.layers.FetchLayer.Params', 'layers.FetchLayer.Params', ({}, {}), '()', False, 'from lingvo.core import layers\n'), ((228, 11, 228, 46), 'lingvo.core.builder_layers.BranchLayer.Params', 'builder_layers.BranchLayer.Params', ({}, {}), '()', False, 'from lingvo.core import builder_layers\n'), ((233, 11, 233, 57), 'lingvo.core.builder_layers.RematerializationLayer.Params', 'builder_layers.RematerializationLayer.Params', ({}, {}), '()', False, 'from lingvo.core import builder_layers\n'), ((247, 11, 247, 53), 'lingvo.core.builder_layers.BatchParallelLayer.Params', 'builder_layers.BatchParallelLayer.Params', ({}, {}), '()', False, 'from lingvo.core import builder_layers\n'), ((251, 11, 251, 50), 'lingvo.core.builder_layers.PrintShapeLayer.Params', 'builder_layers.PrintShapeLayer.Params', ({}, {}), '()', False, 'from lingvo.core import builder_layers\n'), ((255, 11, 255, 55), 'lingvo.core.builder_layers.CreateNestedMapLayer.Params', 'builder_layers.CreateNestedMapLayer.Params', ({}, {}), '()', False, 'from lingvo.core import builder_layers\n'), ((270, 11, 270, 41), 'lingvo.core.layers.BatchNormLayer.Params', 'layers.BatchNormLayer.Params', ({}, {}), '()', False, 'from lingvo.core import layers\n'), ((274, 11, 274, 36), 'lingvo.core.layers.LayerNorm.Params', 'layers.LayerNorm.Params', ({}, {}), '()', False, 'from lingvo.core import layers\n'), ((287, 11, 287, 39), 'lingvo.core.layers.DropoutLayer.Params', 'layers.DropoutLayer.Params', ({}, {}), '()', False, 'from lingvo.core import layers\n'), ((313, 11, 313, 44), 'lingvo.core.builder_layers.BiasLayer.Params', 'builder_layers.BiasLayer.Params', ({}, {}), '()', False, 'from lingvo.core import builder_layers\n'), ((322, 11, 322, 47), 'lingvo.core.activations.ActivationLayer.Params', 'activations.ActivationLayer.Params', ({}, {}), '()', False, 'from lingvo.core import activations\n'), ((352, 11, 352, 47), 'lingvo.core.layers.Conv2DLayerNoPadding.Params', 'layers.Conv2DLayerNoPadding.Params', ({}, {}), '()', False, 'from lingvo.core import layers\n'), ((358, 11, 358, 47), 'lingvo.core.builder_layers.ReshapeLayer.Params', 'builder_layers.ReshapeLayer.Params', ({}, {}), '()', False, 'from lingvo.core import builder_layers\n'), ((283, 13, 283, 54), 'lingvo.core.layers.DeterministicDropoutLayer.Params', 'layers.DeterministicDropoutLayer.Params', ({}, {}), '()', False, 'from lingvo.core import layers\n')]
gilramir/instmake
instmakelib/instmake_toolnames.py
7b083a5061be43e9b92bdcf0f3badda7c4107eef
# Copyright (c) 2010 by Cisco Systems, Inc. """ Manage the tool plugins and use them appropriately. """ import os TOOLNAME_PLUGIN_PREFIX = "toolname" class ToolNameManager: """ToolName plugins have to register with this manager the circumstances under which they wish to be called.""" def __init__(self, plugins): toolname_plugins = plugins.LoadAllPlugins(TOOLNAME_PLUGIN_PREFIX) self.first_arg_matches = [] self.first_arg_basename_matches = [] self.first_arg_regexes= [] self.first_arg_basename_regexes = [] self.command_line_regexes = [] for plugin in toolname_plugins: plugin.register(self) def RegisterFirstArgumentMatch(self, text, cb): """Call back parameters: first_arg, argv, cwd""" self.first_arg_matches.append((text, cb)) def RegisterFirstArgumentRegex(self, regex, cb): """Call back parameters: first_arg, argv, cwd, regex_match""" self.first_arg_regexes.append((regex, cb)) def RegisterFirstArgumentBasenameMatch(self, text, cb): """Call back parameters: basename, first_arg, argv, cwd""" self.first_arg_basename_matches.append((text, cb)) def RegisterFirstArgumentBasenameRegex(self, regex, cb): """Call back parameters: basename, first_arg, argv, cw, regex_match""" self.first_arg_basename_regexes.append((regex, cb)) def RegisterCommandLineRegex(self, regex, cb): """Call back parameters: argv, cwd, regex_match""" self.command_line_regexes.append((regex, cb)) def GetTool(self, cmdline_args, cwd): """Returns a single string representing the tool in this command-line. cmdline_args is an array of strings that will be concatenated with spaces to form a single command-line.""" # It's done this way because of the way the command-line is # stored in the instmake log. The top-most process (which is # the first 'make' run, i.e., the last record in the instmake log) # has a cmdline_args with one true argv-item per item. However, # the instmakes that were called from 'make' have their entire # command-line existing as a single string (the first and only # item in cmdline_args). argv_joined = ' '.join(cmdline_args) argv = argv_joined.split() # Call _GetTool as many times as necessary to find # a non-changing answer. seen = {} max_iterations = 100 i = 0 while 1: seen[argv_joined] = None new_argv = self._GetTool(argv, cwd) new_argv_joined = ' '.join(new_argv) if new_argv_joined == argv_joined: return new_argv[0] elif seen.has_key(new_argv_joined): return new_argv[0] else: i += 1 if i == max_iterations: return new_argv[0] argv = new_argv argv_joined = new_argv_joined def _GetTool(self, argv, cwd): cmdline = ' '.join(argv) # Check the command-line for (regex, cb) in self.command_line_regexes: m = regex.search(cmdline) if m: retval = cb(argv, cwd, m) if retval != None: return retval # Get the first argument if len(argv) >= 1: first_arg = argv[0] else: return argv # Check the first argument for (text, cb) in self.first_arg_matches: if first_arg == text: retval = cb(first_arg, argv, cwd) if retval != None: return retval for (regex, cb) in self.first_arg_regexes: m = regex.search(first_arg) if m: retval = cb(first_arg, argv, cwd, m) if retval != None: return retval # Check the basename of the first arg basename = os.path.basename(first_arg) for (text, cb) in self.first_arg_basename_matches: if basename == text: retval = cb(basename, first_arg, argv, cwd) if retval != None: return retval for (regex, cb) in self.first_arg_basename_regexes: m = regex.search(basename) if m: retval = cb(basename, first_arg, argv, cwd, m) if retval != None: return retval # Nothing matched. Return the default value. return argv
[((113, 19, 113, 46), 'os.path.basename', 'os.path.basename', ({(113, 36, 113, 45): 'first_arg'}, {}), '(first_arg)', False, 'import os\n')]
tirkarthi/raiden
raiden/tests/integration/long_running/test_stress.py
dbd03ddda039332b54ec0c02d81cbe1100bc8028
import time from http import HTTPStatus from itertools import count from typing import Sequence import gevent import grequests import pytest import structlog from eth_utils import to_canonical_address from flask import url_for from raiden.api.python import RaidenAPI from raiden.api.rest import APIServer, RestAPI from raiden.constants import RoutingMode from raiden.message_handler import MessageHandler from raiden.network.transport import MatrixTransport from raiden.raiden_event_handler import RaidenEventHandler from raiden.raiden_service import RaidenService from raiden.settings import RestApiConfig from raiden.tests.integration.api.utils import wait_for_listening_port from raiden.tests.integration.fixtures.raiden_network import RestartNode from raiden.tests.utils.detect_failure import raise_on_failure from raiden.tests.utils.protocol import HoldRaidenEventHandler from raiden.tests.utils.transfer import ( assert_synced_channel_state, wait_assert, watch_for_unlock_failures, ) from raiden.transfer import views from raiden.ui.startup import RaidenBundle from raiden.utils.formatting import to_checksum_address from raiden.utils.typing import ( Address, BlockNumber, Host, Iterator, List, Port, TokenAddress, TokenAmount, TokenNetworkAddress, Tuple, ) log = structlog.get_logger(__name__) def iwait_and_get(items: Sequence[gevent.Greenlet]) -> None: """Iteratively wait and get on passed greenlets. This ensures exceptions in the greenlets are re-raised as soon as possible. """ for item in gevent.iwait(items): item.get() def _url_for(apiserver: APIServer, endpoint: str, **kwargs) -> str: # url_for() expects binary address so we have to convert here for key, val in kwargs.items(): if isinstance(val, str) and val.startswith("0x"): kwargs[key] = to_canonical_address(val) with apiserver.flask_app.app_context(): return url_for(f"v1_resources.{endpoint}", **kwargs) def start_apiserver(raiden_app: RaidenService, rest_api_port_number: Port) -> APIServer: raiden_api = RaidenAPI(raiden_app) rest_api = RestAPI(raiden_api) api_server = APIServer( rest_api, config=RestApiConfig(host=Host("localhost"), port=rest_api_port_number) ) # required for url_for api_server.flask_app.config["SERVER_NAME"] = f"localhost:{rest_api_port_number}" api_server.start() wait_for_listening_port(rest_api_port_number) return api_server def start_apiserver_for_network( raiden_network: List[RaidenService], port_generator: Iterator[Port] ) -> List[APIServer]: return [start_apiserver(app, next(port_generator)) for app in raiden_network] def restart_app(app: RaidenService, restart_node: RestartNode) -> RaidenService: new_transport = MatrixTransport( config=app.config.transport, environment=app.config.environment_type ) raiden_event_handler = RaidenEventHandler() hold_handler = HoldRaidenEventHandler(raiden_event_handler) app = RaidenService( config=app.config, rpc_client=app.rpc_client, proxy_manager=app.proxy_manager, query_start_block=BlockNumber(0), raiden_bundle=RaidenBundle( app.default_registry, app.default_secret_registry, ), services_bundle=app.default_services_bundle, transport=new_transport, raiden_event_handler=hold_handler, message_handler=MessageHandler(), routing_mode=RoutingMode.PRIVATE, ) restart_node(app) return app def restart_network( raiden_network: List[RaidenService], restart_node: RestartNode ) -> List[RaidenService]: for app in raiden_network: app.stop() wait_network = (gevent.spawn(restart_app, app, restart_node) for app in raiden_network) gevent.joinall(set(wait_network), raise_error=True) new_network = [greenlet.get() for greenlet in wait_network] return new_network def restart_network_and_apiservers( raiden_network: List[RaidenService], restart_node: RestartNode, api_servers: List[APIServer], port_generator: Iterator[Port], ) -> Tuple[List[RaidenService], List[APIServer]]: """Stop an app and start it back""" for rest_api in api_servers: rest_api.stop() new_network = restart_network(raiden_network, restart_node) new_servers = start_apiserver_for_network(new_network, port_generator) return (new_network, new_servers) def address_from_apiserver(apiserver: APIServer) -> Address: return apiserver.rest_api.raiden_api.address def transfer_and_assert( server_from: APIServer, server_to: APIServer, token_address: TokenAddress, identifier: int, amount: TokenAmount, ) -> None: url = _url_for( server_from, "token_target_paymentresource", token_address=to_checksum_address(token_address), target_address=to_checksum_address(address_from_apiserver(server_to)), ) json = {"amount": amount, "identifier": identifier} log.debug("PAYMENT REQUEST", url=url, json=json) request = grequests.post(url, json=json) start = time.monotonic() response = request.send().response duration = time.monotonic() - start log.debug("PAYMENT RESPONSE", url=url, json=json, response=response, duration=duration) assert getattr(request, "exception", None) is None assert response is not None assert response.status_code == HTTPStatus.OK, f"Payment failed, reason: {response.content}" assert response.headers["Content-Type"] == "application/json" def sequential_transfers( server_from: APIServer, server_to: APIServer, number_of_transfers: int, token_address: TokenAddress, identifier_generator: Iterator[int], ) -> None: for _ in range(number_of_transfers): transfer_and_assert( server_from=server_from, server_to=server_to, token_address=token_address, identifier=next(identifier_generator), amount=TokenAmount(1), ) def stress_send_serial_transfers( rest_apis: List[APIServer], token_address: TokenAddress, identifier_generator: Iterator[int], deposit: TokenAmount, ) -> None: """Send `deposit` transfers of value `1` one at a time, without changing the initial capacity. """ pairs = list(zip(rest_apis, rest_apis[1:] + [rest_apis[0]])) # deplete the channels in one direction for server_from, server_to in pairs: sequential_transfers( server_from=server_from, server_to=server_to, number_of_transfers=deposit, token_address=token_address, identifier_generator=identifier_generator, ) # deplete the channels in the backwards direction for server_to, server_from in pairs: sequential_transfers( server_from=server_from, server_to=server_to, number_of_transfers=deposit * 2, token_address=token_address, identifier_generator=identifier_generator, ) # reset the balances balances by sending the "extra" deposit forward for server_from, server_to in pairs: sequential_transfers( server_from=server_from, server_to=server_to, number_of_transfers=deposit, token_address=token_address, identifier_generator=identifier_generator, ) def stress_send_parallel_transfers( rest_apis: List[APIServer], token_address: TokenAddress, identifier_generator: Iterator[int], deposit: TokenAmount, ) -> None: """Send `deposit` transfers in parallel, without changing the initial capacity.""" pairs = list(zip(rest_apis, rest_apis[1:] + [rest_apis[0]])) # deplete the channels in one direction iwait_and_get( [ gevent.spawn( sequential_transfers, server_from=server_from, server_to=server_to, number_of_transfers=deposit, token_address=token_address, identifier_generator=identifier_generator, ) for server_from, server_to in pairs ] ) # deplete the channels in the backwards direction iwait_and_get( [ gevent.spawn( sequential_transfers, server_from=server_from, server_to=server_to, number_of_transfers=deposit * 2, token_address=token_address, identifier_generator=identifier_generator, ) for server_to, server_from in pairs ] ) # reset the balances balances by sending the "extra" deposit forward iwait_and_get( [ gevent.spawn( sequential_transfers, server_from=server_from, server_to=server_to, number_of_transfers=deposit, token_address=token_address, identifier_generator=identifier_generator, ) for server_from, server_to in pairs ] ) def stress_send_and_receive_parallel_transfers( rest_apis: List[APIServer], token_address: TokenAddress, identifier_generator: Iterator[int], deposit: TokenAmount, ) -> None: """Send transfers of value one in parallel""" pairs = list(zip(rest_apis, rest_apis[1:] + [rest_apis[0]])) forward_transfers = [ gevent.spawn( sequential_transfers, server_from=server_from, server_to=server_to, number_of_transfers=deposit, token_address=token_address, identifier_generator=identifier_generator, ) for server_from, server_to in pairs ] backwards_transfers = [ gevent.spawn( sequential_transfers, server_from=server_from, server_to=server_to, number_of_transfers=deposit, token_address=token_address, identifier_generator=identifier_generator, ) for server_to, server_from in pairs ] iwait_and_get(forward_transfers + backwards_transfers) def assert_channels( raiden_network: List[RaidenService], token_network_address: TokenNetworkAddress, deposit: TokenAmount, ) -> None: pairs = list(zip(raiden_network, raiden_network[1:] + [raiden_network[0]])) for first, second in pairs: wait_assert( assert_synced_channel_state, token_network_address, first, deposit, [], second, deposit, [], ) @pytest.mark.skip(reason="flaky, see https://github.com/raiden-network/raiden/issues/4803") @raise_on_failure @pytest.mark.parametrize("number_of_nodes", [3]) @pytest.mark.parametrize("number_of_tokens", [1]) @pytest.mark.parametrize("channels_per_node", [2]) @pytest.mark.parametrize("deposit", [2]) @pytest.mark.parametrize("reveal_timeout", [15]) @pytest.mark.parametrize("settle_timeout", [120]) def test_stress( raiden_network: List[RaidenService], restart_node: RestartNode, deposit: TokenAmount, token_addresses: List[TokenAddress], port_generator: Iterator[Port], ) -> None: token_address = token_addresses[0] rest_apis = start_apiserver_for_network(raiden_network, port_generator) identifier_generator = count(start=1) token_network_address = views.get_token_network_address_by_token_address( views.state_from_raiden(raiden_network[0]), raiden_network[0].default_registry.address, token_address, ) assert token_network_address for _ in range(2): assert_channels(raiden_network, token_network_address, deposit) with watch_for_unlock_failures(*raiden_network): stress_send_serial_transfers(rest_apis, token_address, identifier_generator, deposit) raiden_network, rest_apis = restart_network_and_apiservers( raiden_network, restart_node, rest_apis, port_generator ) assert_channels(raiden_network, token_network_address, deposit) with watch_for_unlock_failures(*raiden_network): stress_send_parallel_transfers(rest_apis, token_address, identifier_generator, deposit) raiden_network, rest_apis = restart_network_and_apiservers( raiden_network, restart_node, rest_apis, port_generator ) assert_channels(raiden_network, token_network_address, deposit) with watch_for_unlock_failures(*raiden_network): stress_send_and_receive_parallel_transfers( rest_apis, token_address, identifier_generator, deposit ) raiden_network, rest_apis = restart_network_and_apiservers( raiden_network, restart_node, rest_apis, port_generator ) restart_network(raiden_network, restart_node)
[((46, 6, 46, 36), 'structlog.get_logger', 'structlog.get_logger', ({(46, 27, 46, 35): '__name__'}, {}), '(__name__)', False, 'import structlog\n'), ((355, 1, 355, 91), 'pytest.mark.skip', 'pytest.mark.skip', (), '', False, 'import pytest\n'), ((357, 1, 357, 48), 'pytest.mark.parametrize', 'pytest.mark.parametrize', ({(357, 25, 357, 42): '"""number_of_nodes"""', (357, 44, 357, 47): '[3]'}, {}), "('number_of_nodes', [3])", False, 'import pytest\n'), ((358, 1, 358, 49), 'pytest.mark.parametrize', 'pytest.mark.parametrize', ({(358, 25, 358, 43): '"""number_of_tokens"""', (358, 45, 358, 48): '[1]'}, {}), "('number_of_tokens', [1])", False, 'import pytest\n'), ((359, 1, 359, 50), 'pytest.mark.parametrize', 'pytest.mark.parametrize', ({(359, 25, 359, 44): '"""channels_per_node"""', (359, 46, 359, 49): '[2]'}, {}), "('channels_per_node', [2])", False, 'import pytest\n'), ((360, 1, 360, 40), 'pytest.mark.parametrize', 'pytest.mark.parametrize', ({(360, 25, 360, 34): '"""deposit"""', (360, 36, 360, 39): '[2]'}, {}), "('deposit', [2])", False, 'import pytest\n'), ((361, 1, 361, 48), 'pytest.mark.parametrize', 'pytest.mark.parametrize', ({(361, 25, 361, 41): '"""reveal_timeout"""', (361, 43, 361, 47): '[15]'}, {}), "('reveal_timeout', [15])", False, 'import pytest\n'), ((362, 1, 362, 49), 'pytest.mark.parametrize', 'pytest.mark.parametrize', ({(362, 25, 362, 41): '"""settle_timeout"""', (362, 43, 362, 48): '[120]'}, {}), "('settle_timeout', [120])", False, 'import pytest\n'), ((54, 16, 54, 35), 'gevent.iwait', 'gevent.iwait', ({(54, 29, 54, 34): 'items'}, {}), '(items)', False, 'import gevent\n'), ((69, 17, 69, 38), 'raiden.api.python.RaidenAPI', 'RaidenAPI', ({(69, 27, 69, 37): 'raiden_app'}, {}), '(raiden_app)', False, 'from raiden.api.python import RaidenAPI\n'), ((70, 15, 70, 34), 'raiden.api.rest.RestAPI', 'RestAPI', ({(70, 23, 70, 33): 'raiden_api'}, {}), '(raiden_api)', False, 'from raiden.api.rest import APIServer, RestAPI\n'), ((80, 4, 80, 49), 'raiden.tests.integration.api.utils.wait_for_listening_port', 'wait_for_listening_port', ({(80, 28, 80, 48): 'rest_api_port_number'}, {}), '(rest_api_port_number)', False, 'from raiden.tests.integration.api.utils import wait_for_listening_port\n'), ((92, 20, 94, 5), 'raiden.network.transport.MatrixTransport', 'MatrixTransport', (), '', False, 'from raiden.network.transport import MatrixTransport\n'), ((95, 27, 95, 47), 'raiden.raiden_event_handler.RaidenEventHandler', 'RaidenEventHandler', ({}, {}), '()', False, 'from raiden.raiden_event_handler import RaidenEventHandler\n'), ((96, 19, 96, 63), 'raiden.tests.utils.protocol.HoldRaidenEventHandler', 'HoldRaidenEventHandler', ({(96, 42, 96, 62): 'raiden_event_handler'}, {}), '(raiden_event_handler)', False, 'from raiden.tests.utils.protocol import HoldRaidenEventHandler\n'), ((171, 14, 171, 44), 'grequests.post', 'grequests.post', (), '', False, 'import grequests\n'), ((173, 12, 173, 28), 'time.monotonic', 'time.monotonic', ({}, {}), '()', False, 'import time\n'), ((372, 27, 372, 41), 'itertools.count', 'count', (), '', False, 'from itertools import count\n'), ((65, 15, 65, 60), 'flask.url_for', 'url_for', ({(65, 23, 65, 49): 'f"""v1_resources.{endpoint}"""'}, {}), "(f'v1_resources.{endpoint}', **kwargs)", False, 'from flask import url_for\n'), ((125, 20, 125, 64), 'gevent.spawn', 'gevent.spawn', ({(125, 33, 125, 44): 'restart_app', (125, 46, 125, 49): 'app', (125, 51, 125, 63): 'restart_node'}, {}), '(restart_app, app, restart_node)', False, 'import gevent\n'), ((175, 15, 175, 31), 'time.monotonic', 'time.monotonic', ({}, {}), '()', False, 'import time\n'), ((309, 8, 316, 9), 'gevent.spawn', 'gevent.spawn', (), '', False, 'import gevent\n'), ((321, 8, 328, 9), 'gevent.spawn', 'gevent.spawn', (), '', False, 'import gevent\n'), ((343, 8, 352, 9), 'raiden.tests.utils.transfer.wait_assert', 'wait_assert', ({(344, 12, 344, 39): 'assert_synced_channel_state', (345, 12, 345, 33): 'token_network_address', (346, 12, 346, 17): 'first', (347, 12, 347, 19): 'deposit', (348, 12, 348, 14): '[]', (349, 12, 349, 18): 'second', (350, 12, 350, 19): 'deposit', (351, 12, 351, 14): '[]'}, {}), '(assert_synced_channel_state, token_network_address, first,\n deposit, [], second, deposit, [])', False, 'from raiden.tests.utils.transfer import assert_synced_channel_state, wait_assert, watch_for_unlock_failures\n'), ((375, 8, 375, 50), 'raiden.transfer.views.state_from_raiden', 'views.state_from_raiden', ({(375, 32, 375, 49): 'raiden_network[0]'}, {}), '(raiden_network[0])', False, 'from raiden.transfer import views\n'), ((62, 26, 62, 51), 'eth_utils.to_canonical_address', 'to_canonical_address', ({(62, 47, 62, 50): 'val'}, {}), '(val)', False, 'from eth_utils import to_canonical_address\n'), ((102, 26, 102, 40), 'raiden.utils.typing.BlockNumber', 'BlockNumber', ({(102, 38, 102, 39): '0'}, {}), '(0)', False, 'from raiden.utils.typing import Address, BlockNumber, Host, Iterator, List, Port, TokenAddress, TokenAmount, TokenNetworkAddress, Tuple\n'), ((103, 22, 106, 9), 'raiden.ui.startup.RaidenBundle', 'RaidenBundle', ({(104, 12, 104, 32): 'app.default_registry', (105, 12, 105, 39): 'app.default_secret_registry'}, {}), '(app.default_registry, app.default_secret_registry)', False, 'from raiden.ui.startup import RaidenBundle\n'), ((110, 24, 110, 40), 'raiden.message_handler.MessageHandler', 'MessageHandler', ({}, {}), '()', False, 'from raiden.message_handler import MessageHandler\n'), ((164, 22, 164, 56), 'raiden.utils.formatting.to_checksum_address', 'to_checksum_address', ({(164, 42, 164, 55): 'token_address'}, {}), '(token_address)', False, 'from raiden.utils.formatting import to_checksum_address\n'), ((256, 12, 263, 13), 'gevent.spawn', 'gevent.spawn', (), '', False, 'import gevent\n'), ((271, 12, 278, 13), 'gevent.spawn', 'gevent.spawn', (), '', False, 'import gevent\n'), ((286, 12, 293, 13), 'gevent.spawn', 'gevent.spawn', (), '', False, 'import gevent\n'), ((384, 13, 384, 55), 'raiden.tests.utils.transfer.watch_for_unlock_failures', 'watch_for_unlock_failures', ({(384, 39, 384, 54): '*raiden_network'}, {}), '(*raiden_network)', False, 'from raiden.tests.utils.transfer import assert_synced_channel_state, wait_assert, watch_for_unlock_failures\n'), ((393, 13, 393, 55), 'raiden.tests.utils.transfer.watch_for_unlock_failures', 'watch_for_unlock_failures', ({(393, 39, 393, 54): '*raiden_network'}, {}), '(*raiden_network)', False, 'from raiden.tests.utils.transfer import assert_synced_channel_state, wait_assert, watch_for_unlock_failures\n'), ((402, 13, 402, 55), 'raiden.tests.utils.transfer.watch_for_unlock_failures', 'watch_for_unlock_failures', ({(402, 39, 402, 54): '*raiden_network'}, {}), '(*raiden_network)', False, 'from raiden.tests.utils.transfer import assert_synced_channel_state, wait_assert, watch_for_unlock_failures\n'), ((198, 19, 198, 33), 'raiden.utils.typing.TokenAmount', 'TokenAmount', ({(198, 31, 198, 32): '(1)'}, {}), '(1)', False, 'from raiden.utils.typing import Address, BlockNumber, Host, Iterator, List, Port, TokenAddress, TokenAmount, TokenNetworkAddress, Tuple\n'), ((72, 44, 72, 61), 'raiden.utils.typing.Host', 'Host', ({(72, 49, 72, 60): '"""localhost"""'}, {}), "('localhost')", False, 'from raiden.utils.typing import Address, BlockNumber, Host, Iterator, List, Port, TokenAddress, TokenAmount, TokenNetworkAddress, Tuple\n')]
jackie930/PyABSA
pyabsa/utils/preprocess.py
3cf733f8b95610a69c985b4650309c24f42b44b5
# -*- coding: utf-8 -*- # file: preprocess.py # author: jackie # Copyright (C) 2021. All Rights Reserved. import os import pandas as pd import argparse import emoji import re from sklearn.model_selection import train_test_split parser = argparse.ArgumentParser() parser.add_argument("--inpath", type=str, required=True, default='./raw_data/data1.csv') parser.add_argument("--folder_name", type=str, required=False, default='./custom') parser.add_argument("--task", type=str, required=False, default='aptepc') args = parser.parse_args() def convert(text, labels): # convert label to list try: labels = eval(labels) tags = ['O'] * len(text) sentiment = ['-999'] * len(text) for j in range(len(labels)): label = labels[j] sentiment_key = labels[j][3] if sentiment_key == '正': sentiment_value = 'Positive' elif sentiment_key == '负': sentiment_value = 'Negative' else: sentiment_value = 'Others' tags[label[4][0]] = 'B-ASP' sentiment[label[4][0]] = sentiment_value k = label[4][0] + 1 while k < label[4][1]: tags[k] = 'I-ASP' sentiment[k] = sentiment_value k += 1 return text, tags, sentiment except: print ("labels", labels) print ("text", text) def convert_tag(text, labels): # convert label to list try: labels = eval(labels) tags = ['O'] * len(text) sentiment = ['-999'] * len(text) for j in range(len(labels)): label = labels[j] sentiment_key = labels[j][3] if sentiment_key == '正': sentiment_value = 'Positive' elif sentiment_key == '负': sentiment_value = 'Negative' else: sentiment_value = 'Others' tags[label[4][0]] = 'B-'+label[1] sentiment[label[4][0]] = sentiment_value k = label[4][0] + 1 while k < label[4][1]: tags[k] = 'I-'+label[1] sentiment[k] = sentiment_value k += 1 return text, tags, sentiment except: print ("labels", labels) print ("text", text) def convert_sentiment(sentiment_key): if sentiment_key == '正': sentiment_value = 'Positive' else: sentiment_value = 'Negative' return sentiment_value def convert_apc(text, label): label_update = [(i[0], i[3], i[4]) for i in eval(label)] label_update = list(set(label_update)) str1_list = [] str2_list = [] str3_list = [] for j in range(len(label_update)): str1 = text[:label_update[j][2][0]] + '$T$ ' + text[label_update[j][2][1]:] str1_list.append(str1) str2_list.append(label_update[j][0]) str3_list.append(convert_sentiment(label_update[j][1])) return str1_list, str2_list, str3_list def filter_emoji(desstr, restr=''): # 过滤表情 try: co = re.compile(u'[\U00010000-\U0010ffff]') except re.error: co = re.compile(u'[\uD800-\uDBFF][\uDC00-\uDFFF]') return co.sub(restr, desstr) def convert_to_atepc(inpath, dist_fname, flag): # 写之前,先检验文件是否存在,存在就删掉 if os.path.exists(dist_fname): os.remove(dist_fname) f1 = open(dist_fname, 'w', encoding='utf8') data = pd.read_csv(inpath) data.columns = ['text', 'tag_sentiment_list'] # preprocess for emoji data['text'] = data['text'].map(lambda x: filter_emoji(x, restr='xx')) # 只保留review的长度小于600的 data = data[data['text'].str.len() <= 600] # train test split x_train, x_test = train_test_split(data, test_size=0.2, random_state=42) if flag == 'train': data_res = x_train.iloc[:, :].reset_index() else: data_res = x_test.iloc[:, :].reset_index() # print (data_res.head()) for i in range(len(data_res)): text, label = data_res['text'][i], data_res['tag_sentiment_list'][i] text, tags, sentiment = convert(text, label) for word, tag, sen in zip(text, tags, sentiment): if word not in [',', '。', ' ', '\xa0', '\u2006', '\u3000', '\u2002', '\u2003', '\u2005', '\x0c', '\u2028', '\u2009', '\u200a']: f1.write(word + ' ' + tag + ' ' + sen + '\n') else: f1.write("\n") f1.write("\n") f1.close() print ("process atepc finished!") def convert_to_atepc_tag(inpath, dist_fname, flag): # 写之前,先检验文件是否存在,存在就删掉 if os.path.exists(dist_fname): os.remove(dist_fname) f1 = open(dist_fname, 'w', encoding='utf8') data = pd.read_csv(inpath) data.columns = ['text', 'tag_sentiment_list'] # preprocess for emoji data['text'] = data['text'].map(lambda x: filter_emoji(x, restr='xx')) # drop id list not able to process # print (data.iloc[8832,:]) # data = data.drop([8832]) # 只保留review的长度小于600的 data = data[data['text'].str.len() <= 600] # train test split x_train, x_test = train_test_split(data, test_size=0.2, random_state=42) if flag == 'train': data_res = x_train.iloc[:, :].reset_index() else: data_res = x_test.iloc[:, :].reset_index() # print (data_res.head()) for i in range(len(data_res)): text, label = data_res['text'][i], data_res['tag_sentiment_list'][i] text, tags, sentiment = convert(text, label) for word, tag, sen in zip(text, tags, sentiment): if word not in [',', '。', ' ', '\xa0', '\u2006', '\u3000', '\u2002', '\u2003', '\u2005', '\x0c', '\u2028', '\u2009', '\u200a']: f1.write(word + ' ' + tag + ' ' + sen + '\n') else: f1.write("\n") f1.write("\n") f1.close() print ("process atepc finished!") def convert_to_apc(inpath, dist_fname, flag): # 写之前,先检验文件是否存在,存在就删掉 if os.path.exists(dist_fname): os.remove(dist_fname) f1 = open(dist_fname, 'w', encoding='utf8') data = pd.read_csv(inpath) # train test split x_train, x_test = train_test_split(data, test_size=0.2, random_state=42) if flag == 'train': data_res = x_train.iloc[:, :].reset_index() else: data_res = x_test.iloc[:, :].reset_index() # print (data_res.head()) for i in range(len(data_res)): text, label = data_res['text'][i], data_res['tag_sentiment_list'][i] str1_list, str2_list, str3_list = convert_apc(text, label) for x1, x2, x3 in zip(str1_list, str2_list, str3_list): f1.write(x1 + '\n') f1.write(x2 + '\n') f1.write(x3 + '\n') f1.close() print ("process apc finished!") def main(inpath, folder_name, task): if not os.path.exists(folder_name): os.makedirs(folder_name) if task == 'aptepc': # get folder name print ("start process for an aptepc task") folder_name_prefix = folder_name.split('/')[-1] dist_train_fname = os.path.join(folder_name_prefix, folder_name_prefix + '.train.txt.atepc') dist_test_fname = os.path.join(folder_name_prefix, folder_name_prefix + '.test.txt.atepc') # process train convert_to_atepc(inpath, dist_train_fname, 'train') print ("<<< finish training data preprocess") # process test convert_to_atepc(inpath, dist_test_fname, 'test') print ("<<< finish test data preprocess") elif task == 'apc': # get folder name folder_name_prefix = folder_name.split('/')[-1] dist_train_fname = os.path.join(folder_name_prefix, folder_name_prefix + '.train.txt') dist_test_fname = os.path.join(folder_name_prefix, folder_name_prefix + '.test.txt') # process train convert_to_apc(inpath, dist_train_fname, 'train') print ("<<< finish training data preprocess") # process test convert_to_apc(inpath, dist_test_fname, 'test') print ("<<< finish test data preprocess") elif task == 'aptepc-tag': # get folder name print ("start process for an aptepc tag task") folder_name_prefix = folder_name.split('/')[-1] dist_train_fname = os.path.join(folder_name_prefix, folder_name_prefix + '.train.txt.atepc') dist_test_fname = os.path.join(folder_name_prefix, folder_name_prefix + '.test.txt.atepc') # process train convert_to_atepc_tag(inpath, dist_train_fname, 'train') print ("<<< finish training data preprocess") # process test convert_to_atepc_tag(inpath, dist_test_fname, 'test') print ("<<< finish test data preprocess") main(args.inpath, args.folder_name, args.task)
[((13, 9, 13, 34), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ({}, {}), '()', False, 'import argparse\n'), ((120, 7, 120, 33), 'os.path.exists', 'os.path.exists', ({(120, 22, 120, 32): 'dist_fname'}, {}), '(dist_fname)', False, 'import os\n'), ((124, 11, 124, 30), 'pandas.read_csv', 'pd.read_csv', ({(124, 23, 124, 29): 'inpath'}, {}), '(inpath)', True, 'import pandas as pd\n'), ((134, 22, 134, 76), 'sklearn.model_selection.train_test_split', 'train_test_split', (), '', False, 'from sklearn.model_selection import train_test_split\n'), ((158, 7, 158, 33), 'os.path.exists', 'os.path.exists', ({(158, 22, 158, 32): 'dist_fname'}, {}), '(dist_fname)', False, 'import os\n'), ((162, 11, 162, 30), 'pandas.read_csv', 'pd.read_csv', ({(162, 23, 162, 29): 'inpath'}, {}), '(inpath)', True, 'import pandas as pd\n'), ((176, 22, 176, 76), 'sklearn.model_selection.train_test_split', 'train_test_split', (), '', False, 'from sklearn.model_selection import train_test_split\n'), ((200, 7, 200, 33), 'os.path.exists', 'os.path.exists', ({(200, 22, 200, 32): 'dist_fname'}, {}), '(dist_fname)', False, 'import os\n'), ((204, 11, 204, 30), 'pandas.read_csv', 'pd.read_csv', ({(204, 23, 204, 29): 'inpath'}, {}), '(inpath)', True, 'import pandas as pd\n'), ((206, 22, 206, 76), 'sklearn.model_selection.train_test_split', 'train_test_split', (), '', False, 'from sklearn.model_selection import train_test_split\n'), ((112, 13, 112, 51), 're.compile', 're.compile', ({(112, 24, 112, 50): 'u"""[𐀀-\U0010ffff]"""'}, {}), "(u'[𐀀-\\U0010ffff]')", False, 'import re\n'), ((121, 8, 121, 29), 'os.remove', 'os.remove', ({(121, 18, 121, 28): 'dist_fname'}, {}), '(dist_fname)', False, 'import os\n'), ((159, 8, 159, 29), 'os.remove', 'os.remove', ({(159, 18, 159, 28): 'dist_fname'}, {}), '(dist_fname)', False, 'import os\n'), ((201, 8, 201, 29), 'os.remove', 'os.remove', ({(201, 18, 201, 28): 'dist_fname'}, {}), '(dist_fname)', False, 'import os\n'), ((228, 11, 228, 38), 'os.path.exists', 'os.path.exists', ({(228, 26, 228, 37): 'folder_name'}, {}), '(folder_name)', False, 'import os\n'), ((229, 8, 229, 32), 'os.makedirs', 'os.makedirs', ({(229, 20, 229, 31): 'folder_name'}, {}), '(folder_name)', False, 'import os\n'), ((235, 27, 235, 100), 'os.path.join', 'os.path.join', ({(235, 40, 235, 58): 'folder_name_prefix', (235, 60, 235, 99): "folder_name_prefix + '.train.txt.atepc'"}, {}), "(folder_name_prefix, folder_name_prefix + '.train.txt.atepc')", False, 'import os\n'), ((236, 26, 236, 98), 'os.path.join', 'os.path.join', ({(236, 39, 236, 57): 'folder_name_prefix', (236, 59, 236, 97): "folder_name_prefix + '.test.txt.atepc'"}, {}), "(folder_name_prefix, folder_name_prefix + '.test.txt.atepc')", False, 'import os\n'), ((114, 13, 114, 58), 're.compile', 're.compile', ({(114, 24, 114, 57): "u'[\\ud800-\\udbff][\\udc00-\\udfff]'"}, {}), "(u'[\\ud800-\\udbff][\\udc00-\\udfff]')", False, 'import re\n'), ((246, 27, 246, 94), 'os.path.join', 'os.path.join', ({(246, 40, 246, 58): 'folder_name_prefix', (246, 60, 246, 93): "folder_name_prefix + '.train.txt'"}, {}), "(folder_name_prefix, folder_name_prefix + '.train.txt')", False, 'import os\n'), ((247, 26, 247, 92), 'os.path.join', 'os.path.join', ({(247, 39, 247, 57): 'folder_name_prefix', (247, 59, 247, 91): "folder_name_prefix + '.test.txt'"}, {}), "(folder_name_prefix, folder_name_prefix + '.test.txt')", False, 'import os\n'), ((258, 27, 258, 100), 'os.path.join', 'os.path.join', ({(258, 40, 258, 58): 'folder_name_prefix', (258, 60, 258, 99): "folder_name_prefix + '.train.txt.atepc'"}, {}), "(folder_name_prefix, folder_name_prefix + '.train.txt.atepc')", False, 'import os\n'), ((259, 26, 259, 98), 'os.path.join', 'os.path.join', ({(259, 39, 259, 57): 'folder_name_prefix', (259, 59, 259, 97): "folder_name_prefix + '.test.txt.atepc'"}, {}), "(folder_name_prefix, folder_name_prefix + '.test.txt.atepc')", False, 'import os\n')]
dparito/10Apps-Python_w-Andy
apps/06_lolcat_factory/you_try/PRD/cat_service.py
77ca1ec280729a9002e49071e2f31cb5bc7b75cd
import os import shutil import requests def get_cat(folder, name): url = "http://consuming-python-services-api.azurewebsites.net/cats/random" data = get_data_from_url(url) save_image(folder, name, data) def get_data_from_url(url): response = requests.get(url, stream=True) return response.raw def save_image(folder, name, data): file_name = os.path.join(folder, name + '.jpg') with open(file_name, 'wb') as fout: shutil.copyfileobj(data, fout)
[((14, 15, 14, 45), 'requests.get', 'requests.get', (), '', False, 'import requests\n'), ((19, 16, 19, 51), 'os.path.join', 'os.path.join', ({(19, 29, 19, 35): 'folder', (19, 37, 19, 50): "name + '.jpg'"}, {}), "(folder, name + '.jpg')", False, 'import os\n'), ((21, 8, 21, 38), 'shutil.copyfileobj', 'shutil.copyfileobj', ({(21, 27, 21, 31): 'data', (21, 33, 21, 37): 'fout'}, {}), '(data, fout)', False, 'import shutil\n')]
TryTestspace/dask
dask/dataframe/io/hdf.py
86d4f7d8c6d48ec6c4b1de1b6cfd2d3f4e5a4c1b
from __future__ import absolute_import, division, print_function from fnmatch import fnmatch from glob import glob import os import uuid from warnings import warn import pandas as pd from toolz import merge from .io import _link from ...base import get_scheduler from ..core import DataFrame, new_dd_object from ... import config, multiprocessing from ...base import tokenize, compute_as_if_collection from ...bytes.utils import build_name_function from ...compatibility import PY3 from ...delayed import Delayed, delayed from ...utils import get_scheduler_lock def _pd_to_hdf(pd_to_hdf, lock, args, kwargs=None): """ A wrapper function around pd_to_hdf that enables locking""" if lock: lock.acquire() try: pd_to_hdf(*args, **kwargs) finally: if lock: lock.release() return None def to_hdf(df, path, key, mode='a', append=False, get=None, scheduler=None, name_function=None, compute=True, lock=None, dask_kwargs={}, **kwargs): """ Store Dask Dataframe to Hierarchical Data Format (HDF) files This is a parallel version of the Pandas function of the same name. Please see the Pandas docstring for more detailed information about shared keyword arguments. This function differs from the Pandas version by saving the many partitions of a Dask DataFrame in parallel, either to many files, or to many datasets within the same file. You may specify this parallelism with an asterix ``*`` within the filename or datapath, and an optional ``name_function``. The asterix will be replaced with an increasing sequence of integers starting from ``0`` or with the result of calling ``name_function`` on each of those integers. This function only supports the Pandas ``'table'`` format, not the more specialized ``'fixed'`` format. Parameters ---------- path: string Path to a target filename. May contain a ``*`` to denote many filenames key: string Datapath within the files. May contain a ``*`` to denote many locations name_function: function A function to convert the ``*`` in the above options to a string. Should take in a number from 0 to the number of partitions and return a string. (see examples below) compute: bool Whether or not to execute immediately. If False then this returns a ``dask.Delayed`` value. lock: Lock, optional Lock to use to prevent concurrency issues. By default a ``threading.Lock``, ``multiprocessing.Lock`` or ``SerializableLock`` will be used depending on your scheduler if a lock is required. See dask.utils.get_scheduler_lock for more information about lock selection. **other: See pandas.to_hdf for more information Examples -------- Save Data to a single file >>> df.to_hdf('output.hdf', '/data') # doctest: +SKIP Save data to multiple datapaths within the same file: >>> df.to_hdf('output.hdf', '/data-*') # doctest: +SKIP Save data to multiple files: >>> df.to_hdf('output-*.hdf', '/data') # doctest: +SKIP Save data to multiple files, using the multiprocessing scheduler: >>> df.to_hdf('output-*.hdf', '/data', scheduler='processes') # doctest: +SKIP Specify custom naming scheme. This writes files as '2000-01-01.hdf', '2000-01-02.hdf', '2000-01-03.hdf', etc.. >>> from datetime import date, timedelta >>> base = date(year=2000, month=1, day=1) >>> def name_function(i): ... ''' Convert integer 0 to n to a string ''' ... return base + timedelta(days=i) >>> df.to_hdf('*.hdf', '/data', name_function=name_function) # doctest: +SKIP Returns ------- None: if compute == True delayed value: if compute == False See Also -------- read_hdf: to_parquet: """ name = 'to-hdf-' + uuid.uuid1().hex pd_to_hdf = getattr(df._partition_type, 'to_hdf') single_file = True single_node = True # if path is string, format using i_name if isinstance(path, str): if path.count('*') + key.count('*') > 1: raise ValueError("A maximum of one asterisk is accepted in file " "path and dataset key") fmt_obj = lambda path, i_name: path.replace('*', i_name) if '*' in path: single_file = False else: if key.count('*') > 1: raise ValueError("A maximum of one asterisk is accepted in " "dataset key") fmt_obj = lambda path, _: path if '*' in key: single_node = False if 'format' in kwargs and kwargs['format'] not in ['t', 'table']: raise ValueError("Dask only support 'table' format in hdf files.") if mode not in ('a', 'w', 'r+'): raise ValueError("Mode must be one of 'a', 'w' or 'r+'") if name_function is None: name_function = build_name_function(df.npartitions - 1) # we guarantee partition order is preserved when its saved and read # so we enforce name_function to maintain the order of its input. if not (single_file and single_node): formatted_names = [name_function(i) for i in range(df.npartitions)] if formatted_names != sorted(formatted_names): warn("To preserve order between partitions name_function " "must preserve the order of its input") # If user did not specify scheduler and write is sequential default to the # sequential scheduler. otherwise let the _get method choose the scheduler if (get is None and not config.get('get', None) and scheduler is None and not config.get('scheduler', None) and single_node and single_file): scheduler = 'single-threaded' # handle lock default based on whether we're writing to a single entity _actual_get = get_scheduler(get=get, collections=[df], scheduler=scheduler) if lock is None: if not single_node: lock = True elif not single_file and _actual_get is not multiprocessing.get: # if we're writing to multiple files with the multiprocessing # scheduler we don't need to lock lock = True else: lock = False if lock: lock = get_scheduler_lock(get, df, scheduler=scheduler) kwargs.update({'format': 'table', 'mode': mode, 'append': append}) dsk = dict() i_name = name_function(0) dsk[(name, 0)] = (_pd_to_hdf, pd_to_hdf, lock, [(df._name, 0), fmt_obj(path, i_name), key.replace('*', i_name)], kwargs) kwargs2 = kwargs.copy() if single_file: kwargs2['mode'] = 'a' if single_node: kwargs2['append'] = True filenames = [] for i in range(0,df.npartitions): i_name = name_function(i) filenames.append(fmt_obj(path, i_name)) for i in range(1, df.npartitions): i_name = name_function(i) task = (_pd_to_hdf, pd_to_hdf, lock, [(df._name, i), fmt_obj(path, i_name), key.replace('*', i_name)], kwargs2) if single_file: link_dep = i - 1 if single_node else 0 task = (_link, (name, link_dep), task) dsk[(name, i)] = task dsk = merge(df.dask, dsk) if single_file and single_node: keys = [(name, df.npartitions - 1)] else: keys = [(name, i) for i in range(df.npartitions)] if compute: compute_as_if_collection(DataFrame, dsk, keys, get=get, scheduler=scheduler, **dask_kwargs) return filenames else: return delayed([Delayed(k, dsk) for k in keys]) dont_use_fixed_error_message = """ This HDFStore is not partitionable and can only be use monolithically with pandas. In the future when creating HDFStores use the ``format='table'`` option to ensure that your dataset can be parallelized""" read_hdf_error_msg = """ The start and stop keywords are not supported when reading from more than one file/dataset. The combination is ambiguous because it could be interpreted as the starting and stopping index per file, or starting and stopping index of the global dataset.""" def _read_single_hdf(path, key, start=0, stop=None, columns=None, chunksize=int(1e6), sorted_index=False, lock=None, mode='a'): """ Read a single hdf file into a dask.dataframe. Used for each file in read_hdf. """ def get_keys_stops_divisions(path, key, stop, sorted_index, chunksize): """ Get the "keys" or group identifiers which match the given key, which can contain wildcards. This uses the hdf file identified by the given path. Also get the index of the last row of data for each matched key. """ with pd.HDFStore(path, mode=mode) as hdf: keys = [k for k in hdf.keys() if fnmatch(k, key)] stops = [] divisions = [] for k in keys: storer = hdf.get_storer(k) if storer.format_type != 'table': raise TypeError(dont_use_fixed_error_message) if stop is None: stops.append(storer.nrows) elif stop > storer.nrows: raise ValueError("Stop keyword exceeds dataset number " "of rows ({})".format(storer.nrows)) else: stops.append(stop) if sorted_index: division = [storer.read_column('index', start=start, stop=start + 1)[0] for start in range(0, storer.nrows, chunksize)] division_end = storer.read_column('index', start=storer.nrows - 1, stop=storer.nrows)[0] division.append(division_end) divisions.append(division) else: divisions.append(None) return keys, stops, divisions def one_path_one_key(path, key, start, stop, columns, chunksize, division, lock): """ Get the data frame corresponding to one path and one key (which should not contain any wildcards). """ empty = pd.read_hdf(path, key, mode=mode, stop=0) if columns is not None: empty = empty[columns] token = tokenize((path, os.path.getmtime(path), key, start, stop, empty, chunksize, division)) name = 'read-hdf-' + token if empty.ndim == 1: base = {'name': empty.name, 'mode': mode} else: base = {'columns': empty.columns, 'mode': mode} if start >= stop: raise ValueError("Start row number ({}) is above or equal to stop " "row number ({})".format(start, stop)) def update(s): new = base.copy() new.update({'start': s, 'stop': s + chunksize}) return new dsk = dict(((name, i), (_pd_read_hdf, path, key, lock, update(s))) for i, s in enumerate(range(start, stop, chunksize))) if division: divisions = division else: divisions = [None] * (len(dsk) + 1) return new_dd_object(dsk, name, empty, divisions) keys, stops, divisions = get_keys_stops_divisions(path, key, stop, sorted_index, chunksize) if (start != 0 or stop is not None) and len(keys) > 1: raise NotImplementedError(read_hdf_error_msg) from ..multi import concat return concat([one_path_one_key(path, k, start, s, columns, chunksize, d, lock) for k, s, d in zip(keys, stops, divisions)]) def _pd_read_hdf(path, key, lock, kwargs): """ Read from hdf5 file with a lock """ if lock: lock.acquire() try: result = pd.read_hdf(path, key, **kwargs) finally: if lock: lock.release() return result def read_hdf(pattern, key, start=0, stop=None, columns=None, chunksize=1000000, sorted_index=False, lock=True, mode='a'): """ Read HDF files into a Dask DataFrame Read hdf files into a dask dataframe. This function is like ``pandas.read_hdf``, except it can read from a single large file, or from multiple files, or from multiple keys from the same file. Parameters ---------- pattern : string, list File pattern (string), buffer to read from, or list of file paths. Can contain wildcards. key : group identifier in the store. Can contain wildcards start : optional, integer (defaults to 0), row number to start at stop : optional, integer (defaults to None, the last row), row number to stop at columns : list of columns, optional A list of columns that if not None, will limit the return columns (default is None) chunksize : positive integer, optional Maximal number of rows per partition (default is 1000000). sorted_index : boolean, optional Option to specify whether or not the input hdf files have a sorted index (default is False). lock : boolean, optional Option to use a lock to prevent concurrency issues (default is True). mode : {'a', 'r', 'r+'}, default 'a'. Mode to use when opening file(s). 'r' Read-only; no data can be modified. 'a' Append; an existing file is opened for reading and writing, and if the file does not exist it is created. 'r+' It is similar to 'a', but the file must already exist. Returns ------- dask.DataFrame Examples -------- Load single file >>> dd.read_hdf('myfile.1.hdf5', '/x') # doctest: +SKIP Load multiple files >>> dd.read_hdf('myfile.*.hdf5', '/x') # doctest: +SKIP >>> dd.read_hdf(['myfile.1.hdf5', 'myfile.2.hdf5'], '/x') # doctest: +SKIP Load multiple datasets >>> dd.read_hdf('myfile.1.hdf5', '/*') # doctest: +SKIP """ if lock is True: lock = get_scheduler_lock() key = key if key.startswith('/') else '/' + key if isinstance(pattern, str): paths = sorted(glob(pattern)) else: paths = pattern if (start != 0 or stop is not None) and len(paths) > 1: raise NotImplementedError(read_hdf_error_msg) if chunksize <= 0: raise ValueError("Chunksize must be a positive integer") if (start != 0 or stop is not None) and sorted_index: raise ValueError("When assuming pre-partitioned data, data must be " "read in its entirety using the same chunksizes") from ..multi import concat return concat([_read_single_hdf(path, key, start=start, stop=stop, columns=columns, chunksize=chunksize, sorted_index=sorted_index, lock=lock, mode=mode) for path in paths]) if PY3: from ..core import _Frame _Frame.to_hdf.__doc__ = to_hdf.__doc__
[((215, 10, 215, 29), 'toolz.merge', 'merge', ({(215, 16, 215, 23): 'df.dask', (215, 25, 215, 28): 'dsk'}, {}), '(df.dask, dsk)', False, 'from toolz import merge\n'), ((291, 16, 291, 57), 'pandas.read_hdf', 'pd.read_hdf', (), '', True, 'import pandas as pd\n'), ((336, 17, 336, 49), 'pandas.read_hdf', 'pd.read_hdf', ({(336, 29, 336, 33): 'path', (336, 35, 336, 38): 'key'}, {}), '(path, key, **kwargs)', True, 'import pandas as pd\n'), ((118, 23, 118, 35), 'uuid.uuid1', 'uuid.uuid1', ({}, {}), '()', False, 'import uuid\n'), ((159, 12, 160, 56), 'warnings.warn', 'warn', ({(159, 17, 160, 55): '"""To preserve order between partitions name_function must preserve the order of its input"""'}, {}), "(\n 'To preserve order between partitions name_function must preserve the order of its input'\n )", False, 'from warnings import warn\n'), ((257, 13, 257, 41), 'pandas.HDFStore', 'pd.HDFStore', (), '', True, 'import pandas as pd\n'), ((405, 23, 405, 36), 'glob.glob', 'glob', ({(405, 28, 405, 35): 'pattern'}, {}), '(pattern)', False, 'from glob import glob\n'), ((295, 32, 295, 54), 'os.path.getmtime', 'os.path.getmtime', ({(295, 49, 295, 53): 'path'}, {}), '(path)', False, 'import os\n'), ((258, 45, 258, 60), 'fnmatch.fnmatch', 'fnmatch', ({(258, 53, 258, 54): 'k', (258, 56, 258, 59): 'key'}, {}), '(k, key)', False, 'from fnmatch import fnmatch\n'), ((279, 20, 279, 49), '__future__.division.append', 'division.append', ({(279, 36, 279, 48): 'division_end'}, {}), '(division_end)', False, 'from __future__ import absolute_import, division, print_function\n')]
mononobi/charma-server
src/charma/media_info/manager.py
ed90f5ec0b5ff3996232d5fe49a4f77f96d82ced
# -*- coding: utf-8 -*- """ media info manager module. """ from pyrin.core.mixin import HookMixin from pyrin.core.structs import Manager import pyrin.utils.path as path_utils from charma.media_info import MediaInfoPackage from charma.media_info.interface import AbstractMediaInfoProvider from charma.media_info.exceptions import InvalidMediaInfoProviderTypeError class MediaInfoManager(Manager, HookMixin): """ media info manager class. """ package_class = MediaInfoPackage hook_type = AbstractMediaInfoProvider invalid_hook_type_error = InvalidMediaInfoProviderTypeError REQUIRED_INFO = ('runtime', 'width', 'height') def _is_complete(self, info): """ gets a value indicating that given media info is complete. :param dict info: media info to be checked. :rtype: bool """ for item in self.REQUIRED_INFO: result = info.get(item) if result is None or result <= 0: return False return True def register_provider(self, instance): """ registers the given instance into media info providers. :param AbstractMediaInfoProvider instance: media info provider instance to be registered. :raises InvalidMediaInfoProviderTypeError: invalid media info provider type error. """ self.register_hook(instance) def get_info(self, file, **options): """ gets a dict containing media info of given file. :param str file: absolute path of video file. :raises InvalidPathError: invalid path error. :raises PathIsNotAbsoluteError: path is not absolute error. :raises PathNotExistedError: path not existed error. :raises IsNotFileError: is not directory error. :returns: dict(int runtime, int width, int height) :rtype: dict """ path_utils.assert_is_file(file) result = dict() for provider in self._get_hooks(): current_result = provider.get_info(file, **options) result.update(current_result) if self._is_complete(result) is True: break result.setdefault('runtime', 0) result.setdefault('width', 0) result.setdefault('height', 0) return result
[((72, 8, 72, 39), 'pyrin.utils.path.assert_is_file', 'path_utils.assert_is_file', ({(72, 34, 72, 38): 'file'}, {}), '(file)', True, 'import pyrin.utils.path as path_utils\n')]
FlorisHoogenboom/BoxRec
tests/test_parsers.py
c9cc5d149318f916facdf57d7dbe94e797d81582
import unittest from boxrec.parsers import FightParser class MockResponse(object): def __init__(self, content, encoding, url): self.content= content self.encoding = encoding self.url = url class TestFightParser(unittest.TestCase): def setUp(self): with open('mock_data/fights/draw.html', 'rb') as file: self.drawn_fight = file.read() self.parser = FightParser() def test_parses_draw(self): """Test it correctly handles draws""" mock_response = MockResponse( self.drawn_fight, 'UTF-8', "http://boxrec.com/en/event/115689/202488" ) result = self.parser.parse(mock_response) self.assertEqual(result.winner, 'drawn', "Result should equal draw.") class TestBoxerParser(unittest.TestCase): pass
[((17, 22, 17, 35), 'boxrec.parsers.FightParser', 'FightParser', ({}, {}), '()', False, 'from boxrec.parsers import FightParser\n')]
ErikGartner/hyperdock
hyperdock/common/workqueue.py
19510b4bf1e123576d7be067555d959cb8a7cf45
from datetime import datetime, timedelta from bson.objectid import ObjectId WORK_TIMEOUT = 600 class WorkQueue: """ A simple MongoDB priority work queue that handles the queue of experiment. """ def __init__(self, mongodb): super().__init__() self._mongodb = mongodb self._collection = mongodb.workqueue def assign_next_job(self, worker_id): """ Assigns the next free job to worker. Returns the object from the mongodb. """ t = datetime.utcnow() job = self._collection.find_and_modify( query={"start_time": -1, "cancelled": False}, sort=[("priority", -1), ("created_on", 1)], update={"$set": {"start_time": t, "last_update": t, "worker": worker_id}}, new=True, ) return job def add_job(self, parameters, data, trial_id, trial_name, priority=0): """ Adds new work to the workqueue. """ id = self._collection.insert( { "start_time": -1, "end_time": -1, "last_update": -1, "created_on": datetime.utcnow(), "priority": priority, "parameters": parameters, "data": data, "worker": None, "result": {}, "trial": trial_id, "trial_name": trial_name, "_id": str(ObjectId()), "cancelled": False, "orphaned": False, } ) return id def update_job(self, _id, update=None): """ Marks the job as alive and post an update from the job. """ t = datetime.utcnow() self._collection.update( {"_id": _id}, {"$set": {"last_update": t, "update": update}} ) def is_job_cancelled(self, _id): """ Checks if a certain job has been cancelled or all together removed. """ return self._collection.find_one({"_id": _id, "cancelled": False}) is None def finish_job(self, _id, result): """ Marks the job as finished and attach the result. """ t = datetime.utcnow() self._collection.update_one( {"_id": _id}, {"$set": {"end_time": t, "last_update": t, "result": result}} ) def purge_dead_jobs(self): """ Returns jobs that have timed out due to worker death and cancel them. """ now = datetime.utcnow() deadline = now - timedelta(seconds=WORK_TIMEOUT) jobs = [] while True: job = self._collection.find_and_modify( query={ "start_time": {"$ne": -1}, "end_time": -1, "last_update": {"$lt": deadline}, }, sort=[("priority", -1), ("last_update", 1)], update={ "$set": { "cancelled": True, "orphaned": True, "end_time": now, "result": {"state": "fail", "msg": "Timed out!"}, } }, new=True, ) if job is not None: jobs.append(job) else: return jobs def check_for_orphans(self, id_list): """ Checks if a list of Docker container ids are marked as orphans. Returns a list of (Docker id, experiment id) tuples. """ jobs = self._collection.find( {"orphaned": True, "update.container.long_id": {"$in": id_list}} ) return [(j["update"]["container"]["long_id"], j["_id"]) for j in list(jobs)] def not_orphaned(self, _id): """ Marks a job as not orphaned. """ job = self._collection.find_and_modify( query={"_id": _id}, update={"$set": {"orphaned": False}}, new=True ) return job is not None def cancel_invalid_jobs(self, trial_list): """ Takes a list of all active (not finished, cancelled or removed) trial ids. Work that is not associated with any of these are cancelled. """ now = datetime.utcnow() jobs = [] while True: job = self._collection.find_and_modify( query={"trial": {"$nin": trial_list}, "end_time": -1}, update={ "$set": { "cancelled": True, "end_time": now, "result": {"state": "fail", "msg": "Abandoned"}, } }, new=True, ) if job is not None: jobs.append(job) else: return jobs
[((25, 12, 25, 29), 'datetime.datetime.utcnow', 'datetime.utcnow', ({}, {}), '()', False, 'from datetime import datetime, timedelta\n'), ((62, 12, 62, 29), 'datetime.datetime.utcnow', 'datetime.utcnow', ({}, {}), '()', False, 'from datetime import datetime, timedelta\n'), ((77, 12, 77, 29), 'datetime.datetime.utcnow', 'datetime.utcnow', ({}, {}), '()', False, 'from datetime import datetime, timedelta\n'), ((86, 14, 86, 31), 'datetime.datetime.utcnow', 'datetime.utcnow', ({}, {}), '()', False, 'from datetime import datetime, timedelta\n'), ((137, 14, 137, 31), 'datetime.datetime.utcnow', 'datetime.utcnow', ({}, {}), '()', False, 'from datetime import datetime, timedelta\n'), ((87, 25, 87, 56), 'datetime.timedelta', 'timedelta', (), '', False, 'from datetime import datetime, timedelta\n'), ((43, 30, 43, 47), 'datetime.datetime.utcnow', 'datetime.utcnow', ({}, {}), '()', False, 'from datetime import datetime, timedelta\n'), ((51, 27, 51, 37), 'bson.objectid.ObjectId', 'ObjectId', ({}, {}), '()', False, 'from bson.objectid import ObjectId\n')]
poojavade/Genomics_Docker
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/apache_libcloud-0.15.1-py2.7.egg/libcloud/test/test_connection.py
829b5094bba18bbe03ae97daf925fee40a8476e8
# -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one or more§ # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import ssl from mock import Mock, call from libcloud.test import unittest from libcloud.common.base import Connection from libcloud.common.base import LoggingConnection class ConnectionClassTestCase(unittest.TestCase): def setUp(self): self.originalConnect = Connection.connect self.originalResponseCls = Connection.responseCls Connection.connect = Mock() Connection.responseCls = Mock() Connection.allow_insecure = True def tearDown(self): Connection.connect = self.originalConnect Connection.responseCls = Connection.responseCls Connection.allow_insecure = True def test_dont_allow_insecure(self): Connection.allow_insecure = True Connection(secure=False) Connection.allow_insecure = False expected_msg = (r'Non https connections are not allowed \(use ' 'secure=True\)') self.assertRaisesRegexp(ValueError, expected_msg, Connection, secure=False) def test_content_length(self): con = Connection() con.connection = Mock() # GET method # No data, no content length should be present con.request('/test', method='GET', data=None) call_kwargs = con.connection.request.call_args[1] self.assertTrue('Content-Length' not in call_kwargs['headers']) # '' as data, no content length should be present con.request('/test', method='GET', data='') call_kwargs = con.connection.request.call_args[1] self.assertTrue('Content-Length' not in call_kwargs['headers']) # 'a' as data, content length should be present (data in GET is not # correct, but anyways) con.request('/test', method='GET', data='a') call_kwargs = con.connection.request.call_args[1] self.assertEqual(call_kwargs['headers']['Content-Length'], '1') # POST, PUT method # No data, content length should be present for method in ['POST', 'PUT', 'post', 'put']: con.request('/test', method=method, data=None) call_kwargs = con.connection.request.call_args[1] self.assertEqual(call_kwargs['headers']['Content-Length'], '0') # '' as data, content length should be present for method in ['POST', 'PUT', 'post', 'put']: con.request('/test', method=method, data='') call_kwargs = con.connection.request.call_args[1] self.assertEqual(call_kwargs['headers']['Content-Length'], '0') # No data, raw request, do not touch Content-Length if present for method in ['POST', 'PUT', 'post', 'put']: con.request('/test', method=method, data=None, headers={'Content-Length': '42'}, raw=True) putheader_call_list = con.connection.putheader.call_args_list self.assertIn(call('Content-Length', '42'), putheader_call_list) # '' as data, raw request, do not touch Content-Length if present for method in ['POST', 'PUT', 'post', 'put']: con.request('/test', method=method, data=None, headers={'Content-Length': '42'}, raw=True) putheader_call_list = con.connection.putheader.call_args_list self.assertIn(call('Content-Length', '42'), putheader_call_list) # 'a' as data, content length should be present for method in ['POST', 'PUT', 'post', 'put']: con.request('/test', method=method, data='a') call_kwargs = con.connection.request.call_args[1] self.assertEqual(call_kwargs['headers']['Content-Length'], '1') def test_cache_busting(self): params1 = {'foo1': 'bar1', 'foo2': 'bar2'} params2 = [('foo1', 'bar1'), ('foo2', 'bar2')] con = Connection() con.connection = Mock() con.pre_connect_hook = Mock() con.pre_connect_hook.return_value = {}, {} con.cache_busting = False con.request(action='/path', params=params1) args, kwargs = con.pre_connect_hook.call_args self.assertFalse('cache-busting' in args[0]) self.assertEqual(args[0], params1) con.request(action='/path', params=params2) args, kwargs = con.pre_connect_hook.call_args self.assertFalse('cache-busting' in args[0]) self.assertEqual(args[0], params2) con.cache_busting = True con.request(action='/path', params=params1) args, kwargs = con.pre_connect_hook.call_args self.assertTrue('cache-busting' in args[0]) con.request(action='/path', params=params2) args, kwargs = con.pre_connect_hook.call_args self.assertTrue('cache-busting' in args[0][len(params2)]) def test_context_is_reset_after_request_has_finished(self): context = {'foo': 'bar'} def responseCls(connection, response): connection.called = True self.assertEqual(connection.context, context) con = Connection() con.called = False con.connection = Mock() con.responseCls = responseCls con.set_context(context) self.assertEqual(con.context, context) con.request('/') # Context should have been reset self.assertTrue(con.called) self.assertEqual(con.context, {}) # Context should also be reset if a method inside request throws con = Connection() con.connection = Mock() con.set_context(context) self.assertEqual(con.context, context) con.connection.request = Mock(side_effect=ssl.SSLError()) try: con.request('/') except ssl.SSLError: pass self.assertEqual(con.context, {}) con.connection = Mock() con.set_context(context) self.assertEqual(con.context, context) con.responseCls = Mock(side_effect=ValueError()) try: con.request('/') except ValueError: pass self.assertEqual(con.context, {}) def test_log_curl(self): url = '/test/path' body = None headers = {} con = LoggingConnection() con.protocol = 'http' con.host = 'example.com' con.port = 80 for method in ['GET', 'POST', 'PUT', 'DELETE']: cmd = con._log_curl(method=method, url=url, body=body, headers=headers) self.assertEqual(cmd, 'curl -i -X %s --compress http://example.com:80/test/path' % (method)) # Should use --head for head requests cmd = con._log_curl(method='HEAD', url=url, body=body, headers=headers) self.assertEqual(cmd, 'curl -i --head --compress http://example.com:80/test/path') if __name__ == '__main__': sys.exit(unittest.main())
[((32, 29, 32, 35), 'mock.Mock', 'Mock', ({}, {}), '()', False, 'from mock import Mock, call\n'), ((33, 33, 33, 39), 'mock.Mock', 'Mock', ({}, {}), '()', False, 'from mock import Mock, call\n'), ((43, 8, 43, 32), 'libcloud.common.base.Connection', 'Connection', (), '', False, 'from libcloud.common.base import Connection\n'), ((53, 14, 53, 26), 'libcloud.common.base.Connection', 'Connection', ({}, {}), '()', False, 'from libcloud.common.base import Connection\n'), ((54, 25, 54, 31), 'mock.Mock', 'Mock', ({}, {}), '()', False, 'from mock import Mock, call\n'), ((110, 14, 110, 26), 'libcloud.common.base.Connection', 'Connection', ({}, {}), '()', False, 'from libcloud.common.base import Connection\n'), ((111, 25, 111, 31), 'mock.Mock', 'Mock', ({}, {}), '()', False, 'from mock import Mock, call\n'), ((112, 31, 112, 37), 'mock.Mock', 'Mock', ({}, {}), '()', False, 'from mock import Mock, call\n'), ((143, 14, 143, 26), 'libcloud.common.base.Connection', 'Connection', ({}, {}), '()', False, 'from libcloud.common.base import Connection\n'), ((145, 25, 145, 31), 'mock.Mock', 'Mock', ({}, {}), '()', False, 'from mock import Mock, call\n'), ((158, 14, 158, 26), 'libcloud.common.base.Connection', 'Connection', ({}, {}), '()', False, 'from libcloud.common.base import Connection\n'), ((159, 25, 159, 31), 'mock.Mock', 'Mock', ({}, {}), '()', False, 'from mock import Mock, call\n'), ((173, 25, 173, 31), 'mock.Mock', 'Mock', ({}, {}), '()', False, 'from mock import Mock, call\n'), ((191, 14, 191, 33), 'libcloud.common.base.LoggingConnection', 'LoggingConnection', ({}, {}), '()', False, 'from libcloud.common.base import LoggingConnection\n'), ((207, 13, 207, 28), 'libcloud.test.unittest.main', 'unittest.main', ({}, {}), '()', False, 'from libcloud.test import unittest\n'), ((91, 26, 91, 54), 'mock.call', 'call', ({(91, 31, 91, 47): '"""Content-Length"""', (91, 49, 91, 53): '"""42"""'}, {}), "('Content-Length', '42')", False, 'from mock import Mock, call\n'), ((98, 26, 98, 54), 'mock.call', 'call', ({(98, 31, 98, 47): '"""Content-Length"""', (98, 49, 98, 53): '"""42"""'}, {}), "('Content-Length', '42')", False, 'from mock import Mock, call\n'), ((164, 50, 164, 64), 'ssl.SSLError', 'ssl.SSLError', ({}, {}), '()', False, 'import ssl\n')]
mamadbiabon/iGibson
igibson/utils/data_utils/ext_object/scripts/step_1_visual_mesh.py
d416a470240eb7ad86e04fee475ae4bd67263a7c
import os import sys import bpy script_dir = os.path.dirname(os.path.abspath(__file__)) utils_dir = os.path.join(script_dir, "../../blender_utils") sys.path.append(utils_dir) from utils import bake_model, clean_unused, export_ig_object, import_obj_folder ############################################# # Parse command line arguments ############################################# def get_arg(argv, flag, default=None): if flag in argv: return argv[argv.index(flag) + 1] return default should_bake = "--bake" in sys.argv axis = ["X", "Y", "Z", "-X", "-Y", "-Z"] import_axis_up = get_arg(sys.argv, "--up", default="Z") if import_axis_up not in axis: raise ValueError("Axis up not supported: {} (should be among X,Y,Z,-X,-Y,-Z)".format(import_axis_up)) import_axis_forward = get_arg(sys.argv, "--forward", default="X") if import_axis_forward not in axis: raise ValueError("Axis forward not supported: {} (should be among X,Y,Z,-X,-Y,-Z)".format(import_axis_forward)) source_dir = get_arg(sys.argv, "--source_dir") if source_dir is None: raise ValueError("Source directory not specified.") dest_dir = get_arg(sys.argv, "--dest_dir") if dest_dir is None: raise ValueError("Destination directory not specified.") os.makedirs(dest_dir, exist_ok=True) model_id = os.path.basename(source_dir) ############################################# # Importing obj files from source dir ############################################# for on in bpy.context.scene.objects.keys(): obj = bpy.context.scene.objects[on] bpy.data.objects.remove(obj) clean_unused() import_obj_folder(model_id, source_dir, up=import_axis_up, forward=import_axis_forward) ############################################# # Optional UV Unwrapping # This only needed if baking will be performed ############################################# if should_bake: uv_unwrapped = True for o in bpy.context.scene.objects: if not o.data.uv_layers: uv_unwrapped = False if not uv_unwrapped: bpy.ops.object.mode_set(mode="OBJECT") vl = bpy.context.view_layer bpy.ops.object.select_all(action="DESELECT") for on in bpy.context.scene.objects.keys(): obj = bpy.context.scene.objects[on] new_uv = bpy.context.scene.objects[on].data.uv_layers.new(name="obj_uv") vl.objects.active = obj obj.select_set(True) bpy.ops.object.editmode_toggle() bpy.ops.mesh.select_all(action="SELECT") bpy.ops.uv.smart_project(angle_limit=66, island_margin=0.02) bpy.context.tool_settings.mesh_select_mode = (False, False, True) bpy.ops.object.mode_set(mode="OBJECT") ############################################# # Export models ############################################# export_ig_object(dest_dir, save_material=not should_bake) ############################################# # Optional Texture Baking ############################################# if should_bake: mat_dir = os.path.join(dest_dir, "material") os.makedirs(mat_dir, exist_ok=True) # bpy.ops.wm.open_mainfile(filepath=blend_path) # import_ig_object(model_root, import_mat=True) for obj in bpy.context.scene.objects: obj.select_set(True) bpy.context.view_layer.objects.active = obj bpy.ops.object.select_all(action="SELECT") bpy.ops.object.join() channels = { "DIFFUSE": (2048, 32), "ROUGHNESS": (1024, 16), "METALLIC": (1024, 16), "NORMAL": (1024, 16), } bake_model(mat_dir, channels, overwrite=True) bpy.ops.wm.quit_blender()
[((7, 12, 7, 59), 'os.path.join', 'os.path.join', ({(7, 25, 7, 35): 'script_dir', (7, 37, 7, 58): '"""../../blender_utils"""'}, {}), "(script_dir, '../../blender_utils')", False, 'import os\n'), ((8, 0, 8, 26), 'sys.path.append', 'sys.path.append', ({(8, 16, 8, 25): 'utils_dir'}, {}), '(utils_dir)', False, 'import sys\n'), ((40, 0, 40, 36), 'os.makedirs', 'os.makedirs', (), '', False, 'import os\n'), ((42, 11, 42, 39), 'os.path.basename', 'os.path.basename', ({(42, 28, 42, 38): 'source_dir'}, {}), '(source_dir)', False, 'import os\n'), ((47, 10, 47, 42), 'bpy.context.scene.objects.keys', 'bpy.context.scene.objects.keys', ({}, {}), '()', False, 'import bpy\n'), ((50, 0, 50, 14), 'utils.clean_unused', 'clean_unused', ({}, {}), '()', False, 'from utils import bake_model, clean_unused, export_ig_object, import_obj_folder\n'), ((52, 0, 52, 87), 'utils.import_obj_folder', 'import_obj_folder', (), '', False, 'from utils import bake_model, clean_unused, export_ig_object, import_obj_folder\n'), ((82, 0, 82, 57), 'utils.export_ig_object', 'export_ig_object', (), '', False, 'from utils import bake_model, clean_unused, export_ig_object, import_obj_folder\n'), ((108, 0, 108, 25), 'bpy.ops.wm.quit_blender', 'bpy.ops.wm.quit_blender', ({}, {}), '()', False, 'import bpy\n'), ((6, 29, 6, 54), 'os.path.abspath', 'os.path.abspath', ({(6, 45, 6, 53): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((49, 4, 49, 32), 'bpy.data.objects.remove', 'bpy.data.objects.remove', ({(49, 28, 49, 31): 'obj'}, {}), '(obj)', False, 'import bpy\n'), ((89, 14, 89, 48), 'os.path.join', 'os.path.join', ({(89, 27, 89, 35): 'dest_dir', (89, 37, 89, 47): '"""material"""'}, {}), "(dest_dir, 'material')", False, 'import os\n'), ((90, 4, 90, 39), 'os.makedirs', 'os.makedirs', (), '', False, 'import os\n'), ((97, 4, 97, 46), 'bpy.ops.object.select_all', 'bpy.ops.object.select_all', (), '', False, 'import bpy\n'), ((98, 4, 98, 25), 'bpy.ops.object.join', 'bpy.ops.object.join', ({}, {}), '()', False, 'import bpy\n'), ((106, 4, 106, 49), 'utils.bake_model', 'bake_model', (), '', False, 'from utils import bake_model, clean_unused, export_ig_object, import_obj_folder\n'), ((64, 8, 64, 46), 'bpy.ops.object.mode_set', 'bpy.ops.object.mode_set', (), '', False, 'import bpy\n'), ((66, 8, 66, 52), 'bpy.ops.object.select_all', 'bpy.ops.object.select_all', (), '', False, 'import bpy\n'), ((67, 18, 67, 50), 'bpy.context.scene.objects.keys', 'bpy.context.scene.objects.keys', ({}, {}), '()', False, 'import bpy\n'), ((72, 8, 72, 40), 'bpy.ops.object.editmode_toggle', 'bpy.ops.object.editmode_toggle', ({}, {}), '()', False, 'import bpy\n'), ((73, 8, 73, 48), 'bpy.ops.mesh.select_all', 'bpy.ops.mesh.select_all', (), '', False, 'import bpy\n'), ((74, 8, 74, 68), 'bpy.ops.uv.smart_project', 'bpy.ops.uv.smart_project', (), '', False, 'import bpy\n'), ((76, 8, 76, 46), 'bpy.ops.object.mode_set', 'bpy.ops.object.mode_set', (), '', False, 'import bpy\n')]
mail2nsrajesh/python-ceilometerclient
ceilometerclient/common/base.py
3b4e35abada626ce052f20d55c71fe12ab77052a
# Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Base utilities to build API operation managers and objects on top of. """ import copy from ceilometerclient.apiclient import base from ceilometerclient.apiclient import exceptions from ceilometerclient import exc def getid(obj): """Extracts object ID. Abstracts the common pattern of allowing both an object or an object's ID (UUID) as a parameter when dealing with relationships. """ try: return obj.id except AttributeError: return obj class Manager(object): """Managers interact with a particular type of API. It works with samples, meters, alarms, etc. and provide CRUD operations for them. """ resource_class = None def __init__(self, api): self.api = api @property def client(self): """Compatible with latest oslo-incubator.apiclient code.""" return self.api def _create(self, url, body): body = self.api.post(url, json=body).json() if body: return self.resource_class(self, body) def _list(self, url, response_key=None, obj_class=None, body=None, expect_single=False): try: resp = self.api.get(url) except exceptions.NotFound: raise exc.HTTPNotFound if not resp.content: raise exc.HTTPNotFound body = resp.json() if obj_class is None: obj_class = self.resource_class if response_key: try: data = body[response_key] except KeyError: return [] else: data = body if expect_single: data = [data] return [obj_class(self, res, loaded=True) for res in data if res] def _update(self, url, body, response_key=None): body = self.api.put(url, json=body).json() # PUT requests may not return a body if body: return self.resource_class(self, body) def _delete(self, url): self.api.delete(url) class Resource(base.Resource): """A resource represents a particular instance of an object. Resource might be tenant, user, etc. This is pretty much just a bag for attributes. :param manager: Manager object :param info: dictionary representing resource attributes :param loaded: prevent lazy-loading if set to True """ def to_dict(self): return copy.deepcopy(self._info)
[((106, 15, 106, 40), 'copy.deepcopy', 'copy.deepcopy', ({(106, 29, 106, 39): 'self._info'}, {}), '(self._info)', False, 'import copy\n')]
freyes/charm-azure-integrator
lib/charms/layer/azure.py
9c96eed30388e5e7ae2ff590574890e27e845b5c
import json import os import re import subprocess from base64 import b64decode from enum import Enum from math import ceil, floor from pathlib import Path from urllib.error import HTTPError from urllib.request import urlopen import yaml from charmhelpers.core import hookenv from charmhelpers.core.unitdata import kv from charms.layer import status ENTITY_PREFIX = 'charm.azure' MODEL_UUID = os.environ['JUJU_MODEL_UUID'] MAX_ROLE_NAME_LEN = 64 MAX_POLICY_NAME_LEN = 128 class StandardRole(Enum): NETWORK_MANAGER = '4d97b98b-1d4f-4787-a291-c67834d212e7' SECURITY_MANAGER = 'e3d13bf0-dd5a-482e-ba6b-9b8433878d10' DNS_MANAGER = 'befefa01-2a29-4197-83a8-272ff33ce314' OBJECT_STORE_READER = '2a2b9908-6ea1-4ae2-8e65-a410df84e7d1' OBJECT_STORE_MANAGER = 'ba92f5b4-2d11-453d-a403-e96b0029c9fe' # When debugging hooks, for some reason HOME is set to /home/ubuntu, whereas # during normal hook execution, it's /root. Set it here to be consistent. os.environ['HOME'] = '/root' def log(msg, *args): hookenv.log(msg.format(*args), hookenv.INFO) def log_err(msg, *args): hookenv.log(msg.format(*args), hookenv.ERROR) def get_credentials(): """ Get the credentials from either the config or the hook tool. Prefers the config so that it can be overridden. """ no_creds_msg = 'missing credentials; set credentials config' config = hookenv.config() # try to use Juju's trust feature try: result = subprocess.run(['credential-get'], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) creds = yaml.load(result.stdout.decode('utf8')) creds_data = creds['credential']['attributes'] login_cli(creds_data) return True except FileNotFoundError: pass # juju trust not available except subprocess.CalledProcessError as e: if 'permission denied' not in e.stderr.decode('utf8'): raise no_creds_msg = 'missing credentials access; grant with: juju trust' # try credentials config if config['credentials']: try: creds_data = b64decode(config['credentials']).decode('utf8') login_cli(creds_data) return True except Exception: status.blocked('invalid value for credentials config') return False # no creds provided status.blocked(no_creds_msg) return False def login_cli(creds_data): """ Use the credentials to authenticate the Azure CLI. """ app_id = creds_data['application-id'] app_pass = creds_data['application-password'] sub_id = creds_data['subscription-id'] tenant_id = _get_tenant_id(sub_id) try: log('Forcing logout of Azure CLI') _azure('logout') except AzureError: pass try: log('Logging in to Azure CLI') _azure('login', '--service-principal', '-u', app_id, '-p', app_pass, '-t', tenant_id) # cache the subscription ID for use in roles kv().set('charm.azure.sub-id', sub_id) except AzureError as e: # redact the credential info from the exception message stderr = re.sub(app_id, '<app-id>', e.args[0]) stderr = re.sub(app_pass, '<app-pass>', stderr) stderr = re.sub(tenant_id, '<tenant-id>', stderr) # from None suppresses the previous exception from the stack trace raise AzureError(stderr) from None def ensure_msi(request): msi = _get_msi(request.vm_id) if not msi: log('Enabling Managed Service Identity') result = _azure('vm', 'identity', 'assign', '--name', request.vm_name, '--resource-group', request.resource_group) vm_identities = kv().get('charm.azure.vm-identities', {}) msi = vm_identities[request.vm_id] = result['systemAssignedIdentity'] kv().set('charm.azure.vm-identities', vm_identities) log('Instance MSI is: {}', msi) def send_additional_metadata(request): """ Get additional info about the requesting instance via the API that isn't available from the metadata server. """ res_grp = _azure('group', 'show', '--name', request.resource_group) # hard-code most of these because with Juju, they're always the same # and the queries required to look them up are a PITA request.send_additional_metadata( resource_group_location=res_grp['location'], vnet_name='juju-internal-network', vnet_resource_group=request.resource_group, subnet_name='juju-internal-subnet', security_group_name='juju-internal-nsg', ) def tag_instance(request): """ Tag the given instance with the given tags. """ log('Tagging instance with: {}', request.instance_tags) _azure('vm', 'update', '--name', request.vm_name, '--resource-group', request.resource_group, '--set', *['tags.{}={}'.format(tag, value) for tag, value in request.instance_tags.items()]) def enable_instance_inspection(request): """ Enable instance inspection access for the given application. """ log('Enabling instance inspection') _assign_role(request, _get_role('vm-reader')) def enable_network_management(request): """ Enable network management for the given application. """ log('Enabling network management') _assign_role(request, StandardRole.NETWORK_MANAGER) def enable_security_management(request): """ Enable security management for the given application. """ log('Enabling security management') _assign_role(request, StandardRole.SECURITY_MANAGER) def enable_block_storage_management(request): """ Enable block storage (disk) management for the given application. """ log('Enabling block storage management') _assign_role(request, _get_role('disk-manager')) def enable_dns_management(request): """ Enable DNS management for the given application. """ log('Enabling DNS management') _assign_role(request, StandardRole.DNS_MANAGER) def enable_object_storage_access(request): """ Enable object storage read-only access for the given application. """ log('Enabling object storage read') _assign_role(request, StandardRole.OBJECT_STORE_READER) def enable_object_storage_management(request): """ Enable object storage management for the given application. """ log('Enabling object store management') _assign_role(request, StandardRole.OBJECT_STORE_MANAGER) def cleanup(): """ Perform cleanup. """ pass # Internal helpers class AzureError(Exception): """ Exception class representing an error returned from the azure-cli tool. """ @classmethod def get(cls, message): """ Factory method to create either an instance of this class or a meta-subclass for certain `message`s. """ if 'already exists' in message: return AlreadyExistsAzureError(message) return AzureError(message) class AlreadyExistsAzureError(AzureError): """ Meta-error subclass of AzureError representing something already existing. """ pass def _elide(s, max_len, ellipsis='...'): """ Elide s in the middle to ensure it is under max_len. That is, shorten the string, inserting an ellipsis where the removed characters were to show that they've been removed. """ if len(s) > max_len: hl = (max_len - len(ellipsis)) / 2 headl, taill = floor(hl), ceil(hl) s = s[:headl] + ellipsis + s[-taill:] return s def _get_tenant_id(subscription_id): """ Translate the subscription ID into a tenant ID by making an unauthorized request to the API and extracting the tenant ID from the WWW-Authenticate header in the error response. """ url = ('https://management.azure.com/subscriptions/' '{}?api-version=2018-03-01-01.6.1'.format(subscription_id)) try: urlopen(url) log_err('Error getting tenant ID: did not get "unauthorized" response') return None except HTTPError as e: if 'WWW-Authenticate' not in e.headers: log_err('Error getting tenant ID: missing WWW-Authenticate header') return None www_auth = e.headers['WWW-Authenticate'] match = re.search(r'authorization_uri="[^"]*/([^/"]*)"', www_auth) if not match: log_err('Error getting tenant ID: unable to find in {}', www_auth) return None return match.group(1) def _azure(cmd, *args, return_stderr=False): """ Call the azure-cli tool. """ cmd = ['az', cmd] cmd.extend(args) result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = result.stdout.decode('utf8').strip() stderr = result.stderr.decode('utf8').strip() if result.returncode != 0: raise AzureError.get(stderr) if return_stderr: return stderr if stdout: stdout = json.loads(stdout) return stdout def _get_msi(vm_id): """ Get the Managed System Identity for the VM. """ vm_identities = kv().get('charm.azure.vm-identities', {}) return vm_identities.get(vm_id) def _get_role(role_name): """ Translate short role name into a full role name and ensure that the custom role is loaded. The custom roles have to be applied to a specific subscription ID, but the subscription ID applies to the entire credential, so will almost certainly be reused, so there's not much danger in hitting the 2k custom role limit. """ known_roles = kv().get('charm.azure.roles', {}) if role_name in known_roles: return known_roles[role_name] sub_id = kv().get('charm.azure.sub-id') role_file = Path('files/roles/{}.json'.format(role_name)) role_data = json.loads(role_file.read_text()) role_fullname = role_data['Name'].format(sub_id) scope = role_data['AssignableScopes'][0].format(sub_id) role_data['Name'] = role_fullname role_data['AssignableScopes'][0] = scope try: log('Ensuring role {}', role_fullname) _azure('role', 'definition', 'create', '--role-definition', json.dumps(role_data)) except AzureError as e: if 'already exists' not in e.args[0]: raise known_roles[role_name] = role_fullname return role_fullname def _assign_role(request, role): if isinstance(role, StandardRole): role = role.value msi = _get_msi(request.vm_id) try: _azure('role', 'assignment', 'create', '--assignee-object-id', msi, '--resource-group', request.resource_group, '--role', role) except AlreadyExistsAzureError: pass
[((54, 13, 54, 29), 'charmhelpers.core.hookenv.config', 'hookenv.config', ({}, {}), '()', False, 'from charmhelpers.core import hookenv\n'), ((83, 4, 83, 32), 'charms.layer.status.blocked', 'status.blocked', ({(83, 19, 83, 31): 'no_creds_msg'}, {}), '(no_creds_msg)', False, 'from charms.layer import status\n'), ((292, 13, 294, 51), 'subprocess.run', 'subprocess.run', (), '', False, 'import subprocess\n'), ((57, 17, 60, 55), 'subprocess.run', 'subprocess.run', (), '', False, 'import subprocess\n'), ((271, 8, 271, 20), 'urllib.request.urlopen', 'urlopen', ({(271, 16, 271, 19): 'url'}, {}), '(url)', False, 'from urllib.request import urlopen\n'), ((302, 17, 302, 35), 'json.loads', 'json.loads', ({(302, 28, 302, 34): 'stdout'}, {}), '(stdout)', False, 'import json\n'), ((111, 17, 111, 54), 're.sub', 're.sub', ({(111, 24, 111, 30): 'app_id', (111, 32, 111, 42): '"""<app-id>"""', (111, 44, 111, 53): 'e.args[0]'}, {}), "(app_id, '<app-id>', e.args[0])", False, 'import re\n'), ((112, 17, 112, 55), 're.sub', 're.sub', ({(112, 24, 112, 32): 'app_pass', (112, 34, 112, 46): '"""<app-pass>"""', (112, 48, 112, 54): 'stderr'}, {}), "(app_pass, '<app-pass>', stderr)", False, 'import re\n'), ((113, 17, 113, 57), 're.sub', 're.sub', ({(113, 24, 113, 33): 'tenant_id', (113, 35, 113, 48): '"""<tenant-id>"""', (113, 50, 113, 56): 'stderr'}, {}), "(tenant_id, '<tenant-id>', stderr)", False, 'import re\n'), ((257, 23, 257, 32), 'math.floor', 'floor', ({(257, 29, 257, 31): 'hl'}, {}), '(hl)', False, 'from math import ceil, floor\n'), ((257, 34, 257, 42), 'math.ceil', 'ceil', ({(257, 39, 257, 41): 'hl'}, {}), '(hl)', False, 'from math import ceil, floor\n'), ((279, 16, 279, 74), 're.search', 're.search', ({(279, 26, 279, 63): '"""authorization_uri="[^"]*/([^/"]*)\\""""', (279, 65, 279, 73): 'www_auth'}, {}), '(\'authorization_uri="[^"]*/([^/"]*)"\', www_auth)', False, 'import re\n'), ((310, 20, 310, 24), 'charmhelpers.core.unitdata.kv', 'kv', ({}, {}), '()', False, 'from charmhelpers.core.unitdata import kv\n'), ((324, 18, 324, 22), 'charmhelpers.core.unitdata.kv', 'kv', ({}, {}), '()', False, 'from charmhelpers.core.unitdata import kv\n'), ((327, 13, 327, 17), 'charmhelpers.core.unitdata.kv', 'kv', ({}, {}), '()', False, 'from charmhelpers.core.unitdata import kv\n'), ((337, 36, 337, 57), 'json.dumps', 'json.dumps', ({(337, 47, 337, 56): 'role_data'}, {}), '(role_data)', False, 'import json\n'), ((79, 12, 79, 66), 'charms.layer.status.blocked', 'status.blocked', ({(79, 27, 79, 65): '"""invalid value for credentials config"""'}, {}), "('invalid value for credentials config')", False, 'from charms.layer import status\n'), ((108, 8, 108, 12), 'charmhelpers.core.unitdata.kv', 'kv', ({}, {}), '()', False, 'from charmhelpers.core.unitdata import kv\n'), ((125, 24, 125, 28), 'charmhelpers.core.unitdata.kv', 'kv', ({}, {}), '()', False, 'from charmhelpers.core.unitdata import kv\n'), ((127, 8, 127, 12), 'charmhelpers.core.unitdata.kv', 'kv', ({}, {}), '()', False, 'from charmhelpers.core.unitdata import kv\n'), ((75, 25, 75, 57), 'base64.b64decode', 'b64decode', ({(75, 35, 75, 56): "config['credentials']"}, {}), "(config['credentials'])", False, 'from base64 import b64decode\n')]
pankajk22/Computer-Networks-Assignments
Assignment-1/Code/server3.py
5c227ef59c31ab52cde160568242dbbc84482bc5
import socket import csv import traceback import threading s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) usrpass={} def openfile(): filename="login_credentials.csv" with open(filename,'r')as csvfile: csv_file = csv.reader(csvfile, delimiter=",") for col in csv_file: usrpass[col[0]]=col[1] usrpass.pop("Username") #print(usrpass) ihost=socket.gethostname() host=socket.gethostbyname(ihost) ihost=socket.gethostname() host=socket.gethostbyname(ihost) iport=[] hostfile="host.csv" with open(hostfile,'r')as host_file: csv_hfile = csv.reader(host_file, delimiter=",") for row in csv_hfile: iport.append(row[1]) port=int(iport[4]) def socketbind(): try: s.bind(('',port)) print("Bind with host at port number : "+str(port)) s.listen(10) print("Socket is listening!!") except socket.error as msg: print("Error in Binding: "+ str(msg)+"\n Retrying....") socketbind() def socketaccept(): conn,add=s.accept() print("connection is established with IP : "+str(add[0])+" and Port Number : "+str(add[1])) conn.send(bytes("1","utf-8")) conversation(conn) conn.close() def conversation(conn): while True: username=str(conn.recv(1024),"utf-8") password=str(conn.recv(1024),"utf-8") res=checkpass(username,password) if res==1: print("Valid Password!") conn.send(bytes("1","utf-8")) conn.send(bytes("1","utf-8")) else: conn.send(bytes("-1","utf-8")) conn.send(bytes("-1","utf-8")) # def checkusr(username): # if username in usrpass: # return 1 # else: # print("Invalid Username") # return -1 def checkpass(username,password): if usrpass[username]==password: return 1 else: print("Invalid Password") return -1 def main(): openfile() socketbind() socketaccept() # count=0 # while (count<6): # new_thread=threading.Thread(target =socketaccept) # new_thread.start() # count=count+1 main()
[((6, 2, 6, 50), 'socket.socket', 'socket.socket', ({(6, 16, 6, 30): 'socket.AF_INET', (6, 31, 6, 49): 'socket.SOCK_STREAM'}, {}), '(socket.AF_INET, socket.SOCK_STREAM)', False, 'import socket\n'), ((19, 6, 19, 26), 'socket.gethostname', 'socket.gethostname', ({}, {}), '()', False, 'import socket\n'), ((20, 5, 20, 32), 'socket.gethostbyname', 'socket.gethostbyname', ({(20, 26, 20, 31): 'ihost'}, {}), '(ihost)', False, 'import socket\n'), ((21, 6, 21, 26), 'socket.gethostname', 'socket.gethostname', ({}, {}), '()', False, 'import socket\n'), ((22, 5, 22, 32), 'socket.gethostbyname', 'socket.gethostbyname', ({(22, 26, 22, 31): 'ihost'}, {}), '(ihost)', False, 'import socket\n'), ((26, 16, 26, 52), 'csv.reader', 'csv.reader', (), '', False, 'import csv\n'), ((12, 19, 12, 53), 'csv.reader', 'csv.reader', (), '', False, 'import csv\n')]
joaopfonseca/research
research/utils/_check_pipelines.py
02659512218d077d9ef28d481178e62172ef18cd
from itertools import product from sklearn.base import clone from sklearn.preprocessing import FunctionTransformer from sklearn.model_selection import ParameterGrid from imblearn.pipeline import Pipeline from rlearn.utils import check_random_states def check_pipelines(objects_list, random_state, n_runs): """Extract estimators and parameters grids.""" # Create random states random_states = check_random_states(random_state, n_runs) pipelines = [] param_grid = [] for comb, rs in product(product(*objects_list), random_states): name = "|".join([i[0] for i in comb]) # name, object, sub grid comb = [ (nm, ob, ParameterGrid(sg)) if ob is not None else (nm, FunctionTransformer(), ParameterGrid(sg)) for nm, ob, sg in comb ] # Create estimator if name not in [n[0] for n in pipelines]: est = Pipeline([(nm, ob) for nm, ob, _ in comb]) pipelines.append((name, est)) # Create intermediate parameter grids sub_grids = [ [{f"{nm}__{k}": v for k, v in param_def.items()} for param_def in sg] for nm, obj, sg in comb ] # Create parameter grids for sub_grid in product(*sub_grids): param_prefix = "" if len(comb) == 1 else f"{name}__" grid = {"est_name": [name]} grid.update( {f"{param_prefix}{k}": [v] for d in sub_grid for k, v in d.items()} ) random_states = { f"{param_prefix}{param}": [rs] for param in est.get_params() if "random_state" in param } grid.update(random_states) # Avoid multiple runs over pipelines without random state if grid not in param_grid: param_grid.append(grid) return pipelines, param_grid def check_pipelines_wrapper( objects_list, wrapper, random_state, n_runs, wrapped_only=False ): wrapper_label = wrapper[0] wrapper_obj = wrapper[1] wrapper_grid = wrapper[2] estimators, param_grids = check_pipelines(objects_list, random_state, n_runs) wrapped_estimators = [ ( f"{wrapper_label}|{name}", clone(wrapper_obj).set_params(**{"classifier": pipeline}), ) for name, pipeline in estimators ] wrapped_param_grids = [ { "est_name": [f'{wrapper_label}|{d["est_name"][0]}'], **{ f'{wrapper_label}|{d["est_name"][0]}__classifier__{k}': v for k, v in d.items() if k != "est_name" }, **{ f'{wrapper_label}|{d["est_name"][0]}__{k}': v for k, v in wrapper_grid.items() }, } for d in param_grids ] if wrapped_only: return wrapped_estimators, wrapped_param_grids else: return (estimators + wrapped_estimators, param_grids + wrapped_param_grids)
[((13, 20, 13, 61), 'rlearn.utils.check_random_states', 'check_random_states', ({(13, 40, 13, 52): 'random_state', (13, 54, 13, 60): 'n_runs'}, {}), '(random_state, n_runs)', False, 'from rlearn.utils import check_random_states\n'), ((17, 28, 17, 50), 'itertools.product', 'product', ({(17, 36, 17, 49): '*objects_list'}, {}), '(*objects_list)', False, 'from itertools import product\n'), ((40, 24, 40, 43), 'itertools.product', 'product', ({(40, 32, 40, 42): '*sub_grids'}, {}), '(*sub_grids)', False, 'from itertools import product\n'), ((30, 18, 30, 60), 'imblearn.pipeline.Pipeline', 'Pipeline', ({(30, 27, 30, 59): '[(nm, ob) for nm, ob, _ in comb]'}, {}), '([(nm, ob) for nm, ob, _ in comb])', False, 'from imblearn.pipeline import Pipeline\n'), ((22, 21, 22, 38), 'sklearn.model_selection.ParameterGrid', 'ParameterGrid', ({(22, 35, 22, 37): 'sg'}, {}), '(sg)', False, 'from sklearn.model_selection import ParameterGrid\n'), ((24, 22, 24, 43), 'sklearn.preprocessing.FunctionTransformer', 'FunctionTransformer', ({}, {}), '()', False, 'from sklearn.preprocessing import FunctionTransformer\n'), ((24, 45, 24, 62), 'sklearn.model_selection.ParameterGrid', 'ParameterGrid', ({(24, 59, 24, 61): 'sg'}, {}), '(sg)', False, 'from sklearn.model_selection import ParameterGrid\n'), ((72, 12, 72, 30), 'sklearn.base.clone', 'clone', ({(72, 18, 72, 29): 'wrapper_obj'}, {}), '(wrapper_obj)', False, 'from sklearn.base import clone\n')]
PuzeLiu/mushroom-rl
mushroom_rl/utils/plots/common_plots.py
99942b425e66b4ddcc26009d7105dde23841e95d
from mushroom_rl.utils.plots import PlotItemBuffer, DataBuffer from mushroom_rl.utils.plots.plot_item_buffer import PlotItemBufferLimited class RewardPerStep(PlotItemBuffer): """ Class that represents a plot for the reward at every step. """ def __init__(self, plot_buffer): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used. """ title = "Step_Reward" curves_params = [dict(data_buffer=plot_buffer)] super().__init__(title, curves_params) class RewardPerEpisode(PlotItemBuffer): """ Class that represents a plot for the accumulated reward per episode. """ def __init__(self, plot_buffer): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used. """ title = "Episode_Reward" curves_params = [dict(data_buffer=plot_buffer)] super().__init__(title, curves_params) class Actions(PlotItemBufferLimited): """ Class that represents a plot for the actions. """ def __init__(self, plot_buffers, maxs=None, mins=None): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used; maxs(list, None): list of max values of each data buffer plotted. If an element is None, no max line is drawn; mins(list, None): list of min values of each data buffer plotted. If an element is None, no min line is drawn. """ title = "Actions" super().__init__(title, plot_buffers, maxs=maxs, mins=mins) class Observations(PlotItemBufferLimited): """ Class that represents a plot for the observations. """ def __init__(self, plot_buffers, maxs=None, mins=None, dotted_limits=None): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used; maxs(list, None): list of max values of each data buffer plotted. If an element is None, no max line is drawn; mins(list, None): list of min values of each data buffer plotted. If an element is None, no min line is drawn. dotted_limits (list, None): list of booleans. If True, the corresponding limit is dotted; otherwise, it is printed as a solid line. """ title = "Observations" super().__init__(title, plot_buffers, maxs=maxs, mins=mins, dotted_limits=dotted_limits) class LenOfEpisodeTraining(PlotItemBuffer): """ Class that represents a plot for the length of the episode. """ def __init__(self, plot_buffer): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used; """ title = "Len of Episode" plot_params = [dict(data_buffer=plot_buffer)] super().__init__(title, plot_params)
[]
helion-security/helion
libs/python-daemon-2.2.0/test/test_metadata.py
1e5f22da9808c4d67bb773b93c5295c72fcaf45a
# -*- coding: utf-8 -*- # # test/test_metadata.py # Part of ‘python-daemon’, an implementation of PEP 3143. # # This is free software, and you are welcome to redistribute it under # certain conditions; see the end of this file for copyright # information, grant of license, and disclaimer of warranty. """ Unit test for ‘_metadata’ private module. """ from __future__ import (absolute_import, unicode_literals) import collections import errno import functools import json import re try: # Python 3 standard library. import urllib.parse as urlparse except ImportError: # Python 2 standard library. import urlparse import mock import pkg_resources import testtools.helpers import testtools.matchers from . import scaffold from .scaffold import unicode import daemon._metadata as metadata class HasAttribute(testtools.matchers.Matcher): """ A matcher to assert an object has a named attribute. """ def __init__(self, name): self.attribute_name = name def match(self, instance): """ Assert the object `instance` has an attribute named `name`. """ result = None if not testtools.helpers.safe_hasattr(instance, self.attribute_name): result = AttributeNotFoundMismatch(instance, self.attribute_name) return result class AttributeNotFoundMismatch(testtools.matchers.Mismatch): """ The specified instance does not have the named attribute. """ def __init__(self, instance, name): self.instance = instance self.attribute_name = name def describe(self): """ Emit a text description of this mismatch. """ text = ( "{instance!r}" " has no attribute named {name!r}").format( instance=self.instance, name=self.attribute_name) return text class metadata_value_TestCase(scaffold.TestCaseWithScenarios): """ Test cases for metadata module values. """ expected_str_attributes = set([ 'version_installed', 'author', 'copyright', 'license', 'url', ]) scenarios = [ (name, {'attribute_name': name}) for name in expected_str_attributes] for (name, params) in scenarios: if name == 'version_installed': # No duck typing, this attribute might be None. params['ducktype_attribute_name'] = NotImplemented continue # Expect an attribute of ‘str’ to test this value. params['ducktype_attribute_name'] = 'isdigit' def test_module_has_attribute(self): """ Metadata should have expected value as a module attribute. """ self.assertThat( metadata, HasAttribute(self.attribute_name)) def test_module_attribute_has_duck_type(self): """ Metadata value should have expected duck-typing attribute. """ if self.ducktype_attribute_name == NotImplemented: self.skipTest("Can't assert this attribute's type") instance = getattr(metadata, self.attribute_name) self.assertThat( instance, HasAttribute(self.ducktype_attribute_name)) class YearRange_TestCase(scaffold.TestCaseWithScenarios): """ Test cases for ‘YearRange’ class. """ scenarios = [ ('simple', { 'begin_year': 1970, 'end_year': 1979, 'expected_text': "1970–1979", }), ('same year', { 'begin_year': 1970, 'end_year': 1970, 'expected_text': "1970", }), ('no end year', { 'begin_year': 1970, 'end_year': None, 'expected_text': "1970", }), ] def setUp(self): """ Set up test fixtures. """ super(YearRange_TestCase, self).setUp() self.test_instance = metadata.YearRange( self.begin_year, self.end_year) def test_text_representation_as_expected(self): """ Text representation should be as expected. """ result = unicode(self.test_instance) self.assertEqual(result, self.expected_text) FakeYearRange = collections.namedtuple('FakeYearRange', ['begin', 'end']) @mock.patch.object(metadata, 'YearRange', new=FakeYearRange) class make_year_range_TestCase(scaffold.TestCaseWithScenarios): """ Test cases for ‘make_year_range’ function. """ scenarios = [ ('simple', { 'begin_year': "1970", 'end_date': "1979-01-01", 'expected_range': FakeYearRange(begin=1970, end=1979), }), ('same year', { 'begin_year': "1970", 'end_date': "1970-01-01", 'expected_range': FakeYearRange(begin=1970, end=1970), }), ('no end year', { 'begin_year': "1970", 'end_date': None, 'expected_range': FakeYearRange(begin=1970, end=None), }), ('end date UNKNOWN token', { 'begin_year': "1970", 'end_date': "UNKNOWN", 'expected_range': FakeYearRange(begin=1970, end=None), }), ('end date FUTURE token', { 'begin_year': "1970", 'end_date': "FUTURE", 'expected_range': FakeYearRange(begin=1970, end=None), }), ] def test_result_matches_expected_range(self): """ Result should match expected YearRange. """ result = metadata.make_year_range(self.begin_year, self.end_date) self.assertEqual(result, self.expected_range) class metadata_content_TestCase(scaffold.TestCase): """ Test cases for content of metadata. """ def test_copyright_formatted_correctly(self): """ Copyright statement should be formatted correctly. """ regex_pattern = ( "Copyright © " "\d{4}" # Four-digit year. "(?:–\d{4})?" # Optional range dash and four-digit year. ) regex_flags = re.UNICODE self.assertThat( metadata.copyright, testtools.matchers.MatchesRegex(regex_pattern, regex_flags)) def test_author_formatted_correctly(self): """ Author information should be formatted correctly. """ regex_pattern = ( ".+ " # Name. "<[^>]+>" # Email address, in angle brackets. ) regex_flags = re.UNICODE self.assertThat( metadata.author, testtools.matchers.MatchesRegex(regex_pattern, regex_flags)) def test_copyright_contains_author(self): """ Copyright information should contain author information. """ self.assertThat( metadata.copyright, testtools.matchers.Contains(metadata.author)) def test_url_parses_correctly(self): """ Homepage URL should parse correctly. """ result = urlparse.urlparse(metadata.url) self.assertIsInstance( result, urlparse.ParseResult, "URL value {url!r} did not parse correctly".format( url=metadata.url)) try: FileNotFoundError except NameError: # Python 2 uses IOError. FileNotFoundError = functools.partial(IOError, errno.ENOENT) version_info_filename = "version_info.json" def fake_func_has_metadata(testcase, resource_name): """ Fake the behaviour of ‘pkg_resources.Distribution.has_metadata’. """ if ( resource_name != testcase.version_info_filename or not hasattr(testcase, 'test_version_info')): return False return True def fake_func_get_metadata(testcase, resource_name): """ Fake the behaviour of ‘pkg_resources.Distribution.get_metadata’. """ if not fake_func_has_metadata(testcase, resource_name): error = FileNotFoundError(resource_name) raise error content = testcase.test_version_info return content def fake_func_get_distribution(testcase, distribution_name): """ Fake the behaviour of ‘pkg_resources.get_distribution’. """ if distribution_name != metadata.distribution_name: raise pkg_resources.DistributionNotFound if hasattr(testcase, 'get_distribution_error'): raise testcase.get_distribution_error mock_distribution = testcase.mock_distribution mock_distribution.has_metadata.side_effect = functools.partial( fake_func_has_metadata, testcase) mock_distribution.get_metadata.side_effect = functools.partial( fake_func_get_metadata, testcase) return mock_distribution @mock.patch.object(metadata, 'distribution_name', new="mock-dist") class get_distribution_version_info_TestCase(scaffold.TestCaseWithScenarios): """ Test cases for ‘get_distribution_version_info’ function. """ default_version_info = { 'release_date': "UNKNOWN", 'version': "UNKNOWN", 'maintainer': "UNKNOWN", } scenarios = [ ('version 0.0', { 'test_version_info': json.dumps({ 'version': "0.0", }), 'expected_version_info': {'version': "0.0"}, }), ('version 1.0', { 'test_version_info': json.dumps({ 'version': "1.0", }), 'expected_version_info': {'version': "1.0"}, }), ('file lorem_ipsum.json', { 'test_filename': "lorem_ipsum.json", 'version_info_filename': "lorem_ipsum.json", 'test_version_info': json.dumps({ 'version': "1.0", }), 'expected_resource_name': "lorem_ipsum.json", 'expected_version_info': {'version': "1.0"}, }), ('not installed', { 'get_distribution_error': pkg_resources.DistributionNotFound(), 'expected_version_info': default_version_info, }), ('no version_info', { 'expected_version_info': default_version_info, }), ('wrong filename', { 'test_filename': "lorem_ipsum.json", 'test_version_info': json.dumps({ 'version': "1.0", }), 'expected_resource_name': "lorem_ipsum.json", 'expected_version_info': default_version_info, }), ] def setUp(self): """ Set up test fixtures. """ super(get_distribution_version_info_TestCase, self).setUp() self.test_args = {} if hasattr(self, 'test_filename'): self.test_args['filename'] = self.test_filename if not hasattr(self, 'version_info_filename'): self.version_info_filename = version_info_filename if not hasattr(self, 'expected_resource_name'): self.expected_resource_name = version_info_filename self.mock_distribution = mock.MagicMock() func_patcher_get_distribution = mock.patch.object( pkg_resources, 'get_distribution') func_patcher_get_distribution.start() self.addCleanup(func_patcher_get_distribution.stop) pkg_resources.get_distribution.side_effect = functools.partial( fake_func_get_distribution, self) def test_requests_installed_distribution(self): """ The package distribution should be retrieved. """ expected_distribution_name = metadata.distribution_name metadata.get_distribution_version_info(**self.test_args) pkg_resources.get_distribution.assert_called_with( expected_distribution_name) def test_requests_specified_filename(self): """ The specified metadata resource name should be requested. """ if hasattr(self, 'get_distribution_error'): self.skipTest("No access to distribution") metadata.get_distribution_version_info(**self.test_args) self.mock_distribution.has_metadata.assert_called_with( self.expected_resource_name) def test_result_matches_expected_items(self): """ The result should match the expected items. """ version_info = metadata.get_distribution_version_info(**self.test_args) self.assertEqual(self.expected_version_info, version_info) # Copyright © 2008–2018 Ben Finney <[email protected]> # # This is free software: you may copy, modify, and/or distribute this work # under the terms of the GNU General Public License as published by the # Free Software Foundation; version 3 of that license or any later version. # No warranty expressed or implied. See the file ‘LICENSE.GPL-3’ for details. # Local variables: # coding: utf-8 # mode: python # End: # vim: fileencoding=utf-8 filetype=python :
[((138, 16, 138, 73), 'collections.namedtuple', 'collections.namedtuple', ({(138, 39, 138, 54): '"""FakeYearRange"""', (138, 56, 138, 72): "['begin', 'end']"}, {}), "('FakeYearRange', ['begin', 'end'])", False, 'import collections\n'), ((140, 1, 140, 60), 'mock.patch.object', 'mock.patch.object', (), '', False, 'import mock\n'), ((259, 1, 259, 66), 'mock.patch.object', 'mock.patch.object', (), '', False, 'import mock\n'), ((252, 49, 253, 45), 'functools.partial', 'functools.partial', ({(253, 12, 253, 34): 'fake_func_has_metadata', (253, 36, 253, 44): 'testcase'}, {}), '(fake_func_has_metadata, testcase)', False, 'import functools\n'), ((254, 49, 255, 45), 'functools.partial', 'functools.partial', ({(255, 12, 255, 34): 'fake_func_get_metadata', (255, 36, 255, 44): 'testcase'}, {}), '(fake_func_get_metadata, testcase)', False, 'import functools\n'), ((129, 29, 130, 47), 'daemon._metadata.YearRange', 'metadata.YearRange', ({(130, 16, 130, 31): 'self.begin_year', (130, 33, 130, 46): 'self.end_year'}, {}), '(self.begin_year, self.end_year)', True, 'import daemon._metadata as metadata\n'), ((174, 17, 174, 73), 'daemon._metadata.make_year_range', 'metadata.make_year_range', ({(174, 42, 174, 57): 'self.begin_year', (174, 59, 174, 72): 'self.end_date'}, {}), '(self.begin_year, self.end_date)', True, 'import daemon._metadata as metadata\n'), ((212, 17, 212, 48), 'urlparse.urlparse', 'urlparse.urlparse', ({(212, 35, 212, 47): 'metadata.url'}, {}), '(metadata.url)', False, 'import urlparse\n'), ((223, 24, 223, 64), 'functools.partial', 'functools.partial', ({(223, 42, 223, 49): 'IOError', (223, 51, 223, 63): 'errno.ENOENT'}, {}), '(IOError, errno.ENOENT)', False, 'import functools\n'), ((322, 33, 322, 49), 'mock.MagicMock', 'mock.MagicMock', ({}, {}), '()', False, 'import mock\n'), ((323, 40, 324, 50), 'mock.patch.object', 'mock.patch.object', ({(324, 16, 324, 29): 'pkg_resources', (324, 31, 324, 49): '"""get_distribution"""'}, {}), "(pkg_resources, 'get_distribution')", False, 'import mock\n'), ((327, 53, 328, 49), 'functools.partial', 'functools.partial', ({(328, 16, 328, 42): 'fake_func_get_distribution', (328, 44, 328, 48): 'self'}, {}), '(fake_func_get_distribution, self)', False, 'import functools\n'), ((333, 8, 333, 64), 'daemon._metadata.get_distribution_version_info', 'metadata.get_distribution_version_info', ({}, {}), '(**self.test_args)', True, 'import daemon._metadata as metadata\n'), ((334, 8, 335, 43), 'pkg_resources.get_distribution.assert_called_with', 'pkg_resources.get_distribution.assert_called_with', ({(335, 16, 335, 42): 'expected_distribution_name'}, {}), '(expected_distribution_name)', False, 'import pkg_resources\n'), ((341, 8, 341, 64), 'daemon._metadata.get_distribution_version_info', 'metadata.get_distribution_version_info', ({}, {}), '(**self.test_args)', True, 'import daemon._metadata as metadata\n'), ((347, 23, 347, 79), 'daemon._metadata.get_distribution_version_info', 'metadata.get_distribution_version_info', ({}, {}), '(**self.test_args)', True, 'import daemon._metadata as metadata\n'), ((271, 37, 273, 22), 'json.dumps', 'json.dumps', ({(271, 48, 273, 21): "{'version': '0.0'}"}, {}), "({'version': '0.0'})", False, 'import json\n'), ((277, 37, 279, 22), 'json.dumps', 'json.dumps', ({(277, 48, 279, 21): "{'version': '1.0'}"}, {}), "({'version': '1.0'})", False, 'import json\n'), ((285, 37, 287, 22), 'json.dumps', 'json.dumps', ({(285, 48, 287, 21): "{'version': '1.0'}"}, {}), "({'version': '1.0'})", False, 'import json\n'), ((292, 42, 292, 78), 'pkg_resources.DistributionNotFound', 'pkg_resources.DistributionNotFound', ({}, {}), '()', False, 'import pkg_resources\n'), ((300, 37, 302, 22), 'json.dumps', 'json.dumps', ({(300, 48, 302, 21): "{'version': '1.0'}"}, {}), "({'version': '1.0'})", False, 'import json\n')]
wheatdog/CDM
objectModel/Python/cdm/persistence/cdmfolder/types/purpose_reference.py
8b6698f4a8b4f44132b12d97f9f261afcfeb798c
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. from typing import Union, List from .purpose import * from .trait_reference import TraitReference from cdm.utilities import JObject class PurposeReference(JObject): def __init__(self): super().__init__() self.purposeReference = None # type: Union[str, Purpose] self.appliedTraits = [] # type: List[Union[str, TraitReference]]
[]
cyberpunk317/inverted_index
text_preprocessing/normalizer.py
f49ae3ca4f0255928986c1610c5ff8ee38c5f1ff
import re from typing import Union, List import nltk from bs4 import BeautifulSoup class Normalizer: def __init__(self): self.lemmatizer = nltk.stem.WordNetLemmatizer() def normalize(self, x: Union[list, str]) -> List[str]: """ Accepts text (possibly tokenized) and makes it suitable for machine processing """ x = self._remove_stop_words(x) x = self._denoise(x) x = self._lemmatize(x) return x def _remove_stop_words(self, x: Union[list, str]) -> List[str]: """ Removes stop words from text in english """ if isinstance(x, str): x = x.split(' ') stop_words = set(nltk.corpus.stopwords.words('english')) return [w for w in x if not w in stop_words] def _lemmatize(self, x: Union[list, str]) -> List[str]: """ Removes endings, """ if isinstance(x, list): x = ' '.join(x) x = self.lemmatizer.lemmatize(x) return x def _denoise(self, x: Union[list, str]) -> str: if isinstance(x, list): x = ' '.join(x) def strip_html(x): soup = BeautifulSoup(x, "html.parser") x = soup.get_text() return x def remove_between_square_brackets(x): x = re.sub('\[[^]]*\]', '', x) x = re.sub(r'http\S+', '', x) return x def remove_rating(x): return re.sub('\W\d/\d+\S*', '', x) x = x.lower() x = re.sub(',|\.|!|\?', '', x) x = strip_html(x) x = remove_between_square_brackets(x) x = remove_rating(x) return x
[((11, 26, 11, 55), 'nltk.stem.WordNetLemmatizer', 'nltk.stem.WordNetLemmatizer', ({}, {}), '()', False, 'import nltk\n'), ((58, 12, 58, 38), 're.sub', 're.sub', ({(58, 19, 58, 30): '""",|\\\\.|!|\\\\?"""', (58, 32, 58, 34): '""""""', (58, 36, 58, 37): 'x'}, {}), "(',|\\\\.|!|\\\\?', '', x)", False, 'import re\n'), ((28, 25, 28, 63), 'nltk.corpus.stopwords.words', 'nltk.corpus.stopwords.words', ({(28, 53, 28, 62): '"""english"""'}, {}), "('english')", False, 'import nltk\n'), ((45, 19, 45, 50), 'bs4.BeautifulSoup', 'BeautifulSoup', ({(45, 33, 45, 34): 'x', (45, 36, 45, 49): '"""html.parser"""'}, {}), "(x, 'html.parser')", False, 'from bs4 import BeautifulSoup\n'), ((50, 16, 50, 42), 're.sub', 're.sub', ({(50, 23, 50, 34): '"""\\\\[[^]]*\\\\]"""', (50, 36, 50, 38): '""""""', (50, 40, 50, 41): 'x'}, {}), "('\\\\[[^]]*\\\\]', '', x)", False, 'import re\n'), ((51, 16, 51, 41), 're.sub', 're.sub', ({(51, 23, 51, 33): '"""http\\\\S+"""', (51, 35, 51, 37): '""""""', (51, 39, 51, 40): 'x'}, {}), "('http\\\\S+', '', x)", False, 'import re\n'), ((55, 19, 55, 47), 're.sub', 're.sub', ({(55, 26, 55, 39): '"""\\\\W\\\\d/\\\\d+\\\\S*"""', (55, 41, 55, 43): '""""""', (55, 45, 55, 46): 'x'}, {}), "('\\\\W\\\\d/\\\\d+\\\\S*', '', x)", False, 'import re\n')]
MarcoMancha/BreastCancerDetector
env/lib/python3.7/site-packages/prompt_toolkit/filters/cli.py
be0dfdcebd1ae66da6d0cf48e2525c24942ae877
""" For backwards-compatibility. keep this file. (Many people are going to have key bindings that rely on this file.) """ from __future__ import unicode_literals from .app import * __all__ = [ # Old names. 'HasArg', 'HasCompletions', 'HasFocus', 'HasSelection', 'HasValidationError', 'IsDone', 'IsReadOnly', 'IsMultiline', 'RendererHeightIsKnown', 'InEditingMode', 'InPasteMode', 'ViMode', 'ViNavigationMode', 'ViInsertMode', 'ViInsertMultipleMode', 'ViReplaceMode', 'ViSelectionMode', 'ViWaitingForTextObjectMode', 'ViDigraphMode', 'EmacsMode', 'EmacsInsertMode', 'EmacsSelectionMode', 'IsSearching', 'HasSearch', 'ControlIsSearchable', ] # Keep the original classnames for backwards compatibility. HasValidationError = lambda: has_validation_error HasArg = lambda: has_arg IsDone = lambda: is_done RendererHeightIsKnown = lambda: renderer_height_is_known ViNavigationMode = lambda: vi_navigation_mode InPasteMode = lambda: in_paste_mode EmacsMode = lambda: emacs_mode EmacsInsertMode = lambda: emacs_insert_mode ViMode = lambda: vi_mode IsSearching = lambda: is_searching HasSearch = lambda: is_searching ControlIsSearchable = lambda: control_is_searchable EmacsSelectionMode = lambda: emacs_selection_mode ViDigraphMode = lambda: vi_digraph_mode ViWaitingForTextObjectMode = lambda: vi_waiting_for_text_object_mode ViSelectionMode = lambda: vi_selection_mode ViReplaceMode = lambda: vi_replace_mode ViInsertMultipleMode = lambda: vi_insert_multiple_mode ViInsertMode = lambda: vi_insert_mode HasSelection = lambda: has_selection HasCompletions = lambda: has_completions IsReadOnly = lambda: is_read_only IsMultiline = lambda: is_multiline HasFocus = has_focus # No lambda here! (Has_focus is callable that returns a callable.) InEditingMode = in_editing_mode
[]
shilpasayura/bk
genetic/spaces.py
2b0a1aa9300da80e201264bcf80226b3c5ff4ad6
#spaces.py ''' AlgoHack Genetic Algorithm for University Semaster Planning Version 0.03 2018 Niranjan Meegammana Shilpasayura.org ''' import xdb def crt_spaces_table(cursor,drop=False): if (drop): sql="DROP TABLE IF EXISTS spaces;" success, count=xdb.runSQL(cursor, sql) sql='''CREATE TABLE IF NOT EXISTS spaces ( spid INTEGER PRIMARY KEY AUTOINCREMENT, name varchar(30), sptype INTEGER, fitness INTEGER, gid INTEGER DEFAULT 0, semid INTEGER DEFAULT 0) ''' success, count=xdb.runSQL(cursor, sql) return success def insert_spaces(cursor,nlect,nlabs,gid,semid, delay): # nlabs is number of labs # nlecs is number of lecture halls # if gid =0 common for all groups else dedicated # if semid=0 common for all semasters else dedicated sql="SELECT * FROM spaces LIMIT 1"; success, count=xdb.runSQL(cursor, sql) if (count > 0): print("spaces table: Records exist") return False, 0 sqls="" fitness=1 for i in range (nlect): name="Lect Hall " + str(i+1) sptype=1 sqls=sqls +'INSERT INTO spaces (name,sptype,fitness,gid,semid) VALUES ('+ '"{}",{}, {},{},{}'.format(name, sptype,fitness,gid,semid) +');' for i in range (nlabs): name="Lab " + str(i+1) sptype=2 sqls=sqls +'INSERT INTO spaces (name,sptype,fitness,gid,semid) VALUES ('+ '"{}",{}, {},{},{}'.format(name, sptype,fitness,gid,semid) +');' success, count=xdb.runSQL_stmts(cursor, sqls,delay) return success, count if __name__ == "__main__": delay=0.05 conn=xdb.opendb('genetic56.db') cursor =conn.cursor() # create a cursor object success=crt_spaces_table(cursor, True) # create spaces table #dedicated lecture hall, lab for group and semaster success, count =insert_spaces(cursor,1,1,1,1,delay) # generate records xdb.commit(conn) xdb.closedb(conn)
[((23, 19, 23, 42), 'xdb.runSQL', 'xdb.runSQL', ({(23, 30, 23, 36): 'cursor', (23, 38, 23, 41): 'sql'}, {}), '(cursor, sql)', False, 'import xdb\n'), ((32, 19, 32, 42), 'xdb.runSQL', 'xdb.runSQL', ({(32, 30, 32, 36): 'cursor', (32, 38, 32, 41): 'sql'}, {}), '(cursor, sql)', False, 'import xdb\n'), ((50, 19, 50, 55), 'xdb.runSQL_stmts', 'xdb.runSQL_stmts', ({(50, 36, 50, 42): 'cursor', (50, 44, 50, 48): 'sqls', (50, 49, 50, 54): 'delay'}, {}), '(cursor, sqls, delay)', False, 'import xdb\n'), ((55, 9, 55, 35), 'xdb.opendb', 'xdb.opendb', ({(55, 20, 55, 34): '"""genetic56.db"""'}, {}), "('genetic56.db')", False, 'import xdb\n'), ((60, 4, 60, 20), 'xdb.commit', 'xdb.commit', ({(60, 15, 60, 19): 'conn'}, {}), '(conn)', False, 'import xdb\n'), ((61, 4, 61, 21), 'xdb.closedb', 'xdb.closedb', ({(61, 16, 61, 20): 'conn'}, {}), '(conn)', False, 'import xdb\n'), ((13, 23, 13, 46), 'xdb.runSQL', 'xdb.runSQL', ({(13, 34, 13, 40): 'cursor', (13, 42, 13, 45): 'sql'}, {}), '(cursor, sql)', False, 'import xdb\n')]
hyansuper/flask-video-streaming
threaded_remote_pi_camera.py
a6ba19519b9ba5470e59e535552b3e8c448d57ae
import urllib.request import cv2 import numpy as np import time import threading class ThreadedRemotePiCamera: def __init__(self, pi_address, resolution=(320,240), framerate=10, hflip=False, vflip=False): if hflip and vflip: self.flip = -1 elif hflip: self.flip = 0 elif vflip: self.flip = 1 else: self.flip = None self.stream = urllib.request.urlopen('http://%s:5000/video_feed?w=%d&h=%d&fps=%d' % ((pi_address,)+resolution+(framerate,))) self.total_bytes = b'' self.ev = threading.Event() self.th = threading.Thread(target=self.run, daemon=True) self.running = True self.frame = None self.th.start() def run(self): while self.running: self.frame = self.get_frame() self.ev.set() self.stream.close() def read(self): ''' while self.frame is None: time.sleep(.1) f = self.frame self.frame = None return f ''' self.ev.wait() self.ev.clear() return self.frame def get_frame(self): while True: self.total_bytes += self.stream.read(1024) end = self.total_bytes.find(b'\xff\xd9') # JPEG end if not end == -1: start = self.total_bytes.find(b'\xff\xd8') # JPEG start jpg = cv2.imdecode(np.fromstring(self.total_bytes[start: end+2], dtype=np.uint8), cv2.IMREAD_COLOR) if self.flip is not None: jpg = cv2.flip(jpg, self.flip) self.total_bytes = self.total_bytes[end+2:] return jpg def release(self): self.running = False self.th.join() def frames(self): while True: yield self.read() def __iter__(self): return self.frames() def __enter__(self): return self def __exit__(self, *args): self.release() def __del__(self): self.release()
[((20, 18, 20, 35), 'threading.Event', 'threading.Event', ({}, {}), '()', False, 'import threading\n'), ((21, 18, 21, 64), 'threading.Thread', 'threading.Thread', (), '', False, 'import threading\n'), ((47, 35, 47, 96), 'numpy.fromstring', 'np.fromstring', (), '', True, 'import numpy as np\n'), ((49, 26, 49, 50), 'cv2.flip', 'cv2.flip', ({(49, 35, 49, 38): 'jpg', (49, 40, 49, 49): 'self.flip'}, {}), '(jpg, self.flip)', False, 'import cv2\n')]
jalawala/custom-kubernetes-scheduler
scheduler/misc/Ec2SpotCustomScheduler_jan19.py
07ccba57610048185a245257a1501f6273399d80
#! /usr/bin/python3 import time import random import json import os from pprint import pprint from kubernetes.client.rest import ApiException from pint import UnitRegistry from collections import defaultdict from kubernetes import client, config, watch from timeloop import Timeloop from datetime import timedelta config.load_kube_config() #config.load_incluster_config() # doing this computation within a k8s cluster #k8s.config.load_incluster_config() core_api = client.CoreV1Api() apis_api = client.AppsV1Api() #sdclient = SdcClient(<Your Sysdig API token>) sysdig_metric = "net.http.request.time" metrics = [{ "id": sysdig_metric, "aggregations": { "time": "timeAvg", "group": "avg" } }] #scheduler_name = "Ec2SpotK8sScheduler" CustomSchedulerName ='K8SCustomScheduler' ureg = UnitRegistry() ureg.load_definitions('kubernetes_units.txt') pendingPodsList = [] failedPodsList = [] runningPodsList =[] nodesListPerNodeLabel = {} Q_ = ureg.Quantity def scheduler(name, node, namespace): target=client.V1ObjectReference(api_version='v1', kind="Node", name=node) meta=client.V1ObjectMeta() meta.name=name body=client.V1Binding(metadata=meta, target=target) return core_api.create_namespaced_binding(namespace, body, _preload_content=False) #tl = Timeloop() #@tl.job(interval=timedelta(seconds=10)) def RunEc2SpotCustomScheduler(): #global pendingPodsList #global failedPodsList CustomKubeSchedulingClusterDeploymentData = get_custom_deployments() pprint("CustomKubeSchedulingClusterDeploymentData={}".format(CustomKubeSchedulingClusterDeploymentData)) for namespace, deploymentCustomSchedulingData in CustomKubeSchedulingClusterDeploymentData.items(): print("namespace={} deploymentCustomSchedulingData={}".format(namespace, deploymentCustomSchedulingData)) if deploymentCustomSchedulingData != {}: CustomSchedulePerNamespace(namespace, deploymentCustomSchedulingData) def CustomSchedulePerNamespace(namespace, deploymentCustomSchedulingData): global runningPodsList global pendingPodsList global failedPodsList global nodesListPerNodeLabel print("namespace={} deploymentCustomSchedulingData={}".format(namespace, deploymentCustomSchedulingData)) #exit(0) #namespace = 'default' #lifecycleList = ['OnDemand', 'Ec2Spot'] for deploymentName, CustomSchedulingData in deploymentCustomSchedulingData.items(): print("deploymentName={} CustomSchedulingData={}".format(deploymentName, CustomSchedulingData)) #exit(0) #podsList = getPodsListForDeployment(namespace, deploymentName) runningPodsList = [] pendingPodsList = [] failedPodsList =[] getPodsListForDeployment(namespace, deploymentName) NumOfPodsRunning = len (runningPodsList) NumOfPodsPending = len (pendingPodsList) NumOfPodsFailed = len (failedPodsList) #print("NumOfPodsRunning={} runningPodsList={}".format(NumOfPodsRunning, runningPodsList)) #print("NumOfPodsPending={} pendingPodsList={}".format(NumOfPodsPending, pendingPodsList)) #print("NumOfPodsFailed={} failedPodsList={}".format(NumOfPodsFailed, failedPodsList)) get_node_available_nodes_list(CustomSchedulingData) for i, p in enumerate (runningPodsList): pprint("i={} running pod_name={} node_name={}".format(i,p['node_name'], p['name'])) for i, p in enumerate (pendingPodsList): pprint("i={} pending pod_name={} node_name={}".format(i,p['node_name'], p['name'])) for i, p in enumerate (failedPodsList): pprint("i={} failed pod_name={} node_name={}".format(i,p['node_name'], p['name'])) #print("nodeLabel={} NumOfAlreadyRunningPods={}".format(nodeLabel, NumOfAlreadyRunningPods)) print("lifecycle={} NumOfNodes={}".format(lifecycle, len(NodesList))) for nodeLabel, in NodesList.keys(): pprint("node_name={}".format(n)) #exit(0) #runningPodsList = podsList['runningPodsList'] #pendingPodsList = podsList['pendingPodsList'] #failedPodsList = podsList['failedPodsList'] for nodeLabel, numOfReplicas in CustomSchedulingData.items(): print("Scheduling numOfReplicas={} on nodeLabel={}".format(numOfReplicas, nodeLabel)) #pprint(podsList) #lifecycle = 'OnDemand' #NodesList = get_node_available_nodes_list(lifecycle) #pprint(NodesList) NumOfPodsRunningAlready = 0 podsAlreadyRunningOnNodeLabelList = [] for podRunning in runningPodsList: if podRunning['node_name'] in nodesListPerNodeLabel[nodeLabel].keys(): podsAlreadyRunningOnNodeLabelList.append(podRunning) NumOfAlreadyRunningPods = len (podsAlreadyRunningOnNodeLabelList) for i, p in enumerate (podsAlreadyRunningOnNodeLabelList): pprint("running pod i={} nodeLabel={} node_name={} name={}".format(i,nodeLabel, p['node_name'], p['name'])) if NumOfAlreadyRunningPods == NumOfPodsToBeRunning: print("NumOfAlreadyRunningPods == NumOfPodsToBeRunning = {}. So no need to Schedule".format(NumOfAlreadyRunningPods)) elif NumOfAlreadyRunningPods < NumOfPodsToBeRunning: NumOfPodsToBeScheduled = NumOfPodsToBeRunning - NumOfAlreadyRunningPods try: schedulePods(NumOfPodsToBeScheduled, NodesList) except Exception as e: pprint(e) elif NumOfAlreadyRunningPods > NumOfPodsToBeRunning: NumOfPodsToDeleted = NumOfAlreadyRunningPods - NumOfPodsToBeRunning try: deletePods(NumOfPodsToDeleted, podsAlreadyRunningOnNodeLabelList) except Exception as e: pprint(e) pendingPodsList = [] NumOfPodsFailed = [] #pprint(podsList) #lifecycle = 'OnDemand' #lifecycle = 'Ec2Spot' #get_node_available_nodes_list(lifecycle) def deletePods(NumOfPodsToDeleted, podsAlreadyRunningOnNodeLabelList): namespace = 'default' for i in range(0, NumOfPodsToDeleted): pod = podsAlreadyRunningOnNodeLabelList[i] grace_period_seconds = 30 body = client.V1DeleteOptions() #body = {} pprint("deletePods i={} pod={} NumOfPodsToDeleted={}".format(i, pod['name'], NumOfPodsToDeleted )) response = core_api.delete_namespaced_pod(name=pod['name'], namespace=namespace, grace_period_seconds=grace_period_seconds, body=body) pprint(response) def schedulePods(NumOfPodsToBeScheduled, NodesList): global pendingPodsList global failedPodsList namespace = 'default' if NumOfPodsToBeScheduled > len(pendingPodsList): pprint("schedulePods NumOfPodsToBeScheduled={} is greater than number of pending pods={}. So skipping schedulePods".format(NumOfPodsToBeScheduled, len(pendingPodsList))) return for i in range(NumOfPodsToBeScheduled): pod = pendingPodsList[0] print("schedulePods Trying to schedule i={} NumOfPodsToBeScheduled={} pod={} with cpu_req={} mem_req={}".format(i, NumOfPodsToBeScheduled, pod['name'], pod['cpu_req'], pod['mem_req'])) for node, stats in NodesList.items(): print("schedulePods Checking for free resources on node={} with cpu_free={} mem_free={}".format(node, stats['cpu_free'], stats['mem_free'])) #pprint(node) if pod['cpu_req'] <= stats['cpu_free'] and pod['mem_req'] <= stats['mem_free']: print("schedulePods scheduling pod={} onto the node={}".format(pod['name'], node)) res = scheduler(pod['name'], node, namespace) pprint(res) stats['cpu_free'] = stats['cpu_free'] - pod['cpu_req'] stats['mem_free'] = stats['mem_free'] - pod['mem_req'] pendingPodsList.remove(pod) break def getPodsListForDeployment(namespace, deploymentName): #global pendingPodsList #runningPodsList =[] #failedPodsList =[] #podsList = {} #namespace='default' #name='Ec2SpotK8sScheduler' #field_selector = ("spec.scheduler_name=" + CustomSchedulerName) field_selector = ("spec.schedulerName=" + CustomSchedulerName) pods = core_api.list_namespaced_pod(namespace=namespace, field_selector=field_selector).to_dict() #pods = core_api.list_namespaced_pod(namespace=namespace).to_dict() #print("pods={}".format(pods)) for pod in pods['items']: #pprint(pod) #print("node_name={}".format(pod['spec']['node_name'])) #return "" stats = {} cpureqs,cpulmts,memreqs,memlmts = [], [], [], [] if deploymentName in pod['metadata']['name'] and pod['spec']['scheduler_name'] == CustomSchedulerName: for container in pod['spec']['containers']: res = container['resources'] reqs = defaultdict(lambda: 0, res['requests'] or {}) lmts = defaultdict(lambda: 0, res['limits'] or {}) cpureqs.append(Q_(reqs["cpu"])) memreqs.append(Q_(reqs["memory"])) cpulmts.append(Q_(lmts["cpu"])) memlmts.append(Q_(lmts["memory"])) stats["cpu_req"] = sum(cpureqs) stats["cpu_lmt"] = sum(cpulmts) stats["mem_req"] = sum(memreqs) stats["mem_lmt"] = sum(memlmts) stats["name"] = pod['metadata']['name'] stats["status"] = pod['status']['phase'] if stats["status"] == 'Pending': pendingPodsList.append(stats) elif stats["status"] == 'Running': stats["node_name"] = pod['spec']['node_name'] runningPodsList.append(stats) elif stats["status"] == 'Failed': failedPodsList.append(stats) #podsList['pendingPodsList'] = pendingPodsList #podsList['runningPodsList'] = runningPodsList #podsList['failedPodsList'] = failedPodsList #pprint(podsList) #pprint("pendingPodsList={} runningPodsList={} failedPodsList={}".format(runningPodsList, runningPodsList, failedPodsList ) #return pendingPodsList,runningPodsList,failedPodsList #return podsList def get_custom_deployments(): CustomKubeSchedulingClusterDeploymentData = {} #namespaceList =[] namespacedataList = core_api.list_namespace().to_dict()['items'] for namespaceData in namespacedataList: namespace = namespaceData['metadata']['name'] CustomKubeSchedulingClusterDeploymentData[namespace] = get_custom_deployments_per_namespace(namespace) #namespaceList.append(name) print("CustomKubeSchedulingClusterDeploymentData={}".format(CustomKubeSchedulingClusterDeploymentData)) return CustomKubeSchedulingClusterDeploymentData def get_custom_deployments_per_namespace(namespace): #CustomKubeSchedulingDeploymentData = [] CustomKubeSchedulingDeploymentData = {} #namespace='default' #name = 'nginx' name = '1' #field_selector = ("metadata.name=" + name) field_selector = ("metadata.annotations.OnDemandBase=" + name) # get deployment by namespace #resp = apis_api.list_namespaced_deployment(namespace=namespace, field_selector=field_selector) resp = apis_api.list_namespaced_deployment(namespace=namespace) for deployment in resp.items: #pprint(deployment.metadata.annotations) #pprint(deployment) deploymentData = {} CustomPodScheduleStrategy = {} annotations = deployment.metadata.annotations if 'UseCustomKubeScheduler' in annotations.keys(): if annotations['UseCustomKubeScheduler'] == 'true': deploymentName = deployment.metadata.name numOfReplicas = deployment.spec.replicas #deploymentData[deploymentName] = deployment.metadata.name Strategy = annotations['CustomPodScheduleStrategy'] #deploymentData['pod_replicas'] = deployment.spec.replicas #deploymentData['CustomPodScheduleStrategy'] = get_pods_custom_pod_schedule_strategy(Strategy, deployment.spec.replicas) CustomKubeSchedulingDeploymentData[deploymentName] = get_pods_custom_pod_schedule_strategy(Strategy, numOfReplicas) #deploymentData['NumOfOnDemandPodsToBeRunning'] = int (deploymentData['OnDemandBase'] + (deploymentData['pod_replicas'] - deploymentData['OnDemandBase']) * deploymentData['OnDemandAbovePercentage'] / 100) #deploymentData['NumOfSpotPodsToBeRunning'] = deploymentData['pod_replicas'] - deploymentData['NumOfOnDemandPodsToBeRunning'] #CustomKubeSchedulingDeploymentData.append(deploymentData) return CustomKubeSchedulingDeploymentData #print("OnDemandBase={}, OnDemandAbovePercentage={} SpotASGName={} OnDemandASGName={} pod_replicas={} NumOfOnDemandPods={} NumOfSpotPods={}".format(OnDemandBase, OnDemandAbovePercentage, SpotASGName, OnDemandASGName, pod_replicas, NumOfOnDemandPods, NumOfSpotPods)) def get_pods_custom_pod_schedule_strategy(Strategy, numOfReplicas): print("Strategy={} numOfReplicas={}".format(Strategy, numOfReplicas)) CustomPodScheduleStrategy = {} nodeLabelToReplicas = {} nodeLabelToWights = {} totalWeight = 0 StrategyList = Strategy.split(':') print("StrategyList={}".format(StrategyList)) numOfBaseValues = 0 for nodeStrategy in StrategyList: print("nodeStrategy: {}".format(nodeStrategy)) nodeStrategyPartsList = nodeStrategy.split(',') base = 0 weight = 0 nodeLabel = '' for nodeStrategyPart in nodeStrategyPartsList: nodeStrategySubPartList = nodeStrategyPart.split('=') if nodeStrategySubPartList[0] == 'base': if numOfBaseValues != 0: print("base value cannot be non-zero for more than node strategy") exit(1) else: numOfBaseValues += 1 base = int(nodeStrategySubPartList[1]) if base <= numOfReplicas: numOfReplicas -= base else: base = numOfReplicas numOfReplicas = 0 print("base={}".format(nodeStrategySubPartList[1])) elif nodeStrategySubPartList[0] == 'weight': weight = int(nodeStrategySubPartList[1]) totalWeight += weight print("weight={}".format(weight)) else: nodeLabel = nodeStrategyPart print("label key={} value={}".format(nodeStrategySubPartList[0], nodeStrategySubPartList[1])) #nodeLabelToReplicas [nodeLabel] = base nodeLabelToWights [nodeLabel] = weight CustomPodScheduleStrategy [nodeLabel] = base print("nodeLabelToReplicas={} nodeLabelToWights={}".format(nodeLabelToReplicas, nodeLabelToWights)) print("numOfBaseValues = {} totalWeight={} numOfReplicas={}".format(numOfBaseValues, totalWeight, numOfReplicas)) print("CustomPodScheduleStrategy = {}".format(CustomPodScheduleStrategy)) totalNumOfLables = len (CustomPodScheduleStrategy) labelNum = 0 for key, replicas in CustomPodScheduleStrategy.items(): weight = nodeLabelToWights[key] print("key: {} replicas={} weight={}, totalWeight={}".format(key, replicas, weight, totalWeight)) if labelNum == totalNumOfLables - 1: weightReplicas = numOfReplicas replicas = replicas + weightReplicas else: weightReplicas = int (numOfReplicas * (weight/totalWeight)) replicas = replicas + weightReplicas labelNum += 1 numOfReplicas -= weightReplicas print("weightReplicas: {} replicas={} labelNum={}, numOfReplicas={}".format(weightReplicas, replicas, labelNum, numOfReplicas)) CustomPodScheduleStrategy[key] = replicas print("CustomPodScheduleStrategy = {}".format(CustomPodScheduleStrategy)) print("numOfBaseValues = {} totalWeight={} numOfReplicas={}".format(numOfBaseValues, totalWeight, numOfReplicas)) return CustomPodScheduleStrategy __all__ = ["get_node_available_nodes_list"] def get_node_available_nodes_list(CustomSchedulingData): global nodesListPerNodeLabel #data = [] #data = {} for nodeLabel in CustomSchedulingData.keys(): nodesListPerNodeLabel[nodeLabel] = {} nodeLabelParts = nodeLabel.split('=') nodeLabelKey = nodeLabelParts[0] nodeLabelValue = nodeLabelParts[1] #selector = "metadata.labels."+nodeLabelParts[0]+"="+nodeLabelParts[1] #selector = "metadata.labels.nodesize="+nodeLabelParts[1] #print("selector={}".format(selector)) #name = 'ip-192-168-73-104.ec2.internal' #selector = "metadata.name"+"="+name #print("selector={}".format(selector)) #field_selector = (selector) #resp = core_api.list_node(field_selector=field_selector).to_dict()['items'] #pprint("resp={}".format(resp)) #exit(0) availableNodesData = {} for node in core_api.list_node().to_dict()['items']: #pprint(node) node_labels = node['metadata']['labels'] if nodeLabelKey in node_labels.keys(): if node_labels[nodeLabelKey] == nodeLabelValue: stats = {} node_name = node['metadata']['name'] allocatable = node['status']['allocatable'] max_pods = int(int(allocatable["pods"]) * 1.5) field_selector = ("status.phase!=Succeeded,status.phase!=Failed," + "spec.nodeName=" + node_name) stats["cpu_alloc"] = Q_(allocatable["cpu"]) stats["mem_alloc"] = Q_(allocatable["memory"]) #stats["lifecycle"] = lifecycle pods = core_api.list_pod_for_all_namespaces(limit=max_pods, field_selector=field_selector).to_dict()['items'] # compute the allocated resources cpureqs,cpulmts,memreqs,memlmts = [], [], [], [] for pod in pods: #pprint(pod) for container in pod['spec']['containers']: res = container['resources'] reqs = defaultdict(lambda: 0, res['requests'] or {}) lmts = defaultdict(lambda: 0, res['limits'] or {}) cpureqs.append(Q_(reqs["cpu"])) memreqs.append(Q_(reqs["memory"])) cpulmts.append(Q_(lmts["cpu"])) memlmts.append(Q_(lmts["memory"])) stats["cpu_req"] = sum(cpureqs) stats["cpu_lmt"] = sum(cpulmts) stats["cpu_req_per"] = (stats["cpu_req"] / stats["cpu_alloc"] * 100) stats["cpu_lmt_per"] = (stats["cpu_lmt"] / stats["cpu_alloc"] * 100) stats["mem_req"] = sum(memreqs) stats["mem_lmt"] = sum(memlmts) stats["mem_req_per"] = (stats["mem_req"] / stats["mem_alloc"] * 100) stats["mem_lmt_per"] = (stats["mem_lmt"] / stats["mem_alloc"] * 100) stats["cpu_free"] = stats["cpu_alloc"] - stats["cpu_req"] stats["mem_free"] = stats["mem_alloc"] - stats["mem_req"] #stats["name"] = node['metadata']['name'] #data.append(stats) availableNodesData[node_name] = stats nodesListPerNodeLabel[nodeLabel] = availableNodesData #print(nodesListPerNodeLabel) #for nodeLabel, availableNodesData in nodesListPerNodeLabel.items(): #print("nodeLabel={} availableNodesData={}".format(nodeLabel, availableNodesData)) #exit(0) #pprint(data) return data if __name__ == '__main__': #ready_nodes = nodes_available() #pprint(ready_nodes) #name='review-v1-787d8fbfbb-ltdzt' node='ip-10-0-3-253.ec2.internal' #namespace='ecommerce' #ret=scheduler(name, node, namespace) #pprint(ret) #main() #test() #testpod() #check_node_resources(node) #RunEc2SpotCustomScheduler() #getPodsListForDeployment(' ') #lifecycle = 'OnDemand' #lifecycle = 'Ec2Spot' #get_node_available_nodes_list(lifecycle) #RunEc2SpotCustomScheduler() #NumOfPodsToDeleted = 1 #podsAlreadyRunningOnNodeLabelList = [] #d ={'name':'nginx-66cb875766-vx6bp'} #podsAlreadyRunningOnNodeLabelList.append(d) #deletePods(NumOfPodsToDeleted, podsAlreadyRunningOnNodeLabelList) #deploymentName='nginx' #deploymentName = 'kube-ops-view' #getPodsListForDeployment(deploymentName) #testlist() #tl.start(block=True) while True: RunEc2SpotCustomScheduler() time.sleep(10)
[((17, 0, 17, 25), 'kubernetes.config.load_kube_config', 'config.load_kube_config', ({}, {}), '()', False, 'from kubernetes import client, config, watch\n'), ((21, 11, 21, 29), 'kubernetes.client.CoreV1Api', 'client.CoreV1Api', ({}, {}), '()', False, 'from kubernetes import client, config, watch\n'), ((22, 11, 22, 29), 'kubernetes.client.AppsV1Api', 'client.AppsV1Api', ({}, {}), '()', False, 'from kubernetes import client, config, watch\n'), ((30, 7, 30, 21), 'pint.UnitRegistry', 'UnitRegistry', ({}, {}), '()', False, 'from pint import UnitRegistry\n'), ((44, 11, 44, 77), 'kubernetes.client.V1ObjectReference', 'client.V1ObjectReference', (), '', False, 'from kubernetes import client, config, watch\n'), ((45, 9, 45, 30), 'kubernetes.client.V1ObjectMeta', 'client.V1ObjectMeta', ({}, {}), '()', False, 'from kubernetes import client, config, watch\n'), ((47, 9, 47, 56), 'kubernetes.client.V1Binding', 'client.V1Binding', (), '', False, 'from kubernetes import client, config, watch\n'), ((180, 15, 180, 39), 'kubernetes.client.V1DeleteOptions', 'client.V1DeleteOptions', ({}, {}), '()', False, 'from kubernetes import client, config, watch\n'), ((184, 8, 184, 24), 'pprint.pprint', 'pprint', ({(184, 15, 184, 23): 'response'}, {}), '(response)', False, 'from pprint import pprint\n'), ((529, 8, 529, 22), 'time.sleep', 'time.sleep', ({(529, 19, 529, 21): '(10)'}, {}), '(10)', False, 'import time\n'), ((208, 16, 208, 27), 'pprint.pprint', 'pprint', ({(208, 23, 208, 26): 'res'}, {}), '(res)', False, 'from pprint import pprint\n'), ((243, 23, 243, 68), 'collections.defaultdict', 'defaultdict', ({(243, 35, 243, 44): 'lambda : 0', (243, 46, 243, 67): "res['requests'] or {}"}, {}), "(lambda : 0, res['requests'] or {})", False, 'from collections import defaultdict\n'), ((244, 23, 244, 66), 'collections.defaultdict', 'defaultdict', ({(244, 35, 244, 44): 'lambda : 0', (244, 46, 244, 65): "res['limits'] or {}"}, {}), "(lambda : 0, res['limits'] or {})", False, 'from collections import defaultdict\n'), ((159, 20, 159, 29), 'pprint.pprint', 'pprint', ({(159, 27, 159, 28): 'e'}, {}), '(e)', False, 'from pprint import pprint\n'), ((464, 35, 464, 80), 'collections.defaultdict', 'defaultdict', ({(464, 47, 464, 56): 'lambda : 0', (464, 58, 464, 79): "res['requests'] or {}"}, {}), "(lambda : 0, res['requests'] or {})", False, 'from collections import defaultdict\n'), ((465, 35, 465, 78), 'collections.defaultdict', 'defaultdict', ({(465, 47, 465, 56): 'lambda : 0', (465, 58, 465, 77): "res['limits'] or {}"}, {}), "(lambda : 0, res['limits'] or {})", False, 'from collections import defaultdict\n'), ((165, 20, 165, 29), 'pprint.pprint', 'pprint', ({(165, 27, 165, 28): 'e'}, {}), '(e)', False, 'from pprint import pprint\n')]
DewiBrynJones/docker-deepspeech-cy
local/utils/validate_label_locale.py
99159a746651bd848a8309da7f676045913f3d25
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from clean_transcript import clean_transcript ALPHABET_FILE_PATH = "/DeepSpeech/bin/bangor_welsh/alphabet.txt" def validate_label(label): clean = clean_transcript(ALPHABET_FILE_PATH) cleaned, transcript = clean.clean(label) if cleaned: return transcript.lower() return None
[((10, 12, 10, 48), 'clean_transcript.clean_transcript', 'clean_transcript', ({(10, 29, 10, 47): 'ALPHABET_FILE_PATH'}, {}), '(ALPHABET_FILE_PATH)', False, 'from clean_transcript import clean_transcript\n')]
dumpmemory/state-spaces
src/models/nn/adaptive_softmax.py
2a85503cb3e9e86cc05753950d4a249df9a0fffb
# Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional import functools import torch import torch.nn as nn import torch.nn.functional as F class OptionalParameterList(nn.ParameterList): def extra_repr(self): child_lines = [] for k, p in self._parameters.items(): if p is not None: size_str = 'x'.join(str(size) for size in p.size()) device_str = '' if not p.is_cuda else ' (GPU {})'.format(p.get_device()) parastr = 'Parameter containing: [{} of size {}{}]'.format( torch.typename(p), size_str, device_str) child_lines.append(' (' + str(k) + '): ' + parastr) tmpstr = '\n'.join(child_lines) return tmpstr class ProjectedAdaptiveLogSoftmax(nn.Module): def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, tie_projs=None, out_layers_weights=None, out_projs=None, keep_order=False, bias_scale=0.0, dropout=0.0, ): super().__init__() self.n_token = n_token self.d_embed = d_embed self.d_proj = d_proj self.cutoffs = list(cutoffs) + [n_token] self.cutoff_ends = [0] + self.cutoffs self.div_val = div_val self.shortlist_size = self.cutoffs[0] self.n_clusters = len(self.cutoffs) - 1 self.head_size = self.shortlist_size + self.n_clusters # [21-09-15 AG]: bake the first False into the definition, just as [0] is built into the cutoffs if tie_projs is None: tie_projs = [] elif isinstance(tie_projs, bool): tie_projs = [tie_projs] * len(cutoffs) else: tie_projs = list(tie_projs) tie_projs = [False] + tie_projs self.tie_projs = tie_projs if self.n_clusters > 0: self.cluster_weight = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed)) self.cluster_bias = nn.Parameter(torch.zeros(self.n_clusters)) if not out_layers_weights: self.out_layers_weights = nn.ParameterList() else: self.out_layers_weights = out_layers_weights self.out_layers_biases = nn.ParameterList() self.shared_out_projs = out_projs self.out_projs = OptionalParameterList() self.dropout = dropout self.drop = nn.Dropout(dropout) if div_val == 1: if d_proj != d_embed: for i in range(len(self.cutoffs)): if tie_projs[i]: self.out_projs.append(None) else: self.out_projs.append( nn.Parameter(torch.zeros(d_proj, d_embed)) ) else: # self.out_projs = [None] * len(self.cutoffs) self.out_projs.append(None) self.out_layers_biases.append( nn.Parameter(torch.zeros(n_token)) ) if not out_layers_weights: self.out_layers_weights.append( nn.Parameter(torch.zeros(n_token, d_embed)) ) else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1] d_emb_i = d_embed // (div_val ** i) if tie_projs[i]: self.out_projs.append(None) else: self.out_projs.append( nn.Parameter(torch.zeros(d_proj, d_emb_i)) ) self.out_layers_biases.append( nn.Parameter(torch.zeros(r_idx - l_idx)) ) if not out_layers_weights: self.out_layers_weights.append( nn.Parameter(torch.zeros(r_idx - l_idx, d_emb_i)) ) for bias in self.out_layers_biases: bound = bias_scale * d_proj ** -.5 nn.init.uniform_(bias, -bound, bound) self.keep_order = keep_order def _compute_logit(self, hidden, weight, bias, proj): if proj is None: logit = F.linear(hidden, weight, bias=bias) else: if self.dropout > 0.0: logit = hidden @ proj logit = self.drop(logit) logit = logit @ weight.t() else: logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) if bias is not None: logit = logit + bias return logit def get_out_proj(self, i): if self.tie_projs[i]: if len(self.shared_out_projs) == 0: return None elif len(self.shared_out_projs) == 1: return self.shared_out_projs[0] else: return self.shared_out_projs[i] else: return self.out_projs[i] def forward(self, hidden, target, keep_order=False, key_padding_mask=None, *args, **kwargs): # [21-09-15 AG]: TODO may need to handle key_padding_mask ''' hidden :: [len*bsz x d_proj] target :: [len*bsz] ''' hidden = hidden.reshape(-1, hidden.size(-1)) target = target.reshape(-1) if hidden.size(0) != target.size(0): print(hidden.shape, target.shape) raise RuntimeError('Input and target should have the same size ' 'in the batch dimension.') if self.n_clusters == 0: logit = self._compute_logit(hidden, self.out_layers_weights[0], self.out_layers_biases[0], self.get_out_proj(0)) nll = -F.log_softmax(logit, dim=-1) \ .gather(1, target.unsqueeze(1)).squeeze(1) else: # construct weights and biases weights, biases = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] weight_i = self.out_layers_weights[0][l_idx:r_idx] bias_i = self.out_layers_biases[0][l_idx:r_idx] else: weight_i = self.out_layers_weights[i] bias_i = self.out_layers_biases[i] if i == 0: weight_i = torch.cat( [weight_i, self.cluster_weight], dim=0) bias_i = torch.cat( [bias_i, self.cluster_bias], dim=0) weights.append(weight_i) biases.append(bias_i) head_weight, head_bias, head_proj = weights[0], biases[0], self.get_out_proj(0) head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj) head_logprob = F.log_softmax(head_logit, dim=1) nll = torch.zeros_like(target, dtype=hidden.dtype, device=hidden.device) offset = 0 cutoff_values = [0] + self.cutoffs for i in range(len(cutoff_values) - 1): l_idx, r_idx = cutoff_values[i], cutoff_values[i + 1] mask_i = (target >= l_idx) & (target < r_idx) indices_i = mask_i.nonzero(as_tuple=False).squeeze() if indices_i.numel() == 0: continue target_i = target.index_select(0, indices_i) - l_idx head_logprob_i = head_logprob.index_select(0, indices_i) if i == 0: logprob_i = head_logprob_i.gather(1, target_i[:, None]).squeeze(1) else: weight_i, bias_i, proj_i = weights[i], biases[i], self.get_out_proj(i) hidden_i = hidden.index_select(0, indices_i) tail_logit_i = self._compute_logit(hidden_i, weight_i, bias_i, proj_i) tail_logprob_i = F.log_softmax(tail_logit_i, dim=1) logprob_i = head_logprob_i[:, -i] \ + tail_logprob_i.gather(1, target_i[:, None]).squeeze(1) if self.keep_order or keep_order: nll.index_copy_(0, indices_i, -logprob_i) else: nll[offset:offset+logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return nll.mean() # TODO maybe cases for length or padding_mask class AdaptiveEmbedding(nn.Module): """ Copy of transformers.AdaptiveEmbedding that works with fp16 by replacing the index_put_ operation Initialization has been fixed for the case when d_proj = d_embed """ def __init__(self, n_token, d_embed, d_proj, cutoffs : List[int], div_val=1, init_scale=1.0, sample_softmax=False, dropout=0.0): super().__init__() self.n_token = n_token self.d_embed = d_embed self.cutoffs = list(cutoffs) + [n_token] self.div_val = div_val self.d_proj = d_proj self.drop = nn.Dropout(dropout) if dropout > 0.0 else nn.Identity() self.emb_scale = d_proj ** 0.5 self.cutoff_ends = [0] + self.cutoffs self.emb_layers = nn.ModuleList() self.emb_projs = nn.ParameterList() if div_val == 1: self.emb_layers.append(nn.Embedding(n_token, d_embed, sparse=sample_softmax > 0)) _init_embed(self.emb_layers[-1].weight, d_embed, init_scale) # torch.nn.init.normal_(self.emb_layers[-1].weight, mean=0, std=init_scale * d_embed ** -.5) if d_proj != d_embed: # TODO # self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed))) self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed))) # torch.nn.init.normal_(self.emb_projs[-1], mean=0, std=init_scale * 1./self.emb_scale) _init_proj(self.emb_projs[-1], d_proj, init_scale) else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = d_embed // (div_val ** i) self.emb_layers.append(nn.Embedding(r_idx - l_idx, d_emb_i)) # torch.nn.init.normal_(self.emb_layers[-1].weight, mean=0, std=init_scale * d_emb_i ** -.5) _init_embed(self.emb_layers[-1].weight, d_emb_i, init_scale) self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i))) # torch.nn.init.normal_(self.emb_projs[-1], mean=0, std=init_scale * 1./self.emb_scale) _init_proj(self.emb_projs[-1], d_proj, init_scale) def forward(self, inp, *args, **kwargs): if self.div_val == 1: embed = self.emb_layers[0](inp) embed = self.drop(embed) if self.d_proj != self.d_embed: embed = F.linear(embed, self.emb_projs[0]) else: param = next(self.parameters()) inp_flat = inp.view(-1) # Changes # emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], dtype=param.dtype, device=param.device) embeddings = [] indices = torch.zeros_like(inp_flat) # empty should work as long as cutoffs[-1] > max token _total_tokens = 0 # emb_flat = inp.new_zeros(inp_flat.size(0), self.d_proj) for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx) indices_i = mask_i.nonzero().squeeze(-1) # shape (_tokens,) _tokens = indices_i.numel() if _tokens == 0: continue inp_i = inp_flat.index_select(0, indices_i) - l_idx emb_i = self.emb_layers[i](inp_i) emb_i = self.drop(emb_i) emb_i = F.linear(emb_i, self.emb_projs[i]) # Changes embeddings.append(emb_i) indices.index_put_( (indices_i,), torch.arange(_tokens, device=inp.device) + _total_tokens ) _total_tokens += _tokens # emb_flat.index_copy_(0, indices_i, emb_i) embeddings = torch.cat(embeddings, dim=0) emb_flat = embeddings[indices] embed_shape = inp.size() + (self.d_proj,) embed = emb_flat.view(embed_shape) embed.mul_(self.emb_scale) # embed.div_(self.emb_scale) return embed def _init_weight(weight, d : int, init_scale : Optional[float], default=None): assert init_scale or default if init_scale is None: std = default else: std = init_scale * (d ** -0.5) nn.init.normal_(weight, mean=0, std=std) _init_embed = functools.partial(_init_weight, default=0.02) _init_proj = functools.partial(_init_weight, default=0.01) ### Just for this codebase, we need to squeeze the last dimension because inputs are always given as (B, L, D) instead of (B, L) import src.models.nn.utils as U # AdaptiveEmbedding = U.Squeeze(AdaptiveEmbedding)
[((341, 14, 341, 59), 'functools.partial', 'functools.partial', (), '', False, 'import functools\n'), ((342, 13, 342, 58), 'functools.partial', 'functools.partial', (), '', False, 'import functools\n'), ((339, 4, 339, 44), 'torch.nn.init.normal_', 'nn.init.normal_', (), '', True, 'import torch.nn as nn\n'), ((74, 33, 74, 51), 'torch.nn.ParameterList', 'nn.ParameterList', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((80, 20, 80, 39), 'torch.nn.Dropout', 'nn.Dropout', ({(80, 31, 80, 38): 'dropout'}, {}), '(dropout)', True, 'import torch.nn as nn\n'), ((258, 26, 258, 41), 'torch.nn.ModuleList', 'nn.ModuleList', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((259, 25, 259, 43), 'torch.nn.ParameterList', 'nn.ParameterList', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((70, 38, 70, 56), 'torch.nn.ParameterList', 'nn.ParameterList', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((124, 12, 124, 49), 'torch.nn.init.uniform_', 'nn.init.uniform_', ({(124, 29, 124, 33): 'bias', (124, 35, 124, 41): '(-bound)', (124, 43, 124, 48): 'bound'}, {}), '(bias, -bound, bound)', True, 'import torch.nn as nn\n'), ((131, 20, 131, 55), 'torch.nn.functional.linear', 'F.linear', (), '', True, 'import torch.nn.functional as F\n'), ((197, 27, 197, 59), 'torch.nn.functional.log_softmax', 'F.log_softmax', (), '', True, 'import torch.nn.functional as F\n'), ((199, 18, 199, 84), 'torch.zeros_like', 'torch.zeros_like', (), '', False, 'import torch\n'), ((252, 20, 252, 39), 'torch.nn.Dropout', 'nn.Dropout', ({(252, 31, 252, 38): 'dropout'}, {}), '(dropout)', True, 'import torch.nn as nn\n'), ((252, 62, 252, 75), 'torch.nn.Identity', 'nn.Identity', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((293, 22, 293, 48), 'torch.zeros_like', 'torch.zeros_like', ({(293, 39, 293, 47): 'inp_flat'}, {}), '(inp_flat)', False, 'import torch\n'), ((321, 25, 321, 53), 'torch.cat', 'torch.cat', (), '', False, 'import torch\n'), ((66, 47, 66, 89), 'torch.zeros', 'torch.zeros', ({(66, 59, 66, 74): 'self.n_clusters', (66, 76, 66, 88): 'self.d_embed'}, {}), '(self.n_clusters, self.d_embed)', False, 'import torch\n'), ((67, 45, 67, 73), 'torch.zeros', 'torch.zeros', ({(67, 57, 67, 72): 'self.n_clusters'}, {}), '(self.n_clusters)', False, 'import torch\n'), ((261, 35, 261, 92), 'torch.nn.Embedding', 'nn.Embedding', (), '', True, 'import torch.nn as nn\n'), ((285, 24, 285, 58), 'torch.nn.functional.linear', 'F.linear', ({(285, 33, 285, 38): 'embed', (285, 40, 285, 57): 'self.emb_projs[0]'}, {}), '(embed, self.emb_projs[0])', True, 'import torch.nn.functional as F\n'), ((310, 24, 310, 58), 'torch.nn.functional.linear', 'F.linear', ({(310, 33, 310, 38): 'emb_i', (310, 40, 310, 57): 'self.emb_projs[i]'}, {}), '(emb_i, self.emb_projs[i])', True, 'import torch.nn.functional as F\n'), ((31, 20, 31, 37), 'torch.typename', 'torch.typename', ({(31, 35, 31, 36): 'p'}, {}), '(p)', False, 'import torch\n'), ((96, 29, 96, 49), 'torch.zeros', 'torch.zeros', ({(96, 41, 96, 48): 'n_token'}, {}), '(n_token)', False, 'import torch\n'), ((186, 31, 187, 63), 'torch.cat', 'torch.cat', (), '', False, 'import torch\n'), ((188, 29, 189, 59), 'torch.cat', 'torch.cat', (), '', False, 'import torch\n'), ((223, 37, 223, 71), 'torch.nn.functional.log_softmax', 'F.log_softmax', (), '', True, 'import torch.nn.functional as F\n'), ((273, 39, 273, 75), 'torch.nn.Embedding', 'nn.Embedding', ({(273, 52, 273, 65): '(r_idx - l_idx)', (273, 67, 273, 74): 'd_emb_i'}, {}), '(r_idx - l_idx, d_emb_i)', True, 'import torch.nn as nn\n'), ((101, 33, 101, 62), 'torch.zeros', 'torch.zeros', ({(101, 45, 101, 52): 'n_token', (101, 54, 101, 61): 'd_embed'}, {}), '(n_token, d_embed)', False, 'import torch\n'), ((116, 33, 116, 59), 'torch.zeros', 'torch.zeros', ({(116, 45, 116, 58): '(r_idx - l_idx)'}, {}), '(r_idx - l_idx)', False, 'import torch\n'), ((266, 51, 266, 85), 'torch.FloatTensor', 'torch.FloatTensor', ({(266, 69, 266, 75): 'd_proj', (266, 77, 266, 84): 'd_embed'}, {}), '(d_proj, d_embed)', False, 'import torch\n'), ((276, 51, 276, 85), 'torch.FloatTensor', 'torch.FloatTensor', ({(276, 69, 276, 75): 'd_proj', (276, 77, 276, 84): 'd_emb_i'}, {}), '(d_proj, d_emb_i)', False, 'import torch\n'), ((316, 20, 316, 60), 'torch.arange', 'torch.arange', (), '', False, 'import torch\n'), ((112, 37, 112, 65), 'torch.zeros', 'torch.zeros', ({(112, 49, 112, 55): 'd_proj', (112, 57, 112, 64): 'd_emb_i'}, {}), '(d_proj, d_emb_i)', False, 'import torch\n'), ((120, 37, 120, 72), 'torch.zeros', 'torch.zeros', ({(120, 49, 120, 62): '(r_idx - l_idx)', (120, 64, 120, 71): 'd_emb_i'}, {}), '(r_idx - l_idx, d_emb_i)', False, 'import torch\n'), ((89, 41, 89, 69), 'torch.zeros', 'torch.zeros', ({(89, 53, 89, 59): 'd_proj', (89, 61, 89, 68): 'd_embed'}, {}), '(d_proj, d_embed)', False, 'import torch\n'), ((171, 19, 171, 47), 'torch.nn.functional.log_softmax', 'F.log_softmax', (), '', True, 'import torch.nn.functional as F\n')]
CityOfPhiladelphia/the-el
the_el/cli.py
e3a97afc55d41f2e5fd76cef60ad9393dfa23547
import json import csv import sys import os import re import codecs import logging from logging.config import dictConfig import click import yaml from sqlalchemy import create_engine from jsontableschema_sql import Storage from smart_open import smart_open from . import postgres from . import carto csv.field_size_limit(sys.maxsize) def get_logger(logging_config): try: with open(logging_config) as file: config = yaml.load(file) dictConfig(config) except: FORMAT = '[%(asctime)-15s] %(levelname)s [%(name)s] %(message)s' logging.basicConfig(format=FORMAT, level=logging.INFO, stream=sys.stderr) logger = logging.getLogger('the_el') def exception_handler(type, value, tb): logger.exception("Uncaught exception: {}".format(str(value)), exc_info=(type, value, tb)) sys.excepthook = exception_handler return logger @click.group() def main(): pass def get_connection_string(connection_string): connection_string = os.getenv('CONNECTION_STRING', connection_string) if connection_string == None: raise Exception('`CONNECTION_STRING` environment variable or `--connection-string` option required') return connection_string def create_storage_adaptor(connection_string, db_schema, geometry_support, from_srid=None, to_srid=None): engine = create_engine(connection_string) storage = Storage(engine, dbschema=db_schema, geometry_support=geometry_support, from_srid=from_srid, to_srid=to_srid, views=True) return engine, storage def fopen(file, mode='r'): if file == None: if mode == 'r': return sys.stdin elif mode == 'w': return sys.stdout else: return smart_open(file, mode=mode) def get_table_schema(table_schema_path): with fopen(table_schema_path) as file: contents = file.read() if not isinstance(contents, str): contents = contents.decode('utf-8') return json.loads(contents) @main.command() @click.argument('table_name') @click.option('--connection-string') @click.option('-o','--output-file') @click.option('--db-schema') @click.option('--geometry-support') def describe_table(table_name, connection_string, output_file, db_schema, geometry_support): connection_string = get_connection_string(connection_string) engine, storage = create_storage_adaptor(connection_string, db_schema, geometry_support) descriptor = storage.describe(table_name) with fopen(output_file, mode='w') as file: json.dump(descriptor, file) @main.command() @click.argument('table_name') @click.argument('table_schema_path') @click.option('--connection-string') @click.option('--db-schema') @click.option('--indexes-fields') @click.option('--geometry-support') @click.option('--if-not-exists', is_flag=True, default=False) @click.option('--logging-config', default='logging_config.conf') def create_table(table_name, table_schema_path, connection_string, db_schema, indexes_fields, geometry_support, if_not_exists, logging_config): logger = get_logger(logging_config) table_schema = get_table_schema(table_schema_path) if indexes_fields != None: indexes_fields = indexes_fields.split(',') if re.match(carto.carto_connection_string_regex, connection_string) != None: load_postgis = geometry_support == 'postgis' logger.info('{} - Creating table using Carto'.format(table_name)) return carto.create_table(logger, table_name, load_postgis, table_schema, if_not_exists, indexes_fields, connection_string) connection_string = get_connection_string(connection_string) engine, storage = create_storage_adaptor(connection_string, db_schema, geometry_support) logger.info('{} - Creating table using SQLAlchemy'.format(table_name)) storage.create(table_name, table_schema, indexes_fields=indexes_fields) @main.command() @click.argument('table_name') @click.option('--table-schema-path') @click.option('--connection-string') @click.option('-f','--input-file') @click.option('--db-schema') @click.option('--geometry-support') @click.option('--from-srid') @click.option('--skip-headers', is_flag=True) @click.option('--indexes-fields') @click.option('--upsert', is_flag=True) @click.option('--truncate/--no-truncate', is_flag=True, default=False) @click.option('--logging-config', default='logging_config.conf') def write(table_name, table_schema_path, connection_string, input_file, db_schema, geometry_support, from_srid, skip_headers, indexes_fields, upsert, truncate, logging_config): logger = get_logger(logging_config) table_schema = get_table_schema(table_schema_path) ## TODO: csv settings? use Frictionless Data csv standard? ## TODO: support line delimted json? with fopen(input_file) as file: rows = csv.reader(file) if skip_headers: next(rows) if re.match(carto.carto_connection_string_regex, connection_string) != None: load_postgis = geometry_support == 'postgis' if indexes_fields != None: indexes_fields = indexes_fields.split(',') logger.info('{} - Writing to table using Carto'.format(table_name)) carto.load(logger, db_schema, table_name, load_postgis, table_schema, connection_string, rows, indexes_fields, truncate) else: connection_string = get_connection_string(connection_string) engine, storage = create_storage_adaptor(connection_string, db_schema, geometry_support, from_srid=from_srid) ## TODO: truncate? carto does. Makes this idempotent logger.info('{} - Writing to table using SQLAlchemy'.format(table_name)) if table_schema_path != None: table_schema = get_table_schema(table_schema_path) storage.describe(table_name, descriptor=table_schema) else: storage.describe(table_name) if upsert: postgres.upsert(engine, db_schema, table_name, table_schema, rows) elif geometry_support == None and engine.dialect.driver == 'psycopg2': postgres.copy_from(engine, table_name, table_schema, rows) else: storage.write(table_name, rows) @main.command() @click.argument('table_name') @click.option('--connection-string') @click.option('-o','--output-file') @click.option('--db-schema') @click.option('--geometry-support') @click.option('--from-srid') @click.option('--to-srid') @click.option('--logging-config', default='logging_config.conf') def read(table_name, connection_string, output_file, db_schema, geometry_support, from_srid, to_srid, logging_config): logger = get_logger(logging_config) connection_string = get_connection_string(connection_string) engine, storage = create_storage_adaptor(connection_string, db_schema, geometry_support, from_srid=from_srid, to_srid=to_srid) ## TODO: csv settings? use Frictionless Data csv standard? ## TODO: support line delimited json? with fopen(output_file, mode='w') as file: writer = csv.writer(file) descriptor = storage.describe(table_name) fields = map(lambda x: x['name'], descriptor['fields']) writer.writerow(fields) if geometry_support == None and engine.dialect.driver == 'psycopg2': postgres.copy_to(engine, table_name, file) else: for row in storage.iter(table_name): row_out = [] for field in row: if isinstance(field, dict) or isinstance(field, list): field = json.dumps(field) row_out.append(field) writer.writerow(row_out) @main.command() @click.argument('new_table_name') @click.argument('old_table_name') @click.option('--connection-string') @click.option('--db-schema') @click.option('--select-users', help='Users to grant SELECT on updated table') @click.option('--logging-config', default='logging_config.conf') def swap_table(new_table_name, old_table_name, connection_string, db_schema, select_users, logging_config): logger = get_logger(logging_config) if re.match(carto.carto_connection_string_regex, connection_string) != None: if select_users != None: select_users = select_users.split(',') else: select_users = [] logger.info('Swapping tables using Carto: {} - {}'.format(new_table_name, old_table_name)) return carto.swap_table(logger, db_schema, new_table_name, old_table_name, select_users, connection_string) connection_string = get_connection_string(connection_string) engine = create_engine(connection_string) if engine.dialect.driver == 'psycopg2': logger.info('Swapping tables using psycopg2: {} - {}'.format(new_table_name, old_table_name)) conn = engine.raw_connection() try: with conn.cursor() as cur: sql = 'ALTER TABLE "{}" RENAME TO "{}_old";'.format(old_table_name, old_table_name) +\ 'ALTER TABLE "{}" RENAME TO "{}";'.format(new_table_name, old_table_name) +\ 'DROP TABLE "{}_old";'.format(old_table_name) cur.execute(sql) conn.commit() except: conn.rollback() raise conn.close() elif engine.dialect.driver == 'cx_oracle': logger.info('Swapping tables using cx_Oracle: {} - {}'.format(new_table_name, old_table_name)) conn = engine.connect() if select_users != None: select_users = select_users.split(',') else: select_users = [] grants_sql = [] for user in select_users: grants_sql.append('GRANT SELECT ON {} TO {}'.format(old_table_name, user.strip())) # Oracle does not allow table modification within a transaction, so make individual transactions: sql1 = 'ALTER TABLE {} RENAME TO {}_old'.format(old_table_name, old_table_name) sql2 = 'ALTER TABLE {} RENAME TO {}'.format(new_table_name, old_table_name) sql3 = 'DROP TABLE {}_old'.format(old_table_name) try: conn.execute(sql1) except: logger.error("Could not rename {} table. Does it exist?".format(old_table_name)) raise try: conn.execute(sql2) except: logger.error("Could not rename {} table. Does it exist?".format(new_table_name)) rb_sql = 'ALTER TABLE {}_old RENAME TO {}'.format(old_table_name, old_table_name) conn.execute(rb_sql) raise try: conn.execute(sql3) except: logger.error("Could not drop {}_old table. Do you have permission?".format(old_table_name)) rb_sql1 = 'DROP TABLE {}'.format(old_table_name) conn.execute(rb_sql1) rb_sql2 = 'ALTER TABLE {}_old RENAME TO {}'.format(old_table_name, old_table_name) conn.execute(rb_sql2) raise try: for sql in grants_sql: conn.execute(sql) except: logger.error("Could not grant all permissions to {}.".format(old_table_name)) raise else: raise Exception('`{}` not supported by swap_table'.format(engine.dialect.driver))
[((19, 0, 19, 33), 'csv.field_size_limit', 'csv.field_size_limit', ({(19, 21, 19, 32): 'sys.maxsize'}, {}), '(sys.maxsize)', False, 'import csv\n'), ((39, 1, 39, 14), 'click.group', 'click.group', ({}, {}), '()', False, 'import click\n'), ((71, 1, 71, 29), 'click.argument', 'click.argument', ({(71, 16, 71, 28): '"""table_name"""'}, {}), "('table_name')", False, 'import click\n'), ((72, 1, 72, 36), 'click.option', 'click.option', ({(72, 14, 72, 35): '"""--connection-string"""'}, {}), "('--connection-string')", False, 'import click\n'), ((73, 1, 73, 35), 'click.option', 'click.option', ({(73, 14, 73, 18): '"""-o"""', (73, 19, 73, 34): '"""--output-file"""'}, {}), "('-o', '--output-file')", False, 'import click\n'), ((74, 1, 74, 28), 'click.option', 'click.option', ({(74, 14, 74, 27): '"""--db-schema"""'}, {}), "('--db-schema')", False, 'import click\n'), ((75, 1, 75, 35), 'click.option', 'click.option', ({(75, 14, 75, 34): '"""--geometry-support"""'}, {}), "('--geometry-support')", False, 'import click\n'), ((86, 1, 86, 29), 'click.argument', 'click.argument', ({(86, 16, 86, 28): '"""table_name"""'}, {}), "('table_name')", False, 'import click\n'), ((87, 1, 87, 36), 'click.argument', 'click.argument', ({(87, 16, 87, 35): '"""table_schema_path"""'}, {}), "('table_schema_path')", False, 'import click\n'), ((88, 1, 88, 36), 'click.option', 'click.option', ({(88, 14, 88, 35): '"""--connection-string"""'}, {}), "('--connection-string')", False, 'import click\n'), ((89, 1, 89, 28), 'click.option', 'click.option', ({(89, 14, 89, 27): '"""--db-schema"""'}, {}), "('--db-schema')", False, 'import click\n'), ((90, 1, 90, 33), 'click.option', 'click.option', ({(90, 14, 90, 32): '"""--indexes-fields"""'}, {}), "('--indexes-fields')", False, 'import click\n'), ((91, 1, 91, 35), 'click.option', 'click.option', ({(91, 14, 91, 34): '"""--geometry-support"""'}, {}), "('--geometry-support')", False, 'import click\n'), ((92, 1, 92, 61), 'click.option', 'click.option', (), '', False, 'import click\n'), ((93, 1, 93, 64), 'click.option', 'click.option', (), '', False, 'import click\n'), ((122, 1, 122, 29), 'click.argument', 'click.argument', ({(122, 16, 122, 28): '"""table_name"""'}, {}), "('table_name')", False, 'import click\n'), ((123, 1, 123, 36), 'click.option', 'click.option', ({(123, 14, 123, 35): '"""--table-schema-path"""'}, {}), "('--table-schema-path')", False, 'import click\n'), ((124, 1, 124, 36), 'click.option', 'click.option', ({(124, 14, 124, 35): '"""--connection-string"""'}, {}), "('--connection-string')", False, 'import click\n'), ((125, 1, 125, 34), 'click.option', 'click.option', ({(125, 14, 125, 18): '"""-f"""', (125, 19, 125, 33): '"""--input-file"""'}, {}), "('-f', '--input-file')", False, 'import click\n'), ((126, 1, 126, 28), 'click.option', 'click.option', ({(126, 14, 126, 27): '"""--db-schema"""'}, {}), "('--db-schema')", False, 'import click\n'), ((127, 1, 127, 35), 'click.option', 'click.option', ({(127, 14, 127, 34): '"""--geometry-support"""'}, {}), "('--geometry-support')", False, 'import click\n'), ((128, 1, 128, 28), 'click.option', 'click.option', ({(128, 14, 128, 27): '"""--from-srid"""'}, {}), "('--from-srid')", False, 'import click\n'), ((129, 1, 129, 45), 'click.option', 'click.option', (), '', False, 'import click\n'), ((130, 1, 130, 33), 'click.option', 'click.option', ({(130, 14, 130, 32): '"""--indexes-fields"""'}, {}), "('--indexes-fields')", False, 'import click\n'), ((131, 1, 131, 39), 'click.option', 'click.option', (), '', False, 'import click\n'), ((132, 1, 132, 70), 'click.option', 'click.option', (), '', False, 'import click\n'), ((133, 1, 133, 64), 'click.option', 'click.option', (), '', False, 'import click\n'), ((198, 1, 198, 29), 'click.argument', 'click.argument', ({(198, 16, 198, 28): '"""table_name"""'}, {}), "('table_name')", False, 'import click\n'), ((199, 1, 199, 36), 'click.option', 'click.option', ({(199, 14, 199, 35): '"""--connection-string"""'}, {}), "('--connection-string')", False, 'import click\n'), ((200, 1, 200, 35), 'click.option', 'click.option', ({(200, 14, 200, 18): '"""-o"""', (200, 19, 200, 34): '"""--output-file"""'}, {}), "('-o', '--output-file')", False, 'import click\n'), ((201, 1, 201, 28), 'click.option', 'click.option', ({(201, 14, 201, 27): '"""--db-schema"""'}, {}), "('--db-schema')", False, 'import click\n'), ((202, 1, 202, 35), 'click.option', 'click.option', ({(202, 14, 202, 34): '"""--geometry-support"""'}, {}), "('--geometry-support')", False, 'import click\n'), ((203, 1, 203, 28), 'click.option', 'click.option', ({(203, 14, 203, 27): '"""--from-srid"""'}, {}), "('--from-srid')", False, 'import click\n'), ((204, 1, 204, 26), 'click.option', 'click.option', ({(204, 14, 204, 25): '"""--to-srid"""'}, {}), "('--to-srid')", False, 'import click\n'), ((205, 1, 205, 64), 'click.option', 'click.option', (), '', False, 'import click\n'), ((234, 1, 234, 33), 'click.argument', 'click.argument', ({(234, 16, 234, 32): '"""new_table_name"""'}, {}), "('new_table_name')", False, 'import click\n'), ((235, 1, 235, 33), 'click.argument', 'click.argument', ({(235, 16, 235, 32): '"""old_table_name"""'}, {}), "('old_table_name')", False, 'import click\n'), ((236, 1, 236, 36), 'click.option', 'click.option', ({(236, 14, 236, 35): '"""--connection-string"""'}, {}), "('--connection-string')", False, 'import click\n'), ((237, 1, 237, 28), 'click.option', 'click.option', ({(237, 14, 237, 27): '"""--db-schema"""'}, {}), "('--db-schema')", False, 'import click\n'), ((238, 1, 238, 78), 'click.option', 'click.option', (), '', False, 'import click\n'), ((239, 1, 239, 64), 'click.option', 'click.option', (), '', False, 'import click\n'), ((30, 13, 30, 40), 'logging.getLogger', 'logging.getLogger', ({(30, 31, 30, 39): '"""the_el"""'}, {}), "('the_el')", False, 'import logging\n'), ((44, 24, 44, 73), 'os.getenv', 'os.getenv', ({(44, 34, 44, 53): '"""CONNECTION_STRING"""', (44, 55, 44, 72): 'connection_string'}, {}), "('CONNECTION_STRING', connection_string)", False, 'import os\n'), ((50, 13, 50, 45), 'sqlalchemy.create_engine', 'create_engine', ({(50, 27, 50, 44): 'connection_string'}, {}), '(connection_string)', False, 'from sqlalchemy import create_engine\n'), ((51, 14, 51, 134), 'jsontableschema_sql.Storage', 'Storage', (), '', False, 'from jsontableschema_sql import Storage\n'), ((252, 13, 252, 45), 'sqlalchemy.create_engine', 'create_engine', ({(252, 27, 252, 44): 'connection_string'}, {}), '(connection_string)', False, 'from sqlalchemy import create_engine\n'), ((25, 8, 25, 26), 'logging.config.dictConfig', 'dictConfig', ({(25, 19, 25, 25): 'config'}, {}), '(config)', False, 'from logging.config import dictConfig\n'), ((61, 15, 61, 42), 'smart_open.smart_open', 'smart_open', (), '', False, 'from smart_open import smart_open\n'), ((68, 15, 68, 35), 'json.loads', 'json.loads', ({(68, 26, 68, 34): 'contents'}, {}), '(contents)', False, 'import json\n'), ((83, 8, 83, 35), 'json.dump', 'json.dump', ({(83, 18, 83, 28): 'descriptor', (83, 30, 83, 34): 'file'}, {}), '(descriptor, file)', False, 'import json\n'), ((109, 7, 109, 71), 're.match', 're.match', ({(109, 16, 109, 51): 'carto.carto_connection_string_regex', (109, 53, 109, 70): 'connection_string'}, {}), '(carto.carto_connection_string_regex, connection_string)', False, 'import re\n'), ((153, 15, 153, 31), 'csv.reader', 'csv.reader', ({(153, 26, 153, 30): 'file'}, {}), '(file)', False, 'import csv\n'), ((216, 17, 216, 33), 'csv.writer', 'csv.writer', ({(216, 28, 216, 32): 'file'}, {}), '(file)', False, 'import csv\n'), ((243, 7, 243, 71), 're.match', 're.match', ({(243, 16, 243, 51): 'carto.carto_connection_string_regex', (243, 53, 243, 70): 'connection_string'}, {}), '(carto.carto_connection_string_regex, connection_string)', False, 'import re\n'), ((24, 21, 24, 36), 'yaml.load', 'yaml.load', ({(24, 31, 24, 35): 'file'}, {}), '(file)', False, 'import yaml\n'), ((28, 8, 28, 81), 'logging.basicConfig', 'logging.basicConfig', (), '', False, 'import logging\n'), ((158, 11, 158, 75), 're.match', 're.match', ({(158, 20, 158, 55): 'carto.carto_connection_string_regex', (158, 57, 158, 74): 'connection_string'}, {}), '(carto.carto_connection_string_regex, connection_string)', False, 'import re\n'), ((229, 32, 229, 49), 'json.dumps', 'json.dumps', ({(229, 43, 229, 48): 'field'}, {}), '(field)', False, 'import json\n')]
vadam5/NeMo
examples/asr/experimental/speech_to_text_sclite.py
3c5db09539293c3c19a6bb7437011f91261119af
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script is based on speech_to_text_infer.py and allows you to score the hypotheses with sclite. A local installation from https://github.com/usnistgov/SCTK is required. Hypotheses and references are first saved in trn format and are scored after applying a glm file (if provided). """ import errno import json import os import subprocess from argparse import ArgumentParser import torch from nemo.collections.asr.metrics.wer import WER from nemo.collections.asr.models import EncDecCTCModel from nemo.utils import logging try: from torch.cuda.amp import autocast except ImportError: from contextlib import contextmanager @contextmanager def autocast(enabled=None): yield def score_with_sctk(sctk_dir, ref_fname, hyp_fname, out_dir, glm=""): sclite_path = os.path.join(sctk_dir, "bin", "sclite") if not os.path.exists(sclite_path): raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), sclite_path) # apply glm if os.path.exists(glm): rfilter_path = os.path.join(sctk_dir, "bin", "rfilter1") if not os.path.exists(rfilter_path): raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), rfilter_path) hypglm = os.path.join(out_dir, os.path.basename(hyp_fname)) + ".glm" rfilt_cmd = [rfilter_path] + [glm] with open(hypglm, "w") as hypf, open(hyp_fname, "r") as hyp_in: subprocess.run(rfilt_cmd, stdin=hyp_in, stdout=hypf) refglm = os.path.join(out_dir, os.path.basename(ref_fname)) + ".glm" with open(refglm, "w") as reff, open(ref_fname, "r") as ref_in: subprocess.run(rfilt_cmd, stdin=ref_in, stdout=reff) else: refglm = ref_fname hypglm = hyp_fname _ = subprocess.check_output(f"{sclite_path} -h {hypglm} -r {refglm} -i wsj -o all", shell=True) can_gpu = torch.cuda.is_available() def get_utt_info(manifest_path): info_list = [] with open(manifest_path, "r") as utt_f: for line in utt_f: utt = json.loads(line) info_list.append(utt) return info_list def main(): parser = ArgumentParser() parser.add_argument( "--asr_model", type=str, default="QuartzNet15x5Base-En", required=False, help="Pass: 'QuartzNet15x5Base-En'", ) parser.add_argument("--dataset", type=str, required=True, help="path to evaluation data") parser.add_argument("--batch_size", type=int, default=4) parser.add_argument( "--dont_normalize_text", default=False, action='store_true', help="Turn off trasnscript normalization. Recommended for non-English.", ) parser.add_argument("--out_dir", type=str, required=True, help="Destination dir for output files") parser.add_argument("--sctk_dir", type=str, required=False, default="", help="Path to sctk root dir") parser.add_argument("--glm", type=str, required=False, default="", help="Path to glm file") args = parser.parse_args() torch.set_grad_enabled(False) if not os.path.exists(args.out_dir): os.makedirs(args.out_dir) use_sctk = os.path.exists(args.sctk_dir) if args.asr_model.endswith('.nemo'): logging.info(f"Using local ASR model from {args.asr_model}") asr_model = EncDecCTCModel.restore_from(restore_path=args.asr_model) else: logging.info(f"Using NGC cloud ASR model {args.asr_model}") asr_model = EncDecCTCModel.from_pretrained(model_name=args.asr_model) asr_model.setup_test_data( test_data_config={ 'sample_rate': 16000, 'manifest_filepath': args.dataset, 'labels': asr_model.decoder.vocabulary, 'batch_size': args.batch_size, 'normalize_transcripts': not args.dont_normalize_text, } ) if can_gpu: asr_model = asr_model.cuda() asr_model.eval() labels_map = dict([(i, asr_model.decoder.vocabulary[i]) for i in range(len(asr_model.decoder.vocabulary))]) wer = WER(vocabulary=asr_model.decoder.vocabulary) hypotheses = [] references = [] all_log_probs = [] for test_batch in asr_model.test_dataloader(): if can_gpu: test_batch = [x.cuda() for x in test_batch] with autocast(): log_probs, encoded_len, greedy_predictions = asr_model( input_signal=test_batch[0], input_signal_length=test_batch[1] ) for r in log_probs.cpu().numpy(): all_log_probs.append(r) hypotheses += wer.ctc_decoder_predictions_tensor(greedy_predictions) for batch_ind in range(greedy_predictions.shape[0]): reference = ''.join([labels_map[c] for c in test_batch[2][batch_ind].cpu().detach().numpy()]) references.append(reference) del test_batch info_list = get_utt_info(args.dataset) hypfile = os.path.join(args.out_dir, "hyp.trn") reffile = os.path.join(args.out_dir, "ref.trn") with open(hypfile, "w") as hyp_f, open(reffile, "w") as ref_f: for i in range(len(hypotheses)): utt_id = os.path.splitext(os.path.basename(info_list[i]['audio_filepath']))[0] # rfilter in sctk likes each transcript to have a space at the beginning hyp_f.write(" " + hypotheses[i] + " (" + utt_id + ")" + "\n") ref_f.write(" " + references[i] + " (" + utt_id + ")" + "\n") if use_sctk: score_with_sctk(args.sctk_dir, reffile, hypfile, args.out_dir, glm=args.glm) if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
[((67, 10, 67, 35), 'torch.cuda.is_available', 'torch.cuda.is_available', ({}, {}), '()', False, 'import torch\n'), ((45, 18, 45, 57), 'os.path.join', 'os.path.join', ({(45, 31, 45, 39): 'sctk_dir', (45, 41, 45, 46): '"""bin"""', (45, 48, 45, 56): '"""sclite"""'}, {}), "(sctk_dir, 'bin', 'sclite')", False, 'import os\n'), ((49, 7, 49, 26), 'os.path.exists', 'os.path.exists', ({(49, 22, 49, 25): 'glm'}, {}), '(glm)', False, 'import os\n'), ((64, 8, 64, 100), 'subprocess.check_output', 'subprocess.check_output', (), '', False, 'import subprocess\n'), ((81, 13, 81, 29), 'argparse.ArgumentParser', 'ArgumentParser', ({}, {}), '()', False, 'from argparse import ArgumentParser\n'), ((97, 4, 97, 33), 'torch.set_grad_enabled', 'torch.set_grad_enabled', ({(97, 27, 97, 32): '(False)'}, {}), '(False)', False, 'import torch\n'), ((102, 15, 102, 44), 'os.path.exists', 'os.path.exists', ({(102, 30, 102, 43): 'args.sctk_dir'}, {}), '(args.sctk_dir)', False, 'import os\n'), ((124, 10, 124, 54), 'nemo.collections.asr.metrics.wer.WER', 'WER', (), '', False, 'from nemo.collections.asr.metrics.wer import WER\n'), ((144, 14, 144, 51), 'os.path.join', 'os.path.join', ({(144, 27, 144, 39): 'args.out_dir', (144, 41, 144, 50): '"""hyp.trn"""'}, {}), "(args.out_dir, 'hyp.trn')", False, 'import os\n'), ((145, 14, 145, 51), 'os.path.join', 'os.path.join', ({(145, 27, 145, 39): 'args.out_dir', (145, 41, 145, 50): '"""ref.trn"""'}, {}), "(args.out_dir, 'ref.trn')", False, 'import os\n'), ((46, 11, 46, 38), 'os.path.exists', 'os.path.exists', ({(46, 26, 46, 37): 'sclite_path'}, {}), '(sclite_path)', False, 'import os\n'), ((50, 23, 50, 64), 'os.path.join', 'os.path.join', ({(50, 36, 50, 44): 'sctk_dir', (50, 46, 50, 51): '"""bin"""', (50, 53, 50, 63): '"""rfilter1"""'}, {}), "(sctk_dir, 'bin', 'rfilter1')", False, 'import os\n'), ((99, 11, 99, 39), 'os.path.exists', 'os.path.exists', ({(99, 26, 99, 38): 'args.out_dir'}, {}), '(args.out_dir)', False, 'import os\n'), ((100, 8, 100, 33), 'os.makedirs', 'os.makedirs', ({(100, 20, 100, 32): 'args.out_dir'}, {}), '(args.out_dir)', False, 'import os\n'), ((105, 8, 105, 68), 'nemo.utils.logging.info', 'logging.info', ({(105, 21, 105, 67): 'f"""Using local ASR model from {args.asr_model}"""'}, {}), "(f'Using local ASR model from {args.asr_model}')", False, 'from nemo.utils import logging\n'), ((106, 20, 106, 76), 'nemo.collections.asr.models.EncDecCTCModel.restore_from', 'EncDecCTCModel.restore_from', (), '', False, 'from nemo.collections.asr.models import EncDecCTCModel\n'), ((108, 8, 108, 67), 'nemo.utils.logging.info', 'logging.info', ({(108, 21, 108, 66): 'f"""Using NGC cloud ASR model {args.asr_model}"""'}, {}), "(f'Using NGC cloud ASR model {args.asr_model}')", False, 'from nemo.utils import logging\n'), ((109, 20, 109, 77), 'nemo.collections.asr.models.EncDecCTCModel.from_pretrained', 'EncDecCTCModel.from_pretrained', (), '', False, 'from nemo.collections.asr.models import EncDecCTCModel\n'), ((47, 46, 47, 71), 'os.strerror', 'os.strerror', ({(47, 58, 47, 70): 'errno.ENOENT'}, {}), '(errno.ENOENT)', False, 'import os\n'), ((51, 15, 51, 43), 'os.path.exists', 'os.path.exists', ({(51, 30, 51, 42): 'rfilter_path'}, {}), '(rfilter_path)', False, 'import os\n'), ((56, 12, 56, 64), 'subprocess.run', 'subprocess.run', (), '', False, 'import subprocess\n'), ((59, 12, 59, 64), 'subprocess.run', 'subprocess.run', (), '', False, 'import subprocess\n'), ((74, 18, 74, 34), 'json.loads', 'json.loads', ({(74, 29, 74, 33): 'line'}, {}), '(line)', False, 'import json\n'), ((131, 13, 131, 23), 'torch.cuda.amp.autocast', 'autocast', ({}, {}), '()', False, 'from torch.cuda.amp import autocast\n'), ((52, 50, 52, 75), 'os.strerror', 'os.strerror', ({(52, 62, 52, 74): 'errno.ENOENT'}, {}), '(errno.ENOENT)', False, 'import os\n'), ((53, 39, 53, 66), 'os.path.basename', 'os.path.basename', ({(53, 56, 53, 65): 'hyp_fname'}, {}), '(hyp_fname)', False, 'import os\n'), ((57, 39, 57, 66), 'os.path.basename', 'os.path.basename', ({(57, 56, 57, 65): 'ref_fname'}, {}), '(ref_fname)', False, 'import os\n'), ((148, 38, 148, 86), 'os.path.basename', 'os.path.basename', ({(148, 55, 148, 85): "info_list[i]['audio_filepath']"}, {}), "(info_list[i]['audio_filepath'])", False, 'import os\n')]
pj0620/acca-video-series
accalib/utils.py
1b09548014cc899ded5a8fdd1293f7fc121a98bc
from manimlib.imports import * from manimlib.utils import bezier import numpy as np class VectorInterpolator: def __init__(self,points): self.points = points self.n = len(self.points) self.dists = [0] for i in range(len(self.points)): self.dists += [np.linalg.norm( self.points[i] - self.points[(i+1) % self.n] )+self.dists[i]] def interpolate(self,alpha): dist = alpha*self.dists[-1] idx = self.interpolate_index(dist) mult = (dist - self.dists[idx])/np.linalg.norm(self.points[(idx+1)%self.n]-self.points[idx]) return self.points[idx] + \ mult*(self.points[(idx+1)%self.n]-self.points[idx]) def interpolate_index(self,dist): def is_solution(idx): if idx == self.n-1: return self.dists[idx] <= dist else: return ((self.dists[cur] <= dist) and (self.dists[(cur+1)%self.n] >= dist)) # binary search step_size=int(self.n / 4) cur=int(self.n / 2) while not is_solution(cur): if self.dists[cur] > dist: cur -= step_size else: cur += step_size step_size = max(int(step_size/2), 1) return cur
[((20, 40, 20, 100), 'numpy.linalg.norm', 'np.linalg.norm', ({(20, 55, 20, 99): '(self.points[(idx + 1) % self.n] - self.points[idx])'}, {}), '(self.points[(idx + 1) % self.n] - self.points[idx])', True, 'import numpy as np\n'), ((12, 27, 15, 13), 'numpy.linalg.norm', 'np.linalg.norm', ({(13, 16, 14, 43): '(self.points[i] - self.points[(i + 1) % self.n])'}, {}), '(self.points[i] - self.points[(i + 1) % self.n])', True, 'import numpy as np\n')]
def-mycroft/rapid-plotly
setup.py
87ba5d9e6894e2c3288435aae9a377647b006e79
from setuptools import setup setup(name='rapid_plotly', version='0.1', description='Convenience functions to rapidly create beautiful Plotly graphs', author='Joseph Dasenbrock', author_email='[email protected]', packages=['rapid_plotly'], zip_safe=False)
[((3, 0, 9, 21), 'setuptools.setup', 'setup', (), '', False, 'from setuptools import setup\n')]
enerqi/bridge-bidding-systems
dodo.py
30ea2bf6f8bc0b786df4de8571063509d971236f
#! /usr/bin/doit -f # https://pydoit.org # `pip install [--user] doit` adds `doit.exe` to the PATH # - Note `doit auto`, the file watcher only works on Linux/Mac # - All commands are relative to dodo.py (doit runs in the working dir of dodo.py # even if ran from a different directory `doit -f path/to/dodo.py`) from glob import glob import json from os import environ from os.path import abspath, basename, dirname, exists, expanduser, join, splitext from shutil import copyfile from typing import Iterator, List, NewType, Optional from doit.tools import title_with_actions Path = NewType("Path", str) home = Path(expanduser("~")) bml_tools_dir = Path(environ.get("BML_TOOLS_DIRECTORY", join(home, "dev/bml"))) bml_includes_cache_file = ".include-deps.json" def bml_include_dependencies(bml_path: Path) -> List[Path]: # bml files can include others, so spend time scanning every bml file # for new include directives every time a bml file is saved def includes(file_handle) -> Iterator[Path]: for line in file_handle.readlines(): line = line.strip() if line.startswith("#INCLUDE"): include_directive_tokens = line.split(maxsplit=1) if len(include_directive_tokens) > 1: # We assume the file name is not quoted, just a free form path string included_file = include_directive_tokens[1].strip() yield Path(included_file) with open(bml_path, encoding='utf-8') as f: unique_deps = {include for include in includes(f) if include != bml_path} return list(unique_deps) def read_bml_includes_cache(bml_path: Path) -> Optional[List[Path]]: if not exists(bml_includes_cache_file): return None with open(bml_includes_cache_file, encoding='utf-8') as f: try: existing_deps = json.load(f) except Exception: # Manually edited messed up json perhaps return None if bml_path in existing_deps: return existing_deps[bml_path] else: return None # Manually edited perhaps (assuming we got the task order correct) def update_bml_includes_cache(bml_path: Path, bml_deps: List[Path]): existing_deps = {} if exists(bml_includes_cache_file): with open(bml_includes_cache_file, encoding='utf-8') as f: try: existing_deps = json.load(f) except Exception: pass existing_deps[bml_path] = bml_deps with open(bml_includes_cache_file, "w", encoding='utf-8') as f: json.dump(existing_deps, f, indent=4) def task_bml_include_cache(): """Populate the bml include cache.""" input_bml_file_paths = glob("*.bml") def calc_include_deps_and_cache(file_dep) -> None: bml_path = Path(file_dep) bml_deps = bml_include_dependencies(bml_path) update_bml_includes_cache(bml_path, bml_deps) for bml_path in input_bml_file_paths: # We don't use a target as doit cannot deal with more than one input file affecting the same output file # and we are using a single cache file instead of one cache file per input file. # This does mean that we are using the order of the tasks in this file to have the include cache updated # before the html task reads the include cache as part of determining changing file dependencies # The html task itself cannot use the include cache file as a doit file_dep dependency as it is being updated # by other unrelated bml file changes. # Actually, using a different notion of an update (not just tracking file modifications) if another feature of # doit that could be applied if interested enough. yield { 'name': basename(bml_path), 'actions': [(calc_include_deps_and_cache, [bml_path])], 'file_dep': [bml_path], 'title': title_with_actions } def task_bml2html(): """Create html file from bridge bidding markup language file.""" bml2html_path = Path(join(bml_tools_dir, "bml2html.py")) input_bml_file_paths = glob("*.bml") def html_output_path(bml_path: Path) -> Path: return Path(splitext(bml_path)[0] + ".html") for bml_path in input_bml_file_paths: bml_deps = read_bml_includes_cache(bml_path) if bml_deps is None: bml_deps = bml_include_dependencies(bml_path) update_bml_includes_cache(bml_path, bml_deps) yield { 'name': basename(bml_path), 'actions': [f"python {bml2html_path} {bml_path}"], 'file_dep': [bml_path] + bml_deps, 'targets': [html_output_path(bml_path)], 'title': title_with_actions } def task_bmlcss(): """Copy the bml CSS style sheet to this directory.""" css_basename = "bml.css" src_css_file = Path(join(bml_tools_dir, css_basename)) def copy_file() -> None: # OS neutral compared to running a shell command copyfile(src_css_file, css_basename) return { 'actions': [copy_file], 'file_dep': [src_css_file], 'targets': [css_basename], 'title': title_with_actions } def task_publish_main_bidding(): """Copy the main bidding html and css document to the web server root.""" src_file = "bidding-system.html" dst_file = f"W:/{src_file}" css_file = "bml.css" dst_css = f"W:/{css_file}" def copy_file(dependencies, targets) -> None: copyfile(dependencies[0], targets[0]) for src, dst in [(src_file, dst_file), (css_file, dst_css)]: yield { 'name': basename(src), 'actions': [copy_file], 'file_dep': [src], 'targets': [dst], 'title': title_with_actions }
[((16, 7, 16, 27), 'typing.NewType', 'NewType', ({(16, 15, 16, 21): '"""Path"""', (16, 23, 16, 26): 'str'}, {}), "('Path', str)", False, 'from typing import Iterator, List, NewType, Optional\n'), ((18, 12, 18, 27), 'os.path.expanduser', 'expanduser', ({(18, 23, 18, 26): '"""~"""'}, {}), "('~')", False, 'from os.path import abspath, basename, dirname, exists, expanduser, join, splitext\n'), ((60, 7, 60, 38), 'os.path.exists', 'exists', ({(60, 14, 60, 37): 'bml_includes_cache_file'}, {}), '(bml_includes_cache_file)', False, 'from os.path import abspath, basename, dirname, exists, expanduser, join, splitext\n'), ((75, 27, 75, 40), 'glob.glob', 'glob', ({(75, 32, 75, 39): '"""*.bml"""'}, {}), "('*.bml')", False, 'from glob import glob\n'), ((102, 27, 102, 40), 'glob.glob', 'glob', ({(102, 32, 102, 39): '"""*.bml"""'}, {}), "('*.bml')", False, 'from glob import glob\n'), ((19, 56, 19, 77), 'os.path.join', 'join', ({(19, 61, 19, 65): 'home', (19, 67, 19, 76): '"""dev/bml"""'}, {}), "(home, 'dev/bml')", False, 'from os.path import abspath, basename, dirname, exists, expanduser, join, splitext\n'), ((42, 11, 42, 42), 'os.path.exists', 'exists', ({(42, 18, 42, 41): 'bml_includes_cache_file'}, {}), '(bml_includes_cache_file)', False, 'from os.path import abspath, basename, dirname, exists, expanduser, join, splitext\n'), ((70, 8, 70, 45), 'json.dump', 'json.dump', (), '', False, 'import json\n'), ((101, 25, 101, 59), 'os.path.join', 'join', ({(101, 30, 101, 43): 'bml_tools_dir', (101, 45, 101, 58): '"""bml2html.py"""'}, {}), "(bml_tools_dir, 'bml2html.py')", False, 'from os.path import abspath, basename, dirname, exists, expanduser, join, splitext\n'), ((125, 24, 125, 57), 'os.path.join', 'join', ({(125, 29, 125, 42): 'bml_tools_dir', (125, 44, 125, 56): 'css_basename'}, {}), '(bml_tools_dir, css_basename)', False, 'from os.path import abspath, basename, dirname, exists, expanduser, join, splitext\n'), ((129, 8, 129, 44), 'shutil.copyfile', 'copyfile', ({(129, 17, 129, 29): 'src_css_file', (129, 31, 129, 43): 'css_basename'}, {}), '(src_css_file, css_basename)', False, 'from shutil import copyfile\n'), ((147, 8, 147, 45), 'shutil.copyfile', 'copyfile', ({(147, 17, 147, 32): 'dependencies[0]', (147, 34, 147, 44): 'targets[0]'}, {}), '(dependencies[0], targets[0])', False, 'from shutil import copyfile\n'), ((47, 28, 47, 40), 'json.load', 'json.load', ({(47, 38, 47, 39): 'f'}, {}), '(f)', False, 'import json\n'), ((63, 32, 63, 44), 'json.load', 'json.load', ({(63, 42, 63, 43): 'f'}, {}), '(f)', False, 'import json\n'), ((92, 20, 92, 38), 'os.path.basename', 'basename', ({(92, 29, 92, 37): 'bml_path'}, {}), '(bml_path)', False, 'from os.path import abspath, basename, dirname, exists, expanduser, join, splitext\n'), ((114, 20, 114, 38), 'os.path.basename', 'basename', ({(114, 29, 114, 37): 'bml_path'}, {}), '(bml_path)', False, 'from os.path import abspath, basename, dirname, exists, expanduser, join, splitext\n'), ((151, 20, 151, 33), 'os.path.basename', 'basename', ({(151, 29, 151, 32): 'src'}, {}), '(src)', False, 'from os.path import abspath, basename, dirname, exists, expanduser, join, splitext\n'), ((105, 20, 105, 38), 'os.path.splitext', 'splitext', ({(105, 29, 105, 37): 'bml_path'}, {}), '(bml_path)', False, 'from os.path import abspath, basename, dirname, exists, expanduser, join, splitext\n')]
hustbill/Python-auto
learn/hard-way/EmptyFileError.py
9f43bc2613a64a373927047ac52d8e90ffe644f8
class EmptyFileError(Exception): pass filenames = ["myfile1", "nonExistent", "emptyFile", "myfile2"] for file in filenames: try: f = open(file, 'r') line = f.readline() if line == "": f.close() raise EmptyFileError("%s: is empty" % file) # except IOError as error: # print("%s: could not be opened: %s" % (file, error.strerror) ## except EmptyFileError as error: # print(error) # else: # print("%s: %s" % (file, f.readline())) # finally: # print("Done processing", file)
[]
jimconner/digital_sky
plugins/crumbling_in.py
9427cd19dbd9fb1c82ca12fa8f962532d700c67f
# Crumbling In # Like randomised coloured dots and then they # increase on both sides getting closer and closer into the middle. import sys, traceback, random from numpy import array,full class animation(): def __init__(self,datastore): self.max_led = datastore.LED_COUNT self.pos = 0 self.direction=0 self.cols = [ \ [255,0,0,0], \ [0,255,0,0], \ [0,0,255,0], \ [0,0,0,255], \ [255,255,0,0], \ [255,0,255,0], \ [0,255,255,0], \ [0,0,255,64], \ ] self.row=full((self.max_led,4),0) def emit_row(self): try: if self.pos >= self.max_led/2: self.direction=1 if self.pos <= 0: self.direction=0 col=self.cols[random.randint(0,7)] if self.direction==1: col=[0,0,0,0] self.row[self.pos]=col self.row[(self.max_led-1)-self.pos]=col if self.direction==0: self.pos+=1 else: self.pos-=1 return self.row except Exception as err: print(err) traceback.print_exc(file=sys.stdout)
[((23, 17, 23, 41), 'numpy.full', 'full', ({(23, 22, 23, 38): '(self.max_led, 4)', (23, 39, 23, 40): '0'}, {}), '((self.max_led, 4), 0)', False, 'from numpy import array, full\n'), ((44, 12, 44, 48), 'traceback.print_exc', 'traceback.print_exc', (), '', False, 'import sys, traceback, random\n'), ((31, 26, 31, 45), 'random.randint', 'random.randint', ({(31, 41, 31, 42): '(0)', (31, 43, 31, 44): '(7)'}, {}), '(0, 7)', False, 'import sys, traceback, random\n')]
KBIbiopharma/pybleau
pybleau/app/plotting/tests/test_plot_config.py
5cdfce603ad29af874f74f0f527adc6b4c9066e8
from __future__ import division from unittest import skipIf, TestCase import os from pandas import DataFrame import numpy as np from numpy.testing import assert_array_equal BACKEND_AVAILABLE = os.environ.get("ETS_TOOLKIT", "qt4") != "null" if BACKEND_AVAILABLE: from app_common.apptools.testing_utils import assert_obj_gui_works from pybleau.app.plotting.plot_config import HeatmapPlotConfigurator, \ HEATMAP_PLOT_TYPE, HistogramPlotConfigurator, HIST_PLOT_TYPE, \ LinePlotConfigurator, BarPlotConfigurator, ScatterPlotConfigurator, \ SCATTER_PLOT_TYPE, CMAP_SCATTER_PLOT_TYPE, LINE_PLOT_TYPE, \ BAR_PLOT_TYPE LEN = 16 TEST_DF = DataFrame({"a": [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4], "b": [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4], "c": [1, 2, 3, 4, 2, 3, 1, 1, 4, 4, 5, 6, 4, 4, 5, 6], "d": list("ababcabcdabcdeab"), "e": np.random.randn(LEN), "f": range(LEN), # Highly repetitive column to split the entire data into 2 "g": np.array(["0", "1"] * (LEN // 2)), "h": np.array([0, 1] * (LEN // 2), dtype=bool), }) class BasePlotConfig(object): def test_creation_fails_if_no_df(self): with self.assertRaises(ValueError): config = self.configurator() config.to_dict() def test_bring_up(self): obj = self.configurator(data_source=TEST_DF) assert_obj_gui_works(obj) # Assertion utilities ----------------------------------------------------- def assert_editor_options(self, editor): editor_options = editor.values if self.numerical_cols_only: for col in editor_options: if col != "index": self.assertIn(TEST_DF[col].dtype, (np.int64, np.float64)) else: self.assertEqual(set(editor_options), set(TEST_DF.columns) | {"index"}) class BaseXYPlotConfig(BasePlotConfig): def test_plot_basic(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b") self.assertEqual(config.plot_type, self.basic_type) config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) self.assertIn("x_arr", config_dict) assert_array_equal(config_dict["x_arr"], TEST_DF["a"].values) self.assertIn("y_arr", config_dict) assert_array_equal(config_dict["y_arr"], TEST_DF["b"].values) def test_data_choices(self): """ Make sure different configurators provide the right data choices. """ config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b") view_items = config._data_selection_items() x_editor = view_items[0].content[0].editor self.assert_editor_options(x_editor) y_editor = view_items[1].content[0].editor self.assert_editor_options(y_editor) def test_plot_colored_by_str_col(self): # Color by a column filled with boolean values config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="d") self.assertIn(config.plot_type, self.basic_type) config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) self.assertIn("x_arr", config_dict) self.assertIsInstance(config_dict["x_arr"], dict) d_values = TEST_DF["d"].unique() self.assertEqual(set(config_dict["x_arr"].keys()), set(d_values)) for arr in config_dict["x_arr"].values(): self.assertIsInstance(arr, np.ndarray) # For example: assert_array_equal(config_dict["x_arr"]["c"], np.array([1, 4, 4])) self.assertIn("y_arr", config_dict) self.assertIsInstance(config_dict["y_arr"], dict) self.assertEqual(set(config_dict["y_arr"].keys()), set(d_values)) for arr in config_dict["y_arr"].values(): self.assertIsInstance(arr, np.ndarray) # For example: assert_array_equal(config_dict["y_arr"]["c"], np.array([2, 2, 3])) def test_plot_colored_by_bool_col(self): # Color by a column filled with boolean values config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="h") self.assertIn(config.plot_type, self.basic_type) config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) self.assertIn("x_arr", config_dict) self.assertIsInstance(config_dict["x_arr"], dict) hue_values = set(TEST_DF["h"]) self.assertEqual(set(config_dict["x_arr"].keys()), hue_values) assert_array_equal(config_dict["x_arr"][False], TEST_DF["a"][::2]) assert_array_equal(config_dict["x_arr"][True], TEST_DF["a"][1::2]) self.assertIn("y_arr", config_dict) self.assertIsInstance(config_dict["y_arr"], dict) self.assertEqual(set(config_dict["y_arr"].keys()), hue_values) assert_array_equal(config_dict["y_arr"][False], TEST_DF["b"][::2]) assert_array_equal(config_dict["y_arr"][True], TEST_DF["b"][1::2]) def test_plot_colored_by_NON_EXISTENT_col(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="NON-EXISTENT") with self.assertRaises(KeyError): config.to_dict() @skipIf(not BACKEND_AVAILABLE, "No UI backend available") class TestScatterPlotConfig(TestCase, BaseXYPlotConfig): def setUp(self): self.configurator = ScatterPlotConfigurator self.basic_type = SCATTER_PLOT_TYPE self.numerical_cols_only = True def test_plot_scatter_colored_by_int_col(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="c") self.assertEqual(config.plot_type, CMAP_SCATTER_PLOT_TYPE) config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) self.assertIn("x_arr", config_dict) self.assertIsInstance(config_dict["x_arr"], np.ndarray) self.assertIn("y_arr", config_dict) self.assertIsInstance(config_dict["y_arr"], np.ndarray) self.assertIn("z_arr", config_dict) self.assertIsInstance(config_dict["z_arr"], np.ndarray) def test_plot_scatter_colored_by_float_col(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="e") self.assertEqual(config.plot_type, CMAP_SCATTER_PLOT_TYPE) config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) self.assertIn("x_arr", config_dict) self.assertIsInstance(config_dict["x_arr"], np.ndarray) self.assertIn("y_arr", config_dict) self.assertIsInstance(config_dict["y_arr"], np.ndarray) self.assertIn("z_arr", config_dict) self.assertIsInstance(config_dict["z_arr"], np.ndarray) def test_style_colorize_by_float_changes_on_color_column_change(self): """ The dtype of the column to colorize controls colorize_by_float. """ # Color by a string: config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="d") self.assertFalse(config.plot_style.colorize_by_float) # Color by a float: config.z_col_name = "e" self.assertTrue(config.plot_style.colorize_by_float) def test_scatter_data_selection_columns(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="d") columns = config._data_selection_columns() expected = config._numerical_columns self.assertCountEqual(columns, expected) def test_scatter_color_selection_columns(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="d") columns = config._color_selection_columns() expected = [""] + config._available_columns self.assertCountEqual(columns, expected) @skipIf(not BACKEND_AVAILABLE, "No UI backend available") class TestLinePlotConfig(TestCase, BaseXYPlotConfig): def setUp(self): self.configurator = LinePlotConfigurator self.basic_type = LINE_PLOT_TYPE self.numerical_cols_only = True def test_line_data_selection_columns(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="d") columns = config._data_selection_columns() expected = config._numerical_columns self.assertCountEqual(columns, expected) def test_line_color_selection_columns(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="d") columns = config._color_selection_columns() expected = [""] + config._available_columns self.assertCountEqual(columns, expected) @skipIf(not BACKEND_AVAILABLE, "No UI backend available") class TestBarPlotConfig(TestCase, BaseXYPlotConfig): def setUp(self): self.configurator = BarPlotConfigurator self.basic_type = BAR_PLOT_TYPE self.numerical_cols_only = False def test_data_choices(self): """ Make sure different configurators provide the right data choices. """ config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b") view_items = config._data_selection_items() x_editor = view_items[0].content[3].content[0].content[0].editor self.assert_editor_options(x_editor) def test_melt_mode_no_effect(self): config = self.configurator(data_source=TEST_DF, melt_source_data=True) self.assertEqual(config.plot_type, self.basic_type) # No columns to melt, so no transformation: self.assertIs(config.data_source, TEST_DF) self.assertIs(config.transformed_data, TEST_DF) def test_melt_mode_with_melted_columns(self): config = self.configurator(data_source=TEST_DF, melt_source_data=True, columns_to_melt=["e", "f"]) self.assertIsNot(config.transformed_data, TEST_DF) self.assertIs(config.data_source, TEST_DF) # Pulling the x_arr forces a reset of the x_col_name x_values = np.array(["e"]*LEN+["f"]*LEN) assert_array_equal(config.x_arr, x_values) self.assertEqual(config.x_col_name, "variable") self.assertEqual(len(config.y_arr), 2 * LEN) self.assertEqual(config.y_col_name, "value") config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) self.assertIn("x_arr", config_dict) assert_array_equal(config_dict["x_arr"], x_values) self.assertIn("y_arr", config_dict) self.assertEqual(len(config_dict["y_arr"]), 2 * LEN) def test_melt_mode_with_melted_columns_and_str_color(self): config = self.configurator(data_source=TEST_DF, melt_source_data=True, columns_to_melt=["e", "f"], z_col_name="g") self.assertIsNot(config.transformed_data, TEST_DF) self.assertIs(config.data_source, TEST_DF) hue_values = TEST_DF["g"].unique() # Pulling the x_arr forces a reset of the x_col_name x_values = np.array(["e"] * (LEN // 2) + ["f"] * (LEN // 2)) self.assertEqual(set(config.x_arr.keys()), set(hue_values)) for key in hue_values: assert_array_equal(config.x_arr[key], x_values) self.assertEqual(config.x_col_name, "variable") for key in hue_values: self.assertEqual(len(config.y_arr[key]), LEN) self.assertEqual(config.y_col_name, "value") self.assertIn("g", config.transformed_data.columns) config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) self.assertIn("x_arr", config_dict) self.assertEqual(set(config_dict["x_arr"].keys()), set(hue_values)) for key in hue_values: assert_array_equal(config_dict["x_arr"][key], x_values) self.assertIn("y_arr", config_dict) for key in hue_values: self.assertEqual(len(config_dict["y_arr"][key]), LEN) def test_melt_mode_with_melted_columns_and_bool_color(self): config = self.configurator(data_source=TEST_DF, melt_source_data=True, columns_to_melt=["e", "f"], z_col_name="h") self.assertIsNot(config.transformed_data, TEST_DF) self.assertIs(config.data_source, TEST_DF) hue_values = TEST_DF["h"].unique() # Pulling the x_arr forces a reset of the x_col_name x_values = np.array(["e"] * (LEN // 2) + ["f"] * (LEN // 2)) self.assertEqual(set(config.x_arr.keys()), set(hue_values)) for key in hue_values: assert_array_equal(config.x_arr[key], x_values) self.assertEqual(config.x_col_name, "variable") for key in hue_values: self.assertEqual(len(config.y_arr[key]), LEN) self.assertEqual(config.y_col_name, "value") self.assertIn("h", config.transformed_data.columns) config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) self.assertIn("x_arr", config_dict) self.assertEqual(set(config_dict["x_arr"].keys()), set(hue_values)) for key in hue_values: assert_array_equal(config_dict["x_arr"][key], x_values) self.assertIn("y_arr", config_dict) for key in hue_values: self.assertEqual(len(config_dict["y_arr"][key]), LEN) @skipIf(not BACKEND_AVAILABLE, "No UI backend available") class TestHistogramPlotConfig(BasePlotConfig, TestCase): def setUp(self): self.configurator = HistogramPlotConfigurator self.basic_type = HIST_PLOT_TYPE self.numerical_cols_only = True # Tests ------------------------------------------------------------------- def test_plot_basic(self): config = self.configurator(data_source=TEST_DF, x_col_name="a") self.assertEqual(config.plot_type, self.basic_type) config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) self.assertIn("x_arr", config_dict) assert_array_equal(config_dict["x_arr"], TEST_DF["a"].values) def test_plot_NON_EXISTENT_col(self): config = self.configurator(data_source=TEST_DF, x_col_name="NON-EXISTENT") with self.assertRaises(KeyError): config.to_dict() def test_data_choices(self): """ Make sure different configurators provide the right data choices. """ config = self.configurator(data_source=TEST_DF, x_col_name="a") view_items = config._data_selection_items() x_editor = view_items[0].content[0].editor self.assert_editor_options(x_editor) @skipIf(not BACKEND_AVAILABLE, "No UI backend available") class TestHeatmapPlotConfig(BasePlotConfig, TestCase): def setUp(self): self.configurator = HeatmapPlotConfigurator self.basic_type = HEATMAP_PLOT_TYPE self.numerical_cols_only = True # Tests ------------------------------------------------------------------- def test_plot_basic(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="e") self.assertEqual(config.plot_type, self.basic_type) config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) def test_plot_colored_by_NON_EXISTENT_col(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="NON-EXISTENT") with self.assertRaises(KeyError): config.to_dict() def test_data_choices(self): """ Make sure different configurators provide the right data choices. Passing non-numerical """ config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="e") view_items = config._data_selection_items() x_editor = view_items[0].content[0].editor self.assert_editor_options(x_editor) y_editor = view_items[1].content[0].editor self.assert_editor_options(y_editor)
[((135, 1, 135, 57), 'unittest.skipIf', 'skipIf', ({(135, 8, 135, 29): '(not BACKEND_AVAILABLE)', (135, 31, 135, 56): '"""No UI backend available"""'}, {}), "(not BACKEND_AVAILABLE, 'No UI backend available')", False, 'from unittest import skipIf, TestCase\n'), ((196, 1, 196, 57), 'unittest.skipIf', 'skipIf', ({(196, 8, 196, 29): '(not BACKEND_AVAILABLE)', (196, 31, 196, 56): '"""No UI backend available"""'}, {}), "(not BACKEND_AVAILABLE, 'No UI backend available')", False, 'from unittest import skipIf, TestCase\n'), ((218, 1, 218, 57), 'unittest.skipIf', 'skipIf', ({(218, 8, 218, 29): '(not BACKEND_AVAILABLE)', (218, 31, 218, 56): '"""No UI backend available"""'}, {}), "(not BACKEND_AVAILABLE, 'No UI backend available')", False, 'from unittest import skipIf, TestCase\n'), ((330, 1, 330, 57), 'unittest.skipIf', 'skipIf', ({(330, 8, 330, 29): '(not BACKEND_AVAILABLE)', (330, 31, 330, 56): '"""No UI backend available"""'}, {}), "(not BACKEND_AVAILABLE, 'No UI backend available')", False, 'from unittest import skipIf, TestCase\n'), ((363, 1, 363, 57), 'unittest.skipIf', 'skipIf', ({(363, 8, 363, 29): '(not BACKEND_AVAILABLE)', (363, 31, 363, 56): '"""No UI backend available"""'}, {}), "(not BACKEND_AVAILABLE, 'No UI backend available')", False, 'from unittest import skipIf, TestCase\n'), ((9, 20, 9, 56), 'os.environ.get', 'os.environ.get', ({(9, 35, 9, 48): '"""ETS_TOOLKIT"""', (9, 50, 9, 55): '"""qt4"""'}, {}), "('ETS_TOOLKIT', 'qt4')", False, 'import os\n'), ((25, 26, 25, 46), 'numpy.random.randn', 'np.random.randn', ({(25, 42, 25, 45): 'LEN'}, {}), '(LEN)', True, 'import numpy as np\n'), ((28, 26, 28, 59), 'numpy.array', 'np.array', ({(28, 35, 28, 58): "['0', '1'] * (LEN // 2)"}, {}), "(['0', '1'] * (LEN // 2))", True, 'import numpy as np\n'), ((29, 26, 29, 67), 'numpy.array', 'np.array', (), '', True, 'import numpy as np\n'), ((41, 8, 41, 33), 'app_common.apptools.testing_utils.assert_obj_gui_works', 'assert_obj_gui_works', ({(41, 29, 41, 32): 'obj'}, {}), '(obj)', False, 'from app_common.apptools.testing_utils import assert_obj_gui_works\n'), ((66, 8, 66, 69), 'numpy.testing.assert_array_equal', 'assert_array_equal', ({(66, 27, 66, 47): "config_dict['x_arr']", (66, 49, 66, 68): "TEST_DF['a'].values"}, {}), "(config_dict['x_arr'], TEST_DF['a'].values)", False, 'from numpy.testing import assert_array_equal\n'), ((68, 8, 68, 69), 'numpy.testing.assert_array_equal', 'assert_array_equal', ({(68, 27, 68, 47): "config_dict['y_arr']", (68, 49, 68, 68): "TEST_DF['b'].values"}, {}), "(config_dict['y_arr'], TEST_DF['b'].values)", False, 'from numpy.testing import assert_array_equal\n'), ((119, 8, 119, 74), 'numpy.testing.assert_array_equal', 'assert_array_equal', ({(119, 27, 119, 54): "config_dict['x_arr'][False]", (119, 56, 119, 73): "TEST_DF['a'][::2]"}, {}), "(config_dict['x_arr'][False], TEST_DF['a'][::2])", False, 'from numpy.testing import assert_array_equal\n'), ((120, 8, 120, 74), 'numpy.testing.assert_array_equal', 'assert_array_equal', ({(120, 27, 120, 53): "config_dict['x_arr'][True]", (120, 55, 120, 73): "TEST_DF['a'][1::2]"}, {}), "(config_dict['x_arr'][True], TEST_DF['a'][1::2])", False, 'from numpy.testing import assert_array_equal\n'), ((125, 8, 125, 74), 'numpy.testing.assert_array_equal', 'assert_array_equal', ({(125, 27, 125, 54): "config_dict['y_arr'][False]", (125, 56, 125, 73): "TEST_DF['b'][::2]"}, {}), "(config_dict['y_arr'][False], TEST_DF['b'][::2])", False, 'from numpy.testing import assert_array_equal\n'), ((126, 8, 126, 74), 'numpy.testing.assert_array_equal', 'assert_array_equal', ({(126, 27, 126, 53): "config_dict['y_arr'][True]", (126, 55, 126, 73): "TEST_DF['b'][1::2]"}, {}), "(config_dict['y_arr'][True], TEST_DF['b'][1::2])", False, 'from numpy.testing import assert_array_equal\n'), ((249, 19, 249, 48), 'numpy.array', 'np.array', ({(249, 28, 249, 47): "['e'] * LEN + ['f'] * LEN"}, {}), "(['e'] * LEN + ['f'] * LEN)", True, 'import numpy as np\n'), ((250, 8, 250, 50), 'numpy.testing.assert_array_equal', 'assert_array_equal', ({(250, 27, 250, 39): 'config.x_arr', (250, 41, 250, 49): 'x_values'}, {}), '(config.x_arr, x_values)', False, 'from numpy.testing import assert_array_equal\n'), ((259, 8, 259, 58), 'numpy.testing.assert_array_equal', 'assert_array_equal', ({(259, 27, 259, 47): "config_dict['x_arr']", (259, 49, 259, 57): 'x_values'}, {}), "(config_dict['x_arr'], x_values)", False, 'from numpy.testing import assert_array_equal\n'), ((273, 19, 273, 68), 'numpy.array', 'np.array', ({(273, 28, 273, 67): "['e'] * (LEN // 2) + ['f'] * (LEN // 2)"}, {}), "(['e'] * (LEN // 2) + ['f'] * (LEN // 2))", True, 'import numpy as np\n'), ((306, 19, 306, 68), 'numpy.array', 'np.array', ({(306, 28, 306, 67): "['e'] * (LEN // 2) + ['f'] * (LEN // 2)"}, {}), "(['e'] * (LEN // 2) + ['f'] * (LEN // 2))", True, 'import numpy as np\n'), ((346, 8, 346, 69), 'numpy.testing.assert_array_equal', 'assert_array_equal', ({(346, 27, 346, 47): "config_dict['x_arr']", (346, 49, 346, 68): "TEST_DF['a'].values"}, {}), "(config_dict['x_arr'], TEST_DF['a'].values)", False, 'from numpy.testing import assert_array_equal\n'), ((96, 54, 96, 73), 'numpy.array', 'np.array', ({(96, 63, 96, 72): '[1, 4, 4]'}, {}), '([1, 4, 4])', True, 'import numpy as np\n'), ((104, 54, 104, 73), 'numpy.array', 'np.array', ({(104, 63, 104, 72): '[2, 2, 3]'}, {}), '([2, 2, 3])', True, 'import numpy as np\n'), ((276, 12, 276, 59), 'numpy.testing.assert_array_equal', 'assert_array_equal', ({(276, 31, 276, 48): 'config.x_arr[key]', (276, 50, 276, 58): 'x_values'}, {}), '(config.x_arr[key], x_values)', False, 'from numpy.testing import assert_array_equal\n'), ((290, 12, 290, 67), 'numpy.testing.assert_array_equal', 'assert_array_equal', ({(290, 31, 290, 56): "config_dict['x_arr'][key]", (290, 58, 290, 66): 'x_values'}, {}), "(config_dict['x_arr'][key], x_values)", False, 'from numpy.testing import assert_array_equal\n'), ((309, 12, 309, 59), 'numpy.testing.assert_array_equal', 'assert_array_equal', ({(309, 31, 309, 48): 'config.x_arr[key]', (309, 50, 309, 58): 'x_values'}, {}), '(config.x_arr[key], x_values)', False, 'from numpy.testing import assert_array_equal\n'), ((323, 12, 323, 67), 'numpy.testing.assert_array_equal', 'assert_array_equal', ({(323, 31, 323, 56): "config_dict['x_arr'][key]", (323, 58, 323, 66): 'x_values'}, {}), "(config_dict['x_arr'][key], x_values)", False, 'from numpy.testing import assert_array_equal\n')]
thomasrockhu/bfg9000
test/integration/languages/test_mixed.py
1cd1226eab9bed2fc2ec6acccf7864fdcf2ed31a
import os.path from .. import * class TestMixed(IntegrationTest): def __init__(self, *args, **kwargs): super().__init__(os.path.join('languages', 'mixed'), *args, **kwargs) def test_build(self): self.build(executable('program')) self.assertOutput([executable('program')], 'hello from c++!\n') class TestMixedLibrary(IntegrationTest): def __init__(self, *args, **kwargs): super().__init__(os.path.join('languages', 'mixed_library'), *args, **kwargs) def test_build(self): self.build(executable('program')) self.assertOutput([executable('program')], 'hello, library!\n') @skip_if('fortran' not in test_features, 'skipping fortran tests') # XXX: This fails on macOS, probably because of a version mismatch somewhere. @skip_if(env.host_platform.genus == 'darwin', 'fortran on os x is weird') class TestMixedFortran(IntegrationTest): def __init__(self, *args, **kwargs): super().__init__(os.path.join('languages', 'mixed_fortran'), *args, **kwargs) def test_build(self): self.build(executable('program')) self.assertOutput([executable('program')], 'hello from f77!\n')
[]
TeamLab/introduction_to_pythoy_TEAMLAB_MOOC
code/7/collections/namedtupe_example.py
ebf1ff02d6a341bfee8695eac478ff8297cb97e4
from collections import namedtuple # Basic example Point = namedtuple('Point', ['x', 'y']) p = Point(11, y=22) print(p[0] + p[1]) x, y = p print(x, y) print(p.x + p.y) print(Point(x=11, y=22)) from collections import namedtuple import csv f = open("users.csv", "r") next(f) reader = csv.reader(f) student_list = [] for row in reader: student_list.append(row) print(row) print(student_list) columns = ["user_id", "integration_id", "login_id", "password", "first_name", "last_name", "full_name", "sortable_name", "short_name", "email", "status"] Student = namedtuple('Student', columns) student_namedtupe_list = [] for row in student_list: student = Student(*row) student_namedtupe_list.append(student) print(student_namedtupe_list[0]) print(student_namedtupe_list[0].full_name)
[((4, 8, 4, 39), 'collections.namedtuple', 'namedtuple', ({(4, 19, 4, 26): '"""Point"""', (4, 28, 4, 38): "['x', 'y']"}, {}), "('Point', ['x', 'y'])", False, 'from collections import namedtuple\n'), ((17, 9, 17, 22), 'csv.reader', 'csv.reader', ({(17, 20, 17, 21): 'f'}, {}), '(f)', False, 'import csv\n'), ((27, 10, 27, 40), 'collections.namedtuple', 'namedtuple', ({(27, 21, 27, 30): '"""Student"""', (27, 32, 27, 39): 'columns'}, {}), "('Student', columns)", False, 'from collections import namedtuple\n')]
dotnes/mitmproxy
test/helper_tools/benchtool.py
5eb17bbf6d47c8d703763bfa41cf1ff3f98a632f
# Profile mitmdump with apachebench and # yappi (https://code.google.com/p/yappi/) # # Requirements: # - Apache Bench "ab" binary # - pip install click yappi from mitmproxy.main import mitmdump from os import system from threading import Thread import time import yappi import click class ApacheBenchThread(Thread): def __init__(self, concurrency): self.concurrency = concurrency super().__init__() def run(self): time.sleep(2) system( "ab -n 1024 -c {} -X 127.0.0.1:8080 http://example.com/".format(self.concurrency)) @click.command() @click.option('--profiler', default="none", type=click.Choice(['none', 'yappi'])) @click.option('--clock-type', default="cpu", type=click.Choice(['wall', 'cpu'])) @click.option('--concurrency', default=1, type=click.INT) def main(profiler, clock_type, concurrency): outfile = "callgrind.mitmdump-{}-c{}".format(clock_type, concurrency) a = ApacheBenchThread(concurrency) a.start() if profiler == "yappi": yappi.set_clock_type(clock_type) yappi.start(addons=True) print("Start mitmdump...") mitmdump(["-k", "-q", "-S", "1024example"]) print("mitmdump stopped.") print("Save profile information...") if profiler == "yappi": yappi.stop() stats = yappi.get_func_stats() stats.save(outfile, type='callgrind') print("Done.") if __name__ == '__main__': main()
[((29, 1, 29, 16), 'click.command', 'click.command', ({}, {}), '()', False, 'import click\n'), ((32, 1, 32, 57), 'click.option', 'click.option', (), '', False, 'import click\n'), ((44, 4, 44, 47), 'mitmproxy.main.mitmdump', 'mitmdump', ({(44, 13, 44, 46): "['-k', '-q', '-S', '1024example']"}, {}), "(['-k', '-q', '-S', '1024example'])", False, 'from mitmproxy.main import mitmdump\n'), ((24, 8, 24, 21), 'time.sleep', 'time.sleep', ({(24, 19, 24, 20): '(2)'}, {}), '(2)', False, 'import time\n'), ((40, 8, 40, 40), 'yappi.set_clock_type', 'yappi.set_clock_type', ({(40, 29, 40, 39): 'clock_type'}, {}), '(clock_type)', False, 'import yappi\n'), ((41, 8, 41, 32), 'yappi.start', 'yappi.start', (), '', False, 'import yappi\n'), ((49, 8, 49, 20), 'yappi.stop', 'yappi.stop', ({}, {}), '()', False, 'import yappi\n'), ((50, 16, 50, 38), 'yappi.get_func_stats', 'yappi.get_func_stats', ({}, {}), '()', False, 'import yappi\n'), ((30, 49, 30, 80), 'click.Choice', 'click.Choice', ({(30, 62, 30, 79): "['none', 'yappi']"}, {}), "(['none', 'yappi'])", False, 'import click\n'), ((31, 50, 31, 79), 'click.Choice', 'click.Choice', ({(31, 63, 31, 78): "['wall', 'cpu']"}, {}), "(['wall', 'cpu'])", False, 'import click\n')]
alexliberzonlab/pivpy
pivpy/graphics.py
c1c984cd669fce6f5c0b6a602d6a51ed3fec5954
# -*- coding: utf-8 -*- """ Various plots """ import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation, FFMpegWriter import xarray as xr import os def quiver(data, arrScale = 25.0, threshold = None, nthArr = 1, contourLevels = None, colbar = True, logscale = False, aspectratio='equal', colbar_orient = 'vertical', units = None): """ Generates a quiver plot of a 'data' xarray DataArray object (single frame from a dataset) Inputs: data - xarray DataArray of the type defined in pivpy, one of the frames in the Dataset selected by default using .isel(t=0) threshold - values above the threshold will be set equal to threshold arrScale - use to change arrow scales nthArr - use to plot only every nth arrow from the array contourLevels - use to specify the maximum value (abs) of contour plots colbar - True/False wether to generate a colorbar or not logscale - if true then colorbar is on log scale aspectratio - set auto or equal for the plot's apearence colbar_orient - 'horizontal' or 'vertical' orientation of the colorbar (if colbar is True) Outputs: none Usage: graphics.quiver(data, arrScale = 0.2, threshold = Inf, n) """ data = dataset_to_array(data) x = data.x y = data.y u = data.u v = data.v if units is not None: lUnits = units[0] # ['m' 'm' 'mm/s' 'mm/s'] velUnits = units[2] tUnits = velUnits.split('/')[1] # make it 's' or 'dt' else: lUnits, velUnits, tUnits = '', '', '' if threshold is not None: data['u'] = xr.where(data['u']>threshold, threshold, data['u']) data['v'] = xr.where(data['v']>threshold, threshold, data['v']) S = np.array(np.sqrt(u**2 + v**2)) fig = plt.get_fignums() if len(fig) == 0: # if no figure is open fig, ax = plt.subplots() # open a new figure else: ax = plt.gca() if contourLevels is None: levels = np.linspace(0, np.max(S.flatten()), 30) # default contour levels up to max of S else: levels = np.linspace(0, contourLevels, 30) if logscale: c = ax.contourf(x,y,S,alpha=0.8, cmap = plt.get_cmap("Blues"), levels = levels, norm = plt.colors.LogNorm()) else: c = ax.contourf(x,y,S,alpha=0.8, cmap = plt.get_cmap("Blues"), levels=levels) if colbar: cbar = plt.colorbar(c, orientation=colbar_orient) cbar.set_label(r'$\left| \, V \, \right|$ ['+ lUnits +' $\cdot$ '+ tUnits +'$^{-1}$]') ax.quiver(x[::nthArr],y[::nthArr], u[::nthArr,::nthArr],v[::nthArr,::nthArr],units='width', scale = np.max(S*arrScale),headwidth=2) ax.set_xlabel('x (' + lUnits + ')') ax.set_ylabel('y (' + lUnits + ')') ax.set_aspect(aspectratio) return fig,ax def histogram(data, normed = False): """ this function will plot a normalized histogram of the velocity data. Input: data : xarray DataSet with ['u','v'] attrs['units'] normed : (optional) default is False to present normalized histogram """ u = np.asarray(data.u).flatten() v = np.asarray(data.v).flatten() units = data.attrs['units'] f,ax = plt.subplots(2) ax[0].hist(u,bins=np.int(np.sqrt(len(u))*0.5),density=normed) ax[0].set_xlabel('u ['+units[2]+']') ax[1] = plt.subplot2grid((2,1),(1,0)) ax[1].hist(v,bins=np.int(np.sqrt(len(v)*0.5)),density=normed) ax[1].set_xlabel('v ['+units[2]+']') plt.tight_layout() return f, ax def contour_plot(data, threshold = None, contourLevels = None, colbar = True, logscale = False, aspectration='equal', units=None): """ contourf ajusted for the xarray PIV dataset, creates a contour map for the data['w'] property. Input: data : xarray PIV DataArray, converted automatically using .isel(t=0) threshold : a threshold value, default is None (no data clipping) contourLevels : number of contour levels, default is None colbar : boolean (default is True) show/hide colorbar logscale : boolean (True is default) create in linear/log scale aspectration : string, 'equal' is the default """ data = dataset_to_array(data) if units is not None: lUnits = units[0] # ['m' 'm' 'mm/s' 'mm/s'] # velUnits = units[2] # tUnits = velUnits.split('/')[1] # make it 's' or 'dt' else: # lUnits, velUnits = '', '' lUnits = '' f,ax = plt.subplots() if threshold is not None: data['w'] = xr.where(data['w']>threshold, threshold, data['w']) m = np.amax(abs(data['w'])) if contourLevels == None: levels = np.linspace(-m, m, 30) else: levels = np.linspace(-contourLevels, contourLevels, 30) if logscale: c = ax.contourf(data.x,data.y,np.abs(data['w']), levels=levels, cmap = plt.get_cmap('RdYlBu'), norm=plt.colors.LogNorm()) else: c = ax.contourf(data.x,data.y,data['w'], levels=levels, cmap = plt.get_cmap('RdYlBu')) plt.xlabel('x [' + lUnits + ']') plt.ylabel('y [' + lUnits + ']') if colbar: cbar = plt.colorbar(c) cbar.set_label(r'$\omega$ [s$^{-1}$]') ax.set_aspect(aspectration) return f,ax def showf(data, variables=None, units=None, fig=None): """ showf(data, var, units) Arguments: data : xarray.DataSet that contains dimensions of t,x,y and variables u,v and maybe w (scalar) """ if variables is None: xlabel = ' ' ylabel = ' ' else: xlabel = variables[0] ylabel = variables[1] if units is not None: xlabel += ' ' + units[0] ylabel += ' ' + units[1] fig = plt.figure(None if fig is None else fig.number) for t in data['t']: d = data.isel(t=t) plt.quiver(d['x'],d['y'],d['u'],d['v'],d['u']**2 + d['v']**2) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.draw() plt.pause(0.1) plt.show() def showscal(data, property='ken'): """ showf(data, var, units) Arguments: data : xarray.DataSet that contains dimensions of t,x,y and a variable w (scalar) """ # fig = plt.figure(None if fig is None else fig.number) # import pdb; pdb.set_trace() # xlabel = (None if var is None else var[0]) + ' [' + (None if units is None else units[0])+']' # ylabel = (None if var is None else var[1]) + ' [' + (None if units is None else units[1])+']' data = data.piv.vec2scal(property=property) contour_plot(data) def animate(data, arrowscale=1, savepath=None): """ animates the quiver plot for the dataset (multiple frames) Input: data : xarray PIV type of DataSet arrowscale : [optional] integer, default is 1 savepath : [optional] path to save the MP4 animation, default is None Output: if savepath is None, then only an image display of the animation if savepath is an existing path, a file named im.mp4 is saved """ X, Y = data.x, data.y U, V = data.u[:,:,0], data.v[:,:,0] # first frame fig, ax = plt.subplots(1,1) M = np.sqrt(U**2 + V**2) Q = ax.quiver(X[::3,::3], Y[::3,::3], U[::3,::3], V[::3,::3], M[::3,::3], units='inches', scale=arrowscale) cb = plt.colorbar(Q) units = data.attrs['units'] cb.ax.set_ylabel('velocity (' + units[2] + ')') text = ax.text(0.2,1.05, '1/'+str(len(data.t)), ha='center', va='center', transform=ax.transAxes) def update_quiver(num,Q,data,text): U,V = data.u[:,:,num],data.v[:,:,num] M = np.sqrt(U[::3,::3]**2 + V[::3,::3]**2) Q.set_UVC(U,V,M) text.set_text(str(num+1)+'/'+str(len(data.t))) return Q anim = FuncAnimation(fig, update_quiver, fargs=(Q,data,text), frames = len(data.t), blit=False) mywriter = FFMpegWriter() if savepath: p = os.getcwd() os.chdir(savepath) anim.save('im.mp4', writer=mywriter) os.chdir(p) else: anim.save('im.mp4', writer=mywriter) def dataset_to_array(data,N=0): """ converts xarray Dataset to array """ if 't' in data.dims: print('Warning: function for a single frame, using first frame, supply data.isel(t=N)') data = data.isel(t=N) return data
[((56, 10, 56, 27), 'matplotlib.pyplot.get_fignums', 'plt.get_fignums', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((102, 11, 102, 26), 'matplotlib.pyplot.subplots', 'plt.subplots', ({(102, 24, 102, 25): '2'}, {}), '(2)', True, 'import matplotlib.pyplot as plt\n'), ((107, 12, 107, 41), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', ({(107, 29, 107, 34): '(2, 1)', (107, 35, 107, 40): '(1, 0)'}, {}), '((2, 1), (1, 0))', True, 'import matplotlib.pyplot as plt\n'), ((110, 4, 110, 22), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((139, 11, 139, 25), 'matplotlib.pyplot.subplots', 'plt.subplots', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((157, 4, 157, 36), 'matplotlib.pyplot.xlabel', 'plt.xlabel', ({(157, 15, 157, 35): "('x [' + lUnits + ']')"}, {}), "('x [' + lUnits + ']')", True, 'import matplotlib.pyplot as plt\n'), ((158, 4, 158, 36), 'matplotlib.pyplot.ylabel', 'plt.ylabel', ({(158, 15, 158, 35): "('y [' + lUnits + ']')"}, {}), "('y [' + lUnits + ']')", True, 'import matplotlib.pyplot as plt\n'), ((186, 10, 186, 57), 'matplotlib.pyplot.figure', 'plt.figure', ({(186, 21, 186, 56): 'None if fig is None else fig.number'}, {}), '(None if fig is None else fig.number)', True, 'import matplotlib.pyplot as plt\n'), ((197, 4, 197, 14), 'matplotlib.pyplot.show', 'plt.show', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((230, 14, 230, 31), 'matplotlib.pyplot.subplots', 'plt.subplots', ({(230, 27, 230, 28): '1', (230, 29, 230, 30): '1'}, {}), '(1, 1)', True, 'import matplotlib.pyplot as plt\n'), ((231, 8, 231, 28), 'numpy.sqrt', 'np.sqrt', ({(231, 16, 231, 27): 'U ** 2 + V ** 2'}, {}), '(U ** 2 + V ** 2)', True, 'import numpy as np\n'), ((237, 9, 237, 24), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ({(237, 22, 237, 23): 'Q'}, {}), '(Q)', True, 'import matplotlib.pyplot as plt\n'), ((256, 15, 256, 29), 'matplotlib.animation.FFMpegWriter', 'FFMpegWriter', ({}, {}), '()', False, 'from matplotlib.animation import FuncAnimation, FFMpegWriter\n'), ((51, 20, 51, 71), 'xarray.where', 'xr.where', ({(51, 29, 51, 48): "data['u'] > threshold", (51, 50, 51, 59): 'threshold', (51, 61, 51, 70): "data['u']"}, {}), "(data['u'] > threshold, threshold, data['u'])", True, 'import xarray as xr\n'), ((52, 20, 52, 71), 'xarray.where', 'xr.where', ({(52, 29, 52, 48): "data['v'] > threshold", (52, 50, 52, 59): 'threshold', (52, 61, 52, 70): "data['v']"}, {}), "(data['v'] > threshold, threshold, data['v'])", True, 'import xarray as xr\n'), ((54, 17, 54, 37), 'numpy.sqrt', 'np.sqrt', ({(54, 25, 54, 36): 'u ** 2 + v ** 2'}, {}), '(u ** 2 + v ** 2)', True, 'import numpy as np\n'), ((58, 18, 58, 32), 'matplotlib.pyplot.subplots', 'plt.subplots', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((60, 13, 60, 22), 'matplotlib.pyplot.gca', 'plt.gca', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((65, 17, 65, 50), 'numpy.linspace', 'np.linspace', ({(65, 29, 65, 30): '0', (65, 32, 65, 45): 'contourLevels', (65, 47, 65, 49): '30'}, {}), '(0, contourLevels, 30)', True, 'import numpy as np\n'), ((76, 15, 76, 57), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (), '', True, 'import matplotlib.pyplot as plt\n'), ((142, 20, 142, 71), 'xarray.where', 'xr.where', ({(142, 29, 142, 48): "data['w'] > threshold", (142, 50, 142, 59): 'threshold', (142, 61, 142, 70): "data['w']"}, {}), "(data['w'] > threshold, threshold, data['w'])", True, 'import xarray as xr\n'), ((146, 17, 146, 39), 'numpy.linspace', 'np.linspace', ({(146, 29, 146, 31): '-m', (146, 33, 146, 34): 'm', (146, 36, 146, 38): '30'}, {}), '(-m, m, 30)', True, 'import numpy as np\n'), ((148, 17, 148, 63), 'numpy.linspace', 'np.linspace', ({(148, 29, 148, 43): '-contourLevels', (148, 45, 148, 58): 'contourLevels', (148, 60, 148, 62): '30'}, {}), '(-contourLevels, contourLevels, 30)', True, 'import numpy as np\n'), ((160, 15, 160, 30), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ({(160, 28, 160, 29): 'c'}, {}), '(c)', True, 'import matplotlib.pyplot as plt\n'), ((191, 8, 191, 69), 'matplotlib.pyplot.quiver', 'plt.quiver', ({(191, 19, 191, 25): "d['x']", (191, 26, 191, 32): "d['y']", (191, 33, 191, 39): "d['u']", (191, 40, 191, 46): "d['v']", (191, 47, 191, 68): "(d['u'] ** 2 + d['v'] ** 2)"}, {}), "(d['x'], d['y'], d['u'], d['v'], d['u'] ** 2 + d['v'] ** 2)", True, 'import matplotlib.pyplot as plt\n'), ((192, 8, 192, 26), 'matplotlib.pyplot.xlabel', 'plt.xlabel', ({(192, 19, 192, 25): 'xlabel'}, {}), '(xlabel)', True, 'import matplotlib.pyplot as plt\n'), ((193, 8, 193, 26), 'matplotlib.pyplot.ylabel', 'plt.ylabel', ({(193, 19, 193, 25): 'ylabel'}, {}), '(ylabel)', True, 'import matplotlib.pyplot as plt\n'), ((194, 8, 194, 18), 'matplotlib.pyplot.draw', 'plt.draw', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((195, 8, 195, 22), 'matplotlib.pyplot.pause', 'plt.pause', ({(195, 18, 195, 21): '(0.1)'}, {}), '(0.1)', True, 'import matplotlib.pyplot as plt\n'), ((249, 12, 249, 50), 'numpy.sqrt', 'np.sqrt', ({(249, 20, 249, 49): 'U[::3, ::3] ** 2 + V[::3, ::3] ** 2'}, {}), '(U[::3, ::3] ** 2 + V[::3, ::3] ** 2)', True, 'import numpy as np\n'), ((258, 12, 258, 23), 'os.getcwd', 'os.getcwd', ({}, {}), '()', False, 'import os\n'), ((259, 8, 259, 26), 'os.chdir', 'os.chdir', ({(259, 17, 259, 25): 'savepath'}, {}), '(savepath)', False, 'import os\n'), ((261, 8, 261, 19), 'os.chdir', 'os.chdir', ({(261, 17, 261, 18): 'p'}, {}), '(p)', False, 'import os\n'), ((81, 23, 81, 41), 'numpy.max', 'np.max', ({(81, 30, 81, 40): '(S * arrScale)'}, {}), '(S * arrScale)', True, 'import numpy as np\n'), ((98, 8, 98, 26), 'numpy.asarray', 'np.asarray', ({(98, 19, 98, 25): 'data.u'}, {}), '(data.u)', True, 'import numpy as np\n'), ((99, 8, 99, 26), 'numpy.asarray', 'np.asarray', ({(99, 19, 99, 25): 'data.v'}, {}), '(data.v)', True, 'import numpy as np\n'), ((151, 38, 151, 55), 'numpy.abs', 'np.abs', ({(151, 45, 151, 54): "data['w']"}, {}), "(data['w'])", True, 'import numpy as np\n'), ((69, 24, 69, 45), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', ({(69, 37, 69, 44): '"""Blues"""'}, {}), "('Blues')", True, 'import matplotlib.pyplot as plt\n'), ((70, 41, 70, 61), 'matplotlib.pyplot.colors.LogNorm', 'plt.colors.LogNorm', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((73, 24, 73, 45), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', ({(73, 37, 73, 44): '"""Blues"""'}, {}), "('Blues')", True, 'import matplotlib.pyplot as plt\n'), ((152, 24, 152, 46), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', ({(152, 37, 152, 45): '"""RdYlBu"""'}, {}), "('RdYlBu')", True, 'import matplotlib.pyplot as plt\n'), ((152, 53, 152, 73), 'matplotlib.pyplot.colors.LogNorm', 'plt.colors.LogNorm', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((155, 24, 155, 46), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', ({(155, 37, 155, 45): '"""RdYlBu"""'}, {}), "('RdYlBu')", True, 'import matplotlib.pyplot as plt\n')]
BostonCrayfish/mmsegmentation
configs/my_config/vit_base_aspp.py
e8b87242b877bfe0c32ea2630c2fd08977d7dd4b
# model settings norm_cfg = dict(type='BN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained='pretrain/vit_base_patch16_224.pth', backbone=dict( type='VisionTransformer', img_size=(224, 224), patch_size=16, in_channels=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, # out_indices=(2, 5, 8, 11), qkv_bias=True, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, with_cls_token=True, norm_cfg=dict(type='LN', eps=1e-6), act_cfg=dict(type='GELU'), norm_eval=False, interpolate_mode='bicubic'), neck=None, decode_head=dict( type='ASPPHead', in_channels=768, # in_index=3, channels=512, dilations=(1, 6, 12, 18), dropout_ratio=0.1, num_classes=21, contrast=True, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=None, # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole')) # yapf: disable
[]
smolar/tripleo-ansible
tripleo_ansible/ansible_plugins/modules/podman_container.py
7bd37f019870c032bea71f22b305832932d81424
#!/usr/bin/python # Copyright (c) 2019 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # flake8: noqa: E501 from __future__ import absolute_import, division, print_function __metaclass__ = type import json from distutils.version import LooseVersion import yaml from ansible.module_utils.basic import AnsibleModule from ansible.module_utils._text import to_bytes, to_native ANSIBLE_METADATA = { 'metadata_version': '1.0', 'status': ['preview'], 'supported_by': 'community' } DOCUMENTATION = """ module: podman_container author: - "Sagi Shnaidman (@sshnaidm)" version_added: '2.9' short_description: Manage podman containers notes: [] description: - Start, stop, restart and manage Podman containers requirements: - "Podman installed on host" options: name: description: - Name of the container required: True type: str executable: description: - Path to C(podman) executable if it is not in the C($PATH) on the machine running C(podman) default: 'podman' type: str state: description: - I(absent) - A container matching the specified name will be stopped and removed. - I(present) - Asserts the existence of a container matching the name and any provided configuration parameters. If no container matches the name, a container will be created. If a container matches the name but the provided configuration does not match, the container will be updated, if it can be. If it cannot be updated, it will be removed and re-created with the requested config. Image version will be taken into account when comparing configuration. Use the recreate option to force the re-creation of the matching container. - I(started) - Asserts there is a running container matching the name and any provided configuration. If no container matches the name, a container will be created and started. Use recreate to always re-create a matching container, even if it is running. Use force_restart to force a matching container to be stopped and restarted. - I(stopped) - Asserts that the container is first I(present), and then if the container is running moves it to a stopped state. type: str default: started choices: - absent - present - stopped - started image: description: - Repository path (or image name) and tag used to create the container. If an image is not found, the image will be pulled from the registry. If no tag is included, C(latest) will be used. - Can also be an image ID. If this is the case, the image is assumed to be available locally. type: str annotation: description: - Add an annotation to the container. The format is key value, multiple times. type: dict authfile: description: - Path of the authentication file. Default is ``${XDG_RUNTIME_DIR}/containers/auth.json`` (Not available for remote commands) You can also override the default path of the authentication file by setting the ``REGISTRY_AUTH_FILE`` environment variable. ``export REGISTRY_AUTH_FILE=path`` type: path blkio_weight: description: - Block IO weight (relative weight) accepts a weight value between 10 and 1000 type: int blkio_weight_device: description: - Block IO weight (relative device weight, format DEVICE_NAME[:]WEIGHT). type: dict cap_add: description: - List of capabilities to add to the container. type: list elements: str cap_drop: description: - List of capabilities to drop from the container. type: list elements: str cgroup_parent: description: - Path to cgroups under which the cgroup for the container will be created. If the path is not absolute, the path is considered to be relative to the cgroups path of the init process. Cgroups will be created if they do not already exist. type: path cgroupns: description: - Path to cgroups under which the cgroup for the container will be created. type: str cgroups: description: - Determines whether the container will create CGroups. Valid values are enabled and disabled, which the default being enabled. The disabled option will force the container to not create CGroups, and thus conflicts with CGroup options cgroupns and cgroup-parent. type: str choices: - default - disabled cidfile: description: - Write the container ID to the file type: path cmd_args: description: - Any additionl command options you want to pass to podman command, cmd_args - ['--other-param', 'value'] Be aware module doesn't support idempotency if this is set. type: list elements: str conmon_pidfile: description: - Write the pid of the conmon process to a file. conmon runs in a separate process than Podman, so this is necessary when using systemd to restart Podman containers. type: path command: description: - Override command of container. Can be a string or a list. type: raw cpu_period: description: - Limit the CPU real-time period in microseconds type: int cpu_rt_period: description: - Limit the CPU real-time period in microseconds. Limit the container's Real Time CPU usage. This flag tell the kernel to restrict the container's Real Time CPU usage to the period you specify. type: int cpu_rt_runtime: description: - Limit the CPU real-time runtime in microseconds. This flag tells the kernel to limit the amount of time in a given CPU period Real Time tasks may consume. type: int cpu_shares: description: - CPU shares (relative weight) type: int cpus: description: - Number of CPUs. The default is 0.0 which means no limit. type: str cpuset_cpus: description: - CPUs in which to allow execution (0-3, 0,1) type: str cpuset_mems: description: - Memory nodes (MEMs) in which to allow execution (0-3, 0,1). Only effective on NUMA systems. type: str detach: description: - Run container in detach mode type: bool default: True debug: description: - Return additional information which can be helpful for investigations. type: bool default: False detach_keys: description: - Override the key sequence for detaching a container. Format is a single character or ctrl-value type: str device: description: - Add a host device to the container. The format is <device-on-host>[:<device-on-container>][:<permissions>] (e.g. device /dev/sdc:/dev/xvdc:rwm) type: list elements: str device_read_bps: description: - Limit read rate (bytes per second) from a device (e.g. device-read-bps /dev/sda:1mb) type: list device_read_iops: description: - Limit read rate (IO per second) from a device (e.g. device-read-iops /dev/sda:1000) type: list device_write_bps: description: - Limit write rate (bytes per second) to a device (e.g. device-write-bps /dev/sda:1mb) type: list device_write_iops: description: - Limit write rate (IO per second) to a device (e.g. device-write-iops /dev/sda:1000) type: list dns: description: - Set custom DNS servers type: list elements: str dns_option: description: - Set custom DNS options type: str dns_search: description: - Set custom DNS search domains (Use dns_search with '' if you don't wish to set the search domain) type: str entrypoint: description: - Overwrite the default ENTRYPOINT of the image type: str env: description: - Set environment variables. This option allows you to specify arbitrary environment variables that are available for the process that will be launched inside of the container. type: dict env_file: description: - Read in a line delimited file of environment variables type: path env_host: description: - Use all current host environment variables in container. Defaults to false. type: bool etc_hosts: description: - Dict of host-to-IP mappings, where each host name is a key in the dictionary. Each host name will be added to the container's ``/etc/hosts`` file. type: dict aliases: - add_hosts expose: description: - Expose a port, or a range of ports (e.g. expose "3300-3310") to set up port redirection on the host system. type: list elements: str aliases: - exposed - exposed_ports force_restart: description: - Force restart of container. type: bool default: False aliases: - restart gidmap: description: - Run the container in a new user namespace using the supplied mapping. type: str group_add: description: - Add additional groups to run as type: list healthcheck: description: - Set or alter a healthcheck command for a container. type: str healthcheck_interval: description: - Set an interval for the healthchecks (a value of disable results in no automatic timer setup) (default "30s") type: str healthcheck_retries: description: - The number of retries allowed before a healthcheck is considered to be unhealthy. The default value is 3. type: int healthcheck_start_period: description: - The initialization time needed for a container to bootstrap. The value can be expressed in time format like 2m3s. The default value is 0s type: str healthcheck_timeout: description: - The maximum time allowed to complete the healthcheck before an interval is considered failed. Like start-period, the value can be expressed in a time format such as 1m22s. The default value is 30s type: str hostname: description: - Container host name. Sets the container host name that is available inside the container. type: str http_proxy: description: - By default proxy environment variables are passed into the container if set for the podman process. This can be disabled by setting the http_proxy option to false. The environment variables passed in include http_proxy, https_proxy, ftp_proxy, no_proxy, and also the upper case versions of those. Defaults to true type: bool image_volume: description: - Tells podman how to handle the builtin image volumes. The options are bind, tmpfs, or ignore (default bind) type: str choices: - 'bind' - 'tmpfs' - 'ignore' image_strict: description: - Whether to compare images in idempotency by taking into account a full name with registry and namespaces. type: bool default: False init: description: - Run an init inside the container that forwards signals and reaps processes. type: str init_path: description: - Path to the container-init binary. type: str interactive: description: - Keep STDIN open even if not attached. The default is false. When set to true, keep stdin open even if not attached. The default is false. type: bool ip: description: - Specify a static IP address for the container, for example '10.88.64.128'. Can only be used if no additional CNI networks to join were specified via 'network:', and if the container is not joining another container's network namespace via 'network container:<name|id>'. The address must be within the default CNI network's pool (default 10.88.0.0/16). type: str ipc: description: - Default is to create a private IPC namespace (POSIX SysV IPC) for the container type: str kernel_memory: description: - Kernel memory limit (format <number>[<unit>], where unit = b, k, m or g) Note - idempotency is supported for integers only. type: str label: description: - Add metadata to a container, pass dictionary of label names and values type: dict label_file: description: - Read in a line delimited file of labels type: str log_driver: description: - Logging driver. Used to set the log driver for the container. For example log_driver "k8s-file". type: str choices: - k8s-file - journald - json-file log_opt: description: - Logging driver specific options. Used to set the path to the container log file. For example log_opt "path=/var/log/container/mycontainer.json" type: str aliases: - log_options memory: description: - Memory limit (format 10k, where unit = b, k, m or g) Note - idempotency is supported for integers only. type: str memory_reservation: description: - Memory soft limit (format 100m, where unit = b, k, m or g) Note - idempotency is supported for integers only. type: str memory_swap: description: - A limit value equal to memory plus swap. Must be used with the -m (--memory) flag. The swap LIMIT should always be larger than -m (--memory) value. By default, the swap LIMIT will be set to double the value of --memory Note - idempotency is supported for integers only. type: str memory_swappiness: description: - Tune a container's memory swappiness behavior. Accepts an integer between 0 and 100. type: int mount: description: - Attach a filesystem mount to the container. bind or tmpfs For example mount "type=bind,source=/path/on/host,destination=/path/in/container" type: str network: description: - Set the Network mode for the container * bridge create a network stack on the default bridge * none no networking * container:<name|id> reuse another container's network stack * host use the podman host network stack. * <network-name>|<network-id> connect to a user-defined network * ns:<path> path to a network namespace to join * slirp4netns use slirp4netns to create a user network stack. This is the default for rootless containers type: list elements: str aliases: - net no_hosts: description: - Do not create /etc/hosts for the container Default is false. type: bool oom_kill_disable: description: - Whether to disable OOM Killer for the container or not. Default is false. type: bool oom_score_adj: description: - Tune the host's OOM preferences for containers (accepts -1000 to 1000) type: int pid: description: - Set the PID mode for the container type: str pids_limit: description: - Tune the container's pids limit. Set -1 to have unlimited pids for the container. type: str pod: description: - Run container in an existing pod. If you want podman to make the pod for you, preference the pod name with "new:" type: str privileged: description: - Give extended privileges to this container. The default is false. type: bool publish: description: - Publish a container's port, or range of ports, to the host. Format - ip:hostPort:containerPort | ip::containerPort | hostPort:containerPort | containerPort type: list elements: str aliases: - ports - published - published_ports publish_all: description: - Publish all exposed ports to random ports on the host interfaces. The default is false. type: bool read_only: description: - Mount the container's root filesystem as read only. Default is false type: bool read_only_tmpfs: description: - If container is running in --read-only mode, then mount a read-write tmpfs on /run, /tmp, and /var/tmp. The default is true type: bool recreate: description: - Use with present and started states to force the re-creation of an existing container. type: bool default: False restart_policy: description: - Restart policy to follow when containers exit. Restart policy will not take effect if a container is stopped via the podman kill or podman stop commands. Valid values are * no - Do not restart containers on exit * on-failure[:max_retries] - Restart containers when they exit with a non-0 exit code, retrying indefinitely or until the optional max_retries count is hit * always - Restart containers when they exit, regardless of status, retrying indefinitely type: str rm: description: - Automatically remove the container when it exits. The default is false. type: bool aliases: - remove rootfs: description: - If true, the first argument refers to an exploded container on the file system. The dafault is false. type: bool security_opt: description: - Security Options. For example security_opt "seccomp=unconfined" type: list elements: str shm_size: description: - Size of /dev/shm. The format is <number><unit>. number must be greater than 0. Unit is optional and can be b (bytes), k (kilobytes), m(megabytes), or g (gigabytes). If you omit the unit, the system uses bytes. If you omit the size entirely, the system uses 64m type: str sig_proxy: description: - Proxy signals sent to the podman run command to the container process. SIGCHLD, SIGSTOP, and SIGKILL are not proxied. The default is true. type: bool stop_signal: description: - Signal to stop a container. Default is SIGTERM. type: int stop_timeout: description: - Timeout (in seconds) to stop a container. Default is 10. type: int subgidname: description: - Run the container in a new user namespace using the map with 'name' in the /etc/subgid file. type: str subuidname: description: - Run the container in a new user namespace using the map with 'name' in the /etc/subuid file. type: str sysctl: description: - Configure namespaced kernel parameters at runtime type: dict systemd: description: - Run container in systemd mode. The default is true. type: bool tmpfs: description: - Create a tmpfs mount. For example tmpfs "/tmp" "rw,size=787448k,mode=1777" type: dict tty: description: - Allocate a pseudo-TTY. The default is false. type: bool uidmap: description: - Run the container in a new user namespace using the supplied mapping. type: list ulimit: description: - Ulimit options type: list user: description: - Sets the username or UID used and optionally the groupname or GID for the specified command. type: str userns: description: - Set the user namespace mode for the container. It defaults to the PODMAN_USERNS environment variable. An empty value means user namespaces are disabled. type: str uts: description: - Set the UTS mode for the container type: str volume: description: - Create a bind mount. If you specify, volume /HOST-DIR:/CONTAINER-DIR, podman bind mounts /HOST-DIR in the host to /CONTAINER-DIR in the podman container. type: list elements: str aliases: - volumes volumes_from: description: - Mount volumes from the specified container(s). type: list elements: str workdir: description: - Working directory inside the container. The default working directory for running binaries within a container is the root directory (/). type: str """ EXAMPLES = """ - name: Run container podman_container: name: container image: quay.io/bitnami/wildfly state: started - name: Create a data container podman_container: name: mydata image: busybox volume: - /tmp/data - name: Re-create a redis container podman_container: name: myredis image: redis command: redis-server --appendonly yes state: present recreate: yes expose: - 6379 volumes_from: - mydata - name: Restart a container podman_container: name: myapplication image: redis state: started restart: yes etc_hosts: other: "127.0.0.1" restart_policy: "no" device: "/dev/sda:/dev/xvda:rwm" ports: - "8080:9000" - "127.0.0.1:8081:9001/udp" env: SECRET_KEY: "ssssh" BOOLEAN_KEY: "yes" - name: Container present podman_container: name: mycontainer state: present image: ubuntu:14.04 command: "sleep 1d" - name: Stop a container podman_container: name: mycontainer state: stopped - name: Start 4 load-balanced containers podman_container: name: "container{{ item }}" recreate: yes image: someuser/anotherappimage command: sleep 1d with_sequence: count=4 - name: remove container podman_container: name: ohno state: absent - name: Writing output podman_container: name: myservice image: busybox log_options: path=/var/log/container/mycontainer.json log_driver: k8s-file """ RETURN = """ container: description: - Facts representing the current state of the container. Matches the podman inspection output. - Note that facts are part of the registered vars since Ansible 2.8. For compatibility reasons, the facts are also accessible directly as C(podman_container). Note that the returned fact will be removed in Ansible 2.12. - Empty if C(state) is I(absent). returned: always type: dict sample: '{ "AppArmorProfile": "", "Args": [ "sh" ], "BoundingCaps": [ "CAP_CHOWN", ... ], "Config": { "Annotations": { "io.kubernetes.cri-o.ContainerType": "sandbox", "io.kubernetes.cri-o.TTY": "false" }, "AttachStderr": false, "AttachStdin": false, "AttachStdout": false, "Cmd": [ "sh" ], "Domainname": "", "Entrypoint": "", "Env": [ "PATH=/usr/sbin:/usr/bin:/sbin:/bin", "TERM=xterm", "HOSTNAME=", "container=podman" ], "Hostname": "", "Image": "docker.io/library/busybox:latest", "Labels": null, "OpenStdin": false, "StdinOnce": false, "StopSignal": 15, "Tty": false, "User": { "gid": 0, "uid": 0 }, "Volumes": null, "WorkingDir": "/" }, "ConmonPidFile": "...", "Created": "2019-06-17T19:13:09.873858307+03:00", "Dependencies": [], "Driver": "overlay", "EffectiveCaps": [ "CAP_CHOWN", ... ], "ExecIDs": [], "ExitCommand": [ "/usr/bin/podman", "--root", ... ], "GraphDriver": { ... }, "HostConfig": { ... }, "HostnamePath": "...", "HostsPath": "...", "ID": "...", "Image": "...", "ImageName": "docker.io/library/busybox:latest", "IsInfra": false, "LogPath": "/tmp/container/mycontainer.json", "MountLabel": "system_u:object_r:container_file_t:s0:c282,c782", "Mounts": [ ... ], "Name": "myservice", "Namespace": "", "NetworkSettings": { "Bridge": "", ... }, "Path": "sh", "ProcessLabel": "system_u:system_r:container_t:s0:c282,c782", "ResolvConfPath": "...", "RestartCount": 0, "Rootfs": "", "State": { "Dead": false, "Error": "", "ExitCode": 0, "FinishedAt": "2019-06-17T19:13:10.157518963+03:00", "Healthcheck": { "FailingStreak": 0, "Log": null, "Status": "" }, "OOMKilled": false, "OciVersion": "1.0.1-dev", "Paused": false, "Pid": 4083, "Restarting": false, "Running": false, "StartedAt": "2019-06-17T19:13:10.152479729+03:00", "Status": "exited" }, "StaticDir": "..." ... }' """ class PodmanModuleParams: """Creates list of arguments for podman CLI command. Arguments: action {str} -- action type from 'run', 'stop', 'create', 'delete', 'start' params {dict} -- dictionary of module parameters """ def __init__(self, action, params, podman_version, module): self.params = params self.action = action self.podman_version = podman_version self.module = module def construct_command_from_params(self): """Create a podman command from given module parameters. Returns: list -- list of byte strings for Popen command """ if self.action in ['start', 'stop', 'delete']: return self.start_stop_delete() if self.action in ['create', 'run']: cmd = [self.action, '--name', self.params['name']] all_param_methods = [func for func in dir(self) if callable(getattr(self, func)) and func.startswith("addparam")] params_set = (i for i in self.params if self.params[i] is not None) for param in params_set: func_name = "_".join(["addparam", param]) if func_name in all_param_methods: cmd = getattr(self, func_name)(cmd) cmd.append(self.params['image']) if self.params['command']: if isinstance(self.params['command'], list): cmd += self.params['command'] else: cmd += self.params['command'].split() return [to_bytes(i, errors='surrogate_or_strict') for i in cmd] def start_stop_delete(self): if self.action in ['stop', 'start']: cmd = [self.action, self.params['name']] return [to_bytes(i, errors='surrogate_or_strict') for i in cmd] if self.action == 'delete': cmd = ['rm', '-f', self.params['name']] return [to_bytes(i, errors='surrogate_or_strict') for i in cmd] def check_version(self, param, minv=None, maxv=None): if minv and LooseVersion(minv) > LooseVersion( self.podman_version): self.module.fail_json(msg="Parameter %s is supported from podman " "version %s only! Current version is %s" % ( param, minv, self.podman_version)) if maxv and LooseVersion(maxv) < LooseVersion( self.podman_version): self.module.fail_json(msg="Parameter %s is supported till podman " "version %s only! Current version is %s" % ( param, minv, self.podman_version)) def addparam_annotation(self, c): for annotate in self.params['annotation'].items(): c += ['--annotation', '='.join(annotate)] return c def addparam_authfile(self, c): return c + ['--authfile', self.params['authfile']] def addparam_blkio_weight(self, c): return c + ['--blkio-weight', self.params['blkio_weight']] def addparam_blkio_weight_device(self, c): for blkio in self.params['blkio_weight_device'].items(): c += ['--blkio-weight-device', ':'.join(blkio)] return c def addparam_cap_add(self, c): for cap_add in self.params['cap_add']: c += ['--cap-add', cap_add] return c def addparam_cap_drop(self, c): for cap_drop in self.params['cap_drop']: c += ['--cap-drop', cap_drop] return c def addparam_cgroups(self, c): self.check_version('--cgroups', minv='1.6.0') return c + ['--cgroups=%s' % self.params['cgroups']] def addparam_cgroupns(self, c): self.check_version('--cgroupns', minv='1.6.2') return c + ['--cgroupns=%s' % self.params['cgroupns']] def addparam_cgroup_parent(self, c): return c + ['--cgroup-parent', self.params['cgroup_parent']] def addparam_cidfile(self, c): return c + ['--cidfile', self.params['cidfile']] def addparam_conmon_pidfile(self, c): return c + ['--conmon-pidfile', self.params['conmon_pidfile']] def addparam_cpu_period(self, c): return c + ['--cpu-period', self.params['cpu_period']] def addparam_cpu_rt_period(self, c): return c + ['--cpu-rt-period', self.params['cpu_rt_period']] def addparam_cpu_rt_runtime(self, c): return c + ['--cpu-rt-runtime', self.params['cpu_rt_runtime']] def addparam_cpu_shares(self, c): return c + ['--cpu-shares', self.params['cpu_shares']] def addparam_cpus(self, c): return c + ['--cpus', self.params['cpus']] def addparam_cpuset_cpus(self, c): return c + ['--cpuset-cpus', self.params['cpuset_cpus']] def addparam_cpuset_mems(self, c): return c + ['--cpuset-mems', self.params['cpuset_mems']] def addparam_detach(self, c): return c + ['--detach=%s' % self.params['detach']] def addparam_detach_keys(self, c): return c + ['--detach-keys', self.params['detach_keys']] def addparam_device(self, c): for dev in self.params['device']: c += ['--device', dev] return c def addparam_device_read_bps(self, c): for dev in self.params['device_read_bps']: c += ['--device-read-bps', dev] return c def addparam_device_read_iops(self, c): for dev in self.params['device_read_iops']: c += ['--device-read-iops', dev] return c def addparam_device_write_bps(self, c): for dev in self.params['device_write_bps']: c += ['--device-write-bps', dev] return c def addparam_device_write_iops(self, c): for dev in self.params['device_write_iops']: c += ['--device-write-iops', dev] return c def addparam_dns(self, c): return c + ['--dns', ','.join(self.params['dns'])] def addparam_dns_option(self, c): return c + ['--dns-option', self.params['dns_option']] def addparam_dns_search(self, c): return c + ['--dns-search', self.params['dns_search']] def addparam_entrypoint(self, c): return c + ['--entrypoint', self.params['entrypoint']] def addparam_env(self, c): for env_value in self.params['env'].items(): c += ['--env', b"=".join([to_bytes(k, errors='surrogate_or_strict') for k in env_value])] return c def addparam_env_file(self, c): return c + ['--env-file', self.params['env_file']] def addparam_env_host(self, c): self.check_version('--env-host', minv='1.5.0') return c + ['--env-host=%s' % self.params['env_host']] def addparam_etc_hosts(self, c): for host_ip in self.params['etc_hosts'].items(): c += ['--add-host', ':'.join(host_ip)] return c def addparam_expose(self, c): for exp in self.params['expose']: c += ['--expose', exp] return c def addparam_gidmap(self, c): return c + ['--gidmap', self.params['gidmap']] def addparam_group_add(self, c): for g in self.params['group_add']: c += ['--group-add', g] return c def addparam_healthcheck(self, c): return c + ['--healthcheck-command', self.params['healthcheck']] def addparam_healthcheck_interval(self, c): return c + ['--healthcheck-interval', self.params['healthcheck_interval']] def addparam_healthcheck_retries(self, c): return c + ['--healthcheck-retries', self.params['healthcheck_retries']] def addparam_healthcheck_start_period(self, c): return c + ['--healthcheck-start-period', self.params['healthcheck_start_period']] def addparam_healthcheck_timeout(self, c): return c + ['--healthcheck-timeout', self.params['healthcheck_timeout']] def addparam_hostname(self, c): return c + ['--hostname', self.params['hostname']] def addparam_http_proxy(self, c): return c + ['--http-proxy=%s' % self.params['http_proxy']] def addparam_image_volume(self, c): return c + ['--image-volume', self.params['image_volume']] def addparam_init(self, c): return c + ['--init', self.params['init']] def addparam_init_path(self, c): return c + ['--init-path', self.params['init_path']] def addparam_interactive(self, c): return c + ['--interactive=%s' % self.params['interactive']] def addparam_ip(self, c): return c + ['--ip', self.params['ip']] def addparam_ipc(self, c): return c + ['--ipc', self.params['ipc']] def addparam_kernel_memory(self, c): return c + ['--kernel-memory', self.params['kernel_memory']] def addparam_label(self, c): for label in self.params['label'].items(): c += ['--label', b'='.join([to_bytes(l, errors='surrogate_or_strict') for l in label])] return c def addparam_label_file(self, c): return c + ['--label-file', self.params['label_file']] def addparam_log_driver(self, c): return c + ['--log-driver', self.params['log_driver']] def addparam_log_opt(self, c): return c + ['--log-opt', self.params['log_opt']] def addparam_memory(self, c): return c + ['--memory', self.params['memory']] def addparam_memory_reservation(self, c): return c + ['--memory-reservation', self.params['memory_reservation']] def addparam_memory_swap(self, c): return c + ['--memory-swap', self.params['memory_swap']] def addparam_memory_swappiness(self, c): return c + ['--memory-swappiness', self.params['memory_swappiness']] def addparam_mount(self, c): return c + ['--mount', self.params['mount']] def addparam_network(self, c): return c + ['--network', ",".join(self.params['network'])] def addparam_no_hosts(self, c): return c + ['--no-hosts=%s' % self.params['no_hosts']] def addparam_oom_kill_disable(self, c): return c + ['--oom-kill-disable=%s' % self.params['oom_kill_disable']] def addparam_oom_score_adj(self, c): return c + ['--oom-score-adj', self.params['oom_score_adj']] def addparam_pid(self, c): return c + ['--pid', self.params['pid']] def addparam_pids_limit(self, c): return c + ['--pids-limit', self.params['pids_limit']] def addparam_pod(self, c): return c + ['--pod', self.params['pod']] def addparam_privileged(self, c): return c + ['--privileged=%s' % self.params['privileged']] def addparam_publish(self, c): for pub in self.params['publish']: c += ['--publish', pub] return c def addparam_publish_all(self, c): return c + ['--publish-all=%s' % self.params['publish_all']] def addparam_read_only(self, c): return c + ['--read-only=%s' % self.params['read_only']] def addparam_read_only_tmpfs(self, c): return c + ['--read-only-tmpfs=%s' % self.params['read_only_tmpfs']] def addparam_restart_policy(self, c): return c + ['--restart=%s' % self.params['restart_policy']] def addparam_rm(self, c): if self.params['rm']: c += ['--rm'] return c def addparam_rootfs(self, c): return c + ['--rootfs=%s' % self.params['rootfs']] def addparam_security_opt(self, c): for secopt in self.params['security_opt']: c += ['--security-opt', secopt] return c def addparam_shm_size(self, c): return c + ['--shm-size', self.params['shm_size']] def addparam_sig_proxy(self, c): return c + ['--sig-proxy=%s' % self.params['sig_proxy']] def addparam_stop_signal(self, c): return c + ['--stop-signal', self.params['stop_signal']] def addparam_stop_timeout(self, c): return c + ['--stop-timeout', self.params['stop_timeout']] def addparam_subgidname(self, c): return c + ['--subgidname', self.params['subgidname']] def addparam_subuidname(self, c): return c + ['--subuidname', self.params['subuidname']] def addparam_sysctl(self, c): for sysctl in self.params['sysctl'].items(): c += ['--sysctl', b"=".join([to_bytes(k, errors='surrogate_or_strict') for k in sysctl])] return c def addparam_systemd(self, c): return c + ['--systemd=%s' % self.params['systemd']] def addparam_tmpfs(self, c): for tmpfs in self.params['tmpfs'].items(): c += ['--tmpfs', ':'.join(tmpfs)] return c def addparam_tty(self, c): return c + ['--tty=%s' % self.params['tty']] def addparam_uidmap(self, c): for uidmap in self.params['uidmap']: c += ['--uidmap', uidmap] return c def addparam_ulimit(self, c): for u in self.params['ulimit']: c += ['--ulimit', u] return c def addparam_user(self, c): return c + ['--user', self.params['user']] def addparam_userns(self, c): return c + ['--userns', self.params['userns']] def addparam_uts(self, c): return c + ['--uts', self.params['uts']] def addparam_volume(self, c): for vol in self.params['volume']: if vol: c += ['--volume', vol] return c def addparam_volumes_from(self, c): for vol in self.params['volumes_from']: c += ['--volumes-from', vol] return c def addparam_workdir(self, c): return c + ['--workdir', self.params['workdir']] # Add your own args for podman command def addparam_cmd_args(self, c): return c + self.params['cmd_args'] class PodmanDefaults: def __init__(self, module, podman_version): self.module = module self.version = podman_version self.defaults = { "blkio_weight": 0, "cgroups": "default", "cgroup_parent": "", "cidfile": "", "cpus": 0.0, "cpu_shares": 0, "cpu_quota": 0, "cpu_period": 0, "cpu_rt_runtime": 0, "cpu_rt_period": 0, "cpuset_cpus": "", "cpuset_mems": "", "detach": True, "device": [], "env_host": False, "etc_hosts": {}, "group_add": [], "healthcheck": "", "ipc": "", "kernelmemory": "0", "log_driver": "k8s-file", "memory": "0", "memory_swap": "0", "memory_reservation": "0", # "memory_swappiness": -1, "no_hosts": False, # libpod issue with networks in inspection "network": ["default"], "oom_score_adj": 0, "pid": "", "privileged": False, "rm": False, "security_opt": [], "stop_signal": 15, "tty": False, "user": "", "uts": "", "volume": [], "workdir": "/", } def default_dict(self): # make here any changes to self.defaults related to podman version return self.defaults class PodmanContainerDiff: def __init__(self, module, info, podman_version): self.module = module self.version = podman_version self.default_dict = None self.info = yaml.safe_load(json.dumps(info).lower()) self.params = self.defaultize() self.diff = {'before': {}, 'after': {}} self.non_idempotent = { 'env_file', 'env_host', "ulimit", # Defaults depend on user and platform, impossible to guess } def defaultize(self): params_with_defaults = {} self.default_dict = PodmanDefaults( self.module, self.version).default_dict() for p in self.module.params: if self.module.params[p] is None and p in self.default_dict: params_with_defaults[p] = self.default_dict[p] else: params_with_defaults[p] = self.module.params[p] return params_with_defaults def _diff_update_and_compare(self, param_name, before, after): if before != after: self.diff['before'].update({param_name: before}) self.diff['after'].update({param_name: after}) return True return False def diffparam_annotation(self): before = self.info['config']['annotations'] or {} after = before.copy() if self.module.params['annotation'] is not None: after.update(self.params['annotation']) return self._diff_update_and_compare('annotation', before, after) def diffparam_env_host(self): # It's impossible to get from inspest, recreate it if not default before = False after = self.params['env_host'] return self._diff_update_and_compare('env_host', before, after) def diffparam_blkio_weight(self): before = self.info['hostconfig']['blkioweight'] after = self.params['blkio_weight'] return self._diff_update_and_compare('blkio_weight', before, after) def diffparam_blkio_weight_device(self): before = self.info['hostconfig']['blkioweightdevice'] if before == [] and self.module.params['blkio_weight_device'] is None: after = [] else: after = self.params['blkio_weight_device'] return self._diff_update_and_compare('blkio_weight_device', before, after) def diffparam_cap_add(self): before = self.info['effectivecaps'] or [] after = [] if self.module.params['cap_add'] is not None: after += ["cap_" + i.lower() for i in self.module.params['cap_add']] after += before before, after = sorted(list(set(before))), sorted(list(set(after))) return self._diff_update_and_compare('cap_add', before, after) def diffparam_cap_drop(self): before = self.info['effectivecaps'] or [] after = before[:] if self.module.params['cap_drop'] is not None: for c in ["cap_" + i.lower() for i in self.module.params['cap_drop']]: if c in after: after.remove(c) before, after = sorted(list(set(before))), sorted(list(set(after))) return self._diff_update_and_compare('cap_drop', before, after) def diffparam_cgroup_parent(self): before = self.info['hostconfig']['cgroupparent'] after = self.params['cgroup_parent'] return self._diff_update_and_compare('cgroup_parent', before, after) def diffparam_cgroups(self): # Cgroups output is not supported in all versions if 'cgroups' in self.info['hostconfig']: before = self.info['hostconfig']['cgroups'] after = self.params['cgroups'] return self._diff_update_and_compare('cgroups', before, after) return False def diffparam_cidfile(self): before = self.info['hostconfig']['containeridfile'] after = self.params['cidfile'] return self._diff_update_and_compare('cidfile', before, after) def diffparam_command(self): # TODO(sshnaidm): to inspect image to get the default command if self.module.params['command'] is not None: before = self.info['config']['cmd'] after = self.params['command'] if isinstance(after, str): after = [i.lower() for i in after.split()] elif isinstance(after, list): after = [i.lower() for i in after] return self._diff_update_and_compare('command', before, after) return False def diffparam_conmon_pidfile(self): before = self.info['conmonpidfile'] if self.module.params['conmon_pidfile'] is None: after = before else: after = self.params['conmon_pidfile'] return self._diff_update_and_compare('conmon_pidfile', before, after) def diffparam_cpu_period(self): before = self.info['hostconfig']['cpuperiod'] after = self.params['cpu_period'] return self._diff_update_and_compare('cpu_period', before, after) def diffparam_cpu_rt_period(self): before = self.info['hostconfig']['cpurealtimeperiod'] after = self.params['cpu_rt_period'] return self._diff_update_and_compare('cpu_rt_period', before, after) def diffparam_cpu_rt_runtime(self): before = self.info['hostconfig']['cpurealtimeruntime'] after = self.params['cpu_rt_runtime'] return self._diff_update_and_compare('cpu_rt_runtime', before, after) def diffparam_cpu_shares(self): before = self.info['hostconfig']['cpushares'] after = self.params['cpu_shares'] return self._diff_update_and_compare('cpu_shares', before, after) def diffparam_cpus(self): before = int(self.info['hostconfig']['nanocpus']) / 1000000000 after = self.params['cpus'] return self._diff_update_and_compare('cpus', before, after) def diffparam_cpuset_cpus(self): before = self.info['hostconfig']['cpusetcpus'] after = self.params['cpuset_cpus'] return self._diff_update_and_compare('cpuset_cpus', before, after) def diffparam_cpuset_mems(self): before = self.info['hostconfig']['cpusetmems'] after = self.params['cpuset_mems'] return self._diff_update_and_compare('cpuset_mems', before, after) def diffparam_device(self): before = [":".join([i['pathonhost'], i['pathincontainer']]) for i in self.info['hostconfig']['devices']] after = [":".join(i.split(":")[:2]) for i in self.params['device']] before, after = sorted(list(set(before))), sorted(list(set(after))) return self._diff_update_and_compare('devices', before, after) def diffparam_device_read_bps(self): before = self.info['hostconfig']['blkiodevicereadbps'] or [] before = ["%s:%s" % (i['path'], i['rate']) for i in before] after = self.params['device_read_bps'] or [] before, after = sorted(list(set(before))), sorted(list(set(after))) return self._diff_update_and_compare('device_read_bps', before, after) def diffparam_device_read_iops(self): before = self.info['hostconfig']['blkiodevicereadiops'] or [] before = ["%s:%s" % (i['path'], i['rate']) for i in before] after = self.params['device_read_iops'] or [] before, after = sorted(list(set(before))), sorted(list(set(after))) return self._diff_update_and_compare('device_read_iops', before, after) def diffparam_device_write_bps(self): before = self.info['hostconfig']['blkiodevicewritebps'] or [] before = ["%s:%s" % (i['path'], i['rate']) for i in before] after = self.params['device_write_bps'] or [] before, after = sorted(list(set(before))), sorted(list(set(after))) return self._diff_update_and_compare('device_write_bps', before, after) def diffparam_device_write_iops(self): before = self.info['hostconfig']['blkiodevicewriteiops'] or [] before = ["%s:%s" % (i['path'], i['rate']) for i in before] after = self.params['device_write_iops'] or [] before, after = sorted(list(set(before))), sorted(list(set(after))) return self._diff_update_and_compare('device_write_iops', before, after) # Limited idempotency, it can't guess default values def diffparam_env(self): env_before = self.info['config']['env'] or {} before = {i.split("=")[0]: i.split("=")[1] for i in env_before} after = before.copy() if self.params['env']: after.update({ str(k).lower(): str(v).lower() for k, v in self.params['env'].items() }) return self._diff_update_and_compare('env', before, after) def diffparam_etc_hosts(self): if self.info['hostconfig']['extrahosts']: before = dict([i.split(":") for i in self.info['hostconfig']['extrahosts']]) else: before = {} after = self.params['etc_hosts'] return self._diff_update_and_compare('etc_hosts', before, after) def diffparam_group_add(self): before = self.info['hostconfig']['groupadd'] after = self.params['group_add'] return self._diff_update_and_compare('group_add', before, after) # Healthcheck is only defined in container config if a healthcheck # was configured; otherwise the config key isn't part of the config. def diffparam_healthcheck(self): if 'healthcheck' in self.info['config']: # the "test" key is a list of 2 items where the first one is # "CMD-SHELL" and the second one is the actual healthcheck command. before = self.info['config']['healthcheck']['test'][1] else: before = '' after = self.params['healthcheck'] or before return self._diff_update_and_compare('healthcheck', before, after) # Because of hostname is random generated, this parameter has partial idempotency only. def diffparam_hostname(self): before = self.info['config']['hostname'] after = self.params['hostname'] or before return self._diff_update_and_compare('hostname', before, after) def diffparam_image(self): # TODO(sshnaidm): for strict image compare mode use SHAs before = self.info['config']['image'] after = self.params['image'] mode = self.params['image_strict'] if mode is None or not mode: # In a idempotency 'lite mode' assume all images from different registries are the same before = before.replace(":latest", "") after = after.replace(":latest", "") before = before.split("/")[-1] after = after.split("/")[-1] return self._diff_update_and_compare('image', before, after) def diffparam_ipc(self): before = self.info['hostconfig']['ipcmode'] after = self.params['ipc'] return self._diff_update_and_compare('ipc', before, after) def diffparam_label(self): before = self.info['config']['labels'] or {} after = before.copy() if self.params['label']: after.update({ str(k).lower(): str(v).lower() for k, v in self.params['label'].items() }) return self._diff_update_and_compare('label', before, after) def diffparam_log_driver(self): before = self.info['hostconfig']['logconfig']['type'] after = self.params['log_driver'] return self._diff_update_and_compare('log_driver', before, after) # Parameter has limited idempotency, unable to guess the default log_path def diffparam_log_opt(self): before = self.info['logpath'] if self.module.params['log_opt'] in [None, '']: after = before else: after = self.params['log_opt'].split("=")[1] return self._diff_update_and_compare('log_opt', before, after) def diffparam_memory(self): before = str(self.info['hostconfig']['memory']) after = self.params['memory'] return self._diff_update_and_compare('memory', before, after) def diffparam_memory_swap(self): # By default it's twice memory parameter before = str(self.info['hostconfig']['memoryswap']) after = self.params['memory_swap'] if (self.module.params['memory_swap'] is None and self.params['memory'] != 0 and self.params['memory'].isdigit()): after = str(int(self.params['memory']) * 2) return self._diff_update_and_compare('memory_swap', before, after) def diffparam_memory_reservation(self): before = str(self.info['hostconfig']['memoryreservation']) after = self.params['memory_reservation'] return self._diff_update_and_compare('memory_reservation', before, after) def diffparam_network(self): before = [self.info['hostconfig']['networkmode']] after = self.params['network'] return self._diff_update_and_compare('network', before, after) def diffparam_no_hosts(self): before = not bool(self.info['hostspath']) after = self.params['no_hosts'] if self.params['network'] == ['none']: after = True return self._diff_update_and_compare('no_hosts', before, after) def diffparam_oom_score_adj(self): before = self.info['hostconfig']['oomscoreadj'] after = self.params['oom_score_adj'] return self._diff_update_and_compare('oom_score_adj', before, after) def diffparam_privileged(self): before = self.info['hostconfig']['privileged'] after = self.params['privileged'] return self._diff_update_and_compare('privileged', before, after) def diffparam_pid(self): before = self.info['hostconfig']['pidmode'] after = self.params['pid'] return self._diff_update_and_compare('pid', before, after) def diffparam_rm(self): before = self.info['hostconfig']['autoremove'] after = self.params['rm'] return self._diff_update_and_compare('rm', before, after) def diffparam_security_opt(self): before = self.info['hostconfig']['securityopt'] after = self.params['security_opt'] before, after = sorted(list(set(before))), sorted(list(set(after))) return self._diff_update_and_compare('security_opt', before, after) def diffparam_stop_signal(self): before = self.info['config']['stopsignal'] after = self.params['stop_signal'] return self._diff_update_and_compare('stop_signal', before, after) def diffparam_tty(self): before = self.info['config']['tty'] after = self.params['tty'] return self._diff_update_and_compare('tty', before, after) def diffparam_user(self): before = self.info['config']['user'] if self.module.params['user'] is None and before: after = before else: after = self.params['user'] return self._diff_update_and_compare('user', before, after) def diffparam_uts(self): before = self.info['hostconfig']['utsmode'] after = self.params['uts'] return self._diff_update_and_compare('uts', before, after) def diffparam_volume(self): before = self.info['mounts'] if before: volumes = [] for m in before: if m['type'] == 'volume': volumes.append([m['name'], m['destination']]) else: volumes.append([m['source'], m['destination']]) before = [":".join(v) for v in volumes] # Ignore volumes option for idempotency after = [":".join(v.split(":")[:2]) for v in self.params['volume']] before, after = sorted(list(set(before))), sorted(list(set(after))) return self._diff_update_and_compare('volume', before, after) def diffparam_volumes_from(self): before = self.info['hostconfig']['volumesfrom'] or [] after = self.params['volumes_from'] or [] return self._diff_update_and_compare('volumes_from', before, after) def diffparam_workdir(self): before = self.info['config']['workingdir'] after = self.params['workdir'] return self._diff_update_and_compare('workdir', before, after) def is_different(self): diff_func_list = [func for func in dir(self) if callable(getattr(self, func)) and func.startswith( "diffparam")] fail_fast = not bool(self.module._diff) different = False for func_name in diff_func_list: dff_func = getattr(self, func_name) if dff_func(): if fail_fast: return True else: different = True # Check non idempotent parameters for p in self.non_idempotent: if self.module.params[p] is not None and self.module.params[p] not in [{}, [], '']: different = True return different def ensure_image_exists(module, image): """If image is passed, ensure it exists, if not - pull it or fail. Arguments: module {obj} -- ansible module object image {str} -- name of image Returns: list -- list of image actions - if it pulled or nothing was done """ image_actions = [] module_exec = module.params['executable'] if not image: return image_actions rc, out, err = module.run_command([module_exec, 'image', 'exists', image]) if rc == 0: return image_actions rc, out, err = module.run_command([module_exec, 'image', 'pull', image]) if rc != 0: module.fail_json(msg="Can't pull image %s" % image, stdout=out, stderr=err) image_actions.append("pulled image %s" % image) return image_actions class PodmanContainer: """Perform container tasks. Manages podman container, inspects it and checks its current state """ def __init__(self, module, name): """Initialize PodmanContainer class. Arguments: module {obj} -- ansible module object name {str} -- name of container """ super(PodmanContainer, self).__init__() self.module = module self.name = name self.stdout, self.stderr = '', '' self.info = self.get_info() self.version = self._get_podman_version() self.diff = {} self.actions = [] @property def exists(self): """Check if container exists.""" return bool(self.info != {}) @property def different(self): """Check if container is different.""" diffcheck = PodmanContainerDiff(self.module, self.info, self.version) is_different = diffcheck.is_different() diffs = diffcheck.diff if self.module._diff and is_different and diffs['before'] and diffs['after']: self.diff['before'] = "\n".join( ["%s - %s" % (k, v) for k, v in sorted( diffs['before'].items())]) + "\n" self.diff['after'] = "\n".join( ["%s - %s" % (k, v) for k, v in sorted( diffs['after'].items())]) + "\n" return is_different @property def running(self): """Return True if container is running now.""" return self.exists and self.info['State']['Running'] @property def stopped(self): """Return True if container exists and is not running now.""" return self.exists and not self.info['State']['Running'] def get_info(self): """Inspect container and gather info about it.""" rc, out, err = self.module.run_command( [self.module.params['executable'], b'container', b'inspect', self.name]) return json.loads(out)[0] if rc == 0 else {} def _get_podman_version(self): rc, out, err = self.module.run_command( [self.module.params['executable'], b'--version']) if rc != 0 or not out or "version" not in out: self.module.fail_json(msg="%s run failed!" % self.module.params['executable']) return out.split("version")[1].strip() def _perform_action(self, action): """Perform action with container. Arguments: action {str} -- action to perform - start, create, stop, run, delete """ b_command = PodmanModuleParams(action, self.module.params, self.version, self.module, ).construct_command_from_params() full_cmd = " ".join([self.module.params['executable']] + [to_native(i) for i in b_command]) self.module.log("PODMAN-CONTAINER-DEBUG: %s" % full_cmd) self.actions.append(full_cmd) if not self.module.check_mode: rc, out, err = self.module.run_command( [self.module.params['executable'], b'container'] + b_command, expand_user_and_vars=False) self.stdout = out self.stderr = err if rc != 0: self.module.fail_json( msg="Can't %s container %s" % (action, self.name), stdout=out, stderr=err) def run(self): """Run the container.""" self._perform_action('run') def delete(self): """Delete the container.""" self._perform_action('delete') def stop(self): """Stop the container.""" self._perform_action('stop') def start(self): """Start the container.""" self._perform_action('start') def create(self): """Create the container.""" self._perform_action('create') def recreate(self): """Recreate the container.""" self.delete() self.run() def restart(self): """Restart the container.""" self.stop() self.run() class PodmanManager: """Module manager class. Defines according to parameters what actions should be applied to container """ def __init__(self, module): """Initialize PodmanManager class. Arguments: module {obj} -- ansible module object """ super(PodmanManager, self).__init__() self.module = module self.results = { 'changed': False, 'actions': [], 'container': {}, } self.name = self.module.params['name'] self.executable = \ self.module.get_bin_path(self.module.params['executable'], required=True) self.image = self.module.params['image'] image_actions = ensure_image_exists(self.module, self.image) self.results['actions'] += image_actions self.state = self.module.params['state'] self.restart = self.module.params['force_restart'] self.recreate = self.module.params['recreate'] self.container = PodmanContainer(self.module, self.name) def update_container_result(self, changed=True): """Inspect the current container, update results with last info, exit. Keyword Arguments: changed {bool} -- whether any action was performed (default: {True}) """ facts = self.container.get_info() if changed else self.container.info out, err = self.container.stdout, self.container.stderr self.results.update({'changed': changed, 'container': facts, 'podman_actions': self.container.actions}, stdout=out, stderr=err) if self.container.diff: self.results.update({'diff': self.container.diff}) if self.module.params['debug']: self.results.update({'podman_version': self.container.version}) self.module.exit_json(**self.results) def make_started(self): """Run actions if desired state is 'started'.""" if self.container.running and \ (self.container.different or self.recreate): self.container.recreate() self.results['actions'].append('recreated %s' % self.container.name) self.update_container_result() elif self.container.running and not self.container.different: if self.restart: self.container.restart() self.results['actions'].append('restarted %s' % self.container.name) self.update_container_result() self.update_container_result(changed=False) elif not self.container.exists: self.container.run() self.results['actions'].append('started %s' % self.container.name) self.update_container_result() elif self.container.stopped and self.container.different: self.container.recreate() self.results['actions'].append('recreated %s' % self.container.name) self.update_container_result() elif self.container.stopped and not self.container.different: self.container.start() self.results['actions'].append('started %s' % self.container.name) self.update_container_result() def make_stopped(self): """Run actions if desired state is 'stopped'.""" if not self.container.exists and not self.image: self.module.fail_json(msg='Cannot create container when image' ' is not specified!') if not self.container.exists: self.container.create() self.results['actions'].append('created %s' % self.container.name) self.update_container_result() if self.container.stopped: self.update_container_result(changed=False) elif self.container.running: self.container.stop() self.results['actions'].append('stopped %s' % self.container.name) self.update_container_result() def make_absent(self): """Run actions if desired state is 'absent'.""" if not self.container.exists: self.results.update({'changed': False}) elif self.container.exists: self.container.delete() self.results['actions'].append('deleted %s' % self.container.name) self.results.update({'changed': True}) self.results.update({'container': {}, 'podman_actions': self.container.actions}) self.module.exit_json(**self.results) def execute(self): """Execute the desired action according to map of actions & states.""" states_map = { 'present': self.make_started, 'started': self.make_started, 'absent': self.make_absent, 'stopped': self.make_stopped } process_action = states_map[self.state] process_action() self.module.fail_json(msg="Unexpected logic error happened, " "please contact maintainers ASAP!") def main(): module = AnsibleModule( argument_spec=yaml.safe_load(DOCUMENTATION)['options'], mutually_exclusive=( ['no_hosts', 'etc_hosts'], ), supports_check_mode=True, ) # work on input vars if module.params['state'] in ['started', 'present'] and \ not module.params['image']: module.fail_json(msg="State '%s' required image to be configured!" % module.params['state']) PodmanManager(module).execute() if __name__ == '__main__': main()
[((894, 20, 894, 61), 'ansible.module_utils._text.to_bytes', 'to_bytes', (), '', False, 'from ansible.module_utils._text import to_bytes, to_native\n'), ((900, 20, 900, 61), 'ansible.module_utils._text.to_bytes', 'to_bytes', (), '', False, 'from ansible.module_utils._text import to_bytes, to_native\n'), ((904, 20, 904, 61), 'ansible.module_utils._text.to_bytes', 'to_bytes', (), '', False, 'from ansible.module_utils._text import to_bytes, to_native\n'), ((907, 20, 907, 38), 'distutils.version.LooseVersion', 'LooseVersion', ({(907, 33, 907, 37): 'minv'}, {}), '(minv)', False, 'from distutils.version import LooseVersion\n'), ((907, 41, 908, 36), 'distutils.version.LooseVersion', 'LooseVersion', ({(908, 16, 908, 35): 'self.podman_version'}, {}), '(self.podman_version)', False, 'from distutils.version import LooseVersion\n'), ((912, 20, 912, 38), 'distutils.version.LooseVersion', 'LooseVersion', ({(912, 33, 912, 37): 'maxv'}, {}), '(maxv)', False, 'from distutils.version import LooseVersion\n'), ((912, 41, 913, 36), 'distutils.version.LooseVersion', 'LooseVersion', ({(913, 16, 913, 35): 'self.podman_version'}, {}), '(self.podman_version)', False, 'from distutils.version import LooseVersion\n'), ((1791, 15, 1791, 30), 'json.loads', 'json.loads', ({(1791, 26, 1791, 29): 'out'}, {}), '(out)', False, 'import json\n'), ((1982, 22, 1982, 51), 'yaml.safe_load', 'yaml.safe_load', ({(1982, 37, 1982, 50): 'DOCUMENTATION'}, {}), '(DOCUMENTATION)', False, 'import yaml\n'), ((1317, 35, 1317, 51), 'json.dumps', 'json.dumps', ({(1317, 46, 1317, 50): 'info'}, {}), '(info)', False, 'import json\n'), ((1813, 31, 1813, 43), 'ansible.module_utils._text.to_native', 'to_native', ({(1813, 41, 1813, 42): 'i'}, {}), '(i)', False, 'from ansible.module_utils._text import to_bytes, to_native\n'), ((1028, 29, 1028, 70), 'ansible.module_utils._text.to_bytes', 'to_bytes', (), '', False, 'from ansible.module_utils._text import to_bytes, to_native\n'), ((1105, 40, 1105, 81), 'ansible.module_utils._text.to_bytes', 'to_bytes', (), '', False, 'from ansible.module_utils._text import to_bytes, to_native\n'), ((1208, 29, 1208, 70), 'ansible.module_utils._text.to_bytes', 'to_bytes', (), '', False, 'from ansible.module_utils._text import to_bytes, to_native\n')]
UdoGi/dark-matter
setup.py
3d49e89fa5e81f83144119f6216c5774176d203b
#!/usr/bin/env python from setuptools import setup # Modified from http://stackoverflow.com/questions/2058802/ # how-can-i-get-the-version-defined-in-setup-py-setuptools-in-my-package def version(): import os import re init = os.path.join('dark', '__init__.py') with open(init) as fp: initData = fp.read() match = re.search(r"^__version__ = ['\"]([^'\"]+)['\"]", initData, re.M) if match: return match.group(1) else: raise RuntimeError('Unable to find version string in %r.' % init) # Explicitly list bin scripts to be installed, seeing as I have a few local # bin files that are not (yet) part of the distribution. scripts = [ 'bin/aa-info.py', 'bin/aa-to-dna.py', 'bin/aa-to-properties.py', 'bin/adaptor-distances.py', 'bin/alignment-panel-civ.py', 'bin/alignments-per-read.py', 'bin/bit-score-to-e-value.py', 'bin/cat-json-blast-records.py', 'bin/check-fasta-json-blast-consistency.py', 'bin/codon-distance.py', 'bin/compare-consensuses.py', 'bin/compare-sequences.py', 'bin/convert-blast-xml-to-json.py', 'bin/convert-diamond-to-json.py', 'bin/convert-diamond-to-sam.py', 'bin/convert-sam-to-fastq.sh', 'bin/create-newick-relabeling-output.py', 'bin/dark-matter-version.py', 'bin/describe-protein-database.py', 'bin/dna-to-aa.py', 'bin/download-genbank.sh', 'bin/e-value-to-bit-score.py', 'bin/extract-ORFs.py', 'bin/fasta-base-indices.py', 'bin/fasta-count.py', 'bin/fasta-diff.sh', 'bin/fasta-identity-table.py', 'bin/fasta-ids.py', 'bin/fasta-join.py', 'bin/fasta-lengths.py', 'bin/fasta-sequences.py', 'bin/fasta-sort.py', 'bin/fasta-split-by-id.py', 'bin/fasta-subset.py', 'bin/fasta-subtraction.py', 'bin/fasta-to-phylip.py', 'bin/fasta-variable-sites.py', 'bin/filter-fasta-by-complexity.py', 'bin/filter-fasta-by-taxonomy.py', 'bin/filter-fasta.py', 'bin/filter-hits-to-fasta.py', 'bin/filter-reads-alignments.py', 'bin/filter-sam.py', 'bin/find-hits.py', 'bin/format-fasta.py', 'bin/genome-protein-summary.py', 'bin/get-features.py', 'bin/get-hosts.py', 'bin/get-reads.py', 'bin/get-taxonomy.py', 'bin/graph-evalues.py', 'bin/local-align.py', 'bin/make-consensus.py', 'bin/make-fasta-database.py', 'bin/make-protein-database.py', 'bin/ncbi-fetch-id.py', 'bin/newick-to-ascii.py', 'bin/noninteractive-alignment-panel.py', 'bin/parse-genbank-flat-file.py', 'bin/position-summary.py', 'bin/pre-commit.sh', 'bin/print-blast-xml-for-derek.py', 'bin/print-blast-xml.py', 'bin/print-read-lengths.py', 'bin/proteins-to-pathogens.py', 'bin/proteins-to-pathogens-civ.py', 'bin/randomize-fasta.py', 'bin/read-blast-json.py', 'bin/read-blast-xml.py', 'bin/relabel-newick-tree.py', 'bin/run-bwa.py', 'bin/run-bowtie2.py', 'bin/sam-coverage.py', 'bin/sam-coverage-depth.py', 'bin/sam-to-fasta-alignment.py', 'bin/sam-reference-read-counts.py', 'bin/sam-references.py', 'bin/sff-to-fastq.py', 'bin/split-fasta-by-adaptors.py', 'bin/subset-protein-database.py', 'bin/summarize-fasta-bases.py', 'bin/summarize-reads.py', 'bin/trim-primers.py', 'bin/trim-reads.py', 'bin/write-htcondor-job-spec.py', ] setup(name='dark-matter', version=version(), packages=['dark', 'dark.blast', 'dark.diamond', 'dark.civ'], url='https://github.com/acorg/dark-matter', download_url='https://github.com/acorg/dark-matter', author='Terry Jones, Barbara Muehlemann, Tali Veith, Sophie Mathias', author_email='[email protected]', keywords=['virus discovery'], classifiers=[ 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Topic :: Software Development :: Libraries :: Python Modules', ], license='MIT', description='Python classes for working with genetic sequence data', scripts=scripts, install_requires=[ 'biopython>=1.71', 'bz2file>=0.98', 'Cython>=0.29.16', 'ipython>=3.1.0', 'matplotlib>=1.4.3', 'mysql-connector-python==8.0.11', 'numpy>=1.14.2', 'pysam>=0.15.2', 'pyfaidx>=0.4.8.4', 'pyzmq>=14.3.1', 'requests>=2.18.4', 'cachetools>=3.1.0', 'simplejson>=3.5.3', 'six>=1.11.0', ])
[((12, 11, 12, 46), 'os.path.join', 'os.path.join', ({(12, 24, 12, 30): '"""dark"""', (12, 32, 12, 45): '"""__init__.py"""'}, {}), "('dark', '__init__.py')", False, 'import os\n'), ((15, 12, 16, 37), 're.search', 're.search', ({(15, 22, 15, 59): '"""^__version__ = [\'\\\\"]([^\'\\\\"]+)[\'\\\\"]"""', (16, 22, 16, 30): 'initData', (16, 32, 16, 36): 're.M'}, {}), '(\'^__version__ = [\\\'\\\\"]([^\\\'\\\\"]+)[\\\'\\\\"]\', initData, re.M)', False, 'import re\n')]
FilipBali/VirtualPortfolio-WebApplication
authenticationApp/templatetags/timetags.py
9236509205e37c2c682b7b2f518f5794a94fd178
# ====================================================================================================================== # Fakulta informacnich technologii VUT v Brne # Bachelor thesis # Author: Filip Bali (xbalif00) # License: MIT # ====================================================================================================================== from django import template import datetime import time from portfolioApp.models import NotificationEvent register = template.Library() import pandas as pd def print_timestamp(timestamp): return time.strftime('%Y-%m-%d'.format(timestamp%1000), time.gmtime(timestamp/1000.0)) def print_timestamp_analysis(timestamp): return str(timestamp.year) + '-' + str(timestamp.month) +'-' + str(timestamp.day) def print_timestamp_notifications(timestamp): return str(timestamp.year) + '-' + str(timestamp.month) +'-' + str(timestamp.day) def print_notification_text(type): if type == 1: return 'At a price change equal/above/below' elif type == 2: return 'Percentage increase current price' elif type == 3: return 'Percentage decrease current price' def print_symbol_notifications(notification_id): object = NotificationEvent.objects.get(id=notification_id) symbol = str(object.company.symbol) return symbol def print_type_notifications(notification_type): if notification_type == 1: return 'Interday' elif notification_type == 2: return 'Intraday' register.filter(print_timestamp) register.filter(print_timestamp_analysis) register.filter(print_timestamp_notifications) register.filter(print_notification_text) register.filter(print_symbol_notifications) register.filter(print_type_notifications)
[((13, 11, 13, 29), 'django.template.Library', 'template.Library', ({}, {}), '()', False, 'from django import template\n'), ((35, 13, 35, 62), 'portfolioApp.models.NotificationEvent.objects.get', 'NotificationEvent.objects.get', (), '', False, 'from portfolioApp.models import NotificationEvent\n'), ((18, 60, 18, 89), 'time.gmtime', 'time.gmtime', ({(18, 72, 18, 88): '(timestamp / 1000.0)'}, {}), '(timestamp / 1000.0)', False, 'import time\n')]
donatoaz/pycfmodel
pycfmodel/model/resources/properties/policy.py
1586e290b67d2347493dd4a77d2b0c8ee6c0936b
from pycfmodel.model.resources.properties.policy_document import PolicyDocument from pycfmodel.model.resources.properties.property import Property from pycfmodel.model.types import Resolvable, ResolvableStr class Policy(Property): """ Contains information about an attached policy. Properties: - PolicyDocument: A [policy document][pycfmodel.model.resources.properties.policy_document.PolicyDocument] object. - PolicyName: The friendly name (not ARN) identifying the policy. """ PolicyName: ResolvableStr PolicyDocument: Resolvable[PolicyDocument]
[]
mrahim/stacked-learn
stlearn/__init__.py
b04b49f65f06de7f5b59ba4139b0f78f8d66d94a
from .stacking import StackingClassifier, stack_features from .multitask import MultiTaskEstimator
[]
utsavm9/wasm-micro-runtime
samples/workload/XNNPACK/toolchain/emscripten_toolchain_config.bzl
0960e82db2be30b741f5c83e7a57ea9056b2ab59
# Copyright (C) 2019 Intel Corporation. All rights reserved. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception load("@bazel_tools//tools/build_defs/cc:action_names.bzl", "ACTION_NAMES") load( "@bazel_tools//tools/cpp:cc_toolchain_config_lib.bzl", "feature", "flag_group", "flag_set", "tool_path", ) all_compile_actions = [ ACTION_NAMES.c_compile, ACTION_NAMES.cpp_compile, ] all_link_actions = [ ACTION_NAMES.cpp_link_executable, ACTION_NAMES.cpp_link_dynamic_library, ACTION_NAMES.cpp_link_nodeps_dynamic_library, ] def _impl(ctx): tool_paths = [ tool_path( name = "gcc", path = "/opt/emsdk/upstream/emscripten/emcc", ), tool_path( name = "ld", path = "/opt/emsdk/upstream/emscripten/emcc", ), tool_path( name = "ar", path = "/opt/emsdk/upstream/emscripten/emar", ), tool_path( name = "cpp", path = "/opt/emsdk/upstream/emscripten/em++", ), tool_path( name = "gcov", path = "/bin/false", ), tool_path( name = "nm", path = "/bin/false", ), tool_path( name = "objdump", path = "/bin/false", ), tool_path( name = "strip", path = "/bin/false", ), ] features = [ # NEW feature( name = "default_compile_flags", enabled = True, flag_sets = [ flag_set( actions = all_compile_actions, flag_groups = ([ flag_group( flags = [ "-O3", "-msimd128", "-s", "USE_PTHREADS=0", "-s", "ERROR_ON_UNDEFINED_SYMBOLS=0", "-s", "STANDALONE_WASM=1", ], ), ]), ), ], ), feature( name = "default_linker_flags", enabled = True, flag_sets = [ flag_set( actions = all_link_actions, flag_groups = ([ flag_group( flags = [ "-O3", "-msimd128", "-s", "USE_PTHREADS=0", "-s", "ERROR_ON_UNDEFINED_SYMBOLS=0", "-s", "STANDALONE_WASM=1", "-Wl,--export=__heap_base", "-Wl,--export=__data_end", ], ), ]), ), ], ), ] return cc_common.create_cc_toolchain_config_info( ctx = ctx, features = features, # NEW cxx_builtin_include_directories = [ "/opt/emsdk/upstream/emscripten/system/include/libcxx", "/opt/emsdk/upstream/emscripten/system/lib/libcxxabi/include", "/opt/emsdk/upstream/emscripten/system/include", "/opt/emsdk/upstream/emscripten/system/include/libc", "/opt/emsdk/upstream/emscripten/system/lib/libc/musl/arch/emscripten", "/opt/emsdk/upstream/lib/clang/12.0.0/include/", ], toolchain_identifier = "wasm-emsdk", host_system_name = "i686-unknown-linux-gnu", target_system_name = "wasm32-unknown-emscripten", target_cpu = "wasm32", target_libc = "unknown", compiler = "emsdk", abi_version = "unknown", abi_libc_version = "unknown", tool_paths = tool_paths, ) emsdk_toolchain_config = rule( implementation = _impl, attrs = {}, provides = [CcToolchainConfigInfo], )
[]
toplenboren/safezone
cloud_storages/gdrive/gdrive.py
eafad765ed7cd6f6b7607ac07e75fd843d32ee07
from __future__ import print_function import json from typing import List from functools import lru_cache from cloud_storages.http_shortcuts import * from database.database import Database from models.models import StorageMetaInfo, Resource, Size from cloud_storages.storage import Storage from cloud_storages.gdrive.client_config import GOOGLE_DRIVE_CONFIG, SCOPES from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request from google.oauth2.credentials import Credentials GOOGLE_DRIVE_DB_KEY = 'google' class GDriveStorage(Storage): def __init__(self, token): self.token = token @lru_cache(maxsize=None) def _get_folder_id_by_name(self, name: str) -> str: """ Google drive has a quirk - you can't really use normal os-like paths - first you need to get an ID of the folder This function searches for folders with specified name """ response = get_with_OAuth( f"https://www.googleapis.com/drive/v3/files", params={ 'fields': '*', 'q': f"name = '{name}' and mimeType = 'application/vnd.google-apps.folder'" }, token=self.token ) if response.status_code == 200: response_as_json = response.json() try: result = response_as_json['files'][0]['id'] return result except IndexError as e: raise ValueError(f"Something went wrong with GD: Error: {e}") else: raise ValueError(f"Something went wrong with GD: Response: " f"{str(response.status_code)} — {response.json()}") @classmethod # todo (toplenboren) remove database argument dependency :( def auth(cls, db: Database): creds = None creds_from_db = db.get(GOOGLE_DRIVE_DB_KEY) if creds_from_db: creds = Credentials.from_authorized_user_info(json.loads(creds_from_db), SCOPES) if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_config(GOOGLE_DRIVE_CONFIG, SCOPES) creds = flow.run_local_server(port=0) db.set(GOOGLE_DRIVE_DB_KEY, creds.token) @classmethod def _deserialize_resource(cls, json: dict) -> Resource or None: """ Tries to parse Resource from YD to Resource object :param json: :return: """ try: is_file = True if 'folder' in json['mimeType']: is_file = False # You don't have pathes in google drive, instead -- you have an id path = json['id'] except KeyError: return None res = Resource(is_file, path) res.size = Size(json.get('size'), 'b') if json.get('size') else None res.name = json.get('name') res.url = json.get('webContentLink') res.updated = json.get('modifiedTime') res.md5 = json.get('md5Checksum') return res def list_resources_on_path(self, remote_path: str) -> List[Resource]: """ List all items in directory :param path: path to the resource """ folder_id = self._get_folder_id_by_name(remote_path) response = get_with_OAuth( f"https://www.googleapis.com/drive/v3/files", params={ 'fields': '*', 'q': f"'{folder_id}' in parents" }, token=self.token ) if response.status_code == 200: result = [] response_as_json = response.json() files = response_as_json['files'] for resource in files: res: Resource or None = self._deserialize_resource(resource) if res is not None: result.append(res) return result else: raise ValueError(f"Something went wrong with YD: Response: " f"{str(response.status_code)} — {response.json()['message']}") def get_meta_info(self) -> StorageMetaInfo: response = get_with_OAuth('https://www.googleapis.com/drive/v3/about?fields=*', token=self.token) if response.status_code == 200: response_read = response.json() used_space = response_read.get('storageQuota', {}).get('usage') total_space = response_read.get('storageQuota', {}).get('limit') return StorageMetaInfo(int(used_space), int(total_space)) else: raise ValueError(f"Something went wrong with GD: Response: " f"{str(response.status_code)} — {response.json()['message']}") def create_path(self, remote_path: List[str]) -> None: """ Creates the remote path on yandex disk """ print(f'[{__name__}] Trying to create directory {"/".join(remote_path)} on remote...') dir_to_create = [] for dir in remote_path: dir_to_create.append(dir) path_to_create = '/'.join(dir_to_create) response = put_with_OAuth(f'https://cloud-api.yandex.net/v1/disk/resources?path={path_to_create}', token=self.token) if 199 < response.status_code < 401: print(f'[{__name__}] Created directory {path_to_create}') continue elif response.status_code == 409 and 'уже существует' in response.json().get('message', ''): continue return def save_resource_to_path(self, resource: Resource, remote_path: str, overwrite: bool, _rec_call:bool = False) -> Resource or None: """ Put an Item to the directory :param resource: resource on the local fs :param remote_path: string, path to resource on remote fs :param _rec_call: bool, a system parameter, whether or not this function was called as a recursive call :return: saved resource or raises exception """ upload_successful_flag = False response = get_with_OAuth( f'https://cloud-api.yandex.net/v1/disk/resources/upload?path={remote_path}&overwrite=${overwrite}', token=self.token ) if response.status_code == 200: response_read = response.json() upload_link = response_read['href'] with open(resource.path, 'rb') as f: files = f response = put_with_OAuth(upload_link, data=files) if 199 < response.status_code < 401: upload_successful_flag = True response = get_with_OAuth(f'https://cloud-api.yandex.net/v1/disk/resources?path={remote_path}', token=self.token) resource_metainfo = self._deserialize_resource(response.json()) if 199 < response.status_code < 401: return resource_metainfo elif upload_successful_flag: return resource # This dir is not present in the storage # We use _rec_call to tell that the next call was made as recursive call, so we don't cause SO elif response.status_code == 409 and not _rec_call: # We don't need to create a folder with the name equal to the filename, so we do [:-1] self.create_path(remote_path.split('/')[:-1]) return self.save_resource_to_path(resource, remote_path, overwrite, _rec_call=True) raise ValueError(f"Something went wrong with YD: Response: " f"{str(response.status_code)} — {response.json().get('message', '')}") def download_resource(self, remote_path, local_path) -> str: response = get_with_OAuth( f'https://cloud-api.yandex.net/v1/disk/resources/download?path={remote_path}', token=self.token ) if response.status_code == 200: response_read = response.json() dl_url = response_read.get('href') else: raise ValueError(f"[{__name__}] Something went wrong with YD: Response: " f"{str(response.status_code)} — {response.json()['message']}") file = requests.get(dl_url) open(local_path, 'wb').write(file.content) return local_path def main(): storage = GDriveStorage(None) db = Database('../storage.db') storage.auth(db) authed_storage = GDriveStorage(json.loads(db.get(GOOGLE_DRIVE_DB_KEY))['token']) result = authed_storage.list_resources_on_path('savezone') print(result) if __name__ == '__main__': main()
[((25, 5, 25, 28), 'functools.lru_cache', 'lru_cache', (), '', False, 'from functools import lru_cache\n'), ((216, 9, 216, 34), 'database.database.Database', 'Database', ({(216, 18, 216, 33): '"""../storage.db"""'}, {}), "('../storage.db')", False, 'from database.database import Database\n'), ((82, 14, 82, 37), 'models.models.Resource', 'Resource', ({(82, 23, 82, 30): 'is_file', (82, 32, 82, 36): 'path'}, {}), '(is_file, path)', False, 'from models.models import StorageMetaInfo, Resource, Size\n'), ((84, 19, 84, 35), 'json.get', 'json.get', ({(84, 28, 84, 34): '"""name"""'}, {}), "('name')", False, 'import json\n'), ((85, 18, 85, 44), 'json.get', 'json.get', ({(85, 27, 85, 43): '"""webContentLink"""'}, {}), "('webContentLink')", False, 'import json\n'), ((86, 22, 86, 46), 'json.get', 'json.get', ({(86, 31, 86, 45): '"""modifiedTime"""'}, {}), "('modifiedTime')", False, 'import json\n'), ((87, 18, 87, 41), 'json.get', 'json.get', ({(87, 27, 87, 40): '"""md5Checksum"""'}, {}), "('md5Checksum')", False, 'import json\n'), ((83, 50, 83, 66), 'json.get', 'json.get', ({(83, 59, 83, 65): '"""size"""'}, {}), "('size')", False, 'import json\n'), ((58, 58, 58, 83), 'json.loads', 'json.loads', ({(58, 69, 58, 82): 'creds_from_db'}, {}), '(creds_from_db)', False, 'import json\n'), ((63, 23, 63, 87), 'google_auth_oauthlib.flow.InstalledAppFlow.from_client_config', 'InstalledAppFlow.from_client_config', ({(63, 59, 63, 78): 'GOOGLE_DRIVE_CONFIG', (63, 80, 63, 86): 'SCOPES'}, {}), '(GOOGLE_DRIVE_CONFIG, SCOPES)', False, 'from google_auth_oauthlib.flow import InstalledAppFlow\n'), ((83, 24, 83, 40), 'json.get', 'json.get', ({(83, 33, 83, 39): '"""size"""'}, {}), "('size')", False, 'import json\n'), ((61, 30, 61, 39), 'google.auth.transport.requests.Request', 'Request', ({}, {}), '()', False, 'from google.auth.transport.requests import Request\n')]
darkestmidnight/fedcodeathon2018
index/urls.py
2cac972b6eaebd7bfc47c02aade36b0f4a6869ab
from django.urls import re_path, include from . import views app_name='logged' # url mappings for the webapp. urlpatterns = [ re_path(r'^$', views.logged_count, name="logged_count"), re_path(r'^loggedusers/', views.logged, name="logged_users"), re_path(r'^settings/', views.user_settings, name="update_info"), re_path(r'^administrators/', views.post_alert, name="post_alert"), re_path(r'^alerts/$', views.list_alert, name="list_alert"), re_path(r'^alerts/(?P<slug>[\w-]+)/$', views.view_alert, name="view_alert"), re_path(r'^display/', views.display, name="display"), re_path(r'^doorselection/', views.doors_election, name="door_selecttion") ]
[((8, 4, 8, 59), 'django.urls.re_path', 're_path', (), '', False, 'from django.urls import re_path, include\n'), ((9, 4, 9, 64), 'django.urls.re_path', 're_path', (), '', False, 'from django.urls import re_path, include\n'), ((10, 4, 10, 67), 'django.urls.re_path', 're_path', (), '', False, 'from django.urls import re_path, include\n'), ((11, 4, 11, 69), 'django.urls.re_path', 're_path', (), '', False, 'from django.urls import re_path, include\n'), ((12, 4, 12, 62), 'django.urls.re_path', 're_path', (), '', False, 'from django.urls import re_path, include\n'), ((13, 4, 13, 79), 'django.urls.re_path', 're_path', (), '', False, 'from django.urls import re_path, include\n'), ((14, 4, 14, 56), 'django.urls.re_path', 're_path', (), '', False, 'from django.urls import re_path, include\n'), ((15, 4, 15, 77), 'django.urls.re_path', 're_path', (), '', False, 'from django.urls import re_path, include\n')]
uw-it-aca/scout
scout/dao/item.py
be787378c216f1fb172d68914a550a91c62bc264
# Copyright 2021 UW-IT, University of Washington # SPDX-License-Identifier: Apache-2.0 from scout.dao.space import get_spots_by_filter, _get_spot_filters, \ _get_extended_info_by_key import copy def get_item_by_id(item_id): spot = get_spots_by_filter([ ('item:id', item_id), ('extended_info:app_type', 'tech') ]) if spot: spot = _filter_spot_items(item_id, spot[0]) return spot def _filter_spot_items(item_id, spot): for item in spot.items: if item.item_id == item_id: spot.item = item return spot def add_item_info(spot): for item in spot.items: item.model = _get_extended_info_by_key("i_model", item.extended_info) item.brand = _get_extended_info_by_key("i_brand", item.extended_info) item.checkout_period = _get_extended_info_by_key( "i_checkout_period", item.extended_info ) item.reservation_notes = _get_extended_info_by_key( "i_reservation_notes", item.extended_info ) item.is_active = _get_extended_info_by_key( "i_is_active", item.extended_info ) item.quantity = _get_extended_info_by_key( "i_quantity", item.extended_info ) item.description = _get_extended_info_by_key( "i_description", item.extended_info ) item.reserve_url = _get_extended_info_by_key( "i_reserve_url", item.extended_info ) item.manual_url = _get_extended_info_by_key( "i_manual_url", item.extended_info ) item.owner = _get_extended_info_by_key( "i_owner", item.extended_info ) item.is_stf = _get_extended_info_by_key( "i_is_stf", item.extended_info ) item.cte_type_id = _get_extended_info_by_key( "cte_type_id", item.extended_info ) return spot def get_filtered_items(spots, request): parameter_list = _get_spot_filters(request) brand = [] subcategory = [] is_active = False for param in parameter_list: if param[0] == "item:extended_info:i_brand": brand.append(param[1]) elif param[0] == "item:subcategory": subcategory.append(param[1]) elif param[0] == "item:extended_info:i_is_active": is_active = True new_spots = [] for spot in spots: new_spot = copy.deepcopy(spot) new_spot.items = [] for item in spot.items: if is_active and not item.is_active: continue if len(subcategory) > 0 and item.subcategory not in subcategory: continue if len(brand) > 0 and item.brand not in brand: continue new_spot.items.append(item) new_spots.append(new_spot) return new_spots def get_item_count(spots): item_count = 0 for spot in spots: item_count += len(spot.items) return item_count
[((10, 11, 13, 6), 'scout.dao.space.get_spots_by_filter', 'get_spots_by_filter', ({(10, 31, 13, 5): "[('item:id', item_id), ('extended_info:app_type', 'tech')]"}, {}), "([('item:id', item_id), ('extended_info:app_type', 'tech')])", False, 'from scout.dao.space import get_spots_by_filter, _get_spot_filters, _get_extended_info_by_key\n'), ((77, 21, 77, 47), 'scout.dao.space._get_spot_filters', '_get_spot_filters', ({(77, 39, 77, 46): 'request'}, {}), '(request)', False, 'from scout.dao.space import get_spots_by_filter, _get_spot_filters, _get_extended_info_by_key\n'), ((28, 21, 29, 66), 'scout.dao.space._get_extended_info_by_key', '_get_extended_info_by_key', ({(28, 47, 28, 56): '"""i_model"""', (29, 47, 29, 65): 'item.extended_info'}, {}), "('i_model', item.extended_info)", False, 'from scout.dao.space import get_spots_by_filter, _get_spot_filters, _get_extended_info_by_key\n'), ((30, 21, 31, 66), 'scout.dao.space._get_extended_info_by_key', '_get_extended_info_by_key', ({(30, 47, 30, 56): '"""i_brand"""', (31, 47, 31, 65): 'item.extended_info'}, {}), "('i_brand', item.extended_info)", False, 'from scout.dao.space import get_spots_by_filter, _get_spot_filters, _get_extended_info_by_key\n'), ((32, 31, 35, 9), 'scout.dao.space._get_extended_info_by_key', '_get_extended_info_by_key', ({(33, 12, 33, 31): '"""i_checkout_period"""', (34, 12, 34, 30): 'item.extended_info'}, {}), "('i_checkout_period', item.extended_info)", False, 'from scout.dao.space import get_spots_by_filter, _get_spot_filters, _get_extended_info_by_key\n'), ((36, 33, 39, 9), 'scout.dao.space._get_extended_info_by_key', '_get_extended_info_by_key', ({(37, 12, 37, 33): '"""i_reservation_notes"""', (38, 12, 38, 30): 'item.extended_info'}, {}), "('i_reservation_notes', item.extended_info)", False, 'from scout.dao.space import get_spots_by_filter, _get_spot_filters, _get_extended_info_by_key\n'), ((40, 25, 43, 9), 'scout.dao.space._get_extended_info_by_key', '_get_extended_info_by_key', ({(41, 12, 41, 25): '"""i_is_active"""', (42, 12, 42, 30): 'item.extended_info'}, {}), "('i_is_active', item.extended_info)", False, 'from scout.dao.space import get_spots_by_filter, _get_spot_filters, _get_extended_info_by_key\n'), ((44, 24, 47, 9), 'scout.dao.space._get_extended_info_by_key', '_get_extended_info_by_key', ({(45, 12, 45, 24): '"""i_quantity"""', (46, 12, 46, 30): 'item.extended_info'}, {}), "('i_quantity', item.extended_info)", False, 'from scout.dao.space import get_spots_by_filter, _get_spot_filters, _get_extended_info_by_key\n'), ((48, 27, 51, 9), 'scout.dao.space._get_extended_info_by_key', '_get_extended_info_by_key', ({(49, 12, 49, 27): '"""i_description"""', (50, 12, 50, 30): 'item.extended_info'}, {}), "('i_description', item.extended_info)", False, 'from scout.dao.space import get_spots_by_filter, _get_spot_filters, _get_extended_info_by_key\n'), ((52, 27, 55, 9), 'scout.dao.space._get_extended_info_by_key', '_get_extended_info_by_key', ({(53, 12, 53, 27): '"""i_reserve_url"""', (54, 12, 54, 30): 'item.extended_info'}, {}), "('i_reserve_url', item.extended_info)", False, 'from scout.dao.space import get_spots_by_filter, _get_spot_filters, _get_extended_info_by_key\n'), ((56, 26, 59, 9), 'scout.dao.space._get_extended_info_by_key', '_get_extended_info_by_key', ({(57, 12, 57, 26): '"""i_manual_url"""', (58, 12, 58, 30): 'item.extended_info'}, {}), "('i_manual_url', item.extended_info)", False, 'from scout.dao.space import get_spots_by_filter, _get_spot_filters, _get_extended_info_by_key\n'), ((60, 21, 63, 9), 'scout.dao.space._get_extended_info_by_key', '_get_extended_info_by_key', ({(61, 12, 61, 21): '"""i_owner"""', (62, 12, 62, 30): 'item.extended_info'}, {}), "('i_owner', item.extended_info)", False, 'from scout.dao.space import get_spots_by_filter, _get_spot_filters, _get_extended_info_by_key\n'), ((64, 22, 67, 9), 'scout.dao.space._get_extended_info_by_key', '_get_extended_info_by_key', ({(65, 12, 65, 22): '"""i_is_stf"""', (66, 12, 66, 30): 'item.extended_info'}, {}), "('i_is_stf', item.extended_info)", False, 'from scout.dao.space import get_spots_by_filter, _get_spot_filters, _get_extended_info_by_key\n'), ((68, 27, 71, 9), 'scout.dao.space._get_extended_info_by_key', '_get_extended_info_by_key', ({(69, 12, 69, 25): '"""cte_type_id"""', (70, 12, 70, 30): 'item.extended_info'}, {}), "('cte_type_id', item.extended_info)", False, 'from scout.dao.space import get_spots_by_filter, _get_spot_filters, _get_extended_info_by_key\n'), ((92, 19, 92, 38), 'copy.deepcopy', 'copy.deepcopy', ({(92, 33, 92, 37): 'spot'}, {}), '(spot)', False, 'import copy\n')]
umeboshi2/juriscraper
juriscraper/opinions/united_states/state/minnctapp.py
16abceb3747947593841b1c2708de84dcc85c59d
#Scraper for Minnesota Court of Appeals Published Opinions #CourtID: minnctapp #Court Short Name: MN #Author: mlr #Date: 2016-06-03 from juriscraper.opinions.united_states.state import minn class Site(minn.Site): # Only subclasses minn for the _download method. def __init__(self, *args, **kwargs): super(Site, self).__init__(*args, **kwargs) self.court_id = self.__module__ self.court_filters = ['/ctapun/', '/ctappub/']
[]
JosephMontoya-TRI/monty
monty/os/__init__.py
facef1776c7d05c941191a32a0b93f986a9761dd
from __future__ import absolute_import import os import errno from contextlib import contextmanager __author__ = 'Shyue Ping Ong' __copyright__ = 'Copyright 2013, The Materials Project' __version__ = '0.1' __maintainer__ = 'Shyue Ping Ong' __email__ = '[email protected]' __date__ = '1/24/14' @contextmanager def cd(path): """ A Fabric-inspired cd context that temporarily changes directory for performing some tasks, and returns to the original working directory afterwards. E.g., with cd("/my/path/"): do_something() Args: path: Path to cd to. """ cwd = os.getcwd() os.chdir(path) try: yield finally: os.chdir(cwd) def makedirs_p(path, **kwargs): """ Wrapper for os.makedirs that does not raise an exception if the directory already exists, in the fashion of "mkdir -p" command. The check is performed in a thread-safe way Args: path: path of the directory to create kwargs: standard kwargs for os.makedirs """ try: os.makedirs(path, **kwargs) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise
[((29, 10, 29, 21), 'os.getcwd', 'os.getcwd', ({}, {}), '()', False, 'import os\n'), ((30, 4, 30, 18), 'os.chdir', 'os.chdir', ({(30, 13, 30, 17): 'path'}, {}), '(path)', False, 'import os\n'), ((34, 8, 34, 21), 'os.chdir', 'os.chdir', ({(34, 17, 34, 20): 'cwd'}, {}), '(cwd)', False, 'import os\n'), ((48, 8, 48, 35), 'os.makedirs', 'os.makedirs', ({(48, 20, 48, 24): 'path'}, {}), '(path, **kwargs)', False, 'import os\n'), ((50, 41, 50, 60), 'os.path.isdir', 'os.path.isdir', ({(50, 55, 50, 59): 'path'}, {}), '(path)', False, 'import os\n')]
FrancisMudavanhu/cookiecutter-data-science
{{ cookiecutter.repo_name }}/tests/test_environment.py
be766817a7399ccd714bf03d085609985fa7313a
import sys REQUIRED_PYTHON = "python3" required_major = 3 def main(): system_major = sys.version_info.major if system_major != required_major: raise TypeError( f"This project requires Python {required_major}." f" Found: Python {sys.version}") else: print(">>> Development environment passes all tests!") if __name__ == '__main__': main()
[]
siagholami/aws-documentation
documents/aws-doc-sdk-examples/python/example_code/kda/kda-python-datagenerator-stockticker.py
2d06ee9011f3192b2ff38c09f04e01f1ea9e0191
# snippet-comment:[These are tags for the AWS doc team's sample catalog. Do not remove.] # snippet-sourcedescription:[kda-python-datagenerator-stockticker.py demonstrates how to generate sample data for Amazon Kinesis Data Analytics SQL applications.] # snippet-service:[kinesisanalytics] # snippet-keyword:[Python] # snippet-sourcesyntax:[python] # snippet-sourcesyntax:[python] # snippet-keyword:[Amazon Kinesis Data Analytics] # snippet-keyword:[Code Sample] # snippet-sourcetype:[full-example] # snippet-sourcedate:[2019-01-29] # snippet-sourceauthor:[fletpatr (AWS)] # Copyright 2010-2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # This file is licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. A copy of the # License is located at # # http://aws.amazon.com/apache2.0/ # # This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS # OF ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. # snippet-start:[kinesisanalytics.python.datagenerator.stockticker] import json import boto3 import random import datetime kinesis = boto3.client('kinesis') def getReferrer(): data = {} now = datetime.datetime.now() str_now = now.isoformat() data['EVENT_TIME'] = str_now data['TICKER'] = random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']) price = random.random() * 100 data['PRICE'] = round(price, 2) return data while True: data = json.dumps(getReferrer()) print(data) kinesis.put_record( StreamName="ExampleInputStream", Data=data, PartitionKey="partitionkey") # snippet-end:[kinesisanalytics.python.datagenerator.stockticker]
[((31, 10, 31, 33), 'boto3.client', 'boto3.client', ({(31, 23, 31, 32): '"""kinesis"""'}, {}), "('kinesis')", False, 'import boto3\n'), ((34, 10, 34, 33), 'datetime.datetime.now', 'datetime.datetime.now', ({}, {}), '()', False, 'import datetime\n'), ((37, 21, 37, 75), 'random.choice', 'random.choice', ({(37, 35, 37, 74): "['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']"}, {}), "(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV'])", False, 'import random\n'), ((38, 12, 38, 27), 'random.random', 'random.random', ({}, {}), '()', False, 'import random\n')]
alexespejo/project-argus
backend/app.py
53a6a8b1790906044bffbd2db156322938b62da9
import face_recognition from flask import Flask, request, redirect, Response import camera import firestore as db # You can change this to any folder on your system ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'} app = Flask(__name__) def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS def detect_faces_in_image(name, access, file_stream): # Load the uploaded image filed img = face_recognition.load_image_file(file_stream) # Get face encodings for any faces in the uploaded image unknown_face_encodings = face_recognition.face_encodings(img)[0].tolist() db.add_member(name, access, unknown_face_encodings) return ('', 204) @app.route('/') def root(): return ('', 204) @app.route('/upload', methods=['GET', 'POST']) def upload_image(): db.encoding.update() name = request.form.get("name") access = request.form.get("access") access = int(access) if request.method == 'POST': if 'file' not in request.files: return redirect(request.url) file = request.files['file'] if file.filename == '': return redirect(request.url) if file and allowed_file(file.filename): return detect_faces_in_image(name, access, file) return redirect('/video_feed') @app.route('/update', methods=['GET', 'POST']) def update(): db.encoding.update() member = request.form.get("updateMember") changeName = request.form.get("changeName") changeAccess = request.form.get("changeAccess") if changeAccess == None: changeAccess = "" db.update_member(member, changeName, changeAccess) return ('', 204) @app.route('/configuration', methods=['GET', 'POST']) def config(): db.config_camera_interval(int(request.form.get('cameraDuration'))) return('', 204) @app.route('/members') def members(): print(type(db.encoding.get_names())) return str(db.encoding.get_names()) @app.route('/video_feed') def video_feed(): print('CAMERA RUN') return Response(camera.gen_frames(), mimetype='multipart/x-mixed-replace; boundary=frame') @app.route('/recent_person') def recent_person(): return db.history_log.get_most_recent_member() if __name__ == "__main__": app.run(host='0.0.0.0', port=5001, debug=True)
[((9, 6, 9, 21), 'flask.Flask', 'Flask', ({(9, 12, 9, 20): '__name__'}, {}), '(__name__)', False, 'from flask import Flask, request, redirect, Response\n'), ((19, 10, 19, 55), 'face_recognition.load_image_file', 'face_recognition.load_image_file', ({(19, 43, 19, 54): 'file_stream'}, {}), '(file_stream)', False, 'import face_recognition\n'), ((23, 4, 23, 55), 'firestore.add_member', 'db.add_member', ({(23, 18, 23, 22): 'name', (23, 24, 23, 30): 'access', (23, 32, 23, 54): 'unknown_face_encodings'}, {}), '(name, access, unknown_face_encodings)', True, 'import firestore as db\n'), ((34, 4, 34, 24), 'firestore.encoding.update', 'db.encoding.update', ({}, {}), '()', True, 'import firestore as db\n'), ((35, 11, 35, 35), 'flask.request.form.get', 'request.form.get', ({(35, 28, 35, 34): '"""name"""'}, {}), "('name')", False, 'from flask import Flask, request, redirect, Response\n'), ((36, 13, 36, 39), 'flask.request.form.get', 'request.form.get', ({(36, 30, 36, 38): '"""access"""'}, {}), "('access')", False, 'from flask import Flask, request, redirect, Response\n'), ((48, 11, 48, 34), 'flask.redirect', 'redirect', ({(48, 20, 48, 33): '"""/video_feed"""'}, {}), "('/video_feed')", False, 'from flask import Flask, request, redirect, Response\n'), ((53, 4, 53, 24), 'firestore.encoding.update', 'db.encoding.update', ({}, {}), '()', True, 'import firestore as db\n'), ((54, 13, 54, 45), 'flask.request.form.get', 'request.form.get', ({(54, 30, 54, 44): '"""updateMember"""'}, {}), "('updateMember')", False, 'from flask import Flask, request, redirect, Response\n'), ((55, 17, 55, 47), 'flask.request.form.get', 'request.form.get', ({(55, 34, 55, 46): '"""changeName"""'}, {}), "('changeName')", False, 'from flask import Flask, request, redirect, Response\n'), ((56, 19, 56, 51), 'flask.request.form.get', 'request.form.get', ({(56, 36, 56, 50): '"""changeAccess"""'}, {}), "('changeAccess')", False, 'from flask import Flask, request, redirect, Response\n'), ((59, 4, 59, 54), 'firestore.update_member', 'db.update_member', ({(59, 21, 59, 27): 'member', (59, 29, 59, 39): 'changeName', (59, 41, 59, 53): 'changeAccess'}, {}), '(member, changeName, changeAccess)', True, 'import firestore as db\n'), ((84, 11, 84, 50), 'firestore.history_log.get_most_recent_member', 'db.history_log.get_most_recent_member', ({}, {}), '()', True, 'import firestore as db\n'), ((73, 15, 73, 38), 'firestore.encoding.get_names', 'db.encoding.get_names', ({}, {}), '()', True, 'import firestore as db\n'), ((79, 20, 79, 39), 'camera.gen_frames', 'camera.gen_frames', ({}, {}), '()', False, 'import camera\n'), ((40, 19, 40, 40), 'flask.redirect', 'redirect', ({(40, 28, 40, 39): 'request.url'}, {}), '(request.url)', False, 'from flask import Flask, request, redirect, Response\n'), ((44, 19, 44, 40), 'flask.redirect', 'redirect', ({(44, 28, 44, 39): 'request.url'}, {}), '(request.url)', False, 'from flask import Flask, request, redirect, Response\n'), ((66, 34, 66, 68), 'flask.request.form.get', 'request.form.get', ({(66, 51, 66, 67): '"""cameraDuration"""'}, {}), "('cameraDuration')", False, 'from flask import Flask, request, redirect, Response\n'), ((72, 15, 72, 38), 'firestore.encoding.get_names', 'db.encoding.get_names', ({}, {}), '()', True, 'import firestore as db\n'), ((21, 29, 21, 65), 'face_recognition.face_encodings', 'face_recognition.face_encodings', ({(21, 61, 21, 64): 'img'}, {}), '(img)', False, 'import face_recognition\n')]
fishial/Object-Detection-Model
module/classification_package/src/utils.py
4792f65ea785156a8e240d9cdbbc0c9d013ea0bb
import numpy as np import logging import numbers import torch import math import json import sys from torch.optim.lr_scheduler import LambdaLR from torchvision.transforms.functional import pad class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count class ConstantLRSchedule(LambdaLR): """ Constant learning rate schedule. """ def __init__(self, optimizer, last_epoch=-1): super(ConstantLRSchedule, self).__init__(optimizer, lambda _: 1.0, last_epoch=last_epoch) class WarmupConstantSchedule(LambdaLR): """ Linear warmup and then constant. Linearly increases learning rate schedule from 0 to 1 over `warmup_steps` training steps. Keeps learning rate schedule equal to 1. after warmup_steps. """ def __init__(self, optimizer, warmup_steps, last_epoch=-1): self.warmup_steps = warmup_steps super(WarmupConstantSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch) def lr_lambda(self, step): if step < self.warmup_steps: return float(step) / float(max(1.0, self.warmup_steps)) return 1. class WarmupLinearSchedule(LambdaLR): """ Linear warmup and then linear decay. Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps. Linearly decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps. """ def __init__(self, optimizer, warmup_steps, t_total, last_epoch=-1): self.warmup_steps = warmup_steps self.t_total = t_total super(WarmupLinearSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch) def lr_lambda(self, step): if step < self.warmup_steps: return float(step) / float(max(1, self.warmup_steps)) return max(0.0, float(self.t_total - step) / float(max(1.0, self.t_total - self.warmup_steps))) class WarmupCosineSchedule(LambdaLR): """ Linear warmup and then cosine decay. Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps. Decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps following a cosine curve. If `cycles` (default=0.5) is different from default, learning rate follows cosine function after warmup. """ def __init__(self, optimizer, warmup_steps, t_total, cycles=.5, last_epoch=-1): self.warmup_steps = warmup_steps self.t_total = t_total self.cycles = cycles super(WarmupCosineSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch) def lr_lambda(self, step): if step < self.warmup_steps: return float(step) / float(max(1.0, self.warmup_steps)) # progress after warmup progress = float(step - self.warmup_steps) / float(max(1, self.t_total - self.warmup_steps)) return max(0.0, 0.5 * (1. + math.cos(math.pi * float(self.cycles) * 2.0 * progress))) def get_padding(image): w, h = image.size max_wh = np.max([w, h]) h_padding = (max_wh - w) / 2 v_padding = (max_wh - h) / 2 l_pad = h_padding if h_padding % 1 == 0 else h_padding + 0.5 t_pad = v_padding if v_padding % 1 == 0 else v_padding + 0.5 r_pad = h_padding if h_padding % 1 == 0 else h_padding - 0.5 b_pad = v_padding if v_padding % 1 == 0 else v_padding - 0.5 padding = (int(l_pad), int(t_pad), int(r_pad), int(b_pad)) return padding class NewPad(object): def __init__(self, fill=0, padding_mode='constant'): assert isinstance(fill, (numbers.Number, str, tuple)) assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'] self.fill = fill self.padding_mode = padding_mode def __call__(self, img): """ Args: img (PIL Image): Image to be padded. Returns: PIL Image: Padded image. """ return pad(img, get_padding(img), self.fill, self.padding_mode) def __repr__(self): return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'. \ format(self.fill, self.padding_mode) def find_device(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") return device def read_json(data): with open(data) as f: return json.load(f) def save_json(data, path): with open(path, 'w', encoding='utf-8') as f: json.dump(data, f) def setup_logger(): logger = logging.getLogger('train') logger.setLevel(logging.INFO) if len(logger.handlers) == 0: formatter = logging.Formatter('%(asctime)s | %(message)s') ch = logging.StreamHandler(stream=sys.stdout) ch.setFormatter(formatter) logger.addHandler(ch) return logger def adjust_learning_rate(optimizer, epoch, lr): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = lr * (0.1 ** (epoch // 30)) for param_group in optimizer.param_groups: param_group['lr'] = lr def save_checkpoint(model, path): torch.save(model.state_dict(), path) def reverse_norm_image(image): MEAN = torch.tensor([0.485, 0.456, 0.406]) STD = torch.tensor([0.229, 0.224, 0.225]) reverse_image = image * STD[:, None, None] + MEAN[:, None, None] return reverse_image.permute(1, 2, 0).cpu().numpy()
[((92, 13, 92, 27), 'numpy.max', 'np.max', ({(92, 20, 92, 26): '[w, h]'}, {}), '([w, h])', True, 'import numpy as np\n'), ((142, 13, 142, 39), 'logging.getLogger', 'logging.getLogger', ({(142, 31, 142, 38): '"""train"""'}, {}), "('train')", False, 'import logging\n'), ((164, 11, 164, 46), 'torch.tensor', 'torch.tensor', ({(164, 24, 164, 45): '[0.485, 0.456, 0.406]'}, {}), '([0.485, 0.456, 0.406])', False, 'import torch\n'), ((165, 10, 165, 45), 'torch.tensor', 'torch.tensor', ({(165, 23, 165, 44): '[0.229, 0.224, 0.225]'}, {}), '([0.229, 0.224, 0.225])', False, 'import torch\n'), ((133, 15, 133, 27), 'json.load', 'json.load', ({(133, 25, 133, 26): 'f'}, {}), '(f)', False, 'import json\n'), ((138, 8, 138, 26), 'json.dump', 'json.dump', ({(138, 18, 138, 22): 'data', (138, 24, 138, 25): 'f'}, {}), '(data, f)', False, 'import json\n'), ((145, 20, 145, 66), 'logging.Formatter', 'logging.Formatter', ({(145, 38, 145, 65): '"""%(asctime)s | %(message)s"""'}, {}), "('%(asctime)s | %(message)s')", False, 'import logging\n'), ((146, 13, 146, 53), 'logging.StreamHandler', 'logging.StreamHandler', (), '', False, 'import logging\n'), ((127, 38, 127, 63), 'torch.cuda.is_available', 'torch.cuda.is_available', ({}, {}), '()', False, 'import torch\n')]
L-Net-1992/mlflow
tests/pylint_plugins/test_assert_raises_without_msg.py
a90574dbb730935c815ff41a0660b9a823b81630
import pytest from tests.pylint_plugins.utils import create_message, extract_node, skip_if_pylint_unavailable pytestmark = skip_if_pylint_unavailable() @pytest.fixture(scope="module") def test_case(): import pylint.testutils from pylint_plugins import AssertRaisesWithoutMsg class TestAssertRaisesWithoutMsg(pylint.testutils.CheckerTestCase): CHECKER_CLASS = AssertRaisesWithoutMsg test_case = TestAssertRaisesWithoutMsg() test_case.setup_method() return test_case def test_assert_raises_without_msg(test_case): node = extract_node("self.assertRaises(Exception)") with test_case.assertAddsMessages(create_message(test_case.CHECKER_CLASS.name, node)): test_case.walk(node) node = extract_node("self.assertRaises(Exception, msg='test')") with test_case.assertNoMessages(): test_case.walk(node) node = extract_node("pandas.assertRaises(Exception)") with test_case.assertNoMessages(): test_case.walk(node)
[((5, 13, 5, 41), 'tests.pylint_plugins.utils.skip_if_pylint_unavailable', 'skip_if_pylint_unavailable', ({}, {}), '()', False, 'from tests.pylint_plugins.utils import create_message, extract_node, skip_if_pylint_unavailable\n'), ((8, 1, 8, 31), 'pytest.fixture', 'pytest.fixture', (), '', False, 'import pytest\n'), ((22, 11, 22, 55), 'tests.pylint_plugins.utils.extract_node', 'extract_node', ({(22, 24, 22, 54): '"""self.assertRaises(Exception)"""'}, {}), "('self.assertRaises(Exception)')", False, 'from tests.pylint_plugins.utils import create_message, extract_node, skip_if_pylint_unavailable\n'), ((26, 11, 26, 67), 'tests.pylint_plugins.utils.extract_node', 'extract_node', ({(26, 24, 26, 66): '"""self.assertRaises(Exception, msg=\'test\')"""'}, {}), '("self.assertRaises(Exception, msg=\'test\')")', False, 'from tests.pylint_plugins.utils import create_message, extract_node, skip_if_pylint_unavailable\n'), ((30, 11, 30, 57), 'tests.pylint_plugins.utils.extract_node', 'extract_node', ({(30, 24, 30, 56): '"""pandas.assertRaises(Exception)"""'}, {}), "('pandas.assertRaises(Exception)')", False, 'from tests.pylint_plugins.utils import create_message, extract_node, skip_if_pylint_unavailable\n'), ((23, 38, 23, 88), 'tests.pylint_plugins.utils.create_message', 'create_message', ({(23, 53, 23, 81): 'test_case.CHECKER_CLASS.name', (23, 83, 23, 87): 'node'}, {}), '(test_case.CHECKER_CLASS.name, node)', False, 'from tests.pylint_plugins.utils import create_message, extract_node, skip_if_pylint_unavailable\n')]
AV321/SVPackage
SVassembly/plot_bcs_across_bkpts.py
c9c625af7f5047ddb43ae79f8beb2ce9aadf7697
import pandas as pd import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.colors import csv from scipy.stats import mode import math as m import os import collections #set working directory #os.chdir("/mnt/ix1/Projects/M002_131217_gastric/P00526/P00526_WG10_150722_gastric/A20_170516_hmw_maps/metr") #bkpt_name = "1" #example: plot_bcs_bkpt("1", "/mnt/ix1/Projects/M002_131217_gastric/P00526/P00526_WG10_150722_gastric/A20_170516_hmw_maps/metr", "/mnt/ix1/Projects/M002_131217_gastric/P00526/P00526_WG10_150722_gastric/A20_170516_hmw_maps/metr") def plot_bcs_bkpt(bkpt_name, infolder, outfolder): if infolder[-1] != '/': infolder = infolder + '/' file_1 = infolder + bkpt_name + "_1.bc_windows.txt" file_2 = infolder + bkpt_name + "_2.bc_windows.txt" file_hap = infolder + bkpt_name + "_hap_bcs.txt" df_1 = pd.read_table(file_1) df_2 = pd.read_table(file_2) hap_bcs = pd.read_table(file_hap) # bkpt_name = "1" # file_1 = bkpt_name + "_1.bc_windows.txt" # file_2 = bkpt_name + "_2.bc_windows.txt" # file_hap = bkpt_name + "_hap_bcs.txt" # #sort barcodes by where they map (lowest coordinate to highest) # #read in data frames # df_1 = pd.read_table(file_1) # df_2 = pd.read_table(file_2) # hap_bcs = pd.read_table(file_hap) hap_bcs = hap_bcs.transpose() bcs_hap_dict = {} for key in df_1.keys(): if key != "chrom" and key != "window_start" and key != "window_end": key = key[:-2] bcs_hap_dict[key] = 'unassigned' for key, values in hap_bcs.iteritems(): if values[0] != 'bcs': hap = values[1] bcs_hap_dict[values[0]] = hap df_1 = df_1.sort_values('window_start') df_2 = df_2.sort_values('window_start') chrom_1 = df_1.at[0, 'chrom'] chrom_2 = df_2.at[0, 'chrom'] x_values_1_1 = [] x_values_1_2 = [] x_values_1_unassigned = [] y_values_1_1 = [] y_values_1_2 = [] y_values_1_unassigned = [] x_values_2_1 = [] x_values_2_2 = [] x_values_2_unassigned = [] y_values_2_1 = [] y_values_2_2 = [] y_values_2_unassigned = [] i1 = 0 window_start_arr1 = df_1['window_start'] for name, values in df_1.iteritems(): #go through columns (so each barcode) if name != "chrom" and name != "window_start" and name != "window_end": i1 += 1 name = name[:-2] hap = bcs_hap_dict[name] #print type(hap) int for indx, window in values.iteritems(): if window != 0: if hap == 1: y_values_1_1.append(i1) x_values_1_1.append(window_start_arr1[indx]) elif hap == 2: y_values_1_2.append(i1) x_values_1_2.append(window_start_arr1[indx]) else: y_values_1_unassigned.append(i1) x_values_1_unassigned.append(window_start_arr1[indx]) i2 = 0 window_start_arr2 = df_2['window_start'] for name, values in df_2.iteritems(): if name != "chrom" and name != "window_start" and name != "window_end": i2 += 1 name = name[:-2] hap = bcs_hap_dict[name] for indx, window in values.iteritems(): if window != 0: if hap == 1: y_values_2_1.append(i2) x_values_2_1.append(window_start_arr2[indx]) elif hap == 2: y_values_2_2.append(i2) x_values_2_2.append(window_start_arr2[indx]) elif hap == 'unassigned': y_values_2_unassigned.append(i2) x_values_2_unassigned.append(window_start_arr2[indx]) fig = plt.figure() figL = fig.add_subplot(121) figL.scatter(x_values_1_1, y_values_1_1, s=0.2, color='b') #this doesn't seem to contain anything figL.scatter(x_values_1_2, y_values_1_2, s=0.2, color='r') #same figL.scatter(x_values_1_unassigned, y_values_1_unassigned, s=0.2, color='g') figL.set_title("") figL.set_xlabel("chr %d (Mb)" %chrom_1) figL.set_ylabel("SV-specific barcode") figR = fig.add_subplot(122) figR.scatter(x_values_2_1, y_values_2_1, s=0.2, color='b') #same figR.scatter(x_values_2_2, y_values_2_2, s=0.2, color='r') #same figR.scatter(x_values_2_unassigned, y_values_2_unassigned, s=0.2, color='g') figR.set_title("") figR.set_xlabel("chr %d (Mb)" %chrom_2) figR.set_ylabel("") brkpt1 = min(df_1['window_start']) + ((max(df_1['window_end']) - min(df_1['window_start']))/2) brkpt2 = min(df_2['window_start']) + ((max(df_2['window_end']) - min(df_2['window_start']))/2) figL.axvline(x=brkpt1, linewidth=1, color = 'black') figR.axvline(x=brkpt2, linewidth=1, color = 'black') path = outfolder + 'bcs_bkpt_map' plt.savefig(path)
[((4, 0, 4, 21), 'matplotlib.use', 'matplotlib.use', ({(4, 15, 4, 20): '"""Agg"""'}, {}), "('Agg')", False, 'import matplotlib\n'), ((26, 11, 26, 32), 'pandas.read_table', 'pd.read_table', ({(26, 25, 26, 31): 'file_1'}, {}), '(file_1)', True, 'import pandas as pd\n'), ((27, 11, 27, 32), 'pandas.read_table', 'pd.read_table', ({(27, 25, 27, 31): 'file_2'}, {}), '(file_2)', True, 'import pandas as pd\n'), ((28, 14, 28, 37), 'pandas.read_table', 'pd.read_table', ({(28, 28, 28, 36): 'file_hap'}, {}), '(file_hap)', True, 'import pandas as pd\n'), ((116, 10, 116, 22), 'matplotlib.pyplot.figure', 'plt.figure', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((140, 4, 140, 21), 'matplotlib.pyplot.savefig', 'plt.savefig', ({(140, 16, 140, 20): 'path'}, {}), '(path)', True, 'import matplotlib.pyplot as plt\n')]
ChidinmaKO/Chobe-bitesofpy
bites/bite029.py
2f933e6c8877a37d1ce7ef54ea22169fc67417d3
def get_index_different_char(chars): alnum = [] not_alnum = [] for index, char in enumerate(chars): if str(char).isalnum(): alnum.append(index) else: not_alnum.append(index) result = alnum[0] if len(alnum) < len(not_alnum) else not_alnum[0] return result # tests def test_wrong_char(): inputs = ( ['A', 'f', '.', 'Q', 2], ['.', '{', ' ^', '%', 'a'], [1, '=', 3, 4, 5, 'A', 'b', 'a', 'b', 'c'], ['=', '=', '', '/', '/', 9, ':', ';', '?', '¡'], list(range(1,9)) + ['}'] + list('abcde'), # noqa E231 ) expected = [2, 4, 1, 5, 8] for arg, exp in zip(inputs, expected): err = f'get_index_different_char({arg}) should return index {exp}' assert get_index_different_char(arg) == exp, err
[]
derlin/SwigSpot_Schwyzertuutsch-Spotting
language-detection-webapp/blueprints/langid.py
f38c8243ff34c6e512cadab5e4f51b08dacc16c6
import logging from flask import Blueprint from flask import Flask, render_template, request, flash from flask_wtf import FlaskForm from wtforms import StringField, validators, SelectField, BooleanField from wtforms.fields.html5 import IntegerRangeField from wtforms.widgets import TextArea import langid from utils.utils import templated blueprint_langid = Blueprint('langid', __name__) class UrlForm(FlaskForm): url = StringField( 'URL', validators=[validators.DataRequired(), validators.URL(message='Sorry, this is not a valid URL,')]) wMin = IntegerRangeField( 'Min. words', default=5, validators=[validators.DataRequired(), validators.NumberRange(min=1, max=20)]) extractor_class = SelectField( 'Extractor', default=langid.EXTRACTORS[0], choices=[(i, i) for i in langid.EXTRACTORS], validators=[validators.DataRequired()]) model_class = SelectField( 'Model', default=langid.MODELS[0], choices=[(i, i) for i in langid.MODELS], validators=[validators.DataRequired()]) return_raw = BooleanField( 'Display raw sentences', default=False ) class TextForm(FlaskForm): text = StringField( 'Text', widget=TextArea(), validators=[validators.DataRequired()]) model_class = SelectField( 'Model', default=langid.MODELS[0], choices=[(i, i) for i in langid.MODELS], validators=[validators.DataRequired()]) @blueprint_langid.route('/', methods=['GET', 'POST']) @templated('index.html') def crawl(): form = UrlForm(request.form) if request.method == 'GET': return dict(form=form) elif not form.validate(): for f, errs in form.errors.items(): flash("%s: %s" % (f, "<br>".join(errs)), 'danger') return dict(form=form) try: results = langid.mixed_sentences_from_urls( form.url.data.strip(), extractor_name=form.extractor_class.data, model=form.model_class.data, with_proba=True, min_words=form.wMin.data, return_raw=form.return_raw.data) except Exception as e: flash('Something went wrong %s' % e, 'danger') logging.exception(e) return dict(form=form) return dict(form=form, results=results, labels=langid.DEFAULT_LABELS) @blueprint_langid.route('/text', methods=['GET', 'POST']) @templated('langid.html') def predict_text(): form = TextForm(request.form) if request.method == 'GET': return dict(form=form) elif not form.validate(): for f, errs in form.errors.items(): flash("%s: %s" % (f, "<br>".join(errs)), 'danger') return dict(form=form) results = [[r] for r in langid.lang_of_text( form.text.data, model=form.model_class.data, with_proba=True)] return dict(form=form, results=results, labels=langid.DEFAULT_LABELS)
[((14, 19, 14, 48), 'flask.Blueprint', 'Blueprint', ({(14, 29, 14, 37): '"""langid"""', (14, 39, 14, 47): '__name__'}, {}), "('langid', __name__)", False, 'from flask import Blueprint\n'), ((60, 1, 60, 24), 'utils.utils.templated', 'templated', ({(60, 11, 60, 23): '"""index.html"""'}, {}), "('index.html')", False, 'from utils.utils import templated\n'), ((83, 1, 83, 25), 'utils.utils.templated', 'templated', ({(83, 11, 83, 24): '"""langid.html"""'}, {}), "('langid.html')", False, 'from utils.utils import templated\n'), ((39, 17, 42, 5), 'wtforms.BooleanField', 'BooleanField', (), '', False, 'from wtforms import StringField, validators, SelectField, BooleanField\n'), ((49, 15, 49, 25), 'wtforms.widgets.TextArea', 'TextArea', ({}, {}), '()', False, 'from wtforms.widgets import TextArea\n'), ((76, 8, 76, 54), 'flask.flash', 'flash', ({(76, 14, 76, 43): "('Something went wrong %s' % e)", (76, 45, 76, 53): '"""danger"""'}, {}), "('Something went wrong %s' % e, 'danger')", False, 'from flask import Flask, render_template, request, flash\n'), ((77, 8, 77, 28), 'logging.exception', 'logging.exception', ({(77, 26, 77, 27): 'e'}, {}), '(e)', False, 'import logging\n'), ((95, 28, 96, 69), 'langid.lang_of_text', 'langid.lang_of_text', (), '', False, 'import langid\n'), ((20, 20, 20, 45), 'wtforms.validators.DataRequired', 'validators.DataRequired', ({}, {}), '()', False, 'from wtforms import StringField, validators, SelectField, BooleanField\n'), ((20, 47, 20, 104), 'wtforms.validators.URL', 'validators.URL', (), '', False, 'from wtforms import StringField, validators, SelectField, BooleanField\n'), ((25, 20, 25, 45), 'wtforms.validators.DataRequired', 'validators.DataRequired', ({}, {}), '()', False, 'from wtforms import StringField, validators, SelectField, BooleanField\n'), ((25, 47, 25, 84), 'wtforms.validators.NumberRange', 'validators.NumberRange', (), '', False, 'from wtforms import StringField, validators, SelectField, BooleanField\n'), ((31, 20, 31, 45), 'wtforms.validators.DataRequired', 'validators.DataRequired', ({}, {}), '()', False, 'from wtforms import StringField, validators, SelectField, BooleanField\n'), ((37, 20, 37, 45), 'wtforms.validators.DataRequired', 'validators.DataRequired', ({}, {}), '()', False, 'from wtforms import StringField, validators, SelectField, BooleanField\n'), ((50, 20, 50, 45), 'wtforms.validators.DataRequired', 'validators.DataRequired', ({}, {}), '()', False, 'from wtforms import StringField, validators, SelectField, BooleanField\n'), ((56, 20, 56, 45), 'wtforms.validators.DataRequired', 'validators.DataRequired', ({}, {}), '()', False, 'from wtforms import StringField, validators, SelectField, BooleanField\n')]
kehw/spack
var/spack/repos/builtin/packages/r-xts/package.py
4f49b1a9301447a8cf880c99820cad65e5c2d7e3
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RXts(RPackage): """Provide for uniform handling of R's different time-based data classes by extending zoo, maximizing native format information preservation and allowing for user level customization and extension, while simplifying cross-class interoperability.""" homepage = "http://r-forge.r-project.org/projects/xts/" url = "https://cloud.r-project.org/src/contrib/xts_0.11-2.tar.gz" list_url = "https://cloud.r-project.org/src/contrib/Archive/xts" version('0.11-2', sha256='12772f6a66aab5b84b0665c470f11a3d8d8a992955c027261cfe8e6077ee13b8') version('0.9-7', sha256='f11f7cb98f4b92b7f6632a2151257914130880c267736ef5a264b5dc2dfb7098') depends_on('[email protected]:', type=('build', 'run'))
[]
threefoldtech/threebot_prebuilt
sandbox/lib/jumpscale/Jumpscale/core/BASECLASSES/JSConfigsBCDB.py
1f0e1c65c14cef079cd80f73927d7c8318755c48
# Copyright (C) July 2018: TF TECH NV in Belgium see https://www.threefold.tech/ # In case TF TECH NV ceases to exist (e.g. because of bankruptcy) # then Incubaid NV also in Belgium will get the Copyright & Authorship for all changes made since July 2018 # and the license will automatically become Apache v2 for all code related to Jumpscale & DigitalMe # This file is part of jumpscale at <https://github.com/threefoldtech>. # jumpscale is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # jumpscale is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License v3 for more details. # # You should have received a copy of the GNU General Public License # along with jumpscale or jumpscale derived works. If not, see <http://www.gnu.org/licenses/>. # LICENSE END from Jumpscale import j from .JSConfigBCDBBase import JSConfigBCDBBase class JSConfigsBCDB(JSConfigBCDBBase): def _childclass_selector(self, jsxobject, **kwargs): """ allow custom implementation of which child class to use :return: """ return self.__class__._CHILDCLASS def new(self, name, jsxobject=None, autosave=True, **kwargs): """ it it exists will delete if first when delete == True :param name: :param jsxobject: :param autosave: sets the autosave argument on the data and also saves the object before the function returns. If set to False, you need to explicitly save the object. :param kwargs: :return: """ if self.exists(name=name): raise j.exceptions.Base("cannot do new object, exists") jsconfig = self._new(name=name, jsxobject=jsxobject, autosave=autosave, **kwargs) self._check(jsconfig) return jsconfig def _check_children(self): if not self._cache_use: assert self._children == {} def _check(self, jsconfig): if jsconfig._id is None: # model has never been saved no check required yet return # lets do some tests (maybe in future can be removed, but for now the safe bet) assert jsconfig._id > 0 mother_id = jsconfig._mother_id_get() if mother_id: assert jsconfig.mother_id == mother_id assert jsconfig._model.schema._md5 == self._model.schema._md5 def _new(self, name, jsxobject=None, autosave=True, **kwargs): """ :param name: for the CONFIG item (is a unique name for the service, client, ...) :param jsxobject: you can right away specify the jsxobject :param kwargs: the data elements which will be given to JSXObject underneith (given to constructor) :return: the service """ kwargs_to_class = {} if not jsxobject: if kwargs: kwargs_to_obj_new = {} props = [i.name for i in self._model.schema.properties] for key, val in kwargs.items(): if key in props: kwargs_to_obj_new[key] = val else: kwargs_to_class[key] = val jsxobject = self._model.new(data=kwargs_to_obj_new) else: jsxobject = self._model.new() jsxobject.name = name # means we need to remember the parent id mother_id = self._mother_id_get() if mother_id: if jsxobject.mother_id != mother_id: jsxobject.mother_id = mother_id jsconfig_klass = self._childclass_selector(jsxobject=jsxobject) jsconfig = jsconfig_klass(parent=self, jsxobject=jsxobject, **kwargs_to_class) jsconfig._triggers_call(jsconfig, "new") jsconfig._autosave = autosave self._children[name] = jsconfig if autosave: self._children[name].save() jsxobject._autosave = autosave return self._children[name] def get(self, name="main", id=None, needexist=False, autosave=True, reload=False, **kwargs): """ :param name: of the object """ # will reload if needed (not in self._children) rc, jsconfig = self._get(name=name, id=id, die=needexist, reload=reload) if not jsconfig: self._log_debug("NEW OBJ:%s:%s" % (name, self._classname)) jsconfig = self._new(name=name, autosave=autosave, **kwargs) else: # check that the stored values correspond with kwargs given # means comes from the database if not jsconfig._data._model.schema._md5 == jsconfig._model.schema._md5: # means data came from DB and schema is not same as config mgmt class j.shell() changed = False jsconfig._data._autosave = False for key, val in kwargs.items(): if not getattr(jsconfig, key) == val: changed = True setattr(jsconfig, key, val) if changed and autosave: try: jsconfig.save() except Exception as e: print("CHECK WHY ERROR") j.shell() jsconfig._autosave = autosave # lets do some tests (maybe in future can be removed, but for now the safe bet) self._check(jsconfig) jsconfig._triggers_call(jsconfig, "get") return jsconfig def _get(self, name="main", id=None, die=True, reload=False, autosave=True): if id: obj = self._model.get(id) name = obj.name return 1, self._new(name, obj) obj = self._validate_child(name) if obj: if reload: obj.load() return 1, obj self._log_debug("get child:'%s'from '%s'" % (name, self._classname)) # new = False res = self.find(name=name) if len(res) < 1: if not die: return 3, None raise j.exceptions.Base( "Did not find instance for:%s, name searched for:%s" % (self.__class__._location, name) ) elif len(res) > 1: raise j.exceptions.Base( "Found more than 1 service for :%s, name searched for:%s" % (self.__class__._location, name) ) else: jsxconfig = res[0] jsxconfig._autosave = autosave return 2, jsxconfig def reset(self): """ will destroy all data in the DB, be carefull :return: """ self._log_debug("reset all data") for item in self.find(): try: item.delete() except Exception as e: j.shell() if not self._mother_id_get(): self._model.index.destroy() def _children_names_get(self, filter=None): condition = False Item = self._model.index.sql mother_id = self._mother_id_get() if mother_id: condition = Item.mother_id == mother_id if filter and filter != "*": condition = Item.name.startswith(filter) and condition if condition else Item.name.startswith(filter) if condition: res = [i.name for i in Item.select().where(condition)] else: res = [i.name for i in Item.select()] if len(res) > 50: return [] return res def find(self, reload=False, **kwargs): """ :param kwargs: e.g. color="red",... :return: list of the config objects """ res = [] ids_done = [] for key, item in list(self._children.items()): match = True for key, val in kwargs.items(): if item._hasattr(key): if val != getattr(item, key): match = False else: match = False if match: if reload: item.load() res.append(item) if item.id not in ids_done: ids_done.append(item.id) kwargs = self._kwargs_update(kwargs) # this is more efficient no need to go to backend stor if the objects are already in mem ids = self._model.find_ids(**kwargs) for id in ids: if id not in ids_done: item = self.get(id=id, reload=reload, autosave=False) res.append(item) return res def _kwargs_update(self, kwargs): mother_id = self._mother_id_get() if mother_id: kwargs["mother_id"] = mother_id return kwargs def count(self, **kwargs): """ :param kwargs: e.g. color="red",... :return: list of the config objects """ kwargs = self._kwargs_update(kwargs) # TODO do proper count query return len(list(self._model.find_ids(**kwargs))) def _findData(self, **kwargs): """ :param kwargs: e.g. color="red",... :return: list of the data objects (the data of the model) """ kwargs = self._kwargs_update(kwargs) return self._model.find(**kwargs) def save(self): for item in self._children_get(): if item._hasattr("save"): item.save() def delete(self, name=None): """ :param name: :return: """ self._delete(name=name) def _delete(self, name=None): if name: _, child = self._get(name=name, die=False) if child: return child.delete() else: return self.reset() if not name and self._parent: if self._classname in self._parent._children: if not isinstance(self._parent, j.baseclasses.factory): # only delete when not a factory means is a custom class we're building del self._parent._children[self._data.name] def exists(self, name="main"): """ :param name: of the object """ obj = self._validate_child(name) if obj: return True # will only use the index return self.count(name=name) == 1 def _children_get(self, filter=None): """ :param filter: is '' then will show all, if None will ignore _ when * at end it will be considered a prefix when * at start it will be considered a end of line filter (endswith) when R as first char its considered to be a regex everything else is a full match :return: """ # TODO implement filter properly x = [] for _, item in self._children.items(): x.append(item) x = self._filter(filter=filter, llist=x, nameonly=False) # be smarter in how we use the index for item in self.find(): if item not in x: x.append(item) return x def __str__(self): return "jsxconfigobj:collection:%s" % self._model.schema.url
[((43, 18, 43, 67), 'Jumpscale.j.exceptions.Base', 'j.exceptions.Base', ({(43, 36, 43, 66): '"""cannot do new object, exists"""'}, {}), "('cannot do new object, exists')", False, 'from Jumpscale import j\n'), ((163, 18, 165, 13), 'Jumpscale.j.exceptions.Base', 'j.exceptions.Base', ({(164, 16, 164, 103): "('Did not find instance for:%s, name searched for:%s' % (self.__class__.\n _location, name))"}, {}), "('Did not find instance for:%s, name searched for:%s' % (\n self.__class__._location, name))", False, 'from Jumpscale import j\n'), ((119, 16, 119, 25), 'Jumpscale.j.shell', 'j.shell', ({}, {}), '()', False, 'from Jumpscale import j\n'), ((168, 18, 170, 13), 'Jumpscale.j.exceptions.Base', 'j.exceptions.Base', ({(169, 16, 169, 108): "('Found more than 1 service for :%s, name searched for:%s' % (self.\n __class__._location, name))"}, {}), "('Found more than 1 service for :%s, name searched for:%s' %\n (self.__class__._location, name))", False, 'from Jumpscale import j\n'), ((188, 16, 188, 25), 'Jumpscale.j.shell', 'j.shell', ({}, {}), '()', False, 'from Jumpscale import j\n'), ((131, 20, 131, 29), 'Jumpscale.j.shell', 'j.shell', ({}, {}), '()', False, 'from Jumpscale import j\n')]
holderekt/regression-tree
source/tree.py
130fe07262faea8681159092718310d9aefe9889
import utils as utl import error_measures as err # Regression Tree Node class Node: def __init__(self, parent, node_id, index=None, value=None, examples=None, prediction=0): self.index = index self.id = node_id self.prediction = prediction self.value = value self.parent = parent self.examples = examples self.right = None self.left = None self.ssr = 0 self.leaves = 0 self.ssr_as_root = 0 def is_leaf(self): if(self.right == None and self.left == None): return True return False def leafs_id(self): if(not self.is_leaf()): return self._leafs_search(self.left) + self._leafs_search(self.right) return [1] def n_leafs(self): return len(self.leafs_id()) def _leafs_search(self, node): if node.is_leaf(): return [node.id] return self._leafs_search(node.left) + self._leafs_search(node.right) def __str__(self): return str(self.id) # Regression Tree class Regression_Tree: def __init__(self, y_train, root): self.y = y_train self.root = root # Generate Prediction given a test example def predict(self, example, deleted=[]): current_node = self.root while(not current_node.is_leaf() and ((current_node in deleted) == False)): if(example[current_node.index] <= current_node.value): current_node = current_node.left else: current_node = current_node.right return current_node.prediction # Generate Sum Square Residuals of a given node on training data def node_ssr(self, node): ssr = 0 for example in node.examples: ssr = ssr + pow((self.y[example] - node.prediction) , 2) return ssr def leafs_id(self): return self.root.leafs_id() def n_leafs(self): return len(self.leafs_id()) def __str__(self): return self._print(self.root) def print_leaf(self, node): if(node.is_leaf()): print(len(node.examples)) else: self.print_leaf(node.left) self.print_leaf(node.right) def _print(self, node): node_id = str(node.id) r_string = node_id + " " + str(node.ssr) if(not node.is_leaf()): r_string = r_string + "\nLeft : " + node_id + "\n" + self._print(node.left) r_string = r_string + "\nRight: " + node_id + "\n" + self._print(node.right) return r_string
[]
ninaamorim/sentiment-analysis-2018-president-election
src/site/config.py
a5c12f1b659186edbc2dfa916bc82a2cfa2dd67f
from starlette.applications import Starlette from starlette.middleware.gzip import GZipMiddleware from starlette.middleware.cors import CORSMiddleware from starlette.staticfiles import StaticFiles app = Starlette(debug=False, template_directory='src/site/templates') app.add_middleware(GZipMiddleware, minimum_size=500) app.add_middleware(CORSMiddleware, allow_origins=['*']) app.mount('/static', StaticFiles(directory='src/site/media'), name='static')
[((6, 6, 6, 69), 'starlette.applications.Starlette', 'Starlette', (), '', False, 'from starlette.applications import Starlette\n'), ((9, 21, 9, 60), 'starlette.staticfiles.StaticFiles', 'StaticFiles', (), '', False, 'from starlette.staticfiles import StaticFiles\n')]
fqzhou/LoadBalanceControl-RL
loadbalanceRL/lib/__init__.py
689eec3b3b27e121aa45d2793e411f1863f6fc0b
#! /usr/bin/env python3 # -*- coding: utf-8 -*- """ Contains core logic for Rainman2 """ __author__ = 'Ari Saha ([email protected]), Mingyang Liu([email protected])' __date__ = 'Wednesday, February 14th 2018, 11:42:09 am'
[]
openforcefield/bespoke-f
openff/bespokefit/__init__.py
27b072bd09610dc8209429118d739e1f453edd61
""" BespokeFit Creating bespoke parameters for individual molecules. """ import logging import sys from ._version import get_versions versions = get_versions() __version__ = versions["version"] __git_revision__ = versions["full-revisionid"] del get_versions, versions # Silence verbose messages when running the CLI otherwise you can't read the output # without seeing tens of 'Unable to load AmberTools' or don't import simtk warnings... if sys.argv[0].endswith("openff-bespoke"): from openff.bespokefit.utilities.logging import DeprecationWarningFilter # if "openff-bespoke" logging.getLogger("openff.toolkit").setLevel(logging.ERROR) logging.getLogger().addFilter(DeprecationWarningFilter())
[((24, 34, 24, 60), 'openff.bespokefit.utilities.logging.DeprecationWarningFilter', 'DeprecationWarningFilter', ({}, {}), '()', False, 'from openff.bespokefit.utilities.logging import DeprecationWarningFilter\n'), ((23, 4, 23, 39), 'logging.getLogger', 'logging.getLogger', ({(23, 22, 23, 38): '"""openff.toolkit"""'}, {}), "('openff.toolkit')", False, 'import logging\n'), ((24, 4, 24, 23), 'logging.getLogger', 'logging.getLogger', ({}, {}), '()', False, 'import logging\n')]
greenwoodms/TRANSFORM-Library
TRANSFORM/Resources/python/2006LUT_to_SDF.py
dc152d4f0298d3f18385f2ea33645d87d7812915
# -*- coding: utf-8 -*- """ Created on Tue Apr 03 11:06:37 2018 @author: vmg """ import sdf import numpy as np # Load 2006 LUT for interpolation # 2006 Groeneveld Look-Up Table as presented in # "2006 CHF Look-Up Table", Nuclear Engineering and Design 237, pp. 190-1922. # This file requires the file 2006LUTdata.txt # Pressure range [MPa] from 2006 LUT, convert to [Pa] P = np.array((0.10,0.30,0.50,1.0,2.0,3.0,5.0,7.0,10.0,12.0,14.0,16.0,18.0,20.0,21.0))*1e6 # Mass Flux range [kg/m^2-s] from 2006 .LUT. G = np.array((0.,50.,100.,300.,500.,750.,1000.,1500.,2000.,2500.,3000.,3500.,4000.,4500.,5000.,5500.,6000.,6500.,7000.,7500.,8000.)) # Quality range from 2006 LUT x = np.array((-0.50,-0.40,-0.30,-0.20,-0.15,-0.10,-0.05,0.00,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.60,0.70,0.80,0.90,1.00)) # Critical heat flux [kW/m^2] from 2006 LUT, convert to [W/m^2] q_raw=np.loadtxt('../Data/2006LUTdata.txt')*1e3 # Convert the imported array into a (MxNxQ) where: # M is number of mass flux divisions # N is number of quality divisions # Q is number of pressure divisions lenG = len(G) lenx = len(x) lenP = len(P) q = np.zeros((lenG,lenx,lenP)) for i in xrange(lenG): for j in xrange(lenx): for k in xrange(lenP): q[i,j,k] = q_raw[i + k*lenG,j] # Create the datasets: ds_G = sdf.Dataset('G', data=G, unit='kg/(m2.s)', is_scale=True, display_name='Mass Flux') ds_x = sdf.Dataset('x', data=x, unit='1', is_scale=True, display_name='Quality') ds_P = sdf.Dataset('P', data=P, unit='Pa', is_scale=True, display_name='Pressure') ds_q = sdf.Dataset('q', data=q, unit='W/m2', scales=[ds_G,ds_x,ds_P]) # Create the root group and write the file: g = sdf.Group('/', comment='2006 CHF LUT', datasets=[ds_G,ds_x,ds_P,ds_q]) sdf.save('../Data/2006LUT.sdf', g)
[((21, 4, 21, 132), 'numpy.array', 'np.array', ({(21, 13, 21, 131): '(0.0, 50.0, 100.0, 300.0, 500.0, 750.0, 1000.0, 1500.0, 2000.0, 2500.0, \n 3000.0, 3500.0, 4000.0, 4500.0, 5000.0, 5500.0, 6000.0, 6500.0, 7000.0,\n 7500.0, 8000.0)'}, {}), '((0.0, 50.0, 100.0, 300.0, 500.0, 750.0, 1000.0, 1500.0, 2000.0, \n 2500.0, 3000.0, 3500.0, 4000.0, 4500.0, 5000.0, 5500.0, 6000.0, 6500.0,\n 7000.0, 7500.0, 8000.0))', True, 'import numpy as np\n'), ((24, 4, 24, 137), 'numpy.array', 'np.array', ({(24, 13, 24, 136): '(-0.5, -0.4, -0.3, -0.2, -0.15, -0.1, -0.05, 0.0, 0.05, 0.1, 0.15, 0.2, \n 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)'}, {}), '((-0.5, -0.4, -0.3, -0.2, -0.15, -0.1, -0.05, 0.0, 0.05, 0.1, 0.15,\n 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0))', True, 'import numpy as np\n'), ((36, 4, 36, 30), 'numpy.zeros', 'np.zeros', ({(36, 13, 36, 29): '(lenG, lenx, lenP)'}, {}), '((lenG, lenx, lenP))', True, 'import numpy as np\n'), ((43, 7, 43, 90), 'sdf.Dataset', 'sdf.Dataset', (), '', False, 'import sdf\n'), ((44, 7, 44, 80), 'sdf.Dataset', 'sdf.Dataset', (), '', False, 'import sdf\n'), ((45, 7, 45, 82), 'sdf.Dataset', 'sdf.Dataset', (), '', False, 'import sdf\n'), ((46, 7, 46, 69), 'sdf.Dataset', 'sdf.Dataset', (), '', False, 'import sdf\n'), ((49, 4, 49, 74), 'sdf.Group', 'sdf.Group', (), '', False, 'import sdf\n'), ((50, 0, 50, 34), 'sdf.save', 'sdf.save', ({(50, 9, 50, 30): '"""../Data/2006LUT.sdf"""', (50, 32, 50, 33): 'g'}, {}), "('../Data/2006LUT.sdf', g)", False, 'import sdf\n'), ((18, 4, 18, 85), 'numpy.array', 'np.array', ({(18, 13, 18, 84): '(0.1, 0.3, 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0,\n 21.0)'}, {}), '((0.1, 0.3, 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, 10.0, 12.0, 14.0, 16.0, \n 18.0, 20.0, 21.0))', True, 'import numpy as np\n'), ((27, 6, 27, 43), 'numpy.loadtxt', 'np.loadtxt', ({(27, 17, 27, 42): '"""../Data/2006LUTdata.txt"""'}, {}), "('../Data/2006LUTdata.txt')", True, 'import numpy as np\n')]
tmsanrinsha/vint
test/asserting/policy.py
8c34196252b43d7361d0f58cb78cf2d3e4e4fbd0
import unittest from pathlib import Path from pprint import pprint from vint.compat.itertools import zip_longest from vint.linting.linter import Linter from vint.linting.config.config_default_source import ConfigDefaultSource class PolicyAssertion(unittest.TestCase): class StubPolicySet(object): def __init__(self, *policies): self._policies = policies def get_enabled_policies(self): return self._policies def update_by_config(self, policy_enabling_map): pass class StubConfigContainer(object): def __init__(self, policy_names_to_enable): default_config_dict = ConfigDefaultSource(None).get_config_dict() policy_options = default_config_dict.get('policies', {}) for policy, options in policy_options.items(): options['enabled'] = False for policy in policy_names_to_enable: options = policy_options.setdefault(policy, {}) options['enabled'] = True self._config_dict = { 'policies': policy_options, } def append_config_source(self, config_source): # Ignore a comment config source pass def get_config_dict(self): return self._config_dict def assertFoundNoViolations(self, path, Policy, policy_options=None): self.assertFoundViolationsEqual(path, Policy, [], policy_options) def assertFoundViolationsEqual(self, path, Policy, expected_violations, policy_options=None): policy_to_test = Policy() policy_name = Policy.__name__ policy_set = PolicyAssertion.StubPolicySet(policy_to_test) config = PolicyAssertion.StubConfigContainer(policy_name) if policy_options is not None: config.get_config_dict()['policies'][policy_name].update(policy_options) linter = Linter(policy_set, config.get_config_dict()) violations = linter.lint_file(path) pprint(violations) assert len(violations) == len(expected_violations) for violation, expected_violation in zip_longest(violations, expected_violations): self.assertViolation(violation, expected_violation) def assertViolation(self, actual_violation, expected_violation): self.assertIsNot(actual_violation, None) self.assertIsNot(expected_violation, None) pprint(actual_violation) assert actual_violation['name'] == expected_violation['name'] assert actual_violation['position'] == expected_violation['position'] assert actual_violation['level'] == expected_violation['level'] self.assertIsInstance(actual_violation['description'], str) def get_fixture_path(*filename): return Path('test', 'fixture', 'policy', *filename)
[((88, 11, 88, 55), 'pathlib.Path', 'Path', ({(88, 16, 88, 22): '"""test"""', (88, 24, 88, 33): '"""fixture"""', (88, 35, 88, 43): '"""policy"""', (88, 45, 88, 54): '*filename'}, {}), "('test', 'fixture', 'policy', *filename)", False, 'from pathlib import Path\n'), ((67, 8, 67, 26), 'pprint.pprint', 'pprint', ({(67, 15, 67, 25): 'violations'}, {}), '(violations)', False, 'from pprint import pprint\n'), ((70, 45, 70, 89), 'vint.compat.itertools.zip_longest', 'zip_longest', ({(70, 57, 70, 67): 'violations', (70, 69, 70, 88): 'expected_violations'}, {}), '(violations, expected_violations)', False, 'from vint.compat.itertools import zip_longest\n'), ((78, 8, 78, 32), 'pprint.pprint', 'pprint', ({(78, 15, 78, 31): 'actual_violation'}, {}), '(actual_violation)', False, 'from pprint import pprint\n'), ((26, 34, 26, 59), 'vint.linting.config.config_default_source.ConfigDefaultSource', 'ConfigDefaultSource', ({(26, 54, 26, 58): 'None'}, {}), '(None)', False, 'from vint.linting.config.config_default_source import ConfigDefaultSource\n')]
gliptak/DataProfiler
dataprofiler/labelers/character_level_cnn_model.py
37ffbf43652246ef27e070df7ff0d9f1b9529162
import copy import json import logging import os import sys import time from collections import defaultdict import numpy as np import tensorflow as tf from sklearn import decomposition from .. import dp_logging from . import labeler_utils from .base_model import AutoSubRegistrationMeta, BaseModel, BaseTrainableModel _file_dir = os.path.dirname(os.path.abspath(__file__)) logger = dp_logging.get_child_logger(__name__) class NoV1ResourceMessageFilter(logging.Filter): """Removes TF2 warning for using TF1 model which has resources.""" def filter(self, record): msg = 'is a problem, consider rebuilding the SavedModel after ' + \ 'running tf.compat.v1.enable_resource_variables()' return msg not in record.getMessage() tf_logger = logging.getLogger('tensorflow') tf_logger.addFilter(NoV1ResourceMessageFilter()) @tf.keras.utils.register_keras_serializable() class FBetaScore(tf.keras.metrics.Metric): r"""Computes F-Beta score. Adapted and slightly modified from https://github.com/tensorflow/addons/blob/v0.12.0/tensorflow_addons/metrics/f_scores.py#L211-L283 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # https://github.com/tensorflow/addons/blob/v0.12.0/LICENSE # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== It is the weighted harmonic mean of precision and recall. Output range is `[0, 1]`. Works for both multi-class and multi-label classification. $$ F_{\beta} = (1 + \beta^2) * \frac{\textrm{precision} * \textrm{precision}}{(\beta^2 \cdot \textrm{precision}) + \textrm{recall}} $$ Args: num_classes: Number of unique classes in the dataset. average: Type of averaging to be performed on data. Acceptable values are `None`, `micro`, `macro` and `weighted`. Default value is None. beta: Determines the weight of precision and recall in harmonic mean. Determines the weight given to the precision and recall. Default value is 1. threshold: Elements of `y_pred` greater than threshold are converted to be 1, and the rest 0. If threshold is None, the argmax is converted to 1, and the rest 0. name: (Optional) String name of the metric instance. dtype: (Optional) Data type of the metric result. Returns: F-Beta Score: float. """ # Modification: remove the run-time type checking for functions def __init__(self, num_classes, average=None, beta=1.0, threshold=None, name="fbeta_score", dtype=None, **kwargs): super().__init__(name=name, dtype=dtype) if average not in (None, "micro", "macro", "weighted"): raise ValueError( "Unknown average type. Acceptable values " "are: [None, 'micro', 'macro', 'weighted']" ) if not isinstance(beta, float): raise TypeError("The value of beta should be a python float") if beta <= 0.0: raise ValueError("beta value should be greater than zero") if threshold is not None: if not isinstance(threshold, float): raise TypeError("The value of threshold should be a python float") if threshold > 1.0 or threshold <= 0.0: raise ValueError("threshold should be between 0 and 1") self.num_classes = num_classes self.average = average self.beta = beta self.threshold = threshold self.axis = None self.init_shape = [] if self.average != "micro": self.axis = 0 self.init_shape = [self.num_classes] def _zero_wt_init(name): return self.add_weight( name, shape=self.init_shape, initializer="zeros", dtype=self.dtype ) self.true_positives = _zero_wt_init("true_positives") self.false_positives = _zero_wt_init("false_positives") self.false_negatives = _zero_wt_init("false_negatives") self.weights_intermediate = _zero_wt_init("weights_intermediate") def update_state(self, y_true, y_pred, sample_weight=None): if self.threshold is None: threshold = tf.reduce_max(y_pred, axis=-1, keepdims=True) # make sure [0, 0, 0] doesn't become [1, 1, 1] # Use abs(x) > eps, instead of x != 0 to check for zero y_pred = tf.logical_and(y_pred >= threshold, tf.abs(y_pred) > 1e-12) else: y_pred = y_pred > self.threshold y_true = tf.cast(y_true, self.dtype) y_pred = tf.cast(y_pred, self.dtype) def _weighted_sum(val, sample_weight): if sample_weight is not None: val = tf.math.multiply(val, tf.expand_dims(sample_weight, 1)) return tf.reduce_sum(val, axis=self.axis) self.true_positives.assign_add(_weighted_sum(y_pred * y_true, sample_weight)) self.false_positives.assign_add( _weighted_sum(y_pred * (1 - y_true), sample_weight) ) self.false_negatives.assign_add( _weighted_sum((1 - y_pred) * y_true, sample_weight) ) self.weights_intermediate.assign_add(_weighted_sum(y_true, sample_weight)) def result(self): precision = tf.math.divide_no_nan( self.true_positives, self.true_positives + self.false_positives ) recall = tf.math.divide_no_nan( self.true_positives, self.true_positives + self.false_negatives ) mul_value = precision * recall add_value = (tf.math.square(self.beta) * precision) + recall mean = tf.math.divide_no_nan(mul_value, add_value) f1_score = mean * (1 + tf.math.square(self.beta)) if self.average == "weighted": weights = tf.math.divide_no_nan( self.weights_intermediate, tf.reduce_sum(self.weights_intermediate) ) f1_score = tf.reduce_sum(f1_score * weights) elif self.average is not None: # [micro, macro] f1_score = tf.reduce_mean(f1_score) return f1_score def get_config(self): """Returns the serializable config of the metric.""" config = { "num_classes": self.num_classes, "average": self.average, "beta": self.beta, "threshold": self.threshold, } base_config = super().get_config() return {**base_config, **config} def reset_states(self): reset_value = tf.zeros(self.init_shape, dtype=self.dtype) tf.keras.backend.batch_set_value([(v, reset_value) for v in self.variables]) @tf.keras.utils.register_keras_serializable() class F1Score(FBetaScore): r"""Computes F-1 Score. # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # https://github.com/tensorflow/addons/blob/v0.12.0/LICENSE # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== It is the harmonic mean of precision and recall. Output range is `[0, 1]`. Works for both multi-class and multi-label classification. $$ F_1 = 2 \cdot \frac{\textrm{precision} \cdot \textrm{recall}}{\textrm{precision} + \textrm{recall}} $$ Args: num_classes: Number of unique classes in the dataset. average: Type of averaging to be performed on data. Acceptable values are `None`, `micro`, `macro` and `weighted`. Default value is None. threshold: Elements of `y_pred` above threshold are considered to be 1, and the rest 0. If threshold is None, the argmax is converted to 1, and the rest 0. name: (Optional) String name of the metric instance. dtype: (Optional) Data type of the metric result. Returns: F-1 Score: float. """ # Modification: remove the run-time type checking for functions def __init__(self, num_classes, average=None, threshold=None, name="f1_score", dtype=None): super().__init__(num_classes, average, 1.0, threshold, name=name, dtype=dtype) def get_config(self): base_config = super().get_config() del base_config["beta"] return base_config def build_embd_dictionary(filename): """ Returns a numpy embedding dictionary from embed file with GloVe-like format :param filename: Path to the embed file for loading :type filename: str """ embd_table = dict() with open(filename, 'r') as embds: for line in embds: line = line.strip().split() embd_table[line[0]] = np.asarray(line[1:]) return embd_table def create_glove_char(n_dims, source_file=None): """ Embeds GloVe chars embeddings from source file to n_dims principal components in a new file :param n_dims: Final number of principal component dims of the embeddings :type n_dims: int :param source_file: Location of original embeddings to factor down :type source_file: str """ if source_file is None: source_file = os.path.join(_file_dir, "embeddings/glove.840B.300d-char.txt") # get embedding table first and vectors as array embd_table = build_embd_dictionary(source_file) embd_words, embd_matrix = [ np.asarray(ls) if i > 0 else list(ls) for i, ls in enumerate(zip(*embd_table.items()))] # get PCA embedder pca = decomposition.PCA(n_components=n_dims) reduced_embds = pca.fit_transform(embd_matrix) # write to file dir_name = os.path.dirname(source_file) embd_file_name = os.path.join(dir_name, 'glove-reduced-{}D.txt'.format(n_dims)) with open(embd_file_name, 'w') as file: for word, embd in zip(embd_words, reduced_embds): file.write(word + " " + ' '.join(str(num) for num in embd) + "\n") class CharacterLevelCnnModel(BaseTrainableModel, metaclass=AutoSubRegistrationMeta): # boolean if the label mapping requires the mapping for index 0 reserved requires_zero_mapping = True def __init__(self, label_mapping=None, parameters=None): """ CNN Model Initializer. initialize epoch_id :param label_mapping: maps labels to their encoded integers :type label_mapping: dict :param parameters: Contains all the appropriate parameters for the model. Must contain num_labels. Other possible parameters are: max_length, max_char_encoding_id, dim_embed, size_fc dropout, size_conv, num_fil, optimizer, default_label :type parameters: dict :return: None """ # parameter initialization if not parameters: parameters = {} parameters.setdefault('max_length', 3400) parameters.setdefault('max_char_encoding_id', 127) parameters.setdefault('dim_embed', 64) parameters.setdefault('size_fc', [96, 96]) parameters.setdefault('dropout', 0.073) parameters.setdefault('size_conv', 13) parameters.setdefault('default_label', "UNKNOWN") parameters.setdefault('num_fil', [48 for _ in range(4)]) parameters['pad_label'] = 'PAD' self._epoch_id = 0 # reconstruct flags for model self._model_num_labels = 0 self._model_default_ind = -1 BaseModel.__init__(self, label_mapping, parameters) def __eq__(self, other): """ Checks if two models are equal with one another, may only check important variables, i.e. may not check model itself. :param self: a model :param other: a model :type self: BaseModel :type other: BaseModel :return: Whether or not self and other are equal :rtype: bool """ if self._parameters != other._parameters \ or self._label_mapping != other._label_mapping: return False return True def _validate_parameters(self, parameters): """ Validate the parameters sent in. Raise error if invalid parameters are present. :param parameters: parameter dict containing the following parameters: max_length: Maximum char length in a sample max_char_encoding_id: Maximum integer value for encoding the input dim_embed: Number of embedded dimensions size_fc: Size of each fully connected layers dropout: Ratio of dropout in the model size_conv: Convolution kernel size default_label: Key for label_mapping that is the default label pad_label: Key for entities_dict that is the pad label num_fil: Number of filters in each convolution layer :type parameters: dict :return: None """ errors = [] list_of_necessary_params = ['max_length', 'max_char_encoding_id', 'dim_embed', 'size_fc', 'dropout', 'size_conv', 'default_label', 'pad_label', 'num_fil'] # Make sure the necessary parameters are present and valid. for param in parameters: if param in ['max_length', 'max_char_encoding_id', 'dim_embed', 'size_conv']: if not isinstance(parameters[param], (int, float)) \ or parameters[param] < 0: errors.append(param + " must be a valid integer or float " "greater than 0.") elif param == 'dropout': if not isinstance(parameters[param], (int, float)) \ or parameters[param] < 0 or parameters[param] > 1: errors.append(param + " must be a valid integer or float " "from 0 to 1.") elif param == 'size_fc' or param == 'num_fil': if not isinstance(parameters[param], list) \ or len(parameters[param]) == 0: errors.append(param + " must be a non-empty list of " "integers.") else: for item in parameters[param]: if not isinstance(item, int): errors.append(param + " must be a non-empty " "list of integers.") break elif param == 'default_label': if not isinstance(parameters[param], str): error = str(param) + " must be a string." errors.append(error) # Error if there are extra parameters thrown in for param in parameters: if param not in list_of_necessary_params: errors.append(param + " is not an accepted parameter.") if errors: raise ValueError('\n'.join(errors)) def set_label_mapping(self, label_mapping): """ Sets the labels for the model :param label_mapping: label mapping of the model :type label_mapping: dict :return: None """ if not isinstance(label_mapping, (list, dict)): raise TypeError("Labels must either be a non-empty encoding dict " "which maps labels to index encodings or a list.") label_mapping = copy.deepcopy(label_mapping) if 'PAD' not in label_mapping: if isinstance(label_mapping, list): # if list missing PAD label_mapping = ['PAD'] + label_mapping elif 0 not in label_mapping.values(): # if dict missing PAD and 0 label_mapping.update({'PAD': 0}) if (isinstance(label_mapping, dict) and label_mapping.get('PAD', None) != 0): # dict with bad PAD raise ValueError("`PAD` must map to index zero.") if self._parameters['default_label'] not in label_mapping: raise ValueError("The `default_label` of {} must exist in the " "label mapping.".format( self._parameters['default_label'])) super().set_label_mapping(label_mapping) def _need_to_reconstruct_model(self): """ Determines whether or not the model needs to be reconstructed. :return: bool of whether or not the model needs to reconstruct. """ if not self._model: return False default_ind = self.label_mapping[self._parameters['default_label']] return self.num_labels != self._model_num_labels or \ default_ind != self._model_default_ind def save_to_disk(self, dirpath): """ Saves whole model to disk with weights :param dirpath: directory path where you want to save the model to :type dirpath: str :return: None """ if not self._model: self._construct_model() elif self._need_to_reconstruct_model(): self._reconstruct_model() model_param_dirpath = os.path.join(dirpath, "model_parameters.json") with open(model_param_dirpath, 'w') as fp: json.dump(self._parameters, fp) labels_dirpath = os.path.join(dirpath, "label_mapping.json") with open(labels_dirpath, 'w') as fp: json.dump(self.label_mapping, fp) self._model.save(os.path.join(dirpath)) @classmethod def load_from_disk(cls, dirpath): """ Loads whole model from disk with weights :param dirpath: directory path where you want to load the model from :type dirpath: str :return: None """ # load parameters model_param_dirpath = os.path.join(dirpath, "model_parameters.json") with open(model_param_dirpath, 'r') as fp: parameters = json.load(fp) # load label_mapping labels_dirpath = os.path.join(dirpath, "label_mapping.json") with open(labels_dirpath, 'r') as fp: label_mapping = json.load(fp) # use f1 score metric custom_objects = { "F1Score": F1Score( num_classes=max(label_mapping.values()) + 1, average='micro'), "CharacterLevelCnnModel": cls, } with tf.keras.utils.custom_object_scope(custom_objects): tf_model = tf.keras.models.load_model(dirpath) loaded_model = cls(label_mapping, parameters) loaded_model._model = tf_model # Tensorflow v1 Model weights need to be transferred. if not callable(tf_model): loaded_model._construct_model() tf1_weights = [] for var in tf_model.variables: if 'training' not in var.name: tf1_weights.append(var.value()) loaded_model._construct_model() tf1_weights.append(loaded_model._model.weights[-1].value()) loaded_model._model.set_weights(tf1_weights) # load self loaded_model._model_num_labels = loaded_model.num_labels loaded_model._model_default_ind = loaded_model.label_mapping[ loaded_model._parameters['default_label'] ] return loaded_model @staticmethod def _char_encoding_layer(input_str_tensor, max_char_encoding_id, max_len): """ Character encoding for the list of sentences :param input_str_tensor: input list of sentences converted to tensor :type input_str_tensor: tf.tensor :param max_char_encoding_id: Maximum integer value for encoding the input :type max_char_encoding_id: int :param max_len: Maximum char length in a sample :type max_len: int :return : tensor containing encoded list of input sentences :rtype: tf.Tensor """ # convert characters to indices input_str_flatten = tf.reshape(input_str_tensor, [-1]) sentences_encode = tf.strings.unicode_decode(input_str_flatten, input_encoding='UTF-8') sentences_encode = tf.add(tf.cast(1, tf.int32), sentences_encode) sentences_encode = tf.math.minimum(sentences_encode, max_char_encoding_id + 1) # padding sentences_encode_pad = sentences_encode.to_tensor(shape=[None, max_len]) return sentences_encode_pad @staticmethod def _argmax_threshold_layer(num_labels, threshold=0.0, default_ind=1): """ Adds an argmax threshold layer to the model. This layer's output will be the argmax value if the confidence for that argmax meets the threshold for its label, otherwise it will be the default label index. :param num_labels: number of entities :type num_labels: int :param threshold: default set to 0 so all confidences pass. :type threshold: float :param default_ind: default index :type default_ind: int :return: final argmax threshold layer for the model """ # Initialize the thresholds vector variable and create the threshold # matrix. class ThreshArgMaxLayer(tf.keras.layers.Layer): def __init__(self, threshold_, num_labels_): super(ThreshArgMaxLayer, self).__init__() thresh_init = tf.constant_initializer(threshold_) self.thresh_vec = tf.Variable( name='ThreshVec', initial_value=thresh_init(shape=[num_labels_]), trainable=False) def call(self, argmax_layer, confidence_layer): threshold_at_argmax = tf.gather(self.thresh_vec, argmax_layer) confidence_max_layer = tf.keras.backend.max(confidence_layer, axis=2) # Check if the confidences meet the threshold minimum. argmax_mask = tf.keras.backend.cast( tf.keras.backend.greater_equal(confidence_max_layer, threshold_at_argmax), dtype=argmax_layer.dtype) # Create a vector the same size as the batch_size which # represents the background label bg_label_tf = tf.keras.backend.constant( default_ind, dtype=argmax_layer.dtype) # Generate the final predicted output using the function: final_predicted_layer = tf.add( bg_label_tf, tf.multiply( tf.subtract(argmax_layer, bg_label_tf), argmax_mask ), name='ThreshArgMax' ) return final_predicted_layer return ThreshArgMaxLayer(threshold, num_labels) def _construct_model(self): """ Model constructor for the data labeler. This also serves as a weight reset. :return: None """ num_labels = self.num_labels default_ind = self.label_mapping[self._parameters['default_label']] # Reset model tf.keras.backend.clear_session() # generate glove embedding create_glove_char(self._parameters['dim_embed']) # generate model self._model = tf.keras.models.Sequential() # default parameters max_length = self._parameters['max_length'] max_char_encoding_id = self._parameters['max_char_encoding_id'] # Encoding layer def encoding_function(input_str): char_in_vector = CharacterLevelCnnModel._char_encoding_layer( input_str, max_char_encoding_id, max_length) return char_in_vector self._model.add(tf.keras.layers.Input(shape=(None,), dtype=tf.string)) self._model.add( tf.keras.layers.Lambda(encoding_function, output_shape=tuple([max_length]))) # Create a pre-trained weight matrix # character encoding indices range from 0 to max_char_encoding_id, # we add one extra index for out-of-vocabulary character embed_file = os.path.join( _file_dir, "embeddings/glove-reduced-{}D.txt".format( self._parameters['dim_embed'])) embedding_matrix = np.zeros((max_char_encoding_id + 2, self._parameters['dim_embed'])) embedding_dict = build_embd_dictionary(embed_file) input_shape = tuple([max_length]) # Fill in the weight matrix: let pad and space be 0s for ascii_num in range(max_char_encoding_id): if chr(ascii_num) in embedding_dict: embedding_matrix[ascii_num + 1] = embedding_dict[chr(ascii_num)] self._model.add(tf.keras.layers.Embedding( max_char_encoding_id + 2, self._parameters['dim_embed'], weights=[embedding_matrix], input_length=input_shape[0], trainable=True)) # Add the convolutional layers for fil in self._parameters['num_fil']: self._model.add(tf.keras.layers.Conv1D( filters=fil, kernel_size=self._parameters['size_conv'], activation='relu', padding='same')) if self._parameters['dropout']: self._model.add( tf.keras.layers.Dropout(self._parameters['dropout'])) # Add batch normalization, set fused = True for compactness self._model.add( tf.keras.layers.BatchNormalization(fused=False, scale=True)) # Add the fully connected layers for size in self._parameters['size_fc']: self._model.add( tf.keras.layers.Dense(units=size, activation='relu')) if self._parameters['dropout']: self._model.add( tf.keras.layers.Dropout(self._parameters['dropout'])) # Add the final Softmax layer self._model.add( tf.keras.layers.Dense(num_labels, activation='softmax')) # Output the model into a .pb file for TensorFlow argmax_layer = tf.keras.backend.argmax(self._model.output) # Create confidence layers final_predicted_layer = CharacterLevelCnnModel._argmax_threshold_layer( num_labels, threshold=0.0, default_ind=default_ind) argmax_outputs = self._model.outputs + \ [argmax_layer, final_predicted_layer(argmax_layer, self._model.output)] self._model = tf.keras.Model(self._model.inputs, argmax_outputs) # Compile the model softmax_output_layer_name = self._model.outputs[0].name.split('/')[0] losses = {softmax_output_layer_name: "categorical_crossentropy"} # use f1 score metric f1_score_training = F1Score(num_classes=num_labels, average='micro') metrics = {softmax_output_layer_name: ['acc', f1_score_training]} self._model.compile(loss=losses, optimizer="adam", metrics=metrics) self._epoch_id = 0 self._model_num_labels = num_labels self._model_default_ind = default_ind def reset_weights(self): """ Reset the weights of the model. :return: None """ self._construct_model() def _reconstruct_model(self): """ Reconstruct the appropriate layers if the number of number of labels is altered :return: None """ # Reset model tf.keras.backend.clear_session() num_labels = self.num_labels default_ind = self.label_mapping[self._parameters['default_label']] # Remove the 3 output layers (dense_2', 'tf_op_layer_ArgMax', # 'thresh_arg_max_layer') for _ in range(3): self._model.layers.pop() # Add the final Softmax layer to the previous spot final_softmax_layer = tf.keras.layers.Dense( num_labels, activation='softmax', name="dense_2")( self._model.layers[-4].output) # Output the model into a .pb file for TensorFlow argmax_layer = tf.keras.backend.argmax(final_softmax_layer) # Create confidence layers final_predicted_layer = CharacterLevelCnnModel._argmax_threshold_layer( num_labels, threshold=0.0, default_ind=default_ind) argmax_outputs = [final_softmax_layer] + \ [argmax_layer, final_predicted_layer(argmax_layer, final_softmax_layer)] self._model = tf.keras.Model(self._model.inputs, argmax_outputs) # Compile the model softmax_output_layer_name = self._model.outputs[0].name.split('/')[0] losses = {softmax_output_layer_name: "categorical_crossentropy"} # use f1 score metric f1_score_training = F1Score(num_classes=num_labels, average='micro') metrics = {softmax_output_layer_name: ['acc', f1_score_training]} self._model.compile(loss=losses, optimizer="adam", metrics=metrics) self._epoch_id = 0 self._model_num_labels = num_labels self._model_default_ind = default_ind def fit(self, train_data, val_data=None, batch_size=32, label_mapping=None, reset_weights=False, verbose=True): """ Train the current model with the training data and validation data :param train_data: Training data used to train model :type train_data: Union[list, np.ndarray] :param val_data: Validation data used to validate the training :type val_data: Union[list, np.ndarray] :param batch_size: Used to determine number of samples in each batch :type batch_size: int :param label_mapping: maps labels to their encoded integers :type label_mapping: Union[dict, None] :param reset_weights: Flag to determine whether to reset the weights or not :type reset_weights: bool :param verbose: Flag to determine whether to print status or not :type verbose: bool :return: None """ if label_mapping is not None: self.set_label_mapping(label_mapping) if not self._model: self._construct_model() else: if self._need_to_reconstruct_model(): self._reconstruct_model() if reset_weights: self.reset_weights() history = defaultdict() f1 = None f1_report = [] self._model.reset_metrics() softmax_output_layer_name = self._model.outputs[0].name.split('/')[0] start_time = time.time() batch_id = 0 for x_train, y_train in train_data: model_results = self._model.train_on_batch( x_train, {softmax_output_layer_name: y_train}) sys.stdout.flush() if verbose: sys.stdout.write( "\rEPOCH %d, batch_id %d: loss: %f - acc: %f - " "f1_score %f" % (self._epoch_id, batch_id, *model_results[1:])) batch_id += 1 for i, metric_label in enumerate(self._model.metrics_names): history[metric_label] = model_results[i] if val_data: f1, f1_report = self._validate_training(val_data) history['f1_report'] = f1_report val_f1 = f1_report['weighted avg']['f1-score'] \ if f1_report else np.NAN val_precision = f1_report['weighted avg']['precision'] \ if f1_report else np.NAN val_recall = f1_report['weighted avg']['recall'] \ if f1_report else np.NAN epoch_time = time.time() - start_time logger.info("\rEPOCH %d (%ds), loss: %f - acc: %f - f1_score %f -- " "val_f1: %f - val_precision: %f - val_recall %f" % (self._epoch_id, epoch_time, *model_results[1:], val_f1, val_precision, val_recall)) self._epoch_id += 1 return history, f1, f1_report def _validate_training(self, val_data, batch_size_test=32, verbose_log=True, verbose_keras=False): """ Validate the model on the test set and return the evaluation metrics. :param val_data: data generator for the validation :type val_data: iterator :param batch_size_test: Number of samples to process in testing :type batch_size_test: int :param verbose_log: whether or not to print out scores for training, etc. :type verbose_log: bool :param verbose_keras: whether or not to print out scores for training, from keras. :type verbose_keras: bool return (f1-score, f1 report). """ f1 = None f1_report = None if val_data is None: return f1, f1_report # Predict on the test set batch_id = 0 y_val_pred = [] y_val_test = [] for x_val, y_val in val_data: y_val_pred.append(self._model.predict( x_val, batch_size=batch_size_test, verbose=verbose_keras)[1]) y_val_test.append(np.argmax(y_val, axis=-1)) batch_id += 1 sys.stdout.flush() if verbose_log: sys.stdout.write("\rEPOCH %g, validation_batch_id %d" % (self._epoch_id, batch_id)) tf.keras.backend.set_floatx('float32') # Clean the predicted entities and the actual entities f1, f1_report = labeler_utils.evaluate_accuracy( np.concatenate(y_val_pred, axis=0), np.concatenate(y_val_test, axis=0), self.num_labels, self.reverse_label_mapping, verbose=verbose_keras) return f1, f1_report def predict(self, data, batch_size=32, show_confidences=False, verbose=True): """ Run model and get predictions :param data: text input :type data: Union[list, numpy.ndarray] :param batch_size: number of samples in the batch of data :type batch_size: int :param show_confidences: whether user wants prediction confidences :type show_confidences: :param verbose: Flag to determine whether to print status or not :type verbose: bool :return: char level predictions and confidences :rtype: dict """ if not self._model: raise ValueError("You are trying to predict without a model. " "Construct/Load a model before predicting.") elif self._need_to_reconstruct_model(): raise RuntimeError("The model label mapping definitions have been " "altered without additional training. Please " "train the model or reset the label mapping to " "predict.") # Pre-allocate space for predictions confidences = [] sentence_lengths = np.zeros((batch_size,), dtype=int) predictions = np.zeros((batch_size, self._parameters['max_length'])) if show_confidences: confidences = np.zeros((batch_size, self._parameters['max_length'], self.num_labels)) # Run model with batching allocation_index = 0 for batch_id, batch_data in enumerate(data): model_output = self._model( tf.convert_to_tensor(batch_data) ) # Count number of samples in batch to prevent array mismatch num_samples_in_batch = len(batch_data) allocation_index = batch_id * batch_size # Double array size if len(predictions) <= allocation_index: predictions = np.pad(predictions, ((0, len(predictions)), (0, 0)), mode='constant') sentence_lengths = np.pad( sentence_lengths, pad_width=((0, len(sentence_lengths)),), mode='constant') if show_confidences: confidences = np.pad(confidences, ((0, len(predictions)), (0, 0), (0, 0)), mode='constant') if show_confidences: confidences[allocation_index:allocation_index + num_samples_in_batch] = model_output[0].numpy() predictions[allocation_index:allocation_index + num_samples_in_batch] = model_output[1].numpy() sentence_lengths[allocation_index:allocation_index + num_samples_in_batch] = list(map(lambda x: len(x[0]), batch_data)) allocation_index += num_samples_in_batch # Convert predictions, confidences to lists from numpy predictions_list = [i for i in range(0, allocation_index)] confidences_list = None if show_confidences: confidences_list = [i for i in range(0, allocation_index)] # Append slices of predictions to return prediction & confidence matrices for index, sentence_length \ in enumerate(sentence_lengths[:allocation_index]): predictions_list[index] = list(predictions[index][:sentence_length]) if show_confidences: confidences_list[index] = list(confidences[index][:sentence_length]) if show_confidences: return {'pred': predictions_list, 'conf': confidences_list} return {'pred': predictions_list} def details(self): """ Prints the relevant details of the model (summary, parameters, label mapping) """ print("\n###### Model Details ######\n") self._model.summary() print("\nModel Parameters:") for key, value in self._parameters.items(): print("{}: {}".format(key, value)) print("\nModel Label Mapping:") for key, value in self.label_mapping.items(): print("{}: {}".format(key, value))
[((30, 12, 30, 43), 'logging.getLogger', 'logging.getLogger', ({(30, 30, 30, 42): '"""tensorflow"""'}, {}), "('tensorflow')", False, 'import logging\n'), ((34, 1, 34, 45), 'tensorflow.keras.utils.register_keras_serializable', 'tf.keras.utils.register_keras_serializable', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((190, 1, 190, 45), 'tensorflow.keras.utils.register_keras_serializable', 'tf.keras.utils.register_keras_serializable', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((17, 28, 17, 53), 'os.path.abspath', 'os.path.abspath', ({(17, 44, 17, 52): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((277, 10, 277, 48), 'sklearn.decomposition.PCA', 'decomposition.PCA', (), '', False, 'from sklearn import decomposition\n'), ((281, 15, 281, 43), 'os.path.dirname', 'os.path.dirname', ({(281, 31, 281, 42): 'source_file'}, {}), '(source_file)', False, 'import os\n'), ((131, 17, 131, 44), 'tensorflow.cast', 'tf.cast', ({(131, 25, 131, 31): 'y_true', (131, 33, 131, 43): 'self.dtype'}, {}), '(y_true, self.dtype)', True, 'import tensorflow as tf\n'), ((132, 17, 132, 44), 'tensorflow.cast', 'tf.cast', ({(132, 25, 132, 31): 'y_pred', (132, 33, 132, 43): 'self.dtype'}, {}), '(y_pred, self.dtype)', True, 'import tensorflow as tf\n'), ((149, 20, 151, 9), 'tensorflow.math.divide_no_nan', 'tf.math.divide_no_nan', ({(150, 12, 150, 31): 'self.true_positives', (150, 33, 150, 75): 'self.true_positives + self.false_positives'}, {}), '(self.true_positives, self.true_positives + self.\n false_positives)', True, 'import tensorflow as tf\n'), ((152, 17, 154, 9), 'tensorflow.math.divide_no_nan', 'tf.math.divide_no_nan', ({(153, 12, 153, 31): 'self.true_positives', (153, 33, 153, 75): 'self.true_positives + self.false_negatives'}, {}), '(self.true_positives, self.true_positives + self.\n false_negatives)', True, 'import tensorflow as tf\n'), ((158, 15, 158, 58), 'tensorflow.math.divide_no_nan', 'tf.math.divide_no_nan', ({(158, 37, 158, 46): 'mul_value', (158, 48, 158, 57): 'add_value'}, {}), '(mul_value, add_value)', True, 'import tensorflow as tf\n'), ((186, 22, 186, 65), 'tensorflow.zeros', 'tf.zeros', (), '', True, 'import tensorflow as tf\n'), ((187, 8, 187, 84), 'tensorflow.keras.backend.batch_set_value', 'tf.keras.backend.batch_set_value', ({(187, 41, 187, 83): '[(v, reset_value) for v in self.variables]'}, {}), '([(v, reset_value) for v in self.variables])', True, 'import tensorflow as tf\n'), ((268, 22, 269, 73), 'os.path.join', 'os.path.join', ({(268, 35, 268, 44): '_file_dir', (269, 35, 269, 72): '"""embeddings/glove.840B.300d-char.txt"""'}, {}), "(_file_dir, 'embeddings/glove.840B.300d-char.txt')", False, 'import os\n'), ((417, 24, 417, 52), 'copy.deepcopy', 'copy.deepcopy', ({(417, 38, 417, 51): 'label_mapping'}, {}), '(label_mapping)', False, 'import copy\n'), ((457, 30, 457, 76), 'os.path.join', 'os.path.join', ({(457, 43, 457, 50): 'dirpath', (457, 52, 457, 75): '"""model_parameters.json"""'}, {}), "(dirpath, 'model_parameters.json')", False, 'import os\n'), ((460, 25, 460, 68), 'os.path.join', 'os.path.join', ({(460, 38, 460, 45): 'dirpath', (460, 47, 460, 67): '"""label_mapping.json"""'}, {}), "(dirpath, 'label_mapping.json')", False, 'import os\n'), ((476, 30, 476, 76), 'os.path.join', 'os.path.join', ({(476, 43, 476, 50): 'dirpath', (476, 52, 476, 75): '"""model_parameters.json"""'}, {}), "(dirpath, 'model_parameters.json')", False, 'import os\n'), ((481, 25, 481, 68), 'os.path.join', 'os.path.join', ({(481, 38, 481, 45): 'dirpath', (481, 47, 481, 67): '"""label_mapping.json"""'}, {}), "(dirpath, 'label_mapping.json')", False, 'import os\n'), ((534, 28, 534, 62), 'tensorflow.reshape', 'tf.reshape', ({(534, 39, 534, 55): 'input_str_tensor', (534, 57, 534, 61): '[-1]'}, {}), '(input_str_tensor, [-1])', True, 'import tensorflow as tf\n'), ((535, 27, 536, 76), 'tensorflow.strings.unicode_decode', 'tf.strings.unicode_decode', (), '', True, 'import tensorflow as tf\n'), ((538, 27, 539, 68), 'tensorflow.math.minimum', 'tf.math.minimum', ({(538, 43, 538, 59): 'sentences_encode', (539, 43, 539, 67): 'max_char_encoding_id + 1'}, {}), '(sentences_encode, max_char_encoding_id + 1)', True, 'import tensorflow as tf\n'), ((612, 8, 612, 40), 'tensorflow.keras.backend.clear_session', 'tf.keras.backend.clear_session', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((618, 22, 618, 50), 'tensorflow.keras.models.Sequential', 'tf.keras.models.Sequential', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((642, 27, 643, 68), 'numpy.zeros', 'np.zeros', ({(642, 36, 643, 67): "(max_char_encoding_id + 2, self._parameters['dim_embed'])"}, {}), "((max_char_encoding_id + 2, self._parameters['dim_embed']))", True, 'import numpy as np\n'), ((684, 23, 684, 66), 'tensorflow.keras.backend.argmax', 'tf.keras.backend.argmax', ({(684, 47, 684, 65): 'self._model.output'}, {}), '(self._model.output)', True, 'import tensorflow as tf\n'), ((693, 22, 693, 72), 'tensorflow.keras.Model', 'tf.keras.Model', ({(693, 37, 693, 55): 'self._model.inputs', (693, 57, 693, 71): 'argmax_outputs'}, {}), '(self._model.inputs, argmax_outputs)', True, 'import tensorflow as tf\n'), ((728, 8, 728, 40), 'tensorflow.keras.backend.clear_session', 'tf.keras.backend.clear_session', ({}, {}), '()', True, 'import tensorflow as tf\n'), ((744, 23, 744, 67), 'tensorflow.keras.backend.argmax', 'tf.keras.backend.argmax', ({(744, 47, 744, 66): 'final_softmax_layer'}, {}), '(final_softmax_layer)', True, 'import tensorflow as tf\n'), ((754, 22, 754, 72), 'tensorflow.keras.Model', 'tf.keras.Model', ({(754, 37, 754, 55): 'self._model.inputs', (754, 57, 754, 71): 'argmax_outputs'}, {}), '(self._model.inputs, argmax_outputs)', True, 'import tensorflow as tf\n'), ((803, 18, 803, 31), 'collections.defaultdict', 'defaultdict', ({}, {}), '()', False, 'from collections import defaultdict\n'), ((810, 21, 810, 32), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((883, 8, 883, 46), 'tensorflow.keras.backend.set_floatx', 'tf.keras.backend.set_floatx', ({(883, 36, 883, 45): '"""float32"""'}, {}), "('float32')", True, 'import tensorflow as tf\n'), ((920, 27, 920, 61), 'numpy.zeros', 'np.zeros', (), '', True, 'import numpy as np\n'), ((921, 22, 921, 76), 'numpy.zeros', 'np.zeros', ({(921, 31, 921, 75): "(batch_size, self._parameters['max_length'])"}, {}), "((batch_size, self._parameters['max_length']))", True, 'import numpy as np\n'), ((124, 24, 124, 69), 'tensorflow.reduce_max', 'tf.reduce_max', (), '', True, 'import tensorflow as tf\n'), ((137, 19, 137, 53), 'tensorflow.reduce_sum', 'tf.reduce_sum', (), '', True, 'import tensorflow as tf\n'), ((165, 23, 165, 56), 'tensorflow.reduce_sum', 'tf.reduce_sum', ({(165, 37, 165, 55): 'f1_score * weights'}, {}), '(f1_score * weights)', True, 'import tensorflow as tf\n'), ((252, 34, 252, 54), 'numpy.asarray', 'np.asarray', ({(252, 45, 252, 53): 'line[1:]'}, {}), '(line[1:])', True, 'import numpy as np\n'), ((273, 8, 273, 22), 'numpy.asarray', 'np.asarray', ({(273, 19, 273, 21): 'ls'}, {}), '(ls)', True, 'import numpy as np\n'), ((459, 12, 459, 43), 'json.dump', 'json.dump', ({(459, 22, 459, 38): 'self._parameters', (459, 40, 459, 42): 'fp'}, {}), '(self._parameters, fp)', False, 'import json\n'), ((462, 12, 462, 45), 'json.dump', 'json.dump', ({(462, 22, 462, 40): 'self.label_mapping', (462, 42, 462, 44): 'fp'}, {}), '(self.label_mapping, fp)', False, 'import json\n'), ((463, 25, 463, 46), 'os.path.join', 'os.path.join', ({(463, 38, 463, 45): 'dirpath'}, {}), '(dirpath)', False, 'import os\n'), ((478, 25, 478, 38), 'json.load', 'json.load', ({(478, 35, 478, 37): 'fp'}, {}), '(fp)', False, 'import json\n'), ((483, 28, 483, 41), 'json.load', 'json.load', ({(483, 38, 483, 40): 'fp'}, {}), '(fp)', False, 'import json\n'), ((492, 13, 492, 63), 'tensorflow.keras.utils.custom_object_scope', 'tf.keras.utils.custom_object_scope', ({(492, 48, 492, 62): 'custom_objects'}, {}), '(custom_objects)', True, 'import tensorflow as tf\n'), ((493, 23, 493, 58), 'tensorflow.keras.models.load_model', 'tf.keras.models.load_model', ({(493, 50, 493, 57): 'dirpath'}, {}), '(dirpath)', True, 'import tensorflow as tf\n'), ((537, 34, 537, 54), 'tensorflow.cast', 'tf.cast', ({(537, 42, 537, 43): '1', (537, 45, 537, 53): 'tf.int32'}, {}), '(1, tf.int32)', True, 'import tensorflow as tf\n'), ((630, 24, 630, 77), 'tensorflow.keras.layers.Input', 'tf.keras.layers.Input', (), '', True, 'import tensorflow as tf\n'), ((652, 24, 657, 27), 'tensorflow.keras.layers.Embedding', 'tf.keras.layers.Embedding', (), '', True, 'import tensorflow as tf\n'), ((681, 12, 681, 67), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (), '', True, 'import tensorflow as tf\n'), ((739, 30, 740, 61), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (), '', True, 'import tensorflow as tf\n'), ((815, 12, 815, 30), 'sys.stdout.flush', 'sys.stdout.flush', ({}, {}), '()', False, 'import sys\n'), ((878, 12, 878, 30), 'sys.stdout.flush', 'sys.stdout.flush', ({}, {}), '()', False, 'import sys\n'), ((886, 12, 886, 46), 'numpy.concatenate', 'np.concatenate', (), '', True, 'import numpy as np\n'), ((887, 12, 887, 46), 'numpy.concatenate', 'np.concatenate', (), '', True, 'import numpy as np\n'), ((923, 26, 925, 53), 'numpy.zeros', 'np.zeros', ({(923, 35, 925, 52): "(batch_size, self._parameters['max_length'], self.num_labels)"}, {}), "((batch_size, self._parameters['max_length'], self.num_labels))", True, 'import numpy as np\n'), ((157, 21, 157, 46), 'tensorflow.math.square', 'tf.math.square', ({(157, 36, 157, 45): 'self.beta'}, {}), '(self.beta)', True, 'import tensorflow as tf\n'), ((159, 31, 159, 56), 'tensorflow.math.square', 'tf.math.square', ({(159, 46, 159, 55): 'self.beta'}, {}), '(self.beta)', True, 'import tensorflow as tf\n'), ((163, 43, 163, 83), 'tensorflow.reduce_sum', 'tf.reduce_sum', ({(163, 57, 163, 82): 'self.weights_intermediate'}, {}), '(self.weights_intermediate)', True, 'import tensorflow as tf\n'), ((168, 23, 168, 47), 'tensorflow.reduce_mean', 'tf.reduce_mean', ({(168, 38, 168, 46): 'f1_score'}, {}), '(f1_score)', True, 'import tensorflow as tf\n'), ((565, 30, 565, 65), 'tensorflow.constant_initializer', 'tf.constant_initializer', ({(565, 54, 565, 64): 'threshold_'}, {}), '(threshold_)', True, 'import tensorflow as tf\n'), ((572, 38, 572, 78), 'tensorflow.gather', 'tf.gather', ({(572, 48, 572, 63): 'self.thresh_vec', (572, 65, 572, 77): 'argmax_layer'}, {}), '(self.thresh_vec, argmax_layer)', True, 'import tensorflow as tf\n'), ((574, 39, 575, 67), 'tensorflow.keras.backend.max', 'tf.keras.backend.max', (), '', True, 'import tensorflow as tf\n'), ((585, 30, 586, 58), 'tensorflow.keras.backend.constant', 'tf.keras.backend.constant', (), '', True, 'import tensorflow as tf\n'), ((661, 28, 663, 50), 'tensorflow.keras.layers.Conv1D', 'tf.keras.layers.Conv1D', (), '', True, 'import tensorflow as tf\n'), ((669, 16, 669, 75), 'tensorflow.keras.layers.BatchNormalization', 'tf.keras.layers.BatchNormalization', (), '', True, 'import tensorflow as tf\n'), ((674, 16, 674, 68), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (), '', True, 'import tensorflow as tf\n'), ((817, 16, 820, 67), 'sys.stdout.write', 'sys.stdout.write', ({(818, 20, 820, 66): "('\\rEPOCH %d, batch_id %d: loss: %f - acc: %f - f1_score %f' % (self.\n _epoch_id, batch_id, *model_results[1:]))"}, {}), "(\n '\\rEPOCH %d, batch_id %d: loss: %f - acc: %f - f1_score %f' % (self.\n _epoch_id, batch_id, *model_results[1:]))", False, 'import sys\n'), ((836, 25, 836, 36), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((876, 30, 876, 55), 'numpy.argmax', 'np.argmax', (), '', True, 'import numpy as np\n'), ((880, 16, 881, 60), 'sys.stdout.write', 'sys.stdout.write', ({(880, 33, 881, 59): "('\\rEPOCH %g, validation_batch_id %d' % (self._epoch_id, batch_id))"}, {}), "('\\rEPOCH %g, validation_batch_id %d' % (self._epoch_id,\n batch_id))", False, 'import sys\n'), ((931, 16, 931, 48), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', ({(931, 37, 931, 47): 'batch_data'}, {}), '(batch_data)', True, 'import tensorflow as tf\n'), ((127, 57, 127, 71), 'tensorflow.abs', 'tf.abs', ({(127, 64, 127, 70): 'y_pred'}, {}), '(y_pred)', True, 'import tensorflow as tf\n'), ((136, 44, 136, 76), 'tensorflow.expand_dims', 'tf.expand_dims', ({(136, 59, 136, 72): 'sample_weight', (136, 74, 136, 75): '1'}, {}), '(sample_weight, 1)', True, 'import tensorflow as tf\n'), ((579, 20, 580, 68), 'tensorflow.keras.backend.greater_equal', 'tf.keras.backend.greater_equal', ({(579, 51, 579, 71): 'confidence_max_layer', (580, 48, 580, 67): 'threshold_at_argmax'}, {}), '(confidence_max_layer, threshold_at_argmax)', True, 'import tensorflow as tf\n'), ((666, 20, 666, 72), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', ({(666, 44, 666, 71): "self._parameters['dropout']"}, {}), "(self._parameters['dropout'])", True, 'import tensorflow as tf\n'), ((677, 20, 677, 72), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', ({(677, 44, 677, 71): "self._parameters['dropout']"}, {}), "(self._parameters['dropout'])", True, 'import tensorflow as tf\n'), ((592, 24, 592, 62), 'tensorflow.subtract', 'tf.subtract', ({(592, 36, 592, 48): 'argmax_layer', (592, 50, 592, 61): 'bg_label_tf'}, {}), '(argmax_layer, bg_label_tf)', True, 'import tensorflow as tf\n')]
Nipica/airflow
airflow/contrib/plugins/metastore_browser/main.py
211a71f8a6b9d808bd03af84bd77bf8ff0ef247f
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from datetime import datetime import json from flask import Blueprint, request from flask_admin import BaseView, expose import pandas as pd from airflow.hooks.hive_hooks import HiveMetastoreHook, HiveCliHook from airflow.hooks.mysql_hook import MySqlHook from airflow.hooks.presto_hook import PrestoHook from airflow.plugins_manager import AirflowPlugin from airflow.www import utils as wwwutils from airflow.www.decorators import gzipped METASTORE_CONN_ID = 'metastore_default' METASTORE_MYSQL_CONN_ID = 'metastore_mysql' PRESTO_CONN_ID = 'presto_default' HIVE_CLI_CONN_ID = 'hive_default' DEFAULT_DB = 'default' DB_WHITELIST = None DB_BLACKLIST = ['tmp'] TABLE_SELECTOR_LIMIT = 2000 # Keeping pandas from truncating long strings pd.set_option('display.max_colwidth', -1) # Creating a flask admin BaseView class MetastoreBrowserView(BaseView, wwwutils.DataProfilingMixin): @expose('/') def index(self): sql = """ SELECT a.name as db, db_location_uri as location, count(1) as object_count, a.desc as description FROM DBS a JOIN TBLS b ON a.DB_ID = b.DB_ID GROUP BY a.name, db_location_uri, a.desc """.format(**locals()) h = MySqlHook(METASTORE_MYSQL_CONN_ID) df = h.get_pandas_df(sql) df.db = ( '<a href="/admin/metastorebrowserview/db/?db=' + df.db + '">' + df.db + '</a>') table = df.to_html( classes="table table-striped table-bordered table-hover", index=False, escape=False, na_rep='',) return self.render( "metastore_browser/dbs.html", table=table) @expose('/table/') def table(self): table_name = request.args.get("table") m = HiveMetastoreHook(METASTORE_CONN_ID) table = m.get_table(table_name) return self.render( "metastore_browser/table.html", table=table, table_name=table_name, datetime=datetime, int=int) @expose('/db/') def db(self): db = request.args.get("db") m = HiveMetastoreHook(METASTORE_CONN_ID) tables = sorted(m.get_tables(db=db), key=lambda x: x.tableName) return self.render( "metastore_browser/db.html", tables=tables, db=db) @gzipped @expose('/partitions/') def partitions(self): schema, table = request.args.get("table").split('.') sql = """ SELECT a.PART_NAME, a.CREATE_TIME, c.LOCATION, c.IS_COMPRESSED, c.INPUT_FORMAT, c.OUTPUT_FORMAT FROM PARTITIONS a JOIN TBLS b ON a.TBL_ID = b.TBL_ID JOIN DBS d ON b.DB_ID = d.DB_ID JOIN SDS c ON a.SD_ID = c.SD_ID WHERE b.TBL_NAME like '{table}' AND d.NAME like '{schema}' ORDER BY PART_NAME DESC """.format(**locals()) h = MySqlHook(METASTORE_MYSQL_CONN_ID) df = h.get_pandas_df(sql) return df.to_html( classes="table table-striped table-bordered table-hover", index=False, na_rep='',) @gzipped @expose('/objects/') def objects(self): where_clause = '' if DB_WHITELIST: dbs = ",".join(["'" + db + "'" for db in DB_WHITELIST]) where_clause = "AND b.name IN ({})".format(dbs) if DB_BLACKLIST: dbs = ",".join(["'" + db + "'" for db in DB_BLACKLIST]) where_clause = "AND b.name NOT IN ({})".format(dbs) sql = """ SELECT CONCAT(b.NAME, '.', a.TBL_NAME), TBL_TYPE FROM TBLS a JOIN DBS b ON a.DB_ID = b.DB_ID WHERE a.TBL_NAME NOT LIKE '%tmp%' AND a.TBL_NAME NOT LIKE '%temp%' AND b.NAME NOT LIKE '%tmp%' AND b.NAME NOT LIKE '%temp%' {where_clause} LIMIT {LIMIT}; """.format(where_clause=where_clause, LIMIT=TABLE_SELECTOR_LIMIT) h = MySqlHook(METASTORE_MYSQL_CONN_ID) d = [ {'id': row[0], 'text': row[0]} for row in h.get_records(sql)] return json.dumps(d) @gzipped @expose('/data/') def data(self): table = request.args.get("table") sql = "SELECT * FROM {table} LIMIT 1000;".format(table=table) h = PrestoHook(PRESTO_CONN_ID) df = h.get_pandas_df(sql) return df.to_html( classes="table table-striped table-bordered table-hover", index=False, na_rep='',) @expose('/ddl/') def ddl(self): table = request.args.get("table") sql = "SHOW CREATE TABLE {table};".format(table=table) h = HiveCliHook(HIVE_CLI_CONN_ID) return h.run_cli(sql) v = MetastoreBrowserView(category="Plugins", name="Hive Metadata Browser") # Creating a flask blueprint to intergrate the templates and static folder bp = Blueprint( "metastore_browser", __name__, template_folder='templates', static_folder='static', static_url_path='/static/metastore_browser') # Defining the plugin class class MetastoreBrowserPlugin(AirflowPlugin): name = "metastore_browser" flask_blueprints = [bp] admin_views = [v]
[((44, 0, 44, 41), 'pandas.set_option', 'pd.set_option', ({(44, 14, 44, 36): '"""display.max_colwidth"""', (44, 38, 44, 40): '(-1)'}, {}), "('display.max_colwidth', -1)", True, 'import pandas as pd\n'), ((169, 5, 173, 48), 'flask.Blueprint', 'Blueprint', (), '', False, 'from flask import Blueprint, request\n'), ((50, 5, 50, 16), 'flask_admin.expose', 'expose', ({(50, 12, 50, 15): '"""/"""'}, {}), "('/')", False, 'from flask_admin import BaseView, expose\n'), ((73, 5, 73, 22), 'flask_admin.expose', 'expose', ({(73, 12, 73, 21): '"""/table/"""'}, {}), "('/table/')", False, 'from flask_admin import BaseView, expose\n'), ((82, 5, 82, 19), 'flask_admin.expose', 'expose', ({(82, 12, 82, 18): '"""/db/"""'}, {}), "('/db/')", False, 'from flask_admin import BaseView, expose\n'), ((91, 5, 91, 27), 'flask_admin.expose', 'expose', ({(91, 12, 91, 26): '"""/partitions/"""'}, {}), "('/partitions/')", False, 'from flask_admin import BaseView, expose\n'), ((119, 5, 119, 24), 'flask_admin.expose', 'expose', ({(119, 12, 119, 23): '"""/objects/"""'}, {}), "('/objects/')", False, 'from flask_admin import BaseView, expose\n'), ((147, 5, 147, 21), 'flask_admin.expose', 'expose', ({(147, 12, 147, 20): '"""/data/"""'}, {}), "('/data/')", False, 'from flask_admin import BaseView, expose\n'), ((158, 5, 158, 20), 'flask_admin.expose', 'expose', ({(158, 12, 158, 19): '"""/ddl/"""'}, {}), "('/ddl/')", False, 'from flask_admin import BaseView, expose\n'), ((60, 12, 60, 46), 'airflow.hooks.mysql_hook.MySqlHook', 'MySqlHook', ({(60, 22, 60, 45): 'METASTORE_MYSQL_CONN_ID'}, {}), '(METASTORE_MYSQL_CONN_ID)', False, 'from airflow.hooks.mysql_hook import MySqlHook\n'), ((75, 21, 75, 46), 'flask.request.args.get', 'request.args.get', ({(75, 38, 75, 45): '"""table"""'}, {}), "('table')", False, 'from flask import Blueprint, request\n'), ((76, 12, 76, 48), 'airflow.hooks.hive_hooks.HiveMetastoreHook', 'HiveMetastoreHook', ({(76, 30, 76, 47): 'METASTORE_CONN_ID'}, {}), '(METASTORE_CONN_ID)', False, 'from airflow.hooks.hive_hooks import HiveMetastoreHook, HiveCliHook\n'), ((84, 13, 84, 35), 'flask.request.args.get', 'request.args.get', ({(84, 30, 84, 34): '"""db"""'}, {}), "('db')", False, 'from flask import Blueprint, request\n'), ((85, 12, 85, 48), 'airflow.hooks.hive_hooks.HiveMetastoreHook', 'HiveMetastoreHook', ({(85, 30, 85, 47): 'METASTORE_CONN_ID'}, {}), '(METASTORE_CONN_ID)', False, 'from airflow.hooks.hive_hooks import HiveMetastoreHook, HiveCliHook\n'), ((111, 12, 111, 46), 'airflow.hooks.mysql_hook.MySqlHook', 'MySqlHook', ({(111, 22, 111, 45): 'METASTORE_MYSQL_CONN_ID'}, {}), '(METASTORE_MYSQL_CONN_ID)', False, 'from airflow.hooks.mysql_hook import MySqlHook\n'), ((140, 12, 140, 46), 'airflow.hooks.mysql_hook.MySqlHook', 'MySqlHook', ({(140, 22, 140, 45): 'METASTORE_MYSQL_CONN_ID'}, {}), '(METASTORE_MYSQL_CONN_ID)', False, 'from airflow.hooks.mysql_hook import MySqlHook\n'), ((144, 15, 144, 28), 'json.dumps', 'json.dumps', ({(144, 26, 144, 27): 'd'}, {}), '(d)', False, 'import json\n'), ((149, 16, 149, 41), 'flask.request.args.get', 'request.args.get', ({(149, 33, 149, 40): '"""table"""'}, {}), "('table')", False, 'from flask import Blueprint, request\n'), ((151, 12, 151, 38), 'airflow.hooks.presto_hook.PrestoHook', 'PrestoHook', ({(151, 23, 151, 37): 'PRESTO_CONN_ID'}, {}), '(PRESTO_CONN_ID)', False, 'from airflow.hooks.presto_hook import PrestoHook\n'), ((160, 16, 160, 41), 'flask.request.args.get', 'request.args.get', ({(160, 33, 160, 40): '"""table"""'}, {}), "('table')", False, 'from flask import Blueprint, request\n'), ((162, 12, 162, 41), 'airflow.hooks.hive_hooks.HiveCliHook', 'HiveCliHook', ({(162, 24, 162, 40): 'HIVE_CLI_CONN_ID'}, {}), '(HIVE_CLI_CONN_ID)', False, 'from airflow.hooks.hive_hooks import HiveMetastoreHook, HiveCliHook\n'), ((93, 24, 93, 49), 'flask.request.args.get', 'request.args.get', ({(93, 41, 93, 48): '"""table"""'}, {}), "('table')", False, 'from flask import Blueprint, request\n')]
AaronDewes/compose-nonfree
app/lib/manage.py
82ef3e58019ee03d163dea7aff4d7ed18d884238
#!/usr/bin/env python3 # SPDX-FileCopyrightText: 2021 Aaron Dewes <[email protected]> # # SPDX-License-Identifier: MIT import stat import tempfile import threading from typing import List from sys import argv import os import requests import shutil import json import yaml import subprocess from lib.composegenerator.v0.generate import createComposeConfigFromV0 from lib.composegenerator.v1.generate import createComposeConfigFromV1 from lib.appymlgenerator import convertComposeYMLToAppYML from lib.validate import findAndValidateApps from lib.metadata import getAppRegistry, getSimpleAppRegistry from lib.entropy import deriveEntropy # For an array of threads, join them and wait for them to finish def joinThreads(threads: List[threading.Thread]): for thread in threads: thread.join() # The directory with this script scriptDir = os.path.dirname(os.path.realpath(__file__)) nodeRoot = os.path.join(scriptDir, "..", "..") appsDir = os.path.join(nodeRoot, "apps") appSystemDir = os.path.join(nodeRoot, "app-system") sourcesList = os.path.join(appSystemDir, "sources.list") appDataDir = os.path.join(nodeRoot, "app-data") userFile = os.path.join(nodeRoot, "db", "user.json") legacyScript = os.path.join(nodeRoot, "scripts", "app") def runCompose(app: str, args: str): compose(app, args) # Returns a list of every argument after the second one in sys.argv joined into a string by spaces def getArguments(): arguments = "" for i in range(3, len(argv)): arguments += argv[i] + " " return arguments def getAppYml(name): url = 'https://raw.githubusercontent.com/runcitadel/compose-nonfree/main/apps/' + \ name + '/' + 'app.yml' response = requests.get(url) if response.status_code == 200: return response.text else: return False def getAppYmlPath(app): return os.path.join(appsDir, app, 'app.yml') def composeToAppYml(app): composeFile = os.path.join(appsDir, app, "docker-compose.yml") appYml = os.path.join(appsDir, app, "app.yml") # Read the compose file and parse it with open(composeFile, "r") as f: compose = yaml.safe_load(f) registry = os.path.join(appsDir, "registry.json") # Load the registry with open(registry, "r") as f: registryData = json.load(f) converted = convertComposeYMLToAppYML(compose, app, registryData) # Put converted into the app.yml after encoding it as YAML with open(appYml, "w") as f: f.write(yaml.dump(converted, sort_keys=False)) def update(verbose: bool = False): apps = findAndValidateApps(appsDir) # The compose generation process updates the registry, so we need to get it set up with the basics before that registry = getAppRegistry(apps, appsDir) with open(os.path.join(appsDir, "registry.json"), "w") as f: json.dump(registry, f, indent=4, sort_keys=True) print("Wrote registry to registry.json") simpleRegistry = getSimpleAppRegistry(apps, appsDir) with open(os.path.join(appSystemDir, "apps.json"), "w") as f: json.dump(simpleRegistry, f, indent=4, sort_keys=True) print("Wrote version information to apps.json") # Loop through the apps and generate valid compose files from them, then put these into the app dir for app in apps: composeFile = os.path.join(appsDir, app, "docker-compose.yml") appYml = os.path.join(appsDir, app, "app.yml") with open(composeFile, "w") as f: appCompose = getApp(appYml, app) if(appCompose): f.write(yaml.dump(appCompose, sort_keys=False)) if verbose: print("Wrote " + app + " to " + composeFile) print("Generated configuration successfully") def download(app: str = None): if(app is None): apps = findAndValidateApps(appsDir) for app in apps: data = getAppYml(app) if data: with open(getAppYmlPath(app), 'w') as f: f.write(data) else: print("Warning: Could not download " + app) else: data = getAppYml(app) if data: with open(getAppYmlPath(app), 'w') as f: f.write(data) else: print("Warning: Could not download " + app) def getUserData(): userData = {} if os.path.isfile(userFile): with open(userFile, "r") as f: userData = json.load(f) return userData def startInstalled(): # If userfile doen't exist, just do nothing userData = {} if os.path.isfile(userFile): with open(userFile, "r") as f: userData = json.load(f) threads = [] for app in userData["installedApps"]: print("Starting app {}...".format(app)) # Run runCompose(args.app, "up --detach") asynchrounously for all apps, then exit(0) when all are finished thread = threading.Thread(target=runCompose, args=(app, "up --detach")) thread.start() threads.append(thread) joinThreads(threads) def stopInstalled(): # If userfile doen't exist, just do nothing userData = {} if os.path.isfile(userFile): with open(userFile, "r") as f: userData = json.load(f) threads = [] for app in userData["installedApps"]: print("Stopping app {}...".format(app)) # Run runCompose(args.app, "up --detach") asynchrounously for all apps, then exit(0) when all are finished thread = threading.Thread( target=runCompose, args=(app, "rm --force --stop")) thread.start() threads.append(thread) joinThreads(threads) # Loads an app.yml and converts it to a docker-compose.yml def getApp(appFile: str, appId: str): with open(appFile, 'r') as f: app = yaml.safe_load(f) if not "metadata" in app: raise Exception("Error: Could not find metadata in " + appFile) app["metadata"]["id"] = appId if('version' in app and str(app['version']) == "1"): return createComposeConfigFromV1(app, nodeRoot) else: return createComposeConfigFromV0(app) def compose(app, arguments): # Runs a compose command in the app dir # Before that, check if a docker-compose.yml exists in the app dir composeFile = os.path.join(appsDir, app, "docker-compose.yml") commonComposeFile = os.path.join(appSystemDir, "docker-compose.common.yml") os.environ["APP_DOMAIN"] = subprocess.check_output( "hostname -s 2>/dev/null || echo 'umbrel'", shell=True).decode("utf-8") + ".local" os.environ["APP_HIDDEN_SERVICE"] = subprocess.check_output("cat {} 2>/dev/null || echo 'notyetset.onion'".format( os.path.join(nodeRoot, "tor", "data", "app-{}/hostname".format(app))), shell=True).decode("utf-8") os.environ["APP_SEED"] = deriveEntropy("app-{}-seed".format(app)) # Allow more app seeds, with random numbers from 1-5 assigned in a loop for i in range(1, 6): os.environ["APP_SEED_{}".format(i)] = deriveEntropy("app-{}-seed{}".format(app, i)) os.environ["APP_DATA_DIR"] = os.path.join(appDataDir, app) os.environ["BITCOIN_DATA_DIR"] = os.path.join(nodeRoot, "bitcoin") os.environ["LND_DATA_DIR"] = os.path.join(nodeRoot, "lnd") # List all hidden services for an app and put their hostname in the environment hiddenServices: List[str] = getAppHiddenServices(app) for service in hiddenServices: appHiddenServiceFile = os.path.join( nodeRoot, "tor", "data", "app-{}-{}/hostname".format(app, service)) os.environ["APP_HIDDEN_SERVICE_{}".format(service.upper().replace("-", "_"))] = subprocess.check_output("cat {} 2>/dev/null || echo 'notyetset.onion'".format( appHiddenServiceFile), shell=True).decode("utf-8") if not os.path.isfile(composeFile): print("Error: Could not find docker-compose.yml in " + app) exit(1) os.system( "docker compose --env-file '{}' --project-name '{}' --file '{}' --file '{}' {}".format( os.path.join(nodeRoot, ".env"), app, commonComposeFile, composeFile, arguments)) def remove_readonly(func, path, _): os.chmod(path, stat.S_IWRITE) func(path) def deleteData(app: str): dataDir = os.path.join(appDataDir, app) try: shutil.rmtree(dataDir, onerror=remove_readonly) except FileNotFoundError: pass def createDataDir(app: str): dataDir = os.path.join(appDataDir, app) appDir = os.path.join(appsDir, app) if os.path.isdir(dataDir): deleteData(app) # Recursively copy everything from appDir to dataDir while excluding .gitignore shutil.copytree(appDir, dataDir, symlinks=False, ignore=shutil.ignore_patterns(".gitignore")) # Chown and chmod dataDir to have the same owner and permissions as appDir os.chown(dataDir, os.stat(appDir).st_uid, os.stat(appDir).st_gid) os.chmod(dataDir, os.stat(appDir).st_mode) def setInstalled(app: str): userData = getUserData() if not "installedApps" in userData: userData["installedApps"] = [] userData["installedApps"].append(app) userData["installedApps"] = list(set(userData["installedApps"])) with open(userFile, "w") as f: json.dump(userData, f) def setRemoved(app: str): userData = getUserData() if not "installedApps" in userData: return userData["installedApps"] = list(set(userData["installedApps"])) userData["installedApps"].remove(app) with open(userFile, "w") as f: json.dump(userData, f) def getAppHiddenServices(app: str): torDir = os.path.join(nodeRoot, "tor", "data") # List all subdirectories of torDir which start with app-${APP}- # but return them without the app-${APP}- prefix results = [] for subdir in os.listdir(torDir): if subdir.startswith("app-{}-".format(app)): results.append(subdir[len("app-{}-".format(app)):]) return results # Parse the sources.list repo file, which contains a list of sources in the format # <git-url> <branch> # For every line, clone the repo to a temporary dir and checkout the branch # Then, check that repos apps in the temporary dir/apps and for every app, # overwrite the current app dir with the contents of the temporary dir/apps/app # Also, keep a list of apps from every repo, a repo later in the file may not overwrite an app from a repo earlier in the file def updateRepos(): # Get the list of repos repos = [] with open(sourcesList) as f: repos = f.readlines() # For each repo, clone the repo to a temporary dir, checkout the branch, # and overwrite the current app dir with the contents of the temporary dir/apps/app alreadyInstalled = [] for repo in repos: repo = repo.strip() if repo == "": continue # Split the repo into the git url and the branch repo = repo.split(" ") if len(repo) != 2: print("Error: Invalid repo format in " + sourcesList) exit(1) gitUrl = repo[0] branch = repo[1] # Clone the repo to a temporary dir tempDir = tempfile.mkdtemp() print("Cloning the repository") # Git clone with a depth of 1 to avoid cloning the entire repo # Dont print anything to stdout, as we don't want to see the git clone output subprocess.run("git clone --depth 1 {} {}".format(gitUrl, tempDir), shell=True, stdout=subprocess.DEVNULL) # Overwrite the current app dir with the contents of the temporary dir/apps/app for app in os.listdir(os.path.join(tempDir, "apps")): # if the app is already installed, don't overwrite it if app in alreadyInstalled: continue if os.path.isdir(os.path.join(appsDir, app)): shutil.rmtree(os.path.join(appsDir, app), onerror=remove_readonly) if os.path.isdir(os.path.join(tempDir, "apps", app)): shutil.copytree(os.path.join(tempDir, "apps", app), os.path.join(appsDir, app), symlinks=False, ignore=shutil.ignore_patterns(".gitignore")) alreadyInstalled.append(app) # Remove the temporary dir shutil.rmtree(tempDir)
[((36, 11, 36, 46), 'os.path.join', 'os.path.join', ({(36, 24, 36, 33): 'scriptDir', (36, 35, 36, 39): '""".."""', (36, 41, 36, 45): '""".."""'}, {}), "(scriptDir, '..', '..')", False, 'import os\n'), ((37, 10, 37, 40), 'os.path.join', 'os.path.join', ({(37, 23, 37, 31): 'nodeRoot', (37, 33, 37, 39): '"""apps"""'}, {}), "(nodeRoot, 'apps')", False, 'import os\n'), ((38, 15, 38, 51), 'os.path.join', 'os.path.join', ({(38, 28, 38, 36): 'nodeRoot', (38, 38, 38, 50): '"""app-system"""'}, {}), "(nodeRoot, 'app-system')", False, 'import os\n'), ((39, 14, 39, 56), 'os.path.join', 'os.path.join', ({(39, 27, 39, 39): 'appSystemDir', (39, 41, 39, 55): '"""sources.list"""'}, {}), "(appSystemDir, 'sources.list')", False, 'import os\n'), ((40, 13, 40, 47), 'os.path.join', 'os.path.join', ({(40, 26, 40, 34): 'nodeRoot', (40, 36, 40, 46): '"""app-data"""'}, {}), "(nodeRoot, 'app-data')", False, 'import os\n'), ((41, 11, 41, 52), 'os.path.join', 'os.path.join', ({(41, 24, 41, 32): 'nodeRoot', (41, 34, 41, 38): '"""db"""', (41, 40, 41, 51): '"""user.json"""'}, {}), "(nodeRoot, 'db', 'user.json')", False, 'import os\n'), ((42, 15, 42, 55), 'os.path.join', 'os.path.join', ({(42, 28, 42, 36): 'nodeRoot', (42, 38, 42, 47): '"""scripts"""', (42, 49, 42, 54): '"""app"""'}, {}), "(nodeRoot, 'scripts', 'app')", False, 'import os\n'), ((35, 28, 35, 54), 'os.path.realpath', 'os.path.realpath', ({(35, 45, 35, 53): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((61, 15, 61, 32), 'requests.get', 'requests.get', ({(61, 28, 61, 31): 'url'}, {}), '(url)', False, 'import requests\n'), ((69, 11, 69, 48), 'os.path.join', 'os.path.join', ({(69, 24, 69, 31): 'appsDir', (69, 33, 69, 36): 'app', (69, 38, 69, 47): '"""app.yml"""'}, {}), "(appsDir, app, 'app.yml')", False, 'import os\n'), ((73, 18, 73, 66), 'os.path.join', 'os.path.join', ({(73, 31, 73, 38): 'appsDir', (73, 40, 73, 43): 'app', (73, 45, 73, 65): '"""docker-compose.yml"""'}, {}), "(appsDir, app, 'docker-compose.yml')", False, 'import os\n'), ((74, 13, 74, 50), 'os.path.join', 'os.path.join', ({(74, 26, 74, 33): 'appsDir', (74, 35, 74, 38): 'app', (74, 40, 74, 49): '"""app.yml"""'}, {}), "(appsDir, app, 'app.yml')", False, 'import os\n'), ((78, 15, 78, 53), 'os.path.join', 'os.path.join', ({(78, 28, 78, 35): 'appsDir', (78, 37, 78, 52): '"""registry.json"""'}, {}), "(appsDir, 'registry.json')", False, 'import os\n'), ((82, 16, 82, 69), 'lib.appymlgenerator.convertComposeYMLToAppYML', 'convertComposeYMLToAppYML', ({(82, 42, 82, 49): 'compose', (82, 51, 82, 54): 'app', (82, 56, 82, 68): 'registryData'}, {}), '(compose, app, registryData)', False, 'from lib.appymlgenerator import convertComposeYMLToAppYML\n'), ((89, 11, 89, 39), 'lib.validate.findAndValidateApps', 'findAndValidateApps', ({(89, 31, 89, 38): 'appsDir'}, {}), '(appsDir)', False, 'from lib.validate import findAndValidateApps\n'), ((91, 15, 91, 44), 'lib.metadata.getAppRegistry', 'getAppRegistry', ({(91, 30, 91, 34): 'apps', (91, 36, 91, 43): 'appsDir'}, {}), '(apps, appsDir)', False, 'from lib.metadata import getAppRegistry, getSimpleAppRegistry\n'), ((96, 21, 96, 56), 'lib.metadata.getSimpleAppRegistry', 'getSimpleAppRegistry', ({(96, 42, 96, 46): 'apps', (96, 48, 96, 55): 'appsDir'}, {}), '(apps, appsDir)', False, 'from lib.metadata import getAppRegistry, getSimpleAppRegistry\n'), ((135, 7, 135, 31), 'os.path.isfile', 'os.path.isfile', ({(135, 22, 135, 30): 'userFile'}, {}), '(userFile)', False, 'import os\n'), ((144, 7, 144, 31), 'os.path.isfile', 'os.path.isfile', ({(144, 22, 144, 30): 'userFile'}, {}), '(userFile)', False, 'import os\n'), ((160, 7, 160, 31), 'os.path.isfile', 'os.path.isfile', ({(160, 22, 160, 30): 'userFile'}, {}), '(userFile)', False, 'import os\n'), ((193, 18, 193, 66), 'os.path.join', 'os.path.join', ({(193, 31, 193, 38): 'appsDir', (193, 40, 193, 43): 'app', (193, 45, 193, 65): '"""docker-compose.yml"""'}, {}), "(appsDir, app, 'docker-compose.yml')", False, 'import os\n'), ((194, 24, 194, 79), 'os.path.join', 'os.path.join', ({(194, 37, 194, 49): 'appSystemDir', (194, 51, 194, 78): '"""docker-compose.common.yml"""'}, {}), "(appSystemDir, 'docker-compose.common.yml')", False, 'import os\n'), ((203, 33, 203, 62), 'os.path.join', 'os.path.join', ({(203, 46, 203, 56): 'appDataDir', (203, 58, 203, 61): 'app'}, {}), '(appDataDir, app)', False, 'import os\n'), ((204, 37, 204, 70), 'os.path.join', 'os.path.join', ({(204, 50, 204, 58): 'nodeRoot', (204, 60, 204, 69): '"""bitcoin"""'}, {}), "(nodeRoot, 'bitcoin')", False, 'import os\n'), ((205, 33, 205, 62), 'os.path.join', 'os.path.join', ({(205, 46, 205, 54): 'nodeRoot', (205, 56, 205, 61): '"""lnd"""'}, {}), "(nodeRoot, 'lnd')", False, 'import os\n'), ((223, 4, 223, 33), 'os.chmod', 'os.chmod', ({(223, 13, 223, 17): 'path', (223, 19, 223, 32): 'stat.S_IWRITE'}, {}), '(path, stat.S_IWRITE)', False, 'import os\n'), ((228, 14, 228, 43), 'os.path.join', 'os.path.join', ({(228, 27, 228, 37): 'appDataDir', (228, 39, 228, 42): 'app'}, {}), '(appDataDir, app)', False, 'import os\n'), ((236, 14, 236, 43), 'os.path.join', 'os.path.join', ({(236, 27, 236, 37): 'appDataDir', (236, 39, 236, 42): 'app'}, {}), '(appDataDir, app)', False, 'import os\n'), ((237, 13, 237, 39), 'os.path.join', 'os.path.join', ({(237, 26, 237, 33): 'appsDir', (237, 35, 237, 38): 'app'}, {}), '(appsDir, app)', False, 'import os\n'), ((238, 7, 238, 29), 'os.path.isdir', 'os.path.isdir', ({(238, 21, 238, 28): 'dataDir'}, {}), '(dataDir)', False, 'import os\n'), ((269, 13, 269, 50), 'os.path.join', 'os.path.join', ({(269, 26, 269, 34): 'nodeRoot', (269, 36, 269, 41): '"""tor"""', (269, 43, 269, 49): '"""data"""'}, {}), "(nodeRoot, 'tor', 'data')", False, 'import os\n'), ((273, 18, 273, 36), 'os.listdir', 'os.listdir', ({(273, 29, 273, 35): 'torDir'}, {}), '(torDir)', False, 'import os\n'), ((77, 18, 77, 35), 'yaml.safe_load', 'yaml.safe_load', ({(77, 33, 77, 34): 'f'}, {}), '(f)', False, 'import yaml\n'), ((81, 23, 81, 35), 'json.load', 'json.load', ({(81, 33, 81, 34): 'f'}, {}), '(f)', False, 'import json\n'), ((93, 8, 93, 56), 'json.dump', 'json.dump', (), '', False, 'import json\n'), ((98, 8, 98, 62), 'json.dump', 'json.dump', (), '', False, 'import json\n'), ((103, 22, 103, 70), 'os.path.join', 'os.path.join', ({(103, 35, 103, 42): 'appsDir', (103, 44, 103, 47): 'app', (103, 49, 103, 69): '"""docker-compose.yml"""'}, {}), "(appsDir, app, 'docker-compose.yml')", False, 'import os\n'), ((104, 17, 104, 54), 'os.path.join', 'os.path.join', ({(104, 30, 104, 37): 'appsDir', (104, 39, 104, 42): 'app', (104, 44, 104, 53): '"""app.yml"""'}, {}), "(appsDir, app, 'app.yml')", False, 'import os\n'), ((116, 15, 116, 43), 'lib.validate.findAndValidateApps', 'findAndValidateApps', ({(116, 35, 116, 42): 'appsDir'}, {}), '(appsDir)', False, 'from lib.validate import findAndValidateApps\n'), ((151, 17, 151, 79), 'threading.Thread', 'threading.Thread', (), '', False, 'import threading\n'), ((167, 17, 168, 63), 'threading.Thread', 'threading.Thread', (), '', False, 'import threading\n'), ((178, 14, 178, 31), 'yaml.safe_load', 'yaml.safe_load', ({(178, 29, 178, 30): 'f'}, {}), '(f)', False, 'import yaml\n'), ((185, 15, 185, 55), 'lib.composegenerator.v1.generate.createComposeConfigFromV1', 'createComposeConfigFromV1', ({(185, 41, 185, 44): 'app', (185, 46, 185, 54): 'nodeRoot'}, {}), '(app, nodeRoot)', False, 'from lib.composegenerator.v1.generate import createComposeConfigFromV1\n'), ((187, 15, 187, 45), 'lib.composegenerator.v0.generate.createComposeConfigFromV0', 'createComposeConfigFromV0', ({(187, 41, 187, 44): 'app'}, {}), '(app)', False, 'from lib.composegenerator.v0.generate import createComposeConfigFromV0\n'), ((214, 11, 214, 38), 'os.path.isfile', 'os.path.isfile', ({(214, 26, 214, 37): 'composeFile'}, {}), '(composeFile)', False, 'import os\n'), ((230, 8, 230, 55), 'shutil.rmtree', 'shutil.rmtree', (), '', False, 'import shutil\n'), ((255, 8, 255, 30), 'json.dump', 'json.dump', ({(255, 18, 255, 26): 'userData', (255, 28, 255, 29): 'f'}, {}), '(userData, f)', False, 'import json\n'), ((265, 8, 265, 30), 'json.dump', 'json.dump', ({(265, 18, 265, 26): 'userData', (265, 28, 265, 29): 'f'}, {}), '(userData, f)', False, 'import json\n'), ((305, 18, 305, 36), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ({}, {}), '()', False, 'import tempfile\n'), ((322, 8, 322, 30), 'shutil.rmtree', 'shutil.rmtree', ({(322, 22, 322, 29): 'tempDir'}, {}), '(tempDir)', False, 'import shutil\n'), ((85, 16, 85, 53), 'yaml.dump', 'yaml.dump', (), '', False, 'import yaml\n'), ((92, 14, 92, 52), 'os.path.join', 'os.path.join', ({(92, 27, 92, 34): 'appsDir', (92, 36, 92, 51): '"""registry.json"""'}, {}), "(appsDir, 'registry.json')", False, 'import os\n'), ((97, 14, 97, 53), 'os.path.join', 'os.path.join', ({(97, 27, 97, 39): 'appSystemDir', (97, 41, 97, 52): '"""apps.json"""'}, {}), "(appSystemDir, 'apps.json')", False, 'import os\n'), ((137, 23, 137, 35), 'json.load', 'json.load', ({(137, 33, 137, 34): 'f'}, {}), '(f)', False, 'import json\n'), ((146, 23, 146, 35), 'json.load', 'json.load', ({(146, 33, 146, 34): 'f'}, {}), '(f)', False, 'import json\n'), ((162, 23, 162, 35), 'json.load', 'json.load', ({(162, 33, 162, 34): 'f'}, {}), '(f)', False, 'import json\n'), ((219, 12, 219, 42), 'os.path.join', 'os.path.join', ({(219, 25, 219, 33): 'nodeRoot', (219, 35, 219, 41): '""".env"""'}, {}), "(nodeRoot, '.env')", False, 'import os\n'), ((242, 27, 242, 63), 'shutil.ignore_patterns', 'shutil.ignore_patterns', ({(242, 50, 242, 62): '""".gitignore"""'}, {}), "('.gitignore')", False, 'import shutil\n'), ((244, 22, 244, 37), 'os.stat', 'os.stat', ({(244, 30, 244, 36): 'appDir'}, {}), '(appDir)', False, 'import os\n'), ((244, 46, 244, 61), 'os.stat', 'os.stat', ({(244, 54, 244, 60): 'appDir'}, {}), '(appDir)', False, 'import os\n'), ((245, 22, 245, 37), 'os.stat', 'os.stat', ({(245, 30, 245, 36): 'appDir'}, {}), '(appDir)', False, 'import os\n'), ((311, 30, 311, 59), 'os.path.join', 'os.path.join', ({(311, 43, 311, 50): 'tempDir', (311, 52, 311, 58): '"""apps"""'}, {}), "(tempDir, 'apps')", False, 'import os\n'), ((195, 31, 196, 63), 'subprocess.check_output', 'subprocess.check_output', (), '', False, 'import subprocess\n'), ((315, 29, 315, 55), 'os.path.join', 'os.path.join', ({(315, 42, 315, 49): 'appsDir', (315, 51, 315, 54): 'app'}, {}), '(appsDir, app)', False, 'import os\n'), ((317, 29, 317, 63), 'os.path.join', 'os.path.join', ({(317, 42, 317, 49): 'tempDir', (317, 51, 317, 57): '"""apps"""', (317, 59, 317, 62): 'app'}, {}), "(tempDir, 'apps', app)", False, 'import os\n'), ((108, 24, 108, 62), 'yaml.dump', 'yaml.dump', (), '', False, 'import yaml\n'), ((316, 30, 316, 56), 'os.path.join', 'os.path.join', ({(316, 43, 316, 50): 'appsDir', (316, 52, 316, 55): 'app'}, {}), '(appsDir, app)', False, 'import os\n'), ((318, 32, 318, 66), 'os.path.join', 'os.path.join', ({(318, 45, 318, 52): 'tempDir', (318, 54, 318, 60): '"""apps"""', (318, 62, 318, 65): 'app'}, {}), "(tempDir, 'apps', app)", False, 'import os\n'), ((318, 68, 318, 94), 'os.path.join', 'os.path.join', ({(318, 81, 318, 88): 'appsDir', (318, 90, 318, 93): 'app'}, {}), '(appsDir, app)', False, 'import os\n'), ((319, 55, 319, 91), 'shutil.ignore_patterns', 'shutil.ignore_patterns', ({(319, 78, 319, 90): '""".gitignore"""'}, {}), "('.gitignore')", False, 'import shutil\n')]
YuanruiZJU/SZZ-TSE
features/jit-features/query/query.py
093506f9019a0d8b412dad4672525f93150ca181
from query.base import BaseQuery class CommitMetaQuery(BaseQuery): table_name = 'commit_meta' class DiffusionFeaturesQuery(BaseQuery): table_name = 'diffusion_features' class SizeFeaturesQuery(BaseQuery): table_name = 'size_features' class PurposeFeaturesQuery(BaseQuery): table_name = 'purpose_features' class HistoryFeaturesQuery(BaseQuery): table_name = 'history_features' class ExperienceFeaturesQuery(BaseQuery): table_name = 'experience_features' class ProjectQuery: def __init__(self, project): self.project = project self.cms = CommitMetaQuery(project).do_query() self.diffusion_features = DiffusionFeaturesQuery(project).do_query() self.size_features = SizeFeaturesQuery(project).do_query() self.purpose_features = PurposeFeaturesQuery(project).do_query() self.history_features = HistoryFeaturesQuery(project).do_query() self.exp_features = ExperienceFeaturesQuery(project).do_query() self.__cache_end_commit_id = None @property def end_commit_id(self): if self.__cache_end_commit_id is not None: return self.__cache_end_commit_id commit_id = None for pf in self.purpose_features: if pf.fix: commit_id = pf.commit_id self.__cache_end_commit_id = commit_id return self.__cache_end_commit_id def combine(self): features_dict = dict() for sf in self.size_features: features_dict[sf.commit_id] = dict() features_dict[sf.commit_id]['la'] = sf.la features_dict[sf.commit_id]['ld'] = sf.ld features_dict[sf.commit_id]['lt'] = sf.lt for df in self.diffusion_features: features_dict[df.commit_id]['ns'] = df.ns features_dict[df.commit_id]['nd'] = df.nd features_dict[df.commit_id]['nf'] = df.nf features_dict[df.commit_id]['entropy'] = df.entropy for pf in self.purpose_features: features_dict[pf.commit_id]['fix'] = pf.fix for hf in self.history_features: features_dict[hf.commit_id]['ndev'] = hf.ndev features_dict[hf.commit_id]['age'] = hf.age features_dict[hf.commit_id]['nuc'] = hf.nuc for ef in self.exp_features: features_dict[ef.commit_id]['exp'] = ef.exp features_dict[ef.commit_id]['rexp'] = ef.rexp features_dict[ef.commit_id]['sexp'] = ef.sexp ret_list = list() for cm in self.cms: cm_dict = features_dict[cm.commit_id] if len(cm_dict) == 14: cm_dict['commit_id'] = cm.commit_id ret_list.append(cm_dict) if cm.commit_id == self.end_commit_id: break return ret_list
[]
mikeywaites/flask-arrested
example/mappers.py
6b97ce2ad2765f9acab10f4726e310258aa51de0
from kim import Mapper, field from example.models import Planet, Character class PlanetMapper(Mapper): __type__ = Planet id = field.Integer(read_only=True) name = field.String() description = field.String() created_at = field.DateTime(read_only=True) class CharacterMapper(Mapper): __type__ = Character id = field.Integer(read_only=True) name = field.String() created_at = field.DateTime(read_only=True)
[((10, 9, 10, 38), 'kim.field.Integer', 'field.Integer', (), '', False, 'from kim import Mapper, field\n'), ((11, 11, 11, 25), 'kim.field.String', 'field.String', ({}, {}), '()', False, 'from kim import Mapper, field\n'), ((12, 18, 12, 32), 'kim.field.String', 'field.String', ({}, {}), '()', False, 'from kim import Mapper, field\n'), ((13, 17, 13, 47), 'kim.field.DateTime', 'field.DateTime', (), '', False, 'from kim import Mapper, field\n'), ((20, 9, 20, 38), 'kim.field.Integer', 'field.Integer', (), '', False, 'from kim import Mapper, field\n'), ((21, 11, 21, 25), 'kim.field.String', 'field.String', ({}, {}), '()', False, 'from kim import Mapper, field\n'), ((22, 17, 22, 47), 'kim.field.DateTime', 'field.DateTime', (), '', False, 'from kim import Mapper, field\n')]
escalate/ansible-gitops-example-repository
collections/ansible_collections/community/general/plugins/connection/saltstack.py
f7f7a9fcd09abd982f5fcd3bd196809a6c4c2f08
# Based on local.py (c) 2012, Michael DeHaan <[email protected]> # Based on chroot.py (c) 2013, Maykel Moya <[email protected]> # Based on func.py # (c) 2014, Michael Scherer <[email protected]> # (c) 2017 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = ''' author: Michael Scherer (@mscherer) <[email protected]> name: saltstack short_description: Allow ansible to piggyback on salt minions description: - This allows you to use existing Saltstack infrastructure to connect to targets. ''' import os import base64 from ansible import errors from ansible.plugins.connection import ConnectionBase HAVE_SALTSTACK = False try: import salt.client as sc HAVE_SALTSTACK = True except ImportError: pass class Connection(ConnectionBase): """ Salt-based connections """ has_pipelining = False # while the name of the product is salt, naming that module salt cause # trouble with module import transport = 'community.general.saltstack' def __init__(self, play_context, new_stdin, *args, **kwargs): super(Connection, self).__init__(play_context, new_stdin, *args, **kwargs) self.host = self._play_context.remote_addr def _connect(self): if not HAVE_SALTSTACK: raise errors.AnsibleError("saltstack is not installed") self.client = sc.LocalClient() self._connected = True return self def exec_command(self, cmd, sudoable=False, in_data=None): """ run a command on the remote minion """ super(Connection, self).exec_command(cmd, in_data=in_data, sudoable=sudoable) if in_data: raise errors.AnsibleError("Internal Error: this module does not support optimized module pipelining") self._display.vvv("EXEC %s" % cmd, host=self.host) # need to add 'true;' to work around https://github.com/saltstack/salt/issues/28077 res = self.client.cmd(self.host, 'cmd.exec_code_all', ['bash', 'true;' + cmd]) if self.host not in res: raise errors.AnsibleError("Minion %s didn't answer, check if salt-minion is running and the name is correct" % self.host) p = res[self.host] return p['retcode'], p['stdout'], p['stderr'] @staticmethod def _normalize_path(path, prefix): if not path.startswith(os.path.sep): path = os.path.join(os.path.sep, path) normpath = os.path.normpath(path) return os.path.join(prefix, normpath[1:]) def put_file(self, in_path, out_path): """ transfer a file from local to remote """ super(Connection, self).put_file(in_path, out_path) out_path = self._normalize_path(out_path, '/') self._display.vvv("PUT %s TO %s" % (in_path, out_path), host=self.host) with open(in_path, 'rb') as in_fh: content = in_fh.read() self.client.cmd(self.host, 'hashutil.base64_decodefile', [base64.b64encode(content), out_path]) # TODO test it def fetch_file(self, in_path, out_path): """ fetch a file from remote to local """ super(Connection, self).fetch_file(in_path, out_path) in_path = self._normalize_path(in_path, '/') self._display.vvv("FETCH %s TO %s" % (in_path, out_path), host=self.host) content = self.client.cmd(self.host, 'cp.get_file_str', [in_path])[self.host] open(out_path, 'wb').write(content) def close(self): """ terminate the connection; nothing to do here """ pass
[((49, 22, 49, 38), 'salt.client.LocalClient', 'sc.LocalClient', ({}, {}), '()', True, 'import salt.client as sc\n'), ((73, 19, 73, 41), 'os.path.normpath', 'os.path.normpath', ({(73, 36, 73, 40): 'path'}, {}), '(path)', False, 'import os\n'), ((74, 15, 74, 49), 'os.path.join', 'os.path.join', ({(74, 28, 74, 34): 'prefix', (74, 36, 74, 48): 'normpath[1:]'}, {}), '(prefix, normpath[1:])', False, 'import os\n'), ((47, 18, 47, 67), 'ansible.errors.AnsibleError', 'errors.AnsibleError', ({(47, 38, 47, 66): '"""saltstack is not installed"""'}, {}), "('saltstack is not installed')", False, 'from ansible import errors\n'), ((58, 18, 58, 113), 'ansible.errors.AnsibleError', 'errors.AnsibleError', ({(58, 38, 58, 112): '"""Internal Error: this module does not support optimized module pipelining"""'}, {}), "(\n 'Internal Error: this module does not support optimized module pipelining')", False, 'from ansible import errors\n'), ((64, 18, 64, 133), 'ansible.errors.AnsibleError', 'errors.AnsibleError', ({(64, 38, 64, 132): '("Minion %s didn\'t answer, check if salt-minion is running and the name is correct"\n % self.host)'}, {}), '(\n "Minion %s didn\'t answer, check if salt-minion is running and the name is correct"\n % self.host)', False, 'from ansible import errors\n'), ((72, 19, 72, 50), 'os.path.join', 'os.path.join', ({(72, 32, 72, 43): 'os.path.sep', (72, 45, 72, 49): 'path'}, {}), '(os.path.sep, path)', False, 'import os\n'), ((85, 66, 85, 91), 'base64.b64encode', 'base64.b64encode', ({(85, 83, 85, 90): 'content'}, {}), '(content)', False, 'import base64\n')]
normaldotcom/webvirtmgr
create/views.py
8d822cb94105abf82eb0ff6651a36c43b0911d2a
from django.shortcuts import render_to_response from django.http import HttpResponseRedirect from django.template import RequestContext from django.utils.translation import ugettext_lazy as _ from servers.models import Compute from create.models import Flavor from instance.models import Instance from libvirt import libvirtError from vrtManager.create import wvmCreate from vrtManager import util from create.forms import FlavorAddForm, NewVMForm def create(request, host_id): """ Create new instance. """ if not request.user.is_authenticated(): return HttpResponseRedirect('/login') errors = [] compute = Compute.objects.get(id=host_id) flavors = Flavor.objects.filter().order_by('id') try: conn = wvmCreate(compute.hostname, compute.login, compute.password, compute.type) storages = sorted(conn.get_storages()) networks = sorted(conn.get_networks()) instances = conn.get_instances() get_images = sorted(conn.get_storages_images()) mac_auto = util.randomMAC() except libvirtError as err: errors.append(err.message) if not storages: msg = _("You haven't defined have any storage pools") errors.append(msg) if not networks: msg = _("You haven't defined have any network pools") errors.append(msg) if request.method == 'POST': if 'create_flavor' in request.POST: form = FlavorAddForm(request.POST) if form.is_valid(): data = form.cleaned_data create_flavor = Flavor(label=data['label'], vcpu=data['vcpu'], memory=data['memory'], disk=data['disk']) create_flavor.save() return HttpResponseRedirect(request.get_full_path()) if 'delete_flavor' in request.POST: flavor_id = request.POST.get('flavor', '') delete_flavor = Flavor.objects.get(id=flavor_id) delete_flavor.delete() return HttpResponseRedirect(request.get_full_path()) if 'create' in request.POST: volumes = {} form = NewVMForm(request.POST) if form.is_valid(): data = form.cleaned_data if instances: if data['name'] in instances: msg = _("A virtual machine with this name already exists") errors.append(msg) if not errors: if data['hdd_size']: if not data['mac']: msg = _("No Virtual Machine MAC has been entered") errors.append(msg) else: try: path = conn.create_volume(data['storage'], data['name'], data['hdd_size']) volumes[path] = conn.get_volume_type(path) except libvirtError as msg_error: errors.append(msg_error.message) elif data['template']: templ_path = conn.get_volume_path(data['template']) clone_path = conn.clone_from_template(data['name'], templ_path) volumes[clone_path] = conn.get_volume_type(clone_path) else: if not data['images']: msg = _("First you need to create or select an image") errors.append(msg) else: for vol in data['images'].split(','): try: path = conn.get_volume_path(vol) volumes[path] = conn.get_volume_type(path) except libvirtError as msg_error: errors.append(msg_error.message) if not errors: uuid = util.randomUUID() try: conn.create_instance(data['name'], data['memory'], data['vcpu'], data['host_model'], uuid, volumes, data['networks'], data['virtio'], data['mac']) create_instance = Instance(compute_id=host_id, name=data['name'], uuid=uuid) create_instance.save() return HttpResponseRedirect('/instance/%s/%s/' % (host_id, data['name'])) except libvirtError as msg_error: if data['hdd_size']: conn.delete_volume(volumes.keys()[0]) errors.append(msg_error.message) conn.close() return render_to_response('create.html', locals(), context_instance=RequestContext(request))
[((25, 14, 25, 45), 'servers.models.Compute.objects.get', 'Compute.objects.get', (), '', False, 'from servers.models import Compute\n'), ((22, 15, 22, 45), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', ({(22, 36, 22, 44): '"""/login"""'}, {}), "('/login')", False, 'from django.http import HttpResponseRedirect\n'), ((29, 15, 32, 38), 'vrtManager.create.wvmCreate', 'wvmCreate', ({(29, 25, 29, 41): 'compute.hostname', (30, 25, 30, 38): 'compute.login', (31, 25, 31, 41): 'compute.password', (32, 25, 32, 37): 'compute.type'}, {}), '(compute.hostname, compute.login, compute.password, compute.type)', False, 'from vrtManager.create import wvmCreate\n'), ((38, 19, 38, 35), 'vrtManager.util.randomMAC', 'util.randomMAC', ({}, {}), '()', False, 'from vrtManager import util\n'), ((43, 14, 43, 61), 'django.utils.translation.ugettext_lazy', '_', ({(43, 16, 43, 60): '"""You haven\'t defined have any storage pools"""'}, {}), '("You haven\'t defined have any storage pools")', True, 'from django.utils.translation import ugettext_lazy as _\n'), ((46, 14, 46, 61), 'django.utils.translation.ugettext_lazy', '_', ({(46, 16, 46, 60): '"""You haven\'t defined have any network pools"""'}, {}), '("You haven\'t defined have any network pools")', True, 'from django.utils.translation import ugettext_lazy as _\n'), ((26, 14, 26, 37), 'create.models.Flavor.objects.filter', 'Flavor.objects.filter', ({}, {}), '()', False, 'from create.models import Flavor\n'), ((51, 19, 51, 46), 'create.forms.FlavorAddForm', 'FlavorAddForm', ({(51, 33, 51, 45): 'request.POST'}, {}), '(request.POST)', False, 'from create.forms import FlavorAddForm, NewVMForm\n'), ((62, 28, 62, 60), 'create.models.Flavor.objects.get', 'Flavor.objects.get', (), '', False, 'from create.models import Flavor\n'), ((67, 19, 67, 42), 'create.forms.NewVMForm', 'NewVMForm', ({(67, 29, 67, 41): 'request.POST'}, {}), '(request.POST)', False, 'from create.forms import FlavorAddForm, NewVMForm\n'), ((114, 72, 114, 95), 'django.template.RequestContext', 'RequestContext', ({(114, 87, 114, 94): 'request'}, {}), '(request)', False, 'from django.template import RequestContext\n'), ((54, 32, 57, 57), 'create.models.Flavor', 'Flavor', (), '', False, 'from create.models import Flavor\n'), ((72, 30, 72, 82), 'django.utils.translation.ugettext_lazy', '_', ({(72, 32, 72, 81): '"""A virtual machine with this name already exists"""'}, {}), "('A virtual machine with this name already exists')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((101, 31, 101, 48), 'vrtManager.util.randomUUID', 'util.randomUUID', ({}, {}), '()', False, 'from vrtManager import util\n'), ((77, 34, 77, 78), 'django.utils.translation.ugettext_lazy', '_', ({(77, 36, 77, 77): '"""No Virtual Machine MAC has been entered"""'}, {}), "('No Virtual Machine MAC has been entered')", True, 'from django.utils.translation import ugettext_lazy as _\n'), ((105, 46, 105, 104), 'instance.models.Instance', 'Instance', (), '', False, 'from instance.models import Instance\n'), ((107, 35, 107, 101), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', ({(107, 56, 107, 100): "('/instance/%s/%s/' % (host_id, data['name']))"}, {}), "('/instance/%s/%s/' % (host_id, data['name']))", False, 'from django.http import HttpResponseRedirect\n'), ((91, 34, 91, 82), 'django.utils.translation.ugettext_lazy', '_', ({(91, 36, 91, 81): '"""First you need to create or select an image"""'}, {}), "('First you need to create or select an image')", True, 'from django.utils.translation import ugettext_lazy as _\n')]
andimarafioti/GACELA
utils/wassersteinGradientPenalty.py
34649fb01bdecbcb266db046a8b9c48c141f16e1
import torch __author__ = 'Andres' def calc_gradient_penalty_bayes(discriminator, real_data, fake_data, gamma): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") batch_size = real_data.size()[0] alpha = torch.rand(batch_size, 1, 1, 1) alpha = alpha.expand(real_data.size()).to(device) interpolates = alpha * real_data + ((1 - alpha) * fake_data) interpolates = torch.autograd.Variable(interpolates, requires_grad=True).to(device) disc_interpolates = discriminator(interpolates) gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolates, grad_outputs=torch.ones(disc_interpolates.size()).to(device), create_graph=True, retain_graph=True, only_inputs=True)[0] gradient_penalty = ((gradients.norm(2) - 1) ** 2) * gamma return gradient_penalty
[((9, 12, 9, 43), 'torch.rand', 'torch.rand', ({(9, 23, 9, 33): 'batch_size', (9, 35, 9, 36): '1', (9, 38, 9, 39): '1', (9, 41, 9, 42): '1'}, {}), '(batch_size, 1, 1, 1)', False, 'import torch\n'), ((6, 36, 6, 61), 'torch.cuda.is_available', 'torch.cuda.is_available', ({}, {}), '()', False, 'import torch\n'), ((13, 19, 13, 76), 'torch.autograd.Variable', 'torch.autograd.Variable', (), '', False, 'import torch\n')]
butla/experiments
pytest_capture_log_error/test_file.py
8c8ade15bb01978763d6618342fa42ad7563e38f
import a_file def test_a(capsys): assert a_file.bla() == 5 assert a_file.LOG_MESSAGE in capsys.readouterr().err
[((4, 11, 4, 23), 'a_file.bla', 'a_file.bla', ({}, {}), '()', False, 'import a_file\n')]
Magier/Aetia
src_py/ui/identify_page.py
7f6045d99904b808e1201f445d0d10b0dce54c37
import streamlit as st from ui.session_state import SessionState, get_state from infer import ModelStage def show(state: SessionState): st.header("identify") state = get_state() if state.model.stage < ModelStage.DEFINED: st.error("Please create the model first!")
[((7, 4, 7, 25), 'streamlit.header', 'st.header', ({(7, 14, 7, 24): '"""identify"""'}, {}), "('identify')", True, 'import streamlit as st\n'), ((8, 12, 8, 23), 'ui.session_state.get_state', 'get_state', ({}, {}), '()', False, 'from ui.session_state import SessionState, get_state\n'), ((10, 8, 10, 50), 'streamlit.error', 'st.error', ({(10, 17, 10, 49): '"""Please create the model first!"""'}, {}), "('Please create the model first!')", True, 'import streamlit as st\n')]
luofeisg/OpenKE-PuTransE
openke/data/UniverseTrainDataLoader.py
0bfefb3917e7479520917febd91a9f4d7353c7fc
''' MIT License Copyright (c) 2020 Rashid Lafraie Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import os import ctypes import numpy as np from .TrainDataLoader import TrainDataLoader class UniverseTrainDataLoader(TrainDataLoader): def __init__(self, in_path="./", batch_size=None, nbatches=None, threads=8, sampling_mode="normal", bern_flag=0, filter_flag=1, neg_ent=1, neg_rel=0, initial_random_seed=2): super(UniverseTrainDataLoader, self).__init__(in_path=in_path, batch_size=batch_size, nbatches=nbatches, threads=threads, sampling_mode=sampling_mode, bern_flag=bern_flag, filter_flag=filter_flag, neg_ent=neg_ent, neg_rel=neg_rel, initial_random_seed=initial_random_seed) self.entity_total_universe = 0 self.relation_total_universe = 0 self.train_total_universe = 0 """argtypes""" self.lib.sampling.argtypes = [ ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_int64, ctypes.c_int64, ctypes.c_int64, ctypes.c_int64, ctypes.c_int64, ctypes.c_int64, ctypes.c_int64 ] self.lib.getParallelUniverse.argtypes = [ ctypes.c_int64, ctypes.c_float, ctypes.c_int64 ] self.lib.getEntityRemapping.argtypes = [ ctypes.c_void_p ] self.lib.getRelationRemapping.argtypes = [ ctypes.c_void_p ] self.lib.getEntityTotalUniverse.restype = ctypes.c_int64 self.lib.getRelationTotalUniverse.restype = ctypes.c_int64 self.lib.getTrainTotalUniverse.restype = ctypes.c_int64 def swap_helpers(self): self.lib.swapHelpers() def reset_universe(self): self.lib.resetUniverse() self.set_nbatches(self.lib.getTrainTotal, self.nbatches) def get_universe_mappings(self): entity_remapping = np.zeros(self.entity_total_universe, dtype=np.int64) relation_remapping = np.zeros(self.relation_total_universe, dtype=np.int64) entity_remapping_addr = entity_remapping.__array_interface__["data"][0] relation_remapping_addr = relation_remapping.__array_interface__["data"][0] self.lib.getEntityRemapping(entity_remapping_addr) self.lib.getRelationRemapping(relation_remapping_addr) return entity_remapping, relation_remapping def compile_universe_dataset(self, triple_constraint, balance_param, relation_in_focus): self.lib.getParallelUniverse(triple_constraint, balance_param, relation_in_focus) self.entity_total_universe = self.lib.getEntityTotalUniverse() self.relation_total_universe = self.lib.getRelationTotalUniverse() self.train_total_universe = self.lib.getTrainTotalUniverse() self.set_nbatches(self.train_total_universe, self.nbatches)
[((84, 27, 84, 79), 'numpy.zeros', 'np.zeros', (), '', True, 'import numpy as np\n'), ((85, 29, 85, 83), 'numpy.zeros', 'np.zeros', (), '', True, 'import numpy as np\n')]