repo_name
stringlengths
7
94
repo_path
stringlengths
4
237
repo_head_hexsha
stringlengths
40
40
content
stringlengths
10
680k
apis
stringlengths
2
840k
mark-nicholson/python-editline
examples/elCmd.py
c23f1071c4b832a92f66e2f49142e5c5f00e500d
"""A generic class to build line-oriented command interpreters. Interpreters constructed with this class obey the following conventions: 1. End of file on input is processed as the command 'EOF'. 2. A command is parsed out of each line by collecting the prefix composed of characters in the identchars member. 3. A command `foo' is dispatched to a method 'do_foo()'; the do_ method is passed a single argument consisting of the remainder of the line. 4. Typing an empty line repeats the last command. (Actually, it calls the method `emptyline', which may be overridden in a subclass.) 5. There is a predefined `help' method. Given an argument `topic', it calls the command `help_topic'. With no arguments, it lists all topics with defined help_ functions, broken into up to three topics; documented commands, miscellaneous help topics, and undocumented commands. 6. The command '?' is a synonym for `help'. The command '!' is a synonym for `shell', if a do_shell method exists. 7. If completion is enabled, completing commands will be done automatically, and completing of commands args is done by calling complete_foo() with arguments text, line, begidx, endidx. text is string we are matching against, all returned matches must begin with it. line is the current input line (lstripped), begidx and endidx are the beginning and end indexes of the text being matched, which could be used to provide different completion depending upon which position the argument is in. The `default' method may be overridden to intercept commands for which there is no do_ method. The `completedefault' method may be overridden to intercept completions for commands that have no complete_ method. The data member `self.ruler' sets the character used to draw separator lines in the help messages. If empty, no ruler line is drawn. It defaults to "=". If the value of `self.intro' is nonempty when the cmdloop method is called, it is printed out on interpreter startup. This value may be overridden via an optional argument to the cmdloop() method. The data members `self.doc_header', `self.misc_header', and `self.undoc_header' set the headers used for the help function's listings of documented functions, miscellaneous topics, and undocumented functions respectively. """ import string, sys __all__ = ["Cmd"] PROMPT = '(Cmd) ' IDENTCHARS = string.ascii_letters + string.digits + '_' class ElCmd: """A simple framework for writing line-oriented command interpreters. These are often useful for test harnesses, administrative tools, and prototypes that will later be wrapped in a more sophisticated interface. A Cmd instance or subclass instance is a line-oriented interpreter framework. There is no good reason to instantiate Cmd itself; rather, it's useful as a superclass of an interpreter class you define yourself in order to inherit Cmd's methods and encapsulate action methods. """ prompt = PROMPT identchars = IDENTCHARS ruler = '=' lastcmd = '' intro = None doc_leader = "" doc_header = "Documented commands (type help <topic>):" misc_header = "Miscellaneous help topics:" undoc_header = "Undocumented commands:" nohelp = "*** No help on %s" use_rawinput = False def __init__(self, completekey='tab', stdin=None, stdout=None): """Instantiate a line-oriented interpreter framework. The optional argument 'completekey' is the readline name of a completion key; it defaults to the Tab key. If completekey is not None and the readline module is available, command completion is done automatically. The optional arguments stdin and stdout specify alternate input and output file objects; if not specified, sys.stdin and sys.stdout are used. """ if stdin is not None: self.stdin = stdin else: self.stdin = sys.stdin if stdout is not None: self.stdout = stdout else: self.stdout = sys.stdout self.cmdqueue = [] self.completekey = completekey if not self.use_rawinput and self.completekey: try: import editline self.editline = editline.editline("CMD", self.stdin, self.stdout, sys.stderr) self.editline.rl_completer = self.complete except ImportError: print("Failed to import editline") pass def cmdloop(self, intro=None): """Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action methods, passing them the remainder of the line as argument. """ self.preloop() try: if intro is not None: self.intro = intro if self.intro: self.stdout.write(str(self.intro)+"\n") stop = None while not stop: if self.cmdqueue: line = self.cmdqueue.pop(0) else: if self.use_rawinput: try: line = input(self.prompt) except EOFError: line = 'EOF' else: self.editline.prompt = self.prompt line = self.editline.readline() if not len(line): line = 'EOF' else: line = line.rstrip('\r\n') line = self.precmd(line) stop = self.onecmd(line) stop = self.postcmd(stop, line) self.postloop() finally: pass def precmd(self, line): """Hook method executed just before the command line is interpreted, but after the input prompt is generated and issued. """ return line def postcmd(self, stop, line): """Hook method executed just after a command dispatch is finished.""" return stop def preloop(self): """Hook method executed once when the cmdloop() method is called.""" pass def postloop(self): """Hook method executed once when the cmdloop() method is about to return. """ pass def parseline(self, line): """Parse the line into a command name and a string containing the arguments. Returns a tuple containing (command, args, line). 'command' and 'args' may be None if the line couldn't be parsed. """ line = line.strip() if not line: return None, None, line elif line[0] == '?': line = 'help ' + line[1:] elif line[0] == '!': if hasattr(self, 'do_shell'): line = 'shell ' + line[1:] else: return None, None, line i, n = 0, len(line) while i < n and line[i] in self.identchars: i = i+1 cmd, arg = line[:i], line[i:].strip() return cmd, arg, line def onecmd(self, line): """Interpret the argument as though it had been typed in response to the prompt. This may be overridden, but should not normally need to be; see the precmd() and postcmd() methods for useful execution hooks. The return value is a flag indicating whether interpretation of commands by the interpreter should stop. """ cmd, arg, line = self.parseline(line) if not line: return self.emptyline() if cmd is None: return self.default(line) self.lastcmd = line if line == 'EOF' : print("") print("Bye") sys.exit(0) if cmd == '': return self.default(line) else: try: func = getattr(self, 'do_' + cmd) except AttributeError: return self.default(line) return func(arg) def emptyline(self): """Called when an empty line is entered in response to the prompt. If this method is not overridden, it repeats the last nonempty command entered. """ if self.lastcmd: return self.onecmd(self.lastcmd) def default(self, line): """Called on an input line when the command prefix is not recognized. If this method is not overridden, it prints an error message and returns. """ self.stdout.write('*** Unknown syntax: %s (%d)\n' % (line,len(line))) def completedefault(self, *ignored): """Method called to complete an input line when no command-specific complete_*() method is available. By default, it returns an empty list. """ return [] def completenames(self, text, *ignored): dotext = 'do_'+text return [a[3:] for a in self.get_names() if a.startswith(dotext)] def complete(self, text, state): """Return the next possible completion for 'text'. If a command has not been entered, then complete against command list. Otherwise try to call complete_<command> to get list of completions. """ if state == 0: origline = self.editline.get_line_buffer() line = origline.lstrip() stripped = len(origline) - len(line) begidx = self.editline.get_begidx() - stripped endidx = self.editline.get_endidx() - stripped if begidx>0: cmd, args, foo = self.parseline(line) if cmd == '': compfunc = self.completedefault else: try: compfunc = getattr(self, 'complete_' + cmd) except AttributeError: compfunc = self.completedefault else: compfunc = self.completenames self.completion_matches = compfunc(text, line, begidx, endidx) try: return self.completion_matches[state] except IndexError: return None def get_names(self): # This method used to pull in base class attributes # at a time dir() didn't do it yet. return dir(self.__class__) def complete_help(self, *args): commands = set(self.completenames(*args)) topics = set(a[5:] for a in self.get_names() if a.startswith('help_' + args[0])) return list(commands | topics) def do_help(self, arg): 'List available commands with "help" or detailed help with "help cmd".' if arg: # XXX check arg syntax try: func = getattr(self, 'help_' + arg) except AttributeError: try: doc=getattr(self, 'do_' + arg).__doc__ if doc: self.stdout.write("%s\n"%str(doc)) return except AttributeError: pass self.stdout.write("%s\n"%str(self.nohelp % (arg,))) return func() else: names = self.get_names() cmds_doc = [] cmds_undoc = [] help = {} for name in names: if name[:5] == 'help_': help[name[5:]]=1 names.sort() # There can be duplicates if routines overridden prevname = '' for name in names: if name[:3] == 'do_': if name == prevname: continue prevname = name cmd=name[3:] if cmd in help: cmds_doc.append(cmd) del help[cmd] elif getattr(self, name).__doc__: cmds_doc.append(cmd) else: cmds_undoc.append(cmd) self.stdout.write("%s\n"%str(self.doc_leader)) self.print_topics(self.doc_header, cmds_doc, 15,80) self.print_topics(self.misc_header, list(help.keys()),15,80) self.print_topics(self.undoc_header, cmds_undoc, 15,80) def print_topics(self, header, cmds, cmdlen, maxcol): if cmds: self.stdout.write("%s\n"%str(header)) if self.ruler: self.stdout.write("%s\n"%str(self.ruler * len(header))) self.columnize(cmds, maxcol-1) self.stdout.write("\n") def columnize(self, list, displaywidth=80): """Display a list of strings as a compact set of columns. Each column is only as wide as necessary. Columns are separated by two spaces (one was not legible enough). """ if not list: self.stdout.write("<empty>\n") return nonstrings = [i for i in range(len(list)) if not isinstance(list[i], str)] if nonstrings: raise TypeError("list[i] not a string for i in %s" % ", ".join(map(str, nonstrings))) size = len(list) if size == 1: self.stdout.write('%s\n'%str(list[0])) return # Try every row count from 1 upwards for nrows in range(1, len(list)): ncols = (size+nrows-1) // nrows colwidths = [] totwidth = -2 for col in range(ncols): colwidth = 0 for row in range(nrows): i = row + nrows*col if i >= size: break x = list[i] colwidth = max(colwidth, len(x)) colwidths.append(colwidth) totwidth += colwidth + 2 if totwidth > displaywidth: break if totwidth <= displaywidth: break else: nrows = len(list) ncols = 1 colwidths = [0] for row in range(nrows): texts = [] for col in range(ncols): i = row + nrows*col if i >= size: x = "" else: x = list[i] texts.append(x) while texts and not texts[-1]: del texts[-1] for col in range(len(texts)): texts[col] = texts[col].ljust(colwidths[col]) self.stdout.write("%s\n"%str(" ".join(texts))) class MyCmd(ElCmd,object): def do_bleep(self, s): print("bleep!") def do_blob(self, s): print("blob!") def do_bob(self, s): print("bob!") def do_mods(self, s): print(sys.modules.keys()) if __name__ == '__main__': mc = MyCmd() mc.cmdloop()
[((208, 12, 208, 23), 'sys.exit', 'sys.exit', ({(208, 21, 208, 22): '(0)'}, {}), '(0)', False, 'import string, sys\n'), ((414, 14, 414, 32), 'sys.modules.keys', 'sys.modules.keys', ({}, {}), '()', False, 'import string, sys\n'), ((101, 32, 102, 56), 'editline.editline', 'editline.editline', ({(101, 50, 101, 55): '"""CMD"""', (102, 20, 102, 30): 'self.stdin', (102, 32, 102, 43): 'self.stdout', (102, 45, 102, 55): 'sys.stderr'}, {}), "('CMD', self.stdin, self.stdout, sys.stderr)", False, 'import editline\n')]
Shanu85/FCS_Project
ecommerce-website/orders/admin.py
def3437d58b4d2ff00e26c0a5ca769af66eccfad
from django.contrib import admin from .models import Order, receiverInfo @admin.register(Order) class OrderAdmin(admin.ModelAdmin): date_hierarchy = 'created_at' list_display = ('user', 'code', 'total_price', 'shipping_status', 'created_at') list_display_links = ('user',) list_editable = ('shipping_status',) list_filter = ('shipping_status', 'payment_mode', 'created_at') list_per_page = 25 search_fields = ('user__phone_number', 'user__email', 'code') readonly_fields = ('user','cart', 'receiver', 'payment_mode', 'shipping_status', 'code') def total_price(self, obj): return obj.cart.total_price def has_add_permission(self, request): return False @admin.register(receiverInfo) class receiverInfoAdmin(admin.ModelAdmin): date_hierarchy = 'created_at' list_display = ('id', 'full_name', 'phone_number', 'address', 'created_at') list_display_links = ('id', 'full_name') list_filter = ('created_at',) list_per_page = 25 search_fields = ('full_name', 'phone_number', 'address') readonly_fields = ('full_name', 'phone_number', 'address')
[((6, 1, 6, 22), 'django.contrib.admin.register', 'admin.register', ({(6, 16, 6, 21): 'Order'}, {}), '(Order)', False, 'from django.contrib import admin\n'), ((23, 1, 23, 29), 'django.contrib.admin.register', 'admin.register', ({(23, 16, 23, 28): 'receiverInfo'}, {}), '(receiverInfo)', False, 'from django.contrib import admin\n')]
jeremyCtown/data-structures-and-algorithms
data_structures/linked_lists/ll-kth-from-end/ll_kth.py
d4ba8741f858fb5298f8ce560240373fb7742e20
from node import Node class LinkedList: """ initializes LL """ def __init__(self, iter=[]): self.head = None self._size = 0 for item in reversed(iter): self.insert(item) def __repr__(self): """ assumes head will have a val and we will need this """ return '<head> => {}'.format(self.head.val) def __str__(self): """ this is where we can see the list""" def __len__(self): """ returns size of LL """ return self._size def insert(self, val): """ basic insertion method for adding to front of LL """ self.head = Node(val, self.head) self._size += 1 def append(self, val): """ appends node to the end of the LL """ new_node = Node(val, None) current = self.head._next while current._next is not None: current._next = current._next._next if current._next._next is None: current._next._next = new_node new_node._next is None self._size += 1 return new_node._next def insert_before(self, val, new_val): """ inserts node before node at val """ new_node = Node(new_val) current = self.head._next while current._next is not None: if current._next.val == val: new_node._next = current._next current._next = new_node self._size += 1 break current = current._next if current._next is None: raise ValueError("Data not in list") def insert_after(self, val, new_val): """ inserts node after node at val """ new_node = Node(new_val) current = self.head._next while current._next is not None: if current.val == val: new_node._next = current._next._next current._next = new_node self._size += 1 break current = current._next if current._next is None: raise ValueError("Data not in list") def kth_from_end(self, k): """ returns node at kth from end """ if self._size - k < 0: raise AttributeError current = self.head for i in range(self._size - k - 1): current = current._next return current
[((34, 20, 34, 40), 'node.Node', 'Node', ({(34, 25, 34, 28): 'val', (34, 30, 34, 39): 'self.head'}, {}), '(val, self.head)', False, 'from node import Node\n'), ((41, 19, 41, 34), 'node.Node', 'Node', ({(41, 24, 41, 27): 'val', (41, 29, 41, 33): 'None'}, {}), '(val, None)', False, 'from node import Node\n'), ((55, 19, 55, 32), 'node.Node', 'Node', ({(55, 24, 55, 31): 'new_val'}, {}), '(new_val)', False, 'from node import Node\n'), ((73, 19, 73, 32), 'node.Node', 'Node', ({(73, 24, 73, 31): 'new_val'}, {}), '(new_val)', False, 'from node import Node\n')]
ckamtsikis/cmssw
MuonAnalysis/MomentumScaleCalibration/test/LikelihoodPdfDBReader_cfg.py
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
import FWCore.ParameterSet.Config as cms process = cms.Process("LIKELIHOODPDFDBREADER") # process.load("MuonAnalysis.MomentumScaleCalibration.local_CSA08_Y_cff") process.source = cms.Source("EmptySource", numberEventsInRun = cms.untracked.uint32(1), firstRun = cms.untracked.uint32(1) ) process.load("Configuration.StandardSequences.MagneticField_cff") process.load("Geometry.CMSCommonData.cmsIdealGeometryXML_cfi") process.load("Geometry.CommonTopologies.globalTrackingGeometry_cfi") process.load("RecoMuon.DetLayers.muonDetLayerGeometry_cfi") process.load("Geometry.MuonNumbering.muonNumberingInitialization_cfi") process.load("RecoMuon.TrackingTools.MuonServiceProxy_cff") # process.source = cms.Source("PoolSource", # fileNames = cms.untracked.vstring() # ) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1) ) process.poolDBESSource = cms.ESSource("PoolDBESSource", BlobStreamerName = cms.untracked.string('TBufferBlobStreamingService'), DBParameters = cms.PSet( messageLevel = cms.untracked.int32(2), authenticationPath = cms.untracked.string('/afs/cern.ch/cms/DB/conddb') ), timetype = cms.untracked.string('runnumber'), connect = cms.string('sqlite_file:dummy2.db'), toGet = cms.VPSet(cms.PSet( record = cms.string('MuScleFitLikelihoodPdfRcd'), tag = cms.string('MuScleFitLikelihoodPdf_2_1_12') )) ) process.LikelihoodPdfDBReaderModule = cms.EDAnalyzer( "LikelihoodPdfDBReader" ) process.p1 = cms.Path(process.LikelihoodPdfDBReaderModule)
[((3, 10, 3, 46), 'FWCore.ParameterSet.Config.Process', 'cms.Process', ({(3, 22, 3, 45): '"""LIKELIHOODPDFDBREADER"""'}, {}), "('LIKELIHOODPDFDBREADER')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((45, 38, 47, 1), 'FWCore.ParameterSet.Config.EDAnalyzer', 'cms.EDAnalyzer', ({(46, 4, 46, 27): '"""LikelihoodPdfDBReader"""'}, {}), "('LikelihoodPdfDBReader')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((49, 13, 49, 58), 'FWCore.ParameterSet.Config.Path', 'cms.Path', ({(49, 22, 49, 57): 'process.LikelihoodPdfDBReaderModule'}, {}), '(process.LikelihoodPdfDBReaderModule)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((7, 24, 7, 47), 'FWCore.ParameterSet.Config.untracked.uint32', 'cms.untracked.uint32', ({(7, 45, 7, 46): '1'}, {}), '(1)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((8, 15, 8, 38), 'FWCore.ParameterSet.Config.untracked.uint32', 'cms.untracked.uint32', ({(8, 36, 8, 37): '1'}, {}), '(1)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((28, 12, 28, 34), 'FWCore.ParameterSet.Config.untracked.int32', 'cms.untracked.int32', ({(28, 32, 28, 33): '1'}, {}), '(1)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((32, 22, 32, 73), 'FWCore.ParameterSet.Config.untracked.string', 'cms.untracked.string', ({(32, 43, 32, 72): '"""TBufferBlobStreamingService"""'}, {}), "('TBufferBlobStreamingService')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((37, 15, 37, 48), 'FWCore.ParameterSet.Config.untracked.string', 'cms.untracked.string', ({(37, 36, 37, 47): '"""runnumber"""'}, {}), "('runnumber')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((38, 14, 38, 49), 'FWCore.ParameterSet.Config.string', 'cms.string', ({(38, 25, 38, 48): '"""sqlite_file:dummy2.db"""'}, {}), "('sqlite_file:dummy2.db')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((34, 23, 34, 45), 'FWCore.ParameterSet.Config.untracked.int32', 'cms.untracked.int32', ({(34, 43, 34, 44): '2'}, {}), '(2)', True, 'import FWCore.ParameterSet.Config as cms\n'), ((35, 29, 35, 79), 'FWCore.ParameterSet.Config.untracked.string', 'cms.untracked.string', ({(35, 50, 35, 78): '"""/afs/cern.ch/cms/DB/conddb"""'}, {}), "('/afs/cern.ch/cms/DB/conddb')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((40, 17, 40, 56), 'FWCore.ParameterSet.Config.string', 'cms.string', ({(40, 28, 40, 55): '"""MuScleFitLikelihoodPdfRcd"""'}, {}), "('MuScleFitLikelihoodPdfRcd')", True, 'import FWCore.ParameterSet.Config as cms\n'), ((41, 14, 41, 57), 'FWCore.ParameterSet.Config.string', 'cms.string', ({(41, 25, 41, 56): '"""MuScleFitLikelihoodPdf_2_1_12"""'}, {}), "('MuScleFitLikelihoodPdf_2_1_12')", True, 'import FWCore.ParameterSet.Config as cms\n')]
vinid/fast_fine_tuna
fast_fine_tuna/fast_fine_tuna.py
2d128f58df0407448cdb2e179972573afa7ac636
from transformers import AutoModel, AutoModelForSequenceClassification, AutoTokenizer, AutoConfig from sklearn.model_selection import StratifiedKFold import numpy as np import torch from fast_fine_tuna.dataset import MainDatasetDouble, MainDataset from transformers import AdamW from torch.utils.data import DataLoader import os from tqdm import tqdm from fast_fine_tuna.models import MiniModel from torch import nn class FastFineTuna: def __init__(self, model_name, tokenizer_name): self.model_name = model_name self.tokenizer_name = tokenizer_name self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') def cross_validate_fit(self, texts, labels, splits=5, epochs=5, batch_size=16, learning_rate=5e-5): config = AutoConfig.from_pretrained(self.model_name, num_labels=len(set(labels)), finetuning_task="custom") tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_name) texts = np.array(texts) labels = np.array(labels) skf = StratifiedKFold(n_splits=splits) original = [] predicted = [] for train_index, test_index in skf.split(texts, labels): model = AutoModelForSequenceClassification.from_pretrained(self.model_name, config=config) X_train, X_test = texts[train_index].tolist(), texts[test_index].tolist() y_train, y_test = labels[train_index].tolist(), labels[test_index].tolist() # not the smartest way to do this, but faster to code up tokenized_train = tokenizer(X_train, truncation=True, padding=True) tokenized_test = tokenizer(X_test, truncation=True, padding=True) train_dataset = MainDataset(tokenized_train, y_train) test_dataset = MainDataset(tokenized_test, y_test) model.to(self.device) model.train() train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) optim = AdamW(model.parameters(), lr=learning_rate) pbar = tqdm(total=epochs, position=0, leave=True) for epoch in range(epochs): pbar.update(1) for batch in train_loader: optim.zero_grad() input_ids = batch['input_ids'].to(self.device) attention_mask = batch['attention_mask'].to(self.device) lab = batch['labels'].to(self.device) outputs = model(input_ids, attention_mask=attention_mask, labels=lab) loss = outputs[0] loss.backward() optim.step() pbar.close() model.eval() loader = DataLoader(test_dataset, batch_size=batch_size) original.extend(y_test) with torch.no_grad(): for batch in loader: input_ids = batch['input_ids'].to(self.device) attention_mask = batch['attention_mask'].to(self.device) outputs = model(input_ids, attention_mask=attention_mask) predicted.extend(torch.argmax(outputs["logits"], axis=1).cpu().numpy().tolist()) del model return original, predicted def train_and_save(self, texts, labels, path, epochs=5, batch_size=16, learning_rate=5e-5): config = AutoConfig.from_pretrained(self.model_name, num_labels=len(set(labels)), finetuning_task="custom") model = AutoModelForSequenceClassification.from_pretrained(self.model_name, config=config) tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_name) tokenized_train = tokenizer(texts, truncation=True, padding=True) train_dataset = MainDataset(tokenized_train, labels) model.to(self.device) model.train() train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) optim = AdamW(model.parameters(), lr=learning_rate) pbar = tqdm(total=epochs, position=0, leave=True) for epoch in range(epochs): pbar.update(1) for batch in train_loader: optim.zero_grad() input_ids = batch['input_ids'].to(self.device) attention_mask = batch['attention_mask'].to(self.device) lab = batch['labels'].to(self.device) outputs = model(input_ids, attention_mask=attention_mask, labels=lab) loss = outputs[0] loss.backward() optim.step() pbar.close() os.makedirs(path) model.save_pretrained(path) tokenizer.save_pretrained(path) class DoubleFastFineTuna: def __init__(self, model_name, tokenizer_name): self.model_name = model_name self.tokenizer_name = tokenizer_name self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') def cross_validate_fit(self, texts, labels_A, labels_B, splits=5, epochs=5, batch_size=16, learning_rate=5e-5, ): tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_name) texts = np.array(texts) labels_A = np.array(labels_A) labels_B = np.array(labels_B) skf = StratifiedKFold(n_splits=splits) original_A = [] original_B = [] predicted_A = [] predicted_B = [] for train_index, test_index in skf.split(texts, labels_A, labels_B): model = MiniModel(self.model_name, len(set(labels_A)), len(set(labels_B))) X_train, X_test = texts[train_index].tolist(), texts[test_index].tolist() y_A_train, y_A_test = labels_A[train_index].tolist(), labels_A[test_index].tolist() y_B_train, y_B_test = labels_B[train_index].tolist(), labels_B[test_index].tolist() # not the smartest way to do this, but faster to code up tokenized_train = tokenizer(X_train, truncation=True, padding=True) tokenized_test = tokenizer(X_test, truncation=True, padding=True) train_dataset = MainDatasetDouble(tokenized_train, y_A_train, y_B_train) test_dataset = MainDatasetDouble(tokenized_test, y_A_test, y_B_test) model.to(self.device) model.train() train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) optim = AdamW(model.parameters(), lr=learning_rate) pbar = tqdm(total=epochs, position=0, leave=True) for epoch in range(epochs): pbar.update(1) for batch in train_loader: optim.zero_grad() input_ids = batch['input_ids'].to(self.device) attention_mask = batch['attention_mask'].to(self.device) lab_A = batch['labels_A'].to(self.device) lab_B = batch['labels_B'].to(self.device) outputs = model(input_ids, attention_mask=attention_mask) loss = nn.CrossEntropyLoss() loss_A = loss(outputs[0], lab_A) loss_B = loss(outputs[1], lab_B) loss = loss_A + loss_B loss.backward() optim.step() pbar.close() model.eval() loader = DataLoader(test_dataset, batch_size=batch_size) original_A.extend(y_A_test) original_B.extend(y_B_test) with torch.no_grad(): for batch in loader: input_ids = batch['input_ids'].to(self.device) attention_mask = batch['attention_mask'].to(self.device) outputs = model(input_ids, attention_mask=attention_mask) predicted_A.extend(torch.argmax(outputs[0], axis=1).cpu().numpy().tolist()) predicted_B.extend(torch.argmax(outputs[1], axis=1).cpu().numpy().tolist()) del model return original_A, original_B, predicted_A, predicted_B def train_and_save(self, texts, labels, path, epochs=5, batch_size=16, learning_rate=5e-5): config = AutoConfig.from_pretrained(self.model_name, num_labels=len(set(labels)), finetuning_task="custom") model = AutoModelForSequenceClassification.from_pretrained(self.model_name, config=config) tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_name) tokenized_train = tokenizer(texts, truncation=True, padding=True) train_dataset = MainDataset(tokenized_train, labels) model.to(self.device) model.train() train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) optim = AdamW(model.parameters(), lr=learning_rate) pbar = tqdm(total=epochs, position=0, leave=True) for epoch in range(epochs): pbar.update(1) for batch in train_loader: optim.zero_grad() input_ids = batch['input_ids'].to(self.device) attention_mask = batch['attention_mask'].to(self.device) lab = batch['labels'].to(self.device) outputs = model(input_ids, attention_mask=attention_mask, labels=lab) loss = outputs[0] loss.backward() optim.step() pbar.close() os.makedirs(path) model.save_pretrained(path) tokenizer.save_pretrained(path)
[((24, 20, 24, 70), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', ({(24, 50, 24, 69): 'self.tokenizer_name'}, {}), '(self.tokenizer_name)', False, 'from transformers import AutoModel, AutoModelForSequenceClassification, AutoTokenizer, AutoConfig\n'), ((25, 16, 25, 31), 'numpy.array', 'np.array', ({(25, 25, 25, 30): 'texts'}, {}), '(texts)', True, 'import numpy as np\n'), ((26, 17, 26, 33), 'numpy.array', 'np.array', ({(26, 26, 26, 32): 'labels'}, {}), '(labels)', True, 'import numpy as np\n'), ((28, 14, 28, 46), 'sklearn.model_selection.StratifiedKFold', 'StratifiedKFold', (), '', False, 'from sklearn.model_selection import StratifiedKFold\n'), ((86, 16, 86, 98), 'transformers.AutoModelForSequenceClassification.from_pretrained', 'AutoModelForSequenceClassification.from_pretrained', (), '', False, 'from transformers import AutoModel, AutoModelForSequenceClassification, AutoTokenizer, AutoConfig\n'), ((87, 20, 87, 70), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', ({(87, 50, 87, 69): 'self.tokenizer_name'}, {}), '(self.tokenizer_name)', False, 'from transformers import AutoModel, AutoModelForSequenceClassification, AutoTokenizer, AutoConfig\n'), ((91, 24, 91, 60), 'fast_fine_tuna.dataset.MainDataset', 'MainDataset', ({(91, 36, 91, 51): 'tokenized_train', (91, 53, 91, 59): 'labels'}, {}), '(tokenized_train, labels)', False, 'from fast_fine_tuna.dataset import MainDatasetDouble, MainDataset\n'), ((96, 23, 96, 85), 'torch.utils.data.DataLoader', 'DataLoader', (), '', False, 'from torch.utils.data import DataLoader\n'), ((100, 15, 100, 57), 'tqdm.tqdm', 'tqdm', (), '', False, 'from tqdm import tqdm\n'), ((114, 8, 114, 25), 'os.makedirs', 'os.makedirs', ({(114, 20, 114, 24): 'path'}, {}), '(path)', False, 'import os\n'), ((129, 20, 129, 70), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', ({(129, 50, 129, 69): 'self.tokenizer_name'}, {}), '(self.tokenizer_name)', False, 'from transformers import AutoModel, AutoModelForSequenceClassification, AutoTokenizer, AutoConfig\n'), ((130, 16, 130, 31), 'numpy.array', 'np.array', ({(130, 25, 130, 30): 'texts'}, {}), '(texts)', True, 'import numpy as np\n'), ((131, 19, 131, 37), 'numpy.array', 'np.array', ({(131, 28, 131, 36): 'labels_A'}, {}), '(labels_A)', True, 'import numpy as np\n'), ((132, 19, 132, 37), 'numpy.array', 'np.array', ({(132, 28, 132, 36): 'labels_B'}, {}), '(labels_B)', True, 'import numpy as np\n'), ((134, 14, 134, 46), 'sklearn.model_selection.StratifiedKFold', 'StratifiedKFold', (), '', False, 'from sklearn.model_selection import StratifiedKFold\n'), ((204, 16, 204, 98), 'transformers.AutoModelForSequenceClassification.from_pretrained', 'AutoModelForSequenceClassification.from_pretrained', (), '', False, 'from transformers import AutoModel, AutoModelForSequenceClassification, AutoTokenizer, AutoConfig\n'), ((205, 20, 205, 70), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', ({(205, 50, 205, 69): 'self.tokenizer_name'}, {}), '(self.tokenizer_name)', False, 'from transformers import AutoModel, AutoModelForSequenceClassification, AutoTokenizer, AutoConfig\n'), ((209, 24, 209, 60), 'fast_fine_tuna.dataset.MainDataset', 'MainDataset', ({(209, 36, 209, 51): 'tokenized_train', (209, 53, 209, 59): 'labels'}, {}), '(tokenized_train, labels)', False, 'from fast_fine_tuna.dataset import MainDatasetDouble, MainDataset\n'), ((214, 23, 214, 85), 'torch.utils.data.DataLoader', 'DataLoader', (), '', False, 'from torch.utils.data import DataLoader\n'), ((218, 15, 218, 57), 'tqdm.tqdm', 'tqdm', (), '', False, 'from tqdm import tqdm\n'), ((232, 8, 232, 25), 'os.makedirs', 'os.makedirs', ({(232, 20, 232, 24): 'path'}, {}), '(path)', False, 'import os\n'), ((18, 46, 18, 71), 'torch.cuda.is_available', 'torch.cuda.is_available', ({}, {}), '()', False, 'import torch\n'), ((18, 22, 18, 42), 'torch.device', 'torch.device', ({(18, 35, 18, 41): '"""cuda"""'}, {}), "('cuda')", False, 'import torch\n'), ((18, 77, 18, 96), 'torch.device', 'torch.device', ({(18, 90, 18, 95): '"""cpu"""'}, {}), "('cpu')", False, 'import torch\n'), ((34, 20, 34, 102), 'transformers.AutoModelForSequenceClassification.from_pretrained', 'AutoModelForSequenceClassification.from_pretrained', (), '', False, 'from transformers import AutoModel, AutoModelForSequenceClassification, AutoTokenizer, AutoConfig\n'), ((43, 28, 43, 65), 'fast_fine_tuna.dataset.MainDataset', 'MainDataset', ({(43, 40, 43, 55): 'tokenized_train', (43, 57, 43, 64): 'y_train'}, {}), '(tokenized_train, y_train)', False, 'from fast_fine_tuna.dataset import MainDatasetDouble, MainDataset\n'), ((44, 27, 44, 62), 'fast_fine_tuna.dataset.MainDataset', 'MainDataset', ({(44, 39, 44, 53): 'tokenized_test', (44, 55, 44, 61): 'y_test'}, {}), '(tokenized_test, y_test)', False, 'from fast_fine_tuna.dataset import MainDatasetDouble, MainDataset\n'), ((49, 27, 49, 89), 'torch.utils.data.DataLoader', 'DataLoader', (), '', False, 'from torch.utils.data import DataLoader\n'), ((53, 19, 53, 61), 'tqdm.tqdm', 'tqdm', (), '', False, 'from tqdm import tqdm\n'), ((69, 21, 69, 68), 'torch.utils.data.DataLoader', 'DataLoader', (), '', False, 'from torch.utils.data import DataLoader\n'), ((124, 46, 124, 71), 'torch.cuda.is_available', 'torch.cuda.is_available', ({}, {}), '()', False, 'import torch\n'), ((124, 22, 124, 42), 'torch.device', 'torch.device', ({(124, 35, 124, 41): '"""cuda"""'}, {}), "('cuda')", False, 'import torch\n'), ((124, 77, 124, 96), 'torch.device', 'torch.device', ({(124, 90, 124, 95): '"""cpu"""'}, {}), "('cpu')", False, 'import torch\n'), ((152, 28, 152, 84), 'fast_fine_tuna.dataset.MainDatasetDouble', 'MainDatasetDouble', ({(152, 46, 152, 61): 'tokenized_train', (152, 63, 152, 72): 'y_A_train', (152, 74, 152, 83): 'y_B_train'}, {}), '(tokenized_train, y_A_train, y_B_train)', False, 'from fast_fine_tuna.dataset import MainDatasetDouble, MainDataset\n'), ((153, 27, 153, 80), 'fast_fine_tuna.dataset.MainDatasetDouble', 'MainDatasetDouble', ({(153, 45, 153, 59): 'tokenized_test', (153, 61, 153, 69): 'y_A_test', (153, 71, 153, 79): 'y_B_test'}, {}), '(tokenized_test, y_A_test, y_B_test)', False, 'from fast_fine_tuna.dataset import MainDatasetDouble, MainDataset\n'), ((158, 27, 158, 89), 'torch.utils.data.DataLoader', 'DataLoader', (), '', False, 'from torch.utils.data import DataLoader\n'), ((162, 19, 162, 61), 'tqdm.tqdm', 'tqdm', (), '', False, 'from tqdm import tqdm\n'), ((185, 21, 185, 68), 'torch.utils.data.DataLoader', 'DataLoader', (), '', False, 'from torch.utils.data import DataLoader\n'), ((71, 17, 71, 32), 'torch.no_grad', 'torch.no_grad', ({}, {}), '()', False, 'import torch\n'), ((188, 17, 188, 32), 'torch.no_grad', 'torch.no_grad', ({}, {}), '()', False, 'import torch\n'), ((173, 27, 173, 48), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ({}, {}), '()', False, 'from torch import nn\n'), ((77, 37, 77, 76), 'torch.argmax', 'torch.argmax', (), '', False, 'import torch\n'), ((194, 39, 194, 71), 'torch.argmax', 'torch.argmax', (), '', False, 'import torch\n'), ((195, 39, 195, 71), 'torch.argmax', 'torch.argmax', (), '', False, 'import torch\n')]
gauravyeole/KVstoreDB
Message/Message.py
1c7c83b158e95daec998fba62a89fa1211a05089
# Message class Implementation # @author: Gaurav Yeole <[email protected]> class Message: class Request: def __init__(self, action="", data=None): self.action = action self.data = data class Rsponse: def __init__(self): self.status = False self.data = None def __init__(self): pass def set_request(self): pass def response(self): pass
[]
gsnedders/presto-testo
wpt/websockets/websock_handlers/open_delay_wsh.py
a0acfbef13a3f8cae67cc7145216d31b67aa8eb4
#!/usr/bin/python from mod_pywebsocket import msgutil import time def web_socket_do_extra_handshake(request): pass # Always accept. def web_socket_transfer_data(request): time.sleep(3) msgutil.send_message(request, "line")
[((10, 1, 10, 14), 'time.sleep', 'time.sleep', ({(10, 12, 10, 13): '(3)'}, {}), '(3)', False, 'import time\n'), ((11, 1, 11, 38), 'mod_pywebsocket.msgutil.send_message', 'msgutil.send_message', ({(11, 22, 11, 29): 'request', (11, 31, 11, 37): '"""line"""'}, {}), "(request, 'line')", False, 'from mod_pywebsocket import msgutil\n')]
augusto-herrmann/airflow
airflow/providers/microsoft/psrp/operators/psrp.py
7ee4295dd3f7dba4fcd763286c7823bb1707fe99
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import TYPE_CHECKING, List, Optional, Sequence from airflow.exceptions import AirflowException from airflow.models import BaseOperator from airflow.providers.microsoft.psrp.hooks.psrp import PSRPHook if TYPE_CHECKING: from airflow.utils.context import Context class PSRPOperator(BaseOperator): """PowerShell Remoting Protocol operator. :param psrp_conn_id: connection id :type psrp_conn_id: str :param command: command to execute on remote host. (templated) :type command: str :param powershell: powershell to execute on remote host. (templated) :type powershell: str """ template_fields: Sequence[str] = ( "command", "powershell", ) template_fields_renderers = {"command": "powershell", "powershell": "powershell"} ui_color = "#901dd2" def __init__( self, *, psrp_conn_id: str, command: Optional[str] = None, powershell: Optional[str] = None, **kwargs, ) -> None: super().__init__(**kwargs) if not (command or powershell): raise ValueError("Must provide either 'command' or 'powershell'") self.conn_id = psrp_conn_id self.command = command self.powershell = powershell def execute(self, context: "Context") -> List[str]: with PSRPHook(self.conn_id) as hook: ps = hook.invoke_powershell( f"cmd.exe /c @'\n{self.command}\n'@" if self.command else self.powershell ) if ps.had_errors: raise AirflowException("Process failed") return ps.output
[((63, 13, 63, 35), 'airflow.providers.microsoft.psrp.hooks.psrp.PSRPHook', 'PSRPHook', ({(63, 22, 63, 34): 'self.conn_id'}, {}), '(self.conn_id)', False, 'from airflow.providers.microsoft.psrp.hooks.psrp import PSRPHook\n'), ((68, 18, 68, 52), 'airflow.exceptions.AirflowException', 'AirflowException', ({(68, 35, 68, 51): '"""Process failed"""'}, {}), "('Process failed')", False, 'from airflow.exceptions import AirflowException\n')]
mithro/chromium-infra
appengine/monorail/services/api_pb2_v1_helpers.py
d27ac0b230bedae4bc968515b02927cf9e17c2b7
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is govered by a BSD-style # license that can be found in the LICENSE file or at # https://developers.google.com/open-source/licenses/bsd """Convert Monorail PB objects to API PB objects""" import datetime import logging import time from framework import framework_constants from framework import framework_helpers from framework import permissions from framework import timestr from proto import api_pb2_v1 from proto import project_pb2 from proto import tracker_pb2 from services import issue_svc from services import project_svc from services import user_svc from tracker import tracker_bizobj from tracker import tracker_helpers def convert_project(project, config, role): """Convert Monorail Project PB to API ProjectWrapper PB.""" return api_pb2_v1.ProjectWrapper( kind='monorail#project', name=project.project_name, externalId=project.project_name, htmlLink='/p/%s/' % project.project_name, summary=project.summary, description=project.description, role=role, issuesConfig=convert_project_config(config)) def convert_project_config(config): """Convert Monorail ProjectIssueConfig PB to API ProjectIssueConfig PB.""" return api_pb2_v1.ProjectIssueConfig( kind='monorail#projectIssueConfig', restrictToKnown=config.restrict_to_known, defaultColumns=config.default_col_spec.split(), defaultSorting=config.default_sort_spec.split(), statuses=[convert_status(s) for s in config.well_known_statuses], labels=[convert_label(l) for l in config.well_known_labels], prompts=[convert_template(t) for t in config.templates], defaultPromptForMembers=config.default_template_for_developers, defaultPromptForNonMembers=config.default_template_for_users) def convert_status(status): """Convert Monorail StatusDef PB to API Status PB.""" return api_pb2_v1.Status( status=status.status, meansOpen=status.means_open, description=status.status_docstring) def convert_label(label): """Convert Monorail LabelDef PB to API Label PB.""" return api_pb2_v1.Label( label=label.label, description=label.label_docstring) def convert_template(template): """Convert Monorail TemplateDef PB to API Prompt PB.""" return api_pb2_v1.Prompt( name=template.name, title=template.summary, description=template.content, titleMustBeEdited=template.summary_must_be_edited, status=template.status, labels=template.labels, membersOnly=template.members_only, defaultToMember=template.owner_defaults_to_member, componentRequired=template.component_required) def convert_person(user_id, cnxn, services, trap_exception=False): """Convert user id to API AtomPerson PB.""" if not user_id: return None try: user = services.user.GetUser(cnxn, user_id) except user_svc.NoSuchUserException as ex: if trap_exception: logging.warning(str(ex)) return None else: raise ex days_ago = None if user.last_visit_timestamp: secs_ago = int(time.time()) - user.last_visit_timestamp days_ago = secs_ago / framework_constants.SECS_PER_DAY return api_pb2_v1.AtomPerson( kind='monorail#issuePerson', name=user.email, htmlLink='https://%s/u/%d' % (framework_helpers.GetHostPort(), user_id), last_visit_days_ago=days_ago, email_bouncing=bool(user.email_bounce_timestamp), vacation_message=user.vacation_message) def convert_issue_ids(issue_ids, mar, services): """Convert global issue ids to API IssueRef PB.""" # missed issue ids are filtered out. issues = services.issue.GetIssues(mar.cnxn, issue_ids) result = [] for issue in issues: issue_ref = api_pb2_v1.IssueRef( issueId=issue.local_id, projectId=issue.project_name, kind='monorail#issueRef') result.append(issue_ref) return result def convert_issueref_pbs(issueref_pbs, mar, services): """Convert API IssueRef PBs to global issue ids.""" if issueref_pbs: result = [] for ir in issueref_pbs: project_id = mar.project_id if ir.projectId: project = services.project.GetProjectByName( mar.cnxn, ir.projectId) if project: project_id = project.project_id try: issue = services.issue.GetIssueByLocalID( mar.cnxn, project_id, ir.issueId) result.append(issue.issue_id) except issue_svc.NoSuchIssueException: logging.warning( 'Issue (%s:%d) does not exist.' % (ir.projectId, ir.issueId)) return result else: return None def convert_issue(cls, issue, mar, services): """Convert Monorail Issue PB to API IssuesGetInsertResponse.""" config = services.config.GetProjectConfig(mar.cnxn, issue.project_id) granted_perms = tracker_bizobj.GetGrantedPerms( issue, mar.auth.effective_ids, config) issue_project = services.project.GetProject(mar.cnxn, issue.project_id) component_list = [] for cd in config.component_defs: cid = cd.component_id if cid in issue.component_ids: component_list.append(cd.path) cc_list = [convert_person(p, mar.cnxn, services) for p in issue.cc_ids] cc_list = [p for p in cc_list if p is not None] field_values_list = [] field_id_dict = { fd.field_id: fd.field_name for fd in config.field_defs} for fv in issue.field_values: field_name = field_id_dict.get(fv.field_id) if not field_name: logging.warning('Custom field %d of project %s does not exist', fv.field_id, issue_project.project_name) continue val = None if fv.user_id: val = _get_user_email( services.user, mar.cnxn, fv.user_id) elif fv.str_value: val = fv.str_value elif fv.int_value: val = str(fv.int_value) new_fv = api_pb2_v1.FieldValue( fieldName=field_name, fieldValue=val, derived=fv.derived) field_values_list.append(new_fv) resp = cls( kind='monorail#issue', id=issue.local_id, title=issue.summary, summary=issue.summary, projectId=issue_project.project_name, stars=issue.star_count, starred=services.issue_star.IsItemStarredBy( mar.cnxn, issue.issue_id, mar.auth.user_id), status=issue.status, state=(api_pb2_v1.IssueState.open if tracker_helpers.MeansOpenInProject( tracker_bizobj.GetStatus(issue), config) else api_pb2_v1.IssueState.closed), labels=issue.labels, components=component_list, author=convert_person(issue.reporter_id, mar.cnxn, services), owner=convert_person(issue.owner_id, mar.cnxn, services), cc=cc_list, updated=datetime.datetime.fromtimestamp(issue.modified_timestamp), published=datetime.datetime.fromtimestamp(issue.opened_timestamp), blockedOn=convert_issue_ids(issue.blocked_on_iids, mar, services), blocking=convert_issue_ids(issue.blocking_iids, mar, services), canComment=permissions.CanCommentIssue( mar.auth.effective_ids, mar.perms, issue_project, issue, granted_perms=granted_perms), canEdit=permissions.CanEditIssue( mar.auth.effective_ids, mar.perms, issue_project, issue, granted_perms=granted_perms), fieldValues=field_values_list) if issue.closed_timestamp > 0: resp.closed = datetime.datetime.fromtimestamp(issue.closed_timestamp) if issue.merged_into: resp.mergedInto=convert_issue_ids([issue.merged_into], mar, services)[0] if issue.owner_modified_timestamp: resp.owner_modified = datetime.datetime.fromtimestamp( issue.owner_modified_timestamp) if issue.status_modified_timestamp: resp.status_modified = datetime.datetime.fromtimestamp( issue.status_modified_timestamp) if issue.component_modified_timestamp: resp.component_modified = datetime.datetime.fromtimestamp( issue.component_modified_timestamp) return resp def convert_comment(issue, comment, mar, services, granted_perms): """Convert Monorail IssueComment PB to API IssueCommentWrapper.""" can_delete = permissions.CanDelete( mar.auth.user_id, mar.auth.effective_ids, mar.perms, comment.deleted_by, comment.user_id, mar.project, permissions.GetRestrictions(issue), granted_perms=granted_perms) return api_pb2_v1.IssueCommentWrapper( attachments=[convert_attachment(a) for a in comment.attachments], author=convert_person(comment.user_id, mar.cnxn, services, trap_exception=True), canDelete=can_delete, content=comment.content, deletedBy=convert_person(comment.deleted_by, mar.cnxn, services, trap_exception=True), id=comment.sequence, published=datetime.datetime.fromtimestamp(comment.timestamp), updates=convert_amendments(issue, comment.amendments, mar, services), kind='monorail#issueComment') def convert_attachment(attachment): """Convert Monorail Attachment PB to API Attachment.""" return api_pb2_v1.Attachment( attachmentId=attachment.attachment_id, fileName=attachment.filename, fileSize=attachment.filesize, mimetype=attachment.mimetype, isDeleted=attachment.deleted) def convert_amendments(issue, amendments, mar, services): """Convert a list of Monorail Amendment PBs to API Update.""" result = api_pb2_v1.Update(kind='monorail#issueCommentUpdate') for amendment in amendments: if amendment.field == tracker_pb2.FieldID.SUMMARY: result.summary = amendment.newvalue elif amendment.field == tracker_pb2.FieldID.STATUS: result.status = amendment.newvalue elif amendment.field == tracker_pb2.FieldID.OWNER: if len(amendment.added_user_ids) == 0: result.owner = framework_constants.NO_USER_NAME else: result.owner = _get_user_email( services.user, mar.cnxn, amendment.added_user_ids[0]) elif amendment.field == tracker_pb2.FieldID.LABELS: result.labels = amendment.newvalue.split() elif amendment.field == tracker_pb2.FieldID.CC: for user_id in amendment.added_user_ids: user_email = _get_user_email( services.user, mar.cnxn, user_id) result.cc.append(user_email) for user_id in amendment.removed_user_ids: user_email = _get_user_email( services.user, mar.cnxn, user_id) result.cc.append('-%s' % user_email) elif amendment.field == tracker_pb2.FieldID.BLOCKEDON: result.blockedOn = _append_project( amendment.newvalue, issue.project_name) elif amendment.field == tracker_pb2.FieldID.BLOCKING: result.blocking = _append_project( amendment.newvalue, issue.project_name) elif amendment.field == tracker_pb2.FieldID.MERGEDINTO: result.mergedInto = amendment.newvalue elif amendment.field == tracker_pb2.FieldID.COMPONENTS: result.components = amendment.newvalue.split() elif amendment.field == tracker_pb2.FieldID.CUSTOM: fv = api_pb2_v1.FieldValue() fv.fieldName = amendment.custom_field_name fv.fieldValue = amendment.newvalue result.fieldValues.append(fv) return result def _get_user_email(user_service, cnxn, user_id): """Get user email.""" try: user_email = user_service.LookupUserEmail( cnxn, user_id) if not user_email: user_email = framework_constants.DELETED_USER_NAME except user_svc.NoSuchUserException: user_email = framework_constants.DELETED_USER_NAME return user_email def _append_project(issue_ids, project_name): """Append project name to convert <id> to <project>:<id> format.""" result = [] id_list = issue_ids.split() for id_str in id_list: if ':' in id_str: result.append(id_str) # '-' means this issue is being removed elif id_str.startswith('-'): result.append('-%s:%s' % (project_name, id_str[1:])) else: result.append('%s:%s' % (project_name, id_str)) return result def split_remove_add(item_list): """Split one list of items into two: items to add and items to remove.""" list_to_add = [] list_to_remove = [] for item in item_list: if item.startswith('-'): list_to_remove.append(item[1:]) else: list_to_add.append(item) return list_to_add, list_to_remove # TODO(sheyang): batch the SQL queries to fetch projects/issues. def issue_global_ids(project_local_id_pairs, project_id, mar, services): """Find global issues ids given <project_name>:<issue_local_id> pairs.""" result = [] for pair in project_local_id_pairs: issue_project_id = None local_id = None if ':' in pair: pair_ary = pair.split(':') project_name = pair_ary[0] local_id = int(pair_ary[1]) project = services.project.GetProjectByName(mar.cnxn, project_name) if not project: raise project_svc.NoSuchProjectException( 'Project %s does not exist' % project_name) issue_project_id = project.project_id else: issue_project_id = project_id local_id = int(pair) result.append( services.issue.LookupIssueID(mar.cnxn, issue_project_id, local_id)) return result def convert_group_settings(group_name, setting): """Convert UserGroupSettings to UserGroupSettingsWrapper.""" return api_pb2_v1.UserGroupSettingsWrapper( groupName=group_name, who_can_view_members=setting.who_can_view_members, ext_group_type=setting.ext_group_type, last_sync_time=setting.last_sync_time) def convert_component_def(cd, mar, services): """Convert ComponentDef PB to Component PB.""" project_name = services.project.LookupProjectNames( mar.cnxn, [cd.project_id])[cd.project_id] user_ids = set() user_ids.update( cd.admin_ids + cd.cc_ids + [cd.creator_id] + [cd.modifier_id]) user_names_dict = services.user.LookupUserEmails(mar.cnxn, list(user_ids)) component = api_pb2_v1.Component( componentId=cd.component_id, projectName=project_name, componentPath=cd.path, description=cd.docstring, admin=sorted([user_names_dict[uid] for uid in cd.admin_ids]), cc=sorted([user_names_dict[uid] for uid in cd.cc_ids]), deprecated=cd.deprecated) if cd.created: component.created = datetime.datetime.fromtimestamp(cd.created) component.creator = user_names_dict[cd.creator_id] if cd.modified: component.modified = datetime.datetime.fromtimestamp(cd.modified) component.modifier = user_names_dict[cd.modifier_id] return component def convert_component_ids(config, component_names): """Convert a list of component names to ids.""" component_names_lower = [name.lower() for name in component_names] result = [] for cd in config.component_defs: cpath = cd.path if cpath.lower() in component_names_lower: result.append(cd.component_id) return result def convert_field_values(field_values, mar, services): """Convert user passed in field value list to FieldValue PB, or labels.""" fv_list_add = [] fv_list_remove = [] fv_list_clear = [] label_list_add = [] label_list_remove = [] field_name_dict = { fd.field_name: fd for fd in mar.config.field_defs} for fv in field_values: field_def = field_name_dict.get(fv.fieldName) if not field_def: logging.warning('Custom field %s of does not exist', fv.fieldName) continue if fv.operator == api_pb2_v1.FieldValueOperator.clear: fv_list_clear.append(field_def.field_id) continue # Enum fields are stored as labels if field_def.field_type == tracker_pb2.FieldTypes.ENUM_TYPE: raw_val = '%s-%s' % (fv.fieldName, fv.fieldValue) if fv.operator == api_pb2_v1.FieldValueOperator.remove: label_list_remove.append(raw_val) elif fv.operator == api_pb2_v1.FieldValueOperator.add: label_list_add.append(raw_val) else: logging.warning('Unsupported field value operater %s', fv.operator) else: new_fv = tracker_pb2.FieldValue( field_id=field_def.field_id) if field_def.field_type == tracker_pb2.FieldTypes.USER_TYPE: try: new_fv.user_id = services.user.LookupUserID(mar.cnxn, fv.fieldValue) except user_svc.NoSuchUserException: new_fv.user_id = 0 elif field_def.field_type == tracker_pb2.FieldTypes.STR_TYPE: new_fv.str_value = fv.fieldValue elif field_def.field_type == tracker_pb2.FieldTypes.INT_TYPE: new_fv.int_value = int(fv.fieldValue) else: logging.warning( 'Unsupported field value type %s', field_def.field_type) if fv.operator == api_pb2_v1.FieldValueOperator.remove: fv_list_remove.append(new_fv) elif fv.operator == api_pb2_v1.FieldValueOperator.add: fv_list_add.append(new_fv) else: logging.warning('Unsupported field value operater %s', fv.operator) return (fv_list_add, fv_list_remove, fv_list_clear, label_list_add, label_list_remove)
[((58, 9, 61, 42), 'proto.api_pb2_v1.Status', 'api_pb2_v1.Status', (), '', False, 'from proto import api_pb2_v1\n'), ((67, 9, 69, 40), 'proto.api_pb2_v1.Label', 'api_pb2_v1.Label', (), '', False, 'from proto import api_pb2_v1\n'), ((75, 9, 84, 52), 'proto.api_pb2_v1.Prompt', 'api_pb2_v1.Prompt', (), '', False, 'from proto import api_pb2_v1\n'), ((157, 18, 158, 44), 'tracker.tracker_bizobj.GetGrantedPerms', 'tracker_bizobj.GetGrantedPerms', ({(158, 6, 158, 11): 'issue', (158, 13, 158, 35): 'mar.auth.effective_ids', (158, 37, 158, 43): 'config'}, {}), '(issue, mar.auth.effective_ids, config)', False, 'from tracker import tracker_bizobj\n'), ((260, 9, 265, 35), 'proto.api_pb2_v1.Attachment', 'api_pb2_v1.Attachment', (), '', False, 'from proto import api_pb2_v1\n'), ((271, 11, 271, 64), 'proto.api_pb2_v1.Update', 'api_pb2_v1.Update', (), '', False, 'from proto import api_pb2_v1\n'), ((385, 9, 389, 44), 'proto.api_pb2_v1.UserGroupSettingsWrapper', 'api_pb2_v1.UserGroupSettingsWrapper', (), '', False, 'from proto import api_pb2_v1\n'), ((121, 16, 124, 31), 'proto.api_pb2_v1.IssueRef', 'api_pb2_v1.IssueRef', (), '', False, 'from proto import api_pb2_v1\n'), ((184, 13, 187, 27), 'proto.api_pb2_v1.FieldValue', 'api_pb2_v1.FieldValue', (), '', False, 'from proto import api_pb2_v1\n'), ((220, 18, 220, 73), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', ({(220, 50, 220, 72): 'issue.closed_timestamp'}, {}), '(issue.closed_timestamp)', False, 'import datetime\n'), ((224, 26, 225, 39), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', ({(225, 8, 225, 38): 'issue.owner_modified_timestamp'}, {}), '(issue.owner_modified_timestamp)', False, 'import datetime\n'), ((227, 27, 228, 40), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', ({(228, 8, 228, 39): 'issue.status_modified_timestamp'}, {}), '(issue.status_modified_timestamp)', False, 'import datetime\n'), ((230, 30, 231, 43), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', ({(231, 8, 231, 42): 'issue.component_modified_timestamp'}, {}), '(issue.component_modified_timestamp)', False, 'import datetime\n'), ((241, 6, 241, 40), 'framework.permissions.GetRestrictions', 'permissions.GetRestrictions', ({(241, 34, 241, 39): 'issue'}, {}), '(issue)', False, 'from framework import permissions\n'), ((409, 24, 409, 67), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', ({(409, 56, 409, 66): 'cd.created'}, {}), '(cd.created)', False, 'import datetime\n'), ((412, 25, 412, 69), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', ({(412, 57, 412, 68): 'cd.modified'}, {}), '(cd.modified)', False, 'import datetime\n'), ((173, 6, 174, 62), 'logging.warning', 'logging.warning', ({(173, 22, 173, 68): '"""Custom field %d of project %s does not exist"""', (174, 22, 174, 33): 'fv.field_id', (174, 35, 174, 61): 'issue_project.project_name'}, {}), "('Custom field %d of project %s does not exist', fv.field_id,\n issue_project.project_name)", False, 'import logging\n'), ((208, 14, 208, 71), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', ({(208, 46, 208, 70): 'issue.modified_timestamp'}, {}), '(issue.modified_timestamp)', False, 'import datetime\n'), ((209, 16, 209, 71), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', ({(209, 48, 209, 70): 'issue.opened_timestamp'}, {}), '(issue.opened_timestamp)', False, 'import datetime\n'), ((212, 17, 214, 38), 'framework.permissions.CanCommentIssue', 'permissions.CanCommentIssue', (), '', False, 'from framework import permissions\n'), ((215, 14, 217, 38), 'framework.permissions.CanEditIssue', 'permissions.CanEditIssue', (), '', False, 'from framework import permissions\n'), ((252, 16, 252, 66), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', ({(252, 48, 252, 65): 'comment.timestamp'}, {}), '(comment.timestamp)', False, 'import datetime\n'), ((441, 6, 441, 72), 'logging.warning', 'logging.warning', ({(441, 22, 441, 57): '"""Custom field %s of does not exist"""', (441, 59, 441, 71): 'fv.fieldName'}, {}), "('Custom field %s of does not exist', fv.fieldName)", False, 'import logging\n'), ((458, 15, 459, 38), 'proto.tracker_pb2.FieldValue', 'tracker_pb2.FieldValue', (), '', False, 'from proto import tracker_pb2\n'), ((103, 19, 103, 30), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((371, 14, 372, 55), 'services.project_svc.NoSuchProjectException', 'project_svc.NoSuchProjectException', ({(372, 12, 372, 54): "('Project %s does not exist' % project_name)"}, {}), "('Project %s does not exist' % project_name)", False, 'from services import project_svc\n'), ((108, 36, 108, 67), 'framework.framework_helpers.GetHostPort', 'framework_helpers.GetHostPort', ({}, {}), '()', False, 'from framework import framework_helpers\n'), ((146, 8, 147, 73), 'logging.warning', 'logging.warning', ({(147, 12, 147, 72): "('Issue (%s:%d) does not exist.' % (ir.projectId, ir.issueId))"}, {}), "('Issue (%s:%d) does not exist.' % (ir.projectId, ir.issueId))", False, 'import logging\n'), ((201, 17, 201, 48), 'tracker.tracker_bizobj.GetStatus', 'tracker_bizobj.GetStatus', ({(201, 42, 201, 47): 'issue'}, {}), '(issue)', False, 'from tracker import tracker_bizobj\n'), ((456, 8, 456, 75), 'logging.warning', 'logging.warning', ({(456, 24, 456, 61): '"""Unsupported field value operater %s"""', (456, 63, 456, 74): 'fv.operator'}, {}), "('Unsupported field value operater %s', fv.operator)", False, 'import logging\n'), ((478, 8, 478, 75), 'logging.warning', 'logging.warning', ({(478, 24, 478, 61): '"""Unsupported field value operater %s"""', (478, 63, 478, 74): 'fv.operator'}, {}), "('Unsupported field value operater %s', fv.operator)", False, 'import logging\n'), ((470, 8, 471, 68), 'logging.warning', 'logging.warning', ({(471, 12, 471, 45): '"""Unsupported field value type %s"""', (471, 47, 471, 67): 'field_def.field_type'}, {}), "('Unsupported field value type %s', field_def.field_type)", False, 'import logging\n'), ((305, 11, 305, 34), 'proto.api_pb2_v1.FieldValue', 'api_pb2_v1.FieldValue', ({}, {}), '()', False, 'from proto import api_pb2_v1\n')]
mhmgad/ExCut
excut/feedback/rulebased_deduction/deduction_engine_extended.py
09e943a23207381de3c3a9e6f70015882b8ec4af
""" This module contains the rule-based inference (rulebased_deduction engine) """ import itertools from collections import defaultdict from itertools import chain from excut.explanations_mining.descriptions import dump_explanations_to_file from excut.explanations_mining.descriptions_new import Description2, Atom, load_from_file from excut.explanations_mining.explaining_engines_extended import PathBasedClustersExplainerExtended from excut.explanations_mining.simple_miner.description_miner_extended import DescriptionMinerExtended, ExplanationStructure from excut.kg.kg_query_interface_extended import EndPointKGQueryInterfaceExtended, KGQueryInterfaceExtended from excut.kg.kg_indexing import Indexer from excut.kg.utils.data_formating import n3_repr from excut.utils.logging import logger from excut.kg.utils.Constants import DEFUALT_AUX_RELATION from excut.clustering import target_entities as tes class Prediction: """ An object to represent the prediction of the rules :ivar triple: the predicted triple :ivar all_sources: all rules that predicted the same triple """ # def __init__(self, triple: tuple, source_description=Description(), all_sources=None): def __init__(self, triple=None, sources=None): self.triple = triple # self.source_description = source_descriptionf self.all_sources = sources if sources else list() # sources if sources else {source_description} def get_subject(self): return self.triple[0] def get_object(self): return self.triple[2] def get_quality(self, measure='x_coverage', method=max): # return self.source_description.get_quality(measure) return method([source.get_quality(measure) for source in self.all_sources]) def get_main_description(self, measure='x_coverage', method=max): return method(self.all_sources, key=lambda d: d.get_quality(measure)) def __str__(self): return str(self.triple) + '<<' + str(self.get_main_description()) def __repr__(self): return "%s\t(\t%s,%s)" % (self.__class__.__name__, repr(self.triple), repr(self.all_sources)) def __eq__(self, other): return other.triple == self.triple def __hash__(self): return hash(self.triple) class DeductionEngine(): """ Abstract rulebased_deduction/inference engine. """ def __init__(self, **kwargs): pass def infer(self, descriptions, recursive=False, topk=-1): pass class SparqlBasedDeductionEngineExtended(DeductionEngine): """ Deduction engine that converts the rules to sparql and fire them over the KG. The rule-based_deduction takes care of consolidating similar predictions """ def __init__(self, kg_query_interface: KGQueryInterfaceExtended, relation=DEFUALT_AUX_RELATION, quality='x_coverage', quality_aggregation=max): """ :param kg_query_interface: interface for the KG. :param relation: the relation used in the predicted triple (optional) :param quality: objective quality measure for ranking the predictions (optional) by default the exclusive coverage of the rules is used :param quality_aggregation: the methd used for aggregating the score if multiple rules infers the same fact (optional) by default max is used. """ super(SparqlBasedDeductionEngineExtended, self).__init__() self.relation = relation self.query_executer = kg_query_interface self.quality = quality self.quality_aggregation = quality_aggregation self.labels_indexer=Indexer(store=kg_query_interface.type, endpoint=kg_query_interface.endpoint, graph= kg_query_interface.labels_graph, identifier=kg_query_interface.labels_identifier) def infer(self, descriptions_list, target_entities=None, min_quality=0, topk=-1, output_filepath=None, clear_target_entities=True): """ Infer new facts for a giving set of descriptions :param descriptions_list: list of explantions/descriptions rules :param target_entities: entities and their labels for which predictions are generated :param min_quality: minimum aggregated quality for the predictions :param topk: k *distinct* highest quality predictions per entity, :param output_filepath: predictions output file. :param clear_target_entities: clear indexed target entities after done inference :return: dictionary of predicted entity-clusters assignments """ if isinstance(descriptions_list,dict): descriptions_list=list(itertools.chain.from_iterable(descriptions_list.values())) if target_entities: self.labels_indexer.index_triples(target_entities) self.relation=target_entities.get_relation() predictions = list(map(self._infer_single, descriptions_list)) per_entity_predictions = self.consolidate(predictions) per_entity_predictions = self._merge_and_sort_cut(per_entity_predictions, min_quality, topk=topk) if output_filepath: dump_predictions_map(per_entity_predictions, output_filepath, triple_format=True, topk=topk, with_weight=True, with_description=False, quality=self.quality) if target_entities and clear_target_entities: self.labels_indexer.drop() return per_entity_predictions def consolidate(self, predictions): """ Combine predictions from different rules :param predictions: list of generated predictions :return: combined single prediction with several sources for equivalent predictions :rtype: dict """ # per_var_predictions = defaultdict(lambda: defaultdict(list)) # for p in chain.from_iterable(predictions): # per_var_predictions[p.get_subject()][p.get_object()].append(p) per_entity_predictions = defaultdict(lambda: defaultdict(Prediction)) for p in list(chain.from_iterable(predictions)): cons_pred = per_entity_predictions[p.get_subject()][p.get_object()] cons_pred.triple = p.triple cons_pred.all_sources += p.all_sources return per_entity_predictions def _merge_and_sort_cut(self, per_entity_prediction, threshold=0, topk=-1): """ Merge the the inferred facts in case of functional predicates :param per_entity_prediction: :return: """ def quality_method(p): return p.get_quality(self.quality, self.quality_aggregation) per_entity_prediction_filtered = defaultdict(list) for sub, per_obj_predictions in per_entity_prediction.items(): # print([(k, p.triple[2], qaulity_method(p)) for k, p in per_obj_predictions.items()]) merged_predictions = list( filter(lambda p: quality_method(p) > threshold, list(per_obj_predictions.values()))) merged_predictions.sort(key=quality_method, reverse=True) include = topk if topk > 0 else len(merged_predictions) per_entity_prediction_filtered[sub] = merged_predictions[:include] return per_entity_prediction_filtered def _infer_single(self, description: Description2): """ Infer new facts for the given Description :param description: :return: """ bindings = self.query_executer.get_arguments_bindings(description, restriction_pattern=Description2(body=[Atom('?x', self.relation, '?z')])) head = description.head # only supports p(?x,CONSTANT) predictions = [Prediction((b, head.predicate, head.object), [description]) for b in bindings] return predictions def dump_predictions_map(per_var_predictions, out_filepath, triple_format=True, topk=-1, with_weight=True, with_description=False, quality='x_coverage'): """ Writes the predictions to two files, the first is human readable and the other with .parsable extension that can be parsed in python. :param per_var_predictions: :param out_filepath: :param triple_format: :param topk: :param with_weight: :param with_description: :return: """ out_file_parsable = out_filepath + '.parsable' out_filepath_with_type = out_filepath + ('.%s' % quality if len(quality) > 0 else '') with open(out_filepath_with_type, 'w') as out_file: for var, predictions in per_var_predictions.items(): if topk > 0: predictions = predictions[:topk] for p in predictions: if triple_format: # I only output normalized_coverage out_str = n3_repr(p.triple) + ('\t%f' % p.get_quality(quality) if with_weight else '') + ( '\t%s' % p.source_description if with_description else '') else: out_str = str(p) out_file.write(out_str) out_file.write('\n') with open(out_file_parsable + ('.%s' % quality if len(quality) > 0 else ''), 'w') as out_file: out_file.write('\n'.join( map(str, chain.from_iterable(map(lambda l: l[:topk] if topk > 0 else l, per_var_predictions.values()))))) return out_filepath_with_type if __name__ == '__main__': target_entities=tes.load_from_file('/scratch/GW/pool0/gadelrab/ExDEC/data/yago/yago_art_3_4k.tsv') vos_executer = EndPointKGQueryInterfaceExtended('http://halimede:8890/sparql', ['http://yago-expr.org', 'http://yago-expr.org.types'], labels_identifier='http://yago-expr.org.labels') explainer=PathBasedClustersExplainerExtended(vos_executer, language_bias={'max_length': 4, 'structure': ExplanationStructure.TREE}) explans=explainer.explain(target_entities, output_file='/scratch/GW/pool0/gadelrab/ExDEC/tmp/explanations_tree.txt') ded = SparqlBasedDeductionEngineExtended(vos_executer) per_var_predictions = ded.infer(explans, target_entities, output_filepath='/scratch/GW/pool0/gadelrab/ExDEC/tmp/predictions_tree.tsv') logger.info("Total variables with predictions subjects: %i", len(per_var_predictions))
[((237, 20, 237, 102), 'excut.clustering.target_entities.load_from_file', 'tes.load_from_file', ({(237, 39, 237, 101): '"""/scratch/GW/pool0/gadelrab/ExDEC/data/yago/yago_art_3_4k.tsv"""'}, {}), "(\n '/scratch/GW/pool0/gadelrab/ExDEC/data/yago/yago_art_3_4k.tsv')", True, 'from excut.clustering import target_entities as tes\n'), ((238, 19, 240, 100), 'excut.kg.kg_query_interface_extended.EndPointKGQueryInterfaceExtended', 'EndPointKGQueryInterfaceExtended', (), '', False, 'from excut.kg.kg_query_interface_extended import EndPointKGQueryInterfaceExtended, KGQueryInterfaceExtended\n'), ((242, 14, 242, 135), 'excut.explanations_mining.explaining_engines_extended.PathBasedClustersExplainerExtended', 'PathBasedClustersExplainerExtended', (), '', False, 'from excut.explanations_mining.explaining_engines_extended import PathBasedClustersExplainerExtended\n'), ((94, 28, 97, 84), 'excut.kg.kg_indexing.Indexer', 'Indexer', (), '', False, 'from excut.kg.kg_indexing import Indexer\n'), ((166, 41, 166, 58), 'collections.defaultdict', 'defaultdict', ({(166, 53, 166, 57): 'list'}, {}), '(list)', False, 'from collections import defaultdict\n'), ((148, 22, 148, 54), 'itertools.chain.from_iterable', 'chain.from_iterable', ({(148, 42, 148, 53): 'predictions'}, {}), '(predictions)', False, 'from itertools import chain\n'), ((147, 53, 147, 76), 'collections.defaultdict', 'defaultdict', ({(147, 65, 147, 75): 'Prediction'}, {}), '(Prediction)', False, 'from collections import defaultdict\n'), ((186, 101, 188, 111), 'excut.explanations_mining.descriptions_new.Atom', 'Atom', ({(186, 106, 186, 110): '"""?x"""', (187, 106, 187, 119): 'self.relation', (188, 106, 188, 110): '"""?z"""'}, {}), "('?x', self.relation, '?z')", False, 'from excut.explanations_mining.descriptions_new import Description2, Atom, load_from_file\n'), ((220, 30, 220, 47), 'excut.kg.utils.data_formating.n3_repr', 'n3_repr', ({(220, 38, 220, 46): 'p.triple'}, {}), '(p.triple)', False, 'from excut.kg.utils.data_formating import n3_repr\n')]
urasakikeisuke/rigidmask
dataloader/viperlist_train.py
4bb781102218dfd11efa767e2d0ba987d9949fd1
import torch.utils.data as data from PIL import Image import os import os.path import numpy as np import pdb import glob IMG_EXTENSIONS = [ '.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', ] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def dataloader(filepath): left_fold = 'image_2/' train = glob.glob(filepath+left_fold+'/0*.jpg') train = sorted(train) l0_train = [] l1_train = [] flow_train = [] for img in train: img1 = ('%s_%s.jpg'%(img.rsplit('_',1)[0],'%05d'%(1+int(img.split('.')[0].split('_')[-1])) )) flowp = img.replace('.jpg', '.png').replace('image_2','flow_occ') if (img1 in train and len(glob.glob(flowp))>0 and ('01000' not in img)): l0_train.append(img) l1_train.append(img1) flow_train.append(flowp) return l0_train, l1_train, flow_train
[((22, 10, 22, 49), 'glob.glob', 'glob.glob', ({(22, 20, 22, 48): "filepath + left_fold + '/0*.jpg'"}, {}), "(filepath + left_fold + '/0*.jpg')", False, 'import glob\n'), ((31, 30, 31, 46), 'glob.glob', 'glob.glob', ({(31, 40, 31, 45): 'flowp'}, {}), '(flowp)', False, 'import glob\n')]
jsosa/floodcomparison
floodcomparison/__init__.py
c6662ae9142b4e89c6c05f93adaba49c5d8e4314
from floodcomparison.core import floodcomparison
[]
crim-ca/weaver
weaver/wps_restapi/quotation/quotes.py
107fec5e19f20b77061b9405a764da911d2db8a2
import logging import random from datetime import timedelta from typing import TYPE_CHECKING from duration import to_iso8601 from pyramid.httpexceptions import HTTPBadRequest, HTTPCreated, HTTPNotFound, HTTPOk from weaver import sort from weaver.config import WEAVER_CONFIGURATION_ADES, WEAVER_CONFIGURATION_EMS, get_weaver_configuration from weaver.database import get_db from weaver.datatype import Bill, Quote from weaver.exceptions import ProcessNotFound, QuoteNotFound, log_unhandled_exceptions from weaver.formats import OUTPUT_FORMAT_JSON from weaver.processes.types import PROCESS_APPLICATION, PROCESS_WORKFLOW from weaver.processes.wps_package import get_package_workflow_steps, get_process_location from weaver.store.base import StoreBills, StoreQuotes from weaver.utils import get_settings, get_weaver_url from weaver.wps_restapi import swagger_definitions as sd from weaver.wps_restapi.processes.processes import submit_local_job if TYPE_CHECKING: from weaver.datatype import Process from weaver.typedefs import JSON LOGGER = logging.getLogger(__name__) def process_quote_estimator(process): # noqa: E811 # type: (Process) -> JSON """ Simulate quote parameters for the process execution. :param process: instance of :class:`weaver.datatype.Process` for which to evaluate the quote. :return: dict of {price, currency, estimatedTime} values for the process quote. """ # TODO: replace by some fancy ml technique or something? price = random.uniform(0, 10) # nosec currency = "CAD" estimated_time = to_iso8601(timedelta(minutes=random.uniform(5, 60))) # nosec return {"price": price, "currency": currency, "estimatedTime": estimated_time} @sd.process_quotes_service.post(tags=[sd.TAG_BILL_QUOTE, sd.TAG_PROCESSES], renderer=OUTPUT_FORMAT_JSON, schema=sd.PostProcessQuoteRequestEndpoint(), response_schemas=sd.post_quotes_responses) @log_unhandled_exceptions(logger=LOGGER, message=sd.InternalServerErrorResponseSchema.description) def request_quote(request): """ Request a quotation for a process. """ settings = get_settings(request) weaver_config = get_weaver_configuration(settings) if weaver_config not in [WEAVER_CONFIGURATION_ADES, WEAVER_CONFIGURATION_EMS]: raise HTTPBadRequest("Unsupported request for configuration '{}'.".format(weaver_config)) process_id = request.matchdict.get("process_id") process_store = get_db(request).get_store("processes") try: process = process_store.fetch_by_id(process_id) except ProcessNotFound: raise HTTPNotFound("Could not find process with specified 'process_id'.") store = get_db(request).get_store(StoreQuotes) process_url = get_process_location(process_id, data_source=get_weaver_url(settings)) process_type = process.type process_params = dict() for param in ["inputs", "outputs", "mode", "response"]: if param in request.json: process_params[param] = request.json.pop(param) process_quote_info = process_quote_estimator(process) process_quote_info.update({ "process": process_id, "processParameters": process_params, "location": process_url, "user": str(request.authenticated_userid) }) # loop workflow sub-process steps to get individual quotes if process_type == PROCESS_WORKFLOW and weaver_config == WEAVER_CONFIGURATION_EMS: workflow_quotes = list() for step in get_package_workflow_steps(process_url): # retrieve quote from provider ADES # TODO: data source mapping process_step_url = get_process_location(step["reference"]) process_quote_url = "{}/quotations".format(process_step_url) subreq = request.copy() subreq.path_info = process_quote_url resp_json = request.invoke_subrequest(subreq).json() quote_json = resp_json["quote"] quote = store.save_quote(Quote(**quote_json)) workflow_quotes.append(quote.id) process_quote_info.update({"steps": workflow_quotes}) quote = store.save_quote(Quote(**process_quote_info)) return HTTPCreated(json={"quote": quote.json()}) # single application quotes (ADES or EMS) elif process_type == PROCESS_APPLICATION: quote = store.save_quote(Quote(**process_quote_info)) quote_json = quote.json() quote_json.pop("steps", None) return HTTPCreated(json={"quote": quote_json}) # error if not handled up to this point raise HTTPBadRequest("Unsupported quoting process type '{0}' on '{1}'.".format(process_type, weaver_config)) @sd.process_quotes_service.get(tags=[sd.TAG_BILL_QUOTE, sd.TAG_PROCESSES], renderer=OUTPUT_FORMAT_JSON, schema=sd.ProcessQuotesEndpoint(), response_schemas=sd.get_quote_list_responses) @sd.quotes_service.get(tags=[sd.TAG_BILL_QUOTE], renderer=OUTPUT_FORMAT_JSON, schema=sd.QuotesEndpoint(), response_schemas=sd.get_quote_list_responses) @log_unhandled_exceptions(logger=LOGGER, message=sd.InternalServerErrorResponseSchema.description) def get_quote_list(request): """ Get list of quotes IDs. """ page = int(request.params.get("page", "0")) limit = int(request.params.get("limit", "10")) filters = { "process_id": request.params.get("process", None) or request.matchdict.get("process_id", None), "page": page, "limit": limit, "sort": request.params.get("sort", sort.SORT_CREATED), } store = get_db(request).get_store(StoreQuotes) items, count = store.find_quotes(**filters) return HTTPOk(json={ "count": count, "page": page, "limit": limit, "quotes": [quote.id for quote in items] }) @sd.process_quote_service.get(tags=[sd.TAG_BILL_QUOTE, sd.TAG_PROCESSES], renderer=OUTPUT_FORMAT_JSON, schema=sd.ProcessQuoteEndpoint(), response_schemas=sd.get_quote_responses) @sd.quote_service.get(tags=[sd.TAG_BILL_QUOTE], renderer=OUTPUT_FORMAT_JSON, schema=sd.QuoteEndpoint(), response_schemas=sd.get_quote_responses) @log_unhandled_exceptions(logger=LOGGER, message=sd.InternalServerErrorResponseSchema.description) def get_quote_info(request): """ Get quote information. """ quote_id = request.matchdict.get("quote_id") store = get_db(request).get_store(StoreQuotes) try: quote = store.fetch_by_id(quote_id) except QuoteNotFound: raise HTTPNotFound("Could not find quote with specified 'quote_id'.") return HTTPOk(json={"quote": quote.json()}) @sd.process_quote_service.post(tags=[sd.TAG_BILL_QUOTE, sd.TAG_EXECUTE, sd.TAG_PROCESSES], renderer=OUTPUT_FORMAT_JSON, schema=sd.PostProcessQuote(), response_schemas=sd.post_quote_responses) @sd.quote_service.post(tags=[sd.TAG_BILL_QUOTE, sd.TAG_EXECUTE], renderer=OUTPUT_FORMAT_JSON, schema=sd.PostQuote(), response_schemas=sd.post_quote_responses) @log_unhandled_exceptions(logger=LOGGER, message=sd.InternalServerErrorResponseSchema.description) def execute_quote(request): """ Execute a quoted process. """ quote_info = get_quote_info(request).json["quote"] quote_bill_info = { "quote": quote_info.get("id"), "price": quote_info.get("price"), "currency": quote_info.get("currency") } job_resp = submit_local_job(request) job_json = job_resp.json job_id = job_json.get("jobID") user_id = str(request.authenticated_userid) store = get_db(request).get_store(StoreBills) bill = store.save_bill(Bill(user=user_id, job=job_id, **quote_bill_info)) job_json.update({"bill": bill.id}) return HTTPCreated(json=job_json)
[((26, 9, 26, 36), 'logging.getLogger', 'logging.getLogger', ({(26, 27, 26, 35): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((46, 1, 46, 98), 'weaver.exceptions.log_unhandled_exceptions', 'log_unhandled_exceptions', (), '', False, 'from weaver.exceptions import ProcessNotFound, QuoteNotFound, log_unhandled_exceptions\n'), ((114, 1, 114, 98), 'weaver.exceptions.log_unhandled_exceptions', 'log_unhandled_exceptions', (), '', False, 'from weaver.exceptions import ProcessNotFound, QuoteNotFound, log_unhandled_exceptions\n'), ((142, 1, 142, 98), 'weaver.exceptions.log_unhandled_exceptions', 'log_unhandled_exceptions', (), '', False, 'from weaver.exceptions import ProcessNotFound, QuoteNotFound, log_unhandled_exceptions\n'), ((160, 1, 160, 98), 'weaver.exceptions.log_unhandled_exceptions', 'log_unhandled_exceptions', (), '', False, 'from weaver.exceptions import ProcessNotFound, QuoteNotFound, log_unhandled_exceptions\n'), ((38, 12, 38, 33), 'random.uniform', 'random.uniform', ({(38, 27, 38, 28): '0', (38, 30, 38, 32): '10'}, {}), '(0, 10)', False, 'import random\n'), ((51, 15, 51, 36), 'weaver.utils.get_settings', 'get_settings', ({(51, 28, 51, 35): 'request'}, {}), '(request)', False, 'from weaver.utils import get_settings, get_weaver_url\n'), ((52, 20, 52, 54), 'weaver.config.get_weaver_configuration', 'get_weaver_configuration', ({(52, 45, 52, 53): 'settings'}, {}), '(settings)', False, 'from weaver.config import WEAVER_CONFIGURATION_ADES, WEAVER_CONFIGURATION_EMS, get_weaver_configuration\n'), ((130, 11, 135, 6), 'pyramid.httpexceptions.HTTPOk', 'HTTPOk', (), '', False, 'from pyramid.httpexceptions import HTTPBadRequest, HTTPCreated, HTTPNotFound, HTTPOk\n'), ((171, 15, 171, 40), 'weaver.wps_restapi.processes.processes.submit_local_job', 'submit_local_job', ({(171, 32, 171, 39): 'request'}, {}), '(request)', False, 'from weaver.wps_restapi.processes.processes import submit_local_job\n'), ((178, 11, 178, 37), 'pyramid.httpexceptions.HTTPCreated', 'HTTPCreated', (), '', False, 'from pyramid.httpexceptions import HTTPBadRequest, HTTPCreated, HTTPNotFound, HTTPOk\n'), ((83, 20, 83, 59), 'weaver.processes.wps_package.get_package_workflow_steps', 'get_package_workflow_steps', ({(83, 47, 83, 58): 'process_url'}, {}), '(process_url)', False, 'from weaver.processes.wps_package import get_package_workflow_steps, get_process_location\n'), ((45, 39, 45, 75), 'weaver.wps_restapi.swagger_definitions.PostProcessQuoteRequestEndpoint', 'sd.PostProcessQuoteRequestEndpoint', ({}, {}), '()', True, 'from weaver.wps_restapi import swagger_definitions as sd\n'), ((111, 38, 111, 64), 'weaver.wps_restapi.swagger_definitions.ProcessQuotesEndpoint', 'sd.ProcessQuotesEndpoint', ({}, {}), '()', True, 'from weaver.wps_restapi import swagger_definitions as sd\n'), ((113, 30, 113, 49), 'weaver.wps_restapi.swagger_definitions.QuotesEndpoint', 'sd.QuotesEndpoint', ({}, {}), '()', True, 'from weaver.wps_restapi import swagger_definitions as sd\n'), ((139, 37, 139, 62), 'weaver.wps_restapi.swagger_definitions.ProcessQuoteEndpoint', 'sd.ProcessQuoteEndpoint', ({}, {}), '()', True, 'from weaver.wps_restapi import swagger_definitions as sd\n'), ((141, 29, 141, 47), 'weaver.wps_restapi.swagger_definitions.QuoteEndpoint', 'sd.QuoteEndpoint', ({}, {}), '()', True, 'from weaver.wps_restapi import swagger_definitions as sd\n'), ((176, 27, 176, 76), 'weaver.datatype.Bill', 'Bill', (), '', False, 'from weaver.datatype import Bill, Quote\n'), ((157, 38, 157, 59), 'weaver.wps_restapi.swagger_definitions.PostProcessQuote', 'sd.PostProcessQuote', ({}, {}), '()', True, 'from weaver.wps_restapi import swagger_definitions as sd\n'), ((159, 30, 159, 44), 'weaver.wps_restapi.swagger_definitions.PostQuote', 'sd.PostQuote', ({}, {}), '()', True, 'from weaver.wps_restapi import swagger_definitions as sd\n'), ((58, 20, 58, 35), 'weaver.database.get_db', 'get_db', ({(58, 27, 58, 34): 'request'}, {}), '(request)', False, 'from weaver.database import get_db\n'), ((62, 14, 62, 81), 'pyramid.httpexceptions.HTTPNotFound', 'HTTPNotFound', ({(62, 27, 62, 80): '"""Could not find process with specified \'process_id\'."""'}, {}), '("Could not find process with specified \'process_id\'.")', False, 'from pyramid.httpexceptions import HTTPBadRequest, HTTPCreated, HTTPNotFound, HTTPOk\n'), ((64, 12, 64, 27), 'weaver.database.get_db', 'get_db', ({(64, 19, 64, 26): 'request'}, {}), '(request)', False, 'from weaver.database import get_db\n'), ((65, 63, 65, 87), 'weaver.utils.get_weaver_url', 'get_weaver_url', ({(65, 78, 65, 86): 'settings'}, {}), '(settings)', False, 'from weaver.utils import get_settings, get_weaver_url\n'), ((86, 31, 86, 70), 'weaver.processes.wps_package.get_process_location', 'get_process_location', ({(86, 52, 86, 69): "step['reference']"}, {}), "(step['reference'])", False, 'from weaver.processes.wps_package import get_package_workflow_steps, get_process_location\n'), ((96, 33, 96, 60), 'weaver.datatype.Quote', 'Quote', ({}, {}), '(**process_quote_info)', False, 'from weaver.datatype import Bill, Quote\n'), ((104, 15, 104, 54), 'pyramid.httpexceptions.HTTPCreated', 'HTTPCreated', (), '', False, 'from pyramid.httpexceptions import HTTPBadRequest, HTTPCreated, HTTPNotFound, HTTPOk\n'), ((128, 12, 128, 27), 'weaver.database.get_db', 'get_db', ({(128, 19, 128, 26): 'request'}, {}), '(request)', False, 'from weaver.database import get_db\n'), ((148, 12, 148, 27), 'weaver.database.get_db', 'get_db', ({(148, 19, 148, 26): 'request'}, {}), '(request)', False, 'from weaver.database import get_db\n'), ((152, 14, 152, 77), 'pyramid.httpexceptions.HTTPNotFound', 'HTTPNotFound', ({(152, 27, 152, 76): '"""Could not find quote with specified \'quote_id\'."""'}, {}), '("Could not find quote with specified \'quote_id\'.")', False, 'from pyramid.httpexceptions import HTTPBadRequest, HTTPCreated, HTTPNotFound, HTTPOk\n'), ((175, 12, 175, 27), 'weaver.database.get_db', 'get_db', ({(175, 19, 175, 26): 'request'}, {}), '(request)', False, 'from weaver.database import get_db\n'), ((40, 50, 40, 71), 'random.uniform', 'random.uniform', ({(40, 65, 40, 66): '5', (40, 68, 40, 70): '60'}, {}), '(5, 60)', False, 'import random\n'), ((92, 37, 92, 56), 'weaver.datatype.Quote', 'Quote', ({}, {}), '(**quote_json)', False, 'from weaver.datatype import Bill, Quote\n'), ((101, 33, 101, 60), 'weaver.datatype.Quote', 'Quote', ({}, {}), '(**process_quote_info)', False, 'from weaver.datatype import Bill, Quote\n')]
agustinhenze/mibs.snmplabs.com
pysnmp/CISCO-VSI-CONTROLLER-MIB.py
1fc5c07860542b89212f4c8ab807057d9a9206c7
# # PySNMP MIB module CISCO-VSI-CONTROLLER-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCO-VSI-CONTROLLER-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 18:03:33 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsUnion, ConstraintsIntersection, ValueRangeConstraint, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsUnion", "ConstraintsIntersection", "ValueRangeConstraint", "SingleValueConstraint") ciscoMgmt, = mibBuilder.importSymbols("CISCO-SMI", "ciscoMgmt") ModuleCompliance, NotificationGroup, ObjectGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup", "ObjectGroup") ObjectIdentity, NotificationType, Gauge32, Bits, Unsigned32, IpAddress, MibIdentifier, MibScalar, MibTable, MibTableRow, MibTableColumn, ModuleIdentity, Counter32, Counter64, iso, Integer32, TimeTicks = mibBuilder.importSymbols("SNMPv2-SMI", "ObjectIdentity", "NotificationType", "Gauge32", "Bits", "Unsigned32", "IpAddress", "MibIdentifier", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "ModuleIdentity", "Counter32", "Counter64", "iso", "Integer32", "TimeTicks") TextualConvention, RowStatus, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "RowStatus", "DisplayString") ciscoVSIControllerMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 9, 9, 141)) if mibBuilder.loadTexts: ciscoVSIControllerMIB.setLastUpdated('9906080000Z') if mibBuilder.loadTexts: ciscoVSIControllerMIB.setOrganization('Cisco Systems, Inc.') class CvcControllerShelfLocation(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2)) namedValues = NamedValues(("internal", 1), ("external", 2)) class CvcControllerType(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3)) namedValues = NamedValues(("par", 1), ("pnni", 2), ("lsc", 3)) cvcMIBObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 141, 1)) cvcConfController = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 141, 1, 1)) cvcConfTable = MibTable((1, 3, 6, 1, 4, 1, 9, 9, 141, 1, 1, 1), ) if mibBuilder.loadTexts: cvcConfTable.setStatus('current') cvcConfEntry = MibTableRow((1, 3, 6, 1, 4, 1, 9, 9, 141, 1, 1, 1, 1), ).setIndexNames((0, "CISCO-VSI-CONTROLLER-MIB", "cvcConfControllerID")) if mibBuilder.loadTexts: cvcConfEntry.setStatus('current') cvcConfControllerID = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 141, 1, 1, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))) if mibBuilder.loadTexts: cvcConfControllerID.setStatus('current') cvcConfControllerType = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 141, 1, 1, 1, 1, 2), CvcControllerType()).setMaxAccess("readcreate") if mibBuilder.loadTexts: cvcConfControllerType.setStatus('current') cvcConfControllerShelfLocation = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 141, 1, 1, 1, 1, 3), CvcControllerShelfLocation()).setMaxAccess("readcreate") if mibBuilder.loadTexts: cvcConfControllerShelfLocation.setStatus('current') cvcConfControllerLocation = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 141, 1, 1, 1, 1, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))).setMaxAccess("readcreate") if mibBuilder.loadTexts: cvcConfControllerLocation.setStatus('current') cvcConfControllerName = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 141, 1, 1, 1, 1, 5), DisplayString()).setMaxAccess("readcreate") if mibBuilder.loadTexts: cvcConfControllerName.setStatus('current') cvcConfVpi = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 141, 1, 1, 1, 1, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 4095))).setMaxAccess("readcreate") if mibBuilder.loadTexts: cvcConfVpi.setStatus('current') cvcConfVci = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 141, 1, 1, 1, 1, 7), Integer32().subtype(subtypeSpec=ValueRangeConstraint(32, 65535))).setMaxAccess("readcreate") if mibBuilder.loadTexts: cvcConfVci.setStatus('current') cvcConfRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 9, 9, 141, 1, 1, 1, 1, 8), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: cvcConfRowStatus.setStatus('current') cvcMIBConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 141, 3)) cvcMIBCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 141, 3, 1)) cvcMIBGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 9, 9, 141, 3, 2)) cvcMIBCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 9, 9, 141, 3, 1, 1)).setObjects(("CISCO-VSI-CONTROLLER-MIB", "cvcConfGroup"), ("CISCO-VSI-CONTROLLER-MIB", "cvcConfGroupExternal")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cvcMIBCompliance = cvcMIBCompliance.setStatus('current') cvcConfGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 141, 3, 2, 1)).setObjects(("CISCO-VSI-CONTROLLER-MIB", "cvcConfControllerType"), ("CISCO-VSI-CONTROLLER-MIB", "cvcConfControllerShelfLocation"), ("CISCO-VSI-CONTROLLER-MIB", "cvcConfControllerLocation"), ("CISCO-VSI-CONTROLLER-MIB", "cvcConfControllerName"), ("CISCO-VSI-CONTROLLER-MIB", "cvcConfRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cvcConfGroup = cvcConfGroup.setStatus('current') cvcConfGroupExternal = ObjectGroup((1, 3, 6, 1, 4, 1, 9, 9, 141, 3, 2, 2)).setObjects(("CISCO-VSI-CONTROLLER-MIB", "cvcConfVpi"), ("CISCO-VSI-CONTROLLER-MIB", "cvcConfVci")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): cvcConfGroupExternal = cvcConfGroupExternal.setStatus('current') mibBuilder.exportSymbols("CISCO-VSI-CONTROLLER-MIB", cvcConfTable=cvcConfTable, cvcMIBGroups=cvcMIBGroups, cvcConfControllerType=cvcConfControllerType, cvcConfVpi=cvcConfVpi, CvcControllerShelfLocation=CvcControllerShelfLocation, cvcConfControllerLocation=cvcConfControllerLocation, cvcConfController=cvcConfController, cvcConfControllerName=cvcConfControllerName, PYSNMP_MODULE_ID=ciscoVSIControllerMIB, cvcConfControllerID=cvcConfControllerID, cvcConfGroupExternal=cvcConfGroupExternal, cvcMIBCompliance=cvcMIBCompliance, cvcConfEntry=cvcConfEntry, ciscoVSIControllerMIB=ciscoVSIControllerMIB, cvcConfControllerShelfLocation=cvcConfControllerShelfLocation, cvcConfRowStatus=cvcConfRowStatus, cvcConfGroup=cvcConfGroup, CvcControllerType=CvcControllerType, cvcConfVci=cvcConfVci, cvcMIBObjects=cvcMIBObjects, cvcMIBCompliances=cvcMIBCompliances, cvcMIBConformance=cvcMIBConformance)
[]
AartGoossens/streamlit-activity-viewer
strava.py
b43f157d8bee596908c4f2222be9bb0d8bd9b9e8
import base64 import os import arrow import httpx import streamlit as st import sweat from bokeh.models.widgets import Div APP_URL = os.environ["APP_URL"] STRAVA_CLIENT_ID = os.environ["STRAVA_CLIENT_ID"] STRAVA_CLIENT_SECRET = os.environ["STRAVA_CLIENT_SECRET"] STRAVA_AUTHORIZATION_URL = "https://www.strava.com/oauth/authorize" STRAVA_API_BASE_URL = "https://www.strava.com/api/v3" DEFAULT_ACTIVITY_LABEL = "NO_ACTIVITY_SELECTED" STRAVA_ORANGE = "#fc4c02" @st.cache(show_spinner=False) def load_image_as_base64(image_path): with open(image_path, "rb") as f: contents = f.read() return base64.b64encode(contents).decode("utf-8") def powered_by_strava_logo(): base64_image = load_image_as_base64("./static/api_logo_pwrdBy_strava_horiz_light.png") st.markdown( f'<img src="data:image/png;base64,{base64_image}" width="100%" alt="powered by strava">', unsafe_allow_html=True, ) def authorization_url(): request = httpx.Request( method="GET", url=STRAVA_AUTHORIZATION_URL, params={ "client_id": STRAVA_CLIENT_ID, "redirect_uri": APP_URL, "response_type": "code", "approval_prompt": "auto", "scope": "activity:read_all" } ) return request.url def login_header(header=None): strava_authorization_url = authorization_url() if header is None: base = st else: col1, _, _, button = header base = button with col1: powered_by_strava_logo() base64_image = load_image_as_base64("./static/[email protected]") base.markdown( ( f"<a href=\"{strava_authorization_url}\">" f" <img alt=\"strava login\" src=\"data:image/png;base64,{base64_image}\" width=\"100%\">" f"</a>" ), unsafe_allow_html=True, ) def logout_header(header=None): if header is None: base = st else: _, col2, _, button = header base = button with col2: powered_by_strava_logo() if base.button("Log out"): js = f"window.location.href = '{APP_URL}'" html = f"<img src onerror=\"{js}\">" div = Div(text=html) st.bokeh_chart(div) def logged_in_title(strava_auth, header=None): if header is None: base = st else: col, _, _, _ = header base = col first_name = strava_auth["athlete"]["firstname"] last_name = strava_auth["athlete"]["lastname"] col.markdown(f"*Welcome, {first_name} {last_name}!*") @st.cache(show_spinner=False, suppress_st_warning=True) def exchange_authorization_code(authorization_code): response = httpx.post( url="https://www.strava.com/oauth/token", json={ "client_id": STRAVA_CLIENT_ID, "client_secret": STRAVA_CLIENT_SECRET, "code": authorization_code, "grant_type": "authorization_code", } ) try: response.raise_for_status() except httpx.HTTPStatusError: st.error("Something went wrong while authenticating with Strava. Please reload and try again") st.experimental_set_query_params() st.stop() return strava_auth = response.json() return strava_auth def authenticate(header=None, stop_if_unauthenticated=True): query_params = st.experimental_get_query_params() authorization_code = query_params.get("code", [None])[0] if authorization_code is None: authorization_code = query_params.get("session", [None])[0] if authorization_code is None: login_header(header=header) if stop_if_unauthenticated: st.stop() return else: logout_header(header=header) strava_auth = exchange_authorization_code(authorization_code) logged_in_title(strava_auth, header) st.experimental_set_query_params(session=authorization_code) return strava_auth def header(): col1, col2, col3 = st.beta_columns(3) with col3: strava_button = st.empty() return col1, col2, col3, strava_button @st.cache(show_spinner=False) def get_activities(auth, page=1): access_token = auth["access_token"] response = httpx.get( url=f"{STRAVA_API_BASE_URL}/athlete/activities", params={ "page": page, }, headers={ "Authorization": f"Bearer {access_token}", }, ) return response.json() def activity_label(activity): if activity["name"] == DEFAULT_ACTIVITY_LABEL: return "" start_date = arrow.get(activity["start_date_local"]) human_readable_date = start_date.humanize(granularity=["day"]) date_string = start_date.format("YYYY-MM-DD") return f"{activity['name']} - {date_string} ({human_readable_date})" def select_strava_activity(auth): col1, col2 = st.beta_columns([1, 3]) with col1: page = st.number_input( label="Activities page", min_value=1, help="The Strava API returns your activities in chunks of 30. Increment this field to go to the next page.", ) with col2: activities = get_activities(auth=auth, page=page) if not activities: st.info("This Strava account has no activities or you ran out of pages.") st.stop() default_activity = {"name": DEFAULT_ACTIVITY_LABEL, "start_date_local": ""} activity = st.selectbox( label="Select an activity", options=[default_activity] + activities, format_func=activity_label, ) if activity["name"] == DEFAULT_ACTIVITY_LABEL: st.write("No activity selected") st.stop() return activity_url = f"https://www.strava.com/activities/{activity['id']}" st.markdown( f"<a href=\"{activity_url}\" style=\"color:{STRAVA_ORANGE};\">View on Strava</a>", unsafe_allow_html=True ) return activity @st.cache(show_spinner=False, max_entries=30, allow_output_mutation=True) def download_activity(activity, strava_auth): with st.spinner(f"Downloading activity \"{activity['name']}\"..."): return sweat.read_strava(activity["id"], strava_auth["access_token"])
[((21, 1, 21, 29), 'streamlit.cache', 'st.cache', (), '', True, 'import streamlit as st\n'), ((105, 1, 105, 55), 'streamlit.cache', 'st.cache', (), '', True, 'import streamlit as st\n'), ((159, 1, 159, 29), 'streamlit.cache', 'st.cache', (), '', True, 'import streamlit as st\n'), ((224, 1, 224, 73), 'streamlit.cache', 'st.cache', (), '', True, 'import streamlit as st\n'), ((30, 4, 33, 5), 'streamlit.markdown', 'st.markdown', (), '', True, 'import streamlit as st\n'), ((37, 14, 47, 5), 'httpx.Request', 'httpx.Request', (), '', False, 'import httpx\n'), ((107, 15, 115, 5), 'httpx.post', 'httpx.post', (), '', False, 'import httpx\n'), ((130, 19, 130, 53), 'streamlit.experimental_get_query_params', 'st.experimental_get_query_params', ({}, {}), '()', True, 'import streamlit as st\n'), ((151, 23, 151, 41), 'streamlit.beta_columns', 'st.beta_columns', ({(151, 39, 151, 40): '3'}, {}), '(3)', True, 'import streamlit as st\n'), ((162, 15, 170, 5), 'httpx.get', 'httpx.get', (), '', False, 'import httpx\n'), ((179, 17, 179, 56), 'arrow.get', 'arrow.get', ({(179, 27, 179, 55): "activity['start_date_local']"}, {}), "(activity['start_date_local'])", False, 'import arrow\n'), ((187, 17, 187, 40), 'streamlit.beta_columns', 'st.beta_columns', ({(187, 33, 187, 39): '[1, 3]'}, {}), '([1, 3])', True, 'import streamlit as st\n'), ((215, 4, 218, 5), 'streamlit.markdown', 'st.markdown', (), '', True, 'import streamlit as st\n'), ((89, 14, 89, 28), 'bokeh.models.widgets.Div', 'Div', (), '', False, 'from bokeh.models.widgets import Div\n'), ((90, 8, 90, 27), 'streamlit.bokeh_chart', 'st.bokeh_chart', ({(90, 23, 90, 26): 'div'}, {}), '(div)', True, 'import streamlit as st\n'), ((145, 8, 145, 68), 'streamlit.experimental_set_query_params', 'st.experimental_set_query_params', (), '', True, 'import streamlit as st\n'), ((154, 24, 154, 34), 'streamlit.empty', 'st.empty', ({}, {}), '()', True, 'import streamlit as st\n'), ((189, 15, 193, 9), 'streamlit.number_input', 'st.number_input', (), '', True, 'import streamlit as st\n'), ((202, 19, 206, 9), 'streamlit.selectbox', 'st.selectbox', (), '', True, 'import streamlit as st\n'), ((209, 8, 209, 40), 'streamlit.write', 'st.write', ({(209, 17, 209, 39): '"""No activity selected"""'}, {}), "('No activity selected')", True, 'import streamlit as st\n'), ((210, 8, 210, 17), 'streamlit.stop', 'st.stop', ({}, {}), '()', True, 'import streamlit as st\n'), ((226, 9, 226, 70), 'streamlit.spinner', 'st.spinner', ({(226, 20, 226, 69): 'f"""Downloading activity "{activity[\'name\']}"..."""'}, {}), '(f\'Downloading activity "{activity[\\\'name\\\']}"...\')', True, 'import streamlit as st\n'), ((227, 15, 227, 77), 'sweat.read_strava', 'sweat.read_strava', ({(227, 33, 227, 47): "activity['id']", (227, 49, 227, 76): "strava_auth['access_token']"}, {}), "(activity['id'], strava_auth['access_token'])", False, 'import sweat\n'), ((25, 11, 25, 37), 'base64.b64encode', 'base64.b64encode', ({(25, 28, 25, 36): 'contents'}, {}), '(contents)', False, 'import base64\n'), ((119, 8, 119, 102), 'streamlit.error', 'st.error', ({(119, 17, 119, 101): '"""Something went wrong while authenticating with Strava. Please reload and try again"""'}, {}), "(\n 'Something went wrong while authenticating with Strava. Please reload and try again'\n )", True, 'import streamlit as st\n'), ((120, 8, 120, 42), 'streamlit.experimental_set_query_params', 'st.experimental_set_query_params', ({}, {}), '()', True, 'import streamlit as st\n'), ((121, 8, 121, 17), 'streamlit.stop', 'st.stop', ({}, {}), '()', True, 'import streamlit as st\n'), ((139, 12, 139, 21), 'streamlit.stop', 'st.stop', ({}, {}), '()', True, 'import streamlit as st\n'), ((198, 12, 198, 85), 'streamlit.info', 'st.info', ({(198, 20, 198, 84): '"""This Strava account has no activities or you ran out of pages."""'}, {}), "('This Strava account has no activities or you ran out of pages.')", True, 'import streamlit as st\n'), ((199, 12, 199, 21), 'streamlit.stop', 'st.stop', ({}, {}), '()', True, 'import streamlit as st\n')]
reap3r/nmfta-bouncer
appliance/src/ufw_interface.py
a178244dbf0b8a165aabc02a5d1ba05006f9ec22
#!/usr/bin/env python #shamelessy stolen from: https://gitlab.com/dhj/easyufw # A thin wrapper over the thin wrapper that is ufw # Usage: # import easyufw as ufw # ufw.disable() # disable firewall # ufw.enable() # enable firewall # ufw.allow() # default allow -- allow all # ufw.allow(22) # allow port 22, any protocol # ufw.allow(22,'tcp') # allow port 22, tcp protocol # ufw.allow('22/tcp') # allow port 22, tcp protocol # ufw.allow(53,'udp') # allow port 53, udp protocol # ufw.allow(53,'udp') # allow port 53, udp protocol # ufw.deny() # default deny -- deny all # ufw.deny(22,'tcp') # deny port 22, tcp protocol # ufw.delete(22) # delete rules referencing port 22 # ufw.reset() # restore defaults # ufw.status() # return status string (default verbose=True) # ufw.run("allow 22") # directly run command as if from command line import ufw.frontend import ufw.common import gettext progName = ufw.common.programName gettext.install(progName)#, unicode=True) # for i18n; fixes '_' not defined ui = ufw.frontend.UFWFrontend(False) # no dryrun -- do it live backend = ui.backend parse_command = ufw.frontend.parse_command def _parse(actionstr): # parse commands like "allow 22", "reset", "default allow" argv = [progName] argv.extend(actionstr.split(' ')) # generate bogus argv to parse pr = parse_command(argv) return pr def run(actionstr, force=False): # run command with an explicit force argument pr = _parse(actionstr) rule = pr.data.get('rule','') # commands like reset don't have a rule iptype = pr.data.get('iptype','') return ui.do_action(pr.action,rule,iptype,force) def reset(force=True): run('reset',force=force) def enable(): ui.set_enabled(True) def disable(): ui.set_enabled(False) def allow(port=None, protocol=None): # port int; protocol str ['tcp','udp'] pp = None if port is not None: pp = "" # port and protocol string pp += str(port) if protocol is not None: pp += '/' + protocol _allow(pp) def _allow(pp=None): # pp = port and protocol string ['22','22/tcp','53/udp'] # port without protocol includes all protocols if pp is None: run('default allow') else: run('allow ' + pp) def deny(port=None, protocol=None): # port int; protocol str ['tcp','udp'] pp = None if port is not None: pp = "" # port and protocol string pp += str(port) if protocol is not None: pp += '/' + protocol _deny(pp) def _deny(pp=None): # pp = port and protocol string if pp is None: run('default deny') else: run('deny ' + pp) def delete(port): # delete all rules by destination port while _delete(port): pass # while ports deleted re-enumerate and continue def _delete(port): for i,rule in enumerate(backend.get_rules()): rule_port = None try: rule_port = int(rule.dport) except: rule_port = None if rule_port is not None and port == rule_port: run("delete " + str(i+1), force=True) return True # delete one rule; enumeration changes after delete return False def status(verbose=True): cmd = 'status' if verbose: cmd += ' verbose' return run(cmd)
[((28, 0, 28, 25), 'gettext.install', 'gettext.install', ({(28, 16, 28, 24): 'progName'}, {}), '(progName)', False, 'import gettext\n')]
etri-city-traffic-brain/traffic-simulator
test/libsalt/test_vehicle.py
6d5061febeaef484388b2b5aee14d9894099d98a
import libsalt def test(salt_scenario): libsalt.start(salt_scenario) libsalt.setCurrentStep(25200) step = libsalt.getCurrentStep() while step <= 36000: if (step % 100 == 0): print("Simulation Step: ", step) test_funcs() libsalt.simulationStep() step = libsalt.getCurrentStep() libsalt.close() print("Python: Simulation End!!!") def test_funcs(): standbys = libsalt.vehicle.getStandbyVehicles() runnings = libsalt.vehicle.getRunningVehicles() print("#Running Vehicles: ", len(runnings)) #for vehicle in runnings: # print("\t", vehicle.toString()) #for vehicle in standbys: # print("\t", vehicle.toString()) # for vehicle in runnings: # print("Running Vehicle)", vehicle.id, ":", libsalt.vehicle.getRoute(vehicle.id).toString()) # print("Running Vehicle)", vehicle.id, ":", vehicle.toString()) #print("#Standby Vehicles: ", len(standbys)) #for vehicle in standbys: # print("Standby Vehicle)", vehicle.id, ":", libsalt.vehicle.getRouteString(vehicle.id)) #print("Standby Vehicle)", vehicle.id, ":", vehicle.toString()) if __name__ == "__main__": salt_scenario = r"/home/mclee/project/traffic-simulator/data/dj_sample_data/2020-dj_sample.json" test(salt_scenario)
[((4, 4, 4, 32), 'libsalt.start', 'libsalt.start', ({(4, 18, 4, 31): 'salt_scenario'}, {}), '(salt_scenario)', False, 'import libsalt\n'), ((5, 4, 5, 33), 'libsalt.setCurrentStep', 'libsalt.setCurrentStep', ({(5, 27, 5, 32): '(25200)'}, {}), '(25200)', False, 'import libsalt\n'), ((6, 11, 6, 35), 'libsalt.getCurrentStep', 'libsalt.getCurrentStep', ({}, {}), '()', False, 'import libsalt\n'), ((14, 4, 14, 19), 'libsalt.close', 'libsalt.close', ({}, {}), '()', False, 'import libsalt\n'), ((18, 15, 18, 51), 'libsalt.vehicle.getStandbyVehicles', 'libsalt.vehicle.getStandbyVehicles', ({}, {}), '()', False, 'import libsalt\n'), ((19, 15, 19, 51), 'libsalt.vehicle.getRunningVehicles', 'libsalt.vehicle.getRunningVehicles', ({}, {}), '()', False, 'import libsalt\n'), ((11, 8, 11, 32), 'libsalt.simulationStep', 'libsalt.simulationStep', ({}, {}), '()', False, 'import libsalt\n'), ((12, 15, 12, 39), 'libsalt.getCurrentStep', 'libsalt.getCurrentStep', ({}, {}), '()', False, 'import libsalt\n')]
davidtahim/Glyphs-Scripts
Masters/Copy Layer to Layer.py
5ed28805b5fe03c63d904ad2f79117844c22aa44
#MenuTitle: Copy Layer to Layer # -*- coding: utf-8 -*- __doc__=""" Copies one master to another master in selected glyphs. """ import GlyphsApp import vanilla import math def getComponentScaleX_scaleY_rotation( self ): a = self.transform[0] b = self.transform[1] c = self.transform[2] d = self.transform[3] scale_x = math.sqrt(math.pow(a,2)+math.pow(b,2)) scale_y = math.sqrt(math.pow(c,2)+math.pow(d,2)) if (b<0 and c<0): scale_y = scale_y * -1 rotation = math.atan2(b, a) * (180/math.pi) return [scale_x, scale_y, rotation] class MasterFiller( object ): def __init__( self ): # Window 'self.w': windowWidth = 280 windowHeight = 155 windowWidthResize = 120 # user can resize width by this value windowHeightResize = 0 # user can resize height by this value self.w = vanilla.FloatingWindow( ( windowWidth, windowHeight ), # default window size "Copy layer to layer", # window title minSize = ( windowWidth, windowHeight ), # minimum size (for resizing) maxSize = ( windowWidth + windowWidthResize, windowHeight + windowHeightResize ), # maximum size (for resizing) autosaveName = "com.mekkablue.MasterFiller.mainwindow" # stores last window position and size ) self.w.text_1 = vanilla.TextBox((15, 12+2, 120, 14), "Copy paths from", sizeStyle='small') self.w.master_from = vanilla.PopUpButton((120, 12, -15, 17), self.GetMasterNames(), sizeStyle='small', callback=self.MasterChangeCallback) self.w.text_2 = vanilla.TextBox((15, 32+2, 120, 14), "into selection of", sizeStyle='small') self.w.master_into = vanilla.PopUpButton((120, 32, -15, 17), self.GetMasterNames(), sizeStyle='small', callback=self.MasterChangeCallback) self.w.include_components = vanilla.CheckBox((15, 52+2, -100, 20), "Include components", sizeStyle='small', callback=self.SavePreferences, value=True) self.w.include_anchors = vanilla.CheckBox((15, 52+20, -100, 20), "Include anchors", sizeStyle='small', callback=self.SavePreferences, value=True) self.w.include_metrics = vanilla.CheckBox((15, 52+38, -100, 20), "Include metrics", sizeStyle='small', callback=self.SavePreferences, value=True) self.w.keep_window_open = vanilla.CheckBox((15, 52+56, -100, 20), "Keep window open", sizeStyle='small', callback=self.SavePreferences, value=True) self.w.copybutton = vanilla.Button((-80, -30, -15, -10), "Copy", sizeStyle='small', callback=self.buttonCallback) self.w.setDefaultButton( self.w.copybutton ) # Load Settings: if not self.LoadPreferences(): print "Note: 'Copy Layer to Layer' could not load preferences. Will resort to defaults." self.w.open() self.w.makeKey() self.w.master_into.set(1) def SavePreferences( self, sender ): try: Glyphs.defaults["com.mekkablue.MasterFiller.include_components"] = self.w.include_components.get() Glyphs.defaults["com.mekkablue.MasterFiller.include_anchors"] = self.w.include_anchors.get() Glyphs.defaults["com.mekkablue.MasterFiller.include_metrics"] = self.w.include_metrics.get() Glyphs.defaults["com.mekkablue.MasterFiller.keep_window_open"] = self.w.keep_window_open.get() except: return False return True def LoadPreferences( self ): try: NSUserDefaults.standardUserDefaults().registerDefaults_( { "com.mekkablue.MasterFiller.include_components" : "1", "com.mekkablue.MasterFiller.include_anchors" : "1", "com.mekkablue.MasterFiller.include_metrics" : "1", "com.mekkablue.MasterFiller.keep_window_open" : "1" } ) self.w.include_components.set( Glyphs.defaults["com.mekkablue.MasterFiller.include_components"] ) self.w.include_anchors.set( Glyphs.defaults["com.mekkablue.MasterFiller.include_anchors"] ) self.w.include_metrics.set( Glyphs.defaults["com.mekkablue.MasterFiller.include_metrics"] ) self.w.keep_window_open.set( Glyphs.defaults["com.mekkablue.MasterFiller.keep_window_open"] ) except: return False return True def GetMasterNames( self ): myMasterList = [] for i in range( len( Glyphs.currentDocument.font.masters ) ): x = Glyphs.currentDocument.font.masters[i] myMasterList.append( '%i: %s' % (i, x.name) ) return myMasterList def MasterChangeCallback( self, sender ): if self.w.master_from.get() == self.w.master_into.get(): self.w.copybutton.enable( False ) else: self.w.copybutton.enable( True ) def copyPathsFromLayerToLayer( self, sourceLayer, targetLayer ): """Copies all paths from sourceLayer to targetLayer""" num_from = len( sourceLayer.paths ) num_into = len( targetLayer.paths ) if num_into != 0: print "- Cleaning out paths in target layer" for i in range( num_into )[::-1]: del targetLayer.paths[i] if num_from > 0: print "- Copying paths" for thisPath in sourceLayer.paths: newPath = GSPath() for n in thisPath.nodes: newNode = GSNode() newNode.type = n.type newNode.connection = n.connection newNode.setPosition_( (n.x, n.y) ) newPath.addNode_( newNode ) newPath.closed = thisPath.closed targetLayer.paths.append( newPath ) def copyComponentsFromLayerToLayer( self, sourceLayer, targetLayer ): """Copies all components from sourceLayer to targetLayer.""" comp_from = len( sourceLayer.components ) comp_into = len( targetLayer.components ) if comp_into != 0: print "- Cleaning out components in target layer" for i in range( comp_into )[::-1]: del targetLayer.components[i] if comp_from > 0: print "- Copying components:" for thisComp in sourceLayer.components: compName = str( thisComp.componentName ) # str() probably not necessary anymore, but once fixed a problem newComp = GSComponent( compName ) newComp.setPosition_( (thisComp.x, thisComp.y) ) ScaleX_scaleY_rotation = getComponentScaleX_scaleY_rotation(thisComp) newComp.setScaleX_scaleY_rotation_(ScaleX_scaleY_rotation[0],ScaleX_scaleY_rotation[1],ScaleX_scaleY_rotation[2]) print "-- Component: %s" % ( compName ) targetLayer.components.append( newComp ) def copyAnchorsFromLayerToLayer( self, sourceLayer, targetLayer ): """Copies all anchors from sourceLayer to targetLayer.""" anch_from = len( sourceLayer.anchors ) anch_into = len( targetLayer.anchors ) if anch_into != 0: print "- Cleaning out anchors in target layer" sourceLayer.setAnchors_( None ) if anch_from > 0: print "- Copying anchors from source layer:" for thisAnchor in sourceLayer.anchors: anchorName = thisAnchor.name anchorPosition = NSPoint( thisAnchor.x, thisAnchor.y ) newAnchor = GSAnchor( anchorName, anchorPosition ) print "-- %s (%i, %i)" % ( anchorName, anchorPosition.x, anchorPosition.y ) targetLayer.addAnchor_( newAnchor ) def copyMetricsFromLayerToLayer( self, sourceLayer, targetLayer ): """Copies width of sourceLayer to targetLayer.""" sourceWidth = sourceLayer.width if targetLayer.width != sourceWidth: targetLayer.width = sourceWidth print "- Copying width (%.1f)" % sourceWidth else: print "- Width not changed (already was %.1f)" % sourceWidth def buttonCallback( self, sender ): Glyphs.clearLog() Glyphs.showMacroWindow() print "Copy Layer to Layer Protocol:" Font = Glyphs.font Doc = Glyphs.currentDocument selectedGlyphs = [ x.parent for x in Font.selectedLayers ] index_from = self.w.master_from.get() index_into = self.w.master_into.get() compYesNo = self.w.include_components.get() anchYesNo = self.w.include_anchors.get() metrYesNo = self.w.include_metrics.get() for thisGlyph in selectedGlyphs: try: print "\nProcessing", thisGlyph.name sourcelayer = thisGlyph.layers[ index_from ] targetlayer = thisGlyph.layers[ index_into ] Font.disableUpdateInterface() # copy paths: self.copyPathsFromLayerToLayer( sourcelayer, targetlayer ) # copy components: if compYesNo: self.copyComponentsFromLayerToLayer( sourcelayer, targetlayer ) # copy anchors: if anchYesNo: self.copyAnchorsFromLayerToLayer( sourcelayer, targetlayer ) # copy metrics: if metrYesNo: self.copyMetricsFromLayerToLayer( sourcelayer, targetlayer ) Font.enableUpdateInterface() except Exception, e: print e if not self.w.keep_window_open.get(): self.w.close() MasterFiller()
[]
bjacobs1/vunit
vunit/test/unit/test_tokenizer.py
a7f7717a172855ea7852296bb768370d50cfc992
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this file, # You can obtain one at http://mozilla.org/MPL/2.0/. # # Copyright (c) 2014-2018, Lars Asplund [email protected] """ Test of the general tokenizer """ from unittest import TestCase from vunit.parsing.tokenizer import describe_location from vunit.test.mock_2or3 import mock class TestTokenizer(TestCase): """ Test of the general tokenizer """ def test_describes_single_char_location(self): self.assertEqual( _describe_location("""\ S """), """\ at filename0 line 1: S ~""") def test_describes_single_char_location_within(self): self.assertEqual( _describe_location("""\ S """), """\ at filename0 line 1: S ~""") def test_describes_multi_char_location(self): self.assertEqual( _describe_location("""\ S E """), """\ at filename0 line 1: S E ~~~""") def test_describes_multi_char_location_within(self): self.assertEqual( _describe_location("""\ S E """), """\ at filename0 line 1: S E ~~~""") def test_describes_multi_line_location(self): self.assertEqual( _describe_location("""\ S____ E """), """\ at filename0 line 1: S____ ~~~~~""") def test_describes_multi_file_location(self): self.assertEqual( _describe_location("""\ S__E""", """\ SE"""), """\ from filename0 line 2: S__E ~~~~ at filename1 line 3: SE ~~""") def test_describe_location_none(self): self.assertEqual(describe_location(None), "Unknown location") def test_describe_missing_location(self): self.assertEqual(describe_location((("missing.svh", (0, 0)), None)), "Unknown location in missing.svh") def test_describe_none_filename_location(self): self.assertEqual(describe_location(((None, (0, 0)), None)), "Unknown Python string") def _describe_location(*codes): """ Helper to test describe_location """ contents = {} location = None for idx, code in enumerate(codes): filename = "filename%i" % idx contents[filename] = code start = code.index("S") if "E" in code: end = code.index("E") else: end = start location = ((filename, (start, end)), location) with mock.patch("vunit.parsing.tokenizer.read_file", autospec=True) as mock_read_file: with mock.patch("vunit.parsing.tokenizer.file_exists", autospec=True) as mock_file_exists: def file_exists_side_effect(filename): return filename in contents def read_file_side_effect(filename): return contents[filename] mock_file_exists.side_effect = file_exists_side_effect mock_read_file.side_effect = read_file_side_effect retval = describe_location(location=location) return retval
[((113, 9, 113, 71), 'vunit.test.mock_2or3.mock.patch', 'mock.patch', (), '', False, 'from vunit.test.mock_2or3 import mock\n'), ((83, 25, 83, 48), 'vunit.parsing.tokenizer.describe_location', 'describe_location', ({(83, 43, 83, 47): 'None'}, {}), '(None)', False, 'from vunit.parsing.tokenizer import describe_location\n'), ((87, 25, 87, 75), 'vunit.parsing.tokenizer.describe_location', 'describe_location', ({(87, 43, 87, 74): "(('missing.svh', (0, 0)), None)"}, {}), "((('missing.svh', (0, 0)), None))", False, 'from vunit.parsing.tokenizer import describe_location\n'), ((91, 25, 91, 66), 'vunit.parsing.tokenizer.describe_location', 'describe_location', ({(91, 43, 91, 65): '((None, (0, 0)), None)'}, {}), '(((None, (0, 0)), None))', False, 'from vunit.parsing.tokenizer import describe_location\n'), ((114, 13, 114, 77), 'vunit.test.mock_2or3.mock.patch', 'mock.patch', (), '', False, 'from vunit.test.mock_2or3 import mock\n'), ((123, 21, 123, 57), 'vunit.parsing.tokenizer.describe_location', 'describe_location', (), '', False, 'from vunit.parsing.tokenizer import describe_location\n')]
tbersez/Allmine
modules/star_se_SP.py
092fb1f5abcb4fd4e40b4a25386f05ecb2dea55b
# STAR aligner single end mode, second pass # # This module runs the second pass of the STAR aligner 2 path # strategy. The goal is to align reads taking in account splice # junction found in the fist pass.. # # Inputs: # - sample_trim.fastq.gz # - splicing junction files (.tab) # # Output: # - aligned reads # - logs for follow up and debuging if needed # # Parameters: # No fancy parameters needed, only the threads number is specified. rule star_se_SP: input: # fake input flag = ancient(config["REF"] + "REindexing_done.txt"), R1 = config["TRIMMED"] + "{samples}_trim.fastq.gz", genomeDir = ancient(config["REF"]) output: bam = config["MAP"] + "{samples}_sorted.bam.gz" params: prefix = config["MAP"] + "{samples}.", tmp = config["MAP"] + "SP/" + "{samples}_sp_STAR_TMP", bind = config["BIND"], cont = config["CONT"] benchmark: "benchmarks/star_SP/{samples}.tsv" message : "Running STAR second pass with {input.R1}. \n" shell: """ singularity exec -B {params.bind} {params.cont} \ STAR \ --runThreadN 10 \ --genomeDir {input.genomeDir} \ --readFilesIn {input.R1} \ --outSAMtype BAM SortedByCoordinate \ --outFileNamePrefix {params.prefix} \ --outStd BAM_SortedByCoordinate \ --outTmpDir {params.tmp} \ --scoreGap 0 \ --scoreGapNoncan -8 \ --scoreGapGCAG -4 \ --scoreGapATAC -8 \ --scoreGenomicLengthLog2scale -0.25 \ --scoreDelOpen -2 \ --scoreDelBase -2 \ --scoreInsOpen -2 \ --scoreInsBase -2 \ --scoreStitchSJshift 1 \ --readFilesCommand zcat | gzip --stdout > {output.bam} """
[]
runzezhang/MOOCs
Udemy/REST-Django-VueJS/C3-practice/03-demo/job_board/jobs/models.py
8df8c7adc5af3d7b085be01ae9b6963fe33acd68
from django.db import models class JobOffer(models.Model): company_name = models.CharField(max_length=50) company_email = models.EmailField() job_title = models.CharField(max_length=60) job_description = models.TextField() salary = models.PositiveIntegerField() city = models.CharField(max_length=35) state = models.CharField(max_length=35) created_at = models.DateField(auto_now_add=True) available = models.BooleanField(default=True) def __str__(self): return self.company_name
[((5, 19, 5, 50), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((6, 20, 6, 39), 'django.db.models.EmailField', 'models.EmailField', ({}, {}), '()', False, 'from django.db import models\n'), ((7, 16, 7, 47), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((8, 22, 8, 40), 'django.db.models.TextField', 'models.TextField', ({}, {}), '()', False, 'from django.db import models\n'), ((9, 13, 9, 42), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ({}, {}), '()', False, 'from django.db import models\n'), ((10, 11, 10, 42), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((11, 12, 11, 43), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((12, 17, 12, 52), 'django.db.models.DateField', 'models.DateField', (), '', False, 'from django.db import models\n'), ((13, 16, 13, 49), 'django.db.models.BooleanField', 'models.BooleanField', (), '', False, 'from django.db import models\n')]
barbaramootian/Memes-app
memeapp/views.py
4ffa2da997758ee4f35dc21e755e3db242b8654f
from django.shortcuts import render,redirect from django.contrib.auth.models import User from django.contrib import messages from .forms import PictureUploadForm,CommentForm from .models import Image,Profile,Likes,Comments from django.contrib.auth.decorators import login_required from django.contrib .auth import authenticate,login,logout from django.contrib.auth.forms import UserCreationForm from datetime import datetime def index(request): images=Image.objects.all() context={'images':images} return render(request,'memeapp/index.html',context) def registerPage(request): form=UserCreationForm() if request.method == "POST": form_results=UserCreationForm(request.POST) if form_results.is_valid(): user =form_results.save(commit=False) user.username=user.username.lower() user.save() login(request,user) return redirect('index') else: messages.error(request, 'Error occured during registration') context = {'reg_form':form} return render(request, 'memeapp/auth.html',context) def loginPage(request): page='login' if request.user.is_authenticated: return redirect('index') if request.method == "POST": username=request.POST.get('username').lower() password=request.POST.get('password') try: user=User.objects.get(username=username) except: messages.error(request, 'User does not exist') user=authenticate(request,username=username,password=password) if user is not None: login(request,user) return redirect('index') else: messages.error(request, 'Username OR Password does not exist') context={'page':page} return render(request, 'memeapp/auth.html', context) def logoutUser(request): logout(request) return redirect('index') @login_required(login_url='login') def uploadPicture(request): form = PictureUploadForm() if request.method == "POST": form_results = PictureUploadForm(request.POST,request.FILES) if form_results.is_valid(): form_results.save() return redirect('index') context = {"form": form} return render(request, 'memeapp/upload_picture.html', context) @login_required(login_url='login') def my_images(request): current_user = request.user images = Profile.objects.filter(user_id=current_user.id).first() profiles = Image.objects.filter(user_id=current_user.id) return render(request, 'memeapp/profile.html', {"profile": images,"images":profiles}) @login_required(login_url='login') def each_image(request, id): image = Image.objects.get(id=id) return render(request, 'memeapp/image_details.html', {'image': image}) @login_required(login_url='login') def like_picture(request, id): likes = Likes.objects.filter(image_id=id).first() if Likes.objects.filter(image_id=id, user_id=request.user.id).exists(): likes.delete() image = Image.objects.get(id=id) if image.likes_number == 0: image.likes_number = 0 image.save() else: image.likes_number -= 1 image.save() return redirect('/') else: likes = Likes(image_id=id, user_id=request.user.id) likes.save() image = Image.objects.get(id=id) image.likes_number = image.likes_number + 1 image.save() return redirect('/') @login_required(login_url='login') def comment(request,pk): profile = Image.objects.get(pk=pk) form_results = CommentForm(request.POST,instance=profile) if request.method == "POST": if form_results.is_valid(): user = request.user comment= form_results.cleaned_data['comment'] comment_content = Comments(user=user, image=profile, comment=comment, created_on=datetime.now()) comment_content.save() profile.comments_number = profile.comments_number + 1 profile.save() return redirect('index') else: print('form is invalid') else: form_results = CommentForm context = {'form':form_results,'image':profile} return render(request,'memeapp/comments.html',context) def search(request): title = "Search" if 'search_query' in request.GET and request.GET["search_query"]: search_term = request.GET.get("search_query").lower() searched_results = Image.search_image(search_term) message = f"{search_term}" context = {'message': message, 'results': searched_results, 'title': title} return render(request, 'memeapp/search.html', context) else: messages.error(request, "You haven't searched for any term") message = "You haven't searched for any term" return render(request, 'memeapp/search.html', {"message": message})
[((58, 1, 58, 34), 'django.contrib.auth.decorators.login_required', 'login_required', (), '', False, 'from django.contrib.auth.decorators import login_required\n'), ((70, 1, 70, 34), 'django.contrib.auth.decorators.login_required', 'login_required', (), '', False, 'from django.contrib.auth.decorators import login_required\n'), ((77, 1, 77, 34), 'django.contrib.auth.decorators.login_required', 'login_required', (), '', False, 'from django.contrib.auth.decorators import login_required\n'), ((83, 1, 83, 34), 'django.contrib.auth.decorators.login_required', 'login_required', (), '', False, 'from django.contrib.auth.decorators import login_required\n'), ((104, 1, 104, 34), 'django.contrib.auth.decorators.login_required', 'login_required', (), '', False, 'from django.contrib.auth.decorators import login_required\n'), ((15, 11, 15, 55), 'django.shortcuts.render', 'render', ({(15, 18, 15, 25): 'request', (15, 26, 15, 46): '"""memeapp/index.html"""', (15, 47, 15, 54): 'context'}, {}), "(request, 'memeapp/index.html', context)", False, 'from django.shortcuts import render, redirect\n'), ((19, 9, 19, 27), 'django.contrib.auth.forms.UserCreationForm', 'UserCreationForm', ({}, {}), '()', False, 'from django.contrib.auth.forms import UserCreationForm\n'), ((31, 11, 31, 55), 'django.shortcuts.render', 'render', ({(31, 18, 31, 25): 'request', (31, 27, 31, 46): '"""memeapp/auth.html"""', (31, 47, 31, 54): 'context'}, {}), "(request, 'memeapp/auth.html', context)", False, 'from django.shortcuts import render, redirect\n'), ((52, 11, 52, 56), 'django.shortcuts.render', 'render', ({(52, 18, 52, 25): 'request', (52, 27, 52, 46): '"""memeapp/auth.html"""', (52, 48, 52, 55): 'context'}, {}), "(request, 'memeapp/auth.html', context)", False, 'from django.shortcuts import render, redirect\n'), ((55, 4, 55, 19), 'django.contrib.auth.logout', 'logout', ({(55, 11, 55, 18): 'request'}, {}), '(request)', False, 'from django.contrib.auth import authenticate, login, logout\n'), ((56, 11, 56, 28), 'django.shortcuts.redirect', 'redirect', ({(56, 20, 56, 27): '"""index"""'}, {}), "('index')", False, 'from django.shortcuts import render, redirect\n'), ((67, 11, 67, 66), 'django.shortcuts.render', 'render', ({(67, 18, 67, 25): 'request', (67, 27, 67, 56): '"""memeapp/upload_picture.html"""', (67, 58, 67, 65): 'context'}, {}), "(request, 'memeapp/upload_picture.html', context)", False, 'from django.shortcuts import render, redirect\n'), ((75, 11, 75, 89), 'django.shortcuts.render', 'render', ({(75, 18, 75, 25): 'request', (75, 27, 75, 49): '"""memeapp/profile.html"""', (75, 51, 75, 88): "{'profile': images, 'images': profiles}"}, {}), "(request, 'memeapp/profile.html', {'profile': images, 'images': profiles}\n )", False, 'from django.shortcuts import render, redirect\n'), ((80, 11, 80, 74), 'django.shortcuts.render', 'render', ({(80, 18, 80, 25): 'request', (80, 27, 80, 55): '"""memeapp/image_details.html"""', (80, 57, 80, 73): "{'image': image}"}, {}), "(request, 'memeapp/image_details.html', {'image': image})", False, 'from django.shortcuts import render, redirect\n'), ((122, 11, 122, 58), 'django.shortcuts.render', 'render', ({(122, 18, 122, 25): 'request', (122, 26, 122, 49): '"""memeapp/comments.html"""', (122, 50, 122, 57): 'context'}, {}), "(request, 'memeapp/comments.html', context)", False, 'from django.shortcuts import render, redirect\n'), ((21, 21, 21, 51), 'django.contrib.auth.forms.UserCreationForm', 'UserCreationForm', ({(21, 38, 21, 50): 'request.POST'}, {}), '(request.POST)', False, 'from django.contrib.auth.forms import UserCreationForm\n'), ((37, 16, 37, 33), 'django.shortcuts.redirect', 'redirect', ({(37, 25, 37, 32): '"""index"""'}, {}), "('index')", False, 'from django.shortcuts import render, redirect\n'), ((45, 13, 45, 70), 'django.contrib.auth.authenticate', 'authenticate', (), '', False, 'from django.contrib.auth import authenticate, login, logout\n'), ((95, 15, 95, 28), 'django.shortcuts.redirect', 'redirect', ({(95, 24, 95, 27): '"""/"""'}, {}), "('/')", False, 'from django.shortcuts import render, redirect\n'), ((102, 15, 102, 28), 'django.shortcuts.redirect', 'redirect', ({(102, 24, 102, 27): '"""/"""'}, {}), "('/')", False, 'from django.shortcuts import render, redirect\n'), ((132, 15, 132, 62), 'django.shortcuts.render', 'render', ({(132, 22, 132, 29): 'request', (132, 31, 132, 52): '"""memeapp/search.html"""', (132, 54, 132, 61): 'context'}, {}), "(request, 'memeapp/search.html', context)", False, 'from django.shortcuts import render, redirect\n'), ((134, 8, 134, 68), 'django.contrib.messages.error', 'messages.error', ({(134, 23, 134, 30): 'request', (134, 32, 134, 67): '"""You haven\'t searched for any term"""'}, {}), '(request, "You haven\'t searched for any term")', False, 'from django.contrib import messages\n'), ((136, 15, 136, 75), 'django.shortcuts.render', 'render', ({(136, 22, 136, 29): 'request', (136, 31, 136, 52): '"""memeapp/search.html"""', (136, 54, 136, 74): "{'message': message}"}, {}), "(request, 'memeapp/search.html', {'message': message})", False, 'from django.shortcuts import render, redirect\n'), ((26, 12, 26, 31), 'django.contrib.auth.login', 'login', ({(26, 18, 26, 25): 'request', (26, 26, 26, 30): 'user'}, {}), '(request, user)', False, 'from django.contrib.auth import authenticate, login, logout\n'), ((27, 19, 27, 36), 'django.shortcuts.redirect', 'redirect', ({(27, 28, 27, 35): '"""index"""'}, {}), "('index')", False, 'from django.shortcuts import render, redirect\n'), ((29, 12, 29, 72), 'django.contrib.messages.error', 'messages.error', ({(29, 27, 29, 34): 'request', (29, 36, 29, 71): '"""Error occured during registration"""'}, {}), "(request, 'Error occured during registration')", False, 'from django.contrib import messages\n'), ((42, 17, 42, 52), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', (), '', False, 'from django.contrib.auth.models import User\n'), ((47, 12, 47, 31), 'django.contrib.auth.login', 'login', ({(47, 18, 47, 25): 'request', (47, 26, 47, 30): 'user'}, {}), '(request, user)', False, 'from django.contrib.auth import authenticate, login, logout\n'), ((48, 19, 48, 36), 'django.shortcuts.redirect', 'redirect', ({(48, 28, 48, 35): '"""index"""'}, {}), "('index')", False, 'from django.shortcuts import render, redirect\n'), ((50, 12, 50, 74), 'django.contrib.messages.error', 'messages.error', ({(50, 27, 50, 34): 'request', (50, 36, 50, 73): '"""Username OR Password does not exist"""'}, {}), "(request, 'Username OR Password does not exist')", False, 'from django.contrib import messages\n'), ((65, 19, 65, 36), 'django.shortcuts.redirect', 'redirect', ({(65, 28, 65, 35): '"""index"""'}, {}), "('index')", False, 'from django.shortcuts import render, redirect\n'), ((116, 19, 116, 36), 'django.shortcuts.redirect', 'redirect', ({(116, 28, 116, 35): '"""index"""'}, {}), "('index')", False, 'from django.shortcuts import render, redirect\n'), ((44, 12, 44, 58), 'django.contrib.messages.error', 'messages.error', ({(44, 27, 44, 34): 'request', (44, 36, 44, 57): '"""User does not exist"""'}, {}), "(request, 'User does not exist')", False, 'from django.contrib import messages\n'), ((112, 93, 112, 107), 'datetime.datetime.now', 'datetime.now', ({}, {}), '()', False, 'from datetime import datetime\n')]
spraakbanken/sparv-pipeline
sparv/modules/hist/diapivot.py
7293d42c577afdaf01ce8a936743f8b83d6eb962
"""Create diapivot annotation.""" import logging import pickle import xml.etree.ElementTree as etree import sparv.util as util from sparv import Annotation, Model, ModelOutput, Output, annotator, modelbuilder log = logging.getLogger(__name__) PART_DELIM1 = "^1" # @annotator("Diapivot annotation", language=["swe-1800"]) def diapivot_annotate(out: Output = Output("<token>:hist.diapivot", description="SALDO IDs corresponding to lemgrams"), lemgram: Annotation = Annotation("<token>:saldo.lemgram"), model: Model = Model("hist/diapivot.pickle")): """Annotate each lemgram with its corresponding saldo_id according to model. Args: out (str, optional): Resulting annotation file. Defaults to Output("<token>:hist.diapivot", description="SALDO IDs corresponding to lemgrams"). lemgram (str, optional): Existing lemgram annotation. Defaults to Annotation("<token>:saldo.lemgram"). model (str, optional): Crosslink model. Defaults to Model("hist/diapivot.pickle"). """ lexicon = PivotLexicon(model) lemgram_annotation = list(lemgram.read()) out_annotation = [] for lemgrams in lemgram_annotation: saldo_ids = [] for lemgram in lemgrams.split(util.DELIM): s_i = lexicon.get_exactMatch(lemgram) if s_i: saldo_ids += [s_i] out_annotation.append(util.AFFIX + util.DELIM.join(set(saldo_ids)) + util.AFFIX if saldo_ids else util.AFFIX) out.write(out_annotation) # @modelbuilder("Diapivot model", language=["swe"]) def build_diapivot(out: ModelOutput = ModelOutput("hist/diapivot.pickle")): """Download diapivot XML dictionary and save as a pickle file.""" # Download diapivot.xml xml_model = Model("hist/diapivot.xml") xml_model.download("https://svn.spraakdata.gu.se/sb-arkiv/pub/lmf/diapivot/diapivot.xml") # Create pickle file xml_lexicon = read_xml(xml_model.path) log.info("Saving cross lexicon in Pickle format") picklex = {} for lem in xml_lexicon: lemgrams = [] for saldo, match in list(xml_lexicon[lem].items()): lemgrams.append(PART_DELIM1.join([saldo, match])) picklex[lem] = sorted(lemgrams) out.write_pickle(picklex) # Clean up xml_model.remove() ################################################################################ # Auxiliaries ################################################################################ class PivotLexicon: """A lexicon for old swedish SALDO lookups. It is initialized from a pickled file. """ def __init__(self, crossfile, verbose=True): """Read pickled lexicon.""" if verbose: log.info("Reading cross lexicon: %s", crossfile) with open(crossfile, "rb") as F: self.lexicon = pickle.load(F) if verbose: log.info("OK, read %d words", len(self.lexicon)) def lookup(self, lem): """Lookup a word in the lexicon.""" if lem.lower() == lem: annotation_tag_pairs = self.lexicon.get(lem, []) else: annotation_tag_pairs = self.lexicon.get(lem, []) + self.lexicon.get(lem.lower(), []) return list(map(_split_val, annotation_tag_pairs)) def get_exactMatch(self, word): """Get only exact matches from lexicon.""" s = self.lookup(word) if s and s[0] == "exactMatch": return s[1] def _split_val(key_val): return key_val.rsplit(PART_DELIM1)[1] def read_xml(xml): """Read the XML version of crosslinked lexicon.""" log.info("Reading XML lexicon") lexicon = {} context = etree.iterparse(xml, events=("start", "end")) # "start" needed to save reference to root element context = iter(context) _event, root = next(context) for event, elem in context: if event == "end": if elem.tag == 'LexicalEntry': lemma = elem.find("Lemma") dalin, saldo = [], '' for form in lemma.findall("FormRepresentation"): cat = _findval(form, "category") lem = _findval(form, "lemgram") if cat == "modern": saldo = lem else: match = _findval(form, "match") dalin += [(lem, match)] [lexicon.update({d: {'saldo': saldo, 'match': m}}) for (d, m) in dalin] # Done parsing section. Clear tree to save memory if elem.tag in ['LexicalEntry', 'frame', 'resFrame']: root.clear() testwords = ["tigerhjerta..nn.1", "lågland..nn.1", "gud..nn.1"] util.test_lexicon(lexicon, testwords) log.info("OK, read") return lexicon def _findval(elems, key): for form in elems: att = form.get("att", "") if att == key: return form.get("val") return ""
[((10, 6, 10, 33), 'logging.getLogger', 'logging.getLogger', ({(10, 24, 10, 32): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((16, 36, 16, 118), 'sparv.Output', 'Output', (), '', False, 'from sparv import Annotation, Model, ModelOutput, Output, annotator, modelbuilder\n'), ((17, 44, 17, 79), 'sparv.Annotation', 'Annotation', ({(17, 55, 17, 78): '"""<token>:saldo.lemgram"""'}, {}), "('<token>:saldo.lemgram')", False, 'from sparv import Annotation, Model, ModelOutput, Output, annotator, modelbuilder\n'), ((18, 37, 18, 66), 'sparv.Model', 'Model', ({(18, 43, 18, 65): '"""hist/diapivot.pickle"""'}, {}), "('hist/diapivot.pickle')", False, 'from sparv import Annotation, Model, ModelOutput, Output, annotator, modelbuilder\n'), ((44, 38, 44, 73), 'sparv.ModelOutput', 'ModelOutput', ({(44, 50, 44, 72): '"""hist/diapivot.pickle"""'}, {}), "('hist/diapivot.pickle')", False, 'from sparv import Annotation, Model, ModelOutput, Output, annotator, modelbuilder\n'), ((47, 16, 47, 42), 'sparv.Model', 'Model', ({(47, 22, 47, 41): '"""hist/diapivot.xml"""'}, {}), "('hist/diapivot.xml')", False, 'from sparv import Annotation, Model, ModelOutput, Output, annotator, modelbuilder\n'), ((110, 14, 110, 59), 'xml.etree.ElementTree.iterparse', 'etree.iterparse', (), '', True, 'import xml.etree.ElementTree as etree\n'), ((138, 4, 138, 41), 'sparv.util.test_lexicon', 'util.test_lexicon', ({(138, 22, 138, 29): 'lexicon', (138, 31, 138, 40): 'testwords'}, {}), '(lexicon, testwords)', True, 'import sparv.util as util\n'), ((82, 27, 82, 41), 'pickle.load', 'pickle.load', ({(82, 39, 82, 40): 'F'}, {}), '(F)', False, 'import pickle\n')]
xinyang178/xbot
src/xbot/util/path.py
dad1fc67062dc6fd21802899fd68f7eb91c96569
import os def get_root_path(): current_path = os.path.abspath(os.path.dirname(__file__)) root_path = os.path.dirname( os.path.dirname(os.path.dirname(os.path.dirname(current_path))) ) return os.path.join(root_path, "xbot") def get_config_path(): config_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../config")) return config_path def get_data_path(): data_path = os.path.abspath( os.path.join(os.path.dirname(__file__), "../../../data/") ) return data_path
[((9, 11, 9, 42), 'os.path.join', 'os.path.join', ({(9, 24, 9, 33): 'root_path', (9, 35, 9, 41): '"""xbot"""'}, {}), "(root_path, 'xbot')", False, 'import os\n'), ((5, 35, 5, 60), 'os.path.dirname', 'os.path.dirname', ({(5, 51, 5, 59): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((13, 47, 13, 72), 'os.path.dirname', 'os.path.dirname', ({(13, 63, 13, 71): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((19, 21, 19, 46), 'os.path.dirname', 'os.path.dirname', ({(19, 37, 19, 45): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((7, 40, 7, 69), 'os.path.dirname', 'os.path.dirname', ({(7, 56, 7, 68): 'current_path'}, {}), '(current_path)', False, 'import os\n')]
HackSoftware/hackconf.bg
home/website/wagtail_hooks.py
ab3cc9fcdccf8991098553e0374103e3a241ce50
from django.utils.html import format_html from wagtail.wagtailcore import hooks @hooks.register('insert_editor_js') def enable_source(): return format_html( """ <script> registerHalloPlugin('hallohtml'); </script> """ )
[((5, 1, 5, 35), 'wagtail.wagtailcore.hooks.register', 'hooks.register', ({(5, 16, 5, 34): '"""insert_editor_js"""'}, {}), "('insert_editor_js')", False, 'from wagtail.wagtailcore import hooks\n'), ((7, 11, 13, 5), 'django.utils.html.format_html', 'format_html', ({(8, 8, 12, 11): '"""\n <script>\n registerHalloPlugin(\'hallohtml\');\n </script>\n """'}, {}), '(\n """\n <script>\n registerHalloPlugin(\'hallohtml\');\n </script>\n """\n )', False, 'from django.utils.html import format_html\n')]
msgis/ngsi-timeseries-api
src/reporter/tests/test_api.py
5cc7a8beab748cecfd5fba61740f3730361d4e31
from conftest import QL_URL import requests def test_api(): api_url = "{}/".format(QL_URL) r = requests.get('{}'.format(api_url)) assert r.status_code == 200, r.text assert r.json() == { "notify_url": "/v2/notify", "subscriptions_url": "/v2/subscriptions", "entities_url": "/v2/entities", "types_url": "/v2/types", "attributes_url": "/v2/attrs" }
[]
dyung/llvm-zorg
zorg/buildbot/conditions/FileConditions.py
42cd139968388b14323975647faf322c99945986
from buildbot.process.remotecommand import RemoteCommand from buildbot.interfaces import WorkerTooOldError import stat class FileExists(object): """I check a file existence on the worker. I return True if the file with the given name exists, False if the file does not exist or that is a directory. Use me with doStepIf to make a build step conditional to existence of some file. For example doStepIf=FileExists('build/configure') """ def __init__(self, filename): self.filename = filename def __call__(self, step): step.checkWorkerHasCommand('stat') cmd = RemoteCommand('stat', {'file': self.filename}) d = step.runCommand(cmd) d.addCallback(lambda res: self.commandComplete(cmd)) return d def commandComplete(self, cmd): if cmd.didFail(): return False s = cmd.updates["stat"][-1] filemode = s[stat.ST_MODE] if stat.S_ISREG(filemode) or stat.S_ISLNK(filemode): # True only if this is a file or a link and not any other file # system object. return True else: return False class FileDoesNotExist(object): """I check a file existence on the worker. I return False if the file with the given name exists or that is a directory, True if the file does not exist. Use me with doStepIf to make a build step conditional to nonexistence of some file. For example doStepIf=FileDoesNotExist('build/configure') """ def __init__(self, filename): self.filename = filename def __call__(self, step): step.checkWorkerHasCommand('stat') cmd = RemoteCommand('stat', {'file': self.filename}) d = step.runCommand(cmd) d.addCallback(lambda res: self.commandComplete(cmd)) return d def commandComplete(self, cmd): # False if any filesystem object with the given name exists. return cmd.didFail()
[((22, 14, 22, 60), 'buildbot.process.remotecommand.RemoteCommand', 'RemoteCommand', ({(22, 28, 22, 34): '"""stat"""', (22, 36, 22, 59): "{'file': self.filename}"}, {}), "('stat', {'file': self.filename})", False, 'from buildbot.process.remotecommand import RemoteCommand\n'), ((57, 14, 57, 60), 'buildbot.process.remotecommand.RemoteCommand', 'RemoteCommand', ({(57, 28, 57, 34): '"""stat"""', (57, 36, 57, 59): "{'file': self.filename}"}, {}), "('stat', {'file': self.filename})", False, 'from buildbot.process.remotecommand import RemoteCommand\n'), ((33, 11, 33, 33), 'stat.S_ISREG', 'stat.S_ISREG', ({(33, 24, 33, 32): 'filemode'}, {}), '(filemode)', False, 'import stat\n'), ((33, 37, 33, 59), 'stat.S_ISLNK', 'stat.S_ISLNK', ({(33, 50, 33, 58): 'filemode'}, {}), '(filemode)', False, 'import stat\n')]
refaev/combat_gym
gym_combat/gym_combat/envs/main.py
f02fcf98e95a1dda29cdddd4ae271de3e18ea3bf
from matplotlib import style from tqdm import tqdm style.use("ggplot") from gym_combat.envs.Arena.CState import State from gym_combat.envs.Arena.Entity import Entity from gym_combat.envs.Arena.Environment import Environment, Episode from gym_combat.envs.Common.constants import * from gym_combat.envs.Qtable import Qtable_DecisionMaker from gym_combat.envs.DQN import DQNAgent_keras from gym_combat.envs.Greedy import Greedy_player import matplotlib.pyplot as plt def print_start_of_game_info(blue_decision_maker, red_decision_maker): print("Starting tournament!") print("Blue player type: ", Agent_type_str[blue_decision_maker.type()]) if blue_decision_maker.path_model_to_load==None: print("Blue player starting with no model") else: print("Blue player starting tournament with trained model: " , blue_decision_maker.path_model_to_load) print("Red player type: ", Agent_type_str[red_decision_maker.type()]) if red_decision_maker.path_model_to_load==None: print("Red player starting with no model") else: print("Red player starting tournament with trained model: " , red_decision_maker.path_model_to_load) print("Number of rounds: ", NUM_OF_EPISODES) print("~~~ GO! ~~~\n\n") def evaluate(episode_number): #if episode_number % EVALUATE_PLAYERS_EVERY == 0: a = episode_number % EVALUATE_PLAYERS_EVERY if a>=0 and a<EVALUATE_BATCH_SIZE: EVALUATE = True else: EVALUATE = False return EVALUATE def print_states(observation_for_blue_s0, observation_for_blue_s1): import matplotlib.pyplot as plt plt.matshow(observation_for_blue_s0.img) plt.show() plt.matshow(observation_for_blue_s1.img) plt.show() if __name__ == '__main__': env = Environment(IS_TRAINING) print("Starting Blue player") blue_decision_maker = DQNAgent_keras.DQNAgent_keras() #blue_decision_maker = DQNAgent_keras.DQNAgent_keras(UPDATE_CONTEXT=True, path_model_to_load='conv1(6_6_1_256)_conv2(4_4_256_128)_conv3(3_3_128_128)_flatten_fc__blue_202001_ 0.95max_ -0.04avg_ -3.10min__1620558885.model') print("Starting red player") ### Red Decision Maker red_decision_maker = Greedy_player.Greedy_player() env.blue_player = Entity(blue_decision_maker) env.red_player = Entity(red_decision_maker) print_start_of_game_info(blue_decision_maker, red_decision_maker) NUM_OF_EPISODES = env.NUMBER_OF_EPISODES for episode in tqdm(range(1, NUM_OF_EPISODES + 1), ascii=True, unit='episodes'): EVALUATE = evaluate(episode) current_episode = Episode(episode, EVALUATE, show_always=False if IS_TRAINING else True) # set new start position for the players env.reset_game(episode) # get observation observation_for_blue_s0: State = env.get_observation_for_blue() action_blue = -1 # initialize the decision_makers for the players blue_decision_maker.set_initial_state(observation_for_blue_s0, episode) #red_decision_maker.set_initial_state(observation_for_red_s0, episode) # for non-greedy players blue_won_the_game = False red_won_the_game = False for steps_current_game in range(1, MAX_STEPS_PER_EPISODE + 1): ##### Blue's turn! ##### observation_for_blue_s0: State = env.get_observation_for_blue() current_episode.print_episode(env, steps_current_game) action_blue: AgentAction = blue_decision_maker.get_action(observation_for_blue_s0, EVALUATE) env.take_action(Color.Blue, action_blue) # take the action! current_episode.print_episode(env, steps_current_game) current_episode.is_terminal = (env.compute_terminal(whos_turn=Color.Blue) is not WinEnum.NoWin) if current_episode.is_terminal:# Blue won the game! blue_won_the_game=True else: ##### Red's turn! ##### observation_for_red_s0: State = env.get_observation_for_red() action_red: AgentAction = red_decision_maker.get_action(observation_for_red_s0, EVALUATE) env.take_action(Color.Red, action_red) # take the action! current_episode.is_terminal = (env.compute_terminal(whos_turn=Color.Red) is not WinEnum.NoWin) if current_episode.is_terminal: # Blue won the game! red_won_the_game = True current_episode.print_episode(env, steps_current_game) reward_step_blue, reward_step_red = env.handle_reward(steps_current_game) current_episode.episode_reward_red += reward_step_red current_episode.episode_reward_blue += reward_step_blue observation_for_blue_s1: State = env.get_observation_for_blue() blue_decision_maker.update_context(observation_for_blue_s0, action_blue, reward_step_blue, observation_for_blue_s1, current_episode.is_terminal, EVALUATE) if steps_current_game == MAX_STEPS_PER_EPISODE: # if we exited the loop because we reached MAX_STEPS_PER_EPISODE current_episode.is_terminal = True if blue_won_the_game or red_won_the_game: break # for statistics env.update_win_counters(steps_current_game) env.data_for_statistics(current_episode.episode_reward_blue, current_episode.episode_reward_red, steps_current_game, blue_decision_maker.get_epsolon()) env.evaluate_info(EVALUATE, episode, steps_current_game, blue_decision_maker.get_epsolon()) if current_episode.episode_number % SAVE_STATS_EVERY == 0: if False:#blue_decision_maker.type()== AgentType.DQN_keras or blue_decision_maker.type() == AgentType.DQN_basic: blue_decision_maker._decision_maker.print_model(observation_for_blue_s0, episode, "conv")#env.save_folder_path) # print info of episode: current_episode.print_info_of_episode(env, steps_current_game, blue_decision_maker.get_epsolon(), episode) env.end_run() if blue_decision_maker.type() == AgentType.DQN_keras or blue_decision_maker.type() == AgentType.DQN_basic: blue_decision_maker._decision_maker.print_model(observation_for_blue_s0, episode, env.save_folder_path)
[((4, 0, 4, 19), 'matplotlib.style.use', 'style.use', ({(4, 10, 4, 18): '"""ggplot"""'}, {}), "('ggplot')", False, 'from matplotlib import style\n'), ((44, 4, 44, 44), 'matplotlib.pyplot.matshow', 'plt.matshow', ({(44, 16, 44, 43): 'observation_for_blue_s0.img'}, {}), '(observation_for_blue_s0.img)', True, 'import matplotlib.pyplot as plt\n'), ((45, 4, 45, 14), 'matplotlib.pyplot.show', 'plt.show', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((47, 4, 47, 44), 'matplotlib.pyplot.matshow', 'plt.matshow', ({(47, 16, 47, 43): 'observation_for_blue_s1.img'}, {}), '(observation_for_blue_s1.img)', True, 'import matplotlib.pyplot as plt\n'), ((48, 4, 48, 14), 'matplotlib.pyplot.show', 'plt.show', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((54, 10, 54, 34), 'gym_combat.envs.Arena.Environment.Environment', 'Environment', ({(54, 22, 54, 33): 'IS_TRAINING'}, {}), '(IS_TRAINING)', False, 'from gym_combat.envs.Arena.Environment import Environment, Episode\n'), ((58, 26, 58, 57), 'gym_combat.envs.DQN.DQNAgent_keras.DQNAgent_keras', 'DQNAgent_keras.DQNAgent_keras', ({}, {}), '()', False, 'from gym_combat.envs.DQN import DQNAgent_keras\n'), ((63, 25, 63, 54), 'gym_combat.envs.Greedy.Greedy_player.Greedy_player', 'Greedy_player.Greedy_player', ({}, {}), '()', False, 'from gym_combat.envs.Greedy import Greedy_player\n'), ((66, 22, 66, 49), 'gym_combat.envs.Arena.Entity.Entity', 'Entity', ({(66, 29, 66, 48): 'blue_decision_maker'}, {}), '(blue_decision_maker)', False, 'from gym_combat.envs.Arena.Entity import Entity\n'), ((67, 21, 67, 47), 'gym_combat.envs.Arena.Entity.Entity', 'Entity', ({(67, 28, 67, 46): 'red_decision_maker'}, {}), '(red_decision_maker)', False, 'from gym_combat.envs.Arena.Entity import Entity\n'), ((75, 26, 75, 96), 'gym_combat.envs.Arena.Environment.Episode', 'Episode', (), '', False, 'from gym_combat.envs.Arena.Environment import Environment, Episode\n')]
ramongonze/libqif
libqif/core/hyper.py
57be74a2342a303da5415a3d787855b8115e58f8
"""Hyper-distributions.""" from libqif.core.secrets import Secrets from libqif.core.channel import Channel from numpy import array, arange, zeros from numpy import delete as npdelete class Hyper: def __init__(self, channel): """Hyper-distribution. To create an instance of this class it is class it is necessary to have an instance of :py:class:`.Channel` class. Once created an instance of :py:class:`.Hyper`, the constructor generates the joint, outer and inner distributions. Attributes ---------- channel : core.Channel Channel object. joint : numpy.ndarray Matrix of joint distribution. outer : numpy.ndarray Outer distribution. inners : numpy.ndarray Matrix of inner distributions. num_posteriors : int Number of posterior distributions resulted by reducing the hyper-distribution, i.e., remove columns that contains only zeros and merge columns which one of them a linear combination of the other. Parameters ---------- channel : core.Channel Channel object. """ self._check_types(channel) self.channel = channel self.joint = self._generate_joint_distribution() self.outer, self.inners = self._generate_posteriors() self._reduce_hyper() self.num_posteriors = len(self.outer) def update_prior(self, prior): """Update the prior distribution on set of secrets. The number of secrets must match the current number of rows of the channel. Parameters ---------- prior : list, numpy.ndarray Prior distribution on the set of secrets. prior[i] is the probability of secret named labels[i] beeing the real secret. """ self.channel.update_prior(prior) self.joint = self._generate_joint_distribution() self.outer, self.inners = self._generate_posteriors() self._reduce_hyper() self.num_posteriors = len(self.outer) def _check_types(self, channel): if type(channel) != type(Channel(Secrets(['x1','x2'], [1,0]), ['y1'], array([[1],[1]]))): raise TypeError('The parameter \'channel\' must be a core.channel.Channel object') def _generate_joint_distribution(self): joint = [] channel_t = self.channel.matrix.T for i in arange(self.channel.num_outputs): joint.append(self.channel.secrets.prior * channel_t[i]) return array(joint).T def _generate_posteriors(self): joint_t = self.joint.T.copy() outer = [] for i in arange(self.channel.num_outputs): outer.append(joint_t[i].sum()) if outer[i] > 0: joint_t[i] = joint_t[i]/outer[i] return array(outer), joint_t.T def _reduce_hyper(self): """Given the hyper-distribution generated by _generate_posteriors remove columns with zeros and merge columns that are a linear combination of others. Thus algorithm has time complexity of O(n*m^2) where n is the number of secrets and m is the number of outputs in the. """ epsilon = 10**(-6) # Delete inners that have 0 probability of occuring zero_prob = self.outer < epsilon self.outer = npdelete(self.outer, zero_prob, 0) self.inners = npdelete(self.inners, zero_prob, 1) delete_inner = [False] * len(self.outer) for i in arange(self.inners.shape[1]): for j in arange(i+1, self.inners.shape[1]): # Check if inner i is equal to inner j if (abs(self.inners[:,i] - self.inners[:,j]) < epsilon).sum() == self.channel.secrets.num_secrets: delete_inner[j] = True # Delete inner j self.outer[i] += self.outer[j] # Merge inner j into inner i self.outer = npdelete(self.outer, delete_inner, 0) self.inners = npdelete(self.inners, delete_inner, 1)
[((72, 17, 72, 49), 'numpy.arange', 'arange', ({(72, 24, 72, 48): 'self.channel.num_outputs'}, {}), '(self.channel.num_outputs)', False, 'from numpy import array, arange, zeros\n'), ((80, 17, 80, 49), 'numpy.arange', 'arange', ({(80, 24, 80, 48): 'self.channel.num_outputs'}, {}), '(self.channel.num_outputs)', False, 'from numpy import array, arange, zeros\n'), ((98, 21, 98, 55), 'numpy.delete', 'npdelete', ({(98, 30, 98, 40): 'self.outer', (98, 42, 98, 51): 'zero_prob', (98, 53, 98, 54): '0'}, {}), '(self.outer, zero_prob, 0)', True, 'from numpy import delete as npdelete\n'), ((99, 22, 99, 57), 'numpy.delete', 'npdelete', ({(99, 31, 99, 42): 'self.inners', (99, 44, 99, 53): 'zero_prob', (99, 55, 99, 56): '1'}, {}), '(self.inners, zero_prob, 1)', True, 'from numpy import delete as npdelete\n'), ((102, 17, 102, 45), 'numpy.arange', 'arange', ({(102, 24, 102, 44): 'self.inners.shape[1]'}, {}), '(self.inners.shape[1])', False, 'from numpy import array, arange, zeros\n'), ((109, 21, 109, 58), 'numpy.delete', 'npdelete', ({(109, 30, 109, 40): 'self.outer', (109, 42, 109, 54): 'delete_inner', (109, 56, 109, 57): '0'}, {}), '(self.outer, delete_inner, 0)', True, 'from numpy import delete as npdelete\n'), ((110, 22, 110, 60), 'numpy.delete', 'npdelete', ({(110, 31, 110, 42): 'self.inners', (110, 44, 110, 56): 'delete_inner', (110, 58, 110, 59): '1'}, {}), '(self.inners, delete_inner, 1)', True, 'from numpy import delete as npdelete\n'), ((75, 15, 75, 27), 'numpy.array', 'array', ({(75, 21, 75, 26): 'joint'}, {}), '(joint)', False, 'from numpy import array, arange, zeros\n'), ((85, 15, 85, 27), 'numpy.array', 'array', ({(85, 21, 85, 26): 'outer'}, {}), '(outer)', False, 'from numpy import array, arange, zeros\n'), ((103, 21, 103, 54), 'numpy.arange', 'arange', ({(103, 28, 103, 31): '(i + 1)', (103, 33, 103, 53): 'self.inners.shape[1]'}, {}), '(i + 1, self.inners.shape[1])', False, 'from numpy import array, arange, zeros\n'), ((66, 41, 66, 68), 'libqif.core.secrets.Secrets', 'Secrets', ({(66, 49, 66, 60): "['x1', 'x2']", (66, 62, 66, 67): '[1, 0]'}, {}), "(['x1', 'x2'], [1, 0])", False, 'from libqif.core.secrets import Secrets\n'), ((66, 78, 66, 94), 'numpy.array', 'array', ({(66, 84, 66, 93): '[[1], [1]]'}, {}), '([[1], [1]])', False, 'from numpy import array, arange, zeros\n')]
gvashchenkolineate/gvashchenkolineate_infra_trytravis
ansible/venv/lib/python2.7/site-packages/ansible/modules/network/fortios/fortios_system_virtual_wan_link.py
0fb18850afe0d8609693ba4b23f29c7cda17d97f
#!/usr/bin/python from __future__ import (absolute_import, division, print_function) # Copyright 2019 Fortinet, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. __metaclass__ = type ANSIBLE_METADATA = {'status': ['preview'], 'supported_by': 'community', 'metadata_version': '1.1'} DOCUMENTATION = ''' --- module: fortios_system_virtual_wan_link short_description: Configure redundant internet connections using SD-WAN (formerly virtual WAN link) in Fortinet's FortiOS and FortiGate. description: - This module is able to configure a FortiGate or FortiOS (FOS) device by allowing the user to set and modify system feature and virtual_wan_link category. Examples include all parameters and values need to be adjusted to datasources before usage. Tested with FOS v6.0.5 version_added: "2.8" author: - Miguel Angel Munoz (@mamunozgonzalez) - Nicolas Thomas (@thomnico) notes: - Requires fortiosapi library developed by Fortinet - Run as a local_action in your playbook requirements: - fortiosapi>=0.9.8 options: host: description: - FortiOS or FortiGate IP address. type: str required: false username: description: - FortiOS or FortiGate username. type: str required: false password: description: - FortiOS or FortiGate password. type: str default: "" vdom: description: - Virtual domain, among those defined previously. A vdom is a virtual instance of the FortiGate that can be configured and used as a different unit. type: str default: root https: description: - Indicates if the requests towards FortiGate must use HTTPS protocol. type: bool default: true ssl_verify: description: - Ensures FortiGate certificate must be verified by a proper CA. type: bool default: true version_added: 2.9 system_virtual_wan_link: description: - Configure redundant internet connections using SD-WAN (formerly virtual WAN link). default: null type: dict suboptions: fail_alert_interfaces: description: - Physical interfaces that will be alerted. type: list suboptions: name: description: - Physical interface name. Source system.interface.name. required: true type: str fail_detect: description: - Enable/disable SD-WAN Internet connection status checking (failure detection). type: str choices: - enable - disable health_check: description: - SD-WAN status checking or health checking. Identify a server on the Internet and determine how SD-WAN verifies that the FortiGate can communicate with it. type: list suboptions: addr_mode: description: - Address mode (IPv4 or IPv6). type: str choices: - ipv4 - ipv6 failtime: description: - Number of failures before server is considered lost (1 - 3600). type: int http_agent: description: - String in the http-agent field in the HTTP header. type: str http_get: description: - URL used to communicate with the server if the protocol if the protocol is HTTP. type: str http_match: description: - Response string expected from the server if the protocol is HTTP. type: str interval: description: - Status check interval, or the time between attempting to connect to the server (1 - 3600 sec). type: int members: description: - Member sequence number list. type: list suboptions: seq_num: description: - Member sequence number. Source system.virtual-wan-link.members.seq-num. type: int name: description: - Status check or health check name. required: true type: str packet_size: description: - Packet size of a twamp test session, type: int password: description: - Twamp controller password in authentication mode type: str port: description: - Port number used to communicate with the server over the selected protocol. type: int protocol: description: - Protocol used to determine if the FortiGate can communicate with the server. type: str choices: - ping - tcp-echo - udp-echo - http - twamp - ping6 recoverytime: description: - Number of successful responses received before server is considered recovered (1 - 3600). type: int security_mode: description: - Twamp controller security mode. type: str choices: - none - authentication server: description: - IP address or FQDN name of the server. type: str sla: description: - Service level agreement (SLA). type: list suboptions: id: description: - SLA ID. required: true type: int jitter_threshold: description: - Jitter for SLA to make decision in milliseconds. (0 - 10000000). type: int latency_threshold: description: - Latency for SLA to make decision in milliseconds. (0 - 10000000). type: int link_cost_factor: description: - Criteria on which to base link selection. type: str choices: - latency - jitter - packet-loss packetloss_threshold: description: - Packet loss for SLA to make decision in percentage. (0 - 100). type: int threshold_alert_jitter: description: - Alert threshold for jitter (ms). type: int threshold_alert_latency: description: - Alert threshold for latency (ms). type: int threshold_alert_packetloss: description: - Alert threshold for packet loss (percentage). type: int threshold_warning_jitter: description: - Warning threshold for jitter (ms). type: int threshold_warning_latency: description: - Warning threshold for latency (ms). type: int threshold_warning_packetloss: description: - Warning threshold for packet loss (percentage). type: int update_cascade_interface: description: - Enable/disable update cascade interface. type: str choices: - enable - disable update_static_route: description: - Enable/disable updating the static route. type: str choices: - enable - disable load_balance_mode: description: - Algorithm or mode to use for load balancing Internet traffic to SD-WAN members. type: str choices: - source-ip-based - weight-based - usage-based - source-dest-ip-based - measured-volume-based members: description: - Physical FortiGate interfaces added to the virtual-wan-link. type: list suboptions: comment: description: - Comments. type: str gateway: description: - The default gateway for this interface. Usually the default gateway of the Internet service provider that this interface is connected to. type: str gateway6: description: - IPv6 gateway. type: str ingress_spillover_threshold: description: - Ingress spillover threshold for this interface (0 - 16776000 kbit/s). When this traffic volume threshold is reached, new sessions spill over to other interfaces in the SD-WAN. type: int interface: description: - Interface name. Source system.interface.name. type: str priority: description: - Priority of the interface (0 - 4294967295). Used for SD-WAN rules or priority rules. type: int seq_num: description: - Sequence number(1-255). type: int source: description: - Source IP address used in the health-check packet to the server. type: str source6: description: - Source IPv6 address used in the health-check packet to the server. type: str spillover_threshold: description: - Egress spillover threshold for this interface (0 - 16776000 kbit/s). When this traffic volume threshold is reached, new sessions spill over to other interfaces in the SD-WAN. type: int status: description: - Enable/disable this interface in the SD-WAN. type: str choices: - disable - enable volume_ratio: description: - Measured volume ratio (this value / sum of all values = percentage of link volume, 0 - 255). type: int weight: description: - Weight of this interface for weighted load balancing. (0 - 255) More traffic is directed to interfaces with higher weights. type: int service: description: - Create SD-WAN rules or priority rules (also called services) to control how sessions are distributed to physical interfaces in the SD-WAN. type: list suboptions: addr_mode: description: - Address mode (IPv4 or IPv6). type: str choices: - ipv4 - ipv6 bandwidth_weight: description: - Coefficient of reciprocal of available bidirectional bandwidth in the formula of custom-profile-1. type: int default: description: - Enable/disable use of SD-WAN as default service. type: str choices: - enable - disable dscp_forward: description: - Enable/disable forward traffic DSCP tag. type: str choices: - enable - disable dscp_forward_tag: description: - Forward traffic DSCP tag. type: str dscp_reverse: description: - Enable/disable reverse traffic DSCP tag. type: str choices: - enable - disable dscp_reverse_tag: description: - Reverse traffic DSCP tag. type: str dst: description: - Destination address name. type: list suboptions: name: description: - Address or address group name. Source firewall.address.name firewall.addrgrp.name. required: true type: str dst_negate: description: - Enable/disable negation of destination address match. type: str choices: - enable - disable dst6: description: - Destination address6 name. type: list suboptions: name: description: - Address6 or address6 group name. Source firewall.address6.name firewall.addrgrp6.name. required: true type: str end_port: description: - End destination port number. type: int gateway: description: - Enable/disable SD-WAN service gateway. type: str choices: - enable - disable groups: description: - User groups. type: list suboptions: name: description: - Group name. Source user.group.name. required: true type: str health_check: description: - Health check. Source system.virtual-wan-link.health-check.name. type: str hold_down_time: description: - Waiting period in seconds when switching from the back-up member to the primary member (0 - 10000000). type: int id: description: - Priority rule ID (1 - 4000). required: true type: int input_device: description: - Source interface name. type: list suboptions: name: description: - Interface name. Source system.interface.name. required: true type: str internet_service: description: - Enable/disable use of Internet service for application-based load balancing. type: str choices: - enable - disable internet_service_ctrl: description: - Control-based Internet Service ID list. type: list suboptions: id: description: - Control-based Internet Service ID. required: true type: int internet_service_ctrl_group: description: - Control-based Internet Service group list. type: list suboptions: name: description: - Control-based Internet Service group name. Source application.group.name. required: true type: str internet_service_custom: description: - Custom Internet service name list. type: list suboptions: name: description: - Custom Internet service name. Source firewall.internet-service-custom.name. required: true type: str internet_service_custom_group: description: - Custom Internet Service group list. type: list suboptions: name: description: - Custom Internet Service group name. Source firewall.internet-service-custom-group.name. required: true type: str internet_service_group: description: - Internet Service group list. type: list suboptions: name: description: - Internet Service group name. Source firewall.internet-service-group.name. required: true type: str internet_service_id: description: - Internet service ID list. type: list suboptions: id: description: - Internet service ID. Source firewall.internet-service.id. required: true type: int jitter_weight: description: - Coefficient of jitter in the formula of custom-profile-1. type: int latency_weight: description: - Coefficient of latency in the formula of custom-profile-1. type: int link_cost_factor: description: - Link cost factor. type: str choices: - latency - jitter - packet-loss - inbandwidth - outbandwidth - bibandwidth - custom-profile-1 link_cost_threshold: description: - Percentage threshold change of link cost values that will result in policy route regeneration (0 - 10000000). type: int member: description: - Member sequence number. type: int mode: description: - Control how the priority rule sets the priority of interfaces in the SD-WAN. type: str choices: - auto - manual - priority - sla name: description: - Priority rule name. type: str packet_loss_weight: description: - Coefficient of packet-loss in the formula of custom-profile-1. type: int priority_members: description: - Member sequence number list. type: list suboptions: seq_num: description: - Member sequence number. Source system.virtual-wan-link.members.seq-num. type: int protocol: description: - Protocol number. type: int quality_link: description: - Quality grade. type: int route_tag: description: - IPv4 route map route-tag. type: int sla: description: - Service level agreement (SLA). type: list suboptions: health_check: description: - Virtual WAN Link health-check. Source system.virtual-wan-link.health-check.name. type: str id: description: - SLA ID. type: int src: description: - Source address name. type: list suboptions: name: description: - Address or address group name. Source firewall.address.name firewall.addrgrp.name. required: true type: str src_negate: description: - Enable/disable negation of source address match. type: str choices: - enable - disable src6: description: - Source address6 name. type: list suboptions: name: description: - Address6 or address6 group name. Source firewall.address6.name firewall.addrgrp6.name. required: true type: str start_port: description: - Start destination port number. type: int status: description: - Enable/disable SD-WAN service. type: str choices: - enable - disable tos: description: - Type of service bit pattern. type: str tos_mask: description: - Type of service evaluated bits. type: str users: description: - User name. type: list suboptions: name: description: - User name. Source user.local.name. required: true type: str status: description: - Enable/disable SD-WAN. type: str choices: - disable - enable ''' EXAMPLES = ''' - hosts: localhost vars: host: "192.168.122.40" username: "admin" password: "" vdom: "root" ssl_verify: "False" tasks: - name: Configure redundant internet connections using SD-WAN (formerly virtual WAN link). fortios_system_virtual_wan_link: host: "{{ host }}" username: "{{ username }}" password: "{{ password }}" vdom: "{{ vdom }}" https: "False" system_virtual_wan_link: fail_alert_interfaces: - name: "default_name_4 (source system.interface.name)" fail_detect: "enable" health_check: - addr_mode: "ipv4" failtime: "8" http_agent: "<your_own_value>" http_get: "<your_own_value>" http_match: "<your_own_value>" interval: "12" members: - seq_num: "14 (source system.virtual-wan-link.members.seq-num)" name: "default_name_15" packet_size: "16" password: "<your_own_value>" port: "18" protocol: "ping" recoverytime: "20" security_mode: "none" server: "192.168.100.40" sla: - id: "24" jitter_threshold: "25" latency_threshold: "26" link_cost_factor: "latency" packetloss_threshold: "28" threshold_alert_jitter: "29" threshold_alert_latency: "30" threshold_alert_packetloss: "31" threshold_warning_jitter: "32" threshold_warning_latency: "33" threshold_warning_packetloss: "34" update_cascade_interface: "enable" update_static_route: "enable" load_balance_mode: "source-ip-based" members: - comment: "Comments." gateway: "<your_own_value>" gateway6: "<your_own_value>" ingress_spillover_threshold: "42" interface: "<your_own_value> (source system.interface.name)" priority: "44" seq_num: "45" source: "<your_own_value>" source6: "<your_own_value>" spillover_threshold: "48" status: "disable" volume_ratio: "50" weight: "51" service: - addr_mode: "ipv4" bandwidth_weight: "54" default: "enable" dscp_forward: "enable" dscp_forward_tag: "<your_own_value>" dscp_reverse: "enable" dscp_reverse_tag: "<your_own_value>" dst: - name: "default_name_61 (source firewall.address.name firewall.addrgrp.name)" dst_negate: "enable" dst6: - name: "default_name_64 (source firewall.address6.name firewall.addrgrp6.name)" end_port: "65" gateway: "enable" groups: - name: "default_name_68 (source user.group.name)" health_check: "<your_own_value> (source system.virtual-wan-link.health-check.name)" hold_down_time: "70" id: "71" input_device: - name: "default_name_73 (source system.interface.name)" internet_service: "enable" internet_service_ctrl: - id: "76" internet_service_ctrl_group: - name: "default_name_78 (source application.group.name)" internet_service_custom: - name: "default_name_80 (source firewall.internet-service-custom.name)" internet_service_custom_group: - name: "default_name_82 (source firewall.internet-service-custom-group.name)" internet_service_group: - name: "default_name_84 (source firewall.internet-service-group.name)" internet_service_id: - id: "86 (source firewall.internet-service.id)" jitter_weight: "87" latency_weight: "88" link_cost_factor: "latency" link_cost_threshold: "90" member: "91" mode: "auto" name: "default_name_93" packet_loss_weight: "94" priority_members: - seq_num: "96 (source system.virtual-wan-link.members.seq-num)" protocol: "97" quality_link: "98" route_tag: "99" sla: - health_check: "<your_own_value> (source system.virtual-wan-link.health-check.name)" id: "102" src: - name: "default_name_104 (source firewall.address.name firewall.addrgrp.name)" src_negate: "enable" src6: - name: "default_name_107 (source firewall.address6.name firewall.addrgrp6.name)" start_port: "108" status: "enable" tos: "<your_own_value>" tos_mask: "<your_own_value>" users: - name: "default_name_113 (source user.local.name)" status: "disable" ''' RETURN = ''' build: description: Build number of the fortigate image returned: always type: str sample: '1547' http_method: description: Last method used to provision the content into FortiGate returned: always type: str sample: 'PUT' http_status: description: Last result given by FortiGate on last operation applied returned: always type: str sample: "200" mkey: description: Master key (id) used in the last call to FortiGate returned: success type: str sample: "id" name: description: Name of the table used to fulfill the request returned: always type: str sample: "urlfilter" path: description: Path of the table used to fulfill the request returned: always type: str sample: "webfilter" revision: description: Internal revision number returned: always type: str sample: "17.0.2.10658" serial: description: Serial number of the unit returned: always type: str sample: "FGVMEVYYQT3AB5352" status: description: Indication of the operation's result returned: always type: str sample: "success" vdom: description: Virtual domain used returned: always type: str sample: "root" version: description: Version of the FortiGate returned: always type: str sample: "v5.6.3" ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.connection import Connection from ansible.module_utils.network.fortios.fortios import FortiOSHandler from ansible.module_utils.network.fortimanager.common import FAIL_SOCKET_MSG def login(data, fos): host = data['host'] username = data['username'] password = data['password'] ssl_verify = data['ssl_verify'] fos.debug('on') if 'https' in data and not data['https']: fos.https('off') else: fos.https('on') fos.login(host, username, password, verify=ssl_verify) def filter_system_virtual_wan_link_data(json): option_list = ['fail_alert_interfaces', 'fail_detect', 'health_check', 'load_balance_mode', 'members', 'service', 'status'] dictionary = {} for attribute in option_list: if attribute in json and json[attribute] is not None: dictionary[attribute] = json[attribute] return dictionary def underscore_to_hyphen(data): if isinstance(data, list): for elem in data: elem = underscore_to_hyphen(elem) elif isinstance(data, dict): new_data = {} for k, v in data.items(): new_data[k.replace('_', '-')] = underscore_to_hyphen(v) data = new_data return data def system_virtual_wan_link(data, fos): vdom = data['vdom'] system_virtual_wan_link_data = data['system_virtual_wan_link'] filtered_data = underscore_to_hyphen(filter_system_virtual_wan_link_data(system_virtual_wan_link_data)) return fos.set('system', 'virtual-wan-link', data=filtered_data, vdom=vdom) def is_successful_status(status): return status['status'] == "success" or \ status['http_method'] == "DELETE" and status['http_status'] == 404 def fortios_system(data, fos): if data['system_virtual_wan_link']: resp = system_virtual_wan_link(data, fos) return not is_successful_status(resp), \ resp['status'] == "success", \ resp def main(): fields = { "host": {"required": False, "type": "str"}, "username": {"required": False, "type": "str"}, "password": {"required": False, "type": "str", "default": "", "no_log": True}, "vdom": {"required": False, "type": "str", "default": "root"}, "https": {"required": False, "type": "bool", "default": True}, "ssl_verify": {"required": False, "type": "bool", "default": True}, "system_virtual_wan_link": { "required": False, "type": "dict", "default": None, "options": { "fail_alert_interfaces": {"required": False, "type": "list", "options": { "name": {"required": True, "type": "str"} }}, "fail_detect": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "health_check": {"required": False, "type": "list", "options": { "addr_mode": {"required": False, "type": "str", "choices": ["ipv4", "ipv6"]}, "failtime": {"required": False, "type": "int"}, "http_agent": {"required": False, "type": "str"}, "http_get": {"required": False, "type": "str"}, "http_match": {"required": False, "type": "str"}, "interval": {"required": False, "type": "int"}, "members": {"required": False, "type": "list", "options": { "seq_num": {"required": False, "type": "int"} }}, "name": {"required": True, "type": "str"}, "packet_size": {"required": False, "type": "int"}, "password": {"required": False, "type": "str"}, "port": {"required": False, "type": "int"}, "protocol": {"required": False, "type": "str", "choices": ["ping", "tcp-echo", "udp-echo", "http", "twamp", "ping6"]}, "recoverytime": {"required": False, "type": "int"}, "security_mode": {"required": False, "type": "str", "choices": ["none", "authentication"]}, "server": {"required": False, "type": "str"}, "sla": {"required": False, "type": "list", "options": { "id": {"required": True, "type": "int"}, "jitter_threshold": {"required": False, "type": "int"}, "latency_threshold": {"required": False, "type": "int"}, "link_cost_factor": {"required": False, "type": "str", "choices": ["latency", "jitter", "packet-loss"]}, "packetloss_threshold": {"required": False, "type": "int"} }}, "threshold_alert_jitter": {"required": False, "type": "int"}, "threshold_alert_latency": {"required": False, "type": "int"}, "threshold_alert_packetloss": {"required": False, "type": "int"}, "threshold_warning_jitter": {"required": False, "type": "int"}, "threshold_warning_latency": {"required": False, "type": "int"}, "threshold_warning_packetloss": {"required": False, "type": "int"}, "update_cascade_interface": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "update_static_route": {"required": False, "type": "str", "choices": ["enable", "disable"]} }}, "load_balance_mode": {"required": False, "type": "str", "choices": ["source-ip-based", "weight-based", "usage-based", "source-dest-ip-based", "measured-volume-based"]}, "members": {"required": False, "type": "list", "options": { "comment": {"required": False, "type": "str"}, "gateway": {"required": False, "type": "str"}, "gateway6": {"required": False, "type": "str"}, "ingress_spillover_threshold": {"required": False, "type": "int"}, "interface": {"required": False, "type": "str"}, "priority": {"required": False, "type": "int"}, "seq_num": {"required": False, "type": "int"}, "source": {"required": False, "type": "str"}, "source6": {"required": False, "type": "str"}, "spillover_threshold": {"required": False, "type": "int"}, "status": {"required": False, "type": "str", "choices": ["disable", "enable"]}, "volume_ratio": {"required": False, "type": "int"}, "weight": {"required": False, "type": "int"} }}, "service": {"required": False, "type": "list", "options": { "addr_mode": {"required": False, "type": "str", "choices": ["ipv4", "ipv6"]}, "bandwidth_weight": {"required": False, "type": "int"}, "default": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "dscp_forward": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "dscp_forward_tag": {"required": False, "type": "str"}, "dscp_reverse": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "dscp_reverse_tag": {"required": False, "type": "str"}, "dst": {"required": False, "type": "list", "options": { "name": {"required": True, "type": "str"} }}, "dst_negate": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "dst6": {"required": False, "type": "list", "options": { "name": {"required": True, "type": "str"} }}, "end_port": {"required": False, "type": "int"}, "gateway": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "groups": {"required": False, "type": "list", "options": { "name": {"required": True, "type": "str"} }}, "health_check": {"required": False, "type": "str"}, "hold_down_time": {"required": False, "type": "int"}, "id": {"required": True, "type": "int"}, "input_device": {"required": False, "type": "list", "options": { "name": {"required": True, "type": "str"} }}, "internet_service": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "internet_service_ctrl": {"required": False, "type": "list", "options": { "id": {"required": True, "type": "int"} }}, "internet_service_ctrl_group": {"required": False, "type": "list", "options": { "name": {"required": True, "type": "str"} }}, "internet_service_custom": {"required": False, "type": "list", "options": { "name": {"required": True, "type": "str"} }}, "internet_service_custom_group": {"required": False, "type": "list", "options": { "name": {"required": True, "type": "str"} }}, "internet_service_group": {"required": False, "type": "list", "options": { "name": {"required": True, "type": "str"} }}, "internet_service_id": {"required": False, "type": "list", "options": { "id": {"required": True, "type": "int"} }}, "jitter_weight": {"required": False, "type": "int"}, "latency_weight": {"required": False, "type": "int"}, "link_cost_factor": {"required": False, "type": "str", "choices": ["latency", "jitter", "packet-loss", "inbandwidth", "outbandwidth", "bibandwidth", "custom-profile-1"]}, "link_cost_threshold": {"required": False, "type": "int"}, "member": {"required": False, "type": "int"}, "mode": {"required": False, "type": "str", "choices": ["auto", "manual", "priority", "sla"]}, "name": {"required": False, "type": "str"}, "packet_loss_weight": {"required": False, "type": "int"}, "priority_members": {"required": False, "type": "list", "options": { "seq_num": {"required": False, "type": "int"} }}, "protocol": {"required": False, "type": "int"}, "quality_link": {"required": False, "type": "int"}, "route_tag": {"required": False, "type": "int"}, "sla": {"required": False, "type": "list", "options": { "health_check": {"required": False, "type": "str"}, "id": {"required": False, "type": "int"} }}, "src": {"required": False, "type": "list", "options": { "name": {"required": True, "type": "str"} }}, "src_negate": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "src6": {"required": False, "type": "list", "options": { "name": {"required": True, "type": "str"} }}, "start_port": {"required": False, "type": "int"}, "status": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "tos": {"required": False, "type": "str"}, "tos_mask": {"required": False, "type": "str"}, "users": {"required": False, "type": "list", "options": { "name": {"required": True, "type": "str"} }} }}, "status": {"required": False, "type": "str", "choices": ["disable", "enable"]} } } } module = AnsibleModule(argument_spec=fields, supports_check_mode=False) # legacy_mode refers to using fortiosapi instead of HTTPAPI legacy_mode = 'host' in module.params and module.params['host'] is not None and \ 'username' in module.params and module.params['username'] is not None and \ 'password' in module.params and module.params['password'] is not None if not legacy_mode: if module._socket_path: connection = Connection(module._socket_path) fos = FortiOSHandler(connection) is_error, has_changed, result = fortios_system(module.params, fos) else: module.fail_json(**FAIL_SOCKET_MSG) else: try: from fortiosapi import FortiOSAPI except ImportError: module.fail_json(msg="fortiosapi module is required") fos = FortiOSAPI() login(module.params, fos) is_error, has_changed, result = fortios_system(module.params, fos) fos.logout() if not is_error: module.exit_json(changed=has_changed, meta=result) else: module.fail_json(msg="Error in repo", meta=result) if __name__ == '__main__': main()
[((1133, 13, 1134, 53), 'ansible.module_utils.basic.AnsibleModule', 'AnsibleModule', (), '', False, 'from ansible.module_utils.basic import AnsibleModule\n'), ((1155, 14, 1155, 26), 'fortiosapi.FortiOSAPI', 'FortiOSAPI', ({}, {}), '()', False, 'from fortiosapi import FortiOSAPI\n'), ((1143, 25, 1143, 56), 'ansible.module_utils.connection.Connection', 'Connection', ({(1143, 36, 1143, 55): 'module._socket_path'}, {}), '(module._socket_path)', False, 'from ansible.module_utils.connection import Connection\n'), ((1144, 18, 1144, 44), 'ansible.module_utils.network.fortios.fortios.FortiOSHandler', 'FortiOSHandler', ({(1144, 33, 1144, 43): 'connection'}, {}), '(connection)', False, 'from ansible.module_utils.network.fortios.fortios import FortiOSHandler\n')]
victorlujan/Dise-odeSoftwarePatrones
src/Puerta.py
b9845cc1c4abdc44867c90b9e9784246e57f16b3
from ElementoMapa import ElementoMapa class Puerta (ElementoMapa): def __init__(self): self.abierta= True self.lado2=None self.lado1=None def get_abierta(self): return self.abierta def print_cosas(self): print("hola") def set_abierta(self, value): self.abierta = value def get_lado1(self): return self.lado1 def set_lado1(self, value): self.lado1 = value def get_lado2(self): return self.lado2 def set_lado2(self, value): self.lado2 = value def espuerta(self): return True def abrir(self): self.abierta=True def entrar(self,habitacion): if self.abierta==True and (self.lado1.id == habitacion.id or self.lado2.id == habitacion.id): print("Ahora estas en la habitacion", habitacion.id) if habitacion.hijos[0] == None: pass else: if habitacion.hijos[0].activa == True: print("La bomba ha estallado") if self.abierta==False: print("La puerta esta cerrada")
[]
Teenahshe/ponggame
pong.py
5e4032753894ce1e1ebeb51841676aac24aa22df
""" # Step 1 - Create the App # Step 2 - Create the Game # Step 3 - Build the Game # Step 4 - Run the App """ from kivy.app import App from kivy.uix.widget import Widget from kivy.properties import NumericProperty, ReferenceListProperty, ObjectProperty from kivy.vector import Vector from kivy.clock import Clock from random import randint class PongPaddle(Widget): score = NumericProperty(0) def bounce_ball(self, ball): if self.collide_widget(ball): ball.velocity_x *= -1 print('hello world') class PongBall(Widget): velocity_x = NumericProperty(0) velocity_y = NumericProperty(0) velocity = ReferenceListProperty(velocity_x, velocity_y) # Latest Position of the Ball = Current Velocity + Current Position def move(self): self.pos = Vector(*self.velocity) + self.pos # Update - moving the ball by calling the move function and other stuff # on touch_down() = When our fingers/mouse touches he screen # on touch_up() - when we lift our finger off the screen after touching it # on_touch_move() - when we drag our finger on the screen class PongGame(Widget): ball = ObjectProperty(None) player1 = ObjectProperty(None) player2 = ObjectProperty(None) def serve_ball(self): self.ball.velocity = Vector(4, 0).rotate(randint(0, 360)) def update(self, dt): self.ball.move() # Bounce off top and bottom Y if (self.ball.y < 0) or (self.ball.y > self.height - 50): self.ball.velocity_y *= -1.1 # Bounce off left and increase th score if self.ball.x < 0: self.ball.velocity_x *= -1 self.player1.score += 1 # Bounce off right and increase the score if self.ball.x > self.width - 50: self.ball.velocity_x *= -1 self.player2.score += 1 self.player1.bounce_ball(self.ball) self.player2.bounce_ball(self.ball) def on_touch_move(self, touch): if touch.x < self.width / 1 / 4: self.player1.center_y = touch.y if touch.x > self.width * 3 / 4: self.player2.center_y = touch.y class PongApp(App): def build(self): game = PongGame() game.serve_ball() Clock.schedule_interval(game.update, 1.0 / 60.0) return game PongApp().run()
[((17, 12, 17, 30), 'kivy.properties.NumericProperty', 'NumericProperty', ({(17, 28, 17, 29): '0'}, {}), '(0)', False, 'from kivy.properties import NumericProperty, ReferenceListProperty, ObjectProperty\n'), ((26, 17, 26, 35), 'kivy.properties.NumericProperty', 'NumericProperty', ({(26, 33, 26, 34): '0'}, {}), '(0)', False, 'from kivy.properties import NumericProperty, ReferenceListProperty, ObjectProperty\n'), ((27, 17, 27, 35), 'kivy.properties.NumericProperty', 'NumericProperty', ({(27, 33, 27, 34): '0'}, {}), '(0)', False, 'from kivy.properties import NumericProperty, ReferenceListProperty, ObjectProperty\n'), ((28, 15, 28, 60), 'kivy.properties.ReferenceListProperty', 'ReferenceListProperty', ({(28, 37, 28, 47): 'velocity_x', (28, 49, 28, 59): 'velocity_y'}, {}), '(velocity_x, velocity_y)', False, 'from kivy.properties import NumericProperty, ReferenceListProperty, ObjectProperty\n'), ((41, 11, 41, 31), 'kivy.properties.ObjectProperty', 'ObjectProperty', ({(41, 26, 41, 30): 'None'}, {}), '(None)', False, 'from kivy.properties import NumericProperty, ReferenceListProperty, ObjectProperty\n'), ((42, 14, 42, 34), 'kivy.properties.ObjectProperty', 'ObjectProperty', ({(42, 29, 42, 33): 'None'}, {}), '(None)', False, 'from kivy.properties import NumericProperty, ReferenceListProperty, ObjectProperty\n'), ((43, 14, 43, 34), 'kivy.properties.ObjectProperty', 'ObjectProperty', ({(43, 29, 43, 33): 'None'}, {}), '(None)', False, 'from kivy.properties import NumericProperty, ReferenceListProperty, ObjectProperty\n'), ((80, 8, 80, 56), 'kivy.clock.Clock.schedule_interval', 'Clock.schedule_interval', ({(80, 32, 80, 43): 'game.update', (80, 45, 80, 55): '(1.0 / 60.0)'}, {}), '(game.update, 1.0 / 60.0)', False, 'from kivy.clock import Clock\n'), ((32, 19, 32, 41), 'kivy.vector.Vector', 'Vector', ({(32, 26, 32, 40): '*self.velocity'}, {}), '(*self.velocity)', False, 'from kivy.vector import Vector\n'), ((46, 49, 46, 64), 'random.randint', 'randint', ({(46, 57, 46, 58): '0', (46, 60, 46, 63): '360'}, {}), '(0, 360)', False, 'from random import randint\n'), ((46, 29, 46, 41), 'kivy.vector.Vector', 'Vector', ({(46, 36, 46, 37): '4', (46, 39, 46, 40): '0'}, {}), '(4, 0)', False, 'from kivy.vector import Vector\n')]
cyclone923/blocks-world
get_block_data/relation.py
808127e6b4fde2a9cb499cf6934db7ff73e2f534
class SceneRelation: def __init__(self): self.on_ground = set() self.on_block = {} self.clear = set() def print_relation(self): print(self.on_ground) print(self.on_block) print(self.clear)
[]
EricZLou/BridgeRLAgent
bridge_RL_agent_v16.py
78329eec5fcf320d2850f44dc33b138919fba82d
""" CS 238 Final Project: Bridge RL Agent Eric Lou & Kimberly Tran """ import copy import datetime import numpy as np import random from collections import namedtuple """''''''''''''''''''''''''''''''''''''''''''''''''''''''''' REPRESENTATIONS OF BRIDGE Representing a "Card" as an integer: Cards 0 -> 12 are Club 2 -> Club 14 Cards 13 -> 25 are Diamond 2 -> Diamond 14 Cards 26 -> 38 are Heart 2 -> Heart 14 Cards 39 -> 51 are Spade 2 -> Spade 14 Jack is 11 Queen is 12 King is 13 Ace is 14 Representing a "Suit" as an integer: n/a is -1 <-- used in a "State" where no cards have been played yet. Clubs is 0 Diamonds is 1 Hearts is 2 Spades is 3 Representing a "State" as an opening suit and frozenset of up to 3 "Card"-s: state = State(1, frozenset(23, 0)) We have a Diamond 12 and Club 2 with an opening suit of Diamonds. The agent is 3rd to play a card and must play a Diamond if it has one. Representing the MDP with a Map from a "State" to an array of length-52: We call this Map "weights". And the array of length-52 represets the proportion with which the agent should play each of the 52 cards given that it is at that state. In this example, with state = (1, set(23, 0)), weights[state] will likely have very large values at indices 24 and 25 since a Diamond 13 and Diamond 14 will beat the Diamond 12. '''''''''''''''''''''''''''''''''''''''''''''''''''''''''""" State = namedtuple('State', ['opening_suit', 'cards_played', 'partners_card']) """''''''''''''''''''''''''''''''''''''''''''''''''''''''''' " " DEFINE SOME CONSTANTS " '''''''''''''''''''''''''''''''''''''''''''''''''''''''''""" NUM_ACTIONS = 52 # Agent can choose any card to play (only some are valid). NUM_GAMES_TRAIN = 10000 NUM_GAMES_TEST = 10000 STATS_PER = 1000 """''''''''''''''''''''''''''''''''''''''''''''''''''''''''' " " RL AGENT " '''''''''''''''''''''''''''''''''''''''''''''''''''''''''""" class BridgeAgent: def __init__(self): # We initialize all weights to 1 such that every card has an equal chance of being chosen. self.weights = {} self.weights[State(-1, frozenset(), -1)] = np.full(NUM_ACTIONS, 1.0) for opening_suit in range(4): for card_1 in range(52): for card_2 in range(card_1, 52): for card_3 in range(card_2, 52): for card_partner in [-1, card_1, card_2, card_3]: state = State( opening_suit, frozenset([card_1, card_2, card_3]), card_partner) self.weights[state] = np.full(NUM_ACTIONS, 1.0) # self.alpha = 0.997 # 1,000 # self.alpha = 0.9995 # 10,000 # self.alpha = 0.99995 # 100,000 self.alpha = 0.999995 # 1,000,000 # self.alpha = 0.9999995 # 5,000,000 self.game_num = 1 """ EXAMPLE state = State(1, set(23, 0)) # Diamond 12, Club 2 <-- first 2 cards in round card_played = 24 # Diamond 13 <-- 3rd card in round If 4th card is not 25, then the agent wins. We want to incrase the proportion with which we play 24. ba.add_win(state, card_played) """ def add_win(self, state, card_played): self.weights[state][card_played] *= (1 + 0.1 * self.alpha ** self.game_num) """ EXAMPLE state = State(1, set(23, 0)) card_played = 24 If 4th card is 25 (Diamond 14), then the agent loses. We want to decrease the proportion with which we play 24. ba.add_loss(state, card_played) """ def add_loss(self, state, card_played): self.weights[state][card_played] /= (1 + 0.1 * self.alpha ** self.game_num) """ EXAMPLE state = State(1, set(23, 0)) cards_in_hand = set(0, 1, 4, 8, 11, 20, 24, 38) The agent choose to play whichever remaining card has the highest weight. The agent must play a Diamond if it has Diamonds. In this example, agent will most likely play 24, which beats 23 <-- hopefully 24 has the highest weight. card_played = ba.play_card(state, cards_in_hand) """ def play_card(self, state, cards_in_hand): # Following the EXAMPLE: # suit = 1 suit = state.opening_suit # valid_cards = [20, 24] valid_cards = np.array([i for i in range(suit * 13, (suit + 1) * 13) if i in cards_in_hand]) if len(valid_cards) == 0: valid_cards = cards_in_hand # Choose the valid card with highest weight. # index_into_valid_counts = 1 since 20 has a smaller weight than 24. # index_into_valid_cards = np.argmax(self.weights[state][valid_cards]) index_into_valid_cards = np.random.choice(np.flatnonzero(self.weights[state][valid_cards] == self.weights[state][valid_cards].max())) # returns valid_cards[1] = 24 return valid_cards[index_into_valid_cards] """ This function write the policy at the end of the data training phase. """ def write_policy(self, cards_in_hand, policy, filename, states_accessed): count = 0 with open(filename + "_Last_Game.txt", 'w') as g: g.write("Cards in Hand: {}\n\n".format(cards_in_hand)) with open(filename + ".txt", 'w') as f: for state in self.weights: f.write("State: suit {} | cards played {} | partner's card {}\nBest Card To Play: {}\n\n".format(state.opening_suit, state.cards_played, state.partners_card, policy[count])) if state in states_accessed: g.write("State: suit {} | cards played {} | partner's card {}\nBest Card To Play: {}\n\n".format(state.opening_suit, state.cards_played, state.partners_card, policy[count])) count += 1 """''''''''''''''''''''''''''''''''''''''''''''''''''''''''' " " UTILITY FUNCTIONS " '''''''''''''''''''''''''''''''''''''''''''''''''''''''''""" """ This functions deals random cards. """ deck = list(range(52)) def shuffle_cards(): random.shuffle(deck) return [deck[0:13], deck[13:26], deck[26:39], deck[39:52]] """ This function is used by non-agents who play randomly. """ def play_random_card(suit, cards_in_hand): if suit == -1: return random.choice(cards_in_hand) valid_cards = [i for i in range(suit * 13, (suit + 1) * 13) if i in cards_in_hand] if len(valid_cards) == 0: return random.choice(cards_in_hand) return random.choice(valid_cards) """ This function determines the winner of the round. """ def determine_round_winner(suit, cards_played): max_idx = -1 max_val = -1 for idx, card in enumerate(cards_played): if suit * 13 <= card < (suit + 1) * 13 and card > max_val: max_val, max_idx = card, idx return max_idx """ This function determines the declarer based on partnership with the most points. Return: (agent_is_declarer, declarer_idx) """ def agent_declarer(hands): points = count_points(hands) # determines the number of points in each hand # agent's partnership has more points and agent is declarer if points[0] + points[2] > points[1] + points[3] and points[2] > points[0]: return True, 2 # agent is not declarer and agent should start the play return False, -1 """ This function counts the points in each hand. Note: Ace is 12, 25, 38, 51 """ def count_points(hands): points = [] for hand in hands: p = 0 for card in hand: if card % 13 == 12: p += 4 elif card % 13 == 11: p += 3 elif card % 13 == 10: p += 2 elif card % 13 == 9: p += 1 points.append(p) return points """''''''''''''''''''''''''''''''''''''''''''''''''''''''''' " " TRACKS PERFORMANCE OF BRIDGE AGENT " '''''''''''''''''''''''''''''''''''''''''''''''''''''''''""" class BridgeAgentRedFlags: def __init__(self): self.RED_FLAG_VIOLATIONS = np.zeros(3) self.RED_FLAG_TOTAL_COUNT = np.zeros(3) self.ALL_RED_FLAG_VIOLATIONS = np.zeros(3) # Cumulative self.ALL_RED_FLAG_TOTAL_COUNT = np.zeros(3) # Cumulative def clear_red_flags(self): self.RED_FLAG_VIOLATIONS = np.zeros(3) self.RED_FLAG_TOTAL_COUNT = np.zeros(3) """ This function checks if the agent plays their highest card even though the highest card already played is higher than theirs. """ def highest_card(self, valid_cards, agent_valid_cards, card): if len(agent_valid_cards) > 1 and max(valid_cards) > max(agent_valid_cards): self.RED_FLAG_TOTAL_COUNT[0] += 1 self.ALL_RED_FLAG_TOTAL_COUNT[0] += 1 if card == max(agent_valid_cards): self.RED_FLAG_VIOLATIONS[0] += 1 self.ALL_RED_FLAG_VIOLATIONS[0] += 1 """ This function checks if the agent wins a round when there's three cards played already and the agent has at least one higher card than what's been played. """ def higher_card(self, valid_cards, agent_valid_cards, card, cards_played, partners_cards): if (len(cards_played) == 3 and len(agent_valid_cards) > 1 and max(agent_valid_cards) > max(valid_cards) and max(valid_cards) not in partners_cards ): self.RED_FLAG_TOTAL_COUNT[1] += 1 self.ALL_RED_FLAG_TOTAL_COUNT[1] += 1 if card < max(valid_cards): self.RED_FLAG_VIOLATIONS[1] += 1 self.ALL_RED_FLAG_VIOLATIONS[1] += 1 """ This function checks if the agent plays a higher card even though their partner is guaranteed to win. """ def partner_win(self, valid_cards, agent_valid_cards, card, cards_played, partners_cards): if (len(cards_played) == 3 and len(agent_valid_cards) > 1 and max(valid_cards) in partners_cards ): self.RED_FLAG_TOTAL_COUNT[2] += 1 self.ALL_RED_FLAG_TOTAL_COUNT[2] += 1 if card > max(valid_cards): self.RED_FLAG_VIOLATIONS[2] += 1 self.ALL_RED_FLAG_VIOLATIONS[2] += 1 """ This function checks for any red flags based on what the agent played. """ def assess_card_played(self, hands, card, suit, cards_played, player_idx, partners_cards): all_valid_cards = list(range(suit * 13, (suit + 1) * 13)) valid_cards = np.array([i for i in all_valid_cards if i in cards_played]) agent_valid_cards = np.array([i for i in all_valid_cards if i in hands[player_idx]]) if suit == -1: return # highest card played so far is higher than agent's highest card self.highest_card(valid_cards, agent_valid_cards, card) # 3 cards played and agent has higher cards, does it play highest card or highest necessary card? self.higher_card(valid_cards, agent_valid_cards, card, cards_played, partners_cards) # 3 cards played + partner has played highest card, does agent play lowest card? do they beat their partner? self.partner_win(valid_cards, agent_valid_cards, card, cards_played, partners_cards) """''''''''''''''''''''''''''''''''''''''''''''''''''''''''' " " PLAY A SINGLE GAME OF BRIDGE " '''''''''''''''''''''''''''''''''''''''''''''''''''''''''""" """ This function plays 13 rounds of 1 NT bridge and outputs a winner. """ def play_game(game, hands, train=False, ba=None, barf=None): partners_cards = copy.copy(hands[0]) agents_cards = copy.copy(hands[2]) declarer, d = agent_declarer(hands) """ hands[0] = North's cards hands[1] = East's cards hands[2] = Agent's cards hands[3] = West's cards """ round_winner = (d + 1) % 4 # the person to the right of the declarer starts the game NS_Wins = 0 # used to count total wins in agent partnership states_accessed = [] # records which states have been updated for this game # For each round for _ in range(13): cards_played = [] agent_card_played = [-1, -1] agent_state = None agent_state_2 = None opening_suit = -1 # Each player plays a card in order starting from round_winner for player in range(4): card = None player_idx = (round_winner + player) % 4 if player_idx == 2: # Agent plays if ba: agent_state = State(opening_suit, frozenset(cards_played), agent_card_played[1]) states_accessed.append(agent_state) card = ba.play_card(agent_state, hands[player_idx]) else: card = play_random_card(opening_suit, hands[player_idx]) agent_card_played[0] = card barf.assess_card_played(hands, card, opening_suit, cards_played, player_idx, partners_cards) elif player_idx == 0: # if agent is declarer, they play their partner's cards if ba and declarer: agent_state_2 = State(opening_suit, frozenset(cards_played), agent_card_played[0]) states_accessed.append(agent_state_2) card = ba.play_card(agent_state_2, hands[player_idx]) barf.assess_card_played(hands, card, opening_suit, cards_played, player_idx, partners_cards) else: card = play_random_card(opening_suit, hands[player_idx]) agent_card_played[1] = card else: # Random bot plays card = play_random_card(opening_suit, hands[player_idx]) # Keep track of the opening suit. if player == 0: opening_suit = card // 13 hands[player_idx].remove(card) cards_played.append(card) # Get the winning card. round_winner = (determine_round_winner(opening_suit, cards_played) + round_winner) % 4 # Adjust the BridgeAgent weights. # If the BridgeAgent or N wins. if round_winner == 0 or round_winner == 2: if ba and train: ba.add_win(agent_state, agent_card_played[0]) if declarer: ba.add_win(agent_state_2, agent_card_played[1]) NS_Wins += 1 else: if ba and train: ba.add_loss(agent_state, agent_card_played[0]) if declarer: ba.add_loss(agent_state_2, agent_card_played[1]) # for the last game, determine and write out policy if ba and game == (NUM_GAMES_TRAIN - 1): policy = [] count = 0 for x in ba.weights: y = copy.deepcopy(ba.weights[x]) max = np.argmax(y) while max in x.cards_played: y[max] = -1 max = np.argmax(y) policy.append(max) count += 1 game_file = "Bridge_" + str(game + 1) ba.write_policy(agents_cards, policy, game_file, states_accessed) return NS_Wins def game_summary(ba, t, iterations=NUM_GAMES_TRAIN): with open(str(NUM_GAMES_TRAIN) + "_Game_Data_Train-" + str(t) + ".csv", 'w') as k: k.write("game," "agent_wins,random_wins,diff_wins," "agent_rfv_a,agent_rftc_a," "agent_rfv_b,agent_rftc_b," "agent_rfv_c,agent_rftc_c," "random_rfv_a,random_rftc_a," "random_rfv_b,random_rftc_b," "random_rfv_c,random_rftc_c\n") barf = BridgeAgentRedFlags() barf_random = BridgeAgentRedFlags() NS_Wins = [0] NS_Wins_random = [0] for game in range(iterations): hands = shuffle_cards() NS_Wins[-1] += play_game(game=game, hands=copy.deepcopy(hands), train=True, ba=ba, barf=barf) NS_Wins_random[-1] += play_game(game=game, hands=hands, ba=None, barf=barf_random) ba.game_num += 1 if (game + 1) % STATS_PER == 0: print(f"{game + 1} / ", end="", flush=True) rfv = barf.RED_FLAG_VIOLATIONS rfv_random = barf_random.RED_FLAG_VIOLATIONS rftc = barf.RED_FLAG_TOTAL_COUNT rftc_random = barf_random.RED_FLAG_TOTAL_COUNT with open(str(NUM_GAMES_TRAIN) + "_Game_Data_Train-" + str(t) + ".csv", 'a') as k: k.write( f"{game + 1}," f"{NS_Wins[-1]},{NS_Wins_random[-1]},{NS_Wins[-1] - NS_Wins_random[-1]}," f"{rfv[0]},{rftc[0]}," f"{rfv[1]},{rftc[1]}," f"{rfv[2]},{rftc[2]}," f"{rfv_random[0]},{rftc_random[0]}," f"{rfv_random[1]},{rftc_random[1]}," f"{rfv_random[2]},{rftc_random[2]}," f"\n") # Cumulative statistics on red flags for every STATS_PER games. barf.clear_red_flags() barf_random.clear_red_flags() NS_Wins.append(0) NS_Wins_random.append(0) average_win_delta = (sum(NS_Wins)-sum(NS_Wins_random)) / ((len(NS_Wins) - 1) * STATS_PER) average_rf_ratios_agent = np.divide(barf.ALL_RED_FLAG_VIOLATIONS, barf.ALL_RED_FLAG_TOTAL_COUNT) average_rf_ratios_random = np.divide(barf_random.ALL_RED_FLAG_VIOLATIONS, barf_random.ALL_RED_FLAG_TOTAL_COUNT) print(f"Average Win Delta (want this to be positive): {average_win_delta}") print(f"Average Red Flag Ratios - Agent: {average_rf_ratios_agent}") print(f"Average Red Flag Ratios - Random: {average_rf_ratios_random}") with open(str(NUM_GAMES_TRAIN) + "_Game_Data_Avg_Train-" + str(t) + ".csv", 'w') as m: m.write(f"avg_win_delta,avg_rf_agent,avg_rf_random\n" f"{average_win_delta},{average_rf_ratios_agent},{average_rf_ratios_random}\n") return ba def main(): start_time = datetime.datetime.now() hands = [] # TRAINING print(f"TRAINING on {NUM_GAMES_TRAIN} games") ba = BridgeAgent() ba = game_summary(ba, True) # TESTING -- we don't change the weights here print(f"TESTING on {NUM_GAMES_TEST} games") game_summary(ba, False, iterations=NUM_GAMES_TEST) end_time = datetime.datetime.now() print("Runtime: ", end_time - start_time) # runtime if __name__ == "__main__": main()
[((47, 8, 47, 78), 'collections.namedtuple', 'namedtuple', ({(47, 19, 47, 26): '"""State"""', (47, 28, 47, 77): "['opening_suit', 'cards_played', 'partners_card']"}, {}), "('State', ['opening_suit', 'cards_played', 'partners_card'])", False, 'from collections import namedtuple\n'), ((175, 4, 175, 24), 'random.shuffle', 'random.shuffle', ({(175, 19, 175, 23): 'deck'}, {}), '(deck)', False, 'import random\n'), ((190, 11, 190, 37), 'random.choice', 'random.choice', ({(190, 25, 190, 36): 'valid_cards'}, {}), '(valid_cards)', False, 'import random\n'), ((322, 21, 322, 40), 'copy.copy', 'copy.copy', ({(322, 31, 322, 39): 'hands[0]'}, {}), '(hands[0])', False, 'import copy\n'), ((323, 19, 323, 38), 'copy.copy', 'copy.copy', ({(323, 29, 323, 37): 'hands[2]'}, {}), '(hands[2])', False, 'import copy\n'), ((461, 30, 461, 100), 'numpy.divide', 'np.divide', ({(461, 40, 461, 68): 'barf.ALL_RED_FLAG_VIOLATIONS', (461, 70, 461, 99): 'barf.ALL_RED_FLAG_TOTAL_COUNT'}, {}), '(barf.ALL_RED_FLAG_VIOLATIONS, barf.ALL_RED_FLAG_TOTAL_COUNT)', True, 'import numpy as np\n'), ((462, 31, 462, 115), 'numpy.divide', 'np.divide', ({(462, 41, 462, 76): 'barf_random.ALL_RED_FLAG_VIOLATIONS', (462, 78, 462, 114): 'barf_random.ALL_RED_FLAG_TOTAL_COUNT'}, {}), '(barf_random.ALL_RED_FLAG_VIOLATIONS, barf_random.\n ALL_RED_FLAG_TOTAL_COUNT)', True, 'import numpy as np\n'), ((474, 17, 474, 40), 'datetime.datetime.now', 'datetime.datetime.now', ({}, {}), '()', False, 'import datetime\n'), ((488, 15, 488, 38), 'datetime.datetime.now', 'datetime.datetime.now', ({}, {}), '()', False, 'import datetime\n'), ((71, 51, 71, 76), 'numpy.full', 'np.full', ({(71, 59, 71, 70): 'NUM_ACTIONS', (71, 72, 71, 75): '1.0'}, {}), '(NUM_ACTIONS, 1.0)', True, 'import numpy as np\n'), ((183, 15, 183, 43), 'random.choice', 'random.choice', ({(183, 29, 183, 42): 'cards_in_hand'}, {}), '(cards_in_hand)', False, 'import random\n'), ((188, 15, 188, 43), 'random.choice', 'random.choice', ({(188, 29, 188, 42): 'cards_in_hand'}, {}), '(cards_in_hand)', False, 'import random\n'), ((245, 35, 245, 46), 'numpy.zeros', 'np.zeros', ({(245, 44, 245, 45): '3'}, {}), '(3)', True, 'import numpy as np\n'), ((246, 36, 246, 47), 'numpy.zeros', 'np.zeros', ({(246, 45, 246, 46): '3'}, {}), '(3)', True, 'import numpy as np\n'), ((247, 39, 247, 50), 'numpy.zeros', 'np.zeros', ({(247, 48, 247, 49): '3'}, {}), '(3)', True, 'import numpy as np\n'), ((248, 40, 248, 51), 'numpy.zeros', 'np.zeros', ({(248, 49, 248, 50): '3'}, {}), '(3)', True, 'import numpy as np\n'), ((251, 35, 251, 46), 'numpy.zeros', 'np.zeros', ({(251, 44, 251, 45): '3'}, {}), '(3)', True, 'import numpy as np\n'), ((252, 36, 252, 47), 'numpy.zeros', 'np.zeros', ({(252, 45, 252, 46): '3'}, {}), '(3)', True, 'import numpy as np\n'), ((299, 22, 299, 81), 'numpy.array', 'np.array', ({(299, 31, 299, 80): '[i for i in all_valid_cards if i in cards_played]'}, {}), '([i for i in all_valid_cards if i in cards_played])', True, 'import numpy as np\n'), ((300, 28, 300, 92), 'numpy.array', 'np.array', ({(300, 37, 300, 91): '[i for i in all_valid_cards if i in hands[player_idx]]'}, {}), '([i for i in all_valid_cards if i in hands[player_idx]])', True, 'import numpy as np\n'), ((399, 16, 399, 44), 'copy.deepcopy', 'copy.deepcopy', ({(399, 30, 399, 43): 'ba.weights[x]'}, {}), '(ba.weights[x])', False, 'import copy\n'), ((400, 18, 400, 30), 'numpy.argmax', 'np.argmax', ({(400, 28, 400, 29): 'y'}, {}), '(y)', True, 'import numpy as np\n'), ((403, 22, 403, 34), 'numpy.argmax', 'np.argmax', ({(403, 32, 403, 33): 'y'}, {}), '(y)', True, 'import numpy as np\n'), ((431, 50, 431, 70), 'copy.deepcopy', 'copy.deepcopy', ({(431, 64, 431, 69): 'hands'}, {}), '(hands)', False, 'import copy\n'), ((81, 50, 81, 75), 'numpy.full', 'np.full', ({(81, 58, 81, 69): 'NUM_ACTIONS', (81, 71, 81, 74): '1.0'}, {}), '(NUM_ACTIONS, 1.0)', True, 'import numpy as np\n')]
chbonkie/hacs
tests/hacsbase/test_hacsbase_data.py
81db513a0d3d1af1acf25da7b706ae62d8fdb6fa
"""Data Test Suite.""" from aiogithubapi.objects import repository import pytest import os from homeassistant.core import HomeAssistant from custom_components.hacs.hacsbase.data import HacsData from custom_components.hacs.helpers.classes.repository import HacsRepository from custom_components.hacs.hacsbase.configuration import Configuration from custom_components.hacs.share import get_hacs from tests.dummy_repository import dummy_repository_base @pytest.mark.asyncio async def test_hacs_data_async_write1(tmpdir): data = HacsData() hacs = get_hacs() repository = dummy_repository_base() repository.data.installed = True repository.data.installed_version = "1" hacs.repositories = [repository] hacs.hass = HomeAssistant() hacs.hass.config.config_dir = tmpdir hacs.configuration = Configuration() await data.async_write() @pytest.mark.asyncio async def test_hacs_data_async_write2(tmpdir): data = HacsData() hacs = get_hacs() hacs.hass = HomeAssistant() hacs.hass.config.config_dir = tmpdir hacs.configuration = Configuration() hacs.system.status.background_task = False hacs.system.disabled = False await data.async_write() @pytest.mark.asyncio async def test_hacs_data_restore(tmpdir): data = HacsData() hacs = get_hacs() hacs.hass = HomeAssistant() hacs.hass.config.config_dir = tmpdir await data.restore()
[((16, 11, 16, 21), 'custom_components.hacs.hacsbase.data.HacsData', 'HacsData', ({}, {}), '()', False, 'from custom_components.hacs.hacsbase.data import HacsData\n'), ((17, 11, 17, 21), 'custom_components.hacs.share.get_hacs', 'get_hacs', ({}, {}), '()', False, 'from custom_components.hacs.share import get_hacs\n'), ((18, 17, 18, 40), 'tests.dummy_repository.dummy_repository_base', 'dummy_repository_base', ({}, {}), '()', False, 'from tests.dummy_repository import dummy_repository_base\n'), ((22, 16, 22, 31), 'homeassistant.core.HomeAssistant', 'HomeAssistant', ({}, {}), '()', False, 'from homeassistant.core import HomeAssistant\n'), ((24, 25, 24, 40), 'custom_components.hacs.hacsbase.configuration.Configuration', 'Configuration', ({}, {}), '()', False, 'from custom_components.hacs.hacsbase.configuration import Configuration\n'), ((30, 11, 30, 21), 'custom_components.hacs.hacsbase.data.HacsData', 'HacsData', ({}, {}), '()', False, 'from custom_components.hacs.hacsbase.data import HacsData\n'), ((31, 11, 31, 21), 'custom_components.hacs.share.get_hacs', 'get_hacs', ({}, {}), '()', False, 'from custom_components.hacs.share import get_hacs\n'), ((32, 16, 32, 31), 'homeassistant.core.HomeAssistant', 'HomeAssistant', ({}, {}), '()', False, 'from homeassistant.core import HomeAssistant\n'), ((34, 25, 34, 40), 'custom_components.hacs.hacsbase.configuration.Configuration', 'Configuration', ({}, {}), '()', False, 'from custom_components.hacs.hacsbase.configuration import Configuration\n'), ((42, 11, 42, 21), 'custom_components.hacs.hacsbase.data.HacsData', 'HacsData', ({}, {}), '()', False, 'from custom_components.hacs.hacsbase.data import HacsData\n'), ((43, 11, 43, 21), 'custom_components.hacs.share.get_hacs', 'get_hacs', ({}, {}), '()', False, 'from custom_components.hacs.share import get_hacs\n'), ((44, 16, 44, 31), 'homeassistant.core.HomeAssistant', 'HomeAssistant', ({}, {}), '()', False, 'from homeassistant.core import HomeAssistant\n')]
marc-gav/PhiFlow
phi/math/backend/_backend.py
b6186fd1503d040997b52d49aa18cd875267c27e
from collections import namedtuple from contextlib import contextmanager from threading import Barrier from typing import List, Callable import numpy from ._dtype import DType, combine_types SolveResult = namedtuple('SolveResult', [ 'method', 'x', 'residual', 'iterations', 'function_evaluations', 'converged', 'diverged', 'message', ]) class ComputeDevice: """ A physical device that can be selected to perform backend computations. """ def __init__(self, backend: 'Backend', name: str, device_type: str, memory: int, processor_count: int, description: str, ref=None): self.name: str = name """ Name of the compute device. CPUs are typically called `'CPU'`. """ self.device_type: str = device_type """ Type of device such as `'CPU'`, `'GPU'` or `'TPU'`. """ self.memory: int = memory """ Maximum memory of the device that can be allocated (in bytes). -1 for n/a. """ self.processor_count: int = processor_count """ Number of CPU cores or GPU multiprocessors. -1 for n/a. """ self.description: str = description """ Further information about the device such as driver version. """ self.ref = ref """ (Optional) Reference to the internal device representation. """ self.backend: 'Backend' = backend """ Backend that this device belongs to. Different backends represent the same device with different objects. """ def __repr__(self): mem = f"{(self.memory / 1024 ** 2)} MB" if self.memory > 0 else "memory: n/a" pro = f"{self.processor_count} processors" if self.processor_count > 0 else "processors: n/a" descr = self.description.replace('\n', ' ') if len(descr) > 30: descr = descr[:28] + "..." return f"'{self.name}' ({self.device_type}) | {mem} | {pro} | {descr}" class Backend: def __init__(self, name: str, default_device: ComputeDevice): """ Backends delegate low-level operations to a compute library or emulate them. The methods of `Backend` form a comprehensive list of available operations. To support a compute library, subclass `Backend` and register it by adding it to `BACKENDS`. Args: name: Human-readable string default_device: `ComputeDevice` being used by default """ self._name = name self._default_device = default_device def __enter__(self): _DEFAULT.append(self) def __exit__(self, exc_type, exc_val, exc_tb): _DEFAULT.pop(-1) @property def name(self) -> str: return self._name def supports(self, feature: str or Callable) -> bool: """ Tests if this backend supports the given feature. Features correspond to a method of this backend that must be implemented if the feature is supported. Possible features: * `sparse_tensor` * `gradients Args: feature: `str` or unbound Backend method, e.g. `Backend.sparse_tensor` Returns: Whether the feature is supported. """ feature = feature if isinstance(feature, str) else feature.__name__ if not hasattr(Backend, feature): raise ValueError(f"Not a valid feature: '{feature}'") backend_fun = getattr(Backend, feature) impl_fun = getattr(self.__class__, feature) return impl_fun is not backend_fun def prefers_channels_last(self) -> bool: raise NotImplementedError() @property def precision(self) -> int: """ Short for math.backend.get_precision() """ return get_precision() @property def float_type(self) -> DType: return DType(float, self.precision) @property def as_registered(self) -> 'Backend': from phi.math.backend import BACKENDS for backend in BACKENDS: if self.name in backend.name: return backend raise RuntimeError(f"Backend '{self}' is not visible.") @property def complex_type(self) -> DType: return DType(complex, max(64, self.precision)) def combine_types(self, *dtypes: DType) -> DType: return combine_types(*dtypes, fp_precision=self.precision) def auto_cast(self, *tensors) -> list: """ Determins the appropriate values type resulting from operations involving the tensors as input. This method is called by the default implementations of basic operators. Backends can override this method to prevent unnecessary casting. Args: *tensors: tensors to cast and to consider when determining the common data type Returns: tensors cast to a common data type """ dtypes = [self.dtype(t) for t in tensors] result_type = self.combine_types(*dtypes) if result_type.kind in (int, float, complex, bool): tensors = [self.cast(t, result_type) for t in tensors] return tensors def __str__(self): return self.name def __repr__(self): return self.name def list_devices(self, device_type: str or None = None) -> List[ComputeDevice]: """ Fetches information about all available compute devices this backend can use. Implementations: * NumPy: [`os.cpu_count`](https://docs.python.org/3/library/os.html#os.cpu_count) * PyTorch: [`torch.cuda.get_device_properties`](https://pytorch.org/docs/stable/cuda.html#torch.cuda.get_device_properties) * TensorFlow: `tensorflow.python.client.device_lib.list_local_devices` * Jax: [`jax.devices`](https://jax.readthedocs.io/en/latest/jax.html#jax.devices) Args: device_type: (optional) Return only devices of this type, e.g. `'GPU'` or `'CPU'`. See `ComputeDevice.device_type`. Returns: `list` of all currently available devices. """ raise NotImplementedError() def get_default_device(self) -> ComputeDevice: return self._default_device def set_default_device(self, device: ComputeDevice or str): if isinstance(device, str): devices = self.list_devices(device) assert len(devices) >= 1, f"{self.name}: Cannot select '{device} because no device of this type is available." device = devices[0] self._default_device = device def seed(self, seed: int): raise NotImplementedError() def is_tensor(self, x, only_native=False): """ An object is considered a native tensor by a backend if no internal conversion is required by backend methods. An object is considered a tensor (nativer or otherwise) by a backend if it is not a struct (e.g. tuple, list) and all methods of the backend accept it as a tensor argument. Args: x: object to check only_native: If True, only accepts true native tensor representations, not Python numbers or others that are also supported as tensors (Default value = False) Returns: bool: whether `x` is considered a tensor by this backend """ raise NotImplementedError() def as_tensor(self, x, convert_external=True): """ Converts a tensor-like object to the native tensor representation of this backend. If x is a native tensor of this backend, it is returned without modification. If x is a Python number (numbers.Number instance), `convert_numbers` decides whether to convert it unless the backend cannot handle Python numbers. *Note:* There may be objects that are considered tensors by this backend but are not native and thus, will be converted by this method. Args: x: tensor-like, e.g. list, tuple, Python number, tensor convert_external: if False and `x` is a Python number that is understood by this backend, this method returns the number as-is. This can help prevent type clashes like int32 vs int64. (Default value = True) Returns: tensor representation of `x` """ raise NotImplementedError() def is_available(self, tensor) -> bool: """ Tests if the value of the tensor is known and can be read at this point. If true, `numpy(tensor)` must return a valid NumPy representation of the value. Tensors are typically available when the backend operates in eager mode. Args: tensor: backend-compatible tensor Returns: bool """ raise NotImplementedError() def numpy(self, tensor) -> numpy.ndarray: """ Returns a NumPy representation of the given tensor. If `tensor` is already a NumPy array, it is returned without modification. This method raises an error if the value of the tensor is not known at this point, e.g. because it represents a node in a graph. Use `is_available(tensor)` to check if the value can be represented as a NumPy array. Args: tensor: backend-compatible tensor Returns: NumPy representation of the values stored in the tensor """ raise NotImplementedError() def to_dlpack(self, tensor): raise NotImplementedError() def from_dlpack(self, capsule): raise NotImplementedError() def copy(self, tensor, only_mutable=False): raise NotImplementedError() def call(self, f: Callable, *args, name=None): """ Calls `f(*args)` and returns the result. This method may be used to register internal calls with the profiler. Usage: choose_backend(key).call(custom_function, *args) """ return f(*args) def block_until_ready(self, values): pass def jit_compile(self, f: Callable) -> Callable: return NotImplemented def functional_gradient(self, f, wrt: tuple or list, get_output: bool): raise NotImplementedError(self) def custom_gradient(self, f: Callable, gradient: Callable) -> Callable: """ Creates a function based on `f` that uses a custom gradient for backprop. Args: f: Forward function. gradient: Function for backprop. Will be called as `gradient(*d_out)` to compute the gradient of `f`. Returns: Function with similar signature and return values as `f`. However, the returned function does not support keyword arguments. """ return NotImplemented def jit_compile_grad(self, f, wrt: tuple or list, get_output: bool): raise NotImplementedError() def transpose(self, tensor, axes): raise NotImplementedError() def random_uniform(self, shape): """ Float tensor of selected precision containing random values in the range [0, 1) """ raise NotImplementedError(self) def random_normal(self, shape): """ Float tensor of selected precision containing random values sampled from a normal distribution with mean 0 and std 1. """ raise NotImplementedError(self) def stack(self, values, axis=0): raise NotImplementedError(self) def concat(self, values, axis): raise NotImplementedError(self) def pad(self, value, pad_width, mode: str = 'constant', constant_values=0): """ Pad a tensor with values as specified by `mode` and `constant_values`. If the mode is not supported, returns NotImplemented. Args: value: tensor pad_width: 2D tensor specifying the number of values padded to the edges of each axis in the form [[axis 0 lower, axis 0 upper], ...] including batch and component axes. mode: constant', 'boundary', 'periodic', 'symmetric', 'reflect' constant_values: used for out-of-bounds points if mode='constant' (Default value = 0) mode: str: (Default value = 'constant') Returns: padded tensor or NotImplemented """ raise NotImplementedError(self) def reshape(self, value, shape): raise NotImplementedError(self) def flip(self, value, axes: tuple or list): slices = tuple(slice(None, None, -1 if i in axes else None) for i in range(self.ndims(value))) return value[slices] def sum(self, value, axis=None, keepdims=False): raise NotImplementedError(self) def prod(self, value, axis=None): raise NotImplementedError(self) def divide_no_nan(self, x, y): """ Computes x/y but returns 0 if y=0. Args: x: y: Returns: """ raise NotImplementedError(self) def where(self, condition, x=None, y=None): raise NotImplementedError(self) def nonzero(self, values): """ Args: values: Tensor with only spatial dimensions Returns: non-zero multi-indices as tensor of shape (nnz, vector) """ raise NotImplementedError(self) def mean(self, value, axis=None, keepdims=False): raise NotImplementedError(self) def range(self, start, limit=None, delta=1, dtype: DType = DType(int, 32)): raise NotImplementedError(self) def zeros(self, shape, dtype: DType = None): raise NotImplementedError(self) def zeros_like(self, tensor): raise NotImplementedError(self) def ones(self, shape, dtype: DType = None): raise NotImplementedError(self) def ones_like(self, tensor): raise NotImplementedError(self) def meshgrid(self, *coordinates): raise NotImplementedError(self) def linspace(self, start, stop, number): raise NotImplementedError(self) def tensordot(self, a, a_axes: tuple or list, b, b_axes: tuple or list): """ Multiply-sum-reduce a_axes of a with b_axes of b. """ raise NotImplementedError(self) def matmul(self, A, b): raise NotImplementedError(self) def einsum(self, equation, *tensors): raise NotImplementedError(self) def while_loop(self, loop: Callable, values: tuple): """ ```python while any(values[0]): values = loop(*values) return values ``` This operation does not support backpropagation. Args: loop: Loop function, must return a `tuple` with entries equal to `values` in shape and data type. values: Initial values of loop variables. Returns: Loop variables upon loop completion. """ raise NotImplementedError(self) def abs(self, x): raise NotImplementedError(self) def sign(self, x): raise NotImplementedError(self) def round(self, x): raise NotImplementedError(self) def ceil(self, x): raise NotImplementedError(self) def floor(self, x): raise NotImplementedError(self) def max(self, x, axis=None, keepdims=False): raise NotImplementedError(self) def min(self, x, axis=None, keepdims=False): raise NotImplementedError(self) def maximum(self, a, b): raise NotImplementedError(self) def minimum(self, a, b): raise NotImplementedError(self) def clip(self, x, minimum, maximum): raise NotImplementedError(self) def sqrt(self, x): raise NotImplementedError(self) def exp(self, x): raise NotImplementedError(self) def conv(self, value, kernel, zero_padding=True): """ Convolve value with kernel. Depending on the tensor rank, the convolution is either 1D (rank=3), 2D (rank=4) or 3D (rank=5). Higher dimensions may not be supported. Args: value: tensor of shape (batch_size, in_channel, spatial...) kernel: tensor of shape (batch_size or 1, out_channel, in_channel, spatial...) zero_padding: If True, pads the edges of `value` with zeros so that the result has the same shape as `value`. Returns: Convolution result as tensor of shape (batch_size, out_channel, spatial...) """ raise NotImplementedError(self) def expand_dims(self, a, axis=0, number=1): raise NotImplementedError(self) def shape(self, tensor): raise NotImplementedError(self) def staticshape(self, tensor): raise NotImplementedError(self) def cast(self, x, dtype: DType): raise NotImplementedError(self) def to_float(self, x): """ Converts a tensor to floating point values with precision equal to the currently set default precision. See Also: `Backend.precision()`. If `x` is mutable and of the correct floating type, returns a copy of `x`. To convert float tensors to the backend precision but leave non-float tensors untouched, use `Backend.as_tensor()`. Args: x: tensor of bool, int or float Returns: Values of `x` as float tensor """ return self.cast(x, self.float_type) def to_int32(self, x): return self.cast(x, DType(int, 32)) def to_int64(self, x): return self.cast(x, DType(int, 64)) def to_complex(self, x): return self.cast(x, DType(complex, max(64, min(self.precision * 2, 128)))) def batched_gather_nd(self, values, indices): """ Gathers values from the tensor `values` at locations `indices`. The first dimension of `values` and `indices` is the batch dimension which must be either equal for both or one for either. Args: values: tensor of shape (batch, spatial..., channel) indices: int tensor of shape (batch, any..., multi_index) where the size of multi_index is values.rank - 2. Returns: Gathered values as tensor of shape (batch, any..., channel) """ raise NotImplementedError(self) def flatten(self, x): return self.reshape(x, (-1,)) def std(self, x, axis=None, keepdims=False): raise NotImplementedError(self) def boolean_mask(self, x, mask, axis=0): """ Args: x: tensor with any number of dimensions mask: 1D mask tensor axis: Axis index >= 0 """ raise NotImplementedError(self) def isfinite(self, x): raise NotImplementedError(self) def scatter(self, base_grid, indices, values, mode: str): """ Depending on `mode`, performs scatter_update or scatter_add. Args: base_grid: Tensor into which scatter values are inserted at indices. Tensor of shape (batch_size, spatial..., channels) indices: Tensor of shape (batch_size or 1, update_count, index_vector) values: Values to scatter at indices. Tensor of shape (batch_size or 1, update_count or 1, channels or 1) mode: One of ('update', 'add') Returns: Copy of base_grid with values at `indices` updated by `values`. """ raise NotImplementedError(self) def any(self, boolean_tensor, axis=None, keepdims=False): raise NotImplementedError(self) def all(self, boolean_tensor, axis=None, keepdims=False): raise NotImplementedError(self) def fft(self, x): """ Computes the n-dimensional FFT along all but the first and last dimensions. Args: x: tensor of dimension 3 or higher Returns: """ raise NotImplementedError(self) def ifft(self, k): """ Computes the n-dimensional inverse FFT along all but the first and last dimensions. Args: k: tensor of dimension 3 or higher Returns: """ raise NotImplementedError(self) def imag(self, x): raise NotImplementedError(self) def real(self, x): raise NotImplementedError(self) def sin(self, x): raise NotImplementedError(self) def cos(self, x): raise NotImplementedError(self) def tan(self, x): raise NotImplementedError(self) def log(self, x): """ Natural logarithm """ raise NotImplementedError(self) def log2(self, x): raise NotImplementedError(self) def log10(self, x): raise NotImplementedError(self) def dtype(self, array) -> DType: raise NotImplementedError(self) def tile(self, value, multiples): """ Repeats the tensor along each axis the number of times given by multiples. If `multiples` has more dimensions than `value`, these dimensions are added to `value` as outer dimensions. Args: value: tensor multiples: tuple or list of integers Returns: tile tensor """ raise NotImplementedError(self) def sparse_tensor(self, indices, values, shape): """ Optional features. Args: indices: tuple/list matching the dimensions (pair for matrix) values: param shape: shape: Returns: """ raise NotImplementedError(self) def coordinates(self, tensor): """ Returns the coordinates and values of a tensor. Args: tensor: Sparse tensor Returns: coordinates: `tuple` of tensor holding the coordinate vectors, i.e. (row, col) for matrices. indices: Tensor holding the corresponding values """ raise NotImplementedError(self) def minimize(self, method: str, f, x0, atol, max_iter, trj: bool): from scipy.optimize import OptimizeResult, minimize from threading import Thread assert self.supports(Backend.functional_gradient) assert len(self.staticshape(x0)) == 2 # (batch, parameters) batch_size = self.staticshape(x0)[0] fg = self.functional_gradient(f, [0], get_output=True) method_description = f"SciPy {method} with {self.name}" iterations = [0] * batch_size function_evaluations = [0] * batch_size xs = [None] * batch_size final_losses = [None] * batch_size converged = [False] * batch_size diverged = [False] * batch_size messages = [""] * batch_size f_inputs = [None] * batch_size f_b_losses = None f_b_losses_np = None f_grad_np = None f_input_available = Barrier(batch_size + 1) f_output_available = Barrier(batch_size + 1) finished = [False] * batch_size all_finished = False trajectories = [[] for _ in range(batch_size)] if trj else None threads = [] for b in range(batch_size): def b_thread(b=b): recent_b_losses = [] def b_fun(x: numpy.ndarray): function_evaluations[b] += 1 f_inputs[b] = self.as_tensor(x, convert_external=True) f_input_available.wait() f_output_available.wait() recent_b_losses.append(f_b_losses[b]) if final_losses[b] is None: # first evaluation final_losses[b] = f_b_losses[b] if trajectories is not None: trajectories[b].append(SolveResult(method_description, x0[b], f_b_losses[b], 0, 1, False, False, "")) return f_b_losses_np[b], f_grad_np[b] def callback(x, *args): # L-BFGS-B only passes x but the documentation says (x, state) iterations[b] += 1 loss = min(recent_b_losses) recent_b_losses.clear() final_losses[b] = loss if trajectories is not None: trajectories[b].append(SolveResult(method_description, x, loss, iterations[b], function_evaluations[b], False, False, "")) res = minimize(fun=b_fun, x0=x0[b], jac=True, method=method, tol=atol[b], options={'maxiter': max_iter[b]}, callback=callback) assert isinstance(res, OptimizeResult) # res.nit, res.nfev xs[b] = res.x converged[b] = res.success diverged[b] = res.status not in (0, 1) # 0=success messages[b] = res.message finished[b] = True while not all_finished: f_input_available.wait() f_output_available.wait() b_thread = Thread(target=b_thread) threads.append(b_thread) b_thread.start() while True: f_input_available.wait() if all(finished): all_finished = True f_output_available.wait() break _, f_b_losses, f_grad = fg(self.stack(f_inputs)) f_b_losses_np = self.numpy(f_b_losses).astype(numpy.float64) f_grad_np = self.numpy(f_grad).astype(numpy.float64) f_output_available.wait() for b_thread in threads: b_thread.join() # make sure threads exit correctly if trj: max_trajectory_length = max([len(t) for t in trajectories]) last_points = [SolveResult(method_description, xs[b], final_losses[b], iterations[b], function_evaluations[b], converged[b], diverged[b], "") for b in range(batch_size)] trajectories = [t[:-1] + [last_point] * (max_trajectory_length - len(t) + 1) for t, last_point in zip(trajectories, last_points)] trajectory = [] for states in zip(*trajectories): x = self.stack([self.to_float(state.x) for state in states]) residual = self.stack([state.residual for state in states]) iterations = [state.iterations for state in states] function_evaluations = [state.function_evaluations for state in states] converged = [state.converged for state in states] diverged = [state.diverged for state in states] trajectory.append(SolveResult(method_description, x, residual, iterations, function_evaluations, converged, diverged, messages)) return trajectory else: x = self.stack(xs) residual = self.stack(final_losses) return SolveResult(method_description, x, residual, iterations, function_evaluations, converged, diverged, messages) def linear_solve(self, method: str, lin, y, x0, rtol, atol, max_iter, trj: bool) -> SolveResult or List[SolveResult]: """ Solve the system of linear equations A · x = y. This method need not provide a gradient for the operation. Args: method: Which algorithm to use. One of `('auto', 'CG', 'CG-adaptive')`. lin: Linear operation. One of * sparse/dense matrix valid for all instances * tuple/list of sparse/dense matrices for varying matrices along batch, must have the same nonzero locations. * linear function A(x), must be called on all instances in parallel y: target result of A * x. 2nd order tensor (batch, vector) or list of vectors. x0: Initial guess of size (batch, parameters) rtol: Relative tolerance of size (batch,) atol: Absolute tolerance of size (batch,) max_iter: Maximum number of iterations of size (batch,) trj: Whether to record and return the optimization trajectory as a `List[SolveResult]`. Returns: result: `SolveResult` or `List[SolveResult]`, depending on `trj`. """ if method == 'auto': return self.conjugate_gradient_adaptive(lin, y, x0, rtol, atol, max_iter, trj) elif method == 'CG': return self.conjugate_gradient(lin, y, x0, rtol, atol, max_iter, trj) elif method == 'CG-adaptive': return self.conjugate_gradient_adaptive(lin, y, x0, rtol, atol, max_iter, trj) else: raise NotImplementedError(f"Method '{method}' not supported for linear solve.") def conjugate_gradient(self, lin, y, x0, rtol, atol, max_iter, trj: bool) -> SolveResult or List[SolveResult]: """ Standard conjugate gradient algorithm. Signature matches to `Backend.linear_solve()`. """ # Based on "An Introduction to the Conjugate Gradient Method Without the Agonizing Pain" by Jonathan Richard Shewchuk # symbols: dx=d, dy=q, step_size=alpha, residual_squared=delta, residual=r, y=b method = f"Φ-Flow CG ({self.name})" y = self.to_float(y) x0 = self.copy(self.to_float(x0), only_mutable=True) batch_size = self.staticshape(y)[0] tolerance_sq = self.maximum(rtol ** 2 * self.sum(y ** 2, -1), atol ** 2) x = x0 dx = residual = y - self.linear(lin, x) it_counter = 0 iterations = self.zeros([batch_size], DType(int, 32)) function_evaluations = self.ones([batch_size], DType(int, 32)) residual_squared = rsq0 = self.sum(residual ** 2, -1, keepdims=True) diverged = self.any(~self.isfinite(x), axis=(1,)) converged = self.all(residual_squared <= tolerance_sq, axis=(1,)) trajectory = [SolveResult(method, x, residual, iterations, function_evaluations, converged, diverged, "")] if trj else None finished = converged | diverged | (iterations >= max_iter); not_finished_1 = self.to_int32(~finished) # ; active = self.to_float(self.expand_dims(not_finished_1, -1)) while ~self.all(finished): it_counter += 1; iterations += not_finished_1 dy = self.linear(lin, dx); function_evaluations += not_finished_1 dx_dy = self.sum(dx * dy, axis=-1, keepdims=True) step_size = self.divide_no_nan(residual_squared, dx_dy) step_size *= self.expand_dims(self.to_float(not_finished_1), -1) # this is not really necessary but ensures batch-independence x += step_size * dx if it_counter % 50 == 0: residual = y - self.linear(lin, x); function_evaluations += 1 else: residual = residual - step_size * dy # in-place subtraction affects convergence residual_squared_old = residual_squared residual_squared = self.sum(residual ** 2, -1, keepdims=True) dx = residual + self.divide_no_nan(residual_squared, residual_squared_old) * dx diverged = self.any(residual_squared / rsq0 > 100, axis=(1,)) & (iterations >= 8) converged = self.all(residual_squared <= tolerance_sq, axis=(1,)) if trajectory is not None: trajectory.append(SolveResult(method, x, residual, iterations, function_evaluations, converged, diverged, "")) x = self.copy(x) iterations = self.copy(iterations) finished = converged | diverged | (iterations >= max_iter); not_finished_1 = self.to_int32(~finished) # ; active = self.to_float(self.expand_dims(not_finished_1, -1)) return trajectory if trj else SolveResult(method, x, residual, iterations, function_evaluations, converged, diverged, "") def conjugate_gradient_adaptive(self, lin, y, x0, rtol, atol, max_iter, trj: bool) -> SolveResult or List[SolveResult]: """ Conjugate gradient algorithm with adaptive step size. Signature matches to `Backend.linear_solve()`. """ # Based on the variant described in "Methods of Conjugate Gradients for Solving Linear Systems" by Magnus R. Hestenes and Eduard Stiefel # https://nvlpubs.nist.gov/nistpubs/jres/049/jresv49n6p409_A1b.pdf method = f"Φ-Flow CG-adaptive ({self.name})" y = self.to_float(y) x0 = self.copy(self.to_float(x0), only_mutable=True) batch_size = self.staticshape(y)[0] tolerance_sq = self.maximum(rtol ** 2 * self.sum(y ** 2, -1), atol ** 2) x = x0 dx = residual = y - self.linear(lin, x) dy = self.linear(lin, dx) iterations = self.zeros([batch_size], DType(int, 32)) function_evaluations = self.ones([batch_size], DType(int, 32)) residual_squared = rsq0 = self.sum(residual ** 2, -1, keepdims=True) diverged = self.any(~self.isfinite(x), axis=(1,)) converged = self.all(residual_squared <= tolerance_sq, axis=(1,)) trajectory = [SolveResult(method, x, residual, iterations, function_evaluations, converged, diverged, "")] if trj else None continue_ = ~converged & ~diverged & (iterations < max_iter) def loop(continue_, it_counter, x, dx, dy, residual, iterations, function_evaluations, _converged, _diverged): continue_1 = self.to_int32(continue_) it_counter += 1 iterations += continue_1 dx_dy = self.sum(dx * dy, axis=-1, keepdims=True) step_size = self.divide_no_nan(self.sum(dx * residual, axis=-1, keepdims=True), dx_dy) step_size *= self.expand_dims(self.to_float(continue_1), -1) # this is not really necessary but ensures batch-independence x += step_size * dx # if it_counter % 50 == 0: # Not traceable since Python bool # residual = y - self.linear(lin, x); function_evaluations += 1 # else: residual = residual - step_size * dy # in-place subtraction affects convergence residual_squared = self.sum(residual ** 2, -1, keepdims=True) dx = residual - self.divide_no_nan(self.sum(residual * dy, axis=-1, keepdims=True) * dx, dx_dy) dy = self.linear(lin, dx); function_evaluations += continue_1 diverged = self.any(residual_squared / rsq0 > 100, axis=(1,)) & (iterations >= 8) converged = self.all(residual_squared <= tolerance_sq, axis=(1,)) if trajectory is not None: trajectory.append(SolveResult(method, x, residual, iterations, function_evaluations, converged, diverged, "")) x = self.copy(x) iterations = self.copy(iterations) continue_ = ~converged & ~diverged & (iterations < max_iter) return continue_, it_counter, x, dx, dy, residual, iterations, function_evaluations, converged, diverged _, _, x, _, _, residual, iterations, function_evaluations, converged, diverged =\ self.while_loop(loop, (continue_, 0, x, dx, dy, residual, iterations, function_evaluations, converged, diverged)) return trajectory if trj else SolveResult(method, x, residual, iterations, function_evaluations, converged, diverged, "") def linear(self, lin, vector): if callable(lin): return lin(vector) elif isinstance(lin, (tuple, list)): for lin_i in lin: lin_shape = self.staticshape(lin_i) assert len(lin_shape) == 2 return self.stack([self.matmul(m, v) for m, v in zip(lin, self.unstack(vector))]) else: lin_shape = self.staticshape(lin) assert len(lin_shape) == 2, f"A must be a matrix but got shape {lin_shape}" return self.matmul(lin, vector) def gradients(self, y, xs: tuple or list, grad_y) -> tuple: raise NotImplementedError(self) def record_gradients(self, xs: tuple or list, persistent=False): raise NotImplementedError(self) def stop_gradient(self, value): raise NotImplementedError(self) def grid_sample(self, grid, spatial_dims: tuple, coordinates, extrapolation='constant'): """ Interpolates a regular grid at the specified coordinates. Args: grid: Tensor spatial_dims: Dimension indices that correspond to coordinate vectors coordinates: Tensor of floating grid indices. The last dimension must match `spatial_dims`. The first grid point of dimension i lies at position 0, the last at values.shape[i]-1. extrapolation: Values to use for coordinates outside the grid. One of `('undefined', 'zeros', 'boundary', 'periodic', 'symmetric', 'reflect')`. Returns: sampled values with linear interpolation """ return NotImplemented def variable(self, value): return NotImplemented def ndims(self, tensor): return len(self.staticshape(tensor)) def size(self, array): return self.prod(self.shape(array)) def batch_gather(self, tensor, batches): if isinstance(batches, int): batches = [batches] return tensor[batches, ...] def unstack(self, tensor, axis=0, keepdims=False) -> tuple: if axis < 0: axis += len(tensor.shape) if axis >= len(tensor.shape) or axis < 0: raise ValueError("Illegal axis value") result = [] for slice_idx in range(tensor.shape[axis]): if keepdims: component = tensor[tuple([slice(slice_idx, slice_idx + 1) if d == axis else slice(None) for d in range(len(tensor.shape))])] else: component = tensor[tuple([slice_idx if d == axis else slice(None) for d in range(len(tensor.shape))])] result.append(component) return tuple(result) def equal(self, x, y): """ Element-wise equality check """ raise NotImplementedError(self) def not_equal(self, x, y): return ~self.equal(x, y) def greater_than(self, x, y): x, y = self.auto_cast(x, y) return x > y def greater_or_equal(self, x, y): x, y = self.auto_cast(x, y) return x >= y def add(self, a, b): a, b = self.auto_cast(a, b) return a + b def sub(self, a, b): a, b = self.auto_cast(a, b) return a - b def mul(self, a, b): a, b = self.auto_cast(a, b) return a * b def div(self, numerator, denominator): numerator, denominator = self.auto_cast(numerator, denominator) return numerator / denominator def pow(self, base, exp): base, exp = self.auto_cast(base, exp) return base ** exp def mod(self, dividend, divisor): dividend, divisor = self.auto_cast(dividend, divisor) return dividend % divisor def and_(self, a, b): a, b = self.auto_cast(a, b) return a & b def or_(self, a, b): a, b = self.auto_cast(a, b) return a | b def xor(self, a, b): a, b = self.auto_cast(a, b) return a ^ b def floordiv(self, a, b): a, b = self.auto_cast(a, b) return a // b BACKENDS = [] """ Global list of all registered backends. Register a `Backend` by adding it to the list. """ _DEFAULT = [] # [0] = global default, [1:] from 'with' blocks _PRECISION = [32] # [0] = global precision in bits, [1:] from 'with' blocks def choose_backend(*values, prefer_default=False) -> Backend: """ Selects a suitable backend to handle the given values. This function is used by most math functions operating on `Tensor` objects to delegate the actual computations. Args: *values: prefer_default: if True, selects the default backend assuming it can handle handle the values, see `default_backend()`. raise_error: Determines the behavior of this function if no backend can handle the given values. If True, raises a `NoBackendFound` error, else returns `None`. Returns: the selected `Backend` """ # --- Default Backend has priority --- if _is_applicable(_DEFAULT[-1], values) and (prefer_default or _is_specific(_DEFAULT[-1], values)): return _DEFAULT[-1] # --- Filter out non-applicable --- backends = [backend for backend in BACKENDS if _is_applicable(backend, values)] if len(backends) == 0: raise NoBackendFound(f"No backend found for types {[type(v).__name__ for v in values]}; registered backends are {BACKENDS}") # --- Native tensors? --- for backend in backends: if _is_specific(backend, values): return backend return backends[0] class NoBackendFound(Exception): """ Thrown by `choose_backend` if no backend can handle the given values. """ def __init__(self, msg): Exception.__init__(self, msg) def default_backend() -> Backend: """ The default backend is preferred by `choose_backend()`. The default backend can be set globally using `set_global_default_backend()` and locally using `with backend:`. Returns: current default `Backend` """ return _DEFAULT[-1] def context_backend() -> Backend or None: """ Returns the backend set by the inner-most surrounding `with backend:` block. If called outside a backend context, returns `None`. Returns: `Backend` or `None` """ return _DEFAULT[-1] if len(_DEFAULT) > 1 else None def set_global_default_backend(backend: Backend): """ Sets the given backend as default. This setting can be overridden using `with backend:`. See `default_backend()`, `choose_backend()`. Args: backend: `Backend` to set as default """ assert isinstance(backend, Backend) _DEFAULT[0] = backend def set_global_precision(floating_point_bits: int): """ Sets the floating point precision of DYNAMIC_BACKEND which affects all registered backends. If `floating_point_bits` is an integer, all floating point tensors created henceforth will be of the corresponding data type, float16, float32 or float64. Operations may also convert floating point values to this precision, even if the input had a different precision. If `floating_point_bits` is None, new tensors will default to float32 unless specified otherwise. The output of math operations has the same precision as its inputs. Args: floating_point_bits: one of (16, 32, 64, None) """ _PRECISION[0] = floating_point_bits def get_precision() -> int: """ Gets the current target floating point precision in bits. The precision can be set globally using `set_global_precision()` or locally using `with precision(p):`. Any Backend method may convert floating point values to this precision, even if the input had a different precision. Returns: 16 for half, 32 for single, 64 for double """ return _PRECISION[-1] @contextmanager def precision(floating_point_bits: int): """ Sets the floating point precision for the local context. Usage: `with precision(p):` This overrides the global setting, see `set_global_precision()`. Args: floating_point_bits: 16 for half, 32 for single, 64 for double """ _PRECISION.append(floating_point_bits) try: yield None finally: _PRECISION.pop(-1) def convert(tensor, backend: Backend = None, use_dlpack=True): """ Convert a Tensor to the native format of `backend`. If the target backend can operate natively on `tensor`, returns `tensor`. If both backends support *DLPack* and `use_dlpack=True`, uses zero-copy conversion using the DLPack library. Else, intermediately converts `tensor` to a NumPy array. *Warning*: This operation breaks the automatic differentiation chain. Args: tensor: Native tensor belonging to any registered backend. backend: Target backend. If `None`, uses the current default backend, see `default_backend()`. Returns: Tensor belonging to `backend`. """ backend = backend or default_backend() current_backend = choose_backend(tensor, prefer_default=False) if backend.is_tensor(tensor, True) or backend is current_backend: return tensor if use_dlpack and current_backend.supports(Backend.to_dlpack) and backend.supports(Backend.from_dlpack): capsule = current_backend.to_dlpack(tensor) return backend.from_dlpack(capsule) else: nparray = current_backend.numpy(tensor) return backend.as_tensor(nparray) # Backend choice utility functions def _is_applicable(backend, values): for value in values: if not backend.is_tensor(value, only_native=False): return False return True def _is_specific(backend, values): for value in values: if backend.is_tensor(value, only_native=True): return True return False # Other low-level helper functions def combined_dim(dim1, dim2, type_str: str = 'batch'): if dim1 is None and dim2 is None: return None if dim1 is None or dim1 == 1: return dim2 if dim2 is None or dim2 == 1: return dim1 assert dim1 == dim2, f"Incompatible {type_str} dimensions: x0 {dim1}, y {dim2}" return dim1
[((11, 14, 13, 2), 'collections.namedtuple', 'namedtuple', ({(11, 25, 11, 38): '"""SolveResult"""', (11, 40, 13, 1): "['method', 'x', 'residual', 'iterations', 'function_evaluations',\n 'converged', 'diverged', 'message']"}, {}), "('SolveResult', ['method', 'x', 'residual', 'iterations',\n 'function_evaluations', 'converged', 'diverged', 'message'])", False, 'from collections import namedtuple\n'), ((680, 28, 680, 51), 'threading.Barrier', 'Barrier', ({(680, 36, 680, 50): 'batch_size + 1'}, {}), '(batch_size + 1)', False, 'from threading import Barrier\n'), ((681, 29, 681, 52), 'threading.Barrier', 'Barrier', ({(681, 37, 681, 51): 'batch_size + 1'}, {}), '(batch_size + 1)', False, 'from threading import Barrier\n'), ((724, 23, 724, 46), 'threading.Thread', 'Thread', (), '', False, 'from threading import Thread\n'), ((712, 22, 712, 142), 'scipy.optimize.minimize', 'minimize', (), '', False, 'from scipy.optimize import OptimizeResult, minimize\n')]
dtrodrigues/bpython
bpython/curtsiesfrontend/parse.py
143e4e55d8f5227149528a5880a32a516a40f14d
import re from curtsies.formatstring import fmtstr, FmtStr from curtsies.termformatconstants import ( FG_COLORS, BG_COLORS, colors as CURTSIES_COLORS, ) from functools import partial from ..lazyre import LazyReCompile COLORS = CURTSIES_COLORS + ("default",) CNAMES = dict(zip("krgybmcwd", COLORS)) # hack for finding the "inverse" INVERSE_COLORS = { CURTSIES_COLORS[idx]: CURTSIES_COLORS[ (idx + (len(CURTSIES_COLORS) // 2)) % len(CURTSIES_COLORS) ] for idx in range(len(CURTSIES_COLORS)) } INVERSE_COLORS["default"] = INVERSE_COLORS[CURTSIES_COLORS[0]] def func_for_letter(letter_color_code: str, default: str = "k"): """Returns FmtStr constructor for a bpython-style color code""" if letter_color_code == "d": letter_color_code = default elif letter_color_code == "D": letter_color_code = default.upper() return partial( fmtstr, fg=CNAMES[letter_color_code.lower()], bold=letter_color_code.isupper(), ) def color_for_letter(letter_color_code: str, default: str = "k"): if letter_color_code == "d": letter_color_code = default return CNAMES[letter_color_code.lower()] def parse(s): """Returns a FmtStr object from a bpython-formatted colored string""" rest = s stuff = [] while True: if not rest: break start, rest = peel_off_string(rest) stuff.append(start) return ( sum((fs_from_match(d) for d in stuff[1:]), fs_from_match(stuff[0])) if len(stuff) > 0 else FmtStr() ) def fs_from_match(d): atts = {} if d["fg"]: # this isn't according to spec as I understand it if d["fg"].isupper(): d["bold"] = True # TODO figure out why boldness isn't based on presence of \x02 color = CNAMES[d["fg"].lower()] if color != "default": atts["fg"] = FG_COLORS[color] if d["bg"]: if d["bg"] == "I": # hack for finding the "inverse" color = INVERSE_COLORS[color] else: color = CNAMES[d["bg"].lower()] if color != "default": atts["bg"] = BG_COLORS[color] if d["bold"]: atts["bold"] = True return fmtstr(d["string"], **atts) peel_off_string_re = LazyReCompile( r"""(?P<colormarker>\x01 (?P<fg>[krgybmcwdKRGYBMCWD]?) (?P<bg>[krgybmcwdKRGYBMCWDI]?)?) (?P<bold>\x02?) \x03 (?P<string>[^\x04]*) \x04 (?P<rest>.*) """, re.VERBOSE | re.DOTALL, ) def peel_off_string(s): m = peel_off_string_re.match(s) assert m, repr(s) d = m.groupdict() rest = d["rest"] del d["rest"] return d, rest
[((82, 11, 82, 38), 'curtsies.formatstring.fmtstr', 'fmtstr', ({(82, 18, 82, 29): "d['string']"}, {}), "(d['string'], **atts)", False, 'from curtsies.formatstring import fmtstr, FmtStr\n'), ((57, 13, 57, 21), 'curtsies.formatstring.FmtStr', 'FmtStr', ({}, {}), '()', False, 'from curtsies.formatstring import fmtstr, FmtStr\n')]
pressler-vsc/sarpy
sarpy/io/general/nitf_elements/tres/unclass/BANDSA.py
fa6c951c42b9a7d9df2edfa53c771494cb0246fb
# -*- coding: utf-8 -*- from ..tre_elements import TREExtension, TREElement __classification__ = "UNCLASSIFIED" __author__ = "Thomas McCullough" class BAND(TREElement): def __init__(self, value): super(BAND, self).__init__() self.add_field('BANDPEAK', 's', 5, value) self.add_field('BANDLBOUND', 's', 5, value) self.add_field('BANDUBOUND', 's', 5, value) self.add_field('BANDWIDTH', 's', 5, value) self.add_field('BANDCALDRK', 's', 6, value) self.add_field('BANDCALINC', 's', 5, value) self.add_field('BANDRESP', 's', 5, value) self.add_field('BANDASD', 's', 5, value) self.add_field('BANDGSD', 's', 5, value) class BANDSAType(TREElement): def __init__(self, value): super(BANDSAType, self).__init__() self.add_field('ROW_SPACING', 's', 7, value) self.add_field('ROW_SPACING_UNITS', 's', 1, value) self.add_field('COL_SPACING', 's', 7, value) self.add_field('COL_SPACING_UNITS', 's', 1, value) self.add_field('FOCAL_LENGTH', 's', 6, value) self.add_field('BANDCOUNT', 'd', 4, value) self.add_loop('BANDs', self.BANDCOUNT, BAND, value) class BANDSA(TREExtension): _tag_value = 'BANDSA' _data_type = BANDSAType
[]
husmen/ktrain
ktrain/graph/learner.py
4147b0bd146deb513c6f94505908294a5163efac
from ..imports import * from .. import utils as U from ..core import GenLearner class NodeClassLearner(GenLearner): """ ``` Main class used to tune and train Keras models for node classification Main parameters are: model (Model): A compiled instance of keras.engine.training.Model train_data (Iterator): a Iterator instance for training set val_data (Iterator): A Iterator instance for validation set ``` """ def __init__(self, model, train_data=None, val_data=None, batch_size=U.DEFAULT_BS, eval_batch_size=U.DEFAULT_BS, workers=1, use_multiprocessing=False): super().__init__(model, train_data=train_data, val_data=val_data, batch_size=batch_size, eval_batch_size=eval_batch_size, workers=workers, use_multiprocessing=use_multiprocessing) return def view_top_losses(self, n=4, preproc=None, val_data=None): """ ``` Views observations with top losses in validation set. Typically over-ridden by Learner subclasses. Args: n(int or tuple): a range to select in form of int or tuple e.g., n=8 is treated as n=(0,8) preproc (Preprocessor): A TextPreprocessor or ImagePreprocessor. For some data like text data, a preprocessor is required to undo the pre-processing to correctly view raw data. val_data: optional val_data to use instead of self.val_data Returns: list of n tuples where first element is either filepath or id of validation example and second element is loss. ``` """ val = self._check_val(val_data) # get top losses and associated data tups = self.top_losses(n=n, val_data=val, preproc=preproc) # get multilabel status and class names classes = preproc.get_classes() if preproc is not None else None # iterate through losses for tup in tups: # get data idx = tup[0] loss = tup[1] truth = tup[2] pred = tup[3] print('----------') print("id:%s | loss:%s | true:%s | pred:%s)\n" % (idx, round(loss,2), truth, pred)) #print(obs) return def layer_output(self, layer_id, example_id=0, batch_id=0, use_val=False): """ ``` Prints output of layer with index <layer_id> to help debug models. Uses first example (example_id=0) from training set, by default. ``` """ raise Exception('currently_unsupported: layer_output method is not yet supported for ' + 'graph neural networks in ktrain') class LinkPredLearner(GenLearner): """ ``` Main class used to tune and train Keras models for link prediction Main parameters are: model (Model): A compiled instance of keras.engine.training.Model train_data (Iterator): a Iterator instance for training set val_data (Iterator): A Iterator instance for validation set ``` """ def __init__(self, model, train_data=None, val_data=None, batch_size=U.DEFAULT_BS, eval_batch_size=U.DEFAULT_BS, workers=1, use_multiprocessing=False): super().__init__(model, train_data=train_data, val_data=val_data, batch_size=batch_size, eval_batch_size=eval_batch_size, workers=workers, use_multiprocessing=use_multiprocessing) return def view_top_losses(self, n=4, preproc=None, val_data=None): """ ``` Views observations with top losses in validation set. Typically over-ridden by Learner subclasses. Args: n(int or tuple): a range to select in form of int or tuple e.g., n=8 is treated as n=(0,8) preproc (Preprocessor): A TextPreprocessor or ImagePreprocessor. For some data like text data, a preprocessor is required to undo the pre-processing to correctly view raw data. val_data: optional val_data to use instead of self.val_data Returns: list of n tuples where first element is either filepath or id of validation example and second element is loss. ``` """ val = self._check_val(val_data) # get top losses and associated data tups = self.top_losses(n=n, val_data=val, preproc=preproc) # get multilabel status and class names classes = preproc.get_classes() if preproc is not None else None # iterate through losses for tup in tups: # get data idx = tup[0] loss = tup[1] truth = tup[2] pred = tup[3] print('----------') print("id:%s | loss:%s | true:%s | pred:%s)\n" % (idx, round(loss,2), truth, pred)) #print(obs) return def layer_output(self, layer_id, example_id=0, batch_id=0, use_val=False): """ ``` Prints output of layer with index <layer_id> to help debug models. Uses first example (example_id=0) from training set, by default. ``` """ raise Exception('currently_unsupported: layer_output method is not yet supported for ' + 'graph neural networks in ktrain')
[]
Thanksyy/Vega-Zero
VegaZero2VegaLite.py
dd25cb145faec047b01ca54c69ba96c56adb99f4
__author__ = "Yuyu Luo" import json import pandas class VegaZero2VegaLite(object): def __init__(self): pass def parse_vegaZero(self, vega_zero): self.parsed_vegaZero = { 'mark': '', 'data': '', 'encoding': { 'x': '', 'y': { 'aggregate': '', 'y': '' }, 'color': { 'z': '' } }, 'transform': { 'filter': '', 'group': '', 'bin': { 'axis': '', 'type': '' }, 'sort': { 'axis': '', 'type': '' }, 'topk': '' } } vega_zero_keywords = vega_zero.split(' ') self.parsed_vegaZero['mark'] = vega_zero_keywords[vega_zero_keywords.index('mark') + 1] self.parsed_vegaZero['data'] = vega_zero_keywords[vega_zero_keywords.index('data') + 1] self.parsed_vegaZero['encoding']['x'] = vega_zero_keywords[vega_zero_keywords.index('x') + 1] self.parsed_vegaZero['encoding']['y']['y'] = vega_zero_keywords[vega_zero_keywords.index('aggregate') + 2] self.parsed_vegaZero['encoding']['y']['aggregate'] = vega_zero_keywords[vega_zero_keywords.index('aggregate') + 1] if 'color' in vega_zero_keywords: self.parsed_vegaZero['encoding']['color']['z'] = vega_zero_keywords[vega_zero_keywords.index('color') + 1] if 'topk' in vega_zero_keywords: self.parsed_vegaZero['transform']['topk'] = vega_zero_keywords[vega_zero_keywords.index('topk') + 1] if 'sort' in vega_zero_keywords: self.parsed_vegaZero['transform']['sort']['axis'] = vega_zero_keywords[vega_zero_keywords.index('sort') + 1] self.parsed_vegaZero['transform']['sort']['type'] = vega_zero_keywords[vega_zero_keywords.index('sort') + 2] if 'group' in vega_zero_keywords: self.parsed_vegaZero['transform']['group'] = vega_zero_keywords[vega_zero_keywords.index('group') + 1] if 'bin' in vega_zero_keywords: self.parsed_vegaZero['transform']['bin']['axis'] = vega_zero_keywords[vega_zero_keywords.index('bin') + 1] self.parsed_vegaZero['transform']['bin']['type'] = vega_zero_keywords[vega_zero_keywords.index('bin') + 3] if 'filter' in vega_zero_keywords: filter_part_token = [] for each in vega_zero_keywords[vega_zero_keywords.index('filter') + 1:]: if each not in ['group', 'bin', 'sort', 'topk']: filter_part_token.append(each) else: break if 'between' in filter_part_token: filter_part_token[filter_part_token.index('between') + 2] = 'and ' + filter_part_token[ filter_part_token.index('between') - 1] + ' <=' filter_part_token[filter_part_token.index('between')] = '>=' # replace 'and' -- 'or' filter_part_token = ' '.join(filter_part_token).split() filter_part_token = ['&' if x == 'and' else x for x in filter_part_token] filter_part_token = ['|' if x == 'or' else x for x in filter_part_token] if '&' in filter_part_token or '|' in filter_part_token: final_filter_part = '' each_conditions = [] for i in range(len(filter_part_token)): each = filter_part_token[i] if each != '&' and each != '|': # ’=‘ in SQL --to--> ’==‘ in Vega-Lite if each == '=': each = '==' each_conditions.append(each) if each == '&' or each == '|' or i == len(filter_part_token) - 1: # each = '&' or '|' if 'like' == each_conditions[1]: # only consider this case: '%a%' if each_conditions[2][1] == '%' and each_conditions[2][len(each_conditions[2]) - 2] == '%': final_filter_part += 'indexof(' + 'datum.' + each_conditions[0] + ',"' + \ each_conditions[2][2:len(each_conditions[2]) - 2] + '") != -1' elif 'like' == each_conditions[2] and 'not' == each_conditions[1]: if each_conditions[3][1] == '%' and each_conditions[3][len(each_conditions[3]) - 2] == '%': final_filter_part += 'indexof(' + 'datum.' + each_conditions[0] + ',"' + \ each_conditions[3][2:len(each_conditions[3]) - 2] + '") == -1' else: final_filter_part += 'datum.' + ' '.join(each_conditions) if i != len(filter_part_token) - 1: final_filter_part += ' ' + each + ' ' each_conditions = [] self.parsed_vegaZero['transform']['filter'] = final_filter_part else: # only single filter condition self.parsed_vegaZero['transform']['filter'] = 'datum.' + ' '.join(filter_part_token).strip() return self.parsed_vegaZero def to_VegaLite(self, vega_zero, dataframe=None): self.VegaLiteSpec = { 'bar': { "mark": "bar", "encoding": { "x": {"field": "x", "type": "nominal"}, "y": {"field": "y", "type": "quantitative"} } }, 'arc': { "mark": "arc", "encoding": { "color": {"field": "x", "type": "nominal"}, "theta": {"field": "y", "type": "quantitative"} } }, 'line': { "mark": "line", "encoding": { "x": {"field": "x", "type": "nominal"}, "y": {"field": "y", "type": "quantitative"} } }, 'point': { "mark": "point", "encoding": { "x": {"field": "x", "type": "quantitative"}, "y": {"field": "y", "type": "quantitative"} } } } VegaZero = self.parse_vegaZero(vega_zero) # assign some vega-zero keywords to the VegaLiteSpec object if isinstance(dataframe, pandas.core.frame.DataFrame): self.VegaLiteSpec[VegaZero['mark']]['data'] = dict() self.VegaLiteSpec[VegaZero['mark']]['data']['values'] = json.loads(dataframe.to_json(orient='records')) if VegaZero['mark'] != 'arc': self.VegaLiteSpec[VegaZero['mark']]['encoding']['x']['field'] = VegaZero['encoding']['x'] self.VegaLiteSpec[VegaZero['mark']]['encoding']['y']['field'] = VegaZero['encoding']['y']['y'] if VegaZero['encoding']['y']['aggregate'] != '' and VegaZero['encoding']['y']['aggregate'] != 'none': self.VegaLiteSpec[VegaZero['mark']]['encoding']['y']['aggregate'] = VegaZero['encoding']['y']['aggregate'] else: self.VegaLiteSpec[VegaZero['mark']]['encoding']['color']['field'] = VegaZero['encoding']['x'] self.VegaLiteSpec[VegaZero['mark']]['encoding']['theta']['field'] = VegaZero['encoding']['y']['y'] if VegaZero['encoding']['y']['aggregate'] != '' and VegaZero['encoding']['y']['aggregate'] != 'none': self.VegaLiteSpec[VegaZero['mark']]['encoding']['theta']['aggregate'] = VegaZero['encoding']['y'][ 'aggregate'] if VegaZero['encoding']['color']['z'] != '': self.VegaLiteSpec[VegaZero['mark']]['encoding']['color'] = { 'field': VegaZero['encoding']['color']['z'], 'type': 'nominal' } # it seems that the group will be performed by VegaLite defaultly, in our cases. if VegaZero['transform']['group'] != '': pass if VegaZero['transform']['bin']['axis'] != '': if VegaZero['transform']['bin']['axis'] == 'x': self.VegaLiteSpec[VegaZero['mark']]['encoding']['x']['type'] = 'temporal' if VegaZero['transform']['bin']['type'] in ['date', 'year', 'week', 'month']: self.VegaLiteSpec[VegaZero['mark']]['encoding']['x']['timeUnit'] = VegaZero['transform']['bin']['type'] elif VegaZero['transform']['bin']['type'] == 'weekday': self.VegaLiteSpec[VegaZero['mark']]['encoding']['x']['timeUnit'] = 'week' else: print('Unknown binning step.') if VegaZero['transform']['filter'] != '': if 'transform' not in self.VegaLiteSpec[VegaZero['mark']]: self.VegaLiteSpec[VegaZero['mark']]['transform'] = [{ "filter": VegaZero['transform']['filter'] }] elif 'filter' not in self.VegaLiteSpec[VegaZero['mark']]['transform']: self.VegaLiteSpec[VegaZero['mark']]['transform'].append({ "filter": VegaZero['transform']['filter'] }) else: self.VegaLiteSpec[VegaZero['mark']]['transform']['filter'] += ' & ' + VegaZero['transform']['filter'] if VegaZero['transform']['topk'] != '': if VegaZero['transform']['sort']['axis'] == 'x': sort_field = VegaZero['encoding']['x'] elif VegaZero['transform']['sort']['axis'] == 'y': sort_field = VegaZero['encoding']['y']['y'] else: print('Unknown sorting field: ', VegaZero['transform']['sort']['axis']) sort_field = VegaZero['transform']['sort']['axis'] if VegaZero['transform']['sort']['type'] == 'desc': sort_order = 'descending' else: sort_order = 'ascending' if 'transform' in self.VegaLiteSpec[VegaZero['mark']]: current_filter = self.VegaLiteSpec[VegaZero['mark']]['transform'][0]['filter'] self.VegaLiteSpec[VegaZero['mark']]['transform'][0][ 'filter'] = current_filter + ' & ' + "datum.rank <= " + str(VegaZero['transform']['topk']) self.VegaLiteSpec[VegaZero['mark']]['transform'].insert(0, { "window": [{ "field": sort_field, "op": "dense_rank", "as": "rank" }], "sort": [{"field": sort_field, "order": sort_order}] }) else: self.VegaLiteSpec[VegaZero['mark']]['transform'] = [ { "window": [{ "field": sort_field, "op": "dense_rank", "as": "rank" }], "sort": [{"field": sort_field, "order": sort_order}] }, { "filter": "datum.rank <= " + str(VegaZero['transform']['topk']) } ] if VegaZero['transform']['sort']['axis'] != '': if VegaZero['transform']['sort']['axis'] == 'x': if VegaZero['transform']['sort']['type'] == 'desc': self.VegaLiteSpec[VegaZero['mark']]['encoding']['y']['sort'] = '-x' else: self.VegaLiteSpec[VegaZero['mark']]['encoding']['y']['sort'] = 'x' else: if VegaZero['transform']['sort']['type'] == 'desc': self.VegaLiteSpec[VegaZero['mark']]['encoding']['x']['sort'] = '-y' else: self.VegaLiteSpec[VegaZero['mark']]['encoding']['x']['sort'] = 'y' return self.VegaLiteSpec[VegaZero['mark']]
[]
kmzbrnoI/ac-python
utils/dancer.py
383802734e17d2a00c0b86083cf923517db02acd
"""Library for executing user-defined dance.""" import logging from typing import Any, Dict, Optional, Callable import datetime import ac import ac.blocks from ac import ACs, AC JC = Dict[str, Any] class DanceStartException(Exception): pass class Step: """Base class for all specific dance steps.""" def update(self, acn: AC) -> None: pass def on_start(self, acn: AC) -> None: pass def disp_str(self) -> str: return '' class JCNotFoundException(DanceStartException): pass class StepJC(Step): """ Process jc 'name'. If processed already, skip processing and continue. """ name_to_id: Dict[str, int] = {} def __init__(self, name: str, type_: str = 'VC') -> None: self.jc: Optional[JC] = None self.type = type_ self.name = name def update(self, acn: AC) -> None: assert isinstance(acn, DanceAC) if self.jc is None: jcid = self.get_jc_id(self.name, acn) self.jc = acn.pt_get(f'/jc/{jcid}?state=true')['jc'] if self.jc['state']['active']: self.jc = None acn.step_done() return result = acn.pt_put(f'/jc/{self.jc["id"]}/state', {}) if result['success']: self.jc = None acn.step_done() def on_start(self, acn: AC) -> None: self.get_jc_id(self.name, acn) def get_jc_id(self, name: str, acn: AC) -> int: if not StepJC.name_to_id: jcs = acn.pt_get('/jc')['jc'] StepJC.name_to_id = { jc['name']: jc['id'] for jc in jcs if jc['type'] == self.type } if name not in StepJC.name_to_id.keys(): raise JCNotFoundException(f'Jízdní cesta {self.name} neexistuje!') return StepJC.name_to_id[name] def disp_str(self) -> str: return f'Stavění JC {self.name}' class StepDelay(Step): """Delay any time.""" def __init__(self, delay: datetime.timedelta) -> None: self.delay = delay self.finish: Optional[datetime.datetime] = None def update(self, acn: AC) -> None: assert isinstance(acn, DanceAC) if self.finish is None: self.finish = datetime.datetime.now() + self.delay if datetime.datetime.now() > self.finish: self.finish = None acn.step_done() def disp_str(self) -> str: return f'Čekání {self.delay}' class BlockNotFoundException(DanceStartException): pass class StepWaitForBlock(Step): """Wait for specific state of any block. See examples below.""" name_to_id: Dict[str, int] = {} def __init__(self, name: str, checker: Callable[[ac.Block], bool]) -> None: self.name = name self.checker = checker self.block: Optional[ac.Block] = None def update(self, acn: AC) -> None: assert isinstance(acn, DanceAC) if self.block is None: blockid = self.get_block_id(self.name, acn) self.block = acn.pt_get(f'/blocks/{blockid}?state=true')['block'] if self.checker(self.block): self.block = None acn.step_done() else: ac.blocks.register([self.block['id']]) def on_start(self, acn: AC) -> None: self.get_block_id(self.name, acn) def on_block_change(self, acn: AC, block: ac.Block) -> None: assert isinstance(acn, DanceAC) if self.block is None or block['id'] != self.block['id']: return if self.checker(block): ac.blocks.unregister([self.block['id']]) self.block = None acn.step_done() def get_block_id(self, name: str, acn: AC) -> int: if not StepWaitForBlock.name_to_id: blocks = acn.pt_get('/blocks')['blocks'] StepWaitForBlock.name_to_id = { block['name']: block['id'] for block in blocks } if name not in StepWaitForBlock.name_to_id.keys(): raise BlockNotFoundException(f"Blok {self.name} neexistuje!") return StepWaitForBlock.name_to_id[name] def disp_str(self) -> str: return f'Čekání na stav bloku {self.name}' def track_is_occupied(block: ac.Block) -> bool: return bool(block['blockState']['state'] == 'occupied') class DanceAC(AC): """This AC executes predefined steps.""" def __init__(self, id_: str, password: str, steps: Dict[int, Step]) -> None: AC.__init__(self, id_, password) self.steps = steps self.stepi = 0 def on_start(self) -> None: logging.info('Start') for stepi, step in self.steps.items(): try: step.on_start(self) except DanceStartException as e: self.disp_error(f'Krok {stepi}: '+str(e)) self.done() return self.stepi = 1 self.send_step() self.on_update() def on_stop(self) -> None: self.statestr = '' self.statestr_send() def on_update(self) -> None: AC.on_update(self) if not self.running(): return if self.stepi in self.steps: self.steps[self.stepi].update(self) else: logging.info('Done') self.done() def step_done(self) -> None: logging.info(f'Step {self.stepi} done, ' f'going to step {self.stepi+1}...') self.stepi += 1 self.send_step() self.on_update() def send_step(self) -> None: if self.stepi in self.steps.keys(): if self.running(): description = self.steps[self.stepi].disp_str() self.statestr = f'Aktuální krok: {self.stepi}: {description}' self.statestr_send() def on_block_change(self, block: ac.Block) -> None: if (self.running() and isinstance(self.steps[self.stepi], StepWaitForBlock)): self.steps[self.stepi].on_block_change(self, block) # type: ignore @ac.blocks.on_block_change() def _on_block_change(block: ac.Block) -> None: for acn in ACs.values(): if isinstance(acn, DanceAC): acn.on_block_change(block)
[((212, 1, 212, 28), 'ac.blocks.on_block_change', 'ac.blocks.on_block_change', ({}, {}), '()', False, 'import ac\n'), ((214, 15, 214, 27), 'ac.ACs.values', 'ACs.values', ({}, {}), '()', False, 'from ac import ACs, AC\n'), ((158, 8, 158, 40), 'ac.AC.__init__', 'AC.__init__', ({(158, 20, 158, 24): 'self', (158, 26, 158, 29): 'id_', (158, 31, 158, 39): 'password'}, {}), '(self, id_, password)', False, 'from ac import ACs, AC\n'), ((163, 8, 163, 29), 'logging.info', 'logging.info', ({(163, 21, 163, 28): '"""Start"""'}, {}), "('Start')", False, 'import logging\n'), ((182, 8, 182, 26), 'ac.AC.on_update', 'AC.on_update', ({(182, 21, 182, 25): 'self'}, {}), '(self)', False, 'from ac import ACs, AC\n'), ((193, 8, 194, 56), 'logging.info', 'logging.info', ({(193, 21, 194, 55): 'f"""Step {self.stepi} done, going to step {self.stepi + 1}..."""'}, {}), "(f'Step {self.stepi} done, going to step {self.stepi + 1}...')", False, 'import logging\n'), ((91, 11, 91, 34), 'datetime.datetime.now', 'datetime.datetime.now', ({}, {}), '()', False, 'import datetime\n'), ((131, 12, 131, 52), 'ac.blocks.unregister', 'ac.blocks.unregister', ({(131, 33, 131, 51): "[self.block['id']]"}, {}), "([self.block['id']])", False, 'import ac\n'), ((189, 12, 189, 32), 'logging.info', 'logging.info', ({(189, 25, 189, 31): '"""Done"""'}, {}), "('Done')", False, 'import logging\n'), ((90, 26, 90, 49), 'datetime.datetime.now', 'datetime.datetime.now', ({}, {}), '()', False, 'import datetime\n'), ((121, 16, 121, 54), 'ac.blocks.register', 'ac.blocks.register', ({(121, 35, 121, 53): "[self.block['id']]"}, {}), "([self.block['id']])", False, 'import ac\n')]
zachwylde00/praw
praw/models/reddit/mixins/reportable.py
ad1d73e6a4a33397bbd983bdfde1a4f99ce5607d
"""Provide the ReportableMixin class.""" from ....const import API_PATH class ReportableMixin: """Interface for RedditBase classes that can be reported.""" def report(self, reason): """Report this object to the moderators of its subreddit. :param reason: The reason for reporting. Raises :class:`.APIException` if ``reason`` is longer than 100 characters. Example usage: .. code-block:: python submission = reddit.submission(id='5or86n') submission.report('report reason') comment = reddit.comment(id='dxolpyc') comment.report('report reason') """ self._reddit.post( API_PATH["report"], data={"id": self.fullname, "reason": reason} )
[]
TrustworthyDL/LeBA
defense/jpeg_compress.py
3289c1330585f438dc5b931951cbb682c5513053
def _jpeg_compression(im): assert torch.is_tensor(im) im = ToPILImage()(im) savepath = BytesIO() im.save(savepath, 'JPEG', quality=75) im = Image.open(savepath) im = ToTensor()(im) return im
[]
LaudateCorpus1/mellon
mellon/factories/filesystem/file.py
a7a9f6d8abf1dd03b63a94ddb4439c6cc6c2e272
import collections import os.path from zope import component from zope import interface from zope.component.factory import Factory from sparc.configuration import container import mellon @interface.implementer(mellon.IByteMellonFile) class MellonByteFileFromFilePathAndConfig(object): def __init__(self, file_path, config): self.file_path = file_path self.config = config def __str__(self): return "byte file at location {}".format(self.file_path) def __iter__(self): with open(self.file_path, 'rb') as stream: file_ = component.createObject(u'mellon.byte_file_from_stream', stream, self.config) for snippet in file_: yield snippet mellonByteFileFromFilePathAndConfigFactory = Factory(MellonByteFileFromFilePathAndConfig) @interface.implementer(mellon.IUnicodeMellonFile) class MellonUnicodeFileFromFilePathAndConfig(object): def __init__(self, file_path, config): self.file_path = file_path self.config = config def __str__(self): return "Unicode file at location {}".format(self.file_path) def __iter__(self): _end = 0 _buffer = collections.deque() _eof_buffer = collections.deque() with open(str(self.file_path), 'rU') as stream: file_ = component.createObject(u'mellon.unicode_file_from_stream', stream, self.config) for snippet in file_: yield snippet mellonUnicodeFileFromFilePathAndConfigFactory = Factory(MellonUnicodeFileFromFilePathAndConfig) @interface.implementer(mellon.IMellonFileProvider) class MellonFileProviderForRecursiveDirectoryConfig(object): def __init__(self, config): """Init Args: config: sparc.configuration.container.ISparcAppPyContainerConfiguration provider with mellon.factories.filesystem[configure.yaml:FileSystemDir] and mellon[configure.yaml:MellonSnippet] entries. """ self.config = config def __iter__(self): base_path = container.IPyContainerConfigValue(self.config).\ get('FileSystemDir')['directory'] for d, dirs, files in os.walk(base_path): for f in files: path = os.path.join(d, f) if not os.path.isfile(path): continue #get interface-assigned string (IPath) path = component.createObject(u'mellon.filesystem_path', path) if mellon.IBinaryChecker(path).check(): yield component.createObject(\ u'mellon.factories.filesystem.byte_file', path, self.config) else: yield component.createObject(\ u'mellon.factories.filesystem.unicode_file', path, self.config) mellonFileProviderForRecursiveDirectoryConfigFactory = Factory(MellonFileProviderForRecursiveDirectoryConfig) interface.alsoProvides(mellonFileProviderForRecursiveDirectoryConfigFactory, mellon.IMellonFileProviderFactory)
[((9, 1, 9, 46), 'zope.interface.implementer', 'interface.implementer', ({(9, 23, 9, 45): 'mellon.IByteMellonFile'}, {}), '(mellon.IByteMellonFile)', False, 'from zope import interface\n'), ((24, 45, 24, 89), 'zope.component.factory.Factory', 'Factory', ({(24, 53, 24, 88): 'MellonByteFileFromFilePathAndConfig'}, {}), '(MellonByteFileFromFilePathAndConfig)', False, 'from zope.component.factory import Factory\n'), ((26, 1, 26, 49), 'zope.interface.implementer', 'interface.implementer', ({(26, 23, 26, 48): 'mellon.IUnicodeMellonFile'}, {}), '(mellon.IUnicodeMellonFile)', False, 'from zope import interface\n'), ((44, 48, 44, 95), 'zope.component.factory.Factory', 'Factory', ({(44, 56, 44, 94): 'MellonUnicodeFileFromFilePathAndConfig'}, {}), '(MellonUnicodeFileFromFilePathAndConfig)', False, 'from zope.component.factory import Factory\n'), ((46, 1, 46, 50), 'zope.interface.implementer', 'interface.implementer', ({(46, 23, 46, 49): 'mellon.IMellonFileProvider'}, {}), '(mellon.IMellonFileProvider)', False, 'from zope import interface\n'), ((77, 55, 77, 109), 'zope.component.factory.Factory', 'Factory', ({(77, 63, 77, 108): 'MellonFileProviderForRecursiveDirectoryConfig'}, {}), '(MellonFileProviderForRecursiveDirectoryConfig)', False, 'from zope.component.factory import Factory\n'), ((78, 0, 78, 111), 'zope.interface.alsoProvides', 'interface.alsoProvides', ({(78, 23, 78, 75): 'mellonFileProviderForRecursiveDirectoryConfigFactory', (78, 77, 78, 110): 'mellon.IMellonFileProviderFactory'}, {}), '(mellonFileProviderForRecursiveDirectoryConfigFactory,\n mellon.IMellonFileProviderFactory)', False, 'from zope import interface\n'), ((38, 18, 38, 37), 'collections.deque', 'collections.deque', ({}, {}), '()', False, 'import collections\n'), ((39, 22, 39, 41), 'collections.deque', 'collections.deque', ({}, {}), '()', False, 'import collections\n'), ((21, 20, 21, 96), 'zope.component.createObject', 'component.createObject', ({(21, 43, 21, 74): 'u"""mellon.byte_file_from_stream"""', (21, 76, 21, 82): 'stream', (21, 84, 21, 95): 'self.config'}, {}), "(u'mellon.byte_file_from_stream', stream, self.config)", False, 'from zope import component\n'), ((41, 20, 41, 99), 'zope.component.createObject', 'component.createObject', ({(41, 43, 41, 77): 'u"""mellon.unicode_file_from_stream"""', (41, 79, 41, 85): 'stream', (41, 87, 41, 98): 'self.config'}, {}), "(u'mellon.unicode_file_from_stream', stream, self.config)", False, 'from zope import component\n'), ((69, 23, 69, 78), 'zope.component.createObject', 'component.createObject', ({(69, 46, 69, 71): 'u"""mellon.filesystem_path"""', (69, 73, 69, 77): 'path'}, {}), "(u'mellon.filesystem_path', path)", False, 'from zope import component\n'), ((61, 20, 61, 66), 'sparc.configuration.container.IPyContainerConfigValue', 'container.IPyContainerConfigValue', ({(61, 54, 61, 65): 'self.config'}, {}), '(self.config)', False, 'from sparc.configuration import container\n'), ((70, 19, 70, 46), 'mellon.IBinaryChecker', 'mellon.IBinaryChecker', ({(70, 41, 70, 45): 'path'}, {}), '(path)', False, 'import mellon\n'), ((71, 26, 72, 84), 'zope.component.createObject', 'component.createObject', ({(72, 24, 72, 64): 'u"""mellon.factories.filesystem.byte_file"""', (72, 66, 72, 70): 'path', (72, 72, 72, 83): 'self.config'}, {}), "(u'mellon.factories.filesystem.byte_file', path, self\n .config)", False, 'from zope import component\n'), ((74, 26, 75, 87), 'zope.component.createObject', 'component.createObject', ({(75, 24, 75, 67): 'u"""mellon.factories.filesystem.unicode_file"""', (75, 69, 75, 73): 'path', (75, 75, 75, 86): 'self.config'}, {}), "(u'mellon.factories.filesystem.unicode_file', path,\n self.config)", False, 'from zope import component\n')]
CogSciUOS/DeepLearningToolbox
dltb/thirdparty/datasource/__init__.py
bf07578b9486d8c48e25df357bc4b9963b513b46
"""Predefined Datasources. """ # toolbox imports from ...datasource import Datasource Datasource.register_instance('imagenet-val', __name__ + '.imagenet', 'ImageNet', section='val') # section='train' Datasource.register_instance('dogsandcats', __name__ + '.dogsandcats', 'DogsAndCats') Datasource.register_instance('widerface', __name__ + '.widerface', 'WiderFace') Datasource.register_instance('fgnet', __name__ + '.fgnet', 'FGNet') Datasource.register_instance('Helen', __name__ + '.helen', 'Helen') Datasource.register_instance('lfw', __name__ + '.lfw', 'LabeledFacesInTheWild') Datasource.register_instance('ms-celeb-1m', __name__ + '.face', 'MSCeleb1M') Datasource.register_instance('5celeb', __name__ + '.fivecelebface', 'FiveCelebFace') Datasource.register_instance('ffhq', __name__ + '.ffhq', 'FFHQ') Datasource.register_instance('celeba', __name__ + '.celeba', 'CelebA') Datasource.register_instance('celeba-aligned', __name__ + '.celeba', 'CelebA', aligned=True) Datasource.register_class('WiderFace', __name__ + '.widerface')
[]
babinyurii/RECAN
tests/test_results.py
b49326b47bae22316c3776fee2f398e09a98ba96
# -*- coding: utf-8 -*- """ Created on Tue Oct 22 15:58:44 2019 @author: babin """ posits_def = [251, 501, 751, 1001, 1251, 1501, 1751, 2001, 2251, 2501, 2751, 3001, 3215] dist_whole_align_ref = {'AB048704.1_genotype_C_': [0.88, 0.938, 0.914, 0.886, 0.89, 0.908, 0.938, 0.948, 0.948, 0.886, 0.852, 0.8580645161290322, 0.827906976744186], 'AB010291.1_Bj': [0.968, 0.986, 0.946, 0.92, 0.94, 0.964, 0.95, 0.892, 0.914, 0.9359999999999999, 0.924, 0.935483870967742, 0.9255813953488372]} dist_win_250_shift_100_ref = {'AB048704.1_genotype_C_': [0.87, 0.9, 0.9359999999999999, 0.924, 0.944, 0.944, 0.948, 0.888, 0.868, 0.86, 0.888, 0.9, 0.908, 0.88, 0.916, 0.924, 0.94, 0.96, 0.948, 0.9319999999999999, 0.944, 0.9359999999999999, 0.96, 0.9319999999999999, 0.864, 0.8200000000000001, 0.88, 0.892, 0.88, 0.844, 0.827906976744186, 0.8608695652173913, 0.9333333333333333], 'AB010291.1_Bj': [0.95, 0.984, 0.988, 0.984, 0.98, 0.98, 0.98, 0.92, 0.896, 0.888, 0.928, 0.94, 0.96, 0.948, 0.976, 0.976, 0.968, 0.952, 0.896, 0.844, 0.86, 0.908, 0.976, 0.948, 0.916, 0.904, 0.9359999999999999, 0.948, 0.94, 0.9359999999999999, 0.9255813953488372, 0.9217391304347826, 0.8666666666666667]} dist_whole_align_def_params_k2p = {'AB048704.1_genotype_C_': [0.8681719101219889, 0.9351731626008992, 0.9083728156043438, 0.8750271283550077, 0.879929128403318, 0.9015597329057567, 0.9351297624958606, 0.9459250442159328, 0.9459717143364927, 0.8760802380420646, 0.8343273948904422, 0.841497348083017, 0.8033200314745574], 'AB010291.1_Bj': [0.9671530980992109, 0.9858456107911616, 0.9438329817983037, 0.9150569322625627, 0.9372918193486423, 0.9630251291666885, 0.9481456308045444, 0.8823622232289046, 0.9077377632214376, 0.9325670957791264, 0.919398127767968, 0.9323907045444492, 0.9211964811945209]}
[]
SimonSuster/lxmls-toolkit
lxmls/readers/simple_data_set.py
6a57884f8b7c98da816a60eb88593e0a1585d434
import numpy as np # This class generates a 2D dataset with two classes, "positive" and "negative". # Each class follows a Gaussian distribution. class SimpleDataSet(): ''' A simple two dimentional dataset for visualization purposes. The date set contains points from two gaussians with mean u_i and std_i''' def __init__(self,nr_examples=100,g1 = [[-5,-5],1], g2 = [[5,5],1],balance=0.5,split=[0.8,0,0.2]): nr_positive = nr_examples*balance # number of examples of "positive" class nr_negative = nr_examples - nr_positive # number of examples of "negative" class self.mean1 = g1[0] # mean of positive class self.mean2 = g2[0] # mean of negative class self.variance1 = g1[1] # self.variance2 = g2[1] self.balance = balance self.nr_points = nr_examples X_pos_1 = np.random.normal(g1[0][0],g1[1],[nr_positive,1]) X_pos_2 = np.random.normal(g1[0][1],g1[1],[nr_positive,1]) X_pos = np.hstack([X_pos_1,X_pos_2]) X_neg_1 = np.random.normal(g2[0][0],g2[1],[nr_negative,1]) X_neg_2 = np.random.normal(g2[0][1],g2[1],[nr_negative,1]) X_neg = np.hstack([X_neg_1,X_neg_2]) y_pos = np.zeros([nr_positive,1],dtype=np.int) y_neg = np.ones([nr_negative,1],dtype=np.int) X = np.vstack([X_pos, X_neg]) y = np.vstack([y_pos, y_neg]) perm = np.random.permutation(nr_examples) self.split = split self.X = X[perm,:] self.y = y[perm] train_y,dev_y,test_y,train_X,dev_X,test_X = split_train_dev_test(self.X,self.y,split[0],split[1],split[2]) self.train_X = train_X self.train_y = train_y self.dev_X = dev_X self.dev_y = dev_y self.test_X = test_X self.test_y = test_y def get_name(self): return "Simple Data Set -- Mean1= (%.2f,%.2f) Var1 = %.2f Mean2= (%.2f,%.2f) Var2= %.2f \nNr. Points=%.2f, Balance=%.2f Train-Dev-Test (%.2f,.%.2f,%.2f)"%(self.mean1[0] ,self.mean1[1], self.variance1, self.mean2[0], self.mean2[1], self.variance2, self.nr_points, self.balance, self.split[0],self.split[1],self.split[2]) def get_bayes_optimal(self): params = np.zeros((3,2)) p1 = self.balance p2 = 1.0 - self.balance params[0,0] = -1.0/(2.0*self.variance1) * np.dot(self.mean1,self.mean1) + np.log(p1) params[0,1] = -1.0/(2.0*self.variance2) * np.dot(self.mean2,self.mean2) + np.log(p2) params[1,0] = 1.0/self.variance1 * self.mean1[0] params[2,0] = 1.0/self.variance1 * self.mean1[1] params[1,1] = 1.0/self.variance2 * self.mean2[0] params[2,1] = 1.0/self.variance2 * self.mean2[1] print params return params def plot_data(self,params=np.array([]),name="Naive Bayes", print_bayes_opt = True): import matplotlib.pyplot as plt fig = plt.figure() fig.suptitle(self.get_name()) axis = fig.add_subplot(1,1,1) idx,_ = np.nonzero(self.train_y == 0) idx2,_ = np.nonzero(self.train_y == 1) idx3,_ = np.nonzero(self.test_y == 0) idx4,_ = np.nonzero(self.test_y == 1) axis.scatter(self.train_X[idx,0],self.train_X[idx,1],s=30,c="red",marker='s') axis.scatter(self.train_X[idx2,0],self.train_X[idx2,1],s=30,c="blue",marker='s') if(idx3.shape[0] > 0): axis.scatter(self.test_X[idx3,0],self.test_X[idx3,1],s=30,c="red",marker='o') if(idx4.shape[0] > 0): axis.scatter(self.test_X[idx4,0],self.test_X[idx4,1],s=30,c="blue",marker='o') ## Plot Bayes optimal if(print_bayes_opt): bayes_opt_params = self.get_bayes_optimal() self.add_line(fig,axis,bayes_opt_params, "Bayes Optimal","black") axis.legend() # fig.show() return fig,axis def add_line(self,fig,axis,params,name,colour): x_max = np.max(self.train_X) x_min = np.min(self.train_X) x = np.arange(x_min,x_max,0.1,dtype = "float") y_star = ((params[1,1]-params[1,0])*x + (params[0,1] - params[0,0]))/(params[2,0] -params[2,1]) axis.plot(x,y_star,'g--',c=colour, label=name, linewidth=2) axis.legend() # fig.show() return fig,axis def split_train_dev_test(X,y,train_per,dev_per,test_per): if(train_per + dev_per + test_per > 1): print "Train Dev Test split should sum to one" return dim = y.shape[0] split1 = int(dim*train_per) if(dev_per ==0): train_y,test_y = np.vsplit(y,[split1]) dev_y = np.array([]) train_X = X[0:split1,:] dev_X = np.array([]) test_X = X[split1:,:] else: split2 = int(dim*(train_per+dev_per)) print split2 train_y,dev_y,test_y = np.vsplit(y,(split1,split2)) train_X = X[0:split1,:] dev_X = X[split1:split2,:] test_X = X[split2:,:] return train_y,dev_y,test_y,train_X,dev_X,test_X
[]
kangtastic/cryptopals
set1/c06_attack_repeating_key_xor.py
7014a08b836b3f9ebfdc889123ccf67406738dac
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Break repeating-key XOR # # It is officially on, now. # # This challenge isn't conceptually hard, but it involves actual # error-prone coding. The other challenges in this set are there to bring # you up to speed. This one is there to qualify you. If you can do this # one, you're probably just fine up to Set 6. # # There's a file here: # # http://cryptopals.com/static/challenge-data/6.txt # # It's been base64'd after being encrypted with repeating-key XOR. # # Decrypt it. # # Here's how: # # 1. Let KEYSIZE be the guessed length of the key; try values from 2 to # (say) 40. # 2. Write a function to compute the edit distance/Hamming distance between # two strings. The Hamming distance is just the number of differing # bits. The distance between: # # this is a test # # and # # wokka wokka!!! # # is 37. *Make sure your code agrees before you proceed.* # 3. For each KEYSIZE, take the first KEYSIZE worth of bytes, and the # second KEYSIZE worth of bytes, and find the edit distance between them. # Normalize this result by dividing by KEYSIZE. # 4. The KEYSIZE with the smallest normalized edit distance is probably the # key. You could proceed perhaps with the smallest 2-3 KEYSIZE values. # Or take 4 KEYSIZE blocks instead of 2 and average the distances. # 5. Now that you probably know the KEYSIZE: break the ciphertext into # blocks of KEYSIZE length. # 6. Now transpose the blocks: make a block that is the first byte of every # block, and a block that is the second byte of every block, and so on. # 7. Solve each block as if it was single-character XOR. You already have # code to do this. # 8. For each block, the single-byte XOR key that produces the best looking # histogram is the repeating-key XOR key byte for that block. Put them # together and you have the key. # # This code is going to turn out to be surprisingly useful later on. Breaking # repeating-key XOR ("Vigenère") statistically is obviously an academic # exercise, a "Crypto 101" thing. But more people "know how" to break it than # can actually break it, and a similar technique breaks something much more # important. # # No, that's not a mistake. # # We get more tech support questions for this challenge than any of the # other ones. We promise, there aren't any blatant errors in this text. # In particular: the "wokka wokka!!!" edit distance really is 37. # import inspect import os import sys from itertools import zip_longest sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(inspect.getfile(lambda: 0))))) from util.loader import loader from util.text import englishness, repeating_key_xor, single_byte_xor # Lookup table for the number of 1 bits in a nibble. (Nybble, quartet, etc.) NIBBLE_BITS = [0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4] def likely_key_sizes(bs, lower=2, upper=40, n=3): """Finds a repeating-key-XOR'd ciphertext's most likely key sizes.""" sizes = {} for size in range(lower, upper + 1): normalized_distance = 0 for i in range(0, len(bs) - size * 2, size * 2): bs1, bs2 = bs[i : i + size], bs[i + size : i + size * 2] normalized_distance += hamming_distance(bs1, bs2) / 2 sizes.update({size: normalized_distance}) return sorted(sizes, key=lambda k: sizes[k])[:n] def hamming_distance(bs1, bs2): """Finds the Hamming distance between two bytestrings.""" distance = 0 for b1, b2 in zip_longest(bs1, bs2, fillvalue=0): b = b1 ^ b2 distance += NIBBLE_BITS[b >> 4] + NIBBLE_BITS[b & 0xF] return distance def main(): ctext = loader("6.txt", "base64", split=False) ptext, key, high_score = b"", b"", 0 for size in likely_key_sizes(ctext): blocks = [ctext[i : i + size] for i in range(0, len(ctext), size)] transposed = zip_longest(*blocks, fillvalue=0) likely_key = b"".join( single_byte_xor(tblock, key=True) for tblock in transposed ) candidate = repeating_key_xor(ctext, likely_key) score = englishness(candidate) if score > high_score: ptext, key, high_score = candidate, likely_key, score print(f"Key: '{key.decode()}'") print() print(ptext.decode()) if __name__ == "__main__": try: main() except KeyboardInterrupt: pass # Output: # # Key: 'Terminator X: Bring the noise' (29 bytes) # # I'm back and I'm ringin' the bell # A rockin' on the mike while the fly girls yell # In ecstasy in the back of me # Well that's my DJ Deshay cuttin' all them Z's # Hittin' hard and the girlies goin' crazy # Vanilla's on the mike, man I'm not lazy. # # <remainder of output omitted> #
[((99, 18, 99, 52), 'itertools.zip_longest', 'zip_longest', (), '', False, 'from itertools import zip_longest\n'), ((107, 12, 107, 50), 'util.loader.loader', 'loader', (), '', False, 'from util.loader import loader\n'), ((113, 21, 113, 54), 'itertools.zip_longest', 'zip_longest', (), '', False, 'from itertools import zip_longest\n'), ((119, 20, 119, 56), 'util.text.repeating_key_xor', 'repeating_key_xor', ({(119, 38, 119, 43): 'ctext', (119, 45, 119, 55): 'likely_key'}, {}), '(ctext, likely_key)', False, 'from util.text import englishness, repeating_key_xor, single_byte_xor\n'), ((120, 16, 120, 38), 'util.text.englishness', 'englishness', ({(120, 28, 120, 37): 'candidate'}, {}), '(candidate)', False, 'from util.text import englishness, repeating_key_xor, single_byte_xor\n'), ((69, 64, 69, 90), 'inspect.getfile', 'inspect.getfile', ({(69, 80, 69, 89): '(lambda : 0)'}, {}), '(lambda : 0)', False, 'import inspect\n'), ((116, 12, 116, 45), 'util.text.single_byte_xor', 'single_byte_xor', (), '', False, 'from util.text import englishness, repeating_key_xor, single_byte_xor\n')]
kopf-yhs/ncscos
c2nl/models/transformer.py
8248aaad32d4d19c01d070bf0dfba7aab849ba1d
import torch import torch.nn as nn import torch.nn.functional as f from prettytable import PrettyTable from c2nl.modules.char_embedding import CharEmbedding from c2nl.modules.embeddings import Embeddings from c2nl.modules.highway import Highway from c2nl.encoders.transformer import TransformerEncoder from c2nl.decoders.transformer import TransformerDecoder from c2nl.inputters import constants from c2nl.modules.global_attention import GlobalAttention from c2nl.modules.copy_generator import CopyGenerator, CopyGeneratorCriterion from c2nl.utils.misc import sequence_mask class Embedder(nn.Module): def __init__(self, args): super(Embedder, self).__init__() self.enc_input_size = 0 self.dec_input_size = 0 # at least one of word or char embedding options should be True assert args.use_src_word or args.use_src_char assert args.use_tgt_word or args.use_tgt_char self.use_src_word = args.use_src_word self.use_tgt_word = args.use_tgt_word if self.use_src_word: self.src_word_embeddings = Embeddings(args.emsize, args.src_vocab_size, constants.PAD) self.enc_input_size += args.emsize if self.use_tgt_word: self.tgt_word_embeddings = Embeddings(args.emsize, args.tgt_vocab_size, constants.PAD) self.dec_input_size += args.emsize self.use_src_char = args.use_src_char self.use_tgt_char = args.use_tgt_char if self.use_src_char: assert len(args.filter_size) == len(args.nfilters) self.src_char_embeddings = CharEmbedding(args.n_characters, args.char_emsize, args.filter_size, args.nfilters) self.enc_input_size += sum(list(map(int, args.nfilters))) self.src_highway_net = Highway(self.enc_input_size, num_layers=2) if self.use_tgt_char: assert len(args.filter_size) == len(args.nfilters) self.tgt_char_embeddings = CharEmbedding(args.n_characters, args.char_emsize, args.filter_size, args.nfilters) self.dec_input_size += sum(list(map(int, args.nfilters))) self.tgt_highway_net = Highway(self.dec_input_size, num_layers=2) self.use_type = args.use_code_type if self.use_type: self.type_embeddings = nn.Embedding(len(constants.TOKEN_TYPE_MAP), self.enc_input_size) self.src_pos_emb = args.src_pos_emb self.tgt_pos_emb = args.tgt_pos_emb self.no_relative_pos = all(v == 0 for v in args.max_relative_pos) if self.src_pos_emb and self.no_relative_pos: self.src_pos_embeddings = nn.Embedding(args.max_src_len, self.enc_input_size) if self.tgt_pos_emb: self.tgt_pos_embeddings = nn.Embedding(args.max_tgt_len + 2, self.dec_input_size) self.dropout = nn.Dropout(args.dropout_emb) def forward(self, sequence, sequence_char, sequence_type=None, mode='encoder', step=None): if mode == 'encoder': word_rep = None if self.use_src_word: word_rep = self.src_word_embeddings(sequence.unsqueeze(2)) # B x P x d if self.use_src_char: char_rep = self.src_char_embeddings(sequence_char) # B x P x f if word_rep is None: word_rep = char_rep else: word_rep = torch.cat((word_rep, char_rep), 2) # B x P x d+f word_rep = self.src_highway_net(word_rep) # B x P x d+f if self.use_type: type_rep = self.type_embeddings(sequence_type) word_rep = word_rep + type_rep if self.src_pos_emb and self.no_relative_pos: pos_enc = torch.arange(start=0, end=word_rep.size(1)).type(torch.LongTensor) pos_enc = pos_enc.expand(*word_rep.size()[:-1]) if word_rep.is_cuda: pos_enc = pos_enc.cuda() pos_rep = self.src_pos_embeddings(pos_enc) word_rep = word_rep + pos_rep elif mode == 'decoder': word_rep = None if self.use_tgt_word: word_rep = self.tgt_word_embeddings(sequence.unsqueeze(2)) # B x P x d if self.use_tgt_char: char_rep = self.tgt_char_embeddings(sequence_char) # B x P x f if word_rep is None: word_rep = char_rep else: word_rep = torch.cat((word_rep, char_rep), 2) # B x P x d+f word_rep = self.tgt_highway_net(word_rep) # B x P x d+f if self.tgt_pos_emb: if step is None: pos_enc = torch.arange(start=0, end=word_rep.size(1)).type(torch.LongTensor) else: pos_enc = torch.LongTensor([step]) # used in inference time pos_enc = pos_enc.expand(*word_rep.size()[:-1]) if word_rep.is_cuda: pos_enc = pos_enc.cuda() pos_rep = self.tgt_pos_embeddings(pos_enc) word_rep = word_rep + pos_rep else: raise ValueError('Unknown embedder mode!') word_rep = self.dropout(word_rep) return word_rep class Encoder(nn.Module): def __init__(self, args, input_size): super(Encoder, self).__init__() self.transformer = TransformerEncoder(num_layers=args.nlayers, d_model=input_size, heads=args.num_head, d_k=args.d_k, d_v=args.d_v, d_ff=args.d_ff, dropout=args.trans_drop, max_relative_positions=args.max_relative_pos, use_neg_dist=args.use_neg_dist) self.use_all_enc_layers = args.use_all_enc_layers if self.use_all_enc_layers: self.layer_weights = nn.Linear(input_size, 1, bias=False) def count_parameters(self): return self.transformer.count_parameters() def forward(self, input, input_len): layer_outputs, _ = self.transformer(input, input_len) # B x seq_len x h if self.use_all_enc_layers: output = torch.stack(layer_outputs, dim=2) # B x seq_len x nlayers x h layer_scores = self.layer_weights(output).squeeze(3) layer_scores = f.softmax(layer_scores, dim=-1) memory_bank = torch.matmul(output.transpose(2, 3), layer_scores.unsqueeze(3)).squeeze(3) else: memory_bank = layer_outputs[-1] return memory_bank, layer_outputs class Decoder(nn.Module): def __init__(self, args, input_size): super(Decoder, self).__init__() self.input_size = input_size self.split_decoder = args.split_decoder and args.copy_attn if self.split_decoder: # Following (https://arxiv.org/pdf/1808.07913.pdf), we split decoder self.transformer_c = TransformerDecoder( num_layers=args.nlayers, d_model=self.input_size, heads=args.num_head, d_k=args.d_k, d_v=args.d_v, d_ff=args.d_ff, coverage_attn=args.coverage_attn, dropout=args.trans_drop ) self.transformer_d = TransformerDecoder( num_layers=args.nlayers, d_model=self.input_size, heads=args.num_head, d_k=args.d_k, d_v=args.d_v, d_ff=args.d_ff, dropout=args.trans_drop ) # To accomplish eq. 19 - 21 from `https://arxiv.org/pdf/1808.07913.pdf` self.fusion_sigmoid = nn.Sequential( nn.Linear(self.input_size * 2, self.input_size), nn.Sigmoid() ) self.fusion_gate = nn.Sequential( nn.Linear(self.input_size * 2, self.input_size), nn.ReLU() ) else: self.transformer = TransformerDecoder( num_layers=args.nlayers, d_model=self.input_size, heads=args.num_head, d_k=args.d_k, d_v=args.d_v, d_ff=args.d_ff, coverage_attn=args.coverage_attn, dropout=args.trans_drop ) if args.reload_decoder_state: state_dict = torch.load( args.reload_decoder_state, map_location=lambda storage, loc: storage ) self.decoder.load_state_dict(state_dict) def count_parameters(self): if self.split_decoder: return self.transformer_c.count_parameters() + self.transformer_d.count_parameters() else: return self.transformer.count_parameters() def init_decoder(self, src_lens, max_src_len): if self.split_decoder: state_c = self.transformer_c.init_state(src_lens, max_src_len) state_d = self.transformer_d.init_state(src_lens, max_src_len) return state_c, state_d else: return self.transformer.init_state(src_lens, max_src_len) def decode(self, tgt_words, tgt_emb, memory_bank, state, step=None, layer_wise_coverage=None): if self.split_decoder: copier_out, attns = self.transformer_c(tgt_words, tgt_emb, memory_bank, state[0], step=step, layer_wise_coverage=layer_wise_coverage) dec_out, _ = self.transformer_d(tgt_words, tgt_emb, memory_bank, state[1], step=step) f_t = self.fusion_sigmoid(torch.cat([copier_out, dec_out], dim=-1)) gate_input = torch.cat([copier_out, torch.mul(f_t, dec_out)], dim=-1) decoder_outputs = self.fusion_gate(gate_input) else: decoder_outputs, attns = self.transformer(tgt_words, tgt_emb, memory_bank, state, step=step, layer_wise_coverage=layer_wise_coverage) return decoder_outputs, attns def forward(self, memory_bank, memory_len, tgt_pad_mask, tgt_emb): max_mem_len = memory_bank[0].shape[1] \ if isinstance(memory_bank, list) else memory_bank.shape[1] state = self.init_decoder(memory_len, max_mem_len) return self.decode(tgt_pad_mask, tgt_emb, memory_bank, state) class Transformer(nn.Module): """Module that writes an answer for the question given a passage.""" def __init__(self, args, tgt_dict): """"Constructor of the class.""" super(Transformer, self).__init__() self.name = 'Transformer' if len(args.max_relative_pos) != args.nlayers: assert len(args.max_relative_pos) == 1 args.max_relative_pos = args.max_relative_pos * args.nlayers self.embedder = Embedder(args) self.encoder = Encoder(args, self.embedder.enc_input_size) self.decoder = Decoder(args, self.embedder.dec_input_size) self.layer_wise_attn = args.layer_wise_attn self.generator = nn.Linear(self.decoder.input_size, args.tgt_vocab_size) if args.share_decoder_embeddings: if self.embedder.use_tgt_word: assert args.emsize == self.decoder.input_size self.generator.weight = self.embedder.tgt_word_embeddings.word_lut.weight self._copy = args.copy_attn if self._copy: self.copy_attn = GlobalAttention(dim=self.decoder.input_size, attn_type=args.attn_type) self.copy_generator = CopyGenerator(self.decoder.input_size, tgt_dict, self.generator) self.criterion = CopyGeneratorCriterion(vocab_size=len(tgt_dict), force_copy=args.force_copy) else: self.criterion = nn.CrossEntropyLoss(reduction='none') def _run_forward_ml(self, code_word_rep, code_char_rep, code_type_rep, code_len, summ_word_rep, summ_char_rep, summ_len, tgt_seq, src_map, alignment, **kwargs): batch_size = code_len.size(0) # embed and encode the source sequence code_rep = self.embedder(code_word_rep, code_char_rep, code_type_rep, mode='encoder') memory_bank, layer_wise_outputs = self.encoder(code_rep, code_len) # B x seq_len x h # embed and encode the target sequence summ_emb = self.embedder(summ_word_rep, summ_char_rep, mode='decoder') summ_pad_mask = ~sequence_mask(summ_len, max_len=summ_emb.size(1)) enc_outputs = layer_wise_outputs if self.layer_wise_attn else memory_bank layer_wise_dec_out, attns = self.decoder(enc_outputs, code_len, summ_pad_mask, summ_emb) decoder_outputs = layer_wise_dec_out[-1] loss = dict() target = tgt_seq[:, 1:].contiguous() if self._copy: # copy_score: batch_size, tgt_len, src_len _, copy_score, _ = self.copy_attn(decoder_outputs, memory_bank, memory_lengths=code_len, softmax_weights=False) # mask copy_attn weights here if needed if kwargs['code_mask_rep'] is not None: mask = kwargs['code_mask_rep'].byte().unsqueeze(1) # Make it broadcastable. copy_score.data.masked_fill_(mask, -float('inf')) attn_copy = f.softmax(copy_score, dim=-1) scores = self.copy_generator(decoder_outputs, attn_copy, src_map) scores = scores[:, :-1, :].contiguous() ml_loss = self.criterion(scores, alignment[:, 1:].contiguous(), target) else: scores = self.generator(decoder_outputs) # `batch x tgt_len x vocab_size` scores = scores[:, :-1, :].contiguous() # `batch x tgt_len - 1 x vocab_size` ml_loss = self.criterion(scores.view(-1, scores.size(2)), target.view(-1)) ml_loss = ml_loss.view(*scores.size()[:-1]) ml_loss = ml_loss.mul(target.ne(constants.PAD).float()) ml_loss = ml_loss.sum(1) * kwargs['example_weights'] loss['ml_loss'] = ml_loss.mean() loss['loss_per_token'] = ml_loss.div((summ_len - 1).float()).mean() return loss def forward(self, code_word_rep, code_char_rep, code_type_rep, code_len, summ_word_rep, summ_char_rep, summ_len, tgt_seq, src_map, alignment, **kwargs): """ Input: - code_word_rep: ``(batch_size, max_doc_len)`` - code_char_rep: ``(batch_size, max_doc_len, max_word_len)`` - code_len: ``(batch_size)`` - summ_word_rep: ``(batch_size, max_que_len)`` - summ_char_rep: ``(batch_size, max_que_len, max_word_len)`` - summ_len: ``(batch_size)`` - tgt_seq: ``(batch_size, max_len)`` Output: - ``(batch_size, P_LEN)``, ``(batch_size, P_LEN)`` """ if self.training: return self._run_forward_ml(code_word_rep, code_char_rep, code_type_rep, code_len, summ_word_rep, summ_char_rep, summ_len, tgt_seq, src_map, alignment, **kwargs) else: return self.decode(code_word_rep, code_char_rep, code_type_rep, code_len, src_map, alignment, **kwargs) def __tens2sent(self, t, tgt_dict, src_vocabs): words = [] for idx, w in enumerate(t): widx = w[0].item() if widx < len(tgt_dict): words.append(tgt_dict[widx]) else: widx = widx - len(tgt_dict) words.append(src_vocabs[idx][widx]) return words def __generate_sequence(self, params, choice='greedy', tgt_words=None): batch_size = params['memory_bank'].size(0) use_cuda = params['memory_bank'].is_cuda if tgt_words is None: tgt_words = torch.LongTensor([constants.BOS]) if use_cuda: tgt_words = tgt_words.cuda() tgt_words = tgt_words.expand(batch_size).unsqueeze(1) # B x 1 tgt_chars = None if self.embedder.use_tgt_char: tgt_chars = params['tgt_dict'].word_to_char_ids(constants.BOS_WORD) tgt_chars = torch.Tensor(tgt_chars.tolist()).unsqueeze(0) tgt_chars = tgt_chars.repeat(batch_size, 1) tgt_chars = tgt_chars.to(tgt_words).unsqueeze(1) dec_preds = [] copy_info = [] attentions = [] dec_log_probs = [] acc_dec_outs = [] max_mem_len = params['memory_bank'][0].shape[1] \ if isinstance(params['memory_bank'], list) else params['memory_bank'].shape[1] dec_states = self.decoder.init_decoder(params['src_len'], max_mem_len) attns = {"coverage": None} enc_outputs = params['layer_wise_outputs'] if self.layer_wise_attn \ else params['memory_bank'] # +1 for <EOS> token for idx in range(params['max_len'] + 1): tgt = self.embedder(tgt_words, tgt_chars, mode='decoder', step=idx) tgt_pad_mask = tgt_words.data.eq(constants.PAD) layer_wise_dec_out, attns = self.decoder.decode(tgt_pad_mask, tgt, enc_outputs, dec_states, step=idx, layer_wise_coverage=attns['coverage']) decoder_outputs = layer_wise_dec_out[-1] acc_dec_outs.append(decoder_outputs.squeeze(1)) if self._copy: _, copy_score, _ = self.copy_attn(decoder_outputs, params['memory_bank'], memory_lengths=params['src_len'], softmax_weights=False) # mask copy_attn weights here if needed if params['src_mask'] is not None: mask = params['src_mask'].byte().unsqueeze(1) # Make it broadcastable. copy_score.data.masked_fill_(mask, -float('inf')) attn_copy = f.softmax(copy_score, dim=-1) prediction = self.copy_generator(decoder_outputs, attn_copy, params['src_map']) prediction = prediction.squeeze(1) for b in range(prediction.size(0)): if params['blank'][b]: blank_b = torch.LongTensor(params['blank'][b]) fill_b = torch.LongTensor(params['fill'][b]) if use_cuda: blank_b = blank_b.cuda() fill_b = fill_b.cuda() prediction[b].index_add_(0, fill_b, prediction[b].index_select(0, blank_b)) prediction[b].index_fill_(0, blank_b, 1e-10) else: prediction = self.generator(decoder_outputs.squeeze(1)) prediction = f.softmax(prediction, dim=1) if choice == 'greedy': tgt_prob, tgt = torch.max(prediction, dim=1, keepdim=True) log_prob = torch.log(tgt_prob + 1e-20) elif choice == 'sample': tgt, log_prob = self.reinforce.sample(prediction.unsqueeze(1)) else: assert False dec_log_probs.append(log_prob.squeeze(1)) dec_preds.append(tgt.squeeze(1).clone()) if "std" in attns: # std_attn: batch_size x num_heads x 1 x src_len std_attn = torch.stack(attns["std"], dim=1) attentions.append(std_attn.squeeze(2)) if self._copy: mask = tgt.gt(len(params['tgt_dict']) - 1) copy_info.append(mask.float().squeeze(1)) words = self.__tens2sent(tgt, params['tgt_dict'], params['source_vocab']) tgt_chars = None if self.embedder.use_tgt_char: tgt_chars = [params['tgt_dict'].word_to_char_ids(w).tolist() for w in words] tgt_chars = torch.Tensor(tgt_chars).to(tgt).unsqueeze(1) words = [params['tgt_dict'][w] for w in words] words = torch.Tensor(words).type_as(tgt) tgt_words = words.unsqueeze(1) return dec_preds, attentions, copy_info, dec_log_probs def decode(self, code_word_rep, code_char_rep, code_type_rep, code_len, src_map, alignment, **kwargs): word_rep = self.embedder(code_word_rep, code_char_rep, code_type_rep, mode='encoder') memory_bank, layer_wise_outputs = self.encoder(word_rep, code_len) # B x seq_len x h params = dict() params['memory_bank'] = memory_bank params['layer_wise_outputs'] = layer_wise_outputs params['src_len'] = code_len params['source_vocab'] = kwargs['source_vocab'] params['src_map'] = src_map params['src_mask'] = kwargs['code_mask_rep'] params['fill'] = kwargs['fill'] params['blank'] = kwargs['blank'] params['src_dict'] = kwargs['src_dict'] params['tgt_dict'] = kwargs['tgt_dict'] params['max_len'] = kwargs['max_len'] params['src_words'] = code_word_rep dec_preds, attentions, copy_info, _ = self.__generate_sequence(params, choice='greedy') dec_preds = torch.stack(dec_preds, dim=1) copy_info = torch.stack(copy_info, dim=1) if copy_info else None # attentions: batch_size x tgt_len x num_heads x src_len attentions = torch.stack(attentions, dim=1) if attentions else None return { 'predictions': dec_preds, 'copy_info': copy_info, 'memory_bank': memory_bank, 'attentions': attentions } def count_parameters(self): return sum(p.numel() for p in self.parameters() if p.requires_grad) def count_encoder_parameters(self): return self.encoder.count_parameters() def count_decoder_parameters(self): return self.decoder.count_parameters() def layer_wise_parameters(self): table = PrettyTable() table.field_names = ["Layer Name", "Output Shape", "Param #"] table.align["Layer Name"] = "l" table.align["Output Shape"] = "r" table.align["Param #"] = "r" for name, parameters in self.named_parameters(): if parameters.requires_grad: table.add_row([name, str(list(parameters.shape)), parameters.numel()]) return table
[((78, 23, 78, 51), 'torch.nn.Dropout', 'nn.Dropout', ({(78, 34, 78, 50): 'args.dropout_emb'}, {}), '(args.dropout_emb)', True, 'import torch.nn as nn\n'), ((149, 27, 157, 77), 'c2nl.encoders.transformer.TransformerEncoder', 'TransformerEncoder', (), '', False, 'from c2nl.encoders.transformer import TransformerEncoder\n'), ((315, 25, 315, 80), 'torch.nn.Linear', 'nn.Linear', ({(315, 35, 315, 58): 'self.decoder.input_size', (315, 60, 315, 79): 'args.tgt_vocab_size'}, {}), '(self.decoder.input_size, args.tgt_vocab_size)', True, 'import torch.nn as nn\n'), ((602, 20, 602, 49), 'torch.stack', 'torch.stack', (), '', False, 'import torch\n'), ((624, 16, 624, 29), 'prettytable.PrettyTable', 'PrettyTable', ({}, {}), '()', False, 'from prettytable import PrettyTable\n'), ((31, 39, 33, 64), 'c2nl.modules.embeddings.Embeddings', 'Embeddings', ({(31, 50, 31, 61): 'args.emsize', (32, 50, 32, 69): 'args.src_vocab_size', (33, 50, 33, 63): 'constants.PAD'}, {}), '(args.emsize, args.src_vocab_size, constants.PAD)', False, 'from c2nl.modules.embeddings import Embeddings\n'), ((36, 39, 38, 64), 'c2nl.modules.embeddings.Embeddings', 'Embeddings', ({(36, 50, 36, 61): 'args.emsize', (37, 50, 37, 69): 'args.tgt_vocab_size', (38, 50, 38, 63): 'constants.PAD'}, {}), '(args.emsize, args.tgt_vocab_size, constants.PAD)', False, 'from c2nl.modules.embeddings import Embeddings\n'), ((45, 39, 48, 67), 'c2nl.modules.char_embedding.CharEmbedding', 'CharEmbedding', ({(45, 53, 45, 70): 'args.n_characters', (46, 53, 46, 69): 'args.char_emsize', (47, 53, 47, 69): 'args.filter_size', (48, 53, 48, 66): 'args.nfilters'}, {}), '(args.n_characters, args.char_emsize, args.filter_size, args.\n nfilters)', False, 'from c2nl.modules.char_embedding import CharEmbedding\n'), ((50, 35, 50, 77), 'c2nl.modules.highway.Highway', 'Highway', (), '', False, 'from c2nl.modules.highway import Highway\n'), ((54, 39, 57, 67), 'c2nl.modules.char_embedding.CharEmbedding', 'CharEmbedding', ({(54, 53, 54, 70): 'args.n_characters', (55, 53, 55, 69): 'args.char_emsize', (56, 53, 56, 69): 'args.filter_size', (57, 53, 57, 66): 'args.nfilters'}, {}), '(args.n_characters, args.char_emsize, args.filter_size, args.\n nfilters)', False, 'from c2nl.modules.char_embedding import CharEmbedding\n'), ((59, 35, 59, 77), 'c2nl.modules.highway.Highway', 'Highway', (), '', False, 'from c2nl.modules.highway import Highway\n'), ((71, 38, 72, 71), 'torch.nn.Embedding', 'nn.Embedding', ({(71, 51, 71, 67): 'args.max_src_len', (72, 51, 72, 70): 'self.enc_input_size'}, {}), '(args.max_src_len, self.enc_input_size)', True, 'import torch.nn as nn\n'), ((75, 38, 76, 71), 'torch.nn.Embedding', 'nn.Embedding', ({(75, 51, 75, 71): 'args.max_tgt_len + 2', (76, 51, 76, 70): 'self.dec_input_size'}, {}), '(args.max_tgt_len + 2, self.dec_input_size)', True, 'import torch.nn as nn\n'), ((160, 33, 160, 69), 'torch.nn.Linear', 'nn.Linear', (), '', True, 'import torch.nn as nn\n'), ((170, 21, 170, 54), 'torch.stack', 'torch.stack', (), '', False, 'import torch\n'), ((172, 27, 172, 58), 'torch.nn.functional.softmax', 'f.softmax', (), '', True, 'import torch.nn.functional as f\n'), ((189, 33, 198, 13), 'c2nl.decoders.transformer.TransformerDecoder', 'TransformerDecoder', (), '', False, 'from c2nl.decoders.transformer import TransformerDecoder\n'), ((199, 33, 207, 13), 'c2nl.decoders.transformer.TransformerDecoder', 'TransformerDecoder', (), '', False, 'from c2nl.decoders.transformer import TransformerDecoder\n'), ((219, 31, 228, 13), 'c2nl.decoders.transformer.TransformerDecoder', 'TransformerDecoder', (), '', False, 'from c2nl.decoders.transformer import TransformerDecoder\n'), ((231, 25, 233, 13), 'torch.load', 'torch.load', (), '', False, 'import torch\n'), ((323, 29, 324, 70), 'c2nl.modules.global_attention.GlobalAttention', 'GlobalAttention', (), '', False, 'from c2nl.modules.global_attention import GlobalAttention\n'), ((325, 34, 327, 63), 'c2nl.modules.copy_generator.CopyGenerator', 'CopyGenerator', ({(325, 48, 325, 71): 'self.decoder.input_size', (326, 48, 326, 56): 'tgt_dict', (327, 48, 327, 62): 'self.generator'}, {}), '(self.decoder.input_size, tgt_dict, self.generator)', False, 'from c2nl.modules.copy_generator import CopyGenerator, CopyGeneratorCriterion\n'), ((331, 29, 331, 66), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', (), '', True, 'import torch.nn as nn\n'), ((380, 24, 380, 53), 'torch.nn.functional.softmax', 'f.softmax', (), '', True, 'import torch.nn.functional as f\n'), ((470, 24, 470, 57), 'torch.LongTensor', 'torch.LongTensor', ({(470, 41, 470, 56): '[constants.BOS]'}, {}), '([constants.BOS])', False, 'import torch\n'), ((603, 20, 603, 49), 'torch.stack', 'torch.stack', (), '', False, 'import torch\n'), ((605, 21, 605, 51), 'torch.stack', 'torch.stack', (), '', False, 'import torch\n'), ((211, 16, 211, 63), 'torch.nn.Linear', 'nn.Linear', ({(211, 26, 211, 45): 'self.input_size * 2', (211, 47, 211, 62): 'self.input_size'}, {}), '(self.input_size * 2, self.input_size)', True, 'import torch.nn as nn\n'), ((212, 16, 212, 28), 'torch.nn.Sigmoid', 'nn.Sigmoid', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((215, 16, 215, 63), 'torch.nn.Linear', 'nn.Linear', ({(215, 26, 215, 45): 'self.input_size * 2', (215, 47, 215, 62): 'self.input_size'}, {}), '(self.input_size * 2, self.input_size)', True, 'import torch.nn as nn\n'), ((216, 16, 216, 25), 'torch.nn.ReLU', 'nn.ReLU', ({}, {}), '()', True, 'import torch.nn as nn\n'), ((273, 38, 273, 78), 'torch.cat', 'torch.cat', (), '', False, 'import torch\n'), ((522, 28, 522, 57), 'torch.nn.functional.softmax', 'f.softmax', (), '', True, 'import torch.nn.functional as f\n'), ((540, 29, 540, 57), 'torch.nn.functional.softmax', 'f.softmax', (), '', True, 'import torch.nn.functional as f\n'), ((543, 32, 543, 74), 'torch.max', 'torch.max', (), '', False, 'import torch\n'), ((544, 27, 544, 54), 'torch.log', 'torch.log', ({(544, 37, 544, 53): 'tgt_prob + 1e-20'}, {}), '(tgt_prob + 1e-20)', False, 'import torch\n'), ((554, 27, 554, 59), 'torch.stack', 'torch.stack', (), '', False, 'import torch\n'), ((96, 31, 96, 65), 'torch.cat', 'torch.cat', ({(96, 41, 96, 61): '(word_rep, char_rep)', (96, 63, 96, 64): '2'}, {}), '((word_rep, char_rep), 2)', False, 'import torch\n'), ((274, 48, 274, 71), 'torch.mul', 'torch.mul', ({(274, 58, 274, 61): 'f_t', (274, 63, 274, 70): 'dec_out'}, {}), '(f_t, dec_out)', False, 'import torch\n'), ((567, 20, 567, 39), 'torch.Tensor', 'torch.Tensor', ({(567, 33, 567, 38): 'words'}, {}), '(words)', False, 'import torch\n'), ((121, 31, 121, 65), 'torch.cat', 'torch.cat', ({(121, 41, 121, 61): '(word_rep, char_rep)', (121, 63, 121, 64): '2'}, {}), '((word_rep, char_rep), 2)', False, 'import torch\n'), ((128, 30, 128, 54), 'torch.LongTensor', 'torch.LongTensor', ({(128, 47, 128, 53): '[step]'}, {}), '([step])', False, 'import torch\n'), ((529, 34, 529, 70), 'torch.LongTensor', 'torch.LongTensor', ({(529, 51, 529, 69): "params['blank'][b]"}, {}), "(params['blank'][b])", False, 'import torch\n'), ((530, 33, 530, 68), 'torch.LongTensor', 'torch.LongTensor', ({(530, 50, 530, 67): "params['fill'][b]"}, {}), "(params['fill'][b])", False, 'import torch\n'), ((564, 28, 564, 51), 'torch.Tensor', 'torch.Tensor', ({(564, 41, 564, 50): 'tgt_chars'}, {}), '(tgt_chars)', False, 'import torch\n')]
cjellick/python-agent
cattle/plugins/docker/delegate.py
6991369e309d050a43cba770df6e8ddd758f671d
import logging from cattle import Config from cattle.utils import reply, popen from .compute import DockerCompute from cattle.agent.handler import BaseHandler from cattle.progress import Progress from cattle.type_manager import get_type, MARSHALLER from . import docker_client import subprocess import os import time log = logging.getLogger('docker') def ns_exec(pid, event): script = os.path.join(Config.home(), 'events', event.name.split(';')[0]) cmd = ['nsenter', '-F', '-m', '-u', '-i', '-n', '-p', '-t', str(pid), '--', script] marshaller = get_type(MARSHALLER) input = marshaller.to_string(event) data = None env = {} with open('/proc/{}/environ'.format(pid)) as f: for line in f.read().split('\0'): if not len(line): continue kv = line.split('=', 1) if kv[0].startswith('CATTLE'): env[kv[0]] = kv[1] env['PATH'] = os.environ['PATH'] env['CATTLE_CONFIG_URL'] = Config.config_url() for i in range(3): p = popen(cmd, env=env, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) output, error = p.communicate(input=input) retcode = p.poll() if retcode == 0: break exists_cmd = cmd[:-1] + ['/usr/bin/test', '-e', script] if popen(exists_cmd, env=env).wait() == 0: break # Sleep and try again if missing time.sleep(1) if retcode: return retcode, output, None text = [] for line in output.splitlines(): if line.startswith('{'): data = marshaller.from_string(line) break text.append(line) return retcode, ''.join(text), data class DockerDelegate(BaseHandler): def __init__(self): self.compute = DockerCompute() pass def events(self): return ['delegate.request'] def delegate_request(self, req=None, event=None, instanceData=None, **kw): if instanceData.kind != 'container' or \ instanceData.get('token') is None: return container = self.compute.get_container(docker_client(), instanceData, by_agent=True) if container is None: log.info('Can not call [%s], container does not exists', instanceData.uuid) return inspect = self.compute.inspect(container) try: running = inspect['State']['Running'] if not running: log.error('Can not call [%s], container is not running', instanceData.uuid) return except KeyError: log.error('Can not call [%s], container is not running', instanceData.uuid) return progress = Progress(event, parent=req) exit_code, output, data = ns_exec(inspect['State']['Pid'], event) if exit_code == 0: return reply(event, data, parent=req) else: progress.update('Update failed', data={ 'exitCode': exit_code, 'output': output })
[((15, 6, 15, 33), 'logging.getLogger', 'logging.getLogger', ({(15, 24, 15, 32): '"""docker"""'}, {}), "('docker')", False, 'import logging\n'), ((30, 17, 30, 37), 'cattle.type_manager.get_type', 'get_type', ({(30, 26, 30, 36): 'MARSHALLER'}, {}), '(MARSHALLER)', False, 'from cattle.type_manager import get_type, MARSHALLER\n'), ((44, 31, 44, 50), 'cattle.Config.config_url', 'Config.config_url', ({}, {}), '()', False, 'from cattle import Config\n'), ((19, 26, 19, 39), 'cattle.Config.home', 'Config.home', ({}, {}), '()', False, 'from cattle import Config\n'), ((47, 12, 51, 43), 'cattle.utils.popen', 'popen', (), '', False, 'from cattle.utils import reply, popen\n'), ((63, 8, 63, 21), 'time.sleep', 'time.sleep', ({(63, 19, 63, 20): '(1)'}, {}), '(1)', False, 'import time\n'), ((111, 19, 111, 46), 'cattle.progress.Progress', 'Progress', (), '', False, 'from cattle.progress import Progress\n'), ((115, 19, 115, 49), 'cattle.utils.reply', 'reply', (), '', False, 'from cattle.utils import reply, popen\n'), ((59, 11, 59, 37), 'cattle.utils.popen', 'popen', (), '', False, 'from cattle.utils import reply, popen\n')]
ehickox2012/bitraider
bitraider/strategy.py
dcc695b93dc1c22415780e3f5ff9f7ee29d6988c
import sys import pytz #import xml.utils.iso8601 import time import numpy from datetime import date, datetime, timedelta from matplotlib import pyplot as plt from exchange import cb_exchange as cb_exchange from exchange import CoinbaseExchangeAuth from abc import ABCMeta, abstractmethod class strategy(object): """`strategy` defines an abstract base strategy class. Minimum required to create a strategy is a file with a class which inherits from strategy containing a backtest_strategy function. As a bonus, strategy includes utility functions like calculate_historic_data. """ __metaclass__ = ABCMeta def __init__(name="default name", interval=5): """Constructor for an abstract strategy. You can modify it as needed. \n`interval`: a.k.a timeslice the amount of time in seconds for each 'tick' default is 5 \n`name`: a string name for the strategy """ self.name = name self.interval = interval self.times_recalculated = 0 @abstractmethod def trade(self, timeslice): """Perform operations on a timeslice. \n`timeslice`: a section of trade data with time length equal to the strategy's interval, formatted as follows: \n[time, low, high, open, close, volume] """ return def backtest_strategy(self, historic_data): """Returns performance of a strategy vs market performance. """ # Reverse the data since Coinbase returns it in reverse chronological # now historic_data strarts with the oldest entry historic_data = list(reversed(historic_data)) earliest_time = float(historic_data[0][0]) latest_time = float(historic_data[-1][0]) start_price = float(historic_data[0][4]) end_price = float(historic_data[-1][4]) market_performance = ((end_price-start_price)/start_price)*100 print("Running simulation on historic data. This may take some time....") for timeslice in historic_data: # Display what percent through the data we are idx = historic_data.index(timeslice) percent = (float(idx)/float(len(historic_data)))*100 + 1 sys.stdout.write("\r%d%%" % percent) sys.stdout.flush() self.trade(timeslice) # Calculate performance end_amt_no_trades = (float(self.exchange.start_usd)/float(end_price)) + float(self.exchange.start_btc) end_amt = (float(self.exchange.usd_bal)/float(end_price)) + float(self.exchange.btc_bal) start_amt = (float(self.exchange.start_usd)/float(start_price)) + float(self.exchange.start_btc) strategy_performance = ((end_amt-start_amt)/start_amt)*100 print("\n") print("Times recalculated: "+str(self.times_recalculated)) print("Times bought: "+str(self.exchange.times_bought)) print("Times sold: "+str(self.exchange.times_sold)) print("The Market's performance: "+str(market_performance)+" %") print("Strategy's performance: "+str(strategy_performance)+" %") print("Account's ending value if no trades were made: "+str(end_amt_no_trades)+" BTC") print("Account's ending value with this strategy: "+str(end_amt)+" BTC") strategy_performance_vs_market = strategy_performance - market_performance if strategy_performance > market_performance: print("Congratulations! This strategy has beat the market by: "+str(strategy_performance_vs_market)+" %") elif strategy_performance < market_performance: print("This strategy has preformed: "+str(strategy_performance_vs_market)+" % worse than market.") return strategy_performance_vs_market, strategy_performance, market_performance @staticmethod def calculate_historic_data(data, pivot): """Returns average price weighted according to volume, and the number of bitcoins traded above and below a price point, called a pivot.\n \npivot: the price used for returning volume above and below \ndata: a list of lists formated as follows [time, low, high, open, close] \n[ \n\t["2014-11-07 22:19:28.578544+00", "0.32", "4.2", "0.35", "4.2", "12.3"], \n\t\t... \n] """ price_list = [] weights = [] if data is None: pass min_price = float(data[0][1]) max_price = float(data[0][2]) discrete_prices = {} for timeslice in data: timeslice = [float(i) for i in timeslice] if max_price < timeslice[2]: max_prie = timeslice[2] if min_price > timeslice[1]: min_price = timeslice[1] closing_price = timeslice[4] volume = timeslice[5] if closing_price not in discrete_prices.keys(): discrete_prices[str(closing_price)] = volume else: discrete[str(closing_price)] += volume idx = data.index(timeslice) price_list.append(closing_price) weights.append(volume) fltprices = [float(i) for i in discrete_prices.keys()] fltvolumes = [float(i) for i in discrete_prices.values()] np_discrete_prices = numpy.array(fltprices) np_volume_per_price = numpy.array(fltvolumes) weighted_avg = numpy.average(np_discrete_prices, weights=np_volume_per_price) num_above = 0 num_below = 0 num_at = 0 for key in discrete_prices.keys(): value = discrete_prices[key] if float(key) > pivot: num_above+=value elif float(key) < pivot: num_below+=value elif float(key) == pivot: num_at+=value total_volume = 0.0 for volume in fltvolumes: total_volume+=volume fltprops = [] for volume in fltvolumes: fltprops.append((volume/total_volume)) #print("num_below: "+str(num_below)) #print("num_above: "+str(num_above)) #print("num_at: "+str(num_at)) #print("weighted_average: "+str(weighted_avg)) #plt.title("Price distribution") #plt.xlabel("Price (USD)") #plt.ylabel("Volume") #plt.bar(fltprices, fltprops) #plt.show() return weighted_avg, num_above, num_below
[((119, 29, 119, 51), 'numpy.array', 'numpy.array', ({(119, 41, 119, 50): 'fltprices'}, {}), '(fltprices)', False, 'import numpy\n'), ((120, 30, 120, 53), 'numpy.array', 'numpy.array', ({(120, 42, 120, 52): 'fltvolumes'}, {}), '(fltvolumes)', False, 'import numpy\n'), ((121, 23, 121, 85), 'numpy.average', 'numpy.average', (), '', False, 'import numpy\n'), ((54, 12, 54, 48), 'sys.stdout.write', 'sys.stdout.write', ({(54, 29, 54, 47): "('\\r%d%%' % percent)"}, {}), "('\\r%d%%' % percent)", False, 'import sys\n'), ((55, 12, 55, 30), 'sys.stdout.flush', 'sys.stdout.flush', ({}, {}), '()', False, 'import sys\n')]
PacktPublishing/Python-Deep-Learning-for-Beginners-
neural-networks.py
90f110158cbf0ce02fd4d5d09e3b2034428d9992
import numpy as np # Perceptron def predict_perceptron(inputs, weights): if np.dot(inputs, weights) > 0: return 1 else: return 0 def predict_perceptron_proper(inputs, weights): def step_function(input): return 1 if input > 0 else 0 def linear_model(inputs, weights): return np.dot(inputs, weights) return step_function(linear_model(inputs, weights)) def neuron(inputs, weights): def sigmoid_function(input): return 1 / (1 + np.exp(-1 * input)) def linear_model(inputs, weights): return np.dot(inputs, weights) return sigmoid_function(linear_model(inputs, weights)) neural_network = neuron(neuron(inputs, weights1), weights2)
[((5, 7, 5, 30), 'numpy.dot', 'np.dot', ({(5, 14, 5, 20): 'inputs', (5, 22, 5, 29): 'weights'}, {}), '(inputs, weights)', True, 'import numpy as np\n'), ((16, 15, 16, 38), 'numpy.dot', 'np.dot', ({(16, 22, 16, 28): 'inputs', (16, 30, 16, 37): 'weights'}, {}), '(inputs, weights)', True, 'import numpy as np\n'), ((26, 15, 26, 38), 'numpy.dot', 'np.dot', ({(26, 22, 26, 28): 'inputs', (26, 30, 26, 37): 'weights'}, {}), '(inputs, weights)', True, 'import numpy as np\n'), ((23, 24, 23, 42), 'numpy.exp', 'np.exp', ({(23, 31, 23, 41): '(-1 * input)'}, {}), '(-1 * input)', True, 'import numpy as np\n')]
andreasjansson/OroJaR
biggan_discovery/orojar_discover.py
ebb8c0333bbd33c063b6dd4a21a0559eb86d13e9
""" Learns a matrix of Z-Space directions using a pre-trained BigGAN Generator. Modified from train.py in the PyTorch BigGAN repo. """ import os from tqdm import tqdm import torch import torch.nn as nn import torch.optim import utils import train_fns from sync_batchnorm import patch_replication_callback from torch.utils.tensorboard import SummaryWriter from orojar import orojar from direction_utils import visualize_directions, load_G, get_direction_padding_fn, init_wandb, download_G from layers import fast_gram_schmidt, norm class DataParallelLoss(nn.Module): """ This is simply a wrapper class to compute the OroJaR efficiently over several GPUs """ def __init__(self, G): super(DataParallelLoss, self).__init__() self.G = G def forward(self, z, y, w, Q): penalty = orojar(self.G, z, c=y, w=w, G_z=None, Q=Q, multiple_layers=False) return penalty # The main training file. Config is a dictionary specifying the configuration # of this training run. def run(config): if config['wandb_entity'] is not None: init_wandb(config, config['experiment_name'], config['wandb_entity'], 'imagenet') if config["G_path"] is None: # Download a pre-trained G if necessary download_G() config["G_path"] = 'checkpoints/138k' G, state_dict, device, experiment_name = load_G(config) # If parallel, parallelize the GD module if config['parallel']: G = nn.DataParallel(DataParallelLoss(G)) if config['cross_replica']: patch_replication_callback(G) num_gpus = torch.cuda.device_count() print(f'Using {num_gpus} GPUs') # If search_space != 'all', then we need to pad the z components that we are leaving alone: pad = get_direction_padding_fn(config) direction_size = config['dim_z'] if config['search_space'] == 'all' else config['ndirs'] # A is our (ndirs, |z|) matrix of directions, where ndirs indicates the number of directions we want to learn if config['load_A'] == 'coords': print('Initializing with standard basis directions') A = torch.nn.Parameter(torch.eye(config['ndirs'], direction_size, device=device), requires_grad=True) elif config['load_A'] == 'random': print('Initializing with random directions') A = torch.nn.Parameter(torch.empty(config['ndirs'], direction_size, device=device), requires_grad=True) torch.nn.init.kaiming_normal_(A) else: raise NotImplementedError # We only learn A; G is left frozen during training: optim = torch.optim.Adam(params=[A], lr=config['A_lr']) # Allow for different batch sizes in G G_batch_size = max(config['G_batch_size'], config['batch_size']) z_, y_ = utils.prepare_z_y(G_batch_size, G.module.G.dim_z, config['n_classes'], device=device, fp16=config['G_fp16']) # Prepare a fixed z & y to see individual sample evolution throghout training fixed_z, fixed_y = utils.prepare_z_y(G_batch_size, G.module.G.dim_z, config['n_classes'], device=device, fp16=config['G_fp16']) fixed_z.sample_() fixed_y.sample_() interp_z, interp_y = utils.prepare_z_y(config["n_samples"], G.module.G.dim_z, config['n_classes'], device=device, fp16=config['G_fp16']) interp_z.sample_() interp_y.sample_() if config['fix_class'] is not None: y_ = y_.new_full(y_.size(), config['fix_class']) fixed_y = fixed_y.new_full(fixed_y.size(), config['fix_class']) interp_y = interp_y.new_full(interp_y.size(), config['fix_class']) print('Beginning training at epoch %d...' % state_dict['epoch']) # Train for specified number of epochs, although we mostly track G iterations. iters_per_epoch = 1000 dummy_loader = [None] * iters_per_epoch # We don't need any real data path_size = config['path_size'] # Simply stores a |z|-dimensional one-hot vector indicating each direction we are learning: direction_indicators = torch.eye(config['ndirs']).to(device) G.eval() G.module.optim = optim writer = SummaryWriter('%s/%s' % (config['logs_root'], experiment_name)) sample_sheet = train_fns.save_and_sample(G.module.G, None, G.module.G, z_, y_, fixed_z, fixed_y, state_dict, config, experiment_name) writer.add_image('samples', sample_sheet, 0) interp_y_ = G.module.G.shared(interp_y) norm_fn = norm # Make directions orthonormal via Gram Schmidt followed a normalization: Q = pad(norm_fn(fast_gram_schmidt(A))) if not config["no_ortho"] else pad(A) if config["vis_during_training"]: print("Generating initial visualizations...") interp_vis = visualize_directions(G.module.G, interp_z, interp_y_, path_sizes=path_size, Q=Q, high_quality=False, npv=1) for w_ix in range(config['ndirs']): writer.add_video('G_ema/w%03d' % w_ix, interp_vis[w_ix], 0, fps=24) for epoch in range(state_dict['epoch'], config['num_epochs']): if config['pbar'] == 'mine': pbar = utils.progress(dummy_loader, displaytype='s1k' if config['use_multiepoch_sampler'] else 'eta') else: pbar = tqdm(dummy_loader) for i, _ in enumerate(pbar): state_dict['itr'] += 1 z_.sample_() if config['fix_class'] is None: y_.sample_() y = G.module.G.shared(y_) # OroJaR taken w.r.t. w_sampled, NOT z: w = torch.zeros((G_batch_size, config['ndirs'])) # equal to the one-hot w penalty = G(z_, y, w=w, Q=Q.repeat(num_gpus, 1)).mean() optim.zero_grad() penalty.backward() optim.step() # re-orthogonalize A for visualizations and the next training iteration: Q = pad(norm_fn(fast_gram_schmidt(A))) if not config["no_ortho"] else pad(A) # Log metrics to TensorBoard/WandB: cur_training_iter = epoch * iters_per_epoch + i writer.add_scalar(f'Metrics/orojar', penalty.item(), cur_training_iter) writer.add_scalar('Metrics/direction_norm', A.pow(2).mean().pow(0.5).item(), cur_training_iter) # Save directions and log visuals: if not (state_dict['itr'] % config['save_every']): torch.save(A.cpu().detach(), '%s/%s/A_%06d.pt' % (config['weights_root'], experiment_name, cur_training_iter)) if config["vis_during_training"]: interp_vis = visualize_directions(G.module.G, interp_z, interp_y_, path_sizes=path_size, Q=Q, high_quality=False, npv=1) for w_ix in range(config['ndirs']): writer.add_video('G_ema/w%03d' % w_ix, interp_vis[w_ix], cur_training_iter, fps=24) state_dict['epoch'] += 1 def main(): # parse command line and run parser = utils.prepare_parser() config = vars(parser.parse_args()) print(config) run(config) if __name__ == '__main__': main()
[((46, 45, 46, 59), 'direction_utils.load_G', 'load_G', ({(46, 52, 46, 58): 'config'}, {}), '(config)', False, 'from direction_utils import visualize_directions, load_G, get_direction_padding_fn, init_wandb, download_G\n'), ((53, 15, 53, 40), 'torch.cuda.device_count', 'torch.cuda.device_count', ({}, {}), '()', False, 'import torch\n'), ((57, 10, 57, 42), 'direction_utils.get_direction_padding_fn', 'get_direction_padding_fn', ({(57, 35, 57, 41): 'config'}, {}), '(config)', False, 'from direction_utils import visualize_directions, load_G, get_direction_padding_fn, init_wandb, download_G\n'), ((70, 12, 70, 59), 'torch.optim.Adam', 'torch.optim.Adam', (), '', False, 'import torch\n'), ((74, 13, 75, 68), 'utils.prepare_z_y', 'utils.prepare_z_y', (), '', False, 'import utils\n'), ((78, 23, 80, 63), 'utils.prepare_z_y', 'utils.prepare_z_y', (), '', False, 'import utils\n'), ((84, 25, 86, 65), 'utils.prepare_z_y', 'utils.prepare_z_y', (), '', False, 'import utils\n'), ((108, 13, 108, 76), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ({(108, 27, 108, 75): "'%s/%s' % (config['logs_root'], experiment_name)"}, {}), "('%s/%s' % (config['logs_root'], experiment_name))", False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((109, 19, 110, 81), 'train_fns.save_and_sample', 'train_fns.save_and_sample', ({(109, 45, 109, 55): 'G.module.G', (109, 57, 109, 61): 'None', (109, 63, 109, 73): 'G.module.G', (109, 75, 109, 77): 'z_', (109, 79, 109, 81): 'y_', (109, 83, 109, 90): 'fixed_z', (109, 92, 109, 99): 'fixed_y', (110, 45, 110, 55): 'state_dict', (110, 57, 110, 63): 'config', (110, 65, 110, 80): 'experiment_name'}, {}), '(G.module.G, None, G.module.G, z_, y_, fixed_z,\n fixed_y, state_dict, config, experiment_name)', False, 'import train_fns\n'), ((169, 13, 169, 35), 'utils.prepare_parser', 'utils.prepare_parser', ({}, {}), '()', False, 'import utils\n'), ((33, 18, 33, 83), 'orojar.orojar', 'orojar', (), '', False, 'from orojar import orojar\n'), ((42, 8, 42, 89), 'direction_utils.init_wandb', 'init_wandb', ({(42, 19, 42, 25): 'config', (42, 27, 42, 52): "config['experiment_name']", (42, 54, 42, 76): "config['wandb_entity']", (42, 78, 42, 88): '"""imagenet"""'}, {}), "(config, config['experiment_name'], config['wandb_entity'],\n 'imagenet')", False, 'from direction_utils import visualize_directions, load_G, get_direction_padding_fn, init_wandb, download_G\n'), ((44, 8, 44, 20), 'direction_utils.download_G', 'download_G', ({}, {}), '()', False, 'from direction_utils import visualize_directions, load_G, get_direction_padding_fn, init_wandb, download_G\n'), ((122, 21, 123, 68), 'direction_utils.visualize_directions', 'visualize_directions', (), '', False, 'from direction_utils import visualize_directions, load_G, get_direction_padding_fn, init_wandb, download_G\n'), ((51, 12, 51, 41), 'sync_batchnorm.patch_replication_callback', 'patch_replication_callback', ({(51, 39, 51, 40): 'G'}, {}), '(G)', False, 'from sync_batchnorm import patch_replication_callback\n'), ((62, 31, 62, 88), 'torch.eye', 'torch.eye', (), '', False, 'import torch\n'), ((66, 8, 66, 40), 'torch.nn.init.kaiming_normal_', 'torch.nn.init.kaiming_normal_', ({(66, 38, 66, 39): 'A'}, {}), '(A)', False, 'import torch\n'), ((102, 27, 102, 53), 'torch.eye', 'torch.eye', ({(102, 37, 102, 52): "config['ndirs']"}, {}), "(config['ndirs'])", False, 'import torch\n'), ((129, 19, 129, 113), 'utils.progress', 'utils.progress', (), '', False, 'import utils\n'), ((131, 19, 131, 37), 'tqdm.tqdm', 'tqdm', ({(131, 24, 131, 36): 'dummy_loader'}, {}), '(dummy_loader)', False, 'from tqdm import tqdm\n'), ((140, 16, 140, 60), 'torch.zeros', 'torch.zeros', ({(140, 28, 140, 59): "(G_batch_size, config['ndirs'])"}, {}), "((G_batch_size, config['ndirs']))", False, 'import torch\n'), ((65, 31, 65, 90), 'torch.empty', 'torch.empty', (), '', False, 'import torch\n'), ((118, 20, 118, 40), 'layers.fast_gram_schmidt', 'fast_gram_schmidt', ({(118, 38, 118, 39): 'A'}, {}), '(A)', False, 'from layers import fast_gram_schmidt, norm\n'), ((159, 33, 160, 80), 'direction_utils.visualize_directions', 'visualize_directions', (), '', False, 'from direction_utils import visualize_directions, load_G, get_direction_padding_fn, init_wandb, download_G\n'), ((147, 28, 147, 48), 'layers.fast_gram_schmidt', 'fast_gram_schmidt', ({(147, 46, 147, 47): 'A'}, {}), '(A)', False, 'from layers import fast_gram_schmidt, norm\n')]
Alva789ro/Regional-Comprehensive-Economic-Partnership-RCEP-Economic-Default-Risk-Analysis
file_importer0.py
454583f47883edae17391f101b10b38b68c9834f
import xlsxwriter import pandas as pd import numpy as np import mysql.connector australia=pd.read_excel(r'\Users\jesica\Desktop\RCEP_economic_analysis.xlsx', sheet_name='Australia') brunei=pd.read_excel(r'\Users\jesica\Desktop\RCEP_economic_analysis.xlsx', sheet_name='Brunei') cambodia=pd.read_excel(r'\Users\jesica\Desktop\RCEP_economic_analysis.xlsx', sheet_name='Cambodia') china=pd.read_excel(r'\Users\jesica\Desktop\RCEP_economic_analysis.xlsx', sheet_name='China') indonesia=pd.read_excel(r'\Users\jesica\Desktop\RCEP_economic_analysis.xlsx', sheet_name='Indonesia') japan=pd.read_excel(r'\Users\jesica\Desktop\RCEP_economic_analysis.xlsx', sheet_name='Japan') lao=pd.read_excel(r'\Users\jesica\Desktop\RCEP_economic_analysis.xlsx', sheet_name='Lao') malaysia=pd.read_excel(r'\Users\jesica\Desktop\RCEP_economic_analysis.xlsx', sheet_name='Malaysia') myanmar=pd.read_excel(r'\Users\jesica\Desktop\RCEP_economic_analysis.xlsx', sheet_name='Myanmar') new_zeland=pd.read_excel(r'\Users\jesica\Desktop\RCEP_economic_analysis.xlsx', sheet_name='New Zeland') philipines=pd.read_excel(r'\Users\jesica\Desktop\RCEP_economic_analysis.xlsx', sheet_name='Philipines') singapore=pd.read_excel(r'\Users\jesica\Desktop\RCEP_economic_analysis.xlsx', sheet_name='Singapore') thailand=pd.read_excel(r'\Users\jesica\Desktop\RCEP_economic_analysis.xlsx', sheet_name='Thailand') vietnam=pd.read_excel(r'\Users\jesica\Desktop\RCEP_economic_analysis.xlsx', sheet_name='Vietnam') ''' mydb = mysql.connector.connect( host = "localhost", user = "root", passwd = "", database = "" ) mycursor = mydb.cursor() sqlformula1 = "INSERT INTO australia VALUES(%s, %s, %s, %s, %s, %s, %s, %s)" for a, b, c, d, e, f, g, h in zip(australia['Year'], australia['RGDP'], australia['NGDP'], australia['GDP_pc'], australia['Inflation'], australia['Unemployment_Rate'], australia['Net_LB'], australia['Account_Balance']): mycursor.execute(sqlformula1, [a, b, c, d, e, f, g, h]) sqlformula2 = "INSERT INTO brunei VALUES(%s, %s, %s, %s, %s, %s, %s, %s)" for a, b, c, d, e, f, g, h in zip(brunei['Year'], brunei['RGDP'], brunei['NGDP'], brunei['GDP_pc'], brunei['Inflation'], brunei['Unemployment_Rate'], brunei['Net_LB'], brunei['Account_Balance']): mycursor.execute(sqlformula2, [a, b, c, d, e, f, g, h]) sqlformula3 = "INSERT INTO cambodia VALUES(%s, %s, %s, %s, %s, %s, %s, %s)" for a, b, c, d, e, f, g, h in zip(cambodia['Year'], cambodia['RGDP'], cambodia['NGDP'], cambodia['GDP_pc'], cambodia['Inflation'], cambodia['Unemployment_Rate'], cambodia['Net_LB'], cambodia['Account_Balance']): mycursor.execute(sqlformula3, [a, b, c, d, e, f, g, h]) sqlformula4 = "INSERT INTO china VALUES(%s, %s, %s, %s, %s, %s, %s, %s)" for a, b, c, d, e, f, g, h in zip(china['Year'], china['RGDP'], china['NGDP'], china['GDP_pc'], china['Inflation'], china['Unemployment_Rate'], china['Net_LB'], china['Account_Balance']): mycursor.execute(sqlformula4, [a, b, c, d, e, f, g, h]) sqlformula5 = "INSERT INTO indonesia VALUES(%s, %s, %s, %s, %s, %s, %s, %s)" for a, b, c, d, e, f, g, h in zip(indonesia['Year'], indonesia['RGDP'], indonesia['NGDP'], indonesia['GDP_pc'], indonesia['Inflation'], indonesia['Unemployment_Rate'], indonesia['Net_LB'], indonesia['Account_Balance']): mycursor.execute(sqlformula5, [a, b, c, d, e, f, g, h]) sqlformula6 = "INSERT INTO japan VALUES(%s, %s, %s, %s, %s, %s, %s, %s)" for a, b, c, d, e, f, g, h in zip(japan['Year'], japan['RGDP'], japan['NGDP'], japan['GDP_pc'], japan['Inflation'], japan['Unemployment_Rate'], japan['Net_LB'], japan['Account_Balance']): mycursor.execute(sqlformula6, [a, b, c, d, e, f, g, h]) sqlformula7 = "INSERT INTO lao VALUES(%s, %s, %s, %s, %s, %s, %s, %s)" for a, b, c, d, e, f, g, h in zip(lao['Year'], lao['RGDP'], lao['NGDP'], lao['GDP_pc'], lao['Inflation'], lao['Unemployment_Rate'], lao['Net_LB'], lao['Account_Balance']): mycursor.execute(sqlformula7, [a, b, c, d, e, f, g, h]) sqlformula8 = "INSERT INTO malaysia VALUES(%s, %s, %s, %s, %s, %s, %s, %s)" for a, b, c, d, e, f, g, h in zip(malaysia['Year'], malaysia['RGDP'], malaysia['NGDP'], malaysia['GDP_pc'], malaysia['Inflation'], malaysia['Unemployment_Rate'], malaysia['Net_LB'], malaysia['Account_Balance']): mycursor.execute(sqlformula8, [a, b, c, d, e, f, g, h]) sqlformula9 = "INSERT INTO myanmar VALUES(%s, %s, %s, %s, %s, %s, %s, %s)" for a, b, c, d, e, f, g, h in zip(myanmar['Year'], myanmar['RGDP'], myanmar['NGDP'], myanmar['GDP_pc'], myanmar['Inflation'], myanmar['Unemployment_Rate'], myanmar['Net_LB'], myanmar['Account_Balance']): mycursor.execute(sqlformula9, [a, b, c, d, e, f, g, h]) sqlformula10 = "INSERT INTO new_zeland VALUES(%s, %s, %s, %s, %s, %s, %s, %s)" for a, b, c, d, e, f, g, h in zip(new_zeland['Year'], new_zeland['RGDP'], new_zeland['NGDP'], new_zeland['GDP_pc'], new_zeland['Inflation'], new_zeland['Unemployment_Rate'], new_zeland['Net_LB'], new_zeland['Account_Balance']): mycursor.execute(sqlformula10, [a, b, c, d, e, f, g, h]) sqlformula11 = "INSERT INTO philipines VALUES(%s, %s, %s, %s, %s, %s, %s, %s)" for a, b, c, d, e, f, g, h in zip(philipines['Year'], philipines['RGDP'], philipines['NGDP'], philipines['GDP_pc'], philipines['Inflation'], philipines['Unemployment_Rate'], philipines['Net_LB'], philipines['Account_Balance']): mycursor.execute(sqlformula11, [a, b, c, d, e, f, g, h]) sqlformula12 = "INSERT INTO singapore VALUES(%s, %s, %s, %s, %s, %s, %s, %s)" for a, b, c, d, e, f, g, h in zip(singapore['Year'], singapore['RGDP'], singapore['NGDP'], singapore['GDP_pc'], singapore['Inflation'], singapore['Unemployment_Rate'], singapore['Net_LB'], singapore['Account_Balance']): mycursor.execute(sqlformula12, [a, b, c, d, e, f, g, h]) sqlformula13 = "INSERT INTO thailand VALUES(%s, %s, %s, %s, %s, %s, %s, %s)" for a, b, c, d, e, f, g, h in zip(thailand['Year'], thailand['RGDP'], thailand['NGDP'], thailand['GDP_pc'], thailand['Inflation'], thailand['Unemployment_Rate'], thailand['Net_LB'], thailand['Account_Balance']): mycursor.execute(sqlformula13, [a, b, c, d, e, f, g, h]) sqlformula14 = "INSERT INTO vietnam VALUES(%s, %s, %s, %s, %s, %s, %s, %s)" for a, b, c, d, e, f, g, h in zip(vietnam['Year'], vietnam['RGDP'], vietnam['NGDP'], vietnam['GDP_pc'], vietnam['Inflation'], vietnam['Unemployment_Rate'], vietnam['Net_LB'], vietnam['Account_Balance']): mycursor.execute(sqlformula14, [a, b, c, d, e, f, g, h]) ''' #mydb.commit()
[((6, 10, 6, 101), 'pandas.read_excel', 'pd.read_excel', (), '', True, 'import pandas as pd\n'), ((7, 7, 7, 95), 'pandas.read_excel', 'pd.read_excel', (), '', True, 'import pandas as pd\n'), ((8, 9, 8, 99), 'pandas.read_excel', 'pd.read_excel', (), '', True, 'import pandas as pd\n'), ((9, 6, 9, 93), 'pandas.read_excel', 'pd.read_excel', (), '', True, 'import pandas as pd\n'), ((10, 10, 10, 101), 'pandas.read_excel', 'pd.read_excel', (), '', True, 'import pandas as pd\n'), ((11, 6, 11, 93), 'pandas.read_excel', 'pd.read_excel', (), '', True, 'import pandas as pd\n'), ((12, 4, 12, 89), 'pandas.read_excel', 'pd.read_excel', (), '', True, 'import pandas as pd\n'), ((13, 9, 13, 99), 'pandas.read_excel', 'pd.read_excel', (), '', True, 'import pandas as pd\n'), ((14, 8, 14, 97), 'pandas.read_excel', 'pd.read_excel', (), '', True, 'import pandas as pd\n'), ((15, 11, 15, 103), 'pandas.read_excel', 'pd.read_excel', (), '', True, 'import pandas as pd\n'), ((16, 11, 16, 103), 'pandas.read_excel', 'pd.read_excel', (), '', True, 'import pandas as pd\n'), ((17, 10, 17, 101), 'pandas.read_excel', 'pd.read_excel', (), '', True, 'import pandas as pd\n'), ((18, 9, 18, 99), 'pandas.read_excel', 'pd.read_excel', (), '', True, 'import pandas as pd\n'), ((19, 8, 19, 97), 'pandas.read_excel', 'pd.read_excel', (), '', True, 'import pandas as pd\n')]
VIOOH/nile
packer/resources/bootstrap_node.py
893802387b3891ea02aae05f39ff4aa051354f18
#!/usr/bin/env python3 import os import re import glob import boto3 import requests import subprocess from time import sleep AWS_REGION = os.environ['AWS_REGION'] DEPLOY_UUID = os.environ['DEPLOY_UUID'] SERVICE_NAME = os.environ['SERVICE_NAME'] MOUNT_POINT = "/var/lib/" + SERVICE_NAME NIC_IP = os.environ['NIC_IP'] TAG_KEY = os.environ['TAG_KEY'] def retrieve_eni_ids(): ec2 = boto3.resource('ec2') enis = [] for eni in ec2.network_interfaces.all(): for tag in eni.tag_set: if tag['Key'] == TAG_KEY: if tag['Value'] == DEPLOY_UUID: enis.append(eni.network_interface_id) return enis if len(enis) > 0 else None def attach_eni_ids(): c_ec2 = boto3.client('ec2') r_ec2 = boto3.resource('ec2') i_id = requests.get('http://169.254.169.254/latest/meta-data/instance-id').text eni_ids = retrieve_eni_ids() device_number = len(r_ec2.Instance(i_id).network_interfaces) + 1 for eni_id in eni_ids: c_ec2.attach_network_interface(DeviceIndex=device_number, InstanceId=i_id, NetworkInterfaceId=eni_id) def retrieve_ebs_ids(): ec2 = boto3.resource('ec2') ebss = [] for volume in ec2.volumes.all(): if volume.tags is not None: for tag in volume.tags: if tag['Key'] == TAG_KEY: if tag['Value'] == DEPLOY_UUID: ebss.append(volume.volume_id) return ebss if len(ebss) > 0 else None def attach_ebs(): ec2 = boto3.client('ec2') i_id = requests.get('http://169.254.169.254/latest/meta-data/instance-id').text volume_ids = retrieve_ebs_ids() i = 0 device_char = 'z' while i < len(volume_ids): v_id = volume_ids[i] device = '/dev/xvd{0}'.format(device_char) ec2.attach_volume(Device=device, InstanceId=i_id, VolumeId=v_id) # Wait to ensure device is attached sleep(3) if not check_ebs(v_id): prepare_ebs(v_id) add_fstab_entries(v_id, MOUNT_POINT) p_mount = subprocess.Popen('mount -a'.split(), stdout=subprocess.PIPE) stdout, stderr = p_mount.communicate() p_chown = subprocess.Popen('chown -R {0}:{0} {1}'.format(SERVICE_NAME, MOUNT_POINT).split(), stdout=subprocess.PIPE) stdout, stderr = p_chown.communicate() device_char = chr(ord(device_char) - 1) i += 1 def check_ebs(volume_id): v_id = volume_id.replace('vol-', 'vol') pattern = '/dev/disk/by-id/*{0}-part1'.format(v_id) return bool(len(glob.glob(pattern))) def prepare_ebs(volume_id): v_id = volume_id.replace('vol-', 'vol') pattern = '/dev/disk/by-id/*{0}'.format(v_id) device = glob.glob(pattern)[0] gdisk_commands = '\n'.join([ 'n', '1', '34', '', '', 'w', 'Y', '' ]) p_echo = subprocess.Popen('echo -ne {0}'.format(gdisk_commands).split(' '), stdout=subprocess.PIPE) p_fdisk = subprocess.Popen('gdisk {0}'.format(device).split(), stdin=p_echo.stdout, stdout=subprocess.PIPE) stdout, stderr = p_fdisk.communicate() print(stdout) print(stderr) # p_partprobe = subprocess.Popen('partprobe'.split(' '), stdout=subprocess.PIPE) # stdout, stderr = p_partprobe.communicate() # print(stdout) # print(stderr) sleep(3) pattern = '/dev/disk/by-id/*{0}-part1'.format(v_id) partition = glob.glob(pattern)[0] p_xfs = subprocess.Popen('mkfs.xfs {0}'.format(partition).split(), stdout=subprocess.PIPE) stdout, stderr = p_xfs.communicate() print(stdout) print(stderr) def add_fstab_entries(volume_id, mount_point): v_id = volume_id.replace('vol-', 'vol') pattern = '/dev/disk/by-id/*{0}-part1'.format(v_id) partition = glob.glob(pattern)[0] fstab_entries = [ mount_point, 'xfs', 'defaults', '0', '0' ] with open('/etc/fstab', 'a') as f: f.write('{0} {1}\n'.format(partition, ' '.join(fstab_entries))) f.flush() f.close() def wait_device_ready(timeout=3): c = 0 while c < timeout: sleep(1) p_ip = subprocess.Popen('ip a'.split(), stdout=subprocess.PIPE) stdout, stderr = p_ip.communicate() for line in stdout.decode().splitlines(): res = re.match('.*inet {0}/[0-9]{{2}}'.format(NIC_IP), line) if res is not None: return None c += 1 raise Exception('Device with address {0} not ready'.format(NIC_IP)) def change_default_route(): wait_device_ready(10) p_ip = subprocess.Popen('ip r'.split(), stdout=subprocess.PIPE) stdout, stderr = p_ip.communicate() r_subnet_rules = [] for line in stdout. decode().splitlines(): res = re.match('(.* ){2}eth[0-9](?! $).*', line) if res is not None: subnet_rule = res.group(0) l_subnet_rule = subnet_rule.split() device = l_subnet_rule[2] ip = l_subnet_rule[-1] r_subnet_rules.append( { 'device': device, 'ip': ip, 'subnet_rule': subnet_rule } ) r_default_route = '' for line in stdout.decode().splitlines(): res = re.match('default .*', line) if res is not None: r_default_route = res.group(0) break with open('/etc/rc.local', 'a') as f: f.write('#!/bin/bash\n\n') rule_index = 128 default_route_device = '' for rule in r_subnet_rules: default_route = re.sub('eth.', rule['device'], r_default_route) f.write('ip rule add from {0} table {1}\n'.format(rule['ip'], rule_index)) f.write('ip r add {0} table {1}\n'.format(default_route, rule_index)) f.write('ip r add {0} table {1}\n\n'.format(rule['subnet_rule'], rule_index)) if rule['ip'] == NIC_IP: default_route_device = rule['device'] rule_index += 1 default_route = re.sub('eth.', default_route_device, r_default_route) f.write('ip r del default\n') f.write('ip r add {0}\n\n'.format(default_route)) f.write('exit 0\n') f.flush() f.close() os.chmod('/etc/rc.local', 0o0755) p_rc_local = subprocess.Popen('/etc/rc.local'.split(), stdout=subprocess.PIPE) stdout, stderr = p_rc_local.communicate() if __name__ == '__main__': boto3.setup_default_session(region_name=AWS_REGION) # uses: DEPLOY_UUID, TAG_KEY attach_eni_ids() # uses: MOUNT_POINT, SERVICE_NAME, DEPLOY_UUID, TAG_KEY attach_ebs() # uses: NIC_IP change_default_route()
[((21, 10, 21, 31), 'boto3.resource', 'boto3.resource', ({(21, 25, 21, 30): '"""ec2"""'}, {}), "('ec2')", False, 'import boto3\n'), ((34, 12, 34, 31), 'boto3.client', 'boto3.client', ({(34, 25, 34, 30): '"""ec2"""'}, {}), "('ec2')", False, 'import boto3\n'), ((35, 12, 35, 33), 'boto3.resource', 'boto3.resource', ({(35, 27, 35, 32): '"""ec2"""'}, {}), "('ec2')", False, 'import boto3\n'), ((46, 10, 46, 31), 'boto3.resource', 'boto3.resource', ({(46, 25, 46, 30): '"""ec2"""'}, {}), "('ec2')", False, 'import boto3\n'), ((60, 10, 60, 29), 'boto3.client', 'boto3.client', ({(60, 23, 60, 28): '"""ec2"""'}, {}), "('ec2')", False, 'import boto3\n'), ((126, 4, 126, 12), 'time.sleep', 'sleep', ({(126, 10, 126, 11): '(3)'}, {}), '(3)', False, 'from time import sleep\n'), ((235, 4, 235, 37), 'os.chmod', 'os.chmod', ({(235, 13, 235, 28): '"""/etc/rc.local"""', (235, 30, 235, 36): '(493)'}, {}), "('/etc/rc.local', 493)", False, 'import os\n'), ((244, 4, 244, 55), 'boto3.setup_default_session', 'boto3.setup_default_session', (), '', False, 'import boto3\n'), ((37, 11, 37, 78), 'requests.get', 'requests.get', ({(37, 24, 37, 77): '"""http://169.254.169.254/latest/meta-data/instance-id"""'}, {}), "('http://169.254.169.254/latest/meta-data/instance-id')", False, 'import requests\n'), ((62, 11, 62, 78), 'requests.get', 'requests.get', ({(62, 24, 62, 77): '"""http://169.254.169.254/latest/meta-data/instance-id"""'}, {}), "('http://169.254.169.254/latest/meta-data/instance-id')", False, 'import requests\n'), ((74, 8, 74, 16), 'time.sleep', 'sleep', ({(74, 14, 74, 15): '(3)'}, {}), '(3)', False, 'from time import sleep\n'), ((102, 13, 102, 31), 'glob.glob', 'glob.glob', ({(102, 23, 102, 30): 'pattern'}, {}), '(pattern)', False, 'import glob\n'), ((129, 16, 129, 34), 'glob.glob', 'glob.glob', ({(129, 26, 129, 33): 'pattern'}, {}), '(pattern)', False, 'import glob\n'), ((140, 16, 140, 34), 'glob.glob', 'glob.glob', ({(140, 26, 140, 33): 'pattern'}, {}), '(pattern)', False, 'import glob\n'), ((160, 8, 160, 16), 'time.sleep', 'sleep', ({(160, 14, 160, 15): '(1)'}, {}), '(1)', False, 'from time import sleep\n'), ((184, 14, 184, 56), 're.match', 're.match', ({(184, 23, 184, 49): '"""(.* ){2}eth[0-9](?! $).*"""', (184, 51, 184, 55): 'line'}, {}), "('(.* ){2}eth[0-9](?! $).*', line)", False, 'import re\n'), ((202, 14, 202, 42), 're.match', 're.match', ({(202, 23, 202, 35): '"""default .*"""', (202, 37, 202, 41): 'line'}, {}), "('default .*', line)", False, 'import re\n'), ((226, 24, 226, 77), 're.sub', 're.sub', ({(226, 31, 226, 37): '"""eth."""', (226, 39, 226, 59): 'default_route_device', (226, 61, 226, 76): 'r_default_route'}, {}), "('eth.', default_route_device, r_default_route)", False, 'import re\n'), ((96, 20, 96, 38), 'glob.glob', 'glob.glob', ({(96, 30, 96, 37): 'pattern'}, {}), '(pattern)', False, 'import glob\n'), ((215, 28, 215, 75), 're.sub', 're.sub', ({(215, 35, 215, 41): '"""eth."""', (215, 43, 215, 57): "rule['device']", (215, 59, 215, 74): 'r_default_route'}, {}), "('eth.', rule['device'], r_default_route)", False, 'import re\n')]
otoriocyber/Chronos
parsers/srum_parser.py
d70e22afed723c0ad4b7e449bd253e15351bada6
import csv import datetime import random import os from parsers.parser_base import ParserBase FILE_TIME_EPOCH = datetime.datetime(1601, 1, 1) FILE_TIME_MICROSECOND = 10 def filetime_to_epoch_datetime(file_time): if isinstance(file_time, int): microseconds_since_file_time_epoch = file_time / FILE_TIME_MICROSECOND else: microseconds_since_file_time_epoch = int(file_time) / FILE_TIME_MICROSECOND return FILE_TIME_EPOCH + datetime.timedelta(microseconds=microseconds_since_file_time_epoch) class SrumParser(ParserBase): CSV_FIELDS = { "Unknown1.csv": ["TimeStamp", "AppId", "UserId", "EndTime", "DurationMS"], "Unknown2.csv": [], "Unknown3.csv": [], "Unknown4.csv": ["TimeStamp", "AppId", "UserId"], "SruDbCheckpointTable.csv": [], "SruDbIdMapTable.csv": [], "Network Usage.csv": ["TimeStamp", "AppId", "UserId", "InterfaceLuid", "L2ProfileId", "BytesSent", "BytesRecvd"], "Network Connections.csv": [], "Energy Usage.csv": [], "Energy Usage(Long - Term).csv": [], "Application Resources.csv": ["TimeStamp", "AppId", "UserId"], "Application Resource Usage.csv": ["TimeStamp", "AppId", "UserId"] } PARSING_TOOL = r"Tools\ese-analyst-master\ese2csv.exe" PARSE_COMMAND = "{parser_path} -o {output_path} -p srudb_plugin {srum_db} --plugin-args {software_hive}" def __init__(self, temp, config): super().__init__(config) self.temp_result_path = temp def parse(self, args): srum_db, software_hive = args output = r"{}\srum_{}".format(self.temp_result_path, random.randint(1, 1000000)) os.mkdir(output) command = self.PARSE_COMMAND.format(parser_path=self.PARSING_TOOL, output_path=output, srum_db=srum_db, software_hive=software_hive) self._run_command(command) for csv_file in os.listdir(output): srum_records = [] full_path = os.path.join(output, csv_file) headers = self.CSV_FIELDS.get(csv_file) if not headers: continue if csv_file == "Unknown1.csv": with open(full_path, "r") as f: reader = csv.DictReader(f) for line in reader: cur_record = {} endTime = line.get("EndTime") duration = line.get("DurationMS") if endTime and duration: cur_record["time"] = filetime_to_epoch_datetime(int(endTime) - int(duration)).isoformat() cur_record["EndTime"] = filetime_to_epoch_datetime(endTime).isoformat() cur_record["DurationMS"] = duration else: cur_record["time"] = datetime.datetime(1970, 1, 1).isoformat() cur_record["AppId"] = line.get("AppId") cur_record["UserId"] = line.get("UserId") srum_records.append(cur_record) else: with open(full_path, "r") as f: reader = csv.DictReader(f) for line in reader: cur_record = {} for header in headers: if header == "TimeStamp": cur_record["time"] = line.get("TimeStamp").replace(" ", "T") line.pop("TimeStamp") value = line.get(header) if value: if isinstance(value, bytes): cur_record[header.lower().replace(" ", "_")] = value.decode() elif str.isdigit(value): cur_record[header.lower().replace(" ", "_")] = int(value) else: cur_record[header.lower().replace(" ", "_")] = value else: cur_record[header.lower().replace(" ", "_")] = "" srum_records.append(cur_record) self._write_results_list([("srum-{}".format(csv_file.split(".")[0].lower().replace(" ", "_")), srum_records)])
[((7, 18, 7, 47), 'datetime.datetime', 'datetime.datetime', ({(7, 36, 7, 40): '1601', (7, 42, 7, 43): '1', (7, 45, 7, 46): '1'}, {}), '(1601, 1, 1)', False, 'import datetime\n'), ((16, 29, 16, 96), 'datetime.timedelta', 'datetime.timedelta', (), '', False, 'import datetime\n'), ((46, 8, 46, 24), 'os.mkdir', 'os.mkdir', ({(46, 17, 46, 23): 'output'}, {}), '(output)', False, 'import os\n'), ((51, 24, 51, 42), 'os.listdir', 'os.listdir', ({(51, 35, 51, 41): 'output'}, {}), '(output)', False, 'import os\n'), ((45, 61, 45, 87), 'random.randint', 'random.randint', ({(45, 76, 45, 77): '1', (45, 79, 45, 86): '1000000'}, {}), '(1, 1000000)', False, 'import random\n'), ((53, 24, 53, 54), 'os.path.join', 'os.path.join', ({(53, 37, 53, 43): 'output', (53, 45, 53, 53): 'csv_file'}, {}), '(output, csv_file)', False, 'import os\n'), ((60, 29, 60, 46), 'csv.DictReader', 'csv.DictReader', ({(60, 44, 60, 45): 'f'}, {}), '(f)', False, 'import csv\n'), ((78, 29, 78, 46), 'csv.DictReader', 'csv.DictReader', ({(78, 44, 78, 45): 'f'}, {}), '(f)', False, 'import csv\n'), ((70, 49, 70, 78), 'datetime.datetime', 'datetime.datetime', ({(70, 67, 70, 71): '1970', (70, 73, 70, 74): '1', (70, 76, 70, 77): '1'}, {}), '(1970, 1, 1)', False, 'import datetime\n')]
Yoann-Vie/esgi-hearthstone
tests/csrf_tests/test_context_processor.py
115d03426c7e8e80d89883b78ac72114c29bed12
from django.http import HttpRequest from django.middleware.csrf import _compare_salted_tokens as equivalent_tokens from django.template.context_processors import csrf from django.test import SimpleTestCase class TestContextProcessor(SimpleTestCase): def test_force_token_to_string(self): request = HttpRequest() test_token = '1bcdefghij2bcdefghij3bcdefghij4bcdefghij5bcdefghij6bcdefghijABCD' request.META['CSRF_COOKIE'] = test_token token = csrf(request).get('csrf_token') self.assertTrue(equivalent_tokens(str(token), test_token))
[((10, 18, 10, 31), 'django.http.HttpRequest', 'HttpRequest', ({}, {}), '()', False, 'from django.http import HttpRequest\n'), ((13, 16, 13, 29), 'django.template.context_processors.csrf', 'csrf', ({(13, 21, 13, 28): 'request'}, {}), '(request)', False, 'from django.template.context_processors import csrf\n')]
marza-animation-planet/das
python/das/types.py
1c7460dfdd5f138d8317c72900e90b23c0c28c7b
import sys import das import traceback class ReservedNameError(Exception): def __init__(self, name): super(ReservedNameError, self).__init__("'%s' is a reserved name" % name) class VersionError(Exception): def __init__(self, msg=None, current_version=None, required_version=None): fullmsg = "ersion error" if required_version: fullmsg += ": %s required" % required_version else: fullmsg += ": no requirements" if current_version: fullmsg += ", %s in use" % current_version else: fullmsg += ", no version info" if msg: fullmsg = msg + " v" + fullmsg else: fullmsg = "V" + fullmsg super(VersionError, self).__init__(fullmsg) class GlobalValidationDisabled(object): def __init__(self, data): super(GlobalValidationDisabled, self).__init__() self.data = data self.oldstate = None def __enter__(self): try: self.oldstate = self.data._is_global_validation_enabled() self.data._enable_global_validation(False) except: pass return self.data def __exit__(self, type, value, traceback): if self.oldstate is not None: self.data._enable_global_validation(self.oldstate) self.oldstate = None # Always re-raise exception return False class TypeBase(object): @classmethod def TransferGlobalValidator(klass, src, dst): if isinstance(src, klass) and isinstance(dst, klass): dst._set_validate_globally_cb(src._gvalidate) return dst @classmethod def ValidateGlobally(klass, inst): if isinstance(inst, klass): inst._gvalidate() return inst def __init__(self, *args): super(TypeBase, self).__init__() self.__dict__["_schema_type"] = None self.__dict__["_validate_globally_cb"] = None self.__dict__["_global_validation_enabled"] = True def _wrap(self, rhs): st = self._get_schema_type() rv = self.__class__(rhs if st is None else st._validate_self(rhs)) rv._set_schema_type(self._get_schema_type()) return rv def _adapt_value(self, value, key=None, index=None): return das.adapt_value(value, schema_type=self._get_schema_type(), key=key, index=index) def _validate(self, schema_type=None): if schema_type is None: schema_type = self._get_schema_type() if schema_type is not None: schema_type.validate(self) self._set_schema_type(schema_type) def _gvalidate(self): st = self._get_schema_type() if st is not None: # run self validation first (container validation) st._validate_self(self) if hasattr(self, "_is_global_validation_enabled"): if not self._is_global_validation_enabled(): # Skip global validaton return gvcb = self._get_validate_globally_cb() if gvcb is not None: gvcb() if hasattr(self, "_validate_globally"): try: getattr(self, "_validate_globally")() except: _, ei, tb = sys.exc_info() ei = das.ValidationError("Global Validation Failed (%s)" % str(ei)) raise ei.__class__, ei, tb def _get_schema_type(self): return self.__dict__["_schema_type"] def _set_schema_type(self, schema_type): self.__dict__["_schema_type"] = schema_type def _get_validate_globally_cb(self): return self.__dict__["_validate_globally_cb"] def _set_validate_globally_cb(self, cb): self.__dict__["_validate_globally_cb"] = cb def _is_global_validation_enabled(self): return self.__dict__["_global_validation_enabled"] def _enable_global_validation(self, on): self.__dict__["_global_validation_enabled"] = on class Tuple(TypeBase, tuple): def __init__(self, *args): # Funny, we need to declare *args here, but at the time we reach # the core of the method, tuple is already created # Maybe because tuple is immutable? super(Tuple, self).__init__() def __add__(self, y): raise das.ValidationError("Expected a tuple of size %d, got %d" % (len(self), len(self) + len(y))) def __getitem__(self, i): return TypeBase.TransferGlobalValidator(self, super(Tuple, self).__getitem__(i)) class Sequence(TypeBase, list): def __init__(self, *args): TypeBase.__init__(self) list.__init__(self, *args) def _wrap_index(self, i, n=None, clamp=False): if i < 0: if n is None: n = len(self) ii = i + n if ii < 0: if clamp: return 0 else: raise IndexError("list index out of range") else: return ii else: return i def __imul__(self, n): oldlen = len(self) super(Sequence, self).__imul__(n) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: super(Sequence, self).__setslice__(oldlen, len(self), []) except Exception, e: print("das.types.Sequence.__imul__: Failed to recover sequence data (%s)" % e) raise ec, ei, tb return self def __mul__(self, n): rv = self[:] rv.__imul__(n) return rv def __rmul__(self, n): return self.__mul__(n) def __iadd__(self, y): n = len(self) super(Sequence, self).__iadd__([self._adapt_value(x, index=n+i) for i, x in enumerate(y)]) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: super(Sequence, self).__setslice__(n, len(self), []) except Exception, e: print("das.types.Sequence.__iadd__: Failed to recover sequence data (%s)" % e) raise ec, ei, tb return self def __add__(self, y): rv = self[:] rv.__iadd__(y) return rv def __setitem__(self, i, y): super(Sequence, self).__setitem__(i, self._adapt_value(y, index=i)) self._gvalidate() def __getitem__(self, i): return TypeBase.TransferGlobalValidator(self, super(Sequence, self).__getitem__(i)) def __delitem__(self, i): ii = self._wrap_index(i, clamp=False) item = super(Sequence, self).__getitem__(ii) super(Sequence, self).__delitem__(i) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: super(Sequence, self).insert(ii, item) except Exception, e: print("das.types.Sequence.__delitem__: Failed to recover sequence data (%s)" % e) raise ec, ei, tb def __iter__(self): for item in super(Sequence, self).__iter__(): yield TypeBase.TransferGlobalValidator(self, item) def __setslice__(self, i, j, y): oldvals = super(Sequence, self).__getslice__(i, j) newvals = [self._adapt_value(x, index=i+k) for k, x in enumerate(y)] super(Sequence, self).__setslice__(i, j, newvals) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: ii = self._wrap_index(i, clamp=True) super(Sequence, self).__setslice__(ii, ii+len(newvals), oldvals) except Exception, e: print("das.types.Sequence.__setslice__: Failed to recover sequence data (%s)" % e) raise ec, ei, tb def __getslice__(self, i, j): return self._wrap(super(Sequence, self).__getslice__(i, j)) def __delslice__(self, i, j): oldvals = super(Sequence, self).__getslice__(i, j) super(Sequence, self).__delslice__(i, j) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: ii = self._wrap_index(i, clamp=True) super(Sequence, self).__setslice__(ii, ii, oldvals) except Exception, e: print("das.types.Sequence.__setslice__: Failed to recover sequence data (%s)" % e) raise ec, ei, tb # def __contains__(self, y): # try: # _v = self._adapt_value(y, index=0) # return super(Sequence, self).__contains__(_v) # except: # return False def index(self, y): return super(Sequence, self).index(self._adapt_value(y, index=0)) def insert(self, i, y): super(Sequence, self).insert(i, self._adapt_value(y, index=i)) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: super(Sequence, self).pop(self._wrap_index(i, n=len(self)-1, clamp=True)) except Exception, e: print("das.types.Sequence.insert: Failed to recover sequence data (%s)" % e) raise ec, ei, tb def append(self, y): n = len(self) super(Sequence, self).append(self._adapt_value(y, index=n)) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: super(Sequence, self).pop() except Exception, e: print("das.types.Sequence.append: Failed to recover sequence data (%s)" % e) raise ec, ei, tb def extend(self, y): newvals = [self._adapt_value(x, index=len(self)+i) for i, x in enumerate(y)] super(Sequence, self).extend(newvals) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: super(Sequence, self).__setslice__(len(self) - len(newvals), len(self), []) except Exception, e: print("das.types.Sequence.extend: Failed to recover sequence data (%s)" % e) raise ec, ei, tb def pop(self, *args): rv = super(Sequence, self).pop(*args) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: if args: super(Sequence, self).insert(self._wrap_index(args[0], n=len(self)+1, clamp=False), rv) else: super(Sequence, self).append(rv) except Exception, e: print("das.types.Sequence.pop: Failed to recover sequence data (%s)" % e) raise ec, ei, tb return rv def remove(self, y): idx = self.index(y) item = self[idx] super(Sequence, self).remove(item) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: super(Sequence, self).insert(idx, item) except Exception, e: print("das.types.Sequence.remove: Failed to recover sequence data (%s)" % e) raise ec, ei, tb class Set(TypeBase, set): def __init__(self, args): TypeBase.__init__(self) set.__init__(self, args) def __iand__(self, y): oldvals = super(Set, self).copy() super(Set, self).__iand__(set([self._adapt_value(x, index=i) for i, x in enumerate(y)])) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: super(Set, self).clear() super(Set, self).__ior__(oldvals) except Exception, e: print("das.types.Set.__iand__: Failed to recover set data (%s)" % e) raise ec, ei, tb return self def __and__(self, y): rv = self.copy() rv &= y return rv def __rand__(self, y): return self.__and__(y) def __isub__(self, y): oldvals = super(Set, self).copy() super(Set, self).__isub__(set([self._adapt_value(x, index=i) for i, x in enumerate(y)])) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: super(Set, self).clear() super(Set, self).__ior__(oldvals) except Exception, e: print("das.types.Set.__isub__: Failed to recover set data (%s)" % e) raise ec, ei, tb return self def __sub__(self, y): rv = self.copy() rv -= y return rv def __rsub__(self, y): return self.__sub__(y) def __ior__(self, y): oldvals = super(Set, self).copy() super(Set, self).__ior__(set([self._adapt_value(x, index=i) for i, x in enumerate(y)])) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: super(Set, self).clear() super(Set, self).__ior__(oldvals) except Exception, e: print("das.types.Set.__ior__: Failed to recover set data (%s)" % e) raise ec, ei, tb return self def __or__(self, y): rv = self.copy() rv |= y return rv def __ror__(self, y): return self.__or__(y) def __ixor__(self, y): oldvals = super(Set, self).copy() super(Set, self).__ixor__(set([self._adapt_value(x, index=i) for i, x in enumerate(y)])) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: super(Set, self).clear() super(Set, self).__ior__(oldvals) except Exception, e: print("das.types.Set.__ixor__: Failed to recover set data (%s)" % e) raise ec, ei, tb return self def __xor__(self, y): rv = self.copy() rv ^= y return rv def __rxor__(self, y): rv = self.copy() rv ^= y return rv def __cmp__(self, oth): # base set class doesn't implement __cmp__ # but we need it for some other purpose if len(self.symmetric_difference(oth)) == 0: return 0 elif len(self) <= len(oth): return -1 else: return 1 def __iter__(self): for item in super(Set, self).__iter__(): yield TypeBase.TransferGlobalValidator(self, item) def clear(self): oldvals = super(Set, self).copy() super(Set, self).clear() try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: super(Set, self).__ior__(oldvals) except Exception, e: print("das.types.Set.clear: Failed to recover set data (%s)" % e) raise ec, ei, tb def copy(self): return self._wrap(self) def add(self, e): ae = self._adapt_value(e, index=len(self)) if ae in self: return super(Set, self).add(ae) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: super(Set, self).remove(ae) except Exception, e: print("das.types.Set.add: Failed to recover set data (%s)" % e) raise ec, ei, tb def update(self, *args): added = set() for y in args: lst = [self._adapt_value(x, index=i) for i, x in enumerate(y)] for item in lst: if item in self: continue super(Set, self).add(item) added.add(item) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: for item in added: super(Set, self).remove(item) except Exception, e: print("das.types.Set.update: Failed to recover set data (%s)" % e) raise ec, ei, tb def pop(self): item = super(Set, self).pop() try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: super(Set, self).add(item) except Exception, e: print("das.types.Set.pop: Failed to recover set data (%s)" % e) raise ec, ei, tb return item def difference(self, rhs): return self.__sub__(rhs) def union(self, rhs): return self.__or__(rhs) def intersection(self, rhs): return self.__and__(rhs) def symmetric_difference(self, rhs): return self.__xor__(rhs) class Dict(TypeBase, dict): def __init__(self, *args, **kwargs): TypeBase.__init__(self) dict.__init__(self, *args, **kwargs) def _adapt_key(self, key): st = self._get_schema_type() return (key if st is None else das.adapt_value(key, schema_type=st.ktype)) def __setitem__(self, k, v): k = self._adapt_key(k) wasset = (k in self) oldval = (self[k] if wasset else None) super(Dict, self).__setitem__(k, self._adapt_value(v, key=k)) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: if wasset: super(Dict, self).__setitem__(k, oldval) else: del(self[k]) except Exception, e: print("das.types.Dict.__setitem__: Failed to recover dict data (%s)" % e) raise ec, ei, tb def __getitem__(self, k): return TypeBase.TransferGlobalValidator(self, super(Dict, self).__getitem__(self._adapt_key(k))) def __delitem__(self, k): _k = self._adapt_key(k) _v = super(Dict, self).__getitem__(_k) super(Dict, self).__delitem__(_k) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: super(Dict, self).__setitem__(_k, _v) except Exception, e: print("das.types.Dict.popitem: Failed to recover dict data (%s)" % e) raise ec, ei, tb # def __contains__(self, k): # try: # _k = self._adapt_key(k) # return super(Dict, self).__contains__(_k) # except: # return False def setdefault(self, *args): nargs = len(args) if nargs > 2: raise TypeError("setdefault expected at most 2 arguments, got %d" % nargs) if nargs == 2: args = (args[0], self._adapt_value(args[1], key=args[0])) super(Dict, self).setdefault(*args) def copy(self): return self._wrap(self) def update(self, *args, **kwargs): oldvals = {} remvals = set() if len(args) == 1: a0 = args[0] if hasattr(a0, "keys"): for k in a0.keys(): k = self._adapt_key(k) if k in self: oldvals[k] = self[k] else: remvals.add(k) self[k] = self._adapt_value(a0[k], key=k) else: for k, v in a0: k = self._adapt_key(k) if k in self: oldvals[k] = self[k] else: remvals.add(k) self[k] = self._adapt_value(v, key=k) elif len(args) > 1: raise Exception("update expected at most 1 arguments, got %d" % len(args)) for k, v in kwargs.iteritems(): k = self._adapt_key(k) if k in self: if not k in oldvals: oldvals[k] = self[k] else: remvals.add(k) self[k] = self._adapt_value(v, key=k) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: for k in remvals: super(Dict, self).__delitem__(k) for k, v in oldvals.iteritems(): super(Dict, self).__setitem__(k, v) except Exception, e: print("das.types.Dict.update: Failed to recover dict data (%s)" % e) raise ec, ei, tb def pop(self, k, *args): _k = self._adapt_key(k) _v = super(Dict, self).pop(_k, *args) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: # if _k i not defined but a default value is provided, we should not reach here # as dict is actually unchanged # -> no need to check if _k was a valid key super(Dict, self).__setitem__(_k, _v) except Exception, e: print("das.types.Dict.popitem: Failed to recover dict data (%s)" % e) raise ec, ei, tb return _v def popitem(self): item = super(Dict, self).popitem() try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: super(Dict, self).__setitem__(item[0], item[1]) except Exception, e: print("das.types.Dict.popitem: Failed to recover dict data (%s)" % e) raise ec, ei, tb return item def clear(self): items = super(Dict, self).items() super(Dict, self).clear() try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: super(Dict, self).update(items) except Exception, e: print("das.types.Dict.clear: Failed to recover dict data (%s)" % e) raise ec, ei, tb def itervalues(self): for v in super(Dict, self).itervalues(): yield TypeBase.TransferGlobalValidator(self, v) def values(self): return [x for x in self.itervalues()] def iteritems(self): for k, v in super(Dict, self).iteritems(): yield k, TypeBase.TransferGlobalValidator(self, v) def items(self): return [x for x in self.iteritems()] class Struct(TypeBase): def __init__(self, *args, **kwargs): TypeBase.__init__(self) self.__dict__["_dict"] = {} self._update(*args, **kwargs) def __getattr__(self, k): try: k = self._get_alias(k) return TypeBase.TransferGlobalValidator(self, self._dict[k]) except KeyError: if hasattr(self._dict, k): # Look for an override method of the same name prefixed by '_' in current class k2 = '_' + k if hasattr(self, k2): #print("Forward '%s' to %s class '%s'" % (k, self.__class__.__name__, k2)) return getattr(self, k2) else: #print("Forward '%s' to dict class '%s'" % (k, k)) return getattr(self._dict, k) else: #raise AttributeError("'Struct' has no attribute '%s' (dict %s)" % (k, "has" if hasattr(self._dict, k) else "hasn't")) return self.__getattribute__(k) def __setattr__(self, k, v): # Special case for __class__ member that we may want to modify for # to enable dynamic function set binding if k == "__class__": super(Struct, self).__setattr__(k, v) else: k = self._get_alias(k) self._check_reserved(k) wasset = (k in self._dict) oldval = (self._dict[k] if wasset else None) self._dict[k] = self._adapt_value(v, key=k) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: if wasset: self._dict[k] = oldval else: del(self._dict[k]) except Exception, e: print("das.types.Struct.__setattr__: Failed to recover struct data (%s)" % e) raise ec, ei, tb def __delattr__(self, k): k = self._get_alias(k) oldval = self._dict.get(k, None) self._dict.__delitem__(k) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() # Note: we can reach here only if k was a valid key (otherwise __delitem__(k) would fail) try: self._dict[k] = oldval except Exception, e: print("das.types.Struct.__delattr__: Failed to recover struct data (%s)" % e) raise ec, ei, tb def __getitem__(self, k): k = self._get_alias(k) return TypeBase.TransferGlobalValidator(self, self._dict.__getitem__(k)) def __setitem__(self, k, v): k = self._get_alias(k) self._check_reserved(k) wasset = (k in self._dict) oldval = (self._dict[k] if wasset else None) self._dict.__setitem__(k, self._adapt_value(v, key=k)) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: if wasset: self._dict[k] = oldval else: del(self._dict[k]) except Exception, e: print("das.types.Struct.__setitem__: Failed to recover struct data (%s)" % e) raise ec, ei, tb def __delitem__(self, k): _k = k k = self._get_alias(k) oldval = self._dict.get(k, None) self._dict.__delitem__(k) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() # Note: we can reach here only if k was a valid key (otherwise __delitem__(k) would fail) try: self._dict[k] = oldval except Exception, e: print("das.types.Struct.__delitem__: Failed to recover struct data (%s)" % e) raise ec, ei, tb def __contains__(self, k): return self._dict.__contains__(self._get_alias(k)) def __cmp__(self, oth): return self._dict.__cmp__(oth._dict if isinstance(oth, Struct) else oth) def __eq__(self, oth): return self._dict.__eq__(oth._dict if isinstance(oth, Struct) else oth) def __ge__(self, oth): return self._dict.__ge__(oth._dict if isinstance(oth, Struct) else oth) def __le__(self, oth): return self._dict.__le__(oth._dict if isinstance(oth, Struct) else oth) def __gt__(self, oth): return self._dict.__gt__(oth._dict if isinstance(oth, Struct) else oth) def __lt__(self, oth): return self._dict.__lt__(oth._dict if isinstance(oth, Struct) else oth) def __iter__(self): return self._dict.__iter__() def __len__(self): return self._dict.__len__() def __str__(self): return self._dict.__str__() def __repr__(self): return self._dict.__repr__() # Override of dict.has_key def _has_key(self, k): return self._dict.has_key(self._get_alias(k)) # Override of dict.pop def _pop(self, k, *args): _k = k k = self._get_alias(k) oldval = self._dict.get(k, None) retval = self._dict.pop(k, *args) try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: self._dict[k] = oldval except Exception, e: print("das.types.Struct.pop: Failed to recover struct data (%s)" % e) raise ec, ei, tb return retval # Override of dict.popitem def _popitem(self): k, v = self._dict.popitem() try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: self._dict[k] = v except Exception, e: print("das.types.Struct.popitem: Failed to recover struct data (%s)" % e) raise ec, ei, tb # Override of dict.clear def _clear(self): items = self._dict.items() self._dict.clear() try: self._gvalidate() except: ec, ei, tb = sys.exc_info() try: self._dict.update(items) except Exception, e: print("das.types.Struct.clear: Failed to recover struct data (%s)" % e) raise ec, ei, tb # Override of dict.copy def _copy(self): return self._wrap(self) # Override of dict.setdefault def _setdefault(self, *args): nargs = len(args) if nargs > 2: raise TypeError("_setdefault expected at most 2 arguments, got %d" % nargs) if nargs >= 1: self._check_reserved(args[0]) if nargs == 2: args = (args[0], self._adapt_value(args[1], key=args[0])) self._dict.setdefault(*args) # Override of dict.update def _update(self, *args, **kwargs): if len(args) > 1: raise Exception("update expected at most 1 arguments, got %d" % len(args)) oldvals = self._dict.copy() try: if len(args) == 1: a0 = args[0] if hasattr(a0, "keys"): for k in a0.keys(): k = self._get_alias(k) self._check_reserved(k) self._dict[k] = self._adapt_value(a0[k], key=k) else: for k, v in a0: k = self._get_alias(k) self._check_reserved(k) self._dict[k] = self._adapt_value(v, key=k) for k, v in kwargs.iteritems(): k = self._get_alias(k) self._check_reserved(k) self._dict[k] = self._adapt_value(v, key=k) self._gvalidate() except: ec, ei, tb = sys.exc_info() try: self._dict.clear() self._dict.update(oldvals) except Exception, e: print("das.types.Struct.update: Failed to recover struct data (%s)" % e) raise ec, ei, tb def _get_alias(self, k): st = self._get_schema_type() if st is not None and st.has_key(k): aliasname = das.schematypes.Alias.Name(st[k]) if aliasname is not None: # if isinstance(st[k], das.schematypes.Deprecated): # message = ("[das] Field %s is deprecated, use %s instead" % (repr(k), repr(aliasname))) # das.print_once(message) return aliasname return k def _check_reserved(self, k): if hasattr(self.__class__, k): raise ReservedNameError(k) elif hasattr(self._dict, k): k2 = "_" + k if hasattr(self, k2): # don't need to create forwarding attribute (set __getattr__) return if k2 in self.__dict__: if self.__dict__[k2] != getattr(self._dict, k): raise ReservedNameError(k) else: msg = "[das] %s's '%s(...)' method conflicts with data field '%s', use '_%s(...)' to call it instead" % (type(self).__name__, k, k, k) st = self._get_schema_type() if st is not None: n = das.get_schema_type_name(st) if n: msg = "[%s] %s" % (n, msg) das.print_once(msg) self.__dict__[k2] = getattr(self._dict, k) def ordered_keys(self): return filter(lambda x: x in self, self._get_schema_type().ordered_keys()) def _itervalues(self): for v in self._dict.itervalues(): yield TypeBase.TransferGlobalValidator(self, v) def _values(self): return [x for x in self.itervalues()] def _iteritems(self): for k, v in self._dict.iteritems(): yield k, TypeBase.TransferGlobalValidator(self, v) def _items(self): return [x for x in self.iteritems()]
[]
AliabbasMerchant/fileTrackAndBackup
track.py
8cdf97be58c69061e1f60c08f89b524d91f8c17d
#! /usr/bin/python3 from help import * import time # short-forms are used, so as to reduce the .json file size # t : type - d or f # d : directory # f : file # ts : timestamp # dirs : The dictionary containing info about directory contents # time : edit time of the file/folder # s : size of the file/folder # p : full path of the file/folder # n : name of the main file/folder in the .json file # i : info about the contents in the .json file # folder = {'t': 'd', 's': get_size(dir_dict), 'p': full_path + '/' + entity, 'time': get_time(stats), 'dirs': dir_dict} # file = {'t': 'f', 's': stats.st_size, 'p': full_path + '/' + entity, 'time': get_time(stats)} # info = {'t': 'd', 's': size, 'p': base_path, 'time': get_time(stats), 'dirs': info} # write = {'n': examine_name, 'ts': time.time(), 'i': info} # info = {'t': 'f', 's': stats.st_size, 'p': base_path, 'time': get_time(stats)} # write = {'n': examine_name, 'ts': time.time(), 'i': info} no_of_files = 0 no_of_dirs = 0 examine_name = '' save_filename = '' _base_path = None _ignore = False errors = [] def get_save_config(base_path: str) -> None: global examine_name, save_filename examine_name = base_path.strip().split('/')[-1] save_filename = examine_name + '.json' if not os.path.lexists(constants.save_folder_name): execute_bash("mkdir " + constants.save_folder_name) def get_info_dict(sub_path: str) -> dict: global no_of_files, no_of_dirs, _base_path, _ignore, errors full_path = _base_path + '/' + sub_path full_path = full_path.strip() if full_path.endswith('/'): full_path = full_path[:-1] edit_dict = dict() try: entity_list = os.listdir(full_path) for entity in entity_list: ignore_it = False if _ignore and to_be_ignored(full_path + '/' + entity): # ignoring cache temp etc files ignore_it = True if not ignore_it: try: stats = os.stat(full_path + '/' + entity) if not os.path.islink(full_path + '/' + entity): if os.path.isdir(full_path + '/' + entity): no_of_dirs += 1 new_sub_path = sub_path + '/' + entity dir_dict = get_info_dict(new_sub_path) edit_dict[entity] = {'t': 'd', 's': get_size(dir_dict), 'p': full_path + '/' + entity, 'time': get_time(stats), 'dirs': dir_dict} if os.path.isfile(full_path + '/' + entity): no_of_files += 1 edit_dict[entity] = {'t': 'f', 's': stats.st_size, 'p': full_path + '/' + entity, 'time': get_time(stats)} except FileNotFoundError: errors.append(full_path + '/' + entity) except PermissionError: errors.append(full_path) return edit_dict def track(base_path: str, dir_path: str, output: bool = False, ignore: bool = False) -> list: global _base_path, no_of_dirs, no_of_files, save_filename, _ignore, errors no_of_dirs = 0 no_of_files = 0 print("Tracking...") _base_path = base_path _ignore = ignore get_save_config(base_path) if _ignore: get_ignore_list() if os.path.isdir(base_path): info = get_info_dict('') size = get_size(info) no_of_dirs += 1 stats = os.stat(base_path) info = {'t': 'd', 's': size, 'p': base_path, 'time': get_time(stats), 'dirs': info} write = {'n': examine_name, 'ts': time.time(), 'i': info} write_to_json_file(write, constants.save_folder_name + "/" + save_filename) if output: print("Successfully analysed the folder " + base_path) print("Found {} folder(s)".format(no_of_dirs)) print("Found {} file(s)".format(no_of_files)) print("The directory is of size {}".format(get_size_format(size))) print("A detailed report can be found using the 'file_tb.py print [FILE/FOLDER]' command ") else: no_of_files += 1 stats = os.stat(base_path) info = {'t': 'f', 's': stats.st_size, 'p': base_path, 'time': get_time(stats)} write = {'n': examine_name, 'ts': time.time(), 'i': info} write_to_json_file(write, constants.save_folder_name + "/" + save_filename) if output: print("Successfully analysed the file") print("The file is of size {}".format(get_size_format(stats.st_size))) print("A detailed report can be found using the 'file_tb.py print [FILE/FOLDER]' command ") # pp(info) return errors if __name__ == '__main__': track(os.getcwd(), os.getcwd(), output=True)
[((94, 42, 94, 53), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((106, 42, 106, 53), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n')]
Kvarnefalk/llvm-project
clang/tools/scan-build-py/libscanbuild/analyze.py
8b5f5798aaa24074609d151ea906d114cf5337c2
# -*- coding: utf-8 -*- # Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception """ This module implements the 'scan-build' command API. To run the static analyzer against a build is done in multiple steps: -- Intercept: capture the compilation command during the build, -- Analyze: run the analyzer against the captured commands, -- Report: create a cover report from the analyzer outputs. """ import re import os import os.path import json import logging import multiprocessing import tempfile import functools import subprocess import contextlib import datetime import shutil import glob from collections import defaultdict from libscanbuild import command_entry_point, compiler_wrapper, \ wrapper_environment, run_build, run_command, CtuConfig from libscanbuild.arguments import parse_args_for_scan_build, \ parse_args_for_analyze_build from libscanbuild.intercept import capture from libscanbuild.report import document from libscanbuild.compilation import split_command, classify_source, \ compiler_language from libscanbuild.clang import get_version, get_arguments, get_triple_arch, \ ClangErrorException from libscanbuild.shell import decode __all__ = ['scan_build', 'analyze_build', 'analyze_compiler_wrapper'] COMPILER_WRAPPER_CC = 'analyze-cc' COMPILER_WRAPPER_CXX = 'analyze-c++' CTU_EXTDEF_MAP_FILENAME = 'externalDefMap.txt' CTU_TEMP_DEFMAP_FOLDER = 'tmpExternalDefMaps' @command_entry_point def scan_build(): """ Entry point for scan-build command. """ args = parse_args_for_scan_build() # will re-assign the report directory as new output with report_directory( args.output, args.keep_empty, args.output_format) as args.output: # Run against a build command. there are cases, when analyzer run # is not required. But we need to set up everything for the # wrappers, because 'configure' needs to capture the CC/CXX values # for the Makefile. if args.intercept_first: # Run build command with intercept module. exit_code = capture(args) # Run the analyzer against the captured commands. if need_analyzer(args.build): govern_analyzer_runs(args) else: # Run build command and analyzer with compiler wrappers. environment = setup_environment(args) exit_code = run_build(args.build, env=environment) # Cover report generation and bug counting. number_of_bugs = document(args) # Set exit status as it was requested. return number_of_bugs if args.status_bugs else exit_code @command_entry_point def analyze_build(): """ Entry point for analyze-build command. """ args = parse_args_for_analyze_build() # will re-assign the report directory as new output with report_directory(args.output, args.keep_empty, args.output_format) as args.output: # Run the analyzer against a compilation db. govern_analyzer_runs(args) # Cover report generation and bug counting. number_of_bugs = document(args) # Set exit status as it was requested. return number_of_bugs if args.status_bugs else 0 def need_analyzer(args): """ Check the intent of the build command. When static analyzer run against project configure step, it should be silent and no need to run the analyzer or generate report. To run `scan-build` against the configure step might be necessary, when compiler wrappers are used. That's the moment when build setup check the compiler and capture the location for the build process. """ return len(args) and not re.search(r'configure|autogen', args[0]) def prefix_with(constant, pieces): """ From a sequence create another sequence where every second element is from the original sequence and the odd elements are the prefix. eg.: prefix_with(0, [1,2,3]) creates [0, 1, 0, 2, 0, 3] """ return [elem for piece in pieces for elem in [constant, piece]] def get_ctu_config_from_args(args): """ CTU configuration is created from the chosen phases and dir. """ return ( CtuConfig(collect=args.ctu_phases.collect, analyze=args.ctu_phases.analyze, dir=args.ctu_dir, extdef_map_cmd=args.extdef_map_cmd) if hasattr(args, 'ctu_phases') and hasattr(args.ctu_phases, 'dir') else CtuConfig(collect=False, analyze=False, dir='', extdef_map_cmd='')) def get_ctu_config_from_json(ctu_conf_json): """ CTU configuration is created from the chosen phases and dir. """ ctu_config = json.loads(ctu_conf_json) # Recover namedtuple from json when coming from analyze-cc or analyze-c++ return CtuConfig(collect=ctu_config[0], analyze=ctu_config[1], dir=ctu_config[2], extdef_map_cmd=ctu_config[3]) def create_global_ctu_extdef_map(extdef_map_lines): """ Takes iterator of individual external definition maps and creates a global map keeping only unique names. We leave conflicting names out of CTU. :param extdef_map_lines: Contains the id of a definition (mangled name) and the originating source (the corresponding AST file) name. :type extdef_map_lines: Iterator of str. :returns: Mangled name - AST file pairs. :rtype: List of (str, str) tuples. """ mangled_to_asts = defaultdict(set) for line in extdef_map_lines: mangled_name, ast_file = line.strip().split(' ', 1) mangled_to_asts[mangled_name].add(ast_file) mangled_ast_pairs = [] for mangled_name, ast_files in mangled_to_asts.items(): if len(ast_files) == 1: mangled_ast_pairs.append((mangled_name, next(iter(ast_files)))) return mangled_ast_pairs def merge_ctu_extdef_maps(ctudir): """ Merge individual external definition maps into a global one. As the collect phase runs parallel on multiple threads, all compilation units are separately mapped into a temporary file in CTU_TEMP_DEFMAP_FOLDER. These definition maps contain the mangled names and the source (AST generated from the source) which had their definition. These files should be merged at the end into a global map file: CTU_EXTDEF_MAP_FILENAME.""" def generate_extdef_map_lines(extdefmap_dir): """ Iterate over all lines of input files in a determined order. """ files = glob.glob(os.path.join(extdefmap_dir, '*')) files.sort() for filename in files: with open(filename, 'r') as in_file: for line in in_file: yield line def write_global_map(arch, mangled_ast_pairs): """ Write (mangled name, ast file) pairs into final file. """ extern_defs_map_file = os.path.join(ctudir, arch, CTU_EXTDEF_MAP_FILENAME) with open(extern_defs_map_file, 'w') as out_file: for mangled_name, ast_file in mangled_ast_pairs: out_file.write('%s %s\n' % (mangled_name, ast_file)) triple_arches = glob.glob(os.path.join(ctudir, '*')) for triple_path in triple_arches: if os.path.isdir(triple_path): triple_arch = os.path.basename(triple_path) extdefmap_dir = os.path.join(ctudir, triple_arch, CTU_TEMP_DEFMAP_FOLDER) extdef_map_lines = generate_extdef_map_lines(extdefmap_dir) mangled_ast_pairs = create_global_ctu_extdef_map(extdef_map_lines) write_global_map(triple_arch, mangled_ast_pairs) # Remove all temporary files shutil.rmtree(extdefmap_dir, ignore_errors=True) def run_analyzer_parallel(args): """ Runs the analyzer against the given compilation database. """ def exclude(filename, directory): """ Return true when any excluded directory prefix the filename. """ if not os.path.isabs(filename): # filename is either absolute or relative to directory. Need to turn # it to absolute since 'args.excludes' are absolute paths. filename = os.path.normpath(os.path.join(directory, filename)) return any(re.match(r'^' + exclude_directory, filename) for exclude_directory in args.excludes) consts = { 'clang': args.clang, 'output_dir': args.output, 'output_format': args.output_format, 'output_failures': args.output_failures, 'direct_args': analyzer_params(args), 'force_debug': args.force_debug, 'ctu': get_ctu_config_from_args(args) } logging.debug('run analyzer against compilation database') with open(args.cdb, 'r') as handle: generator = (dict(cmd, **consts) for cmd in json.load(handle) if not exclude( cmd['file'], cmd['directory'])) # when verbose output requested execute sequentially pool = multiprocessing.Pool(1 if args.verbose > 2 else None) for current in pool.imap_unordered(run, generator): if current is not None: # display error message from the static analyzer for line in current['error_output']: logging.info(line.rstrip()) pool.close() pool.join() def govern_analyzer_runs(args): """ Governs multiple runs in CTU mode or runs once in normal mode. """ ctu_config = get_ctu_config_from_args(args) # If we do a CTU collect (1st phase) we remove all previous collection # data first. if ctu_config.collect: shutil.rmtree(ctu_config.dir, ignore_errors=True) # If the user asked for a collect (1st) and analyze (2nd) phase, we do an # all-in-one run where we deliberately remove collection data before and # also after the run. If the user asks only for a single phase data is # left so multiple analyze runs can use the same data gathered by a single # collection run. if ctu_config.collect and ctu_config.analyze: # CTU strings are coming from args.ctu_dir and extdef_map_cmd, # so we can leave it empty args.ctu_phases = CtuConfig(collect=True, analyze=False, dir='', extdef_map_cmd='') run_analyzer_parallel(args) merge_ctu_extdef_maps(ctu_config.dir) args.ctu_phases = CtuConfig(collect=False, analyze=True, dir='', extdef_map_cmd='') run_analyzer_parallel(args) shutil.rmtree(ctu_config.dir, ignore_errors=True) else: # Single runs (collect or analyze) are launched from here. run_analyzer_parallel(args) if ctu_config.collect: merge_ctu_extdef_maps(ctu_config.dir) def setup_environment(args): """ Set up environment for build command to interpose compiler wrapper. """ environment = dict(os.environ) environment.update(wrapper_environment(args)) environment.update({ 'CC': COMPILER_WRAPPER_CC, 'CXX': COMPILER_WRAPPER_CXX, 'ANALYZE_BUILD_CLANG': args.clang if need_analyzer(args.build) else '', 'ANALYZE_BUILD_REPORT_DIR': args.output, 'ANALYZE_BUILD_REPORT_FORMAT': args.output_format, 'ANALYZE_BUILD_REPORT_FAILURES': 'yes' if args.output_failures else '', 'ANALYZE_BUILD_PARAMETERS': ' '.join(analyzer_params(args)), 'ANALYZE_BUILD_FORCE_DEBUG': 'yes' if args.force_debug else '', 'ANALYZE_BUILD_CTU': json.dumps(get_ctu_config_from_args(args)) }) return environment @command_entry_point def analyze_compiler_wrapper(): """ Entry point for `analyze-cc` and `analyze-c++` compiler wrappers. """ return compiler_wrapper(analyze_compiler_wrapper_impl) def analyze_compiler_wrapper_impl(result, execution): """ Implements analyzer compiler wrapper functionality. """ # don't run analyzer when compilation fails. or when it's not requested. if result or not os.getenv('ANALYZE_BUILD_CLANG'): return # check is it a compilation? compilation = split_command(execution.cmd) if compilation is None: return # collect the needed parameters from environment, crash when missing parameters = { 'clang': os.getenv('ANALYZE_BUILD_CLANG'), 'output_dir': os.getenv('ANALYZE_BUILD_REPORT_DIR'), 'output_format': os.getenv('ANALYZE_BUILD_REPORT_FORMAT'), 'output_failures': os.getenv('ANALYZE_BUILD_REPORT_FAILURES'), 'direct_args': os.getenv('ANALYZE_BUILD_PARAMETERS', '').split(' '), 'force_debug': os.getenv('ANALYZE_BUILD_FORCE_DEBUG'), 'directory': execution.cwd, 'command': [execution.cmd[0], '-c'] + compilation.flags, 'ctu': get_ctu_config_from_json(os.getenv('ANALYZE_BUILD_CTU')) } # call static analyzer against the compilation for source in compilation.files: parameters.update({'file': source}) logging.debug('analyzer parameters %s', parameters) current = run(parameters) # display error message from the static analyzer if current is not None: for line in current['error_output']: logging.info(line.rstrip()) @contextlib.contextmanager def report_directory(hint, keep, output_format): """ Responsible for the report directory. hint -- could specify the parent directory of the output directory. keep -- a boolean value to keep or delete the empty report directory. """ stamp_format = 'scan-build-%Y-%m-%d-%H-%M-%S-%f-' stamp = datetime.datetime.now().strftime(stamp_format) parent_dir = os.path.abspath(hint) if not os.path.exists(parent_dir): os.makedirs(parent_dir) name = tempfile.mkdtemp(prefix=stamp, dir=parent_dir) logging.info('Report directory created: %s', name) try: yield name finally: if os.listdir(name): if output_format != 'sarif': # 'scan-view' currently does not support sarif format. msg = "Run 'scan-view %s' to examine bug reports." else: msg = "View result at %s/results-merged.sarif." keep = True else: if keep: msg = "Report directory '%s' contains no report, but kept." else: msg = "Removing directory '%s' because it contains no report." logging.warning(msg, name) if not keep: os.rmdir(name) def analyzer_params(args): """ A group of command line arguments can mapped to command line arguments of the analyzer. This method generates those. """ result = [] if args.store_model: result.append('-analyzer-store={0}'.format(args.store_model)) if args.constraints_model: result.append('-analyzer-constraints={0}'.format( args.constraints_model)) if args.internal_stats: result.append('-analyzer-stats') if args.analyze_headers: result.append('-analyzer-opt-analyze-headers') if args.stats: result.append('-analyzer-checker=debug.Stats') if args.maxloop: result.extend(['-analyzer-max-loop', str(args.maxloop)]) if args.output_format: result.append('-analyzer-output={0}'.format(args.output_format)) if args.analyzer_config: result.extend(['-analyzer-config', args.analyzer_config]) if args.verbose >= 4: result.append('-analyzer-display-progress') if args.plugins: result.extend(prefix_with('-load', args.plugins)) if args.enable_checker: checkers = ','.join(args.enable_checker) result.extend(['-analyzer-checker', checkers]) if args.disable_checker: checkers = ','.join(args.disable_checker) result.extend(['-analyzer-disable-checker', checkers]) return prefix_with('-Xclang', result) def require(required): """ Decorator for checking the required values in state. It checks the required attributes in the passed state and stop when any of those is missing. """ def decorator(function): @functools.wraps(function) def wrapper(*args, **kwargs): for key in required: if key not in args[0]: raise KeyError('{0} not passed to {1}'.format( key, function.__name__)) return function(*args, **kwargs) return wrapper return decorator @require(['command', # entry from compilation database 'directory', # entry from compilation database 'file', # entry from compilation database 'clang', # clang executable name (and path) 'direct_args', # arguments from command line 'force_debug', # kill non debug macros 'output_dir', # where generated report files shall go 'output_format', # it's 'plist', 'html', 'plist-html', 'plist-multi-file', or 'sarif' 'output_failures', # generate crash reports or not 'ctu']) # ctu control options def run(opts): """ Entry point to run (or not) static analyzer against a single entry of the compilation database. This complex task is decomposed into smaller methods which are calling each other in chain. If the analysis is not possible the given method just return and break the chain. The passed parameter is a python dictionary. Each method first check that the needed parameters received. (This is done by the 'require' decorator. It's like an 'assert' to check the contract between the caller and the called method.) """ try: command = opts.pop('command') command = command if isinstance(command, list) else decode(command) logging.debug("Run analyzer against '%s'", command) opts.update(classify_parameters(command)) return arch_check(opts) except Exception: logging.error("Problem occurred during analysis.", exc_info=1) return None @require(['clang', 'directory', 'flags', 'file', 'output_dir', 'language', 'error_output', 'exit_code']) def report_failure(opts): """ Create report when analyzer failed. The major report is the preprocessor output. The output filename generated randomly. The compiler output also captured into '.stderr.txt' file. And some more execution context also saved into '.info.txt' file. """ def extension(): """ Generate preprocessor file extension. """ mapping = {'objective-c++': '.mii', 'objective-c': '.mi', 'c++': '.ii'} return mapping.get(opts['language'], '.i') def destination(): """ Creates failures directory if not exits yet. """ failures_dir = os.path.join(opts['output_dir'], 'failures') if not os.path.isdir(failures_dir): os.makedirs(failures_dir) return failures_dir # Classify error type: when Clang terminated by a signal it's a 'Crash'. # (python subprocess Popen.returncode is negative when child terminated # by signal.) Everything else is 'Other Error'. error = 'crash' if opts['exit_code'] < 0 else 'other_error' # Create preprocessor output file name. (This is blindly following the # Perl implementation.) (handle, name) = tempfile.mkstemp(suffix=extension(), prefix='clang_' + error + '_', dir=destination()) os.close(handle) # Execute Clang again, but run the syntax check only. cwd = opts['directory'] cmd = [opts['clang'], '-fsyntax-only', '-E'] + opts['flags'] + \ [opts['file'], '-o', name] try: cmd = get_arguments(cmd, cwd) run_command(cmd, cwd=cwd) except subprocess.CalledProcessError: pass except ClangErrorException: pass # write general information about the crash with open(name + '.info.txt', 'w') as handle: handle.write(opts['file'] + os.linesep) handle.write(error.title().replace('_', ' ') + os.linesep) handle.write(' '.join(cmd) + os.linesep) handle.write(' '.join(os.uname()) + os.linesep) handle.write(get_version(opts['clang'])) handle.close() # write the captured output too with open(name + '.stderr.txt', 'w') as handle: handle.writelines(opts['error_output']) handle.close() @require(['clang', 'directory', 'flags', 'direct_args', 'file', 'output_dir', 'output_format']) def run_analyzer(opts, continuation=report_failure): """ It assembles the analysis command line and executes it. Capture the output of the analysis and returns with it. If failure reports are requested, it calls the continuation to generate it. """ def target(): """ Creates output file name for reports. """ if opts['output_format'] in { 'plist', 'plist-html', 'plist-multi-file'}: (handle, name) = tempfile.mkstemp(prefix='report-', suffix='.plist', dir=opts['output_dir']) os.close(handle) return name elif opts['output_format'] == 'sarif': (handle, name) = tempfile.mkstemp(prefix='result-', suffix='.sarif', dir=opts['output_dir']) os.close(handle) return name return opts['output_dir'] try: cwd = opts['directory'] cmd = get_arguments([opts['clang'], '--analyze'] + opts['direct_args'] + opts['flags'] + [opts['file'], '-o', target()], cwd) output = run_command(cmd, cwd=cwd) return {'error_output': output, 'exit_code': 0} except subprocess.CalledProcessError as ex: result = {'error_output': ex.output, 'exit_code': ex.returncode} if opts.get('output_failures', False): opts.update(result) continuation(opts) return result except ClangErrorException as ex: result = {'error_output': ex.error, 'exit_code': 0} if opts.get('output_failures', False): opts.update(result) continuation(opts) return result def extdef_map_list_src_to_ast(extdef_src_list): """ Turns textual external definition map list with source files into an external definition map list with ast files. """ extdef_ast_list = [] for extdef_src_txt in extdef_src_list: mangled_name, path = extdef_src_txt.split(" ", 1) # Normalize path on windows as well path = os.path.splitdrive(path)[1] # Make relative path out of absolute path = path[1:] if path[0] == os.sep else path ast_path = os.path.join("ast", path + ".ast") extdef_ast_list.append(mangled_name + " " + ast_path) return extdef_ast_list @require(['clang', 'directory', 'flags', 'direct_args', 'file', 'ctu']) def ctu_collect_phase(opts): """ Preprocess source by generating all data needed by CTU analysis. """ def generate_ast(triple_arch): """ Generates ASTs for the current compilation command. """ args = opts['direct_args'] + opts['flags'] ast_joined_path = os.path.join(opts['ctu'].dir, triple_arch, 'ast', os.path.realpath(opts['file'])[1:] + '.ast') ast_path = os.path.abspath(ast_joined_path) ast_dir = os.path.dirname(ast_path) if not os.path.isdir(ast_dir): try: os.makedirs(ast_dir) except OSError: # In case an other process already created it. pass ast_command = [opts['clang'], '-emit-ast'] ast_command.extend(args) ast_command.append('-w') ast_command.append(opts['file']) ast_command.append('-o') ast_command.append(ast_path) logging.debug("Generating AST using '%s'", ast_command) run_command(ast_command, cwd=opts['directory']) def map_extdefs(triple_arch): """ Generate external definition map file for the current source. """ args = opts['direct_args'] + opts['flags'] extdefmap_command = [opts['ctu'].extdef_map_cmd] extdefmap_command.append(opts['file']) extdefmap_command.append('--') extdefmap_command.extend(args) logging.debug("Generating external definition map using '%s'", extdefmap_command) extdef_src_list = run_command(extdefmap_command, cwd=opts['directory']) extdef_ast_list = extdef_map_list_src_to_ast(extdef_src_list) extern_defs_map_folder = os.path.join(opts['ctu'].dir, triple_arch, CTU_TEMP_DEFMAP_FOLDER) if not os.path.isdir(extern_defs_map_folder): try: os.makedirs(extern_defs_map_folder) except OSError: # In case an other process already created it. pass if extdef_ast_list: with tempfile.NamedTemporaryFile(mode='w', dir=extern_defs_map_folder, delete=False) as out_file: out_file.write("\n".join(extdef_ast_list) + "\n") cwd = opts['directory'] cmd = [opts['clang'], '--analyze'] + opts['direct_args'] + opts['flags'] \ + [opts['file']] triple_arch = get_triple_arch(cmd, cwd) generate_ast(triple_arch) map_extdefs(triple_arch) @require(['ctu']) def dispatch_ctu(opts, continuation=run_analyzer): """ Execute only one phase of 2 phases of CTU if needed. """ ctu_config = opts['ctu'] if ctu_config.collect or ctu_config.analyze: assert ctu_config.collect != ctu_config.analyze if ctu_config.collect: return ctu_collect_phase(opts) if ctu_config.analyze: cwd = opts['directory'] cmd = [opts['clang'], '--analyze'] + opts['direct_args'] \ + opts['flags'] + [opts['file']] triarch = get_triple_arch(cmd, cwd) ctu_options = ['ctu-dir=' + os.path.join(ctu_config.dir, triarch), 'experimental-enable-naive-ctu-analysis=true'] analyzer_options = prefix_with('-analyzer-config', ctu_options) direct_options = prefix_with('-Xanalyzer', analyzer_options) opts['direct_args'].extend(direct_options) return continuation(opts) @require(['flags', 'force_debug']) def filter_debug_flags(opts, continuation=dispatch_ctu): """ Filter out nondebug macros when requested. """ if opts.pop('force_debug'): # lazy implementation just append an undefine macro at the end opts.update({'flags': opts['flags'] + ['-UNDEBUG']}) return continuation(opts) @require(['language', 'compiler', 'file', 'flags']) def language_check(opts, continuation=filter_debug_flags): """ Find out the language from command line parameters or file name extension. The decision also influenced by the compiler invocation. """ accepted = frozenset({ 'c', 'c++', 'objective-c', 'objective-c++', 'c-cpp-output', 'c++-cpp-output', 'objective-c-cpp-output' }) # language can be given as a parameter... language = opts.pop('language') compiler = opts.pop('compiler') # ... or find out from source file extension if language is None and compiler is not None: language = classify_source(opts['file'], compiler == 'c') if language is None: logging.debug('skip analysis, language not known') return None elif language not in accepted: logging.debug('skip analysis, language not supported') return None else: logging.debug('analysis, language: %s', language) opts.update({'language': language, 'flags': ['-x', language] + opts['flags']}) return continuation(opts) @require(['arch_list', 'flags']) def arch_check(opts, continuation=language_check): """ Do run analyzer through one of the given architectures. """ disabled = frozenset({'ppc', 'ppc64'}) received_list = opts.pop('arch_list') if received_list: # filter out disabled architectures and -arch switches filtered_list = [a for a in received_list if a not in disabled] if filtered_list: # There should be only one arch given (or the same multiple # times). If there are multiple arch are given and are not # the same, those should not change the pre-processing step. # But that's the only pass we have before run the analyzer. current = filtered_list.pop() logging.debug('analysis, on arch: %s', current) opts.update({'flags': ['-arch', current] + opts['flags']}) return continuation(opts) else: logging.debug('skip analysis, found not supported arch') return None else: logging.debug('analysis, on default arch') return continuation(opts) # To have good results from static analyzer certain compiler options shall be # omitted. The compiler flag filtering only affects the static analyzer run. # # Keys are the option name, value number of options to skip IGNORED_FLAGS = { '-c': 0, # compile option will be overwritten '-fsyntax-only': 0, # static analyzer option will be overwritten '-o': 1, # will set up own output file # flags below are inherited from the perl implementation. '-g': 0, '-save-temps': 0, '-install_name': 1, '-exported_symbols_list': 1, '-current_version': 1, '-compatibility_version': 1, '-init': 1, '-e': 1, '-seg1addr': 1, '-bundle_loader': 1, '-multiply_defined': 1, '-sectorder': 3, '--param': 1, '--serialize-diagnostics': 1 } def classify_parameters(command): """ Prepare compiler flags (filters some and add others) and take out language (-x) and architecture (-arch) flags for future processing. """ result = { 'flags': [], # the filtered compiler flags 'arch_list': [], # list of architecture flags 'language': None, # compilation language, None, if not specified 'compiler': compiler_language(command) # 'c' or 'c++' } # iterate on the compile options args = iter(command[1:]) for arg in args: # take arch flags into a separate basket if arg == '-arch': result['arch_list'].append(next(args)) # take language elif arg == '-x': result['language'] = next(args) # parameters which looks source file are not flags elif re.match(r'^[^-].+', arg) and classify_source(arg): pass # ignore some flags elif arg in IGNORED_FLAGS: count = IGNORED_FLAGS[arg] for _ in range(count): next(args) # we don't care about extra warnings, but we should suppress ones # that we don't want to see. elif re.match(r'^-W.+', arg) and not re.match(r'^-Wno-.+', arg): pass # and consider everything else as compilation flag. else: result['flags'].append(arg) return result
[((53, 11, 53, 38), 'libscanbuild.arguments.parse_args_for_scan_build', 'parse_args_for_scan_build', ({}, {}), '()', False, 'from libscanbuild.arguments import parse_args_for_scan_build, parse_args_for_analyze_build\n'), ((81, 11, 81, 41), 'libscanbuild.arguments.parse_args_for_analyze_build', 'parse_args_for_analyze_build', ({}, {}), '()', False, 'from libscanbuild.arguments import parse_args_for_scan_build, parse_args_for_analyze_build\n'), ((129, 17, 129, 42), 'json.loads', 'json.loads', ({(129, 28, 129, 41): 'ctu_conf_json'}, {}), '(ctu_conf_json)', False, 'import json\n'), ((131, 11, 134, 50), 'libscanbuild.CtuConfig', 'CtuConfig', (), '', False, 'from libscanbuild import command_entry_point, compiler_wrapper, wrapper_environment, run_build, run_command, CtuConfig\n'), ((149, 22, 149, 38), 'collections.defaultdict', 'defaultdict', ({(149, 34, 149, 37): 'set'}, {}), '(set)', False, 'from collections import defaultdict\n'), ((230, 4, 230, 62), 'logging.debug', 'logging.debug', ({(230, 18, 230, 61): '"""run analyzer against compilation database"""'}, {}), "('run analyzer against compilation database')", False, 'import logging\n'), ((301, 11, 301, 58), 'libscanbuild.compiler_wrapper', 'compiler_wrapper', ({(301, 28, 301, 57): 'analyze_compiler_wrapper_impl'}, {}), '(analyze_compiler_wrapper_impl)', False, 'from libscanbuild import command_entry_point, compiler_wrapper, wrapper_environment, run_build, run_command, CtuConfig\n'), ((312, 18, 312, 46), 'libscanbuild.compilation.split_command', 'split_command', ({(312, 32, 312, 45): 'execution.cmd'}, {}), '(execution.cmd)', False, 'from libscanbuild.compilation import split_command, classify_source, compiler_language\n'), ((348, 17, 348, 38), 'os.path.abspath', 'os.path.abspath', ({(348, 33, 348, 37): 'hint'}, {}), '(hint)', False, 'import os\n'), ((351, 11, 351, 57), 'tempfile.mkdtemp', 'tempfile.mkdtemp', (), '', False, 'import tempfile\n'), ((353, 4, 353, 54), 'logging.info', 'logging.info', ({(353, 17, 353, 47): '"""Report directory created: %s"""', (353, 49, 353, 53): 'name'}, {}), "('Report directory created: %s', name)", False, 'import logging\n'), ((501, 4, 501, 20), 'os.close', 'os.close', ({(501, 13, 501, 19): 'handle'}, {}), '(handle)', False, 'import os\n'), ((648, 18, 648, 43), 'libscanbuild.clang.get_triple_arch', 'get_triple_arch', ({(648, 34, 648, 37): 'cmd', (648, 39, 648, 42): 'cwd'}, {}), '(cmd, cwd)', False, 'from libscanbuild.clang import get_version, get_arguments, get_triple_arch, ClangErrorException\n'), ((72, 25, 72, 39), 'libscanbuild.report.document', 'document', ({(72, 34, 72, 38): 'args'}, {}), '(args)', False, 'from libscanbuild.report import document\n'), ((87, 25, 87, 39), 'libscanbuild.report.document', 'document', ({(87, 34, 87, 38): 'args'}, {}), '(args)', False, 'from libscanbuild.report import document\n'), ((118, 8, 121, 53), 'libscanbuild.CtuConfig', 'CtuConfig', (), '', False, 'from libscanbuild import command_entry_point, compiler_wrapper, wrapper_environment, run_build, run_command, CtuConfig\n'), ((123, 13, 123, 79), 'libscanbuild.CtuConfig', 'CtuConfig', (), '', False, 'from libscanbuild import command_entry_point, compiler_wrapper, wrapper_environment, run_build, run_command, CtuConfig\n'), ((187, 31, 188, 67), 'os.path.join', 'os.path.join', ({(187, 44, 187, 50): 'ctudir', (187, 52, 187, 56): 'arch', (188, 43, 188, 66): 'CTU_EXTDEF_MAP_FILENAME'}, {}), '(ctudir, arch, CTU_EXTDEF_MAP_FILENAME)', False, 'import os\n'), ((193, 30, 193, 55), 'os.path.join', 'os.path.join', ({(193, 43, 193, 49): 'ctudir', (193, 51, 193, 54): '"""*"""'}, {}), "(ctudir, '*')", False, 'import os\n'), ((195, 11, 195, 37), 'os.path.isdir', 'os.path.isdir', ({(195, 25, 195, 36): 'triple_path'}, {}), '(triple_path)', False, 'import os\n'), ((236, 15, 236, 68), 'multiprocessing.Pool', 'multiprocessing.Pool', ({(236, 36, 236, 67): '1 if args.verbose > 2 else None'}, {}), '(1 if args.verbose > 2 else None)', False, 'import multiprocessing\n'), ((253, 8, 253, 57), 'shutil.rmtree', 'shutil.rmtree', (), '', False, 'import shutil\n'), ((263, 26, 264, 62), 'libscanbuild.CtuConfig', 'CtuConfig', (), '', False, 'from libscanbuild import command_entry_point, compiler_wrapper, wrapper_environment, run_build, run_command, CtuConfig\n'), ((267, 26, 268, 62), 'libscanbuild.CtuConfig', 'CtuConfig', (), '', False, 'from libscanbuild import command_entry_point, compiler_wrapper, wrapper_environment, run_build, run_command, CtuConfig\n'), ((270, 8, 270, 57), 'shutil.rmtree', 'shutil.rmtree', (), '', False, 'import shutil\n'), ((282, 23, 282, 48), 'libscanbuild.wrapper_environment', 'wrapper_environment', ({(282, 43, 282, 47): 'args'}, {}), '(args)', False, 'from libscanbuild import command_entry_point, compiler_wrapper, wrapper_environment, run_build, run_command, CtuConfig\n'), ((317, 17, 317, 49), 'os.getenv', 'os.getenv', ({(317, 27, 317, 48): '"""ANALYZE_BUILD_CLANG"""'}, {}), "('ANALYZE_BUILD_CLANG')", False, 'import os\n'), ((318, 22, 318, 59), 'os.getenv', 'os.getenv', ({(318, 32, 318, 58): '"""ANALYZE_BUILD_REPORT_DIR"""'}, {}), "('ANALYZE_BUILD_REPORT_DIR')", False, 'import os\n'), ((319, 25, 319, 65), 'os.getenv', 'os.getenv', ({(319, 35, 319, 64): '"""ANALYZE_BUILD_REPORT_FORMAT"""'}, {}), "('ANALYZE_BUILD_REPORT_FORMAT')", False, 'import os\n'), ((320, 27, 320, 69), 'os.getenv', 'os.getenv', ({(320, 37, 320, 68): '"""ANALYZE_BUILD_REPORT_FAILURES"""'}, {}), "('ANALYZE_BUILD_REPORT_FAILURES')", False, 'import os\n'), ((323, 23, 323, 61), 'os.getenv', 'os.getenv', ({(323, 33, 323, 60): '"""ANALYZE_BUILD_FORCE_DEBUG"""'}, {}), "('ANALYZE_BUILD_FORCE_DEBUG')", False, 'import os\n'), ((331, 8, 331, 59), 'logging.debug', 'logging.debug', ({(331, 22, 331, 46): '"""analyzer parameters %s"""', (331, 48, 331, 58): 'parameters'}, {}), "('analyzer parameters %s', parameters)", False, 'import logging\n'), ((349, 11, 349, 37), 'os.path.exists', 'os.path.exists', ({(349, 26, 349, 36): 'parent_dir'}, {}), '(parent_dir)', False, 'import os\n'), ((350, 8, 350, 31), 'os.makedirs', 'os.makedirs', ({(350, 20, 350, 30): 'parent_dir'}, {}), '(parent_dir)', False, 'import os\n'), ((358, 11, 358, 27), 'os.listdir', 'os.listdir', ({(358, 22, 358, 26): 'name'}, {}), '(name)', False, 'import os\n'), ((370, 8, 370, 34), 'logging.warning', 'logging.warning', ({(370, 24, 370, 27): 'msg', (370, 29, 370, 33): 'name'}, {}), '(msg, name)', False, 'import logging\n'), ((420, 9, 420, 34), 'functools.wraps', 'functools.wraps', ({(420, 25, 420, 33): 'function'}, {}), '(function)', False, 'import functools\n'), ((460, 8, 460, 59), 'logging.debug', 'logging.debug', ({(460, 22, 460, 49): '"""Run analyzer against \'%s\'"""', (460, 51, 460, 58): 'command'}, {}), '("Run analyzer against \'%s\'", command)', False, 'import logging\n'), ((487, 23, 487, 67), 'os.path.join', 'os.path.join', ({(487, 36, 487, 54): "opts['output_dir']", (487, 56, 487, 66): '"""failures"""'}, {}), "(opts['output_dir'], 'failures')", False, 'import os\n'), ((507, 14, 507, 37), 'libscanbuild.clang.get_arguments', 'get_arguments', ({(507, 28, 507, 31): 'cmd', (507, 33, 507, 36): 'cwd'}, {}), '(cmd, cwd)', False, 'from libscanbuild.clang import get_version, get_arguments, get_triple_arch, ClangErrorException\n'), ((508, 8, 508, 33), 'libscanbuild.run_command', 'run_command', (), '', False, 'from libscanbuild import command_entry_point, compiler_wrapper, wrapper_environment, run_build, run_command, CtuConfig\n'), ((559, 17, 559, 42), 'libscanbuild.run_command', 'run_command', (), '', False, 'from libscanbuild import command_entry_point, compiler_wrapper, wrapper_environment, run_build, run_command, CtuConfig\n'), ((586, 19, 586, 53), 'os.path.join', 'os.path.join', ({(586, 32, 586, 37): '"""ast"""', (586, 39, 586, 52): "path + '.ast'"}, {}), "('ast', path + '.ast')", False, 'import os\n'), ((602, 19, 602, 51), 'os.path.abspath', 'os.path.abspath', ({(602, 35, 602, 50): 'ast_joined_path'}, {}), '(ast_joined_path)', False, 'import os\n'), ((603, 18, 603, 43), 'os.path.dirname', 'os.path.dirname', ({(603, 34, 603, 42): 'ast_path'}, {}), '(ast_path)', False, 'import os\n'), ((616, 8, 616, 63), 'logging.debug', 'logging.debug', ({(616, 22, 616, 49): '"""Generating AST using \'%s\'"""', (616, 51, 616, 62): 'ast_command'}, {}), '("Generating AST using \'%s\'", ast_command)', False, 'import logging\n'), ((617, 8, 617, 55), 'libscanbuild.run_command', 'run_command', (), '', False, 'from libscanbuild import command_entry_point, compiler_wrapper, wrapper_environment, run_build, run_command, CtuConfig\n'), ((627, 8, 628, 40), 'logging.debug', 'logging.debug', ({(627, 22, 627, 69): '"""Generating external definition map using \'%s\'"""', (628, 22, 628, 39): 'extdefmap_command'}, {}), '("Generating external definition map using \'%s\'",\n extdefmap_command)', False, 'import logging\n'), ((629, 26, 629, 79), 'libscanbuild.run_command', 'run_command', (), '', False, 'from libscanbuild import command_entry_point, compiler_wrapper, wrapper_environment, run_build, run_command, CtuConfig\n'), ((631, 33, 632, 68), 'os.path.join', 'os.path.join', ({(631, 46, 631, 61): "opts['ctu'].dir", (631, 63, 631, 74): 'triple_arch', (632, 45, 632, 67): 'CTU_TEMP_DEFMAP_FOLDER'}, {}), "(opts['ctu'].dir, triple_arch, CTU_TEMP_DEFMAP_FOLDER)", False, 'import os\n'), ((703, 19, 703, 65), 'libscanbuild.compilation.classify_source', 'classify_source', ({(703, 35, 703, 47): "opts['file']", (703, 49, 703, 64): "compiler == 'c'"}, {}), "(opts['file'], compiler == 'c')", False, 'from libscanbuild.compilation import split_command, classify_source, compiler_language\n'), ((706, 8, 706, 58), 'logging.debug', 'logging.debug', ({(706, 22, 706, 57): '"""skip analysis, language not known"""'}, {}), "('skip analysis, language not known')", False, 'import logging\n'), ((742, 8, 742, 50), 'logging.debug', 'logging.debug', ({(742, 22, 742, 49): '"""analysis, on default arch"""'}, {}), "('analysis, on default arch')", False, 'import logging\n'), ((780, 20, 780, 46), 'libscanbuild.compilation.compiler_language', 'compiler_language', ({(780, 38, 780, 45): 'command'}, {}), '(command)', False, 'from libscanbuild.compilation import split_command, classify_source, compiler_language\n'), ((63, 24, 63, 37), 'libscanbuild.intercept.capture', 'capture', ({(63, 32, 63, 36): 'args'}, {}), '(args)', False, 'from libscanbuild.intercept import capture\n'), ((70, 24, 70, 62), 'libscanbuild.run_build', 'run_build', (), '', False, 'from libscanbuild import command_entry_point, compiler_wrapper, wrapper_environment, run_build, run_command, CtuConfig\n'), ((102, 29, 102, 69), 're.search', 're.search', ({(102, 39, 102, 59): '"""configure|autogen"""', (102, 61, 102, 68): 'args[0]'}, {}), "('configure|autogen', args[0])", False, 'import re\n'), ((177, 26, 177, 58), 'os.path.join', 'os.path.join', ({(177, 39, 177, 52): 'extdefmap_dir', (177, 54, 177, 57): '"""*"""'}, {}), "(extdefmap_dir, '*')", False, 'import os\n'), ((196, 26, 196, 55), 'os.path.basename', 'os.path.basename', ({(196, 43, 196, 54): 'triple_path'}, {}), '(triple_path)', False, 'import os\n'), ((197, 28, 198, 60), 'os.path.join', 'os.path.join', ({(197, 41, 197, 47): 'ctudir', (197, 49, 197, 60): 'triple_arch', (198, 37, 198, 59): 'CTU_TEMP_DEFMAP_FOLDER'}, {}), '(ctudir, triple_arch, CTU_TEMP_DEFMAP_FOLDER)', False, 'import os\n'), ((205, 12, 205, 60), 'shutil.rmtree', 'shutil.rmtree', (), '', False, 'import shutil\n'), ((213, 15, 213, 38), 'os.path.isabs', 'os.path.isabs', ({(213, 29, 213, 37): 'filename'}, {}), '(filename)', False, 'import os\n'), ((308, 21, 308, 53), 'os.getenv', 'os.getenv', ({(308, 31, 308, 52): '"""ANALYZE_BUILD_CLANG"""'}, {}), "('ANALYZE_BUILD_CLANG')", False, 'import os\n'), ((326, 40, 326, 70), 'os.getenv', 'os.getenv', ({(326, 50, 326, 69): '"""ANALYZE_BUILD_CTU"""'}, {}), "('ANALYZE_BUILD_CTU')", False, 'import os\n'), ((347, 12, 347, 35), 'datetime.datetime.now', 'datetime.datetime.now', ({}, {}), '()', False, 'import datetime\n'), ((373, 12, 373, 26), 'os.rmdir', 'os.rmdir', ({(373, 21, 373, 25): 'name'}, {}), '(name)', False, 'import os\n'), ((459, 60, 459, 75), 'libscanbuild.shell.decode', 'decode', ({(459, 67, 459, 74): 'command'}, {}), '(command)', False, 'from libscanbuild.shell import decode\n'), ((465, 8, 465, 70), 'logging.error', 'logging.error', (), '', False, 'import logging\n'), ((488, 15, 488, 42), 'os.path.isdir', 'os.path.isdir', ({(488, 29, 488, 41): 'failures_dir'}, {}), '(failures_dir)', False, 'import os\n'), ((489, 12, 489, 37), 'os.makedirs', 'os.makedirs', ({(489, 24, 489, 36): 'failures_dir'}, {}), '(failures_dir)', False, 'import os\n'), ((519, 21, 519, 47), 'libscanbuild.clang.get_version', 'get_version', ({(519, 33, 519, 46): "opts['clang']"}, {}), "(opts['clang'])", False, 'from libscanbuild.clang import get_version, get_arguments, get_triple_arch, ClangErrorException\n'), ((540, 29, 542, 69), 'tempfile.mkstemp', 'tempfile.mkstemp', (), '', False, 'import tempfile\n'), ((543, 12, 543, 28), 'os.close', 'os.close', ({(543, 21, 543, 27): 'handle'}, {}), '(handle)', False, 'import os\n'), ((583, 15, 583, 39), 'os.path.splitdrive', 'os.path.splitdrive', ({(583, 34, 583, 38): 'path'}, {}), '(path)', False, 'import os\n'), ((604, 15, 604, 37), 'os.path.isdir', 'os.path.isdir', ({(604, 29, 604, 36): 'ast_dir'}, {}), '(ast_dir)', False, 'import os\n'), ((633, 15, 633, 52), 'os.path.isdir', 'os.path.isdir', ({(633, 29, 633, 51): 'extern_defs_map_folder'}, {}), '(extern_defs_map_folder)', False, 'import os\n'), ((667, 22, 667, 47), 'libscanbuild.clang.get_triple_arch', 'get_triple_arch', ({(667, 38, 667, 41): 'cmd', (667, 43, 667, 46): 'cwd'}, {}), '(cmd, cwd)', False, 'from libscanbuild.clang import get_version, get_arguments, get_triple_arch, ClangErrorException\n'), ((709, 8, 709, 62), 'logging.debug', 'logging.debug', ({(709, 22, 709, 61): '"""skip analysis, language not supported"""'}, {}), "('skip analysis, language not supported')", False, 'import logging\n'), ((712, 8, 712, 57), 'logging.debug', 'logging.debug', ({(712, 22, 712, 46): '"""analysis, language: %s"""', (712, 48, 712, 56): 'language'}, {}), "('analysis, language: %s', language)", False, 'import logging\n'), ((734, 12, 734, 59), 'logging.debug', 'logging.debug', ({(734, 26, 734, 49): '"""analysis, on arch: %s"""', (734, 51, 734, 58): 'current'}, {}), "('analysis, on arch: %s', current)", False, 'import logging\n'), ((739, 12, 739, 68), 'logging.debug', 'logging.debug', ({(739, 26, 739, 67): '"""skip analysis, found not supported arch"""'}, {}), "('skip analysis, found not supported arch')", False, 'import logging\n'), ((216, 40, 216, 73), 'os.path.join', 'os.path.join', ({(216, 53, 216, 62): 'directory', (216, 64, 216, 72): 'filename'}, {}), '(directory, filename)', False, 'import os\n'), ((217, 19, 217, 63), 're.match', 're.match', ({(217, 28, 217, 52): "('^' + exclude_directory)", (217, 54, 217, 62): 'filename'}, {}), "('^' + exclude_directory, filename)", False, 'import re\n'), ((233, 32, 233, 49), 'json.load', 'json.load', ({(233, 42, 233, 48): 'handle'}, {}), '(handle)', False, 'import json\n'), ((321, 23, 322, 36), 'os.getenv', 'os.getenv', ({(321, 33, 321, 59): '"""ANALYZE_BUILD_PARAMETERS"""', (322, 33, 322, 35): '""""""'}, {}), "('ANALYZE_BUILD_PARAMETERS', '')", False, 'import os\n'), ((546, 29, 548, 69), 'tempfile.mkstemp', 'tempfile.mkstemp', (), '', False, 'import tempfile\n'), ((549, 12, 549, 28), 'os.close', 'os.close', ({(549, 21, 549, 27): 'handle'}, {}), '(handle)', False, 'import os\n'), ((606, 16, 606, 36), 'os.makedirs', 'os.makedirs', ({(606, 28, 606, 35): 'ast_dir'}, {}), '(ast_dir)', False, 'import os\n'), ((635, 16, 635, 51), 'os.makedirs', 'os.makedirs', ({(635, 28, 635, 50): 'extern_defs_map_folder'}, {}), '(extern_defs_map_folder)', False, 'import os\n'), ((640, 17, 642, 58), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', (), '', False, 'import tempfile\n'), ((518, 30, 518, 40), 'os.uname', 'os.uname', ({}, {}), '()', False, 'import os\n'), ((600, 39, 600, 69), 'os.path.realpath', 'os.path.realpath', ({(600, 56, 600, 68): "opts['file']"}, {}), "(opts['file'])", False, 'import os\n'), ((668, 40, 668, 77), 'os.path.join', 'os.path.join', ({(668, 53, 668, 67): 'ctu_config.dir', (668, 69, 668, 76): 'triarch'}, {}), '(ctu_config.dir, triarch)', False, 'import os\n'), ((793, 13, 793, 38), 're.match', 're.match', ({(793, 22, 793, 32): '"""^[^-].+"""', (793, 34, 793, 37): 'arg'}, {}), "('^[^-].+', arg)", False, 'import re\n'), ((793, 43, 793, 63), 'libscanbuild.compilation.classify_source', 'classify_source', ({(793, 59, 793, 62): 'arg'}, {}), '(arg)', False, 'from libscanbuild.compilation import split_command, classify_source, compiler_language\n'), ((802, 13, 802, 36), 're.match', 're.match', ({(802, 22, 802, 30): '"""^-W.+"""', (802, 32, 802, 35): 'arg'}, {}), "('^-W.+', arg)", False, 'import re\n'), ((802, 45, 802, 71), 're.match', 're.match', ({(802, 54, 802, 65): '"""^-Wno-.+"""', (802, 67, 802, 70): 'arg'}, {}), "('^-Wno-.+', arg)", False, 'import re\n')]
PIRXrav/pyhack
tableborder.py
af5c86fb721053d8a3e819ab772c8144a23b86bf
#!/usr/bin/env python3 # pylint: disable=C0103 # pylint: disable=R0902 # pylint: disable=R0903 # pylint: disable=R0913 """ Définie la classe TableBorder """ class TableBorder: """ Facillite l'usage de l'UNICODE """ def __init__(self, top_left, top_split, top_right, mid_left, mid_split, mid_right, low_left, low_split, low_right, horizontal, vertical): """ Constructeur """ self.top_left = top_left self.top_split = top_split self.top_right = top_right self.mid_left = mid_left self.mid_split = mid_split self.mid_right = mid_right self.low_left = low_left self.low_split = low_split self.low_right = low_right self.horizontal = horizontal self.vertical = vertical BORDERS = [TableBorder('+', '+', '+',\ '+', '+', '+',\ '+', '+', '+',\ '-', '|'), TableBorder(u'\u250c', u'\u252C', u'\u2510',\ u'\u251C', u'\u253C', u'\u2524',\ u'\u2514', u'\u2534', u'\u2518',\ u'\u2500', u'\u2502'), TableBorder(u'\u2554', u'\u2566', u'\u2557',\ u'\u2560', u'\u256C', u'\u2563',\ u'\u255a', u'\u2569', u'\u255d',\ u'\u2550', u'\u2551') ]
[]
tkf2019/Vue-Django-SAST-Search
app/urls.py
385af9819c608ce2d0845ed3e786777ff52b52b3
from django.conf.urls import url from . import views urlpatterns = [ url(r'^register/', views.register), url(r'^login/', views.login), url(r'logout/', views.logout), url(r'search/', views.search) ]
[((6, 4, 6, 38), 'django.conf.urls.url', 'url', ({(6, 8, 6, 21): '"""^register/"""', (6, 23, 6, 37): 'views.register'}, {}), "('^register/', views.register)", False, 'from django.conf.urls import url\n'), ((7, 4, 7, 32), 'django.conf.urls.url', 'url', ({(7, 8, 7, 18): '"""^login/"""', (7, 20, 7, 31): 'views.login'}, {}), "('^login/', views.login)", False, 'from django.conf.urls import url\n'), ((8, 4, 8, 33), 'django.conf.urls.url', 'url', ({(8, 8, 8, 18): '"""logout/"""', (8, 20, 8, 32): 'views.logout'}, {}), "('logout/', views.logout)", False, 'from django.conf.urls import url\n'), ((9, 4, 9, 33), 'django.conf.urls.url', 'url', ({(9, 8, 9, 18): '"""search/"""', (9, 20, 9, 32): 'views.search'}, {}), "('search/', views.search)", False, 'from django.conf.urls import url\n')]
Ziqqo/hasl-platform
custom_components/hasl/sensor.py
27386314bf58626538d59c38d89249b07ed9256a
#!/usr/bin/python # -*- coding: utf-8 -*- """Simple service for SL (Storstockholms Lokaltrafik).""" import datetime import json import logging from datetime import timedelta import homeassistant.helpers.config_validation as cv import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import (ATTR_FRIENDLY_NAME, CONF_SCAN_INTERVAL, CONF_SENSOR_TYPE, CONF_SENSORS, STATE_OFF, STATE_ON) from homeassistant.helpers.entity import Entity from homeassistant.helpers.event import (async_track_point_in_utc_time, async_track_utc_time_change, track_time_interval) from homeassistant.util import Throttle from homeassistant.util.dt import now from hasl import (haslapi, fpapi, tl2api, ri4api, si2api, HASL_Error, HASL_API_Error, HASL_HTTP_Error) __version__ = '2.2.0' _LOGGER = logging.getLogger(__name__) DOMAIN = 'hasl' # Keys used in the configuration. CONF_RI4_KEY = 'ri4key' CONF_SI2_KEY = 'si2key' CONF_TL2_KEY = 'tl2key' CONF_SITEID = 'siteid' CONF_LINES = 'lines' CONF_DIRECTION = 'direction' CONF_ENABLED_SENSOR = 'sensor' CONF_TIMEWINDOW = 'timewindow' CONF_SENSORPROPERTY = 'property' CONF_TRAIN_TYPE = 'train_type' CONF_TRAFFIC_CLASS = 'traffic_class' CONF_VERSION = 'version_sensor' CONF_USE_MINIMIZATION = 'api_minimization' LIST_SENSOR_TYPES = ['departures', 'status', 'trainlocation', 'comb', 'tl2'] LIST_SENSOR_PROPERTIES = ['min', 'time', 'deviations', 'refresh', 'updated'] LIST_TRAIN_TYPES = ['PT', 'RB', 'TVB', 'SB', 'LB', 'SpvC', 'TB1', 'TB2', 'TB3'] # Default values for configuration. DEFAULT_INTERVAL = timedelta(minutes=10) DEFAULT_TIMEWINDOW = 30 DEFAULT_DIRECTION = 0 DEFAULT_SENSORPROPERTY = 'min' DEFAULT_TRAIN_TYPE = 'PT' DEFAULT_TRAFFIC_CLASS = ['metro', 'train', 'local', 'tram', 'bus', 'fer'] DEFAULT_SENSORTYPE = 'departures' DEFAULT_CACHE_FILE = '.storage/haslcache.json' # Defining the configuration schema. PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ # API Keys vol.Optional(CONF_RI4_KEY): cv.string, vol.Optional(CONF_SI2_KEY): cv.string, vol.Optional(CONF_TL2_KEY): cv.string, vol.Optional(CONF_VERSION, default=False): cv.boolean, vol.Optional(CONF_USE_MINIMIZATION, default=True): cv.boolean, vol.Required(CONF_SENSORS, default=[]): vol.All(cv.ensure_list, [vol.All({ vol.Required(ATTR_FRIENDLY_NAME): cv.string, vol.Required(CONF_SENSOR_TYPE, default=DEFAULT_SENSORTYPE): vol.In(LIST_SENSOR_TYPES), vol.Optional(CONF_ENABLED_SENSOR): cv.string, vol.Optional(CONF_SCAN_INTERVAL, default=DEFAULT_INTERVAL): vol.Any(cv.time_period, cv.positive_timedelta), vol.Optional(CONF_SITEID): cv.string, vol.Optional(CONF_LINES, default=[]): vol.All(cv.ensure_list, [cv.string]), vol.Optional(CONF_DIRECTION, default=DEFAULT_DIRECTION): vol.All(vol.Coerce(int), vol.Range(min=0, max=2)), vol.Optional(CONF_TIMEWINDOW, default=DEFAULT_TIMEWINDOW): vol.All(vol.Coerce(int), vol.Range(min=0, max=60)), vol.Optional(CONF_SENSORPROPERTY, default=DEFAULT_SENSORPROPERTY): vol.In(LIST_SENSOR_PROPERTIES), vol.Optional(CONF_TRAFFIC_CLASS, default=DEFAULT_TRAFFIC_CLASS): vol.All(cv.ensure_list, [vol.In(DEFAULT_TRAFFIC_CLASS)]), vol.Optional(CONF_TRAIN_TYPE, default=DEFAULT_TRAIN_TYPE): vol.In(LIST_TRAIN_TYPES) })]), }, extra=vol.ALLOW_EXTRA) def setup_platform(hass, config, add_devices, discovery_info=None): """Setup the sensors.""" if not hass.data.get(DOMAIN): hass.data[DOMAIN] = {} sensors = [] if config[CONF_VERSION]: sensors.append(SLVersionSensor(hass)) _LOGGER.info("Created version sensor for HASL") for sensorconf in config[CONF_SENSORS]: if sensorconf[CONF_SENSOR_TYPE] == 'departures' or \ sensorconf[CONF_SENSOR_TYPE] == 'comb': sitekey = sensorconf.get(CONF_SITEID) si2key = config.get(CONF_SI2_KEY) ri4key = config.get(CONF_RI4_KEY) if sitekey and ri4key: sensorname = sensorconf[ATTR_FRIENDLY_NAME] sensors.append(SLDeparturesSensor( hass, si2key, ri4key, sitekey, sensorconf.get(CONF_LINES), sensorname, sensorconf.get(CONF_ENABLED_SENSOR), sensorconf.get(CONF_SCAN_INTERVAL), sensorconf.get(CONF_DIRECTION), sensorconf.get(CONF_TIMEWINDOW), sensorconf.get(CONF_SENSORPROPERTY), config.get(CONF_USE_MINIMIZATION) )) _LOGGER.info("Created departures sensor %s...", sensorname) else: _LOGGER.error("Sensor %s is missing site, si2key or ri4key", sensorconf[ATTR_FRIENDLY_NAME]) if sensorconf[CONF_SENSOR_TYPE] == 'status' or \ sensorconf[CONF_SENSOR_TYPE] == 'tl2': tl2key = config.get(CONF_TL2_KEY) if tl2key: sensorname = sensorconf[ATTR_FRIENDLY_NAME] sensors.append(SLStatusSensor( hass, tl2key, sensorname, sensorconf.get(CONF_ENABLED_SENSOR), sensorconf.get(CONF_SCAN_INTERVAL), sensorconf.get(CONF_TRAFFIC_CLASS), config.get(CONF_USE_MINIMIZATION) )) _LOGGER.info("Created status sensor %s...", sensorname) else: _LOGGER.error("Sensor %s is missing tl2key attribute", sensorconf[ATTR_FRIENDLY_NAME]) if sensorconf[CONF_SENSOR_TYPE] == 'trainlocation': train_type = sensorconf.get(CONF_TRAIN_TYPE) if train_type: sensorname = sensorconf[ATTR_FRIENDLY_NAME] sensors.append(SLTrainLocationSensor( hass, sensorname, train_type, sensorconf.get(CONF_SCAN_INTERVAL), sensorconf.get(CONF_ENABLED_SENSOR), )) _LOGGER.info("Created train sensor %s...", sensorname) else: _LOGGER.error("Sensor %s is missing train_type attribute", sensorconf[ATTR_FRIENDLY_NAME]) add_devices(sensors) class SLTrainLocationSensor(Entity): """Trafic Situation Sensor.""" def __init__(self, hass, friendly_name, train_type, interval, enabled_sensor): self._hass = hass self._fpapi = fpapi() self._name = friendly_name self._interval = interval self._enabled_sensor = enabled_sensor self._train_type = train_type self._data = {} self.update = Throttle(interval)(self._update) @property def name(self): """Return the name of the sensor.""" return self._name @property def icon(self): """ Return the icon for the frontend.""" return None @property def device_state_attributes(self): """ Return the sensor attributes.""" return {'type': self._train_type, 'data': json.dumps(self._data)} @property def state(self): """ Return the state of the sensor.""" return self._train_type def _update(self): if self._enabled_sensor is not None: sensor_state = self._hass.states.get(self._enabled_sensor) if self._enabled_sensor is None or sensor_state.state is STATE_ON: try: apidata = self._fpapi.request(self._train_type) except HASL_Error as e: _LOGGER.error("A communication error occured while " "updating train location sensor: %s", e.details) return except Exception as e: _LOGGER.error("A error occured while" "updating train location sensor: %s", e) return self._data = apidata _LOGGER.info("Update completed %s...", self._name) class SLVersionSensor(Entity): """HASL Version Sensor.""" def __init__(self, hass): self._hass = hass self._haslapi = haslapi() self._name = 'HASL Version' self._version = __version__ self._py_version = self._haslapi.version() @property def name(self): """Return the name of the sensor.""" return self._name @property def icon(self): """ Return the icon for the frontend.""" return None @property def device_state_attributes(self): """ Return the sensor attributes.""" return {'hasl': self._version, 'pyHasl': self._py_version} @property def state(self): """ Return the state of the sensor.""" return self._version + "/" + self._py_version class SLStatusSensor(Entity): """Trafic Situation Sensor.""" def __init__(self, hass, tl2key, friendly_name, enabled_sensor, interval, type, minimization): self._tl2api = tl2api(tl2key) self._datakey = 'tl2_' + tl2key self._interval = interval self._hass = hass self._name = friendly_name self._enabled_sensor = enabled_sensor self._type = type self._sensordata = [] self._lastupdate = '-' self._cachefile = hass.config.path(DEFAULT_CACHE_FILE) self._minimization = minimization if not hass.data[DOMAIN].get(self._datakey): hass.data[DOMAIN][self._datakey] = '' self.update = Throttle(interval)(self._update) @property def name(self): """Return the name of the sensor.""" return self._name @property def icon(self): """ Return the icon for the frontend.""" return 'mdi:train-car' @property def device_state_attributes(self): """ Return the sensor attributes.""" return self._sensordata @property def state(self): """ Return the state of the sensor.""" return self._lastupdate def getCache(self, key): try: jsonFile = open(self._cachefile, 'r') data = json.load(jsonFile) jsonFile.close() return data.get(key) except: return {} def putCache(self, key, value): try: jsonFile = open(self._cachefile, 'r') data = json.load(jsonFile) jsonFile.close() data[key] = value except: data = {'' + key + '': value} jsonFile = open(self._cachefile, 'w') jsonFile.write(json.dumps(data)) jsonFile.close() def _update(self): if self._enabled_sensor is not None: sensor_state = self._hass.states.get(self._enabled_sensor) if self._enabled_sensor is None or sensor_state.state is STATE_ON: _LOGGER.info("Starting to update TL2 for %s...", self._name) # Object used to create our object. newdata = {} # Use some nice translations for the statuses etc. statuses = { 'EventGood': 'Good', 'EventMinor': 'Minor', 'EventMajor': 'Closed', 'EventPlanned': 'Planned', } # Icon table used for HomeAssistant. statusIcons = { 'EventGood': 'mdi:check', 'EventMinor': 'mdi:clock-alert-outline', 'EventMajor': 'mdi:close', 'EventPlanned': 'mdi:triangle-outline' } trafficTypeIcons = { 'ferry': 'mdi:ferry', 'bus': 'mdi:bus', 'tram': 'mdi:tram', 'train': 'mdi:train', 'local': 'mdi:train-variant', 'metro': 'mdi:subway-variant' } # If the same API have already made the request in within # the specified interval then use that data instead of # requesting it again and spare some innocent credits from dying. cacheage = self._hass.data[DOMAIN][self._datakey] if not cacheage or now(self._hass.config.time_zone) \ - self._interval > cacheage or not self._minimization: try: apidata = self._tl2api.request() apidata = apidata['ResponseData']['TrafficTypes'] self.putCache(self._datakey, apidata) self._hass.data[DOMAIN][self._datakey] = \ now(self._hass.config.time_zone) _LOGGER.info("Updated cache for %s...", self._name) except HASL_Error as e: _LOGGER.error("A communication error occured while " "updating TL2 sensor: %s", e.details) return except Exception as e: _LOGGER.error("A error occured while " "updating TL4 API: %s", e) return else: apidata = self.getCache(self._datakey) _LOGGER.info("Reusing data from cache for %s...", self._name) # Return only the relevant portion of the results. for response in apidata: type = response['Type'] if self._type is None or type in self._type: statustype = ('ferry' if type == 'fer' else type) newdata[statustype + '_status'] = \ statuses.get(response['StatusIcon']) newdata[statustype + '_status_icon'] = \ statusIcons.get(response['StatusIcon']) newdata[statustype + '_icon'] = \ trafficTypeIcons.get(statustype) for event in response['Events']: event['Status'] = statuses.get(event['StatusIcon']) event['StatusIcon'] = \ statusIcons.get(event['StatusIcon']) newdata[statustype + '_events'] = response['Events'] # Attribution and update sensor data. newdata['attribution'] = "Stockholms Lokaltrafik" newdata['last_updated'] = \ self._hass.data[DOMAIN][self._datakey].strftime('%Y-%m-%d' + '%H:%M:%S') self._sensordata = newdata self._lastupdate = newdata['last_updated'] _LOGGER.info("TL2 update completed for %s...", self._name) class SLDeparturesSensor(Entity): """Departure board for one SL site.""" def __init__(self, hass, si2key, ri4key, siteid, lines, friendly_name, enabled_sensor, interval, direction, timewindow, sensorproperty, minimization): """Initialize""" # The table of resulttypes and the corresponding units of measure. unit_table = { 'min': 'min', 'time': '', 'deviations': '', 'refresh': '', 'update': '', } if si2key: self._si2key = si2key self._si2api = si2api(si2key, siteid, '') self._si2datakey = 'si2_' + si2key + '_' + siteid self._ri4key = ri4key self._ri4api = ri4api(ri4key, siteid, 60) self._ri4datakey = 'ri2_' + ri4key + '_' + siteid self._hass = hass self._name = friendly_name self._lines = lines self._siteid = siteid self._enabled_sensor = enabled_sensor self._sensorproperty = sensorproperty self._departure_table = [] self._deviations_table = [] self._direction = direction self._timewindow = timewindow self._nextdeparture_minutes = '0' self._nextdeparture_expected = '-' self._lastupdate = '-' self._interval = interval self._unit_of_measure = unit_table.get(self._sensorproperty, 'min') self._cachefile = hass.config.path(DEFAULT_CACHE_FILE) self._minimization = minimization if not hass.data[DOMAIN].get(self._ri4datakey): hass.data[DOMAIN][self._ri4datakey] = '' if self._si2key: if not hass.data[DOMAIN].get(self._si2datakey): hass.data[DOMAIN][self._si2datakey] = '' # Setup updating of the sensor. self.update = Throttle(interval)(self._update) @property def name(self): """Return the name of the sensor.""" return self._name @property def icon(self): """ Return the icon for the frontend.""" if self._deviations_table: return 'mdi:bus-alert' return 'mdi:bus' @property def state(self): """ Return number of minutes to the next departure """ # If the sensor should return minutes to next departure. if self._sensorproperty is 'min': if not self._departure_table: return '-' return self._departure_table[0]['time'] # If the sensor should return the time at which next departure occurs. if self._sensorproperty is 'time': if not self._departure_table: return '-' expected = self._departure_table[0]['expected'] or '-' if expected is not '-': expected = \ datetime.datetime.strptime(self._nextdeparture_expected, '%Y-%m-%dT%H:%M:%S') expected = expected.strftime('%H:%M:%S') return expected # If the sensor should return the number of deviations. if self._sensorproperty is 'deviations': return len(self._deviations_table) # If the sensor should return if it is updating or not. if self._sensorproperty is 'refresh': if self._enabled_sensor is None or sensor_state.state is STATE_ON: return STATE_ON return STATE_OFF if self._sensorproperty is 'updated': if self._lastupdate is '-': return '-' return refresh.strftime('%Y-%m-%d %H:%M:%S') # Failsafe return '-' @property def device_state_attributes(self): """ Return the sensor attributes .""" # Initialize the state attributes. val = {} # Format the next exptected time. if self._departure_table: expected_time = self._departure_table[0]['expected'] or '-' expected_minutes = self._departure_table[0]['time'] or '-' if expected_time is not '-': expected_time = \ datetime.datetime.strptime(expected_time, '%Y-%m-%dT%H:%M:%S') expected_time = expected_time.strftime('%H:%M:%S') else: expected_time = '-' expected_minutes = '-' # Format the last refresh time. refresh = self._lastupdate if self._lastupdate is not '-': refresh = refresh.strftime('%Y-%m-%d %H:%M:%S') # Setup the unit of measure. if self._unit_of_measure is not '': val['unit_of_measurement'] = self._unit_of_measure # Check if sensor is currently updating or not. if self._enabled_sensor is not None: sensor_state = self._hass.states.get(self._enabled_sensor) if self._enabled_sensor is None or sensor_state.state is STATE_ON: val['refresh_enabled'] = STATE_ON else: val['refresh_enabled'] = STATE_OFF # Set values of the sensor. val['attribution'] = 'Stockholms Lokaltrafik' val['departures'] = self._departure_table val['deviations'] = self._deviations_table val['last_refresh'] = refresh val['next_departure_minutes'] = expected_minutes val['next_departure_time'] = expected_time val['deviation_count'] = len(self._deviations_table) return val def parseDepartureTime(self, t): """ weird time formats from the API, do some quick and dirty conversions. """ try: if t == 'Nu': return 0 s = t.split() if len(s) > 1 and s[1] == 'min': return int(s[0]) s = t.split(':') if len(s) > 1: rightnow = now(self._hass.config.time_zone) min = int(s[0]) * 60 + int(s[1]) - (rightnow.hour * 60 + rightnow.minute) if min < 0: min = min + 1440 return min except Exception: _LOGGER.warning("Failed to parse departure time (%s) ", t) return 0 def getCache(self, key): try: jsonFile = open(self._cachefile, 'r') data = json.load(jsonFile) jsonFile.close() return data.get(key) except: return {} def putCache(self, key, value): try: jsonFile = open(self._cachefile, 'r') data = json.load(jsonFile) jsonFile.close() data[key] = value except: data = {'' + key + '': value} jsonFile = open(self._cachefile, 'w') jsonFile.write(json.dumps(data)) jsonFile.close() def _update(self): """Get the departure board.""" # If using external sensor, get its value. if self._enabled_sensor is not None: sensor_state = self._hass.states.get(self._enabled_sensor) # If we dont have external sensor or it is ON then proceed. if self._enabled_sensor is None or sensor_state.state \ is STATE_ON: self._update_ri4() if self._si2key: self._update_si2() self._lastupdate = now(self._hass.config.time_zone) def _update_ri4(self): errorOccured = False _LOGGER.info("Starting to update RI4 for %s...", self._name) cacheage = self._hass.data[DOMAIN][self._ri4datakey] if not cacheage or now(self._hass.config.time_zone) \ - self._interval > cacheage or not self._minimization: try: departuredata = self._ri4api.request() departuredata = departuredata['ResponseData'] self.putCache(self._ri4datakey, departuredata) self._hass.data[DOMAIN][self._ri4datakey] = \ now(self._hass.config.time_zone) _LOGGER.info("Updated cache for %s...", self._name) except HASL_Error as e: _LOGGER.error("A communication error occured while " "updating SI2 sensor: %s", e.details) errorOccured = True except Exception as e: _LOGGER.error("A communication error occured while " "updating RI4 API: %s", e) errorOccured = True else: try: departuredata = self.getCache(self._ri4datakey) _LOGGER.info("Reusing data from cache for %s...", self._name) except Exception as e: _LOGGER.error("A error occured while retreiving " "cached RI4 sensor data: %s", e) errorOccured = True if not errorOccured: departures = [] iconswitcher = { 'Buses': 'mdi:bus', 'Trams': 'mdi:tram', 'Ships': 'mdi:ferry', 'Metros': 'mdi:subway-variant', 'Trains': 'mdi:train', } for (i, traffictype) in enumerate(['Metros', 'Buses', 'Trains', 'Trams', 'Ships']): for (idx, value) in enumerate(departuredata[traffictype]): direction = value['JourneyDirection'] or 0 displaytime = value['DisplayTime'] or '' destination = value['Destination'] or '' linenumber = value['LineNumber'] or '' expected = value['ExpectedDateTime'] or '' groupofline = value['GroupOfLine'] or '' icon = iconswitcher.get(traffictype, 'mdi:train-car') if int(self._direction) == 0 or int(direction) \ == int(self._direction): if self._lines == [] or linenumber \ in self._lines: diff = self.parseDepartureTime(displaytime) if diff < self._timewindow: departures.append({ 'line': linenumber, 'direction': direction, 'departure': displaytime, 'destination': destination, 'time': diff, 'expected': expected, 'type': traffictype, 'groupofline': groupofline, 'icon': icon, }) self._departure_table = sorted(departures, key=lambda k: k['time']) _LOGGER.info("RI4 update completed for %s...", self._name) def _update_si2(self): errorOccured = False _LOGGER.info("Starting to update SI2 for %s...", self._name) cacheage = self._hass.data[DOMAIN][self._si2datakey] if not cacheage or now(self._hass.config.time_zone) \ - self._interval > cacheage or not self._minimization: try: deviationdata = self._si2api.request() deviationdata = deviationdata['ResponseData'] self.putCache(self._si2datakey, deviationdata) self._hass.data[DOMAIN][self._si2datakey] = \ now(self._hass.config.time_zone) _LOGGER.info('Updated cache for %s...', self._name) except HASL_Error as e: _LOGGER.error("A communication error occured while " "updating SI2 sensor: %s", e.details) errorOccured = True except Exception as e: _LOGGER.error("A error occured while " "updating SI2 sensor: %s", e) errorOccured = True else: try: deviationdata = self.getCache(self._si2datakey) _LOGGER.info("Reusing data from cache for %s...", self._name) except Exception as e: _LOGGER.error("A error occured while retreiving " "cached SI2 sensor: %s", e.details) errorOccured = True if not errorOccured: deviations = [] for (idx, value) in enumerate(deviationdata): deviations.append({ 'updated': value['Updated'], 'title': value['Header'], 'fromDate': value['FromDateTime'], 'toDate': value['UpToDateTime'], 'details': value['Details'], 'sortOrder': value['SortOrder'], }) self._deviations_table = \ sorted(deviations, key=lambda k: k['sortOrder']) _LOGGER.info("SI2 update completed for %s...", self._name)
[((26, 10, 26, 37), 'logging.getLogger', 'logging.getLogger', ({(26, 28, 26, 36): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((49, 19, 49, 40), 'datetime.timedelta', 'timedelta', (), '', False, 'from datetime import timedelta\n'), ((62, 4, 62, 30), 'voluptuous.Optional', 'vol.Optional', ({(62, 17, 62, 29): 'CONF_RI4_KEY'}, {}), '(CONF_RI4_KEY)', True, 'import voluptuous as vol\n'), ((63, 4, 63, 30), 'voluptuous.Optional', 'vol.Optional', ({(63, 17, 63, 29): 'CONF_SI2_KEY'}, {}), '(CONF_SI2_KEY)', True, 'import voluptuous as vol\n'), ((64, 4, 64, 30), 'voluptuous.Optional', 'vol.Optional', ({(64, 17, 64, 29): 'CONF_TL2_KEY'}, {}), '(CONF_TL2_KEY)', True, 'import voluptuous as vol\n'), ((65, 4, 65, 45), 'voluptuous.Optional', 'vol.Optional', (), '', True, 'import voluptuous as vol\n'), ((66, 4, 66, 53), 'voluptuous.Optional', 'vol.Optional', (), '', True, 'import voluptuous as vol\n'), ((68, 4, 68, 42), 'voluptuous.Required', 'vol.Required', (), '', True, 'import voluptuous as vol\n'), ((193, 22, 193, 29), 'hasl.fpapi', 'fpapi', ({}, {}), '()', False, 'from hasl import haslapi, fpapi, tl2api, ri4api, si2api, HASL_Error, HASL_API_Error, HASL_HTTP_Error\n'), ((252, 24, 252, 33), 'hasl.haslapi', 'haslapi', ({}, {}), '()', False, 'from hasl import haslapi, fpapi, tl2api, ri4api, si2api, HASL_Error, HASL_API_Error, HASL_HTTP_Error\n'), ((284, 23, 284, 37), 'hasl.tl2api', 'tl2api', ({(284, 30, 284, 36): 'tl2key'}, {}), '(tl2key)', False, 'from hasl import haslapi, fpapi, tl2api, ri4api, si2api, HASL_Error, HASL_API_Error, HASL_HTTP_Error\n'), ((469, 23, 469, 49), 'hasl.ri4api', 'ri4api', ({(469, 30, 469, 36): 'ri4key', (469, 38, 469, 44): 'siteid', (469, 46, 469, 48): '60'}, {}), '(ri4key, siteid, 60)', False, 'from hasl import haslapi, fpapi, tl2api, ri4api, si2api, HASL_Error, HASL_API_Error, HASL_HTTP_Error\n'), ((200, 22, 200, 40), 'homeassistant.util.Throttle', 'Throttle', ({(200, 31, 200, 39): 'interval'}, {}), '(interval)', False, 'from homeassistant.util import Throttle\n'), ((215, 50, 215, 72), 'json.dumps', 'json.dumps', ({(215, 61, 215, 71): 'self._data'}, {}), '(self._data)', False, 'import json\n'), ((299, 22, 299, 40), 'homeassistant.util.Throttle', 'Throttle', ({(299, 31, 299, 39): 'interval'}, {}), '(interval)', False, 'from homeassistant.util import Throttle\n'), ((324, 19, 324, 38), 'json.load', 'json.load', ({(324, 29, 324, 37): 'jsonFile'}, {}), '(jsonFile)', False, 'import json\n'), ((334, 19, 334, 38), 'json.load', 'json.load', ({(334, 29, 334, 37): 'jsonFile'}, {}), '(jsonFile)', False, 'import json\n'), ((342, 23, 342, 39), 'json.dumps', 'json.dumps', ({(342, 34, 342, 38): 'data'}, {}), '(data)', False, 'import json\n'), ((465, 27, 465, 53), 'hasl.si2api', 'si2api', ({(465, 34, 465, 40): 'si2key', (465, 42, 465, 48): 'siteid', (465, 50, 465, 52): '""""""'}, {}), "(si2key, siteid, '')", False, 'from hasl import haslapi, fpapi, tl2api, ri4api, si2api, HASL_Error, HASL_API_Error, HASL_HTTP_Error\n'), ((497, 22, 497, 40), 'homeassistant.util.Throttle', 'Throttle', ({(497, 31, 497, 39): 'interval'}, {}), '(interval)', False, 'from homeassistant.util import Throttle\n'), ((627, 19, 627, 38), 'json.load', 'json.load', ({(627, 29, 627, 37): 'jsonFile'}, {}), '(jsonFile)', False, 'import json\n'), ((637, 19, 637, 38), 'json.load', 'json.load', ({(637, 29, 637, 37): 'jsonFile'}, {}), '(jsonFile)', False, 'import json\n'), ((645, 23, 645, 39), 'json.dumps', 'json.dumps', ({(645, 34, 645, 38): 'data'}, {}), '(data)', False, 'import json\n'), ((664, 31, 664, 63), 'homeassistant.util.dt.now', 'now', ({(664, 35, 664, 62): 'self._hass.config.time_zone'}, {}), '(self._hass.config.time_zone)', False, 'from homeassistant.util.dt import now\n'), ((530, 20, 531, 67), 'datetime.datetime.strptime', 'datetime.datetime.strptime', ({(530, 47, 530, 75): 'self._nextdeparture_expected', (531, 47, 531, 66): '"""%Y-%m-%dT%H:%M:%S"""'}, {}), "(self._nextdeparture_expected, '%Y-%m-%dT%H:%M:%S')", False, 'import datetime\n'), ((566, 20, 567, 67), 'datetime.datetime.strptime', 'datetime.datetime.strptime', ({(566, 47, 566, 60): 'expected_time', (567, 47, 567, 66): '"""%Y-%m-%dT%H:%M:%S"""'}, {}), "(expected_time, '%Y-%m-%dT%H:%M:%S')", False, 'import datetime\n'), ((614, 27, 614, 59), 'homeassistant.util.dt.now', 'now', ({(614, 31, 614, 58): 'self._hass.config.time_zone'}, {}), '(self._hass.config.time_zone)', False, 'from homeassistant.util.dt import now\n'), ((680, 20, 680, 52), 'homeassistant.util.dt.now', 'now', ({(680, 24, 680, 51): 'self._hass.config.time_zone'}, {}), '(self._hass.config.time_zone)', False, 'from homeassistant.util.dt import now\n'), ((764, 20, 764, 52), 'homeassistant.util.dt.now', 'now', ({(764, 24, 764, 51): 'self._hass.config.time_zone'}, {}), '(self._hass.config.time_zone)', False, 'from homeassistant.util.dt import now\n'), ((396, 24, 396, 56), 'homeassistant.util.dt.now', 'now', ({(396, 28, 396, 55): 'self._hass.config.time_zone'}, {}), '(self._hass.config.time_zone)', False, 'from homeassistant.util.dt import now\n'), ((671, 27, 671, 59), 'homeassistant.util.dt.now', 'now', ({(671, 31, 671, 58): 'self._hass.config.time_zone'}, {}), '(self._hass.config.time_zone)', False, 'from homeassistant.util.dt import now\n'), ((755, 27, 755, 59), 'homeassistant.util.dt.now', 'now', ({(755, 31, 755, 58): 'self._hass.config.time_zone'}, {}), '(self._hass.config.time_zone)', False, 'from homeassistant.util.dt import now\n'), ((71, 12, 71, 44), 'voluptuous.Required', 'vol.Required', ({(71, 25, 71, 43): 'ATTR_FRIENDLY_NAME'}, {}), '(ATTR_FRIENDLY_NAME)', True, 'import voluptuous as vol\n'), ((73, 12, 73, 70), 'voluptuous.Required', 'vol.Required', (), '', True, 'import voluptuous as vol\n'), ((76, 12, 76, 45), 'voluptuous.Optional', 'vol.Optional', ({(76, 25, 76, 44): 'CONF_ENABLED_SENSOR'}, {}), '(CONF_ENABLED_SENSOR)', True, 'import voluptuous as vol\n'), ((78, 12, 78, 70), 'voluptuous.Optional', 'vol.Optional', (), '', True, 'import voluptuous as vol\n'), ((81, 12, 81, 37), 'voluptuous.Optional', 'vol.Optional', ({(81, 25, 81, 36): 'CONF_SITEID'}, {}), '(CONF_SITEID)', True, 'import voluptuous as vol\n'), ((83, 12, 83, 48), 'voluptuous.Optional', 'vol.Optional', (), '', True, 'import voluptuous as vol\n'), ((86, 12, 86, 67), 'voluptuous.Optional', 'vol.Optional', (), '', True, 'import voluptuous as vol\n'), ((89, 12, 89, 69), 'voluptuous.Optional', 'vol.Optional', (), '', True, 'import voluptuous as vol\n'), ((92, 12, 92, 77), 'voluptuous.Optional', 'vol.Optional', (), '', True, 'import voluptuous as vol\n'), ((95, 12, 95, 75), 'voluptuous.Optional', 'vol.Optional', (), '', True, 'import voluptuous as vol\n'), ((98, 12, 98, 69), 'voluptuous.Optional', 'vol.Optional', (), '', True, 'import voluptuous as vol\n'), ((74, 16, 74, 41), 'voluptuous.In', 'vol.In', ({(74, 23, 74, 40): 'LIST_SENSOR_TYPES'}, {}), '(LIST_SENSOR_TYPES)', True, 'import voluptuous as vol\n'), ((79, 16, 79, 62), 'voluptuous.Any', 'vol.Any', ({(79, 24, 79, 38): 'cv.time_period', (79, 40, 79, 61): 'cv.positive_timedelta'}, {}), '(cv.time_period, cv.positive_timedelta)', True, 'import voluptuous as vol\n'), ((84, 16, 84, 52), 'voluptuous.All', 'vol.All', ({(84, 24, 84, 38): 'cv.ensure_list', (84, 40, 84, 51): '[cv.string]'}, {}), '(cv.ensure_list, [cv.string])', True, 'import voluptuous as vol\n'), ((93, 16, 93, 46), 'voluptuous.In', 'vol.In', ({(93, 23, 93, 45): 'LIST_SENSOR_PROPERTIES'}, {}), '(LIST_SENSOR_PROPERTIES)', True, 'import voluptuous as vol\n'), ((99, 16, 99, 40), 'voluptuous.In', 'vol.In', ({(99, 23, 99, 39): 'LIST_TRAIN_TYPES'}, {}), '(LIST_TRAIN_TYPES)', True, 'import voluptuous as vol\n'), ((387, 31, 387, 63), 'homeassistant.util.dt.now', 'now', ({(387, 35, 387, 62): 'self._hass.config.time_zone'}, {}), '(self._hass.config.time_zone)', False, 'from homeassistant.util.dt import now\n'), ((87, 24, 87, 39), 'voluptuous.Coerce', 'vol.Coerce', ({(87, 35, 87, 38): 'int'}, {}), '(int)', True, 'import voluptuous as vol\n'), ((87, 41, 87, 64), 'voluptuous.Range', 'vol.Range', (), '', True, 'import voluptuous as vol\n'), ((90, 24, 90, 39), 'voluptuous.Coerce', 'vol.Coerce', ({(90, 35, 90, 38): 'int'}, {}), '(int)', True, 'import voluptuous as vol\n'), ((90, 41, 90, 65), 'voluptuous.Range', 'vol.Range', (), '', True, 'import voluptuous as vol\n'), ((96, 41, 96, 70), 'voluptuous.In', 'vol.In', ({(96, 48, 96, 69): 'DEFAULT_TRAFFIC_CLASS'}, {}), '(DEFAULT_TRAFFIC_CLASS)', True, 'import voluptuous as vol\n')]
ishivvers/astro
simbad_tools.py
ff3f3b9f8ef4013157c277bbb5bf82ac1bd3287d
""" A quick library to deal with searching simbad for info about a SN and parsing the results. Author: Isaac Shivvers, [email protected], 2014 example SIMBAD uri query: http://simbad.u-strasbg.fr/simbad/sim-id?output.format=ASCII&Ident=sn%201998S """ import re from urllib2 import urlopen def get_SN_info( name ): """ Queries simbad for SN coords, redshift, and host galaxy. If redshift is not given for SN, attempts to resolve link to host galaxy and report its redshift. Returns ( (ra,dec), redshift, host_name, redshift_citation ), with values of None inserted whenever it cannot resolve the value. """ simbad_uri = "http://simbad.u-strasbg.fr/simbad/sim-id?output.format=ASCII&Ident=%s" regex_coords = "Coordinates\(FK5.+\): .+" regex_redshift = "Redshift:\s+\d+\.\d+.+" regex_host = "apparent\s+host\s+galaxy\s+.+?\{(.*?)\}" result = urlopen( simbad_uri % name.replace(' ','%20') ).read() rescoords = re.search( regex_coords, result ) resred = re.search( regex_redshift, result ) reshost = re.search( regex_host, result ) try: cs = rescoords.group().split(':')[1].strip() ra = cs[:12].strip() dec = cs[12:].strip() except: ra,dec = None,None try: redshift = float(resred.group().strip('Redshift: ').split(' ')[0]) citation = resred.group().split(' ')[-1] except AttributeError: redshift = None citation = None try: host = reshost.group().split('{')[1].split('}')[0] except AttributeError: host = None if (redshift == None) and (host != None): # get the redshift from the host galaxy result = urlopen( simbad_uri % host.replace(' ','%20') ).read() resred = re.search( regex_redshift, result ) try: redshift = float(resred.group().strip('Redshift: ').split(' ')[0]) citation = resred.group().split(' ')[-1] except AttributeError: pass return ((ra,dec), redshift, host, citation)
[((29, 16, 29, 49), 're.search', 're.search', ({(29, 27, 29, 39): 'regex_coords', (29, 41, 29, 47): 'result'}, {}), '(regex_coords, result)', False, 'import re\n'), ((30, 13, 30, 48), 're.search', 're.search', ({(30, 24, 30, 38): 'regex_redshift', (30, 40, 30, 46): 'result'}, {}), '(regex_redshift, result)', False, 'import re\n'), ((31, 14, 31, 45), 're.search', 're.search', ({(31, 25, 31, 35): 'regex_host', (31, 37, 31, 43): 'result'}, {}), '(regex_host, result)', False, 'import re\n'), ((55, 17, 55, 52), 're.search', 're.search', ({(55, 28, 55, 42): 'regex_redshift', (55, 44, 55, 50): 'result'}, {}), '(regex_redshift, result)', False, 'import re\n')]
StanfordASL/soft-robot-control
robots/environments.py
29ade9b7b952e25e639b42767a4f09c87a0e824a
import os from math import cos from math import sin import Sofa.Core from splib.numerics import Quat, Vec3 from sofacontrol import measurement_models path = os.path.dirname(os.path.abspath(__file__)) class TemplateEnvironment: def __init__(self, name='Template', rayleighMass=0.1, rayleighStiffness=0.1, dt=0.01): self.name = name self.robot = Sofa.Core.Node(name) # set-up solvers self.robot.addObject('EulerImplicitSolver', name='odesolver', firstOrder="0", rayleighMass=str(rayleighMass), rayleighStiffness=str(rayleighStiffness)) self.robot.addObject('SparseLDLSolver', name='preconditioner') self.robot.addObject('GenericConstraintCorrection', solverName="preconditioner") self.actuator_list = [] self.nb_nodes = None self.gravity = [0., -9810., 0.] # default self.dt = dt def get_measurement_model(self, nodes=None, pos=True, vel=True): if nodes is None: return measurement_models.linearModel(range(self.nb_nodes), self.nb_nodes, pos=pos, vel=vel) else: return measurement_models.linearModel(nodes, self.nb_nodes, pos=pos, vel=vel) class Trunk(TemplateEnvironment): def __init__(self, name='Trunk', all_cables=True): super(Trunk, self).__init__(name=name) self.nb_nodes = 709 self.gravity = [0., 0., 9810.] self.robot.min_force = [0.] * 8 # Without premultiplication with dt self.robot.addObject('MeshVTKLoader', name='loader', filename=path + '/mesh/trunk.vtk') self.robot.addObject('TetrahedronSetTopologyContainer', src='@loader', name='container') self.robot.addObject('TetrahedronSetTopologyModifier') self.robot.addObject('TetrahedronSetTopologyAlgorithms') self.robot.addObject('TetrahedronSetGeometryAlgorithms') # Option 1: self.robot.addObject('MechanicalObject', name='tetras', template='Vec3d', showIndices='false', showIndicesScale='4e-5') # Option 2: Equivalent to option 1 (we believe) # self.robot.addObject('MechanicalObject', src='@loader') # Gives a mass to the model self.robot.addObject('UniformMass', totalMass=0.042) # Add a TetrahedronFEMForceField componant which implement an elastic material model solved using the Finite # Element Method on tetrahedrons. self.robot.addObject('TetrahedronFEMForceField', template='Vec3d', name='FEM', method='large', poissonRatio=0.45, youngModulus=450) # Fix the base of the trunk by adding constraints in a region of interest (ROI) self.robot.addObject('BoxROI', name='boxROI', box=[[-20, -20, 0], [20, 20, 20]], drawBoxes=False) self.robot.addObject('RestShapeSpringsForceField', points='@boxROI.indices', stiffness='1e12') ########################################## # Cable # ########################################## actuator_names = '' length1 = 10. length2 = 2. lengthTrunk = 195. pullPoint = [[0., length1, 0.], [-length1, 0., 0.], [0., -length1, 0.], [length1, 0., 0.]] direction = Vec3(0., length2 - length1, lengthTrunk) direction.normalize() nbCables = 4 actuators = self.robot.addChild('actuators') for i in range(0, nbCables): childname = 'cableL' + str(i) theta = 1.57 * i q = Quat(0., 0., sin(theta / 2.), cos(theta / 2.)) position = [[0., 0., 0.]] * 20 for k in range(0, 20, 2): v = Vec3(direction[0], direction[1] * 17.5 * (k / 2) + length1, direction[2] * 17.5 * (k / 2) + 21) position[k] = v.rotateFromQuat(q) v = Vec3(direction[0], direction[1] * 17.5 * (k / 2) + length1, direction[2] * 17.5 * (k / 2) + 27) position[k + 1] = v.rotateFromQuat(q) cableL = actuators.addChild(childname) cableL.addObject('MechanicalObject', name='meca', position=pullPoint[i] + [pos.toList() for pos in position]) cableL.addObject('CableConstraint', template='Vec3d', name="cable", hasPullPoint="0", indices=list(range(21)), maxPositiveDisp='70', maxDispVariation="1", valueType='force', minForce=self.robot.min_force[i] * self.robot.dt.value) cableL.addObject('BarycentricMapping', name='mapping', mapForces='false', mapMasses='false') actuator_names += childname + '/cable,' self.actuator_list.append(cableL.cable) if all_cables: for i in range(0, nbCables): childname = 'cableS' + str(i) theta = 1.57 * i q = Quat(0., 0., sin(theta / 2.), cos(theta / 2.)) position = [[0., 0., 0.]] * 10 for k in range(0, 9, 2): v = Vec3(direction[0], direction[1] * 17.5 * (k / 2) + length1, direction[2] * 17.5 * (k / 2) + 21) position[k] = v.rotateFromQuat(q) v = Vec3(direction[0], direction[1] * 17.5 * (k / 2) + length1, direction[2] * 17.5 * (k / 2) + 27) position[k + 1] = v.rotateFromQuat(q) cableS = actuators.addChild(childname) cableS.addObject('MechanicalObject', name='meca', position=pullPoint[i] + [pos.toList() for pos in position]) cableS.addObject('CableConstraint', template='Vec3d', name="cable", hasPullPoint="0", indices=list(range(10)), maxPositiveDisp='40', maxDispVariation="1", valueType='force', minForce=self.robot.min_force[i + 4] * self.robot.dt.value) cableS.addObject('BarycentricMapping', name='mapping', mapForces='false', mapMasses='false') actuator_names += childname + '/cable,' self.actuator_list.append(cableS.cable) self.robot.actuator_list = self.actuator_list ########################################## # Visualization # ########################################## trunkVisu = self.robot.addChild('VisualModel') trunkVisu.addObject('MeshSTLLoader', filename=path + "/mesh/trunk.stl") trunkVisu.addObject('OglModel', template='Vec3d', color=[1., 1., 1., 0.8]) trunkVisu.addObject('BarycentricMapping') class Trunk4Cables(Trunk): def __init__(self, name='Trunk4Cables'): super(Trunk4Cables, self).__init__(name=name, all_cables=False) self.robot.min_force = [0, 0, 0, 0] # Without premultiplication with dt class Finger(TemplateEnvironment): def __init__(self, name='Finger'): super(Finger, self).__init__(name=name) self.nb_nodes = 158 self.robot.min_force = [0.] # Without premultiplication with dt self.robot.addObject('MeshVTKLoader', name='loader', filename=path + '/mesh/finger.vtk') self.robot.addObject('TetrahedronSetTopologyContainer', src='@loader', name='container') self.robot.addObject('TetrahedronSetTopologyModifier') self.robot.addObject('TetrahedronSetTopologyAlgorithms') self.robot.addObject('TetrahedronSetGeometryAlgorithms') self.robot.addObject('MechanicalObject', name='tetras', template='Vec3d', showIndices='false', showIndicesScale='4e-5') self.robot.addObject('UniformMass', totalMass=0.075) # Add a TetrahedronFEMForceField componant which implement an elastic material model solved using the Finite Element Method on tetrahedrons. self.robot.addObject('TetrahedronFEMForceField', template='Vec3d', name='FEM', method='large', poissonRatio=0.45, youngModulus=600) # Fix the base of the trunk by adding constraints in a region of interest (ROI) self.robot.addObject('BoxROI', name='boxROI', box=[[-15, 0, 0], [5, 10, 15]], drawBoxes=False) self.robot.addObject('RestShapeSpringsForceField', points='@boxROI.indices', stiffness='1e12') ########################################## # Cable # ########################################## # This creates a new node in the scene. This node is appended to the finger's node. actuators = self.robot.addChild('actuators') cable = actuators.addChild('cable') #  This create a MechanicalObject, a componant holding the degree of freedom of our # mechanical modelling. In the case of a cable it is a set of positions specifying #  the points where the cable is passing by. cable.addObject('MechanicalObject', name='meca', position=( "-17.5 12.5 2.5 " + "-32.5 12.5 2.5 " + "-47.5 12.5 2.5 " + "-62.5 12.5 2.5 " + "-77.5 12.5 2.5 " + "-83.5 12.5 4.5 " + "-85.5 12.5 6.5 " + "-85.5 12.5 8.5 " + "-83.5 12.5 10.5 " + "-77.5 12.5 12.5 " + "-62.5 12.5 12.5 " + "-47.5 12.5 12.5 " + "-32.5 12.5 12.5 " + "-17.5 12.5 12.5 ")) # Create a CableConstraint object with a name. # the indices are referring to the MechanicalObject's positions. # The last indice is where the pullPoint is connected. cable.addObject('CableConstraint', name="cable", indices=list(range(14)), pullPoint="0.0 12.5 2.5", valueType='force', minForce=self.robot.min_force[0] * self.robot.dt.value) # This create a BarycentricMapping. A BarycentricMapping is a key element as it will create a bi-directional link #  between the cable's DoFs and the finger's ones so that movements of the cable's DoFs will be mapped #  to the finger and vice-versa; cable.addObject('BarycentricMapping', name='mapping', mapForces='false', mapMasses='false') self.actuator_list.append(cable.cable) self.robot.actuator_list = self.actuator_list ########################################## # Visualization # ########################################## # In Sofa, visualization is handled by adding a rendering model. #  Create an empty child node to store this rendering model. fingerVisu = self.robot.addChild('VisualModel') # Add to this empty node a rendering model made of triangles and loaded from an stl file. fingerVisu.addObject('MeshSTLLoader', filename=path + "/mesh/finger.stl") fingerVisu.addObject('OglModel', template='Vec3d', color=[1., 1., 1., 0.8]) # Add a BarycentricMapping to deform rendering model in way that follow the ones of the parent mechanical model. fingerVisu.addObject('BarycentricMapping') class Diamond(TemplateEnvironment): def __init__(self, name='Diamond', totalMass=0.5, poissonRatio=0.45, youngModulus=450, rayleighMass=0.1, rayleighStiffness=0.1, dt=0.01): super(Diamond, self).__init__(name=name, rayleighMass=rayleighMass, rayleighStiffness=rayleighStiffness, dt=dt) self.nb_nodes = 1628 self.gravity = [0., 0., -9810.] rotation = [90, 0.0, 0.0] translation = [0.0, 0.0, 35] self.robot.min_force = [0, 0, 0, 0] # Without premultiplication with dt self.robot.addObject('MeshVTKLoader', name='loader', filename=path + "/mesh/diamond.vtu", rotation=rotation, translation=translation) self.robot.addObject('TetrahedronSetTopologyContainer', src='@loader', name='container') self.robot.addObject('TetrahedronSetTopologyModifier') self.robot.addObject('TetrahedronSetTopologyAlgorithms') self.robot.addObject('TetrahedronSetGeometryAlgorithms') self.robot.addObject('MechanicalObject', template='Vec3d', name='tetras', showIndices='false', showIndicesScale='4e-5') self.robot.addObject('UniformMass', totalMass=totalMass, name='mass') self.robot.addObject('TetrahedronFEMForceField', template='Vec3d', method='large', name='forcefield', poissonRatio=poissonRatio, youngModulus=youngModulus) # Fix the base of the trunk by adding constraints in a region of interest (ROI) self.robot.addObject('BoxROI', name='boxROI', box=[-15, -15, -40, 15, 15, 10], drawBoxes=True) self.robot.addObject('RestShapeSpringsForceField', points='@boxROI.indices', stiffness='1e12') ########################################## # Cable # ########################################## self.actuatorsParam = [ {'withName': 'A', 'withCableGeometry': [[0, 97, 45]], 'withAPullPointLocation': [0, 10, 30] }, {'withName': 'B', 'withCableGeometry': [[-97, 0, 45]], 'withAPullPointLocation': [-10, 0, 30] }, {'withName': 'C', 'withCableGeometry': [[0, -97, 45]], 'withAPullPointLocation': [0, -10, 30] }, {'withName': 'D', 'withCableGeometry': [[97, 0, 45]], 'withAPullPointLocation': [10, 0, 30] } ] actuators = self.robot.addChild('actuators') for i in range(len(self.actuatorsParam)): cable = actuators.addChild(self.actuatorsParam[i]['withName']) cable.addObject('MechanicalObject', position=self.actuatorsParam[i]['withCableGeometry']) cable.addObject('CableConstraint', name='cable', indices=list(range(len(self.actuatorsParam[i]['withCableGeometry']))), pullPoint=self.actuatorsParam[i]['withAPullPointLocation'], valueType='force', hasPullPoint=True, minForce=self.robot.min_force[i] * self.robot.dt.value ) cable.addObject('BarycentricMapping', name="Mapping", mapForces=False, mapMasses=False) self.actuator_list.append(cable.cable) self.robot.actuator_list = self.actuator_list ########################################## # Visualization # ########################################## diamondVisu = self.robot.addChild('VisualModel') diamondVisu.addObject('MeshSTLLoader', filename=path + "/mesh/diamond.stl") diamondVisu.addObject('OglModel', template='Vec3d', color=[0.7, 0.7, 0.7, 0.7], updateNormals=False) diamondVisu.addObject('BarycentricMapping')
[((10, 23, 10, 48), 'os.path.abspath', 'os.path.abspath', ({(10, 39, 10, 47): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((76, 20, 76, 60), 'splib.numerics.Vec3', 'Vec3', ({(76, 25, 76, 27): '0.0', (76, 29, 76, 46): 'length2 - length1', (76, 48, 76, 59): 'lengthTrunk'}, {}), '(0.0, length2 - length1, lengthTrunk)', False, 'from splib.numerics import Quat, Vec3\n'), ((31, 19, 31, 89), 'sofacontrol.measurement_models.linearModel', 'measurement_models.linearModel', (), '', False, 'from sofacontrol import measurement_models\n'), ((84, 29, 84, 44), 'math.sin', 'sin', ({(84, 33, 84, 43): 'theta / 2.0'}, {}), '(theta / 2.0)', False, 'from math import sin\n'), ((84, 46, 84, 61), 'math.cos', 'cos', ({(84, 50, 84, 60): 'theta / 2.0'}, {}), '(theta / 2.0)', False, 'from math import cos\n'), ((87, 20, 87, 115), 'splib.numerics.Vec3', 'Vec3', ({(87, 25, 87, 37): 'direction[0]', (87, 39, 87, 78): 'direction[1] * 17.5 * (k / 2) + length1', (87, 80, 87, 114): 'direction[2] * 17.5 * (k / 2) + 21'}, {}), '(direction[0], direction[1] * 17.5 * (k / 2) + length1, direction[2] * \n 17.5 * (k / 2) + 21)', False, 'from splib.numerics import Quat, Vec3\n'), ((89, 20, 89, 115), 'splib.numerics.Vec3', 'Vec3', ({(89, 25, 89, 37): 'direction[0]', (89, 39, 89, 78): 'direction[1] * 17.5 * (k / 2) + length1', (89, 80, 89, 114): 'direction[2] * 17.5 * (k / 2) + 27'}, {}), '(direction[0], direction[1] * 17.5 * (k / 2) + length1, direction[2] * \n 17.5 * (k / 2) + 27)', False, 'from splib.numerics import Quat, Vec3\n'), ((110, 33, 110, 48), 'math.sin', 'sin', ({(110, 37, 110, 47): 'theta / 2.0'}, {}), '(theta / 2.0)', False, 'from math import sin\n'), ((110, 50, 110, 65), 'math.cos', 'cos', ({(110, 54, 110, 64): 'theta / 2.0'}, {}), '(theta / 2.0)', False, 'from math import cos\n'), ((114, 24, 114, 119), 'splib.numerics.Vec3', 'Vec3', ({(114, 29, 114, 41): 'direction[0]', (114, 43, 114, 82): 'direction[1] * 17.5 * (k / 2) + length1', (114, 84, 114, 118): 'direction[2] * 17.5 * (k / 2) + 21'}, {}), '(direction[0], direction[1] * 17.5 * (k / 2) + length1, direction[2] * \n 17.5 * (k / 2) + 21)', False, 'from splib.numerics import Quat, Vec3\n'), ((116, 24, 116, 119), 'splib.numerics.Vec3', 'Vec3', ({(116, 29, 116, 41): 'direction[0]', (116, 43, 116, 82): 'direction[1] * 17.5 * (k / 2) + length1', (116, 84, 116, 118): 'direction[2] * 17.5 * (k / 2) + 27'}, {}), '(direction[0], direction[1] * 17.5 * (k / 2) + length1, direction[2] * \n 17.5 * (k / 2) + 27)', False, 'from splib.numerics import Quat, Vec3\n')]
SimonPreissner/get-shifty
default.py
aff49220932921c77e419a34ca472b51e0b26b72
""" This file contains meta information and default configurations of the project """ RSC_YEARS = [1660, 1670, 1680, 1690, 1700, 1710, 1720, 1730, 1740, 1750, 1760, 1770, 1780, 1790, 1800, 1810, 1820, 1830, 1840, 1850, 1860, 1870, 1880, 1890, 1900, 1910, 1920] # cf. Chapter 4.4.1 of the thesis SPACE_PAIR_SELECTION = [(1740,1750), (1750,1760), (1680,1710), (1710,1740), (1740,1770), (1770,1800), (1800,1830), (1830,1860), (1860,1890), (1700,1800), (1800,1900), (1700,1900)] COUPLING_CONFIG = { # Alternatives # parameters passed to the GWOT object 'metric': "cosine", # 'euclidian', 'normalize_vecs': "both", # 'mean', 'whiten', 'whiten_zca' 'normalize_dists': "mean", # 'max', 'median' 'score_type': "coupling", # #TODO fill in the rest of the options in the comments 'adjust': None, # 'csls', ... 'distribs': "uniform", # 'custom', 'zipf' 'share_vocs':False, # True 'size':1000, # 100 is small, 1e4 'max_anchors':100, # used with small couplings (for projection) # parameters to be passed to the optimizer 'opt_loss_fun': "square_loss", # 'kl_loss' 'opt_entropic': True, # False 'opt_entreg': 5e-4, # stay within the range of e-4 (originally: 1e-4) 'opt_tol': 1e-9, # no limits 'opt_round_g': False, # True 'opt_compute_accuracy': False, # True would require a test dict, but that's not implemented! 'opt_gpu': False, # GPU optimization not tested # parameters for calling fit() 'fit_maxiter': 300, # no limits; normally converges within 150 iterations 'fit_tol': 1e-9, # no limits 'fit_plot_every': 100000, # normally 20; 'deactivate' the file spam by choosing a large value 'fit_print_every': 1, # no limits 'fit_verbose': True, # False 'fit_save_plots': None # "/my_dir/my_optimizer_plots" } DIST_SHAPES = ['uniform', 'zipf', 'custom'] SHIFT_EXPERIMENTS = ["all", "unsup_bi", "unsup_mono", "dis_tech"]
[]
SimonTopp/Graph-WaveNet
generate_training_data_drb.py
ef63a80cc397744667a5d27f7c410c10e3e03a4c
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import numpy as np import os import pandas as pd import util import os.path import pandas as pd import numpy as np import yaml import xarray as xr import datetime import pickle def scale(dataset, std=None, mean=None): """ scale the data so it has a standard deviation of 1 and a mean of zero :param dataset: [xr dataset] input or output data :param std: [xr dataset] standard deviation if scaling test data with dims :param mean: [xr dataset] mean if scaling test data with dims :return: scaled data with original dims """ if not isinstance(std, xr.Dataset) or not isinstance(mean, xr.Dataset): std = dataset.std(skipna=True) mean = dataset.mean(skipna=True) # adding small number in case there is a std of zero scaled = (dataset - mean) / (std + 1e-10) check_if_finite(std) check_if_finite(mean) return scaled, std, mean def sel_partition_data(dataset, start_dates, end_dates): """ select the data from a date range or a set of date ranges :param dataset: [xr dataset] input or output data with date dimension :param start_dates: [str or list] fmt: "YYYY-MM-DD"; date(s) to start period (can have multiple discontinuos periods) :param end_dates: [str or list] fmt: "YYYY-MM-DD"; date(s) to end period (can have multiple discontinuos periods) :return: dataset of just those dates """ # if it just one date range if isinstance(start_dates, str): if isinstance(end_dates, str): return dataset.sel(date=slice(start_dates, end_dates)) else: raise ValueError("start_dates is str but not end_date") # if it's a list of date ranges elif isinstance(start_dates, list) or isinstance(start_dates, tuple): if len(start_dates) == len(end_dates): data_list = [] for i in range(len(start_dates)): date_slice = slice(start_dates[i], end_dates[i]) data_list.append(dataset.sel(date=date_slice)) return xr.concat(data_list, dim="date") else: raise ValueError("start_dates and end_dates must have same length") else: raise ValueError("start_dates must be either str, list, or tuple") def separate_trn_tst( dataset, train_start_date, train_end_date, val_start_date, val_end_date, test_start_date, test_end_date, ): """ separate the train data from the test data according to the start and end dates. This assumes your training data is in one continuous block and all the dates that are not in the training are in the testing. :param dataset: [xr dataset] input or output data with dims :param train_start_date: [str or list] fmt: "YYYY-MM-DD"; date(s) to start train period (can have multiple discontinuos periods) :param train_end_date: [str or list] fmt: "YYYY-MM-DD"; date(s) to end train period (can have multiple discontinuos periods) :param val_start_date: [str or list] fmt: "YYYY-MM-DD"; date(s) to start validation period (can have multiple discontinuos periods) :param val_end_date: [str or list] fmt: "YYYY-MM-DD"; date(s) to end validation period (can have multiple discontinuos periods) :param test_start_date: [str or list] fmt: "YYYY-MM-DD"; date(s) to start test period (can have multiple discontinuos periods) :param test_end_date: [str or list] fmt: "YYYY-MM-DD"; date(s) to end test period (can have multiple discontinuos periods) """ train = sel_partition_data(dataset, train_start_date, train_end_date) val = sel_partition_data(dataset, val_start_date, val_end_date) test = sel_partition_data(dataset, test_start_date, test_end_date) return train, val, test def split_into_batches(data_array, seq_len=365, offset=1): """ split training data into batches with size of batch_size :param data_array: [numpy array] array of training data with dims [nseg, ndates, nfeat] :param seq_len: [int] length of sequences (i.e., 365) :param offset: [float] 0-1, how to offset the batches (e.g., 0.5 means that the first batch will be 0-365 and the second will be 182-547) :return: [numpy array] batched data with dims [nbatches, nseg, seq_len (batch_size), nfeat] """ combined = [] for i in range(int(1 / offset)): start = int(i * offset * seq_len) idx = np.arange(start=start, stop=data_array.shape[1] + 1, step=seq_len) split = np.split(data_array, indices_or_sections=idx, axis=1) # add all but the first and last batch since they will be smaller combined.extend([s for s in split if s.shape[1] == seq_len]) combined = np.asarray(combined) return combined def read_multiple_obs(obs_files, x_data): """ read and format multiple observation files. we read in the pretrain data to make sure we have the same indexing. :param obs_files: [list] list of filenames of observation files :param pre_train_file: [str] the file of pre_training data :return: [xr dataset] the observations in the same time """ obs = [x_data.sortby(["seg_id_nat", "date"])] for filename in obs_files: ds = xr.open_zarr(filename) obs.append(ds) if "site_id" in ds.variables: del ds["site_id"] obs = xr.merge(obs, join="left") obs = obs[["temp_c", "discharge_cms"]] obs = obs.rename( {"temp_c": "seg_tave_water", "discharge_cms": "seg_outflow"} ) return obs def reshape_for_training(data): """ reshape the data for training :param data: training data (either x or y or mask) dims: [nbatch, nseg, len_seq, nfeat/nout] :return: reshaped data [nbatch * nseg, len_seq, nfeat/nout] """ n_batch, n_seg, seq_len, n_feat = data.shape return np.reshape(data, [n_batch * n_seg, seq_len, n_feat]) def get_exclude_start_end(exclude_grp): """ get the start and end dates for the exclude group :param exclude_grp: [dict] dictionary representing the exclude group from the exclude yml file :return: [tuple of datetime objects] start date, end date """ start = exclude_grp.get("start_date") if start: start = datetime.datetime.strptime(start, "%Y-%m-%d") end = exclude_grp.get("end_date") if end: end = datetime.datetime.strptime(end, "%Y-%m-%d") return start, end def convert_batch_reshape(dataset, seq_len=365, offset=1, y = False, period = np.nan): """ convert xarray dataset into numpy array, swap the axes, batch the array and reshape for training :param dataset: [xr dataset] data to be batched :param seq_len: [int] length of sequences (i.e., 365) :param offset: [float] 0-1, how to offset the batches (e.g., 0.5 means that the first batch will be 0-365 and the second will be 182-547) :return: [numpy array] batched and reshaped dataset """ # convert xr.dataset to numpy array dataset = dataset.transpose("seg_id_nat", "date") arr = dataset.to_array().values # if the dataset is empty, just return it as is if dataset.date.size == 0: return arr # before [nfeat, nseg, ndates]; after [nseg, ndates, nfeat] # this is the order that the split into batches expects arr = np.moveaxis(arr, 0, -1) # batch the data # after [nbatch, nseg, seq_len, nfeat] batched = split_into_batches(arr, seq_len=seq_len, offset=offset) # reshape data # after [nseq, seq_len, nseg, nfeat] #reshaped = reshape_for_training(batched) reshaped = np.moveaxis(batched, [0,1,2,3], [0,2,1,3]) if y & np.isfinite(period): reshaped = reshaped[:,-period:,...] return reshaped def coord_as_reshaped_array(dataset, coord_name, seq_len=365, offset=1): # I need one variable name. It can be any in the dataset, but I'll use the # first first_var = next(iter(dataset.data_vars.keys())) coord_array = xr.broadcast(dataset[coord_name], dataset[first_var])[0] new_var_name = coord_name + "1" dataset[new_var_name] = coord_array reshaped_np_arr = convert_batch_reshape( dataset[[new_var_name]], seq_len=seq_len, offset=offset ) return reshaped_np_arr def check_if_finite(xarr): assert np.isfinite(xarr.to_array().values).all() def prep_data( obs_temper_file, obs_flow_file, pretrain_file, #distfile, train_start_date, train_end_date, val_start_date, val_end_date, test_start_date, test_end_date, x_vars=None, y_vars= ["seg_tave_water", "seg_outflow"], seq_length = 365, offset = 1, period = None, primary_variable="temp", #catch_prop_file=None, #exclude_file=None, #log_q=False, out_file=None, #segs=None, normalize_y=False, ): """ prepare input and output data for DL model training read in and process data into training and testing datasets. the training and testing data are scaled to have a std of 1 and a mean of zero :param obs_temper_file: [str] temperature observations file (csv) :param obs_flow_file:[str] discharge observations file (csv) :param pretrain_file: [str] the file with the pretraining data (SNTemp data) :param distfile: [str] path to the distance matrix .npz file :param train_start_date: [str or list] fmt: "YYYY-MM-DD"; date(s) to start train period (can have multiple discontinuos periods) :param train_end_date: [str or list] fmt: "YYYY-MM-DD"; date(s) to end train period (can have multiple discontinuos periods) :param val_start_date: [str or list] fmt: "YYYY-MM-DD"; date(s) to start validation period (can have multiple discontinuos periods) :param val_end_date: [str or list] fmt: "YYYY-MM-DD"; date(s) to end validation period (can have multiple discontinuos periods) :param test_start_date: [str or list] fmt: "YYYY-MM-DD"; date(s) to start test period (can have multiple discontinuos periods) :param test_end_date: [str or list] fmt: "YYYY-MM-DD"; date(s) to end test period (can have multiple discontinuos periods) :param x_vars: [list] variables that should be used as input. If None, all of the variables will be used :param primary_variable: [str] which variable the model should focus on 'temp' or 'flow'. This determines the order of the variables. :param catch_prop_file: [str] the path to the catchment properties file. If left unfilled, the catchment properties will not be included as predictors :param exclude_file: [str] path to exclude file :param log_q: [bool] whether or not to take the log of discharge in training :param out_file: [str] file to where the values will be written :returns: training and testing data along with the means and standard deviations of the training input and output data 'y_trn_pre': batched, scaled, and centered output data for entire period of record of SNTemp [n_samples, seq_len, n_out] 'y_obs_trn': batched, scaled, and centered output observation data for the training period 'y_trn_obs_std': standard deviation of the y observations training data [n_out] 'y_trn_obs_mean': mean of the observation training data [n_out] 'y_obs_tst': un-batched, unscaled, uncentered observation data for the test period [n_yrs, n_seg, len_seq, n_out] 'dates_ids_trn: batched dates and national seg ids for training data [n_samples, seq_len, 2] 'dates_ids_tst: un-batched dates and national seg ids for testing data [n_yrs, n_seg, len_seq, 2] """ ds_pre = xr.open_zarr(pretrain_file) x_data = ds_pre[x_vars] # make sure we don't have any weird input values check_if_finite(x_data) x_trn, x_val, x_tst = separate_trn_tst( x_data, train_start_date, train_end_date, val_start_date, val_end_date, test_start_date, test_end_date, ) x_scl, x_std, x_mean = scale(x_data) x_trn_scl, _, _ = scale(x_trn, std=x_std, mean=x_mean) x_val_scl, _, _ = scale(x_val, std=x_std, mean=x_mean) x_tst_scl, _, _ = scale(x_tst, std=x_std, mean=x_mean) y_obs = read_multiple_obs([obs_temper_file, obs_flow_file], x_data) y_obs = y_obs[y_vars] y_pre = ds_pre[y_vars] y_obs_trn, y_obs_val, y_obs_tst = separate_trn_tst( y_obs, train_start_date, train_end_date, val_start_date, val_end_date, test_start_date, test_end_date, ) y_pre_trn, y_pre_val, y_pre_tst = separate_trn_tst( y_pre, train_start_date, train_end_date, val_start_date, val_end_date, test_start_date, test_end_date, ) if normalize_y: # scale y training data and get the mean and std y_obs_trn, y_std, y_mean = scale(y_obs_trn) y_pre_trn, _, _ = scale(y_pre_trn, y_std, y_mean) else: _, y_std, y_mean = scale(y_obs_trn) data = { "x_train": convert_batch_reshape(x_trn_scl, offset=offset, seq_len=seq_length), "x_val": convert_batch_reshape(x_val_scl, offset=offset, seq_len=seq_length), "x_test": convert_batch_reshape(x_tst_scl, offset=offset, seq_len=seq_length), "x_std": x_std.to_array().values, "x_mean": x_mean.to_array().values, "x_cols": np.array(x_vars), "ids_train": coord_as_reshaped_array(x_trn, "seg_id_nat", offset=offset, seq_len=seq_length), "dates_train": coord_as_reshaped_array(x_trn, "date", offset=offset, seq_len=seq_length), "ids_val": coord_as_reshaped_array(x_val, "seg_id_nat", offset=offset, seq_len=seq_length), "dates_val": coord_as_reshaped_array(x_val, "date", offset=offset, seq_len=seq_length), "ids_test": coord_as_reshaped_array(x_tst, "seg_id_nat", offset=offset, seq_len=seq_length), "dates_test": coord_as_reshaped_array(x_tst, "date", offset=offset, seq_len=seq_length), "y_pre_train": convert_batch_reshape(y_pre_trn, offset=offset, seq_len=seq_length, y=True, period=period), "y_train": convert_batch_reshape(y_obs_trn, offset=offset, seq_len=seq_length, y=True, period=period), "y_val": convert_batch_reshape(y_obs_val, offset=offset, seq_len=seq_length, y=True, period=period), "y_test": convert_batch_reshape(y_obs_tst, offset=offset, seq_len=seq_length, y=True, period=period), "y_vars": np.array(y_vars), 'period': np.array([period]), 'y_pre_train_val': convert_batch_reshape(y_pre_val, offset=offset, seq_len=seq_length, y=True, period=period), 'y_pre_train_test': convert_batch_reshape(y_pre_tst, offset=offset, seq_len=seq_length, y=True, period=period), "y_std": y_std.to_array().values, "y_mean": y_mean.to_array().values, } if out_file: if os.path.isdir(out_file) == False: os.makedirs(out_file) ''' np.savez_compressed(os.path.join(out_file, 'pre_train.npz'), x=data['x_train'], y=data['y_pre_train']) np.savez_compressed(os.path.join(out_file,'train.npz'), x=data['x_train'], y=data['y_obs_train'], ) np.savez_compressed(os.path.join(out_file, 'test.npz'), x=data['x_test'], y=data['y_obs_tst'], ) np.savez_compressed(os.path.join(out_file,'val.npz'), x=data['x_val'], y=data['y_obs_val'], ) ''' np.savez_compressed(os.path.join(out_file,'data.npz'), **data) return data def prep_adj_matrix(infile, dist_type, out_file=None): """ process adj matrix. **The resulting matrix is sorted by seg_id_nat ** :param infile: :param dist_type: [str] type of distance matrix ("upstream", "downstream" or "updown") :param out_file: :return: [numpy array] processed adjacency matrix """ adj_matrices = np.load(infile) adj = adj_matrices[dist_type] adj_full = sort_dist_matrix(adj, adj_matrices["rowcolnames"]) adj = adj_full[2] adj = np.where(np.isinf(adj), 0, adj) adj = -adj mean_adj = np.mean(adj[adj != 0]) std_adj = np.std(adj[adj != 0]) adj[adj != 0] = adj[adj != 0] - mean_adj adj[adj != 0] = adj[adj != 0] / std_adj adj[adj != 0] = 1 / (1 + np.exp(-adj[adj != 0])) I = np.eye(adj.shape[0]) A_hat = adj.copy() + I D = np.sum(A_hat, axis=1) D_inv = D ** -1.0 D_inv = np.diag(D_inv) A_hat = np.matmul(D_inv, A_hat) if out_file: out_dm = [adj_full[0], adj_full[1], A_hat] with open(out_file+'.pkl', 'wb') as f: pickle.dump(out_dm, f, protocol=2) return adj_full[0], adj_full[1], A_hat def sort_dist_matrix(mat, row_col_names): """ sort the distance matrix by seg_id_nat :return: """ df = pd.DataFrame(mat, columns=row_col_names, index=row_col_names) df = df.sort_index(axis=0) df = df.sort_index(axis=1) sensor_id_to_ind = {} for i, sensor_id in enumerate(df.columns): sensor_id_to_ind[sensor_id] = i return row_col_names, sensor_id_to_ind, df #check = prep_adj_matrix('../../gits/river-dl/DRB_data/distance_matrix.npz', 'upstream', 'data/DRB_gwn_full/adj_mx') #if __name__ == "__main__": check2 = prep_data(obs_temper_file='../../gits/river-dl/DRB_data/obs_temp_full', obs_flow_file='../../gits/river-dl/DRB_data/obs_flow_full', pretrain_file='../../gits/river-dl/DRB_data/uncal_sntemp_input_output', train_start_date=['1985-10-01', '2016-10-01'], train_end_date=['2006-09-30', '2020-09-30'], val_start_date='2006-10-01', val_end_date='2016-09-30', test_start_date=['1980-10-01', '2020-10-01'], test_end_date=['1985-09-30', '2021-09-30'], x_vars=["seg_rain", "seg_tave_air", "seginc_swrad", "seg_length", "seginc_potet", "seg_slope", "seg_humid", "seg_elev"], y_vars=['seg_tave_water'], primary_variable='temp', seq_length=365, period=np.nan, offset=1, out_file = 'data/DRB_gwn_full') '''f __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--output_dir", type=str, default="data/METR-LA", help="Output directory.") parser.add_argument("--traffic_df_filename", type=str, default="data/metr-la.h5", help="Raw traffic readings.",) parser.add_argument("--seq_length_x", type=int, default=12, help="Sequence Length.",) parser.add_argument("--seq_length_y", type=int, default=12, help="Sequence Length.",) parser.add_argument("--y_start", type=int, default=1, help="Y pred start", ) parser.add_argument("--dow", action='store_true',) args = parser.parse_args() if os.path.exists(args.output_dir): reply = str(input(f'{args.output_dir} exists. Do you want to overwrite it? (y/n)')).lower().strip() if reply[0] != 'y': exit else: os.makedirs(args.output_dir) generate_train_val_test(args) ##### Reformat our inputs to match theirs. df = pd.read_hdf("data/metr-la.h5") seq_length_x = 12 seq_length_y = 12 y_start = 1 LAtrain = np.load('data/METR-LA/train.npz') LAtest = np.load('data/METR-LA/test.npz') LAval = np.load('data/METR-LA/val.npz') LAtrain['x'].shape LAtrain['y'].shape LAtest['x'].shape LAtest['y'].shape check = np.moveaxis(data['x_train'], [0,1,2,3], [0,2,1,3]) np.savez_compressed(os.path.join(out_file, 'pre_train.npz'), x=data['x_train'], y=data['y_pre_train']) np.savez_compressed(os.path.join(out_file,'train.npz'), x=data['x_train'], y=data['y_pre_train'], ) np.savez_compressed(os.path.join(out_file, 'test.npz'), x=data['x_test'], y=data['y_pre_test'], ) np.savez_compressed(os.path.join(out_file,'val.npz'), x=data['x_val'], y=data['y_pre_val'], ) '''
[((120, 15, 120, 35), 'numpy.asarray', 'np.asarray', ({(120, 26, 120, 34): 'combined'}, {}), '(combined)', True, 'import numpy as np\n'), ((138, 10, 138, 36), 'xarray.merge', 'xr.merge', (), '', True, 'import xarray as xr\n'), ((154, 11, 154, 63), 'numpy.reshape', 'np.reshape', ({(154, 22, 154, 26): 'data', (154, 28, 154, 62): '[n_batch * n_seg, seq_len, n_feat]'}, {}), '(data, [n_batch * n_seg, seq_len, n_feat])', True, 'import numpy as np\n'), ((196, 10, 196, 33), 'numpy.moveaxis', 'np.moveaxis', ({(196, 22, 196, 25): 'arr', (196, 27, 196, 28): '0', (196, 30, 196, 32): '-1'}, {}), '(arr, 0, -1)', True, 'import numpy as np\n'), ((205, 15, 205, 57), 'numpy.moveaxis', 'np.moveaxis', ({(205, 27, 205, 34): 'batched', (205, 36, 205, 45): '[0, 1, 2, 3]', (205, 47, 205, 56): '[0, 2, 1, 3]'}, {}), '(batched, [0, 1, 2, 3], [0, 2, 1, 3])', True, 'import numpy as np\n'), ((298, 13, 298, 40), 'xarray.open_zarr', 'xr.open_zarr', ({(298, 26, 298, 39): 'pretrain_file'}, {}), '(pretrain_file)', True, 'import xarray as xr\n'), ((413, 19, 413, 34), 'numpy.load', 'np.load', ({(413, 27, 413, 33): 'infile'}, {}), '(infile)', True, 'import numpy as np\n'), ((419, 15, 419, 37), 'numpy.mean', 'np.mean', ({(419, 23, 419, 36): 'adj[adj != 0]'}, {}), '(adj[adj != 0])', True, 'import numpy as np\n'), ((420, 14, 420, 35), 'numpy.std', 'np.std', ({(420, 21, 420, 34): 'adj[adj != 0]'}, {}), '(adj[adj != 0])', True, 'import numpy as np\n'), ((425, 8, 425, 28), 'numpy.eye', 'np.eye', ({(425, 15, 425, 27): 'adj.shape[0]'}, {}), '(adj.shape[0])', True, 'import numpy as np\n'), ((427, 8, 427, 29), 'numpy.sum', 'np.sum', (), '', True, 'import numpy as np\n'), ((429, 12, 429, 26), 'numpy.diag', 'np.diag', ({(429, 20, 429, 25): 'D_inv'}, {}), '(D_inv)', True, 'import numpy as np\n'), ((430, 12, 430, 35), 'numpy.matmul', 'np.matmul', ({(430, 22, 430, 27): 'D_inv', (430, 29, 430, 34): 'A_hat'}, {}), '(D_inv, A_hat)', True, 'import numpy as np\n'), ((446, 9, 446, 70), 'pandas.DataFrame', 'pd.DataFrame', (), '', True, 'import pandas as pd\n'), ((116, 14, 116, 80), 'numpy.arange', 'np.arange', (), '', True, 'import numpy as np\n'), ((117, 16, 117, 69), 'numpy.split', 'np.split', (), '', True, 'import numpy as np\n'), ((134, 13, 134, 35), 'xarray.open_zarr', 'xr.open_zarr', ({(134, 26, 134, 34): 'filename'}, {}), '(filename)', True, 'import xarray as xr\n'), ((166, 16, 166, 61), 'datetime.datetime.strptime', 'datetime.datetime.strptime', ({(166, 43, 166, 48): 'start', (166, 50, 166, 60): '"""%Y-%m-%d"""'}, {}), "(start, '%Y-%m-%d')", False, 'import datetime\n'), ((170, 14, 170, 57), 'datetime.datetime.strptime', 'datetime.datetime.strptime', ({(170, 41, 170, 44): 'end', (170, 46, 170, 56): '"""%Y-%m-%d"""'}, {}), "(end, '%Y-%m-%d')", False, 'import datetime\n'), ((206, 11, 206, 30), 'numpy.isfinite', 'np.isfinite', ({(206, 23, 206, 29): 'period'}, {}), '(period)', True, 'import numpy as np\n'), ((216, 18, 216, 71), 'xarray.broadcast', 'xr.broadcast', ({(216, 31, 216, 50): 'dataset[coord_name]', (216, 52, 216, 70): 'dataset[first_var]'}, {}), '(dataset[coord_name], dataset[first_var])', True, 'import xarray as xr\n'), ((356, 18, 356, 34), 'numpy.array', 'np.array', ({(356, 27, 356, 33): 'x_vars'}, {}), '(x_vars)', True, 'import numpy as np\n'), ((367, 18, 367, 34), 'numpy.array', 'np.array', ({(367, 27, 367, 33): 'y_vars'}, {}), '(y_vars)', True, 'import numpy as np\n'), ((368, 18, 368, 36), 'numpy.array', 'np.array', ({(368, 27, 368, 35): '[period]'}, {}), '([period])', True, 'import numpy as np\n'), ((417, 19, 417, 32), 'numpy.isinf', 'np.isinf', ({(417, 28, 417, 31): 'adj'}, {}), '(adj)', True, 'import numpy as np\n'), ((376, 11, 376, 34), 'os.path.isdir', 'os.path.isdir', ({(376, 25, 376, 33): 'out_file'}, {}), '(out_file)', False, 'import os\n'), ((377, 12, 377, 33), 'os.makedirs', 'os.makedirs', ({(377, 24, 377, 32): 'out_file'}, {}), '(out_file)', False, 'import os\n'), ((399, 28, 399, 61), 'os.path.join', 'os.path.join', ({(399, 41, 399, 49): 'out_file', (399, 50, 399, 60): '"""data.npz"""'}, {}), "(out_file, 'data.npz')", False, 'import os\n'), ((423, 29, 423, 51), 'numpy.exp', 'np.exp', ({(423, 36, 423, 50): '(-adj[adj != 0])'}, {}), '(-adj[adj != 0])', True, 'import numpy as np\n'), ((434, 12, 434, 46), 'pickle.dump', 'pickle.dump', (), '', False, 'import pickle\n'), ((62, 19, 62, 51), 'xarray.concat', 'xr.concat', (), '', True, 'import xarray as xr\n')]
CodedLadiesInnovateTech/python-challenges
Phase-1/Python Basic 1/Day-3.py
22ce26c68fea6c7c243ada831e47c52e27a62127
<<<<<<< HEAD """ 1. Write a Python program to print the documents (syntax, description etc.) of Python built-in function(s). Sample function : abs() Expected Result : abs(number) -> number Return the absolute value of the argument. Tools: help function 2. Write a Python program to print the calendar of a given month and year. Tools: Use 'calendar' module. 3. Write a Python program to print the following here document. Sample string : a string that you "don't" have to escape This is a ....... multi-line heredoc string --------> example Tools: string formating 4. Write a Python program to calculate number of days between two dates. Sample dates : (2014, 7, 2), (2014, 7, 11) Expected output : 9 days Tools: Datetime module, timedelta module 5. Write a Python program to get the volume of a sphere with radius 6. Tools: input function, math 6. Write a Python program to get the difference between a given number and 17, if the number is greater than 17 return double the absolute difference. Tools: abs function, input function, math 7. Write a Python program to test whether a number is within 100 of 1000 or 2000. Tools: maths,input function 8. Write a Python program to calculate the sum of three given numbers, if the values are equal then return three times of their sum. Tools: math, input function 9. Write a Python program to get a new string from a given string where "Is" has been added to the front. If the given string already begins with "Is" then return the string unchanged. Tools: input function, string formating 10. Write a Python program to get a string which is n (non-negative integer) copies of a given string. Tools: input function, slicing ======= """ 1. Write a Python program to print the documents (syntax, description etc.) of Python built-in function(s). Sample function : abs() Expected Result : abs(number) -> number Return the absolute value of the argument. Tools: help function 2. Write a Python program to print the calendar of a given month and year. Tools: Use 'calendar' module. 3. Write a Python program to print the following here document. Sample string : a string that you "don't" have to escape This is a ....... multi-line heredoc string --------> example Tools: string formating 4. Write a Python program to calculate number of days between two dates. Sample dates : (2014, 7, 2), (2014, 7, 11) Expected output : 9 days Tools: Datetime module, timedelta module 5. Write a Python program to get the volume of a sphere with radius 6. Tools: input function, math 6. Write a Python program to get the difference between a given number and 17, if the number is greater than 17 return double the absolute difference. Tools: abs function, input function, math 7. Write a Python program to test whether a number is within 100 of 1000 or 2000. Tools: maths,input function 8. Write a Python program to calculate the sum of three given numbers, if the values are equal then return three times of their sum. Tools: math, input function 9. Write a Python program to get a new string from a given string where "Is" has been added to the front. If the given string already begins with "Is" then return the string unchanged. Tools: input function, string formating 10. Write a Python program to get a string which is n (non-negative integer) copies of a given string. Tools: input function, slicing >>>>>>> f4444ec0d72c645d12694e90df7429456db0611c """
[]
gmgunter/pyre
tests/python/metaclass_inheritance.py
e9ff3f8c04661f8b2cd2ba0caded08b6fe8054e2
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # michael a.g. aïvázis # orthologue # (c) 1998-2021 all rights reserved # # """ When a metaclass understands the extra keywords that can be passed during class declaration, it has to override all these to accommodate the change in signature """ class meta(type): @classmethod def __prepare__(metacls, name, bases, **kwds): assert metacls.__name__ == 'meta' assert name in ['base', 'derived'] if name == 'base': assert bases == (object,) assert kwds == {'arg1': True, 'arg2': False} if name == 'derived': assert bases == (base,) assert kwds == {'arg1': False, 'arg2': True} return super().__prepare__(name, bases) def __new__(metacls, name, bases, attributes, **kwds): assert metacls.__name__ == 'meta' assert name in ['base', 'derived'] if name == 'base': assert bases == (object,) assert kwds == {'arg1': True, 'arg2': False} if name == 'derived': assert bases == (base,) assert kwds == {'arg1': False, 'arg2': True} return super().__new__(metacls, name, bases, attributes) def __init__(self, name, bases, attributes, **kwds): assert self.__name__ in ['base', 'derived'] if self.__name__ == 'base': assert bases == (object,) assert kwds == {'arg1': True, 'arg2': False} if self.__name__ == 'derived': assert bases == (base,) assert kwds == {'arg1': False, 'arg2': True} super().__init__(name, bases, attributes) return class base(object, metaclass=meta, arg1=True, arg2=False): def __init__(self, **kwds): assert type(self).__name__ == 'base' assert kwds == {} return class derived(base, arg1=False, arg2=True): def __init__(self, **kwds): assert type(self).__name__ == 'derived' assert kwds == {} return def test(): b = base() d = derived() return # main if __name__ == "__main__": test() # end of file
[]
idsdlab/basicai_sp21
cs101/module8/8-1/chroma1.py
af9acba34c0417fed830de1b61753c50fd303169
from cs1media import * import math def dist(c1, c2): r1, g1, b1 = c1 r2, g2, b2 = c2 return math.sqrt((r1-r2)**2 + (g1-g2)**2 + (b1-b2)**2) def chroma(img, key, threshold): w, h = img.size() for y in range(h): for x in range(w): p = img.get(x, y) if dist(p, key) < threshold: img.set(x, y, Color.yellow) statue = load_picture("photos/statue1.jpg") chroma(statue, (41, 75, 146), 70) statue.show()
[((8, 9, 8, 56), 'math.sqrt', 'math.sqrt', ({(8, 19, 8, 55): '((r1 - r2) ** 2 + (g1 - g2) ** 2 + (b1 - b2) ** 2)'}, {}), '((r1 - r2) ** 2 + (g1 - g2) ** 2 + (b1 - b2) ** 2)', False, 'import math\n')]
RuthAngus/wfirst_stars
wfirst_stars/mklc.py
60989fc56488ac915082e76c3088c6133909985b
import numpy as np import scipy import scipy.io import pylab import numpy import glob import pyfits def mklc(t, nspot=200, incl=(scipy.pi)*5./12., amp=1., tau=30.5, p=10.0): diffrot = 0. ''' This is a simplified version of the class-based routines in spot_model.py. It generates a light curves for dark, point like spots with no limb-darkening. Parameters: nspot = desired number of spots present on star at any one time amp = desired light curve amplitude tau = characteristic spot life-time diffrot = fractional difference between equatorial and polar rotation period (unit of time is equatorial rotation period)''' # print('Period = ', p) dur = (max(t) - min(t)) # (crude estimate of) total number of spots needed during entire # time-series nspot_tot = int(nspot * dur / 2 / tau) # uniform distribution of spot longitudes lon = scipy.rand(nspot_tot) * 2 * scipy.pi # distribution of spot latitudes uniform in sin(latitude) lat = scipy.arcsin(scipy.rand(nspot_tot)) # spot rotation rate optionally depends on latitude period = ((scipy.sin(lat) - 0.5) * diffrot + 1.0 ) * p period0 = scipy.ones(nspot_tot) * p # all spots have the same maximum area # (crude estimate of) filling factor needed per spot ff = amp / scipy.sqrt(nspot) scale_fac = 1 amax = scipy.ones(nspot_tot) * ff * scale_fac # all spots have the evolution timescale decay = scipy.ones(nspot_tot) * tau # uniform distribution of spot peak times # start well before and end well after time-series limits (to # avoid edge effects) extra = 3 * decay.max() pk = scipy.rand(nspot_tot) * (dur + 2 * extra) - extra # COMPUTE THE LIGHT CURVE # print("Computing light curve...") time = numpy.array(t - min(t)) area_tot = scipy.zeros_like(time) dF_tot = scipy.zeros_like(time) dF_tot0 = scipy.zeros_like(time) # add up the contributions of individual spots for i in range(nspot_tot): # Spot area if (pk[i] == 0) + (decay[i] == 0): area = scipy.ones_like(time) * amax[i] else: area = amax[i] * \ scipy.exp(-(time - pk[i])**2 / 2. / decay[i]**2) area_tot += area # Fore-shortening phase = 2 * scipy.pi * time / period[i] + lon[i] phase0 = 2 * scipy.pi * time / period0[i] + lon[i] mu = scipy.cos(incl) * scipy.sin(lat[i]) + \ scipy.sin(incl) * scipy.cos(lat[i]) * scipy.cos(phase) mu0 = scipy.cos(incl) * scipy.sin(lat[i]) + \ scipy.sin(incl) * scipy.cos(lat[i]) * scipy.cos(phase0) mu[mu < 0] = 0.0 mu0[mu0 < 0] = 0.0 # Flux dF_tot -= area * mu dF_tot0 -= area * mu0 amp_eff = dF_tot.max()-dF_tot.min() nspot_eff = area_tot / scale_fac / ff res0 = scipy.array([nspot_eff.mean(), ff, amp_eff]) res1 = scipy.zeros((4, len(time))) res1[0,:] = time res1[1,:] = area_tot res1[2,:] = dF_tot res1[3,:] = dF_tot0 # print('Used %d spots in total over %d rotation periods.' % (nspot_tot, dur)) # print('Mean filling factor of individual spots was %.4f.' % ff) # print('Desired amplitude was %.4f, actual amplitude was %.4f.' \ # % (amp, amp_eff)) # print('Desired number of spots at any one time was %d.' % nspot) return res0, res1
[((62, 15, 62, 37), 'scipy.zeros_like', 'scipy.zeros_like', ({(62, 32, 62, 36): 'time'}, {}), '(time)', False, 'import scipy\n'), ((63, 13, 63, 35), 'scipy.zeros_like', 'scipy.zeros_like', ({(63, 30, 63, 34): 'time'}, {}), '(time)', False, 'import scipy\n'), ((64, 14, 64, 36), 'scipy.zeros_like', 'scipy.zeros_like', ({(64, 31, 64, 35): 'time'}, {}), '(time)', False, 'import scipy\n'), ((37, 23, 37, 44), 'scipy.rand', 'scipy.rand', ({(37, 34, 37, 43): 'nspot_tot'}, {}), '(nspot_tot)', False, 'import scipy\n'), ((41, 14, 41, 35), 'scipy.ones', 'scipy.ones', ({(41, 25, 41, 34): 'nspot_tot'}, {}), '(nspot_tot)', False, 'import scipy\n'), ((45, 15, 45, 32), 'scipy.sqrt', 'scipy.sqrt', ({(45, 26, 45, 31): 'nspot'}, {}), '(nspot)', False, 'import scipy\n'), ((50, 12, 50, 33), 'scipy.ones', 'scipy.ones', ({(50, 23, 50, 32): 'nspot_tot'}, {}), '(nspot_tot)', False, 'import scipy\n'), ((34, 10, 34, 31), 'scipy.rand', 'scipy.rand', ({(34, 21, 34, 30): 'nspot_tot'}, {}), '(nspot_tot)', False, 'import scipy\n'), ((47, 11, 47, 32), 'scipy.ones', 'scipy.ones', ({(47, 22, 47, 31): 'nspot_tot'}, {}), '(nspot_tot)', False, 'import scipy\n'), ((56, 9, 56, 30), 'scipy.rand', 'scipy.rand', ({(56, 20, 56, 29): 'nspot_tot'}, {}), '(nspot_tot)', False, 'import scipy\n'), ((71, 19, 71, 40), 'scipy.ones_like', 'scipy.ones_like', ({(71, 35, 71, 39): 'time'}, {}), '(time)', False, 'import scipy\n'), ((74, 16, 74, 64), 'scipy.exp', 'scipy.exp', ({(74, 26, 74, 63): '(-(time - pk[i]) ** 2 / 2.0 / decay[i] ** 2)'}, {}), '(-(time - pk[i]) ** 2 / 2.0 / decay[i] ** 2)', False, 'import scipy\n'), ((80, 13, 80, 28), 'scipy.cos', 'scipy.cos', ({(80, 23, 80, 27): 'incl'}, {}), '(incl)', False, 'import scipy\n'), ((80, 31, 80, 48), 'scipy.sin', 'scipy.sin', ({(80, 41, 80, 47): 'lat[i]'}, {}), '(lat[i])', False, 'import scipy\n'), ((81, 50, 81, 66), 'scipy.cos', 'scipy.cos', ({(81, 60, 81, 65): 'phase'}, {}), '(phase)', False, 'import scipy\n'), ((82, 14, 82, 29), 'scipy.cos', 'scipy.cos', ({(82, 24, 82, 28): 'incl'}, {}), '(incl)', False, 'import scipy\n'), ((82, 32, 82, 49), 'scipy.sin', 'scipy.sin', ({(82, 42, 82, 48): 'lat[i]'}, {}), '(lat[i])', False, 'import scipy\n'), ((83, 50, 83, 67), 'scipy.cos', 'scipy.cos', ({(83, 60, 83, 66): 'phase0'}, {}), '(phase0)', False, 'import scipy\n'), ((40, 15, 40, 29), 'scipy.sin', 'scipy.sin', ({(40, 25, 40, 28): 'lat'}, {}), '(lat)', False, 'import scipy\n'), ((81, 12, 81, 27), 'scipy.sin', 'scipy.sin', ({(81, 22, 81, 26): 'incl'}, {}), '(incl)', False, 'import scipy\n'), ((81, 30, 81, 47), 'scipy.cos', 'scipy.cos', ({(81, 40, 81, 46): 'lat[i]'}, {}), '(lat[i])', False, 'import scipy\n'), ((83, 12, 83, 27), 'scipy.sin', 'scipy.sin', ({(83, 22, 83, 26): 'incl'}, {}), '(incl)', False, 'import scipy\n'), ((83, 30, 83, 47), 'scipy.cos', 'scipy.cos', ({(83, 40, 83, 46): 'lat[i]'}, {}), '(lat[i])', False, 'import scipy\n')]
pelavarre/pybashish
bin/sort.py
03f74356fb0a2a0ef7106f09c059fd9b375ce89a
#!/usr/bin/env python3 """ usage: sort.py [-h] sort lines options: -h, --help show this help message and exit quirks: sorts tabs as different than spaces sorts some spaces ending a line as different than none ending a line examples: Oh no! No examples disclosed!! 💥 💔 💥 """ # FIXME: doc -k$N,$N and -n and maybe little else is worth learning # FIXME: ass -k-1,-1 for negative field indexing # FIXME: think into the mess at "sort" vs "LC_ALL=C sort" import sys import argdoc def main(): args = argdoc.parse_args() sys.stderr.write("{}\n".format(args)) sys.stderr.write("{}\n".format(argdoc.format_usage().rstrip())) sys.stderr.write("sort.py: error: not implemented\n") sys.exit(2) # exit 2 from rejecting usage if __name__ == "__main__": main() # copied from: git clone https://github.com/pelavarre/pybashish.git
[((29, 11, 29, 30), 'argdoc.parse_args', 'argdoc.parse_args', ({}, {}), '()', False, 'import argdoc\n'), ((32, 4, 32, 57), 'sys.stderr.write', 'sys.stderr.write', ({(32, 21, 32, 56): '"""sort.py: error: not implemented\n"""'}, {}), "('sort.py: error: not implemented\\n')", False, 'import sys\n'), ((33, 4, 33, 15), 'sys.exit', 'sys.exit', ({(33, 13, 33, 14): '(2)'}, {}), '(2)', False, 'import sys\n'), ((31, 35, 31, 56), 'argdoc.format_usage', 'argdoc.format_usage', ({}, {}), '()', False, 'import argdoc\n')]
davandev/davanserver
davan/http/service/telldus/tdtool.py
0be914268c8e34d4092251508bae213cff3ef621
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys, getopt, httplib, urllib, json, os import oauth.oauth as oauth import datetime from configobj import ConfigObj import logging global logger logger = logging.getLogger(os.path.basename(__file__)) import davan.util.application_logger as log_manager #insert your own public_key and private_key import davan.config.config_creator as config_creator configuration = config_creator.create() PUBLIC_KEY = configuration["TELLDUS_PUBLIC_KEY"] PRIVATE_KEY = configuration["TELLDUS_PRIVATE_KEY"] TELLSTICK_TURNON = 1 TELLSTICK_TURNOFF = 2 TELLSTICK_BELL = 4 TELLSTICK_DIM = 16 TELLSTICK_UP = 128 TELLSTICK_DOWN = 256 SUPPORTED_METHODS = TELLSTICK_TURNON | TELLSTICK_TURNOFF | TELLSTICK_BELL | TELLSTICK_DIM | TELLSTICK_UP | TELLSTICK_DOWN; def printUsage(): print("Usage: %s [ options ]" % sys.argv[0]) print("") print("Options:") print(" -[lnfdbvh] [ --list ] [ --help ]") print(" [ --on device ] [ --off device ] [ --bell device ]") print(" [ --dimlevel level --dim device ]") print(" [ --up device --down device ]") print("") print(" --list (-l short option)") print(" List currently configured devices.") print("") print(" --help (-h short option)") print(" Shows this screen.") print("") print(" --on device (-n short option)") print(" Turns on device. 'device' must be an integer of the device-id") print(" Device-id and name is outputed with the --list option") print("") print(" --off device (-f short option)") print(" Turns off device. 'device' must be an integer of the device-id") print(" Device-id and name is outputed with the --list option") print("") print(" --dim device (-d short option)") print(" Dims device. 'device' must be an integer of the device-id") print(" Device-id and name is outputed with the --list option") print(" Note: The dimlevel parameter must be set before using this option.") print("") print(" --dimlevel level (-v short option)") print(" Set dim level. 'level' should an integer, 0-255.") print(" Note: This parameter must be set before using dim.") print("") print(" --bell device (-b short option)") print(" Sends bell command to devices supporting this. 'device' must") print(" be an integer of the device-id") print(" Device-id and name is outputed with the --list option") print("") print(" --up device") print(" Sends up command to devices supporting this. 'device' must") print(" be an integer of the device-id") print(" Device-id and name is outputed with the --list option") print("") print(" --down device") print(" Sends down command to devices supporting this. 'device' must") print(" be an integer of the device-id") print(" Device-id and name is outputed with the --list option") print("") print(" --list-sensors (-s short option)") print(" Lists currently configured sensors") print("") print(" --sensor-data sensor (-d short option)") print(" Get sensor data with sensor id number") print("") print("Report bugs to <[email protected]>") def listSensors(): response = doRequest('sensors/list', {'includeIgnored': 1}); logger.debug("Number of sensors: %i" % len(response['sensor'])); for sensor in response['sensor']: lastupdate = datetime.datetime.fromtimestamp(int(sensor['lastUpdated'])); logger.debug( "%s\t%s\t%s" % (sensor['id'], sensor['name'], lastupdate)) def listSensorsAndValues(): response = doRequest('sensors/list', {'includeValues': 1}); return response def listDevicesAndValues(): response = doRequest('devices/list', {'supportedMethods': SUPPORTED_METHODS}) return response def getSensorData(sensorId): response = doRequest('sensor/info', {'id': sensorId }); lastupdate = datetime.datetime.fromtimestamp(int(response['lastUpdated'])); sensor_name = response['name']; for data in response['data']: logger.debug( "%s\t%s\t%s\t%s" % (sensor_name, data['name'], data['value'], lastupdate) ) def listDevices(): response = doRequest('devices/list', {'supportedMethods': SUPPORTED_METHODS}) logger.debug("Number of devices: %i" % len(response['device'])); for device in response['device']: if (device['state'] == TELLSTICK_TURNON): state = 'ON' elif (device['state'] == TELLSTICK_TURNOFF): state = 'OFF' elif (device['state'] == TELLSTICK_DIM): state = "DIMMED" elif (device['state'] == TELLSTICK_UP): state = "UP" elif (device['state'] == TELLSTICK_DOWN): state = "DOWN" else: state = 'Unknown state' logger.debug("%s\t%s\t%s" % (device['id'], device['name'], state)); def doMethod(deviceId, methodId, methodValue = 0): response = doRequest('device/info', {'id': deviceId}) if (methodId == TELLSTICK_TURNON): method = 'on' elif (methodId == TELLSTICK_TURNOFF): method = 'off' elif (methodId == TELLSTICK_BELL): method = 'bell' elif (methodId == TELLSTICK_UP): method = 'up' elif (methodId == TELLSTICK_DOWN): method = 'down' if ('error' in response): name = '' retString = response['error'] else: name = response['name'] response = doRequest('device/command', {'id': deviceId, 'method': methodId, 'value': methodValue}) if ('error' in response): retString = response['error'] else: retString = response['status'] if (methodId in (TELLSTICK_TURNON, TELLSTICK_TURNOFF)): logger.debug("Turning %s device %s, %s - %s" % ( method, deviceId, name, retString)); elif (methodId in (TELLSTICK_BELL, TELLSTICK_UP, TELLSTICK_DOWN)): logger.debug("Sending %s to: %s %s - %s" % (method, deviceId, name, retString)) elif (methodId == TELLSTICK_DIM): logger.debug("Dimming device: %s %s to %s - %s" % (deviceId, name, methodValue, retString)) def doRequest(method, params): global config config = ConfigObj(os.environ['HOME'] + '/.config/Telldus/tdtool.conf') consumer = oauth.OAuthConsumer(PUBLIC_KEY, PRIVATE_KEY) token = oauth.OAuthToken(config['token'], config['tokenSecret']) oauth_request = oauth.OAuthRequest.from_consumer_and_token(consumer, token=token, http_method='GET', http_url="http://api.telldus.com/json/" + method, parameters=params) oauth_request.sign_request(oauth.OAuthSignatureMethod_HMAC_SHA1(), consumer, token) headers = oauth_request.to_header() headers['Content-Type'] = 'application/x-www-form-urlencoded' conn = httplib.HTTPConnection("api.telldus.com:80") conn.request('GET', "/json/" + method + "?" + urllib.urlencode(params, True).replace('+', '%20'), headers=headers) response = conn.getresponse() try: return json.load(response) except: logger.debug( 'Failed to decode response :%s'%str(response)) return "" def requestToken(): global config consumer = oauth.OAuthConsumer(PUBLIC_KEY, PRIVATE_KEY) request = oauth.OAuthRequest.from_consumer_and_token(consumer, http_url='http://api.telldus.com/oauth/requestToken') request.sign_request(oauth.OAuthSignatureMethod_HMAC_SHA1(), consumer, None) conn = httplib.HTTPConnection('api.telldus.com:80') conn.request(request.http_method, '/oauth/requestToken', headers=request.to_header()) resp = conn.getresponse().read() token = oauth.OAuthToken.from_string(resp) logger.debug( 'Open the following url in your webbrowser:\nhttp://api.telldus.com/oauth/authorize?oauth_token=%s\n' % token.key) logger.debug( 'After logging in and accepting to use this application run:\n%s --authenticate' % (sys.argv[0])) config['requestToken'] = str(token.key) config['requestTokenSecret'] = str(token.secret) saveConfig() def getAccessToken(): global config consumer = oauth.OAuthConsumer(PUBLIC_KEY, PRIVATE_KEY) token = oauth.OAuthToken(config['requestToken'], config['requestTokenSecret']) request = oauth.OAuthRequest.from_consumer_and_token(consumer, token=token, http_method='GET', http_url='http://api.telldus.com/oauth/accessToken') request.sign_request(oauth.OAuthSignatureMethod_HMAC_SHA1(), consumer, token) conn = httplib.HTTPConnection('api.telldus.com:80') conn.request(request.http_method, request.to_url(), headers=request.to_header()) resp = conn.getresponse() if resp.status != 200: logger.debug( 'Error retreiving access token, the server replied:\n%s' % resp.read()) return token = oauth.OAuthToken.from_string(resp.read()) config['requestToken'] = None config['requestTokenSecret'] = None config['token'] = str(token.key) config['tokenSecret'] = str(token.secret) logger.debug( 'Authentication successful, you can now use tdtool') saveConfig() def authenticate(): try: opts, args = getopt.getopt(sys.argv[1:], '', ['authenticate']) for opt, arg in opts: if opt in ('--authenticate'): getAccessToken() return except getopt.GetoptError: pass requestToken() def saveConfig(): global config try: os.makedirs(os.environ['HOME'] + '/.config/Telldus') except: pass config.write() def main(argv): global config if ('token' not in config or config['token'] == ''): authenticate() return try: opts, args = getopt.getopt(argv, "lsd:n:f:d:b:v:h", ["list", "list-sensors", "sensor-data=", "on=", "off=", "dim=", "bell=", "dimlevel=", "up=", "down=", "help"]) except getopt.GetoptError: printUsage() sys.exit(2) dimlevel = -1 for opt, arg in opts: if opt in ("-h", "--help"): printUsage() elif opt in ("-l", "--list"): listDevices() elif opt in ("-s", "--list-sensors"): listSensors() elif opt in ("-x", "--list-sensorsvalue"): listSensorsAndValues() elif opt in ("-d", "--sensor-data"): getSensorData(arg) elif opt in ("-n", "--on"): doMethod(arg, TELLSTICK_TURNON) elif opt in ("-f", "--off"): doMethod(arg, TELLSTICK_TURNOFF) elif opt in ("-b", "--bell"): doMethod(arg, TELLSTICK_BELL) elif opt in ("-d", "--dim"): if (dimlevel < 0): logger.debug("Dimlevel must be set with --dimlevel before --dim") else: doMethod(arg, TELLSTICK_DIM, dimlevel) elif opt in ("-v", "--dimlevel"): dimlevel = arg elif opt in ("--up"): doMethod(arg, TELLSTICK_UP) elif opt in ("--down"): doMethod(arg, TELLSTICK_DOWN) if __name__ == "__main__": config = ConfigObj(os.environ['HOME'] + '/.config/Telldus/tdtool.conf') configuration = config_creator.create() log_manager.start_logging(configuration["LOGFILE_PATH"],loglevel=4) main(sys.argv[1:])
[((15, 16, 15, 39), 'davan.config.config_creator.create', 'config_creator.create', ({}, {}), '()', True, 'import davan.config.config_creator as config_creator\n'), ((11, 27, 11, 53), 'os.path.basename', 'os.path.basename', ({(11, 44, 11, 52): '__file__'}, {}), '(__file__)', False, 'import sys, getopt, httplib, urllib, json, os\n'), ((160, 10, 160, 72), 'configobj.ConfigObj', 'ConfigObj', ({(160, 20, 160, 71): "os.environ['HOME'] + '/.config/Telldus/tdtool.conf'"}, {}), "(os.environ['HOME'] + '/.config/Telldus/tdtool.conf')", False, 'from configobj import ConfigObj\n'), ((162, 12, 162, 56), 'oauth.oauth.OAuthConsumer', 'oauth.OAuthConsumer', ({(162, 32, 162, 42): 'PUBLIC_KEY', (162, 44, 162, 55): 'PRIVATE_KEY'}, {}), '(PUBLIC_KEY, PRIVATE_KEY)', True, 'import oauth.oauth as oauth\n'), ((163, 9, 163, 65), 'oauth.oauth.OAuthToken', 'oauth.OAuthToken', ({(163, 26, 163, 41): "config['token']", (163, 43, 163, 64): "config['tokenSecret']"}, {}), "(config['token'], config['tokenSecret'])", True, 'import oauth.oauth as oauth\n'), ((165, 17, 165, 170), 'oauth.oauth.OAuthRequest.from_consumer_and_token', 'oauth.OAuthRequest.from_consumer_and_token', (), '', True, 'import oauth.oauth as oauth\n'), ((170, 8, 170, 52), 'httplib.HTTPConnection', 'httplib.HTTPConnection', ({(170, 31, 170, 51): '"""api.telldus.com:80"""'}, {}), "('api.telldus.com:80')", False, 'import sys, getopt, httplib, urllib, json, os\n'), ((182, 12, 182, 56), 'oauth.oauth.OAuthConsumer', 'oauth.OAuthConsumer', ({(182, 32, 182, 42): 'PUBLIC_KEY', (182, 44, 182, 55): 'PRIVATE_KEY'}, {}), '(PUBLIC_KEY, PRIVATE_KEY)', True, 'import oauth.oauth as oauth\n'), ((183, 11, 183, 117), 'oauth.oauth.OAuthRequest.from_consumer_and_token', 'oauth.OAuthRequest.from_consumer_and_token', (), '', True, 'import oauth.oauth as oauth\n'), ((185, 8, 185, 52), 'httplib.HTTPConnection', 'httplib.HTTPConnection', ({(185, 31, 185, 51): '"""api.telldus.com:80"""'}, {}), "('api.telldus.com:80')", False, 'import sys, getopt, httplib, urllib, json, os\n'), ((189, 9, 189, 43), 'oauth.oauth.OAuthToken.from_string', 'oauth.OAuthToken.from_string', ({(189, 38, 189, 42): 'resp'}, {}), '(resp)', True, 'import oauth.oauth as oauth\n'), ((198, 12, 198, 56), 'oauth.oauth.OAuthConsumer', 'oauth.OAuthConsumer', ({(198, 32, 198, 42): 'PUBLIC_KEY', (198, 44, 198, 55): 'PRIVATE_KEY'}, {}), '(PUBLIC_KEY, PRIVATE_KEY)', True, 'import oauth.oauth as oauth\n'), ((199, 9, 199, 79), 'oauth.oauth.OAuthToken', 'oauth.OAuthToken', ({(199, 26, 199, 48): "config['requestToken']", (199, 50, 199, 78): "config['requestTokenSecret']"}, {}), "(config['requestToken'], config['requestTokenSecret'])", True, 'import oauth.oauth as oauth\n'), ((200, 11, 200, 148), 'oauth.oauth.OAuthRequest.from_consumer_and_token', 'oauth.OAuthRequest.from_consumer_and_token', (), '', True, 'import oauth.oauth as oauth\n'), ((202, 8, 202, 52), 'httplib.HTTPConnection', 'httplib.HTTPConnection', ({(202, 31, 202, 51): '"""api.telldus.com:80"""'}, {}), "('api.telldus.com:80')", False, 'import sys, getopt, httplib, urllib, json, os\n'), ((290, 10, 290, 72), 'configobj.ConfigObj', 'ConfigObj', ({(290, 20, 290, 71): "os.environ['HOME'] + '/.config/Telldus/tdtool.conf'"}, {}), "(os.environ['HOME'] + '/.config/Telldus/tdtool.conf')", False, 'from configobj import ConfigObj\n'), ((291, 17, 291, 40), 'davan.config.config_creator.create', 'config_creator.create', ({}, {}), '()', True, 'import davan.config.config_creator as config_creator\n'), ((292, 1, 292, 68), 'davan.util.application_logger.start_logging', 'log_manager.start_logging', (), '', True, 'import davan.util.application_logger as log_manager\n'), ((166, 28, 166, 66), 'oauth.oauth.OAuthSignatureMethod_HMAC_SHA1', 'oauth.OAuthSignatureMethod_HMAC_SHA1', ({}, {}), '()', True, 'import oauth.oauth as oauth\n'), ((175, 9, 175, 28), 'json.load', 'json.load', ({(175, 19, 175, 27): 'response'}, {}), '(response)', False, 'import sys, getopt, httplib, urllib, json, os\n'), ((184, 22, 184, 60), 'oauth.oauth.OAuthSignatureMethod_HMAC_SHA1', 'oauth.OAuthSignatureMethod_HMAC_SHA1', ({}, {}), '()', True, 'import oauth.oauth as oauth\n'), ((201, 22, 201, 60), 'oauth.oauth.OAuthSignatureMethod_HMAC_SHA1', 'oauth.OAuthSignatureMethod_HMAC_SHA1', ({}, {}), '()', True, 'import oauth.oauth as oauth\n'), ((219, 15, 219, 64), 'getopt.getopt', 'getopt.getopt', ({(219, 29, 219, 41): 'sys.argv[1:]', (219, 43, 219, 45): '""""""', (219, 47, 219, 63): "['authenticate']"}, {}), "(sys.argv[1:], '', ['authenticate'])", False, 'import sys, getopt, httplib, urllib, json, os\n'), ((231, 2, 231, 54), 'os.makedirs', 'os.makedirs', ({(231, 14, 231, 53): "(os.environ['HOME'] + '/.config/Telldus')"}, {}), "(os.environ['HOME'] + '/.config/Telldus')", False, 'import sys, getopt, httplib, urllib, json, os\n'), ((242, 15, 242, 164), 'getopt.getopt', 'getopt.getopt', ({(242, 29, 242, 33): 'argv', (242, 35, 242, 52): '"""lsd:n:f:d:b:v:h"""', (242, 54, 242, 163): "['list', 'list-sensors', 'sensor-data=', 'on=', 'off=', 'dim=', 'bell=',\n 'dimlevel=', 'up=', 'down=', 'help']"}, {}), "(argv, 'lsd:n:f:d:b:v:h', ['list', 'list-sensors',\n 'sensor-data=', 'on=', 'off=', 'dim=', 'bell=', 'dimlevel=', 'up=',\n 'down=', 'help'])", False, 'import sys, getopt, httplib, urllib, json, os\n'), ((245, 2, 245, 13), 'sys.exit', 'sys.exit', ({(245, 11, 245, 12): '(2)'}, {}), '(2)', False, 'import sys, getopt, httplib, urllib, json, os\n'), ((171, 47, 171, 77), 'urllib.urlencode', 'urllib.urlencode', ({(171, 64, 171, 70): 'params', (171, 72, 171, 76): '(True)'}, {}), '(params, True)', False, 'import sys, getopt, httplib, urllib, json, os\n')]
rajreet/ichnaea
ichnaea/data/export.py
7bd2eaa9568f9004e566b802623299625c29f5ae
from collections import defaultdict import json import re import time from urllib.parse import urlparse import uuid import boto3 import boto3.exceptions import botocore.exceptions import markus import redis.exceptions import requests import requests.exceptions from sqlalchemy import select import sqlalchemy.exc from ichnaea.data import _map_content_enabled from ichnaea.models import ( ApiKey, BlueObservation, BlueReport, BlueShard, CellObservation, CellReport, CellShard, DataMap, ExportConfig, Report, WifiObservation, WifiReport, WifiShard, ) from ichnaea.models.content import encode_datamap_grid from ichnaea import util WHITESPACE = re.compile(r"\s", flags=re.UNICODE) METRICS = markus.get_metrics() class IncomingQueue(object): """ The incoming queue contains the data collected in the web application. It is the single entrypoint from which all other data pipelines get their data. It distributes the data into the configured export queues, checks those queues and if they contain enough or old enough data schedules an async export task to process the data in each queue. """ def __init__(self, task): self.task = task def __call__(self, export_task): redis_client = self.task.redis_client data_queue = self.task.app.data_queues["update_incoming"] data = data_queue.dequeue() grouped = defaultdict(list) for item in data: grouped[(item["api_key"], item.get("source", "gnss"))].append( {"api_key": item["api_key"], "report": item["report"]} ) with self.task.db_session(commit=False) as session: export_configs = ExportConfig.all(session) with self.task.redis_pipeline() as pipe: for (api_key, source), items in grouped.items(): for config in export_configs: if config.allowed(api_key, source): queue_key = config.queue_key(api_key, source) queue = config.queue(queue_key, redis_client) queue.enqueue(items, pipe=pipe) for config in export_configs: # Check all queues if they now contain enough data or # old enough data to be ready for processing. for queue_key in config.partitions(redis_client): queue = config.queue(queue_key, redis_client) if queue.ready(): export_task.delay(config.name, queue_key) if data_queue.ready(): self.task.apply_countdown() class ReportExporter(object): _retriable = (IOError,) _retries = 3 _retry_wait = 1.0 def __init__(self, task, config, queue_key): self.task = task self.config = config self.queue_key = queue_key self.queue = config.queue(queue_key, task.redis_client) self.stats_tags = ["key:" + self.config.name] @staticmethod def export(task, name, queue_key): with task.db_session(commit=False) as session: config = ExportConfig.get(session, name) exporter_types = { "dummy": DummyExporter, "geosubmit": GeosubmitExporter, "internal": InternalExporter, "s3": S3Exporter, } exporter_type = exporter_types.get(config.schema) if exporter_type is not None: exporter_type(task, config, queue_key)() def __call__(self): queue_items = self.queue.dequeue() if not queue_items: return success = False for i in range(self._retries): try: with METRICS.timer("data.export.upload.timing", tags=self.stats_tags): self.send(queue_items) success = True except self._retriable: success = False time.sleep(self._retry_wait * (i ** 2 + 1)) if success: METRICS.incr("data.export.batch", tags=self.stats_tags) break if success and self.queue.ready(): self.task.apply_countdown(args=[self.config.name, self.queue_key]) def send(self, queue_items): raise NotImplementedError() class DummyExporter(ReportExporter): def send(self, queue_items): pass class GeosubmitExporter(ReportExporter): _retriable = (IOError, requests.exceptions.RequestException) def send(self, queue_items): # ignore metadata reports = [item["report"] for item in queue_items] headers = { "Content-Encoding": "gzip", "Content-Type": "application/json", "User-Agent": "ichnaea", } response = requests.post( self.config.url, data=util.encode_gzip( json.dumps({"items": reports}).encode(), compresslevel=5 ), headers=headers, timeout=60.0, ) # log upload_status and trigger exception for bad responses # this causes the task to be re-tried METRICS.incr( "data.export.upload", tags=self.stats_tags + ["status:%s" % response.status_code], ) response.raise_for_status() class S3Exporter(ReportExporter): _retriable = ( IOError, boto3.exceptions.Boto3Error, botocore.exceptions.BotoCoreError, ) def send(self, queue_items): # ignore metadata reports = [item["report"] for item in queue_items] _, bucketname, path = urlparse(self.config.url)[:3] # s3 key names start without a leading slash path = path.lstrip("/") if not path.endswith("/"): path += "/" year, month, day = util.utcnow().timetuple()[:3] # strip away queue prefix again parts = self.queue_key.split(":") source = parts[1] api_key = parts[2] obj_name = path.format( source=source, api_key=api_key, year=year, month=month, day=day ) obj_name += uuid.uuid1().hex + ".json.gz" try: data = util.encode_gzip( json.dumps({"items": reports}).encode(), compresslevel=7 ) s3 = boto3.resource("s3") bucket = s3.Bucket(bucketname) obj = bucket.Object(obj_name) obj.put(Body=data, ContentEncoding="gzip", ContentType="application/json") METRICS.incr( "data.export.upload", tags=self.stats_tags + ["status:success"] ) except Exception: METRICS.incr( "data.export.upload", tags=self.stats_tags + ["status:failure"] ) raise class InternalTransform(object): """ This maps the geosubmit v2 schema used in view code and external transfers (backup, forward to partners) to the internal submit v1 schema used in our own database models. """ # *_id maps a source section id to a target section id # *_map maps fields inside the section from source to target id # if the names are equal, a simple string can be specified instead # of a two-tuple position_id = ("position", None) position_map = [ ("latitude", "lat"), ("longitude", "lon"), "accuracy", "altitude", ("altitudeAccuracy", "altitude_accuracy"), "heading", "pressure", "speed", "source", ] blue_id = ("bluetoothBeacons", "blue") blue_map = [("macAddress", "mac"), "age", ("signalStrength", "signal")] cell_id = ("cellTowers", "cell") cell_map = [ ("radioType", "radio"), ("mobileCountryCode", "mcc"), ("mobileNetworkCode", "mnc"), ("locationAreaCode", "lac"), ("cellId", "cid"), "age", "asu", ("primaryScramblingCode", "psc"), "serving", ("signalStrength", "signal"), ("timingAdvance", "ta"), ] wifi_id = ("wifiAccessPoints", "wifi") wifi_map = [ ("macAddress", "mac"), "age", "channel", "frequency", ("radioType", "radio"), ("signalToNoiseRatio", "snr"), ("signalStrength", "signal"), ] def _map_dict(self, item_source, field_map): value = {} for spec in field_map: if isinstance(spec, tuple): source, target = spec else: source = spec target = spec source_value = item_source.get(source) if source_value is not None: value[target] = source_value return value def _parse_dict(self, item, report, key_map, field_map): value = {} item_source = item.get(key_map[0]) if item_source: value = self._map_dict(item_source, field_map) if value: if key_map[1] is None: report.update(value) else: report[key_map[1]] = value return value def _parse_list(self, item, report, key_map, field_map): values = [] for value_item in item.get(key_map[0], ()): value = self._map_dict(value_item, field_map) if value: values.append(value) if values: report[key_map[1]] = values return values def __call__(self, item): report = {} self._parse_dict(item, report, self.position_id, self.position_map) blues = self._parse_list(item, report, self.blue_id, self.blue_map) cells = self._parse_list(item, report, self.cell_id, self.cell_map) wifis = self._parse_list(item, report, self.wifi_id, self.wifi_map) position = item.get("position") or {} gps_age = position.get("age", 0) timestamp = item.get("timestamp") if timestamp: # turn timestamp into GPS timestamp report["timestamp"] = timestamp - gps_age if gps_age: # Normalize age fields to be relative to GPS time for type_ in ("blue", "cell", "wifi"): for record in report.get(type_, ()): record["age"] = record.get("age", 0) - gps_age if blues or cells or wifis: return report return {} class InternalExporter(ReportExporter): _retriable = (IOError, redis.exceptions.RedisError, sqlalchemy.exc.InternalError) transform = InternalTransform() def send(self, queue_items): api_keys = set() api_keys_known = set() metrics = {} items = [] for item in queue_items: # preprocess items and extract set of API keys item["report"] = self.transform(item["report"]) if item["report"]: items.append(item) api_keys.add(item["api_key"]) for api_key in api_keys: metrics[api_key] = {} for type_ in ("report", "blue", "cell", "wifi"): for action in ("drop", "upload"): metrics[api_key]["%s_%s" % (type_, action)] = 0 with self.task.db_session(commit=False) as session: # limit database session to get API keys keys = [key for key in api_keys if key] if keys: columns = ApiKey.__table__.c rows = session.execute( select([columns.valid_key]).where(columns.valid_key.in_(keys)) ).fetchall() for row in rows: api_keys_known.add(row.valid_key) positions = [] observations = {"blue": [], "cell": [], "wifi": []} for item in items: api_key = item["api_key"] report = item["report"] obs, malformed_obs = self.process_report(report) any_data = False for name in ("blue", "cell", "wifi"): if obs.get(name): observations[name].extend(obs[name]) metrics[api_key][name + "_upload"] += len(obs[name]) any_data = True metrics[api_key][name + "_drop"] += malformed_obs.get(name, 0) metrics[api_key]["report_upload"] += 1 if any_data: positions.append((report["lat"], report["lon"])) else: metrics[api_key]["report_drop"] += 1 with self.task.redis_pipeline() as pipe: self.queue_observations(pipe, observations) if _map_content_enabled and positions: self.process_datamap(pipe, positions) self.emit_metrics(api_keys_known, metrics) def queue_observations(self, pipe, observations): for datatype, shard_model, shard_key, queue_prefix in ( ("blue", BlueShard, "mac", "update_blue_"), ("cell", CellShard, "cellid", "update_cell_"), ("wifi", WifiShard, "mac", "update_wifi_"), ): queued_obs = defaultdict(list) for obs in observations[datatype]: # group by sharded queue shard_id = shard_model.shard_id(getattr(obs, shard_key)) queue_id = queue_prefix + shard_id queued_obs[queue_id].append(obs.to_json()) for queue_id, values in queued_obs.items(): # enqueue values for each queue queue = self.task.app.data_queues[queue_id] queue.enqueue(values, pipe=pipe) def emit_metrics(self, api_keys_known, metrics): for api_key, key_metrics in metrics.items(): api_tag = [] if api_key and api_key in api_keys_known: api_tag = ["key:%s" % api_key] for name, count in key_metrics.items(): if not count: continue type_, action = name.split("_") if type_ == "report": suffix = "report" tags = api_tag else: suffix = "observation" tags = ["type:%s" % type_] + api_tag METRICS.incr("data.%s.%s" % (suffix, action), count, tags=tags) def process_report(self, data): report = Report.create(**data) if report is None: return ({}, {}) malformed = {} observations = {} for name, report_cls, obs_cls in ( ("blue", BlueReport, BlueObservation), ("cell", CellReport, CellObservation), ("wifi", WifiReport, WifiObservation), ): malformed[name] = 0 observations[name] = {} if data.get(name): for item in data[name]: # validate the blue/cell/wifi specific fields item_report = report_cls.create(**item) if item_report is None: malformed[name] += 1 continue # combine general and specific report data into one item_obs = obs_cls.combine(report, item_report) item_key = item_obs.unique_key # if we have better data for the same key, ignore existing = observations[name].get(item_key) if existing is not None and existing.better(item_obs): continue observations[name][item_key] = item_obs obs = { "blue": observations["blue"].values(), "cell": observations["cell"].values(), "wifi": observations["wifi"].values(), } return (obs, malformed) def process_datamap(self, pipe, positions): grids = set() for lat, lon in positions: if lat is not None and lon is not None: grids.add(DataMap.scale(lat, lon)) shards = defaultdict(set) for lat, lon in grids: shards[DataMap.shard_id(lat, lon)].add(encode_datamap_grid(lat, lon)) for shard_id, values in shards.items(): queue = self.task.app.data_queues["update_datamap_" + shard_id] queue.enqueue(list(values), pipe=pipe)
[((38, 13, 38, 48), 're.compile', 're.compile', (), '', False, 'import re\n'), ((40, 10, 40, 30), 'markus.get_metrics', 'markus.get_metrics', ({}, {}), '()', False, 'import markus\n'), ((63, 18, 63, 35), 'collections.defaultdict', 'defaultdict', ({(63, 30, 63, 34): 'list'}, {}), '(list)', False, 'from collections import defaultdict\n'), ((456, 17, 456, 38), 'ichnaea.models.Report.create', 'Report.create', ({}, {}), '(**data)', False, 'from ichnaea.models import ApiKey, BlueObservation, BlueReport, BlueShard, CellObservation, CellReport, CellShard, DataMap, ExportConfig, Report, WifiObservation, WifiReport, WifiShard\n'), ((503, 17, 503, 33), 'collections.defaultdict', 'defaultdict', ({(503, 29, 503, 32): 'set'}, {}), '(set)', False, 'from collections import defaultdict\n'), ((70, 29, 70, 54), 'ichnaea.models.ExportConfig.all', 'ExportConfig.all', ({(70, 46, 70, 53): 'session'}, {}), '(session)', False, 'from ichnaea.models import ApiKey, BlueObservation, BlueReport, BlueShard, CellObservation, CellReport, CellShard, DataMap, ExportConfig, Report, WifiObservation, WifiReport, WifiShard\n'), ((108, 21, 108, 52), 'ichnaea.models.ExportConfig.get', 'ExportConfig.get', ({(108, 38, 108, 45): 'session', (108, 47, 108, 51): 'name'}, {}), '(session, name)', False, 'from ichnaea.models import ApiKey, BlueObservation, BlueReport, BlueShard, CellObservation, CellReport, CellShard, DataMap, ExportConfig, Report, WifiObservation, WifiReport, WifiShard\n'), ((196, 30, 196, 55), 'urllib.parse.urlparse', 'urlparse', ({(196, 39, 196, 54): 'self.config.url'}, {}), '(self.config.url)', False, 'from urllib.parse import urlparse\n'), ((219, 17, 219, 37), 'boto3.resource', 'boto3.resource', ({(219, 32, 219, 36): '"""s3"""'}, {}), "('s3')", False, 'import boto3\n'), ((423, 25, 423, 42), 'collections.defaultdict', 'defaultdict', ({(423, 37, 423, 41): 'list'}, {}), '(list)', False, 'from collections import defaultdict\n'), ((212, 20, 212, 32), 'uuid.uuid1', 'uuid.uuid1', ({}, {}), '()', False, 'import uuid\n'), ((505, 51, 505, 80), 'ichnaea.models.content.encode_datamap_grid', 'encode_datamap_grid', ({(505, 71, 505, 74): 'lat', (505, 76, 505, 79): 'lon'}, {}), '(lat, lon)', False, 'from ichnaea.models.content import encode_datamap_grid\n'), ((134, 16, 134, 59), 'time.sleep', 'time.sleep', ({(134, 27, 134, 58): '(self._retry_wait * (i ** 2 + 1))'}, {}), '(self._retry_wait * (i ** 2 + 1))', False, 'import time\n'), ((202, 27, 202, 40), 'ichnaea.util.utcnow', 'util.utcnow', ({}, {}), '()', False, 'from ichnaea import util\n'), ((501, 26, 501, 49), 'ichnaea.models.DataMap.scale', 'DataMap.scale', ({(501, 40, 501, 43): 'lat', (501, 45, 501, 48): 'lon'}, {}), '(lat, lon)', False, 'from ichnaea.models import ApiKey, BlueObservation, BlueReport, BlueShard, CellObservation, CellReport, CellShard, DataMap, ExportConfig, Report, WifiObservation, WifiReport, WifiShard\n'), ((216, 16, 216, 46), 'json.dumps', 'json.dumps', ({(216, 27, 216, 45): "{'items': reports}"}, {}), "({'items': reports})", False, 'import json\n'), ((169, 16, 169, 46), 'json.dumps', 'json.dumps', ({(169, 27, 169, 45): "{'items': reports}"}, {}), "({'items': reports})", False, 'import json\n'), ((505, 19, 505, 45), 'ichnaea.models.DataMap.shard_id', 'DataMap.shard_id', ({(505, 36, 505, 39): 'lat', (505, 41, 505, 44): 'lon'}, {}), '(lat, lon)', False, 'from ichnaea.models import ApiKey, BlueObservation, BlueReport, BlueShard, CellObservation, CellReport, CellShard, DataMap, ExportConfig, Report, WifiObservation, WifiReport, WifiShard\n'), ((380, 20, 380, 47), 'sqlalchemy.select', 'select', ({(380, 27, 380, 46): '[columns.valid_key]'}, {}), '([columns.valid_key])', False, 'from sqlalchemy import select\n')]
x-y-z/HugeCTR
test/inference_correctness/dcn_multi_hot.py
17bf942215df60827ece9dc015af5191ef9219b7
import hugectr from mpi4py import MPI solver = hugectr.CreateSolver(model_name = "dcn", max_eval_batches = 1, batchsize_eval = 16384, batchsize = 16384, lr = 0.001, vvgpu = [[0]], repeat_dataset = True, use_mixed_precision = False, scaler = 1.0, use_cuda_graph = True, metrics_spec = {hugectr.MetricsType.AUC: 1.0}) reader = hugectr.DataReaderParams(data_reader_type = hugectr.DataReaderType_t.Norm, source = ["./dcn_data/file_list.txt"], eval_source = "./dcn_data/file_list_test.txt", check_type = hugectr.Check_t.Sum, num_workers = 16) optimizer = hugectr.CreateOptimizer(optimizer_type = hugectr.Optimizer_t.Adam, update_type = hugectr.Update_t.Global, beta1 = 0.9, beta2 = 0.999, epsilon = 0.0001) model = hugectr.Model(solver, reader, optimizer) model.add(hugectr.Input(label_dim = 1, label_name = "label", dense_dim = 13, dense_name = "dense", data_reader_sparse_param_array = [hugectr.DataReaderSparseParam("data1", 2, False, 26)])) model.add(hugectr.SparseEmbedding(embedding_type = hugectr.Embedding_t.DistributedSlotSparseEmbeddingHash, workspace_size_per_gpu_in_mb = 300, embedding_vec_size = 16, combiner = "sum", sparse_embedding_name = "sparse_embedding1", bottom_name = "data1", optimizer = optimizer)) model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Reshape, bottom_names = ["sparse_embedding1"], top_names = ["reshape1"], leading_dim=416)) model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Concat, bottom_names = ["reshape1", "dense"], top_names = ["concat1"])) model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Slice, bottom_names = ["concat1"], top_names = ["slice11", "slice12"], ranges=[(0,429),(0,429)])) model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.MultiCross, bottom_names = ["slice11"], top_names = ["multicross1"], num_layers=1)) model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.InnerProduct, bottom_names = ["slice12"], top_names = ["fc1"], num_output=1024)) model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.ReLU, bottom_names = ["fc1"], top_names = ["relu1"])) model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Dropout, bottom_names = ["relu1"], top_names = ["dropout1"], dropout_rate=0.5)) model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.InnerProduct, bottom_names = ["dropout1"], top_names = ["fc2"], num_output=1024)) model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.ReLU, bottom_names = ["fc2"], top_names = ["relu2"])) model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Dropout, bottom_names = ["relu2"], top_names = ["dropout2"], dropout_rate=0.5)) model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Concat, bottom_names = ["dropout2", "multicross1"], top_names = ["concat2"])) model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.InnerProduct, bottom_names = ["concat2"], top_names = ["fc3"], num_output=1)) model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.BinaryCrossEntropyLoss, bottom_names = ["fc3", "label"], top_names = ["loss"])) model.compile() model.summary() model.graph_to_json(graph_config_file = "/dump_infer/dcn.json") model.fit(max_iter = 2300, display = 200, eval_interval = 2000, snapshot = 2000, snapshot_prefix = "/dump_infer/dcn") model.export_predictions("/dump_infer/dcn_pred_" + str(2000), "/dump_infer/dcn_label_" + str(2000)) from hugectr.inference import InferenceParams, CreateInferenceSession import numpy as np batch_size = 16384 num_batches = 1 data_source = "./dcn_data/file_list_test.txt" inference_params = InferenceParams(model_name = "dcn", max_batchsize = batch_size, hit_rate_threshold = 1.0, dense_model_file = "/dump_infer/dcn_dense_2000.model", sparse_model_files = ["/dump_infer/dcn0_sparse_2000.model"], device_id = 0, use_gpu_embedding_cache = False, cache_size_percentage = 1.0, i64_input_key = False, use_mixed_precision = False, use_cuda_graph = True) inference_session = CreateInferenceSession("/dump_infer/dcn.json", inference_params) predictions = inference_session.predict(num_batches = num_batches, source = data_source, data_reader_type = hugectr.DataReaderType_t.Norm, check_type = hugectr.Check_t.Sum) grount_truth = np.loadtxt("/dump_infer/dcn_pred_2000") diff = predictions-grount_truth mse = np.mean(diff*diff) if mse > 1e-3: raise RuntimeError("Too large mse between DCN multi hot inference and training: {}".format(mse)) sys.exit(1) else: print("DCN multi hot inference results are consistent with those during training, mse: {}".format(mse))
[((3, 9, 13, 76), 'hugectr.CreateSolver', 'hugectr.CreateSolver', (), '', False, 'import hugectr\n'), ((14, 9, 18, 51), 'hugectr.DataReaderParams', 'hugectr.DataReaderParams', (), '', False, 'import hugectr\n'), ((19, 12, 23, 53), 'hugectr.CreateOptimizer', 'hugectr.CreateOptimizer', (), '', False, 'import hugectr\n'), ((24, 8, 24, 48), 'hugectr.Model', 'hugectr.Model', ({(24, 22, 24, 28): 'solver', (24, 30, 24, 36): 'reader', (24, 38, 24, 47): 'optimizer'}, {}), '(solver, reader, optimizer)', False, 'import hugectr\n'), ((94, 19, 104, 54), 'hugectr.inference.InferenceParams', 'InferenceParams', (), '', False, 'from hugectr.inference import InferenceParams, CreateInferenceSession\n'), ((105, 20, 105, 84), 'hugectr.inference.CreateInferenceSession', 'CreateInferenceSession', ({(105, 43, 105, 65): '"""/dump_infer/dcn.json"""', (105, 67, 105, 83): 'inference_params'}, {}), "('/dump_infer/dcn.json', inference_params)", False, 'from hugectr.inference import InferenceParams, CreateInferenceSession\n'), ((110, 15, 110, 54), 'numpy.loadtxt', 'np.loadtxt', ({(110, 26, 110, 53): '"""/dump_infer/dcn_pred_2000"""'}, {}), "('/dump_infer/dcn_pred_2000')", True, 'import numpy as np\n'), ((112, 6, 112, 24), 'numpy.mean', 'np.mean', ({(112, 14, 112, 23): 'diff * diff'}, {}), '(diff * diff)', True, 'import numpy as np\n'), ((29, 10, 35, 50), 'hugectr.SparseEmbedding', 'hugectr.SparseEmbedding', (), '', False, 'import hugectr\n'), ((36, 10, 39, 44), 'hugectr.DenseLayer', 'hugectr.DenseLayer', (), '', False, 'import hugectr\n'), ((40, 10, 41, 90), 'hugectr.DenseLayer', 'hugectr.DenseLayer', (), '', False, 'import hugectr\n'), ((42, 10, 45, 53), 'hugectr.DenseLayer', 'hugectr.DenseLayer', (), '', False, 'import hugectr\n'), ((46, 10, 49, 41), 'hugectr.DenseLayer', 'hugectr.DenseLayer', (), '', False, 'import hugectr\n'), ((50, 10, 53, 44), 'hugectr.DenseLayer', 'hugectr.DenseLayer', (), '', False, 'import hugectr\n'), ((54, 10, 56, 50), 'hugectr.DenseLayer', 'hugectr.DenseLayer', (), '', False, 'import hugectr\n'), ((57, 10, 60, 45), 'hugectr.DenseLayer', 'hugectr.DenseLayer', (), '', False, 'import hugectr\n'), ((61, 10, 64, 44), 'hugectr.DenseLayer', 'hugectr.DenseLayer', (), '', False, 'import hugectr\n'), ((65, 10, 67, 50), 'hugectr.DenseLayer', 'hugectr.DenseLayer', (), '', False, 'import hugectr\n'), ((68, 10, 71, 45), 'hugectr.DenseLayer', 'hugectr.DenseLayer', (), '', False, 'import hugectr\n'), ((72, 10, 74, 52), 'hugectr.DenseLayer', 'hugectr.DenseLayer', (), '', False, 'import hugectr\n'), ((75, 10, 78, 41), 'hugectr.DenseLayer', 'hugectr.DenseLayer', (), '', False, 'import hugectr\n'), ((79, 10, 81, 49), 'hugectr.DenseLayer', 'hugectr.DenseLayer', (), '', False, 'import hugectr\n'), ((28, 25, 28, 77), 'hugectr.DataReaderSparseParam', 'hugectr.DataReaderSparseParam', ({(28, 55, 28, 62): '"""data1"""', (28, 64, 28, 65): '(2)', (28, 67, 28, 72): '(False)', (28, 74, 28, 76): '(26)'}, {}), "('data1', 2, False, 26)", False, 'import hugectr\n')]
RobotLocomotion/drake-python3.7
bindings/pydrake/systems/perception.py
ae397a4c6985262d23e9675b9bf3927c08d027f5
import numpy as np from pydrake.common.value import AbstractValue from pydrake.math import RigidTransform from pydrake.perception import BaseField, Fields, PointCloud from pydrake.systems.framework import LeafSystem def _TransformPoints(points_Ci, X_CiSi): # Make homogeneous copy of points. points_h_Ci = np.vstack((points_Ci, np.ones((1, points_Ci.shape[1])))) return X_CiSi.dot(points_h_Ci)[:3, :] def _TileColors(color, dim): # Need manual broadcasting. return np.tile(np.array([color]).T, (1, dim)) def _ConcatenatePointClouds(points_dict, colors_dict): scene_points = None scene_colors = None for id in points_dict: if scene_points is None: scene_points = points_dict[id] else: scene_points = np.hstack((points_dict[id], scene_points)) if scene_colors is None: scene_colors = colors_dict[id] else: scene_colors = np.hstack((colors_dict[id], scene_colors)) valid_indices = np.logical_not(np.isnan(scene_points)) scene_points = scene_points[:, valid_indices[0, :]] scene_colors = scene_colors[:, valid_indices[0, :]] return scene_points, scene_colors class PointCloudConcatenation(LeafSystem): """ .. pydrake_system:: name: PointCloudConcatenation input_ports: - point_cloud_CiSi_id0 - X_FCi_id0 - ... - point_cloud_CiSi_idN - X_FCi_idN output_ports: - point_cloud_FS """ def __init__(self, id_list, default_rgb=[255., 255., 255.]): """ A system that takes in N point clouds of points Si in frame Ci, and N RigidTransforms from frame Ci to F, to put each point cloud in a common frame F. The system returns one point cloud combining all of the transformed point clouds. Each point cloud must have XYZs. RGBs are optional. If absent, those points will be the provided default color. @param id_list A list containing the string IDs of all of the point clouds. This is often the serial number of the camera they came from, such as "1" for a simulated camera or "805212060373" for a real camera. @param default_rgb A list of length 3 containing the RGB values to use in the absence of PointCloud.rgbs. Values should be between 0 and 255. The default is white. """ LeafSystem.__init__(self) self._point_cloud_ports = {} self._transform_ports = {} self._id_list = id_list self._default_rgb = np.array(default_rgb) output_fields = Fields(BaseField.kXYZs | BaseField.kRGBs) for id in self._id_list: self._point_cloud_ports[id] = self.DeclareAbstractInputPort( "point_cloud_CiSi_{}".format(id), AbstractValue.Make(PointCloud(fields=output_fields))) self._transform_ports[id] = self.DeclareAbstractInputPort( "X_FCi_{}".format(id), AbstractValue.Make(RigidTransform.Identity())) self.DeclareAbstractOutputPort("point_cloud_FS", lambda: AbstractValue.Make( PointCloud(fields=output_fields)), self.DoCalcOutput) def _AlignPointClouds(self, context): points = {} colors = {} for id in self._id_list: point_cloud = self.EvalAbstractInput( context, self._point_cloud_ports[id].get_index()).get_value() X_CiSi = self.EvalAbstractInput( context, self._transform_ports[id].get_index()).get_value() points[id] = _TransformPoints( point_cloud.xyzs(), X_CiSi.GetAsMatrix4()) if point_cloud.has_rgbs(): colors[id] = point_cloud.rgbs() else: colors[id] = _TileColors( self._default_rgb, point_cloud.xyzs().shape[1]) return _ConcatenatePointClouds(points, colors) def DoCalcOutput(self, context, output): scene_points, scene_colors = self._AlignPointClouds(context) output.get_mutable_value().resize(scene_points.shape[1]) output.get_mutable_value().mutable_xyzs()[:] = scene_points output.get_mutable_value().mutable_rgbs()[:] = scene_colors
[((37, 35, 37, 57), 'numpy.isnan', 'np.isnan', ({(37, 44, 37, 56): 'scene_points'}, {}), '(scene_points)', True, 'import numpy as np\n'), ((76, 8, 76, 33), 'pydrake.systems.framework.LeafSystem.__init__', 'LeafSystem.__init__', ({(76, 28, 76, 32): 'self'}, {}), '(self)', False, 'from pydrake.systems.framework import LeafSystem\n'), ((83, 28, 83, 49), 'numpy.array', 'np.array', ({(83, 37, 83, 48): 'default_rgb'}, {}), '(default_rgb)', True, 'import numpy as np\n'), ((85, 24, 85, 65), 'pydrake.perception.Fields', 'Fields', ({(85, 31, 85, 64): 'BaseField.kXYZs | BaseField.kRGBs'}, {}), '(BaseField.kXYZs | BaseField.kRGBs)', False, 'from pydrake.perception import BaseField, Fields, PointCloud\n'), ((12, 29, 12, 61), 'numpy.ones', 'np.ones', ({(12, 37, 12, 60): '(1, points_Ci.shape[1])'}, {}), '((1, points_Ci.shape[1]))', True, 'import numpy as np\n'), ((19, 19, 19, 36), 'numpy.array', 'np.array', ({(19, 28, 19, 35): '[color]'}, {}), '([color])', True, 'import numpy as np\n'), ((30, 27, 30, 69), 'numpy.hstack', 'np.hstack', ({(30, 37, 30, 68): '(points_dict[id], scene_points)'}, {}), '((points_dict[id], scene_points))', True, 'import numpy as np\n'), ((35, 27, 35, 69), 'numpy.hstack', 'np.hstack', ({(35, 37, 35, 68): '(colors_dict[id], scene_colors)'}, {}), '((colors_dict[id], scene_colors))', True, 'import numpy as np\n'), ((90, 35, 90, 67), 'pydrake.perception.PointCloud', 'PointCloud', (), '', False, 'from pydrake.perception import BaseField, Fields, PointCloud\n'), ((94, 35, 94, 60), 'pydrake.math.RigidTransform.Identity', 'RigidTransform.Identity', ({}, {}), '()', False, 'from pydrake.math import RigidTransform\n'), ((98, 43, 98, 75), 'pydrake.perception.PointCloud', 'PointCloud', (), '', False, 'from pydrake.perception import BaseField, Fields, PointCloud\n')]
mit-ll/CATAN
experiments/db_test.py
7cc6f7e8af459c0f6bcf325f0754db1ba5b591ac
#!/usr/bin/env python """ @author Hongyi Hu © 2015 Massachusetts Institute of Technology """ import argparse import random import catan.db from catan.data import NodeMessage # test data STATUS_LIST = ['ok', 'injured', 'deceased'] # nodes def gen_nodes(n, db, start_lat, stop_lat, start_long, stop_long): assert n > 0 cmd = "INSERT INTO catan_nodes VALUES " # generate n random nodes, centered around Cambridge for i in range(n): # random lat, long lat = round(random.uniform(start_lat, stop_lat), 6) lng = round(random.uniform(start_long, stop_long), 6) # node_id, gps_lat, gps_long, gps_acc, path, timestamp sql_cmd = cmd + "(%d, %.6f, %.6f, %.6f, %.6f, %.6f)" % (i, lat, lng, 0, 0, 0) db._sql(sql_cmd) # people def gen_people(n, db, start_lat, stop_lat, start_long, stop_long): """ Generates n people, random male/female ratio between 5 and 90 years of age """ assert n > 0 # open male first names file f = open('dist.male.first','r') male_first_names = [name.strip().split()[0] for name in f.readlines()] f.close() # open female first names file f = open('dist.female.first','r') female_first_names = [name.strip().split()[0] for name in f.readlines()] f.close() # open last names file f = open('dist.all.last','r') family_names = [name.strip().split()[0] for name in f.readlines()] f.close() # generate people for i in range(n): catanDBObj = catan.db.CatanDatabaseObject() # bio sex = random.randint(0,1) if sex == 0: # male catanDBObj.person_bio.name_given = male_first_names[random.randint(0,len(male_first_names)-1)] catanDBObj.person_bio.sex = 'male' else: # female catanDBObj.person_bio.name_given = female_first_names[random.randint(0,len(female_first_names)-1)] catanDBObj.person_bio.sex = 'female' catanDBObj.person_bio.name_family = family_names[random.randint(0,len(family_names)-1)] catanDBObj.person_bio.age = random.randint(5,90) # message (message, status, location, etc.) # location lat = round(random.uniform(start_lat, stop_lat), 6) lng = round(random.uniform(start_long, stop_long), 6) catanDBObj.person_message.person_message = 'Hi Mom' catanDBObj.person_message.status_gps_latitude = lat catanDBObj.person_message.status_gps_longitude = lng catanDBObj.person_message.status_gps_accuracy = 0 # status catanDBObj.person_message.status = STATUS_LIST[random.randint(0,len(STATUS_LIST)-1)] catanDBObj.person_message.status_location = 'Test status location' # generate a NodeMessage for the database # it only cares about the data and source fields, so we can ignore other fields nmsg = NodeMessage() nmsg.source = random.randint(0,31) # random node 0-31 nmsg.data = catanDBObj.pack() db.update_db(nmsg) # Create some random updates for i in range(1,n+1): update = random.randint(0,1) if update == 0: catanDBObj = catan.db.CatanDatabaseObject() catanDBObj.person_id = i # location lat = round(random.uniform(start_lat, stop_lat), 6) lng = round(random.uniform(start_long, stop_long), 6) catanDBObj.person_message.person_message = 'Location update 1' catanDBObj.person_message.status_gps_latitude = lat catanDBObj.person_message.status_gps_longitude = lng catanDBObj.person_message.status_gps_accuracy = 0 n = NodeMessage() n.source = random.randint(0,31) n.data = catanDBObj.pack() db.update_db(n) def populate_db(): db = catan.db.CatanDatabase(0) # insert some test nodes # for cambridge gen_nodes(32, db, 42.354823, 42.368315, -71.114484, -71.084422) gen_people(100, db, 42.354823, 42.368315, -71.114484, -71.084422) cmd = ('SELECT ' 'db_person_bio.person_id, ' 'db_person_bio.origin_node_id, ' 'db_person_bio.name_family, ' 'db_person_bio.name_given, ' 'db_person_bio.age, ' 'db_person_bio.sex, ' 'db_person_messages.submission_id, ' 'db_person_messages.origin_node_id, ' 'db_person_messages.status_gps_latitude, ' 'db_person_messages.status_gps_longitude, ' 'db_person_messages.status_gps_accuracy, ' 'db_person_messages.status, ' 'db_person_messages.status_location, ' 'db_submitter_info.timestamp ' 'FROM db_person_bio ' 'LEFT JOIN db_person_messages ON db_person_messages.person_id = db_person_bio.person_id ' 'LEFT JOIN db_submitter_info ON db_submitter_info.submission_id = db_person_messages.submission_id') for r in db._sql(cmd).fetchall(): print r def main(args): pass if __name__=='__main__': populate_db()
[]
Hellofafar/Leetcode
Medium/200.py
7a459e9742958e63be8886874904e5ab2489411a
# ------------------------------ # 200. Number of Islands # # Description: # Given a 2d grid map of '1's (land) and '0's (water), count the number of islands. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water. # # Example 1: # 11110 # 11010 # 11000 # 00000 # Answer: 1 # # Example 2: # 11000 # 11000 # 00100 # 00011 # Answer: 3 # # Version: 1.0 # 11/13/17 by Jianfa # ------------------------------ class Solution(object): def numIslands(self, grid): """ :type grid: List[List[str]] :rtype: int """ def sink(i, j): if 0 <= i < len(grid) and 0 <= j < len(grid[0]) and grid[i][j] == "1": grid[i][j] = "0" map(sink, (i+1, i-1, i, i), (j, j, j+1, j-1)) return 1 return 0 return sum(sink(i, j) for i in range(len(grid)) for j in range(len(grid[i]))) # ------------------------------ # Summary: # Copied from discussion. # The following is another easy understanding idea: # # class Solution(object): # def numIslands(self, grid): # """ # :type grid: List[List[str]] # :rtype: int # """ # if len(grid) == 0: return 0 # m = len(grid) # n = len(grid[0]) # res = 0 # for i in range(m): # for j in range(n): # if grid[i][j] == '1': # res += 1 # grid[i][j] = '2' # self.island(i, j, grid, m, n) # return res # def island(self, x, y, grid, m, n): # if x + 1 < m and grid[x+1][y] == '1': # grid[x+1][y] = '2' # self.island(x+1,y,grid, m, n) # if y + 1 < n and grid[x][y+1] == '1': # grid[x][y+1] = '2' # self.island(x,y+1,grid, m, n) # if x -1 >=0 and grid[x-1][y] == '1': # grid[x-1][y] = '2' # self.island(x-1,y,grid, m, n) # if y - 1 >= 0 and grid[x][y-1] == '1': # grid[x][y-1] = '2' # self.island(x,y-1,grid, m, n)
[]
SamuelePilleri/plaso
tests/formatters/fseventsd.py
f5687f12a89c7309797ccc285da78e855c120579
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for the fseventsd record event formatter.""" from __future__ import unicode_literals import unittest from plaso.formatters import fseventsd from tests.formatters import test_lib class FseventsdFormatterTest(test_lib.EventFormatterTestCase): """Tests for the fseventsd record event formatter.""" def testInitialization(self): """Tests the initialization.""" event_formatter = fseventsd.FSEventsdEventFormatter() self.assertIsNotNone(event_formatter) def testGetFormatStringAttributeNames(self): """Tests the GetFormatStringAttributeNames function.""" event_formatter = fseventsd.FSEventsdEventFormatter() expected_attribute_names = [ u'event_identifier', u'flag_values', u'hex_flags', u'path'] self._TestGetFormatStringAttributeNames( event_formatter, expected_attribute_names) # TODO: add test for GetSources. if __name__ == '__main__': unittest.main()
[((36, 2, 36, 17), 'unittest.main', 'unittest.main', ({}, {}), '()', False, 'import unittest\n'), ((19, 22, 19, 57), 'plaso.formatters.fseventsd.FSEventsdEventFormatter', 'fseventsd.FSEventsdEventFormatter', ({}, {}), '()', False, 'from plaso.formatters import fseventsd\n'), ((24, 22, 24, 57), 'plaso.formatters.fseventsd.FSEventsdEventFormatter', 'fseventsd.FSEventsdEventFormatter', ({}, {}), '()', False, 'from plaso.formatters import fseventsd\n')]
Farzin-Negahbani/PathoNet
train.py
b467a255fb356e64129b7942261e972ae15a2d2b
from keras.callbacks import ModelCheckpoint,Callback,LearningRateScheduler,TensorBoard from keras.models import load_model import random import numpy as np from scipy import misc import gc from keras.optimizers import Adam from imageio import imread from datetime import datetime import os import json import models from utils import DataLoader, LrPolicy from config import Config import argparse def get_parser(): parser = argparse.ArgumentParser('train') parser.add_argument('--configPath', '-c', required=True) return parser def train(args=None): parser = get_parser() args = parser.parse_args(args) conf=Config() conf.load(args.configPath) time=datetime.now().strftime('%Y-%m-%d_%H-%M-%S') trainString="%s_%s_%s_%s" % (conf.model,conf.optimizer,str(conf.lr),time) os.makedirs(conf.logPath+"/"+trainString) conf.save(conf.logPath+"/"+trainString+'/config.json') print('Compiling model...') model_checkpoint = ModelCheckpoint(conf.logPath+"/"+trainString+'/Checkpoint-{epoch:02d}-{val_loss:.2f}.hdf5', monitor='val_loss', save_best_only=False, save_weights_only=True) change_lr = LearningRateScheduler(LrPolicy(conf.lr).stepDecay) tbCallBack=TensorBoard(log_dir=conf.logPath+"/"+trainString+'/logs', histogram_freq=0, write_graph=True, write_images=True) model=models.modelCreator(conf.model,conf.inputShape,conf.classes,conf.pretrainedModel) model.compile(optimizer = conf.optimizer, loss = conf.loss) data = [conf.trainDataPath+"/"+f for f in os.listdir(conf.trainDataPath) if '.jpg' in f] random.shuffle(data) thr=int(len(data)*conf.validationSplit) trainData=data[thr:] valData=data[:thr] trainDataLoader=DataLoader(conf.batchSize,conf.inputShape,trainData,conf.guaMaxValue) validationDataLoader=DataLoader(conf.batchSize,conf.inputShape,valData,conf.guaMaxValue) print('Fitting model...') model.fit_generator(generator=trainDataLoader.generator(), validation_data=validationDataLoader.generator(), steps_per_epoch=len(trainData)//conf.batchSize, validation_steps=len(valData)//conf.batchSize, epochs=conf.epoches, verbose=1, initial_epoch=0, callbacks = [model_checkpoint, change_lr,tbCallBack] ) if __name__ == "__main__": train()
[((19, 13, 19, 45), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ({(19, 37, 19, 44): '"""train"""'}, {}), "('train')", False, 'import argparse\n'), ((26, 9, 26, 17), 'config.Config', 'Config', ({}, {}), '()', False, 'from config import Config\n'), ((30, 4, 30, 45), 'os.makedirs', 'os.makedirs', ({(30, 16, 30, 44): "(conf.logPath + '/' + trainString)"}, {}), "(conf.logPath + '/' + trainString)", False, 'import os\n'), ((33, 23, 33, 180), 'keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', (), '', False, 'from keras.callbacks import ModelCheckpoint, Callback, LearningRateScheduler, TensorBoard\n'), ((35, 15, 35, 128), 'keras.callbacks.TensorBoard', 'TensorBoard', (), '', False, 'from keras.callbacks import ModelCheckpoint, Callback, LearningRateScheduler, TensorBoard\n'), ((36, 10, 36, 91), 'models.modelCreator', 'models.modelCreator', ({(36, 30, 36, 40): 'conf.model', (36, 41, 36, 56): 'conf.inputShape', (36, 57, 36, 69): 'conf.classes', (36, 70, 36, 90): 'conf.pretrainedModel'}, {}), '(conf.model, conf.inputShape, conf.classes, conf.\n pretrainedModel)', False, 'import models\n'), ((39, 4, 39, 24), 'random.shuffle', 'random.shuffle', ({(39, 19, 39, 23): 'data'}, {}), '(data)', False, 'import random\n'), ((43, 20, 43, 89), 'utils.DataLoader', 'DataLoader', ({(43, 31, 43, 45): 'conf.batchSize', (43, 46, 43, 61): 'conf.inputShape', (43, 62, 43, 71): 'trainData', (43, 72, 43, 88): 'conf.guaMaxValue'}, {}), '(conf.batchSize, conf.inputShape, trainData, conf.guaMaxValue)', False, 'from utils import DataLoader, LrPolicy\n'), ((44, 25, 44, 92), 'utils.DataLoader', 'DataLoader', ({(44, 36, 44, 50): 'conf.batchSize', (44, 51, 44, 66): 'conf.inputShape', (44, 67, 44, 74): 'valData', (44, 75, 44, 91): 'conf.guaMaxValue'}, {}), '(conf.batchSize, conf.inputShape, valData, conf.guaMaxValue)', False, 'from utils import DataLoader, LrPolicy\n'), ((28, 9, 28, 23), 'datetime.datetime.now', 'datetime.now', ({}, {}), '()', False, 'from datetime import datetime\n'), ((34, 38, 34, 55), 'utils.LrPolicy', 'LrPolicy', ({(34, 47, 34, 54): 'conf.lr'}, {}), '(conf.lr)', False, 'from utils import DataLoader, LrPolicy\n'), ((38, 46, 38, 76), 'os.listdir', 'os.listdir', ({(38, 57, 38, 75): 'conf.trainDataPath'}, {}), '(conf.trainDataPath)', False, 'import os\n')]
mingxiaoh/chainer-v3
tests/chainer_tests/functions_tests/array_tests/test_flatten.py
815ff00f5eaf7944d6e8a75662ff64a2fe046a4d
import unittest import numpy import chainer from chainer import cuda from chainer import functions from chainer import gradient_check from chainer import testing from chainer.testing import attr @testing.parameterize(*testing.product({ 'shape': [(3, 4), ()], 'dtype': [numpy.float16, numpy.float32, numpy.float64], })) class TestFlatten(unittest.TestCase): dtype = numpy.float32 def setUp(self): self.x = numpy.random.uniform(-1, 1, self.shape).astype(self.dtype) self.g_shape = (numpy.prod((1,) + self.shape),) self.g = numpy.random.uniform(-1, 1, self.g_shape).astype(self.dtype) def check_forward(self, x_data): x = chainer.Variable(x_data) y = functions.flatten(x) self.assertEqual(y.shape, self.g_shape) self.assertEqual(y.dtype, self.dtype) testing.assert_allclose(self.x.flatten(), y.data) def test_forward_cpu(self): self.check_forward(self.x) @attr.gpu def test_forward_gpu(self): self.check_forward(cuda.to_gpu(self.x)) def check_backward(self, x_data, g_data): gradient_check.check_backward( functions.Flatten(), x_data, g_data, dtype=numpy.float64) def test_backward_cpu(self): self.check_backward(self.x, self.g) @attr.gpu def test_backward_gpu(self): self.check_backward(cuda.to_gpu(self.x), cuda.to_gpu(self.g)) testing.run_module(__name__, __file__)
[((53, 0, 53, 38), 'chainer.testing.run_module', 'testing.run_module', ({(53, 19, 53, 27): '__name__', (53, 29, 53, 37): '__file__'}, {}), '(__name__, __file__)', False, 'from chainer import testing\n'), ((27, 12, 27, 36), 'chainer.Variable', 'chainer.Variable', ({(27, 29, 27, 35): 'x_data'}, {}), '(x_data)', False, 'import chainer\n'), ((28, 12, 28, 32), 'chainer.functions.flatten', 'functions.flatten', ({(28, 30, 28, 31): 'x'}, {}), '(x)', False, 'from chainer import functions\n'), ((13, 23, 16, 2), 'chainer.testing.product', 'testing.product', ({(13, 39, 16, 1): "{'shape': [(3, 4), ()], 'dtype': [numpy.float16, numpy.float32, numpy.float64]}"}, {}), "({'shape': [(3, 4), ()], 'dtype': [numpy.float16, numpy.\n float32, numpy.float64]})", False, 'from chainer import testing\n'), ((23, 24, 23, 53), 'numpy.prod', 'numpy.prod', ({(23, 35, 23, 52): '((1,) + self.shape)'}, {}), '((1,) + self.shape)', False, 'import numpy\n'), ((39, 27, 39, 46), 'chainer.cuda.to_gpu', 'cuda.to_gpu', ({(39, 39, 39, 45): 'self.x'}, {}), '(self.x)', False, 'from chainer import cuda\n'), ((43, 12, 43, 31), 'chainer.functions.Flatten', 'functions.Flatten', ({}, {}), '()', False, 'from chainer import functions\n'), ((50, 28, 50, 47), 'chainer.cuda.to_gpu', 'cuda.to_gpu', ({(50, 40, 50, 46): 'self.x'}, {}), '(self.x)', False, 'from chainer import cuda\n'), ((50, 49, 50, 68), 'chainer.cuda.to_gpu', 'cuda.to_gpu', ({(50, 61, 50, 67): 'self.g'}, {}), '(self.g)', False, 'from chainer import cuda\n'), ((22, 17, 22, 56), 'numpy.random.uniform', 'numpy.random.uniform', ({(22, 38, 22, 40): '-1', (22, 42, 22, 43): '1', (22, 45, 22, 55): 'self.shape'}, {}), '(-1, 1, self.shape)', False, 'import numpy\n'), ((24, 17, 24, 58), 'numpy.random.uniform', 'numpy.random.uniform', ({(24, 38, 24, 40): '-1', (24, 42, 24, 43): '1', (24, 45, 24, 57): 'self.g_shape'}, {}), '(-1, 1, self.g_shape)', False, 'import numpy\n')]
snoop2head/exercise_curation_django
categories/migrations/0001_initial.py
ba35bd32d8bc203d318cb8b6e0a1722f3aa26eda
# Generated by Django 3.0.3 on 2020-03-24 09:59 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('exercises', '0018_photo_file'), ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('name', models.CharField(max_length=80)), ('description', models.TextField(blank=True)), ('exercises', models.ForeignKey(blank=True, on_delete=django.db.models.deletion.CASCADE, related_name='categories', to='exercises.Exercise')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Photo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('image_url', models.URLField()), ('image_caption', models.CharField(blank=True, max_length=80)), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='photos', to='categories.Category')), ], options={ 'abstract': False, }, ), ]
[((19, 23, 19, 112), 'django.db.models.AutoField', 'models.AutoField', (), '', False, 'from django.db import migrations, models\n'), ((20, 28, 20, 67), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import migrations, models\n'), ((21, 28, 21, 63), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import migrations, models\n'), ((22, 25, 22, 56), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import migrations, models\n'), ((23, 32, 23, 60), 'django.db.models.TextField', 'models.TextField', (), '', False, 'from django.db import migrations, models\n'), ((24, 30, 24, 156), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import migrations, models\n'), ((33, 23, 33, 112), 'django.db.models.AutoField', 'models.AutoField', (), '', False, 'from django.db import migrations, models\n'), ((34, 28, 34, 67), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import migrations, models\n'), ((35, 28, 35, 63), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import migrations, models\n'), ((36, 30, 36, 47), 'django.db.models.URLField', 'models.URLField', ({}, {}), '()', False, 'from django.db import migrations, models\n'), ((37, 34, 37, 77), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import migrations, models\n'), ((38, 29, 38, 140), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import migrations, models\n')]
neurips2020submission11699/metarl
src/metarl/envs/dm_control/dm_control_env.py
ae4825d21478fa1fd0aa6b116941ea40caa152a5
from dm_control import suite from dm_control.rl.control import flatten_observation from dm_env import StepType import gym import numpy as np from metarl.envs import Step from metarl.envs.dm_control.dm_control_viewer import DmControlViewer class DmControlEnv(gym.Env): """ Binding for `dm_control <https://arxiv.org/pdf/1801.00690.pdf>`_ """ def __init__(self, env, name=None): self._name = name or type(env.task).__name__ self._env = env self._viewer = None @classmethod def from_suite(cls, domain_name, task_name): return cls(suite.load(domain_name, task_name), name='{}.{}'.format(domain_name, task_name)) def step(self, action): time_step = self._env.step(action) return Step( flatten_observation(time_step.observation)['observations'], time_step.reward, time_step.step_type == StepType.LAST, **time_step.observation) def reset(self): time_step = self._env.reset() return flatten_observation(time_step.observation)['observations'] def render(self, mode='human'): # pylint: disable=inconsistent-return-statements if mode == 'human': if not self._viewer: title = 'dm_control {}'.format(self._name) self._viewer = DmControlViewer(title=title) self._viewer.launch(self._env) self._viewer.render() return None elif mode == 'rgb_array': return self._env.physics.render() else: raise NotImplementedError def close(self): if self._viewer: self._viewer.close() self._env.close() self._viewer = None self._env = None def _flat_shape(self, observation): return np.sum(int(np.prod(v.shape)) for k, v in observation.items()) @property def action_space(self): action_spec = self._env.action_spec() if (len(action_spec.shape) == 1) and (-np.inf in action_spec.minimum or np.inf in action_spec.maximum): return gym.spaces.Discrete(np.prod(action_spec.shape)) else: return gym.spaces.Box(action_spec.minimum, action_spec.maximum, dtype=np.float32) @property def observation_space(self): flat_dim = self._flat_shape(self._env.observation_spec()) return gym.spaces.Box(low=-np.inf, high=np.inf, shape=[flat_dim], dtype=np.float32) def __getstate__(self): d = self.__dict__.copy() d['_viewer'] = None return d
[((75, 15, 78, 47), 'gym.spaces.Box', 'gym.spaces.Box', (), '', False, 'import gym\n'), ((23, 19, 23, 53), 'dm_control.suite.load', 'suite.load', ({(23, 30, 23, 41): 'domain_name', (23, 43, 23, 52): 'task_name'}, {}), '(domain_name, task_name)', False, 'from dm_control import suite\n'), ((35, 15, 35, 57), 'dm_control.rl.control.flatten_observation', 'flatten_observation', ({(35, 35, 35, 56): 'time_step.observation'}, {}), '(time_step.observation)', False, 'from dm_control.rl.control import flatten_observation\n'), ((68, 19, 70, 51), 'gym.spaces.Box', 'gym.spaces.Box', (), '', False, 'import gym\n'), ((29, 12, 29, 54), 'dm_control.rl.control.flatten_observation', 'flatten_observation', ({(29, 32, 29, 53): 'time_step.observation'}, {}), '(time_step.observation)', False, 'from dm_control.rl.control import flatten_observation\n'), ((42, 31, 42, 59), 'metarl.envs.dm_control.dm_control_viewer.DmControlViewer', 'DmControlViewer', (), '', False, 'from metarl.envs.dm_control.dm_control_viewer import DmControlViewer\n'), ((66, 39, 66, 65), 'numpy.prod', 'np.prod', ({(66, 47, 66, 64): 'action_spec.shape'}, {}), '(action_spec.shape)', True, 'import numpy as np\n'), ((59, 26, 59, 42), 'numpy.prod', 'np.prod', ({(59, 34, 59, 41): 'v.shape'}, {}), '(v.shape)', True, 'import numpy as np\n')]
vatervonacht/dagster
python_modules/lakehouse/lakehouse/snowflake_table.py
595d78c883ef20618052ac1575fe46cde51fd541
from dagster import check from .house import Lakehouse from .table import create_lakehouse_table_def class SnowflakeLakehouse(Lakehouse): def __init__(self): pass def hydrate(self, _context, _table_type, _table_metadata, table_handle, _dest_metadata): return None def materialize(self, context, table_type, table_metadata, value): return None, None def snowflake_table( name=None, input_tables=None, other_input_defs=None, tags=None, required_resource_keys=None, description=None, ): tags = check.opt_dict_param(tags, 'tags') tags['lakehouse_type'] = 'snowflake_table' tags['kind'] = 'snowflake' required_resource_keys = check.opt_set_param(required_resource_keys, 'required_resource_keys') required_resource_keys.add('snowflake') if callable(name): fn = name return create_lakehouse_table_def( name=fn.__name__, lakehouse_fn=fn, input_tables=[], required_resource_keys=required_resource_keys, ) def _wrap(fn): return create_lakehouse_table_def( name=name if name is not None else fn.__name__, lakehouse_fn=fn, input_tables=input_tables, other_input_defs=other_input_defs, tags=tags, description=description, required_resource_keys=required_resource_keys, ) return _wrap
[((26, 11, 26, 45), 'dagster.check.opt_dict_param', 'check.opt_dict_param', ({(26, 32, 26, 36): 'tags', (26, 38, 26, 44): '"""tags"""'}, {}), "(tags, 'tags')", False, 'from dagster import check\n'), ((30, 29, 30, 98), 'dagster.check.opt_set_param', 'check.opt_set_param', ({(30, 49, 30, 71): 'required_resource_keys', (30, 73, 30, 97): '"""required_resource_keys"""'}, {}), "(required_resource_keys, 'required_resource_keys')", False, 'from dagster import check\n')]
tokejepsen/pype
pype/plugins/maya/publish/validate_look_no_default_shaders.py
8f2b2b631cc5d3ad93eeb5ad3bc6110d32466ed3
from maya import cmds import pyblish.api import pype.api import pype.maya.action class ValidateLookNoDefaultShaders(pyblish.api.InstancePlugin): """Validate if any node has a connection to a default shader. This checks whether the look has any members of: - lambert1 - initialShadingGroup - initialParticleSE - particleCloud1 If any of those is present it will raise an error. A look is not allowed to have any of the "default" shaders present in a scene as they can introduce problems when referenced (overriding local scene shaders). To fix this no shape nodes in the look must have any of default shaders applied. """ order = pype.api.ValidateContentsOrder + 0.01 families = ['look'] hosts = ['maya'] label = 'Look No Default Shaders' actions = [pype.maya.action.SelectInvalidAction] DEFAULT_SHADERS = {"lambert1", "initialShadingGroup", "initialParticleSE", "particleCloud1"} def process(self, instance): """Process all the nodes in the instance""" invalid = self.get_invalid(instance) if invalid: raise RuntimeError("Invalid node relationships found: " "{0}".format(invalid)) @classmethod def get_invalid(cls, instance): invalid = set() for node in instance: # Get shading engine connections shaders = cmds.listConnections(node, type="shadingEngine") or [] # Check for any disallowed connections on *all* nodes if any(s in cls.DEFAULT_SHADERS for s in shaders): # Explicitly log each individual "wrong" connection. for s in shaders: if s in cls.DEFAULT_SHADERS: cls.log.error("Node has unallowed connection to " "'{}': {}".format(s, node)) invalid.add(node) return list(invalid)
[((49, 22, 49, 70), 'maya.cmds.listConnections', 'cmds.listConnections', (), '', False, 'from maya import cmds\n')]
Johne-DuChene/data_science_learning_app
data_science_app/app.py
40bafce85a27155766950806b5b32a2d1f6753c4
from flask import Flask # initialize the app app = Flask(__name__) # execute iris function at /iris route @app.route("/iris") def iris(): from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression X, y = load_iris(return_X_y=True) clf = LogisticRegression( random_state = 42, solver="lbfgs", multi_class="multinomial" ).fit(X, y) return str(clf.predict(X[:2, :]))
[((4, 6, 4, 21), 'flask.Flask', 'Flask', ({(4, 12, 4, 20): '__name__'}, {}), '(__name__)', False, 'from flask import Flask\n'), ((11, 11, 11, 37), 'sklearn.datasets.load_iris', 'load_iris', (), '', False, 'from sklearn.datasets import load_iris\n'), ((12, 10, 16, 5), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', (), '', False, 'from sklearn.linear_model import LogisticRegression\n')]
VarunSrivastava19/VBDiarization
vbdiar/scoring/normalization.py
2a460b4fc11b3a5ff73d0534cadb182be1a9d882
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2018 Brno University of Technology FIT # Author: Jan Profant <[email protected]> # All Rights Reserved import os import logging import pickle import multiprocessing import numpy as np from sklearn.metrics.pairwise import cosine_similarity from vbdiar.features.segments import get_frames_from_time from vbdiar.embeddings.embedding import extract_embeddings from vbdiar.utils import mkdir_p from vbdiar.utils.utils import Utils logger = logging.getLogger(__name__) def process_files(fns, speakers_dict, features_extractor, embedding_extractor, audio_dir, wav_suffix, in_rttm_dir, rttm_suffix, min_length, n_jobs=1): """ Args: fns: speakers_dict: features_extractor: embedding_extractor: audio_dir: wav_suffix: in_rttm_dir: rttm_suffix: min_length: n_jobs: Returns: """ kwargs = dict(speakers_dict=speakers_dict, features_extractor=features_extractor, embedding_extractor=embedding_extractor, audio_dir=audio_dir, wav_suffix=wav_suffix, in_rttm_dir=in_rttm_dir, rttm_suffix=rttm_suffix, min_length=min_length) if n_jobs == 1: ret = _process_files((fns, kwargs)) else: pool = multiprocessing.Pool(n_jobs) ret = pool.map(_process_files, ((part, kwargs) for part in Utils.partition(fns, n_jobs))) return ret def _process_files(dargs): """ Args: dargs: Returns: """ fns, kwargs = dargs ret = [] for fn in fns: ret.append(process_file(file_name=fn, **kwargs)) return ret def process_file(file_name, speakers_dict, features_extractor, embedding_extractor, audio_dir, wav_suffix, in_rttm_dir, rttm_suffix, min_length): """ Extract embeddings for all defined speakers. Args: file_name (string_types): path to input audio file speakers_dict (dict): dictionary containing all embedding across speakers features_extractor (Any): embedding_extractor (Any): audio_dir (string_types): wav_suffix (string_types): in_rttm_dir (string_types): rttm_suffix (string_types): min_length (float): Returns: dict: updated dictionary with speakers """ logger.info('Processing file `{}`.'.format(file_name.split()[0])) # extract features from whole audio features = features_extractor.audio2features(os.path.join(audio_dir, '{}{}'.format(file_name, wav_suffix))) # process utterances of the speakers features_dict = {} with open(f'{os.path.join(in_rttm_dir, file_name)}{rttm_suffix}') as f: for line in f: start_time, dur = int(float(line.split()[3]) * 1000), int(float(line.split()[4]) * 1000) speaker = line.split()[7] if dur > min_length: end_time = start_time + dur start, end = get_frames_from_time(int(start_time)), get_frames_from_time(int(end_time)) if speaker not in features_dict: features_dict[speaker] = {} assert 0 <= start < end, \ f'Incorrect timing for extracting features, start: {start}, size: {features.shape[0]}, end: {end}.' if end >= features.shape[0]: end = features.shape[0] - 1 features_dict[speaker][(start_time, end_time)] = features[start:end] for speaker in features_dict: embedding_set = extract_embeddings(features_dict[speaker], embedding_extractor) embeddings_long = embedding_set.get_all_embeddings() if speaker not in speakers_dict.keys(): speakers_dict[speaker] = embeddings_long else: speakers_dict[speaker] = np.concatenate((speakers_dict[speaker], embeddings_long), axis=0) return speakers_dict class Normalization(object): """ Speaker normalization S-Norm. """ embeddings = None in_emb_dir = None def __init__(self, norm_list, audio_dir=None, in_rttm_dir=None, in_emb_dir=None, out_emb_dir=None, min_length=None, features_extractor=None, embedding_extractor=None, plda=None, wav_suffix='.wav', rttm_suffix='.rttm', n_jobs=1): """ Initialize normalization object. Args: norm_list (string_types): path to normalization list audio_dir (string_types|None): path to audio directory in_rttm_dir (string_types|None): path to directory with rttm files in_emb_dir (str|None): path to directory with i-vectors out_emb_dir (str|None): path to directory for storing embeddings min_length (int): minimal length for extracting embeddings features_extractor (Any): object for feature extraction embedding_extractor (Any): object for extracting embedding plda (PLDA|None): plda model object wav_suffix (string_types): suffix of wav files rttm_suffix (string_types): suffix of rttm files """ if audio_dir: self.audio_dir = os.path.abspath(audio_dir) self.norm_list = norm_list if in_rttm_dir: self.in_rttm_dir = os.path.abspath(in_rttm_dir) else: raise ValueError('It is required to have input rttm files for normalization.') self.features_extractor = features_extractor self.embedding_extractor = embedding_extractor self.plda = plda self.wav_suffix = wav_suffix self.rttm_suffix = rttm_suffix if in_emb_dir: self.in_emb_dir = os.path.abspath(in_emb_dir) if out_emb_dir: self.out_emb_dir = os.path.abspath(out_emb_dir) self.min_length = min_length self.n_jobs = n_jobs if self.in_emb_dir is None: self.embeddings = self.extract_embeddings() else: self.embeddings = self.load_embeddings() self.mean = np.mean(self.embeddings, axis=0) def __iter__(self): current = 0 while current < len(self.embeddings): yield self.embeddings[current] current += 1 def __getitem__(self, key): return self.embeddings[key] def __setitem__(self, key, value): self.embeddings[key] = value def __len__(self): return len(self.embeddings) def extract_embeddings(self): """ Extract normalization embeddings using averaging. Returns: Tuple[np.array, np.array]: vectors for individual speakers, global mean over all speakers """ speakers_dict, fns = {}, [] with open(self.norm_list) as f: for line in f: if len(line.split()) > 1: # number of speakers is defined line = line.split()[0] else: line = line.replace(os.linesep, '') fns.append(line) speakers_dict = process_files(fns, speakers_dict=speakers_dict, features_extractor=self.features_extractor, embedding_extractor=self.embedding_extractor, audio_dir=self.audio_dir, wav_suffix=self.wav_suffix, in_rttm_dir=self.in_rttm_dir, rttm_suffix=self.rttm_suffix, min_length=self.min_length, n_jobs=self.n_jobs) assert len(speakers_dict) == len(fns) # all are the same merged_speakers_dict = speakers_dict[0] if self.out_emb_dir: for speaker in merged_speakers_dict: out_path = os.path.join(self.out_emb_dir, f'{speaker}.pkl') mkdir_p(os.path.dirname(out_path)) with open(out_path, 'wb') as f: pickle.dump(merged_speakers_dict[speaker], f, pickle.HIGHEST_PROTOCOL) for speaker in merged_speakers_dict: merged_speakers_dict[speaker] = np.mean(merged_speakers_dict[speaker], axis=0) return np.array(list(merged_speakers_dict.values())) def load_embeddings(self): """ Load normalization embeddings from pickle files. Returns: np.array: embeddings per speaker """ embeddings, speakers = [], set() with open(self.norm_list) as f: for file_name in f: if len(file_name.split()) > 1: # number of speakers is defined file_name = file_name.split()[0] else: file_name = file_name.replace(os.linesep, '') with open('{}{}'.format(os.path.join(self.in_rttm_dir, file_name), self.rttm_suffix)) as fp: for line in fp: speakers.add(line.split()[7]) logger.info('Loading pickled normalization embeddings from `{}`.'.format(self.in_emb_dir)) for speaker in speakers: embedding_path = os.path.join(self.in_emb_dir, '{}.pkl'.format(speaker)) if os.path.isfile(embedding_path): logger.info('Loading normalization pickle file `{}`.'.format(speaker)) with open(embedding_path, 'rb') as f: # append mean from speaker's embeddings speaker_embeddings = pickle.load(f) embeddings.append(np.mean(speaker_embeddings, axis=0)) else: logger.warning('No pickle file found for `{}` in `{}`.'.format(speaker, self.in_emb_dir)) return np.array(embeddings) def s_norm(self, test, enroll): """ Run speaker normalization (S-Norm) on cached embeddings. Args: test (np.array): test embedding enroll (np.array): enroll embedding Returns: float: hypothesis """ if self.plda: a = self.plda.score(test, self.embeddings).T b = self.plda.score(enroll, self.embeddings).T c = self.plda.score(enroll, test).T else: a = cosine_similarity(test, self.embeddings).T b = cosine_similarity(enroll, self.embeddings).T c = cosine_similarity(enroll, test).T scores = [] for ii in range(test.shape[0]): test_scores = [] for jj in range(enroll.shape[0]): test_mean, test_std = np.mean(a.T[ii]), np.std(a.T[ii]) enroll_mean, enroll_std = np.mean(b.T[jj]), np.std(b.T[jj]) s = c[ii][jj] test_scores.append((((s - test_mean) / test_std + (s - enroll_mean) / enroll_std) / 2)) scores.append(test_scores) return np.array(scores)
[((21, 9, 21, 36), 'logging.getLogger', 'logging.getLogger', ({(21, 27, 21, 35): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((49, 15, 49, 43), 'multiprocessing.Pool', 'multiprocessing.Pool', ({(49, 36, 49, 42): 'n_jobs'}, {}), '(n_jobs)', False, 'import multiprocessing\n'), ((110, 24, 110, 87), 'vbdiar.embeddings.embedding.extract_embeddings', 'extract_embeddings', ({(110, 43, 110, 65): 'features_dict[speaker]', (110, 67, 110, 86): 'embedding_extractor'}, {}), '(features_dict[speaker], embedding_extractor)', False, 'from vbdiar.embeddings.embedding import extract_embeddings\n'), ((164, 20, 164, 52), 'numpy.mean', 'np.mean', (), '', True, 'import numpy as np\n'), ((244, 15, 244, 35), 'numpy.array', 'np.array', ({(244, 24, 244, 34): 'embeddings'}, {}), '(embeddings)', True, 'import numpy as np\n'), ((273, 15, 273, 31), 'numpy.array', 'np.array', ({(273, 24, 273, 30): 'scores'}, {}), '(scores)', True, 'import numpy as np\n'), ((115, 37, 115, 102), 'numpy.concatenate', 'np.concatenate', (), '', True, 'import numpy as np\n'), ((143, 29, 143, 55), 'os.path.abspath', 'os.path.abspath', ({(143, 45, 143, 54): 'audio_dir'}, {}), '(audio_dir)', False, 'import os\n'), ((146, 31, 146, 59), 'os.path.abspath', 'os.path.abspath', ({(146, 47, 146, 58): 'in_rttm_dir'}, {}), '(in_rttm_dir)', False, 'import os\n'), ((155, 30, 155, 57), 'os.path.abspath', 'os.path.abspath', ({(155, 46, 155, 56): 'in_emb_dir'}, {}), '(in_emb_dir)', False, 'import os\n'), ((157, 31, 157, 59), 'os.path.abspath', 'os.path.abspath', ({(157, 47, 157, 58): 'out_emb_dir'}, {}), '(out_emb_dir)', False, 'import os\n'), ((212, 44, 212, 90), 'numpy.mean', 'np.mean', (), '', True, 'import numpy as np\n'), ((236, 15, 236, 45), 'os.path.isfile', 'os.path.isfile', ({(236, 30, 236, 44): 'embedding_path'}, {}), '(embedding_path)', False, 'import os\n'), ((206, 27, 206, 75), 'os.path.join', 'os.path.join', ({(206, 40, 206, 56): 'self.out_emb_dir', (206, 58, 206, 74): 'f"""{speaker}.pkl"""'}, {}), "(self.out_emb_dir, f'{speaker}.pkl')", False, 'import os\n'), ((261, 16, 261, 56), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', ({(261, 34, 261, 38): 'test', (261, 40, 261, 55): 'self.embeddings'}, {}), '(test, self.embeddings)', False, 'from sklearn.metrics.pairwise import cosine_similarity\n'), ((262, 16, 262, 58), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', ({(262, 34, 262, 40): 'enroll', (262, 42, 262, 57): 'self.embeddings'}, {}), '(enroll, self.embeddings)', False, 'from sklearn.metrics.pairwise import cosine_similarity\n'), ((263, 16, 263, 47), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', ({(263, 34, 263, 40): 'enroll', (263, 42, 263, 46): 'test'}, {}), '(enroll, test)', False, 'from sklearn.metrics.pairwise import cosine_similarity\n'), ((50, 67, 50, 95), 'vbdiar.utils.utils.Utils.partition', 'Utils.partition', ({(50, 83, 50, 86): 'fns', (50, 88, 50, 94): 'n_jobs'}, {}), '(fns, n_jobs)', False, 'from vbdiar.utils.utils import Utils\n'), ((94, 17, 94, 53), 'os.path.join', 'os.path.join', ({(94, 30, 94, 41): 'in_rttm_dir', (94, 43, 94, 52): 'file_name'}, {}), '(in_rttm_dir, file_name)', False, 'import os\n'), ((207, 24, 207, 49), 'os.path.dirname', 'os.path.dirname', ({(207, 40, 207, 48): 'out_path'}, {}), '(out_path)', False, 'import os\n'), ((209, 20, 209, 90), 'pickle.dump', 'pickle.dump', ({(209, 32, 209, 61): 'merged_speakers_dict[speaker]', (209, 63, 209, 64): 'f', (209, 66, 209, 89): 'pickle.HIGHEST_PROTOCOL'}, {}), '(merged_speakers_dict[speaker], f, pickle.HIGHEST_PROTOCOL)', False, 'import pickle\n'), ((240, 41, 240, 55), 'pickle.load', 'pickle.load', ({(240, 53, 240, 54): 'f'}, {}), '(f)', False, 'import pickle\n'), ((268, 38, 268, 54), 'numpy.mean', 'np.mean', ({(268, 46, 268, 53): 'a.T[ii]'}, {}), '(a.T[ii])', True, 'import numpy as np\n'), ((268, 56, 268, 71), 'numpy.std', 'np.std', ({(268, 63, 268, 70): 'a.T[ii]'}, {}), '(a.T[ii])', True, 'import numpy as np\n'), ((269, 42, 269, 58), 'numpy.mean', 'np.mean', ({(269, 50, 269, 57): 'b.T[jj]'}, {}), '(b.T[jj])', True, 'import numpy as np\n'), ((269, 60, 269, 75), 'numpy.std', 'np.std', ({(269, 67, 269, 74): 'b.T[jj]'}, {}), '(b.T[jj])', True, 'import numpy as np\n'), ((241, 38, 241, 73), 'numpy.mean', 'np.mean', (), '', True, 'import numpy as np\n'), ((229, 40, 229, 81), 'os.path.join', 'os.path.join', ({(229, 53, 229, 69): 'self.in_rttm_dir', (229, 71, 229, 80): 'file_name'}, {}), '(self.in_rttm_dir, file_name)', False, 'import os\n')]
mattsmart/biomodels
agent_based_models/abm_allelopathy/plot_data.py
237f87489553fa1ebf5c676fab563166dd0c39e9
import matplotlib.pyplot as plt import os def data_plotter(lattice_dict, datafile_dir, plot_dir): # total spaces on grid implies grid size total_cells = lattice_dict['E'][0] + lattice_dict['D_a'][0] + lattice_dict['D_b'][0] + lattice_dict['B'][0] n = int(total_cells**0.5) plt.figure(1) plt.plot(lattice_dict['time'], lattice_dict['E'], label='Empty lattice points') plt.plot(lattice_dict['time'], lattice_dict['D_a'], label='Donors (Type A)') plt.plot(lattice_dict['time'], lattice_dict['D_b'], label='Donors (Type B)') plt.plot(lattice_dict['time'], lattice_dict['B'], label='Debris') ax = plt.gca() ax.set_title('Cell Populations over time (n = %d)' % n) ax.set_ylabel('Number of cells') ax.set_xlabel('Time (h)') plt.legend() f = plt.gcf() f.set_size_inches(20.0, 8.0) # alternative: 20.0, 8.0 f.tight_layout() plt.savefig(os.path.join(plot_dir, 'population_vs_time.png')) plt.clf() return
[((11, 4, 11, 17), 'matplotlib.pyplot.figure', 'plt.figure', ({(11, 15, 11, 16): '(1)'}, {}), '(1)', True, 'import matplotlib.pyplot as plt\n'), ((13, 4, 13, 83), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((14, 4, 14, 80), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((15, 4, 15, 80), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((16, 4, 16, 69), 'matplotlib.pyplot.plot', 'plt.plot', (), '', True, 'import matplotlib.pyplot as plt\n'), ((18, 9, 18, 18), 'matplotlib.pyplot.gca', 'plt.gca', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((23, 4, 23, 16), 'matplotlib.pyplot.legend', 'plt.legend', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((25, 8, 25, 17), 'matplotlib.pyplot.gcf', 'plt.gcf', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((29, 4, 29, 13), 'matplotlib.pyplot.clf', 'plt.clf', ({}, {}), '()', True, 'import matplotlib.pyplot as plt\n'), ((28, 16, 28, 64), 'os.path.join', 'os.path.join', ({(28, 29, 28, 37): 'plot_dir', (28, 39, 28, 63): '"""population_vs_time.png"""'}, {}), "(plot_dir, 'population_vs_time.png')", False, 'import os\n')]
JonathanGailliez/azure-sdk-for-python
azure-mgmt-network/azure/mgmt/network/v2018_10_01/models/virtual_wan_security_providers.py
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class VirtualWanSecurityProviders(Model): """Collection of SecurityProviders. :param supported_providers: :type supported_providers: list[~azure.mgmt.network.v2018_10_01.models.VirtualWanSecurityProvider] """ _attribute_map = { 'supported_providers': {'key': 'supportedProviders', 'type': '[VirtualWanSecurityProvider]'}, } def __init__(self, **kwargs): super(VirtualWanSecurityProviders, self).__init__(**kwargs) self.supported_providers = kwargs.get('supported_providers', None)
[]
flowgunso/jsonresume-theme-stackoverflow
jsonresume_theme_stackoverflow/filters.py
5fcadcf41a93478a09e95d79fd62d8ac3402b33b
import datetime import re from .exceptions import ObjectIsNotADate def format_date(value, format="%d %M %Y"): regex = re.match(r"(?P<year>\d{4})-(?P<month>\d{2})-(?P<day>\d{2})", value) if regex is not None: date = datetime.date( int(regex.group("year")), int(regex.group("month")), int(regex.group("day"))) else: raise ObjectIsNotADate return date.strftime(format)
[((8, 12, 8, 79), 're.match', 're.match', ({(8, 21, 8, 71): '"""(?P<year>\\\\d{4})-(?P<month>\\\\d{2})-(?P<day>\\\\d{2})"""', (8, 73, 8, 78): 'value'}, {}), "('(?P<year>\\\\d{4})-(?P<month>\\\\d{2})-(?P<day>\\\\d{2})', value)", False, 'import re\n')]
wwwbbb8510/ippso
ipec/data/core.py
fa20d23cd8edba5908e65a0ab0ab990d7ce3d5d5
import numpy as np import os import logging from sklearn.model_selection import train_test_split DATASET_ROOT_FOLDER = os.path.abspath('datasets') class DataLoader: train = None validation = None test = None mode = None partial_dataset = None @staticmethod def load(train_path=None, validation_path=None, test_path=None, height=28, length=28, train_validation_split_point=10000): if train_path is not None: DataLoader.train = DataLoader.load_image_data_with_label_at_end( os.path.join(DATASET_ROOT_FOLDER, train_path), height=height, length=length) if validation_path is not None: DataLoader.validation = DataLoader.load_image_data_with_label_at_end( os.path.join(DATASET_ROOT_FOLDER, validation_path), height=height, length=length) elif train_validation_split_point is not None and train_validation_split_point > 0: if DataLoader.mode is None or DataLoader.partial_dataset is not None: train_validation_split_point = int(DataLoader.train['images'].shape[0] * 0.8) splited_train = { 'images': DataLoader.train['images'][0:train_validation_split_point, :, :, :], 'labels': DataLoader.train['labels'][0:train_validation_split_point] } splited_validation = { 'images': DataLoader.train['images'][train_validation_split_point:, :, :, :], 'labels': DataLoader.train['labels'][train_validation_split_point:] } DataLoader.train = splited_train DataLoader.validation = splited_validation if test_path is not None: DataLoader.test = DataLoader.load_image_data_with_label_at_end(os.path.join(DATASET_ROOT_FOLDER, test_path), height=height, length=length) logging.debug('Training data shape:{}'.format(str(DataLoader.train['images'].shape))) logging.debug('Validation data shape:{}'.format(str(DataLoader.validation['images'].shape))) logging.debug('Test data shape:{}'.format(str(DataLoader.test['images'].shape))) return DataLoader @staticmethod def get_training_data(): """ get training data :return: dict of (images, labels) :rtype: dict """ images = DataLoader.train.images labels = DataLoader.train.labels return { 'images': images, 'labels': labels } @staticmethod def get_validation_data(): """ get validation data :return: dict of (images, labels) :rtype: dict """ images = DataLoader.validation.images labels = DataLoader.validation.labels return { 'images': images, 'labels': labels } @staticmethod def get_test_data(): """ get test data :return: dict of (images, labels) :rtype: dict """ images = DataLoader.test.images labels = DataLoader.test.labels return { 'images': images, 'labels': labels } @staticmethod def load_image_data_with_label_at_end(path, height, length): data = np.loadtxt(path) if DataLoader.mode is None: data = data[0:1000, :] elif DataLoader.partial_dataset is not None and DataLoader.partial_dataset > 0 and DataLoader.partial_dataset <1: # randomly pick partial dataset cut_point = int(data.shape[0] * DataLoader.partial_dataset) indices = np.random.permutation(data.shape[0]) training_idx= indices[:cut_point] data = data[training_idx, :] images = data[:, 0:-1] labels = data[:, -1] images = np.reshape(images, [images.shape[0], height, length, 1], order='F') return { 'images': images, 'labels': labels }
[((6, 22, 6, 49), 'os.path.abspath', 'os.path.abspath', ({(6, 38, 6, 48): '"""datasets"""'}, {}), "('datasets')", False, 'import os\n'), ((92, 15, 92, 31), 'numpy.loadtxt', 'np.loadtxt', ({(92, 26, 92, 30): 'path'}, {}), '(path)', True, 'import numpy as np\n'), ((103, 17, 103, 84), 'numpy.reshape', 'np.reshape', (), '', True, 'import numpy as np\n'), ((20, 16, 20, 61), 'os.path.join', 'os.path.join', ({(20, 29, 20, 48): 'DATASET_ROOT_FOLDER', (20, 50, 20, 60): 'train_path'}, {}), '(DATASET_ROOT_FOLDER, train_path)', False, 'import os\n'), ((23, 16, 23, 66), 'os.path.join', 'os.path.join', ({(23, 29, 23, 48): 'DATASET_ROOT_FOLDER', (23, 50, 23, 65): 'validation_path'}, {}), '(DATASET_ROOT_FOLDER, validation_path)', False, 'import os\n'), ((38, 75, 38, 119), 'os.path.join', 'os.path.join', ({(38, 88, 38, 107): 'DATASET_ROOT_FOLDER', (38, 109, 38, 118): 'test_path'}, {}), '(DATASET_ROOT_FOLDER, test_path)', False, 'import os\n'), ((98, 22, 98, 58), 'numpy.random.permutation', 'np.random.permutation', ({(98, 44, 98, 57): 'data.shape[0]'}, {}), '(data.shape[0])', True, 'import numpy as np\n')]
lucasf5/Python
FOR/Analisador-completo/main.py
c5649121e2af42922e2d9c19cec98322e132bdab
# Exercício Python 56: Desenvolva um programa que leia o nome, idade e sexo de 4 pessoas. No final do programa, mostre: a média de idade do grupo, qual é o nome do homem mais velho e quantas mulheres têm menos de 20 anos. mediaidade = '' nomelista = [] idadelista = [] sexolista = [] homens = [] mulherescommenosde20 = 0 nomedelas = [] # ------------------------------------------------------------------- for i in range(1,5): print(f'{i} PESSOA') nome = (input('Seu nome: ')) idade = int(input('Sua idade: ')) sexo = int(input('Sexo? [0]Masculino [1]Feminino: ')) if sexo == 1 and idade < 20: nomedelas.append(nome) mulherescommenosde20 += 1 elif sexo == 0: homens.append(nome) # Adcionei todas idades em uma lista idadelista.append(idade) # Tirei a média dessas idades //Primeira parte mediaidade = ((sum(idadelista))/4) # Adcionei todos os nomes em uma lista nomelista.append(nome) # ------------------------------------------------------------------- # Armazenei em maximo o maior valor encontrado dentro de uma lista maximo = max(idadelista) # Armazenei em idadexidade o INDEX do maior valor indexidade = idadelista.index(maximo) # Armazenei em indexnome a posição de quem tem a maior idade indexnome = nomelista[indexidade] # ------------------------------------------------------------------- print(f'A media das idades é: {mediaidade}') print(f'A pessoa que tem a maior idade, com {maximo} é essa: {indexnome}') print(f'As mulheres que possuem menos de 20 anos: {mulherescommenosde20} e são: {nomedelas}')
[]
EnriqueL8/qiskit-terra
test/python/quantum_info/operators/test_operator.py
08b801f1f8598c4e44680b4a75c232ed92db0262
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name """Tests for Operator matrix linear operator class.""" import unittest import logging import copy import numpy as np from numpy.testing import assert_allclose import scipy.linalg as la from qiskit import QiskitError from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.extensions.standard import HGate, CHGate, CXGate from qiskit.test import QiskitTestCase from qiskit.quantum_info.operators.operator import Operator from qiskit.quantum_info.operators.predicates import matrix_equal logger = logging.getLogger(__name__) class OperatorTestCase(QiskitTestCase): """Test utils for Operator""" # Pauli-matrix unitaries UI = np.eye(2) UX = np.array([[0, 1], [1, 0]]) UY = np.array([[0, -1j], [1j, 0]]) UZ = np.diag([1, -1]) UH = np.array([[1, 1], [1, -1]]) / np.sqrt(2) @classmethod def rand_rho(cls, n): """Return random density matrix""" seed = np.random.randint(0, np.iinfo(np.int32).max) logger.debug("rand_rho RandomState seeded with seed=%s", seed) rng = np.random.RandomState(seed) psi = rng.rand(n) + 1j * rng.rand(n) rho = np.outer(psi, psi.conj()) rho /= np.trace(rho) return rho @classmethod def rand_matrix(cls, rows, cols=None, real=False): """Return a random matrix.""" seed = np.random.randint(0, np.iinfo(np.int32).max) logger.debug("rand_matrix RandomState seeded with seed=%s", seed) rng = np.random.RandomState(seed) if cols is None: cols = rows if real: return rng.rand(rows, cols) return rng.rand(rows, cols) + 1j * rng.rand(rows, cols) def simple_circuit_no_measure(self): """Return a unitary circuit and the corresponding unitary array.""" qr = QuantumRegister(3) circ = QuantumCircuit(qr) circ.h(qr[0]) circ.x(qr[1]) circ.ry(np.pi / 2, qr[2]) y90 = (1 / np.sqrt(2)) * np.array([[1, -1], [1, 1]]) target = Operator(np.kron(y90, np.kron(self.UX, self.UH))) return circ, target def simple_circuit_with_measure(self): """Return a unitary circuit with measurement.""" qr = QuantumRegister(2) cr = ClassicalRegister(2) circ = QuantumCircuit(qr, cr) circ.h(qr[0]) circ.x(qr[1]) circ.measure(qr, cr) return circ class TestOperator(OperatorTestCase): """Tests for Operator linear operator class.""" def test_init_array_qubit(self): """Test subsystem initialization from N-qubit array.""" # Test automatic inference of qubit subsystems mat = self.rand_matrix(8, 8) op = Operator(mat) assert_allclose(op.data, mat) self.assertEqual(op.dim, (8, 8)) self.assertEqual(op.input_dims(), (2, 2, 2)) self.assertEqual(op.output_dims(), (2, 2, 2)) op = Operator(mat, input_dims=8, output_dims=8) assert_allclose(op.data, mat) self.assertEqual(op.dim, (8, 8)) self.assertEqual(op.input_dims(), (2, 2, 2)) self.assertEqual(op.output_dims(), (2, 2, 2)) def test_init_array(self): """Test initialization from array.""" mat = np.eye(3) op = Operator(mat) assert_allclose(op.data, mat) self.assertEqual(op.dim, (3, 3)) self.assertEqual(op.input_dims(), (3,)) self.assertEqual(op.output_dims(), (3,)) mat = self.rand_matrix(2 * 3 * 4, 4 * 5) op = Operator(mat, input_dims=[4, 5], output_dims=[2, 3, 4]) assert_allclose(op.data, mat) self.assertEqual(op.dim, (4 * 5, 2 * 3 * 4)) self.assertEqual(op.input_dims(), (4, 5)) self.assertEqual(op.output_dims(), (2, 3, 4)) def test_init_array_except(self): """Test initialization exception from array.""" mat = self.rand_matrix(4, 4) self.assertRaises(QiskitError, Operator, mat, input_dims=[4, 2]) self.assertRaises(QiskitError, Operator, mat, input_dims=[2, 4]) self.assertRaises(QiskitError, Operator, mat, input_dims=5) def test_init_operator(self): """Test initialization from Operator.""" op1 = Operator(self.rand_matrix(4, 4)) op2 = Operator(op1) self.assertEqual(op1, op2) def test_circuit_init(self): """Test initialization from a circuit.""" # Test tensor product of 1-qubit gates circuit = QuantumCircuit(3) circuit.h(0) circuit.x(1) circuit.ry(np.pi / 2, 2) op = Operator(circuit) y90 = (1 / np.sqrt(2)) * np.array([[1, -1], [1, 1]]) target = np.kron(y90, np.kron(self.UX, self.UH)) global_phase_equivalent = matrix_equal( op.data, target, ignore_phase=True) self.assertTrue(global_phase_equivalent) # Test decomposition of Controlled-u1 gate lam = np.pi / 4 circuit = QuantumCircuit(2) circuit.cu1(lam, 0, 1) op = Operator(circuit) target = np.diag([1, 1, 1, np.exp(1j * lam)]) global_phase_equivalent = matrix_equal( op.data, target, ignore_phase=True) self.assertTrue(global_phase_equivalent) # Test decomposition of controlled-H gate circuit = QuantumCircuit(2) circuit.ch(0, 1) op = Operator(circuit) target = np.kron(self.UI, np.diag([1, 0])) + np.kron( self.UH, np.diag([0, 1])) global_phase_equivalent = matrix_equal( op.data, target, ignore_phase=True) self.assertTrue(global_phase_equivalent) def test_instruction_init(self): """Test initialization from a circuit.""" gate = CXGate() op = Operator(gate).data target = gate.to_matrix() global_phase_equivalent = matrix_equal(op, target, ignore_phase=True) self.assertTrue(global_phase_equivalent) gate = CHGate() op = Operator(gate).data had = HGate().to_matrix() target = np.kron(had, np.diag([0, 1])) + np.kron( np.eye(2), np.diag([1, 0])) global_phase_equivalent = matrix_equal(op, target, ignore_phase=True) self.assertTrue(global_phase_equivalent) def test_circuit_init_except(self): """Test initialization from circuit with measure raises exception.""" circuit = self.simple_circuit_with_measure() self.assertRaises(QiskitError, Operator, circuit) def test_equal(self): """Test __eq__ method""" mat = self.rand_matrix(2, 2, real=True) self.assertEqual(Operator(np.array(mat, dtype=complex)), Operator(mat)) mat = self.rand_matrix(4, 4) self.assertEqual(Operator(mat.tolist()), Operator(mat)) def test_data(self): """Test Operator representation string property.""" mat = self.rand_matrix(2, 2) op = Operator(mat) assert_allclose(mat, op.data) def test_dim(self): """Test Operator dim property.""" mat = self.rand_matrix(4, 4) self.assertEqual(Operator(mat).dim, (4, 4)) self.assertEqual(Operator(mat, input_dims=[4], output_dims=[4]).dim, (4, 4)) self.assertEqual(Operator(mat, input_dims=[2, 2], output_dims=[2, 2]).dim, (4, 4)) def test_input_dims(self): """Test Operator input_dims method.""" op = Operator(self.rand_matrix(2 * 3 * 4, 4 * 5), input_dims=[4, 5], output_dims=[2, 3, 4]) self.assertEqual(op.input_dims(), (4, 5)) self.assertEqual(op.input_dims(qargs=[0, 1]), (4, 5)) self.assertEqual(op.input_dims(qargs=[1, 0]), (5, 4)) self.assertEqual(op.input_dims(qargs=[0]), (4,)) self.assertEqual(op.input_dims(qargs=[1]), (5,)) def test_output_dims(self): """Test Operator output_dims method.""" op = Operator(self.rand_matrix(2 * 3 * 4, 4 * 5), input_dims=[4, 5], output_dims=[2, 3, 4]) self.assertEqual(op.output_dims(), (2, 3, 4)) self.assertEqual(op.output_dims(qargs=[0, 1, 2]), (2, 3, 4)) self.assertEqual(op.output_dims(qargs=[2, 1, 0]), (4, 3, 2)) self.assertEqual(op.output_dims(qargs=[2, 0, 1]), (4, 2, 3)) self.assertEqual(op.output_dims(qargs=[0]), (2,)) self.assertEqual(op.output_dims(qargs=[1]), (3,)) self.assertEqual(op.output_dims(qargs=[2]), (4,)) self.assertEqual(op.output_dims(qargs=[0, 2]), (2, 4)) self.assertEqual(op.output_dims(qargs=[2, 0]), (4, 2)) def test_reshape(self): """Test Operator reshape method.""" op = Operator(self.rand_matrix(8, 8)) reshaped1 = op.reshape(input_dims=[8], output_dims=[8]) reshaped2 = op.reshape(input_dims=[4, 2], output_dims=[2, 4]) self.assertEqual(op.output_dims(), (2, 2, 2)) self.assertEqual(op.input_dims(), (2, 2, 2)) self.assertEqual(reshaped1.output_dims(), (8,)) self.assertEqual(reshaped1.input_dims(), (8,)) self.assertEqual(reshaped2.output_dims(), (2, 4)) self.assertEqual(reshaped2.input_dims(), (4, 2)) def test_copy(self): """Test Operator copy method""" mat = np.eye(2) with self.subTest("Deep copy"): orig = Operator(mat) cpy = orig.copy() cpy._data[0, 0] = 0.0 self.assertFalse(cpy == orig) with self.subTest("Shallow copy"): orig = Operator(mat) clone = copy.copy(orig) clone._data[0, 0] = 0.0 self.assertTrue(clone == orig) def test_is_unitary(self): """Test is_unitary method.""" # X-90 rotation X90 = la.expm(-1j * 0.5 * np.pi * np.array([[0, 1], [1, 0]]) / 2) self.assertTrue(Operator(X90).is_unitary()) # Non-unitary should return false self.assertFalse(Operator([[1, 0], [0, 0]]).is_unitary()) def test_to_operator(self): """Test to_operator method.""" op1 = Operator(self.rand_matrix(4, 4)) op2 = op1.to_operator() self.assertEqual(op1, op2) def test_conjugate(self): """Test conjugate method.""" matr = self.rand_matrix(2, 4, real=True) mati = self.rand_matrix(2, 4, real=True) op = Operator(matr + 1j * mati) uni_conj = op.conjugate() self.assertEqual(uni_conj, Operator(matr - 1j * mati)) def test_transpose(self): """Test transpose method.""" matr = self.rand_matrix(2, 4, real=True) mati = self.rand_matrix(2, 4, real=True) op = Operator(matr + 1j * mati) uni_t = op.transpose() self.assertEqual(uni_t, Operator(matr.T + 1j * mati.T)) def test_adjoint(self): """Test adjoint method.""" matr = self.rand_matrix(2, 4, real=True) mati = self.rand_matrix(2, 4, real=True) op = Operator(matr + 1j * mati) uni_adj = op.adjoint() self.assertEqual(uni_adj, Operator(matr.T - 1j * mati.T)) def test_compose_except(self): """Test compose different dimension exception""" self.assertRaises(QiskitError, Operator(np.eye(2)).compose, Operator(np.eye(3))) self.assertRaises(QiskitError, Operator(np.eye(2)).compose, 2) def test_compose(self): """Test compose method.""" op1 = Operator(self.UX) op2 = Operator(self.UY) targ = Operator(np.dot(self.UY, self.UX)) self.assertEqual(op1.compose(op2), targ) self.assertEqual(op1 @ op2, targ) targ = Operator(np.dot(self.UX, self.UY)) self.assertEqual(op2.compose(op1), targ) self.assertEqual(op2 @ op1, targ) def test_dot(self): """Test dot method.""" op1 = Operator(self.UY) op2 = Operator(self.UX) targ = Operator(np.dot(self.UY, self.UX)) self.assertEqual(op1.dot(op2), targ) self.assertEqual(op1 * op2, targ) targ = Operator(np.dot(self.UX, self.UY)) self.assertEqual(op2.dot(op1), targ) self.assertEqual(op2 * op1, targ) def test_compose_front(self): """Test front compose method.""" opYX = Operator(self.UY).compose(Operator(self.UX), front=True) matYX = np.dot(self.UY, self.UX) self.assertEqual(opYX, Operator(matYX)) opXY = Operator(self.UX).compose(Operator(self.UY), front=True) matXY = np.dot(self.UX, self.UY) self.assertEqual(opXY, Operator(matXY)) def test_compose_subsystem(self): """Test subsystem compose method.""" # 3-qubit operator mat = self.rand_matrix(8, 8) mat_a = self.rand_matrix(2, 2) mat_b = self.rand_matrix(2, 2) mat_c = self.rand_matrix(2, 2) op = Operator(mat) op1 = Operator(mat_a) op2 = Operator(np.kron(mat_b, mat_a)) op3 = Operator(np.kron(mat_c, np.kron(mat_b, mat_a))) # op3 qargs=[0, 1, 2] targ = np.dot(np.kron(mat_c, np.kron(mat_b, mat_a)), mat) self.assertEqual(op.compose(op3, qargs=[0, 1, 2]), Operator(targ)) self.assertEqual(op.compose(op3([0, 1, 2])), Operator(targ)) self.assertEqual(op @ op3([0, 1, 2]), Operator(targ)) # op3 qargs=[2, 1, 0] targ = np.dot(np.kron(mat_a, np.kron(mat_b, mat_c)), mat) self.assertEqual(op.compose(op3, qargs=[2, 1, 0]), Operator(targ)) self.assertEqual(op @ op3([2, 1, 0]), Operator(targ)) # op2 qargs=[0, 1] targ = np.dot(np.kron(np.eye(2), np.kron(mat_b, mat_a)), mat) self.assertEqual(op.compose(op2, qargs=[0, 1]), Operator(targ)) self.assertEqual(op @ op2([0, 1]), Operator(targ)) # op2 qargs=[2, 0] targ = np.dot(np.kron(mat_a, np.kron(np.eye(2), mat_b)), mat) self.assertEqual(op.compose(op2, qargs=[2, 0]), Operator(targ)) self.assertEqual(op @ op2([2, 0]), Operator(targ)) # op1 qargs=[0] targ = np.dot(np.kron(np.eye(4), mat_a), mat) self.assertEqual(op.compose(op1, qargs=[0]), Operator(targ)) self.assertEqual(op @ op1([0]), Operator(targ)) # op1 qargs=[1] targ = np.dot(np.kron(np.eye(2), np.kron(mat_a, np.eye(2))), mat) self.assertEqual(op.compose(op1, qargs=[1]), Operator(targ)) self.assertEqual(op @ op1([1]), Operator(targ)) # op1 qargs=[2] targ = np.dot(np.kron(mat_a, np.eye(4)), mat) self.assertEqual(op.compose(op1, qargs=[2]), Operator(targ)) self.assertEqual(op @ op1([2]), Operator(targ)) def test_dot_subsystem(self): """Test subsystem dot method.""" # 3-qubit operator mat = self.rand_matrix(8, 8) mat_a = self.rand_matrix(2, 2) mat_b = self.rand_matrix(2, 2) mat_c = self.rand_matrix(2, 2) op = Operator(mat) op1 = Operator(mat_a) op2 = Operator(np.kron(mat_b, mat_a)) op3 = Operator(np.kron(mat_c, np.kron(mat_b, mat_a))) # op3 qargs=[0, 1, 2] targ = np.dot(mat, np.kron(mat_c, np.kron(mat_b, mat_a))) self.assertEqual(op.dot(op3, qargs=[0, 1, 2]), Operator(targ)) self.assertEqual(op * op3([0, 1, 2]), Operator(targ)) # op3 qargs=[2, 1, 0] targ = np.dot(mat, np.kron(mat_a, np.kron(mat_b, mat_c))) self.assertEqual(op.dot(op3, qargs=[2, 1, 0]), Operator(targ)) self.assertEqual(op * op3([2, 1, 0]), Operator(targ)) # op2 qargs=[0, 1] targ = np.dot(mat, np.kron(np.eye(2), np.kron(mat_b, mat_a))) self.assertEqual(op.dot(op2, qargs=[0, 1]), Operator(targ)) self.assertEqual(op * op2([0, 1]), Operator(targ)) # op2 qargs=[2, 0] targ = np.dot(mat, np.kron(mat_a, np.kron(np.eye(2), mat_b))) self.assertEqual(op.dot(op2, qargs=[2, 0]), Operator(targ)) self.assertEqual(op * op2([2, 0]), Operator(targ)) # op1 qargs=[0] targ = np.dot(mat, np.kron(np.eye(4), mat_a)) self.assertEqual(op.dot(op1, qargs=[0]), Operator(targ)) self.assertEqual(op * op1([0]), Operator(targ)) # op1 qargs=[1] targ = np.dot(mat, np.kron(np.eye(2), np.kron(mat_a, np.eye(2)))) self.assertEqual(op.dot(op1, qargs=[1]), Operator(targ)) self.assertEqual(op * op1([1]), Operator(targ)) # op1 qargs=[2] targ = np.dot(mat, np.kron(mat_a, np.eye(4))) self.assertEqual(op.dot(op1, qargs=[2]), Operator(targ)) self.assertEqual(op * op1([2]), Operator(targ)) def test_compose_front_subsystem(self): """Test subsystem front compose method.""" # 3-qubit operator mat = self.rand_matrix(8, 8) mat_a = self.rand_matrix(2, 2) mat_b = self.rand_matrix(2, 2) mat_c = self.rand_matrix(2, 2) op = Operator(mat) op1 = Operator(mat_a) op2 = Operator(np.kron(mat_b, mat_a)) op3 = Operator(np.kron(mat_c, np.kron(mat_b, mat_a))) # op3 qargs=[0, 1, 2] targ = np.dot(mat, np.kron(mat_c, np.kron(mat_b, mat_a))) self.assertEqual(op.compose(op3, qargs=[0, 1, 2], front=True), Operator(targ)) # op3 qargs=[2, 1, 0] targ = np.dot(mat, np.kron(mat_a, np.kron(mat_b, mat_c))) self.assertEqual(op.compose(op3, qargs=[2, 1, 0], front=True), Operator(targ)) # op2 qargs=[0, 1] targ = np.dot(mat, np.kron(np.eye(2), np.kron(mat_b, mat_a))) self.assertEqual(op.compose(op2, qargs=[0, 1], front=True), Operator(targ)) # op2 qargs=[2, 0] targ = np.dot(mat, np.kron(mat_a, np.kron(np.eye(2), mat_b))) self.assertEqual(op.compose(op2, qargs=[2, 0], front=True), Operator(targ)) # op1 qargs=[0] targ = np.dot(mat, np.kron(np.eye(4), mat_a)) self.assertEqual(op.compose(op1, qargs=[0], front=True), Operator(targ)) # op1 qargs=[1] targ = np.dot(mat, np.kron(np.eye(2), np.kron(mat_a, np.eye(2)))) self.assertEqual(op.compose(op1, qargs=[1], front=True), Operator(targ)) # op1 qargs=[2] targ = np.dot(mat, np.kron(mat_a, np.eye(4))) self.assertEqual(op.compose(op1, qargs=[2], front=True), Operator(targ)) def test_power(self): """Test power method.""" X90 = la.expm(-1j * 0.5 * np.pi * np.array([[0, 1], [1, 0]]) / 2) op = Operator(X90) self.assertEqual(op.power(2), Operator([[0, -1j], [-1j, 0]])) self.assertEqual(op.power(4), Operator(-1 * np.eye(2))) self.assertEqual(op.power(8), Operator(np.eye(2))) def test_expand(self): """Test expand method.""" mat1 = self.UX mat2 = np.eye(3, dtype=complex) mat21 = np.kron(mat2, mat1) op21 = Operator(mat1).expand(Operator(mat2)) self.assertEqual(op21.dim, (6, 6)) assert_allclose(op21.data, Operator(mat21).data) mat12 = np.kron(mat1, mat2) op12 = Operator(mat2).expand(Operator(mat1)) self.assertEqual(op12.dim, (6, 6)) assert_allclose(op12.data, Operator(mat12).data) def test_tensor(self): """Test tensor method.""" mat1 = self.UX mat2 = np.eye(3, dtype=complex) mat21 = np.kron(mat2, mat1) op21 = Operator(mat2).tensor(Operator(mat1)) self.assertEqual(op21.dim, (6, 6)) assert_allclose(op21.data, Operator(mat21).data) mat12 = np.kron(mat1, mat2) op12 = Operator(mat1).tensor(Operator(mat2)) self.assertEqual(op12.dim, (6, 6)) assert_allclose(op12.data, Operator(mat12).data) def test_power_except(self): """Test power method raises exceptions.""" op = Operator(self.rand_matrix(3, 3)) # Non-integer power raises error self.assertRaises(QiskitError, op.power, 0.5) def test_add(self): """Test add method.""" mat1 = self.rand_matrix(4, 4) mat2 = self.rand_matrix(4, 4) op1 = Operator(mat1) op2 = Operator(mat2) self.assertEqual(op1._add(op2), Operator(mat1 + mat2)) self.assertEqual(op1 + op2, Operator(mat1 + mat2)) self.assertEqual(op1 - op2, Operator(mat1 - mat2)) def test_add_except(self): """Test add method raises exceptions.""" op1 = Operator(self.rand_matrix(2, 2)) op2 = Operator(self.rand_matrix(3, 3)) self.assertRaises(QiskitError, op1._add, op2) def test_multiply(self): """Test multiply method.""" mat = self.rand_matrix(4, 4) val = np.exp(5j) op = Operator(mat) self.assertEqual(op._multiply(val), Operator(val * mat)) self.assertEqual(val * op, Operator(val * mat)) def test_multiply_except(self): """Test multiply method raises exceptions.""" op = Operator(self.rand_matrix(2, 2)) self.assertRaises(QiskitError, op._multiply, 's') self.assertRaises(QiskitError, op.__rmul__, 's') self.assertRaises(QiskitError, op._multiply, op) self.assertRaises(QiskitError, op.__rmul__, op) def test_negate(self): """Test negate method""" mat = self.rand_matrix(4, 4) op = Operator(mat) self.assertEqual(-op, Operator(-1 * mat)) def test_equiv(self): """Test negate method""" mat = np.diag([1, np.exp(1j * np.pi / 2)]) phase = np.exp(-1j * np.pi / 4) op = Operator(mat) self.assertTrue(op.equiv(phase * mat)) self.assertTrue(op.equiv(Operator(phase * mat))) self.assertFalse(op.equiv(2 * mat)) if __name__ == '__main__': unittest.main()
[((33, 9, 33, 36), 'logging.getLogger', 'logging.getLogger', ({(33, 27, 33, 35): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((40, 9, 40, 18), 'numpy.eye', 'np.eye', ({(40, 16, 40, 17): '2'}, {}), '(2)', True, 'import numpy as np\n'), ((41, 9, 41, 35), 'numpy.array', 'np.array', ({(41, 18, 41, 34): '[[0, 1], [1, 0]]'}, {}), '([[0, 1], [1, 0]])', True, 'import numpy as np\n'), ((42, 9, 42, 38), 'numpy.array', 'np.array', ({(42, 18, 42, 37): '[[0, -1.0j], [1.0j, 0]]'}, {}), '([[0, -1.0j], [1.0j, 0]])', True, 'import numpy as np\n'), ((43, 9, 43, 25), 'numpy.diag', 'np.diag', ({(43, 17, 43, 24): '[1, -1]'}, {}), '([1, -1])', True, 'import numpy as np\n'), ((569, 4, 569, 19), 'unittest.main', 'unittest.main', ({}, {}), '()', False, 'import unittest\n'), ((44, 9, 44, 36), 'numpy.array', 'np.array', ({(44, 18, 44, 35): '[[1, 1], [1, -1]]'}, {}), '([[1, 1], [1, -1]])', True, 'import numpy as np\n'), ((44, 39, 44, 49), 'numpy.sqrt', 'np.sqrt', ({(44, 47, 44, 48): '(2)'}, {}), '(2)', True, 'import numpy as np\n'), ((51, 14, 51, 41), 'numpy.random.RandomState', 'np.random.RandomState', ({(51, 36, 51, 40): 'seed'}, {}), '(seed)', True, 'import numpy as np\n'), ((55, 15, 55, 28), 'numpy.trace', 'np.trace', ({(55, 24, 55, 27): 'rho'}, {}), '(rho)', True, 'import numpy as np\n'), ((63, 14, 63, 41), 'numpy.random.RandomState', 'np.random.RandomState', ({(63, 36, 63, 40): 'seed'}, {}), '(seed)', True, 'import numpy as np\n'), ((73, 13, 73, 31), 'qiskit.QuantumRegister', 'QuantumRegister', ({(73, 29, 73, 30): '3'}, {}), '(3)', False, 'from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit\n'), ((74, 15, 74, 33), 'qiskit.QuantumCircuit', 'QuantumCircuit', ({(74, 30, 74, 32): 'qr'}, {}), '(qr)', False, 'from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit\n'), ((84, 13, 84, 31), 'qiskit.QuantumRegister', 'QuantumRegister', ({(84, 29, 84, 30): '2'}, {}), '(2)', False, 'from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit\n'), ((85, 13, 85, 33), 'qiskit.ClassicalRegister', 'ClassicalRegister', ({(85, 31, 85, 32): '2'}, {}), '(2)', False, 'from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit\n'), ((86, 15, 86, 37), 'qiskit.QuantumCircuit', 'QuantumCircuit', ({(86, 30, 86, 32): 'qr', (86, 34, 86, 36): 'cr'}, {}), '(qr, cr)', False, 'from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit\n'), ((100, 13, 100, 26), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(100, 22, 100, 25): 'mat'}, {}), '(mat)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((101, 8, 101, 37), 'numpy.testing.assert_allclose', 'assert_allclose', ({(101, 24, 101, 31): 'op.data', (101, 33, 101, 36): 'mat'}, {}), '(op.data, mat)', False, 'from numpy.testing import assert_allclose\n'), ((106, 13, 106, 55), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', (), '', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((107, 8, 107, 37), 'numpy.testing.assert_allclose', 'assert_allclose', ({(107, 24, 107, 31): 'op.data', (107, 33, 107, 36): 'mat'}, {}), '(op.data, mat)', False, 'from numpy.testing import assert_allclose\n'), ((114, 14, 114, 23), 'numpy.eye', 'np.eye', ({(114, 21, 114, 22): '3'}, {}), '(3)', True, 'import numpy as np\n'), ((115, 13, 115, 26), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(115, 22, 115, 25): 'mat'}, {}), '(mat)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((116, 8, 116, 37), 'numpy.testing.assert_allclose', 'assert_allclose', ({(116, 24, 116, 31): 'op.data', (116, 33, 116, 36): 'mat'}, {}), '(op.data, mat)', False, 'from numpy.testing import assert_allclose\n'), ((122, 13, 122, 68), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', (), '', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((123, 8, 123, 37), 'numpy.testing.assert_allclose', 'assert_allclose', ({(123, 24, 123, 31): 'op.data', (123, 33, 123, 36): 'mat'}, {}), '(op.data, mat)', False, 'from numpy.testing import assert_allclose\n'), ((138, 14, 138, 27), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(138, 23, 138, 26): 'op1'}, {}), '(op1)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((144, 18, 144, 35), 'qiskit.QuantumCircuit', 'QuantumCircuit', ({(144, 33, 144, 34): '3'}, {}), '(3)', False, 'from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit\n'), ((148, 13, 148, 30), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(148, 22, 148, 29): 'circuit'}, {}), '(circuit)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((151, 34, 152, 47), 'qiskit.quantum_info.operators.predicates.matrix_equal', 'matrix_equal', (), '', False, 'from qiskit.quantum_info.operators.predicates import matrix_equal\n'), ((157, 18, 157, 35), 'qiskit.QuantumCircuit', 'QuantumCircuit', ({(157, 33, 157, 34): '2'}, {}), '(2)', False, 'from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit\n'), ((159, 13, 159, 30), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(159, 22, 159, 29): 'circuit'}, {}), '(circuit)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((161, 34, 162, 47), 'qiskit.quantum_info.operators.predicates.matrix_equal', 'matrix_equal', (), '', False, 'from qiskit.quantum_info.operators.predicates import matrix_equal\n'), ((166, 18, 166, 35), 'qiskit.QuantumCircuit', 'QuantumCircuit', ({(166, 33, 166, 34): '2'}, {}), '(2)', False, 'from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit\n'), ((168, 13, 168, 30), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(168, 22, 168, 29): 'circuit'}, {}), '(circuit)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((171, 34, 172, 47), 'qiskit.quantum_info.operators.predicates.matrix_equal', 'matrix_equal', (), '', False, 'from qiskit.quantum_info.operators.predicates import matrix_equal\n'), ((177, 15, 177, 23), 'qiskit.extensions.standard.CXGate', 'CXGate', ({}, {}), '()', False, 'from qiskit.extensions.standard import HGate, CHGate, CXGate\n'), ((180, 34, 180, 77), 'qiskit.quantum_info.operators.predicates.matrix_equal', 'matrix_equal', (), '', False, 'from qiskit.quantum_info.operators.predicates import matrix_equal\n'), ((183, 15, 183, 23), 'qiskit.extensions.standard.CHGate', 'CHGate', ({}, {}), '()', False, 'from qiskit.extensions.standard import HGate, CHGate, CXGate\n'), ((188, 34, 188, 77), 'qiskit.quantum_info.operators.predicates.matrix_equal', 'matrix_equal', (), '', False, 'from qiskit.quantum_info.operators.predicates import matrix_equal\n'), ((208, 13, 208, 26), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(208, 22, 208, 25): 'mat'}, {}), '(mat)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((209, 8, 209, 37), 'numpy.testing.assert_allclose', 'assert_allclose', ({(209, 24, 209, 27): 'mat', (209, 29, 209, 36): 'op.data'}, {}), '(mat, op.data)', False, 'from numpy.testing import assert_allclose\n'), ((256, 14, 256, 23), 'numpy.eye', 'np.eye', ({(256, 21, 256, 22): '2'}, {}), '(2)', True, 'import numpy as np\n'), ((286, 13, 286, 39), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(286, 22, 286, 38): 'matr + 1.0j * mati'}, {}), '(matr + 1.0j * mati)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((294, 13, 294, 39), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(294, 22, 294, 38): 'matr + 1.0j * mati'}, {}), '(matr + 1.0j * mati)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((302, 13, 302, 39), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(302, 22, 302, 38): 'matr + 1.0j * mati'}, {}), '(matr + 1.0j * mati)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((316, 14, 316, 31), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(316, 23, 316, 30): 'self.UX'}, {}), '(self.UX)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((317, 14, 317, 31), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(317, 23, 317, 30): 'self.UY'}, {}), '(self.UY)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((329, 14, 329, 31), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(329, 23, 329, 30): 'self.UY'}, {}), '(self.UY)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((330, 14, 330, 31), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(330, 23, 330, 30): 'self.UX'}, {}), '(self.UX)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((344, 16, 344, 40), 'numpy.dot', 'np.dot', ({(344, 23, 344, 30): 'self.UY', (344, 32, 344, 39): 'self.UX'}, {}), '(self.UY, self.UX)', True, 'import numpy as np\n'), ((348, 16, 348, 40), 'numpy.dot', 'np.dot', ({(348, 23, 348, 30): 'self.UX', (348, 32, 348, 39): 'self.UY'}, {}), '(self.UX, self.UY)', True, 'import numpy as np\n'), ((358, 13, 358, 26), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(358, 22, 358, 25): 'mat'}, {}), '(mat)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((359, 14, 359, 29), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(359, 23, 359, 28): 'mat_a'}, {}), '(mat_a)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((402, 13, 402, 26), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(402, 22, 402, 25): 'mat'}, {}), '(mat)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((403, 14, 403, 29), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(403, 23, 403, 28): 'mat_a'}, {}), '(mat_a)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((445, 13, 445, 26), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(445, 22, 445, 25): 'mat'}, {}), '(mat)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((446, 14, 446, 29), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(446, 23, 446, 28): 'mat_a'}, {}), '(mat_a)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((479, 13, 479, 26), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(479, 22, 479, 25): 'X90'}, {}), '(X90)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((487, 15, 487, 39), 'numpy.eye', 'np.eye', (), '', True, 'import numpy as np\n'), ((489, 16, 489, 35), 'numpy.kron', 'np.kron', ({(489, 24, 489, 28): 'mat2', (489, 30, 489, 34): 'mat1'}, {}), '(mat2, mat1)', True, 'import numpy as np\n'), ((494, 16, 494, 35), 'numpy.kron', 'np.kron', ({(494, 24, 494, 28): 'mat1', (494, 30, 494, 34): 'mat2'}, {}), '(mat1, mat2)', True, 'import numpy as np\n'), ((502, 15, 502, 39), 'numpy.eye', 'np.eye', (), '', True, 'import numpy as np\n'), ((504, 16, 504, 35), 'numpy.kron', 'np.kron', ({(504, 24, 504, 28): 'mat2', (504, 30, 504, 34): 'mat1'}, {}), '(mat2, mat1)', True, 'import numpy as np\n'), ((509, 16, 509, 35), 'numpy.kron', 'np.kron', ({(509, 24, 509, 28): 'mat1', (509, 30, 509, 34): 'mat2'}, {}), '(mat1, mat2)', True, 'import numpy as np\n'), ((524, 14, 524, 28), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(524, 23, 524, 27): 'mat1'}, {}), '(mat1)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((525, 14, 525, 28), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(525, 23, 525, 27): 'mat2'}, {}), '(mat2)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((539, 14, 539, 24), 'numpy.exp', 'np.exp', ({(539, 21, 539, 23): '5.0j'}, {}), '(5.0j)', True, 'import numpy as np\n'), ((540, 13, 540, 26), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(540, 22, 540, 25): 'mat'}, {}), '(mat)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((555, 13, 555, 26), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(555, 22, 555, 25): 'mat'}, {}), '(mat)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((561, 16, 561, 39), 'numpy.exp', 'np.exp', ({(561, 23, 561, 38): '-1.0j * np.pi / 4'}, {}), '(-1.0j * np.pi / 4)', True, 'import numpy as np\n'), ((562, 13, 562, 26), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(562, 22, 562, 25): 'mat'}, {}), '(mat)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((78, 33, 78, 60), 'numpy.array', 'np.array', ({(78, 42, 78, 59): '[[1, -1], [1, 1]]'}, {}), '([[1, -1], [1, 1]])', True, 'import numpy as np\n'), ((149, 33, 149, 60), 'numpy.array', 'np.array', ({(149, 42, 149, 59): '[[1, -1], [1, 1]]'}, {}), '([[1, -1], [1, 1]])', True, 'import numpy as np\n'), ((150, 30, 150, 55), 'numpy.kron', 'np.kron', ({(150, 38, 150, 45): 'self.UX', (150, 47, 150, 54): 'self.UH'}, {}), '(self.UX, self.UH)', True, 'import numpy as np\n'), ((178, 13, 178, 27), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(178, 22, 178, 26): 'gate'}, {}), '(gate)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((184, 13, 184, 27), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(184, 22, 184, 26): 'gate'}, {}), '(gate)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((200, 25, 200, 38), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(200, 34, 200, 37): 'mat'}, {}), '(mat)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((203, 25, 203, 38), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(203, 34, 203, 37): 'mat'}, {}), '(mat)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((258, 19, 258, 32), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(258, 28, 258, 31): 'mat'}, {}), '(mat)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((263, 19, 263, 32), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(263, 28, 263, 31): 'mat'}, {}), '(mat)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((264, 20, 264, 35), 'copy.copy', 'copy.copy', ({(264, 30, 264, 34): 'orig'}, {}), '(orig)', False, 'import copy\n'), ((288, 35, 288, 61), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(288, 44, 288, 60): '(matr - 1.0j * mati)'}, {}), '(matr - 1.0j * mati)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((296, 32, 296, 62), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(296, 41, 296, 61): '(matr.T + 1.0j * mati.T)'}, {}), '(matr.T + 1.0j * mati.T)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((304, 34, 304, 64), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(304, 43, 304, 63): '(matr.T - 1.0j * mati.T)'}, {}), '(matr.T - 1.0j * mati.T)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((319, 24, 319, 48), 'numpy.dot', 'np.dot', ({(319, 31, 319, 38): 'self.UY', (319, 40, 319, 47): 'self.UX'}, {}), '(self.UY, self.UX)', True, 'import numpy as np\n'), ((323, 24, 323, 48), 'numpy.dot', 'np.dot', ({(323, 31, 323, 38): 'self.UX', (323, 40, 323, 47): 'self.UY'}, {}), '(self.UX, self.UY)', True, 'import numpy as np\n'), ((332, 24, 332, 48), 'numpy.dot', 'np.dot', ({(332, 31, 332, 38): 'self.UY', (332, 40, 332, 47): 'self.UX'}, {}), '(self.UY, self.UX)', True, 'import numpy as np\n'), ((336, 24, 336, 48), 'numpy.dot', 'np.dot', ({(336, 31, 336, 38): 'self.UX', (336, 40, 336, 47): 'self.UY'}, {}), '(self.UX, self.UY)', True, 'import numpy as np\n'), ((343, 41, 343, 58), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(343, 50, 343, 57): 'self.UX'}, {}), '(self.UX)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((345, 31, 345, 46), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(345, 40, 345, 45): 'matYX'}, {}), '(matYX)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((347, 41, 347, 58), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(347, 50, 347, 57): 'self.UY'}, {}), '(self.UY)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((349, 31, 349, 46), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(349, 40, 349, 45): 'matXY'}, {}), '(matXY)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((360, 23, 360, 44), 'numpy.kron', 'np.kron', ({(360, 31, 360, 36): 'mat_b', (360, 38, 360, 43): 'mat_a'}, {}), '(mat_b, mat_a)', True, 'import numpy as np\n'), ((365, 59, 365, 73), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(365, 68, 365, 72): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((366, 53, 366, 67), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(366, 62, 366, 66): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((367, 46, 367, 60), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(367, 55, 367, 59): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((370, 59, 370, 73), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(370, 68, 370, 72): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((371, 46, 371, 60), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(371, 55, 371, 59): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((375, 56, 375, 70), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(375, 65, 375, 69): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((376, 43, 376, 57), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(376, 52, 376, 56): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((379, 56, 379, 70), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(379, 65, 379, 69): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((380, 43, 380, 57), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(380, 52, 380, 56): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((384, 53, 384, 67), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(384, 62, 384, 66): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((385, 40, 385, 54), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(385, 49, 385, 53): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((388, 53, 388, 67), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(388, 62, 388, 66): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((389, 40, 389, 54), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(389, 49, 389, 53): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((392, 53, 392, 67), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(392, 62, 392, 66): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((393, 40, 393, 54), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(393, 49, 393, 53): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((404, 23, 404, 44), 'numpy.kron', 'np.kron', ({(404, 31, 404, 36): 'mat_b', (404, 38, 404, 43): 'mat_a'}, {}), '(mat_b, mat_a)', True, 'import numpy as np\n'), ((409, 55, 409, 69), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(409, 64, 409, 68): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((410, 46, 410, 60), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(410, 55, 410, 59): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((413, 55, 413, 69), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(413, 64, 413, 68): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((414, 46, 414, 60), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(414, 55, 414, 59): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((418, 52, 418, 66), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(418, 61, 418, 65): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((419, 43, 419, 57), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(419, 52, 419, 56): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((422, 52, 422, 66), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(422, 61, 422, 65): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((423, 43, 423, 57), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(423, 52, 423, 56): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((427, 49, 427, 63), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(427, 58, 427, 62): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((428, 40, 428, 54), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(428, 49, 428, 53): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((431, 49, 431, 63), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(431, 58, 431, 62): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((432, 40, 432, 54), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(432, 49, 432, 53): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((435, 49, 435, 63), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(435, 58, 435, 62): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((436, 40, 436, 54), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(436, 49, 436, 53): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((447, 23, 447, 44), 'numpy.kron', 'np.kron', ({(447, 31, 447, 36): 'mat_b', (447, 38, 447, 43): 'mat_a'}, {}), '(mat_b, mat_a)', True, 'import numpy as np\n'), ((452, 71, 452, 85), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(452, 80, 452, 84): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((455, 71, 455, 85), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(455, 80, 455, 84): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((459, 68, 459, 82), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(459, 77, 459, 81): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((462, 68, 462, 82), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(462, 77, 462, 81): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((466, 65, 466, 79), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(466, 74, 466, 78): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((470, 65, 470, 79), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(470, 74, 470, 78): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((474, 65, 474, 79), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(474, 74, 474, 78): 'targ'}, {}), '(targ)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((480, 38, 480, 68), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(480, 47, 480, 67): '[[0, -1.0j], [-1.0j, 0]]'}, {}), '([[0, -1.0j], [-1.0j, 0]])', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((490, 37, 490, 51), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(490, 46, 490, 50): 'mat2'}, {}), '(mat2)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((495, 37, 495, 51), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(495, 46, 495, 50): 'mat1'}, {}), '(mat1)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((505, 37, 505, 51), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(505, 46, 505, 50): 'mat1'}, {}), '(mat1)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((510, 37, 510, 51), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(510, 46, 510, 50): 'mat2'}, {}), '(mat2)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((526, 40, 526, 61), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(526, 49, 526, 60): '(mat1 + mat2)'}, {}), '(mat1 + mat2)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((527, 36, 527, 57), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(527, 45, 527, 56): '(mat1 + mat2)'}, {}), '(mat1 + mat2)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((528, 36, 528, 57), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(528, 45, 528, 56): '(mat1 - mat2)'}, {}), '(mat1 - mat2)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((541, 44, 541, 63), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(541, 53, 541, 62): '(val * mat)'}, {}), '(val * mat)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((542, 35, 542, 54), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(542, 44, 542, 53): '(val * mat)'}, {}), '(val * mat)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((556, 30, 556, 48), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(556, 39, 556, 47): '(-1 * mat)'}, {}), '(-1 * mat)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((49, 36, 49, 54), 'numpy.iinfo', 'np.iinfo', ({(49, 45, 49, 53): 'np.int32'}, {}), '(np.int32)', True, 'import numpy as np\n'), ((61, 36, 61, 54), 'numpy.iinfo', 'np.iinfo', ({(61, 45, 61, 53): 'np.int32'}, {}), '(np.int32)', True, 'import numpy as np\n'), ((78, 19, 78, 29), 'numpy.sqrt', 'np.sqrt', ({(78, 27, 78, 28): '(2)'}, {}), '(2)', True, 'import numpy as np\n'), ((79, 39, 79, 64), 'numpy.kron', 'np.kron', ({(79, 47, 79, 54): 'self.UX', (79, 56, 79, 63): 'self.UH'}, {}), '(self.UX, self.UH)', True, 'import numpy as np\n'), ((149, 19, 149, 29), 'numpy.sqrt', 'np.sqrt', ({(149, 27, 149, 28): '(2)'}, {}), '(2)', True, 'import numpy as np\n'), ((160, 35, 160, 51), 'numpy.exp', 'np.exp', ({(160, 42, 160, 50): '1.0j * lam'}, {}), '(1.0j * lam)', True, 'import numpy as np\n'), ((169, 34, 169, 49), 'numpy.diag', 'np.diag', ({(169, 42, 169, 48): '[1, 0]'}, {}), '([1, 0])', True, 'import numpy as np\n'), ((170, 21, 170, 36), 'numpy.diag', 'np.diag', ({(170, 29, 170, 35): '[0, 1]'}, {}), '([0, 1])', True, 'import numpy as np\n'), ((185, 14, 185, 21), 'qiskit.extensions.standard.HGate', 'HGate', ({}, {}), '()', False, 'from qiskit.extensions.standard import HGate, CHGate, CXGate\n'), ((186, 30, 186, 45), 'numpy.diag', 'np.diag', ({(186, 38, 186, 44): '[0, 1]'}, {}), '([0, 1])', True, 'import numpy as np\n'), ((187, 12, 187, 21), 'numpy.eye', 'np.eye', ({(187, 19, 187, 20): '(2)'}, {}), '(2)', True, 'import numpy as np\n'), ((187, 23, 187, 38), 'numpy.diag', 'np.diag', ({(187, 31, 187, 37): '[1, 0]'}, {}), '([1, 0])', True, 'import numpy as np\n'), ((199, 34, 199, 62), 'numpy.array', 'np.array', (), '', True, 'import numpy as np\n'), ((214, 25, 214, 38), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(214, 34, 214, 37): 'mat'}, {}), '(mat)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((215, 25, 215, 71), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', (), '', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((216, 25, 216, 77), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', (), '', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((310, 35, 310, 44), 'numpy.eye', 'np.eye', ({(310, 42, 310, 43): '(3)'}, {}), '(3)', True, 'import numpy as np\n'), ((343, 15, 343, 32), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(343, 24, 343, 31): 'self.UY'}, {}), '(self.UY)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((347, 15, 347, 32), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(347, 24, 347, 31): 'self.UX'}, {}), '(self.UX)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((361, 38, 361, 59), 'numpy.kron', 'np.kron', ({(361, 46, 361, 51): 'mat_b', (361, 53, 361, 58): 'mat_a'}, {}), '(mat_b, mat_a)', True, 'import numpy as np\n'), ((364, 37, 364, 58), 'numpy.kron', 'np.kron', ({(364, 45, 364, 50): 'mat_b', (364, 52, 364, 57): 'mat_a'}, {}), '(mat_b, mat_a)', True, 'import numpy as np\n'), ((369, 37, 369, 58), 'numpy.kron', 'np.kron', ({(369, 45, 369, 50): 'mat_b', (369, 52, 369, 57): 'mat_c'}, {}), '(mat_b, mat_c)', True, 'import numpy as np\n'), ((374, 30, 374, 39), 'numpy.eye', 'np.eye', ({(374, 37, 374, 38): '2'}, {}), '(2)', True, 'import numpy as np\n'), ((374, 41, 374, 62), 'numpy.kron', 'np.kron', ({(374, 49, 374, 54): 'mat_b', (374, 56, 374, 61): 'mat_a'}, {}), '(mat_b, mat_a)', True, 'import numpy as np\n'), ((383, 30, 383, 39), 'numpy.eye', 'np.eye', ({(383, 37, 383, 38): '4'}, {}), '(4)', True, 'import numpy as np\n'), ((387, 30, 387, 39), 'numpy.eye', 'np.eye', ({(387, 37, 387, 38): '2'}, {}), '(2)', True, 'import numpy as np\n'), ((391, 37, 391, 46), 'numpy.eye', 'np.eye', ({(391, 44, 391, 45): '4'}, {}), '(4)', True, 'import numpy as np\n'), ((405, 38, 405, 59), 'numpy.kron', 'np.kron', ({(405, 46, 405, 51): 'mat_b', (405, 53, 405, 58): 'mat_a'}, {}), '(mat_b, mat_a)', True, 'import numpy as np\n'), ((408, 42, 408, 63), 'numpy.kron', 'np.kron', ({(408, 50, 408, 55): 'mat_b', (408, 57, 408, 62): 'mat_a'}, {}), '(mat_b, mat_a)', True, 'import numpy as np\n'), ((412, 42, 412, 63), 'numpy.kron', 'np.kron', ({(412, 50, 412, 55): 'mat_b', (412, 57, 412, 62): 'mat_c'}, {}), '(mat_b, mat_c)', True, 'import numpy as np\n'), ((417, 35, 417, 44), 'numpy.eye', 'np.eye', ({(417, 42, 417, 43): '2'}, {}), '(2)', True, 'import numpy as np\n'), ((417, 46, 417, 67), 'numpy.kron', 'np.kron', ({(417, 54, 417, 59): 'mat_b', (417, 61, 417, 66): 'mat_a'}, {}), '(mat_b, mat_a)', True, 'import numpy as np\n'), ((426, 35, 426, 44), 'numpy.eye', 'np.eye', ({(426, 42, 426, 43): '4'}, {}), '(4)', True, 'import numpy as np\n'), ((430, 35, 430, 44), 'numpy.eye', 'np.eye', ({(430, 42, 430, 43): '2'}, {}), '(2)', True, 'import numpy as np\n'), ((434, 42, 434, 51), 'numpy.eye', 'np.eye', ({(434, 49, 434, 50): '4'}, {}), '(4)', True, 'import numpy as np\n'), ((448, 38, 448, 59), 'numpy.kron', 'np.kron', ({(448, 46, 448, 51): 'mat_b', (448, 53, 448, 58): 'mat_a'}, {}), '(mat_b, mat_a)', True, 'import numpy as np\n'), ((451, 42, 451, 63), 'numpy.kron', 'np.kron', ({(451, 50, 451, 55): 'mat_b', (451, 57, 451, 62): 'mat_a'}, {}), '(mat_b, mat_a)', True, 'import numpy as np\n'), ((454, 42, 454, 63), 'numpy.kron', 'np.kron', ({(454, 50, 454, 55): 'mat_b', (454, 57, 454, 62): 'mat_c'}, {}), '(mat_b, mat_c)', True, 'import numpy as np\n'), ((458, 35, 458, 44), 'numpy.eye', 'np.eye', ({(458, 42, 458, 43): '2'}, {}), '(2)', True, 'import numpy as np\n'), ((458, 46, 458, 67), 'numpy.kron', 'np.kron', ({(458, 54, 458, 59): 'mat_b', (458, 61, 458, 66): 'mat_a'}, {}), '(mat_b, mat_a)', True, 'import numpy as np\n'), ((465, 35, 465, 44), 'numpy.eye', 'np.eye', ({(465, 42, 465, 43): '4'}, {}), '(4)', True, 'import numpy as np\n'), ((469, 35, 469, 44), 'numpy.eye', 'np.eye', ({(469, 42, 469, 43): '2'}, {}), '(2)', True, 'import numpy as np\n'), ((473, 42, 473, 51), 'numpy.eye', 'np.eye', ({(473, 49, 473, 50): '4'}, {}), '(4)', True, 'import numpy as np\n'), ((482, 47, 482, 56), 'numpy.eye', 'np.eye', ({(482, 54, 482, 55): '(2)'}, {}), '(2)', True, 'import numpy as np\n'), ((490, 15, 490, 29), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(490, 24, 490, 28): 'mat1'}, {}), '(mat1)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((492, 35, 492, 50), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(492, 44, 492, 49): 'mat21'}, {}), '(mat21)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((495, 15, 495, 29), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(495, 24, 495, 28): 'mat2'}, {}), '(mat2)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((497, 35, 497, 50), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(497, 44, 497, 49): 'mat12'}, {}), '(mat12)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((505, 15, 505, 29), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(505, 24, 505, 28): 'mat2'}, {}), '(mat2)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((507, 35, 507, 50), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(507, 44, 507, 49): 'mat21'}, {}), '(mat21)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((510, 15, 510, 29), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(510, 24, 510, 28): 'mat1'}, {}), '(mat1)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((512, 35, 512, 50), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(512, 44, 512, 49): 'mat12'}, {}), '(mat12)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((560, 26, 560, 48), 'numpy.exp', 'np.exp', ({(560, 33, 560, 47): '1.0j * np.pi / 2'}, {}), '(1.0j * np.pi / 2)', True, 'import numpy as np\n'), ((564, 33, 564, 54), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(564, 42, 564, 53): '(phase * mat)'}, {}), '(phase * mat)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((271, 42, 271, 68), 'numpy.array', 'np.array', ({(271, 51, 271, 67): '[[0, 1], [1, 0]]'}, {}), '([[0, 1], [1, 0]])', True, 'import numpy as np\n'), ((272, 24, 272, 37), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(272, 33, 272, 36): 'X90'}, {}), '(X90)', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((274, 25, 274, 51), 'qiskit.quantum_info.operators.operator.Operator', 'Operator', ({(274, 34, 274, 50): '[[1, 0], [0, 0]]'}, {}), '([[1, 0], [0, 0]])', False, 'from qiskit.quantum_info.operators.operator import Operator\n'), ((309, 35, 309, 44), 'numpy.eye', 'np.eye', ({(309, 42, 309, 43): '(2)'}, {}), '(2)', True, 'import numpy as np\n'), ((311, 48, 311, 57), 'numpy.eye', 'np.eye', ({(311, 55, 311, 56): '(2)'}, {}), '(2)', True, 'import numpy as np\n'), ((378, 45, 378, 54), 'numpy.eye', 'np.eye', ({(378, 52, 378, 53): '2'}, {}), '(2)', True, 'import numpy as np\n'), ((387, 56, 387, 65), 'numpy.eye', 'np.eye', ({(387, 63, 387, 64): '2'}, {}), '(2)', True, 'import numpy as np\n'), ((421, 50, 421, 59), 'numpy.eye', 'np.eye', ({(421, 57, 421, 58): '2'}, {}), '(2)', True, 'import numpy as np\n'), ((430, 61, 430, 70), 'numpy.eye', 'np.eye', ({(430, 68, 430, 69): '2'}, {}), '(2)', True, 'import numpy as np\n'), ((461, 50, 461, 59), 'numpy.eye', 'np.eye', ({(461, 57, 461, 58): '2'}, {}), '(2)', True, 'import numpy as np\n'), ((469, 61, 469, 70), 'numpy.eye', 'np.eye', ({(469, 68, 469, 69): '2'}, {}), '(2)', True, 'import numpy as np\n'), ((478, 42, 478, 68), 'numpy.array', 'np.array', ({(478, 51, 478, 67): '[[0, 1], [1, 0]]'}, {}), '([[0, 1], [1, 0]])', True, 'import numpy as np\n'), ((481, 52, 481, 61), 'numpy.eye', 'np.eye', ({(481, 59, 481, 60): '(2)'}, {}), '(2)', True, 'import numpy as np\n')]
jack-skerrett-bluefruit/Python-ScreenPlay
pages/feature_modal.py
045486bdf441fa3a7a6cde59e7b7e12a7d53fbed
from selenium.webdriver.common.by import By class feature_modal: title_textbox = (By.ID, "feature-name") description_textbox = (By.ID, "description") save_button = (By.XPATH, "/html/body/app/div[3]/div[2]/div/div/div/button[1]")
[]
CrookedY/AirPollutionBot
liststations.py
ce79037d6dddd1f297fce04a694b49f8b9a1bfad
from urllib2 import Request, urlopen, URLError import json request = Request('https://uk-air.defra.gov.uk/sos-ukair/api/v1/stations/') try: response = urlopen(request) data = response.read() except URLError, e: print 'error:', e stations= json.loads (data) #extract out station 2 stations2 = stations [7] properties = stations2[u'properties'] #extract ID so can be use in link ID = properties[u'id'] #print ID url = ('https://uk-air.defra.gov.uk/sos-ukair/api/v1/stations/'+str(ID)) request2 = Request (url) try: response = urlopen(request2) data2 = response.read() except URLError, e: print 'error:', e #contains station properties data. Need to get to timecourse ID station_prop = data2 station_prop_json= json.loads (station_prop) #ID is a key in dictionary so need to extract as a key a= station_prop_json[u'properties'][u'timeseries'].keys() i=a[0] url2 =('https://uk-air.defra.gov.uk/sos-ukair/api/v1/timeseries/'+str(i) +'/getData') request3 = Request(url2) try: response = urlopen(request3) data3 = response.read() except URLError, e: print 'error:', e print data3
[]
kmiller96/PyFinancials
pyfinancials/engine.py
73a89b0fd3a3d501b8f8c770f73473e9a2d18fdf
def hello_world(): """Tests the import.""" return "Hello world!"
[]
mertyildiran/echo
core/migrations/0002_auto_20180702_1913.py
805db64e3fa9d31fd3c24390fac2e9bf7c91ad57
# Generated by Django 2.0.6 on 2018-07-02 19:13 import core.models from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0001_initial'), ] operations = [ migrations.RenameField( model_name='echo', old_name='owner', new_name='user', ), migrations.AlterField( model_name='echo', name='audio', field=models.FileField(upload_to=core.models.echo_directory), ), migrations.AlterField( model_name='profile', name='picture', field=models.FileField(blank=True, null=True, upload_to=core.models.profile_directory), ), ]
[((14, 8, 18, 9), 'django.db.migrations.RenameField', 'migrations.RenameField', (), '', False, 'from django.db import migrations, models\n'), ((22, 18, 22, 72), 'django.db.models.FileField', 'models.FileField', (), '', False, 'from django.db import migrations, models\n'), ((27, 18, 27, 98), 'django.db.models.FileField', 'models.FileField', (), '', False, 'from django.db import migrations, models\n')]
ajdavis/aiohttp
tests/test_helpers.py
d5138978f3e82aa82a2f003b00d38112c58a40c1
import pytest from unittest import mock from aiohttp import helpers import datetime def test_parse_mimetype_1(): assert helpers.parse_mimetype('') == ('', '', '', {}) def test_parse_mimetype_2(): assert helpers.parse_mimetype('*') == ('*', '*', '', {}) def test_parse_mimetype_3(): assert (helpers.parse_mimetype('application/json') == ('application', 'json', '', {})) def test_parse_mimetype_4(): assert ( helpers.parse_mimetype('application/json; charset=utf-8') == ('application', 'json', '', {'charset': 'utf-8'})) def test_parse_mimetype_5(): assert ( helpers.parse_mimetype('''application/json; charset=utf-8;''') == ('application', 'json', '', {'charset': 'utf-8'})) def test_parse_mimetype_6(): assert( helpers.parse_mimetype('ApPlIcAtIoN/JSON;ChaRseT="UTF-8"') == ('application', 'json', '', {'charset': 'UTF-8'})) def test_parse_mimetype_7(): assert ( helpers.parse_mimetype('application/rss+xml') == ('application', 'rss', 'xml', {})) def test_parse_mimetype_8(): assert ( helpers.parse_mimetype('text/plain;base64') == ('text', 'plain', '', {'base64': ''})) def test_basic_auth1(): # missing password here with pytest.raises(ValueError): helpers.BasicAuth(None) def test_basic_auth2(): with pytest.raises(ValueError): helpers.BasicAuth('nkim', None) def test_basic_auth3(): auth = helpers.BasicAuth('nkim') assert auth.login == 'nkim' assert auth.password == '' def test_basic_auth4(): auth = helpers.BasicAuth('nkim', 'pwd') assert auth.login == 'nkim' assert auth.password == 'pwd' assert auth.encode() == 'Basic bmtpbTpwd2Q=' def test_invalid_formdata_params(): with pytest.raises(TypeError): helpers.FormData('asdasf') def test_invalid_formdata_params2(): with pytest.raises(TypeError): helpers.FormData('as') # 2-char str is not allowed def test_invalid_formdata_content_type(): form = helpers.FormData() invalid_vals = [0, 0.1, {}, [], b'foo'] for invalid_val in invalid_vals: with pytest.raises(TypeError): form.add_field('foo', 'bar', content_type=invalid_val) def test_invalid_formdata_filename(): form = helpers.FormData() invalid_vals = [0, 0.1, {}, [], b'foo'] for invalid_val in invalid_vals: with pytest.raises(TypeError): form.add_field('foo', 'bar', filename=invalid_val) def test_invalid_formdata_content_transfer_encoding(): form = helpers.FormData() invalid_vals = [0, 0.1, {}, [], b'foo'] for invalid_val in invalid_vals: with pytest.raises(TypeError): form.add_field('foo', 'bar', content_transfer_encoding=invalid_val) def test_access_logger_format(): log_format = '%T {%{SPAM}e} "%{ETag}o" %X {X} %%P' mock_logger = mock.Mock() access_logger = helpers.AccessLogger(mock_logger, log_format) expected = '%s {%s} "%s" %%X {X} %%%s' assert expected == access_logger._log_format @mock.patch("aiohttp.helpers.datetime") @mock.patch("os.getpid") def test_access_logger_atoms(mock_getpid, mock_datetime): utcnow = datetime.datetime(1843, 1, 1, 0, 0) mock_datetime.datetime.utcnow.return_value = utcnow mock_getpid.return_value = 42 log_format = '%a %t %P %l %u %r %s %b %O %T %Tf %D' mock_logger = mock.Mock() access_logger = helpers.AccessLogger(mock_logger, log_format) message = mock.Mock(headers={}, method="GET", path="/path", version=(1, 1)) environ = {} response = mock.Mock(headers={}, output_length=123, body_length=42, status=200) transport = mock.Mock() transport.get_extra_info.return_value = ("127.0.0.2", 1234) access_logger.log(message, environ, response, transport, 3.1415926) assert not mock_logger.exception.called expected = ('127.0.0.2 [01/Jan/1843:00:00:00 +0000] <42> - - ' 'GET /path HTTP/1.1 200 42 123 3 3.141593 3141593') mock_logger.info.assert_called_with(expected) def test_access_logger_dicts(): log_format = '%{User-Agent}i %{Content-Length}o %{SPAM}e %{None}i' mock_logger = mock.Mock() access_logger = helpers.AccessLogger(mock_logger, log_format) message = mock.Mock(headers={"USER-AGENT": "Mock/1.0"}, version=(1, 1)) environ = {"SPAM": "EGGS"} response = mock.Mock(headers={"CONTENT-LENGTH": 123}) transport = mock.Mock() transport.get_extra_info.return_value = ("127.0.0.2", 1234) access_logger.log(message, environ, response, transport, 0.0) assert not mock_logger.error.called expected = 'Mock/1.0 123 EGGS -' mock_logger.info.assert_called_with(expected) def test_logger_no_message_and_environ(): mock_logger = mock.Mock() mock_transport = mock.Mock() mock_transport.get_extra_info.return_value = ("127.0.0.3", 0) access_logger = helpers.AccessLogger(mock_logger, "%r %{FOOBAR}e") access_logger.log(None, None, None, mock_transport, 0.0) mock_logger.info.assert_called_with("- -") def test_reify(): class A: @helpers.reify def prop(self): return 1 a = A() assert 1 == a.prop def test_reify_class(): class A: @helpers.reify def prop(self): """Docstring.""" return 1 assert isinstance(A.prop, helpers.reify) assert 'Docstring.' == A.prop.__doc__ def test_reify_assignment(): class A: @helpers.reify def prop(self): return 1 a = A() with pytest.raises(AttributeError): a.prop = 123 def test_requote_uri_with_unquoted_percents(): # Ensure we handle unquoted percent signs in redirects. bad_uri = 'http://example.com/fiz?buz=%ppicture' quoted = 'http://example.com/fiz?buz=%25ppicture' assert quoted == helpers.requote_uri(bad_uri) def test_requote_uri_properly_requotes(): # Ensure requoting doesn't break expectations. quoted = 'http://example.com/fiz?buz=%25ppicture' assert quoted == helpers.requote_uri(quoted)
[((118, 1, 118, 39), 'unittest.mock.patch', 'mock.patch', ({(118, 12, 118, 38): '"""aiohttp.helpers.datetime"""'}, {}), "('aiohttp.helpers.datetime')", False, 'from unittest import mock\n'), ((119, 1, 119, 24), 'unittest.mock.patch', 'mock.patch', ({(119, 12, 119, 23): '"""os.getpid"""'}, {}), "('os.getpid')", False, 'from unittest import mock\n'), ((62, 11, 62, 36), 'aiohttp.helpers.BasicAuth', 'helpers.BasicAuth', ({(62, 29, 62, 35): '"""nkim"""'}, {}), "('nkim')", False, 'from aiohttp import helpers\n'), ((68, 11, 68, 43), 'aiohttp.helpers.BasicAuth', 'helpers.BasicAuth', ({(68, 29, 68, 35): '"""nkim"""', (68, 37, 68, 42): '"""pwd"""'}, {}), "('nkim', 'pwd')", False, 'from aiohttp import helpers\n'), ((85, 11, 85, 29), 'aiohttp.helpers.FormData', 'helpers.FormData', ({}, {}), '()', False, 'from aiohttp import helpers\n'), ((93, 11, 93, 29), 'aiohttp.helpers.FormData', 'helpers.FormData', ({}, {}), '()', False, 'from aiohttp import helpers\n'), ((101, 11, 101, 29), 'aiohttp.helpers.FormData', 'helpers.FormData', ({}, {}), '()', False, 'from aiohttp import helpers\n'), ((112, 18, 112, 29), 'unittest.mock.Mock', 'mock.Mock', ({}, {}), '()', False, 'from unittest import mock\n'), ((113, 20, 113, 65), 'aiohttp.helpers.AccessLogger', 'helpers.AccessLogger', ({(113, 41, 113, 52): 'mock_logger', (113, 54, 113, 64): 'log_format'}, {}), '(mock_logger, log_format)', False, 'from aiohttp import helpers\n'), ((121, 13, 121, 48), 'datetime.datetime', 'datetime.datetime', ({(121, 31, 121, 35): '1843', (121, 37, 121, 38): '1', (121, 40, 121, 41): '1', (121, 43, 121, 44): '0', (121, 46, 121, 47): '0'}, {}), '(1843, 1, 1, 0, 0)', False, 'import datetime\n'), ((125, 18, 125, 29), 'unittest.mock.Mock', 'mock.Mock', ({}, {}), '()', False, 'from unittest import mock\n'), ((126, 20, 126, 65), 'aiohttp.helpers.AccessLogger', 'helpers.AccessLogger', ({(126, 41, 126, 52): 'mock_logger', (126, 54, 126, 64): 'log_format'}, {}), '(mock_logger, log_format)', False, 'from aiohttp import helpers\n'), ((127, 14, 127, 79), 'unittest.mock.Mock', 'mock.Mock', (), '', False, 'from unittest import mock\n'), ((129, 15, 130, 52), 'unittest.mock.Mock', 'mock.Mock', (), '', False, 'from unittest import mock\n'), ((131, 16, 131, 27), 'unittest.mock.Mock', 'mock.Mock', ({}, {}), '()', False, 'from unittest import mock\n'), ((142, 18, 142, 29), 'unittest.mock.Mock', 'mock.Mock', ({}, {}), '()', False, 'from unittest import mock\n'), ((143, 20, 143, 65), 'aiohttp.helpers.AccessLogger', 'helpers.AccessLogger', ({(143, 41, 143, 52): 'mock_logger', (143, 54, 143, 64): 'log_format'}, {}), '(mock_logger, log_format)', False, 'from aiohttp import helpers\n'), ((144, 14, 144, 75), 'unittest.mock.Mock', 'mock.Mock', (), '', False, 'from unittest import mock\n'), ((146, 15, 146, 57), 'unittest.mock.Mock', 'mock.Mock', (), '', False, 'from unittest import mock\n'), ((147, 16, 147, 27), 'unittest.mock.Mock', 'mock.Mock', ({}, {}), '()', False, 'from unittest import mock\n'), ((156, 18, 156, 29), 'unittest.mock.Mock', 'mock.Mock', ({}, {}), '()', False, 'from unittest import mock\n'), ((157, 21, 157, 32), 'unittest.mock.Mock', 'mock.Mock', ({}, {}), '()', False, 'from unittest import mock\n'), ((159, 20, 159, 70), 'aiohttp.helpers.AccessLogger', 'helpers.AccessLogger', ({(159, 41, 159, 52): 'mock_logger', (159, 54, 159, 69): '"""%r %{FOOBAR}e"""'}, {}), "(mock_logger, '%r %{FOOBAR}e')", False, 'from aiohttp import helpers\n'), ((8, 11, 8, 37), 'aiohttp.helpers.parse_mimetype', 'helpers.parse_mimetype', ({(8, 34, 8, 36): '""""""'}, {}), "('')", False, 'from aiohttp import helpers\n'), ((12, 11, 12, 38), 'aiohttp.helpers.parse_mimetype', 'helpers.parse_mimetype', ({(12, 34, 12, 37): '"""*"""'}, {}), "('*')", False, 'from aiohttp import helpers\n'), ((16, 12, 16, 54), 'aiohttp.helpers.parse_mimetype', 'helpers.parse_mimetype', ({(16, 35, 16, 53): '"""application/json"""'}, {}), "('application/json')", False, 'from aiohttp import helpers\n'), ((22, 8, 22, 66), 'aiohttp.helpers.parse_mimetype', 'helpers.parse_mimetype', ({(22, 31, 22, 65): '"""application/json; charset=utf-8"""'}, {}), "('application/json; charset=utf-8')", False, 'from aiohttp import helpers\n'), ((28, 8, 28, 70), 'aiohttp.helpers.parse_mimetype', 'helpers.parse_mimetype', ({(28, 31, 28, 69): '"""application/json; charset=utf-8;"""'}, {}), "('application/json; charset=utf-8;')", False, 'from aiohttp import helpers\n'), ((34, 8, 34, 66), 'aiohttp.helpers.parse_mimetype', 'helpers.parse_mimetype', ({(34, 31, 34, 65): '"""ApPlIcAtIoN/JSON;ChaRseT="UTF-8\\""""'}, {}), '(\'ApPlIcAtIoN/JSON;ChaRseT="UTF-8"\')', False, 'from aiohttp import helpers\n'), ((40, 8, 40, 53), 'aiohttp.helpers.parse_mimetype', 'helpers.parse_mimetype', ({(40, 31, 40, 52): '"""application/rss+xml"""'}, {}), "('application/rss+xml')", False, 'from aiohttp import helpers\n'), ((46, 8, 46, 51), 'aiohttp.helpers.parse_mimetype', 'helpers.parse_mimetype', ({(46, 31, 46, 50): '"""text/plain;base64"""'}, {}), "('text/plain;base64')", False, 'from aiohttp import helpers\n'), ((52, 9, 52, 34), 'pytest.raises', 'pytest.raises', ({(52, 23, 52, 33): 'ValueError'}, {}), '(ValueError)', False, 'import pytest\n'), ((53, 8, 53, 31), 'aiohttp.helpers.BasicAuth', 'helpers.BasicAuth', ({(53, 26, 53, 30): 'None'}, {}), '(None)', False, 'from aiohttp import helpers\n'), ((57, 9, 57, 34), 'pytest.raises', 'pytest.raises', ({(57, 23, 57, 33): 'ValueError'}, {}), '(ValueError)', False, 'import pytest\n'), ((58, 8, 58, 39), 'aiohttp.helpers.BasicAuth', 'helpers.BasicAuth', ({(58, 26, 58, 32): '"""nkim"""', (58, 34, 58, 38): 'None'}, {}), "('nkim', None)", False, 'from aiohttp import helpers\n'), ((75, 9, 75, 33), 'pytest.raises', 'pytest.raises', ({(75, 23, 75, 32): 'TypeError'}, {}), '(TypeError)', False, 'import pytest\n'), ((76, 8, 76, 34), 'aiohttp.helpers.FormData', 'helpers.FormData', ({(76, 25, 76, 33): '"""asdasf"""'}, {}), "('asdasf')", False, 'from aiohttp import helpers\n'), ((80, 9, 80, 33), 'pytest.raises', 'pytest.raises', ({(80, 23, 80, 32): 'TypeError'}, {}), '(TypeError)', False, 'import pytest\n'), ((81, 8, 81, 30), 'aiohttp.helpers.FormData', 'helpers.FormData', ({(81, 25, 81, 29): '"""as"""'}, {}), "('as')", False, 'from aiohttp import helpers\n'), ((193, 9, 193, 38), 'pytest.raises', 'pytest.raises', ({(193, 23, 193, 37): 'AttributeError'}, {}), '(AttributeError)', False, 'import pytest\n'), ((201, 21, 201, 49), 'aiohttp.helpers.requote_uri', 'helpers.requote_uri', ({(201, 41, 201, 48): 'bad_uri'}, {}), '(bad_uri)', False, 'from aiohttp import helpers\n'), ((207, 21, 207, 48), 'aiohttp.helpers.requote_uri', 'helpers.requote_uri', ({(207, 41, 207, 47): 'quoted'}, {}), '(quoted)', False, 'from aiohttp import helpers\n'), ((88, 13, 88, 37), 'pytest.raises', 'pytest.raises', ({(88, 27, 88, 36): 'TypeError'}, {}), '(TypeError)', False, 'import pytest\n'), ((96, 13, 96, 37), 'pytest.raises', 'pytest.raises', ({(96, 27, 96, 36): 'TypeError'}, {}), '(TypeError)', False, 'import pytest\n'), ((104, 13, 104, 37), 'pytest.raises', 'pytest.raises', ({(104, 27, 104, 36): 'TypeError'}, {}), '(TypeError)', False, 'import pytest\n')]
truls/faas-profiler
GenConfigs.py
d54ca0d9926f38c693f616ba4d08414aea823f51
from os.path import join FAAS_ROOT="/lhome/trulsas/faas-profiler" WORKLOAD_SPECS=join(FAAS_ROOT, "specs", "workloads") #FAAS_ROOT="/home/truls/uni/phd/faas-profiler" WSK_PATH = "wsk" OPENWHISK_PATH = "/lhome/trulsas/openwhisk" #: Location of output data DATA_DIR = join(FAAS_ROOT, "..", "profiler_results") SYSTEM_CPU_SET = "0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30"
[((4, 15, 4, 52), 'os.path.join', 'join', ({(4, 20, 4, 29): 'FAAS_ROOT', (4, 31, 4, 38): '"""specs"""', (4, 40, 4, 51): '"""workloads"""'}, {}), "(FAAS_ROOT, 'specs', 'workloads')", False, 'from os.path import join\n'), ((10, 11, 10, 52), 'os.path.join', 'join', ({(10, 16, 10, 25): 'FAAS_ROOT', (10, 27, 10, 31): '""".."""', (10, 33, 10, 51): '"""profiler_results"""'}, {}), "(FAAS_ROOT, '..', 'profiler_results')", False, 'from os.path import join\n')]
LuisPereda/Learning_Python
Chapter09/calc.py
e89e69346c5584be10d991010f39b59329793ba5
def sum1(a,b): try: c = a+b return c except : print "Error in sum1 function" def divide(a,b): try: c = a/b return c except : print "Error in divide function" print divide(10,0) print sum1(10,0)
[]