repo_name
stringlengths
7
94
repo_path
stringlengths
4
237
repo_head_hexsha
stringlengths
40
40
content
stringlengths
10
680k
apis
stringlengths
2
680k
kevinxucs/pyston
minibenchmarks/go.py
bdb87c1706ac74a0d15d9bc2bae53798678a5f14
# from pypy-benchmarks/own/chaos.py, with some minor modifications # (more output, took out the benchmark harness) # import random, math, sys, time SIZE = 9 GAMES = 200 KOMI = 7.5 EMPTY, WHITE, BLACK = 0, 1, 2 SHOW = {EMPTY: '.', WHITE: 'o', BLACK: 'x'} PASS = -1 MAXMOVES = SIZE*SIZE*3 TIMESTAMP = 0 MOVES = 0 def to_pos(x,y): return y * SIZE + x def to_xy(pos): y, x = divmod(pos, SIZE) return x, y class Square: def __init__(self, board, pos): self.board = board self.pos = pos self.timestamp = TIMESTAMP self.removestamp = TIMESTAMP self.zobrist_strings = [random.randrange(sys.maxint) for i in range(3)] def set_neighbours(self): x, y = self.pos % SIZE, self.pos / SIZE; self.neighbours = [] for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]: newx, newy = x + dx, y + dy if 0 <= newx < SIZE and 0 <= newy < SIZE: self.neighbours.append(self.board.squares[to_pos(newx, newy)]) def move(self, color): global TIMESTAMP, MOVES TIMESTAMP += 1 MOVES += 1 self.board.zobrist.update(self, color) self.color = color self.reference = self self.ledges = 0 self.used = True for neighbour in self.neighbours: neighcolor = neighbour.color if neighcolor == EMPTY: self.ledges += 1 else: neighbour_ref = neighbour.find(update=True) if neighcolor == color: if neighbour_ref.reference.pos != self.pos: self.ledges += neighbour_ref.ledges neighbour_ref.reference = self self.ledges -= 1 else: neighbour_ref.ledges -= 1 if neighbour_ref.ledges == 0: neighbour.remove(neighbour_ref) self.board.zobrist.add() def remove(self, reference, update=True): self.board.zobrist.update(self, EMPTY) self.removestamp = TIMESTAMP if update: self.color = EMPTY self.board.emptyset.add(self.pos) # if color == BLACK: # self.board.black_dead += 1 # else: # self.board.white_dead += 1 for neighbour in self.neighbours: if neighbour.color != EMPTY and neighbour.removestamp != TIMESTAMP: neighbour_ref = neighbour.find(update) if neighbour_ref.pos == reference.pos: neighbour.remove(reference, update) else: if update: neighbour_ref.ledges += 1 def find(self, update=False): reference = self.reference if reference.pos != self.pos: reference = reference.find(update) if update: self.reference = reference return reference def __repr__(self): return repr(to_xy(self.pos)) class EmptySet: def __init__(self, board): self.board = board self.empties = range(SIZE*SIZE) self.empty_pos = range(SIZE*SIZE) def random_choice(self): choices = len(self.empties) while choices: i = int(random.random()*choices) pos = self.empties[i] if self.board.useful(pos): return pos choices -= 1 self.set(i, self.empties[choices]) self.set(choices, pos) return PASS def add(self, pos): self.empty_pos[pos] = len(self.empties) self.empties.append(pos) def remove(self, pos): self.set(self.empty_pos[pos], self.empties[len(self.empties)-1]) self.empties.pop() def set(self, i, pos): self.empties[i] = pos self.empty_pos[pos] = i class ZobristHash: def __init__(self, board): self.board = board self.hash_set = set() self.hash = 0 for square in self.board.squares: self.hash ^= square.zobrist_strings[EMPTY] self.hash_set.clear() self.hash_set.add(self.hash) def update(self, square, color): self.hash ^= square.zobrist_strings[square.color] self.hash ^= square.zobrist_strings[color] def add(self): self.hash_set.add(self.hash) def dupe(self): return self.hash in self.hash_set class Board: def __init__(self): self.squares = [Square(self, pos) for pos in range(SIZE*SIZE)] for square in self.squares: square.set_neighbours() self.reset() def reset(self): for square in self.squares: square.color = EMPTY square.used = False self.emptyset = EmptySet(self) self.zobrist = ZobristHash(self) self.color = BLACK self.finished = False self.lastmove = -2 self.history = [] self.white_dead = 0 self.black_dead = 0 def move(self, pos): square = self.squares[pos] if pos != PASS: square.move(self.color) self.emptyset.remove(square.pos) elif self.lastmove == PASS: self.finished = True if self.color == BLACK: self.color = WHITE else: self.color = BLACK self.lastmove = pos self.history.append(pos) def random_move(self): return self.emptyset.random_choice() def useful_fast(self, square): if not square.used: for neighbour in square.neighbours: if neighbour.color == EMPTY: return True return False def useful(self, pos): global TIMESTAMP TIMESTAMP += 1 square = self.squares[pos] if self.useful_fast(square): return True old_hash = self.zobrist.hash self.zobrist.update(square, self.color) empties = opps = weak_opps = neighs = weak_neighs = 0 for neighbour in square.neighbours: neighcolor = neighbour.color if neighcolor == EMPTY: empties += 1 continue neighbour_ref = neighbour.find() if neighbour_ref.timestamp != TIMESTAMP: if neighcolor == self.color: neighs += 1 else: opps += 1 neighbour_ref.timestamp = TIMESTAMP neighbour_ref.temp_ledges = neighbour_ref.ledges neighbour_ref.temp_ledges -= 1 if neighbour_ref.temp_ledges == 0: if neighcolor == self.color: weak_neighs += 1 else: weak_opps += 1 neighbour_ref.remove(neighbour_ref, update=False) dupe = self.zobrist.dupe() self.zobrist.hash = old_hash strong_neighs = neighs-weak_neighs strong_opps = opps-weak_opps return not dupe and \ (empties or weak_opps or (strong_neighs and (strong_opps or weak_neighs))) def useful_moves(self): return [pos for pos in self.emptyset.empties if self.useful(pos)] def replay(self, history): for pos in history: self.move(pos) def score(self, color): if color == WHITE: count = KOMI + self.black_dead else: count = self.white_dead for square in self.squares: squarecolor = square.color if squarecolor == color: count += 1 elif squarecolor == EMPTY: surround = 0 for neighbour in square.neighbours: if neighbour.color == color: surround += 1 if surround == len(square.neighbours): count += 1 return count def check(self): for square in self.squares: if square.color == EMPTY: continue members1 = set([square]) changed = True while changed: changed = False for member in members1.copy(): for neighbour in member.neighbours: if neighbour.color == square.color and neighbour not in members1: changed = True members1.add(neighbour) ledges1 = 0 for member in members1: for neighbour in member.neighbours: if neighbour.color == EMPTY: ledges1 += 1 root = square.find() #print 'members1', square, root, members1 #print 'ledges1', square, ledges1 members2 = set() for square2 in self.squares: if square2.color != EMPTY and square2.find() == root: members2.add(square2) ledges2 = root.ledges #print 'members2', square, root, members1 #print 'ledges2', square, ledges2 assert members1 == members2 assert ledges1 == ledges2, ('ledges differ at %r: %d %d' % (square, ledges1, ledges2)) empties1 = set(self.emptyset.empties) empties2 = set() for square in self.squares: if square.color == EMPTY: empties2.add(square.pos) def __repr__(self): result = [] for y in range(SIZE): start = to_pos(0, y) result.append(''.join([SHOW[square.color]+' ' for square in self.squares[start:start+SIZE]])) return '\n'.join(result) class UCTNode: def __init__(self): self.bestchild = None self.pos = -1 self.wins = 0 self.losses = 0 self.pos_child = [None for x in range(SIZE*SIZE)] self.parent = None def play(self, board): """ uct tree search """ color = board.color node = self path = [node] while True: pos = node.select(board) if pos == PASS: break board.move(pos) child = node.pos_child[pos] if not child: child = node.pos_child[pos] = UCTNode() child.unexplored = board.useful_moves() child.pos = pos child.parent = node path.append(child) break path.append(child) node = child self.random_playout(board) self.update_path(board, color, path) def select(self, board): """ select move; unexplored children first, then according to uct value """ if self.unexplored: i = random.randrange(len(self.unexplored)) pos = self.unexplored[i] self.unexplored[i] = self.unexplored[len(self.unexplored)-1] self.unexplored.pop() return pos elif self.bestchild: return self.bestchild.pos else: return PASS def random_playout(self, board): """ random play until both players pass """ for x in range(MAXMOVES): # XXX while not self.finished? if board.finished: break board.move(board.random_move()) def update_path(self, board, color, path): """ update win/loss count along path """ wins = board.score(BLACK) >= board.score(WHITE) for node in path: if color == BLACK: color = WHITE else: color = BLACK if wins == (color == BLACK): node.wins += 1 else: node.losses += 1 if node.parent: node.parent.bestchild = node.parent.best_child() def score(self): winrate = self.wins/float(self.wins+self.losses) parentvisits = self.parent.wins+self.parent.losses if not parentvisits: return winrate nodevisits = self.wins+self.losses return winrate + math.sqrt((math.log(parentvisits))/(5*nodevisits)) def best_child(self): maxscore = -1 maxchild = None for child in self.pos_child: if child and child.score() > maxscore: maxchild = child maxscore = child.score() return maxchild def best_visited(self): maxvisits = -1 maxchild = None for child in self.pos_child: # if child: # print to_xy(child.pos), child.wins, child.losses, child.score() if child and (child.wins+child.losses) > maxvisits: maxvisits, maxchild = (child.wins+child.losses), child return maxchild def user_move(board): while True: text = raw_input('?').strip() if text == 'p': return PASS if text == 'q': raise EOFError try: x, y = [int(i) for i in text.split()] except ValueError: continue if not (0 <= x < SIZE and 0 <= y < SIZE): continue pos = to_pos(x, y) if board.useful(pos): return pos def computer_move(board): global MOVES pos = board.random_move() if pos == PASS: return PASS tree = UCTNode() tree.unexplored = board.useful_moves() nboard = Board() for game in range(GAMES): node = tree nboard.reset() nboard.replay(board.history) node.play(nboard) # print 'moves', MOVES return tree.best_visited().pos def versus_cpu(): print "versus_cpu" random.seed(1) board = Board() pos = computer_move(board) def main(n): times = [] for i in range(5): versus_cpu() # warmup for i in range(n): t1 = time.time() versus_cpu() t2 = time.time() times.append(t2 - t1) return times if __name__ == "__main__": main(100)
[]
BrianPugh/circuitpython
tools/gen_usb_descriptor.py
f0bb9635bf311013e7b1ff69d1a0542575cf9d0a
# SPDX-FileCopyrightText: 2014 MicroPython & CircuitPython contributors (https://github.com/adafruit/circuitpython/graphs/contributors) # # SPDX-License-Identifier: MIT import argparse import os import sys sys.path.append("../../tools/usb_descriptor") from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util import hid_report_descriptors DEFAULT_INTERFACE_NAME = 'CircuitPython' ALL_DEVICES='CDC,MSC,AUDIO,HID' ALL_DEVICES_SET=frozenset(ALL_DEVICES.split(',')) DEFAULT_DEVICES='CDC,MSC,AUDIO,HID' ALL_HID_DEVICES='KEYBOARD,MOUSE,CONSUMER,SYS_CONTROL,GAMEPAD,DIGITIZER,XAC_COMPATIBLE_GAMEPAD,RAW' ALL_HID_DEVICES_SET=frozenset(ALL_HID_DEVICES.split(',')) # Digitizer works on Linux but conflicts with mouse, so omit it. DEFAULT_HID_DEVICES='KEYBOARD,MOUSE,CONSUMER,GAMEPAD' parser = argparse.ArgumentParser(description='Generate USB descriptors.') parser.add_argument('--highspeed', default=False, action='store_true', help='descriptor for highspeed device') parser.add_argument('--manufacturer', type=str, help='manufacturer of the device') parser.add_argument('--product', type=str, help='product name of the device') parser.add_argument('--vid', type=lambda x: int(x, 16), help='vendor id') parser.add_argument('--pid', type=lambda x: int(x, 16), help='product id') parser.add_argument('--serial_number_length', type=int, default=32, help='length needed for the serial number in digits') parser.add_argument('--devices', type=lambda l: tuple(l.split(',')), default=DEFAULT_DEVICES, help='devices to include in descriptor (AUDIO includes MIDI support)') parser.add_argument('--hid_devices', type=lambda l: tuple(l.split(',')), default=DEFAULT_HID_DEVICES, help='HID devices to include in HID report descriptor') parser.add_argument('--interface_name', type=str, help='The name/prefix to use in the interface descriptions', default=DEFAULT_INTERFACE_NAME) parser.add_argument('--no-renumber_endpoints', dest='renumber_endpoints', action='store_false', help='use to not renumber endpoint') parser.add_argument('--cdc_ep_num_notification', type=int, default=0, help='endpoint number of CDC NOTIFICATION') parser.add_argument('--cdc_ep_num_data_out', type=int, default=0, help='endpoint number of CDC DATA OUT') parser.add_argument('--cdc_ep_num_data_in', type=int, default=0, help='endpoint number of CDC DATA IN') parser.add_argument('--msc_ep_num_out', type=int, default=0, help='endpoint number of MSC OUT') parser.add_argument('--msc_ep_num_in', type=int, default=0, help='endpoint number of MSC IN') parser.add_argument('--hid_ep_num_out', type=int, default=0, help='endpoint number of HID OUT') parser.add_argument('--hid_ep_num_in', type=int, default=0, help='endpoint number of HID IN') parser.add_argument('--midi_ep_num_out', type=int, default=0, help='endpoint number of MIDI OUT') parser.add_argument('--midi_ep_num_in', type=int, default=0, help='endpoint number of MIDI IN') parser.add_argument('--output_c_file', type=argparse.FileType('w', encoding='UTF-8'), required=True) parser.add_argument('--output_h_file', type=argparse.FileType('w', encoding='UTF-8'), required=True) args = parser.parse_args() unknown_devices = list(frozenset(args.devices) - ALL_DEVICES_SET) if unknown_devices: raise ValueError("Unknown device(s)", unknown_devices) unknown_hid_devices = list(frozenset(args.hid_devices) - ALL_HID_DEVICES_SET) if unknown_hid_devices: raise ValueError("Unknown HID devices(s)", unknown_hid_devices) if not args.renumber_endpoints: if 'CDC' in args.devices: if args.cdc_ep_num_notification == 0: raise ValueError("CDC notification endpoint number must not be 0") elif args.cdc_ep_num_data_out == 0: raise ValueError("CDC data OUT endpoint number must not be 0") elif args.cdc_ep_num_data_in == 0: raise ValueError("CDC data IN endpoint number must not be 0") if 'MSC' in args.devices: if args.msc_ep_num_out == 0: raise ValueError("MSC endpoint OUT number must not be 0") elif args.msc_ep_num_in == 0: raise ValueError("MSC endpoint IN number must not be 0") if 'HID' in args.devices: if args.args.hid_ep_num_out == 0: raise ValueError("HID endpoint OUT number must not be 0") elif args.hid_ep_num_in == 0: raise ValueError("HID endpoint IN number must not be 0") if 'AUDIO' in args.devices: if args.args.midi_ep_num_out == 0: raise ValueError("MIDI endpoint OUT number must not be 0") elif args.midi_ep_num_in == 0: raise ValueError("MIDI endpoint IN number must not be 0") class StringIndex: """Assign a monotonically increasing index to each unique string. Start with 0.""" string_to_index = {} index_to_variable = {} strings = [] @classmethod def index(cls, string, *, variable_name = None): if string in cls.string_to_index: idx = cls.string_to_index[string] if not cls.index_to_variable[idx]: cls.index_to_variable[idx] = variable_name return idx else: idx = len(cls.strings) cls.string_to_index[string] = idx cls.strings.append(string) cls.index_to_variable[idx] = variable_name return idx @classmethod def strings_in_order(cls): return cls.strings # langid must be the 0th string descriptor LANGID_INDEX = StringIndex.index("\u0409", variable_name="language_id") assert LANGID_INDEX == 0 SERIAL_NUMBER_INDEX = StringIndex.index("S" * args.serial_number_length, variable_name="usb_serial_number") device = standard.DeviceDescriptor( description="top", idVendor=args.vid, idProduct=args.pid, iManufacturer=StringIndex.index(args.manufacturer), iProduct=StringIndex.index(args.product), iSerialNumber=SERIAL_NUMBER_INDEX) # Interface numbers are interface-set local and endpoints are interface local # until util.join_interfaces renumbers them. cdc_union = cdc.Union( description="CDC comm", bMasterInterface=0x00, # Adjust this after interfaces are renumbered. bSlaveInterface_list=[0x01]) # Adjust this after interfaces are renumbered. cdc_call_management = cdc.CallManagement( description="CDC comm", bmCapabilities=0x01, bDataInterface=0x01) # Adjust this after interfaces are renumbered. cdc_comm_interface = standard.InterfaceDescriptor( description="CDC comm", bInterfaceClass=cdc.CDC_CLASS_COMM, # Communications Device Class bInterfaceSubClass=cdc.CDC_SUBCLASS_ACM, # Abstract control model bInterfaceProtocol=cdc.CDC_PROTOCOL_NONE, iInterface=StringIndex.index("{} CDC control".format(args.interface_name)), subdescriptors=[ cdc.Header( description="CDC comm", bcdCDC=0x0110), cdc_call_management, cdc.AbstractControlManagement( description="CDC comm", bmCapabilities=0x02), cdc_union, standard.EndpointDescriptor( description="CDC comm in", bEndpointAddress=args.cdc_ep_num_notification | standard.EndpointDescriptor.DIRECTION_IN, bmAttributes=standard.EndpointDescriptor.TYPE_INTERRUPT, wMaxPacketSize=0x0040, bInterval=0x10) ]) cdc_data_interface = standard.InterfaceDescriptor( description="CDC data", bInterfaceClass=cdc.CDC_CLASS_DATA, iInterface=StringIndex.index("{} CDC data".format(args.interface_name)), subdescriptors=[ standard.EndpointDescriptor( description="CDC data out", bEndpointAddress=args.cdc_ep_num_data_out | standard.EndpointDescriptor.DIRECTION_OUT, bmAttributes=standard.EndpointDescriptor.TYPE_BULK, bInterval=0, wMaxPacketSize=512 if args.highspeed else 64), standard.EndpointDescriptor( description="CDC data in", bEndpointAddress=args.cdc_ep_num_data_in | standard.EndpointDescriptor.DIRECTION_IN, bmAttributes=standard.EndpointDescriptor.TYPE_BULK, bInterval=0, wMaxPacketSize=512 if args.highspeed else 64), ]) cdc_interfaces = [cdc_comm_interface, cdc_data_interface] msc_interfaces = [ standard.InterfaceDescriptor( description="MSC", bInterfaceClass=msc.MSC_CLASS, bInterfaceSubClass=msc.MSC_SUBCLASS_TRANSPARENT, bInterfaceProtocol=msc.MSC_PROTOCOL_BULK, iInterface=StringIndex.index("{} Mass Storage".format(args.interface_name)), subdescriptors=[ standard.EndpointDescriptor( description="MSC in", bEndpointAddress=args.msc_ep_num_in | standard.EndpointDescriptor.DIRECTION_IN, bmAttributes=standard.EndpointDescriptor.TYPE_BULK, bInterval=0, wMaxPacketSize=512 if args.highspeed else 64), standard.EndpointDescriptor( description="MSC out", bEndpointAddress=(args.msc_ep_num_out | standard.EndpointDescriptor.DIRECTION_OUT), bmAttributes=standard.EndpointDescriptor.TYPE_BULK, bInterval=0, wMaxPacketSize=512 if args.highspeed else 64), ] ) ] # When there's only one hid_device, it shouldn't have a report id. # Otherwise, report ids are assigned sequentially: # args.hid_devices[0] has report_id 1 # args.hid_devices[1] has report_id 2 # etc. report_ids = {} if len(args.hid_devices) == 1: name = args.hid_devices[0] combined_hid_report_descriptor = hid.ReportDescriptor( description=name, report_descriptor=bytes(hid_report_descriptors.REPORT_DESCRIPTOR_FUNCTIONS[name](0))) report_ids[name] = 0 else: report_id = 1 concatenated_descriptors = bytearray() for name in args.hid_devices: concatenated_descriptors.extend( bytes(hid_report_descriptors.REPORT_DESCRIPTOR_FUNCTIONS[name](report_id))) report_ids[name] = report_id report_id += 1 combined_hid_report_descriptor = hid.ReportDescriptor( description="MULTIDEVICE", report_descriptor=bytes(concatenated_descriptors)) # ASF4 expects keyboard and generic devices to have both in and out endpoints, # and will fail (possibly silently) if both are not supplied. hid_endpoint_in_descriptor = standard.EndpointDescriptor( description="HID in", bEndpointAddress=args.hid_ep_num_in | standard.EndpointDescriptor.DIRECTION_IN, bmAttributes=standard.EndpointDescriptor.TYPE_INTERRUPT, bInterval=8) hid_endpoint_out_descriptor = standard.EndpointDescriptor( description="HID out", bEndpointAddress=args.hid_ep_num_out | standard.EndpointDescriptor.DIRECTION_OUT, bmAttributes=standard.EndpointDescriptor.TYPE_INTERRUPT, bInterval=8) hid_interfaces = [ standard.InterfaceDescriptor( description="HID Multiple Devices", bInterfaceClass=hid.HID_CLASS, bInterfaceSubClass=hid.HID_SUBCLASS_NOBOOT, bInterfaceProtocol=hid.HID_PROTOCOL_NONE, iInterface=StringIndex.index("{} HID".format(args.interface_name)), subdescriptors=[ hid.HIDDescriptor( description="HID", wDescriptorLength=len(bytes(combined_hid_report_descriptor))), hid_endpoint_in_descriptor, hid_endpoint_out_descriptor, ] ), ] # Audio! # In and out here are relative to CircuitPython # USB OUT -> midi_in_jack_emb -> midi_out_jack_ext -> CircuitPython midi_in_jack_emb = midi.InJackDescriptor( description="MIDI PC -> {}".format(args.interface_name), bJackType=midi.JACK_TYPE_EMBEDDED, iJack=StringIndex.index("{} usb_midi.ports[0]".format(args.interface_name))) midi_out_jack_ext = midi.OutJackDescriptor( description="MIDI data out to user code.", bJackType=midi.JACK_TYPE_EXTERNAL, input_pins=[(midi_in_jack_emb, 1)], iJack=0) # USB IN <- midi_out_jack_emb <- midi_in_jack_ext <- CircuitPython midi_in_jack_ext = midi.InJackDescriptor( description="MIDI data in from user code.", bJackType=midi.JACK_TYPE_EXTERNAL, iJack=0) midi_out_jack_emb = midi.OutJackDescriptor( description="MIDI PC <- {}".format(args.interface_name), bJackType=midi.JACK_TYPE_EMBEDDED, input_pins=[(midi_in_jack_ext, 1)], iJack=StringIndex.index("{} usb_midi.ports[1]".format(args.interface_name))) audio_midi_interface = standard.InterfaceDescriptor( description="Midi goodness", bInterfaceClass=audio.AUDIO_CLASS_DEVICE, bInterfaceSubClass=audio.AUDIO_SUBCLASS_MIDI_STREAMING, bInterfaceProtocol=audio.AUDIO_PROTOCOL_V1, iInterface=StringIndex.index("{} MIDI".format(args.interface_name)), subdescriptors=[ midi.Header( jacks_and_elements=[ midi_in_jack_emb, midi_in_jack_ext, midi_out_jack_emb, midi_out_jack_ext ], ), standard.EndpointDescriptor( description="MIDI data out to {}".format(args.interface_name), bEndpointAddress=args.midi_ep_num_out | standard.EndpointDescriptor.DIRECTION_OUT, bmAttributes=standard.EndpointDescriptor.TYPE_BULK, bInterval=0, wMaxPacketSize=512 if args.highspeed else 64), midi.DataEndpointDescriptor(baAssocJack=[midi_in_jack_emb]), standard.EndpointDescriptor( description="MIDI data in from {}".format(args.interface_name), bEndpointAddress=args.midi_ep_num_in | standard.EndpointDescriptor.DIRECTION_IN, bmAttributes=standard.EndpointDescriptor.TYPE_BULK, bInterval = 0x0, wMaxPacketSize=512 if args.highspeed else 64), midi.DataEndpointDescriptor(baAssocJack=[midi_out_jack_emb]), ]) cs_ac_interface = audio10.AudioControlInterface( description="Empty audio control", audio_streaming_interfaces = [], midi_streaming_interfaces = [ audio_midi_interface ] ) audio_control_interface = standard.InterfaceDescriptor( description="All the audio", bInterfaceClass=audio.AUDIO_CLASS_DEVICE, bInterfaceSubClass=audio.AUDIO_SUBCLASS_CONTROL, bInterfaceProtocol=audio.AUDIO_PROTOCOL_V1, iInterface=StringIndex.index("{} Audio".format(args.interface_name)), subdescriptors=[ cs_ac_interface, ]) # Audio streaming interfaces must occur before MIDI ones. audio_interfaces = [audio_control_interface] + cs_ac_interface.audio_streaming_interfaces + cs_ac_interface.midi_streaming_interfaces interfaces_to_join = [] if 'CDC' in args.devices: interfaces_to_join.append(cdc_interfaces) if 'MSC' in args.devices: interfaces_to_join.append(msc_interfaces) if 'HID' in args.devices: interfaces_to_join.append(hid_interfaces) if 'AUDIO' in args.devices: interfaces_to_join.append(audio_interfaces) # util.join_interfaces() will renumber the endpoints to make them unique across descriptors, # and renumber the interfaces in order. But we still need to fix up certain # interface cross-references. interfaces = util.join_interfaces(interfaces_to_join, renumber_endpoints=args.renumber_endpoints) # Now adjust the CDC interface cross-references. cdc_union.bMasterInterface = cdc_comm_interface.bInterfaceNumber cdc_union.bSlaveInterface_list = [cdc_data_interface.bInterfaceNumber] cdc_call_management.bDataInterface = cdc_data_interface.bInterfaceNumber cdc_iad = standard.InterfaceAssociationDescriptor( description="CDC IAD", bFirstInterface=cdc_comm_interface.bInterfaceNumber, bInterfaceCount=len(cdc_interfaces), bFunctionClass=cdc.CDC_CLASS_COMM, # Communications Device Class bFunctionSubClass=cdc.CDC_SUBCLASS_ACM, # Abstract control model bFunctionProtocol=cdc.CDC_PROTOCOL_NONE) descriptor_list = [] if 'CDC' in args.devices: # Put the CDC IAD just before the CDC interfaces. # There appears to be a bug in the Windows composite USB driver that requests the # HID report descriptor with the wrong interface number if the HID interface is not given # first. However, it still fetches the descriptor anyway. We could reorder the interfaces but # the Windows 7 Adafruit_usbser.inf file thinks CDC is at Interface 0, so we'll leave it # there for backwards compatibility. descriptor_list.append(cdc_iad) descriptor_list.extend(cdc_interfaces) if 'MSC' in args.devices: descriptor_list.extend(msc_interfaces) if 'HID' in args.devices: descriptor_list.extend(hid_interfaces) if 'AUDIO' in args.devices: # Only add the control interface because other audio interfaces are managed by it to ensure the # correct ordering. descriptor_list.append(audio_control_interface) # Finally, build the composite descriptor. configuration = standard.ConfigurationDescriptor( description="Composite configuration", wTotalLength=(standard.ConfigurationDescriptor.bLength + sum([len(bytes(x)) for x in descriptor_list])), bNumInterfaces=len(interfaces)) descriptor_list.insert(0, configuration) string_descriptors = [standard.StringDescriptor(string) for string in StringIndex.strings_in_order()] serial_number_descriptor = string_descriptors[SERIAL_NUMBER_INDEX] c_file = args.output_c_file h_file = args.output_h_file c_file.write("""\ #include <stdint.h> #include "py/objtuple.h" #include "shared-bindings/usb_hid/Device.h" #include "{H_FILE_NAME}" """.format(H_FILE_NAME=h_file.name)) c_file.write("""\ // {DESCRIPTION} : {CLASS} """.format(DESCRIPTION=device.description, CLASS=device.__class__)) c_file.write("""\ const uint8_t usb_desc_dev[] = { """) for b in bytes(device): c_file.write("0x{:02x}, ".format(b)) c_file.write("""\ }; """) c_file.write("""\ const uint8_t usb_desc_cfg[] = { """) # Write out all the regular descriptors as one long array (that's how ASF4 does it). descriptor_length = 0 for descriptor in descriptor_list: c_file.write("""\ // {DESCRIPTION} : {CLASS} """.format(DESCRIPTION=descriptor.description, CLASS=descriptor.__class__)) b = bytes(descriptor) notes = descriptor.notes() i = 0 # This prints each subdescriptor on a separate line. n = 0 while i < len(b): length = b[i] for j in range(length): c_file.write("0x{:02x}, ".format(b[i + j])) c_file.write("// " + notes[n]) n += 1 c_file.write("\n") i += length descriptor_length += len(b) c_file.write("""\ }; """) pointers_to_strings = [] for idx, descriptor in enumerate(string_descriptors): c_file.write("""\ // {DESCRIPTION} : {CLASS} """.format(DESCRIPTION=descriptor.description, CLASS=descriptor.__class__)) b = bytes(descriptor) notes = descriptor.notes() i = 0 # This prints each subdescriptor on a separate line. variable_name = StringIndex.index_to_variable[idx] if not variable_name: variable_name = "string_descriptor{}".format(idx) const = "const " if variable_name == "usb_serial_number": const = "" c_file.write("""\ {const}uint16_t {NAME}[] = {{ """.format(const=const, NAME=variable_name)) pointers_to_strings.append("{name}".format(name=variable_name)) n = 0 while i < len(b): length = b[i] for j in range(length // 2): c_file.write("0x{:04x}, ".format(b[i + 2*j + 1] << 8 | b[i + 2*j])) n += 1 c_file.write("\n") i += length c_file.write("""\ }; """) c_file.write("""\ // array of pointer to string descriptors uint16_t const * const string_desc_arr [] = { """) c_file.write(""",\ """.join(pointers_to_strings)) c_file.write(""" }; """) c_file.write("\n") hid_descriptor_length = len(bytes(combined_hid_report_descriptor)) # Now we values we need for the .h file. h_file.write("""\ #ifndef MICROPY_INCLUDED_AUTOGEN_USB_DESCRIPTOR_H #define MICROPY_INCLUDED_AUTOGEN_USB_DESCRIPTOR_H #include <stdint.h> extern const uint8_t usb_desc_dev[{device_length}]; extern const uint8_t usb_desc_cfg[{configuration_length}]; extern uint16_t usb_serial_number[{serial_number_length}]; extern uint16_t const * const string_desc_arr [{string_descriptor_length}]; extern const uint8_t hid_report_descriptor[{hid_report_descriptor_length}]; #define CFG_TUSB_RHPORT0_MODE ({rhport0_mode}) #define USB_HID_NUM_DEVICES {hid_num_devices} // Vendor name included in Inquiry response, max 8 bytes #define CFG_TUD_MSC_VENDOR "{msc_vendor}" // Product name included in Inquiry response, max 16 bytes #define CFG_TUD_MSC_PRODUCT "{msc_product}" """ .format(serial_number_length=len(bytes(serial_number_descriptor)) // 2, device_length=len(bytes(device)), configuration_length=descriptor_length, max_configuration_length=max(hid_descriptor_length, descriptor_length), string_descriptor_length=len(pointers_to_strings), hid_report_descriptor_length=len(bytes(combined_hid_report_descriptor)), rhport0_mode='OPT_MODE_DEVICE | OPT_MODE_HIGH_SPEED' if args.highspeed else 'OPT_MODE_DEVICE', hid_num_devices=len(args.hid_devices), msc_vendor=args.manufacturer[:8], msc_product=args.product[:16])) # Write out the report descriptor and info c_file.write("""\ const uint8_t hid_report_descriptor[{HID_DESCRIPTOR_LENGTH}] = {{ """.format(HID_DESCRIPTOR_LENGTH=hid_descriptor_length)) for b in bytes(combined_hid_report_descriptor): c_file.write("0x{:02x}, ".format(b)) c_file.write("""\ }; """) # Write out USB HID report buffer definitions. for name in args.hid_devices: c_file.write("""\ static uint8_t {name}_report_buffer[{report_length}]; """.format(name=name.lower(), report_length=hid_report_descriptors.HID_DEVICE_DATA[name].report_length)) if hid_report_descriptors.HID_DEVICE_DATA[name].out_report_length > 0: c_file.write("""\ static uint8_t {name}_out_report_buffer[{report_length}]; """.format(name=name.lower(), report_length=hid_report_descriptors.HID_DEVICE_DATA[name].out_report_length)) # Write out table of device objects. c_file.write(""" usb_hid_device_obj_t usb_hid_devices[] = { """) for name in args.hid_devices: device_data = hid_report_descriptors.HID_DEVICE_DATA[name] out_report_buffer = '{}_out_report_buffer'.format(name.lower()) if device_data.out_report_length > 0 else 'NULL' c_file.write("""\ {{ .base = {{ .type = &usb_hid_device_type }}, .report_buffer = {name}_report_buffer, .report_id = {report_id}, .report_length = {report_length}, .usage_page = {usage_page:#04x}, .usage = {usage:#04x}, .out_report_buffer = {out_report_buffer}, .out_report_length = {out_report_length}, }}, """.format(name=name.lower(), report_id=report_ids[name], report_length=device_data.report_length, usage_page=device_data.usage_page, usage=device_data.usage, out_report_buffer=out_report_buffer, out_report_length=device_data.out_report_length)) c_file.write("""\ }; """) # Write out tuple of device objects. c_file.write(""" mp_obj_tuple_t common_hal_usb_hid_devices = {{ .base = {{ .type = &mp_type_tuple, }}, .len = {num_devices}, .items = {{ """.format(num_devices=len(args.hid_devices))) for idx in range(len(args.hid_devices)): c_file.write("""\ (mp_obj_t) &usb_hid_devices[{idx}], """.format(idx=idx)) c_file.write("""\ }, }; """) h_file.write("""\ #endif // MICROPY_INCLUDED_AUTOGEN_USB_DESCRIPTOR_H """)
[((209, 254), 'sys.path.append', 'sys.path.append', (['"""../../tools/usb_descriptor"""'], {}), "('../../tools/usb_descriptor')\n", (224, 254), False, 'import sys\n'), ((821, 885), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Generate USB descriptors."""'}), "(description='Generate USB descriptors.')\n", (844, 885), False, 'import argparse\n'), ((6439, 6518), 'adafruit_usb_descriptor.cdc.Union', 'cdc.Union', ([], {'description': '"""CDC comm"""', 'bMasterInterface': '(0)', 'bSlaveInterface_list': '[1]'}), "(description='CDC comm', bMasterInterface=0, bSlaveInterface_list=[1])\n", (6448, 6518), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((6661, 6739), 'adafruit_usb_descriptor.cdc.CallManagement', 'cdc.CallManagement', ([], {'description': '"""CDC comm"""', 'bmCapabilities': '(1)', 'bDataInterface': '(1)'}), "(description='CDC comm', bmCapabilities=1, bDataInterface=1)\n", (6679, 6739), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((10800, 11009), 'adafruit_usb_descriptor.standard.EndpointDescriptor', 'standard.EndpointDescriptor', ([], {'description': '"""HID in"""', 'bEndpointAddress': '(args.hid_ep_num_in | standard.EndpointDescriptor.DIRECTION_IN)', 'bmAttributes': 'standard.EndpointDescriptor.TYPE_INTERRUPT', 'bInterval': '(8)'}), "(description='HID in', bEndpointAddress=args.\n hid_ep_num_in | standard.EndpointDescriptor.DIRECTION_IN, bmAttributes=\n standard.EndpointDescriptor.TYPE_INTERRUPT, bInterval=8)\n", (10827, 11009), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((11048, 11259), 'adafruit_usb_descriptor.standard.EndpointDescriptor', 'standard.EndpointDescriptor', ([], {'description': '"""HID out"""', 'bEndpointAddress': '(args.hid_ep_num_out | standard.EndpointDescriptor.DIRECTION_OUT)', 'bmAttributes': 'standard.EndpointDescriptor.TYPE_INTERRUPT', 'bInterval': '(8)'}), "(description='HID out', bEndpointAddress=args.\n hid_ep_num_out | standard.EndpointDescriptor.DIRECTION_OUT,\n bmAttributes=standard.EndpointDescriptor.TYPE_INTERRUPT, bInterval=8)\n", (11075, 11259), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((12235, 12385), 'adafruit_usb_descriptor.midi.OutJackDescriptor', 'midi.OutJackDescriptor', ([], {'description': '"""MIDI data out to user code."""', 'bJackType': 'midi.JACK_TYPE_EXTERNAL', 'input_pins': '[(midi_in_jack_emb, 1)]', 'iJack': '(0)'}), "(description='MIDI data out to user code.', bJackType\n =midi.JACK_TYPE_EXTERNAL, input_pins=[(midi_in_jack_emb, 1)], iJack=0)\n", (12257, 12385), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((12549, 12663), 'adafruit_usb_descriptor.midi.InJackDescriptor', 'midi.InJackDescriptor', ([], {'description': '"""MIDI data in from user code."""', 'bJackType': 'midi.JACK_TYPE_EXTERNAL', 'iJack': '(0)'}), "(description='MIDI data in from user code.', bJackType\n =midi.JACK_TYPE_EXTERNAL, iJack=0)\n", (12570, 12663), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((14416, 14570), 'adafruit_usb_descriptor.audio10.AudioControlInterface', 'audio10.AudioControlInterface', ([], {'description': '"""Empty audio control"""', 'audio_streaming_interfaces': '[]', 'midi_streaming_interfaces': '[audio_midi_interface]'}), "(description='Empty audio control',\n audio_streaming_interfaces=[], midi_streaming_interfaces=[\n audio_midi_interface])\n", (14445, 14570), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((15741, 15830), 'adafruit_usb_descriptor.util.join_interfaces', 'util.join_interfaces', (['interfaces_to_join'], {'renumber_endpoints': 'args.renumber_endpoints'}), '(interfaces_to_join, renumber_endpoints=args.\n renumber_endpoints)\n', (15761, 15830), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((17753, 17786), 'adafruit_usb_descriptor.standard.StringDescriptor', 'standard.StringDescriptor', (['string'], {}), '(string)\n', (17778, 17786), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((3370, 3410), 'argparse.FileType', 'argparse.FileType', (['"""w"""'], {'encoding': '"""UTF-8"""'}), "('w', encoding='UTF-8')\n", (3387, 3410), False, 'import argparse\n'), ((3471, 3511), 'argparse.FileType', 'argparse.FileType', (['"""w"""'], {'encoding': '"""UTF-8"""'}), "('w', encoding='UTF-8')\n", (3488, 3511), False, 'import argparse\n'), ((7191, 7237), 'adafruit_usb_descriptor.cdc.Header', 'cdc.Header', ([], {'description': '"""CDC comm"""', 'bcdCDC': '(272)'}), "(description='CDC comm', bcdCDC=272)\n", (7201, 7237), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((7304, 7375), 'adafruit_usb_descriptor.cdc.AbstractControlManagement', 'cdc.AbstractControlManagement', ([], {'description': '"""CDC comm"""', 'bmCapabilities': '(2)'}), "(description='CDC comm', bmCapabilities=2)\n", (7333, 7375), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((7432, 7680), 'adafruit_usb_descriptor.standard.EndpointDescriptor', 'standard.EndpointDescriptor', ([], {'description': '"""CDC comm in"""', 'bEndpointAddress': '(args.cdc_ep_num_notification | standard.EndpointDescriptor.DIRECTION_IN)', 'bmAttributes': 'standard.EndpointDescriptor.TYPE_INTERRUPT', 'wMaxPacketSize': '(64)', 'bInterval': '(16)'}), "(description='CDC comm in', bEndpointAddress=\n args.cdc_ep_num_notification | standard.EndpointDescriptor.DIRECTION_IN,\n bmAttributes=standard.EndpointDescriptor.TYPE_INTERRUPT, wMaxPacketSize\n =64, bInterval=16)\n", (7459, 7680), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((7967, 8233), 'adafruit_usb_descriptor.standard.EndpointDescriptor', 'standard.EndpointDescriptor', ([], {'description': '"""CDC data out"""', 'bEndpointAddress': '(args.cdc_ep_num_data_out | standard.EndpointDescriptor.DIRECTION_OUT)', 'bmAttributes': 'standard.EndpointDescriptor.TYPE_BULK', 'bInterval': '(0)', 'wMaxPacketSize': '(512 if args.highspeed else 64)'}), "(description='CDC data out', bEndpointAddress=\n args.cdc_ep_num_data_out | standard.EndpointDescriptor.DIRECTION_OUT,\n bmAttributes=standard.EndpointDescriptor.TYPE_BULK, bInterval=0,\n wMaxPacketSize=512 if args.highspeed else 64)\n", (7994, 8233), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((8291, 8554), 'adafruit_usb_descriptor.standard.EndpointDescriptor', 'standard.EndpointDescriptor', ([], {'description': '"""CDC data in"""', 'bEndpointAddress': '(args.cdc_ep_num_data_in | standard.EndpointDescriptor.DIRECTION_IN)', 'bmAttributes': 'standard.EndpointDescriptor.TYPE_BULK', 'bInterval': '(0)', 'wMaxPacketSize': '(512 if args.highspeed else 64)'}), "(description='CDC data in', bEndpointAddress=\n args.cdc_ep_num_data_in | standard.EndpointDescriptor.DIRECTION_IN,\n bmAttributes=standard.EndpointDescriptor.TYPE_BULK, bInterval=0,\n wMaxPacketSize=512 if args.highspeed else 64)\n", (8318, 8554), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((13329, 13439), 'adafruit_usb_descriptor.midi.Header', 'midi.Header', ([], {'jacks_and_elements': '[midi_in_jack_emb, midi_in_jack_ext, midi_out_jack_emb, midi_out_jack_ext]'}), '(jacks_and_elements=[midi_in_jack_emb, midi_in_jack_ext,\n midi_out_jack_emb, midi_out_jack_ext])\n', (13340, 13439), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((13901, 13960), 'adafruit_usb_descriptor.midi.DataEndpointDescriptor', 'midi.DataEndpointDescriptor', ([], {'baAssocJack': '[midi_in_jack_emb]'}), '(baAssocJack=[midi_in_jack_emb])\n', (13928, 13960), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((14328, 14388), 'adafruit_usb_descriptor.midi.DataEndpointDescriptor', 'midi.DataEndpointDescriptor', ([], {'baAssocJack': '[midi_out_jack_emb]'}), '(baAssocJack=[midi_out_jack_emb])\n', (14355, 14388), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((9019, 9273), 'adafruit_usb_descriptor.standard.EndpointDescriptor', 'standard.EndpointDescriptor', ([], {'description': '"""MSC in"""', 'bEndpointAddress': '(args.msc_ep_num_in | standard.EndpointDescriptor.DIRECTION_IN)', 'bmAttributes': 'standard.EndpointDescriptor.TYPE_BULK', 'bInterval': '(0)', 'wMaxPacketSize': '(512 if args.highspeed else 64)'}), "(description='MSC in', bEndpointAddress=args.\n msc_ep_num_in | standard.EndpointDescriptor.DIRECTION_IN, bmAttributes=\n standard.EndpointDescriptor.TYPE_BULK, bInterval=0, wMaxPacketSize=512 if\n args.highspeed else 64)\n", (9046, 9273), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((9354, 9610), 'adafruit_usb_descriptor.standard.EndpointDescriptor', 'standard.EndpointDescriptor', ([], {'description': '"""MSC out"""', 'bEndpointAddress': '(args.msc_ep_num_out | standard.EndpointDescriptor.DIRECTION_OUT)', 'bmAttributes': 'standard.EndpointDescriptor.TYPE_BULK', 'bInterval': '(0)', 'wMaxPacketSize': '(512 if args.highspeed else 64)'}), "(description='MSC out', bEndpointAddress=args.\n msc_ep_num_out | standard.EndpointDescriptor.DIRECTION_OUT,\n bmAttributes=standard.EndpointDescriptor.TYPE_BULK, bInterval=0,\n wMaxPacketSize=512 if args.highspeed else 64)\n", (9381, 9610), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n')]
Columbine21/THUIAR-ERC
bclstm/train_meld.py
90e928e1ce777152e459dbc487acf04c32cbc645
from tqdm import tqdm import pandas as pd import numpy as np, argparse, time, pickle, random, os, datetime import torch import torch.optim as optim from model import MaskedNLLLoss, BC_LSTM from dataloader import MELDDataLoader from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report def setup_seed(seed): """ Manually Fix the random seed to get deterministic results. """ torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.benchmark = False torch.backends.cudnn.deterministic = True def train_or_eval_model(model, loss_function, dataloader, epoch, optimizer=None, mode='train'): losses, preds, labels, masks, losses_sense = [], [], [], [], [] max_sequence_len = [] assert mode != 'train' or optimizer != None if mode == 'train': model.train() else: model.eval() with tqdm(dataloader) as td: for data in td: if mode == 'train': optimizer.zero_grad() textf, acouf, mask, label = [d.cuda() for d in data[:-1]] if args.cuda else data[:-1] log_prob, _ = model(textf, None, acouf, None, mask) lp_ = log_prob.transpose(0,1).contiguous().view(-1, log_prob.size()[2]) # batch*seq_len, n_classes labels_ = label.view(-1) # batch*seq_len loss = loss_function(lp_, labels_, mask) pred_ = torch.argmax(lp_,1) # batch*seq_len preds.append(pred_.data.cpu().numpy()) labels.append(labels_.data.cpu().numpy()) masks.append(mask.view(-1).cpu().numpy()) losses.append(loss.item()*masks[-1].sum()) if mode == 'train': total_loss = loss total_loss.backward() optimizer.step() if preds!=[]: preds = np.concatenate(preds) labels = np.concatenate(labels) masks = np.concatenate(masks) else: return float('nan'), float('nan'), float('nan'), [], [], [], float('nan'),[] avg_loss = round(np.sum(losses)/np.sum(masks), 4) avg_sense_loss = round(np.sum(losses_sense)/np.sum(masks), 4) avg_accuracy = round(accuracy_score(labels,preds, sample_weight=masks)*100, 2) avg_fscore = round(f1_score(labels,preds, sample_weight=masks, average='weighted')*100, 2) if mode == 'test': class_report = classification_report(labels, preds, sample_weight=masks, target_names=['neutral', 'surprise', 'fear', 'sadness', 'joy', 'disgust', 'anger'], digits=6) print(class_report) return avg_loss, avg_accuracy, labels, preds, masks, [avg_fscore] def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--num_workers', type=int, default=0, help='num workers of loading data') # dataloader settings parser.add_argument('--batch-size', type=int, default=32, metavar='BS', help='batch size') parser.add_argument('--data_path', type=str, default='../TextCnn/dataset/MELD_features_raw.pkl') # model settings. parser.add_argument('--attention_type', type=str, default='general2') parser.add_argument('--utterance_dim', type=int, default=600, help='embedding dims to use') parser.add_argument('--emotion_state_dim', type=int, default=100) parser.add_argument('--hidden_layer_dim', type=int, default=100) parser.add_argument('--dropout', type=float, default=0.25) parser.add_argument('--n_classes', type=int, default=7) # late fusion module. parser.add_argument('--lateFusionModule', type=str, default='concat') parser.add_argument('--input_features', type=tuple, default=(100, 300)) parser.add_argument('--pre_fusion_hidden_dims', type=tuple, default=(24, 7)) parser.add_argument('--pre_fusion_dropout', type=float, default=0.4) parser.add_argument('--post_fusion_dropout', type=float, default=0.3) # train settings. parser.add_argument('--lr', type=float, default=1e-4, metavar='LR', help='learning rate') parser.add_argument('--l2', type=float, default=1e-5, metavar='L2', help='L2 regularization weight') parser.add_argument('--epochs', type=int, default=100, metavar='E', help='number of epochs') return parser.parse_args() if __name__ == '__main__': args = parse_args() args.cuda = torch.cuda.is_available() if args.cuda: print('Running on GPU') else: print('Running on CPU') for seed in [1, 11, 111, 1111, 11111]: setup_seed(seed) args.seed = seed print(args) model = BC_LSTM(args) print('MELD BC_LSTM MODULE ...') if args.cuda: model.cuda() loss_weights = torch.FloatTensor([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]) loss_function = MaskedNLLLoss(loss_weights.cuda() if args.cuda else loss_weights) optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2) lf = open('logs/cnn_meld_logs.txt', 'a') dataloader = MELDDataLoader(args) valid_losses, valid_fscores = [], [] test_fscores, test_accuracys, test_losses = [], [], [] best_loss, best_label, best_pred, best_mask = None, None, None, None for e in range(args.epochs): start_time = time.time() train_loss, train_acc, _, _, _, train_fscore = train_or_eval_model(model, loss_function, dataloader['train'], e, optimizer, mode='train') valid_loss, valid_acc, _, _, _, valid_fscore = train_or_eval_model(model, loss_function, dataloader['valid'], e, mode='valid') test_loss, test_acc, test_label, test_pred, test_mask, test_fscore = train_or_eval_model(model, loss_function, dataloader['test'], e, mode='test') valid_losses.append(valid_loss) valid_fscores.append(valid_fscore) test_losses.append(test_loss) test_accuracys.append(test_acc) test_fscores.append(test_fscore) x = 'epoch: {}, train_loss: {}, acc: {}, fscore: {}, valid_loss: {}, acc: {}, fscore: {}, test_loss: {}, acc: {}, fscore: {}, time: {} sec'.format(e+1, train_loss, train_acc, train_fscore, valid_loss, valid_acc, valid_fscore, test_loss, test_acc, test_fscore, round(time.time()-start_time, 2)) print (x) lf.write(x + '\n') valid_fscores = np.array(valid_fscores).transpose() test_fscores = np.array(test_fscores).transpose() # [1, epoches] test_accuracys = np.array(test_accuracys).transpose() # [epoches] f1_score1 = test_fscores[0][np.argmin(valid_losses)] acc_score1 = test_accuracys[np.argmin(valid_losses)] f1_score2 = test_fscores[0][np.argmax(valid_fscores[0])] acc_score2 = test_accuracys[np.argmax(valid_fscores[0])] scores = [acc_score1, f1_score1, acc_score2, f1_score2] scores = [str(item) for item in scores] print ('Test Scores: Weighted F1') print('@Best Valid Loss: Test Acc: {}, Test F1: {}'.format(acc_score1, f1_score1)) print('@Best Valid F1: Test Acc: {}, Test F1: {}'.format(acc_score2, f1_score2)) rf = open('results/cnn_meld_results.txt', 'a') rf.write('\t'.join(scores) + '\t' + str(args) + '\n') rf.close()
[((427, 450), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (444, 450), False, 'import torch\n'), ((455, 483), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['seed'], {}), '(seed)\n', (477, 483), False, 'import torch\n'), ((488, 520), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['seed'], {}), '(seed)\n', (514, 520), False, 'import torch\n'), ((525, 545), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (539, 545), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((550, 567), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (561, 567), False, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2807, 2832), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2830, 2832), False, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((4486, 4511), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (4509, 4511), False, 'import torch\n'), ((978, 994), 'tqdm.tqdm', 'tqdm', (['dataloader'], {}), '(dataloader)\n', (982, 994), False, 'from tqdm import tqdm\n'), ((1982, 2003), 'numpy.concatenate', 'np.concatenate', (['preds'], {}), '(preds)\n', (1996, 2003), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2021, 2043), 'numpy.concatenate', 'np.concatenate', (['labels'], {}), '(labels)\n', (2035, 2043), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2061, 2082), 'numpy.concatenate', 'np.concatenate', (['masks'], {}), '(masks)\n', (2075, 2082), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2524, 2684), 'sklearn.metrics.classification_report', 'classification_report', (['labels', 'preds'], {'sample_weight': 'masks', 'target_names': "['neutral', 'surprise', 'fear', 'sadness', 'joy', 'disgust', 'anger']", 'digits': '(6)'}), "(labels, preds, sample_weight=masks, target_names=[\n 'neutral', 'surprise', 'fear', 'sadness', 'joy', 'disgust', 'anger'],\n digits=6)\n", (2545, 2684), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((4744, 4757), 'model.BC_LSTM', 'BC_LSTM', (['args'], {}), '(args)\n', (4751, 4757), False, 'from model import MaskedNLLLoss, BC_LSTM\n'), ((4879, 4933), 'torch.FloatTensor', 'torch.FloatTensor', (['[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0])\n', (4896, 4933), False, 'import torch\n'), ((5207, 5227), 'dataloader.MELDDataLoader', 'MELDDataLoader', (['args'], {}), '(args)\n', (5221, 5227), False, 'from dataloader import MELDDataLoader\n'), ((1541, 1561), 'torch.argmax', 'torch.argmax', (['lp_', '(1)'], {}), '(lp_, 1)\n', (1553, 1561), False, 'import torch\n'), ((2200, 2214), 'numpy.sum', 'np.sum', (['losses'], {}), '(losses)\n', (2206, 2214), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2215, 2228), 'numpy.sum', 'np.sum', (['masks'], {}), '(masks)\n', (2221, 2228), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2260, 2280), 'numpy.sum', 'np.sum', (['losses_sense'], {}), '(losses_sense)\n', (2266, 2280), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2281, 2294), 'numpy.sum', 'np.sum', (['masks'], {}), '(masks)\n', (2287, 2294), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2325, 2375), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['labels', 'preds'], {'sample_weight': 'masks'}), '(labels, preds, sample_weight=masks)\n', (2339, 2375), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((2406, 2470), 'sklearn.metrics.f1_score', 'f1_score', (['labels', 'preds'], {'sample_weight': 'masks', 'average': '"""weighted"""'}), "(labels, preds, sample_weight=masks, average='weighted')\n", (2414, 2470), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((5478, 5489), 'time.time', 'time.time', ([], {}), '()\n', (5487, 5489), False, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6591, 6614), 'numpy.array', 'np.array', (['valid_fscores'], {}), '(valid_fscores)\n', (6599, 6614), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6650, 6672), 'numpy.array', 'np.array', (['test_fscores'], {}), '(test_fscores)\n', (6658, 6672), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6725, 6749), 'numpy.array', 'np.array', (['test_accuracys'], {}), '(test_accuracys)\n', (6733, 6749), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6811, 6834), 'numpy.argmin', 'np.argmin', (['valid_losses'], {}), '(valid_losses)\n', (6820, 6834), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6872, 6895), 'numpy.argmin', 'np.argmin', (['valid_losses'], {}), '(valid_losses)\n', (6881, 6895), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6933, 6960), 'numpy.argmax', 'np.argmax', (['valid_fscores[0]'], {}), '(valid_fscores[0])\n', (6942, 6960), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6998, 7025), 'numpy.argmax', 'np.argmax', (['valid_fscores[0]'], {}), '(valid_fscores[0])\n', (7007, 7025), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6472, 6483), 'time.time', 'time.time', ([], {}), '()\n', (6481, 6483), False, 'import numpy as np, argparse, time, pickle, random, os, datetime\n')]
emkailu/PAT3DEM
bin/p3starcoordcheck.py
74e7a0f30179e49ea5c7da1bea893e21a3ed601a
#!/usr/bin/env python import os import sys import argparse import pat3dem.star as p3s import math def main(): progname = os.path.basename(sys.argv[0]) usage = progname + """ [options] <coord star files> Output the coord star files after deleting duplicate particles """ args_def = {'mindis':150} parser = argparse.ArgumentParser() parser.add_argument("star", nargs='*', help="specify coord star files to be processed") parser.add_argument("-m", "--mindis", type=float, help="specify the minimum distance between particles in pixels, by default {}".format(args_def['mindis'])) args = parser.parse_args() if len(sys.argv) == 1: print "usage: " + usage print "Please run '" + progname + " -h' for detailed options." sys.exit(1) # get default values for i in args_def: if args.__dict__[i] == None: args.__dict__[i] = args_def[i] # loop over all input files for star in args.star: star_dict = p3s.star_parse(star, 'data_') header = star_dict['data_']+star_dict['loop_'] header_len = len(header) basename = os.path.basename(os.path.splitext(star)[0]) with open(star) as s_read: lines = s_read.readlines()[header_len:-1] # with open(basename+'_checked.star', 'w') as s_w: s_w.write(''.join(header)) # use list of list to store x and y xy = [] for line in lines: good = 1 line = line.split() # get coord x, y = float(line[star_dict['_rlnCoordinateX']]), float(line[star_dict['_rlnCoordinateY']]) for i in xy: dis = math.sqrt((x - i[0])**2 + (y - i[1])**2) if dis < args.mindis: print 'Distance between ({},{}) and {} is {}. Discard.'.format(x,y,i,dis) good = 0 break if good == 1: s_w.write('{:>12} '.format(x) + '{:>12} \n'.format(y)) xy.append((x,y)) s_w.write('\n') if __name__ == '__main__': main()
[]
ryankirkland/voice-of-the-customer
src/review_scraper.py
0214af45cc6aa76bfce64065f07c3f4781ee045e
from bs4 import BeautifulSoup import pandas as pd import requests import time import sys def reviews_scraper(asin_list, filename): ''' Takes a list of asins, retrieves html for reviews page, and parses out key data points Parameters ---------- List of ASINs (list of strings) Returns: ------- review information (list), reviews_df (Pandas DataFrame) ''' asin_list = [asin_list] print(asin_list) reviews = [] headers = {"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0", "Accept-Encoding":"gzip, deflate", "Accept":"text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8", "DNT":"1","Connection":"close", "Upgrade-Insecure-Requests":"1"} for asin in asin_list: print(f'Collecting reviews for {asin}') passed_last_page = None counter = 1 while (passed_last_page == None) and (counter <= 10): print(len(reviews)) reviews_url = f'https://www.amazon.com/product-reviews/{asin}/ref=cm_cr_arp_d_viewopt_srt?ie=UTF8&reviewerType=all_reviews&sortBy=recent&pageNumber={counter}' print(reviews_url) rev = requests.get(reviews_url, headers=headers) print(rev.status_code) reviews_page_content = rev.content review_soup = BeautifulSoup(reviews_page_content, features='lxml') print(review_soup) passed_last_page = review_soup.find('div', attrs={'class': 'a-section a-spacing-top-large a-text-center no-reviews-section'}) if passed_last_page == None: for d in review_soup.findAll('div', attrs={'data-hook':'review'}): # print(d) try: date = d.find('span', attrs={'data-hook':'review-date'}) date = date.text.split(' ')[-3:] date = ' '.join(date) except: date = 'null' try: title = d.find('a', attrs={'data-hook': 'review-title'}) except: title = 'null' try: product = d.find('a', attrs={'data-hook': 'format-strip'}) product = product.text except: product = 'null' try: review_asin = product['href'].split('/')[3] except: review_asin = asin try: verified = d.find('span', attrs={'data-hook':'avp-badge'}) if verified == None: verified = 'Not Verified' else: verified = verified.text except: verified = 'null' try: description = d.find('span', attrs={'data-hook': 'review-body'}) except: description = 'null' try: reviewer_name = d.find('span', attrs={'class': 'a-profile-name'}) except: reviewer_name = 'null' try: stars = d.find('span', attrs={'class': 'a-icon-alt'}) except: stars = 'null' reviews.append([review_asin, product, date, verified, title.text, description.text, reviewer_name.text, float(stars.text[0:3])]) else: pass counter += 1 time.sleep(15) reviews_df = pd.DataFrame(reviews, columns=['asin','product','date', 'verified', 'title', 'desc', 'reviewer_name', 'rating']) reviews_df.to_csv(f'data/reviews/{filename}') print(f'{len(reviews)} reviews for {len(asin_list)} asins stored successfully in {filename}') return reviews, reviews_df if __name__ == '__main__': reviews_scraper(*sys.argv[1:])
[((3894, 4012), 'pandas.DataFrame', 'pd.DataFrame', (['reviews'], {'columns': "['asin', 'product', 'date', 'verified', 'title', 'desc', 'reviewer_name',\n 'rating']"}), "(reviews, columns=['asin', 'product', 'date', 'verified',\n 'title', 'desc', 'reviewer_name', 'rating'])\n", (3906, 4012), True, 'import pandas as pd\n'), ((1188, 1230), 'requests.get', 'requests.get', (['reviews_url'], {'headers': 'headers'}), '(reviews_url, headers=headers)\n', (1200, 1230), False, 'import requests\n'), ((1340, 1392), 'bs4.BeautifulSoup', 'BeautifulSoup', (['reviews_page_content'], {'features': '"""lxml"""'}), "(reviews_page_content, features='lxml')\n", (1353, 1392), False, 'from bs4 import BeautifulSoup\n'), ((3853, 3867), 'time.sleep', 'time.sleep', (['(15)'], {}), '(15)\n', (3863, 3867), False, 'import time\n')]
cglumberjack/lumber_metadata
lumberdata/metadata.py
aebca5dbecb8d7684b1b169bf2961e4ab0daca2b
# noinspection PyUnresolvedReferences import os import re # TODO I'm going to need to make a dictionary for my big list of stuff i care about and what's needed for # every file type.... RAF = ['EXIF:LensModel', 'MakerNotes:RawImageHeight', 'MakerNotes:RawImageWidth', 'EXIF:CreateDate', 'EXIF:ModifyDate', 'EXIF:SerialNumber', 'Composite:Aperture', 'EXIF:FocalLength', 'EXIF:Make', 'EXIF:Model', 'EXIF:LensMake'] MOV = ['EXIF:LensModel', 'MakerNotes:RawImageHeight', 'MakerNotes:RawImageWidth', 'EXIF:CreateDate', 'EXIF:ModifyDate', 'EXIF:SerialNumber', 'Composite:Aperture', 'EXIF:FocalLength', 'EXIF:Make', 'EXIF:Model', 'EXIF:LensMake', 'QuickTime:VideoFrameRate', 'QuickTime:Duration'] R3D = ['ClipName', 'EdgeTC', 'EndEdgeTC', 'TotalFrames', 'FrameHeight', 'FrameWidth', 'Aperture', 'ISO', 'Date', 'AudioSlate', 'VideoSlate', 'Camera', 'CameraModel', 'CameraPIN', 'MediaSerialNumber', 'LensSerialNumber', 'FPS', 'AspectRatio', 'Kelvin', 'LensName', 'LensBrand', 'FocalLength', 'Shutter(deg)', 'SensorID', 'SensorName', 'Take'] def check_exiftool(): """ checks if exiftool is installed. :return: """ pass def check_redline(): """ checks if redline is installed :return: """ pass def check_ffprobe(): """ checks if ffprobe is installed :return: """ pass def get(filein, tool='exiftool', print_output=False): """ Due to issues with the exiftool module this is provided as a way to parse output directly from exiftool through the system commands and cglexecute. For the moment it's only designed to get the lumberdata for a single file. :param filein: :return: dictionary containing lumberdata from exiftool """ ext = os.path.splitext(filein)[-1] d = {} if tool == 'exiftool': command = r'exiftool %s' % filein output = cgl_execute(command=command, verbose=False, print_output=print_output) for each in output['printout']: key, value = re.split("\s+:\s+", each) d[key] = value return d elif tool == 'ffprobe': command = r'%s %s' % ('ffprobe', filein) output = cgl_execute(command=command) for each in output['printout']: try: values = re.split(":\s+", each) key = values[0] values.pop(0) if 'Stream' in key: split_v = values[1].split(',') d['Image Size'] = split_v[2].split()[0] d['Source Image Width'], d['Source Image Height'] = d['Image Size'].split('x') d['Video Frame Rate'] = split_v[4].split(' fps')[0].replace(' ', '') if 'Duration' in key: d['Track Duration'] = '%s s' % values[0].split(',')[0] value = ' '.join(values) d[key] = value except ValueError: print('skipping %s' % each) return d def get_red_data(filein): """ method for pulling lumberdata from r3d files. REDLINE is a command line interface from RED that is required for this https://www.red.com/downloads/options?itemInternalId=16144 :param filein: :return: """ file_, ext_ = os.path.splitext(filein) if ext_.upper() == '.R3D': command = r'REDLINE --i %s --printMeta 1' % filein d = {} for line in os.popen(command).readlines(): line = line.strip('\n') line = line.replace('\t', '') line = line.replace(' ', '') try: key_, value = line.split(':', 1) if key_ != 'None': d[key_] = value except ValueError: pass return d
[((3281, 3305), 'os.path.splitext', 'os.path.splitext', (['filein'], {}), '(filein)\n', (3297, 3305), False, 'import os\n'), ((1764, 1788), 'os.path.splitext', 'os.path.splitext', (['filein'], {}), '(filein)\n', (1780, 1788), False, 'import os\n'), ((2026, 2053), 're.split', 're.split', (['"""\\\\s+:\\\\s+"""', 'each'], {}), "('\\\\s+:\\\\s+', each)\n", (2034, 2053), False, 'import re\n'), ((3431, 3448), 'os.popen', 'os.popen', (['command'], {}), '(command)\n', (3439, 3448), False, 'import os\n'), ((2301, 2324), 're.split', 're.split', (['""":\\\\s+"""', 'each'], {}), "(':\\\\s+', each)\n", (2309, 2324), False, 'import re\n')]
robfiras/RLBench
rlbench/task_environment.py
97ab9526b6efb718f2b5aae40897ccd75aeff11e
import logging from typing import List, Callable import numpy as np from pyquaternion import Quaternion from pyrep import PyRep from pyrep.errors import IKError from pyrep.objects import Dummy, Object from rlbench import utils from rlbench.action_modes import ArmActionMode, ActionMode from rlbench.backend.exceptions import BoundaryError, WaypointError from rlbench.backend.observation import Observation from rlbench.backend.robot import Robot from rlbench.backend.scene import Scene from rlbench.backend.task import Task from rlbench.demo import Demo from rlbench.observation_config import ObservationConfig _TORQUE_MAX_VEL = 9999 _DT = 0.05 _MAX_RESET_ATTEMPTS = 40 _MAX_DEMO_ATTEMPTS = 10 class InvalidActionError(Exception): pass class TaskEnvironmentError(Exception): pass class TaskEnvironment(object): def __init__(self, pyrep: PyRep, robot: Robot, scene: Scene, task: Task, action_mode: ActionMode, dataset_root: str, obs_config: ObservationConfig, static_positions: bool = False, attach_grasped_objects: bool = True): self._pyrep = pyrep self._robot = robot self._scene = scene self._task = task self._variation_number = 0 self._action_mode = action_mode self._dataset_root = dataset_root self._obs_config = obs_config self._static_positions = static_positions self._attach_grasped_objects = attach_grasped_objects self._reset_called = False self._prev_ee_velocity = None self._enable_path_observations = False self._scene.load(self._task) self._pyrep.start() self._target_workspace_check = Dummy.create() self._last_e = None def get_name(self) -> str: return self._task.get_name() def sample_variation(self) -> int: self._variation_number = np.random.randint( 0, self._task.variation_count()) return self._variation_number def set_variation(self, v: int) -> None: if v >= self.variation_count(): raise TaskEnvironmentError( 'Requested variation %d, but there are only %d variations.' % ( v, self.variation_count())) self._variation_number = v def variation_count(self) -> int: return self._task.variation_count() def reset(self) -> (List[str], Observation): self._scene.reset() try: desc = self._scene.init_episode( self._variation_number, max_attempts=_MAX_RESET_ATTEMPTS, randomly_place=not self._static_positions) except (BoundaryError, WaypointError) as e: raise TaskEnvironmentError( 'Could not place the task %s in the scene. This should not ' 'happen, please raise an issues on this task.' % self._task.get_name()) from e self._reset_called = True # redundancy resolution self._last_e = None # Returns a list of descriptions and the first observation return desc, self._scene.get_observation() def get_observation(self) -> Observation: return self._scene.get_observation() def get_joint_upper_velocity_limits(self): return self._robot.arm.get_joint_upper_velocity_limits() def get_all_graspable_objects(self): return self._task.get_graspable_objects() def get_robot_visuals(self): return self._robot.arm.get_visuals() def get_all_graspable_object_positions(self, relative_to_cameras=False): """ returns the positions of all graspable object relative to all enabled cameras """ objects = self._task.get_graspable_objects() positions = [] for ob in objects: if relative_to_camera: positions.append(self._scene.get_object_position_relative_to_cameras(ob)) else: positions.append({"left_shoulder_camera": ob.get_position(), "right_shoulder_camera": ob.get_position(), "front_camera": ob.get_position(), "wrist_camera": ob.get_position()}) return positions def get_all_graspable_object_poses(self, relative_to_cameras=False): """ returns the pose of all graspable object relative to all enabled cameras """ objects = self._task.get_graspable_objects() poses = [] for ob in objects: if relative_to_cameras: poses.append(self._scene.get_object_pose_relative_to_cameras(ob)) else: poses.append({"left_shoulder_camera": ob.get_pose(), "right_shoulder_camera": ob.get_pose(), "front_camera": ob.get_pose(), "wrist_camera": ob.get_pose()}) return poses def _assert_action_space(self, action, expected_shape): if np.shape(action) != expected_shape: raise RuntimeError( 'Expected the action shape to be: %s, but was shape: %s' % ( str(expected_shape), str(np.shape(action)))) def _assert_unit_quaternion(self, quat): if not np.isclose(np.linalg.norm(quat), 1.0): raise RuntimeError('Action contained non unit quaternion!') def _torque_action(self, action): self._robot.arm.set_joint_target_velocities( [(_TORQUE_MAX_VEL if t < 0 else -_TORQUE_MAX_VEL) for t in action]) self._robot.arm.set_joint_forces(np.abs(action)) def _ee_action(self, action, relative_to=None): self._assert_unit_quaternion(action[3:]) try: joint_positions = self._robot.arm.solve_ik( action[:3], quaternion=action[3:], relative_to=relative_to) self._robot.arm.set_joint_target_positions(joint_positions) except IKError as e: raise InvalidActionError('Could not find a path.') from e done = False prev_values = None # Move until reached target joint positions or until we stop moving # (e.g. when we collide wth something) while not done: self._scene.step() cur_positions = self._robot.arm.get_joint_positions() reached = np.allclose(cur_positions, joint_positions, atol=0.01) not_moving = False if prev_values is not None: not_moving = np.allclose( cur_positions, prev_values, atol=0.001) prev_values = cur_positions done = reached or not_moving def _path_action(self, action, relative_to=None): self._assert_unit_quaternion(action[3:]) try: # Check if the target is in the workspace; if not, then quick reject # Only checks position, not rotation pos_to_check = action[:3] if relative_to is not None: self._target_workspace_check.set_position( pos_to_check, relative_to) pos_to_check = self._target_workspace_check.get_position() valid = self._scene.check_target_in_workspace(pos_to_check) if not valid: raise InvalidActionError('Target is outside of workspace.') path = self._robot.arm.get_path( action[:3], quaternion=action[3:], ignore_collisions=True, relative_to=relative_to) done = False observations = [] while not done: done = path.step() self._scene.step() if self._enable_path_observations: observations.append(self._scene.get_observation()) success, terminate = self._task.success() # If the task succeeds while traversing path, then break early if success: break observations.append(self._scene.get_observation()) return observations except IKError as e: raise InvalidActionError('Could not find a path.') from e def step(self, action, camcorder=None) -> (Observation, int, bool): # returns observation, reward, done, info if not self._reset_called: raise RuntimeError( "Call 'reset' before calling 'step' on a task.") # action should contain 1 extra value for gripper open close state arm_action = np.array(action[:-1]) ee_action = action[-1] if 0.0 > ee_action > 1.0: raise ValueError('Gripper action expected to be within 0 and 1.') # Discretize the gripper action current_ee = (1.0 if self._robot.gripper.get_open_amount()[0] > 0.9 else 0.0) if ee_action > 0.5: ee_action = 1.0 elif ee_action < 0.5: ee_action = 0.0 if current_ee != ee_action: arm_action = np.array([0.0]*7) if self._action_mode.arm == ArmActionMode.ABS_JOINT_VELOCITY: self._assert_action_space(arm_action, (len(self._robot.arm.joints),)) self._robot.arm.set_joint_target_velocities(arm_action) self._scene.step() # if needed save some images if camcorder: obs = self._scene.get_observation() camcorder.save(obs, self.get_robot_visuals(), self.get_all_graspable_objects()) elif self._action_mode.arm == ArmActionMode.DELTA_JOINT_VELOCITY: self._assert_action_space(arm_action, (len(self._robot.arm.joints),)) cur = np.array(self._robot.arm.get_joint_velocities()) self._robot.arm.set_joint_target_velocities(cur + arm_action) self._scene.step() elif self._action_mode.arm == ArmActionMode.ABS_JOINT_POSITION: self._assert_action_space(arm_action, (len(self._robot.arm.joints),)) self._robot.arm.set_joint_target_positions(arm_action) self._scene.step() elif self._action_mode.arm == ArmActionMode.DELTA_JOINT_POSITION: self._assert_action_space(arm_action, (len(self._robot.arm.joints),)) cur = np.array(self._robot.arm.get_joint_positions()) self._robot.arm.set_joint_target_positions(cur + arm_action) self._scene.step() elif self._action_mode.arm == ArmActionMode.ABS_JOINT_TORQUE: self._assert_action_space( arm_action, (len(self._robot.arm.joints),)) self._torque_action(arm_action) self._scene.step() elif self._action_mode.arm == ArmActionMode.DELTA_JOINT_TORQUE: cur = np.array(self._robot.arm.get_joint_forces()) new_action = cur + arm_action self._torque_action(new_action) self._scene.step() elif self._action_mode.arm == ArmActionMode.ABS_EE_POSE_WORLD_FRAME: self._assert_action_space(arm_action, (7,)) self._ee_action(list(arm_action)) elif self._action_mode.arm == ArmActionMode.ABS_EE_POSE_PLAN_WORLD_FRAME: self._assert_action_space(arm_action, (7,)) self._path_observations = [] self._path_observations = self._path_action(list(arm_action)) elif self._action_mode.arm == ArmActionMode.DELTA_EE_POSE_PLAN_WORLD_FRAME: self._assert_action_space(arm_action, (7,)) a_x, a_y, a_z, a_qx, a_qy, a_qz, a_qw = arm_action x, y, z, qx, qy, qz, qw = self._robot.arm.get_tip().get_pose() new_rot = Quaternion(a_qw, a_qx, a_qy, a_qz) * Quaternion(qw, qx, qy, qz) qw, qx, qy, qz = list(new_rot) new_pose = [a_x + x, a_y + y, a_z + z] + [qx, qy, qz, qw] self._path_observations = [] self._path_observations = self._path_action(list(new_pose)) elif self._action_mode.arm == ArmActionMode.DELTA_EE_POSE_WORLD_FRAME: self._assert_action_space(arm_action, (7,)) a_x, a_y, a_z, a_qx, a_qy, a_qz, a_qw = arm_action x, y, z, qx, qy, qz, qw = self._robot.arm.get_tip().get_pose() new_rot = Quaternion(a_qw, a_qx, a_qy, a_qz) * Quaternion( qw, qx, qy, qz) qw, qx, qy, qz = list(new_rot) new_pose = [a_x + x, a_y + y, a_z + z] + [qx, qy, qz, qw] self._ee_action(list(new_pose)) elif self._action_mode.arm == ArmActionMode.EE_POSE_EE_FRAME: self._assert_action_space(arm_action, (7,)) self._ee_action( list(arm_action), relative_to=self._robot.arm.get_tip()) elif self._action_mode.arm == ArmActionMode.EE_POSE_PLAN_EE_FRAME: self._assert_action_space(arm_action, (7,)) self._path_observations = [] self._path_observations = self._path_action( list(arm_action), relative_to=self._robot.arm.get_tip()) else: raise RuntimeError('Unrecognised action mode.') if current_ee != ee_action: done = False while not done: done = self._robot.gripper.actuate(ee_action, velocity=0.2) self._pyrep.step() self._task.step() # if needed save some images if camcorder: obs = self._scene.get_observation() camcorder.save(obs, self.get_robot_visuals(), self.get_all_graspable_objects()) if ee_action == 0.0 and self._attach_grasped_objects: # If gripper close action, the check for grasp. for g_obj in self._task.get_graspable_objects(): self._robot.gripper.grasp(g_obj) else: # If gripper open action, the check for ungrasp. self._robot.gripper.release() success, terminate = self._task.success() task_reward = self._task.reward() reward = float(success) if task_reward is None else task_reward return self._scene.get_observation(), reward, terminate def resolve_redundancy_joint_velocities(self, actions, setup): """ Resolves redundant self-motion into the nullspace without changing the gripper tip position :param actions: Current actions without redundancy resolution. :param setup: Setup for redundancy resolution defining the mode, weighting etc. :return: Array of joint velocities, which move the robot's tip according to the provided actions yet push the joint position towards a reference position. """ # get the Jacobian J = self._robot.arm.get_jacobian() J = np.transpose(J) J = np.flip(J) J = J[-3:] # compute the pseudo inverse J_plus = np.linalg.pinv(J) # weighting if type(setup["W"]) is list: W = np.array(setup["W"]) elif setup["W"] is None: # use default weighting later W = None else: raise TypeError("Unsupported type %s for weighting vector." % type(setup["W"])) # compute the error if setup["mode"] == "reference_position": dL, L = self.get_loss_reference_position(setup["ref_position"], W) elif setup["mode"] == "collision_avoidance": dL, L = self.get_loss_collision_avoidance(W, setup) # compute the joint velocities q_dot_redundancy = setup["alpha"] * np.matmul((np.identity(len(self._robot.arm.joints)) - np.matmul(J_plus, J)), dL) # the provided jacobian seems to be inaccurate resulting in slight movement of the ee. This is why # the velocites are set to 0 once the error stops changing much. e = dL if setup["cut-off_error"] is not None: if self._last_e is not None: e_dot = np.sum(np.abs(e - self._last_e)) if self._last_e is not None and e_dot < setup["cut-off_error"]: q_dot_redundancy = np.array([0.0] * 7) self._last_e = e else: self._last_e = e return actions - q_dot_redundancy, L def get_loss_reference_position(self, ref_pos, W): """ Calculates the summed squarred error between the current and the reference consfiguration as well as its partial derivatives with respect to al q's for redundancy resoltuion. -> L(q) = 1/2 sum_{i=1}^N w_i (q_i - \tilde{q}_i)^2 :param ref_pos: Reference position. :param W: Weighting vector. :return: 1: The partial derivatives of the summed squarred error between the current and the reference configuration -> -> \nabla_q L(q) 2: Summed squarred error between the current and the reference configuration. -> L(q) """ if W is None: # default weighting W = np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]) e = (self._robot.arm.get_joint_positions() - ref_pos) return e * W, 0.5*np.dot(e,e*W) def get_loss_collision_avoidance(self, W, setup): """ Calculates the loss as well as the respective partial derivatives for redundancy resoltuion with collision avoidance. This only works with tasks that include one obstacles! L(q) = \sum_{i=1}^N d(q)^{-1} :param W: Weighting vector. :return: 1: The partial derivatives of the loss above. -> \nable_q L(q) 2: The loss shown above.-> L(q) """ # get the position of the object p_obs = self._task.obstacle.get_position() + np.array([0, 0, 0.33]) - self._robot.arm.joints[0].get_position() #p_obs = self._task.obstacle.get_position() p_obs = np.append(p_obs, [1]) # get the transformation matrices, their derivatives, and the positions of the links A_1, A_2, A_3, A_4, A_5, A_6, A_7 = self._robot.get_transformation_matrices() dA_1, dA_2, dA_3, dA_4, dA_5, dA_6, dA_7 = self._robot.get_transformation_matrices_derivatives() p_1, p_2, p_3, p_4, p_5, p_6, p_7 = self._robot.get_link_positions_in_ref_frames() # we use reciprocal of the distance between each link and an obstacle as our Loss # the chain rule delivers: d/dq L = (p_i^0 (q_1,..., q_i) - p_obs)^T * d/dq (p_i^0 (q_1,..., q_i) - p_obs) # where p_i^0 = (\prod_{j=1}^i A_j^{j-1}(q_j)) * p_i # as the left side of d/dq L is used often, let's calculate it in advance d_1_T = np.transpose(A_1.dot(p_1) - p_obs) d_2_T = np.transpose(A_1.dot(A_2).dot(p_2) - p_obs) d_3_T = np.transpose(A_1.dot(A_2).dot(A_3).dot(p_3) - p_obs) d_4_T = np.transpose(A_1.dot(A_2).dot(A_3).dot(A_4).dot(p_4) - p_obs) d_5_T = np.transpose(A_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(p_5) - p_obs) d_6_T = np.transpose(A_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(p_6) - p_obs) d_7_T = np.transpose(A_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(A_7).dot(p_7) - p_obs) # now we can calculate the derivatives in each dimension dq_1 = -np.matmul(d_1_T, dA_1.dot(p_1)) + \ -np.matmul(d_2_T, dA_1.dot(A_2).dot(p_2)) + \ -np.matmul(d_3_T, dA_1.dot(A_2).dot(A_3).dot(p_3)) + \ -np.matmul(d_4_T, dA_1.dot(A_2).dot(A_3).dot(A_4).dot(p_4)) + \ -np.matmul(d_5_T, dA_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(p_5)) + \ -np.matmul(d_6_T, dA_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(p_6)) + \ -np.matmul(d_7_T, dA_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(A_7).dot(p_7)) dq_2 = -np.matmul(d_2_T, A_1.dot(dA_2).dot(p_2)) + \ -np.matmul(d_3_T, A_1.dot(dA_2).dot(A_3).dot(p_3)) + \ -np.matmul(d_4_T, A_1.dot(dA_2).dot(A_3).dot(A_4).dot(p_4)) + \ -np.matmul(d_5_T, A_1.dot(dA_2).dot(A_3).dot(A_4).dot(A_5).dot(p_5)) + \ -np.matmul(d_6_T, A_1.dot(dA_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(p_6)) + \ -np.matmul(d_7_T, A_1.dot(dA_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(A_7).dot(p_7)) dq_3 = -np.matmul(d_3_T, A_1.dot(A_2).dot(dA_3).dot(p_3)) + \ -np.matmul(d_4_T, A_1.dot(A_2).dot(dA_3).dot(A_4).dot(p_4)) + \ -np.matmul(d_5_T, A_1.dot(A_2).dot(dA_3).dot(A_4).dot(A_5).dot(p_5)) + \ -np.matmul(d_6_T, A_1.dot(A_2).dot(dA_3).dot(A_4).dot(A_5).dot(A_6).dot(p_6)) + \ -np.matmul(d_7_T, A_1.dot(A_2).dot(dA_3).dot(A_4).dot(A_5).dot(A_6).dot(A_7).dot(p_7)) dq_4 = -np.matmul(d_4_T, A_1.dot(A_2).dot(A_3).dot(dA_4).dot(p_4)) + \ -np.matmul(d_5_T, A_1.dot(A_2).dot(A_3).dot(dA_4).dot(A_5).dot(p_5)) + \ -np.matmul(d_6_T, A_1.dot(A_2).dot(A_3).dot(dA_4).dot(A_5).dot(A_6).dot(p_6)) + \ -np.matmul(d_7_T, A_1.dot(A_2).dot(A_3).dot(dA_4).dot(A_5).dot(A_6).dot(A_7).dot(p_7)) dq_5 = -np.matmul(d_5_T, A_1.dot(A_2).dot(A_3).dot(A_4).dot(dA_5).dot(p_5)) + \ -np.matmul(d_6_T, A_1.dot(A_2).dot(A_3).dot(A_4).dot(dA_5).dot(A_6).dot(p_6)) + \ -np.matmul(d_7_T, A_1.dot(A_2).dot(A_3).dot(A_4).dot(dA_5).dot(A_6).dot(A_7).dot(p_7)) dq_6 = -np.matmul(d_6_T, A_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(dA_6).dot(p_6)) + \ -np.matmul(d_7_T, A_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(dA_6).dot(A_7).dot(p_7)) dq_7 = -np.matmul(d_7_T, A_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(dA_7).dot(p_7)) if W is None: # default weighting vector -> based on the reciprocal of the distance. The greater the distance the smaller # the weight. That is, it is concentrated on close objects. W = np.array([1 / np.sum(np.square(d_1_T)), 1 / np.sum(np.square(d_2_T)) , 1 / np.sum(np.square(d_3_T)) , 1 / np.sum(np.square(d_4_T)) , 1 / np.sum(np.square(d_5_T)) , 1 / np.sum(np.square(d_6_T)) , 1 / np.sum(np.square(d_7_T)) ]) * 0.1 # --- scaling to keep distance to joint limits --- # get the minimum distance of each joint to its limit joint_positions = np.array([j.get_joint_position() for j in self._robot.arm.joints]) lower_joint_limits = np.array(setup["lower_joint_pos_limit"]) upper_joint_limits = np.array(setup["upper_joint_pos_limit"]) min_j_distances = [np.minimum(u-j, j-l) for l,u,j in zip(lower_joint_limits, upper_joint_limits, joint_positions)] # start scaling down error when joint limit is 15° away. # Scaling is done linearly from 0 to 1 for 0° <= d <= 15° rad_thres = 15*(np.pi/180) W *= np.array([ np.minimum((1/rad_thres)*d, 1.0) for d in min_j_distances]) # concatenate the derivaties to vector and apply weightig dL = np.array([dq_1, dq_2, dq_3, dq_4, dq_5, dq_6, dq_7])*W # calculate the loss L = np.sqrt(np.dot(d_1_T, d_1_T))*W[0] \ + np.sqrt(np.dot(d_2_T, d_2_T))*W[1] \ + np.sqrt(np.dot(d_3_T, d_3_T))*W[2] \ + np.sqrt(np.dot(d_4_T, d_4_T))*W[3] \ + np.sqrt(np.dot(d_5_T, d_5_T))*W[4] \ + np.sqrt(np.dot(d_6_T, d_6_T))*W[5] \ + np.sqrt(np.dot(d_7_T, d_7_T))*W[6] return dL, L def enable_path_observations(self, value: bool) -> None: if (self._action_mode.arm != ArmActionMode.DELTA_EE_POSE_PLAN_WORLD_FRAME and self._action_mode.arm != ArmActionMode.ABS_EE_POSE_PLAN_WORLD_FRAME and self._action_mode.arm != ArmActionMode.EE_POSE_PLAN_EE_FRAME): raise RuntimeError('Only available in DELTA_EE_POSE_PLAN or ' 'ABS_EE_POSE_PLAN action mode.') self._enable_path_observations = value def get_path_observations(self): if (self._action_mode.arm != ArmActionMode.DELTA_EE_POSE_PLAN_WORLD_FRAME and self._action_mode.arm != ArmActionMode.ABS_EE_POSE_PLAN_WORLD_FRAME and self._action_mode.arm != ArmActionMode.EE_POSE_PLAN_EE_FRAME): raise RuntimeError('Only available in DELTA_EE_POSE_PLAN or ' 'ABS_EE_POSE_PLAN action mode.') return self._path_observations def get_demos(self, amount: int, live_demos: bool = False, image_paths: bool = False, callable_each_step: Callable[[Observation], None] = None, max_attempts: int = _MAX_DEMO_ATTEMPTS, ) -> List[Demo]: """Negative means all demos""" if not live_demos and (self._dataset_root is None or len(self._dataset_root) == 0): raise RuntimeError( "Can't ask for a stored demo when no dataset root provided.") if not live_demos: if self._dataset_root is None or len(self._dataset_root) == 0: raise RuntimeError( "Can't ask for stored demo when no dataset root provided.") demos = utils.get_stored_demos( amount, image_paths, self._dataset_root, self._variation_number, self._task.get_name(), self._obs_config) else: ctr_loop = self._robot.arm.joints[0].is_control_loop_enabled() self._robot.arm.set_control_loop_enabled(True) demos = self._get_live_demos( amount, callable_each_step, max_attempts) self._robot.arm.set_control_loop_enabled(ctr_loop) return demos def _get_live_demos(self, amount: int, callable_each_step: Callable[ [Observation], None] = None, max_attempts: int = _MAX_DEMO_ATTEMPTS) -> List[Demo]: demos = [] for i in range(amount): attempts = max_attempts while attempts > 0: random_seed = np.random.get_state() self.reset() logging.info('Collecting demo %d' % i) try: demo = self._scene.get_demo( callable_each_step=callable_each_step) demo.random_seed = random_seed demos.append(demo) break except Exception as e: attempts -= 1 logging.info('Bad demo. ' + str(e)) if attempts <= 0: raise RuntimeError( 'Could not collect demos. Maybe a problem with the task?') return demos def reset_to_demo(self, demo: Demo) -> (List[str], Observation): demo.restore_state() return self.reset()
[((1721, 1735), 'pyrep.objects.Dummy.create', 'Dummy.create', ([], {}), '()\n', (1733, 1735), False, 'from pyrep.objects import Dummy, Object\n'), ((8536, 8557), 'numpy.array', 'np.array', (['action[:-1]'], {}), '(action[:-1])\n', (8544, 8557), True, 'import numpy as np\n'), ((14997, 15012), 'numpy.transpose', 'np.transpose', (['J'], {}), '(J)\n', (15009, 15012), True, 'import numpy as np\n'), ((15025, 15035), 'numpy.flip', 'np.flip', (['J'], {}), '(J)\n', (15032, 15035), True, 'import numpy as np\n'), ((15110, 15127), 'numpy.linalg.pinv', 'np.linalg.pinv', (['J'], {}), '(J)\n', (15124, 15127), True, 'import numpy as np\n'), ((18089, 18110), 'numpy.append', 'np.append', (['p_obs', '[1]'], {}), '(p_obs, [1])\n', (18098, 18110), True, 'import numpy as np\n'), ((22729, 22769), 'numpy.array', 'np.array', (["setup['lower_joint_pos_limit']"], {}), "(setup['lower_joint_pos_limit'])\n", (22737, 22769), True, 'import numpy as np\n'), ((22799, 22839), 'numpy.array', 'np.array', (["setup['upper_joint_pos_limit']"], {}), "(setup['upper_joint_pos_limit'])\n", (22807, 22839), True, 'import numpy as np\n'), ((5012, 5028), 'numpy.shape', 'np.shape', (['action'], {}), '(action)\n', (5020, 5028), True, 'import numpy as np\n'), ((5620, 5634), 'numpy.abs', 'np.abs', (['action'], {}), '(action)\n', (5626, 5634), True, 'import numpy as np\n'), ((6368, 6422), 'numpy.allclose', 'np.allclose', (['cur_positions', 'joint_positions'], {'atol': '(0.01)'}), '(cur_positions, joint_positions, atol=0.01)\n', (6379, 6422), True, 'import numpy as np\n'), ((9006, 9025), 'numpy.array', 'np.array', (['([0.0] * 7)'], {}), '([0.0] * 7)\n', (9014, 9025), True, 'import numpy as np\n'), ((15202, 15222), 'numpy.array', 'np.array', (["setup['W']"], {}), "(setup['W'])\n", (15210, 15222), True, 'import numpy as np\n'), ((17229, 17274), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0])\n', (17237, 17274), True, 'import numpy as np\n'), ((22867, 22891), 'numpy.minimum', 'np.minimum', (['(u - j)', '(j - l)'], {}), '(u - j, j - l)\n', (22877, 22891), True, 'import numpy as np\n'), ((23356, 23408), 'numpy.array', 'np.array', (['[dq_1, dq_2, dq_3, dq_4, dq_5, dq_6, dq_7]'], {}), '([dq_1, dq_2, dq_3, dq_4, dq_5, dq_6, dq_7])\n', (23364, 23408), True, 'import numpy as np\n'), ((5294, 5314), 'numpy.linalg.norm', 'np.linalg.norm', (['quat'], {}), '(quat)\n', (5308, 5314), True, 'import numpy as np\n'), ((6523, 6574), 'numpy.allclose', 'np.allclose', (['cur_positions', 'prev_values'], {'atol': '(0.001)'}), '(cur_positions, prev_values, atol=0.001)\n', (6534, 6574), True, 'import numpy as np\n'), ((16317, 16336), 'numpy.array', 'np.array', (['([0.0] * 7)'], {}), '([0.0] * 7)\n', (16325, 16336), True, 'import numpy as np\n'), ((17363, 17379), 'numpy.dot', 'np.dot', (['e', '(e * W)'], {}), '(e, e * W)\n', (17369, 17379), True, 'import numpy as np\n'), ((17954, 17976), 'numpy.array', 'np.array', (['[0, 0, 0.33]'], {}), '([0, 0, 0.33])\n', (17962, 17976), True, 'import numpy as np\n'), ((23216, 23250), 'numpy.minimum', 'np.minimum', (['(1 / rad_thres * d)', '(1.0)'], {}), '(1 / rad_thres * d, 1.0)\n', (23226, 23250), True, 'import numpy as np\n'), ((26437, 26458), 'numpy.random.get_state', 'np.random.get_state', ([], {}), '()\n', (26456, 26458), True, 'import numpy as np\n'), ((26504, 26542), 'logging.info', 'logging.info', (["('Collecting demo %d' % i)"], {}), "('Collecting demo %d' % i)\n", (26516, 26542), False, 'import logging\n'), ((15838, 15858), 'numpy.matmul', 'np.matmul', (['J_plus', 'J'], {}), '(J_plus, J)\n', (15847, 15858), True, 'import numpy as np\n'), ((16180, 16204), 'numpy.abs', 'np.abs', (['(e - self._last_e)'], {}), '(e - self._last_e)\n', (16186, 16204), True, 'import numpy as np\n'), ((23761, 23781), 'numpy.dot', 'np.dot', (['d_7_T', 'd_7_T'], {}), '(d_7_T, d_7_T)\n', (23767, 23781), True, 'import numpy as np\n'), ((23711, 23731), 'numpy.dot', 'np.dot', (['d_6_T', 'd_6_T'], {}), '(d_6_T, d_6_T)\n', (23717, 23731), True, 'import numpy as np\n'), ((5202, 5218), 'numpy.shape', 'np.shape', (['action'], {}), '(action)\n', (5210, 5218), True, 'import numpy as np\n'), ((23661, 23681), 'numpy.dot', 'np.dot', (['d_5_T', 'd_5_T'], {}), '(d_5_T, d_5_T)\n', (23667, 23681), True, 'import numpy as np\n'), ((22117, 22133), 'numpy.square', 'np.square', (['d_1_T'], {}), '(d_1_T)\n', (22126, 22133), True, 'import numpy as np\n'), ((22173, 22189), 'numpy.square', 'np.square', (['d_2_T'], {}), '(d_2_T)\n', (22182, 22189), True, 'import numpy as np\n'), ((22230, 22246), 'numpy.square', 'np.square', (['d_3_T'], {}), '(d_3_T)\n', (22239, 22246), True, 'import numpy as np\n'), ((22287, 22303), 'numpy.square', 'np.square', (['d_4_T'], {}), '(d_4_T)\n', (22296, 22303), True, 'import numpy as np\n'), ((22344, 22360), 'numpy.square', 'np.square', (['d_5_T'], {}), '(d_5_T)\n', (22353, 22360), True, 'import numpy as np\n'), ((22401, 22417), 'numpy.square', 'np.square', (['d_6_T'], {}), '(d_6_T)\n', (22410, 22417), True, 'import numpy as np\n'), ((22458, 22474), 'numpy.square', 'np.square', (['d_7_T'], {}), '(d_7_T)\n', (22467, 22474), True, 'import numpy as np\n'), ((23611, 23631), 'numpy.dot', 'np.dot', (['d_4_T', 'd_4_T'], {}), '(d_4_T, d_4_T)\n', (23617, 23631), True, 'import numpy as np\n'), ((23561, 23581), 'numpy.dot', 'np.dot', (['d_3_T', 'd_3_T'], {}), '(d_3_T, d_3_T)\n', (23567, 23581), True, 'import numpy as np\n'), ((23461, 23481), 'numpy.dot', 'np.dot', (['d_1_T', 'd_1_T'], {}), '(d_1_T, d_1_T)\n', (23467, 23481), True, 'import numpy as np\n'), ((23511, 23531), 'numpy.dot', 'np.dot', (['d_2_T', 'd_2_T'], {}), '(d_2_T, d_2_T)\n', (23517, 23531), True, 'import numpy as np\n'), ((11795, 11829), 'pyquaternion.Quaternion', 'Quaternion', (['a_qw', 'a_qx', 'a_qy', 'a_qz'], {}), '(a_qw, a_qx, a_qy, a_qz)\n', (11805, 11829), False, 'from pyquaternion import Quaternion\n'), ((11832, 11858), 'pyquaternion.Quaternion', 'Quaternion', (['qw', 'qx', 'qy', 'qz'], {}), '(qw, qx, qy, qz)\n', (11842, 11858), False, 'from pyquaternion import Quaternion\n'), ((12452, 12486), 'pyquaternion.Quaternion', 'Quaternion', (['a_qw', 'a_qx', 'a_qy', 'a_qz'], {}), '(a_qw, a_qx, a_qy, a_qz)\n', (12462, 12486), False, 'from pyquaternion import Quaternion\n'), ((12489, 12515), 'pyquaternion.Quaternion', 'Quaternion', (['qw', 'qx', 'qy', 'qz'], {}), '(qw, qx, qy, qz)\n', (12499, 12515), False, 'from pyquaternion import Quaternion\n')]
Yoann-Vie/esgi-hearthstone
tests/generic_relations/test_forms.py
115d03426c7e8e80d89883b78ac72114c29bed12
from django import forms from django.contrib.contenttypes.forms import generic_inlineformset_factory from django.contrib.contenttypes.models import ContentType from django.db import models from django.test import TestCase from django.test.utils import isolate_apps from .models import ( Animal, ForProxyModelModel, Gecko, Mineral, ProxyRelatedModel, TaggedItem, ) class CustomWidget(forms.TextInput): pass class TaggedItemForm(forms.ModelForm): class Meta: model = TaggedItem fields = '__all__' widgets = {'tag': CustomWidget} class GenericInlineFormsetTests(TestCase): def test_output(self): GenericFormSet = generic_inlineformset_factory(TaggedItem, extra=1) formset = GenericFormSet() self.assertHTMLEqual( ''.join(form.as_p() for form in formset.forms), """<p><label for="id_generic_relations-taggeditem-content_type-object_id-0-tag"> Tag:</label> <input id="id_generic_relations-taggeditem-content_type-object_id-0-tag" type="text" name="generic_relations-taggeditem-content_type-object_id-0-tag" maxlength="50"></p> <p><label for="id_generic_relations-taggeditem-content_type-object_id-0-DELETE">Delete:</label> <input type="checkbox" name="generic_relations-taggeditem-content_type-object_id-0-DELETE" id="id_generic_relations-taggeditem-content_type-object_id-0-DELETE"> <input type="hidden" name="generic_relations-taggeditem-content_type-object_id-0-id" id="id_generic_relations-taggeditem-content_type-object_id-0-id"></p>""" ) formset = GenericFormSet(instance=Animal()) self.assertHTMLEqual( ''.join(form.as_p() for form in formset.forms), """<p><label for="id_generic_relations-taggeditem-content_type-object_id-0-tag"> Tag:</label> <input id="id_generic_relations-taggeditem-content_type-object_id-0-tag" type="text" name="generic_relations-taggeditem-content_type-object_id-0-tag" maxlength="50"></p> <p><label for="id_generic_relations-taggeditem-content_type-object_id-0-DELETE">Delete:</label> <input type="checkbox" name="generic_relations-taggeditem-content_type-object_id-0-DELETE" id="id_generic_relations-taggeditem-content_type-object_id-0-DELETE"><input type="hidden" name="generic_relations-taggeditem-content_type-object_id-0-id" id="id_generic_relations-taggeditem-content_type-object_id-0-id"></p>""" ) platypus = Animal.objects.create( common_name='Platypus', latin_name='Ornithorhynchus anatinus', ) platypus.tags.create(tag='shiny') GenericFormSet = generic_inlineformset_factory(TaggedItem, extra=1) formset = GenericFormSet(instance=platypus) tagged_item_id = TaggedItem.objects.get(tag='shiny', object_id=platypus.id).id self.assertHTMLEqual( ''.join(form.as_p() for form in formset.forms), """<p><label for="id_generic_relations-taggeditem-content_type-object_id-0-tag">Tag:</label> <input id="id_generic_relations-taggeditem-content_type-object_id-0-tag" type="text" name="generic_relations-taggeditem-content_type-object_id-0-tag" value="shiny" maxlength="50"></p> <p><label for="id_generic_relations-taggeditem-content_type-object_id-0-DELETE">Delete:</label> <input type="checkbox" name="generic_relations-taggeditem-content_type-object_id-0-DELETE" id="id_generic_relations-taggeditem-content_type-object_id-0-DELETE"> <input type="hidden" name="generic_relations-taggeditem-content_type-object_id-0-id" value="%s" id="id_generic_relations-taggeditem-content_type-object_id-0-id"></p> <p><label for="id_generic_relations-taggeditem-content_type-object_id-1-tag">Tag:</label> <input id="id_generic_relations-taggeditem-content_type-object_id-1-tag" type="text" name="generic_relations-taggeditem-content_type-object_id-1-tag" maxlength="50"></p> <p><label for="id_generic_relations-taggeditem-content_type-object_id-1-DELETE">Delete:</label> <input type="checkbox" name="generic_relations-taggeditem-content_type-object_id-1-DELETE" id="id_generic_relations-taggeditem-content_type-object_id-1-DELETE"> <input type="hidden" name="generic_relations-taggeditem-content_type-object_id-1-id" id="id_generic_relations-taggeditem-content_type-object_id-1-id"></p>""" % tagged_item_id ) lion = Animal.objects.create(common_name='Lion', latin_name='Panthera leo') formset = GenericFormSet(instance=lion, prefix='x') self.assertHTMLEqual( ''.join(form.as_p() for form in formset.forms), """<p><label for="id_x-0-tag">Tag:</label> <input id="id_x-0-tag" type="text" name="x-0-tag" maxlength="50"></p> <p><label for="id_x-0-DELETE">Delete:</label> <input type="checkbox" name="x-0-DELETE" id="id_x-0-DELETE"> <input type="hidden" name="x-0-id" id="id_x-0-id"></p>""" ) def test_options(self): TaggedItemFormSet = generic_inlineformset_factory( TaggedItem, can_delete=False, exclude=['tag'], extra=3, ) platypus = Animal.objects.create(common_name='Platypus', latin_name='Ornithorhynchus anatinus') harmless = platypus.tags.create(tag='harmless') mammal = platypus.tags.create(tag='mammal') # Works without a queryset. formset = TaggedItemFormSet(instance=platypus) self.assertEqual(len(formset.forms), 5) self.assertHTMLEqual( formset.forms[0].as_p(), '<input type="hidden" name="generic_relations-taggeditem-content_type-object_id-0-id" value="%s" ' 'id="id_generic_relations-taggeditem-content_type-object_id-0-id">' % harmless.pk ) self.assertEqual(formset.forms[0].instance, harmless) self.assertEqual(formset.forms[1].instance, mammal) self.assertIsNone(formset.forms[2].instance.pk) # A queryset can be used to alter display ordering. formset = TaggedItemFormSet(instance=platypus, queryset=TaggedItem.objects.order_by('-tag')) self.assertEqual(len(formset.forms), 5) self.assertEqual(formset.forms[0].instance, mammal) self.assertEqual(formset.forms[1].instance, harmless) self.assertIsNone(formset.forms[2].instance.pk) # A queryset that omits items. formset = TaggedItemFormSet(instance=platypus, queryset=TaggedItem.objects.filter(tag__startswith='harm')) self.assertEqual(len(formset.forms), 4) self.assertEqual(formset.forms[0].instance, harmless) self.assertIsNone(formset.forms[1].instance.pk) def test_get_queryset_ordering(self): """ BaseGenericInlineFormSet.get_queryset() adds default ordering, if needed. """ inline_formset = generic_inlineformset_factory(TaggedItem, exclude=('tag',)) formset = inline_formset(instance=Gecko.objects.create()) self.assertIs(formset.get_queryset().ordered, True) def test_initial(self): quartz = Mineral.objects.create(name='Quartz', hardness=7) GenericFormSet = generic_inlineformset_factory(TaggedItem, extra=1) ctype = ContentType.objects.get_for_model(quartz) initial_data = [{ 'tag': 'lizard', 'content_type': ctype.pk, 'object_id': quartz.pk, }] formset = GenericFormSet(initial=initial_data) self.assertEqual(formset.forms[0].initial, initial_data[0]) def test_meta_widgets(self): """TaggedItemForm has a widget defined in Meta.""" Formset = generic_inlineformset_factory(TaggedItem, TaggedItemForm) form = Formset().forms[0] self.assertIsInstance(form['tag'].field.widget, CustomWidget) @isolate_apps('generic_relations') def test_incorrect_content_type(self): class BadModel(models.Model): content_type = models.PositiveIntegerField() msg = "fk_name 'generic_relations.BadModel.content_type' is not a ForeignKey to ContentType" with self.assertRaisesMessage(Exception, msg): generic_inlineformset_factory(BadModel, TaggedItemForm) def test_save_new_uses_form_save(self): class SaveTestForm(forms.ModelForm): def save(self, *args, **kwargs): self.instance.saved_by = 'custom method' return super().save(*args, **kwargs) Formset = generic_inlineformset_factory(ForProxyModelModel, fields='__all__', form=SaveTestForm) instance = ProxyRelatedModel.objects.create() data = { 'form-TOTAL_FORMS': '1', 'form-INITIAL_FORMS': '0', 'form-MAX_NUM_FORMS': '', 'form-0-title': 'foo', } formset = Formset(data, instance=instance, prefix='form') self.assertTrue(formset.is_valid()) new_obj = formset.save()[0] self.assertEqual(new_obj.saved_by, 'custom method') def test_save_new_for_proxy(self): Formset = generic_inlineformset_factory(ForProxyModelModel, fields='__all__', for_concrete_model=False) instance = ProxyRelatedModel.objects.create() data = { 'form-TOTAL_FORMS': '1', 'form-INITIAL_FORMS': '0', 'form-MAX_NUM_FORMS': '', 'form-0-title': 'foo', } formset = Formset(data, instance=instance, prefix='form') self.assertTrue(formset.is_valid()) new_obj, = formset.save() self.assertEqual(new_obj.obj, instance) def test_save_new_for_concrete(self): Formset = generic_inlineformset_factory(ForProxyModelModel, fields='__all__', for_concrete_model=True) instance = ProxyRelatedModel.objects.create() data = { 'form-TOTAL_FORMS': '1', 'form-INITIAL_FORMS': '0', 'form-MAX_NUM_FORMS': '', 'form-0-title': 'foo', } formset = Formset(data, instance=instance, prefix='form') self.assertTrue(formset.is_valid()) new_obj, = formset.save() self.assertNotIsInstance(new_obj.obj, ProxyRelatedModel) def test_initial_count(self): GenericFormSet = generic_inlineformset_factory(TaggedItem) data = { 'form-TOTAL_FORMS': '3', 'form-INITIAL_FORMS': '3', 'form-MAX_NUM_FORMS': '', } formset = GenericFormSet(data=data, prefix='form') self.assertEqual(formset.initial_form_count(), 3) formset = GenericFormSet(data=data, prefix='form', save_as_new=True) self.assertEqual(formset.initial_form_count(), 0) def test_save_as_new(self): """ The save_as_new parameter creates new items that are associated with the object. """ lion = Animal.objects.create(common_name='Lion', latin_name='Panthera leo') yellow = lion.tags.create(tag='yellow') hairy = lion.tags.create(tag='hairy') GenericFormSet = generic_inlineformset_factory(TaggedItem) data = { 'form-TOTAL_FORMS': '3', 'form-INITIAL_FORMS': '2', 'form-MAX_NUM_FORMS': '', 'form-0-id': str(yellow.pk), 'form-0-tag': 'hunts', 'form-1-id': str(hairy.pk), 'form-1-tag': 'roars', } formset = GenericFormSet(data, instance=lion, prefix='form', save_as_new=True) self.assertTrue(formset.is_valid()) tags = formset.save() self.assertEqual([tag.tag for tag in tags], ['hunts', 'roars']) hunts, roars = tags self.assertSequenceEqual(lion.tags.order_by('tag'), [hairy, hunts, roars, yellow])
[((7814, 7847), 'django.test.utils.isolate_apps', 'isolate_apps', (['"""generic_relations"""'], {}), "('generic_relations')\n", (7826, 7847), False, 'from django.test.utils import isolate_apps\n'), ((692, 742), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['TaggedItem'], {'extra': '(1)'}), '(TaggedItem, extra=1)\n', (721, 742), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((2634, 2684), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['TaggedItem'], {'extra': '(1)'}), '(TaggedItem, extra=1)\n', (2663, 2684), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((4952, 5041), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['TaggedItem'], {'can_delete': '(False)', 'exclude': "['tag']", 'extra': '(3)'}), "(TaggedItem, can_delete=False, exclude=['tag'],\n extra=3)\n", (4981, 5041), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((6834, 6893), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['TaggedItem'], {'exclude': "('tag',)"}), "(TaggedItem, exclude=('tag',))\n", (6863, 6893), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((7147, 7197), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['TaggedItem'], {'extra': '(1)'}), '(TaggedItem, extra=1)\n', (7176, 7197), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((7215, 7256), 'django.contrib.contenttypes.models.ContentType.objects.get_for_model', 'ContentType.objects.get_for_model', (['quartz'], {}), '(quartz)\n', (7248, 7256), False, 'from django.contrib.contenttypes.models import ContentType\n'), ((7642, 7699), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['TaggedItem', 'TaggedItemForm'], {}), '(TaggedItem, TaggedItemForm)\n', (7671, 7699), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((8490, 8581), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['ForProxyModelModel'], {'fields': '"""__all__"""', 'form': 'SaveTestForm'}), "(ForProxyModelModel, fields='__all__', form=\n SaveTestForm)\n", (8519, 8581), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((9085, 9182), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['ForProxyModelModel'], {'fields': '"""__all__"""', 'for_concrete_model': '(False)'}), "(ForProxyModelModel, fields='__all__',\n for_concrete_model=False)\n", (9114, 9182), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((9676, 9772), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['ForProxyModelModel'], {'fields': '"""__all__"""', 'for_concrete_model': '(True)'}), "(ForProxyModelModel, fields='__all__',\n for_concrete_model=True)\n", (9705, 9772), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((10282, 10323), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['TaggedItem'], {}), '(TaggedItem)\n', (10311, 10323), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((11093, 11134), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['TaggedItem'], {}), '(TaggedItem)\n', (11122, 11134), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((7959, 7988), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {}), '()\n', (7986, 7988), False, 'from django.db import models\n'), ((8162, 8217), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['BadModel', 'TaggedItemForm'], {}), '(BadModel, TaggedItemForm)\n', (8191, 8217), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n')]
tamnguyen135/sage
src/sage/rings/polynomial/pbori/fglm.py
2c87dc16f26604033bb1b2d1dc6796d279c88b16
from .PyPolyBoRi import (BooleSet, Polynomial, BoolePolynomialVector, FGLMStrategy) def _fglm(I, from_ring, to_ring): r""" Unchecked variant of fglm """ vec = BoolePolynomialVector(I) return FGLMStrategy(from_ring, to_ring, vec).main() def fglm(I, from_ring, to_ring): r""" Convert *reduced* Groebner Basis in from_ring to a GroebnerBasis in to_ring. It acts independent of the global ring, which is restored at the end of the computation. TESTS:: sage: from sage.rings.polynomial.pbori import * sage: from sage.rings.polynomial.pbori.PyPolyBoRi import OrderCode sage: dp_asc = OrderCode.dp_asc sage: r=declare_ring(['x','y','z'],dict()) sage: old_ring = r sage: new_ring = old_ring.clone(ordering=dp_asc) sage: (x,y,z) = [old_ring.variable(i) for i in range(3)] sage: ideal=[x+z, y+z]# lp Groebner basis sage: from sage.rings.polynomial.pbori.fglm import fglm sage: list(fglm(ideal, old_ring, new_ring)) [y + x, z + x] """ for poly in I: if poly.ring().id() != from_ring.id(): raise ValueError("Ideal I must be from the first ring argument") return _fglm(I, from_ring, to_ring) def vars_real_divisors(monomial, monomial_set): r""" Returns all elements of of monomial_set, which result multiplied by a variable in monomial. TESTS:: sage: from sage.rings.polynomial.pbori.pbori import * sage: from sage.rings.polynomial.pbori.PyPolyBoRi import OrderCode sage: dp_asc = OrderCode.dp_asc sage: from sage.rings.polynomial.pbori.PyPolyBoRi import Ring sage: r=Ring(1000) sage: x = r.variable sage: b=BooleSet([x(1)*x(2),x(2)]) sage: from sage.rings.polynomial.pbori.fglm import vars_real_divisors sage: vars_real_divisors(x(1)*x(2)*x(3),b) {{x(1),x(2)}} """ return BooleSet(Polynomial(monomial_set.divisors_of(monomial)). \ graded_part(monomial.deg() - 1)) def m_k_plus_one(completed_elements, variables): r""" Calculates $m_{k+1}$ from the FGLM algorithm as described in Wichmanns diploma thesis It would be nice to be able to efficiently extract the smallest term of a polynomial. TESTS:: sage: from sage.rings.polynomial.pbori.pbori import * sage: from sage.rings.polynomial.pbori.PyPolyBoRi import OrderCode sage: dp_asc = OrderCode.dp_asc sage: from sage.rings.polynomial.pbori.PyPolyBoRi import Ring sage: r=Ring(1000) sage: x = r.variable sage: from sage.rings.polynomial.pbori.PyPolyBoRi import Monomial sage: s=BooleSet([x(1)*x(2),x(1),x(2),Monomial(r),x(3)]) sage: from sage.rings.polynomial.pbori.fglm import m_k_plus_one sage: variables=BooleSet([x(1),x(2),x(3)]) sage: m_k_plus_one(s,variables) x(2)*x(3) sage: r2 = r.clone(ordering=dp_asc) sage: m_k_plus_one(r2(s).set(),r2(variables).set()) x(1)*x(3) """ return sorted(completed_elements.cartesian_product(variables).diff( completed_elements))[0]
[]
coursetable/ferry
ferry/embed/umap_reduce.py
f369b9588557c359af8589f2575a03493d6b08b6
""" Uses UMAP (https://umap-learn.readthedocs.io/en/latest/index.html) to reduce course embeddings to two dimensions for visualization. """ import pandas as pd import umap from sklearn.preprocessing import StandardScaler from ferry import config courses = pd.read_csv( config.DATA_DIR / "course_embeddings/courses_deduplicated.csv", index_col=0, ) # mypy: ignore-errors embeddings = pd.read_hdf( config.DATA_DIR / "course_embeddings/fasttext_embeddings.h5", key="embeddings", ) embeddings = StandardScaler().fit_transform(embeddings) reducer = umap.UMAP() umap_embeddings = reducer.fit_transform(embeddings) courses["umap1"] = umap_embeddings[:, 0] courses["umap2"] = umap_embeddings[:, 1] courses.to_csv(config.DATA_DIR / "course_embeddings/courses_deduplicated_umap.csv")
[((258, 350), 'pandas.read_csv', 'pd.read_csv', (["(config.DATA_DIR / 'course_embeddings/courses_deduplicated.csv')"], {'index_col': '(0)'}), "(config.DATA_DIR / 'course_embeddings/courses_deduplicated.csv',\n index_col=0)\n", (269, 350), True, 'import pandas as pd\n'), ((394, 489), 'pandas.read_hdf', 'pd.read_hdf', (["(config.DATA_DIR / 'course_embeddings/fasttext_embeddings.h5')"], {'key': '"""embeddings"""'}), "(config.DATA_DIR / 'course_embeddings/fasttext_embeddings.h5',\n key='embeddings')\n", (405, 489), True, 'import pandas as pd\n'), ((565, 576), 'umap.UMAP', 'umap.UMAP', ([], {}), '()\n', (574, 576), False, 'import umap\n'), ((511, 527), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (525, 527), False, 'from sklearn.preprocessing import StandardScaler\n')]
zhumakova/ClassProject
flora_fauna.py
b869258706dae7c8e8ab723c61a45fd78e26494f
import inheritance class Flora: def __init__(self, name, lifespan, habitat, plant_type): self.name = name self.lifespan = lifespan self.habitat = habitat self.plant_type = plant_type self.plant_size = 0 class Fauna: def __init__(self, name): self.name = name class Predator(Fauna): def __init__(self, name:str, predator_type:str, what_eats:str, lifespan:int): super().__init__(name) self.predator_type = predator_type self.what_eats = what_eats self.lifespan = lifespan # def check_planet(self,planet:tsk4.Planet): # if planet.fauna and not planet.humanity: # print('YES') # else: # print('NO') class Mammal(Fauna): def __init__(self, name, mammal_type, lifespan): super().__init__(name) self.mammal_type = mammal_type self.lifespan = lifespan def check_planet(self,planet:inheritance.Planet): if planet.flora and planet.fauna and not planet.humanity: planet.add_fauna(self) shark = Predator('baby shark','sea','all',20) giraffe = Mammal('malwan','earth',20) giraffe.check_planet(inheritance.friendly) marti = Mammal('marti','earth',20) marti.check_planet(inheritance.friendly) print(inheritance.friendly.__dict__) print(inheritance.Planet.__dict__)
[]
rdenham/jug
jug/subcommands/demo.py
40925445a5f96f9eec237de37e46e6fabcce6526
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright (C) 2017, Luis Pedro Coelho <[email protected]> # vim: set ts=4 sts=4 sw=4 expandtab smartindent: # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from . import SubCommand __all__ = ['DemoCommand'] class DemoCommand(SubCommand): '''Create demo directory. ''' name = "demo" def run(self, *args, **kwargs): import os from os import path print(''' Jug will create a directory called 'jug-demo/' with a file called 'primes.py' inside. You can test jug by switching to that directory and running the commands: jug status primes.py followed by jug execute primes.py Upon termination of the process, results will be in a file called 'output.txt'. PARALLEL USAGE You can speed up the process by running several 'jug execute' in parallel: jug execute primes.py & jug execute primes.py & jug execute primes.py & jug execute primes.py & TROUBLE SHOOTING: Should you run into issues, you can run the internal tests for jug with jug test-jug FURTHER READING The online documentation contains further reading. You can read the next tutorial here: http://jug.readthedocs.io/en/latest/decrypt-example.html ''') if path.exists('jug-demo'): print("Jug-demo previously created") return os.mkdir('jug-demo') output = open('jug-demo/primes.py', 'wt') output.write(r''' from time import sleep from jug import TaskGenerator @TaskGenerator def is_prime(n): sleep(1.) for j in range(2, n - 1): if (n % j) == 0: return False return True @TaskGenerator def count_primes(ps): return sum(ps) @TaskGenerator def write_output(n): output = open('output.txt', 'wt') output.write("Found {0} primes <= 100.\n".format(n)) output.close() primes100 = [] for n in range(2, 101): primes100.append(is_prime(n)) n_primes = count_primes(primes100) write_output(n_primes) ''') output.close() demo = DemoCommand()
[((2271, 2294), 'os.path.exists', 'path.exists', (['"""jug-demo"""'], {}), "('jug-demo')\n", (2282, 2294), False, 'from os import path\n'), ((2372, 2392), 'os.mkdir', 'os.mkdir', (['"""jug-demo"""'], {}), "('jug-demo')\n", (2380, 2392), False, 'import os\n')]
ID2797370/arxiv-search
search/controllers/simple/tests.py
889402e8eef9a2faaa8e900978cd27ff2784ce33
"""Tests for simple search controller, :mod:`search.controllers.simple`.""" from http import HTTPStatus from unittest import TestCase, mock from werkzeug.datastructures import MultiDict from werkzeug.exceptions import InternalServerError, NotFound, BadRequest from search.domain import SimpleQuery from search.controllers import simple from search.controllers.simple.forms import SimpleSearchForm from search.services.index import ( IndexConnectionError, QueryError, DocumentNotFound, ) class TestRetrieveDocument(TestCase): """Tests for :func:`.simple.retrieve_document`.""" @mock.patch("search.controllers.simple.SearchSession") def test_encounters_queryerror(self, mock_index): """There is a bug in the index or query.""" def _raiseQueryError(*args, **kwargs): raise QueryError("What now") mock_index.get_document.side_effect = _raiseQueryError with self.assertRaises(InternalServerError): try: response_data, code, headers = simple.retrieve_document(1) except QueryError as ex: self.fail("QueryError should be handled (caught %s)" % ex) self.assertEqual( mock_index.get_document.call_count, 1, "A search should be attempted", ) @mock.patch("search.controllers.simple.SearchSession") def test_index_raises_connection_exception(self, mock_index): """Index service raises a IndexConnectionError.""" mock_index.get_document.side_effect = IndexConnectionError with self.assertRaises(InternalServerError): response_data, code, headers = simple.retrieve_document("124.5678") self.assertEqual( mock_index.get_document.call_count, 1, "A search should be attempted", ) call_args, call_kwargs = mock_index.get_document.call_args self.assertIsInstance(call_args[0], str, "arXiv ID is passed") # self.assertEqual(code, status.HTTP_500_INTERNAL_SERVER_ERROR) @mock.patch("search.controllers.simple.SearchSession") def test_document_not_found(self, mock_index): """The document is not found.""" def _raiseDocumentNotFound(*args, **kwargs): raise DocumentNotFound("What now") mock_index.get_document.side_effect = _raiseDocumentNotFound with self.assertRaises(NotFound): try: response_data, code, headers = simple.retrieve_document(1) except DocumentNotFound as ex: self.fail( "DocumentNotFound should be handled (caught %s)" % ex ) self.assertEqual( mock_index.get_document.call_count, 1, "A search should be attempted", ) class TestSearchController(TestCase): """Tests for :func:`.simple.search`.""" @mock.patch( "search.controllers.simple.url_for", lambda *a, **k: f'https://arxiv.org/{k["paper_id"]}', ) @mock.patch("search.controllers.simple.SearchSession") def test_arxiv_id(self, mock_index): """Query parameter contains an arXiv ID.""" request_data = MultiDict({"query": "1702.00123"}) response_data, code, headers = simple.search(request_data) self.assertEqual( code, HTTPStatus.MOVED_PERMANENTLY, "Response should be a 301 redirect.", ) self.assertIn("Location", headers, "Location header should be set") self.assertEqual( mock_index.search.call_count, 0, "No search should be attempted" ) @mock.patch("search.controllers.simple.SearchSession") def test_no_form_data(self, mock_index): """No form data has been submitted.""" request_data = MultiDict() response_data, code, headers = simple.search(request_data) self.assertEqual(code, HTTPStatus.OK, "Response should be OK.") self.assertIn("form", response_data, "Response should include form.") self.assertEqual( mock_index.search.call_count, 0, "No search should be attempted" ) @mock.patch("search.controllers.simple.SearchSession") def test_single_field_term(self, mock_index): """Form data are present.""" mock_index.search.return_value = {"metadata": {}, "results": []} request_data = MultiDict({"searchtype": "title", "query": "foo title"}) response_data, code, headers = simple.search(request_data) self.assertEqual( mock_index.search.call_count, 1, "A search should be attempted" ) call_args, call_kwargs = mock_index.search.call_args self.assertIsInstance( call_args[0], SimpleQuery, "An SimpleQuery is passed to the search index", ) self.assertEqual(code, HTTPStatus.OK, "Response should be OK.") @mock.patch("search.controllers.simple.SearchSession") def test_invalid_data(self, mock_index): """Form data are invalid.""" request_data = MultiDict({"searchtype": "title"}) response_data, code, headers = simple.search(request_data) self.assertEqual(code, HTTPStatus.OK, "Response should be OK.") self.assertIn("form", response_data, "Response should include form.") self.assertEqual( mock_index.search.call_count, 0, "No search should be attempted" ) @mock.patch("search.controllers.simple.SearchSession") def test_index_raises_connection_exception(self, mock_index): """Index service raises a IndexConnectionError.""" def _raiseIndexConnectionError(*args, **kwargs): raise IndexConnectionError("What now") mock_index.search.side_effect = _raiseIndexConnectionError request_data = MultiDict({"searchtype": "title", "query": "foo title"}) with self.assertRaises(InternalServerError): _, _, _ = simple.search(request_data) self.assertEqual( mock_index.search.call_count, 1, "A search should be attempted" ) call_args, call_kwargs = mock_index.search.call_args self.assertIsInstance( call_args[0], SimpleQuery, "An SimpleQuery is passed to the search index", ) @mock.patch("search.controllers.simple.SearchSession") def test_index_raises_query_error(self, mock_index): """Index service raises a QueryError.""" def _raiseQueryError(*args, **kwargs): raise QueryError("What now") mock_index.search.side_effect = _raiseQueryError request_data = MultiDict({"searchtype": "title", "query": "foo title"}) with self.assertRaises(InternalServerError): try: response_data, code, headers = simple.search(request_data) except QueryError as ex: self.fail("QueryError should be handled (caught %s)" % ex) self.assertEqual( mock_index.search.call_count, 1, "A search should be attempted" ) class TestSimpleSearchForm(TestCase): """Tests for :class:`.SimpleSearchForm`.""" def test_searchtype_only(self): """User has entered only a searchtype (field).""" data = MultiDict({"searchtype": "title"}) form = SimpleSearchForm(data) self.assertFalse(form.validate(), "Form should be invalid") def test_query_only(self): """User has entered only a query (value); this should never happen.""" data = MultiDict({"query": "someone monkeyed with the request"}) form = SimpleSearchForm(data) self.assertFalse(form.validate(), "Form should be invalid") def test_query_and_searchtype(self): """User has entered a searchtype (field) and query (value).""" data = MultiDict({"searchtype": "title", "query": "foo title"}) form = SimpleSearchForm(data) self.assertTrue(form.validate(), "Form should be valid") class TestQueryFromForm(TestCase): """Tests for :func:`.simple._query_from_form`.""" def test_multiple_simple(self): """Form data has three simple.""" data = MultiDict({"searchtype": "title", "query": "foo title"}) form = SimpleSearchForm(data) query = simple._query_from_form(form) self.assertIsInstance( query, SimpleQuery, "Should return an instance of SimpleQuery" ) def test_form_data_has_order(self): """Form data includes sort order.""" data = MultiDict( { "searchtype": "title", "query": "foo title", "order": "submitted_date", } ) form = SimpleSearchForm(data) query = simple._query_from_form(form) self.assertIsInstance( query, SimpleQuery, "Should return an instance of SimpleQuery" ) self.assertEqual(query.order, "submitted_date") def test_form_data_has_no_order(self): """Form data includes sort order parameter, but it is 'None'.""" data = MultiDict( {"searchtype": "title", "query": "foo title", "order": "None"} # ) form = SimpleSearchForm(data) query = simple._query_from_form(form) self.assertIsInstance( query, SimpleQuery, "Should return an instance of SimpleQuery" ) self.assertIsNone(query.order, "Order should be None") def test_querystring_has_wildcard_at_start(self): """Querystring starts with a wildcard.""" data = MultiDict({"searchtype": "title", "query": "*foo title"}) form = SimpleSearchForm(data) self.assertFalse(form.validate(), "Form should be invalid") def test_input_whitespace_is_stripped(self): """If query has padding whitespace, it should be removed.""" data = MultiDict({"searchtype": "title", "query": " foo title "}) form = SimpleSearchForm(data) self.assertTrue(form.validate(), "Form should be valid.") self.assertEqual(form.query.data, "foo title") def test_querystring_has_unbalanced_quotes(self): """Querystring has an odd number of quote characters.""" data = MultiDict({"searchtype": "title", "query": '"rhubarb'}) form = SimpleSearchForm(data) self.assertFalse(form.validate(), "Form should be invalid") data["query"] = '"rhubarb"' form = SimpleSearchForm(data) self.assertTrue(form.validate(), "Form should be valid") data["query"] = '"rhubarb" "pie' form = SimpleSearchForm(data) self.assertFalse(form.validate(), "Form should be invalid") data["query"] = '"rhubarb" "pie"' form = SimpleSearchForm(data) self.assertTrue(form.validate(), "Form should be valid") class TestPaginationParametersAreFunky(TestCase): """ The user may have monkeyed with the order or sort parameters. Since these are limited to specific values, there is no other reason for them to be invalid. Given that they are passed around among views (to persist users' selection), it's important to break the chain. To do this, we return a 400 Bad Request, with a clean link back to the search form. """ @mock.patch("search.controllers.simple.url_for") def test_order_is_invalid(self, mock_url_for): """The order parameter on the request is invalid.""" request_data = MultiDict( { "searchtype": "title", "query": "foo title", "size": 50, # Valid. "order": "foo", # Invalid } ) with self.assertRaises(BadRequest): simple.search(request_data) @mock.patch("search.controllers.simple.url_for") def test_size_is_invalid(self, mock_url_for): """The order parameter on the request is invalid.""" request_data = MultiDict( { "searchtype": "title", "query": "foo title", "size": 51, # Invalid "order": "", # Valid } ) with self.assertRaises(BadRequest): simple.search(request_data) class TestClassicAuthorSyntaxIsIntercepted(TestCase): """ The user may have entered an author query using `surname_f` syntax. This is an artefact of the classic search system, and not intended to be supported. Nevertheless, users have become accustomed to this syntax. We therefore rewrite the query using a comma, and show the user a warning about the syntax change. """ @mock.patch("search.controllers.simple.SearchSession") def test_all_fields_search_contains_classic_syntax(self, mock_index): """User has entered a `surname_f` query in an all-fields search.""" request_data = MultiDict( { "searchtype": "all", "query": "franklin_r", "size": 50, "order": "", } ) mock_index.search.return_value = {"metadata": {}, "results": []} data, code, headers = simple.search(request_data) self.assertEqual( data["query"].value, "franklin, r", "The query should be rewritten.", ) self.assertTrue( data["has_classic_format"], "A flag denoting the syntax interception should be set" " in the response context, so that a message may be" " rendered in the template.", ) @mock.patch("search.controllers.simple.SearchSession") def test_author_search_contains_classic_syntax(self, mock_index): """User has entered a `surname_f` query in an author search.""" request_data = MultiDict( { "searchtype": "author", "query": "franklin_r", "size": 50, "order": "", } ) mock_index.search.return_value = {"metadata": {}, "results": []} data, code, headers = simple.search(request_data) self.assertEqual( data["query"].value, "franklin, r", "The query should be rewritten.", ) self.assertTrue( data["has_classic_format"], "A flag denoting the syntax interception should be set" " in the response context, so that a message may be" " rendered in the template.", ) @mock.patch("search.controllers.simple.SearchSession") def test_all_fields_search_multiple_classic_syntax(self, mock_index): """User has entered a classic query with multiple authors.""" request_data = MultiDict( { "searchtype": "all", "query": "j franklin_r hawking_s", "size": 50, "order": "", } ) mock_index.search.return_value = {"metadata": {}, "results": []} data, code, headers = simple.search(request_data) self.assertEqual( data["query"].value, "j franklin, r; hawking, s", "The query should be rewritten.", ) self.assertTrue( data["has_classic_format"], "A flag denoting the syntax interception should be set" " in the response context, so that a message may be" " rendered in the template.", ) @mock.patch("search.controllers.simple.SearchSession") def test_title_search_contains_classic_syntax(self, mock_index): """User has entered a `surname_f` query in a title search.""" request_data = MultiDict( { "searchtype": "title", "query": "franklin_r", "size": 50, "order": "", } ) mock_index.search.return_value = {"metadata": {}, "results": []} data, code, headers = simple.search(request_data) self.assertEqual( data["query"].value, "franklin_r", "The query should not be rewritten.", ) self.assertFalse( data["has_classic_format"], "Flag should not be set, as no rewrite has occurred.", )
[((603, 656), 'unittest.mock.patch', 'mock.patch', (['"""search.controllers.simple.SearchSession"""'], {}), "('search.controllers.simple.SearchSession')\n", (613, 656), False, 'from unittest import TestCase, mock\n'), ((1324, 1377), 'unittest.mock.patch', 'mock.patch', (['"""search.controllers.simple.SearchSession"""'], {}), "('search.controllers.simple.SearchSession')\n", (1334, 1377), False, 'from unittest import TestCase, mock\n'), ((2064, 2117), 'unittest.mock.patch', 'mock.patch', (['"""search.controllers.simple.SearchSession"""'], {}), "('search.controllers.simple.SearchSession')\n", (2074, 2117), False, 'from unittest import TestCase, mock\n'), ((2912, 3017), 'unittest.mock.patch', 'mock.patch', (['"""search.controllers.simple.url_for"""', '(lambda *a, **k: f"https://arxiv.org/{k[\'paper_id\']}")'], {}), '(\'search.controllers.simple.url_for\', lambda *a, **k:\n f"https://arxiv.org/{k[\'paper_id\']}")\n', (2922, 3017), False, 'from unittest import TestCase, mock\n'), ((3042, 3095), 'unittest.mock.patch', 'mock.patch', (['"""search.controllers.simple.SearchSession"""'], {}), "('search.controllers.simple.SearchSession')\n", (3052, 3095), False, 'from unittest import TestCase, mock\n'), ((3656, 3709), 'unittest.mock.patch', 'mock.patch', (['"""search.controllers.simple.SearchSession"""'], {}), "('search.controllers.simple.SearchSession')\n", (3666, 3709), False, 'from unittest import TestCase, mock\n'), ((4175, 4228), 'unittest.mock.patch', 'mock.patch', (['"""search.controllers.simple.SearchSession"""'], {}), "('search.controllers.simple.SearchSession')\n", (4185, 4228), False, 'from unittest import TestCase, mock\n'), ((4939, 4992), 'unittest.mock.patch', 'mock.patch', (['"""search.controllers.simple.SearchSession"""'], {}), "('search.controllers.simple.SearchSession')\n", (4949, 4992), False, 'from unittest import TestCase, mock\n'), ((5471, 5524), 'unittest.mock.patch', 'mock.patch', (['"""search.controllers.simple.SearchSession"""'], {}), "('search.controllers.simple.SearchSession')\n", (5481, 5524), False, 'from unittest import TestCase, mock\n'), ((6343, 6396), 'unittest.mock.patch', 'mock.patch', (['"""search.controllers.simple.SearchSession"""'], {}), "('search.controllers.simple.SearchSession')\n", (6353, 6396), False, 'from unittest import TestCase, mock\n'), ((11297, 11344), 'unittest.mock.patch', 'mock.patch', (['"""search.controllers.simple.url_for"""'], {}), "('search.controllers.simple.url_for')\n", (11307, 11344), False, 'from unittest import TestCase, mock\n'), ((11777, 11824), 'unittest.mock.patch', 'mock.patch', (['"""search.controllers.simple.url_for"""'], {}), "('search.controllers.simple.url_for')\n", (11787, 11824), False, 'from unittest import TestCase, mock\n'), ((12655, 12708), 'unittest.mock.patch', 'mock.patch', (['"""search.controllers.simple.SearchSession"""'], {}), "('search.controllers.simple.SearchSession')\n", (12665, 12708), False, 'from unittest import TestCase, mock\n'), ((13594, 13647), 'unittest.mock.patch', 'mock.patch', (['"""search.controllers.simple.SearchSession"""'], {}), "('search.controllers.simple.SearchSession')\n", (13604, 13647), False, 'from unittest import TestCase, mock\n'), ((14528, 14581), 'unittest.mock.patch', 'mock.patch', (['"""search.controllers.simple.SearchSession"""'], {}), "('search.controllers.simple.SearchSession')\n", (14538, 14581), False, 'from unittest import TestCase, mock\n'), ((15487, 15540), 'unittest.mock.patch', 'mock.patch', (['"""search.controllers.simple.SearchSession"""'], {}), "('search.controllers.simple.SearchSession')\n", (15497, 15540), False, 'from unittest import TestCase, mock\n'), ((3212, 3246), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'query': '1702.00123'}"], {}), "({'query': '1702.00123'})\n", (3221, 3246), False, 'from werkzeug.datastructures import MultiDict\n'), ((3286, 3313), 'search.controllers.simple.search', 'simple.search', (['request_data'], {}), '(request_data)\n', (3299, 3313), False, 'from search.controllers import simple\n'), ((3825, 3836), 'werkzeug.datastructures.MultiDict', 'MultiDict', ([], {}), '()\n', (3834, 3836), False, 'from werkzeug.datastructures import MultiDict\n'), ((3876, 3903), 'search.controllers.simple.search', 'simple.search', (['request_data'], {}), '(request_data)\n', (3889, 3903), False, 'from search.controllers import simple\n'), ((4412, 4468), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'searchtype': 'title', 'query': 'foo title'}"], {}), "({'searchtype': 'title', 'query': 'foo title'})\n", (4421, 4468), False, 'from werkzeug.datastructures import MultiDict\n'), ((4508, 4535), 'search.controllers.simple.search', 'simple.search', (['request_data'], {}), '(request_data)\n', (4521, 4535), False, 'from search.controllers import simple\n'), ((5098, 5132), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'searchtype': 'title'}"], {}), "({'searchtype': 'title'})\n", (5107, 5132), False, 'from werkzeug.datastructures import MultiDict\n'), ((5172, 5199), 'search.controllers.simple.search', 'simple.search', (['request_data'], {}), '(request_data)\n', (5185, 5199), False, 'from search.controllers import simple\n'), ((5851, 5907), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'searchtype': 'title', 'query': 'foo title'}"], {}), "({'searchtype': 'title', 'query': 'foo title'})\n", (5860, 5907), False, 'from werkzeug.datastructures import MultiDict\n'), ((6674, 6730), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'searchtype': 'title', 'query': 'foo title'}"], {}), "({'searchtype': 'title', 'query': 'foo title'})\n", (6683, 6730), False, 'from werkzeug.datastructures import MultiDict\n'), ((7299, 7333), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'searchtype': 'title'}"], {}), "({'searchtype': 'title'})\n", (7308, 7333), False, 'from werkzeug.datastructures import MultiDict\n'), ((7349, 7371), 'search.controllers.simple.forms.SimpleSearchForm', 'SimpleSearchForm', (['data'], {}), '(data)\n', (7365, 7371), False, 'from search.controllers.simple.forms import SimpleSearchForm\n'), ((7566, 7623), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'query': 'someone monkeyed with the request'}"], {}), "({'query': 'someone monkeyed with the request'})\n", (7575, 7623), False, 'from werkzeug.datastructures import MultiDict\n'), ((7639, 7661), 'search.controllers.simple.forms.SimpleSearchForm', 'SimpleSearchForm', (['data'], {}), '(data)\n', (7655, 7661), False, 'from search.controllers.simple.forms import SimpleSearchForm\n'), ((7858, 7914), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'searchtype': 'title', 'query': 'foo title'}"], {}), "({'searchtype': 'title', 'query': 'foo title'})\n", (7867, 7914), False, 'from werkzeug.datastructures import MultiDict\n'), ((7930, 7952), 'search.controllers.simple.forms.SimpleSearchForm', 'SimpleSearchForm', (['data'], {}), '(data)\n', (7946, 7952), False, 'from search.controllers.simple.forms import SimpleSearchForm\n'), ((8203, 8259), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'searchtype': 'title', 'query': 'foo title'}"], {}), "({'searchtype': 'title', 'query': 'foo title'})\n", (8212, 8259), False, 'from werkzeug.datastructures import MultiDict\n'), ((8275, 8297), 'search.controllers.simple.forms.SimpleSearchForm', 'SimpleSearchForm', (['data'], {}), '(data)\n', (8291, 8297), False, 'from search.controllers.simple.forms import SimpleSearchForm\n'), ((8314, 8343), 'search.controllers.simple._query_from_form', 'simple._query_from_form', (['form'], {}), '(form)\n', (8337, 8343), False, 'from search.controllers import simple\n'), ((8561, 8648), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'searchtype': 'title', 'query': 'foo title', 'order': 'submitted_date'}"], {}), "({'searchtype': 'title', 'query': 'foo title', 'order':\n 'submitted_date'})\n", (8570, 8648), False, 'from werkzeug.datastructures import MultiDict\n'), ((8745, 8767), 'search.controllers.simple.forms.SimpleSearchForm', 'SimpleSearchForm', (['data'], {}), '(data)\n', (8761, 8767), False, 'from search.controllers.simple.forms import SimpleSearchForm\n'), ((8784, 8813), 'search.controllers.simple._query_from_form', 'simple._query_from_form', (['form'], {}), '(form)\n', (8807, 8813), False, 'from search.controllers import simple\n'), ((9118, 9191), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'searchtype': 'title', 'query': 'foo title', 'order': 'None'}"], {}), "({'searchtype': 'title', 'query': 'foo title', 'order': 'None'})\n", (9127, 9191), False, 'from werkzeug.datastructures import MultiDict\n'), ((9232, 9254), 'search.controllers.simple.forms.SimpleSearchForm', 'SimpleSearchForm', (['data'], {}), '(data)\n', (9248, 9254), False, 'from search.controllers.simple.forms import SimpleSearchForm\n'), ((9271, 9300), 'search.controllers.simple._query_from_form', 'simple._query_from_form', (['form'], {}), '(form)\n', (9294, 9300), False, 'from search.controllers import simple\n'), ((9600, 9657), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'searchtype': 'title', 'query': '*foo title'}"], {}), "({'searchtype': 'title', 'query': '*foo title'})\n", (9609, 9657), False, 'from werkzeug.datastructures import MultiDict\n'), ((9673, 9695), 'search.controllers.simple.forms.SimpleSearchForm', 'SimpleSearchForm', (['data'], {}), '(data)\n', (9689, 9695), False, 'from search.controllers.simple.forms import SimpleSearchForm\n'), ((9898, 9956), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'searchtype': 'title', 'query': ' foo title '}"], {}), "({'searchtype': 'title', 'query': ' foo title '})\n", (9907, 9956), False, 'from werkzeug.datastructures import MultiDict\n'), ((9972, 9994), 'search.controllers.simple.forms.SimpleSearchForm', 'SimpleSearchForm', (['data'], {}), '(data)\n', (9988, 9994), False, 'from search.controllers.simple.forms import SimpleSearchForm\n'), ((10251, 10306), 'werkzeug.datastructures.MultiDict', 'MultiDict', (['{\'searchtype\': \'title\', \'query\': \'"rhubarb\'}'], {}), '({\'searchtype\': \'title\', \'query\': \'"rhubarb\'})\n', (10260, 10306), False, 'from werkzeug.datastructures import MultiDict\n'), ((10322, 10344), 'search.controllers.simple.forms.SimpleSearchForm', 'SimpleSearchForm', (['data'], {}), '(data)\n', (10338, 10344), False, 'from search.controllers.simple.forms import SimpleSearchForm\n'), ((10465, 10487), 'search.controllers.simple.forms.SimpleSearchForm', 'SimpleSearchForm', (['data'], {}), '(data)\n', (10481, 10487), False, 'from search.controllers.simple.forms import SimpleSearchForm\n'), ((10610, 10632), 'search.controllers.simple.forms.SimpleSearchForm', 'SimpleSearchForm', (['data'], {}), '(data)\n', (10626, 10632), False, 'from search.controllers.simple.forms import SimpleSearchForm\n'), ((10759, 10781), 'search.controllers.simple.forms.SimpleSearchForm', 'SimpleSearchForm', (['data'], {}), '(data)\n', (10775, 10781), False, 'from search.controllers.simple.forms import SimpleSearchForm\n'), ((11480, 11568), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'searchtype': 'title', 'query': 'foo title', 'size': 50, 'order': 'foo'}"], {}), "({'searchtype': 'title', 'query': 'foo title', 'size': 50, 'order':\n 'foo'})\n", (11489, 11568), False, 'from werkzeug.datastructures import MultiDict\n'), ((11959, 12044), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'searchtype': 'title', 'query': 'foo title', 'size': 51, 'order': ''}"], {}), "({'searchtype': 'title', 'query': 'foo title', 'size': 51, 'order':\n ''})\n", (11968, 12044), False, 'from werkzeug.datastructures import MultiDict\n'), ((12882, 12967), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'searchtype': 'all', 'query': 'franklin_r', 'size': 50, 'order': ''}"], {}), "({'searchtype': 'all', 'query': 'franklin_r', 'size': 50, 'order': ''}\n )\n", (12891, 12967), False, 'from werkzeug.datastructures import MultiDict\n'), ((13168, 13195), 'search.controllers.simple.search', 'simple.search', (['request_data'], {}), '(request_data)\n', (13181, 13195), False, 'from search.controllers import simple\n'), ((13813, 13900), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'searchtype': 'author', 'query': 'franklin_r', 'size': 50, 'order': ''}"], {}), "({'searchtype': 'author', 'query': 'franklin_r', 'size': 50,\n 'order': ''})\n", (13822, 13900), False, 'from werkzeug.datastructures import MultiDict\n'), ((14102, 14129), 'search.controllers.simple.search', 'simple.search', (['request_data'], {}), '(request_data)\n', (14115, 14129), False, 'from search.controllers import simple\n'), ((14749, 14846), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'searchtype': 'all', 'query': 'j franklin_r hawking_s', 'size': 50,\n 'order': ''}"], {}), "({'searchtype': 'all', 'query': 'j franklin_r hawking_s', 'size': \n 50, 'order': ''})\n", (14758, 14846), False, 'from werkzeug.datastructures import MultiDict\n'), ((15047, 15074), 'search.controllers.simple.search', 'simple.search', (['request_data'], {}), '(request_data)\n', (15060, 15074), False, 'from search.controllers import simple\n'), ((15703, 15789), 'werkzeug.datastructures.MultiDict', 'MultiDict', (["{'searchtype': 'title', 'query': 'franklin_r', 'size': 50, 'order': ''}"], {}), "({'searchtype': 'title', 'query': 'franklin_r', 'size': 50,\n 'order': ''})\n", (15712, 15789), False, 'from werkzeug.datastructures import MultiDict\n'), ((15991, 16018), 'search.controllers.simple.search', 'simple.search', (['request_data'], {}), '(request_data)\n', (16004, 16018), False, 'from search.controllers import simple\n'), ((829, 851), 'search.services.index.QueryError', 'QueryError', (['"""What now"""'], {}), "('What now')\n", (839, 851), False, 'from search.services.index import IndexConnectionError, QueryError, DocumentNotFound\n'), ((1667, 1703), 'search.controllers.simple.retrieve_document', 'simple.retrieve_document', (['"""124.5678"""'], {}), "('124.5678')\n", (1691, 1703), False, 'from search.controllers import simple\n'), ((2282, 2310), 'search.services.index.DocumentNotFound', 'DocumentNotFound', (['"""What now"""'], {}), "('What now')\n", (2298, 2310), False, 'from search.services.index import IndexConnectionError, QueryError, DocumentNotFound\n'), ((5726, 5758), 'search.services.index.IndexConnectionError', 'IndexConnectionError', (['"""What now"""'], {}), "('What now')\n", (5746, 5758), False, 'from search.services.index import IndexConnectionError, QueryError, DocumentNotFound\n'), ((5983, 6010), 'search.controllers.simple.search', 'simple.search', (['request_data'], {}), '(request_data)\n', (5996, 6010), False, 'from search.controllers import simple\n'), ((6569, 6591), 'search.services.index.QueryError', 'QueryError', (['"""What now"""'], {}), "('What now')\n", (6579, 6591), False, 'from search.services.index import IndexConnectionError, QueryError, DocumentNotFound\n'), ((11743, 11770), 'search.controllers.simple.search', 'simple.search', (['request_data'], {}), '(request_data)\n', (11756, 11770), False, 'from search.controllers import simple\n'), ((12218, 12245), 'search.controllers.simple.search', 'simple.search', (['request_data'], {}), '(request_data)\n', (12231, 12245), False, 'from search.controllers import simple\n'), ((1034, 1061), 'search.controllers.simple.retrieve_document', 'simple.retrieve_document', (['(1)'], {}), '(1)\n', (1058, 1061), False, 'from search.controllers import simple\n'), ((2488, 2515), 'search.controllers.simple.retrieve_document', 'simple.retrieve_document', (['(1)'], {}), '(1)\n', (2512, 2515), False, 'from search.controllers import simple\n'), ((6848, 6875), 'search.controllers.simple.search', 'simple.search', (['request_data'], {}), '(request_data)\n', (6861, 6875), False, 'from search.controllers import simple\n')]
hcrlab/kuri_wandering_robot
kuri_wandering_robot/scripts/kuri_wandering_robot_executive_node.py
9c747bfe27e3c3450fd4717e26b866af2ef70149
#!/usr/bin/env python # ROS Libraries import actionlib from actionlib_msgs.msg import GoalStatus from control_msgs.msg import JointTrajectoryControllerState, FollowJointTrajectoryAction, FollowJointTrajectoryGoal from kuri_wandering_robot.msg import Power from wandering_behavior.msg import WanderAction, WanderGoal import rospy from sensor_msgs.msg import CompressedImage from std_msgs.msg import Empty from trajectory_msgs.msg import JointTrajectoryPoint # Python Default Libraries import base64 import csv from enum import Enum import os import requests import threading import time import traceback # Custom Libraries from sent_messages_database import SentMessagesDatabase class KuriWanderingRobotState(Enum): """ During NORMAL, the base moves according to wandering_behavior. During CHARGING, the robot's eyes are closed and it is charging. The robot transitions from NORMAL to CHARGING if its battery is below a threshold and it is on the charger. It transitions from CHARGING to NORMAL if it's battery is above a threshold or it is off the charger. """ NORMAL = 1 CHARGING = 2 class KuriWanderingRobot(object): """ The central executive node. This node runs a control loop that manages the robot's state: turning on and monitoring progress of the wandering module in NORMAL, turning off wandering in CHARGING, and switching back to NORMAL when the robot is sufficiently charged. This node also runs anomaly detection to detect low battery; when it detects low battery, it sends a low battery request to the Slackbot, which then sends it to the helpers. This node can be extended with additional anomaly detection and help requests, as needed. This node also subscribes to a dummy `where_am_i_help` topic, which sends helpers the sample `where_am_i` help message. Note that that is only in place to illsutrate the sample `where_am_i` help message, and actually using that would require developing a custom anomaly detection system to trigger the robot asking for that type of help. Finally, this node has a separate thread that continually queries the Slackbot for responses to its help requests. """ def __init__(self): """ Initialize an instance of the KuriWanderingRobot class """ self.has_loaded = False # Get the Slackbot URL self.slackbot_url = rospy.get_param('~slackbot_url') # Initialize the state. self.state_lock = threading.Lock() self.state_changed = True self.state = KuriWanderingRobotState.NORMAL # Initialize the wandering module self.wandering_module_action = actionlib.SimpleActionClient('/wandering_behavior/navigate', WanderAction) # Initialize the eye controller self.eyelid_controller_action = actionlib.SimpleActionClient('/eyelids_controller/follow_joint_trajectory', FollowJointTrajectoryAction) self.eye_closed_position = 0.41 self.eye_open_position = 0.0 # Initialize the camera self.img_sub = rospy.Subscriber( '/upward_looking_camera/compressed', CompressedImage, self.image_callback, queue_size=1) self.latest_image = None self.latest_image_lock = threading.Lock() # Initialize low battery anomaly detector self.battery_sub = rospy.Subscriber( "/mobile_base/power", Power, self.power_callback, queue_size=1) self.previous_battery_lock = threading.Lock() self.previous_battery = None self.previous_dock_present = None self.battery_notification_thresholds = rospy.get_param('~battery_notification_thresholds', [40, 20, 10, 5, 4, 3, 2, 1]) # if the battery is less than this and Kuri is docked, charge self.to_charge_threshold = rospy.get_param('~to_charge_threshold', 50) # if the batter is greater than this and Kuri is charging, switch back to NORMAL self.charging_done_threshold = rospy.get_param('~charging_done_threshold', 90) # Whether the low battery message should include Kuri's current camera image self.low_battery_message_include_image = rospy.get_param('~low_battery_message_include_image', True) # Initialize the dummy `where_am_i` anomaly detector self.where_am_i_help_sub = rospy.Subscriber( "/where_am_i_help", Empty, self.where_am_i_help_callback, queue_size=1) # Initialize storing images and message IDs self.sent_messages_database_filepath = rospy.get_param('~send_messages_database_filepath') self.sent_messages_database = SentMessagesDatabase.load( self.sent_messages_database_filepath) self.database_save_interval = 1 self.database_updates_since_last_save = 0 # Initialize the head controller self.head_state_sub = rospy.Subscriber( "/head_controller/state", JointTrajectoryControllerState, self.head_state_callback, queue_size=1) self.head_controller_action = actionlib.SimpleActionClient('/head_controller/follow_joint_trajectory', FollowJointTrajectoryAction) self.head_tilt_speed = 0.2 # head tilt is in [-0.8, 0.3] self.head_pan_speed = 0.2 # head pan is in [-0.75, 0.75] # Initialize the Slackbot updates thread self.slackbot_responses_thread = threading.Thread( target=self.get_slackbot_updates, ) self.slackbot_responses_thread.start() # Initialize the state machine self.state_machine_thread = threading.Thread( target=self.state_machine_control_loop, ) self.state_machine_thread.start() self.has_centered_head = False self.has_loaded = True def database_updated(self, num_updates=1): """ Called everytime the database is updated. Saves the database every self.database_save_interval updates """ self.database_updates_since_last_save += num_updates if self.database_updates_since_last_save % self.database_save_interval == 0: self.sent_messages_database.save(self.sent_messages_database_filepath) rospy.logdebug("Saved sent_messages_database!") def open_eyes(self, duration_secs=0.2): """ Open the robot's eyes """ rospy.logdebug("Open Eyes") duration = rospy.Duration.from_sec(duration_secs) goal = FollowJointTrajectoryGoal() goal.trajectory.header.stamp = rospy.Time.now() goal.trajectory.joint_names = ["eyelids_joint"] point = JointTrajectoryPoint() point.positions = [self.eye_open_position] point.velocities = [] point.accelerations = [] point.effort = [] point.time_from_start = duration goal.trajectory.points = [point] # Send the goal self.eyelid_controller_action.wait_for_server() self.eyelid_controller_action.send_goal(goal) self.eyelid_controller_action.wait_for_result(duration) def close_eyes(self, duration_secs=0.2): """ Close the robot's eyes """ rospy.logdebug("Close Eyes") duration = rospy.Duration.from_sec(duration_secs) goal = FollowJointTrajectoryGoal() goal.trajectory.header.stamp = rospy.Time.now() goal.trajectory.joint_names = ["eyelids_joint"] point = JointTrajectoryPoint() point.positions = [self.eye_closed_position] point.velocities = [] point.accelerations = [] point.effort = [] point.time_from_start = duration goal.trajectory.points = [point] # Send the goal self.eyelid_controller_action.wait_for_server() self.eyelid_controller_action.send_goal(goal) self.eyelid_controller_action.wait_for_result(duration) def head_state_callback(self, head_state_msg): """ Get the head's current position """ if not self.has_loaded: return if not self.has_centered_head: self.center_head(head_state_msg.actual.positions[0], head_state_msg.actual.positions[1]) def center_head(self, current_pan, current_tilt): """ Center Kuri's head. This involves moving from the current pan and tilt to the centered values of (0.0, -0.3) """ pan_endpoint = 0.0 tilt_endpoint = -0.3 n_waypoints = 10 # Compute the actual endpoint and duration_secs duration_secs = max( abs(pan_endpoint-current_pan)/self.head_pan_speed, abs(tilt_endpoint-current_tilt)/self.head_tilt_speed) duration = rospy.Duration.from_sec(duration_secs) # Create the goal goal = FollowJointTrajectoryGoal() goal.trajectory.header.stamp = rospy.Time.now() goal.trajectory.joint_names = ["head_1_joint", "head_2_joint"] goal.trajectory.points = [] pan_interval = (pan_endpoint-current_pan)/(n_waypoints-1) tilt_interval = (tilt_endpoint-current_tilt)/(n_waypoints-1) time_interval = duration/n_waypoints for i in range(n_waypoints): point = JointTrajectoryPoint() point.positions = [current_pan + i*pan_interval, current_tilt + i*tilt_interval] point.velocities = [] point.accelerations = [] point.effort = [] point.time_from_start = (i+1)*time_interval goal.trajectory.points.append(point) # Send the goal self.head_controller_action.wait_for_server() self.head_controller_action.send_goal(goal) self.head_controller_action.wait_for_result(duration) self.has_centered_head = True def state_machine_control_loop(self, rate_hz=10): """ The control loop for the state machine. All of the state machine logic is handled in this function and the functions it calls. During NORMAL, the base moves according to wandering_behavior. During CHARGING, the robot's eyes are closed and it is charging. The robot transitions from NORMAL to CHARGING if its battery is below a threshold and it is on the charger. It transitions from CHARGING to NORMAL if it's battery is above a threshold or it is off the charger. """ rate = rospy.Rate(rate_hz) while not rospy.is_shutdown(): rate.sleep() with self.state_lock: state_at_start_of_loop = self.state if (self.state == KuriWanderingRobotState.NORMAL): goal_state = self.wandering_module_action.get_state() if (self.state_changed or goal_state == GoalStatus.ABORTED or goal_state == GoalStatus.SUCCEEDED): rospy.logdebug("Waiting for wandering_module_action server") self.wandering_module_action.wait_for_server() rospy.logdebug("Sending goal to wandering_module_action") # Effort -1 means "don't stop unless preempted" self.wandering_module_action.send_goal(WanderGoal(effort=-1)) self.open_eyes() with self.previous_battery_lock: if (self.previous_battery is not None and self.previous_battery < self.to_charge_threshold and self.previous_dock_present): self.close_eyes() self.state = KuriWanderingRobotState.CHARGING self.wandering_module_action.cancel_all_goals() rospy.loginfo("State: NORMAL ==> CHARGING") elif self.state == KuriWanderingRobotState.CHARGING: with self.previous_battery_lock: if (self.previous_battery is None or not self.previous_dock_present or self.previous_battery >= self.charging_done_threshold): self.state = KuriWanderingRobotState.NORMAL rospy.loginfo("State: CHARGING ==> NORMAL") state_at_end_of_loop = self.state self.state_changed = (state_at_start_of_loop != state_at_end_of_loop) def image_callback(self, img_msg): """ Store the latest image. """ if not self.has_loaded: return with self.latest_image_lock: self.latest_image = img_msg def power_callback(self, msg): """ Callback function for Kuri's power update. It Kuri's battery has crossed a battery_notification_threshold, notify the Slackbot. """ if not self.has_loaded: return with self.state_lock: with self.previous_battery_lock: self.previous_dock_present = msg.dock_present if self.state == KuriWanderingRobotState.CHARGING: self.previous_battery = msg.battery.pct else: update_previous_battery = True if msg.battery.pct <= self.battery_notification_thresholds[0]: # Send the low-battery helper notifications when the battery # crosses the thresholds defined in self.battery_notification_thresholds for i in range(len(self.battery_notification_thresholds)): if (self.previous_battery is None or (self.previous_battery > self.battery_notification_thresholds[i]) and msg.battery.pct <= self.battery_notification_thresholds[i]): try: # Send a low_battery_alert dict_to_send = {'battery_pct':msg.battery.pct} if self.low_battery_message_include_image: with self.latest_image_lock: if self.latest_image is not None: image_contents = base64.b64encode(bytearray(self.latest_image.data)).decode('ascii') dict_to_send['image'] = image_contents rospy.loginfo("Sending battery request for pct %s" % msg.battery.pct) res = requests.post( os.path.join(self.slackbot_url, 'low_battery'), json=dict_to_send, ) res_json = res.json() if not res_json['success']: update_previous_battery = False except Exception as e: rospy.logwarn("Error communicating with Slackbot /low_battery at URL %s." % self.slackbot_url) if "res" in locals(): rospy.logwarn("Response text %s." % res.text) rospy.logwarn(traceback.format_exc()) rospy.logwarn("Error %s." % e) update_previous_battery = False break if (update_previous_battery and (self.previous_battery is None or msg.battery.pct < self.previous_battery)): self.previous_battery = msg.battery.pct def where_am_i_help_callback(self, msg): """ A dummy callback that triggers sending a where_am_i help message to the Slackbot. This is merely intended to showcase some of the Slackbot's capabilities. Users who want a robot that autonomously asks the human to tell it where it is should implement their own anomaly detection system for triggering this help request. """ with self.latest_image_lock: if self.latest_image is None: rospy.loginfo("Attempted to send where_am_i help request but have no image.") return try: # Send a low_battery_alert rospy.loginfo("Sending where_am_i help request") with self.latest_image_lock: image_contents = base64.b64encode(bytearray(self.latest_image.data)).decode('ascii') res = requests.post( os.path.join(self.slackbot_url, 'where_am_i'), json={'image':image_contents, 'options':['Lounge', "Office#252", "200 Corridoor", "Atrium"]}, ) res_json = res.json() message_id = res_json['message_id'] self.sent_messages_database.add_respondable_message(message_id) self.database_updated() except Exception as e: rospy.logwarn("Error communicating with Slackbot /where_am_i at URL %s." % self.slackbot_url) if "res" in locals(): rospy.logwarn("Response text %s." % res.text) rospy.logwarn(traceback.format_exc()) rospy.logwarn("Error %s." % e) def get_slackbot_updates(self, refresh_secs=5.0): """ Once every refresh_secs seconds, request updates (e.g., human responses) from the Slackbot. Note that you can optionally request updates for partular message_ids (e.g., those that have not received responses yet) """ r = rospy.Rate(1.0/refresh_secs) while not rospy.is_shutdown(): if not self.has_loaded: r.sleep() try: message_ids_and_action_ts = self.sent_messages_database.get_message_ids_and_latest_action_ts() # Request responses for those message_ids res = requests.post( os.path.join(self.slackbot_url, 'get_updates'), json={'message_ids_and_action_ts':message_ids_and_action_ts}, ) res_json = res.json() rospy.logdebug("Got updates from Slackbot %s" % res_json) message_id_to_responses = res_json["message_id_to_responses"] if len(message_id_to_responses) > 0: num_updates = 0 # Insert reactions into the database for message_id in message_id_to_responses: for action_ts, response in message_id_to_responses[message_id]: rospy.loginfo("Got reaction %s from at ts %s" % (response, action_ts)) self.sent_messages_database.add_user_response(message_id, action_ts, response) num_updates += 1 self.database_updated(num_updates) except Exception as e: rospy.logwarn("Error communicating with Slackbot /get_updates at URL %s." % self.slackbot_url) if "res" in locals(): rospy.logwarn("Response text %s." % res.text) rospy.logwarn(traceback.format_exc()) rospy.logwarn("Error %s." % e) r.sleep() if __name__ == "__main__": rospy.init_node("kuri_wandering_robot") kuri_wandering_robot = KuriWanderingRobot() rospy.spin()
[((19163, 19202), 'rospy.init_node', 'rospy.init_node', (['"""kuri_wandering_robot"""'], {}), "('kuri_wandering_robot')\n", (19178, 19202), False, 'import rospy\n'), ((19257, 19269), 'rospy.spin', 'rospy.spin', ([], {}), '()\n', (19267, 19269), False, 'import rospy\n'), ((2419, 2451), 'rospy.get_param', 'rospy.get_param', (['"""~slackbot_url"""'], {}), "('~slackbot_url')\n", (2434, 2451), False, 'import rospy\n'), ((2511, 2527), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (2525, 2527), False, 'import threading\n'), ((2696, 2770), 'actionlib.SimpleActionClient', 'actionlib.SimpleActionClient', (['"""/wandering_behavior/navigate"""', 'WanderAction'], {}), "('/wandering_behavior/navigate', WanderAction)\n", (2724, 2770), False, 'import actionlib\n'), ((2852, 2960), 'actionlib.SimpleActionClient', 'actionlib.SimpleActionClient', (['"""/eyelids_controller/follow_joint_trajectory"""', 'FollowJointTrajectoryAction'], {}), "('/eyelids_controller/follow_joint_trajectory',\n FollowJointTrajectoryAction)\n", (2880, 2960), False, 'import actionlib\n'), ((3090, 3200), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/upward_looking_camera/compressed"""', 'CompressedImage', 'self.image_callback'], {'queue_size': '(1)'}), "('/upward_looking_camera/compressed', CompressedImage, self\n .image_callback, queue_size=1)\n", (3106, 3200), False, 'import rospy\n'), ((3275, 3291), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (3289, 3291), False, 'import threading\n'), ((3370, 3455), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/mobile_base/power"""', 'Power', 'self.power_callback'], {'queue_size': '(1)'}), "('/mobile_base/power', Power, self.power_callback, queue_size=1\n )\n", (3386, 3455), False, 'import rospy\n'), ((3501, 3517), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (3515, 3517), False, 'import threading\n'), ((3644, 3729), 'rospy.get_param', 'rospy.get_param', (['"""~battery_notification_thresholds"""', '[40, 20, 10, 5, 4, 3, 2, 1]'], {}), "('~battery_notification_thresholds', [40, 20, 10, 5, 4, 3, 2, 1]\n )\n", (3659, 3729), False, 'import rospy\n'), ((3830, 3873), 'rospy.get_param', 'rospy.get_param', (['"""~to_charge_threshold"""', '(50)'], {}), "('~to_charge_threshold', 50)\n", (3845, 3873), False, 'import rospy\n'), ((4002, 4049), 'rospy.get_param', 'rospy.get_param', (['"""~charging_done_threshold"""', '(90)'], {}), "('~charging_done_threshold', 90)\n", (4017, 4049), False, 'import rospy\n'), ((4184, 4243), 'rospy.get_param', 'rospy.get_param', (['"""~low_battery_message_include_image"""', '(True)'], {}), "('~low_battery_message_include_image', True)\n", (4199, 4243), False, 'import rospy\n'), ((4341, 4433), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/where_am_i_help"""', 'Empty', 'self.where_am_i_help_callback'], {'queue_size': '(1)'}), "('/where_am_i_help', Empty, self.where_am_i_help_callback,\n queue_size=1)\n", (4357, 4433), False, 'import rospy\n'), ((4543, 4594), 'rospy.get_param', 'rospy.get_param', (['"""~send_messages_database_filepath"""'], {}), "('~send_messages_database_filepath')\n", (4558, 4594), False, 'import rospy\n'), ((4633, 4696), 'sent_messages_database.SentMessagesDatabase.load', 'SentMessagesDatabase.load', (['self.sent_messages_database_filepath'], {}), '(self.sent_messages_database_filepath)\n', (4658, 4696), False, 'from sent_messages_database import SentMessagesDatabase\n'), ((4872, 4990), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/head_controller/state"""', 'JointTrajectoryControllerState', 'self.head_state_callback'], {'queue_size': '(1)'}), "('/head_controller/state', JointTrajectoryControllerState,\n self.head_state_callback, queue_size=1)\n", (4888, 4990), False, 'import rospy\n'), ((5038, 5143), 'actionlib.SimpleActionClient', 'actionlib.SimpleActionClient', (['"""/head_controller/follow_joint_trajectory"""', 'FollowJointTrajectoryAction'], {}), "('/head_controller/follow_joint_trajectory',\n FollowJointTrajectoryAction)\n", (5066, 5143), False, 'import actionlib\n'), ((5361, 5411), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.get_slackbot_updates'}), '(target=self.get_slackbot_updates)\n', (5377, 5411), False, 'import threading\n'), ((5558, 5614), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.state_machine_control_loop'}), '(target=self.state_machine_control_loop)\n', (5574, 5614), False, 'import threading\n'), ((6338, 6365), 'rospy.logdebug', 'rospy.logdebug', (['"""Open Eyes"""'], {}), "('Open Eyes')\n", (6352, 6365), False, 'import rospy\n'), ((6385, 6423), 'rospy.Duration.from_sec', 'rospy.Duration.from_sec', (['duration_secs'], {}), '(duration_secs)\n', (6408, 6423), False, 'import rospy\n'), ((6439, 6466), 'control_msgs.msg.FollowJointTrajectoryGoal', 'FollowJointTrajectoryGoal', ([], {}), '()\n', (6464, 6466), False, 'from control_msgs.msg import JointTrajectoryControllerState, FollowJointTrajectoryAction, FollowJointTrajectoryGoal\n'), ((6506, 6522), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (6520, 6522), False, 'import rospy\n'), ((6595, 6617), 'trajectory_msgs.msg.JointTrajectoryPoint', 'JointTrajectoryPoint', ([], {}), '()\n', (6615, 6617), False, 'from trajectory_msgs.msg import JointTrajectoryPoint\n'), ((7148, 7176), 'rospy.logdebug', 'rospy.logdebug', (['"""Close Eyes"""'], {}), "('Close Eyes')\n", (7162, 7176), False, 'import rospy\n'), ((7196, 7234), 'rospy.Duration.from_sec', 'rospy.Duration.from_sec', (['duration_secs'], {}), '(duration_secs)\n', (7219, 7234), False, 'import rospy\n'), ((7250, 7277), 'control_msgs.msg.FollowJointTrajectoryGoal', 'FollowJointTrajectoryGoal', ([], {}), '()\n', (7275, 7277), False, 'from control_msgs.msg import JointTrajectoryControllerState, FollowJointTrajectoryAction, FollowJointTrajectoryGoal\n'), ((7317, 7333), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (7331, 7333), False, 'import rospy\n'), ((7406, 7428), 'trajectory_msgs.msg.JointTrajectoryPoint', 'JointTrajectoryPoint', ([], {}), '()\n', (7426, 7428), False, 'from trajectory_msgs.msg import JointTrajectoryPoint\n'), ((8679, 8717), 'rospy.Duration.from_sec', 'rospy.Duration.from_sec', (['duration_secs'], {}), '(duration_secs)\n', (8702, 8717), False, 'import rospy\n'), ((8760, 8787), 'control_msgs.msg.FollowJointTrajectoryGoal', 'FollowJointTrajectoryGoal', ([], {}), '()\n', (8785, 8787), False, 'from control_msgs.msg import JointTrajectoryControllerState, FollowJointTrajectoryAction, FollowJointTrajectoryGoal\n'), ((8827, 8843), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (8841, 8843), False, 'import rospy\n'), ((10359, 10378), 'rospy.Rate', 'rospy.Rate', (['rate_hz'], {}), '(rate_hz)\n', (10369, 10378), False, 'import rospy\n'), ((17475, 17505), 'rospy.Rate', 'rospy.Rate', (['(1.0 / refresh_secs)'], {}), '(1.0 / refresh_secs)\n', (17485, 17505), False, 'import rospy\n'), ((6183, 6230), 'rospy.logdebug', 'rospy.logdebug', (['"""Saved sent_messages_database!"""'], {}), "('Saved sent_messages_database!')\n", (6197, 6230), False, 'import rospy\n'), ((9188, 9210), 'trajectory_msgs.msg.JointTrajectoryPoint', 'JointTrajectoryPoint', ([], {}), '()\n', (9208, 9210), False, 'from trajectory_msgs.msg import JointTrajectoryPoint\n'), ((10397, 10416), 'rospy.is_shutdown', 'rospy.is_shutdown', ([], {}), '()\n', (10414, 10416), False, 'import rospy\n'), ((16216, 16264), 'rospy.loginfo', 'rospy.loginfo', (['"""Sending where_am_i help request"""'], {}), "('Sending where_am_i help request')\n", (16229, 16264), False, 'import rospy\n'), ((17522, 17541), 'rospy.is_shutdown', 'rospy.is_shutdown', ([], {}), '()\n', (17539, 17541), False, 'import rospy\n'), ((16051, 16128), 'rospy.loginfo', 'rospy.loginfo', (['"""Attempted to send where_am_i help request but have no image."""'], {}), "('Attempted to send where_am_i help request but have no image.')\n", (16064, 16128), False, 'import rospy\n'), ((16456, 16501), 'os.path.join', 'os.path.join', (['self.slackbot_url', '"""where_am_i"""'], {}), "(self.slackbot_url, 'where_am_i')\n", (16468, 16501), False, 'import os\n'), ((16864, 16961), 'rospy.logwarn', 'rospy.logwarn', (["('Error communicating with Slackbot /where_am_i at URL %s.' % self.slackbot_url\n )"], {}), "('Error communicating with Slackbot /where_am_i at URL %s.' %\n self.slackbot_url)\n", (16877, 16961), False, 'import rospy\n'), ((17116, 17146), 'rospy.logwarn', 'rospy.logwarn', (["('Error %s.' % e)"], {}), "('Error %s.' % e)\n", (17129, 17146), False, 'import rospy\n'), ((18032, 18089), 'rospy.logdebug', 'rospy.logdebug', (["('Got updates from Slackbot %s' % res_json)"], {}), "('Got updates from Slackbot %s' % res_json)\n", (18046, 18089), False, 'import rospy\n'), ((17008, 17053), 'rospy.logwarn', 'rospy.logwarn', (["('Response text %s.' % res.text)"], {}), "('Response text %s.' % res.text)\n", (17021, 17053), False, 'import rospy\n'), ((17080, 17102), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (17100, 17102), False, 'import traceback\n'), ((17830, 17876), 'os.path.join', 'os.path.join', (['self.slackbot_url', '"""get_updates"""'], {}), "(self.slackbot_url, 'get_updates')\n", (17842, 17876), False, 'import os\n'), ((18821, 18919), 'rospy.logwarn', 'rospy.logwarn', (["('Error communicating with Slackbot /get_updates at URL %s.' % self.\n slackbot_url)"], {}), "('Error communicating with Slackbot /get_updates at URL %s.' %\n self.slackbot_url)\n", (18834, 18919), False, 'import rospy\n'), ((19078, 19108), 'rospy.logwarn', 'rospy.logwarn', (["('Error %s.' % e)"], {}), "('Error %s.' % e)\n", (19091, 19108), False, 'import rospy\n'), ((10813, 10873), 'rospy.logdebug', 'rospy.logdebug', (['"""Waiting for wandering_module_action server"""'], {}), "('Waiting for wandering_module_action server')\n", (10827, 10873), False, 'import rospy\n'), ((10969, 11026), 'rospy.logdebug', 'rospy.logdebug', (['"""Sending goal to wandering_module_action"""'], {}), "('Sending goal to wandering_module_action')\n", (10983, 11026), False, 'import rospy\n'), ((18968, 19013), 'rospy.logwarn', 'rospy.logwarn', (["('Response text %s.' % res.text)"], {}), "('Response text %s.' % res.text)\n", (18981, 19013), False, 'import rospy\n'), ((19041, 19063), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (19061, 19063), False, 'import traceback\n'), ((11162, 11183), 'wandering_behavior.msg.WanderGoal', 'WanderGoal', ([], {'effort': '(-1)'}), '(effort=-1)\n', (11172, 11183), False, 'from wandering_behavior.msg import WanderAction, WanderGoal\n'), ((11651, 11694), 'rospy.loginfo', 'rospy.loginfo', (['"""State: NORMAL ==> CHARGING"""'], {}), "('State: NORMAL ==> CHARGING')\n", (11664, 11694), False, 'import rospy\n'), ((18494, 18564), 'rospy.loginfo', 'rospy.loginfo', (["('Got reaction %s from at ts %s' % (response, action_ts))"], {}), "('Got reaction %s from at ts %s' % (response, action_ts))\n", (18507, 18564), False, 'import rospy\n'), ((12068, 12111), 'rospy.loginfo', 'rospy.loginfo', (['"""State: CHARGING ==> NORMAL"""'], {}), "('State: CHARGING ==> NORMAL')\n", (12081, 12111), False, 'import rospy\n'), ((14250, 14319), 'rospy.loginfo', 'rospy.loginfo', (["('Sending battery request for pct %s' % msg.battery.pct)"], {}), "('Sending battery request for pct %s' % msg.battery.pct)\n", (14263, 14319), False, 'import rospy\n'), ((14417, 14463), 'os.path.join', 'os.path.join', (['self.slackbot_url', '"""low_battery"""'], {}), "(self.slackbot_url, 'low_battery')\n", (14429, 14463), False, 'import os\n'), ((14847, 14945), 'rospy.logwarn', 'rospy.logwarn', (["('Error communicating with Slackbot /low_battery at URL %s.' % self.\n slackbot_url)"], {}), "('Error communicating with Slackbot /low_battery at URL %s.' %\n self.slackbot_url)\n", (14860, 14945), False, 'import rospy\n'), ((15196, 15226), 'rospy.logwarn', 'rospy.logwarn', (["('Error %s.' % e)"], {}), "('Error %s.' % e)\n", (15209, 15226), False, 'import rospy\n'), ((15040, 15085), 'rospy.logwarn', 'rospy.logwarn', (["('Response text %s.' % res.text)"], {}), "('Response text %s.' % res.text)\n", (15053, 15085), False, 'import rospy\n'), ((15136, 15158), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (15156, 15158), False, 'import traceback\n')]
montehoover/NimbusML
src/python/nimbusml/internal/entrypoints/trainers_lightgbmbinaryclassifier.py
f6be39ce9359786976429bab0ccd837e849b4ba5
# - Generated by tools/entrypoint_compiler.py: do not edit by hand """ Trainers.LightGbmBinaryClassifier """ import numbers from ..utils.entrypoints import EntryPoint from ..utils.utils import try_set, unlist def trainers_lightgbmbinaryclassifier( training_data, predictor_model=None, number_of_iterations=100, learning_rate=None, number_of_leaves=None, minimum_example_count_per_leaf=None, feature_column_name='Features', booster=None, label_column_name='Label', example_weight_column_name=None, row_group_column_name=None, normalize_features='Auto', caching='Auto', unbalanced_sets=False, weight_of_positive_examples=1.0, sigmoid=0.5, evaluation_metric='Logloss', maximum_bin_count_per_feature=255, verbose=False, silent=True, number_of_threads=None, early_stopping_round=0, batch_size=1048576, use_categorical_split=None, handle_missing_value=True, use_zero_as_missing_value=False, minimum_example_count_per_group=100, maximum_categorical_split_point_count=32, categorical_smoothing=10.0, l2_categorical_regularization=10.0, seed=None, parallel_trainer=None, **params): """ **Description** Train a LightGBM binary classification model. :param number_of_iterations: Number of iterations. (inputs). :param training_data: The data to be used for training (inputs). :param learning_rate: Shrinkage rate for trees, used to prevent over-fitting. Range: (0,1]. (inputs). :param number_of_leaves: Maximum leaves for trees. (inputs). :param minimum_example_count_per_leaf: Minimum number of instances needed in a child. (inputs). :param feature_column_name: Column to use for features (inputs). :param booster: Which booster to use, can be gbtree, gblinear or dart. gbtree and dart use tree based model while gblinear uses linear function. (inputs). :param label_column_name: Column to use for labels (inputs). :param example_weight_column_name: Column to use for example weight (inputs). :param row_group_column_name: Column to use for example groupId (inputs). :param normalize_features: Normalize option for the feature column (inputs). :param caching: Whether trainer should cache input training data (inputs). :param unbalanced_sets: Use for binary classification when training data is not balanced. (inputs). :param weight_of_positive_examples: Control the balance of positive and negative weights, useful for unbalanced classes. A typical value to consider: sum(negative cases) / sum(positive cases). (inputs). :param sigmoid: Parameter for the sigmoid function. (inputs). :param evaluation_metric: Evaluation metrics. (inputs). :param maximum_bin_count_per_feature: Maximum number of bucket bin for features. (inputs). :param verbose: Verbose (inputs). :param silent: Printing running messages. (inputs). :param number_of_threads: Number of parallel threads used to run LightGBM. (inputs). :param early_stopping_round: Rounds of early stopping, 0 will disable it. (inputs). :param batch_size: Number of entries in a batch when loading data. (inputs). :param use_categorical_split: Enable categorical split or not. (inputs). :param handle_missing_value: Enable special handling of missing value or not. (inputs). :param use_zero_as_missing_value: Enable usage of zero (0) as missing value. (inputs). :param minimum_example_count_per_group: Minimum number of instances per categorical group. (inputs). :param maximum_categorical_split_point_count: Max number of categorical thresholds. (inputs). :param categorical_smoothing: Lapalace smooth term in categorical feature spilt. Avoid the bias of small categories. (inputs). :param l2_categorical_regularization: L2 Regularization for categorical split. (inputs). :param seed: Sets the random seed for LightGBM to use. (inputs). :param parallel_trainer: Parallel LightGBM Learning Algorithm (inputs). :param predictor_model: The trained model (outputs). """ entrypoint_name = 'Trainers.LightGbmBinaryClassifier' inputs = {} outputs = {} if number_of_iterations is not None: inputs['NumberOfIterations'] = try_set( obj=number_of_iterations, none_acceptable=True, is_of_type=numbers.Real) if training_data is not None: inputs['TrainingData'] = try_set( obj=training_data, none_acceptable=False, is_of_type=str) if learning_rate is not None: inputs['LearningRate'] = try_set( obj=learning_rate, none_acceptable=True, is_of_type=numbers.Real) if number_of_leaves is not None: inputs['NumberOfLeaves'] = try_set( obj=number_of_leaves, none_acceptable=True, is_of_type=numbers.Real) if minimum_example_count_per_leaf is not None: inputs['MinimumExampleCountPerLeaf'] = try_set( obj=minimum_example_count_per_leaf, none_acceptable=True, is_of_type=numbers.Real) if feature_column_name is not None: inputs['FeatureColumnName'] = try_set( obj=feature_column_name, none_acceptable=True, is_of_type=str, is_column=True) if booster is not None: inputs['Booster'] = try_set( obj=booster, none_acceptable=True, is_of_type=dict) if label_column_name is not None: inputs['LabelColumnName'] = try_set( obj=label_column_name, none_acceptable=True, is_of_type=str, is_column=True) if example_weight_column_name is not None: inputs['ExampleWeightColumnName'] = try_set( obj=example_weight_column_name, none_acceptable=True, is_of_type=str, is_column=True) if row_group_column_name is not None: inputs['RowGroupColumnName'] = try_set( obj=row_group_column_name, none_acceptable=True, is_of_type=str, is_column=True) if normalize_features is not None: inputs['NormalizeFeatures'] = try_set( obj=normalize_features, none_acceptable=True, is_of_type=str, values=[ 'No', 'Warn', 'Auto', 'Yes']) if caching is not None: inputs['Caching'] = try_set( obj=caching, none_acceptable=True, is_of_type=str, values=[ 'Auto', 'Memory', 'None']) if unbalanced_sets is not None: inputs['UnbalancedSets'] = try_set( obj=unbalanced_sets, none_acceptable=True, is_of_type=bool) if weight_of_positive_examples is not None: inputs['WeightOfPositiveExamples'] = try_set( obj=weight_of_positive_examples, none_acceptable=True, is_of_type=numbers.Real) if sigmoid is not None: inputs['Sigmoid'] = try_set( obj=sigmoid, none_acceptable=True, is_of_type=numbers.Real) if evaluation_metric is not None: inputs['EvaluationMetric'] = try_set( obj=evaluation_metric, none_acceptable=True, is_of_type=str, values=[ 'None', 'Default', 'Logloss', 'Error', 'AreaUnderCurve']) if maximum_bin_count_per_feature is not None: inputs['MaximumBinCountPerFeature'] = try_set( obj=maximum_bin_count_per_feature, none_acceptable=True, is_of_type=numbers.Real) if verbose is not None: inputs['Verbose'] = try_set( obj=verbose, none_acceptable=True, is_of_type=bool) if silent is not None: inputs['Silent'] = try_set( obj=silent, none_acceptable=True, is_of_type=bool) if number_of_threads is not None: inputs['NumberOfThreads'] = try_set( obj=number_of_threads, none_acceptable=True, is_of_type=numbers.Real) if early_stopping_round is not None: inputs['EarlyStoppingRound'] = try_set( obj=early_stopping_round, none_acceptable=True, is_of_type=numbers.Real) if batch_size is not None: inputs['BatchSize'] = try_set( obj=batch_size, none_acceptable=True, is_of_type=numbers.Real) if use_categorical_split is not None: inputs['UseCategoricalSplit'] = try_set( obj=use_categorical_split, none_acceptable=True, is_of_type=bool) if handle_missing_value is not None: inputs['HandleMissingValue'] = try_set( obj=handle_missing_value, none_acceptable=True, is_of_type=bool) if use_zero_as_missing_value is not None: inputs['UseZeroAsMissingValue'] = try_set( obj=use_zero_as_missing_value, none_acceptable=True, is_of_type=bool) if minimum_example_count_per_group is not None: inputs['MinimumExampleCountPerGroup'] = try_set( obj=minimum_example_count_per_group, none_acceptable=True, is_of_type=numbers.Real, valid_range={ 'Inf': 0, 'Max': 2147483647}) if maximum_categorical_split_point_count is not None: inputs['MaximumCategoricalSplitPointCount'] = try_set( obj=maximum_categorical_split_point_count, none_acceptable=True, is_of_type=numbers.Real, valid_range={ 'Inf': 0, 'Max': 2147483647}) if categorical_smoothing is not None: inputs['CategoricalSmoothing'] = try_set( obj=categorical_smoothing, none_acceptable=True, is_of_type=numbers.Real, valid_range={'Min': 0.0}) if l2_categorical_regularization is not None: inputs['L2CategoricalRegularization'] = try_set( obj=l2_categorical_regularization, none_acceptable=True, is_of_type=numbers.Real, valid_range={'Min': 0.0}) if seed is not None: inputs['Seed'] = try_set( obj=seed, none_acceptable=True, is_of_type=numbers.Real) if parallel_trainer is not None: inputs['ParallelTrainer'] = try_set( obj=parallel_trainer, none_acceptable=True, is_of_type=dict) if predictor_model is not None: outputs['PredictorModel'] = try_set( obj=predictor_model, none_acceptable=False, is_of_type=str) input_variables = { x for x in unlist(inputs.values()) if isinstance(x, str) and x.startswith("$")} output_variables = { x for x in unlist(outputs.values()) if isinstance(x, str) and x.startswith("$")} entrypoint = EntryPoint( name=entrypoint_name, inputs=inputs, outputs=outputs, input_variables=input_variables, output_variables=output_variables) return entrypoint
[]
Candida18/Job-Portal-with-Automated-Resume-Screening
Job Portal with Automated Resume Screening/gensim-4.1.2/gensim/test/test_rpmodel.py
19d19464ad3d1714da856656753a4afdfe257b31
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2010 Radim Rehurek <[email protected]> # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """ Automated tests for checking transformation algorithms (the models package). """ import logging import unittest import numpy as np from gensim.corpora.mmcorpus import MmCorpus from gensim.models import rpmodel from gensim import matutils from gensim.test.utils import datapath, get_tmpfile class TestRpModel(unittest.TestCase): def setUp(self): self.corpus = MmCorpus(datapath('testcorpus.mm')) def test_transform(self): # create the transformation model # HACK; set fixed seed so that we always get the same random matrix (and can compare against expected results) np.random.seed(13) model = rpmodel.RpModel(self.corpus, num_topics=2) # transform one document doc = list(self.corpus)[0] transformed = model[doc] vec = matutils.sparse2full(transformed, 2) # convert to dense vector, for easier equality tests expected = np.array([-0.70710677, 0.70710677]) self.assertTrue(np.allclose(vec, expected)) # transformed entries must be equal up to sign def test_persistence(self): fname = get_tmpfile('gensim_models.tst') model = rpmodel.RpModel(self.corpus, num_topics=2) model.save(fname) model2 = rpmodel.RpModel.load(fname) self.assertEqual(model.num_topics, model2.num_topics) self.assertTrue(np.allclose(model.projection, model2.projection)) tstvec = [] self.assertTrue(np.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector def test_persistence_compressed(self): fname = get_tmpfile('gensim_models.tst.gz') model = rpmodel.RpModel(self.corpus, num_topics=2) model.save(fname) model2 = rpmodel.RpModel.load(fname, mmap=None) self.assertEqual(model.num_topics, model2.num_topics) self.assertTrue(np.allclose(model.projection, model2.projection)) tstvec = [] self.assertTrue(np.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector if __name__ == '__main__': logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.DEBUG) unittest.main()
[((2240, 2336), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s : %(levelname)s : %(message)s"""', 'level': 'logging.DEBUG'}), "(format='%(asctime)s : %(levelname)s : %(message)s',\n level=logging.DEBUG)\n", (2259, 2336), False, 'import logging\n'), ((2337, 2352), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2350, 2352), False, 'import unittest\n'), ((801, 819), 'numpy.random.seed', 'np.random.seed', (['(13)'], {}), '(13)\n', (815, 819), True, 'import numpy as np\n'), ((836, 878), 'gensim.models.rpmodel.RpModel', 'rpmodel.RpModel', (['self.corpus'], {'num_topics': '(2)'}), '(self.corpus, num_topics=2)\n', (851, 878), False, 'from gensim.models import rpmodel\n'), ((995, 1031), 'gensim.matutils.sparse2full', 'matutils.sparse2full', (['transformed', '(2)'], {}), '(transformed, 2)\n', (1015, 1031), False, 'from gensim import matutils\n'), ((1106, 1141), 'numpy.array', 'np.array', (['[-0.70710677, 0.70710677]'], {}), '([-0.70710677, 0.70710677])\n', (1114, 1141), True, 'import numpy as np\n'), ((1291, 1323), 'gensim.test.utils.get_tmpfile', 'get_tmpfile', (['"""gensim_models.tst"""'], {}), "('gensim_models.tst')\n", (1302, 1323), False, 'from gensim.test.utils import datapath, get_tmpfile\n'), ((1340, 1382), 'gensim.models.rpmodel.RpModel', 'rpmodel.RpModel', (['self.corpus'], {'num_topics': '(2)'}), '(self.corpus, num_topics=2)\n', (1355, 1382), False, 'from gensim.models import rpmodel\n'), ((1426, 1453), 'gensim.models.rpmodel.RpModel.load', 'rpmodel.RpModel.load', (['fname'], {}), '(fname)\n', (1446, 1453), False, 'from gensim.models import rpmodel\n'), ((1772, 1807), 'gensim.test.utils.get_tmpfile', 'get_tmpfile', (['"""gensim_models.tst.gz"""'], {}), "('gensim_models.tst.gz')\n", (1783, 1807), False, 'from gensim.test.utils import datapath, get_tmpfile\n'), ((1824, 1866), 'gensim.models.rpmodel.RpModel', 'rpmodel.RpModel', (['self.corpus'], {'num_topics': '(2)'}), '(self.corpus, num_topics=2)\n', (1839, 1866), False, 'from gensim.models import rpmodel\n'), ((1910, 1948), 'gensim.models.rpmodel.RpModel.load', 'rpmodel.RpModel.load', (['fname'], {'mmap': 'None'}), '(fname, mmap=None)\n', (1930, 1948), False, 'from gensim.models import rpmodel\n'), ((574, 599), 'gensim.test.utils.datapath', 'datapath', (['"""testcorpus.mm"""'], {}), "('testcorpus.mm')\n", (582, 599), False, 'from gensim.test.utils import datapath, get_tmpfile\n'), ((1166, 1192), 'numpy.allclose', 'np.allclose', (['vec', 'expected'], {}), '(vec, expected)\n', (1177, 1192), True, 'import numpy as np\n'), ((1540, 1588), 'numpy.allclose', 'np.allclose', (['model.projection', 'model2.projection'], {}), '(model.projection, model2.projection)\n', (1551, 1588), True, 'import numpy as np\n'), ((1634, 1676), 'numpy.allclose', 'np.allclose', (['model[tstvec]', 'model2[tstvec]'], {}), '(model[tstvec], model2[tstvec])\n', (1645, 1676), True, 'import numpy as np\n'), ((2035, 2083), 'numpy.allclose', 'np.allclose', (['model.projection', 'model2.projection'], {}), '(model.projection, model2.projection)\n', (2046, 2083), True, 'import numpy as np\n'), ((2129, 2171), 'numpy.allclose', 'np.allclose', (['model[tstvec]', 'model2[tstvec]'], {}), '(model[tstvec], model2[tstvec])\n', (2140, 2171), True, 'import numpy as np\n')]
tianhaoz95/mangekyo
playground/tianhaoz95/gan_getting_started/cgan_model.py
fd2b151538d0c15cca60e05a844baffcbe08e68c
import tensorflow as tf from tensorflow import keras class CondGeneratorModel(keras.Model): def __init__(self): super(CondGeneratorModel, self).__init__() # Expand 7*7*128 features into a (7,7,128) tensor self.dense_1 = keras.layers.Dense(7*7*256) self.reshape_1 = keras.layers.Reshape((7, 7, 256)) # Expand (10,) to (7,7,1) self.embedder = keras.layers.Embedding(10, 100) self.dense_2 = keras.layers.Dense(7*7*256) # From (7,7,256) to (7,7,128) self.convt_1 = keras.layers.Conv2DTranspose( 128, (5, 5), strides=1, padding='same', use_bias=False) self.convt_bn_1 = keras.layers.BatchNormalization() self.convt_relu_1 = keras.layers.LeakyReLU() # From (7,7,128) to (14,14,64) self.convt_2 = keras.layers.Conv2DTranspose( 64, (5, 5), strides=2, padding='same', use_bias=False) self.convt_bn_2 = keras.layers.BatchNormalization() self.convt_relu_2 = keras.layers.LeakyReLU() # From (14,14,64) to (28,28,1) self.convt_out = keras.layers.Conv2DTranspose( 1, (5, 5), strides=2, padding='same', use_bias=False) def call(self, inputs): feat_x = inputs[0] label = inputs[2] # Expand label input to be the same as latent feature label_x = self.embedder(label) label_x = self.dense_2(label_x) label_x = tf.squeeze(label_x, 1) # Expand features to image channels feat_x = self.dense_1(feat_x) # Combine latent feature and label input x = tf.math.multiply(feat_x, label_x) x = self.reshape_1(x) # From (7,7,256) to (7,7,128) x = self.convt_1(x) x = self.convt_bn_1(x) x = self.convt_relu_1(x) # From (7,7,128) to (14,14,64) x = self.convt_2(x) x = self.convt_bn_2(x) x = self.convt_relu_2(x) # From (14,14,64) to (28,28,1) x = self.convt_out(x) return [x, None, label] class CondDiscriminatorModel(keras.Model): def __init__(self): super(CondDiscriminatorModel, self).__init__() self.embedder = keras.layers.Embedding(10, 100) self.expand_layer = keras.layers.Dense(28*28*1) self.reshape_layer = keras.layers.Reshape((28, 28, 1)) self.conv_1 = keras.layers.Conv2D( 64, (5, 5), strides=2, padding='same', input_shape=(28, 28, 1)) self.relu_1 = keras.layers.LeakyReLU() self.drop_1 = keras.layers.Dropout(0.3) self.conv_2 = keras.layers.Conv2D( 128, (5, 5), strides=2, padding='same') self.relu_2 = keras.layers.LeakyReLU() self.drop_2 = keras.layers.Dropout(0.3) self.flatten = keras.layers.Flatten() self.out = keras.layers.Dense(1) def call(self, inputs): images_x = inputs[0] labels = inputs[2] labels_x = self.embedder(labels) labels_x = self.expand_layer(labels_x) labels_x = self.reshape_layer(labels_x) x = tf.math.multiply(images_x, labels_x) x = self.conv_1(x) x = self.relu_1(x) x = self.drop_1(x) x = self.conv_2(x) x = self.relu_2(x) x = self.drop_2(x) x = self.flatten(x) x = self.out(x) return x
[((250, 281), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(7 * 7 * 256)'], {}), '(7 * 7 * 256)\n', (268, 281), False, 'from tensorflow import keras\n'), ((303, 336), 'tensorflow.keras.layers.Reshape', 'keras.layers.Reshape', (['(7, 7, 256)'], {}), '((7, 7, 256))\n', (323, 336), False, 'from tensorflow import keras\n'), ((395, 426), 'tensorflow.keras.layers.Embedding', 'keras.layers.Embedding', (['(10)', '(100)'], {}), '(10, 100)\n', (417, 426), False, 'from tensorflow import keras\n'), ((450, 481), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(7 * 7 * 256)'], {}), '(7 * 7 * 256)\n', (468, 481), False, 'from tensorflow import keras\n'), ((539, 627), 'tensorflow.keras.layers.Conv2DTranspose', 'keras.layers.Conv2DTranspose', (['(128)', '(5, 5)'], {'strides': '(1)', 'padding': '"""same"""', 'use_bias': '(False)'}), "(128, (5, 5), strides=1, padding='same',\n use_bias=False)\n", (567, 627), False, 'from tensorflow import keras\n'), ((663, 696), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (694, 696), False, 'from tensorflow import keras\n'), ((725, 749), 'tensorflow.keras.layers.LeakyReLU', 'keras.layers.LeakyReLU', ([], {}), '()\n', (747, 749), False, 'from tensorflow import keras\n'), ((812, 899), 'tensorflow.keras.layers.Conv2DTranspose', 'keras.layers.Conv2DTranspose', (['(64)', '(5, 5)'], {'strides': '(2)', 'padding': '"""same"""', 'use_bias': '(False)'}), "(64, (5, 5), strides=2, padding='same',\n use_bias=False)\n", (840, 899), False, 'from tensorflow import keras\n'), ((935, 968), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (966, 968), False, 'from tensorflow import keras\n'), ((997, 1021), 'tensorflow.keras.layers.LeakyReLU', 'keras.layers.LeakyReLU', ([], {}), '()\n', (1019, 1021), False, 'from tensorflow import keras\n'), ((1086, 1173), 'tensorflow.keras.layers.Conv2DTranspose', 'keras.layers.Conv2DTranspose', (['(1)', '(5, 5)'], {'strides': '(2)', 'padding': '"""same"""', 'use_bias': '(False)'}), "(1, (5, 5), strides=2, padding='same', use_bias\n =False)\n", (1114, 1173), False, 'from tensorflow import keras\n'), ((1423, 1445), 'tensorflow.squeeze', 'tf.squeeze', (['label_x', '(1)'], {}), '(label_x, 1)\n', (1433, 1445), True, 'import tensorflow as tf\n'), ((1589, 1622), 'tensorflow.math.multiply', 'tf.math.multiply', (['feat_x', 'label_x'], {}), '(feat_x, label_x)\n', (1605, 1622), True, 'import tensorflow as tf\n'), ((2163, 2194), 'tensorflow.keras.layers.Embedding', 'keras.layers.Embedding', (['(10)', '(100)'], {}), '(10, 100)\n', (2185, 2194), False, 'from tensorflow import keras\n'), ((2223, 2254), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(28 * 28 * 1)'], {}), '(28 * 28 * 1)\n', (2241, 2254), False, 'from tensorflow import keras\n'), ((2280, 2313), 'tensorflow.keras.layers.Reshape', 'keras.layers.Reshape', (['(28, 28, 1)'], {}), '((28, 28, 1))\n', (2300, 2313), False, 'from tensorflow import keras\n'), ((2336, 2423), 'tensorflow.keras.layers.Conv2D', 'keras.layers.Conv2D', (['(64)', '(5, 5)'], {'strides': '(2)', 'padding': '"""same"""', 'input_shape': '(28, 28, 1)'}), "(64, (5, 5), strides=2, padding='same', input_shape=(28,\n 28, 1))\n", (2355, 2423), False, 'from tensorflow import keras\n'), ((2455, 2479), 'tensorflow.keras.layers.LeakyReLU', 'keras.layers.LeakyReLU', ([], {}), '()\n', (2477, 2479), False, 'from tensorflow import keras\n'), ((2502, 2527), 'tensorflow.keras.layers.Dropout', 'keras.layers.Dropout', (['(0.3)'], {}), '(0.3)\n', (2522, 2527), False, 'from tensorflow import keras\n'), ((2550, 2609), 'tensorflow.keras.layers.Conv2D', 'keras.layers.Conv2D', (['(128)', '(5, 5)'], {'strides': '(2)', 'padding': '"""same"""'}), "(128, (5, 5), strides=2, padding='same')\n", (2569, 2609), False, 'from tensorflow import keras\n'), ((2645, 2669), 'tensorflow.keras.layers.LeakyReLU', 'keras.layers.LeakyReLU', ([], {}), '()\n', (2667, 2669), False, 'from tensorflow import keras\n'), ((2692, 2717), 'tensorflow.keras.layers.Dropout', 'keras.layers.Dropout', (['(0.3)'], {}), '(0.3)\n', (2712, 2717), False, 'from tensorflow import keras\n'), ((2741, 2763), 'tensorflow.keras.layers.Flatten', 'keras.layers.Flatten', ([], {}), '()\n', (2761, 2763), False, 'from tensorflow import keras\n'), ((2783, 2804), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(1)'], {}), '(1)\n', (2801, 2804), False, 'from tensorflow import keras\n'), ((3038, 3074), 'tensorflow.math.multiply', 'tf.math.multiply', (['images_x', 'labels_x'], {}), '(images_x, labels_x)\n', (3054, 3074), True, 'import tensorflow as tf\n')]
miracum/ahd2fhir
ahd2fhir/utils/resource_handler.py
0c1bf3e0d86278145f9f1fa5c99a121f8e961d5f
import base64 import datetime import logging import os import time from typing import List, Tuple import structlog import tenacity from averbis import Pipeline from fhir.resources.bundle import Bundle from fhir.resources.codeableconcept import CodeableConcept from fhir.resources.composition import Composition, CompositionSection from fhir.resources.documentreference import DocumentReference from fhir.resources.fhirtypes import DateTime from fhir.resources.identifier import Identifier from fhir.resources.reference import Reference from fhir.resources.resource import Resource from prometheus_client import Counter, Histogram, Summary from tenacity.after import after_log from ahd2fhir.mappers import ahd_to_condition, ahd_to_medication_statement from ahd2fhir.utils.bundle_builder import BundleBuilder from ahd2fhir.utils.custom_mappers import custom_mappers, mapper_functions from ahd2fhir.utils.device_builder import build_device from ahd2fhir.utils.fhir_utils import sha256_of_identifier MAPPING_FAILURES_COUNTER = Counter("mapping_failures", "Exceptions during mapping") MAPPING_DURATION_SUMMARY = Histogram( "map_duration_seconds", "Time spent mapping", buckets=( 0.05, 0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 8.0, 13.0, 21.0, 34.0, 55.0, "inf", ), ) EXTRACTED_RESOURCES_COUNT_SUMMARY = Summary( "extracted_resources", "Number of extracted resources for each processed document" ) DOCUMENT_LENGTH_SUMMARY = Summary( "document_length", "Length of each processed document's text in charactes", ) DISCHARGE_SUMMARY_CONCEPT_TEXT = ( "Clinical document Kind of document from LOINC Document Ontology" ) DISCHARGE_SUMMARY_CONCEPT = CodeableConcept( **{ "coding": [ { "system": "http://loinc.org", "code": "74477-1", "display": DISCHARGE_SUMMARY_CONCEPT_TEXT, }, ], "text": DISCHARGE_SUMMARY_CONCEPT_TEXT, } ) AHD_TYPE_DOCUMENT_ANNOTATION = "de.averbis.types.health.DocumentAnnotation" AHD_TYPE_MEDICATION = "de.averbis.types.health.Medication" AHD_TYPE_DIAGNOSIS = "de.averbis.types.health.Diagnosis" log = structlog.get_logger() class TransientError(Exception): pass class ResourceHandler: def __init__(self, averbis_pipeline: Pipeline): self.pipeline = averbis_pipeline self.bundle_builder = BundleBuilder() @MAPPING_FAILURES_COUNTER.count_exceptions() @MAPPING_DURATION_SUMMARY.time() def handle_documents(self, document_references: List[DocumentReference]) -> Bundle: """ Process a list of DocumentReferences """ all_resources = [] bundle_id = None for document_reference in document_references: resources_from_document = self._process_documentreference( document_reference ) composition = self._build_composition( document_reference, resources_from_document ) bundle_id = composition.id all_resources.extend(resources_from_document) all_resources.append(composition) EXTRACTED_RESOURCES_COUNT_SUMMARY.observe(len(all_resources)) result_bundle = self.bundle_builder.build_from_resources( all_resources, bundle_id ) return result_bundle def handle_bundle(self, bundle: Bundle): """ Process all FHIR DocumentReference resources from a given bundle """ document_references = [] for entry in bundle.entry: if entry.resource.resource_type == "DocumentReference": document_references.append(entry.resource) return self.handle_documents(document_references) def _build_composition( self, document_reference: DocumentReference, all_resources: List[Resource] ): composition_type = ( document_reference.type if document_reference.type is not None else DISCHARGE_SUMMARY_CONCEPT ) composition_subject = document_reference.subject composition_category = document_reference.category composition_encounter = None if document_reference.context is not None: if len(document_reference.context.encounter) > 1: log.warning( "DocumentReference contains more than one encounter. " + "Using the first." ) composition_encounter = document_reference.context.encounter[0] composition_author = None composition_sections = [] for resource in all_resources: resource_type = resource.resource_type if resource_type == "Device": author = Reference.construct() author.reference = f"Device/{resource.id}" author.type = "Device" composition_author = author continue # Check if no resource specific section exists ands adds it, # otherwise select the correct section if not any( section.title == resource_type for section in composition_sections ): resource_section = CompositionSection.construct() resource_section.title = resource_type resource_section.entry = [] composition_sections.append(resource_section) ind = len(composition_sections) - 1 else: ind = [ ind for ind, section in enumerate(composition_sections) if section.title == resource_type ][0] entry_reference = Reference.construct() entry_reference.reference = resource_type + "/" + resource.id composition_sections[ind].entry.append(entry_reference) if composition_author is None: composition_author = Reference(**{"display": "Averbis Health Discovery"}) composition_identifier = ( self._build_composition_identifier_from_documentreference( document_reference ) ) composition = Composition( **{ "title": "NLP FHIR Results " + time.strftime("%Y-%m-%dT%H:%M"), "status": "final", "date": DateTime.validate(datetime.datetime.now(datetime.timezone.utc)), "type": composition_type, "identifier": composition_identifier, "id": sha256_of_identifier(composition_identifier), "subject": composition_subject, "category": composition_category, "encounter": composition_encounter, "author": [composition_author], "section": composition_sections, } ) return composition def _process_documentreference(self, document_reference: DocumentReference): log = structlog.get_logger().bind( document_id=f"{document_reference.get_resource_type()}/" + f"{document_reference.id}" ) # Text extraction and text analysis (text, content_type, lang) = self._extract_text_from_resource( document_reference ) DOCUMENT_LENGTH_SUMMARY.observe(len(text)) averbis_result = None try: averbis_result = self._perform_text_analysis( text=text, mime_type=content_type, lang=lang ) except Exception as exc: log.exception(exc) log.error("Failed to perform text analysis", error=exc) raise TransientError(exc) total_results = [] # Building FHIR resources as results medication_statement_lists = [] for val in averbis_result: if val["type"] == AHD_TYPE_DIAGNOSIS: mapped_condition = ahd_to_condition.get_fhir_condition( val, document_reference ) if mapped_condition is not None: total_results.append(mapped_condition) if val["type"] == AHD_TYPE_DOCUMENT_ANNOTATION: device = build_device(val) if device is not None: total_results.append(device) if val["type"] == AHD_TYPE_MEDICATION: statement = ahd_to_medication_statement.get_fhir_medication_statement( val, document_reference ) if statement is not None: medication_statement_lists.append(statement) # if custom_mappers_enabled if os.getenv("CUSTOM_MAPPERS_ENABLED", "False").lower() in ["true", "1"]: total_results.extend(custom_mappers(val, document_reference)) medication_results = [] medication_statement_results = [] for medication_statement_list in medication_statement_lists: for medication_statement_dict in medication_statement_list: medication_results.append(medication_statement_dict["medication"]) medication_statement_results.append( medication_statement_dict["statement"] ) # de-duplicate any Medication and MedicationStatement resources medication_resources_unique = {m.id: m for m in medication_results}.values() medication_statements_unique = { m.id: m for m in medication_statement_results }.values() total_results.extend(medication_resources_unique) total_results.extend(medication_statements_unique) return total_results def _extract_text_from_resource( self, document_reference: DocumentReference, ) -> Tuple[str, str]: valid_content = [ content for content in document_reference.content if content.attachment.data is not None ] if len(valid_content) == 0: raise ValueError( f"Document {document_reference.id} contains no valid content" ) if len(valid_content) > 1: raise ValueError( f"Document {document_reference.id} contains more than one attachment" ) content = valid_content[0] language = None if content.attachment.language: language = content.attachment.language.lower().split("-")[0] return ( base64.b64decode(content.attachment.data).decode("utf8"), content.attachment.contentType, language, ) @tenacity.retry( stop=tenacity.stop.stop_after_attempt(10), wait=tenacity.wait.wait_fixed(5) + tenacity.wait.wait_random_exponential(multiplier=1, max=30), after=after_log(logging.getLogger(), logging.WARNING), reraise=True, ) def _perform_text_analysis( self, text: str, mime_type: str = "text/plain", lang: str = None ): types = ",".join( [ AHD_TYPE_DIAGNOSIS, AHD_TYPE_MEDICATION, AHD_TYPE_DOCUMENT_ANNOTATION, *mapper_functions.keys(), ] ) analyse_args = {"language": lang, "annotation_types": types} try: if mime_type == "text/html": return self.pipeline.analyse_html(text, **analyse_args) else: return self.pipeline.analyse_text(text, **analyse_args) except Exception as exc: log.exception(exc) log.error("Text analysis failed") raise exc def _build_composition_identifier_from_documentreference( self, doc_ref: DocumentReference, ): """ construct a hopefully unqiue identifier for the condition from the document identifier as well as the offset into the text and the unique id of the annotation """ doc_ref_identifier = None if doc_ref.identifier is None or len(doc_ref.identifier) == 0: log.warning( "No identifier specified on the document. " + "Trying to fall-back to the DocumentReference.id" ) doc_ref_identifier = doc_ref.id else: if len(doc_ref.identifier) > 1: log.warning( "More than one identifier specified on the document. " + "Using the first occurrence." ) doc_ref_identifier = doc_ref.identifier[0].value composition_identifier_system = ( "https://fhir.miracum.org/nlp/identifiers/ahd-analysis-result-composition" ) composition_identifier_value = f"{doc_ref_identifier}_ahd-analysis-result" return Identifier( **{ "system": composition_identifier_system, "value": composition_identifier_value, } )
[((1026, 1082), 'prometheus_client.Counter', 'Counter', (['"""mapping_failures"""', '"""Exceptions during mapping"""'], {}), "('mapping_failures', 'Exceptions during mapping')\n", (1033, 1082), False, 'from prometheus_client import Counter, Histogram, Summary\n'), ((1110, 1251), 'prometheus_client.Histogram', 'Histogram', (['"""map_duration_seconds"""', '"""Time spent mapping"""'], {'buckets': "(0.05, 0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 8.0, 13.0, 21.0, 34.0, 55.0, 'inf')"}), "('map_duration_seconds', 'Time spent mapping', buckets=(0.05, 0.1,\n 0.5, 1.0, 2.0, 3.0, 5.0, 8.0, 13.0, 21.0, 34.0, 55.0, 'inf'))\n", (1119, 1251), False, 'from prometheus_client import Counter, Histogram, Summary\n'), ((1410, 1505), 'prometheus_client.Summary', 'Summary', (['"""extracted_resources"""', '"""Number of extracted resources for each processed document"""'], {}), "('extracted_resources',\n 'Number of extracted resources for each processed document')\n", (1417, 1505), False, 'from prometheus_client import Counter, Histogram, Summary\n'), ((1534, 1621), 'prometheus_client.Summary', 'Summary', (['"""document_length"""', '"""Length of each processed document\'s text in charactes"""'], {}), '(\'document_length\',\n "Length of each processed document\'s text in charactes")\n', (1541, 1621), False, 'from prometheus_client import Counter, Histogram, Summary\n'), ((1765, 1938), 'fhir.resources.codeableconcept.CodeableConcept', 'CodeableConcept', ([], {}), "(**{'coding': [{'system': 'http://loinc.org', 'code':\n '74477-1', 'display': DISCHARGE_SUMMARY_CONCEPT_TEXT}], 'text':\n DISCHARGE_SUMMARY_CONCEPT_TEXT})\n", (1780, 1938), False, 'from fhir.resources.codeableconcept import CodeableConcept\n'), ((2246, 2268), 'structlog.get_logger', 'structlog.get_logger', ([], {}), '()\n', (2266, 2268), False, 'import structlog\n'), ((2461, 2476), 'ahd2fhir.utils.bundle_builder.BundleBuilder', 'BundleBuilder', ([], {}), '()\n', (2474, 2476), False, 'from ahd2fhir.utils.bundle_builder import BundleBuilder\n'), ((12951, 13049), 'fhir.resources.identifier.Identifier', 'Identifier', ([], {}), "(**{'system': composition_identifier_system, 'value':\n composition_identifier_value})\n", (12961, 13049), False, 'from fhir.resources.identifier import Identifier\n'), ((5817, 5838), 'fhir.resources.reference.Reference.construct', 'Reference.construct', ([], {}), '()\n', (5836, 5838), False, 'from fhir.resources.reference import Reference\n'), ((6055, 6107), 'fhir.resources.reference.Reference', 'Reference', ([], {}), "(**{'display': 'Averbis Health Discovery'})\n", (6064, 6107), False, 'from fhir.resources.reference import Reference\n'), ((10778, 10814), 'tenacity.stop.stop_after_attempt', 'tenacity.stop.stop_after_attempt', (['(10)'], {}), '(10)\n', (10810, 10814), False, 'import tenacity\n'), ((4856, 4877), 'fhir.resources.reference.Reference.construct', 'Reference.construct', ([], {}), '()\n', (4875, 4877), False, 'from fhir.resources.reference import Reference\n'), ((5327, 5357), 'fhir.resources.composition.CompositionSection.construct', 'CompositionSection.construct', ([], {}), '()\n', (5355, 5357), False, 'from fhir.resources.composition import Composition, CompositionSection\n'), ((7088, 7110), 'structlog.get_logger', 'structlog.get_logger', ([], {}), '()\n', (7108, 7110), False, 'import structlog\n'), ((8029, 8089), 'ahd2fhir.mappers.ahd_to_condition.get_fhir_condition', 'ahd_to_condition.get_fhir_condition', (['val', 'document_reference'], {}), '(val, document_reference)\n', (8064, 8089), False, 'from ahd2fhir.mappers import ahd_to_condition, ahd_to_medication_statement\n'), ((8322, 8339), 'ahd2fhir.utils.device_builder.build_device', 'build_device', (['val'], {}), '(val)\n', (8334, 8339), False, 'from ahd2fhir.utils.device_builder import build_device\n'), ((8508, 8594), 'ahd2fhir.mappers.ahd_to_medication_statement.get_fhir_medication_statement', 'ahd_to_medication_statement.get_fhir_medication_statement', (['val', 'document_reference'], {}), '(val,\n document_reference)\n', (8565, 8594), False, 'from ahd2fhir.mappers import ahd_to_condition, ahd_to_medication_statement\n'), ((10829, 10856), 'tenacity.wait.wait_fixed', 'tenacity.wait.wait_fixed', (['(5)'], {}), '(5)\n', (10853, 10856), False, 'import tenacity\n'), ((10867, 10926), 'tenacity.wait.wait_random_exponential', 'tenacity.wait.wait_random_exponential', ([], {'multiplier': '(1)', 'max': '(30)'}), '(multiplier=1, max=30)\n', (10904, 10926), False, 'import tenacity\n'), ((10952, 10971), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (10969, 10971), False, 'import logging\n'), ((6648, 6692), 'ahd2fhir.utils.fhir_utils.sha256_of_identifier', 'sha256_of_identifier', (['composition_identifier'], {}), '(composition_identifier)\n', (6668, 6692), False, 'from ahd2fhir.utils.fhir_utils import sha256_of_identifier\n'), ((8900, 8939), 'ahd2fhir.utils.custom_mappers.custom_mappers', 'custom_mappers', (['val', 'document_reference'], {}), '(val, document_reference)\n', (8914, 8939), False, 'from ahd2fhir.utils.custom_mappers import custom_mappers, mapper_functions\n'), ((10609, 10650), 'base64.b64decode', 'base64.b64decode', (['content.attachment.data'], {}), '(content.attachment.data)\n', (10625, 10650), False, 'import base64\n'), ((11307, 11330), 'ahd2fhir.utils.custom_mappers.mapper_functions.keys', 'mapper_functions.keys', ([], {}), '()\n', (11328, 11330), False, 'from ahd2fhir.utils.custom_mappers import custom_mappers, mapper_functions\n'), ((6373, 6404), 'time.strftime', 'time.strftime', (['"""%Y-%m-%dT%H:%M"""'], {}), "('%Y-%m-%dT%H:%M')\n", (6386, 6404), False, 'import time\n'), ((6483, 6527), 'datetime.datetime.now', 'datetime.datetime.now', (['datetime.timezone.utc'], {}), '(datetime.timezone.utc)\n', (6504, 6527), False, 'import datetime\n'), ((8792, 8836), 'os.getenv', 'os.getenv', (['"""CUSTOM_MAPPERS_ENABLED"""', '"""False"""'], {}), "('CUSTOM_MAPPERS_ENABLED', 'False')\n", (8801, 8836), False, 'import os\n')]
Infinityloopsistemas/SIVA
maestros/lookups.py
92b6c82f018d39ef405989639974d1f2757476ed
# -*- coding: utf-8 -*- from selectable.decorators import login_required from maestros.models import TiposMedidasActuacion, TiposLimitesCriticos, TiposMedidasVigilancia, TiposTemperaturas, TiposFrecuencias, Zonas, Terceros, CatalogoEquipos, Personal, Consumibles, ParametrosAnalisis, Actividades, Etapas, Peligros, TiposCursos, TiposLegislacion, Unidades, Firmas, HorarioTurnos from selectable.base import ModelLookup from selectable.registry import registry from maestros_generales.models import Empresas from siva import settings __author__ = 'julian' @login_required class TPActuacionPrevLookup(ModelLookup): model = TiposMedidasActuacion search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TPActuacionPrevLookup, self).get_query(request, term) results = results.filter(tipo="P",empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TPActuacionPrevLookup) @login_required class TPActuacionCorrLookup(ModelLookup): model = TiposMedidasActuacion search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TPActuacionCorrLookup, self).get_query(request, term) results = results.filter(tipo="C",empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TPActuacionCorrLookup) @login_required class TPLimitesCritLookup(ModelLookup): model = TiposLimitesCriticos search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TPLimitesCritLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TPLimitesCritLookup) @login_required class ActividadesLookup(ModelLookup): model = Actividades search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(ActividadesLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(ActividadesLookup) @login_required class TipoMedidasVigilanciaLookup(ModelLookup): model = TiposMedidasVigilancia search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TipoMedidasVigilanciaLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TipoMedidasVigilanciaLookup) @login_required class TiposTemperaturasLookup(ModelLookup): model = TiposTemperaturas search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TiposTemperaturasLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TiposTemperaturasLookup) @login_required class TiposFrecuenciasLookup(ModelLookup): model = TiposFrecuencias search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TiposFrecuenciasLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TiposFrecuenciasLookup) @login_required class ZonasLookup(ModelLookup): model = Zonas search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(ZonasLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(ZonasLookup) @login_required class TercerosLookup(ModelLookup): model = Terceros search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TercerosLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TercerosLookup) @login_required class TercerosTiposLookup(ModelLookup): model = Terceros search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TercerosTiposLookup, self).get_query(request, term) results = results.filter(tipotercero__descripcion=settings.ASESORSANITARIO, empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TercerosTiposLookup) @login_required class CatalogoEquiposLookup(ModelLookup): model = CatalogoEquipos search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(CatalogoEquiposLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(CatalogoEquiposLookup) @login_required class PersonalLookup(ModelLookup): model = Personal search_fields = ('apellidos__icontains',) def get_query(self, request, term): results = super(PersonalLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.apellidos def get_item_label(self, item): return "%s %s" % (item.apellidos, item.nombres) registry.register(PersonalLookup) @login_required class TiposCursosLookup(ModelLookup): model = TiposCursos search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TiposCursosLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TiposCursosLookup) @login_required class TiposLegislacionLookup(ModelLookup): model = TiposLegislacion search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TiposLegislacionLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TiposLegislacionLookup) @login_required class ConsumiblesLookup(ModelLookup): model = Consumibles search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(ConsumiblesLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(ConsumiblesLookup) @login_required class ParametrosAnalisisLookup(ModelLookup): model = ParametrosAnalisis search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(ParametrosAnalisisLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(ParametrosAnalisisLookup) @login_required class EtapasLookup(ModelLookup): model = Etapas search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(EtapasLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(EtapasLookup) @login_required class PeligrosLookup(ModelLookup): model = Peligros search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(PeligrosLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(PeligrosLookup) @login_required class UnidadesLookup(ModelLookup): model = Unidades search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(UnidadesLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(UnidadesLookup) @login_required class FirmasLookup(ModelLookup): model = Firmas search_fields = ('personal__apellidos__icontains',) def get_query(self, request, term): results = super(FirmasLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.personal.apellidos def get_item_label(self, item): return "%s %s" % (item.personal__apellidos, item.personal__nombres) registry.register(FirmasLookup) @login_required class HorarioTurnoLookup(ModelLookup): model = HorarioTurnos search_fields = ('ihora__icontains','fhora__icontains') def get_query(self, request, term): results = super(HorarioTurnoLookup, self).get_query(request, term) idtpturno = request.GET.get('idtpturno', '') if idtpturno: results = results.filter(tpturnos_id=idtpturno) return results def get_item_value(self, item): return "%s - %s" % (item.ihora, item.fhora) def get_item_label(self, item): return "%s - %s" % (item.ihora, item.fhora) registry.register(HorarioTurnoLookup)
[((1100, 1140), 'selectable.registry.registry.register', 'registry.register', (['TPActuacionPrevLookup'], {}), '(TPActuacionPrevLookup)\n', (1117, 1140), False, 'from selectable.registry import registry\n'), ((1686, 1726), 'selectable.registry.registry.register', 'registry.register', (['TPActuacionCorrLookup'], {}), '(TPActuacionCorrLookup)\n', (1703, 1726), False, 'from selectable.registry import registry\n'), ((2258, 2296), 'selectable.registry.registry.register', 'registry.register', (['TPLimitesCritLookup'], {}), '(TPLimitesCritLookup)\n', (2275, 2296), False, 'from selectable.registry import registry\n'), ((2816, 2852), 'selectable.registry.registry.register', 'registry.register', (['ActividadesLookup'], {}), '(ActividadesLookup)\n', (2833, 2852), False, 'from selectable.registry import registry\n'), ((3402, 3448), 'selectable.registry.registry.register', 'registry.register', (['TipoMedidasVigilanciaLookup'], {}), '(TipoMedidasVigilanciaLookup)\n', (3419, 3448), False, 'from selectable.registry import registry\n'), ((3985, 4027), 'selectable.registry.registry.register', 'registry.register', (['TiposTemperaturasLookup'], {}), '(TiposTemperaturasLookup)\n', (4002, 4027), False, 'from selectable.registry import registry\n'), ((4561, 4602), 'selectable.registry.registry.register', 'registry.register', (['TiposFrecuenciasLookup'], {}), '(TiposFrecuenciasLookup)\n', (4578, 4602), False, 'from selectable.registry import registry\n'), ((5103, 5133), 'selectable.registry.registry.register', 'registry.register', (['ZonasLookup'], {}), '(ZonasLookup)\n', (5120, 5133), False, 'from selectable.registry import registry\n'), ((5643, 5676), 'selectable.registry.registry.register', 'registry.register', (['TercerosLookup'], {}), '(TercerosLookup)\n', (5660, 5676), False, 'from selectable.registry import registry\n'), ((6247, 6285), 'selectable.registry.registry.register', 'registry.register', (['TercerosTiposLookup'], {}), '(TercerosTiposLookup)\n', (6264, 6285), False, 'from selectable.registry import registry\n'), ((6817, 6857), 'selectable.registry.registry.register', 'registry.register', (['CatalogoEquiposLookup'], {}), '(CatalogoEquiposLookup)\n', (6834, 6857), False, 'from selectable.registry import registry\n'), ((7375, 7408), 'selectable.registry.registry.register', 'registry.register', (['PersonalLookup'], {}), '(PersonalLookup)\n', (7392, 7408), False, 'from selectable.registry import registry\n'), ((7927, 7963), 'selectable.registry.registry.register', 'registry.register', (['TiposCursosLookup'], {}), '(TiposCursosLookup)\n', (7944, 7963), False, 'from selectable.registry import registry\n'), ((8498, 8539), 'selectable.registry.registry.register', 'registry.register', (['TiposLegislacionLookup'], {}), '(TiposLegislacionLookup)\n', (8515, 8539), False, 'from selectable.registry import registry\n'), ((9059, 9095), 'selectable.registry.registry.register', 'registry.register', (['ConsumiblesLookup'], {}), '(ConsumiblesLookup)\n', (9076, 9095), False, 'from selectable.registry import registry\n'), ((9636, 9679), 'selectable.registry.registry.register', 'registry.register', (['ParametrosAnalisisLookup'], {}), '(ParametrosAnalisisLookup)\n', (9653, 9679), False, 'from selectable.registry import registry\n'), ((10183, 10214), 'selectable.registry.registry.register', 'registry.register', (['EtapasLookup'], {}), '(EtapasLookup)\n', (10200, 10214), False, 'from selectable.registry import registry\n'), ((10724, 10757), 'selectable.registry.registry.register', 'registry.register', (['PeligrosLookup'], {}), '(PeligrosLookup)\n', (10741, 10757), False, 'from selectable.registry import registry\n'), ((11268, 11301), 'selectable.registry.registry.register', 'registry.register', (['UnidadesLookup'], {}), '(UnidadesLookup)\n', (11285, 11301), False, 'from selectable.registry import registry\n'), ((11853, 11884), 'selectable.registry.registry.register', 'registry.register', (['FirmasLookup'], {}), '(FirmasLookup)\n', (11870, 11884), False, 'from selectable.registry import registry\n'), ((12482, 12519), 'selectable.registry.registry.register', 'registry.register', (['HorarioTurnoLookup'], {}), '(HorarioTurnoLookup)\n', (12499, 12519), False, 'from selectable.registry import registry\n'), ((870, 925), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (893, 925), False, 'from maestros_generales.models import Empresas\n'), ((1456, 1511), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (1479, 1511), False, 'from maestros_generales.models import Empresas\n'), ((2028, 2083), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (2051, 2083), False, 'from maestros_generales.models import Empresas\n'), ((2586, 2641), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (2609, 2641), False, 'from maestros_generales.models import Empresas\n'), ((3172, 3227), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (3195, 3227), False, 'from maestros_generales.models import Empresas\n'), ((3755, 3810), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (3778, 3810), False, 'from maestros_generales.models import Empresas\n'), ((4331, 4386), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (4354, 4386), False, 'from maestros_generales.models import Empresas\n'), ((4873, 4928), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (4896, 4928), False, 'from maestros_generales.models import Empresas\n'), ((5413, 5468), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (5436, 5468), False, 'from maestros_generales.models import Empresas\n'), ((6017, 6072), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (6040, 6072), False, 'from maestros_generales.models import Empresas\n'), ((6587, 6642), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (6610, 6642), False, 'from maestros_generales.models import Empresas\n'), ((7134, 7189), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (7157, 7189), False, 'from maestros_generales.models import Empresas\n'), ((7697, 7752), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (7720, 7752), False, 'from maestros_generales.models import Empresas\n'), ((8268, 8323), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (8291, 8323), False, 'from maestros_generales.models import Empresas\n'), ((8829, 8884), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (8852, 8884), False, 'from maestros_generales.models import Empresas\n'), ((9406, 9461), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (9429, 9461), False, 'from maestros_generales.models import Empresas\n'), ((9953, 10008), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (9976, 10008), False, 'from maestros_generales.models import Empresas\n'), ((10494, 10549), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (10517, 10549), False, 'from maestros_generales.models import Empresas\n'), ((11038, 11093), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (11061, 11093), False, 'from maestros_generales.models import Empresas\n'), ((11583, 11638), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (11606, 11638), False, 'from maestros_generales.models import Empresas\n')]
dew-uff/julynter
julynter/oldcmd.py
f4657aba4fa3e17af2cd241f0c3170b76df7c57c
"""Define commands for Python 2.7""" import argparse import traceback from . import util from .cmd import run from .cmd import extractpipenv def main(): """Main function""" print("This version is not supported! It has limitted analysis features") parser = argparse.ArgumentParser(description='Analyze Jupyter Notebooks') subparsers = parser.add_subparsers() run.create_subparsers(subparsers) extractpipenv.create_subparsers(subparsers) args, rest = parser.parse_known_args() try: if not getattr(args, 'func', None): parser.print_help() else: args.func(args, rest) if not util.EXITED: util.do_exit(0) except: # pylint: disable=bare-except if not util.EXITED: traceback.print_exc() util.do_exit(1)
[((270, 334), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Analyze Jupyter Notebooks"""'}), "(description='Analyze Jupyter Notebooks')\n", (293, 334), False, 'import argparse\n'), ((778, 799), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (797, 799), False, 'import traceback\n')]
nurikk/gpdb
gpMgmt/bin/gppylib/test/unit/test_unit_gpcrondump.py
04fe0202c59721826d1eda2b19d73e5572893fcb
#!/usr/bin/env python import os import imp gpcrondump_path = os.path.abspath('gpcrondump') gpcrondump = imp.load_source('gpcrondump', gpcrondump_path) import unittest2 as unittest from datetime import datetime from gppylib import gplog from gpcrondump import GpCronDump from gppylib.operations.utils import DEFAULT_NUM_WORKERS from mock import patch, Mock from gppylib.operations.dump import MailDumpEvent from gppylib.operations.backup_utils import get_backup_directory, write_lines_to_file import mock logger = gplog.get_unittest_logger() class GpCronDumpTestCase(unittest.TestCase): class Options: def __init__(self): self.masterDataDirectory = "" self.interactive = False self.clear_dumps_only = False self.post_script = None self.dump_config = False self.history = False self.pre_vacuum = False self.post_vacuum = False self.rollback = False self.compress = True self.free_space_percent = None self.clear_dumps = False self.cleanup_date = None self.cleanup_total = None self.dump_schema = False self.dump_databases = ['testdb'] self.bypass_disk_check = True self.backup_set = None self.dump_global = False self.clear_catalog_dumps = False self.batch_default = DEFAULT_NUM_WORKERS self.include_dump_tables = None self.exclude_dump_tables = None self.include_dump_tables_file = None self.exclude_dump_tables_file = None self.backup_dir = None self.encoding = None self.output_options = None self.report_dir = None self.timestamp_key = None self.list_backup_files = None self.quiet = False self.verbose = False self.local_dump_prefix = '' self.list_filter_tables = None self.include_email_file = None self.email_details = None self.include_schema_file = None self.exclude_schema_file = None self.exclude_dump_schema = None self.dump_stats = None ## Enterprise init self.incremental = False self.ddboost = False self.ddboost_hosts = None self.ddboost_user = None self.ddboost_config_remove = False self.ddboost_verify = False self.ddboost_remote = None self.ddboost_ping = None self.ddboost_backupdir = None self.replicate = None self.max_streams = None self.netbackup_service_host = None self.netbackup_policy = None self.netbackup_schedule = None self.netbackup_block_size = None self.netbackup_keyword = None @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.GpCronDump.validate_dump_schema') @patch('gpcrondump.validate_current_timestamp') def test_option_schema_filter_1(self, mock, mock2, mock3): options = GpCronDumpTestCase.Options() options.include_schema_file = '/tmp/foo' options.incremental = True with self.assertRaisesRegexp(Exception, '--schema-file option can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.GpCronDump.validate_dump_schema') @patch('gpcrondump.validate_current_timestamp') def test_option_schema_filter_2(self, mock, mock2, mock3): options = GpCronDumpTestCase.Options() options.exclude_schema_file = '/tmp/foo' options.incremental = True with self.assertRaisesRegexp(Exception, '--exclude-schema-file option can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_3(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_schema = 'foo' options.incremental = True with self.assertRaisesRegexp(Exception, '-S option can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_4(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = 'foo' options.incremental = True with self.assertRaisesRegexp(Exception, '-s option can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_5(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = 'foo' options.exclude_schema_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-s can not be selected with --exclude-schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_6(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = 'foo' options.include_schema_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-s can not be selected with --schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_7(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = 'foo' options.exclude_dump_schema = 'foo' with self.assertRaisesRegexp(Exception, '-s can not be selected with -S option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_8(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_schema = 'foo' options.exclude_schema_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-S can not be selected with --exclude-schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_9(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_schema = 'foo' options.include_schema_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-S can not be selected with --schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_10(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_schema_file = 'foo' options.include_schema_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '--exclude-schema-file can not be selected with --schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_11(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_schema_file = 'foo' options.include_dump_tables_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '--table-file and --exclude-table-file can not be selected with --exclude-schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_12(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_schema_file = 'foo' options.exclude_dump_tables_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '--table-file and --exclude-table-file can not be selected with --exclude-schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_13(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_schema_file = 'foo' options.exclude_dump_tables_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '--table-file and --exclude-table-file can not be selected with --schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_14(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_schema_file = 'foo' options.include_dump_tables_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '--table-file and --exclude-table-file can not be selected with --schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_15(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = 'foo' options.include_dump_tables_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '--table-file and --exclude-table-file can not be selected with -s option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_16(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = 'foo' options.exclude_dump_tables_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '--table-file and --exclude-table-file can not be selected with -s option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_17(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_schema = 'foo' options.include_dump_tables_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '--table-file and --exclude-table-file can not be selected with -S option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_18(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_schema = 'foo' options.exclude_dump_tables_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, '--table-file and --exclude-table-file can not be selected with -S option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_19(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_schema_file = 'foo' options.exclude_dump_tables = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-t and -T can not be selected with --exclude-schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_20(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_schema_file = 'foo' options.include_dump_tables = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-t and -T can not be selected with --exclude-schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_21(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_schema_file = 'foo' options.exclude_dump_tables = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-t and -T can not be selected with --schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_22(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_schema_file = 'foo' options.include_dump_tables = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-t and -T can not be selected with --schema-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_23(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = 'foo' options.exclude_dump_tables = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-t and -T can not be selected with -s option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_24(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = 'foo' options.include_dump_tables = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-t and -T can not be selected with -s option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_25(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_schema = 'foo' options.exclude_dump_tables = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-t and -T can not be selected with -S option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_26(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_schema = 'foo' options.include_dump_tables = '/tmp/foo' with self.assertRaisesRegexp(Exception, '-t and -T can not be selected with -S option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_27(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = ['information_schema'] with self.assertRaisesRegexp(Exception, "can not specify catalog schema 'information_schema' using -s option"): GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_28(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_schema = ['information_schema'] with self.assertRaisesRegexp(Exception, "can not specify catalog schema 'information_schema' using -S option"): GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.get_lines_from_file', return_value=['public', 'information_schema']) def test_options_schema_filter_29(self, mock, mock2, mock3): options = GpCronDumpTestCase.Options() options.exclude_schema_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, "can not exclude catalog schema 'information_schema' in schema file '/tmp/foo'"): GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.get_lines_from_file', return_value=['public', 'information_schema']) def test_options_schema_filter_30(self, mock, mock2, mock3): options = GpCronDumpTestCase.Options() options.include_schema_file = '/tmp/foo' with self.assertRaisesRegexp(Exception, "can not include catalog schema 'information_schema' in schema file '/tmp/foo'"): GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_31(self, mock, mock2): options = GpCronDumpTestCase.Options() options.masterDataDirectory = '/tmp/foobar' gpcd = GpCronDump(options, None) dbname = 'foo' timestamp = '20141016010101' file = gpcd.get_schema_list_file(dbname) self.assertEquals(file, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_32(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = ['public'] gpcd = GpCronDump(options, None) dbname = 'foo' timestamp = '20141016010101' file = gpcd.get_schema_list_file(dbname) self.assertTrue(file.startswith('/tmp/schema_list')) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_schema_filter_33(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.include_schema_file = '/tmp/foo' write_lines_to_file('/tmp/foo', ['public']) gpcd = GpCronDump(options, None) dbname = 'foo' timestamp = '20141016010101' file = gpcd.get_schema_list_file(dbname) self.assertTrue(file.startswith('/tmp/schema_list')) if os.path.exists('/tmp/foo'): os.remove('/tmp/foo') @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.get_include_schema_list_from_exclude_schema', return_value=['public']) def test_options_schema_filter_34(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() options.exclude_schema_file = '/tmp/foo' write_lines_to_file('/tmp/foo', ['public']) gpcd = GpCronDump(options, None) dbname = 'foo' timestamp = '20141016010101' file = gpcd.get_schema_list_file(dbname) self.assertTrue(file.startswith('/tmp/schema_list')) if os.path.exists('/tmp/foo'): os.remove('/tmp/foo') @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.get_include_schema_list_from_exclude_schema', return_value=['public']) def test_options_schema_filter_35(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() options.exclude_dump_schema = 'public' gpcd = GpCronDump(options, None) dbname = 'foo' timestamp = '20141016010101' file = gpcd.get_schema_list_file(dbname) self.assertTrue(file.startswith('/tmp/schema_list')) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.get_lines_from_file', return_value=['public']) @patch('gpcrondump.get_user_table_list_for_schema', return_value=['public', 'table1', 'public', 'table2']) def test_options_schema_filter_36(self, mock1, mock2, mock3, mock4): options = GpCronDumpTestCase.Options() gpcd = GpCronDump(options, None) dbname = 'foo' schema_file = '/tmp/foo' inc = gpcd.generate_include_table_list_from_schema_file(dbname, schema_file) self.assertTrue(inc.startswith('/tmp/include_dump_tables_file')) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options1(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_dump_tables = 'foo' options.incremental = True with self.assertRaisesRegexp(Exception, 'include table list can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options2(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_tables = 'foo' options.incremental = True with self.assertRaisesRegexp(Exception, 'exclude table list can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options3(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_dump_tables_file = 'foo' options.incremental = True with self.assertRaisesRegexp(Exception, 'include table file can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options4(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_tables_file = 'foo' options.incremental = True with self.assertRaisesRegexp(Exception, 'exclude table file can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options10(self, mock, mock2): options = GpCronDumpTestCase.Options() options.local_dump_prefix = 'foo' options.incremental = False options.list_filter_tables = True try: with self.assertRaisesRegexp(Exception, 'list filter tables option requires --prefix and --incremental'): cron = GpCronDump(options, None) finally: options.list_filter_tables = False @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.get_latest_full_dump_timestamp', return_value='20121225090000') def test_options11(self, mock, mock2, mock3): options = GpCronDumpTestCase.Options() options.incremental = True cron = GpCronDump(options, None) self.assertEquals(cron.full_dump_timestamp, '20121225090000') @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options12(self, mock, mock2): options = GpCronDumpTestCase.Options() options.incremental = True options.dump_databases = 'bkdb,fulldb' with self.assertRaisesRegexp(Exception, 'multi-database backup is not supported with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.get_latest_full_dump_timestamp', return_value='20120330090000') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.GpCronDump._get_master_port') def test_options13(self, mock, mock2, mock3): options = GpCronDumpTestCase.Options() options.incremental = True options.dump_databases = ['bkdb'] #If this is successful then it should not raise an exception GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options14(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_databases = 'bkdb' options.incremental = False #If this is successful then it should not raise an exception GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options15(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_databases = 'bkdb,fulldb' options.incremental = False #If this is successful then it should not raise an exception GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options16(self, mock, mock2): options = GpCronDumpTestCase.Options() options.masterDataDirectory = '/tmp/foobar' options.backup_dir = '/foo1' gpcd = GpCronDump(options, None) self.assertEquals(gpcd.getBackupDirectoryRoot(), '/foo1') @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options17(self, mock, mock2): options = GpCronDumpTestCase.Options() options.masterDataDirectory = '/tmp/foobar' options.backup_dir = None gpcd = GpCronDump(options, None) self.assertEquals(gpcd.getBackupDirectoryRoot(), '/tmp/foobar') @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options18(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_schema = 'foo' options.incremental = True with self.assertRaisesRegexp(Exception, '-s option can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options19(self, mock, mock2): options = GpCronDumpTestCase.Options() options.clear_dumps = True options.incremental = True with self.assertRaisesRegexp(Exception, '-c option can not be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options20(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_databases = [] options.incremental = True with self.assertRaisesRegexp(Exception, 'Must supply -x <database name> with incremental option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options21(self, mock, mock2): options = GpCronDumpTestCase.Options() options.ddboost = True options.replicate = False options.max_streams = 20 with self.assertRaisesRegexp(Exception, '--max-streams must be specified along with --replicate'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options22(self, mock, mock2): options = GpCronDumpTestCase.Options() options.ddboost = True options.replicate = True options.max_streams = None with self.assertRaisesRegexp(Exception, '--max-streams must be specified along with --replicate'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options23(self, mock, mock2): options = GpCronDumpTestCase.Options() options.ddboost = True options.replicate = True options.max_streams = 0 with self.assertRaisesRegexp(Exception, '--max-streams must be a number greater than zero'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options24(self, mock, mock2): options = GpCronDumpTestCase.Options() options.ddboost = True options.replicate = True options.max_streams = "abc" with self.assertRaisesRegexp(Exception, '--max-streams must be a number greater than zero'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options25(self, mock, mock2): options = GpCronDumpTestCase.Options() options.ddboost = False options.replicate = False options.max_streams = 20 with self.assertRaisesRegexp(Exception, '--replicate and --max-streams cannot be used without --ddboost'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options26(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.list_backup_files = True options.timestamp_key = None with self.assertRaisesRegexp(Exception, 'Must supply -K option when listing backup files'): GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options27(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_databases = 'bkdb,fulldb' options.timestamp_key = True with self.assertRaisesRegexp(Exception, 'multi-database backup is not supported with -K option'): GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options28(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_databases = ['bkdb'] options.timestamp_key = True options.ddboost = True options.list_backup_files = True with self.assertRaisesRegexp(Exception, 'list backup files not supported with ddboost option'): GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options29(self, mock, mock2): options = GpCronDumpTestCase.Options() options.dump_databases = ['bkdb'] options.timestamp_key = True options.ddboost = True options.netbackup_service_host = "mdw" options.netbackup_policy = "test_policy" options.netbackup_schedule = "test_schedule" with self.assertRaisesRegexp(Exception, '--ddboost is not supported with NetBackup'): GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_include_exclude_for_dump_database00(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.masterDataDirectory = '/tmp/foobar' gpcd = GpCronDump(options, None) dirtyfile = '/tmp/dirty' dbname = 'foo' (inc, exc) = gpcd.get_include_exclude_for_dump_database(dirtyfile, dbname) self.assertEquals(inc, None) self.assertEquals(exc, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.expand_partitions_and_populate_filter_file', return_value='/tmp/include_dump_tables_file') @patch('gpcrondump.get_lines_from_file', return_value=['public.t1', 'public.t2']) def test_get_include_exclude_for_dump_database01(self, mock1, mock2, mock3, mock4): options = GpCronDumpTestCase.Options() options.masterDataDirectory = '/tmp/foobar' options.include_dump_tables_file = '/mydir/incfile' gpcd = GpCronDump(options, None) dirtyfile = '/tmp/dirty' dbname = 'foo' (inc, exc) = gpcd.get_include_exclude_for_dump_database(dirtyfile, dbname) self.assertTrue(inc.startswith('/tmp/include_dump_tables_file')) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.expand_partitions_and_populate_filter_file', return_value='/tmp/include_dump_tables_file') @patch('gpcrondump.get_lines_from_file') def test_get_include_exclude_for_dump_database02(self, mock1, mock2, mock3, mock4): options = GpCronDumpTestCase.Options() options.masterDataDirectory = '/tmp/foobar' options.include_dump_tables = ['public.t1', 'public.t2', 'public.t3'] gpcd = GpCronDump(options, None) dirtyfile = '/tmp/dirty' dbname = 'foo' (inc, exc) = gpcd.get_include_exclude_for_dump_database(dirtyfile, dbname) self.assertTrue(inc.startswith('/tmp/include_dump_tables_file')) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.get_latest_full_dump_timestamp', return_value='20121225090000') def test_get_include_exclude_for_dump_database03(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() options.masterDataDirectory = '/tmp/foobar' options.incremental = True gpcd = GpCronDump(options, None) dirtyfile = '/tmp/dirty' dbname = 'foo' (inc, exc) = gpcd.get_include_exclude_for_dump_database(dirtyfile, dbname) self.assertEquals(inc, '/tmp/dirty') self.assertEquals(exc, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.expand_partitions_and_populate_filter_file', return_value='/tmp/exclude_dump_tables_file') @patch('gpcrondump.get_lines_from_file', return_value=['public.t1', 'public.t2']) def test_get_include_exclude_for_dump_database04(self, mock1, mock2, mock3, mock4): options = GpCronDumpTestCase.Options() options.masterDataDirectory = '/tmp/foobar' options.exclude_dump_tables_file = '/odir/exfile' gpcd = GpCronDump(options, None) dirtyfile = '/tmp/dirty' dbname = 'foo' (inc, exc) = gpcd.get_include_exclude_for_dump_database(dirtyfile, dbname) self.assertTrue(exc.startswith('/tmp/exclude_dump_tables_file')) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.expand_partitions_and_populate_filter_file', return_value='/tmp/exclude_dump_tables_file') @patch('gpcrondump.get_lines_from_file') def test_get_include_exclude_for_dump_database06(self, mock1, mock2, mock3, mock4): options = GpCronDumpTestCase.Options() options.masterDataDirectory = '/tmp/foobar' options.exclude_dump_tables = ['public.t4', 'public.t5', 'public.t6'] gpcd = GpCronDump(options, None) dirtyfile = '/tmp/dirty' dbname = 'foo' (inc, exc) = gpcd.get_include_exclude_for_dump_database(dirtyfile, dbname) self.assertTrue(exc.startswith('/tmp/exclude_dump_tables_file')) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.GpCronDump._get_table_names_from_partition_list', side_effect = [['public.aot1', 'public.aot2'], ['public.cot1', 'public.cot2']]) def test_verify_tablenames_00(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() cron = GpCronDump(options, None) ao_partition_list = ['public, aot1, 2190', 'public, aot2, 3190'] co_partition_list = ['public, cot1, 2190', 'public, cot2, 3190'] heap_partition_list = ['public.heapt1', 'public.heapt2'] cron._verify_tablenames(ao_partition_list, co_partition_list, heap_partition_list) #Should not raise an exception @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.GpCronDump._get_table_names_from_partition_list', side_effect = [['public.aot1:asd', 'public.aot2'], ['public.cot1', 'public.cot2:asd']]) def test_verify_tablenames_00_bad(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() cron = GpCronDump(options, None) ao_partition_list = ['public, aot1!asd, 2190', 'public, aot2, 3190'] co_partition_list = ['public, cot1, 2190', 'public, cot2\nasd, 3190'] heap_partition_list = ['public, heapt1, 2190', 'public, heapt2!asdasd , 3190'] with self.assertRaisesRegexp(Exception, ''): cron._verify_tablenames(ao_partition_list, co_partition_list, heap_partition_list) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_inserts_with_incremental(self, mock, mock2): options = GpCronDumpTestCase.Options() options.output_options = ['--inserts'] options.incremental = True with self.assertRaisesRegexp(Exception, '--inserts, --column-inserts, --oids cannot be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_oids_with_incremental(self, mock, mock2): options = GpCronDumpTestCase.Options() options.output_options = ['--oids'] options.incremental = True with self.assertRaisesRegexp(Exception, '--inserts, --column-inserts, --oids cannot be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_column_inserts_with_incremental(self, mock, mock2): options = GpCronDumpTestCase.Options() options.output_options = ['--column-inserts'] options.incremental = True with self.assertRaisesRegexp(Exception, '--inserts, --column-inserts, --oids cannot be selected with incremental backup'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_table_names_from_partition_list_00(self, mock1, mock2): options = GpCronDumpTestCase.Options() cron = GpCronDump(options, None) partition_list = ['public, aot1, 2190', 'public, aot2:aot, 3190'] expected_output = ['public.aot1', 'public.aot2:aot'] result = cron._get_table_names_from_partition_list(partition_list) self.assertEqual(result, expected_output) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_table_names_from_partition_list_01(self, mock1, mock2): options = GpCronDumpTestCase.Options() cron = GpCronDump(options, None) partition_list = ['public, aot1, 2190', 'public, aot2,aot, 3190'] with self.assertRaisesRegexp(Exception, 'Invalid partition entry "public, aot2,aot, 3190"'): cron._get_table_names_from_partition_list(partition_list) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_table_filter1(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_dump_tables = 'foo' options.include_dump_tables_file = 'foo' with self.assertRaisesRegexp(Exception, '-t can not be selected with --table-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_table_filter2(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_dump_tables = 'foo' options.exclude_dump_tables_file = 'foo' with self.assertRaisesRegexp(Exception, '-t can not be selected with --exclude-table-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_table_filter3(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_tables = 'foo' options.exclude_dump_tables_file = 'foo' with self.assertRaisesRegexp(Exception, '-T can not be selected with --exclude-table-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_table_filter4(self, mock, mock2): options = GpCronDumpTestCase.Options() options.exclude_dump_tables = 'foo' options.include_dump_tables_file = 'foo' with self.assertRaisesRegexp(Exception, '-T can not be selected with --table-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_table_filter5(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_dump_tables = 'foo' options.exclude_dump_tables = 'foo' with self.assertRaisesRegexp(Exception, '-t can not be selected with -T option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_options_table_filter6(self, mock, mock2): options = GpCronDumpTestCase.Options() options.include_dump_tables_file = 'foo' options.exclude_dump_tables_file = 'foo' with self.assertRaisesRegexp(Exception, '--table-file can not be selected with --exclude-table-file option'): cron = GpCronDump(options, None) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_timestamp_object1(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = '20130101010101' gpcd = GpCronDump(options, None) timestamp = gpcd._get_timestamp_object(options.timestamp_key) self.assertEquals(timestamp, datetime(2013, 1, 1, 1, 1, 1)) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_timestamp_object2(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = '20130101010' gpcd = GpCronDump(options, None) with self.assertRaisesRegexp(Exception, 'Invalid timestamp key'): gpcd._get_timestamp_object(options.timestamp_key) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_timestamp_object3(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = None gpcd = GpCronDump(options, None) timestamp = gpcd._get_timestamp_object(options.timestamp_key) self.assertTrue(isinstance(timestamp, datetime)) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_files_file_list1(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = None options.masterDataDirectory = '/foo' gpcd = GpCronDump(options, None) master = Mock() master.getSegmentHostName.return_value = 'foo1' timestamp = '20130101010101' dump_dir = get_backup_directory(options.masterDataDirectory, options.backup_dir, gpcd.dump_dir, timestamp) files_file_list = gpcd._get_files_file_list(master, dump_dir, timestamp) expected_files_list = ['foo1:%s/db_dumps/20130101/gp_cdatabase_1_1_20130101010101' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_20130101010101_ao_state_file' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_20130101010101_co_state_file' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_20130101010101_last_operation' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_20130101010101.rpt' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_status_1_1_20130101010101' % options.masterDataDirectory] self.assertEqual(files_file_list, expected_files_list) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_files_file_list2(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = None options.masterDataDirectory = '/foo' gpcd = GpCronDump(options, None) master = Mock() master.getSegmentHostName.return_value = 'foo2' timestamp = '20130101010101' dump_dir = get_backup_directory(options.masterDataDirectory, options.backup_dir, gpcd.dump_dir, timestamp) files_file_list = gpcd._get_files_file_list(master, dump_dir, timestamp) expected_files_list = ['foo2:%s/db_dumps/20130101/gp_cdatabase_1_1_20130101010101' % options.masterDataDirectory, 'foo2:%s/db_dumps/20130101/gp_dump_20130101010101_ao_state_file' % options.masterDataDirectory, 'foo2:%s/db_dumps/20130101/gp_dump_20130101010101_co_state_file' % options.masterDataDirectory, 'foo2:%s/db_dumps/20130101/gp_dump_20130101010101_last_operation' % options.masterDataDirectory, 'foo2:%s/db_dumps/20130101/gp_dump_20130101010101.rpt' % options.masterDataDirectory, 'foo2:%s/db_dumps/20130101/gp_dump_status_1_1_20130101010101' % options.masterDataDirectory] self.assertEqual(files_file_list, expected_files_list) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.get_latest_full_dump_timestamp', return_value='20130101000000') def test_get_files_file_list3(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() options.timestamp_key = '20130101010101' options.incremental = True options.masterDataDirectory = '/data/foo' gpcd = GpCronDump(options, None) master = Mock() master.getSegmentHostName.return_value = 'foo1' timestamp = '20130101010101' dump_dir = get_backup_directory(options.masterDataDirectory, None, gpcd.dump_dir, timestamp) files_file_list = gpcd._get_files_file_list(master, dump_dir, timestamp) expected_files_list = ['foo1:%s/db_dumps/20130101/gp_cdatabase_1_1_20130101010101' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_20130101010101_ao_state_file' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_20130101010101_co_state_file' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_20130101010101_last_operation' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_20130101010101.rpt' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_status_1_1_20130101010101' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_20130101000000_increments' % options.masterDataDirectory] self.assertEqual(sorted(files_file_list), sorted(expected_files_list)) @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.GpCronDump._get_master_port') @patch('gppylib.operations.backup_utils.get_latest_full_dump_timestamp', return_value='20130101000000') def test_get_files_file_list_with_filter(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() options.timestamp_key = '20130101010101' options.local_dump_prefix = 'metro' options.include_dump_tables_file = 'bar' options.masterDataDirectory = '/data/foo' gpcd = GpCronDump(options, None) master = Mock() master.getSegmentHostName.return_value = 'foo1' timestamp = '20130101010101' dump_dir = get_backup_directory(options.masterDataDirectory, options.backup_dir, gpcd.dump_dir, timestamp) files_file_list = gpcd._get_files_file_list(master, dump_dir, timestamp) expected_files_list = ['foo1:%s/db_dumps/20130101/metro_gp_cdatabase_1_1_20130101010101' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101010101_ao_state_file' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101010101_co_state_file' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101010101_last_operation' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101010101.rpt' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_status_1_1_20130101010101' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101010101_filter' % options.masterDataDirectory] self.assertEqual(sorted(files_file_list), sorted(expected_files_list)) @patch('gpcrondump.validate_current_timestamp') @patch('gpcrondump.get_latest_full_dump_timestamp', return_value='20130101000000') @patch('gpcrondump.GpCronDump._get_master_port') def test_get_files_file_list_with_prefix(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() options.timestamp_key = '20130101010101' options.incremental = True options.local_dump_prefix = 'metro' options.masterDataDirectory = '/data/foo' gpcd = GpCronDump(options, None) master = Mock() master.getSegmentHostName.return_value = 'foo1' timestamp = '20130101010101' dump_dir = get_backup_directory(options.masterDataDirectory, None, gpcd.dump_dir, timestamp) files_file_list = gpcd._get_files_file_list(master, dump_dir, timestamp) expected_files_list = ['foo1:%s/db_dumps/20130101/metro_gp_cdatabase_1_1_20130101010101' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101010101_ao_state_file' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101010101_co_state_file' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101010101_last_operation' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101010101.rpt' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_status_1_1_20130101010101' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/metro_gp_dump_20130101000000_increments' % options.masterDataDirectory] self.assertEqual(sorted(files_file_list), sorted(expected_files_list)) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_pipes_file_list1(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = None options.masterDataDirectory = '/foo' gpcd = GpCronDump(options, None) master = Mock() master.getSegmentHostName.return_value = 'foo2' mock_segs = [] timestamp = '20130101010101' dump_dir = get_backup_directory(options.masterDataDirectory, options.backup_dir, gpcd.dump_dir, timestamp) pipes_file_list = gpcd._get_pipes_file_list(master, mock_segs, dump_dir, timestamp) expected_files_list = ['foo2:%s/db_dumps/20130101/gp_dump_1_1_20130101010101.gz' % options.masterDataDirectory, 'foo2:%s/db_dumps/20130101/gp_dump_1_1_20130101010101_post_data.gz' % options.masterDataDirectory] self.assertEqual(pipes_file_list, expected_files_list) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_pipes_file_list2(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = None options.masterDataDirectory = '/foo' gpcd = GpCronDump(options, None) master = Mock() master.getSegmentHostName.return_value = 'foo1' mock_segs = [Mock(), Mock()] for id, seg in enumerate(mock_segs): seg.getSegmentDataDirectory.return_value = '/bar' seg.getSegmentHostName.return_value = 'foo1' seg.getSegmentDbId.return_value = id + 1 timestamp = '20130101010101' dump_dir = get_backup_directory(options.masterDataDirectory, options.backup_dir, gpcd.dump_dir, timestamp) pipes_file_list = gpcd._get_pipes_file_list(master, mock_segs, dump_dir, timestamp) expected_files_list = ['foo1:%s/db_dumps/20130101/gp_dump_1_1_20130101010101.gz' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_1_1_20130101010101_post_data.gz' % options.masterDataDirectory, 'foo1:/bar/db_dumps/20130101/gp_dump_0_1_20130101010101.gz', 'foo1:/bar/db_dumps/20130101/gp_dump_0_2_20130101010101.gz'] self.assertEqual(sorted(pipes_file_list), sorted(expected_files_list)) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_pipes_file_list3(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = None options.dump_global = True options.masterDataDirectory = '/foo' gpcd = GpCronDump(options, None) master = Mock() master.getSegmentHostName.return_value = 'foo1' mock_segs = [Mock(), Mock()] for id, seg in enumerate(mock_segs): seg.getSegmentDataDirectory.return_value = '/bar' seg.getSegmentHostName.return_value = 'foo1' seg.getSegmentDbId.return_value = id + 1 timestamp = '20130101010101' dump_dir = get_backup_directory(options.masterDataDirectory, options.backup_dir, gpcd.dump_dir, timestamp) pipes_file_list = gpcd._get_pipes_file_list(master, mock_segs, dump_dir, timestamp) expected_files_list = ['foo1:%s/db_dumps/20130101/gp_dump_1_1_20130101010101.gz' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_1_1_20130101010101_post_data.gz' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_global_1_1_20130101010101' % options.masterDataDirectory, 'foo1:/bar/db_dumps/20130101/gp_dump_0_1_20130101010101.gz', 'foo1:/bar/db_dumps/20130101/gp_dump_0_2_20130101010101.gz'] self.assertEqual(sorted(pipes_file_list), sorted(expected_files_list)) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_get_pipes_file_list4(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = None options.masterDataDirectory = '/foo' options.dump_config = True gpcd = GpCronDump(options, None) master = Mock() master.getSegmentHostName.return_value = 'foo1' mock_segs = [Mock(), Mock()] for id, seg in enumerate(mock_segs): seg.getSegmentDataDirectory.return_value = '/bar' seg.getSegmentHostName.return_value = 'foo1' seg.getSegmentDbId.return_value = id + 1 timestamp = '20130101010101' dump_dir = get_backup_directory(options.masterDataDirectory, options.backup_dir, gpcd.dump_dir, timestamp) pipes_file_list = gpcd._get_pipes_file_list(master, mock_segs, dump_dir, timestamp) expected_files_list = ['foo1:%s/db_dumps/20130101/gp_dump_1_1_20130101010101.gz' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_dump_1_1_20130101010101_post_data.gz' % options.masterDataDirectory, 'foo1:%s/db_dumps/20130101/gp_master_config_files_20130101010101.tar' % options.masterDataDirectory, 'foo1:/bar/db_dumps/20130101/gp_segment_config_files_0_1_20130101010101.tar', 'foo1:/bar/db_dumps/20130101/gp_segment_config_files_0_2_20130101010101.tar', 'foo1:/bar/db_dumps/20130101/gp_dump_0_1_20130101010101.gz', 'foo1:/bar/db_dumps/20130101/gp_dump_0_2_20130101010101.gz'] self.assertEqual(sorted(pipes_file_list), sorted(expected_files_list)) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.validate_current_timestamp') def test_gpcrondump_init0(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.timestamp_key = None options.local_dump_prefix = 'foo' options.ddboost = False options.ddboost_verify = False options.ddboost_config_remove = False options.ddboost_user = False options.ddboost_host = False options.max_streams = None options.list_backup_files = False gpcd = GpCronDump(options, None) self.assertEqual(gpcd.dump_prefix, 'foo_') @patch('gpcrondump.os.path.isfile', return_value=True) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.os.path.getsize', return_value=111) @patch('gpcrondump.yaml.load', return_value={'EMAIL_DETAILS': [{'FROM': 'RRP_MPE2_DCA_1', 'DBNAME': 'testdb100', 'SUBJECT': "backup completed for Database 'testdb100'"}]}) def test_validate_parse_email_File00(self, mock1, mock2, mock3, mock4): options = GpCronDumpTestCase.Options() options.include_email_file = "/tmp/abc.yaml" m = mock.MagicMock() with patch('__builtin__.open', m, create=True): cron = GpCronDump(options, None) @patch('gpcrondump.os.path.isfile', return_value=False) @patch('gpcrondump.GpCronDump._get_master_port') def test_validate_parse_email_File01(self, mock1, mock2): options = GpCronDumpTestCase.Options() options.include_email_file = "/tmp/abc.yaml" with self.assertRaisesRegexp(Exception, "\'%s\' file does not exist." % options.include_email_file): cron = GpCronDump(options, None) @patch('gpcrondump.os.path.isfile', return_value=True) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.os.path.getsize', return_value=111) def test_validate_parse_email_File02(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() options.include_email_file = "/tmp/abc" with self.assertRaisesRegexp(Exception, "'%s' is not '.yaml' file. File containing email details should be '.yaml' file." % options.include_email_file): cron = GpCronDump(options, None) @patch('gpcrondump.os.path.isfile', return_value=True) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.os.path.getsize', return_value=0) def test_validate_parse_email_File03(self, mock1, mock2, mock3): options = GpCronDumpTestCase.Options() options.include_email_file = "/tmp/abc.yaml" with self.assertRaisesRegexp(Exception, "'%s' file is empty." % options.include_email_file): cron = GpCronDump(options, None) @patch('gpcrondump.os.path.isfile', return_value=True) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.os.path.getsize', return_value=111) @patch('gpcrondump.yaml.load', return_value={'EMAIL_DETAILS': [{'FROM': 'RRP_MPE2_DCA_1', 'NAME': 'testdb100', 'SUBJECT': "backup completed for Database 'testdb100'"}]}) def test_validate_parse_email_File04(self, mock1, mock2, mock3, mock4): options = GpCronDumpTestCase.Options() options.include_email_file = "/tmp/abc.yaml" m = mock.MagicMock() with self.assertRaisesRegexp(Exception, "\'%s\' file is not formatted properly." % options.include_email_file): with patch('__builtin__.open', m, create=True): cron = GpCronDump(options, None) @patch('gpcrondump.os.path.isfile', return_value=True) @patch('gpcrondump.GpCronDump._get_master_port') @patch('gpcrondump.os.path.getsize', return_value=111) @patch('gpcrondump.yaml.load', return_value={'EMAIL_DETAILS': [{'FROM': 'RRP_MPE2_DCA_1', 'DBNAME': None, 'SUBJECT': "backup completed for Database 'testdb100'"}]}) def test_validate_parse_email_File05(self, mock1, mock2, mock3, mock4): options = GpCronDumpTestCase.Options() options.include_email_file = "/tmp/abc.yaml" m = mock.MagicMock() with self.assertRaisesRegexp(Exception, "\'%s\' file is not formatted properly." % options.include_email_file): with patch('__builtin__.open', m, create=True): cron = GpCronDump(options, None) @patch('gpcrondump.MailDumpEvent') @patch('gpcrondump.GpCronDump._get_master_port') def test_send_email00(self, mock1, MailDumpEvent): options = GpCronDumpTestCase.Options() dump_database = 'testdb1' current_exit_status = 0 time_start = '12:07:09' time_end = '12:08:18' cron = GpCronDump(options, None) cron._send_email(dump_database, current_exit_status, time_start, time_end) #------------------------------- Mainline -------------------------------- if __name__ == '__main__': unittest.main()
[((62, 91), 'os.path.abspath', 'os.path.abspath', (['"""gpcrondump"""'], {}), "('gpcrondump')\n", (77, 91), False, 'import os\n'), ((105, 151), 'imp.load_source', 'imp.load_source', (['"""gpcrondump"""', 'gpcrondump_path'], {}), "('gpcrondump', gpcrondump_path)\n", (120, 151), False, 'import imp\n'), ((516, 543), 'gppylib.gplog.get_unittest_logger', 'gplog.get_unittest_logger', ([], {}), '()\n', (541, 543), False, 'from gppylib import gplog\n'), ((2933, 2980), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (2938, 2980), False, 'from mock import patch, Mock\n'), ((2986, 3037), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump.validate_dump_schema"""'], {}), "('gpcrondump.GpCronDump.validate_dump_schema')\n", (2991, 3037), False, 'from mock import patch, Mock\n'), ((3043, 3089), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (3048, 3089), False, 'from mock import patch, Mock\n'), ((3452, 3499), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (3457, 3499), False, 'from mock import patch, Mock\n'), ((3505, 3556), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump.validate_dump_schema"""'], {}), "('gpcrondump.GpCronDump.validate_dump_schema')\n", (3510, 3556), False, 'from mock import patch, Mock\n'), ((3562, 3608), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (3567, 3608), False, 'from mock import patch, Mock\n'), ((3979, 4026), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (3984, 4026), False, 'from mock import patch, Mock\n'), ((4032, 4078), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (4037, 4078), False, 'from mock import patch, Mock\n'), ((4419, 4466), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (4424, 4466), False, 'from mock import patch, Mock\n'), ((4472, 4518), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (4477, 4518), False, 'from mock import patch, Mock\n'), ((4851, 4898), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (4856, 4898), False, 'from mock import patch, Mock\n'), ((4904, 4950), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (4909, 4950), False, 'from mock import patch, Mock\n'), ((5300, 5347), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (5305, 5347), False, 'from mock import patch, Mock\n'), ((5353, 5399), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (5358, 5399), False, 'from mock import patch, Mock\n'), ((5741, 5788), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (5746, 5788), False, 'from mock import patch, Mock\n'), ((5794, 5840), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (5799, 5840), False, 'from mock import patch, Mock\n'), ((6166, 6213), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (6171, 6213), False, 'from mock import patch, Mock\n'), ((6219, 6265), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (6224, 6265), False, 'from mock import patch, Mock\n'), ((6623, 6670), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (6628, 6670), False, 'from mock import patch, Mock\n'), ((6676, 6722), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (6681, 6722), False, 'from mock import patch, Mock\n'), ((7072, 7119), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (7077, 7119), False, 'from mock import patch, Mock\n'), ((7125, 7171), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (7130, 7171), False, 'from mock import patch, Mock\n'), ((7541, 7588), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (7546, 7588), False, 'from mock import patch, Mock\n'), ((7594, 7640), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (7599, 7640), False, 'from mock import patch, Mock\n'), ((8039, 8086), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (8044, 8086), False, 'from mock import patch, Mock\n'), ((8092, 8138), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (8097, 8138), False, 'from mock import patch, Mock\n'), ((8537, 8584), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (8542, 8584), False, 'from mock import patch, Mock\n'), ((8590, 8636), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (8595, 8636), False, 'from mock import patch, Mock\n'), ((9027, 9074), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (9032, 9074), False, 'from mock import patch, Mock\n'), ((9080, 9126), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (9085, 9126), False, 'from mock import patch, Mock\n'), ((9517, 9564), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (9522, 9564), False, 'from mock import patch, Mock\n'), ((9570, 9616), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (9575, 9616), False, 'from mock import patch, Mock\n'), ((9988, 10035), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (9993, 10035), False, 'from mock import patch, Mock\n'), ((10041, 10087), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (10046, 10087), False, 'from mock import patch, Mock\n'), ((10459, 10506), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (10464, 10506), False, 'from mock import patch, Mock\n'), ((10512, 10558), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (10517, 10558), False, 'from mock import patch, Mock\n'), ((10938, 10985), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (10943, 10985), False, 'from mock import patch, Mock\n'), ((10991, 11037), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (10996, 11037), False, 'from mock import patch, Mock\n'), ((11417, 11464), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (11422, 11464), False, 'from mock import patch, Mock\n'), ((11470, 11516), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (11475, 11516), False, 'from mock import patch, Mock\n'), ((11882, 11929), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (11887, 11929), False, 'from mock import patch, Mock\n'), ((11935, 11981), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (11940, 11981), False, 'from mock import patch, Mock\n'), ((12347, 12394), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (12352, 12394), False, 'from mock import patch, Mock\n'), ((12400, 12446), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (12405, 12446), False, 'from mock import patch, Mock\n'), ((12804, 12851), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (12809, 12851), False, 'from mock import patch, Mock\n'), ((12857, 12903), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (12862, 12903), False, 'from mock import patch, Mock\n'), ((13261, 13308), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (13266, 13308), False, 'from mock import patch, Mock\n'), ((13314, 13360), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (13319, 13360), False, 'from mock import patch, Mock\n'), ((13699, 13746), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (13704, 13746), False, 'from mock import patch, Mock\n'), ((13752, 13798), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (13757, 13798), False, 'from mock import patch, Mock\n'), ((14137, 14184), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (14142, 14184), False, 'from mock import patch, Mock\n'), ((14190, 14236), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (14195, 14236), False, 'from mock import patch, Mock\n'), ((14583, 14630), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (14588, 14630), False, 'from mock import patch, Mock\n'), ((14636, 14682), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (14641, 14682), False, 'from mock import patch, Mock\n'), ((15029, 15076), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (15034, 15076), False, 'from mock import patch, Mock\n'), ((15082, 15128), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (15087, 15128), False, 'from mock import patch, Mock\n'), ((15451, 15498), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (15456, 15498), False, 'from mock import patch, Mock\n'), ((15504, 15550), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (15509, 15550), False, 'from mock import patch, Mock\n'), ((15881, 15928), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (15886, 15928), False, 'from mock import patch, Mock\n'), ((15934, 15980), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (15939, 15980), False, 'from mock import patch, Mock\n'), ((15986, 16076), 'mock.patch', 'patch', (['"""gpcrondump.get_lines_from_file"""'], {'return_value': "['public', 'information_schema']"}), "('gpcrondump.get_lines_from_file', return_value=['public',\n 'information_schema'])\n", (15991, 16076), False, 'from mock import patch, Mock\n'), ((16408, 16455), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (16413, 16455), False, 'from mock import patch, Mock\n'), ((16461, 16507), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (16466, 16507), False, 'from mock import patch, Mock\n'), ((16513, 16603), 'mock.patch', 'patch', (['"""gpcrondump.get_lines_from_file"""'], {'return_value': "['public', 'information_schema']"}), "('gpcrondump.get_lines_from_file', return_value=['public',\n 'information_schema'])\n", (16518, 16603), False, 'from mock import patch, Mock\n'), ((16935, 16982), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (16940, 16982), False, 'from mock import patch, Mock\n'), ((16988, 17034), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (16993, 17034), False, 'from mock import patch, Mock\n'), ((17386, 17433), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (17391, 17433), False, 'from mock import patch, Mock\n'), ((17439, 17485), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (17444, 17485), False, 'from mock import patch, Mock\n'), ((17850, 17897), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (17855, 17897), False, 'from mock import patch, Mock\n'), ((17903, 17949), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (17908, 17949), False, 'from mock import patch, Mock\n'), ((18447, 18494), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (18452, 18494), False, 'from mock import patch, Mock\n'), ((18500, 18546), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (18505, 18546), False, 'from mock import patch, Mock\n'), ((18552, 18644), 'mock.patch', 'patch', (['"""gpcrondump.get_include_schema_list_from_exclude_schema"""'], {'return_value': "['public']"}), "('gpcrondump.get_include_schema_list_from_exclude_schema',\n return_value=['public'])\n", (18557, 18644), False, 'from mock import patch, Mock\n'), ((19145, 19192), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (19150, 19192), False, 'from mock import patch, Mock\n'), ((19198, 19244), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (19203, 19244), False, 'from mock import patch, Mock\n'), ((19250, 19342), 'mock.patch', 'patch', (['"""gpcrondump.get_include_schema_list_from_exclude_schema"""'], {'return_value': "['public']"}), "('gpcrondump.get_include_schema_list_from_exclude_schema',\n return_value=['public'])\n", (19255, 19342), False, 'from mock import patch, Mock\n'), ((19716, 19763), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (19721, 19763), False, 'from mock import patch, Mock\n'), ((19769, 19815), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (19774, 19815), False, 'from mock import patch, Mock\n'), ((19821, 19885), 'mock.patch', 'patch', (['"""gpcrondump.get_lines_from_file"""'], {'return_value': "['public']"}), "('gpcrondump.get_lines_from_file', return_value=['public'])\n", (19826, 19885), False, 'from mock import patch, Mock\n'), ((19891, 20000), 'mock.patch', 'patch', (['"""gpcrondump.get_user_table_list_for_schema"""'], {'return_value': "['public', 'table1', 'public', 'table2']"}), "('gpcrondump.get_user_table_list_for_schema', return_value=['public',\n 'table1', 'public', 'table2'])\n", (19896, 20000), False, 'from mock import patch, Mock\n'), ((20378, 20425), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (20383, 20425), False, 'from mock import patch, Mock\n'), ((20431, 20477), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (20436, 20477), False, 'from mock import patch, Mock\n'), ((20812, 20859), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (20817, 20859), False, 'from mock import patch, Mock\n'), ((20865, 20911), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (20870, 20911), False, 'from mock import patch, Mock\n'), ((21246, 21293), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (21251, 21293), False, 'from mock import patch, Mock\n'), ((21299, 21345), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (21304, 21345), False, 'from mock import patch, Mock\n'), ((21685, 21732), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (21690, 21732), False, 'from mock import patch, Mock\n'), ((21738, 21784), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (21743, 21784), False, 'from mock import patch, Mock\n'), ((22124, 22171), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (22129, 22171), False, 'from mock import patch, Mock\n'), ((22177, 22223), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (22182, 22223), False, 'from mock import patch, Mock\n'), ((22684, 22731), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (22689, 22731), False, 'from mock import patch, Mock\n'), ((22737, 22783), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (22742, 22783), False, 'from mock import patch, Mock\n'), ((22789, 22875), 'mock.patch', 'patch', (['"""gpcrondump.get_latest_full_dump_timestamp"""'], {'return_value': '"""20121225090000"""'}), "('gpcrondump.get_latest_full_dump_timestamp', return_value=\n '20121225090000')\n", (22794, 22875), False, 'from mock import patch, Mock\n'), ((23120, 23167), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (23125, 23167), False, 'from mock import patch, Mock\n'), ((23173, 23219), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (23178, 23219), False, 'from mock import patch, Mock\n'), ((23558, 23644), 'mock.patch', 'patch', (['"""gpcrondump.get_latest_full_dump_timestamp"""'], {'return_value': '"""20120330090000"""'}), "('gpcrondump.get_latest_full_dump_timestamp', return_value=\n '20120330090000')\n", (23563, 23644), False, 'from mock import patch, Mock\n'), ((23645, 23691), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (23650, 23691), False, 'from mock import patch, Mock\n'), ((23697, 23744), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (23702, 23744), False, 'from mock import patch, Mock\n'), ((24029, 24076), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (24034, 24076), False, 'from mock import patch, Mock\n'), ((24082, 24128), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (24087, 24128), False, 'from mock import patch, Mock\n'), ((24405, 24452), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (24410, 24452), False, 'from mock import patch, Mock\n'), ((24458, 24504), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (24463, 24504), False, 'from mock import patch, Mock\n'), ((24788, 24835), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (24793, 24835), False, 'from mock import patch, Mock\n'), ((24841, 24887), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (24846, 24887), False, 'from mock import patch, Mock\n'), ((25180, 25227), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (25185, 25227), False, 'from mock import patch, Mock\n'), ((25233, 25279), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (25238, 25279), False, 'from mock import patch, Mock\n'), ((25575, 25622), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (25580, 25622), False, 'from mock import patch, Mock\n'), ((25628, 25674), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (25633, 25674), False, 'from mock import patch, Mock\n'), ((25993, 26040), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (25998, 26040), False, 'from mock import patch, Mock\n'), ((26046, 26092), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (26051, 26092), False, 'from mock import patch, Mock\n'), ((26410, 26457), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (26415, 26457), False, 'from mock import patch, Mock\n'), ((26463, 26509), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (26468, 26509), False, 'from mock import patch, Mock\n'), ((26829, 26876), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (26834, 26876), False, 'from mock import patch, Mock\n'), ((26882, 26928), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (26887, 26928), False, 'from mock import patch, Mock\n'), ((27275, 27322), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (27280, 27322), False, 'from mock import patch, Mock\n'), ((27328, 27374), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (27333, 27374), False, 'from mock import patch, Mock\n'), ((27722, 27769), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (27727, 27769), False, 'from mock import patch, Mock\n'), ((27775, 27821), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (27780, 27821), False, 'from mock import patch, Mock\n'), ((28160, 28207), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (28165, 28207), False, 'from mock import patch, Mock\n'), ((28213, 28259), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (28218, 28259), False, 'from mock import patch, Mock\n'), ((28602, 28649), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (28607, 28649), False, 'from mock import patch, Mock\n'), ((28655, 28701), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (28660, 28701), False, 'from mock import patch, Mock\n'), ((29057, 29104), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (29062, 29104), False, 'from mock import patch, Mock\n'), ((29110, 29156), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (29115, 29156), False, 'from mock import patch, Mock\n'), ((29470, 29517), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (29475, 29517), False, 'from mock import patch, Mock\n'), ((29523, 29569), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (29528, 29569), False, 'from mock import patch, Mock\n'), ((29894, 29941), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (29899, 29941), False, 'from mock import patch, Mock\n'), ((29947, 29993), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (29952, 29993), False, 'from mock import patch, Mock\n'), ((30383, 30430), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (30388, 30430), False, 'from mock import patch, Mock\n'), ((30436, 30482), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (30441, 30482), False, 'from mock import patch, Mock\n'), ((30970, 31017), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (30975, 31017), False, 'from mock import patch, Mock\n'), ((31023, 31069), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (31028, 31069), False, 'from mock import patch, Mock\n'), ((31504, 31551), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (31509, 31551), False, 'from mock import patch, Mock\n'), ((31557, 31603), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (31562, 31603), False, 'from mock import patch, Mock\n'), ((31609, 31722), 'mock.patch', 'patch', (['"""gpcrondump.expand_partitions_and_populate_filter_file"""'], {'return_value': '"""/tmp/include_dump_tables_file"""'}), "('gpcrondump.expand_partitions_and_populate_filter_file', return_value\n ='/tmp/include_dump_tables_file')\n", (31614, 31722), False, 'from mock import patch, Mock\n'), ((31723, 31808), 'mock.patch', 'patch', (['"""gpcrondump.get_lines_from_file"""'], {'return_value': "['public.t1', 'public.t2']"}), "('gpcrondump.get_lines_from_file', return_value=['public.t1', 'public.t2']\n )\n", (31728, 31808), False, 'from mock import patch, Mock\n'), ((32310, 32357), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (32315, 32357), False, 'from mock import patch, Mock\n'), ((32363, 32409), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (32368, 32409), False, 'from mock import patch, Mock\n'), ((32415, 32528), 'mock.patch', 'patch', (['"""gpcrondump.expand_partitions_and_populate_filter_file"""'], {'return_value': '"""/tmp/include_dump_tables_file"""'}), "('gpcrondump.expand_partitions_and_populate_filter_file', return_value\n ='/tmp/include_dump_tables_file')\n", (32420, 32528), False, 'from mock import patch, Mock\n'), ((32529, 32568), 'mock.patch', 'patch', (['"""gpcrondump.get_lines_from_file"""'], {}), "('gpcrondump.get_lines_from_file')\n", (32534, 32568), False, 'from mock import patch, Mock\n'), ((33093, 33140), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (33098, 33140), False, 'from mock import patch, Mock\n'), ((33146, 33192), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (33151, 33192), False, 'from mock import patch, Mock\n'), ((33198, 33284), 'mock.patch', 'patch', (['"""gpcrondump.get_latest_full_dump_timestamp"""'], {'return_value': '"""20121225090000"""'}), "('gpcrondump.get_latest_full_dump_timestamp', return_value=\n '20121225090000')\n", (33203, 33284), False, 'from mock import patch, Mock\n'), ((33763, 33810), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (33768, 33810), False, 'from mock import patch, Mock\n'), ((33816, 33862), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (33821, 33862), False, 'from mock import patch, Mock\n'), ((33868, 33981), 'mock.patch', 'patch', (['"""gpcrondump.expand_partitions_and_populate_filter_file"""'], {'return_value': '"""/tmp/exclude_dump_tables_file"""'}), "('gpcrondump.expand_partitions_and_populate_filter_file', return_value\n ='/tmp/exclude_dump_tables_file')\n", (33873, 33981), False, 'from mock import patch, Mock\n'), ((33982, 34067), 'mock.patch', 'patch', (['"""gpcrondump.get_lines_from_file"""'], {'return_value': "['public.t1', 'public.t2']"}), "('gpcrondump.get_lines_from_file', return_value=['public.t1', 'public.t2']\n )\n", (33987, 34067), False, 'from mock import patch, Mock\n'), ((34567, 34614), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (34572, 34614), False, 'from mock import patch, Mock\n'), ((34620, 34666), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (34625, 34666), False, 'from mock import patch, Mock\n'), ((34672, 34785), 'mock.patch', 'patch', (['"""gpcrondump.expand_partitions_and_populate_filter_file"""'], {'return_value': '"""/tmp/exclude_dump_tables_file"""'}), "('gpcrondump.expand_partitions_and_populate_filter_file', return_value\n ='/tmp/exclude_dump_tables_file')\n", (34677, 34785), False, 'from mock import patch, Mock\n'), ((34786, 34825), 'mock.patch', 'patch', (['"""gpcrondump.get_lines_from_file"""'], {}), "('gpcrondump.get_lines_from_file')\n", (34791, 34825), False, 'from mock import patch, Mock\n'), ((35350, 35397), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (35355, 35397), False, 'from mock import patch, Mock\n'), ((35403, 35449), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (35408, 35449), False, 'from mock import patch, Mock\n'), ((35455, 35608), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_table_names_from_partition_list"""'], {'side_effect': "[['public.aot1', 'public.aot2'], ['public.cot1', 'public.cot2']]"}), "('gpcrondump.GpCronDump._get_table_names_from_partition_list',\n side_effect=[['public.aot1', 'public.aot2'], ['public.cot1',\n 'public.cot2']])\n", (35460, 35608), False, 'from mock import patch, Mock\n'), ((36092, 36139), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (36097, 36139), False, 'from mock import patch, Mock\n'), ((36145, 36191), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (36150, 36191), False, 'from mock import patch, Mock\n'), ((36197, 36358), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_table_names_from_partition_list"""'], {'side_effect': "[['public.aot1:asd', 'public.aot2'], ['public.cot1', 'public.cot2:asd']]"}), "('gpcrondump.GpCronDump._get_table_names_from_partition_list',\n side_effect=[['public.aot1:asd', 'public.aot2'], ['public.cot1',\n 'public.cot2:asd']])\n", (36202, 36358), False, 'from mock import patch, Mock\n'), ((36903, 36950), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (36908, 36950), False, 'from mock import patch, Mock\n'), ((36956, 37002), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (36961, 37002), False, 'from mock import patch, Mock\n'), ((37380, 37427), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (37385, 37427), False, 'from mock import patch, Mock\n'), ((37433, 37479), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (37438, 37479), False, 'from mock import patch, Mock\n'), ((37851, 37898), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (37856, 37898), False, 'from mock import patch, Mock\n'), ((37904, 37950), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (37909, 37950), False, 'from mock import patch, Mock\n'), ((38342, 38389), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (38347, 38389), False, 'from mock import patch, Mock\n'), ((38395, 38441), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (38400, 38441), False, 'from mock import patch, Mock\n'), ((38869, 38916), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (38874, 38916), False, 'from mock import patch, Mock\n'), ((38922, 38968), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (38927, 38968), False, 'from mock import patch, Mock\n'), ((39381, 39428), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (39386, 39428), False, 'from mock import patch, Mock\n'), ((39434, 39480), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (39439, 39480), False, 'from mock import patch, Mock\n'), ((39827, 39874), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (39832, 39874), False, 'from mock import patch, Mock\n'), ((39880, 39926), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (39885, 39926), False, 'from mock import patch, Mock\n'), ((40281, 40328), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (40286, 40328), False, 'from mock import patch, Mock\n'), ((40334, 40380), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (40339, 40380), False, 'from mock import patch, Mock\n'), ((40735, 40782), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (40740, 40782), False, 'from mock import patch, Mock\n'), ((40788, 40834), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (40793, 40834), False, 'from mock import patch, Mock\n'), ((41181, 41228), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (41186, 41228), False, 'from mock import patch, Mock\n'), ((41234, 41280), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (41239, 41280), False, 'from mock import patch, Mock\n'), ((41612, 41659), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (41617, 41659), False, 'from mock import patch, Mock\n'), ((41665, 41711), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (41670, 41711), False, 'from mock import patch, Mock\n'), ((42081, 42128), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (42086, 42128), False, 'from mock import patch, Mock\n'), ((42134, 42180), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (42139, 42180), False, 'from mock import patch, Mock\n'), ((42518, 42565), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (42523, 42565), False, 'from mock import patch, Mock\n'), ((42571, 42617), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (42576, 42617), False, 'from mock import patch, Mock\n'), ((42950, 42997), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (42955, 42997), False, 'from mock import patch, Mock\n'), ((43003, 43049), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (43008, 43049), False, 'from mock import patch, Mock\n'), ((43364, 43411), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (43369, 43411), False, 'from mock import patch, Mock\n'), ((43417, 43463), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (43422, 43463), False, 'from mock import patch, Mock\n'), ((44816, 44863), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (44821, 44863), False, 'from mock import patch, Mock\n'), ((44869, 44915), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (44874, 44915), False, 'from mock import patch, Mock\n'), ((46268, 46315), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (46273, 46315), False, 'from mock import patch, Mock\n'), ((46321, 46367), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (46326, 46367), False, 'from mock import patch, Mock\n'), ((46373, 46459), 'mock.patch', 'patch', (['"""gpcrondump.get_latest_full_dump_timestamp"""'], {'return_value': '"""20130101000000"""'}), "('gpcrondump.get_latest_full_dump_timestamp', return_value=\n '20130101000000')\n", (46378, 46459), False, 'from mock import patch, Mock\n'), ((47993, 48039), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (47998, 48039), False, 'from mock import patch, Mock\n'), ((48045, 48092), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (48050, 48092), False, 'from mock import patch, Mock\n'), ((48098, 48204), 'mock.patch', 'patch', (['"""gppylib.operations.backup_utils.get_latest_full_dump_timestamp"""'], {'return_value': '"""20130101000000"""'}), "('gppylib.operations.backup_utils.get_latest_full_dump_timestamp',\n return_value='20130101000000')\n", (48103, 48204), False, 'from mock import patch, Mock\n'), ((49859, 49905), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (49864, 49905), False, 'from mock import patch, Mock\n'), ((49911, 49997), 'mock.patch', 'patch', (['"""gpcrondump.get_latest_full_dump_timestamp"""'], {'return_value': '"""20130101000000"""'}), "('gpcrondump.get_latest_full_dump_timestamp', return_value=\n '20130101000000')\n", (49916, 49997), False, 'from mock import patch, Mock\n'), ((49998, 50045), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (50003, 50045), False, 'from mock import patch, Mock\n'), ((51682, 51729), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (51687, 51729), False, 'from mock import patch, Mock\n'), ((51735, 51781), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (51740, 51781), False, 'from mock import patch, Mock\n'), ((52673, 52720), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (52678, 52720), False, 'from mock import patch, Mock\n'), ((52726, 52772), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (52731, 52772), False, 'from mock import patch, Mock\n'), ((54095, 54142), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (54100, 54142), False, 'from mock import patch, Mock\n'), ((54148, 54194), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (54153, 54194), False, 'from mock import patch, Mock\n'), ((55671, 55718), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (55676, 55718), False, 'from mock import patch, Mock\n'), ((55724, 55770), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (55729, 55770), False, 'from mock import patch, Mock\n'), ((57478, 57525), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (57483, 57525), False, 'from mock import patch, Mock\n'), ((57531, 57577), 'mock.patch', 'patch', (['"""gpcrondump.validate_current_timestamp"""'], {}), "('gpcrondump.validate_current_timestamp')\n", (57536, 57577), False, 'from mock import patch, Mock\n'), ((58121, 58174), 'mock.patch', 'patch', (['"""gpcrondump.os.path.isfile"""'], {'return_value': '(True)'}), "('gpcrondump.os.path.isfile', return_value=True)\n", (58126, 58174), False, 'from mock import patch, Mock\n'), ((58180, 58227), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (58185, 58227), False, 'from mock import patch, Mock\n'), ((58233, 58286), 'mock.patch', 'patch', (['"""gpcrondump.os.path.getsize"""'], {'return_value': '(111)'}), "('gpcrondump.os.path.getsize', return_value=111)\n", (58238, 58286), False, 'from mock import patch, Mock\n'), ((58292, 58470), 'mock.patch', 'patch', (['"""gpcrondump.yaml.load"""'], {'return_value': '{\'EMAIL_DETAILS\': [{\'FROM\': \'RRP_MPE2_DCA_1\', \'DBNAME\': \'testdb100\',\n \'SUBJECT\': "backup completed for Database \'testdb100\'"}]}'}), '(\'gpcrondump.yaml.load\', return_value={\'EMAIL_DETAILS\': [{\'FROM\':\n \'RRP_MPE2_DCA_1\', \'DBNAME\': \'testdb100\', \'SUBJECT\':\n "backup completed for Database \'testdb100\'"}]})\n', (58297, 58470), False, 'from mock import patch, Mock\n'), ((58775, 58829), 'mock.patch', 'patch', (['"""gpcrondump.os.path.isfile"""'], {'return_value': '(False)'}), "('gpcrondump.os.path.isfile', return_value=False)\n", (58780, 58829), False, 'from mock import patch, Mock\n'), ((58835, 58882), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (58840, 58882), False, 'from mock import patch, Mock\n'), ((59205, 59258), 'mock.patch', 'patch', (['"""gpcrondump.os.path.isfile"""'], {'return_value': '(True)'}), "('gpcrondump.os.path.isfile', return_value=True)\n", (59210, 59258), False, 'from mock import patch, Mock\n'), ((59264, 59311), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (59269, 59311), False, 'from mock import patch, Mock\n'), ((59317, 59370), 'mock.patch', 'patch', (['"""gpcrondump.os.path.getsize"""'], {'return_value': '(111)'}), "('gpcrondump.os.path.getsize', return_value=111)\n", (59322, 59370), False, 'from mock import patch, Mock\n'), ((59748, 59801), 'mock.patch', 'patch', (['"""gpcrondump.os.path.isfile"""'], {'return_value': '(True)'}), "('gpcrondump.os.path.isfile', return_value=True)\n", (59753, 59801), False, 'from mock import patch, Mock\n'), ((59807, 59854), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (59812, 59854), False, 'from mock import patch, Mock\n'), ((59860, 59911), 'mock.patch', 'patch', (['"""gpcrondump.os.path.getsize"""'], {'return_value': '(0)'}), "('gpcrondump.os.path.getsize', return_value=0)\n", (59865, 59911), False, 'from mock import patch, Mock\n'), ((60233, 60286), 'mock.patch', 'patch', (['"""gpcrondump.os.path.isfile"""'], {'return_value': '(True)'}), "('gpcrondump.os.path.isfile', return_value=True)\n", (60238, 60286), False, 'from mock import patch, Mock\n'), ((60292, 60339), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (60297, 60339), False, 'from mock import patch, Mock\n'), ((60345, 60398), 'mock.patch', 'patch', (['"""gpcrondump.os.path.getsize"""'], {'return_value': '(111)'}), "('gpcrondump.os.path.getsize', return_value=111)\n", (60350, 60398), False, 'from mock import patch, Mock\n'), ((60404, 60580), 'mock.patch', 'patch', (['"""gpcrondump.yaml.load"""'], {'return_value': '{\'EMAIL_DETAILS\': [{\'FROM\': \'RRP_MPE2_DCA_1\', \'NAME\': \'testdb100\',\n \'SUBJECT\': "backup completed for Database \'testdb100\'"}]}'}), '(\'gpcrondump.yaml.load\', return_value={\'EMAIL_DETAILS\': [{\'FROM\':\n \'RRP_MPE2_DCA_1\', \'NAME\': \'testdb100\', \'SUBJECT\':\n "backup completed for Database \'testdb100\'"}]})\n', (60409, 60580), False, 'from mock import patch, Mock\n'), ((61013, 61066), 'mock.patch', 'patch', (['"""gpcrondump.os.path.isfile"""'], {'return_value': '(True)'}), "('gpcrondump.os.path.isfile', return_value=True)\n", (61018, 61066), False, 'from mock import patch, Mock\n'), ((61072, 61119), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (61077, 61119), False, 'from mock import patch, Mock\n'), ((61125, 61178), 'mock.patch', 'patch', (['"""gpcrondump.os.path.getsize"""'], {'return_value': '(111)'}), "('gpcrondump.os.path.getsize', return_value=111)\n", (61130, 61178), False, 'from mock import patch, Mock\n'), ((61184, 61355), 'mock.patch', 'patch', (['"""gpcrondump.yaml.load"""'], {'return_value': '{\'EMAIL_DETAILS\': [{\'FROM\': \'RRP_MPE2_DCA_1\', \'DBNAME\': None, \'SUBJECT\':\n "backup completed for Database \'testdb100\'"}]}'}), '(\'gpcrondump.yaml.load\', return_value={\'EMAIL_DETAILS\': [{\'FROM\':\n \'RRP_MPE2_DCA_1\', \'DBNAME\': None, \'SUBJECT\':\n "backup completed for Database \'testdb100\'"}]})\n', (61189, 61355), False, 'from mock import patch, Mock\n'), ((61788, 61821), 'mock.patch', 'patch', (['"""gpcrondump.MailDumpEvent"""'], {}), "('gpcrondump.MailDumpEvent')\n", (61793, 61821), False, 'from mock import patch, Mock\n'), ((61827, 61874), 'mock.patch', 'patch', (['"""gpcrondump.GpCronDump._get_master_port"""'], {}), "('gpcrondump.GpCronDump._get_master_port')\n", (61832, 61874), False, 'from mock import patch, Mock\n'), ((62336, 62351), 'unittest2.main', 'unittest.main', ([], {}), '()\n', (62349, 62351), True, 'import unittest2 as unittest\n'), ((17207, 17232), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (17217, 17232), False, 'from gpcrondump import GpCronDump\n'), ((17648, 17673), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (17658, 17673), False, 'from gpcrondump import GpCronDump\n'), ((18113, 18156), 'gppylib.operations.backup_utils.write_lines_to_file', 'write_lines_to_file', (['"""/tmp/foo"""', "['public']"], {}), "('/tmp/foo', ['public'])\n", (18132, 18156), False, 'from gppylib.operations.backup_utils import get_backup_directory, write_lines_to_file\n'), ((18172, 18197), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (18182, 18197), False, 'from gpcrondump import GpCronDump\n'), ((18379, 18405), 'os.path.exists', 'os.path.exists', (['"""/tmp/foo"""'], {}), "('/tmp/foo')\n", (18393, 18405), False, 'import os\n'), ((18811, 18854), 'gppylib.operations.backup_utils.write_lines_to_file', 'write_lines_to_file', (['"""/tmp/foo"""', "['public']"], {}), "('/tmp/foo', ['public'])\n", (18830, 18854), False, 'from gppylib.operations.backup_utils import get_backup_directory, write_lines_to_file\n'), ((18870, 18895), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (18880, 18895), False, 'from gpcrondump import GpCronDump\n'), ((19077, 19103), 'os.path.exists', 'os.path.exists', (['"""/tmp/foo"""'], {}), "('/tmp/foo')\n", (19091, 19103), False, 'import os\n'), ((19514, 19539), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (19524, 19539), False, 'from gpcrondump import GpCronDump\n'), ((20132, 20157), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (20142, 20157), False, 'from gpcrondump import GpCronDump\n'), ((23018, 23043), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (23028, 23043), False, 'from gpcrondump import GpCronDump\n'), ((23997, 24022), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (24007, 24022), False, 'from gpcrondump import GpCronDump\n'), ((24373, 24398), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (24383, 24398), False, 'from gpcrondump import GpCronDump\n'), ((24756, 24781), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (24766, 24781), False, 'from gpcrondump import GpCronDump\n'), ((25082, 25107), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (25092, 25107), False, 'from gpcrondump import GpCronDump\n'), ((25471, 25496), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (25481, 25496), False, 'from gpcrondump import GpCronDump\n'), ((31258, 31283), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (31268, 31283), False, 'from gpcrondump import GpCronDump\n'), ((32066, 32091), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (32076, 32091), False, 'from gpcrondump import GpCronDump\n'), ((32849, 32874), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (32859, 32874), False, 'from gpcrondump import GpCronDump\n'), ((33510, 33535), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (33520, 33535), False, 'from gpcrondump import GpCronDump\n'), ((34323, 34348), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (34333, 34348), False, 'from gpcrondump import GpCronDump\n'), ((35106, 35131), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (35116, 35131), False, 'from gpcrondump import GpCronDump\n'), ((35727, 35752), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (35737, 35752), False, 'from gpcrondump import GpCronDump\n'), ((36481, 36506), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (36491, 36506), False, 'from gpcrondump import GpCronDump\n'), ((38577, 38602), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (38587, 38602), False, 'from gpcrondump import GpCronDump\n'), ((39104, 39129), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (39114, 39129), False, 'from gpcrondump import GpCronDump\n'), ((42348, 42373), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (42358, 42373), False, 'from gpcrondump import GpCronDump\n'), ((42782, 42807), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (42792, 42807), False, 'from gpcrondump import GpCronDump\n'), ((43205, 43230), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (43215, 43230), False, 'from gpcrondump import GpCronDump\n'), ((43663, 43688), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (43673, 43688), False, 'from gpcrondump import GpCronDump\n'), ((43706, 43712), 'mock.Mock', 'Mock', ([], {}), '()\n', (43710, 43712), False, 'from mock import patch, Mock\n'), ((43825, 43925), 'gppylib.operations.backup_utils.get_backup_directory', 'get_backup_directory', (['options.masterDataDirectory', 'options.backup_dir', 'gpcd.dump_dir', 'timestamp'], {}), '(options.masterDataDirectory, options.backup_dir, gpcd.\n dump_dir, timestamp)\n', (43845, 43925), False, 'from gppylib.operations.backup_utils import get_backup_directory, write_lines_to_file\n'), ((45115, 45140), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (45125, 45140), False, 'from gpcrondump import GpCronDump\n'), ((45158, 45164), 'mock.Mock', 'Mock', ([], {}), '()\n', (45162, 45164), False, 'from mock import patch, Mock\n'), ((45277, 45377), 'gppylib.operations.backup_utils.get_backup_directory', 'get_backup_directory', (['options.masterDataDirectory', 'options.backup_dir', 'gpcd.dump_dir', 'timestamp'], {}), '(options.masterDataDirectory, options.backup_dir, gpcd.\n dump_dir, timestamp)\n', (45297, 45377), False, 'from gppylib.operations.backup_utils import get_backup_directory, write_lines_to_file\n'), ((46713, 46738), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (46723, 46738), False, 'from gpcrondump import GpCronDump\n'), ((46756, 46762), 'mock.Mock', 'Mock', ([], {}), '()\n', (46760, 46762), False, 'from mock import patch, Mock\n'), ((46876, 46961), 'gppylib.operations.backup_utils.get_backup_directory', 'get_backup_directory', (['options.masterDataDirectory', 'None', 'gpcd.dump_dir', 'timestamp'], {}), '(options.masterDataDirectory, None, gpcd.dump_dir,\n timestamp)\n', (46896, 46961), False, 'from gppylib.operations.backup_utils import get_backup_directory, write_lines_to_file\n'), ((48528, 48553), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (48538, 48553), False, 'from gpcrondump import GpCronDump\n'), ((48571, 48577), 'mock.Mock', 'Mock', ([], {}), '()\n', (48575, 48577), False, 'from mock import patch, Mock\n'), ((48690, 48790), 'gppylib.operations.backup_utils.get_backup_directory', 'get_backup_directory', (['options.masterDataDirectory', 'options.backup_dir', 'gpcd.dump_dir', 'timestamp'], {}), '(options.masterDataDirectory, options.backup_dir, gpcd.\n dump_dir, timestamp)\n', (48710, 48790), False, 'from gppylib.operations.backup_utils import get_backup_directory, write_lines_to_file\n'), ((50359, 50384), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (50369, 50384), False, 'from gpcrondump import GpCronDump\n'), ((50402, 50408), 'mock.Mock', 'Mock', ([], {}), '()\n', (50406, 50408), False, 'from mock import patch, Mock\n'), ((50522, 50607), 'gppylib.operations.backup_utils.get_backup_directory', 'get_backup_directory', (['options.masterDataDirectory', 'None', 'gpcd.dump_dir', 'timestamp'], {}), '(options.masterDataDirectory, None, gpcd.dump_dir,\n timestamp)\n', (50542, 50607), False, 'from gppylib.operations.backup_utils import get_backup_directory, write_lines_to_file\n'), ((51981, 52006), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (51991, 52006), False, 'from gpcrondump import GpCronDump\n'), ((52024, 52030), 'mock.Mock', 'Mock', ([], {}), '()\n', (52028, 52030), False, 'from mock import patch, Mock\n'), ((52166, 52266), 'gppylib.operations.backup_utils.get_backup_directory', 'get_backup_directory', (['options.masterDataDirectory', 'options.backup_dir', 'gpcd.dump_dir', 'timestamp'], {}), '(options.masterDataDirectory, options.backup_dir, gpcd.\n dump_dir, timestamp)\n', (52186, 52266), False, 'from gppylib.operations.backup_utils import get_backup_directory, write_lines_to_file\n'), ((52972, 52997), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (52982, 52997), False, 'from gpcrondump import GpCronDump\n'), ((53015, 53021), 'mock.Mock', 'Mock', ([], {}), '()\n', (53019, 53021), False, 'from mock import patch, Mock\n'), ((53388, 53488), 'gppylib.operations.backup_utils.get_backup_directory', 'get_backup_directory', (['options.masterDataDirectory', 'options.backup_dir', 'gpcd.dump_dir', 'timestamp'], {}), '(options.masterDataDirectory, options.backup_dir, gpcd.\n dump_dir, timestamp)\n', (53408, 53488), False, 'from gppylib.operations.backup_utils import get_backup_directory, write_lines_to_file\n'), ((54429, 54454), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (54439, 54454), False, 'from gpcrondump import GpCronDump\n'), ((54472, 54478), 'mock.Mock', 'Mock', ([], {}), '()\n', (54476, 54478), False, 'from mock import patch, Mock\n'), ((54845, 54945), 'gppylib.operations.backup_utils.get_backup_directory', 'get_backup_directory', (['options.masterDataDirectory', 'options.backup_dir', 'gpcd.dump_dir', 'timestamp'], {}), '(options.masterDataDirectory, options.backup_dir, gpcd.\n dump_dir, timestamp)\n', (54865, 54945), False, 'from gppylib.operations.backup_utils import get_backup_directory, write_lines_to_file\n'), ((56005, 56030), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (56015, 56030), False, 'from gpcrondump import GpCronDump\n'), ((56048, 56054), 'mock.Mock', 'Mock', ([], {}), '()\n', (56052, 56054), False, 'from mock import patch, Mock\n'), ((56421, 56521), 'gppylib.operations.backup_utils.get_backup_directory', 'get_backup_directory', (['options.masterDataDirectory', 'options.backup_dir', 'gpcd.dump_dir', 'timestamp'], {}), '(options.masterDataDirectory, options.backup_dir, gpcd.\n dump_dir, timestamp)\n', (56441, 56521), False, 'from gppylib.operations.backup_utils import get_backup_directory, write_lines_to_file\n'), ((58038, 58063), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (58048, 58063), False, 'from gpcrondump import GpCronDump\n'), ((58651, 58667), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (58665, 58667), False, 'import mock\n'), ((60761, 60777), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (60775, 60777), False, 'import mock\n'), ((61536, 61552), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (61550, 61552), False, 'import mock\n'), ((62120, 62145), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (62130, 62145), False, 'from gpcrondump import GpCronDump\n'), ((3420, 3445), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (3430, 3445), False, 'from gpcrondump import GpCronDump\n'), ((3947, 3972), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (3957, 3972), False, 'from gpcrondump import GpCronDump\n'), ((4387, 4412), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (4397, 4412), False, 'from gpcrondump import GpCronDump\n'), ((4819, 4844), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (4829, 4844), False, 'from gpcrondump import GpCronDump\n'), ((5268, 5293), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (5278, 5293), False, 'from gpcrondump import GpCronDump\n'), ((5709, 5734), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (5719, 5734), False, 'from gpcrondump import GpCronDump\n'), ((6134, 6159), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (6144, 6159), False, 'from gpcrondump import GpCronDump\n'), ((6591, 6616), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (6601, 6616), False, 'from gpcrondump import GpCronDump\n'), ((7040, 7065), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (7050, 7065), False, 'from gpcrondump import GpCronDump\n'), ((7509, 7534), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (7519, 7534), False, 'from gpcrondump import GpCronDump\n'), ((8007, 8032), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (8017, 8032), False, 'from gpcrondump import GpCronDump\n'), ((8505, 8530), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (8515, 8530), False, 'from gpcrondump import GpCronDump\n'), ((8995, 9020), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (9005, 9020), False, 'from gpcrondump import GpCronDump\n'), ((9485, 9510), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (9495, 9510), False, 'from gpcrondump import GpCronDump\n'), ((9956, 9981), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (9966, 9981), False, 'from gpcrondump import GpCronDump\n'), ((10427, 10452), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (10437, 10452), False, 'from gpcrondump import GpCronDump\n'), ((10906, 10931), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (10916, 10931), False, 'from gpcrondump import GpCronDump\n'), ((11385, 11410), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (11395, 11410), False, 'from gpcrondump import GpCronDump\n'), ((11850, 11875), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (11860, 11875), False, 'from gpcrondump import GpCronDump\n'), ((12315, 12340), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (12325, 12340), False, 'from gpcrondump import GpCronDump\n'), ((12772, 12797), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (12782, 12797), False, 'from gpcrondump import GpCronDump\n'), ((13229, 13254), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (13239, 13254), False, 'from gpcrondump import GpCronDump\n'), ((13667, 13692), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (13677, 13692), False, 'from gpcrondump import GpCronDump\n'), ((14105, 14130), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (14115, 14130), False, 'from gpcrondump import GpCronDump\n'), ((14551, 14576), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (14561, 14576), False, 'from gpcrondump import GpCronDump\n'), ((14997, 15022), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (15007, 15022), False, 'from gpcrondump import GpCronDump\n'), ((15419, 15444), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (15429, 15444), False, 'from gpcrondump import GpCronDump\n'), ((15849, 15874), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (15859, 15874), False, 'from gpcrondump import GpCronDump\n'), ((16376, 16401), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (16386, 16401), False, 'from gpcrondump import GpCronDump\n'), ((16903, 16928), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (16913, 16928), False, 'from gpcrondump import GpCronDump\n'), ((18419, 18440), 'os.remove', 'os.remove', (['"""/tmp/foo"""'], {}), "('/tmp/foo')\n", (18428, 18440), False, 'import os\n'), ((19117, 19138), 'os.remove', 'os.remove', (['"""/tmp/foo"""'], {}), "('/tmp/foo')\n", (19126, 19138), False, 'import os\n'), ((20780, 20805), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (20790, 20805), False, 'from gpcrondump import GpCronDump\n'), ((21214, 21239), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (21224, 21239), False, 'from gpcrondump import GpCronDump\n'), ((21653, 21678), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (21663, 21678), False, 'from gpcrondump import GpCronDump\n'), ((22092, 22117), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (22102, 22117), False, 'from gpcrondump import GpCronDump\n'), ((23526, 23551), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (23536, 23551), False, 'from gpcrondump import GpCronDump\n'), ((25961, 25986), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (25971, 25986), False, 'from gpcrondump import GpCronDump\n'), ((26378, 26403), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (26388, 26403), False, 'from gpcrondump import GpCronDump\n'), ((26797, 26822), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (26807, 26822), False, 'from gpcrondump import GpCronDump\n'), ((27243, 27268), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (27253, 27268), False, 'from gpcrondump import GpCronDump\n'), ((27690, 27715), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (27700, 27715), False, 'from gpcrondump import GpCronDump\n'), ((28128, 28153), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (28138, 28153), False, 'from gpcrondump import GpCronDump\n'), ((28570, 28595), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (28580, 28595), False, 'from gpcrondump import GpCronDump\n'), ((29025, 29050), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (29035, 29050), False, 'from gpcrondump import GpCronDump\n'), ((29438, 29463), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (29448, 29463), False, 'from gpcrondump import GpCronDump\n'), ((29862, 29887), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (29872, 29887), False, 'from gpcrondump import GpCronDump\n'), ((30351, 30376), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (30361, 30376), False, 'from gpcrondump import GpCronDump\n'), ((30938, 30963), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (30948, 30963), False, 'from gpcrondump import GpCronDump\n'), ((37348, 37373), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (37358, 37373), False, 'from gpcrondump import GpCronDump\n'), ((37819, 37844), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (37829, 37844), False, 'from gpcrondump import GpCronDump\n'), ((38310, 38335), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (38320, 38335), False, 'from gpcrondump import GpCronDump\n'), ((39795, 39820), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (39805, 39820), False, 'from gpcrondump import GpCronDump\n'), ((40249, 40274), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (40259, 40274), False, 'from gpcrondump import GpCronDump\n'), ((40703, 40728), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (40713, 40728), False, 'from gpcrondump import GpCronDump\n'), ((41149, 41174), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (41159, 41174), False, 'from gpcrondump import GpCronDump\n'), ((41580, 41605), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (41590, 41605), False, 'from gpcrondump import GpCronDump\n'), ((42049, 42074), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (42059, 42074), False, 'from gpcrondump import GpCronDump\n'), ((42481, 42510), 'datetime.datetime', 'datetime', (['(2013)', '(1)', '(1)', '(1)', '(1)', '(1)'], {}), '(2013, 1, 1, 1, 1, 1)\n', (42489, 42510), False, 'from datetime import datetime\n'), ((53099, 53105), 'mock.Mock', 'Mock', ([], {}), '()\n', (53103, 53105), False, 'from mock import patch, Mock\n'), ((53107, 53113), 'mock.Mock', 'Mock', ([], {}), '()\n', (53111, 53113), False, 'from mock import patch, Mock\n'), ((54556, 54562), 'mock.Mock', 'Mock', ([], {}), '()\n', (54560, 54562), False, 'from mock import patch, Mock\n'), ((54564, 54570), 'mock.Mock', 'Mock', ([], {}), '()\n', (54568, 54570), False, 'from mock import patch, Mock\n'), ((56132, 56138), 'mock.Mock', 'Mock', ([], {}), '()\n', (56136, 56138), False, 'from mock import patch, Mock\n'), ((56140, 56146), 'mock.Mock', 'Mock', ([], {}), '()\n', (56144, 56146), False, 'from mock import patch, Mock\n'), ((58681, 58722), 'mock.patch', 'patch', (['"""__builtin__.open"""', 'm'], {'create': '(True)'}), "('__builtin__.open', m, create=True)\n", (58686, 58722), False, 'from mock import patch, Mock\n'), ((58743, 58768), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (58753, 58768), False, 'from gpcrondump import GpCronDump\n'), ((59173, 59198), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (59183, 59198), False, 'from gpcrondump import GpCronDump\n'), ((59716, 59741), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (59726, 59741), False, 'from gpcrondump import GpCronDump\n'), ((60201, 60226), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (60211, 60226), False, 'from gpcrondump import GpCronDump\n'), ((22588, 22613), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (22598, 22613), False, 'from gpcrondump import GpCronDump\n'), ((60915, 60956), 'mock.patch', 'patch', (['"""__builtin__.open"""', 'm'], {'create': '(True)'}), "('__builtin__.open', m, create=True)\n", (60920, 60956), False, 'from mock import patch, Mock\n'), ((60981, 61006), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (60991, 61006), False, 'from gpcrondump import GpCronDump\n'), ((61690, 61731), 'mock.patch', 'patch', (['"""__builtin__.open"""', 'm'], {'create': '(True)'}), "('__builtin__.open', m, create=True)\n", (61695, 61731), False, 'from mock import patch, Mock\n'), ((61756, 61781), 'gpcrondump.GpCronDump', 'GpCronDump', (['options', 'None'], {}), '(options, None)\n', (61766, 61781), False, 'from gpcrondump import GpCronDump\n')]
vsosrc/ambari
ambari-server/src/test/python/stacks/2.0.6/HIVE/test_hive_service_check.py
e3cc898672707bedf7597f2e16d684c8a00bba3b
#!/usr/bin/env python ''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import os from mock.mock import MagicMock, call, patch from stacks.utils.RMFTestCase import * import datetime, sys, socket import resource_management.libraries.functions @patch.object(resource_management.libraries.functions, "get_unique_id_and_date", new = MagicMock(return_value='')) @patch("socket.socket", new = MagicMock()) class TestServiceCheck(RMFTestCase): @patch("sys.exit") def test_service_check_default(self, sys_exit_mock): self.executeScript("2.0.6/services/HIVE/package/scripts/service_check.py", classname="HiveServiceCheck", command="service_check", config_file="default.json" ) self.assertResourceCalled('File', '/tmp/hcatSmoke.sh', content = StaticFile('hcatSmoke.sh'), mode = 0755, ) self.assertResourceCalled('Execute', 'env JAVA_HOME=/usr/jdk64/jdk1.7.0_45 /tmp/hcatSmoke.sh hcatsmoke prepare', logoutput = True, path = ['/usr/sbin', '/usr/local/nin', '/bin', '/usr/bin'], tries = 3, user = 'ambari-qa', environment = {'PATH' : os.environ['PATH'] + os.pathsep + "/usr/lib/hive/bin"}, try_sleep = 5, ) self.assertResourceCalled('ExecuteHadoop', 'fs -test -e /apps/hive/warehouse/hcatsmoke', logoutput = True, user = 'hdfs', conf_dir = '/etc/hadoop/conf', keytab=UnknownConfigurationMock(), kinit_path_local='/usr/bin/kinit', bin_dir = '/usr/lib/hive/bin', security_enabled=False ) self.assertResourceCalled('Execute', ' /tmp/hcatSmoke.sh hcatsmoke cleanup', logoutput = True, path = ['/usr/sbin', '/usr/local/nin', '/bin', '/usr/bin'], tries = 3, user = 'ambari-qa', environment = {'PATH' : os.environ['PATH'] + os.pathsep + "/usr/lib/hive/bin"}, try_sleep = 5, ) self.assertNoMoreResources() @patch("sys.exit") def test_service_check_secured(self, sys_exit_mock): self.executeScript("2.0.6/services/HIVE/package/scripts/service_check.py", classname="HiveServiceCheck", command="service_check", config_file="secured.json" ) self.assertResourceCalled('File', '/tmp/hcatSmoke.sh', content = StaticFile('hcatSmoke.sh'), mode = 0755, ) self.assertResourceCalled('Execute', '/usr/bin/kinit -kt /etc/security/keytabs/smokeuser.headless.keytab ambari-qa; env JAVA_HOME=/usr/jdk64/jdk1.7.0_45 /tmp/hcatSmoke.sh hcatsmoke prepare', logoutput = True, path = ['/usr/sbin', '/usr/local/nin', '/bin', '/usr/bin'], tries = 3, user = 'ambari-qa', environment = {'PATH' : os.environ['PATH'] + os.pathsep + "/usr/lib/hive/bin"}, try_sleep = 5, ) self.assertResourceCalled('ExecuteHadoop', 'fs -test -e /apps/hive/warehouse/hcatsmoke', logoutput = True, user = 'hdfs', conf_dir = '/etc/hadoop/conf', keytab='/etc/security/keytabs/hdfs.headless.keytab', kinit_path_local='/usr/bin/kinit', security_enabled=True, bin_dir = '/usr/lib/hive/bin', principal='hdfs' ) self.assertResourceCalled('Execute', '/usr/bin/kinit -kt /etc/security/keytabs/smokeuser.headless.keytab ambari-qa; /tmp/hcatSmoke.sh hcatsmoke cleanup', logoutput = True, path = ['/usr/sbin', '/usr/local/nin', '/bin', '/usr/bin'], tries = 3, user = 'ambari-qa', environment = {'PATH' : os.environ['PATH'] + os.pathsep + "/usr/lib/hive/bin"}, try_sleep = 5, ) self.assertNoMoreResources()
[]
chlorm-forks/gyp
test/linux/gyptest-ldflags-from-environment.py
a8921fcaab1a18c8cf7e4ab09ceb940e336918ec
#!/usr/bin/env python # Copyright (c) 2017 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Verifies the use of linker flags in environment variables. In this test, gyp and build both run in same local environment. """ import TestGyp import re import subprocess import sys FORMATS = ('make', 'ninja') if sys.platform.startswith('linux'): test = TestGyp.TestGyp(formats=FORMATS) CHDIR = 'ldflags-from-environment' with TestGyp.LocalEnv({'LDFLAGS': '-Wl,--dynamic-linker=/target', 'LDFLAGS_host': '-Wl,--dynamic-linker=/host', 'GYP_CROSSCOMPILE': '1'}): test.run_gyp('test.gyp', chdir=CHDIR) test.build('test.gyp', chdir=CHDIR) def GetDynamicLinker(p): p = test.built_file_path(p, chdir=CHDIR) r = re.compile(r'\[Requesting program interpreter: ([^\]]+)\]') proc = subprocess.Popen(['readelf', '-l', p], stdout=subprocess.PIPE) o = proc.communicate()[0].decode('utf-8') assert not proc.returncode return r.search(o).group(1) if GetDynamicLinker('ldflags') != '/target': test.fail_test() if GetDynamicLinker('ldflags_host') != '/host': test.fail_test() test.pass_test()
[((401, 433), 'sys.platform.startswith', 'sys.platform.startswith', (['"""linux"""'], {}), "('linux')\n", (424, 433), False, 'import sys\n'), ((444, 476), 'TestGyp.TestGyp', 'TestGyp.TestGyp', ([], {'formats': 'FORMATS'}), '(formats=FORMATS)\n', (459, 476), False, 'import TestGyp\n'), ((522, 658), 'TestGyp.LocalEnv', 'TestGyp.LocalEnv', (["{'LDFLAGS': '-Wl,--dynamic-linker=/target', 'LDFLAGS_host':\n '-Wl,--dynamic-linker=/host', 'GYP_CROSSCOMPILE': '1'}"], {}), "({'LDFLAGS': '-Wl,--dynamic-linker=/target', 'LDFLAGS_host':\n '-Wl,--dynamic-linker=/host', 'GYP_CROSSCOMPILE': '1'})\n", (538, 658), False, 'import TestGyp\n'), ((869, 930), 're.compile', 're.compile', (['"""\\\\[Requesting program interpreter: ([^\\\\]]+)\\\\]"""'], {}), "('\\\\[Requesting program interpreter: ([^\\\\]]+)\\\\]')\n", (879, 930), False, 'import re\n'), ((940, 1002), 'subprocess.Popen', 'subprocess.Popen', (["['readelf', '-l', p]"], {'stdout': 'subprocess.PIPE'}), "(['readelf', '-l', p], stdout=subprocess.PIPE)\n", (956, 1002), False, 'import subprocess\n')]
dhaitz/python-package-template
tests/test_advanced.py
b4c636e48ae192e5efe30fe71af37be6f8273d29
# -*- coding: utf-8 -*- from .context import sample def test_thoughts(): assert(sample.hmm() is None)
[]
dhrubach/python-code-recipes
binary_tree/m_post_order_traversal.py
14356c6adb1946417482eaaf6f42dde4b8351d2f
###################################################################### # LeetCode Problem Number : 145 # Difficulty Level : Medium # URL : https://leetcode.com/problems/binary-tree-postorder-traversal/ ###################################################################### from binary_search_tree.tree_node import TreeNode class BinaryTree: # runtime --> 77.59%, memory --> 50.59% def postOrderRecursive(self, root: TreeNode) -> [int]: if not root: return [] res = [] """ post - order traversal visit left sub - tree visit right sub - tree visit node """ res += self.postOrderRecursive(root.left) res += self.postOrderRecursive(root.right) res.append(root.val) """ return visited node + child nodes """ return res def postOrderIterative(self, root: TreeNode) -> [int]: if not root: return [] ret = [] """ on visiting a node, push 2 copies to the stack. use 1st copy to process the child nodes use 2nd copy to insert into result """ st = [root] * 2 while st: cur = st.pop() """ if current node is the last node in the stack, then visit it's child nodes if current node is not the last node in the stack, then current node is the 2nd copy. Insert node into result list """ if st and st[-1] is cur: """insert right child node followed by left. this ensures processing is done from left to right. """ if cur.right: st += [cur.right] * 2 if cur.left: st += [cur.left] * 2 else: ret.append(cur.val) return ret # runtime --> 54.35%, memory --> 5.09% def postOrderIterativeReverse(self, root: TreeNode) -> [int]: if not root: return [] res, stack = [], [root] while stack: cur = stack.pop() if cur: """ visit the nodes in reverse order i.e. node -> right child node -> left child node similar to right-first pre-order traversal """ res.append(cur.val) stack.append(cur.left) stack.append(cur.right) """ reversed result will give post-order traversal """ return res[::-1]
[]
luminisward/python-dokuwiki
dokuwiki.py
329862e6c91a79b2ad9f0b7616f7591459f2d4fd
# -*- coding: utf-8 -*- """This python module aims to manage `DokuWiki <https://www.dokuwiki.org/dokuwiki>`_ wikis by using the provided `XML-RPC API <https://www.dokuwiki.org/devel:xmlrpc>`_. It is compatible with python2.7 and python3+. Installation ------------ It is on `PyPi <https://pypi.python.org/pypi/dokuwiki>`_ so you can use the ``pip`` command to install it:: pip install dokuwiki Otherwise sources are in `github <https://github.com/fmenabe/python-dokuwiki>`_ """ import re import sys import base64 import weakref from xml.parsers.expat import ExpatError if sys.version_info[0] == 3: from xmlrpc.client import ServerProxy, Binary, Fault, Transport from urllib.parse import urlencode else: from xmlrpclib import ServerProxy, Binary, Fault, Transport from urllib import urlencode from datetime import datetime, timedelta ERR = 'XML or text declaration not at start of entity: line 2, column 0' _URL_RE = re.compile(r'(?P<proto>https?)://(?P<host>[^/]*)(?P<uri>/.*)?') def date(date): """DokuWiki returns dates of `xmlrpclib`/`xmlrpc.client` ``DateTime`` type and the format changes between DokuWiki versions ... This function convert *date* to a `datetime` object. """ date = date.value return (datetime.strptime(date[:-5], '%Y-%m-%dT%H:%M:%S') if len(date) == 24 else datetime.strptime(date, '%Y%m%dT%H:%M:%S')) def utc2local(date): """DokuWiki returns date with a +0000 timezone. This function convert *date* to the local time. """ date_offset = (datetime.now() - datetime.utcnow()) # Python < 2.7 don't have the 'total_seconds' method so calculate it by hand! date_offset = (date_offset.microseconds + (date_offset.seconds + date_offset.days * 24 * 3600) * 1e6) / 1e6 date_offset = int(round(date_offset / 60 / 60)) return date + timedelta(hours=date_offset) class DokuWikiError(Exception): """Exception raised by this module when there is an error.""" pass class CookiesTransport(Transport): """A Python3 xmlrpc.client.Transport subclass that retains cookies.""" def __init__(self): Transport.__init__(self) self._cookies = dict() def send_headers(self, connection, headers): if self._cookies: cookies = map(lambda x: x[0] + '=' + x[1], self._cookies.items()) connection.putheader("Cookie", "; ".join(cookies)) Transport.send_headers(self, connection, headers) def parse_response(self, response): """parse and store cookie""" try: for header in response.msg.get_all("Set-Cookie"): cookie = header.split(";", 1)[0] cookieKey, cookieValue = cookie.split("=", 1) self._cookies[cookieKey] = cookieValue finally: return Transport.parse_response(self, response) class CookiesTransport2(Transport): """A Python2 xmlrpclib.Transport subclass that retains cookies.""" def __init__(self): Transport.__init__(self) self._cookies = dict() def send_request(self, connection, handler, request_body): Transport.send_request(self, connection, handler, request_body) # set cookie below handler if self._cookies: cookies = map(lambda x: x[0] + '=' + x[1], self._cookies.items()) connection.putheader("Cookie", "; ".join(cookies)) def parse_response(self, response): """parse and store cookie""" try: for header in response.getheader("set-cookie").split(", "): # filter 'expire' information if not header.startswith("D"): continue cookie = header.split(";", 1)[0] cookieKey, cookieValue = cookie.split("=", 1) self._cookies[cookieKey] = cookieValue finally: return Transport.parse_response(self, response) class DokuWiki(object): """Initialize a connection to a DokuWiki wiki. *url*, *user* and *password* are respectively the URL, the login and the password for connecting to the wiki. *kwargs* are `xmlrpclib`/`xmlrpc.client` **ServerProxy** parameters. The exception `DokuWikiError` is raised if the authentification fails but others exceptions (like ``gaierror`` for invalid domain, ``ProtocolError`` for an invalid wiki, ...) are not catched. .. code:: try: wiki = dokuwiki.DokuWiki('URL', 'USER', 'PASSWORD', cookieAuth=False) except (DokuWikiError, Exception) as err: print('unable to connect: %s' % err) """ def __init__(self, url, user, password, cookieAuth=False, **kwargs): """Initialize the object by connecting to the XMLRPC server.""" # Initialize XMLRPC client. try: params = _URL_RE.search(url).groupdict() if cookieAuth == False: url = '%s://%s:%s@%s%s/lib/exe/xmlrpc.php' % ( params['proto'], user, password, params['host'], params['uri'] or '') else: url = '%s://%s%s/lib/exe/xmlrpc.php' % ( params['proto'], params['host'], params['uri'] or '') except AttributeError: raise DokuWikiError("invalid url '%s'" % url) if cookieAuth == False: self.proxy = ServerProxy(url, **kwargs) else: if sys.version_info[0] == 3: self.proxy = ServerProxy(url, CookiesTransport(), **kwargs) else: self.proxy = ServerProxy(url, CookiesTransport2(), **kwargs) # Force login to check the connection. if not self.login(user, password): raise DokuWikiError('invalid login or password!') # Set "namespaces" for pages and medias functions. self.pages = _Pages(weakref.ref(self)()) self.medias = _Medias(weakref.ref(self)()) def send(self, command, *args, **kwargs): """Generic method for executing an XML-RPC *command*. *args* and *kwargs* are the arguments and parameters needed by the command. """ args = list(args) if kwargs: args.append(kwargs) method = self.proxy for elt in command.split('.'): method = getattr(method, elt) try: return method(*args) except Fault as err: if err.faultCode == 121: return {} elif err.faultCode == 321: return [] raise DokuWikiError(err) except ExpatError as err: if str(err) != ERR: raise DokuWikiError(err) @property def version(self): """Property that returns the DokuWiki version of the remote Wiki.""" return self.send('dokuwiki.getVersion') @property def time(self): """Property that returns the current time at the remote wiki server as Unix timestamp. """ return self.send('dokuwiki.getTime') @property def xmlrpc_version(self): """Property that returns the XML RPC interface version of the remote Wiki. This is DokuWiki implementation specific and independent of the supported standard API version returned by ``wiki.getRPCVersionSupported``. """ return self.send('dokuwiki.getXMLRPCAPIVersion') @property def xmlrpc_supported_version(self): """Property that returns *2* with the supported RPC API version.""" return self.send('wiki.getRPCVersionSupported') @property def title(self): """Property that returns the title of the wiki.""" return self.send('dokuwiki.getTitle') def login(self, user, password): """Log to the wiki using *user* and *password* credentials. It returns a boolean that indicates if the user succesfully authenticate.""" return self.send('dokuwiki.login', user, password) def add_acl(self, scope, user, permission): """Add an `ACL <https://www.dokuwiki.org/acl>`_ rule that restricts the page/namespace *scope* to *user* (use *@group* syntax for groups) with *permission* level. It returns a boolean that indicate if the rule was correctly added. """ return self.send('plugin.acl.addAcl', scope, user, permission) def del_acl(self, scope, user): """Delete any ACL matching the given *scope* and *user* (or group if *@group* syntax is used). It returns a boolean that indicate if the rule was correctly removed. """ return self.send('plugin.acl.delAcl', scope, user) class _Pages(object): """This object regroup methods for managing pages of a DokuWiki. This object is accessible from the ``pages`` property of an `DokuWiki` instance:: wiki = dokuwiki.DokuWiki('URL', 'User', 'Password') wiki.pages.list() """ def __init__(self, dokuwiki): self._dokuwiki = dokuwiki def list(self, namespace='/', **options): """List all pages of the given *namespace*. Valid *options* are: * *depth*: (int) recursion level, 0 for all * *hash*: (bool) do an md5 sum of content * *skipacl*: (bool) list everything regardless of ACL """ return self._dokuwiki.send('dokuwiki.getPagelist', namespace, options) def changes(self, timestamp): """Returns a list of changes since given *timestamp*. For example, for returning all changes since *2016-01-01*:: from datetime import datetime wiki.pages.changes(datetime(2016, 1, 1).timestamp()) """ return self._dokuwiki.send('wiki.getRecentChanges', timestamp) def search(self, string): """Performs a fulltext search on *string* and returns the first 15 results. """ return self._dokuwiki.send('dokuwiki.search', string) def versions(self, page, offset=0): """Returns the available versions of *page*. *offset* can be used to list earlier versions in the history. """ return self._dokuwiki.send('wiki.getPageVersions', page, offset) def info(self, page, version=None): """Returns informations of *page*. Informations of the last version is returned if *version* is not set. """ return (self._dokuwiki.send('wiki.getPageInfoVersion', page, version) if version is not None else self._dokuwiki.send('wiki.getPageInfo', page)) def get(self, page, version=None): """Returns the content of *page*. The content of the last version is returned if *version* is not set. """ return (self._dokuwiki.send('wiki.getPageVersion', page, version) if version is not None else self._dokuwiki.send('wiki.getPage', page)) def append(self, page, content, **options): """Appends *content* text to *page*. Valid *options* are: * *sum*: (str) change summary * *minor*: (bool) whether this is a minor change """ return self._dokuwiki.send('dokuwiki.appendPage', page, content, options) def html(self, page, version=None): """Returns HTML content of *page*. The HTML content of the last version of the page is returned if *version* is not set. """ return (self._dokuwiki.send('wiki.getPageHTMLVersion', page, version) if version is not None else self._dokuwiki.send('wiki.getPageHTML', page)) def set(self, page, content, **options): """Set/replace the *content* of *page*. Valid *options* are: * *sum*: (str) change summary * *minor*: (bool) whether this is a minor change """ try: return self._dokuwiki.send('wiki.putPage', page, content, options) except ExpatError as err: # Sometime the first line of the XML response is blank which raise # the 'ExpatError' exception although the change has been done. This # allow to ignore the error. if str(err) != ERR: raise DokuWikiError(err) def delete(self, page): """Delete *page* by setting an empty content.""" return self.set(page, '') def lock(self, page): """Locks *page*.""" result = self._dokuwiki.send('dokuwiki.setLocks', lock=[page], unlock=[]) if result['lockfail']: raise DokuWikiError('unable to lock page') def unlock(self, page): """Unlocks *page*.""" result = self._dokuwiki.send('dokuwiki.setLocks', lock=[], unlock=[page]) if result['unlockfail']: raise DokuWikiError('unable to unlock page') def permission(self, page): """Returns the permission level of *page*.""" return self._dokuwiki.send('wiki.aclCheck', page) def links(self, page): """Returns a list of all links contained in *page*.""" return self._dokuwiki.send('wiki.listLinks', page) def backlinks(self, page): """Returns a list of all links referencing *page*.""" return self._dokuwiki.send('wiki.getBackLinks', page) class _Medias(object): """This object regroup methods for managing medias of a DokuWiki. This object is accessible from the ``medias`` property of an `DokuWiki` instance:: wiki = dokuwiki.DokuWiki('URL', 'User', 'Password') wiki.medias.list() """ def __init__(self, dokuwiki): self._dokuwiki = dokuwiki def list(self, namespace='/', **options): """Returns all medias of the given *namespace*. Valid *options* are: * *depth*: (int) recursion level, 0 for all * *skipacl*: (bool) skip acl checking * *pattern*: (str) check given pattern * *hash*: (bool) add hashes to result list """ return self._dokuwiki.send('wiki.getAttachments', namespace, options) def changes(self, timestamp): """Returns the list of medias changed since given *timestamp*. For example, for returning all changes since *2016-01-01*:: from datetime import datetime wiki.medias.changes(datetime(2016, 1, 1).timestamp()) """ return self._dokuwiki.send('wiki.getRecentMediaChanges', timestamp) def get(self, media, dirpath=None, filename=None, overwrite=False, b64decode=False): """Returns the binary data of *media* or save it to a file. If *dirpath* is not set the binary data is returned, otherwise the data is saved to a file. By default, the filename is the name of the media but it can be changed with *filename* parameter. *overwrite* parameter allow to overwrite the file if it already exists locally. """ import os data = self._dokuwiki.send('wiki.getAttachment', media) data = base64.b64decode(data) if b64decode else data.data if dirpath is None: return data if filename is None: filename = media.replace('/', ':').split(':')[-1] if not os.path.exists(dirpath): os.makedirs(dirpath) filepath = os.path.join(dirpath, filename) if os.path.exists(filepath) and not overwrite: raise FileExistsError("[Errno 17] File exists: '%s'" % filepath) with open(filepath, 'wb') as fhandler: fhandler.write(data) def info(self, media): """Returns informations of *media*.""" return self._dokuwiki.send('wiki.getAttachmentInfo', media) def add(self, media, filepath, overwrite=True): """Set *media* from local file *filepath*. *overwrite* parameter specify if the media must be overwrite if it exists remotely. """ with open(filepath, 'rb') as fhandler: self._dokuwiki.send('wiki.putAttachment', media, Binary(fhandler.read()), ow=overwrite) def set(self, media, _bytes, overwrite=True, b64encode=False): """Set *media* from *_bytes*. *overwrite* parameter specify if the media must be overwrite if it exists remotely. """ data = base64.b64encode(_bytes) if b64encode else Binary(_bytes) self._dokuwiki.send('wiki.putAttachment', media, data, ow=overwrite) def delete(self, media): """Delete *media*.""" return self._dokuwiki.send('wiki.deleteAttachment', media) class Dataentry(object): """Object that manage `data entries <https://www.dokuwiki.org/plugin:data>`_.""" @staticmethod def get(content, keep_order=False): """Get dataentry from *content*. *keep_order* indicates whether to return an ordered dictionnay.""" if keep_order: from collections import OrderedDict dataentry = OrderedDict() else: dataentry = {} found = False for line in content.split('\n'): if line.strip().startswith('---- dataentry'): found = True continue elif line == '----': break elif not found: continue line_split = line.split(':') key = line_split[0].strip() value = re.sub('#.*$', '', ':'.join(line_split[1:])).strip() dataentry.setdefault(key, value) if not found: raise DokuWikiError('no dataentry found') return dataentry @staticmethod def gen(name, data): """Generate dataentry *name* from *data*.""" return '---- dataentry %s ----\n%s\n----' % (name, '\n'.join( '%s:%s' % (attr, value) for attr, value in data.items())) @staticmethod def ignore(content): """Remove dataentry from *content*.""" page_content = [] start = False for line in content.split('\n'): if line == '----' and not start: start = True continue if start: page_content.append(line) return '\n'.join(page_content) if page_content else content
[((945, 1007), 're.compile', 're.compile', (['"""(?P<proto>https?)://(?P<host>[^/]*)(?P<uri>/.*)?"""'], {}), "('(?P<proto>https?)://(?P<host>[^/]*)(?P<uri>/.*)?')\n", (955, 1007), False, 'import re\n'), ((1261, 1310), 'datetime.datetime.strptime', 'datetime.strptime', (['date[:-5]', '"""%Y-%m-%dT%H:%M:%S"""'], {}), "(date[:-5], '%Y-%m-%dT%H:%M:%S')\n", (1278, 1310), False, 'from datetime import datetime, timedelta\n'), ((1359, 1401), 'datetime.datetime.strptime', 'datetime.strptime', (['date', '"""%Y%m%dT%H:%M:%S"""'], {}), "(date, '%Y%m%dT%H:%M:%S')\n", (1376, 1401), False, 'from datetime import datetime, timedelta\n'), ((1556, 1570), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1568, 1570), False, 'from datetime import datetime, timedelta\n'), ((1573, 1590), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (1588, 1590), False, 'from datetime import datetime, timedelta\n'), ((1875, 1903), 'datetime.timedelta', 'timedelta', ([], {'hours': 'date_offset'}), '(hours=date_offset)\n', (1884, 1903), False, 'from datetime import datetime, timedelta\n'), ((2156, 2180), 'xmlrpclib.Transport.__init__', 'Transport.__init__', (['self'], {}), '(self)\n', (2174, 2180), False, 'from xmlrpclib import ServerProxy, Binary, Fault, Transport\n'), ((2437, 2486), 'xmlrpclib.Transport.send_headers', 'Transport.send_headers', (['self', 'connection', 'headers'], {}), '(self, connection, headers)\n', (2459, 2486), False, 'from xmlrpclib import ServerProxy, Binary, Fault, Transport\n'), ((3023, 3047), 'xmlrpclib.Transport.__init__', 'Transport.__init__', (['self'], {}), '(self)\n', (3041, 3047), False, 'from xmlrpclib import ServerProxy, Binary, Fault, Transport\n'), ((3151, 3214), 'xmlrpclib.Transport.send_request', 'Transport.send_request', (['self', 'connection', 'handler', 'request_body'], {}), '(self, connection, handler, request_body)\n', (3173, 3214), False, 'from xmlrpclib import ServerProxy, Binary, Fault, Transport\n'), ((15357, 15388), 'os.path.join', 'os.path.join', (['dirpath', 'filename'], {}), '(dirpath, filename)\n', (15369, 15388), False, 'import os\n'), ((2842, 2882), 'xmlrpclib.Transport.parse_response', 'Transport.parse_response', (['self', 'response'], {}), '(self, response)\n', (2866, 2882), False, 'from xmlrpclib import ServerProxy, Binary, Fault, Transport\n'), ((3904, 3944), 'xmlrpclib.Transport.parse_response', 'Transport.parse_response', (['self', 'response'], {}), '(self, response)\n', (3928, 3944), False, 'from xmlrpclib import ServerProxy, Binary, Fault, Transport\n'), ((5369, 5395), 'xmlrpclib.ServerProxy', 'ServerProxy', (['url'], {}), '(url, **kwargs)\n', (5380, 5395), False, 'from xmlrpclib import ServerProxy, Binary, Fault, Transport\n'), ((15070, 15092), 'base64.b64decode', 'base64.b64decode', (['data'], {}), '(data)\n', (15086, 15092), False, 'import base64\n'), ((15280, 15303), 'os.path.exists', 'os.path.exists', (['dirpath'], {}), '(dirpath)\n', (15294, 15303), False, 'import os\n'), ((15317, 15337), 'os.makedirs', 'os.makedirs', (['dirpath'], {}), '(dirpath)\n', (15328, 15337), False, 'import os\n'), ((15400, 15424), 'os.path.exists', 'os.path.exists', (['filepath'], {}), '(filepath)\n', (15414, 15424), False, 'import os\n'), ((16357, 16381), 'base64.b64encode', 'base64.b64encode', (['_bytes'], {}), '(_bytes)\n', (16373, 16381), False, 'import base64\n'), ((16400, 16414), 'xmlrpclib.Binary', 'Binary', (['_bytes'], {}), '(_bytes)\n', (16406, 16414), False, 'from xmlrpclib import ServerProxy, Binary, Fault, Transport\n'), ((17001, 17014), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (17012, 17014), False, 'from collections import OrderedDict\n'), ((5863, 5880), 'weakref.ref', 'weakref.ref', (['self'], {}), '(self)\n', (5874, 5880), False, 'import weakref\n'), ((5914, 5931), 'weakref.ref', 'weakref.ref', (['self'], {}), '(self)\n', (5925, 5931), False, 'import weakref\n')]
lvgig/test-aide
setup.py
60a9420062dd778ce9dad43993dd8ab4f300ac4e
import setuptools import re with open("README.md", "r") as fh: long_description = fh.read() # get version from _version.py file, from below # https://stackoverflow.com/questions/458550/standard-way-to-embed-version-into-python-package VERSION_FILE = "test_aide/_version.py" version_file_str = open(VERSION_FILE, "rt").read() VERSION_STR_RE = r"^__version__ = ['\"]([^'\"]*)['\"]" mo = re.search(VERSION_STR_RE, version_file_str, re.M) if mo: version = mo.group(1) else: raise RuntimeError("Unable to find version string in %s." % (VERSION_FILE,)) def list_reqs(fname="requirements.txt"): with open(fname) as fd: return fd.read().splitlines() setuptools.setup( name="test-aide", version=version, author="LV GI Data Science Team", author_email="#[email protected]", description="Package of helper functions to be used for unit testing", long_description=long_description, long_description_content_type="text/markdown", packages=setuptools.find_packages(), install_requires=list_reqs(), python_requires=">=3.6", classifiers=[ "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Operating System :: OS Independent", "License :: OSI Approved :: BSD License", ], )
[((391, 440), 're.search', 're.search', (['VERSION_STR_RE', 'version_file_str', 're.M'], {}), '(VERSION_STR_RE, version_file_str, re.M)\n', (400, 440), False, 'import re\n'), ((999, 1025), 'setuptools.find_packages', 'setuptools.find_packages', ([], {}), '()\n', (1023, 1025), False, 'import setuptools\n')]
jbbrokaw/matplotlib
examples/pylab_examples/matshow.py
86ec1b6fc5628bfb2d09797c58d7eed0ca8c2427
"""Simple matshow() example.""" from matplotlib.pylab import * def samplemat(dims): """Make a matrix with all zeros and increasing elements on the diagonal""" aa = zeros(dims) for i in range(min(dims)): aa[i, i] = i return aa # Display 2 matrices of different sizes dimlist = [(12, 12), (15, 35)] for d in dimlist: matshow(samplemat(d)) # Display a random matrix with a specified figure number and a grayscale # colormap matshow(rand(64, 64), fignum=100, cmap=cm.gray) show()
[]
HeyLifeHD/rp-bp
setup.py
9c59b1bc0267400747477467c45f96364d5528e1
#! /usr/bin/env python3 import importlib import logging import os import subprocess from setuptools import setup from setuptools.command.install import install as install from setuptools.command.develop import develop as develop logger = logging.getLogger(__name__) stan_model_files = [ os.path.join("nonperiodic", "no-periodicity.stan"), os.path.join("nonperiodic", "start-high-high-low.stan"), os.path.join("nonperiodic", "start-high-low-high.stan"), os.path.join("periodic", "start-high-low-low.stan"), os.path.join("untranslated", "gaussian-naive-bayes.stan"), os.path.join("translated", "periodic-gaussian-mixture.stan") ] stan_pickle_files = [ os.path.join("nonperiodic", "no-periodicity.pkl"), os.path.join("nonperiodic", "start-high-high-low.pkl"), os.path.join("nonperiodic", "start-high-low-high.pkl"), os.path.join("periodic", "start-high-low-low.pkl"), os.path.join("untranslated", "gaussian-naive-bayes.pkl"), os.path.join("translated", "periodic-gaussian-mixture.pkl") ] def _pickle_it(stan, pickle): import shlex dirname = os.path.dirname(pickle) if not os.path.exists(dirname): os.makedirs(dirname) cmd = "pickle-stan {} {}".format(shlex.quote(stan), shlex.quote(pickle)) logging.info(cmd) subprocess.call(cmd, shell=True) def _post_install(force_recompile): import site importlib.reload(site) import pbio.ribo.ribo_filenames as filenames import pbio.misc.shell_utils as shell_utils smf = [os.path.join("rpbp_models", s) for s in stan_model_files] models_base = filenames.get_default_models_base() spf = [os.path.join(models_base, s) for s in stan_pickle_files] # Compile and pickle the Stan models if force_recompile: for stan, pickle in zip(smf, spf): _pickle_it(stan, pickle) else: # default for stan, pickle in zip(smf, spf): if os.path.exists(pickle): msg = "A model already exists at: {}. Skipping.".format(pickle) logging.warning(msg) continue _pickle_it(stan, pickle) # Check for the prerequisite programs programs = ['flexbar'] shell_utils.check_programs_exist(programs, raise_on_error=False, package_name='flexbar', logger=logger) programs = ['STAR'] shell_utils.check_programs_exist(programs, raise_on_error=False, package_name='STAR', logger=logger) programs = ['bowtie2', 'bowtie2-build-s'] shell_utils.check_programs_exist(programs, raise_on_error=False, package_name='bowtie2', logger=logger) programs = ['samtools'] shell_utils.check_programs_exist(programs, raise_on_error=False, package_name='SAMtools', logger=logger) class SetupInstall(install): user_options = install.user_options + [ ('force-recompile', None, 'Set this flag to recompile the Stan models'), ] def initialize_options(self): install.initialize_options(self) self.force_recompile = None def finalize_options(self): install.finalize_options(self) def run(self): force_recompile = self.force_recompile # 0 or 1 level = logging.getLevelName("INFO") logging.basicConfig(level=level, format='%(levelname)-8s : %(message)s') install.run(self) # skip if RTD if not os.environ.get('READTHEDOCS') == 'True': _post_install(force_recompile) class SetupDevelop(develop): user_options = develop.user_options + [ ('force-recompile', None, 'Set this flag to recompile the Stan models'), ] def initialize_options(self): develop.initialize_options(self) self.force_recompile = None def finalize_options(self): develop.finalize_options(self) def run(self): force_recompile = self.force_recompile # 0 or 1 level = logging.getLevelName("INFO") logging.basicConfig(level=level, format='%(levelname)-8s : %(message)s') develop.run(self) # skip if RTD if not os.environ.get('READTHEDOCS') == 'True': _post_install(force_recompile) setup( cmdclass={ 'install': SetupInstall, 'develop': SetupDevelop } )
[((242, 269), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (259, 269), False, 'import logging\n'), ((4350, 4416), 'setuptools.setup', 'setup', ([], {'cmdclass': "{'install': SetupInstall, 'develop': SetupDevelop}"}), "(cmdclass={'install': SetupInstall, 'develop': SetupDevelop})\n", (4355, 4416), False, 'from setuptools import setup\n'), ((297, 347), 'os.path.join', 'os.path.join', (['"""nonperiodic"""', '"""no-periodicity.stan"""'], {}), "('nonperiodic', 'no-periodicity.stan')\n", (309, 347), False, 'import os\n'), ((353, 408), 'os.path.join', 'os.path.join', (['"""nonperiodic"""', '"""start-high-high-low.stan"""'], {}), "('nonperiodic', 'start-high-high-low.stan')\n", (365, 408), False, 'import os\n'), ((414, 469), 'os.path.join', 'os.path.join', (['"""nonperiodic"""', '"""start-high-low-high.stan"""'], {}), "('nonperiodic', 'start-high-low-high.stan')\n", (426, 469), False, 'import os\n'), ((475, 526), 'os.path.join', 'os.path.join', (['"""periodic"""', '"""start-high-low-low.stan"""'], {}), "('periodic', 'start-high-low-low.stan')\n", (487, 526), False, 'import os\n'), ((532, 589), 'os.path.join', 'os.path.join', (['"""untranslated"""', '"""gaussian-naive-bayes.stan"""'], {}), "('untranslated', 'gaussian-naive-bayes.stan')\n", (544, 589), False, 'import os\n'), ((595, 655), 'os.path.join', 'os.path.join', (['"""translated"""', '"""periodic-gaussian-mixture.stan"""'], {}), "('translated', 'periodic-gaussian-mixture.stan')\n", (607, 655), False, 'import os\n'), ((686, 735), 'os.path.join', 'os.path.join', (['"""nonperiodic"""', '"""no-periodicity.pkl"""'], {}), "('nonperiodic', 'no-periodicity.pkl')\n", (698, 735), False, 'import os\n'), ((741, 795), 'os.path.join', 'os.path.join', (['"""nonperiodic"""', '"""start-high-high-low.pkl"""'], {}), "('nonperiodic', 'start-high-high-low.pkl')\n", (753, 795), False, 'import os\n'), ((801, 855), 'os.path.join', 'os.path.join', (['"""nonperiodic"""', '"""start-high-low-high.pkl"""'], {}), "('nonperiodic', 'start-high-low-high.pkl')\n", (813, 855), False, 'import os\n'), ((861, 911), 'os.path.join', 'os.path.join', (['"""periodic"""', '"""start-high-low-low.pkl"""'], {}), "('periodic', 'start-high-low-low.pkl')\n", (873, 911), False, 'import os\n'), ((917, 973), 'os.path.join', 'os.path.join', (['"""untranslated"""', '"""gaussian-naive-bayes.pkl"""'], {}), "('untranslated', 'gaussian-naive-bayes.pkl')\n", (929, 973), False, 'import os\n'), ((979, 1038), 'os.path.join', 'os.path.join', (['"""translated"""', '"""periodic-gaussian-mixture.pkl"""'], {}), "('translated', 'periodic-gaussian-mixture.pkl')\n", (991, 1038), False, 'import os\n'), ((1106, 1129), 'os.path.dirname', 'os.path.dirname', (['pickle'], {}), '(pickle)\n', (1121, 1129), False, 'import os\n'), ((1277, 1294), 'logging.info', 'logging.info', (['cmd'], {}), '(cmd)\n', (1289, 1294), False, 'import logging\n'), ((1299, 1331), 'subprocess.call', 'subprocess.call', (['cmd'], {'shell': '(True)'}), '(cmd, shell=True)\n', (1314, 1331), False, 'import subprocess\n'), ((1391, 1413), 'importlib.reload', 'importlib.reload', (['site'], {}), '(site)\n', (1407, 1413), False, 'import importlib\n'), ((1605, 1640), 'pbio.ribo.ribo_filenames.get_default_models_base', 'filenames.get_default_models_base', ([], {}), '()\n', (1638, 1640), True, 'import pbio.ribo.ribo_filenames as filenames\n'), ((2211, 2318), 'pbio.misc.shell_utils.check_programs_exist', 'shell_utils.check_programs_exist', (['programs'], {'raise_on_error': '(False)', 'package_name': '"""flexbar"""', 'logger': 'logger'}), "(programs, raise_on_error=False,\n package_name='flexbar', logger=logger)\n", (2243, 2318), True, 'import pbio.misc.shell_utils as shell_utils\n'), ((2389, 2493), 'pbio.misc.shell_utils.check_programs_exist', 'shell_utils.check_programs_exist', (['programs'], {'raise_on_error': '(False)', 'package_name': '"""STAR"""', 'logger': 'logger'}), "(programs, raise_on_error=False,\n package_name='STAR', logger=logger)\n", (2421, 2493), True, 'import pbio.misc.shell_utils as shell_utils\n'), ((2578, 2685), 'pbio.misc.shell_utils.check_programs_exist', 'shell_utils.check_programs_exist', (['programs'], {'raise_on_error': '(False)', 'package_name': '"""bowtie2"""', 'logger': 'logger'}), "(programs, raise_on_error=False,\n package_name='bowtie2', logger=logger)\n", (2610, 2685), True, 'import pbio.misc.shell_utils as shell_utils\n'), ((2752, 2860), 'pbio.misc.shell_utils.check_programs_exist', 'shell_utils.check_programs_exist', (['programs'], {'raise_on_error': '(False)', 'package_name': '"""SAMtools"""', 'logger': 'logger'}), "(programs, raise_on_error=False,\n package_name='SAMtools', logger=logger)\n", (2784, 2860), True, 'import pbio.misc.shell_utils as shell_utils\n'), ((1141, 1164), 'os.path.exists', 'os.path.exists', (['dirname'], {}), '(dirname)\n', (1155, 1164), False, 'import os\n'), ((1174, 1194), 'os.makedirs', 'os.makedirs', (['dirname'], {}), '(dirname)\n', (1185, 1194), False, 'import os\n'), ((1233, 1250), 'shlex.quote', 'shlex.quote', (['stan'], {}), '(stan)\n', (1244, 1250), False, 'import shlex\n'), ((1252, 1271), 'shlex.quote', 'shlex.quote', (['pickle'], {}), '(pickle)\n', (1263, 1271), False, 'import shlex\n'), ((1528, 1558), 'os.path.join', 'os.path.join', (['"""rpbp_models"""', 's'], {}), "('rpbp_models', s)\n", (1540, 1558), False, 'import os\n'), ((1652, 1680), 'os.path.join', 'os.path.join', (['models_base', 's'], {}), '(models_base, s)\n', (1664, 1680), False, 'import os\n'), ((3100, 3132), 'setuptools.command.install.install.initialize_options', 'install.initialize_options', (['self'], {}), '(self)\n', (3126, 3132), True, 'from setuptools.command.install import install as install\n'), ((3210, 3240), 'setuptools.command.install.install.finalize_options', 'install.finalize_options', (['self'], {}), '(self)\n', (3234, 3240), True, 'from setuptools.command.install import install as install\n'), ((3335, 3363), 'logging.getLevelName', 'logging.getLevelName', (['"""INFO"""'], {}), "('INFO')\n", (3355, 3363), False, 'import logging\n'), ((3372, 3444), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'level', 'format': '"""%(levelname)-8s : %(message)s"""'}), "(level=level, format='%(levelname)-8s : %(message)s')\n", (3391, 3444), False, 'import logging\n'), ((3482, 3499), 'setuptools.command.install.install.run', 'install.run', (['self'], {}), '(self)\n', (3493, 3499), True, 'from setuptools.command.install import install as install\n'), ((3827, 3859), 'setuptools.command.develop.develop.initialize_options', 'develop.initialize_options', (['self'], {}), '(self)\n', (3853, 3859), True, 'from setuptools.command.develop import develop as develop\n'), ((3937, 3967), 'setuptools.command.develop.develop.finalize_options', 'develop.finalize_options', (['self'], {}), '(self)\n', (3961, 3967), True, 'from setuptools.command.develop import develop as develop\n'), ((4062, 4090), 'logging.getLevelName', 'logging.getLevelName', (['"""INFO"""'], {}), "('INFO')\n", (4082, 4090), False, 'import logging\n'), ((4099, 4171), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'level', 'format': '"""%(levelname)-8s : %(message)s"""'}), "(level=level, format='%(levelname)-8s : %(message)s')\n", (4118, 4171), False, 'import logging\n'), ((4209, 4226), 'setuptools.command.develop.develop.run', 'develop.run', (['self'], {}), '(self)\n', (4220, 4226), True, 'from setuptools.command.develop import develop as develop\n'), ((1934, 1956), 'os.path.exists', 'os.path.exists', (['pickle'], {}), '(pickle)\n', (1948, 1956), False, 'import os\n'), ((2054, 2074), 'logging.warning', 'logging.warning', (['msg'], {}), '(msg)\n', (2069, 2074), False, 'import logging\n'), ((3537, 3566), 'os.environ.get', 'os.environ.get', (['"""READTHEDOCS"""'], {}), "('READTHEDOCS')\n", (3551, 3566), False, 'import os\n'), ((4264, 4293), 'os.environ.get', 'os.environ.get', (['"""READTHEDOCS"""'], {}), "('READTHEDOCS')\n", (4278, 4293), False, 'import os\n')]
BorisMansencal/quickNAT_pytorch
utils/data_utils.py
1853afbe409f2fec6db298c70a3dd0ae088091f0
import os import h5py import nibabel as nb import numpy as np import torch import torch.utils.data as data from torchvision import transforms import utils.preprocessor as preprocessor # transform_train = transforms.Compose([ # transforms.RandomCrop(200, padding=56), # transforms.ToTensor(), # ]) class ImdbData(data.Dataset): def __init__(self, X, y, w, transforms=None): self.X = X if len(X.shape) == 4 else X[:, np.newaxis, :, :] self.y = y self.w = w self.transforms = transforms def __getitem__(self, index): img = torch.from_numpy(self.X[index]) label = torch.from_numpy(self.y[index]) weight = torch.from_numpy(self.w[index]) return img, label, weight def __len__(self): return len(self.y) def get_imdb_dataset(data_params): data_train = h5py.File(os.path.join(data_params['data_dir'], data_params['train_data_file']), 'r') label_train = h5py.File(os.path.join(data_params['data_dir'], data_params['train_label_file']), 'r') class_weight_train = h5py.File(os.path.join(data_params['data_dir'], data_params['train_class_weights_file']), 'r') weight_train = h5py.File(os.path.join(data_params['data_dir'], data_params['train_weights_file']), 'r') data_test = h5py.File(os.path.join(data_params['data_dir'], data_params['test_data_file']), 'r') label_test = h5py.File(os.path.join(data_params['data_dir'], data_params['test_label_file']), 'r') class_weight_test = h5py.File(os.path.join(data_params['data_dir'], data_params['test_class_weights_file']), 'r') weight_test = h5py.File(os.path.join(data_params['data_dir'], data_params['test_weights_file']), 'r') return (ImdbData(data_train['data'][()], label_train['label'][()], class_weight_train['class_weights'][()]), ImdbData(data_test['data'][()], label_test['label'][()], class_weight_test['class_weights'][()])) def load_dataset(file_paths, orientation, remap_config, return_weights=False, reduce_slices=False, remove_black=False): print("Loading and preprocessing data...") volume_list, labelmap_list, headers, class_weights_list, weights_list = [], [], [], [], [] for file_path in file_paths: volume, labelmap, class_weights, weights, header = load_and_preprocess(file_path, orientation, remap_config=remap_config, reduce_slices=reduce_slices, remove_black=remove_black, return_weights=return_weights) volume_list.append(volume) labelmap_list.append(labelmap) if return_weights: class_weights_list.append(class_weights) weights_list.append(weights) headers.append(header) print("#", end='', flush=True) print("100%", flush=True) if return_weights: return volume_list, labelmap_list, class_weights_list, weights_list, headers else: return volume_list, labelmap_list, headers def load_and_preprocess(file_path, orientation, remap_config, reduce_slices=False, remove_black=False, return_weights=False): volume, labelmap, header = load_data(file_path, orientation) volume, labelmap, class_weights, weights = preprocess(volume, labelmap, remap_config=remap_config, reduce_slices=reduce_slices, remove_black=remove_black, return_weights=return_weights) return volume, labelmap, class_weights, weights, header def load_and_preprocess_eval(file_path, orientation, notlabel=True): volume_nifty = nb.load(file_path[0]) header = volume_nifty.header volume = volume_nifty.get_fdata() if notlabel: volume = (volume - np.min(volume)) / (np.max(volume) - np.min(volume)) else: volume = np.round(volume) if orientation == "COR": volume = volume.transpose((2, 0, 1)) elif orientation == "AXI": volume = volume.transpose((1, 2, 0)) return volume, header def load_data(file_path, orientation): volume_nifty, labelmap_nifty = nb.load(file_path[0]), nb.load(file_path[1]) volume, labelmap = volume_nifty.get_fdata(), labelmap_nifty.get_fdata() volume = (volume - np.min(volume)) / (np.max(volume) - np.min(volume)) volume, labelmap = preprocessor.rotate_orientation(volume, labelmap, orientation) return volume, labelmap, volume_nifty.header def preprocess(volume, labelmap, remap_config, reduce_slices=False, remove_black=False, return_weights=False): if reduce_slices: volume, labelmap = preprocessor.reduce_slices(volume, labelmap) if remap_config: labelmap = preprocessor.remap_labels(labelmap, remap_config) if remove_black: volume, labelmap = preprocessor.remove_black(volume, labelmap) if return_weights: class_weights, weights = preprocessor.estimate_weights_mfb(labelmap) return volume, labelmap, class_weights, weights else: return volume, labelmap, None, None # def load_file_paths(data_dir, label_dir, volumes_txt_file=None): # """ # This function returns the file paths combined as a list where each element is a 2 element tuple, 0th being data and 1st being label. # It should be modified to suit the need of the project # :param data_dir: Directory which contains the data files # :param label_dir: Directory which contains the label files # :param volumes_txt_file: (Optional) Path to the a csv file, when provided only these data points will be read # :return: list of file paths as string # """ # # volume_exclude_list = ['IXI290', 'IXI423'] # if volumes_txt_file: # with open(volumes_txt_file) as file_handle: # volumes_to_use = file_handle.read().splitlines() # else: # volumes_to_use = [name for name in os.listdir(data_dir) if # name.startswith('IXI') and name not in volume_exclude_list] # # file_paths = [ # [os.path.join(data_dir, vol, 'mri/orig.mgz'), os.path.join(label_dir, vol, 'mri/aseg.auto_noCCseg.mgz')] # for # vol in volumes_to_use] # return file_paths def load_file_paths(data_dir, label_dir, data_id, volumes_txt_file=None): """ This function returns the file paths combined as a list where each element is a 2 element tuple, 0th being data and 1st being label. It should be modified to suit the need of the project :param data_dir: Directory which contains the data files :param label_dir: Directory which contains the label files :param data_id: A flag indicates the name of Dataset for proper file reading :param volumes_txt_file: (Optional) Path to the a csv file, when provided only these data points will be read :return: list of file paths as string """ if volumes_txt_file: with open(volumes_txt_file) as file_handle: volumes_to_use = file_handle.read().splitlines() else: volumes_to_use = [name for name in os.listdir(data_dir)] if data_id == "MALC": file_paths = [ [os.path.join(data_dir, vol, 'mri/orig.mgz'), os.path.join(label_dir, vol + '_glm.mgz')] for vol in volumes_to_use] elif data_id == "ADNI": file_paths = [ [os.path.join(data_dir, vol, 'orig.mgz'), os.path.join(label_dir, vol, 'Lab_con.mgz')] for vol in volumes_to_use] elif data_id == "CANDI": file_paths = [ [os.path.join(data_dir, vol + '/' + vol + '_1.mgz'), os.path.join(label_dir, vol + '/' + vol + '_1_seg.mgz')] for vol in volumes_to_use] elif data_id == "IBSR": file_paths = [ [os.path.join(data_dir, vol, 'mri/orig.mgz'), os.path.join(label_dir, vol + '_map.nii.gz')] for vol in volumes_to_use] elif data_id == "BORIS": #BORIS file_paths = [ [os.path.join(data_dir, vol), os.path.join(label_dir, vol.replace('.nii', '_seg.nii'))] for vol in volumes_to_use] else: raise ValueError("Invalid entry, valid options are MALC, ADNI, CANDI and IBSR") return file_paths def load_file_paths_eval(data_dir, volumes_txt_file, dir_struct): """ This function returns the file paths combined as a list where each element is a 2 element tuple, 0th being data and 1st being label. It should be modified to suit the need of the project :param data_dir: Directory which contains the data files :param volumes_txt_file: Path to the a csv file, when provided only these data points will be read :param dir_struct: If the id_list is in FreeSurfer style or normal :return: list of file paths as string """ with open(volumes_txt_file) as file_handle: volumes_to_use = file_handle.read().splitlines() if dir_struct == "FS": file_paths = [ [os.path.join(data_dir, vol, 'mri/orig.mgz')] for vol in volumes_to_use] elif dir_struct == "Linear": file_paths = [ [os.path.join(data_dir, vol)] for vol in volumes_to_use] elif dir_struct == "part_FS": file_paths = [ [os.path.join(data_dir, vol, 'orig.mgz')] for vol in volumes_to_use] else: raise ValueError("Invalid entry, valid options are FS and Linear") return file_paths
[((4062, 4083), 'nibabel.load', 'nb.load', (['file_path[0]'], {}), '(file_path[0])\n', (4069, 4083), True, 'import nibabel as nb\n'), ((4766, 4828), 'utils.preprocessor.rotate_orientation', 'preprocessor.rotate_orientation', (['volume', 'labelmap', 'orientation'], {}), '(volume, labelmap, orientation)\n', (4797, 4828), True, 'import utils.preprocessor as preprocessor\n'), ((582, 613), 'torch.from_numpy', 'torch.from_numpy', (['self.X[index]'], {}), '(self.X[index])\n', (598, 613), False, 'import torch\n'), ((630, 661), 'torch.from_numpy', 'torch.from_numpy', (['self.y[index]'], {}), '(self.y[index])\n', (646, 661), False, 'import torch\n'), ((679, 710), 'torch.from_numpy', 'torch.from_numpy', (['self.w[index]'], {}), '(self.w[index])\n', (695, 710), False, 'import torch\n'), ((860, 929), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['train_data_file']"], {}), "(data_params['data_dir'], data_params['train_data_file'])\n", (872, 929), False, 'import os\n'), ((964, 1034), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['train_label_file']"], {}), "(data_params['data_dir'], data_params['train_label_file'])\n", (976, 1034), False, 'import os\n'), ((1076, 1154), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['train_class_weights_file']"], {}), "(data_params['data_dir'], data_params['train_class_weights_file'])\n", (1088, 1154), False, 'import os\n'), ((1190, 1262), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['train_weights_file']"], {}), "(data_params['data_dir'], data_params['train_weights_file'])\n", (1202, 1262), False, 'import os\n'), ((1296, 1364), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['test_data_file']"], {}), "(data_params['data_dir'], data_params['test_data_file'])\n", (1308, 1364), False, 'import os\n'), ((1398, 1467), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['test_label_file']"], {}), "(data_params['data_dir'], data_params['test_label_file'])\n", (1410, 1467), False, 'import os\n'), ((1508, 1585), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['test_class_weights_file']"], {}), "(data_params['data_dir'], data_params['test_class_weights_file'])\n", (1520, 1585), False, 'import os\n'), ((1620, 1691), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['test_weights_file']"], {}), "(data_params['data_dir'], data_params['test_weights_file'])\n", (1632, 1691), False, 'import os\n'), ((4278, 4294), 'numpy.round', 'np.round', (['volume'], {}), '(volume)\n', (4286, 4294), True, 'import numpy as np\n'), ((4547, 4568), 'nibabel.load', 'nb.load', (['file_path[0]'], {}), '(file_path[0])\n', (4554, 4568), True, 'import nibabel as nb\n'), ((4570, 4591), 'nibabel.load', 'nb.load', (['file_path[1]'], {}), '(file_path[1])\n', (4577, 4591), True, 'import nibabel as nb\n'), ((5040, 5084), 'utils.preprocessor.reduce_slices', 'preprocessor.reduce_slices', (['volume', 'labelmap'], {}), '(volume, labelmap)\n', (5066, 5084), True, 'import utils.preprocessor as preprocessor\n'), ((5126, 5175), 'utils.preprocessor.remap_labels', 'preprocessor.remap_labels', (['labelmap', 'remap_config'], {}), '(labelmap, remap_config)\n', (5151, 5175), True, 'import utils.preprocessor as preprocessor\n'), ((5225, 5268), 'utils.preprocessor.remove_black', 'preprocessor.remove_black', (['volume', 'labelmap'], {}), '(volume, labelmap)\n', (5250, 5268), True, 'import utils.preprocessor as preprocessor\n'), ((5326, 5369), 'utils.preprocessor.estimate_weights_mfb', 'preprocessor.estimate_weights_mfb', (['labelmap'], {}), '(labelmap)\n', (5359, 5369), True, 'import utils.preprocessor as preprocessor\n'), ((4691, 4705), 'numpy.min', 'np.min', (['volume'], {}), '(volume)\n', (4697, 4705), True, 'import numpy as np\n'), ((4710, 4724), 'numpy.max', 'np.max', (['volume'], {}), '(volume)\n', (4716, 4724), True, 'import numpy as np\n'), ((4727, 4741), 'numpy.min', 'np.min', (['volume'], {}), '(volume)\n', (4733, 4741), True, 'import numpy as np\n'), ((4199, 4213), 'numpy.min', 'np.min', (['volume'], {}), '(volume)\n', (4205, 4213), True, 'import numpy as np\n'), ((4218, 4232), 'numpy.max', 'np.max', (['volume'], {}), '(volume)\n', (4224, 4232), True, 'import numpy as np\n'), ((4235, 4249), 'numpy.min', 'np.min', (['volume'], {}), '(volume)\n', (4241, 4249), True, 'import numpy as np\n'), ((7469, 7489), 'os.listdir', 'os.listdir', (['data_dir'], {}), '(data_dir)\n', (7479, 7489), False, 'import os\n'), ((7554, 7597), 'os.path.join', 'os.path.join', (['data_dir', 'vol', '"""mri/orig.mgz"""'], {}), "(data_dir, vol, 'mri/orig.mgz')\n", (7566, 7597), False, 'import os\n'), ((7599, 7640), 'os.path.join', 'os.path.join', (['label_dir', "(vol + '_glm.mgz')"], {}), "(label_dir, vol + '_glm.mgz')\n", (7611, 7640), False, 'import os\n'), ((9395, 9438), 'os.path.join', 'os.path.join', (['data_dir', 'vol', '"""mri/orig.mgz"""'], {}), "(data_dir, vol, 'mri/orig.mgz')\n", (9407, 9438), False, 'import os\n'), ((7757, 7796), 'os.path.join', 'os.path.join', (['data_dir', 'vol', '"""orig.mgz"""'], {}), "(data_dir, vol, 'orig.mgz')\n", (7769, 7796), False, 'import os\n'), ((7798, 7841), 'os.path.join', 'os.path.join', (['label_dir', 'vol', '"""Lab_con.mgz"""'], {}), "(label_dir, vol, 'Lab_con.mgz')\n", (7810, 7841), False, 'import os\n'), ((9560, 9587), 'os.path.join', 'os.path.join', (['data_dir', 'vol'], {}), '(data_dir, vol)\n', (9572, 9587), False, 'import os\n'), ((7959, 8009), 'os.path.join', 'os.path.join', (['data_dir', "(vol + '/' + vol + '_1.mgz')"], {}), "(data_dir, vol + '/' + vol + '_1.mgz')\n", (7971, 8009), False, 'import os\n'), ((8024, 8079), 'os.path.join', 'os.path.join', (['label_dir', "(vol + '/' + vol + '_1_seg.mgz')"], {}), "(label_dir, vol + '/' + vol + '_1_seg.mgz')\n", (8036, 8079), False, 'import os\n'), ((9710, 9749), 'os.path.join', 'os.path.join', (['data_dir', 'vol', '"""orig.mgz"""'], {}), "(data_dir, vol, 'orig.mgz')\n", (9722, 9749), False, 'import os\n'), ((8196, 8239), 'os.path.join', 'os.path.join', (['data_dir', 'vol', '"""mri/orig.mgz"""'], {}), "(data_dir, vol, 'mri/orig.mgz')\n", (8208, 8239), False, 'import os\n'), ((8241, 8285), 'os.path.join', 'os.path.join', (['label_dir', "(vol + '_map.nii.gz')"], {}), "(label_dir, vol + '_map.nii.gz')\n", (8253, 8285), False, 'import os\n'), ((8410, 8437), 'os.path.join', 'os.path.join', (['data_dir', 'vol'], {}), '(data_dir, vol)\n', (8422, 8437), False, 'import os\n')]
auho/python-ETL
lib/common/app.py
761589814b04e076ba6fa1c0e64b83ce62ce8556
import argparse import yaml import sys from .conf import MysqlConf from lib.db import mysql parser = argparse.ArgumentParser() parser.add_argument("--config", help="config file name", type=str, required=False, default='office') input_args = parser.parse_args() class PartConfig: def __init__(self): self._mysqlDbConf = MysqlConf() self._yamlConfig = None def parse(self, conf_name, module_path): self._parse_yaml(conf_name, module_path) self._mysqlDbConf.load(self.get('mysql')) def get(self, name): return self._yamlConfig[name] def _parse_yaml(self, conf_name, module_path): yaml_file = module_path + f"/conf/db_{conf_name}.yml" f = open(yaml_file, 'r', encoding='utf-8') yaml_content = f.read() self._yamlConfig = yaml.safe_load(yaml_content) @property def mysql_db_conf(self): return self._mysqlDbConf class App: configName = None moduleImport = None moduleName = None modulePath = None mysqlDb = None mysqlDbConf = None ENV = 'dev' DEBUG = True ENV_DEBUG = False def __init__(self, module_path, root_path): self.configName = input_args.config self.modulePath = module_path self.moduleName = self.modulePath.replace(root_path + '/', '') self.moduleImport = self.moduleName.replace('/', '.') part_conf = PartConfig() # type:PartConfig part_conf.parse(conf_name=input_args.config, module_path=module_path) self.mysqlDbConf = part_conf.mysql_db_conf # type:MysqlConf self.mysqlDb = mysql.Mysql(self.mysqlDbConf) # type: mysql.Mysql self.mysqlDb.connect() self.DEBUG = bool(part_conf.get('debug')) self.ENV = part_conf.get('env') if self.ENV == 'dev': self.ENV_DEBUG = True def get_db(self): return self.mysqlDb def get_sub_import(self, sub): return self.moduleImport + '.' + sub def get_sub_path(self, sub): return self.modulePath + '/' + sub def get_conf_path(self): return self.get_sub_path(sub='conf') def get_data_path(self): return self.get_sub_path(sub='data') def get_data_file_path(self, file): return self.get_data_path() + '/' + file def log(self): self._init_info() def _init_info(self): print("=" * 50) print("=" * 2 + f" MODULE PATH:: {self.modulePath}") print("=" * 2 + f" FILE PATH:: {' '.join(sys.argv)}") print(f" config file: {self.configName}") print(f" db:: {self.mysqlDbConf.db}") print(f" debug:: {str(int(self.DEBUG))}") print(f" env_debug:: {str(int(self.ENV_DEBUG))}") print("=" * 50) print("\n")
[((102, 127), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (125, 127), False, 'import argparse\n'), ((811, 839), 'yaml.safe_load', 'yaml.safe_load', (['yaml_content'], {}), '(yaml_content)\n', (825, 839), False, 'import yaml\n'), ((1606, 1635), 'lib.db.mysql.Mysql', 'mysql.Mysql', (['self.mysqlDbConf'], {}), '(self.mysqlDbConf)\n', (1617, 1635), False, 'from lib.db import mysql\n')]
StrangeArcturus/QtAndRequestParser-Project
design.py
5205420ff06c91917ce0c1d890da85e9d72a06ea
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'design.ui' # # Created by: PyQt5 UI code generator 5.15.4 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(650, 550) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(20, 10, 140, 13)) self.label.setObjectName("label") self.song_title = QtWidgets.QLineEdit(self.centralwidget) self.song_title.setGeometry(QtCore.QRect(90, 30, 113, 20)) self.song_title.setObjectName("song_title") self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(20, 30, 60, 13)) self.label_2.setObjectName("label_2") self.label_3 = QtWidgets.QLabel(self.centralwidget) self.label_3.setGeometry(QtCore.QRect(220, 30, 80, 13)) self.label_3.setObjectName("label_3") self.song_autor = QtWidgets.QLineEdit(self.centralwidget) self.song_autor.setGeometry(QtCore.QRect(310, 30, 113, 20)) self.song_autor.setObjectName("song_autor") self.label_4 = QtWidgets.QLabel(self.centralwidget) self.label_4.setGeometry(QtCore.QRect(20, 90, 140, 13)) self.label_4.setObjectName("label_4") self.orig_text = QtWidgets.QPlainTextEdit(self.centralwidget) self.orig_text.setGeometry(QtCore.QRect(20, 150, 270, 340)) self.orig_text.setObjectName("orig_text") self.label_5 = QtWidgets.QLabel(self.centralwidget) self.label_5.setGeometry(QtCore.QRect(20, 120, 60, 13)) self.label_5.setObjectName("label_5") self.trans_text = QtWidgets.QPlainTextEdit(self.centralwidget) self.trans_text.setGeometry(QtCore.QRect(320, 150, 270, 340)) self.trans_text.setObjectName("trans_text") self.label_6 = QtWidgets.QLabel(self.centralwidget) self.label_6.setGeometry(QtCore.QRect(320, 120, 120, 13)) self.label_6.setObjectName("label_6") self.get_text = QtWidgets.QPushButton(self.centralwidget) self.get_text.setGeometry(QtCore.QRect(310, 70, 100, 23)) self.get_text.setObjectName("get_text") self.pretty_flag = QtWidgets.QCheckBox(self.centralwidget) self.pretty_flag.setGeometry(QtCore.QRect(20, 60, 250, 20)) self.pretty_flag.setObjectName("pretty_flag") self.info = QtWidgets.QLabel(self.centralwidget) self.info.setGeometry(QtCore.QRect(30, 500, 560, 13)) self.info.setText("") self.info.setObjectName("info") self.error_text = QtWidgets.QLabel(self.centralwidget) self.error_text.setGeometry(QtCore.QRect(30, 520, 560, 20)) self.error_text.setText("") self.error_text.setObjectName("error_text") MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Проект 1")) self.label.setText(_translate("MainWindow", "Введите данные о песне:")) self.label_2.setText(_translate("MainWindow", "Название:")) self.label_3.setText(_translate("MainWindow", "Исполнитель:")) self.label_4.setText(_translate("MainWindow", "Полученный текст песни:")) self.label_5.setText(_translate("MainWindow", "Оригинал:")) self.label_6.setText(_translate("MainWindow", "Перевод на русский:")) self.get_text.setText(_translate("MainWindow", "Запрос текста")) self.pretty_flag.setText(_translate("MainWindow", "Красивый текст (без указания на припев)"))
[((527, 556), 'PyQt5.QtWidgets.QWidget', 'QtWidgets.QWidget', (['MainWindow'], {}), '(MainWindow)\n', (544, 556), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((638, 674), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (654, 674), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((808, 847), 'PyQt5.QtWidgets.QLineEdit', 'QtWidgets.QLineEdit', (['self.centralwidget'], {}), '(self.centralwidget)\n', (827, 847), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((993, 1029), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1009, 1029), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1165, 1201), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1181, 1201), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1341, 1380), 'PyQt5.QtWidgets.QLineEdit', 'QtWidgets.QLineEdit', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1360, 1380), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1527, 1563), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1543, 1563), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1702, 1746), 'PyQt5.QtWidgets.QPlainTextEdit', 'QtWidgets.QPlainTextEdit', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1726, 1746), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1891, 1927), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1907, 1927), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2067, 2111), 'PyQt5.QtWidgets.QPlainTextEdit', 'QtWidgets.QPlainTextEdit', (['self.centralwidget'], {}), '(self.centralwidget)\n', (2091, 2111), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2260, 2296), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (2276, 2296), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2436, 2477), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (2457, 2477), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2622, 2661), 'PyQt5.QtWidgets.QCheckBox', 'QtWidgets.QCheckBox', (['self.centralwidget'], {}), '(self.centralwidget)\n', (2641, 2661), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2807, 2843), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (2823, 2843), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3006, 3042), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (3022, 3042), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3310, 3359), 'PyQt5.QtCore.QMetaObject.connectSlotsByName', 'QtCore.QMetaObject.connectSlotsByName', (['MainWindow'], {}), '(MainWindow)\n', (3347, 3359), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((707, 736), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(10)', '(140)', '(13)'], {}), '(20, 10, 140, 13)\n', (719, 736), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((885, 914), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(90)', '(30)', '(113)', '(20)'], {}), '(90, 30, 113, 20)\n', (897, 914), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1064, 1092), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(30)', '(60)', '(13)'], {}), '(20, 30, 60, 13)\n', (1076, 1092), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1236, 1265), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(220)', '(30)', '(80)', '(13)'], {}), '(220, 30, 80, 13)\n', (1248, 1265), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1418, 1448), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(310)', '(30)', '(113)', '(20)'], {}), '(310, 30, 113, 20)\n', (1430, 1448), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1598, 1627), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(90)', '(140)', '(13)'], {}), '(20, 90, 140, 13)\n', (1610, 1627), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1783, 1814), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(150)', '(270)', '(340)'], {}), '(20, 150, 270, 340)\n', (1795, 1814), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1962, 1991), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(120)', '(60)', '(13)'], {}), '(20, 120, 60, 13)\n', (1974, 1991), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2149, 2181), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(320)', '(150)', '(270)', '(340)'], {}), '(320, 150, 270, 340)\n', (2161, 2181), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2331, 2362), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(320)', '(120)', '(120)', '(13)'], {}), '(320, 120, 120, 13)\n', (2343, 2362), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2513, 2543), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(310)', '(70)', '(100)', '(23)'], {}), '(310, 70, 100, 23)\n', (2525, 2543), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2700, 2729), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(60)', '(250)', '(20)'], {}), '(20, 60, 250, 20)\n', (2712, 2729), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2875, 2905), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(30)', '(500)', '(560)', '(13)'], {}), '(30, 500, 560, 13)\n', (2887, 2905), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3080, 3110), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(30)', '(520)', '(560)', '(20)'], {}), '(30, 520, 560, 20)\n', (3092, 3110), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n')]
Alisa-lisa/conferences
EP_2019/py_impl/main.py
d93014747dc9d18493295dbc33fa51c8fb9467dc
from simulation.car import spawn_drivers from simulation.passenger import spawn_passengers from simulation.core import World, Clock conf = { "x": 100, "y": 100, "drivers": 200, "users": 1000, "start": "2019-07-08T00:00:00", "end": "2019-07-08T00:01:00" } clock = Clock(conf["start"], conf["end"]) if __name__ == '__main__': world = World([conf['x'], conf['y']], clock=clock) world.register_drivers(spawn_drivers(conf["drivers"], conf['x'], conf['y'])) world.register_passengers(spawn_passengers(conf["users"], conf['x'], conf['y'])) world.run(log=False)
[((289, 322), 'simulation.core.Clock', 'Clock', (["conf['start']", "conf['end']"], {}), "(conf['start'], conf['end'])\n", (294, 322), False, 'from simulation.core import World, Clock\n'), ((363, 405), 'simulation.core.World', 'World', (["[conf['x'], conf['y']]"], {'clock': 'clock'}), "([conf['x'], conf['y']], clock=clock)\n", (368, 405), False, 'from simulation.core import World, Clock\n'), ((433, 485), 'simulation.car.spawn_drivers', 'spawn_drivers', (["conf['drivers']", "conf['x']", "conf['y']"], {}), "(conf['drivers'], conf['x'], conf['y'])\n", (446, 485), False, 'from simulation.car import spawn_drivers\n'), ((517, 570), 'simulation.passenger.spawn_passengers', 'spawn_passengers', (["conf['users']", "conf['x']", "conf['y']"], {}), "(conf['users'], conf['x'], conf['y'])\n", (533, 570), False, 'from simulation.passenger import spawn_passengers\n')]
avulaankith/Python
Python/reverse_with_swap.py
71269b1a36b45150edb7834c559386a91618e723
#!/bin/python3 import math import os import random import re import sys # # Complete the 'reverse_words_order_and_swap_cases' function below. # # The function is expected to return a STRING. # The function accepts STRING sentence as parameter. # def reverse_words_order_and_swap_cases(sentence): # Write your code here l = [] st = "" for i in sentence: if i == " ": l.append(st) st = "" else: st += i.swapcase() # continue l.append(st) st = "" l.reverse() news = "" for i in range(len(l)): if i != (len(l) - 1): news += l[i] + " " else: news += l[i] return news sentence = input() news = reverse_words_order_and_swap_cases(sentence) print(news)
[]
INK-USC/hypter
playground/check_equal.py
732551e1e717b66ad26ba538593ed184957ecdea
import json d1 = {} with open("/home/qinyuan/zs/out/bart-large-with-description-grouped-1e-5-outerbsz4-innerbsz32-adapterdim4-unfreeze-dec29/test_predictions.jsonl") as fin: for line in fin: d = json.loads(line) d1[d["id"]] = d["output"][0]["answer"] d2 = {} dq = {} with open("/home/qinyuan/zs/out/bart-large-zsre-with-description-LR2e-5-FREQ32-dec27/test_predictions_submitted.jsonl") as fin: for line in fin: d = json.loads(line) d2[d["id"]] = d["output"][0]["answer"] dq[d["id"]] = d["input"] d3 = {} with open("/home/qinyuan/zs/data/structured_zeroshot-test.jsonl") as fin: for line in fin: d = json.loads(line) d3[d["id"]] = [item["answer"] for item in d["output"]] count = 0 win1 = 0 win2 = 0 for key in d1.keys(): if d1[key]!= d2[key]: print("{}. {}. {}. {}. {}".format(key, dq[key], d1[key], d2[key], d3[key])) count += 1 if d1[key] in d3[key] and d2[key] not in d3[key]: win1 += 1 print(d1[key]) print(d2[key]) if d2[key] in d3[key] and d1[key] not in d3[key]: win2 += 1 print(d1[key]) print(d2[key]) print(count) print(win1) print(win2)
[((208, 224), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (218, 224), False, 'import json\n'), ((450, 466), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (460, 466), False, 'import json\n'), ((663, 679), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (673, 679), False, 'import json\n')]
MaayanLab/creeds
creeds/static/api1.py
7d580c91ca45c03e34bbc0d1928668f266ff13d9
import json, requests from pprint import pprint CREEDS_URL = 'http://amp.pharm.mssm.edu/CREEDS/' response = requests.get(CREEDS_URL + 'search', params={'q':'STAT3'}) if response.status_code == 200: pprint(response.json()) json.dump(response.json(), open('api1_result.json', 'wb'), indent=4)
[((109, 167), 'requests.get', 'requests.get', (["(CREEDS_URL + 'search')"], {'params': "{'q': 'STAT3'}"}), "(CREEDS_URL + 'search', params={'q': 'STAT3'})\n", (121, 167), False, 'import json, requests\n')]
rodlukas/UP-admin
admin/migrations/0041_course_color.py
08f36de0773f39c6222da82016bf1384af2cce18
# Generated by Django 2.2.3 on 2019-07-31 13:54 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("admin", "0040_auto_20190718_0938")] operations = [ migrations.AddField( model_name="course", name="color", field=models.CharField(default="#000", max_length=7) ) ]
[((292, 338), 'django.db.models.CharField', 'models.CharField', ([], {'default': '"""#000"""', 'max_length': '(7)'}), "(default='#000', max_length=7)\n", (308, 338), False, 'from django.db import migrations, models\n')]
pedrosimoes-programmer/exercicios-python
exercicios-Python/ex083.py
150de037496d63d76086678d87425a8ccfc74573
# Forma sem bugs expressao = (str(input('Digite a expressão: '))) pilhaParenteses = [] for v in expressao: if v == '(': pilhaParenteses.append('(') elif v == ')': if len(pilhaParenteses) > 0: pilhaParenteses.pop() else: pilhaParenteses.append(')') break if len(pilhaParenteses) == 0: print(f'A expressão {expressao} está válida.') else: print(f'A expressão {expressao} está inválida!') # Forma com bugs #expressao = (str(input('Digite a expressão: '))) #if expressao.count('(') == expressao.count(')'): # print('Sua expressão está válida.') #else: # print('Sua expressão está inválida!')
[]
code-acrobat/InspectorTodo
src/inspectortodo/todo.py
342bd0840d4f087cf2914f906ebc69bf2b21d9ce
# Copyright 2018 TNG Technology Consulting GmbH, Unterföhring, Germany # Licensed under the Apache License, Version 2.0 - see LICENSE.md in project root directory import logging from xml.sax.saxutils import escape log = logging.getLogger() class Todo: def __init__(self, file_path, line_number, content): self.file_path = file_path self.line_number = line_number self.content = content self.is_valid = True self.error_reason = None def __str__(self): return 'Todo in file ' + self.file_path + ':' + str(self.line_number) + ' | ' + self.content def mark_as_valid(self): self.is_valid = True self.error_reason = None def mark_as_invalid(self, error_reason): self.is_valid = False self.error_reason = error_reason def print(self, show_valid=False): if not show_valid and self.is_valid: return log.error('[REASON] %s' % self.error_reason) log.error('[FILE] %s' % self.file_path) log.error('[LINE] %s' % self.line_number) log.error('[CONTENT] %s' % self.content) def print_xml(self, xml_file): if self.is_valid: xml_file.write('\t<testcase classname="{}" name="line {}" />\n'.format(self.file_path, self.line_number)) else: xml_file.write('\t<testcase classname="{}" name="line {}" >\n'.format(self.file_path, self.line_number)) xml_file.write('\t\t<failure message="{}">{}</failure>\n'.format(self.error_reason, escape(self.content))) xml_file.write('\t</testcase>\n')
[((223, 242), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (240, 242), False, 'import logging\n'), ((1538, 1558), 'xml.sax.saxutils.escape', 'escape', (['self.content'], {}), '(self.content)\n', (1544, 1558), False, 'from xml.sax.saxutils import escape\n')]
FabLabUTFSM/fusm_usage_report
generators.py
92b18ad81f97482d6e8428b6c7cbdfc23d0ca440
import dash_core_components as dcc import dash_html_components as html import plotly.graph_objs as go import plotly.express as px from plotly.subplots import make_subplots import pandas as pd import math from datetime import datetime, time from utils import MONTH_NAMES, month_range def section(title, content, gray=False): return html.Section(className=f'hero is-fullheight is-medium {"has-background-grey-lighter" if gray else ""}', children=[ html.Div(className='hero-body', children=[ html.Div(className='container', children=[ html.Div(className='columns is-centered', children=[ html.Div(className='column is-four-fifths is-full-mobile', children=[ html.Div(className='level', children=[ html.H2(title, className='title') ]), ] + content) ]) ]) ]) ]) def quality_index(df): indexes = df.sort_values('Valor', ascending=False).fillna('?').values return html.Div(className='columns is-multiline is-4 is-variable', children=[ html.Div(className=f'column is-one-quarter index-container {"unknown-data" if i[1] == "?" else ""}', children=[ html.H1(i[1], className='title'), html.H2(i[0], className='subtitle') ]) for i in indexes ]) def month_selector(df, first_month=None): current_month = datetime.now().month return html.Div(dcc.RangeSlider( id='month-range-slider', marks={i+1: MONTH_NAMES[i] for i in range(first_month-1, current_month)}, min=first_month, max=current_month, value=[current_month-2,current_month], pushable=1 ), className='slider-frame') def point_list(items): return html.Ul([html.Li(item) for item in items]) def first(): return html.Section(className='hero is-fullheight', children=[ html.Div(className='hero-body', children=[ html.Div(className='container', children=[ html.Div(className='columns is-vcentered is-centered', children=[ html.Div(className='column is-5', children=[ html.Figure(className='image is-4by4', children=[ html.Img(src='/indicadores/assets/logo.png', alt='FabLab UTFSM'), ]), ]), html.Div(className='column is-5 main-title', children=[ html.H1('Informe de Gestión de Operaciones', className='title') ]) ]) ]), ]) ]) def last(): return html.Footer(className='footer has-background-white', children=[ html.Div(className='content has-text-centered', children=[ html.Img(src='/indicadores/assets/footer.png', alt='FabLab UTFSM'), html.P(className='is-size-7', children=[ 'FabLab UTFSM 2019', html.Br(), 'UTFSM Campus San Joaquín, Edificio C', html.Br(), 'Av. Vicuña Mackenna 3939, Santiago de Chile', html.Br(), 'Desarrollado bajo licencia MIT' ]) ]) ]) def fig_records(df, months=None, stacked=False): machine_list = df['Tipo Máquina'].unique() months = month_range(months) def create_frame(df, serie_name): count = df['Tipo Máquina'].value_counts() frame = pd.DataFrame({'Tipo de Máquina': machine_list}) frame[serie_name] = [count.get(machine, 0) for machine in machine_list] return frame extras = {'barmode': 'relative' if stacked else 'group'} figure = go.Figure() for m in months: name = MONTH_NAMES[m-1] frame = create_frame(df[df.index.month == m], name) figure.add_trace(go.Bar(x=frame['Tipo de Máquina'], y=frame[name], name=name, hoverinfo='name+y')) if stacked and months: frame = create_frame(df[df.index.month.isin(months)], 'Total') figure.add_trace(go.Scatter( x=frame['Tipo de Máquina'], y=frame['Total'], text=frame['Total'], textposition='top center', mode='text', showlegend=False, hoverinfo='skip' )) figure.update_layout(yaxis={ 'title': 'Número de registros'}, **extras) return figure def fig_hours(df, months=None, stacked=False): machine_list = df['Tipo Máquina'].unique() months=month_range(months) def create_frame(df, serie_name): count = df.groupby('Tipo Máquina').sum()['Tiempo de uso en minutos'].divide(60).round(0) frame = pd.DataFrame({'Tipo de Máquina': machine_list}) frame[serie_name] = [count.get(machine, 0) for machine in machine_list] return frame if months and type(months) == list: df = df[df.index.month.isin(months)] frame = create_frame(df, 'Total') figure = go.Figure() extras = {'barmode': 'relative' if stacked else 'group'} for m in months: name = MONTH_NAMES[m-1] frame = create_frame(df[df.index.month == m], name) figure.add_trace(go.Bar(y=frame['Tipo de Máquina'], x=frame[name], name=name, hoverinfo='name+x', orientation='h')) if stacked and months: frame = create_frame(df[df.index.month.isin(months)], 'Total') figure.add_trace(go.Scatter( y=frame['Tipo de Máquina'], x=frame['Total'], text=frame['Total'], textposition='middle right', mode='text', showlegend=False, hoverinfo='skip' )) figure.update_layout(xaxis={ 'title': f'Horas de uso {"total" if stacked else ""}'}, **extras) return figure def cap_per_machine_per_month(month_caps, machine, month): this_month = month_caps[month_caps['Mes'] == month] machine_count = {'Impresora 3D': 5, 'Cortadora Láser': 2, 'Router CNC': 3, 'Torno': 1, 'Cirqoid': 1} return (this_month['Dias'] * this_month['Horas']).values[0] * 60 * machine_count[machine] def fig_total_capacity_2(df, month_caps, months): machine_list = df['Tipo Máquina'].unique() months = month_range(months) month_names = [MONTH_NAMES[m-1] for m in months] figure = go.Figure() for machine in machine_list: texts = [] caps = [] for month in months: total_cap = cap_per_machine_per_month(month_caps, machine, month) hours = total_cap // 60 used_cap = df[df.index.month==month].groupby('Tipo Máquina')['Tiempo de uso en minutos'].sum().divide(total_cap).multiply(100).round(2).get(machine, 0) caps.append(used_cap) texts.append(f'{used_cap}% utilizado de una capacidad total de {hours} horas.') figure.add_trace(go.Bar(x=month_names, y=caps, name=machine, hovertext=texts)) figure.update_layout(barmode='group', yaxis=dict(type='linear', ticksuffix='%', title='Capacidad Utilizada')) return figure """ TODO: Terminar el heatmap de alguna manera... def fig_uses(df, months): dias = ['Lunes', 'Martes', 'Miércoles', 'Jueves', 'Viernes'] days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'] data = df[df.index.month.isin(month_range(months))] figure = go.Figure() times = data.groupby([data.index.weekday_name, pd.Grouper(freq='60min', key='Hora Inicio')]).fillna(0).sum().reset_index() day_times = times[times['Marca temporal'] == 'Monday']['Hora Inicio'].dt.time z_dict = dict() for i, d in enumerate(days): z_dict.update({dias[i]: times[times['Marca temporal'] == d]['Tiempo de uso en minutos'].fillna(0).values}) z_values = pd.DataFrame(z_dict).values figure.add_trace(go.Heatmap( x=dias, y=day_times, z=z_values)) return figure """ def trace_context_use(df, level=None, **kwargs): grouped = None if not level: grouped = df.groupby('Contexto 1') else: grouped = df[df['Contexto 1'] == level].groupby('Contexto 2') context_data = grouped.sum()['Tiempo de uso en minutos'] return go.Pie(labels=context_data.index, values=context_data.values, **kwargs) def fig_contexts_use(df, months, level, **kwargs): col_count = 3 row_count = math.ceil(len(month_range(months))/col_count) figure = make_subplots(row_count, col_count, specs=[[{'type':'domain'} for c in range(col_count)] for r in range(row_count)], subplot_titles=[MONTH_NAMES[m-1] for m in month_range(months)]) def take_month(months): for m in month_range(months): yield trace_context_use(df[df.index.month == m], level, name=MONTH_NAMES[m-1]) pie_factory = take_month(months) try: for r in range(row_count): for c in range(col_count): figure.add_trace(next(pie_factory), r+1, c+1) except StopIteration as stop: pass return figure def records_per_machine(df, months=None, stacked=False): return dcc.Graph(figure=fig_records(df, months=months, stacked=stacked), style={'height': '80vh'}) def time_per_machine(df, months=None, stacked=False): return dcc.Graph(figure=fig_hours(df, months=months, stacked=stacked), style={'height': '80vh'}) def machine_capacity(df, caps, months=None): return dcc.Graph(figure=fig_total_capacity_2(df, caps, months), style={'height': '80vh'}) #def uses(df, months): # return dcc.Graph(figure=fig_uses(df, months), style={'height': '80vh'}) def contexts(df, months, level=None): return dcc.Graph(figure=fig_contexts_use(df, months, level), style={'height': '80vh'})
[((3304, 3323), 'utils.month_range', 'month_range', (['months'], {}), '(months)\n', (3315, 3323), False, 'from utils import MONTH_NAMES, month_range\n'), ((3654, 3665), 'plotly.graph_objs.Figure', 'go.Figure', ([], {}), '()\n', (3663, 3665), True, 'import plotly.graph_objs as go\n'), ((4464, 4483), 'utils.month_range', 'month_range', (['months'], {}), '(months)\n', (4475, 4483), False, 'from utils import MONTH_NAMES, month_range\n'), ((4924, 4935), 'plotly.graph_objs.Figure', 'go.Figure', ([], {}), '()\n', (4933, 4935), True, 'import plotly.graph_objs as go\n'), ((6159, 6178), 'utils.month_range', 'month_range', (['months'], {}), '(months)\n', (6170, 6178), False, 'from utils import MONTH_NAMES, month_range\n'), ((6245, 6256), 'plotly.graph_objs.Figure', 'go.Figure', ([], {}), '()\n', (6254, 6256), True, 'import plotly.graph_objs as go\n'), ((8086, 8157), 'plotly.graph_objs.Pie', 'go.Pie', ([], {'labels': 'context_data.index', 'values': 'context_data.values'}), '(labels=context_data.index, values=context_data.values, **kwargs)\n', (8092, 8157), True, 'import plotly.graph_objs as go\n'), ((1447, 1461), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1459, 1461), False, 'from datetime import datetime, time\n'), ((3429, 3476), 'pandas.DataFrame', 'pd.DataFrame', (["{'Tipo de Máquina': machine_list}"], {}), "({'Tipo de Máquina': machine_list})\n", (3441, 3476), True, 'import pandas as pd\n'), ((4636, 4683), 'pandas.DataFrame', 'pd.DataFrame', (["{'Tipo de Máquina': machine_list}"], {}), "({'Tipo de Máquina': machine_list})\n", (4648, 4683), True, 'import pandas as pd\n'), ((8549, 8568), 'utils.month_range', 'month_range', (['months'], {}), '(months)\n', (8560, 8568), False, 'from utils import MONTH_NAMES, month_range\n'), ((1807, 1820), 'dash_html_components.Li', 'html.Li', (['item'], {}), '(item)\n', (1814, 1820), True, 'import dash_html_components as html\n'), ((3804, 3889), 'plotly.graph_objs.Bar', 'go.Bar', ([], {'x': "frame['Tipo de Máquina']", 'y': 'frame[name]', 'name': 'name', 'hoverinfo': '"""name+y"""'}), "(x=frame['Tipo de Máquina'], y=frame[name], name=name, hoverinfo='name+y'\n )\n", (3810, 3889), True, 'import plotly.graph_objs as go\n'), ((4014, 4177), 'plotly.graph_objs.Scatter', 'go.Scatter', ([], {'x': "frame['Tipo de Máquina']", 'y': "frame['Total']", 'text': "frame['Total']", 'textposition': '"""top center"""', 'mode': '"""text"""', 'showlegend': '(False)', 'hoverinfo': '"""skip"""'}), "(x=frame['Tipo de Máquina'], y=frame['Total'], text=frame['Total'\n ], textposition='top center', mode='text', showlegend=False, hoverinfo=\n 'skip')\n", (4024, 4177), True, 'import plotly.graph_objs as go\n'), ((5137, 5239), 'plotly.graph_objs.Bar', 'go.Bar', ([], {'y': "frame['Tipo de Máquina']", 'x': 'frame[name]', 'name': 'name', 'hoverinfo': '"""name+x"""', 'orientation': '"""h"""'}), "(y=frame['Tipo de Máquina'], x=frame[name], name=name, hoverinfo=\n 'name+x', orientation='h')\n", (5143, 5239), True, 'import plotly.graph_objs as go\n'), ((5360, 5524), 'plotly.graph_objs.Scatter', 'go.Scatter', ([], {'y': "frame['Tipo de Máquina']", 'x': "frame['Total']", 'text': "frame['Total']", 'textposition': '"""middle right"""', 'mode': '"""text"""', 'showlegend': '(False)', 'hoverinfo': '"""skip"""'}), "(y=frame['Tipo de Máquina'], x=frame['Total'], text=frame['Total'\n ], textposition='middle right', mode='text', showlegend=False,\n hoverinfo='skip')\n", (5370, 5524), True, 'import plotly.graph_objs as go\n'), ((6785, 6845), 'plotly.graph_objs.Bar', 'go.Bar', ([], {'x': 'month_names', 'y': 'caps', 'name': 'machine', 'hovertext': 'texts'}), '(x=month_names, y=caps, name=machine, hovertext=texts)\n', (6791, 6845), True, 'import plotly.graph_objs as go\n'), ((8258, 8277), 'utils.month_range', 'month_range', (['months'], {}), '(months)\n', (8269, 8277), False, 'from utils import MONTH_NAMES, month_range\n'), ((8482, 8501), 'utils.month_range', 'month_range', (['months'], {}), '(months)\n', (8493, 8501), False, 'from utils import MONTH_NAMES, month_range\n'), ((1267, 1299), 'dash_html_components.H1', 'html.H1', (['i[1]'], {'className': '"""title"""'}), "(i[1], className='title')\n", (1274, 1299), True, 'import dash_html_components as html\n'), ((1313, 1348), 'dash_html_components.H2', 'html.H2', (['i[0]'], {'className': '"""subtitle"""'}), "(i[0], className='subtitle')\n", (1320, 1348), True, 'import dash_html_components as html\n'), ((2802, 2868), 'dash_html_components.Img', 'html.Img', ([], {'src': '"""/indicadores/assets/footer.png"""', 'alt': '"""FabLab UTFSM"""'}), "(src='/indicadores/assets/footer.png', alt='FabLab UTFSM')\n", (2810, 2868), True, 'import dash_html_components as html\n'), ((2960, 2969), 'dash_html_components.Br', 'html.Br', ([], {}), '()\n', (2967, 2969), True, 'import dash_html_components as html\n'), ((3028, 3037), 'dash_html_components.Br', 'html.Br', ([], {}), '()\n', (3035, 3037), True, 'import dash_html_components as html\n'), ((3102, 3111), 'dash_html_components.Br', 'html.Br', ([], {}), '()\n', (3109, 3111), True, 'import dash_html_components as html\n'), ((2495, 2558), 'dash_html_components.H1', 'html.H1', (['"""Informe de Gestión de Operaciones"""'], {'className': '"""title"""'}), "('Informe de Gestión de Operaciones', className='title')\n", (2502, 2558), True, 'import dash_html_components as html\n'), ((2277, 2341), 'dash_html_components.Img', 'html.Img', ([], {'src': '"""/indicadores/assets/logo.png"""', 'alt': '"""FabLab UTFSM"""'}), "(src='/indicadores/assets/logo.png', alt='FabLab UTFSM')\n", (2285, 2341), True, 'import dash_html_components as html\n'), ((808, 841), 'dash_html_components.H2', 'html.H2', (['title'], {'className': '"""title"""'}), "(title, className='title')\n", (815, 841), True, 'import dash_html_components as html\n')]
greck2908/gamification-engine
gengine/app/tests_old/test_groups.py
4a74086bde4505217e4b9ba36349a427a7042b4b
# -*- coding: utf-8 -*- from gengine.app.tests.base import BaseDBTest from gengine.app.tests.helpers import create_user, update_user, delete_user, get_or_create_language from gengine.metadata import DBSession from gengine.app.model import AuthUser class TestUserCreation(BaseDBTest): def test_user_creation(self): lang = get_or_create_language("en") user = create_user( lat = 12.1, lng = 12.2, #country = "RO", #region = "Transylvania", #city = "Cluj-Napoca", timezone = "Europe/Bukarest", language = "en", additional_public_data = { "first_name" : "Rudolf", "last_name" : "Red Nose" } ) self.assertTrue(user.lat == 12.1) self.assertTrue(user.lng == 12.2) #self.assertTrue(user.country == "RO") #self.assertTrue(user.region == "Transylvania") #self.assertTrue(user.city == "Cluj-Napoca") self.assertTrue(user.timezone == "Europe/Bukarest") self.assertTrue(user.language_id == lang.id) self.assertTrue(user.additional_public_data["first_name"] == "Rudolf") self.assertTrue(user.additional_public_data["last_name"] == "Red Nose") def test_user_updation(self): lang = get_or_create_language("en") user = create_user() user = update_user( user_id = user.id, lat = 14.2, lng = 16.3, #country = "EN", #region = "Transylvania", #city = "Cluj-Napoca", timezone = "Europe/Bukarest", language = "en", additional_public_data = { "first_name" : "Rudolf", "last_name" : "Red Nose" } ) # Correct cases self.assertTrue(user.lat == 14.2) self.assertTrue(user.lng == 16.3) #self.assertTrue(user.country == "EN") #self.assertTrue(user.region == "Transylvania") #self.assertTrue(user.city == "Cluj-Napoca") self.assertTrue(user.timezone == "Europe/Bukarest") self.assertTrue(user.language_id == lang.id) def test_user_deletion(self): user1 = create_user() # Create Second user user2 = create_user( lat=85.59, lng=65.75, #country="DE", #region="Niedersachsen", #city="Osnabrück", timezone="Europe/Berlin", language="de", additional_public_data={ "first_name": "Michael", "last_name": "Clarke" }, friends=[1] ) remaining_users = delete_user( user_id = user1.id ) # Correct cases self.assertNotIn(user1.id, remaining_users) self.assertEqual(user2.id, remaining_users[0].id) def test_verify_password(self): auth_user = AuthUser() auth_user.password = "test12345" auth_user.active = True auth_user.email = "[email protected]" DBSession.add(auth_user) iscorrect = auth_user.verify_password("test12345") self.assertEqual(iscorrect, True) def test_create_token(self): user = create_user() auth_user = AuthUser() auth_user.user_id = user.id auth_user.password = "test12345" auth_user.active = True auth_user.email = "[email protected]" DBSession.add(auth_user) if auth_user.verify_password("test12345"): token = auth_user.get_or_create_token() self.assertNotEqual(token, None)
[((337, 365), 'gengine.app.tests.helpers.get_or_create_language', 'get_or_create_language', (['"""en"""'], {}), "('en')\n", (359, 365), False, 'from gengine.app.tests.helpers import create_user, update_user, delete_user, get_or_create_language\n'), ((381, 533), 'gengine.app.tests.helpers.create_user', 'create_user', ([], {'lat': '(12.1)', 'lng': '(12.2)', 'timezone': '"""Europe/Bukarest"""', 'language': '"""en"""', 'additional_public_data': "{'first_name': 'Rudolf', 'last_name': 'Red Nose'}"}), "(lat=12.1, lng=12.2, timezone='Europe/Bukarest', language='en',\n additional_public_data={'first_name': 'Rudolf', 'last_name': 'Red Nose'})\n", (392, 533), False, 'from gengine.app.tests.helpers import create_user, update_user, delete_user, get_or_create_language\n'), ((1324, 1352), 'gengine.app.tests.helpers.get_or_create_language', 'get_or_create_language', (['"""en"""'], {}), "('en')\n", (1346, 1352), False, 'from gengine.app.tests.helpers import create_user, update_user, delete_user, get_or_create_language\n'), ((1368, 1381), 'gengine.app.tests.helpers.create_user', 'create_user', ([], {}), '()\n', (1379, 1381), False, 'from gengine.app.tests.helpers import create_user, update_user, delete_user, get_or_create_language\n'), ((1397, 1570), 'gengine.app.tests.helpers.update_user', 'update_user', ([], {'user_id': 'user.id', 'lat': '(14.2)', 'lng': '(16.3)', 'timezone': '"""Europe/Bukarest"""', 'language': '"""en"""', 'additional_public_data': "{'first_name': 'Rudolf', 'last_name': 'Red Nose'}"}), "(user_id=user.id, lat=14.2, lng=16.3, timezone='Europe/Bukarest',\n language='en', additional_public_data={'first_name': 'Rudolf',\n 'last_name': 'Red Nose'})\n", (1408, 1570), False, 'from gengine.app.tests.helpers import create_user, update_user, delete_user, get_or_create_language\n'), ((2237, 2250), 'gengine.app.tests.helpers.create_user', 'create_user', ([], {}), '()\n', (2248, 2250), False, 'from gengine.app.tests.helpers import create_user, update_user, delete_user, get_or_create_language\n'), ((2297, 2465), 'gengine.app.tests.helpers.create_user', 'create_user', ([], {'lat': '(85.59)', 'lng': '(65.75)', 'timezone': '"""Europe/Berlin"""', 'language': '"""de"""', 'additional_public_data': "{'first_name': 'Michael', 'last_name': 'Clarke'}", 'friends': '[1]'}), "(lat=85.59, lng=65.75, timezone='Europe/Berlin', language='de',\n additional_public_data={'first_name': 'Michael', 'last_name': 'Clarke'},\n friends=[1])\n", (2308, 2465), False, 'from gengine.app.tests.helpers import create_user, update_user, delete_user, get_or_create_language\n'), ((2708, 2737), 'gengine.app.tests.helpers.delete_user', 'delete_user', ([], {'user_id': 'user1.id'}), '(user_id=user1.id)\n', (2719, 2737), False, 'from gengine.app.tests.helpers import create_user, update_user, delete_user, get_or_create_language\n'), ((2954, 2964), 'gengine.app.model.AuthUser', 'AuthUser', ([], {}), '()\n', (2962, 2964), False, 'from gengine.app.model import AuthUser\n'), ((3091, 3115), 'gengine.metadata.DBSession.add', 'DBSession.add', (['auth_user'], {}), '(auth_user)\n', (3104, 3115), False, 'from gengine.metadata import DBSession\n'), ((3268, 3281), 'gengine.app.tests.helpers.create_user', 'create_user', ([], {}), '()\n', (3279, 3281), False, 'from gengine.app.tests.helpers import create_user, update_user, delete_user, get_or_create_language\n'), ((3302, 3312), 'gengine.app.model.AuthUser', 'AuthUser', ([], {}), '()\n', (3310, 3312), False, 'from gengine.app.model import AuthUser\n'), ((3475, 3499), 'gengine.metadata.DBSession.add', 'DBSession.add', (['auth_user'], {}), '(auth_user)\n', (3488, 3499), False, 'from gengine.metadata import DBSession\n')]
guorenxi/fonttools
Lib/fontTools/designspaceLib/__init__.py
cefb41e6c261eeff0062a7b4017061982ed87aa7
from __future__ import annotations import collections import copy import itertools import math import os import posixpath from io import BytesIO, StringIO from textwrap import indent from typing import Any, Dict, List, MutableMapping, Optional, Tuple, Union from fontTools.misc import etree as ET from fontTools.misc import plistlib from fontTools.misc.loggingTools import LogMixin from fontTools.misc.textTools import tobytes, tostr """ designSpaceDocument - read and write designspace files """ __all__ = [ 'DesignSpaceDocumentError', 'DesignSpaceDocument', 'SourceDescriptor', 'InstanceDescriptor', 'AxisDescriptor', 'RuleDescriptor', 'BaseDocReader', 'BaseDocWriter' ] # ElementTree allows to find namespace-prefixed elements, but not attributes # so we have to do it ourselves for 'xml:lang' XML_NS = "{http://www.w3.org/XML/1998/namespace}" XML_LANG = XML_NS + "lang" def posix(path): """Normalize paths using forward slash to work also on Windows.""" new_path = posixpath.join(*path.split(os.path.sep)) if path.startswith('/'): # The above transformation loses absolute paths new_path = '/' + new_path elif path.startswith(r'\\'): # The above transformation loses leading slashes of UNC path mounts new_path = '//' + new_path return new_path def posixpath_property(private_name): """Generate a propery that holds a path always using forward slashes.""" def getter(self): # Normal getter return getattr(self, private_name) def setter(self, value): # The setter rewrites paths using forward slashes if value is not None: value = posix(value) setattr(self, private_name, value) return property(getter, setter) class DesignSpaceDocumentError(Exception): def __init__(self, msg, obj=None): self.msg = msg self.obj = obj def __str__(self): return str(self.msg) + ( ": %r" % self.obj if self.obj is not None else "") class AsDictMixin(object): def asdict(self): d = {} for attr, value in self.__dict__.items(): if attr.startswith("_"): continue if hasattr(value, "asdict"): value = value.asdict() elif isinstance(value, list): value = [ v.asdict() if hasattr(v, "asdict") else v for v in value ] d[attr] = value return d class SimpleDescriptor(AsDictMixin): """ Containers for a bunch of attributes""" # XXX this is ugly. The 'print' is inappropriate here, and instead of # assert, it should simply return True/False def compare(self, other): # test if this object contains the same data as the other for attr in self._attrs: try: assert(getattr(self, attr) == getattr(other, attr)) except AssertionError: print("failed attribute", attr, getattr(self, attr), "!=", getattr(other, attr)) def __repr__(self): attrs = [f"{a}={repr(getattr(self, a))}," for a in self._attrs] attrs = indent('\n'.join(attrs), ' ') return f"{self.__class__.__name__}(\n{attrs}\n)" class SourceDescriptor(SimpleDescriptor): """Simple container for data related to the source .. code:: python doc = DesignSpaceDocument() s1 = SourceDescriptor() s1.path = masterPath1 s1.name = "master.ufo1" s1.font = defcon.Font("master.ufo1") s1.location = dict(weight=0) s1.familyName = "MasterFamilyName" s1.styleName = "MasterStyleNameOne" s1.localisedFamilyName = dict(fr="Caractère") s1.mutedGlyphNames.append("A") s1.mutedGlyphNames.append("Z") doc.addSource(s1) """ flavor = "source" _attrs = ['filename', 'path', 'name', 'layerName', 'location', 'copyLib', 'copyGroups', 'copyFeatures', 'muteKerning', 'muteInfo', 'mutedGlyphNames', 'familyName', 'styleName', 'localisedFamilyName'] filename = posixpath_property("_filename") path = posixpath_property("_path") def __init__( self, *, filename=None, path=None, font=None, name=None, location=None, designLocation=None, layerName=None, familyName=None, styleName=None, localisedFamilyName=None, copyLib=False, copyInfo=False, copyGroups=False, copyFeatures=False, muteKerning=False, muteInfo=False, mutedGlyphNames=None, ): self.filename = filename """string. A relative path to the source file, **as it is in the document**. MutatorMath + VarLib. """ self.path = path """The absolute path, calculated from filename.""" self.font = font """Any Python object. Optional. Points to a representation of this source font that is loaded in memory, as a Python object (e.g. a ``defcon.Font`` or a ``fontTools.ttFont.TTFont``). The default document reader will not fill-in this attribute, and the default writer will not use this attribute. It is up to the user of ``designspaceLib`` to either load the resource identified by ``filename`` and store it in this field, or write the contents of this field to the disk and make ```filename`` point to that. """ self.name = name """string. Optional. Unique identifier name for this source. MutatorMath + Varlib. """ self.designLocation = designLocation if designLocation is not None else location or {} """dict. Axis values for this source, in design space coordinates. MutatorMath + Varlib. This may be only part of the full design location. See :meth:`getFullDesignLocation()` .. versionadded:: 5.0 """ self.layerName = layerName """string. The name of the layer in the source to look for outline data. Default ``None`` which means ``foreground``. """ self.familyName = familyName """string. Family name of this source. Though this data can be extracted from the font, it can be efficient to have it right here. Varlib. """ self.styleName = styleName """string. Style name of this source. Though this data can be extracted from the font, it can be efficient to have it right here. Varlib. """ self.localisedFamilyName = localisedFamilyName or {} """dict. A dictionary of localised family name strings, keyed by language code. If present, will be used to build localized names for all instances. .. versionadded:: 5.0 """ self.copyLib = copyLib """bool. Indicates if the contents of the font.lib need to be copied to the instances. MutatorMath. .. deprecated:: 5.0 """ self.copyInfo = copyInfo """bool. Indicates if the non-interpolating font.info needs to be copied to the instances. MutatorMath. .. deprecated:: 5.0 """ self.copyGroups = copyGroups """bool. Indicates if the groups need to be copied to the instances. MutatorMath. .. deprecated:: 5.0 """ self.copyFeatures = copyFeatures """bool. Indicates if the feature text needs to be copied to the instances. MutatorMath. .. deprecated:: 5.0 """ self.muteKerning = muteKerning """bool. Indicates if the kerning data from this source needs to be muted (i.e. not be part of the calculations). MutatorMath only. """ self.muteInfo = muteInfo """bool. Indicated if the interpolating font.info data for this source needs to be muted. MutatorMath only. """ self.mutedGlyphNames = mutedGlyphNames or [] """list. Glyphnames that need to be muted in the instances. MutatorMath only. """ @property def location(self): """dict. Axis values for this source, in design space coordinates. MutatorMath + Varlib. .. deprecated:: 5.0 Use the more explicit alias for this property :attr:`designLocation`. """ return self.designLocation @location.setter def location(self, location: Optional[AnisotropicLocationDict]): self.designLocation = location or {} def setFamilyName(self, familyName, languageCode="en"): """Setter for :attr:`localisedFamilyName` .. versionadded:: 5.0 """ self.localisedFamilyName[languageCode] = tostr(familyName) def getFamilyName(self, languageCode="en"): """Getter for :attr:`localisedFamilyName` .. versionadded:: 5.0 """ return self.localisedFamilyName.get(languageCode) def getFullDesignLocation(self, doc: 'DesignSpaceDocument') -> AnisotropicLocationDict: """Get the complete design location of this source, from its :attr:`designLocation` and the document's axis defaults. .. versionadded:: 5.0 """ result: AnisotropicLocationDict = {} for axis in doc.axes: if axis.name in self.designLocation: result[axis.name] = self.designLocation[axis.name] else: result[axis.name] = axis.map_forward(axis.default) return result class RuleDescriptor(SimpleDescriptor): """Represents the rule descriptor element: a set of glyph substitutions to trigger conditionally in some parts of the designspace. .. code:: python r1 = RuleDescriptor() r1.name = "unique.rule.name" r1.conditionSets.append([dict(name="weight", minimum=-10, maximum=10), dict(...)]) r1.conditionSets.append([dict(...), dict(...)]) r1.subs.append(("a", "a.alt")) .. code:: xml <!-- optional: list of substitution rules --> <rules> <rule name="vertical.bars"> <conditionset> <condition minimum="250.000000" maximum="750.000000" name="weight"/> <condition minimum="100" name="width"/> <condition minimum="10" maximum="40" name="optical"/> </conditionset> <sub name="cent" with="cent.alt"/> <sub name="dollar" with="dollar.alt"/> </rule> </rules> """ _attrs = ['name', 'conditionSets', 'subs'] # what do we need here def __init__(self, *, name=None, conditionSets=None, subs=None): self.name = name """string. Unique name for this rule. Can be used to reference this rule data.""" # list of lists of dict(name='aaaa', minimum=0, maximum=1000) self.conditionSets = conditionSets or [] """a list of conditionsets. - Each conditionset is a list of conditions. - Each condition is a dict with ``name``, ``minimum`` and ``maximum`` keys. """ # list of substitutions stored as tuples of glyphnames ("a", "a.alt") self.subs = subs or [] """list of substitutions. - Each substitution is stored as tuples of glyphnames, e.g. ("a", "a.alt"). - Note: By default, rules are applied first, before other text shaping/OpenType layout, as they are part of the `Required Variation Alternates OpenType feature <https://docs.microsoft.com/en-us/typography/opentype/spec/features_pt#-tag-rvrn>`_. See ref:`rules-element` § Attributes. """ def evaluateRule(rule, location): """Return True if any of the rule's conditionsets matches the given location.""" return any(evaluateConditions(c, location) for c in rule.conditionSets) def evaluateConditions(conditions, location): """Return True if all the conditions matches the given location. - If a condition has no minimum, check for < maximum. - If a condition has no maximum, check for > minimum. """ for cd in conditions: value = location[cd['name']] if cd.get('minimum') is None: if value > cd['maximum']: return False elif cd.get('maximum') is None: if cd['minimum'] > value: return False elif not cd['minimum'] <= value <= cd['maximum']: return False return True def processRules(rules, location, glyphNames): """Apply these rules at this location to these glyphnames. Return a new list of glyphNames with substitutions applied. - rule order matters """ newNames = [] for rule in rules: if evaluateRule(rule, location): for name in glyphNames: swap = False for a, b in rule.subs: if name == a: swap = True break if swap: newNames.append(b) else: newNames.append(name) glyphNames = newNames newNames = [] return glyphNames AnisotropicLocationDict = Dict[str, Union[float, Tuple[float, float]]] SimpleLocationDict = Dict[str, float] class InstanceDescriptor(SimpleDescriptor): """Simple container for data related to the instance .. code:: python i2 = InstanceDescriptor() i2.path = instancePath2 i2.familyName = "InstanceFamilyName" i2.styleName = "InstanceStyleName" i2.name = "instance.ufo2" # anisotropic location i2.designLocation = dict(weight=500, width=(400,300)) i2.postScriptFontName = "InstancePostscriptName" i2.styleMapFamilyName = "InstanceStyleMapFamilyName" i2.styleMapStyleName = "InstanceStyleMapStyleName" i2.lib['com.coolDesignspaceApp.specimenText'] = 'Hamburgerwhatever' doc.addInstance(i2) """ flavor = "instance" _defaultLanguageCode = "en" _attrs = ['filename', 'path', 'name', 'locationLabel', 'designLocation', 'userLocation', 'familyName', 'styleName', 'postScriptFontName', 'styleMapFamilyName', 'styleMapStyleName', 'localisedFamilyName', 'localisedStyleName', 'localisedStyleMapFamilyName', 'localisedStyleMapStyleName', 'glyphs', 'kerning', 'info', 'lib'] filename = posixpath_property("_filename") path = posixpath_property("_path") def __init__( self, *, filename=None, path=None, font=None, name=None, location=None, locationLabel=None, designLocation=None, userLocation=None, familyName=None, styleName=None, postScriptFontName=None, styleMapFamilyName=None, styleMapStyleName=None, localisedFamilyName=None, localisedStyleName=None, localisedStyleMapFamilyName=None, localisedStyleMapStyleName=None, glyphs=None, kerning=True, info=True, lib=None, ): self.filename = filename """string. Relative path to the instance file, **as it is in the document**. The file may or may not exist. MutatorMath + VarLib. """ self.path = path """string. Absolute path to the instance file, calculated from the document path and the string in the filename attr. The file may or may not exist. MutatorMath. """ self.font = font """Same as :attr:`SourceDescriptor.font` .. seealso:: :attr:`SourceDescriptor.font` """ self.name = name """string. Unique identifier name of the instance, used to identify it if it needs to be referenced from elsewhere in the document. """ self.locationLabel = locationLabel """Name of a :class:`LocationLabelDescriptor`. If provided, the instance should have the same location as the LocationLabel. .. seealso:: :meth:`getFullDesignLocation` :meth:`getFullUserLocation` .. versionadded:: 5.0 """ self.designLocation: AnisotropicLocationDict = designLocation if designLocation is not None else (location or {}) """dict. Axis values for this instance, in design space coordinates. MutatorMath + Varlib. .. seealso:: This may be only part of the full location. See: :meth:`getFullDesignLocation` :meth:`getFullUserLocation` .. versionadded:: 5.0 """ self.userLocation: SimpleLocationDict = userLocation or {} """dict. Axis values for this instance, in user space coordinates. MutatorMath + Varlib. .. seealso:: This may be only part of the full location. See: :meth:`getFullDesignLocation` :meth:`getFullUserLocation` .. versionadded:: 5.0 """ self.familyName = familyName """string. Family name of this instance. MutatorMath + Varlib. """ self.styleName = styleName """string. Style name of this instance. MutatorMath + Varlib. """ self.postScriptFontName = postScriptFontName """string. Postscript fontname for this instance. MutatorMath + Varlib. """ self.styleMapFamilyName = styleMapFamilyName """string. StyleMap familyname for this instance. MutatorMath + Varlib. """ self.styleMapStyleName = styleMapStyleName """string. StyleMap stylename for this instance. MutatorMath + Varlib. """ self.localisedFamilyName = localisedFamilyName or {} """dict. A dictionary of localised family name strings, keyed by language code. """ self.localisedStyleName = localisedStyleName or {} """dict. A dictionary of localised stylename strings, keyed by language code. """ self.localisedStyleMapFamilyName = localisedStyleMapFamilyName or {} """A dictionary of localised style map familyname strings, keyed by language code. """ self.localisedStyleMapStyleName = localisedStyleMapStyleName or {} """A dictionary of localised style map stylename strings, keyed by language code. """ self.glyphs = glyphs or {} """dict for special master definitions for glyphs. If glyphs need special masters (to record the results of executed rules for example). MutatorMath. .. deprecated:: 5.0 Use rules or sparse sources instead. """ self.kerning = kerning """ bool. Indicates if this instance needs its kerning calculated. MutatorMath. .. deprecated:: 5.0 """ self.info = info """bool. Indicated if this instance needs the interpolating font.info calculated. .. deprecated:: 5.0 """ self.lib = lib or {} """Custom data associated with this instance.""" @property def location(self): """dict. Axis values for this instance. MutatorMath + Varlib. .. deprecated:: 5.0 Use the more explicit alias for this property :attr:`designLocation`. """ return self.designLocation @location.setter def location(self, location: Optional[AnisotropicLocationDict]): self.designLocation = location or {} def setStyleName(self, styleName, languageCode="en"): """These methods give easier access to the localised names.""" self.localisedStyleName[languageCode] = tostr(styleName) def getStyleName(self, languageCode="en"): return self.localisedStyleName.get(languageCode) def setFamilyName(self, familyName, languageCode="en"): self.localisedFamilyName[languageCode] = tostr(familyName) def getFamilyName(self, languageCode="en"): return self.localisedFamilyName.get(languageCode) def setStyleMapStyleName(self, styleMapStyleName, languageCode="en"): self.localisedStyleMapStyleName[languageCode] = tostr(styleMapStyleName) def getStyleMapStyleName(self, languageCode="en"): return self.localisedStyleMapStyleName.get(languageCode) def setStyleMapFamilyName(self, styleMapFamilyName, languageCode="en"): self.localisedStyleMapFamilyName[languageCode] = tostr(styleMapFamilyName) def getStyleMapFamilyName(self, languageCode="en"): return self.localisedStyleMapFamilyName.get(languageCode) def clearLocation(self, axisName: Optional[str] = None): """Clear all location-related fields. Ensures that :attr:``designLocation`` and :attr:``userLocation`` are dictionaries (possibly empty if clearing everything). In order to update the location of this instance wholesale, a user should first clear all the fields, then change the field(s) for which they have data. .. code:: python instance.clearLocation() instance.designLocation = {'Weight': (34, 36.5), 'Width': 100} instance.userLocation = {'Opsz': 16} In order to update a single axis location, the user should only clear that axis, then edit the values: .. code:: python instance.clearLocation('Weight') instance.designLocation['Weight'] = (34, 36.5) Args: axisName: if provided, only clear the location for that axis. .. versionadded:: 5.0 """ self.locationLabel = None if axisName is None: self.designLocation = {} self.userLocation = {} else: if self.designLocation is None: self.designLocation = {} if axisName in self.designLocation: del self.designLocation[axisName] if self.userLocation is None: self.userLocation = {} if axisName in self.userLocation: del self.userLocation[axisName] def getLocationLabelDescriptor(self, doc: 'DesignSpaceDocument') -> Optional[LocationLabelDescriptor]: """Get the :class:`LocationLabelDescriptor` instance that matches this instances's :attr:`locationLabel`. Raises if the named label can't be found. .. versionadded:: 5.0 """ if self.locationLabel is None: return None label = doc.getLocationLabel(self.locationLabel) if label is None: raise DesignSpaceDocumentError( 'InstanceDescriptor.getLocationLabelDescriptor(): ' f'unknown location label `{self.locationLabel}` in instance `{self.name}`.' ) return label def getFullDesignLocation(self, doc: 'DesignSpaceDocument') -> AnisotropicLocationDict: """Get the complete design location of this instance, by combining data from the various location fields, default axis values and mappings, and top-level location labels. The source of truth for this instance's location is determined for each axis independently by taking the first not-None field in this list: - ``locationLabel``: the location along this axis is the same as the matching STAT format 4 label. No anisotropy. - ``designLocation[axisName]``: the explicit design location along this axis, possibly anisotropic. - ``userLocation[axisName]``: the explicit user location along this axis. No anisotropy. - ``axis.default``: default axis value. No anisotropy. .. versionadded:: 5.0 """ label = self.getLocationLabelDescriptor(doc) if label is not None: return doc.map_forward(label.userLocation) # type: ignore result: AnisotropicLocationDict = {} for axis in doc.axes: if axis.name in self.designLocation: result[axis.name] = self.designLocation[axis.name] elif axis.name in self.userLocation: result[axis.name] = axis.map_forward(self.userLocation[axis.name]) else: result[axis.name] = axis.map_forward(axis.default) return result def getFullUserLocation(self, doc: 'DesignSpaceDocument') -> SimpleLocationDict: """Get the complete user location for this instance. .. seealso:: :meth:`getFullDesignLocation` .. versionadded:: 5.0 """ return doc.map_backward(self.getFullDesignLocation(doc)) def tagForAxisName(name): # try to find or make a tag name for this axis name names = { 'weight': ('wght', dict(en = 'Weight')), 'width': ('wdth', dict(en = 'Width')), 'optical': ('opsz', dict(en = 'Optical Size')), 'slant': ('slnt', dict(en = 'Slant')), 'italic': ('ital', dict(en = 'Italic')), } if name.lower() in names: return names[name.lower()] if len(name) < 4: tag = name + "*" * (4 - len(name)) else: tag = name[:4] return tag, dict(en=name) class AbstractAxisDescriptor(SimpleDescriptor): flavor = "axis" def __init__( self, *, tag=None, name=None, labelNames=None, hidden=False, map=None, axisOrdering=None, axisLabels=None, ): # opentype tag for this axis self.tag = tag """string. Four letter tag for this axis. Some might be registered at the `OpenType specification <https://www.microsoft.com/typography/otspec/fvar.htm#VAT>`__. Privately-defined axis tags must begin with an uppercase letter and use only uppercase letters or digits. """ # name of the axis used in locations self.name = name """string. Name of the axis as it is used in the location dicts. MutatorMath + Varlib. """ # names for UI purposes, if this is not a standard axis, self.labelNames = labelNames or {} """dict. When defining a non-registered axis, it will be necessary to define user-facing readable names for the axis. Keyed by xml:lang code. Values are required to be ``unicode`` strings, even if they only contain ASCII characters. """ self.hidden = hidden """bool. Whether this axis should be hidden in user interfaces. """ self.map = map or [] """list of input / output values that can describe a warp of user space to design space coordinates. If no map values are present, it is assumed user space is the same as design space, as in [(minimum, minimum), (maximum, maximum)]. Varlib. """ self.axisOrdering = axisOrdering """STAT table field ``axisOrdering``. See: `OTSpec STAT Axis Record <https://docs.microsoft.com/en-us/typography/opentype/spec/stat#axis-records>`_ .. versionadded:: 5.0 """ self.axisLabels: List[AxisLabelDescriptor] = axisLabels or [] """STAT table entries for Axis Value Tables format 1, 2, 3. See: `OTSpec STAT Axis Value Tables <https://docs.microsoft.com/en-us/typography/opentype/spec/stat#axis-value-tables>`_ .. versionadded:: 5.0 """ class AxisDescriptor(AbstractAxisDescriptor): """ Simple container for the axis data. Add more localisations? .. code:: python a1 = AxisDescriptor() a1.minimum = 1 a1.maximum = 1000 a1.default = 400 a1.name = "weight" a1.tag = "wght" a1.labelNames['fa-IR'] = "قطر" a1.labelNames['en'] = "Wéíght" a1.map = [(1.0, 10.0), (400.0, 66.0), (1000.0, 990.0)] a1.axisOrdering = 1 a1.axisLabels = [ AxisLabelDescriptor(name="Regular", userValue=400, elidable=True) ] doc.addAxis(a1) """ _attrs = ['tag', 'name', 'maximum', 'minimum', 'default', 'map', 'axisOrdering', 'axisLabels'] def __init__( self, *, tag=None, name=None, labelNames=None, minimum=None, default=None, maximum=None, hidden=False, map=None, axisOrdering=None, axisLabels=None, ): super().__init__( tag=tag, name=name, labelNames=labelNames, hidden=hidden, map=map, axisOrdering=axisOrdering, axisLabels=axisLabels, ) self.minimum = minimum """number. The minimum value for this axis in user space. MutatorMath + Varlib. """ self.maximum = maximum """number. The maximum value for this axis in user space. MutatorMath + Varlib. """ self.default = default """number. The default value for this axis, i.e. when a new location is created, this is the value this axis will get in user space. MutatorMath + Varlib. """ def serialize(self): # output to a dict, used in testing return dict( tag=self.tag, name=self.name, labelNames=self.labelNames, maximum=self.maximum, minimum=self.minimum, default=self.default, hidden=self.hidden, map=self.map, axisOrdering=self.axisOrdering, axisLabels=self.axisLabels, ) def map_forward(self, v): """Maps value from axis mapping's input (user) to output (design).""" from fontTools.varLib.models import piecewiseLinearMap if not self.map: return v return piecewiseLinearMap(v, {k: v for k, v in self.map}) def map_backward(self, v): """Maps value from axis mapping's output (design) to input (user).""" from fontTools.varLib.models import piecewiseLinearMap if isinstance(v, tuple): v = v[0] if not self.map: return v return piecewiseLinearMap(v, {v: k for k, v in self.map}) class DiscreteAxisDescriptor(AbstractAxisDescriptor): """Container for discrete axis data. Use this for axes that do not interpolate. The main difference from a continuous axis is that a continuous axis has a ``minimum`` and ``maximum``, while a discrete axis has a list of ``values``. Example: an Italic axis with 2 stops, Roman and Italic, that are not compatible. The axis still allows to bind together the full font family, which is useful for the STAT table, however it can't become a variation axis in a VF. .. code:: python a2 = DiscreteAxisDescriptor() a2.values = [0, 1] a2.name = "Italic" a2.tag = "ITAL" a2.labelNames['fr'] = "Italique" a2.map = [(0, 0), (1, -11)] a2.axisOrdering = 2 a2.axisLabels = [ AxisLabelDescriptor(name="Roman", userValue=0, elidable=True) ] doc.addAxis(a2) .. versionadded:: 5.0 """ flavor = "axis" _attrs = ('tag', 'name', 'values', 'default', 'map', 'axisOrdering', 'axisLabels') def __init__( self, *, tag=None, name=None, labelNames=None, values=None, default=None, hidden=False, map=None, axisOrdering=None, axisLabels=None, ): super().__init__( tag=tag, name=name, labelNames=labelNames, hidden=hidden, map=map, axisOrdering=axisOrdering, axisLabels=axisLabels, ) self.default: float = default """The default value for this axis, i.e. when a new location is created, this is the value this axis will get in user space. However, this default value is less important than in continuous axes: - it doesn't define the "neutral" version of outlines from which deltas would apply, as this axis does not interpolate. - it doesn't provide the reference glyph set for the designspace, as fonts at each value can have different glyph sets. """ self.values: List[float] = values or [] """List of possible values for this axis. Contrary to continuous axes, only the values in this list can be taken by the axis, nothing in-between. """ def map_forward(self, value): """Maps value from axis mapping's input to output. Returns value unchanged if no mapping entry is found. Note: for discrete axes, each value must have its mapping entry, if you intend that value to be mapped. """ return next((v for k, v in self.map if k == value), value) def map_backward(self, value): """Maps value from axis mapping's output to input. Returns value unchanged if no mapping entry is found. Note: for discrete axes, each value must have its mapping entry, if you intend that value to be mapped. """ if isinstance(value, tuple): value = value[0] return next((k for k, v in self.map if v == value), value) class AxisLabelDescriptor(SimpleDescriptor): """Container for axis label data. Analogue of OpenType's STAT data for a single axis (formats 1, 2 and 3). All values are user values. See: `OTSpec STAT Axis value table, format 1, 2, 3 <https://docs.microsoft.com/en-us/typography/opentype/spec/stat#axis-value-table-format-1>`_ The STAT format of the Axis value depends on which field are filled-in, see :meth:`getFormat` .. versionadded:: 5.0 """ flavor = "label" _attrs = ('userMinimum', 'userValue', 'userMaximum', 'name', 'elidable', 'olderSibling', 'linkedUserValue', 'labelNames') def __init__( self, *, name, userValue, userMinimum=None, userMaximum=None, elidable=False, olderSibling=False, linkedUserValue=None, labelNames=None, ): self.userMinimum: Optional[float] = userMinimum """STAT field ``rangeMinValue`` (format 2).""" self.userValue: float = userValue """STAT field ``value`` (format 1, 3) or ``nominalValue`` (format 2).""" self.userMaximum: Optional[float] = userMaximum """STAT field ``rangeMaxValue`` (format 2).""" self.name: str = name """Label for this axis location, STAT field ``valueNameID``.""" self.elidable: bool = elidable """STAT flag ``ELIDABLE_AXIS_VALUE_NAME``. See: `OTSpec STAT Flags <https://docs.microsoft.com/en-us/typography/opentype/spec/stat#flags>`_ """ self.olderSibling: bool = olderSibling """STAT flag ``OLDER_SIBLING_FONT_ATTRIBUTE``. See: `OTSpec STAT Flags <https://docs.microsoft.com/en-us/typography/opentype/spec/stat#flags>`_ """ self.linkedUserValue: Optional[float] = linkedUserValue """STAT field ``linkedValue`` (format 3).""" self.labelNames: MutableMapping[str, str] = labelNames or {} """User-facing translations of this location's label. Keyed by ``xml:lang`` code. """ def getFormat(self) -> int: """Determine which format of STAT Axis value to use to encode this label. =========== ========= =========== =========== =============== STAT Format userValue userMinimum userMaximum linkedUserValue =========== ========= =========== =========== =============== 1 ✅ ❌ ❌ ❌ 2 ✅ ✅ ✅ ❌ 3 ✅ ❌ ❌ ✅ =========== ========= =========== =========== =============== """ if self.linkedUserValue is not None: return 3 if self.userMinimum is not None or self.userMaximum is not None: return 2 return 1 @property def defaultName(self) -> str: """Return the English name from :attr:`labelNames` or the :attr:`name`.""" return self.labelNames.get("en") or self.name class LocationLabelDescriptor(SimpleDescriptor): """Container for location label data. Analogue of OpenType's STAT data for a free-floating location (format 4). All values are user values. See: `OTSpec STAT Axis value table, format 4 <https://docs.microsoft.com/en-us/typography/opentype/spec/stat#axis-value-table-format-4>`_ .. versionadded:: 5.0 """ flavor = "label" _attrs = ('name', 'elidable', 'olderSibling', 'userLocation', 'labelNames') def __init__( self, *, name, userLocation, elidable=False, olderSibling=False, labelNames=None, ): self.name: str = name """Label for this named location, STAT field ``valueNameID``.""" self.userLocation: SimpleLocationDict = userLocation or {} """Location in user coordinates along each axis. If an axis is not mentioned, it is assumed to be at its default location. .. seealso:: This may be only part of the full location. See: :meth:`getFullUserLocation` """ self.elidable: bool = elidable """STAT flag ``ELIDABLE_AXIS_VALUE_NAME``. See: `OTSpec STAT Flags <https://docs.microsoft.com/en-us/typography/opentype/spec/stat#flags>`_ """ self.olderSibling: bool = olderSibling """STAT flag ``OLDER_SIBLING_FONT_ATTRIBUTE``. See: `OTSpec STAT Flags <https://docs.microsoft.com/en-us/typography/opentype/spec/stat#flags>`_ """ self.labelNames: Dict[str, str] = labelNames or {} """User-facing translations of this location's label. Keyed by xml:lang code. """ @property def defaultName(self) -> str: """Return the English name from :attr:`labelNames` or the :attr:`name`.""" return self.labelNames.get("en") or self.name def getFullUserLocation(self, doc: 'DesignSpaceDocument') -> SimpleLocationDict: """Get the complete user location of this label, by combining data from the explicit user location and default axis values. .. versionadded:: 5.0 """ return { axis.name: self.userLocation.get(axis.name, axis.default) for axis in doc.axes } class VariableFontDescriptor(SimpleDescriptor): """Container for variable fonts, sub-spaces of the Designspace. Use-cases: - From a single DesignSpace with discrete axes, define 1 variable font per value on the discrete axes. Before version 5, you would have needed 1 DesignSpace per such variable font, and a lot of data duplication. - From a big variable font with many axes, define subsets of that variable font that only include some axes and freeze other axes at a given location. .. versionadded:: 5.0 """ flavor = "variable-font" _attrs = ('filename', 'axisSubsets', 'lib') filename = posixpath_property("_filename") def __init__(self, *, name, filename=None, axisSubsets=None, lib=None): self.name: str = name """string, required. Name of this variable to identify it during the build process and from other parts of the document, and also as a filename in case the filename property is empty. VarLib. """ self.filename: str = filename """string, optional. Relative path to the variable font file, **as it is in the document**. The file may or may not exist. If not specified, the :attr:`name` will be used as a basename for the file. """ self.axisSubsets: List[Union[RangeAxisSubsetDescriptor, ValueAxisSubsetDescriptor]] = axisSubsets or [] """Axis subsets to include in this variable font. If an axis is not mentioned, assume that we only want the default location of that axis (same as a :class:`ValueAxisSubsetDescriptor`). """ self.lib: MutableMapping[str, Any] = lib or {} """Custom data associated with this variable font.""" class RangeAxisSubsetDescriptor(SimpleDescriptor): """Subset of a continuous axis to include in a variable font. .. versionadded:: 5.0 """ flavor = "axis-subset" _attrs = ('name', 'userMinimum', 'userDefault', 'userMaximum') def __init__(self, *, name, userMinimum=-math.inf, userDefault=None, userMaximum=math.inf): self.name: str = name """Name of the :class:`AxisDescriptor` to subset.""" self.userMinimum: float = userMinimum """New minimum value of the axis in the target variable font. If not specified, assume the same minimum value as the full axis. (default = ``-math.inf``) """ self.userDefault: Optional[float] = userDefault """New default value of the axis in the target variable font. If not specified, assume the same default value as the full axis. (default = ``None``) """ self.userMaximum: float = userMaximum """New maximum value of the axis in the target variable font. If not specified, assume the same maximum value as the full axis. (default = ``math.inf``) """ class ValueAxisSubsetDescriptor(SimpleDescriptor): """Single value of a discrete or continuous axis to use in a variable font. .. versionadded:: 5.0 """ flavor = "axis-subset" _attrs = ('name', 'userValue') def __init__(self, *, name, userValue): self.name: str = name """Name of the :class:`AxisDescriptor` or :class:`DiscreteAxisDescriptor` to "snapshot" or "freeze". """ self.userValue: float = userValue """Value in user coordinates at which to freeze the given axis.""" class BaseDocWriter(object): _whiteSpace = " " axisDescriptorClass = AxisDescriptor discreteAxisDescriptorClass = DiscreteAxisDescriptor axisLabelDescriptorClass = AxisLabelDescriptor locationLabelDescriptorClass = LocationLabelDescriptor ruleDescriptorClass = RuleDescriptor sourceDescriptorClass = SourceDescriptor variableFontDescriptorClass = VariableFontDescriptor valueAxisSubsetDescriptorClass = ValueAxisSubsetDescriptor rangeAxisSubsetDescriptorClass = RangeAxisSubsetDescriptor instanceDescriptorClass = InstanceDescriptor @classmethod def getAxisDecriptor(cls): return cls.axisDescriptorClass() @classmethod def getSourceDescriptor(cls): return cls.sourceDescriptorClass() @classmethod def getInstanceDescriptor(cls): return cls.instanceDescriptorClass() @classmethod def getRuleDescriptor(cls): return cls.ruleDescriptorClass() def __init__(self, documentPath, documentObject: DesignSpaceDocument): self.path = documentPath self.documentObject = documentObject self.effectiveFormatTuple = self._getEffectiveFormatTuple() self.root = ET.Element("designspace") def write(self, pretty=True, encoding="UTF-8", xml_declaration=True): self.root.attrib['format'] = ".".join(str(i) for i in self.effectiveFormatTuple) if self.documentObject.axes or self.documentObject.elidedFallbackName is not None: axesElement = ET.Element("axes") if self.documentObject.elidedFallbackName is not None: axesElement.attrib['elidedfallbackname'] = self.documentObject.elidedFallbackName self.root.append(axesElement) for axisObject in self.documentObject.axes: self._addAxis(axisObject) if self.documentObject.locationLabels: labelsElement = ET.Element("labels") for labelObject in self.documentObject.locationLabels: self._addLocationLabel(labelsElement, labelObject) self.root.append(labelsElement) if self.documentObject.rules: if getattr(self.documentObject, "rulesProcessingLast", False): attributes = {"processing": "last"} else: attributes = {} self.root.append(ET.Element("rules", attributes)) for ruleObject in self.documentObject.rules: self._addRule(ruleObject) if self.documentObject.sources: self.root.append(ET.Element("sources")) for sourceObject in self.documentObject.sources: self._addSource(sourceObject) if self.documentObject.variableFonts: variableFontsElement = ET.Element("variable-fonts") for variableFont in self.documentObject.variableFonts: self._addVariableFont(variableFontsElement, variableFont) self.root.append(variableFontsElement) if self.documentObject.instances: self.root.append(ET.Element("instances")) for instanceObject in self.documentObject.instances: self._addInstance(instanceObject) if self.documentObject.lib: self._addLib(self.root, self.documentObject.lib, 2) tree = ET.ElementTree(self.root) tree.write( self.path, encoding=encoding, method='xml', xml_declaration=xml_declaration, pretty_print=pretty, ) def _getEffectiveFormatTuple(self): """Try to use the version specified in the document, or a sufficiently recent version to be able to encode what the document contains. """ minVersion = self.documentObject.formatTuple if ( any( isinstance(axis, DiscreteAxisDescriptor) or axis.axisOrdering is not None or axis.axisLabels for axis in self.documentObject.axes ) or self.documentObject.locationLabels or any( source.localisedFamilyName for source in self.documentObject.sources ) or self.documentObject.variableFonts or any( instance.locationLabel or instance.userLocation for instance in self.documentObject.instances ) ): if minVersion < (5, 0): minVersion = (5, 0) return minVersion def _makeLocationElement(self, locationObject, name=None): """ Convert Location dict to a locationElement.""" locElement = ET.Element("location") if name is not None: locElement.attrib['name'] = name validatedLocation = self.documentObject.newDefaultLocation() for axisName, axisValue in locationObject.items(): if axisName in validatedLocation: # only accept values we know validatedLocation[axisName] = axisValue for dimensionName, dimensionValue in validatedLocation.items(): dimElement = ET.Element('dimension') dimElement.attrib['name'] = dimensionName if type(dimensionValue) == tuple: dimElement.attrib['xvalue'] = self.intOrFloat(dimensionValue[0]) dimElement.attrib['yvalue'] = self.intOrFloat(dimensionValue[1]) else: dimElement.attrib['xvalue'] = self.intOrFloat(dimensionValue) locElement.append(dimElement) return locElement, validatedLocation def intOrFloat(self, num): if int(num) == num: return "%d" % num return ("%f" % num).rstrip('0').rstrip('.') def _addRule(self, ruleObject): # if none of the conditions have minimum or maximum values, do not add the rule. ruleElement = ET.Element('rule') if ruleObject.name is not None: ruleElement.attrib['name'] = ruleObject.name for conditions in ruleObject.conditionSets: conditionsetElement = ET.Element('conditionset') for cond in conditions: if cond.get('minimum') is None and cond.get('maximum') is None: # neither is defined, don't add this condition continue conditionElement = ET.Element('condition') conditionElement.attrib['name'] = cond.get('name') if cond.get('minimum') is not None: conditionElement.attrib['minimum'] = self.intOrFloat(cond.get('minimum')) if cond.get('maximum') is not None: conditionElement.attrib['maximum'] = self.intOrFloat(cond.get('maximum')) conditionsetElement.append(conditionElement) if len(conditionsetElement): ruleElement.append(conditionsetElement) for sub in ruleObject.subs: subElement = ET.Element('sub') subElement.attrib['name'] = sub[0] subElement.attrib['with'] = sub[1] ruleElement.append(subElement) if len(ruleElement): self.root.findall('.rules')[0].append(ruleElement) def _addAxis(self, axisObject): axisElement = ET.Element('axis') axisElement.attrib['tag'] = axisObject.tag axisElement.attrib['name'] = axisObject.name self._addLabelNames(axisElement, axisObject.labelNames) if axisObject.map: for inputValue, outputValue in axisObject.map: mapElement = ET.Element('map') mapElement.attrib['input'] = self.intOrFloat(inputValue) mapElement.attrib['output'] = self.intOrFloat(outputValue) axisElement.append(mapElement) if axisObject.axisOrdering or axisObject.axisLabels: labelsElement = ET.Element('labels') if axisObject.axisOrdering is not None: labelsElement.attrib['ordering'] = str(axisObject.axisOrdering) for label in axisObject.axisLabels: self._addAxisLabel(labelsElement, label) axisElement.append(labelsElement) if isinstance(axisObject, AxisDescriptor): axisElement.attrib['minimum'] = self.intOrFloat(axisObject.minimum) axisElement.attrib['maximum'] = self.intOrFloat(axisObject.maximum) elif isinstance(axisObject, DiscreteAxisDescriptor): axisElement.attrib['values'] = " ".join(self.intOrFloat(v) for v in axisObject.values) axisElement.attrib['default'] = self.intOrFloat(axisObject.default) if axisObject.hidden: axisElement.attrib['hidden'] = "1" self.root.findall('.axes')[0].append(axisElement) def _addAxisLabel(self, axisElement: ET.Element, label: AxisLabelDescriptor) -> None: labelElement = ET.Element('label') labelElement.attrib['uservalue'] = self.intOrFloat(label.userValue) if label.userMinimum is not None: labelElement.attrib['userminimum'] = self.intOrFloat(label.userMinimum) if label.userMaximum is not None: labelElement.attrib['usermaximum'] = self.intOrFloat(label.userMaximum) labelElement.attrib['name'] = label.name if label.elidable: labelElement.attrib['elidable'] = "true" if label.olderSibling: labelElement.attrib['oldersibling'] = "true" if label.linkedUserValue is not None: labelElement.attrib['linkeduservalue'] = self.intOrFloat(label.linkedUserValue) self._addLabelNames(labelElement, label.labelNames) axisElement.append(labelElement) def _addLabelNames(self, parentElement, labelNames): for languageCode, labelName in sorted(labelNames.items()): languageElement = ET.Element('labelname') languageElement.attrib[XML_LANG] = languageCode languageElement.text = labelName parentElement.append(languageElement) def _addLocationLabel(self, parentElement: ET.Element, label: LocationLabelDescriptor) -> None: labelElement = ET.Element('label') labelElement.attrib['name'] = label.name if label.elidable: labelElement.attrib['elidable'] = "true" if label.olderSibling: labelElement.attrib['oldersibling'] = "true" self._addLabelNames(labelElement, label.labelNames) self._addLocationElement(labelElement, userLocation=label.userLocation) parentElement.append(labelElement) def _addLocationElement( self, parentElement, *, designLocation: AnisotropicLocationDict = None, userLocation: SimpleLocationDict = None ): locElement = ET.Element("location") for axis in self.documentObject.axes: if designLocation is not None and axis.name in designLocation: dimElement = ET.Element('dimension') dimElement.attrib['name'] = axis.name value = designLocation[axis.name] if isinstance(value, tuple): dimElement.attrib['xvalue'] = self.intOrFloat(value[0]) dimElement.attrib['yvalue'] = self.intOrFloat(value[1]) else: dimElement.attrib['xvalue'] = self.intOrFloat(value) locElement.append(dimElement) elif userLocation is not None and axis.name in userLocation: dimElement = ET.Element('dimension') dimElement.attrib['name'] = axis.name value = userLocation[axis.name] dimElement.attrib['uservalue'] = self.intOrFloat(value) locElement.append(dimElement) if len(locElement) > 0: parentElement.append(locElement) def _addInstance(self, instanceObject): instanceElement = ET.Element('instance') if instanceObject.name is not None: instanceElement.attrib['name'] = instanceObject.name if instanceObject.locationLabel is not None: instanceElement.attrib['location'] = instanceObject.locationLabel if instanceObject.familyName is not None: instanceElement.attrib['familyname'] = instanceObject.familyName if instanceObject.styleName is not None: instanceElement.attrib['stylename'] = instanceObject.styleName # add localisations if instanceObject.localisedStyleName: languageCodes = list(instanceObject.localisedStyleName.keys()) languageCodes.sort() for code in languageCodes: if code == "en": continue # already stored in the element attribute localisedStyleNameElement = ET.Element('stylename') localisedStyleNameElement.attrib[XML_LANG] = code localisedStyleNameElement.text = instanceObject.getStyleName(code) instanceElement.append(localisedStyleNameElement) if instanceObject.localisedFamilyName: languageCodes = list(instanceObject.localisedFamilyName.keys()) languageCodes.sort() for code in languageCodes: if code == "en": continue # already stored in the element attribute localisedFamilyNameElement = ET.Element('familyname') localisedFamilyNameElement.attrib[XML_LANG] = code localisedFamilyNameElement.text = instanceObject.getFamilyName(code) instanceElement.append(localisedFamilyNameElement) if instanceObject.localisedStyleMapStyleName: languageCodes = list(instanceObject.localisedStyleMapStyleName.keys()) languageCodes.sort() for code in languageCodes: if code == "en": continue localisedStyleMapStyleNameElement = ET.Element('stylemapstylename') localisedStyleMapStyleNameElement.attrib[XML_LANG] = code localisedStyleMapStyleNameElement.text = instanceObject.getStyleMapStyleName(code) instanceElement.append(localisedStyleMapStyleNameElement) if instanceObject.localisedStyleMapFamilyName: languageCodes = list(instanceObject.localisedStyleMapFamilyName.keys()) languageCodes.sort() for code in languageCodes: if code == "en": continue localisedStyleMapFamilyNameElement = ET.Element('stylemapfamilyname') localisedStyleMapFamilyNameElement.attrib[XML_LANG] = code localisedStyleMapFamilyNameElement.text = instanceObject.getStyleMapFamilyName(code) instanceElement.append(localisedStyleMapFamilyNameElement) if self.effectiveFormatTuple >= (5, 0): if instanceObject.locationLabel is None: self._addLocationElement( instanceElement, designLocation=instanceObject.designLocation, userLocation=instanceObject.userLocation ) else: # Pre-version 5.0 code was validating and filling in the location # dict while writing it out, as preserved below. if instanceObject.location is not None: locationElement, instanceObject.location = self._makeLocationElement(instanceObject.location) instanceElement.append(locationElement) if instanceObject.filename is not None: instanceElement.attrib['filename'] = instanceObject.filename if instanceObject.postScriptFontName is not None: instanceElement.attrib['postscriptfontname'] = instanceObject.postScriptFontName if instanceObject.styleMapFamilyName is not None: instanceElement.attrib['stylemapfamilyname'] = instanceObject.styleMapFamilyName if instanceObject.styleMapStyleName is not None: instanceElement.attrib['stylemapstylename'] = instanceObject.styleMapStyleName if self.effectiveFormatTuple < (5, 0): # Deprecated members as of version 5.0 if instanceObject.glyphs: if instanceElement.findall('.glyphs') == []: glyphsElement = ET.Element('glyphs') instanceElement.append(glyphsElement) glyphsElement = instanceElement.findall('.glyphs')[0] for glyphName, data in sorted(instanceObject.glyphs.items()): glyphElement = self._writeGlyphElement(instanceElement, instanceObject, glyphName, data) glyphsElement.append(glyphElement) if instanceObject.kerning: kerningElement = ET.Element('kerning') instanceElement.append(kerningElement) if instanceObject.info: infoElement = ET.Element('info') instanceElement.append(infoElement) self._addLib(instanceElement, instanceObject.lib, 4) self.root.findall('.instances')[0].append(instanceElement) def _addSource(self, sourceObject): sourceElement = ET.Element("source") if sourceObject.filename is not None: sourceElement.attrib['filename'] = sourceObject.filename if sourceObject.name is not None: if sourceObject.name.find("temp_master") != 0: # do not save temporary source names sourceElement.attrib['name'] = sourceObject.name if sourceObject.familyName is not None: sourceElement.attrib['familyname'] = sourceObject.familyName if sourceObject.styleName is not None: sourceElement.attrib['stylename'] = sourceObject.styleName if sourceObject.layerName is not None: sourceElement.attrib['layer'] = sourceObject.layerName if sourceObject.localisedFamilyName: languageCodes = list(sourceObject.localisedFamilyName.keys()) languageCodes.sort() for code in languageCodes: if code == "en": continue # already stored in the element attribute localisedFamilyNameElement = ET.Element('familyname') localisedFamilyNameElement.attrib[XML_LANG] = code localisedFamilyNameElement.text = sourceObject.getFamilyName(code) sourceElement.append(localisedFamilyNameElement) if sourceObject.copyLib: libElement = ET.Element('lib') libElement.attrib['copy'] = "1" sourceElement.append(libElement) if sourceObject.copyGroups: groupsElement = ET.Element('groups') groupsElement.attrib['copy'] = "1" sourceElement.append(groupsElement) if sourceObject.copyFeatures: featuresElement = ET.Element('features') featuresElement.attrib['copy'] = "1" sourceElement.append(featuresElement) if sourceObject.copyInfo or sourceObject.muteInfo: infoElement = ET.Element('info') if sourceObject.copyInfo: infoElement.attrib['copy'] = "1" if sourceObject.muteInfo: infoElement.attrib['mute'] = "1" sourceElement.append(infoElement) if sourceObject.muteKerning: kerningElement = ET.Element("kerning") kerningElement.attrib["mute"] = '1' sourceElement.append(kerningElement) if sourceObject.mutedGlyphNames: for name in sourceObject.mutedGlyphNames: glyphElement = ET.Element("glyph") glyphElement.attrib["name"] = name glyphElement.attrib["mute"] = '1' sourceElement.append(glyphElement) if self.effectiveFormatTuple >= (5, 0): self._addLocationElement(sourceElement, designLocation=sourceObject.location) else: # Pre-version 5.0 code was validating and filling in the location # dict while writing it out, as preserved below. locationElement, sourceObject.location = self._makeLocationElement(sourceObject.location) sourceElement.append(locationElement) self.root.findall('.sources')[0].append(sourceElement) def _addVariableFont(self, parentElement: ET.Element, vf: VariableFontDescriptor) -> None: vfElement = ET.Element('variable-font') vfElement.attrib['name'] = vf.name if vf.filename is not None: vfElement.attrib['filename'] = vf.filename if vf.axisSubsets: subsetsElement = ET.Element('axis-subsets') for subset in vf.axisSubsets: subsetElement = ET.Element('axis-subset') subsetElement.attrib['name'] = subset.name if isinstance(subset, RangeAxisSubsetDescriptor): if subset.userMinimum != -math.inf: subsetElement.attrib['userminimum'] = self.intOrFloat(subset.userMinimum) if subset.userMaximum != math.inf: subsetElement.attrib['usermaximum'] = self.intOrFloat(subset.userMaximum) if subset.userDefault is not None: subsetElement.attrib['userdefault'] = self.intOrFloat(subset.userDefault) elif isinstance(subset, ValueAxisSubsetDescriptor): subsetElement.attrib['uservalue'] = self.intOrFloat(subset.userValue) subsetsElement.append(subsetElement) vfElement.append(subsetsElement) self._addLib(vfElement, vf.lib, 4) parentElement.append(vfElement) def _addLib(self, parentElement: ET.Element, data: Any, indent_level: int) -> None: if not data: return libElement = ET.Element('lib') libElement.append(plistlib.totree(data, indent_level=indent_level)) parentElement.append(libElement) def _writeGlyphElement(self, instanceElement, instanceObject, glyphName, data): glyphElement = ET.Element('glyph') if data.get('mute'): glyphElement.attrib['mute'] = "1" if data.get('unicodes') is not None: glyphElement.attrib['unicode'] = " ".join([hex(u) for u in data.get('unicodes')]) if data.get('instanceLocation') is not None: locationElement, data['instanceLocation'] = self._makeLocationElement(data.get('instanceLocation')) glyphElement.append(locationElement) if glyphName is not None: glyphElement.attrib['name'] = glyphName if data.get('note') is not None: noteElement = ET.Element('note') noteElement.text = data.get('note') glyphElement.append(noteElement) if data.get('masters') is not None: mastersElement = ET.Element("masters") for m in data.get('masters'): masterElement = ET.Element("master") if m.get('glyphName') is not None: masterElement.attrib['glyphname'] = m.get('glyphName') if m.get('font') is not None: masterElement.attrib['source'] = m.get('font') if m.get('location') is not None: locationElement, m['location'] = self._makeLocationElement(m.get('location')) masterElement.append(locationElement) mastersElement.append(masterElement) glyphElement.append(mastersElement) return glyphElement class BaseDocReader(LogMixin): axisDescriptorClass = AxisDescriptor discreteAxisDescriptorClass = DiscreteAxisDescriptor axisLabelDescriptorClass = AxisLabelDescriptor locationLabelDescriptorClass = LocationLabelDescriptor ruleDescriptorClass = RuleDescriptor sourceDescriptorClass = SourceDescriptor variableFontsDescriptorClass = VariableFontDescriptor valueAxisSubsetDescriptorClass = ValueAxisSubsetDescriptor rangeAxisSubsetDescriptorClass = RangeAxisSubsetDescriptor instanceDescriptorClass = InstanceDescriptor def __init__(self, documentPath, documentObject): self.path = documentPath self.documentObject = documentObject tree = ET.parse(self.path) self.root = tree.getroot() self.documentObject.formatVersion = self.root.attrib.get("format", "3.0") self._axes = [] self.rules = [] self.sources = [] self.instances = [] self.axisDefaults = {} self._strictAxisNames = True @classmethod def fromstring(cls, string, documentObject): f = BytesIO(tobytes(string, encoding="utf-8")) self = cls(f, documentObject) self.path = None return self def read(self): self.readAxes() self.readLabels() self.readRules() self.readVariableFonts() self.readSources() self.readInstances() self.readLib() def readRules(self): # we also need to read any conditions that are outside of a condition set. rules = [] rulesElement = self.root.find(".rules") if rulesElement is not None: processingValue = rulesElement.attrib.get("processing", "first") if processingValue not in {"first", "last"}: raise DesignSpaceDocumentError( "<rules> processing attribute value is not valid: %r, " "expected 'first' or 'last'" % processingValue) self.documentObject.rulesProcessingLast = processingValue == "last" for ruleElement in self.root.findall(".rules/rule"): ruleObject = self.ruleDescriptorClass() ruleName = ruleObject.name = ruleElement.attrib.get("name") # read any stray conditions outside a condition set externalConditions = self._readConditionElements( ruleElement, ruleName, ) if externalConditions: ruleObject.conditionSets.append(externalConditions) self.log.info( "Found stray rule conditions outside a conditionset. " "Wrapped them in a new conditionset." ) # read the conditionsets for conditionSetElement in ruleElement.findall('.conditionset'): conditionSet = self._readConditionElements( conditionSetElement, ruleName, ) if conditionSet is not None: ruleObject.conditionSets.append(conditionSet) for subElement in ruleElement.findall('.sub'): a = subElement.attrib['name'] b = subElement.attrib['with'] ruleObject.subs.append((a, b)) rules.append(ruleObject) self.documentObject.rules = rules def _readConditionElements(self, parentElement, ruleName=None): cds = [] for conditionElement in parentElement.findall('.condition'): cd = {} cdMin = conditionElement.attrib.get("minimum") if cdMin is not None: cd['minimum'] = float(cdMin) else: # will allow these to be None, assume axis.minimum cd['minimum'] = None cdMax = conditionElement.attrib.get("maximum") if cdMax is not None: cd['maximum'] = float(cdMax) else: # will allow these to be None, assume axis.maximum cd['maximum'] = None cd['name'] = conditionElement.attrib.get("name") # # test for things if cd.get('minimum') is None and cd.get('maximum') is None: raise DesignSpaceDocumentError( "condition missing required minimum or maximum in rule" + (" '%s'" % ruleName if ruleName is not None else "")) cds.append(cd) return cds def readAxes(self): # read the axes elements, including the warp map. axesElement = self.root.find(".axes") if axesElement is not None and 'elidedfallbackname' in axesElement.attrib: self.documentObject.elidedFallbackName = axesElement.attrib['elidedfallbackname'] axisElements = self.root.findall(".axes/axis") if not axisElements: return for axisElement in axisElements: if self.documentObject.formatTuple >= (5, 0) and "values" in axisElement.attrib: axisObject = self.discreteAxisDescriptorClass() axisObject.values = [float(s) for s in axisElement.attrib["values"].split(" ")] else: axisObject = self.axisDescriptorClass() axisObject.minimum = float(axisElement.attrib.get("minimum")) axisObject.maximum = float(axisElement.attrib.get("maximum")) axisObject.default = float(axisElement.attrib.get("default")) axisObject.name = axisElement.attrib.get("name") if axisElement.attrib.get('hidden', False): axisObject.hidden = True axisObject.tag = axisElement.attrib.get("tag") for mapElement in axisElement.findall('map'): a = float(mapElement.attrib['input']) b = float(mapElement.attrib['output']) axisObject.map.append((a, b)) for labelNameElement in axisElement.findall('labelname'): # Note: elementtree reads the "xml:lang" attribute name as # '{http://www.w3.org/XML/1998/namespace}lang' for key, lang in labelNameElement.items(): if key == XML_LANG: axisObject.labelNames[lang] = tostr(labelNameElement.text) labelElement = axisElement.find(".labels") if labelElement is not None: if "ordering" in labelElement.attrib: axisObject.axisOrdering = int(labelElement.attrib["ordering"]) for label in labelElement.findall(".label"): axisObject.axisLabels.append(self.readAxisLabel(label)) self.documentObject.axes.append(axisObject) self.axisDefaults[axisObject.name] = axisObject.default def readAxisLabel(self, element: ET.Element): xml_attrs = {'userminimum', 'uservalue', 'usermaximum', 'name', 'elidable', 'oldersibling', 'linkeduservalue'} unknown_attrs = set(element.attrib) - xml_attrs if unknown_attrs: raise DesignSpaceDocumentError(f"label element contains unknown attributes: {', '.join(unknown_attrs)}") name = element.get("name") if name is None: raise DesignSpaceDocumentError("label element must have a name attribute.") valueStr = element.get("uservalue") if valueStr is None: raise DesignSpaceDocumentError("label element must have a uservalue attribute.") value = float(valueStr) minimumStr = element.get("userminimum") minimum = float(minimumStr) if minimumStr is not None else None maximumStr = element.get("usermaximum") maximum = float(maximumStr) if maximumStr is not None else None linkedValueStr = element.get("linkeduservalue") linkedValue = float(linkedValueStr) if linkedValueStr is not None else None elidable = True if element.get("elidable") == "true" else False olderSibling = True if element.get("oldersibling") == "true" else False labelNames = { lang: label_name.text or "" for label_name in element.findall("labelname") for attr, lang in label_name.items() if attr == XML_LANG # Note: elementtree reads the "xml:lang" attribute name as # '{http://www.w3.org/XML/1998/namespace}lang' } return self.axisLabelDescriptorClass( name=name, userValue=value, userMinimum=minimum, userMaximum=maximum, elidable=elidable, olderSibling=olderSibling, linkedUserValue=linkedValue, labelNames=labelNames, ) def readLabels(self): if self.documentObject.formatTuple < (5, 0): return xml_attrs = {'name', 'elidable', 'oldersibling'} for labelElement in self.root.findall(".labels/label"): unknown_attrs = set(labelElement.attrib) - xml_attrs if unknown_attrs: raise DesignSpaceDocumentError(f"Label element contains unknown attributes: {', '.join(unknown_attrs)}") name = labelElement.get("name") if name is None: raise DesignSpaceDocumentError("label element must have a name attribute.") designLocation, userLocation = self.locationFromElement(labelElement) if designLocation: raise DesignSpaceDocumentError(f'<label> element "{name}" must only have user locations (using uservalue="").') elidable = True if labelElement.get("elidable") == "true" else False olderSibling = True if labelElement.get("oldersibling") == "true" else False labelNames = { lang: label_name.text or "" for label_name in labelElement.findall("labelname") for attr, lang in label_name.items() if attr == XML_LANG # Note: elementtree reads the "xml:lang" attribute name as # '{http://www.w3.org/XML/1998/namespace}lang' } locationLabel = self.locationLabelDescriptorClass( name=name, userLocation=userLocation, elidable=elidable, olderSibling=olderSibling, labelNames=labelNames, ) self.documentObject.locationLabels.append(locationLabel) def readVariableFonts(self): if self.documentObject.formatTuple < (5, 0): return xml_attrs = {'name', 'filename'} for variableFontElement in self.root.findall(".variable-fonts/variable-font"): unknown_attrs = set(variableFontElement.attrib) - xml_attrs if unknown_attrs: raise DesignSpaceDocumentError(f"variable-font element contains unknown attributes: {', '.join(unknown_attrs)}") name = variableFontElement.get("name") if name is None: raise DesignSpaceDocumentError("variable-font element must have a name attribute.") filename = variableFontElement.get("filename") axisSubsetsElement = variableFontElement.find(".axis-subsets") if axisSubsetsElement is None: raise DesignSpaceDocumentError("variable-font element must contain an axis-subsets element.") axisSubsets = [] for axisSubset in axisSubsetsElement.iterfind(".axis-subset"): axisSubsets.append(self.readAxisSubset(axisSubset)) lib = None libElement = variableFontElement.find(".lib") if libElement is not None: lib = plistlib.fromtree(libElement[0]) variableFont = self.variableFontsDescriptorClass( name=name, filename=filename, axisSubsets=axisSubsets, lib=lib, ) self.documentObject.variableFonts.append(variableFont) def readAxisSubset(self, element: ET.Element): if "uservalue" in element.attrib: xml_attrs = {'name', 'uservalue'} unknown_attrs = set(element.attrib) - xml_attrs if unknown_attrs: raise DesignSpaceDocumentError(f"axis-subset element contains unknown attributes: {', '.join(unknown_attrs)}") name = element.get("name") if name is None: raise DesignSpaceDocumentError("axis-subset element must have a name attribute.") userValueStr = element.get("uservalue") if userValueStr is None: raise DesignSpaceDocumentError( "The axis-subset element for a discrete subset must have a uservalue attribute." ) userValue = float(userValueStr) return self.valueAxisSubsetDescriptorClass(name=name, userValue=userValue) else: xml_attrs = {'name', 'userminimum', 'userdefault', 'usermaximum'} unknown_attrs = set(element.attrib) - xml_attrs if unknown_attrs: raise DesignSpaceDocumentError(f"axis-subset element contains unknown attributes: {', '.join(unknown_attrs)}") name = element.get("name") if name is None: raise DesignSpaceDocumentError("axis-subset element must have a name attribute.") userMinimum = element.get("userminimum") userDefault = element.get("userdefault") userMaximum = element.get("usermaximum") if userMinimum is not None and userDefault is not None and userMaximum is not None: return self.rangeAxisSubsetDescriptorClass( name=name, userMinimum=float(userMinimum), userDefault=float(userDefault), userMaximum=float(userMaximum), ) if all(v is None for v in (userMinimum, userDefault, userMaximum)): return self.rangeAxisSubsetDescriptorClass(name=name) raise DesignSpaceDocumentError( "axis-subset element must have min/max/default values or none at all." ) def readSources(self): for sourceCount, sourceElement in enumerate(self.root.findall(".sources/source")): filename = sourceElement.attrib.get('filename') if filename is not None and self.path is not None: sourcePath = os.path.abspath(os.path.join(os.path.dirname(self.path), filename)) else: sourcePath = None sourceName = sourceElement.attrib.get('name') if sourceName is None: # add a temporary source name sourceName = "temp_master.%d" % (sourceCount) sourceObject = self.sourceDescriptorClass() sourceObject.path = sourcePath # absolute path to the ufo source sourceObject.filename = filename # path as it is stored in the document sourceObject.name = sourceName familyName = sourceElement.attrib.get("familyname") if familyName is not None: sourceObject.familyName = familyName styleName = sourceElement.attrib.get("stylename") if styleName is not None: sourceObject.styleName = styleName for familyNameElement in sourceElement.findall('familyname'): for key, lang in familyNameElement.items(): if key == XML_LANG: familyName = familyNameElement.text sourceObject.setFamilyName(familyName, lang) designLocation, userLocation = self.locationFromElement(sourceElement) if userLocation: raise DesignSpaceDocumentError(f'<source> element "{sourceName}" must only have design locations (using xvalue="").') sourceObject.location = designLocation layerName = sourceElement.attrib.get('layer') if layerName is not None: sourceObject.layerName = layerName for libElement in sourceElement.findall('.lib'): if libElement.attrib.get('copy') == '1': sourceObject.copyLib = True for groupsElement in sourceElement.findall('.groups'): if groupsElement.attrib.get('copy') == '1': sourceObject.copyGroups = True for infoElement in sourceElement.findall(".info"): if infoElement.attrib.get('copy') == '1': sourceObject.copyInfo = True if infoElement.attrib.get('mute') == '1': sourceObject.muteInfo = True for featuresElement in sourceElement.findall(".features"): if featuresElement.attrib.get('copy') == '1': sourceObject.copyFeatures = True for glyphElement in sourceElement.findall(".glyph"): glyphName = glyphElement.attrib.get('name') if glyphName is None: continue if glyphElement.attrib.get('mute') == '1': sourceObject.mutedGlyphNames.append(glyphName) for kerningElement in sourceElement.findall(".kerning"): if kerningElement.attrib.get('mute') == '1': sourceObject.muteKerning = True self.documentObject.sources.append(sourceObject) def locationFromElement(self, element): """Read a nested ``<location>`` element inside the given ``element``. .. versionchanged:: 5.0 Return a tuple of (designLocation, userLocation) """ elementLocation = (None, None) for locationElement in element.findall('.location'): elementLocation = self.readLocationElement(locationElement) break return elementLocation def readLocationElement(self, locationElement): """Read a ``<location>`` element. .. versionchanged:: 5.0 Return a tuple of (designLocation, userLocation) """ if self._strictAxisNames and not self.documentObject.axes: raise DesignSpaceDocumentError("No axes defined") userLoc = {} designLoc = {} for dimensionElement in locationElement.findall(".dimension"): dimName = dimensionElement.attrib.get("name") if self._strictAxisNames and dimName not in self.axisDefaults: # In case the document contains no axis definitions, self.log.warning("Location with undefined axis: \"%s\".", dimName) continue userValue = xValue = yValue = None try: userValue = dimensionElement.attrib.get('uservalue') if userValue is not None: userValue = float(userValue) except ValueError: self.log.warning("ValueError in readLocation userValue %3.3f", userValue) try: xValue = dimensionElement.attrib.get('xvalue') if xValue is not None: xValue = float(xValue) except ValueError: self.log.warning("ValueError in readLocation xValue %3.3f", xValue) try: yValue = dimensionElement.attrib.get('yvalue') if yValue is not None: yValue = float(yValue) except ValueError: self.log.warning("ValueError in readLocation yValue %3.3f", yValue) if userValue is None == xValue is None: raise DesignSpaceDocumentError(f'Exactly one of uservalue="" or xvalue="" must be provided for location dimension "{dimName}"') if yValue is not None: if xValue is None: raise DesignSpaceDocumentError(f'Missing xvalue="" for the location dimension "{dimName}"" with yvalue="{yValue}"') designLoc[dimName] = (xValue, yValue) elif xValue is not None: designLoc[dimName] = xValue else: userLoc[dimName] = userValue return designLoc, userLoc def readInstances(self, makeGlyphs=True, makeKerning=True, makeInfo=True): instanceElements = self.root.findall('.instances/instance') for instanceElement in instanceElements: self._readSingleInstanceElement(instanceElement, makeGlyphs=makeGlyphs, makeKerning=makeKerning, makeInfo=makeInfo) def _readSingleInstanceElement(self, instanceElement, makeGlyphs=True, makeKerning=True, makeInfo=True): filename = instanceElement.attrib.get('filename') if filename is not None and self.documentObject.path is not None: instancePath = os.path.join(os.path.dirname(self.documentObject.path), filename) else: instancePath = None instanceObject = self.instanceDescriptorClass() instanceObject.path = instancePath # absolute path to the instance instanceObject.filename = filename # path as it is stored in the document name = instanceElement.attrib.get("name") if name is not None: instanceObject.name = name familyname = instanceElement.attrib.get('familyname') if familyname is not None: instanceObject.familyName = familyname stylename = instanceElement.attrib.get('stylename') if stylename is not None: instanceObject.styleName = stylename postScriptFontName = instanceElement.attrib.get('postscriptfontname') if postScriptFontName is not None: instanceObject.postScriptFontName = postScriptFontName styleMapFamilyName = instanceElement.attrib.get('stylemapfamilyname') if styleMapFamilyName is not None: instanceObject.styleMapFamilyName = styleMapFamilyName styleMapStyleName = instanceElement.attrib.get('stylemapstylename') if styleMapStyleName is not None: instanceObject.styleMapStyleName = styleMapStyleName # read localised names for styleNameElement in instanceElement.findall('stylename'): for key, lang in styleNameElement.items(): if key == XML_LANG: styleName = styleNameElement.text instanceObject.setStyleName(styleName, lang) for familyNameElement in instanceElement.findall('familyname'): for key, lang in familyNameElement.items(): if key == XML_LANG: familyName = familyNameElement.text instanceObject.setFamilyName(familyName, lang) for styleMapStyleNameElement in instanceElement.findall('stylemapstylename'): for key, lang in styleMapStyleNameElement.items(): if key == XML_LANG: styleMapStyleName = styleMapStyleNameElement.text instanceObject.setStyleMapStyleName(styleMapStyleName, lang) for styleMapFamilyNameElement in instanceElement.findall('stylemapfamilyname'): for key, lang in styleMapFamilyNameElement.items(): if key == XML_LANG: styleMapFamilyName = styleMapFamilyNameElement.text instanceObject.setStyleMapFamilyName(styleMapFamilyName, lang) designLocation, userLocation = self.locationFromElement(instanceElement) locationLabel = instanceElement.attrib.get('location') if (designLocation or userLocation) and locationLabel is not None: raise DesignSpaceDocumentError('instance element must have at most one of the location="..." attribute or the nested location element') instanceObject.locationLabel = locationLabel instanceObject.userLocation = userLocation or {} instanceObject.designLocation = designLocation or {} for glyphElement in instanceElement.findall('.glyphs/glyph'): self.readGlyphElement(glyphElement, instanceObject) for infoElement in instanceElement.findall("info"): self.readInfoElement(infoElement, instanceObject) for libElement in instanceElement.findall('lib'): self.readLibElement(libElement, instanceObject) self.documentObject.instances.append(instanceObject) def readLibElement(self, libElement, instanceObject): """Read the lib element for the given instance.""" instanceObject.lib = plistlib.fromtree(libElement[0]) def readInfoElement(self, infoElement, instanceObject): """ Read the info element.""" instanceObject.info = True def readGlyphElement(self, glyphElement, instanceObject): """ Read the glyph element, which could look like either one of these: .. code-block:: xml <glyph name="b" unicode="0x62"/> <glyph name="b"/> <glyph name="b"> <master location="location-token-bbb" source="master-token-aaa2"/> <master glyphname="b.alt1" location="location-token-ccc" source="master-token-aaa3"/> <note> This is an instance from an anisotropic interpolation. </note> </glyph> """ glyphData = {} glyphName = glyphElement.attrib.get('name') if glyphName is None: raise DesignSpaceDocumentError("Glyph object without name attribute") mute = glyphElement.attrib.get("mute") if mute == "1": glyphData['mute'] = True # unicode unicodes = glyphElement.attrib.get('unicode') if unicodes is not None: try: unicodes = [int(u, 16) for u in unicodes.split(" ")] glyphData['unicodes'] = unicodes except ValueError: raise DesignSpaceDocumentError("unicode values %s are not integers" % unicodes) for noteElement in glyphElement.findall('.note'): glyphData['note'] = noteElement.text break designLocation, userLocation = self.locationFromElement(glyphElement) if userLocation: raise DesignSpaceDocumentError(f'<glyph> element "{glyphName}" must only have design locations (using xvalue="").') if designLocation is not None: glyphData['instanceLocation'] = designLocation glyphSources = None for masterElement in glyphElement.findall('.masters/master'): fontSourceName = masterElement.attrib.get('source') designLocation, userLocation = self.locationFromElement(masterElement) if userLocation: raise DesignSpaceDocumentError(f'<master> element "{fontSourceName}" must only have design locations (using xvalue="").') masterGlyphName = masterElement.attrib.get('glyphname') if masterGlyphName is None: # if we don't read a glyphname, use the one we have masterGlyphName = glyphName d = dict(font=fontSourceName, location=designLocation, glyphName=masterGlyphName) if glyphSources is None: glyphSources = [] glyphSources.append(d) if glyphSources is not None: glyphData['masters'] = glyphSources instanceObject.glyphs[glyphName] = glyphData def readLib(self): """Read the lib element for the whole document.""" for libElement in self.root.findall(".lib"): self.documentObject.lib = plistlib.fromtree(libElement[0]) class DesignSpaceDocument(LogMixin, AsDictMixin): """The DesignSpaceDocument object can read and write ``.designspace`` data. It imports the axes, sources, variable fonts and instances to very basic **descriptor** objects that store the data in attributes. Data is added to the document by creating such descriptor objects, filling them with data and then adding them to the document. This makes it easy to integrate this object in different contexts. The **DesignSpaceDocument** object can be subclassed to work with different objects, as long as they have the same attributes. Reader and Writer objects can be subclassed as well. **Note:** Python attribute names are usually camelCased, the corresponding `XML <document-xml-structure>`_ attributes are usually all lowercase. .. code:: python from fontTools.designspaceLib import DesignSpaceDocument doc = DesignSpaceDocument.fromfile("some/path/to/my.designspace") doc.formatVersion doc.elidedFallbackName doc.axes doc.locationLabels doc.rules doc.rulesProcessingLast doc.sources doc.variableFonts doc.instances doc.lib """ def __init__(self, readerClass=None, writerClass=None): self.path = None """String, optional. When the document is read from the disk, this is the full path that was given to :meth:`read` or :meth:`fromfile`. """ self.filename = None """String, optional. When the document is read from the disk, this is its original file name, i.e. the last part of its path. When the document is produced by a Python script and still only exists in memory, the producing script can write here an indication of a possible "good" filename, in case one wants to save the file somewhere. """ self.formatVersion: Optional[str] = None """Format version for this document, as a string. E.g. "4.0" """ self.elidedFallbackName: Optional[str] = None """STAT Style Attributes Header field ``elidedFallbackNameID``. See: `OTSpec STAT Style Attributes Header <https://docs.microsoft.com/en-us/typography/opentype/spec/stat#style-attributes-header>`_ .. versionadded:: 5.0 """ self.axes: List[Union[AxisDescriptor, DiscreteAxisDescriptor]] = [] """List of this document's axes.""" self.locationLabels: List[LocationLabelDescriptor] = [] """List of this document's STAT format 4 labels. .. versionadded:: 5.0""" self.rules: List[RuleDescriptor] = [] """List of this document's rules.""" self.rulesProcessingLast: bool = False """This flag indicates whether the substitution rules should be applied before or after other glyph substitution features. - False: before - True: after. Default is False. For new projects, you probably want True. See the following issues for more information: `fontTools#1371 <https://github.com/fonttools/fonttools/issues/1371#issuecomment-590214572>`__ `fontTools#2050 <https://github.com/fonttools/fonttools/issues/2050#issuecomment-678691020>`__ If you want to use a different feature altogether, e.g. ``calt``, use the lib key ``com.github.fonttools.varLib.featureVarsFeatureTag`` .. code:: xml <lib> <dict> <key>com.github.fonttools.varLib.featureVarsFeatureTag</key> <string>calt</string> </dict> </lib> """ self.sources: List[SourceDescriptor] = [] """List of this document's sources.""" self.variableFonts: List[VariableFontDescriptor] = [] """List of this document's variable fonts. .. versionadded:: 5.0""" self.instances: List[InstanceDescriptor] = [] """List of this document's instances.""" self.lib: Dict = {} """User defined, custom data associated with the whole document. Use reverse-DNS notation to identify your own data. Respect the data stored by others. """ self.default: Optional[str] = None """Name of the default master. This attribute is updated by the :meth:`findDefault` """ if readerClass is not None: self.readerClass = readerClass else: self.readerClass = BaseDocReader if writerClass is not None: self.writerClass = writerClass else: self.writerClass = BaseDocWriter @classmethod def fromfile(cls, path, readerClass=None, writerClass=None): """Read a designspace file from ``path`` and return a new instance of :class:. """ self = cls(readerClass=readerClass, writerClass=writerClass) self.read(path) return self @classmethod def fromstring(cls, string, readerClass=None, writerClass=None): self = cls(readerClass=readerClass, writerClass=writerClass) reader = self.readerClass.fromstring(string, self) reader.read() if self.sources: self.findDefault() return self def tostring(self, encoding=None): """Returns the designspace as a string. Default encoding ``utf-8``.""" if encoding is str or ( encoding is not None and encoding.lower() == "unicode" ): f = StringIO() xml_declaration = False elif encoding is None or encoding == "utf-8": f = BytesIO() encoding = "UTF-8" xml_declaration = True else: raise ValueError("unsupported encoding: '%s'" % encoding) writer = self.writerClass(f, self) writer.write(encoding=encoding, xml_declaration=xml_declaration) return f.getvalue() def read(self, path): """Read a designspace file from ``path`` and populates the fields of ``self`` with the data. """ if hasattr(path, "__fspath__"): # support os.PathLike objects path = path.__fspath__() self.path = path self.filename = os.path.basename(path) reader = self.readerClass(path, self) reader.read() if self.sources: self.findDefault() def write(self, path): """Write this designspace to ``path``.""" if hasattr(path, "__fspath__"): # support os.PathLike objects path = path.__fspath__() self.path = path self.filename = os.path.basename(path) self.updatePaths() writer = self.writerClass(path, self) writer.write() def _posixRelativePath(self, otherPath): relative = os.path.relpath(otherPath, os.path.dirname(self.path)) return posix(relative) def updatePaths(self): """ Right before we save we need to identify and respond to the following situations: In each descriptor, we have to do the right thing for the filename attribute. :: case 1. descriptor.filename == None descriptor.path == None -- action: write as is, descriptors will not have a filename attr. useless, but no reason to interfere. case 2. descriptor.filename == "../something" descriptor.path == None -- action: write as is. The filename attr should not be touched. case 3. descriptor.filename == None descriptor.path == "~/absolute/path/there" -- action: calculate the relative path for filename. We're not overwriting some other value for filename, it should be fine case 4. descriptor.filename == '../somewhere' descriptor.path == "~/absolute/path/there" -- action: there is a conflict between the given filename, and the path. So we know where the file is relative to the document. Can't guess why they're different, we just choose for path to be correct and update filename. """ assert self.path is not None for descriptor in self.sources + self.instances: if descriptor.path is not None: # case 3 and 4: filename gets updated and relativized descriptor.filename = self._posixRelativePath(descriptor.path) def addSource(self, sourceDescriptor: SourceDescriptor): """Add the given ``sourceDescriptor`` to ``doc.sources``.""" self.sources.append(sourceDescriptor) def addSourceDescriptor(self, **kwargs): """Instantiate a new :class:`SourceDescriptor` using the given ``kwargs`` and add it to ``doc.sources``. """ source = self.writerClass.sourceDescriptorClass(**kwargs) self.addSource(source) return source def addInstance(self, instanceDescriptor: InstanceDescriptor): """Add the given ``instanceDescriptor`` to :attr:`instances`.""" self.instances.append(instanceDescriptor) def addInstanceDescriptor(self, **kwargs): """Instantiate a new :class:`InstanceDescriptor` using the given ``kwargs`` and add it to :attr:`instances`. """ instance = self.writerClass.instanceDescriptorClass(**kwargs) self.addInstance(instance) return instance def addAxis(self, axisDescriptor: Union[AxisDescriptor, DiscreteAxisDescriptor]): """Add the given ``axisDescriptor`` to :attr:`axes`.""" self.axes.append(axisDescriptor) def addAxisDescriptor(self, **kwargs): """Instantiate a new :class:`AxisDescriptor` using the given ``kwargs`` and add it to :attr:`axes`. The axis will be and instance of :class:`DiscreteAxisDescriptor` if the ``kwargs`` provide a ``value``, or a :class:`AxisDescriptor` otherwise. """ if "values" in kwargs: axis = self.writerClass.discreteAxisDescriptorClass(**kwargs) else: axis = self.writerClass.axisDescriptorClass(**kwargs) self.addAxis(axis) return axis def addRule(self, ruleDescriptor: RuleDescriptor): """Add the given ``ruleDescriptor`` to :attr:`rules`.""" self.rules.append(ruleDescriptor) def addRuleDescriptor(self, **kwargs): """Instantiate a new :class:`RuleDescriptor` using the given ``kwargs`` and add it to :attr:`rules`. """ rule = self.writerClass.ruleDescriptorClass(**kwargs) self.addRule(rule) return rule def addVariableFont(self, variableFontDescriptor: VariableFontDescriptor): """Add the given ``variableFontDescriptor`` to :attr:`variableFonts`. .. versionadded:: 5.0 """ self.variableFonts.append(variableFontDescriptor) def addVariableFontDescriptor(self, **kwargs): """Instantiate a new :class:`VariableFontDescriptor` using the given ``kwargs`` and add it to :attr:`variableFonts`. .. versionadded:: 5.0 """ variableFont = self.writerClass.variableFontDescriptorClass(**kwargs) self.addVariableFont(variableFont) return variableFont def addLocationLabel(self, locationLabelDescriptor: LocationLabelDescriptor): """Add the given ``locationLabelDescriptor`` to :attr:`locationLabels`. .. versionadded:: 5.0 """ self.locationLabels.append(locationLabelDescriptor) def addLocationLabelDescriptor(self, **kwargs): """Instantiate a new :class:`LocationLabelDescriptor` using the given ``kwargs`` and add it to :attr:`locationLabels`. .. versionadded:: 5.0 """ locationLabel = self.writerClass.locationLabelDescriptorClass(**kwargs) self.addLocationLabel(locationLabel) return locationLabel def newDefaultLocation(self): """Return a dict with the default location in design space coordinates.""" # Without OrderedDict, output XML would be non-deterministic. # https://github.com/LettError/designSpaceDocument/issues/10 loc = collections.OrderedDict() for axisDescriptor in self.axes: loc[axisDescriptor.name] = axisDescriptor.map_forward( axisDescriptor.default ) return loc def labelForUserLocation(self, userLocation: SimpleLocationDict) -> Optional[LocationLabelDescriptor]: """Return the :class:`LocationLabel` that matches the given ``userLocation``, or ``None`` if no such label exists. .. versionadded:: 5.0 """ return next( (label for label in self.locationLabels if label.userLocation == userLocation), None ) def updateFilenameFromPath(self, masters=True, instances=True, force=False): """Set a descriptor filename attr from the path and this document path. If the filename attribute is not None: skip it. """ if masters: for descriptor in self.sources: if descriptor.filename is not None and not force: continue if self.path is not None: descriptor.filename = self._posixRelativePath(descriptor.path) if instances: for descriptor in self.instances: if descriptor.filename is not None and not force: continue if self.path is not None: descriptor.filename = self._posixRelativePath(descriptor.path) def newAxisDescriptor(self): """Ask the writer class to make us a new axisDescriptor.""" return self.writerClass.getAxisDecriptor() def newSourceDescriptor(self): """Ask the writer class to make us a new sourceDescriptor.""" return self.writerClass.getSourceDescriptor() def newInstanceDescriptor(self): """Ask the writer class to make us a new instanceDescriptor.""" return self.writerClass.getInstanceDescriptor() def getAxisOrder(self): """Return a list of axis names, in the same order as defined in the document.""" names = [] for axisDescriptor in self.axes: names.append(axisDescriptor.name) return names def getAxis(self, name): """Return the axis with the given ``name``, or ``None`` if no such axis exists.""" for axisDescriptor in self.axes: if axisDescriptor.name == name: return axisDescriptor return None def getLocationLabel(self, name: str) -> Optional[LocationLabelDescriptor]: """Return the top-level location label with the given ``name``, or ``None`` if no such label exists. .. versionadded:: 5.0 """ for label in self.locationLabels: if label.name == name: return label return None def map_forward(self, userLocation: SimpleLocationDict) -> SimpleLocationDict: """Map a user location to a design location. Assume that missing coordinates are at the default location for that axis. Note: the output won't be anisotropic, only the xvalue is set. .. versionadded:: 5.0 """ return { axis.name: axis.map_forward(userLocation.get(axis.name, axis.default)) for axis in self.axes } def map_backward(self, designLocation: AnisotropicLocationDict) -> SimpleLocationDict: """Map a design location to a user location. Assume that missing coordinates are at the default location for that axis. When the input has anisotropic locations, only the xvalue is used. .. versionadded:: 5.0 """ return { axis.name: ( axis.map_backward(designLocation[axis.name]) if axis.name in designLocation else axis.default ) for axis in self.axes } def findDefault(self): """Set and return SourceDescriptor at the default location or None. The default location is the set of all `default` values in user space of all axes. This function updates the document's :attr:`default` value. .. versionchanged:: 5.0 Allow the default source to not specify some of the axis values, and they are assumed to be the default. See :meth:`SourceDescriptor.getFullDesignLocation()` """ self.default = None # Convert the default location from user space to design space before comparing # it against the SourceDescriptor locations (always in design space). defaultDesignLocation = self.newDefaultLocation() for sourceDescriptor in self.sources: if sourceDescriptor.getFullDesignLocation(self) == defaultDesignLocation: self.default = sourceDescriptor return sourceDescriptor return None def normalizeLocation(self, location): """Return a dict with normalized axis values.""" from fontTools.varLib.models import normalizeValue new = {} for axis in self.axes: if axis.name not in location: # skipping this dimension it seems continue value = location[axis.name] # 'anisotropic' location, take first coord only if isinstance(value, tuple): value = value[0] triple = [ axis.map_forward(v) for v in (axis.minimum, axis.default, axis.maximum) ] new[axis.name] = normalizeValue(value, triple) return new def normalize(self): """ Normalise the geometry of this designspace: - scale all the locations of all masters and instances to the -1 - 0 - 1 value. - we need the axis data to do the scaling, so we do those last. """ # masters for item in self.sources: item.location = self.normalizeLocation(item.location) # instances for item in self.instances: # glyph masters for this instance for _, glyphData in item.glyphs.items(): glyphData['instanceLocation'] = self.normalizeLocation(glyphData['instanceLocation']) for glyphMaster in glyphData['masters']: glyphMaster['location'] = self.normalizeLocation(glyphMaster['location']) item.location = self.normalizeLocation(item.location) # the axes for axis in self.axes: # scale the map first newMap = [] for inputValue, outputValue in axis.map: newOutputValue = self.normalizeLocation({axis.name: outputValue}).get(axis.name) newMap.append((inputValue, newOutputValue)) if newMap: axis.map = newMap # finally the axis values minimum = self.normalizeLocation({axis.name: axis.minimum}).get(axis.name) maximum = self.normalizeLocation({axis.name: axis.maximum}).get(axis.name) default = self.normalizeLocation({axis.name: axis.default}).get(axis.name) # and set them in the axis.minimum axis.minimum = minimum axis.maximum = maximum axis.default = default # now the rules for rule in self.rules: newConditionSets = [] for conditions in rule.conditionSets: newConditions = [] for cond in conditions: if cond.get('minimum') is not None: minimum = self.normalizeLocation({cond['name']: cond['minimum']}).get(cond['name']) else: minimum = None if cond.get('maximum') is not None: maximum = self.normalizeLocation({cond['name']: cond['maximum']}).get(cond['name']) else: maximum = None newConditions.append(dict(name=cond['name'], minimum=minimum, maximum=maximum)) newConditionSets.append(newConditions) rule.conditionSets = newConditionSets def loadSourceFonts(self, opener, **kwargs): """Ensure SourceDescriptor.font attributes are loaded, and return list of fonts. Takes a callable which initializes a new font object (e.g. TTFont, or defcon.Font, etc.) from the SourceDescriptor.path, and sets the SourceDescriptor.font attribute. If the font attribute is already not None, it is not loaded again. Fonts with the same path are only loaded once and shared among SourceDescriptors. For example, to load UFO sources using defcon: designspace = DesignSpaceDocument.fromfile("path/to/my.designspace") designspace.loadSourceFonts(defcon.Font) Or to load masters as FontTools binary fonts, including extra options: designspace.loadSourceFonts(ttLib.TTFont, recalcBBoxes=False) Args: opener (Callable): takes one required positional argument, the source.path, and an optional list of keyword arguments, and returns a new font object loaded from the path. **kwargs: extra options passed on to the opener function. Returns: List of font objects in the order they appear in the sources list. """ # we load fonts with the same source.path only once loaded = {} fonts = [] for source in self.sources: if source.font is not None: # font already loaded fonts.append(source.font) continue if source.path in loaded: source.font = loaded[source.path] else: if source.path is None: raise DesignSpaceDocumentError( "Designspace source '%s' has no 'path' attribute" % (source.name or "<Unknown>") ) source.font = opener(source.path, **kwargs) loaded[source.path] = source.font fonts.append(source.font) return fonts @property def formatTuple(self): """Return the formatVersion as a tuple of (major, minor). .. versionadded:: 5.0 """ if self.formatVersion is None: return (5, 0) numbers = (int(i) for i in self.formatVersion.split(".")) major = next(numbers) minor = next(numbers, 0) return (major, minor) def getVariableFonts(self) -> List[VariableFontDescriptor]: """Return all variable fonts defined in this document, or implicit variable fonts that can be built from the document's continuous axes. In the case of Designspace documents before version 5, the whole document was implicitly describing a variable font that covers the whole space. In version 5 and above documents, there can be as many variable fonts as there are locations on discrete axes. .. seealso:: :func:`splitInterpolable` .. versionadded:: 5.0 """ if self.variableFonts: return self.variableFonts variableFonts = [] discreteAxes = [] rangeAxisSubsets: List[Union[RangeAxisSubsetDescriptor, ValueAxisSubsetDescriptor]] = [] for axis in self.axes: if isinstance(axis, DiscreteAxisDescriptor): discreteAxes.append(axis) else: rangeAxisSubsets.append(RangeAxisSubsetDescriptor(name=axis.name)) valueCombinations = itertools.product(*[axis.values for axis in discreteAxes]) for values in valueCombinations: basename = None if self.filename is not None: basename = os.path.splitext(self.filename)[0] + "-VF" if self.path is not None: basename = os.path.splitext(os.path.basename(self.path))[0] + "-VF" if basename is None: basename = "VF" axisNames = "".join([f"-{axis.tag}{value}" for axis, value in zip(discreteAxes, values)]) variableFonts.append(VariableFontDescriptor( name=f"{basename}{axisNames}", axisSubsets=rangeAxisSubsets + [ ValueAxisSubsetDescriptor(name=axis.name, userValue=value) for axis, value in zip(discreteAxes, values) ] )) return variableFonts def deepcopyExceptFonts(self): """Allow deep-copying a DesignSpace document without deep-copying attached UFO fonts or TTFont objects. The :attr:`font` attribute is shared by reference between the original and the copy. .. versionadded:: 5.0 """ fonts = [source.font for source in self.sources] try: for source in self.sources: source.font = None res = copy.deepcopy(self) for source, font in zip(res.sources, fonts): res.font = font return res finally: for source, font in zip(self.sources, fonts): source.font = font
[((8905, 8922), 'fontTools.misc.textTools.tostr', 'tostr', (['familyName'], {}), '(familyName)\n', (8910, 8922), False, 'from fontTools.misc.textTools import tobytes, tostr\n'), ((20148, 20164), 'fontTools.misc.textTools.tostr', 'tostr', (['styleName'], {}), '(styleName)\n', (20153, 20164), False, 'from fontTools.misc.textTools import tobytes, tostr\n'), ((20380, 20397), 'fontTools.misc.textTools.tostr', 'tostr', (['familyName'], {}), '(familyName)\n', (20385, 20397), False, 'from fontTools.misc.textTools import tobytes, tostr\n'), ((20636, 20660), 'fontTools.misc.textTools.tostr', 'tostr', (['styleMapStyleName'], {}), '(styleMapStyleName)\n', (20641, 20660), False, 'from fontTools.misc.textTools import tobytes, tostr\n'), ((20916, 20941), 'fontTools.misc.textTools.tostr', 'tostr', (['styleMapFamilyName'], {}), '(styleMapFamilyName)\n', (20921, 20941), False, 'from fontTools.misc.textTools import tobytes, tostr\n'), ((30249, 30299), 'fontTools.varLib.models.piecewiseLinearMap', 'piecewiseLinearMap', (['v', '{k: v for k, v in self.map}'], {}), '(v, {k: v for k, v in self.map})\n', (30267, 30299), False, 'from fontTools.varLib.models import piecewiseLinearMap\n'), ((30589, 30639), 'fontTools.varLib.models.piecewiseLinearMap', 'piecewiseLinearMap', (['v', '{v: k for k, v in self.map}'], {}), '(v, {v: k for k, v in self.map})\n', (30607, 30639), False, 'from fontTools.varLib.models import piecewiseLinearMap\n'), ((43672, 43697), 'fontTools.misc.etree.Element', 'ET.Element', (['"""designspace"""'], {}), "('designspace')\n", (43682, 43697), True, 'from fontTools.misc import etree as ET\n'), ((45756, 45781), 'fontTools.misc.etree.ElementTree', 'ET.ElementTree', (['self.root'], {}), '(self.root)\n', (45770, 45781), True, 'from fontTools.misc import etree as ET\n'), ((47128, 47150), 'fontTools.misc.etree.Element', 'ET.Element', (['"""location"""'], {}), "('location')\n", (47138, 47150), True, 'from fontTools.misc import etree as ET\n'), ((48356, 48374), 'fontTools.misc.etree.Element', 'ET.Element', (['"""rule"""'], {}), "('rule')\n", (48366, 48374), True, 'from fontTools.misc import etree as ET\n'), ((49740, 49758), 'fontTools.misc.etree.Element', 'ET.Element', (['"""axis"""'], {}), "('axis')\n", (49750, 49758), True, 'from fontTools.misc import etree as ET\n'), ((51344, 51363), 'fontTools.misc.etree.Element', 'ET.Element', (['"""label"""'], {}), "('label')\n", (51354, 51363), True, 'from fontTools.misc import etree as ET\n'), ((52606, 52625), 'fontTools.misc.etree.Element', 'ET.Element', (['"""label"""'], {}), "('label')\n", (52616, 52625), True, 'from fontTools.misc import etree as ET\n'), ((53236, 53258), 'fontTools.misc.etree.Element', 'ET.Element', (['"""location"""'], {}), "('location')\n", (53246, 53258), True, 'from fontTools.misc import etree as ET\n'), ((54369, 54391), 'fontTools.misc.etree.Element', 'ET.Element', (['"""instance"""'], {}), "('instance')\n", (54379, 54391), True, 'from fontTools.misc import etree as ET\n'), ((59664, 59684), 'fontTools.misc.etree.Element', 'ET.Element', (['"""source"""'], {}), "('source')\n", (59674, 59684), True, 'from fontTools.misc import etree as ET\n'), ((62917, 62944), 'fontTools.misc.etree.Element', 'ET.Element', (['"""variable-font"""'], {}), "('variable-font')\n", (62927, 62944), True, 'from fontTools.misc import etree as ET\n'), ((64336, 64353), 'fontTools.misc.etree.Element', 'ET.Element', (['"""lib"""'], {}), "('lib')\n", (64346, 64353), True, 'from fontTools.misc import etree as ET\n'), ((64579, 64598), 'fontTools.misc.etree.Element', 'ET.Element', (['"""glyph"""'], {}), "('glyph')\n", (64589, 64598), True, 'from fontTools.misc import etree as ET\n'), ((66764, 66783), 'fontTools.misc.etree.parse', 'ET.parse', (['self.path'], {}), '(self.path)\n', (66772, 66783), True, 'from fontTools.misc import etree as ET\n'), ((90558, 90590), 'fontTools.misc.plistlib.fromtree', 'plistlib.fromtree', (['libElement[0]'], {}), '(libElement[0])\n', (90575, 90590), False, 'from fontTools.misc import plistlib\n'), ((99936, 99958), 'os.path.basename', 'os.path.basename', (['path'], {}), '(path)\n', (99952, 99958), False, 'import os\n'), ((100318, 100340), 'os.path.basename', 'os.path.basename', (['path'], {}), '(path)\n', (100334, 100340), False, 'import os\n'), ((105967, 105992), 'collections.OrderedDict', 'collections.OrderedDict', ([], {}), '()\n', (105990, 105992), False, 'import collections\n'), ((117573, 117631), 'itertools.product', 'itertools.product', (['*[axis.values for axis in discreteAxes]'], {}), '(*[axis.values for axis in discreteAxes])\n', (117590, 117631), False, 'import itertools\n'), ((43980, 43998), 'fontTools.misc.etree.Element', 'ET.Element', (['"""axes"""'], {}), "('axes')\n", (43990, 43998), True, 'from fontTools.misc import etree as ET\n'), ((44372, 44392), 'fontTools.misc.etree.Element', 'ET.Element', (['"""labels"""'], {}), "('labels')\n", (44382, 44392), True, 'from fontTools.misc import etree as ET\n'), ((45214, 45242), 'fontTools.misc.etree.Element', 'ET.Element', (['"""variable-fonts"""'], {}), "('variable-fonts')\n", (45224, 45242), True, 'from fontTools.misc import etree as ET\n'), ((47597, 47620), 'fontTools.misc.etree.Element', 'ET.Element', (['"""dimension"""'], {}), "('dimension')\n", (47607, 47620), True, 'from fontTools.misc import etree as ET\n'), ((48558, 48584), 'fontTools.misc.etree.Element', 'ET.Element', (['"""conditionset"""'], {}), "('conditionset')\n", (48568, 48584), True, 'from fontTools.misc import etree as ET\n'), ((49434, 49451), 'fontTools.misc.etree.Element', 'ET.Element', (['"""sub"""'], {}), "('sub')\n", (49444, 49451), True, 'from fontTools.misc import etree as ET\n'), ((50344, 50364), 'fontTools.misc.etree.Element', 'ET.Element', (['"""labels"""'], {}), "('labels')\n", (50354, 50364), True, 'from fontTools.misc import etree as ET\n'), ((52303, 52326), 'fontTools.misc.etree.Element', 'ET.Element', (['"""labelname"""'], {}), "('labelname')\n", (52313, 52326), True, 'from fontTools.misc import etree as ET\n'), ((61011, 61028), 'fontTools.misc.etree.Element', 'ET.Element', (['"""lib"""'], {}), "('lib')\n", (61021, 61028), True, 'from fontTools.misc import etree as ET\n'), ((61182, 61202), 'fontTools.misc.etree.Element', 'ET.Element', (['"""groups"""'], {}), "('groups')\n", (61192, 61202), True, 'from fontTools.misc import etree as ET\n'), ((61366, 61388), 'fontTools.misc.etree.Element', 'ET.Element', (['"""features"""'], {}), "('features')\n", (61376, 61388), True, 'from fontTools.misc import etree as ET\n'), ((61573, 61591), 'fontTools.misc.etree.Element', 'ET.Element', (['"""info"""'], {}), "('info')\n", (61583, 61591), True, 'from fontTools.misc import etree as ET\n'), ((61878, 61899), 'fontTools.misc.etree.Element', 'ET.Element', (['"""kerning"""'], {}), "('kerning')\n", (61888, 61899), True, 'from fontTools.misc import etree as ET\n'), ((63135, 63161), 'fontTools.misc.etree.Element', 'ET.Element', (['"""axis-subsets"""'], {}), "('axis-subsets')\n", (63145, 63161), True, 'from fontTools.misc import etree as ET\n'), ((64380, 64428), 'fontTools.misc.plistlib.totree', 'plistlib.totree', (['data'], {'indent_level': 'indent_level'}), '(data, indent_level=indent_level)\n', (64395, 64428), False, 'from fontTools.misc import plistlib\n'), ((65180, 65198), 'fontTools.misc.etree.Element', 'ET.Element', (['"""note"""'], {}), "('note')\n", (65190, 65198), True, 'from fontTools.misc import etree as ET\n'), ((65365, 65386), 'fontTools.misc.etree.Element', 'ET.Element', (['"""masters"""'], {}), "('masters')\n", (65375, 65386), True, 'from fontTools.misc import etree as ET\n'), ((67158, 67191), 'fontTools.misc.textTools.tobytes', 'tobytes', (['string'], {'encoding': '"""utf-8"""'}), "(string, encoding='utf-8')\n", (67165, 67191), False, 'from fontTools.misc.textTools import tobytes, tostr\n'), ((93654, 93686), 'fontTools.misc.plistlib.fromtree', 'plistlib.fromtree', (['libElement[0]'], {}), '(libElement[0])\n', (93671, 93686), False, 'from fontTools.misc import plistlib\n'), ((99210, 99220), 'io.StringIO', 'StringIO', ([], {}), '()\n', (99218, 99220), False, 'from io import BytesIO, StringIO\n'), ((100529, 100555), 'os.path.dirname', 'os.path.dirname', (['self.path'], {}), '(self.path)\n', (100544, 100555), False, 'import os\n'), ((111470, 111499), 'fontTools.varLib.models.normalizeValue', 'normalizeValue', (['value', 'triple'], {}), '(value, triple)\n', (111484, 111499), False, 'from fontTools.varLib.models import normalizeValue\n'), ((118916, 118935), 'copy.deepcopy', 'copy.deepcopy', (['self'], {}), '(self)\n', (118929, 118935), False, 'import copy\n'), ((44816, 44847), 'fontTools.misc.etree.Element', 'ET.Element', (['"""rules"""', 'attributes'], {}), "('rules', attributes)\n", (44826, 44847), True, 'from fontTools.misc import etree as ET\n'), ((45010, 45031), 'fontTools.misc.etree.Element', 'ET.Element', (['"""sources"""'], {}), "('sources')\n", (45020, 45031), True, 'from fontTools.misc import etree as ET\n'), ((45507, 45530), 'fontTools.misc.etree.Element', 'ET.Element', (['"""instances"""'], {}), "('instances')\n", (45517, 45530), True, 'from fontTools.misc import etree as ET\n'), ((48832, 48855), 'fontTools.misc.etree.Element', 'ET.Element', (['"""condition"""'], {}), "('condition')\n", (48842, 48855), True, 'from fontTools.misc import etree as ET\n'), ((50042, 50059), 'fontTools.misc.etree.Element', 'ET.Element', (['"""map"""'], {}), "('map')\n", (50052, 50059), True, 'from fontTools.misc import etree as ET\n'), ((53409, 53432), 'fontTools.misc.etree.Element', 'ET.Element', (['"""dimension"""'], {}), "('dimension')\n", (53419, 53432), True, 'from fontTools.misc import etree as ET\n'), ((55253, 55276), 'fontTools.misc.etree.Element', 'ET.Element', (['"""stylename"""'], {}), "('stylename')\n", (55263, 55276), True, 'from fontTools.misc import etree as ET\n'), ((55837, 55861), 'fontTools.misc.etree.Element', 'ET.Element', (['"""familyname"""'], {}), "('familyname')\n", (55847, 55861), True, 'from fontTools.misc import etree as ET\n'), ((56404, 56435), 'fontTools.misc.etree.Element', 'ET.Element', (['"""stylemapstylename"""'], {}), "('stylemapstylename')\n", (56414, 56435), True, 'from fontTools.misc import etree as ET\n'), ((57009, 57041), 'fontTools.misc.etree.Element', 'ET.Element', (['"""stylemapfamilyname"""'], {}), "('stylemapfamilyname')\n", (57019, 57041), True, 'from fontTools.misc import etree as ET\n'), ((59257, 59278), 'fontTools.misc.etree.Element', 'ET.Element', (['"""kerning"""'], {}), "('kerning')\n", (59267, 59278), True, 'from fontTools.misc import etree as ET\n'), ((59400, 59418), 'fontTools.misc.etree.Element', 'ET.Element', (['"""info"""'], {}), "('info')\n", (59410, 59418), True, 'from fontTools.misc import etree as ET\n'), ((60713, 60737), 'fontTools.misc.etree.Element', 'ET.Element', (['"""familyname"""'], {}), "('familyname')\n", (60723, 60737), True, 'from fontTools.misc import etree as ET\n'), ((62123, 62142), 'fontTools.misc.etree.Element', 'ET.Element', (['"""glyph"""'], {}), "('glyph')\n", (62133, 62142), True, 'from fontTools.misc import etree as ET\n'), ((63236, 63261), 'fontTools.misc.etree.Element', 'ET.Element', (['"""axis-subset"""'], {}), "('axis-subset')\n", (63246, 63261), True, 'from fontTools.misc import etree as ET\n'), ((65461, 65481), 'fontTools.misc.etree.Element', 'ET.Element', (['"""master"""'], {}), "('master')\n", (65471, 65481), True, 'from fontTools.misc import etree as ET\n'), ((77735, 77767), 'fontTools.misc.plistlib.fromtree', 'plistlib.fromtree', (['libElement[0]'], {}), '(libElement[0])\n', (77752, 77767), False, 'from fontTools.misc import plistlib\n'), ((86875, 86916), 'os.path.dirname', 'os.path.dirname', (['self.documentObject.path'], {}), '(self.documentObject.path)\n', (86890, 86916), False, 'import os\n'), ((99327, 99336), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (99334, 99336), False, 'from io import BytesIO, StringIO\n'), ((53977, 54000), 'fontTools.misc.etree.Element', 'ET.Element', (['"""dimension"""'], {}), "('dimension')\n", (53987, 54000), True, 'from fontTools.misc import etree as ET\n'), ((58794, 58814), 'fontTools.misc.etree.Element', 'ET.Element', (['"""glyphs"""'], {}), "('glyphs')\n", (58804, 58814), True, 'from fontTools.misc import etree as ET\n'), ((72323, 72351), 'fontTools.misc.textTools.tostr', 'tostr', (['labelNameElement.text'], {}), '(labelNameElement.text)\n', (72328, 72351), False, 'from fontTools.misc.textTools import tobytes, tostr\n'), ((80546, 80572), 'os.path.dirname', 'os.path.dirname', (['self.path'], {}), '(self.path)\n', (80561, 80572), False, 'import os\n'), ((117770, 117801), 'os.path.splitext', 'os.path.splitext', (['self.filename'], {}), '(self.filename)\n', (117786, 117801), False, 'import os\n'), ((117895, 117922), 'os.path.basename', 'os.path.basename', (['self.path'], {}), '(self.path)\n', (117911, 117922), False, 'import os\n')]
dme65/Ax
ax/models/torch/posterior_mean.py
c460eab90d464df87e6478b5765fd02fb5126adb
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Optional, Tuple import torch from botorch.acquisition.acquisition import AcquisitionFunction from botorch.acquisition.monte_carlo import qSimpleRegret from botorch.acquisition.objective import ConstrainedMCObjective, GenericMCObjective from botorch.acquisition.utils import get_infeasible_cost from botorch.models.model import Model from botorch.utils import ( get_objective_weights_transform, get_outcome_constraint_transforms, ) from botorch.utils.multi_objective.scalarization import get_chebyshev_scalarization from botorch.utils.transforms import squeeze_last_dim from torch import Tensor def get_PosteriorMean( model: Model, objective_weights: Tensor, outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None, X_observed: Optional[Tensor] = None, X_pending: Optional[Tensor] = None, **kwargs: Any, ) -> AcquisitionFunction: r"""Instantiates a PosteriorMean acquisition function. Note: If no OutcomeConstraints given, return an analytic acquisition function. This requires {optimizer_kwargs: {joint_optimization: True}} or an optimizer that does not assume pending point support. Args: objective_weights: The objective is to maximize a weighted sum of the columns of f(x). These are the weights. outcome_constraints: A tuple of (A, b). For k outcome constraints and m outputs at f(x), A is (k x m) and b is (k x 1) such that A f(x) <= b. (Not used by single task models) X_observed: A tensor containing points observed for all objective outcomes and outcomes that appear in the outcome constraints (if there are any). X_pending: A tensor containing points whose evaluation is pending (i.e. that have been submitted for evaluation) present for all objective outcomes and outcomes that appear in the outcome constraints (if there are any). Returns: PosteriorMean: The instantiated acquisition function. """ if X_observed is None: raise ValueError("There are no feasible observed points.") # construct Objective module if kwargs.get("chebyshev_scalarization", False): obj_tf = get_chebyshev_scalarization( weights=objective_weights, Y=squeeze_last_dim(torch.stack(kwargs.get("Ys")).transpose(0, 1)), ) else: obj_tf = get_objective_weights_transform(objective_weights) if outcome_constraints is None: objective = GenericMCObjective(objective=obj_tf) else: con_tfs = get_outcome_constraint_transforms(outcome_constraints) inf_cost = get_infeasible_cost(X=X_observed, model=model, objective=obj_tf) objective = ConstrainedMCObjective( objective=obj_tf, constraints=con_tfs or [], infeasible_cost=inf_cost ) # Use qSimpleRegret, not analytic posterior, to handle arbitrary objective fns. acq_func = qSimpleRegret(model, objective=objective) return acq_func
[((3168, 3209), 'botorch.acquisition.monte_carlo.qSimpleRegret', 'qSimpleRegret', (['model'], {'objective': 'objective'}), '(model, objective=objective)\n', (3181, 3209), False, 'from botorch.acquisition.monte_carlo import qSimpleRegret\n'), ((2622, 2672), 'botorch.utils.get_objective_weights_transform', 'get_objective_weights_transform', (['objective_weights'], {}), '(objective_weights)\n', (2653, 2672), False, 'from botorch.utils import get_objective_weights_transform, get_outcome_constraint_transforms\n'), ((2729, 2765), 'botorch.acquisition.objective.GenericMCObjective', 'GenericMCObjective', ([], {'objective': 'obj_tf'}), '(objective=obj_tf)\n', (2747, 2765), False, 'from botorch.acquisition.objective import ConstrainedMCObjective, GenericMCObjective\n'), ((2794, 2848), 'botorch.utils.get_outcome_constraint_transforms', 'get_outcome_constraint_transforms', (['outcome_constraints'], {}), '(outcome_constraints)\n', (2827, 2848), False, 'from botorch.utils import get_objective_weights_transform, get_outcome_constraint_transforms\n'), ((2868, 2932), 'botorch.acquisition.utils.get_infeasible_cost', 'get_infeasible_cost', ([], {'X': 'X_observed', 'model': 'model', 'objective': 'obj_tf'}), '(X=X_observed, model=model, objective=obj_tf)\n', (2887, 2932), False, 'from botorch.acquisition.utils import get_infeasible_cost\n'), ((2953, 3050), 'botorch.acquisition.objective.ConstrainedMCObjective', 'ConstrainedMCObjective', ([], {'objective': 'obj_tf', 'constraints': '(con_tfs or [])', 'infeasible_cost': 'inf_cost'}), '(objective=obj_tf, constraints=con_tfs or [],\n infeasible_cost=inf_cost)\n', (2975, 3050), False, 'from botorch.acquisition.objective import ConstrainedMCObjective, GenericMCObjective\n')]
fanyu2021/fyAutowareAuto
src/drivers/velodyne_nodes/test/velodyne_node.test.py
073661c0634de671ff01bda8a316a5ce10c96ca9
# Copyright 2018 the Autoware Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #    http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Co-developed by Tier IV, Inc. and Apex.AI, Inc. import ament_index_python import launch import launch.actions import launch_ros.actions import lidar_integration def generate_test_description(ready_fn): PORT = lidar_integration.get_open_port() # The node under test and the checker node that will pass/fail our tests: test_topic = "veloyne_cloud_node_test_topic" velodyne_cloud_node = launch_ros.actions.Node( package="velodyne_nodes", node_executable="velodyne_cloud_node_exe", node_name="vlp16_driver_node", node_namespace="lidar_front", parameters=[ "{}/param/vlp16_test.param.yaml".format( ament_index_python.get_package_share_directory("velodyne_nodes") ), { "port": PORT, "expected_num_subscribers": 1, } ], remappings=[("points_raw", test_topic)], arguments=["--model", "vlp16"] ) pcl_checker = lidar_integration.make_pcl_checker( topic=test_topic, size=55000, period=100, period_tolerance=2.2, size_tolerance=1.4, ) return lidar_integration.get_lidar_launch_description( test_nodes=[velodyne_cloud_node], checkers=[pcl_checker], other_actions=[ launch.actions.OpaqueFunction(function=lambda context: ready_fn()) ], port=PORT ) # Test cases are created automatically by the lidar_integration package. We just need to # instantiate them active = lidar_integration.make_active_tests() after_shutdown = lidar_integration.make_post_shutdown_tests()
[((2139, 2176), 'lidar_integration.make_active_tests', 'lidar_integration.make_active_tests', ([], {}), '()\n', (2174, 2176), False, 'import lidar_integration\n'), ((2195, 2239), 'lidar_integration.make_post_shutdown_tests', 'lidar_integration.make_post_shutdown_tests', ([], {}), '()\n', (2237, 2239), False, 'import lidar_integration\n'), ((807, 840), 'lidar_integration.get_open_port', 'lidar_integration.get_open_port', ([], {}), '()\n', (838, 840), False, 'import lidar_integration\n'), ((1581, 1703), 'lidar_integration.make_pcl_checker', 'lidar_integration.make_pcl_checker', ([], {'topic': 'test_topic', 'size': '(55000)', 'period': '(100)', 'period_tolerance': '(2.2)', 'size_tolerance': '(1.4)'}), '(topic=test_topic, size=55000, period=100,\n period_tolerance=2.2, size_tolerance=1.4)\n', (1615, 1703), False, 'import lidar_integration\n'), ((1272, 1336), 'ament_index_python.get_package_share_directory', 'ament_index_python.get_package_share_directory', (['"""velodyne_nodes"""'], {}), "('velodyne_nodes')\n", (1318, 1336), False, 'import ament_index_python\n')]
manhcuogntin4/Color-transfer
example.py
14b139efa86bb49a07a118c905d9d82cd7ad10d3
# USAGE # python example.py --source images/ocean_sunset.jpg --target images/ocean_day.jpg # import the necessary packages from color_transfer import color_transfer import numpy as np import argparse import cv2 def show_image(title, image, width = 300): # resize the image to have a constant width, just to # make displaying the images take up less screen real # estate r = width / float(image.shape[1]) dim = (width, int(image.shape[0] * r)) resized = cv2.resize(image, dim, interpolation = cv2.INTER_AREA) # show the resized image cv2.imshow(title, resized) # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-s", "--source", required = True, help = "Path to the source image") ap.add_argument("-t", "--target", required = True, help = "Path to the target image") ap.add_argument("-o", "--output", help = "Path to the output image (optional)") args = vars(ap.parse_args()) # load the images source = cv2.imread(args["source"]) target = cv2.imread(args["target"]) # transfer the color distribution from the source image # to the target image transfer = color_transfer(source, target) # check to see if the output image should be saved if args["output"] is not None: cv2.imwrite(args["output"], transfer) # show the images and wait for a key press show_image("Source", source) show_image("Target", target) show_image("Transfer", transfer) cv2.waitKey(0)
[((633, 658), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (656, 658), False, 'import argparse\n'), ((970, 996), 'cv2.imread', 'cv2.imread', (["args['source']"], {}), "(args['source'])\n", (980, 996), False, 'import cv2\n'), ((1006, 1032), 'cv2.imread', 'cv2.imread', (["args['target']"], {}), "(args['target'])\n", (1016, 1032), False, 'import cv2\n'), ((1123, 1153), 'color_transfer.color_transfer', 'color_transfer', (['source', 'target'], {}), '(source, target)\n', (1137, 1153), False, 'from color_transfer import color_transfer\n'), ((1411, 1425), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (1422, 1425), False, 'import cv2\n'), ((461, 513), 'cv2.resize', 'cv2.resize', (['image', 'dim'], {'interpolation': 'cv2.INTER_AREA'}), '(image, dim, interpolation=cv2.INTER_AREA)\n', (471, 513), False, 'import cv2\n'), ((544, 570), 'cv2.imshow', 'cv2.imshow', (['title', 'resized'], {}), '(title, resized)\n', (554, 570), False, 'import cv2\n'), ((1238, 1275), 'cv2.imwrite', 'cv2.imwrite', (["args['output']", 'transfer'], {}), "(args['output'], transfer)\n", (1249, 1275), False, 'import cv2\n')]
heethesh/Argoverse-HDMap-Update
scripts/registration_pipeline.py
61e9bf965a1fa7a0c74a2671457a2778d849bfe5
import copy import numpy as np import open3d as o3d from tqdm import tqdm from scipy import stats import utils_o3d as utils def remove_ground_plane(pcd, z_thresh=-2.7): cropped = copy.deepcopy(pcd) cropped_points = np.array(cropped.points) cropped_points = cropped_points[cropped_points[:, -1] > z_thresh] pcd_final = o3d.geometry.PointCloud() pcd_final.points = o3d.utility.Vector3dVector(cropped_points) return pcd_final def remove_y_plane(pcd, y_thresh=5): cropped = copy.deepcopy(pcd) cropped_points = np.array(cropped.points) cropped_points = cropped_points[cropped_points[:, 0] < y_thresh] cropped_points[:, -1] = -cropped_points[:, -1] pcd_final = o3d.geometry.PointCloud() pcd_final.points = o3d.utility.Vector3dVector(cropped_points) return pcd_final def compute_features(pcd, voxel_size, normals_nn=100, features_nn=120, downsample=True): normals_radius = voxel_size * 2 features_radius = voxel_size * 4 # Downsample the point cloud using Voxel grids if downsample: print(':: Input size:', np.array(pcd.points).shape) pcd_down = utils.downsample_point_cloud(pcd, voxel_size) print(':: Downsample with a voxel size %.3f' % voxel_size) print(':: Downsample size', np.array(pcd_down.points).shape) else: pcd_down = copy.deepcopy(pcd) # Estimate normals print(':: Estimate normal with search radius %.3f' % normals_radius) pcd_down.estimate_normals( o3d.geometry.KDTreeSearchParamHybrid(radius=normals_radius, max_nn=normals_nn)) # Compute FPFH features print(':: Compute FPFH feature with search radius %.3f' % features_radius) features = o3d.registration.compute_fpfh_feature(pcd_down, o3d.geometry.KDTreeSearchParamHybrid(radius=features_radius, max_nn=features_nn)) return pcd_down, features def match_features(pcd0, pcd1, feature0, feature1, thresh=None, display=False): pcd0, pcd1 = copy.deepcopy(pcd0), copy.deepcopy(pcd1) print(':: Input size 0:', np.array(pcd0.points).shape) print(':: Input size 1:', np.array(pcd1.points).shape) print(':: Features size 0:', np.array(feature0.data).shape) print(':: Features size 1:', np.array(feature1.data).shape) utils.paint_uniform_color(pcd0, color=[1, 0.706, 0]) utils.paint_uniform_color(pcd1, color=[0, 0.651, 0.929]) scores, indices = [], [] fpfh_tree = o3d.geometry.KDTreeFlann(feature1) for i in tqdm(range(len(pcd0.points)), desc=':: Feature Matching'): [_, idx, _] = fpfh_tree.search_knn_vector_xd(feature0.data[:, i], 1) scores.append(np.linalg.norm(pcd0.points[i] - pcd1.points[idx[0]])) indices.append([i, idx[0]]) scores, indices = np.array(scores), np.array(indices) median = np.median(scores) if thresh is None: thresh = median inliers_idx = np.where(scores <= thresh)[0] pcd0_idx = indices[inliers_idx, 0] pcd1_idx = indices[inliers_idx, 1] print(':: Score stats: Min=%0.3f, Max=%0.3f, Median=%0.3f, N<Thresh=%d' % ( np.min(scores), np.max(scores), median, len(inliers_idx))) if display: for i, j in zip(pcd0_idx, pcd1_idx): pcd0.colors[i] = [1, 0, 0] pcd1.colors[j] = [1, 0, 0] utils.display([pcd0, pcd1]) return pcd0_idx, pcd1_idx def estimate_scale(pcd0, pcd1, pcd0_idx, pcd1_idx, top_percent=1.0, ransac_iters=5000, sample_size=50): points0 = np.asarray(pcd0.points)[pcd0_idx] points1 = np.asarray(pcd1.points)[pcd1_idx] mean0 = np.mean(points0, axis=0) mean1 = np.mean(points1, axis=0) top_count = int(top_percent * len(pcd0_idx)) assert top_count > sample_size, 'top_count <= sample_size' scales = [] for i in tqdm(range(ransac_iters), desc=':: Scale Estimation RANSAC'): args = np.random.choice(top_count, sample_size, replace=False) points0_r = points0[args] points1_r = points1[args] score0 = np.sum((points0_r - mean0) ** 2, axis=1) score1 = np.sum((points1_r - mean1) ** 2, axis=1) scale = np.sqrt(np.mean(score1) / np.mean(score0)) scales.append(scale) best_scale = stats.mode(scales)[0][0] print(':: Estimated scale:', best_scale) return best_scale def global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size, distance_threshold=1.0, num_iters=4000000, num_val_iters=500): print(':: Distance threshold %.3f' % distance_threshold) result = o3d.registration.registration_ransac_based_on_feature_matching( source_down, target_down, source_fpfh, target_fpfh, distance_threshold, o3d.registration.TransformationEstimationPointToPoint(False), 4, [ o3d.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9), o3d.registration.CorrespondenceCheckerBasedOnDistance( distance_threshold) ], o3d.registration.RANSACConvergenceCriteria(num_iters, num_val_iters)) return result def fast_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size): distance_threshold = 1.0 result = o3d.registration.registration_fast_based_on_feature_matching( source_down, target_down, source_fpfh, target_fpfh, o3d.registration.FastGlobalRegistrationOption( maximum_correspondence_distance=distance_threshold)) return result def refine_registration(source, target, source_fpfh, target_fpfh, initial_result, voxel_size): distance_threshold = 0.1 print(':: Distance threshold %.3f' % distance_threshold) result = o3d.registration.registration_icp( source, target, distance_threshold, initial_result.transformation, o3d.registration.TransformationEstimationPointToPlane()) return result def registration(pcd0, pcd1, feature1, feature2, voxel_size, method='global'): if method == 'global': print('\nRANSAC global registration on scaled point clouds...') initial_result = global_registration(pcd0, pcd1, feature1, feature2, voxel_size) elif method == 'fast_global': print('\nFast global registration on scaled point clouds...') initial_result = fast_global_registration(pcd0, pcd1, feature1, feature2, voxel_size) else: print(':: Registration method not supported') return print(':: Initial registration results:') print(initial_result) print('\nDisplaying initial result...') draw_registration_result(pcd0, pcd1, initial_result.transformation) print('\nRefine registration...') result = refine_registration(pcd0, pcd1, feature1, feature2, initial_result, voxel_size) print(':: Final registration results:') print(result) return result def draw_registration_result(source, target, transformation): source_temp = copy.deepcopy(source) target_temp = copy.deepcopy(target) source_temp.paint_uniform_color([1, 0.706, 0]) target_temp.paint_uniform_color([0, 0.651, 0.929]) source_temp.transform(transformation) o3d.visualization.draw_geometries([source_temp, target_temp]) def run(): voxel_size = 0.2 dso_scale = 0.03 pcd_lidar = o3d.io.read_point_cloud('../maps/scans/scan_050.pcd') pcd_lidar = remove_ground_plane(pcd_lidar) pcd_dso = o3d.io.read_point_cloud('../maps/dso_map_cleaned.pcd') pcd_dso = remove_ground_plane(pcd_dso, z_thresh=4.5) pcd_dso = remove_y_plane(pcd_dso, y_thresh=0.2) # pcd_dso = utils.scale_point_cloud(pcd_dso, dso_scale).rotate([0.5, 0.5, 0.5]).translate([10, 20, 30]) # Ground plane removal results # utils.display(pcds=[pcd_lidar, pcd_dso], colors=[[1, 0.706, 0], [0, 0.651, 0.929]]) # utils.display(pcds=[pcd_dso], colors=[[0, 0.651, 0.929]]) # return print('\nComputing FPFH features for lidar point cloud...') pcd_lidar_down, features_lidar = compute_features(pcd_lidar, voxel_size=voxel_size) print('\nComputing FPFH features for DSO point cloud...') pcd_dso_down, features_dso = compute_features(pcd_dso, voxel_size=voxel_size * (dso_scale if dso_scale < 1 else 1)) print('\nMatching FPFH features...') pcd_lidar_idx, pcd_dso_idx = match_features(pcd_lidar_down, pcd_dso_down, features_lidar, features_dso, thresh=None) print('\nEstimating scale using matches...') scale = estimate_scale(pcd_lidar_down, pcd_dso_down, pcd_lidar_idx, pcd_dso_idx) scale = 0.06 print('\nCorrecting scale...') pcd_dso_scaled = utils.scale_point_cloud(pcd_dso, 1.0 / scale) utils.display(pcds=[pcd_lidar, pcd_dso_scaled], colors=[[1, 0.706, 0], [0, 0.651, 0.929]]) # return # Registration pcd_dso_scaled_down, features_dso_scaled = compute_features( pcd_dso_scaled, voxel_size=voxel_size) result = registration(pcd_lidar_down, pcd_dso_scaled_down, features_lidar, features_dso_scaled, voxel_size, method='global') print('\nDisplaying result...') draw_registration_result(pcd_lidar, pcd_dso_scaled, result.transformation) if __name__ == '__main__': run()
[((187, 205), 'copy.deepcopy', 'copy.deepcopy', (['pcd'], {}), '(pcd)\n', (200, 205), False, 'import copy\n'), ((227, 251), 'numpy.array', 'np.array', (['cropped.points'], {}), '(cropped.points)\n', (235, 251), True, 'import numpy as np\n'), ((338, 363), 'open3d.geometry.PointCloud', 'o3d.geometry.PointCloud', ([], {}), '()\n', (361, 363), True, 'import open3d as o3d\n'), ((387, 429), 'open3d.utility.Vector3dVector', 'o3d.utility.Vector3dVector', (['cropped_points'], {}), '(cropped_points)\n', (413, 429), True, 'import open3d as o3d\n'), ((504, 522), 'copy.deepcopy', 'copy.deepcopy', (['pcd'], {}), '(pcd)\n', (517, 522), False, 'import copy\n'), ((544, 568), 'numpy.array', 'np.array', (['cropped.points'], {}), '(cropped.points)\n', (552, 568), True, 'import numpy as np\n'), ((705, 730), 'open3d.geometry.PointCloud', 'o3d.geometry.PointCloud', ([], {}), '()\n', (728, 730), True, 'import open3d as o3d\n'), ((754, 796), 'open3d.utility.Vector3dVector', 'o3d.utility.Vector3dVector', (['cropped_points'], {}), '(cropped_points)\n', (780, 796), True, 'import open3d as o3d\n'), ((2258, 2310), 'utils_o3d.paint_uniform_color', 'utils.paint_uniform_color', (['pcd0'], {'color': '[1, 0.706, 0]'}), '(pcd0, color=[1, 0.706, 0])\n', (2283, 2310), True, 'import utils_o3d as utils\n'), ((2315, 2371), 'utils_o3d.paint_uniform_color', 'utils.paint_uniform_color', (['pcd1'], {'color': '[0, 0.651, 0.929]'}), '(pcd1, color=[0, 0.651, 0.929])\n', (2340, 2371), True, 'import utils_o3d as utils\n'), ((2418, 2452), 'open3d.geometry.KDTreeFlann', 'o3d.geometry.KDTreeFlann', (['feature1'], {}), '(feature1)\n', (2442, 2452), True, 'import open3d as o3d\n'), ((2786, 2803), 'numpy.median', 'np.median', (['scores'], {}), '(scores)\n', (2795, 2803), True, 'import numpy as np\n'), ((3542, 3566), 'numpy.mean', 'np.mean', (['points0'], {'axis': '(0)'}), '(points0, axis=0)\n', (3549, 3566), True, 'import numpy as np\n'), ((3579, 3603), 'numpy.mean', 'np.mean', (['points1'], {'axis': '(0)'}), '(points1, axis=0)\n', (3586, 3603), True, 'import numpy as np\n'), ((6823, 6844), 'copy.deepcopy', 'copy.deepcopy', (['source'], {}), '(source)\n', (6836, 6844), False, 'import copy\n'), ((6863, 6884), 'copy.deepcopy', 'copy.deepcopy', (['target'], {}), '(target)\n', (6876, 6884), False, 'import copy\n'), ((7037, 7098), 'open3d.visualization.draw_geometries', 'o3d.visualization.draw_geometries', (['[source_temp, target_temp]'], {}), '([source_temp, target_temp])\n', (7070, 7098), True, 'import open3d as o3d\n'), ((7171, 7224), 'open3d.io.read_point_cloud', 'o3d.io.read_point_cloud', (['"""../maps/scans/scan_050.pcd"""'], {}), "('../maps/scans/scan_050.pcd')\n", (7194, 7224), True, 'import open3d as o3d\n'), ((7287, 7341), 'open3d.io.read_point_cloud', 'o3d.io.read_point_cloud', (['"""../maps/dso_map_cleaned.pcd"""'], {}), "('../maps/dso_map_cleaned.pcd')\n", (7310, 7341), True, 'import open3d as o3d\n'), ((8478, 8523), 'utils_o3d.scale_point_cloud', 'utils.scale_point_cloud', (['pcd_dso', '(1.0 / scale)'], {}), '(pcd_dso, 1.0 / scale)\n', (8501, 8523), True, 'import utils_o3d as utils\n'), ((8528, 8623), 'utils_o3d.display', 'utils.display', ([], {'pcds': '[pcd_lidar, pcd_dso_scaled]', 'colors': '[[1, 0.706, 0], [0, 0.651, 0.929]]'}), '(pcds=[pcd_lidar, pcd_dso_scaled], colors=[[1, 0.706, 0], [0, \n 0.651, 0.929]])\n', (8541, 8623), True, 'import utils_o3d as utils\n'), ((1134, 1179), 'utils_o3d.downsample_point_cloud', 'utils.downsample_point_cloud', (['pcd', 'voxel_size'], {}), '(pcd, voxel_size)\n', (1162, 1179), True, 'import utils_o3d as utils\n'), ((1337, 1355), 'copy.deepcopy', 'copy.deepcopy', (['pcd'], {}), '(pcd)\n', (1350, 1355), False, 'import copy\n'), ((1494, 1572), 'open3d.geometry.KDTreeSearchParamHybrid', 'o3d.geometry.KDTreeSearchParamHybrid', ([], {'radius': 'normals_radius', 'max_nn': 'normals_nn'}), '(radius=normals_radius, max_nn=normals_nn)\n', (1530, 1572), True, 'import open3d as o3d\n'), ((1754, 1839), 'open3d.geometry.KDTreeSearchParamHybrid', 'o3d.geometry.KDTreeSearchParamHybrid', ([], {'radius': 'features_radius', 'max_nn': 'features_nn'}), '(radius=features_radius, max_nn=features_nn\n )\n', (1790, 1839), True, 'import open3d as o3d\n'), ((1966, 1985), 'copy.deepcopy', 'copy.deepcopy', (['pcd0'], {}), '(pcd0)\n', (1979, 1985), False, 'import copy\n'), ((1987, 2006), 'copy.deepcopy', 'copy.deepcopy', (['pcd1'], {}), '(pcd1)\n', (2000, 2006), False, 'import copy\n'), ((2737, 2753), 'numpy.array', 'np.array', (['scores'], {}), '(scores)\n', (2745, 2753), True, 'import numpy as np\n'), ((2755, 2772), 'numpy.array', 'np.array', (['indices'], {}), '(indices)\n', (2763, 2772), True, 'import numpy as np\n'), ((2861, 2887), 'numpy.where', 'np.where', (['(scores <= thresh)'], {}), '(scores <= thresh)\n', (2869, 2887), True, 'import numpy as np\n'), ((3265, 3292), 'utils_o3d.display', 'utils.display', (['[pcd0, pcd1]'], {}), '([pcd0, pcd1])\n', (3278, 3292), True, 'import utils_o3d as utils\n'), ((3448, 3471), 'numpy.asarray', 'np.asarray', (['pcd0.points'], {}), '(pcd0.points)\n', (3458, 3471), True, 'import numpy as np\n'), ((3496, 3519), 'numpy.asarray', 'np.asarray', (['pcd1.points'], {}), '(pcd1.points)\n', (3506, 3519), True, 'import numpy as np\n'), ((3823, 3878), 'numpy.random.choice', 'np.random.choice', (['top_count', 'sample_size'], {'replace': '(False)'}), '(top_count, sample_size, replace=False)\n', (3839, 3878), True, 'import numpy as np\n'), ((3965, 4005), 'numpy.sum', 'np.sum', (['((points0_r - mean0) ** 2)'], {'axis': '(1)'}), '((points0_r - mean0) ** 2, axis=1)\n', (3971, 4005), True, 'import numpy as np\n'), ((4023, 4063), 'numpy.sum', 'np.sum', (['((points1_r - mean1) ** 2)'], {'axis': '(1)'}), '((points1_r - mean1) ** 2, axis=1)\n', (4029, 4063), True, 'import numpy as np\n'), ((4647, 4707), 'open3d.registration.TransformationEstimationPointToPoint', 'o3d.registration.TransformationEstimationPointToPoint', (['(False)'], {}), '(False)\n', (4700, 4707), True, 'import open3d as o3d\n'), ((4902, 4970), 'open3d.registration.RANSACConvergenceCriteria', 'o3d.registration.RANSACConvergenceCriteria', (['num_iters', 'num_val_iters'], {}), '(num_iters, num_val_iters)\n', (4944, 4970), True, 'import open3d as o3d\n'), ((5263, 5365), 'open3d.registration.FastGlobalRegistrationOption', 'o3d.registration.FastGlobalRegistrationOption', ([], {'maximum_correspondence_distance': 'distance_threshold'}), '(maximum_correspondence_distance\n =distance_threshold)\n', (5308, 5365), True, 'import open3d as o3d\n'), ((5713, 5768), 'open3d.registration.TransformationEstimationPointToPlane', 'o3d.registration.TransformationEstimationPointToPlane', ([], {}), '()\n', (5766, 5768), True, 'import open3d as o3d\n'), ((2037, 2058), 'numpy.array', 'np.array', (['pcd0.points'], {}), '(pcd0.points)\n', (2045, 2058), True, 'import numpy as np\n'), ((2096, 2117), 'numpy.array', 'np.array', (['pcd1.points'], {}), '(pcd1.points)\n', (2104, 2117), True, 'import numpy as np\n'), ((2158, 2181), 'numpy.array', 'np.array', (['feature0.data'], {}), '(feature0.data)\n', (2166, 2181), True, 'import numpy as np\n'), ((2222, 2245), 'numpy.array', 'np.array', (['feature1.data'], {}), '(feature1.data)\n', (2230, 2245), True, 'import numpy as np\n'), ((2624, 2676), 'numpy.linalg.norm', 'np.linalg.norm', (['(pcd0.points[i] - pcd1.points[idx[0]])'], {}), '(pcd0.points[i] - pcd1.points[idx[0]])\n', (2638, 2676), True, 'import numpy as np\n'), ((4170, 4188), 'scipy.stats.mode', 'stats.mode', (['scales'], {}), '(scales)\n', (4180, 4188), False, 'from scipy import stats\n'), ((4726, 4786), 'open3d.registration.CorrespondenceCheckerBasedOnEdgeLength', 'o3d.registration.CorrespondenceCheckerBasedOnEdgeLength', (['(0.9)'], {}), '(0.9)\n', (4781, 4786), True, 'import open3d as o3d\n'), ((4800, 4873), 'open3d.registration.CorrespondenceCheckerBasedOnDistance', 'o3d.registration.CorrespondenceCheckerBasedOnDistance', (['distance_threshold'], {}), '(distance_threshold)\n', (4853, 4873), True, 'import open3d as o3d\n'), ((1087, 1107), 'numpy.array', 'np.array', (['pcd.points'], {}), '(pcd.points)\n', (1095, 1107), True, 'import numpy as np\n'), ((1283, 1308), 'numpy.array', 'np.array', (['pcd_down.points'], {}), '(pcd_down.points)\n', (1291, 1308), True, 'import numpy as np\n'), ((3058, 3072), 'numpy.min', 'np.min', (['scores'], {}), '(scores)\n', (3064, 3072), True, 'import numpy as np\n'), ((3074, 3088), 'numpy.max', 'np.max', (['scores'], {}), '(scores)\n', (3080, 3088), True, 'import numpy as np\n'), ((4088, 4103), 'numpy.mean', 'np.mean', (['score1'], {}), '(score1)\n', (4095, 4103), True, 'import numpy as np\n'), ((4106, 4121), 'numpy.mean', 'np.mean', (['score0'], {}), '(score0)\n', (4113, 4121), True, 'import numpy as np\n')]
michaelcraige/neo4j-python-driver
neo4j/aio/__init__.py
27d0ce3f1941c4b29d0f050c6186a4f48ae4d30a
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Copyright (c) 2002-2019 "Neo4j," # Neo4j Sweden AB [http://neo4j.com] # # This file is part of Neo4j. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from asyncio import ( IncompleteReadError, Lock, StreamReader, StreamReaderProtocol, StreamWriter, get_event_loop, wait, ) from collections import deque from logging import getLogger from os import strerror from random import choice from ssl import SSLError from sys import platform, version_info from time import perf_counter from neo4j.addressing import Address from neo4j.aio._collections import WaitingList from neo4j.aio._mixins import Addressable, Breakable from neo4j.errors import ( BoltError, BoltConnectionError, BoltSecurityError, BoltConnectionBroken, BoltHandshakeError, Neo4jAvailabilityError, ) from neo4j.api import Version from neo4j.conf import Config, PoolConfig from neo4j.meta import version as neo4j_version from neo4j.routing import RoutingTable log = getLogger(__name__) MAGIC = b"\x60\x60\xB0\x17" class Bolt(Addressable, object): #: True if this instance uses secure communication, false #: otherwise. secure = None #: As a class attribute, this denotes the version of Bolt handled #: by that subclass. As an instance attribute, this represents the #: version of the protocol in use. protocol_version = () # Record of the time at which this connection was opened. __t_opened = None # Handle to the StreamReader object. __reader = None # Handle to the StreamWriter object, which can be used on close. __writer = None # Flag to indicate that the connection is closed __closed = False @classmethod def default_user_agent(cls): """ Return the default user agent string for a connection. """ template = "neo4j-python/{} Python/{}.{}.{}-{}-{} ({})" fields = (neo4j_version,) + tuple(version_info) + (platform,) return template.format(*fields) @classmethod def protocol_handlers(cls, protocol_version=None): """ Return a dictionary of available Bolt protocol handlers, keyed by version tuple. If an explicit protocol version is provided, the dictionary will contain either zero or one items, depending on whether that version is supported. If no protocol version is provided, all available versions will be returned. :param protocol_version: tuple identifying a specific protocol version (e.g. (3, 5)) or None :return: dictionary of version tuple to handler class for all relevant and supported protocol versions :raise TypeError: if protocol version is not passed in a tuple """ # Carry out subclass imports locally to avoid circular # dependency issues. from neo4j.aio.bolt3 import Bolt3 handlers = {bolt.protocol_version: bolt for bolt in [ # This list can be updated as protocol # versions are added and removed. Bolt3, ]} if protocol_version is None: return handlers if not isinstance(protocol_version, tuple): raise TypeError("Protocol version must be specified as a tuple") return {version: handler for version, handler in handlers.items() if version == protocol_version} @classmethod def opener(cls, auth=None, **config): """ Create and return an opener function for a given set of configuration parameters. This is useful when multiple servers share the same configuration details, such as within a connection pool. """ async def f(address, *, loop=None): return await Bolt.open(address, auth=auth, loop=loop, **config) return f @classmethod async def open(cls, address, *, auth=None, loop=None, **config): """ Open a socket connection and perform protocol version negotiation, in order to construct and return a Bolt client instance for a supported Bolt protocol version. :param address: tuples of host and port, such as ("127.0.0.1", 7687) :param auth: :param loop: :param config: :return: instance of a Bolt subclass :raise BoltConnectionError: if a connection could not be established :raise BoltConnectionLost: if an I/O error occurs on the underlying socket connection :raise BoltHandshakeError: if handshake completes without a successful negotiation :raise TypeError: if any of the arguments provided are passed as incompatible types :raise ValueError: if any of the arguments provided are passed with unsupported values """ # Args address = Address(address) if loop is None: loop = get_event_loop() config = PoolConfig.consume(config) # Connect reader, writer = await cls._connect(address, loop, config) try: # Handshake subclass = await cls._handshake(reader, writer, config.protocol_version) # Instantiation obj = subclass(reader, writer) obj.secure = bool(config.secure) assert hasattr(obj, "__ainit__") await obj.__ainit__(auth) return obj except BoltError: writer.write_eof() writer.close() raise @classmethod async def _connect(cls, address, loop, config): """ Attempt to establish a TCP connection to the address provided. :param address: :param loop: :param config: :return: a 3-tuple of reader, writer and security settings for the new connection :raise BoltConnectionError: if a connection could not be established """ assert isinstance(address, Address) assert loop is not None assert isinstance(config, Config) connection_args = { "host": address.host, "port": address.port, "family": address.family, # TODO: other args } ssl_context = config.get_ssl_context() if ssl_context: connection_args["ssl"] = ssl_context connection_args["server_hostname"] = address.host log.debug("[#0000] C: <DIAL> %s", address) try: reader = BoltStreamReader(loop=loop) protocol = StreamReaderProtocol(reader, loop=loop) transport, _ = await loop.create_connection(lambda: protocol, **connection_args) writer = BoltStreamWriter(transport, protocol, reader, loop) except SSLError as err: log.debug("[#%04X] S: <REJECT> %s (%d %s)", 0, address, err.errno, strerror(err.errno)) raise BoltSecurityError("Failed to establish a secure connection", address) from err except OSError as err: log.debug("[#%04X] S: <REJECT> %s (%d %s)", 0, address, err.errno, strerror(err.errno)) raise BoltConnectionError("Failed to establish a connection", address) from err else: local_address = Address(transport.get_extra_info("sockname")) remote_address = Address(transport.get_extra_info("peername")) log.debug("[#%04X] S: <ACCEPT> %s -> %s", local_address.port_number, local_address, remote_address) return reader, writer @classmethod async def _handshake(cls, reader, writer, protocol_version): """ Carry out a Bolt handshake, optionally requesting a specific protocol version. :param reader: :param writer: :param protocol_version: :return: :raise BoltConnectionLost: if an I/O error occurs on the underlying socket connection :raise BoltHandshakeError: if handshake completes without a successful negotiation """ local_address = Address(writer.transport.get_extra_info("sockname")) remote_address = Address(writer.transport.get_extra_info("peername")) handlers = cls.protocol_handlers(protocol_version) if not handlers: raise ValueError("No protocol handlers available (requested Bolt %r)", protocol_version) offered_versions = sorted(handlers.keys(), reverse=True)[:4] request_data = MAGIC + b"".join( v.to_bytes() for v in offered_versions).ljust(16, b"\x00") log.debug("[#%04X] C: <HANDSHAKE> %r", local_address.port_number, request_data) writer.write(request_data) await writer.drain() response_data = await reader.readexactly(4) log.debug("[#%04X] S: <HANDSHAKE> %r", local_address.port_number, response_data) try: agreed_version = Version.from_bytes(response_data) except ValueError as err: writer.close() raise BoltHandshakeError("Unexpected handshake response %r" % response_data, remote_address, request_data, response_data) from err try: subclass = handlers[agreed_version] except KeyError: log.debug("Unsupported Bolt protocol version %s", agreed_version) raise BoltHandshakeError("Unsupported Bolt protocol version", remote_address, request_data, response_data) else: return subclass def __new__(cls, reader, writer): obj = super().__new__(cls) obj.__t_opened = perf_counter() obj.__reader = reader obj.__writer = writer Addressable.set_transport(obj, writer.transport) return obj def __repr__(self): return "<Bolt address=%r protocol_version=%r>" % (self.remote_address, self.protocol_version) async def __ainit__(self, auth): """ Asynchronous initializer for implementation by subclasses. :param auth: """ @property def age(self): """ The age of this connection in seconds. """ return perf_counter() - self.__t_opened @property def broken(self): """ Flag to indicate whether this connection has been broken by the network or remote peer. """ return self.__reader.broken or self.__writer.broken @property def closed(self): """ Flag to indicate whether this connection has been closed locally.""" return self.__closed async def close(self): """ Close the connection. """ if self.closed: return if not self.broken: log.debug("[#%04X] S: <HANGUP>", self.local_address.port_number) self.__writer.write_eof() self.__writer.close() try: await self.__writer.wait_closed() except BoltConnectionBroken: pass self.__closed = True async def reset(self, force=False): """ Reset the connection to a clean state. By default, a RESET message will only be sent if required, i.e. if the connection is not already in a clean state. If forced, this check will be overridden and a RESET will be sent regardless. """ async def run(self, cypher, parameters=None, discard=False, readonly=False, bookmarks=None, timeout=None, metadata=None): """ Run an auto-commit transaction. :param cypher: :param parameters: :param discard: :param readonly: :param bookmarks: :param timeout: :param metadata: :raise BoltTransactionError: if a transaction cannot be carried out at this time """ async def begin(self, readonly=False, bookmarks=None, timeout=None, metadata=None): """ Begin an explicit transaction. :param readonly: :param bookmarks: :param timeout: :param metadata: :return: """ async def run_tx(self, f, args=None, kwargs=None, readonly=False, bookmarks=None, timeout=None, metadata=None): """ Run a transaction function and return the return value from that function. """ async def get_routing_table(self, context=None): """ Fetch a new routing table. :param context: the routing context to use for this call :return: a new RoutingTable instance or None if the given router is currently unable to provide routing information :raise ServiceUnavailable: if no writers are available :raise ProtocolError: if the routing information received is unusable """ class BoltStreamReader(Addressable, Breakable, StreamReader): """ Wrapper for asyncio.streams.StreamReader """ def set_transport(self, transport): Addressable.set_transport(self, transport) StreamReader.set_transport(self, transport) async def readuntil(self, separator=b'\n'): # pragma: no cover assert False # not used by current implementation async def read(self, n=-1): # pragma: no cover assert False # not used by current implementation async def readexactly(self, n): try: return await super().readexactly(n) except IncompleteReadError as err: message = ("Network read incomplete (received {} of {} " "bytes)".format(len(err.partial), err.expected)) log.debug("[#%04X] S: <CLOSE>", self.local_address.port_number) Breakable.set_broken(self) raise BoltConnectionBroken(message, self.remote_address) from err except OSError as err: log.debug("[#%04X] S: <CLOSE> %d %s", err.errno, strerror(err.errno)) Breakable.set_broken(self) raise BoltConnectionBroken("Network read failed", self.remote_address) from err class BoltStreamWriter(Addressable, Breakable, StreamWriter): """ Wrapper for asyncio.streams.StreamWriter """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) Addressable.set_transport(self, self.transport) async def drain(self): try: await super().drain() except OSError as err: log.debug("[#%04X] S: <CLOSE> (%s)", self.local_address.port_number, err) Breakable.set_broken(self) raise BoltConnectionBroken("Network write failed", self.remote_address) from err async def wait_closed(self): try: await super().wait_closed() except AttributeError: # pragma: no cover # This is a dirty hack for Python 3.6, which didn't include # 'wait_closed'. The code polls waiting for the stream # reader inside the protocol to go away which, by the # implementation of 3.6, occurs on 'connection_lost'. This # hack is likely safe unless the implementation of 3.6 # changes in a subsequent patch, and can be removed when # Python 3.6 support is no longer required. # from asyncio import sleep try: while self._protocol._stream_reader is not None: await sleep(0.1) except AttributeError: pass class Pool: def acquire(self, *, force_reset=False, timeout=None): raise NotImplementedError def release(self, *connections, force_reset=False): raise NotImplementedError def close(self, *, force=False): raise NotImplementedError class BoltPool: """ A pool of connections to a single address. :param opener: a function to which an address can be passed that returns an open and ready Bolt connection :param address: the remote address for which this pool operates :param max_size: the maximum permitted number of simultaneous connections that may be owned by this pool, both in-use and free :param max_age: the maximum permitted age, in seconds, for connections to be retained in this pool """ @classmethod async def open(cls, address, *, auth=None, loop=None, **config): """ Create a new connection pool, with an option to seed one or more initial connections. """ pool_config = PoolConfig.consume(config) def opener(addr): return Bolt.open(addr, auth=auth, loop=loop, **pool_config) pool = cls(loop, opener, pool_config, address) seeds = [await pool.acquire() for _ in range(pool_config.init_size)] for seed in seeds: await pool.release(seed) return pool def __init__(self, loop, opener, config, address): if loop is None: self._loop = get_event_loop() else: self._loop = loop self._opener = opener self._address = Address(address) self._max_size = config.max_size self._max_age = config.max_age self._in_use_list = deque() self._free_list = deque() self._waiting_list = WaitingList(loop=self._loop) def __repr__(self): return "<{} addr'{}' [{}{}{}]>".format( self.__class__.__name__, self.address, "|" * len(self._in_use_list), "." * len(self._free_list), " " * (self.max_size - self.size), ) def __contains__(self, cx): return cx in self._in_use_list or cx in self._free_list def __len__(self): return self.size @property def address(self): """ The remote address for which this pool operates. """ return self._address @property def max_size(self): """ The maximum permitted number of simultaneous connections that may be owned by this pool, both in-use and free. """ return self._max_size @max_size.setter def max_size(self, value): old_value = self._max_size self._max_size = value if value > old_value: # The maximum size has grown, so new slots have become # available. Notify any waiting acquirers of this extra # capacity. self._waiting_list.notify() @property def max_age(self): """ The maximum permitted age, in seconds, for connections to be retained in this pool. """ return self._max_age @property def in_use(self): """ The number of connections in this pool that are currently in use. """ return len(self._in_use_list) @property def size(self): """ The total number of connections (both in-use and free) currently owned by this connection pool. """ return len(self._in_use_list) + len(self._free_list) async def _sanitize(self, cx, *, force_reset): """ Attempt to clean up a connection, such that it can be reused. If the connection is broken or closed, it can be discarded. Otherwise, the age of the connection is checked against the maximum age permitted by this pool, consequently closing it on expiry. Should the connection be neither broken, closed nor expired, it will be reset (optionally forcibly so) and the connection object will be returned, indicating success. """ if cx.broken or cx.closed: return None expired = self.max_age is not None and cx.age > self.max_age if expired: await cx.close() return None await cx.reset(force=force_reset) return cx async def acquire(self, *, force_reset=False): """ Acquire a connection from the pool. In the simplest case, this will return an existing open connection, if one is free. If not, and the pool is not full, a new connection will be created. If the pool is full and no free connections are available, this will block until a connection is released, or until the acquire call is cancelled. :param force_reset: if true, the connection will be forcibly reset before being returned; if false, this will only occur if the connection is not already in a clean state :return: a Bolt connection object """ log.debug("Acquiring connection from pool %r", self) cx = None while cx is None or cx.broken or cx.closed: try: # Plan A: select a free connection from the pool cx = self._free_list.popleft() except IndexError: if self.size < self.max_size: # Plan B: if the pool isn't full, open # a new connection cx = await self._opener(self.address) else: # Plan C: wait for more capacity to become # available, then try again log.debug("Joining waiting list") await self._waiting_list.join() else: cx = await self._sanitize(cx, force_reset=force_reset) self._in_use_list.append(cx) return cx async def release(self, cx, *, force_reset=False): """ Release a Bolt connection, putting it back into the pool if the connection is healthy and the pool is not already at capacity. :param cx: the connection to release :param force_reset: if true, the connection will be forcibly reset before being released back into the pool; if false, this will only occur if the connection is not already in a clean state :raise ValueError: if the connection is not currently in use, or if it does not belong to this pool """ log.debug("Releasing connection %r", cx) if cx in self._in_use_list: self._in_use_list.remove(cx) if self.size < self.max_size: # If there is spare capacity in the pool, attempt to # sanitize the connection and return it to the pool. cx = await self._sanitize(cx, force_reset=force_reset) if cx: # Carry on only if sanitation succeeded. if self.size < self.max_size: # Check again if there is still capacity. self._free_list.append(cx) self._waiting_list.notify() else: # Otherwise, close the connection. await cx.close() else: # If the pool is full, simply close the connection. await cx.close() elif cx in self._free_list: raise ValueError("Connection is not in use") else: raise ValueError("Connection does not belong to this pool") async def prune(self): """ Close all free connections. """ await self.__close(self._free_list) async def close(self): """ Close all connections immediately. This does not permanently disable the connection pool, it merely shuts down all open connections, including those in use. Depending on the applications, it may be perfectly acceptable to re-acquire connections after pool closure, which will have the implicit affect of reopening the pool. To close gracefully, allowing work in progress to continue until connections are released, use the following sequence instead: pool.max_size = 0 pool.prune() This will force all future connection acquisitions onto the waiting list, and released connections will be closed instead of being returned to the pool. """ await self.prune() await self.__close(self._in_use_list) async def __close(self, connections): """ Close all connections in the given list. """ closers = deque() while True: try: cx = connections.popleft() except IndexError: break else: closers.append(cx.close()) if closers: await wait(closers, loop=self._loop) class Neo4jPool: """ Connection pool with routing table. """ @classmethod async def open(cls, *addresses, auth=None, routing_context=None, loop=None, **config): pool_config = PoolConfig.consume(config) def opener(addr): return Bolt.open(addr, auth=auth, **pool_config) obj = cls(loop, opener, config, addresses, routing_context) # TODO: get initial routing table and construct await obj._ensure_routing_table_is_fresh() return obj def __init__(self, loop, opener, config, addresses, routing_context): if loop is None: self._loop = get_event_loop() else: self._loop = loop self._opener = opener self._config = config self._pools = {} self._missing_writer = False self._refresh_lock = Lock(loop=self._loop) self._routing_context = routing_context self._max_size_per_host = config.max_size self._initial_routers = addresses self._routing_table = RoutingTable(addresses) self._activate_new_pools_in(self._routing_table) def _activate_new_pools_in(self, routing_table): """ Add pools for addresses that exist in the given routing table but which don't already have pools. """ for address in routing_table.servers(): if address not in self._pools: self._pools[address] = BoltPool(self._loop, self._opener, self._config, address) async def _deactivate_pools_not_in(self, routing_table): """ Deactivate any pools that aren't represented in the given routing table. """ for address in self._pools: if address not in routing_table: await self._deactivate(address) async def _get_routing_table_from(self, *routers): """ Try to update routing tables with the given routers. :return: True if the routing table is successfully updated, otherwise False """ log.debug("Attempting to update routing table from " "{}".format(", ".join(map(repr, routers)))) for router in routers: pool = self._pools[router] cx = await pool.acquire() try: new_routing_table = await cx.get_routing_table(self._routing_context) except BoltError: await self._deactivate(router) else: num_routers = len(new_routing_table.routers) num_readers = len(new_routing_table.readers) num_writers = len(new_routing_table.writers) # No writers are available. This likely indicates a temporary state, # such as leader switching, so we should not signal an error. # When no writers available, then we flag we are reading in absence of writer self._missing_writer = (num_writers == 0) # No routers if num_routers == 0: continue # No readers if num_readers == 0: continue log.debug("Successfully updated routing table from " "{!r} ({!r})".format(router, self._routing_table)) return new_routing_table finally: await pool.release(cx) return None async def _get_routing_table(self): """ Update the routing table from the first router able to provide valid routing information. """ # copied because it can be modified existing_routers = list(self._routing_table.routers) has_tried_initial_routers = False if self._missing_writer: has_tried_initial_routers = True rt = await self._get_routing_table_from(self._initial_routers) if rt: return rt rt = await self._get_routing_table_from(*existing_routers) if rt: return rt if not has_tried_initial_routers and self._initial_routers not in existing_routers: rt = await self._get_routing_table_from(self._initial_routers) if rt: return rt # None of the routers have been successful, so just fail log.error("Unable to retrieve routing information") raise Neo4jAvailabilityError("Unable to retrieve routing information") async def _ensure_routing_table_is_fresh(self, readonly=False): """ Update the routing table if stale. This method performs two freshness checks, before and after acquiring the refresh lock. If the routing table is already fresh on entry, the method exits immediately; otherwise, the refresh lock is acquired and the second freshness check that follows determines whether an update is still required. """ if self._routing_table.is_fresh(readonly=readonly): return async with self._refresh_lock: if self._routing_table.is_fresh(readonly=readonly): if readonly: # if reader is fresh but writers are not, then # we are reading in absence of writer self._missing_writer = not self._routing_table.is_fresh(readonly=False) else: rt = await self._get_routing_table() self._activate_new_pools_in(rt) self._routing_table.update(rt) await self._deactivate_pools_not_in(rt) async def _select_pool(self, readonly=False): """ Selects the pool with the fewest in-use connections. """ await self._ensure_routing_table_is_fresh(readonly=readonly) if readonly: addresses = self._routing_table.readers else: addresses = self._routing_table.writers pools = [pool for address, pool in self._pools.items() if address in addresses] pools_by_usage = {} for pool in pools: pools_by_usage.setdefault(pool.in_use, []).append(pool) if not pools_by_usage: raise Neo4jAvailabilityError("No {} service currently " "available".format("read" if readonly else "write")) return choice(pools_by_usage[min(pools_by_usage)]) async def acquire(self, *, readonly=False, force_reset=False): """ Acquire a connection to a server that can satisfy a set of parameters. :param readonly: true if a readonly connection is required, otherwise false :param force_reset: """ while True: pool = await self._select_pool(readonly=readonly) try: cx = await pool.acquire(force_reset=force_reset) except BoltError: await self._deactivate(pool.address) else: if not readonly: # If we're not acquiring a connection as # readonly, then intercept NotALeader and # ForbiddenOnReadOnlyDatabase errors to # invalidate the routing table. from neo4j.errors import ( NotALeader, ForbiddenOnReadOnlyDatabase, ) def handler(failure): """ Invalidate the routing table before raising the failure. """ log.debug("[#0000] C: <ROUTING> Invalidating routing table") self._routing_table.ttl = 0 raise failure cx.set_failure_handler(NotALeader, handler) cx.set_failure_handler(ForbiddenOnReadOnlyDatabase, handler) return cx async def release(self, connection, *, force_reset=False): """ Release a connection back into the pool. This method is thread safe. """ for pool in self._pools.values(): try: await pool.release(connection, force_reset=force_reset) except ValueError: pass else: # Unhook any custom error handling and exit. from neo4j.errors import ( NotALeader, ForbiddenOnReadOnlyDatabase, ) connection.del_failure_handler(NotALeader) connection.del_failure_handler(ForbiddenOnReadOnlyDatabase) break else: raise ValueError("Connection does not belong to this pool") async def _deactivate(self, address): """ Deactivate an address from the connection pool, if present, remove from the routing table and also closing all idle connections to that address. """ log.debug("[#0000] C: <ROUTING> Deactivating address %r", address) # We use `discard` instead of `remove` here since the former # will not fail if the address has already been removed. self._routing_table.routers.discard(address) self._routing_table.readers.discard(address) self._routing_table.writers.discard(address) log.debug("[#0000] C: <ROUTING> table=%r", self._routing_table) try: pool = self._pools.pop(address) except KeyError: pass # assume the address has already been removed else: pool.max_size = 0 await pool.prune() async def close(self, force=False): """ Close all connections and empty the pool. If forced, in-use connections will be closed immediately; if not, they will remain open until released. """ pools = dict(self._pools) self._pools.clear() for address, pool in pools.items(): if force: await pool.close() else: pool.max_size = 0 await pool.prune() class Neo4j: # The default router address list to use if no addresses are specified. default_router_addresses = Address.parse_list(":7687 :17601 :17687") # TODO # @classmethod # async def open(cls, *addresses, auth=None, security=False, protocol_version=None, loop=None): # opener = Bolt.opener(auth=auth, security=security, protocol_version=protocol_version) # router_addresses = Address.parse_list(" ".join(addresses), default_port=7687) # return cls(opener, router_addresses, loop=loop) # # def __init__(self, opener, router_addresses, loop=None): # self._routers = Neo4jPool(opener, router_addresses or self.default_router_addresses) # self._writers = Neo4jPool(opener) # self._readers = Neo4jPool(opener) # self._routing_table = None # # @property # def routing_table(self): # return self._routing_table # # async def update_routing_table(self): # cx = await self._routers.acquire() # try: # result = await cx.run("CALL dbms.cluster.routing.getRoutingTable($context)", {"context": {}}) # record = await result.single() # self._routing_table = RoutingTable.parse_routing_info([record]) # TODO: handle ValueError? # return self._routing_table # finally: # self._routers.release(cx) # async def main(): # from neo4j.debug import watch; watch("neo4j") # neo4j = await Neo4j.open(":17601 :17602 :17603", auth=("neo4j", "password")) # await neo4j.update_routing_table() # print(neo4j.routing_table) # # # if __name__ == "__main__": # run(main())
[((1531, 1550), 'logging.getLogger', 'getLogger', (['__name__'], {}), '(__name__)\n', (1540, 1550), False, 'from logging import getLogger\n'), ((35280, 35321), 'neo4j.addressing.Address.parse_list', 'Address.parse_list', (['""":7687 :17601 :17687"""'], {}), "(':7687 :17601 :17687')\n", (35298, 35321), False, 'from neo4j.addressing import Address\n'), ((5412, 5428), 'neo4j.addressing.Address', 'Address', (['address'], {}), '(address)\n', (5419, 5428), False, 'from neo4j.addressing import Address\n'), ((5507, 5533), 'neo4j.conf.PoolConfig.consume', 'PoolConfig.consume', (['config'], {}), '(config)\n', (5525, 5533), False, 'from neo4j.conf import Config, PoolConfig\n'), ((10233, 10247), 'time.perf_counter', 'perf_counter', ([], {}), '()\n', (10245, 10247), False, 'from time import perf_counter\n'), ((10316, 10364), 'neo4j.aio._mixins.Addressable.set_transport', 'Addressable.set_transport', (['obj', 'writer.transport'], {}), '(obj, writer.transport)\n', (10341, 10364), False, 'from neo4j.aio._mixins import Addressable, Breakable\n'), ((13638, 13680), 'neo4j.aio._mixins.Addressable.set_transport', 'Addressable.set_transport', (['self', 'transport'], {}), '(self, transport)\n', (13663, 13680), False, 'from neo4j.aio._mixins import Addressable, Breakable\n'), ((13689, 13732), 'asyncio.StreamReader.set_transport', 'StreamReader.set_transport', (['self', 'transport'], {}), '(self, transport)\n', (13715, 13732), False, 'from asyncio import IncompleteReadError, Lock, StreamReader, StreamReaderProtocol, StreamWriter, get_event_loop, wait\n'), ((14905, 14952), 'neo4j.aio._mixins.Addressable.set_transport', 'Addressable.set_transport', (['self', 'self.transport'], {}), '(self, self.transport)\n', (14930, 14952), False, 'from neo4j.aio._mixins import Addressable, Breakable\n'), ((17131, 17157), 'neo4j.conf.PoolConfig.consume', 'PoolConfig.consume', (['config'], {}), '(config)\n', (17149, 17157), False, 'from neo4j.conf import Config, PoolConfig\n'), ((17695, 17711), 'neo4j.addressing.Address', 'Address', (['address'], {}), '(address)\n', (17702, 17711), False, 'from neo4j.addressing import Address\n'), ((17820, 17827), 'collections.deque', 'deque', ([], {}), '()\n', (17825, 17827), False, 'from collections import deque\n'), ((17854, 17861), 'collections.deque', 'deque', ([], {}), '()\n', (17859, 17861), False, 'from collections import deque\n'), ((17891, 17919), 'neo4j.aio._collections.WaitingList', 'WaitingList', ([], {'loop': 'self._loop'}), '(loop=self._loop)\n', (17902, 17919), False, 'from neo4j.aio._collections import WaitingList\n'), ((24871, 24878), 'collections.deque', 'deque', ([], {}), '()\n', (24876, 24878), False, 'from collections import deque\n'), ((25344, 25370), 'neo4j.conf.PoolConfig.consume', 'PoolConfig.consume', (['config'], {}), '(config)\n', (25362, 25370), False, 'from neo4j.conf import Config, PoolConfig\n'), ((25991, 26012), 'asyncio.Lock', 'Lock', ([], {'loop': 'self._loop'}), '(loop=self._loop)\n', (25995, 26012), False, 'from asyncio import IncompleteReadError, Lock, StreamReader, StreamReaderProtocol, StreamWriter, get_event_loop, wait\n'), ((26183, 26206), 'neo4j.routing.RoutingTable', 'RoutingTable', (['addresses'], {}), '(addresses)\n', (26195, 26206), False, 'from neo4j.routing import RoutingTable\n'), ((29513, 29577), 'neo4j.errors.Neo4jAvailabilityError', 'Neo4jAvailabilityError', (['"""Unable to retrieve routing information"""'], {}), "('Unable to retrieve routing information')\n", (29535, 29577), False, 'from neo4j.errors import BoltError, BoltConnectionError, BoltSecurityError, BoltConnectionBroken, BoltHandshakeError, Neo4jAvailabilityError\n'), ((5473, 5489), 'asyncio.get_event_loop', 'get_event_loop', ([], {}), '()\n', (5487, 5489), False, 'from asyncio import IncompleteReadError, Lock, StreamReader, StreamReaderProtocol, StreamWriter, get_event_loop, wait\n'), ((7106, 7145), 'asyncio.StreamReaderProtocol', 'StreamReaderProtocol', (['reader'], {'loop': 'loop'}), '(reader, loop=loop)\n', (7126, 7145), False, 'from asyncio import IncompleteReadError, Lock, StreamReader, StreamReaderProtocol, StreamWriter, get_event_loop, wait\n'), ((9497, 9530), 'neo4j.api.Version.from_bytes', 'Version.from_bytes', (['response_data'], {}), '(response_data)\n', (9515, 9530), False, 'from neo4j.api import Version\n'), ((10824, 10838), 'time.perf_counter', 'perf_counter', ([], {}), '()\n', (10836, 10838), False, 'from time import perf_counter\n'), ((17580, 17596), 'asyncio.get_event_loop', 'get_event_loop', ([], {}), '()\n', (17594, 17596), False, 'from asyncio import IncompleteReadError, Lock, StreamReader, StreamReaderProtocol, StreamWriter, get_event_loop, wait\n'), ((25779, 25795), 'asyncio.get_event_loop', 'get_event_loop', ([], {}), '()\n', (25793, 25795), False, 'from asyncio import IncompleteReadError, Lock, StreamReader, StreamReaderProtocol, StreamWriter, get_event_loop, wait\n'), ((7484, 7553), 'neo4j.errors.BoltSecurityError', 'BoltSecurityError', (['"""Failed to establish a secure connection"""', 'address'], {}), "('Failed to establish a secure connection', address)\n", (7501, 7553), False, 'from neo4j.errors import BoltError, BoltConnectionError, BoltSecurityError, BoltConnectionBroken, BoltHandshakeError, Neo4jAvailabilityError\n'), ((7734, 7798), 'neo4j.errors.BoltConnectionError', 'BoltConnectionError', (['"""Failed to establish a connection"""', 'address'], {}), "('Failed to establish a connection', address)\n", (7753, 7798), False, 'from neo4j.errors import BoltError, BoltConnectionError, BoltSecurityError, BoltConnectionBroken, BoltHandshakeError, Neo4jAvailabilityError\n'), ((9610, 9729), 'neo4j.errors.BoltHandshakeError', 'BoltHandshakeError', (["('Unexpected handshake response %r' % response_data)", 'remote_address', 'request_data', 'response_data'], {}), "('Unexpected handshake response %r' % response_data,\n remote_address, request_data, response_data)\n", (9628, 9729), False, 'from neo4j.errors import BoltError, BoltConnectionError, BoltSecurityError, BoltConnectionBroken, BoltHandshakeError, Neo4jAvailabilityError\n'), ((9954, 10058), 'neo4j.errors.BoltHandshakeError', 'BoltHandshakeError', (['"""Unsupported Bolt protocol version"""', 'remote_address', 'request_data', 'response_data'], {}), "('Unsupported Bolt protocol version', remote_address,\n request_data, response_data)\n", (9972, 10058), False, 'from neo4j.errors import BoltError, BoltConnectionError, BoltSecurityError, BoltConnectionBroken, BoltHandshakeError, Neo4jAvailabilityError\n'), ((14343, 14369), 'neo4j.aio._mixins.Breakable.set_broken', 'Breakable.set_broken', (['self'], {}), '(self)\n', (14363, 14369), False, 'from neo4j.aio._mixins import Addressable, Breakable\n'), ((14388, 14438), 'neo4j.errors.BoltConnectionBroken', 'BoltConnectionBroken', (['message', 'self.remote_address'], {}), '(message, self.remote_address)\n', (14408, 14438), False, 'from neo4j.errors import BoltError, BoltConnectionError, BoltSecurityError, BoltConnectionBroken, BoltHandshakeError, Neo4jAvailabilityError\n'), ((14573, 14599), 'neo4j.aio._mixins.Breakable.set_broken', 'Breakable.set_broken', (['self'], {}), '(self)\n', (14593, 14599), False, 'from neo4j.aio._mixins import Addressable, Breakable\n'), ((14618, 14682), 'neo4j.errors.BoltConnectionBroken', 'BoltConnectionBroken', (['"""Network read failed"""', 'self.remote_address'], {}), "('Network read failed', self.remote_address)\n", (14638, 14682), False, 'from neo4j.errors import BoltError, BoltConnectionError, BoltSecurityError, BoltConnectionBroken, BoltHandshakeError, Neo4jAvailabilityError\n'), ((15157, 15183), 'neo4j.aio._mixins.Breakable.set_broken', 'Breakable.set_broken', (['self'], {}), '(self)\n', (15177, 15183), False, 'from neo4j.aio._mixins import Addressable, Breakable\n'), ((15202, 15267), 'neo4j.errors.BoltConnectionBroken', 'BoltConnectionBroken', (['"""Network write failed"""', 'self.remote_address'], {}), "('Network write failed', self.remote_address)\n", (15222, 15267), False, 'from neo4j.errors import BoltError, BoltConnectionError, BoltSecurityError, BoltConnectionBroken, BoltHandshakeError, Neo4jAvailabilityError\n'), ((25111, 25141), 'asyncio.wait', 'wait', (['closers'], {'loop': 'self._loop'}), '(closers, loop=self._loop)\n', (25115, 25141), False, 'from asyncio import IncompleteReadError, Lock, StreamReader, StreamReaderProtocol, StreamWriter, get_event_loop, wait\n'), ((7445, 7464), 'os.strerror', 'strerror', (['err.errno'], {}), '(err.errno)\n', (7453, 7464), False, 'from os import strerror\n'), ((7695, 7714), 'os.strerror', 'strerror', (['err.errno'], {}), '(err.errno)\n', (7703, 7714), False, 'from os import strerror\n'), ((14540, 14559), 'os.strerror', 'strerror', (['err.errno'], {}), '(err.errno)\n', (14548, 14559), False, 'from os import strerror\n'), ((16043, 16053), 'asyncio.sleep', 'sleep', (['(0.1)'], {}), '(0.1)\n', (16048, 16053), False, 'from asyncio import sleep\n')]
bubriks/feature-store-api
python/setup.py
fa286f257b87a09c081e86811b853b3e564ce197
import os import imp from setuptools import setup, find_packages __version__ = imp.load_source( "hsfs.version", os.path.join("hsfs", "version.py") ).__version__ def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name="hsfs", version=__version__, install_requires=[ "pyhumps==1.6.1", "requests", "furl", "boto3", "pandas", "numpy", "pyjks", "mock", "avro==1.10.2", "sqlalchemy", "PyMySQL", ], extras_require={ "dev": [ "pytest", "flake8", "black"], "docs": [ "mkdocs==1.1.2", "mkdocs-material==6.2.2", "mike==0.5.5", "sphinx==3.5.4", "keras_autodoc @ git+https://[email protected]/moritzmeister/keras-autodoc@split-tags-properties", "markdown-include"], "hive": ["pyhopshive[thrift]"] }, author="Logical Clocks AB", author_email="[email protected]", description="HSFS: An environment independent client to interact with the Hopsworks Featurestore", license="Apache License 2.0", keywords="Hopsworks, Feature Store, Spark, Machine Learning, MLOps, DataOps", url="https://github.com/logicalclocks/feature-store-api", download_url="https://github.com/logicalclocks/feature-store-api/releases/tag/" + __version__, packages=find_packages(), long_description=read("../README.md"), long_description_content_type="text/markdown", classifiers=[ "Development Status :: 5 - Production/Stable", "Topic :: Utilities", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3", "Intended Audience :: Developers", ], )
[((118, 152), 'os.path.join', 'os.path.join', (['"""hsfs"""', '"""version.py"""'], {}), "('hsfs', 'version.py')\n", (130, 152), False, 'import os\n'), ((1456, 1471), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (1469, 1471), False, 'from setuptools import setup, find_packages\n'), ((215, 240), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (230, 240), False, 'import os\n')]
kfrime/yonder
src/server_py3/aps/src/wes/api/v1/users/__init__.py
cd2f491c24f8552aeadd6ee48c601e1194a2e082
#!/usr/bin/env python3 from . import signup, signin, signout, update, info, detail
[]
jamesmcclain/pytorch-multi-class-focal-loss
hubconf.py
de74657769e07dc40be838a6277dea269bfddad0
# Optional list of dependencies required by the package dependencies = ['torch'] from focal_loss import FocalLoss, focal_loss
[]
HongqiangWei/gdal
autotest/ogr/ogr_gpx.py
f7c427926438cc39d31e4459fa6401321f8e62f0
#!/usr/bin/env python ############################################################################### # $Id$ # # Project: GDAL/OGR Test Suite # Purpose: Test GPX driver functionality. # Author: Even Rouault <even dot rouault at mines dash paris dot org> # ############################################################################### # Copyright (c) 2007, Even Rouault <even dot rouault at mines dash paris dot org> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ############################################################################### import os import sys import string sys.path.append( '../pymod' ) import gdaltest import ogrtest import ogr import osr import gdal def ogr_gpx_init(): gdaltest.gpx_ds = None try: gdaltest.gpx_ds = ogr.Open( 'data/test.gpx' ) except: gdaltest.gpx_ds = None if gdaltest.gpx_ds is None: gdaltest.have_gpx = 0 else: gdaltest.have_gpx = 1 if not gdaltest.have_gpx: return 'skip' if gdaltest.gpx_ds.GetLayerCount() != 5: gdaltest.post_reason( 'wrong number of layers' ) return 'fail' return 'success' ############################################################################### # Test waypoints gpx layer. def ogr_gpx_1(): if not gdaltest.have_gpx: return 'skip' if gdaltest.gpx_ds is None: return 'fail' lyr = gdaltest.gpx_ds.GetLayerByName( 'waypoints' ) expect = [2, None] tr = ogrtest.check_features_against_list( lyr, 'ele', expect ) if not tr: return 'fail' lyr.ResetReading() expect = ['waypoint name', None] tr = ogrtest.check_features_against_list( lyr, 'name', expect ) if not tr: return 'fail' lyr.ResetReading() expect = ['href', None] tr = ogrtest.check_features_against_list( lyr, 'link1_href', expect ) if not tr: return 'fail' lyr.ResetReading() expect = ['text', None] tr = ogrtest.check_features_against_list( lyr, 'link1_text', expect ) if not tr: return 'fail' lyr.ResetReading() expect = ['type', None] tr = ogrtest.check_features_against_list( lyr, 'link1_type', expect ) if not tr: return 'fail' lyr.ResetReading() expect = ['href2', None] tr = ogrtest.check_features_against_list( lyr, 'link2_href', expect ) if not tr: return 'fail' lyr.ResetReading() expect = ['text2', None] tr = ogrtest.check_features_against_list( lyr, 'link2_text', expect ) if not tr: return 'fail' lyr.ResetReading() expect = ['type2', None] tr = ogrtest.check_features_against_list( lyr, 'link2_type', expect ) if not tr: return 'fail' lyr.ResetReading() expect = ['2007/11/25 17:58:00+01', None] tr = ogrtest.check_features_against_list( lyr, 'time', expect ) if not tr: return 'fail' lyr.ResetReading() feat = lyr.GetNextFeature() if ogrtest.check_feature_geometry( feat, 'POINT (1 0)', max_error = 0.0001 ) != 0: return 'fail' feat.Destroy() feat = lyr.GetNextFeature() if ogrtest.check_feature_geometry( feat, 'POINT (4 3)', max_error = 0.0001 ) != 0: return 'fail' feat.Destroy() return 'success' ############################################################################### # Test routes gpx layer. def ogr_gpx_2(): if not gdaltest.have_gpx: return 'skip' if gdaltest.gpx_ds is None: return 'fail' lyr = gdaltest.gpx_ds.GetLayerByName( 'routes' ) lyr.ResetReading() feat = lyr.GetNextFeature() if ogrtest.check_feature_geometry( feat, 'LINESTRING (6 5,9 8,12 11)', max_error = 0.0001 ) != 0: return 'fail' feat.Destroy() feat = lyr.GetNextFeature() if ogrtest.check_feature_geometry( feat, 'LINESTRING EMPTY', max_error = 0.0001 ) != 0: return 'fail' feat.Destroy() return 'success' ############################################################################### # Test route_points gpx layer. def ogr_gpx_3(): if not gdaltest.have_gpx: return 'skip' if gdaltest.gpx_ds is None: return 'fail' lyr = gdaltest.gpx_ds.GetLayerByName( 'route_points' ) expect = ['route point name', None, None] tr = ogrtest.check_features_against_list( lyr, 'name', expect ) lyr.ResetReading() feat = lyr.GetNextFeature() if ogrtest.check_feature_geometry( feat, 'POINT (6 5)', max_error = 0.0001 ) != 0: return 'fail' feat.Destroy() return 'success' ############################################################################### # Test tracks gpx layer. def ogr_gpx_4(): if not gdaltest.have_gpx: return 'skip' if gdaltest.gpx_ds is None: return 'fail' lyr = gdaltest.gpx_ds.GetLayerByName( 'tracks' ) lyr.ResetReading() feat = lyr.GetNextFeature() if ogrtest.check_feature_geometry( feat, 'MULTILINESTRING ((15 14,18 17),(21 20,24 23))', max_error = 0.0001 ) != 0: return 'fail' feat.Destroy() feat = lyr.GetNextFeature() if ogrtest.check_feature_geometry( feat, 'MULTILINESTRING EMPTY', max_error = 0.0001 ) != 0: return 'fail' feat.Destroy() feat = lyr.GetNextFeature() f_geom = feat.GetGeometryRef() if f_geom.ExportToWkt()!= 'MULTILINESTRING EMPTY': return 'fail' feat.Destroy() return 'success' ############################################################################### # Test route_points gpx layer. def ogr_gpx_5(): if not gdaltest.have_gpx: return 'skip' if gdaltest.gpx_ds is None: return 'fail' lyr = gdaltest.gpx_ds.GetLayerByName( 'track_points' ) expect = ['track point name', None, None, None] tr = ogrtest.check_features_against_list( lyr, 'name', expect ) lyr.ResetReading() feat = lyr.GetNextFeature() if ogrtest.check_feature_geometry( feat, 'POINT (15 14)', max_error = 0.0001 ) != 0: return 'fail' feat.Destroy() return 'success' ############################################################################### # Copy our small gpx file to a new gpx file. def ogr_gpx_6(): if not gdaltest.have_gpx: return 'skip' if gdaltest.gpx_ds is None: return 'skip' try: gdal.PushErrorHandler( 'CPLQuietErrorHandler' ) ogr.GetDriverByName('CSV').DeleteDataSource( 'tmp/gpx.gpx' ) gdal.PopErrorHandler() except: pass co_opts = [ ] # Duplicate waypoints gpx_lyr = gdaltest.gpx_ds.GetLayerByName( 'waypoints' ) gpx2_ds = ogr.GetDriverByName('GPX').CreateDataSource('tmp/gpx.gpx', options = co_opts ) gpx2_lyr = gpx2_ds.CreateLayer( 'waypoints', geom_type = ogr.wkbPoint ) gpx_lyr.ResetReading() dst_feat = ogr.Feature( feature_def = gpx2_lyr.GetLayerDefn() ) feat = gpx_lyr.GetNextFeature() while feat is not None: dst_feat.SetFrom( feat ) if gpx2_lyr.CreateFeature( dst_feat ) != 0: gdaltest.post_reason('CreateFeature failed.') return 'fail' feat = gpx_lyr.GetNextFeature() dst_feat.Destroy() # Duplicate routes gpx_lyr = gdaltest.gpx_ds.GetLayerByName( 'routes' ) gpx2_lyr = gpx2_ds.CreateLayer( 'routes', geom_type = ogr.wkbLineString ) gpx_lyr.ResetReading() dst_feat = ogr.Feature( feature_def = gpx2_lyr.GetLayerDefn() ) feat = gpx_lyr.GetNextFeature() while feat is not None: dst_feat.SetFrom( feat ) if gpx2_lyr.CreateFeature( dst_feat ) != 0: gdaltest.post_reason('CreateFeature failed.') return 'fail' feat = gpx_lyr.GetNextFeature() dst_feat.Destroy() # Duplicate tracks gpx_lyr = gdaltest.gpx_ds.GetLayerByName( 'tracks' ) gpx2_lyr = gpx2_ds.CreateLayer( 'tracks', geom_type = ogr.wkbMultiLineString ) gpx_lyr.ResetReading() dst_feat = ogr.Feature( feature_def = gpx2_lyr.GetLayerDefn() ) feat = gpx_lyr.GetNextFeature() while feat is not None: dst_feat.SetFrom( feat ) if gpx2_lyr.CreateFeature( dst_feat ) != 0: gdaltest.post_reason('CreateFeature failed.') return 'fail' feat = gpx_lyr.GetNextFeature() dst_feat.Destroy() gpx_lyr = None gpx2_lyr = None # Explicit destroy is required for old-gen python bindings gpx2_ds.Destroy() gdaltest.gpx_ds.Destroy() gdaltest.gpx_ds = ogr.Open( 'tmp/gpx.gpx' ) return 'success' ############################################################################### # Output extra fields as <extensions>. def ogr_gpx_7(): if not gdaltest.have_gpx: return 'skip' if gdaltest.gpx_ds is not None: gdaltest.gpx_ds.Destroy() gdaltest.gpx_ds = None bna_ds = ogr.Open( 'data/bna_for_gpx.bna' ) try: os.remove ('tmp/gpx.gpx') except: pass co_opts = [ 'GPX_USE_EXTENSIONS=yes' ] # Duplicate waypoints bna_lyr = bna_ds.GetLayerByName( 'bna_for_gpx_points' ) gdaltest.gpx_ds = ogr.GetDriverByName('GPX').CreateDataSource('tmp/gpx.gpx', options = co_opts ) gpx_lyr = gdaltest.gpx_ds.CreateLayer( 'waypoints', geom_type = ogr.wkbPoint ) bna_lyr.ResetReading() for i in range(bna_lyr.GetLayerDefn().GetFieldCount()): field_defn = bna_lyr.GetLayerDefn().GetFieldDefn(i) gpx_lyr.CreateField( field_defn ) dst_feat = ogr.Feature( feature_def = gpx_lyr.GetLayerDefn() ) feat = bna_lyr.GetNextFeature() while feat is not None: dst_feat.SetFrom( feat ) if gpx_lyr.CreateFeature( dst_feat ) != 0: gdaltest.post_reason('CreateFeature failed.') return 'fail' feat = bna_lyr.GetNextFeature() dst_feat.Destroy() bna_ds.Destroy() gdaltest.gpx_ds.Destroy() gdaltest.gpx_ds = None #Now check that the extensions fields have been well written gdaltest.gpx_ds = ogr.Open('tmp/gpx.gpx') gpx_lyr = gdaltest.gpx_ds.GetLayerByName( 'waypoints' ) expect = ['PID1', 'PID2'] tr = ogrtest.check_features_against_list( gpx_lyr, 'ogr_Primary_ID', expect ) if not tr: return 'fail' gpx_lyr.ResetReading() expect = ['SID1', 'SID2'] tr = ogrtest.check_features_against_list( gpx_lyr, 'ogr_Secondary_ID', expect ) if not tr: return 'fail' gpx_lyr.ResetReading() expect = ['TID1', None] tr = ogrtest.check_features_against_list( gpx_lyr, 'ogr_Third_ID', expect ) if not tr: return 'fail' return 'success' ############################################################################### # Output extra fields as <extensions>. def ogr_gpx_8(): if not gdaltest.have_gpx: return 'skip' if gdaltest.gpx_ds is not None: gdaltest.gpx_ds.Destroy() gdaltest.gpx_ds = None try: os.remove ('tmp/gpx.gpx') except: pass gdaltest.gpx_ds = ogr.GetDriverByName('GPX').CreateDataSource('tmp/gpx.gpx', options = ['LINEFORMAT=LF']) lyr = gdaltest.gpx_ds.CreateLayer( 'route_points', geom_type = ogr.wkbPoint ) feat = ogr.Feature(lyr.GetLayerDefn()) geom = ogr.CreateGeometryFromWkt('POINT(2 49)') feat.SetField('route_name', 'ROUTE_NAME') feat.SetField('route_fid', 0) feat.SetGeometry(geom) lyr.CreateFeature(feat) feat = ogr.Feature(lyr.GetLayerDefn()) geom = ogr.CreateGeometryFromWkt('POINT(3 50)') feat.SetField('route_name', '--ignored--') feat.SetField('route_fid', 0) feat.SetGeometry(geom) lyr.CreateFeature(feat) feat = ogr.Feature(lyr.GetLayerDefn()) geom = ogr.CreateGeometryFromWkt('POINT(3 51)') feat.SetField('route_name', 'ROUTE_NAME2') feat.SetField('route_fid', 1) feat.SetGeometry(geom) lyr.CreateFeature(feat) feat = ogr.Feature(lyr.GetLayerDefn()) geom = ogr.CreateGeometryFromWkt('POINT(3 49)') feat.SetField('route_fid', 1) feat.SetGeometry(geom) lyr.CreateFeature(feat) lyr = gdaltest.gpx_ds.CreateLayer( 'track_points', geom_type = ogr.wkbPoint ) feat = ogr.Feature(lyr.GetLayerDefn()) geom = ogr.CreateGeometryFromWkt('POINT(2 49)') feat.SetField('track_name', 'TRACK_NAME') feat.SetField('track_fid', 0) feat.SetField('track_seg_id', 0) feat.SetGeometry(geom) lyr.CreateFeature(feat) feat = ogr.Feature(lyr.GetLayerDefn()) geom = ogr.CreateGeometryFromWkt('POINT(3 50)') feat.SetField('track_name', '--ignored--') feat.SetField('track_fid', 0) feat.SetField('track_seg_id', 0) feat.SetGeometry(geom) lyr.CreateFeature(feat) feat = ogr.Feature(lyr.GetLayerDefn()) geom = ogr.CreateGeometryFromWkt('POINT(3 51)') feat.SetField('track_fid', 0) feat.SetField('track_seg_id', 1) feat.SetGeometry(geom) lyr.CreateFeature(feat) feat = ogr.Feature(lyr.GetLayerDefn()) geom = ogr.CreateGeometryFromWkt('POINT(3 49)') feat.SetField('track_name', 'TRACK_NAME2') feat.SetField('track_fid', 1) feat.SetField('track_seg_id', 0) feat.SetGeometry(geom) lyr.CreateFeature(feat) gdaltest.gpx_ds.Destroy() gdaltest.gpx_ds = None f = open('tmp/gpx.gpx','rb') f_ref = open('data/ogr_gpx_8_ref.txt','rb') f_content = f.read() f_ref_content = f_ref.read() f.close() f_ref.close() if f_content.find(f_ref_content) == -1: gdaltest.post_reason('did not get expected result') print(f_content) return 'fail' return 'success' ############################################################################### # def ogr_gpx_cleanup(): if gdaltest.gpx_ds is not None: gdaltest.gpx_ds.Destroy() gdaltest.gpx_ds = None try: os.remove ('tmp/gpx.gpx') except: pass return 'success' gdaltest_list = [ ogr_gpx_init, ogr_gpx_1, ogr_gpx_2, ogr_gpx_3, ogr_gpx_4, ogr_gpx_5, ogr_gpx_6, # Rerun test 1, 2 and 4 with generated tmp/tmp.gpx ogr_gpx_1, ogr_gpx_2, ogr_gpx_4, ogr_gpx_7, ogr_gpx_8, ogr_gpx_cleanup ] if __name__ == '__main__': gdaltest.setup_run( 'ogr_gpx' ) gdaltest.run_tests( gdaltest_list ) gdaltest.summarize()
[((1597, 1624), 'sys.path.append', 'sys.path.append', (['"""../pymod"""'], {}), "('../pymod')\n", (1612, 1624), False, 'import sys\n'), ((2400, 2443), 'gdaltest.gpx_ds.GetLayerByName', 'gdaltest.gpx_ds.GetLayerByName', (['"""waypoints"""'], {}), "('waypoints')\n", (2430, 2443), False, 'import gdaltest\n'), ((2484, 2539), 'ogrtest.check_features_against_list', 'ogrtest.check_features_against_list', (['lyr', '"""ele"""', 'expect'], {}), "(lyr, 'ele', expect)\n", (2519, 2539), False, 'import ogrtest\n'), ((2659, 2715), 'ogrtest.check_features_against_list', 'ogrtest.check_features_against_list', (['lyr', '"""name"""', 'expect'], {}), "(lyr, 'name', expect)\n", (2694, 2715), False, 'import ogrtest\n'), ((2826, 2888), 'ogrtest.check_features_against_list', 'ogrtest.check_features_against_list', (['lyr', '"""link1_href"""', 'expect'], {}), "(lyr, 'link1_href', expect)\n", (2861, 2888), False, 'import ogrtest\n'), ((2999, 3061), 'ogrtest.check_features_against_list', 'ogrtest.check_features_against_list', (['lyr', '"""link1_text"""', 'expect'], {}), "(lyr, 'link1_text', expect)\n", (3034, 3061), False, 'import ogrtest\n'), ((3172, 3234), 'ogrtest.check_features_against_list', 'ogrtest.check_features_against_list', (['lyr', '"""link1_type"""', 'expect'], {}), "(lyr, 'link1_type', expect)\n", (3207, 3234), False, 'import ogrtest\n'), ((3346, 3408), 'ogrtest.check_features_against_list', 'ogrtest.check_features_against_list', (['lyr', '"""link2_href"""', 'expect'], {}), "(lyr, 'link2_href', expect)\n", (3381, 3408), False, 'import ogrtest\n'), ((3520, 3582), 'ogrtest.check_features_against_list', 'ogrtest.check_features_against_list', (['lyr', '"""link2_text"""', 'expect'], {}), "(lyr, 'link2_text', expect)\n", (3555, 3582), False, 'import ogrtest\n'), ((3694, 3756), 'ogrtest.check_features_against_list', 'ogrtest.check_features_against_list', (['lyr', '"""link2_type"""', 'expect'], {}), "(lyr, 'link2_type', expect)\n", (3729, 3756), False, 'import ogrtest\n'), ((3885, 3941), 'ogrtest.check_features_against_list', 'ogrtest.check_features_against_list', (['lyr', '"""time"""', 'expect'], {}), "(lyr, 'time', expect)\n", (3920, 3941), False, 'import ogrtest\n'), ((4680, 4720), 'gdaltest.gpx_ds.GetLayerByName', 'gdaltest.gpx_ds.GetLayerByName', (['"""routes"""'], {}), "('routes')\n", (4710, 4720), False, 'import gdaltest\n'), ((5371, 5417), 'gdaltest.gpx_ds.GetLayerByName', 'gdaltest.gpx_ds.GetLayerByName', (['"""route_points"""'], {}), "('route_points')\n", (5401, 5417), False, 'import gdaltest\n'), ((5477, 5533), 'ogrtest.check_features_against_list', 'ogrtest.check_features_against_list', (['lyr', '"""name"""', 'expect'], {}), "(lyr, 'name', expect)\n", (5512, 5533), False, 'import ogrtest\n'), ((5992, 6032), 'gdaltest.gpx_ds.GetLayerByName', 'gdaltest.gpx_ds.GetLayerByName', (['"""tracks"""'], {}), "('tracks')\n", (6022, 6032), False, 'import gdaltest\n'), ((6874, 6920), 'gdaltest.gpx_ds.GetLayerByName', 'gdaltest.gpx_ds.GetLayerByName', (['"""track_points"""'], {}), "('track_points')\n", (6904, 6920), False, 'import gdaltest\n'), ((6986, 7042), 'ogrtest.check_features_against_list', 'ogrtest.check_features_against_list', (['lyr', '"""name"""', 'expect'], {}), "(lyr, 'name', expect)\n", (7021, 7042), False, 'import ogrtest\n'), ((7776, 7819), 'gdaltest.gpx_ds.GetLayerByName', 'gdaltest.gpx_ds.GetLayerByName', (['"""waypoints"""'], {}), "('waypoints')\n", (7806, 7819), False, 'import gdaltest\n'), ((8489, 8529), 'gdaltest.gpx_ds.GetLayerByName', 'gdaltest.gpx_ds.GetLayerByName', (['"""routes"""'], {}), "('routes')\n", (8519, 8529), False, 'import gdaltest\n'), ((9053, 9093), 'gdaltest.gpx_ds.GetLayerByName', 'gdaltest.gpx_ds.GetLayerByName', (['"""tracks"""'], {}), "('tracks')\n", (9083, 9093), False, 'import gdaltest\n'), ((9714, 9739), 'gdaltest.gpx_ds.Destroy', 'gdaltest.gpx_ds.Destroy', ([], {}), '()\n', (9737, 9739), False, 'import gdaltest\n'), ((9763, 9786), 'ogr.Open', 'ogr.Open', (['"""tmp/gpx.gpx"""'], {}), "('tmp/gpx.gpx')\n", (9771, 9786), False, 'import ogr\n'), ((10118, 10150), 'ogr.Open', 'ogr.Open', (['"""data/bna_for_gpx.bna"""'], {}), "('data/bna_for_gpx.bna')\n", (10126, 10150), False, 'import ogr\n'), ((10532, 10596), 'gdaltest.gpx_ds.CreateLayer', 'gdaltest.gpx_ds.CreateLayer', (['"""waypoints"""'], {'geom_type': 'ogr.wkbPoint'}), "('waypoints', geom_type=ogr.wkbPoint)\n", (10559, 10596), False, 'import gdaltest\n'), ((11184, 11209), 'gdaltest.gpx_ds.Destroy', 'gdaltest.gpx_ds.Destroy', ([], {}), '()\n', (11207, 11209), False, 'import gdaltest\n'), ((11325, 11348), 'ogr.Open', 'ogr.Open', (['"""tmp/gpx.gpx"""'], {}), "('tmp/gpx.gpx')\n", (11333, 11348), False, 'import ogr\n'), ((11363, 11406), 'gdaltest.gpx_ds.GetLayerByName', 'gdaltest.gpx_ds.GetLayerByName', (['"""waypoints"""'], {}), "('waypoints')\n", (11393, 11406), False, 'import gdaltest\n'), ((11454, 11524), 'ogrtest.check_features_against_list', 'ogrtest.check_features_against_list', (['gpx_lyr', '"""ogr_Primary_ID"""', 'expect'], {}), "(gpx_lyr, 'ogr_Primary_ID', expect)\n", (11489, 11524), False, 'import ogrtest\n'), ((11641, 11713), 'ogrtest.check_features_against_list', 'ogrtest.check_features_against_list', (['gpx_lyr', '"""ogr_Secondary_ID"""', 'expect'], {}), "(gpx_lyr, 'ogr_Secondary_ID', expect)\n", (11676, 11713), False, 'import ogrtest\n'), ((11828, 11896), 'ogrtest.check_features_against_list', 'ogrtest.check_features_against_list', (['gpx_lyr', '"""ogr_Third_ID"""', 'expect'], {}), "(gpx_lyr, 'ogr_Third_ID', expect)\n", (11863, 11896), False, 'import ogrtest\n'), ((12438, 12505), 'gdaltest.gpx_ds.CreateLayer', 'gdaltest.gpx_ds.CreateLayer', (['"""route_points"""'], {'geom_type': 'ogr.wkbPoint'}), "('route_points', geom_type=ogr.wkbPoint)\n", (12465, 12505), False, 'import gdaltest\n'), ((12565, 12605), 'ogr.CreateGeometryFromWkt', 'ogr.CreateGeometryFromWkt', (['"""POINT(2 49)"""'], {}), "('POINT(2 49)')\n", (12590, 12605), False, 'import ogr\n'), ((12796, 12836), 'ogr.CreateGeometryFromWkt', 'ogr.CreateGeometryFromWkt', (['"""POINT(3 50)"""'], {}), "('POINT(3 50)')\n", (12821, 12836), False, 'import ogr\n'), ((13028, 13068), 'ogr.CreateGeometryFromWkt', 'ogr.CreateGeometryFromWkt', (['"""POINT(3 51)"""'], {}), "('POINT(3 51)')\n", (13053, 13068), False, 'import ogr\n'), ((13260, 13300), 'ogr.CreateGeometryFromWkt', 'ogr.CreateGeometryFromWkt', (['"""POINT(3 49)"""'], {}), "('POINT(3 49)')\n", (13285, 13300), False, 'import ogr\n'), ((13401, 13468), 'gdaltest.gpx_ds.CreateLayer', 'gdaltest.gpx_ds.CreateLayer', (['"""track_points"""'], {'geom_type': 'ogr.wkbPoint'}), "('track_points', geom_type=ogr.wkbPoint)\n", (13428, 13468), False, 'import gdaltest\n'), ((13528, 13568), 'ogr.CreateGeometryFromWkt', 'ogr.CreateGeometryFromWkt', (['"""POINT(2 49)"""'], {}), "('POINT(2 49)')\n", (13553, 13568), False, 'import ogr\n'), ((13796, 13836), 'ogr.CreateGeometryFromWkt', 'ogr.CreateGeometryFromWkt', (['"""POINT(3 50)"""'], {}), "('POINT(3 50)')\n", (13821, 13836), False, 'import ogr\n'), ((14065, 14105), 'ogr.CreateGeometryFromWkt', 'ogr.CreateGeometryFromWkt', (['"""POINT(3 51)"""'], {}), "('POINT(3 51)')\n", (14090, 14105), False, 'import ogr\n'), ((14287, 14327), 'ogr.CreateGeometryFromWkt', 'ogr.CreateGeometryFromWkt', (['"""POINT(3 49)"""'], {}), "('POINT(3 49)')\n", (14312, 14327), False, 'import ogr\n'), ((14506, 14531), 'gdaltest.gpx_ds.Destroy', 'gdaltest.gpx_ds.Destroy', ([], {}), '()\n', (14529, 14531), False, 'import gdaltest\n'), ((15509, 15538), 'gdaltest.setup_run', 'gdaltest.setup_run', (['"""ogr_gpx"""'], {}), "('ogr_gpx')\n", (15527, 15538), False, 'import gdaltest\n'), ((15546, 15579), 'gdaltest.run_tests', 'gdaltest.run_tests', (['gdaltest_list'], {}), '(gdaltest_list)\n', (15564, 15579), False, 'import gdaltest\n'), ((15587, 15607), 'gdaltest.summarize', 'gdaltest.summarize', ([], {}), '()\n', (15605, 15607), False, 'import gdaltest\n'), ((1777, 1802), 'ogr.Open', 'ogr.Open', (['"""data/test.gpx"""'], {}), "('data/test.gpx')\n", (1785, 1802), False, 'import ogr\n'), ((2012, 2043), 'gdaltest.gpx_ds.GetLayerCount', 'gdaltest.gpx_ds.GetLayerCount', ([], {}), '()\n', (2041, 2043), False, 'import gdaltest\n'), ((2058, 2104), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""wrong number of layers"""'], {}), "('wrong number of layers')\n", (2078, 2104), False, 'import gdaltest\n'), ((4044, 4113), 'ogrtest.check_feature_geometry', 'ogrtest.check_feature_geometry', (['feat', '"""POINT (1 0)"""'], {'max_error': '(0.0001)'}), "(feat, 'POINT (1 0)', max_error=0.0001)\n", (4074, 4113), False, 'import ogrtest\n'), ((4248, 4317), 'ogrtest.check_feature_geometry', 'ogrtest.check_feature_geometry', (['feat', '"""POINT (4 3)"""'], {'max_error': '(0.0001)'}), "(feat, 'POINT (4 3)', max_error=0.0001)\n", (4278, 4317), False, 'import ogrtest\n'), ((4786, 4874), 'ogrtest.check_feature_geometry', 'ogrtest.check_feature_geometry', (['feat', '"""LINESTRING (6 5,9 8,12 11)"""'], {'max_error': '(0.0001)'}), "(feat, 'LINESTRING (6 5,9 8,12 11)',\n max_error=0.0001)\n", (4816, 4874), False, 'import ogrtest\n'), ((4966, 5040), 'ogrtest.check_feature_geometry', 'ogrtest.check_feature_geometry', (['feat', '"""LINESTRING EMPTY"""'], {'max_error': '(0.0001)'}), "(feat, 'LINESTRING EMPTY', max_error=0.0001)\n", (4996, 5040), False, 'import ogrtest\n'), ((5603, 5672), 'ogrtest.check_feature_geometry', 'ogrtest.check_feature_geometry', (['feat', '"""POINT (6 5)"""'], {'max_error': '(0.0001)'}), "(feat, 'POINT (6 5)', max_error=0.0001)\n", (5633, 5672), False, 'import ogrtest\n'), ((6098, 6205), 'ogrtest.check_feature_geometry', 'ogrtest.check_feature_geometry', (['feat', '"""MULTILINESTRING ((15 14,18 17),(21 20,24 23))"""'], {'max_error': '(0.0001)'}), "(feat,\n 'MULTILINESTRING ((15 14,18 17),(21 20,24 23))', max_error=0.0001)\n", (6128, 6205), False, 'import ogrtest\n'), ((6297, 6376), 'ogrtest.check_feature_geometry', 'ogrtest.check_feature_geometry', (['feat', '"""MULTILINESTRING EMPTY"""'], {'max_error': '(0.0001)'}), "(feat, 'MULTILINESTRING EMPTY', max_error=0.0001)\n", (6327, 6376), False, 'import ogrtest\n'), ((7112, 7183), 'ogrtest.check_feature_geometry', 'ogrtest.check_feature_geometry', (['feat', '"""POINT (15 14)"""'], {'max_error': '(0.0001)'}), "(feat, 'POINT (15 14)', max_error=0.0001)\n", (7142, 7183), False, 'import ogrtest\n'), ((7539, 7584), 'gdal.PushErrorHandler', 'gdal.PushErrorHandler', (['"""CPLQuietErrorHandler"""'], {}), "('CPLQuietErrorHandler')\n", (7560, 7584), False, 'import gdal\n'), ((7664, 7686), 'gdal.PopErrorHandler', 'gdal.PopErrorHandler', ([], {}), '()\n', (7684, 7686), False, 'import gdal\n'), ((10047, 10072), 'gdaltest.gpx_ds.Destroy', 'gdaltest.gpx_ds.Destroy', ([], {}), '()\n', (10070, 10072), False, 'import gdaltest\n'), ((10175, 10199), 'os.remove', 'os.remove', (['"""tmp/gpx.gpx"""'], {}), "('tmp/gpx.gpx')\n", (10184, 10199), False, 'import os\n'), ((12194, 12219), 'gdaltest.gpx_ds.Destroy', 'gdaltest.gpx_ds.Destroy', ([], {}), '()\n', (12217, 12219), False, 'import gdaltest\n'), ((12265, 12289), 'os.remove', 'os.remove', (['"""tmp/gpx.gpx"""'], {}), "('tmp/gpx.gpx')\n", (12274, 12289), False, 'import os\n'), ((14784, 14835), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""did not get expected result"""'], {}), "('did not get expected result')\n", (14804, 14835), False, 'import gdaltest\n'), ((15058, 15083), 'gdaltest.gpx_ds.Destroy', 'gdaltest.gpx_ds.Destroy', ([], {}), '()\n', (15081, 15083), False, 'import gdaltest\n'), ((15128, 15152), 'os.remove', 'os.remove', (['"""tmp/gpx.gpx"""'], {}), "('tmp/gpx.gpx')\n", (15137, 15152), False, 'import os\n'), ((7837, 7863), 'ogr.GetDriverByName', 'ogr.GetDriverByName', (['"""GPX"""'], {}), "('GPX')\n", (7856, 7863), False, 'import ogr\n'), ((8314, 8359), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""CreateFeature failed."""'], {}), "('CreateFeature failed.')\n", (8334, 8359), False, 'import gdaltest\n'), ((8874, 8919), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""CreateFeature failed."""'], {}), "('CreateFeature failed.')\n", (8894, 8919), False, 'import gdaltest\n'), ((9443, 9488), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""CreateFeature failed."""'], {}), "('CreateFeature failed.')\n", (9463, 9488), False, 'import gdaltest\n'), ((10380, 10406), 'ogr.GetDriverByName', 'ogr.GetDriverByName', (['"""GPX"""'], {}), "('GPX')\n", (10399, 10406), False, 'import ogr\n'), ((11021, 11066), 'gdaltest.post_reason', 'gdaltest.post_reason', (['"""CreateFeature failed."""'], {}), "('CreateFeature failed.')\n", (11041, 11066), False, 'import gdaltest\n'), ((12339, 12365), 'ogr.GetDriverByName', 'ogr.GetDriverByName', (['"""GPX"""'], {}), "('GPX')\n", (12358, 12365), False, 'import ogr\n'), ((7595, 7621), 'ogr.GetDriverByName', 'ogr.GetDriverByName', (['"""CSV"""'], {}), "('CSV')\n", (7614, 7621), False, 'import ogr\n')]
max-stack/MWP-SS-Metrics
mwp_solver/models/sausolver.py
01268f2d6da716596216b04de4197e345b96c219
# Code Taken from https://github.com/LYH-YF/MWPToolkit # -*- encoding: utf-8 -*- # @Author: Yihuai Lan # @Time: 2021/08/21 04:59:55 # @File: sausolver.py import random import torch from torch import nn import copy from module.Encoder.rnn_encoder import BasicRNNEncoder from module.Embedder.basic_embedder import BasicEmbedder from module.Decoder.tree_decoder import SARTreeDecoder from module.Layer.tree_layers import NodeGenerater, SubTreeMerger, TreeNode, TreeEmbedding from module.Layer.tree_layers import Prediction, GenerateNode, Merge, SemanticAlignmentModule from module.Strategy.beam_search import TreeBeam from loss.masked_cross_entropy_loss import MaskedCrossEntropyLoss, masked_cross_entropy from loss.mse_loss import MSELoss from utils.utils import copy_list from utils.enum_type import NumMask, SpecialTokens class SAUSolver(nn.Module): """ Reference: Qin et al. "Semantically-Aligned Universal Tree-Structured Solver for Math Word Problems" in EMNLP 2020. """ def __init__(self, config, dataset): super(SAUSolver, self).__init__() # parameter self.hidden_size = config["hidden_size"] self.device = config["device"] self.USE_CUDA = True if self.device == torch.device('cuda') else False self.beam_size = config['beam_size'] self.max_out_len = config['max_output_len'] self.embedding_size = config["embedding_size"] self.dropout_ratio = config["dropout_ratio"] self.num_layers = config["num_layers"] self.rnn_cell_type = config["rnn_cell_type"] self.loss_weight = config['loss_weight'] self.vocab_size = len(dataset.in_idx2word) self.out_symbol2idx = dataset.out_symbol2idx self.out_idx2symbol = dataset.out_idx2symbol generate_list = dataset.generate_list self.generate_nums = [self.out_symbol2idx[symbol] for symbol in generate_list] self.mask_list = NumMask.number self.num_start = dataset.num_start self.operator_nums = dataset.operator_nums self.generate_size = len(generate_list) self.unk_token = self.out_symbol2idx[SpecialTokens.UNK_TOKEN] try: self.out_sos_token = self.out_symbol2idx[SpecialTokens.SOS_TOKEN] except: self.out_sos_token = None try: self.out_eos_token = self.out_symbol2idx[SpecialTokens.EOS_TOKEN] except: self.out_eos_token = None try: self.out_pad_token = self.out_symbol2idx[SpecialTokens.PAD_TOKEN] except: self.out_pad_token = None # module self.embedder = BasicEmbedder(self.vocab_size, self.embedding_size, self.dropout_ratio) # self.t_encoder = BasicRNNEncoder(self.embedding_size, self.hidden_size, self.num_layers, self.rnn_cell_type, self.dropout_ratio) self.encoder = BasicRNNEncoder(self.embedding_size, self.hidden_size, self.num_layers, self.rnn_cell_type, self.dropout_ratio, batch_first=False) #self.decoder = SARTreeDecoder(self.hidden_size, self.operator_nums, self.generate_size, self.dropout_ratio) self.decoder = Prediction(self.hidden_size,self.operator_nums,self.generate_size,self.dropout_ratio) self.node_generater = GenerateNode(self.hidden_size, self.operator_nums, self.embedding_size, self.dropout_ratio) self.merge = Merge(self.hidden_size, self.embedding_size, self.dropout_ratio) self.sa = SemanticAlignmentModule(self.hidden_size,self.hidden_size,self.hidden_size) self.loss1 = MaskedCrossEntropyLoss() # def calculate_loss(self, batch_data:dict) -> float: """Finish forward-propagating, calculating loss and back-propagation. :param batch_data: one batch data. :return: loss value. batch_data should include keywords 'question', 'ques len', 'equation', 'equ len', 'num stack', 'num size', 'num pos' """ seq = torch.tensor(batch_data["question"]).to(self.device) seq_length = torch.tensor(batch_data["ques len"]).long() target = torch.tensor(batch_data["equation"]).to(self.device) target_length = torch.LongTensor(batch_data["equ len"]).to(self.device) nums_stack = copy.deepcopy(batch_data["num stack"]) num_size = batch_data["num size"] num_pos = batch_data["num pos"] generate_nums = self.generate_nums num_start = self.num_start # sequence mask for attention unk = self.unk_token loss = self.train_tree(seq, seq_length, target, target_length, nums_stack, num_size, generate_nums, num_pos, unk, num_start) return loss def model_test(self, batch_data:dict) -> tuple: """Model test. :param batch_data: one batch data. :return: predicted equation, target equation. batch_data should include keywords 'question', 'ques len', 'equation', 'num stack', 'num pos', 'num list' """ seq = torch.tensor(batch_data["question"]).to(self.device) seq_length = torch.tensor(batch_data["ques len"]).long() target = torch.tensor(batch_data["equation"]).to(self.device) nums_stack = copy.deepcopy(batch_data["num stack"]) num_pos = batch_data["num pos"] num_list = batch_data['num list'] generate_nums = self.generate_nums num_start = self.num_start # sequence mask for attention all_node_output = self.evaluate_tree(seq, seq_length, generate_nums, num_pos, num_start, self.beam_size, self.max_out_len) all_output = self.convert_idx2symbol(all_node_output, num_list[0], copy_list(nums_stack[0])) targets = self.convert_idx2symbol(target[0], num_list[0], copy_list(nums_stack[0])) return all_output, targets def train_tree(self,input_batch, input_length, target_batch, target_length, nums_stack_batch, num_size_batch, generate_nums, num_pos, unk, num_start, english=False,var_nums=[], batch_first=False): # sequence mask for attention seq_mask = [] max_len = max(input_length) for i in input_length: seq_mask.append([0 for _ in range(i)] + [1 for _ in range(i, max_len)]) seq_mask = torch.ByteTensor(seq_mask) num_mask = [] max_num_size = max(num_size_batch) + len(generate_nums) + len(var_nums) # 最大的位置列表数目+常识数字数目+未知数列表 for i in num_size_batch: d = i + len(generate_nums) + len(var_nums) num_mask.append([0] * d + [1] * (max_num_size - d)) num_mask = torch.ByteTensor(num_mask) # 用于屏蔽无关数字,防止生成错误的Nx #unk = output_lang.word2index["UNK"] # Turn padded arrays into (batch_size x max_len) tensors, transpose into (max_len x batch_size) input_var = input_batch.transpose(0, 1) target = target_batch.transpose(0, 1) padding_hidden = torch.FloatTensor([0.0 for _ in range(self.decoder.hidden_size)]).unsqueeze(0) batch_size = len(input_length) if self.USE_CUDA: input_var = input_var.cuda() seq_mask = seq_mask.cuda() padding_hidden = padding_hidden.cuda() num_mask = num_mask.cuda() # Zero gradients of both optimizers # Run words through encoder #encoder_outputs, problem_output = self.encoder(input_var, input_length) seq_emb = self.embedder(input_var) pade_outputs, _ = self.encoder(seq_emb, input_length) problem_output = pade_outputs[-1, :, :self.hidden_size] + pade_outputs[0, :, self.hidden_size:] encoder_outputs = pade_outputs[:, :, :self.hidden_size] + pade_outputs[:, :, self.hidden_size:] # Prepare input and output variables node_stacks = [[TreeNode(_)] for _ in problem_output.split(1, dim=0)] # root embedding B x 1 max_target_length = max(target_length) all_node_outputs = [] all_sa_outputs = [] # all_leafs = [] copy_num_len = [len(_) for _ in num_pos] num_size = max(copy_num_len) # 提取与问题相关的数字embedding all_nums_encoder_outputs = self.get_all_number_encoder_outputs(encoder_outputs, num_pos, batch_size, num_size, self.encoder.hidden_size) embeddings_stacks = [[] for _ in range(batch_size)] # B x 1 当前的tree state/ subtree embedding / output left_childs = [None for _ in range(batch_size)] # B x 1 for t in range(max_target_length): num_score, op, current_embeddings, current_context, current_nums_embeddings = self.decoder( node_stacks, left_childs, encoder_outputs, all_nums_encoder_outputs, padding_hidden, seq_mask, num_mask) # all_leafs.append(p_leaf) outputs = torch.cat((op, num_score), 1) all_node_outputs.append(outputs) target_t, generate_input = self.generate_tree_input(target[t].tolist(), outputs, nums_stack_batch, num_start, unk) target[t] = target_t if self.USE_CUDA: generate_input = generate_input.cuda() left_child, right_child, node_label = self.node_generater(current_embeddings, generate_input, current_context) left_childs = [] for idx, l, r, node_stack, i, o in zip(range(batch_size), left_child.split(1), right_child.split(1), node_stacks, target[t].tolist(), embeddings_stacks): if len(node_stack) != 0: node = node_stack.pop() else: left_childs.append(None) continue # 未知数当数字处理,SEP当操作符处理 if i < num_start: # 非数字 node_stack.append(TreeNode(r)) node_stack.append(TreeNode(l, left_flag=True)) o.append(TreeEmbedding(node_label[idx].unsqueeze(0), terminal=False)) # print(o[-1].embedding.size()) # print(encoder_outputs[idx].size()) else: # 数字 current_num = current_nums_embeddings[idx, i - num_start].unsqueeze(0) while len(o) > 0 and o[-1].terminal: sub_stree = o.pop() op = o.pop() current_num = self.merge(op.embedding, sub_stree.embedding, current_num) # Subtree embedding if batch_first: encoder_mapping, decoder_mapping = self.sa(current_num, encoder_outputs[idx]) else: temp_encoder_outputs = encoder_outputs.transpose(0, 1) encoder_mapping, decoder_mapping = self.sa(current_num,temp_encoder_outputs[idx]) all_sa_outputs.append((encoder_mapping, decoder_mapping)) o.append(TreeEmbedding(current_num, terminal=True)) if len(o) > 0 and o[-1].terminal: left_childs.append(o[-1].embedding) else: left_childs.append(None) # all_leafs = torch.stack(all_leafs, dim=1) # B x S x 2 all_node_outputs = torch.stack(all_node_outputs, dim=1) # B x S x N target = target.transpose(0, 1).contiguous() # B x S if self.USE_CUDA: # all_leafs = all_leafs.cuda() all_node_outputs = all_node_outputs.cuda() target = target.cuda() new_all_sa_outputs = [] for sa_pair in all_sa_outputs: new_all_sa_outputs.append((sa_pair[0].cuda(), sa_pair[1].cuda())) all_sa_outputs = new_all_sa_outputs # target_length = torch.LongTensor(target_length).cuda() else: pass # target_length = torch.LongTensor(target_length) semantic_alignment_loss = nn.MSELoss() total_semanti_alognment_loss = 0 sa_len = len(all_sa_outputs) for sa_pair in all_sa_outputs: total_semanti_alognment_loss += semantic_alignment_loss(sa_pair[0], sa_pair[1]) # print(total_semanti_alognment_loss) total_semanti_alognment_loss = total_semanti_alognment_loss / sa_len # print(total_semanti_alognment_loss) # op_target = target < num_start # loss_0 = masked_cross_entropy_without_logit(all_leafs, op_target.long(), target_length) loss = masked_cross_entropy(all_node_outputs, target,target_length) + 0.01 * total_semanti_alognment_loss # loss = loss_0 + loss_1 loss.backward() # clip the grad # torch.nn.utils.clip_grad_norm_(encoder.parameters(), 5) # torch.nn.utils.clip_grad_norm_(predict.parameters(), 5) # torch.nn.utils.clip_grad_norm_(generate.parameters(), 5) # Update parameters with optimizers return loss.item() # , loss_0.item(), loss_1.item() def evaluate_tree(self, input_batch, input_length, generate_nums, num_pos, num_start, beam_size=5, max_length=30): seq_mask = torch.BoolTensor(1, input_length).fill_(0) # Turn padded arrays into (batch_size x max_len) tensors, transpose into (max_len x batch_size) input_var = input_batch.transpose(0, 1) num_mask = torch.BoolTensor(1, len(num_pos[0]) + len(generate_nums)).fill_(0) padding_hidden = torch.FloatTensor([0.0 for _ in range(self.hidden_size)]).unsqueeze(0) batch_size = 1 if self.USE_CUDA: input_var = input_var.cuda() seq_mask = seq_mask.cuda() padding_hidden = padding_hidden.cuda() num_mask = num_mask.cuda() # Run words through encoder seq_emb = self.embedder(input_var) pade_outputs, _ = self.encoder(seq_emb, input_length) problem_output = pade_outputs[-1, :, :self.hidden_size] + pade_outputs[0, :, self.hidden_size:] encoder_outputs = pade_outputs[:, :, :self.hidden_size] + pade_outputs[:, :, self.hidden_size:] # Prepare input and output variables node_stacks = [[TreeNode(_)] for _ in problem_output.split(1, dim=0)] num_size = len(num_pos[0]) all_nums_encoder_outputs = self.get_all_number_encoder_outputs(encoder_outputs, num_pos, batch_size, num_size, self.hidden_size) # B x P x N embeddings_stacks = [[] for _ in range(batch_size)] left_childs = [None for _ in range(batch_size)] beams = [TreeBeam(0.0, node_stacks, embeddings_stacks, left_childs, [])] for t in range(max_length): current_beams = [] while len(beams) > 0: b = beams.pop() if len(b.node_stack[0]) == 0: current_beams.append(b) continue # left_childs = torch.stack(b.left_childs) left_childs = b.left_childs num_score, op, current_embeddings, current_context, current_nums_embeddings = self.decoder(b.node_stack, left_childs, encoder_outputs, all_nums_encoder_outputs, padding_hidden, seq_mask, num_mask) out_score = nn.functional.log_softmax(torch.cat((op, num_score), dim=1), dim=1) # out_score = p_leaf * out_score topv, topi = out_score.topk(beam_size) for tv, ti in zip(topv.split(1, dim=1), topi.split(1, dim=1)): current_node_stack = copy_list(b.node_stack) current_left_childs = [] current_embeddings_stacks = copy_list(b.embedding_stack) current_out = copy.deepcopy(b.out) out_token = int(ti) current_out.append(out_token) node = current_node_stack[0].pop() if out_token < num_start: generate_input = torch.LongTensor([out_token]) if self.USE_CUDA: generate_input = generate_input.cuda() left_child, right_child, node_label = self.node_generater(current_embeddings, generate_input, current_context) current_node_stack[0].append(TreeNode(right_child)) current_node_stack[0].append(TreeNode(left_child, left_flag=True)) current_embeddings_stacks[0].append(TreeEmbedding(node_label[0].unsqueeze(0), False)) else: current_num = current_nums_embeddings[0, out_token - num_start].unsqueeze(0) while len(current_embeddings_stacks[0]) > 0 and current_embeddings_stacks[0][-1].terminal: sub_stree = current_embeddings_stacks[0].pop() op = current_embeddings_stacks[0].pop() current_num = self.merge(op.embedding, sub_stree.embedding, current_num) current_embeddings_stacks[0].append(TreeEmbedding(current_num, True)) if len(current_embeddings_stacks[0]) > 0 and current_embeddings_stacks[0][-1].terminal: current_left_childs.append(current_embeddings_stacks[0][-1].embedding) else: current_left_childs.append(None) current_beams.append(TreeBeam(b.score + float(tv), current_node_stack, current_embeddings_stacks, current_left_childs, current_out)) beams = sorted(current_beams, key=lambda x: x.score, reverse=True) beams = beams[:beam_size] flag = True for b in beams: if len(b.node_stack[0]) != 0: flag = False if flag: break return beams[0].out def get_all_number_encoder_outputs(self, encoder_outputs, num_pos, batch_size, num_size, hidden_size): indices = list() sen_len = encoder_outputs.size(0) masked_index = [] temp_1 = [1 for _ in range(hidden_size)] temp_0 = [0 for _ in range(hidden_size)] for b in range(batch_size): for i in num_pos[b]: indices.append(i + b * sen_len) masked_index.append(temp_0) indices += [0 for _ in range(len(num_pos[b]), num_size)] masked_index += [temp_1 for _ in range(len(num_pos[b]), num_size)] indices = torch.LongTensor(indices) masked_index = torch.BoolTensor(masked_index) masked_index = masked_index.view(batch_size, num_size, hidden_size) if self.USE_CUDA: indices = indices.cuda() masked_index = masked_index.cuda() all_outputs = encoder_outputs.transpose(0, 1).contiguous() all_embedding = all_outputs.view(-1, encoder_outputs.size(2)) # S x B x H -> (B x S) x H all_num = all_embedding.index_select(0, indices) all_num = all_num.view(batch_size, num_size, hidden_size) return all_num.masked_fill_(masked_index, 0.0) def generate_tree_input(self, target, decoder_output, nums_stack_batch, num_start, unk): # when the decoder input is copied num but the num has two pos, chose the max target_input = copy.deepcopy(target) for i in range(len(target)): if target[i] == unk: num_stack = nums_stack_batch[i].pop() max_score = -float("1e12") for num in num_stack: if decoder_output[i, num_start + num] > max_score: target[i] = num + num_start max_score = decoder_output[i, num_start + num] if target_input[i] >= num_start: target_input[i] = 0 return torch.LongTensor(target), torch.LongTensor(target_input) def mse_loss(self, outputs, targets, mask=None): # outputs : [batch_size,output_len,hidden_size] # targets : [batch_size,output_len,hidden_size] # mask : [batch_size,output_len] mask = mask.to(self.device) x = torch.sqrt(torch.sum(torch.square((outputs - targets)), dim=-1)) # [batch_size,output_len] y = torch.sum(x * mask, dim=-1) / torch.sum(mask, dim=-1) # [batch_size] return torch.sum(y) def convert_idx2symbol(self, output, num_list, num_stack): # batch_size=output.size(0) '''batch_size=1''' seq_len = len(output) num_len = len(num_list) output_list = [] res = [] for s_i in range(seq_len): idx = output[s_i] if idx in [self.out_sos_token, self.out_eos_token, self.out_pad_token]: break symbol = self.out_idx2symbol[idx] if "NUM" in symbol: num_idx = self.mask_list.index(symbol) if num_idx >= num_len: res = [] break res.append(num_list[num_idx]) elif symbol == SpecialTokens.UNK_TOKEN: try: pos_list = num_stack.pop() c = num_list[pos_list[0]] res.append(c) except: return None else: res.append(symbol) output_list.append(res) return output_list
[((2643, 2714), 'module.Embedder.basic_embedder.BasicEmbedder', 'BasicEmbedder', (['self.vocab_size', 'self.embedding_size', 'self.dropout_ratio'], {}), '(self.vocab_size, self.embedding_size, self.dropout_ratio)\n', (2656, 2714), False, 'from module.Embedder.basic_embedder import BasicEmbedder\n'), ((2877, 3011), 'module.Encoder.rnn_encoder.BasicRNNEncoder', 'BasicRNNEncoder', (['self.embedding_size', 'self.hidden_size', 'self.num_layers', 'self.rnn_cell_type', 'self.dropout_ratio'], {'batch_first': '(False)'}), '(self.embedding_size, self.hidden_size, self.num_layers,\n self.rnn_cell_type, self.dropout_ratio, batch_first=False)\n', (2892, 3011), False, 'from module.Encoder.rnn_encoder import BasicRNNEncoder\n'), ((3187, 3280), 'module.Layer.tree_layers.Prediction', 'Prediction', (['self.hidden_size', 'self.operator_nums', 'self.generate_size', 'self.dropout_ratio'], {}), '(self.hidden_size, self.operator_nums, self.generate_size, self.\n dropout_ratio)\n', (3197, 3280), False, 'from module.Layer.tree_layers import Prediction, GenerateNode, Merge, SemanticAlignmentModule\n'), ((3303, 3398), 'module.Layer.tree_layers.GenerateNode', 'GenerateNode', (['self.hidden_size', 'self.operator_nums', 'self.embedding_size', 'self.dropout_ratio'], {}), '(self.hidden_size, self.operator_nums, self.embedding_size,\n self.dropout_ratio)\n', (3315, 3398), False, 'from module.Layer.tree_layers import Prediction, GenerateNode, Merge, SemanticAlignmentModule\n'), ((3459, 3523), 'module.Layer.tree_layers.Merge', 'Merge', (['self.hidden_size', 'self.embedding_size', 'self.dropout_ratio'], {}), '(self.hidden_size, self.embedding_size, self.dropout_ratio)\n', (3464, 3523), False, 'from module.Layer.tree_layers import Prediction, GenerateNode, Merge, SemanticAlignmentModule\n'), ((3542, 3619), 'module.Layer.tree_layers.SemanticAlignmentModule', 'SemanticAlignmentModule', (['self.hidden_size', 'self.hidden_size', 'self.hidden_size'], {}), '(self.hidden_size, self.hidden_size, self.hidden_size)\n', (3565, 3619), False, 'from module.Layer.tree_layers import Prediction, GenerateNode, Merge, SemanticAlignmentModule\n'), ((3639, 3663), 'loss.masked_cross_entropy_loss.MaskedCrossEntropyLoss', 'MaskedCrossEntropyLoss', ([], {}), '()\n', (3661, 3663), False, 'from loss.masked_cross_entropy_loss import MaskedCrossEntropyLoss, masked_cross_entropy\n'), ((4331, 4369), 'copy.deepcopy', 'copy.deepcopy', (["batch_data['num stack']"], {}), "(batch_data['num stack'])\n", (4344, 4369), False, 'import copy\n'), ((5282, 5320), 'copy.deepcopy', 'copy.deepcopy', (["batch_data['num stack']"], {}), "(batch_data['num stack'])\n", (5295, 5320), False, 'import copy\n'), ((6408, 6434), 'torch.ByteTensor', 'torch.ByteTensor', (['seq_mask'], {}), '(seq_mask)\n', (6424, 6434), False, 'import torch\n'), ((6735, 6761), 'torch.ByteTensor', 'torch.ByteTensor', (['num_mask'], {}), '(num_mask)\n', (6751, 6761), False, 'import torch\n'), ((11454, 11490), 'torch.stack', 'torch.stack', (['all_node_outputs'], {'dim': '(1)'}), '(all_node_outputs, dim=1)\n', (11465, 11490), False, 'import torch\n'), ((12133, 12145), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (12143, 12145), False, 'from torch import nn\n'), ((19482, 19507), 'torch.LongTensor', 'torch.LongTensor', (['indices'], {}), '(indices)\n', (19498, 19507), False, 'import torch\n'), ((19531, 19561), 'torch.BoolTensor', 'torch.BoolTensor', (['masked_index'], {}), '(masked_index)\n', (19547, 19561), False, 'import torch\n'), ((20294, 20315), 'copy.deepcopy', 'copy.deepcopy', (['target'], {}), '(target)\n', (20307, 20315), False, 'import copy\n'), ((21321, 21333), 'torch.sum', 'torch.sum', (['y'], {}), '(y)\n', (21330, 21333), False, 'import torch\n'), ((5771, 5795), 'utils.utils.copy_list', 'copy_list', (['nums_stack[0]'], {}), '(nums_stack[0])\n', (5780, 5795), False, 'from utils.utils import copy_list\n'), ((5863, 5887), 'utils.utils.copy_list', 'copy_list', (['nums_stack[0]'], {}), '(nums_stack[0])\n', (5872, 5887), False, 'from utils.utils import copy_list\n'), ((8962, 8991), 'torch.cat', 'torch.cat', (['(op, num_score)', '(1)'], {}), '((op, num_score), 1)\n', (8971, 8991), False, 'import torch\n'), ((12679, 12740), 'loss.masked_cross_entropy_loss.masked_cross_entropy', 'masked_cross_entropy', (['all_node_outputs', 'target', 'target_length'], {}), '(all_node_outputs, target, target_length)\n', (12699, 12740), False, 'from loss.masked_cross_entropy_loss import MaskedCrossEntropyLoss, masked_cross_entropy\n'), ((14775, 14837), 'module.Strategy.beam_search.TreeBeam', 'TreeBeam', (['(0.0)', 'node_stacks', 'embeddings_stacks', 'left_childs', '[]'], {}), '(0.0, node_stacks, embeddings_stacks, left_childs, [])\n', (14783, 14837), False, 'from module.Strategy.beam_search import TreeBeam\n'), ((20811, 20835), 'torch.LongTensor', 'torch.LongTensor', (['target'], {}), '(target)\n', (20827, 20835), False, 'import torch\n'), ((20837, 20867), 'torch.LongTensor', 'torch.LongTensor', (['target_input'], {}), '(target_input)\n', (20853, 20867), False, 'import torch\n'), ((21236, 21263), 'torch.sum', 'torch.sum', (['(x * mask)'], {'dim': '(-1)'}), '(x * mask, dim=-1)\n', (21245, 21263), False, 'import torch\n'), ((21266, 21289), 'torch.sum', 'torch.sum', (['mask'], {'dim': '(-1)'}), '(mask, dim=-1)\n', (21275, 21289), False, 'import torch\n'), ((1237, 1257), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (1249, 1257), False, 'import torch\n'), ((4042, 4078), 'torch.tensor', 'torch.tensor', (["batch_data['question']"], {}), "(batch_data['question'])\n", (4054, 4078), False, 'import torch\n'), ((4116, 4152), 'torch.tensor', 'torch.tensor', (["batch_data['ques len']"], {}), "(batch_data['ques len'])\n", (4128, 4152), False, 'import torch\n'), ((4177, 4213), 'torch.tensor', 'torch.tensor', (["batch_data['equation']"], {}), "(batch_data['equation'])\n", (4189, 4213), False, 'import torch\n'), ((4254, 4293), 'torch.LongTensor', 'torch.LongTensor', (["batch_data['equ len']"], {}), "(batch_data['equ len'])\n", (4270, 4293), False, 'import torch\n'), ((5073, 5109), 'torch.tensor', 'torch.tensor', (["batch_data['question']"], {}), "(batch_data['question'])\n", (5085, 5109), False, 'import torch\n'), ((5147, 5183), 'torch.tensor', 'torch.tensor', (["batch_data['ques len']"], {}), "(batch_data['ques len'])\n", (5159, 5183), False, 'import torch\n'), ((5208, 5244), 'torch.tensor', 'torch.tensor', (["batch_data['equation']"], {}), "(batch_data['equation'])\n", (5220, 5244), False, 'import torch\n'), ((7915, 7926), 'module.Layer.tree_layers.TreeNode', 'TreeNode', (['_'], {}), '(_)\n', (7923, 7926), False, 'from module.Layer.tree_layers import NodeGenerater, SubTreeMerger, TreeNode, TreeEmbedding\n'), ((13303, 13336), 'torch.BoolTensor', 'torch.BoolTensor', (['(1)', 'input_length'], {}), '(1, input_length)\n', (13319, 13336), False, 'import torch\n'), ((14323, 14334), 'module.Layer.tree_layers.TreeNode', 'TreeNode', (['_'], {}), '(_)\n', (14331, 14334), False, 'from module.Layer.tree_layers import NodeGenerater, SubTreeMerger, TreeNode, TreeEmbedding\n'), ((21153, 21184), 'torch.square', 'torch.square', (['(outputs - targets)'], {}), '(outputs - targets)\n', (21165, 21184), False, 'import torch\n'), ((16106, 16139), 'torch.cat', 'torch.cat', (['(op, num_score)'], {'dim': '(1)'}), '((op, num_score), dim=1)\n', (16115, 16139), False, 'import torch\n'), ((16375, 16398), 'utils.utils.copy_list', 'copy_list', (['b.node_stack'], {}), '(b.node_stack)\n', (16384, 16398), False, 'from utils.utils import copy_list\n'), ((16492, 16520), 'utils.utils.copy_list', 'copy_list', (['b.embedding_stack'], {}), '(b.embedding_stack)\n', (16501, 16520), False, 'from utils.utils import copy_list\n'), ((16555, 16575), 'copy.deepcopy', 'copy.deepcopy', (['b.out'], {}), '(b.out)\n', (16568, 16575), False, 'import copy\n'), ((10009, 10020), 'module.Layer.tree_layers.TreeNode', 'TreeNode', (['r'], {}), '(r)\n', (10017, 10020), False, 'from module.Layer.tree_layers import NodeGenerater, SubTreeMerger, TreeNode, TreeEmbedding\n'), ((10060, 10087), 'module.Layer.tree_layers.TreeNode', 'TreeNode', (['l'], {'left_flag': '(True)'}), '(l, left_flag=True)\n', (10068, 10087), False, 'from module.Layer.tree_layers import NodeGenerater, SubTreeMerger, TreeNode, TreeEmbedding\n'), ((11143, 11184), 'module.Layer.tree_layers.TreeEmbedding', 'TreeEmbedding', (['current_num'], {'terminal': '(True)'}), '(current_num, terminal=True)\n', (11156, 11184), False, 'from module.Layer.tree_layers import NodeGenerater, SubTreeMerger, TreeNode, TreeEmbedding\n'), ((16831, 16860), 'torch.LongTensor', 'torch.LongTensor', (['[out_token]'], {}), '([out_token])\n', (16847, 16860), False, 'import torch\n'), ((17241, 17262), 'module.Layer.tree_layers.TreeNode', 'TreeNode', (['right_child'], {}), '(right_child)\n', (17249, 17262), False, 'from module.Layer.tree_layers import NodeGenerater, SubTreeMerger, TreeNode, TreeEmbedding\n'), ((17317, 17353), 'module.Layer.tree_layers.TreeNode', 'TreeNode', (['left_child'], {'left_flag': '(True)'}), '(left_child, left_flag=True)\n', (17325, 17353), False, 'from module.Layer.tree_layers import NodeGenerater, SubTreeMerger, TreeNode, TreeEmbedding\n'), ((18013, 18045), 'module.Layer.tree_layers.TreeEmbedding', 'TreeEmbedding', (['current_num', '(True)'], {}), '(current_num, True)\n', (18026, 18045), False, 'from module.Layer.tree_layers import NodeGenerater, SubTreeMerger, TreeNode, TreeEmbedding\n')]
rafacarrascosa/rosetta
rosetta/tests/test_parallel.py
d5a964756b4f51e1032df40ee24f18398e3193b7
import unittest from functools import partial import pandas as pd from pandas.util.testing import assert_frame_equal, assert_series_equal import numpy as np import threading from StringIO import StringIO from rosetta.parallel import parallel_easy, pandas_easy from rosetta.parallel.threading_easy import threading_easy, LockIterateApply # A couple functions for testing parallel easy # Must be defined outside of the test class for some reason. def _abfunc(x, a, b=1): return x * a * b abfunc = partial(_abfunc, 2, 3) def frame_to_series(frame): x = frame.iloc[0, 0] return pd.Series([x] * len(frame.columns), index=frame.columns) def rightmax(mylist): return [max(mylist[i: i+2]) for i in range(len(mylist))] def leftmax(mylist): for i in range(len(mylist)): if i == 0: result = [mylist[0]] else: result.append(max(mylist[i - 1: i+1])) return result class TestBase(unittest.TestCase): """ Tests the parallel_easy module. """ def setUp(self): self.numbers = range(5) self.benchmark = [0, 6, 12, 18, 24] def test_map_easy_1job(self): result = parallel_easy.map_easy(abfunc, self.numbers, 1) self.assertEqual(result, self.benchmark) def test_map_easy_3job(self): result = parallel_easy.map_easy(abfunc, self.numbers, 3) self.assertEqual(result, self.benchmark) def test_imap_easy_1job(self): result_iterator = parallel_easy.imap_easy(abfunc, self.numbers, 1, 1) result = [] for number in result_iterator: result.append(number) self.assertEqual(result, self.benchmark) def test_imap_easy_3job(self): result_iterator = parallel_easy.imap_easy(abfunc, self.numbers, 3, 1) result = [] for number in result_iterator: result.append(number) self.assertEqual(result, self.benchmark) def test_n_jobs_wrap_positive(self): """ For n_jobs positive, the wrap should return n_jobs. """ for n_jobs in range(1, 5): result = parallel_easy._n_jobs_wrap(n_jobs) self.assertEqual(result, n_jobs) def test_n_jobs_wrap_zero(self): """ For n_jobs zero, the wrap should raise a ValueError """ self.assertRaises(ValueError, parallel_easy._n_jobs_wrap, 0) class TestMapEasyPaddedBlock(unittest.TestCase): """ Tests the parallel_easy.map_easy_padded_blocks function. """ def setUp(self): #self.numbers_1 = [ # 0, 0, 2, -1, 4, 2, 6, 7, 6, 9, 12, 11, 11, 14, 55, 55, 44, 33, 33] self.numbers_10 = np.random.randint(0, 5, 10) self.numbers_101 = np.random.randint(0, 5, 101) self.numbers_51 = np.random.randint(0, 5, 101) #self.numbers_1 = [0, 1, 2, 0, 3, 2, 4, 3, 2, 3, 3] self.n_jobs = 1 def lefttest(self, numbers, buffer_len, blocksize): result = parallel_easy.map_easy_padded_blocks( leftmax, numbers, self.n_jobs, buffer_len, blocksize=blocksize) benchmark = leftmax(numbers) self.assertEqual(result, benchmark) def righttest(self, numbers, buffer_len, blocksize): result = parallel_easy.map_easy_padded_blocks( rightmax, numbers, self.n_jobs, buffer_len, blocksize=blocksize) benchmark = rightmax(numbers) self.assertEqual(result, benchmark) def test_map_easy_padded_blocks_14(self): buffer_len = 1 blocksize = 4 self.lefttest(self.numbers_10, buffer_len, blocksize) self.lefttest(self.numbers_101, buffer_len, blocksize) self.lefttest(self.numbers_51, buffer_len, blocksize) self.righttest(self.numbers_10, buffer_len, blocksize) self.righttest(self.numbers_101, buffer_len, blocksize) self.righttest(self.numbers_51, buffer_len, blocksize) def test_map_easy_padded_blocks_24(self): buffer_len = 2 blocksize = 4 self.lefttest(self.numbers_10, buffer_len, blocksize) self.lefttest(self.numbers_101, buffer_len, blocksize) self.lefttest(self.numbers_51, buffer_len, blocksize) self.righttest(self.numbers_10, buffer_len, blocksize) self.righttest(self.numbers_101, buffer_len, blocksize) self.righttest(self.numbers_51, buffer_len, blocksize) def test_map_easy_padded_blocks_37(self): buffer_len = 3 blocksize = 7 self.lefttest(self.numbers_101, buffer_len, blocksize) self.lefttest(self.numbers_51, buffer_len, blocksize) self.righttest(self.numbers_101, buffer_len, blocksize) self.righttest(self.numbers_51, buffer_len, blocksize) def test_map_easy_padded_blocks_17(self): buffer_len = 1 blocksize = 7 self.lefttest(self.numbers_10, buffer_len, blocksize) self.lefttest(self.numbers_101, buffer_len, blocksize) self.lefttest(self.numbers_51, buffer_len, blocksize) self.righttest(self.numbers_10, buffer_len, blocksize) self.righttest(self.numbers_101, buffer_len, blocksize) self.righttest(self.numbers_51, buffer_len, blocksize) class TestPandasEasy(unittest.TestCase): """ Tests the pandas_easy module. """ def setUp(self): pass def test_groupby_to_scalar_to_series_1(self): df = pd.DataFrame({'a': [6, 2, 2], 'b': [4, 5, 6]}) benchmark = df.groupby('a').apply(max) result = pandas_easy.groupby_to_scalar_to_series(df, max, 1, by='a') assert_series_equal(result, benchmark) def test_groupby_to_scalar_to_series_2(self): s = pd.Series([1, 2, 3, 4]) labels = ['a', 'a', 'b', 'b'] benchmark = s.groupby(labels).apply(max) result = pandas_easy.groupby_to_scalar_to_series( s, max, 1, by=labels) assert_series_equal(result, benchmark) def test_groupby_to_series_to_frame_1(self): df = pd.DataFrame({'a': [6, 2, 2], 'b': [4, 5, 6]}) labels = ['g1', 'g1', 'g2'] benchmark = df.groupby(labels).mean() result = pandas_easy.groupby_to_series_to_frame( df, np.mean, 1, use_apply=True, by=labels) assert_frame_equal(result, benchmark) def test_groupby_to_series_to_frame_2(self): df = pd.DataFrame({'a': [6, 2, 2], 'b': [4, 5, 6]}) labels = ['g1', 'g1', 'g2'] benchmark = df.groupby(labels).apply(frame_to_series) result = pandas_easy.groupby_to_series_to_frame( df, frame_to_series, 1, use_apply=False, by=labels) assert_frame_equal(result, benchmark) class TestLockIterateApply(unittest.TestCase): """ Test the Locked Iterator Class """ def setUp(self): self.data = ['my', 'name', 'is', 'daniel'] self.num_threads = 4 def bytwo(x): return 2 * x self.func = bytwo def it(): for i in self.data: yield i self.myiter = it() def test_locked_iterator(self): threads = [] lock = threading.Lock() out = StringIO() for i in range(self.num_threads): t = LockIterateApply(self.func, self.myiter, lock, ',', out) threads.append(t) for t in threads: t.start() for t in threads: t.join() benchmark = set(['mymy', 'namename', 'danieldaniel', 'isis', '']) results = set(out.getvalue().split(',')) self.assertEqual(results, benchmark) def test_threading_easy(self): out = StringIO() threading_easy(self.func, self.myiter, self.num_threads, ',', out) benchmark = set(['mymy', 'namename', 'danieldaniel', 'isis', '']) results = set(out.getvalue().split(',')) self.assertEqual(results, benchmark) def test_threading_easy_single(self): out = StringIO() threading_easy(self.func, self.myiter, 1, ',', out) benchmark = set(['mymy', 'namename', 'danieldaniel', 'isis', '']) results = set(out.getvalue().split(',')) self.assertEqual(results, benchmark)
[((503, 525), 'functools.partial', 'partial', (['_abfunc', '(2)', '(3)'], {}), '(_abfunc, 2, 3)\n', (510, 525), False, 'from functools import partial\n'), ((1164, 1211), 'rosetta.parallel.parallel_easy.map_easy', 'parallel_easy.map_easy', (['abfunc', 'self.numbers', '(1)'], {}), '(abfunc, self.numbers, 1)\n', (1186, 1211), False, 'from rosetta.parallel import parallel_easy, pandas_easy\n'), ((1313, 1360), 'rosetta.parallel.parallel_easy.map_easy', 'parallel_easy.map_easy', (['abfunc', 'self.numbers', '(3)'], {}), '(abfunc, self.numbers, 3)\n', (1335, 1360), False, 'from rosetta.parallel import parallel_easy, pandas_easy\n'), ((1472, 1523), 'rosetta.parallel.parallel_easy.imap_easy', 'parallel_easy.imap_easy', (['abfunc', 'self.numbers', '(1)', '(1)'], {}), '(abfunc, self.numbers, 1, 1)\n', (1495, 1523), False, 'from rosetta.parallel import parallel_easy, pandas_easy\n'), ((1728, 1779), 'rosetta.parallel.parallel_easy.imap_easy', 'parallel_easy.imap_easy', (['abfunc', 'self.numbers', '(3)', '(1)'], {}), '(abfunc, self.numbers, 3, 1)\n', (1751, 1779), False, 'from rosetta.parallel import parallel_easy, pandas_easy\n'), ((2658, 2685), 'numpy.random.randint', 'np.random.randint', (['(0)', '(5)', '(10)'], {}), '(0, 5, 10)\n', (2675, 2685), True, 'import numpy as np\n'), ((2713, 2741), 'numpy.random.randint', 'np.random.randint', (['(0)', '(5)', '(101)'], {}), '(0, 5, 101)\n', (2730, 2741), True, 'import numpy as np\n'), ((2768, 2796), 'numpy.random.randint', 'np.random.randint', (['(0)', '(5)', '(101)'], {}), '(0, 5, 101)\n', (2785, 2796), True, 'import numpy as np\n'), ((2955, 3059), 'rosetta.parallel.parallel_easy.map_easy_padded_blocks', 'parallel_easy.map_easy_padded_blocks', (['leftmax', 'numbers', 'self.n_jobs', 'buffer_len'], {'blocksize': 'blocksize'}), '(leftmax, numbers, self.n_jobs,\n buffer_len, blocksize=blocksize)\n', (2991, 3059), False, 'from rosetta.parallel import parallel_easy, pandas_easy\n'), ((3225, 3330), 'rosetta.parallel.parallel_easy.map_easy_padded_blocks', 'parallel_easy.map_easy_padded_blocks', (['rightmax', 'numbers', 'self.n_jobs', 'buffer_len'], {'blocksize': 'blocksize'}), '(rightmax, numbers, self.n_jobs,\n buffer_len, blocksize=blocksize)\n', (3261, 3330), False, 'from rosetta.parallel import parallel_easy, pandas_easy\n'), ((5364, 5410), 'pandas.DataFrame', 'pd.DataFrame', (["{'a': [6, 2, 2], 'b': [4, 5, 6]}"], {}), "({'a': [6, 2, 2], 'b': [4, 5, 6]})\n", (5376, 5410), True, 'import pandas as pd\n'), ((5475, 5534), 'rosetta.parallel.pandas_easy.groupby_to_scalar_to_series', 'pandas_easy.groupby_to_scalar_to_series', (['df', 'max', '(1)'], {'by': '"""a"""'}), "(df, max, 1, by='a')\n", (5514, 5534), False, 'from rosetta.parallel import parallel_easy, pandas_easy\n'), ((5543, 5581), 'pandas.util.testing.assert_series_equal', 'assert_series_equal', (['result', 'benchmark'], {}), '(result, benchmark)\n', (5562, 5581), False, 'from pandas.util.testing import assert_frame_equal, assert_series_equal\n'), ((5645, 5668), 'pandas.Series', 'pd.Series', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (5654, 5668), True, 'import pandas as pd\n'), ((5773, 5834), 'rosetta.parallel.pandas_easy.groupby_to_scalar_to_series', 'pandas_easy.groupby_to_scalar_to_series', (['s', 'max', '(1)'], {'by': 'labels'}), '(s, max, 1, by=labels)\n', (5812, 5834), False, 'from rosetta.parallel import parallel_easy, pandas_easy\n'), ((5856, 5894), 'pandas.util.testing.assert_series_equal', 'assert_series_equal', (['result', 'benchmark'], {}), '(result, benchmark)\n', (5875, 5894), False, 'from pandas.util.testing import assert_frame_equal, assert_series_equal\n'), ((5958, 6004), 'pandas.DataFrame', 'pd.DataFrame', (["{'a': [6, 2, 2], 'b': [4, 5, 6]}"], {}), "({'a': [6, 2, 2], 'b': [4, 5, 6]})\n", (5970, 6004), True, 'import pandas as pd\n'), ((6104, 6190), 'rosetta.parallel.pandas_easy.groupby_to_series_to_frame', 'pandas_easy.groupby_to_series_to_frame', (['df', 'np.mean', '(1)'], {'use_apply': '(True)', 'by': 'labels'}), '(df, np.mean, 1, use_apply=True, by=\n labels)\n', (6142, 6190), False, 'from rosetta.parallel import parallel_easy, pandas_easy\n'), ((6207, 6244), 'pandas.util.testing.assert_frame_equal', 'assert_frame_equal', (['result', 'benchmark'], {}), '(result, benchmark)\n', (6225, 6244), False, 'from pandas.util.testing import assert_frame_equal, assert_series_equal\n'), ((6308, 6354), 'pandas.DataFrame', 'pd.DataFrame', (["{'a': [6, 2, 2], 'b': [4, 5, 6]}"], {}), "({'a': [6, 2, 2], 'b': [4, 5, 6]})\n", (6320, 6354), True, 'import pandas as pd\n'), ((6470, 6565), 'rosetta.parallel.pandas_easy.groupby_to_series_to_frame', 'pandas_easy.groupby_to_series_to_frame', (['df', 'frame_to_series', '(1)'], {'use_apply': '(False)', 'by': 'labels'}), '(df, frame_to_series, 1, use_apply=\n False, by=labels)\n', (6508, 6565), False, 'from rosetta.parallel import parallel_easy, pandas_easy\n'), ((6582, 6619), 'pandas.util.testing.assert_frame_equal', 'assert_frame_equal', (['result', 'benchmark'], {}), '(result, benchmark)\n', (6600, 6619), False, 'from pandas.util.testing import assert_frame_equal, assert_series_equal\n'), ((7072, 7088), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (7086, 7088), False, 'import threading\n'), ((7103, 7113), 'StringIO.StringIO', 'StringIO', ([], {}), '()\n', (7111, 7113), False, 'from StringIO import StringIO\n'), ((7575, 7585), 'StringIO.StringIO', 'StringIO', ([], {}), '()\n', (7583, 7585), False, 'from StringIO import StringIO\n'), ((7594, 7660), 'rosetta.parallel.threading_easy.threading_easy', 'threading_easy', (['self.func', 'self.myiter', 'self.num_threads', '""","""', 'out'], {}), "(self.func, self.myiter, self.num_threads, ',', out)\n", (7608, 7660), False, 'from rosetta.parallel.threading_easy import threading_easy, LockIterateApply\n'), ((7887, 7897), 'StringIO.StringIO', 'StringIO', ([], {}), '()\n', (7895, 7897), False, 'from StringIO import StringIO\n'), ((7906, 7957), 'rosetta.parallel.threading_easy.threading_easy', 'threading_easy', (['self.func', 'self.myiter', '(1)', '""","""', 'out'], {}), "(self.func, self.myiter, 1, ',', out)\n", (7920, 7957), False, 'from rosetta.parallel.threading_easy import threading_easy, LockIterateApply\n'), ((2104, 2138), 'rosetta.parallel.parallel_easy._n_jobs_wrap', 'parallel_easy._n_jobs_wrap', (['n_jobs'], {}), '(n_jobs)\n', (2130, 2138), False, 'from rosetta.parallel import parallel_easy, pandas_easy\n'), ((7172, 7228), 'rosetta.parallel.threading_easy.LockIterateApply', 'LockIterateApply', (['self.func', 'self.myiter', 'lock', '""","""', 'out'], {}), "(self.func, self.myiter, lock, ',', out)\n", (7188, 7228), False, 'from rosetta.parallel.threading_easy import threading_easy, LockIterateApply\n')]
sdelcore/video-event-notifier-old
modules/helper/subtitles/subtitles.py
16bd322f2b81efbb3e08e63ed407ab098d610c88
import time import srt import re import datetime from mqtthandler import MQTTHandler INIT_STATUS={ "video": { "title": None, "series_title": None, "season": None, "episode": None }, "time": None, "events": None } class SubtitleHandler: subtitles = [] phrases = [] def __init__(self, broker): self.mqtt = MQTTHandler(broker) def parseSRT(self, srt_filename): f=open(srt_filename, "r") subtitle_generate = srt.parse(f.read()) f.close() self.subtitles = list(subtitle_generate) return self.subtitles def parsePhrases(self, phrase_filename): f=open(phrase_filename, "r") lines = f.readlines() for line in lines: phrase = line.rstrip("\n\r").split("/") self.phrases.append(phrase) return self.phrases def isPhraseInLine(self,phrase, sub, content): sub_line = re.sub('[^A-Za-z0-9\s]+', '', str(content)).lower() phrase = re.sub('[^A-Za-z0-9\s]+', '', str(phrase)).lower() count = 0 while bool(re.search(phrase, sub_line)): count += 1 sub_line = sub_line.replace(phrase, '', 1) return count def getEventTime(self,sub): middle = sub.end - sub.start between_sec = datetime.timedelta.total_seconds(middle) / 2 sec = between_sec + datetime.timedelta.total_seconds(sub.start) return int(sec) def matchEventToMovie(self, movie, subtitles, phrases, time_offset): global INIT_STATUS status = INIT_STATUS status["video"]["title"] = movie #TODO determine how to set up phrase data for sub in subtitles: c = sub.content.replace('\n', ' ') c = c.split(" ") firstpart, secondpart = " ".join(c[:len(c)//2]), " ".join(c[len(c)//2:]) mult = 0 for phrase in phrases: line = phrase[0] events = phrase[1] mult += self.isPhraseInLine(line,sub,sub.content) #f = self.isPhraseInLine(line,sub, firstpart) #s = self.isPhraseInLine(line,sub, secondpart) #if f + s == 0: # mult += self.isPhraseInLine(line,sub,sub.content ) #else: # mult += f+s ## DEAR LESS DRUNK SELF # this currently adds the number of events over the entire subtitle # what you need to do if you wish to accept it, is to split each subtitle into to two parts # the first part will the the half that has the first bit of text, which will have the correct time to event for the work # the second half will have the correct time to event gfor the second half # you could have three if statements that check and each toher them reach a send.message() if mult > 0: # wotn work properly if events is greater than 1 status["time"] = self.getEventTime(sub) + time_offset status["events"] = int(events) * mult self.sendMessage(status) #print(sub.content) def sendMessage(self, msg): self.mqtt.send(msg) print(msg) return msg def isDone(self): return True
[((380, 399), 'mqtthandler.MQTTHandler', 'MQTTHandler', (['broker'], {}), '(broker)\n', (391, 399), False, 'from mqtthandler import MQTTHandler\n'), ((1112, 1139), 're.search', 're.search', (['phrase', 'sub_line'], {}), '(phrase, sub_line)\n', (1121, 1139), False, 'import re\n'), ((1333, 1373), 'datetime.timedelta.total_seconds', 'datetime.timedelta.total_seconds', (['middle'], {}), '(middle)\n', (1365, 1373), False, 'import datetime\n'), ((1406, 1449), 'datetime.timedelta.total_seconds', 'datetime.timedelta.total_seconds', (['sub.start'], {}), '(sub.start)\n', (1438, 1449), False, 'import datetime\n')]
rbago/CEBD1160_Class4_hwk
thecsvparser.py
1012c81663dc60ea9d139d96f368f8289d4b363e
#!/usr/bin/env python import os import numpy as np import pandas as pd os.getcwd() # Request for the filename # Current version of this script works only with TSV type files mainFilename = input('Input your file name (diabetes.tab.txt or housing.data.txt): ') print() # To create proper dataframe, transforming it with numpy # Then changing it with pandas filenameData = np.genfromtxt(mainFilename, dtype='str') filenameData = pd.DataFrame(filenameData) # Obtains first row to identify header is string or numeric headers = filenameData.iloc[0] try: pd.to_numeric(headers) except: filenameData = pd.DataFrame(filenameData.values[1:], columns=headers) # Changes strings to numbers (self identifies for float or integer) filenameData = filenameData.apply(pd.to_numeric) # Obtains the mean and standard deviation of the columns listMean = filenameData.mean() listStd = filenameData.std() print(filenameData) # Prints out the results print('Mean for each column:') for idx in filenameData.columns: print(idx,':',listMean[idx]) print() print('Standard deviation for each column:') for idx in filenameData.columns: print(idx,':',listStd[idx])
[((73, 84), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (82, 84), False, 'import os\n'), ((375, 415), 'numpy.genfromtxt', 'np.genfromtxt', (['mainFilename'], {'dtype': '"""str"""'}), "(mainFilename, dtype='str')\n", (388, 415), True, 'import numpy as np\n'), ((432, 458), 'pandas.DataFrame', 'pd.DataFrame', (['filenameData'], {}), '(filenameData)\n', (444, 458), True, 'import pandas as pd\n'), ((561, 583), 'pandas.to_numeric', 'pd.to_numeric', (['headers'], {}), '(headers)\n', (574, 583), True, 'import pandas as pd\n'), ((611, 665), 'pandas.DataFrame', 'pd.DataFrame', (['filenameData.values[1:]'], {'columns': 'headers'}), '(filenameData.values[1:], columns=headers)\n', (623, 665), True, 'import pandas as pd\n')]
wenxichen/donkeycar
donkeycar/tests/test_web_socket.py
d70ee60d35d7e0e004b885e6f6062fb51916dad1
from donkeycar.parts.web_controller.web import WebSocketCalibrateAPI from functools import partial from tornado import testing import tornado.websocket import tornado.web import tornado.ioloop import json from unittest.mock import Mock from donkeycar.parts.actuator import PWMSteering, PWMThrottle class WebSocketCalibrateTest(testing.AsyncHTTPTestCase): """ Example of WebSocket usage as a client in AsyncHTTPTestCase-based unit tests. """ def get_app(self): app = tornado.web.Application([('/', WebSocketCalibrateAPI)]) self.app = app return app def get_ws_url(self): return "ws://localhost:" + str(self.get_http_port()) + "/" @tornado.testing.gen_test def test_calibrate_servo_esc_1(self): ws_client = yield tornado.websocket.websocket_connect(self.get_ws_url()) # Now we can run a test on the WebSocket. self.app.drive_train = dict() self.app.drive_train['steering'] = Mock() self.app.drive_train_type = "SERVO_ESC" data = {"config": {"STEERING_LEFT_PWM": 444}} yield ws_client.write_message(json.dumps(data)) yield ws_client.close() assert self.app.drive_train['steering'].left_pulse == 444 assert isinstance(self.app.drive_train['steering'].right_pulse, Mock) @tornado.testing.gen_test def test_calibrate_servo_esc_2(self): ws_client = yield tornado.websocket.websocket_connect(self.get_ws_url()) # Now we can run a test on the WebSocket. self.app.drive_train = dict() self.app.drive_train['steering'] = Mock() self.app.drive_train_type = "SERVO_ESC" data = {"config": {"STEERING_RIGHT_PWM": 555}} yield ws_client.write_message(json.dumps(data)) yield ws_client.close() assert self.app.drive_train['steering'].right_pulse == 555 assert isinstance(self.app.drive_train['steering'].left_pulse, Mock) @tornado.testing.gen_test def test_calibrate_servo_esc_3(self): ws_client = yield tornado.websocket.websocket_connect(self.get_ws_url()) # Now we can run a test on the WebSocket. self.app.drive_train = dict() self.app.drive_train['throttle'] = Mock() self.app.drive_train_type = "SERVO_ESC" data = {"config": {"THROTTLE_FORWARD_PWM": 666}} yield ws_client.write_message(json.dumps(data)) yield ws_client.close() assert self.app.drive_train['throttle'].max_pulse == 666 assert isinstance(self.app.drive_train['throttle'].min_pulse, Mock) @tornado.testing.gen_test def test_calibrate_mm1(self): ws_client = yield tornado.websocket.websocket_connect(self.get_ws_url()) # Now we can run a test on the WebSocket. self.app.drive_train = Mock() self.app.drive_train_type = "MM1" data = {"config": {"MM1_STEERING_MID": 1234}} yield ws_client.write_message(json.dumps(data)) yield ws_client.close() assert self.app.drive_train.STEERING_MID == 1234
[((978, 984), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (982, 984), False, 'from unittest.mock import Mock\n'), ((1607, 1613), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (1611, 1613), False, 'from unittest.mock import Mock\n'), ((2237, 2243), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (2241, 2243), False, 'from unittest.mock import Mock\n'), ((2808, 2814), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (2812, 2814), False, 'from unittest.mock import Mock\n'), ((1126, 1142), 'json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (1136, 1142), False, 'import json\n'), ((1756, 1772), 'json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (1766, 1772), False, 'import json\n'), ((2388, 2404), 'json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (2398, 2404), False, 'import json\n'), ((2949, 2965), 'json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (2959, 2965), False, 'import json\n')]
weese/seqan
misc/trac_plugins/IncludeMacro/includemacro/macros.py
1acb1688969c7b61497f2328af54b4d11228a484
# TracIncludeMacro macros import re import urllib2 from StringIO import StringIO from trac.core import * from trac.wiki.macros import WikiMacroBase from trac.wiki.formatter import system_message from trac.wiki.model import WikiPage from trac.mimeview.api import Mimeview, get_mimetype, Context from trac.perm import IPermissionRequestor from genshi.core import escape from genshi.input import HTMLParser, ParseError from genshi.filters.html import HTMLSanitizer __all__ = ['IncludeMacro'] class IncludeMacro(WikiMacroBase): """A macro to include other resources in wiki pages. More documentation to follow. """ implements(IPermissionRequestor) # Default output formats for sources that need them default_formats = { 'wiki': 'text/x-trac-wiki', } # IWikiMacroProvider methods def expand_macro(self, formatter, name, content): req = formatter.req # Shortcut. safe_content = False # Whether or not to disable cleaning HTML. args = [x.strip() for x in content.split(',')] if len(args) == 1: args.append(None) elif len(args) == 3: return system_message('args == %s' % args) if not args[2].startswith('fragment='): msg = ('If three arguments are given, the last one must' ' start with fragment=, but tag content was %s') return system_message(msg % content) elif len(args) != 2: return system_message('Invalid arguments "%s"'%content) # Parse out fragment name. fragment_name = None if args[-1] and args[-1].startswith('fragment='): fragment_name = args[-1][len('fragment='):] args.pop() if len(args) == 1: args.append(None) # Pull out the arguments source, dest_format = args try: source_format, source_obj = source.split(':', 1) except ValueError: # If no : is present, assume its a wiki page source_format, source_obj = 'wiki', source # Apply a default format if needed if dest_format is None: try: dest_format = self.default_formats[source_format] except KeyError: pass if source_format in ('http', 'https', 'ftp'): # Since I can't really do recursion checking, and because this # could be a source of abuse allow selectively blocking it. # RFE: Allow blacklist/whitelist patterns for URLS. <NPK> # RFE: Track page edits and prevent unauthorized users from ever entering a URL include. <NPK> if not req.perm.has_permission('INCLUDE_URL'): self.log.info('IncludeMacro: Blocking attempt by %s to include URL %s on page %s', req.authname, source, req.path_info) return '' try: urlf = urllib2.urlopen(source) out = urlf.read() except urllib2.URLError, e: return system_message('Error while retrieving file', str(e)) except TracError, e: return system_message('Error while previewing', str(e)) ctxt = Context.from_request(req) elif source_format == 'wiki': # XXX: Check for recursion in page includes. <NPK> if not req.perm.has_permission('WIKI_VIEW'): return '' page = WikiPage(self.env, source_obj) if not page.exists: return system_message('Wiki page %s does not exist'%source_obj) out = page.text ctxt = Context.from_request(req, 'wiki', source_obj) elif source_format == 'source': if not req.perm.has_permission('FILE_VIEW'): return '' repo = self.env.get_repository(authname=req.authname) node = repo.get_node(source_obj) out = node.get_content().read() if dest_format is None: dest_format = node.content_type or get_mimetype(source_obj, out) ctxt = Context.from_request(req, 'source', source_obj) # RFE: Add ticket: and comment: sources. <NPK> # RFE: Add attachment: source. <NPK> else: return system_message('Unsupported include source %s'%source) # If there was a fragment name given then find the fragment. fragment = [] current_fragment_name = None if fragment_name: for line in out.splitlines(): res = re.search(r'FRAGMENT\(([^)]*)\)', line) if res: current_fragment_name = res.groups()[0] else: if current_fragment_name == fragment_name: fragment.append(line) out = '\n'.join(fragment) # If we have a preview format, use it if dest_format: # We can trust the output and do not need to call the HTML sanitizer # below. The HTML sanitization leads to whitespace being stripped. safe_content = True out = Mimeview(self.env).render(ctxt, dest_format, out, force_source=True) # Escape if needed if not safe_content and not self.config.getbool('wiki', 'render_unsafe_content', False): try: out = HTMLParser(StringIO(out)).parse() | HTMLSanitizer() except ParseError: out = escape(out) return out # IPermissionRequestor methods def get_permission_actions(self): yield 'INCLUDE_URL'
[]
rjcuevas/Email-Frontend-AngularJS-
packages/google/cloud/logging/client.py
753dbd190582ed953058c9e15c2be920716c7985
# Copyright 2016 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Client for interacting with the Google Stackdriver Logging API.""" import os try: from google.cloud.gapic.logging.v2.config_service_v2_api import ( ConfigServiceV2Api as GeneratedSinksAPI) from google.cloud.gapic.logging.v2.logging_service_v2_api import ( LoggingServiceV2Api as GeneratedLoggingAPI) from google.cloud.gapic.logging.v2.metrics_service_v2_api import ( MetricsServiceV2Api as GeneratedMetricsAPI) from google.cloud.logging._gax import _LoggingAPI as GAXLoggingAPI from google.cloud.logging._gax import _MetricsAPI as GAXMetricsAPI from google.cloud.logging._gax import _SinksAPI as GAXSinksAPI except ImportError: # pragma: NO COVER _HAVE_GAX = False GeneratedLoggingAPI = GAXLoggingAPI = None GeneratedMetricsAPI = GAXMetricsAPI = None GeneratedSinksAPI = GAXSinksAPI = None else: _HAVE_GAX = True from google.cloud.client import JSONClient from google.cloud.environment_vars import DISABLE_GRPC from google.cloud.logging.connection import Connection from google.cloud.logging.connection import _LoggingAPI as JSONLoggingAPI from google.cloud.logging.connection import _MetricsAPI as JSONMetricsAPI from google.cloud.logging.connection import _SinksAPI as JSONSinksAPI from google.cloud.logging.entries import ProtobufEntry from google.cloud.logging.entries import StructEntry from google.cloud.logging.entries import TextEntry from google.cloud.logging.logger import Logger from google.cloud.logging.metric import Metric from google.cloud.logging.sink import Sink _DISABLE_GAX = os.getenv(DISABLE_GRPC, False) _USE_GAX = _HAVE_GAX and not _DISABLE_GAX class Client(JSONClient): """Client to bundle configuration needed for API requests. :type project: str :param project: the project which the client acts on behalf of. If not passed, falls back to the default inferred from the environment. :type credentials: :class:`oauth2client.client.OAuth2Credentials` or :class:`NoneType` :param credentials: The OAuth2 Credentials to use for the connection owned by this client. If not passed (and if no ``http`` object is passed), falls back to the default inferred from the environment. :type http: :class:`httplib2.Http` or class that defines ``request()``. :param http: An optional HTTP object to make requests. If not passed, an ``http`` object is created that is bound to the ``credentials`` for the current object. """ _connection_class = Connection _logging_api = _sinks_api = _metrics_api = None @property def logging_api(self): """Helper for logging-related API calls. See: https://cloud.google.com/logging/docs/api/ref_v2beta1/rest/v2beta1/entries https://cloud.google.com/logging/docs/api/ref_v2beta1/rest/v2beta1/projects.logs """ if self._logging_api is None: if _USE_GAX: generated = GeneratedLoggingAPI() self._logging_api = GAXLoggingAPI(generated) else: self._logging_api = JSONLoggingAPI(self.connection) return self._logging_api @property def sinks_api(self): """Helper for log sink-related API calls. See: https://cloud.google.com/logging/docs/api/ref_v2beta1/rest/v2beta1/projects.sinks """ if self._sinks_api is None: if _USE_GAX: generated = GeneratedSinksAPI() self._sinks_api = GAXSinksAPI(generated) else: self._sinks_api = JSONSinksAPI(self.connection) return self._sinks_api @property def metrics_api(self): """Helper for log metric-related API calls. See: https://cloud.google.com/logging/docs/api/ref_v2beta1/rest/v2beta1/projects.metrics """ if self._metrics_api is None: if _USE_GAX: generated = GeneratedMetricsAPI() self._metrics_api = GAXMetricsAPI(generated) else: self._metrics_api = JSONMetricsAPI(self.connection) return self._metrics_api def logger(self, name): """Creates a logger bound to the current client. :type name: str :param name: the name of the logger to be constructed. :rtype: :class:`google.cloud.logging.logger.Logger` :returns: Logger created with the current client. """ return Logger(name, client=self) def _entry_from_resource(self, resource, loggers): """Detect correct entry type from resource and instantiate. :type resource: dict :param resource: one entry resource from API response :type loggers: dict or None :param loggers: A mapping of logger fullnames -> loggers. If not passed, the entry will have a newly-created logger. :rtype: One of: :class:`google.cloud.logging.entries.TextEntry`, :class:`google.cloud.logging.entries.StructEntry`, :class:`google.cloud.logging.entries.ProtobufEntry` :returns: the entry instance, constructed via the resource """ if 'textPayload' in resource: return TextEntry.from_api_repr(resource, self, loggers) elif 'jsonPayload' in resource: return StructEntry.from_api_repr(resource, self, loggers) elif 'protoPayload' in resource: return ProtobufEntry.from_api_repr(resource, self, loggers) raise ValueError('Cannot parse log entry resource') def list_entries(self, projects=None, filter_=None, order_by=None, page_size=None, page_token=None): """Return a page of log entries. See: https://cloud.google.com/logging/docs/api/ref_v2beta1/rest/v2beta1/entries/list :type projects: list of strings :param projects: project IDs to include. If not passed, defaults to the project bound to the client. :type filter_: str :param filter_: a filter expression. See: https://cloud.google.com/logging/docs/view/advanced_filters :type order_by: str :param order_by: One of :data:`~google.cloud.logging.ASCENDING` or :data:`~google.cloud.logging.DESCENDING`. :type page_size: int :param page_size: maximum number of entries to return, If not passed, defaults to a value set by the API. :type page_token: str :param page_token: opaque marker for the next "page" of entries. If not passed, the API will return the first page of entries. :rtype: tuple, (list, str) :returns: list of :class:`google.cloud.logging.entry.TextEntry`, plus a "next page token" string: if not None, indicates that more entries can be retrieved with another call (pass that value as ``page_token``). """ if projects is None: projects = [self.project] resources, token = self.logging_api.list_entries( projects=projects, filter_=filter_, order_by=order_by, page_size=page_size, page_token=page_token) loggers = {} entries = [self._entry_from_resource(resource, loggers) for resource in resources] return entries, token def sink(self, name, filter_=None, destination=None): """Creates a sink bound to the current client. :type name: str :param name: the name of the sink to be constructed. :type filter_: str :param filter_: (optional) the advanced logs filter expression defining the entries exported by the sink. If not passed, the instance should already exist, to be refreshed via :meth:`Sink.reload`. :type destination: str :param destination: destination URI for the entries exported by the sink. If not passed, the instance should already exist, to be refreshed via :meth:`Sink.reload`. :rtype: :class:`google.cloud.logging.sink.Sink` :returns: Sink created with the current client. """ return Sink(name, filter_, destination, client=self) def list_sinks(self, page_size=None, page_token=None): """List sinks for the project associated with this client. See: https://cloud.google.com/logging/docs/api/ref_v2beta1/rest/v2beta1/projects.sinks/list :type page_size: int :param page_size: maximum number of sinks to return, If not passed, defaults to a value set by the API. :type page_token: str :param page_token: opaque marker for the next "page" of sinks. If not passed, the API will return the first page of sinks. :rtype: tuple, (list, str) :returns: list of :class:`google.cloud.logging.sink.Sink`, plus a "next page token" string: if not None, indicates that more sinks can be retrieved with another call (pass that value as ``page_token``). """ resources, token = self.sinks_api.list_sinks( self.project, page_size, page_token) sinks = [Sink.from_api_repr(resource, self) for resource in resources] return sinks, token def metric(self, name, filter_=None, description=''): """Creates a metric bound to the current client. :type name: str :param name: the name of the metric to be constructed. :type filter_: str :param filter_: the advanced logs filter expression defining the entries tracked by the metric. If not passed, the instance should already exist, to be refreshed via :meth:`Metric.reload`. :type description: str :param description: the description of the metric to be constructed. If not passed, the instance should already exist, to be refreshed via :meth:`Metric.reload`. :rtype: :class:`google.cloud.logging.metric.Metric` :returns: Metric created with the current client. """ return Metric(name, filter_, client=self, description=description) def list_metrics(self, page_size=None, page_token=None): """List metrics for the project associated with this client. See: https://cloud.google.com/logging/docs/api/ref_v2beta1/rest/v2beta1/projects.metrics/list :type page_size: int :param page_size: maximum number of metrics to return, If not passed, defaults to a value set by the API. :type page_token: str :param page_token: opaque marker for the next "page" of metrics. If not passed, the API will return the first page of metrics. :rtype: tuple, (list, str) :returns: list of :class:`google.cloud.logging.metric.Metric`, plus a "next page token" string: if not None, indicates that more metrics can be retrieved with another call (pass that value as ``page_token``). """ resources, token = self.metrics_api.list_metrics( self.project, page_size, page_token) metrics = [Metric.from_api_repr(resource, self) for resource in resources] return metrics, token
[((2148, 2178), 'os.getenv', 'os.getenv', (['DISABLE_GRPC', '(False)'], {}), '(DISABLE_GRPC, False)\n', (2157, 2178), False, 'import os\n'), ((5172, 5197), 'google.cloud.logging.logger.Logger', 'Logger', (['name'], {'client': 'self'}), '(name, client=self)\n', (5178, 5197), False, 'from google.cloud.logging.logger import Logger\n'), ((9133, 9178), 'google.cloud.logging.sink.Sink', 'Sink', (['name', 'filter_', 'destination'], {'client': 'self'}), '(name, filter_, destination, client=self)\n', (9137, 9178), False, 'from google.cloud.logging.sink import Sink\n'), ((11246, 11305), 'google.cloud.logging.metric.Metric', 'Metric', (['name', 'filter_'], {'client': 'self', 'description': 'description'}), '(name, filter_, client=self, description=description)\n', (11252, 11305), False, 'from google.cloud.logging.metric import Metric\n'), ((5962, 6010), 'google.cloud.logging.entries.TextEntry.from_api_repr', 'TextEntry.from_api_repr', (['resource', 'self', 'loggers'], {}), '(resource, self, loggers)\n', (5985, 6010), False, 'from google.cloud.logging.entries import TextEntry\n'), ((10233, 10267), 'google.cloud.logging.sink.Sink.from_api_repr', 'Sink.from_api_repr', (['resource', 'self'], {}), '(resource, self)\n', (10251, 10267), False, 'from google.cloud.logging.sink import Sink\n'), ((12384, 12420), 'google.cloud.logging.metric.Metric.from_api_repr', 'Metric.from_api_repr', (['resource', 'self'], {}), '(resource, self)\n', (12404, 12420), False, 'from google.cloud.logging.metric import Metric\n'), ((3660, 3681), 'google.cloud.gapic.logging.v2.logging_service_v2_api.LoggingServiceV2Api', 'GeneratedLoggingAPI', ([], {}), '()\n', (3679, 3681), True, 'from google.cloud.gapic.logging.v2.logging_service_v2_api import LoggingServiceV2Api as GeneratedLoggingAPI\n'), ((3718, 3742), 'google.cloud.logging._gax._LoggingAPI', 'GAXLoggingAPI', (['generated'], {}), '(generated)\n', (3731, 3742), True, 'from google.cloud.logging._gax import _LoggingAPI as GAXLoggingAPI\n'), ((3797, 3828), 'google.cloud.logging.connection._LoggingAPI', 'JSONLoggingAPI', (['self.connection'], {}), '(self.connection)\n', (3811, 3828), True, 'from google.cloud.logging.connection import _LoggingAPI as JSONLoggingAPI\n'), ((4157, 4176), 'google.cloud.gapic.logging.v2.config_service_v2_api.ConfigServiceV2Api', 'GeneratedSinksAPI', ([], {}), '()\n', (4174, 4176), True, 'from google.cloud.gapic.logging.v2.config_service_v2_api import ConfigServiceV2Api as GeneratedSinksAPI\n'), ((4211, 4233), 'google.cloud.logging._gax._SinksAPI', 'GAXSinksAPI', (['generated'], {}), '(generated)\n', (4222, 4233), True, 'from google.cloud.logging._gax import _SinksAPI as GAXSinksAPI\n'), ((4286, 4315), 'google.cloud.logging.connection._SinksAPI', 'JSONSinksAPI', (['self.connection'], {}), '(self.connection)\n', (4298, 4315), True, 'from google.cloud.logging.connection import _SinksAPI as JSONSinksAPI\n'), ((4650, 4671), 'google.cloud.gapic.logging.v2.metrics_service_v2_api.MetricsServiceV2Api', 'GeneratedMetricsAPI', ([], {}), '()\n', (4669, 4671), True, 'from google.cloud.gapic.logging.v2.metrics_service_v2_api import MetricsServiceV2Api as GeneratedMetricsAPI\n'), ((4708, 4732), 'google.cloud.logging._gax._MetricsAPI', 'GAXMetricsAPI', (['generated'], {}), '(generated)\n', (4721, 4732), True, 'from google.cloud.logging._gax import _MetricsAPI as GAXMetricsAPI\n'), ((4787, 4818), 'google.cloud.logging.connection._MetricsAPI', 'JSONMetricsAPI', (['self.connection'], {}), '(self.connection)\n', (4801, 4818), True, 'from google.cloud.logging.connection import _MetricsAPI as JSONMetricsAPI\n'), ((6070, 6120), 'google.cloud.logging.entries.StructEntry.from_api_repr', 'StructEntry.from_api_repr', (['resource', 'self', 'loggers'], {}), '(resource, self, loggers)\n', (6095, 6120), False, 'from google.cloud.logging.entries import StructEntry\n'), ((6181, 6233), 'google.cloud.logging.entries.ProtobufEntry.from_api_repr', 'ProtobufEntry.from_api_repr', (['resource', 'self', 'loggers'], {}), '(resource, self, loggers)\n', (6208, 6233), False, 'from google.cloud.logging.entries import ProtobufEntry\n')]
wwwidonja/changed_plotly
tests/test_core/test_graph_objs/test_instantiate_hierarchy.py
1bda35a438539a97c84a3ab3952e95e8848467bd
from __future__ import absolute_import from unittest import TestCase import os import importlib import inspect from plotly.basedatatypes import BasePlotlyType, BaseFigure datatypes_root = "new_plotly/graph_objs" datatype_modules = [ dirpath.replace("/", ".") for dirpath, _, _ in os.walk(datatypes_root) if not dirpath.endswith("__pycache__") ] class HierarchyTest(TestCase): def test_construct_datatypes(self): for datatypes_module in datatype_modules: module = importlib.import_module(datatypes_module) for name in getattr(module, "__all__", []): if name.startswith("_") or name[0].islower() or name == "FigureWidget": continue obj = getattr(module, name) try: v = obj() except Exception: print( "Failed to construct {obj} in module {module}".format( obj=obj, module=datatypes_module ) ) raise if obj.__module__ == "new_plotly.graph_objs._deprecations": self.assertTrue(isinstance(v, list) or isinstance(v, dict)) obj() elif name in ("Figure", "FigureWidget"): self.assertIsInstance(v, BaseFigure) else: self.assertIsInstance(v, BasePlotlyType)
[((290, 313), 'os.walk', 'os.walk', (['datatypes_root'], {}), '(datatypes_root)\n', (297, 313), False, 'import os\n'), ((503, 544), 'importlib.import_module', 'importlib.import_module', (['datatypes_module'], {}), '(datatypes_module)\n', (526, 544), False, 'import importlib\n')]
lyrl/mycli
mycli/packages/special/main.py
d62eefdc819a11ecdb97d93dd7ad1922d28a3795
import logging from collections import namedtuple from . import export log = logging.getLogger(__name__) NO_QUERY = 0 PARSED_QUERY = 1 RAW_QUERY = 2 SpecialCommand = namedtuple('SpecialCommand', ['handler', 'command', 'shortcut', 'description', 'arg_type', 'hidden', 'case_sensitive']) COMMANDS = {} @export class CommandNotFound(Exception): pass @export def parse_special_command(sql): command, _, arg = sql.partition(' ') verbose = '+' in command command = command.strip().replace('+', '') return (command, verbose, arg.strip()) @export def special_command(command, shortcut, description, arg_type=PARSED_QUERY, hidden=False, case_sensitive=False, aliases=()): def wrapper(wrapped): register_special_command(wrapped, command, shortcut, description, arg_type, hidden, case_sensitive, aliases) return wrapped return wrapper @export def register_special_command(handler, command, shortcut, description, arg_type=PARSED_QUERY, hidden=False, case_sensitive=False, aliases=()): cmd = command.lower() if not case_sensitive else command COMMANDS[cmd] = SpecialCommand(handler, command, shortcut, description, arg_type, hidden, case_sensitive) for alias in aliases: cmd = alias.lower() if not case_sensitive else alias COMMANDS[cmd] = SpecialCommand(handler, command, shortcut, description, arg_type, case_sensitive=case_sensitive, hidden=True) @export def execute(cur, sql): """Execute a special command and return the results. If the special command is not supported a KeyError will be raised. """ command, verbose, arg = parse_special_command(sql) if (command not in COMMANDS) and (command.lower() not in COMMANDS): raise CommandNotFound try: special_cmd = COMMANDS[command] except KeyError: special_cmd = COMMANDS[command.lower()] if special_cmd.case_sensitive: raise CommandNotFound('Command not found: %s' % command) # "help <SQL KEYWORD> is a special case. We want built-in help, not # mycli help here. if command == 'help' and arg: return show_keyword_help(cur=cur, arg=arg) if special_cmd.arg_type == NO_QUERY: return special_cmd.handler() elif special_cmd.arg_type == PARSED_QUERY: return special_cmd.handler(cur=cur, arg=arg, verbose=verbose) elif special_cmd.arg_type == RAW_QUERY: return special_cmd.handler(cur=cur, query=sql) @special_command('help', '\\?', 'Show this help.', arg_type=NO_QUERY, aliases=('\\?', '?')) def show_help(): # All the parameters are ignored. headers = ['Command', 'Shortcut', 'Description'] result = [] for _, value in sorted(COMMANDS.items()): if not value.hidden: result.append((value.command, value.shortcut, value.description)) return [(None, result, headers, None)] def show_keyword_help(cur, arg): """ Call the built-in "show <command>", to display help for an SQL keyword. :param cur: cursor :param arg: string :return: list """ keyword = arg.strip('"').strip("'") query = "help '{0}'".format(keyword) log.debug(query) cur.execute(query) if cur.description and cur.rowcount > 0: headers = [x[0] for x in cur.description] return [(None, cur, headers, '')] else: return [(None, None, None, 'No help found for {0}.'.format(keyword))] @special_command('exit', '\\q', 'Exit.', arg_type=NO_QUERY, aliases=('\\q', )) @special_command('quit', '\\q', 'Quit.', arg_type=NO_QUERY) def quit(*_args): raise EOFError @special_command('\\e', '\\e', 'Edit command with editor (uses $EDITOR).', arg_type=NO_QUERY, case_sensitive=True) @special_command('\\clip', '\\clip', 'Copy query to the system clipboard.', arg_type=NO_QUERY, case_sensitive=True) @special_command('\\G', '\\G', 'Display current query results vertically.', arg_type=NO_QUERY, case_sensitive=True) def stub(): raise NotImplementedError
[((79, 106), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (96, 106), False, 'import logging\n'), ((170, 293), 'collections.namedtuple', 'namedtuple', (['"""SpecialCommand"""', "['handler', 'command', 'shortcut', 'description', 'arg_type', 'hidden',\n 'case_sensitive']"], {}), "('SpecialCommand', ['handler', 'command', 'shortcut',\n 'description', 'arg_type', 'hidden', 'case_sensitive'])\n", (180, 293), False, 'from collections import namedtuple\n')]
ShreyasTheOne/Super-Duper-Fuzzer
core/sample_fuzzer/data_generators/base.py
b667e2dca3e49a370634ad4b0bd826aca06136b7
from abc import ABC, abstractmethod class BaseDataGenerator(ABC): def __init__(self): pass @staticmethod @abstractmethod def generate(cls): pass
[]
TungTNg/itc110_python
Mon_08_06/convert2.py
589ca1398f26d39b05a0b798100df0b05e556e3c
# convert2.py # A program to convert Celsius temps to Fahrenheit. # This version issues heat and cold warnings. def main(): celsius = float(input("What is the Celsius temperature? ")) fahrenheit = 9 / 5 * celsius + 32 print("The temperature is", fahrenheit, "degrees fahrenheit.") if fahrenheit >= 90: print("It's really hot out there, be careful!") if fahrenheit <= 30: print("Brrrrr. Be sure to dress warmly") main()
[]
basicpail/core
homeassistant/components/wolflink/__init__.py
5cc54618c5af3f75c08314bf2375cc7ac40d2b7e
"""The Wolf SmartSet Service integration.""" from datetime import timedelta import logging from httpx import ConnectError, ConnectTimeout from wolf_smartset.token_auth import InvalidAuth from wolf_smartset.wolf_client import FetchFailed, ParameterReadError, WolfClient from homeassistant.config_entries import ConfigEntry from homeassistant.const import CONF_PASSWORD, CONF_USERNAME from homeassistant.core import HomeAssistant from homeassistant.exceptions import ConfigEntryNotReady from homeassistant.helpers.update_coordinator import DataUpdateCoordinator, UpdateFailed from .const import ( COORDINATOR, DEVICE_GATEWAY, DEVICE_ID, DEVICE_NAME, DOMAIN, PARAMETERS, ) _LOGGER = logging.getLogger(__name__) PLATFORMS = ["sensor"] async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up Wolf SmartSet Service from a config entry.""" username = entry.data[CONF_USERNAME] password = entry.data[CONF_PASSWORD] device_name = entry.data[DEVICE_NAME] device_id = entry.data[DEVICE_ID] gateway_id = entry.data[DEVICE_GATEWAY] refetch_parameters = False _LOGGER.debug( "Setting up wolflink integration for device: %s (ID: %s, gateway: %s)", device_name, device_id, gateway_id, ) wolf_client = WolfClient(username, password) parameters = await fetch_parameters_init(wolf_client, gateway_id, device_id) async def async_update_data(): """Update all stored entities for Wolf SmartSet.""" try: nonlocal refetch_parameters nonlocal parameters await wolf_client.update_session() if not wolf_client.fetch_system_state_list(device_id, gateway_id): refetch_parameters = True raise UpdateFailed( "Could not fetch values from server because device is Offline." ) if refetch_parameters: parameters = await fetch_parameters(wolf_client, gateway_id, device_id) hass.data[DOMAIN][entry.entry_id][PARAMETERS] = parameters refetch_parameters = False values = { v.value_id: v.value for v in await wolf_client.fetch_value( gateway_id, device_id, parameters ) } return { parameter.parameter_id: ( parameter.value_id, values[parameter.value_id], ) for parameter in parameters if parameter.value_id in values } except ConnectError as exception: raise UpdateFailed( f"Error communicating with API: {exception}" ) from exception except FetchFailed as exception: raise UpdateFailed( f"Could not fetch values from server due to: {exception}" ) from exception except ParameterReadError as exception: refetch_parameters = True raise UpdateFailed( "Could not fetch values for parameter. Refreshing value IDs." ) from exception except InvalidAuth as exception: raise UpdateFailed("Invalid authentication during update.") from exception coordinator = DataUpdateCoordinator( hass, _LOGGER, name=DOMAIN, update_method=async_update_data, update_interval=timedelta(minutes=1), ) await coordinator.async_refresh() hass.data.setdefault(DOMAIN, {}) hass.data[DOMAIN][entry.entry_id] = {} hass.data[DOMAIN][entry.entry_id][PARAMETERS] = parameters hass.data[DOMAIN][entry.entry_id][COORDINATOR] = coordinator hass.data[DOMAIN][entry.entry_id][DEVICE_ID] = device_id hass.config_entries.async_setup_platforms(entry, PLATFORMS) return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry): """Unload a config entry.""" unload_ok = await hass.config_entries.async_unload_platforms(entry, PLATFORMS) if unload_ok: hass.data[DOMAIN].pop(entry.entry_id) return unload_ok async def fetch_parameters(client: WolfClient, gateway_id: int, device_id: int): """ Fetch all available parameters with usage of WolfClient. By default Reglertyp entity is removed because API will not provide value for this parameter. """ fetched_parameters = await client.fetch_parameters(gateway_id, device_id) return [param for param in fetched_parameters if param.name != "Reglertyp"] async def fetch_parameters_init(client: WolfClient, gateway_id: int, device_id: int): """Fetch all available parameters with usage of WolfClient but handles all exceptions and results in ConfigEntryNotReady.""" try: return await fetch_parameters(client, gateway_id, device_id) except (ConnectError, ConnectTimeout, FetchFailed) as exception: raise ConfigEntryNotReady( f"Error communicating with API: {exception}" ) from exception
[((708, 735), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (725, 735), False, 'import logging\n'), ((1321, 1351), 'wolf_smartset.wolf_client.WolfClient', 'WolfClient', (['username', 'password'], {}), '(username, password)\n', (1331, 1351), False, 'from wolf_smartset.wolf_client import FetchFailed, ParameterReadError, WolfClient\n'), ((3490, 3510), 'datetime.timedelta', 'timedelta', ([], {'minutes': '(1)'}), '(minutes=1)\n', (3499, 3510), False, 'from datetime import timedelta\n'), ((4979, 5044), 'homeassistant.exceptions.ConfigEntryNotReady', 'ConfigEntryNotReady', (['f"""Error communicating with API: {exception}"""'], {}), "(f'Error communicating with API: {exception}')\n", (4998, 5044), False, 'from homeassistant.exceptions import ConfigEntryNotReady\n'), ((1805, 1882), 'homeassistant.helpers.update_coordinator.UpdateFailed', 'UpdateFailed', (['"""Could not fetch values from server because device is Offline."""'], {}), "('Could not fetch values from server because device is Offline.')\n", (1817, 1882), False, 'from homeassistant.helpers.update_coordinator import DataUpdateCoordinator, UpdateFailed\n'), ((2698, 2756), 'homeassistant.helpers.update_coordinator.UpdateFailed', 'UpdateFailed', (['f"""Error communicating with API: {exception}"""'], {}), "(f'Error communicating with API: {exception}')\n", (2710, 2756), False, 'from homeassistant.helpers.update_coordinator import DataUpdateCoordinator, UpdateFailed\n'), ((2861, 2932), 'homeassistant.helpers.update_coordinator.UpdateFailed', 'UpdateFailed', (['f"""Could not fetch values from server due to: {exception}"""'], {}), "(f'Could not fetch values from server due to: {exception}')\n", (2873, 2932), False, 'from homeassistant.helpers.update_coordinator import DataUpdateCoordinator, UpdateFailed\n'), ((3082, 3157), 'homeassistant.helpers.update_coordinator.UpdateFailed', 'UpdateFailed', (['"""Could not fetch values for parameter. Refreshing value IDs."""'], {}), "('Could not fetch values for parameter. Refreshing value IDs.')\n", (3094, 3157), False, 'from homeassistant.helpers.update_coordinator import DataUpdateCoordinator, UpdateFailed\n'), ((3262, 3315), 'homeassistant.helpers.update_coordinator.UpdateFailed', 'UpdateFailed', (['"""Invalid authentication during update."""'], {}), "('Invalid authentication during update.')\n", (3274, 3315), False, 'from homeassistant.helpers.update_coordinator import DataUpdateCoordinator, UpdateFailed\n')]
chunribu/python-algorithms
src/levenshtein_distance.py
0483df09b5b4f93bd96712d78e3ad34bcb7e57cc
class LevenshteinDistance: def solve(self, str_a, str_b): a, b = str_a, str_b dist = {(x,y):0 for x in range(len(a)) for y in range(len(b))} for x in range(len(a)): dist[(x,-1)] = x+1 for y in range(len(b)): dist[(-1,y)] = y+1 dist[(-1,-1)] = 0 for i in range(len(a)): for j in range(len(b)): need_edit = a[i]!=b[j] last_edits = min(dist[(i,j-1)], dist[(i-1,j)], dist[(i-1,j-1)]) dist[(i,j)] = last_edits + int(need_edit) self.distance = dist return dist[(i,j)] def show(self): if hasattr(self, 'distance'): dist = self.distance for x in range(-1,len(a)): row = [] for y in range(-1, len(b)): row.append(dist[(x,y)]) print(row) # test ld = LevenshteinDistance() ld.solve('kitten','sitting') ld.show()
[]
ConnectedSystems/pyapprox
pyapprox/benchmarks/test_spectral_diffusion.py
4f405654c707cba83d211f327c0f0fdbc95efa29
import numpy as np import unittest from pyapprox.benchmarks.spectral_diffusion import ( kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D ) from pyapprox.univariate_polynomials.quadrature import gauss_jacobi_pts_wts_1D import pyapprox as pya class TestSpectralDiffusion2D(unittest.TestCase): def setUp(self): np.random.seed(1) self.eps = 2 * np.finfo(np.float).eps def test_derivative_matrix(self): order = 4 model = SteadyStateDiffusionEquation1D() bndry_cond = [0., 0.0] xlim = [-1, 1] model.initialize(order, bndry_cond, xlim) derivative_matrix = model.get_derivative_matrix() true_matrix = \ [[5.5, -6.82842712, 2., -1.17157288, 0.5], [1.70710678, -0.70710678, -1.41421356, 0.70710678, -0.29289322], [-0.5, 1.41421356, -0., -1.41421356, 0.5], [0.29289322, -0.70710678, 1.41421356, 0.70710678, -1.70710678], [-0.5, 1.17157288, -2., 6.82842712, -5.5]] # I return points and calculate derivatives using reverse order of # points compared to what is used by Matlab cheb function thus the # derivative matrix I return will be the negative of the matlab version assert np.allclose(-derivative_matrix, true_matrix) def test_homogeneous_possion_equation(self): """ solve u(x)'' = 0, u(0) = 0, u(1) = 0.5 """ order = 4 model = SteadyStateDiffusionEquation1D() bndry_cond = [0.0, 0.5] xlim = [0, 1] model.initialize(order, bndry_cond, xlim) mesh_pts = model.get_collocation_points() diff_vals = 0*mesh_pts.squeeze()+1 forcing_vals = 0*mesh_pts.squeeze() solution = model.solve(diff_vals, forcing_vals) def exact_sol(x): return 0.5*x assert np.linalg.norm(exact_sol(mesh_pts.squeeze())-solution) < 20*self.eps def test_inhomogeneous_possion_equation(self): """ solve u(x)'' = -1, u(0) = 0, u(1) = 1 solution u(x) = -0.5*(x-3.)*x """ order = 4 model = SteadyStateDiffusionEquation1D() bndry_cond = [0.0, 1.0] xlim = [0, 1] model.initialize(order, bndry_cond, xlim) mesh_pts = model.get_collocation_points() diff_vals = 0*mesh_pts.squeeze()+1 forcing_vals = 0*mesh_pts.squeeze()-1 solution = model.solve(diff_vals, forcing_vals) def exact_sol(x): return -0.5*(x-3.)*x assert np.linalg.norm( exact_sol(mesh_pts.squeeze())-solution) < 30*self.eps def test_inhomogeneous_diffusion_equation_with_variable_coefficient(self): """ solve ((1+x)*u(x)')' = -1, u(0) = 0, u(1) = 0 solution u(x) = log(x+1)/log(2) - x """ order = 20 model = SteadyStateDiffusionEquation1D() bndry_cond = [0.0, 0.0] xlim = [0, 1] model.initialize(order, bndry_cond, xlim) mesh_pts = model.get_collocation_points() def diffusivity_function(x): return x + 1 diff_vals = diffusivity_function(mesh_pts.squeeze()) forcing_vals = 0*mesh_pts.squeeze()-1 solution = model.solve(diff_vals, forcing_vals) def exact_sol(x): return np.log(x+1.) / np.log(2.) - x assert np.linalg.norm(exact_sol(mesh_pts.squeeze())-solution) < 3e-13 def test_integrate_1d(self): order = 4 model = SteadyStateDiffusionEquation1D() bndry_cond = [0.0, 0.0] xlim = [0, 1] model.initialize(order, bndry_cond, xlim) mesh_pts = model.get_collocation_points() assert np.allclose(model.integrate(mesh_pts.T**2), 1./3.) assert np.allclose(model.integrate(mesh_pts.T**3), 1./4.) order = 4 model = SteadyStateDiffusionEquation1D() bndry_cond = [0.0, 0.0] xlim = [-1, 1] model.initialize(order, bndry_cond, xlim) mesh_pts = model.get_collocation_points() assert np.allclose(model.integrate(mesh_pts.T**2), 2./3.) assert np.allclose(model.integrate(mesh_pts.T**3), 0.) def test_evaluate(self): """ for the PDE ((1+z*x)*u(x)')' = -1, u(0) = 0, u(1) = 0 use model.evaluate to extract QoI """ order = 20 model = SteadyStateDiffusionEquation1D() bndry_cond = [0.0, 0.0] xlim = [0, 1] model.initialize(order, bndry_cond, xlim) model.diffusivity_function = lambda x, z: z*x + 1. model.forcing_function = lambda x, z: 0*x-1 qoi_coords = np.array([0.05, 0.5, 0.95]) model.qoi_functional = lambda x: model.interpolate(x, qoi_coords)[:, 0] sample = np.ones((1, 1), float) qoi = model(sample) assert np.allclose(np.log(qoi_coords+1.)/np.log(2.)-qoi_coords, qoi) sample = 0.5*np.ones((1, 1), float) qoi = model(sample) assert np.allclose( -(qoi_coords*np.log(9./4.)-2.*np.log(qoi_coords+2.) + np.log(4.))/np.log(3./2.), qoi) def test_evaluate_gradient_1d(self): """ for the PDE ((1+sum(z^2)*x)*u(x)')' = -2, u(0) = 0, u(1) = 1 use model.evaluate_gradient to evaluate the gradient of the QoI with respect to the random parameter vector z. The QoI is the intergral of the solution over the entire domain The adjoint rhs is then just 1. """ order = 20 model = SteadyStateDiffusionEquation1D() bndry_cond = [0.0, 0.0] xlim = [0, 1] model.initialize(order, bndry_cond, xlim) model.diffusivity_function = lambda x, z: (z[0]**2+z[1]**2)*x + 1. model.forcing_function = lambda x, z: 0*x-2 sample = np.random.RandomState(2).uniform(-1, 1, (2, 1)) model.diffusivity_derivs_function = \ lambda x, z, i: np.array([2.*x*z[i]]).T model.forcing_derivs_function = \ lambda x, z, i: np.array([0.*x]).T model(sample) # evaluate_gradient has to be called before any more calls to # model.solve with different parameters, because we need to # access self.fwd_solution, which will change with any subsuquent calls errors = pya.check_gradients( model, lambda x: model.evaluate_gradient(x[:, 0]), sample) errors = errors[np.isfinite(errors)] assert errors.max() > 0.1 and errors.min() <= 6e-7 @unittest.skip("Not fully implemented") def test_compute_error_estimate(self): """ for the PDE ((1+z*x)*u(x)')' = -1, u(0) = 0, u(1) = 0 use model.compute_error_estomate to compute an error estimate of the deterministic error in the foward solution. The QoI is the intergral of the solution over the entire domain The adjoint rhs is then just 1. """ order = 5 model = SteadyStateDiffusionEquation1D() bndry_cond = [0.0, 0.0] xlim = [0, 1] model.initialize(order, bndry_cond, xlim) model.diffusivity_function = lambda x, z: z[0]*x + 1. model.forcing_function = lambda x, z: 0.*x-1. sample = np.ones((1, 1), float) qoi = model(sample) error_estimate = model.compute_error_estimate(sample) solution = model.run(sample[:, 0]) def exact_solution(x): return np.log(x+1.)/np.log(2.)-x gl_pts, gl_wts = gauss_jacobi_pts_wts_1D(50, 0, 0) x_range = model.xlim[1]-model.xlim[0] gl_pts = x_range*(gl_pts+1.)/2.+model.xlim[0] gl_wts *= x_range gl_vals = exact_solution(gl_pts) exact_qoi = np.dot(gl_vals, gl_wts) exact_error = abs(exact_qoi-qoi) print('err estimate', error_estimate) print('exact err', exact_error) print('effectivity ratio', error_estimate / exact_error) # should be very close to 1. As adjoint order is increased # it will converge to 1 sample = 0.5*np.ones((1), float) qoi = model.evaluate(sample) exact_solution = -(model.mesh_pts*np.log(9./4.) - 2.*np.log(model.mesh_pts+2.) + np.log(4.))/np.log(3./2.) exact_qoi = model.qoi_functional(exact_solution) error = abs(exact_qoi-qoi) error_estimate = model.compute_error_estimate(sample) print(error_estimate, error) # print model.integrate( (exact_solution - solution )**2 ) assert np.allclose(error_estimate, error) def test_timestepping_without_forcing(self): r""" solve u_t(x,t) = u_xx(x,t), u(-1,t) = 0, u(1,t) = 0, u(x,0) = \sin(\pi*x) Exact solution u(x,t) = \exp(-\pi^2t)*sin(\pi*x) """ order = 16 model = SteadyStateDiffusionEquation1D() bndry_cond = [0.0, 0.0] xlim = [-1, 1] model.initialize(order, bndry_cond, xlim) model.diffusivity_function = lambda x, z: 0*x + 1. model.forcing_function = lambda x, t, z: 0*x sample = np.ones((1), float) # dummy argument for this example model.num_time_steps = 1000 model.initial_sol = np.sin(np.pi*model.mesh_pts) model.time_step_size = 1e-4 model.time_step_method = 'adams-moulton-3' # model.time_step_method = 'crank-nicholson' model.time_step_method = 'backward-euler' model.num_stored_timesteps = 100 solution = model.transient_solve(sample) def exact_sol(x, t): return np.exp(-np.pi**2*t)*np.sin(np.pi*x) test_mesh_pts = np.linspace(xlim[0], xlim[1], 100) plot = False # True for i, t in enumerate(model.times): if plot: exact_sol_t = exact_sol(test_mesh_pts, t) model_sol_t = model.interpolate(solution[:, i], test_mesh_pts) pya.plt.plot(test_mesh_pts, model_sol_t, 'k', label='collocation', linewidth=2) pya.plt.plot(test_mesh_pts, exact_sol_t, 'r--', label='exact', linewidth=2) pya.plt.legend(loc=0) pya.plt.title('$t=%1.2f$' % t) pya.plt.show() L2_error = np.sqrt(model.integrate( (exact_sol(model.mesh_pts, t)-solution[:, i])**2)) factor = np.sqrt( model.integrate(exact_sol(model.mesh_pts, t)**2)) # print L2_error, 1e-3*factor assert L2_error < 1e-3*factor def test_timestepping_with_time_independent_forcing(self): r""" solve u_t(x,t) = u_xx(x,t)+sin(3\pi x), u(0,t) = 0, u(1,t) = 0, u(x,0) = 5\sin(2\pi x)+2\sin(3\pi x) Exact solution u(x,t) = 5\exp(-4\pi^2t)*sin(2\pi*x)+(2\exp(-9\pi^2t)+(1-\exp(-9\pi^2t))/(9\pi^2))*\sin(3\pi x) """ order = 32 model = SteadyStateDiffusionEquation1D() bndry_cond = [0.0, 0.0] xlim = [0, 1] model.initialize(order, bndry_cond, xlim) model.diffusivity_function = lambda x, z: 0*x + 1. model.forcing_function = lambda x, t, z: np.sin(3*np.pi*x) sample = np.ones((1), float) # dummy argument for this example model.num_time_steps = 10000 model.initial_sol = 5*np.sin(2*np.pi*model.mesh_pts) + \ 2*np.sin(3*np.pi*model.mesh_pts) model.time_step_size = 1e-4 # model.time_step_method = 'adams-moulton-3' model.time_step_method = 'crank-nicholson' # model.time_step_method = 'backward-euler' model.num_stored_timesteps = 100 solution = model.transient_solve(sample) def exact_sol(x, t): return 5.*np.exp(-4.*np.pi**2*t)*np.sin(2.*np.pi*x) + \ (2.*np.exp(-9.*np.pi**2*t)+(1.-np.exp(-9.*np.pi**2*t))/(9.*np.pi**2))*np.sin(3.*np.pi*x) # test_mesh_pts = np.linspace(xlim[0], xlim[1], 100) for i, t in enumerate(model.times): # exact_sol_t = exact_sol(test_mesh_pts,t) # model_sol_t = model.interpolate(solution[:,i],test_mesh_pts) # pya.plt.plot(test_mesh_pts,model_sol_t,'k',label='collocation',linewidth=2) # pya.plt.plot(test_mesh_pts,exact_sol_t,'r--',label='exact',linewidth=2) # pya.plt.legend(loc=0) # pya.plt.title('$t=%1.2f$'%t) # pya.plt.show() L2_error = np.sqrt(model.integrate( (exact_sol(model.mesh_pts, t)-solution[:, i])**2)) factor = np.sqrt( model.integrate(exact_sol(model.mesh_pts, t)**2)) # print(L2_error, 1e-4*factor) assert L2_error < 1e-4*factor def test_timestepping_with_time_dependent_forcing(self): r""" solve u_t(x,t) = u_xx(x,t)+np.sin(3\pi x)*np.sin(t), u(0,t) = 0, u(1,t) = 0, u(x,0) = 5sin(2\pi x)+2sin(3\pi x) Exact solution u(x,t) = 5\exp(-4\pi^2t)*np.sin(2\pi*x)+(2\exp(-9\pi^2t)+\exp(-9\pi^2t)(9\pi^2sin(t)-cos(t)+\exp(-9\pi^2t))/(1+81\pi^4))*sin(3\pi x) """ order = 32 model = SteadyStateDiffusionEquation1D() bndry_cond = [0.0, 0.0] xlim = [0, 1] model.initialize(order, bndry_cond, xlim) model.diffusivity_function = lambda x, z: 0*x + 1. model.forcing_function = lambda x, t, z: np.sin(3*np.pi*x)*np.sin(t) sample = np.ones((1), float) # dummy argument for this example model.num_time_steps = int(1e4) model.initial_sol = 5*np.sin(2*np.pi*model.mesh_pts) + \ 2*np.sin(3*np.pi*model.mesh_pts) model.time_step_size = 1e-4 model.num_stored_timesteps = 100 # model.time_step_method = 'adams-moulton-3' model.time_step_method = 'crank-nicholson' # model.time_step_method = 'backward-euler' # model.time_step_method = 'RK4' solution = model.transient_solve(sample) def exact_sol(x, t): return 5.*np.exp( -4.*np.pi**2*t)*np.sin(2.*np.pi*x)+( 2.*np.exp(-9.*np.pi**2*t)+( 9.*np.pi**2*np.sin(t)-np.cos(t) + np.exp(-9.*np.pi**2*t))/(1+81.*np.pi**4))*np.sin( 3.*np.pi*x) test_mesh_pts = np.linspace(xlim[0], xlim[1], 100) plot = False for i, t in enumerate(model.times): if plot: exact_sol_t = exact_sol(test_mesh_pts, t) model_sol_t = model.interpolate(solution[:, i], test_mesh_pts) pya.plt.plot(test_mesh_pts, model_sol_t, 'k', label='collocation', linewidth=2) pya.plt.plot(test_mesh_pts, exact_sol_t, 'r--', label='exact', linewidth=2) pya.plt.legend(loc=0) pya.plt.title('$t=%1.3f$' % t) pya.plt.show() L2_error = np.sqrt(model.integrate( (exact_sol(model.mesh_pts, t)-solution[:, i])**2)) factor = np.sqrt( model.integrate(exact_sol(model.mesh_pts, t)**2)) # print(L2_error, 1e-4*factor) assert L2_error < 1e-4*factor # print('time %1.2e: L2 error %1.2e' % (t, L2_error)) def test_convergence(self): order = 8 # 1e-5 # order = 16 #1e-11 order = 20 # 2e-15 model = SteadyStateDiffusionEquation1D() bndry_cond = [0.0, 0.0] xlim = [0, 1] model.initialize(order, bndry_cond, xlim) model.diffusivity_function = lambda x, z: 0*x + 1. model.forcing_function = lambda x, t, z: np.sin(3*np.pi*x)*np.sin(t) sample = np.ones((1), float) # dummy argument for this example model.initial_sol = 5*np.sin(2*np.pi*model.mesh_pts) + \ 2*np.sin(3*np.pi*model.mesh_pts) final_time = 1. model.time_step_size = 1e-2 model.num_stored_timesteps = 1 # model.time_step_method = 'crank-nicholson' # model.time_step_method = 'backward-euler' # model.time_step_method = 'RK4' needs bug fixes and testing def exact_sol(x, t): return 5.*np.exp( -4.*np.pi**2*t)*np.sin(2.*np.pi*x)+(2.*np.exp(-9.*np.pi**2*t) + ( 9.*np.pi**2*np.sin(t)-np.cos(t)+np.exp(-9.*np.pi**2*t))/(1+81.*np.pi**4))*np.sin(3.*np.pi*x) # test_mesh_pts = np.linspace(xlim[0], xlim[1], 1000) num_convergence_steps = 4 errors = np.empty((num_convergence_steps), float) time_step_sizes = np.empty((num_convergence_steps), float) num_time_steps = np.empty((num_convergence_steps), float) for i in range(num_convergence_steps): model.num_time_steps = int( np.ceil(final_time/model.time_step_size)) solution = model.transient_solve(sample) assert np.allclose(model.times[0], final_time, atol=1e-15) L2_error = np.sqrt(model.integrate( (exact_sol(model.mesh_pts, final_time)-solution[:, 0])**2)) # interpolated_sol = model.interpolate(exact_sol(model.mesh_pts,final_time),test_mesh_pts) # print(np.linalg.norm(exact_sol(test_mesh_pts,final_time)-interpolated_sol)/np.sqrt(interpolated_sol.shape[0])) # print(model.num_time_steps, L2_error) errors[i] = L2_error time_step_sizes[i] = model.time_step_size num_time_steps[i] = model.num_time_steps model.time_step_size /= 2 # print(errors) conv_rate = -np.log10(errors[-1]/errors[0])/np.log10( num_time_steps[-1]/num_time_steps[0]) assert np.allclose(conv_rate, 2, atol=1e-4) # pya.plt.loglog( # num_time_steps, errors, 'o-r', # label=r'$\lVert u(x,T)-\hat{u}(x,T)\\rVert_{\ell_2(D)}$', # linewidth=2) # # print errors[0]*num_time_steps[0]/num_time_steps # order = 1 # pya.plt.loglog( # num_time_steps, # errors[0]*num_time_steps[0]**order/num_time_steps**order, # 'o--', label=r'$(\Delta t)^{-%d}$' % order, linewidth=2) # order = 2 # pya.plt.loglog( # num_time_steps, # errors[0]*num_time_steps[0]**order/num_time_steps**order, # 'o--', label=r'$(\Delta t)^{-%d}$' % order, linewidth=2) # pya.plt.legend(loc=0) # pya.plt.show() def test_inhomogeneous_diffusion_equation_2d_variable_coefficient(self): """ wolfram alpha z random variable x and w are spatial dimension d/dx 16*exp(-z^2)*(x^2-1/4)*(w^2-1/4) d/dx (1+t/pi^2*z*cos(pi/2*(x^2+w^2)))*32*(w^2-1/4)*x*exp(-z^2) Peter zaspels thesis is wrong it is 1 = sigma * not 1 + sigma + """ sigma = 1 num_dims = 1 order = 16 model = SteadyStateDiffusionEquation2D() lims = [-0.5, 0.5, -0.5, 0.5] bndry_cond = [0., 0.] model.initialize(order, bndry_cond, lims) def forcing_function(x, y): return \ 32.*(1.+sigma*y[0]*sigma*np.cos(np.pi/2.*(x[0, :]**2+x[1, :]**2))/np.pi**2) * \ np.exp(-y[0]**2)*(x[0, :]**2+x[1, :]**2-0.5) -\ 32./np.pi*y[0]*sigma*np.sin(np.pi/2.*(x[0, :]**2+x[1, :]**2)) *\ (x[0, :]**2 * np.exp(-y[0]**2)*(x[1, :]**2-0.25)+x[1, :]**2 * np.exp(-y[0]**2)*(x[0, :]**2-0.25)) def diffusivity_function(x, y): return 1.+sigma/np.pi**2*y[0]*np.cos( np.pi/2.*(x[0, :]**2+x[1, :]**2)) # only well posed if |y| < pi^2/sigma def exact_sol(x, y): return 16.*np.exp(-y**2) * \ (x[0, :]**2-0.25)*(x[1, :]**2-0.25) rng = np.random.RandomState(1) sample = rng.uniform(-np.sqrt(3), np.sqrt(3), (num_dims)) mesh_pts = model.get_collocation_points() diff_vals = diffusivity_function(mesh_pts, sample) forcing_vals = forcing_function(mesh_pts, sample) solution = model.solve(diff_vals, forcing_vals) # print np.linalg.norm(exact_sol( mesh_pts, sample )- solution ) assert np.linalg.norm(exact_sol(mesh_pts, sample) - solution) < 2.e-12 def test_2d_matlab_example(self): """ Example from Spectral methods in Matlab. Specifically program 16 on page 70 (90 PDF page number) Solve Poisson eq. on [-1,1]x[-1,1] with u=0 on boundary and forcing 10*np.sin(8*xx.*(yy-1)) true_solution at (xx,yy)=(1/np.sqrt(2),1/np.sqrt(2))= 0.32071594511 """ num_dims = 10 order = 24 model = SteadyStateDiffusionEquation2D() lims = [-1, 1, -1, 1] bndry_cond = [0., 0.] model.initialize(order, bndry_cond, lims) def diffusivity(x, y): return np.ones(x.shape[1]) def forcing(x, y): return 10.*np.sin(8.*(x[0, :])*(x[1, :]-1)) rng = np.random.RandomState(1) sample = rng.uniform(-1, 1., (num_dims)) mesh_pts = model.get_collocation_points() diff_vals = diffusivity(mesh_pts, sample) forcing_vals = forcing(mesh_pts, sample) solution = model.solve(diff_vals, forcing_vals) # because I used reverse order of chebyshev points # and thus negative sign # of derivative matrix the solution returned here will have different # order to matlab which can be obtained by applying flipud(fliplr(x)), # e.g. we can obtain the correct coordinates used in the example with # index = np.arange((order+1)**2).reshape( # (order+1, order+1))[3*order//4, 3*order//4] # print(mesh_pts[:, index]) eval_samples = np.array([[1./np.sqrt(2), 1./np.sqrt(2)]]).T qoi = model.interpolate(solution, eval_samples) assert np.allclose(qoi, 0.32071594511) def test_integrate_2d(self): order = 4 model = SteadyStateDiffusionEquation2D() bndry_cond = [0.0, 0.0] lims = [0., 1., 0., 1.] model.initialize(order, bndry_cond, lims) mesh_pts = model.get_collocation_points() assert np.allclose( model.integrate(np.sum(mesh_pts**2, axis=0)[:, None]), 2./3.) order = 4 model = SteadyStateDiffusionEquation2D() bndry_cond = [0.0, 0.0] lims = [-1., 1., -1., 1.] model.initialize(order, bndry_cond, lims) mesh_pts = model.get_collocation_points() assert np.allclose( model.integrate(np.sum(mesh_pts**2, axis=0)[:, None]), 8./3.) def test_evaluate_gradient_2d(self): """ for the PDE ((1+sum(z^2)*x)*u(x)')' = -2, u(0) = 0, u(1) = 1 use model.evaluate_gradient to evaluate the gradient of the QoI with respect to the random parameter vector z. The QoI is the intergral of the solution over the entire domain The adjoint rhs is then just 1. """ order = 20 model = SteadyStateDiffusionEquation2D() lims = [0., 1., 0., 1.] bndry_cond = [0., 0.] model.initialize(order, bndry_cond, lims) model.diffusivity_function = \ lambda x, z: (z[0]**2+z[1]**2)*(x[0]+x[1]) + 1. model.forcing_function = lambda x, z: 0*x[0]-2 sample = np.random.RandomState(2).uniform(-1, 1, (2, 1)) model.diffusivity_derivs_function = \ lambda x, z, i: np.array([2.*(x[0]+x[1])*z[i]]).T model.forcing_derivs_function = \ lambda x, z, i: np.array([0.*x[0]]).T model(sample) # evaluate_gradient has to be called before any more calls to # model.solve with different parameters, because we need to # access self.fwd_solution, which will change with any subsuquent calls errors = pya.check_gradients( model, lambda x: model.evaluate_gradient(x[:, 0]), sample) errors = errors[np.isfinite(errors)] assert errors.max() > 0.1 and errors.min() <= 4e-6 if __name__ == "__main__": spectral_diffusion_test_suite = \ unittest.TestLoader().loadTestsFromTestCase(TestSpectralDiffusion2D) unittest.TextTestRunner(verbosity=2).run(spectral_diffusion_test_suite)
[((6532, 6570), 'unittest.skip', 'unittest.skip', (['"""Not fully implemented"""'], {}), "('Not fully implemented')\n", (6545, 6570), False, 'import unittest\n'), ((396, 413), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (410, 413), True, 'import numpy as np\n'), ((533, 565), 'pyapprox.benchmarks.spectral_diffusion.SteadyStateDiffusionEquation1D', 'SteadyStateDiffusionEquation1D', ([], {}), '()\n', (563, 565), False, 'from pyapprox.benchmarks.spectral_diffusion import kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D\n'), ((1373, 1417), 'numpy.allclose', 'np.allclose', (['(-derivative_matrix)', 'true_matrix'], {}), '(-derivative_matrix, true_matrix)\n', (1384, 1417), True, 'import numpy as np\n'), ((1574, 1606), 'pyapprox.benchmarks.spectral_diffusion.SteadyStateDiffusionEquation1D', 'SteadyStateDiffusionEquation1D', ([], {}), '()\n', (1604, 1606), False, 'from pyapprox.benchmarks.spectral_diffusion import kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D\n'), ((2223, 2255), 'pyapprox.benchmarks.spectral_diffusion.SteadyStateDiffusionEquation1D', 'SteadyStateDiffusionEquation1D', ([], {}), '()\n', (2253, 2255), False, 'from pyapprox.benchmarks.spectral_diffusion import kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D\n'), ((2936, 2968), 'pyapprox.benchmarks.spectral_diffusion.SteadyStateDiffusionEquation1D', 'SteadyStateDiffusionEquation1D', ([], {}), '()\n', (2966, 2968), False, 'from pyapprox.benchmarks.spectral_diffusion import kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D\n'), ((3545, 3577), 'pyapprox.benchmarks.spectral_diffusion.SteadyStateDiffusionEquation1D', 'SteadyStateDiffusionEquation1D', ([], {}), '()\n', (3575, 3577), False, 'from pyapprox.benchmarks.spectral_diffusion import kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D\n'), ((3899, 3931), 'pyapprox.benchmarks.spectral_diffusion.SteadyStateDiffusionEquation1D', 'SteadyStateDiffusionEquation1D', ([], {}), '()\n', (3929, 3931), False, 'from pyapprox.benchmarks.spectral_diffusion import kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D\n'), ((4409, 4441), 'pyapprox.benchmarks.spectral_diffusion.SteadyStateDiffusionEquation1D', 'SteadyStateDiffusionEquation1D', ([], {}), '()\n', (4439, 4441), False, 'from pyapprox.benchmarks.spectral_diffusion import kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D\n'), ((4679, 4706), 'numpy.array', 'np.array', (['[0.05, 0.5, 0.95]'], {}), '([0.05, 0.5, 0.95])\n', (4687, 4706), True, 'import numpy as np\n'), ((4805, 4827), 'numpy.ones', 'np.ones', (['(1, 1)', 'float'], {}), '((1, 1), float)\n', (4812, 4827), True, 'import numpy as np\n'), ((5555, 5587), 'pyapprox.benchmarks.spectral_diffusion.SteadyStateDiffusionEquation1D', 'SteadyStateDiffusionEquation1D', ([], {}), '()\n', (5585, 5587), False, 'from pyapprox.benchmarks.spectral_diffusion import kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D\n'), ((6975, 7007), 'pyapprox.benchmarks.spectral_diffusion.SteadyStateDiffusionEquation1D', 'SteadyStateDiffusionEquation1D', ([], {}), '()\n', (7005, 7007), False, 'from pyapprox.benchmarks.spectral_diffusion import kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D\n'), ((7247, 7269), 'numpy.ones', 'np.ones', (['(1, 1)', 'float'], {}), '((1, 1), float)\n', (7254, 7269), True, 'import numpy as np\n'), ((7493, 7526), 'pyapprox.univariate_polynomials.quadrature.gauss_jacobi_pts_wts_1D', 'gauss_jacobi_pts_wts_1D', (['(50)', '(0)', '(0)'], {}), '(50, 0, 0)\n', (7516, 7526), False, 'from pyapprox.univariate_polynomials.quadrature import gauss_jacobi_pts_wts_1D\n'), ((7714, 7737), 'numpy.dot', 'np.dot', (['gl_vals', 'gl_wts'], {}), '(gl_vals, gl_wts)\n', (7720, 7737), True, 'import numpy as np\n'), ((8553, 8587), 'numpy.allclose', 'np.allclose', (['error_estimate', 'error'], {}), '(error_estimate, error)\n', (8564, 8587), True, 'import numpy as np\n'), ((8854, 8886), 'pyapprox.benchmarks.spectral_diffusion.SteadyStateDiffusionEquation1D', 'SteadyStateDiffusionEquation1D', ([], {}), '()\n', (8884, 8886), False, 'from pyapprox.benchmarks.spectral_diffusion import kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D\n'), ((9121, 9138), 'numpy.ones', 'np.ones', (['(1)', 'float'], {}), '(1, float)\n', (9128, 9138), True, 'import numpy as np\n'), ((9240, 9270), 'numpy.sin', 'np.sin', (['(np.pi * model.mesh_pts)'], {}), '(np.pi * model.mesh_pts)\n', (9246, 9270), True, 'import numpy as np\n'), ((9645, 9679), 'numpy.linspace', 'np.linspace', (['xlim[0]', 'xlim[1]', '(100)'], {}), '(xlim[0], xlim[1], 100)\n', (9656, 9679), True, 'import numpy as np\n'), ((10937, 10969), 'pyapprox.benchmarks.spectral_diffusion.SteadyStateDiffusionEquation1D', 'SteadyStateDiffusionEquation1D', ([], {}), '()\n', (10967, 10969), False, 'from pyapprox.benchmarks.spectral_diffusion import kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D\n'), ((11217, 11234), 'numpy.ones', 'np.ones', (['(1)', 'float'], {}), '(1, float)\n', (11224, 11234), True, 'import numpy as np\n'), ((13117, 13149), 'pyapprox.benchmarks.spectral_diffusion.SteadyStateDiffusionEquation1D', 'SteadyStateDiffusionEquation1D', ([], {}), '()\n', (13147, 13149), False, 'from pyapprox.benchmarks.spectral_diffusion import kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D\n'), ((13407, 13424), 'numpy.ones', 'np.ones', (['(1)', 'float'], {}), '(1, float)\n', (13414, 13424), True, 'import numpy as np\n'), ((14280, 14314), 'numpy.linspace', 'np.linspace', (['xlim[0]', 'xlim[1]', '(100)'], {}), '(xlim[0], xlim[1], 100)\n', (14291, 14314), True, 'import numpy as np\n'), ((15393, 15425), 'pyapprox.benchmarks.spectral_diffusion.SteadyStateDiffusionEquation1D', 'SteadyStateDiffusionEquation1D', ([], {}), '()\n', (15423, 15425), False, 'from pyapprox.benchmarks.spectral_diffusion import kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D\n'), ((15683, 15700), 'numpy.ones', 'np.ones', (['(1)', 'float'], {}), '(1, float)\n', (15690, 15700), True, 'import numpy as np\n'), ((16477, 16515), 'numpy.empty', 'np.empty', (['num_convergence_steps', 'float'], {}), '(num_convergence_steps, float)\n', (16485, 16515), True, 'import numpy as np\n'), ((16544, 16582), 'numpy.empty', 'np.empty', (['num_convergence_steps', 'float'], {}), '(num_convergence_steps, float)\n', (16552, 16582), True, 'import numpy as np\n'), ((16610, 16648), 'numpy.empty', 'np.empty', (['num_convergence_steps', 'float'], {}), '(num_convergence_steps, float)\n', (16618, 16648), True, 'import numpy as np\n'), ((17653, 17691), 'numpy.allclose', 'np.allclose', (['conv_rate', '(2)'], {'atol': '(0.0001)'}), '(conv_rate, 2, atol=0.0001)\n', (17664, 17691), True, 'import numpy as np\n'), ((18853, 18885), 'pyapprox.benchmarks.spectral_diffusion.SteadyStateDiffusionEquation2D', 'SteadyStateDiffusionEquation2D', ([], {}), '()\n', (18883, 18885), False, 'from pyapprox.benchmarks.spectral_diffusion import kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D\n'), ((19711, 19735), 'numpy.random.RandomState', 'np.random.RandomState', (['(1)'], {}), '(1)\n', (19732, 19735), True, 'import numpy as np\n'), ((20596, 20628), 'pyapprox.benchmarks.spectral_diffusion.SteadyStateDiffusionEquation2D', 'SteadyStateDiffusionEquation2D', ([], {}), '()\n', (20626, 20628), False, 'from pyapprox.benchmarks.spectral_diffusion import kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D\n'), ((20882, 20906), 'numpy.random.RandomState', 'np.random.RandomState', (['(1)'], {}), '(1)\n', (20903, 20906), True, 'import numpy as np\n'), ((21773, 21804), 'numpy.allclose', 'np.allclose', (['qoi', '(0.32071594511)'], {}), '(qoi, 0.32071594511)\n', (21784, 21804), True, 'import numpy as np\n'), ((21873, 21905), 'pyapprox.benchmarks.spectral_diffusion.SteadyStateDiffusionEquation2D', 'SteadyStateDiffusionEquation2D', ([], {}), '()\n', (21903, 21905), False, 'from pyapprox.benchmarks.spectral_diffusion import kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D\n'), ((22207, 22239), 'pyapprox.benchmarks.spectral_diffusion.SteadyStateDiffusionEquation2D', 'SteadyStateDiffusionEquation2D', ([], {}), '()\n', (22237, 22239), False, 'from pyapprox.benchmarks.spectral_diffusion import kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D\n'), ((22917, 22949), 'pyapprox.benchmarks.spectral_diffusion.SteadyStateDiffusionEquation2D', 'SteadyStateDiffusionEquation2D', ([], {}), '()\n', (22947, 22949), False, 'from pyapprox.benchmarks.spectral_diffusion import kronecker_product_2d, chebyshev_derivative_matrix, SteadyStateDiffusionEquation2D, SteadyStateDiffusionEquation1D\n'), ((4955, 4977), 'numpy.ones', 'np.ones', (['(1, 1)', 'float'], {}), '((1, 1), float)\n', (4962, 4977), True, 'import numpy as np\n'), ((8053, 8070), 'numpy.ones', 'np.ones', (['(1)', 'float'], {}), '(1, float)\n', (8060, 8070), True, 'import numpy as np\n'), ((8265, 8282), 'numpy.log', 'np.log', (['(3.0 / 2.0)'], {}), '(3.0 / 2.0)\n', (8271, 8282), True, 'import numpy as np\n'), ((11182, 11203), 'numpy.sin', 'np.sin', (['(3 * np.pi * x)'], {}), '(3 * np.pi * x)\n', (11188, 11203), True, 'import numpy as np\n'), ((16868, 16919), 'numpy.allclose', 'np.allclose', (['model.times[0]', 'final_time'], {'atol': '(1e-15)'}), '(model.times[0], final_time, atol=1e-15)\n', (16879, 16919), True, 'import numpy as np\n'), ((17578, 17626), 'numpy.log10', 'np.log10', (['(num_time_steps[-1] / num_time_steps[0])'], {}), '(num_time_steps[-1] / num_time_steps[0])\n', (17586, 17626), True, 'import numpy as np\n'), ((19778, 19788), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (19785, 19788), True, 'import numpy as np\n'), ((20777, 20796), 'numpy.ones', 'np.ones', (['x.shape[1]'], {}), '(x.shape[1])\n', (20784, 20796), True, 'import numpy as np\n'), ((24011, 24032), 'unittest.TestLoader', 'unittest.TestLoader', ([], {}), '()\n', (24030, 24032), False, 'import unittest\n'), ((24084, 24120), 'unittest.TextTestRunner', 'unittest.TextTestRunner', ([], {'verbosity': '(2)'}), '(verbosity=2)\n', (24107, 24120), False, 'import unittest\n'), ((437, 455), 'numpy.finfo', 'np.finfo', (['np.float'], {}), '(np.float)\n', (445, 455), True, 'import numpy as np\n'), ((5126, 5143), 'numpy.log', 'np.log', (['(3.0 / 2.0)'], {}), '(3.0 / 2.0)\n', (5132, 5143), True, 'import numpy as np\n'), ((5838, 5862), 'numpy.random.RandomState', 'np.random.RandomState', (['(2)'], {}), '(2)\n', (5859, 5862), True, 'import numpy as np\n'), ((5960, 5986), 'numpy.array', 'np.array', (['[2.0 * x * z[i]]'], {}), '([2.0 * x * z[i]])\n', (5968, 5986), True, 'import numpy as np\n'), ((6054, 6073), 'numpy.array', 'np.array', (['[0.0 * x]'], {}), '([0.0 * x])\n', (6062, 6073), True, 'import numpy as np\n'), ((6446, 6465), 'numpy.isfinite', 'np.isfinite', (['errors'], {}), '(errors)\n', (6457, 6465), True, 'import numpy as np\n'), ((9585, 9608), 'numpy.exp', 'np.exp', (['(-np.pi ** 2 * t)'], {}), '(-np.pi ** 2 * t)\n', (9591, 9608), True, 'import numpy as np\n'), ((9605, 9622), 'numpy.sin', 'np.sin', (['(np.pi * x)'], {}), '(np.pi * x)\n', (9611, 9622), True, 'import numpy as np\n'), ((9927, 10006), 'pyapprox.plt.plot', 'pya.plt.plot', (['test_mesh_pts', 'model_sol_t', '"""k"""'], {'label': '"""collocation"""', 'linewidth': '(2)'}), "(test_mesh_pts, model_sol_t, 'k', label='collocation', linewidth=2)\n", (9939, 10006), True, 'import pyapprox as pya\n'), ((10052, 10127), 'pyapprox.plt.plot', 'pya.plt.plot', (['test_mesh_pts', 'exact_sol_t', '"""r--"""'], {'label': '"""exact"""', 'linewidth': '(2)'}), "(test_mesh_pts, exact_sol_t, 'r--', label='exact', linewidth=2)\n", (10064, 10127), True, 'import pyapprox as pya\n'), ((10173, 10194), 'pyapprox.plt.legend', 'pya.plt.legend', ([], {'loc': '(0)'}), '(loc=0)\n', (10187, 10194), True, 'import pyapprox as pya\n'), ((10211, 10241), 'pyapprox.plt.title', 'pya.plt.title', (["('$t=%1.2f$' % t)"], {}), "('$t=%1.2f$' % t)\n", (10224, 10241), True, 'import pyapprox as pya\n'), ((10258, 10272), 'pyapprox.plt.show', 'pya.plt.show', ([], {}), '()\n', (10270, 10272), True, 'import pyapprox as pya\n'), ((11339, 11373), 'numpy.sin', 'np.sin', (['(2 * np.pi * model.mesh_pts)'], {}), '(2 * np.pi * model.mesh_pts)\n', (11345, 11373), True, 'import numpy as np\n'), ((11388, 11422), 'numpy.sin', 'np.sin', (['(3 * np.pi * model.mesh_pts)'], {}), '(3 * np.pi * model.mesh_pts)\n', (11394, 11422), True, 'import numpy as np\n'), ((13362, 13383), 'numpy.sin', 'np.sin', (['(3 * np.pi * x)'], {}), '(3 * np.pi * x)\n', (13368, 13383), True, 'import numpy as np\n'), ((13380, 13389), 'numpy.sin', 'np.sin', (['t'], {}), '(t)\n', (13386, 13389), True, 'import numpy as np\n'), ((13532, 13566), 'numpy.sin', 'np.sin', (['(2 * np.pi * model.mesh_pts)'], {}), '(2 * np.pi * model.mesh_pts)\n', (13538, 13566), True, 'import numpy as np\n'), ((13581, 13615), 'numpy.sin', 'np.sin', (['(3 * np.pi * model.mesh_pts)'], {}), '(3 * np.pi * model.mesh_pts)\n', (13587, 13615), True, 'import numpy as np\n'), ((14554, 14633), 'pyapprox.plt.plot', 'pya.plt.plot', (['test_mesh_pts', 'model_sol_t', '"""k"""'], {'label': '"""collocation"""', 'linewidth': '(2)'}), "(test_mesh_pts, model_sol_t, 'k', label='collocation', linewidth=2)\n", (14566, 14633), True, 'import pyapprox as pya\n'), ((14679, 14754), 'pyapprox.plt.plot', 'pya.plt.plot', (['test_mesh_pts', 'exact_sol_t', '"""r--"""'], {'label': '"""exact"""', 'linewidth': '(2)'}), "(test_mesh_pts, exact_sol_t, 'r--', label='exact', linewidth=2)\n", (14691, 14754), True, 'import pyapprox as pya\n'), ((14800, 14821), 'pyapprox.plt.legend', 'pya.plt.legend', ([], {'loc': '(0)'}), '(loc=0)\n', (14814, 14821), True, 'import pyapprox as pya\n'), ((14838, 14868), 'pyapprox.plt.title', 'pya.plt.title', (["('$t=%1.3f$' % t)"], {}), "('$t=%1.3f$' % t)\n", (14851, 14868), True, 'import pyapprox as pya\n'), ((14885, 14899), 'pyapprox.plt.show', 'pya.plt.show', ([], {}), '()\n', (14897, 14899), True, 'import pyapprox as pya\n'), ((15638, 15659), 'numpy.sin', 'np.sin', (['(3 * np.pi * x)'], {}), '(3 * np.pi * x)\n', (15644, 15659), True, 'import numpy as np\n'), ((15656, 15665), 'numpy.sin', 'np.sin', (['t'], {}), '(t)\n', (15662, 15665), True, 'import numpy as np\n'), ((15768, 15802), 'numpy.sin', 'np.sin', (['(2 * np.pi * model.mesh_pts)'], {}), '(2 * np.pi * model.mesh_pts)\n', (15774, 15802), True, 'import numpy as np\n'), ((15817, 15851), 'numpy.sin', 'np.sin', (['(3 * np.pi * model.mesh_pts)'], {}), '(3 * np.pi * model.mesh_pts)\n', (15823, 15851), True, 'import numpy as np\n'), ((16754, 16796), 'numpy.ceil', 'np.ceil', (['(final_time / model.time_step_size)'], {}), '(final_time / model.time_step_size)\n', (16761, 16796), True, 'import numpy as np\n'), ((17547, 17579), 'numpy.log10', 'np.log10', (['(errors[-1] / errors[0])'], {}), '(errors[-1] / errors[0])\n', (17555, 17579), True, 'import numpy as np\n'), ((19766, 19776), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (19773, 19776), True, 'import numpy as np\n'), ((20835, 20876), 'numpy.sin', 'np.sin', (['(8.0 * x[(0), :] * (x[(1), :] - 1))'], {}), '(8.0 * x[(0), :] * (x[(1), :] - 1))\n', (20841, 20876), True, 'import numpy as np\n'), ((23235, 23259), 'numpy.random.RandomState', 'np.random.RandomState', (['(2)'], {}), '(2)\n', (23256, 23259), True, 'import numpy as np\n'), ((23357, 23395), 'numpy.array', 'np.array', (['[2.0 * (x[0] + x[1]) * z[i]]'], {}), '([2.0 * (x[0] + x[1]) * z[i]])\n', (23365, 23395), True, 'import numpy as np\n'), ((23461, 23483), 'numpy.array', 'np.array', (['[0.0 * x[0]]'], {}), '([0.0 * x[0]])\n', (23469, 23483), True, 'import numpy as np\n'), ((23856, 23875), 'numpy.isfinite', 'np.isfinite', (['errors'], {}), '(errors)\n', (23867, 23875), True, 'import numpy as np\n'), ((3369, 3384), 'numpy.log', 'np.log', (['(x + 1.0)'], {}), '(x + 1.0)\n', (3375, 3384), True, 'import numpy as np\n'), ((3384, 3395), 'numpy.log', 'np.log', (['(2.0)'], {}), '(2.0)\n', (3390, 3395), True, 'import numpy as np\n'), ((4883, 4907), 'numpy.log', 'np.log', (['(qoi_coords + 1.0)'], {}), '(qoi_coords + 1.0)\n', (4889, 4907), True, 'import numpy as np\n'), ((4905, 4916), 'numpy.log', 'np.log', (['(2.0)'], {}), '(2.0)\n', (4911, 4916), True, 'import numpy as np\n'), ((7442, 7457), 'numpy.log', 'np.log', (['(x + 1.0)'], {}), '(x + 1.0)\n', (7448, 7457), True, 'import numpy as np\n'), ((7455, 7466), 'numpy.log', 'np.log', (['(2.0)'], {}), '(2.0)\n', (7461, 7466), True, 'import numpy as np\n'), ((8253, 8264), 'numpy.log', 'np.log', (['(4.0)'], {}), '(4.0)\n', (8259, 8264), True, 'import numpy as np\n'), ((11763, 11786), 'numpy.sin', 'np.sin', (['(2.0 * np.pi * x)'], {}), '(2.0 * np.pi * x)\n', (11769, 11786), True, 'import numpy as np\n'), ((11868, 11891), 'numpy.sin', 'np.sin', (['(3.0 * np.pi * x)'], {}), '(3.0 * np.pi * x)\n', (11874, 11891), True, 'import numpy as np\n'), ((14015, 14038), 'numpy.sin', 'np.sin', (['(2.0 * np.pi * x)'], {}), '(2.0 * np.pi * x)\n', (14021, 14038), True, 'import numpy as np\n'), ((14208, 14231), 'numpy.sin', 'np.sin', (['(3.0 * np.pi * x)'], {}), '(3.0 * np.pi * x)\n', (14214, 14231), True, 'import numpy as np\n'), ((16201, 16224), 'numpy.sin', 'np.sin', (['(2.0 * np.pi * x)'], {}), '(2.0 * np.pi * x)\n', (16207, 16224), True, 'import numpy as np\n'), ((16345, 16368), 'numpy.sin', 'np.sin', (['(3.0 * np.pi * x)'], {}), '(3.0 * np.pi * x)\n', (16351, 16368), True, 'import numpy as np\n'), ((19485, 19540), 'numpy.cos', 'np.cos', (['(np.pi / 2.0 * (x[(0), :] ** 2 + x[(1), :] ** 2))'], {}), '(np.pi / 2.0 * (x[(0), :] ** 2 + x[(1), :] ** 2))\n', (19491, 19540), True, 'import numpy as np\n'), ((22126, 22155), 'numpy.sum', 'np.sum', (['(mesh_pts ** 2)'], {'axis': '(0)'}), '(mesh_pts ** 2, axis=0)\n', (22132, 22155), True, 'import numpy as np\n'), ((22462, 22491), 'numpy.sum', 'np.sum', (['(mesh_pts ** 2)'], {'axis': '(0)'}), '(mesh_pts ** 2, axis=0)\n', (22468, 22491), True, 'import numpy as np\n'), ((5114, 5125), 'numpy.log', 'np.log', (['(4.0)'], {}), '(4.0)\n', (5120, 5125), True, 'import numpy as np\n'), ((11740, 11769), 'numpy.exp', 'np.exp', (['(-4.0 * np.pi ** 2 * t)'], {}), '(-4.0 * np.pi ** 2 * t)\n', (11746, 11769), True, 'import numpy as np\n'), ((13975, 14004), 'numpy.exp', 'np.exp', (['(-4.0 * np.pi ** 2 * t)'], {}), '(-4.0 * np.pi ** 2 * t)\n', (13981, 14004), True, 'import numpy as np\n'), ((16161, 16190), 'numpy.exp', 'np.exp', (['(-4.0 * np.pi ** 2 * t)'], {}), '(-4.0 * np.pi ** 2 * t)\n', (16167, 16190), True, 'import numpy as np\n'), ((19154, 19172), 'numpy.exp', 'np.exp', (['(-y[0] ** 2)'], {}), '(-y[0] ** 2)\n', (19160, 19172), True, 'import numpy as np\n'), ((19235, 19290), 'numpy.sin', 'np.sin', (['(np.pi / 2.0 * (x[(0), :] ** 2 + x[(1), :] ** 2))'], {}), '(np.pi / 2.0 * (x[(0), :] ** 2 + x[(1), :] ** 2))\n', (19241, 19290), True, 'import numpy as np\n'), ((19630, 19645), 'numpy.exp', 'np.exp', (['(-y ** 2)'], {}), '(-y ** 2)\n', (19636, 19645), True, 'import numpy as np\n'), ((8152, 8169), 'numpy.log', 'np.log', (['(9.0 / 4.0)'], {}), '(9.0 / 4.0)\n', (8158, 8169), True, 'import numpy as np\n'), ((8198, 8226), 'numpy.log', 'np.log', (['(model.mesh_pts + 2.0)'], {}), '(model.mesh_pts + 2.0)\n', (8204, 8226), True, 'import numpy as np\n'), ((11802, 11831), 'numpy.exp', 'np.exp', (['(-9.0 * np.pi ** 2 * t)'], {}), '(-9.0 * np.pi ** 2 * t)\n', (11808, 11831), True, 'import numpy as np\n'), ((14059, 14088), 'numpy.exp', 'np.exp', (['(-9.0 * np.pi ** 2 * t)'], {}), '(-9.0 * np.pi ** 2 * t)\n', (14065, 14088), True, 'import numpy as np\n'), ((16224, 16253), 'numpy.exp', 'np.exp', (['(-9.0 * np.pi ** 2 * t)'], {}), '(-9.0 * np.pi ** 2 * t)\n', (16230, 16253), True, 'import numpy as np\n'), ((21671, 21681), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (21678, 21681), True, 'import numpy as np\n'), ((21686, 21696), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (21693, 21696), True, 'import numpy as np\n'), ((5059, 5076), 'numpy.log', 'np.log', (['(9.0 / 4.0)'], {}), '(9.0 / 4.0)\n', (5065, 5076), True, 'import numpy as np\n'), ((5076, 5100), 'numpy.log', 'np.log', (['(qoi_coords + 2.0)'], {}), '(qoi_coords + 2.0)\n', (5082, 5100), True, 'import numpy as np\n'), ((11829, 11858), 'numpy.exp', 'np.exp', (['(-9.0 * np.pi ** 2 * t)'], {}), '(-9.0 * np.pi ** 2 * t)\n', (11835, 11858), True, 'import numpy as np\n'), ((14166, 14195), 'numpy.exp', 'np.exp', (['(-9.0 * np.pi ** 2 * t)'], {}), '(-9.0 * np.pi ** 2 * t)\n', (14172, 14195), True, 'import numpy as np\n'), ((16303, 16332), 'numpy.exp', 'np.exp', (['(-9.0 * np.pi ** 2 * t)'], {}), '(-9.0 * np.pi ** 2 * t)\n', (16309, 16332), True, 'import numpy as np\n'), ((19305, 19323), 'numpy.exp', 'np.exp', (['(-y[0] ** 2)'], {}), '(-y[0] ** 2)\n', (19311, 19323), True, 'import numpy as np\n'), ((19366, 19384), 'numpy.exp', 'np.exp', (['(-y[0] ** 2)'], {}), '(-y[0] ** 2)\n', (19372, 19384), True, 'import numpy as np\n'), ((14130, 14139), 'numpy.cos', 'np.cos', (['t'], {}), '(t)\n', (14136, 14139), True, 'import numpy as np\n'), ((16293, 16302), 'numpy.cos', 'np.cos', (['t'], {}), '(t)\n', (16299, 16302), True, 'import numpy as np\n'), ((14120, 14129), 'numpy.sin', 'np.sin', (['t'], {}), '(t)\n', (14126, 14129), True, 'import numpy as np\n'), ((16283, 16292), 'numpy.sin', 'np.sin', (['t'], {}), '(t)\n', (16289, 16292), True, 'import numpy as np\n'), ((19087, 19142), 'numpy.cos', 'np.cos', (['(np.pi / 2.0 * (x[(0), :] ** 2 + x[(1), :] ** 2))'], {}), '(np.pi / 2.0 * (x[(0), :] ** 2 + x[(1), :] ** 2))\n', (19093, 19142), True, 'import numpy as np\n')]
wconnell/torchdrug
torchdrug/layers/flow.py
a710097cb4ad4c48e0de0d18fbb77ef0e806cdc8
import torch from torch import nn from torch.nn import functional as F from torchdrug import layers class ConditionalFlow(nn.Module): """ Conditional flow transformation from `Masked Autoregressive Flow for Density Estimation`_. .. _Masked Autoregressive Flow for Density Estimation: https://arxiv.org/pdf/1705.07057.pdf Parameters: input_dim (int): input & output dimension condition_dim (int): condition dimension hidden_dims (list of int, optional): hidden dimensions activation (str or function, optional): activation function """ def __init__(self, input_dim, condition_dim, hidden_dims=None, activation="relu"): super(ConditionalFlow, self).__init__() self.input_dim = input_dim self.output_dim = input_dim if hidden_dims is None: hidden_dims = [] self.mlp = layers.MLP(condition_dim, list(hidden_dims) + [input_dim * 2], activation) self.rescale = nn.Parameter(torch.zeros(1)) def forward(self, input, condition): """ Transform data into latent representations. Parameters: input (Tensor): input representations condition (Tensor): conditional representations Returns: (Tensor, Tensor): latent representations, log-likelihood of the transformation """ scale, bias = self.mlp(condition).chunk(2, dim=-1) scale = (F.tanh(scale) * self.rescale) output = (input + bias) * scale.exp() log_det = scale return output, log_det def reverse(self, latent, condition): """ Transform latent representations into data. Parameters: latent (Tensor): latent representations condition (Tensor): conditional representations Returns: (Tensor, Tensor): input representations, log-likelihood of the transformation """ scale, bias = self.mlp(condition).chunk(2, dim=-1) scale = (F.tanh(scale) * self.rescale) output = latent / scale.exp() - bias log_det = scale return output, log_det
[((999, 1013), 'torch.zeros', 'torch.zeros', (['(1)'], {}), '(1)\n', (1010, 1013), False, 'import torch\n'), ((1449, 1462), 'torch.nn.functional.tanh', 'F.tanh', (['scale'], {}), '(scale)\n', (1455, 1462), True, 'from torch.nn import functional as F\n'), ((2016, 2029), 'torch.nn.functional.tanh', 'F.tanh', (['scale'], {}), '(scale)\n', (2022, 2029), True, 'from torch.nn import functional as F\n')]
lowandrew/OLCTools
olctools/accessoryFunctions/metadataprinter.py
c74e9d18e2ebe0159aa824e095091045ed227e95
#!/usr/bin/env python3 import logging import json import os __author__ = 'adamkoziol' class MetadataPrinter(object): def printmetadata(self): # Iterate through each sample in the analysis for sample in self.metadata: # Set the name of the json file jsonfile = os.path.join(sample.general.outputdirectory, '{}_metadata.json'.format(sample.name)) try: # Open the metadata file to write with open(jsonfile, 'w') as metadatafile: # Write the json dump of the object dump to the metadata file json.dump(sample.dump(), metadatafile, sort_keys=True, indent=4, separators=(',', ': ')) except IOError: # Print useful information in case of an error logging.warning('Error creating .json file for {sample}'.format(sample=sample.name)) raise except TypeError as e: logging.debug(f'Encountered TypeError writing metadata to file with the following details: {e}') def __init__(self, inputobject): try: self.metadata = inputobject.runmetadata.samples except AttributeError: try: self.metadata = inputobject.metadata.samples except AttributeError: try: self.metadata = inputobject.metadata except AttributeError: self.metadata = inputobject.runmetadata self.printmetadata()
[((973, 1079), 'logging.debug', 'logging.debug', (['f"""Encountered TypeError writing metadata to file with the following details: {e}"""'], {}), "(\n f'Encountered TypeError writing metadata to file with the following details: {e}'\n )\n", (986, 1079), False, 'import logging\n')]
aman-gupta-1995/Machine-Learning-Mindware
mindware/estimators.py
8b3050720711730520683c89949e3dbdfb168961
import numpy as np from sklearn.utils.multiclass import type_of_target from mindware.base_estimator import BaseEstimator from mindware.components.utils.constants import type_dict, MULTILABEL_CLS, IMG_CLS, TEXT_CLS, OBJECT_DET from mindware.components.feature_engineering.transformation_graph import DataNode class Classifier(BaseEstimator): """This class implements the classification task. """ def initialize(self, data: DataNode, **kwargs): if self.metric is None: self.metric = 'acc' # Check the task type: {binary, multiclass} task_type = type_of_target(data.data[1]) if task_type in type_dict: task_type = type_dict[task_type] else: raise ValueError("Invalid Task Type: %s!" % task_type) self.task_type = task_type super().initialize(data=data, **kwargs) def fit(self, data: DataNode, **kwargs): """ Fit the classifier to given training data. :param data: instance of DataNode :return: self """ if self._ml_engine is None: self.initialize(data=data, **kwargs) super().fit(data, **kwargs) return self def predict(self, X, batch_size=None, n_jobs=1): """ Predict classes for X. :param X: Datanode :param batch_size: int :param n_jobs: int :return: y : array of shape = [n_samples] The predicted classes. """ if not isinstance(X, DataNode): raise ValueError("X is supposed to be a Data Node, but get %s" % type(X)) return super().predict(X, batch_size=batch_size, n_jobs=n_jobs) def refit(self): return super().refit() def predict_proba(self, X, batch_size=None, n_jobs=1): """ Predict probabilities of classes for all samples X. :param X: Datanode :param batch_size: int :param n_jobs: int :return: y : array of shape = [n_samples, n_classes] The predicted class probabilities. """ if not isinstance(X, DataNode): raise ValueError("X is supposed to be a Data Node, but get %s" % type(X)) pred_proba = super().predict_proba(X, batch_size=batch_size, n_jobs=n_jobs) if self.task_type != MULTILABEL_CLS: assert ( np.allclose( np.sum(pred_proba, axis=1), np.ones_like(pred_proba[:, 0])) ), "Prediction probability does not sum up to 1!" # Check that all probability values lie between 0 and 1. assert ( (pred_proba >= 0).all() and (pred_proba <= 1).all() ), "Found prediction probability value outside of [0, 1]!" return pred_proba def get_tree_importance(self, data: DataNode): from lightgbm import LGBMClassifier import pandas as pd X, y = self.data_transformer(data).data lgb = LGBMClassifier(random_state=1) lgb.fit(X, y) _importance = lgb.feature_importances_ h = {} h['feature_id'] = np.array(range(len(_importance))) h['feature_importance'] = _importance return pd.DataFrame(h) def get_linear_importance(self, data: DataNode): from sklearn.linear_model import LogisticRegression import pandas as pd X, y = self.data_transformer(data).data clf = LogisticRegression(random_state=1) clf.fit(X, y) _ef = clf.coef_ std_array = np.std(_ef, ddof=1, axis=0) abs_array = abs(_ef) mean_array = np.mean(abs_array, axis=0) _importance = std_array / mean_array h = {} h['feature_id'] = np.array(range(len(_importance))) h['feature_importance'] = _importance return pd.DataFrame(h) def get_linear_impact(self, data: DataNode): from sklearn.linear_model import LogisticRegression import pandas as pd if (len(set(data.data[1]))) > 2: print('ERROR! Only binary classification is supported!') return 0 X, y = self.data_transformer(data).data clf = LogisticRegression(random_state=1) clf.fit(X, y) _ef = clf.coef_ _impact = _ef[0] h = {} h['feature_id'] = np.array(range(len(_impact))) h['feature_impact'] = _impact return pd.DataFrame(h) class Regressor(BaseEstimator): """This class implements the regression task. """ def initialize(self, data: DataNode, **kwargs): self.metric = 'mse' if self.metric is None else self.metric # Check the task type: {continuous} task_type = type_dict['continuous'] self.task_type = task_type super().initialize(data=data, **kwargs) def fit(self, data, **kwargs): """ Fit the regressor to given training data. :param data: DataNode :return: self """ if self._ml_engine is None: self.initialize(data=data, **kwargs) super().fit(data, **kwargs) return self def predict(self, X, batch_size=None, n_jobs=1): """ Make predictions for X. :param X: DataNode :param batch_size: int :param n_jobs: int :return: y : array of shape = [n_samples] or [n_samples, n_labels] The predicted classes. """ if not isinstance(X, DataNode): raise ValueError("X is supposed to be a Data Node, but get %s" % type(X)) return super().predict(X, batch_size=batch_size, n_jobs=n_jobs) def get_tree_importance(self, data: DataNode): from lightgbm import LGBMRegressor import pandas as pd X, y = self.data_transformer(data).data lgb = LGBMRegressor(random_state=1) lgb.fit(X, y) _importance = lgb.feature_importances_ h = {} h['feature_id'] = np.array(range(len(_importance))) h['feature_importance'] = _importance return pd.DataFrame(h) def get_linear_impact(self, data: DataNode): from sklearn.linear_model import LinearRegression import pandas as pd X, y = self.data_transformer(data).data reg = LinearRegression() reg.fit(X, y) _impact = reg.coef_ h = {} h['feature_id'] = np.array(range(len(_impact))) h['feature_impact'] = _impact return pd.DataFrame(h)
[((591, 619), 'sklearn.utils.multiclass.type_of_target', 'type_of_target', (['data.data[1]'], {}), '(data.data[1])\n', (605, 619), False, 'from sklearn.utils.multiclass import type_of_target\n'), ((2957, 2987), 'lightgbm.LGBMClassifier', 'LGBMClassifier', ([], {'random_state': '(1)'}), '(random_state=1)\n', (2971, 2987), False, 'from lightgbm import LGBMClassifier\n'), ((3193, 3208), 'pandas.DataFrame', 'pd.DataFrame', (['h'], {}), '(h)\n', (3205, 3208), True, 'import pandas as pd\n'), ((3413, 3447), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'random_state': '(1)'}), '(random_state=1)\n', (3431, 3447), False, 'from sklearn.linear_model import LogisticRegression\n'), ((3514, 3541), 'numpy.std', 'np.std', (['_ef'], {'ddof': '(1)', 'axis': '(0)'}), '(_ef, ddof=1, axis=0)\n', (3520, 3541), True, 'import numpy as np\n'), ((3592, 3618), 'numpy.mean', 'np.mean', (['abs_array'], {'axis': '(0)'}), '(abs_array, axis=0)\n', (3599, 3618), True, 'import numpy as np\n'), ((3800, 3815), 'pandas.DataFrame', 'pd.DataFrame', (['h'], {}), '(h)\n', (3812, 3815), True, 'import pandas as pd\n'), ((4147, 4181), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'random_state': '(1)'}), '(random_state=1)\n', (4165, 4181), False, 'from sklearn.linear_model import LogisticRegression\n'), ((4377, 4392), 'pandas.DataFrame', 'pd.DataFrame', (['h'], {}), '(h)\n', (4389, 4392), True, 'import pandas as pd\n'), ((5766, 5795), 'lightgbm.LGBMRegressor', 'LGBMRegressor', ([], {'random_state': '(1)'}), '(random_state=1)\n', (5779, 5795), False, 'from lightgbm import LGBMRegressor\n'), ((6001, 6016), 'pandas.DataFrame', 'pd.DataFrame', (['h'], {}), '(h)\n', (6013, 6016), True, 'import pandas as pd\n'), ((6215, 6233), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (6231, 6233), False, 'from sklearn.linear_model import LinearRegression\n'), ((6408, 6423), 'pandas.DataFrame', 'pd.DataFrame', (['h'], {}), '(h)\n', (6420, 6423), True, 'import pandas as pd\n'), ((2384, 2410), 'numpy.sum', 'np.sum', (['pred_proba'], {'axis': '(1)'}), '(pred_proba, axis=1)\n', (2390, 2410), True, 'import numpy as np\n'), ((2432, 2464), 'numpy.ones_like', 'np.ones_like', (['pred_proba[:, (0)]'], {}), '(pred_proba[:, (0)])\n', (2444, 2464), True, 'import numpy as np\n')]
xiaowenwen1995/AnimeSpider
AnimeSpider/spiders/AinmeLinkList.py
11c676b772508fd4e14565a7adbfc7336d69b982
# -*- coding: utf-8 -*- import scrapy import json import os import codecs from AnimeSpider.items import AnimespiderItem class AinmelinklistSpider(scrapy.Spider): name = 'AinmeLinkList' allowed_domains = ['bilibili.com'] start_urls = ['http://bilibili.com/'] def start_requests(self): jsonpath = os.path.dirname(__file__) + '/output' jsonfile = codecs.open('%s/AinmeList_items.json' % jsonpath, 'r', encoding='utf-8') for line in jsonfile: ainme = json.loads(line) ainmename = ainme["name"] url = ainme["link"].replace("//", "https://") yield scrapy.Request(url=url, callback=self.parse, meta={'ainmename': ainmename}) def parse(self, response): item = AnimespiderItem() item["info_link"] = response.css(".media-title").xpath('@href').get() yield item
[((379, 451), 'codecs.open', 'codecs.open', (["('%s/AinmeList_items.json' % jsonpath)", '"""r"""'], {'encoding': '"""utf-8"""'}), "('%s/AinmeList_items.json' % jsonpath, 'r', encoding='utf-8')\n", (390, 451), False, 'import codecs\n'), ((756, 773), 'AnimeSpider.items.AnimespiderItem', 'AnimespiderItem', ([], {}), '()\n', (771, 773), False, 'from AnimeSpider.items import AnimespiderItem\n'), ((322, 347), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (337, 347), False, 'import os\n'), ((502, 518), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (512, 518), False, 'import json\n'), ((633, 708), 'scrapy.Request', 'scrapy.Request', ([], {'url': 'url', 'callback': 'self.parse', 'meta': "{'ainmename': ainmename}"}), "(url=url, callback=self.parse, meta={'ainmename': ainmename})\n", (647, 708), False, 'import scrapy\n')]
PacktPublishing/Raspberry-Pi-Making-Amazing-Projects-Right-from-Scratch-
Module 1/Chapter 7/prog1.py
49fd30ca8e1e30e7d85cf14e9dcb6e1d24d4a445
import cv2 print cv2.__version__
[]
darlenew/pytest-testplan
setup.py
85ef0c196efced681b6559328b3db3d409b2612d
"""Setup for pytest-testplan plugin.""" from setuptools import setup setup( name='pytest-testplan', version='0.1.0', description='A pytest plugin to generate a CSV test report.', author='Darlene Wong', author_email='[email protected]', license='MIT', py_modules=['pytest_testplan'], install_requires=['pytest'], entry_points={'pytest11': ['testplan = pytest_testplan', ]}, )
[((71, 393), 'setuptools.setup', 'setup', ([], {'name': '"""pytest-testplan"""', 'version': '"""0.1.0"""', 'description': '"""A pytest plugin to generate a CSV test report."""', 'author': '"""Darlene Wong"""', 'author_email': '"""[email protected]"""', 'license': '"""MIT"""', 'py_modules': "['pytest_testplan']", 'install_requires': "['pytest']", 'entry_points': "{'pytest11': ['testplan = pytest_testplan']}"}), "(name='pytest-testplan', version='0.1.0', description=\n 'A pytest plugin to generate a CSV test report.', author='Darlene Wong',\n author_email='[email protected]', license='MIT', py_modules=[\n 'pytest_testplan'], install_requires=['pytest'], entry_points={\n 'pytest11': ['testplan = pytest_testplan']})\n", (76, 393), False, 'from setuptools import setup\n')]
petr-kalinin/PaddleX
examples/industrial_quality_inspection/train_yolov3.py
e4f08b50dab01f3720570702a071188d1efd4042
# 环境变量配置,用于控制是否使用GPU # 说明文档:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html#gpu import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' from paddlex.det import transforms import paddlex as pdx # 下载和解压铝材缺陷检测数据集 aluminum_dataset = 'https://bj.bcebos.com/paddlex/examples/industrial_quality_inspection/datasets/aluminum_inspection.tar.gz' pdx.utils.download_and_decompress(aluminum_dataset, path='./') # 定义训练和验证时的transforms # API说明 https://paddlex.readthedocs.io/zh_CN/develop/apis/transforms/det_transforms.html train_transforms = transforms.Compose([ transforms.MixupImage(mixup_epoch=250), transforms.RandomDistort(), transforms.RandomExpand(), transforms.RandomCrop(), transforms.Resize( target_size=608, interp='RANDOM'), transforms.RandomHorizontalFlip(), transforms.Normalize() ]) eval_transforms = transforms.Compose([ transforms.Resize( target_size=608, interp='CUBIC'), transforms.Normalize() ]) # 定义训练和验证所用的数据集 # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-vocdetection train_dataset = pdx.datasets.VOCDetection( data_dir='aluminum_inspection', file_list='aluminum_inspection/train_list.txt', label_list='aluminum_inspection/labels.txt', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.VOCDetection( data_dir='aluminum_inspection', file_list='aluminum_inspection/val_list.txt', label_list='aluminum_inspection/labels.txt', transforms=eval_transforms) # 初始化模型,并进行训练 # 可使用VisualDL查看训练指标,参考https://paddlex.readthedocs.io/zh_CN/develop/train/visualdl.html num_classes = len(train_dataset.labels) # API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#paddlex-det-yolov3 model = pdx.det.YOLOv3(num_classes=num_classes, backbone='MobileNetV3_large') # API说明: https://paddlex.readthedocs.io/zh_CN/develop/apis/models/detection.html#train # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html model.train( num_epochs=400, train_dataset=train_dataset, train_batch_size=8, eval_dataset=eval_dataset, warmup_steps=4000, learning_rate=0.000125, lr_decay_epochs=[240, 320], save_dir='output/yolov3_mobilenetv3', use_vdl=True)
[((355, 417), 'paddlex.utils.download_and_decompress', 'pdx.utils.download_and_decompress', (['aluminum_dataset'], {'path': '"""./"""'}), "(aluminum_dataset, path='./')\n", (388, 417), True, 'import paddlex as pdx\n'), ((1091, 1299), 'paddlex.datasets.VOCDetection', 'pdx.datasets.VOCDetection', ([], {'data_dir': '"""aluminum_inspection"""', 'file_list': '"""aluminum_inspection/train_list.txt"""', 'label_list': '"""aluminum_inspection/labels.txt"""', 'transforms': 'train_transforms', 'shuffle': '(True)'}), "(data_dir='aluminum_inspection', file_list=\n 'aluminum_inspection/train_list.txt', label_list=\n 'aluminum_inspection/labels.txt', transforms=train_transforms, shuffle=True\n )\n", (1116, 1299), True, 'import paddlex as pdx\n'), ((1321, 1507), 'paddlex.datasets.VOCDetection', 'pdx.datasets.VOCDetection', ([], {'data_dir': '"""aluminum_inspection"""', 'file_list': '"""aluminum_inspection/val_list.txt"""', 'label_list': '"""aluminum_inspection/labels.txt"""', 'transforms': 'eval_transforms'}), "(data_dir='aluminum_inspection', file_list=\n 'aluminum_inspection/val_list.txt', label_list=\n 'aluminum_inspection/labels.txt', transforms=eval_transforms)\n", (1346, 1507), True, 'import paddlex as pdx\n'), ((1766, 1835), 'paddlex.det.YOLOv3', 'pdx.det.YOLOv3', ([], {'num_classes': 'num_classes', 'backbone': '"""MobileNetV3_large"""'}), "(num_classes=num_classes, backbone='MobileNetV3_large')\n", (1780, 1835), True, 'import paddlex as pdx\n'), ((574, 612), 'paddlex.det.transforms.MixupImage', 'transforms.MixupImage', ([], {'mixup_epoch': '(250)'}), '(mixup_epoch=250)\n', (595, 612), False, 'from paddlex.det import transforms\n'), ((614, 640), 'paddlex.det.transforms.RandomDistort', 'transforms.RandomDistort', ([], {}), '()\n', (638, 640), False, 'from paddlex.det import transforms\n'), ((646, 671), 'paddlex.det.transforms.RandomExpand', 'transforms.RandomExpand', ([], {}), '()\n', (669, 671), False, 'from paddlex.det import transforms\n'), ((673, 696), 'paddlex.det.transforms.RandomCrop', 'transforms.RandomCrop', ([], {}), '()\n', (694, 696), False, 'from paddlex.det import transforms\n'), ((698, 749), 'paddlex.det.transforms.Resize', 'transforms.Resize', ([], {'target_size': '(608)', 'interp': '"""RANDOM"""'}), "(target_size=608, interp='RANDOM')\n", (715, 749), False, 'from paddlex.det import transforms\n'), ((760, 793), 'paddlex.det.transforms.RandomHorizontalFlip', 'transforms.RandomHorizontalFlip', ([], {}), '()\n', (791, 793), False, 'from paddlex.det import transforms\n'), ((799, 821), 'paddlex.det.transforms.Normalize', 'transforms.Normalize', ([], {}), '()\n', (819, 821), False, 'from paddlex.det import transforms\n'), ((869, 919), 'paddlex.det.transforms.Resize', 'transforms.Resize', ([], {'target_size': '(608)', 'interp': '"""CUBIC"""'}), "(target_size=608, interp='CUBIC')\n", (886, 919), False, 'from paddlex.det import transforms\n'), ((930, 952), 'paddlex.det.transforms.Normalize', 'transforms.Normalize', ([], {}), '()\n', (950, 952), False, 'from paddlex.det import transforms\n')]
bartoszper/Django-REST-API-movierater
api/migrations/0004_auto_20210107_2032.py
a145f087d9c59167ea3503dde5fa74ab7f3e3e72
# Generated by Django 3.1.4 on 2021-01-07 19:32 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('api', '0003_auto_20210107_2010'), ] operations = [ migrations.AlterField( model_name='extrainfo', name='rodzaj', field=models.IntegerField(choices=[(2, 'Sci-Fi'), (0, 'Nieznany'), (5, 'Komedia'), (3, 'Dramat'), (1, 'Horror')], default=0), ), migrations.CreateModel( name='Recenzja', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('opis', models.TextField(default='')), ('gwizdki', models.IntegerField(default=5)), ('film', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='api.film')), ], ), ]
[((368, 490), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'choices': "[(2, 'Sci-Fi'), (0, 'Nieznany'), (5, 'Komedia'), (3, 'Dramat'), (1, 'Horror')]", 'default': '(0)'}), "(choices=[(2, 'Sci-Fi'), (0, 'Nieznany'), (5, 'Komedia'),\n (3, 'Dramat'), (1, 'Horror')], default=0)\n", (387, 490), False, 'from django.db import migrations, models\n'), ((604, 697), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (620, 697), False, 'from django.db import migrations, models\n'), ((721, 749), 'django.db.models.TextField', 'models.TextField', ([], {'default': '""""""'}), "(default='')\n", (737, 749), False, 'from django.db import migrations, models\n'), ((780, 810), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(5)'}), '(default=5)\n', (799, 810), False, 'from django.db import migrations, models\n'), ((838, 915), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""api.film"""'}), "(on_delete=django.db.models.deletion.CASCADE, to='api.film')\n", (855, 915), False, 'from django.db import migrations, models\n')]
macdaliot/Wooey
wooey/migrations/0009_script_versioning.py
3a0f40e3b3ab4d905f9acc72f5cd5d6453e14834
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import wooey.models.mixins class Migration(migrations.Migration): dependencies = [ ('wooey', '0008_short_param_admin'), ] operations = [ migrations.CreateModel( name='ScriptVersion', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('script_version', models.CharField(default='1', help_text='The script version.', max_length=50, blank=True)), ('script_iteration', models.PositiveSmallIntegerField(default=1)), ('script_path', models.FileField(upload_to=b'')), ('default_version', models.BooleanField(default=False)), ('created_date', models.DateTimeField(auto_now_add=True)), ('modified_date', models.DateTimeField(auto_now=True)), ('script', models.ForeignKey(related_name='script_version_new', to='wooey.Script')), ], bases=(wooey.models.mixins.ModelDiffMixin, wooey.models.mixins.WooeyPy2Mixin, models.Model), ), migrations.AddField( model_name='scriptparameter', name='script_version', field=models.ForeignKey(null=True, to='wooey.ScriptVersion'), preserve_default=False, ), migrations.AddField( model_name='scriptparametergroup', name='script_version', field=models.ForeignKey(null=True, to='wooey.ScriptVersion'), preserve_default=False, ), migrations.AddField( model_name='wooeyjob', name='script_version', field=models.ForeignKey(null=True, to='wooey.ScriptVersion'), preserve_default=False, ), ]
[((1321, 1375), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'null': '(True)', 'to': '"""wooey.ScriptVersion"""'}), "(null=True, to='wooey.ScriptVersion')\n", (1338, 1375), False, 'from django.db import models, migrations\n'), ((1553, 1607), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'null': '(True)', 'to': '"""wooey.ScriptVersion"""'}), "(null=True, to='wooey.ScriptVersion')\n", (1570, 1607), False, 'from django.db import models, migrations\n'), ((1773, 1827), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'null': '(True)', 'to': '"""wooey.ScriptVersion"""'}), "(null=True, to='wooey.ScriptVersion')\n", (1790, 1827), False, 'from django.db import models, migrations\n'), ((377, 470), 'django.db.models.AutoField', 'models.AutoField', ([], {'verbose_name': '"""ID"""', 'serialize': '(False)', 'auto_created': '(True)', 'primary_key': '(True)'}), "(verbose_name='ID', serialize=False, auto_created=True,\n primary_key=True)\n", (393, 470), False, 'from django.db import models, migrations\n'), ((504, 598), 'django.db.models.CharField', 'models.CharField', ([], {'default': '"""1"""', 'help_text': '"""The script version."""', 'max_length': '(50)', 'blank': '(True)'}), "(default='1', help_text='The script version.', max_length=\n 50, blank=True)\n", (520, 598), False, 'from django.db import models, migrations\n'), ((633, 676), 'django.db.models.PositiveSmallIntegerField', 'models.PositiveSmallIntegerField', ([], {'default': '(1)'}), '(default=1)\n', (665, 676), False, 'from django.db import models, migrations\n'), ((711, 742), 'django.db.models.FileField', 'models.FileField', ([], {'upload_to': "b''"}), "(upload_to=b'')\n", (727, 742), False, 'from django.db import models, migrations\n'), ((781, 815), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (800, 815), False, 'from django.db import models, migrations\n'), ((851, 890), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (871, 890), False, 'from django.db import models, migrations\n'), ((927, 962), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (947, 962), False, 'from django.db import models, migrations\n'), ((992, 1063), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'related_name': '"""script_version_new"""', 'to': '"""wooey.Script"""'}), "(related_name='script_version_new', to='wooey.Script')\n", (1009, 1063), False, 'from django.db import models, migrations\n')]
menamegaly/MR
vendor/munkireport/firewall/scripts/firewall.py
18d042639d9b45ca81a9b58659f45c6e2c3ac87f
#!/usr/bin/python """ Firewall for munkireport. By Tuxudo Will return all details about how the firewall is configured """ import subprocess import os import sys import platform import re import plistlib import json sys.path.insert(0,'/usr/local/munki') sys.path.insert(0, '/usr/local/munkireport') from munkilib import FoundationPlist def get_firewall_info(): '''Uses system profiler to get firewall info for the machine.''' cmd = ['/usr/sbin/system_profiler', 'SPFirewallDataType', '-xml'] proc = subprocess.Popen(cmd, shell=False, bufsize=-1, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (output, unused_error) = proc.communicate() try: plist = plistlib.readPlistFromString(output) # system_profiler xml is an array firewall_dict = plist[0] items = firewall_dict['_items'] return items except Exception: return {} def flatten_firewall_info(array): '''Un-nest firewall info, return array with objects with relevant keys''' firewall = {} for obj in array: for item in obj: if item == '_items': out = out + flatten_firewall_info(obj['_items']) elif item == 'spfirewall_services': for service in obj[item]: if obj[item][service] == "spfirewall_allow_all": obj[item][service] = 1 else: obj[item][service] = 0 firewall['services'] = json.dumps(obj[item]) elif item == 'spfirewall_applications': for application in obj[item]: if obj[item][application] == "spfirewall_allow_all": obj[item][application] = 1 else: obj[item][application] = 0 firewall['applications'] = json.dumps(obj[item]) return firewall def get_alf_preferences(): pl = FoundationPlist.readPlist("/Library/Preferences/com.apple.alf.plist") firewall = {} for item in pl: if item == 'allowdownloadsignedenabled': firewall['allowdownloadsignedenabled'] = to_bool(pl[item]) elif item == 'allowsignedenabled': firewall['allowsignedenabled'] = to_bool(pl[item]) elif item == 'firewallunload': firewall['firewallunload'] = to_bool(pl[item]) elif item == 'globalstate': firewall['globalstate'] = to_bool(pl[item]) elif item == 'stealthenabled': firewall['stealthenabled'] = to_bool(pl[item]) elif item == 'loggingenabled': firewall['loggingenabled'] = to_bool(pl[item]) elif item == 'loggingoption': firewall['loggingoption'] = pl[item] elif item == 'version': firewall['version'] = pl[item] return firewall def to_bool(s): if s == True: return 1 else: return 0 def merge_two_dicts(x, y): z = x.copy() z.update(y) return z def main(): """Main""" # Skip manual check if len(sys.argv) > 1: if sys.argv[1] == 'manualcheck': print 'Manual check: skipping' exit(0) # Create cache dir if it does not exist cachedir = '%s/cache' % os.path.dirname(os.path.realpath(__file__)) if not os.path.exists(cachedir): os.makedirs(cachedir) # Set the encoding # The "ugly hack" :P reload(sys) sys.setdefaultencoding('utf8') # Get results result = dict() info = get_firewall_info() result = merge_two_dicts(flatten_firewall_info(info), get_alf_preferences()) # Write firewall results to cache output_plist = os.path.join(cachedir, 'firewall.plist') FoundationPlist.writePlist(result, output_plist) #print FoundationPlist.writePlistToString(result) if __name__ == "__main__": main()
[]
dpoulopoulos/cf_step
cf_step/metrics.py
c0ed1d0fbdedb863a630e90a7c7b6f95141a3e30
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/metrics.ipynb (unless otherwise specified). __all__ = ['recall_at_k', 'precision_at_k'] # Cell from typing import List # Cell def recall_at_k(predictions: List[int], targets: List[int], k: int = 10) -> float: """Computes `Recall@k` from the given predictions and targets sets.""" predictions_set = set(predictions[:k]) targets_set = set(targets) result = len(targets_set & predictions_set) / float(len(targets_set)) return result # Cell def precision_at_k(predictions: List[int], targets: List[int], k: int = 10) -> float: """Computes `Precision@k` from the given predictions and targets sets.""" predictions_set = set(predictions[:k]) targets_set = set(targets) result = len(targets_set & predictions_set) / float(len(predictions_set)) return result
[]
sandertyu/Simple-Geometry-Plot
bicycleparameters/period.py
6fa4dfb50aebc4215818f75ff56f916fc32f8cfa
#!/usr/bin/env/ python import os from math import pi import numpy as np from numpy import ma from scipy.optimize import leastsq import matplotlib.pyplot as plt from uncertainties import ufloat # local modules from .io import load_pendulum_mat_file def average_rectified_sections(data): '''Returns a slice of an oscillating data vector based on the max and min of the mean of the sections created by retifiying the data. Parameters ---------- data : ndarray, shape(n,) Returns ------- data : ndarray, shape(m,) A slice where m is typically less than n. Notes ----- This is a function to try to handle the fact that some of the data from the torsional pendulum had a beating like phenomena and we only want to select a section of the data that doesn't seem to exhibit the phenomena. ''' # subtract the mean so that there are zero crossings meanSubData = data - np.mean(data) # find the zero crossings zeroCrossings = np.where(np.diff(np.sign(meanSubData)))[0] # add a zero to the beginning crossings = np.concatenate((np.array([0]), zeroCrossings)) # find the mean value of the rectified sections and the local indice secMean = [] localMeanInd = [] for sec in np.split(np.abs(meanSubData), zeroCrossings): localMeanInd.append(np.argmax(sec)) secMean.append(np.mean(sec)) meanInd = [] # make the global indices for i, val in enumerate(crossings): meanInd.append(val + localMeanInd[i]) # only take the top part of the data because some the zero crossings can be # a lot at one point mainly due to the resolution of the daq box threshold = np.mean(secMean) secMeanOverThresh = [] indice = [] for i, val in enumerate(secMean): if val > threshold: secMeanOverThresh.append(val) indice.append(meanInd[i]) # now return the data based on the max value and the min value maxInd = indice[np.argmax(secMeanOverThresh)] minInd = indice[np.argmin(secMeanOverThresh)] return data[maxInd:minInd] def calc_periods_for_files(directory, filenames, forkIsSplit): '''Calculates the period for all filenames in directory. Parameters ---------- directory : string This is the path to the RawData directory. filenames : list List of all the mat file names in the RawData directory. forkIsSplit : boolean True if the fork is broken into a handlebar and fork and false if the fork and handlebar was measured together. Returns ------- periods : dictionary Contains all the periods for the mat files in the RawData directory. ''' periods = {} def pathParts(path): '''Splits a path into a list of its parts.''' components = [] while True: (path,tail) = os.path.split(path) if tail == "": components.reverse() return components components.append(tail) pathToRawDataParts = pathParts(directory) pathToRawDataParts.pop() pathToBicycleDir = os.path.join(pathToRawDataParts[0], pathToRawDataParts[1], pathToRawDataParts[2]) pathToPlotDir = os.path.join(pathToBicycleDir, 'Plots', 'PendulumFit') # make sure there is a place to save the plots if not os.path.exists(pathToPlotDir): os.makedirs(pathToPlotDir) for f in filenames: print("Calculating the period for:", f) # load the pendulum data pathToMatFile = os.path.join(directory, f) matData = load_pendulum_mat_file(pathToMatFile) # generate a variable name for this period periodKey = get_period_key(matData, forkIsSplit) # calculate the period sampleRate = get_sample_rate(matData) pathToPlotFile = os.path.join(pathToPlotDir, os.path.splitext(f)[0] + '.png') period = get_period_from_truncated(matData['data'], sampleRate, pathToPlotFile) print("The period is:", period, "\n") # either append the the period or if it isn't there yet, then # make a new list try: periods[periodKey].append(period) except KeyError: periods[periodKey] = [period] # now average all the periods for k, v in periods.items(): if k.startswith('T'): periods[k] = np.mean(v) return periods def check_for_period(mp, forkIsSplit): '''Returns whether the fork is split into two pieces and whether the period calculations need to happen again. Parameters ---------- mp : dictionary Dictionary the measured parameters. forkIsSplit : boolean True if the fork is broken into a handlebar and fork and false if the fork and handlebar was measured together. Returns ------- forcePeriodCalc : boolean True if there wasn't enough period data in mp, false if there was. forkIsSplit : boolean True if the fork is broken into a handlebar and fork and false if the fork and handlebar was measured together. ''' forcePeriodCalc = False #Check to see if mp contains at enough periods to not need # recalculation ncTSum = 0 ntTSum = 0 for key in mp.keys(): # check for any periods in the keys if key[:2] == 'Tc': ncTSum += 1 elif key[:2] == 'Tt': ntTSum += 1 # if there isn't enough data then force the period cals again if forkIsSplit: if ncTSum < 5 or ntTSum < 11: forcePeriodCalc = True else: if ncTSum < 4 or ntTSum < 8: forcePeriodCalc = True return forcePeriodCalc def fit_goodness(ym, yp): ''' Calculate the goodness of fit. Parameters ---------- ym : ndarray, shape(n,) The vector of measured values. yp : ndarry, shape(n,) The vector of predicted values. Returns ------- rsq : float The r squared value of the fit. SSE : float The error sum of squares. SST : float The total sum of squares. SSR : float The regression sum of squares. ''' SSR = np.sum((yp - np.mean(ym))**2) SST = np.sum((ym - np.mean(ym))**2) SSE = SST - SSR rsq = SSR / SST return rsq, SSE, SST, SSR def get_period(data, sampleRate, pathToPlotFile): '''Returns the period and uncertainty for data resembling a decaying oscillation. Parameters ---------- data : ndarray, shape(n,) A time series that resembles a decaying oscillation. sampleRate : int The frequency that data was sampled at. pathToPlotFile : string A path to the file to print the plots. Returns ------- T : ufloat The period of oscillation and its uncertainty. ''' y = data x = np.linspace(0., (len(y) - 1) / float(sampleRate), num=len(y)) def fitfunc(p, t): '''Decaying oscillation function.''' a = p[0] b = np.exp(-p[3] * p[4] * t) c = p[1] * np.sin(p[4] * np.sqrt(1 - p[3]**2) * t) d = p[2] * np.cos(p[4] * np.sqrt(1 - p[3]**2) * t) return a + b * (c + d) # initial guesses #p0 = np.array([1.35, -.5, -.75, 0.01, 3.93]) # guess from delft #p0 = np.array([2.5, -.75, -.75, 0.001, 4.3]) # guess from ucd p0 = make_guess(data, sampleRate) # tries to make a good guess # create the error function errfunc = lambda p, t, y: fitfunc(p, t) - y # minimize the error function p1, success = leastsq(errfunc, p0[:], args=(x, y)) lscurve = fitfunc(p1, x) # find the uncertainty in the fit parameters rsq, SSE, SST, SSR = fit_goodness(y, lscurve) sigma = np.sqrt(SSE / (len(y) - len(p0))) # calculate the jacobian L = jac_fitfunc(p1, x) # the Hessian H = np.dot(L.T, L) # the covariance matrix U = sigma**2. * np.linalg.inv(H) # the standard deviations sigp = np.sqrt(U.diagonal()) # natural frequency wo = ufloat(p1[4], sigp[4]) # damping ratio zeta = ufloat(p1[3], sigp[3]) # damped natural frequency wd = (1. - zeta**2.)**(1. / 2.) * wo # damped natural frequency (hz) fd = wd / 2. / pi # period T = 1. / fd # plot the data and save it to file fig = plt.figure() plot_osfit(x, y, lscurve, p1, rsq, T, m=np.max(x), fig=fig) plt.savefig(pathToPlotFile) plt.close() # return the period return T def get_period_from_truncated(data, sampleRate, pathToPlotFile): #dataRec = average_rectified_sections(data) dataRec = data dataGood = select_good_data(dataRec, 0.1) return get_period(dataGood, sampleRate, pathToPlotFile) def get_period_key(matData, forkIsSplit): '''Returns a dictionary key for the period entries. Parameters ---------- matData : dictionary The data imported from a pendulum mat file. forkIsSplit : boolean True if the fork is broken into a handlebar and fork and false if the fork and handlebar was measured together. Returns ------- key : string A key of the form 'T[pendulum][part][orientation]'. For example, if it is the frame that was hung as a torsional pendulum at the second orientation angle then the key would be 'TtB2'. ''' # set up the subscripting for the period key subscripts = {'Fwheel': 'F', 'Rwheel': 'R', 'Frame': 'B', 'Flywheel': 'D'} # the Flywheel is for the gyro bike and it actually represents the front # wheel and the flywheel as one rigid body. It was easier to measure the # the inertia this way. So...the to get the actual flywheel inertia, one # must subtract the inertia of the Fwheel, F, from the Flywheel, D. if forkIsSplit: subscripts['Fork'] = 'S' subscripts['Handlebar'] = 'G' else: subscripts['Fork'] = 'H' try: subscripts[matData['rod']] = 'P' except KeyError: subscripts['Rod'] = 'P' # used to convert word ordinals to numbers ordinal = {'First' : '1', 'Second' : '2', 'Third' : '3', 'Fourth' : '4', 'Fifth' : '5', 'Sixth' : '6'} try: orienWord = matData['angleOrder'] except: orienWord = matData['angle'] pend = matData['pendulum'][0].lower() part = subscripts[matData['part']] orienNum = ordinal[orienWord] return 'T' + pend + part + orienNum def get_sample_rate(matData): '''Returns the sample rate for the data.''' if 'ActualRate' in matData.keys(): sampleRate = matData['ActualRate'] else: sampleRate = matData['sampleRate'] return sampleRate def jac_fitfunc(p, t): ''' Calculate the Jacobian of a decaying oscillation function. Uses the analytical formulations of the partial derivatives. Parameters ---------- p : the five parameters of the equation t : time vector Returns ------- jac : The jacobian, the partial of the vector function with respect to the parameters vector. A 5 x N matrix where N is the number of time steps. ''' jac = np.zeros((len(p), len(t))) e = np.exp(-p[3] * p[4] * t) dampsq = np.sqrt(1 - p[3]**2) s = np.sin(dampsq * p[4] * t) c = np.cos(dampsq * p[4] * t) jac[0] = np.ones_like(t) jac[1] = e * s jac[2] = e * c jac[3] = (-p[4] * t * e * (p[1] * s + p[2] * c) + e * (-p[1] * p[3] * p[4] * t / dampsq * c + p[2] * p[3] * p[4] * t / dampsq * s)) jac[4] = (-p[3] * t * e * (p[1] * s + p[2] * c) + e * dampsq * t * (p[1] * c - p[2] * s)) return jac.T def make_guess(data, sampleRate): '''Returns a decent starting point for fitting the decaying oscillation function. ''' p = np.zeros(5) # the first unknown is the shift along the y axis p[0] = np.mean(data) # work with the mean subtracted data from now on data = data - p[0] # what is the initial slope of the curve if data[10] > data[0]: slope = 1 else: slope = -1 # the second is the amplitude for the sin function p[1] = slope * np.max(data) / 2 # the third is the amplitude for the cos function p[2] = slope * np.max(data) # the fourth is the damping ratio and is typically small, 0.001 < zeta < 0.02 p[3] = 0.001 # the fifth is the undamped natural frequency # first remove the data around zero dataMasked = ma.masked_inside(data, -0.1, 0.1) # find the zero crossings zeroCrossings = np.where(np.diff(np.sign(dataMasked)))[0] # remove redundant crossings zero = [] for i, v in enumerate(zeroCrossings): if abs(v - zeroCrossings[i - 1]) > 20: zero.append(v) # get the samples per period samplesPerPeriod = 2*np.mean(np.diff(zero)) # now the frequency p[4] = (samplesPerPeriod / float(sampleRate) /2. / pi)**-1 if np.isnan(p[4]): p[4] = 4. return p def plot_osfit(t, ym, yf, p, rsq, T, m=None, fig=None): '''Plot fitted data over the measured Parameters ---------- t : ndarray (n,) Measurement time in seconds ym : ndarray (n,) The measured voltage yf : ndarray (n,) p : ndarray (5,) The fit parameters for the decaying osicallation fucntion rsq : float The r squared value of y (the fit) T : float The period m : float The maximum value to plot Returns ------- fig : the figure ''' # figure properties figwidth = 4. # in inches goldenMean = (np.sqrt(5) - 1.0) / 2.0 figsize = [figwidth, figwidth * goldenMean] params = {#'backend': 'ps', 'axes.labelsize': 8, 'axes.titlesize': 8, 'text.fontsize': 8, 'legend.fontsize': 8, 'xtick.labelsize': 6, 'ytick.labelsize': 6, 'text.usetex': True, #'figure.figsize': figsize } if fig: fig = fig else: fig = plt.figure(2) fig.set_size_inches(figsize) plt.rcParams.update(params) ax1 = plt.axes([0.125, 0.125, 0.9-0.125, 0.65]) #if m == None: #end = len(t) #else: #end = t[round(m/t[-1]*len(t))] ax1.plot(t, ym, '.', markersize=2) plt.plot(t, yf, 'k-') plt.xlabel('Time [s]') plt.ylabel('Amplitude [V]') equation = r'$f(t)={0:1.2f}+e^{{-({3:1.3f})({4:1.1f})t}}\left[{1:1.2f}\sin{{\sqrt{{1-{3:1.3f}^2}}{4:1.1f}t}}+{2:1.2f}\cos{{\sqrt{{1-{3:1.3f}^2}}{4:1.1f}t}}\right]$'.format(p[0], p[1], p[2], p[3], p[4]) rsquare = '$r^2={0:1.3f}$'.format(rsq) period = '$T={0} s$'.format(T) plt.title(equation + '\n' + rsquare + ', ' + period) plt.legend(['Measured', 'Fit']) if m is not None: plt.xlim((0, m)) else: pass return fig def select_good_data(data, percent): '''Returns a slice of the data from the index at maximum value to the index at a percent of the maximum value. Parameters ---------- data : ndarray, shape(1,) This should be a decaying function. percent : float The percent of the maximum to clip. This basically snips of the beginning and end of the data so that the super damped tails are gone and also any weirdness at the beginning. ''' meanSub = data - np.mean(data) maxVal = np.max(np.abs(meanSub)) maxInd = np.argmax(np.abs(meanSub)) for i, v in reversed(list(enumerate(meanSub))): if v > percent * maxVal: minInd = i break return data[maxInd:minInd]
[((1695, 1711), 'numpy.mean', 'np.mean', (['secMean'], {}), '(secMean)\n', (1702, 1711), True, 'import numpy as np\n'), ((3127, 3212), 'os.path.join', 'os.path.join', (['pathToRawDataParts[0]', 'pathToRawDataParts[1]', 'pathToRawDataParts[2]'], {}), '(pathToRawDataParts[0], pathToRawDataParts[1],\n pathToRawDataParts[2])\n', (3139, 3212), False, 'import os\n'), ((3301, 3355), 'os.path.join', 'os.path.join', (['pathToBicycleDir', '"""Plots"""', '"""PendulumFit"""'], {}), "(pathToBicycleDir, 'Plots', 'PendulumFit')\n", (3313, 3355), False, 'import os\n'), ((7748, 7784), 'scipy.optimize.leastsq', 'leastsq', (['errfunc', 'p0[:]'], {'args': '(x, y)'}), '(errfunc, p0[:], args=(x, y))\n', (7755, 7784), False, 'from scipy.optimize import leastsq\n'), ((8045, 8059), 'numpy.dot', 'np.dot', (['L.T', 'L'], {}), '(L.T, L)\n', (8051, 8059), True, 'import numpy as np\n'), ((8224, 8246), 'uncertainties.ufloat', 'ufloat', (['p1[4]', 'sigp[4]'], {}), '(p1[4], sigp[4])\n', (8230, 8246), False, 'from uncertainties import ufloat\n'), ((8278, 8300), 'uncertainties.ufloat', 'ufloat', (['p1[3]', 'sigp[3]'], {}), '(p1[3], sigp[3])\n', (8284, 8300), False, 'from uncertainties import ufloat\n'), ((8511, 8523), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (8521, 8523), True, 'import matplotlib.pyplot as plt\n'), ((8592, 8619), 'matplotlib.pyplot.savefig', 'plt.savefig', (['pathToPlotFile'], {}), '(pathToPlotFile)\n', (8603, 8619), True, 'import matplotlib.pyplot as plt\n'), ((8624, 8635), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (8633, 8635), True, 'import matplotlib.pyplot as plt\n'), ((11465, 11489), 'numpy.exp', 'np.exp', (['(-p[3] * p[4] * t)'], {}), '(-p[3] * p[4] * t)\n', (11471, 11489), True, 'import numpy as np\n'), ((11503, 11525), 'numpy.sqrt', 'np.sqrt', (['(1 - p[3] ** 2)'], {}), '(1 - p[3] ** 2)\n', (11510, 11525), True, 'import numpy as np\n'), ((11532, 11557), 'numpy.sin', 'np.sin', (['(dampsq * p[4] * t)'], {}), '(dampsq * p[4] * t)\n', (11538, 11557), True, 'import numpy as np\n'), ((11566, 11591), 'numpy.cos', 'np.cos', (['(dampsq * p[4] * t)'], {}), '(dampsq * p[4] * t)\n', (11572, 11591), True, 'import numpy as np\n'), ((11605, 11620), 'numpy.ones_like', 'np.ones_like', (['t'], {}), '(t)\n', (11617, 11620), True, 'import numpy as np\n'), ((12076, 12087), 'numpy.zeros', 'np.zeros', (['(5)'], {}), '(5)\n', (12084, 12087), True, 'import numpy as np\n'), ((12154, 12167), 'numpy.mean', 'np.mean', (['data'], {}), '(data)\n', (12161, 12167), True, 'import numpy as np\n'), ((12752, 12785), 'numpy.ma.masked_inside', 'ma.masked_inside', (['data', '(-0.1)', '(0.1)'], {}), '(data, -0.1, 0.1)\n', (12768, 12785), False, 'from numpy import ma\n'), ((13216, 13230), 'numpy.isnan', 'np.isnan', (['p[4]'], {}), '(p[4])\n', (13224, 13230), True, 'import numpy as np\n'), ((14337, 14364), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (['params'], {}), '(params)\n', (14356, 14364), True, 'import matplotlib.pyplot as plt\n'), ((14375, 14418), 'matplotlib.pyplot.axes', 'plt.axes', (['[0.125, 0.125, 0.9 - 0.125, 0.65]'], {}), '([0.125, 0.125, 0.9 - 0.125, 0.65])\n', (14383, 14418), True, 'import matplotlib.pyplot as plt\n'), ((14552, 14573), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'yf', '"""k-"""'], {}), "(t, yf, 'k-')\n", (14560, 14573), True, 'import matplotlib.pyplot as plt\n'), ((14578, 14600), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [s]"""'], {}), "('Time [s]')\n", (14588, 14600), True, 'import matplotlib.pyplot as plt\n'), ((14605, 14632), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Amplitude [V]"""'], {}), "('Amplitude [V]')\n", (14615, 14632), True, 'import matplotlib.pyplot as plt\n'), ((14921, 14973), 'matplotlib.pyplot.title', 'plt.title', (["(equation + '\\n' + rsquare + ', ' + period)"], {}), "(equation + '\\n' + rsquare + ', ' + period)\n", (14930, 14973), True, 'import matplotlib.pyplot as plt\n'), ((14978, 15009), 'matplotlib.pyplot.legend', 'plt.legend', (["['Measured', 'Fit']"], {}), "(['Measured', 'Fit'])\n", (14988, 15009), True, 'import matplotlib.pyplot as plt\n'), ((939, 952), 'numpy.mean', 'np.mean', (['data'], {}), '(data)\n', (946, 952), True, 'import numpy as np\n'), ((1279, 1298), 'numpy.abs', 'np.abs', (['meanSubData'], {}), '(meanSubData)\n', (1285, 1298), True, 'import numpy as np\n'), ((3419, 3448), 'os.path.exists', 'os.path.exists', (['pathToPlotDir'], {}), '(pathToPlotDir)\n', (3433, 3448), False, 'import os\n'), ((3458, 3484), 'os.makedirs', 'os.makedirs', (['pathToPlotDir'], {}), '(pathToPlotDir)\n', (3469, 3484), False, 'import os\n'), ((3615, 3641), 'os.path.join', 'os.path.join', (['directory', 'f'], {}), '(directory, f)\n', (3627, 3641), False, 'import os\n'), ((7214, 7238), 'numpy.exp', 'np.exp', (['(-p[3] * p[4] * t)'], {}), '(-p[3] * p[4] * t)\n', (7220, 7238), True, 'import numpy as np\n'), ((8109, 8125), 'numpy.linalg.inv', 'np.linalg.inv', (['H'], {}), '(H)\n', (8122, 8125), True, 'import numpy as np\n'), ((12531, 12543), 'numpy.max', 'np.max', (['data'], {}), '(data)\n', (12537, 12543), True, 'import numpy as np\n'), ((14286, 14299), 'matplotlib.pyplot.figure', 'plt.figure', (['(2)'], {}), '(2)\n', (14296, 14299), True, 'import matplotlib.pyplot as plt\n'), ((15040, 15056), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0, m)'], {}), '((0, m))\n', (15048, 15056), True, 'import matplotlib.pyplot as plt\n'), ((15600, 15613), 'numpy.mean', 'np.mean', (['data'], {}), '(data)\n', (15607, 15613), True, 'import numpy as np\n'), ((15634, 15649), 'numpy.abs', 'np.abs', (['meanSub'], {}), '(meanSub)\n', (15640, 15649), True, 'import numpy as np\n'), ((15674, 15689), 'numpy.abs', 'np.abs', (['meanSub'], {}), '(meanSub)\n', (15680, 15689), True, 'import numpy as np\n'), ((1112, 1125), 'numpy.array', 'np.array', (['[0]'], {}), '([0])\n', (1120, 1125), True, 'import numpy as np\n'), ((1344, 1358), 'numpy.argmax', 'np.argmax', (['sec'], {}), '(sec)\n', (1353, 1358), True, 'import numpy as np\n'), ((1383, 1395), 'numpy.mean', 'np.mean', (['sec'], {}), '(sec)\n', (1390, 1395), True, 'import numpy as np\n'), ((1988, 2016), 'numpy.argmax', 'np.argmax', (['secMeanOverThresh'], {}), '(secMeanOverThresh)\n', (1997, 2016), True, 'import numpy as np\n'), ((2038, 2066), 'numpy.argmin', 'np.argmin', (['secMeanOverThresh'], {}), '(secMeanOverThresh)\n', (2047, 2066), True, 'import numpy as np\n'), ((2874, 2893), 'os.path.split', 'os.path.split', (['path'], {}), '(path)\n', (2887, 2893), False, 'import os\n'), ((4572, 4582), 'numpy.mean', 'np.mean', (['v'], {}), '(v)\n', (4579, 4582), True, 'import numpy as np\n'), ((8568, 8577), 'numpy.max', 'np.max', (['x'], {}), '(x)\n', (8574, 8577), True, 'import numpy as np\n'), ((12440, 12452), 'numpy.max', 'np.max', (['data'], {}), '(data)\n', (12446, 12452), True, 'import numpy as np\n'), ((13107, 13120), 'numpy.diff', 'np.diff', (['zero'], {}), '(zero)\n', (13114, 13120), True, 'import numpy as np\n'), ((13878, 13888), 'numpy.sqrt', 'np.sqrt', (['(5)'], {}), '(5)\n', (13885, 13888), True, 'import numpy as np\n'), ((1020, 1040), 'numpy.sign', 'np.sign', (['meanSubData'], {}), '(meanSubData)\n', (1027, 1040), True, 'import numpy as np\n'), ((6394, 6405), 'numpy.mean', 'np.mean', (['ym'], {}), '(ym)\n', (6401, 6405), True, 'import numpy as np\n'), ((6434, 6445), 'numpy.mean', 'np.mean', (['ym'], {}), '(ym)\n', (6441, 6445), True, 'import numpy as np\n'), ((12853, 12872), 'numpy.sign', 'np.sign', (['dataMasked'], {}), '(dataMasked)\n', (12860, 12872), True, 'import numpy as np\n'), ((3974, 3993), 'os.path.splitext', 'os.path.splitext', (['f'], {}), '(f)\n', (3990, 3993), False, 'import os\n'), ((7272, 7294), 'numpy.sqrt', 'np.sqrt', (['(1 - p[3] ** 2)'], {}), '(1 - p[3] ** 2)\n', (7279, 7294), True, 'import numpy as np\n'), ((7331, 7353), 'numpy.sqrt', 'np.sqrt', (['(1 - p[3] ** 2)'], {}), '(1 - p[3] ** 2)\n', (7338, 7353), True, 'import numpy as np\n')]
tbenthompson/BIE_tutorials
tectosaur2/analyze.py
02cd56ab7e63e36afc4a10db17072076541aab77
import time import warnings import matplotlib.pyplot as plt import numpy as np import sympy as sp from .global_qbx import global_qbx_self from .mesh import apply_interp_mat, gauss_rule, panelize_symbolic_surface, upsample def find_dcutoff_refine(kernel, src, tol, plot=False): # prep step 1: find d_cutoff and d_refine # The goal is to estimate the error due to the QBX local patch # The local surface will have singularities at the tips where it is cut off # These singularities will cause error in the QBX expansion. We want to make # the local patch large enough that these singularities are irrelevant. # To isolate the QBX patch cutoff error, we will use a very high upsampling. # We'll also choose p to be the minimum allowed value since that will result in # the largest cutoff error. Increasing p will reduce the cutoff error guaranteeing that # we never need to worry about cutoff error. density = np.ones_like(src.pts[:, 0]) # np.cos(src.pts[:,0] * src.pts[:,1]) if plot: plt.figure(figsize=(9, 13)) params = [] d_cutoffs = [1.1, 1.3, 1.6, 2.0] ps = np.arange(1, 55, 3) for di, direction in enumerate([-1.0, 1.0]): baseline = global_qbx_self(kernel, src, p=30, kappa=8, direction=direction) baseline_v = baseline.dot(density) # Check that the local qbx method matches the simple global qbx approach when d_cutoff is very large d_refine_high = 8.0 with warnings.catch_warnings(): warnings.simplefilter("ignore") local_baseline = kernel.integrate( src.pts, src, d_cutoff=3.0, tol=1e-20, max_p=50, d_refine=d_refine_high, on_src_direction=direction, ) local_baseline_v = local_baseline.dot(density) err = np.max(np.abs(baseline_v - local_baseline_v)) print(err) assert err < tol / 2 n_qbx_panels = [] drefine_optimal = [] p_for_full_accuracy = [] if plot: plt.subplot(3, 2, 1 + di) for i_d, d_cutoff in enumerate(d_cutoffs): errs = [] for i_p, p in enumerate(ps): # print(p, d_cutoff) with warnings.catch_warnings(): warnings.simplefilter("ignore") test, report = kernel.integrate( src.pts, src, d_cutoff=d_cutoff, tol=1e-15, max_p=p, on_src_direction=direction, d_refine=d_refine_high, return_report=True, ) testv = test.dot(density) err = np.max(np.abs(baseline_v - testv)) errs.append(err) # print(p, err) if err < tol: for d_refine_decrease in np.arange(1.0, d_refine_high, 0.25): refine_test, refine_report = kernel.integrate( src.pts, src, d_cutoff=d_cutoff, tol=1e-15, max_p=p + 10, # Increase p here to have a refinement safety margin on_src_direction=direction, d_refine=d_refine_decrease, return_report=True, ) refine_testv = refine_test.dot(density) refine_err = np.max(np.abs(baseline_v - refine_testv)) if refine_err < tol: drefine_optimal.append(d_refine_decrease) n_qbx_panels.append(refine_report["n_qbx_panels"]) p_for_full_accuracy.append(p) break if len(n_qbx_panels) <= i_d: print(f"Failed to find parameters for {d_cutoff}") drefine_optimal.append(1000) n_qbx_panels.append(1e6) p_for_full_accuracy.append(1e3) break if plot: print(d_cutoff, errs) plt.plot(ps[: i_p + 1], np.log10(errs), label=str(d_cutoff)) params.append((direction, n_qbx_panels, drefine_optimal, p_for_full_accuracy)) if plot: plt.legend() plt.title("interior" if direction > 0 else "exterior") plt.xlabel(r"$p_{\textrm{max}}$") if di == 0: plt.ylabel(r"$\log_{10}(\textrm{error})$") plt.yticks(-np.arange(0, 16, 3)) plt.xticks(np.arange(0, 61, 10)) plt.ylim([-15, 0]) plt.subplot(3, 2, 3 + di) plt.plot(d_cutoffs, np.array(n_qbx_panels) / src.n_pts, "k-*") plt.xlabel(r"$d_{\textrm{cutoff}}$") plt.ylim([0, 8]) if di == 0: plt.ylabel("QBX panels per point") plt.subplot(3, 2, 5 + di) plt.plot(d_cutoffs, np.array(drefine_optimal), "k-*") plt.xlabel(r"$d_{\textrm{cutoff}}$") plt.ylim([0, 6]) if di == 0: plt.ylabel(r"$d_{\textrm{refine}}$") if plot: plt.tight_layout() plt.show() total_cost = 0 for i in [0, 1]: direction, n_qbx_panels, drefine_optimal, p_for_full_accuracy = params[i] appx_cost = ( np.array(p_for_full_accuracy) * np.array(n_qbx_panels) * np.array(drefine_optimal) ) if plot: print(direction, appx_cost) total_cost += appx_cost if plot: plt.plot(d_cutoffs, total_cost, "k-o") plt.show() best_idx = np.argmin(total_cost) d_cutoff = d_cutoffs[best_idx] d_refine = drefine_optimal[best_idx] return d_cutoff, d_refine # prep step 2: find the minimum distance at which integrals are computed # to the required tolerance def _find_d_up_helper(kernel, nq, max_curvature, start_d, tol, kappa): t = sp.var("t") n_panels = 2 while True: panel_edges = np.linspace(-1, 1, n_panels + 1) panel_bounds = np.stack((panel_edges[:-1], panel_edges[1:]), axis=1) circle = panelize_symbolic_surface( t, sp.cos(sp.pi * t), sp.sin(sp.pi * t), panel_bounds, *gauss_rule(nq) ) n_panels_new = np.max(circle.panel_length / max_curvature * circle.panel_radius) if n_panels_new <= n_panels: break n_panels = np.ceil(n_panels_new).astype(int) # print(f"\nusing {n_panels} panels with max_curvature={max_curvature}") circle_kappa, _ = upsample(circle, kappa) circle_upsample, interp_mat_upsample = upsample(circle_kappa, 2) # TODO: Write more about the underlying regularity assumptions!! # Why is it acceptable to use this test_density here? Empirically, any # well-resolved density has approximately the same error as integrating sin(x). # For example, integrating: 1, cos(x)^2. # If we integrate a poorly resolved density, we do see higher errors. # # How poorly resolved does the density need to be in order to see higher error? # It seems like an interpolation Linfinity error of around 1e-5 causes the d_up value to start to drift upwards. # # As a simple heuristic that seems to perform very well, we compute the # error when integrating a constant and then double the required distance # in order to account for integrands that are not quite so perfectly # resolved. # if assume_regularity: # omega = 1.0 # else: # omega = 999.0# / max_curvature # f = lambda x: np.sin(omega * x) # test_density = interp_mat_upsample.dot(f(circle.pts[:,0])) # test_density_upsampled = f(circle_upsample.pts[:,0]) # print('l2 err', np.linalg.norm(test_density - test_density_upsampled) / np.linalg.norm(test_density_upsampled)) # print('linf err', np.max(np.abs(test_density - test_density_upsampled))) # test_density = f(circle.pts[:,0]) # test_density = np.sin(999 * circle.pts[:,0]) test_density = np.ones(circle_kappa.n_pts) d_up = 0 for direction in [-1.0, 1.0]: d = start_d for i in range(50): # In actuality, we only need to test interior points because the curvature # of the surface ensures that more source panels are near the observation # points and, as a result, the error will be higher for any given value of d. L = np.repeat(circle_kappa.panel_length, circle_kappa.panel_order) dist = L * d test_pts = ( circle_kappa.pts + direction * circle_kappa.normals * dist[:, None] ) # Check to make sure that the closest distance to a source point is # truly `dist`. This check might fail if the interior test_pts are # crossing over into the other half of the circle. min_src_dist = np.min( np.linalg.norm((test_pts[:, None] - circle_kappa.pts[None, :]), axis=2), axis=1, ) if not np.allclose(min_src_dist, dist): return False, d upsample_mat = np.transpose( apply_interp_mat( kernel._direct(test_pts, circle_upsample), interp_mat_upsample ), (0, 2, 1), ) est_mat = np.transpose(kernel._direct(test_pts, circle_kappa), (0, 2, 1)) # err = np.max(np.abs(upsample_mat - est_mat).sum(axis=2)) err = np.max( np.abs(upsample_mat.dot(test_density) - est_mat.dot(test_density)) ) # print(d, err) if err < tol: d_up = max(d, d_up) break d *= 1.2 return True, d_up def find_d_up(kernel, nq, max_curvature, start_d, tol, kappa): d = start_d for i in range(10): d_up = _find_d_up_helper(kernel, nq, max_curvature * (0.8) ** i, d, tol, kappa) if d_up[0]: return d_up[1] d = d_up[1] def final_check(kernel, src): density = np.ones_like(src.pts[:, 0]) # np.cos(source.pts[:,0] * src.pts[:,1]) baseline = global_qbx_self(kernel, src, p=50, kappa=10, direction=1.0) baseline_v = baseline.dot(density) tols = 10.0 ** np.arange(0, -15, -1) errs = [] runtimes = [] for tol in tols: runs = [] for i in range(10): start = time.time() local_baseline, report = kernel.integrate( src.pts, src, tol=tol, on_src_direction=1.0, return_report=True, ) runs.append(time.time() - start) runtimes.append(np.min(runs)) local_baseline_v = local_baseline.dot(density) errs.append(np.max(np.abs(baseline_v - local_baseline_v))) # print(tol, errs[-1], runtime) # assert(np.max(np.abs(baseline_v-local_baseline_v)) < 5e-14) plt.figure(figsize=(9, 5)) plt.subplot(1, 2, 1) plt.plot(-np.log10(tols), np.log10(errs)) plt.subplot(1, 2, 2) plt.plot(-np.log10(tols), runtimes) plt.tight_layout() plt.show()
[((951, 980), 'numpy.ones_like', 'np.ones_like', (['src.pts[:, (0)]'], {}), '(src.pts[:, (0)])\n', (963, 980), True, 'import numpy as np\n'), ((1130, 1149), 'numpy.arange', 'np.arange', (['(1)', '(55)', '(3)'], {}), '(1, 55, 3)\n', (1139, 1149), True, 'import numpy as np\n'), ((6070, 6091), 'numpy.argmin', 'np.argmin', (['total_cost'], {}), '(total_cost)\n', (6079, 6091), True, 'import numpy as np\n'), ((6380, 6391), 'sympy.var', 'sp.var', (['"""t"""'], {}), "('t')\n", (6386, 6391), True, 'import sympy as sp\n'), ((8460, 8487), 'numpy.ones', 'np.ones', (['circle_kappa.n_pts'], {}), '(circle_kappa.n_pts)\n', (8467, 8487), True, 'import numpy as np\n'), ((10506, 10535), 'numpy.ones_like', 'np.ones_like', (['src.pts[:, (0)]'], {}), '(src.pts[:, (0)])\n', (10518, 10535), True, 'import numpy as np\n'), ((11396, 11422), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(9, 5)'}), '(figsize=(9, 5))\n', (11406, 11422), True, 'import matplotlib.pyplot as plt\n'), ((11427, 11447), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(1)'], {}), '(1, 2, 1)\n', (11438, 11447), True, 'import matplotlib.pyplot as plt\n'), ((11498, 11518), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(2)'], {}), '(1, 2, 2)\n', (11509, 11518), True, 'import matplotlib.pyplot as plt\n'), ((11563, 11581), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (11579, 11581), True, 'import matplotlib.pyplot as plt\n'), ((11586, 11596), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (11594, 11596), True, 'import matplotlib.pyplot as plt\n'), ((1039, 1066), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(9, 13)'}), '(figsize=(9, 13))\n', (1049, 1066), True, 'import matplotlib.pyplot as plt\n'), ((5574, 5592), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (5590, 5592), True, 'import matplotlib.pyplot as plt\n'), ((5601, 5611), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5609, 5611), True, 'import matplotlib.pyplot as plt\n'), ((5996, 6034), 'matplotlib.pyplot.plot', 'plt.plot', (['d_cutoffs', 'total_cost', '"""k-o"""'], {}), "(d_cutoffs, total_cost, 'k-o')\n", (6004, 6034), True, 'import matplotlib.pyplot as plt\n'), ((6043, 6053), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6051, 6053), True, 'import matplotlib.pyplot as plt\n'), ((6448, 6480), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)', '(n_panels + 1)'], {}), '(-1, 1, n_panels + 1)\n', (6459, 6480), True, 'import numpy as np\n'), ((6504, 6557), 'numpy.stack', 'np.stack', (['(panel_edges[:-1], panel_edges[1:])'], {'axis': '(1)'}), '((panel_edges[:-1], panel_edges[1:]), axis=1)\n', (6512, 6557), True, 'import numpy as np\n'), ((6718, 6783), 'numpy.max', 'np.max', (['(circle.panel_length / max_curvature * circle.panel_radius)'], {}), '(circle.panel_length / max_curvature * circle.panel_radius)\n', (6724, 6783), True, 'import numpy as np\n'), ((10709, 10730), 'numpy.arange', 'np.arange', (['(0)', '(-15)', '(-1)'], {}), '(0, -15, -1)\n', (10718, 10730), True, 'import numpy as np\n'), ((11478, 11492), 'numpy.log10', 'np.log10', (['errs'], {}), '(errs)\n', (11486, 11492), True, 'import numpy as np\n'), ((1477, 1502), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (1500, 1502), False, 'import warnings\n'), ((1516, 1547), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (1537, 1547), False, 'import warnings\n'), ((1898, 1935), 'numpy.abs', 'np.abs', (['(baseline_v - local_baseline_v)'], {}), '(baseline_v - local_baseline_v)\n', (1904, 1935), True, 'import numpy as np\n'), ((2103, 2128), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(1 + di)'], {}), '(3, 2, 1 + di)\n', (2114, 2128), True, 'import matplotlib.pyplot as plt\n'), ((4696, 4708), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4706, 4708), True, 'import matplotlib.pyplot as plt\n'), ((4721, 4775), 'matplotlib.pyplot.title', 'plt.title', (["('interior' if direction > 0 else 'exterior')"], {}), "('interior' if direction > 0 else 'exterior')\n", (4730, 4775), True, 'import matplotlib.pyplot as plt\n'), ((4788, 4821), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$p_{\\\\textrm{max}}$"""'], {}), "('$p_{\\\\textrm{max}}$')\n", (4798, 4821), True, 'import matplotlib.pyplot as plt\n'), ((5007, 5025), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[-15, 0]'], {}), '([-15, 0])\n', (5015, 5025), True, 'import matplotlib.pyplot as plt\n'), ((5039, 5064), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(3 + di)'], {}), '(3, 2, 3 + di)\n', (5050, 5064), True, 'import matplotlib.pyplot as plt\n'), ((5152, 5188), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$d_{\\\\textrm{cutoff}}$"""'], {}), "('$d_{\\\\textrm{cutoff}}$')\n", (5162, 5188), True, 'import matplotlib.pyplot as plt\n'), ((5201, 5217), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0, 8]'], {}), '([0, 8])\n', (5209, 5217), True, 'import matplotlib.pyplot as plt\n'), ((5306, 5331), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(5 + di)'], {}), '(3, 2, 5 + di)\n', (5317, 5331), True, 'import matplotlib.pyplot as plt\n'), ((5410, 5446), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$d_{\\\\textrm{cutoff}}$"""'], {}), "('$d_{\\\\textrm{cutoff}}$')\n", (5420, 5446), True, 'import matplotlib.pyplot as plt\n'), ((5459, 5475), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0, 6]'], {}), '([0, 6])\n', (5467, 5475), True, 'import matplotlib.pyplot as plt\n'), ((5850, 5875), 'numpy.array', 'np.array', (['drefine_optimal'], {}), '(drefine_optimal)\n', (5858, 5875), True, 'import numpy as np\n'), ((6617, 6634), 'sympy.cos', 'sp.cos', (['(sp.pi * t)'], {}), '(sp.pi * t)\n', (6623, 6634), True, 'import sympy as sp\n'), ((6636, 6653), 'sympy.sin', 'sp.sin', (['(sp.pi * t)'], {}), '(sp.pi * t)\n', (6642, 6653), True, 'import sympy as sp\n'), ((8863, 8925), 'numpy.repeat', 'np.repeat', (['circle_kappa.panel_length', 'circle_kappa.panel_order'], {}), '(circle_kappa.panel_length, circle_kappa.panel_order)\n', (8872, 8925), True, 'import numpy as np\n'), ((10850, 10861), 'time.time', 'time.time', ([], {}), '()\n', (10859, 10861), False, 'import time\n'), ((11145, 11157), 'numpy.min', 'np.min', (['runs'], {}), '(runs)\n', (11151, 11157), True, 'import numpy as np\n'), ((11462, 11476), 'numpy.log10', 'np.log10', (['tols'], {}), '(tols)\n', (11470, 11476), True, 'import numpy as np\n'), ((11533, 11547), 'numpy.log10', 'np.log10', (['tols'], {}), '(tols)\n', (11541, 11547), True, 'import numpy as np\n'), ((4862, 4905), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\log_{10}(\\\\textrm{error})$"""'], {}), "('$\\\\log_{10}(\\\\textrm{error})$')\n", (4872, 4905), True, 'import matplotlib.pyplot as plt\n'), ((4973, 4993), 'numpy.arange', 'np.arange', (['(0)', '(61)', '(10)'], {}), '(0, 61, 10)\n', (4982, 4993), True, 'import numpy as np\n'), ((5258, 5292), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""QBX panels per point"""'], {}), "('QBX panels per point')\n", (5268, 5292), True, 'import matplotlib.pyplot as plt\n'), ((5364, 5389), 'numpy.array', 'np.array', (['drefine_optimal'], {}), '(drefine_optimal)\n', (5372, 5389), True, 'import numpy as np\n'), ((5516, 5552), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$d_{\\\\textrm{refine}}$"""'], {}), "('$d_{\\\\textrm{refine}}$')\n", (5526, 5552), True, 'import matplotlib.pyplot as plt\n'), ((5769, 5798), 'numpy.array', 'np.array', (['p_for_full_accuracy'], {}), '(p_for_full_accuracy)\n', (5777, 5798), True, 'import numpy as np\n'), ((5813, 5835), 'numpy.array', 'np.array', (['n_qbx_panels'], {}), '(n_qbx_panels)\n', (5821, 5835), True, 'import numpy as np\n'), ((6858, 6879), 'numpy.ceil', 'np.ceil', (['n_panels_new'], {}), '(n_panels_new)\n', (6865, 6879), True, 'import numpy as np\n'), ((9349, 9422), 'numpy.linalg.norm', 'np.linalg.norm', (['(test_pts[:, (None)] - circle_kappa.pts[(None), :])'], {'axis': '(2)'}), '(test_pts[:, (None)] - circle_kappa.pts[(None), :], axis=2)\n', (9363, 9422), True, 'import numpy as np\n'), ((9479, 9510), 'numpy.allclose', 'np.allclose', (['min_src_dist', 'dist'], {}), '(min_src_dist, dist)\n', (9490, 9510), True, 'import numpy as np\n'), ((11241, 11278), 'numpy.abs', 'np.abs', (['(baseline_v - local_baseline_v)'], {}), '(baseline_v - local_baseline_v)\n', (11247, 11278), True, 'import numpy as np\n'), ((2301, 2326), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (2324, 2326), False, 'import warnings\n'), ((2348, 2379), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (2369, 2379), False, 'import warnings\n'), ((4541, 4555), 'numpy.log10', 'np.log10', (['errs'], {}), '(errs)\n', (4549, 4555), True, 'import numpy as np\n'), ((4929, 4948), 'numpy.arange', 'np.arange', (['(0)', '(16)', '(3)'], {}), '(0, 16, 3)\n', (4938, 4948), True, 'import numpy as np\n'), ((5097, 5119), 'numpy.array', 'np.array', (['n_qbx_panels'], {}), '(n_qbx_panels)\n', (5105, 5119), True, 'import numpy as np\n'), ((11100, 11111), 'time.time', 'time.time', ([], {}), '()\n', (11109, 11111), False, 'import time\n'), ((2851, 2877), 'numpy.abs', 'np.abs', (['(baseline_v - testv)'], {}), '(baseline_v - testv)\n', (2857, 2877), True, 'import numpy as np\n'), ((3035, 3070), 'numpy.arange', 'np.arange', (['(1.0)', 'd_refine_high', '(0.25)'], {}), '(1.0, d_refine_high, 0.25)\n', (3044, 3070), True, 'import numpy as np\n'), ((3769, 3802), 'numpy.abs', 'np.abs', (['(baseline_v - refine_testv)'], {}), '(baseline_v - refine_testv)\n', (3775, 3802), True, 'import numpy as np\n')]
hustbeta/python-examples
celery-getting-started/celeryconfig.py
9052a080cb27b1c8c2bc36222ece409e236ba076
# -*- coding: utf-8 -*- BROKER_URL = 'amqp://guest@localhost//' CELERY_ACCEPT_CONTENT = ['json'], CELERY_RESULT_BACKEND = 'amqp://guest@localhost//' CELERY_RESULT_SERIALIZER = 'json' CELERY_TASK_SERIALIZER = 'json' CELERY_TIMEZONE = 'Asia/Shanghai' CELERY_ENABLE_UTC = False
[]
msgi/nlp-tour
smartnlp/utils/basic_log.py
ffed8c32da69c2427c92a7043f47bfc91e7feb64
import logging as log class Log: def __init__(self, level): self.level = level log.basicConfig(format='%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s', level=level) self.log = log def info(self, msg): self.log.info(msg) def debug(self, msg): self.log.debug(msg) def warn(self, msg): self.log.warn(msg) def error(self, msg): self.log.error(msg)
[((101, 221), 'logging.basicConfig', 'log.basicConfig', ([], {'format': '"""%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s"""', 'level': 'level'}), "(format=\n '%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s',\n level=level)\n", (116, 221), True, 'import logging as log\n')]
dluvizon/3d-pose-consensus
people/losses-bkp.py
7a829d5713d2c45c6b265c9886add0b69e0050a8
def structural_loss_dst68j3d(p_pred, v_pred): v_pred = K.stop_gradient(v_pred) def getlength(v): return K.sqrt(K.sum(K.square(v), axis=-1)) """Arms segments""" joints_arms = p_pred[:, :, 16:37+1, :] conf_arms = v_pred[:, :, 16:37+1] diff_arms_r = joints_arms[:, :, 2:-1:2, :] - joints_arms[:, :, 0:-3:2, :] diff_arms_l = joints_arms[:, :, 3::2, :] - joints_arms[:, :, 1:-2:2, :] c2_arms_r = conf_arms[:, :, 2:-1:2] * conf_arms[:, :, 0:-3:2] c2_arms_l = conf_arms[:, :, 3::2] * conf_arms[:, :, 1:-2:2] """Legs segments""" joints_legs = p_pred[:, :, 48:67+1, :] conf_legs = v_pred[:, :, 48:67+1] diff_legs_r = joints_legs[:, :, 2:-1:2, :] - joints_legs[:, :, 0:-3:2, :] diff_legs_l = joints_legs[:, :, 3::2, :] - joints_legs[:, :, 1:-2:2, :] c2_legs_r = conf_legs[:, :, 2:-1:2] * conf_legs[:, :, 0:-3:2] c2_legs_l = conf_legs[:, :, 3::2] * conf_legs[:, :, 1:-2:2] """Limbs segments""" segs_limbs_r = getlength(K.concatenate([diff_arms_r, diff_legs_r], axis=-2)) segs_limbs_l = getlength(K.concatenate([diff_arms_l, diff_legs_l], axis=-2)) c2_limbs_r = K.concatenate([c2_arms_r, c2_legs_r], axis=-1) c2_limbs_l = K.concatenate([c2_arms_l, c2_legs_l], axis=-1) len_upperarm_r = K.sum(segs_limbs_r[:, :, 2:5], axis=-1, keepdims=True) len_upperarm_l = K.sum(segs_limbs_l[:, :, 2:5], axis=-1, keepdims=True) len_forearm_r = K.sum(segs_limbs_r[:, :, 5:8], axis=-1, keepdims=True) len_forearm_l = K.sum(segs_limbs_l[:, :, 5:8], axis=-1, keepdims=True) len_hand_r = K.sum(segs_limbs_r[:, :, 8:10], axis=-1, keepdims=True) len_hand_l = K.sum(segs_limbs_r[:, :, 8:10], axis=-1, keepdims=True) c2_upperarm_r = K.sum(c2_limbs_r[:, :, 2:5], axis=-1, keepdims=True) c2_upperarm_l = K.sum(c2_limbs_l[:, :, 2:5], axis=-1, keepdims=True) c2_forearm_r = K.sum(c2_limbs_r[:, :, 5:8], axis=-1, keepdims=True) c2_forearm_l = K.sum(c2_limbs_l[:, :, 5:8], axis=-1, keepdims=True) c2_hand_r = K.sum(c2_limbs_r[:, :, 8:10], axis=-1, keepdims=True) c2_hand_l = K.sum(c2_limbs_r[:, :, 8:10], axis=-1, keepdims=True) len_femur_r = K.sum(K.concatenate([ segs_limbs_r[:, :, 10:11], segs_limbs_r[:, :, 12:14], ], axis=-1), axis=-1, keepdims=True) len_femur_l = K.sum(K.concatenate([ segs_limbs_l[:, :, 10:11], segs_limbs_l[:, :, 12:14], ], axis=-1), axis=-1, keepdims=True) c2_femur_r = K.sum(K.concatenate([ c2_limbs_r[:, :, 10:11], c2_limbs_r[:, :, 12:14], ], axis=-1), axis=-1, keepdims=True) c2_femur_l = K.sum(K.concatenate([ c2_limbs_l[:, :, 10:11], c2_limbs_l[:, :, 12:14], ], axis=-1), axis=-1, keepdims=True) len_shin_r = K.sum(segs_limbs_r[:, :, 14:17], axis=-1, keepdims=True) len_shin_l = K.sum(segs_limbs_l[:, :, 14:17], axis=-1, keepdims=True) len_feet_r = K.sum(segs_limbs_r[:, :, 17:19], axis=-1, keepdims=True) len_feet_l = K.sum(segs_limbs_l[:, :, 17:19], axis=-1, keepdims=True) c2_shin_r = K.sum(c2_limbs_r[:, :, 14:17], axis=-1, keepdims=True) c2_shin_l = K.sum(c2_limbs_l[:, :, 14:17], axis=-1, keepdims=True) c2_feet_r = K.sum(c2_limbs_r[:, :, 17:19], axis=-1, keepdims=True) c2_feet_l = K.sum(c2_limbs_l[:, :, 17:19], axis=-1, keepdims=True) joints_head = K.concatenate([ p_pred[:, :, 11:11+1, :], p_pred[:, :, 11:11+1, :], p_pred[:, :, 12:15+1, :], p_pred[:, :, 8:8+1, :], p_pred[:, :, 8:8+1, :], p_pred[:, :, 14:15+1, :], ], axis=-2) conf_head = K.concatenate([ v_pred[:, :, 11:11+1], v_pred[:, :, 11:11+1], v_pred[:, :, 12:15+1], v_pred[:, :, 8:8+1], v_pred[:, :, 8:8+1], v_pred[:, :, 14:15+1], ], axis=-1) diff_head_r = joints_head[:, :, 2:-1:2, :] - joints_head[:, :, 0:-3:2, :] diff_head_l = joints_head[:, :, 3::2, :] - joints_head[:, :, 1:-2:2, :] c2_head_r = conf_head[:, :, 2:-1:2] * conf_head[:, :, 0:-3:2] c2_head_l = conf_head[:, :, 3::2] * conf_head[:, :, 1:-2:2] diff_cross_r = K.concatenate([ p_pred[:, :, 3:3+1, :] - p_pred[:, :, 20:20+1, :], p_pred[:, :, 49:49+1, :] - p_pred[:, :, 3:3+1, :], ], axis=-2) diff_cross_l = K.concatenate([ p_pred[:, :, 3:3+1, :] - p_pred[:, :, 21:21+1, :], p_pred[:, :, 48:48+1, :] - p_pred[:, :, 3:3+1, :], ], axis=-2) diff_spine = K.concatenate([ p_pred[:, :, 0:0+1, :] - p_pred[:, :, 7:7+1, :], # euclidean p_pred[:, :, 1:7+1, :] - p_pred[:, :, 0:6+1, :], # geodesic ], axis=-2) segs_spine = getlength(diff_spine) spine_euclidian = K.stop_gradient(segs_spine[:, :, :1]) len_spine = K.sum(segs_spine[:, :, 1:], axis=-1, keepdims=True) segs_midhead = getlength(p_pred[:, :, 9:11+1, :] - p_pred[:, :, 8:10+1, :]) len_midhead = K.sum(segs_midhead, axis=-1, keepdims=True) segs_ears = getlength(K.concatenate([ p_pred[:, :, 12:12+1, :] - p_pred[:, :, 14:14+1, :], p_pred[:, :, 9:9+1, :] - p_pred[:, :, 12:12+1, :], p_pred[:, :, 13:13+1, :] - p_pred[:, :, 9:9+1, :], p_pred[:, :, 15:15+1, :] - p_pred[:, :, 13:13+1, :] ], axis=-2)) len_ears = K.sum(segs_ears, axis=-1, keepdims=True) len_cross_r = K.sum(getlength(diff_cross_r), axis=-1, keepdims=True) len_cross_l = K.sum(getlength(diff_cross_l), axis=-1, keepdims=True) ref_length = K.stop_gradient( K.clip((len_cross_r + len_cross_l) / 2., 0.1, 1.)) """Reference lengths based on ground truth poses from Human3.6M: Spine wrt. ref: 0.715 (0.032 std.) Spine wrt. euclidean: 1.430 (maximum) (0.046 std.) MidHead wrt. ref: 0.266 (0.019 std.) Shoulder wrt. ref: 0.150 (?? std.) Upper arms wrt. ref: 0.364 (0.019 std.) Fore arms wrt. ref: 0.326 (0.025 std.) Hands wrt. ref: 0.155 (0.014 std.) Femur wrt. ref: 0.721 (0.040 std.) Shin wrt. ref: 0.549 (0.063 std.) Feet wrt. ref: 0.294 (0.060 std.) """ rules_loss = K.concatenate([ c2_limbs_r * c2_limbs_l * (segs_limbs_r - segs_limbs_l), len_spine - 0.715 * ref_length, len_midhead - 0.266 * ref_length, c2_upperarm_r * (len_upperarm_r - 0.364 * ref_length), c2_upperarm_l * (len_upperarm_l - 0.364 * ref_length), c2_forearm_r * (len_forearm_r - 0.326 * ref_length), c2_forearm_l * (len_forearm_l - 0.326 * ref_length), c2_hand_r * (len_hand_r - 0.155 * ref_length), c2_hand_l * (len_hand_l - 0.155 * ref_length), c2_femur_r * (len_femur_r - 0.721 * ref_length), c2_femur_l * (len_femur_l - 0.721 * ref_length), c2_shin_r * (len_shin_r - 0.549 * ref_length), c2_shin_l * (len_shin_l - 0.549 * ref_length), c2_feet_r * (len_feet_r - 0.294 * ref_length), c2_feet_l * (len_feet_l - 0.294 * ref_length), len_ears - 0.213 * ref_length, ], axis=-1) rules = K.sum(K.square(rules_loss), axis=-1) spine_bent = K.squeeze(K.maximum(0., len_spine - 1.430 * spine_euclidian), axis=-1) return K.mean(spine_bent + rules, axis=-1)
[]
Muzammil-khan/Aspose.Email-Python-Dotnet
Examples/IMAP/FilteringMessagesFromIMAPMailbox.py
04ca3a6f440339f3ddf316218f92d15d66f24e7e
import aspose.email from aspose.email.clients.imap import ImapClient from aspose.email.clients import SecurityOptions from aspose.email.clients.imap import ImapQueryBuilder import datetime as dt def run(): dataDir = "" #ExStart: FetchEmailMessageFromServer client = ImapClient("imap.gmail.com", 993, "username", "password") client.select_folder("Inbox") builder = ImapQueryBuilder() builder.subject.contains("Newsletter") builder.internal_date.on(dt.datetime.now()) query = builder.get_query() msgsColl = client.list_messages(query) print("Total Messages fulfilling search criterion: " + str(len(msgsColl))) #ExEnd: FetchEmailMessageFromServer if __name__ == '__main__': run()
[((281, 338), 'aspose.email.clients.imap.ImapClient', 'ImapClient', (['"""imap.gmail.com"""', '(993)', '"""username"""', '"""password"""'], {}), "('imap.gmail.com', 993, 'username', 'password')\n", (291, 338), False, 'from aspose.email.clients.imap import ImapClient\n'), ((387, 405), 'aspose.email.clients.imap.ImapQueryBuilder', 'ImapQueryBuilder', ([], {}), '()\n', (403, 405), False, 'from aspose.email.clients.imap import ImapQueryBuilder\n'), ((478, 495), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (493, 495), True, 'import datetime as dt\n')]
010001111/Vx-Suites
Python.FancyBear/settings.py
6b4b90a60512cce48aa7b87aec5e5ac1c4bb9a79
# Server UID SERVER_UID = 45158729 # Setup Logging system ######################################### # import os from FileConsoleLogger import FileConsoleLogger ServerLogger = FileConsoleLogger( os.path.join(os.path.dirname(os.path.abspath(__file__)), "_w3server.log") ) W3Logger = FileConsoleLogger( os.path.join(os.path.dirname(os.path.abspath(__file__)), "_w3.log") ) # # Setup Level 2 Protocol - P2Scheme ######################################### # from P2Scheme import P2Scheme P2_URL_TOKEN = '760e25f9eb3124'.decode('hex') P2_SUBJECT_TOKEN = '\x55\xaa\x63\x68\x69\x6e\x61' P2_DATA_TOKEN = '\x55\xaa\x63\x68\x69\x6e\x61' # P2_DATA_TOKEN = 'd85a8c54fbe5e6'.decode('hex') MARK = 'itwm=' B64_JUNK_LEN = 9 BIN_JUNK_LEN = 4 P2_Scheme = P2Scheme(_url_token=P2_URL_TOKEN, _data_token=P2_DATA_TOKEN, _mark=MARK, _subj_token=P2_SUBJECT_TOKEN,\ _b64junk_len=B64_JUNK_LEN, _binary_junk_len=BIN_JUNK_LEN) # # Setup Level 3 Protocol - P3Scheme ######################################### # from P3Scheme import P3Scheme # P3_PRIVATE_TOKEN = 'a20e25f9aa3fe4'.decode('hex') P3_SERVICE_TOKEN = '015a1354acf1b1'.decode('hex') # P3_Scheme = P3Scheme(private_token=P3_PRIVATE_TOKEN, service_token=P3_SERVICE_TOKEN) # # Setup HTTP checker # #from HTTPHeadersChecker import HTTPHeadersChecker # #HTTPChecker = HTTPHeadersChecker() # Setup LocalStorage # from FSLocalStorage import FSLocalStorage LocalStorage = FSLocalStorage() ############################################################ # Initialize Server instance # # #from W3Server import W3Server #MAIN_HANDLER = W3Server(p2_scheme=P2_Scheme, p3_scheme=P3_Scheme, http_checker=HTTPChecker, local_storage=LocalStorage, logger=ServerLogger) ############################################################ # Mail Parameters POP3_MAIL_IP = 'pop.gmail.com' POP3_PORT = 995 POP3_ADDR = '[email protected]' POP3_PASS = '30Jass11' SMTP_MAIL_IP = 'smtp.gmail.com' SMTP_PORT = 587 SMTP_TO_ADDR = '[email protected]' SMTP_FROM_ADDR = '[email protected]' SMTP_PASS = '75Gina75' # C&C Parametrs # XAS_IP = '104.152.187.66' XAS_GATE = '/updates/' ############################################################ # Setup P3 communication # wsgi2 # LS_TIMEOUT = 1 # big loop timeout FILES_PER_ITER = 5 # count of requests per iter ############################################################
[((741, 909), 'P2Scheme.P2Scheme', 'P2Scheme', ([], {'_url_token': 'P2_URL_TOKEN', '_data_token': 'P2_DATA_TOKEN', '_mark': 'MARK', '_subj_token': 'P2_SUBJECT_TOKEN', '_b64junk_len': 'B64_JUNK_LEN', '_binary_junk_len': 'BIN_JUNK_LEN'}), '(_url_token=P2_URL_TOKEN, _data_token=P2_DATA_TOKEN, _mark=MARK,\n _subj_token=P2_SUBJECT_TOKEN, _b64junk_len=B64_JUNK_LEN,\n _binary_junk_len=BIN_JUNK_LEN)\n', (749, 909), False, 'from P2Scheme import P2Scheme\n'), ((1153, 1225), 'P3Scheme.P3Scheme', 'P3Scheme', ([], {'private_token': 'P3_PRIVATE_TOKEN', 'service_token': 'P3_SERVICE_TOKEN'}), '(private_token=P3_PRIVATE_TOKEN, service_token=P3_SERVICE_TOKEN)\n', (1161, 1225), False, 'from P3Scheme import P3Scheme\n'), ((1422, 1438), 'FSLocalStorage.FSLocalStorage', 'FSLocalStorage', ([], {}), '()\n', (1436, 1438), False, 'from FSLocalStorage import FSLocalStorage\n'), ((225, 250), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (240, 250), False, 'import os\n'), ((331, 356), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (346, 356), False, 'import os\n')]
HoundThe/retdec-regression-tests
tools/fileinfo/features/certificates-info/test.py
760639deb1ee52e88a14523b4a908d3e69d6fcd3
from regression_tests import * class Test1(Test): settings = TestSettings( tool='fileinfo', input='8b280f2b7788520de214fa8d6ea32a30ebb2a51038381448939530fd0f7dfc16', args='--json --verbose' ) def test_certificates(self): assert self.fileinfo.succeeded assert self.fileinfo.output['digitalSignatures']['numberOfSignatures'] == 2 first_sig = self.fileinfo.output['digitalSignatures']['signatures'][0] assert len(first_sig['allCertificates']) == 5 assert first_sig['signatureVerified'] == True assert len(first_sig['warnings']) == 0 assert first_sig['digestAlgorithm'] == 'sha1' assert first_sig['fileDigest'] == 'F6B86E97AEB3E567F58901F799E18FC6F89CC92E' assert first_sig['signedDigest'] == 'F6B86E97AEB3E567F58901F799E18FC6F89CC92E' assert first_sig['programName'] == "Broadband Download, Thunder in a Flash!" assert first_sig['allCertificates'][0]['subject'] == "CN=Symantec Time Stamping Services CA - G2,O=Symantec Corporation,C=US" assert first_sig['allCertificates'][0]['issuer'] == "CN=Thawte Timestamping CA,OU=Thawte Certification,O=Thawte,L=Durbanville,ST=Western Cape,C=ZA" assert first_sig['allCertificates'][0]['subjectOneline'] == "/C=US/O=Symantec Corporation/CN=Symantec Time Stamping Services CA - G2" assert first_sig['allCertificates'][0]['issuerOneline'] == "/C=ZA/ST=Western Cape/L=Durbanville/O=Thawte/OU=Thawte Certification/CN=Thawte Timestamping CA" assert first_sig['allCertificates'][0]['serialNumber'] == "7e:93:eb:fb:7c:c6:4e:59:ea:4b:9a:77:d4:06:fc:3b" assert first_sig['allCertificates'][0]['publicKeyAlgorithm'] == "rsaEncryption" assert first_sig['allCertificates'][0]['signatureAlgorithm'] == "sha1WithRSAEncryption" assert first_sig['allCertificates'][0]['validSince'] == "Dec 21 00:00:00 2012 GMT" assert first_sig['allCertificates'][0]['validUntil'] == "Dec 30 23:59:59 2020 GMT" assert first_sig['allCertificates'][0]['sha1'] == "6C07453FFDDA08B83707C09B82FB3D15F35336B1" assert first_sig['allCertificates'][0]['sha256'] == "0625FEE1A80D7B897A9712249C2F55FF391D6661DBD8B87F9BE6F252D88CED95" assert first_sig['allCertificates'][0]['publicKey'] == ( 'MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAsayzSVRLl' 'xwSCtgleZEiVypv3LgmxENza8K/LlBa+xTCdo5DASVDtKHiRfTot3vDdMwi17SUAAL3Te2/tLdEJGvNX0U70UTOQxJzF4KLabQry5kerHIbJk' '1xH7Ex3ftRYQJTpqr1SSwFeEWlL4nO55nn/oziVz89xpLcSvh7M+R5CvvwdYhBnP/FA1GZqtdsn5Nph2Upg4XCYBTEyMk7FNrAgfAfDXTekiK' 'ryvf7dHwn5vdKG3+nw54trorqpuaqJxZ9YfeYcRG84lChS+Vd+uUOpyyfqmUg09iW6Mh8pU5IRP8Z4kQHkgvXaISAXWp4ZEXNYEZ+VMETfMV58cnBcQIDAQAB') attributes = first_sig['allCertificates'][0]['attributes'] assert attributes['subject']['country'] == "US" assert attributes['subject']['organization'] == "Symantec Corporation" assert attributes['subject']['commonName'] == "Symantec Time Stamping Services CA - G2" assert attributes['issuer']['country'] == "ZA" assert attributes['issuer']['organization'] == "Thawte" assert attributes['issuer']['organizationalUnit'] == "Thawte Certification" assert attributes['issuer']['state'] == "Western Cape" assert attributes['issuer']['commonName'] == "Thawte Timestamping CA" assert attributes['issuer']['locality'] == "Durbanville" assert first_sig['allCertificates'][1]['sha256'] == "0374881C9B74D31F28DC580B0F2B9D2B14A97CE31CBEC2A05AEB377DCDDCC2B0" assert first_sig['allCertificates'][2]['sha256'] == "8420DFBE376F414BF4C0A81E6936D24CCC03F304835B86C7A39142FCA723A689" assert first_sig['allCertificates'][3]['sha256'] == "8FB47562286677514075BC38D1CFD2B73481D93CB3F9C23F9AC3E6414EF34A6F" assert first_sig['allCertificates'][4]['sha256'] == "582DC1D97A790EF04FE2567B1EC88C26B03BF6E99937CAE6A0B50397AD20BBF8" first_sig_signer = first_sig['signer'] assert first_sig_signer['digest'] == "96D052BD1B13E983FC6FE41911F6B49CEB5961B9" assert first_sig_signer['digestAlgorithm'] == 'sha1' assert len(first_sig_signer['chain']) == 3 assert first_sig_signer['chain'][0]['sha256'] == "8FB47562286677514075BC38D1CFD2B73481D93CB3F9C23F9AC3E6414EF34A6F" assert first_sig_signer['chain'][1]['sha256'] == "582DC1D97A790EF04FE2567B1EC88C26B03BF6E99937CAE6A0B50397AD20BBF8" assert first_sig_signer['chain'][2]['sha256'] == "8420DFBE376F414BF4C0A81E6936D24CCC03F304835B86C7A39142FCA723A689" first_sig_countersig = first_sig_signer['counterSigners'][0] assert len(first_sig_countersig['warnings']) == 0 assert first_sig_countersig['signTime'] == "Jun 25 14:19:05 2016 GMT" assert first_sig_countersig['digest'] == '8F22E222461E03492E8D67948463100465B1B9D0' assert first_sig_countersig['digestAlgorithm'] == 'sha1' assert len(first_sig_countersig['chain']) == 2 assert first_sig_countersig['chain'][0]['sha256'] == "0374881C9B74D31F28DC580B0F2B9D2B14A97CE31CBEC2A05AEB377DCDDCC2B0" assert first_sig_countersig['chain'][1]['sha256'] == "0625FEE1A80D7B897A9712249C2F55FF391D6661DBD8B87F9BE6F252D88CED95" second_sig = self.fileinfo.output['digitalSignatures']['signatures'][1] assert second_sig['signatureVerified'] == True assert len(second_sig['warnings']) == 0 assert second_sig['digestAlgorithm'] == 'sha256' assert second_sig['fileDigest'] == '9FC3902927BFEDA2A3F61D650B0D2CBEC6D84597989EA6244D4EF954C67CA0B3' assert second_sig['signedDigest'] == '9FC3902927BFEDA2A3F61D650B0D2CBEC6D84597989EA6244D4EF954C67CA0B3' assert second_sig['programName'] == "Broadband Download, Thunder in a Flash!" assert len(second_sig['allCertificates']) == 6 assert second_sig['allCertificates'][0]['sha256'] == "8420DFBE376F414BF4C0A81E6936D24CCC03F304835B86C7A39142FCA723A689" assert second_sig['allCertificates'][1]['sha256'] == "8FB47562286677514075BC38D1CFD2B73481D93CB3F9C23F9AC3E6414EF34A6F" assert second_sig['allCertificates'][2]['sha256'] == "582DC1D97A790EF04FE2567B1EC88C26B03BF6E99937CAE6A0B50397AD20BBF8" assert second_sig['allCertificates'][3]['sha256'] == "43CE166BC567F9887D650A2E624473BE7A43A6F378ABE03CB32FA63F7ABB1E45" assert second_sig['allCertificates'][4]['sha256'] == "6B6C1E01F590F5AFC5FCF85CD0B9396884048659FC2C6D1170D68B045216C3FD" assert second_sig['allCertificates'][5]['sha256'] == "0625FEE1A80D7B897A9712249C2F55FF391D6661DBD8B87F9BE6F252D88CED95" second_sig_signer = second_sig['signer'] assert second_sig_signer['digest'] == "E421C1A7625B9CD410B64A0EBEA7D991EA1DBAC65A3404A227235E1C0AB781F1" assert second_sig_signer['digestAlgorithm'] == 'sha256' assert len(second_sig_signer['chain']) == 3 assert second_sig_signer['chain'][0]['sha256'] == "8FB47562286677514075BC38D1CFD2B73481D93CB3F9C23F9AC3E6414EF34A6F" assert second_sig_signer['chain'][1]['sha256'] == "582DC1D97A790EF04FE2567B1EC88C26B03BF6E99937CAE6A0B50397AD20BBF8" assert second_sig_signer['chain'][2]['sha256'] == "8420DFBE376F414BF4C0A81E6936D24CCC03F304835B86C7A39142FCA723A689" second_sig_countersig = second_sig_signer['counterSigners'][0] assert len(second_sig_countersig['warnings']) == 0 assert second_sig_countersig['signTime'] == "Jun 25 14:19:29 2016 GMT" assert second_sig_countersig['digest'] == 'B36785DD22C1E070DB8A198A16C81BD93FB87F4D5B6301ACB2656C23E4EF80F5' assert second_sig_countersig['digestAlgorithm'] == 'sha256' assert len(second_sig_countersig['chain']) == 3 assert second_sig_countersig['chain'][0]['sha256'] == "43CE166BC567F9887D650A2E624473BE7A43A6F378ABE03CB32FA63F7ABB1E45" assert second_sig_countersig['chain'][1]['sha256'] == "0625FEE1A80D7B897A9712249C2F55FF391D6661DBD8B87F9BE6F252D88CED95" assert second_sig_countersig['chain'][2]['sha256'] == "6B6C1E01F590F5AFC5FCF85CD0B9396884048659FC2C6D1170D68B045216C3FD" class Test2(Test): settings = TestSettings( tool='fileinfo', input='avgcfgex.ex', args='--json --verbose' ) def test_certificates(self): assert self.fileinfo.succeeded assert self.fileinfo.output['digitalSignatures']['numberOfSignatures'] == 2 first_sig = self.fileinfo.output['digitalSignatures']['signatures'][0] assert len(first_sig['allCertificates']) == 5 assert first_sig['signatureVerified'] == True assert len(first_sig['warnings']) == 0 assert first_sig['digestAlgorithm'] == 'sha1' assert first_sig['fileDigest'] == '3E7B33AB316770BD369BFADF5FB5354730C89991' assert first_sig['signedDigest'] == '3E7B33AB316770BD369BFADF5FB5354730C89991' assert first_sig['allCertificates'][0]['subject'] == "CN=Symantec Time Stamping Services CA - G2,O=Symantec Corporation,C=US" assert first_sig['allCertificates'][0]['issuer'] == "CN=Thawte Timestamping CA,OU=Thawte Certification,O=Thawte,L=Durbanville,ST=Western Cape,C=ZA" assert first_sig['allCertificates'][0]['serialNumber'] == "7e:93:eb:fb:7c:c6:4e:59:ea:4b:9a:77:d4:06:fc:3b" assert first_sig['allCertificates'][0]['publicKeyAlgorithm'] == "rsaEncryption" assert first_sig['allCertificates'][0]['signatureAlgorithm'] == "sha1WithRSAEncryption" assert first_sig['allCertificates'][0]['validSince'] == "Dec 21 00:00:00 2012 GMT" assert first_sig['allCertificates'][0]['validUntil'] == "Dec 30 23:59:59 2020 GMT" assert first_sig['allCertificates'][0]['sha1'] == "6C07453FFDDA08B83707C09B82FB3D15F35336B1" assert first_sig['allCertificates'][0]['sha256'] == "0625FEE1A80D7B897A9712249C2F55FF391D6661DBD8B87F9BE6F252D88CED95" assert first_sig['allCertificates'][0]['publicKey'] == ( 'MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAsayzSVRLl' 'xwSCtgleZEiVypv3LgmxENza8K/LlBa+xTCdo5DASVDtKHiRfTot3vDdMwi17SUAAL3Te2/tLdEJGvNX0U70UTOQxJzF4KLabQry5kerHIbJk' '1xH7Ex3ftRYQJTpqr1SSwFeEWlL4nO55nn/oziVz89xpLcSvh7M+R5CvvwdYhBnP/FA1GZqtdsn5Nph2Upg4XCYBTEyMk7FNrAgfAfDXTekiK' 'ryvf7dHwn5vdKG3+nw54trorqpuaqJxZ9YfeYcRG84lChS+Vd+uUOpyyfqmUg09iW6Mh8pU5IRP8Z4kQHkgvXaISAXWp4ZEXNYEZ+VMETfMV58cnBcQIDAQAB') attributes = first_sig['allCertificates'][0]['attributes'] assert attributes['subject']['country'] == "US" assert attributes['subject']['organization'] == "Symantec Corporation" assert attributes['subject']['commonName'] == "Symantec Time Stamping Services CA - G2" assert attributes['issuer']['country'] == "ZA" assert attributes['issuer']['organization'] == "Thawte" assert attributes['issuer']['organizationalUnit'] == "Thawte Certification" assert attributes['issuer']['state'] == "Western Cape" assert attributes['issuer']['commonName'] == "Thawte Timestamping CA" assert attributes['issuer']['locality'] == "Durbanville" assert first_sig['allCertificates'][1]['sha256'] == "0374881C9B74D31F28DC580B0F2B9D2B14A97CE31CBEC2A05AEB377DCDDCC2B0" assert first_sig['allCertificates'][2]['sha256'] == "8420DFBE376F414BF4C0A81E6936D24CCC03F304835B86C7A39142FCA723A689" assert first_sig['allCertificates'][3]['sha256'] == "3B0ABE047D7E84F3BBD12B5E399BED55E4D7E9FCC3F629B8953A8C060EF6D746" assert first_sig['allCertificates'][4]['sha256'] == "0CFC19DB681B014BFE3F23CB3A78B67208B4E3D8D7B6A7B1807F7CD6ECB2A54E" first_sig_signer = first_sig['signer'] assert first_sig_signer['digest'] == "229A2D7B4C8F2E8EC5B6943D0F0E53B9F59E33B5" assert first_sig_signer['digestAlgorithm'] == 'sha1' assert len(first_sig_signer['chain']) == 3 assert first_sig_signer['chain'][0]['sha256'] == "3B0ABE047D7E84F3BBD12B5E399BED55E4D7E9FCC3F629B8953A8C060EF6D746" assert first_sig_signer['chain'][1]['sha256'] == "0CFC19DB681B014BFE3F23CB3A78B67208B4E3D8D7B6A7B1807F7CD6ECB2A54E" assert first_sig_signer['chain'][2]['sha256'] == "8420DFBE376F414BF4C0A81E6936D24CCC03F304835B86C7A39142FCA723A689" first_sig_countersig = first_sig_signer['counterSigners'][0] assert len(first_sig_countersig['warnings']) == 0 assert first_sig_countersig['signTime'] == "Feb 1 14:02:52 2016 GMT" assert first_sig_countersig['digest'] == '0DAAC35A77C75EAEA723AE13E61C927F676080A2' assert first_sig_countersig['digestAlgorithm'] == 'sha1' assert len(first_sig_countersig['chain']) == 2 assert first_sig_countersig['chain'][0]['sha256'] == "0374881C9B74D31F28DC580B0F2B9D2B14A97CE31CBEC2A05AEB377DCDDCC2B0" assert first_sig_countersig['chain'][1]['sha256'] == "0625FEE1A80D7B897A9712249C2F55FF391D6661DBD8B87F9BE6F252D88CED95" second_sig = self.fileinfo.output['digitalSignatures']['signatures'][1] assert second_sig['signatureVerified'] == True assert len(second_sig['warnings']) == 0 assert second_sig['digestAlgorithm'] == 'sha256' assert second_sig['fileDigest'] == '6BE0FA5AB9336DDCC6ACE35ED2BC9744860E80088F35E5D77AF254F246228CDE' assert second_sig['signedDigest'] == '6BE0FA5AB9336DDCC6ACE35ED2BC9744860E80088F35E5D77AF254F246228CDE' assert len(second_sig['allCertificates']) == 6 assert second_sig['allCertificates'][0]['sha256'] == "8420DFBE376F414BF4C0A81E6936D24CCC03F304835B86C7A39142FCA723A689" assert second_sig['allCertificates'][1]['sha256'] == "3A0682AB7FB478BA82FD11CE4DB9B0ADEA55DA05558A0CF737453D51572163D0" assert second_sig['allCertificates'][2]['sha256'] == "0CFC19DB681B014BFE3F23CB3A78B67208B4E3D8D7B6A7B1807F7CD6ECB2A54E" assert second_sig['allCertificates'][3]['sha256'] == "43CE166BC567F9887D650A2E624473BE7A43A6F378ABE03CB32FA63F7ABB1E45" assert second_sig['allCertificates'][4]['sha256'] == "6B6C1E01F590F5AFC5FCF85CD0B9396884048659FC2C6D1170D68B045216C3FD" assert second_sig['allCertificates'][5]['sha256'] == "0625FEE1A80D7B897A9712249C2F55FF391D6661DBD8B87F9BE6F252D88CED95" second_sig_signer = second_sig['signer'] assert second_sig_signer['digest'] == "0183B70327A59E8006B666E908D798CCD309BC4C2FFFD10E551E040B9B1DC449" assert second_sig_signer['digestAlgorithm'] == 'sha256' assert len(second_sig_signer['chain']) == 3 assert second_sig_signer['chain'][0]['sha256'] == "3A0682AB7FB478BA82FD11CE4DB9B0ADEA55DA05558A0CF737453D51572163D0" assert second_sig_signer['chain'][1]['sha256'] == "0CFC19DB681B014BFE3F23CB3A78B67208B4E3D8D7B6A7B1807F7CD6ECB2A54E" assert second_sig_signer['chain'][2]['sha256'] == "8420DFBE376F414BF4C0A81E6936D24CCC03F304835B86C7A39142FCA723A689" second_sig_countersig = second_sig_signer['counterSigners'][0] assert len(second_sig_countersig['warnings']) == 0 assert second_sig_countersig['signTime'] == "Feb 1 14:02:54 2016 GMT" assert second_sig_countersig['digest'] == '1C5206936E053F3D79A046D0E359FB32926AA9D8C269812A80A188AE04DC3E34' assert second_sig_countersig['digestAlgorithm'] == 'sha256' assert len(second_sig_countersig['chain']) == 3 assert second_sig_countersig['chain'][0]['sha256'] == "43CE166BC567F9887D650A2E624473BE7A43A6F378ABE03CB32FA63F7ABB1E45" assert second_sig_countersig['chain'][1]['sha256'] == "0625FEE1A80D7B897A9712249C2F55FF391D6661DBD8B87F9BE6F252D88CED95" assert second_sig_countersig['chain'][2]['sha256'] == "6B6C1E01F590F5AFC5FCF85CD0B9396884048659FC2C6D1170D68B045216C3FD" class Test3(Test): settings = TestSettings( tool='fileinfo', input='c339b87d932b3f86c298b1745db1a28b1214fb7635ba3805851ef8699290f9b8', args='--json --verbose' ) def test_certificates(self): assert self.fileinfo.succeeded assert self.fileinfo.output['digitalSignatures']['numberOfSignatures'] == 2 first_sig = self.fileinfo.output['digitalSignatures']['signatures'][0] assert first_sig['signatureVerified'] == True assert len(first_sig['warnings']) == 0 assert first_sig['digestAlgorithm'] == 'sha1' assert first_sig['fileDigest'] == '0C13D3C2B3C6F48FA3485B36E08AC822C579C1E0' assert first_sig['signedDigest'] == '0C13D3C2B3C6F48FA3485B36E08AC822C579C1E0' # 2 certificates are there indeed stored twice, confirmed with LIEF assert len(first_sig['allCertificates']) == 7 assert first_sig['allCertificates'][0]['sha256'] == "FCB433D6D1AFBEC9E8F5447C2C0FA4AE7553986D5C2703BE82524BE608F35F61" assert first_sig['allCertificates'][1]['sha256'] == "53793CFC1B2B5096CC4EDBEC527ABC5CBC20470C788162D9E54C370D51625F4A" assert first_sig['allCertificates'][2]['sha256'] == "C766A9BEF2D4071C863A31AA4920E813B2D198608CB7B7CFE21143B836DF09EA" assert first_sig['allCertificates'][3]['sha256'] == "53793CFC1B2B5096CC4EDBEC527ABC5CBC20470C788162D9E54C370D51625F4A" assert first_sig['allCertificates'][4]['sha256'] == "C766A9BEF2D4071C863A31AA4920E813B2D198608CB7B7CFE21143B836DF09EA" assert first_sig['allCertificates'][5]['sha256'] == "0374881C9B74D31F28DC580B0F2B9D2B14A97CE31CBEC2A05AEB377DCDDCC2B0" assert first_sig['allCertificates'][6]['sha256'] == "0625FEE1A80D7B897A9712249C2F55FF391D6661DBD8B87F9BE6F252D88CED95" first_sig_signer = first_sig['signer'] assert first_sig_signer['digest'] == "AC1E29C0611678FA7E5B98A11106A1F9D69B224F" assert first_sig_signer['digestAlgorithm'] == 'sha1' assert len(first_sig_signer['chain']) == 3 assert first_sig_signer['chain'][0]['sha256'] == "FCB433D6D1AFBEC9E8F5447C2C0FA4AE7553986D5C2703BE82524BE608F35F61" assert first_sig_signer['chain'][1]['sha256'] == "53793CFC1B2B5096CC4EDBEC527ABC5CBC20470C788162D9E54C370D51625F4A" assert first_sig_signer['chain'][2]['sha256'] == "C766A9BEF2D4071C863A31AA4920E813B2D198608CB7B7CFE21143B836DF09EA" first_sig_countersig = first_sig_signer['counterSigners'][0] assert len(first_sig_countersig['warnings']) == 0 assert first_sig_countersig['signTime'] == "Feb 1 15:47:14 2016 GMT" assert first_sig_countersig['digest'] == 'DE8E927CEC0175F4544CAFBBAC55D584DAE15C20' assert first_sig_countersig['digestAlgorithm'] == 'sha1' assert len(first_sig_countersig['chain']) == 2 assert first_sig_countersig['chain'][0]['sha256'] == "0374881C9B74D31F28DC580B0F2B9D2B14A97CE31CBEC2A05AEB377DCDDCC2B0" assert first_sig_countersig['chain'][1]['sha256'] == "0625FEE1A80D7B897A9712249C2F55FF391D6661DBD8B87F9BE6F252D88CED95" second_sig = self.fileinfo.output['digitalSignatures']['signatures'][1] assert second_sig['signatureVerified'] == True assert len(second_sig['warnings']) == 0 assert second_sig['digestAlgorithm'] == 'sha256' assert second_sig['fileDigest'] == '838379A390118A6562F3E06BE818F5A6407FD7F4FEA9ADF4C36A8B6952B1336B' assert second_sig['signedDigest'] == '838379A390118A6562F3E06BE818F5A6407FD7F4FEA9ADF4C36A8B6952B1336B' assert len(second_sig['allCertificates']) == 8 assert second_sig['allCertificates'][0]['sha256'] == "D09EDDF7DA800BCC3AC114852614124706D94EA473A98DB19BC4F4CB6AEE16A4" assert second_sig['allCertificates'][1]['sha256'] == "5E6D2F88F617DC8B809AEE712445A41B3CDE26AF874A221A9DC98EA1DC68E3D5" assert second_sig['allCertificates'][2]['sha256'] == "4F32D5DC00F715250ABCC486511E37F501A899DEB3BF7EA8ADBBD3AEF1C412DA" assert second_sig['allCertificates'][3]['sha256'] == "687FA451382278FFF0C8B11F8D43D576671C6EB2BCEAB413FB83D965D06D2FF2" assert second_sig['allCertificates'][4]['sha256'] == "52F0E1C4E58EC629291B60317F074671B85D7EA80D5B07273463534B32B40234" assert second_sig['allCertificates'][5]['sha256'] == "5E6D2F88F617DC8B809AEE712445A41B3CDE26AF874A221A9DC98EA1DC68E3D5" assert second_sig['allCertificates'][6]['sha256'] == "0374881C9B74D31F28DC580B0F2B9D2B14A97CE31CBEC2A05AEB377DCDDCC2B0" assert second_sig['allCertificates'][7]['sha256'] == "0625FEE1A80D7B897A9712249C2F55FF391D6661DBD8B87F9BE6F252D88CED95" second_sig_signer = second_sig['signer'] assert second_sig_signer['digest'] == "FB26A5FA064C2789EEE8560B4F8A82B7FE968B0D776CE02F52AA3BA11D8CB22C" assert second_sig_signer['digestAlgorithm'] == 'sha256' assert len(second_sig_signer['chain']) == 3 assert second_sig_signer['chain'][0]['sha256'] == "D09EDDF7DA800BCC3AC114852614124706D94EA473A98DB19BC4F4CB6AEE16A4" assert second_sig_signer['chain'][1]['sha256'] == "5E6D2F88F617DC8B809AEE712445A41B3CDE26AF874A221A9DC98EA1DC68E3D5" assert second_sig_signer['chain'][2]['sha256'] == "52F0E1C4E58EC629291B60317F074671B85D7EA80D5B07273463534B32B40234" second_sig_countersig = second_sig_signer['counterSigners'][0] assert len(second_sig_countersig['warnings']) == 0 assert second_sig_countersig['signTime'] == "Feb 1 15:47:15 2016 GMT" assert second_sig_countersig['digest'] == 'C361F36F13601CEAF01F3480C58F98660205981A' assert second_sig_countersig['digestAlgorithm'] == 'sha1' assert len(second_sig_countersig['chain']) == 2 assert second_sig_countersig['chain'][0]['sha256'] == "0374881C9B74D31F28DC580B0F2B9D2B14A97CE31CBEC2A05AEB377DCDDCC2B0" assert second_sig_countersig['chain'][1]['sha256'] == "0625FEE1A80D7B897A9712249C2F55FF391D6661DBD8B87F9BE6F252D88CED95" class Test4(Test): settings = TestSettings( tool='fileinfo', input='c58e6118bbe12d2c56b2db014c4eb0d3fd32cde7bca1f32a2da8169be1301e23', args='--json --verbose' ) def test_certificates(self): assert self.fileinfo.succeeded assert self.fileinfo.output['digitalSignatures']['numberOfSignatures'] == 1 first_sig = self.fileinfo.output['digitalSignatures']['signatures'][0] assert first_sig['signatureVerified'] == True assert len(first_sig['warnings']) == 0 assert first_sig['digestAlgorithm'] == 'sha1' assert first_sig['fileDigest'] == 'F9D74771FD4A1A2233D266F1F73B53464328EE1E' assert first_sig['signedDigest'] == 'F9D74771FD4A1A2233D266F1F73B53464328EE1E' assert first_sig['programName'] == 'Alveo' assert len(first_sig['allCertificates']) == 5 assert first_sig['allCertificates'][0]['sha256'] == "0625FEE1A80D7B897A9712249C2F55FF391D6661DBD8B87F9BE6F252D88CED95" assert first_sig['allCertificates'][1]['sha256'] == "3A2FBE92891E57FE05D57087F48E730F17E5A5F53EF403D618E5B74D7A7E6ECB" assert first_sig['allCertificates'][2]['sha256'] == "0374881C9B74D31F28DC580B0F2B9D2B14A97CE31CBEC2A05AEB377DCDDCC2B0" assert first_sig['allCertificates'][3]['sha256'] == "973A41276FFD01E027A2AAD49E34C37846D3E976FF6A620B6712E33832041AA6" assert first_sig['allCertificates'][4]['sha256'] == "E2DBA399BE32992B74DF8A86CFD9886C2304CCC19DA8A9BE2B87809DA006379E" first_sig_signer = first_sig['signer'] assert first_sig_signer['digest'] == "C2072238EB76B1C42F366FD72B85304A88AE5037" assert first_sig_signer['digestAlgorithm'] == 'sha1' assert len(first_sig_signer['chain']) == 3 assert first_sig_signer['chain'][0]['sha256'] == "E2DBA399BE32992B74DF8A86CFD9886C2304CCC19DA8A9BE2B87809DA006379E" assert first_sig_signer['chain'][1]['sha256'] == "973A41276FFD01E027A2AAD49E34C37846D3E976FF6A620B6712E33832041AA6" assert first_sig_signer['chain'][2]['sha256'] == "3A2FBE92891E57FE05D57087F48E730F17E5A5F53EF403D618E5B74D7A7E6ECB" first_sig_countersig = first_sig_signer['counterSigners'][0] assert len(first_sig_countersig['warnings']) == 0 assert first_sig_countersig['signTime'] == "Jul 1 20:02:53 2016 GMT" assert first_sig_countersig['digest'] == 'BFFD2E4E2707EE7BF5EB9B1381F100771CCCCD45' assert first_sig_countersig['digestAlgorithm'] == 'sha1' assert len(first_sig_countersig['chain']) == 2 assert first_sig_countersig['chain'][0]['sha256'] == "0374881C9B74D31F28DC580B0F2B9D2B14A97CE31CBEC2A05AEB377DCDDCC2B0" assert first_sig_countersig['chain'][1]['sha256'] == "0625FEE1A80D7B897A9712249C2F55FF391D6661DBD8B87F9BE6F252D88CED95" class Test5(Test): settings = TestSettings( tool='fileinfo', input='crashreporter.ex', args='--json --verbose' ) def test_certificates(self): assert self.fileinfo.succeeded assert self.fileinfo.output['digitalSignatures']['numberOfSignatures'] == 1 first_sig = self.fileinfo.output['digitalSignatures']['signatures'][0] assert first_sig['signatureVerified'] == True assert len(first_sig['warnings']) == 0 assert first_sig['digestAlgorithm'] == 'sha1' assert first_sig['fileDigest'] == '65901089C84EF122BE9397F508580A3EFC674D1D' assert first_sig['signedDigest'] == '65901089C84EF122BE9397F508580A3EFC674D1D' assert len(first_sig['allCertificates']) == 5 assert first_sig['allCertificates'][0]['sha1'] == "0563B8630D62D75ABBC8AB1E4BDFB5A899B24D43" assert first_sig['allCertificates'][1]['sha1'] == "92C1588E85AF2201CE7915E8538B492F605B80C6" assert first_sig['allCertificates'][2]['sha1'] == "50600FD631998451C8F75EF3F618E31FC74D1585" assert first_sig['allCertificates'][3]['sha1'] == "65439929B67973EB192D6FF243E6767ADF0834E4" assert first_sig['allCertificates'][4]['sha1'] == "6C07453FFDDA08B83707C09B82FB3D15F35336B1" first_sig_signer = first_sig['signer'] assert first_sig_signer['digest'] == "21C4C8CCB2A4B1A878D8347D5F07B8BE4A44693E" assert first_sig_signer['digestAlgorithm'] == 'sha1' assert len(first_sig_signer['chain']) == 3 assert first_sig_signer['chain'][0]['sha256'] == "1A73BF16814D061CF5930634FBBD8A55E53DF2A556469C48FDF2623DFEEEE8A8" assert first_sig_signer['chain'][1]['sha256'] == "51044706BD237B91B89B781337E6D62656C69F0FCFFBE8E43741367948127862" assert first_sig_signer['chain'][2]['sha256'] == "3E9099B5015E8F486C00BCEA9D111EE721FABA355A89BCF1DF69561E3DC6325C" first_sig_countersig = first_sig_signer['counterSigners'][0] assert len(first_sig_countersig['warnings']) == 0 assert first_sig_countersig['signTime'] == "Jan 24 02:14:31 2016 GMT" assert first_sig_countersig['digest'] == 'F5D8409366948F3B1185F0D7032759C5A1E2FAF5' assert first_sig_countersig['digestAlgorithm'] == 'sha1' assert len(first_sig_countersig['chain']) == 2 assert first_sig_countersig['chain'][0]['sha256'] == "0374881C9B74D31F28DC580B0F2B9D2B14A97CE31CBEC2A05AEB377DCDDCC2B0" assert first_sig_countersig['chain'][1]['sha256'] == "0625FEE1A80D7B897A9712249C2F55FF391D6661DBD8B87F9BE6F252D88CED95" class Test6(Test): settings = TestSettings( tool='fileinfo', input='f77acb4e1523b882f5307864345e5f7d20a657a7f40863bd7ae41d2521703fec', args='--json --verbose' ) def test_certificates(self): assert self.fileinfo.succeeded assert self.fileinfo.output['digitalSignatures']['numberOfSignatures'] == 2 first_sig = self.fileinfo.output['digitalSignatures']['signatures'][0] assert first_sig['digestAlgorithm'] == 'sha1' assert first_sig['fileDigest'] == 'A6BE6C062A26427A722571FD634838DD2FE3743D' assert first_sig['signedDigest'] == 'A6BE6C062A26427A722571FD634838DD2FE3743D' assert first_sig['signatureVerified'] == True assert len(first_sig['warnings']) == 0 assert len(first_sig['allCertificates']) == 7 first_sig_signer = first_sig['signer'] assert first_sig_signer['digest'] == "5370C469214E0A599238F7FA851BD86E633FB4E2" assert first_sig_signer['digestAlgorithm'] == 'sha1' assert len(first_sig_signer['chain']) == 3 first_sig_countersig = first_sig_signer['counterSigners'][0] assert first_sig_countersig['signTime'] == "Feb 1 14:55:04 2016 GMT" assert first_sig_countersig['digest'] == 'B49D4C25284D735D3DCD7B3BBCE6FDA6828F774E' assert first_sig_countersig['digestAlgorithm'] == 'sha1' assert len(first_sig_countersig['warnings']) == 0 assert len(first_sig_countersig['chain']) == 2 second_sig = self.fileinfo.output['digitalSignatures']['signatures'][1] assert second_sig['signatureVerified'] == True assert len(second_sig['warnings']) == 0 assert second_sig['digestAlgorithm'] == 'sha256' assert second_sig['fileDigest'] == '54227373068BB3F2721F0E9B849142F3B68FDDD43571A9327C3F9CA44420EEA8' assert second_sig['signedDigest'] == '54227373068BB3F2721F0E9B849142F3B68FDDD43571A9327C3F9CA44420EEA8' assert len(second_sig['allCertificates']) == 8 assert second_sig['allCertificates'][0]['sha256'] == "D09EDDF7DA800BCC3AC114852614124706D94EA473A98DB19BC4F4CB6AEE16A4" assert second_sig['allCertificates'][1]['sha256'] == "5E6D2F88F617DC8B809AEE712445A41B3CDE26AF874A221A9DC98EA1DC68E3D5" assert second_sig['allCertificates'][2]['sha256'] == "4F32D5DC00F715250ABCC486511E37F501A899DEB3BF7EA8ADBBD3AEF1C412DA" assert second_sig['allCertificates'][3]['sha256'] == "687FA451382278FFF0C8B11F8D43D576671C6EB2BCEAB413FB83D965D06D2FF2" assert second_sig['allCertificates'][4]['sha256'] == "52F0E1C4E58EC629291B60317F074671B85D7EA80D5B07273463534B32B40234" assert second_sig['allCertificates'][5]['sha256'] == "5E6D2F88F617DC8B809AEE712445A41B3CDE26AF874A221A9DC98EA1DC68E3D5" assert second_sig['allCertificates'][6]['sha256'] == "0374881C9B74D31F28DC580B0F2B9D2B14A97CE31CBEC2A05AEB377DCDDCC2B0" assert second_sig['allCertificates'][7]['sha256'] == "0625FEE1A80D7B897A9712249C2F55FF391D6661DBD8B87F9BE6F252D88CED95" second_sig_signer = second_sig['signer'] assert second_sig_signer['digest'] == "400EAD9ABBA5A18062E513E78DB4E7535A81F2B250C9E35A50D158DFA82CFD45" assert second_sig_signer['digestAlgorithm'] == 'sha256' assert len(second_sig_signer['chain']) == 3 assert second_sig_signer['chain'][0]['sha256'] == "D09EDDF7DA800BCC3AC114852614124706D94EA473A98DB19BC4F4CB6AEE16A4" assert second_sig_signer['chain'][1]['sha256'] == "5E6D2F88F617DC8B809AEE712445A41B3CDE26AF874A221A9DC98EA1DC68E3D5" assert second_sig_signer['chain'][2]['sha256'] == "52F0E1C4E58EC629291B60317F074671B85D7EA80D5B07273463534B32B40234" second_sig_countersig = second_sig_signer['counterSigners'][0] assert len(second_sig_countersig['warnings']) == 0 assert second_sig_countersig['signTime'] == "Feb 1 14:55:06 2016 GMT" assert second_sig_countersig['digest'] == '46A76769C69B78945E9B12594F638A943017F26E' assert second_sig_countersig['digestAlgorithm'] == 'sha1' assert len(second_sig_countersig['chain']) == 2 assert second_sig_countersig['chain'][0]['sha256'] == "0374881C9B74D31F28DC580B0F2B9D2B14A97CE31CBEC2A05AEB377DCDDCC2B0" assert second_sig_countersig['chain'][1]['sha256'] == "0625FEE1A80D7B897A9712249C2F55FF391D6661DBD8B87F9BE6F252D88CED95" class Test7(Test): settings = TestSettings( tool='fileinfo', input='msenvmnu.dll', args='--json --verbose' ) def test_certificates(self): assert self.fileinfo.succeeded assert self.fileinfo.output['digitalSignatures']['numberOfSignatures'] == 2 first_sig = self.fileinfo.output['digitalSignatures']['signatures'][0] assert first_sig['signatureVerified'] == True assert len(first_sig['warnings']) == 0 assert first_sig['digestAlgorithm'] == 'sha1' assert first_sig['fileDigest'] == '798D33E74F6F28A62A336C61CF81AE0277F47516' assert first_sig['signedDigest'] == '798D33E74F6F28A62A336C61CF81AE0277F47516' assert first_sig['programName'] == 'msenvmnu.dll' assert len(first_sig['allCertificates']) == 4 first_sig_signer = first_sig['signer'] assert first_sig_signer['digest'] == "BC70A3256BE34E5FBB8874E3E6D58664F3F27BE5" assert first_sig_signer['digestAlgorithm'] == 'sha1' assert len(first_sig_signer['chain']) == 2 first_sig_countersig = first_sig_signer['counterSigners'][0] assert first_sig_countersig['signTime'] == "Jul 7 07:30:56 2015 GMT" assert first_sig_countersig['digest'] == '7F95DBB284EFE07428573201F47342592CA9E007' assert first_sig_countersig['digestAlgorithm'] == 'sha1' assert len(first_sig_countersig['warnings']) == 0 assert len(first_sig_countersig['chain']) == 2 second_sig = self.fileinfo.output['digitalSignatures']['signatures'][1] assert second_sig['signatureVerified'] == True assert len(second_sig['warnings']) == 0 assert second_sig['digestAlgorithm'] == 'sha256' assert second_sig['fileDigest'] == '5BFB3AB09F359E11D76D95640BACB3A6CD65F2EF0D1763DC47D0B7F7203D22B7' assert second_sig['signedDigest'] == '5BFB3AB09F359E11D76D95640BACB3A6CD65F2EF0D1763DC47D0B7F7203D22B7' assert first_sig['programName'] == 'msenvmnu.dll' assert len(second_sig['allCertificates']) == 2 assert second_sig['allCertificates'][0]['sha1'] == "76DAF3E30F95B244CA4D6107E0243BB97F7DF965" assert second_sig['allCertificates'][1]['sha1'] == "F252E794FE438E35ACE6E53762C0A234A2C52135" second_sig_signer = second_sig['signer'] assert second_sig_signer['digest'] == "2B80E8B619EDC847B62A8A58785C70830B10ACA6863FE30C590F5AE4034258E9" assert second_sig_signer['digestAlgorithm'] == 'sha256' assert len(second_sig_signer['chain']) == 2 second_sig_countersig = second_sig_signer['counterSigners'][0] assert len(second_sig_countersig['warnings']) == 1 assert second_sig_countersig['warnings'][0] == "Couldn't parse signature" class Test8(Test): settings = TestSettings( tool='fileinfo', input='PdfConv_32.dll', args='--json --verbose' ) def test_certificates(self): assert self.fileinfo.succeeded assert self.fileinfo.output['digitalSignatures']['numberOfSignatures'] == 1 first_sig = self.fileinfo.output['digitalSignatures']['signatures'][0] assert len(first_sig['warnings']) == 0 assert first_sig['digestAlgorithm'] == 'sha1' assert first_sig['fileDigest'] == '714A802FB13B89160538890320E519F7A9260E84' assert first_sig['signedDigest'] == '714A802FB13B89160538890320E519F7A9260E84' assert len(first_sig['allCertificates']) == 4 assert first_sig['allCertificates'][0]['sha1'] == "DF946A5E503015777FD22F46B5624ECD27BEE376" assert first_sig['allCertificates'][1]['sha1'] == "DF540F8FEDBA6454E039DD5E21B3B7C99E327B51" assert first_sig['allCertificates'][2]['sha1'] == "F5AD0BCC1AD56CD150725B1C866C30AD92EF21B0" assert first_sig['allCertificates'][3]['sha1'] == "B69E752BBE88B4458200A7C0F4F5B3CCE6F35B47" first_sig_signer = first_sig['signer'] assert first_sig_signer['digest'] == "807D00A61C50095D308F33F29EDD644A06E5C514" assert first_sig_signer['digestAlgorithm'] == 'sha1' assert len(first_sig_signer['chain']) == 3 first_sig_countersig = first_sig_signer['counterSigners'][0] assert len(first_sig_countersig['warnings']) == 0 assert first_sig_countersig['signTime'] == "Aug 14 07:58:15 2015 GMT" assert first_sig_countersig['digest'] == 'FDD38655C08F04B887C4992656CD4F35DE6E6A07' assert first_sig_countersig['digestAlgorithm'] == 'sha1' assert len(first_sig_countersig['chain']) == 1 assert first_sig_countersig['chain'][0]['sha256'] == "12F0A1DDF83D265B205B4F3BCA43B3FA89A748E9834EC24004774FD2FDE34073" class Test9(Test): settings = TestSettings( tool='fileinfo', input='thunderbird.ex', args='--json --verbose' ) def test_certificates(self): assert self.fileinfo.succeeded assert self.fileinfo.output['digitalSignatures']['numberOfSignatures'] == 1 first_sig = self.fileinfo.output['digitalSignatures']['signatures'][0] assert len(first_sig['warnings']) == 0 assert first_sig['digestAlgorithm'] == 'sha1' assert first_sig['fileDigest'] == '0813562802948CCB60D288A84147671FBFC10CD4' assert first_sig['signedDigest'] == '0813562802948CCB60D288A84147671FBFC10CD4' assert len(first_sig['allCertificates']) == 5 first_sig_signer = first_sig['signer'] assert first_sig_signer['digest'] == "A6549FE9A61275AD574F53D2A299138E534780E6" assert first_sig_signer['digestAlgorithm'] == 'sha1' assert len(first_sig_signer['chain']) == 3 first_sig_countersig = first_sig_signer['counterSigners'][0] assert len(first_sig_countersig['warnings']) == 0 assert first_sig_countersig['signTime'] == "Feb 11 22:09:49 2016 GMT" assert first_sig_countersig['digest'] == 'BEFD25FA1E19A6D90B1918D4E06E465FE3BC57E3' assert first_sig_countersig['digestAlgorithm'] == 'sha1' assert len(first_sig_countersig['chain']) == 2 class Test10(Test): settings = TestSettings( tool='fileinfo', input='VSTST-FileConverter.ex', args='--json --verbose' ) def test_certificates(self): assert self.fileinfo.succeeded assert self.fileinfo.output['digitalSignatures']['numberOfSignatures'] == 2 first_sig = self.fileinfo.output['digitalSignatures']['signatures'][0] assert first_sig['digestAlgorithm'] == 'sha1' assert first_sig['fileDigest'] == '427DC17A763807D2DEAD406DDFD3AAE93F5CE235' assert first_sig['signedDigest'] == '427DC17A763807D2DEAD406DDFD3AAE93F5CE235' assert first_sig['programName'] == 'VSTST-FileConverter.exe' assert first_sig['signatureVerified'] == True assert len(first_sig['warnings']) == 0 assert len(first_sig['allCertificates']) == 4 assert first_sig['allCertificates'][0]['sha256'] == "E43F82BC40029F17DBB516613D1E1A96EC2940CE76E0A9CD5F53BA50175A8766" assert first_sig['allCertificates'][1]['sha256'] == "67C529AD57B2AEDD4D248993324270C7064D4F6BDAAF70044D772D05C56001A4" assert first_sig['allCertificates'][2]['sha256'] == "9CBF22FAE0DD53A7395556CE6154AA14A0D03360AA8C51CFEA05D1FD8819E043" assert first_sig['allCertificates'][3]['sha256'] == "4F987BBE4E0D1DCF48FCEFC9239AC6E62EE9DF38CAC2D32993B8533CD95C2E49" first_sig_signer = first_sig['signer'] assert first_sig_signer['digest'] == "C66CA59AF0B63A5758EC97F74FA33C686DBD06D0" assert first_sig_signer['digestAlgorithm'] == 'sha1' assert len(first_sig_signer['chain']) == 2 first_sig_countersig = first_sig_signer['counterSigners'][0] assert first_sig_countersig['signTime'] == "Jul 7 07:34:43 2015 GMT" assert first_sig_countersig['digest'] == 'C29360ED776638FE506A2641A5F13A9975EA9945' assert first_sig_countersig['digestAlgorithm'] == 'sha1' assert len(first_sig_countersig['warnings']) == 0 assert len(first_sig_countersig['chain']) == 2 second_sig = self.fileinfo.output['digitalSignatures']['signatures'][1] assert second_sig['signatureVerified'] == True assert len(second_sig['warnings']) == 0 assert second_sig['digestAlgorithm'] == 'sha256' assert second_sig['fileDigest'] == '7E6B06384FF2B27537F0AC76E311C116434D02DBC735FAF113B6EFD6D629F74C' assert second_sig['signedDigest'] == '7E6B06384FF2B27537F0AC76E311C116434D02DBC735FAF113B6EFD6D629F74C' assert first_sig['programName'] == 'VSTST-FileConverter.exe' assert len(second_sig['allCertificates']) == 2 assert second_sig['allCertificates'][0]['sha256'] == "BD3FCED7A02EA9A18CEBC0628AF487A2925960BE8A88A35609666FA7901987AA" assert second_sig['allCertificates'][1]['sha256'] == "56DA8722AFD94066FFE1E4595473A4854892B843A0827D53FB7D8F4AEED1E18B" second_sig_signer = second_sig['signer'] assert second_sig_signer['digest'] == "61A1F261448BCD1CC8AB9F03DF0209951734455840B2B0C2CFB11FC1DB0C1A81" assert second_sig_signer['digestAlgorithm'] == 'sha256' assert len(second_sig_signer['chain']) == 2 second_sig_countersig = second_sig_signer['counterSigners'][0] assert len(second_sig_countersig['warnings']) == 1 assert second_sig_countersig['warnings'][0] == "Couldn't parse signature" class TestEscaping(Test): settings = TestSettings( tool='fileinfo', input='3708882e564ba289416f65cb4cb2b4de', args='--json --verbose' ) def test_certificates(self): assert self.fileinfo.succeeded self.assertEqual( len(self.fileinfo.output["digitalSignatures"]["signatures"][0]['allCertificates']), 4) self.assertEqual(self.fileinfo.output["digitalSignatures"]['signatures'][0]['signer']['chain'][0] ["sha256"], "9D5DC543A16E3B97AA12ABB6A09C9393C1F6778E475D95C81607335D5D19AF8B") self.assertEqual(self.fileinfo.output["digitalSignatures"]['signatures'][0]['signer']['chain'][1] ["sha256"], "0D34394100E961CE4318DBA9B8DD38EBC25BB07AEF78FDA3FFF632685549BA0F") self.assertEqual(self.fileinfo.output["digitalSignatures"]['signatures'][0]['signer']['counterSigners'][0]['chain'][0] ["sha256"], "0374881C9B74D31F28DC580B0F2B9D2B14A97CE31CBEC2A05AEB377DCDDCC2B0") self.assertEqual(self.fileinfo.output["digitalSignatures"]['signatures'][0]['signer']['counterSigners'][0]['chain'][1] ["sha256"], "0625FEE1A80D7B897A9712249C2F55FF391D6661DBD8B87F9BE6F252D88CED95") self.assertEqual(self.fileinfo.output["digitalSignatures"]['signatures'][0]['signer']['chain'][0] ["attributes"]["subject"]["locality"], R"M\xfcnchen") class Test11(Test): settings = TestSettings( tool='fileinfo', args='--json --verbose', input='x86-pe-ff6717faf307cdc5ba2d07e320cb8e33' ) def test_certificates(self): assert self.fileinfo.succeeded assert self.fileinfo.output['digitalSignatures']['numberOfSignatures'] == 1 first_sig = self.fileinfo.output['digitalSignatures']['signatures'][0] assert len(first_sig['warnings']) == 0 assert first_sig['digestAlgorithm'] == 'sha1' assert first_sig['fileDigest'] == 'F48199821F5D51C334E00532FABB05E3F2D3D92C' assert first_sig['signedDigest'] == 'F48199821F5D51C334E00532FABB05E3F2D3D92C' assert len(first_sig['allCertificates']) == 3 assert first_sig['allCertificates'][0]['sha1'] == "C5DAAAEAA82AAF90C2963CE7432E934A8DE17D51" assert first_sig['allCertificates'][1]['sha1'] == "7C4656C3061F7F4C0D67B319A855F60EBC11FC44" assert first_sig['allCertificates'][2]['sha1'] == "2796BAE63F1801E277261BA0D77770028F20EEE4" first_sig_signer = first_sig['signer'] assert first_sig_signer['digest'] == "9C6BCEE73B8C669764AEDB8046C064C71C5B6A27" assert first_sig_signer['digestAlgorithm'] == 'sha1' assert len(first_sig_signer['chain']) == 3 class Test12(Test): settings = TestSettings( tool='fileinfo', input='002720d5ed0df9fe550d52145a44268d24b6368c61065be070e3319b9a67b082', args='-j -v' ) def test(self): assert self.fileinfo.succeeded assert self.fileinfo.output['digitalSignatures']['numberOfSignatures'] == 2 assert len(self.fileinfo.output['digitalSignatures']['signatures']) == 2 first_signature = self.fileinfo.output['digitalSignatures']['signatures'][0] assert first_signature['signatureVerified'] == True assert len(first_signature['warnings']) == 0 assert len(first_signature['allCertificates']) == 6 assert first_signature['fileDigest'] == 'D643405056A4A16042D47942A8C6A59524BDA64A' assert first_signature['fileDigest'] == first_signature['signedDigest'] assert first_signature['digestAlgorithm'] == 'sha1' signer = first_signature['signer'] assert len(signer['warnings']) == 0 assert signer['digest'] == '2C39C585984D98957CA03802F8C255EE4359D8EE' assert signer['digestAlgorithm'] == 'sha1' assert len(signer['chain']) == 4 assert len(signer['counterSigners']) == 1 counter_signer = signer['counterSigners'][0] assert len(counter_signer['warnings']) == 0 assert len(counter_signer['chain']) == 2 assert counter_signer['signTime'] == 'Aug 21 14:53:13 2017 GMT' assert counter_signer['digest'] == '1530CD732860961182222E7C955AEF70BD0BA570' assert counter_signer['digestAlgorithm'] == 'sha1' ####################################################################### second_signature = self.fileinfo.output['digitalSignatures']['signatures'][1] assert second_signature['signatureVerified'] == True assert len(second_signature['warnings']) == 0 assert len(first_signature['allCertificates']) == 6 assert second_signature['fileDigest'] == '75CACDF5BE7BAEECB89C70BC01343FB7C9E8FD000CC191F08D2A996359D617FE' assert second_signature['fileDigest'] == second_signature['signedDigest'] assert second_signature['digestAlgorithm'] == 'sha256' signer = second_signature['signer'] assert len(signer['warnings']) == 0 assert signer['digest'] == '018A36C7429C0058101D3F087E69E27824CC68FEC8A745B8AF59D5D225BBDB77' assert signer['digestAlgorithm'] == 'sha256' assert len(signer['chain']) == 4 assert len(signer['counterSigners']) == 1 counter_signer = signer['counterSigners'][0] assert len(counter_signer['warnings']) == 0 assert len(counter_signer['chain']) == 2 assert counter_signer['signTime'] == 'Aug 21 14:53:39 2017 GMT' assert counter_signer['digest'] == '32344850DE23CE4A6312A69CC355AC6D16968964' assert counter_signer['digestAlgorithm'] == 'sha1' class TestProgramName(Test): settings = TestSettings( tool='fileinfo', input='0059fb3f225c5784789622eeccb97197d591972851b63d59f5bd107ddfdb7a21', args='-j -v' ) def test(self): assert self.fileinfo.succeeded assert self.fileinfo.output['digitalSignatures']['numberOfSignatures'] == 1 first_signature = self.fileinfo.output['digitalSignatures']['signatures'][0] assert first_signature['programName'] == "GoTo Opener"
[]
AmitSrourDev/darn
app/darn.py
c04b681881620ffed2e1e0788d9cd80da7f806c4
import subprocess def run(cmd): subprocess.run(cmd.split(' ')) def ls(): subprocess.call(["ls", "-l"])
[((82, 111), 'subprocess.call', 'subprocess.call', (["['ls', '-l']"], {}), "(['ls', '-l'])\n", (97, 111), False, 'import subprocess\n')]
lakhlaifi/RedHat-Ansible
virt/ansible-latest/lib/python2.7/site-packages/ansible/plugins/become/runas.py
27c5077cced9d416081fcd5d69ea44bca0317fa4
# -*- coding: utf-8 -*- # Copyright: (c) 2018, Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = """ become: runas short_description: Run As user description: - This become plugins allows your remote/login user to execute commands as another user via the windows runas facility. author: ansible (@core) version_added: "2.8" options: become_user: description: User you 'become' to execute the task ini: - section: privilege_escalation key: become_user - section: runas_become_plugin key: user vars: - name: ansible_become_user - name: ansible_runas_user env: - name: ANSIBLE_BECOME_USER - name: ANSIBLE_RUNAS_USER required: True become_flags: description: Options to pass to runas, a space delimited list of k=v pairs default: '' ini: - section: privilege_escalation key: become_flags - section: runas_become_plugin key: flags vars: - name: ansible_become_flags - name: ansible_runas_flags env: - name: ANSIBLE_BECOME_FLAGS - name: ANSIBLE_RUNAS_FLAGS become_pass: description: password ini: - section: runas_become_plugin key: password vars: - name: ansible_become_password - name: ansible_become_pass - name: ansible_runas_runas env: - name: ANSIBLE_BECOME_PASS - name: ANSIBLE_RUNAS_PASS notes: - runas is really implemented in the powershell module handler and as such can only be used with winrm connections. - This plugin ignores the 'become_exe' setting as it uses an API and not an executable. """ from ansible.plugins.become import BecomeBase class BecomeModule(BecomeBase): name = 'runas' def build_become_command(self, cmd, shell): # runas is implemented inside the winrm connection plugin return cmd
[]
JustHitTheCore/ctf_workshops
2017/lab_dh/utils.py
d50e8a5c90e80cdae3e17a92bce83955f0618570
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' ~Gros ''' from hashlib import sha256 import random def add_padding(data, block_size=16): """add PKCS#7 padding""" size = block_size - (len(data)%block_size) return data+chr(size)*size def strip_padding(data, block_size=16): """strip PKCS#7 padding""" padding = ord(data[-1]) if padding == 0 or padding > block_size or data[-padding:] != chr(padding)*padding: raise Exception("Invalid padding") return data[:-padding] def random_bytes(amount=1): return ''.join([chr(random.randint(0,255)) for x in range(amount)]) def derive_key(key_int, block_size=16): return sha256(str(key_int)).digest()[:16]
[((563, 585), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (577, 585), False, 'import random\n')]
nparkstar/nauta
applications/cli/commands/model/tests/test_export.py
1bda575a01f782d1dc2cd5221122651f184f7167
# # Copyright (c) 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from click.testing import CliRunner from cli_text_consts import ModelExportCmdTexts as Texts from commands.model.common import workflow_description from commands.model.export import export from platform_resources.workflow import ArgoWorkflow, QUEUED_PHASE FEM_NAME = "EXPORT_1" SEM_NAME = "EXPORT_2" FEM_PARAMETERS = "PARAMS_1" SEM_PARAMETERS = "PARAMS_2" FEM_START_DATE = '2000-01-01' FEM_NAMESPACE = 'test-namespace' TEST_AGROWORKFLOW = ArgoWorkflow(name=FEM_NAME, started_at=FEM_START_DATE, finished_at=None, namespace=FEM_NAMESPACE, phase=None) TWO_MODEL_OUTPUT = [workflow_description(name=FEM_NAME, parameters=FEM_PARAMETERS), workflow_description(name=SEM_NAME, parameters=SEM_PARAMETERS)] def setup_mocks(mocker): mocker.patch('commands.model.export.get_kubectl_current_context_namespace', return_value='fake-namespace') mocker.patch('platform_resources.workflow.ArgoWorkflow.from_yaml', return_value=mocker.MagicMock()) mocker.patch('platform_resources.workflow.ArgoWorkflow.get', return_value=TEST_AGROWORKFLOW) mocker.patch('os.listdir', return_value=['openvino.yaml', 'tensorflow.yaml', 'some_other_file']) mocker.patch('commands.model.export.NAUTAConfigMap', return_value=mocker.MagicMock(registry='fake-addr')) mocker.patch('commands.model.export.Config') mocker.patch('os.path.isdir', return_value=True) def test_export(mocker): setup_mocks(mocker) result = CliRunner().invoke(export, ["/fake/path", "openvino"]) assert result.exit_code == 0 assert "Successfully created export workflow" in result.output assert QUEUED_PHASE in result.output assert FEM_NAME in result.output assert FEM_START_DATE in result.output assert FEM_NAMESPACE in result.output def test_export_inexistent_format(mocker): setup_mocks(mocker) result = CliRunner().invoke(export, ["/fake/path", "bad"]) assert result.exit_code == 2 assert "Format: bad does not exist. Choose from:" in result.output def test_export_failure(mocker): setup_mocks(mocker) mocker.patch('platform_resources.workflow.ArgoWorkflow.from_yaml', return_value=mocker.MagicMock(create=lambda: RuntimeError)) result = CliRunner().invoke(export, ["/fake/path", "openvino"]) assert result.exit_code == 1 assert "Failed to create export workflow" in result.output def test_export_list(mocker): mocker.patch("commands.model.export.get_list_of_workflows", return_value=TWO_MODEL_OUTPUT) result = CliRunner().invoke(export, ["formats"]) assert FEM_NAME in result.output assert SEM_NAME in result.output assert FEM_PARAMETERS in result.output assert SEM_PARAMETERS in result.output def test_export_list_error(mocker): mocker.patch("commands.model.export.get_list_of_workflows", side_effect=RuntimeError) result = CliRunner().invoke(export, ["formats"]) assert Texts.EXPORT_LIST_ERROR_MSG in result.output def test_export_missing_format(mocker): setup_mocks(mocker) result = CliRunner().invoke(export, ["wrong-option"]) assert Texts.MISSING_EXPORT_FORMAT.format(formats=["openvino", "tensorflow"]) in result.output
[((1034, 1147), 'platform_resources.workflow.ArgoWorkflow', 'ArgoWorkflow', ([], {'name': 'FEM_NAME', 'started_at': 'FEM_START_DATE', 'finished_at': 'None', 'namespace': 'FEM_NAMESPACE', 'phase': 'None'}), '(name=FEM_NAME, started_at=FEM_START_DATE, finished_at=None,\n namespace=FEM_NAMESPACE, phase=None)\n', (1046, 1147), False, 'from platform_resources.workflow import ArgoWorkflow, QUEUED_PHASE\n'), ((1198, 1260), 'commands.model.common.workflow_description', 'workflow_description', ([], {'name': 'FEM_NAME', 'parameters': 'FEM_PARAMETERS'}), '(name=FEM_NAME, parameters=FEM_PARAMETERS)\n', (1218, 1260), False, 'from commands.model.common import workflow_description\n'), ((1282, 1344), 'commands.model.common.workflow_description', 'workflow_description', ([], {'name': 'SEM_NAME', 'parameters': 'SEM_PARAMETERS'}), '(name=SEM_NAME, parameters=SEM_PARAMETERS)\n', (1302, 1344), False, 'from commands.model.common import workflow_description\n'), ((3760, 3830), 'cli_text_consts.ModelExportCmdTexts.MISSING_EXPORT_FORMAT.format', 'Texts.MISSING_EXPORT_FORMAT.format', ([], {'formats': "['openvino', 'tensorflow']"}), "(formats=['openvino', 'tensorflow'])\n", (3794, 3830), True, 'from cli_text_consts import ModelExportCmdTexts as Texts\n'), ((2113, 2124), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (2122, 2124), False, 'from click.testing import CliRunner\n'), ((2515, 2526), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (2524, 2526), False, 'from click.testing import CliRunner\n'), ((2891, 2902), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (2900, 2902), False, 'from click.testing import CliRunner\n'), ((3184, 3195), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (3193, 3195), False, 'from click.testing import CliRunner\n'), ((3527, 3538), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (3536, 3538), False, 'from click.testing import CliRunner\n'), ((3703, 3714), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (3712, 3714), False, 'from click.testing import CliRunner\n')]
LiamBindle/spack
var/spack/repos/builtin/packages/py-mdanalysis/package.py
e90d5ad6cfff2ba3de7b537d6511adccd9d5fcf1
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PyMdanalysis(PythonPackage): """MDAnalysis is a Python toolkit to analyze molecular dynamics trajectories generated by a wide range of popular simulation packages including DL_Poly, CHARMM, Amber, NAMD, LAMMPS, and Gromacs. (See the lists of supported trajectory formats and topology formats.)""" homepage = "https://www.mdanalysis.org" pypi = "MDAnalysis/MDAnalysis-0.19.2.tar.gz" version('1.0.0', sha256='f45a024aca45e390ff1c45ca90beb2180b78881be377e2a1aa9cd6c109bcfa81') version('0.20.1', sha256='d04b71b193b9716d2597ffb9938b93f43487fa535da1bb5c1f2baccf356d7df9') version('0.19.2', sha256='c5395bbafa5efca2e1aee4715d26129844140c47cb8301da0293106cb969de7d') version('0.19.1', sha256='ff1d694f8598c0833ec340de6a6adb3b5e62b92d0fa94ee6401718ba972db3cc') version('0.19.0', sha256='248e3b37fc6150e31c609cc18a3927c32aee37b76d29cbfedf635e7e1aa982cf') version('0.18.0', sha256='a08acea1755112411e7db55e3f282e164b47a59e15794b38744cce6c596f252a') version('0.17.0', sha256='9bd61760334698cc7b8a57ad26456451e926e9c9e66722594ad8816561348cde') version('0.16.2', sha256='407d9a9ff1ab8a5e47973714d06fabff220f8d08a28792dee93e88e70e995b0a') version('0.16.1', sha256='3dc8f5d639ab3a0d152cbd7259ae9372ec8a9bac0f8cb7d3b80ce5adc1e3ee57') version('0.16.0', sha256='c4824fa1fddd336daa39371436187ebb023366885fb250c2827ed7fce2546bd4') version('0.15.0', sha256='9088786048b47339cba1f8a586977bbb3bb04ae1bcd0462b59e45bda37e25533') variant('analysis', default=True, description='Enable analysis packages: matplotlib, scipy, seaborn') variant('amber', default=False, description='Support AMBER netcdf format.') depends_on('[email protected]:', type=('build', 'run')) depends_on('py-setuptools', type='build') depends_on('[email protected]:', type='build') depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', when='@0.17.0:', type=('build', 'run')) depends_on('[email protected]:', when='@0.16.0:', type=('build', 'run')) depends_on('py-mock', when='@0.18.0:', type=('build', 'run')) depends_on('[email protected]:', when='@1.0.0:', type=('build', 'run')) depends_on('py-joblib', when='@0.16.0:0.20.1', type=('build', 'run')) depends_on('[email protected]:', when='@1.0.0:', type=('build', 'run')) depends_on('[email protected]:', when='@:0.15.0', type=('build', 'run')) depends_on('[email protected]:', when='@0.16.0:0.19.2', type=('build', 'run')) depends_on('[email protected]:', when='@0.20.1:', type=('build', 'run')) depends_on('[email protected]:', when='@:0.17.0', type=('build', 'run')) depends_on('[email protected]:', when='@0.18.0:', type=('build', 'run')) depends_on('[email protected]:', when='@:0.16.2', type=('build', 'run')) depends_on('[email protected]:', when='@0.17.0:', type=('build', 'run')) depends_on('py-matplotlib', when='@:0.15.0+analysis', type=('build', 'run')) depends_on('[email protected]:', when='@0.16.0:0.16.1+analysis', type=('build', 'run')) depends_on('[email protected]:', when='@0.16.2:', type=('build', 'run')) depends_on('py-scipy', when='@:0.16.1+analysis', type=('build', 'run')) depends_on('py-scipy', when='@0.16.2:0.17.0', type=('build', 'run')) depends_on('[email protected]:', when='@0.18.0:', type=('build', 'run')) depends_on('py-scikit-learn', when='@0.16.0:+analysis', type=('build', 'run')) depends_on('py-seaborn', when='+analysis', type=('build', 'run')) depends_on('[email protected]:', when='+amber', type=('build', 'run')) depends_on('hdf5', when='+amber', type=('run'))
[]
lesley-byte/enviroplus-python
lesley-byte/graphpressure.py
df08c238c8b550c9041ff06a0b6bef6b330af611
from requests import get import matplotlib.pyplot as plt import matplotlib.animation as animation import datetime as dt from bme280 import BME280 try: from smbus2 import SMBus except ImportError: from smbus import SMBus fig = plt.figure() ax = fig.add_subplot(1, 1, 1) xs = [] ys =[] bus = SMBus(1) bme280 = BME280(i2c_dev=bus) def animate(i, xs, ys): pressure = bme280.get_pressure() xs.append(dt.datetime.now().strftime('%H:%M:%S')) ys.append(pressure) xs = xs[-20:] ys = ys[-20:] ax.clear() ax.plot(xs, ys) plt.xticks(rotation=45, ha='right') plt.subplots_adjust(bottom=0.30) plt.title('Pressure over time') plt.ylabel("pressure") ani = animation.FuncAnimation(fig, animate, fargs=(xs, ys), interval=60000) plt.show()
[((237, 249), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (247, 249), True, 'import matplotlib.pyplot as plt\n'), ((302, 310), 'smbus.SMBus', 'SMBus', (['(1)'], {}), '(1)\n', (307, 310), False, 'from smbus import SMBus\n'), ((320, 339), 'bme280.BME280', 'BME280', ([], {'i2c_dev': 'bus'}), '(i2c_dev=bus)\n', (326, 339), False, 'from bme280 import BME280\n'), ((702, 771), 'matplotlib.animation.FuncAnimation', 'animation.FuncAnimation', (['fig', 'animate'], {'fargs': '(xs, ys)', 'interval': '(60000)'}), '(fig, animate, fargs=(xs, ys), interval=60000)\n', (725, 771), True, 'import matplotlib.animation as animation\n'), ((772, 782), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (780, 782), True, 'import matplotlib.pyplot as plt\n'), ((555, 590), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'rotation': '(45)', 'ha': '"""right"""'}), "(rotation=45, ha='right')\n", (565, 590), True, 'import matplotlib.pyplot as plt\n'), ((595, 626), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'bottom': '(0.3)'}), '(bottom=0.3)\n', (614, 626), True, 'import matplotlib.pyplot as plt\n'), ((632, 663), 'matplotlib.pyplot.title', 'plt.title', (['"""Pressure over time"""'], {}), "('Pressure over time')\n", (641, 663), True, 'import matplotlib.pyplot as plt\n'), ((668, 690), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""pressure"""'], {}), "('pressure')\n", (678, 690), True, 'import matplotlib.pyplot as plt\n'), ((416, 433), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (431, 433), True, 'import datetime as dt\n')]
brett-smith/bootstrap-vz
bootstrapvz/plugins/ova/tasks.py
2eaa98db684b85186f3ecd6e5d1304aaceca6b73
from bootstrapvz.base import Task from bootstrapvz.common import phases from bootstrapvz.common.tasks import workspace import os import shutil assets = os.path.normpath(os.path.join(os.path.dirname(__file__), 'assets')) class CheckOVAPath(Task): description = 'Checking if the OVA file already exists' phase = phases.preparation @classmethod def run(cls, info): ova_basename = info.manifest.name.format(**info.manifest_vars) ova_name = ova_basename + '.ova' ova_path = os.path.join(info.manifest.bootstrapper['workspace'], ova_name) if os.path.exists(ova_path): from bootstrapvz.common.exceptions import TaskError msg = 'The OVA `{name}\' already exists at `{path}\''.format(name=ova_name, path=ova_path) raise TaskError(msg) info._ova['ova_basename'] = ova_basename info._ova['ova_name'] = ova_name info._ova['ova_path'] = ova_path class CreateOVADir(Task): description = 'Creating directory for the OVA' phase = phases.preparation predecessors = [workspace.CreateWorkspace, CheckOVAPath] @classmethod def run(cls, info): info._ova['folder'] = os.path.join(info.workspace, 'ova') os.mkdir(info._ova['folder']) class PackageOVA(Task): description = 'Packaging the volume as an OVA' phase = phases.image_registration @classmethod def run(cls, info): import random mac_address = '080027{mac:06X}'.format(mac=random.randrange(16 ** 6)) from bootstrapvz.common.tools import log_check_call disk_name = info._ova['ova_basename'] + '.' + info.volume.extension disk_link = os.path.join(info._ova['folder'], disk_name) log_check_call(['ln', '-s', info.volume.image_path, disk_link]) ovf_path = os.path.join(info._ova['folder'], info._ova['ova_basename'] + '.ovf') cls.write_ovf(info, ovf_path, mac_address, disk_name) ova_files = os.listdir(info._ova['folder']) log_check_call(['ovftool', ovf_path, info._ova['ova_path']] ) import logging logging.getLogger(__name__).info('The OVA has been placed at ' + info._ova['ova_path']) @classmethod def write_ovf(cls, info, destination, mac_address, disk_name): namespaces = {'ovf': 'http://schemas.dmtf.org/ovf/envelope/1', 'rasd': 'http://schemas.dmtf.org/wbem/wscim/1/cim-schema/2/CIM_ResourceAllocationSettingData', 'vssd': 'http://schemas.dmtf.org/wbem/wscim/1/cim-schema/2/CIM_VirtualSystemSettingData', 'xsi': 'http://www.w3.org/2001/XMLSchema-instance', 'vbox': 'http://www.virtualbox.org/ovf/machine', } def attr(element, name, value=None): for prefix, ns in namespaces.iteritems(): name = name.replace(prefix + ':', '{' + ns + '}') if value is None: return element.attrib[name] else: element.attrib[name] = str(value) template_path = os.path.join(assets, 'default.ovf') if 'ovf' in info.manifest.plugins['ova']: template_path = info.manifest.plugins['ova']['ovf'] import xml.etree.ElementTree as ET template = ET.parse(template_path) root = template.getroot() [disk_ref] = root.findall('./ovf:References/ovf:File', namespaces) attr(disk_ref, 'ovf:href', disk_name) # List of OVF disk format URIs # Snatched from VBox source (src/VBox/Main/src-server/ApplianceImpl.cpp:47) # ISOURI = "http://www.ecma-international.org/publications/standards/Ecma-119.htm" # VMDKStreamURI = "http://www.vmware.com/interfaces/specifications/vmdk.html#streamOptimized" # VMDKSparseURI = "http://www.vmware.com/specifications/vmdk.html#sparse" # VMDKCompressedURI = "http://www.vmware.com/specifications/vmdk.html#compressed" # VMDKCompressedURI2 = "http://www.vmware.com/interfaces/specifications/vmdk.html#compressed" # VHDURI = "http://go.microsoft.com/fwlink/?LinkId=137171" volume_uuid = info.volume.get_uuid() [disk] = root.findall('./ovf:DiskSection/ovf:Disk', namespaces) attr(disk, 'ovf:capacity', info.volume.size.bytes.get_qty_in('B')) attr(disk, 'ovf:format', info.volume.ovf_uri) attr(disk, 'vbox:uuid', volume_uuid) [system] = root.findall('./ovf:VirtualSystem', namespaces) attr(system, 'ovf:id', info._ova['ova_basename']) # Set the operating system [os_section] = system.findall('./ovf:OperatingSystemSection', namespaces) os_info = {'i386': {'id': 96, 'name': 'Debian'}, 'amd64': {'id': 96, 'name': 'Debian_64'} }.get(info.manifest.system['architecture']) attr(os_section, 'ovf:id', os_info['id']) [os_desc] = os_section.findall('./ovf:Description', namespaces) os_desc.text = os_info['name'] [os_type] = os_section.findall('./vbox:OSType', namespaces) os_type.text = os_info['name'] [sysid] = system.findall('./ovf:VirtualHardwareSection/ovf:System/' 'vssd:VirtualSystemIdentifier', namespaces) sysid.text = info._ova['ova_basename'] [machine] = system.findall('./vbox:Machine', namespaces) import uuid del machine.attrib['uuid'] attr(machine, 'uuid', uuid.uuid4()) del machine.attrib['name'] attr(machine, 'name', info._ova['ova_basename']) from datetime import datetime del machine.attrib['lastStateChange'] attr(machine, 'lastStateChange', datetime.now().strftime('%Y-%m-%dT%H:%M:%SZ')) [nic] = machine.findall('./ovf:Hardware/ovf:Network/ovf:Adapter', namespaces) attr(machine, 'MACAddress', mac_address) [device_img] = machine.findall('./ovf:StorageControllers' '/ovf:StorageController[1]' '/ovf:AttachedDevice/ovf:Image', namespaces) attr(device_img, 'uuid', '{' + str(volume_uuid) + '}') template.write(destination, xml_declaration=True) # , default_namespace=namespaces['ovf'] class RemoveOVADir(Task): description = 'Removing the OVA directory' phase = phases.cleaning successors = [workspace.DeleteWorkspace] @classmethod def run(cls, info): shutil.rmtree(info._ova['folder']) del info._ova['folder']
[((183, 208), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (198, 208), False, 'import os\n'), ((483, 546), 'os.path.join', 'os.path.join', (["info.manifest.bootstrapper['workspace']", 'ova_name'], {}), "(info.manifest.bootstrapper['workspace'], ova_name)\n", (495, 546), False, 'import os\n'), ((552, 576), 'os.path.exists', 'os.path.exists', (['ova_path'], {}), '(ova_path)\n', (566, 576), False, 'import os\n'), ((1086, 1121), 'os.path.join', 'os.path.join', (['info.workspace', '"""ova"""'], {}), "(info.workspace, 'ova')\n", (1098, 1121), False, 'import os\n'), ((1124, 1153), 'os.mkdir', 'os.mkdir', (["info._ova['folder']"], {}), "(info._ova['folder'])\n", (1132, 1153), False, 'import os\n'), ((1528, 1572), 'os.path.join', 'os.path.join', (["info._ova['folder']", 'disk_name'], {}), "(info._ova['folder'], disk_name)\n", (1540, 1572), False, 'import os\n'), ((1575, 1638), 'bootstrapvz.common.tools.log_check_call', 'log_check_call', (["['ln', '-s', info.volume.image_path, disk_link]"], {}), "(['ln', '-s', info.volume.image_path, disk_link])\n", (1589, 1638), False, 'from bootstrapvz.common.tools import log_check_call\n'), ((1653, 1722), 'os.path.join', 'os.path.join', (["info._ova['folder']", "(info._ova['ova_basename'] + '.ovf')"], {}), "(info._ova['folder'], info._ova['ova_basename'] + '.ovf')\n", (1665, 1722), False, 'import os\n'), ((1794, 1825), 'os.listdir', 'os.listdir', (["info._ova['folder']"], {}), "(info._ova['folder'])\n", (1804, 1825), False, 'import os\n'), ((1828, 1888), 'bootstrapvz.common.tools.log_check_call', 'log_check_call', (["['ovftool', ovf_path, info._ova['ova_path']]"], {}), "(['ovftool', ovf_path, info._ova['ova_path']])\n", (1842, 1888), False, 'from bootstrapvz.common.tools import log_check_call\n'), ((2801, 2836), 'os.path.join', 'os.path.join', (['assets', '"""default.ovf"""'], {}), "(assets, 'default.ovf')\n", (2813, 2836), False, 'import os\n'), ((2989, 3012), 'xml.etree.ElementTree.parse', 'ET.parse', (['template_path'], {}), '(template_path)\n', (2997, 3012), True, 'import xml.etree.ElementTree as ET\n'), ((5851, 5885), 'shutil.rmtree', 'shutil.rmtree', (["info._ova['folder']"], {}), "(info._ova['folder'])\n", (5864, 5885), False, 'import shutil\n'), ((736, 750), 'bootstrapvz.common.exceptions.TaskError', 'TaskError', (['msg'], {}), '(msg)\n', (745, 750), False, 'from bootstrapvz.common.exceptions import TaskError\n'), ((4952, 4964), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (4962, 4964), False, 'import uuid\n'), ((1360, 1385), 'random.randrange', 'random.randrange', (['(16 ** 6)'], {}), '(16 ** 6)\n', (1376, 1385), False, 'import random\n'), ((1926, 1953), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1943, 1953), False, 'import logging\n'), ((5153, 5167), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (5165, 5167), False, 'from datetime import datetime\n')]
PhilippJunk/homelette
docs/conf.py
d6e585a215d7eef75ef6c837d1faf2d0ad8025c1
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import shutil import sys sys.path.insert(0, os.path.abspath('..')) # -- Project information ----------------------------------------------------- project = 'homelette' copyright = '2021, Philipp Junk, Christina Kiel' author = 'Philipp Junk, Christina Kiel' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'nbsphinx', 'sphinx_rtd_theme', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' html_logo = 'logo.png' html_theme_options = { 'logo_only': False, 'style_nav_header_background': '#000000', } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ['_static'] # -- Options for LaTex output ------------------------------------------------ latex_elements = { 'preamble': r''' \setcounter{tocdepth}{1} \renewcommand{\hyperref}[2][]{#2} ''' } # -- Extension configuration: autodoc ---------------------------------------- autodoc_default_options = { 'member-order': 'bysource', } autoclass_content = 'class' autodoc_mock_imports = ['altmod', 'modeller', 'ost', 'promod3', 'qmean', 'pandas'] # -- Extension configuration: napoleon --------------------------------------- napoleon_use_ivar = True # -- Copy notebooks to include in the documentation -------------------------- notebooks = [ '../examples/Tutorial1_Basics.ipynb', '../examples/Tutorial2_Modelling.ipynb', '../examples/Tutorial3_Evaluation.ipynb', '../examples/Tutorial4_ExtendingHomelette.ipynb', '../examples/Tutorial5_Parallelization.ipynb', '../examples/Tutorial6_ComplexModelling.ipynb', '../examples/Tutorial7_AssemblingPipelines.ipynb', '../examples/Tutorial8_AlignmentGeneration.ipynb', ] for notebook in notebooks: if os.path.exists(notebook): shutil.copy(notebook, '.') # -- Copy logo --------------------------------------------------------------- if os.path.exists('../logo/logo.png'): shutil.copy('../logo/logo.png', '.')
[((3421, 3455), 'os.path.exists', 'os.path.exists', (['"""../logo/logo.png"""'], {}), "('../logo/logo.png')\n", (3435, 3455), False, 'import os\n'), ((607, 628), 'os.path.abspath', 'os.path.abspath', (['""".."""'], {}), "('..')\n", (622, 628), False, 'import os\n'), ((3276, 3300), 'os.path.exists', 'os.path.exists', (['notebook'], {}), '(notebook)\n', (3290, 3300), False, 'import os\n'), ((3461, 3497), 'shutil.copy', 'shutil.copy', (['"""../logo/logo.png"""', '"""."""'], {}), "('../logo/logo.png', '.')\n", (3472, 3497), False, 'import shutil\n'), ((3310, 3336), 'shutil.copy', 'shutil.copy', (['notebook', '"""."""'], {}), "(notebook, '.')\n", (3321, 3336), False, 'import shutil\n')]
Cologler/bytecode2ast-python
bytecode2ast/parsers/bases.py
407b261a493e018bc86388040ddfb6fb0e4b96d9
# -*- coding: utf-8 -*- # # Copyright (c) 2019~2999 - Cologler <[email protected]> # ---------- # some object for parser # ---------- from typing import List import enum import dis from collections import defaultdict class ID: def __init__(self, name): self._name = name # a name use to debug def __repr__(self): return f'ID({self._name})' def __str__(self): return repr(self) class Scope(enum.IntEnum): NONE = enum.auto() LOOP = enum.auto() WITH = enum.auto() EXCEPT = enum.auto() FINALLY = enum.auto() class CodeState: def __init__(self, *, scope=Scope.NONE): self._ast_stack = [] self._load_stack = [] self._scope = scope self._state: dict = None if scope is Scope.NONE else {} self._blocks = [[]] # ensure has last block self._instrs = [] # all handled instrs in this state def __repr__(self): return f'b({self._blocks!r}), l({self._load_stack!r})' @property def scope(self): return self._scope # state @property def state(self): return self._state def add_state(self, id, value): ''' add a state, also ensure it does not exists. ''' assert id not in self._state self._state[id] = value # instrs def add_instr(self, instr: dis.Instruction): ''' add a handled instruction in this state ''' self._instrs.append(instr) def get_instrs(self, key=None) -> List[dis.Instruction]: ''' get all instructions by key from this state ''' if key is None: return self._instrs.copy() else: return [i for i in self._instrs if i.opcode == key or i.opname == key] def copy(self): ''' copy a `CodeState` ''' state = CodeState() state._load_stack = self._load_stack.copy() state._ast_stack = self._ast_stack.copy() return state def copy_with_load(self, load_count): ''' copy a `CodeState` with empty ast stack. ''' state = CodeState() state._load_stack = self._load_stack[-load_count:] return state def push(self, node): ''' push a node into load stack. ''' self._load_stack.append(node) def pop(self): ''' pop the top node from load stack. ''' return self._load_stack.pop() def pop_seq(self, count: int) -> list: ''' pop a list of top nodes from load stack. ''' assert count >= 0 if count > 0: items = self._load_stack[-count:] self._load_stack = self._load_stack[0:-count] return items else: return [] def dup_top(self): ''' repeat top once. ''' self._load_stack.append(self._load_stack[-1]) def store(self, node): ''' store a node ''' self.add_node(node) def add_node(self, node): ''' add a final node into ast stmt tree ''' self._blocks[-1].append(node) def get_value(self) -> list: ''' get stmts from single block. ''' # ensure all status was handled assert not self._state, self._state assert not self._load_stack, self._load_stack # get value assert len(self._blocks) == 1, self._blocks return self._blocks[-1] def new_block(self): ''' make a new stmts block ''' self._blocks.append([]) def get_blocks(self) -> list: ''' get all stmts blocks. ''' # ensure all status was handled assert not self._state, self._state assert not self._load_stack, self._load_stack # get value return self._blocks def get_block_count(self) -> int: ''' get count of stmts blocks. ''' return len(self._blocks) class CodeReaderIter: __slots__ = ('_reader', '_condition') def __init__(self, reader, condition): self._reader: CodeReader = reader self._condition = condition def __iter__(self): while self._condition(): yield self._reader.pop() def fill_state(self, state: CodeState): ''' iter self into the `CodeState` and return it. ''' for instr in self: handler = get_instr_handler(instr) handler(self._reader, state, instr) state.add_instr(instr) return state def get_state(self, *, scope=Scope.NONE): ''' iter self into a new `CodeState`, return the `CodeState` ''' state = CodeState(scope=scope) return self.fill_state(state) def get_value(self, *, scope=Scope.NONE): ''' iter self into a new `CodeState`, return value from `CodeState`. ''' return self.get_state(scope=scope).get_value() def get_blocks(self, *, scope=Scope.NONE): ''' iter self into a new `CodeState`, return blocks from `CodeState`. ''' return self.get_state(scope=scope).get_blocks() class CodeReader: def __init__(self, instructions): # reversed will fast self._instructions = list(reversed(instructions)) self._lineno = None def __bool__(self): return bool(self._instructions) def __repr__(self): return repr(list(reversed(self._instructions))) @property def co_consts(self): return self._co_consts def get_instrs_count(self) -> int: return len(self._instructions) def get_lineno(self) -> int: return self._lineno def peek(self) -> dis.Instruction: ''' peek one instr ''' if not self._instructions: return None return self._instructions[-1] def pop(self) -> dis.Instruction: ''' pop one instr ''' instr = self._instructions.pop() if instr.starts_line is not None: self._lineno = instr.starts_line return instr def pop_assert(self, opcode: int) -> dis.Instruction: instr = self.pop() assert instr.opcode == opcode return instr def pop_if(self, opcode: int) -> dis.Instruction: if self._instructions and self._instructions[-1].opcode == opcode: return self.pop() # read methods def read_until_end(self): ''' read until reader end. ''' return CodeReaderIter(self, lambda: self) def read_until_offset(self, offset: int): ''' read until come to the offset ''' return CodeReaderIter(self, lambda: self.peek().offset != offset) def read_until_opcodes(self, *opcodes): ''' read until visit some opcodes ''' return CodeReaderIter(self, lambda: self.peek().opcode not in opcodes) def read_until_count(self, count: int): ''' read until handled count of instrs ''' end_count = self.get_instrs_count() - count return CodeReaderIter(self, lambda: self.get_instrs_count() > end_count) def read_until_scoped_count(self, count: int): ''' read until handled count of instrs in current scope. ''' if count <= 0: raise ValueError(count) def cond(): nonlocal count count -= 1 return count >= 0 return CodeReaderIter(self, cond) _OPCODE_MAP = {} def op(opname, opcode, **kwargs): def wrapper(func): def func_wrapper(reader, state, instr: dis.Instruction): func(reader, state, instr, **kwargs) assert opcode not in _OPCODE_MAP _OPCODE_MAP[(opname, opcode)] = func_wrapper return func return wrapper def get_instr_handler(instr): ''' the return function `(reader, state, instr) -> None` ''' k = (instr.opname, instr.opcode) try: return _OPCODE_MAP[k] except KeyError: raise NotImplementedError(k, instr)
[((458, 469), 'enum.auto', 'enum.auto', ([], {}), '()\n', (467, 469), False, 'import enum\n'), ((481, 492), 'enum.auto', 'enum.auto', ([], {}), '()\n', (490, 492), False, 'import enum\n'), ((504, 515), 'enum.auto', 'enum.auto', ([], {}), '()\n', (513, 515), False, 'import enum\n'), ((529, 540), 'enum.auto', 'enum.auto', ([], {}), '()\n', (538, 540), False, 'import enum\n'), ((555, 566), 'enum.auto', 'enum.auto', ([], {}), '()\n', (564, 566), False, 'import enum\n')]
orphanedgamboa/netbox
netbox/extras/forms.py
5cdc38ec3adb5278480b267a6c8e674e9d3fca39
from django import forms from django.contrib.auth.models import User from django.contrib.contenttypes.models import ContentType from django.utils.safestring import mark_safe from django.utils.translation import gettext as _ from dcim.models import DeviceRole, DeviceType, Platform, Region, Site, SiteGroup from tenancy.models import Tenant, TenantGroup from utilities.forms import ( add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES, ) from virtualization.models import Cluster, ClusterGroup from .choices import * from .models import ConfigContext, CustomField, ImageAttachment, JournalEntry, ObjectChange, Tag from .utils import FeatureQuery # # Custom fields # class CustomFieldForm(forms.Form): """ Extend Form to include custom field support. """ model = None def __init__(self, *args, **kwargs): if self.model is None: raise NotImplementedError("CustomFieldForm must specify a model class.") self.custom_fields = [] super().__init__(*args, **kwargs) # Append relevant custom fields to the form instance obj_type = ContentType.objects.get_for_model(self.model) for cf in CustomField.objects.filter(content_types=obj_type): field_name = 'cf_{}'.format(cf.name) self.fields[field_name] = cf.to_form_field() # Annotate the field in the list of CustomField form fields self.custom_fields.append(field_name) class CustomFieldModelForm(forms.ModelForm): """ Extend ModelForm to include custom field support. """ def __init__(self, *args, **kwargs): self.obj_type = ContentType.objects.get_for_model(self._meta.model) self.custom_fields = [] super().__init__(*args, **kwargs) self._append_customfield_fields() def _append_customfield_fields(self): """ Append form fields for all CustomFields assigned to this model. """ # Append form fields; assign initial values if modifying and existing object for cf in CustomField.objects.filter(content_types=self.obj_type): field_name = 'cf_{}'.format(cf.name) if self.instance.pk: self.fields[field_name] = cf.to_form_field(set_initial=False) self.fields[field_name].initial = self.instance.custom_field_data.get(cf.name) else: self.fields[field_name] = cf.to_form_field() # Annotate the field in the list of CustomField form fields self.custom_fields.append(field_name) def clean(self): # Save custom field data on instance for cf_name in self.custom_fields: self.instance.custom_field_data[cf_name[3:]] = self.cleaned_data.get(cf_name) return super().clean() class CustomFieldModelCSVForm(CSVModelForm, CustomFieldModelForm): def _append_customfield_fields(self): # Append form fields for cf in CustomField.objects.filter(content_types=self.obj_type): field_name = 'cf_{}'.format(cf.name) self.fields[field_name] = cf.to_form_field(for_csv_import=True) # Annotate the field in the list of CustomField form fields self.custom_fields.append(field_name) class CustomFieldBulkEditForm(BulkEditForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.custom_fields = [] self.obj_type = ContentType.objects.get_for_model(self.model) # Add all applicable CustomFields to the form custom_fields = CustomField.objects.filter(content_types=self.obj_type) for cf in custom_fields: # Annotate non-required custom fields as nullable if not cf.required: self.nullable_fields.append(cf.name) self.fields[cf.name] = cf.to_form_field(set_initial=False, enforce_required=False) # Annotate this as a custom field self.custom_fields.append(cf.name) class CustomFieldFilterForm(forms.Form): def __init__(self, *args, **kwargs): self.obj_type = ContentType.objects.get_for_model(self.model) super().__init__(*args, **kwargs) # Add all applicable CustomFields to the form custom_fields = CustomField.objects.filter(content_types=self.obj_type).exclude( filter_logic=CustomFieldFilterLogicChoices.FILTER_DISABLED ) for cf in custom_fields: field_name = 'cf_{}'.format(cf.name) self.fields[field_name] = cf.to_form_field(set_initial=True, enforce_required=False) # # Tags # class TagForm(BootstrapMixin, forms.ModelForm): slug = SlugField() class Meta: model = Tag fields = [ 'name', 'slug', 'color', 'description' ] fieldsets = ( ('Tag', ('name', 'slug', 'color', 'description')), ) class TagCSVForm(CSVModelForm): slug = SlugField() class Meta: model = Tag fields = Tag.csv_headers help_texts = { 'color': mark_safe('RGB color in hexadecimal (e.g. <code>00ff00</code>)'), } class AddRemoveTagsForm(forms.Form): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Add add/remove tags fields self.fields['add_tags'] = DynamicModelMultipleChoiceField( queryset=Tag.objects.all(), required=False ) self.fields['remove_tags'] = DynamicModelMultipleChoiceField( queryset=Tag.objects.all(), required=False ) class TagFilterForm(BootstrapMixin, forms.Form): model = Tag q = forms.CharField( required=False, label=_('Search') ) content_type_id = ContentTypeMultipleChoiceField( queryset=ContentType.objects.filter(FeatureQuery('tags').get_query()), required=False, label=_('Tagged object type') ) class TagBulkEditForm(BootstrapMixin, BulkEditForm): pk = forms.ModelMultipleChoiceField( queryset=Tag.objects.all(), widget=forms.MultipleHiddenInput ) color = forms.CharField( max_length=6, required=False, widget=ColorSelect() ) description = forms.CharField( max_length=200, required=False ) class Meta: nullable_fields = ['description'] # # Config contexts # class ConfigContextForm(BootstrapMixin, forms.ModelForm): regions = DynamicModelMultipleChoiceField( queryset=Region.objects.all(), required=False ) site_groups = DynamicModelMultipleChoiceField( queryset=SiteGroup.objects.all(), required=False ) sites = DynamicModelMultipleChoiceField( queryset=Site.objects.all(), required=False ) device_types = DynamicModelMultipleChoiceField( queryset=DeviceType.objects.all(), required=False ) roles = DynamicModelMultipleChoiceField( queryset=DeviceRole.objects.all(), required=False ) platforms = DynamicModelMultipleChoiceField( queryset=Platform.objects.all(), required=False ) cluster_groups = DynamicModelMultipleChoiceField( queryset=ClusterGroup.objects.all(), required=False ) clusters = DynamicModelMultipleChoiceField( queryset=Cluster.objects.all(), required=False ) tenant_groups = DynamicModelMultipleChoiceField( queryset=TenantGroup.objects.all(), required=False ) tenants = DynamicModelMultipleChoiceField( queryset=Tenant.objects.all(), required=False ) tags = DynamicModelMultipleChoiceField( queryset=Tag.objects.all(), required=False ) data = JSONField( label='' ) class Meta: model = ConfigContext fields = ( 'name', 'weight', 'description', 'is_active', 'regions', 'site_groups', 'sites', 'roles', 'device_types', 'platforms', 'cluster_groups', 'clusters', 'tenant_groups', 'tenants', 'tags', 'data', ) class ConfigContextBulkEditForm(BootstrapMixin, BulkEditForm): pk = forms.ModelMultipleChoiceField( queryset=ConfigContext.objects.all(), widget=forms.MultipleHiddenInput ) weight = forms.IntegerField( required=False, min_value=0 ) is_active = forms.NullBooleanField( required=False, widget=BulkEditNullBooleanSelect() ) description = forms.CharField( required=False, max_length=100 ) class Meta: nullable_fields = [ 'description', ] class ConfigContextFilterForm(BootstrapMixin, forms.Form): field_order = [ 'q', 'region_id', 'site_group_id', 'site_id', 'role_id', 'platform_id', 'cluster_group_id', 'cluster_id', 'tenant_group_id', 'tenant_id', ] q = forms.CharField( required=False, label=_('Search') ) region_id = DynamicModelMultipleChoiceField( queryset=Region.objects.all(), required=False, label=_('Regions') ) site_group_id = DynamicModelMultipleChoiceField( queryset=SiteGroup.objects.all(), required=False, label=_('Site groups') ) site_id = DynamicModelMultipleChoiceField( queryset=Site.objects.all(), required=False, label=_('Sites') ) device_type_id = DynamicModelMultipleChoiceField( queryset=DeviceType.objects.all(), required=False, label=_('Device types') ) role_id = DynamicModelMultipleChoiceField( queryset=DeviceRole.objects.all(), required=False, label=_('Roles') ) platform_id = DynamicModelMultipleChoiceField( queryset=Platform.objects.all(), required=False, label=_('Platforms') ) cluster_group_id = DynamicModelMultipleChoiceField( queryset=ClusterGroup.objects.all(), required=False, label=_('Cluster groups') ) cluster_id = DynamicModelMultipleChoiceField( queryset=Cluster.objects.all(), required=False, label=_('Clusters') ) tenant_group_id = DynamicModelMultipleChoiceField( queryset=TenantGroup.objects.all(), required=False, label=_('Tenant groups') ) tenant_id = DynamicModelMultipleChoiceField( queryset=Tenant.objects.all(), required=False, label=_('Tenant') ) tag = DynamicModelMultipleChoiceField( queryset=Tag.objects.all(), to_field_name='slug', required=False, label=_('Tags') ) # # Filter form for local config context data # class LocalConfigContextFilterForm(forms.Form): local_context_data = forms.NullBooleanField( required=False, label=_('Has local config context data'), widget=StaticSelect2( choices=BOOLEAN_WITH_BLANK_CHOICES ) ) # # Image attachments # class ImageAttachmentForm(BootstrapMixin, forms.ModelForm): class Meta: model = ImageAttachment fields = [ 'name', 'image', ] # # Journal entries # class JournalEntryForm(BootstrapMixin, forms.ModelForm): comments = CommentField() class Meta: model = JournalEntry fields = ['assigned_object_type', 'assigned_object_id', 'kind', 'comments'] widgets = { 'assigned_object_type': forms.HiddenInput, 'assigned_object_id': forms.HiddenInput, } class JournalEntryBulkEditForm(BootstrapMixin, BulkEditForm): pk = forms.ModelMultipleChoiceField( queryset=JournalEntry.objects.all(), widget=forms.MultipleHiddenInput ) kind = forms.ChoiceField( choices=JournalEntryKindChoices, required=False ) comments = forms.CharField( required=False, widget=forms.Textarea() ) class Meta: nullable_fields = [] class JournalEntryFilterForm(BootstrapMixin, forms.Form): model = JournalEntry q = forms.CharField( required=False, label=_('Search') ) created_after = forms.DateTimeField( required=False, label=_('After'), widget=DateTimePicker() ) created_before = forms.DateTimeField( required=False, label=_('Before'), widget=DateTimePicker() ) created_by_id = DynamicModelMultipleChoiceField( queryset=User.objects.all(), required=False, label=_('User'), widget=APISelectMultiple( api_url='/api/users/users/', ) ) assigned_object_type_id = DynamicModelMultipleChoiceField( queryset=ContentType.objects.all(), required=False, label=_('Object Type'), widget=APISelectMultiple( api_url='/api/extras/content-types/', ) ) kind = forms.ChoiceField( choices=add_blank_choice(JournalEntryKindChoices), required=False, widget=StaticSelect2() ) # # Change logging # class ObjectChangeFilterForm(BootstrapMixin, forms.Form): model = ObjectChange q = forms.CharField( required=False, label=_('Search') ) time_after = forms.DateTimeField( required=False, label=_('After'), widget=DateTimePicker() ) time_before = forms.DateTimeField( required=False, label=_('Before'), widget=DateTimePicker() ) action = forms.ChoiceField( choices=add_blank_choice(ObjectChangeActionChoices), required=False, widget=StaticSelect2() ) user_id = DynamicModelMultipleChoiceField( queryset=User.objects.all(), required=False, label=_('User'), widget=APISelectMultiple( api_url='/api/users/users/', ) ) changed_object_type_id = DynamicModelMultipleChoiceField( queryset=ContentType.objects.all(), required=False, label=_('Object Type'), widget=APISelectMultiple( api_url='/api/extras/content-types/', ) ) # # Scripts # class ScriptForm(BootstrapMixin, forms.Form): _commit = forms.BooleanField( required=False, initial=True, label="Commit changes", help_text="Commit changes to the database (uncheck for a dry-run)" ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Move _commit to the end of the form commit = self.fields.pop('_commit') self.fields['_commit'] = commit @property def requires_input(self): """ A boolean indicating whether the form requires user input (ignore the _commit field). """ return bool(len(self.fields) > 1)
[((4906, 4917), 'utilities.forms.SlugField', 'SlugField', ([], {}), '()\n', (4915, 4917), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n'), ((5175, 5186), 'utilities.forms.SlugField', 'SlugField', ([], {}), '()\n', (5184, 5186), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n'), ((6485, 6532), 'django.forms.CharField', 'forms.CharField', ([], {'max_length': '(200)', 'required': '(False)'}), '(max_length=200, required=False)\n', (6500, 6532), False, 'from django import forms\n'), ((8011, 8030), 'utilities.forms.JSONField', 'JSONField', ([], {'label': '""""""'}), "(label='')\n", (8020, 8030), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n'), ((8550, 8597), 'django.forms.IntegerField', 'forms.IntegerField', ([], {'required': '(False)', 'min_value': '(0)'}), '(required=False, min_value=0)\n', (8568, 8597), False, 'from django import forms\n'), ((8751, 8798), 'django.forms.CharField', 'forms.CharField', ([], {'required': '(False)', 'max_length': '(100)'}), '(required=False, max_length=100)\n', (8766, 8798), False, 'from django import forms\n'), ((11508, 11522), 'utilities.forms.CommentField', 'CommentField', ([], {}), '()\n', (11520, 11522), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n'), ((11999, 12065), 'django.forms.ChoiceField', 'forms.ChoiceField', ([], {'choices': 'JournalEntryKindChoices', 'required': '(False)'}), '(choices=JournalEntryKindChoices, required=False)\n', (12016, 12065), False, 'from django import forms\n'), ((14456, 14600), 'django.forms.BooleanField', 'forms.BooleanField', ([], {'required': '(False)', 'initial': '(True)', 'label': '"""Commit changes"""', 'help_text': '"""Commit changes to the database (uncheck for a dry-run)"""'}), "(required=False, initial=True, label='Commit changes',\n help_text='Commit changes to the database (uncheck for a dry-run)')\n", (14474, 14600), False, 'from django import forms\n'), ((1341, 1386), 'django.contrib.contenttypes.models.ContentType.objects.get_for_model', 'ContentType.objects.get_for_model', (['self.model'], {}), '(self.model)\n', (1374, 1386), False, 'from django.contrib.contenttypes.models import ContentType\n'), ((1869, 1920), 'django.contrib.contenttypes.models.ContentType.objects.get_for_model', 'ContentType.objects.get_for_model', (['self._meta.model'], {}), '(self._meta.model)\n', (1902, 1920), False, 'from django.contrib.contenttypes.models import ContentType\n'), ((3681, 3726), 'django.contrib.contenttypes.models.ContentType.objects.get_for_model', 'ContentType.objects.get_for_model', (['self.model'], {}), '(self.model)\n', (3714, 3726), False, 'from django.contrib.contenttypes.models import ContentType\n'), ((4340, 4385), 'django.contrib.contenttypes.models.ContentType.objects.get_for_model', 'ContentType.objects.get_for_model', (['self.model'], {}), '(self.model)\n', (4373, 4385), False, 'from django.contrib.contenttypes.models import ContentType\n'), ((5301, 5365), 'django.utils.safestring.mark_safe', 'mark_safe', (['"""RGB color in hexadecimal (e.g. <code>00ff00</code>)"""'], {}), "('RGB color in hexadecimal (e.g. <code>00ff00</code>)')\n", (5310, 5365), False, 'from django.utils.safestring import mark_safe\n'), ((5959, 5970), 'django.utils.translation.gettext', '_', (['"""Search"""'], {}), "('Search')\n", (5960, 5970), True, 'from django.utils.translation import gettext as _\n'), ((6148, 6171), 'django.utils.translation.gettext', '_', (['"""Tagged object type"""'], {}), "('Tagged object type')\n", (6149, 6171), True, 'from django.utils.translation import gettext as _\n'), ((6447, 6460), 'utilities.forms.ColorSelect', 'ColorSelect', ([], {}), '()\n', (6458, 6460), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n'), ((6761, 6781), 'dcim.models.Region.objects.all', 'Region.objects.all', ([], {}), '()\n', (6779, 6781), False, 'from dcim.models import DeviceRole, DeviceType, Platform, Region, Site, SiteGroup\n'), ((6880, 6903), 'dcim.models.SiteGroup.objects.all', 'SiteGroup.objects.all', ([], {}), '()\n', (6901, 6903), False, 'from dcim.models import DeviceRole, DeviceType, Platform, Region, Site, SiteGroup\n'), ((6996, 7014), 'dcim.models.Site.objects.all', 'Site.objects.all', ([], {}), '()\n', (7012, 7014), False, 'from dcim.models import DeviceRole, DeviceType, Platform, Region, Site, SiteGroup\n'), ((7114, 7138), 'dcim.models.DeviceType.objects.all', 'DeviceType.objects.all', ([], {}), '()\n', (7136, 7138), False, 'from dcim.models import DeviceRole, DeviceType, Platform, Region, Site, SiteGroup\n'), ((7231, 7255), 'dcim.models.DeviceRole.objects.all', 'DeviceRole.objects.all', ([], {}), '()\n', (7253, 7255), False, 'from dcim.models import DeviceRole, DeviceType, Platform, Region, Site, SiteGroup\n'), ((7352, 7374), 'dcim.models.Platform.objects.all', 'Platform.objects.all', ([], {}), '()\n', (7372, 7374), False, 'from dcim.models import DeviceRole, DeviceType, Platform, Region, Site, SiteGroup\n'), ((7476, 7502), 'virtualization.models.ClusterGroup.objects.all', 'ClusterGroup.objects.all', ([], {}), '()\n', (7500, 7502), False, 'from virtualization.models import Cluster, ClusterGroup\n'), ((7598, 7619), 'virtualization.models.Cluster.objects.all', 'Cluster.objects.all', ([], {}), '()\n', (7617, 7619), False, 'from virtualization.models import Cluster, ClusterGroup\n'), ((7720, 7745), 'tenancy.models.TenantGroup.objects.all', 'TenantGroup.objects.all', ([], {}), '()\n', (7743, 7745), False, 'from tenancy.models import Tenant, TenantGroup\n'), ((7840, 7860), 'tenancy.models.Tenant.objects.all', 'Tenant.objects.all', ([], {}), '()\n', (7858, 7860), False, 'from tenancy.models import Tenant, TenantGroup\n'), ((8699, 8726), 'utilities.forms.BulkEditNullBooleanSelect', 'BulkEditNullBooleanSelect', ([], {}), '()\n', (8724, 8726), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n'), ((9207, 9218), 'django.utils.translation.gettext', '_', (['"""Search"""'], {}), "('Search')\n", (9208, 9218), True, 'from django.utils.translation import gettext as _\n'), ((9291, 9311), 'dcim.models.Region.objects.all', 'Region.objects.all', ([], {}), '()\n', (9309, 9311), False, 'from dcim.models import DeviceRole, DeviceType, Platform, Region, Site, SiteGroup\n'), ((9351, 9363), 'django.utils.translation.gettext', '_', (['"""Regions"""'], {}), "('Regions')\n", (9352, 9363), True, 'from django.utils.translation import gettext as _\n'), ((9440, 9463), 'dcim.models.SiteGroup.objects.all', 'SiteGroup.objects.all', ([], {}), '()\n', (9461, 9463), False, 'from dcim.models import DeviceRole, DeviceType, Platform, Region, Site, SiteGroup\n'), ((9503, 9519), 'django.utils.translation.gettext', '_', (['"""Site groups"""'], {}), "('Site groups')\n", (9504, 9519), True, 'from django.utils.translation import gettext as _\n'), ((9590, 9608), 'dcim.models.Site.objects.all', 'Site.objects.all', ([], {}), '()\n', (9606, 9608), False, 'from dcim.models import DeviceRole, DeviceType, Platform, Region, Site, SiteGroup\n'), ((9648, 9658), 'django.utils.translation.gettext', '_', (['"""Sites"""'], {}), "('Sites')\n", (9649, 9658), True, 'from django.utils.translation import gettext as _\n'), ((9736, 9760), 'dcim.models.DeviceType.objects.all', 'DeviceType.objects.all', ([], {}), '()\n', (9758, 9760), False, 'from dcim.models import DeviceRole, DeviceType, Platform, Region, Site, SiteGroup\n'), ((9800, 9817), 'django.utils.translation.gettext', '_', (['"""Device types"""'], {}), "('Device types')\n", (9801, 9817), True, 'from django.utils.translation import gettext as _\n'), ((9888, 9912), 'dcim.models.DeviceRole.objects.all', 'DeviceRole.objects.all', ([], {}), '()\n', (9910, 9912), False, 'from dcim.models import DeviceRole, DeviceType, Platform, Region, Site, SiteGroup\n'), ((9952, 9962), 'django.utils.translation.gettext', '_', (['"""Roles"""'], {}), "('Roles')\n", (9953, 9962), True, 'from django.utils.translation import gettext as _\n'), ((10037, 10059), 'dcim.models.Platform.objects.all', 'Platform.objects.all', ([], {}), '()\n', (10057, 10059), False, 'from dcim.models import DeviceRole, DeviceType, Platform, Region, Site, SiteGroup\n'), ((10099, 10113), 'django.utils.translation.gettext', '_', (['"""Platforms"""'], {}), "('Platforms')\n", (10100, 10113), True, 'from django.utils.translation import gettext as _\n'), ((10193, 10219), 'virtualization.models.ClusterGroup.objects.all', 'ClusterGroup.objects.all', ([], {}), '()\n', (10217, 10219), False, 'from virtualization.models import Cluster, ClusterGroup\n'), ((10259, 10278), 'django.utils.translation.gettext', '_', (['"""Cluster groups"""'], {}), "('Cluster groups')\n", (10260, 10278), True, 'from django.utils.translation import gettext as _\n'), ((10352, 10373), 'virtualization.models.Cluster.objects.all', 'Cluster.objects.all', ([], {}), '()\n', (10371, 10373), False, 'from virtualization.models import Cluster, ClusterGroup\n'), ((10413, 10426), 'django.utils.translation.gettext', '_', (['"""Clusters"""'], {}), "('Clusters')\n", (10414, 10426), True, 'from django.utils.translation import gettext as _\n'), ((10505, 10530), 'tenancy.models.TenantGroup.objects.all', 'TenantGroup.objects.all', ([], {}), '()\n', (10528, 10530), False, 'from tenancy.models import Tenant, TenantGroup\n'), ((10570, 10588), 'django.utils.translation.gettext', '_', (['"""Tenant groups"""'], {}), "('Tenant groups')\n", (10571, 10588), True, 'from django.utils.translation import gettext as _\n'), ((10661, 10681), 'tenancy.models.Tenant.objects.all', 'Tenant.objects.all', ([], {}), '()\n', (10679, 10681), False, 'from tenancy.models import Tenant, TenantGroup\n'), ((10721, 10732), 'django.utils.translation.gettext', '_', (['"""Tenant"""'], {}), "('Tenant')\n", (10722, 10732), True, 'from django.utils.translation import gettext as _\n'), ((10886, 10895), 'django.utils.translation.gettext', '_', (['"""Tags"""'], {}), "('Tags')\n", (10887, 10895), True, 'from django.utils.translation import gettext as _\n'), ((11088, 11122), 'django.utils.translation.gettext', '_', (['"""Has local config context data"""'], {}), "('Has local config context data')\n", (11089, 11122), True, 'from django.utils.translation import gettext as _\n'), ((11139, 11188), 'utilities.forms.StaticSelect2', 'StaticSelect2', ([], {'choices': 'BOOLEAN_WITH_BLANK_CHOICES'}), '(choices=BOOLEAN_WITH_BLANK_CHOICES)\n', (11152, 11188), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n'), ((12159, 12175), 'django.forms.Textarea', 'forms.Textarea', ([], {}), '()\n', (12173, 12175), False, 'from django import forms\n'), ((12376, 12387), 'django.utils.translation.gettext', '_', (['"""Search"""'], {}), "('Search')\n", (12377, 12387), True, 'from django.utils.translation import gettext as _\n'), ((12473, 12483), 'django.utils.translation.gettext', '_', (['"""After"""'], {}), "('After')\n", (12474, 12483), True, 'from django.utils.translation import gettext as _\n'), ((12500, 12516), 'utilities.forms.DateTimePicker', 'DateTimePicker', ([], {}), '()\n', (12514, 12516), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n'), ((12603, 12614), 'django.utils.translation.gettext', '_', (['"""Before"""'], {}), "('Before')\n", (12604, 12614), True, 'from django.utils.translation import gettext as _\n'), ((12631, 12647), 'utilities.forms.DateTimePicker', 'DateTimePicker', ([], {}), '()\n', (12645, 12647), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n'), ((12724, 12742), 'django.contrib.auth.models.User.objects.all', 'User.objects.all', ([], {}), '()\n', (12740, 12742), False, 'from django.contrib.auth.models import User\n'), ((12782, 12791), 'django.utils.translation.gettext', '_', (['"""User"""'], {}), "('User')\n", (12783, 12791), True, 'from django.utils.translation import gettext as _\n'), ((12808, 12854), 'utilities.forms.APISelectMultiple', 'APISelectMultiple', ([], {'api_url': '"""/api/users/users/"""'}), "(api_url='/api/users/users/')\n", (12825, 12854), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n'), ((12964, 12989), 'django.contrib.contenttypes.models.ContentType.objects.all', 'ContentType.objects.all', ([], {}), '()\n', (12987, 12989), False, 'from django.contrib.contenttypes.models import ContentType\n'), ((13029, 13045), 'django.utils.translation.gettext', '_', (['"""Object Type"""'], {}), "('Object Type')\n", (13030, 13045), True, 'from django.utils.translation import gettext as _\n'), ((13062, 13117), 'utilities.forms.APISelectMultiple', 'APISelectMultiple', ([], {'api_url': '"""/api/extras/content-types/"""'}), "(api_url='/api/extras/content-types/')\n", (13079, 13117), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n'), ((13193, 13234), 'utilities.forms.add_blank_choice', 'add_blank_choice', (['JournalEntryKindChoices'], {}), '(JournalEntryKindChoices)\n', (13209, 13234), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n'), ((13275, 13290), 'utilities.forms.StaticSelect2', 'StaticSelect2', ([], {}), '()\n', (13288, 13290), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n'), ((13467, 13478), 'django.utils.translation.gettext', '_', (['"""Search"""'], {}), "('Search')\n", (13468, 13478), True, 'from django.utils.translation import gettext as _\n'), ((13561, 13571), 'django.utils.translation.gettext', '_', (['"""After"""'], {}), "('After')\n", (13562, 13571), True, 'from django.utils.translation import gettext as _\n'), ((13588, 13604), 'utilities.forms.DateTimePicker', 'DateTimePicker', ([], {}), '()\n', (13602, 13604), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n'), ((13688, 13699), 'django.utils.translation.gettext', '_', (['"""Before"""'], {}), "('Before')\n", (13689, 13699), True, 'from django.utils.translation import gettext as _\n'), ((13716, 13732), 'utilities.forms.DateTimePicker', 'DateTimePicker', ([], {}), '()\n', (13730, 13732), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n'), ((13787, 13830), 'utilities.forms.add_blank_choice', 'add_blank_choice', (['ObjectChangeActionChoices'], {}), '(ObjectChangeActionChoices)\n', (13803, 13830), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n'), ((13871, 13886), 'utilities.forms.StaticSelect2', 'StaticSelect2', ([], {}), '()\n', (13884, 13886), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n'), ((13957, 13975), 'django.contrib.auth.models.User.objects.all', 'User.objects.all', ([], {}), '()\n', (13973, 13975), False, 'from django.contrib.auth.models import User\n'), ((14015, 14024), 'django.utils.translation.gettext', '_', (['"""User"""'], {}), "('User')\n", (14016, 14024), True, 'from django.utils.translation import gettext as _\n'), ((14041, 14087), 'utilities.forms.APISelectMultiple', 'APISelectMultiple', ([], {'api_url': '"""/api/users/users/"""'}), "(api_url='/api/users/users/')\n", (14058, 14087), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n'), ((14196, 14221), 'django.contrib.contenttypes.models.ContentType.objects.all', 'ContentType.objects.all', ([], {}), '()\n', (14219, 14221), False, 'from django.contrib.contenttypes.models import ContentType\n'), ((14261, 14277), 'django.utils.translation.gettext', '_', (['"""Object Type"""'], {}), "('Object Type')\n", (14262, 14277), True, 'from django.utils.translation import gettext as _\n'), ((14294, 14349), 'utilities.forms.APISelectMultiple', 'APISelectMultiple', ([], {'api_url': '"""/api/extras/content-types/"""'}), "(api_url='/api/extras/content-types/')\n", (14311, 14349), False, 'from utilities.forms import add_blank_choice, APISelectMultiple, BootstrapMixin, BulkEditForm, BulkEditNullBooleanSelect, ColorSelect, CommentField, ContentTypeMultipleChoiceField, CSVModelForm, DateTimePicker, DynamicModelMultipleChoiceField, JSONField, SlugField, StaticSelect2, BOOLEAN_WITH_BLANK_CHOICES\n')]
zgjslc/Film-Recovery-master1
unwarp_models.py
4497a9930398c9e826ac364056a79e5bcbf6c953
import torch import torch.nn as nn import torch.nn.functional as F from models.misc import modules constrain_path = { ('threeD', 'normal'): (True, True, ''), ('threeD', 'depth'): (True, True, ''), ('normal', 'depth'): (True, True, ''), ('depth', 'normal'): (True, True, ''), } class UnwarpNet(nn.Module): def __init__(self, use_simple=False, combine_num=3, use_constrain=True, constrain_configure=None): super(UnwarpNet, self).__init__() self.combine_num = combine_num self.use_simple = use_simple self.use_constrain = use_constrain self.constrain_configure = constrain_configure self.geo_encoder = modules.Encoder(downsample=6, in_channels=3) self.threeD_decoder = modules.Decoder(downsample=6, out_channels=3, combine_num=self.combine_num) self.normal_decoder = modules.Decoder(downsample=6, out_channels=3, combine_num=self.combine_num) self.depth_decoder = modules.Decoder(downsample=6, out_channels=1, combine_num=self.combine_num) self.mask_decoder = modules.Decoder(downsample=6, out_channels=1, combine_num=0) bottle_neck = sum([2 ** (i + 4) for i in range(self.combine_num)]) self.second_encoder = modules.Encoder(downsample=6, in_channels=bottle_neck * 3 + 3) self.uv_decoder = modules.Decoder(downsample=6, out_channels=2, combine_num=0) # self.albedo_decoder = modules.AlbedoDecoder(downsample=6, out_channels=1) self.albedo_decoder = modules.Decoder(downsample=6, out_channels=1, combine_num=0) self.deform_decoder = modules.Decoder(downsample=6, out_channels=2, combine_num=0) self.dep2nor = None self.threeD_to_nor2dep = None self.nor2dep = None def forward(self, x): gxvals, gx_encode = self.geo_encoder(x) threeD_map, threeD_feature = self.threeD_decoder(gxvals, gx_encode) threeD_map = nn.functional.tanh(threeD_map) dep_map, dep_feature = self.depth_decoder(gxvals, gx_encode) dep_map = nn.functional.tanh(dep_map) nor_map, nor_feature = self.normal_decoder(gxvals, gx_encode) nor_map = nn.functional.tanh(nor_map) mask_map, mask_feature = self.mask_decoder(gxvals, gx_encode) mask_map = torch.nn.functional.sigmoid(mask_map) # geo_feature = torch.cat([threeD_feature, nor_feature, dep_feature], dim=1) geo_feature = torch.cat([threeD_feature, nor_feature, dep_feature, x], dim=1) b, c, h, w = geo_feature.size() geo_feature_mask = geo_feature.mul(mask_map.expand(b, c, h, w)) secvals, sec_encode = self.second_encoder(geo_feature_mask) uv_map, _ = self.uv_decoder(secvals, sec_encode) uv_map = nn.functional.tanh(uv_map) alb_map, _ = self.albedo_decoder(secvals, sec_encode) alb_map = nn.functional.tanh(alb_map) deform_map, _ = self.deform_decoder(secvals, sec_encode) deform_map = nn.functional.tanh(deform_map) return uv_map, threeD_map, nor_map, alb_map, dep_map, mask_map, \ None, None, None, None, None, deform_map
[((680, 724), 'models.misc.modules.Encoder', 'modules.Encoder', ([], {'downsample': '(6)', 'in_channels': '(3)'}), '(downsample=6, in_channels=3)\n', (695, 724), False, 'from models.misc import modules\n'), ((755, 830), 'models.misc.modules.Decoder', 'modules.Decoder', ([], {'downsample': '(6)', 'out_channels': '(3)', 'combine_num': 'self.combine_num'}), '(downsample=6, out_channels=3, combine_num=self.combine_num)\n', (770, 830), False, 'from models.misc import modules\n'), ((861, 936), 'models.misc.modules.Decoder', 'modules.Decoder', ([], {'downsample': '(6)', 'out_channels': '(3)', 'combine_num': 'self.combine_num'}), '(downsample=6, out_channels=3, combine_num=self.combine_num)\n', (876, 936), False, 'from models.misc import modules\n'), ((966, 1041), 'models.misc.modules.Decoder', 'modules.Decoder', ([], {'downsample': '(6)', 'out_channels': '(1)', 'combine_num': 'self.combine_num'}), '(downsample=6, out_channels=1, combine_num=self.combine_num)\n', (981, 1041), False, 'from models.misc import modules\n'), ((1070, 1130), 'models.misc.modules.Decoder', 'modules.Decoder', ([], {'downsample': '(6)', 'out_channels': '(1)', 'combine_num': '(0)'}), '(downsample=6, out_channels=1, combine_num=0)\n', (1085, 1130), False, 'from models.misc import modules\n'), ((1236, 1298), 'models.misc.modules.Encoder', 'modules.Encoder', ([], {'downsample': '(6)', 'in_channels': '(bottle_neck * 3 + 3)'}), '(downsample=6, in_channels=bottle_neck * 3 + 3)\n', (1251, 1298), False, 'from models.misc import modules\n'), ((1325, 1385), 'models.misc.modules.Decoder', 'modules.Decoder', ([], {'downsample': '(6)', 'out_channels': '(2)', 'combine_num': '(0)'}), '(downsample=6, out_channels=2, combine_num=0)\n', (1340, 1385), False, 'from models.misc import modules\n'), ((1500, 1560), 'models.misc.modules.Decoder', 'modules.Decoder', ([], {'downsample': '(6)', 'out_channels': '(1)', 'combine_num': '(0)'}), '(downsample=6, out_channels=1, combine_num=0)\n', (1515, 1560), False, 'from models.misc import modules\n'), ((1591, 1651), 'models.misc.modules.Decoder', 'modules.Decoder', ([], {'downsample': '(6)', 'out_channels': '(2)', 'combine_num': '(0)'}), '(downsample=6, out_channels=2, combine_num=0)\n', (1606, 1651), False, 'from models.misc import modules\n'), ((1926, 1956), 'torch.nn.functional.tanh', 'nn.functional.tanh', (['threeD_map'], {}), '(threeD_map)\n', (1944, 1956), True, 'import torch.nn as nn\n'), ((2044, 2071), 'torch.nn.functional.tanh', 'nn.functional.tanh', (['dep_map'], {}), '(dep_map)\n', (2062, 2071), True, 'import torch.nn as nn\n'), ((2160, 2187), 'torch.nn.functional.tanh', 'nn.functional.tanh', (['nor_map'], {}), '(nor_map)\n', (2178, 2187), True, 'import torch.nn as nn\n'), ((2277, 2314), 'torch.nn.functional.sigmoid', 'torch.nn.functional.sigmoid', (['mask_map'], {}), '(mask_map)\n', (2304, 2314), False, 'import torch\n'), ((2422, 2485), 'torch.cat', 'torch.cat', (['[threeD_feature, nor_feature, dep_feature, x]'], {'dim': '(1)'}), '([threeD_feature, nor_feature, dep_feature, x], dim=1)\n', (2431, 2485), False, 'import torch\n'), ((2740, 2766), 'torch.nn.functional.tanh', 'nn.functional.tanh', (['uv_map'], {}), '(uv_map)\n', (2758, 2766), True, 'import torch.nn as nn\n'), ((2847, 2874), 'torch.nn.functional.tanh', 'nn.functional.tanh', (['alb_map'], {}), '(alb_map)\n', (2865, 2874), True, 'import torch.nn as nn\n'), ((2961, 2991), 'torch.nn.functional.tanh', 'nn.functional.tanh', (['deform_map'], {}), '(deform_map)\n', (2979, 2991), True, 'import torch.nn as nn\n')]
pansila/Auto-Test-System
endpoint/test_endpoint/update.py
bfe51a277466939a32daa08f27a89cf3c1900def
import configparser import os import hashlib import json import shutil import sys import tempfile import subprocess import tarfile import re import stat from functools import cmp_to_key from contextlib import closing from gzip import GzipFile from pathlib import Path from urllib.error import HTTPError from urllib.request import Request from urllib.request import urlopen WINDOWS = sys.platform == "win32" BOOTSTRAP = """\ import os, sys import re import subprocess def _which_python(): allowed_executables = ["python3", "python"] if sys.platform == 'win32': # in favor of 32 bit python to be compatible with the 32bit dlls of test libraries allowed_executables[:0] = ["py.exe -3-32", "py.exe -2-32", "py.exe -3-64", "py.exe -2-64"] # \d in regex ensures we can convert to int later version_matcher = re.compile(r"^Python (?P<major>\d+)\.(?P<minor>\d+)\..+$") fallback = None for executable in allowed_executables: try: raw_version = subprocess.check_output( executable + " --version", stderr=subprocess.STDOUT, shell=True ).decode("utf-8") except subprocess.CalledProcessError: continue match = version_matcher.match(raw_version.strip()) if match and tuple(map(int, match.groups())) >= (3, 0): # favor the first py3 executable we can find. return executable if fallback is None: # keep this one as the fallback; it was the first valid executable we found. fallback = executable if fallback is None: # Avoid breaking existing scripts fallback = "python" return fallback if __name__ == '__main__': py_executable = _which_python() subprocess.run(py_executable + r' {collie_bin} ' + ' '.join(sys.argv[1:]), shell=True) """ BIN = """#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import os import argparse lib = os.path.normpath(os.path.join(os.path.realpath(__file__), "..", "..", "lib", "collie")) sys.path.insert(0, lib) from test_endpoint.app import main if __name__ == "__main__": sys.exit(main()) """ BAT = '@echo off\r\n{python_executable} "{collie_bootstrap}" %*\r\n' SH = '#!/bin/sh\npython3 "{collie_bootstrap}" $*\n' def expanduser(path): """ Expand ~ and ~user constructions. Includes a workaround for http://bugs.python.org/issue14768 """ expanded = os.path.expanduser(path) if path.startswith("~/") and expanded.startswith("//"): expanded = expanded[1:] return expanded class SelfUpdate: VERSION_REGEX = re.compile( r"v?(\d+)(?:\.(\d+))?(?:\.(\d+))?(?:\.(\d+))?" "(" "[._-]?" r"(?:(stable|beta|b|RC|alpha|a|patch|pl|p)((?:[.-]?\d+)*)?)?" "([.-]?dev)?" ")?" r"(?:\+[^\s]+)?" ) def __init__(self, version=None, force=False): config = configparser.ConfigParser() config.read(self.config) self.server_host = config['tool.collie.settings']['server_host'] self.server_port = config['tool.collie.settings']['server_port'] self.join_id = config['tool.collie.settings']['join_id'] self.uuid = config['tool.collie.settings']['uuid'] server_host = self.server_host.strip('"') server_port = self.server_port.strip('"') self.SERVER_URL = f'http://{server_host}:{server_port}/api_v1' self.METADATA_URL = self.SERVER_URL + "/setting/get-endpoint/json" self.BASE_URL = self.SERVER_URL + "/setting/download" self._version = None if isinstance(version, bool) else version self._force = force @property def home(self): if os.environ.get("COLLIE_HOME"): return Path(expanduser(os.environ["COLLIE_HOME"])) home = Path(expanduser("~")) return home / ".collie" @property def bin(self): return self.home / "bin" @property def lib(self): return self.home / "lib" @property def lib_backup(self): return self.home / "lib-backup" @property def config(self): return self.home / "lib" / 'collie' / 'pyproject.toml' def get_version(self): from .__version__ import __version__ metadata = json.loads(self._get(self.METADATA_URL).decode()) def _compare_versions(x, y): mx = self.VERSION_REGEX.match(x) my = self.VERSION_REGEX.match(y) vx = tuple(int(p) for p in mx.groups()[:3]) + (mx.group(5),) vy = tuple(int(p) for p in my.groups()[:3]) + (my.group(5),) if vx < vy: return -1 elif vx > vy: return 1 return 0 releases = sorted( metadata["releases"], key=cmp_to_key(_compare_versions) ) if self._version and self._version not in releases: print("Version {} does not exist.".format(self._version)) return None, None version = self._version if not version: for release in reversed(releases): m = self.VERSION_REGEX.match(release) if m.group(5) and not self.allows_prereleases(): continue version = release break current_version = __version__ if current_version == version and not self._force: print("Latest version already installed.") return None, current_version return version, current_version def run(self): version, current_version = self.get_version() if not version: return self.update(version) self.restore_config() print(f'Succeeded to update collie to version {version}') def update(self, version): if self.lib_backup.exists(): shutil.rmtree(str(self.lib_backup)) # Backup the current installation if self.lib.exists(): shutil.copytree(str(self.lib), str(self.lib_backup)) shutil.rmtree(str(self.lib)) try: self._update(version) except Exception: if not self.lib_backup.exists(): raise shutil.copytree(str(self.lib_backup), str(self.lib)) shutil.rmtree(str(self.lib_backup)) raise finally: if self.lib_backup.exists(): shutil.rmtree(str(self.lib_backup)) self.make_bin() def _update(self, version): release_name = self._get_release_name(version) base_url = self.BASE_URL + '?' name = f"{release_name}.tar.gz" checksum = f"{release_name}.sha256sum" try: r = urlopen(base_url + "file={}".format(checksum)) except HTTPError as e: if e.code == 404: raise RuntimeError("Could not find {} file".format(checksum)) raise checksum = r.read().decode().strip() try: r = urlopen(base_url + "file={}".format(name)) except HTTPError as e: if e.code == 404: raise RuntimeError("Could not find {} file".format(name)) raise meta = r.info() size = int(meta["Content-Length"]) current = 0 block_size = 8192 sha = hashlib.sha256() with tempfile.TemporaryDirectory(prefix="collie-updater-") as dir_: tar = os.path.join(dir_, name) with open(tar, "wb") as f: while True: buffer = r.read(block_size) if not buffer: break current += len(buffer) f.write(buffer) sha.update(buffer) # Checking hashes if checksum != sha.hexdigest(): raise RuntimeError( "Hashes for {} do not match: {} != {}".format( name, checksum, sha.hexdigest() ) ) gz = GzipFile(tar, mode="rb") try: with tarfile.TarFile(tar, fileobj=gz, format=tarfile.PAX_FORMAT) as f: f.extractall(str(self.lib)) finally: gz.close() def restore_config(self): config = configparser.ConfigParser() config.read(self.config) config['tool.collie.settings']['server_host'] = self.server_host config['tool.collie.settings']['server_port'] = self.server_port config['tool.collie.settings']['join_id'] = self.join_id config['tool.collie.settings']['uuid'] = self.uuid with open(self.config, 'w') as config_file: config.write(config_file) def process(self, *args): return subprocess.check_output(list(args), stderr=subprocess.STDOUT) def _check_recommended_installation(self): current = Path(__file__) try: current.relative_to(self.home) except ValueError: raise RuntimeError( "Collie was not installed with the recommended installer. " "Cannot update automatically." ) def _get_release_name(self, version): platform = sys.platform if platform == "linux2": platform = "linux" return "collie-{}-{}".format(version, platform) def _bin_path(self, base_path, bin): if WINDOWS: return (base_path / "Scripts" / bin).with_suffix(".exe") return base_path / "bin" / bin def make_bin(self): self.bin.mkdir(0o755, parents=True, exist_ok=True) python_executable = self._which_python() with self.bin.joinpath("bootstrap.py").open("w", newline="") as f: f.write(BOOTSTRAP.format(collie_bin=str(self.bin / "collie.py"))) if WINDOWS: with self.bin.joinpath("collie.bat").open("w", newline="") as f: f.write( BAT.format( python_executable=python_executable, collie_bootstrap=str(self.bin / "bootstrap.py").replace( os.environ["USERPROFILE"], "%USERPROFILE%" ), ) ) else: with self.bin.joinpath("collie").open("w", newline="") as f: f.write( SH.format( collie_bootstrap=str(self.bin / "bootstrap.py").replace( os.getenv("HOME", ""), "$HOME" ), ) ) bin_content = BIN if not WINDOWS: bin_content = "#!/usr/bin/env {}\n".format(python_executable) + bin_content self.bin.joinpath("collie.py").write_text(bin_content, encoding="utf-8") if not WINDOWS: # Making the file executable st = os.stat(str(self.bin.joinpath("collie"))) os.chmod(str(self.bin.joinpath("collie")), st.st_mode | stat.S_IEXEC) def _which_python(self): """ Decides which python executable we'll embed in the launcher script. """ allowed_executables = ["python", "python3"] if WINDOWS: allowed_executables += ["py.exe -3", "py.exe -2"] # \d in regex ensures we can convert to int later version_matcher = re.compile(r"^Python (?P<major>\d+)\.(?P<minor>\d+)\..+$") fallback = None for executable in allowed_executables: try: raw_version = subprocess.check_output( executable + " --version", stderr=subprocess.STDOUT, shell=True ).decode("utf-8") except subprocess.CalledProcessError: continue match = version_matcher.match(raw_version.strip()) if match and tuple(map(int, match.groups())) >= (3, 0): # favor the first py3 executable we can find. return executable if fallback is None: # keep this one as the fallback; it was the first valid executable we found. fallback = executable if fallback is None: # Avoid breaking existing scripts fallback = "python" return fallback def _get(self, url): request = Request(url, headers={"User-Agent": "Python Robotest"}) with closing(urlopen(request)) as r: return r.read() def update_join_id(self, join_id): config = configparser.ConfigParser() config.read(self.config) config['tool.collie.settings']['join_id'] = f'"{join_id}"' with open(self.config, 'w') as config_file: config.write(config_file)
[((2422, 2446), 'os.path.expanduser', 'os.path.expanduser', (['path'], {}), '(path)\n', (2440, 2446), False, 'import os\n'), ((2598, 2766), 're.compile', 're.compile', (['"""v?(\\\\d+)(?:\\\\.(\\\\d+))?(?:\\\\.(\\\\d+))?(?:\\\\.(\\\\d+))?([._-]?(?:(stable|beta|b|RC|alpha|a|patch|pl|p)((?:[.-]?\\\\d+)*)?)?([.-]?dev)?)?(?:\\\\+[^\\\\s]+)?"""'], {}), "(\n 'v?(\\\\d+)(?:\\\\.(\\\\d+))?(?:\\\\.(\\\\d+))?(?:\\\\.(\\\\d+))?([._-]?(?:(stable|beta|b|RC|alpha|a|patch|pl|p)((?:[.-]?\\\\d+)*)?)?([.-]?dev)?)?(?:\\\\+[^\\\\s]+)?'\n )\n", (2608, 2766), False, 'import re\n'), ((2899, 2926), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (2924, 2926), False, 'import configparser\n'), ((3683, 3712), 'os.environ.get', 'os.environ.get', (['"""COLLIE_HOME"""'], {}), "('COLLIE_HOME')\n", (3697, 3712), False, 'import os\n'), ((7319, 7335), 'hashlib.sha256', 'hashlib.sha256', ([], {}), '()\n', (7333, 7335), False, 'import hashlib\n'), ((8319, 8346), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (8344, 8346), False, 'import configparser\n'), ((8914, 8928), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (8918, 8928), False, 'from pathlib import Path\n'), ((11398, 11459), 're.compile', 're.compile', (['"""^Python (?P<major>\\\\d+)\\\\.(?P<minor>\\\\d+)\\\\..+$"""'], {}), "('^Python (?P<major>\\\\d+)\\\\.(?P<minor>\\\\d+)\\\\..+$')\n", (11408, 11459), False, 'import re\n'), ((12363, 12418), 'urllib.request.Request', 'Request', (['url'], {'headers': "{'User-Agent': 'Python Robotest'}"}), "(url, headers={'User-Agent': 'Python Robotest'})\n", (12370, 12418), False, 'from urllib.request import Request\n'), ((12550, 12577), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (12575, 12577), False, 'import configparser\n'), ((7349, 7402), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {'prefix': '"""collie-updater-"""'}), "(prefix='collie-updater-')\n", (7376, 7402), False, 'import tempfile\n'), ((7430, 7454), 'os.path.join', 'os.path.join', (['dir_', 'name'], {}), '(dir_, name)\n', (7442, 7454), False, 'import os\n'), ((8046, 8070), 'gzip.GzipFile', 'GzipFile', (['tar'], {'mode': '"""rb"""'}), "(tar, mode='rb')\n", (8054, 8070), False, 'from gzip import GzipFile\n'), ((4770, 4799), 'functools.cmp_to_key', 'cmp_to_key', (['_compare_versions'], {}), '(_compare_versions)\n', (4780, 4799), False, 'from functools import cmp_to_key\n'), ((12441, 12457), 'urllib.request.urlopen', 'urlopen', (['request'], {}), '(request)\n', (12448, 12457), False, 'from urllib.request import urlopen\n'), ((8109, 8168), 'tarfile.TarFile', 'tarfile.TarFile', (['tar'], {'fileobj': 'gz', 'format': 'tarfile.PAX_FORMAT'}), '(tar, fileobj=gz, format=tarfile.PAX_FORMAT)\n', (8124, 8168), False, 'import tarfile\n'), ((11575, 11667), 'subprocess.check_output', 'subprocess.check_output', (["(executable + ' --version')"], {'stderr': 'subprocess.STDOUT', 'shell': '(True)'}), "(executable + ' --version', stderr=subprocess.STDOUT,\n shell=True)\n", (11598, 11667), False, 'import subprocess\n'), ((10523, 10544), 'os.getenv', 'os.getenv', (['"""HOME"""', '""""""'], {}), "('HOME', '')\n", (10532, 10544), False, 'import os\n')]
routedo/junos-pyez-example
lib/jbgp/jbgpneighbor.py
b89df2d40ca0a233529e4a26b42dd605c00aae46
""" Query BGP neighbor table on a Juniper network device. """ import sys from jnpr.junos import Device from jnpr.junos.factory import loadyaml def juniper_bgp_state(dev, bgp_neighbor): """ This function queries the BGP neighbor table on a Juniper network device. dev = Juniper device connection bgp_neighbor = IP address of BGP neighbor return = Returns state of BGP neighbor """ try: globals().update(loadyaml('yaml/bgp_neighbor.yml')) bgp_ni = bgp_neighbor_info(dev).get(neighbor_address=bgp_neighbor) return bgp_ni except Exception as err: print(err) dev.close() sys.exit(1) return return
[((441, 474), 'jnpr.junos.factory.loadyaml', 'loadyaml', (['"""yaml/bgp_neighbor.yml"""'], {}), "('yaml/bgp_neighbor.yml')\n", (449, 474), False, 'from jnpr.junos.factory import loadyaml\n'), ((651, 662), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (659, 662), False, 'import sys\n')]
MiCHiLU/google_appengine_sdk
lib/cherrypy/cherrypy/test/test_sessionauthenticate.py
3da9f20d7e65e26c4938d2c4054bc4f39cbc5522
import cherrypy from cherrypy.test import helper class SessionAuthenticateTest(helper.CPWebCase): def setup_server(): def check(username, password): # Dummy check_username_and_password function if username != 'test' or password != 'password': return 'Wrong login/password' def augment_params(): # A simple tool to add some things to request.params # This is to check to make sure that session_auth can handle request # params (ticket #780) cherrypy.request.params["test"] = "test" cherrypy.tools.augment_params = cherrypy.Tool('before_handler', augment_params, None, priority=30) class Test: _cp_config = {'tools.sessions.on': True, 'tools.session_auth.on': True, 'tools.session_auth.check_username_and_password': check, 'tools.augment_params.on': True, } def index(self, **kwargs): return "Hi %s, you are logged in" % cherrypy.request.login index.exposed = True cherrypy.tree.mount(Test()) setup_server = staticmethod(setup_server) def testSessionAuthenticate(self): # request a page and check for login form self.getPage('/') self.assertInBody('<form method="post" action="do_login">') # setup credentials login_body = 'username=test&password=password&from_page=/' # attempt a login self.getPage('/do_login', method='POST', body=login_body) self.assertStatus((302, 303)) # get the page now that we are logged in self.getPage('/', self.cookies) self.assertBody('Hi test, you are logged in') # do a logout self.getPage('/do_logout', self.cookies, method='POST') self.assertStatus((302, 303)) # verify we are logged out self.getPage('/', self.cookies) self.assertInBody('<form method="post" action="do_login">')
[((651, 717), 'cherrypy.Tool', 'cherrypy.Tool', (['"""before_handler"""', 'augment_params', 'None'], {'priority': '(30)'}), "('before_handler', augment_params, None, priority=30)\n", (664, 717), False, 'import cherrypy\n')]
amochtar/adventofcode
2021/day-12/solve.py
292e7f00a1e19d2149d00246b0a77fedfcd3bd08
#!/usr/bin/env python from typing import List import aoc from collections import defaultdict @aoc.timing def solve(inp: str, part2=False): def find_path(current: str, path: List[str] = []): if current == 'end': yield path return for nxt in caves[current]: if nxt == 'start': continue if nxt.islower() and nxt in path: if not part2: continue elif any(path.count(c) > 1 for c in path if c.islower()): continue yield from find_path(nxt, path + [nxt]) caves = defaultdict(list) for line in inp.splitlines(): parts = line.split('-') caves[parts[0]].append(parts[1]) caves[parts[1]].append(parts[0]) return len(list(find_path('start'))) @aoc.timing def part2(inp: str): return inp with open('test2.txt', 'r') as f: inp = f.read() print("Part 1:", solve(inp)) print("Part 2:", solve(inp, True)) with open('input.txt', 'r') as f: inp = f.read() print("Part 1:", solve(inp)) print("Part 2:", solve(inp, True))
[((634, 651), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (645, 651), False, 'from collections import defaultdict\n')]
suytingwan/models
PaddleCV/tracking/ltr/data/processing.py
ccdbfe77d071cc19b55fb9f4b738912e35d982ef
import numpy as np from ltr.data import transforms import ltr.data.processing_utils as prutils from pytracking.libs import TensorDict class BaseProcessing: """ Base class for Processing. Processing class is used to process the data returned by a dataset, before passing it through the network. For example, it can be used to crop a search region around the object, apply various data augmentations, etc.""" def __init__(self, transform=transforms.ToArray(), train_transform=None, test_transform=None, joint_transform=None): """ args: transform - The set of transformations to be applied on the images. Used only if train_transform or test_transform is None. train_transform - The set of transformations to be applied on the train images. If None, the 'transform' argument is used instead. test_transform - The set of transformations to be applied on the test images. If None, the 'transform' argument is used instead. joint_transform - The set of transformations to be applied 'jointly' on the train and test images. For example, it can be used to convert both test and train images to grayscale. """ self.transform = { 'train': transform if train_transform is None else train_transform, 'test': transform if test_transform is None else test_transform, 'joint': joint_transform } def __call__(self, data: TensorDict): raise NotImplementedError class SiamFCProcessing(BaseProcessing): def __init__(self, search_area_factor, output_sz, center_jitter_factor, scale_jitter_factor, mode='pair', scale_type='context', border_type='meanpad', *args, **kwargs): super().__init__(*args, **kwargs) self.search_area_factor = search_area_factor self.output_sz = output_sz self.center_jitter_factor = center_jitter_factor self.scale_jitter_factor = scale_jitter_factor self.mode = mode self.scale_type = scale_type self.border_type = border_type def _get_jittered_box(self, box, mode, rng): jittered_size = box[2:4] * np.exp( rng.randn(2) * self.scale_jitter_factor[mode]) max_offset = (np.sqrt(jittered_size.prod()) * self.center_jitter_factor[mode]) jittered_center = box[0:2] + 0.5 * box[2:4] + max_offset * (rng.rand(2) - 0.5) return np.concatenate( (jittered_center - 0.5 * jittered_size, jittered_size), axis=0) def __call__(self, data: TensorDict, rng=None): # Apply joint transforms if self.transform['joint'] is not None: num_train_images = len(data['train_images']) all_images = data['train_images'] + data['test_images'] all_images_trans = self.transform['joint'](*all_images) data['train_images'] = all_images_trans[:num_train_images] data['test_images'] = all_images_trans[num_train_images:] for s in ['train', 'test']: assert self.mode == 'sequence' or len(data[s + '_images']) == 1, \ "In pair mode, num train/test frames must be 1" # Add a uniform noise to the center pos jittered_anno = [ self._get_jittered_box(a, s, rng) for a in data[s + '_anno'] ] # Crop image region centered at jittered_anno box try: crops, boxes = prutils.jittered_center_crop( data[s + '_images'], jittered_anno, data[s + '_anno'], self.search_area_factor[s], self.output_sz[s], scale_type=self.scale_type, border_type=self.border_type) except Exception as e: print('{}, anno: {}'.format(data['dataset'], data[s + '_anno'])) raise e # Apply transforms data[s + '_images'] = [self.transform[s](x) for x in crops] data[s + '_anno'] = boxes # Prepare output if self.mode == 'sequence': data = data.apply(prutils.stack_tensors) else: data = data.apply(lambda x: x[0] if isinstance(x, list) else x) return data class ATOMProcessing(BaseProcessing): """ The processing class used for training ATOM. The images are processed in the following way. First, the target bounding box is jittered by adding some noise. Next, a square region (called search region ) centered at the jittered target center, and of area search_area_factor^2 times the area of the jittered box is cropped from the image. The reason for jittering the target box is to avoid learning the bias that the target is always at the center of the search region. The search region is then resized to a fixed size given by the argument output_sz. A set of proposals are then generated for the test images by jittering the ground truth box. """ def __init__(self, search_area_factor, output_sz, center_jitter_factor, scale_jitter_factor, proposal_params, mode='pair', *args, **kwargs): """ args: search_area_factor - The size of the search region relative to the target size. output_sz - An integer, denoting the size to which the search region is resized. The search region is always square. center_jitter_factor - A dict containing the amount of jittering to be applied to the target center before extracting the search region. See _get_jittered_box for how the jittering is done. scale_jitter_factor - A dict containing the amount of jittering to be applied to the target size before extracting the search region. See _get_jittered_box for how the jittering is done. proposal_params - Arguments for the proposal generation process. See _generate_proposals for details. mode - Either 'pair' or 'sequence'. If mode='sequence', then output has an extra dimension for frames """ super().__init__(*args, **kwargs) self.search_area_factor = search_area_factor self.output_sz = output_sz self.center_jitter_factor = center_jitter_factor self.scale_jitter_factor = scale_jitter_factor self.proposal_params = proposal_params self.mode = mode def _get_jittered_box(self, box, mode, rng): """ Jitter the input box args: box - input bounding box mode - string 'train' or 'test' indicating train or test data returns: Variable - jittered box """ jittered_size = box[2:4] * np.exp( rng.randn(2) * self.scale_jitter_factor[mode]) max_offset = (np.sqrt(jittered_size.prod()) * self.center_jitter_factor[mode]) jittered_center = box[0:2] + 0.5 * box[2:4] + max_offset * (rng.rand(2) - 0.5) return np.concatenate( (jittered_center - 0.5 * jittered_size, jittered_size), axis=0) def _generate_proposals(self, box, rng): """ Generates proposals by adding noise to the input box args: box - input box returns: array - Array of shape (num_proposals, 4) containing proposals array - Array of shape (num_proposals,) containing IoU overlap of each proposal with the input box. The IoU is mapped to [-1, 1] """ # Generate proposals num_proposals = self.proposal_params['boxes_per_frame'] proposals = np.zeros((num_proposals, 4)) gt_iou = np.zeros(num_proposals) for i in range(num_proposals): proposals[i, :], gt_iou[i] = prutils.perturb_box( box, min_iou=self.proposal_params['min_iou'], sigma_factor=self.proposal_params['sigma_factor'], rng=rng) # Map to [-1, 1] gt_iou = gt_iou * 2 - 1 return proposals, gt_iou def __call__(self, data: TensorDict, rng=None): """ args: data - The input data, should contain the following fields: 'train_images' - 'test_images' - 'train_anno' - 'test_anno' - returns: TensorDict - output data block with following fields: 'train_images' - 'test_images' - 'train_anno' - 'test_anno' - 'test_proposals'- 'proposal_iou' - """ # Apply joint transforms if self.transform['joint'] is not None: num_train_images = len(data['train_images']) all_images = data['train_images'] + data['test_images'] all_images_trans = self.transform['joint'](*all_images) data['train_images'] = all_images_trans[:num_train_images] data['test_images'] = all_images_trans[num_train_images:] for s in ['train', 'test']: assert self.mode == 'sequence' or len(data[s + '_images']) == 1, \ "In pair mode, num train/test frames must be 1" # Add a uniform noise to the center pos jittered_anno = [ self._get_jittered_box(a, s, rng) for a in data[s + '_anno'] ] # Crop image region centered at jittered_anno box try: crops, boxes = prutils.jittered_center_crop( data[s + '_images'], jittered_anno, data[s + '_anno'], self.search_area_factor, self.output_sz) except Exception as e: print('{}, anno: {}'.format(data['dataset'], data[s + '_anno'])) raise e # Apply transforms data[s + '_images'] = [self.transform[s](x) for x in crops] data[s + '_anno'] = boxes # Generate proposals frame2_proposals, gt_iou = zip( * [self._generate_proposals(a, rng) for a in data['test_anno']]) data['test_proposals'] = list(frame2_proposals) data['proposal_iou'] = list(gt_iou) # Prepare output if self.mode == 'sequence': data = data.apply(prutils.stack_tensors) else: data = data.apply(lambda x: x[0] if isinstance(x, list) else x) return data
[((488, 508), 'ltr.data.transforms.ToArray', 'transforms.ToArray', ([], {}), '()\n', (506, 508), False, 'from ltr.data import transforms\n'), ((2916, 2994), 'numpy.concatenate', 'np.concatenate', (['(jittered_center - 0.5 * jittered_size, jittered_size)'], {'axis': '(0)'}), '((jittered_center - 0.5 * jittered_size, jittered_size), axis=0)\n', (2930, 2994), True, 'import numpy as np\n'), ((7846, 7924), 'numpy.concatenate', 'np.concatenate', (['(jittered_center - 0.5 * jittered_size, jittered_size)'], {'axis': '(0)'}), '((jittered_center - 0.5 * jittered_size, jittered_size), axis=0)\n', (7860, 7924), True, 'import numpy as np\n'), ((8489, 8517), 'numpy.zeros', 'np.zeros', (['(num_proposals, 4)'], {}), '((num_proposals, 4))\n', (8497, 8517), True, 'import numpy as np\n'), ((8536, 8559), 'numpy.zeros', 'np.zeros', (['num_proposals'], {}), '(num_proposals)\n', (8544, 8559), True, 'import numpy as np\n'), ((8644, 8773), 'ltr.data.processing_utils.perturb_box', 'prutils.perturb_box', (['box'], {'min_iou': "self.proposal_params['min_iou']", 'sigma_factor': "self.proposal_params['sigma_factor']", 'rng': 'rng'}), "(box, min_iou=self.proposal_params['min_iou'],\n sigma_factor=self.proposal_params['sigma_factor'], rng=rng)\n", (8663, 8773), True, 'import ltr.data.processing_utils as prutils\n'), ((3966, 4163), 'ltr.data.processing_utils.jittered_center_crop', 'prutils.jittered_center_crop', (["data[s + '_images']", 'jittered_anno', "data[s + '_anno']", 'self.search_area_factor[s]', 'self.output_sz[s]'], {'scale_type': 'self.scale_type', 'border_type': 'self.border_type'}), "(data[s + '_images'], jittered_anno, data[s +\n '_anno'], self.search_area_factor[s], self.output_sz[s], scale_type=\n self.scale_type, border_type=self.border_type)\n", (3994, 4163), True, 'import ltr.data.processing_utils as prutils\n'), ((10442, 10570), 'ltr.data.processing_utils.jittered_center_crop', 'prutils.jittered_center_crop', (["data[s + '_images']", 'jittered_anno', "data[s + '_anno']", 'self.search_area_factor', 'self.output_sz'], {}), "(data[s + '_images'], jittered_anno, data[s +\n '_anno'], self.search_area_factor, self.output_sz)\n", (10470, 10570), True, 'import ltr.data.processing_utils as prutils\n')]