image
imagewidth (px) 20
2.05k
| label
stringlengths 1
195
| normalized_label
stringlengths 1
188
| source
stringclasses 2
values | sample_id
stringlengths 0
16
| ink_path
stringlengths 0
45
|
---|---|---|---|---|---|
\left(a + \sqrt{3} b\right) \left(c + \sqrt{3} d\right) = [(a c + 3 b d) \,\bmod\,q] + \sqrt{3} [(a d + b c) \,\bmod\,q]. | (a+\sqrt{3}b)(c+\sqrt{3}d)=[(ac+3bd)modq]+\sqrt{3}[(ad+bc)modq]. | synthetic | cfdbf777ce5e01d4 | mathwriting-2024/synthetic/cfdbf777ce5e01d4.inkml |
|
P\left( {y,t} \right) | P(y,t) | synthetic | a8fb853f657dbe58 | mathwriting-2024/synthetic/a8fb853f657dbe58.inkml |
|
\varphi = -K\Phi(\Phi^{-1}(1-R_1)-\sigma\sqrt{\tau}) + R_2 | \varphi=-K\Phi(\Phi^{-1}(1-R_{1})-\sigma\sqrt{\tau})+R_{2} | synthetic | a4f8a5992ca908c0 | mathwriting-2024/synthetic/a4f8a5992ca908c0.inkml |
|
h = \left(q + \left\lfloor\frac{13(m+1)}{5}\right\rfloor + K + \left\lfloor\frac{K}{4}\right\rfloor + \left\lfloor\frac{J}{4}\right\rfloor - 2J\right) \bmod 7, | h=(q+\lfloor\frac{13(m+1)}{5}\rfloor+K+\lfloor\frac{K}{4}\rfloor+\lfloor\frac{J}{4}\rfloor-2J)mod7, | synthetic | e0b40c1d3faf7e01 | mathwriting-2024/synthetic/e0b40c1d3faf7e01.inkml |
|
P(k) = 2^{-k}. | P(k)=2^{-k}. | synthetic | dcebae6cff257a29 | mathwriting-2024/synthetic/dcebae6cff257a29.inkml |
|
S \And \neg S | S\&\neg S | synthetic | c357cddb83d1ca73 | mathwriting-2024/synthetic/c357cddb83d1ca73.inkml |
|
\sigma_p^* | \sigma_{p}^{*} | synthetic | 3fb82981b4061701 | mathwriting-2024/synthetic/3fb82981b4061701.inkml |
|
T_xM\to E_x, | T_{x}M\rightarrow E_{x}, | synthetic | 9586a42930b53131 | mathwriting-2024/synthetic/9586a42930b53131.inkml |
|
y\leftrightarrow (y,y,\ldots,y) | y\leftrightarrow(y,y,...,y) | synthetic | c9bfa6c47f414544 | mathwriting-2024/synthetic/c9bfa6c47f414544.inkml |
|
dk_{i,i+1}/df|_{f=f_0}. | dk_{i,i+1}/df|_{f=f_{0}}. | synthetic | 99e47ba60d236160 | mathwriting-2024/synthetic/99e47ba60d236160.inkml |
|
\gamma = (q Y_{Fo})/(c_v T_o) | \gamma=(qY_{Fo})/(c_{v}T_{o}) | synthetic | 4f0503e4e0a15642 | mathwriting-2024/synthetic/4f0503e4e0a15642.inkml |
|
\mathbf P = \rho_b \mathbf d | P=\rho_{b}d | synthetic | ebf01e6593c7b360 | mathwriting-2024/synthetic/ebf01e6593c7b360.inkml |
|
]a,b[ | ]a,b[ | synthetic | 59995ec37d7a00c0 | mathwriting-2024/synthetic/59995ec37d7a00c0.inkml |
|
\overline{W}_{\dot{\alpha}} | \overline{W}_{\dot{\alpha}} | synthetic | 4cf97bbed56f043a | mathwriting-2024/synthetic/4cf97bbed56f043a.inkml |
|
(b^4-d^4-2b^2 d^2)^2 | (b^{4}-d^{4}-2b^{2}d^{2})^{2} | synthetic | 0c17ed7b1ba7f2ca | mathwriting-2024/synthetic/0c17ed7b1ba7f2ca.inkml |
|
V\, \begin{bmatrix} \frac{d_1}{b_{1,1}}\\ \vdots\\ \frac{d_k}{b_{k,k}}\\ h_{k+1}\\ \vdots\\ h_n \end{bmatrix}\,, | V[\begin{matrix}\frac{d_{1}}{b_{1,1}}\\ \vdots\\ \frac{d_{k}}{b_{k,k}}\\ h_{k+1}\\ \vdots\\ h_{n}\end{matrix}], | synthetic | 0cf69befa1b57c32 | mathwriting-2024/synthetic/0cf69befa1b57c32.inkml |
|
\pi\left( \frac{1}{i \pi \omega} + \delta(\omega)\right) | \pi(\frac{1}{i\pi\omega}+\delta(\omega)) | synthetic | 6c1c2586ed90e61f | mathwriting-2024/synthetic/6c1c2586ed90e61f.inkml |
|
dW = L I \cdot dI | dW=LI\cdot dI | synthetic | 55fd4fab42413c47 | mathwriting-2024/synthetic/55fd4fab42413c47.inkml |
|
g(0) - g_T(0) = \frac 1 {2 \pi i }\int_C \left( g(z) - g_T(z) \right ) \frac {dz} z = \frac 1 {2 \pi i }\int_C \left( g(z) - g_T(z) \right ) F(z)\frac {dz} z | g(0)-g_{T}(0)=\frac{1}{2\pi i}\int_{C}(g(z)-g_{T}(z))\frac{dz}{z}=\frac{1}{2\pi i}\int_{C}(g(z)-g_{T}(z))F(z)\frac{dz}{z} | synthetic | 810c78db1b61ae89 | mathwriting-2024/synthetic/810c78db1b61ae89.inkml |
|
B(e_s,e_s)=1 | B(e_{s},e_{s})=1 | synthetic | b9f7fcf3556af285 | mathwriting-2024/synthetic/b9f7fcf3556af285.inkml |
|
\frac{777999225577}{44.38174578\cdot333336668888} | \frac{777999225577}{44.38174578\cdot333336668888} | synthetic | a575ad144bca7a0e | mathwriting-2024/synthetic/a575ad144bca7a0e.inkml |
|
\theta_{4}\biggl\langle q\bigl\{\tan\bigl[\tfrac{1}{2}\arctan(1)\bigr]\bigr\}^3 \biggr\rangle = \theta_{4}\biggl\langle q\bigl\{\tan\bigl[\tfrac{1}{2}\arctan(1)\bigr]\bigr\} \biggr\rangle \,3^{-1/2} \bigl(\sqrt{3} + \sqrt{2}\,\bigr)^{1/2} | \theta_{4}\langle q\{tan[\frac{1}{2}arctan(1)]\}^{3}\rangle=\theta_{4}\langle q\{tan[\frac{1}{2}arctan(1)]\}\rangle3^{-1/2}(\sqrt{3}+\sqrt{2})^{1/2} | synthetic | 5bca8cce98fa576c | mathwriting-2024/synthetic/5bca8cce98fa576c.inkml |
|
f_2(x_0, x_1, x_2) | f_{2}(x_{0},x_{1},x_{2}) | synthetic | 9f31ed4873cb73a2 | mathwriting-2024/synthetic/9f31ed4873cb73a2.inkml |
|
IAS \approx \sqrt{\frac{2 (p_t - p_s)}{\rho(0)}} | IAS\approx\sqrt{\frac{2(p_{t}-p_{s})}{\rho(0)}} | synthetic | 4c4d9167134b9e3d | mathwriting-2024/synthetic/4c4d9167134b9e3d.inkml |
|
n'\geq n/2 | n^{\prime}\ge n/2 | synthetic | a684c870707dbe63 | mathwriting-2024/synthetic/a684c870707dbe63.inkml |
|
\forall x \in A_R A \le x | \forall x\in A_{R}A\le x | synthetic | 1f17f4813613cdd4 | mathwriting-2024/synthetic/1f17f4813613cdd4.inkml |
|
a h | ah | synthetic | ed20cd64f9ca1af5 | mathwriting-2024/synthetic/ed20cd64f9ca1af5.inkml |
|
n\in\mathbb P,~a=0, | n\in\mathbb{P},a=0, | synthetic | cdbc93b07dba6270 | mathwriting-2024/synthetic/cdbc93b07dba6270.inkml |
|
x(e^{a_1y}-e^{a_2y})-b=xye^{a_1y}-c=0 | x(e^{a_{1}y}-e^{a_{2}y})-b=xye^{a_{1}y}-c=0 | synthetic | e28c7e09e4b937b0 | mathwriting-2024/synthetic/e28c7e09e4b937b0.inkml |
|
\Pi_C\, | \Pi_{C} | synthetic | b40632fee2ba6b95 | mathwriting-2024/synthetic/b40632fee2ba6b95.inkml |
|
k \operatorname{cs} | kcs | synthetic | ec77009f79d3aad0 | mathwriting-2024/synthetic/ec77009f79d3aad0.inkml |
|
\{(n_1,\dots,n_k)\in \mathbb{N}^k \mid n_1+\cdots+n_k=n\}.\, | \{(n_{1},...,n_{k})\in\mathbb{N}^{k}|n_{1}+\cdot\cdot\cdot+n_{k}=n\}. | synthetic | 0273f26fea5342fd | mathwriting-2024/synthetic/0273f26fea5342fd.inkml |
|
\left\langle -2, \{0,1,\mathrm i,1+\mathrm i\}\right\rangle. | \langle-2,\{0,1,i,1+i\}\rangle. | synthetic | 9f07cd9c387c502a | mathwriting-2024/synthetic/9f07cd9c387c502a.inkml |
|
X = \sigma_x =\operatorname{NOT} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} , | X=\sigma_{x}=NOT=[\begin{matrix}0&1\\ 1&0\end{matrix}], | synthetic | 662cd3b89f04672d | mathwriting-2024/synthetic/662cd3b89f04672d.inkml |
|
\mathsf{NL} \subseteq \mathsf{SPACE}(\log^2n) | NL\subseteq SPACE(log^{2}n) | synthetic | 890433b5fbfd6edc | mathwriting-2024/synthetic/890433b5fbfd6edc.inkml |
|
dX = \mu dt + s dZ | dX=\mu dt+sdZ | synthetic | 90a7f9df6679cca5 | mathwriting-2024/synthetic/90a7f9df6679cca5.inkml |
|
\text{SWR} = \max \left\{ \frac{R_\text{L}}{\,Z_\text{0}\,} \, , \frac{\,Z_\text{0}\,}{R_\text{L}} \right\} | SWR=max\{\frac{R_{L}}{Z_{0}},\frac{Z_{0}}{R_{L}}\} | synthetic | 22eba7bb54a35ee8 | mathwriting-2024/synthetic/22eba7bb54a35ee8.inkml |
|
\frac{97.908047487}{222222000004} | \frac{97.908047487}{222222000004} | synthetic | e4d84edce3ee6c27 | mathwriting-2024/synthetic/e4d84edce3ee6c27.inkml |
|
\boldsymbol{p} = m\boldsymbol{v} | p=mv | synthetic | 0c90dfe27a259c5d | mathwriting-2024/synthetic/0c90dfe27a259c5d.inkml |
|
|\mathbf{B}| = |\mathbf{a}||\mathbf{b}|\sin\theta, | |B|=|a||b|sin\theta, | synthetic | 6952b0d5d7dd135b | mathwriting-2024/synthetic/6952b0d5d7dd135b.inkml |
|
w_{j+1}=w_j-\frac{w_j e^{w_j}-z}{e^{w_j}+w_j e^{w_j}}. | w_{j+1}=w_{j}-\frac{w_{j}e^{w_{j}}-z}{e^{w_{j}}+w_{j}e^{w_{j}}}. | synthetic | 5de89a80dc7551fc | mathwriting-2024/synthetic/5de89a80dc7551fc.inkml |
|
\hat{\boldsymbol{\tau}} = \hat{\boldsymbol{\tau}}_1 \hat{\boldsymbol{\tau}}_2 \hat{\boldsymbol{\tau}}_3 | \hat{\tau}=\hat{\tau}_{1}\hat{\tau}_{2}\hat{\tau}_{3} | synthetic | 6eb2ee9f2ee007fb | mathwriting-2024/synthetic/6eb2ee9f2ee007fb.inkml |
|
[0, 3] | [0,3] | synthetic | f948e543b4c0d275 | mathwriting-2024/synthetic/f948e543b4c0d275.inkml |
|
\lim_{n \to \infty} x_n = \sqrt S | lim_{n\rightarrow\infty}x_{n}=\sqrt{S} | synthetic | e234591b9ad04775 | mathwriting-2024/synthetic/e234591b9ad04775.inkml |
|
\ W_{final}=n*(1-(1-\beta)F_1)*(1-(1-\beta)F_2)... | W_{final}=n*(1-(1-\beta)F_{1})*(1-(1-\beta)F_{2})... | synthetic | 95ec6d6c51584e26 | mathwriting-2024/synthetic/95ec6d6c51584e26.inkml |
|
P^{2m}(R)=E[\Pr[\sigma(x)\in R]]\leq \max_{x\in X^{2m}}(\Pr[\sigma(x)\in R]), | P^{2m}(R)=E[Pr[\sigma(x)\in R]]\le max_{x\in X^{2m}}(Pr[\sigma(x)\in R]), | synthetic | 5f09529f8ab6b937 | mathwriting-2024/synthetic/5f09529f8ab6b937.inkml |
|
\mathcal{FL^-} | FL^{-} | synthetic | 7bb510a88a863100 | mathwriting-2024/synthetic/7bb510a88a863100.inkml |
|
S, T \subseteq Y, | S,T\subseteq Y, | synthetic | 9fca1c9a11fb1a85 | mathwriting-2024/synthetic/9fca1c9a11fb1a85.inkml |
|
H_A \otimes H_B | H_{A}\otimes H_{B} | synthetic | 99ac1454f4a60d4f | mathwriting-2024/synthetic/99ac1454f4a60d4f.inkml |
|
f(k,r)\le C^k | f(k,r)\le C^{k} | synthetic | 20661fead373fe6e | mathwriting-2024/synthetic/20661fead373fe6e.inkml |
|
g(-t) | g(-t) | synthetic | 64500930b87cff61 | mathwriting-2024/synthetic/64500930b87cff61.inkml |
|
\tfrac12+\Omega(1/\sqrt\Delta) | \frac{1}{2}+\Omega(1/\sqrt{\Delta}) | synthetic | b2383ef54f58c6e7 | mathwriting-2024/synthetic/b2383ef54f58c6e7.inkml |
|
(A f)(x) = -i \frac{\mathrm{d}}{\mathrm{d}x} f(x) \,, | (Af)(x)=-i\frac{d}{dx}f(x), | synthetic | ec3c942306675b5a | mathwriting-2024/synthetic/ec3c942306675b5a.inkml |
|
\cos(3\theta_c)=\sin\left(\left(3\theta_s - \frac{\pi}{2}\right) + \frac{\pi}{2} \right) | cos(3\theta_{c})=sin((3\theta_{s}-\frac{\pi}{2})+\frac{\pi}{2}) | synthetic | bc57314355d8cfca | mathwriting-2024/synthetic/bc57314355d8cfca.inkml |
|
a_i,\ a_{i+1} | a_{i},a_{i+1} | synthetic | 8dde15ec88ec3623 | mathwriting-2024/synthetic/8dde15ec88ec3623.inkml |
|
\underline{\mathbf{\hat{T}}}: \mathcal{V} \rightarrow \mathcal{V} | \underline{\hat{T}}:V\rightarrow V | synthetic | 0fd7a293390fa228 | mathwriting-2024/synthetic/0fd7a293390fa228.inkml |
|
\Delta\lambda = \lambda^2\frac{\delta D}{2D\Delta D}. | \Delta\lambda=\lambda^{2}\frac{\delta D}{2D\Delta D}. | synthetic | 51ccff9f473295d8 | mathwriting-2024/synthetic/51ccff9f473295d8.inkml |
|
E \approx K E_0 | E\approx KE_{0} | synthetic | 01c1f901328ecb2e | mathwriting-2024/synthetic/01c1f901328ecb2e.inkml |
|
(\nabla^2 + k^2)\mathbf{B} = 0,\, \mathbf{E} = -\frac{i}{k} \nabla \times \mathbf{B}. | (\nabla^{2}+k^{2})B=0,E=-\frac{i}{k}\nabla\times B. | synthetic | c9e0be5155262518 | mathwriting-2024/synthetic/c9e0be5155262518.inkml |
|
1_\mathcal{D} | 1_{D} | synthetic | de96a2ec644a9bbb | mathwriting-2024/synthetic/de96a2ec644a9bbb.inkml |
|
=\tfrac{ (x+x^2+x^3+...+x^n) + x(x+x^2+...+x^{n-1}) + ... + (x^n) } {1 + x + x^2 + x^3 + ...}= | =\frac{(x+x^{2}+x^{3}+...+x^{n})+x(x+x^{2}+...+x^{n-1})+...+(x^{n})}{1+x+x^{2}+x^{3}+...}= | synthetic | e3b276aa99655ca9 | mathwriting-2024/synthetic/e3b276aa99655ca9.inkml |
|
\mathbf{n} \cdot \nabla\psi | n\cdot\nabla\psi | synthetic | d8e6cd364c070508 | mathwriting-2024/synthetic/d8e6cd364c070508.inkml |
|
T= (2\pi)^4\frac{constant^3}{G^2 \left(M_1 + M_2\right)^2} | T=(2\pi)^{4}\frac{constant^{3}}{G^{2}(M_{1}+M_{2})^{2}} | synthetic | 2b66e829fe5cb928 | mathwriting-2024/synthetic/2b66e829fe5cb928.inkml |
|
\int_{-\infty}^{\infty}f(x)\,dx = \int_{-1}^{1} f\left(\frac{t}{1-t^2}\right)\frac{1+t^2}{(1-t^2)^2}\,dt, | \int_{-\infty}^{\infty}f(x)dx=\int_{-1}^{1}f(\frac{t}{1-t^{2}})\frac{1+t^{2}}{(1-t^{2})^{2}}dt, | synthetic | ecd503b77dee7bf8 | mathwriting-2024/synthetic/ecd503b77dee7bf8.inkml |
|
\int_{-\infty}^\infty \mathit{He}_m(x) \mathit{He}_n(x)\, e^{-\frac{x^2}{2}} \,dx = \sqrt{2 \pi}\, n!\, \delta_{nm}, | \int_{-\infty}^{\infty}He_{m}(x)He_{n}(x)e^{-\frac{x^{2}}{2}}dx=\sqrt{2\pi}n!\delta_{nm}, | synthetic | 40d9e39280c281c3 | mathwriting-2024/synthetic/40d9e39280c281c3.inkml |
|
X = \cup_i \psi_i(X_i), | X=\cup_{i}\psi_{i}(X_{i}), | synthetic | 25602195264de5bb | mathwriting-2024/synthetic/25602195264de5bb.inkml |
|
w^0_{,1111} + 2\,w^0_{,1212} + w^0_{,2222} = \cfrac{q}{D} | w_{,1111}^{0}+2w_{,1212}^{0}+w_{,2222}^{0}=\frac{q}{D} | synthetic | 5ac15a71a085db35 | mathwriting-2024/synthetic/5ac15a71a085db35.inkml |
|
U_1 \in [10V,11V] | U_{1}\in[10V,11V] | synthetic | 6568b38c1640b9c4 | mathwriting-2024/synthetic/6568b38c1640b9c4.inkml |
|
\sum_{i=1}^m a_{ij} x_i + e_j t_j \ge g_j, | \sum_{i=1}^{m}a_{ij}x_{i}+e_{j}t_{j}\ge g_{j}, | synthetic | b3b0392fb33e3126 | mathwriting-2024/synthetic/b3b0392fb33e3126.inkml |
|
lastBlock \leftarrow 0 | lastBlock\leftarrow0 | synthetic | a8d93d11d7b4c625 | mathwriting-2024/synthetic/a8d93d11d7b4c625.inkml |
|
\big(K = K_{\text{max}} = K_{\text{Ic}}\big) | (K=K_{max}=K_{Ic}) | synthetic | 601c38c88e987986 | mathwriting-2024/synthetic/601c38c88e987986.inkml |
|
t_1 t_2 = 1 | t_{1}t_{2}=1 | synthetic | e675b97c5e722dc7 | mathwriting-2024/synthetic/e675b97c5e722dc7.inkml |
|
= 1.0200\ldots-1 | =1.0200...-1 | synthetic | f980ffc5f542e591 | mathwriting-2024/synthetic/f980ffc5f542e591.inkml |
|
\operatorname{cl}_D(A), | cl_{D}(A), | synthetic | 4b141fda507d5131 | mathwriting-2024/synthetic/4b141fda507d5131.inkml |
|
-2\pi n | -2\pi n | synthetic | 4f2abc86c8f29d0d | mathwriting-2024/synthetic/4f2abc86c8f29d0d.inkml |
|
\frac{3[\gamma+\ln(2\pi f_H\tau)]-\ln 2}{4\pi^2} | \frac{3[\gamma+ln(2\pi f_{H}\tau)]-ln2}{4\pi^{2}} | synthetic | dd911d9eeb2ce8cf | mathwriting-2024/synthetic/dd911d9eeb2ce8cf.inkml |
|
\overline{v_n^2} = \text{v}_\text{rms}^2 | \overline{v_{n}^{2}}=v_{rms}^{2} | synthetic | 317c3a6062c244bb | mathwriting-2024/synthetic/317c3a6062c244bb.inkml |
|
\alpha : A \longrightarrow FA | \alpha:A\longrightarrow FA | synthetic | 71d1c0379582f09d | mathwriting-2024/synthetic/71d1c0379582f09d.inkml |
|
s^2 = \frac{n}{n-1} s_n^2 | s^{2}=\frac{n}{n-1}s_{n}^{2} | synthetic | 6708f4a4265efe9e | mathwriting-2024/synthetic/6708f4a4265efe9e.inkml |
|
\Delta^* | \Delta^{*} | synthetic | bcf1c918e3b5897d | mathwriting-2024/synthetic/bcf1c918e3b5897d.inkml |
|
T_2 = \frac{1}{4} \sum_{i,j} \sum_{a,b} t_{ab}^{ij} \hat{a}^a \hat{a}^b \hat{a}_j \hat{a}_i, | T_{2}=\frac{1}{4}\sum_{i,j}\sum_{a,b}t_{ab}^{ij}\hat{a}^{a}\hat{a}^{b}\hat{a}_{j}\hat{a}_{i}, | synthetic | 0d4b52496e1c75b6 | mathwriting-2024/synthetic/0d4b52496e1c75b6.inkml |
|
4 \times 2r = 8r | 4\times2r=8r | synthetic | 0a50a3a3a6cca752 | mathwriting-2024/synthetic/0a50a3a3a6cca752.inkml |
|
f(z):=g\pi Hz | f(z):=g\pi Hz | synthetic | 17506ce485696232 | mathwriting-2024/synthetic/17506ce485696232.inkml |
|
\lambda_{1}g_{1}(x)=\cdots = \lambda_{m}g_{m}(x) = 0 | \lambda_{1}g_{1}(x)=\cdot\cdot\cdot=\lambda_{m}g_{m}(x)=0 | synthetic | 2af34e0ad0a3429d | mathwriting-2024/synthetic/2af34e0ad0a3429d.inkml |
|
I_d \equiv \int_1^\infty e^{- {\gamma}/{\theta}} (\gamma^2-1)^{{d}/{2}} \mathrm{d}\gamma. | I_{d}\equiv\int_{1}^{\infty}e^{-\gamma/\theta}(\gamma^{2}-1)^{d/2}d\gamma. | synthetic | 6427e170a0eb3d8c | mathwriting-2024/synthetic/6427e170a0eb3d8c.inkml |
|
\frac{94.5}{75} | \frac{94.5}{75} | synthetic | 246e82d0e68ead8b | mathwriting-2024/synthetic/246e82d0e68ead8b.inkml |
|
C = \frac{q}{V}, | C=\frac{q}{V}, | synthetic | cd95914936dbf6a9 | mathwriting-2024/synthetic/cd95914936dbf6a9.inkml |
|
\left|\frac{e(S, T)}{e(G)} - \alpha \beta\right| \leq \frac{\lambda}{\sqrt{d_Ld_R}} \sqrt{\alpha \beta (1 - \alpha) (1 - \beta)} \leq \frac{\lambda}{\sqrt{d_Ld_R}} \sqrt{\alpha \beta}\,. | |\frac{e(S,T)}{e(G)}-\alpha\beta|\le\frac{\lambda}{\sqrt{d_{L}d_{R}}}\sqrt{\alpha\beta(1-\alpha)(1-\beta)}\le\frac{\lambda}{\sqrt{d_{L}d_{R}}}\sqrt{\alpha\beta}. | synthetic | cfd12dae86ccfa0f | mathwriting-2024/synthetic/cfd12dae86ccfa0f.inkml |
|
\frac{112222222222}{880000011666} | \frac{112222222222}{880000011666} | synthetic | a2c387a890009e28 | mathwriting-2024/synthetic/a2c387a890009e28.inkml |
|
(\Pi_{\text{ACCEPT}},\Pi_{\text{REJECT}}) | (\Pi_{ACCEPT},\Pi_{REJECT}) | synthetic | bf06ab49e1d4e3b6 | mathwriting-2024/synthetic/bf06ab49e1d4e3b6.inkml |
|
\kappa_r^{F_n} = \frac{n \kappa_r}{\sigma^r n^{r/2}} = \frac{\lambda_r}{n^{r/2 - 1}} \quad \mathrm{where} \quad \lambda_r = \frac{\kappa_r}{\sigma^r}. | \kappa_{r}^{F_{n}}=\frac{n\kappa_{r}}{\sigma^{r}n^{r/2}}=\frac{\lambda_{r}}{n^{r/2-1}}where\lambda_{r}=\frac{\kappa_{r}}{\sigma^{r}}. | synthetic | 335bdf52bdf62522 | mathwriting-2024/synthetic/335bdf52bdf62522.inkml |
|
\left[(x_1-\bar{x})^2 + (x_2-\bar{x})^2\right] /(n-1) = (1+1)/1 = 2 | [(x_{1}-\overline{x})^{2}+(x_{2}-\overline{x})^{2}]/(n-1)=(1+1)/1=2 | synthetic | 29daa0b85a2bb210 | mathwriting-2024/synthetic/29daa0b85a2bb210.inkml |
|
\sqrt{1 + 1 + 1 + 1 + 1 +1} = \sqrt{6} = 2.4495, | \sqrt{1+1+1+1+1+1}=\sqrt{6}=2.4495, | synthetic | 1a8a19d2f1b6d203 | mathwriting-2024/synthetic/1a8a19d2f1b6d203.inkml |
|
\sin(\theta) \approx \pi - \theta | sin(\theta)\approx\pi-\theta | synthetic | a61048dd6e551766 | mathwriting-2024/synthetic/a61048dd6e551766.inkml |
|
=(\vec{N} \cdot (\{ 0.133; \; 0.65; \; 0 \}))^3=(0\cdot 0.133 + 1\cdot 0.65 + 0 )^3=0.65^3=0.274625. | =(\vec{N}\cdot(\{0.133;0.65;0\}))^{3}=(0\cdot0.133+1\cdot0.65+0)^{3}=0.65^{3}=0.274625. | synthetic | 78995fb29db53e68 | mathwriting-2024/synthetic/78995fb29db53e68.inkml |
|
K=\left\{p(\cdot):p(\cdot)=\sum_{i=1}^n a_i f_i(\cdot ; \theta_i), a_i>0, \sum_{i=1}^n a_i=1, f_i(\cdot ; \theta_i)\in J\ \forall i,n\right\} | K=\{p(\cdot):p(\cdot)=\sum_{i=1}^{n}a_{i}f_{i}(\cdot;\theta_{i}),a_{i}>0,\sum_{i=1}^{n}a_{i}=1,f_{i}(\cdot;\theta_{i})\in J\forall i,n\} | synthetic | fd7440602b67038c | mathwriting-2024/synthetic/fd7440602b67038c.inkml |
|
x^{\prime}=\sqrt{s}x,\quad y^{\prime}=y,\quad z^{\prime}=z,\quad t'=\frac{t}{\sqrt{s}}-\sqrt{s}\frac{u}{v^{2}}x,\quad s=1-\frac{u^{2}}{v^{2}} | x^{\prime}=\sqrt{s}x,y^{\prime}=y,z^{\prime}=z,t^{\prime}=\frac{t}{\sqrt{s}}-\sqrt{s}\frac{u}{v^{2}}x,s=1-\frac{u^{2}}{v^{2}} | synthetic | 16bbb3b490bc5723 | mathwriting-2024/synthetic/16bbb3b490bc5723.inkml |
|
\frac{daf(x)b}{d x} = a\ \frac{df(x)}{d x}\ b | \frac{daf(x)b}{dx}=a\frac{df(x)}{dx}b | synthetic | 8f8d2c3925ab2d59 | mathwriting-2024/synthetic/8f8d2c3925ab2d59.inkml |
|
e=\frac{0.34812}{1+e^{(1403.79\text{ K}-T)/540.196\text{ K}}} | e=\frac{0.34812}{1+e^{(1403.79K-T)/540.196K}} | synthetic | 046174841447fe27 | mathwriting-2024/synthetic/046174841447fe27.inkml |
|
\frac{\frac{\frac{111888833111}{666999991144}}{888885554449*\frac{446666600555}{24.27842}}}{a} | \frac{\frac{\frac{111888833111}{666999991144}}{888885554449*\frac{446666600555}{24.27842}}}{a} | synthetic | 24f5e8a7701c996b | mathwriting-2024/synthetic/24f5e8a7701c996b.inkml |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.