Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 2 new columns ({'display', 'dishwasher'}) and 4 missing columns ({'keyboard', 'clock', 'trashcan', 'faucet'}).

This happened while the json dataset builder was generating data using

hf://datasets/Weizm/AffordSplat/UnSeen_test.json (at revision 6bc6c766b079d0d779fa43cb8fcfd9a882e08422)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 623, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              bed: list<item: string>
                child 0, item: string
              dishwasher: list<item: string>
                child 0, item: string
              knife: list<item: string>
                child 0, item: string
              bottle: list<item: string>
                child 0, item: string
              chair: list<item: string>
                child 0, item: string
              bag: list<item: string>
                child 0, item: string
              laptop: list<item: string>
                child 0, item: string
              table: list<item: string>
                child 0, item: string
              earphone: list<item: string>
                child 0, item: string
              storagefurniture: list<item: string>
                child 0, item: string
              hat: list<item: string>
                child 0, item: string
              microwave: list<item: string>
                child 0, item: string
              mug: list<item: string>
                child 0, item: string
              bowl: list<item: string>
                child 0, item: string
              vase: list<item: string>
                child 0, item: string
              door: list<item: string>
                child 0, item: string
              display: list<item: string>
                child 0, item: string
              to
              {'trashcan': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'clock': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'keyboard': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'bed': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'knife': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'bottle': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'chair': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'bag': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'laptop': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'table': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'faucet': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'earphone': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'storagefurniture': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'hat': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'microwave': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'mug': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'bowl': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'vase': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'door': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1433, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 989, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 2 new columns ({'display', 'dishwasher'}) and 4 missing columns ({'keyboard', 'clock', 'trashcan', 'faucet'}).
              
              This happened while the json dataset builder was generating data using
              
              hf://datasets/Weizm/AffordSplat/UnSeen_test.json (at revision 6bc6c766b079d0d779fa43cb8fcfd9a882e08422)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

trashcan
sequence
clock
sequence
keyboard
sequence
bed
sequence
knife
sequence
bottle
sequence
chair
sequence
bag
sequence
laptop
sequence
table
sequence
faucet
sequence
earphone
sequence
storagefurniture
sequence
hat
sequence
microwave
sequence
mug
sequence
bowl
sequence
vase
sequence
door
sequence
[ "pour", "contain", "open" ]
[ "display" ]
[ "press" ]
[ "lay", "support" ]
[ "stab", "grasp" ]
[ "contain", "open", "grasp", "wrap_grasp" ]
[ "move", "sit" ]
[ "contain", "open", "grasp" ]
[ "display" ]
[ "support" ]
[ "open", "grasp" ]
[ "listen" ]
[ "open" ]
[ "grasp" ]
[ "contain" ]
[ "pour", "contain", "wrap_grasp" ]
[ "pour", "contain" ]
[ "contain", "wrap_grasp" ]
[ "pull", "open" ]

In this repository, we present 3DAffordSplat, the first large-scale, multi-modal dataset tailored for 3DGS-based affordance reasoning. This dataset includes 23k Gaussian instances, 8k point cloud instances, and 6k manually annotated affordance labels, encompassing 21 object categories and 18 affordance types.

Dataset Structure

After downloading, the data structure should be as follows:

—Seen
    ├── train
    │   ├── bag
    │   │   ├── Gaussian
    │   │   │   └── GS_0017.ply
    │   │   │       ......
    │   │   ├── PointCloud
    │   │   │   └── PC_0001.ply
    │   │   │       ......
    │   │   ├── contain
    │   │   │   ├── GS_anno_0017.ply
    │   │   │   ├── PC_anno_0001.json
    │   │   │       ......
    │   │   └── grasp
    │   │       ......
    │   └── bed
    │       ......
    │
    ├── val
    │   ├── bag
    │   │   ├── Gaussian
    │   │   │   └── GS_0009.ply
    │   │   │       ......
    │   │   ├── contain
    │   │   │   └── GS_anno_0009.ply
    │   │   │       ......
    │   │   └── grasp
    │   │       ......
    │   └── bed
    │       ......
    │
    └── test
        ├── bag
        │   ├── Gaussian
        │   │   └── GS_0001.ply
        │   │       ......
        │   ├── contain
        │   │   └── GS_anno_0001.ply
        │   │       ......
        │   └── grasp
        │       ......
        └── bed
            ......

—Affordance-Question.csv
—obj_aff_structure.json
—UnSeen_test.json
—UnSeen_train.json

Dataset Details

For more information on detailed statistics and the methodology of AffordSplat, please refer to the following resources:

Additionally, we sincerely thank Guantian Liu, Yao Xiao, Xinyu Li, Kecheng Liang and Yipeng Ouyang for their contributions.

Contact

This project is for research purpose only, please contact us for the licence of commercial use. For any other questions please contact ([email protected], [email protected] or [email protected]).

Citation

If you use this data, please cite our paper.

@misc{wei20253daffordsplatefficientaffordancereasoning,
      title={3DAffordSplat: Efficient Affordance Reasoning with 3D Gaussians}, 
      author={Zeming wei and Junyi Lin and Yang Liu and Weixing Chen and Jingzhou Luo and Guanbin Li and Liang Lin},
      year={2025},
      eprint={2504.11218},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2504.11218}, 
}

Acknowledgement

The construction of AffordSplat dataset is based on 3DAffordanceNet, LASO and ShapeSplat. We sincerely thank them for their contributions to the community.

Downloads last month
276