problem_id
stringlengths 6
6
| user_id
stringlengths 10
10
| time_limit
float64 1k
8k
| memory_limit
float64 262k
1.05M
| problem_description
stringlengths 48
1.55k
| codes
stringlengths 35
98.9k
| status
stringlengths 28
1.7k
| submission_ids
stringlengths 28
1.41k
| memories
stringlengths 13
808
| cpu_times
stringlengths 11
610
| code_sizes
stringlengths 7
505
|
---|---|---|---|---|---|---|---|---|---|---|
p02595 | u589766880 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['x,y = int(input())\nN = x[0]\nD = y[0]\ncount = 0\nfor i in range(1,N):\n dist = sqrt(x[i]^2+y[i]^2)\n if dist <= D:\n count += 1\nprint(count)\n ', 'import numpy as np\n\nN,D = input().strip().split()\nN = int(N)\nD = int(D)\n\ngrid = []\nfor i in range(N):\n array = list(map(int, input().strip().split()))\n grid.append(array)\n \ncount = 0\nfor i in range(0,N):\n dist = sqrt(grid[i][0]^2+grid[i][1]^2)\n if dist <= D:\n count += 1\nprint(count)', 'import numpy as np\nN,D = input().strip().split()\nN = int(N)\nD = int(D)\ncount = 0\nfor i in range(N):\n x,y = input().strip().split()\n x = int(x)\n y = int(y)\n #print(x**2)\n dist = np.sqrt((x)**2+(y)**2)\n #print(dist)\n if dist <= D:\n count +=1\nprint(count)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s552285446', 's866614521', 's483226171'] | [9184.0, 62944.0, 27184.0] | [30.0, 547.0, 832.0] | [145, 320, 280] |
p02595 | u592248346 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d = map(int,input().split())\nans = 0\nfor i in range(n):\n if x*x+y*y <= d*d: ans+=1\nprint(ans)', 'n,d = map(int,input().split())\nans = 0\nfor i in range(n):\n x,y = map(int,input().split())\n if x*x+y*y <= d*d: ans+=1\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s761354430', 's343674661'] | [9060.0, 8972.0] | [26.0, 392.0] | [98, 133] |
p02595 | u595833382 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D = [int(x) for x in input().split()]\ncount = 0\n\nfor x in range(N):\n x,y = [int(x) for x in input().split()]\n if x**2 + y**2 <= D:\n count += 1\n\nprint(count)', 'import numpy\nN,D = [int(x) for x in input().split()]\ncount = 0\n\nfor x in range(N):\n x,y = [int(x) for x in input().split()]\n if numpy.sqrt((x**2) + (y**2)) <= D:\n count += 1\n\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s542997116', 's145768571'] | [9100.0, 27100.0] | [460.0, 870.0] | [171, 200] |
p02595 | u599547273 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = map(int, input().split())\nXY = [list(map(int, input().split())) for _ in range()]\n\nprint(sum(x**2 + y**2 <= D**2 for x, y in XY))', 'N, D = map(int, input().split())\nXY = [list(map(int, input().split())) for _ in range(N)]\n\nprint(sum(x**2 + y**2 <= D**2 for x, y in XY))'] | ['Runtime Error', 'Accepted'] | ['s631642275', 's347292621'] | [9176.0, 45456.0] | [35.0, 562.0] | [136, 137] |
p02595 | u600673553 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = map(int, input().split())\nans = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if (x**2+y**2) <= D**2:\n ans +=1\n else:\n ans +=0\n\nprint(ans)', 'N, D = map(int, input().split())\nans = 0\nfor i in range(N):\n x, y = map(int, input().split())\n if (x**2+y**2) <= D**2:\n ans +=1\n else:\n ans +=0\n\nprint(ans)\n'] | ['Runtime Error', 'Accepted'] | ['s494407605', 's153056358'] | [9096.0, 9188.0] | [26.0, 487.0] | [164, 165] |
p02595 | u603695922 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D = map(int , input().split()) \nans = 0\n\nfor i in N :\n x,y = map(int , input().split())\n if x**2 + y**2 <= D**2:\n ans += 1\n\nprint(ans)\n\n', 'N,D = map(int , input().split()) \nans = 0\n\nfor i in range(N) :\n x,y = map(int , input().split())\n if x**2 + y**2 <= D**2:\n ans += 1\n\nprint(ans)\n\n'] | ['Runtime Error', 'Accepted'] | ['s066231526', 's662343777'] | [9056.0, 9132.0] | [23.0, 509.0] | [252, 259] |
p02595 | u607074939 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D = map(int,input().split())\nl = []\nfor i in range (N):\n x,y = map(int,input().split())\n l.append(x*x+y*y)\n \nans = 0\nfor i in range(N):\n if l[i] < D*D:\n ans += 1\n\nprint(cnt)', 'N,D = map(int,input().split())\nl = []\nfor i in range (N):\n x,y = map(int,input().split())\n l.append(x*x+y*y)\n \nans = 0\nfor i in range(N):\n if l[i] < D*D:\n cnt += 1\n\nprint(cnt)', 'N,D = map(int,input().split())\nl = []\nfor i in range (N):\n x,y = map(int,input().split())\n l.append(x*x+y*y)\n \nans = 0\nfor i in range(N):\n if l[i] <= D*D:\n ans += 1\n\nprint(ans)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s239742562', 's402096335', 's207107548'] | [20132.0, 19984.0, 19988.0] | [435.0, 401.0, 438.0] | [194, 194, 195] |
p02595 | u614246506 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\ncase, most = map(int, input().split())\nsumm = 0\nfor i in range(case):\n a, b = map(int, input().split())\n print(math.sqrt((a * a) + (b * b)), i+1)\n if math.sqrt((a * a) + (b * b)) <= most:\n summ += 1\n\nprint(summ)\n', 'import math\ncase, most = map(int, input().split())\nsumm = 0\nfor i in range(case):\n a, b = map(int, input().split())\n if math.sqrt((a * a) + (b * b)) >= most:\n print(a, b, i+1)\n summ += 1\n\nprint(summ)\n', 'import math\ncase, most = map(int, input().split())\nsumm = 0\nfor i in range(case):\n a, b = map(int, input().split())\n if math.sqrt((a * a) + (b * b)) <= most:\n summ += 1\n\nprint(summ)\n'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s274182736', 's997895052', 's150907432'] | [9104.0, 9120.0, 9020.0] | [1118.0, 990.0, 412.0] | [240, 220, 195] |
p02595 | u616481477 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\nn, d = list(map(int, input().split()))\ncount = 0\n\nfor i in range(n):\n x, y = list(map(int, input().split()))\n if x >= d or y >= d:\n pass\n else:\n if math.sqrt(x*x + y*y) <= d:\n count += 1\n\nprint(count)', 'import math\n\nn, d = list(map(int, input().split()))\ncount = 0\n\nfor i in range(n):\n x, y = list(map(int, input().split()))\n if abs(x) > d or abs(y) > d:\n pass\n else:\n if math.sqrt(x*x + y*y) <= d:\n count += 1\n\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s813447731', 's963399516'] | [9196.0, 9128.0] | [501.0, 492.0] | [227, 235] |
p02595 | u620259318 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\nn, d = map(int, input().split())\ncnt = 0\nfor i in range(n):\n x, y = map(int, input().split())\n dist = math.sqrt((x * x) + (y * y))\n print(dist)\n if dist <= d:\n cnt += 1\nprint(cnt)\n', 'import math\n\nn, d = map(int, input().split())\ncnt = 0\nfor i in range(n):\n x, y = map(int, input().split())\n dist = math.sqrt((x * x) + (y * y))\n if dist <= d:\n cnt += 1\nprint(cnt)\n'] | ['Wrong Answer', 'Accepted'] | ['s273623996', 's889598483'] | [9188.0, 9032.0] | [1023.0, 421.0] | [212, 196] |
p02595 | u626228246 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nn,d = map(int,input().split())\nxy = [list(map(int,input().split())) for _ in range(n)]\ncnt = 0\nfor i in range(n):\n\tif math.sqrt((xy[0])**2 + (xy[1])**2) <= d:\n\t\tcnt += 1\nprint(cnt)', 'import math\nn,d = map(int,input().split())\nxy = [list(map(int,input().split())) for _ in range(n)]\ncnt = 0\nfor i in range(n):\n\tif math.sqrt((xy[i][0])**2 + (xy[i][1])**2) <= d:\n\t\tcnt += 1\nprint(cnt)'] | ['Runtime Error', 'Accepted'] | ['s092418422', 's626464575'] | [45472.0, 45456.0] | [441.0, 573.0] | [192, 198] |
p02595 | u627530854 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\ndef dist(x, y):\n math.sqrt(x ^ 2 + y ^ 2)\n\n(n, d) = map(int, input().split())\nres = 0\n\nfor _ in range(n):\n (x, y) = map(int, input().split())\n res += 1 if dist(x, y) <= d else 0\n \nprint(res)', 'import math\n\ndef dist(x, y):\n return math.sqrt(x ** 2 + y ** 2)\n\n(n, d) = map(int, input().split())\nres = 0\n\nfor _ in range(n):\n (x, y) = map(int, input().split())\n res += 1 if dist(x, y) <= d else 0\n\nprint(res)\n'] | ['Runtime Error', 'Accepted'] | ['s550259701', 's844930022'] | [9216.0, 9188.0] | [29.0, 501.0] | [207, 215] |
p02595 | u630237503 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ["import math\n\ndef main():\n N, D = list(map(int, input().split()))\n ans = 0\n for i in range(0,N):\n A, B = list(map(int, input().split()))\n if dist <= D:\n ans +=1\n print(ans)\n\n\nif __name__ == '__main__':\n main()", "import math\n\ndef main():\n N, D = list(map(int, input().split()))\n ans = 0\n for i in range(0,N):\n A, B = list(map(int, input().split()))\n print(dist)\n if dist <= D:\n ans +=1\n print(ans)\n\n\nif __name__ == '__main__':\n main()", "import math\n\ndef main():\n N, D = list(map(int, input().split()))\n ans = 0\n for i in range(0,N):\n A, B = list(map(int, input().split()))\n dist = math.sqrt(A**2 + B**2)\n if dist <= D:\n ans +=1\n print(ans)\n\n\nif __name__ == '__main__':\n main()"] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s369556726', 's927352953', 's139095971'] | [9180.0, 9184.0, 9228.0] | [29.0, 23.0, 515.0] | [248, 268, 286] |
p02595 | u634653487 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\ninp = input()\n\nm = [x.split() for x in inp]\n\ncount = 0\n\nfor i in inp:\n x, y = i.split()\n\n xx = x ** 2\n yy = y ** 2\n\n ans = math.sqrt(xx + yy)\n\n if ans >= y:\n count += 1\n\nprint(count)', 'import math\n\nN, D = map(int, input().split())\ncount = 0\nfor _ in range(M):\n x, y = map(int, input().split())\n xx = x ** 2\n yy = y ** 2\n\n ans = math.sqrt(xx + yy)\n if ans >= D:\n count += 1\n\nprint(count)', 'import math\n\nx, y = [int(x) for x in input().split()]\n\nxx = x ** 2\nyy = y ** 2\n\nans = math.sqrt(xx + yy)\n\nprint(ans)', 'import math\n\ninp = str(input())\n\nN, M = map(int, input().split())\ncount = 0\nfor _ in range(M):\n \n for i in inp:\n x, y = map(int, input().split())\n\n xx = int(x) ** 2\n yy = int(y) ** 2\n\n ans = math.sqrt(xx + yy)\n print(ans)\n\n if ans >= M:\n count += 1\n j += 1\n print(count)', 'import math\n\ninp = str(input())\nm = [x.split() for x in inp]\n\ncount = 0\nj = 0\nfor i in inp:\n x, y = i.split()\n if j == 0:\n D = int(y)\n print(D)\n else:\n xx = int(x) ** 2\n yy = int(y) ** 2\n\n ans = math.sqrt(xx + yy)\n print(ans)\n\n if ans >= int(D):\n count += 1\n j += 1\nprint(count)', 'import math\n\ninp = str(input())\n\nN, M = map(int, input().split())\ncount = 0\nfor _ in range(M):\n \n for i in inp:\n x, y = map(int, input().split())\n\n xx = int(x) ** 2\n yy = int(y) ** 2\n\n ans = math.sqrt(xx + yy)\n\n if ans >= M:\n count += 1\n j += 1\n print(count)', 'import math\n\nN, D = map(int, input().split())\ncount = 0\nfor _ in range(N):\n x, y = map(int, input().split())\n xx = x ** 2\n yy = y ** 2\n\n ans = math.sqrt(xx + yy)\n if ans <= D:\n count += 1\n\nprint(count)'] | ['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s000648069', 's518031389', 's692922893', 's794170053', 's893078221', 's899313713', 's590942720'] | [9132.0, 9132.0, 9172.0, 9164.0, 9136.0, 8892.0, 9196.0] | [33.0, 28.0, 31.0, 25.0, 25.0, 31.0, 489.0] | [217, 223, 116, 339, 350, 320, 223] |
p02595 | u637387397 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d = input()\n\ncount = 0\nfor i in range(n):\n x,y = input()\n \n r = (int(x)**2+int(y)**2)**(1/2)\n \n if r <= int(d):\n count += 1\nprint(count)', 'n,d = input().split(" ")\n\ncount = 0\nfor i in range(int(n)):\n x,y = input().split(" ")\n \n r = (int(x)**2+int(y)**2)**(1/2)\n \n if r <= int(d):\n count += 1\nprint(count)'] | ['Runtime Error', 'Accepted'] | ['s610162334', 's560678805'] | [9028.0, 9612.0] | [26.0, 482.0] | [146, 173] |
p02595 | u639318121 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D = map(int,input().split())\npoint = [list(map(int, input().split())) for x in range(N)]\ncount = 0\nfor i in range(n):\n if D >= (point[i][0]**2+point[i][1]**2)**0.5:\n count += 1\nprint(count)', 'N,D = map(int,input().split())\npoint = [list(map(int, input().split())) for x in range(N)]\ncount = 0\nfor i in range(N):\n if D >= (point[i][0]**2+point[i][1]**2)**0.5:\n count += 1\nprint(count)'] | ['Runtime Error', 'Accepted'] | ['s160612980', 's212999615'] | [45164.0, 45768.0] | [414.0, 559.0] | [201, 201] |
p02595 | u642529859 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = map(int, input().split())\nans = 0\nfor i in range(N)\n X, Y = map(int, input().split())\n if X*X+Y*Y<=D:\n ans += 1\nprint(ans)\n', 'N, D = map(int, input().split())\nans = 0\nfor i in range(N):\n X, Y = map(int, input().split())\n if X*X+Y*Y<=D:\n ans += 1\nprint(ans)', 'N, D = map(int, input().split())\nans = 0\nfor i in range(N):\n X, Y = map(int, input().split())\n if X*X+Y*Y<=D:\n ans += 1\nprint(ans)', 'N, D = map(int, input().split())\nans = 0\nfor i in range(N):\n X, Y = map(int, input().split())\n if X*X+Y*Y<=D*D:\n ans += 1\nprint(ans)'] | ['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s315232936', 's528770544', 's824967746', 's182220122'] | [8896.0, 8972.0, 9088.0, 9020.0] | [25.0, 383.0, 385.0, 396.0] | [135, 135, 156, 137] |
p02595 | u644126199 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['line = input().split()\nnumber = int(line[0])\ndistance = int(line[1])\nimport math\ncnt =0\nprint(number)\nfor i in range(number):\n position = input().split()\n x = int(position[0])\n y = int(position[1])\n origin_dis = math.sqrt(x*x+y*y)\n if origin_dis <=distance:\n cnt +=1\nprint(cnt)', 'line = input().split()\nnumber = int(line[0])\ndistance = int(line[1])\nimport math\ncnt =0\nfor i in range(number):\n position = input().split()\n x = int(position[0])\n y = int(position[1])\n origin_dis = math.sqrt(x*x+y*y)\n if origin_dis <=distance:\n cnt +=1\nprint(cnt)'] | ['Wrong Answer', 'Accepted'] | ['s689105637', 's822332343'] | [9196.0, 9176.0] | [407.0, 432.0] | [285, 271] |
p02595 | u644139801 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nN=int(input()) \nD=int(input())\nP=[]\nc=0\nans=0\nwhile c<N:\n x=int(input()) \n y=int(input())\n z=x**2+y**2\n z=z**(1/2)\n if z<=D:\n ans+=1\n c+=1\nprint(ans)', 'import math\nN=int(input()) \nD=int(input())\nc=0\nans=0\nwhile c<N:\n x=int(input()) \n y=int(input()) \n if x*x+y*y<=D*D:\n ans+=1\n c+=1\nprint(ans)', 'import math\nN,D=map(int,input().split())\nc=0\nans=0\nwhile c<N:\n x,y=map(int,input().split()) \n if x*x+y*y<=D*D:\n ans+=1\n c+=1\nprint(ans)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s017580166', 's084996148', 's343717620'] | [9192.0, 9092.0, 9172.0] | [27.0, 26.0, 409.0] | [186, 159, 151] |
p02595 | u645504441 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D =(int(x) for x in input().split())\nxy = [map(int,input().split()) for _ int range(N)]\nx,y = [list(i) for i in zip(*xy)]\nn = 0\n\nfor i in range(N):\n if(x[i]**2 + y[i]**2 <= D**2):\n n += 1\n\nprint(n)', 'N,D =(int(x) for x in input().split())\nxy = [map(int,input().split()) for _ in range(N)]\nx,y = [list(i) for i in zip(*xy)]\nn = 0\n \nfor i in range(N):\n if(x[i]**2 + y[i]**2 <= D**2):\n n += 1\n \nprint(n)'] | ['Runtime Error', 'Accepted'] | ['s056179194', 's477183373'] | [8912.0, 116728.0] | [26.0, 892.0] | [203, 204] |
p02595 | u646661668 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N = int(input().split()[0])\nD = int(input().split()[1])\ncount = 0\nfor i in range(N):\n Xi = int(input().split()[0])\n Yi = int(input().split()[1])\n R = (Xi**2+Yi**2)**(1/2)\n if R<=D:\n count += 1\nprint(count)', 'ND = input()\nN = int(ND.split()[0])\nD = int(ND.split()[1])\ncount = 0\nfor i in range(N):\n XiYi = input()\n Xi = int(XiYi.split()[0])\n Yi = int(XiYi.split()[1])\n R = (Xi**2+Yi**2)**(1/2)\n if R <= D:\n count += 1\nprint(count)'] | ['Runtime Error', 'Accepted'] | ['s150227514', 's732627148'] | [9648.0, 9648.0] | [364.0, 514.0] | [212, 228] |
p02595 | u648431783 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\nn, d = input().split()\ncount = 0\nfor idx in range(int(n)):\n x, y = input().split()\n x, y = int(x), int(y)\n if math.sqrt(math.pow(int(x), 2) + math.pow(int(x), 2)) < (int(d) + 1):\n count += 1\n\nprint(count)', 'import math\n\ndef get_input():\n n, d = input().split()\n points = []\n for idx in range(int(n)):\n x, y = input().split()\n points.append((int(x), int(y)))\n\n return int(d), points\n\ndef is_within_dist(point, max_dist):\n x, y = point\n return math.sqrt((x * x) + (y * y)) <= max_dist\n\ndef solution():\n dist, points = get_input()\n\n count = 0\n for point in points:\n if is_within_dist(point, dist):\n count += 1\n return count', 'import math\n\nn, d = input().split()\ncount = 0\nfor idx in range(int(n)):\n x, y = input().split()\n x, y = int(x), int(y)\n if math.sqrt(math.pow(int(x), 2) + math.pow(int(y), 2)) < (int(d) + 1):\n count += 1\n\nprint(count)', 'import math\n\ndef get_input():\n n, d = input().split()\n points = []\n for idx in range(int(n)):\n x, y = input().split()\n points.append((int(x), int(y)))\n\n return int(d), points\n\ndef is_within_dist(point, max_dist):\n x, y = point\n return math.sqrt((x * x) + (y * y)) <= max_dist\n\ndef solution():\n dist, points = get_input()\n\n count = 0\n for point in points:\n if is_within_dist(point, dist):\n count += 1\n return count\n\nsolution()', 'import math\n\nn, d = input().split()\ncount = 0\nfor idx in range(int(n)):\n x, y = input().split()\n x, y = int(x), int(y)\n if math.sqrt(math.pow(int(x), 2) + math.pow(int(y), 2)) <= int(d):\n count += 1\n\nprint(count)'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s592891024', 's655404590', 's684584843', 's891276025', 's327144453'] | [9260.0, 9000.0, 9148.0, 36120.0, 9256.0] | [482.0, 27.0, 488.0, 396.0, 471.0] | [233, 475, 233, 487, 228] |
p02595 | u651913160 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\nn, d = int(input().split())\ncount = 0\n\nfor i in range(n):\n xn, yn = int(input().split())\n if d >= math.sqrt(xn ** 2 + yn ** 2):\n count += 1\n\nprint(count)', 'import math\n\nn, d = input().split()\ncount = 0\ndn = int(d)\n\nfor i in range(int(n)):\n x = list(map(int,input().split()))\n if dn >= math.sqrt(x[0] ** 2 + x[1] ** 2):\n count += 1\n\nprint(count)'] | ['Runtime Error', 'Accepted'] | ['s417342611', 's468713967'] | [9104.0, 9152.0] | [27.0, 511.0] | [179, 201] |
p02595 | u654192896 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D=map(int,input().split())\nsum=0\nfor _ in range(N):\n X,Y=map(int,input().split())\n if math.sqrt(((X*X)+(Y*Y)))<=D:\n sum=sum+1\nprint(sum)\n \n', 'N,D=map(int,input().split())\nsum=0\nfor _ in range(N):\n X,Y=map(int,input().split())\n if math.sqrt(((X*X)+(Y*Y)))<=D:\n sum=sum+1\n print(sum)\n ', 'import math\n\nN,D=map(int,input().split())\nsum=0\nfor _ in range(N):\n X,Y=map(int,input().split())\n if math.sqrt(((X*X)+(Y*Y)))<=D:\n sum=sum+1\nprint(sum)\n \n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s174838143', 's694414881', 's117098900'] | [9172.0, 9168.0, 9144.0] | [23.0, 27.0, 412.0] | [157, 160, 170] |
p02595 | u655048024 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d = int(input())\nans = 0\nfor i in range(n):\n x,y = map(int,input().split())\n if(d>=(x**2+y**2)**(1/2)):\n ans += 1\nprint(ans)', 'n,d = map(int,input().split())\nans = 0\nfor i in range(n):\n x,y = map(int,input().split())\n if(d >= (x**2+y**2)**(1/2)):\n ans += 1\nprint(ans)\n'] | ['Runtime Error', 'Accepted'] | ['s211347362', 's455271052'] | [9180.0, 9628.0] | [26.0, 491.0] | [131, 146] |
p02595 | u658915215 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = map(int, input().split())\nans = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if x ** 2 + y ** 2 <= d ** 2\nprint(ans)', 'n, d = map(int, input().split())\nans = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if x ** 2 + y ** 2 <= d ** 2:\n ans += 1\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s083051682', 's314863282'] | [8972.0, 9176.0] | [26.0, 502.0] | [140, 158] |
p02595 | u663438907 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = map(int, input().split())\nans = 0\nfor in range(N):\n X, Y = map(int, input().split())\n if x**2 + y**2 <= D**2:\n ans += 1\n\nprint(ans)', 'N, D = map(int, input().split())\nans = 0\nfor i in range(N):\n X, Y = map(int, input().split())\n if X**2 + Y**2 <= D**2:\n ans += 1\n \nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s704444157', 's680241065'] | [8940.0, 9036.0] | [33.0, 472.0] | [143, 146] |
p02595 | u667427469 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import numpy as np\n\nN = int(input())\nD = int(input())\ncount = 0\n\nfor i in range(N): \n x = int(input())\n y = int(input())\n d = np.sqrt(x**2+y**2)\n\n if d <= D:\n count += 1 \n\nprint(count) \n\n', 'import numpy as np\n\nN,D = input().split()\nN = int(N)\nD = int(D)\ncount = 0\n\nfor i in range(N): \n x,y = input().split()\n x = int(x)\n y = int(y)\n d = np.sqrt(x**2+y**2)\n\n if d <= D:\n count += 1 \n\nprint(count) \n'] | ['Runtime Error', 'Accepted'] | ['s568950136', 's148850941'] | [27140.0, 26512.0] | [114.0, 814.0] | [207, 230] |
p02595 | u671211357 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['count=0\nN,D=map(int,input().split())\nfor i in range(N):\n X,Y=map(int,input().split())\n if D**2>X**2+Y**2:\n count+=1\nprint(count)', 'count=0\nN,D=map(int,input().split())\nfor i in range(N):\n X,Y=map(int,input().split())\n if D**2>=X**2+Y**2:\n count+=1\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s207675441', 's652217889'] | [9084.0, 9032.0] | [496.0, 498.0] | [141, 142] |
p02595 | u674418975 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\nN, D = map(int,input().split())\n\nprint(N+D)\nDf = [0]*N\n\nfor i in range(N):\n x,y = map(float,input().split())\n if math.sqrt(x*2 + y*2) >= D:\n Df[i] = 1\n\nprint(Df.count(1))', 'import math\n\nN, D = map(int,input().split())\n\nDf = [0]*N\n\nfor i in range(N):\n x,y = map(float,input().split())\n if math.sqrt(x*x + y*y) <= D:\n Df[i] = 1\n\nprint(Df.count(1))'] | ['Runtime Error', 'Accepted'] | ['s340685533', 's474068502'] | [10388.0, 10444.0] | [377.0, 419.0] | [188, 177] |
p02595 | u677400065 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d = map(int,input().split())\nans = 0\nimport numpy as np\nfor i in range(n):\n x,y = map(int,input().split())\n if np.norm(np.array([x,y]),ord=2) <= d:\n ans+=1\n \nprint(ans)', 'n,d = map(int,input().split())\nans = 0\nimport numpy as np\nfor i in range(n):\n x,y = map(int,input().split())\n if np.linalg.norm(np.array([x,y]),ord=2) <= d:\n ans+=1\n \nprint(ans)\n'] | ['Runtime Error', 'Accepted'] | ['s518176013', 's096457650'] | [26940.0, 27052.0] | [206.0, 1749.0] | [178, 186] |
p02595 | u681882250 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['x,y=map(int,input().split())\ncount=0\nfor i in range(x):\n a,b=map(int,input().split())\n dist=pow((pow(x,2)+pow(y,2)),0.5)\n if dist<=y:\n count+=1\nprint(count)', 'import math\nx, y = map(int, input().split())\ncount = 0\nfor i in range(x):\n a, b = map(int, input().split())\n ans = math.sqrt((a*a)+(b*b))\n if y <= ans:\n count = count + 1\nprint(count-1)', 'n,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x,y=map(int,input().split())\n dist=pow((pow(x,2)+pow(y,2)),0.5)\n if dist<=d:\n count+=1\nprint(count)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s058557152', 's562066547', 's366902691'] | [9444.0, 9200.0, 9584.0] | [498.0, 455.0, 508.0] | [172, 201, 172] |
p02595 | u684556734 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n = list(map(int, input().split()))\ndistance = n[1]\npoints = [list(map(int, input().split())) for i in range(n[0])]\nans = 0\nfor i in points:\n x = i[0]\n y = i[1]\n d = (x**2 + y**2)**-2\n if d <= distance:\n ans += 1\nprint(ans)', 'n = list(map(int, input().split()))\ndistance = n[1]\npoints = [list(map(int, input().split())) for i in range(n[0])]\nans = 0\nfor i in points:\n x = i[0]\n y = i[1]\n d = math.sqrt(x**2 + y**2)\n if d <= distance:\n ans += 1\nprint(ans)', 'import math\nn = list(map(int, input().split()))\ndistance = n[1]\npoints = [list(map(int, input().split())) for i in range(n[0])]\nans = 0\nfor i in points:\n x = i[0]\n y = i[1]\n d = math.sqrt(x**2 + y**2)\n if d <= distance:\n ans += 1\nprint(ans)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s195470641', 's322431358', 's254015434'] | [45772.0, 45452.0, 45496.0] | [608.0, 426.0, 578.0] | [242, 247, 259] |
p02595 | u686174642 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d=[int(i) for i in input().strip().split(" ")]\nans=0\nfor _ in range(n):\n x,y=[int(i) for i in input().strip().split(" ")]\n if x*x+y*y=d*d:\n ans+=1\nprint(ans)', '# -*- coding: utf-8 -*-\n"""\nCreated on Mon Aug 24 12:23:05 2020\n\n@author: vivek\n"""\n\nn,d=[int(i) for i in input().strip().split(" ")]\nans=0\nfor _ in range(n):\n x,y=[int(i) for i in input().strip().split(" ")]\n if x*x+y*y<=d*d:\n ans+=1\nprint(ans)'] | ['Runtime Error', 'Accepted'] | ['s878807596', 's418112497'] | [8824.0, 9180.0] | [28.0, 404.0] | [164, 250] |
p02595 | u688203790 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['\n#ABC174B\n\nN,D = map(int,input.split())\nX = []\nY = []\nfor _ in range(N):\n x,y = map(int,input().split())\n X.append(x)\n Y.append(y)\n\ncount = 0\n\nfor i in range(N):\n if D**2 >= X[i]**2 + Y[i]**2:\n count += 1\nprint(count)', '\n#ABC174B\n\nN,D = map(int,input().split())\nX = []\nY = []\nfor _ in range(N):\n x,y = map(int,input().split())\n X.append(x)\n Y.append(y)\n\ncount = 0\n\nfor i in range(N):\n if D**2 >= X[i]**2 + Y[i]**2:\n count += 1\nprint(count)'] | ['Runtime Error', 'Accepted'] | ['s104731642', 's270125569'] | [9040.0, 24780.0] | [27.0, 519.0] | [236, 238] |
p02595 | u689723321 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d= map(int, input().split())\nx,y=[int(input()) for i in range(n)]\ns=0\ndef distance_count():\n \n for i in range(N)\n if (x[i]**2 + y[i]**2)**(1/2)<= D :\n s=s+1\n return s\nanswer = distance_count(x,y)\nprint(answer)', 'N,D= map(int, input().split())\nxy = [map(int, input().split()) for _ in range(N)]\nx, y = [list(i) for i in zip(*xy)]\n\ndef f(a,b,c):\n s=0\n for i in range(N)\n \u3000\u3000if (a[i]**2 + b[i]**2)**(1/2)<= c:\n \u3000\u3000s=s+1\n return s\na = x\nb = y\nc = D\nprint(f(a,b,c))', 'n,d= map(int, input().split())\nx,y=[int(input()) for i in range(n)]\n\ndef distance_count():\n s=0\n for i in range(N)\n \u3000\u3000if (x[i]**2 + y[i]**2)**(1/2)<= d:\n \u3000\u3000s=s+1\n return s\ndistance_count(x,y)\nprint(s)\n', 'n,d= map(int, input().split())\nx,y=[int(input()) for i in range(n)]\n\ndef distance_count():\n s=0\n for i in range(N)\n \u3000\u3000if (x[i]**2 + y[i]**2)**(1/2)<= d:\n \u3000\u3000s=s+1\n return s\n\nprint(distance_count(x,y))', 'n,d= map(int, input().split())\nx,y=[int(input()) for i in range(n)]\ns=0\ndef distance_count():\n \n for i in range(N)\n \u3000\u3000if (x[i]**2 + y[i]**2)**(1/2)<= d:\n \u3000\u3000s=s+1\n return s\ndistance_count(x,y)\nprint(s)', 'n,d= map(int, input().split())\nx,y=[int(input()) for i in range(n)]\ns=0\ndef distance_count():\n \n for i in range(N)\n \u3000\u3000if (x[i]**2 + y[i]**2)**(1/2)<= D :\n \u3000\u3000s=s+1\n return s\nanswer = distance_count(x,y)\nprint(answer)', 'N,D= map(int, input().split())\nx,y=[int(input()) for i in range(N)]\ns=0\ndef distance_count():\n for i in range(N)\n if (x[i]**2 + y[i]**2)**(1/2)<= D :\n s=s+1\n return s\nanswer = distance_count(x,y)\nprint(answer)', 'n,d= map(int, input().split())\nx,y=[int(input()) for i in range(n)]\n\ndef f(a,b,c):\n s=0\n for i in range(N)\n \u3000\u3000if (a[i]**2 + b[i]**2)**(1/2)<= c:\n \u3000\u3000s=s+1\n return s\n\nprint(f(x,y,d))', 'N,D= map(int, input().split())\nxy = [map(int, input().split()) for _ in range(N)]\nx, y = [list(i) for i in zip(*xy)]\n\ndef f(x,y,D):\n s=0\n for i in range(N)\n \u3000\u3000if (x[i]*x[i] + y[i]*y[i])<= D*D:\n \u3000\u3000s=s+1\n return s\n\nprint(s)', 'point=[ list(map(int,input().split())) for i range (N)]\nD=input()\ndef distance():\n s=0\n for i in range(N)\n if (point[i][0]**2+point[i][1]**2)**(1/2)<=int(D):\n s=s+1\n return s\nanswer = distance(point)\nprint(answer)', 'N,D= map(int, input().split())\nX,Y=[map(int, input().split() for i in range(N))]\n\ndef f(a,b,c):\n s=0\n for i in range(N)\n \u3000\u3000if (a[i]**2 + b[i]**2)**(1/2)<= c:\n \u3000\u3000s=s+1\n return s\na = X\nb = Y\nc = D\nprint(f(a,b,c))', 'n,d= map(int, input().split())\nx,y=[int(input()) for i in range(n)]\n\ndef f(a,b):\n s=0\n for i in range(N)\n \u3000\u3000if (a[i]**2 + b[i]**2)**(1/2)<= d:\n \u3000\u3000s=s+1\n return s\n\nprint(f(x,y))', 'N,D= map(int, input().split())\nX,Y=[int(input()) for i in range(N)]\n\ndef f(a,b,c):\n s=0\n for i in range(N)\n \u3000\u3000if (a[i]**2 + b[i]**2)**(1/2)<= c:\n \u3000\u3000s=s+1\n return s\na = X\nb = Y\nc = D\nprint(f(a,b,c))', 'N,D= map(int, input().split())\nxy = [map(int, input().split()) for i in range(N)]\nx,y= [list(i) for i in zip(*xy)]\n\ndef f(x,y,D):\n s=0\n for i in range(N)\n \u3000\u3000if (x[i]*x[i] + y[i]*y[i])<= D*D:\n \u3000\u3000s=s+1\n return s\n\nprint(f(x,y,D))', 'N,D= map(int, input().split())\nxy = [map(int, input().split()) for _ in range(N)]\nx, y = [list(i) for i in zip(*xy)]\n\ndef f(x,y,D):\n s=0\n for i in range(N)\n \u3000\u3000if (a[i]*a[i] + b[i]*b[i])<= c*c:\n \u3000\u3000s=s+1\n return s\n\nprint(s)', 'N,D = map(int, input().split())\nXY = [map(int, input().split()) for _ in range(N)]\nX,Y = [list(i) for i in zip(*XY)]\n\ns=0\nfor i in range (N):\n if X[i]*X[i]+Y[i]*Y[i]<=D*D:\n s=s+1\nprint(s)'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s168298304', 's171687807', 's258415299', 's366990653', 's414358608', 's428458068', 's497374267', 's532630039', 's567470475', 's581480608', 's788698441', 's807098565', 's874325934', 's900938043', 's913041118', 's224908268'] | [8996.0, 9036.0, 8852.0, 9032.0, 9020.0, 8960.0, 9020.0, 8936.0, 9008.0, 8916.0, 8932.0, 8992.0, 9028.0, 9040.0, 9040.0, 116640.0] | [27.0, 24.0, 22.0, 27.0, 25.0, 22.0, 24.0, 29.0, 26.0, 25.0, 25.0, 24.0, 25.0, 24.0, 22.0, 826.0] | [225, 262, 217, 215, 216, 231, 227, 196, 237, 232, 226, 192, 213, 242, 237, 191] |
p02595 | u695197008 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = map(int, input())\n\n# pts = [tuple(map(int, input())) for _ in range(N)]\n\nans = 0\nif _ in range(N):\n x, y = map(int, input())\n if x**2 + y**2 <= D**2:\n ans+=1\n \nprint(ans)\n ', "N, D = map(int, input().split(' '))\n\n# pts = [tuple(map(int, input())) for _ in range(N)]\n\nans = 0\nfor _ in range(N):\n x, y = map(int, input().split(' '))\n if x**2 + y**2 <= D**2:\n ans+=1\n \nprint(ans)\n \n"] | ['Runtime Error', 'Accepted'] | ['s060753405', 's007861505'] | [9160.0, 9108.0] | [24.0, 476.0] | [188, 212] |
p02595 | u695329583 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d = map(int,input().split())\nans = 0\nfor _ in range(n) :\n x,y = map(int,input().split())\n distance = (x**2 + y**2)**1/2\n if distance <= d :\n ans += 1\nprint(ans)', 'n,d = map(int,input().split())\nans = 0\nfor _ in range(n) :\n x,y = map(int,input().split())\n distance = (x**2 + y**2)**0.5\n if distance <= d :\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s129541033', 's510532748'] | [9012.0, 9524.0] | [486.0, 485.0] | [178, 178] |
p02595 | u696011546 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ["feom collections import sqrt\nif __name__=='__main__':\n n,d=[int(i) for i in input().split()]\n c=0\n for i in range(n):\n x,y = [int(i) for i in input().split()]\n if sqrt(x**2 + y**2) <= d:\n c+=1\n print(c)\n ", "from math import sqrt\nif __name__=='__main__':\n n,d=[int(i) for i in input().split()]\n c=0\n for i in range(n):\n x,y = [int(i) for i in input().split()]\n if sqrt(x**2 + y**2) <= d:\n c+=1\n print(c)"] | ['Runtime Error', 'Accepted'] | ['s610569890', 's497288814'] | [8948.0, 9124.0] | [29.0, 480.0] | [222, 210] |
p02595 | u696444274 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\ndata = [list(map(int, input().split())) for i in range(n)]\ndef dist(x, y):\n return math.sqrt(x**2 + y**2)\ncount = 0\nfor i in range(n):\n dis = dist(data[i][0], data[i][1])\n if dis <= d:\n count += 1\n\nprint(count)\n', 'import math\nn, d = list(map(int, input().split()))\ndata = [list(map(int, input().split())) for i in range(n)]\ndef dist(x, y):\n return math.sqrt(x**2 + y**2)\n\n\ncount = 0\nfor i in range(n):\n dis = dist(data[i][0], data[i][1])\n if dis <= d:\n count += 1\n\nprint(count)\n'] | ['Runtime Error', 'Accepted'] | ['s806223473', 's933002983'] | [9012.0, 45332.0] | [26.0, 607.0] | [239, 280] |
p02595 | u696919316 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nn, d = list(map(int, input().split()))\ncount = 0\nfor _ in range(n):\n x, y = list(map(int, input().split()))\n if math.sqrt(x**2 + y**2) >= d\n count += 1\nprint(count)', 'import math\nn, d = list(map(int, input().split()))\ncount = 0\nfor _ in range(n):\n x, y = list(map(int, input().split()))\n if math.sqrt(x**2 + y**2) <= d:\n count += 1\nprint(count)'] | ['Runtime Error', 'Accepted'] | ['s416176952', 's706780298'] | [8964.0, 9132.0] | [26.0, 514.0] | [179, 182] |
p02595 | u699490860 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d=map(int,input().split())\nfor i in range(n):\n\ta,b=map(int,input().split())\n\tif a*a+b*b<=d*d:ans+=1\nprint(ans)', 'n,d=map(int,input().split())\n\nans=0\n\nfor i in range(n):\n\n\ta,b=map(int,input().split())\tif a*a+b*b<=d*d:ans+=1\n\nprint(ans)', 'n,d=map(int,input().split())\nans=0\nfor i in range(n):\n\ta,b=map(int,input().split())\n\tif a*a+b*b<=d*d:ans+=1\nprint(ans)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s910329237', 's917000306', 's221281540'] | [9112.0, 8964.0, 9088.0] | [29.0, 23.0, 386.0] | [112, 121, 118] |
p02595 | u699522269 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D=map(int,input().split())\nd2 = D**2\nrt = 0\nfor i in range(n):\n x,y = map(int,input().split())\n \n if x**2 + y**2 < d2:\n rt+=1\nprint(rt)', 'N,D=map(int,input().split())\nd2 = D**2\nrt = 0\nfor i in range(N):\n x,y = map(int,input().split())\n \n if x**2 + y**2 <= d2:\n rt+=1\nprint(rt)'] | ['Runtime Error', 'Accepted'] | ['s365306080', 's283734817'] | [9192.0, 9184.0] | [27.0, 458.0] | [143, 144] |
p02595 | u701513230 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['K = int(input())\n\nr = 1\nN = 0\nwhile True:\n N += 7*(10**(r-1))\n if N%K ==0:\n break\n r += 1\n\nprint(r)', 'N,D = map(int,input().split())\nX=[]\nY=[]\ncount = 0\nfor i in range(N):\n a,b = map(float,input().split())\n X.append(a)\n Y.append(b)\nfor i in range(N):\n if (X[i]^2+Y[i]^2)^(1/2) <= D:\n count += 1\n\nprint(count)\n', 'N,D = map(int,input().split())\nX=[]\nY=[]\ncount = 0\nfor i in range(N):\n a,b = map(float,input().split())\n X.append(a)\n Y.append(b)\nfor i in range(N):\n if (X[i]**2+Y[i]**2)**(1/2) <= D:\n count += 1\n\nprint(count)\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s185961885', 's692826813', 's206285426'] | [9072.0, 24932.0, 24840.0] | [25.0, 379.0, 458.0] | [115, 226, 229] |
p02595 | u706743360 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['def dist(x, y):\n return x^2+y^2\n\nin_values = [[4,5], [0,5], [-2,4]]\n\nn = in_values[0][0]\nd = in_values[0][1]\n\ncount = 0\nfor value in in_values[1:]:\n if dist(value[0], value[1]) <= d:\n count+=1\n\nprint(count)', 'import math\n\ndef dist(x, y):\n return math.sqrt(x^2+y^2)\n\n# in_values = input()\n\nl = list(map(int, input().split()))\nn = l[0]\nd = l[1]\n\ncount = 0\nfor _ in range(n):\n l = list(map(int, input().split()))\n if dist(l[0], l[1]) <= d:\n count+=1\n\nprint(count)', 'import math\n\ndef dist(x, y):\n return math.sqrt(x**2+y**2)\n\n# in_values = input()\n\nl = list(map(int, input().split()))\nn = l[0]\nd = l[1]\n\ncount = 0\nfor _ in range(n):\n l = list(map(int, input().split()))\n if dist(l[0], l[1]) <= d:\n count+=1\n\nprint(count)'] | ['Wrong Answer', 'Runtime Error', 'Accepted'] | ['s517353663', 's765457785', 's951530127'] | [9112.0, 8952.0, 8972.0] | [28.0, 434.0, 517.0] | [219, 267, 269] |
p02595 | u712239107 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nn,d=map(int,input().split())\nxy=[map(int,input().split()) for _ in range(n)]\nx,y=[list(i) for i in zip(*xy)]\ncount=0\n\nfor i in range(n):\n if math.sqrt((abs(x[i]**2))*(abs(y[i]**2)))<=d:\n count=count+1 \n\nprint(count)\n', 'import math\nn,d=map(int,input().split())\nxy=[map(int,input().split()) for _ in range(n)]\nx,y=[list(i) for i in zip(*xy)]\ncount=0\n\nfor i in range(n):\n a=math.sqrt((x[i]*x[i])+(y[i]*y[i]))\n if d>=a:\n count=count+1 \n\nprint(count)\n'] | ['Wrong Answer', 'Accepted'] | ['s755787468', 's644109599'] | [116768.0, 116676.0] | [1038.0, 979.0] | [240, 242] |
p02595 | u715213082 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,m = map(int,input().split())\nfor i in range(n):\n p1,p2 = map(int,input().split())\n cnt = 0\n t = ((p1*p1)(p2*p2))**(0.5)\n if t >= m:\n cnt += 1\n print(cnt)', 'N,D=input().split()\nN=int(N)\nD=int(D)\ncnt = 0\nfor i in range(N):\n \n p1,p2 = map(int,input().split())\n t = ((p1*p1)(p2*p2))**(0.5)\n if t >= D:\n cnt += 1\n \nprint(cnt)', 'N,D=input().split()\nN=int(N)\nD=int(D)\ncnt = 0\nfor i in range(N):\n \n p1,p2 = map(int,input().split())\n t = ((p1*p1)(p2*p2))**(0.5)\n if t <= D:\n cnt += 1\n \nprint(cnt)', 'N,D=input().split()\nN=int(N)\nD=int(D)\ncnt = 0\nfor i in range(N):\n \n \n p1,p2 = map(int,input().split())\n t = ((p1*p1)(p2*p2))**(0.5)\n if t >= D:\n \n cnt += 1\n \nprint(cnt)', 'n,m = map(int,input().split())\ncnt = 0\nfor i in range(n):\n \n p1,p2 = map(int,input().split())\n t = ((p1*p1)+(p2*p2))**(0.5)\n if t <= m:\n cnt += 1\n \nprint(cnt)'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s091812471', 's095552402', 's314668308', 's343373945', 's299983789'] | [9108.0, 9136.0, 9016.0, 9032.0, 9648.0] | [28.0, 23.0, 32.0, 25.0, 417.0] | [163, 186, 186, 184, 180] |
p02595 | u720124072 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nn, d = map(int, input().split())\nnum = 0\nans = 0\n\nfor i in range(n):\n x, y = map(int, input().split())\n num = math.sqrt(x**2 + y**2)\n if num <= 0:\n ans += 1\n \nprint(ans)', 'import math\nn, d = map(int, input().split())\nnum = 0\nans = 0\n\nfor i in range(n):\n x, y = map(int, input().split())\n num = math.sqrt(x**2 + y**2)\n if num <= d:\n ans += 1\n \nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s280689096', 's379259743'] | [9192.0, 9172.0] | [474.0, 505.0] | [190, 190] |
p02595 | u721130361 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D=(int(x) for x in input().split())\nxy = [map(int, input().split()) for _ in range(N)]\nx, y = [list(i) for i in zip(*xy)]\n\n\ncount=0\nfor i in range(N) :\n \tz=x[i]**2+y[i]**2\n \tif z<=D :\n\t\t count+=1\nprint(count)', 'N,D=(int(x) for x in input().split())\nxy = [map(int, input().split()) for _ in range(N)]\nx, y = [list(i) for i in zip(*xy)]\n\n\ncount=0\nfor i in range(N) :\n \tz=x[i]**2+y[i]**2\n \tif z<=D**2 :\n\t\t count+=1\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s712893754', 's512094301'] | [116544.0, 116636.0] | [867.0, 910.0] | [210, 213] |
p02595 | u723636155 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = map(int, input().split())\nL = [list(map(int, input().split())) for i in range(N)]\ncounter = 0\n\nfor list in L:\n if list[0]**2+ list[1]**2 <= D:\n counter = counter + 1\n\nprint(str(counter))', 'N, D = map(int, input().split())\nL = [list(map(int, input().split())) for i in range(N)]\ncounter = 0\n \nfor list in L:\n if list[0]**2+ list[1]**2 <= D**2:\n counter = counter + 1\n \nprint(str(counter))'] | ['Wrong Answer', 'Accepted'] | ['s599129696', 's685656186'] | [45476.0, 45424.0] | [529.0, 571.0] | [197, 202] |
p02595 | u723844943 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\nn,d = map(int,input().split())\nres = 0\nfor _ in range(n):\n p,q = map(int,input().split())\n if math.sqrt((p**2)+(q**2))<=d:\n res += 1', 'import math\n\nn,d = map(int,input().split())\nres = 0\nfor _ in range(n):\n p,q = map(int,input().split())\n if math.sqrt((p**2)+(q**2))<=d:\n res += 1\nprint(res)'] | ['Wrong Answer', 'Accepted'] | ['s395535094', 's734611929'] | [9132.0, 9188.0] | [488.0, 488.0] | [158, 169] |
p02595 | u726823037 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import sys\ndef Ii():return int(sys.stdin.readline())\ndef Mi():return map(int,sys.stdin.readline().split())\ndef Li():return list(map(int,sys.stdin.readline().split()))\n\nans = 0\nn,d = Mi()\nd = d*d\nfor i in range(n):\n x,y = Mi()\n if d > x**2+y**2:\n ans += 1\nprint(ans)', 'import sys\ndef Ii():return int(sys.stdin.readline())\ndef Mi():return map(int,sys.stdin.readline().split())\ndef Li():return list(map(int,sys.stdin.readline().split()))\n\nans = 0\nn,d = Mi()\nd = d*d\nfor i in range(n):\n x,y = Mi()\n if d >= x**2+y**2:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s165981516', 's424770626'] | [9200.0, 9200.0] | [272.0, 284.0] | [270, 271] |
p02595 | u727360543 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\ninput_ = input().split()\n\nN = int(input_[0])\nD = float(input_[1])\n\nnum = 0\n\nfor i in range(N):\n x_i,y_i = map(float,input().split())\n \n if(math.sqrt(x_i**2 + y_i**2p) <= D):\n num += 1\n \nprint(num)\n \n ', 'import math\n\ninput_ = input().split()\n\nN = int(input_[0])\nD = float(input_[1])\n\nnum = 0\n\nfor i in range(N):\n x_i,y_i = map(float,input().split())\n \n if(math.sqrt(x_i**2 + y_i**2) <= D):\n num += 1\n \nprint(num)\n \n \n'] | ['Runtime Error', 'Accepted'] | ['s656102234', 's799442231'] | [8964.0, 9236.0] | [24.0, 401.0] | [224, 224] |
p02595 | u729133443 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['z=[map(int,t.split())for t in open(0)];print(sum(x*x+y*y<=z[0][1]**2for x,y in z))', 'from numpy import*\nx,y=loadtxt(open(0)).T\nprint(sum(x*x+y*y<=y[0]**2))'] | ['Runtime Error', 'Accepted'] | ['s513702632', 's604330972'] | [96060.0, 47304.0] | [488.0, 850.0] | [82, 70] |
p02595 | u735542540 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nn,d = map(int,input().split())\nans = 0\nfor i in range(n):\n x,y = map(int,input().split())\n print(math.sqrt((x ** 2) + (y ** 2)))\n if math.sqrt((x ** 2) + (y ** 2)) <= d:\n ans += 1\nprint(ans)', 'import math\nn,d = map(int,input().split())\nans = 0\nfor i in range(n):\n x,y = map(int,input().split())\n if math.sqrt((x ** 2) + (y ** 2)) <= d:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s551328338', 's431595932'] | [9144.0, 9124.0] | [1153.0, 472.0] | [218, 176] |
p02595 | u737842024 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D=map(int,input().split())\nans=0\nfor i in range(N):\n x,y=map(int,input().split())\n if x^2 + y^2<=D^2:\n ans+=1\nprint(ans)\n\n', 'N,D=map(int,input().split())\nans=0\nfor i in range(N):\n x,y=map(int,input().split())\n if x^2 + y^2<=D^2:\n ans+=1\n\nprint(ans)\n', 'def main():\n N,D=map(int,input().split())\n ans=0\n for i in range(N):\n x,y=map(int,input().split())\n if x^2+y^2<=D^2:\n ans+=1\n print(ans)\n\nmain()\n\n', 'N,D=map(int,input().split())\nans=0\nfor i in range(N):\n x,y=map(int,input().split())\n if x*x + y*y<=D*D:\n ans+=1\n\nprint(ans)\n\n\n'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s321417377', 's347698033', 's494759751', 's840773635'] | [9188.0, 9020.0, 9040.0, 9100.0] | [397.0, 389.0, 374.0, 390.0] | [137, 137, 183, 139] |
p02595 | u740157634 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = map(int, input().split())\ncnt = 0\n\nfor i in range(n):\n Z = list(map(int, input().split()))\n X = Z[0]\n Y = Z[1]\n\n if X**2 + Y**2 <= D**2:\n cnt += 1\nprint(cnt)\n', 'n, d = map(int, input().split())\ncnt = 0\n\nfor i in range(n):\n Z = list(map(int, input().split()))\n X = Z[0]\n Y = Z[1]\n\n if X**2 + Y**2 <= d**2:\n cnt += 1\nprint(cnt)\n'] | ['Runtime Error', 'Accepted'] | ['s871276867', 's438182411'] | [9144.0, 9148.0] | [26.0, 520.0] | [184, 184] |
p02595 | u745214511 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import sys\na = []\nfor l in sys.stdin:\n a.append(map(lambda x: int(x), l.split(" ")))\n\nN = a[0][0]\nD = a[0][1]\ncoo = a[1:]\n\nimport math\n\ncount = 0\nfor c in coo:\n l = math.sqrt(c[0]**2 + c[1]**2)\n if l <= D:\n count += 1\n\nprint(count)', 'import sys\na = []\nfor l in sys.stdin:\n if l == "":\n break\n a.append(list(map(lambda x: int(x), l.split(" "))))\n\nN = a[0][0]\nD = a[0][1]\ncoo = a[1:]\n\nimport math\n\ncount = 0\nfor c in coo:\n l = math.sqrt(c[0]**2 + c[1]**2)\n if l <= D:\n count += 1\n\nprint(count)'] | ['Runtime Error', 'Accepted'] | ['s578486161', 's363181949'] | [124728.0, 46912.0] | [854.0, 451.0] | [247, 283] |
p02595 | u756399469 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D=map(int,input())\nD2=D*D\nc=0\nfor i in range(N):\n x,y =sprit(int,input())\n if x*x+y*y<=D2:\n c+=1\nprint(c)\n \n ', 'N,D=map(int,input().split())\nD2=D*D\nc=0\nfor i in range(N):\n x,y =map(int,input().split())\n if x*x+y*y<=D2:\n c+=1\nprint(c)'] | ['Runtime Error', 'Accepted'] | ['s650500529', 's169581070'] | [9088.0, 9124.0] | [25.0, 379.0] | [118, 126] |
p02595 | u761168538 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d=map(int,input().split())\nd=d*d\ncount=0\nfor _ in range(n):\n\tx,y=map(int,input().split())\n\tif(x*x+y*y<=d*d):\n\t\tcount+=1\nprint(count)', 'n,d=map(int,input().split())\nd=d*d\ncount=0\nfor _ in range(n):\n\tx,y=map(int,input().split())\n\tif(x*x+y*y<=d):\n\t\tcount+=1\nprint(count)'] | ['Wrong Answer', 'Accepted'] | ['s427452095', 's324182027'] | [9192.0, 9180.0] | [401.0, 389.0] | [134, 132] |
p02595 | u772649753 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['l = [list(map(int,input.split())) for i in range(n)]\nN = l[0][0]\nD = l[0][1]\ncount = 0\nfor i in range(N):\n if l[i+1][0]**2 + l[i+1][1]**2 <= D**2:\n count += 1\nprint(count)', 'N,D = map(int,input().split())\ncount = 0\nfor i in range(N):\n X,Y = map(int,input().split())\n if X**2 + Y**2 <= D**2:\n count += 1\nprint(count)'] | ['Runtime Error', 'Accepted'] | ['s650966832', 's428434965'] | [9120.0, 9208.0] | [26.0, 475.0] | [181, 154] |
p02595 | u779327980 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = map(int, input().split())\n\ncount = 0\n\nfor i in N:\n x, y = map(int, input().split())\n if D > pow(x**2+y**2, 0.5):\n count += 1\n else:\n continue\n \nprint(count)', 'N, D = map(int, input().split())\n\ncount = 0\n\nfor i in range(N):\n x, y = map(int, input().split())\n if D > pow(x**2+y**2, 0.5):\n print(pow(x**2+y**2, 0.5))\n count += 1\n else:\n continue\n \nprint(count)', 'N, D = map(int, input().split())\n\ncount = 0\n\nfor i in range(N):\n x, y = map(int, input().split())\n if D >= pow(x**2+y**2, 0.5):\n count += 1\n \nprint(count)'] | ['Runtime Error', 'Wrong Answer', 'Accepted'] | ['s214300859', 's866126792', 's000253872'] | [9036.0, 9524.0, 9552.0] | [23.0, 1062.0, 521.0] | [175, 213, 170] |
p02595 | u780772381 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ["import math\nn,d=map(int,input().split(' '))\ncnt=0\nwhile n>0:\n x,y=map(int,input().split(' '))\n res=math.sqrt(x**2+y**2)\n if res<=d:\n cnt+=1\nprint(cnt)\n", "import math\nn,d=map(int,input().split(' '))\ncnt=0\nwhile n>0:\n x,y=map(int,input().split(' '))\n res=math.sqrt(x**2+y**2)\n if res<=d:\n cnt+=1\n n=n-1\nprint(cnt)\n"] | ['Runtime Error', 'Accepted'] | ['s497598158', 's126616507'] | [9052.0, 9136.0] | [477.0, 497.0] | [167, 177] |
p02595 | u783340206 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = map(int,input().split())\ncnt = 0\nwhile(n>0):\n p,q = map(int,input().split())\n if d**2 <= (p**2)+(q**2):\n cnt+=1\nprint(cnt)', 'n, d = map(int,input().split())\ncnt = 0\nfor i in range(n):\n p,q = map(int,input().split())\n if p*p+q*q<=d:\n cnt+=1\nprint(cnt)', 'n, d = map(int,input().split())\ncnt = 0\nwhile(n>0):\n p,q = map(int,input().split())\n if (p**2)+(q**2) <= d:\n cnt+=1\nprint(cnt)', 'n, d = map(int,input().split())\ncnt = 0\nwhile(n>0):\n p,q = map(int,input().split())\n if d <= int((p**2)+(q**2)):\n cnt++\nprint(cnt)', 'n, d = map(int,input().split())\ncnt = 0\nfor i in range(n):\n p,q = map(int,input().split())\n if d <= (p**2)+(q**2):\n cnt+=1\nprint(cnt)', 'n, d = map(int(input()))\ncnt = 0\nwhile(n>0):\n p,q = map(int(input()))\n if d == int((p**2)+(q**2)):\n cnt++\nprint(cnt)', 'n, d = map(int,input().split())\ncnt = 0\nwhile(n--):\n p,q = map(int,input().split())\n if p**2 + q**2 <= d**2:\n cnt+=1\nprint(cnt)\n', 'n, d = map(int,input().split())\ncnt = 0\nfor i in range(n):\n p,q = map(int,input().split())\n if p**2 + q**2 <= d**2:\n cnt+=1\nprint(cnt)\n'] | ['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s088880105', 's287757416', 's349390392', 's576899263', 's825511378', 's939111480', 's991746054', 's581864827'] | [9124.0, 9120.0, 8992.0, 8836.0, 9096.0, 8940.0, 8952.0, 9088.0] | [469.0, 378.0, 441.0, 23.0, 441.0, 26.0, 23.0, 478.0] | [142, 138, 139, 143, 146, 129, 141, 148] |
p02595 | u784084008 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nxy = [map(int, input().split()) for _ in range(5)]\nx, y = [list(i) for i in zip(*xy)]\n\nn = 0\n\nfor i ,index in enumerate(x[0]):\n m = math.sqrt(x[i+1]**2 + y[i+1]**2)\n if (m <= y[0]):\n n += 1\n\nprint(n)', 'import math\nn,d = map(int,input().split())\n\nx =[]\ny = []\nfor i in range(n):\n x1,y1 = map(int,input().split())\n x.append(x1)\n y.append(y1)\n\nn = 0\n \nfor i ,index in enumerate(x):\n m = math.sqrt(x[i]**2 + y[i]**2)\n if m <= d:\n n += 1\n \nprint(n)'] | ['Runtime Error', 'Accepted'] | ['s451057054', 's880814002'] | [9124.0, 24912.0] | [32.0, 536.0] | [216, 257] |
p02595 | u792278636 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nn, d = map(int, input().split())\nlst1 = []\nlst2 = []\nans = 0\nfor i in range(n):\n x, y = map(int, input().split())\n # lst2 =[x, y]\n # list1.append(lst2)\n cal = math.sqrt(x^2+y^2)\n lst1.append(cal)\n \nfor i in range(n):\n if lst1[i] >= d:\n ans += 1\n else:\n continue\nprint(ans)\n', 'import math\nn, d = map(int, input().split())\nlst1 = []\nlst2 = []\nans = 0\nfor i in range(n):\n x, y = map(int, input().split())\n # lst2 =[x, y]\n # list1.append(lst2)\n cal = math.sqrt(x^2+y^2)\n lst1.append(cal)\n \nfor i in range(n):\n if lst1[i] >= d:\n ans += 1\n else:\n continue:\nprint(ans)', 'import math\nN,D= map(int, input().split(" "))\ncount = 0\nfor i in range(0,N):\n X,Y= map(int, input().split(" "))\n d= math.sqrt(pow(X,2)+pow(Y,2))\n if d<= D:\n count = count+1\nprint(count)\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s262103946', 's762216186', 's585211045'] | [16844.0, 8968.0, 9108.0] | [418.0, 27.0, 541.0] | [299, 299, 202] |
p02595 | u793010149 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nn,d=map(int,input().split())\nans=0\nfor i in range(1,n+1):\n x,y=map(int,input().split())\n if math.sqrt((x**2+y**2)*10**5)<=d*10**5:\n ans+=1\n \nprint(ans)', 'import math\nn,d=map(int,input().split())\nans=0\nfor i in range(1,n+1):\n x,y=map(int,input().split())\n if math.sqrt((x**2+y**2)*10**6)<=d*10**3:\n ans+=1\n \nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s274489104', 's702805165'] | [9196.0, 9188.0] | [496.0, 502.0] | [169, 169] |
p02595 | u793225228 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['def q2():\n import math\n n, d = map(int, input().split())\n points = set([tuple(int(v) for v in input().split()) for v in range(n)])\n print(points)\n\n res = [math.sqrt((x**2 + y**2)) <= d for x, y in points]\n print(sum(res))\n\n\nif __name__ == "__main__":\n \n q2()\n', '\ndef q2():\n import math\n n, d = map(int, input().split())\n points = [[int(v) for v in input().split()] for v in range(n)]\n\n res = [math.sqrt((x**2 + y**2)) <= d for x, y in points]\n print(sum(res))\n\n\n\nif __name__ == "__main__":\n \n q2()\n'] | ['Wrong Answer', 'Accepted'] | ['s294848743', 's757782340'] | [51216.0, 43896.0] | [800.0, 515.0] | [289, 263] |
p02595 | u794136315 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nN,D = [int(x) for x in input().split()]\ncount = 0\nfor i in range(D):\n X,Y = [int(x) for x in input().split()]\n if math.sqrt(X**2 + Y**2) <= D:\n count += 1\nprint(count) ', 'import math\nN,D = [int(x) for x in input().split()]\ncount = 0\nfor i in range(0,N):\n X,Y = [int(x) for x in input().split()]\n if math.sqrt(X**2 + Y**2) <= D:\n count += 1\nprint(count) '] | ['Runtime Error', 'Accepted'] | ['s148222276', 's382191686'] | [9180.0, 9168.0] | [474.0, 479.0] | [192, 190] |
p02595 | u798886512 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d=map(int,input().split())\nctr=0\nfor i in range(n):\n x,y=map(int,input().split())\n t=(x**2+y**2)**(1/2)\n if t>=d:\n ctr+=1\nprint(ctr', 'n,d=map(int,input().split())\nctr=0\nfor i in range(n):\n x,y=map(int,input().split())\n t=(x**2+y**2)**(1/2)\n if t<=d:\n ctr+=1\nprint(ctr)\n'] | ['Runtime Error', 'Accepted'] | ['s086573797', 's500078542'] | [9056.0, 9540.0] | [24.0, 481.0] | [139, 141] |
p02595 | u804800128 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nN , D = ( int(x) for x in input().split() )\nX = [ ]\nY = [ ]\n\nfor i in range(N):\n x , y = ( int(x) for x in input().split() )\n X.append(x)\n Y.append(y)\n\n\nans = 0\nfor i in range( len(X) ):\n x1 = X[i]\n y1 = Y[i]\n d = math.sqrt( (x1)**2 + (y1)**2 )\n print(x1,y1,d)\n if d <= D:\n ans += 1\n\nprint(ans)', 'import math\nN , D = ( int(x) for x in input().split() )\nX = [ ]\nY = [ ]\n\nfor i in range(N):\n x , y = ( int(x) for x in input().split() )\n X.append(x)\n Y.append(y)\n\n\nans = 0\nfor i in range( N ):\n x1 = X[i]\n y1 = Y[i]\n d = math.sqrt( (x1)**2 + (y1)**2 )\n if d <= D:\n ans += 1\n\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s002273610', 's547150542'] | [25508.0, 24928.0] | [830.0, 557.0] | [337, 313] |
p02595 | u805066078 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nn, d = map(int, input().split())\np = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if sqrt(pow(abs(x),2)+pow(abs(y),2)) <= d :\n p += 1\nprint(p)', 'import math\nn, d = map(int, input().split())\np = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if sqrt(pow(x,2)+pow(y,2)) ≤ d :\n p += 1\nprint(p)\n ', 'from math import *\nn, d = map(int, input().split())\np = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if sqrt(pow(abs(x),2)+pow(abs(y),2)) <= d :\n p += 1\nprint(p)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s315587133', 's672439944', 's336384988'] | [9164.0, 9024.0, 9248.0] | [29.0, 26.0, 454.0] | [170, 164, 177] |
p02595 | u805586810 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ["from collections import Counter\nimport copy\nfrom itertools import combinations\n\n\ndef A(x):\n return 'Yes' if x >= 30 else 'No'\n\n\ndef B(N, D, X, Y):\n ans = 0\n for i in range(N):\n Di = X[i]**2 + Y[i]**2\n if Di < D**2:\n ans += 1\n return ans\n\n\ndef main():\n N, D = map(int, input().split())\n X = []\n Y = []\n for i in range(N):\n Xi, Yi = map(int, input().split())\n X.append(Xi)\n Y.append(Yi)\n print(B(N, D, X, Y))\n\n\nif __name__ == '__main__':\n main()\n", "from collections import Counter\nimport copy\nfrom itertools import combinations\n\n\ndef A(x):\n return 'Yes' if x >= 30 else 'No'\n\n\ndef B(N, D, X, Y):\n ans = 0\n for i in range(N):\n Di = X[i]**2 + Y[i]**2\n if Di <= D**2:\n ans += 1\n return ans\n\n\ndef main():\n N, D = map(int, input().split())\n X = []\n Y = []\n for i in range(N):\n Xi, Yi = map(int, input().split())\n X.append(Xi)\n Y.append(Yi)\n print(B(N, D, X, Y))\n\n\nif __name__ == '__main__':\n main()\n"] | ['Wrong Answer', 'Accepted'] | ['s647625686', 's450062923'] | [25392.0, 25392.0] | [489.0, 497.0] | [474, 475] |
p02595 | u813033918 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\nN,D = map(int,input().split())\ncnt = 0\nfor n in range(N):\n a,b = map(int,input().split())\n if sqrt(a**2 + b**2)-D>=0:\n cnt+=1\nprint(cnt)', 'import math\n\nN,D = map(int,input().split())\ncnt = 0\nfor n in range(N):\n a,b = map(int,input().split())\n if math.sqrt(a**2 + b**2)-D<=0:\n cnt+=1\nprint(cnt)\n\n'] | ['Runtime Error', 'Accepted'] | ['s064457697', 's270922080'] | [9168.0, 9124.0] | [26.0, 471.0] | [162, 169] |
p02595 | u813042907 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d=map(int,input().split())\nt=0\nfor i in range(n):\n a,b=map(int,input().split())\n if a*a+b*b<=d*d:\n t+=1\nprint(n)', 'n,d=map(int,input().split())\nt=0\nfor i in range(n):\n a,b=map(int,input().split())\n if a*a+b*b<=d*d:\n t+=1\nprint(t)'] | ['Wrong Answer', 'Accepted'] | ['s703203084', 's385824947'] | [9024.0, 9188.0] | [387.0, 403.0] | [127, 127] |
p02595 | u814288001 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['\nn,d=map(int,input().split())\ncnt = 0\nfor _ in range(n):\n x,y = map(int,input().split())\n if(sqrt((x**2) + (y**2))<=d):\n cnt +=1 \nprint(cnt)', 'import math as m\nn,d=map(int,input().split())\ncnt = 0\nfor _ in range(n):\n x,y = map(int,input().split())\n if(m.sqrt((x**2) + (y**2))<=d):\n cnt +=1 \nprint(cnt)'] | ['Runtime Error', 'Accepted'] | ['s899746587', 's688927556'] | [9120.0, 9124.0] | [30.0, 501.0] | [153, 171] |
p02595 | u816377834 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nN = int(input())\nx = int(input())\ny = int(input())\n\nD = int(input())\ndistance = math.sqrt(x**2 + y**2)\n\ncount = 0\nfor i in range(1, N+1):\n if distance <= D:\n count += 1\n\nprint(count)', 'import math\nN, D = map(int, input().split()) \ncount = 0\nfor i in range(N):\n x, y = map(int, input().split())\n if math.sqrt(x**2 + y**2) <= D:\n count += 1\nprint(count)'] | ['Runtime Error', 'Accepted'] | ['s307226469', 's342860797'] | [9092.0, 9136.0] | [28.0, 471.0] | [204, 205] |
p02595 | u818213347 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\ninfo = list(map(int, input().split()))\nnum = info[0]\ndis = info[1]\nA = [list(map(int, input().split())) for i in range(num)]\ndisA = [math.squart(A[i][0]^2 + A[i][1]^2) for i in range(num)]\ncnt = 0 \nfor i in range(num):\n if disA <= dis:\n cnt += 1\nprint(cnt)\n', 'import math\n\ninfo = list(map(int, input().split()))\nnum = info[0]\ndis = info[1]\nA = [list(map(int, input().split())) for i in range(num)]\ndisA = [math.sqrt(A[i][0]**2 + A[i][1]**2) for i in range(num)]\ncnt = 0 \nfor i in range(num):\n if disA[i] <= dis:\n cnt += 1\nprint(cnt)\n'] | ['Runtime Error', 'Accepted'] | ['s610065374', 's507329319'] | [45360.0, 53392.0] | [426.0, 573.0] | [280, 283] |
p02595 | u820031813 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = input().split()\n\nx = [0] * N\ny = [0] * N\n\nfor i in range(N):\n x[i], y[i] = map(int, input().split())\n \ncounter = 0\n\nfor i in range(N):\n dist = x[i] * x[i] + y[i] * y[i]\n if dist <= D:\n counter += 1\n\nprint(counter)', 'import math\n\nN, D = input().split()\n\nx = [0] * N\ny = [0] * N\n\nfor i in range(N):\n x[i], y[i] = map(int, input().split())\n \ncounter = 0\n\nfor i in range(N):\n dist = x[i] * x[i] + y[i] * y[i]\n if dist <= D:\n counter += 1\n\nprint(counter)', 'N, D = input().split()\n\nx = [0] * N\ny = [0] * N\n\nfor i in range(N):\n x[i], y[i] = map(int, input().split())\n \ncounter = 0\n\nfor i in range(N):\n dist = x[i] * x[i] + y[i] * y[i]\n if dist <= D*D:\n counter += 1\n\nprint(counter)', 'N, D = map(int, input().split())\n\nx = [0] * N\ny = [0] * N\n\nfor i in range(N):\n x[i], y[i] = map(int, input().split())\n \ncounter = 0\n\nfor i in range(N):\n dist = x[i] * x[i] + y[i] * y[i]\n if dist <= D*D:\n counter += 1\n\nprint(counter)'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s080229570', 's099191531', 's789565841', 's269542135'] | [9068.0, 9072.0, 9140.0, 24696.0] | [28.0, 23.0, 21.0, 459.0] | [227, 240, 229, 239] |
p02595 | u836695640 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import numpy as np\nn, d = map(int, input().split())\nx, y = list(map(int, input().split()))\n\nfor i in range (n):\n\tnp.sqrt(x ** 2 + y ** 2) <= d', 'from math import sqrt\nn, d = map(int, input().split())\nxy = [map(int, input().split())for _ in range(n)]\nans = 0\n\nfor x, y in xy:\n s = sqrt(x**2 + y**2)\n if s <= d:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s267994751', 's152809524'] | [27080.0, 96280.0] | [459.0, 830.0] | [142, 190] |
p02595 | u843318346 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d = map(int,input().split())\nfrom math import sqrt\ncount = 0\nfor _ in range(n):\n x,y = map(int,input().split())\n m = sqrt(x**2 + y**2)\n if m <= d:\n count += 1\nprint(ccount)', 'n,d = map(int,input().split())\nfrom math import sqrt\ncount = 0\nfor i in range(n):\n x,y = map(int,input().split())\n m = sqrt(x**2 + y**2)\n if m <= d:\n count += 1\nprint(count)\n'] | ['Runtime Error', 'Accepted'] | ['s981260327', 's188667025'] | [9040.0, 9084.0] | [463.0, 481.0] | [180, 190] |
p02595 | u856564576 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = map(int, input().split(" "))\np = []\nans = 0\nfor i in range(n):\n p.append(list(map(int, input().split(" "))))\n\nfor i, [x, y] in enumerate(p):\n if(x >= d or y >= d):\n continue\n if(x**2 + y**2 <= d**2):\n ans += 1\n\n\nprint(ans)\n', 'n, d = map(int, input().split(" "))\np = []\nans = 0\nfor i in range(n):\n p.append(list(map(int, input().split(" "))))\n\nfor i, [x, y] in enumerate(p):\n if(x > d or y > d):\n continue\n if(x**2 + y**2 <= d**2):\n ans += 1\n\n\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s961585719', 's227798153'] | [45320.0, 45376.0] | [593.0, 588.0] | [253, 250] |
p02595 | u866325817 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n=int(input())\nd=int(input())\ncnt=0\nfor i in range(0,n):\n x=int(input())\n y=int(input())\n z=sqrt((x*x)+(y*y))\n if(z>=d):\n cnt+=1\n \nprint(cnt)', 'import math\nn, d = map(int, input().split()) \ncnt=0\nfor i in range(0,n):\n x, y = map(int, input().split()) \n z=math.sqrt((x*x)+(y*y))\n if(z<=d):\n cnt+=1\n \nprint(cnt)'] | ['Runtime Error', 'Accepted'] | ['s266351823', 's716663541'] | [9164.0, 9124.0] | [21.0, 430.0] | [151, 174] |
p02595 | u866850376 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d = map(int, input())\n\ncount = 0\nfor t in range(n):\n x,y = map(int, input())\n if x*x + y*y <= d*d:\n count += 1\n\nprint(count)', 'n,d = map(int, input().split(" "))\n\ncount = 0\nfor t in range(n):\n x,y = map(int, input().split(" "))\n if x*x + y*y <= d*d:\n count += 1\n\nprint(count)'] | ['Runtime Error', 'Accepted'] | ['s726751589', 's262574215'] | [9176.0, 9164.0] | [25.0, 406.0] | [131, 153] |
p02595 | u867981789 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = map(int,input().split())\nP = [list(map(int,input().split())) for i in range(M)]\nans = 0\nfor i in range(N):\n num = P[N]\n X , Y = num\n if X*X + Y*Y <= D*D:\n ans += 1\nprint(ans)\n', 'N = int(input())\nD = int(input())\nans = 0\nfor i in range(N):\n X = int(input())\n Y = int(input())\n if X*X + Y*Y <= D*D:\n ans += 1\nprint(ans)\n', 'N, D = map(int, input().split())\nans = 0\nfor l in range(N):\n X , Y = map(int,input().split())\n if X*X + Y*Y <= D*D:\n ans += 1\nprint(ans)\n'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s737392844', 's803841219', 's908727600'] | [9184.0, 8836.0, 9076.0] | [26.0, 24.0, 398.0] | [198, 156, 150] |
p02595 | u868055170 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\n\nDISTANCE_NUM=0\n\nN,D=(int(x) for x in input.split())\n\nfor _ in range(N)\n x,y=(int(x) for in input.split())\n distance=math.sqrt(x**2+y**2)\n \n if distance <= D:\n DISTANCE_NUM+=1\n \nprint(DISTANCE_NUM)', 'import math\n \nDISTANCE_NUM=0\n \nN,D=(int(x) for x in input.split())\n \nfor _ in range(N)\n x,y=(int(x) for x in input.split())\n distance=math.sqrt(x**2+y**2)\n \n if distance <= D:\n DISTANCE_NUM+=1\n \nprint(DISTANCE_NUM)', 'import math\n \nDISTANCE_NUM=0\n \nN,D=map(int,input().split())\n \nfor _ in range(N):\n x,y=map(int,input().split())\n distance=math.sqrt(x**2+y**2)\n \n if distance <= D:\n DISTANCE_NUM+=1\n \nprint(DISTANCE_NUM)'] | ['Runtime Error', 'Runtime Error', 'Accepted'] | ['s296748131', 's430070459', 's128792324'] | [9020.0, 8884.0, 9184.0] | [29.0, 26.0, 493.0] | [219, 224, 211] |
p02595 | u879866069 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\nn, d = input().split()\npoints = []\nfor i in range(n):\n points.append([int(x) for x in input().split()])\nprint(len([p for p in points if math.sqrt(p[0]**2+p[1]**2) <= d]))', 'import math\nn, d = [int(i) for i in input().split()]\npoints = []\nfor i in range(n):\n points.append([int(x) for x in input().split()])\nprint(len([p for p in points if math.sqrt(p[0]**2+p[1]**2) <= d]))'] | ['Runtime Error', 'Accepted'] | ['s829415681', 's823736922'] | [9120.0, 43468.0] | [24.0, 557.0] | [183, 201] |
p02595 | u888933875 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import sys\nN, D = map(int, input().split())\nans = 0\nfor _ in range(N):\n x, y = map(int, sys.stdin.readline().split())\n if x ** + y** <= D**:\n ans += 1\nprint(ans)', 'n,d=map(int,input().split())\nc=0\nfor _ in range(n): \n x,y= map(int,input().split())\n if x**2+y**2 <=d**2:\n c+=1\nprint(c)'] | ['Runtime Error', 'Accepted'] | ['s285788091', 's488743947'] | [8956.0, 8996.0] | [24.0, 483.0] | [174, 125] |
p02595 | u893178798 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N, D = [int(i) for i in input().split()]\nprint(N, D)\nD2 = D ** 2\nans = 0\nfor i in range(N):\n X, Y = [int(i) for i in input().split()]\n if X**2 + Y**2 <= D2:\n ans += 1\nprint(ans)\n', 'N, D = [int(i) for i in input().split()]\nD2 = D ** 2\nans = 0\nfor i in range(N):\n X, Y = [int(i) for i in input().split()]\n if X**2 + Y**2 <= D2:\n ans += 1\nprint(ans)\n'] | ['Wrong Answer', 'Accepted'] | ['s974239143', 's610104313'] | [9180.0, 9172.0] | [463.0, 460.0] | [191, 179] |
p02595 | u893661063 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D=input().split() \nN=int(N)\nD=int(D)\ncount = 0\n\nlist = []\nfor i in range(N):\n a, b=input().split()\n list.append((int(a),int(b)))\n\nfor n in range(N):\n distance=((list[u][0]) ** 2 + (list[u][1]) ** 2)\n if distance <= D:\n count += 1\n\nprint (count)', '#B-distance\nN, D = map(int, input().split())\ncount = 0\n\nfor i in range(N):\n x, y = map(int, input().split())\n if (x*x + y*y <= D*D):\n count += 1\nprint (count)\n'] | ['Runtime Error', 'Accepted'] | ['s586910050', 's524832538'] | [35944.0, 9140.0] | [388.0, 397.0] | [265, 172] |
p02595 | u898631971 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N , D = map(int,input().split())\n\nc = 0\nfor i in range(N):\n x , y = map(int,input().split())\n\n z = (x**2+y**2)**0.5\n\n # print(z)\n\n if D >= z:\n c+=1\n print(c)', 'N , D = map(int,input().split())\n\nc = 0\nfor i in range(N):\n x , y = map(int,input().split())\n\n z = (x**2+y**2)**0.5\n\n print(z)\n\n if D <= z:\n c+=1\n print(c)', 'N , D = map(int,input().split())\n\nc = 0\nfor i in range(N):\n x , y = map(int,input().split())\n\n z = (x**2+y**2)**0.5\n\n # print(z)\n\n if D <= z:\n c+=1\n print(c)', 'N , D = map(int,input().split())\n\nc = 0\nfor i in range(N):\n x , y = map(int,input().split())\n\n z = (x**2+y**2)**0.5\n\n # print(z)\n\n if D >= z:\n c+=1\nprint(c)'] | ['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s257870672', 's331442259', 's516806397', 's793673261'] | [9500.0, 9496.0, 9564.0, 9580.0] | [895.0, 1141.0, 915.0, 486.0] | [183, 181, 183, 175] |
p02595 | u901850884 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['\n# x=int(input())\n#\n# if x>=30:\n# print("Yes")\n# else:\n# print("No")\n\n\nn,d = (int(y) for y in input().split())\nx=[]\ncount=0\nfor i in range(n):\n n, m = (int(y) for y in input().split())\n s=n**2+m**2\n if s<(d**2):\n count+=1\nprint(count)\n\n', '\n# x=int(input())\n#\n# if x>=30:\n# print("Yes")\n# else:\n# print("No")\n\n\nn,d = (int(y) for y in input().split())\nx=[]\ncount=0\nfor i in range(n):\n n, m = (int(y) for y in input().split())\n s=n**2+m**2\n # print(s)\n if s<=(d**2):\n count+=1\nprint(count)\n\n'] | ['Wrong Answer', 'Accepted'] | ['s741791129', 's780774207'] | [9108.0, 9172.0] | [542.0, 563.0] | [276, 292] |
p02595 | u904331908 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n,d = map(int,input().split())\n\np = [list(map(int,input().split())) for i in range n]\n\nkyori = d * d\ncount = 0\n\nfor s in range(n):\n nagasa = p[s][0] * p[s][0] + p[s][1] * p[s][1]\n if nagasa <= kyori:\n count += 1\n \nprint(count)', 'n,d = map(int,input().split())\n\np = [list(map(int,input().split())) for i in range(n)]\n\nkyori = d * d\ncount = 0\n\nfor s in range(n):\n nagasa = p[s][0] * p[s][0] + p[s][1] * p[s][1]\n if nagasa <= kyori:\n count += 1\n \nprint(count)\n'] | ['Runtime Error', 'Accepted'] | ['s703935933', 's096315436'] | [9036.0, 45464.0] | [24.0, 497.0] | [234, 236] |
p02595 | u906501980 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['def main():\n n, d = map(int, input().split())\n is_shorter = lambda dis, x, y : dis**2 <= (x**2 + y**2)\n ans = sum([is_shorter(d, map(int, input().split())) for _ in range(n)])\n print(ans)\n\nif __name__ == "__main__":\n main()', 'def main():\n n, d = map(int, input().split())\n is_shorter = lambda dis, x, y : (x**2 + y**2) <= dis**2\n ans = sum([is_shorter(d, *map(int, input().split())) for _ in range(n)])\n print(ans)\n\nif __name__ == "__main__":\n main()'] | ['Runtime Error', 'Accepted'] | ['s887929493', 's476098153'] | [9188.0, 10456.0] | [29.0, 507.0] | [238, 239] |
p02595 | u907676137 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['import math\na, b = map(int, input().split())\ncount = 0\nfor n in range(a):\n c, d = map(int, input().split())\n e = (c*c) + (d * d)\n if int(math.sqrt(e)) < b:\n count += 1\nprint(count)', 'import math\na, b = map(int, input().split())\ncount = 0\nfor n in range(a):\n c, d = map(int, input().split())\n e = (c*c) + (d * d)\n if math.sqrt(e) < b:\n count += 1\nprint(count)', 'import math\na, b = map(int, input().split())\ncount = 0\nfor n in range(a):\n c, d = map(int, input().split())\n e = pow(c, 2) + pow(d, 2)\n if math.sqrt(e) <= b:\n count += 1\nprint(count)'] | ['Wrong Answer', 'Wrong Answer', 'Accepted'] | ['s046062065', 's641893258', 's259447202'] | [9168.0, 9196.0, 9076.0] | [439.0, 425.0, 520.0] | [196, 191, 199] |
p02595 | u912556688 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D = map(int,input().split())\nans = 0\nfor i in range(N):\n num1,num2 = map(float,input().split())\n if (num1 ** 2 + num2 ** 2) ** (1 / 2) < D:\n ans += 1', 'N,D = map(int,input().split())\nans = 0\nfor i in range(N):\n num1,num2 = map(float,input().split())\n if (num1 ** 2 + num2 ** 2) ** (1 / 2) <= D:\n ans += 1\nprint(ans)'] | ['Wrong Answer', 'Accepted'] | ['s697476302', 's522627935'] | [9624.0, 9632.0] | [433.0, 435.0] | [156, 168] |
p02595 | u914693053 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D=map(int,input().split())\nl=[]\nl1=[]\ncount=0\nfor i in range(N):\n x,y=map(int,input().split())\n l.append(x)\n l1.append(y)\nfor i in range(N):\n if (l[i]**2 +l1**2)**0.5 <=D:\n count+=1\nprint(count) \n \n', 'N,D=map(int,input().split())\nl=[]\nl1=[]\ncount=0\nfor i in range(N):\n x,y=map(int,input().split())\n l.append(x)\n l1append(y)\nfor i in range(N):\n if (l[i]**2 +l1[i]**2)**0.5 <=D:\n count+=1\nprint(count) \n \n', 'N,D=map(int,input().split())\nl=[]\nl1=[]\ncount=0\nfor i in range(N):\n x,y=map(int,input().split())\n l.append(x)\n l1append(y)\nfor i in range(N):\n if (l[i]**2 +l1**2)**0.5 <=D:\n count+=1\nprint(count) \n ', 'N,D=map(int,input().split())\nl=[]\nl1=[]\ncount=0\nfor i in range(N):\n x,y=map(int,input().split())\n l.append(x)\n l1.append(y)\nfor i in range(N):\n if (l[i]**2 +l1[i]**2)**0.5 <=D:\n count+=1\nprint(count) \n \n'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s344100866', 's582044404', 's858170565', 's402067963'] | [24808.0, 9172.0, 9116.0, 24928.0] | [384.0, 26.0, 25.0, 532.0] | [211, 213, 209, 214] |
p02595 | u914883924 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N,D=map(int,input().split())\nn=0\nfor x,y=map(int,input().split()) in range(N):\n if (x**2+y**2)**(1/2)<=D:\n n+=1\nprint(n)', 'N,D=map(int,input().split())\nx,y=map(int,input().split())\ni=0\nfor i in range(N):\n if (x**2+y**2)**(1/2)<=D:\n i+=1\n print(i)', 'N,D=map(int,input().split())\nx,y=map(int,input().split())\nn=0\nfor i in range(N):\n if (x**2+y**2)**(1/2)<=D:\n n+=1\n print(n)', 'while True:\n i=0\n x,y=map(int,input().split())\n (x**2+y**2)**(1/2)\n i+=1\n print(i)', 'N,D=map(int,input().split())\nn=0\nfor i in range(N):\n x,y=map(int,input().split())\n if (x**2+y**2)**(1/2)<=D:\n n+=1\nprint(n)'] | ['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted'] | ['s457108141', 's557037122', 's645438755', 's960210061', 's374390967'] | [8972.0, 9428.0, 9452.0, 9616.0, 9596.0] | [24.0, 211.0, 226.0, 964.0, 490.0] | [130, 140, 140, 97, 136] |
p02595 | u917678406 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['n, d = list(map(int, input().split()))\ncount = 0\nfor _ in range(n):\n x, y = list(map(int, input().split()))\n if (x**2 + y**2) <= d**2:\n ++count\nprint(count)', 'N = int(input())\nD = int(input())\ncount = 0\nfor i in range (N):\n x = int(input())\n y = int(input())\n if((D * D) >= ((x * x) + (y * y))):\n ++count\nprint(count)', 'N = input()\nD = input()\ncount = 0\nfor i in range (N):\n x = input()\n y = input()\n if((D * D) >= ((x * x) + (y * y))):\n ++count\nprint(count)', 'N, D = list(map(int, input().split()))\ncount = 0\nfor i in range(N):\n x, y = list(map(int, input().split()))\n if (x**2 + y**2) <= d**2:\n count += 1\nprint(count)', 'n, d = list(map(int, input().split()))\ncount = 0\nfor _ in range(n):\n x, y = list(map(int, input().split()))\n if (x**2 + y**2) <= d**2:\n count+=1\nprint(count)'] | ['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s064338299', 's083821212', 's128364653', 's612337727', 's174765198'] | [9104.0, 9116.0, 8976.0, 9176.0, 9068.0] | [502.0, 27.0, 27.0, 26.0, 523.0] | [161, 174, 154, 164, 162] |
p02595 | u922050654 | 2,000 | 1,048,576 | We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}. | ['N=int(input())\nD=int(input())\nans=0\nfor i in range(N):\n x,y=[int(i) for i in input().split()] \n if x*x + y*y <= D*D:\n ans += 1\nprint(ans)\n', 'N=int(input())\nD=int(input())\nans=0\nfor i in range(N):\n x,y=int(input()).split()\n if x*x + y*y <= D*D:\n ans +=1\nprint(ans)\n', 'N=int(input())\nD=int(input())\ncount=0\na = list(map(int,input().strip().split()))[:N]\nfor i in range(len(a)):\n distance=((i[0]**2)+(i[1]**2))**0.5\n if distance>D:\n count+=1\nprint(count)', 'N=int(input())\nD=int(input())\nans=0\nfor i in range(N):\n x,y=int(input()).split()\n if x*x + y*y <= D*D\n ans+=1\nprint(ans)', 'N,D=[int(i) for i in input().split()]\nans=0\nfor i in range(N):\n x,y=[int(i) for i in input().split()] \n if x*x + y*y <= D*D:\n ans += 1\nprint(ans)\n'] | ['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted'] | ['s063995858', 's150021138', 's201538326', 's951098249', 's689659754'] | [9176.0, 9032.0, 9192.0, 9024.0, 9188.0] | [27.0, 30.0, 26.0, 26.0, 402.0] | [145, 128, 189, 123, 153] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.