problem_id
stringlengths
6
6
user_id
stringlengths
10
10
time_limit
float64
1k
8k
memory_limit
float64
262k
1.05M
problem_description
stringlengths
48
1.55k
codes
stringlengths
35
98.9k
status
stringlengths
28
1.7k
submission_ids
stringlengths
28
1.41k
memories
stringlengths
13
808
cpu_times
stringlengths
11
610
code_sizes
stringlengths
7
505
p02595
u589766880
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['x,y = int(input())\nN = x[0]\nD = y[0]\ncount = 0\nfor i in range(1,N):\n dist = sqrt(x[i]^2+y[i]^2)\n if dist <= D:\n count += 1\nprint(count)\n ', 'import numpy as np\n\nN,D = input().strip().split()\nN = int(N)\nD = int(D)\n\ngrid = []\nfor i in range(N):\n array = list(map(int, input().strip().split()))\n grid.append(array)\n \ncount = 0\nfor i in range(0,N):\n dist = sqrt(grid[i][0]^2+grid[i][1]^2)\n if dist <= D:\n count += 1\nprint(count)', 'import numpy as np\nN,D = input().strip().split()\nN = int(N)\nD = int(D)\ncount = 0\nfor i in range(N):\n x,y = input().strip().split()\n x = int(x)\n y = int(y)\n #print(x**2)\n dist = np.sqrt((x)**2+(y)**2)\n #print(dist)\n if dist <= D:\n count +=1\nprint(count)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s552285446', 's866614521', 's483226171']
[9184.0, 62944.0, 27184.0]
[30.0, 547.0, 832.0]
[145, 320, 280]
p02595
u592248346
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d = map(int,input().split())\nans = 0\nfor i in range(n):\n if x*x+y*y <= d*d: ans+=1\nprint(ans)', 'n,d = map(int,input().split())\nans = 0\nfor i in range(n):\n x,y = map(int,input().split())\n if x*x+y*y <= d*d: ans+=1\nprint(ans)']
['Runtime Error', 'Accepted']
['s761354430', 's343674661']
[9060.0, 8972.0]
[26.0, 392.0]
[98, 133]
p02595
u595833382
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D = [int(x) for x in input().split()]\ncount = 0\n\nfor x in range(N):\n x,y = [int(x) for x in input().split()]\n if x**2 + y**2 <= D:\n count += 1\n\nprint(count)', 'import numpy\nN,D = [int(x) for x in input().split()]\ncount = 0\n\nfor x in range(N):\n x,y = [int(x) for x in input().split()]\n if numpy.sqrt((x**2) + (y**2)) <= D:\n count += 1\n\nprint(count)']
['Wrong Answer', 'Accepted']
['s542997116', 's145768571']
[9100.0, 27100.0]
[460.0, 870.0]
[171, 200]
p02595
u599547273
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = map(int, input().split())\nXY = [list(map(int, input().split())) for _ in range()]\n\nprint(sum(x**2 + y**2 <= D**2 for x, y in XY))', 'N, D = map(int, input().split())\nXY = [list(map(int, input().split())) for _ in range(N)]\n\nprint(sum(x**2 + y**2 <= D**2 for x, y in XY))']
['Runtime Error', 'Accepted']
['s631642275', 's347292621']
[9176.0, 45456.0]
[35.0, 562.0]
[136, 137]
p02595
u600673553
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = map(int, input().split())\nans = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if (x**2+y**2) <= D**2:\n ans +=1\n else:\n ans +=0\n\nprint(ans)', 'N, D = map(int, input().split())\nans = 0\nfor i in range(N):\n x, y = map(int, input().split())\n if (x**2+y**2) <= D**2:\n ans +=1\n else:\n ans +=0\n\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s494407605', 's153056358']
[9096.0, 9188.0]
[26.0, 487.0]
[164, 165]
p02595
u603695922
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D = map(int , input().split()) \nans = 0\n\nfor i in N :\n x,y = map(int , input().split())\n if x**2 + y**2 <= D**2:\n ans += 1\n\nprint(ans)\n\n', 'N,D = map(int , input().split()) \nans = 0\n\nfor i in range(N) :\n x,y = map(int , input().split())\n if x**2 + y**2 <= D**2:\n ans += 1\n\nprint(ans)\n\n']
['Runtime Error', 'Accepted']
['s066231526', 's662343777']
[9056.0, 9132.0]
[23.0, 509.0]
[252, 259]
p02595
u607074939
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D = map(int,input().split())\nl = []\nfor i in range (N):\n x,y = map(int,input().split())\n l.append(x*x+y*y)\n \nans = 0\nfor i in range(N):\n if l[i] < D*D:\n ans += 1\n\nprint(cnt)', 'N,D = map(int,input().split())\nl = []\nfor i in range (N):\n x,y = map(int,input().split())\n l.append(x*x+y*y)\n \nans = 0\nfor i in range(N):\n if l[i] < D*D:\n cnt += 1\n\nprint(cnt)', 'N,D = map(int,input().split())\nl = []\nfor i in range (N):\n x,y = map(int,input().split())\n l.append(x*x+y*y)\n \nans = 0\nfor i in range(N):\n if l[i] <= D*D:\n ans += 1\n\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s239742562', 's402096335', 's207107548']
[20132.0, 19984.0, 19988.0]
[435.0, 401.0, 438.0]
[194, 194, 195]
p02595
u614246506
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\ncase, most = map(int, input().split())\nsumm = 0\nfor i in range(case):\n a, b = map(int, input().split())\n print(math.sqrt((a * a) + (b * b)), i+1)\n if math.sqrt((a * a) + (b * b)) <= most:\n summ += 1\n\nprint(summ)\n', 'import math\ncase, most = map(int, input().split())\nsumm = 0\nfor i in range(case):\n a, b = map(int, input().split())\n if math.sqrt((a * a) + (b * b)) >= most:\n print(a, b, i+1)\n summ += 1\n\nprint(summ)\n', 'import math\ncase, most = map(int, input().split())\nsumm = 0\nfor i in range(case):\n a, b = map(int, input().split())\n if math.sqrt((a * a) + (b * b)) <= most:\n summ += 1\n\nprint(summ)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s274182736', 's997895052', 's150907432']
[9104.0, 9120.0, 9020.0]
[1118.0, 990.0, 412.0]
[240, 220, 195]
p02595
u616481477
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\nn, d = list(map(int, input().split()))\ncount = 0\n\nfor i in range(n):\n x, y = list(map(int, input().split()))\n if x >= d or y >= d:\n pass\n else:\n if math.sqrt(x*x + y*y) <= d:\n count += 1\n\nprint(count)', 'import math\n\nn, d = list(map(int, input().split()))\ncount = 0\n\nfor i in range(n):\n x, y = list(map(int, input().split()))\n if abs(x) > d or abs(y) > d:\n pass\n else:\n if math.sqrt(x*x + y*y) <= d:\n count += 1\n\nprint(count)']
['Wrong Answer', 'Accepted']
['s813447731', 's963399516']
[9196.0, 9128.0]
[501.0, 492.0]
[227, 235]
p02595
u620259318
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\nn, d = map(int, input().split())\ncnt = 0\nfor i in range(n):\n x, y = map(int, input().split())\n dist = math.sqrt((x * x) + (y * y))\n print(dist)\n if dist <= d:\n cnt += 1\nprint(cnt)\n', 'import math\n\nn, d = map(int, input().split())\ncnt = 0\nfor i in range(n):\n x, y = map(int, input().split())\n dist = math.sqrt((x * x) + (y * y))\n if dist <= d:\n cnt += 1\nprint(cnt)\n']
['Wrong Answer', 'Accepted']
['s273623996', 's889598483']
[9188.0, 9032.0]
[1023.0, 421.0]
[212, 196]
p02595
u626228246
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nn,d = map(int,input().split())\nxy = [list(map(int,input().split())) for _ in range(n)]\ncnt = 0\nfor i in range(n):\n\tif math.sqrt((xy[0])**2 + (xy[1])**2) <= d:\n\t\tcnt += 1\nprint(cnt)', 'import math\nn,d = map(int,input().split())\nxy = [list(map(int,input().split())) for _ in range(n)]\ncnt = 0\nfor i in range(n):\n\tif math.sqrt((xy[i][0])**2 + (xy[i][1])**2) <= d:\n\t\tcnt += 1\nprint(cnt)']
['Runtime Error', 'Accepted']
['s092418422', 's626464575']
[45472.0, 45456.0]
[441.0, 573.0]
[192, 198]
p02595
u627530854
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\ndef dist(x, y):\n math.sqrt(x ^ 2 + y ^ 2)\n\n(n, d) = map(int, input().split())\nres = 0\n\nfor _ in range(n):\n (x, y) = map(int, input().split())\n res += 1 if dist(x, y) <= d else 0\n \nprint(res)', 'import math\n\ndef dist(x, y):\n return math.sqrt(x ** 2 + y ** 2)\n\n(n, d) = map(int, input().split())\nres = 0\n\nfor _ in range(n):\n (x, y) = map(int, input().split())\n res += 1 if dist(x, y) <= d else 0\n\nprint(res)\n']
['Runtime Error', 'Accepted']
['s550259701', 's844930022']
[9216.0, 9188.0]
[29.0, 501.0]
[207, 215]
p02595
u630237503
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
["import math\n\ndef main():\n N, D = list(map(int, input().split()))\n ans = 0\n for i in range(0,N):\n A, B = list(map(int, input().split()))\n if dist <= D:\n ans +=1\n print(ans)\n\n\nif __name__ == '__main__':\n main()", "import math\n\ndef main():\n N, D = list(map(int, input().split()))\n ans = 0\n for i in range(0,N):\n A, B = list(map(int, input().split()))\n print(dist)\n if dist <= D:\n ans +=1\n print(ans)\n\n\nif __name__ == '__main__':\n main()", "import math\n\ndef main():\n N, D = list(map(int, input().split()))\n ans = 0\n for i in range(0,N):\n A, B = list(map(int, input().split()))\n dist = math.sqrt(A**2 + B**2)\n if dist <= D:\n ans +=1\n print(ans)\n\n\nif __name__ == '__main__':\n main()"]
['Runtime Error', 'Runtime Error', 'Accepted']
['s369556726', 's927352953', 's139095971']
[9180.0, 9184.0, 9228.0]
[29.0, 23.0, 515.0]
[248, 268, 286]
p02595
u634653487
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\ninp = input()\n\nm = [x.split() for x in inp]\n\ncount = 0\n\nfor i in inp:\n x, y = i.split()\n\n xx = x ** 2\n yy = y ** 2\n\n ans = math.sqrt(xx + yy)\n\n if ans >= y:\n count += 1\n\nprint(count)', 'import math\n\nN, D = map(int, input().split())\ncount = 0\nfor _ in range(M):\n x, y = map(int, input().split())\n xx = x ** 2\n yy = y ** 2\n\n ans = math.sqrt(xx + yy)\n if ans >= D:\n count += 1\n\nprint(count)', 'import math\n\nx, y = [int(x) for x in input().split()]\n\nxx = x ** 2\nyy = y ** 2\n\nans = math.sqrt(xx + yy)\n\nprint(ans)', 'import math\n\ninp = str(input())\n\nN, M = map(int, input().split())\ncount = 0\nfor _ in range(M):\n \n for i in inp:\n x, y = map(int, input().split())\n\n xx = int(x) ** 2\n yy = int(y) ** 2\n\n ans = math.sqrt(xx + yy)\n print(ans)\n\n if ans >= M:\n count += 1\n j += 1\n print(count)', 'import math\n\ninp = str(input())\nm = [x.split() for x in inp]\n\ncount = 0\nj = 0\nfor i in inp:\n x, y = i.split()\n if j == 0:\n D = int(y)\n print(D)\n else:\n xx = int(x) ** 2\n yy = int(y) ** 2\n\n ans = math.sqrt(xx + yy)\n print(ans)\n\n if ans >= int(D):\n count += 1\n j += 1\nprint(count)', 'import math\n\ninp = str(input())\n\nN, M = map(int, input().split())\ncount = 0\nfor _ in range(M):\n \n for i in inp:\n x, y = map(int, input().split())\n\n xx = int(x) ** 2\n yy = int(y) ** 2\n\n ans = math.sqrt(xx + yy)\n\n if ans >= M:\n count += 1\n j += 1\n print(count)', 'import math\n\nN, D = map(int, input().split())\ncount = 0\nfor _ in range(N):\n x, y = map(int, input().split())\n xx = x ** 2\n yy = y ** 2\n\n ans = math.sqrt(xx + yy)\n if ans <= D:\n count += 1\n\nprint(count)']
['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s000648069', 's518031389', 's692922893', 's794170053', 's893078221', 's899313713', 's590942720']
[9132.0, 9132.0, 9172.0, 9164.0, 9136.0, 8892.0, 9196.0]
[33.0, 28.0, 31.0, 25.0, 25.0, 31.0, 489.0]
[217, 223, 116, 339, 350, 320, 223]
p02595
u637387397
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d = input()\n\ncount = 0\nfor i in range(n):\n x,y = input()\n \n r = (int(x)**2+int(y)**2)**(1/2)\n \n if r <= int(d):\n count += 1\nprint(count)', 'n,d = input().split(" ")\n\ncount = 0\nfor i in range(int(n)):\n x,y = input().split(" ")\n \n r = (int(x)**2+int(y)**2)**(1/2)\n \n if r <= int(d):\n count += 1\nprint(count)']
['Runtime Error', 'Accepted']
['s610162334', 's560678805']
[9028.0, 9612.0]
[26.0, 482.0]
[146, 173]
p02595
u639318121
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D = map(int,input().split())\npoint = [list(map(int, input().split())) for x in range(N)]\ncount = 0\nfor i in range(n):\n if D >= (point[i][0]**2+point[i][1]**2)**0.5:\n count += 1\nprint(count)', 'N,D = map(int,input().split())\npoint = [list(map(int, input().split())) for x in range(N)]\ncount = 0\nfor i in range(N):\n if D >= (point[i][0]**2+point[i][1]**2)**0.5:\n count += 1\nprint(count)']
['Runtime Error', 'Accepted']
['s160612980', 's212999615']
[45164.0, 45768.0]
[414.0, 559.0]
[201, 201]
p02595
u642529859
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = map(int, input().split())\nans = 0\nfor i in range(N)\n X, Y = map(int, input().split())\n if X*X+Y*Y<=D:\n ans += 1\nprint(ans)\n', 'N, D = map(int, input().split())\nans = 0\nfor i in range(N):\n X, Y = map(int, input().split())\n if X*X+Y*Y<=D:\n ans += 1\nprint(ans)', 'N, D = map(int, input().split())\nans = 0\nfor i in range(N):\n X, Y = map(int, input().split())\n if X*X+Y*Y<=D:\n ans += 1\nprint(ans)', 'N, D = map(int, input().split())\nans = 0\nfor i in range(N):\n X, Y = map(int, input().split())\n if X*X+Y*Y<=D*D:\n ans += 1\nprint(ans)']
['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s315232936', 's528770544', 's824967746', 's182220122']
[8896.0, 8972.0, 9088.0, 9020.0]
[25.0, 383.0, 385.0, 396.0]
[135, 135, 156, 137]
p02595
u644126199
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['line = input().split()\nnumber = int(line[0])\ndistance = int(line[1])\nimport math\ncnt =0\nprint(number)\nfor i in range(number):\n position = input().split()\n x = int(position[0])\n y = int(position[1])\n origin_dis = math.sqrt(x*x+y*y)\n if origin_dis <=distance:\n cnt +=1\nprint(cnt)', 'line = input().split()\nnumber = int(line[0])\ndistance = int(line[1])\nimport math\ncnt =0\nfor i in range(number):\n position = input().split()\n x = int(position[0])\n y = int(position[1])\n origin_dis = math.sqrt(x*x+y*y)\n if origin_dis <=distance:\n cnt +=1\nprint(cnt)']
['Wrong Answer', 'Accepted']
['s689105637', 's822332343']
[9196.0, 9176.0]
[407.0, 432.0]
[285, 271]
p02595
u644139801
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nN=int(input()) \nD=int(input())\nP=[]\nc=0\nans=0\nwhile c<N:\n x=int(input()) \n y=int(input())\n z=x**2+y**2\n z=z**(1/2)\n if z<=D:\n ans+=1\n c+=1\nprint(ans)', 'import math\nN=int(input()) \nD=int(input())\nc=0\nans=0\nwhile c<N:\n x=int(input()) \n y=int(input()) \n if x*x+y*y<=D*D:\n ans+=1\n c+=1\nprint(ans)', 'import math\nN,D=map(int,input().split())\nc=0\nans=0\nwhile c<N:\n x,y=map(int,input().split()) \n if x*x+y*y<=D*D:\n ans+=1\n c+=1\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s017580166', 's084996148', 's343717620']
[9192.0, 9092.0, 9172.0]
[27.0, 26.0, 409.0]
[186, 159, 151]
p02595
u645504441
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D =(int(x) for x in input().split())\nxy = [map(int,input().split()) for _ int range(N)]\nx,y = [list(i) for i in zip(*xy)]\nn = 0\n\nfor i in range(N):\n if(x[i]**2 + y[i]**2 <= D**2):\n n += 1\n\nprint(n)', 'N,D =(int(x) for x in input().split())\nxy = [map(int,input().split()) for _ in range(N)]\nx,y = [list(i) for i in zip(*xy)]\nn = 0\n \nfor i in range(N):\n if(x[i]**2 + y[i]**2 <= D**2):\n n += 1\n \nprint(n)']
['Runtime Error', 'Accepted']
['s056179194', 's477183373']
[8912.0, 116728.0]
[26.0, 892.0]
[203, 204]
p02595
u646661668
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N = int(input().split()[0])\nD = int(input().split()[1])\ncount = 0\nfor i in range(N):\n Xi = int(input().split()[0])\n Yi = int(input().split()[1])\n R = (Xi**2+Yi**2)**(1/2)\n if R<=D:\n count += 1\nprint(count)', 'ND = input()\nN = int(ND.split()[0])\nD = int(ND.split()[1])\ncount = 0\nfor i in range(N):\n XiYi = input()\n Xi = int(XiYi.split()[0])\n Yi = int(XiYi.split()[1])\n R = (Xi**2+Yi**2)**(1/2)\n if R <= D:\n count += 1\nprint(count)']
['Runtime Error', 'Accepted']
['s150227514', 's732627148']
[9648.0, 9648.0]
[364.0, 514.0]
[212, 228]
p02595
u648431783
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\nn, d = input().split()\ncount = 0\nfor idx in range(int(n)):\n x, y = input().split()\n x, y = int(x), int(y)\n if math.sqrt(math.pow(int(x), 2) + math.pow(int(x), 2)) < (int(d) + 1):\n count += 1\n\nprint(count)', 'import math\n\ndef get_input():\n n, d = input().split()\n points = []\n for idx in range(int(n)):\n x, y = input().split()\n points.append((int(x), int(y)))\n\n return int(d), points\n\ndef is_within_dist(point, max_dist):\n x, y = point\n return math.sqrt((x * x) + (y * y)) <= max_dist\n\ndef solution():\n dist, points = get_input()\n\n count = 0\n for point in points:\n if is_within_dist(point, dist):\n count += 1\n return count', 'import math\n\nn, d = input().split()\ncount = 0\nfor idx in range(int(n)):\n x, y = input().split()\n x, y = int(x), int(y)\n if math.sqrt(math.pow(int(x), 2) + math.pow(int(y), 2)) < (int(d) + 1):\n count += 1\n\nprint(count)', 'import math\n\ndef get_input():\n n, d = input().split()\n points = []\n for idx in range(int(n)):\n x, y = input().split()\n points.append((int(x), int(y)))\n\n return int(d), points\n\ndef is_within_dist(point, max_dist):\n x, y = point\n return math.sqrt((x * x) + (y * y)) <= max_dist\n\ndef solution():\n dist, points = get_input()\n\n count = 0\n for point in points:\n if is_within_dist(point, dist):\n count += 1\n return count\n\nsolution()', 'import math\n\nn, d = input().split()\ncount = 0\nfor idx in range(int(n)):\n x, y = input().split()\n x, y = int(x), int(y)\n if math.sqrt(math.pow(int(x), 2) + math.pow(int(y), 2)) <= int(d):\n count += 1\n\nprint(count)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s592891024', 's655404590', 's684584843', 's891276025', 's327144453']
[9260.0, 9000.0, 9148.0, 36120.0, 9256.0]
[482.0, 27.0, 488.0, 396.0, 471.0]
[233, 475, 233, 487, 228]
p02595
u651913160
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\nn, d = int(input().split())\ncount = 0\n\nfor i in range(n):\n xn, yn = int(input().split())\n if d >= math.sqrt(xn ** 2 + yn ** 2):\n count += 1\n\nprint(count)', 'import math\n\nn, d = input().split()\ncount = 0\ndn = int(d)\n\nfor i in range(int(n)):\n x = list(map(int,input().split()))\n if dn >= math.sqrt(x[0] ** 2 + x[1] ** 2):\n count += 1\n\nprint(count)']
['Runtime Error', 'Accepted']
['s417342611', 's468713967']
[9104.0, 9152.0]
[27.0, 511.0]
[179, 201]
p02595
u654192896
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D=map(int,input().split())\nsum=0\nfor _ in range(N):\n X,Y=map(int,input().split())\n if math.sqrt(((X*X)+(Y*Y)))<=D:\n sum=sum+1\nprint(sum)\n \n', 'N,D=map(int,input().split())\nsum=0\nfor _ in range(N):\n X,Y=map(int,input().split())\n if math.sqrt(((X*X)+(Y*Y)))<=D:\n sum=sum+1\n print(sum)\n ', 'import math\n\nN,D=map(int,input().split())\nsum=0\nfor _ in range(N):\n X,Y=map(int,input().split())\n if math.sqrt(((X*X)+(Y*Y)))<=D:\n sum=sum+1\nprint(sum)\n \n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s174838143', 's694414881', 's117098900']
[9172.0, 9168.0, 9144.0]
[23.0, 27.0, 412.0]
[157, 160, 170]
p02595
u655048024
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d = int(input())\nans = 0\nfor i in range(n):\n x,y = map(int,input().split())\n if(d>=(x**2+y**2)**(1/2)):\n ans += 1\nprint(ans)', 'n,d = map(int,input().split())\nans = 0\nfor i in range(n):\n x,y = map(int,input().split())\n if(d >= (x**2+y**2)**(1/2)):\n ans += 1\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s211347362', 's455271052']
[9180.0, 9628.0]
[26.0, 491.0]
[131, 146]
p02595
u658915215
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = map(int, input().split())\nans = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if x ** 2 + y ** 2 <= d ** 2\nprint(ans)', 'n, d = map(int, input().split())\nans = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if x ** 2 + y ** 2 <= d ** 2:\n ans += 1\nprint(ans)']
['Runtime Error', 'Accepted']
['s083051682', 's314863282']
[8972.0, 9176.0]
[26.0, 502.0]
[140, 158]
p02595
u663438907
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = map(int, input().split())\nans = 0\nfor in range(N):\n X, Y = map(int, input().split())\n if x**2 + y**2 <= D**2:\n ans += 1\n\nprint(ans)', 'N, D = map(int, input().split())\nans = 0\nfor i in range(N):\n X, Y = map(int, input().split())\n if X**2 + Y**2 <= D**2:\n ans += 1\n \nprint(ans)']
['Runtime Error', 'Accepted']
['s704444157', 's680241065']
[8940.0, 9036.0]
[33.0, 472.0]
[143, 146]
p02595
u667427469
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import numpy as np\n\nN = int(input())\nD = int(input())\ncount = 0\n\nfor i in range(N): \n x = int(input())\n y = int(input())\n d = np.sqrt(x**2+y**2)\n\n if d <= D:\n count += 1 \n\nprint(count) \n\n', 'import numpy as np\n\nN,D = input().split()\nN = int(N)\nD = int(D)\ncount = 0\n\nfor i in range(N): \n x,y = input().split()\n x = int(x)\n y = int(y)\n d = np.sqrt(x**2+y**2)\n\n if d <= D:\n count += 1 \n\nprint(count) \n']
['Runtime Error', 'Accepted']
['s568950136', 's148850941']
[27140.0, 26512.0]
[114.0, 814.0]
[207, 230]
p02595
u671211357
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['count=0\nN,D=map(int,input().split())\nfor i in range(N):\n X,Y=map(int,input().split())\n if D**2>X**2+Y**2:\n count+=1\nprint(count)', 'count=0\nN,D=map(int,input().split())\nfor i in range(N):\n X,Y=map(int,input().split())\n if D**2>=X**2+Y**2:\n count+=1\nprint(count)']
['Wrong Answer', 'Accepted']
['s207675441', 's652217889']
[9084.0, 9032.0]
[496.0, 498.0]
[141, 142]
p02595
u674418975
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\nN, D = map(int,input().split())\n\nprint(N+D)\nDf = [0]*N\n\nfor i in range(N):\n x,y = map(float,input().split())\n if math.sqrt(x*2 + y*2) >= D:\n Df[i] = 1\n\nprint(Df.count(1))', 'import math\n\nN, D = map(int,input().split())\n\nDf = [0]*N\n\nfor i in range(N):\n x,y = map(float,input().split())\n if math.sqrt(x*x + y*y) <= D:\n Df[i] = 1\n\nprint(Df.count(1))']
['Runtime Error', 'Accepted']
['s340685533', 's474068502']
[10388.0, 10444.0]
[377.0, 419.0]
[188, 177]
p02595
u677400065
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d = map(int,input().split())\nans = 0\nimport numpy as np\nfor i in range(n):\n x,y = map(int,input().split())\n if np.norm(np.array([x,y]),ord=2) <= d:\n ans+=1\n \nprint(ans)', 'n,d = map(int,input().split())\nans = 0\nimport numpy as np\nfor i in range(n):\n x,y = map(int,input().split())\n if np.linalg.norm(np.array([x,y]),ord=2) <= d:\n ans+=1\n \nprint(ans)\n']
['Runtime Error', 'Accepted']
['s518176013', 's096457650']
[26940.0, 27052.0]
[206.0, 1749.0]
[178, 186]
p02595
u681882250
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['x,y=map(int,input().split())\ncount=0\nfor i in range(x):\n a,b=map(int,input().split())\n dist=pow((pow(x,2)+pow(y,2)),0.5)\n if dist<=y:\n count+=1\nprint(count)', 'import math\nx, y = map(int, input().split())\ncount = 0\nfor i in range(x):\n a, b = map(int, input().split())\n ans = math.sqrt((a*a)+(b*b))\n if y <= ans:\n count = count + 1\nprint(count-1)', 'n,d=map(int,input().split())\ncount=0\nfor i in range(n):\n x,y=map(int,input().split())\n dist=pow((pow(x,2)+pow(y,2)),0.5)\n if dist<=d:\n count+=1\nprint(count)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s058557152', 's562066547', 's366902691']
[9444.0, 9200.0, 9584.0]
[498.0, 455.0, 508.0]
[172, 201, 172]
p02595
u684556734
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n = list(map(int, input().split()))\ndistance = n[1]\npoints = [list(map(int, input().split())) for i in range(n[0])]\nans = 0\nfor i in points:\n x = i[0]\n y = i[1]\n d = (x**2 + y**2)**-2\n if d <= distance:\n ans += 1\nprint(ans)', 'n = list(map(int, input().split()))\ndistance = n[1]\npoints = [list(map(int, input().split())) for i in range(n[0])]\nans = 0\nfor i in points:\n x = i[0]\n y = i[1]\n d = math.sqrt(x**2 + y**2)\n if d <= distance:\n ans += 1\nprint(ans)', 'import math\nn = list(map(int, input().split()))\ndistance = n[1]\npoints = [list(map(int, input().split())) for i in range(n[0])]\nans = 0\nfor i in points:\n x = i[0]\n y = i[1]\n d = math.sqrt(x**2 + y**2)\n if d <= distance:\n ans += 1\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s195470641', 's322431358', 's254015434']
[45772.0, 45452.0, 45496.0]
[608.0, 426.0, 578.0]
[242, 247, 259]
p02595
u686174642
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d=[int(i) for i in input().strip().split(" ")]\nans=0\nfor _ in range(n):\n x,y=[int(i) for i in input().strip().split(" ")]\n if x*x+y*y=d*d:\n ans+=1\nprint(ans)', '# -*- coding: utf-8 -*-\n"""\nCreated on Mon Aug 24 12:23:05 2020\n\n@author: vivek\n"""\n\nn,d=[int(i) for i in input().strip().split(" ")]\nans=0\nfor _ in range(n):\n x,y=[int(i) for i in input().strip().split(" ")]\n if x*x+y*y<=d*d:\n ans+=1\nprint(ans)']
['Runtime Error', 'Accepted']
['s878807596', 's418112497']
[8824.0, 9180.0]
[28.0, 404.0]
[164, 250]
p02595
u688203790
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['\n#ABC174B\n\nN,D = map(int,input.split())\nX = []\nY = []\nfor _ in range(N):\n x,y = map(int,input().split())\n X.append(x)\n Y.append(y)\n\ncount = 0\n\nfor i in range(N):\n if D**2 >= X[i]**2 + Y[i]**2:\n count += 1\nprint(count)', '\n#ABC174B\n\nN,D = map(int,input().split())\nX = []\nY = []\nfor _ in range(N):\n x,y = map(int,input().split())\n X.append(x)\n Y.append(y)\n\ncount = 0\n\nfor i in range(N):\n if D**2 >= X[i]**2 + Y[i]**2:\n count += 1\nprint(count)']
['Runtime Error', 'Accepted']
['s104731642', 's270125569']
[9040.0, 24780.0]
[27.0, 519.0]
[236, 238]
p02595
u689723321
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d= map(int, input().split())\nx,y=[int(input()) for i in range(n)]\ns=0\ndef distance_count():\n \n for i in range(N)\n if (x[i]**2 + y[i]**2)**(1/2)<= D :\n s=s+1\n return s\nanswer = distance_count(x,y)\nprint(answer)', 'N,D= map(int, input().split())\nxy = [map(int, input().split()) for _ in range(N)]\nx, y = [list(i) for i in zip(*xy)]\n\ndef f(a,b,c):\n s=0\n for i in range(N)\n \u3000\u3000if (a[i]**2 + b[i]**2)**(1/2)<= c:\n \u3000\u3000s=s+1\n return s\na = x\nb = y\nc = D\nprint(f(a,b,c))', 'n,d= map(int, input().split())\nx,y=[int(input()) for i in range(n)]\n\ndef distance_count():\n s=0\n for i in range(N)\n \u3000\u3000if (x[i]**2 + y[i]**2)**(1/2)<= d:\n \u3000\u3000s=s+1\n return s\ndistance_count(x,y)\nprint(s)\n', 'n,d= map(int, input().split())\nx,y=[int(input()) for i in range(n)]\n\ndef distance_count():\n s=0\n for i in range(N)\n \u3000\u3000if (x[i]**2 + y[i]**2)**(1/2)<= d:\n \u3000\u3000s=s+1\n return s\n\nprint(distance_count(x,y))', 'n,d= map(int, input().split())\nx,y=[int(input()) for i in range(n)]\ns=0\ndef distance_count():\n \n for i in range(N)\n \u3000\u3000if (x[i]**2 + y[i]**2)**(1/2)<= d:\n \u3000\u3000s=s+1\n return s\ndistance_count(x,y)\nprint(s)', 'n,d= map(int, input().split())\nx,y=[int(input()) for i in range(n)]\ns=0\ndef distance_count():\n \n for i in range(N)\n \u3000\u3000if (x[i]**2 + y[i]**2)**(1/2)<= D :\n \u3000\u3000s=s+1\n return s\nanswer = distance_count(x,y)\nprint(answer)', 'N,D= map(int, input().split())\nx,y=[int(input()) for i in range(N)]\ns=0\ndef distance_count():\n for i in range(N)\n if (x[i]**2 + y[i]**2)**(1/2)<= D :\n s=s+1\n return s\nanswer = distance_count(x,y)\nprint(answer)', 'n,d= map(int, input().split())\nx,y=[int(input()) for i in range(n)]\n\ndef f(a,b,c):\n s=0\n for i in range(N)\n \u3000\u3000if (a[i]**2 + b[i]**2)**(1/2)<= c:\n \u3000\u3000s=s+1\n return s\n\nprint(f(x,y,d))', 'N,D= map(int, input().split())\nxy = [map(int, input().split()) for _ in range(N)]\nx, y = [list(i) for i in zip(*xy)]\n\ndef f(x,y,D):\n s=0\n for i in range(N)\n \u3000\u3000if (x[i]*x[i] + y[i]*y[i])<= D*D:\n \u3000\u3000s=s+1\n return s\n\nprint(s)', 'point=[ list(map(int,input().split())) for i range (N)]\nD=input()\ndef distance():\n s=0\n for i in range(N)\n if (point[i][0]**2+point[i][1]**2)**(1/2)<=int(D):\n s=s+1\n return s\nanswer = distance(point)\nprint(answer)', 'N,D= map(int, input().split())\nX,Y=[map(int, input().split() for i in range(N))]\n\ndef f(a,b,c):\n s=0\n for i in range(N)\n \u3000\u3000if (a[i]**2 + b[i]**2)**(1/2)<= c:\n \u3000\u3000s=s+1\n return s\na = X\nb = Y\nc = D\nprint(f(a,b,c))', 'n,d= map(int, input().split())\nx,y=[int(input()) for i in range(n)]\n\ndef f(a,b):\n s=0\n for i in range(N)\n \u3000\u3000if (a[i]**2 + b[i]**2)**(1/2)<= d:\n \u3000\u3000s=s+1\n return s\n\nprint(f(x,y))', 'N,D= map(int, input().split())\nX,Y=[int(input()) for i in range(N)]\n\ndef f(a,b,c):\n s=0\n for i in range(N)\n \u3000\u3000if (a[i]**2 + b[i]**2)**(1/2)<= c:\n \u3000\u3000s=s+1\n return s\na = X\nb = Y\nc = D\nprint(f(a,b,c))', 'N,D= map(int, input().split())\nxy = [map(int, input().split()) for i in range(N)]\nx,y= [list(i) for i in zip(*xy)]\n\ndef f(x,y,D):\n s=0\n for i in range(N)\n \u3000\u3000if (x[i]*x[i] + y[i]*y[i])<= D*D:\n \u3000\u3000s=s+1\n return s\n\nprint(f(x,y,D))', 'N,D= map(int, input().split())\nxy = [map(int, input().split()) for _ in range(N)]\nx, y = [list(i) for i in zip(*xy)]\n\ndef f(x,y,D):\n s=0\n for i in range(N)\n \u3000\u3000if (a[i]*a[i] + b[i]*b[i])<= c*c:\n \u3000\u3000s=s+1\n return s\n\nprint(s)', 'N,D = map(int, input().split())\nXY = [map(int, input().split()) for _ in range(N)]\nX,Y = [list(i) for i in zip(*XY)]\n\ns=0\nfor i in range (N):\n if X[i]*X[i]+Y[i]*Y[i]<=D*D:\n s=s+1\nprint(s)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s168298304', 's171687807', 's258415299', 's366990653', 's414358608', 's428458068', 's497374267', 's532630039', 's567470475', 's581480608', 's788698441', 's807098565', 's874325934', 's900938043', 's913041118', 's224908268']
[8996.0, 9036.0, 8852.0, 9032.0, 9020.0, 8960.0, 9020.0, 8936.0, 9008.0, 8916.0, 8932.0, 8992.0, 9028.0, 9040.0, 9040.0, 116640.0]
[27.0, 24.0, 22.0, 27.0, 25.0, 22.0, 24.0, 29.0, 26.0, 25.0, 25.0, 24.0, 25.0, 24.0, 22.0, 826.0]
[225, 262, 217, 215, 216, 231, 227, 196, 237, 232, 226, 192, 213, 242, 237, 191]
p02595
u695197008
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = map(int, input())\n\n# pts = [tuple(map(int, input())) for _ in range(N)]\n\nans = 0\nif _ in range(N):\n x, y = map(int, input())\n if x**2 + y**2 <= D**2:\n ans+=1\n \nprint(ans)\n ', "N, D = map(int, input().split(' '))\n\n# pts = [tuple(map(int, input())) for _ in range(N)]\n\nans = 0\nfor _ in range(N):\n x, y = map(int, input().split(' '))\n if x**2 + y**2 <= D**2:\n ans+=1\n \nprint(ans)\n \n"]
['Runtime Error', 'Accepted']
['s060753405', 's007861505']
[9160.0, 9108.0]
[24.0, 476.0]
[188, 212]
p02595
u695329583
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d = map(int,input().split())\nans = 0\nfor _ in range(n) :\n x,y = map(int,input().split())\n distance = (x**2 + y**2)**1/2\n if distance <= d :\n ans += 1\nprint(ans)', 'n,d = map(int,input().split())\nans = 0\nfor _ in range(n) :\n x,y = map(int,input().split())\n distance = (x**2 + y**2)**0.5\n if distance <= d :\n ans += 1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s129541033', 's510532748']
[9012.0, 9524.0]
[486.0, 485.0]
[178, 178]
p02595
u696011546
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
["feom collections import sqrt\nif __name__=='__main__':\n n,d=[int(i) for i in input().split()]\n c=0\n for i in range(n):\n x,y = [int(i) for i in input().split()]\n if sqrt(x**2 + y**2) <= d:\n c+=1\n print(c)\n ", "from math import sqrt\nif __name__=='__main__':\n n,d=[int(i) for i in input().split()]\n c=0\n for i in range(n):\n x,y = [int(i) for i in input().split()]\n if sqrt(x**2 + y**2) <= d:\n c+=1\n print(c)"]
['Runtime Error', 'Accepted']
['s610569890', 's497288814']
[8948.0, 9124.0]
[29.0, 480.0]
[222, 210]
p02595
u696444274
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\ndata = [list(map(int, input().split())) for i in range(n)]\ndef dist(x, y):\n return math.sqrt(x**2 + y**2)\ncount = 0\nfor i in range(n):\n dis = dist(data[i][0], data[i][1])\n if dis <= d:\n count += 1\n\nprint(count)\n', 'import math\nn, d = list(map(int, input().split()))\ndata = [list(map(int, input().split())) for i in range(n)]\ndef dist(x, y):\n return math.sqrt(x**2 + y**2)\n\n\ncount = 0\nfor i in range(n):\n dis = dist(data[i][0], data[i][1])\n if dis <= d:\n count += 1\n\nprint(count)\n']
['Runtime Error', 'Accepted']
['s806223473', 's933002983']
[9012.0, 45332.0]
[26.0, 607.0]
[239, 280]
p02595
u696919316
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nn, d = list(map(int, input().split()))\ncount = 0\nfor _ in range(n):\n x, y = list(map(int, input().split()))\n if math.sqrt(x**2 + y**2) >= d\n count += 1\nprint(count)', 'import math\nn, d = list(map(int, input().split()))\ncount = 0\nfor _ in range(n):\n x, y = list(map(int, input().split()))\n if math.sqrt(x**2 + y**2) <= d:\n count += 1\nprint(count)']
['Runtime Error', 'Accepted']
['s416176952', 's706780298']
[8964.0, 9132.0]
[26.0, 514.0]
[179, 182]
p02595
u699490860
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d=map(int,input().split())\nfor i in range(n):\n\ta,b=map(int,input().split())\n\tif a*a+b*b<=d*d:ans+=1\nprint(ans)', 'n,d=map(int,input().split())\n\nans=0\n\nfor i in range(n):\n\n\ta,b=map(int,input().split())\tif a*a+b*b<=d*d:ans+=1\n\nprint(ans)', 'n,d=map(int,input().split())\nans=0\nfor i in range(n):\n\ta,b=map(int,input().split())\n\tif a*a+b*b<=d*d:ans+=1\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s910329237', 's917000306', 's221281540']
[9112.0, 8964.0, 9088.0]
[29.0, 23.0, 386.0]
[112, 121, 118]
p02595
u699522269
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D=map(int,input().split())\nd2 = D**2\nrt = 0\nfor i in range(n):\n x,y = map(int,input().split())\n \n if x**2 + y**2 < d2:\n rt+=1\nprint(rt)', 'N,D=map(int,input().split())\nd2 = D**2\nrt = 0\nfor i in range(N):\n x,y = map(int,input().split())\n \n if x**2 + y**2 <= d2:\n rt+=1\nprint(rt)']
['Runtime Error', 'Accepted']
['s365306080', 's283734817']
[9192.0, 9184.0]
[27.0, 458.0]
[143, 144]
p02595
u701513230
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['K = int(input())\n\nr = 1\nN = 0\nwhile True:\n N += 7*(10**(r-1))\n if N%K ==0:\n break\n r += 1\n\nprint(r)', 'N,D = map(int,input().split())\nX=[]\nY=[]\ncount = 0\nfor i in range(N):\n a,b = map(float,input().split())\n X.append(a)\n Y.append(b)\nfor i in range(N):\n if (X[i]^2+Y[i]^2)^(1/2) <= D:\n count += 1\n\nprint(count)\n', 'N,D = map(int,input().split())\nX=[]\nY=[]\ncount = 0\nfor i in range(N):\n a,b = map(float,input().split())\n X.append(a)\n Y.append(b)\nfor i in range(N):\n if (X[i]**2+Y[i]**2)**(1/2) <= D:\n count += 1\n\nprint(count)\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s185961885', 's692826813', 's206285426']
[9072.0, 24932.0, 24840.0]
[25.0, 379.0, 458.0]
[115, 226, 229]
p02595
u706743360
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['def dist(x, y):\n return x^2+y^2\n\nin_values = [[4,5], [0,5], [-2,4]]\n\nn = in_values[0][0]\nd = in_values[0][1]\n\ncount = 0\nfor value in in_values[1:]:\n if dist(value[0], value[1]) <= d:\n count+=1\n\nprint(count)', 'import math\n\ndef dist(x, y):\n return math.sqrt(x^2+y^2)\n\n# in_values = input()\n\nl = list(map(int, input().split()))\nn = l[0]\nd = l[1]\n\ncount = 0\nfor _ in range(n):\n l = list(map(int, input().split()))\n if dist(l[0], l[1]) <= d:\n count+=1\n\nprint(count)', 'import math\n\ndef dist(x, y):\n return math.sqrt(x**2+y**2)\n\n# in_values = input()\n\nl = list(map(int, input().split()))\nn = l[0]\nd = l[1]\n\ncount = 0\nfor _ in range(n):\n l = list(map(int, input().split()))\n if dist(l[0], l[1]) <= d:\n count+=1\n\nprint(count)']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s517353663', 's765457785', 's951530127']
[9112.0, 8952.0, 8972.0]
[28.0, 434.0, 517.0]
[219, 267, 269]
p02595
u712239107
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nn,d=map(int,input().split())\nxy=[map(int,input().split()) for _ in range(n)]\nx,y=[list(i) for i in zip(*xy)]\ncount=0\n\nfor i in range(n):\n if math.sqrt((abs(x[i]**2))*(abs(y[i]**2)))<=d:\n count=count+1 \n\nprint(count)\n', 'import math\nn,d=map(int,input().split())\nxy=[map(int,input().split()) for _ in range(n)]\nx,y=[list(i) for i in zip(*xy)]\ncount=0\n\nfor i in range(n):\n a=math.sqrt((x[i]*x[i])+(y[i]*y[i]))\n if d>=a:\n count=count+1 \n\nprint(count)\n']
['Wrong Answer', 'Accepted']
['s755787468', 's644109599']
[116768.0, 116676.0]
[1038.0, 979.0]
[240, 242]
p02595
u715213082
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,m = map(int,input().split())\nfor i in range(n):\n p1,p2 = map(int,input().split())\n cnt = 0\n t = ((p1*p1)(p2*p2))**(0.5)\n if t >= m:\n cnt += 1\n print(cnt)', 'N,D=input().split()\nN=int(N)\nD=int(D)\ncnt = 0\nfor i in range(N):\n \n p1,p2 = map(int,input().split())\n t = ((p1*p1)(p2*p2))**(0.5)\n if t >= D:\n cnt += 1\n \nprint(cnt)', 'N,D=input().split()\nN=int(N)\nD=int(D)\ncnt = 0\nfor i in range(N):\n \n p1,p2 = map(int,input().split())\n t = ((p1*p1)(p2*p2))**(0.5)\n if t <= D:\n cnt += 1\n \nprint(cnt)', 'N,D=input().split()\nN=int(N)\nD=int(D)\ncnt = 0\nfor i in range(N):\n \n \n p1,p2 = map(int,input().split())\n t = ((p1*p1)(p2*p2))**(0.5)\n if t >= D:\n \n cnt += 1\n \nprint(cnt)', 'n,m = map(int,input().split())\ncnt = 0\nfor i in range(n):\n \n p1,p2 = map(int,input().split())\n t = ((p1*p1)+(p2*p2))**(0.5)\n if t <= m:\n cnt += 1\n \nprint(cnt)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s091812471', 's095552402', 's314668308', 's343373945', 's299983789']
[9108.0, 9136.0, 9016.0, 9032.0, 9648.0]
[28.0, 23.0, 32.0, 25.0, 417.0]
[163, 186, 186, 184, 180]
p02595
u720124072
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nn, d = map(int, input().split())\nnum = 0\nans = 0\n\nfor i in range(n):\n x, y = map(int, input().split())\n num = math.sqrt(x**2 + y**2)\n if num <= 0:\n ans += 1\n \nprint(ans)', 'import math\nn, d = map(int, input().split())\nnum = 0\nans = 0\n\nfor i in range(n):\n x, y = map(int, input().split())\n num = math.sqrt(x**2 + y**2)\n if num <= d:\n ans += 1\n \nprint(ans)']
['Wrong Answer', 'Accepted']
['s280689096', 's379259743']
[9192.0, 9172.0]
[474.0, 505.0]
[190, 190]
p02595
u721130361
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D=(int(x) for x in input().split())\nxy = [map(int, input().split()) for _ in range(N)]\nx, y = [list(i) for i in zip(*xy)]\n\n\ncount=0\nfor i in range(N) :\n \tz=x[i]**2+y[i]**2\n \tif z<=D :\n\t\t count+=1\nprint(count)', 'N,D=(int(x) for x in input().split())\nxy = [map(int, input().split()) for _ in range(N)]\nx, y = [list(i) for i in zip(*xy)]\n\n\ncount=0\nfor i in range(N) :\n \tz=x[i]**2+y[i]**2\n \tif z<=D**2 :\n\t\t count+=1\nprint(count)']
['Wrong Answer', 'Accepted']
['s712893754', 's512094301']
[116544.0, 116636.0]
[867.0, 910.0]
[210, 213]
p02595
u723636155
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = map(int, input().split())\nL = [list(map(int, input().split())) for i in range(N)]\ncounter = 0\n\nfor list in L:\n if list[0]**2+ list[1]**2 <= D:\n counter = counter + 1\n\nprint(str(counter))', 'N, D = map(int, input().split())\nL = [list(map(int, input().split())) for i in range(N)]\ncounter = 0\n \nfor list in L:\n if list[0]**2+ list[1]**2 <= D**2:\n counter = counter + 1\n \nprint(str(counter))']
['Wrong Answer', 'Accepted']
['s599129696', 's685656186']
[45476.0, 45424.0]
[529.0, 571.0]
[197, 202]
p02595
u723844943
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\nn,d = map(int,input().split())\nres = 0\nfor _ in range(n):\n p,q = map(int,input().split())\n if math.sqrt((p**2)+(q**2))<=d:\n res += 1', 'import math\n\nn,d = map(int,input().split())\nres = 0\nfor _ in range(n):\n p,q = map(int,input().split())\n if math.sqrt((p**2)+(q**2))<=d:\n res += 1\nprint(res)']
['Wrong Answer', 'Accepted']
['s395535094', 's734611929']
[9132.0, 9188.0]
[488.0, 488.0]
[158, 169]
p02595
u726823037
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import sys\ndef Ii():return int(sys.stdin.readline())\ndef Mi():return map(int,sys.stdin.readline().split())\ndef Li():return list(map(int,sys.stdin.readline().split()))\n\nans = 0\nn,d = Mi()\nd = d*d\nfor i in range(n):\n x,y = Mi()\n if d > x**2+y**2:\n ans += 1\nprint(ans)', 'import sys\ndef Ii():return int(sys.stdin.readline())\ndef Mi():return map(int,sys.stdin.readline().split())\ndef Li():return list(map(int,sys.stdin.readline().split()))\n\nans = 0\nn,d = Mi()\nd = d*d\nfor i in range(n):\n x,y = Mi()\n if d >= x**2+y**2:\n ans += 1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s165981516', 's424770626']
[9200.0, 9200.0]
[272.0, 284.0]
[270, 271]
p02595
u727360543
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\ninput_ = input().split()\n\nN = int(input_[0])\nD = float(input_[1])\n\nnum = 0\n\nfor i in range(N):\n x_i,y_i = map(float,input().split())\n \n if(math.sqrt(x_i**2 + y_i**2p) <= D):\n num += 1\n \nprint(num)\n \n ', 'import math\n\ninput_ = input().split()\n\nN = int(input_[0])\nD = float(input_[1])\n\nnum = 0\n\nfor i in range(N):\n x_i,y_i = map(float,input().split())\n \n if(math.sqrt(x_i**2 + y_i**2) <= D):\n num += 1\n \nprint(num)\n \n \n']
['Runtime Error', 'Accepted']
['s656102234', 's799442231']
[8964.0, 9236.0]
[24.0, 401.0]
[224, 224]
p02595
u729133443
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['z=[map(int,t.split())for t in open(0)];print(sum(x*x+y*y<=z[0][1]**2for x,y in z))', 'from numpy import*\nx,y=loadtxt(open(0)).T\nprint(sum(x*x+y*y<=y[0]**2))']
['Runtime Error', 'Accepted']
['s513702632', 's604330972']
[96060.0, 47304.0]
[488.0, 850.0]
[82, 70]
p02595
u735542540
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nn,d = map(int,input().split())\nans = 0\nfor i in range(n):\n x,y = map(int,input().split())\n print(math.sqrt((x ** 2) + (y ** 2)))\n if math.sqrt((x ** 2) + (y ** 2)) <= d:\n ans += 1\nprint(ans)', 'import math\nn,d = map(int,input().split())\nans = 0\nfor i in range(n):\n x,y = map(int,input().split())\n if math.sqrt((x ** 2) + (y ** 2)) <= d:\n ans += 1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s551328338', 's431595932']
[9144.0, 9124.0]
[1153.0, 472.0]
[218, 176]
p02595
u737842024
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D=map(int,input().split())\nans=0\nfor i in range(N):\n x,y=map(int,input().split())\n if x^2 + y^2<=D^2:\n ans+=1\nprint(ans)\n\n', 'N,D=map(int,input().split())\nans=0\nfor i in range(N):\n x,y=map(int,input().split())\n if x^2 + y^2<=D^2:\n ans+=1\n\nprint(ans)\n', 'def main():\n N,D=map(int,input().split())\n ans=0\n for i in range(N):\n x,y=map(int,input().split())\n if x^2+y^2<=D^2:\n ans+=1\n print(ans)\n\nmain()\n\n', 'N,D=map(int,input().split())\nans=0\nfor i in range(N):\n x,y=map(int,input().split())\n if x*x + y*y<=D*D:\n ans+=1\n\nprint(ans)\n\n\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s321417377', 's347698033', 's494759751', 's840773635']
[9188.0, 9020.0, 9040.0, 9100.0]
[397.0, 389.0, 374.0, 390.0]
[137, 137, 183, 139]
p02595
u740157634
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = map(int, input().split())\ncnt = 0\n\nfor i in range(n):\n Z = list(map(int, input().split()))\n X = Z[0]\n Y = Z[1]\n\n if X**2 + Y**2 <= D**2:\n cnt += 1\nprint(cnt)\n', 'n, d = map(int, input().split())\ncnt = 0\n\nfor i in range(n):\n Z = list(map(int, input().split()))\n X = Z[0]\n Y = Z[1]\n\n if X**2 + Y**2 <= d**2:\n cnt += 1\nprint(cnt)\n']
['Runtime Error', 'Accepted']
['s871276867', 's438182411']
[9144.0, 9148.0]
[26.0, 520.0]
[184, 184]
p02595
u745214511
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import sys\na = []\nfor l in sys.stdin:\n a.append(map(lambda x: int(x), l.split(" ")))\n\nN = a[0][0]\nD = a[0][1]\ncoo = a[1:]\n\nimport math\n\ncount = 0\nfor c in coo:\n l = math.sqrt(c[0]**2 + c[1]**2)\n if l <= D:\n count += 1\n\nprint(count)', 'import sys\na = []\nfor l in sys.stdin:\n if l == "":\n break\n a.append(list(map(lambda x: int(x), l.split(" "))))\n\nN = a[0][0]\nD = a[0][1]\ncoo = a[1:]\n\nimport math\n\ncount = 0\nfor c in coo:\n l = math.sqrt(c[0]**2 + c[1]**2)\n if l <= D:\n count += 1\n\nprint(count)']
['Runtime Error', 'Accepted']
['s578486161', 's363181949']
[124728.0, 46912.0]
[854.0, 451.0]
[247, 283]
p02595
u756399469
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D=map(int,input())\nD2=D*D\nc=0\nfor i in range(N):\n x,y =sprit(int,input())\n if x*x+y*y<=D2:\n c+=1\nprint(c)\n \n ', 'N,D=map(int,input().split())\nD2=D*D\nc=0\nfor i in range(N):\n x,y =map(int,input().split())\n if x*x+y*y<=D2:\n c+=1\nprint(c)']
['Runtime Error', 'Accepted']
['s650500529', 's169581070']
[9088.0, 9124.0]
[25.0, 379.0]
[118, 126]
p02595
u761168538
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d=map(int,input().split())\nd=d*d\ncount=0\nfor _ in range(n):\n\tx,y=map(int,input().split())\n\tif(x*x+y*y<=d*d):\n\t\tcount+=1\nprint(count)', 'n,d=map(int,input().split())\nd=d*d\ncount=0\nfor _ in range(n):\n\tx,y=map(int,input().split())\n\tif(x*x+y*y<=d):\n\t\tcount+=1\nprint(count)']
['Wrong Answer', 'Accepted']
['s427452095', 's324182027']
[9192.0, 9180.0]
[401.0, 389.0]
[134, 132]
p02595
u772649753
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['l = [list(map(int,input.split())) for i in range(n)]\nN = l[0][0]\nD = l[0][1]\ncount = 0\nfor i in range(N):\n if l[i+1][0]**2 + l[i+1][1]**2 <= D**2:\n count += 1\nprint(count)', 'N,D = map(int,input().split())\ncount = 0\nfor i in range(N):\n X,Y = map(int,input().split())\n if X**2 + Y**2 <= D**2:\n count += 1\nprint(count)']
['Runtime Error', 'Accepted']
['s650966832', 's428434965']
[9120.0, 9208.0]
[26.0, 475.0]
[181, 154]
p02595
u779327980
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = map(int, input().split())\n\ncount = 0\n\nfor i in N:\n x, y = map(int, input().split())\n if D > pow(x**2+y**2, 0.5):\n count += 1\n else:\n continue\n \nprint(count)', 'N, D = map(int, input().split())\n\ncount = 0\n\nfor i in range(N):\n x, y = map(int, input().split())\n if D > pow(x**2+y**2, 0.5):\n print(pow(x**2+y**2, 0.5))\n count += 1\n else:\n continue\n \nprint(count)', 'N, D = map(int, input().split())\n\ncount = 0\n\nfor i in range(N):\n x, y = map(int, input().split())\n if D >= pow(x**2+y**2, 0.5):\n count += 1\n \nprint(count)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s214300859', 's866126792', 's000253872']
[9036.0, 9524.0, 9552.0]
[23.0, 1062.0, 521.0]
[175, 213, 170]
p02595
u780772381
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
["import math\nn,d=map(int,input().split(' '))\ncnt=0\nwhile n>0:\n x,y=map(int,input().split(' '))\n res=math.sqrt(x**2+y**2)\n if res<=d:\n cnt+=1\nprint(cnt)\n", "import math\nn,d=map(int,input().split(' '))\ncnt=0\nwhile n>0:\n x,y=map(int,input().split(' '))\n res=math.sqrt(x**2+y**2)\n if res<=d:\n cnt+=1\n n=n-1\nprint(cnt)\n"]
['Runtime Error', 'Accepted']
['s497598158', 's126616507']
[9052.0, 9136.0]
[477.0, 497.0]
[167, 177]
p02595
u783340206
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = map(int,input().split())\ncnt = 0\nwhile(n>0):\n p,q = map(int,input().split())\n if d**2 <= (p**2)+(q**2):\n cnt+=1\nprint(cnt)', 'n, d = map(int,input().split())\ncnt = 0\nfor i in range(n):\n p,q = map(int,input().split())\n if p*p+q*q<=d:\n cnt+=1\nprint(cnt)', 'n, d = map(int,input().split())\ncnt = 0\nwhile(n>0):\n p,q = map(int,input().split())\n if (p**2)+(q**2) <= d:\n cnt+=1\nprint(cnt)', 'n, d = map(int,input().split())\ncnt = 0\nwhile(n>0):\n p,q = map(int,input().split())\n if d <= int((p**2)+(q**2)):\n cnt++\nprint(cnt)', 'n, d = map(int,input().split())\ncnt = 0\nfor i in range(n):\n p,q = map(int,input().split())\n if d <= (p**2)+(q**2):\n cnt+=1\nprint(cnt)', 'n, d = map(int(input()))\ncnt = 0\nwhile(n>0):\n p,q = map(int(input()))\n if d == int((p**2)+(q**2)):\n cnt++\nprint(cnt)', 'n, d = map(int,input().split())\ncnt = 0\nwhile(n--):\n p,q = map(int,input().split())\n if p**2 + q**2 <= d**2:\n cnt+=1\nprint(cnt)\n', 'n, d = map(int,input().split())\ncnt = 0\nfor i in range(n):\n p,q = map(int,input().split())\n if p**2 + q**2 <= d**2:\n cnt+=1\nprint(cnt)\n']
['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted']
['s088880105', 's287757416', 's349390392', 's576899263', 's825511378', 's939111480', 's991746054', 's581864827']
[9124.0, 9120.0, 8992.0, 8836.0, 9096.0, 8940.0, 8952.0, 9088.0]
[469.0, 378.0, 441.0, 23.0, 441.0, 26.0, 23.0, 478.0]
[142, 138, 139, 143, 146, 129, 141, 148]
p02595
u784084008
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nxy = [map(int, input().split()) for _ in range(5)]\nx, y = [list(i) for i in zip(*xy)]\n\nn = 0\n\nfor i ,index in enumerate(x[0]):\n m = math.sqrt(x[i+1]**2 + y[i+1]**2)\n if (m <= y[0]):\n n += 1\n\nprint(n)', 'import math\nn,d = map(int,input().split())\n\nx =[]\ny = []\nfor i in range(n):\n x1,y1 = map(int,input().split())\n x.append(x1)\n y.append(y1)\n\nn = 0\n \nfor i ,index in enumerate(x):\n m = math.sqrt(x[i]**2 + y[i]**2)\n if m <= d:\n n += 1\n \nprint(n)']
['Runtime Error', 'Accepted']
['s451057054', 's880814002']
[9124.0, 24912.0]
[32.0, 536.0]
[216, 257]
p02595
u792278636
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nn, d = map(int, input().split())\nlst1 = []\nlst2 = []\nans = 0\nfor i in range(n):\n x, y = map(int, input().split())\n # lst2 =[x, y]\n # list1.append(lst2)\n cal = math.sqrt(x^2+y^2)\n lst1.append(cal)\n \nfor i in range(n):\n if lst1[i] >= d:\n ans += 1\n else:\n continue\nprint(ans)\n', 'import math\nn, d = map(int, input().split())\nlst1 = []\nlst2 = []\nans = 0\nfor i in range(n):\n x, y = map(int, input().split())\n # lst2 =[x, y]\n # list1.append(lst2)\n cal = math.sqrt(x^2+y^2)\n lst1.append(cal)\n \nfor i in range(n):\n if lst1[i] >= d:\n ans += 1\n else:\n continue:\nprint(ans)', 'import math\nN,D= map(int, input().split(" "))\ncount = 0\nfor i in range(0,N):\n X,Y= map(int, input().split(" "))\n d= math.sqrt(pow(X,2)+pow(Y,2))\n if d<= D:\n count = count+1\nprint(count)\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s262103946', 's762216186', 's585211045']
[16844.0, 8968.0, 9108.0]
[418.0, 27.0, 541.0]
[299, 299, 202]
p02595
u793010149
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nn,d=map(int,input().split())\nans=0\nfor i in range(1,n+1):\n x,y=map(int,input().split())\n if math.sqrt((x**2+y**2)*10**5)<=d*10**5:\n ans+=1\n \nprint(ans)', 'import math\nn,d=map(int,input().split())\nans=0\nfor i in range(1,n+1):\n x,y=map(int,input().split())\n if math.sqrt((x**2+y**2)*10**6)<=d*10**3:\n ans+=1\n \nprint(ans)']
['Wrong Answer', 'Accepted']
['s274489104', 's702805165']
[9196.0, 9188.0]
[496.0, 502.0]
[169, 169]
p02595
u793225228
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['def q2():\n import math\n n, d = map(int, input().split())\n points = set([tuple(int(v) for v in input().split()) for v in range(n)])\n print(points)\n\n res = [math.sqrt((x**2 + y**2)) <= d for x, y in points]\n print(sum(res))\n\n\nif __name__ == "__main__":\n \n q2()\n', '\ndef q2():\n import math\n n, d = map(int, input().split())\n points = [[int(v) for v in input().split()] for v in range(n)]\n\n res = [math.sqrt((x**2 + y**2)) <= d for x, y in points]\n print(sum(res))\n\n\n\nif __name__ == "__main__":\n \n q2()\n']
['Wrong Answer', 'Accepted']
['s294848743', 's757782340']
[51216.0, 43896.0]
[800.0, 515.0]
[289, 263]
p02595
u794136315
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nN,D = [int(x) for x in input().split()]\ncount = 0\nfor i in range(D):\n X,Y = [int(x) for x in input().split()]\n if math.sqrt(X**2 + Y**2) <= D:\n count += 1\nprint(count) ', 'import math\nN,D = [int(x) for x in input().split()]\ncount = 0\nfor i in range(0,N):\n X,Y = [int(x) for x in input().split()]\n if math.sqrt(X**2 + Y**2) <= D:\n count += 1\nprint(count) ']
['Runtime Error', 'Accepted']
['s148222276', 's382191686']
[9180.0, 9168.0]
[474.0, 479.0]
[192, 190]
p02595
u798886512
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d=map(int,input().split())\nctr=0\nfor i in range(n):\n x,y=map(int,input().split())\n t=(x**2+y**2)**(1/2)\n if t>=d:\n ctr+=1\nprint(ctr', 'n,d=map(int,input().split())\nctr=0\nfor i in range(n):\n x,y=map(int,input().split())\n t=(x**2+y**2)**(1/2)\n if t<=d:\n ctr+=1\nprint(ctr)\n']
['Runtime Error', 'Accepted']
['s086573797', 's500078542']
[9056.0, 9540.0]
[24.0, 481.0]
[139, 141]
p02595
u804800128
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nN , D = ( int(x) for x in input().split() )\nX = [ ]\nY = [ ]\n\nfor i in range(N):\n x , y = ( int(x) for x in input().split() )\n X.append(x)\n Y.append(y)\n\n\nans = 0\nfor i in range( len(X) ):\n x1 = X[i]\n y1 = Y[i]\n d = math.sqrt( (x1)**2 + (y1)**2 )\n print(x1,y1,d)\n if d <= D:\n ans += 1\n\nprint(ans)', 'import math\nN , D = ( int(x) for x in input().split() )\nX = [ ]\nY = [ ]\n\nfor i in range(N):\n x , y = ( int(x) for x in input().split() )\n X.append(x)\n Y.append(y)\n\n\nans = 0\nfor i in range( N ):\n x1 = X[i]\n y1 = Y[i]\n d = math.sqrt( (x1)**2 + (y1)**2 )\n if d <= D:\n ans += 1\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s002273610', 's547150542']
[25508.0, 24928.0]
[830.0, 557.0]
[337, 313]
p02595
u805066078
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nn, d = map(int, input().split())\np = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if sqrt(pow(abs(x),2)+pow(abs(y),2)) <= d :\n p += 1\nprint(p)', 'import math\nn, d = map(int, input().split())\np = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if sqrt(pow(x,2)+pow(y,2)) ≤ d :\n p += 1\nprint(p)\n ', 'from math import *\nn, d = map(int, input().split())\np = 0\nfor i in range(n):\n x, y = map(int, input().split())\n if sqrt(pow(abs(x),2)+pow(abs(y),2)) <= d :\n p += 1\nprint(p)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s315587133', 's672439944', 's336384988']
[9164.0, 9024.0, 9248.0]
[29.0, 26.0, 454.0]
[170, 164, 177]
p02595
u805586810
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
["from collections import Counter\nimport copy\nfrom itertools import combinations\n\n\ndef A(x):\n return 'Yes' if x >= 30 else 'No'\n\n\ndef B(N, D, X, Y):\n ans = 0\n for i in range(N):\n Di = X[i]**2 + Y[i]**2\n if Di < D**2:\n ans += 1\n return ans\n\n\ndef main():\n N, D = map(int, input().split())\n X = []\n Y = []\n for i in range(N):\n Xi, Yi = map(int, input().split())\n X.append(Xi)\n Y.append(Yi)\n print(B(N, D, X, Y))\n\n\nif __name__ == '__main__':\n main()\n", "from collections import Counter\nimport copy\nfrom itertools import combinations\n\n\ndef A(x):\n return 'Yes' if x >= 30 else 'No'\n\n\ndef B(N, D, X, Y):\n ans = 0\n for i in range(N):\n Di = X[i]**2 + Y[i]**2\n if Di <= D**2:\n ans += 1\n return ans\n\n\ndef main():\n N, D = map(int, input().split())\n X = []\n Y = []\n for i in range(N):\n Xi, Yi = map(int, input().split())\n X.append(Xi)\n Y.append(Yi)\n print(B(N, D, X, Y))\n\n\nif __name__ == '__main__':\n main()\n"]
['Wrong Answer', 'Accepted']
['s647625686', 's450062923']
[25392.0, 25392.0]
[489.0, 497.0]
[474, 475]
p02595
u813033918
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\nN,D = map(int,input().split())\ncnt = 0\nfor n in range(N):\n a,b = map(int,input().split())\n if sqrt(a**2 + b**2)-D>=0:\n cnt+=1\nprint(cnt)', 'import math\n\nN,D = map(int,input().split())\ncnt = 0\nfor n in range(N):\n a,b = map(int,input().split())\n if math.sqrt(a**2 + b**2)-D<=0:\n cnt+=1\nprint(cnt)\n\n']
['Runtime Error', 'Accepted']
['s064457697', 's270922080']
[9168.0, 9124.0]
[26.0, 471.0]
[162, 169]
p02595
u813042907
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d=map(int,input().split())\nt=0\nfor i in range(n):\n a,b=map(int,input().split())\n if a*a+b*b<=d*d:\n t+=1\nprint(n)', 'n,d=map(int,input().split())\nt=0\nfor i in range(n):\n a,b=map(int,input().split())\n if a*a+b*b<=d*d:\n t+=1\nprint(t)']
['Wrong Answer', 'Accepted']
['s703203084', 's385824947']
[9024.0, 9188.0]
[387.0, 403.0]
[127, 127]
p02595
u814288001
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['\nn,d=map(int,input().split())\ncnt = 0\nfor _ in range(n):\n x,y = map(int,input().split())\n if(sqrt((x**2) + (y**2))<=d):\n cnt +=1 \nprint(cnt)', 'import math as m\nn,d=map(int,input().split())\ncnt = 0\nfor _ in range(n):\n x,y = map(int,input().split())\n if(m.sqrt((x**2) + (y**2))<=d):\n cnt +=1 \nprint(cnt)']
['Runtime Error', 'Accepted']
['s899746587', 's688927556']
[9120.0, 9124.0]
[30.0, 501.0]
[153, 171]
p02595
u816377834
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nN = int(input())\nx = int(input())\ny = int(input())\n\nD = int(input())\ndistance = math.sqrt(x**2 + y**2)\n\ncount = 0\nfor i in range(1, N+1):\n if distance <= D:\n count += 1\n\nprint(count)', 'import math\nN, D = map(int, input().split()) \ncount = 0\nfor i in range(N):\n x, y = map(int, input().split())\n if math.sqrt(x**2 + y**2) <= D:\n count += 1\nprint(count)']
['Runtime Error', 'Accepted']
['s307226469', 's342860797']
[9092.0, 9136.0]
[28.0, 471.0]
[204, 205]
p02595
u818213347
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\ninfo = list(map(int, input().split()))\nnum = info[0]\ndis = info[1]\nA = [list(map(int, input().split())) for i in range(num)]\ndisA = [math.squart(A[i][0]^2 + A[i][1]^2) for i in range(num)]\ncnt = 0 \nfor i in range(num):\n if disA <= dis:\n cnt += 1\nprint(cnt)\n', 'import math\n\ninfo = list(map(int, input().split()))\nnum = info[0]\ndis = info[1]\nA = [list(map(int, input().split())) for i in range(num)]\ndisA = [math.sqrt(A[i][0]**2 + A[i][1]**2) for i in range(num)]\ncnt = 0 \nfor i in range(num):\n if disA[i] <= dis:\n cnt += 1\nprint(cnt)\n']
['Runtime Error', 'Accepted']
['s610065374', 's507329319']
[45360.0, 53392.0]
[426.0, 573.0]
[280, 283]
p02595
u820031813
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = input().split()\n\nx = [0] * N\ny = [0] * N\n\nfor i in range(N):\n x[i], y[i] = map(int, input().split())\n \ncounter = 0\n\nfor i in range(N):\n dist = x[i] * x[i] + y[i] * y[i]\n if dist <= D:\n counter += 1\n\nprint(counter)', 'import math\n\nN, D = input().split()\n\nx = [0] * N\ny = [0] * N\n\nfor i in range(N):\n x[i], y[i] = map(int, input().split())\n \ncounter = 0\n\nfor i in range(N):\n dist = x[i] * x[i] + y[i] * y[i]\n if dist <= D:\n counter += 1\n\nprint(counter)', 'N, D = input().split()\n\nx = [0] * N\ny = [0] * N\n\nfor i in range(N):\n x[i], y[i] = map(int, input().split())\n \ncounter = 0\n\nfor i in range(N):\n dist = x[i] * x[i] + y[i] * y[i]\n if dist <= D*D:\n counter += 1\n\nprint(counter)', 'N, D = map(int, input().split())\n\nx = [0] * N\ny = [0] * N\n\nfor i in range(N):\n x[i], y[i] = map(int, input().split())\n \ncounter = 0\n\nfor i in range(N):\n dist = x[i] * x[i] + y[i] * y[i]\n if dist <= D*D:\n counter += 1\n\nprint(counter)']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s080229570', 's099191531', 's789565841', 's269542135']
[9068.0, 9072.0, 9140.0, 24696.0]
[28.0, 23.0, 21.0, 459.0]
[227, 240, 229, 239]
p02595
u836695640
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import numpy as np\nn, d = map(int, input().split())\nx, y = list(map(int, input().split()))\n\nfor i in range (n):\n\tnp.sqrt(x ** 2 + y ** 2) <= d', 'from math import sqrt\nn, d = map(int, input().split())\nxy = [map(int, input().split())for _ in range(n)]\nans = 0\n\nfor x, y in xy:\n s = sqrt(x**2 + y**2)\n if s <= d:\n ans += 1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s267994751', 's152809524']
[27080.0, 96280.0]
[459.0, 830.0]
[142, 190]
p02595
u843318346
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d = map(int,input().split())\nfrom math import sqrt\ncount = 0\nfor _ in range(n):\n x,y = map(int,input().split())\n m = sqrt(x**2 + y**2)\n if m <= d:\n count += 1\nprint(ccount)', 'n,d = map(int,input().split())\nfrom math import sqrt\ncount = 0\nfor i in range(n):\n x,y = map(int,input().split())\n m = sqrt(x**2 + y**2)\n if m <= d:\n count += 1\nprint(count)\n']
['Runtime Error', 'Accepted']
['s981260327', 's188667025']
[9040.0, 9084.0]
[463.0, 481.0]
[180, 190]
p02595
u856564576
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = map(int, input().split(" "))\np = []\nans = 0\nfor i in range(n):\n p.append(list(map(int, input().split(" "))))\n\nfor i, [x, y] in enumerate(p):\n if(x >= d or y >= d):\n continue\n if(x**2 + y**2 <= d**2):\n ans += 1\n\n\nprint(ans)\n', 'n, d = map(int, input().split(" "))\np = []\nans = 0\nfor i in range(n):\n p.append(list(map(int, input().split(" "))))\n\nfor i, [x, y] in enumerate(p):\n if(x > d or y > d):\n continue\n if(x**2 + y**2 <= d**2):\n ans += 1\n\n\nprint(ans)']
['Wrong Answer', 'Accepted']
['s961585719', 's227798153']
[45320.0, 45376.0]
[593.0, 588.0]
[253, 250]
p02595
u866325817
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n=int(input())\nd=int(input())\ncnt=0\nfor i in range(0,n):\n x=int(input())\n y=int(input())\n z=sqrt((x*x)+(y*y))\n if(z>=d):\n cnt+=1\n \nprint(cnt)', 'import math\nn, d = map(int, input().split()) \ncnt=0\nfor i in range(0,n):\n x, y = map(int, input().split()) \n z=math.sqrt((x*x)+(y*y))\n if(z<=d):\n cnt+=1\n \nprint(cnt)']
['Runtime Error', 'Accepted']
['s266351823', 's716663541']
[9164.0, 9124.0]
[21.0, 430.0]
[151, 174]
p02595
u866850376
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d = map(int, input())\n\ncount = 0\nfor t in range(n):\n x,y = map(int, input())\n if x*x + y*y <= d*d:\n count += 1\n\nprint(count)', 'n,d = map(int, input().split(" "))\n\ncount = 0\nfor t in range(n):\n x,y = map(int, input().split(" "))\n if x*x + y*y <= d*d:\n count += 1\n\nprint(count)']
['Runtime Error', 'Accepted']
['s726751589', 's262574215']
[9176.0, 9164.0]
[25.0, 406.0]
[131, 153]
p02595
u867981789
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = map(int,input().split())\nP = [list(map(int,input().split())) for i in range(M)]\nans = 0\nfor i in range(N):\n num = P[N]\n X , Y = num\n if X*X + Y*Y <= D*D:\n ans += 1\nprint(ans)\n', 'N = int(input())\nD = int(input())\nans = 0\nfor i in range(N):\n X = int(input())\n Y = int(input())\n if X*X + Y*Y <= D*D:\n ans += 1\nprint(ans)\n', 'N, D = map(int, input().split())\nans = 0\nfor l in range(N):\n X , Y = map(int,input().split())\n if X*X + Y*Y <= D*D:\n ans += 1\nprint(ans)\n']
['Runtime Error', 'Runtime Error', 'Accepted']
['s737392844', 's803841219', 's908727600']
[9184.0, 8836.0, 9076.0]
[26.0, 24.0, 398.0]
[198, 156, 150]
p02595
u868055170
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\n\nDISTANCE_NUM=0\n\nN,D=(int(x) for x in input.split())\n\nfor _ in range(N)\n x,y=(int(x) for in input.split())\n distance=math.sqrt(x**2+y**2)\n \n if distance <= D:\n DISTANCE_NUM+=1\n \nprint(DISTANCE_NUM)', 'import math\n \nDISTANCE_NUM=0\n \nN,D=(int(x) for x in input.split())\n \nfor _ in range(N)\n x,y=(int(x) for x in input.split())\n distance=math.sqrt(x**2+y**2)\n \n if distance <= D:\n DISTANCE_NUM+=1\n \nprint(DISTANCE_NUM)', 'import math\n \nDISTANCE_NUM=0\n \nN,D=map(int,input().split())\n \nfor _ in range(N):\n x,y=map(int,input().split())\n distance=math.sqrt(x**2+y**2)\n \n if distance <= D:\n DISTANCE_NUM+=1\n \nprint(DISTANCE_NUM)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s296748131', 's430070459', 's128792324']
[9020.0, 8884.0, 9184.0]
[29.0, 26.0, 493.0]
[219, 224, 211]
p02595
u879866069
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\nn, d = input().split()\npoints = []\nfor i in range(n):\n points.append([int(x) for x in input().split()])\nprint(len([p for p in points if math.sqrt(p[0]**2+p[1]**2) <= d]))', 'import math\nn, d = [int(i) for i in input().split()]\npoints = []\nfor i in range(n):\n points.append([int(x) for x in input().split()])\nprint(len([p for p in points if math.sqrt(p[0]**2+p[1]**2) <= d]))']
['Runtime Error', 'Accepted']
['s829415681', 's823736922']
[9120.0, 43468.0]
[24.0, 557.0]
[183, 201]
p02595
u888933875
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import sys\nN, D = map(int, input().split())\nans = 0\nfor _ in range(N):\n x, y = map(int, sys.stdin.readline().split())\n if x ** + y** <= D**:\n ans += 1\nprint(ans)', 'n,d=map(int,input().split())\nc=0\nfor _ in range(n): \n x,y= map(int,input().split())\n if x**2+y**2 <=d**2:\n c+=1\nprint(c)']
['Runtime Error', 'Accepted']
['s285788091', 's488743947']
[8956.0, 8996.0]
[24.0, 483.0]
[174, 125]
p02595
u893178798
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N, D = [int(i) for i in input().split()]\nprint(N, D)\nD2 = D ** 2\nans = 0\nfor i in range(N):\n X, Y = [int(i) for i in input().split()]\n if X**2 + Y**2 <= D2:\n ans += 1\nprint(ans)\n', 'N, D = [int(i) for i in input().split()]\nD2 = D ** 2\nans = 0\nfor i in range(N):\n X, Y = [int(i) for i in input().split()]\n if X**2 + Y**2 <= D2:\n ans += 1\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s974239143', 's610104313']
[9180.0, 9172.0]
[463.0, 460.0]
[191, 179]
p02595
u893661063
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D=input().split() \nN=int(N)\nD=int(D)\ncount = 0\n\nlist = []\nfor i in range(N):\n a, b=input().split()\n list.append((int(a),int(b)))\n\nfor n in range(N):\n distance=((list[u][0]) ** 2 + (list[u][1]) ** 2)\n if distance <= D:\n count += 1\n\nprint (count)', '#B-distance\nN, D = map(int, input().split())\ncount = 0\n\nfor i in range(N):\n x, y = map(int, input().split())\n if (x*x + y*y <= D*D):\n count += 1\nprint (count)\n']
['Runtime Error', 'Accepted']
['s586910050', 's524832538']
[35944.0, 9140.0]
[388.0, 397.0]
[265, 172]
p02595
u898631971
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N , D = map(int,input().split())\n\nc = 0\nfor i in range(N):\n x , y = map(int,input().split())\n\n z = (x**2+y**2)**0.5\n\n # print(z)\n\n if D >= z:\n c+=1\n print(c)', 'N , D = map(int,input().split())\n\nc = 0\nfor i in range(N):\n x , y = map(int,input().split())\n\n z = (x**2+y**2)**0.5\n\n print(z)\n\n if D <= z:\n c+=1\n print(c)', 'N , D = map(int,input().split())\n\nc = 0\nfor i in range(N):\n x , y = map(int,input().split())\n\n z = (x**2+y**2)**0.5\n\n # print(z)\n\n if D <= z:\n c+=1\n print(c)', 'N , D = map(int,input().split())\n\nc = 0\nfor i in range(N):\n x , y = map(int,input().split())\n\n z = (x**2+y**2)**0.5\n\n # print(z)\n\n if D >= z:\n c+=1\nprint(c)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s257870672', 's331442259', 's516806397', 's793673261']
[9500.0, 9496.0, 9564.0, 9580.0]
[895.0, 1141.0, 915.0, 486.0]
[183, 181, 183, 175]
p02595
u901850884
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['\n# x=int(input())\n#\n# if x>=30:\n# print("Yes")\n# else:\n# print("No")\n\n\nn,d = (int(y) for y in input().split())\nx=[]\ncount=0\nfor i in range(n):\n n, m = (int(y) for y in input().split())\n s=n**2+m**2\n if s<(d**2):\n count+=1\nprint(count)\n\n', '\n# x=int(input())\n#\n# if x>=30:\n# print("Yes")\n# else:\n# print("No")\n\n\nn,d = (int(y) for y in input().split())\nx=[]\ncount=0\nfor i in range(n):\n n, m = (int(y) for y in input().split())\n s=n**2+m**2\n # print(s)\n if s<=(d**2):\n count+=1\nprint(count)\n\n']
['Wrong Answer', 'Accepted']
['s741791129', 's780774207']
[9108.0, 9172.0]
[542.0, 563.0]
[276, 292]
p02595
u904331908
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n,d = map(int,input().split())\n\np = [list(map(int,input().split())) for i in range n]\n\nkyori = d * d\ncount = 0\n\nfor s in range(n):\n nagasa = p[s][0] * p[s][0] + p[s][1] * p[s][1]\n if nagasa <= kyori:\n count += 1\n \nprint(count)', 'n,d = map(int,input().split())\n\np = [list(map(int,input().split())) for i in range(n)]\n\nkyori = d * d\ncount = 0\n\nfor s in range(n):\n nagasa = p[s][0] * p[s][0] + p[s][1] * p[s][1]\n if nagasa <= kyori:\n count += 1\n \nprint(count)\n']
['Runtime Error', 'Accepted']
['s703935933', 's096315436']
[9036.0, 45464.0]
[24.0, 497.0]
[234, 236]
p02595
u906501980
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['def main():\n n, d = map(int, input().split())\n is_shorter = lambda dis, x, y : dis**2 <= (x**2 + y**2)\n ans = sum([is_shorter(d, map(int, input().split())) for _ in range(n)])\n print(ans)\n\nif __name__ == "__main__":\n main()', 'def main():\n n, d = map(int, input().split())\n is_shorter = lambda dis, x, y : (x**2 + y**2) <= dis**2\n ans = sum([is_shorter(d, *map(int, input().split())) for _ in range(n)])\n print(ans)\n\nif __name__ == "__main__":\n main()']
['Runtime Error', 'Accepted']
['s887929493', 's476098153']
[9188.0, 10456.0]
[29.0, 507.0]
[238, 239]
p02595
u907676137
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['import math\na, b = map(int, input().split())\ncount = 0\nfor n in range(a):\n c, d = map(int, input().split())\n e = (c*c) + (d * d)\n if int(math.sqrt(e)) < b:\n count += 1\nprint(count)', 'import math\na, b = map(int, input().split())\ncount = 0\nfor n in range(a):\n c, d = map(int, input().split())\n e = (c*c) + (d * d)\n if math.sqrt(e) < b:\n count += 1\nprint(count)', 'import math\na, b = map(int, input().split())\ncount = 0\nfor n in range(a):\n c, d = map(int, input().split())\n e = pow(c, 2) + pow(d, 2)\n if math.sqrt(e) <= b:\n count += 1\nprint(count)']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s046062065', 's641893258', 's259447202']
[9168.0, 9196.0, 9076.0]
[439.0, 425.0, 520.0]
[196, 191, 199]
p02595
u912556688
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D = map(int,input().split())\nans = 0\nfor i in range(N):\n num1,num2 = map(float,input().split())\n if (num1 ** 2 + num2 ** 2) ** (1 / 2) < D:\n ans += 1', 'N,D = map(int,input().split())\nans = 0\nfor i in range(N):\n num1,num2 = map(float,input().split())\n if (num1 ** 2 + num2 ** 2) ** (1 / 2) <= D:\n ans += 1\nprint(ans)']
['Wrong Answer', 'Accepted']
['s697476302', 's522627935']
[9624.0, 9632.0]
[433.0, 435.0]
[156, 168]
p02595
u914693053
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D=map(int,input().split())\nl=[]\nl1=[]\ncount=0\nfor i in range(N):\n x,y=map(int,input().split())\n l.append(x)\n l1.append(y)\nfor i in range(N):\n if (l[i]**2 +l1**2)**0.5 <=D:\n count+=1\nprint(count) \n \n', 'N,D=map(int,input().split())\nl=[]\nl1=[]\ncount=0\nfor i in range(N):\n x,y=map(int,input().split())\n l.append(x)\n l1append(y)\nfor i in range(N):\n if (l[i]**2 +l1[i]**2)**0.5 <=D:\n count+=1\nprint(count) \n \n', 'N,D=map(int,input().split())\nl=[]\nl1=[]\ncount=0\nfor i in range(N):\n x,y=map(int,input().split())\n l.append(x)\n l1append(y)\nfor i in range(N):\n if (l[i]**2 +l1**2)**0.5 <=D:\n count+=1\nprint(count) \n ', 'N,D=map(int,input().split())\nl=[]\nl1=[]\ncount=0\nfor i in range(N):\n x,y=map(int,input().split())\n l.append(x)\n l1.append(y)\nfor i in range(N):\n if (l[i]**2 +l1[i]**2)**0.5 <=D:\n count+=1\nprint(count) \n \n']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s344100866', 's582044404', 's858170565', 's402067963']
[24808.0, 9172.0, 9116.0, 24928.0]
[384.0, 26.0, 25.0, 532.0]
[211, 213, 209, 214]
p02595
u914883924
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N,D=map(int,input().split())\nn=0\nfor x,y=map(int,input().split()) in range(N):\n if (x**2+y**2)**(1/2)<=D:\n n+=1\nprint(n)', 'N,D=map(int,input().split())\nx,y=map(int,input().split())\ni=0\nfor i in range(N):\n if (x**2+y**2)**(1/2)<=D:\n i+=1\n print(i)', 'N,D=map(int,input().split())\nx,y=map(int,input().split())\nn=0\nfor i in range(N):\n if (x**2+y**2)**(1/2)<=D:\n n+=1\n print(n)', 'while True:\n i=0\n x,y=map(int,input().split())\n (x**2+y**2)**(1/2)\n i+=1\n print(i)', 'N,D=map(int,input().split())\nn=0\nfor i in range(N):\n x,y=map(int,input().split())\n if (x**2+y**2)**(1/2)<=D:\n n+=1\nprint(n)']
['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s457108141', 's557037122', 's645438755', 's960210061', 's374390967']
[8972.0, 9428.0, 9452.0, 9616.0, 9596.0]
[24.0, 211.0, 226.0, 964.0, 490.0]
[130, 140, 140, 97, 136]
p02595
u917678406
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['n, d = list(map(int, input().split()))\ncount = 0\nfor _ in range(n):\n x, y = list(map(int, input().split()))\n if (x**2 + y**2) <= d**2:\n ++count\nprint(count)', 'N = int(input())\nD = int(input())\ncount = 0\nfor i in range (N):\n x = int(input())\n y = int(input())\n if((D * D) >= ((x * x) + (y * y))):\n ++count\nprint(count)', 'N = input()\nD = input()\ncount = 0\nfor i in range (N):\n x = input()\n y = input()\n if((D * D) >= ((x * x) + (y * y))):\n ++count\nprint(count)', 'N, D = list(map(int, input().split()))\ncount = 0\nfor i in range(N):\n x, y = list(map(int, input().split()))\n if (x**2 + y**2) <= d**2:\n count += 1\nprint(count)', 'n, d = list(map(int, input().split()))\ncount = 0\nfor _ in range(n):\n x, y = list(map(int, input().split()))\n if (x**2 + y**2) <= d**2:\n count+=1\nprint(count)']
['Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s064338299', 's083821212', 's128364653', 's612337727', 's174765198']
[9104.0, 9116.0, 8976.0, 9176.0, 9068.0]
[502.0, 27.0, 27.0, 26.0, 523.0]
[161, 174, 154, 164, 162]
p02595
u922050654
2,000
1,048,576
We have N points in the two-dimensional plane. The coordinates of the i-th point are (X_i,Y_i). Among them, we are looking for the points such that the distance from the origin is at most D. How many such points are there? We remind you that the distance between the origin and the point (p, q) can be represented as \sqrt{p^2+q^2}.
['N=int(input())\nD=int(input())\nans=0\nfor i in range(N):\n x,y=[int(i) for i in input().split()] \n if x*x + y*y <= D*D:\n ans += 1\nprint(ans)\n', 'N=int(input())\nD=int(input())\nans=0\nfor i in range(N):\n x,y=int(input()).split()\n if x*x + y*y <= D*D:\n ans +=1\nprint(ans)\n', 'N=int(input())\nD=int(input())\ncount=0\na = list(map(int,input().strip().split()))[:N]\nfor i in range(len(a)):\n distance=((i[0]**2)+(i[1]**2))**0.5\n if distance>D:\n count+=1\nprint(count)', 'N=int(input())\nD=int(input())\nans=0\nfor i in range(N):\n x,y=int(input()).split()\n if x*x + y*y <= D*D\n ans+=1\nprint(ans)', 'N,D=[int(i) for i in input().split()]\nans=0\nfor i in range(N):\n x,y=[int(i) for i in input().split()] \n if x*x + y*y <= D*D:\n ans += 1\nprint(ans)\n']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s063995858', 's150021138', 's201538326', 's951098249', 's689659754']
[9176.0, 9032.0, 9192.0, 9024.0, 9188.0]
[27.0, 30.0, 26.0, 26.0, 402.0]
[145, 128, 189, 123, 153]