text
stringlengths
37
1.41M
import re import math import time import numpy as np import matplotlib.pyplot as plt #to hierarchical clustering with Eucledean distance. #cluster distance is average distance #agglomerative algorithm #to implement a hierarchical cluster algorithm #check if a point is in an list of points def pointIn(p, ps): result=False for i in range(len(ps)): if ps[i].index==p.index: result=True return result #find the index of a poinnt in a list of list of points #garranteed to be there def getIndex(p,clusters): index=0 for i in range(len(clusters)): if pointIn(p,clusters[i]): index=i return index #distance of 2 points def distance(pa, pb): #a and b are data points d=0 data1=pa.data data2=pb.data for i in range(len(pa.data)): d=d+ (data1[i]-data2[i])*(data1[i]-data2[i]) d=math.sqrt(d) return d #distance of 2 cluster of points def nodeDistance(na, nb): #use mean distance as meansure of distance between clusters lena=len(na.points) lenb=len(nb.points) if lena==0 or lenb==0: return 0 dist=0 for i in range(lena): for j in range(lenb): dist=dist+distance(na.points[i],nb.points[j]) dist=dist/(lena*lenb) return dist #represents a data point class Point(): def __init__(self, index, data, label): self.index=index #as a indexing id for data point self.data=data self.label=label #represents a clustering node class Node(): def __init__(self,points,step): self.points=points #a list of datapoints self.step=step self.edges=[] #class to do hierarchial clustering class HierarchyCluster(): def __init__(self): #self.nodes=[] clusters=[] #current nodes during calculation self.allpoints=[] #holds all data points self.givenClusters=[] #calculate based on label for i in range(4): self.givenClusters.append([]) data=readData() dimension=len(data[0])-1 print("the dimension of data is") print(dimension) for i in range(len(data)): if np.random.rand()<=0.01: #randomly get about 400 samples p=Point(i,data[i][1:],data[i][0]) self.allpoints.append(p) self.givenClusters[int(data[i][0])-1].append(p) n=Node([p],len(data)) clusters.append(n) #inittiating clusters with single nodes. #building the hierarchical tree length=len(clusters) print("initial length "+str(length)) self.alldistance=np.zeros((length,length)) for i in range(length): for j in range(length): self.alldistance[i][j]=distance(clusters[i].points[0],clusters[j].points[0]) while length>1: minavd=nodeDistance(clusters[0],clusters[1]) indexa=0 indexb=1 for i in range(length-1): for j in range(i+1,length): #print(j) d=nodeDistance(clusters[i],clusters[j]) #print(d) if d < minavd: minavd=d indexa=i indexb=j #print("loop") n1=clusters.pop(indexa) n2=clusters.pop(indexb-1) #clusters[i].points=n1.points+n2.points nodet=Node(n1.points+n2.points,length) self.connect(nodet,n1) self.connect(nodet,n2) #print("node has edges "+ str(len(nodet.edges))) clusters.append(nodet) length=length-1 print("current length "+str(length)) self.root=clusters[0] def connect(self, nodea,nodeb): nodea.edges.append(nodeb) #from the hierarchical clustering generate clusters given the number of groups def generateClusters(self,groupnumber): resultnodes=[self.root] while len(resultnodes) < groupnumber: minstep=10000 minindex=0 for i in range(len(resultnodes)): if resultnodes[i].step<minstep: minstep=resultnodes[i].step minindex=i n=resultnodes.pop(minindex) for i in range(len(n.edges)): resultnodes.append(n.edges[i]) result=[] for i in range(len(resultnodes)): result.append(resultnodes[i].points) print(len(resultnodes[i].points)) return result #n is the number of clusters #calculate Rand Index def randIndex(self,clusters): print("cluster has "+str(len(clusters))) print("given clusters has "+str(len(self.givenClusters))) c2=self.givenClusters l=len(self.allpoints) count=0 for i in range(l-1): for j in range(i+1,l): i1=getIndex(self.allpoints[i], c2) i2=getIndex(self.allpoints[i],clusters) j1=getIndex(self.allpoints[j],c2) j2=getIndex(self.allpoints[j],clusters) if i1==j1 and i2==j2: count=count+1 if i1!=j1 and i2!=j2: count=count+1 #print( str(i1)+" "+str(j1)+ " "+str(i2)+" "+str(j2)) return 2*count/(l * l-1) def readData(): data=[] with open('data.txt', newline='') as csvfile: for line in csvfile: sp=re.split(" +",line) p=[] for i in range(len(sp)-1): p.append(float(sp[i+1])) data.append(p) return data def main(): #the executing body g=HierarchyCluster() ris=[] for i in range(2,10): c1=g.generateClusters(i) ri=g.randIndex(c1) ris.append(ri) plt.plot(range(2,10), ris) plt.title('cluster number vs Rand Index') plt.xlabel('cluster number') plt.ylabel('Rand Index') plt.grid(True) plt.show() if __name__=='__main__': main()
#primeiro exemplo de funรงรตes def meuverso(palavras): print(palavras) print(palavras) print(gato) def gato_duplo (parte1, parte2): gato = parte1 + parte2 meuverso (gato) linha1= "miau" linha2= "grrr miau" gato_duplo(linha1,linha2)
def gradient_descent(formula, init, epoch, lr, delta=1e-8): """formula: f(1), f(2), f(3) w: the weight of init epoch: the epoch for iterations lr: the step""" for i in range(epoch): f1 = formula(init - delta) f2 = formula(init + delta) g = (f2 - f1) / (2 * delta) init -= g * lr return init def f(x): return (x+3)**2+5 w = gradient_descent(f, 3, 1000, 0.1) print(w)
#-*-coding=utf-8-*- import os my_name = 'zeb' my_height = 78 my_age = 19 my_eyes = 'Blue' print(f"Let's talk about {my_name}.") tatal = my_age * 3 print(f"if i {my_name} and age is {my_age}") types_of_people = 10 x = f"there are {types_of_people} types of people." binary = "binary" do_not = "don't" y = f"those who know {binary} adnd those who {do_not}." print(x) print(f"I said: {y}") hilarious = False joke_evaluation = "Isn't that joke so funny?! {}" print(joke_evaluation.format(hilarious)) print(x + y) print("." * 20) print("its fleece was white as {}".format("snow")) print("this end changed", end=' ') print("see")
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2020-02-19 17:26:31 # @Author : ZubinGou ([email protected]) # @Link : https://github.com/ZubinGou # @Version : $Id$ import os # 1 def make_inc(n): return lambda x: x + n f = make_inc(98) print(f(99)) print(f(0)) # 2 sum = lambda a, b, c: a + b + c print(sum(23,23,1)) # 3 pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')] pairs.sort(key=lambda x: x[1]) print(pairs)
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2020-02-20 17:42:06 # @Author : ZubinGou ([email protected]) # @Link : https://github.com/ZubinGou # @Version : $Id$ import os the_count = list(range(1, 6)) print(the_count) fruits = ['apples', 'oranges', 'pears', 'apricots'] change = [1, 'pennies', 2, 'dimes', 3, 'quarters'] for num in the_count: print(f"this is count {num}") for fruit in fruits: print(f"A fruits of type: {fruit}") elements = [] for i in range(0, 6): print(f"Adding {i} to the list.") elements.append(i) for i in elements: print(f"Element was: {i}")
#!/usr/bin/env python import os, sys fb = open('input.txt', 'r') text = fb.read().split('\n')[:-1] # print(text) def run_file(text): i = 0 acc = 0 lines = [] while(i < len(text)): if i in lines: # print("infinite loop detected!") return else: lines.append(i) #print("i: ", i, "\nacc: ", acc) action = text[i][:3] value = int(text[i][4:]) if action == "nop": pass elif action == "acc": acc = acc + value elif action == "jmp": i = i + value continue i = i + 1 print("i: ", i, ", acc: ", acc) run_file(text) for j in range(len(text[:])): text2 = text[:] # print(text2[j]) if text2[j][:3] == "jmp": text2[j] = text2[j].replace("jmp", "nop") elif text2[j][:3] == "nop": text2[j] = text2[j].replace("nop", "jmp") # print(text2[j]) run_file(text2)
# Process: # Import necessary libraries # Get spreadsheet location and name # Store values in variables # Make the input text of the name of the stock uppercase # Present a small menu which will allow to either edit, add, or view # Create functions for each with proper logic import openpyxl import os from openpyxl import workbook from openpyxl import load_workbook def setup(): directory = "C:\\Users\\shrey\\Desktop" directory = directory.lower() os.chdir(directory) spreadname = "Stocks.xlsx" workbook = openpyxl.load_workbook(spreadname) """ sheet_Arr = workbook.sheetnames answer = '' sheetname = '' while answer != 'Y': for x in sheet_Arr: answer = input(x + ": Is this the sheetname which you are trying to access? (Y/N) ") answer = answer.upper() if (answer == 'Y'): sheetname = sheet_Arr[0] break print(sheetname) choose(sheet, workbook) """ sheet = workbook["Sheet1"] return sheet def showStock(stockName): sheet = setup() stockName = stockName.upper() stockRow = 0 toReturn = '' for i in range(1, sheet.max_row + 1): if sheet.cell(row=i, column = 2).value == stockName: stockRow = i toReturn += '\n' toReturn += "Here is the info for " + str(stockName) + ":" + '\n' for i in range(1, sheet.max_column + 1): if i == 8 or i == 3 or i == 2 or i == 1: toReturn += str(i) + ": " + sheet.cell(row = 1, column = i).value + ": " + str(sheet.cell(row = stockRow, column = i).value) else: toReturn += str(i) + ": " + sheet.cell(row = 1, column = i).value + ": " + str(float((sheet.cell(row = stockRow, column = i).value))) toReturn += '\n' return toReturn def showCurrentStocks() -> str: sheet = setup() toReturn = '' toReturn += "Here is a current list of your stocks: " + '\n' for i in range(2, sheet.max_row + 1): toReturn += "Investment Name: " + str(sheet.cell(row = i, column = 1).value) + '\n' + "Stock Symbol: " + str(sheet.cell(row = i, column = 2).value) toReturn += '\n' return toReturn def getStockRow(stock): sheet = setup() stockRow = 1 for i in range(1, sheet.max_row + 1): if sheet.cell(row=i, column = 2).value == stock: stockRow = i return stockRow def editStock(choice, stockSymbol, edit): directory = "C:\\Users\\shrey\\Desktop" directory = directory.lower() os.chdir(directory) spreadname = "Stocks.xlsx" workbook = openpyxl.load_workbook(spreadname) sheet = workbook["Sheet1"] stockRow = getStockRow(stockSymbol) if choice == 7 or choice == 2 or choice == 3 or choice == 1: sheet.cell(row = stockRow, column = choice).value = edit else: sheet.cell(row = stockRow, column = choice).value = float(edit) workbook.save("Stocks.xlsx") def addStock(sheet, workbook): line = sheet.max_row + 1 for i in range(1, sheet.max_column + 1): if i == 7 or i == 2 or i == 1: add = input(sheet.cell(row = 1, column = i).value + ": ") sheet.cell(row = line, column = i).value = add else: add = input(sheet.cell(row = 1, column = i).value + ": ") sheet.cell(row = line, column = i).value = float(add) directory = "C:\\Users\\shrey\\Desktop" directory = directory.lower() os.chdir(directory) workbook.save("Stocks.xlsx") def main(): answer = 'Y' while answer == 'Y': setup() answer = input("Continue? (Y/N) ") if __name__ == "__main__": main()
from __future__ import print_function import sys #class for the parsed instructions, add type, target for extra fuinctionality class instruction3ac : def __init__(self, no, type, in1, in2, out) : if type == 'cmp': debug(in1=in1,in2=in2,out=out) self.no, self.type, self.in1, self.in2, self.out = no, type, in1, in2, out def __str__(self) : return "Instruction No :{},Instruction Type :{}".format(self.no,self.type) def __repr__(self) : return "\n{}. {} {} {} {} ".format(self.no,self.out, self.type, self.in1, self.in2) #raw is a list of the parsed instructions #block is a list of instructions corresdonding to a basic block #TODO : a block generator, which builds the global data structures block, symtable and clears address and register descriptors raw = [] block = [] #vset[] is a set of all the variables of the program. To be used in the .data section vset = set() stringMap = {} arrayset = {} #rset is a list of all the general purpose registers rset = ['eax', 'ebx', 'ecx', 'edx'] #symtable[] is a list st symtable[instruction_no.]<var : nextuse>. nextuse = INF means that the variable is dead symtable = [] #address descriptor adesc{} is a dictionary st adesc[var] = Register containing var. # note that each variable will be contained in atmost 1 register. adesc[var] == None implies that no register contains var # and thus var should be present in memory adesc = {} curr_scope = "" #For keeping count of Number of function temps and arguments. num_var = dict() num_arg = dict() #For mapping local variables and function arguments to the correct stack pointer memmap = dict() globmap = set() #register descriptor rdesc{} is a dictionary st rdesc[reg] = var st reg currently holds the correct value of the "live" variable #var. Note that a register can contain atmost 1 variable. rdesc[reg] = None implies that the register is free. rdesc = {} #list of string to store the output of the block out = [] #Total number of instructions, the registers zprime, yprime and L used in register allocation numins = 0 zprime = None yprime = None L = None debug_flag = 0 def print_symbol_table() : if debug_flag : s = [[str(e) for e in row.values()] for row in symtable] lens = [max(map(len, col)) for col in zip(*s)] fmt = ' '.join('{{:{}}}'.format(x) for x in lens) table = [fmt.format(*row) for row in s] print('-'*(sum(lens)+len(lens)*2)+'|',file = sys.stderr) print(fmt.format(*adesc),'|',file = sys.stderr) print('-'*(sum(lens)+len(lens)*2)+'|',file = sys.stderr) print(' |\n'.join(table),' |',file = sys.stderr) def debug(*arg,**kwarg) : if debug_flag : print('\033[91m',file = sys.stderr) for a in arg : print(a,end=', ', file = sys.stderr) for k,v in kwarg.items() : print(k,'=',v,end=', ', file = sys.stderr) print('\033[0m', file = sys.stderr)
myList = ['Sofia','carlos','mauricio','Rafa','Fabian','Beatriz','Pablo','Edgar','Santiago'] myList2 = ['Pepe','lepu'] #size = len(myList) #print(myList) #myList.sort(reverse=True,key=len) #print(sorted(myList))s #print(myList.pop(0)) #print(myList[3:9]) #myList.append('Renato') #print(myList) #myList.remove('Beatriz') #print(myList) #myList.extend(myList2) #print(myList) print([*myList,*myList2]) #cmd + alt nos ayuda a agrrar varias cosas t con
#message = input("introduce un mensaje") #print("This is the message:" , message) '''eset es un comentario de mas de una linea waoooooo ''' ''' number1 =int (input('give me the first number')) number2 = int (input('give me the second number')) _sum = number1 + number2 if _sum == 10: print('okay u got ten') elif _sum > 10: print ('u got more than ten') else: print('is not ten') ''' while True: try: numero1 = int(input('give me some value')) numero2 = int(input('give me the second value')) _sum = numero1 + numero2 if _sum == 10: print('si es igual a 10') break elif _sum > 10: print('es mayor a 10') else: print('What =(') except ValueError: print('Esto esta mal no sumo strings') break
from board import Board from game_tile import GameTile class GameBoard(Board): def __init__(self, width, height, num_mines): super().__init__(width, height, num_mines) self.total_selections = 0 self.mine_selected = False def add_tiles_to_board(self): for i in range(self.height): row = [] for j in range(self.width): row.append(GameTile((i,j))) self.board.append(row) def select(self, game_tile): ''' Selects given tile if it is selectable, if the tile is blank recursively select all of its neighbours ''' if self.total_selections == 0: self.add_mines(game_tile) if game_tile.is_selected() or game_tile.is_flagged(): return self.total_selections += 1 game_tile._is_selected = True if game_tile.is_mine(): self.mine_selected = True # if selected tile is blank, recurse over its blank neighbours. if game_tile.is_blank(): for neighbour_tile in self.get_neighbours(game_tile): if neighbour_tile.is_blank(): self.select(neighbour_tile) def flag(self, game_tile): """ Flags/deflags at the given coordinate """ # deflag if game_tile.is_flagged(): game_tile._is_flagged = False # flag else: game_tile._is_flagged = True def game_over(self): return self.game_won() is True or self.game_lost() is True def game_won(self): return self.width * self.height - self.num_mines == self.total_selections def game_lost(self): return self.mine_selected
# Program to display the Fibonacci sequence up to n-th term nSequence = int(input("How many sequences do you wish to complete? ")) # first two numbers in the sequence num1, num2 = 0, 1 # initializing a counter count = 0 # check if the number of squences is valid if nSequence <= 0: print("Please enter a positive integer.") elif nSequence == 1: print("Fibonacci sequence up to",nSequence,":") print(num1) else: print("Fibonacci sequence:") while count < nSequence: print(num1) nth = num1 + num2 # update values num1 = num2 num2 = nth count += 1
"""่พ“ๅ…ฅไธ€ไธชๆ•ดๆ•ฐ k (k < 50), ่พ“ๅ‡บไธ€ไธช k*k ็š„ไนๅฎซๅ›พใ€‚ ็คบไพ‹๏ผš 5*5 17 24 01 08 15 23 05 07 14 16 04 06 13 20 22 10 12 19 21 03 11 18 25 02 09 """ import random def exch(arr, a, b): tamp = arr[a] arr[a] = arr[b] arr[b] = tamp def shuffle(arr): """Rearrange array so that result is a uniformly random permutation. Args: arr: A list instance. """ for i in range(len(arr)): r = random.randrange(i + 1) exch(arr, i, r) # creat the asked array and shuffle it x = int(input()) arr = list(range(1, x * x + 1)) shuffle(arr) # print the number graph width = len(str(x * x)) for i in range(x * x): if i % x == 0: print('\n') print('%0*d' % (width, arr[i]), end=" ")
#*****Funciones 7***** print('\nFunciones Ejercicio # 07\n') def calcularpresupuesto(presupuesto): presu_ginecologia = presupuesto * 0.40 presu_traumatologia = presupuesto * 0.30 presu_padiatria = presupuesto * 0.30 return presu_ginecologia, presu_traumatologia, presu_padiatria presupuesto = float(input(('Ingrese el presupuesto anual de todas las รกreas-->ยข '))) x, y, z = calcularpresupuesto(presupuesto) print(f'El presupuesto anual asignado es de ยข{presupuesto}. Para Ginecologรญa el presupuesto es de ยข{x}. Para Traumatologรญa el presupuesto es de ยข{y}. Para Padiatrรญa el presupuesto es de ยข{z}')
#*****Funciones 4***** print('\nFunciones Ejercicio # 04\n') def preciofinal (precio): precio = precio * (1+0.30) return precio costo = float(input(('Ingrese el costo del artรญculo-->ยข'))) resultado = preciofinal(costo) print(f'\nLa tienda compra el artรญculo a ยข{costo} y lo vende a ยข{resultado}')
class Node: def __init__(self, label, *children): self.label = label self.children = children def __str__(self): chstr = [str(i) for i in self.children] chstr = ', '.join(chstr) return "Node {}: [{}]".format(self.label, chstr) class Leaf: def __init__(self, label, val): self.label = label self.val = val def __str__(self): return "Leaf {}: {}".format(self.label, self.val) def main(): # syntax tree for 5 + 7 l1 = Leaf('NUM', 5) l2 = Leaf('+', '+') l3 = Leaf('NUM', 7) expr = Node('expr', l1, l2, l3) print 'done.' if __name__ == '__main__': main()
#!/usr/bin/env python3 # This program is an example for running a motor at a set power value. # The motor will turn with a constant torque, at whatever RPM allows it. # # Created by the Purdue ENGR 16X teaching team # Contact a TA if you have any questions regarding this program. # # Hardware: Connect EV3 or NXT motors to the BrickPi3 motor port A. # Make sure that the BrickPi3 is running on a 12v power supply. # # Results: When you run this program, motor A will run at the # specified power. # # Syntax: BP.set_motor_dps(<PORT>, <VALUE>) # Sets motor in port <PORT> to the degrees-per-second value <VALUE> # The motor will apply whatever torque is required to keep this # rotational valocity. There is an upper limit, but it could be # different based on input voltage and motor type. import time #library for sleep function import brickpi3 #library for BrickPi dependencies BP = brickpi3.BrickPi3() #creating a BP object MOTOR = BP.PORT_A #defining the motor port to be used, motor should be plugged into the #corresponding port on the BrickPi try: print('Enter desired speed for motor A in degrees/sec.\nCtrl+C to terminate program.\n') while True: dps = float(input('Enter desired speed: ')) #get dps from user input BP.set_motor_dps(MOTOR, dps) #sets motor to dps input print('Current speed is {:.4f} degrees/sec'.format(dps)) time.sleep(0.02) except KeyboardInterrupt: #ctrl+c will trigger the program to terminate # Stop all motors, reset all sensors, and return LED control to the firmware. BP.reset_all()
from pprint import pprint class Player(): def __init__(self, name, card1, card2, bank, dealer=False): self.cards = [card1, card2] self.name = name self.bank = bank self.dealer = dealer self.score = self.__calculate_cards_value__() if (dealer): self.cards[0].secret = True def reset_cards(self, card1, card2): self.cards = [card1, card2] self.score = self.__calculate_cards_value__() def lose_bet(self, amount): self.bank -= amount def win_bet(self, amount): self.bank +=amount def can_place_bet(self,amount): if amount > self.bank: print("lol, you can't bet more than you have") return False return True def add_card(self, card): self.cards.append(card) self.score = self.__calculate_cards_value__() if self.score == 0: print(f"{self.name} busted!") def __calculate_cards_value__(self): """ Calculates values for players cards Set value to 0, if hand is bust """ score = 0 aces = False # first treat all aces as 1 and track if any of the cards is ace # then if aces found -> try to return sum + 10 (as only one ace in hand could be 11) # if that is > thatn 21, try to return sum where all aces are 1 # if that is > 21, then player is bust for card in self.cards: # first try to convert value to int try: score += int(card.rank) except ValueError: # card is some high rank card if card.rank in ['jack','queen','king']: score += 10 else: # ace found aces = True score += 1 if aces: if score+10 <= 21: return score+10 elif score <= 21: return score else: return 0 elif score <= 21: return score else: return 0 def get_cards_value(self): return self.score def print_cards(self): print(f"{self.name} cards:") pprint(self.cards)
# Filename: wall_area_of_room2 # Created by: jasongreen # Date: Saturday, January 12, 2019 # Time of Creation: 12:07 # --- # calculate wall area of room NOT # including two windows and a door # I'm sure I could do this in an array, but don't know how. room_perimeter = int(input("Please enter the room's perimeter: ")) room_Height = int(input("Please enter the room height: ")) window_one_height = int(input("Please enter the height of Window #1: ")) window_one_width = int(input("Please enter the width of Window #1: ")) window_two_height = int(input("Please enter the height of Window #2: ")) window_two_width = int(input("Please enter the width of Window #2: ")) door_height = int(input("Please enter the door height: ")) door_width = int(input("Please enter the door width: ")) window_one_area = window_one_width * window_one_height window_two_area = window_two_width * window_two_height door_area = door_width * door_height room_Wall_Area_noWindow_noDoor = ((room_perimeter * room_Height) - ((window_one_area + window_two_area + door_area))) print("The wall area of the room without doors and windows is: {0} square feet.".format(room_Wall_Area_noWindow_noDoor))
import sys def get_fuel(mass): """ Fuel required to launch a given module is based on its mass. Specifically, to find the fuel required for a module, take its mass, divide by three, round down, and subtract 2. For example: For a mass of 12, divide by 3 and round down to get 4, then subtract 2 to get 2. >>> get_fuel(12) 2 For a mass of 14, dividing by 3 and rounding down still yields 4, so the fuel required is also 2. >>> get_fuel(14) 2 For a mass of 1969, the fuel required is 654. >>> get_fuel(1969) 654 For a mass of 100756, the fuel required is 33583. >>> get_fuel(100756) 33583 """ return int(mass / 3) - 2 def main(input_file): total = 0 for line in input_file: total += get_fuel(int(line)) print(total) if __name__ == '__main__': main(sys.stdin)
#this script adds course entries to the classes_for_prototype.csv file #so that we can have some discussion sections in our test data import random import csv courses_input = [] with open("intermediate_data_file.csv", "rU") as data: reader = csv.reader(data) for row in reader: #print(row) courses_input.append(row) #print(courses_input) courses_output = [] # 0: IDENT_DIV 1: IDENT_SUFX_CD 2: xlisting 3: DEPARTMENT 4: CRS_TITLE 5: credit # 6: CRS_DESCRIPTION 7: FORMAT 8: FINALEXAMSTATUS 9: PREREQS 10: CR_RESTRICT # 11: AC 12: AL 13: BS 14: HS 15: IS 16: PV 17: PS 18: SS 19: RCA 20: RCB 21: pubHealthMaj 22: type for item in courses_input: #choose which courses will have current instances if random.randint(0,1) == 1: item[23] = "Y" if random.randint(0, 3) == 3: item[24] = "Y" courses_output.append(item) with open("courses_for_prototype.csv", "wb") as data: writer = csv.writer(data) writer.writerows(courses_output)
# -*- coding: utf-8 -*- import random import string import sys notPrintable = {'๐Ÿ”พ', '๐Ÿ”ฟ', '๐Ÿ•€', '๐Ÿ•', '๐Ÿ•‚', '๐Ÿ•ƒ', '๐Ÿ•„', '๐Ÿ•…', '๐Ÿ•†', '๐Ÿ•‡', '๐Ÿ•ˆ', '๐Ÿ•จ', '๐Ÿ•ฉ', '๐Ÿ•ช', '๐Ÿ•ซ', '๐Ÿ•ฌ', '๐Ÿ•ญ', '๐Ÿ•ฎ','๐Ÿ“พ'} viableCharacters = [chr(i) for i in range(0x1F300, 0x1F578) if chr(i) not in notPrintable] viableCharacters += [chr(i) for i in range(0x1F5ff, 0x1F649) if chr(i) not in notPrintable] print(viableCharacters) englishSymbols = string.ascii_letters + string.digits sentence = input("Enter Sentence to encode ") filename = input("Enter filename to write to ") f = input("Should capitals also be encoded? (y or n) ") while f not in "yn": print("Please type y or n") f = input(">> ") if "n" == f[0]: englishSymbols =englishSymbols.replace(string.ascii_uppercase, "") f = input("Should digits also be encoded? (y or n) ") while f not in "yn": print("Please type y or n") f = input(">> ") if "n" == f[0]: englishSymbols =englishSymbols.replace(string.digits, "") while True: mapping = {} for symbol in englishSymbols: mapping[symbol] = random.choice(viableCharacters) finalString = "" for key in mapping: finalString += key + "\t" + mapping[key] finalString += "\n" finalString += "\n" finalString += sentence finalString += "\n" for letter in sentence: if letter in englishSymbols: letter = mapping[letter] finalString += letter print(finalString) fileToWrite = open(filename, "w") fileToWrite.write(finalString) fileToWrite.close() y = input("is this a good encoding? press y to exit") if (y == "y"): break
# As an exercise , add a method __sub__(self, other) that overloads the subtraction operator, and try it out. class Point: def __init__(self, x=0, y=0): self.x = x self.y = y def __sub__(self, other): return self.x - other.x, self.y - other.y p = Point() p1 = Point(2, 4) p2 = Point(4, 6) print(p1-p2)
import numpy as np from helper import * def sigmoid(x): # Sigmoid activation function: f(x) = 1 / (1 + e^(-x)) return 1 / (1 + np.exp(-x)) def sigmoid_derivative(x): # Derivative of sigmoid: f'(x) = f(x) * (1 - f(x)) fx = sigmoid(x) return fx * (1 - fx) def relu(x): # Relu function: f(x) = x (x>0), f(x)=0 (x<=0) return x * (x > 0) def relu_derivative(x): # Derivative of Relu: f(x) = 1 (x>0), f(x)=0 (x<=0) return 1 * (x > 0) class NeuralNetwork: def __init__(self, x, y, layer_size, lr=0.1, final_lr=0.001, n_epochs=10, batch_size=1, learning_rate_decay=0.95): self.input = x self.output = y self.lr = lr self.n_epochs = n_epochs self.batch_size = batch_size self.layer_size = layer_size self.n_layers = len(self.layer_size)-1 self.learning_rate_decay = learning_rate_decay self.step_num = find_step_num(lr, final_lr, learning_rate_decay, n_epochs) self.weight = [] self.bias = [] ### initial weight and bias for each layer for i in range(0, self.n_layers): self.weight.append(np.random.normal(size=(self.layer_size[i], self.layer_size[i+1]))) self.bias.append(np.random.normal(size=(1, self.layer_size[i+1]))) ### propagate the input from the first layer to last layer ##### ReLu as activation function for hidden layer ##### Sigmoid as activation function for the last layer def forward(self, x): self.layers = [] self.layers.append(x) for i in range(self.n_layers): z_output = np.dot(self.layers[i], self.weight[i]) + self.bias[i] if i < self.n_layers - 1: output = relu(z_output) else: output = sigmoid(z_output) self.layers.append(output) return self.layers ### loss function: MSE def mse(self, y_true, y_pred): return np.mean(np.power(y_true - y_pred, 2)) ### backpropagation: calculate the gradient and update the weights def back_propagation(self, y): self.grad_list = [] d_output = (self.layers[-1] - y) * sigmoid_derivative(self.layers[-1]) self.grad_list.append(d_output) for i in range(self.n_layers-1, 0, -1): delta = np.dot(self.grad_list[-1], self.weight[i].T) * relu_derivative(self.layers[i]) self.grad_list.append(delta) self.grad_list.reverse() for i in range(len(self.grad_list)): d_weight = np.dot(self.layers[i].T, self.grad_list[i]) d_bias = self.grad_list[i] self.weight[i] -= d_weight * self.lr self.bias[i] -= d_bias * self.lr error = self.mse(self.layers[-1], y) return error ### training function def train(self, x_train, y_train): losses = [] for epoch in range(self.n_epochs): error = 0 for x, y in zip(x_train, y_train): self.forward(x.reshape(1, len(x))) error += self.back_propagation(y.reshape(1, len(y))) if epoch % self.step_num == 0: # Decay learning rate self.lr *= self.learning_rate_decay error /= len(x_train) print(f'epoch{epoch} - error:{error}') losses.append(error) return losses ### predict the output with the input def predict(self, input): output_list = self.forward(input) return output_list[-1] # Calculate accuracy percentage def accuracy_metric(self, y_true, y_pred): correct = 0 for i in range(len(y_true)): if y_true[i] == y_pred[i]: correct += 1 return correct / float(len(y_true)) * 100.0
import sys def reverse_word(word): reversed_word = [] ''' turn the string into list ''' array = list(word) ''' reverse by getting the index of the last character to the first''' index = len(word)-1 while index >= 0: reversed_word.append(array[index]) index -= 1 return reversed_word ''' join the list into string''' def print_reversed(reverse_words): word = "".join(reverse_words) print(word) if __name__=="__main__": word = sys.argv[1] print_reversed(reverse_word(word))
# -*- coding: utf-8 -*- """ Created on Wed Feb 26 16:19:56 2020 @author: vidhy""" #---------------------------------------The knapsack problem--------------------------------------------------- import numpy as np import pandas as pd import random as rd from random import randint import matplotlib.pyplot as plt item_number = np.arange(1,9) #weight of rice bag weight = [2,4,5,6,8,15,17,20] #respective price value = [5,11,15,30,26,35,40,50] knapsack_threshold = 50 #Maximum weight that the bag of rice can hold print('The list is as follows:') print('Item No. Weight Value') for i in range(item_number.shape[0]): print('{0} {1} {2}\n'.format(item_number[i], weight[i], value[i])) #declare the initial population solutions_per_pop = 8 pop_size = (solutions_per_pop, item_number.shape[0]) print('Population size = {}'.format(pop_size)) initial_population = np.random.randint(2, size = pop_size) initial_population = initial_population.astype(int) num_generations = 50 print('Initial population: \n{}'.format(initial_population)) #fitness function def cal_fitness(weight, value, population, threshold): fitness = np.empty(population.shape[0]) for i in range(population.shape[0]): S1 = np.sum(population[i] * value) S2 = np.sum(population[i] * weight) if S2 <= threshold: fitness[i] = S1 else : fitness[i] = 0 return fitness.astype(int) #crossover function def selection(fitness, num_parents, population): fitness = list(fitness) parents = np.empty((num_parents, population.shape[1])) for i in range(num_parents): max_fitness_idx = np.where(fitness == np.max(fitness)) parents[i,:] = population[max_fitness_idx[0][0], :] fitness[max_fitness_idx[0][0]] = -999999 return parents #For crossover we will be using one-point crossover def crossover(parents, num_offsprings): offsprings = np.empty((num_offsprings, parents.shape[1])) crossover_point = int(parents.shape[1]/2) crossover_rate = 0.8 i=0 while (parents.shape[0] < num_offsprings): parent1_index = i%parents.shape[0] parent2_index = (i+1)%parents.shape[0] x = rd.random() if x > crossover_rate: continue parent1_index = i%parents.shape[0] parent2_index = (i+1)%parents.shape[0] offsprings[i,0:crossover_point] = parents[parent1_index,0:crossover_point] offsprings[i,crossover_point:] = parents[parent2_index,crossover_point:] i=+1 return offsprings #In Mutation, which chromosome will undergo mutation is being done randomly. # For creating mutants we will be using bit-flip technique i.e. if the selected gene which is going to undergo mutation is 1 then change it to 0 and vice-versa. def mutation(offsprings): mutants = np.empty((offsprings.shape)) mutation_rate = 0.4 for i in range(mutants.shape[0]): random_value = rd.random() mutants[i,:] = offsprings[i,:] if random_value > mutation_rate: continue int_random_value = randint(0,offsprings.shape[1]-1) if mutants[i,int_random_value] == 0 : mutants[i,int_random_value] = 1 else : mutants[i,int_random_value] = 0 return mutants def optimize(weight, value, population, pop_size, num_generations, threshold): parameters, fitness_history = [], [] num_parents = int(pop_size[0]/2) num_offsprings = pop_size[0] - num_parents for i in range(num_generations): fitness = cal_fitness(weight, value, population, threshold) fitness_history.append(fitness) parents = selection(fitness, num_parents, population) offsprings = crossover(parents, num_offsprings) mutants = mutation(offsprings) population[0:parents.shape[0], :] = parents population[parents.shape[0]:, :] = mutants print('Last generation: \n{}\n'.format(population)) fitness_last_gen = cal_fitness(weight, value, population, threshold) print('Fitness of the last generation: \n{}\n'.format(fitness_last_gen)) max_fitness = np.where(fitness_last_gen == np.max(fitness_last_gen)) parameters.append(population[max_fitness[0][0],:]) return parameters, fitness_history #The corresponding items of the parameters in the item_number array will be the ones that the rice will take to fit in 50kg bag. parameters, fitness_history = optimize(weight, value, initial_population, pop_size, num_generations, knapsack_threshold) print('The optimized parameters for the given inputs are: \n{}'.format(parameters)) selected_items = item_number * parameters print('\nSelected items that will maximize the knapsack without breaking it:') for i in range(selected_items.shape[1]): if selected_items[0][i] != 0: print('{}\n'.format(selected_items[0][i]))
from random import shuffle, randrange from time import sleep from structures import Tree, RBTreeNode BLACK = RBTreeNode.BLACK RED = RBTreeNode.RED NIL = RBTreeNode.NIL def tree_insert(tree, data): node = RBTreeNode(data) node.left = node.right = NIL tree_insert_node(tree, node) def tree_insert_node(tree, z): x = tree.root y = None while x: y = x if z.data < x.data: x = x.left else: x = x.right z.parent = y if not y: tree.root = z elif z.data < y.data: y.left = z else: y.right = z insert_case(tree, z) def insert_case(tree, z): # Initally, z.color is RED # # Case 1: z is root if not z.parent: # change z.color to BLACK z.color = BLACK return # Case 2: z.parent.color is BLACK, OK if z.parent.color == BLACK: return # # Now, z.parent.color is RED, so z must have a grandparent. # The colors of z and z.parent are both RED which is not allowed, we should deal with it. # # Case 3: z.uncle.color is RED if z.uncle and z.uncle.color == RED: # invert the colors of z.parent, z.uncle and z.grandparent z.parent.color = BLACK z.uncle.color = BLACK z.grandparent.color = RED # process z.grandparent insert_case(tree, z.grandparent) return # # Now, z has no uncle or z.uncle.color is BLACK # # Case 4: if z == z.parent.right and z.parent == z.grandparent.left: # exchange the role of z and z.parent tree.rotate_left(z.parent) z = z.left # now, z == z.parent.left and z.parent == z.grandparent.left # turn to Case 5.1 elif z == z.parent.left and z.parent == z.grandparent.right: # exchange the role of z and z.parent tree.rotate_right(z.parent) z = z.right # now, z == z.parent.right and z.parent == z.grandparent.right # turn to Case 5.2 # Case 5: # First, invert the colors of z.parent and z.grandparent z.parent.color = BLACK z.grandparent.color = RED # Case 5.1: if z == z.parent.left and z.parent == z.grandparent.left: tree.rotate_right(z.grandparent) # Case 5.2 else: tree.rotate_left(z.grandparent) def get_smallest_child(node): x = node while x.left: x = x.left return x def tree_delete(tree, data): z = tree_search(tree, data) if z: if z.right: s = get_smallest_child(z.right) z.data, s.data = s.data, z.data z = s tree_delete_one_child_node(tree, z) return True else: return False def tree_delete_one_child_node(tree, z): child = z.left if z.left else z.right if not z.parent and not child: tree.root = None return if not z.parent: child.parent = None child.color = BLACK tree.root = child return if z.parent.left == z: z.parent.left = child else: z.parent.right = child child.parent = z.parent if z.color == BLACK: if child.color == RED: child.color = BLACK else: delete_case(tree, child) def delete_case(tree, x): # # Initally, x.color is BLACK # # Case 1: x is root if not x.parent: return # Case 2: x.sibling.color is RED if x.sibling.color == RED: # invert colors of x.parent and x.sibing x.parent.color = RED x.sibling.color = BLACK # rotate if x == x.parent.left: tree.rotate_left(x.parent) else: tree.rotate_right(x.parent) # turn to Case 4, 5, 6 s = x.sibling # Case 3: x.parent, x.sibling and its childs are both BLACK if x.parent.color == s.color == s.left.color == s.right.color == BLACK: s.color = RED delete_case(tree, x.parent) return # Case 4: if x.parent.color == RED and s.color == s.left.color == s.right.color == BLACK: s.color = RED x.parent.color = BLACK return # Case 5: if s.color == BLACK: if x == x.parent.left and s.right.color == BLACK and s.left.color == RED: s.color = RED s.left.color = BLACK tree.rotate_right(s) elif x == x.parent.right and s.left.color == BLACK and s.right.color == RED: s.color = RED s.right.color = BLACK tree.rotate_left(s) # Case 6: s = x.sibling s.color = x.parent.color x.parent.color = BLACK if x == x.parent.left: s.right.color = BLACK tree.rotate_left(s.parent) else: s.left.color = BLACK tree.rotate_right(s.parent) def tree_build(tree, lst): shuffle(lst) for i in lst: tree_insert(tree, i) def tree_search(tree, data): x = tree.root while x and x.data != data: if x.data > data: x = x.left else: x = x.right return x tree = Tree() tree.bind('x', 0x00ff00) tree.bind('z', 0x0000ff) N = 50 lst = [randrange(N) for _ in range(N)] tree_build(tree, lst) sleep(1) for i in lst: tree_delete(tree, i)
# MNIST handwritten digit recognition problem # Simple NN with one hidden layer # For plotting ad hoc MNIST instances from keras.datasets import mnist import matplotlib.pyplot as plt # For NN import numpy from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from keras.utils import np_utils def show_data(X_train): # Call within run() function # Plot first 4 images of dataset as gray scale plt.subplot(221) plt.imshow(X_train[0], cmap=plt.get_cmap('gray')) plt.subplot(222) plt.imshow(X_train[1], cmap=plt.get_cmap('gray')) plt.subplot(223) plt.imshow(X_train[2], cmap=plt.get_cmap('gray')) plt.subplot(224) plt.imshow(X_train[3], cmap=plt.get_cmap('gray')) # Show the plot plt.show() def baseline_model(num_pixels, num_classes): # Create model model = Sequential() model.add(Dense(num_pixels, input_dim=num_pixels, kernel_initializer='normal', activation='relu')) model.add(Dense(num_classes, kernel_initializer='normal', activation='softmax')) # Compile model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model def run(): # Set seed for reproducibility seed = 7 numpy.random.seed(seed) # Load the MNIST dataset (X_train, y_train), (X_test, y_test) = mnist.load_data() # Shape and flatten dataset array num_pixels = X_train.shape[1] * X_train.shape[2] X_train = X_train.reshape(X_train.shape[0], num_pixels).astype('float32') X_test = X_test.reshape(X_test.shape[0], num_pixels).astype('float32') # Normalise inputs from 0-255 to 0-1 X_train = X_train / 255 X_test = X_test / 255 # One hot encode outputs y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) num_classes = y_test.shape[1] # Build the model model = baseline_model(num_pixels, num_classes) # Fit the model model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=200, verbose=2) # Final evaluation of the model scores = model.evaluate(X_test, y_test, verbose=0) print("Baseline error: %.2f%%" % (100-scores[1]*100)) # Run the script run()
class BinarySearch(list): def __init__(self, a, b, *args): list.__init__(self, *args) self.list_length = a self.step = b end = self.list_length * self.step for i in range(self.step, end+1, self.step): self.append(i) @property def length(self): return len(self) def search(self, value, start=0, end=None, count=0): if not end: end = self.length - 1 if value == self[start]: return {'index': start, 'count': count} elif value == self[end]: return {'index': end, 'count': count} mid = (start + end) // 2 if value == self[mid]: return {'index': mid, 'count': count} elif value > self[mid]: start = mid + 1 elif value < self[mid]: end = mid - 1 if start >= end: return {'index': -1, 'count': count} count += 1 return self.search(value, start, end, count)
"""Scoring, analysing This file includes functions to analyse the tweets and give them scores. """ import re import os def get_words(): """Get words Returns a list with first a list of positive words and second a list of negative words. """ # path to the directory including the word-files dir_path = os.path.dirname(os.path.realpath(__file__)) + "\\src\\" # reading in the positive and negative words as lists pos_words = [] neg_words = [] with open(dir_path + "positive-words.txt") as positive, open(dir_path + "negative-words.txt") as negative: for line in positive: li = line.strip() if not li.startswith(";"): pos_words.append(line.rstrip()) for line in negative: li = line.strip() if not li.startswith(";"): neg_words.append(line.rstrip()) return [pos_words, neg_words] def scoring(tweets): """Scoring Returns a dictionary containing the tweets as keys and the scoring as their values. """ scored_tweets = {} for tweet in tweets: # removing unwanted parts tweet = re.sub('https://', '', tweet) tweet = re.sub('http://', '', tweet) tweet = re.sub('[^[:graph:]]', ' ', tweet) tweet = re.sub('[[:punct:]]', '', tweet) tweet = re.sub('[[:cntrl:]]', '', tweet) tweet = re.sub('\\d+', '', tweet) tweet = re.sub('#', '', tweet) tweet = re.sub('\u2026', '', tweet) tweet = tweet.lower() # split to a list of words tweet_list = tweet.split() # getting words for scoring words = get_words() pos_words = words[0] neg_words = words[1] # defining the score pos_matches = 0 neg_matches = 0 for pos, neg in zip(pos_words, neg_words): pos_matches += tweet_list.count(pos) neg_matches += tweet_list.count(neg) scored_tweets.update({tweet : pos_matches - neg_matches}) return scored_tweets
import zipfile import shutil f = open('fileone.txt', 'w+') f.write('ONE FILE') f.close f = open('filetwo.txt', 'w+') f.write('TWO FILE') f.close comp_file = zipfile.ZipFile('comp_file.zip', 'w') comp_file.write('fileone.txt', compress_type = zipfile.ZIP_DEFLATED) comp_file.write('filetwo.txt', compress_type = zipfile.ZIP_DEFLATED) comp_file.close() zip_obj = zipfile.ZipFile('comp_file.zip', 'r') zip_obj.extractall('extracted_content') dir_to_zip = '/home/tmorris24/Python/exercises/extracted_content' output_filename = 'example' shutil.make_archive(output_filename, 'zip', dir_to_zip) shutil.unpack_archive('example.zip', 'final_unzip', 'zip')
import deck import card import hand def black_jack(): deck1 = deck.Deck() balance = 1000 print("Welcome to Black Jack!\n") while True: win = 0 playerturn = 0 dealerturn = 0 print(f"Current Balance: ${balance}") if balance <= 0: print("You are out of money! Goodbye!") break play = input("Would you like to place a bet? Please enter Yes to play.\ \nEnter any other input to quit\n\n") if play == "Yes" or play == "yes" or play == "y": pass else: print(f"Goodbye! Your final balance is: ${balance}") break print(f"\nPlease enter a bet!\nCurrent Balance: ${balance}") bet = 0 while bet <= 0 or bet > balance: try: bet = int(input("Enter a bet: $")) except: bet = -1 if bet <= balance and bet > 0: pass else: print(f"\nPlease enter a valid bet!\n\nCurrent Balance: ${balance}") print(f"Bet Placed!: ${bet}\n") print("Let's Play!\n") playerhand = hand.Hand(deck1) dealerhand = hand.Hand(deck1) while win == 0: print(f"Dealer is showing a {dealerhand.hand[-1].rank} of {dealerhand.hand[-1].suit}\n") while playerturn == 0: print("Player Hand:") for i, val in enumerate(playerhand.hand): print(f"{playerhand.hand[i].rank} of {playerhand.hand[i].suit}") print(f"Player has {playerhand.total()}\n") move = input("Would you like to hit or stay?: ") if move == "Hit" or move == "hit": playerhand.hit(deck1) if playerhand.total() > 21: print("Player Busts!\n") win = -1 playerturn = 1 elif move == "Stay" or "stay": print(f"Player stays with {playerhand.total()}\n") playerturn = 1 else: print("I didn't understand you!\n") if win == -1: print(f"Dealer wins with a {dealerhand.hand[-1].rank} of {dealerhand.hand[-1].suit}\ and a {dealerhand.hand[-2].rank} of {dealerhand.hand[-2].suit}\n") break print(f"Dealer reveals a {dealerhand.hand[-2].rank} of {dealerhand.hand[-2].suit}\n") while dealerturn == 0: print("Dealer Hand:") for i, val in enumerate(dealerhand.hand, -1): print(f"{dealerhand.hand[i].rank} of {dealerhand.hand[i].suit}") print(f"Dealer has {dealerhand.total()}\n") if dealerhand.total() <= 16: print("The dealer hits\n") dealerhand.hit(deck1) else: print(f"The dealer stays with {dealerhand.total()}\n") dealerturn = 1 if dealerhand.total() > 21: print("The dealer busts\n") win = 1 dealerturn = 1 break if win == 1 or ((playerhand.total() > dealerhand.total()) and win != -1): print(f"The player wins with {playerhand.total()}!\n") balance += bet elif win == -1 or playerhand.total() < dealerhand.total(): print(f"The dealer wins with {dealerhand.total()}!\n") balance -= bet else: print("The player and dealer drew!\n") black_jack()
import requests import bs4 result = requests.get("https://en.wikipedia.org/wiki/Jonas_Salk") print(type(result)) # print(result.text) soup = bs4.BeautifulSoup(result.text, "lxml") # print(soup) print(soup.select('title')) site_paragraphs = soup.select("p") print(site_paragraphs) print(site_paragraphs[0])
# imports all openGL functions from OpenGL.GL import * from OpenGL.GL import shaders from matutils import * # we will use numpy to store data in arrays import numpy as np class Uniform: """ We create a simple class to handle uniforms, this is not necessary, but allow to put all relevant code in one place """ def __init__(self, uniform_name, value=None): """ Initialise the uniform parameter :param uniform_name: the name of the uniform, as stated in the GLSL code """ self.name = uniform_name self.value = value self.location = -1 def link(self, program): """ This function needs to be called after compiling the GLSL program to fetch the location of the uniform in the program from its name :param program: the GLSL program where the uniform is used """ self.location = glGetUniformLocation(program=program, name=self.name) if self.location == -1: print('(E) Warning, no uniform {}'.format(self.name)) def bind_matrix(self, M=None, number=1, transpose=True): """ Call this before rendering to bind the Python matrix to the GLSL uniform mat4. You will need different methods for different types of uniform, but for now this will do for the PVM matrix :param number: the number of matrices sent, leave that to 1 for now :param transpose: Whether the matrix should be transposed """ if M is not None: self.value = M if self.value.shape[0] == 4 and self.value.shape[1] == 4: glUniformMatrix4fv(self.location, number, transpose, self.value) elif self.value.shape[0] == 3 and self.value.shape[1] == 3: glUniformMatrix3fv(self.location, number, transpose, self.value) else: print('(E) Error: Trying to bind as uniform a matrix of shape {}'.format(self.value.shape)) def bind(self, value): if value is not None: self.value = value if isinstance(self.value, int): self.bind_int() elif isinstance(self.value, float): self.bind_float() elif isinstance(self.value, np.ndarray): if self.value.ndim == 1: self.bind_vector() elif self.value.ndim == 2: self.bind_matrix() else: print('Wrong value bound: {}'.format(type(self.value))) def bind_int(self, value=None): if value is not None: self.value = value glUniform1i(self.location, self.value) def bind_float(self, value=None): if value is not None: self.value = value glUniform1f(self.location, self.value) def bind_vector(self, value=None): if value is not None: self.value = value if value.shape[0] == 2: glUniform2fv(self.location, 1, value) elif value.shape[0] == 3: glUniform3fv(self.location, 1, value) elif value.shape[0] == 4: glUniform4fv(self.location, 1, value) else: print('(E) Error in Uniform.bind_vector(): Vector should be of dimension 2,3 or 4, found {}'.format( value.shape[0])) def set(self, value): """ function to set the uniform value (could also access it directly, of course) """ self.value = value class FurShader: """ This is the base class for loading and compiling the GLSL shaders. """ def __init__(self): """ Initialises the shaders :param vertex_shader: the name of the file containing the vertex shader GLSL code :param fragment_shader: the name of the file containing the fragment shader GLSL code """ print('Creating shader program.') # tells the program where to find the shaders. vertex_shader = 'shaders/vertex_shader.glsl' fragment_shader = 'shaders/fragment_shader.glsl' # load the vertex shader GLSL code print('Load vertex shader from file: {}'.format(vertex_shader)) with open(vertex_shader, 'r') as file: self.vertex_shader_source = file.read() # load the fragment shader GLSL code print('Load fragment shader from file: {}'.format(fragment_shader)) with open(fragment_shader, 'r') as file: self.fragment_shader_source = file.read() # All of the uniforms which are required for the shaders. self.uniforms = { 'UVScale': Uniform('UVScale'), 'num_of_layers': Uniform('num_of_layers'), 'current_layer': Uniform('current_layer'), 'projection': Uniform('projection'), 'view': Uniform('view'), 'model': Uniform('model'), 'fur_length': Uniform('fur_length'), 'furFlowOffset': Uniform('furFlowOffset'), 'textureUnit0': Uniform('textureUnit0'), 'textureUnit1': Uniform('textureUnit1') } self.model_program = None def compile(self, attributes): """ Call this function to compile the GLSL codes for both shaders. :return: """ print('Compiling GLSL shaders....') try: self.program = glCreateProgram() glAttachShader(self.program, shaders.compileShader(self.vertex_shader_source, shaders.GL_VERTEX_SHADER)) glAttachShader(self.program, shaders.compileShader(self.fragment_shader_source, shaders.GL_FRAGMENT_SHADER)) except RuntimeError as error_message: print('(E) An error occurred while compiling {} shader:\n {}\n... forwarding exception...'.format(self.name, error_message)), raise error_message self.bindAttributes(attributes) # Links the program glLinkProgram(self.program) # tell OpenGL to use this shader program for rendering glUseProgram(self.program) # link all uniforms for uniform in self.uniforms: self.uniforms[uniform].link(self.program) def bindAttributes(self, attributes): # bind all shader attributes to the correct locations in the VAO for attrib_name, location in attributes.items(): glBindAttribLocation(self.program, location, attrib_name) print('Binding attribute {} to location {}'.format(attrib_name, location)) def bind(self, model, M, UVScale, num_of_layers, fur_length, current_layer, furFlowOffset): """ Call this function to enable this GLSL Program (you can have multiple GLSL programs used during rendering!) """ # tell OpenGL to use this shader program for rendering glUseProgram(self.program) P = model.scene.P V = model.scene.camera.V # set the uniforms self.uniforms['projection'].bind(P) self.uniforms['view'].bind(V) self.uniforms['model'].bind(M) self.uniforms['UVScale'].bind_float(UVScale) self.uniforms['num_of_layers'].bind_float(num_of_layers) self.uniforms['fur_length'].bind_float(fur_length) self.uniforms['current_layer'].bind_float(current_layer) self.uniforms['furFlowOffset'].bind_float(furFlowOffset) self.uniforms['textureUnit0'].bind(0) self.uniforms['textureUnit1'].bind(1) def unbind(self): glUseProgram(0)
import unittest class Node: def __init__(self, keyIn, valueIn): self.key = keyIn self.value = valueIn self.left = None self.right = None def __repr__(self): return "Node{ key : " + str(self.key) + ", value : " + str(self.value) + "}" def getKey(self): return self.key def setKey(self, keyIn): self.key = keyIn def getValue(self): return self.value def setValue(self, valueIn): self.value = valueIn def getLeft(self): return self.left def setLeft(self, nodeIn): self.left = nodeIn def getRight(self): return self.right def setRight(self, nodeIn): self.right = nodeIn class BST: def __init__(self): self.root = Node(None, None) def size(self): return self.__size(self.root) def __size(self, nodeIn): if nodeIn == None or nodeIn.getKey() == None: return 0 left = nodeIn.getLeft() == None right = nodeIn.getRight() == None if left & right: return 1 elif right: return 1 + self.__size(nodeIn.getLeft()) elif left: return 1 + self.__size(nodeIn.getRight()) else: return 1 + self.__size(nodeIn.getRight()) + self.__size(nodeIn.getLeft()) def isEmpty(self): return self.size() == 0 def put(self, keyIn, valueIn): if self.root.getKey() == None: self.root = Node(keyIn, valueIn) else: self.root = self.__put(self.root, keyIn, valueIn) def __put(self, nodeIn, keyIn, valueIn): if nodeIn == None or nodeIn.getKey() == None: return Node(keyIn, valueIn) else: if keyIn > nodeIn.getKey(): nodeIn.setRight(self.__put(nodeIn.getRight(), keyIn, valueIn)) else: nodeIn.setLeft(self.__put(nodeIn.getLeft(), keyIn, valueIn)) return nodeIn def get(self, keyIn): return self.__get(self.root, keyIn) def __get(self, curNode, keyIn): if curNode == None: return None if curNode.getKey() == keyIn: return curNode.getValue() elif curNode.getKey() < keyIn: if curNode.getRight() == None: return None return self.__get(curNode.getRight(), keyIn) elif curNode.getKey() > keyIn: if curNode.getLeft() == None: return None return self.__get(curNode.getLeft(), keyIn) def contains(self, keyIn): return self.get(keyIn) != None def remove(self, keyIn): value = self.get(keyIn) self.root = self.__remove(self.root, keyIn) return value def __remove(self, nodeIn, keyIn): if nodeIn == None: return None if keyIn < nodeIn.getKey(): nodeIn.setLeft(self.__remove(nodeIn.getLeft(), keyIn)) elif keyIn > nodeIn.getKey(): nodeIn.setRight(self.__remove(nodeIn.getRight(), keyIn)) else: if nodeIn.getRight() == None: return nodeIn.getLeft(); if nodeIn.getLeft() == None: return nodeIn.getRight() min = self.__min(nodeIn.getRight()) min.setLeft(nodeIn.getLeft()) nodeIn = nodeIn.getRight() return nodeIn def min(self): return self.__min(self.root).getKey(); def __min(self, nodeIn): if nodeIn.getLeft() == None: return nodeIn else: return self.__min(nodeIn.getLeft()) def max(self): return self.__max(self.root).getKey(); def __max(self, nodeIn): if nodeIn.getRight() == None: return nodeIn else: return self.__max(nodeIn.getRight()) def __repr__(self): temp = self.toString(self.root) temp = temp[0:len(temp)-2] return "{" + temp + "}" def toString(self, nodeIn): if(nodeIn==None): return "" return self.toString(nodeIn.getLeft()) + str(nodeIn.getKey()) + "=" + str(nodeIn.getValue()) + ", " + self.toString(nodeIn.getRight()) def isBST(bst): return(isBSTNode(bst.root)) def isBSTNode(nodeIn): if nodeIn.getLeft() == None and nodeIn.getRight() == None: return True elif nodeIn.getLeft() != None and nodeIn.getRight() == None: return(nodeIn.getLeft().getKey() < nodeIn.getKey() and isBSTNode(nodeIn.getLeft())) elif nodeIn.getLeft() == None and nodeIn.getRight() != None: return(nodeIn.getRight().getKey() > nodeIn.getKey() and isBSTNode(nodeIn.getRight())) else: return(nodeIn.getLeft().getKey() < nodeIn.getKey() and nodeIn.getRight().getKey() > nodeIn.getKey() and isBSTNode(nodeIn.getLeft()) and isBSTNode(nodeIn.getRight()))
#!/usr/bin/env python # -*- coding: utf-8 -*- # function: https://practice.geeksforgeeks.org/problems/coin-change/0 # author: jmhuang # email: [email protected] # date: 2018/7/1 import sys global matrix def calculate_coin_change(number, number_list): global matrix if number == 0: return 0 if not number_list: return 0 number_list.sort() if number < number_list[0]: return 0 if matrix[number][number_list[0]] != -1: return matrix[number][number_list[0]] result = 0 for i, num in enumerate(number_list): if number < num: break elif number == num: result += 1 else: result += calculate_coin_change(number - num, number_list[i:]) matrix[number][number_list[0]] = result return result if __name__ == "__main__": lines = sys.stdin.readlines() total_groups = int(lines[0]) for group in range(total_groups): number_len = int(lines[group * 3 + 1]) global matrix number_list = list(map(int, lines[group * 3 + 2].split())) total = int(lines[group * 3 + 3]) matrix = [[-1 for i in range(total + 1)] for i in range(total + 1)] result = calculate_coin_change(total, number_list) # for each in matrix: # print each print(result)
import requests from datetime import datetime def get_proxies(request="getproxies", proxytype="http", timeout="10000", country="all", ssl="all", anonymity="all"): """ returns a list of proxies as strings ['host1:port1', 'host2:port2'] or None if proxies aren't found. proxytype - http, socks4, and socks5 timeout - time in ms country - all, US, CA, AU, DE, FR, GB, GE, IN, IT, JP, MX, PH, PK, US, RU, SG, and more ssl - all, yes, and no anonymity - all, elite, anonymous, and transparent """ request = request proxytype = proxytype timeout = timeout country = country ssl = ssl anonymity = anonymity url = "https://api.proxyscrape.com/"+ \ "?request="+request+ \ "&proxytype="+proxytype+ \ "&timeout="+timeout+ \ "&country="+country+ \ "&ssl="+ssl+ \ "&anonymity="+anonymity r = requests.get(url) proxy_list = r.text proxies = proxy_list.split("\r\n") if(len(proxy_list) > 0): return proxy_list else: return None def import_proxies(request="getproxies", proxytype="http", timeout="10000", country="all", ssl="all", anonymity="all"): """ Imports all proxies into a text file - 'proxies/proxies.txt' Returns True on completion and None if proxies aren't found. """ proxies = get_proxies(request=request, proxytype=proxytype, timeout=timeout, country=country, ssl=ssl, anonymity=anonymity) proxy_file = open("./proxies/proxies.txt", "w+") if(len(proxies) < 1): return None for proxy in proxies: if(len(proxy)> 4): proxy_file.write(proxy+"\n") return True
from math import sqrt import numpy as np from sympy import Matrix def get_pos_array(key,alphabet): """ Gets an array of positions of a string in the alphabet Params: key - word to be transformed alphabet - alphabet that contains the key Return: An array of positions """ pos_pass = [] for letter in key: pos_pass.append(alphabet.find(letter)) return pos_pass def generate_matrix(key,alphabet): """ Generate a matrix given a key and an alphabet Params: key - key to be transformed to a matrix alphabet - Alphabet Return: Matrix of positions of the given key """ pos_pass = np.asarray(get_pos_array(key,alphabet)) a = pos_pass.reshape(int(sqrt(len(key))),int(sqrt(len(key)))) return a def dot_matrix(A,alphabet,s): """ Generates the string of the product of a matrix and a string in the alphabet Params: A - matrix to be multiplied alphabet - alphabet s - string to be multiplied Return: String of the result of the product between the matrix and the string """ pos_pass = np.asarray(get_pos_array(s,alphabet)) enciphered_vector = A.dot(pos_pass)%26 res = '' for i in enciphered_vector: res += alphabet[int(i)] return res def mod_mat_inv(A,m): """ Calculates the module matrix inverse Params: A - Matrix m - module Return: The module matrix inverse of the given matrix """ A = Matrix(A) A = A.inv_mod(m) return np.array(A).astype(np.int32)
import unittest from calculator import Calculator class TestStringMethods(unittest.TestCase): def test_expression(self): calc = Calculator("1,2") self.assertEqual(calc.expr, "1,2") def test_invalid_expression(self): with self.assertRaises(RuntimeError): Calculator("a,b") if __name__ == '__main__': unittest.main()
earnings = float(input("ะ’ะฒะตะดะธั‚ะต ะทะฝะฐั‡ะตะฝะธะต ะฒั‹ั€ัƒั‡ะบะธ:")) expenses = float(input("ะ’ะฒะตะดะธั‚ะต ะทะฝะฐั‡ะตะฝะธะต ะธะทะดะตั€ะถะตะบ:")) if earnings > expenses: print("ะŸั€ะธะฑั‹ะปัŒ โ€” ะฒั‹ั€ัƒั‡ะบะฐ ะฑะพะปัŒัˆะต ะธะทะดะตั€ะถะตะบ") profit = earnings - expenses efficiency = profit / earnings print("ะ ะตะฝั‚ะฐะฑะตะปัŒะฝะพัั‚ัŒ ัะพัั‚ะฐะฒะปัะตั‚ %.2f" % efficiency) employers = int(input("ะ’ะฒะตะดะธั‚ะต ะบะพะปะธั‡ะตัั‚ะฒะพ ัะพั‚ั€ัƒะดะฝะธะบะพะฒ:")) print("ะŸั€ะธะฑั‹ะปัŒ ะฝะฐ ะพะดะฝะพะณะพ ัะพั‚ั€ัƒะดะฝะธะบะฐ ัะพัั‚ะฐะฒะปัะตั‚: %.2f" % (profit / employers)) else: print("ะฃะฑั‹ั‚ะพะบ โ€” ะธะทะดะตั€ะถะบะธ ะฑะพะปัŒัˆะต ะฒั‹ั€ัƒั‡ะบะธ")
# ะ ะตะฐะปะธะทะพะฒะฐั‚ัŒ ั„ัƒะฝะบั†ะธัŽ int_func(), # ะฟั€ะธะฝะธะผะฐัŽั‰ัƒัŽ ัะปะพะฒะพ ะธะท ะผะฐะปะตะฝัŒะบะธั… ะปะฐั‚ะธะฝัะบะธั… ะฑัƒะบะฒ ะธ ะฒะพะทะฒั€ะฐั‰ะฐัŽั‰ัƒัŽ ะตะณะพ ะถะต, # ะฝะพ ั ะฟั€ะพะฟะธัะฝะพะน ะฟะตั€ะฒะพะน ะฑัƒะบะฒะพะน. # ะะฐะฟั€ะธะผะตั€, print(int_func(โ€˜textโ€™)) -> Text. # # ะŸั€ะพะดะพะปะถะธั‚ัŒ ั€ะฐะฑะพั‚ัƒ ะฝะฐะด ะทะฐะดะฐะฝะธะตะผ. # ะ’ ะฟั€ะพะณั€ะฐะผะผัƒ ะดะพะปะถะฝะฐ ะฟะพะฟะฐะดะฐั‚ัŒ ัั‚ั€ะพะบะฐ ะธะท ัะปะพะฒ, ั€ะฐะทะดะตะปะตะฝะฝั‹ั… ะฟั€ะพะฑะตะปะพะผ. # ะšะฐะถะดะพะต ัะปะพะฒะพ ัะพัั‚ะพะธั‚ ะธะท ะปะฐั‚ะธะฝัะบะธั… ะฑัƒะบะฒ ะฒ ะฝะธะถะฝะตะผ ั€ะตะณะธัั‚ั€ะต. # ะกะดะตะปะฐั‚ัŒ ะฒั‹ะฒะพะด ะธัั…ะพะดะฝะพะน ัั‚ั€ะพะบะธ, ะฝะพ ะบะฐะถะดะพะต ัะปะพะฒะพ ะดะพะปะถะฝะพ ะฝะฐั‡ะธะฝะฐั‚ัŒัั ั ะทะฐะณะปะฐะฒะฝะพะน ะฑัƒะบะฒั‹. # ะะตะพะฑั…ะพะดะธะผะพ ะธัะฟะพะปัŒะทะพะฒะฐั‚ัŒ ะฝะฐะฟะธัะฐะฝะฝัƒัŽ ั€ะฐะฝะตะต ั„ัƒะฝะบั†ะธัŽ int_func(). def int_func(word): return word.capitalize() def int_func_multi(sentence): return_value = "" for word in sentence.split(): return_value += int_func(word) + " " return return_value print(int_func("ั€ะ•ะทะฃะปะฌั‚ะั‚:"), int_func_multi(input("ะ’ะฒะตะดะธั‚ะต ัั‚ั€ะพะบัƒ: ")))
# ะ ะตะฐะปะธะทะพะฒะฐั‚ัŒ ั„ัƒะฝะบั†ะธัŽ, ะฟั€ะธะฝะธะผะฐัŽั‰ัƒัŽ ะฝะตัะบะพะปัŒะบะพ ะฟะฐั€ะฐะผะตั‚ั€ะพะฒ, # ะพะฟะธัั‹ะฒะฐัŽั‰ะธั… ะดะฐะฝะฝั‹ะต ะฟะพะปัŒะทะพะฒะฐั‚ะตะปั: ะธะผั, ั„ะฐะผะธะปะธั, ะณะพะด ั€ะพะถะดะตะฝะธั, ะณะพั€ะพะด ะฟั€ะพะถะธะฒะฐะฝะธั, email, ั‚ะตะปะตั„ะพะฝ. # ะคัƒะฝะบั†ะธั ะดะพะปะถะฝะฐ ะฟั€ะธะฝะธะผะฐั‚ัŒ ะฟะฐั€ะฐะผะตั‚ั€ั‹ ะบะฐะบ ะธะผะตะฝะพะฒะฐะฝะฝั‹ะต ะฐั€ะณัƒะผะตะฝั‚ั‹. # ะ ะตะฐะปะธะทะพะฒะฐั‚ัŒ ะฒั‹ะฒะพะด ะดะฐะฝะฝั‹ั… ะพ ะฟะพะปัŒะทะพะฒะฐั‚ะตะปะต ะพะดะฝะพะน ัั‚ั€ะพะบะพะน. def pretty_user_print(first_name, last_name, birth_year, city, email, phone): print(f"{last_name} {first_name}, {birth_year} ะณะพะดะฐ ั€ะพะถะดะตะฝะธั.\nะŸั€ะพะถะธะฒะฐะตั‚ ะฒ ะณะพั€ะพะดะต {city}.\nemail: {email}\nั‚ะตะปะตั„ะพะฝ: {phone}") name = input("ะ’ะฒะตะดะธั‚ะต ะธะผั: ") last_name = input("ะ’ะฒะตะดะธั‚ะต ั„ะฐะผะธะปะธัŽ: ") year = int(input("ะ’ะฒะตะดะธั‚ะต ะณะพะด ั€ะพะถะดะตะฝะธั: ")) city = input("ะ’ะฒะตะดะธั‚ะต ะณะพั€ะพะด ะฟั€ะพะถะธะฒะฐะฝะธั: ") email = input("ะ’ะฒะตะดะธั‚ะต email: ") phone_number = input("ะ’ะฒะตะดะธั‚ะต ั‚ะตะปะตั„ะพะฝ: ") print("\nะŸะพะปัƒั‡ะตะฝั‹ ัะปะตะดัƒัŽั‰ะธะต ะดะฐะฝะฝั‹ะต: \n") pretty_user_print(first_name=name, last_name=last_name, birth_year=year, city=city, email=email, phone=phone_number)
class StackMin: def __init__(self): self.stack = [] def add(self, item): minval = self.getmin() minval = min(minval, item) self.stack.append((item, minval)) def getmin(): if len(self.stack) == 0: return inf("float") return self.stack[-1][1] def remove(self): data = self.stack.pop() return data add(5) - mini = 5 add(1) - mini = 1 add(1000) - mini= 1 Stack min : How would you design a stack which, in addition to push and pop, has function min which returns the minimun element? Push, pop and minimun element? Push, pop and min should all operate in 0(1) time
""" One Away: There are threetypes of edits that can be performed onstrings:insert a character,removea character, orreplacea character.Given two strings, write a function to check if they are one edit(orzero edits) away. EXAMPLE pale, pIe -> true pales,pale -> true pale,bale -> true pale, bake -> false """ class Solution: def isOneEditDistance(self, s: str, t: str) -> bool: # if abs(len(s) - len(t)) == 1 and ( not s or not t): # return True if abs(len(s) - len(t)) > 1 or (not s and not t): return False # Defining largest and smaller strings shortS = s if len(s) <= len(t) else t longS = s if len(s) > len(t) else t # Defining two pointers starting at zero index1 = 0 # index1 is associated with shortS index2 = 0 # index2 is associated with longS # defining a boolean flag, represents whether we found a single difference foundifference = False while index1 < len(shortS) and index2 < len(longS): # if the letters are different, if foundifference, we return false, otherwise, we set # foundifference to True if shortS[index1] != longS[index2]: if foundifference: return False foundifference = True # if the strings are same lengths, we increment both pointers if len(shortS) == len(longS): index1 += 1 index2 += 1 else: # if the strings have different lengths, we incrememt the pointer of the # the largest string index2 += 1 else: # if the letters at specifics indexes are the same, we increment both pointers index1 += 1 index2 += 1 # if after while loop, we still have a letter that is left, if previously found a difference(foundifference #is True), we return False, otherwise we set foundifference to True if index1 < len(shortS) or index2 < len(longS): if foundifference: return False foundifference = True return foundifference def make_letter_counts_dict(str): """Return dict of letters and # of occurrences in phrase.""" letter_counts = {} for letter in str: letter_counts[letter] = letter_counts.get(letter, 0) + 1 return letter_counts def oneAway(str1,str2): A = {} B = {} A= make_letter_counts_dict(str1) print (A) B= make_letter_counts_dict(str2) print (B) count = 0 for (key,value) in A.items(): if not (key,value) in B.items(): count += 1 return count==1 print(oneAway("task", "take"))
# Call Center: Imagine you have a call center with three levels of employees: Respondent, # manager, and director. An incoming telephone call must be first allocated to a respondent who is free. # if the responder can't handle the call, he or she must escalate the call to a manager. # if the manager is not free or not able to handle it, the the call should be escalated to a director. Design the classes and datastructures # for this problem. Implement a method dispatchCall() which assigns a call to the first # available employee. class CallCenter(): # are the parantheses necessary? def __init__(self, respondents, managers, director): self.respondents = respondents self.managers = managers self.director = director self.respondent_queue = [] self.call_queue = [] for respondent in respondents: respondent.callcenter = self # not sure why if not respondent.call: self.respondent_queue.append(respondent) def route_respondent(self, respondent): if len(self.call_queue): respondent.take_call(self, call_queue.pop()) else: self.respondent_queue(respondent) def route_call(self, call): if len(self.respondent_queue): self.respondent_queue.pop(0).take_call else: self.call_queue.append(call) class Call(): def __init__(self, issue): self.issue = issue self.employee = None def resolve(self, handled): if handled: self.issue = None self.employee = None def apologize_and_hangup(self): # Try calling our competitor self.employee = None class Employee(object): def __init__(self, name, manager): self.name = name self.manager = manager def take_call(self,call): if self.call: self.escalate(call) else: self.call = call self.call.employee = self # why ? def escalate(self, call): if self.manager: self.manager.take_call(call) else: call.apologize_and_hangup def finish_call(self, handled = True): if not handed: if self.manager: self.manager.take_call(self.call) else: call.apologize_and_hangup() self.call = None class manager(Employee): pass class Director(Employee): def __init__(self, name): super(Director,self).__init__(name, None) # why ?
# [15,16,19,20,25,1,3,4,5,7,10,14], key = 5 # mid # left = 0 # right = len(arr) - 1 # mid = left + right//2 # mid = left + (right-left)/2 # compute the mid value # if arr[mid] < arr[left], we know that the left side is not sorted and we need to explore the right side first and then the left side # if arr[right] < arr[mid], we know that the rightt side is not sorted and we need to explore the left side first and then the right side # if arr[left] == arr[mid], the left is sorted and I need to evaluate the key value in regard to arr[left], if arr[left]< key, then I need to search the right first and then the left # if arr[right] == arr[mid], right or left could be all repeats. # if arr[mid] != arr[right], we search the left side else we save the result of the search of teh right side in a variable called result. if result == -1 # we search the left side else we return the result. at the very end, aligning the if statements we return -1 #if arr[right] > arr[mid] # def search_in_rotated_array(arr, key): # if not arr: return # return binarySearch(arr, 0, len(arr) - 1, key) # def splitInHalf() # time complexity is 0(log n ) without duplicates or 0(n) with duplicates def binarySearch(arr, left, right, key): mid = left + (right - left) // 2 if key == arr[mid]: return mid if right < left: return -1 if arr[left] > arr[mid]: # providing a hint that the right side is sorted if arr[mid] < key and key <= arr[right]: # sort the right side return binarySearch(arr, mid + 1, right, key ) else: return binarySearch(arr, left, mid - 1, key) # searching the left side elif arr[left] < arr[mid]: # left side is ordered if arr[mid] > key and arr[left] <= key: return binarySearch(arr, left, mid - 1, key) else: return binarySearch(arr, mid + 1, right, key ) elif arr[left] == arr[mid]: # left and right are all repeats if arr[mid] != arr[right]: # if right side is different, search it return binarySearch(arr,mid + 1, right, key) # searching the right side else: result = binarySearch(arr, left, mid - 1, key ) # searching the left side if result == -1: return binarySearch(arr, left, mid - 1, key) # searching the left side else: return result return -1 arr = [15,16,19,20,25,1,3,4,5,7,10,14] print(binarySearch(arr, 0, len(arr)-1, 25)) # [15,16,19,20,25,1,3,4,5,7,10,14], key = 5 # hint 298: # can you modify binary search for this purpose? # hint 310: # what is the runtime of your algorithm? What will happen if the array has duplicates # Implement a binary search: # def binary_search(arr,l, r, key): # if not arr: return # mid = l + (r - l )// 2 # if arr[mid] == key: # return mid # elif arr[mid] < key: # return binary_search(arr, mid + 1, r, key) # elif arr[mid] > key: # return binary_search(arr, l, mid - 1, key ) # arr = [15,16,19,20,25,1,3,4,5,7,10,14] # print(binary_search(arr, 0, len(arr)-1,20 ))
# Testing assigned variables and output. x = 5 y = 7 z = x + y print ("z is equal to", z, "by addition. \nThanks!") z = y - x print ("z is equal to", z, "by subtraction. \nThanks!") # Testing conditional flow control max = x if(x > y) else y print( '\nGreater value is', max)
import networkx as nx for i in range(10): print(i) # Iterate through list - a bit more Pythonic z = [42, 15, 9, 'italy', 14] for z_item in z: print(z_item) # iterate through a dict z2 = {42: "tyger", 15: "burning", 9: "bright", 3: "yeats"} for z_key in z2: print(z_key, z2[z_key])
Name = input("What is your Name ") Branch = input("What is your Branch ") College = input("What is your college Name ") Gender = input("What is your Gender ") Age = input("What is your Age ") print(Name + "\n" + Branch + "\n" + College + "\n" + Gender + "\n" + Age)
# tasks guessing game # 0 # Hangman-0.png # Word: hangman # Guess: E # Misses: # 1 # Hangman-1.png # Word: _ _ _ _ _ _ _ # Guess: T # Misses: e # 2 # Hangman-2.png # Word: _ _ _ _ _ _ _ # Guess: A # Misses: e, t # 3 # Hangman-2.png # Word: _ A _ _ _ A _ # Guess: O # Misses: e, t # option+ cmd + L import re def check_whole_answer(arrayOfGuessAnswer, answer): strArray = ''.join(arrayOfGuessAnswer) # convert list to string if strArray == answer: return True # it is in the array, stop else: return False # not in the array, just going def insert_answer(arrayOfGuessAnswer, guess, answer): for n, i in enumerate(answer): # n returns number, i return the character if guess in i: arrayOfGuessAnswer[n] = guess def check_input(guess): checkCharacter = False while not checkCharacter: guess = input("please guess a letter \n") if not re.match("[a-z]", guess): print("Invalid character!") checkCharacter = False elif len(guess) > 1: print("only a single character is allowed!") checkCharacter = False else: checkCharacter = True return guess # initial answer = "hangman" # declare the answer, convert the answer to no space and small letter answer = answer.lower() # lowercase answer = answer.replace(" ", "") # no space miss_time = 0 MAX_ESTIMATED_TIME = 6 arrayOfGuessAnswer = [] for a in range(len(answer)): arrayOfGuessAnswer.append("_") print(arrayOfGuessAnswer) setOfMissAnswer = set() guess = "" print("hangman begin! \n") print("Chances : ", MAX_ESTIMATED_TIME) while not check_whole_answer(arrayOfGuessAnswer, answer) and miss_time < MAX_ESTIMATED_TIME: # not only refer to the first condition guess = check_input(guess) if guess in answer: insert_answer(arrayOfGuessAnswer, guess, answer) print(arrayOfGuessAnswer) else: setOfMissAnswer.add(guess) print("you guessed it wrong!") print(setOfMissAnswer) miss_time += 1 print("remaining chance : ", MAX_ESTIMATED_TIME - miss_time) if miss_time >= 6: print("you lose!") else: print("you win!, end game")
def recurse_dict (value, bag_dict, already_counted) : if value not in already_counted : count = 1 already_counted.append(value) else : count = 0 if value not in bag_dict : return already_counted, count arr = bag_dict.get(value) for i in arr : already_counted, num = recurse_dict(i, bag_dict, already_counted) count += num return already_counted, count def solution1(input_text) : dict_bags = {} for line in input_text : outer_bag, inner_bags = line.split("contain") outer_bag = ''.join([i for i in outer_bag if i.isalpha() or i == ' ']) inner_bags = ''.join([i for i in inner_bags if i.isalpha() or i == ',' or i == ' ']) inner_bags = inner_bags.replace("bags", "") inner_bags = inner_bags.replace("bag", "") outer_bag = outer_bag.replace("bags", "") outer_bag = outer_bag.replace("bag", "") outer_bag = outer_bag.strip() inner_bags = inner_bags.split(",") #print (outer_bag, inner_bags) for bag in inner_bags : bag = bag.strip() if bag != "no other" : if bag in dict_bags : arr = dict_bags.get(bag) arr.append(outer_bag) dict_bags[bag] = arr else : dict_bags[bag] = [outer_bag] null, count = recurse_dict("shiny gold", dict_bags, ["shiny gold"]) return count def recurse_dict_2 (value, bag_dict) : count = 1 if value not in bag_dict : return count arr = bag_dict.get(value) for i in arr : #print (value,i, recurse_dict_2(i[1], bag_dict), recurse_dict_2(i[1], bag_dict) * int(i[0])) count += recurse_dict_2(i[1], bag_dict) * int(i[0]) return count def solution2(input_text) : dict_bags = {} for line in input_text : outer_bag, inner_bags = line.split("contain") outer_bag = ''.join([i for i in outer_bag if i.isalpha() or i == ' ']) inner_bags = ''.join([i for i in inner_bags if i.isalnum() or i == ',' or i == ' ']) inner_bags = inner_bags.replace("bags", "") inner_bags = inner_bags.replace("bag", "") outer_bag = outer_bag.replace("bags", "") outer_bag = outer_bag.replace("bag", "") outer_bag = outer_bag.strip() inner_bags = inner_bags.strip() inner_bags = inner_bags.split(",") #print (outer_bag, inner_bags) arr = [n.split() for n in inner_bags] for n in arr : if n[0] != "no" : if outer_bag in dict_bags: arr = dict_bags[outer_bag] arr.append((n[0], n[1] + ' ' + n[2])) dict_bags.update({outer_bag : arr}) else : dict_bags[outer_bag] = [(n[0], n[1] + ' ' + n[2])] return recurse_dict_2("shiny gold", dict_bags) - 1 with open("input.txt") as f: input_text = f.readlines() print (solution1(input_text)) with open("test.txt") as f: input_text = f.readlines() print (solution1(input_text)) with open("input.txt") as f: input_text = f.readlines() print (solution2(input_text)) with open("test.txt") as f: input_text = f.readlines() print (solution2(input_text))
import json import urllib.request CONVERSION_FACTIOR = 250 # Main function which will run loop until there are no new pages to read in API def main(): weights = [] url_base = "http://wp8m3he1wt.s3-website-ap-southeast-2.amazonaws.com" url_api = "/api/products/1" while True: url = url_base + url_api data = get_data(url) append_cubic_weight(weights, data) if(data["next"] == None): break else: url_api = data["next"] average_weight(weights) # Funtion to access data from API and convert it into JSON def get_data(url): res = urllib.request.urlopen(url) return json.loads(res.read()) # Function to populate list with cubic weight for every Air Conditoner def append_cubic_weight(weights, data): for objects in data["objects"]: if(objects["category"] == "Air Conditioners"): dimensions = get_dimensions(objects) weights.append(get_cubic_weight(dimensions)) # Function to retrieve dimension of Air Conditioner and converting every dimension into cm def get_dimensions(i): w = i["size"]["width"] / 100 l = i["size"]["length"] / 100 h = i["size"]["height"] / 100 return (w, l, h) # Function to calculate cubic weight of 1 Air Conditioner def get_cubic_weight(dimensions): return round(dimensions[0] * dimensions[1] * dimensions[2] * CONVERSION_FACTIOR, 3) # Function to calculate average weight of all Air Conditoners def average_weight(weight): total_weight = sum(weight) average = round(total_weight/len(weight), 3) print("\nAverage weight for {} Air Conditioners is {}kg\n".format( len(weight), average)) if __name__ == "__main__": main()
# Google image web scraper for Nostalgia Machine project # Adapted from: # https://github.com/hardikvasa/google-images-download/issues/301#issuecomment-587097949 # and # https://towardsdatascience.com/image-scraping-with-python-a96feda8af2d # ############################################################################################################### # todo - fix bug that saves empty image files # todo - fix scrolling issue at beginning of program import time import shutil from selenium import webdriver from selenium.webdriver.common.keys import Keys import requests import os import urllib3 from urllib3.exceptions import InsecureRequestWarning if __name__ == '__main__': urllib3.disable_warnings(InsecureRequestWarning) t0 = time.time() # Start program timer! folder_name = 'testpictures' # Destination folder in which to save images search_keywords = "Spongebob screencaps" max_images = 100 # Create an empty folder in which to store pictures once they download if not os.path.exists(folder_name): # If folder doesn't exist, just make a new one os.mkdir(folder_name) else: # If folder already exists, empty its contents, delete the folder, then make a new one shutil.rmtree(folder_name) os.rmdir(folder_name) os.mkdir(folder_name) # Use webdriver, open an empty Firefox browser driver = webdriver.Firefox(executable_path="/home/megan/Python/Project/geckodriver") # Navigate browser to page specified by search_url - in this case, the home page for Google Images search_url = 'https://www.google.com/imghp?hl=en' driver.get(search_url) # Locate the search bar and types in the search keywords driver.find_element_by_name("q").send_keys(search_keywords + Keys.ENTER) # Give the page some time to load the search results - if you don't, the next part won't work! time.sleep(3) url_set = set() # Initialize empty set for storing urls - allows you to ignore any duplicates url_count = 0 # Size of url_set results_start = 0 # This marks the location of the page where the current range of search results begins # Keep going until you've reached the desired number of images while url_count < max_images: # This line of code uses a JavascriptExecutor (an interface of the selenium webdriver) which scrolls all the way # to the bottom of the current results. Doing this **may** automatically load more search results as well. print("Scrolling down ...") driver.execute_script("window.scrollTo(0, document.body.scrollHeight);") # Get all image thumbnails (i.e. the long list of results which your search initially displays, before any clicking) thumb_results = driver.find_elements_by_css_selector("img.Q4LuWd") number_results = len(thumb_results) # TOTAL number of thumbnail results loaded so far # This condition will be met if you reach the end of the search results if number_results == results_start: print("Reached end of results. Collected {} image links!".format(url_count)) break print(f"Found {number_results} total search results. Extracting links from range {results_start}-{number_results}") # Loops through a fixed range of urls - this is usually fewer than the total number of search results currently loaded for thumb_img in thumb_results[results_start:number_results]: # Attempt to click every thumbnail such that we can get the real image behind it try: thumb_img.click() time.sleep(0.1) except Exception: # if any exception occurs, just skip the current image and move on to the next one continue # Now that you've clicked on the image, extract the image url actual_images = driver.find_elements_by_css_selector('img.n3VNCb') for actual_image in actual_images: # Make sure that 'src' is a url containing the substring 'http' if actual_image.get_attribute('src') and 'http' in actual_image.get_attribute('src'): # Add new url to the set url_set.add(actual_image.get_attribute('src')) url_count = len(url_set) # Update the size of the image_url set # Break out of loop if you've collected the desired number of urls, or when you run out of search results if url_count >= max_images or results_start == number_results: print("Done! Collected {} image links!".format(url_count)) break # End the while loop elif results_start == number_results: print("Reached end of results. Collected {} image links!".format(url_count)) break else: print("Found", url_count, "total image links, looking for more ...") time.sleep(3) # Although scrolling to the bottom of the page will automatically load more results for your first few attempts, # eventually this will stop and you'll have to click a "show more results" button before continuing show_more_button = driver.find_element_by_css_selector(".mye4qd") if show_more_button: # If this button exists... print("Pressing the 'show more results' button ...") driver.execute_script("document.querySelector('.mye4qd').click();") # ... click it. # Move the result starting point further down results_start = len(thumb_results) driver.close() # At this point, we've gathered all the urls we need and the web browser window is closed. Now we need to save those # images into a local folder. print("Attempting to save images to {} ...".format(folder_name)) # Use count to track the number of successfully DOWNLOADED images thus far download_count = 0 # Iterate through the set of urls for url in url_set: try: # Use an HTTP get request to read the actual image data from the url response = requests.get(url, verify=False, stream=True) # doesn't need to verify host's SSL certificate; don't download body of response immediately raw_data = response.raw.read() # The os.path.join() method concatenates the paths of folder_name and the new image file # e.g. f = ....PycharmProjects/webscraping/testpictures/img_1.jpg with open(os.path.join(folder_name, 'img_' + str(download_count) + '.jpg'), 'wb') as f: f.write(raw_data) download_count += 1 except Exception as e: print('Failed to write rawdata.') t1 = time.time() print("Program took {} seconds to save {} images".format(t1-t0, download_count))
# # Example file for working with date information # from datetime import date from datetime import time from datetime import datetime def main(): ## DATE OBJECTS # Get today's date from the simple today() method from the date class oToday = date.today() daynames = ["mon","tue","wed","thu","fri", "sat", "sun"] print(oToday, daynames[oToday.weekday()], oToday.day, oToday.year, oToday.month) # print out the date's individual components # retrieve today's weekday (0=Monday, 6=Sunday) ## DATETIME OBJECTS # Get today's date from the datetime class oToday = None oToday = datetime.now() print(oToday, oToday.weekday(),oToday.year) # Get the current time if __name__ == "__main__": main();
import numpy as np import pandas as pd import matplotlib.pyplot as plt dataset= pd.read_csv('50_Startups.csv') X=dataset.iloc[:,:-1].values Y=dataset.iloc[:,4].values #encoding strings into numbers from sklearn.preprocessing import LabelEncoder ,OneHotEncoder labelencoder_X= LabelEncoder() X[:,3]=labelencoder_X.fit_transform(X[:,3]) onehotencoder=OneHotEncoder(categorical_features=[3]) X=onehotencoder.fit_transform(X).toarray() #removing 1st column to tackle dummy variable trap X=X[:,1:] #cross validation from sklearn.model_selection import train_test_split X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_state=0) #fitting Simple linear regression to training set from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train,Y_train) #predicting test results Y_pred=regressor.predict(X_test) #building optimal model using backward elimination import statsmodels.regression.linear_model as sm X= np.append(arr=np.ones((50,1)).astype(int),values= X ,axis=1) X_opt = X[:,[0,1,2,3,4,5]] regressor_OLS=sm.OLS(endog = Y,exog = X_opt).fit() regressor_OLS.summary() X_opt = X[:,[0,1,3,4,5]] regressor_OLS=sm.OLS(endog = Y,exog = X_opt).fit() regressor_OLS.summary() X_opt = X[:,[0,3,4,5]] regressor_OLS=sm.OLS(endog = Y,exog = X_opt).fit() regressor_OLS.summary() X_opt = X[:,[0,3,5]] regressor_OLS=sm.OLS(endog = Y,exog = X_opt).fit() regressor_OLS.summary() X_opt = X[:,[0,3]] regressor_OLS=sm.OLS(endog = Y,exog = X_opt).fit() regressor_OLS.summary()
def str_interval(x): """Return a string representation of interval x. >>> str_interval(interval(-1, 2)) '-1 to 2' """ return '{0} to {1}'.format(lower_bound(x), upper_bound(x)) def add_interval(x, y): """Return an interval that contains the sum of any value in interval x and any value in interval y. >>> str_interval(add_interval(interval(-1, 2), interval(4, 8))) '3 to 10' """ lower = lower_bound(x) + lower_bound(y) upper = upper_bound(x) + upper_bound(y) return interval(lower, upper) def mul_interval(x, y): """Return the interval that contains the product of any value in x and any value in y. >>> str_interval(mul_interval(interval(-1, 2), interval(4, 8))) '-8 to 16' """ p1 = lower_bound(x) * lower_bound(y) p2 = upper_bound(x) * lower_bound(y) p3 = lower_bound(x) * upper_bound(y) p4 = upper_bound(x) * upper_bound(y) return interval(min(p1,p2,p3,p4), max(p1,p2,p3,p4)) def interval(a, b): """Construct an interval from a to b.""" x = [a, b] return x def lower_bound(x): """Return the lower bound of interval x.""" return x[0] def upper_bound(x): """Return the upper bound of interval x.""" return x[1] def div_interval(x, y): """Return the interval that contains the quotient of any value in x divided by any value in y. Division is implemented as the multiplication of x by the reciprocal of y. >>> str_interval(div_interval(interval(-1, 2), interval(4, 8))) '-0.25 to 0.5' """ assert upper_bound(y) or upper_bound(y) == 0 , "division by zero" reciprocal_y = interval(1/upper_bound(y), 1/lower_bound(y)) return mul_interval(x, reciprocal_y) def sub_interval(x, y): """Return the interval that contains the difference between any value in x and any value in y. >>> str_interval(sub_interval(interval(-1, 2), interval(4, 8))) '-9 to -2' """ lower = upper_bound(y) - lower_bound(x) upper = upper_bound(x) - lower_bound(y) return interval(lower, upper) def par1(r1, r2): return div_interval(mul_interval(r1, r2), add_interval(r1, r2)) #par1 for (-3,0),(4,5) shows the interval to be (-15, 0), which is not right; probably due to simplification occuring at the the end of each function def par2(r1, r2): one = interval(1, 1) rep_r1 = div_interval(one, r1) rep_r2 = div_interval(one, r2) return div_interval(one, add_interval(rep_r1, rep_r2)) #par2 for (-3,0),(4,5) shows the interval to be not computed = division by zero; checks to divide by zero or not def quadratic(x, a, b, c): y0 = a*(pow(x[0],2)) + b*(x[0]) + c y1 = a*(pow(x[1],2)) + b*(x[1]) + c h = ((-b)/(2*a)) k = a*(pow(h,2)) + b*(h) + c if a < 0: if x[0] > h or x[1] < h: return interval(y0, y1) elif x[0] < h and x[1] > h: return interval(min(y0,y1), k) elif a > 0: if x[0] > h or x[1] < h: return interval(y0, y1) elif x[0] < h and x[1] > h: return interval(k, min(y0, y1)) def polynomial(x, c): """Return the interval that is the range of the polynomial defined by coefficients c, for domain interval x. >>> str_interval(polynomial(interval(0, 2), [-1, 3, -2])) '-3 to 0.125' >>> str_interval(polynomial(interval(1, 3), [1, -3, 2])) '0 to 10' >>> str_interval(polynomial(interval(0.5, 2.25), [10, 24, -6, -8, 3])) '18.0 to 23.0' """
print('Please enter some sentences. Type "quit" on a line by itself to quit.') total = int(0) average = int(0) list1 = [] word_list=[] num_word=0 x=input('') while x != "quit": list1.append(x) x=input('') for sentance in list1: word_list=sentance.split() num_word+=len(word_list) total+=1 average = num_word/total print("These sentences have an average of",format(average,'.2f'),"words.")
# -*- coding=utf-8 -*- # Implementation of Charikar simhashes in Python # See: http://dsrg.mff.cuni.cz/~holub/sw/shash/#a1 # ๆŠŠๆ–‡ๅญ—่ฝฌๅŒ–ไธบhash class SimhashBuilder: def __init__(self, word_list=[], hashbits=128): self.hashbits = hashbits self.hashval_list = [self._string_hash(word) for word in word_list] print('Totally: %s words' % (len(self.hashval_list),)) # with open('word_hash.txt', 'w') as outs: # for word in word_list: # outs.write(word+'\t'+str(self._string_hash(word))+os.linesep) def _string_hash(self, word): # A variable-length version of Python's builtin hash if word == "": return 0 else: x = ord(word[0]) << 7 m = 1000003 mask = 2 ** self.hashbits - 1 for c in word: x = ((x * m) ^ ord(c)) & mask x ^= len(word) if x == -1: x = -2 return x def sim_hash_nonzero(self, feature_vec): finger_vec = [0] * self.hashbits # Feature_vec is like [(idx,nonzero-value),(idx,nonzero-value)...] for idx, feature in feature_vec: hashval = self.hashval_list[int(idx)] for i in range(self.hashbits): bitmask = 1 << i if bitmask & hashval != 0: finger_vec[i] += float(feature) else: finger_vec[i] -= float(feature) # print finger_vec fingerprint = 0 for i in range(self.hashbits): if finger_vec[i] >= 0: fingerprint += 1 << i # ๆ•ดไธชๆ–‡ๆกฃ็š„fingerprintไธบๆœ€็ปˆๅ„ไธชไฝๅคงไบŽ็ญ‰ไบŽ0็š„ไฝ็š„ๅ’Œ return fingerprint def sim_hash(self, feature_vec): finger_vec = [0] * self.hashbits for idx, feature in enumerate(feature_vec): if float(feature) < 1e-6: continue hashval = self.hashval_list[idx] for i in range(self.hashbits): bitmask = 1 << i if bitmask & hashval != 0: finger_vec[i] += float(feature) else: finger_vec[i] -= float(feature) # print finger_vec fingerprint = 0 for i in range(self.hashbits): if finger_vec[i] >= 0: fingerprint += 1 << i # ๆ•ดไธชๆ–‡ๆกฃ็š„fingerprintไธบๆœ€็ปˆๅ„ไธชไฝๅคงไบŽ็ญ‰ไบŽ0็š„ไฝ็š„ๅ’Œ return fingerprint def _add_word(self, word): self.hashval_list.append(self._string_hash(word)) def update_words(self, word_list=[]): for word in word_list: self._add_word(word)
# -*- coding:utf-8 -*- import numpy as np import random # Object oriented approach class RandomWalker: def __init__(self): self.position = 0 def walk(self, n): self.position = 0 for i in range(n): yield self.position self.position += 2*random.randint(0, 1) - 1 def random_walk(n): position = 0 walk = [position] for i in range(n): position += 2*random.randint(0, 1)-1 walk.append(position) return walk def random_walk_faster(n=1000): from itertools import accumulate # Only available from Python 3.6 steps = random.choices([-1,+1], k=n) return [0]+list(accumulate(steps)) def random_walk_fastest(n=1000): # No 's' in numpy choice (Python offers choice & choices) steps = np.random.choice([-1,+1], n) return np.cumsum(steps) if __name__ == '__main__': walker = RandomWalker() walk = [position for position in walker.walk(1000)] print(walk)
# -*- coding:utf-8 -*- import numpy as np import pandas as pd def data_filter_sort(data_path): # ๅผ•ๅ…ฅๆ•ฐๆฎ chipo = pd.read_csv(url_local, sep='\t') # ๆŠŠpriceๅˆ—่ฝฌๆขไธบfloatๆ ผๅผ dollarizer = lambda x: float(x[1:-1]) chipo['item_price'] = chipo['item_price'].apply(dollarizer) # ๅˆ ้™คๆމ้‡ๅค็š„ๆ•ฐๆฎ chipo.filtered = chipo.drop_duplicates(['item_name', 'quantity']) # ๆŒ‘้€‰ๅ‡บquantityไธบ1๏ผŒไธ”ไปทๆ ผๅคงไบŽ10็š„ไบงๅ“ chipo_one_prod = chipo.filtered[chipo['quantity'] == 1] print(chipo_one_prod[chipo_one_prod['item_price'] > 10].item_name.unique()) # ๆฏไธช็‰ฉๅ“็š„ไปทๆ ผๆ˜ฏๅคšๅฐ‘ price_per_item = chipo_one_prod[['item_name', 'item_price']] price_per_item = price_per_item.sort_values(by='item_price', ascending=False) print(price_per_item) # ๆ นๆฎๅ•†ๅ“ๅๅญ—ๆŽ’ๅบ print(chipo['item_name'].sort_values()) # ๆœ€่ดต็š„ๅ•†ๅ“่ขซ็‚นไบ†ๅคšๅฐ‘ๆฌก most_expensive_item = price_per_item.at[0, 'item_name'] print(most_expensive_item) print(chipo[chipo['item_name'] == most_expensive_item]['quantity'].sum) # Veggie Salad Bowl่ขซ็‚นไบ†ๅคšๅฐ‘ๆฌก print(chipo[chipo['item_name'] == 'Veggie Salad Bowl']['quantity'].sum()) # ๆœ‰ๅคšๅฐ‘ๆฌก้กพๅฎข็‚นไบ†ๅคงไบŽไธ€็ฝ็š„Canned Soda chipo_drink_steak_cans = chipo[(chipo['item_name'] == 'Canned Soda') & (chipo['quantity'] > 1)] print(len(chipo_drink_steak_cans)) if __name__ == '__main__': url = 'https://raw.githubusercontent.com/justmarkham/DAT8/master/data/chipotle.tsv' url_local = '/apps/data/ai_nlp_testing/raw/pandas_exercises/chipotle.tsv' data_filter_sort(url_local)
# -*- coding:utf-8 -*- from pyhanlp import * # ็”จๆˆท่‡ชๅฎšไน‰่ฏๅ…ธ class CustomisedDict: def __init__(self): self.CustomDictionary = JClass("com.hankcs.hanlp.dictionary.CustomDictionary") # def add(self, word): # self.CustomDictionary.add(word) def add(self, word, nature_with_freq=None): self.CustomDictionary.add(word, nature_with_freq) def insert(self, word, nature_with_freq): self.CustomDictionary.insert(word, nature_with_freq) def remove(self, word): self.CustomDictionary.remove(word) def get(self, word): return self.CustomDictionary.get(word) # test if __name__ == '__main__': text = "ๆ”ปๅŸŽ็‹ฎ้€†่ขญๅ•่บซ็‹—๏ผŒ่ฟŽๅจถ็™ฝๅฏŒ็พŽ๏ผŒ่ตฐไธŠไบบ็”Ÿๅท…ๅณฐ" print(HanLP.segment(text)) customized_dict = CustomisedDict() # ็”จๆˆท่‡ชๅฎšไน‰่ฏๅ…ธ customized_dict.add('ๆ”ปๅŸŽ็‹ฎ') customized_dict.insert('็™ฝๅฏŒ็พŽ', 'nz 1024') # ๅˆ ้™ค่ฏ่ฏญ # customized_dict.remove('ๆ”ปๅŸŽ็‹ฎ') customized_dict.add('ๅ•่บซ็‹—', 'nz 1024 n 1') print(customized_dict.get('ๅ•่บซ็‹—')) print(HanLP.segment(text))
import numpy as np import matplotlib.pyplot as plt from scipy.odr import * import random def odr_demo(): # Initiate some data, giving some randomness using random.random(). x = np.array([0, 1, 2, 3, 4, 5]) y = np.array([i ** 2 + random.random() for i in x]) # Define a function (quadratic in our case) to fit the data with. def linear_func(p, x): m, c = p return m * x + c # Create a model for fitting. linear_model = Model(linear_func) # Create a RealData object using our initiated data from above. data = RealData(x, y) # Set up ODR with the model and data. odr = ODR(data, linear_model, beta0=[0., 1.]) # Run the regression. out = odr.run() # Use the in-built pprint method to give us results. out.pprint() if __name__ == '__main__': odr_demo()
# -*- coding:utf-8 -*- import pandas as pd import numpy as np from scipy.spatial import Delaunay import matplotlib.pyplot as plt from scipy.spatial import ConvexHull def spatial(): # Delaunayไธ‰่ง’ points = np.array([[0, 4], [2, 1.1], [1, 3], [1, 2]]) tri = Delaunay(points) plt.triplot(points[:, 0], points[:, 1], tri.simplices.copy()) plt.plot(points[:, 0], points[:, 1], 'o') plt.show() # ๅ…ฑ้ข็‚น points = np.array([[0, 0], [0, 1], [1, 0], [1, 1], [1, 1]]) tri = Delaunay(points) print(tri.coplanar) # ๅ‡ธๅฃณ points = np.random.rand(10, 2) # 30 random points in 2-D hull = ConvexHull(points) plt.plot(points[:, 0], points[:, 1], 'o') for simplex in hull.simplices: plt.plot(points[simplex, 0], points[simplex, 1], 'k-') plt.show() if __name__ == '__main__': spatial()
#Simple Caesar cypher. from string import * from collections import deque def key(n): #Slightly round-about way of generating the lookup-table, in order to preserve case lower = deque(ascii_lowercase) upper = deque(ascii_uppercase) lower.rotate(n) upper.rotate(n) return list(lower)+list(upper) def encrypt(s, n): return ''.join(ascii_letters[key(n).index(c)] for c in s) def decrypt(s, n): return ''.join(key(n)[ascii_letters.index(c)] for c in s) op, text, n = input().split() if op == 'e': print(encrypt(text, int(n))) elif op == 'd': print(decrypt(text, int(n))) else: print('Unknown option, use "d/e text n"')
from math import factorial def pascal(n,k): n, k = n-1, k-1 if k>n: return "No such number" return factorial(n)//(factorial(k)*factorial(n-k)) print(pascal(*map(int, input().split())))
#Functional programming killed the Python from itertools import chain, zip_longest dataz = [] for _ in range(int(input())):#Read input lines from stdin dataz.append(input()) words = list(chain.from_iterable(map(str.split, dataz))) + list(chain.from_iterable(map(str.split, map(''.join, zip_longest(*dataz, fillvalue=' '))))) #Split words, both horizontally ad vertically with open('dictionary.txt', 'r') as f: #Load a dictionary dictionary = set(map(str.strip, f.readlines())) def greed(word): #Greedy match. Note lack of spaghetti code if len(word) < 3: return '' if word.lower() in dictionary: return word if word.lower()[::-1] in dictionary: return word[::-1] return max(greed(word[1:]), greed(word[:-1]), key=len) for w in sorted(w for w in map(greed, words) if w ): #Filtering and worting print(w.lower())
""" ## Problem1 Kth Smallest Element in a BST (https://leetcode.com/problems/kth-smallest-element-in-a-bst/description/) Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Note: You may assume k is always valid, 1 โ‰ค k โ‰ค BST's total elements. Example 1: Input: root = [3,1,4,null,2], k = 1 3 / \ 1 4 \ 2 Output: 1 Example 2: Input: root = [5,3,6,2,4,null,null,1], k = 3 5 / \ 3 6 / \ 2 4 / 1 Output: 3 TIME- O(maxdepth) SPACE - O(maxdepth) """ # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def kthSmallest(self, root: TreeNode, k: int) -> int: stack = [] count = 0 while root != None or stack != []: while root != None: #go left left left and keep append the roots to stack stack.append(root) root = root.left top = stack.pop() # at en dof left start poping count += 1 # keep count of pops, popped element will be in ascending order - inorder of BST if k == count: # when count is equal to k RETURN TOP.VAL return top.val root = top.right # AFTER POP go to right of popped/top node
""" // Time Complexity :O(n) where n=number of words // Space Complexity :O(1) two hashmaps will store 26*2 keys // Did this code successfully run on Leetcode :Not LC problem // Any problem you faced while coding this : """ class Solution: def isIsomorphic(self, s: str, t: str) -> bool: if (len(s)!=len(t)): return False sHashMap={} tHashMap={} for char in range(len(s)): schar=s[char] tchar=t[char] if schar not in sHashMap: # if key does not exist add sHashMap[schar]=t[char] elif sHashMap.get(schar)!=t[char]:#If existing key does not match with char return False if tchar not in tHashMap: tHashMap[tchar]=s[char] elif tHashMap.get(tchar)!=s[char]: return False return True if __name__=="__main__": so=Solution() s="egg" t="add" print(so.isIsomorphic(s,t))
def bracket (a,f,s=0.01,m=2): #f รฉ para avaliar, #s รฉ o passo, m รฉ o multiplicador para acelerar o processo. bracket = [a] #criando vetor com o intervalo desejado. # a=-2 #print("\nprimeiro bracket:",bracket) b = a + s # รฉ um ponto b tal que รฉ a soma de a + o passo, para avaliar se o prรณximo ponto รฉ maior ou menor, tem de ser menor pois quer minimizar. bracket = [a,b] #criando vetor com o intervalo desejado. # a=-2 ; b = -2+0.01=-1.99 #print("\n\nsegundo bracket:",bracket) fa = f(a) #valor da funรงรฃo no ponto a, indo para fa, ou seja, รฉ a^2 #print("\nimpriminfo fa",fa,"\n") fb = f(b) #valor da funรงรฃo no ponto b, indo para fb,ou seja, รฉ b^2 #print("\nimpriminfo fb",fb,"\n") if fa>=fb : c = b + s #criando ponto para encontrar o mรญnimo preservando o ponto a. fc = f(c) while fc < fb: #encontrando o mรญnimo comparando pontos. b = c fb = fc s = s*m c = c + s fc = f(c) print("\naqui estรก procurando-se o menor valor de b\nvalors de b:",b,"valors de b:",c) print("fb",fb,"valor de fc",fc) bracket = [a,c] #criando vetor com o intervalo desejado. print("\n\nvalor encontrado minimizando: ",bracket,) elif fa < fb : c = a - s fc = f(c) while fc < fa : a = c fa = fc s = s*m c = c - s bracket = [c,b] #criando lista com C e B print("\n\nquarto bracket:",bracket) return bracket f = lambda x: x**2 # f รฉ minha funรงรฃo b = bracket(-2,f) print("\n\n\nbreacket final",b)
print("printing all alphabets from a-z") initialASCIIValue=int(input()) finalASCIIValue=int(input()) while(initialASCIIValue>0): print(chr(initialASCIIValue)) initialASCIIValue=initialASCIIValue+1 if(initialASCIIValue==finalASCIIValue): break
initialValue=int(input("Enter the Number : ")) inputNumber=int(input("Enter the Number : ")) sumValue=0 for number in range(initialValue,inputNumber+1): if(number>1): for i in range(2,number): if((number%i) == 0): break else: sumValue=sumValue+number print(sumValue)
def firstDigit(number): while(number>=10): number=number/10 return int(number) def lastDigit(number): while(number>0): return number%10 number=int(input("Enter the Number : ")) firstDigit(number) lastDigit(number) print("Sum of First and last digit is :",(firstDigit(number)+lastDigit(number)))
digit=int(input("Enter the number : ")) temp=digit count=0 while(temp>0): temp=temp//10 count=count+1 print("Number of digits in number is :", count)
from arrays import Array2D # Open the text file for reading. grade_file = open( "grade.txt", "r" ) # Extract the first two values which indicate the size of the array. num_students = int( grade_file.readline() ) num_exams = int( grade_file.readline() ) # Create the 2 -D array to store the grades. exam_grades = Array2D( num_students, num_exams ) # Extract the grades from the remaining lines. i = 0 for student in grade_file : grades = student.split() for j in range( num_exams ): exam_grades[i,j] = int( grades[j] ) i += 1 # Close the text file. grade_file.close() # Compute each student's average exam grade. for i in range( num_students ) : # Tally the exam grades for the ith student. total = 0 for j in range( num_exams ) : total += exam_grades[i,j] # Compute average for the ith student. exam_avg = total / num_exams print( "{:2d}: {:6.2f}".format(i+1, exam_avg) ) # Add 2 points to every grade. for row in range(exam_grades.num_rows()): for col in range(exam_grades.num_cols()): grade = exam_grades[row,col] grade = grade + 2 exam_grades[row,col] = grade
import sqlite3 def LoadDataBase(name): conn=sqlite3.connect(name) cur=conn.cursor() cur.execute("CREATE TABLE Usuarios(email text primary key, name text, password text);") conn.commit() conn.close() def save(email, name, password): conn=sqlite3.connect("DataBase") cur=conn.cursor() cur.execute("SELECT * FROM Usuarios;") print("Se registra correctamente") cur.execute("INSERT INTO Usuarios(email, name, password) VALUES ('"+email+"','"+name+"','"+password+"');") conn.commit() conn.close() def init(email, password): conn=sqlite3.connect("DataBase") cur=conn.cursor() cur.execute("SELECT * FROM Usuarios WHERE email='"+email+"';") datos=cur.fetchall() print(datos) usuario = datos[0][1] if datos[0][2] == password: conn.commit() conn.close() return "Hola "+usuario+" :)" else: conn.commit() conn.close() return "Contraseรฑa incorrecta"
""" Calculates the minimum edit distance between two strings. In other words, minimum number of operations to convert a to b. Also known as the Levenshtein algorithm. Arguments: 1. a: string 2. b: string 3. cost: (cost of making an edit) int {default 1} """ from memoize import memoize @memoize def minimum_edit_distance(a, b, cost_insert_delete=1, cost_substitution=2): if(not all(isinstance(arg, str) for arg in [a, b])): raise Exception("Please pass strings!") if(len(a) == 0): return(len(b)) elif(len(b) == 0): return(len(a)) else: return( min( minimum_edit_distance(a[1:], b, cost_insert_delete) + cost_insert_delete, minimum_edit_distance(a, b[1:], cost_insert_delete) + cost_insert_delete, minimum_edit_distance(a[1:], b[1:], cost_insert_delete) + ( lambda x, y, cost: 0 if x[0] == y[0] else cost)(a, b, cost_substitution ) ) )
import time import re # main() calculates number of possible passwords def main(): meet = 0 doubles = False ascending_sequence = True initial_time = time.time() try: with open("data.txt", "r") as input: given_range_str = input.read() given_range_list = re.split("-", given_range_str) for password in range(int(given_range_list[0]), int(given_range_list[1])+1): password_string = str(password) if len(password_string) != 6: continue for digit in range(len(password_string)-1): if password_string[digit] == password_string[digit+1]: doubles = True elif password_string[digit] > password_string[digit+1]: ascending_sequence = False continue if doubles and ascending_sequence: meet += 1 doubles = False ascending_sequence = True except FileNotFoundError: print("File not found") except: print("Error found") print("met-criteria passwords: ", meet) elapsed_time = time.time() - initial_time print('time: {} secs'.format(elapsed_time)) return elapsed_time # avg_time calculates average proccesing time for the indicated number of tests def avg_time(number_of_tests): return print("average time:", sum([main() for _ in range(number_of_tests)]) / number_of_tests) if __name__ == '__main__': main()
import MapReduce import sys """ @ jim pizagno 06.06.2014 This code will take data from a sparse matrix "a" and multiply it times sparse matrix "b". """ mr = MapReduce.MapReduce() # ============================= # Do not modify above this line def mapper(record): # key: column of final matrix # value: row/column of final matrix if record[0] == "a": i = record[1] j = record[2] value = record[3] for k in range(0,5): emit = str(i) + "," + str(k) mr.emit_intermediate( emit , ["a", j, value]) else: j = record[1] k = record[2] value = record[3] for i in range(0,5): emit = str(i) + "," + str(k) mr.emit_intermediate( emit , ["b", j , value]) def reducer(key, list_of_values): # key: column of final matrix # value: sum of values list_A = [0,0,0,0,0] list_B = [0,0,0,0,0] for value in list_of_values: if value[0] == "a": list_A[value[1]] = value[2] if value[0] == "b": list_B[value[1]] = value[2] sum = 0 for j in range(0,5): sum += list_A[j] * list_B[j] i = key.split(",")[0] j = key.split(",")[1] mr.emit(( int(i) , int(j) , sum)) # Do not modify below this line # ============================= if __name__ == '__main__': inputdata = open(sys.argv[1]) mr.execute(inputdata, mapper, reducer)
# Bonus: # cons(a, b) constructs a pair, and car(pair) and cdr(pair) returns the first and last element of that pair. # For example, car(cons(3, 4)) returns 3, and cdr(cons(3, 4)) returns 4. # # def cons(a, b) -> int: return lambda f: f(a,b) def cdr(f): return f(lambda a, b: a) def car(f): return f(lambda a, b: b) if __name__ == '__main__': print(cdr(cons(3,4)))
from itertools import groupby # Question 1.6 # Implement a method to perform basic string compression usng the counts of repeated characters. # # (1) Grouping by chars with groupby(string) # (2) Counting length of group with sum(1 for _ in group) (because no len on group is possible) # (3) Joining into proper format # (4) Removing 1 chars for single items # def string_compress(string: str) -> str: return ''.join('%s%s' % (char, sum(1 for char in group)) for char, group in groupby(string)).replace('1', '')
import numpy as np import time #Fibonacci para python def Fibonacci(N): if(N<2): return 1 else: return (Fibonacci(N-1)+Fibonacci(N-2)) #sacar tiempo para comparar, se hace un for para guardar N y el tiempo para cada iteracion enes=[] tiemposenes=[] for i in range(36): enes.append(i) t0=time.time() Fibonacci(i) t1=time.time()-t0 tiemposenes.append(t1) print enes print tiemposenes
# =========== define objective function for unsupervised competitive learning ========== def bingo(y_true, y_pred): # y_true can be ignored # find the biggest 3 outputs threshold = np.partition(y_pred, -3)[-3] # last 3 elements would be biggest loss = map( lambda y: if y >= threshold: (1 - y) # if it is the winner, ideal value = 1.0 else: (y) # if it is loser, ideal value = 0.0 , y_pred) return np.array(loss)
""" @author JungBok Cho @version 1.0 """ import time # Word list file WORDSLIST = "words.txt" # Pairs file PAIRLIST = "pairs.txt" # Dictionary to store every word dictionary = dict() # Minimum and Maximum of word length wordMin, wordMax = 4, 6 def readWordsFile(): """ Function to read word list file and store every word in the dictionary. """ file = open(WORDSLIST, "r") for line in file: line = line.strip() if wordMin <= len(line) <= wordMax: # Store words separately depending on the word length if len(line) in dictionary: dictionary.get(len(line)).add(line) else: dictionary[len(line)] = set() dictionary.get(len(line)).add(line) file.close() def readPairsFile(): """ Function to read pairs file and call findPath function to initiate the BFS. """ file = open(PAIRLIST, "r") count = 1 for line in file: line = line.strip() tempList = line.split(" ") # Get beginning and ending words begWord = tempList.pop(0) endWord = tempList.pop(0) print(count, end="") print(". Beginning word: " + begWord + ", Ending word: " + endWord) # Call findPath function and measure the speed using timeit class start = time.time() result = findPath(dictionary.get(len(begWord)), begWord, endWord) end = time.time() # Print the result if isinstance(result, str): print(" - " + result) else: print("Path: ", end="") print(result) print("Time in seconds: {}".format(end - start)) print() count += 1 file.close() def findPath(tempDictionary, begWord, endWord): """ Find the shortest path between words with Breath First Search """ if len(begWord) != len(endWord): return "Length of pairs must be equivalent" elif not (wordMin <= len(begWord) <= wordMax and wordMin <= len(endWord) <= wordMax): return "Path does not exist" elif begWord == endWord: return [begWord] else: if begWord in tempDictionary and endWord in tempDictionary: visited = set() # Set to check if word was visited visited.add(begWord) queue = [[begWord]] # Create a queue of lists # Process until the queue is empty while len(queue) > 0: currList = queue.pop(0) # List to store a cut-down version of tempDictionary tempList = [] smallerTempDictionary(currList, tempDictionary, tempList, visited) # Using unvisited words, create new currLists and append to the queue for currWord in tempList: if currWord not in currList: temp = currList[:] temp.append(currWord) if temp[-1] == endWord: return temp queue.append(temp) return "Path does not exist" def smallerTempDictionary(currList, tempDictionary, tempList, visited): """ Create a cut-down version of tempDictionary """ # Find all the words that are one letter apart # from the last word in the currList for i in range(len(currList[-1])): for char in range(ord('a'), ord('z') + 1): word = currList[-1][:i] + chr(char) + currList[-1][i + 1:] if word in tempDictionary and word != currList[-1] and word not in visited: tempList.append(word) visited.add(word) def _main(): """ Main function to print Hello and Goodbye messages and call readWordsFile and readPairsFile functions""" print("\nWelcome to Word Ladder program.\n") print("These are the files you are using:") print("Word List file:", WORDSLIST) print("Pair List file:", PAIRLIST, "\n") readWordsFile() readPairsFile() print("Thank you for playing this program!\n") """ Call main method if this file is main module """ if __name__ == '__main__': _main()
# 0 = not cute / 1 = cute N = int(input()) cute = 0 notcute = 0 for i in range(1, N+1) : opinion = int(input()) if opinion == 1 : cute += 1 elif opinion == 0 : notcute += 1 if cute > notcute : print('Junhee is cute!') else : print('Junhee is not cute!')
print('QUESTรƒO 05') def acoes_bolsa(lista): d1 = 0 d4 = 4 s= sum(lista[d1:d4]) for c in range(len(lista)-3): soma = sum(lista[d1:d4]) d1 += 1 d4 += 1 if soma > s: s = soma return s print(acoes_bolsa([-1,-2,-3,-4,-5,-6,-7,-8]))
import turtle turtle.shape('turtle') finn = turtle.clone() finn.shape('square') finn.color('yellow') finn.goto(100,0) finn.goto(100,100) finn.goto(0,100) finn.goto(0,0) charlie = turtle.Turtle() charlie.shape = ('triangle') charlie.color('blue') charlie.goto(100,100) charlie.goto(200,0) charlie.goto(0,0) finn.goto(-400,100) finn.stamp() finn.goto(-100,100) charlie.goto(-400,-100) charlie.stamp() charlie.goto(-100,-100) turtle.mainloop()
""" N,M์ด ์ฃผ์–ด์ง„๋‹ค. M์€ ์ž…๋ ฅ์œผ๋กœ ์ฃผ์–ด์ง€๋Š” ์—ฐ์‚ฐ์˜ ๊ฐœ์ˆ˜ M๊ฐœ์˜ ์ค„์—๋Š” ๊ฐ๊ฐ์˜ ์—ฐ์‚ฐ์ด ์ฃผ์–ด์ง„๋‹ค 'ํŒ€ ํ•ฉ์น˜๊ธฐ' ์—ฐ์‚ฐ์€ 0, a, b ํ˜•ํƒœ๋กœ ์ฃผ์–ด์ง„๋‹ค. ์ด๋Š” a๋ฒˆ ํ•™์ƒ์ด ์†ํ•œ ํŒ€๊ณผ b๋ฒˆ ํ•™์ƒ์ด ์†ํ•œ ํŒ€์„ ํ•ฉ์นœ๋‹ค๋Š” ์˜๋ฏธ '๊ฐ™์€ ํŒ€ ์—ฌ๋ถ€ ํ™•์ธ' ์—ฐ์‚ฐ์€ 1, a, b ํ˜•ํƒœ๋กœ ์ฃผ์–ด์ง„๋‹ค. ์ด๋Š” a๋ฒˆ ํ•™์ƒ๊ณผ b๋ฒˆ ํ•™์ƒ์ด ๊ฐ™์€ ํŒ€์— ์†ํ•ด ์žˆ๋Š” ์ง€๋ฅผ ํ™•์ธํ•˜๋Š” ์—ฐ์‚ฐ์ด๋‹ค a,b๋Š” N ์ดํ•˜์˜ ์–‘์˜ ์ •์ˆ˜์ด๋‹ค '๊ฐ™์€ ํŒ€ ์—ฌ๋ถ€ ํ™•์ธ' ์—ฐ์‚ฐ์— ๋Œ€ํ•˜์—ฌ ํ•œ์ค„์— ํ•˜๋‚˜์”ฉ yes ํ˜น์€ no๋กœ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค """ # ํŠน์ • ์›์†Œ๊ฐ€ ์†ํ•œ ์ง‘ํ•ฉ์„ ์ฐพ๊ธฐ def find_parent(parent, x): # ๋ฃจํŠธ ๋…ธ๋“œ๊ฐ€ ์•„๋‹ˆ๋ผ๋ฉด ๋ฃจํŠธ ๋…ธ๋“œ๋ฅผ ์ฐพ์„ ๋•Œ ๊นŒ์ง€ ์žฌ๊ท€์ ์œผ๋กœ ํ˜ธ์ถœ if parent[x] != x: parent[x] = find_parent(parent, parent[x]) return parent[x] # ๋‘ ์›์†Œ๊ฐ€ ์†ํ•œ ์ง‘ํ•ฉ์„ ํ•ฉ์น˜๊ธฐ def union_parent(parent, a, b): a = find_parent(parent, b) b = find_parent(parent, a) if a < b: parent[b] = a else: parent[a] = b # n,m ์ž…๋ ฅ๋ฐ›๊ธฐ n, m = map(int, input().split()) # ๋ถ€๋ชจ ํ…Œ์ด๋ธ” ์ดˆ๊ธฐํ™” parent = [0] * (n + 1) # ๋ถ€๋ชจ ํ…Œ์ด๋ธ” ์ƒ์—์„œ ๋ถ€๋ชจ๋ฅผ ์ž๊ธฐ ์ž์‹ ์œผ๋กœ ์ดˆ๊ธฐํ™” for i in range(0, n + 1): parent[i] = i # ๊ฐ ์—ฐ์‚ฐ์„ ํ•˜๋‚˜์”ฉ ํ™•์ธ for i in range(m): oper, a, b = map(int, input().split()) # ํ•ฉ์ง‘ํ•ฉ ์—ฐ์‚ฐ์ธ ๊ฒฝ์šฐ if oper == 0: union_parent(parent, a, b) # ์ฐพ๊ธฐ ์—ฐ์‚ฐ์ธ ๊ฒฝ์šฐ elif oper == 1: if find_parent(parent, a) == find_parent(parent, b): print('YES') else: print('NO')
#!/usr/bin/env python3 # Return the number of unique pairs from a list that sum up to a given integer def numberOfPairs(a, k): uniques = set() for i,x in enumerate(a): idx = 0 for y in a[i:]: if x == y and idx == 0: idx += 1 elif x + y == k uniques.add("".join(str(n) for n in sorted([x,y]))) return len(uniques) if __name__ == "__main__": assert numberOfPairs([1,3,46,1,3,9], 47) == 1 assert numberOfPairs([6,6,3,9,3,5,1], 12) == 2 assert numberOfPairs([1,1,1,1], 2) == 1 print("All tests passed!")
import pprint import pandas as pd import math import numpy as np """ The program implements the ID3 algorithm to generate the decision tree for classification and the decision tree would be saved in a dictionary in hierarchy structure. This is not a generalize program to receive any data format. It is actually only designed for finishing our assignment. """ attributes_values = { 'Department': ['Research & Development', 'Sales', 'Human Resources'], 'BusinessTravel': ['Travel_Rarely', 'Travel_Frequently', 'Non-Travel'], 'EducationField': ['Life Sciences', 'Medical', 'Marketing'], 'MonthlyIncome': ['<5881', '>=5881'], 'Age': ['<38', '>=38'] } def split(data, attribute, value): """ Splitting examples and dropping the attribute of splitting :param data: The examples :param attribute: The attribute for splitting determining how to split the example :param value: The value of the attribute for splitting :return: Return the subset of the example after splitting """ subset = data.loc[data[attribute] == value] # drop column from current list subset = subset.drop([attribute], axis=1) return subset def is_end_with_same_label(data): """ To tell if the examples only contain ony a class of label :param data: the example :return: If the example only contains one label, then return false """ # every elements are in the same class if 'Yes' in data['Attrition'].values and 'No' not in data['Attrition'].values: return 'Yes' else: if 'Yes' not in data['Attrition'].values and 'No' in data['Attrition'].values: return 'No' def entropy(positive, negative, total): """ To calculate the entropy. Looks stupid but works for the binary label. :param positive: the number positive :param negative: the number of negative :param total: the total total number positive and negative :return: the entropy """ if positive == 0 and negative == 0: return 0 if positive != 0 and negative == 0: return -(positive / total) * math.log((positive / total), 2) if positive == 0 and negative != 0: return -(negative / total) * math.log((negative / total), 2) if positive != 0 and negative != 0: return -(positive / total) * math.log((positive / total), 2) - (negative / total) * math.log((negative / total), 2) def compute_info_gain(root_entropy, counts, total): """ Compute the information gain for the target attribute. The function is specialized only for the attribute that has three :param root_entropy: The entropy of the splitting attribute :param counts: The counts consists of [total number of first values, positive number of first value, second number of second value, positive number of second value ...] :param total: The total number of attributes :return: the information gain for the the attributes """ entropy_sum = 0 print(range(0, int(len(counts)/2))) i = 0 while i < len(counts): entropy_sum += counts[i] / total * entropy(counts[i+1], counts[i] - counts[i+1], counts[i]) i += 2 info_gain = root_entropy - entropy_sum return info_gain def get_category_info_gain(data, attribute, values, root_entropy, total): """ Counts the label and compute the information gain """ counts = [] for value in values: counts.append(data.loc[data[attribute] == value].count()[attribute]) counts.append(data.loc[data[attribute] == value].loc[data['Attrition'] == 'Yes'].count()[attribute]) return compute_info_gain(root_entropy, counts, total) def compute_all(data): """ Compute the information gain of each attribute. The function is specialized only for our data format. :param data: :return: A dictionary of the information gain """ # Terminate when there is no more attribute to be selected if len(data.columns) is 1: # return yes or no when there are only one class if is_end_with_same_label(data) == 'Yes' or is_end_with_same_label(data) == 'No': return is_end_with_same_label(data) # return the most common class yes_count = data['Attrition'].tolist().count('Yes') no_count = data['Attrition'].tolist().count('No') if yes_count > no_count: return 'Yes' else: return 'No' # terminate when all element is in the same class if is_end_with_same_label(data) == 'Yes' or is_end_with_same_label(data) == 'No': return is_end_with_same_label(data) root_entropy = entropy(data['Attrition'].value_counts()['Yes'], data['Attrition'].value_counts()['No'], len(data.index) ) result = {} attribute_list = data.columns.tolist() attribute_list.remove('Attrition') for key in attribute_list: result[key] = get_category_info_gain(data, key, attributes_values[key], root_entropy, len(data.index)) return result def run(data, k, tree_dict): """ This is recursive function that recursively split examples and save the decision tree in the dictionary :param data: :param k: The tree depth :param tree_dict: The dictionary holds the decision tree :return: Return the current level of decision tree """ k = k result = compute_all(data) # terminate when all element is in the same class if result == 'Yes' or result == 'No' or result is None: tree_dict['Result'] = result print(result) print('---------------------------------------') else: # else continue to find the maximum info and split max_info_gain_attr = max(result, key=result.get) possible_attributes = attributes_values[max_info_gain_attr] # Split for value in possible_attributes: print('The ' + max_info_gain_attr + ' is the max at level ' + str(k)) print('Inspecting Condition ' + str(value)) sub_data = split(data, max_info_gain_attr, value) if sub_data.size == 0: yes_count = data['Attrition'].tolist().count('Yes') no_count = data['Attrition'].tolist().count('No') if yes_count > no_count: print('Yes') if max_info_gain_attr not in tree_dict.keys(): tree_dict = {max_info_gain_attr: {}} tree_dict[max_info_gain_attr][value] = {'Result': 'Yes'} else: tree_dict[max_info_gain_attr][value] = {'Result': 'Yes'} print('---------------------------------------') else: print('No') if max_info_gain_attr not in tree_dict.keys(): # tree_dict = {max_info_gain_attr: {}} tree_dict.update({max_info_gain_attr: {}}) tree_dict[max_info_gain_attr][value] = {'Result': 'No'} else: tree_dict[max_info_gain_attr][value] = {'Result': 'No'} print('---------------------------------------') else: if max_info_gain_attr not in tree_dict.keys(): branch = {} tree_dict.update({max_info_gain_attr: {value: branch}}) run(sub_data, k + 1, branch) else: branch = {} tree_dict[max_info_gain_attr][value] = branch run(sub_data, k + 1, branch) return tree_dict if __name__ == '__main__': data = pd.read_csv('training_data.csv') data = data[['Age', 'Attrition', 'BusinessTravel', 'Department', 'EducationField', 'MonthlyIncome']] print('Start:') tree_dict = {} run(data, 0, tree_dict) pprint.pprint(tree_dict) np.save('tree', tree_dict)
import collections class SymbolTable(collections.MutableMapping): def __init__(self): """Initialize the symbol table to a stack with global scope""" self.stack = [] self.push() return def push(self): """Pushes and returns an empty dictionary onto the symbol table""" d = {} self.stack.append(d) return d def pop(self): """Removes and returns the top-level symbol dictionary""" v = self.stack[-1] del self.stack[-1] return v def __len__(self): """Return total number of elements in the symbol table""" return sum(map(len, self.stack)) def __iter__(self): """Iterator to the stack""" for d in reversed(self.stack): for k in d: yield k return def top(self, symbol): """Look in the top level of the symbol table for the symbol""" return self.stack[-1].get(symbol) def __getitem__(self, symbol): """Get the value that is stored under symbol""" for d in reversed(self.stack): v = d.get(symbol) if v is not None: return v return None def __setitem__(self, symbol, value): """Set the value of symbol to be value""" self.stack[-1][symbol] = value return def __delitem__(self, symbol): """Deletes and returns the item associated with symbol""" for d in reversed(self.stack): v = d.get(symbol) if v is not None: item = v del d[symbol] return item return None def find(self, symbol): """Returns a integer that gives the position of the symbol in the table""" for i in reversed(range(self.num_levels)): if symbol in self.stack[i]: return i return -1 @property def functions(self): """Returns a dict of the functions that are in the global scope""" return self.stack[0] @property def num_levels(self): """Returns the number of levels of the symbol table""" return len(self.stack)
""" CMSC 12300 / CAPP 30123 Task: Descriptive analysis (Exploring Questions) Main author: Sanittawan (Nikki) """ import csv import re from mrjob.job import MRJob class GetMaxAnsQuest(MRJob): """ A class for finding questions with the most number of answers per year from 2008 to 2019 using a MapReduce framework """ def mapper(self, _, line): """ Maps year to answer counts and title of the question Inputs: line: a single line in a CSV file Returns: a year as key and a tuple of answer counts and title """ row = csv.reader([line]).__next__() try: post_type = int(row[1]) if post_type == 1: create_date = row[4] search = re.search(r"20[01][0-9]", create_date) if search: year = search.group() title = row[13] answer_counts = row[15] yield year, (int(answer_counts), title) except (IndexError, ValueError): pass def combiner(self, year, val): """ Combine counts of all unique bi-grams Inputs: year: (string) the year the question was posted val: (tuple) of number of answers and title Returns: a year and a tuple containing the maximum number of answer counts """ try: max_ans = max(val) yield year, max_ans except (TypeError, ValueError): pass def reducer(self, year, val): """ Reduce all counts of a unique bi-gram tag Inputs: year: (string) the year the question was posted val: (tuple) of number of answers and title Returns: a year and a tuple containing the maximum number of answer counts """ try: max_ans = max(val) yield year, max_ans except (TypeError, ValueError): pass if __name__ == '__main__': GetMaxAnsQuest.run()
def listtGenerator(): lst1 = [] for i in range(10,100): lst1.append(i) i += 1 return lst1 def Generate_table(number): n = 1 lst = [] for i in range(10): i = n*number n = n+1 lst.append(i) return lst def WrongTable(table): import random rand = random.choice(lst) for item in table: if item > 10: item = rand else: pass return table if __name__ == '__main__': import random table_of_no = int(input("Please enter the number you want to get the table\n")) table = Generate_table(table_of_no) lst = listtGenerator() tableW = WrongTable(table) print(tableW)
""" A simple PyQt5 UI example Created by: Jacob Lewis Date: June 8th, 2016 """ import sys import numpy as np from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * V_NUM = "0.1" class CircleCanvas(QGraphicsView): """ Renders the circle """ def __init__(self, circleCheckbox, parent=None): super(CircleCanvas, self).__init__(parent) self.circleCheckbox = circleCheckbox def paintEvent(self, QPaintEvent): qp = QPainter(self.viewport()) qp.fillRect(QRect(0, 0, self.width(), self.height()), QColor(200, 200, 200, 255)) qp.setPen(Qt.red) # only draw the circle if the circleCheckBox is checked if self.circleCheckbox.isChecked(): qp.drawEllipse(10, 10, 200, 200) ctr = (self.width() // 2, self.height() // 2) # draw axises qp.drawLine(0, ctr[1], self.width(), ctr[1]) qp.drawLine(ctr[0], 0, ctr[0], self.height()) # Draw notches NOTCH_SEP = 30 NOTCH_SIZE = 5 for x in range(ctr[0] // NOTCH_SEP): dist = NOTCH_SEP * x qp.drawLine(ctr[0] + dist, ctr[1] - NOTCH_SIZE, ctr[0] + dist, ctr[1] + NOTCH_SIZE) qp.drawLine(ctr[0] - dist, ctr[1] - NOTCH_SIZE, ctr[0] - dist, ctr[1] + NOTCH_SIZE) for y in range(ctr[1] // NOTCH_SEP): dist = NOTCH_SEP * y qp.drawLine(ctr[0] - NOTCH_SIZE, ctr[1] + dist, ctr[0] + NOTCH_SIZE, ctr[1] + dist) qp.drawLine(ctr[0] - NOTCH_SIZE, ctr[1] - dist, ctr[0] + NOTCH_SIZE, ctr[1] - dist) #points = np.array([complex(x, y) for x in range(-50, 51) for y in range(50, -51, -1)]) points = np.array([2, 0+2j, 0-2j, -2, 1.61803399, -0.618033989]) qp.setPen(Qt.blue) self.display_points(qp, points, ctr, NOTCH_SEP) try: mTrans = (eval(self.a.toPlainText()), eval(self.b.toPlainText()), eval(self.c.toPlainText()), eval(self.d.toPlainText())) for i in range(len(points)): # if points[i].real == points[i].imag == 0: # continue points[i] = self.mob_trans(points[i], mTrans) points *= eval(self.a2.toPlainText()) points += eval(self.b2.toPlainText()) except Exception: pass # points[1] = self.mob_trans(points[1], mTrans) # points[2] = self.mob_trans(points[2], mTrans) # points[3] = self.mob_trans(points[3], mTrans) #points *= cmath.e**(1j*cmath.pi/4) print(points) # points[1] *= 1+1j # points[2] *= 1+1j # points[3] *= 1+1j qp.setPen(Qt.black) self.display_points(qp, points, ctr, NOTCH_SEP, 4) qp.end() def display_points(self, qp, points, ctr, sep_size, rad=2): for point in points: qp.drawEllipse(QRectF((ctr[0] + point.real * sep_size - rad), (ctr[1] - point.imag * sep_size - rad), rad*2, rad*2)) def mob_trans(self, z, trans): a, b, c, d = trans return (a * z + b) / (c * z + d) class Form(QWidget): def __init__(self, parent=None): super(Form, self).__init__(parent) # The Dimensions of the side bar and bottom bar self.DIM_PANEL_RIGHT_WIDTH = 200 self.DIM_PANEL_BOTTOM_HEIGHT = 50 # Setup the basic window properties self.setMinimumWidth(700) self.setMinimumHeight(550) # Setup the Panels self.setupSidePanel() self.setupBottomPanel() # Setup the Graphical View self.sceneLayout = QVBoxLayout() self.gview = CircleCanvas(self.showCircle) self.gview.a = self.a self.gview.b = self.b self.gview.c = self.c self.gview.d = self.d self.gview.a2 = self.a2 self.gview.b2 = self.b2 self.gview.setUpdatesEnabled(True) self.sceneLayout.addWidget(self.gview) # Setup and attach all views to the main grid self.grid = QGridLayout() self.grid.setColumnMinimumWidth(1, self.DIM_PANEL_RIGHT_WIDTH) self.grid.setRowMinimumHeight(1, self.DIM_PANEL_BOTTOM_HEIGHT) self.grid.addItem(self.sceneLayout, 0, 0) self.grid.addItem(self.bottomButtons, 1, 0) self.grid.addItem(self.groupHolder, 0, 1) # Set the layout the the grid self.setLayout(self.grid) self.setWindowTitle('CPPS Explorer v%s' % V_NUM) def setupSidePanel(self): # Side Panel self.groupHolder = QGridLayout() # Side Panel Group 1 group1 = QVBoxLayout() titleLabel = QLabel("Mobius Transformation Params\n T(z) = (az+b)/(cz+d)") titleLabel.setMaximumHeight(30) self.a = QTextEdit("1") self.a.setMaximumWidth(self.DIM_PANEL_RIGHT_WIDTH//2) self.a.setMaximumHeight(30) self.a.textChanged.connect(lambda: self.gview.viewport().repaint()) self.b = QTextEdit("0") self.b.setMaximumWidth(self.DIM_PANEL_RIGHT_WIDTH//2) self.b.setMaximumHeight(30) self.b.textChanged.connect(lambda: self.gview.viewport().repaint()) self.c = QTextEdit("0") self.c.setMaximumWidth(self.DIM_PANEL_RIGHT_WIDTH//2) self.c.setMaximumHeight(30) self.c.textChanged.connect(lambda: self.gview.viewport().repaint()) self.d = QTextEdit("1") self.d.setMaximumWidth(self.DIM_PANEL_RIGHT_WIDTH//2) self.d.setMaximumHeight(30) self.d.textChanged.connect(lambda: self.gview.viewport().repaint()) sg1 = QVBoxLayout() sg1.setDirection(QBoxLayout.LeftToRight) sg1.addWidget(self.a) sg1.addWidget(self.b) sg2 = QVBoxLayout() sg2.setDirection(QBoxLayout.LeftToRight) sg2.addWidget(self.c) sg2.addWidget(self.d) slider1 = QSlider(Qt.Horizontal) slider1.setMinimum(-500) slider1.setMaximum(500) slider1.setValue(100) slider1.valueChanged.connect(lambda:self.a.setText(str(int(slider1.value())/100.0))) slider1.setMaximumWidth(self.DIM_PANEL_RIGHT_WIDTH) slider2 = QSlider(Qt.Horizontal) slider2.setMinimum(-500) slider2.setMaximum(500) slider2.setValue(0) slider2.valueChanged.connect(lambda: self.b.setText(str(int(slider2.value()) / 100.0))) slider2.setMaximumWidth(self.DIM_PANEL_RIGHT_WIDTH) slider3 = QSlider(Qt.Horizontal) slider3.setMinimum(-500) slider3.setMaximum(500) slider3.setValue(0) slider3.valueChanged.connect(lambda: self.c.setText(str(int(slider3.value()) / 100.0))) slider3.setMaximumWidth(self.DIM_PANEL_RIGHT_WIDTH) slider4 = QSlider(Qt.Horizontal) slider4.setMinimum(-500) slider4.setMaximum(500) slider4.setValue(100) slider4.valueChanged.connect(lambda: self.d.setText(str(int(slider4.value()) / 100.0))) slider4.setMaximumWidth(self.DIM_PANEL_RIGHT_WIDTH) group1.addWidget(titleLabel, alignment=Qt.AlignTop) group1.addWidget(slider1, alignment=Qt.AlignTop) group1.addWidget(slider2, alignment=Qt.AlignTop) group1.addWidget(slider3, alignment=Qt.AlignTop) group1.addWidget(slider4, alignment=Qt.AlignTop) group1.addItem(sg1) group1.addItem(sg2) #Side Panel Group 2 group2 = QVBoxLayout() titleLabel2 = QLabel("Transform T(z) = (az+b)") # radio groups in group 2 # radioGroup = QButtonGroup(group2) # radio1 = QRadioButton("Option 1") # radio1.toggled.connect(lambda: self.radioButtonChange(radio1)) # radio1.setChecked(True) # radio2 = QRadioButton("Option 2") # radio2.toggled.connect(lambda: self.radioButtonChange(radio2)) # # radioGroup.addButton(radio1) # radioGroup.addButton(radio2) # # radioGroup2 = QButtonGroup(group2) # radio3 = QRadioButton("Option 3a") # radio3.toggled.connect(lambda: self.radioButtonChange(radio3)) # radio3.setChecked(True) # radio4 = QRadioButton("Option 2b") # radio4.toggled.connect(lambda: self.radioButtonChange(radio4)) # # radioGroup2.addButton(radio3) # radioGroup2.addButton(radio4) self.a2 = QTextEdit("1") self.a2.setMaximumWidth(self.DIM_PANEL_RIGHT_WIDTH // 2) self.a2.setMaximumHeight(30) self.a2.textChanged.connect(lambda: self.gview.viewport().repaint()) self.b2 = QTextEdit("0") self.b2.setMaximumWidth(self.DIM_PANEL_RIGHT_WIDTH // 2) self.b2.setMaximumHeight(30) self.b2.textChanged.connect(lambda: self.gview.viewport().repaint()) sg3 = QVBoxLayout() sg3.setDirection(QBoxLayout.LeftToRight) sg3.addWidget(self.a2) sg3.addWidget(self.b2) slider5 = QSlider(Qt.Horizontal) slider5.setMinimum(-500) slider5.setMaximum(500) slider5.setValue(100) slider5.setMaximumHeight(30) slider5.valueChanged.connect(lambda: self.a2.setText(str(int(slider5.value()) / 100.0))) slider5.setMaximumWidth(self.DIM_PANEL_RIGHT_WIDTH) slider6 = QSlider(Qt.Horizontal) slider6.setMinimum(-500) slider6.setMaximum(500) slider6.setValue(0) slider6.setMaximumHeight(30) slider6.valueChanged.connect(lambda: self.b2.setText(str(int(slider6.value()) / 100.0))) slider6.setMaximumWidth(self.DIM_PANEL_RIGHT_WIDTH) group2.addWidget(titleLabel2, alignment=Qt.AlignTop) group2.addWidget(slider5, alignment=Qt.AlignTop) group2.addWidget(slider6, alignment=Qt.AlignTop) group2.addItem(sg3) # group2.addWidget(radio1, alignment=Qt.AlignTop) # group2.addWidget(radio2, alignment=Qt.AlignTop) # group2.addWidget(radio3, alignment=Qt.AlignTop) # group2.addWidget(radio4, alignment=Qt.AlignTop) # attach all groups to group holder grid self.groupHolder.addItem(group1, 0, 0) # group, row, col self.groupHolder.setRowMinimumHeight(1, 50) self.groupHolder.addItem(group2, 2, 0) # group, row, col def setupBottomPanel(self): # Bottom Panel self.exitButton = QPushButton("Quit") self.exitButton.setMaximumWidth(100) self.exitButton.clicked.connect(self.exitNow) self.showCircle = QCheckBox("Draw Circle") self.showCircle.stateChanged.connect(self.checkboxChange) self.bottomButtons = QVBoxLayout() self.bottomButtons.setDirection(QBoxLayout.LeftToRight) #self.bottomButtons.addWidget(self.showCircle) self.bottomButtons.addWidget(self.exitButton) def radioButtonChange(self, radioBtn): if radioBtn.isChecked(): print(radioBtn.text(), "is checked") def checkboxChange(self): # used to force a repaint to either display or hide the circle self.gview.viewport().repaint() print("checkbox is:", self.showCircle.isChecked()) def exitNow(self): print("exit") exit() def resizeEvent(self, QResizeEvent): print("width %d, height %d" % (self.width(), self.height())) if __name__ == '__main__': app = QApplication(sys.argv) w = Form() w.show() sys.exit(app.exec_())
s=str(input('introduceti un nume si un prenume:')) a,b=s.split() print(a) print(b) if((a.title()==a)and(b.title()==b)): print('numele introdus este corect') else: print('numele introdus este incorect')
sexo = input('Informe o seu sexo: ') if(sexo== 'f'): print('O sexo Informado foi o sexo feminino.') elif(sexo== 'm'): print('O sexo informado foi o sexo masculino.') else: print('Sexo nรฃo detectado.')
import urllib.request, urllib.parse, urllib.error import json url=input("Enter location: ") #url = ' http://py4e-data.dr-chuck.net/comments_10141.json' #open url url_open = urllib.request.urlopen(url) #extract data data = url_open.read() #put the data into a dictionary data_parsed = json.loads(data) '''print the sum of all 'count' occurrences. The file has the following structure: { "note":"This file contains the actual data for your assignment", "comments":[ { "name":"abc", "count":100 }, { "name":"cde", "count":77 }, ... } ''' total = 0 for item in data_parsed['comments']: total += int(item['count']) print ('Total: ', total)
def flat_list(nested_lst, low, high): lst = [] if isinstance(nested_lst, list): for i in range(low, high+1): if isinstance(nested_lst[i], list): lst.extend(flat_list(nested_lst[i], 0, len(nested_lst[i])-1)) else: lst.append(nested_lst[i]) else: return nested_lst return lst
def rightView(root): if not root: return queue=[] queue.append(root) while queue: l=len(queue) while l: temp=queue[0] if l==1: print(temp.data,end=" ") l-=1 if temp.left: queue.append(temp.left) if temp.right: queue.append(temp.right) queue.pop(0)
import sqlite3 import random class SimpleSQL3: """Table/db created upon init If working with an existing DB, leave the column_dict kwarg blank - column names will be populated automatically. database_name: looks for suffix '.db' - will add '.db' if not found. This can be overridden with the override boolean argument **column_dict takes the column name and the type: col_name='TEXT' Wildcard search: query = "%" + query + "%" fetch_all=True, change to false to use fetchone() func No fetchmany() support at this time, probably a simple if statement """ def __init__(self, database_name, table_name, override=False, **column_dict): assert database_name and table_name is not None, "One/more missing: database_name, table_name" self.database_name = database_name self.table_name = table_name self.override = override if not override: if not self.database_name.endswith(".db"): self.database_name = f"{database_name}.db" else: self.database_name = database_name self.column_dict = column_dict if len(self.column_dict) is 0: # Gets the column names for working with an existing DB conn = sqlite3.connect(self.database_name) c = conn.cursor() c.execute(f"""SELECT * FROM {self.table_name}""") self.column_names = list(map(lambda x: x[0], c.description)) self.column_types = ["TEXT"] * len(self.column_names) c.close() conn.close() else: self.column_names = list(self.column_dict.keys()) self.column_types = list(column_dict.values()) col_vals = "?," * len(str(self.column_names).split(",")) self.col_vals = col_vals[:-1] self.columns = "".join([f"{a} {b.upper()}, " for a, b in zip(self.column_names, self.column_types)])[:-2] # Last 2 chars are always a space and comma conn = sqlite3.connect(self.database_name) c = conn.cursor() c.execute(f"CREATE TABLE IF NOT EXISTS {self.table_name} ({self.columns})") c.close() conn.close() def insert(self, *args): args = (args) assert len(args) == len(self.col_vals.split(',')), f"{len(args)} argument and {len(self.col_vals.split(','))} column - length do not match" conn = sqlite3.connect(self.database_name) c = conn.cursor() c.execute(f"""INSERT INTO {self.table_name} VALUES ({self.col_vals})""", args) conn.commit() c.close() conn.close() def select_cols_like(self, sel_col, like_col, query, fetch_all=True): assert fetch_all is not None, "fetch_all must be boolean" query = (query,) conn = sqlite3.connect(self.database_name) # path to DB as well c = conn.cursor() c.execute(f"""SELECT {sel_col} FROM {self.table_name} WHERE {like_col} LIKE ?""", query) if not fetch_all: return c.fetchone() else: return c.fetchall() c.close() conn.close() def select_cols_equal(self, sel_col, equal_col, query, fetch_all=True): assert fetch_all is not None, "fetch_all must be boolean" query = (query,) conn = sqlite3.connect(self.database_name) # path to DB as well c = conn.cursor() c.execute(f"""SELECT {sel_col} FROM {self.table_name} WHERE {equal_col}=?""", query) if not fetch_all: return c.fetchone() else: return c.fetchall() c.close() conn.close() def select_all_table(self, fetch_all=True): assert fetch_all is not None, "fetch_all must be boolean" conn = sqlite3.connect(self.database_name) # path to DB as well c = conn.cursor() c.execute(f"""SELECT * FROM {self.table_name}""") if not fetch_all: return c.fetchone() else: return c.fetchall() c.close() conn.close() def update(self, set_col, where_col, set_var, where_var): conn = sqlite3.connect(self.database_name) # path to DB as well c = conn.cursor() c.execute(f"""UPDATE {self.table_name} SET {set_col} = ? WHERE {where_col} = ?""", (set_var, where_var)) conn.commit() c.close() conn.close() def delete(self): # TODO pass def custom_sql(self, sql_statement, fetch_all=True): conn = sqlite3.connect(self.database_name) # path to DB as well c = conn.cursor() c.execute(f"""{sql_statement}""") if not fetch_all: return c.fetchone() else: return c.fetchall() conn.commit() c.close() conn.close() def __repr__(self): return f"\nDB Name: {self.database_name}, \nTable Name: {self.table_name}, \nOverride: {self.override},\nColumns: {self.column_dict}" def __str__(self): return f"\nDB Name: {self.database_name}, \nTable Name: {self.table_name}, \nOverride: {self.override},\nColumns: {self.column_dict}" # Add checks and balances: if column is TEXT then data=str(data), etc.. if __name__ == '__main__': # (self, database_name, table_name, override=False, **column_dict) day = "2018-08-19" my_table = SimpleSQL3("testDB", "testCols", False, col1="TEXT", col2="TEXT", col3="TEXT", col4="TEXT") my_table.insert(random.randint(1, 50), random.randint(1, 50), random.randint(1, 50), random.randint(1, 50)) all_table = my_table.select_all_table() cols_eqal = my_table.select_cols_equal("col1", "col2", "9") # sel_col, equal_col, query cols_like = my_table.select_cols_like("col3", "col4", "UPDATED") # sel_col, like_col, query # cols_eqal.select_cols_equal("col1, col2, col3", "col4='SOMETHING' AND col5", day) # Example of using 'AND' statement my_table.update("col1", "col1", "UPDATED", "12") # set_col, where_col, set_var, where_var custom_thing = my_table.custom_sql("SELECT * FROM testCols")