text
stringlengths
37
1.41M
def pattern(n): for i in range(1,10): for i in range(0,i): print("*") print("\r") pattern(10) #not completed
#a function its self is called recursion #fibnocci series using recursion #call afunction inside the same function #important def recur_fibo(n): if n<=1: return n else: return recur_fibo(n-1)+recur_fibo(n-2) nterms=10 #nterms=int(input("enter number)) if nterms<=0: print("please enter a positive integer") else: print("fibonacci sequence:") for i in range(nterms): print(recur_fibo(i))
#for loop same #initialization #condition #inc or dec #inc 1 ,bt not using;no need of 1,loop default the inc for i in range(1,10): #upp-1 print(i)
list=[1,53,4,96,46] print(list) oddset=set() evenset=set() for i in list: if(i%2==0): evenset.add(i) else: oddset.add(i) print("even set",evenset) print("odd set",oddset)
#program to accept three integers and print the largest of the three. make use of #only if statement. x=float(input("enter the first number:")) y=float(input("enter the second number:")) z=float(input("enter the third number:")) max=x if(y>max): max=y if(z>max): max=z print("largest number is", max)
sal=int(input("enter ur salary")) year=int(input("enter num of yr of service")) bonus=(5/100)*sal if(year>=5): newsal=sal+bonus print(newsal) else: print("experience lessthan 5")
#Create an Animal class using constructor and build a child class for Dog? class Animal: def __init__(self,name,age): self.name=name self.age=age def print(self): print("i'am",self.name) print(self.age,"years old") class Dog(Animal): def __init__(self,name,age,type): super().__init__(name,age) self.type=type def printval(self): print(self.type) am=Dog("jacky",5,"dog") am.print() am.printval()
# to add odd and even elemnts to different set s={1,8,5,9,4,7,11,100,5,} print(s) odd=set() even=set() for i in s: if(i%2==0): even.add(i) else: odd.add(i) print("even set",even) print("odd set",odd)
#reduce # import functools from functools import * arr=[1,2,3,4,5,6] total=reduce(lambda num1,num2:num1+num2,arr) print(total) #print highest number highest=reduce(lambda num1,num2:num1 if num1>num2 else num2,arr) print(highest)
#using forloop odd to even number and check sum low=int(input("enter the low limit")) upp=int(input("enter the upp limit")) evensum=0 oddsum=0 for i in range(low,upp+1): if(i%2==0): #1%2==0 evensum+i else: oddsum+i print(evensum) print(oddsum)
#write a program to input a value in kilometers and convert it into miles (1km=0.621371miles) km=int(input("enter the kilometers:")) miles=km*0.621371 print(miles)
#odd or even def odd(): num1=int(input("enter the num")) if(num1%2==0): print("even") else: print("odd") odd()
# 1. PRINT STATEMENT: [syntax: print()] print("hello world") # 2. PRINT BLANK LINES: print(4 * "\n") # it's print 4 blank lines """ NOTE: 1. print("\n\n\n\n") this is another print statement to print 4 blank lines """ # 3. PRINT END COMMAND: [syntax : print("", end ="")] """ NOTE: 1. In python(above 3+ version) every print() statement have end command, the default value of end command is '\n'. because of that after every print statement next statement comes/print in newline in output. 2. You can end a print statement with any character or string using 'end' parameter. 3. For example if you want to replace end statement with space then the next print statement not printed in newline because we replaced end statement value i.e \n with space so next statement print along with current print statement with space. check below print statements""" print("---print end command start---\n") print("default print statement,") # here we didn't mention any end command, so the default value is '\n' print("without end command\n") print("1st print statement with space end command,", end=' ') # here we replaced '\n' with space by using end command print("2nd print statement w/o end command\n") print("1st print statement with space end command,", end=' ') # replaced '\n' with space print("2nd print statement with character(!) end command", end='!') # replaced '\n' with '!' character, so next print # statement print beside this. print("\n---print end command end---\n") # 4. MAIN FUNCTION: [syntax : def function_name()] print("--- main() start---\n") def main(): # here we declare main() print("main function start") var1 = 1 print(var1) var2 = "inside main()" print(var2) print("main function end\n") main() # here we call the main(), if you want to run main() we must call it. print("outside the main()\n") print("---main() end---\n") # 5. DECLARE AND RE-DECLARE VARIABLE: print("---declare and re-declare start---\n") var3 = 1 # here we declare the variable with integer print("var3 value before re-declare:", var3) var3 = "var3 successfully re-declared" # here we re-declare the variable with string print("var3 value after re-declare:", var3) print("\n---declare and re-declare end---\n") # 6. ATTACH/CONCATENATE VARIABLES: print("---Concatenate Variables start---\n") var4 = " string var4 " var5 = 5 var6 = " string var6 " var7 = 7 print("concatenate string var4 with integer var5 is: ", var4 + str(var5)) print("concatenate string var4 with string var6 is: ", var4 + var6) print("concatenate integer with integer is:", str(var5) + str(var7)) print("\n---Concatenate Variables end---\n") """NOTE: 1. we can not concatenate string with integer directly, so we use str() method to declare integer value as string. 2. similarly we can't concatenate integer with integer directly its do addition. so we have to use str() method to concatenate integer with integer. """ # 6. LOCAL AND GLOBAL VARIABLES: """NOTE: 1. any variable declared in inside function (var10) is called LOCAL VARIABLE 2. any variable declared in outside function (var8,var9) is called GLOBAL VARIABLE 3. all variables we used in function is must declare before function calling other wise its leeds to error 4. if you declaring a variable as GLOBAL VARIABLE (var11) then you shouldn't declare that variable before global syntax in inside the function, if you did that leeds to error 5. if you use any local variable (var10) outside function its leeds to error. 6. we can use global variable (var8,var9) inside function but we can't use local variable (var10) outside function without declaring as global variable (var11). """ print("---local and global variable start---\n") var8 = "var8 is global variable" # here var8 is global variable var9 = "var9 is global variable" print(var8) def main2(): print("\nmain2() start\n") var8 = "var8 is local variable" # here var8 is local variable. the value of var8 valid inside this function only. print(var8) var10 = "var10 is local variable" # var10 is local variable because its define in inside function. if you used # var10 variable outside the function without define its leeds to error because its local variable. print(var10) print(var9) # we printing/calling global variable inside function. global var11 # make sure that var11 is not declare before this syntax, if you declared its leeds to error. var11 = "var11 declared as global variable inside function" print("inside function var11 value:", var11) print("\nmain2() end\n") main2() print(var8) print("outside function var11 value:", var11) print("\n---local and global variable end---\n") # 7. DELETE VARIABLE: [syntax: del variable_name ] var12 = 12 del var12 # var12 variable is deleted. # 8. SPECIAL AND ESCAPE CHARACTER: """ NOTE: 1. In python "\t" and "\n" is called as "SPECIAL CHARACTER" and "\" called as "ESCAPE CHARACTER" '\t' is a tab '\n' is a new line '\' is escape character, it means '\' becomes hide/escape and print content before and next to it. """ print("---special and escape character start---\n") print("1. '\\t'character") # ESCAPE character print("apple", "\torange") # special character '\t' it's gives space b/w two words. print("2. '\\n'character") # ESCAPE character print("apple\n", "orange", "\n") # special character '\n' it's produce new line b/w two words print("3. '\\'escape character") # ESCAPE character print("it\'s raining here") # ESCAPE character '\' it's produce single/double quotations. print("\"hello\"") # ESCAPE character '\' it's produce single/double quotations. print("'\'hello") print("\n---special and escape character end---\n") # 9. RAW STRING: [syntax: print(r"") or print(R"")] """ NOTE: 1. raw strings means it's print text/value inside the quotation r"" or R"" as it is. 2. its define with R"" or r"". """ print("---raw string start---\n") print(r"hello '\n' and '\t' this is raw string example") # RAW STRING: it's print text after 'r' or 'R' as it is print(R"hello '\n' and '\t' this is raw string example") print("\n---raw string end---\n") # the content b/w """ """ is taken as paragraph or multiple line string, it is used when need to print paragraphs # syntax: print(""" """). if you not mention print statement with """ """ quotation it is not print in o/p.
# import libraries # -*- coding: utf-8 -*- import urllib2 from bs4 import BeautifulSoup # specify the url quote_page = "http://www.bloomberg.com/quote/SPX:IND" # query the website and return the html to the variable ‘page’ page = urllib2.urlopen(quote_page) # parse the html using beautiful soup and store in variable `soup` soup = BeautifulSoup(page, "html.parser") # Take out the <div> of name and get its value name_box = soup.find('h1', attrs={"class": "name"}) name = name_box.text.strip() # strip() is used to remove starting and trailing print name
# Normal library imports import cv2 import numpy as np import pandas as pd import matplotlib.pyplot as plt import os # importing requisite information from create_data.py # 1. show_images(): to display the images so it may be verified if Canny Edge detection worked fine # 2. grey_images: which is a from create_data import show_images, gray_images, test_images def detect_edges(image, low_threshold=50, high_threshold=200): # Applies the Canny Edge detection algorithm # Refer: https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_canny/py_canny.html # Thresholds are hyper-parameters chosen such that: # 1. Shorter than requried lines are not chosen # 2. Longer lines such that path etc. are also not chosen and are not mistaken for parking spot return cv2.Canny(image, low_threshold, high_threshold) edge_images = list(map(lambda image: detect_edges(image), gray_images)) # creating a map and applying the Canny edge detection # Uncomment the line to display the image, for testing purposes show_images(edge_images) ############################################################################################################################### def filter_region(image, vertices): # The entire image is not required for the training. So we simply remove parts of the image not required/containing paths the network can # confuse for some parking spot mask = np.zeros_like(image) # np.zeros_like() creates a matrix of 0s of the same size as the image. Applying the mask on the image # enables it to multiply the pixel value with 0 (rendering it black) if len(mask.shape)==2: # No extra channel dimension: cv2.fillPoly(mask, vertices, 255) # Simply fill the image with BLACK else: cv2.fillPoly(mask, vertices, (255,)*mask.shape[2]) # in case, the input image has a channel dimension # Handle the color dimension equally well return cv2.bitwise_and(image, mask) # Bitwise_and simply does a 0 whenever the mask has a zero value. So the non-required area is chopped off def select_region(image): # The Region of Interest is defined a polygon of user defined number of vertices # FUTURE UPDATE: include a method to let users dynamically define this region of interest rows, cols = image.shape[:2] pt_1 = [cols*0.05, rows*0.90] pt_2 = [cols*0.05, rows*0.70] pt_3 = [cols*0.30, rows*0.55] pt_4 = [cols*0.6, rows*0.15] pt_5 = [cols*0.90, rows*0.15] pt_6 = [cols*0.90, rows*0.90] # the vertices are an array of polygons (i.e array of arrays) and the data type must be integer vertices = np.array([[pt_1, pt_2, pt_3, pt_4, pt_5, pt_6]], dtype=np.int32) return filter_region(image, vertices) # images showing the region of interest only roi_images = list(map(select_region, edge_images)) # Uncomment this line to test for the region of interest detection show_images(roi_images) ####################################################################################################### def hough_lines(image): # This function applies the Hough Line Transform to the Canny Edge detected image (along with ROI implemented) return cv2.HoughLinesP(image, rho=0.1, theta=np.pi/10, threshold=15, minLineLength=9, maxLineGap=4) def draw_lines(image, lines, color=[255, 0, 0], thickness=2, make_copy=True): # the lines returned by cv2.HoughLinesP has the shape (-1, 1, 4) if make_copy: image = np.copy(image) # don't want to modify the original cleaned = [] for line in lines: for x1,y1,x2,y2 in line: if abs(y2-y1) <=1 and abs(x2-x1) >=25 and abs(x2-x1) <= 55: cleaned.append((x1,y1,x2,y2)) cv2.line(image, (x1, y1), (x2, y2), color, thickness) print(" No lines detected: ", len(cleaned)) return image list_of_lines = list(map(hough_lines, roi_images)) line_images = [] for image, lines in zip(test_images, list_of_lines): line_images.append(draw_lines(image, lines)) show_images(line_images) ################################# ####################################################################################################### def identify_blocks(image, lines, make_copy=True): if make_copy: new_image = np.copy(image) #Step 1: Create a clean list of lines cleaned = [] for line in lines: for x1,y1,x2,y2 in line: if abs(y2-y1) <=1 and abs(x2-x1) >=25 and abs(x2-x1) <= 55: cleaned.append((x1,y1,x2,y2)) #Step 2: Sort cleaned by x1 position import operator list1 = sorted(cleaned, key=operator.itemgetter(0, 1)) #Step 3: Find clusters of x1 close together - clust_dist apart clusters = {} dIndex = 0 clus_dist = 10 for i in range(len(list1) - 1): distance = abs(list1[i+1][0] - list1[i][0]) # print(distance) if distance <= clus_dist: if not dIndex in clusters.keys(): clusters[dIndex] = [] clusters[dIndex].append(list1[i]) clusters[dIndex].append(list1[i + 1]) else: dIndex += 1 #Step 4: Identify coordinates of rectangle around this cluster rects = {} i = 0 for key in clusters: all_list = clusters[key] cleaned = list(set(all_list)) if len(cleaned) > 5: cleaned = sorted(cleaned, key=lambda tup: tup[1]) avg_y1 = cleaned[0][1] avg_y2 = cleaned[-1][1] # print(avg_y1, avg_y2) avg_x1 = 0 avg_x2 = 0 for tup in cleaned: avg_x1 += tup[0] avg_x2 += tup[2] avg_x1 = avg_x1/len(cleaned) avg_x2 = avg_x2/len(cleaned) rects[i] = (avg_x1, avg_y1, avg_x2, avg_y2) i += 1 print("Num Parking Lanes: ", len(rects)) #Step 5: Draw the rectangles on the image buff = 7 for key in rects: tup_topLeft = (int(rects[key][0] - buff), int(rects[key][1])) tup_botRight = (int(rects[key][2] + buff), int(rects[key][3])) # print(tup_topLeft, tup_botRight) cv2.rectangle(new_image, tup_topLeft,tup_botRight,(0,255,0),3) return new_image, rects # images showing the region of interest only rect_images = [] rect_coords = [] for image, lines in zip(test_images, list_of_lines): new_image, rects = identify_blocks(image, lines) rect_images.append(new_image) rect_coords.append(rects) show_images(rect_images) ####################################################################################################### def draw_parking(image, rects, make_copy = True, color=[255, 0, 0], thickness=2, save = True): if make_copy: new_image = np.copy(image) gap = 15.5 spot_dict = {} # maps each parking ID to its coords tot_spots = 0 adj_y1 = {0: 20, 1:-10, 2:0, 3:-11, 4:28, 5:5, 6:-15, 7:-15, 8:-10, 9:-30, 10:9, 11:-32} adj_y2 = {0: 30, 1: 50, 2:15, 3:10, 4:-15, 5:15, 6:15, 7:-20, 8:15, 9:15, 10:0, 11:30} adj_x1 = {0: -8, 1:-15, 2:-15, 3:-15, 4:-15, 5:-15, 6:-15, 7:-15, 8:-10, 9:-10, 10:-10, 11:0} adj_x2 = {0: 0, 1: 15, 2:15, 3:15, 4:15, 5:15, 6:15, 7:15, 8:10, 9:10, 10:10, 11:0} for key in rects: # Horizontal lines tup = rects[key] x1 = int(tup[0]+ adj_x1[key]) x2 = int(tup[2]+ adj_x2[key]) y1 = int(tup[1] + adj_y1[key]) y2 = int(tup[3] + adj_y2[key]) cv2.rectangle(new_image, (x1, y1),(x2,y2),(0,255,0),2) num_splits = int(abs(y2-y1)//gap) for i in range(0, num_splits+1): y = int(y1 + i*gap) cv2.line(new_image, (x1, y), (x2, y), color, thickness) if key > 0 and key < len(rects) -1 : #draw vertical lines x = int((x1 + x2)/2) cv2.line(new_image, (x, y1), (x, y2), color, thickness) # Add up spots in this lane if key == 0 or key == (len(rects) -1): tot_spots += num_splits +1 else: tot_spots += 2*(num_splits +1) # Dictionary of spot positions if key == 0 or key == (len(rects) -1): for i in range(0, num_splits+1): cur_len = len(spot_dict) y = int(y1 + i*gap) spot_dict[(x1, y, x2, y+gap)] = cur_len +1 else: for i in range(0, num_splits+1): cur_len = len(spot_dict) y = int(y1 + i*gap) x = int((x1 + x2)/2) spot_dict[(x1, y, x, y+gap)] = cur_len +1 spot_dict[(x, y, x2, y+gap)] = cur_len +2 print("total parking spaces: ", tot_spots, cur_len) if save: filename = 'with_parking.jpg' cv2.imwrite(filename, new_image) return new_image, spot_dict delineated = [] spot_pos = [] for image, rects in zip(test_images, rect_coords): new_image, spot_dict = draw_parking(image, rects) delineated.append(new_image) spot_pos.append(spot_dict) show_images(delineated) ####################################################################################################### final_spot_dict = spot_pos[1] def assign_spots_map(image, spot_dict=final_spot_dict, make_copy = True, color=[255, 0, 0], thickness=2): if make_copy: new_image = np.copy(image) for spot in spot_dict.keys(): (x1, y1, x2, y2) = spot cv2.rectangle(new_image, (int(x1),int(y1)), (int(x2),int(y2)), color, thickness) return new_image marked_spot_images = list(map(assign_spots_map, test_images)) show_images(marked_spot_images) ####################################################################################################### import pickle with open('spot_dict.pickle', 'wb') as handle: pickle.dump(final_spot_dict, handle, protocol=pickle.HIGHEST_PROTOCOL) ####################################################################################################### def save_images_for_cnn(image, folder_name, spot_dict = final_spot_dict): for spot in spot_dict.keys(): (x1, y1, x2, y2) = spot (x1, y1, x2, y2) = (int(x1), int(y1), int(x2), int(y2)) #crop this image # print(image.shape) spot_img = image[y1:y2, x1:x2] spot_img = cv2.resize(spot_img, (0,0), fx=2.0, fy=2.0) spot_id = spot_dict[spot] filename = 'spot' + str(spot_id) +'.jpg' print(spot_img.shape, filename, (x1,x2,y1,y2)) cv2.imwrite(os.path.join(folder_name, filename), spot_img) save_images_for_cnn(test_images[0], 'cnn\\train_cnn\\') save_images_for_cnn(test_images[1], 'cnn\\test_cnn\\')
def check_index(key): if not isinstance(key,int):raise TypeError if key<0:raise IndexError class ArithmeticSequence: def __init__(self,start=0,step=1): self.start = start self.step = step self.changed = {} def __getitem__(self,key): check_index(key) try:return self.changed[key] except KeyError: return self.start + key * self.step def __setitem__(self,key,value): check_index(key) self.changed[key] = value s = ArithmeticSequence(1,2) print(s[4]) print(s[2]) a = 2 b = 6 a,b = b,a+b print(a,b)
#!/usr/bin/env python # list = [num*num for num in range(1,11)] # print(list) # list1 = [num*num for num in range(1,11) if num%2 == 0] # print(list1) # list2 = [char+num for char in ['a','b','c'] for num in['1','2','3']] # print(list2) # list3 = (num*num for num in range(1,6)) # print(list3) # for li in list3: # print(li) # def square(input): # list = [] # for num in range(input): # list.append(num*num) # print(list) # return list # for num in square(1000): # print(num) # def square(input): # for num in range(input): # print('before yield') # yield num*num # print('after yield') # for num in square(5): # print(num) # import time # def timeTest(): # print('timeTest start') # print('sleep 1 second...') # time.sleep(1) # print('timeTest end') # timeTest() # def hi(name="yasoob"): # print("now you are inside the hi() function") # def greet(): # print("now you are in the greet() function") # def welcome(): # print("now you are in the welcome() function") # print("now you are back in the hi() function") # hi() # def a_new_decorator(a_func): # def wrapTheFunction(): # print("I am doing some boring work before executing a_func()") # a_func() # print("I am doing some boring work after executing a_func()") # return wrapTheFunction # def a_function_requiring_decoration(): # print("I am the function which needs some decoration to remove my foul smell") # a_function_requiring_decoration() # #outputs: "I am the function which needs some decoration to remove my foul smell" # a_function_requiring_decoration = a_new_decorator(a_function_requiring_decoration) # #now a_function_requiring_decoration is wrapped by wrapTheFunction() # a_function_requiring_decoration() # #outputs:I am doing some boring work before executing a_func() # # I am the function which needs some decoration to remove my foul smell # # I am doing some boring work after executing a_func() # def use_logging(func): # def wrapper(): # print("%s is running" % func.__name__) # return func() # return wrapper # @use_logging # def foo(): # print("i am foo") # foo() # print(foo) # def int2(num,base=2): # return int(num,base) # print(int2('1010')) # import struct # s = '459C3800' # print(s) # #<是小端,>是大端,f代表浮点数 # print(struct.unpack('<f', bytes.fromhex(s))[0])#小端 # #输出:120.40420532226562 # s = float('6.55563714424545E-10') # print(struct.pack('<f', s).hex())#小端 # #输出:32333430 # print(struct.pack('>f', s).hex())#大端 # #输出:30343332 # import struct # print(struct.unpack('!f','459C3800'.decode('hex'))) # from ctypes import * # def convert(s): # i = int(s,16) # cp = pointer(c_int(i)) # fp = cast(cp, POINTER(c_float)) # return fp.contents.value # print(convert('45151000')) import datetime import time cur_time_minute = datetime.datetime.now().minute cur_time_second = datetime.datetime.now().second if cur_time_minute == 0 or cur_time_minute == 30: sleep_time=0 elif cur_time_minute < 30: sleep_time = (30-cur_time_minute)*60 - cur_time_second elif cur_time_minute > 30: sleep_time = (60-cur_time_minute)*60 - cur_time_second print(sleep_time) time.sleep(sleep_time) while True: hour_now=datetime.datetime.now().hour minute_now=datetime.datetime.now().minute print(hour_now) print(minute_now) minute_now=datetime.datetime.now().minute second_now=datetime.datetime.now().second if sleep_time == 0 and minute_now == 1 or minute_now == 31: time.sleep(3600-second_now-60) else: time.sleep(3600-second_now)
#!/usr/bin/env python #-*-coding:utf-8-*- class MyClass(object): message="hello, developer!" def show(self): print(self.message) print("Here is %s in %s!" % (self.name,self.color)) @staticmethod def printMessage(): print("printMessage is called") print(MyClass.message) @classmethod def createObj(cls,name,color): print("Object will be created: %s(%s, %s)"% (cls.__name__,name,color)) return cls() def __init__ (self,name="unset",color="black"): print("Constructor is called with param: ",name," ",color) self.name = name self.color = color def __del__(self): print("Destructor is called for %s!"%self.name) MyClass.printMessage() inst = MyClass.createObj("Toby","Red") print(inst.message) del inst """inst = MyClass() inst.show() inst2 = MyClass("Divad") inst2.show() inst3 = MyClass("Lisa","Yellow") inst3.show() inst4 = MyClass(color="Green") inst4.show()"""
import random import time nahodne_cislo = [] zadane_cislo = [] def main(): print("Ahoj, vitej ve hre bulls and cows!") print("Generuji nahodne ctyrciferne cislo (muze zacinat nulou).") vytvor_nahodne_cislo() t0 = time.time() pokus = 0 while nahodne_cislo != zadane_cislo: pokus += 1 print(16 * "=") print("Pokus cislo: {} .".format(pokus)) print(16 * "=") zadane_cislo.clear() zadej_cislo() print(41 * "=") porovnej_cisla(nahodne_cislo, zadane_cislo) print(41 * "=") if nahodne_cislo == zadane_cislo: break ukonceni = input("Pro ukonceni zadej 'exit',pro pokracovani zadej cokoli jineho a stiskni ENTER : ") if ukonceni == 'exit': break else: continue if zadane_cislo == nahodne_cislo: t1 = time.time() - t0 casy.append(t1) pokusy.append(pokus) print("Vyborne, uhodl jsi na pocet pokusu: {} , za cas {} vterin.".format(pokus, t1)) else: t1 = time.time() - t0 casy.append(-t1) pokusy.append(-pokus) print("Nevadi, snad nekdy priste.") def vytvor_nahodne_cislo(): while len(nahodne_cislo) < 4: x = random.randint(0, 9) if x not in nahodne_cislo: nahodne_cislo.append(x) def zadej_cislo(): cislo_str = input("Vloz ctyrciferne cislo! : ") while len(cislo_str) != 4 or cislo_str.isalpha(): cislo_str = input("Neplatne zadani! Vloz ctyrciferne cislo! : ") for i in range(4): zadane_cislo.append(int(cislo_str[i])) def porovnej_cisla(nahodne_cislo, zadane_cislo): bulls = 0 dohromady = 0 for i in range(0, 4): if nahodne_cislo[i] == zadane_cislo[i]: bulls += 1 for i in nahodne_cislo: if i in zadane_cislo: dohromady += 1 cows = dohromady - bulls print("Trefil jsi pocet BULLS: {} a pocet COWS: {} ".format(bulls, cows)) pokusy = [] casy = [] while True: nahodne_cislo.clear() zadane_cislo.clear() main() konec_hry = input("Pro UKONCENI zadej 'exit', pro NOVOU HRU zadej cokoli : ") if konec_hry == 'exit': break else: continue print("Znamenko minus [-] indikuje NEDOHRANOU hru!") print("POCET pokusu v jednotlivych hrach: {}.".format(pokusy)) print("CASY jednotlivych her [vteriny]: {}.".format(casy)) print("Ukoncuji, nashledanou...")
""" This project was created by the right honorable sir Alexander de Poyen-Brown, in the year of Our Lord two thousand and twenty one for the purpose of being silly. """ def sillyText(word, num): """ Purpose: To duplicate each character in a string Parameters: word - the string in question, num - the number of duplications Return: word - the duplicated word """ if len(word) == 0: return "" thing = word[0] word = word[1:] word = sillyText(word, num) word = thing * 2 + word return word def getUserInput(): """ Purpose: to validate user Input Parameters: None Returns: x - validated user input """ x = input("Number of repeats: ") try: x = int(x) except ValueError: x = getUserInput() return x def main(): word = input("Word: ") num = getUserInput() silly = sillyText(word, num) print(silly) main()
# Pograma que da um desconto de 12 porcento de um produto produto = 'Video Game' valor = float(input('Entre com o valor do produto: R$')) desc = (valor * 12) / 100 print(f'Produto: {produto}.\nValor: R${valor}\nDesconto: R${desc}\nTotal a pagar: R${valor - desc}')
# Peça ao usuario para digitar 3 numero e retorne a somas de ambos """num1 = int(input('Entre com um numero: ')) num2 = int(input('Entre com um numero: ')) num3 = int(input('Entre com um numero: ')) soma = num1 + num2 + num3 print(soma)""" nums = [] cont = 0 while cont < 3: numeros = int(input('Entre com um numero: ')) nums.append(numeros) cont += 1 soma = sum(nums) print(f'A somas dos numeros {nums} é: {soma}')
# Convertendo Km/h para milhas km_h = float(input('Entre com a distancia em KM/h: ')) milhas = km_h / 1.62 print(milhas)
import sys import click #(1)Source: https://stackoverflow.com/questions/20063/whats-the-best-way-to-parse-command-line-arguments #(2)Source: https://www.youtube.com/watch?v=SDyHLG2ltSY (click watch) #(3)Source: https://www.youtube.com/watch?v=gR73nLbbgqY (tools for cli) #(4)Source: https://www.youtube.com/watch?v=hJhZhLg3obk #(5)Source - Useful: http://zetcode.com/python/click/ #print(len(sys.argv)) #args = sys.argv[1:] """if(len(args) > 0): print("ok") else: print("not enough args")""" #print(type(args[0])) #for arg in args: # print(arg) @click.command() @click.option('--count', default=1, help='Number of greetings.') @click.option('--name', multiple=True, help='The person to greet.') def hello(count, name): """Simple program that greets NAME for a total of COUNT times.""" for x in range(count): #click.echo('Hello %s!' % name) #click.echo(name) print(list(name)) if __name__ == '__main__': hello()
import sys # total arguments print("Total arguments passed: " + str(len(sys.argv))) assert len(sys.argv)==3, "Expected 2 arguments." s1 = sys.argv[1] s2 = sys.argv[2] print("No of characters in both strings: (" + str(len(s1)) + "," + str(len(s2)) + ")") print("Are they equal? " + str(s1==s2)) counter=0 for char1,char2 in zip(s1,s2): counter+=1 if char1!=char2: # Character1,Character2,Position print(char1 + "," + char2 + "," + str(counter) + "\n")
# 第一步 以像素为单位,进行带角度的坐标转换 像素相对坐标系 # 第二步 将坐标转化为以毫米为单位 毫米绝对坐标系 # 第三步 加上平移的毫米偏移量,最终毫米绝对坐标系下的坐标 import numpy as np # a = np.arange(10) # print(a) # print(a.shape) a = np.arange(100).reshape(10, 10) print(a) print(a.shape) a_index = [] for i in range(a.shape[0]): for j in range(a.shape[1]): a_index.append([i,j]) print(a_index) matrix = [[0.6,0.8],[-0.8,0.6]] b = np.dot(a_index, matrix) print(b)
############################### # python imports ############################### from time import time ############################### # Timing Class ############################### class Timer: def __init__(self, precision=3): ''' (Timing, int) -> (None) :constructor function for the Timing class, will initialize a starting time upon the function call @paramaters the precission paramater must be given a integer argument, representing the number of decimals ea- ch float value will have that is logged, default 3 ''' self.precision = precision self.start = round(time(), self.precision) #start time of the class self.log = [] def get_log(self): ''' (Timing) -> (list of floats) :the getter function for the last recorded time difference ''' return self.log def get_start(self): ''' (Timing) -> (float) :the getter function for the classes start time @returns the time recorded when the class was initialized ''' return self.start def pop(self, index): ''' (Timing) -> (float) :remove a stored lap based on it's index @returns a float representing the popped value @exception returns 0.0 if a valid index was given ''' log_length = len(self.log) if (index > log_length or (index < 0 and index < -log_length)): return 0.0 return self.log.pop(index) def reset(self): ''' (Timing) -> (None) :remove the currently stored laps on the Timmer ''' self.log = [] def time_alive(self): ''' (Timer) -> (float) :a function returning the time the Timer class has been running since being initialize, following the rounding @returns a float representing time since placed on the heap ''' temp = round(time(), self.precision) - self.start return temp def __eq__(self, other): ''' (Timer, object) -> (boolean) ''' #check if the types are the same if (type(other) != type(self)): return False #check to see if the logs of both of the timers are the same if (self.log != other.log): return False return True def __repr__(self): ''' (Timing) -> (list of floats) :the Timing class can be represented by the the list of logs they hold from the lap function being called @returns a list of floats representing all the laps @exception if no laps have been called an empty list of floats is returned ''' return self.log def __str__(self): ''' (Timing) -> (string) :the string representation function for the Timer class @returns a client-friendly string representing the class ''' return f'Timer(start={self.start}, {self.precision})' def __del__(self): ''' (Timing) -> (float) :the destructor object for the Timing class, released from memory and returns the total runtime of the counter ''' temp = round(time(), self.precision) - self.start return temp
def show_magicians(list): # while list: # print(list) # 不能自动跳出去 for person in list: print(person) personlist = ["linlin","linna","nana"] show_magicians(personlist)
##Codifica strings ao transformá-las em binário, de binário para gray e de gray de volta para string. #Encodes strings by transforming them into binary, from binary to gray and from gray into string again. print('Bem-vindo ao Codificador.') #'Welcome to the encoder.' print('O codificador usa os caracteres dentro da lista encodedChar,') #'The encoder uses characters from the list encodedChar' print('tanto na codificação quanto na decodificação da string, e') #'when reading input as well as when encoding the string' print('pode ser customizada dentro do código.\n') #'and can be customized inside the code.' ##Lista de caracteres. Adicione ou remova caracteres de acordo com os que você quer usar. #List of characters. Add or remove characters to suit your needs. encodedChar = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '/'] def encoder(): ##Define as variáveis usadas #Defines the variables used. string = input('Insira a sequência de caracteres que deseja codificar: ') inputChar = list(string) inputChar.reverse() value = 0 binary = [] gray = [] codList = [] cod = '' ##Converte o valor do index dos caracteres do input em valor decimal. #Converts the index value of the input characters into decimal. for x in encodedChar: index = 0 while index < len(inputChar): if inputChar[index] == x: value += (encodedChar.index(x)) * ((len(encodedChar))**(index)) index += 1 ##Converte o valor em decimal para um em binário. #Converts the decimal value to binary. divRes = 1 divRem = 1 while divRes != 0: divRes = value // 2 divRem = value % 2 value = divRes binary.append(str(divRem)) binary.reverse() ##Converte o valor em binário para gray. #Converts the binery value to gray. for i in range(0, (len(binary))): if i == 0: gray.append(binary[0]) elif binary[i] != binary[i - 1]: gray.append('1') else: gray.append('0') gray.reverse() ##Converte o valor em gray para decimal. #Converts the gray value to decimal value = 0 for i in range (0, len(gray)): value += int(gray[i]) * (2**(i)) ##Converte o valor decimal para caractere usando seus valores de index. #Converts the decimal value to characters using their index values. divRes = 1 divRem = 1 while divRes != 0: divRes = value // (len(encodedChar)) divRem = value % (len(encodedChar)) value = divRes codList.append(encodedChar[divRem]) codList.reverse() ##Une os caracteres codificados em uma string. #Unites the codified characters into a string. for i in codList: cod += i ##Mostra a string codificada. #Prints the encoded string. print('\nA sequência de caracteres codificadas é: ' + cod) ##Pergunta se o usuário quer codificar outra string. #Asks if the user wants to encode another string. again = input('\nInsira 1 se você gostaria de codificar ou decodificar outra sequência de caracteres: ') if again == '1': choice() def decoder(): ##Define as variáveis usadas #Defines the variables used. string = input('Insira a sequência de caracteres que deseja decodificar: ') inputChar = list(string) inputChar.reverse() value = 0 binary = [] gray = [] codList = [] cod = '' ##Converte o valor do index dos caracteres do input em valor decimal. #Converts the index value of the input characters into decimal. for x in encodedChar: index = 0 while index < len(inputChar): if inputChar[index] == x: value += (encodedChar.index(x)) * ((len(encodedChar))**(index)) index += 1 ##Converte o valor em decimal para gray. #Converts the decimal value to gray. divRes = 1 divRem = 1 while divRes != 0: divRes = value // 2 divRem = value % 2 value = divRes gray.append(str(divRem)) gray.reverse() ##Converte o valor em gray para binário. #Converts the gray value to binary. for i in range(0,len(gray)): if i == 0: binary.append(gray[0]) elif gray[i] != binary[i - 1]: binary.append('1') else: binary.append('0') binary.reverse() ##Converte o valor em gray para decimal. #Converts the gray value to decimal value = 0 for i in range (0, len(binary)): value += int(binary[i]) * (2**(i)) ##Converte o valor decimal para caractere usando seus valores de index. #Converts the decimal value to characters using their index values. divRes = 1 divRem = 1 while divRes != 0: divRes = value // (len(encodedChar)) divRem = value % (len(encodedChar)) value = divRes codList.append(encodedChar[divRem]) codList.reverse() ##Une os caracteres codificados em uma string. #Unites the codified characters into a string. for i in codList: cod += i ##Mostra a string codificada. #Prints the encoded string. print('\nA sequência de caracteres codificadas é: ' + cod) ##Pergunta se o usuário quer codificar outra string. #Asks if the user wants to encode another string. again = input('\nInsira 1 se você gostaria de codificar ou decodificar outra sequência de caracteres: ') if again == '1': choice() def choice(): print('Você quer codificar ou decodificar uma string?\n') print('1. Codificar') print('2. Decodificar\n') choice = input() if choice == '1': encoder() elif choice == '2': decoder() choice()
# Recebe o número de itens em uma lista e o valor de cada item e imprime o dobro do valor deles na ordem inversa # Receives the number of items in a list and each item value, then prints their double in the reverse order lista = [] n = int(input('Insira o número de itens da lista: ')) for cont in range (1, n + 1): lista.append(int(input('Insira o item: '))) lista.reverse() for i in lista: print(i * 2)
import random import numpy as np from operator import itemgetter class RandomSampling(object): """This class is used to implement different types of random sampling techniques """ def __init__(self,data,num): print ("Initialzing Random Sampling Class") self.data=data self.num=num def simple_random_sampling(self): """This function is used to implement simple random sampling """ return random.sample(self.data,self.num) def uniform_random_sampling(self): """This function is used to implement uniform random sampling """ random_data=[] cur=np.random.uniform(0,len(self.data),self.num) cur=[int(i) for i in cur] for i in xrange(len(cur)): random_data.append(self.data[i]) return random_data def systematic_random_sampling(self): """This function is used to implement systematic random sampling """ N=len(self.data) k=N/self.num index=0 iteration=0 random_data=[] while (iteration< self.num): random_data.extend(random.sample(self.data[index:index+k],1)) iteration+=1 index+=k return random_data def stratified_random_sampling(self): """This function is used to implement stratified random sampling """ sorted_data=sorted(self.data,key=itemgetter(9)) random_data=random.sample(sorted_data[0:self.num/2],self.num/2) random_data.extend(random.sample(sorted_data[(self.num/2)+1:self.num],(self.num/2)-1)) return random_data def multistage_random_sampling(self): """This function is used to implement multistage random sampling """ num_cluster=8 random_data=[] from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=(num_cluster), precompute_distances=True, ).fit(self.data) selected_cluster=random.randint(0,num_cluster-1) labels=kmeans.labels_.tolist() for i in xrange(len(labels)): if labels[i]==selected_cluster: random_data.append(self.data[i]) return random_data
import numpy as np from .layers import Layer from tqdm import tqdm # Neural Network API inspired by sequential model def batch_iterator(X, y=None, batch_size=64): """ Simple batch iterator From https://github.com/eriklindernoren/ML-From-Scratch/blob/master/mlfromscratch/utils/data_manipulation.py """ n_samples = X.shape[0] for i in np.arange(0, n_samples, batch_size): begin, end = i, min(i+batch_size, n_samples) if y is not None: yield X[begin:end], y[begin:end] else: yield X[begin:end] class NeuralNetwork(): def __init__(self, optimizer, loss_function): self.layers = [] self.loss_function = loss_function() self.optimizer = optimizer self.errors = [] def add_layer(self, layer: Layer): if self.layers: layer.set_input_shape(shape=self.layers[-1].output_shape()) # If the layer has weights that needs to be initialized if hasattr(layer, 'initialize'): layer.initialize(optimizer=self.optimizer) # Add layer to the network self.layers.append(layer) def _forward(self, X, training=True): """ Loops over every layer and does forward propagation Output of previous layer is input for the next """ layer_output = X # First input is X for layer in self.layers: layer_output = layer.forward(layer_output, training) return layer_output def _train_batch(self, X, y): y_pred = self._forward(X) loss = np.mean(self.loss_function.loss(y, y_pred)) loss_grad = self.loss_function.gradient(y, y_pred) self._backward(loss_grad=loss_grad) return loss def _backward(self, loss_grad): """ Back propagate through the layers and updates the gradients according to the loss """ for layer in reversed(self.layers): loss_grad = layer.backward(loss_grad) def fit(self, X, y, n_epochs, batch_size): for _ in tqdm(range(n_epochs)): batch_errors = [] for X_batch, y_batch in batch_iterator(X, y, batch_size=batch_size): loss = self._train_batch(X_batch, y_batch) batch_errors.append(loss) avg_batch_error = np.mean(batch_errors) self.errors.append(avg_batch_error) return self.errors def predict(self, X, argmax=True): """Forward pass through network for predicting """ pred = self._forward(X, training=False) #print(pred) if argmax: return np.argmax(pred, axis=1) else: return pred
if __name__ == '__main__': s = raw_input() alphanum = 0 alpha = 0 digit = 0 lower = 0 upper = 0 for i in range(len(s)): if(s[i].isalnum()): alphanum+=1 if(s[i].isalpha()): alpha+=1 if(s[i].isdigit()): digit+=1 if(s[i].islower()): lower+=1 if(s[i].isupper()): upper+=1 if(alphanum>0): print("True") else: print("False") if(alpha>0): print("True") else: print("False") if(digit>0): print("True") else: print("False") if(lower>0): print("True") else: print("False") if(upper>0): print("True") else: print("False")
# High order functions # son funciones que reciben como prametro a otra funcion # Existen 3 principales:jilter, map, reduce from functools import reduce def run(): my_list = [1,4,5,6,9,13,19,21] odd = [i for i in my_list if i % 2 != 0] print(odd) # Filter: filtra los valores de una lista odd = list(filter(lambda x: x % 2 != 0, my_list)) print(odd) my_list = [1,2,3,4,5] squared = [i**2 for i in my_list] print(squared) # map: aplica trnsformacion de valores squared = list(map(lambda x: x**2, my_list)) print(squared) my_list = [2, 2, 2, 2, 2] all_multiplied = reduce(lambda a, b: a * b, my_list) print(all_multiplied) # La diferencia entre filter y map:d # filter devuelve True or False según el valor esté dentro de los criterios buscados o no. En caso de que no cumpla con la condición, no será devuelto y la lista se verá reducida por este filtro. # Map funciona muy parecido, pero su diferencia radica en que no puede eliminar valores de la lista del array entregado. Es decir, el output tiene la misma cantidad de valores que el input. # Cómo funciona reduce: # Reduce toma 2 valores entregados como parámetros y el iterador como otro parámetro. Realiza la función con estos 2 valores, y luego con el resultado de esto y el valor que le sigue en el array. Y así hasta pasar por todos los valores de la lista. if __name__ == '__main__': run()
# -*- coding: utf-8 -*- """ Created on Mon Jul 20 00:05:02 2020 @author: Akshat Jain """ class Node(object): def __init__(self , character): self.character = character self.leftchild = None self.rightchild = None self.middlechild = None self.value = 0 class TST(object): def __init__(self): self.root = None def put(self , key , value): self.root = self.putItem(self.root , key , value , 0) def putItem(self , node , key ,value , index): c = key[index] if node == None: node = Node(c) if c < node.character: node.leftchild = self.putItem(node.leftchild , key , value , index) elif c > node.character: node.rightchild = self.putItem(node.rightchild , key , value , index) elif index < len(key)-1: node.middlechild = self.putItem(node.middlechild , key , value , index+1) else: node.value = value return node def get(self , key): node = self.getItem(self.root , key , 0) if node == None: return -1 return node.value def getItem(self , node , key , index): c = key[index] if node == None: return None if c < node.character : return self.getItem(node.leftchild , key , index) elif c > node.character : return self.getItem(node.rightchild , key , index) elif index < len(key)-1: return self.getItem(node.middlechild , key , index+1) else: return node if __name__ == "__main__": t = TST() t.put('apple' , 20) t.put('oranges' , 40) t.get('oranges') t.get('apple')
str = "Hello man, how are you babe?" print(str[3]) print(str[3:5]) print(str.split(",")) print(str.lower()) print(str.upper()) print(len(str)) print("What is your name?") name = input() print("Your name is " + name)
class Person: def __init__(self,name, family): self.name = name self.family = family def full_name(self): return(self.name + " "+ self.family) class Student(Person): def __init__(self, fname , lname , year_of_birth): Person.__init__(self,fname, lname) self.year_of_birth = year_of_birth def show_year_of_birth(self): return(self.year_of_birth) person = Person("soroush","khosravi") print(person.full_name()) student = Student("farnaz","ostovari",1988) print(student.full_name()) print(student.show_year_of_birth())
n1 = float(input('Digite a nota 1 ')) n2 = float(input('Digite a nota 2 ')) print('A média entre suas notas "{}" "{}" é "{}"'.format(n1, n2, ((n1 + n2) / 2)))
a = input("enter value of a") b = input("enter value of b") val_a = int(a) val_b = int(b) y = (val_a + 4 * val_b) * (val_a + 3 * val_b) + val_a*val_a print(y)
#! /usr/bin/env python3 # # Take a file, extract all trees, midpoint root, calculate height, print # heights import argparse from parsers import Tree from midpointRoot import midpoint_root from describe import print_descriptive_statistics def get_height(tree): tree = midpoint_root(tree) return tree.avg_dist(tree.root) def get_trees(file_handle): while True: text_tree = file_handle.readline() if text_tree == '': break else: try: tree = Tree(text_tree) yield tree except ValueError: continue if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('tree_file', help="the file containing one or more trees") args = parser.parse_args() heights = [] with open(args.tree_file, 'r') as fh: for tree in get_trees(fh): heights.append(get_height(tree)) print_descriptive_statistics(heights)
#https://www.hackerrank.com/challenges/np-arrays/problem?h_r=next-challenge&h_v=zen import numpy def arrays(arr): # complete this function # use numpy.array arrnp = numpy.array(arr,float) return arrnp[::-1] arr = input().strip().split(' ') result = arrays(arr) print(result)
#!/bin/python3 import math import os import random import re import sys def keyFunc(item,k): return item[k] if __name__ == '__main__': nm = input().split() n = int(nm[0]) m = int(nm[1]) arr = [] for _ in range(n): arr.append(list(map(int, input().rstrip().split()))) # print(arr[::]) k = int(input()) # arr.sort(key=keyFunc(k)) arr.sort(key=lambda x: x[k]) print('\n'.join([' '.join(['{}'.format(item) for item in row]) for row in arr]))
# https://www.hackerrank.com/challenges/py-collections-ordereddict/problem from collections import OrderedDict n = int(input()) ordered_dictionary = OrderedDict() for _ in range(n): items = input().rpartition(' ') item_name = items[0] net_price = int(items[2]) if item_name in ordered_dictionary: ordered_dictionary[item_name] = ordered_dictionary[item_name] + net_price else: ordered_dictionary[item_name] = net_price for key in ordered_dictionary: print(key,ordered_dictionary[key])
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Mar 11 12:08:22 2017 @author: yazar """ import numpy as np import pandas as pd from scipy import linalg from sklearn import preprocessing from matplotlib import pyplot as plt from scipy import optimize def sigmoid(x): return 1 / (1 + np.exp(-x)) def _RSS(theta, X, y): # number of training examples m = len(y) theta = theta.reshape(-1, 1) y = y.reshape(-1, 1) prediction = np.dot(X, theta) mean_error = prediction - y return 1/(2*m) * np.sum(np.power(mean_error, 2)) def _logisticCostFunc(theta, X, y): """ compute cost for logistic regression Parameters: ----------- theta : ndarray, shape (n_features,) Regression coefficients X : {array-like}, shape (n_samples, n_features) Training data. Should include intercept. y : ndarray, shape (n_samples,) Target values Returns ------- cost : float cost evaluation using logistic cost function """ # number of training examples m = len(y) y = y.reshape(-1, 1) theta = theta.reshape(-1, 1) J = 1/m * (np.dot(-y.T, np.log(sigmoid(np.dot(X, theta)))) - np.dot((1-y).T, np.log(1 - sigmoid(np.dot(X, theta))))) return np.asscalar(J) def compute_gradient(theta, X, y): """ Compute gradient. This will be passed to minimization functions Parameters: ----------- theta : ndarray, shape (n_features,) Regression coefficients X : {array-like}, shape (n_samples, n_features) Training data. Should include intercept. y : ndarray, shape (n_samples,) Target values Returns ------- gradient : ndarray, shape (n_features,) """ m = len(y) y = y.reshape(-1, 1) theta = theta.reshape(-1, 1) grad = 1/m * np.dot(X.T, sigmoid(np.dot(X, theta)) - y) return grad.ravel() def compute_cost(theta, X, y, method='RSS'): """ Compute cost to be used in gradient descent Parameters: ----------- X : {array-like}, shape (n_samples, n_features) Training data. Should include intercept. y : ndarray, shape (n_samples,) Target values theta : ndarray, shape (n_features,) Regression coefficients method : cost calculation method, default to 'RSS' Only RSS is supported for now Returns ------- cost : float """ print("cost method is {0}".format(method)) if method == 'RSS': return _RSS(theta, X, y) elif method == 'logistic': return _logisticCostFunc(theta, X, y) else: raise ValueError("only 'RSS' and 'Logistic' methods are supported.") def normalEqn(X, y): """ Computes the closed-form solution to linear regression using the normal equations. Parameters: ----------- X : {array-like}, shape (n_samples, n_features) Training data. Should include intercept. y : ndarray, shape (n_samples,) Target values Returns ------- theta : {array-like}, shape (n_features,) """ theta = np.dot(np.dot(linalg.inv(np.dot(X.T, X)), X.T), y) return theta def gradient_descent(X, y, theta, learning_rate, num_iters, cost_func='RSS', ): """ Performs gradient descent to learn theta theta = gradient_descent(x, y, theta, alpha, num_iters) updates theta by taking num_iters gradient steps with learning rate alpha Parameters: ----------- X : {array-like}, shape (n_samples, n_features) Training data. Should include intercept. y : ndarray, shape (n_samples,) Target values theta : ndarray, shape (n_features,) Regression coefficients learning_rate : float Controls the speed of convergence, a.k.a alpha cost_func : cost calculation method, default to 'RSS' Only RSS is supported for now num_iters : int Number of iterations Returns ------- calculated theta : ndarray, shape (n_features,) Regression coefficients that minimize the cost function cost : ndarray, shape (num_iters,) Cost calculated for each iteration """ print("running gradient descent algorithm...") # Initialize some useful values m = len(y) # number of training examples cost = np.zeros((num_iters,)) y = y.reshape(-1, 1) for i in range(num_iters): # Perform a single gradient step on the parameter vector prediction = np.dot(X, theta) # m size vector mean_error = prediction - y # m size vector theta = theta - learning_rate/m * np.dot(X.T, mean_error) # Save the cost J in every iteration cost[i] = compute_cost(X, y, theta) return theta, cost def plotData(X, y, ax1=None): train_y = pd.DataFrame(y, columns=['y']) train = pd.concat((pd.DataFrame(X), train_y), axis=1) # scatter plot of admitted and non-admitted exam scores X_admitted = train.ix[train['y'] == 1, train.columns != 'y'].get_values() X_not_admitted = train.ix[train['y'] == 0, train.columns != 'y'].get_values() if ax1 is None: fig1 = plt.figure() ax1 = fig1.add_subplot(111) admitted = ax1.scatter(X_admitted[:, 0], X_admitted[:, 1], color='b', marker='+') not_admitted = ax1.scatter(X_not_admitted[:, 0], X_not_admitted[:, 1], color='r', marker='o') plt.xlabel('exam 1 score') plt.ylabel('exam 2 score') plt.legend([admitted, not_admitted], ['admitted', 'Not admitted']) def plotDecisionBoundary(theta, X, y, poly=False): """Plots the data points X and y into a new figure with the decision boundary defined by theta plotDecisionBoundary(theta, X,y) plots the data points with + for the positive examples and o for the negative examples. X is assumed to be a either 1) Mx3 matrix, where the first column is an all-ones column for the intercept. 2) MxN, N>3 matrix, where the first column is all-ones """ fig = plt.figure() ax1 = fig.add_subplot(111) # Plot Data plotData(X, y, ax1) if not poly: # Only need 2 points to define a line, so choose two endpoints plot_x = np.array([np.min(X[:, 1])-0.1, np.max(X[:, 1])+0.1]) # Calculate the decision boundary line plot_y = (-1 / theta[2]) * (np.dot(theta[1], plot_x) + theta[0]) # Plot, and adjust axes for better viewing ax1.plot(plot_x, plot_y) else: # Here is the grid range u_orig = np.linspace(-1, 1.5, 50) v_orig = np.linspace(-1, 1.5, 50) # create a dataframe with all combinations of u and v u = u_orig.repeat(len(u_orig)).reshape(-1, 1) v = v_orig.reshape(-1, 1).repeat(len(v_orig), axis=1).T.reshape(-1, 1) df = pd.DataFrame(np.concatenate((u, v), axis=1), columns=['c1', 'c2']) # create polynomial features poly = polynomial_features(df, columns=['c1', 'c2'], degree=6) # add intercept X = np.concatenate((np.ones((len(poly), 1)), poly.get_values()), axis=1) # Evaluate z = theta*x over the grid z = np.dot(X, theta) z = z.reshape(len(u_orig), len(v_orig)) # important to transpose z before calling contour # Plot z = 0 # Notice you need to specify the range [0, 0] CS = plt.contour(u_orig, v_orig, z) plt.clabel(CS, inline=1, fontsize=10) plt.show() def polynomial_features(df, columns, degree=2, include_bias=False, copy=True): """ Convert the columns provided a san input to polynomial features. Columns in the input dataframe not part of "columns" parameters are not touched. Parameters ---------- df : pandas DataFrame The training/test input samples. columns: list of columns where polynomial features will be generated degree: degree of the polynomial that will be generated include_bias: include bias or not copy: leave the input dataframe intact when generating output dataframe Returns ------- Dataframe with "columns" replaced with polynomials """ from sklearn.preprocessing import PolynomialFeatures poly = PolynomialFeatures(degree, include_bias=include_bias) X = df[columns].get_values() X_poly = poly.fit_transform(X) target_feature_names = [] power_columns = [zip(df[columns], p) for p in poly.powers_] for power_column in power_columns: powers = [] for pair in power_column: if pair[1] != 0: if pair[1] == 1: powers.append('{}'.format(pair[0])) else: powers.append('{}^{}'.format(pair[0], pair[1])) target_feature_names.append('x'.join(powers)) df_poly = pd.DataFrame(X_poly, columns=target_feature_names) if copy: df_output = df.copy() else: df_output = df df_output.drop(columns, axis=1, inplace=True) df_output.reset_index(inplace=True) return pd.concat((df_output, df_poly), axis=1) Nfeval = 1 def callbackF(Xi): global Nfeval global X_scaled, y g = compute_gradient(Xi, X_scaled, y) print ('{0:4d} {1: 3.6f} {2: 3.6f} {3: 3.6f} {4: 3.6f}'.format(Nfeval, _logisticCostFunc(Xi, X_scaled, y), g[0], g[1], g[2])) Nfeval += 1 if __name__ == "__main__": # load data train = pd.read_csv('ex2data2.txt', names=['x1', 'x2', 'y']) # pylint: disable-msg=C0103 print('train.shape = {0}'.format(train.shape)) X = train.ix[:, train.columns != 'y'].get_values() y = train['y'].get_values() print('Shape of X,y = ({0},{1})'.format(X.shape, y.shape)) plotData(X, y) # add additional features train_poly = polynomial_features(train.ix[:, train.columns != 'y'], ['x1', 'x2'], degree=6) # scale the input to zero mean and standard deviation of 1 # scaler = preprocessing.StandardScaler() # scaler.fit(train_poly.get_values()) # X_scaled = scaler.transform(train_poly.get_values()) # commented out scaling. It creates very small values causing issues with # minimization X_scaled = train_poly.get_values() # add intercept term to X_scaled X_scaled = np.concatenate((np.ones((X.shape[0], 1)), X_scaled), axis=1) print('Shape of X_scaled: {0}'.format(X_scaled.shape)) # Init Theta theta = np.zeros((X_scaled.shape[1], )) print('cost = {}'.format(compute_cost(theta, X_scaled, y, 'logistic'))) print('gradient = {}'.format(compute_gradient(theta, X_scaled, y))) # [xopt, fopt, gopt, Bopt, func_calls, grad_calls, # warnflg] = optimize.fmin_bfgs(_logisticCostFunc, theta, # fprime=compute_gradient, # args=(X_scaled, y), # callback=callbackF, # maxiter=2000, # full_output=True, # retall=False) xopt = optimize.minimize(_logisticCostFunc, theta, # method='Powell', jac=compute_gradient, args=(X_scaled, y), callback=callbackF, options={'gtol': 1e-6, 'disp': True}) print('optimized theta with bfgs= {}'.format(xopt.x)) # calculate minimum cost # print('minimum cost: {0}'.format( # _logisticCostFunc(theta_optimized, X_scaled, y))) # plot data wiht a decision boundary plotDecisionBoundary(xopt.x, X, y, poly=True)
import socket def draw_board(content): if len(content) != 9: # board content len error return print('Current board:\n') print(f'|{content[0]}|{content[1]}|{content[2]}|\n') print(f'|{content[3]}|{content[4]}|{content[5]}|\n') print(f'|{content[6]}|{content[7]}|{content[8]}|\n') client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client_socket.connect(('localhost', 7777)) # print welcome messag from server print(client_socket.recv(1024).decode()) # print match info from server print(client_socket.recv(1024).decode()) # confirmation to server that the player is ready to start client_socket.send(b'ready') while True: board_content = client_socket.recv(11).decode() print(board_content) draw_board(board_content) command = client_socket.recv(6).decode().strip() if command == 'YES': while True: try: move = int(input('Your turn! Enter a position (1-9)>>>')) if move in range(1, 10): if board_content[move-1] != ' ': # error print('''That position is not empty. Please choose another one''') else: # user input is valid break else: # error print('Please enter a value in range 1-9') except ValueError as err: # error print('Move value have wrong type') client_socket.sendall(str(move).encode()) elif command == 'NO': print('Wait for the other player move...') elif command == 'DRAW': print('It\'s draw') break elif command == 'WIN': print('You win!!!') break elif command == 'LOSE': print('You lose') break client_socket.shutdown(socket.SHUT_RDWR) client_socket.close()
from typing import List class Solution: def removeDuplicates(self, nums: List[int]) -> int: N = len(nums) for i in range(N - 1): # print(output[i]) if nums[i] == nums[i + 1]: del nums[i] else: i += 1 return nums number_list = [1, 1, 2] print(Solution.removeDuplicates(Solution, number_list))
import math import sys testlist = [(1, 3), (2, 5), (10, 6), (14, 15), (13, 14), (45, 81)] min_distance = sys.maxsize closest_points = [testlist[0], testlist[1]] for point in testlist: i = testlist.index(point) + 1 for second_point in testlist[i:]: y_length = second_point[1] - point[1] x_length = second_point[0] - point[0] distance = math.sqrt(y_length**2 + x_length**2) if distance < min_distance: min_distance = distance closest_points = [point, second_point] print(closest_points)
def list_vertices(g): # Your code here vertices = [] for i in g: vertices.append(i) return vertices l = {1:[2, 4], 2:[3, 4], 3:[4], 4:[5], 5:[1]} print(list_vertices(l))
import json import os import crypt import getpass #Constants file_name = "data.json" def login_validation(database_name, user_dict): ''' returns True if account is found in the database, and False otherwise. ''' # account_exists = False with open(database_name, 'r') as file: data = file.read() data += '\n]' info = json.loads(data) for account in info: if account['email'] == user_dict['email'] and account['password'] == user_dict['password']: return True print("email and password were not a match") return False def email_validation(database_name, user_dict): ''' returns True if email is in use, False otherwise ''' with open(database_name, 'r') as file: data = file.read() data += '\n]' info = json.loads(data) for account in info: if account['email'] == user_dict['email']: print("Email is already in use!") return True return False def detect_user_status(): ''' returns True if user has account, False otherwise ''' while True: _answer = input().lower() if _answer == 'quit': quit() if _answer == 'yes': return True break elif _answer == 'no': return False else: print("please input either 'yes' or 'no'") def invalid_input(input): ''' returns True if input error detected, False otherwise ''' b_invalid = False if input == 'exit': quit() if input.isspace(): b_invalid = True if input == '': b_invalid = True if len(input) < 4: b_invalid = True if b_invalid: print("please give a valid non empty input >4 characters") return b_invalid def database_handler(file_name, user_dictionary): ''' creates database if the json file isn't created, and appends to database otherwise ''' file_path = os.getcwd() + "/{}".format(file_name) if os.path.exists(file_path) == False: print("Creating new File") with open(file_name,"w+") as file: file.write('[\n') json.dump(user_dictionary, file, indent=4) else: print("Appending") with open(file_name,"a") as file: file.write(',\n') json.dump(user_dictionary, file, indent=4) def hash_password(password): return crypt.crypt(password, crypt.METHOD_SHA512) if __name__ == "__main__": print("**********************************************************") print("*********** REMINDER: type 'exit' at any time to quit ***********") print("**********************************************************") print("Do you have an account? (yes/no)") has_account = detect_user_status() user_dictionary = {"email":"", "password":""} if not has_account: while True: print("Enter an email for your account:") user_dictionary['email'] = input() if invalid_input(user_dictionary['email']): continue email_used = email_validation(file_name, user_dictionary) if not email_used: break while True: user_dictionary['password'] = getpass.getpass("enter desired password:") if invalid_input(user_dictionary['password']): continue user_dictionary['password'] = hash_password(user_dictionary['password']) database_handler(file_name, user_dictionary) break else: while True: print("Enter your email:") user_dictionary['email'] = input() if invalid_input(user_dictionary['email']): continue user_dictionary['password'] = getpass.getpass("Enter your password:") if invalid_input(user_dictionary['password']): continue user_dictionary['password'] = hash_password(user_dictionary['password']) break login_status = login_validation(file_name, user_dictionary) if login_status: print("Login successful") else: print("Login failed. Exiting") #test if files append when you already have an account, and that login only occurs when account is found. #end quit()
from collections import defaultdict from heapq import * def dijkstra(edges, f, t): #edges = lista dei link | f = nodo di partenza (from) | t = nodo di arrivo (to) g = defaultdict(list) #dizionario dove ad ogni nodo viene fatto corrispondere un nodo raggiungibile da esso e il peso per raggiungerlo for link in edges: #l = nodo partenza | r = nodo arrivo | c = weight id = link.id l = link.start.id r = link.exit.id c = len(link.components) """ print("------") print("ID =", id) print("START =", l) print("END =", r) print("WEIGHT =", c) """ g[l].append((c,r,id)) #salva per ogni nodo i movimenti che può fare verso un altro nodo e il peso di tale movimento g[r].append((c,l,id)) #salva anche il collegamento opposto #print(g) q, seen, mins = [(0,f,(),None)], set(), {f: 0} #q = lista di tuple (peso per il nodo da raggiungere, nodo da raggiungere, nodi precedenti da attraversare per raggiungerlo, link da cui raggiungerlo) | seen = set dei nodi già visistati | mins = dizionario in cui ad ogni nodo si fa corrispondere la distanza minima per raggiungerlo dal nodo di partenza while q: #fintanto che è presente qualche elemento in q #print(q) (cost,v1,path, link) = heappop(q) #prende ed elimina il nodo con il minor costo da q #print("cost=",cost,"v1=",v1,"path:",path) #print (v1 not in seen) if v1 not in seen: #se il nodo preso non è in seen seen.add(v1) #viene aggiunto in seen #print("seen=",seen) tmpPath = (v1, link) path += ((v1, link),) #viene aggiunto al path #print("path=",path) #print(v1 == t) if v1 == t: #se il nodo è il punto di arrivo si conclude l'algoritmo return (cost, path) for c, v2, lk in g.get(v1, ()): #prende tutti i nodi collegati al nodo v1 | c = costo per il nodo raggiungibile | v2 = nodo raggiungibile | lk = id del link #print("c=",c,"v2=",v2, "link=",lk) #print(v2 in seen) if v2 in seen: continue #se v2 è in seen (quindi è già stato visitato) si passa al prossimo nodo collegato a v1 prev = mins.get(v2, None) #si prende la distanza minima precedente trovata per raggiungere v2 (None se non se fosse trovata una prima) next = cost + c #si calcola il nuovo costo trovato per raggiungere 2 if prev is None or next < prev: #se il costo precedente non esiteva o è superiore al nuovo costo trovato #print("link usato") mins[v2] = next #la distanza minima per v2 viene cambiata nel nuovo costo heappush(q, (next, v2, path, lk)) #viene aggiunto a q la tupla con (costo minimo per raggiungere v2, v2, percroso minimo per raggiungere v2) return float("inf") if __name__ == "__main__": edges = [ ("1", "2", 1), ("1", "2", 1), ("1", "3", 8), ("1", "6", 7), ("2", "3", 2), ("2", "6", 5), ("3", "4", 2), ("3", "5", 2), ("4", "4", 3), ("4", "5", 1), ("5", "6", 1), ("5", "6", 3) ] print("=== Dijkstra ===") print (edges) print ("1 -> 6:") weight, path = dijkstra(edges, "1", "6") print ("WEIGHT : "+str(weight)) print ("PATH : "+str(path)) print ("5 -> 2:") weight, path = dijkstra(edges, "5", "2") print("WEIGHT : " + str(weight)) print("PATH : " + str(path)) print ("4 -> 6:") weight, path = dijkstra(edges, "4", "6") print("WEIGHT : " + str(weight)) print("PATH : " + str(path)) print ("3 -> 4:") weight, path = dijkstra(edges, "3", "4") print("WEIGHT : " + str(weight)) print("PATH : " + str(path))
#1. Write a code to verify if the string is a palindrome str1=input("Enter a string:") if(str1==str1[::-1]): print("The string is a palindrome") else: print("The string is not a palindrome")
# -*- coding: utf-8 -*- print "medio de tres numeros" def entra(): a = int(raw_input("numero 1:")) b = int(raw_input("numero 2:")) c = int(raw_input("numero 3:")) sale(a, b, c) def sale(a, b, c): if a < b: if b < c: print "el medio es %d" % b elif a < c: print "el medio es %d" % c else: print "el medio es %d" % a elif a < c: print "el medio es %d" % a elif c < b: print "el medio es %d" % b else: print "el medio es %d" % c def mein(): entra()
# -*- coding: utf-8 -*- import math print "ecuacion cuadratica" def entra(): a = int(raw_input("numero 1:")) b = int(raw_input("numero 2:")) c = int(raw_input("numero 3:")) x = b ^ 2 - 4 * a * c return calcula(a, b, c, x) def calcula(a, b, c, x): if a == 0: print "no se puede dividir" else: x = (-b) + math.sqrt (b) * (-4 * a * c) / 2 * a x = (-b) - math.sqrt (b) * (-4 * a * c) / 2 * a if x > 0: print " es pisitiva" else: print "es negativo" return entra()
#interpolation module #takes 2 two-dimensional points and interpolates for a point in between them #author: shulkasr def interpolate(two_dim_array,interpPoint): x1 = two_dim_array[0][0] if two_dim_array[0][0] <= two_dim_array[1][0] else two_dim_array[1][0] y1 = two_dim_array[0][1] if two_dim_array[0][0] <= two_dim_array[1][0] else two_dim_array[1][1] x2 = two_dim_array[1][0] if two_dim_array[0][0] <= two_dim_array[1][0] else two_dim_array[0][0] y2 = two_dim_array[1][1] if two_dim_array[0][0] <= two_dim_array[1][0] else two_dim_array[0][1] print "1:",x1,y1,"2:",x2,y2 slope = (y2-y1)/(x2-x1) constant = (y1*x2-y2*x1)/(x2-x1) interPolatedPoint = slope*interpPoint + constant return interPolatedPoint def findClosestPoints(windspeed_list,inputPoint): #assumes sorted windspeed_list if inputPoint < windspeed_list[0]: closest1 = -1 closest2 = -1 elif inputPoint > windspeed_list[-1]: closest1 = -1 closest2 = -1 else: closest1 = min(windspeed_list, key=lambda x:abs(x-inputPoint)) if closest1==inputPoint: closest2 = closest1 elif closest1 < inputPoint: closest2 = windspeed_list[windspeed_list.index(closest1)+1] elif closest1> inputPoint: closest2 = windspeed_list[windspeed_list.index(closest1)-1] return sorted([closest1,closest2]) if __name__ == '__main__': intPoint = interpolate([(21.4,5),(21,10)],21.1) print intPoint print findClosestPoints([0.5,1.0,1.5,2.0,2.5,3.0],4.25)
from random import randint from time import sleep def hallway(): inventory = [] lockedDoor=5 hallDoors =[1,2,3,4] doorOption = [ 'N','n','Y','y'] deathDoor = hallDoors.pop(randint(0,len(hallDoors)-1)) keyDoor = hallDoors.pop(randint(0,len(hallDoors)-1)) coinDoor = hallDoors.pop(randint(0,len(hallDoors)-1)) trapDoor = hallDoors.pop(0) print('You find yourself standing in front of a long, dark hallway.') print('There are five doors. Two on either side, and one at the end.') print('As you inspect the hallway you find the doors are numbered, with 5 at the end.') print('The doors have even numbers on the right, with odd numbers on the left.') print('The voice returns...') sleep(10) print() print('"One of these doors are locked... make it through..."') print() doorChoice=input('Which door do you choose?(only #s 1-5 and press 0 to repeat): ') print() doorsOptions = [0,1,2,3,4,5] doorsUnvisit = [0,1,2,3,4,5] while doorChoice!=lockedDoor or 'key' not in inventory: while doorChoice not in doorsOptions: if doorChoice.isdigit()== True and 0 <= int(doorChoice) <= 5: doorChoice = int(doorChoice) else: print('That is not an option') print() doorChoice=input('Which door do you choose?(only #s 1-5 and press 0 to repeat): ') print() continue if doorChoice not in doorsUnvisit: print('There is nothing left in this room for you.') print() doorChoice=input('Which door do you choose?(only #s 1-5 and press 0 to repeat): ') print() continue if doorChoice==0: print('You find yourself standing in front of a long, dark hallway.') print('There are five doors. Two on either side, and one at the end.') print('As you inspect the hallway you find the doors are numbered, with 5 at the end') print('The doors have even numbers on the right, with odd numbers on the left') print() doorChoice=input('Which door do you choose?(only #s 1-5 and press 0 to repeat): ') print() if doorChoice==lockedDoor and 'key' not in inventory: print('The door is locked...') print() doorChoice=input('Which door do you choose?(only #s 1-5 and press 0 to repeat): ') print() if doorChoice==0: print('You find yourself standing in front of a long, dark hallway.') print('There are five doors. Two on either side, and one at the end.') print('As you inspect the hallway you find the doors are numbered, with 5 at the end') print('The doors have even numbers on the right, with odd numbers on the left') print() doorChoice=input('Which door do you choose?(only #s 1-5 and press 0 to repeat): ') print() if doorChoice==trapDoor: choice=input('You smell an errie oder... Do you open the door?(Y or N): ') print() while choice not in doorOption: choice=input('You smell an errie oder... Do you open the door?(Y or N): ') print() if choice=='N' or choice=='n': doorChoice=input('Which door do you choose?(only #s 1-5 and press 0 to repeat): ') print() if choice=='Y' or choice=='y': print('There appears to be the decomposing corpse of the last person...') print('Better leave now.') print() doorsUnvisit.remove(doorChoice) doorChoice=input('Which door do you choose?(only #s 1-5 and press 0 to repeat): ') print() if doorChoice==deathDoor: choice=input('The door handle is hot... Do you open it?(Y or N): ') print() while choice not in doorOption: choice=input('The door handle is hot... Do you open it?(Y or N): ') print() if choice=='N' or choice=='n': doorChoice=input('Which door do you choose?(only #s 1-5 and press 0 to repeat): ') print() if choice=='Y' or choice=='y': sleep(3) print('A monsterous wall of fire pours forth from the open door!') print('You try to run as a scaley hand shoots out and drags you to your death...') print() return False break if doorChoice==coinDoor: choice=input('There is a strong smell of metal... Do you proceed?(Y or N): ') print() while choice not in doorOption: choice=input('There is a strong smell of metal... Do you proceed?(Y or N): ') print() if choice=='N' or choice=='n': doorChoice=input('Which door do you choose?(only #s 1-5 and press 0 to repeat): ') print() if choice=='Y' or choice=='y': print('There is only a small nightstand with a latch in the corner.') print() choice=input('Do you open it?: ') print() while choice not in doorOption: choice=input('Do you open it?: ') print() if choice=='N' or choice=='n': print('You choose to ignore the dest and proceed back to the hallway.') print() doorChoice=input('Which door do you choose?(only #s 1-5 and press 0 to repeat): ') print() if choice=='Y' or choice=='y': print('You open the drawer and find some coins!') inventory+=['coins'] print('"coins" are added to the inventory') print('You exit and reenter the hallway.') print() doorsUnvisit.remove(doorChoice) doorChoice=input('Which door do you choose?(only #s 1-5 and press 0 to repeat): ') print() if doorChoice==keyDoor and 'coins' not in inventory: choice=input('The door is quite warped... enter anyway?(Y or N): ') print() while choice not in doorOption: choice=input('The door is quite warped... enter anyway?(Y or N): ') print() if choice=='N' or choice=='n': doorChoice=input('Which door do you choose?(only #s 1-5 and press 0 to repeat): ') print() if choice=='Y' or choice=='y': print('There are strange slots in the wall...') print('You leave the room since there is nothing you can do.') print() doorChoice=input('Which door do you choose?(only #s 1-5 and press 0 to repeat): ') print() if doorChoice==keyDoor and 'coins' in inventory: choice=input('The door is quite warped... Enter anyway?(Y or N): ') print() while choice not in doorOption: choice=input('The door is quite warped... Enter anyway?(Y or N): ') print() if choice=='N' or choice=='n': doorChoice=input('Which door do you choose?(only #s 1-5 and press 0 to repeat): ') print() if choice=='Y' or choice=='y': print('There are strange slots in the wall...') print('You insert the coins into the slots.') inventory = [] print('There is a loud rumble as gears start to turn and key pops out!') print() inventory+=['key'] print('"key" is added to the inventory') print() doorChoice=input('Which door do you choose?(only #s and press 0 to repeat): ') print() if doorChoice==lockedDoor and 'key' in inventory: print('You pull out the key and it fits in the door!') inventory.remove('key') print('The door opens and you proceed to the next room...') print() sleep(3) return True break
def merge_sort(data_list): def merge(left, right): result = [] while len(left) > 0 and len(right) > 0: if left[0] <= right[0]: result.append(left[0]) del left[0] else: result.append(right[0]) del right[0] while len(left) > 0: result.append(left[0]) del left[0] while len(right) > 0: result.append(right[0]) del right[0] return result if len(data_list) <= 1: return data_list mid = len(data_list) // 2 left_list = data_list[:mid] right_list = data_list[mid:] left_list = merge_sort(left_list) right_list = merge_sort(right_list) return merge(left_list, right_list)
"""A class for creating a timer widget.""" from kivy.clock import Clock import kivy.properties as props from kivy.uix.widget import Widget class Timer(Widget): """Used to dynamically display the current time elapsed on the screen.""" # initializes a timer with 0 seconds. timeText = props.NumericProperty(0) def __init__(self, **kwargs): super(Timer, self).__init__(**kwargs) # need dt to relate update of time to frames per second def update_time(self, dt): """Updates the time elapsed.""" self.timeText += 1 * dt def reset_time(self): """Resets the time elapsed.""" self.stop_time() self.timeText = 0 self.start_time() def start_time(self): """Begins a clock interval running at 60 FPS calling update_time""" Clock.schedule_interval(self.update_time, 1.0 / 60.0) def stop_time(self): """Stops time.""" Clock.unschedule(self.update_time)
import turtle ''' turtle.showturtle() turtle.color("red") turtle.forward(120) turtle.write("1", font=('adobe garamond', 20, 'normal')) turtle.right(90) turtle.color("yellow") turtle.forward(50) turtle.write(" 2", font=('adobe garamond', 20, 'normal')) turtle.right(90) turtle.color("green") turtle.forward(120) turtle.write("3", font=('adobe garamond', 20, 'normal')) turtle.right(90) turtle.color("blue") turtle.forward(50) turtle.write("4", font=('adobe garamond', 20, 'normal')) ''' radius=int(input("Enter the desired radius: ")) halfRadius=radius/2 diameter=2*radius y_startCord1=0 y_move1=-radius cubeDiamter=diameter*3 x_start=-(cubeDiamter/2) #+(halfRadius)) x_move1=diameter+(halfRadius) x_move2=radius+(radius/4) blue=x_start black=blue+x_move1 red=black+x_move1 yellow=blue+x_move2 green=black+x_move2 fontSize=radius ''' circles=[blue, black, red, yellow, green] colours={blue:"blue", black:"black", red:"red", yellow:"yellow", green:"green"} for i in range(5): if i <= 3: turtle.color(colours[circles[i]]) turtle.goto(circles[i], y_startCord1) turtle.pendown() turtle.circle(radius) turtle.penup() elif i > 3: turtle.color(colours[circles[i]]) turtle.goto(circles[i], y_move1) turtle.pendown() turtle.circle(radius) turtle.penup() ''' ts=turtle.getscreen() ts.bgcolor("pink") turtle.pensize(5) turtle.color("blue") turtle.penup() turtle.goto(blue, y_startCord1) #turtle.goto(x, y) turtle.pendown() turtle.circle(radius) turtle.color("black") turtle.penup() turtle.goto(black, y_startCord1) turtle.pendown() turtle.circle(radius) turtle.color("red") turtle.penup() turtle.goto(red, y_startCord1) turtle.pendown() turtle.circle(radius) turtle.color("yellow") turtle.penup() turtle.goto(yellow, y_move1) turtle.pendown() turtle.circle(radius) turtle.color("green") turtle.penup() turtle.goto(green, y_move1) turtle.pendown() turtle.circle(radius) turtle.color("maroon") turtle.penup() turtle.goto(0, -(diameter+halfRadius)) turtle.pendown() turtle.write("Olympics", align='center', font=('Calibri', fontSize, 'normal')) '''turtle.color("yellow") turtle.write("Olympics", align='center', font=('Calibri', fontSize, 'normal')) turtle.write("Olympics", align='center', font=('Calibri', fontSize, 'normal')) turtle.write("Olympics", align='center', font=('Calibri', fontSize, 'normal')) turtle.write("Olympics", align='center', font=('Calibri', fontSize, 'normal')) ''' ''' turtle.penup() turtle.goto(0, 100) turtle.pendown() turtle.write("\u6B22\u8FCE \u03b1 \u03b2 \u03b3", font=('adobe garamond', 40, 'bold')) turtle.write("\u0000\uFFFF") ''' input("")
from tkinter import * import tkinter master = Tk() master.title("AUTOMATED MACHINE LEARNING") #creating a text label Label(master, text="AUTOMATED MACHINE LEARNING SYSTEM",font=("times new roman",20),fg="white",bg="maroon",height=2).grid(row=0,rowspan=2,columnspan=8,sticky=N+E+W+S,padx=5,pady=5) location=StringVar() Label(master, text='ENTER THE LOCATION OF DATASET').grid(row=2) e1 = Entry(master,textvariable=location) e1.grid(row=2,column=1) y=StringVar() Label(master, text='ENTER THE PREDICTION COLUMN').grid(row=3) e1 = Entry(master,textvariable=y) e1.grid(row=3,column=1) reg = IntVar() Checkbutton(master, text='REGRESSION', variable=reg).grid(row=4, sticky=W) clas = IntVar() Checkbutton(master, text='CLASSIFICATION', variable=clas).grid(row=5, sticky=W) Label(master, text='TRAIN_TEST_SPLIT_SIZE [0-100]').grid(row=4,column=1) Label(master, text='NUMBER OF FOLDS').grid(row=5,column=1) train_test=IntVar() num_folds=IntVar() e1 = Entry(master,textvariable=train_test) e2 = Entry(master,textvariable=num_folds) e1.grid(row=4, column=2) e2.grid(row=5, column=2) Label(master, text='SCORING METRICS').grid(row=6) mse = IntVar() Checkbutton(master, text='MSE', variable=mse).grid(row=7, sticky=W) mae = IntVar() Checkbutton(master, text='MAE', variable=mae).grid(row=8, sticky=W) acc = IntVar() Checkbutton(master, text='ACCURACY', variable=acc).grid(row=9, sticky=W) mainloop() print(reg.get(),clas.get(),num_folds.get(),train_test.get(),mse.get(),mae.get(),acc.get(),y.get(),location.get()) machinelearning(location.get(),y.get(),train_test.get(),num_folds.get(),reg.get(),'mae') def machinelearning(X,Y,train_test,num_folds,reg,metrics): def importregressionmodels(): from sklearn.linear_model import LinearRegression from sklearn.neighbors import KNeighborsRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor models = [] models.append(('LR', LinearRegression())) models.append(('KNN', KNeighborsRegressor())) models.append(('CART', DecisionTreeRegressor())) models.append(('RF', RandomForestRegressor())) return models def importclassificationmodels(): from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB models = [] models.append(('LR', LogisticRegression())) models.append(('KNN', KNeighborsClassifier())) models.append(('CART', DecisionTreeClassifier())) models.append(('RF', RandomForestClassifier())) models.append(('NB',GaussianNB())) return models ## IMPORT PANDAS AND NUMPY import pandas as pd import numpy as np ## SPLIT THE DATA INTO TRAIN AND TEST data=pd.read_csv(X) x=data.drop(Y,axis=1) y=data[[Y]] from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=train_test) print('Runnng BASELINE models') d=reg if d==0: ## INTIALISING MODELS models=importclassificationmodels() results = [] names = [] from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score ## FOR BINARY AND MULTICLASS CLASSIFICATION: #print('please enter a number 1 -> Binary Classification 2 -> Multiclass Classification') #temp=int(input()) if reg==0: ## FOR BINARY CLASSIFICATION ## INPUT FOR KFOLD CROSS VALIDATION AND SCORING METRICS print('ENTER num_folds FOR KFOLD CROSS VALIDATION') num_folds = int(input()) seed = 77 print('ENTER THE SCORING METRICS 1 -> PRECISION 2 -> RECALL 3 -> F1-SCORE 4 -> ACCURACY') f=int(input()) if f==1: scoring='precision' elif f==2: scoring='recall' elif f==3: scoring='f1' elif f==4: scoring='accuracy' elif temp==2: print('ENTER num_folds FOR KFOLD CROSS VALIDATION') num_folds = int(input()) seed = 77 print('ENTER THE SCORING METRICS 1 -> precision_macro 2 -> precision_micro 3 -> F1-recall_macro 4 -> accuracy') f=int(input()) if f==1: scoring='precision_macro' elif f==2: scoring='precision_micro' elif f==3: scoring='recall_macro' elif f==4: scoring='recall_micro' elif f==5: scoring='accuracy' from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error from sklearn.metrics import accuracy_score for name, model in models: kfold = KFold(n_splits=num_folds, random_state=seed) cv_results = cross_val_score(model, x_train, y_train,scoring=scoring, cv=kfold) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) ### PARAMETER TUNING GRID SEARCH############ from sklearn.preprocessing import StandardScaler scaler = StandardScaler().fit(x_train) scaledX = scaler.transform(x_train) ##### INITILASE THE VALUES FOR GRID SEARCH FOR VARIOUS PARAMETERS######## k_values = np.array([1,3,5,7,9,11,13,15,17,19,21]) max_depth=np.array([1,2,3,4,5,6,7,8,9]) min_samples_leaf=np.array([2,4,6,8,10,12,14]) param_gridknn = dict(n_neighbors=k_values) param_griddt=dict(max_depth=max_depth,min_samples_leaf=min_samples_leaf) ## FINDING THE VARIOUS PARAMTERS FOR DIFFERENT MODELS: for name, model in models: if name=='KNN': kfold = KFold(n_splits=num_folds, random_state=seed) grid = GridSearchCV(estimator=model, param_grid=param_gridknn,cv=kfold) grid_result = grid.fit(scaledX, y_train) print("Best: %f using %s for %s" % (grid_result.best_score_, grid_result.best_params_,name)) elif name=='CART': kfold = KFold(n_splits=num_folds, random_state=seed) grid = GridSearchCV(estimator=model, param_grid=param_griddt,cv=kfold) grid_result = grid.fit(scaledX, y_train) print("Best: %f using %s for %s" % (grid_result.best_score_, grid_result.best_params_,name)) elif name=='RF': kfold = KFold(n_splits=num_folds, random_state=seed) grid = GridSearchCV(estimator=model, param_grid=param_griddt,cv=kfold) grid_result = grid.fit(scaledX, y_train) print("Best: %f using %s for %s" % (grid_result.best_score_, grid_result.best_params_,name)) ######## FOR REGRESSION############################# elif reg==1: models=importregressionmodels() results = [] names = [] from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error from sklearn.metrics import accuracy_score num_folds =num_folds seed = 77 f=metrics if f=='mse': scoring='neg_mean_squared_error' elif f=='mae': scoring='neg_mean_absolute_error' elif f=='acc': scoring='r2' for name, model in models: kfold = KFold(n_splits=num_folds, random_state=seed) cv_results = cross_val_score(model, x_train, y_train, cv=kfold,scoring=scoring) results.append(cv_results) names.append(name) msg = "%s: %f (%f)" % (name, cv_results.mean(), cv_results.std()) print(msg) ### PARAMETER TUNING GRID SEARCH from sklearn.preprocessing import StandardScaler scaler = StandardScaler().fit(x_train) scaledX = scaler.transform(x_train) ## INITILASE THE VALUES FOR GRID SEARCH FOR VARIOUS PARAMETERS k_values = np.array([1,3,5,7,9,11,13,15,17,19,21]) max_depth=np.array([1,2,3,4,5,6,7,8,9]) min_samples_leaf=np.array([2,4,6,8,10,12,14]) param_gridknn = dict(n_neighbors=k_values) param_griddt=dict(max_depth=max_depth,min_samples_leaf=min_samples_leaf) ## FINDING THE VARIOUS PARAMTERS FOR DIFFERENT MODELS: for name, model in models: if name=='KNN': kfold = KFold(n_splits=num_folds, random_state=seed) grid = GridSearchCV(estimator=model, param_grid=param_gridknn,cv=kfold,scoring=scoring) grid_result = grid.fit(scaledX, y_train) print("Best: %f using %s for %s" % (grid_result.best_score_, grid_result.best_params_,name)) elif name=='CART': kfold = KFold(n_splits=num_folds, random_state=seed) grid = GridSearchCV(estimator=model, param_grid=param_griddt,cv=kfold,scoring=scoring) grid_result = grid.fit(scaledX, y_train) print("Best: %f using %s for %s" % (grid_result.best_score_, grid_result.best_params_,name)) elif name=='RF': kfold = KFold(n_splits=num_folds, random_state=seed) grid = GridSearchCV(estimator=model, param_grid=param_griddt,cv=kfold,scoring=scoring) grid_result = grid.fit(scaledX, y_train) print("Best: %f using %s for %s" % (grid_result.best_score_, grid_result.best_params_,name))
def run(): def crea_diccionario(diccionario): nuevo_diccionario = {} for asignatura, nota in diccionario.items(): asignatura = asignatura.upper() if nota >= 7: nota = 'Aprobado' nuevo_diccionario[asignatura] = nota return nuevo_diccionario asignaturas_notas = { 'Español': 5, 'Matemáticas': 7, 'Inglés': 9, 'Arte': 4 } print(crea_diccionario(asignaturas_notas)) if __name__ == '__main__': run()
def contar_palabras(cadena): cadena = cadena.split() palabras = {} for palabra in cadena: if palabra in palabras: palabras[palabra] += 1 else: palabras[palabra] = 1 return palabras #print(palabras) def mas_repetida(cadena): palabra_mas_repetida = '' maxima_frecuencia = 0 for palabra,frecuencia in cadena.items(): if frecuencia > maxima_frecuencia: palabra_mas_repetida = palabra maxima_frecuencia = frecuencia return palabra_mas_repetida , maxima_frecuencia print(contar_palabras("hola hola hola mundo desde python")) print(mas_repetida(contar_palabras("hola hola hola mundo desde python")))
from functools import reduce def run(): #map -> map(funcion, objeto_iterable) """ def elevar_al_cuadrado(numero): return numero * numero lista = [1,2,3,4,5] resultado = list(map(elevar_al_cuadrado, lista)) print(resultado) """ #filter -> filter(funcion, objeto_iterable) """ def mayor_a_cinco(numero): return numero > 5 lista = [46,1,2,3,7,8] resultado = list(filter(mayor_a_cinco, lista)) print(resultado) def circulo(palabra): return palabra == 'circulo' tupla = ('hola','soy','un','circulo','circulo','circulo') resultado2 = tuple(filter(circulo, tupla)) print(resultado2) """ #reduce -> reduce(funcion, objeto_iterable) """ lista = [1,2,3,4] def funcion_acumulador(acumulador, elemento): return acumulador + elemento resultado = reduce(funcion_acumulador, lista) print(resultado) """ lista = ['Python', 'JavaScript', 'C#','C++','Go','Swift','Kotlin'] def funcion_acumulador(acumulador, elemento): return acumulador + " - " + elemento resultado = reduce(funcion_acumulador, lista) print(resultado) if __name__ == '__main__': run()
numeros = [50, 75, 46,100, 22, 80, 65, 8,1] numeros.sort() print(f'El número más pequeño de {numeros} es {numeros[0]}') print(f'El número más grande de {numeros} es {numeros[-1]}')
n = float(input("Ingresa un numerador: ")) #numerador es el de arriba m = float(input("Ingresa un denominador: ")) #denominador es el de abajo c = n/m r = n%m #módulo -> regresa el residuo de una división print(f"El resultado de dividir {n} entre {m} es {c} y su residuo es {r}")
def run(): inmuebles = [ {'año': 2000, 'metros': 100, 'habitaciones': 3, 'garaje': True, 'zona': 'A'}, # 0 {'año': 2012, 'metros': 60, 'habitaciones': 2, 'garaje': True, 'zona': 'B'}, # 1 {'año': 1980, 'metros': 120, 'habitaciones': 4, 'garaje': False, 'zona': 'A'}, # 2 {'año': 2005, 'metros': 75, 'habitaciones': 3, 'garaje': True, 'zona': 'B'}, # 3 {'año': 2015, 'metros': 90, 'habitaciones': 2, 'garaje': False, 'zona': 'A'} # 4 ] precios = [] year = 2021 def calcula_precio_inmueble(): for inmueble in inmuebles: for clave, valor in inmueble.items(): if inmueble['zona'] == 'A': precio = (inmueble['metros'] * 1000 + inmueble['habitaciones'] * 5000 + inmueble['garaje'] * 15000) * (1-(year - inmueble['año'])/100) elif inmueble['zona'] == 'B': precio = (inmueble['metros'] * 1000 + inmueble['habitaciones'] * 5000 + inmueble['garaje'] * 15000) * (1-(year - inmueble['año'])/100) * 1.5 precios.append(precio) return precios def busca_inmueble(presupuesto): print(f'Precios de los inmuebles {calcula_precio_inmueble()}') for precio in precios: if presupuesto >= precio: print(f'Puede comprar el apartamento de ${precio}\n') busca_inmueble(94000) if __name__ == "__main__": run()
monto = float(input("Monto: ")) interes = float(input("Interés: ")) anios = int(input("Años: ")) for i in range(anios): monto = monto * (1+interes)**anios print(f"Cantidad de dinero después de {i+1} años $ {monto}")
print("\n\t Welcome to the Gusess Game\n\n\t You have only three atemps") import random for i in range(3): ran=random.randint(1,6) number=int(input("enter number > ")) if number==ran: print("you Guess the number.. Congrats ") break else: print("bad luck")
# https://blog.csdn.net/sinat_38321889/article/details/80390238 #selectSort which is a time-consuming sort algorithm.Its Time-complexity is O(N**2) #1、we just use the simple sort algorithm to get the smallest number per loop,which the time-consuming is O(n) #2、next we can define a function that a loop to get the small value every loop,and the append the value into a new Array #to get the minmum value # 选择排序 def getmin(arr): min = arr[0]; min_index = 0; for i in range(0,len(arr)): if arr[i]<min: min = arr[i] min_index = i return min_index #SelectSort def selectSort(arr): newArr = []; for i in range(0,len(arr)): min = getmin(arr); newArr.append(arr.pop(min)) return newArr; #test the output a = [4,6,9,1,3,87,41,5] print(selectSort(a)) # [1, 3, 4, 5, 6, 9, 41, 87]
def first_double_string(mot): dict_char = dict() for letter in mot: if letter in dict_char: dict_char[letter]+=1 print(letter) return letter else: dict_char[letter]=1 return dict_char first_double_string('abcdefa') first_double_string('jfslsfjdl')
# encoding=utf-8 # -,- 回头理解清楚一下 class Solution(object): def recur_search(self, left, right, nums, target): if left == right: if nums[left] == target: return left else: return -1 mid = (left + right) / 2 if nums[mid] == target: return mid if nums[mid] == nums[left]: tmp = mid while nums[tmp] == nums[left] and tmp > left: tmp = tmp -1 if tmp == left: return self.recur_search(mid+1,right,nums,target) else: mid = tmp if nums[mid] == target: return mid if nums[mid] < nums[left]: if target >= nums[left] or target < nums[mid]: return self.recur_search(left, mid - 1, nums, target) else: return self.bin_search(mid + 1, right, nums, target) if target >= nums[left] and target < nums[mid]: return self.bin_search(left, mid - 1, nums, target) else: return self.recur_search(mid + 1, right, nums, target) def bin_search(self, left, right, nums, target): if target < nums[left] or target > nums[right]: return -1 if left == right: if nums[left] == target: return left else: return False mid = (left + right) / 2 if nums[mid] == target: return mid if nums[mid] > target: return self.bin_search(left, mid - 1, nums, target) else: return self.bin_search(mid + 1, right, nums, target) def search(self, nums, target): """ :type nums: List[int] :type target: int :rtype: int """ if not nums: return False x = self.recur_search(0, len(nums) - 1, nums, target) if x >= 0: print x return True else: return False if __name__ == '__main__': so = Solution() a = [1,3,1] tar = 2 print so.search(a,tar)
import pandas as pd import numpy as np dfx = pd.read_csv("data.csv") dataset = dfx.values print(dataset) res = [] n = dataset.shape[1]-1 for i in range(n): res.append('Φ') print("The initial value of hypothesis:") print(res) print() for i in dataset: if i[-1] == 'Yes': for j in range(len(i)-1): if(res[j] == '?'): pass elif (res[j] == i[j]) or (res[j]=='Φ'): res[j] = i[j]; else: res[j] = '?' print(res) else: print(res) print("\nFinal Hyposthesis : ",res)
a = [1, 2, 3] b = [4, 5, 6] c = a + b print(c) s = "a b c d e f" # split adds individual characters to a list z = s.split() print(z) if 'a' in z: print("A is in z") else: print("A is not in z") for i in z: print(i) # sort sorts by ascending order g = [4, 5, 3, 2, 7] g.sort() print(g) g.reverse() print(g)
""" This example shows how to use the Mesh class in order to generate a geometry similar to those that may define a lifting surface planform. X ^ B This geometry is positioned in space | +---+ with two chords simulating the root | / | and tip chords, using points A and B | / | b to store their respective leading edge |/ | coordinates. +-------+----> A c Y With the parameters n and m the grid density in the chordwise and spanwise directions will be defined. """ import numpy as np import matplotlib.pyplot as plt from pyvlm.mesh_generator import Mesh # GEOMETRY DEFINITION # # Parameters c = 1 # root chord length b = 10 # panel span length n = 10 # number of panels chordwise m = 20 # number of panels spanwise # Wing A = np.array([0, 0]) # root chord leading edge coordinates B = np.array([c/2, b]) # tip chord leading edge coordinates leading_edges_coord = [A, B] chord_lengths = [c, c/2] mesh = Mesh(leading_edges_coord, chord_lengths, n, m) Points = mesh.points() Panels = mesh.panels() Chordwise_panel_pos = mesh.panel_chord_positions() Panels_span = mesh.panels_span() # PRINTING AND PLOTTING print('\n Point | Coordinates ') print('--------------------------') for i in range(0, len(Points)): print(' %2s |' % i, np.round(Points[i], 2)) print('\n Panel | Chrd % | Span | Points coordinates') print('----------------------------------------------------------------------') for i in range(0, len(Panels)): print(' %3s | %4.1f | %6.2f | ' % (i, 100*Chordwise_panel_pos[i], Panels_span[i]), np.round(Panels[i][0], 2), np.round(Panels[i][1], 2), np.round(Panels[i][2], 2), np.round(Panels[i][3], 2)) plt.style.use('ggplot') plt.xlim(0, c), plt.ylim(0, b) for i in range(0, len(Points)): P = Points[i] plt.plot(P[0], P[1], 'ro') plt.show()
# Translate one language to the other using the translate library! from translate import Translator def trans(): global user_statement user_statement =input('Type the statement you want to translate: ') print() langauge_type = input('Which language will you like to translate it to? ') m = langauge_type.lower() #Converts the user selection to lowercase letters if m == 'french': translator = Translator(to_lang="french") trans = translator.translate(user_statement) elif m == 'spanish': translator = Translator(to_lang="spanish") trans = translator.translate(user_statement) elif m == 'arabic': translator = Translator(to_lang="arabic") trans = translator.translate(user_statement) elif m == 'hindu': translator = Translator(to_lang="hindu") trans = translator.translate(user_statement) elif m == 'german': translator = Translator(to_lang="german") trans = translator.translate(user_statement) elif m == 'chinese': translator = Translator(to_lang="chinese") trans = translator.translate(user_statement) elif m == 'portugese': translator = Translator(to_lang="portugese") trans = translator.translate(user_statement) elif m == 'english': translator = Translator(from_lang="spanish", to_lang="english") #Translate from spanish to english if the user input is spanish. trans = translator.translate(user_statement) else: print('Cannot translate your statement into the given language') return print(trans) trans()
# Write a python program to find sum of the first n positive integers. # sum = ( n * ( n + 1)) / 2 list=[1,2,3,4,5,6,7,8,9,10] total=sum(list) print(f"The sum of the give integer is {total}")
# 3. BMI 指数测试 weight = float(input('请输入体重(公斤):')) height = float(input('请输入身高(米):')) height_square = height ** 2 bmi = weight / height_square min_weight = height_square * 18.5 max_weight = height_square * 24 print('您的BMI指数为: %.2f ' % bmi) print('正常体重范围是%.2f公斤 - %.2f公斤 之间' %(min_weight, max_weight)) if bmi < 18.5: print('体重偏轻') print('建议您至少增重 %.2f 公斤' % (min_weight - weight)) elif bmi >= 24: print('体重偏重') print('建议您至少减重 %.2f 公斤' % (weight - max_weight)) else: print('体重正常')
""" Program: NumPy_array_math.py Author: Daniel Meeker Date: 9/17/2020 This program demonstrates using NumPy in Python. """ import numpy as np if __name__ == '__main__': array_1 = np.array([[10, 15, 20], [2, 3, 4], [9, 14.5, 18]]) array_2 = np.array([[1, 2, 5], [8, 0, 12], [11, 3, 22]]) array_1_even = array_1 % 2 == 0 array_1_slice = array_1[0:2, 0:2] array_sum = np.add(array_1, array_2) array_multiply = np.multiply(array_1, array_2) # Print array_1 to the console print(array_1) # Print array_1's shape print(array_1.shape) # Print a 2x2 slice starting at 0,0 and going to 1,1 print(array_1_slice) # Output a boolean on whether an element is even or odd print(array_1_even) # Add the two arrays together elementwise print(array_sum) # Multiply the arrays together elementwise print(array_multiply) # Print the sum of all elements in array_2 print(array_2.sum()) # Print the product of all elements in array_2 print(array_2.prod()) # Print the max value of all elements in array_2 print(array_2.max()) # Print the min value of all elements in array_2 print(array_2.min())
my_votes = int(input("How many votes did you get in the election? ")) total_votes = int(input("What is the total votes in the election? ")) print(f"I received {my_votes / total_votes * 100}% of the total votes.") my_votes = int(input("How many votes did you get in the election? ")) total_votes = int(input("What is the total votes in the election? ")) percentage_votes = (my_votes / total_votes) * 100 print("I received " + str(percentage_votes)+"% of the total votes.") counties_dict = {"Arapahoe": 422829, "Denver": 463353, "Jefferson": 432438} for key, value in counties_dict.items(): print(f" {key:} county has {value:,} registered voters.)") voting_data = [``{"county":"Arapahoe", "registered_voters": 422829}, {"county":"Denver", "registered_voters": 463353}, {"county":"Jefferson", "registered_voters": 432438}] for county, reg_vot in voting_data.items(): print(f" {county:} county has {reg_vot:,} registered voters.)")
#!/usr/bin/env python # coding: utf-8 """ A simple VM interpreter. Code from the post at http://csl.name/post/vm/ This version should work on both Python 2 and 3. """ from __future__ import print_function from collections import deque from io import StringIO import sys import tokenize def get_input(*args, **kw): """Read a string from standard input.""" if sys.version[0] == "2": return raw_input(*args, **kw) else: return input(*args, **kw) class Stack(deque): push = deque.append def top(self): return self[-1] class Machine: log = "" def __init__(self, code): self.data_stack = Stack() self.return_stack = Stack() self.instruction_pointer = 0 self.code = code def pop(self): return self.data_stack.pop() def push(self, value): self.data_stack.push(value) def top(self): return self.data_stack.top() def run(self): while self.instruction_pointer < len(self.code): opcode = self.code[self.instruction_pointer] self.instruction_pointer += 1 self.dispatch(opcode) def dispatch(self, op): dispatch_map = { "%": self.mod, "*": self.mul, "+": self.plus, "-": self.minus, "/": self.div, "==": self.eq, "cast_int": self.cast_int, "cast_str": self.cast_str, "drop": self.drop, "dup": self.dup, "exit": self.exit, "if": self.if_stmt, "jmp": self.jmp, "over": self.over, "print": self.print, "println": self.println, "read": self.read, "stack": self.dump_stack, "swap": self.swap, } if op in dispatch_map: dispatch_map[op]() elif isinstance(op, int): self.push(op) # push numbers on stack elif isinstance(op, str) and op[0]==op[-1]=='"': self.push(op[1:-1]) # push quoted strings on stack else: raise RuntimeError("Unknown opcode: '%s'" % op) # OPERATIONS FOLLOW: def plus(self): self.push(self.pop() + self.pop()) def exit(self): sys.exit(0) def minus(self): last = self.pop() self.push(self.pop() - last) def mul(self): self.push(self.pop() * self.pop()) def div(self): last = self.pop() self.push(self.pop() / last) def mod(self): last = self.pop() self.push(self.pop() % last) def dup(self): self.push(self.top()) def over(self): b = self.pop() a = self.pop() self.push(a) self.push(b) self.push(a) def drop(self): self.pop() def swap(self): b = self.pop() a = self.pop() self.push(b) self.push(a) def print(self): self.log+=str(self.pop()) def println(self): self.log+=str(self.pop())+"\n" def read(self): self.push(get_input()) def cast_int(self): self.push(int(self.pop())) def cast_str(self): self.push(str(self.pop())) def eq(self): self.push(self.pop() == self.pop()) def if_stmt(self): false_clause = self.pop() true_clause = self.pop() test = self.pop() self.push(true_clause if test else false_clause) def jmp(self): addr = self.pop() if isinstance(addr, int) and 0 <= addr < len(self.code): self.instruction_pointer = addr else: raise RuntimeError("JMP address must be a valid integer.") def dump_stack(self): pass def parse(text): # Note that the tokenizer module is intended for parsing Python source # code, so if you're going to expand on the parser, you may have to use # another tokenizer. if sys.version[0] == "2": stream = StringIO(unicode(text)) else: stream = StringIO(text) tokens = tokenize.generate_tokens(stream.readline) for toknum, tokval, _, _, _ in tokens: if toknum == tokenize.NUMBER: yield int(tokval) elif toknum in [tokenize.OP, tokenize.STRING, tokenize.NAME]: yield tokval elif toknum == tokenize.ENDMARKER: break else: raise RuntimeError("Unknown token %s: '%s'" % (tokenize.tok_name[toknum], tokval)) def constant_fold(code): """Constant-folds simple mathematical expressions like 2 3 + to 5.""" while True: # Find two consecutive numbers and an arithmetic operator for i, (a, b, op) in enumerate(zip(code, code[1:], code[2:])): if isinstance(a, int) and isinstance(b, int) \ and op in {"+", "-", "*", "/"}: m = Machine((a, b, op)) m.run() code[i:i+3] = [m.top()] print("Constant-folded %s%s%s to %s" % (a,op,b,m.top())) break else: break return code def repl(): print('Hit CTRL+D or type "exit" to quit.') while True: try: source = get_input("> ") code = list(parse(source)) code = constant_fold(code) Machine(code).run() except (RuntimeError, IndexError) as e: print("IndexError: %s" % e) except KeyboardInterrupt: print("\nKeyboardInterrupt") def test(code = [2, 3, "+", 5, "*", "println"]): print("Code before optimization: %s" % str(code)) optimized = constant_fold(code) print("Code after optimization: %s" % str(optimized)) print("Stack after running original program:") a = Machine(code) a.run() a.dump_stack() print("Stack after running optimized program:") b = Machine(optimized) b.run() b.dump_stack() result = a.data_stack == b.data_stack print("Result: %s" % ("OK" if result else "FAIL")) return result def examples(): print("** Program 1: Runs the code for `print((2+3)*4)`") Machine([2, 3, "+", 4, "*", "println"]).run() print("\n** Program 2: Ask for numbers, computes sum and product.") Machine([ '"Enter a number: "', "print", "read", "cast_int", '"Enter another number: "', "print", "read", "cast_int", "over", "over", '"Their sum is: "', "print", "+", "println", '"Their product is: "', "print", "*", "println" ]).run() print("\n** Program 3: Shows branching and looping (use CTRL+D to exit).") Machine([ '"Enter a number: "', "print", "read", "cast_int", '"The number "', "print", "dup", "print", '" is "', "print", 2, "%", 0, "==", '"even."', '"odd."', "if", "println", 0, "jmp" # loop forever! ]).run() if __name__ == "__main__": try: if len(sys.argv) > 1: cmd = sys.argv[1] if cmd == "repl": repl() elif cmd == "test": test() examples() else: print("Commands: repl, test") else: repl() except EOFError: print("")
#!/usr/bin/env python """ nn.py Implements feedforward complete artifical neural networks. Python 2.7.12 A 'from scratch' implementation + a few code snippets from grad school coursework. """ import math import random def sigmoid(dblX): """The sigmoid function. Given input dblX, sigmoid(dblX). sigmoid(0.0) 0.5 sigmoid(100.0) 1.0 sigmoid(-100.0) < 1.0e-10 True """ dblActVal = float(1.0/(1.0 + pow(math.e, -dblX))) return dblActVal class Perceptron(object): """Implements a unit in a feed-forward neural network.""" def __init__(self, listDblW, dblW0, ix): """ listDblW: a list of weights dblW0: the threshold weight ix: the index of this perceptron in it's layer """ self.listDblW = map(float,listDblW) self.dblW0 = float(dblW0) self.ix = int(ix) def __repr__(self): tplSFormat = (list(self.listDblW), self.dblW0, self.ix) return "Perceptron(%r, %r, %r)" % tplSFormat def input_size(self): return len(self.listDblW) class NeuralNetLayer(object): """A single layer of a complete neural network""" def __init__(self, cInputs, listPcpt): """ cInputs: number of inputs each perceptron in the layer receives. same number in a complete network. listPcpt: list of perceptrons in the layer. The index of each perceptron must match its zero-indexed position in this list. """ self.check_consistency(cInputs, listPcpt) self.cInputs = int(cInputs) self.listPcpt = listPcpt def layer_input_size(self): """Returns the number of inputs connected to each unit in this layer.""" return self.cInputs def layer_output_size(self): """Returns the number of units in this layer.""" return len(self.listPcpt) @classmethod def check_consistency(cls, cInputs, listPcpt): for ix,pcpt in enumerate(listPcpt): if not isinstance(pcpt, Perceptron): raise TypeError("Expected Perceptron") if pcpt.input_size() != cInputs: raise TypeError("Input size mismatch") if pcpt.ix != ix: raise ValueError("Index mismatch. Expected %d but found %d" % (ix, pcpt.ix)) def dot(listDbl1, listDbl2): """Takes the dot product of two equal-length lists of floats. dot([1.0, 2.0, 3.0], [-1.0, 0.25, 4.0]) 11.5""" if len(listDbl1) != len(listDbl2): print listDbl1 print listDbl2 raise ValueError("Incompatible lengths") return sum([dbl1*dbl2 for dbl1,dbl2 in zip(listDbl1,listDbl2)]) def output_error(dblActivation,dblTarget): """Computes the output error for perceptron activation level dblActivation and target value dblTarget. output_error(0.75, -1.0) -1.75""" return float(dblTarget - dblActivation) def hidden_error(listDblDownstreamDelta, pcpt, layerNext): """Determines the error on a hidden node from downstream deltas and weights. pcpt = Perceptron([], 0.0, 0) listPcpt = [Perceptron([1.5],0,0), Perceptron([2.0],0,1)] layer = NeuralNetLayer(1, listPcpt) hidden_error([1.0, 0.75], pcpt, layer) 3.0""" curIx = pcpt.ix listNextWeights = map(lambda p: p.listDblW[curIx], layerNext.listPcpt) return dot(listDblDownstreamDelta, listNextWeights) def compute_delta(dblActivation, dblError): """Computes a delta value from activation and error. compute_delta(0.5,0.5) 0.125""" dblActivationDerv = float(dblActivation*(float(1.0) - dblActivation)) return float(dblActivationDerv*dblError) def update_weight(dblW, dblLearningRate, dblInput, dblDelta): """Computes the updated weight. update_weight(3.0, 0.1, 1.25, 2.0) 3.25""" dblNewW = float(dblW + (dblLearningRate*dblInput*dblDelta)) return dblNewW def update_pcpt(pcpt, listDblInputs, dblDelta, dblLearningRate): """Updates the perceptron's weights in place, including threshold weights. pcpt = Perceptron([1.0,2.0,3.0], 4.0, 0) print pcpt Perceptron([1.0, 2.0, 3.0], 4.0, 0) update_pcpt(pcpt, [0.5,0.5,0.5], 0.25, 2.0) print pcpt Perceptron([1.25, 2.25, 3.25], 4.5, 0)""" pcpt.listDblW =\ map(lambda dblInput, dblOldW: update_weight(dblOldW, dblLearningRate, dblInput, dblDelta), listDblInputs, pcpt.listDblW) dblOldW0 = pcpt.dblW0 pcpt.dblW0 = update_weight(dblOldW0, dblLearningRate, 1.0, dblDelta) return None def pcpt_activation(pcpt, listDblInput): """Compute a perceptron's activation function. pcpt = Perceptron([0.5,0.5,-1.5], 0.75, 0) pcpt_activation(pcpt, [0.5,1.0,1.0]) 0.5""" dblNoThreshDotInput = dot(listDblInput, pcpt.listDblW) dblDotInput = dblNoThreshDotInput + pcpt.dblW0 return sigmoid(dblDotInput) def feed_forward_layer(layer, listDblInput): """Build a list of activation levels for the perceptrons in the layer recieving input listDblInput. pcpt1 = Perceptron([-1.0,2.0], 0.0, 0) pcpt2 = Perceptron([-2.0,4.0], 0.0, 1) layer = NeuralNetLayer(2, [pcpt1, pcpt2]) listDblInput = [0.5, 0.25] feed_forward_layer(layer, listDblInput) [0.5, 0.5]""" return map(lambda pcpt: pcpt_activation(pcpt, listDblInput), layer.listPcpt) class NeuralNet(object): """An artificial neural network.""" def __init__(self, cInputs, listLayer): """Assemble the network from layers listLayer. cInputs specifies the number of inputs to each node in the first hidden layer of the network.""" if not self.check_layers(cInputs, listLayer): raise TypeError("Incompatible neural network layers.") self.cInputs = cInputs for layer in listLayer: if not isinstance(layer, NeuralNetLayer): raise TypeError("NeuralNet layers must be of type " "NeuralNetLayer.") self.listLayer = listLayer @classmethod def check_layers(cls, cInputs, listLayer): if not listLayer: return False if cInputs != listLayer[0].layer_input_size(): return False for layerFst,layerSnd in zip(listLayer[:-1], listLayer[1:]): if layerFst.layer_output_size() != layerSnd.layer_input_size(): return False return True def input_layer(self): return self.listLayer[0] def output_layer(self): return self.listLayer[-1] def build_layer_inputs_and_outputs(net, listDblInput): """Build a pair of lists containing first the list of the input to each layer in the neural network, and second, a list of output from each layer in the network. The list of inputs contains as its first element listDblInput, the inputs to the first layer of the network.The list of outputs contains as its last element the output of the output layer. listCLayerSize = [2,2,1] net = init_net(listCLayerSize) build_layer_inputs_and_outputs(net, [-1.0, 1.0]) ([[...], [...]], [[...], [...]])""" lstDblInputs = [] lstDblOutputs = [] curListDblInput = listDblInput curListDblOutput = [] for layer in net.listLayer: curListDblOutput = feed_forward_layer(layer, curListDblInput) lstDblInputs.append(curListDblInput) lstDblOutputs.append(curListDblOutput) curListDblInput = curListDblOutput return (lstDblInputs,lstDblOutputs) def feed_forward(net, listDblInput): """Compute the neural net's output on input listDblInput.""" return build_layer_inputs_and_outputs(net, listDblInput)[-1][-1] def layer_deltas(listDblActivation, listDblError): """Compute the delta values for a layer which generated activation levels listDblActivation, resulting in error listDblError. layer_deltas([0.5, 0.25], [0.125, 0.0625]) [0.03125, 0.01171875]""" return map(compute_delta, listDblActivation,listDblError) def update_layer(layer, listDblInputs, listDblDelta, dblLearningRate): """Update all perceptrons in the neural net layer. The function updates the perceptrons in the layer in place, and does not return anything. listPcpt = [Perceptron([1.0,-1.0],0.0,0), Perceptron([-1.0,1.0],0.0,1)] layer = NeuralNetLayer(2, listPcpt) print layer.listPcpt [Perceptron([1.0, -1.0], 0.0, 0), Perceptron([-1.0, 1.0], 0.0, 1)] update_layer(layer, [0.5,-0.5], [2.0,2.0], 0.5) # do the update print layer.listPcpt [Perceptron([1.5, -1.5], 1.0, 0), Perceptron([-0.5, 0.5], 1.0, 1)]""" for pcpt, delta in zip(layer.listPcpt,listDblDelta): update_pcpt(pcpt, listDblInputs, delta, dblLearningRate) return None def hidden_layer_error(layer, listDblDownstreamDelta, layerDownstream): """Determine the error produced by each node in a hidden layer, given the next layer downstream and the deltas produced by that layer. layer = NeuralNetLayer(0, [Perceptron([], 0.0, 0), Perceptron([], 0.0, 1)]) layerDownstream = NeuralNetLayer(2, [Perceptron([0.75,0.25], 0.0, 0)]) hidden_layer_error(layer, [2.0], layerDownstream) [1.5, 0.5]""" return map(lambda pcpt: hidden_error(listDblDownstreamDelta, pcpt, layerDownstream), layer.listPcpt) class Instance(object): def __init__(self, iLabel, listDblFeatures): self.iLabel = iLabel self.listDblFeatures = listDblFeatures class ImageInstance(Instance): """Implements an instance composed of 2D data.""" def __init__(self, iLabel, listListImage): listDblFeatures = [] self.cRow = len(listListImage) self.cCol = None for listDblRow in listListImage: self.cCol = max(len(listDblRow), self.cCol) for dblCol in listDblRow: listDblFeatures.append(dblCol) super(ImageInstance,self).__init__(iLabel,listDblFeatures) def reconstruct_image(self): pass def distributed_encode_label(iLabel): """Generate a distributed encoding of the integer label iLabel. distributed_encode_label(2) [0.05, 0.05, 0.95, 0.05, 0.05, 0.05, 0.05]""" listDblEncodedVector = [] #numberDimensions = 2 # XOR test numberDimensions = 7 #covertype set dblNegVal = 0.05 dblPosVal = 0.95 for ix in range(numberDimensions): if ix is iLabel: listDblEncodedVector.append(dblPosVal) else: listDblEncodedVector.append(dblNegVal) return listDblEncodedVector def binary_encode_label(iLabel): """Generate a binary encoding of the integer label iLabel. binary_encode_label(5) [0.95, 0.05, 0.95, 0.05]""" curIntLabel = iLabel lstDblBinary = [] value = None numberBits = 1 dblNegVal = 0.05 dblPosVal = 0.95 while not(curIntLabel is 0): if curIntLabel%2 is 0: value = dblNegVal else: value = dblPosVal lstDblBinary.append(value) curIntLabel = (curIntLabel - curIntLabel%2)/2 curBitLength = len(lstDblBinary) for ix in range(numberBits - curBitLength): lstDblBinary.append(dblNegVal) return lstDblBinary def distributed_decode_net_output(listDblOutput): """Decode the output of a neural network with distributed-encoded outputs. listDblOutput = [0.23, 0.4, 0.01, 0.2, 0.3, 0.78, 0.51, 0.15, 0.2, 0.1] distributed_decode_net_output(listDblOutput) 5""" return listDblOutput.index(max(listDblOutput)) def binary_decode_net_output(listDblOutput): """Decode the output of a neural network with binary-encoded outputs. binary_decode_net_output([0.95, 0.44, 0.01, 0.51]) 9 """ dblThreshold = 0.50 listInterpretation = [] iCurBitSignificance = 1 def convert_to_binary(dblVal): if dblVal < dblThreshold: return int(0) else: return int(1) listBinaryValues = map(convert_to_binary, listDblOutput) for ix in range(len(listBinaryValues)): listInterpretation.append(iCurBitSignificance) iCurBitSignificance = iCurBitSignificance*2 iOutput = dot(listBinaryValues,listInterpretation) return iOutput def update_net(net, inst, dblLearningRate, listTargetOutputs): """Updates the weights of a neural network in place based on one instance and returns the list of outputs after feeding forward. The outline is as follows: - feed forward the instance through the network - compute deltas - update weights """ listDblInputs = inst.listDblFeatures dblLayerInputsOutputs = build_layer_inputs_and_outputs(net, listDblInputs) listDblLayerInputs = dblLayerInputsOutputs[0] listDblLayerOutputs = dblLayerInputsOutputs[1] listDblOuputActivations = dblLayerInputsOutputs[-1][-1] listDblLayerDeltas = [] #backpropagation #deal with output first listOutputError = \ map(lambda dblOutputActivation, dblTargetOutput: output_error(dblOutputActivation, dblTargetOutput), listDblOuputActivations,listTargetOutputs) listOutputLayerDeltas = layer_deltas(listDblOuputActivations, listOutputError) #calculate deltas from the close to output hidden layer towards #the first hidden layer after the input listDblLayerDeltas.insert(0, listOutputLayerDeltas) #result in correct order! listCurError = listOutputError for ixCurHiddenLayer in reversed(range(len(net.listLayer)-1)): curLayer = net.listLayer[ixCurHiddenLayer] downstreamLayer = net.listLayer[ixCurHiddenLayer+1] listDblDownstreamDelta = listDblLayerDeltas[0] listDblCurError = \ hidden_layer_error(curLayer, listDblDownstreamDelta, downstreamLayer) #here we need activation produced by teh current layer listDblCurActivation = listDblLayerOutputs[ixCurHiddenLayer] listDblCurDeltas = layer_deltas(listDblCurActivation, listDblCurError) listDblLayerDeltas.insert(0, listDblCurDeltas) #update all perceptrons in layers for layer, listDblInputs, listDblDelta in \ zip(net.listLayer,listDblLayerInputs,listDblLayerDeltas): update_layer(layer, listDblInputs, listDblDelta, dblLearningRate) return listDblOuputActivations def init_net(listCLayerSize, dblScale=0.01): """Returns a complete feedforward neural network with zero or more hidden layers and initialize its weights to random values in (-dblScale,dblScale). listCLayerSize: specializes the structure of the NN, [#inputs, #first hidden, #second hidden,...,#outputs]""" iCurInputs = listCLayerSize[0] listLayers = [] for cLayerSize in listCLayerSize[1 :]: listPcpt = [] for ixPcpt in range(cLayerSize): dblW0 = random.uniform(-dblScale, dblScale) listDblWeights = map(lambda dummy: random.uniform(-dblScale, dblScale), range(iCurInputs)) listPcpt.append(Perceptron(listDblWeights, dblW0, ixPcpt)) listLayers.append(NeuralNetLayer(iCurInputs, listPcpt)) iCurInputs = cLayerSize return NeuralNet(listCLayerSize[0], listLayers) def print_net(net): """Convenience routine for printing a network to standard out.""" for layer in net.listLayer: print "" for pcpt in layer.listPcpt: print pcpt #break #break
''' Write a Python class to find the three elements that sum to zero from a list of n real numbers. Input array: [-25, -10, -7, -3, 2, 4, 8, 10] Output : [[-10, 2, 8], [-7, -3, 10]] ''' from itertools import combinations def sumToZero(inArray): comb = combinations(inArray, 3) posibOutComes = list(comb) res = [] for i in posibOutComes: if sum(i) == 0: res.append(list(i)) return res inArray = [-25, -10, -7, -3, 2, 4, 8, 10] print(sumToZero(inArray))
''' Write a Python class to find validity of a string of parentheses, '(', ')', '{', '}', '[' and ']'. These brackets must be close in the correct order, for example "()" and "()[]{}" are valid but "[)", "({[)]" and "{{{" are invalid ''' def bra(string): dis = {'[': ']', '{': '}', '(': ')'} stack = [] for i in string: if stack: tos = stack[-1] stack.pop() if i == dis[tos] else stack.append(i) else: stack.append(i) print("True") if len(stack) == 0 else print("False") # test if __name__ == '__main__': string = "()[{}]" bra(string)
''' Create a function, is_palindrome, to determine if a supplied word is the same if the letters are reversed. ''' def is_palindrome(word1): word2 = word1[-1::-1] return "It is palindrome" if word1 == word2 else "It is not palindrome" word1 = input("Enter the word: ") word1.lower() print(is_palindrome(word1))
''' A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99. Find the largest palindrome made from the product of two 3-digit numbers. ''' def for_n_digit_numbers(n=3): limit = calculate_limit(n) multipliers = [] largest = 0 for i in range(limit, 0, -1): multipliers.append(i) for multiplier in multipliers: product = multiplier * i if is_palindrome(product) and product > largest: largest = product return largest def calculate_limit(n): limit = 1 for _ in range(n): limit *= 10 return limit - 1 def is_palindrome(number): number_string = str(number) return number_string == number_string[::-1] if __name__ == '__main__': print(for_n_digit_numbers()) # => 906609
for i in range(0, 10): print("In the iteration with the value", i) for i in range(0, 10): print("perfect square", i, "is", i*i) for j in range(1,11): print(i, "x", j, "=", i*j)
#!/usr/bin/env python # -*- coding: utf-8 -*- count = raw_input("Vpiši cifro do katere želiš prešteti: ") count = int(count) for num in xrange(1, count): if num % 3 == 0 and num % 5 == 0: print "FizzBuzz" elif num % 3 == 0: print "Fizz" elif num % 5 == 0: print "Buzz" else: print num
def clean_dict(d): """Remove all key, value pairs whose key is "tooltip" or whose value is either None or empty""" clean = {} for k, v in d.items(): if isinstance(v, dict): nested = clean_dict(v) if len(nested.keys()) > 0 and k != "tooltip": clean[k] = nested elif v and k != "tooltip": clean[k] = v return clean
# 1b qns 4 import math import tensorflow as tf import numpy as np import pylab as plt seed = 10 tf.set_random_seed(seed) # Same implementation as question 1 def get_admission_data(small = None): np.random.seed(seed) #read and divide data into test and train sets admit_data = np.genfromtxt('admission_predict.csv', delimiter= ',') X_data, Y_data = admit_data[1:,1:8], admit_data[1:,-1] Y_data = Y_data.reshape(Y_data.shape[0], 1) idx = np.arange(X_data.shape[0]) np.random.shuffle(idx) X_data, Y_data = X_data[idx], Y_data[idx] if small is not None: # experiment with small datasets X_data = X_data[:small] Y_data = Y_data[:small] X_data = (X_data- np.mean(X_data, axis=0))/ np.std(X_data, axis=0) split = 0.7 #create train set trainX = X_data[:int(X_data.shape[0]*split)] trainY = Y_data[:int(Y_data.shape[0]*split)] #create test set testX = X_data[:int(X_data.shape[0]*split*-1)] testY = Y_data[:int(Y_data.shape[0]*split*-1)] #randomly choose 50 samples from test set rand = np.random.choice(testX.shape[0], 50, replace=True) testX = testX[rand] testY = testY[rand] return trainX, trainY, testX, testY # Same implementation as question 1 def gradientDescentOptimizer(trainX, trainY, testX, testY, print_result = False, epochs = 1000, num_layer = 3, num_neuron = 10, with_dropouts = False): # initialise constants learning_rate = 10**-3 beta = 10**-3 batch_size = 8 NUM_FEATURES = np.size(trainX,1) dropout = 0.8 # Create the model x = tf.placeholder(tf.float32, [None, NUM_FEATURES]) y_ = tf.placeholder(tf.float32, [None, 1]) # Build the graph for the deep net stddev = 1.0/math.sqrt(NUM_FEATURES) # hidden layer 1 seed=10 weights_h1 = tf.Variable(tf.truncated_normal([NUM_FEATURES,num_neuron], stddev=stddev, dtype=tf.float32,seed=seed), name='weights') biases_h1 = tf.Variable(tf.zeros([num_neuron])) h1 = tf.nn.relu(tf.matmul(x, weights_h1) + biases_h1) if with_dropouts: h1 = tf.nn.dropout(h1, dropout) # hidden layer 2 seed=20 weights_h2 = tf.Variable(tf.truncated_normal([num_neuron,num_neuron], stddev=stddev, dtype=tf.float32,seed=seed), name='weights') biases_h2 = tf.Variable(tf.zeros([num_neuron])) h2 = tf.nn.relu(tf.matmul(h1, weights_h2) + biases_h2) if with_dropouts: h2 = tf.nn.dropout(h2, dropout) # hidden layer 3 seed=30 weights_h3 = tf.Variable(tf.truncated_normal([num_neuron,num_neuron], stddev=stddev, dtype=tf.float32,seed=seed), name='weights') biases_h3 = tf.Variable(tf.zeros([num_neuron])) h3 = tf.nn.relu(tf.matmul(h2, weights_h3) + biases_h3) if with_dropouts: h3 = tf.nn.dropout(h3, dropout) #output layer seed=40 weights = tf.Variable(tf.truncated_normal([num_neuron, 1], stddev=stddev, dtype=tf.float32, seed=seed), name='weights') biases = tf.Variable(tf.zeros([1]), dtype=tf.float32, name='biases') if num_layer == 3: y = tf.matmul(h1, weights) + biases regularization = tf.nn.l2_loss(weights) + tf.nn.l2_loss(weights_h1) elif num_layer == 4: y = tf.matmul(h2, weights) + biases regularization = tf.nn.l2_loss(weights) + tf.nn.l2_loss(weights_h1) + tf.nn.l2_loss(weights_h2) elif num_layer == 5: y = tf.matmul(h3, weights) + biases regularization = tf.nn.l2_loss(weights) + tf.nn.l2_loss(weights_h1) + tf.nn.l2_loss(weights_h2) + tf.nn.l2_loss(weights_h3) ridge_loss = tf.square(y_ - y) loss = tf.reduce_mean(ridge_loss + beta*regularization) #Create the gradient descent optimizer with the given learning rate. optimizer = tf.train.GradientDescentOptimizer(learning_rate) train_op = optimizer.minimize(loss) error = tf.reduce_mean(tf.square(y_ - y)) train_errs = [] test_errs = [] n = trainX.shape[0] with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(epochs): # shuffle idx = np.arange(trainX.shape[0]) np.random.shuffle(idx) trainX, trainY = trainX[idx], trainY[idx] # implementing mini-batch GD for s in range(0, n-batch_size, batch_size): train_op.run(feed_dict={x: trainX[s:s+batch_size], y_: trainY[s:s+batch_size]}) train_err = error.eval(feed_dict={x: trainX, y_:trainY}) train_errs.append(train_err) test_err = error.eval(feed_dict={x: testX, y_:testY}) test_errs.append(test_err) if print_result: print("training iteration %d" %i, end="\r") if i % 100 == 0: print('iter %d: train error %g'%(i, train_errs[i])) print('iter %d: test error %g'%(i, test_errs[i])) pred = sess.run(y, feed_dict={x:testX}) if print_result: if epochs >= 20000: # plot learning curves plt.figure(1) plt.xlabel(str(epochs) + ' iterations') plt.ylabel('Error') z = 10000 plt.plot(range(z,epochs), train_errs[z:], c="r") plt.plot(range(z,epochs), test_errs[z:], c="b") plt.legend(["train error", "test error"],loc='upper left') plt.figure(2) plt.xlabel(str(epochs) + ' iterations') plt.ylabel('Error') z = 0 plt.plot(range(z,epochs), train_errs[z:], c="r") plt.plot(range(z,epochs), test_errs[z:], c="b") plt.legend(["train error", "test error"],loc='upper left') plt.figure(3) plt.xlabel('Sample number') plt.ylabel('Chance to Admit') plt.plot(testY, c="r") plt.plot(pred, c="b") plt.legend(["Target", "Predicted"],loc='upper left') plt.show() return test_errs[len(test_errs) -1] trainX, trainY, testX, testY = get_admission_data() trainX = np.delete(trainX, 3, 1) # delete 'SOP' testX = np.delete(testX, 3, 1) # delete 'SOP' import pandas as pd df = pd.DataFrame(columns = ['layers', 'dropouts', 'no. of neurons', 'Root Mean Square Error']) rms = gradientDescentOptimizer(trainX, trainY, testX, testY, epochs = 1000, num_layer = 3, num_neuron = 10, with_dropouts = False) df.loc[0] = [3, False, 10, rms] layers = [3,4,5] dropout = [True,False] for num_layer in layers: for with_dropouts in dropout: rms = gradientDescentOptimizer(trainX, trainY, testX, testY, epochs = 1000, num_layer = num_layer, num_neuron = 50, with_dropouts = with_dropouts) df.loc[len(df)] = [num_layer, with_dropouts, 50, rms] print([num_layer, with_dropouts, 50, rms]) print(df)
name = input("What's your name?\n") print("Hi " + name + " How are you?") user = input() #for saving useres answers print("Thanks," + name + " Good bye.")
class Person(): def __init__(self, name, age, idNum): self.name = name self.age = age self.idNum = idNum def output(self): print("Your name is " + self.name + " your age is " + self.age + " Your ID num is " + self.idNum) ana = Person("Ana", "28", "23225655") class Man(): #New class that is over Child class def strong(self): print("Man is strong") class Child(Person, Man): pass kid = Child("Davor", "28", "232555664") kid.output() kid.strong() # Now kid object will inherit these features
myvarable = 10 if myvarable == 5: print("This is true, myvariable = 10") else: print("this is false myvariable is NOT 10") print("Lession for Greater, less than, and aqual operator") enyvar = 150 othervar = 5000 if enyvar >= othervar: print("enyvar is greater than othervar") else: print("No")
print("This program checks if you are eligbe for loan or not") salary = int(input("How much is your salary")) if(salary>1000): amount = 200 print("You are eligbe to get a bank loan py paying", amount, "monthly") elif(salary == 1000): amount=500 print("you are eligbe to get bank loan with higher monthly price", amount, "monthly") else: print("Sorry you are not eligbe")
n = int(input("Введите числo: ")) z = 0 for i in range (1, n+1): y = 1 / i if i % 2 ==0: y = -y elif i % 2 !=0 or y ==1: y = y z += y print(z)
n = int(input("Введите число от 1 до 9 ")) x = n * 10 for i in range (n, x, n): print(i, end=" ")
y = int(input("Введите угол в градусах: ")) x = 30 #Градусы hours = y // 30 min = y % 30 * 2 # 30gr - 60min, 15gr - xmin => x = 15 * 60 / 30 print(min)
x = int(input("Введите число ")) max = x while x != 0: x = int(input("введите число ")) if x > max: max = x print(max)
import math def area(): a = float(input("Введите a ")) b = float(input("Введите b ")) c = float(input("Введите c ")) d = float(input("Введите d ")) e = float(input("Введите e ")) f = float(input("Введите f ")) g = float(input("Введите g ")) S1 = (a * b) // 2 S2 = (e * d) // 2 x = math.sqrt(f*f - (c*c /4)) # Высота треугольника cgf S3 = (c * x) / 2 return print("Площадь пятиугольника равна: ", S1 + S2 + S3) area()
a=(input("ведите число a ")) b=(input("ведите число b ")) c=(input("ведите число c ")) x=b z=a a=x b=c c=z print(a,b,c)
a = input("Введите число: ") length = len(a) x ="" for i in range(length): y = a[length -1 - i] x = x + y print(int(x))
n = int(input("Введите натуральное число n: ")) m = int(input("Введите число m: ")) p = int(input("Введите число p: ")) sum = 0 for i in range(n): d = int(input("Введите число d: ")) if d <= m: sum += d if sum % p == 0: print("Сумма чисел 'd' кратна числу p") else: print("Сумма чисел 'd' не кратна числу p")