code
stringlengths
26
870k
docstring
stringlengths
1
65.6k
func_name
stringlengths
1
194
language
stringclasses
1 value
repo
stringlengths
8
68
path
stringlengths
5
182
url
stringlengths
46
251
license
stringclasses
4 values
def test_scan_event_result_export_multi(self): """ Test scaneventresultexportmulti(self, ids, filetype="csv", dialect="excel") """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) search_results = sfwebui.scaneventresultexportmulti("", "") self.assertIsInstance(search_results, bytes) search_results = sfwebui.scaneventresultexportmulti("", "excel") self.assertIsInstance(search_results, bytes)
Test scaneventresultexportmulti(self, ids, filetype="csv", dialect="excel")
test_scan_event_result_export_multi
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_scan_search_result_export(self): """ Test scansearchresultexport(self, id, eventType=None, value=None, filetype="csv", dialect="excel") """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) search_results = sfwebui.scansearchresultexport("") self.assertIsInstance(search_results, bytes) search_results = sfwebui.scansearchresultexport("", None, None, "excel") self.assertIsInstance(search_results, bytes)
Test scansearchresultexport(self, id, eventType=None, value=None, filetype="csv", dialect="excel")
test_scan_search_result_export
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_scan_export_logs_invalid_scan_id_should_return_string(self): """ Test scanexportlogs(self: 'SpiderFootWebUi', id: str, dialect: str = "excel") -> str """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) logs = sfwebui.scanexportlogs(None, "excel") self.assertIsInstance(logs, str) self.assertIn("Scan ID not found.", logs)
Test scanexportlogs(self: 'SpiderFootWebUi', id: str, dialect: str = "excel") -> str
test_scan_export_logs_invalid_scan_id_should_return_string
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_scan_export_json_multi(self): """ Test scanexportjsonmulti(self, ids) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) search_results = sfwebui.scanexportjsonmulti(None) self.assertIsInstance(search_results, bytes)
Test scanexportjsonmulti(self, ids)
test_scan_export_json_multi
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_scan_viz_should_return_a_string(self): """ Test scanviz(self, id, gexf="0") """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) scan_viz = sfwebui.scanviz(None, None) self.assertIsInstance(scan_viz, str)
Test scanviz(self, id, gexf="0")
test_scan_viz_should_return_a_string
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_scan_viz_multi_should_return_a_string(self): """ Test scanvizmulti(self, ids, gexf="1") """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) scan_viz_multi = sfwebui.scanvizmulti(None, None) self.assertIsInstance(scan_viz_multi, str)
Test scanvizmulti(self, ids, gexf="1")
test_scan_viz_multi_should_return_a_string
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_rerunscanmulti(self): """ Test rerunscanmulti(self, ids) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) rerunscanmulti = sfwebui.rerunscanmulti("example scan instance") self.assertIsInstance(rerunscanmulti, str)
Test rerunscanmulti(self, ids)
test_rerunscanmulti
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_newscan(self): """ Test newscan(self) """ self.assertEqual('TBD', 'TBD')
Test newscan(self)
test_newscan
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_clonescan(self): """ Test clonescan(self, id) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) clone_scan = sfwebui.clonescan("example scan instance") self.assertIsInstance(clone_scan, str)
Test clonescan(self, id)
test_clonescan
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_index(self): """ Test index(self) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) index = sfwebui.index() self.assertIsInstance(index, str)
Test index(self)
test_index
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_scaninfo(self): """ Test scaninfo(self, id) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) scan_info = sfwebui.scaninfo("example scan instance") self.assertIsInstance(scan_info, str)
Test scaninfo(self, id)
test_scaninfo
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_scandelete_invalid_scanid_should_return_an_error(self): """ Test scandelete(self, id) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) scan_delete = sfwebui.scandelete("example scan id") self.assertIsInstance(scan_delete, dict) self.assertEqual("Scan example scan id does not exist", scan_delete.get('error').get('message'))
Test scandelete(self, id)
test_scandelete_invalid_scanid_should_return_an_error
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_savesettings_invalid_csrf_token_should_return_an_error(self): """ Test savesettings(self, allopts, token, configFile=None) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) save_settings = sfwebui.savesettings(None, "invalid token", None) self.assertIsInstance(save_settings, str) self.assertIn("Invalid token", save_settings)
Test savesettings(self, allopts, token, configFile=None)
test_savesettings_invalid_csrf_token_should_return_an_error
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_result_set_fp(self): """ Test resultsetfp(self, id, resultids, fp) """ self.assertEqual('TBD', 'TBD')
Test resultsetfp(self, id, resultids, fp)
test_result_set_fp
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_ping_should_return_list(self): """ Test ping(self) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) ping = sfwebui.ping() self.assertIsInstance(ping, list) self.assertEqual(ping[0], 'SUCCESS')
Test ping(self)
test_ping_should_return_list
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_query_should_perform_sql_query(self): """ Test query(self, query) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) select = "12345" query = sfwebui.query(f"SELECT {select}") self.assertIsInstance(query, list) self.assertEqual(len(query), 1) self.assertEqual(str(query[0].get(select)), str(select))
Test query(self, query)
test_query_should_perform_sql_query
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_start_scan_should_start_a_scan(self): """ Test startscan(self, scanname, scantarget, modulelist, typelist, usecase) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) start_scan = sfwebui.startscan('example scan name', 'spiderfoot.net', 'example module list', None, None) self.assertEqual(start_scan, start_scan) self.assertEqual('TBD', 'TBD')
Test startscan(self, scanname, scantarget, modulelist, typelist, usecase)
test_start_scan_should_start_a_scan
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_stopscan_invalid_scanid_should_return_an_error(self): """ Test stopscan(self, id) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) stop_scan = sfwebui.stopscan("example scan id") self.assertIsInstance(stop_scan, dict) self.assertEqual("Scan example scan id does not exist", stop_scan.get('error').get('message'))
Test stopscan(self, id)
test_stopscan_invalid_scanid_should_return_an_error
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_scanlog_should_return_a_list(self): """ Test scanlog(self, id, limit=None, rowId=None, reverse=None) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) scan_log = sfwebui.scanlog(None, None, None, None) self.assertIsInstance(scan_log, list) scan_log = sfwebui.scanlog('', '', '', '') self.assertIsInstance(scan_log, list)
Test scanlog(self, id, limit=None, rowId=None, reverse=None)
test_scanlog_should_return_a_list
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_scanerrors_should_return_a_list(self): """ Test scanerrors(self, id, limit=None) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) scan_errors = sfwebui.scanerrors(None, None) self.assertIsInstance(scan_errors, list) scan_errors = sfwebui.scanerrors('', '') self.assertIsInstance(scan_errors, list)
Test scanerrors(self, id, limit=None)
test_scanerrors_should_return_a_list
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_scanlist_should_return_a_list(self): """ Test scanlist(self) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) scan_list = sfwebui.scanlist() self.assertIsInstance(scan_list, list)
Test scanlist(self)
test_scanlist_should_return_a_list
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_scanstatus_should_return_a_list(self): """ Test scanstatus(self, id) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) scan_status = sfwebui.scanstatus("example scan instance") self.assertIsInstance(scan_status, list)
Test scanstatus(self, id)
test_scanstatus_should_return_a_list
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_scansummary_should_return_a_list(self): """ Test scansummary(self, id, by) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) scan_summary = sfwebui.scansummary(None, None) self.assertIsInstance(scan_summary, list) scan_summary = sfwebui.scansummary('', '') self.assertIsInstance(scan_summary, list)
Test scansummary(self, id, by)
test_scansummary_should_return_a_list
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_scaneventresults_should_return_a_list(self): """ Test scaneventresults(self, id, eventType, filterfp=False) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) scan_results = sfwebui.scaneventresults(None, None, None) self.assertIsInstance(scan_results, list) scan_results = sfwebui.scaneventresults('', '', '') self.assertIsInstance(scan_results, list)
Test scaneventresults(self, id, eventType, filterfp=False)
test_scaneventresults_should_return_a_list
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_scaneventresultsunique_should_return_a_list(self): """ Test scaneventresultsunique(self, id, eventType, filterfp=False) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) scan_results = sfwebui.scaneventresultsunique(None, None, None) self.assertIsInstance(scan_results, list) scan_results = sfwebui.scaneventresultsunique('', '', '') self.assertIsInstance(scan_results, list)
Test scaneventresultsunique(self, id, eventType, filterfp=False)
test_scaneventresultsunique_should_return_a_list
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_search_should_return_a_list(self): """ Test search(self, id=None, eventType=None, value=None) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) search_results = sfwebui.search(None, None, None) self.assertIsInstance(search_results, list) search_results = sfwebui.search('', '', '') self.assertIsInstance(search_results, list)
Test search(self, id=None, eventType=None, value=None)
test_search_should_return_a_list
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_scan_history_missing_scanid_should_return_error(self): """ Test scanhistory(self, id) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) scan_history = sfwebui.scanhistory(None) self.assertIsInstance(scan_history, dict) self.assertEqual("No scan specified", scan_history.get('error').get('message')) scan_history = sfwebui.scanhistory("example scan id") self.assertIsInstance(scan_history, list)
Test scanhistory(self, id)
test_scan_history_missing_scanid_should_return_error
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_scan_element_type_discovery_should_return_a_dict(self): """ Test scanelementtypediscovery(self, id, eventType) """ opts = self.default_options opts['__modules__'] = dict() sfwebui = SpiderFootWebUi(self.web_default_options, opts) scan_element_type_discovery = sfwebui.scanelementtypediscovery(None, None) self.assertIsInstance(scan_element_type_discovery, dict) scan_element_type_discovery = sfwebui.scanelementtypediscovery('', '') self.assertIsInstance(scan_element_type_discovery, dict)
Test scanelementtypediscovery(self, id, eventType)
test_scan_element_type_discovery_should_return_a_dict
python
smicallef/spiderfoot
test/unit/test_spiderfootwebui.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootwebui.py
MIT
def test_init_argument_start_false_should_create_a_scan_without_starting_the_scan(self): """ Test __init__(self, scanName, scanId, scanTarget, targetType, moduleList, globalOpts, start=True) """ opts = self.default_options opts['__modules__'] = dict() scan_id = str(uuid.uuid4()) module_list = ['sfp__stor_db'] sfscan = SpiderFootScanner("example scan name", scan_id, "spiderfoot.net", "INTERNET_NAME", module_list, opts, start=False) self.assertIsInstance(sfscan, SpiderFootScanner) self.assertEqual(sfscan.status, "INITIALIZING")
Test __init__(self, scanName, scanId, scanTarget, targetType, moduleList, globalOpts, start=True)
test_init_argument_start_false_should_create_a_scan_without_starting_the_scan
python
smicallef/spiderfoot
test/unit/test_spiderfootscanner.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootscanner.py
MIT
def test_init_argument_targetType_of_invalid_type_should_raise_TypeError(self): """ Test __init__(self, scanName, scanId, scanTarget, targetType, moduleList, globalOpts) """ scan_id = str(uuid.uuid4()) module_list = ['sfp__stor_db'] invalid_types = [None, list(), dict(), int()] for invalid_type in invalid_types: with self.subTest(invalid_type=invalid_type): with self.assertRaises(TypeError): SpiderFootScanner("example scan name", scan_id, "spiderfoot.net", invalid_type, module_list, self.default_options, start=False)
Test __init__(self, scanName, scanId, scanTarget, targetType, moduleList, globalOpts)
test_init_argument_targetType_of_invalid_type_should_raise_TypeError
python
smicallef/spiderfoot
test/unit/test_spiderfootscanner.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootscanner.py
MIT
def test__setStatus_argument_status_of_invalid_type_should_raise_TypeError(self): """ Test __setStatus(self, status, started=None, ended=None) """ opts = self.default_options opts['__modules__'] = dict() scan_id = str(uuid.uuid4()) module_list = ['sfp__stor_db'] sfscan = SpiderFootScanner("example scan name", scan_id, "spiderfoot.net", "IP_ADDRESS", module_list, opts, start=False) invalid_types = [None, list(), dict(), int()] for invalid_type in invalid_types: with self.subTest(invalid_type=invalid_type): with self.assertRaises(TypeError): sfscan._SpiderFootScanner__setStatus(invalid_type)
Test __setStatus(self, status, started=None, ended=None)
test__setStatus_argument_status_of_invalid_type_should_raise_TypeError
python
smicallef/spiderfoot
test/unit/test_spiderfootscanner.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/test_spiderfootscanner.py
MIT
def test_init(self): """ Test __init__(self) """ sfp = SpiderFootPlugin() self.assertIsInstance(sfp, SpiderFootPlugin)
Test __init__(self)
test_init
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_updateSocket(self): """ Test _updateSocket(self, sock) """ sfp = SpiderFootPlugin() sfp._updateSocket(None) self.assertEqual('TBD', 'TBD')
Test _updateSocket(self, sock)
test_updateSocket
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_clearListeners(self): """ Test clearListeners(self) """ sfp = SpiderFootPlugin() sfp.clearListeners() self.assertEqual('TBD', 'TBD')
Test clearListeners(self)
test_clearListeners
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_setup(self): """ Test setup(self, sf, userOpts=dict()) """ sfp = SpiderFootPlugin() sfp.setup(None) sfp.setup(None, None) self.assertEqual('TBD', 'TBD')
Test setup(self, sf, userOpts=dict())
test_setup
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_enrichTargetargument_target_should_enrih_target(self): """ Test enrichTarget(self, target) """ sfp = SpiderFootPlugin() sfp.enrichTarget(None) self.assertEqual('TBD', 'TBD')
Test enrichTarget(self, target)
test_enrichTargetargument_target_should_enrih_target
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_setTarget_should_set_a_target(self): """ Test setTarget(self, target) """ sfp = SpiderFootPlugin() target = SpiderFootTarget("spiderfoot.net", "INTERNET_NAME") sfp.setTarget(target) get_target = sfp.getTarget().targetValue self.assertIsInstance(get_target, str) self.assertEqual("spiderfoot.net", get_target)
Test setTarget(self, target)
test_setTarget_should_set_a_target
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_set_dbhargument_dbh_should_set_database_handle(self): """ Test setDbh(self, dbh) """ sfdb = SpiderFootDb(self.default_options, False) sfp = SpiderFootPlugin() sfp.setDbh(sfdb) self.assertIsInstance(sfp.__sfdb__, SpiderFootDb)
Test setDbh(self, dbh)
test_set_dbhargument_dbh_should_set_database_handle
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_setScanId_argument_id_should_set_a_scan_id(self): """ Test setScanId(self, id) """ sfp = SpiderFootPlugin() scan_id = '1234' sfp.setScanId(scan_id) get_scan_id = sfp.getScanId() self.assertIsInstance(get_scan_id, str) self.assertEqual(scan_id, get_scan_id)
Test setScanId(self, id)
test_setScanId_argument_id_should_set_a_scan_id
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_getScanId_should_return_a_string(self): """ Test getScanId(self) """ sfp = SpiderFootPlugin() scan_id = 'example scan id' sfp.setScanId(scan_id) get_scan_id = sfp.getScanId() self.assertIsInstance(get_scan_id, str) self.assertEqual(scan_id, get_scan_id)
Test getScanId(self)
test_getScanId_should_return_a_string
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_getTarget_should_return_a_string(self): """ Test getTarget(self) """ sfp = SpiderFootPlugin() target = SpiderFootTarget("spiderfoot.net", "INTERNET_NAME") sfp.setTarget(target) get_target = sfp.getTarget().targetValue self.assertIsInstance(get_target, str) self.assertEqual("spiderfoot.net", get_target)
Test getTarget(self)
test_getTarget_should_return_a_string
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_register_listener(self): """ Test registerListener(self, listener) """ sfp = SpiderFootPlugin() sfp.registerListener(None) self.assertEqual('TBD', 'TBD')
Test registerListener(self, listener)
test_register_listener
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_setOutputFilter_should_set_output_filter(self): """ Test setOutputFilter(self, types) """ sfp = SpiderFootPlugin() output_filter = "test filter" sfp.setOutputFilter("test filter") self.assertEqual(output_filter, sfp.__outputFilter__)
Test setOutputFilter(self, types)
test_setOutputFilter_should_set_output_filter
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_tempStorage_should_return_a_dict(self): """ Test tempStorage(self) """ sfp = SpiderFootPlugin() temp_storage = sfp.tempStorage() self.assertIsInstance(temp_storage, dict)
Test tempStorage(self)
test_tempStorage_should_return_a_dict
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_notifyListeners_should_notify_listener_modules(self): """ Test notifyListeners(self, sfEvent) """ sfp = SpiderFootPlugin() sfdb = SpiderFootDb(self.default_options, False) sfp.setDbh(sfdb) event_type = 'ROOT' event_data = 'test data' module = 'test module' source_event = None evt = SpiderFootEvent(event_type, event_data, module, source_event) sfp.notifyListeners(evt) self.assertEqual('TBD', 'TBD')
Test notifyListeners(self, sfEvent)
test_notifyListeners_should_notify_listener_modules
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_checkForStop(self): """ Test checkForStop(self) """ sfp = SpiderFootPlugin() class DatabaseStub: def scanInstanceGet(self, scanId): return [None, None, None, None, None, status] sfp.__sfdb__ = DatabaseStub() sfp.__scanId__ = 'example scan id' # pseudo-parameterized test scan_statuses = [ (None, False), ("anything", False), ("RUNNING", False), ("ABORT-REQUESTED", True) ] for status, expectedReturnValue in scan_statuses: returnValue = sfp.checkForStop() self.assertEqual(returnValue, expectedReturnValue, status)
Test checkForStop(self)
test_checkForStop
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_watchedEvents_should_return_a_list(self): """ Test watchedEvents(self) """ sfp = SpiderFootPlugin() watched_events = sfp.watchedEvents() self.assertIsInstance(watched_events, list)
Test watchedEvents(self)
test_watchedEvents_should_return_a_list
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_producedEvents_should_return_a_list(self): """ Test producedEvents(self) """ sfp = SpiderFootPlugin() produced_events = sfp.producedEvents() self.assertIsInstance(produced_events, list)
Test producedEvents(self)
test_producedEvents_should_return_a_list
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_handleEvent(self): """ Test handleEvent(self, sfEvent) """ event_type = 'ROOT' event_data = 'example event data' module = '' source_event = '' evt = SpiderFootEvent(event_type, event_data, module, source_event) sfp = SpiderFootPlugin() sfp.handleEvent(evt)
Test handleEvent(self, sfEvent)
test_handleEvent
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_start(self): """ Test start(self) """ sf = SpiderFoot(self.default_options) sfp = SpiderFootPlugin() sfp.sf = sf sfp.start()
Test start(self)
test_start
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootplugin.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootplugin.py
MIT
def test_getEquivalents_should_return_a_list(self): """ Test _getEquivalents(self, typeName) """ target_value = 'example target value' target_type = 'IP_ADDRESS' target = SpiderFootTarget(target_value, target_type) equivalents = target._getEquivalents(target_type) self.assertEqual(list, type(equivalents))
Test _getEquivalents(self, typeName)
test_getEquivalents_should_return_a_list
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfoottarget.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfoottarget.py
MIT
def test_getNames_should_return_a_list(self): """ Test getNames(self) """ target_value = 'example target value' target_type = 'IP_ADDRESS' target = SpiderFootTarget(target_value, target_type) names = target.getNames() self.assertEqual(list, type(names))
Test getNames(self)
test_getNames_should_return_a_list
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfoottarget.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfoottarget.py
MIT
def test_getAddresses_should_return_a_list(self): """ Test getAddresses(self) """ target_value = 'example target value' target_type = 'IP_ADDRESS' target = SpiderFootTarget(target_value, target_type) addresses = target.getAddresses() self.assertEqual(list, type(addresses)) target_value = 'example target value' target_type = 'IPV6_ADDRESS' target = SpiderFootTarget(target_value, target_type) addresses = target.getAddresses() self.assertEqual(list, type(addresses))
Test getAddresses(self)
test_getAddresses_should_return_a_list
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfoottarget.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfoottarget.py
MIT
def test_init_argument_opts_of_invalid_type_should_raise_TypeError(self): """ Test __init__(self, opts, init=False) """ invalid_types = [None, "", list(), int()] for invalid_type in invalid_types: with self.subTest(invalid_type=invalid_type): with self.assertRaises(TypeError): SpiderFootDb(invalid_type)
Test __init__(self, opts, init=False)
test_init_argument_opts_of_invalid_type_should_raise_TypeError
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_create_should_create_database_schema(self): """ Test create(self) """ sfdb = SpiderFootDb(self.default_options, False) sfdb.create() self.assertEqual('TBD', 'TBD')
Test create(self)
test_create_should_create_database_schema
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_close_should_close_database_connection(self): """ Test close(self) """ sfdb = SpiderFootDb(self.default_options, False) sfdb.close()
Test close(self)
test_close_should_close_database_connection
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_search_should_return_a_list(self): """ Test search(self, criteria, filterFp=False) """ sfdb = SpiderFootDb(self.default_options, False) criteria = { 'scan_id': "example scan id", 'type': "example type", 'value': "example value", 'regex': "example regex" } search_results = sfdb.search(criteria, False) self.assertIsInstance(search_results, list) self.assertFalse(search_results)
Test search(self, criteria, filterFp=False)
test_search_should_return_a_list
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_eventTypes_should_return_a_list(self): """ Test eventTypes(self) """ sfdb = SpiderFootDb(self.default_options, False) event_types = sfdb.eventTypes() self.assertIsInstance(event_types, list)
Test eventTypes(self)
test_eventTypes_should_return_a_list
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanLogEvent_should_create_a_scan_log_event(self): """ Test scanLogEvent(self, instanceId, classification, message, component=None) """ sfdb = SpiderFootDb(self.default_options, False) sfdb.scanLogEvent("", "", "", None) self.assertEqual('TBD', 'TBD')
Test scanLogEvent(self, instanceId, classification, message, component=None)
test_scanLogEvent_should_create_a_scan_log_event
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanInstanceCreate_should_create_a_scan_instance(self): """ Test scanInstanceCreate(self, instanceId, scanName, scanTarget) """ sfdb = SpiderFootDb(self.default_options, False) instance_id = "example instance id" scan_name = "example scan name" scan_target = "example scan target" sfdb.scanInstanceCreate(instance_id, scan_name, scan_target) self.assertEqual('TBD', 'TBD')
Test scanInstanceCreate(self, instanceId, scanName, scanTarget)
test_scanInstanceCreate_should_create_a_scan_instance
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanInstanceSet(self): """ Test scanInstanceSet(self, instanceId, started=None, ended=None, status=None) """ sfdb = SpiderFootDb(self.default_options, False) scan_instance = 'example scan instance' sfdb.scanInstanceSet(scan_instance, None, None, None) self.assertEqual('TBD', 'TBD')
Test scanInstanceSet(self, instanceId, started=None, ended=None, status=None)
test_scanInstanceSet
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanInstanceGet_should_return_scan_info(self): """ Test scanInstanceGet(self, instanceId) """ sfdb = SpiderFootDb(self.default_options, False) instance_id = "example instance id" scan_name = "example scan name" scan_target = "example scan target" sfdb.scanInstanceCreate(instance_id, scan_name, scan_target) scan_instance_get = sfdb.scanInstanceGet(instance_id) self.assertEqual(len(scan_instance_get), 6) self.assertIsInstance(scan_instance_get[0], str) self.assertEqual(scan_instance_get[0], scan_name) self.assertIsInstance(scan_instance_get[1], str) self.assertEqual(scan_instance_get[1], scan_target) self.assertIsInstance(scan_instance_get[2], float) self.assertIsInstance(scan_instance_get[3], float) self.assertIsInstance(scan_instance_get[4], float) self.assertIsInstance(scan_instance_get[5], str) self.assertEqual(scan_instance_get[5], 'CREATED')
Test scanInstanceGet(self, instanceId)
test_scanInstanceGet_should_return_scan_info
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanResultSummary_should_return_a_list(self): """ Test scanResultSummary(self, instanceId, by="type") """ sfdb = SpiderFootDb(self.default_options, False) instance_id = "example instance id" scan_results_summary = sfdb.scanResultSummary(instance_id, "type") self.assertIsInstance(scan_results_summary, list)
Test scanResultSummary(self, instanceId, by="type")
test_scanResultSummary_should_return_a_list
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanResultEvent_should_return_a_list(self): """ Test scanResultEvent(self, instanceId, eventType='ALL', filterFp=False) """ sfdb = SpiderFootDb(self.default_options, False) instance_id = "example instance id" scan_result_event = sfdb.scanResultEvent(instance_id, "", False) self.assertIsInstance(scan_result_event, list)
Test scanResultEvent(self, instanceId, eventType='ALL', filterFp=False)
test_scanResultEvent_should_return_a_list
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanResultEventUnique_should_return_a_list(self): """ Test scanResultEventUnique(self, instanceId, eventType='ALL', filterFp=False) """ sfdb = SpiderFootDb(self.default_options, False) instance_id = "example instance id" scan_result_event = sfdb.scanResultEventUnique(instance_id, "", False) self.assertIsInstance(scan_result_event, list)
Test scanResultEventUnique(self, instanceId, eventType='ALL', filterFp=False)
test_scanResultEventUnique_should_return_a_list
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanLogs_should_return_a_list(self): """ Test scanLogs(self, instanceId, limit=None, fromRowId=None, reverse=False) """ sfdb = SpiderFootDb(self.default_options, False) instance_id = "example instance id" scan_logs = sfdb.scanLogs(instance_id, None, None, None) self.assertIsInstance(scan_logs, list) self.assertEqual('TBD', 'TBD')
Test scanLogs(self, instanceId, limit=None, fromRowId=None, reverse=False)
test_scanLogs_should_return_a_list
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanErrors_should_return_a_list(self): """ Test scanErrors(self, instanceId, limit=None) """ sfdb = SpiderFootDb(self.default_options, False) instance_id = "example instance id" scan_instance = sfdb.scanErrors(instance_id) self.assertIsInstance(scan_instance, list)
Test scanErrors(self, instanceId, limit=None)
test_scanErrors_should_return_a_list
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanInstanceDelete(self): """ Test scanInstanceDelete(self, instanceId) """ sfdb = SpiderFootDb(self.default_options, False) instance_id = "example instance id" sfdb.scanInstanceDelete(instance_id) self.assertEqual('TBD', 'TBD')
Test scanInstanceDelete(self, instanceId)
test_scanInstanceDelete
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanResultsUpdateFP(self): """ Test scanResultsUpdateFP(self, instanceId, resultHashes, fpFlag) """ sfdb = SpiderFootDb(self.default_options, False) instance_id = "example instance id" scan_name = "example scan name" scan_target = "example scan target" sfdb.scanInstanceCreate(instance_id, scan_name, scan_target) result_hashes = None fp_flag = None sfdb.scanResultsUpdateFP(instance_id, result_hashes, fp_flag) self.assertEqual('TBD', 'TBD')
Test scanResultsUpdateFP(self, instanceId, resultHashes, fpFlag)
test_scanResultsUpdateFP
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_configSet_should_set_config_opts(self): """ Test configSet(self, optMap=dict()) """ sfdb = SpiderFootDb(self.default_options, False) opts = dict() opts['example'] = 'example non-default config opt' sfdb.configSet(opts) config = sfdb.configGet() self.assertIsInstance(config, dict) self.assertIn('example', config) self.assertEqual('TBD', 'TBD')
Test configSet(self, optMap=dict())
test_configSet_should_set_config_opts
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_configGet_should_return_a_dict(self): """ Test configGet(self) """ sfdb = SpiderFootDb(self.default_options, False) config = sfdb.configGet() self.assertIsInstance(config, dict)
Test configGet(self)
test_configGet_should_return_a_dict
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_configClear_should_clear_config(self): """ Test configClear(self) """ sfdb = SpiderFootDb(self.default_options, False) opts = dict() opts['example'] = 'example non-default config opt' sfdb.configSet(opts) config = sfdb.configGet() self.assertIsInstance(config, dict) self.assertIn('example', config) sfdb.configClear() config = sfdb.configGet() self.assertIsInstance(config, dict) self.assertNotIn('example', config)
Test configClear(self)
test_configClear_should_clear_config
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanConfigSet_argument_optMap_of_invalid_type_should_raise_TypeError(self): """ Test scanConfigSet(self, id, optMap=dict()) """ sfdb = SpiderFootDb(self.default_options, False) instance_id = "example instance id" invalid_types = [None, ""] for invalid_type in invalid_types: with self.subTest(invalid_type=invalid_type): with self.assertRaises(TypeError): sfdb.scanConfigSet(instance_id, invalid_type)
Test scanConfigSet(self, id, optMap=dict())
test_scanConfigSet_argument_optMap_of_invalid_type_should_raise_TypeError
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanConfigGet_should_return_a_dict(self): """ Test scanConfigGet(self, instanceId) """ sfdb = SpiderFootDb(self.default_options, False) instance_id = "example instance id" scan_config = sfdb.scanConfigGet(instance_id) self.assertIsInstance(scan_config, dict)
Test scanConfigGet(self, instanceId)
test_scanConfigGet_should_return_a_dict
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanEventStore_should_store_a_scan_event(self): """ Test scanEventStore(self, instanceId, sfEvent, truncateSize=0) """ sfdb = SpiderFootDb(self.default_options, False) event_type = 'ROOT' event_data = 'example data' module = '' source_event = '' event = SpiderFootEvent(event_type, event_data, module, source_event) instance_id = "example instance id" sfdb.scanEventStore(instance_id, event)
Test scanEventStore(self, instanceId, sfEvent, truncateSize=0)
test_scanEventStore_should_store_a_scan_event
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanInstanceList_should_return_a_list(self): """ Test scanInstanceList(self) """ sfdb = SpiderFootDb(self.default_options, False) scan_instances = sfdb.scanInstanceList() self.assertIsInstance(scan_instances, list)
Test scanInstanceList(self)
test_scanInstanceList_should_return_a_list
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanResultHistory_should_return_a_list(self): """ Test scanResultHistory(self, instanceId) """ sfdb = SpiderFootDb(self.default_options, False) instance_id = "example instance id" scan_result_history = sfdb.scanResultHistory(instance_id) self.assertIsInstance(scan_result_history, list)
Test scanResultHistory(self, instanceId)
test_scanResultHistory_should_return_a_list
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanElementSourcesDirect_should_return_a_list(self): """ Test scanElementSourcesDirect(self, instanceId, elementIdList) """ sfdb = SpiderFootDb(self.default_options, False) instance_id = "example instance id" element_id_list = [] scan_element_sources_direct = sfdb.scanElementSourcesDirect(instance_id, element_id_list) self.assertIsInstance(scan_element_sources_direct, list) self.assertEqual('TBD', 'TBD')
Test scanElementSourcesDirect(self, instanceId, elementIdList)
test_scanElementSourcesDirect_should_return_a_list
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanElementChildrenDirect_should_return_a_list(self): """ Test scanElementChildrenDirect(self, instanceId, elementIdList) """ sfdb = SpiderFootDb(self.default_options, False) instance_id = "example instance id" scan_element_children_direct = sfdb.scanElementChildrenDirect(instance_id, list()) self.assertIsInstance(scan_element_children_direct, list) self.assertEqual('TBD', 'TBD')
Test scanElementChildrenDirect(self, instanceId, elementIdList)
test_scanElementChildrenDirect_should_return_a_list
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanElementSourcesAll_should_return_a_list(self): """ Test scanElementSourcesAll(self, instanceId, childData) """ sfdb = SpiderFootDb(self.default_options, False) instance_id = "example instance id" child_data = ["example child", "example child"] scan_element_sources_all = sfdb.scanElementSourcesAll(instance_id, child_data) self.assertIsInstance(scan_element_sources_all, list) self.assertEqual('TBD', 'TBD')
Test scanElementSourcesAll(self, instanceId, childData)
test_scanElementSourcesAll_should_return_a_list
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_scanElementChildrenAll_should_return_a_list(self): """ Test scanElementChildrenAll(self, instanceId, parentIds) """ sfdb = SpiderFootDb(self.default_options, False) instance_id = "example instance id" scan_element_children_all = sfdb.scanElementChildrenAll(instance_id, list()) self.assertIsInstance(scan_element_children_all, list) self.assertEqual('TBD', 'TBD')
Test scanElementChildrenAll(self, instanceId, parentIds)
test_scanElementChildrenAll_should_return_a_list
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootdb.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootdb.py
MIT
def test_threadPool(self): """ Test ThreadPool(sfp, threads=10) """ threads = 10 def callback(x, *args, **kwargs): return (x, args, list(kwargs.items())[0]) iterable = ["a", "b", "c"] args = ("arg1",) kwargs = {"kwarg1": "kwarg1"} expectedOutput = [ ("a", ("arg1",), ("kwarg1", "kwarg1")), ("b", ("arg1",), ("kwarg1", "kwarg1")), ("c", ("arg1",), ("kwarg1", "kwarg1")) ] # Example 1: using map() with SpiderFootThreadPool(threads) as pool: map_results = sorted( list(pool.map( callback, iterable, *args, saveResult=True, **kwargs )), key=lambda x: x[0] ) self.assertEqual(map_results, expectedOutput) # Example 2: using submit() with SpiderFootThreadPool(threads) as pool: pool.start() for i in iterable: pool.submit(callback, *((i,) + args), saveResult=True, **kwargs) submit_results = sorted( list(pool.shutdown()["default"]), key=lambda x: x[0] ) self.assertEqual(submit_results, expectedOutput) # Example 3: using both threads = 1 iterable2 = ["d", "e", "f"] expectedOutput2 = [ ("d", ("arg1",), ("kwarg1", "kwarg1")), ("e", ("arg1",), ("kwarg1", "kwarg1")), ("f", ("arg1",), ("kwarg1", "kwarg1")) ] pool = SpiderFootThreadPool(threads) pool.start() for i in iterable2: pool.submit(callback, *((i,) + args), taskName="submitTest", saveResult=True, **kwargs) map_results = sorted( list(pool.map( callback, iterable, *args, taskName="mapTest", saveResult=True, **kwargs )), key=lambda x: x[0] ) submit_results = sorted( list(pool.shutdown()["submitTest"]), key=lambda x: x[0] ) self.assertEqual(map_results, expectedOutput) self.assertEqual(submit_results, expectedOutput2)
Test ThreadPool(sfp, threads=10)
test_threadPool
python
smicallef/spiderfoot
test/unit/spiderfoot/test_spiderfootthreadpool.py
https://github.com/smicallef/spiderfoot/blob/master/test/unit/spiderfoot/test_spiderfootthreadpool.py
MIT
def test_handleEvent_event_data_raw_rir_data_containing_subdomain_should_return_internet_name_event(self): """ Test handleEvent(self, event) """ sf = SpiderFoot(self.default_options) module = sfp_dnsresolve() module.setup(sf, dict()) target_value = 'spiderfoot.net' target_type = 'INTERNET_NAME' target = SpiderFootTarget(target_value, target_type) module.setTarget(target) def new_notifyListeners(self, event): expected = 'INTERNET_NAME' if str(event.eventType) != expected: raise Exception(f"{event.eventType} != {expected}") expected = "www.spiderfoot.net" if str(event.data) != expected: raise Exception(f"{event.data} != {expected}") raise Exception("OK") module.notifyListeners = new_notifyListeners.__get__(module, sfp_dnsresolve) event_type = 'ROOT' event_data = 'example data' event_module = '' source_event = '' evt = SpiderFootEvent(event_type, event_data, event_module, source_event) event_type = 'RAW_RIR_DATA' event_data = 'example data www.spiderfoot.net example data' event_module = 'example module' source_event = evt evt = SpiderFootEvent(event_type, event_data, event_module, source_event) with self.assertRaises(Exception) as cm: module.handleEvent(evt) self.assertEqual("OK", str(cm.exception))
Test handleEvent(self, event)
test_handleEvent_event_data_raw_rir_data_containing_subdomain_should_return_internet_name_event
python
smicallef/spiderfoot
test/integration/modules/test_sfp_dnsresolve.py
https://github.com/smicallef/spiderfoot/blob/master/test/integration/modules/test_sfp_dnsresolve.py
MIT
def display_data(imgData): sum = 0 ''' 显示100个数(若是一个一个绘制将会非常慢,可以将要画的数字整理好,放到一个矩阵中,显示这个矩阵即可) - 初始化一个二维数组 - 将每行的数据调整成图像的矩阵,放进二维数组 - 显示即可 ''' pad = 1 display_array = -np.ones((pad+10*(20+pad),pad+10*(20+pad))) for i in range(10): for j in range(10): display_array[pad+i*(20+pad):pad+i*(20+pad)+20,pad+j*(20+pad):pad+j*(20+pad)+20] = (imgData[sum,:].reshape(20,20,order="F")) # order=F指定以列优先,在matlab中是这样的,python中需要指定,默认以行 sum += 1 plt.imshow(display_array,cmap='gray') #显示灰度图像 plt.axis('off') plt.show()
显示100个数(若是一个一个绘制将会非常慢,可以将要画的数字整理好,放到一个矩阵中,显示这个矩阵即可) - 初始化一个二维数组 - 将每行的数据调整成图像的矩阵,放进二维数组 - 显示即可
display_data
python
lawlite19/MachineLearning_Python
LogisticRegression/LogisticRegression_OneVsAll.py
https://github.com/lawlite19/MachineLearning_Python/blob/master/LogisticRegression/LogisticRegression_OneVsAll.py
MIT
def oneVsAll(X,y,num_labels,Lambda): # 初始化变量 m,n = X.shape all_theta = np.zeros((n+1,num_labels)) # 每一列对应相应分类的theta,共10列 X = np.hstack((np.ones((m,1)),X)) # X前补上一列1的偏置bias class_y = np.zeros((m,num_labels)) # 数据的y对应0-9,需要映射为0/1的关系 initial_theta = np.zeros((n+1,1)) # 初始化一个分类的theta # 映射y for i in range(num_labels): class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以赋值 #np.savetxt("class_y.csv", class_y[0:600,:], delimiter=',') '''遍历每个分类,计算对应的theta值''' for i in range(num_labels): #optimize.fmin_cg result = optimize.fmin_bfgs(costFunction, initial_theta, fprime=gradient, args=(X,class_y[:,i],Lambda)) # 调用梯度下降的优化方法 all_theta[:,i] = result.reshape(1,-1) # 放入all_theta中 all_theta = np.transpose(all_theta) return all_theta
遍历每个分类,计算对应的theta值
oneVsAll
python
lawlite19/MachineLearning_Python
LogisticRegression/LogisticRegression_OneVsAll.py
https://github.com/lawlite19/MachineLearning_Python/blob/master/LogisticRegression/LogisticRegression_OneVsAll.py
MIT
def predict_oneVsAll(all_theta,X): m = X.shape[0] num_labels = all_theta.shape[0] p = np.zeros((m,1)) X = np.hstack((np.ones((m,1)),X)) #在X最前面加一列1 h = sigmoid(np.dot(X,np.transpose(all_theta))) #预测 ''' 返回h中每一行最大值所在的列号 - np.max(h, axis=1)返回h中每一行的最大值(是某个数字的最大概率) - 最后where找到的最大概率所在的列号(列号即是对应的数字) ''' p = np.array(np.where(h[0,:] == np.max(h, axis=1)[0])) for i in np.arange(1, m): t = np.array(np.where(h[i,:] == np.max(h, axis=1)[i])) p = np.vstack((p,t)) return p
返回h中每一行最大值所在的列号 - np.max(h, axis=1)返回h中每一行的最大值(是某个数字的最大概率) - 最后where找到的最大概率所在的列号(列号即是对应的数字)
predict_oneVsAll
python
lawlite19/MachineLearning_Python
LogisticRegression/LogisticRegression_OneVsAll.py
https://github.com/lawlite19/MachineLearning_Python/blob/master/LogisticRegression/LogisticRegression_OneVsAll.py
MIT
def LogisticRegression(): data = loadtxtAndcsv_data("data2.txt", ",", np.float64) X = data[:,0:-1] y = data[:,-1] plot_data(X,y) # 作图 X = mapFeature(X[:,0],X[:,1]) #映射为多项式 initial_theta = np.zeros((X.shape[1],1))#初始化theta initial_lambda = 0.1 #初始化正则化系数,一般取0.01,0.1,1..... J = costFunction(initial_theta,X,y,initial_lambda) #计算一下给定初始化的theta和lambda求出的代价J print(J) #输出一下计算的值,应该为0.693147 #result = optimize.fmin(costFunction, initial_theta, args=(X,y,initial_lambda)) #直接使用最小化的方法,效果不好 '''调用scipy中的优化算法fmin_bfgs(拟牛顿法Broyden-Fletcher-Goldfarb-Shanno) - costFunction是自己实现的一个求代价的函数, - initial_theta表示初始化的值, - fprime指定costFunction的梯度 - args是其余测参数,以元组的形式传入,最后会将最小化costFunction的theta返回 ''' result = optimize.fmin_bfgs(costFunction, initial_theta, fprime=gradient, args=(X,y,initial_lambda)) p = predict(X, result) #预测 print(u'在训练集上的准确度为%f%%'%np.mean(np.float64(p==y)*100)) # 与真实值比较,p==y返回True,转化为float X = data[:,0:-1] y = data[:,-1] plotDecisionBoundary(result,X,y) #画决策边界
调用scipy中的优化算法fmin_bfgs(拟牛顿法Broyden-Fletcher-Goldfarb-Shanno) - costFunction是自己实现的一个求代价的函数, - initial_theta表示初始化的值, - fprime指定costFunction的梯度 - args是其余测参数,以元组的形式传入,最后会将最小化costFunction的theta返回
LogisticRegression
python
lawlite19/MachineLearning_Python
LogisticRegression/LogisticRegression.py
https://github.com/lawlite19/MachineLearning_Python/blob/master/LogisticRegression/LogisticRegression.py
MIT
def mapFeature(X1,X2): degree = 2; # 映射的最高次方 out = np.ones((X1.shape[0],1)) # 映射后的结果数组(取代X) ''' 这里以degree=2为例,映射为1,x1,x2,x1^2,x1,x2,x2^2 ''' for i in np.arange(1,degree+1): for j in range(i+1): temp = X1**(i-j)*(X2**j) #矩阵直接乘相当于matlab中的点乘.* out = np.hstack((out, temp.reshape(-1,1))) return out
这里以degree=2为例,映射为1,x1,x2,x1^2,x1,x2,x2^2
mapFeature
python
lawlite19/MachineLearning_Python
LogisticRegression/LogisticRegression.py
https://github.com/lawlite19/MachineLearning_Python/blob/master/LogisticRegression/LogisticRegression.py
MIT
def anomalyDetection_example(): '''加载并显示数据''' data = spio.loadmat('data1.mat') X = data['X'] plt = display_2d_data(X, 'bx') plt.title("origin data") plt.show() '''多元高斯分布函数,并可视化拟合的边界''' mu,sigma2 = estimateGaussian(X) # 参数估计(求均值和方差) #print (mu,sigma2) p = multivariateGaussian(X,mu,sigma2) # 多元高斯分布函数 #print (p) visualizeFit(X,mu,sigma2) # 显示图像 '''选择异常点(在交叉验证CV上训练得到最好的epsilon)''' Xval = data['Xval'] yval = data['yval'] # y=1代表异常 pval = multivariateGaussian(Xval, mu, sigma2) # 计算CV上的概率密度值 epsilon,F1 = selectThreshold(yval,pval) # 选择最优的epsilon临界值 print(u'在CV上得到的最好的epsilon是:%e'%epsilon) print(u'对应的F1Score值为:%f'%F1) outliers = np.where(p<epsilon) # 找到小于临界值的异常点,并作图 plt.plot(X[outliers,0],X[outliers,1],'o',markeredgecolor='r',markerfacecolor='w',markersize=10.) plt = display_2d_data(X, 'bx') plt.show()
加载并显示数据
anomalyDetection_example
python
lawlite19/MachineLearning_Python
AnomalyDetection/AnomalyDetection.py
https://github.com/lawlite19/MachineLearning_Python/blob/master/AnomalyDetection/AnomalyDetection.py
MIT
def multivariateGaussian(X,mu,Sigma2): k = len(mu) if (Sigma2.shape[0]>1): Sigma2 = np.diag(Sigma2) '''多元高斯分布函数''' X = X-mu argu = (2*np.pi)**(-k/2)*np.linalg.det(Sigma2)**(-0.5) p = argu*np.exp(-0.5*np.sum(np.dot(X,np.linalg.inv(Sigma2))*X,axis=1)) # axis表示每行 return p
多元高斯分布函数
multivariateGaussian
python
lawlite19/MachineLearning_Python
AnomalyDetection/AnomalyDetection.py
https://github.com/lawlite19/MachineLearning_Python/blob/master/AnomalyDetection/AnomalyDetection.py
MIT
def selectThreshold(yval,pval): '''初始化所需变量''' bestEpsilon = 0. bestF1 = 0. F1 = 0. step = (np.max(pval)-np.min(pval))/1000 '''计算''' for epsilon in np.arange(np.min(pval),np.max(pval),step): cvPrecision = pval<epsilon tp = np.sum((cvPrecision == 1) & (yval == 1).ravel()).astype(float) # sum求和是int型的,需要转为float fp = np.sum((cvPrecision == 1) & (yval == 0).ravel()).astype(float) fn = np.sum((cvPrecision == 0) & (yval == 1).ravel()).astype(float) precision = tp/(tp+fp) # 精准度 recision = tp/(tp+fn) # 召回率 F1 = (2*precision*recision)/(precision+recision) # F1Score计算公式 if F1 > bestF1: # 修改最优的F1 Score bestF1 = F1 bestEpsilon = epsilon return bestEpsilon,bestF1
初始化所需变量
selectThreshold
python
lawlite19/MachineLearning_Python
AnomalyDetection/AnomalyDetection.py
https://github.com/lawlite19/MachineLearning_Python/blob/master/AnomalyDetection/AnomalyDetection.py
MIT
def SVM(): '''data1——线性分类''' data1 = spio.loadmat('data1.mat') X = data1['X'] y = data1['y'] y = np.ravel(y) plot_data(X, y) model = svm.SVC(C=1.0, kernel='linear').fit(X, y) # 指定核函数为线性核函数 plot_decisionBoundary(X, y, model) # 画决策边界 '''data2——非线性分类''' data2 = spio.loadmat('data2.mat') X = data2['X'] y = data2['y'] y = np.ravel(y) plt = plot_data(X, y) plt.show() model = svm.SVC(gamma=100).fit(X, y) # gamma为核函数的系数,值越大拟合的越好 plot_decisionBoundary(X, y, model, class_='notLinear') # 画决策边界
data1——线性分类
SVM
python
lawlite19/MachineLearning_Python
SVM/SVM_scikit-learn.py
https://github.com/lawlite19/MachineLearning_Python/blob/master/SVM/SVM_scikit-learn.py
MIT
def PCA_2d_example(): '''加载数据并作图''' data = spio.loadmat('data.mat') X = data['X'] plt = plot_data_2d(X,'bo') plt.axis('square') plt.title('original data') plt.show() '''归一化数据并作图''' scaler = StandardScaler() scaler.fit(X) x_train = scaler.transform(X) plot_data_2d(x_train, 'bo') plt.axis('square') plt.title('scaler data') plt.show() '''拟合数据''' K=1 # 要降的维度 model = pca.PCA(n_components=K).fit(x_train) # 拟合数据,n_components定义要降的维度 Z = model.transform(x_train) # transform就会执行降维操作 '''数据恢复并作图''' Ureduce = model.components_ # 得到降维用的Ureduce x_rec = np.dot(Z,Ureduce) # 数据恢复 plot_data_2d(x_rec,'bo') plt.plot() plt.axis('square') plt.title('recover data') plt.show()
加载数据并作图
PCA_2d_example
python
lawlite19/MachineLearning_Python
PCA/PCA_scikit-learn.py
https://github.com/lawlite19/MachineLearning_Python/blob/master/PCA/PCA_scikit-learn.py
MIT
def PCA_face_example(): '''加载数据并显示''' image_data = spio.loadmat('data_faces.mat') X = image_data['X'] display_imageData(X[0:100,:]) # 显示100个最初图像 '''归一化数据''' scaler = StandardScaler() scaler.fit(X) x_train = scaler.transform(X) '''拟合模型''' K=100 model = pca.PCA(n_components=K).fit(x_train) Z = model.transform(x_train) Ureduce = model.components_ display_imageData(Ureduce[0:36,:]) # 可视化部分U数据 x_rec = np.dot(Z,Ureduce) display_imageData(x_rec[0:100,:]) # 显示恢复的数据
加载数据并显示
PCA_face_example
python
lawlite19/MachineLearning_Python
PCA/PCA_scikit-learn.py
https://github.com/lawlite19/MachineLearning_Python/blob/master/PCA/PCA_scikit-learn.py
MIT
def display_imageData(imgData): sum = 0 ''' 显示100个数(若是一个一个绘制将会非常慢,可以将要画的图片整理好,放到一个矩阵中,显示这个矩阵即可) - 初始化一个二维数组 - 将每行的数据调整成图像的矩阵,放进二维数组 - 显示即可 ''' m,n = imgData.shape width = np.int32(np.round(np.sqrt(n))) height = np.int32(n/width); rows_count = np.int32(np.floor(np.sqrt(m))) cols_count = np.int32(np.ceil(m/rows_count)) pad = 1 display_array = -np.ones((pad+rows_count*(height+pad),pad+cols_count*(width+pad))) for i in range(rows_count): for j in range(cols_count): max_val = np.max(np.abs(imgData[sum,:])) display_array[pad+i*(height+pad):pad+i*(height+pad)+height,pad+j*(width+pad):pad+j*(width+pad)+width] = imgData[sum,:].reshape(height,width,order="F")/max_val # order=F指定以列优先,在matlab中是这样的,python中需要指定,默认以行 sum += 1 plt.imshow(display_array,cmap='gray') #显示灰度图像 plt.axis('off') plt.show()
显示100个数(若是一个一个绘制将会非常慢,可以将要画的图片整理好,放到一个矩阵中,显示这个矩阵即可) - 初始化一个二维数组 - 将每行的数据调整成图像的矩阵,放进二维数组 - 显示即可
display_imageData
python
lawlite19/MachineLearning_Python
PCA/PCA_scikit-learn.py
https://github.com/lawlite19/MachineLearning_Python/blob/master/PCA/PCA_scikit-learn.py
MIT
def PCA_2D(): data_2d = spio.loadmat("data.mat") X = data_2d['X'] m = X.shape[0] plt = plot_data_2d(X,'bo') # 显示二维的数据 plt.show() X_copy = X.copy() X_norm,mu,sigma = featureNormalize(X_copy) # 归一化数据 #plot_data_2d(X_norm) # 显示归一化后的数据 #plt.show() Sigma = np.dot(np.transpose(X_norm),X_norm)/m # 求Sigma U,S,V = np.linalg.svd(Sigma) # 求Sigma的奇异值分解 plt = plot_data_2d(X,'bo') # 显示原本数据 drawline(plt, mu, mu+S[0]*(U[:,0]), 'r-') # 线,为投影的方向 plt.axis('square') plt.show() K = 1 # 定义降维多少维(本来是2维的,这里降维1维) '''投影之后数据(降维之后)''' Z = projectData(X_norm,U,K) # 投影 '''恢复数据''' X_rec = recoverData(Z,U,K) # 恢复 '''作图-----原数据与恢复的数据''' plt = plot_data_2d(X_norm,'bo') plot_data_2d(X_rec,'ro') for i in range(X_norm.shape[0]): drawline(plt, X_norm[i,:], X_rec[i,:], '--k') plt.axis('square') plt.show()
投影之后数据(降维之后)
PCA_2D
python
lawlite19/MachineLearning_Python
PCA/PCA.py
https://github.com/lawlite19/MachineLearning_Python/blob/master/PCA/PCA.py
MIT
def featureNormalize(X): '''(每一个数据-当前列的均值)/当前列的标准差''' n = X.shape[1] mu = np.zeros((1,n)); sigma = np.zeros((1,n)) mu = np.mean(X,axis=0) # axis=0表示列 sigma = np.std(X,axis=0) for i in range(n): X[:,i] = (X[:,i]-mu[i])/sigma[i] return X,mu,sigma
(每一个数据-当前列的均值)/当前列的标准差
featureNormalize
python
lawlite19/MachineLearning_Python
PCA/PCA.py
https://github.com/lawlite19/MachineLearning_Python/blob/master/PCA/PCA.py
MIT
def KMeans(): '''二维数据聚类过程演示''' print(u'聚类过程展示...\n') data = spio.loadmat("data.mat") X = data['X'] K = 3 # 总类数 initial_centroids = np.array([[3,3],[6,2],[8,5]]) # 初始化类中心 max_iters = 10 runKMeans(X,initial_centroids,max_iters,True) # 执行K-Means聚类算法 ''' 图片压缩 ''' print(u'K-Means压缩图片\n') img_data = misc.imread("bird.png") # 读取图片像素数据 img_data = img_data/255.0 # 像素值映射到0-1 img_size = img_data.shape X = img_data.reshape(img_size[0]*img_size[1],3) # 调整为N*3的矩阵,N是所有像素点个数 K = 16 max_iters = 5 initial_centroids = kMeansInitCentroids(X,K) centroids,idx = runKMeans(X, initial_centroids, max_iters, False) print(u'\nK-Means运行结束\n') print(u'\n压缩图片...\n') idx = findClosestCentroids(X, centroids) X_recovered = centroids[idx,:] X_recovered = X_recovered.reshape(img_size[0],img_size[1],3) print(u'绘制图片...\n') plt.subplot(1,2,1) plt.imshow(img_data) plt.title(u"原先图片",fontproperties=font) plt.subplot(1,2,2) plt.imshow(X_recovered) plt.title(u"压缩图像",fontproperties=font) plt.show() print(u'运行结束!')
二维数据聚类过程演示
KMeans
python
lawlite19/MachineLearning_Python
K-Means/K-Menas.py
https://github.com/lawlite19/MachineLearning_Python/blob/master/K-Means/K-Menas.py
MIT
def findClosestCentroids(X,initial_centroids): m = X.shape[0] # 数据条数 K = initial_centroids.shape[0] # 类的总数 dis = np.zeros((m,K)) # 存储计算每个点分别到K个类的距离 idx = np.zeros((m,1)) # 要返回的每条数据属于哪个类 '''计算每个点到每个类中心的距离''' for i in range(m): for j in range(K): dis[i,j] = np.dot((X[i,:]-initial_centroids[j,:]).reshape(1,-1),(X[i,:]-initial_centroids[j,:]).reshape(-1,1)) '''返回dis每一行的最小值对应的列号,即为对应的类别 - np.min(dis, axis=1)返回每一行的最小值 - np.where(dis == np.min(dis, axis=1).reshape(-1,1)) 返回对应最小值的坐标 - 注意:可能最小值对应的坐标有多个,where都会找出来,所以返回时返回前m个需要的即可(因为对于多个最小值,属于哪个类别都可以) ''' dummy,idx = np.where(dis == np.min(dis, axis=1).reshape(-1,1)) return idx[0:dis.shape[0]] # 注意截取一下
计算每个点到每个类中心的距离
findClosestCentroids
python
lawlite19/MachineLearning_Python
K-Means/K-Menas.py
https://github.com/lawlite19/MachineLearning_Python/blob/master/K-Means/K-Menas.py
MIT
def neuralNetwork(input_layer_size,hidden_layer_size,out_put_layer): data_img = loadmat_data("data_digits.mat") X = data_img['X'] y = data_img['y'] '''scaler = StandardScaler() scaler.fit(X) X = scaler.transform(X)''' m,n = X.shape """digits = datasets.load_digits() X = digits.data y = digits.target m,n = X.shape scaler = StandardScaler() scaler.fit(X) X = scaler.transform(X)""" ## 随机显示几行数据 rand_indices = [t for t in [np.random.randint(x-x, m) for x in range(100)]] # 生成100个0-m的随机数 display_data(X[rand_indices,:]) # 显示100个数字 #nn_params = np.vstack((Theta1.reshape(-1,1),Theta2.reshape(-1,1))) Lambda = 1 initial_Theta1 = randInitializeWeights(input_layer_size,hidden_layer_size); initial_Theta2 = randInitializeWeights(hidden_layer_size,out_put_layer) initial_nn_params = np.vstack((initial_Theta1.reshape(-1,1),initial_Theta2.reshape(-1,1))) #展开theta #np.savetxt("testTheta.csv",initial_nn_params,delimiter=",") start = time.time() result = optimize.fmin_cg(nnCostFunction, initial_nn_params, fprime=nnGradient, args=(input_layer_size,hidden_layer_size,out_put_layer,X,y,Lambda), maxiter=100) print (u'执行时间:',time.time()-start) print (result) '''可视化 Theta1''' length = result.shape[0] Theta1 = result[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1) Theta2 = result[hidden_layer_size*(input_layer_size+1):length].reshape(out_put_layer,hidden_layer_size+1) display_data(Theta1[:,1:length]) display_data(Theta2[:,1:length]) '''预测''' p = predict(Theta1,Theta2,X) print (u"预测准确度为:%f%%"%np.mean(np.float64(p == y.reshape(-1,1))*100)) res = np.hstack((p,y.reshape(-1,1))) np.savetxt("predict.csv", res, delimiter=',')
scaler = StandardScaler() scaler.fit(X) X = scaler.transform(X)
neuralNetwork
python
lawlite19/MachineLearning_Python
NeuralNetwok/NeuralNetwork.py
https://github.com/lawlite19/MachineLearning_Python/blob/master/NeuralNetwok/NeuralNetwork.py
MIT