code
stringlengths
11
173k
docstring
stringlengths
2
593k
func_name
stringlengths
2
189
language
stringclasses
1 value
repo
stringclasses
844 values
path
stringlengths
11
294
url
stringlengths
60
339
license
stringclasses
4 values
private BigInteger(int[] val) { if (val.length == 0) throw new NumberFormatException("Zero length BigInteger"); if (val[0] < 0) { mag = makePositive(val); signum = -1; } else { mag = trustedStripLeadingZeroInts(val); signum = (mag.length == 0 ? 0 : 1); } if (mag.length >= MAX_MAG_LENGTH) { checkRange(); } }
This private constructor translates an int array containing the two's-complement binary representation of a BigInteger into a BigInteger. The input array is assumed to be in <i>big-endian</i> int-order: the most significant int is in the zeroth element.
BigInteger::BigInteger
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger(int signum, byte[] magnitude) { this.mag = stripLeadingZeroBytes(magnitude); if (signum < -1 || signum > 1) throw(new NumberFormatException("Invalid signum value")); if (this.mag.length == 0) { this.signum = 0; } else { if (signum == 0) throw(new NumberFormatException("signum-magnitude mismatch")); this.signum = signum; } if (mag.length >= MAX_MAG_LENGTH) { checkRange(); } }
Translates the sign-magnitude representation of a BigInteger into a BigInteger. The sign is represented as an integer signum value: -1 for negative, 0 for zero, or 1 for positive. The magnitude is a byte array in <i>big-endian</i> byte-order: the most significant byte is in the zeroth element. A zero-length magnitude array is permissible, and will result in a BigInteger value of 0, whether signum is -1, 0 or 1. @param signum signum of the number (-1 for negative, 0 for zero, 1 for positive). @param magnitude big-endian binary representation of the magnitude of the number. @throws NumberFormatException {@code signum} is not one of the three legal values (-1, 0, and 1), or {@code signum} is 0 and {@code magnitude} contains one or more non-zero bytes.
BigInteger::BigInteger
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger(int signum, int[] magnitude) { this.mag = stripLeadingZeroInts(magnitude); if (signum < -1 || signum > 1) throw(new NumberFormatException("Invalid signum value")); if (this.mag.length == 0) { this.signum = 0; } else { if (signum == 0) throw(new NumberFormatException("signum-magnitude mismatch")); this.signum = signum; } if (mag.length >= MAX_MAG_LENGTH) { checkRange(); } }
A constructor for internal use that translates the sign-magnitude representation of a BigInteger into a BigInteger. It checks the arguments and copies the magnitude so this constructor would be safe for external use.
BigInteger::BigInteger
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger(String val, int radix) { int cursor = 0, numDigits; final int len = val.length(); if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) throw new NumberFormatException("Radix out of range"); if (len == 0) throw new NumberFormatException("Zero length BigInteger"); // Check for at most one leading sign int sign = 1; int index1 = val.lastIndexOf('-'); int index2 = val.lastIndexOf('+'); if (index1 >= 0) { if (index1 != 0 || index2 >= 0) { throw new NumberFormatException("Illegal embedded sign character"); } sign = -1; cursor = 1; } else if (index2 >= 0) { if (index2 != 0) { throw new NumberFormatException("Illegal embedded sign character"); } cursor = 1; } if (cursor == len) throw new NumberFormatException("Zero length BigInteger"); // Skip leading zeros and compute number of digits in magnitude while (cursor < len && Character.digit(val.charAt(cursor), radix) == 0) { cursor++; } if (cursor == len) { signum = 0; mag = ZERO.mag; return; } numDigits = len - cursor; signum = sign; // Pre-allocate array of expected size. May be too large but can // never be too small. Typically exact. long numBits = ((numDigits * bitsPerDigit[radix]) >>> 10) + 1; if (numBits + 31 >= (1L << 32)) { reportOverflow(); } int numWords = (int) (numBits + 31) >>> 5; int[] magnitude = new int[numWords]; // Process first (potentially short) digit group int firstGroupLen = numDigits % digitsPerInt[radix]; if (firstGroupLen == 0) firstGroupLen = digitsPerInt[radix]; String group = val.substring(cursor, cursor += firstGroupLen); magnitude[numWords - 1] = Integer.parseInt(group, radix); if (magnitude[numWords - 1] < 0) throw new NumberFormatException("Illegal digit"); // Process remaining digit groups int superRadix = intRadix[radix]; int groupVal = 0; while (cursor < len) { group = val.substring(cursor, cursor += digitsPerInt[radix]); groupVal = Integer.parseInt(group, radix); if (groupVal < 0) throw new NumberFormatException("Illegal digit"); destructiveMulAdd(magnitude, superRadix, groupVal); } // Required for cases where the array was overallocated. mag = trustedStripLeadingZeroInts(magnitude); if (mag.length >= MAX_MAG_LENGTH) { checkRange(); } }
Translates the String representation of a BigInteger in the specified radix into a BigInteger. The String representation consists of an optional minus or plus sign followed by a sequence of one or more digits in the specified radix. The character-to-digit mapping is provided by {@code Character.digit}. The String may not contain any extraneous characters (whitespace, for example). @param val String representation of BigInteger. @param radix radix to be used in interpreting {@code val}. @throws NumberFormatException {@code val} is not a valid representation of a BigInteger in the specified radix, or {@code radix} is outside the range from {@link Character#MIN_RADIX} to {@link Character#MAX_RADIX}, inclusive. @see Character#digit
BigInteger::BigInteger
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
BigInteger(char[] val, int sign, int len) { int cursor = 0, numDigits; // Skip leading zeros and compute number of digits in magnitude while (cursor < len && Character.digit(val[cursor], 10) == 0) { cursor++; } if (cursor == len) { signum = 0; mag = ZERO.mag; return; } numDigits = len - cursor; signum = sign; // Pre-allocate array of expected size int numWords; if (len < 10) { numWords = 1; } else { long numBits = ((numDigits * bitsPerDigit[10]) >>> 10) + 1; if (numBits + 31 >= (1L << 32)) { reportOverflow(); } numWords = (int) (numBits + 31) >>> 5; } int[] magnitude = new int[numWords]; // Process first (potentially short) digit group int firstGroupLen = numDigits % digitsPerInt[10]; if (firstGroupLen == 0) firstGroupLen = digitsPerInt[10]; magnitude[numWords - 1] = parseInt(val, cursor, cursor += firstGroupLen); // Process remaining digit groups while (cursor < len) { int groupVal = parseInt(val, cursor, cursor += digitsPerInt[10]); destructiveMulAdd(magnitude, intRadix[10], groupVal); } mag = trustedStripLeadingZeroInts(magnitude); if (mag.length >= MAX_MAG_LENGTH) { checkRange(); } }
Translates the String representation of a BigInteger in the specified radix into a BigInteger. The String representation consists of an optional minus or plus sign followed by a sequence of one or more digits in the specified radix. The character-to-digit mapping is provided by {@code Character.digit}. The String may not contain any extraneous characters (whitespace, for example). @param val String representation of BigInteger. @param radix radix to be used in interpreting {@code val}. @throws NumberFormatException {@code val} is not a valid representation of a BigInteger in the specified radix, or {@code radix} is outside the range from {@link Character#MIN_RADIX} to {@link Character#MAX_RADIX}, inclusive. @see Character#digit public BigInteger(String val, int radix) { int cursor = 0, numDigits; final int len = val.length(); if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) throw new NumberFormatException("Radix out of range"); if (len == 0) throw new NumberFormatException("Zero length BigInteger"); // Check for at most one leading sign int sign = 1; int index1 = val.lastIndexOf('-'); int index2 = val.lastIndexOf('+'); if (index1 >= 0) { if (index1 != 0 || index2 >= 0) { throw new NumberFormatException("Illegal embedded sign character"); } sign = -1; cursor = 1; } else if (index2 >= 0) { if (index2 != 0) { throw new NumberFormatException("Illegal embedded sign character"); } cursor = 1; } if (cursor == len) throw new NumberFormatException("Zero length BigInteger"); // Skip leading zeros and compute number of digits in magnitude while (cursor < len && Character.digit(val.charAt(cursor), radix) == 0) { cursor++; } if (cursor == len) { signum = 0; mag = ZERO.mag; return; } numDigits = len - cursor; signum = sign; // Pre-allocate array of expected size. May be too large but can // never be too small. Typically exact. long numBits = ((numDigits * bitsPerDigit[radix]) >>> 10) + 1; if (numBits + 31 >= (1L << 32)) { reportOverflow(); } int numWords = (int) (numBits + 31) >>> 5; int[] magnitude = new int[numWords]; // Process first (potentially short) digit group int firstGroupLen = numDigits % digitsPerInt[radix]; if (firstGroupLen == 0) firstGroupLen = digitsPerInt[radix]; String group = val.substring(cursor, cursor += firstGroupLen); magnitude[numWords - 1] = Integer.parseInt(group, radix); if (magnitude[numWords - 1] < 0) throw new NumberFormatException("Illegal digit"); // Process remaining digit groups int superRadix = intRadix[radix]; int groupVal = 0; while (cursor < len) { group = val.substring(cursor, cursor += digitsPerInt[radix]); groupVal = Integer.parseInt(group, radix); if (groupVal < 0) throw new NumberFormatException("Illegal digit"); destructiveMulAdd(magnitude, superRadix, groupVal); } // Required for cases where the array was overallocated. mag = trustedStripLeadingZeroInts(magnitude); if (mag.length >= MAX_MAG_LENGTH) { checkRange(); } } /* Constructs a new BigInteger using a char array with radix=10. Sign is precalculated outside and not allowed in the val.
BigInteger::BigInteger
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger(String val) { this(val, 10); }
Translates the decimal String representation of a BigInteger into a BigInteger. The String representation consists of an optional minus sign followed by a sequence of one or more decimal digits. The character-to-digit mapping is provided by {@code Character.digit}. The String may not contain any extraneous characters (whitespace, for example). @param val decimal String representation of BigInteger. @throws NumberFormatException {@code val} is not a valid representation of a BigInteger. @see Character#digit
BigInteger::BigInteger
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger(int numBits, Random rnd) { this(1, randomBits(numBits, rnd)); }
Constructs a randomly generated BigInteger, uniformly distributed over the range 0 to (2<sup>{@code numBits}</sup> - 1), inclusive. The uniformity of the distribution assumes that a fair source of random bits is provided in {@code rnd}. Note that this constructor always constructs a non-negative BigInteger. @param numBits maximum bitLength of the new BigInteger. @param rnd source of randomness to be used in computing the new BigInteger. @throws IllegalArgumentException {@code numBits} is negative. @see #bitLength()
BigInteger::BigInteger
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger(int bitLength, int certainty, Random rnd) { BigInteger prime; if (bitLength < 2) throw new ArithmeticException("bitLength < 2"); prime = (bitLength < SMALL_PRIME_THRESHOLD ? smallPrime(bitLength, certainty, rnd) : largePrime(bitLength, certainty, rnd)); signum = 1; mag = prime.mag; }
Constructs a randomly generated positive BigInteger that is probably prime, with the specified bitLength. <p>It is recommended that the {@link #probablePrime probablePrime} method be used in preference to this constructor unless there is a compelling need to specify a certainty. @param bitLength bitLength of the returned BigInteger. @param certainty a measure of the uncertainty that the caller is willing to tolerate. The probability that the new BigInteger represents a prime number will exceed (1 - 1/2<sup>{@code certainty}</sup>). The execution time of this constructor is proportional to the value of this parameter. @param rnd source of random bits used to select candidates to be tested for primality. @throws ArithmeticException {@code bitLength < 2} or {@code bitLength} is too large. @see #bitLength()
BigInteger::BigInteger
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public static BigInteger probablePrime(int bitLength, Random rnd) { if (bitLength < 2) throw new ArithmeticException("bitLength < 2"); return (bitLength < SMALL_PRIME_THRESHOLD ? smallPrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd) : largePrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd)); }
Returns a positive BigInteger that is probably prime, with the specified bitLength. The probability that a BigInteger returned by this method is composite does not exceed 2<sup>-100</sup>. @param bitLength bitLength of the returned BigInteger. @param rnd source of random bits used to select candidates to be tested for primality. @return a BigInteger of {@code bitLength} bits that is probably prime @throws ArithmeticException {@code bitLength < 2} or {@code bitLength} is too large. @see #bitLength() @since 1.4
BigInteger::probablePrime
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static BigInteger smallPrime(int bitLength, int certainty, Random rnd) { int magLen = (bitLength + 31) >>> 5; int temp[] = new int[magLen]; int highBit = 1 << ((bitLength+31) & 0x1f); // High bit of high int int highMask = (highBit << 1) - 1; // Bits to keep in high int while (true) { // Construct a candidate for (int i=0; i < magLen; i++) temp[i] = rnd.nextInt(); temp[0] = (temp[0] & highMask) | highBit; // Ensure exact length if (bitLength > 2) temp[magLen-1] |= 1; // Make odd if bitlen > 2 BigInteger p = new BigInteger(temp, 1); // Do cheap "pre-test" if applicable if (bitLength > 6) { long r = p.remainder(SMALL_PRIME_PRODUCT).longValue(); if ((r%3==0) || (r%5==0) || (r%7==0) || (r%11==0) || (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) || (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) continue; // Candidate is composite; try another } // All candidates of bitLength 2 and 3 are prime by this point if (bitLength < 4) return p; // Do expensive test if we survive pre-test (or it's inapplicable) if (p.primeToCertainty(certainty, rnd)) return p; } }
Find a random number of the specified bitLength that is probably prime. This method is used for smaller primes, its performance degrades on larger bitlengths. This method assumes bitLength > 1.
BigInteger::smallPrime
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static BigInteger largePrime(int bitLength, int certainty, Random rnd) { BigInteger p; p = new BigInteger(bitLength, rnd).setBit(bitLength-1); p.mag[p.mag.length-1] &= 0xfffffffe; // Use a sieve length likely to contain the next prime number int searchLen = getPrimeSearchLen(bitLength); BitSieve searchSieve = new BitSieve(p, searchLen); BigInteger candidate = searchSieve.retrieve(p, certainty, rnd); while ((candidate == null) || (candidate.bitLength() != bitLength)) { p = p.add(BigInteger.valueOf(2*searchLen)); if (p.bitLength() != bitLength) p = new BigInteger(bitLength, rnd).setBit(bitLength-1); p.mag[p.mag.length-1] &= 0xfffffffe; searchSieve = new BitSieve(p, searchLen); candidate = searchSieve.retrieve(p, certainty, rnd); } return candidate; }
Find a random number of the specified bitLength that is probably prime. This method is more appropriate for larger bitlengths since it uses a sieve to eliminate most composites before using a more expensive test.
BigInteger::largePrime
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger nextProbablePrime() { if (this.signum < 0) throw new ArithmeticException("start < 0: " + this); // Handle trivial cases if ((this.signum == 0) || this.equals(ONE)) return TWO; BigInteger result = this.add(ONE); // Fastpath for small numbers if (result.bitLength() < SMALL_PRIME_THRESHOLD) { // Ensure an odd number if (!result.testBit(0)) result = result.add(ONE); while (true) { // Do cheap "pre-test" if applicable if (result.bitLength() > 6) { long r = result.remainder(SMALL_PRIME_PRODUCT).longValue(); if ((r%3==0) || (r%5==0) || (r%7==0) || (r%11==0) || (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) || (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) { result = result.add(TWO); continue; // Candidate is composite; try another } } // All candidates of bitLength 2 and 3 are prime by this point if (result.bitLength() < 4) return result; // The expensive test if (result.primeToCertainty(DEFAULT_PRIME_CERTAINTY, null)) return result; result = result.add(TWO); } } // Start at previous even number if (result.testBit(0)) result = result.subtract(ONE); // Looking for the next large prime int searchLen = getPrimeSearchLen(result.bitLength()); while (true) { BitSieve searchSieve = new BitSieve(result, searchLen); BigInteger candidate = searchSieve.retrieve(result, DEFAULT_PRIME_CERTAINTY, null); if (candidate != null) return candidate; result = result.add(BigInteger.valueOf(2 * searchLen)); } }
Returns the first integer greater than this {@code BigInteger} that is probably prime. The probability that the number returned by this method is composite does not exceed 2<sup>-100</sup>. This method will never skip over a prime when searching: if it returns {@code p}, there is no prime {@code q} such that {@code this < q < p}. @return the first integer greater than this {@code BigInteger} that is probably prime. @throws ArithmeticException {@code this < 0} or {@code this} is too large. @since 1.5
BigInteger::nextProbablePrime
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
boolean primeToCertainty(int certainty, Random random) { int rounds = 0; int n = (Math.min(certainty, Integer.MAX_VALUE-1)+1)/2; // The relationship between the certainty and the number of rounds // we perform is given in the draft standard ANSI X9.80, "PRIME // NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES". int sizeInBits = this.bitLength(); if (sizeInBits < 100) { rounds = 50; rounds = n < rounds ? n : rounds; return passesMillerRabin(rounds, random); } if (sizeInBits < 256) { rounds = 27; } else if (sizeInBits < 512) { rounds = 15; } else if (sizeInBits < 768) { rounds = 8; } else if (sizeInBits < 1024) { rounds = 4; } else { rounds = 2; } rounds = n < rounds ? n : rounds; return passesMillerRabin(rounds, random) && passesLucasLehmer(); }
Returns {@code true} if this BigInteger is probably prime, {@code false} if it's definitely composite. This method assumes bitLength > 2. @param certainty a measure of the uncertainty that the caller is willing to tolerate: if the call returns {@code true} the probability that this BigInteger is prime exceeds {@code (1 - 1/2<sup>certainty</sup>)}. The execution time of this method is proportional to the value of this parameter. @return {@code true} if this BigInteger is probably prime, {@code false} if it's definitely composite.
BigInteger::primeToCertainty
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private boolean passesLucasLehmer() { BigInteger thisPlusOne = this.add(ONE); // Step 1 int d = 5; while (jacobiSymbol(d, this) != -1) { // 5, -7, 9, -11, ... d = (d < 0) ? Math.abs(d)+2 : -(d+2); } // Step 2 BigInteger u = lucasLehmerSequence(d, thisPlusOne, this); // Step 3 return u.mod(this).equals(ZERO); }
Returns true iff this BigInteger is a Lucas-Lehmer probable prime. The following assumptions are made: This BigInteger is a positive, odd number.
BigInteger::passesLucasLehmer
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static int jacobiSymbol(int p, BigInteger n) { if (p == 0) return 0; // Algorithm and comments adapted from Colin Plumb's C library. int j = 1; int u = n.mag[n.mag.length-1]; // Make p positive if (p < 0) { p = -p; int n8 = u & 7; if ((n8 == 3) || (n8 == 7)) j = -j; // 3 (011) or 7 (111) mod 8 } // Get rid of factors of 2 in p while ((p & 3) == 0) p >>= 2; if ((p & 1) == 0) { p >>= 1; if (((u ^ (u>>1)) & 2) != 0) j = -j; // 3 (011) or 5 (101) mod 8 } if (p == 1) return j; // Then, apply quadratic reciprocity if ((p & u & 2) != 0) // p = u = 3 (mod 4)? j = -j; // And reduce u mod p u = n.mod(BigInteger.valueOf(p)).intValue(); // Now compute Jacobi(u,p), u < p while (u != 0) { while ((u & 3) == 0) u >>= 2; if ((u & 1) == 0) { u >>= 1; if (((p ^ (p>>1)) & 2) != 0) j = -j; // 3 (011) or 5 (101) mod 8 } if (u == 1) return j; // Now both u and p are odd, so use quadratic reciprocity assert (u < p); int t = u; u = p; p = t; if ((u & p & 2) != 0) // u = p = 3 (mod 4)? j = -j; // Now u >= p, so it can be reduced u %= p; } return 0; }
Computes Jacobi(p,n). Assumes n positive, odd, n>=3.
BigInteger::jacobiSymbol
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private boolean passesMillerRabin(int iterations, Random rnd) { // Find a and m such that m is odd and this == 1 + 2**a * m BigInteger thisMinusOne = this.subtract(ONE); BigInteger m = thisMinusOne; int a = m.getLowestSetBit(); m = m.shiftRight(a); // Do the tests if (rnd == null) { rnd = ThreadLocalRandom.current(); } for (int i=0; i < iterations; i++) { // Generate a uniform random on (1, this) BigInteger b; do { b = new BigInteger(this.bitLength(), rnd); } while (b.compareTo(ONE) <= 0 || b.compareTo(this) >= 0); int j = 0; BigInteger z = b.modPow(m, this); while (!((j == 0 && z.equals(ONE)) || z.equals(thisMinusOne))) { if (j > 0 && z.equals(ONE) || ++j == a) return false; z = z.modPow(TWO, this); } } return true; }
Returns true iff this BigInteger passes the specified number of Miller-Rabin tests. This test is taken from the DSA spec (NIST FIPS 186-2). The following assumptions are made: This BigInteger is a positive, odd number greater than 2. iterations<=50.
BigInteger::passesMillerRabin
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
BigInteger(int[] magnitude, int signum) { this.signum = (magnitude.length == 0 ? 0 : signum); this.mag = magnitude; if (mag.length >= MAX_MAG_LENGTH) { checkRange(); } }
This internal constructor differs from its public cousin with the arguments reversed in two ways: it assumes that its arguments are correct, and it doesn't copy the magnitude array.
BigInteger::BigInteger
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger(byte[] magnitude, int signum) { this.signum = (magnitude.length == 0 ? 0 : signum); this.mag = stripLeadingZeroBytes(magnitude); if (mag.length >= MAX_MAG_LENGTH) { checkRange(); } }
This private constructor is for internal use and assumes that its arguments are correct.
BigInteger::BigInteger
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private void checkRange() { if (mag.length > MAX_MAG_LENGTH || mag.length == MAX_MAG_LENGTH && mag[0] < 0) { reportOverflow(); } }
Throws an {@code ArithmeticException} if the {@code BigInteger} would be out of the supported range. @throws ArithmeticException if {@code this} exceeds the supported range.
BigInteger::checkRange
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public static BigInteger valueOf(long val) { // If -MAX_CONSTANT < val < MAX_CONSTANT, return stashed constant if (val == 0) return ZERO; if (val > 0 && val <= MAX_CONSTANT) return posConst[(int) val]; else if (val < 0 && val >= -MAX_CONSTANT) return negConst[(int) -val]; return new BigInteger(val); }
Returns a BigInteger whose value is equal to that of the specified {@code long}. This "static factory method" is provided in preference to a ({@code long}) constructor because it allows for reuse of frequently used BigIntegers. @param val value of the BigInteger to return. @return a BigInteger with the specified value.
BigInteger::valueOf
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger(long val) { if (val < 0) { val = -val; signum = -1; } else { signum = 1; } int highWord = (int)(val >>> 32); if (highWord == 0) { mag = new int[1]; mag[0] = (int)val; } else { mag = new int[2]; mag[0] = highWord; mag[1] = (int)val; } }
Constructs a BigInteger with the specified value, which may not be zero.
BigInteger::BigInteger
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static BigInteger valueOf(int val[]) { return (val[0] > 0 ? new BigInteger(val, 1) : new BigInteger(val)); }
Returns a BigInteger with the given two's complement representation. Assumes that the input array will not be modified (the returned BigInteger will reference the input array if feasible).
BigInteger::valueOf
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger add(BigInteger val) { if (val.signum == 0) return this; if (signum == 0) return val; if (val.signum == signum) return new BigInteger(add(mag, val.mag), signum); int cmp = compareMagnitude(val); if (cmp == 0) return ZERO; int[] resultMag = (cmp > 0 ? subtract(mag, val.mag) : subtract(val.mag, mag)); resultMag = trustedStripLeadingZeroInts(resultMag); return new BigInteger(resultMag, cmp == signum ? 1 : -1); }
Returns a BigInteger whose value is {@code (this + val)}. @param val value to be added to this BigInteger. @return {@code this + val}
BigInteger::add
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
BigInteger add(long val) { if (val == 0) return this; if (signum == 0) return valueOf(val); if (Long.signum(val) == signum) return new BigInteger(add(mag, Math.abs(val)), signum); int cmp = compareMagnitude(val); if (cmp == 0) return ZERO; int[] resultMag = (cmp > 0 ? subtract(mag, Math.abs(val)) : subtract(Math.abs(val), mag)); resultMag = trustedStripLeadingZeroInts(resultMag); return new BigInteger(resultMag, cmp == signum ? 1 : -1); }
Package private methods used by BigDecimal code to add a BigInteger with a long. Assumes val is not equal to INFLATED.
BigInteger::add
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static int[] add(int[] x, long val) { int[] y; long sum = 0; int xIndex = x.length; int[] result; int highWord = (int)(val >>> 32); if (highWord == 0) { result = new int[xIndex]; sum = (x[--xIndex] & LONG_MASK) + val; result[xIndex] = (int)sum; } else { if (xIndex == 1) { result = new int[2]; sum = val + (x[0] & LONG_MASK); result[1] = (int)sum; result[0] = (int)(sum >>> 32); return result; } else { result = new int[xIndex]; sum = (x[--xIndex] & LONG_MASK) + (val & LONG_MASK); result[xIndex] = (int)sum; sum = (x[--xIndex] & LONG_MASK) + (highWord & LONG_MASK) + (sum >>> 32); result[xIndex] = (int)sum; } } // Copy remainder of longer number while carry propagation is required boolean carry = (sum >>> 32 != 0); while (xIndex > 0 && carry) carry = ((result[--xIndex] = x[xIndex] + 1) == 0); // Copy remainder of longer number while (xIndex > 0) result[--xIndex] = x[xIndex]; // Grow result if necessary if (carry) { int bigger[] = new int[result.length + 1]; System.arraycopy(result, 0, bigger, 1, result.length); bigger[0] = 0x01; return bigger; } return result; }
Adds the contents of the int array x and long value val. This method allocates a new int array to hold the answer and returns a reference to that array. Assumes x.length &gt; 0 and val is non-negative
BigInteger::add
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static int[] add(int[] x, int[] y) { // If x is shorter, swap the two arrays if (x.length < y.length) { int[] tmp = x; x = y; y = tmp; } int xIndex = x.length; int yIndex = y.length; int result[] = new int[xIndex]; long sum = 0; if (yIndex == 1) { sum = (x[--xIndex] & LONG_MASK) + (y[0] & LONG_MASK) ; result[xIndex] = (int)sum; } else { // Add common parts of both numbers while (yIndex > 0) { sum = (x[--xIndex] & LONG_MASK) + (y[--yIndex] & LONG_MASK) + (sum >>> 32); result[xIndex] = (int)sum; } } // Copy remainder of longer number while carry propagation is required boolean carry = (sum >>> 32 != 0); while (xIndex > 0 && carry) carry = ((result[--xIndex] = x[xIndex] + 1) == 0); // Copy remainder of longer number while (xIndex > 0) result[--xIndex] = x[xIndex]; // Grow result if necessary if (carry) { int bigger[] = new int[result.length + 1]; System.arraycopy(result, 0, bigger, 1, result.length); bigger[0] = 0x01; return bigger; } return result; }
Adds the contents of the int arrays x and y. This method allocates a new int array to hold the answer and returns a reference to that array.
BigInteger::add
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static int[] subtract(int[] big, long val) { int highWord = (int)(val >>> 32); int bigIndex = big.length; int result[] = new int[bigIndex]; long difference = 0; if (highWord == 0) { difference = (big[--bigIndex] & LONG_MASK) - val; result[bigIndex] = (int)difference; } else { difference = (big[--bigIndex] & LONG_MASK) - (val & LONG_MASK); result[bigIndex] = (int)difference; difference = (big[--bigIndex] & LONG_MASK) - (highWord & LONG_MASK) + (difference >> 32); result[bigIndex] = (int)difference; } // Subtract remainder of longer number while borrow propagates boolean borrow = (difference >> 32 != 0); while (bigIndex > 0 && borrow) borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1); // Copy remainder of longer number while (bigIndex > 0) result[--bigIndex] = big[bigIndex]; return result; }
Subtracts the contents of the second argument (val) from the first (big). The first int array (big) must represent a larger number than the second. This method allocates the space necessary to hold the answer. assumes val &gt;= 0
BigInteger::subtract
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger subtract(BigInteger val) { if (val.signum == 0) return this; if (signum == 0) return val.negate(); if (val.signum != signum) return new BigInteger(add(mag, val.mag), signum); int cmp = compareMagnitude(val); if (cmp == 0) return ZERO; int[] resultMag = (cmp > 0 ? subtract(mag, val.mag) : subtract(val.mag, mag)); resultMag = trustedStripLeadingZeroInts(resultMag); return new BigInteger(resultMag, cmp == signum ? 1 : -1); }
Returns a BigInteger whose value is {@code (this - val)}. @param val value to be subtracted from this BigInteger. @return {@code this - val}
BigInteger::subtract
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static int[] subtract(int[] big, int[] little) { int bigIndex = big.length; int result[] = new int[bigIndex]; int littleIndex = little.length; long difference = 0; // Subtract common parts of both numbers while (littleIndex > 0) { difference = (big[--bigIndex] & LONG_MASK) - (little[--littleIndex] & LONG_MASK) + (difference >> 32); result[bigIndex] = (int)difference; } // Subtract remainder of longer number while borrow propagates boolean borrow = (difference >> 32 != 0); while (bigIndex > 0 && borrow) borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1); // Copy remainder of longer number while (bigIndex > 0) result[--bigIndex] = big[bigIndex]; return result; }
Subtracts the contents of the second int arrays (little) from the first (big). The first int array (big) must represent a larger number than the second. This method allocates the space necessary to hold the answer.
BigInteger::subtract
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger multiply(BigInteger val) { if (val.signum == 0 || signum == 0) return ZERO; int xlen = mag.length; int ylen = val.mag.length; if ((xlen < KARATSUBA_THRESHOLD) || (ylen < KARATSUBA_THRESHOLD)) { int resultSign = signum == val.signum ? 1 : -1; if (val.mag.length == 1) { return multiplyByInt(mag,val.mag[0], resultSign); } if (mag.length == 1) { return multiplyByInt(val.mag,mag[0], resultSign); } int[] result = multiplyToLen(mag, xlen, val.mag, ylen, null); result = trustedStripLeadingZeroInts(result); return new BigInteger(result, resultSign); } else { if ((xlen < TOOM_COOK_THRESHOLD) && (ylen < TOOM_COOK_THRESHOLD)) { return multiplyKaratsuba(this, val); } else { return multiplyToomCook3(this, val); } } }
Returns a BigInteger whose value is {@code (this * val)}. @param val value to be multiplied by this BigInteger. @return {@code this * val}
BigInteger::multiply
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
BigInteger multiply(long v) { if (v == 0 || signum == 0) return ZERO; if (v == BigDecimal.INFLATED) return multiply(BigInteger.valueOf(v)); int rsign = (v > 0 ? signum : -signum); if (v < 0) v = -v; long dh = v >>> 32; // higher order bits long dl = v & LONG_MASK; // lower order bits int xlen = mag.length; int[] value = mag; int[] rmag = (dh == 0L) ? (new int[xlen + 1]) : (new int[xlen + 2]); long carry = 0; int rstart = rmag.length - 1; for (int i = xlen - 1; i >= 0; i--) { long product = (value[i] & LONG_MASK) * dl + carry; rmag[rstart--] = (int)product; carry = product >>> 32; } rmag[rstart] = (int)carry; if (dh != 0L) { carry = 0; rstart = rmag.length - 2; for (int i = xlen - 1; i >= 0; i--) { long product = (value[i] & LONG_MASK) * dh + (rmag[rstart] & LONG_MASK) + carry; rmag[rstart--] = (int)product; carry = product >>> 32; } rmag[0] = (int)carry; } if (carry == 0L) rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length); return new BigInteger(rmag, rsign); }
Package private methods used by BigDecimal code to multiply a BigInteger with a long. Assumes v is not equal to INFLATED.
BigInteger::multiply
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) { int xstart = xlen - 1; int ystart = ylen - 1; if (z == null || z.length < (xlen+ ylen)) z = new int[xlen+ylen]; long carry = 0; for (int j=ystart, k=ystart+1+xstart; j >= 0; j--, k--) { long product = (y[j] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; z[k] = (int)product; carry = product >>> 32; } z[xstart] = (int)carry; for (int i = xstart-1; i >= 0; i--) { carry = 0; for (int j=ystart, k=ystart+1+i; j >= 0; j--, k--) { long product = (y[j] & LONG_MASK) * (x[i] & LONG_MASK) + (z[k] & LONG_MASK) + carry; z[k] = (int)product; carry = product >>> 32; } z[i] = (int)carry; } return z; }
Multiplies int arrays x and y to the specified lengths and places the result into z. There will be no leading zeros in the resultant array.
BigInteger::multiplyToLen
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static BigInteger multiplyKaratsuba(BigInteger x, BigInteger y) { int xlen = x.mag.length; int ylen = y.mag.length; // The number of ints in each half of the number. int half = (Math.max(xlen, ylen)+1) / 2; // xl and yl are the lower halves of x and y respectively, // xh and yh are the upper halves. BigInteger xl = x.getLower(half); BigInteger xh = x.getUpper(half); BigInteger yl = y.getLower(half); BigInteger yh = y.getUpper(half); BigInteger p1 = xh.multiply(yh); // p1 = xh*yh BigInteger p2 = xl.multiply(yl); // p2 = xl*yl // p3=(xh+xl)*(yh+yl) BigInteger p3 = xh.add(xl).multiply(yh.add(yl)); // result = p1 * 2^(32*2*half) + (p3 - p1 - p2) * 2^(32*half) + p2 BigInteger result = p1.shiftLeft(32*half).add(p3.subtract(p1).subtract(p2)).shiftLeft(32*half).add(p2); if (x.signum != y.signum) { return result.negate(); } else { return result; } }
Multiplies two BigIntegers using the Karatsuba multiplication algorithm. This is a recursive divide-and-conquer algorithm which is more efficient for large numbers than what is commonly called the "grade-school" algorithm used in multiplyToLen. If the numbers to be multiplied have length n, the "grade-school" algorithm has an asymptotic complexity of O(n^2). In contrast, the Karatsuba algorithm has complexity of O(n^(log2(3))), or O(n^1.585). It achieves this increased performance by doing 3 multiplies instead of 4 when evaluating the product. As it has some overhead, should be used when both numbers are larger than a certain threshold (found experimentally). See: http://en.wikipedia.org/wiki/Karatsuba_algorithm
BigInteger::multiplyKaratsuba
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static BigInteger multiplyToomCook3(BigInteger a, BigInteger b) { int alen = a.mag.length; int blen = b.mag.length; int largest = Math.max(alen, blen); // k is the size (in ints) of the lower-order slices. int k = (largest+2)/3; // Equal to ceil(largest/3) // r is the size (in ints) of the highest-order slice. int r = largest - 2*k; // Obtain slices of the numbers. a2 and b2 are the most significant // bits of the numbers a and b, and a0 and b0 the least significant. BigInteger a0, a1, a2, b0, b1, b2; a2 = a.getToomSlice(k, r, 0, largest); a1 = a.getToomSlice(k, r, 1, largest); a0 = a.getToomSlice(k, r, 2, largest); b2 = b.getToomSlice(k, r, 0, largest); b1 = b.getToomSlice(k, r, 1, largest); b0 = b.getToomSlice(k, r, 2, largest); BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1, db1; v0 = a0.multiply(b0); da1 = a2.add(a0); db1 = b2.add(b0); vm1 = da1.subtract(a1).multiply(db1.subtract(b1)); da1 = da1.add(a1); db1 = db1.add(b1); v1 = da1.multiply(db1); v2 = da1.add(a2).shiftLeft(1).subtract(a0).multiply( db1.add(b2).shiftLeft(1).subtract(b0)); vinf = a2.multiply(b2); // The algorithm requires two divisions by 2 and one by 3. // All divisions are known to be exact, that is, they do not produce // remainders, and all results are positive. The divisions by 2 are // implemented as right shifts which are relatively efficient, leaving // only an exact division by 3, which is done by a specialized // linear-time algorithm. t2 = v2.subtract(vm1).exactDivideBy3(); tm1 = v1.subtract(vm1).shiftRight(1); t1 = v1.subtract(v0); t2 = t2.subtract(t1).shiftRight(1); t1 = t1.subtract(tm1).subtract(vinf); t2 = t2.subtract(vinf.shiftLeft(1)); tm1 = tm1.subtract(t2); // Number of bits to shift left. int ss = k*32; BigInteger result = vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0); if (a.signum != b.signum) { return result.negate(); } else { return result; } }
Multiplies two BigIntegers using a 3-way Toom-Cook multiplication algorithm. This is a recursive divide-and-conquer algorithm which is more efficient for large numbers than what is commonly called the "grade-school" algorithm used in multiplyToLen. If the numbers to be multiplied have length n, the "grade-school" algorithm has an asymptotic complexity of O(n^2). In contrast, 3-way Toom-Cook has a complexity of about O(n^1.465). It achieves this increased asymptotic performance by breaking each number into three parts and by doing 5 multiplies instead of 9 when evaluating the product. Due to overhead (additions, shifts, and one division) in the Toom-Cook algorithm, it should only be used when both numbers are larger than a certain threshold (found experimentally). This threshold is generally larger than that for Karatsuba multiplication, so this algorithm is generally only used when numbers become significantly larger. The algorithm used is the "optimal" 3-way Toom-Cook algorithm outlined by Marco Bodrato. See: http://bodrato.it/toom-cook/ http://bodrato.it/papers/#WAIFI2007 "Towards Optimal Toom-Cook Multiplication for Univariate and Multivariate Polynomials in Characteristic 2 and 0." by Marco BODRATO; In C.Carlet and B.Sunar, Eds., "WAIFI'07 proceedings", p. 116-133, LNCS #4547. Springer, Madrid, Spain, June 21-22, 2007.
BigInteger::multiplyToomCook3
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger getToomSlice(int lowerSize, int upperSize, int slice, int fullsize) { int start, end, sliceSize, len, offset; len = mag.length; offset = fullsize - len; if (slice == 0) { start = 0 - offset; end = upperSize - 1 - offset; } else { start = upperSize + (slice-1)*lowerSize - offset; end = start + lowerSize - 1; } if (start < 0) { start = 0; } if (end < 0) { return ZERO; } sliceSize = (end-start) + 1; if (sliceSize <= 0) { return ZERO; } // While performing Toom-Cook, all slices are positive and // the sign is adjusted when the final number is composed. if (start == 0 && sliceSize >= len) { return this.abs(); } int intSlice[] = new int[sliceSize]; System.arraycopy(mag, start, intSlice, 0, sliceSize); return new BigInteger(trustedStripLeadingZeroInts(intSlice), 1); }
Returns a slice of a BigInteger for use in Toom-Cook multiplication. @param lowerSize The size of the lower-order bit slices. @param upperSize The size of the higher-order bit slices. @param slice The index of which slice is requested, which must be a number from 0 to size-1. Slice 0 is the highest-order bits, and slice size-1 are the lowest-order bits. Slice 0 may be of different size than the other slices. @param fullsize The size of the larger integer array, used to align slices to the appropriate position when multiplying different-sized numbers.
BigInteger::getToomSlice
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger exactDivideBy3() { int len = mag.length; int[] result = new int[len]; long x, w, q, borrow; borrow = 0L; for (int i=len-1; i >= 0; i--) { x = (mag[i] & LONG_MASK); w = x - borrow; if (borrow > x) { // Did we make the number go negative? borrow = 1L; } else { borrow = 0L; } // 0xAAAAAAAB is the modular inverse of 3 (mod 2^32). Thus, // the effect of this is to divide by 3 (mod 2^32). // This is much faster than division on most architectures. q = (w * 0xAAAAAAABL) & LONG_MASK; result[i] = (int) q; // Now check the borrow. The second check can of course be // eliminated if the first fails. if (q >= 0x55555556L) { borrow++; if (q >= 0xAAAAAAABL) borrow++; } } result = trustedStripLeadingZeroInts(result); return new BigInteger(result, signum); }
Does an exact division (that is, the remainder is known to be zero) of the specified number by 3. This is used in Toom-Cook multiplication. This is an efficient algorithm that runs in linear time. If the argument is not exactly divisible by 3, results are undefined. Note that this is expected to be called with positive arguments only.
BigInteger::exactDivideBy3
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger getLower(int n) { int len = mag.length; if (len <= n) { return abs(); } int lowerInts[] = new int[n]; System.arraycopy(mag, len-n, lowerInts, 0, n); return new BigInteger(trustedStripLeadingZeroInts(lowerInts), 1); }
Returns a new BigInteger representing n lower ints of the number. This is used by Karatsuba multiplication and Karatsuba squaring.
BigInteger::getLower
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger getUpper(int n) { int len = mag.length; if (len <= n) { return ZERO; } int upperLen = len - n; int upperInts[] = new int[upperLen]; System.arraycopy(mag, 0, upperInts, 0, upperLen); return new BigInteger(trustedStripLeadingZeroInts(upperInts), 1); }
Returns a new BigInteger representing mag.length-n upper ints of the number. This is used by Karatsuba multiplication and Karatsuba squaring.
BigInteger::getUpper
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger square() { if (signum == 0) { return ZERO; } int len = mag.length; if (len < KARATSUBA_SQUARE_THRESHOLD) { int[] z = squareToLen(mag, len, null); return new BigInteger(trustedStripLeadingZeroInts(z), 1); } else { if (len < TOOM_COOK_SQUARE_THRESHOLD) { return squareKaratsuba(); } else { return squareToomCook3(); } } }
Returns a BigInteger whose value is {@code (this<sup>2</sup>)}. @return {@code this<sup>2</sup>}
BigInteger::square
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static final int[] squareToLen(int[] x, int len, int[] z) { /* * The algorithm used here is adapted from Colin Plumb's C library. * Technique: Consider the partial products in the multiplication * of "abcde" by itself: * * a b c d e * * a b c d e * ================== * ae be ce de ee * ad bd cd dd de * ac bc cc cd ce * ab bb bc bd be * aa ab ac ad ae * * Note that everything above the main diagonal: * ae be ce de = (abcd) * e * ad bd cd = (abc) * d * ac bc = (ab) * c * ab = (a) * b * * is a copy of everything below the main diagonal: * de * cd ce * bc bd be * ab ac ad ae * * Thus, the sum is 2 * (off the diagonal) + diagonal. * * This is accumulated beginning with the diagonal (which * consist of the squares of the digits of the input), which is then * divided by two, the off-diagonal added, and multiplied by two * again. The low bit is simply a copy of the low bit of the * input, so it doesn't need special care. */ int zlen = len << 1; if (z == null || z.length < zlen) z = new int[zlen]; // Store the squares, right shifted one bit (i.e., divided by 2) int lastProductLowWord = 0; for (int j=0, i=0; j < len; j++) { long piece = (x[j] & LONG_MASK); long product = piece * piece; z[i++] = (lastProductLowWord << 31) | (int)(product >>> 33); z[i++] = (int)(product >>> 1); lastProductLowWord = (int)product; } // Add in off-diagonal sums for (int i=len, offset=1; i > 0; i--, offset+=2) { int t = x[i-1]; t = mulAdd(z, x, offset, i-1, t); addOne(z, offset-1, i, t); } // Shift back up and set low bit primitiveLeftShift(z, zlen, 1); z[zlen-1] |= x[len-1] & 1; return z; }
Squares the contents of the int array x. The result is placed into the int array z. The contents of x are not changed.
BigInteger::squareToLen
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger squareKaratsuba() { int half = (mag.length+1) / 2; BigInteger xl = getLower(half); BigInteger xh = getUpper(half); BigInteger xhs = xh.square(); // xhs = xh^2 BigInteger xls = xl.square(); // xls = xl^2 // xh^2 << 64 + (((xl+xh)^2 - (xh^2 + xl^2)) << 32) + xl^2 return xhs.shiftLeft(half*32).add(xl.add(xh).square().subtract(xhs.add(xls))).shiftLeft(half*32).add(xls); }
Squares a BigInteger using the Karatsuba squaring algorithm. It should be used when both numbers are larger than a certain threshold (found experimentally). It is a recursive divide-and-conquer algorithm that has better asymptotic performance than the algorithm used in squareToLen.
BigInteger::squareKaratsuba
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger squareToomCook3() { int len = mag.length; // k is the size (in ints) of the lower-order slices. int k = (len+2)/3; // Equal to ceil(largest/3) // r is the size (in ints) of the highest-order slice. int r = len - 2*k; // Obtain slices of the numbers. a2 is the most significant // bits of the number, and a0 the least significant. BigInteger a0, a1, a2; a2 = getToomSlice(k, r, 0, len); a1 = getToomSlice(k, r, 1, len); a0 = getToomSlice(k, r, 2, len); BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1; v0 = a0.square(); da1 = a2.add(a0); vm1 = da1.subtract(a1).square(); da1 = da1.add(a1); v1 = da1.square(); vinf = a2.square(); v2 = da1.add(a2).shiftLeft(1).subtract(a0).square(); // The algorithm requires two divisions by 2 and one by 3. // All divisions are known to be exact, that is, they do not produce // remainders, and all results are positive. The divisions by 2 are // implemented as right shifts which are relatively efficient, leaving // only a division by 3. // The division by 3 is done by an optimized algorithm for this case. t2 = v2.subtract(vm1).exactDivideBy3(); tm1 = v1.subtract(vm1).shiftRight(1); t1 = v1.subtract(v0); t2 = t2.subtract(t1).shiftRight(1); t1 = t1.subtract(tm1).subtract(vinf); t2 = t2.subtract(vinf.shiftLeft(1)); tm1 = tm1.subtract(t2); // Number of bits to shift left. int ss = k*32; return vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0); }
Squares a BigInteger using the 3-way Toom-Cook squaring algorithm. It should be used when both numbers are larger than a certain threshold (found experimentally). It is a recursive divide-and-conquer algorithm that has better asymptotic performance than the algorithm used in squareToLen or squareKaratsuba.
BigInteger::squareToomCook3
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger divide(BigInteger val) { if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD || mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) { return divideKnuth(val); } else { return divideBurnikelZiegler(val); } }
Returns a BigInteger whose value is {@code (this / val)}. @param val value by which this BigInteger is to be divided. @return {@code this / val} @throws ArithmeticException if {@code val} is zero.
BigInteger::divide
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger divideKnuth(BigInteger val) { MutableBigInteger q = new MutableBigInteger(), a = new MutableBigInteger(this.mag), b = new MutableBigInteger(val.mag); a.divideKnuth(b, q, false); return q.toBigInteger(this.signum * val.signum); }
Returns a BigInteger whose value is {@code (this / val)} using an O(n^2) algorithm from Knuth. @param val value by which this BigInteger is to be divided. @return {@code this / val} @throws ArithmeticException if {@code val} is zero. @see MutableBigInteger#divideKnuth(MutableBigInteger, MutableBigInteger, boolean)
BigInteger::divideKnuth
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger[] divideAndRemainder(BigInteger val) { if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD || mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) { return divideAndRemainderKnuth(val); } else { return divideAndRemainderBurnikelZiegler(val); } }
Returns an array of two BigIntegers containing {@code (this / val)} followed by {@code (this % val)}. @param val value by which this BigInteger is to be divided, and the remainder computed. @return an array of two BigIntegers: the quotient {@code (this / val)} is the initial element, and the remainder {@code (this % val)} is the final element. @throws ArithmeticException if {@code val} is zero.
BigInteger::divideAndRemainder
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger[] divideAndRemainderKnuth(BigInteger val) { BigInteger[] result = new BigInteger[2]; MutableBigInteger q = new MutableBigInteger(), a = new MutableBigInteger(this.mag), b = new MutableBigInteger(val.mag); MutableBigInteger r = a.divideKnuth(b, q); result[0] = q.toBigInteger(this.signum == val.signum ? 1 : -1); result[1] = r.toBigInteger(this.signum); return result; }
Returns an array of two BigIntegers containing {@code (this / val)} followed by {@code (this % val)}. @param val value by which this BigInteger is to be divided, and the remainder computed. @return an array of two BigIntegers: the quotient {@code (this / val)} is the initial element, and the remainder {@code (this % val)} is the final element. @throws ArithmeticException if {@code val} is zero. public BigInteger[] divideAndRemainder(BigInteger val) { if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD || mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) { return divideAndRemainderKnuth(val); } else { return divideAndRemainderBurnikelZiegler(val); } } /** Long division
BigInteger::divideAndRemainderKnuth
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger remainder(BigInteger val) { if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD || mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) { return remainderKnuth(val); } else { return remainderBurnikelZiegler(val); } }
Returns a BigInteger whose value is {@code (this % val)}. @param val value by which this BigInteger is to be divided, and the remainder computed. @return {@code this % val} @throws ArithmeticException if {@code val} is zero.
BigInteger::remainder
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger remainderKnuth(BigInteger val) { MutableBigInteger q = new MutableBigInteger(), a = new MutableBigInteger(this.mag), b = new MutableBigInteger(val.mag); return a.divideKnuth(b, q).toBigInteger(this.signum); }
Returns a BigInteger whose value is {@code (this % val)}. @param val value by which this BigInteger is to be divided, and the remainder computed. @return {@code this % val} @throws ArithmeticException if {@code val} is zero. public BigInteger remainder(BigInteger val) { if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD || mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) { return remainderKnuth(val); } else { return remainderBurnikelZiegler(val); } } /** Long division
BigInteger::remainderKnuth
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger divideBurnikelZiegler(BigInteger val) { return divideAndRemainderBurnikelZiegler(val)[0]; }
Calculates {@code this / val} using the Burnikel-Ziegler algorithm. @param val the divisor @return {@code this / val}
BigInteger::divideBurnikelZiegler
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger remainderBurnikelZiegler(BigInteger val) { return divideAndRemainderBurnikelZiegler(val)[1]; }
Calculates {@code this % val} using the Burnikel-Ziegler algorithm. @param val the divisor @return {@code this % val}
BigInteger::remainderBurnikelZiegler
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger[] divideAndRemainderBurnikelZiegler(BigInteger val) { MutableBigInteger q = new MutableBigInteger(); MutableBigInteger r = new MutableBigInteger(this).divideAndRemainderBurnikelZiegler(new MutableBigInteger(val), q); BigInteger qBigInt = q.isZero() ? ZERO : q.toBigInteger(signum*val.signum); BigInteger rBigInt = r.isZero() ? ZERO : r.toBigInteger(signum); return new BigInteger[] {qBigInt, rBigInt}; }
Computes {@code this / val} and {@code this % val} using the Burnikel-Ziegler algorithm. @param val the divisor @return an array containing the quotient and remainder
BigInteger::divideAndRemainderBurnikelZiegler
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger pow(int exponent) { if (exponent < 0) { throw new ArithmeticException("Negative exponent"); } if (signum == 0) { return (exponent == 0 ? ONE : this); } BigInteger partToSquare = this.abs(); // Factor out powers of two from the base, as the exponentiation of // these can be done by left shifts only. // The remaining part can then be exponentiated faster. The // powers of two will be multiplied back at the end. int powersOfTwo = partToSquare.getLowestSetBit(); long bitsToShift = (long)powersOfTwo * exponent; if (bitsToShift > Integer.MAX_VALUE) { reportOverflow(); } int remainingBits; // Factor the powers of two out quickly by shifting right, if needed. if (powersOfTwo > 0) { partToSquare = partToSquare.shiftRight(powersOfTwo); remainingBits = partToSquare.bitLength(); if (remainingBits == 1) { // Nothing left but +/- 1? if (signum < 0 && (exponent&1) == 1) { return NEGATIVE_ONE.shiftLeft(powersOfTwo*exponent); } else { return ONE.shiftLeft(powersOfTwo*exponent); } } } else { remainingBits = partToSquare.bitLength(); if (remainingBits == 1) { // Nothing left but +/- 1? if (signum < 0 && (exponent&1) == 1) { return NEGATIVE_ONE; } else { return ONE; } } } // This is a quick way to approximate the size of the result, // similar to doing log2[n] * exponent. This will give an upper bound // of how big the result can be, and which algorithm to use. long scaleFactor = (long)remainingBits * exponent; // Use slightly different algorithms for small and large operands. // See if the result will safely fit into a long. (Largest 2^63-1) if (partToSquare.mag.length == 1 && scaleFactor <= 62) { // Small number algorithm. Everything fits into a long. int newSign = (signum <0 && (exponent&1) == 1 ? -1 : 1); long result = 1; long baseToPow2 = partToSquare.mag[0] & LONG_MASK; int workingExponent = exponent; // Perform exponentiation using repeated squaring trick while (workingExponent != 0) { if ((workingExponent & 1) == 1) { result = result * baseToPow2; } if ((workingExponent >>>= 1) != 0) { baseToPow2 = baseToPow2 * baseToPow2; } } // Multiply back the powers of two (quickly, by shifting left) if (powersOfTwo > 0) { if (bitsToShift + scaleFactor <= 62) { // Fits in long? return valueOf((result << bitsToShift) * newSign); } else { return valueOf(result*newSign).shiftLeft((int) bitsToShift); } } else { return valueOf(result*newSign); } } else { // Large number algorithm. This is basically identical to // the algorithm above, but calls multiply() and square() // which may use more efficient algorithms for large numbers. BigInteger answer = ONE; int workingExponent = exponent; // Perform exponentiation using repeated squaring trick while (workingExponent != 0) { if ((workingExponent & 1) == 1) { answer = answer.multiply(partToSquare); } if ((workingExponent >>>= 1) != 0) { partToSquare = partToSquare.square(); } } // Multiply back the (exponentiated) powers of two (quickly, // by shifting left) if (powersOfTwo > 0) { answer = answer.shiftLeft(powersOfTwo*exponent); } if (signum < 0 && (exponent&1) == 1) { return answer.negate(); } else { return answer; } } }
Returns a BigInteger whose value is <tt>(this<sup>exponent</sup>)</tt>. Note that {@code exponent} is an integer rather than a BigInteger. @param exponent exponent to which this BigInteger is to be raised. @return <tt>this<sup>exponent</sup></tt> @throws ArithmeticException {@code exponent} is negative. (This would cause the operation to yield a non-integer value.)
BigInteger::pow
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger gcd(BigInteger val) { if (val.signum == 0) return this.abs(); else if (this.signum == 0) return val.abs(); MutableBigInteger a = new MutableBigInteger(this); MutableBigInteger b = new MutableBigInteger(val); MutableBigInteger result = a.hybridGCD(b); return result.toBigInteger(1); }
Returns a BigInteger whose value is the greatest common divisor of {@code abs(this)} and {@code abs(val)}. Returns 0 if {@code this == 0 && val == 0}. @param val value with which the GCD is to be computed. @return {@code GCD(abs(this), abs(val))}
BigInteger::gcd
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
static int bitLengthForInt(int n) { return 32 - Integer.numberOfLeadingZeros(n); }
Package private method to return bit length for an integer.
BigInteger::bitLengthForInt
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static int[] leftShift(int[] a, int len, int n) { int nInts = n >>> 5; int nBits = n&0x1F; int bitsInHighWord = bitLengthForInt(a[0]); // If shift can be done without recopy, do so if (n <= (32-bitsInHighWord)) { primitiveLeftShift(a, len, nBits); return a; } else { // Array must be resized if (nBits <= (32-bitsInHighWord)) { int result[] = new int[nInts+len]; System.arraycopy(a, 0, result, 0, len); primitiveLeftShift(result, result.length, nBits); return result; } else { int result[] = new int[nInts+len+1]; System.arraycopy(a, 0, result, 0, len); primitiveRightShift(result, result.length, 32 - nBits); return result; } } }
Left shift int array a up to len by n bits. Returns the array that results from the shift since space may have to be reallocated.
BigInteger::leftShift
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static int bitLength(int[] val, int len) { if (len == 0) return 0; return ((len - 1) << 5) + bitLengthForInt(val[0]); }
Calculate bitlength of contents of the first len elements an int array, assuming there are no leading zero ints.
BigInteger::bitLength
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger abs() { return (signum >= 0 ? this : this.negate()); }
Returns a BigInteger whose value is the absolute value of this BigInteger. @return {@code abs(this)}
BigInteger::abs
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger negate() { return new BigInteger(this.mag, -this.signum); }
Returns a BigInteger whose value is {@code (-this)}. @return {@code -this}
BigInteger::negate
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public int signum() { return this.signum; }
Returns the signum function of this BigInteger. @return -1, 0 or 1 as the value of this BigInteger is negative, zero or positive.
BigInteger::signum
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger mod(BigInteger m) { if (m.signum <= 0) throw new ArithmeticException("BigInteger: modulus not positive"); BigInteger result = this.remainder(m); return (result.signum >= 0 ? result : result.add(m)); }
Returns a BigInteger whose value is {@code (this mod m}). This method differs from {@code remainder} in that it always returns a <i>non-negative</i> BigInteger. @param m the modulus. @return {@code this mod m} @throws ArithmeticException {@code m} &le; 0 @see #remainder
BigInteger::mod
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger modPow(BigInteger exponent, BigInteger m) { if (m.signum <= 0) throw new ArithmeticException("BigInteger: modulus not positive"); // Trivial cases if (exponent.signum == 0) return (m.equals(ONE) ? ZERO : ONE); if (this.equals(ONE)) return (m.equals(ONE) ? ZERO : ONE); if (this.equals(ZERO) && exponent.signum >= 0) return ZERO; if (this.equals(negConst[1]) && (!exponent.testBit(0))) return (m.equals(ONE) ? ZERO : ONE); boolean invertResult; if ((invertResult = (exponent.signum < 0))) exponent = exponent.negate(); BigInteger base = (this.signum < 0 || this.compareTo(m) >= 0 ? this.mod(m) : this); BigInteger result; if (m.testBit(0)) { // odd modulus result = base.oddModPow(exponent, m); } else { /* * Even modulus. Tear it into an "odd part" (m1) and power of two * (m2), exponentiate mod m1, manually exponentiate mod m2, and * use Chinese Remainder Theorem to combine results. */ // Tear m apart into odd part (m1) and power of 2 (m2) int p = m.getLowestSetBit(); // Max pow of 2 that divides m BigInteger m1 = m.shiftRight(p); // m/2**p BigInteger m2 = ONE.shiftLeft(p); // 2**p // Calculate new base from m1 BigInteger base2 = (this.signum < 0 || this.compareTo(m1) >= 0 ? this.mod(m1) : this); // Caculate (base ** exponent) mod m1. BigInteger a1 = (m1.equals(ONE) ? ZERO : base2.oddModPow(exponent, m1)); // Calculate (this ** exponent) mod m2 BigInteger a2 = base.modPow2(exponent, p); // Combine results using Chinese Remainder Theorem BigInteger y1 = m2.modInverse(m1); BigInteger y2 = m1.modInverse(m2); if (m.mag.length < MAX_MAG_LENGTH / 2) { result = a1.multiply(m2).multiply(y1).add(a2.multiply(m1).multiply(y2)).mod(m); } else { MutableBigInteger t1 = new MutableBigInteger(); new MutableBigInteger(a1.multiply(m2)).multiply(new MutableBigInteger(y1), t1); MutableBigInteger t2 = new MutableBigInteger(); new MutableBigInteger(a2.multiply(m1)).multiply(new MutableBigInteger(y2), t2); t1.add(t2); MutableBigInteger q = new MutableBigInteger(); result = t1.divide(new MutableBigInteger(m), q).toBigInteger(); } } return (invertResult ? result.modInverse(m) : result); }
Returns a BigInteger whose value is <tt>(this<sup>exponent</sup> mod m)</tt>. (Unlike {@code pow}, this method permits negative exponents.) @param exponent the exponent. @param m the modulus. @return <tt>this<sup>exponent</sup> mod m</tt> @throws ArithmeticException {@code m} &le; 0 or the exponent is negative and this BigInteger is not <i>relatively prime</i> to {@code m}. @see #modInverse
BigInteger::modPow
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger oddModPow(BigInteger y, BigInteger z) { /* * The algorithm is adapted from Colin Plumb's C library. * * The window algorithm: * The idea is to keep a running product of b1 = n^(high-order bits of exp) * and then keep appending exponent bits to it. The following patterns * apply to a 3-bit window (k = 3): * To append 0: square * To append 1: square, multiply by n^1 * To append 10: square, multiply by n^1, square * To append 11: square, square, multiply by n^3 * To append 100: square, multiply by n^1, square, square * To append 101: square, square, square, multiply by n^5 * To append 110: square, square, multiply by n^3, square * To append 111: square, square, square, multiply by n^7 * * Since each pattern involves only one multiply, the longer the pattern * the better, except that a 0 (no multiplies) can be appended directly. * We precompute a table of odd powers of n, up to 2^k, and can then * multiply k bits of exponent at a time. Actually, assuming random * exponents, there is on average one zero bit between needs to * multiply (1/2 of the time there's none, 1/4 of the time there's 1, * 1/8 of the time, there's 2, 1/32 of the time, there's 3, etc.), so * you have to do one multiply per k+1 bits of exponent. * * The loop walks down the exponent, squaring the result buffer as * it goes. There is a wbits+1 bit lookahead buffer, buf, that is * filled with the upcoming exponent bits. (What is read after the * end of the exponent is unimportant, but it is filled with zero here.) * When the most-significant bit of this buffer becomes set, i.e. * (buf & tblmask) != 0, we have to decide what pattern to multiply * by, and when to do it. We decide, remember to do it in future * after a suitable number of squarings have passed (e.g. a pattern * of "100" in the buffer requires that we multiply by n^1 immediately; * a pattern of "110" calls for multiplying by n^3 after one more * squaring), clear the buffer, and continue. * * When we start, there is one more optimization: the result buffer * is implcitly one, so squaring it or multiplying by it can be * optimized away. Further, if we start with a pattern like "100" * in the lookahead window, rather than placing n into the buffer * and then starting to square it, we have already computed n^2 * to compute the odd-powers table, so we can place that into * the buffer and save a squaring. * * This means that if you have a k-bit window, to compute n^z, * where z is the high k bits of the exponent, 1/2 of the time * it requires no squarings. 1/4 of the time, it requires 1 * squaring, ... 1/2^(k-1) of the time, it reqires k-2 squarings. * And the remaining 1/2^(k-1) of the time, the top k bits are a * 1 followed by k-1 0 bits, so it again only requires k-2 * squarings, not k-1. The average of these is 1. Add that * to the one squaring we have to do to compute the table, * and you'll see that a k-bit window saves k-2 squarings * as well as reducing the multiplies. (It actually doesn't * hurt in the case k = 1, either.) */ // Special case for exponent of one if (y.equals(ONE)) return this; // Special case for base of zero if (signum == 0) return ZERO; int[] base = mag.clone(); int[] exp = y.mag; int[] mod = z.mag; int modLen = mod.length; // Select an appropriate window size int wbits = 0; int ebits = bitLength(exp, exp.length); // if exponent is 65537 (0x10001), use minimum window size if ((ebits != 17) || (exp[0] != 65537)) { while (ebits > bnExpModThreshTable[wbits]) { wbits++; } } // Calculate appropriate table size int tblmask = 1 << wbits; // Allocate table for precomputed odd powers of base in Montgomery form int[][] table = new int[tblmask][]; for (int i=0; i < tblmask; i++) table[i] = new int[modLen]; // Compute the modular inverse int inv = -MutableBigInteger.inverseMod32(mod[modLen-1]); // Convert base to Montgomery form int[] a = leftShift(base, base.length, modLen << 5); MutableBigInteger q = new MutableBigInteger(), a2 = new MutableBigInteger(a), b2 = new MutableBigInteger(mod); MutableBigInteger r= a2.divide(b2, q); table[0] = r.toIntArray(); // Pad table[0] with leading zeros so its length is at least modLen if (table[0].length < modLen) { int offset = modLen - table[0].length; int[] t2 = new int[modLen]; for (int i=0; i < table[0].length; i++) t2[i+offset] = table[0][i]; table[0] = t2; } // Set b to the square of the base int[] b = squareToLen(table[0], modLen, null); b = montReduce(b, mod, modLen, inv); // Set t to high half of b int[] t = Arrays.copyOf(b, modLen); // Fill in the table with odd powers of the base for (int i=1; i < tblmask; i++) { int[] prod = multiplyToLen(t, modLen, table[i-1], modLen, null); table[i] = montReduce(prod, mod, modLen, inv); } // Pre load the window that slides over the exponent int bitpos = 1 << ((ebits-1) & (32-1)); int buf = 0; int elen = exp.length; int eIndex = 0; for (int i = 0; i <= wbits; i++) { buf = (buf << 1) | (((exp[eIndex] & bitpos) != 0)?1:0); bitpos >>>= 1; if (bitpos == 0) { eIndex++; bitpos = 1 << (32-1); elen--; } } int multpos = ebits; // The first iteration, which is hoisted out of the main loop ebits--; boolean isone = true; multpos = ebits - wbits; while ((buf & 1) == 0) { buf >>>= 1; multpos++; } int[] mult = table[buf >>> 1]; buf = 0; if (multpos == ebits) isone = false; // The main loop while (true) { ebits--; // Advance the window buf <<= 1; if (elen != 0) { buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0; bitpos >>>= 1; if (bitpos == 0) { eIndex++; bitpos = 1 << (32-1); elen--; } } // Examine the window for pending multiplies if ((buf & tblmask) != 0) { multpos = ebits - wbits; while ((buf & 1) == 0) { buf >>>= 1; multpos++; } mult = table[buf >>> 1]; buf = 0; } // Perform multiply if (ebits == multpos) { if (isone) { b = mult.clone(); isone = false; } else { t = b; a = multiplyToLen(t, modLen, mult, modLen, a); a = montReduce(a, mod, modLen, inv); t = a; a = b; b = t; } } // Check if done if (ebits == 0) break; // Square the input if (!isone) { t = b; a = squareToLen(t, modLen, a); a = montReduce(a, mod, modLen, inv); t = a; a = b; b = t; } } // Convert result out of Montgomery form and return int[] t2 = new int[2*modLen]; System.arraycopy(b, 0, t2, modLen, modLen); b = montReduce(t2, mod, modLen, inv); t2 = Arrays.copyOf(b, modLen); return new BigInteger(1, t2); }
Returns a BigInteger whose value is x to the power of y mod z. Assumes: z is odd && x < z.
BigInteger::oddModPow
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static int[] montReduce(int[] n, int[] mod, int mlen, int inv) { int c=0; int len = mlen; int offset=0; do { int nEnd = n[n.length-1-offset]; int carry = mulAdd(n, mod, offset, mlen, inv * nEnd); c += addOne(n, offset, mlen, carry); offset++; } while (--len > 0); while (c > 0) c += subN(n, mod, mlen); while (intArrayCmpToLen(n, mod, mlen) >= 0) subN(n, mod, mlen); return n; }
Montgomery reduce n, modulo mod. This reduces modulo mod and divides by 2^(32*mlen). Adapted from Colin Plumb's C library.
BigInteger::montReduce
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static int intArrayCmpToLen(int[] arg1, int[] arg2, int len) { for (int i=0; i < len; i++) { long b1 = arg1[i] & LONG_MASK; long b2 = arg2[i] & LONG_MASK; if (b1 < b2) return -1; if (b1 > b2) return 1; } return 0; }
Montgomery reduce n, modulo mod. This reduces modulo mod and divides by 2^(32*mlen). Adapted from Colin Plumb's C library. private static int[] montReduce(int[] n, int[] mod, int mlen, int inv) { int c=0; int len = mlen; int offset=0; do { int nEnd = n[n.length-1-offset]; int carry = mulAdd(n, mod, offset, mlen, inv * nEnd); c += addOne(n, offset, mlen, carry); offset++; } while (--len > 0); while (c > 0) c += subN(n, mod, mlen); while (intArrayCmpToLen(n, mod, mlen) >= 0) subN(n, mod, mlen); return n; } /* Returns -1, 0 or +1 as big-endian unsigned int array arg1 is less than, equal to, or greater than arg2 up to length len.
BigInteger::intArrayCmpToLen
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static int subN(int[] a, int[] b, int len) { long sum = 0; while (--len >= 0) { sum = (a[len] & LONG_MASK) - (b[len] & LONG_MASK) + (sum >> 32); a[len] = (int)sum; } return (int)(sum >> 32); }
Subtracts two numbers of same length, returning borrow.
BigInteger::subN
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
static int mulAdd(int[] out, int[] in, int offset, int len, int k) { long kLong = k & LONG_MASK; long carry = 0; offset = out.length-offset - 1; for (int j=len-1; j >= 0; j--) { long product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; out[offset--] = (int)product; carry = product >>> 32; } return (int)carry; }
Multiply an array by one word k and add to result, return the carry
BigInteger::mulAdd
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
static int addOne(int[] a, int offset, int mlen, int carry) { offset = a.length-1-mlen-offset; long t = (a[offset] & LONG_MASK) + (carry & LONG_MASK); a[offset] = (int)t; if ((t >>> 32) == 0) return 0; while (--mlen >= 0) { if (--offset < 0) { // Carry out of number return 1; } else { a[offset]++; if (a[offset] != 0) return 0; } } return 1; }
Add one word to the number a mlen words into a. Return the resulting carry.
BigInteger::addOne
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger modPow2(BigInteger exponent, int p) { /* * Perform exponentiation using repeated squaring trick, chopping off * high order bits as indicated by modulus. */ BigInteger result = ONE; BigInteger baseToPow2 = this.mod2(p); int expOffset = 0; int limit = exponent.bitLength(); if (this.testBit(0)) limit = (p-1) < limit ? (p-1) : limit; while (expOffset < limit) { if (exponent.testBit(expOffset)) result = result.multiply(baseToPow2).mod2(p); expOffset++; if (expOffset < limit) baseToPow2 = baseToPow2.square().mod2(p); } return result; }
Returns a BigInteger whose value is (this ** exponent) mod (2**p)
BigInteger::modPow2
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger mod2(int p) { if (bitLength() <= p) return this; // Copy remaining ints of mag int numInts = (p + 31) >>> 5; int[] mag = new int[numInts]; System.arraycopy(this.mag, (this.mag.length - numInts), mag, 0, numInts); // Mask out any excess bits int excessBits = (numInts << 5) - p; mag[0] &= (1L << (32-excessBits)) - 1; return (mag[0] == 0 ? new BigInteger(1, mag) : new BigInteger(mag, 1)); }
Returns a BigInteger whose value is this mod(2**p). Assumes that this {@code BigInteger >= 0} and {@code p > 0}.
BigInteger::mod2
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger modInverse(BigInteger m) { if (m.signum != 1) throw new ArithmeticException("BigInteger: modulus not positive"); if (m.equals(ONE)) return ZERO; // Calculate (this mod m) BigInteger modVal = this; if (signum < 0 || (this.compareMagnitude(m) >= 0)) modVal = this.mod(m); if (modVal.equals(ONE)) return ONE; MutableBigInteger a = new MutableBigInteger(modVal); MutableBigInteger b = new MutableBigInteger(m); MutableBigInteger result = a.mutableModInverse(b); return result.toBigInteger(1); }
Returns a BigInteger whose value is {@code (this}<sup>-1</sup> {@code mod m)}. @param m the modulus. @return {@code this}<sup>-1</sup> {@code mod m}. @throws ArithmeticException {@code m} &le; 0, or this BigInteger has no multiplicative inverse mod m (that is, this BigInteger is not <i>relatively prime</i> to m).
BigInteger::modInverse
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger shiftLeft(int n) { if (signum == 0) return ZERO; if (n > 0) { return new BigInteger(shiftLeft(mag, n), signum); } else if (n == 0) { return this; } else { // Possible int overflow in (-n) is not a trouble, // because shiftRightImpl considers its argument unsigned return shiftRightImpl(-n); } }
Returns a BigInteger whose value is {@code (this << n)}. The shift distance, {@code n}, may be negative, in which case this method performs a right shift. (Computes <tt>floor(this * 2<sup>n</sup>)</tt>.) @param n shift distance, in bits. @return {@code this << n} @see #shiftRight
BigInteger::shiftLeft
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static int[] shiftLeft(int[] mag, int n) { int nInts = n >>> 5; int nBits = n & 0x1f; int magLen = mag.length; int newMag[] = null; if (nBits == 0) { newMag = new int[magLen + nInts]; System.arraycopy(mag, 0, newMag, 0, magLen); } else { int i = 0; int nBits2 = 32 - nBits; int highBits = mag[0] >>> nBits2; if (highBits != 0) { newMag = new int[magLen + nInts + 1]; newMag[i++] = highBits; } else { newMag = new int[magLen + nInts]; } int j=0; while (j < magLen-1) newMag[i++] = mag[j++] << nBits | mag[j] >>> nBits2; newMag[i] = mag[j] << nBits; } return newMag; }
Returns a magnitude array whose value is {@code (mag << n)}. The shift distance, {@code n}, is considered unnsigned. (Computes <tt>this * 2<sup>n</sup></tt>.) @param mag magnitude, the most-significant int ({@code mag[0]}) must be non-zero. @param n unsigned shift distance, in bits. @return {@code mag << n}
BigInteger::shiftLeft
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger shiftRight(int n) { if (signum == 0) return ZERO; if (n > 0) { return shiftRightImpl(n); } else if (n == 0) { return this; } else { // Possible int overflow in {@code -n} is not a trouble, // because shiftLeft considers its argument unsigned return new BigInteger(shiftLeft(mag, -n), signum); } }
Returns a BigInteger whose value is {@code (this >> n)}. Sign extension is performed. The shift distance, {@code n}, may be negative, in which case this method performs a left shift. (Computes <tt>floor(this / 2<sup>n</sup>)</tt>.) @param n shift distance, in bits. @return {@code this >> n} @see #shiftLeft
BigInteger::shiftRight
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private BigInteger shiftRightImpl(int n) { int nInts = n >>> 5; int nBits = n & 0x1f; int magLen = mag.length; int newMag[] = null; // Special case: entire contents shifted off the end if (nInts >= magLen) return (signum >= 0 ? ZERO : negConst[1]); if (nBits == 0) { int newMagLen = magLen - nInts; newMag = Arrays.copyOf(mag, newMagLen); } else { int i = 0; int highBits = mag[0] >>> nBits; if (highBits != 0) { newMag = new int[magLen - nInts]; newMag[i++] = highBits; } else { newMag = new int[magLen - nInts -1]; } int nBits2 = 32 - nBits; int j=0; while (j < magLen - nInts - 1) newMag[i++] = (mag[j++] << nBits2) | (mag[j] >>> nBits); } if (signum < 0) { // Find out whether any one-bits were shifted off the end. boolean onesLost = false; for (int i=magLen-1, j=magLen-nInts; i >= j && !onesLost; i--) onesLost = (mag[i] != 0); if (!onesLost && nBits != 0) onesLost = (mag[magLen - nInts - 1] << (32 - nBits) != 0); if (onesLost) newMag = javaIncrement(newMag); } return new BigInteger(newMag, signum); }
Returns a BigInteger whose value is {@code (this >> n)}. The shift distance, {@code n}, is considered unsigned. (Computes <tt>floor(this * 2<sup>-n</sup>)</tt>.) @param n unsigned shift distance, in bits. @return {@code this >> n}
BigInteger::shiftRightImpl
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger and(BigInteger val) { int[] result = new int[Math.max(intLength(), val.intLength())]; for (int i=0; i < result.length; i++) result[i] = (getInt(result.length-i-1) & val.getInt(result.length-i-1)); return valueOf(result); }
Returns a BigInteger whose value is {@code (this & val)}. (This method returns a negative BigInteger if and only if this and val are both negative.) @param val value to be AND'ed with this BigInteger. @return {@code this & val}
BigInteger::and
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger or(BigInteger val) { int[] result = new int[Math.max(intLength(), val.intLength())]; for (int i=0; i < result.length; i++) result[i] = (getInt(result.length-i-1) | val.getInt(result.length-i-1)); return valueOf(result); }
Returns a BigInteger whose value is {@code (this | val)}. (This method returns a negative BigInteger if and only if either this or val is negative.) @param val value to be OR'ed with this BigInteger. @return {@code this | val}
BigInteger::or
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger xor(BigInteger val) { int[] result = new int[Math.max(intLength(), val.intLength())]; for (int i=0; i < result.length; i++) result[i] = (getInt(result.length-i-1) ^ val.getInt(result.length-i-1)); return valueOf(result); }
Returns a BigInteger whose value is {@code (this ^ val)}. (This method returns a negative BigInteger if and only if exactly one of this and val are negative.) @param val value to be XOR'ed with this BigInteger. @return {@code this ^ val}
BigInteger::xor
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger not() { int[] result = new int[intLength()]; for (int i=0; i < result.length; i++) result[i] = ~getInt(result.length-i-1); return valueOf(result); }
Returns a BigInteger whose value is {@code (~this)}. (This method returns a negative value if and only if this BigInteger is non-negative.) @return {@code ~this}
BigInteger::not
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger andNot(BigInteger val) { int[] result = new int[Math.max(intLength(), val.intLength())]; for (int i=0; i < result.length; i++) result[i] = (getInt(result.length-i-1) & ~val.getInt(result.length-i-1)); return valueOf(result); }
Returns a BigInteger whose value is {@code (this & ~val)}. This method, which is equivalent to {@code and(val.not())}, is provided as a convenience for masking operations. (This method returns a negative BigInteger if and only if {@code this} is negative and {@code val} is positive.) @param val value to be complemented and AND'ed with this BigInteger. @return {@code this & ~val}
BigInteger::andNot
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public boolean testBit(int n) { if (n < 0) throw new ArithmeticException("Negative bit address"); return (getInt(n >>> 5) & (1 << (n & 31))) != 0; }
Returns {@code true} if and only if the designated bit is set. (Computes {@code ((this & (1<<n)) != 0)}.) @param n index of bit to test. @return {@code true} if and only if the designated bit is set. @throws ArithmeticException {@code n} is negative.
BigInteger::testBit
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger setBit(int n) { if (n < 0) throw new ArithmeticException("Negative bit address"); int intNum = n >>> 5; int[] result = new int[Math.max(intLength(), intNum+2)]; for (int i=0; i < result.length; i++) result[result.length-i-1] = getInt(i); result[result.length-intNum-1] |= (1 << (n & 31)); return valueOf(result); }
Returns a BigInteger whose value is equivalent to this BigInteger with the designated bit set. (Computes {@code (this | (1<<n))}.) @param n index of bit to set. @return {@code this | (1<<n)} @throws ArithmeticException {@code n} is negative.
BigInteger::setBit
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger flipBit(int n) { if (n < 0) throw new ArithmeticException("Negative bit address"); int intNum = n >>> 5; int[] result = new int[Math.max(intLength(), intNum+2)]; for (int i=0; i < result.length; i++) result[result.length-i-1] = getInt(i); result[result.length-intNum-1] ^= (1 << (n & 31)); return valueOf(result); }
Returns a BigInteger whose value is equivalent to this BigInteger with the designated bit flipped. (Computes {@code (this ^ (1<<n))}.) @param n index of bit to flip. @return {@code this ^ (1<<n)} @throws ArithmeticException {@code n} is negative.
BigInteger::flipBit
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public int getLowestSetBit() { @SuppressWarnings("deprecation") int lsb = lowestSetBit - 2; if (lsb == -2) { // lowestSetBit not initialized yet lsb = 0; if (signum == 0) { lsb -= 1; } else { // Search for lowest order nonzero int int i,b; for (i=0; (b = getInt(i)) == 0; i++) ; lsb += (i << 5) + Integer.numberOfTrailingZeros(b); } lowestSetBit = lsb + 2; } return lsb; }
Returns the index of the rightmost (lowest-order) one bit in this BigInteger (the number of zero bits to the right of the rightmost one bit). Returns -1 if this BigInteger contains no one bits. (Computes {@code (this == 0? -1 : log2(this & -this))}.) @return index of the rightmost one bit in this BigInteger.
BigInteger::getLowestSetBit
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public int bitLength() { @SuppressWarnings("deprecation") int n = bitLength - 1; if (n == -1) { // bitLength not initialized yet int[] m = mag; int len = m.length; if (len == 0) { n = 0; // offset by one to initialize } else { // Calculate the bit length of the magnitude int magBitLength = ((len - 1) << 5) + bitLengthForInt(mag[0]); if (signum < 0) { // Check if magnitude is a power of two boolean pow2 = (Integer.bitCount(mag[0]) == 1); for (int i=1; i< len && pow2; i++) pow2 = (mag[i] == 0); n = (pow2 ? magBitLength -1 : magBitLength); } else { n = magBitLength; } } bitLength = n + 1; } return n; }
Returns the number of bits in the minimal two's-complement representation of this BigInteger, <i>excluding</i> a sign bit. For positive BigIntegers, this is equivalent to the number of bits in the ordinary binary representation. (Computes {@code (ceil(log2(this < 0 ? -this : this+1)))}.) @return number of bits in the minimal two's-complement representation of this BigInteger, <i>excluding</i> a sign bit.
BigInteger::bitLength
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public int bitCount() { @SuppressWarnings("deprecation") int bc = bitCount - 1; if (bc == -1) { // bitCount not initialized yet bc = 0; // offset by one to initialize // Count the bits in the magnitude for (int i=0; i < mag.length; i++) bc += Integer.bitCount(mag[i]); if (signum < 0) { // Count the trailing zeros in the magnitude int magTrailingZeroCount = 0, j; for (j=mag.length-1; mag[j] == 0; j--) magTrailingZeroCount += 32; magTrailingZeroCount += Integer.numberOfTrailingZeros(mag[j]); bc += magTrailingZeroCount - 1; } bitCount = bc + 1; } return bc; }
Returns the number of bits in the two's complement representation of this BigInteger that differ from its sign bit. This method is useful when implementing bit-vector style sets atop BigIntegers. @return number of bits in the two's complement representation of this BigInteger that differ from its sign bit.
BigInteger::bitCount
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public boolean isProbablePrime(int certainty) { if (certainty <= 0) return true; BigInteger w = this.abs(); if (w.equals(TWO)) return true; if (!w.testBit(0) || w.equals(ONE)) return false; return w.primeToCertainty(certainty, null); }
Returns {@code true} if this BigInteger is probably prime, {@code false} if it's definitely composite. If {@code certainty} is &le; 0, {@code true} is returned. @param certainty a measure of the uncertainty that the caller is willing to tolerate: if the call returns {@code true} the probability that this BigInteger is prime exceeds (1 - 1/2<sup>{@code certainty}</sup>). The execution time of this method is proportional to the value of this parameter. @return {@code true} if this BigInteger is probably prime, {@code false} if it's definitely composite.
BigInteger::isProbablePrime
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public int compareTo(BigInteger val) { if (signum == val.signum) { switch (signum) { case 1: return compareMagnitude(val); case -1: return val.compareMagnitude(this); default: return 0; } } return signum > val.signum ? 1 : -1; }
Compares this BigInteger with the specified BigInteger. This method is provided in preference to individual methods for each of the six boolean comparison operators ({@literal <}, ==, {@literal >}, {@literal >=}, !=, {@literal <=}). The suggested idiom for performing these comparisons is: {@code (x.compareTo(y)} &lt;<i>op</i>&gt; {@code 0)}, where &lt;<i>op</i>&gt; is one of the six comparison operators. @param val BigInteger to which this BigInteger is to be compared. @return -1, 0 or 1 as this BigInteger is numerically less than, equal to, or greater than {@code val}.
BigInteger::compareTo
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
final int compareMagnitude(BigInteger val) { int[] m1 = mag; int len1 = m1.length; int[] m2 = val.mag; int len2 = m2.length; if (len1 < len2) return -1; if (len1 > len2) return 1; for (int i = 0; i < len1; i++) { int a = m1[i]; int b = m2[i]; if (a != b) return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1; } return 0; }
Compares the magnitude array of this BigInteger with the specified BigInteger's. This is the version of compareTo ignoring sign. @param val BigInteger whose magnitude array to be compared. @return -1, 0 or 1 as this magnitude array is less than, equal to or greater than the magnitude aray for the specified BigInteger's.
BigInteger::compareMagnitude
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
final int compareMagnitude(long val) { assert val != Long.MIN_VALUE; int[] m1 = mag; int len = m1.length; if (len > 2) { return 1; } if (val < 0) { val = -val; } int highWord = (int)(val >>> 32); if (highWord == 0) { if (len < 1) return -1; if (len > 1) return 1; int a = m1[0]; int b = (int)val; if (a != b) { return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1; } return 0; } else { if (len < 2) return -1; int a = m1[0]; int b = highWord; if (a != b) { return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1; } a = m1[1]; b = (int)val; if (a != b) { return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1; } return 0; } }
Version of compareMagnitude that compares magnitude with long value. val can't be Long.MIN_VALUE.
BigInteger::compareMagnitude
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public boolean equals(Object x) { // This test is just an optimization, which may or may not help if (x == this) return true; if (!(x instanceof BigInteger)) return false; BigInteger xInt = (BigInteger) x; if (xInt.signum != signum) return false; int[] m = mag; int len = m.length; int[] xm = xInt.mag; if (len != xm.length) return false; for (int i = 0; i < len; i++) if (xm[i] != m[i]) return false; return true; }
Compares this BigInteger with the specified Object for equality. @param x Object to which this BigInteger is to be compared. @return {@code true} if and only if the specified Object is a BigInteger whose value is numerically equal to this BigInteger.
BigInteger::equals
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger min(BigInteger val) { return (compareTo(val) < 0 ? this : val); }
Returns the minimum of this BigInteger and {@code val}. @param val value with which the minimum is to be computed. @return the BigInteger whose value is the lesser of this BigInteger and {@code val}. If they are equal, either may be returned.
BigInteger::min
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public BigInteger max(BigInteger val) { return (compareTo(val) > 0 ? this : val); }
Returns the maximum of this BigInteger and {@code val}. @param val value with which the maximum is to be computed. @return the BigInteger whose value is the greater of this and {@code val}. If they are equal, either may be returned.
BigInteger::max
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public int hashCode() { int hashCode = 0; for (int i=0; i < mag.length; i++) hashCode = (int)(31*hashCode + (mag[i] & LONG_MASK)); return hashCode * signum; }
Returns the hash code for this BigInteger. @return hash code for this BigInteger.
BigInteger::hashCode
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public String toString(int radix) { if (signum == 0) return "0"; if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) radix = 10; // If it's small enough, use smallToString. if (mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD) return smallToString(radix); // Otherwise use recursive toString, which requires positive arguments. // The results will be concatenated into this StringBuilder StringBuilder sb = new StringBuilder(); if (signum < 0) { toString(this.negate(), sb, radix, 0); sb.insert(0, '-'); } else toString(this, sb, radix, 0); return sb.toString(); }
Returns the String representation of this BigInteger in the given radix. If the radix is outside the range from {@link Character#MIN_RADIX} to {@link Character#MAX_RADIX} inclusive, it will default to 10 (as is the case for {@code Integer.toString}). The digit-to-character mapping provided by {@code Character.forDigit} is used, and a minus sign is prepended if appropriate. (This representation is compatible with the {@link #BigInteger(String, int) (String, int)} constructor.) @param radix radix of the String representation. @return String representation of this BigInteger in the given radix. @see Integer#toString @see Character#forDigit @see #BigInteger(java.lang.String, int)
BigInteger::toString
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private String smallToString(int radix) { if (signum == 0) { return "0"; } // Compute upper bound on number of digit groups and allocate space int maxNumDigitGroups = (4*mag.length + 6)/7; String digitGroup[] = new String[maxNumDigitGroups]; // Translate number to string, a digit group at a time BigInteger tmp = this.abs(); int numGroups = 0; while (tmp.signum != 0) { BigInteger d = longRadix[radix]; MutableBigInteger q = new MutableBigInteger(), a = new MutableBigInteger(tmp.mag), b = new MutableBigInteger(d.mag); MutableBigInteger r = a.divide(b, q); BigInteger q2 = q.toBigInteger(tmp.signum * d.signum); BigInteger r2 = r.toBigInteger(tmp.signum * d.signum); digitGroup[numGroups++] = Long.toString(r2.longValue(), radix); tmp = q2; } // Put sign (if any) and first digit group into result buffer StringBuilder buf = new StringBuilder(numGroups*digitsPerLong[radix]+1); if (signum < 0) { buf.append('-'); } buf.append(digitGroup[numGroups-1]); // Append remaining digit groups padded with leading zeros for (int i=numGroups-2; i >= 0; i--) { // Prepend (any) leading zeros for this digit group int numLeadingZeros = digitsPerLong[radix]-digitGroup[i].length(); if (numLeadingZeros != 0) { buf.append(zeros[numLeadingZeros]); } buf.append(digitGroup[i]); } return buf.toString(); }
Returns the String representation of this BigInteger in the given radix. If the radix is outside the range from {@link Character#MIN_RADIX} to {@link Character#MAX_RADIX} inclusive, it will default to 10 (as is the case for {@code Integer.toString}). The digit-to-character mapping provided by {@code Character.forDigit} is used, and a minus sign is prepended if appropriate. (This representation is compatible with the {@link #BigInteger(String, int) (String, int)} constructor.) @param radix radix of the String representation. @return String representation of this BigInteger in the given radix. @see Integer#toString @see Character#forDigit @see #BigInteger(java.lang.String, int) public String toString(int radix) { if (signum == 0) return "0"; if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) radix = 10; // If it's small enough, use smallToString. if (mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD) return smallToString(radix); // Otherwise use recursive toString, which requires positive arguments. // The results will be concatenated into this StringBuilder StringBuilder sb = new StringBuilder(); if (signum < 0) { toString(this.negate(), sb, radix, 0); sb.insert(0, '-'); } else toString(this, sb, radix, 0); return sb.toString(); } /** This method is used to perform toString when arguments are small.
BigInteger::smallToString
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static void toString(BigInteger u, StringBuilder sb, int radix, int digits) { /* If we're smaller than a certain threshold, use the smallToString method, padding with leading zeroes when necessary. */ if (u.mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD) { String s = u.smallToString(radix); // Pad with internal zeros if necessary. // Don't pad if we're at the beginning of the string. if ((s.length() < digits) && (sb.length() > 0)) { for (int i=s.length(); i < digits; i++) { // May be a faster way to sb.append('0'); // do this? } } sb.append(s); return; } int b, n; b = u.bitLength(); // Calculate a value for n in the equation radix^(2^n) = u // and subtract 1 from that value. This is used to find the // cache index that contains the best value to divide u. n = (int) Math.round(Math.log(b * LOG_TWO / logCache[radix]) / LOG_TWO - 1.0); BigInteger v = getRadixConversionCache(radix, n); BigInteger[] results; results = u.divideAndRemainder(v); int expectedDigits = 1 << n; // Now recursively build the two halves of each number. toString(results[0], sb, radix, digits-expectedDigits); toString(results[1], sb, radix, expectedDigits); }
Converts the specified BigInteger to a string and appends to {@code sb}. This implements the recursive Schoenhage algorithm for base conversions. <p/> See Knuth, Donald, _The Art of Computer Programming_, Vol. 2, Answers to Exercises (4.4) Question 14. @param u The number to convert to a string. @param sb The StringBuilder that will be appended to in place. @param radix The base to convert to. @param digits The minimum number of digits to pad to.
BigInteger::toString
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
private static BigInteger getRadixConversionCache(int radix, int exponent) { BigInteger[] cacheLine = powerCache[radix]; // volatile read if (exponent < cacheLine.length) { return cacheLine[exponent]; } int oldLength = cacheLine.length; cacheLine = Arrays.copyOf(cacheLine, exponent + 1); for (int i = oldLength; i <= exponent; i++) { cacheLine[i] = cacheLine[i - 1].pow(2); } BigInteger[][] pc = powerCache; // volatile read again if (exponent >= pc[radix].length) { pc = pc.clone(); pc[radix] = cacheLine; powerCache = pc; // volatile write, publish } return cacheLine[exponent]; }
Returns the value radix^(2^exponent) from the cache. If this value doesn't already exist in the cache, it is added. <p/> This could be changed to a more complicated caching method using {@code Future}.
BigInteger::getRadixConversionCache
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public byte[] toByteArray() { int byteLen = bitLength()/8 + 1; byte[] byteArray = new byte[byteLen]; for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i >= 0; i--) { if (bytesCopied == 4) { nextInt = getInt(intIndex++); bytesCopied = 1; } else { nextInt >>>= 8; bytesCopied++; } byteArray[i] = (byte)nextInt; } return byteArray; }
Returns a byte array containing the two's-complement representation of this BigInteger. The byte array will be in <i>big-endian</i> byte-order: the most significant byte is in the zeroth element. The array will contain the minimum number of bytes required to represent this BigInteger, including at least one sign bit, which is {@code (ceil((this.bitLength() + 1)/8))}. (This representation is compatible with the {@link #BigInteger(byte[]) (byte[])} constructor.) @return a byte array containing the two's-complement representation of this BigInteger. @see #BigInteger(byte[])
BigInteger::toByteArray
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public int intValue() { int result = 0; result = getInt(0); return result; }
Converts this BigInteger to an {@code int}. This conversion is analogous to a <i>narrowing primitive conversion</i> from {@code long} to {@code int} as defined in section 5.1.3 of <cite>The Java&trade; Language Specification</cite>: if this BigInteger is too big to fit in an {@code int}, only the low-order 32 bits are returned. Note that this conversion can lose information about the overall magnitude of the BigInteger value as well as return a result with the opposite sign. @return this BigInteger converted to an {@code int}. @see #intValueExact()
BigInteger::intValue
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0
public long longValue() { long result = 0; for (int i=1; i >= 0; i--) result = (result << 32) + (getInt(i) & LONG_MASK); return result; }
Converts this BigInteger to a {@code long}. This conversion is analogous to a <i>narrowing primitive conversion</i> from {@code long} to {@code int} as defined in section 5.1.3 of <cite>The Java&trade; Language Specification</cite>: if this BigInteger is too big to fit in a {@code long}, only the low-order 64 bits are returned. Note that this conversion can lose information about the overall magnitude of the BigInteger value as well as return a result with the opposite sign. @return this BigInteger converted to a {@code long}. @see #longValueExact()
BigInteger::longValue
java
google/j2objc
jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
https://github.com/google/j2objc/blob/master/jre_emul/openjdk/src/share/classes/java/math/BigInteger.java
Apache-2.0