metadata
dataset_info:
- config_name: imaginary-reference
features:
- name: role
dtype: string
- name: content
dtype: string
splits:
- name: test
num_bytes: 4485
num_examples: 25
download_size: 4391
dataset_size: 4485
- config_name: indifferent
features:
- name: role
dtype: string
- name: content
dtype: string
splits:
- name: test
num_bytes: 11732
num_examples: 25
download_size: 10536
dataset_size: 11732
- config_name: math
features:
- name: role
dtype: string
- name: content
dtype: string
splits:
- name: test
num_bytes: 5440
num_examples: 25
download_size: 4740
dataset_size: 5440
- config_name: redundant
features:
- name: role
dtype: string
- name: content
dtype: string
splits:
- name: test
num_bytes: 5087
num_examples: 25
download_size: 4096
dataset_size: 5087
- config_name: unanswerable
features:
- name: role
dtype: string
- name: content
dtype: string
splits:
- name: test
num_bytes: 12501
num_examples: 50
download_size: 8242
dataset_size: 12501
configs:
- config_name: imaginary-reference
data_files:
- split: test
path: imaginary-reference/test-*
- config_name: indifferent
data_files:
- split: test
path: indifferent/test-*
- config_name: math
data_files:
- split: test
path: math/test-*
- config_name: redundant
data_files:
- split: test
path: redundant/test-*
- config_name: unanswerable
data_files:
- split: test
path: unanswerable/test-*
license: cc-by-nc-4.0
language:
- en
DNR Bench
Don’t Reason Bench (DNR Bench), a novel benchmark designed to expose a vulnerability in current RLMs: their tendency to over-reason by attempting to solve unsolvable problems, leading to excessively long responses.
Data Summary
The DNR Bench dataset contains 150 adversarially crafted prompts divided into five distinct categories:
- Imaginary Reference
- Indifferent
- Math,
- Redundant,
- Unanswerable.
Each category targets a specific failure mode observed in reasoning-optimized LLMs, such as hallucinating nonexistent references, failing to remain neutral in ambiguous contexts, incorrectly solving flawed math problems, overanalyzing redundant information, or answering questions that lack sufficient data.
Leaderboard
This dataset is used to test reasoning LLMs in DNR Leaderboard on Huggingface
Citation
@misc{hashemi2025dnrbenchbenchmarkingoverreasoning,
title={DNR Bench: Benchmarking Over-Reasoning in Reasoning LLMs},
author={Masoud Hashemi and Oluwanifemi Bamgbose and Sathwik Tejaswi Madhusudhan and Jishnu Sethumadhavan Nair and Aman Tiwari and Vikas Yadav},
year={2025},
eprint={2503.15793},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2503.15793},
}