license: other
This version of the dataset is strictly permitted for use exclusively in conjunction with the review process for the paper with Submission Number 13449. Upon completion of the review process, a de-anonymized version of the dataset will be released under a license similar to that of The Stack, which can be found at https://huggingface.co/datasets/bigcode/the-stack.
Dataset Format
The dataset contains 4 different subdataset or configurations in HuggingFace Datasets terminology. Those are bm25_contexts
PP_contexts
randomNN_contexts
and sources
.
First 3 are data used to train and test Repo fusion and the last one is actual java sourcode files the date was taken from.
The format of the data for firt 3 dataset is as follows:
features = datasets.Features({
'id': datasets.Value('string'),
'hole_file': datasets.Value('string'),
'hole_line': datasets.Value('int32'),
'hole_pos': datasets.Value('int32'),
'question': datasets.Value('string'),
'target': datasets.Value('string'),
'answers': datasets.Sequence(
datasets.Value('string')
),
'ctxs': [{
'title': datasets.Value('string'),
'text': datasets.Value('string'),
'score': datasets.Value('float64')
}]
})
The format of the sources
is either as follows if accessed through Datasets.load_dataset:
features = datasets.Features({
'file': datasets.Value('string'),
'content': datasets.Value('string')
})
Or, it can be accessed via file system directly. The format is like this [<data_set_root>/data/<split_name>/<github_user>/<repo_name>/<path/to/every/java/file/in/the/repo>.java]
Therea are 3 splits for each configuration train
, test
, validation
Dataset usage
First, please, clone the dataset locally
git clone https://huggingface.co/datasets/RepoFusion/Stack-Repo <local/path/to/manual/data>
Second, please, load the dataset desired configuration and split:
ds = datasets.load_dataset(
"RepoFusion/Stack-Repo",
name="<configuration_name>",
split="<split_name>"
data_dir="<local/path/to/manual/data>"
)
NOTE: bm25_contexts
PP_contexts
randomNN_contexts
configrations can be loaded directly from the hub without cloning the repo locally. For the sources
if not clonned beforehand or data_dir
not specified, ManualDownloadError
will be raised.