metadata
license: mit
task_categories:
- text-generation
language:
- zh
tags:
- ACG
- animation
size_categories:
- 1K<n<10K
ACG-SimpleQA
π Website β’
π€ Hugging Face
δΈζ | English
ACG-SimpleQA is an objective knowledge question-answering dataset focused on the Chinese ACG (Animation, Comic, Game) domain, containing 4242 auto-generated carefully designed QA samples. This benchmark aims to evaluate large language models' factual capabilities in the ACG culture domain, featuring Chinese language, diversity, high quality, static answers, and easy evaluation.
π’ Latest Updates
- [2025.04.24] We officially release the ACG-SimpleQA dataset! Welcome to download it from π€Hugging Face
π« Introduction
ACG-SimpleQA is a comprehensive benchmark designed to test large language models' factual knowledge in the ACG culture domain. The dataset features:
- π Chinese: ACG-SimpleQA focuses on Chinese ACG knowledge, providing a thorough evaluation of LLMs' factual abilities in this area.
- π Diversity: Covers multiple subdomains such as anime, games, manga, and music, ensuring comprehensive assessment.
- β‘ High Quality: Strict quality control ensures the accuracy of questions and answers.
- π‘ Static: All reference answers are time-invariant, and the knowledge cutoff is before 2024, ensuring long-term validity.
- ποΈ Easy Evaluation: The evaluation method is consistent with SimpleQA and ChineseSimpleQA.
π Leaderboard
Model | ACG-SimpleQA |
---|---|
gemini-2.5-pro-preview-03-25 | 0.5434 |
gpt-4.5-preview | 0.4884 |
gemini-2.5-flash-preview-04-17 | 0.3993 |
deepseek-v3-241226 | 0.3963 |
deepseek-v3-250324 | 0.3944 |
gpt-4.1 | 0.3880 |
grok-3-beta | 0.3810 |
chatgpt-4o-latest | 0.3758 |
gemini-2.0-flash-001 | 0.3597 |
minimax-01 | 0.3175 |
gemini-2.0-flash-lite-001 | 0.2897 |
claude-3.7-sonnet | 0.2864 |
glm-4-plus | 0.2659 |
claude-3.5-sonnet | 0.2515 |
qwen-max | 0.2466 |
doubao-1.5-pro-32k-250115 | 0.2435 |
grok-3-mini-beta | 0.2357 |
o4-mini | 0.2263 |
llama-4-maverick | 0.1655 |
gpt-4.1-mini | 0.1610 |
glm-4-air-250414 | 0.1412 |
claude-3.5-haiku | 0.1334 |
gemma-3-27b-it | 0.1247 |
llama-3.3-70b-instruct | 0.1106 |
qwq-32b | 0.0974 |
qwen2.5-32b-instruct | 0.0969 |
gpt-4.1-nano | 0.0957 |
glm-4-flash-250414 | 0.0700 |
gemma-3-4b-it | 0.0370 |
π Citation
If you use this repository in your research, please consider citing:
@misc{pka2025acgsimpleqa,
title={ACG-SimpleQA},
author={Papersnake},
howpublished = {\url{https://github.com/prnake/ACG-SimpleQA}},
year={2025}
}