Datasets:
metadata
license: cc-by-sa-4.0
size_categories:
- n<1K
task_categories:
- graph-ml
pretty_name: 2D external aero CFD RANS datasets, under geometrical variations
tags:
- physics learning
- geometry learning
configs:
- config_name: default
data_files:
- split: all_samples
path: data/all_samples-*
dataset_info:
description:
legal:
owner: Safran
license: CC-by-SA 4.0
data_production:
type: simulation
physics: 2D stationary RANS
simulator: elsA
split:
train:
- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
test:
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
task: regression
in_scalars_names: []
out_scalars_names: []
in_timeseries_names: []
out_timeseries_names: []
in_fields_names: []
out_fields_names:
- Mach
- Pressure
- Velocity-x
- Velocity-y
in_meshes_names:
- /Base_2_2/Zone
out_meshes_names: []
features:
- name: sample
dtype: binary
splits:
- name: all_samples
num_bytes: 1290091704
num_examples: 400
download_size: 813895818
dataset_size: 1290091704
Dataset Card
This dataset contains a single huggingface split, named 'all_samples'.
The samples contains a single huggingface feature, named called "sample".
Samples are instances of plaid.containers.sample.Sample. Mesh objects included in samples follow the CGNS standard, and can be converted in Muscat.Containers.Mesh.Mesh.
Example of commands:
from datasets import load_dataset
from plaid.containers.sample import Sample
import pickle
# Load the dataset
hf_dataset = load_dataset("PLAID-datasets/2D_profile", split="all_samples")
# Get split ids
ids_train = hf_dataset.description["split"]['train']
ids_test = hf_dataset.description["split"]['test']
# Get inputs/outputs names
in_scalars_names = hf_dataset.description["in_scalars_names"]
out_fields_names = hf_dataset.description["out_fields_names"]
# Get samples
sample = Sample.model_validate(pickle.loads(hf_dataset[ids_train[0]]["sample"]))
sample_2 = Sample.model_validate(pickle.loads(hf_dataset[ids_test[0]]["sample"]))
# Examples data retrievals
nodes = sample.get_nodes()
elements = sample.get_elements()
nodal_tags = sample.get_nodal_tags()
for fn in ['Mach', 'Pressure', 'Velocity-x', 'Velocity-y']:
field = sample.get_field(fn)
# Get the mesh and convert it to Muscat
from Muscat.Bridges import CGNSBridge
CGNS_tree = sample.get_mesh()
mesh = CGNSBridge.CGNSToMesh(CGNS_tree)
print(mesh)
Dataset Details
Dataset Description
This dataset contains 2D external aero CFD RANS solutions, under geometrical variations.
The variablity in the samples is the geometry (mesh). Outputs of interest are 4 fields. Each sample have been computed on large refined meshes, which have been cut close to the profil.
Dataset created using the PLAID library and datamodel, version 0.1.
- Language: PLAID
- License: cc-by-sa-4.0
- Owner: Safran
Dataset Sources
- Repository: Zenodo