id
stringlengths 14
28
| title
stringclasses 18
values | content
stringlengths 2
999
| contents
stringlengths 19
1.02k
|
---|---|---|---|
Biochemistry_Lippincott_883 | Biochemistry_Lippinco | Two mechanisms are available in humans for the transport of ammonia from peripheral tissues to the liver for conversion to urea. Both are important in, but not exclusive to, skeletal muscle. The first uses glutamine synthetase to combine ammonia with glutamate to form glutamine, a nontoxic transport form of ammonia (Fig. 19.13). The glutamine is transported in the blood to the liver where it is cleaved by glutaminase to glutamate and ammonia (see p. 256). The glutamate is oxidatively deaminated to ammonia and α-ketoglutarate by GDH. The ammonia is converted to urea. The second transport mechanism involves the formation of alanine by the transamination of pyruvate produced from both aerobic glycolysis and metabolism of the succinyl coenzyme A (CoA) generated by the catabolism of the BCAA isoleucine and valine. Alanine is transported in the blood to the liver, where it is transaminated by ALT to pyruvate. The pyruvate is used to synthesize glucose, which can enter the blood and be used | Biochemistry_Lippinco. Two mechanisms are available in humans for the transport of ammonia from peripheral tissues to the liver for conversion to urea. Both are important in, but not exclusive to, skeletal muscle. The first uses glutamine synthetase to combine ammonia with glutamate to form glutamine, a nontoxic transport form of ammonia (Fig. 19.13). The glutamine is transported in the blood to the liver where it is cleaved by glutaminase to glutamate and ammonia (see p. 256). The glutamate is oxidatively deaminated to ammonia and α-ketoglutarate by GDH. The ammonia is converted to urea. The second transport mechanism involves the formation of alanine by the transamination of pyruvate produced from both aerobic glycolysis and metabolism of the succinyl coenzyme A (CoA) generated by the catabolism of the BCAA isoleucine and valine. Alanine is transported in the blood to the liver, where it is transaminated by ALT to pyruvate. The pyruvate is used to synthesize glucose, which can enter the blood and be used |
Biochemistry_Lippincott_884 | Biochemistry_Lippinco | and valine. Alanine is transported in the blood to the liver, where it is transaminated by ALT to pyruvate. The pyruvate is used to synthesize glucose, which can enter the blood and be used by muscle, a pathway called the glucose–alanine cycle. The glutamate product of ALT can be deaminated by GDH, generating ammonia. Thus, both alanine and glutamine carry ammonia to the liver. | Biochemistry_Lippinco. and valine. Alanine is transported in the blood to the liver, where it is transaminated by ALT to pyruvate. The pyruvate is used to synthesize glucose, which can enter the blood and be used by muscle, a pathway called the glucose–alanine cycle. The glutamate product of ALT can be deaminated by GDH, generating ammonia. Thus, both alanine and glutamine carry ammonia to the liver. |
Biochemistry_Lippincott_885 | Biochemistry_Lippinco | V. UREA CYCLE is the major disposal form of amino groups derived from amino acids and accounts for ~90% of the nitrogen-containing components of urine. One nitrogen of the urea molecule is supplied by free ammonia and the other nitrogen by aspartate. [Note: Glutamate is the immediate precursor of both ammonia (through oxidative deamination by GDH) and aspartate nitrogen (through transamination of oxaloacetate by AST).] The carbon and oxygen of urea are derived from CO2 (as HCO3−). Urea is produced by the liver and then is transported in the blood to the kidneys for excretion in the urine. A. Reactions The first two reactions leading to the synthesis of urea occur in the mitochondrial matrix, whereas the remaining cycle enzymes are located in the cytosol (Fig. 19.14). [Note: Gluconeogenesis (see p. 117) and heme synthesis (see p. 278) also involve both the mitochondrial matrix and the cytosol.] | Biochemistry_Lippinco. V. UREA CYCLE is the major disposal form of amino groups derived from amino acids and accounts for ~90% of the nitrogen-containing components of urine. One nitrogen of the urea molecule is supplied by free ammonia and the other nitrogen by aspartate. [Note: Glutamate is the immediate precursor of both ammonia (through oxidative deamination by GDH) and aspartate nitrogen (through transamination of oxaloacetate by AST).] The carbon and oxygen of urea are derived from CO2 (as HCO3−). Urea is produced by the liver and then is transported in the blood to the kidneys for excretion in the urine. A. Reactions The first two reactions leading to the synthesis of urea occur in the mitochondrial matrix, whereas the remaining cycle enzymes are located in the cytosol (Fig. 19.14). [Note: Gluconeogenesis (see p. 117) and heme synthesis (see p. 278) also involve both the mitochondrial matrix and the cytosol.] |
Biochemistry_Lippincott_886 | Biochemistry_Lippinco | Pi = inorganic phosphate; NAD(H) = nicotinamide adenine dinucleotide; MD = malate dehydrogenase. 1. Carbamoyl phosphate formation: Formation of carbamoyl phosphate by carbamoyl phosphate synthetase I (CPS I) is driven by cleavage of two molecules of ATP. Ammonia incorporated into carbamoyl phosphate is provided primarily by the oxidative deamination of glutamate by mitochondrial GDH (see Fig. 19.11). Ultimately, the nitrogen atom derived from this ammonia becomes one of the nitrogens of urea. CPS I requires N-acetylglutamate (NAG) as a positive allosteric activator (see Fig. 19.14). [Note: Carbamoyl phosphate synthetase II participates in the biosynthesis of pyrimidines (see p. 302). It does not require NAG, uses glutamine as the nitrogen source, and occurs in the cytosol.] 2. | Biochemistry_Lippinco. Pi = inorganic phosphate; NAD(H) = nicotinamide adenine dinucleotide; MD = malate dehydrogenase. 1. Carbamoyl phosphate formation: Formation of carbamoyl phosphate by carbamoyl phosphate synthetase I (CPS I) is driven by cleavage of two molecules of ATP. Ammonia incorporated into carbamoyl phosphate is provided primarily by the oxidative deamination of glutamate by mitochondrial GDH (see Fig. 19.11). Ultimately, the nitrogen atom derived from this ammonia becomes one of the nitrogens of urea. CPS I requires N-acetylglutamate (NAG) as a positive allosteric activator (see Fig. 19.14). [Note: Carbamoyl phosphate synthetase II participates in the biosynthesis of pyrimidines (see p. 302). It does not require NAG, uses glutamine as the nitrogen source, and occurs in the cytosol.] 2. |
Biochemistry_Lippincott_887 | Biochemistry_Lippinco | Citrulline formation: The carbamoyl portion of carbamoyl phosphate is transferred to ornithine by ornithine transcarbamylase (OTC) as the phosphate is released as inorganic phosphate. The reaction product, citrulline, is transported to the cytosol. [Note: Ornithine and citrulline move across the inner mitochondrial membrane via an antiporter. These basic amino acids are not incorporated into cellular proteins because there are no codons for them (see p. 447).] Ornithine is regenerated with each turn of the urea cycle, much in the same way that oxaloacetate is regenerated by the reactions of the tricarboxylic acid (TCA) cycle (see p. 109). 3. | Biochemistry_Lippinco. Citrulline formation: The carbamoyl portion of carbamoyl phosphate is transferred to ornithine by ornithine transcarbamylase (OTC) as the phosphate is released as inorganic phosphate. The reaction product, citrulline, is transported to the cytosol. [Note: Ornithine and citrulline move across the inner mitochondrial membrane via an antiporter. These basic amino acids are not incorporated into cellular proteins because there are no codons for them (see p. 447).] Ornithine is regenerated with each turn of the urea cycle, much in the same way that oxaloacetate is regenerated by the reactions of the tricarboxylic acid (TCA) cycle (see p. 109). 3. |
Biochemistry_Lippincott_888 | Biochemistry_Lippinco | 3. Argininosuccinate formation: Argininosuccinate synthetase combines citrulline with aspartate to form argininosuccinate. The α-amino group of aspartate provides the second nitrogen that is ultimately incorporated into urea. The formation of argininosuccinate is driven by the cleavage of ATP to adenosine monophosphate and pyrophosphate. This is the third and final molecule of ATP consumed in the formation of urea. 4. | Biochemistry_Lippinco. 3. Argininosuccinate formation: Argininosuccinate synthetase combines citrulline with aspartate to form argininosuccinate. The α-amino group of aspartate provides the second nitrogen that is ultimately incorporated into urea. The formation of argininosuccinate is driven by the cleavage of ATP to adenosine monophosphate and pyrophosphate. This is the third and final molecule of ATP consumed in the formation of urea. 4. |
Biochemistry_Lippincott_889 | Biochemistry_Lippinco | 4. Argininosuccinate cleavage: Argininosuccinate is cleaved by argininosuccinate lyase to yield arginine and fumarate. The arginine serves as the immediate precursor of urea. The fumarate is hydrated to malate, providing a link with several metabolic pathways. Malate can be oxidized by malate dehydrogenase to oxaloacetate, which can be transaminated to aspartate (see Fig. 19.8) and enter the urea cycle (see Fig. 19.14). Alternatively, malate can be transported into mitochondria via the malate–aspartate shuttle (see p. 80), reenter the TCA cycle, and get oxidized to oxaloacetate, which can be used for gluconeogenesis (see p. 120). [Note: Malate oxidation generates NADH for oxidative phosphorylation (see p. 77), thereby reducing the energy cost of the urea cycle.] 5. | Biochemistry_Lippinco. 4. Argininosuccinate cleavage: Argininosuccinate is cleaved by argininosuccinate lyase to yield arginine and fumarate. The arginine serves as the immediate precursor of urea. The fumarate is hydrated to malate, providing a link with several metabolic pathways. Malate can be oxidized by malate dehydrogenase to oxaloacetate, which can be transaminated to aspartate (see Fig. 19.8) and enter the urea cycle (see Fig. 19.14). Alternatively, malate can be transported into mitochondria via the malate–aspartate shuttle (see p. 80), reenter the TCA cycle, and get oxidized to oxaloacetate, which can be used for gluconeogenesis (see p. 120). [Note: Malate oxidation generates NADH for oxidative phosphorylation (see p. 77), thereby reducing the energy cost of the urea cycle.] 5. |
Biochemistry_Lippincott_890 | Biochemistry_Lippinco | Arginine cleavage to ornithine and urea: Arginase-I hydrolyzes arginine to ornithine and urea and is virtually exclusive to the liver. Therefore, only the liver can cleave arginine, thereby synthesizing urea, whereas other tissues, such as the kidney, can synthesize arginine from citrulline. [Note: Arginase-II in kidneys controls arginine availability for nitric oxide synthesis (see p. 150).] 6. | Biochemistry_Lippinco. Arginine cleavage to ornithine and urea: Arginase-I hydrolyzes arginine to ornithine and urea and is virtually exclusive to the liver. Therefore, only the liver can cleave arginine, thereby synthesizing urea, whereas other tissues, such as the kidney, can synthesize arginine from citrulline. [Note: Arginase-II in kidneys controls arginine availability for nitric oxide synthesis (see p. 150).] 6. |
Biochemistry_Lippincott_891 | Biochemistry_Lippinco | Fate of urea: Urea diffuses from the liver and is transported in the blood to the kidneys, where it is filtered and excreted in the urine (see Fig. 19.19). A portion of the urea diffuses from the blood into the intestine and is cleaved to CO2 and ammonia by bacterial urease. The ammonia is partly lost in the feces and is partly reabsorbed into the blood. In patients with kidney failure, plasma urea levels are elevated, promoting a greater transfer of urea from blood into the gut. The intestinal action of urease on this urea becomes a clinically important source of ammonia, contributing to the hyperammonemia often seen in these patients. Oral administration of antibiotics reduces the number of intestinal bacteria responsible for this ammonia production. B. Overall stoichiometry | Biochemistry_Lippinco. Fate of urea: Urea diffuses from the liver and is transported in the blood to the kidneys, where it is filtered and excreted in the urine (see Fig. 19.19). A portion of the urea diffuses from the blood into the intestine and is cleaved to CO2 and ammonia by bacterial urease. The ammonia is partly lost in the feces and is partly reabsorbed into the blood. In patients with kidney failure, plasma urea levels are elevated, promoting a greater transfer of urea from blood into the gut. The intestinal action of urease on this urea becomes a clinically important source of ammonia, contributing to the hyperammonemia often seen in these patients. Oral administration of antibiotics reduces the number of intestinal bacteria responsible for this ammonia production. B. Overall stoichiometry |
Biochemistry_Lippincott_892 | Biochemistry_Lippinco | B. Overall stoichiometry Because four high-energy phosphate bonds are consumed in the synthesis of each molecule of urea, the synthesis of urea is irreversible, with a large, negative ∆G (see p. 70). One nitrogen of the urea molecule is supplied by free ammonia and the other nitrogen by aspartate. Glutamate is the immediate precursor of both ammonia (through oxidative deamination by GDH) and aspartate nitrogen (through transamination of oxaloacetate by AST). In effect, both nitrogen atoms of urea arise from glutamate, which, in turn, gathers nitrogen from other amino acids (Fig. 19.15). C. Regulation | Biochemistry_Lippinco. B. Overall stoichiometry Because four high-energy phosphate bonds are consumed in the synthesis of each molecule of urea, the synthesis of urea is irreversible, with a large, negative ∆G (see p. 70). One nitrogen of the urea molecule is supplied by free ammonia and the other nitrogen by aspartate. Glutamate is the immediate precursor of both ammonia (through oxidative deamination by GDH) and aspartate nitrogen (through transamination of oxaloacetate by AST). In effect, both nitrogen atoms of urea arise from glutamate, which, in turn, gathers nitrogen from other amino acids (Fig. 19.15). C. Regulation |
Biochemistry_Lippincott_893 | Biochemistry_Lippinco | C. Regulation NAG is an essential activator for CPS I, the rate-limiting step in the urea cycle. It increases the affinity of CPS I for ATP. NAG is synthesized from acetyl CoA and glutamate by N-acetylglutamate synthase (NAGS), as shown in Figure 19.16, in a reaction for which arginine is an activator. The cycle is also regulated by substrate availability (short-term regulation) and enzyme induction (long term). activator of carbamoyl phosphate synthetase I. CoA = coenzyme A. VI. AMMONIA METABOLISM | Biochemistry_Lippinco. C. Regulation NAG is an essential activator for CPS I, the rate-limiting step in the urea cycle. It increases the affinity of CPS I for ATP. NAG is synthesized from acetyl CoA and glutamate by N-acetylglutamate synthase (NAGS), as shown in Figure 19.16, in a reaction for which arginine is an activator. The cycle is also regulated by substrate availability (short-term regulation) and enzyme induction (long term). activator of carbamoyl phosphate synthetase I. CoA = coenzyme A. VI. AMMONIA METABOLISM |
Biochemistry_Lippincott_894 | Biochemistry_Lippinco | activator of carbamoyl phosphate synthetase I. CoA = coenzyme A. VI. AMMONIA METABOLISM Ammonia is produced by all tissues during the metabolism of a variety of compounds, and it is disposed of primarily by formation of urea in the liver. However, the blood ammonia level must be kept very low, because even slightly elevated concentrations (hyperammonemia) are toxic to the central nervous system (CNS). Therefore, a mechanism is required for the transport of nitrogen from the peripheral tissues to the liver for ultimate disposal as urea while keeping circulating levels of free ammonia low. A. Sources | Biochemistry_Lippinco. activator of carbamoyl phosphate synthetase I. CoA = coenzyme A. VI. AMMONIA METABOLISM Ammonia is produced by all tissues during the metabolism of a variety of compounds, and it is disposed of primarily by formation of urea in the liver. However, the blood ammonia level must be kept very low, because even slightly elevated concentrations (hyperammonemia) are toxic to the central nervous system (CNS). Therefore, a mechanism is required for the transport of nitrogen from the peripheral tissues to the liver for ultimate disposal as urea while keeping circulating levels of free ammonia low. A. Sources |
Biochemistry_Lippincott_895 | Biochemistry_Lippinco | A. Sources Amino acids are quantitatively the most important source of ammonia because most Western diets are high in protein and provide excess amino acids, which travel to the liver and undergo transdeamination (that is, the linking of the aminotransferase and GDH reactions), producing ammonia. [Note: The liver catabolizes straight-chain amino acids, primarily.] However, substantial amounts of ammonia can be obtained from other sources. 1. Glutamine: An important source of plasma glutamine is from the catabolism of BCAA in skeletal muscle. This glutamine is taken up by cells of the intestine, the liver, and the kidneys. The liver and kidneys generate ammonia from glutamine by the actions of glutaminase (Fig. | Biochemistry_Lippinco. A. Sources Amino acids are quantitatively the most important source of ammonia because most Western diets are high in protein and provide excess amino acids, which travel to the liver and undergo transdeamination (that is, the linking of the aminotransferase and GDH reactions), producing ammonia. [Note: The liver catabolizes straight-chain amino acids, primarily.] However, substantial amounts of ammonia can be obtained from other sources. 1. Glutamine: An important source of plasma glutamine is from the catabolism of BCAA in skeletal muscle. This glutamine is taken up by cells of the intestine, the liver, and the kidneys. The liver and kidneys generate ammonia from glutamine by the actions of glutaminase (Fig. |
Biochemistry_Lippincott_896 | Biochemistry_Lippinco | 19.17) and GDH. In the kidneys, most of this ammonia is excreted into + the urine as NH4 , which provides an important mechanism for maintaining the body’s acid–base balance through the excretion of protons. In the liver, the ammonia is detoxified to urea and excreted. [Note: α-Ketoglutarate, the second product of GDH, is a glucogenic precursor in the liver and kidneys.] Ammonia is also generated by intestinal glutaminase. Enterocytes obtain glutamine either from the blood or from digestion of dietary protein. [Note: Intestinal glutamine metabolism also produces alanine, which is used by the liver for gluconeogenesis, and citrulline, which is used by the kidneys to synthesize arginine.] 2. Intestinal bacteria: Ammonia is formed from urea by the action of bacterial urease in the lumen of the intestine. This ammonia is absorbed from the intestine by way of the portal vein, and virtually all is removed by the liver via conversion to urea. 3. | Biochemistry_Lippinco. 19.17) and GDH. In the kidneys, most of this ammonia is excreted into + the urine as NH4 , which provides an important mechanism for maintaining the body’s acid–base balance through the excretion of protons. In the liver, the ammonia is detoxified to urea and excreted. [Note: α-Ketoglutarate, the second product of GDH, is a glucogenic precursor in the liver and kidneys.] Ammonia is also generated by intestinal glutaminase. Enterocytes obtain glutamine either from the blood or from digestion of dietary protein. [Note: Intestinal glutamine metabolism also produces alanine, which is used by the liver for gluconeogenesis, and citrulline, which is used by the kidneys to synthesize arginine.] 2. Intestinal bacteria: Ammonia is formed from urea by the action of bacterial urease in the lumen of the intestine. This ammonia is absorbed from the intestine by way of the portal vein, and virtually all is removed by the liver via conversion to urea. 3. |
Biochemistry_Lippincott_897 | Biochemistry_Lippinco | 3. Amines: Amines obtained from the diet and monoamines that serve as hormones or neurotransmitters give rise to ammonia by the action of monoamine oxidase (see p. 286). 4. Purines and pyrimidines: In the catabolism of purines and pyrimidines, amino groups attached to the ring atoms are released as ammonia (see Fig. 22.15 on p. 300). B. Transport in the circulation Although ammonia is constantly produced in the tissues, it is present at very low levels in blood. This is due both to the rapid removal of blood ammonia by the liver and to the fact that several tissues, particularly muscle, release amino acid nitrogen in the form of glutamine and alanine, rather than as free ammonia (see Fig. 19.13). 1. Urea: Formation of urea in the liver is quantitatively the most important disposal route for ammonia. Urea travels in the blood from the liver to the kidneys, where it passes into the glomerular filtrate. 2. | Biochemistry_Lippinco. 3. Amines: Amines obtained from the diet and monoamines that serve as hormones or neurotransmitters give rise to ammonia by the action of monoamine oxidase (see p. 286). 4. Purines and pyrimidines: In the catabolism of purines and pyrimidines, amino groups attached to the ring atoms are released as ammonia (see Fig. 22.15 on p. 300). B. Transport in the circulation Although ammonia is constantly produced in the tissues, it is present at very low levels in blood. This is due both to the rapid removal of blood ammonia by the liver and to the fact that several tissues, particularly muscle, release amino acid nitrogen in the form of glutamine and alanine, rather than as free ammonia (see Fig. 19.13). 1. Urea: Formation of urea in the liver is quantitatively the most important disposal route for ammonia. Urea travels in the blood from the liver to the kidneys, where it passes into the glomerular filtrate. 2. |
Biochemistry_Lippincott_898 | Biochemistry_Lippinco | 2. Glutamine: This amide of glutamate provides a nontoxic storage and transport form of ammonia (Fig. 19.18). The ATP-requiring formation of glutamine from glutamate and ammonia by glutamine synthetase occurs primarily in skeletal muscle and the liver but is also important in the CNS, where it is the major mechanism for the removal of ammonia in the brain. Glutamine is found in plasma at concentrations higher than other amino acids, a finding consistent with its transport function. [Note: The liver keeps blood ammonia levels low through glutaminase, GDH, and the urea cycle in periportal (close to inflow of blood) hepatocytes and through glutamine synthetase as an ammonia scavenger in the perivenous hepatocytes.] Ammonia metabolism is summarized in Figure 19.19. C. Hyperammonemia | Biochemistry_Lippinco. 2. Glutamine: This amide of glutamate provides a nontoxic storage and transport form of ammonia (Fig. 19.18). The ATP-requiring formation of glutamine from glutamate and ammonia by glutamine synthetase occurs primarily in skeletal muscle and the liver but is also important in the CNS, where it is the major mechanism for the removal of ammonia in the brain. Glutamine is found in plasma at concentrations higher than other amino acids, a finding consistent with its transport function. [Note: The liver keeps blood ammonia levels low through glutaminase, GDH, and the urea cycle in periportal (close to inflow of blood) hepatocytes and through glutamine synthetase as an ammonia scavenger in the perivenous hepatocytes.] Ammonia metabolism is summarized in Figure 19.19. C. Hyperammonemia |
Biochemistry_Lippincott_899 | Biochemistry_Lippinco | C. Hyperammonemia The capacity of the hepatic urea cycle exceeds the normal rates of ammonia generation, and the levels of blood ammonia are normally low (5–35 µmol/l). However, when liver function is compromised, due either to genetic defects of the urea cycle or liver disease, blood levels can be >1,000 µmol/l. Such hyperammonemia is a medical emergency, because ammonia has a direct neurotoxic effect on the CNS. For example, elevated concentrations of ammonia in the blood cause the symptoms of ammonia intoxication, which include tremors, slurring of speech, somnolence (drowsiness), vomiting, cerebral edema, and blurring of vision. At high concentrations, ammonia can cause coma and death. There are two major types of hyperammonemia. 1. | Biochemistry_Lippinco. C. Hyperammonemia The capacity of the hepatic urea cycle exceeds the normal rates of ammonia generation, and the levels of blood ammonia are normally low (5–35 µmol/l). However, when liver function is compromised, due either to genetic defects of the urea cycle or liver disease, blood levels can be >1,000 µmol/l. Such hyperammonemia is a medical emergency, because ammonia has a direct neurotoxic effect on the CNS. For example, elevated concentrations of ammonia in the blood cause the symptoms of ammonia intoxication, which include tremors, slurring of speech, somnolence (drowsiness), vomiting, cerebral edema, and blurring of vision. At high concentrations, ammonia can cause coma and death. There are two major types of hyperammonemia. 1. |
Biochemistry_Lippincott_900 | Biochemistry_Lippinco | 1. Acquired: Liver disease is a common cause of acquired hyperammonemia in adults and may be due, for example, to viral hepatitis or to hepatotoxins such as alcohol. Cirrhosis of the liver may result in formation of collateral circulation around the liver. As a result, portal blood is shunted directly into the systemic circulation and does not have access to the liver. Therefore, the conversion of ammonia to urea is severely impaired, leading to elevated levels of ammonia. 2. | Biochemistry_Lippinco. 1. Acquired: Liver disease is a common cause of acquired hyperammonemia in adults and may be due, for example, to viral hepatitis or to hepatotoxins such as alcohol. Cirrhosis of the liver may result in formation of collateral circulation around the liver. As a result, portal blood is shunted directly into the systemic circulation and does not have access to the liver. Therefore, the conversion of ammonia to urea is severely impaired, leading to elevated levels of ammonia. 2. |
Biochemistry_Lippincott_901 | Biochemistry_Lippinco | Congenital: Genetic deficiencies of each of the five enzymes of the urea cycle (and of NAGS) have been described, with an overall incidence of ~1:25,000 live births. X-linked OTC deficiency is the most common of these disorders, predominantly affecting males, although female carriers may become symptomatic. All of the other urea cycle disorders follow an autosomal-recessive inheritance pattern. In each case, the failure to synthesize urea leads to hyperammonemia during the first weeks following birth. [Note: The hyperammonemia seen with arginase deficiency is less severe because arginine contains two waste nitrogens and can be excreted in the urine.] Historically, urea cycle defects had high morbidity (neurologic manifestations) and mortality. Treatment included restriction of dietary protein in the presence of sufficient calories to prevent protein catabolism. Administration of compounds that bind covalently to nonessential amino acids, producing nitrogen-containing molecules that | Biochemistry_Lippinco. Congenital: Genetic deficiencies of each of the five enzymes of the urea cycle (and of NAGS) have been described, with an overall incidence of ~1:25,000 live births. X-linked OTC deficiency is the most common of these disorders, predominantly affecting males, although female carriers may become symptomatic. All of the other urea cycle disorders follow an autosomal-recessive inheritance pattern. In each case, the failure to synthesize urea leads to hyperammonemia during the first weeks following birth. [Note: The hyperammonemia seen with arginase deficiency is less severe because arginine contains two waste nitrogens and can be excreted in the urine.] Historically, urea cycle defects had high morbidity (neurologic manifestations) and mortality. Treatment included restriction of dietary protein in the presence of sufficient calories to prevent protein catabolism. Administration of compounds that bind covalently to nonessential amino acids, producing nitrogen-containing molecules that |
Biochemistry_Lippincott_902 | Biochemistry_Lippinco | in the presence of sufficient calories to prevent protein catabolism. Administration of compounds that bind covalently to nonessential amino acids, producing nitrogen-containing molecules that are excreted in the urine, has improved survival. For example, phenylbutyrate given orally is converted to phenylacetate. This condenses with glutamine to form phenylacetylglutamine, which is excreted (Fig. 19.20). | Biochemistry_Lippinco. in the presence of sufficient calories to prevent protein catabolism. Administration of compounds that bind covalently to nonessential amino acids, producing nitrogen-containing molecules that are excreted in the urine, has improved survival. For example, phenylbutyrate given orally is converted to phenylacetate. This condenses with glutamine to form phenylacetylglutamine, which is excreted (Fig. 19.20). |
Biochemistry_Lippincott_903 | Biochemistry_Lippinco | VII. CHAPTER SUMMARY | Biochemistry_Lippinco. VII. CHAPTER SUMMARY |
Biochemistry_Lippincott_904 | Biochemistry_Lippinco | Nitrogen enters the body in a variety of compounds present in food, the most important being amino acids contained in dietary protein. Nitrogen leaves the body as urea, ammonia, and other products derived from amino acid metabolism (Fig. 19.21). Free amino acids in the body are produced by hydrolysis of dietary protein by proteases activated from their zymogen form in the stomach and intestine, degradation of tissue proteins, and de novo synthesis. This amino acid pool is consumed in the synthesis of body protein, metabolized for energy, or its members used as precursors for other nitrogen-containing compounds. Free amino acids from digestion are taken up by intestinal enterocytes via sodium-dependent secondary active transport. Small peptides are taken up via proton-linked transport. Note that body protein is simultaneously degraded and resynthesized, a process known as protein turnover. The concentration of a cellular protein may be determined by regulation of its synthesis or | Biochemistry_Lippinco. Nitrogen enters the body in a variety of compounds present in food, the most important being amino acids contained in dietary protein. Nitrogen leaves the body as urea, ammonia, and other products derived from amino acid metabolism (Fig. 19.21). Free amino acids in the body are produced by hydrolysis of dietary protein by proteases activated from their zymogen form in the stomach and intestine, degradation of tissue proteins, and de novo synthesis. This amino acid pool is consumed in the synthesis of body protein, metabolized for energy, or its members used as precursors for other nitrogen-containing compounds. Free amino acids from digestion are taken up by intestinal enterocytes via sodium-dependent secondary active transport. Small peptides are taken up via proton-linked transport. Note that body protein is simultaneously degraded and resynthesized, a process known as protein turnover. The concentration of a cellular protein may be determined by regulation of its synthesis or |
Biochemistry_Lippincott_905 | Biochemistry_Lippinco | Note that body protein is simultaneously degraded and resynthesized, a process known as protein turnover. The concentration of a cellular protein may be determined by regulation of its synthesis or degradation. The ATP-dependent, cytosolic, selective ubiquitin–proteasome and ATP-independent, relatively nonselective lysosomal acid hydrolases are the two major enzyme systems that are responsible for degrading proteins. Nitrogen cannot be stored, and amino acids in excess of the biosynthetic needs of the cell are quickly degraded. The first phase of catabolism involves the transfer of the α-amino groups through transamination by pyridoxal phosphate–dependent aminotransferases (transaminases), followed by oxidative deamination of glutamate by glutamate dehydrogenase, forming ammonia and the corresponding α-keto acids. A portion of the free ammonia is excreted in the urine. Some ammonia is used in converting glutamate to glutamine for safe transport, but most is used in the hepatic | Biochemistry_Lippinco. Note that body protein is simultaneously degraded and resynthesized, a process known as protein turnover. The concentration of a cellular protein may be determined by regulation of its synthesis or degradation. The ATP-dependent, cytosolic, selective ubiquitin–proteasome and ATP-independent, relatively nonselective lysosomal acid hydrolases are the two major enzyme systems that are responsible for degrading proteins. Nitrogen cannot be stored, and amino acids in excess of the biosynthetic needs of the cell are quickly degraded. The first phase of catabolism involves the transfer of the α-amino groups through transamination by pyridoxal phosphate–dependent aminotransferases (transaminases), followed by oxidative deamination of glutamate by glutamate dehydrogenase, forming ammonia and the corresponding α-keto acids. A portion of the free ammonia is excreted in the urine. Some ammonia is used in converting glutamate to glutamine for safe transport, but most is used in the hepatic |
Biochemistry_Lippincott_906 | Biochemistry_Lippinco | the corresponding α-keto acids. A portion of the free ammonia is excreted in the urine. Some ammonia is used in converting glutamate to glutamine for safe transport, but most is used in the hepatic synthesis of urea, which is quantitatively the most important route for disposing of nitrogen from the body. Alanine also carries nitrogen to the liver for disposal as urea. The two major causes of hyperammonemia (with its neurologic effects) are acquired liver disease and congenital deficiencies of urea cycle enzymes such as X-linked ornithine transcarbamylase. | Biochemistry_Lippinco. the corresponding α-keto acids. A portion of the free ammonia is excreted in the urine. Some ammonia is used in converting glutamate to glutamine for safe transport, but most is used in the hepatic synthesis of urea, which is quantitatively the most important route for disposing of nitrogen from the body. Alanine also carries nitrogen to the liver for disposal as urea. The two major causes of hyperammonemia (with its neurologic effects) are acquired liver disease and congenital deficiencies of urea cycle enzymes such as X-linked ornithine transcarbamylase. |
Biochemistry_Lippincott_907 | Biochemistry_Lippinco | Choose the ONE best answer. 9.1. In this transamination reaction (right), which of the following are the products X and Y? A. Alanine, α-ketoglutarate B. Aspartate, α-ketoglutarate C. Glutamate, alanine D. Pyruvate, aspartate Correct answer = B. Transamination reactions always have an amino acid and an α-keto acid as substrates. The products of the reaction are also an amino acid (corresponding to the α-keto substrate) and an α-keto acid (corresponding to the amino acid substrate). Three amino acid α-keto acid pairs commonly encountered in metabolism are alanine/pyruvate, aspartate/oxaloacetate, and glutamate/α-ketoglutarate. In this question, glutamate is deaminated to form αketoglutarate, and oxaloacetate is aminated to form aspartate. 9.2. Which one of the following statements about amino acids and their metabolism is correct? A. Free amino acids are taken into the enterocytes by a single proton-linked transport system. | Biochemistry_Lippinco. Choose the ONE best answer. 9.1. In this transamination reaction (right), which of the following are the products X and Y? A. Alanine, α-ketoglutarate B. Aspartate, α-ketoglutarate C. Glutamate, alanine D. Pyruvate, aspartate Correct answer = B. Transamination reactions always have an amino acid and an α-keto acid as substrates. The products of the reaction are also an amino acid (corresponding to the α-keto substrate) and an α-keto acid (corresponding to the amino acid substrate). Three amino acid α-keto acid pairs commonly encountered in metabolism are alanine/pyruvate, aspartate/oxaloacetate, and glutamate/α-ketoglutarate. In this question, glutamate is deaminated to form αketoglutarate, and oxaloacetate is aminated to form aspartate. 9.2. Which one of the following statements about amino acids and their metabolism is correct? A. Free amino acids are taken into the enterocytes by a single proton-linked transport system. |
Biochemistry_Lippincott_908 | Biochemistry_Lippinco | 9.2. Which one of the following statements about amino acids and their metabolism is correct? A. Free amino acids are taken into the enterocytes by a single proton-linked transport system. B. In healthy, well-fed individuals, the input to the amino acid pool exceeds the output. C. The liver uses ammonia to buffer protons. D. Muscle-derived glutamine is metabolized in liver and kidney tissue to ammonia + a gluconeogenic precursor. E. The first step in the catabolism of most amino acids is their oxidative deamination. F. The toxic ammonia generated from the amide nitrogen of amino acids is transported through blood as arginine. | Biochemistry_Lippinco. 9.2. Which one of the following statements about amino acids and their metabolism is correct? A. Free amino acids are taken into the enterocytes by a single proton-linked transport system. B. In healthy, well-fed individuals, the input to the amino acid pool exceeds the output. C. The liver uses ammonia to buffer protons. D. Muscle-derived glutamine is metabolized in liver and kidney tissue to ammonia + a gluconeogenic precursor. E. The first step in the catabolism of most amino acids is their oxidative deamination. F. The toxic ammonia generated from the amide nitrogen of amino acids is transported through blood as arginine. |
Biochemistry_Lippincott_909 | Biochemistry_Lippinco | F. The toxic ammonia generated from the amide nitrogen of amino acids is transported through blood as arginine. Correct answer = D. Glutamine, produced by the catabolism of branched-chain amino acids in muscle, is deaminated by glutaminase to ammonia + glutamate. The glutamate is deaminated by glutamate dehydrogenase to ammonia + αketoglutarate, which can be used for gluconeogenesis. Free amino acids are taken into enterocytes by several different sodium-linked transport systems. Healthy, well-fed individuals are in nitrogen balance, in which nitrogen input equals output. The liver converts ammonia to urea, and the kidneys use ammonia to buffer protons. Amino acid catabolism begins with transamination that generates glutamate. The glutamate undergoes oxidative deamination. Toxic ammonia is transported as glutamine and alanine. Arginine is synthesized and hydrolyzed in the hepatic urea cycle. For Questions 19.3–19.5, use the following scenario. | Biochemistry_Lippinco. F. The toxic ammonia generated from the amide nitrogen of amino acids is transported through blood as arginine. Correct answer = D. Glutamine, produced by the catabolism of branched-chain amino acids in muscle, is deaminated by glutaminase to ammonia + glutamate. The glutamate is deaminated by glutamate dehydrogenase to ammonia + αketoglutarate, which can be used for gluconeogenesis. Free amino acids are taken into enterocytes by several different sodium-linked transport systems. Healthy, well-fed individuals are in nitrogen balance, in which nitrogen input equals output. The liver converts ammonia to urea, and the kidneys use ammonia to buffer protons. Amino acid catabolism begins with transamination that generates glutamate. The glutamate undergoes oxidative deamination. Toxic ammonia is transported as glutamine and alanine. Arginine is synthesized and hydrolyzed in the hepatic urea cycle. For Questions 19.3–19.5, use the following scenario. |
Biochemistry_Lippincott_910 | Biochemistry_Lippinco | For Questions 19.3–19.5, use the following scenario. A female neonate appeared healthy until age ~24 hours, when she became lethargic. A sepsis workup proved negative. At 56 hours, she started showing focal seizure activity. The plasma ammonia level was found to be 887 µmol/l (normal 5–35 µmol/l). Quantitative plasma amino acid levels revealed a marked elevation of citrulline but not argininosuccinate. 9.3. Which one of the following enzymic activities is most likely to be deficient in this patient? A. Arginase B. Argininosuccinate lyase C. Argininosuccinate synthetase D. Carbamoyl phosphate synthetase I | Biochemistry_Lippinco. For Questions 19.3–19.5, use the following scenario. A female neonate appeared healthy until age ~24 hours, when she became lethargic. A sepsis workup proved negative. At 56 hours, she started showing focal seizure activity. The plasma ammonia level was found to be 887 µmol/l (normal 5–35 µmol/l). Quantitative plasma amino acid levels revealed a marked elevation of citrulline but not argininosuccinate. 9.3. Which one of the following enzymic activities is most likely to be deficient in this patient? A. Arginase B. Argininosuccinate lyase C. Argininosuccinate synthetase D. Carbamoyl phosphate synthetase I |
Biochemistry_Lippincott_911 | Biochemistry_Lippinco | A. Arginase B. Argininosuccinate lyase C. Argininosuccinate synthetase D. Carbamoyl phosphate synthetase I E. Ornithine transcarbamylase Correct answer = C. Genetic deficiencies of each of the five enzymes of the urea cycle, as well as deficiencies in N-acetylglutamate synthase, have been described. The accumulation of citrulline (but not argininosuccinate) in the plasma of this patient means that the enzyme required for the conversion of citrulline to argininosuccinate (argininosuccinate synthetase) is defective, whereas the enzyme that cleaves argininosuccinate (argininosuccinate lyase) is functional. 9.4. Which one of the following would also be elevated in the blood of this patient? A. Asparagine B. Glutamine C. Lysine D. Urea | Biochemistry_Lippinco. A. Arginase B. Argininosuccinate lyase C. Argininosuccinate synthetase D. Carbamoyl phosphate synthetase I E. Ornithine transcarbamylase Correct answer = C. Genetic deficiencies of each of the five enzymes of the urea cycle, as well as deficiencies in N-acetylglutamate synthase, have been described. The accumulation of citrulline (but not argininosuccinate) in the plasma of this patient means that the enzyme required for the conversion of citrulline to argininosuccinate (argininosuccinate synthetase) is defective, whereas the enzyme that cleaves argininosuccinate (argininosuccinate lyase) is functional. 9.4. Which one of the following would also be elevated in the blood of this patient? A. Asparagine B. Glutamine C. Lysine D. Urea |
Biochemistry_Lippincott_912 | Biochemistry_Lippinco | 9.4. Which one of the following would also be elevated in the blood of this patient? A. Asparagine B. Glutamine C. Lysine D. Urea Correct answer = B. Deficiencies of the enzymes of the urea cycle result in the failure to synthesize urea and lead to hyperammonemia in the first few weeks after birth. Glutamine will also be elevated because it acts as a nontoxic storage and transport form of ammonia. Therefore, elevated glutamine accompanies hyperammonemia. Asparagine and lysine do not serve this sequestering role. Urea would be decreased because of impaired activity of the urea cycle. [Note: Alanine would also be elevated in this patient.] 9.5. Why might supplementation with arginine be of benefit to this patient? The arginine will be cleaved by arginase to urea and ornithine. Ornithine will be combined with carbamoyl phosphate by ornithine transcarbamylase to form citrulline. Citrulline, containing one waste nitrogen, will be excreted. Amino Acids: Degradation and Synthesis 20 | Biochemistry_Lippinco. 9.4. Which one of the following would also be elevated in the blood of this patient? A. Asparagine B. Glutamine C. Lysine D. Urea Correct answer = B. Deficiencies of the enzymes of the urea cycle result in the failure to synthesize urea and lead to hyperammonemia in the first few weeks after birth. Glutamine will also be elevated because it acts as a nontoxic storage and transport form of ammonia. Therefore, elevated glutamine accompanies hyperammonemia. Asparagine and lysine do not serve this sequestering role. Urea would be decreased because of impaired activity of the urea cycle. [Note: Alanine would also be elevated in this patient.] 9.5. Why might supplementation with arginine be of benefit to this patient? The arginine will be cleaved by arginase to urea and ornithine. Ornithine will be combined with carbamoyl phosphate by ornithine transcarbamylase to form citrulline. Citrulline, containing one waste nitrogen, will be excreted. Amino Acids: Degradation and Synthesis 20 |
Biochemistry_Lippincott_913 | Biochemistry_Lippinco | Amino Acids: Degradation and Synthesis 20 For additional ancillary materials related to this chapter, please visit thePoint. I. OVERVIEW | Biochemistry_Lippinco. Amino Acids: Degradation and Synthesis 20 For additional ancillary materials related to this chapter, please visit thePoint. I. OVERVIEW |
Biochemistry_Lippincott_914 | Biochemistry_Lippinco | Amino acid degradation involves removal of the α-amino group, followed by the catabolism of the resulting α-keto acids (carbon skeletons). These pathways converge to form seven intermediate products: oxaloacetate, pyruvate, αketoglutarate, fumarate, succinyl coenzyme A (CoA), acetyl CoA, and acetoacetate. The products directly enter the pathways of intermediary metabolism, resulting either in the synthesis of glucose, ketone bodies, or lipids or in the production of energy through their oxidation to carbon dioxide (CO2) by the tricarboxylic acid (TCA) cycle. Figure 20.1 provides an overview of these pathways, with a more detailed summary presented in Figure 20.15 (see p. 269). Nonessential amino acids (Fig. 20.2) can be synthesized in sufficient amounts from the intermediates of metabolism or, as in the case of cysteine and tyrosine, from essential amino acids. In contrast, because the essential amino acids cannot be synthesized (or synthesized in sufficient amounts) by humans, they | Biochemistry_Lippinco. Amino acid degradation involves removal of the α-amino group, followed by the catabolism of the resulting α-keto acids (carbon skeletons). These pathways converge to form seven intermediate products: oxaloacetate, pyruvate, αketoglutarate, fumarate, succinyl coenzyme A (CoA), acetyl CoA, and acetoacetate. The products directly enter the pathways of intermediary metabolism, resulting either in the synthesis of glucose, ketone bodies, or lipids or in the production of energy through their oxidation to carbon dioxide (CO2) by the tricarboxylic acid (TCA) cycle. Figure 20.1 provides an overview of these pathways, with a more detailed summary presented in Figure 20.15 (see p. 269). Nonessential amino acids (Fig. 20.2) can be synthesized in sufficient amounts from the intermediates of metabolism or, as in the case of cysteine and tyrosine, from essential amino acids. In contrast, because the essential amino acids cannot be synthesized (or synthesized in sufficient amounts) by humans, they |
Biochemistry_Lippincott_915 | Biochemistry_Lippinco | or, as in the case of cysteine and tyrosine, from essential amino acids. In contrast, because the essential amino acids cannot be synthesized (or synthesized in sufficient amounts) by humans, they must be obtained from the diet in order for normal protein synthesis to occur. Genetic defects in the pathways of amino acid metabolism can cause serious disease. | Biochemistry_Lippinco. or, as in the case of cysteine and tyrosine, from essential amino acids. In contrast, because the essential amino acids cannot be synthesized (or synthesized in sufficient amounts) by humans, they must be obtained from the diet in order for normal protein synthesis to occur. Genetic defects in the pathways of amino acid metabolism can cause serious disease. |
Biochemistry_Lippincott_916 | Biochemistry_Lippinco | postoperative infections, and immunosuppression.] II. GLUCOGENIC AND KETOGENIC AMINO ACIDS Amino acids can be classified as glucogenic, ketogenic, or both, based on which of the seven intermediates are produced during their catabolism (see Fig. 20.2). A. Glucogenic amino acids Amino acids whose catabolism yields pyruvate or one of the intermediates of the TCA cycle are termed glucogenic. Because these intermediates are substrates for gluconeogenesis (see p. 118), they can give rise to the net synthesis of glucose in the liver and kidney. B. Ketogenic amino acids | Biochemistry_Lippinco. postoperative infections, and immunosuppression.] II. GLUCOGENIC AND KETOGENIC AMINO ACIDS Amino acids can be classified as glucogenic, ketogenic, or both, based on which of the seven intermediates are produced during their catabolism (see Fig. 20.2). A. Glucogenic amino acids Amino acids whose catabolism yields pyruvate or one of the intermediates of the TCA cycle are termed glucogenic. Because these intermediates are substrates for gluconeogenesis (see p. 118), they can give rise to the net synthesis of glucose in the liver and kidney. B. Ketogenic amino acids |
Biochemistry_Lippincott_917 | Biochemistry_Lippinco | B. Ketogenic amino acids Amino acids whose catabolism yields either acetoacetate or one of its precursors (acetyl CoA or acetoacetyl CoA) are termed ketogenic (see Fig. 20.2). Acetoacetate is one of the ketone bodies, which also include 3hydroxybutyrate and acetone (see p. 195). Leucine and lysine are the only exclusively ketogenic amino acids found in proteins. Their carbon skeletons are not substrates for gluconeogenesis and, therefore, cannot give rise to the net synthesis of glucose. III. AMINO ACID CARBON SKELETON The pathways by which amino acids are catabolized are conveniently organized according to which one (or more) of the seven intermediates listed above is produced from a particular amino acid. A. Amino acids that form oxaloacetate | Biochemistry_Lippinco. B. Ketogenic amino acids Amino acids whose catabolism yields either acetoacetate or one of its precursors (acetyl CoA or acetoacetyl CoA) are termed ketogenic (see Fig. 20.2). Acetoacetate is one of the ketone bodies, which also include 3hydroxybutyrate and acetone (see p. 195). Leucine and lysine are the only exclusively ketogenic amino acids found in proteins. Their carbon skeletons are not substrates for gluconeogenesis and, therefore, cannot give rise to the net synthesis of glucose. III. AMINO ACID CARBON SKELETON The pathways by which amino acids are catabolized are conveniently organized according to which one (or more) of the seven intermediates listed above is produced from a particular amino acid. A. Amino acids that form oxaloacetate |
Biochemistry_Lippincott_918 | Biochemistry_Lippinco | A. Amino acids that form oxaloacetate Asparagine is hydrolyzed by asparaginase, liberating ammonia and aspartate (Fig. 20.3). Aspartate loses its amino group by transamination to form oxaloacetate (see Fig. 20.3). [Note: Some rapidly dividing leukemic cells are unable to synthesize sufficient asparagine to support their growth. This makes asparagine an essential amino acid for these cells, which, therefore, require asparagine from the blood. Asparaginase, which hydrolyzes asparagine to aspartate, can be administered systemically to treat leukemia. Asparaginase lowers the level of asparagine in the plasma, thereby depriving cancer cells of a required nutrient.] B. Amino acids that form α-ketoglutarate via glutamate 1. Glutamine: This amino acid is hydrolyzed to glutamate and ammonia by the enzyme glutaminase (see p. 256). Glutamate is converted to αketoglutarate by transamination or through oxidative deamination by glutamate dehydrogenase (see p. 252). 2. | Biochemistry_Lippinco. A. Amino acids that form oxaloacetate Asparagine is hydrolyzed by asparaginase, liberating ammonia and aspartate (Fig. 20.3). Aspartate loses its amino group by transamination to form oxaloacetate (see Fig. 20.3). [Note: Some rapidly dividing leukemic cells are unable to synthesize sufficient asparagine to support their growth. This makes asparagine an essential amino acid for these cells, which, therefore, require asparagine from the blood. Asparaginase, which hydrolyzes asparagine to aspartate, can be administered systemically to treat leukemia. Asparaginase lowers the level of asparagine in the plasma, thereby depriving cancer cells of a required nutrient.] B. Amino acids that form α-ketoglutarate via glutamate 1. Glutamine: This amino acid is hydrolyzed to glutamate and ammonia by the enzyme glutaminase (see p. 256). Glutamate is converted to αketoglutarate by transamination or through oxidative deamination by glutamate dehydrogenase (see p. 252). 2. |
Biochemistry_Lippincott_919 | Biochemistry_Lippinco | 2. Proline: This amino acid is oxidized to glutamate. Glutamate is transaminated or oxidatively deaminated to form α-ketoglutarate. 3. Arginine: This amino acid is hydrolyzed by arginase to produce ornithine (and urea). [Note: The reaction occurs primarily in the liver as part of the urea cycle (see p. 255).] Ornithine is subsequently converted to α-ketoglutarate, with glutamate semialdehyde as an intermediate. 4. | Biochemistry_Lippinco. 2. Proline: This amino acid is oxidized to glutamate. Glutamate is transaminated or oxidatively deaminated to form α-ketoglutarate. 3. Arginine: This amino acid is hydrolyzed by arginase to produce ornithine (and urea). [Note: The reaction occurs primarily in the liver as part of the urea cycle (see p. 255).] Ornithine is subsequently converted to α-ketoglutarate, with glutamate semialdehyde as an intermediate. 4. |
Biochemistry_Lippincott_920 | Biochemistry_Lippinco | 4. Histidine: This amino acid is oxidatively deaminated by histidase to urocanic acid, which subsequently forms N-formiminoglutamate ([FIGlu], Fig. 20.4). FIGlu donates its formimino group to tetrahydrofolate (THF), leaving glutamate, which is degraded as described above. [Note: Individuals deficient in folic acid excrete increased amounts of FIGlu in the urine, particularly after ingestion of a large dose of histidine. The FIGlu excretion test has been used in diagnosing a deficiency of folic acid. See p. 267 for a discussion of folic acid, THF, and one-carbon metabolism.] C. Amino acids that form pyruvate 1. Alanine: This amino acid loses its amino group by transamination to 2. Serine: This amino acid can be converted to glycine as THF becomes N5,N10-methylenetetrahydrofolate (N5,N10-MTHF), as shown in Figure 20.6A. Serine can also be converted to pyruvate (see Fig. 20.6B). 3. | Biochemistry_Lippinco. 4. Histidine: This amino acid is oxidatively deaminated by histidase to urocanic acid, which subsequently forms N-formiminoglutamate ([FIGlu], Fig. 20.4). FIGlu donates its formimino group to tetrahydrofolate (THF), leaving glutamate, which is degraded as described above. [Note: Individuals deficient in folic acid excrete increased amounts of FIGlu in the urine, particularly after ingestion of a large dose of histidine. The FIGlu excretion test has been used in diagnosing a deficiency of folic acid. See p. 267 for a discussion of folic acid, THF, and one-carbon metabolism.] C. Amino acids that form pyruvate 1. Alanine: This amino acid loses its amino group by transamination to 2. Serine: This amino acid can be converted to glycine as THF becomes N5,N10-methylenetetrahydrofolate (N5,N10-MTHF), as shown in Figure 20.6A. Serine can also be converted to pyruvate (see Fig. 20.6B). 3. |
Biochemistry_Lippincott_921 | Biochemistry_Lippinco | 3. Glycine: This amino acid can be converted to serine by the reversible addition of a methylene group from N5,N10-MTHF (see Fig. 20.6A) or oxidized to CO2 and ammonia by the glycine cleavage system. [Note: Glycine can be deaminated to glyoxylate (by a d-amino acid oxidase; see form pyruvate (Fig. 20.5). [Note: Tryptophan catabolism produces alanine and, therefore, pyruvate (see Fig. 20.10 on p. 265).] p. 253), which can be oxidized to oxalate or transaminated to glycine. Deficiency of the transaminase in liver peroxisomes causes overproduction of oxalate, the formation of oxalate stones, and kidney damage (primary oxaluria type 1).] 4. Cysteine: This sulfur-containing amino acid undergoes desulfurization to yield pyruvate. [Note: The sulfate released can be used to synthesize 3′phosphoadenosine-5′-phosphosulfate (PAPS), an activated sulfate donor to a variety of acceptors.] Cysteine can also be oxidized to its disulfide derivative, cystine. 5. | Biochemistry_Lippinco. 3. Glycine: This amino acid can be converted to serine by the reversible addition of a methylene group from N5,N10-MTHF (see Fig. 20.6A) or oxidized to CO2 and ammonia by the glycine cleavage system. [Note: Glycine can be deaminated to glyoxylate (by a d-amino acid oxidase; see form pyruvate (Fig. 20.5). [Note: Tryptophan catabolism produces alanine and, therefore, pyruvate (see Fig. 20.10 on p. 265).] p. 253), which can be oxidized to oxalate or transaminated to glycine. Deficiency of the transaminase in liver peroxisomes causes overproduction of oxalate, the formation of oxalate stones, and kidney damage (primary oxaluria type 1).] 4. Cysteine: This sulfur-containing amino acid undergoes desulfurization to yield pyruvate. [Note: The sulfate released can be used to synthesize 3′phosphoadenosine-5′-phosphosulfate (PAPS), an activated sulfate donor to a variety of acceptors.] Cysteine can also be oxidized to its disulfide derivative, cystine. 5. |
Biochemistry_Lippincott_922 | Biochemistry_Lippinco | 5. Threonine: This amino acid is converted to pyruvate in most organisms but is a minor pathway (at best) in humans. D. Amino acids that form fumarate 1. Phenylalanine and tyrosine: Hydroxylation of phenylalanine produces tyrosine (Fig. 20.7). This irreversible reaction, catalyzed by tetrahydrobiopterin-requiring phenylalanine hydroxylase (PAH), initiates the catabolism of phenylalanine. Thus, phenylalanine metabolism and tyrosine metabolism merge, leading ultimately to fumarate and acetoacetate formation. Therefore, phenylalanine and tyrosine are both glucogenic and ketogenic. 2. Inherited deficiencies: Inherited deficiencies in the enzymes of phenylalanine and tyrosine metabolism lead to the diseases phenylketonuria (PKU) (see p. 270), tyrosinemia (see p. 274), and alkaptonuria (see p. 274) as well as the condition of albinism (see p. 273). E. Amino acids that form succinyl CoA: Methionine | Biochemistry_Lippinco. 5. Threonine: This amino acid is converted to pyruvate in most organisms but is a minor pathway (at best) in humans. D. Amino acids that form fumarate 1. Phenylalanine and tyrosine: Hydroxylation of phenylalanine produces tyrosine (Fig. 20.7). This irreversible reaction, catalyzed by tetrahydrobiopterin-requiring phenylalanine hydroxylase (PAH), initiates the catabolism of phenylalanine. Thus, phenylalanine metabolism and tyrosine metabolism merge, leading ultimately to fumarate and acetoacetate formation. Therefore, phenylalanine and tyrosine are both glucogenic and ketogenic. 2. Inherited deficiencies: Inherited deficiencies in the enzymes of phenylalanine and tyrosine metabolism lead to the diseases phenylketonuria (PKU) (see p. 270), tyrosinemia (see p. 274), and alkaptonuria (see p. 274) as well as the condition of albinism (see p. 273). E. Amino acids that form succinyl CoA: Methionine |
Biochemistry_Lippincott_923 | Biochemistry_Lippinco | E. Amino acids that form succinyl CoA: Methionine Methionine is one of four amino acids that form succinyl CoA. This sulfur-containing amino acid deserves special attention because it is converted to S-adenosylmethionine (SAM), the major methyl group donor in one-carbon metabolism (Fig. 20.8). Methionine is also the source of homocysteine (Hcy), a metabolite associated with atherosclerotic vascular disease and thrombosis (see p. 265). the methyl group carrier and donor.] PPi = pyrophosphate; Pi = inorganic phosphate; NH3 = ammonia. 1. S-Adenosylmethionine synthesis: Methionine condenses with ATP, forming SAM, a high-energy compound that is unusual in that it contains no phosphate. The formation of SAM is driven by hydrolysis of all three phosphate bonds in ATP (see Fig. 20.8). 2. | Biochemistry_Lippinco. E. Amino acids that form succinyl CoA: Methionine Methionine is one of four amino acids that form succinyl CoA. This sulfur-containing amino acid deserves special attention because it is converted to S-adenosylmethionine (SAM), the major methyl group donor in one-carbon metabolism (Fig. 20.8). Methionine is also the source of homocysteine (Hcy), a metabolite associated with atherosclerotic vascular disease and thrombosis (see p. 265). the methyl group carrier and donor.] PPi = pyrophosphate; Pi = inorganic phosphate; NH3 = ammonia. 1. S-Adenosylmethionine synthesis: Methionine condenses with ATP, forming SAM, a high-energy compound that is unusual in that it contains no phosphate. The formation of SAM is driven by hydrolysis of all three phosphate bonds in ATP (see Fig. 20.8). 2. |
Biochemistry_Lippincott_924 | Biochemistry_Lippinco | 2. Activated methyl group: The methyl group attached to the sulfur in SAM is activated and can be transferred by methyltransferases to a variety of acceptors such as norepinephrine in the synthesis of epinephrine. The methyl group is usually transferred to nitrogen or oxygen atoms (as with epinephrine synthesis and degradation, respectively; see p. 286) and sometimes to carbon atoms (as with cytosine). The reaction product, Sadenosylhomocysteine (SAH), is a simple thioether, analogous to methionine. The resulting loss of free energy makes methyl transfer essentially irreversible. 3. S-Adenosylhomocysteine hydrolysis: After donation of the methyl group, SAH is hydrolyzed to Hcy and adenosine. Hcy has two fates. If there is a deficiency of methionine, Hcy may be remethylated to methionine (see Fig. 20.8). If methionine stores are adequate, Hcy may enter the transsulfuration pathway, where it is converted to cysteine. | Biochemistry_Lippinco. 2. Activated methyl group: The methyl group attached to the sulfur in SAM is activated and can be transferred by methyltransferases to a variety of acceptors such as norepinephrine in the synthesis of epinephrine. The methyl group is usually transferred to nitrogen or oxygen atoms (as with epinephrine synthesis and degradation, respectively; see p. 286) and sometimes to carbon atoms (as with cytosine). The reaction product, Sadenosylhomocysteine (SAH), is a simple thioether, analogous to methionine. The resulting loss of free energy makes methyl transfer essentially irreversible. 3. S-Adenosylhomocysteine hydrolysis: After donation of the methyl group, SAH is hydrolyzed to Hcy and adenosine. Hcy has two fates. If there is a deficiency of methionine, Hcy may be remethylated to methionine (see Fig. 20.8). If methionine stores are adequate, Hcy may enter the transsulfuration pathway, where it is converted to cysteine. |
Biochemistry_Lippincott_925 | Biochemistry_Lippinco | a. Methionine resynthesis: Hcy accepts a methyl group from N5methyltetrahydrofolate (N5-methyl-THF) in a reaction requiring methylcobalamin, a coenzyme derived from vitamin B12 (see p. 379). [Note: The methyl group is transferred by methionine synthase from the B12 derivative to Hcy, regenerating methionine. Cobalamin is remethylated from N5-methyl-THF.] b. Cysteine synthesis: Hcy condenses with serine, forming cystathionine, which is hydrolyzed to α-ketobutyrate and cysteine (see Fig. 20.8). This vitamin B6–requiring sequence has the net effect of converting serine to cysteine and Hcy to α-ketobutyrate, which is oxidatively decarboxylated to form propionyl CoA. Propionyl CoA is converted to succinyl CoA (see Fig. 16.20 on p. 195). Because Hcy is synthesized from the essential amino acid methionine, cysteine is not an essential amino acid as long as sufficient methionine is available. | Biochemistry_Lippinco. a. Methionine resynthesis: Hcy accepts a methyl group from N5methyltetrahydrofolate (N5-methyl-THF) in a reaction requiring methylcobalamin, a coenzyme derived from vitamin B12 (see p. 379). [Note: The methyl group is transferred by methionine synthase from the B12 derivative to Hcy, regenerating methionine. Cobalamin is remethylated from N5-methyl-THF.] b. Cysteine synthesis: Hcy condenses with serine, forming cystathionine, which is hydrolyzed to α-ketobutyrate and cysteine (see Fig. 20.8). This vitamin B6–requiring sequence has the net effect of converting serine to cysteine and Hcy to α-ketobutyrate, which is oxidatively decarboxylated to form propionyl CoA. Propionyl CoA is converted to succinyl CoA (see Fig. 16.20 on p. 195). Because Hcy is synthesized from the essential amino acid methionine, cysteine is not an essential amino acid as long as sufficient methionine is available. |
Biochemistry_Lippincott_926 | Biochemistry_Lippinco | 4. Relationship of homocysteine to vascular disease: Elevations in plasma Hcy levels promote oxidative damage, inflammation, and endothelial dysfunction and are an independent risk factor for occlusive vascular diseases such as cardiovascular disease (CVD) and stroke (Fig. 20.9). Mild elevations (hyperhomocysteinemia) are seen in ~7% of the population. Epidemiologic studies have shown that plasma Hcy levels are inversely related to plasma levels of folate, B12, and B6, the three vitamins involved in the conversion of Hcy to methionine and cysteine. Supplementation with these vitamins has been shown to reduce circulating levels of Hcy. However, in patients with established CVD, vitamin therapy does not decrease cardiovascular events or death. This raises the question as to whether Hcy is a cause of the vascular damage or merely a marker of such damage. [Note: Large elevations in plasma Hcy as a result of rare deficiencies in cystathionine β-synthase of the transsulfuration pathway are | Biochemistry_Lippinco. 4. Relationship of homocysteine to vascular disease: Elevations in plasma Hcy levels promote oxidative damage, inflammation, and endothelial dysfunction and are an independent risk factor for occlusive vascular diseases such as cardiovascular disease (CVD) and stroke (Fig. 20.9). Mild elevations (hyperhomocysteinemia) are seen in ~7% of the population. Epidemiologic studies have shown that plasma Hcy levels are inversely related to plasma levels of folate, B12, and B6, the three vitamins involved in the conversion of Hcy to methionine and cysteine. Supplementation with these vitamins has been shown to reduce circulating levels of Hcy. However, in patients with established CVD, vitamin therapy does not decrease cardiovascular events or death. This raises the question as to whether Hcy is a cause of the vascular damage or merely a marker of such damage. [Note: Large elevations in plasma Hcy as a result of rare deficiencies in cystathionine β-synthase of the transsulfuration pathway are |
Biochemistry_Lippincott_927 | Biochemistry_Lippinco | cause of the vascular damage or merely a marker of such damage. [Note: Large elevations in plasma Hcy as a result of rare deficiencies in cystathionine β-synthase of the transsulfuration pathway are seen in patients with classic homocystinuria (resulting from severe hyperhomocysteinemia [>100 µmol/l], see p. 273).] Deficiencies in the remethylation reaction also result in a rise in Hcy. | Biochemistry_Lippinco. cause of the vascular damage or merely a marker of such damage. [Note: Large elevations in plasma Hcy as a result of rare deficiencies in cystathionine β-synthase of the transsulfuration pathway are seen in patients with classic homocystinuria (resulting from severe hyperhomocysteinemia [>100 µmol/l], see p. 273).] Deficiencies in the remethylation reaction also result in a rise in Hcy. |
Biochemistry_Lippincott_928 | Biochemistry_Lippinco | Elevated homocysteine and decreased folic acid levels in pregnant women are associated with increased incidence of neural tube defects (improper closure, as in spina bifida) in the fetus. Periconceptual supplementation with folate reduces the risk of such defects. F. Other amino acids that form succinyl CoA Degradation of valine, isoleucine, and threonine also results in the production of succinyl CoA, a TCA cycle intermediate and gluconeogenic compound. [Note: It is metabolized to pyruvate.] 1. Valine and isoleucine: These amino acids are branched-chain amino acids (BCAA) that generate propionyl CoA, which is converted to methylmalonyl CoA and then succinyl CoA by biotin-and vitamin B12 – requiring reactions. 2. | Biochemistry_Lippinco. Elevated homocysteine and decreased folic acid levels in pregnant women are associated with increased incidence of neural tube defects (improper closure, as in spina bifida) in the fetus. Periconceptual supplementation with folate reduces the risk of such defects. F. Other amino acids that form succinyl CoA Degradation of valine, isoleucine, and threonine also results in the production of succinyl CoA, a TCA cycle intermediate and gluconeogenic compound. [Note: It is metabolized to pyruvate.] 1. Valine and isoleucine: These amino acids are branched-chain amino acids (BCAA) that generate propionyl CoA, which is converted to methylmalonyl CoA and then succinyl CoA by biotin-and vitamin B12 – requiring reactions. 2. |
Biochemistry_Lippincott_929 | Biochemistry_Lippinco | 2. Threonine: This amino acid is dehydrated to α-ketobutyrate, which is converted to propionyl CoA and then to succinyl CoA. Propionyl CoA, then, is generated by the catabolism of the amino acids methionine, valine, isoleucine, and threonine. [Note: Propionyl CoA also is generated by the oxidation of odd-numbered fatty acids (see p. 193).] G. Amino acids that form acetyl CoA or acetoacetyl CoA Tryptophan, leucine, isoleucine, and lysine form acetyl CoA or acetoacetyl CoA directly, without pyruvate serving as an intermediate. As noted earlier, phenylalanine and tyrosine also give rise to acetoacetate during their catabolism (see Fig. 20.7). Therefore, there are a total of six partly or wholly ketogenic amino acids. 1. Tryptophan: This amino acid is both glucogenic and ketogenic, because its catabolism yields alanine and acetoacetyl CoA (Fig. 20.10). [Note: Quinolinate from tryptophan catabolism is used in the synthesis of nicotinamide adenine dinucleotide ([NAD], see p. 383).] 2. | Biochemistry_Lippinco. 2. Threonine: This amino acid is dehydrated to α-ketobutyrate, which is converted to propionyl CoA and then to succinyl CoA. Propionyl CoA, then, is generated by the catabolism of the amino acids methionine, valine, isoleucine, and threonine. [Note: Propionyl CoA also is generated by the oxidation of odd-numbered fatty acids (see p. 193).] G. Amino acids that form acetyl CoA or acetoacetyl CoA Tryptophan, leucine, isoleucine, and lysine form acetyl CoA or acetoacetyl CoA directly, without pyruvate serving as an intermediate. As noted earlier, phenylalanine and tyrosine also give rise to acetoacetate during their catabolism (see Fig. 20.7). Therefore, there are a total of six partly or wholly ketogenic amino acids. 1. Tryptophan: This amino acid is both glucogenic and ketogenic, because its catabolism yields alanine and acetoacetyl CoA (Fig. 20.10). [Note: Quinolinate from tryptophan catabolism is used in the synthesis of nicotinamide adenine dinucleotide ([NAD], see p. 383).] 2. |
Biochemistry_Lippincott_930 | Biochemistry_Lippinco | Leucine: This amino acid is exclusively ketogenic, because its catabolism yields acetyl CoA and acetoacetate (Fig. 20.11). The first two reactions in the catabolism of leucine and the other BCAA, isoleucine and valine, are catalyzed by enzymes that use all three BCAA (or their derivatives) as substrates (see H. below). 3. Isoleucine: This amino acid is both ketogenic and glucogenic, because its metabolism yields acetyl CoA and propionyl CoA. 4. Lysine: This amino acid is exclusively ketogenic and is unusual in that neither of its amino groups undergoes transamination as the first step in catabolism. Lysine is ultimately converted to acetoacetyl CoA. H. Branched-chain amino acid degradation | Biochemistry_Lippinco. Leucine: This amino acid is exclusively ketogenic, because its catabolism yields acetyl CoA and acetoacetate (Fig. 20.11). The first two reactions in the catabolism of leucine and the other BCAA, isoleucine and valine, are catalyzed by enzymes that use all three BCAA (or their derivatives) as substrates (see H. below). 3. Isoleucine: This amino acid is both ketogenic and glucogenic, because its metabolism yields acetyl CoA and propionyl CoA. 4. Lysine: This amino acid is exclusively ketogenic and is unusual in that neither of its amino groups undergoes transamination as the first step in catabolism. Lysine is ultimately converted to acetoacetyl CoA. H. Branched-chain amino acid degradation |
Biochemistry_Lippincott_931 | Biochemistry_Lippinco | H. Branched-chain amino acid degradation The BCAA isoleucine, leucine, and valine are essential amino acids. In contrast to other amino acids, they are catabolized primarily by the peripheral tissues (particularly muscle), rather than by the liver. Because these three amino acids have a similar route of degradation, it is convenient to describe them as a group (see Fig. 20.11). 1. Transamination: Transfer of the amino groups of all three BCAA to α ketoglutarate is catalyzed by a single, vitamin B6–requiring enzyme, branched-chain amino acid aminotransferase, that is expressed primarily in skeletal muscle. 2. | Biochemistry_Lippinco. H. Branched-chain amino acid degradation The BCAA isoleucine, leucine, and valine are essential amino acids. In contrast to other amino acids, they are catabolized primarily by the peripheral tissues (particularly muscle), rather than by the liver. Because these three amino acids have a similar route of degradation, it is convenient to describe them as a group (see Fig. 20.11). 1. Transamination: Transfer of the amino groups of all three BCAA to α ketoglutarate is catalyzed by a single, vitamin B6–requiring enzyme, branched-chain amino acid aminotransferase, that is expressed primarily in skeletal muscle. 2. |
Biochemistry_Lippincott_932 | Biochemistry_Lippinco | 2. Oxidative decarboxylation: Removal of the carboxyl group of the α-keto acids derived from leucine, valine, and isoleucine is catalyzed by a single multienzyme complex, branched-chain α-keto acid dehydrogenase (BCKD) complex. This complex uses thiamine pyrophosphate, lipoic acid, oxidized flavin adenine dinucleotide (FAD), NAD+, and CoA as its coenzymes and produces NADH. [Note: This reaction is similar to the conversion of pyruvate to acetyl CoA by the pyruvate dehydrogenase (PDH) complex (see p. 109) and α-ketoglutarate to succinyl CoA by the α-ketoglutarate dehydrogenase complex (see p. 112). The dihydrolipoyl dehydrogenase (Enzyme 3, or E3) component is identical in all three complexes.] 3. | Biochemistry_Lippinco. 2. Oxidative decarboxylation: Removal of the carboxyl group of the α-keto acids derived from leucine, valine, and isoleucine is catalyzed by a single multienzyme complex, branched-chain α-keto acid dehydrogenase (BCKD) complex. This complex uses thiamine pyrophosphate, lipoic acid, oxidized flavin adenine dinucleotide (FAD), NAD+, and CoA as its coenzymes and produces NADH. [Note: This reaction is similar to the conversion of pyruvate to acetyl CoA by the pyruvate dehydrogenase (PDH) complex (see p. 109) and α-ketoglutarate to succinyl CoA by the α-ketoglutarate dehydrogenase complex (see p. 112). The dihydrolipoyl dehydrogenase (Enzyme 3, or E3) component is identical in all three complexes.] 3. |
Biochemistry_Lippincott_933 | Biochemistry_Lippinco | Dehydrogenations: Oxidation of the products formed in the BCKD reaction produces α-β-unsaturated acyl CoA derivatives and FADH2. These reactions are analogous to the FAD-linked dehydrogenation in the β-oxidation of fatty acids (see p. 192). [Note: Deficiency in the dehydrogenase specific for isovaleryl CoA causes neurologic problems and is associated with a “sweaty feet” odor in body fluids.] 4. End products: The catabolism of isoleucine ultimately yields acetyl CoA and succinyl CoA, rendering it both ketogenic and glucogenic. Valine yields succinyl CoA and is glucogenic. Leucine is ketogenic, being metabolized to acetoacetate and acetyl CoA. In addition, NADH and FADH2 are produced in the decarboxylation and dehydrogenation reactions, respectively. [Note: BCAA catabolism also results in glutamine and alanine being synthesized and sent out into the blood from muscle (see p. 253).] IV. FOLIC ACID AND AMINO ACID METABOLISM | Biochemistry_Lippinco. Dehydrogenations: Oxidation of the products formed in the BCKD reaction produces α-β-unsaturated acyl CoA derivatives and FADH2. These reactions are analogous to the FAD-linked dehydrogenation in the β-oxidation of fatty acids (see p. 192). [Note: Deficiency in the dehydrogenase specific for isovaleryl CoA causes neurologic problems and is associated with a “sweaty feet” odor in body fluids.] 4. End products: The catabolism of isoleucine ultimately yields acetyl CoA and succinyl CoA, rendering it both ketogenic and glucogenic. Valine yields succinyl CoA and is glucogenic. Leucine is ketogenic, being metabolized to acetoacetate and acetyl CoA. In addition, NADH and FADH2 are produced in the decarboxylation and dehydrogenation reactions, respectively. [Note: BCAA catabolism also results in glutamine and alanine being synthesized and sent out into the blood from muscle (see p. 253).] IV. FOLIC ACID AND AMINO ACID METABOLISM |
Biochemistry_Lippincott_934 | Biochemistry_Lippinco | IV. FOLIC ACID AND AMINO ACID METABOLISM Some synthetic pathways require the addition of single-carbon groups that exist in a variety of oxidation states, including formyl, methenyl, methylene, and methyl. These single-carbon groups can be transferred from carrier compounds such as THF and SAM to specific structures that are being synthesized or modified. The “one-carbon pool” refers to the single-carbon units attached to this group of carriers. [Note: CO2, coming from bicarbonate (HCO3–), is carried by the vitamin biotin (see p. 385), which is a prosthetic group for most carboxylation reactions but is not considered a member of the one-carbon pool. Defects in the ability to add or remove biotin from carboxylases result in multiple carboxylase deficiency. Treatment is supplementation with biotin.] A. Folic acid and one-carbon metabolism | Biochemistry_Lippinco. IV. FOLIC ACID AND AMINO ACID METABOLISM Some synthetic pathways require the addition of single-carbon groups that exist in a variety of oxidation states, including formyl, methenyl, methylene, and methyl. These single-carbon groups can be transferred from carrier compounds such as THF and SAM to specific structures that are being synthesized or modified. The “one-carbon pool” refers to the single-carbon units attached to this group of carriers. [Note: CO2, coming from bicarbonate (HCO3–), is carried by the vitamin biotin (see p. 385), which is a prosthetic group for most carboxylation reactions but is not considered a member of the one-carbon pool. Defects in the ability to add or remove biotin from carboxylases result in multiple carboxylase deficiency. Treatment is supplementation with biotin.] A. Folic acid and one-carbon metabolism |
Biochemistry_Lippincott_935 | Biochemistry_Lippinco | A. Folic acid and one-carbon metabolism The active form of folic acid, THF, is produced from folate by dihydrofolate reductase in a two-step reaction requiring two nicotinamide adenine dinucleotide phosphate (NADPH). The one-carbon unit carried by THF is bound to N5 or N10 or to both N5 and N10 . Figure 20.12 shows the structures of the various members of the THF family and their interconversions and indicates the sources of the one-carbon units and the synthetic reactions in which the specific members participate. [Note: Folate deficiency presents as a megaloblastic anemia because of decreased availability of the purines and of the thymidine monophosphate needed for DNA synthesis (see p. 303).] V. BIOSYNTHESIS OF NONESSENTIAL AMINO ACIDS | Biochemistry_Lippinco. A. Folic acid and one-carbon metabolism The active form of folic acid, THF, is produced from folate by dihydrofolate reductase in a two-step reaction requiring two nicotinamide adenine dinucleotide phosphate (NADPH). The one-carbon unit carried by THF is bound to N5 or N10 or to both N5 and N10 . Figure 20.12 shows the structures of the various members of the THF family and their interconversions and indicates the sources of the one-carbon units and the synthetic reactions in which the specific members participate. [Note: Folate deficiency presents as a megaloblastic anemia because of decreased availability of the purines and of the thymidine monophosphate needed for DNA synthesis (see p. 303).] V. BIOSYNTHESIS OF NONESSENTIAL AMINO ACIDS |
Biochemistry_Lippincott_936 | Biochemistry_Lippinco | V. BIOSYNTHESIS OF NONESSENTIAL AMINO ACIDS Nonessential amino acids are synthesized from intermediates of metabolism or, as in the case of tyrosine and cysteine, from the essential amino acids phenylalanine and methionine, respectively. The synthetic reactions for the nonessential amino acids are described below and are summarized in Figure 20.15. [Note: Some amino acids found in proteins, such as hydroxyproline and hydroxylysine (see p. 45), are produced by posttranslational modification (after incorporation into a protein) of their precursor (parent) amino acids.] A. Synthesis from α-keto acids | Biochemistry_Lippinco. V. BIOSYNTHESIS OF NONESSENTIAL AMINO ACIDS Nonessential amino acids are synthesized from intermediates of metabolism or, as in the case of tyrosine and cysteine, from the essential amino acids phenylalanine and methionine, respectively. The synthetic reactions for the nonessential amino acids are described below and are summarized in Figure 20.15. [Note: Some amino acids found in proteins, such as hydroxyproline and hydroxylysine (see p. 45), are produced by posttranslational modification (after incorporation into a protein) of their precursor (parent) amino acids.] A. Synthesis from α-keto acids |
Biochemistry_Lippincott_937 | Biochemistry_Lippinco | A. Synthesis from α-keto acids Alanine, aspartate, and glutamate are synthesized by transfer of an amino group to the α-keto acids pyruvate, oxaloacetate, and α-ketoglutarate, respectively. These transamination reactions (Fig. 20.13; also see p. 250) are the most direct of the biosynthetic pathways. Glutamate is unusual in that it can also be synthesized by reversal of oxidative deamination, catalyzed by glutamate dehydrogenase, when ammonia levels are high (see p. 252). B. Synthesis by amidation 1. Glutamine: This amino acid, which contains an amide linkage with ammonia at the γ-carboxyl, is formed from glutamate by glutamine synthetase (see Fig. 19.18, p. 256). The reaction is driven by the hydrolysis of ATP. In addition to producing glutamine for protein synthesis, the reaction also serves as a major mechanism for the transport of ammonia in a nontoxic form. (See p. 256 for a discussion of ammonia metabolism.) 2. | Biochemistry_Lippinco. A. Synthesis from α-keto acids Alanine, aspartate, and glutamate are synthesized by transfer of an amino group to the α-keto acids pyruvate, oxaloacetate, and α-ketoglutarate, respectively. These transamination reactions (Fig. 20.13; also see p. 250) are the most direct of the biosynthetic pathways. Glutamate is unusual in that it can also be synthesized by reversal of oxidative deamination, catalyzed by glutamate dehydrogenase, when ammonia levels are high (see p. 252). B. Synthesis by amidation 1. Glutamine: This amino acid, which contains an amide linkage with ammonia at the γ-carboxyl, is formed from glutamate by glutamine synthetase (see Fig. 19.18, p. 256). The reaction is driven by the hydrolysis of ATP. In addition to producing glutamine for protein synthesis, the reaction also serves as a major mechanism for the transport of ammonia in a nontoxic form. (See p. 256 for a discussion of ammonia metabolism.) 2. |
Biochemistry_Lippincott_938 | Biochemistry_Lippinco | Asparagine: This amino acid, which contains an amide linkage with ammonia at the β-carboxyl, is formed from aspartate by asparagine synthetase, using glutamine as the amide donor. Like the synthesis of glutamine, the reaction requires ATP and has an equilibrium far in the direction of amide synthesis. C. Proline Glutamate via glutamate semialdehyde is converted to proline by cyclization and reduction reactions. [Note: The semialdehyde can also be transaminated to ornithine.] D. Serine, glycine, and cysteineThe pathways of synthesis for these amino acids are interconnected. 1. | Biochemistry_Lippinco. Asparagine: This amino acid, which contains an amide linkage with ammonia at the β-carboxyl, is formed from aspartate by asparagine synthetase, using glutamine as the amide donor. Like the synthesis of glutamine, the reaction requires ATP and has an equilibrium far in the direction of amide synthesis. C. Proline Glutamate via glutamate semialdehyde is converted to proline by cyclization and reduction reactions. [Note: The semialdehyde can also be transaminated to ornithine.] D. Serine, glycine, and cysteineThe pathways of synthesis for these amino acids are interconnected. 1. |
Biochemistry_Lippincott_939 | Biochemistry_Lippinco | D. Serine, glycine, and cysteineThe pathways of synthesis for these amino acids are interconnected. 1. Serine: This amino acid arises from 3-phosphoglycerate, a glycolytic intermediate (see Fig. 8.18, p. 101), which is first oxidized to 3phosphopyruvate and then transaminated to 3-phosphoserine. Serine is formed by hydrolysis of the phosphate ester. Serine can also be formed from glycine through transfer of a hydroxymethyl group by serine hydroxymethyltransferase using N5,N10-MTHF as the one-carbon donor (see Fig. 20.6A). [Note: Selenocysteine (Sec), the 21st genetically encoded amino acid, is synthesized from serine and selenium (see p. 407), while serine is attached to transfer RNA. Sec is found in ~25 human proteins including glutathione peroxidase (see p. 148) and thioredoxin reductase (see p. 297).] 2. | Biochemistry_Lippinco. D. Serine, glycine, and cysteineThe pathways of synthesis for these amino acids are interconnected. 1. Serine: This amino acid arises from 3-phosphoglycerate, a glycolytic intermediate (see Fig. 8.18, p. 101), which is first oxidized to 3phosphopyruvate and then transaminated to 3-phosphoserine. Serine is formed by hydrolysis of the phosphate ester. Serine can also be formed from glycine through transfer of a hydroxymethyl group by serine hydroxymethyltransferase using N5,N10-MTHF as the one-carbon donor (see Fig. 20.6A). [Note: Selenocysteine (Sec), the 21st genetically encoded amino acid, is synthesized from serine and selenium (see p. 407), while serine is attached to transfer RNA. Sec is found in ~25 human proteins including glutathione peroxidase (see p. 148) and thioredoxin reductase (see p. 297).] 2. |
Biochemistry_Lippincott_940 | Biochemistry_Lippinco | Glycine: This amino acid is synthesized from serine by removal of a hydroxymethyl group, also by serine hydroxymethyltransferase (see Fig. 20.6A). THF is the one-carbon acceptor. 3. Cysteine: This amino acid is synthesized by two consecutive reactions in which Hcy combines with serine, forming cystathionine, which, in turn, is hydrolyzed to α-ketobutyrate and cysteine (see Fig. 20.8). [Note: Hcy is derived from methionine, as described on p. 264. Because methionine is an essential amino acid, cysteine synthesis requires adequate dietary intake of methionine.] E. Tyrosine | Biochemistry_Lippinco. Glycine: This amino acid is synthesized from serine by removal of a hydroxymethyl group, also by serine hydroxymethyltransferase (see Fig. 20.6A). THF is the one-carbon acceptor. 3. Cysteine: This amino acid is synthesized by two consecutive reactions in which Hcy combines with serine, forming cystathionine, which, in turn, is hydrolyzed to α-ketobutyrate and cysteine (see Fig. 20.8). [Note: Hcy is derived from methionine, as described on p. 264. Because methionine is an essential amino acid, cysteine synthesis requires adequate dietary intake of methionine.] E. Tyrosine |
Biochemistry_Lippincott_941 | Biochemistry_Lippinco | E. Tyrosine Tyrosine is formed from phenylalanine by PAH (see p. 263). The reaction requires molecular oxygen and the coenzyme tetrahydrobiopterin (BH4), which is synthesized from guanosine triphosphate. One atom of molecular oxygen becomes the hydroxyl group of tyrosine, and the other atom is reduced to water. During the reaction, BH4 is oxidized to dihydrobiopterin (BH2). BH4 is regenerated from BH2 by NADH-requiring dihydropteridine reductase. Tyrosine, like cysteine, is formed from an essential amino acid and is, therefore, nonessential only in the presence of adequate dietary phenylalanine. VI. AMINO ACID METABOLISM DISORDERS | Biochemistry_Lippinco. E. Tyrosine Tyrosine is formed from phenylalanine by PAH (see p. 263). The reaction requires molecular oxygen and the coenzyme tetrahydrobiopterin (BH4), which is synthesized from guanosine triphosphate. One atom of molecular oxygen becomes the hydroxyl group of tyrosine, and the other atom is reduced to water. During the reaction, BH4 is oxidized to dihydrobiopterin (BH2). BH4 is regenerated from BH2 by NADH-requiring dihydropteridine reductase. Tyrosine, like cysteine, is formed from an essential amino acid and is, therefore, nonessential only in the presence of adequate dietary phenylalanine. VI. AMINO ACID METABOLISM DISORDERS |
Biochemistry_Lippincott_942 | Biochemistry_Lippinco | VI. AMINO ACID METABOLISM DISORDERS These single gene disorders, a subset of the inborn errors of metabolism, are caused by mutations that generally result in abnormal proteins, most often enzymes. The inherited defects may be expressed as a total loss of enzyme activity or, more frequently, as a partial deficiency in catalytic activity. Without treatment, the amino acid disorders almost invariably result in intellectual disability or other developmental abnormalities as a consequence of harmful accumulation of metabolites. Although >50 of these disorders have been described, many are rare, occurring in <1 per 250,000 in most populations (Fig. 20.14). Collectively, however, they constitute a very significant portion of pediatric genetic diseases (Fig. 20.15). | Biochemistry_Lippinco. VI. AMINO ACID METABOLISM DISORDERS These single gene disorders, a subset of the inborn errors of metabolism, are caused by mutations that generally result in abnormal proteins, most often enzymes. The inherited defects may be expressed as a total loss of enzyme activity or, more frequently, as a partial deficiency in catalytic activity. Without treatment, the amino acid disorders almost invariably result in intellectual disability or other developmental abnormalities as a consequence of harmful accumulation of metabolites. Although >50 of these disorders have been described, many are rare, occurring in <1 per 250,000 in most populations (Fig. 20.14). Collectively, however, they constitute a very significant portion of pediatric genetic diseases (Fig. 20.15). |
Biochemistry_Lippincott_943 | Biochemistry_Lippinco | boxes. Classification of amino acids is color coded: Red = glucogenic; brown = glucogenic and ketogenic; green = ketogenic. Compounds in BLUE ALL CAPS are the seven metabolites to which all amino acid metabolism converges. CoA = coenzyme A; NAD(H) = nicotinamide adenine dinucleotide. A. Phenylketonuria | Biochemistry_Lippinco. boxes. Classification of amino acids is color coded: Red = glucogenic; brown = glucogenic and ketogenic; green = ketogenic. Compounds in BLUE ALL CAPS are the seven metabolites to which all amino acid metabolism converges. CoA = coenzyme A; NAD(H) = nicotinamide adenine dinucleotide. A. Phenylketonuria |
Biochemistry_Lippincott_944 | Biochemistry_Lippinco | PKU is the most common clinically encountered inborn error of amino acid metabolism (incidence 1:15,000). It is caused by a deficiency of PAH (Fig. 20.16). Biochemically, PKU is characterized by hyperphenylalaninemia. Phenylalanine is present in high concentrations (ten times normal) not only in plasma but also in urine and body tissues. Tyrosine, which normally is formed from phenylalanine by PAH, is deficient. Treatment includes dietary restriction of phenylalanine and supplementation with tyrosine. [Note: Hyperphenylalaninemia may also be caused by rare deficiencies in any of the several enzymes required to synthesize BH4 or in dihydropteridine reductase, which regenerates BH4 from BH2 (Fig. 20.17). Such deficiencies indirectly raise phenylalanine concentrations, because PAH requires BH4 as a coenzyme. BH4 is also required for tyrosine hydroxylase and tryptophan hydroxylase, which catalyze reactions leading to the synthesis of neurotransmitters, such as serotonin and the | Biochemistry_Lippinco. PKU is the most common clinically encountered inborn error of amino acid metabolism (incidence 1:15,000). It is caused by a deficiency of PAH (Fig. 20.16). Biochemically, PKU is characterized by hyperphenylalaninemia. Phenylalanine is present in high concentrations (ten times normal) not only in plasma but also in urine and body tissues. Tyrosine, which normally is formed from phenylalanine by PAH, is deficient. Treatment includes dietary restriction of phenylalanine and supplementation with tyrosine. [Note: Hyperphenylalaninemia may also be caused by rare deficiencies in any of the several enzymes required to synthesize BH4 or in dihydropteridine reductase, which regenerates BH4 from BH2 (Fig. 20.17). Such deficiencies indirectly raise phenylalanine concentrations, because PAH requires BH4 as a coenzyme. BH4 is also required for tyrosine hydroxylase and tryptophan hydroxylase, which catalyze reactions leading to the synthesis of neurotransmitters, such as serotonin and the |
Biochemistry_Lippincott_945 | Biochemistry_Lippinco | requires BH4 as a coenzyme. BH4 is also required for tyrosine hydroxylase and tryptophan hydroxylase, which catalyze reactions leading to the synthesis of neurotransmitters, such as serotonin and the catecholamines. Simply restricting dietary phenylalanine does not reverse the central nervous system effects due to deficiencies in neurotransmitters. Supplementation with BH4 and replacement therapy with L-3,4 dihydroxyphenylalanine and 5-hydroxytryptophan (products of the affected tyrosine hydroxylase– and tryptophan hydroxylase–catalyzed reactions) improves the clinical outcome in these variant forms of hyperphenylalaninemia, although the response is unpredictable.] | Biochemistry_Lippinco. requires BH4 as a coenzyme. BH4 is also required for tyrosine hydroxylase and tryptophan hydroxylase, which catalyze reactions leading to the synthesis of neurotransmitters, such as serotonin and the catecholamines. Simply restricting dietary phenylalanine does not reverse the central nervous system effects due to deficiencies in neurotransmitters. Supplementation with BH4 and replacement therapy with L-3,4 dihydroxyphenylalanine and 5-hydroxytryptophan (products of the affected tyrosine hydroxylase– and tryptophan hydroxylase–catalyzed reactions) improves the clinical outcome in these variant forms of hyperphenylalaninemia, although the response is unpredictable.] |
Biochemistry_Lippincott_946 | Biochemistry_Lippinco | Screening of newborns for a number of treatable disorders, including inborn errors of amino acid metabolism, is done by tandem mass spectrometry of blood obtained from a heel prick. By law, all states must screen for >20 disorders, with some screening for >50. All states screen for PKU. 1. Additional characteristics: As the name suggests, PKU is also characterized by elevated levels of a phenylketone in the urine. a. Elevated phenylalanine metabolites: Phenylpyruvate (a phenylketone), phenylacetate, and phenyllactate, which are not normally produced in significant amounts in the presence of functional PAH, are elevated in PKU (Fig. 20.18). These metabolites give urine a characteristic musty (“mousy”) odor. b. | Biochemistry_Lippinco. Screening of newborns for a number of treatable disorders, including inborn errors of amino acid metabolism, is done by tandem mass spectrometry of blood obtained from a heel prick. By law, all states must screen for >20 disorders, with some screening for >50. All states screen for PKU. 1. Additional characteristics: As the name suggests, PKU is also characterized by elevated levels of a phenylketone in the urine. a. Elevated phenylalanine metabolites: Phenylpyruvate (a phenylketone), phenylacetate, and phenyllactate, which are not normally produced in significant amounts in the presence of functional PAH, are elevated in PKU (Fig. 20.18). These metabolites give urine a characteristic musty (“mousy”) odor. b. |
Biochemistry_Lippincott_947 | Biochemistry_Lippinco | b. Central nervous system effects: Severe intellectual disability, developmental delay, microcephaly, and seizures are characteristic findings in untreated PKU. The affected individual typically shows symptoms of intellectual disability by age 1 year and rarely achieves an intelligence quotient (IQ) >50 (Fig. 20.19). [Note: These clinical manifestations are now rarely seen as a result of newborn screening programs, which allow early diagnosis and treatment.] c. Hypopigmentation: Patients with untreated PKU may show a deficiency of pigmentation (fair hair, light skin color, and blue eyes). The hydroxylation of tyrosine by copper-requiring tyrosinase, which is the first step in the formation of the pigment melanin, is decreased in PKU because tyrosine is decreased. 2. | Biochemistry_Lippinco. b. Central nervous system effects: Severe intellectual disability, developmental delay, microcephaly, and seizures are characteristic findings in untreated PKU. The affected individual typically shows symptoms of intellectual disability by age 1 year and rarely achieves an intelligence quotient (IQ) >50 (Fig. 20.19). [Note: These clinical manifestations are now rarely seen as a result of newborn screening programs, which allow early diagnosis and treatment.] c. Hypopigmentation: Patients with untreated PKU may show a deficiency of pigmentation (fair hair, light skin color, and blue eyes). The hydroxylation of tyrosine by copper-requiring tyrosinase, which is the first step in the formation of the pigment melanin, is decreased in PKU because tyrosine is decreased. 2. |
Biochemistry_Lippincott_948 | Biochemistry_Lippinco | 2. Newborn screening and diagnosis: Early diagnosis of PKU is important because the disease is treatable by dietary means. Because of the lack of neonatal symptoms, laboratory testing for elevated blood levels of phenylalanine is mandatory for detection. However, the infant with PKU frequently has normal blood levels of phenylalanine at birth because the mother clears increased blood phenylalanine in her affected fetus through the placenta. Normal levels of phenylalanine may persist until the newborn is exposed to 24–48 hours of protein feeding. Thus, screening tests are typically done after this time to avoid false negatives. For newborns with a positive screening test, diagnosis is confirmed through quantitative determination of phenylalanine levels. 3. | Biochemistry_Lippinco. 2. Newborn screening and diagnosis: Early diagnosis of PKU is important because the disease is treatable by dietary means. Because of the lack of neonatal symptoms, laboratory testing for elevated blood levels of phenylalanine is mandatory for detection. However, the infant with PKU frequently has normal blood levels of phenylalanine at birth because the mother clears increased blood phenylalanine in her affected fetus through the placenta. Normal levels of phenylalanine may persist until the newborn is exposed to 24–48 hours of protein feeding. Thus, screening tests are typically done after this time to avoid false negatives. For newborns with a positive screening test, diagnosis is confirmed through quantitative determination of phenylalanine levels. 3. |
Biochemistry_Lippincott_949 | Biochemistry_Lippinco | 3. Prenatal diagnosis: Classic PKU is caused by any of 100 or more different mutations in the gene that encodes PAH. The frequency of any given mutation varies among populations, and the disease is often doubly heterozygous (that is, the PAH gene has a different mutation in each allele). Despite this complexity, prenatal diagnosis is possible (see p. 493). 4. | Biochemistry_Lippinco. 3. Prenatal diagnosis: Classic PKU is caused by any of 100 or more different mutations in the gene that encodes PAH. The frequency of any given mutation varies among populations, and the disease is often doubly heterozygous (that is, the PAH gene has a different mutation in each allele). Despite this complexity, prenatal diagnosis is possible (see p. 493). 4. |
Biochemistry_Lippincott_950 | Biochemistry_Lippinco | Treatment: Because most natural protein contains phenylalanine, an essential amino acid, it is impossible to satisfy the body’s protein requirement without exceeding the phenylalanine limit when ingesting a normal diet. Therefore, in PKU, blood phenylalanine level is maintained close to the normal range by feeding synthetic amino acid preparations free of phenylalanine, supplemented with some natural foods (such as fruits, vegetables, and certain cereals) selected for their low phenylalanine content. The amount is adjusted according to the tolerance of the individual as measured by blood phenylalanine levels. The earlier treatment is started, the more completely neurologic damage can be prevented. Individuals who are appropriately treated can have normal intelligence. [Note: Treatment must begin during the first 7–10 days of life to prevent cognitive impairment.] Because phenylalanine is an essential amino acid, overzealous treatment that results in blood phenylalanine levels below | Biochemistry_Lippinco. Treatment: Because most natural protein contains phenylalanine, an essential amino acid, it is impossible to satisfy the body’s protein requirement without exceeding the phenylalanine limit when ingesting a normal diet. Therefore, in PKU, blood phenylalanine level is maintained close to the normal range by feeding synthetic amino acid preparations free of phenylalanine, supplemented with some natural foods (such as fruits, vegetables, and certain cereals) selected for their low phenylalanine content. The amount is adjusted according to the tolerance of the individual as measured by blood phenylalanine levels. The earlier treatment is started, the more completely neurologic damage can be prevented. Individuals who are appropriately treated can have normal intelligence. [Note: Treatment must begin during the first 7–10 days of life to prevent cognitive impairment.] Because phenylalanine is an essential amino acid, overzealous treatment that results in blood phenylalanine levels below |
Biochemistry_Lippincott_951 | Biochemistry_Lippinco | begin during the first 7–10 days of life to prevent cognitive impairment.] Because phenylalanine is an essential amino acid, overzealous treatment that results in blood phenylalanine levels below normal is avoided. In patients with PKU, tyrosine cannot be synthesized from phenylalanine, and, therefore, it becomes an essential amino acid and must be supplied in the diet. Discontinuance of the phenylalanine-restricted diet in early childhood is associated with poor performance on IQ tests. Adult PKU patients show deterioration of IQ scores after discontinuation of the diet (Fig. 20.20). Therefore, lifelong restriction of dietary phenylalanine is recommended. [Note: Individuals with PKU are advised to avoid aspartame, an artificial sweetener that contains phenylalanine.] 5. Maternal phenylketonuria: If women with PKU who are not on a low-phenylalanine diet become pregnant, the offspring can be affected with maternal PKU syndrome. High blood phenylalanine in the mother has a teratogenic | Biochemistry_Lippinco. begin during the first 7–10 days of life to prevent cognitive impairment.] Because phenylalanine is an essential amino acid, overzealous treatment that results in blood phenylalanine levels below normal is avoided. In patients with PKU, tyrosine cannot be synthesized from phenylalanine, and, therefore, it becomes an essential amino acid and must be supplied in the diet. Discontinuance of the phenylalanine-restricted diet in early childhood is associated with poor performance on IQ tests. Adult PKU patients show deterioration of IQ scores after discontinuation of the diet (Fig. 20.20). Therefore, lifelong restriction of dietary phenylalanine is recommended. [Note: Individuals with PKU are advised to avoid aspartame, an artificial sweetener that contains phenylalanine.] 5. Maternal phenylketonuria: If women with PKU who are not on a low-phenylalanine diet become pregnant, the offspring can be affected with maternal PKU syndrome. High blood phenylalanine in the mother has a teratogenic |
Biochemistry_Lippincott_952 | Biochemistry_Lippinco | If women with PKU who are not on a low-phenylalanine diet become pregnant, the offspring can be affected with maternal PKU syndrome. High blood phenylalanine in the mother has a teratogenic effect, causing microcephaly and congenital heart abnormalities in the fetus. Because these developmental responses to high phenylalanine occur during the first months of pregnancy, dietary control of blood phenylalanine must begin prior to conception and be maintained throughout the pregnancy. | Biochemistry_Lippinco. If women with PKU who are not on a low-phenylalanine diet become pregnant, the offspring can be affected with maternal PKU syndrome. High blood phenylalanine in the mother has a teratogenic effect, causing microcephaly and congenital heart abnormalities in the fetus. Because these developmental responses to high phenylalanine occur during the first months of pregnancy, dietary control of blood phenylalanine must begin prior to conception and be maintained throughout the pregnancy. |
Biochemistry_Lippincott_953 | Biochemistry_Lippinco | B. Maple syrup urine disease Maple syrup urine disease (MSUD) is a rare (1:185,000), autosomalrecessive disorder in which there is a partial or complete deficiency in BCKD, the mitochondrial enzyme complex that oxidatively decarboxylates leucine, isoleucine, and valine (see Fig. 20.11). These BCAA and their corresponding α-keto acids accumulate in the blood, causing a toxic effect that interferes with brain functions. The disease is characterized by feeding problems, vomiting, ketoacidosis, changes in muscle tone, neurologic problems that can result in coma (primarily because of the rise in leucine), and a characteristic maple syrup–like odor of the urine because of the rise in isoleucine. If untreated, the disease is fatal. If treatment is delayed, intellectual disability results. 1. | Biochemistry_Lippinco. B. Maple syrup urine disease Maple syrup urine disease (MSUD) is a rare (1:185,000), autosomalrecessive disorder in which there is a partial or complete deficiency in BCKD, the mitochondrial enzyme complex that oxidatively decarboxylates leucine, isoleucine, and valine (see Fig. 20.11). These BCAA and their corresponding α-keto acids accumulate in the blood, causing a toxic effect that interferes with brain functions. The disease is characterized by feeding problems, vomiting, ketoacidosis, changes in muscle tone, neurologic problems that can result in coma (primarily because of the rise in leucine), and a characteristic maple syrup–like odor of the urine because of the rise in isoleucine. If untreated, the disease is fatal. If treatment is delayed, intellectual disability results. 1. |
Biochemistry_Lippincott_954 | Biochemistry_Lippinco | 1. Classification: MSUD includes a classic type and several variant forms. The classic, neonatal-onset form is the most common type of MSUD. Leukocytes or cultured skin fibroblasts from these patients show little or no BCKD activity. Infants with classic MSUD show symptoms within the first several days of life. If not diagnosed and treated, classic MSUD is lethal in the first weeks of life. Patients with intermediate forms have a higher level of enzyme activity (up to 30% of normal). The symptoms are milder and show an onset from infancy to adolescence. Patients with the rare thiamine-dependent variant of MSUD respond to large doses of this vitamin. 2. Screening and diagnosis: As with PKU, prenatal diagnosis and newborn screening are available, and most affected individuals are compound heterozygotes. 3. | Biochemistry_Lippinco. 1. Classification: MSUD includes a classic type and several variant forms. The classic, neonatal-onset form is the most common type of MSUD. Leukocytes or cultured skin fibroblasts from these patients show little or no BCKD activity. Infants with classic MSUD show symptoms within the first several days of life. If not diagnosed and treated, classic MSUD is lethal in the first weeks of life. Patients with intermediate forms have a higher level of enzyme activity (up to 30% of normal). The symptoms are milder and show an onset from infancy to adolescence. Patients with the rare thiamine-dependent variant of MSUD respond to large doses of this vitamin. 2. Screening and diagnosis: As with PKU, prenatal diagnosis and newborn screening are available, and most affected individuals are compound heterozygotes. 3. |
Biochemistry_Lippincott_955 | Biochemistry_Lippinco | 2. Screening and diagnosis: As with PKU, prenatal diagnosis and newborn screening are available, and most affected individuals are compound heterozygotes. 3. Treatment: MSUD is treated with a synthetic formula that is free of BCAA, supplemented with limited amounts of leucine, isoleucine, and valine to allow for normal growth and development without producing toxic levels. [Note: Elevated leucine is the cause of the neurologic damage in MSUD, and its level is carefully monitored.] Early diagnosis and lifelong dietary treatment are essential if the child with MSUD is to develop normally. [Note: BCAA are an important energy source in times of metabolic need, and individuals with MSUD are at risk of decompensation during periods of increased protein catabolism.] C. Albinism | Biochemistry_Lippinco. 2. Screening and diagnosis: As with PKU, prenatal diagnosis and newborn screening are available, and most affected individuals are compound heterozygotes. 3. Treatment: MSUD is treated with a synthetic formula that is free of BCAA, supplemented with limited amounts of leucine, isoleucine, and valine to allow for normal growth and development without producing toxic levels. [Note: Elevated leucine is the cause of the neurologic damage in MSUD, and its level is carefully monitored.] Early diagnosis and lifelong dietary treatment are essential if the child with MSUD is to develop normally. [Note: BCAA are an important energy source in times of metabolic need, and individuals with MSUD are at risk of decompensation during periods of increased protein catabolism.] C. Albinism |
Biochemistry_Lippincott_956 | Biochemistry_Lippinco | C. Albinism Albinism refers to a group of conditions in which a defect in tyrosine metabolism results in a deficiency in the production of melanin. These defects result in the partial or full absence of pigment from the skin, hair, and eyes. Albinism appears in different forms, and it may be inherited by one of several modes: autosomal recessive (primary mode), autosomal dominant, or X linked. Total absence of pigment from the hair, eyes, and skin (Fig. 20.21), tyrosinase-negative oculocutaneous albinism (type 1 albinism), results from an absent or defective copper-requiring tyrosinase. It is the most severe form of the condition. In addition to hypopigmentation, affected individuals have vision defects and photophobia (sunlight hurts their eyes). They are at increased risk for skin cancer. D. Homocystinuria | Biochemistry_Lippinco. C. Albinism Albinism refers to a group of conditions in which a defect in tyrosine metabolism results in a deficiency in the production of melanin. These defects result in the partial or full absence of pigment from the skin, hair, and eyes. Albinism appears in different forms, and it may be inherited by one of several modes: autosomal recessive (primary mode), autosomal dominant, or X linked. Total absence of pigment from the hair, eyes, and skin (Fig. 20.21), tyrosinase-negative oculocutaneous albinism (type 1 albinism), results from an absent or defective copper-requiring tyrosinase. It is the most severe form of the condition. In addition to hypopigmentation, affected individuals have vision defects and photophobia (sunlight hurts their eyes). They are at increased risk for skin cancer. D. Homocystinuria |
Biochemistry_Lippincott_957 | Biochemistry_Lippinco | The homocystinurias are a group of disorders involving defects in the metabolism of Hcy. These autosomal-recessive diseases are characterized by high urinary levels of Hcy, high plasma levels of Hcy and methionine, and low plasma levels of cysteine. The most common cause of homocystinuria is a defect in the enzyme cystathionine β-synthase, which converts Hcy to cystathionine (Fig. 20.22). Individuals homozygous for cystathionine β-synthase deficiency exhibit dislocation of the lens (ectopia lentis), skeletal anomalies (long limbs and fingers), intellectual disability, and an increased risk for developing thrombi (blood clots). Thrombosis is the major cause of early death in these individuals. Treatment includes restriction of methionine and supplementation with vitamin B12 and folate. Additionally, some patients are responsive to oral administration of pyridoxine (vitamin B6), which is converted to pyridoxal phosphate, the coenzyme of cystathionine β-synthase. These patients usually | Biochemistry_Lippinco. The homocystinurias are a group of disorders involving defects in the metabolism of Hcy. These autosomal-recessive diseases are characterized by high urinary levels of Hcy, high plasma levels of Hcy and methionine, and low plasma levels of cysteine. The most common cause of homocystinuria is a defect in the enzyme cystathionine β-synthase, which converts Hcy to cystathionine (Fig. 20.22). Individuals homozygous for cystathionine β-synthase deficiency exhibit dislocation of the lens (ectopia lentis), skeletal anomalies (long limbs and fingers), intellectual disability, and an increased risk for developing thrombi (blood clots). Thrombosis is the major cause of early death in these individuals. Treatment includes restriction of methionine and supplementation with vitamin B12 and folate. Additionally, some patients are responsive to oral administration of pyridoxine (vitamin B6), which is converted to pyridoxal phosphate, the coenzyme of cystathionine β-synthase. These patients usually |
Biochemistry_Lippincott_958 | Biochemistry_Lippinco | some patients are responsive to oral administration of pyridoxine (vitamin B6), which is converted to pyridoxal phosphate, the coenzyme of cystathionine β-synthase. These patients usually have a milder and later onset of clinical symptoms compared with B6nonresponsive patients. [Note: Deficiencies in methylcobalamin (see Fig. | Biochemistry_Lippinco. some patients are responsive to oral administration of pyridoxine (vitamin B6), which is converted to pyridoxal phosphate, the coenzyme of cystathionine β-synthase. These patients usually have a milder and later onset of clinical symptoms compared with B6nonresponsive patients. [Note: Deficiencies in methylcobalamin (see Fig. |
Biochemistry_Lippincott_959 | Biochemistry_Lippinco | 20.8) or N5,N10-MTHF reductase ([MTHFR]; see Fig. 20.12) also result in elevated Hcy.] E. Alkaptonuria Alkaptonuria is a rare organic aciduria involving a deficiency in homogentisic acid oxidase, resulting in the accumulation of homogentisic acid (HA), an intermediate in the degradative pathway of tyrosine (see Fig. | Biochemistry_Lippinco. 20.8) or N5,N10-MTHF reductase ([MTHFR]; see Fig. 20.12) also result in elevated Hcy.] E. Alkaptonuria Alkaptonuria is a rare organic aciduria involving a deficiency in homogentisic acid oxidase, resulting in the accumulation of homogentisic acid (HA), an intermediate in the degradative pathway of tyrosine (see Fig. |
Biochemistry_Lippincott_960 | Biochemistry_Lippinco | 20.15 on p. 269). The condition has three characteristic symptoms: homogentisic aciduria (the urine contains elevated levels of HA, which is oxidized to a dark pigment on standing, as shown in Fig. 20.23A), early onset of arthritis in the large joints, and deposition of black pigment (ochronosis) in cartilage and collagenous tissue (see Fig. 20.23B). Dark staining of diapers can indicate the disease in infants, but usually no symptoms are present until about age 40 years. Treatment includes dietary restriction of phenylalanine and tyrosine to reduce HA levels. Although alkaptonuria is not life threatening, the associated arthritis may be severely crippling. [Note: Deficiencies in fumarylacetoacetate hydrolase, the terminal enzyme of tyrosine metabolism, result in tyrosinemia type I (see Fig. 20.15) and a characteristic cabbage-like odor to urine.] VII. CHAPTER SUMMARY | Biochemistry_Lippinco. 20.15 on p. 269). The condition has three characteristic symptoms: homogentisic aciduria (the urine contains elevated levels of HA, which is oxidized to a dark pigment on standing, as shown in Fig. 20.23A), early onset of arthritis in the large joints, and deposition of black pigment (ochronosis) in cartilage and collagenous tissue (see Fig. 20.23B). Dark staining of diapers can indicate the disease in infants, but usually no symptoms are present until about age 40 years. Treatment includes dietary restriction of phenylalanine and tyrosine to reduce HA levels. Although alkaptonuria is not life threatening, the associated arthritis may be severely crippling. [Note: Deficiencies in fumarylacetoacetate hydrolase, the terminal enzyme of tyrosine metabolism, result in tyrosinemia type I (see Fig. 20.15) and a characteristic cabbage-like odor to urine.] VII. CHAPTER SUMMARY |
Biochemistry_Lippincott_961 | Biochemistry_Lippinco | Amino acids whose catabolism yields pyruvate or an intermediate of the tricarboxylic acid cycle are termed glucogenic (Fig. 20.24). They can give rise to the net formation of glucose in the liver and kidneys. The solely glucogenic amino acids are glutamine, glutamate, proline, arginine, histidine, alanine, serine, glycine, cysteine, methionine, valine, threonine, aspartate, and asparagine. Amino acids whose catabolism yields either acetoacetate or one of its precursors, acetyl coenzyme A (CoA) or acetoacetyl CoA, are termed ketogenic. Leucine and lysine are solely ketogenic. Tyrosine, phenylalanine, tryptophan, and isoleucine are both ketogenic and glucogenic. Nonessential amino acids can be synthesized from metabolic intermediates or from the carbon skeletons of essential amino acids. Essential amino acids need to be obtained from the diet. They include histidine, methionine, threonine, valine, isoleucine, phenylalanine, tryptophan, leucine, and lysine. Phenylketonuria (PKU) is | Biochemistry_Lippinco. Amino acids whose catabolism yields pyruvate or an intermediate of the tricarboxylic acid cycle are termed glucogenic (Fig. 20.24). They can give rise to the net formation of glucose in the liver and kidneys. The solely glucogenic amino acids are glutamine, glutamate, proline, arginine, histidine, alanine, serine, glycine, cysteine, methionine, valine, threonine, aspartate, and asparagine. Amino acids whose catabolism yields either acetoacetate or one of its precursors, acetyl coenzyme A (CoA) or acetoacetyl CoA, are termed ketogenic. Leucine and lysine are solely ketogenic. Tyrosine, phenylalanine, tryptophan, and isoleucine are both ketogenic and glucogenic. Nonessential amino acids can be synthesized from metabolic intermediates or from the carbon skeletons of essential amino acids. Essential amino acids need to be obtained from the diet. They include histidine, methionine, threonine, valine, isoleucine, phenylalanine, tryptophan, leucine, and lysine. Phenylketonuria (PKU) is |
Biochemistry_Lippincott_962 | Biochemistry_Lippinco | Essential amino acids need to be obtained from the diet. They include histidine, methionine, threonine, valine, isoleucine, phenylalanine, tryptophan, leucine, and lysine. Phenylketonuria (PKU) is caused by a deficiency of phenylalanine hydroxylase (PAH), which converts phenylalanine to tyrosine. Hyperphenylalaninemia may also be caused by deficiencies in the enzymes that synthesize or regenerate the coenzyme for PAH, tetrahydrobiopterin. Untreated individuals with PKU suffer from severe intellectual disability, developmental delay, microcephaly, seizures, and a characteristic musty (mousy) smell of the urine. Treatment involves controlling dietary phenylalanine. Tyrosine becomes an essential dietary component for people with PKU. Maple syrup urine disease (MSUD) is caused by a partial or complete deficiency in branched-chain a-keto acid dehydrogenase, the enzyme that decarboxylates the branched-chain amino acids (BCAA) leucine, isoleucine, and valine. Symptoms include feeding | Biochemistry_Lippinco. Essential amino acids need to be obtained from the diet. They include histidine, methionine, threonine, valine, isoleucine, phenylalanine, tryptophan, leucine, and lysine. Phenylketonuria (PKU) is caused by a deficiency of phenylalanine hydroxylase (PAH), which converts phenylalanine to tyrosine. Hyperphenylalaninemia may also be caused by deficiencies in the enzymes that synthesize or regenerate the coenzyme for PAH, tetrahydrobiopterin. Untreated individuals with PKU suffer from severe intellectual disability, developmental delay, microcephaly, seizures, and a characteristic musty (mousy) smell of the urine. Treatment involves controlling dietary phenylalanine. Tyrosine becomes an essential dietary component for people with PKU. Maple syrup urine disease (MSUD) is caused by a partial or complete deficiency in branched-chain a-keto acid dehydrogenase, the enzyme that decarboxylates the branched-chain amino acids (BCAA) leucine, isoleucine, and valine. Symptoms include feeding |
Biochemistry_Lippincott_963 | Biochemistry_Lippinco | or complete deficiency in branched-chain a-keto acid dehydrogenase, the enzyme that decarboxylates the branched-chain amino acids (BCAA) leucine, isoleucine, and valine. Symptoms include feeding problems, vomiting, ketoacidosis, changes in muscle tone, and a characteristic sweet smell of the urine. If untreated, the disease leads to neurologic problems that result in death. Treatment involves controlling BCAA intake. Other important genetic diseases associated with amino acid metabolism include albinism, homocystinuria, methylmalonic acidemia, alkaptonuria, histidinemia, tyrosinemia, and cystathioninuria. | Biochemistry_Lippinco. or complete deficiency in branched-chain a-keto acid dehydrogenase, the enzyme that decarboxylates the branched-chain amino acids (BCAA) leucine, isoleucine, and valine. Symptoms include feeding problems, vomiting, ketoacidosis, changes in muscle tone, and a characteristic sweet smell of the urine. If untreated, the disease leads to neurologic problems that result in death. Treatment involves controlling BCAA intake. Other important genetic diseases associated with amino acid metabolism include albinism, homocystinuria, methylmalonic acidemia, alkaptonuria, histidinemia, tyrosinemia, and cystathioninuria. |
Biochemistry_Lippincott_964 | Biochemistry_Lippinco | Choose the ONE best answer. For Questions 20.1–20.3, match the deficient enzyme with the associated clinical sign or laboratory finding in urine. 0.1. Cystathionine β-synthase 0.2. Homogentisic acid oxidase 0.3. Tyrosinase | Biochemistry_Lippinco. Choose the ONE best answer. For Questions 20.1–20.3, match the deficient enzyme with the associated clinical sign or laboratory finding in urine. 0.1. Cystathionine β-synthase 0.2. Homogentisic acid oxidase 0.3. Tyrosinase |
Biochemistry_Lippincott_965 | Biochemistry_Lippinco | 0.1. Cystathionine β-synthase 0.2. Homogentisic acid oxidase 0.3. Tyrosinase Correct answers = F, A, D. A deficiency in cystathionine β-synthase of methionine degradation results in a rise in homocysteine. A deficiency in homogentisic acid oxidase of tyrosine degradation results in a rise in homogentisic acid, which forms a black pigment that is deposited in connective tissue (ochronosis). A deficiency in tyrosinase results in decreased formation of melanin from tyrosine in the skin, hair, and eyes. A sweaty feet– like odor is characteristic of isovaleryl coenzyme A dehydrogenase deficiency. Cystine crystals in urine are seen with cystinuria, a defect in intestinal and renal cystine absorption. Increased branched-chain amino acids are seen in maple syrup urine disease, increased methionine is seen in defects in homocysteine metabolism, and increased phenylalanine is seen in phenylketonuria. | Biochemistry_Lippinco. 0.1. Cystathionine β-synthase 0.2. Homogentisic acid oxidase 0.3. Tyrosinase Correct answers = F, A, D. A deficiency in cystathionine β-synthase of methionine degradation results in a rise in homocysteine. A deficiency in homogentisic acid oxidase of tyrosine degradation results in a rise in homogentisic acid, which forms a black pigment that is deposited in connective tissue (ochronosis). A deficiency in tyrosinase results in decreased formation of melanin from tyrosine in the skin, hair, and eyes. A sweaty feet– like odor is characteristic of isovaleryl coenzyme A dehydrogenase deficiency. Cystine crystals in urine are seen with cystinuria, a defect in intestinal and renal cystine absorption. Increased branched-chain amino acids are seen in maple syrup urine disease, increased methionine is seen in defects in homocysteine metabolism, and increased phenylalanine is seen in phenylketonuria. |
Biochemistry_Lippincott_966 | Biochemistry_Lippinco | 0.4. A 1-week-old infant, who was born at home in a rural, medicallyunderserved area, has undetected classic phenylketonuria. Which statement about this baby and/or her treatment is correct? A. A diet devoid of phenylalanine should be initiated immediately. B. Dietary treatment will be discontinued in adulthood. C. Supplementation with vitamin B6 is required. D. Tyrosine is an essential amino acid. Correct answer = D. In patients with phenylketonuria, tyrosine cannot be synthesized from phenylalanine and, hence, becomes essential and must be supplied in the diet. Phenylalanine in the diet must be controlled but cannot be eliminated entirely because it is an essential amino acid. Dietary treatment must begin during the first 7–10 days of life to prevent intellectual disability, and lifelong restriction of phenylalanine is recommended to prevent cognitive decline. Additionally, elevated levels of phenylalanine are teratogenic to a developing fetus. | Biochemistry_Lippinco. 0.4. A 1-week-old infant, who was born at home in a rural, medicallyunderserved area, has undetected classic phenylketonuria. Which statement about this baby and/or her treatment is correct? A. A diet devoid of phenylalanine should be initiated immediately. B. Dietary treatment will be discontinued in adulthood. C. Supplementation with vitamin B6 is required. D. Tyrosine is an essential amino acid. Correct answer = D. In patients with phenylketonuria, tyrosine cannot be synthesized from phenylalanine and, hence, becomes essential and must be supplied in the diet. Phenylalanine in the diet must be controlled but cannot be eliminated entirely because it is an essential amino acid. Dietary treatment must begin during the first 7–10 days of life to prevent intellectual disability, and lifelong restriction of phenylalanine is recommended to prevent cognitive decline. Additionally, elevated levels of phenylalanine are teratogenic to a developing fetus. |
Biochemistry_Lippincott_967 | Biochemistry_Lippinco | 0.5. Which one of the following statements concerning amino acids is correct? A. Alanine is ketogenic. B. Amino acids that are catabolized to acetyl coenzyme A are glucogenic. C. Branched-chain amino acids are catabolized primarily in the liver. D. Cysteine is essential for individuals consuming a diet severely limited in methionine. Correct answer = D. Methionine is the precursor of cysteine, which becomes essential if methionine is severely restricted. Alanine is a key glucogenic amino acid. Acetyl coenzyme A (CoA) cannot be used for the net synthesis of glucose. Amino acids catabolized to acetyl CoA are ketogenic. Branched-chain amino acids are catabolized primarily in skeletal muscle. 0.6. In an individual with the dihydrolipoyl dehydrogenase (E3)-deficient form of maple syrup urine disease, why would lactic acidosis be an expected finding? | Biochemistry_Lippinco. 0.5. Which one of the following statements concerning amino acids is correct? A. Alanine is ketogenic. B. Amino acids that are catabolized to acetyl coenzyme A are glucogenic. C. Branched-chain amino acids are catabolized primarily in the liver. D. Cysteine is essential for individuals consuming a diet severely limited in methionine. Correct answer = D. Methionine is the precursor of cysteine, which becomes essential if methionine is severely restricted. Alanine is a key glucogenic amino acid. Acetyl coenzyme A (CoA) cannot be used for the net synthesis of glucose. Amino acids catabolized to acetyl CoA are ketogenic. Branched-chain amino acids are catabolized primarily in skeletal muscle. 0.6. In an individual with the dihydrolipoyl dehydrogenase (E3)-deficient form of maple syrup urine disease, why would lactic acidosis be an expected finding? |
Biochemistry_Lippincott_968 | Biochemistry_Lippinco | 0.6. In an individual with the dihydrolipoyl dehydrogenase (E3)-deficient form of maple syrup urine disease, why would lactic acidosis be an expected finding? The three α-keto acid dehydrogenase complexes (pyruvate dehydrogenase [PDH], α-ketoglutarate dehydrogenase, and branched-chain α-keto acid dehydrogenase [BCKD]) have dihydrolipoyl dehydrogenase (Enzyme 3, or E3) in common. In E3-deficient maple syrup urine disease, in addition to the branched-chain amino acids and their α-keto acid derivatives accumulating as a result of decreased activity of BCKD, lactate will also be increased because of decreased activity of PDH. 0.7. In contrast to the vitamin B6–derived pyridoxal phosphate required in most enzymic reactions involving amino acids, what coenzyme is required by the aromatic amino acid hydroxylases? Tetrahydrobiopterin, made from guanosine triphosphate, is the required coenzyme. Amino Acids: Conversion to Specialized Products 21 | Biochemistry_Lippinco. 0.6. In an individual with the dihydrolipoyl dehydrogenase (E3)-deficient form of maple syrup urine disease, why would lactic acidosis be an expected finding? The three α-keto acid dehydrogenase complexes (pyruvate dehydrogenase [PDH], α-ketoglutarate dehydrogenase, and branched-chain α-keto acid dehydrogenase [BCKD]) have dihydrolipoyl dehydrogenase (Enzyme 3, or E3) in common. In E3-deficient maple syrup urine disease, in addition to the branched-chain amino acids and their α-keto acid derivatives accumulating as a result of decreased activity of BCKD, lactate will also be increased because of decreased activity of PDH. 0.7. In contrast to the vitamin B6–derived pyridoxal phosphate required in most enzymic reactions involving amino acids, what coenzyme is required by the aromatic amino acid hydroxylases? Tetrahydrobiopterin, made from guanosine triphosphate, is the required coenzyme. Amino Acids: Conversion to Specialized Products 21 |
Biochemistry_Lippincott_969 | Biochemistry_Lippinco | Tetrahydrobiopterin, made from guanosine triphosphate, is the required coenzyme. Amino Acids: Conversion to Specialized Products 21 For additional ancillary materials related to this chapter, please visit thePoint. I. OVERVIEW In addition to serving as building blocks for proteins, amino acids are precursors of many nitrogen-containing compounds that have important physiologic functions (Fig. 21.1). These molecules include porphyrins, neurotransmitters, hormones, purines, and pyrimidines. [Note: See p. 151 for the synthesis of nitric oxide from arginine.] II. PORPHYRIN METABOLISM | Biochemistry_Lippinco. Tetrahydrobiopterin, made from guanosine triphosphate, is the required coenzyme. Amino Acids: Conversion to Specialized Products 21 For additional ancillary materials related to this chapter, please visit thePoint. I. OVERVIEW In addition to serving as building blocks for proteins, amino acids are precursors of many nitrogen-containing compounds that have important physiologic functions (Fig. 21.1). These molecules include porphyrins, neurotransmitters, hormones, purines, and pyrimidines. [Note: See p. 151 for the synthesis of nitric oxide from arginine.] II. PORPHYRIN METABOLISM |
Biochemistry_Lippincott_970 | Biochemistry_Lippinco | II. PORPHYRIN METABOLISM Porphyrins are cyclic compounds that readily bind metal ions, usually ferrous (Fe2+) or ferric (Fe3+) iron. The most prevalent metalloporphyrin in humans is heme, which consists of one Fe2+ coordinated in the center of the tetrapyrrole ring of protoporphyrin IX (see p. 279). Heme is the prosthetic group for hemoglobin (Hb), myoglobin, the cytochromes, the cytochrome P450 (CYP) monooxygenase system, catalase, nitric oxide synthase, and peroxidase. These hemeproteins are rapidly synthesized and degraded. For example, 6–7 g of Hb is synthesized each day to replace heme lost through the normal turnover of erythrocytes. The synthesis and degradation of the associated porphyrins and recycling of the iron are coordinated with the turnover of hemeproteins. A. Structure | Biochemistry_Lippinco. II. PORPHYRIN METABOLISM Porphyrins are cyclic compounds that readily bind metal ions, usually ferrous (Fe2+) or ferric (Fe3+) iron. The most prevalent metalloporphyrin in humans is heme, which consists of one Fe2+ coordinated in the center of the tetrapyrrole ring of protoporphyrin IX (see p. 279). Heme is the prosthetic group for hemoglobin (Hb), myoglobin, the cytochromes, the cytochrome P450 (CYP) monooxygenase system, catalase, nitric oxide synthase, and peroxidase. These hemeproteins are rapidly synthesized and degraded. For example, 6–7 g of Hb is synthesized each day to replace heme lost through the normal turnover of erythrocytes. The synthesis and degradation of the associated porphyrins and recycling of the iron are coordinated with the turnover of hemeproteins. A. Structure |
Biochemistry_Lippincott_971 | Biochemistry_Lippinco | A. Structure Porphyrins are cyclic planar molecules formed by the linkage of four pyrrole rings through methenyl bridges (Fig. 21.2). Three structural features of these molecules are relevant to understanding their medical significance. 1. Side chains: Different porphyrins vary in the nature of the side chains attached to each of the four pyrrole rings. Uroporphyrin contains acetate (−CH2–COO–) and propionate (−CH2–CH2–COO–) side chains; coproporphyrin contains methyl (−CH3) and propionate groups; and protoporphyrin IX (and heme b, the most common heme) contains vinyl (−CH=CH2), methyl, and propionate groups. [Note: The methyl and vinyl groups are produced by decarboxylation of acetate and propionate side chains, respectively.] 2. | Biochemistry_Lippinco. A. Structure Porphyrins are cyclic planar molecules formed by the linkage of four pyrrole rings through methenyl bridges (Fig. 21.2). Three structural features of these molecules are relevant to understanding their medical significance. 1. Side chains: Different porphyrins vary in the nature of the side chains attached to each of the four pyrrole rings. Uroporphyrin contains acetate (−CH2–COO–) and propionate (−CH2–CH2–COO–) side chains; coproporphyrin contains methyl (−CH3) and propionate groups; and protoporphyrin IX (and heme b, the most common heme) contains vinyl (−CH=CH2), methyl, and propionate groups. [Note: The methyl and vinyl groups are produced by decarboxylation of acetate and propionate side chains, respectively.] 2. |
Biochemistry_Lippincott_972 | Biochemistry_Lippinco | Side chain distribution: The side chains of porphyrins can be ordered around the tetrapyrrole nucleus in four different ways, designated by Roman numerals I to IV. Only type III porphyrins, which contain an asymmetric substitution on ring D (see Fig. 21.2), are physiologically important in humans. [Note: Protoporphyrin IX is a member of the type III series.] 3. Porphyrinogens: These porphyrin precursors (for example, uroporphyrinogen) exist in a chemically reduced, colorless form and serve as intermediates between porphobilinogen (PBG) and the oxidized, colored protoporphyrins in heme biosynthesis. B. Heme biosynthesis | Biochemistry_Lippinco. Side chain distribution: The side chains of porphyrins can be ordered around the tetrapyrrole nucleus in four different ways, designated by Roman numerals I to IV. Only type III porphyrins, which contain an asymmetric substitution on ring D (see Fig. 21.2), are physiologically important in humans. [Note: Protoporphyrin IX is a member of the type III series.] 3. Porphyrinogens: These porphyrin precursors (for example, uroporphyrinogen) exist in a chemically reduced, colorless form and serve as intermediates between porphobilinogen (PBG) and the oxidized, colored protoporphyrins in heme biosynthesis. B. Heme biosynthesis |
Biochemistry_Lippincott_973 | Biochemistry_Lippinco | The major sites of heme biosynthesis are the liver, which synthesizes a number of heme proteins (particularly the CYP proteins), and the erythrocyte-producing cells of the bone marrow, which are active in Hb synthesis. In the liver, the rate of heme synthesis is highly variable, responding to alterations in the cellular heme pool caused by fluctuating demands for hemeproteins. In contrast, heme synthesis in erythroid cells is relatively constant and is matched to the rate of globin synthesis. [Note: Over 85% of all heme synthesis occurs in erythroid tissue. Mature red blood cells (RBC) lack mitochondria and are unable to synthesize heme.] The initial reaction and the last three steps in the formation of porphyrins occur in mitochondria, whereas the intermediate steps of the biosynthetic pathway occur in the cytosol. [Note: Fig. 21.8 summarizes heme synthesis.] 1. δ-Aminolevulinic acid formation: All the carbon and nitrogen atoms of the porphyrin molecule are provided by glycine (a | Biochemistry_Lippinco. The major sites of heme biosynthesis are the liver, which synthesizes a number of heme proteins (particularly the CYP proteins), and the erythrocyte-producing cells of the bone marrow, which are active in Hb synthesis. In the liver, the rate of heme synthesis is highly variable, responding to alterations in the cellular heme pool caused by fluctuating demands for hemeproteins. In contrast, heme synthesis in erythroid cells is relatively constant and is matched to the rate of globin synthesis. [Note: Over 85% of all heme synthesis occurs in erythroid tissue. Mature red blood cells (RBC) lack mitochondria and are unable to synthesize heme.] The initial reaction and the last three steps in the formation of porphyrins occur in mitochondria, whereas the intermediate steps of the biosynthetic pathway occur in the cytosol. [Note: Fig. 21.8 summarizes heme synthesis.] 1. δ-Aminolevulinic acid formation: All the carbon and nitrogen atoms of the porphyrin molecule are provided by glycine (a |
Biochemistry_Lippincott_974 | Biochemistry_Lippinco | pathway occur in the cytosol. [Note: Fig. 21.8 summarizes heme synthesis.] 1. δ-Aminolevulinic acid formation: All the carbon and nitrogen atoms of the porphyrin molecule are provided by glycine (a nonessential amino acid) and succinyl coenzyme A (a tricarboxylic acid cycle intermediate) that condense to form δ-aminolevulinic acid (ALA) in a reaction catalyzed by ALA synthase ([ALAS], Fig. 21.3). This reaction requires pyridoxal phosphate ([PLP] see p. 382) as a coenzyme and is the committed and rate-limiting step in porphyrin biosynthesis. [Note: There are two ALAS isoforms, each produced by different genes and controlled by different mechanisms. ALAS1 is found in all tissues, whereas ALAS2 is erythroid specific. Loss-of-function mutations in ALAS2 result in X-linked sideroblastic anemia and iron overload.] (Continued in Figs. 21.4 and 21.5.) a. | Biochemistry_Lippinco. pathway occur in the cytosol. [Note: Fig. 21.8 summarizes heme synthesis.] 1. δ-Aminolevulinic acid formation: All the carbon and nitrogen atoms of the porphyrin molecule are provided by glycine (a nonessential amino acid) and succinyl coenzyme A (a tricarboxylic acid cycle intermediate) that condense to form δ-aminolevulinic acid (ALA) in a reaction catalyzed by ALA synthase ([ALAS], Fig. 21.3). This reaction requires pyridoxal phosphate ([PLP] see p. 382) as a coenzyme and is the committed and rate-limiting step in porphyrin biosynthesis. [Note: There are two ALAS isoforms, each produced by different genes and controlled by different mechanisms. ALAS1 is found in all tissues, whereas ALAS2 is erythroid specific. Loss-of-function mutations in ALAS2 result in X-linked sideroblastic anemia and iron overload.] (Continued in Figs. 21.4 and 21.5.) a. |
Biochemistry_Lippincott_975 | Biochemistry_Lippinco | Heme (hemin) effects: When porphyrin production exceeds the availability of the apoproteins that require it, heme accumulates and is converted to hemin by the oxidation of Fe2+ to Fe3+ . Hemin decreases the amount (and, thus, the activity) of ALAS1 by repressing transcription of its gene, increasing degradation of its messenger RNA, and decreasing import of the enzyme into mitochondria. [Note: In erythroid cells, ALAS2 is controlled by the availability of intracellular iron (see p. 475).] b. | Biochemistry_Lippinco. Heme (hemin) effects: When porphyrin production exceeds the availability of the apoproteins that require it, heme accumulates and is converted to hemin by the oxidation of Fe2+ to Fe3+ . Hemin decreases the amount (and, thus, the activity) of ALAS1 by repressing transcription of its gene, increasing degradation of its messenger RNA, and decreasing import of the enzyme into mitochondria. [Note: In erythroid cells, ALAS2 is controlled by the availability of intracellular iron (see p. 475).] b. |
Biochemistry_Lippincott_976 | Biochemistry_Lippinco | Drug effects: Administration of any of a large number of drugs results in a significant increase in hepatic ALAS1 activity. These drugs are metabolized by the microsomal CYP monooxygenase system, a hemeprotein oxidase system found in the liver (see p. 149). In response to these drugs, the synthesis of CYP proteins increases, leading to an enhanced consumption of heme, a component of these proteins. This, in turn, causes a decrease in the concentration of heme in liver cells. The lower intracellular heme concentration leads to an increase in the synthesis of ALAS1 and prompts a corresponding increase in the synthesis of ALA. 2. Porphobilinogen formation: The cytosolic condensation of two ALA to form PBG by zinc-containing ALA dehydratase (PBG synthase) is extremely sensitive to inhibition by heavy metal ions (for example, lead) that replace the zinc (see Fig. 21.3). This inhibition is, in part, responsible for the elevation in ALA and the anemia seen in lead poisoning. 3. | Biochemistry_Lippinco. Drug effects: Administration of any of a large number of drugs results in a significant increase in hepatic ALAS1 activity. These drugs are metabolized by the microsomal CYP monooxygenase system, a hemeprotein oxidase system found in the liver (see p. 149). In response to these drugs, the synthesis of CYP proteins increases, leading to an enhanced consumption of heme, a component of these proteins. This, in turn, causes a decrease in the concentration of heme in liver cells. The lower intracellular heme concentration leads to an increase in the synthesis of ALAS1 and prompts a corresponding increase in the synthesis of ALA. 2. Porphobilinogen formation: The cytosolic condensation of two ALA to form PBG by zinc-containing ALA dehydratase (PBG synthase) is extremely sensitive to inhibition by heavy metal ions (for example, lead) that replace the zinc (see Fig. 21.3). This inhibition is, in part, responsible for the elevation in ALA and the anemia seen in lead poisoning. 3. |
Biochemistry_Lippincott_977 | Biochemistry_Lippinco | 3. Uroporphyrinogen formation: The condensation of four PBG produces the linear tetrapyrrole hydroxymethylbilane, which is cyclized and isomerized by uroporphyrinogen III synthase to produce the asymmetric uroporphyrinogen III. This cyclic tetrapyrrole undergoes decarboxylation of its acetate groups by uroporphyrinogen III decarboxylase (UROD), generating coproporphyrinogen III (Fig. 21.4). The reactions occur in the cytosol. 4. Heme formation: Coproporphyrinogen III enters the mitochondrion, and two propionate side chains are decarboxylated by coproporphyrinogen III oxidase to vinyl groups generating protoporphyrinogen IX, which is oxidized to protoporphyrin IX. The introduction of iron (as Fe2+) into protoporphyrin IX produces heme. This step can occur spontaneously, but the rate is enhanced by ferrochelatase, an enzyme that, like ALA dehydratase, is inhibited by lead (Fig. 21.5). C. Porphyrias | Biochemistry_Lippinco. 3. Uroporphyrinogen formation: The condensation of four PBG produces the linear tetrapyrrole hydroxymethylbilane, which is cyclized and isomerized by uroporphyrinogen III synthase to produce the asymmetric uroporphyrinogen III. This cyclic tetrapyrrole undergoes decarboxylation of its acetate groups by uroporphyrinogen III decarboxylase (UROD), generating coproporphyrinogen III (Fig. 21.4). The reactions occur in the cytosol. 4. Heme formation: Coproporphyrinogen III enters the mitochondrion, and two propionate side chains are decarboxylated by coproporphyrinogen III oxidase to vinyl groups generating protoporphyrinogen IX, which is oxidized to protoporphyrin IX. The introduction of iron (as Fe2+) into protoporphyrin IX produces heme. This step can occur spontaneously, but the rate is enhanced by ferrochelatase, an enzyme that, like ALA dehydratase, is inhibited by lead (Fig. 21.5). C. Porphyrias |
Biochemistry_Lippincott_978 | Biochemistry_Lippinco | Porphyrias are rare, inherited (or sometimes acquired) defects in heme synthesis, resulting in the accumulation and increased excretion of porphyrins or porphyrin precursors (see Fig. 21.8). [Note: Inherited porphyrias are autosominal-dominant (AD) or autosomal-recessive (AR) disorders.] Each porphyria results in the accumulation of a unique pattern of intermediates caused by the deficiency of an enzyme in the heme synthetic pathway. [Note: Porphyria, derived from the Greek for purple, refers to the red-blue color caused by pigment-like porphyrins in the urine of some patients with defects in heme synthesis.] 1. Clinical manifestations: The porphyrias are classified as erythropoietic or hepatic, depending on whether the enzyme deficiency occurs in the erythropoietic cells of the bone marrow or in the liver. Hepatic porphyrias can be further classified as chronic or acute. In general, individuals with an enzyme defect prior to the synthesis of the tetrapyrroles manifest abdominal and | Biochemistry_Lippinco. Porphyrias are rare, inherited (or sometimes acquired) defects in heme synthesis, resulting in the accumulation and increased excretion of porphyrins or porphyrin precursors (see Fig. 21.8). [Note: Inherited porphyrias are autosominal-dominant (AD) or autosomal-recessive (AR) disorders.] Each porphyria results in the accumulation of a unique pattern of intermediates caused by the deficiency of an enzyme in the heme synthetic pathway. [Note: Porphyria, derived from the Greek for purple, refers to the red-blue color caused by pigment-like porphyrins in the urine of some patients with defects in heme synthesis.] 1. Clinical manifestations: The porphyrias are classified as erythropoietic or hepatic, depending on whether the enzyme deficiency occurs in the erythropoietic cells of the bone marrow or in the liver. Hepatic porphyrias can be further classified as chronic or acute. In general, individuals with an enzyme defect prior to the synthesis of the tetrapyrroles manifest abdominal and |
Biochemistry_Lippincott_979 | Biochemistry_Lippinco | or in the liver. Hepatic porphyrias can be further classified as chronic or acute. In general, individuals with an enzyme defect prior to the synthesis of the tetrapyrroles manifest abdominal and neuropsychiatric signs, whereas those with enzyme defects leading to the accumulation of tetrapyrrole intermediates show photosensitivity (that is, their skin itches and burns [pruritus] when exposed to sunlight). [Note: Photosensitivity is a result of the oxidation of colorless porphyrinogens to colored porphyrins, which are photosensitizing molecules thought to participate in the formation of superoxide radicals from oxygen. These radicals can oxidatively damage membranes and cause the release of destructive enzymes from lysosomes.] a. Chronic hepatic porphyria: Porphyria cutanea tarda, the most common porphyria, is a chronic disease of the liver. The disease is associated with severe deficiency of UROD, but clinical expression of the deficiency is influenced by various factors, such as | Biochemistry_Lippinco. or in the liver. Hepatic porphyrias can be further classified as chronic or acute. In general, individuals with an enzyme defect prior to the synthesis of the tetrapyrroles manifest abdominal and neuropsychiatric signs, whereas those with enzyme defects leading to the accumulation of tetrapyrrole intermediates show photosensitivity (that is, their skin itches and burns [pruritus] when exposed to sunlight). [Note: Photosensitivity is a result of the oxidation of colorless porphyrinogens to colored porphyrins, which are photosensitizing molecules thought to participate in the formation of superoxide radicals from oxygen. These radicals can oxidatively damage membranes and cause the release of destructive enzymes from lysosomes.] a. Chronic hepatic porphyria: Porphyria cutanea tarda, the most common porphyria, is a chronic disease of the liver. The disease is associated with severe deficiency of UROD, but clinical expression of the deficiency is influenced by various factors, such as |
Biochemistry_Lippincott_980 | Biochemistry_Lippinco | most common porphyria, is a chronic disease of the liver. The disease is associated with severe deficiency of UROD, but clinical expression of the deficiency is influenced by various factors, such as hepatic iron overload, exposure to sunlight, alcohol ingestion, estrogen therapy, and the presence of hepatitis B or C or HIV infections. [Note: Mutations to UROD are found in only 20% of affected individuals. Inheritance is AD.] Clinical onset is typically during the fourth or fifth decade of life. Porphyrin accumulation leads to cutaneous symptoms (Fig. 21.6) as well as urine that is red to brown in natural light (Fig. | Biochemistry_Lippinco. most common porphyria, is a chronic disease of the liver. The disease is associated with severe deficiency of UROD, but clinical expression of the deficiency is influenced by various factors, such as hepatic iron overload, exposure to sunlight, alcohol ingestion, estrogen therapy, and the presence of hepatitis B or C or HIV infections. [Note: Mutations to UROD are found in only 20% of affected individuals. Inheritance is AD.] Clinical onset is typically during the fourth or fifth decade of life. Porphyrin accumulation leads to cutaneous symptoms (Fig. 21.6) as well as urine that is red to brown in natural light (Fig. |
Biochemistry_Lippincott_981 | Biochemistry_Lippinco | 21.7) and pink to red in fluorescent light. b. Acute hepatic porphyrias: Acute hepatic porphyrias (ALA dehydratase–deficiency porphyria, acute intermittent porphyria, hereditary coproporphyria, and variegate porphyria) are characterized by acute attacks of gastrointestinal (GI), neuropsychiatric, and motor symptoms that may be accompanied by photosensitivity (Fig. 21.8). Porphyrias leading to accumulation of ALA and PBG, such as acute intermittent porphyria, cause abdominal pain and neuropsychiatric disturbances, ranging from anxiety to delirium. Symptoms of the acute hepatic porphyrias are often precipitated by use of drugs, such as barbiturates and ethanol, which induce the synthesis of the heme-containing CYP microsomal drug-oxidation system. This further decreases the amount of available heme, which, in turn, promotes increased synthesis of ALAS1. c. | Biochemistry_Lippinco. 21.7) and pink to red in fluorescent light. b. Acute hepatic porphyrias: Acute hepatic porphyrias (ALA dehydratase–deficiency porphyria, acute intermittent porphyria, hereditary coproporphyria, and variegate porphyria) are characterized by acute attacks of gastrointestinal (GI), neuropsychiatric, and motor symptoms that may be accompanied by photosensitivity (Fig. 21.8). Porphyrias leading to accumulation of ALA and PBG, such as acute intermittent porphyria, cause abdominal pain and neuropsychiatric disturbances, ranging from anxiety to delirium. Symptoms of the acute hepatic porphyrias are often precipitated by use of drugs, such as barbiturates and ethanol, which induce the synthesis of the heme-containing CYP microsomal drug-oxidation system. This further decreases the amount of available heme, which, in turn, promotes increased synthesis of ALAS1. c. |
Biochemistry_Lippincott_982 | Biochemistry_Lippinco | c. Erythropoietic porphyrias: The chronic erythropoietic porphyrias (congenital erythropoietic porphyria and erythropoietic protoporphyria) cause photosensitivity characterized by skin rashes and blisters that appear in early childhood (see Fig. 21.8). 2. Increased δ-aminolevulinic acid synthase activity: One common feature of the hepatic porphyrias is decreased synthesis of heme. In the liver, heme normally functions as a repressor of the ALAS1 gene. Therefore, the absence of this end product results in an increase in the synthesis of ALAS1 (derepression). This causes an increased synthesis of intermediates that occur prior to the genetic block. The accumulation of these toxic intermediates is the major pathophysiology of the porphyrias. 3. | Biochemistry_Lippinco. c. Erythropoietic porphyrias: The chronic erythropoietic porphyrias (congenital erythropoietic porphyria and erythropoietic protoporphyria) cause photosensitivity characterized by skin rashes and blisters that appear in early childhood (see Fig. 21.8). 2. Increased δ-aminolevulinic acid synthase activity: One common feature of the hepatic porphyrias is decreased synthesis of heme. In the liver, heme normally functions as a repressor of the ALAS1 gene. Therefore, the absence of this end product results in an increase in the synthesis of ALAS1 (derepression). This causes an increased synthesis of intermediates that occur prior to the genetic block. The accumulation of these toxic intermediates is the major pathophysiology of the porphyrias. 3. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.