GenoTEX / eval.py
Liu-Hy's picture
Add files using upload-large-folder tool
9fe78b4 verified
import argparse
import json
import os
import traceback
import numpy as np
import pandas as pd
from tqdm import tqdm
from utils.utils import get_question_pairs
from utils.metrics import evaluate_gene_selection
from tools.statistics import get_gene_regressors
def average_metrics(metrics_list):
"""Average a list of metric dictionaries."""
if not metrics_list:
return {}
avg_metrics = {}
for metric in metrics_list[0]:
if isinstance(metrics_list[0][metric], (int, float)):
avg_metrics[metric] = float(np.round(np.nanmean([p[metric] for p in metrics_list]), 2))
return avg_metrics
def evaluate_dataset_selection(pred_dir, ref_dir):
"""
Evaluate dataset filtering and selection by comparing predicted and reference cohort info files.
This function evaluates two aspects:
1. Dataset Filtering (DF): Binary classification of dataset availability (is_available)
2. Dataset Selection (DS): Accuracy in selecting the best dataset(s) for each problem
Args:
pred_dir: Path to prediction directory
ref_dir: Path to reference directory
Returns:
Dictionary of evaluation metrics for dataset filtering and selection
"""
# Initialize lists to store per-trait metrics
filtering_metrics_list = []
selection_metrics_list = []
# Track traits we've already evaluated for dataset filtering
seen_traits = set()
# Get all trait-condition pairs from the metadata directory
task_info_file = './metadata/task_info.json'
all_pairs = get_question_pairs(task_info_file)
# Process each trait-condition pair
with tqdm(total=len(all_pairs), desc="Evaluating dataset filtering and selection") as pbar:
for i, (trait, condition) in enumerate(all_pairs):
# Initialize metrics
trait_filtering_metrics = {'tp': 0, 'fp': 0, 'tn': 0, 'fn': 0}
problem_selection_metrics = {'accuracy': 0.0}
# Get trait cohort info paths
ref_trait_dir = os.path.join(ref_dir, 'preprocess', trait)
pred_trait_dir = os.path.join(pred_dir, 'preprocess', trait)
ref_trait_info_path = os.path.join(ref_trait_dir, 'cohort_info.json')
pred_trait_info_path = os.path.join(pred_trait_dir, 'cohort_info.json')
if not os.path.exists(ref_trait_info_path):
print(f"Warning: Reference cohort info not found at '{ref_trait_info_path}'")
pbar.update(1)
continue
if not os.path.exists(pred_trait_info_path):
print(f"Warning: Prediction cohort info not found at '{pred_trait_info_path}'")
pbar.update(1)
continue
try:
# Load reference and prediction trait cohort info
with open(ref_trait_info_path, 'r') as f:
ref_trait_info = json.load(f)
with open(pred_trait_info_path, 'r') as f:
pred_trait_info = json.load(f)
# Only evaluate trait filtering metrics if we haven't seen this trait before
if trait not in seen_traits:
# Evaluate dataset filtering based on is_available attribute
for cohort_id in set(ref_trait_info.keys()).union(set(pred_trait_info.keys())):
ref_available = ref_trait_info.get(cohort_id, {}).get('is_available', False)
pred_available = pred_trait_info.get(cohort_id, {}).get('is_available', False)
if ref_available and pred_available:
trait_filtering_metrics['tp'] += 1
elif ref_available and not pred_available:
trait_filtering_metrics['fn'] += 1
elif not ref_available and pred_available:
trait_filtering_metrics['fp'] += 1
else: # not ref_available and not pred_available
trait_filtering_metrics['tn'] += 1
# Calculate metrics for this trait
filtering_result = calculate_metrics_from_confusion(
trait_filtering_metrics['tp'],
trait_filtering_metrics['fp'],
trait_filtering_metrics['tn'],
trait_filtering_metrics['fn']
)
# Store trait name as part of the metrics
filtering_result['trait'] = trait
# Add to the filtering metrics list
filtering_metrics_list.append(filtering_result)
# Mark this trait as seen
seen_traits.add(trait)
# Select best dataset(s) using the refactored function
ref_selection = select_cohorts(
root_dir=ref_dir,
trait=trait,
condition=condition
)
pred_selection = select_cohorts(
root_dir=pred_dir,
trait=trait,
condition=condition
)
# Check if selections match
if ref_selection == pred_selection:
problem_selection_metrics['accuracy'] = 100.0
# Store trait and condition names as part of the metrics
problem_selection_metrics['trait'] = trait
problem_selection_metrics['condition'] = condition
selection_metrics_list.append(problem_selection_metrics)
# Update running average more frequently - every 5 iterations or at start/end
if (i + 1) % 5 == 0 or i == 0 or i == len(all_pairs) - 1:
# Display both filtering and selection metrics in a single progress bar update
display_running_average(
pbar,
filtering_metrics_list,
"Dataset filtering",
['precision', 'recall', 'f1', 'accuracy'],
selection_metrics_list,
"Dataset selection",
['accuracy']
)
except Exception as e:
print(f"Error evaluating {trait}-{condition}: {str(e)}")
print(traceback.format_exc())
pbar.update(1)
# Calculate average metrics across all traits
avg_filtering_metrics = average_metrics(filtering_metrics_list)
avg_selection_metrics = average_metrics(selection_metrics_list)
return {
'filtering_metrics': {
'per_trait': filtering_metrics_list,
'average': avg_filtering_metrics
},
'selection_metrics': {
'per_problem': selection_metrics_list,
'average': avg_selection_metrics
}
}
def select_cohorts(root_dir, trait, condition=None, gene_info_path='./metadata/task_info.json'):
"""
Select the best cohort or cohort pair for analysis.
Unified function that handles both one-step and two-step dataset selection.
Args:
root_dir: Base directory containing output data
trait: Name of the trait
condition: Name of the condition (optional)
gene_info_path: Path to gene info metadata file (default: './metadata/task_info.json')
Returns:
For one-step: Selected cohort ID or None if no suitable cohort found
For two-step: Tuple of (trait_cohort_id, condition_cohort_id) or None if no suitable pair found
"""
# Set up necessary paths
trait_dir = os.path.join(root_dir, 'preprocess', trait)
trait_info_path = os.path.join(trait_dir, 'cohort_info.json')
# Check if trait directory and info exist
if not os.path.exists(trait_info_path):
print(f"Warning: Trait cohort info not found for '{trait}'")
return None
# Load trait info
with open(trait_info_path, 'r') as f:
trait_info = json.load(f)
# One-step problem (only trait, or trait with Age/Gender condition)
if condition is None or condition.lower() in ['age', 'gender', 'none']:
# Filter usable cohorts
usable_cohorts = {}
for cohort_id, info in trait_info.items():
if info.get('is_usable', False):
# For Age/Gender conditions, filter cohorts with that info
if condition == 'Age' and not info.get('has_age', False):
continue
elif condition == 'Gender' and not info.get('has_gender', False):
continue
usable_cohorts[cohort_id] = info
if not usable_cohorts:
return None
# Select cohort with largest sample size
return max(usable_cohorts.items(), key=lambda x: x[1].get('sample_size', 0))[0]
# Two-step problem (trait with another non-basic condition)
else:
# Set up condition paths
condition_dir = os.path.join(root_dir, 'preprocess', condition)
condition_info_path = os.path.join(condition_dir, 'cohort_info.json')
# Check if condition directory and info exist
if not os.path.exists(condition_info_path):
print(f"Warning: Condition cohort info not found for '{condition}'")
return None
# Load condition info
with open(condition_info_path, 'r') as f:
condition_info = json.load(f)
# Filter usable cohorts
usable_trait_cohorts = {k: v for k, v in trait_info.items() if v.get('is_usable', False)}
usable_condition_cohorts = {k: v for k, v in condition_info.items() if v.get('is_usable', False)}
if not usable_trait_cohorts or not usable_condition_cohorts:
return None
# Create all possible pairs with their product of sample sizes
pairs = []
for trait_id, trait_info_item in usable_trait_cohorts.items():
for cond_id, cond_info_item in usable_condition_cohorts.items():
trait_size = trait_info_item.get('sample_size', 0)
cond_size = cond_info_item.get('sample_size', 0)
pairs.append((trait_id, cond_id, trait_size * cond_size))
# Sort by product of sample sizes (largest first)
pairs.sort(key=lambda x: x[2], reverse=True)
# Find first pair with common gene regressors
for trait_id, cond_id, _ in pairs:
trait_data_path = os.path.join(trait_dir, f"{trait_id}.csv")
condition_data_path = os.path.join(condition_dir, f"{cond_id}.csv")
if os.path.exists(trait_data_path) and os.path.exists(condition_data_path):
# Load the data to check for common gene regressors
try:
trait_data = pd.read_csv(trait_data_path, index_col=0).astype('float')
condition_data = pd.read_csv(condition_data_path, index_col=0).astype('float')
# Check for common gene regressors
gene_regressors = get_gene_regressors(trait, condition, trait_data, condition_data, gene_info_path)
if gene_regressors:
return trait_id, cond_id
except Exception as e:
print(f"Error processing pair ({trait_id}, {cond_id}): {str(e)}")
# If there's an error, try the next pair
continue
# No valid pair found
return None
def calculate_metrics_from_confusion(tp, fp, tn, fn):
"""
Calculate precision, recall, F1, and accuracy from confusion matrix values.
Args:
tp: True positives
fp: False positives
tn: True negatives
fn: False negatives
Returns:
Dictionary of metrics
"""
precision = tp / (tp + fp) if (tp + fp) > 0 else 0.0
recall = tp / (tp + fn) if (tp + fn) > 0 else 0.0
f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0.0
accuracy = (tp + tn) / (tp + tn + fp + fn) if (tp + tn + fp + fn) > 0 else 0.0
return {
'precision': precision * 100,
'recall': recall * 100,
'f1': f1 * 100,
'accuracy': accuracy * 100
}
def calculate_jaccard(set1, set2):
"""Calculate Jaccard similarity between two sets."""
intersection = len(set1.intersection(set2))
union = len(set1.union(set2))
return 0.0 if union == 0 else intersection / union
def calculate_pearson_correlation(df1, df2):
"""Calculate Pearson correlation between common features in two dataframes.
Optimized for large datasets using numpy vectorization."""
common_samples = df1.index.intersection(df2.index)
common_features = df1.columns.intersection(df2.columns)
if len(common_samples) == 0 or len(common_features) == 0:
return 0.0
# Extract only common samples and features
aligned_df1 = df1.loc[common_samples, common_features]
aligned_df2 = df2.loc[common_samples, common_features]
# Fill missing values with column means (more efficient than column-by-column)
aligned_df1 = aligned_df1.fillna(aligned_df1.mean())
aligned_df2 = aligned_df2.fillna(aligned_df2.mean())
# Handle any remaining NaNs (e.g., columns that are all NaN)
aligned_df1 = aligned_df1.fillna(0.0)
aligned_df2 = aligned_df2.fillna(0.0)
# Vectorized Pearson correlation calculation
try:
# Convert to numpy arrays for faster computation
X = aligned_df1.values
Y = aligned_df2.values
n_samples = X.shape[0]
# Center the data (subtract column means)
X_centered = X - np.mean(X, axis=0)
Y_centered = Y - np.mean(Y, axis=0)
# Calculate standard deviations for each column
X_std = np.std(X, axis=0)
Y_std = np.std(Y, axis=0)
# Create mask for valid columns (non-zero std dev in both datasets)
valid_cols = (X_std != 0) & (Y_std != 0)
if not np.any(valid_cols):
return 0.0 # No valid columns to correlate
# Calculate correlation only for valid columns
# Use the formula: corr = sum(X_centered * Y_centered) / (n * std_X * std_Y)
numerator = np.sum(X_centered[:, valid_cols] * Y_centered[:, valid_cols], axis=0)
denominator = n_samples * X_std[valid_cols] * Y_std[valid_cols]
correlations = numerator / denominator
# Handle any NaN values that might have slipped through
correlations = np.nan_to_num(correlations, nan=0.0)
# Return the mean correlation
return float(np.mean(correlations))
except Exception as e:
print(f"Error calculating Pearson correlation: {str(e)}")
return 0.0
def evaluate_csv(pred_file_path, ref_file_path, subtask="linked"):
"""
Evaluate preprocessing by comparing prediction and reference CSV files.
Args:
pred_file_path: Path to the prediction CSV file
ref_file_path: Path to the reference CSV file
subtask: The preprocessing subtask ('gene', 'clinical', 'linked')
Returns:
Dictionary of evaluation metrics
"""
# Default metrics if file doesn't exist
default_metrics = {
'attributes_jaccard': 0.0,
'samples_jaccard': 0.0,
'feature_correlation': 0.0,
'composite_similarity_correlation': 0.0
}
# Check if prediction file exists
if not os.path.isfile(pred_file_path):
return default_metrics
try:
# Read CSV files
df1 = pd.read_csv(pred_file_path, index_col=0)
df2 = pd.read_csv(ref_file_path, index_col=0)
# Reset index and column names to avoid possible errors and confusion
df1.index.name = None
df1.columns.name = None
df2.index.name = None
df2.columns.name = None
# Make sure rows represent samples and columns represent features
if subtask != "linked":
# Transpose the DataFrames
df1 = df1.T
df2 = df2.T
# Return default metrics if any dataframe is empty
if df1.empty or df2.empty:
return default_metrics
# Calculate metrics
attributes_jaccard = calculate_jaccard(set(df1.columns), set(df2.columns))
samples_jaccard = calculate_jaccard(set(df1.index), set(df2.index))
feature_correlation = calculate_pearson_correlation(df1, df2)
composite_similarity_correlation = attributes_jaccard * samples_jaccard * feature_correlation
return {
'attributes_jaccard': attributes_jaccard,
'samples_jaccard': samples_jaccard,
'feature_correlation': feature_correlation,
'composite_similarity_correlation': composite_similarity_correlation
}
except Exception as e:
print(f"Error processing {pred_file_path} and {ref_file_path}")
print(f"Error details: {str(e)}")
print(traceback.format_exc())
return default_metrics
def display_running_average(pbar, metrics_list, task_name, metrics_to_show=None, second_metrics_list=None, second_task_name=None, second_metrics_to_show=None):
"""
Display running average of metrics in the progress bar.
Args:
pbar: tqdm progress bar
metrics_list: List of metric dictionaries
task_name: Name of the task for display
metrics_to_show: List of metrics to display (if None, show all numeric metrics)
second_metrics_list: Optional second list of metrics to display (e.g., selection metrics)
second_task_name: Name for the second task
second_metrics_to_show: Metrics to show for the second task
"""
# Skip if there are no metrics
if not metrics_list:
pbar.set_description(f"{task_name}: No metrics yet")
return
# Calculate average metrics
avg_metrics = average_metrics(metrics_list)
# Determine which metrics to show
if metrics_to_show is None:
metrics_to_show = [k for k, v in avg_metrics.items() if isinstance(v, (int, float))]
# Filter out metadata keys that aren't metrics
metrics_to_show = [m for m in metrics_to_show if m not in ['trait', 'file', 'condition', 'category']]
# Create compact description for progress bar
desc_parts = []
for metric in metrics_to_show:
if metric in avg_metrics:
desc_parts.append(f"{metric[:3]}={avg_metrics[metric]:.2f}")
# Process second metrics list if provided
second_desc_parts = []
if second_metrics_list and second_task_name:
second_avg_metrics = average_metrics(second_metrics_list)
if second_metrics_to_show is None:
second_metrics_to_show = [k for k, v in second_avg_metrics.items()
if isinstance(v, (int, float))]
# Filter out metadata keys that aren't metrics
second_metrics_to_show = [m for m in second_metrics_to_show
if m not in ['trait', 'file', 'condition', 'category']]
for metric in second_metrics_to_show:
if metric in second_avg_metrics:
second_desc_parts.append(f"{metric[:3]}={second_avg_metrics[metric]:.2f}")
# Build the description with both primary and secondary metrics
description = f"{task_name}: " + " ".join(desc_parts) if desc_parts else f"{task_name}: No metrics yet"
if second_desc_parts and second_task_name:
description += f" | {second_task_name}: " + " ".join(second_desc_parts)
# Set the progress bar description
pbar.set_description(description)
def evaluate_dataset_preprocessing(pred_dir, ref_dir, subtasks=None):
"""
Evaluate preprocessing by comparing predicted and reference datasets.
Args:
pred_dir: Path to prediction directory
ref_dir: Path to reference directory
subtasks: List of subtasks to evaluate ('gene', 'clinical', 'linked')
or None to evaluate all
Returns:
Dictionary of evaluation metrics for each subtask
"""
results = {}
if subtasks is None:
subtasks = ["gene", "clinical", "linked"]
pred_preprocess_dir = os.path.join(pred_dir, "preprocess")
ref_preprocess_dir = os.path.join(ref_dir, "preprocess")
if not os.path.exists(pred_preprocess_dir):
print(f"Warning: Preprocessing prediction directory '{pred_preprocess_dir}' does not exist.")
return {subtask: {} for subtask in subtasks}
for subtask in subtasks:
metrics_list = []
processed_count = 0
# Get list of trait directories
trait_dirs = []
for t in os.listdir(ref_preprocess_dir):
ref_trait_dir = os.path.join(ref_preprocess_dir, t)
if os.path.isdir(ref_trait_dir):
trait_dirs.append(t)
# Count total files to process for better progress tracking
total_files = 0
for trait in trait_dirs:
ref_trait_dir = os.path.join(ref_preprocess_dir, trait)
# Determine the subdirectory path based on subtask
if subtask in ["gene", "clinical"]:
sub_dir = os.path.join(ref_trait_dir, f"{subtask}_data")
else: # linked
sub_dir = ref_trait_dir
if os.path.isdir(sub_dir):
csv_files = [f for f in os.listdir(sub_dir) if f.endswith(".csv")]
total_files += len(csv_files)
# Process each trait directory with progress bar
with tqdm(total=len(trait_dirs), desc=f"Evaluating {subtask} data preprocessing") as pbar:
for trait_idx, trait in enumerate(trait_dirs):
ref_trait_dir = os.path.join(ref_preprocess_dir, trait)
# Determine the subdirectory path based on subtask
if subtask in ["gene", "clinical"]:
sub_dir = os.path.join(ref_trait_dir, f"{subtask}_data")
else: # linked
sub_dir = ref_trait_dir
if not os.path.isdir(sub_dir):
pbar.update(1)
continue
# Process each CSV file
csv_files = [f for f in sorted(os.listdir(sub_dir)) if f.endswith(".csv")]
for file_idx, file in enumerate(csv_files):
ref_file_path = os.path.join(sub_dir, file)
# Get corresponding prediction file path
if subtask in ["gene", "clinical"]:
pred_file_path = os.path.join(pred_preprocess_dir, trait, f"{subtask}_data", file)
else: # linked
pred_file_path = os.path.join(pred_preprocess_dir, trait, file)
# Skip if prediction file doesn't exist
if not os.path.exists(pred_file_path):
continue
try:
# Evaluate the file pair
file_metrics = evaluate_csv(pred_file_path, ref_file_path, subtask)
# Add trait and file information
file_metrics['trait'] = trait
file_metrics['file'] = file
metrics_list.append(file_metrics)
processed_count += 1
# Update running average more frequently:
# - At first file
# - Every 5 files
# - At last file per trait
# - At last trait
if (processed_count % 5 == 0 or
processed_count == 1 or
file_idx == len(csv_files) - 1 or
trait_idx == len(trait_dirs) - 1):
# Show progress
pbar.write(f"\nProcessed {processed_count}/{total_files} files")
# Display metrics
display_running_average(
pbar,
metrics_list,
f"{subtask.capitalize()} preprocessing",
['feature_correlation', 'composite_similarity_correlation']
)
except Exception as e:
print(f"Error evaluating {trait}/{file}: {str(e)}")
pbar.update(1)
# Store both per-file metrics and averages
results[subtask] = {
'per_file': metrics_list,
'average': average_metrics(metrics_list)
}
return results
def evaluate_statistical_analysis(pred_dir, ref_dir):
"""Evaluate statistical analysis (gene selection) task."""
results = {}
pred_regress_dir = os.path.join(pred_dir, 'regress')
ref_regress_dir = os.path.join(ref_dir, 'regress')
if not os.path.exists(pred_regress_dir):
print(f"Warning: Statistical analysis prediction directory '{pred_regress_dir}' does not exist.")
return {}, {}
# Get all trait directories at once to prepare for processing
trait_dirs = [t for t in sorted(os.listdir(ref_regress_dir))
if os.path.isdir(os.path.join(ref_regress_dir, t))]
# Count and prepare all files for processing
all_files = []
for trait in trait_dirs:
ref_trait_path = os.path.join(ref_regress_dir, trait)
json_files = [f for f in sorted(os.listdir(ref_trait_path))
if f.startswith('significant_genes') and f.endswith('.json')]
for filename in json_files:
parts = filename.split('_')
condition = '_'.join(parts[3:])[:-5]
ref_file = os.path.join(ref_trait_path, filename)
pred_file = os.path.join(pred_regress_dir, trait, filename)
all_files.append((trait, condition, ref_file, pred_file))
metrics_for_display = []
with tqdm(total=len(all_files), desc="Evaluating statistical analysis") as pbar:
for i, (trait, condition, ref_file, pred_file) in enumerate(all_files):
try:
metrics = evaluate_problem_result(ref_file, pred_file)
results[(trait, condition)] = metrics
# Add trait and condition for display purposes
metrics_copy = metrics.copy()
metrics_copy['trait'] = trait
metrics_copy['condition'] = condition
metrics_for_display.append(metrics_copy)
# Update the progress bar display at regular intervals
# Display on 1st, every 5th, and last file
if i == 0 or (i + 1) % 5 == 0 or i == len(all_files) - 1:
display_running_average(
pbar,
metrics_for_display,
"Statistical analysis",
['precision', 'recall', 'f1', 'jaccard']
)
except Exception as e:
print(f"Error evaluating {pred_file}: {str(e)}")
# Update the progress
pbar.update(1)
# Categorize and aggregate the results
categorized_avg_metrics = categorize_and_aggregate(results)
return results, categorized_avg_metrics
def evaluate_problem_result(ref_file, pred_file):
"""Calculate metrics for gene selection evaluation."""
assert os.path.exists(ref_file), "Reference file does not exist"
with open(ref_file, 'r') as rfile:
ref = json.load(rfile)
ref_genes = ref["significant_genes"]["Variable"]
# If the 'pred_file' does not exist, it indicates the agent's regression code fails to run on this question
metrics = {'success': 0.0,
'precision': np.nan,
'recall': np.nan,
'f1': np.nan,
'auroc': np.nan,
'gsea_es': np.nan,
'trait_pred_accuracy': np.nan,
'trait_pred_f1': np.nan}
if os.path.exists(pred_file):
with open(pred_file, 'r') as file:
result = json.load(file)
pred_genes = result["significant_genes"]["Variable"]
metrics.update(evaluate_gene_selection(pred_genes, ref_genes))
# Optionally, record performance on trait prediction.
try:
metrics['trait_pred_accuracy'] = result["cv_performance"]["prediction"]["accuracy"]
except KeyError:
pass
try:
metrics['trait_pred_f1'] = result["cv_performance"]["prediction"]["f1"]
except KeyError:
pass
metrics['success'] = 100.0
return metrics
def categorize_and_aggregate(results):
"""Categorize and aggregate metrics by condition type."""
categorized_results = {'Unconditional one-step': [], 'Conditional one-step': [], 'Two-step': []}
for pair, metrics in results.items():
condition = pair[1]
if condition is None or condition.lower() == "none":
category = 'Unconditional one-step'
elif condition.lower() in ["age", "gender"]:
category = 'Conditional one-step'
else:
category = 'Two-step'
categorized_results[category].append(metrics)
aggregated_metrics = {}
for category, metrics_list in categorized_results.items():
aggregated_metrics[category] = average_metrics(metrics_list)
aggregated_metrics['Overall'] = average_metrics(
[metric for sublist in categorized_results.values() for metric in sublist])
return aggregated_metrics
def main(pred_dir, ref_dir, tasks=None, preprocess_subtasks=None):
"""
Main evaluation function that can evaluate different tasks.
Args:
pred_dir: Path to prediction directory
ref_dir: Path to reference directory
tasks: List of tasks to evaluate ('selection', 'preprocessing', 'analysis')
or None to evaluate all
preprocess_subtasks: List of preprocessing subtasks to evaluate
('gene', 'clinical', 'linked') or None to evaluate all
Returns:
Dictionary of evaluation results for each task
"""
if tasks is None:
tasks = ["selection", "preprocessing", "analysis"]
results = {}
# Evaluate dataset selection
if "selection" in tasks:
print("\n=== Evaluating Dataset Selection ===")
results["selection"] = evaluate_dataset_selection(pred_dir, ref_dir)
# Print selection results immediately
print("\nDataset Selection Results:")
if "filtering_metrics" in results["selection"]:
filtering_avg = results["selection"]["filtering_metrics"]["average"]
print("\nFiltering Average Metrics:")
for metric, value in filtering_avg.items():
if isinstance(value, (int, float)):
print(f" {metric}: {value:.4f}")
if "selection_metrics" in results["selection"]:
selection_avg = results["selection"]["selection_metrics"]["average"]
print("\nSelection Average Metrics:")
for metric, value in selection_avg.items():
if isinstance(value, (int, float)):
print(f" {metric}: {value:.4f}")
# Evaluate preprocessing
if "preprocessing" in tasks:
print("\n=== Evaluating Dataset Preprocessing ===")
results["preprocessing"] = evaluate_dataset_preprocessing(pred_dir, ref_dir, preprocess_subtasks)
# Print preprocessing results immediately
print("\nDataset Preprocessing Results:")
for subtask, subtask_results in results["preprocessing"].items():
if "average" in subtask_results:
avg_metrics = subtask_results["average"]
print(f"\n{subtask.capitalize()} Average Metrics:")
for metric, value in avg_metrics.items():
if isinstance(value, (int, float)):
print(f" {metric}: {value:.4f}")
else:
print(f" No results available for {subtask}")
# Evaluate statistical analysis
if "analysis" in tasks:
print("\n=== Evaluating Statistical Analysis ===")
problem_results, categorized_metrics = evaluate_statistical_analysis(pred_dir, ref_dir)
results["analysis"] = {
"problem_results": problem_results,
"categorized": categorized_metrics
}
# Print analysis results immediately
print("\nStatistical Analysis Results:")
for category, metrics in categorized_metrics.items():
print(f"\n{category} Metrics:")
for metric, value in metrics.items():
if isinstance(value, (int, float)):
print(f" {metric}: {value:.4f}")
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Evaluation script for GeneTex")
parser.add_argument("-p", "--pred-dir", type=str, default="./pred",
help="Path to the prediction directory")
parser.add_argument("-r", "--ref-dir", type=str, default="./output",
help="Path to the reference directory")
parser.add_argument("-t", "--tasks", type=str, nargs="+",
choices=["selection", "preprocessing", "analysis"], default=None,
help="Tasks to evaluate (default: all)")
parser.add_argument("-s", "--preprocess-subtasks", type=str, nargs="+",
choices=["gene", "clinical", "linked"], default=None,
help="Preprocessing subtasks to evaluate (default: all)")
args = parser.parse_args()
try:
# Run main evaluation - results are printed in the main function
results = main(args.pred_dir, args.ref_dir, args.tasks, args.preprocess_subtasks)
except Exception as e:
print(f"Error in evaluation process: {str(e)}")
print(traceback.format_exc())