File size: 35,229 Bytes
9fe78b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 |
import argparse
import json
import os
import traceback
import numpy as np
import pandas as pd
from tqdm import tqdm
from utils.utils import get_question_pairs
from utils.metrics import evaluate_gene_selection
from tools.statistics import get_gene_regressors
def average_metrics(metrics_list):
"""Average a list of metric dictionaries."""
if not metrics_list:
return {}
avg_metrics = {}
for metric in metrics_list[0]:
if isinstance(metrics_list[0][metric], (int, float)):
avg_metrics[metric] = float(np.round(np.nanmean([p[metric] for p in metrics_list]), 2))
return avg_metrics
def evaluate_dataset_selection(pred_dir, ref_dir):
"""
Evaluate dataset filtering and selection by comparing predicted and reference cohort info files.
This function evaluates two aspects:
1. Dataset Filtering (DF): Binary classification of dataset availability (is_available)
2. Dataset Selection (DS): Accuracy in selecting the best dataset(s) for each problem
Args:
pred_dir: Path to prediction directory
ref_dir: Path to reference directory
Returns:
Dictionary of evaluation metrics for dataset filtering and selection
"""
# Initialize lists to store per-trait metrics
filtering_metrics_list = []
selection_metrics_list = []
# Track traits we've already evaluated for dataset filtering
seen_traits = set()
# Get all trait-condition pairs from the metadata directory
task_info_file = './metadata/task_info.json'
all_pairs = get_question_pairs(task_info_file)
# Process each trait-condition pair
with tqdm(total=len(all_pairs), desc="Evaluating dataset filtering and selection") as pbar:
for i, (trait, condition) in enumerate(all_pairs):
# Initialize metrics
trait_filtering_metrics = {'tp': 0, 'fp': 0, 'tn': 0, 'fn': 0}
problem_selection_metrics = {'accuracy': 0.0}
# Get trait cohort info paths
ref_trait_dir = os.path.join(ref_dir, 'preprocess', trait)
pred_trait_dir = os.path.join(pred_dir, 'preprocess', trait)
ref_trait_info_path = os.path.join(ref_trait_dir, 'cohort_info.json')
pred_trait_info_path = os.path.join(pred_trait_dir, 'cohort_info.json')
if not os.path.exists(ref_trait_info_path):
print(f"Warning: Reference cohort info not found at '{ref_trait_info_path}'")
pbar.update(1)
continue
if not os.path.exists(pred_trait_info_path):
print(f"Warning: Prediction cohort info not found at '{pred_trait_info_path}'")
pbar.update(1)
continue
try:
# Load reference and prediction trait cohort info
with open(ref_trait_info_path, 'r') as f:
ref_trait_info = json.load(f)
with open(pred_trait_info_path, 'r') as f:
pred_trait_info = json.load(f)
# Only evaluate trait filtering metrics if we haven't seen this trait before
if trait not in seen_traits:
# Evaluate dataset filtering based on is_available attribute
for cohort_id in set(ref_trait_info.keys()).union(set(pred_trait_info.keys())):
ref_available = ref_trait_info.get(cohort_id, {}).get('is_available', False)
pred_available = pred_trait_info.get(cohort_id, {}).get('is_available', False)
if ref_available and pred_available:
trait_filtering_metrics['tp'] += 1
elif ref_available and not pred_available:
trait_filtering_metrics['fn'] += 1
elif not ref_available and pred_available:
trait_filtering_metrics['fp'] += 1
else: # not ref_available and not pred_available
trait_filtering_metrics['tn'] += 1
# Calculate metrics for this trait
filtering_result = calculate_metrics_from_confusion(
trait_filtering_metrics['tp'],
trait_filtering_metrics['fp'],
trait_filtering_metrics['tn'],
trait_filtering_metrics['fn']
)
# Store trait name as part of the metrics
filtering_result['trait'] = trait
# Add to the filtering metrics list
filtering_metrics_list.append(filtering_result)
# Mark this trait as seen
seen_traits.add(trait)
# Select best dataset(s) using the refactored function
ref_selection = select_cohorts(
root_dir=ref_dir,
trait=trait,
condition=condition
)
pred_selection = select_cohorts(
root_dir=pred_dir,
trait=trait,
condition=condition
)
# Check if selections match
if ref_selection == pred_selection:
problem_selection_metrics['accuracy'] = 100.0
# Store trait and condition names as part of the metrics
problem_selection_metrics['trait'] = trait
problem_selection_metrics['condition'] = condition
selection_metrics_list.append(problem_selection_metrics)
# Update running average more frequently - every 5 iterations or at start/end
if (i + 1) % 5 == 0 or i == 0 or i == len(all_pairs) - 1:
# Display both filtering and selection metrics in a single progress bar update
display_running_average(
pbar,
filtering_metrics_list,
"Dataset filtering",
['precision', 'recall', 'f1', 'accuracy'],
selection_metrics_list,
"Dataset selection",
['accuracy']
)
except Exception as e:
print(f"Error evaluating {trait}-{condition}: {str(e)}")
print(traceback.format_exc())
pbar.update(1)
# Calculate average metrics across all traits
avg_filtering_metrics = average_metrics(filtering_metrics_list)
avg_selection_metrics = average_metrics(selection_metrics_list)
return {
'filtering_metrics': {
'per_trait': filtering_metrics_list,
'average': avg_filtering_metrics
},
'selection_metrics': {
'per_problem': selection_metrics_list,
'average': avg_selection_metrics
}
}
def select_cohorts(root_dir, trait, condition=None, gene_info_path='./metadata/task_info.json'):
"""
Select the best cohort or cohort pair for analysis.
Unified function that handles both one-step and two-step dataset selection.
Args:
root_dir: Base directory containing output data
trait: Name of the trait
condition: Name of the condition (optional)
gene_info_path: Path to gene info metadata file (default: './metadata/task_info.json')
Returns:
For one-step: Selected cohort ID or None if no suitable cohort found
For two-step: Tuple of (trait_cohort_id, condition_cohort_id) or None if no suitable pair found
"""
# Set up necessary paths
trait_dir = os.path.join(root_dir, 'preprocess', trait)
trait_info_path = os.path.join(trait_dir, 'cohort_info.json')
# Check if trait directory and info exist
if not os.path.exists(trait_info_path):
print(f"Warning: Trait cohort info not found for '{trait}'")
return None
# Load trait info
with open(trait_info_path, 'r') as f:
trait_info = json.load(f)
# One-step problem (only trait, or trait with Age/Gender condition)
if condition is None or condition.lower() in ['age', 'gender', 'none']:
# Filter usable cohorts
usable_cohorts = {}
for cohort_id, info in trait_info.items():
if info.get('is_usable', False):
# For Age/Gender conditions, filter cohorts with that info
if condition == 'Age' and not info.get('has_age', False):
continue
elif condition == 'Gender' and not info.get('has_gender', False):
continue
usable_cohorts[cohort_id] = info
if not usable_cohorts:
return None
# Select cohort with largest sample size
return max(usable_cohorts.items(), key=lambda x: x[1].get('sample_size', 0))[0]
# Two-step problem (trait with another non-basic condition)
else:
# Set up condition paths
condition_dir = os.path.join(root_dir, 'preprocess', condition)
condition_info_path = os.path.join(condition_dir, 'cohort_info.json')
# Check if condition directory and info exist
if not os.path.exists(condition_info_path):
print(f"Warning: Condition cohort info not found for '{condition}'")
return None
# Load condition info
with open(condition_info_path, 'r') as f:
condition_info = json.load(f)
# Filter usable cohorts
usable_trait_cohorts = {k: v for k, v in trait_info.items() if v.get('is_usable', False)}
usable_condition_cohorts = {k: v for k, v in condition_info.items() if v.get('is_usable', False)}
if not usable_trait_cohorts or not usable_condition_cohorts:
return None
# Create all possible pairs with their product of sample sizes
pairs = []
for trait_id, trait_info_item in usable_trait_cohorts.items():
for cond_id, cond_info_item in usable_condition_cohorts.items():
trait_size = trait_info_item.get('sample_size', 0)
cond_size = cond_info_item.get('sample_size', 0)
pairs.append((trait_id, cond_id, trait_size * cond_size))
# Sort by product of sample sizes (largest first)
pairs.sort(key=lambda x: x[2], reverse=True)
# Find first pair with common gene regressors
for trait_id, cond_id, _ in pairs:
trait_data_path = os.path.join(trait_dir, f"{trait_id}.csv")
condition_data_path = os.path.join(condition_dir, f"{cond_id}.csv")
if os.path.exists(trait_data_path) and os.path.exists(condition_data_path):
# Load the data to check for common gene regressors
try:
trait_data = pd.read_csv(trait_data_path, index_col=0).astype('float')
condition_data = pd.read_csv(condition_data_path, index_col=0).astype('float')
# Check for common gene regressors
gene_regressors = get_gene_regressors(trait, condition, trait_data, condition_data, gene_info_path)
if gene_regressors:
return trait_id, cond_id
except Exception as e:
print(f"Error processing pair ({trait_id}, {cond_id}): {str(e)}")
# If there's an error, try the next pair
continue
# No valid pair found
return None
def calculate_metrics_from_confusion(tp, fp, tn, fn):
"""
Calculate precision, recall, F1, and accuracy from confusion matrix values.
Args:
tp: True positives
fp: False positives
tn: True negatives
fn: False negatives
Returns:
Dictionary of metrics
"""
precision = tp / (tp + fp) if (tp + fp) > 0 else 0.0
recall = tp / (tp + fn) if (tp + fn) > 0 else 0.0
f1 = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0.0
accuracy = (tp + tn) / (tp + tn + fp + fn) if (tp + tn + fp + fn) > 0 else 0.0
return {
'precision': precision * 100,
'recall': recall * 100,
'f1': f1 * 100,
'accuracy': accuracy * 100
}
def calculate_jaccard(set1, set2):
"""Calculate Jaccard similarity between two sets."""
intersection = len(set1.intersection(set2))
union = len(set1.union(set2))
return 0.0 if union == 0 else intersection / union
def calculate_pearson_correlation(df1, df2):
"""Calculate Pearson correlation between common features in two dataframes.
Optimized for large datasets using numpy vectorization."""
common_samples = df1.index.intersection(df2.index)
common_features = df1.columns.intersection(df2.columns)
if len(common_samples) == 0 or len(common_features) == 0:
return 0.0
# Extract only common samples and features
aligned_df1 = df1.loc[common_samples, common_features]
aligned_df2 = df2.loc[common_samples, common_features]
# Fill missing values with column means (more efficient than column-by-column)
aligned_df1 = aligned_df1.fillna(aligned_df1.mean())
aligned_df2 = aligned_df2.fillna(aligned_df2.mean())
# Handle any remaining NaNs (e.g., columns that are all NaN)
aligned_df1 = aligned_df1.fillna(0.0)
aligned_df2 = aligned_df2.fillna(0.0)
# Vectorized Pearson correlation calculation
try:
# Convert to numpy arrays for faster computation
X = aligned_df1.values
Y = aligned_df2.values
n_samples = X.shape[0]
# Center the data (subtract column means)
X_centered = X - np.mean(X, axis=0)
Y_centered = Y - np.mean(Y, axis=0)
# Calculate standard deviations for each column
X_std = np.std(X, axis=0)
Y_std = np.std(Y, axis=0)
# Create mask for valid columns (non-zero std dev in both datasets)
valid_cols = (X_std != 0) & (Y_std != 0)
if not np.any(valid_cols):
return 0.0 # No valid columns to correlate
# Calculate correlation only for valid columns
# Use the formula: corr = sum(X_centered * Y_centered) / (n * std_X * std_Y)
numerator = np.sum(X_centered[:, valid_cols] * Y_centered[:, valid_cols], axis=0)
denominator = n_samples * X_std[valid_cols] * Y_std[valid_cols]
correlations = numerator / denominator
# Handle any NaN values that might have slipped through
correlations = np.nan_to_num(correlations, nan=0.0)
# Return the mean correlation
return float(np.mean(correlations))
except Exception as e:
print(f"Error calculating Pearson correlation: {str(e)}")
return 0.0
def evaluate_csv(pred_file_path, ref_file_path, subtask="linked"):
"""
Evaluate preprocessing by comparing prediction and reference CSV files.
Args:
pred_file_path: Path to the prediction CSV file
ref_file_path: Path to the reference CSV file
subtask: The preprocessing subtask ('gene', 'clinical', 'linked')
Returns:
Dictionary of evaluation metrics
"""
# Default metrics if file doesn't exist
default_metrics = {
'attributes_jaccard': 0.0,
'samples_jaccard': 0.0,
'feature_correlation': 0.0,
'composite_similarity_correlation': 0.0
}
# Check if prediction file exists
if not os.path.isfile(pred_file_path):
return default_metrics
try:
# Read CSV files
df1 = pd.read_csv(pred_file_path, index_col=0)
df2 = pd.read_csv(ref_file_path, index_col=0)
# Reset index and column names to avoid possible errors and confusion
df1.index.name = None
df1.columns.name = None
df2.index.name = None
df2.columns.name = None
# Make sure rows represent samples and columns represent features
if subtask != "linked":
# Transpose the DataFrames
df1 = df1.T
df2 = df2.T
# Return default metrics if any dataframe is empty
if df1.empty or df2.empty:
return default_metrics
# Calculate metrics
attributes_jaccard = calculate_jaccard(set(df1.columns), set(df2.columns))
samples_jaccard = calculate_jaccard(set(df1.index), set(df2.index))
feature_correlation = calculate_pearson_correlation(df1, df2)
composite_similarity_correlation = attributes_jaccard * samples_jaccard * feature_correlation
return {
'attributes_jaccard': attributes_jaccard,
'samples_jaccard': samples_jaccard,
'feature_correlation': feature_correlation,
'composite_similarity_correlation': composite_similarity_correlation
}
except Exception as e:
print(f"Error processing {pred_file_path} and {ref_file_path}")
print(f"Error details: {str(e)}")
print(traceback.format_exc())
return default_metrics
def display_running_average(pbar, metrics_list, task_name, metrics_to_show=None, second_metrics_list=None, second_task_name=None, second_metrics_to_show=None):
"""
Display running average of metrics in the progress bar.
Args:
pbar: tqdm progress bar
metrics_list: List of metric dictionaries
task_name: Name of the task for display
metrics_to_show: List of metrics to display (if None, show all numeric metrics)
second_metrics_list: Optional second list of metrics to display (e.g., selection metrics)
second_task_name: Name for the second task
second_metrics_to_show: Metrics to show for the second task
"""
# Skip if there are no metrics
if not metrics_list:
pbar.set_description(f"{task_name}: No metrics yet")
return
# Calculate average metrics
avg_metrics = average_metrics(metrics_list)
# Determine which metrics to show
if metrics_to_show is None:
metrics_to_show = [k for k, v in avg_metrics.items() if isinstance(v, (int, float))]
# Filter out metadata keys that aren't metrics
metrics_to_show = [m for m in metrics_to_show if m not in ['trait', 'file', 'condition', 'category']]
# Create compact description for progress bar
desc_parts = []
for metric in metrics_to_show:
if metric in avg_metrics:
desc_parts.append(f"{metric[:3]}={avg_metrics[metric]:.2f}")
# Process second metrics list if provided
second_desc_parts = []
if second_metrics_list and second_task_name:
second_avg_metrics = average_metrics(second_metrics_list)
if second_metrics_to_show is None:
second_metrics_to_show = [k for k, v in second_avg_metrics.items()
if isinstance(v, (int, float))]
# Filter out metadata keys that aren't metrics
second_metrics_to_show = [m for m in second_metrics_to_show
if m not in ['trait', 'file', 'condition', 'category']]
for metric in second_metrics_to_show:
if metric in second_avg_metrics:
second_desc_parts.append(f"{metric[:3]}={second_avg_metrics[metric]:.2f}")
# Build the description with both primary and secondary metrics
description = f"{task_name}: " + " ".join(desc_parts) if desc_parts else f"{task_name}: No metrics yet"
if second_desc_parts and second_task_name:
description += f" | {second_task_name}: " + " ".join(second_desc_parts)
# Set the progress bar description
pbar.set_description(description)
def evaluate_dataset_preprocessing(pred_dir, ref_dir, subtasks=None):
"""
Evaluate preprocessing by comparing predicted and reference datasets.
Args:
pred_dir: Path to prediction directory
ref_dir: Path to reference directory
subtasks: List of subtasks to evaluate ('gene', 'clinical', 'linked')
or None to evaluate all
Returns:
Dictionary of evaluation metrics for each subtask
"""
results = {}
if subtasks is None:
subtasks = ["gene", "clinical", "linked"]
pred_preprocess_dir = os.path.join(pred_dir, "preprocess")
ref_preprocess_dir = os.path.join(ref_dir, "preprocess")
if not os.path.exists(pred_preprocess_dir):
print(f"Warning: Preprocessing prediction directory '{pred_preprocess_dir}' does not exist.")
return {subtask: {} for subtask in subtasks}
for subtask in subtasks:
metrics_list = []
processed_count = 0
# Get list of trait directories
trait_dirs = []
for t in os.listdir(ref_preprocess_dir):
ref_trait_dir = os.path.join(ref_preprocess_dir, t)
if os.path.isdir(ref_trait_dir):
trait_dirs.append(t)
# Count total files to process for better progress tracking
total_files = 0
for trait in trait_dirs:
ref_trait_dir = os.path.join(ref_preprocess_dir, trait)
# Determine the subdirectory path based on subtask
if subtask in ["gene", "clinical"]:
sub_dir = os.path.join(ref_trait_dir, f"{subtask}_data")
else: # linked
sub_dir = ref_trait_dir
if os.path.isdir(sub_dir):
csv_files = [f for f in os.listdir(sub_dir) if f.endswith(".csv")]
total_files += len(csv_files)
# Process each trait directory with progress bar
with tqdm(total=len(trait_dirs), desc=f"Evaluating {subtask} data preprocessing") as pbar:
for trait_idx, trait in enumerate(trait_dirs):
ref_trait_dir = os.path.join(ref_preprocess_dir, trait)
# Determine the subdirectory path based on subtask
if subtask in ["gene", "clinical"]:
sub_dir = os.path.join(ref_trait_dir, f"{subtask}_data")
else: # linked
sub_dir = ref_trait_dir
if not os.path.isdir(sub_dir):
pbar.update(1)
continue
# Process each CSV file
csv_files = [f for f in sorted(os.listdir(sub_dir)) if f.endswith(".csv")]
for file_idx, file in enumerate(csv_files):
ref_file_path = os.path.join(sub_dir, file)
# Get corresponding prediction file path
if subtask in ["gene", "clinical"]:
pred_file_path = os.path.join(pred_preprocess_dir, trait, f"{subtask}_data", file)
else: # linked
pred_file_path = os.path.join(pred_preprocess_dir, trait, file)
# Skip if prediction file doesn't exist
if not os.path.exists(pred_file_path):
continue
try:
# Evaluate the file pair
file_metrics = evaluate_csv(pred_file_path, ref_file_path, subtask)
# Add trait and file information
file_metrics['trait'] = trait
file_metrics['file'] = file
metrics_list.append(file_metrics)
processed_count += 1
# Update running average more frequently:
# - At first file
# - Every 5 files
# - At last file per trait
# - At last trait
if (processed_count % 5 == 0 or
processed_count == 1 or
file_idx == len(csv_files) - 1 or
trait_idx == len(trait_dirs) - 1):
# Show progress
pbar.write(f"\nProcessed {processed_count}/{total_files} files")
# Display metrics
display_running_average(
pbar,
metrics_list,
f"{subtask.capitalize()} preprocessing",
['feature_correlation', 'composite_similarity_correlation']
)
except Exception as e:
print(f"Error evaluating {trait}/{file}: {str(e)}")
pbar.update(1)
# Store both per-file metrics and averages
results[subtask] = {
'per_file': metrics_list,
'average': average_metrics(metrics_list)
}
return results
def evaluate_statistical_analysis(pred_dir, ref_dir):
"""Evaluate statistical analysis (gene selection) task."""
results = {}
pred_regress_dir = os.path.join(pred_dir, 'regress')
ref_regress_dir = os.path.join(ref_dir, 'regress')
if not os.path.exists(pred_regress_dir):
print(f"Warning: Statistical analysis prediction directory '{pred_regress_dir}' does not exist.")
return {}, {}
# Get all trait directories at once to prepare for processing
trait_dirs = [t for t in sorted(os.listdir(ref_regress_dir))
if os.path.isdir(os.path.join(ref_regress_dir, t))]
# Count and prepare all files for processing
all_files = []
for trait in trait_dirs:
ref_trait_path = os.path.join(ref_regress_dir, trait)
json_files = [f for f in sorted(os.listdir(ref_trait_path))
if f.startswith('significant_genes') and f.endswith('.json')]
for filename in json_files:
parts = filename.split('_')
condition = '_'.join(parts[3:])[:-5]
ref_file = os.path.join(ref_trait_path, filename)
pred_file = os.path.join(pred_regress_dir, trait, filename)
all_files.append((trait, condition, ref_file, pred_file))
metrics_for_display = []
with tqdm(total=len(all_files), desc="Evaluating statistical analysis") as pbar:
for i, (trait, condition, ref_file, pred_file) in enumerate(all_files):
try:
metrics = evaluate_problem_result(ref_file, pred_file)
results[(trait, condition)] = metrics
# Add trait and condition for display purposes
metrics_copy = metrics.copy()
metrics_copy['trait'] = trait
metrics_copy['condition'] = condition
metrics_for_display.append(metrics_copy)
# Update the progress bar display at regular intervals
# Display on 1st, every 5th, and last file
if i == 0 or (i + 1) % 5 == 0 or i == len(all_files) - 1:
display_running_average(
pbar,
metrics_for_display,
"Statistical analysis",
['precision', 'recall', 'f1', 'jaccard']
)
except Exception as e:
print(f"Error evaluating {pred_file}: {str(e)}")
# Update the progress
pbar.update(1)
# Categorize and aggregate the results
categorized_avg_metrics = categorize_and_aggregate(results)
return results, categorized_avg_metrics
def evaluate_problem_result(ref_file, pred_file):
"""Calculate metrics for gene selection evaluation."""
assert os.path.exists(ref_file), "Reference file does not exist"
with open(ref_file, 'r') as rfile:
ref = json.load(rfile)
ref_genes = ref["significant_genes"]["Variable"]
# If the 'pred_file' does not exist, it indicates the agent's regression code fails to run on this question
metrics = {'success': 0.0,
'precision': np.nan,
'recall': np.nan,
'f1': np.nan,
'auroc': np.nan,
'gsea_es': np.nan,
'trait_pred_accuracy': np.nan,
'trait_pred_f1': np.nan}
if os.path.exists(pred_file):
with open(pred_file, 'r') as file:
result = json.load(file)
pred_genes = result["significant_genes"]["Variable"]
metrics.update(evaluate_gene_selection(pred_genes, ref_genes))
# Optionally, record performance on trait prediction.
try:
metrics['trait_pred_accuracy'] = result["cv_performance"]["prediction"]["accuracy"]
except KeyError:
pass
try:
metrics['trait_pred_f1'] = result["cv_performance"]["prediction"]["f1"]
except KeyError:
pass
metrics['success'] = 100.0
return metrics
def categorize_and_aggregate(results):
"""Categorize and aggregate metrics by condition type."""
categorized_results = {'Unconditional one-step': [], 'Conditional one-step': [], 'Two-step': []}
for pair, metrics in results.items():
condition = pair[1]
if condition is None or condition.lower() == "none":
category = 'Unconditional one-step'
elif condition.lower() in ["age", "gender"]:
category = 'Conditional one-step'
else:
category = 'Two-step'
categorized_results[category].append(metrics)
aggregated_metrics = {}
for category, metrics_list in categorized_results.items():
aggregated_metrics[category] = average_metrics(metrics_list)
aggregated_metrics['Overall'] = average_metrics(
[metric for sublist in categorized_results.values() for metric in sublist])
return aggregated_metrics
def main(pred_dir, ref_dir, tasks=None, preprocess_subtasks=None):
"""
Main evaluation function that can evaluate different tasks.
Args:
pred_dir: Path to prediction directory
ref_dir: Path to reference directory
tasks: List of tasks to evaluate ('selection', 'preprocessing', 'analysis')
or None to evaluate all
preprocess_subtasks: List of preprocessing subtasks to evaluate
('gene', 'clinical', 'linked') or None to evaluate all
Returns:
Dictionary of evaluation results for each task
"""
if tasks is None:
tasks = ["selection", "preprocessing", "analysis"]
results = {}
# Evaluate dataset selection
if "selection" in tasks:
print("\n=== Evaluating Dataset Selection ===")
results["selection"] = evaluate_dataset_selection(pred_dir, ref_dir)
# Print selection results immediately
print("\nDataset Selection Results:")
if "filtering_metrics" in results["selection"]:
filtering_avg = results["selection"]["filtering_metrics"]["average"]
print("\nFiltering Average Metrics:")
for metric, value in filtering_avg.items():
if isinstance(value, (int, float)):
print(f" {metric}: {value:.4f}")
if "selection_metrics" in results["selection"]:
selection_avg = results["selection"]["selection_metrics"]["average"]
print("\nSelection Average Metrics:")
for metric, value in selection_avg.items():
if isinstance(value, (int, float)):
print(f" {metric}: {value:.4f}")
# Evaluate preprocessing
if "preprocessing" in tasks:
print("\n=== Evaluating Dataset Preprocessing ===")
results["preprocessing"] = evaluate_dataset_preprocessing(pred_dir, ref_dir, preprocess_subtasks)
# Print preprocessing results immediately
print("\nDataset Preprocessing Results:")
for subtask, subtask_results in results["preprocessing"].items():
if "average" in subtask_results:
avg_metrics = subtask_results["average"]
print(f"\n{subtask.capitalize()} Average Metrics:")
for metric, value in avg_metrics.items():
if isinstance(value, (int, float)):
print(f" {metric}: {value:.4f}")
else:
print(f" No results available for {subtask}")
# Evaluate statistical analysis
if "analysis" in tasks:
print("\n=== Evaluating Statistical Analysis ===")
problem_results, categorized_metrics = evaluate_statistical_analysis(pred_dir, ref_dir)
results["analysis"] = {
"problem_results": problem_results,
"categorized": categorized_metrics
}
# Print analysis results immediately
print("\nStatistical Analysis Results:")
for category, metrics in categorized_metrics.items():
print(f"\n{category} Metrics:")
for metric, value in metrics.items():
if isinstance(value, (int, float)):
print(f" {metric}: {value:.4f}")
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Evaluation script for GeneTex")
parser.add_argument("-p", "--pred-dir", type=str, default="./pred",
help="Path to the prediction directory")
parser.add_argument("-r", "--ref-dir", type=str, default="./output",
help="Path to the reference directory")
parser.add_argument("-t", "--tasks", type=str, nargs="+",
choices=["selection", "preprocessing", "analysis"], default=None,
help="Tasks to evaluate (default: all)")
parser.add_argument("-s", "--preprocess-subtasks", type=str, nargs="+",
choices=["gene", "clinical", "linked"], default=None,
help="Preprocessing subtasks to evaluate (default: all)")
args = parser.parse_args()
try:
# Run main evaluation - results are printed in the main function
results = main(args.pred_dir, args.ref_dir, args.tasks, args.preprocess_subtasks)
except Exception as e:
print(f"Error in evaluation process: {str(e)}")
print(traceback.format_exc())
|