text
stringlengths 2
104M
| meta
dict |
---|---|
# Regex > Introduction > Matching Specific String
# Match a specific string using regex.
#
# https://www.hackerrank.com/challenges/matching-specific-string/problem
# https://www.hackerrank.com/contests/regular-expresso/challenges/matching-specific-string
# challenge id: 13619
#
Regex_Pattern = r'hackerrank' # Do not delete 'r'.
# (skeliton_tail) ----------------------------------------------------------------------
import re
Test_String = input()
match = re.findall(Regex_Pattern, Test_String)
print("Number of matches :", len(match))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
### [Regex](https://www.hackerrank.com/domains/regex)
Explore the power of regular expressions
#### [Introduction](https://www.hackerrank.com/domains/regex/re-introduction)
Name | Preview | Code | Difficulty
---- | ------- | ---- | ----------
[Matching Specific String](https://www.hackerrank.com/challenges/matching-specific-string)|Match a specific string using regex.|[Python](matching-specific-string.py)|Easy
[Matching Anything But a Newline](https://www.hackerrank.com/challenges/matching-anything-but-new-line)|Use [.] in the regex expression to match anything but a newline character.|[Python](matching-anything-but-new-line.py)|Easy
[Matching Digits & Non-Digit Characters](https://www.hackerrank.com/challenges/matching-digits-non-digit-character)|Use the expression \d to match digits and \D to match non-digit characters.|[Python](matching-digits-non-digit-character.py)|Easy
[Matching Whitespace & Non-Whitespace Character](https://www.hackerrank.com/challenges/matching-whitespace-non-whitespace-character)|Use \s to match whitespace and \S to match non whitespace characters in this challenge.|[Python](matching-whitespace-non-whitespace-character.py)|Easy
[Matching Word & Non-Word Character](https://www.hackerrank.com/challenges/matching-word-non-word)|Use \w to match any word and \W to match any non-word character.|[Python](matching-word-non-word.py)|Easy
[Matching Start & End](https://www.hackerrank.com/challenges/matching-start-end)|Use the ^ symbol to match the start of a string, and the $ symbol to match the end characters.|[Python](matching-start-end.py)|Easy
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# https://www.hackerrank.com/domains/mathematics
add_subdirectory(fundamentals)
add_subdirectory(number-theory)
add_subdirectory(combinatorics)
add_subdirectory(geometry)
add_subdirectory(algebra)
add_subdirectory(probability)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
### [Mathematics](https://www.hackerrank.com/domains/mathematics)
Without mathematics, there's nothing you can do. Everything around you is mathematics. Everything around you is numbers.
#### [Fundamentals](https://www.hackerrank.com/domains/mathematics/fundamentals)
Name | Preview | Code | Difficulty
---- | ------- | ---- | ----------
[Find the Point](https://www.hackerrank.com/challenges/find-point)|Given two points P and Q, output the symmetric point of point P about Q.|[C++](fundamentals/find-point.cpp)|Easy
[Maximum Draws](https://www.hackerrank.com/challenges/maximum-draws)|Count the minimum Draws|[Python](fundamentals/maximum-draws.py)|Easy
[Handshake](https://www.hackerrank.com/challenges/handshake)|Count the number of Handshakes in a board meeting.|[Python](fundamentals/handshake.py)|Easy
[Minimum Height Triangle](https://www.hackerrank.com/challenges/lowest-triangle)|Find the smallest height of a triangle preserving the given constraints.|[Python](fundamentals/lowest-triangle.py)|Easy
[Army Game](https://www.hackerrank.com/challenges/game-with-cells)|Find the minimum number of supply packages Luke must drop to supply all of his army bases.|[Python](fundamentals/game-with-cells.py)|Easy
[Leonardo's Prime Factors](https://www.hackerrank.com/challenges/leonardo-and-prime)|Find the maximum number of prime factors for any number in the inclusive range from 1 to n.|[Python](fundamentals/leonardo-and-prime.py)|Easy
[Connecting Towns](https://www.hackerrank.com/challenges/connecting-towns)|Find the Number of ways to in which one can travel from one town to another.|[Python](fundamentals/connecting-towns.py)|Easy
[Cutting Paper Squares](https://www.hackerrank.com/challenges/p1-paper-cutting)|Determine the number of cuts needed to cut a paper into $1 \times 1$ squares.|[Python](fundamentals/p1-paper-cutting.py)|Easy
[Summing the N series ](https://www.hackerrank.com/challenges/summing-the-n-series)|Sum the N series.|[Python](fundamentals/summing-the-n-series.py)|Medium
[Sherlock and Moving Tiles](https://www.hackerrank.com/challenges/sherlock-and-moving-tiles)|Help Sherlock in identifying the overlapping area.|[Python](fundamentals/sherlock-and-moving-tiles.py)|Easy
[Best Divisor](https://www.hackerrank.com/challenges/best-divisor)|Find the best divisor of the number!|[Python](fundamentals/best-divisor.py)|Easy
[Restaurant](https://www.hackerrank.com/challenges/restaurant)|Help Martha with her interview at Subway|[Python](fundamentals/restaurant.py)|Easy
[Reverse Game](https://www.hackerrank.com/challenges/reverse-game)|Print the final position of the index.|[Python](fundamentals/reverse-game.py)|Easy
[Strange Grid Again](https://www.hackerrank.com/challenges/strange-grid)|find the integer in c-th column in r-th row of the grid.|[Python](fundamentals/strange-grid.py)|Easy
[Diwali Lights](https://www.hackerrank.com/challenges/diwali-lights)|Number of ways to light the room|[Python](fundamentals/diwali-lights.py)|Medium
[Sherlock and Divisors](https://www.hackerrank.com/challenges/sherlock-and-divisors)|Help Sherlock in Counting Divisors.|[Python](fundamentals/sherlock-and-divisors.py)|Easy
[Sherlock and Permutations](https://www.hackerrank.com/challenges/sherlock-and-permutations)|Help Sherlock in counting permutations.|[Python](fundamentals/sherlock-and-permutations.py)|Hard
[Even Odd Query](https://www.hackerrank.com/challenges/even-odd-query)|Is the number odd or even?|[C++](fundamentals/even-odd-query.cpp) [Python](fundamentals/even-odd-query.py)|Hard
[Special Multiple](https://www.hackerrank.com/challenges/special-multiple)|Can you find the least positive integer that is made of only 0s and 9s? - 30 Points|[C](fundamentals/special-multiple.c) [Python](fundamentals/special-multiple.py)|Medium
[Matrix Tracing](https://www.hackerrank.com/challenges/matrix-tracing)|How many ways can you trace a given matrix? - 30 Points|[Python](fundamentals/matrix-tracing.py)|Hard
[Die Hard 3](https://www.hackerrank.com/challenges/die-hard-3)|Help Bruce and Samuel save the city by solving their puzzle|[Python](fundamentals/die-hard-3.py)|Medium
[Halloween party](https://www.hackerrank.com/challenges/halloween-party)|Help Alex give Silvia the maximum number of chocolates|[Python](fundamentals/halloween-party.py)|Easy
[Filling Jars](https://www.hackerrank.com/challenges/filling-jars)|Perform the multiple queries on the list. And print average. - 20 Points|[Python](fundamentals/filling-jars.py)|Easy
[Is Fibo](https://www.hackerrank.com/challenges/is-fibo)|Find out if a number is a Fibonacci Number or not.|[Python](fundamentals/is-fibo.py)|Medium
[K Candy Store](https://www.hackerrank.com/challenges/k-candy-store)|In how many ways can you select K candies out of N different types of candies when each of the N candies are infinite in number?|[Python](fundamentals/k-candy-store.py)|Medium
[Sumar and the Floating Rocks](https://www.hackerrank.com/challenges/harry-potter-and-the-floating-rocks)|Count the number of integral rocks between Harry and Hermoine|[Python](fundamentals/harry-potter-and-the-floating-rocks.py)|Easy
[Russian Peasant Exponentiation](https://www.hackerrank.com/challenges/russian-peasant-exponentiation)|The only correct way to raise numbers in powers.|[Python](fundamentals/russian-peasant-exponentiation.py)|Easy
[Bus Station](https://www.hackerrank.com/challenges/bus-station)|Find all suitable bus sizes|[Python](fundamentals/bus-station.py)|Medium
[Most Distant](https://www.hackerrank.com/challenges/most-distant)|Measure the gap between the two most distant coordinates.|[Python](fundamentals/most-distant.py)|Easy
[Jim and the Jokes](https://www.hackerrank.com/challenges/jim-and-the-jokes)|Jim is running out of jokes! Help him finding new jokes.|[Python](fundamentals/jim-and-the-jokes.py)|Medium
[Possible Path](https://www.hackerrank.com/challenges/possible-path)|Help Adam in reaching at aa particular point.|[Python](fundamentals/possible-path.py)|Easy
[Mutual Recurrences](https://www.hackerrank.com/challenges/mutual-recurrences)|Compute terms in a mutual recurrence.|[C++](fundamentals/mutual-recurrences.cpp) [Python](fundamentals/mutual-recurrences.py)|Medium
#### [Number Theory](https://www.hackerrank.com/domains/mathematics/number-theory)
Name | Preview | Code | Difficulty
---- | ------- | ---- | ----------
[Constructing a Number](https://www.hackerrank.com/challenges/constructing-a-number)|Construct a number divisible by 3 from the given numbers by reordering their digits.|[Python](number-theory/constructing-a-number.py)|Easy
[Closest Number](https://www.hackerrank.com/challenges/closest-number)|What is the closest number?|[Python](number-theory/closest-number.py)|Medium
[Sherlock and GCD](https://www.hackerrank.com/challenges/sherlock-and-gcd)|Help Sherlock in finding the subset.|[Python](number-theory/sherlock-and-gcd.py)|Easy
[Primitive Problem](https://www.hackerrank.com/challenges/primitive-problem)|Find the primitive roots of a prime number.|[Python](number-theory/primitive-problem.py)|Easy
[Identify Smith Numbers](https://www.hackerrank.com/challenges/identify-smith-numbers)|Write a program to check whether a given integer is a Smith number.|[Python](number-theory/identify-smith-numbers.py)|Easy
[Euler's Criterion](https://www.hackerrank.com/challenges/eulers-criterion)|Detect whether the number is a quadratic residue.|[Python](number-theory/eulers-criterion.py)|Easy
[Twins](https://www.hackerrank.com/challenges/twins)|How many pairs of twins can you find?|[Python](number-theory/twins.py)|Medium
[Fibonacci Finding (easy)](https://www.hackerrank.com/challenges/fibonacci-finding-easy)|Find some Fibonacci numbers!|[Python](number-theory/fibonacci-finding-easy.py)|Easy
[Little Panda Power](https://www.hackerrank.com/challenges/littlepandapower)|Compute A^B mod X|[Python](number-theory/littlepandapower.py)|Hard
[Mehta and his Laziness](https://www.hackerrank.com/challenges/mehta-and-his-laziness)|How will Mehta do these calculations?|[Python](number-theory/mehta-and-his-laziness.py)|Hard
[Minimal Distance to Pi](https://www.hackerrank.com/challenges/minimal-distance-to-pi)|Given a range of denominators, find the common fraction that best approximates Pi.|[Python](number-theory/minimal-distance-to-pi.py)|Hard
[Help Mike](https://www.hackerrank.com/challenges/help-mike)|Help Mike attend the NSA meeting|[Python](number-theory/help-mike.py)|Hard
[Dancing in Pairs](https://www.hackerrank.com/challenges/dance-class)|Find out if they can dance in pairs?|[Python](number-theory/dance-class.py)|Hard
[The Chosen One](https://www.hackerrank.com/challenges/the-chosen-one)|Given a list of integers, find and print an integer that is a divisor of all but one integer in the list.|[Python](number-theory/the-chosen-one.py)|Medium
[Power of large numbers](https://www.hackerrank.com/challenges/power-of-large-numbers)|How much does Hackerland coach pay to get Cristiano Ronaldo to play for his team?|[Python](number-theory/power-of-large-numbers.py)|Medium
[Salary Blues](https://www.hackerrank.com/challenges/salary-blues)|Help manager of HackerX company to normalize salaries.|[Python](number-theory/salary-blues.py)|Medium
[Akhil and GF](https://www.hackerrank.com/challenges/akhil-and-gf)|Help Akhil in impressing his girlfriend|[Python](number-theory/akhil-and-gf.py)|Hard
[Little Ashish's Huge Donation](https://www.hackerrank.com/challenges/little-chammys-huge-donation)|Help Ashish calculate donations.|[C++](number-theory/little-chammys-huge-donation.cpp)|Hard
[Manasa and Factorials](https://www.hackerrank.com/challenges/manasa-and-factorials)|Think about number of zeros in k!|[Python](number-theory/manasa-and-factorials.py)|Hard
[Number of zero-xor subsets](https://www.hackerrank.com/challenges/number-of-subsets)|How many subsets with zero xor are here?|[Python](number-theory/number-of-subsets.py)|Medium
[Breaking Sticks](https://www.hackerrank.com/challenges/breaking-sticks)|Find the length of the longest sequence of moves.|[C++](number-theory/breaking-sticks.cpp)|Medium
[Cheese and Random Toppings](https://www.hackerrank.com/challenges/cheese-and-random-toppings)|How many ways are there to choose exactly R toppings from N toppings?|[Python](number-theory/cheese-and-random-toppings.py)|Easy
[Easy GCD](https://www.hackerrank.com/challenges/easy-gcd-1)|Find the maximum number less than K such that GCD of all numbers is still more than one!|[Python](number-theory/easy-gcd-1.py)|Medium
[Satisfactory Pairs](https://www.hackerrank.com/challenges/pairs-again)|How many pairs of integers give a solution?|[C++](number-theory/pairs-again.cpp)|Hard
[Manasa loves Maths](https://www.hackerrank.com/challenges/manasa-loves-maths)|Find out if any permutation of the given number is divisible by 8.|[Python](number-theory/manasa-loves-maths.py)|Medium
[Largest Non-Coprime Submatrix](https://www.hackerrank.com/challenges/largest-coprime-submatrix)|Given a matrix find the largest coprime submatrix.|[C++](number-theory/largest-coprime-submatrix.cpp)|Hard
[John and GCD list](https://www.hackerrank.com/challenges/john-and-gcd-list)|Help John in making a list from GCD list|[Python](number-theory/john-and-gcd-list.py)|Easy
[Divisor Exploration II](https://www.hackerrank.com/challenges/divisor-exploration-2)|Find the product of a sequence and then calculate the summation of its divisors.|[Python](number-theory/divisor-exploration-2.py)|Hard
[Strange numbers](https://www.hackerrank.com/challenges/strange-numbers)|How many strange numbers belong to interval [L, R]?|[Python](number-theory/strange-numbers.py)|Hard
[Easy math](https://www.hackerrank.com/challenges/easy-math)|Help Johnny in figuring out the value of Y|[Python](number-theory/easy-math.py)|Medium
[Equations](https://www.hackerrank.com/challenges/equations)|Find the number of positive integral solutions for an equation.|[Python](number-theory/equations.py)|Medium
[Binomial Coefficients](https://www.hackerrank.com/challenges/binomial-coefficients)|Calculate how many binomial coefficients of n become 0 after modulo by P.|[Python](number-theory/binomial-coefficients.py)|Medium
[Lucy and Flowers](https://www.hackerrank.com/challenges/lucy-and-flowers)|Help Lucy's father with a computation involving flowers|[C++](number-theory/lucy-and-flowers.cpp)|Medium
[Divisor Exploration 3](https://www.hackerrank.com/challenges/divisor-exploration-3)|Find the value given at the root of a tree constructing by the given rules.|[C++](number-theory/divisor-exploration-3.cpp) [Python](number-theory/divisor-exploration-3.py)|Hard
[Superpowers of 2](https://www.hackerrank.com/challenges/superpowers)|Just another numbers problem...|[Python](number-theory/superpowers.py)|Advanced
[Sherlock Puzzle](https://www.hackerrank.com/challenges/sherlock-puzzle)|Help Sherlock get close to his Arch Nemesis, Jim Moriarty.|[Python](number-theory/sherlock-puzzle.py)|Hard
[Divisibility of Power](https://www.hackerrank.com/challenges/divisibility-of-power)|Divisibility Test.|[Python](number-theory/divisibility-of-power.py)|Medium
[Devu Vs Police](https://www.hackerrank.com/challenges/devu-police)|Help Devu escape from police|[Python](number-theory/devu-police.py)|Hard
[Long Permutation](https://www.hackerrank.com/challenges/long-permutation)|Determine the n^th element of an infinite permutation!|[Python](number-theory/long-permutation.py)|Hard
[Megaprime Numbers](https://www.hackerrank.com/challenges/megaprime-numbers)|Count the number of primes in a given range that consist only of prime digits.|[Python](number-theory/megaprime-numbers.py)|Medium
[Divisor Exploration](https://www.hackerrank.com/challenges/divisor-exploration)|Find and print the number of divisors for each dataset.|[Python](number-theory/divisor-exploration.py)|Hard
[Prime Sum](https://www.hackerrank.com/challenges/prime-sum)|Represent a number as sum of primes.|[Python](number-theory/prime-sum.py)|Medium
[nCr](https://www.hackerrank.com/challenges/ncr)|Given n and r, in how many ways can r items be chosen from n items?|[Python](number-theory/ncr.py)|Expert
[Fibonacci GCD](https://www.hackerrank.com/challenges/fibonacci-gcd)|Find gcd for n fibonacci numbers.|[Python](number-theory/fibonacci-gcd.py)|Hard
#### [Combinatorics](https://www.hackerrank.com/domains/mathematics/combinatorics)
Name | Preview | Code | Difficulty
---- | ------- | ---- | ----------
[nCr table](https://www.hackerrank.com/challenges/ncr-table)|Help Jim calculating nCr values|[C++](combinatorics/ncr-table.cpp) [Python](combinatorics/ncr-table.py)|Medium
[Coinage](https://www.hackerrank.com/challenges/coinage)|Find the number of ways to pay a given amount, given a set of coins with prescribed denominations.|[Python](combinatorics/coinage.py)|Medium
[Building a List](https://www.hackerrank.com/challenges/building-a-list)|Generate all possible combinations of a string|[Python](combinatorics/building-a-list.py)|Medium
[Merge List](https://www.hackerrank.com/challenges/merge-list)|Help Shashank in merging two list.|[Python](combinatorics/merge-list.py)|Medium
[A Chocolate Fiesta](https://www.hackerrank.com/challenges/a-chocolate-fiesta)|Find the number of even subsets in the given set of numbers.|[Python](combinatorics/a-chocolate-fiesta.py)|Easy
[Sherlock and Pairs](https://www.hackerrank.com/challenges/sherlock-and-pairs)|Count the number of pairs that satisfy a given constraint.|[Python](combinatorics/sherlock-and-pairs.py)|Medium
[Picking Cards](https://www.hackerrank.com/challenges/picking-cards)|How many ways can you pick up all the cards from a table?|[Python](combinatorics/picking-cards.py)|Easy
#### [Algebra](https://www.hackerrank.com/domains/mathematics/algebra)
Name | Preview | Code | Difficulty
---- | ------- | ---- | ----------
[Combo Meal](https://www.hackerrank.com/challenges/combo-meal)|Find the profit that a fast-food chain earns at each purchase.|[Python](algebra/combo-meal.py)|Easy
[Stepping Stones Game](https://www.hackerrank.com/challenges/stepping-stones-game)|Can you tell Bob, if he should play Stepping Stones or not ?|[Python](algebra/stepping-stones-game.py)|Medium
[Shashank and List](https://www.hackerrank.com/challenges/shashank-and-list)|Help Shashank in Huge calculations.|[Python](algebra/shashank-and-list.py)|Medium
[Triangle Numbers](https://www.hackerrank.com/challenges/triangle-numbers)|Given a triangle numbers where each number is equal to the sum of the three top numbers, find the first even number in a row.|[Python](algebra/triangle-numbers.py)|Medium
[Little Gaurav and Sequence](https://www.hackerrank.com/challenges/little-gaurav-and-sequence)|Help Gaurav in calculating last digit of a sequence.|[Python](algebra/little-gaurav-and-sequence.py)|Medium
[Easy sum](https://www.hackerrank.com/challenges/easy-sum)|Find the mod sum|[Python](algebra/easy-sum.py)|Hard
[Difference and Product](https://www.hackerrank.com/challenges/difference-and-product)|Answer a question about Difference and Product|[Python](algebra/difference-and-product.py)|Easy
[Pythagorean Triple](https://www.hackerrank.com/challenges/pythagorean-triple)|Find the Pythagorean triple for the given side a.|[Python](algebra/pythagorean-triple.py)|Easy
[Number Groups](https://www.hackerrank.com/challenges/number-groups)|Find the sum of consecutive odd number groups.|[Python](algebra/number-groups.py)|Easy
[Tell the Average](https://www.hackerrank.com/challenges/tell-the-average)|Tell me average of all list value.|[Python](algebra/tell-the-average.py)|Medium
[Wet Shark and 42](https://www.hackerrank.com/challenges/wet-shark-and-42)|Help Wet Shark escape the gods of 42.|[Python](algebra/wet-shark-and-42.py)|Easy
[Sherlock and Square](https://www.hackerrank.com/challenges/sherlock-and-square)|Help Sherlock in finding the total side lengths of squares.|[Python](algebra/sherlock-and-square.py)|Hard
[Manasa and Sub-sequences ](https://www.hackerrank.com/challenges/manasa-and-sub-sequences)|Help Manasa in getting candies|[Python](algebra/manasa-and-sub-sequences.py)|Medium
[Simple One](https://www.hackerrank.com/challenges/simple-one)|Calculate the tan function of a given equation.|[Python](algebra/simple-one.py)|Easy
#### [Geometry](https://www.hackerrank.com/domains/mathematics/geometry)
Name | Preview | Code | Difficulty
---- | ------- | ---- | ----------
[Points On a Line](https://www.hackerrank.com/challenges/points-on-a-line)|Given a set of coordinates, determine if they fall in an horizontal or vertical line.|[Python](geometry/points-on-a-line.py)|Easy
[Rectangular Game](https://www.hackerrank.com/challenges/rectangular-game)|What's the largest number in the rectangular grid?|[Python](geometry/rectangular-game.py)|Easy
[Sherlock and Counting](https://www.hackerrank.com/challenges/sherlock-and-counting)|Help Sherlock count numbers satisfying an inequality.|[Python](geometry/sherlock-and-counting.py)|Easy
[Sherlock and Planes](https://www.hackerrank.com/challenges/sherlock-and-planes)|Help Sherlock with points on planes.|[Python](geometry/sherlock-and-planes.py)|Easy
[Circle City](https://www.hackerrank.com/challenges/circle-city)|Determine whether Roy's city can be saved or not.|[Python](geometry/circle-city.py)|Medium
[Xrange's Pancakes](https://www.hackerrank.com/challenges/xrange-and-pizza)|Determine who needs to be added to the end of the line to restore the pancake to its initial orientation.|[Python](geometry/xrange-and-pizza.py)|Easy
[Baby Step, Giant Step](https://www.hackerrank.com/challenges/baby-step-giant-step)|Find the minimum number of steps needed to get to point $(d, 0)$.|[Python](geometry/baby-step-giant-step.py)|Medium
[Points on a Rectangle](https://www.hackerrank.com/challenges/points-on-rectangle)|Determine if a set of points coincides with the edges of a non-degenerate rectangle.|[Python](geometry/points-on-rectangle.py)|Easy
[A Circle and a Square](https://www.hackerrank.com/challenges/a-circle-and-a-square)|Draw a circle and a square at specific coordinates within a raster image.|[C++](geometry/a-circle-and-a-square.cpp)|Medium
#### [Probability](https://www.hackerrank.com/domains/mathematics/probability)
Name | Preview | Code | Difficulty
---- | ------- | ---- | ----------
[Random number generator](https://www.hackerrank.com/challenges/random-number-generator)|what's the probability that x + y is less than C?|[Python](probability/random-number-generator.py)|Easy
[Sherlock and Probability](https://www.hackerrank.com/challenges/sherlock-and-probability)|Help Sherlock in finding the probability.|[Python](probability/sherlock-and-probability.py)|Hard
[Day 4: Normal Distribution #1](https://www.hackerrank.com/challenges/normal-distribution-1)|Problems based on basic statistical distributions.|[Python](probability/normal-distribution-1.py)|Medium
[Day 4: Normal Distribution #2](https://www.hackerrank.com/challenges/normal-distribution-2)|Problems based on basic statistical distributions.|[Python](probability/normal-distribution-2.py)|Medium
[Normal Distribution #3](https://www.hackerrank.com/challenges/normal-distribution-3)|Problems based on basic statistical distributions.|[Python](probability/normal-distribution-3.py)|Hard
[B'day Gift](https://www.hackerrank.com/challenges/bday-gift)|Whats the price Isaac has to pay for HackerPhone|[Python](probability/bday-gift.py)|Easy
[Extremely Dangerous Virus](https://www.hackerrank.com/challenges/extremely-dangerous-virus)|Estimate how large the virus will grow.|[Python](probability/extremely-dangerous-virus.py)|Medium
[Binomial Distribution #1](https://www.hackerrank.com/challenges/binomial-distribution-1)|Problems based on basic statistical distributions.|[Python](probability/binomial-distribution-1.py)|Medium
[Binomial Distribution #2](https://www.hackerrank.com/challenges/binomial-distribution-2)|Problems based on basic statistical distributions.|[Python](probability/binomial-distribution-2.py)|Hard
[Binomial Distribution #3](https://www.hackerrank.com/challenges/binomial-distribution-3)|Problems based on basic statistical distributions.|[Python](probability/binomial-distribution-3.py)|Hard
#### [Linear Algebra Foundations](https://www.hackerrank.com/domains/mathematics/linear-algebra-foundations)
Name | Preview | Code | Difficulty
---- | ------- | ---- | ----------
[Linear Algebra Foundations #1 - Matrix Addition](https://www.hackerrank.com/challenges/linear-algebra-foundations-1)|The basics of linear algebra and matrices as required in Machine Learning.|[text](linear-algebra-foundations/linear-algebra-foundations-1.txt)|Easy
[Linear Algebra Foundations #2 - Matrix Subtraction](https://www.hackerrank.com/challenges/linear-algebra-foundations-1-matrix-subtraction)|The basics of linear algebra and matrices as required in Machine Learning.|[text](linear-algebra-foundations/linear-algebra-foundations-1-matrix-subtraction.txt)|Easy
[Linear Algebra Foundations #3- Matrix Multiplication](https://www.hackerrank.com/challenges/linear-algebra-foundations-3-matrix-multiplication)|Matrix Multiplication of 2x2 Matrices|[Python](linear-algebra-foundations/linear-algebra-foundations-3-matrix-multiplication.py) [text](linear-algebra-foundations/linear-algebra-foundations-3-matrix-multiplication.txt)|Easy
[Linear Algebra Foundations #4- Matrix Multiplication](https://www.hackerrank.com/challenges/linear-algebra-foundations-4-matrix-multiplication)|Matrix Multiplication of 2x2 Matrices|[Python](linear-algebra-foundations/linear-algebra-foundations-4-matrix-multiplication.py)|Easy
[Linear Algebra Foundations #5 - The 100th Power of a Matrix](https://www.hackerrank.com/challenges/linear-algebra-foundations-5-the-100th-power-of-a-matrix)|Compute the 100<sup>the</sup> power of a given matrix.|[Python](linear-algebra-foundations/linear-algebra-foundations-5-the-100th-power-of-a-matrix.py)|Medium
[Linear Algebra Foundations #6 - An Equation involving Matrices](https://www.hackerrank.com/challenges/linear-algebra-foundations-6-the-nsupthsup-power-of-a-matrix)|Solve an equation involving matrices.|[text](linear-algebra-foundations/linear-algebra-foundations-6-the-nsupthsup-power-of-a-matrix.txt)|Medium
[Linear Algebra Foundations #7 - The 1000th Power of a Matrix](https://www.hackerrank.com/challenges/linear-algebra-foundations-7-the-1000th-power-of-a-matrix)|Compute the 1000th power of the given matrix.|[Python](linear-algebra-foundations/linear-algebra-foundations-7-the-1000th-power-of-a-matrix.py) [text](linear-algebra-foundations/linear-algebra-foundations-7-the-1000th-power-of-a-matrix.txt)|Hard
[Linear Algebra Foundations #8 - Systems of Equations](https://www.hackerrank.com/challenges/linear-algebra-fundamentals-8-systems-of-equations)|A system of equations with no solutions.|[Python](linear-algebra-foundations/linear-algebra-fundamentals-8-systems-of-equations.py)|Hard
[Linear Algebra Foundations #9 - Eigenvalues](https://www.hackerrank.com/challenges/linear-algebra-fundamentals-9-eigenvalues)|Compute the Eigenvalues of the following 2x2 matrix.|[text](linear-algebra-foundations/linear-algebra-fundamentals-9-eigenvalues.txt)|Hard
[Linear Algebra Foundations #10 - Eigenvectors](https://www.hackerrank.com/challenges/linear-algebra-fundamentals-10-eigenvectors)|Compute the EigenVectors of the following 2x2 matrix.|[Python](linear-algebra-foundations/linear-algebra-fundamentals-10-eigenvectors.py)|Medium
[Determinant of the matrix #1](https://www.hackerrank.com/challenges/determinant-of-the-matrix-1)|Basic problems related to determinants.|[Python](linear-algebra-foundations/determinant-of-the-matrix-1.py)|Medium
[Determinant of the matrix #2](https://www.hackerrank.com/challenges/determinant-of-the-matrix-2)|Basic problems related to determinants.|[text](linear-algebra-foundations/determinant-of-the-matrix-2.txt)|Hard
[Determinant of the matrix #3](https://www.hackerrank.com/challenges/determinant-of-the-matrix-3)|Basic problems related to determinants.|[text](linear-algebra-foundations/determinant-of-the-matrix-3.txt)|Medium
[Eigenvalue of a Matrix I](https://www.hackerrank.com/challenges/eigenvalue-of-matrix-1)|Basic problems related to eigenvalues.|[Python](linear-algebra-foundations/eigenvalue-of-matrix-1.py)|Hard
[Eigenvalue of matrix #2](https://www.hackerrank.com/challenges/eigenvalue-of-matrix-2)|Basic problems related to eigenvalues.|[Python](linear-algebra-foundations/eigenvalue-of-matrix-2.py)|Hard
[Eigenvalue of matrix #3](https://www.hackerrank.com/challenges/eigenvalues-of-matrix-3)|Basic problems related to eigenvalues.|[Python](linear-algebra-foundations/eigenvalues-of-matrix-3.py)|Hard
[Eigenvalue of matrix #4](https://www.hackerrank.com/challenges/eigenvalues-of-matrix-4)|Basic problems related to eigenvalues.|[Python](linear-algebra-foundations/eigenvalues-of-matrix-4.py)|Hard
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
// Mathematics > Geometry > A Circle and a Square
// Draw a circle and a square at specific coordinates within a raster image.
//
// https://www.hackerrank.com/challenges/a-circle-and-a-square/problem
// https://www.hackerrank.com/contests/w29/challenges/a-circle-and-a-square
// challenge id: 30440
//
#include <bits/stdc++.h>
using namespace std;
struct point
{
int x;
int y;
};
int sign(const point& p1, const point& p2, const point& p3)
{
return (p1.x - p3.x) * (p2.y - p3.y) - (p2.x - p3.x) * (p1.y - p3.y);
}
bool pntriangle(const point& pt, const point& v1, const point& v2, const point& v3)
{
bool b1, b2, b3;
b1 = sign(pt, v1, v2) < 0;
b2 = sign(pt, v2, v3) < 0;
b3 = sign(pt, v3, v1) < 0;
return ((b1 == b2) && (b2 == b3));
}
bool pisquare(const int x[4], const int y[4], int testx, int testy)
{
point pt { testx, testy};
point v1 { x[0], y[0] },
v2 { x[1], y[1] },
v3 { x[2], y[2] },
v4 { x[3], y[3] };
return pntriangle(pt, v1, v2, v3) || pntriangle(pt, v1, v3, v4);
}
int main()
{
int w, h;
int xc, yc, r;
int xs[4], ys[4];
int x, y;
cin >> w >> h;
cin >> xc >> yc >> r;
cin >> xs[0] >> ys[0] >> xs[2] >> ys[2];
// l'astuce consiste à doubler les coordonnées du carré pour gérer les cas où
// les deux autres sommets ont des coordonnées en 0.5
xs[0] *= 2;
ys[0] *= 2;
xs[2] *= 2;
ys[2] *= 2;
// calcul des deux autres sommets du carré
x = (xs[0] + xs[2]) / 2;
y = (ys[0] + ys[2]) / 2;
xs[1] = x + (y - ys[0]);
ys[1] = y - (x - xs[0]);
xs[3] = x - (y - ys[0]);
ys[3] = y + (x - xs[0]);
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
char c = '.';
// est-ce que (x, y) est dans le cercle ?
if ((x - xc) * (x - xc) + (y - yc) * (y - yc) <= r * r)
{
c = '#';
}
// est-ce que le point est dans le carré ?
else if (pisquare(xs, ys, x * 2, y * 2))
{
c = '#';
}
cout << c;
}
cout << endl;
}
return 0;
}
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Geometry > Xrange's Pancakes
# Determine who needs to be added to the end of the line to restore the pancake to its initial orientation.
#
# https://www.hackerrank.com/challenges/xrange-and-pizza/problem
# https://www.hackerrank.com/contests/infinitum16/challenges/xrange-and-pizza
# challenge id: 12799
#
n, m = map(int, input().split())
a = 0 # position du pancake
flip = False # est-ce qu'on l'a retourné?
for _ in range(m):
op, k = map(int, input().split())
if op == 1:
a = (a + k) % n # rotation de k
else:
a = (n - a + k) % n # flip et rotation de k
flip = not flip
if flip:
print(2, a)
else:
print(1, (n - a) % n)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Geometry > Baby Step, Giant Step
# Find the minimum number of steps needed to get to point $(d, 0)$.
#
# https://www.hackerrank.com/challenges/baby-step-giant-step/problem
#
for _ in range(int(input())):
a, b, d = map(int, input().split())
if d == 0:
# rien à faire
print(0)
elif d == a or d == b:
# en un coup, on y est
print(1)
elif d < b:
# un triangle isocèle
print(2)
else:
if d % b == 0:
# on se déplace uniquement sur (x)
print(d // b)
else:
# on se déplace sur (x) et un triangle isocèle
print(d // b + 1)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Geometry > Sherlock and Planes
# Help Sherlock with points on planes.
#
# https://www.hackerrank.com/challenges/sherlock-and-planes/problem
# https://www.hackerrank.com/contests/infinitum-may14/challenges/sherlock-and-planes
#
# je n'ai pas tout à faire le droit à numpy mais je me l'octroie !!!
import sys
sys.path += ['/var/ml/python3/lib/python3.5/site-packages']
import numpy
for _ in range(int(input())):
# lit les quatre points A,B,C,D
A = numpy.array(input().split(), numpy.int)
B = numpy.array(input().split(), numpy.int)
C = numpy.array(input().split(), numpy.int)
D = numpy.array(input().split(), numpy.int)
v = numpy.cross(B - A, C - A)
w = numpy.dot(D - A, v)
if w == 0: print("YES")
else: print("NO")
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Geometry > Sherlock and Counting
# Help Sherlock count numbers satisfying an inequality.
#
# https://www.hackerrank.com/challenges/sherlock-and-counting/problem
#
from math import sqrt, floor, ceil
for _ in range(int(input())):
n, k = map(int, input().split())
# résoud x*(n-x)=n*k
# les solutions seront les entiers entre [0, n]
# qui ne sont pas dans la parabole (sommet vers le haut), i.e dans [r1, r2]
# __
# r1 / \ r2
# +__________/____\________+___
# 0 / \ n
# / \
D = n * n - 4 * k * n
if D <= 0:
print(n - 1)
else:
r1 = (n - sqrt(D)) / 2
r2 = (n + sqrt(D)) / 2
print(floor(r1) + (n - ceil(r2)))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# https://www.hackerrank.com/domains/mathematics/geometry
add_hackerrank_py(points-on-a-line.py)
add_hackerrank_py(baby-step-giant-step.py)
add_hackerrank_py(rectangular-game.py)
add_hackerrank_py(sherlock-and-counting.py)
add_hackerrank_py(points-on-rectangle.py)
add_hackerrank_py(sherlock-and-planes.py)
add_hackerrank_py(circle-city.py)
add_hackerrank_py(xrange-and-pizza.py)
add_hackerrank(a-circle-and-a-square a-circle-and-a-square.cpp)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Geometry > Points On a Line
# Given a set of coordinates, determine if they fall in an horizontal or vertical line.
#
# https://www.hackerrank.com/challenges/points-on-a-line/problem
#
x0, y0 = 0, 0
same_x, same_y = True, True
n = int(input())
for i in range(n):
x, y = map(int, input().split())
if i == 0:
x0, y0 = x, y
else:
same_x = same_x and x == x0
same_y = same_y and y == y0
print("YES" if same_x or same_y else "NO")
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Geometry > Rectangular Game
# What's the largest number in the rectangular grid?
#
# https://www.hackerrank.com/challenges/rectangular-game/problem
#
# sans forcer, la réponse est clairement min(x) * min(y)
n = int(input())
mx, my = map(int, input().split())
for _ in range(n - 1):
x, y = map(int, input().split())
mx = min(x, mx)
my = min(y, my)
print(mx * my)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Geometry > Circle City
# Determine whether Roy's city can be saved or not.
#
# https://www.hackerrank.com/challenges/circle-city/problem
# https://www.hackerrank.com/contests/101aug14/challenges/circle-city
#
# https://fr.wikipedia.org/wiki/Théorème_des_deux_carrés_de_Fermat#Le_cas_général
# le nombre de décompositions d'un entier n en somme de deux carrés est égal
# à 4*(d1 - d3) où d1 (resp. d3) = nombre de diviseurs congrus à 1 mod 4 (resp. 3)
import sys
def diviseurs(n):
div = [1]
i = 2
while i * i <= n:
q, r = divmod(n, i)
if r == 0:
div.append(i)
if i != q:
div.append(q)
i += 1
if n != 1:
div.append(n)
return div
for _ in range(int(input())):
rr, k = map(int, input().split())
d = diviseurs(rr)
d1 = sum(1 for i in d if i % 4 == 1)
d3 = sum(1 for i in d if i % 4 == 3)
r2 = 4 * (d1 - d3)
print("n={} div={} d1={} d3={} r2={}".format(rr, d, d1, d3, r2), file=sys.stderr)
if k >= r2:
print("possible")
else:
print("impossible")
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Geometry > Points on a Rectangle
# Determine if a set of points coincides with the edges of a non-degenerate rectangle.
#
# https://www.hackerrank.com/challenges/points-on-rectangle/problem
# https://www.hackerrank.com/contests/101hack42/challenges/points-on-rectangle
#
# le rectangle a ses côtés parralèles aux axes, ça simplifie grandement les choses !
# ces côtés sont définis par les valeurs min et max de x,y
# le rectangle a ses côtés parralèles aux axes, ça simplifie grandement les choses !
# ces côtés sont définis par les valeurs min et max de x,y
for _ in range(int(input())):
n = int(input())
x, y = [0] * n, [0] * n
for i in range(n):
x[i], y[i] = map(int, input().split())
x0, y0 = min(x), min(y)
x1, y1 = max(x), max(y)
# il faut que tous les points soient sur x0, y0, x1 ou y1
ok = all((x[i] == x0) or (y[i] == y0) or (x[i] == x1) or (y[i] == y1)
for i in range(n))
print(["NO", "YES"][ok])
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
### [Mathematics](https://www.hackerrank.com/domains/mathematics)
Without mathematics, there's nothing you can do. Everything around you is mathematics. Everything around you is numbers.
#### [Geometry](https://www.hackerrank.com/domains/mathematics/geometry)
Name | Preview | Code | Difficulty
---- | ------- | ---- | ----------
[Points On a Line](https://www.hackerrank.com/challenges/points-on-a-line)|Given a set of coordinates, determine if they fall in an horizontal or vertical line.|[Python](points-on-a-line.py)|Easy
[Rectangular Game](https://www.hackerrank.com/challenges/rectangular-game)|What's the largest number in the rectangular grid?|[Python](rectangular-game.py)|Easy
[Sherlock and Counting](https://www.hackerrank.com/challenges/sherlock-and-counting)|Help Sherlock count numbers satisfying an inequality.|[Python](sherlock-and-counting.py)|Easy
[Sherlock and Planes](https://www.hackerrank.com/challenges/sherlock-and-planes)|Help Sherlock with points on planes.|[Python](sherlock-and-planes.py)|Easy
[Circle City](https://www.hackerrank.com/challenges/circle-city)|Determine whether Roy's city can be saved or not.|[Python](circle-city.py)|Medium
[Xrange's Pancakes](https://www.hackerrank.com/challenges/xrange-and-pizza)|Determine who needs to be added to the end of the line to restore the pancake to its initial orientation.|[Python](xrange-and-pizza.py)|Easy
[Baby Step, Giant Step](https://www.hackerrank.com/challenges/baby-step-giant-step)|Find the minimum number of steps needed to get to point $(d, 0)$.|[Python](baby-step-giant-step.py)|Medium
[Points on a Rectangle](https://www.hackerrank.com/challenges/points-on-rectangle)|Determine if a set of points coincides with the edges of a non-degenerate rectangle.|[Python](points-on-rectangle.py)|Easy
[A Circle and a Square](https://www.hackerrank.com/challenges/a-circle-and-a-square)|Draw a circle and a square at specific coordinates within a raster image.|[C++](a-circle-and-a-square.cpp)|Medium
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Eigenvalue of matrix #4
# Basic problems related to eigenvalues.
#
# https://www.hackerrank.com/challenges/eigenvalues-of-matrix-4/problem
#
import numpy as np
A = np.matrix([[ 2, -1],
[-1, 2]])
I = np.identity(np.linalg.matrix_rank(A))
print(np.linalg.eigvals(np.linalg.inv(A)))
print(np.linalg.eigvals(A - 4 * I))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Linear Algebra Foundations #4- Matrix Multiplication
# Matrix Multiplication of 2x2 Matrices
#
# https://www.hackerrank.com/challenges/linear-algebra-foundations-4-matrix-multiplication/problem
#
import numpy as np
a = np.matrix([[1,2,3], [2,3,4], [1,1,1]])
b = np.matrix([[4,5,6], [7,8,9], [4,5,7]])
print(a * b)
"""
réponse:
30
36
45
45
54
67
15
18
22
""" | {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Eigenvalue of matrix #3
# Basic problems related to eigenvalues.
#
# https://www.hackerrank.com/challenges/eigenvalues-of-matrix-3/problem
#
import numpy as np
a = np.matrix([[2, -1], [-1, 2]])
print(np.linalg.eigvalsh(a))
print(np.linalg.eigvalsh(a * a))
"""
réponse:
1
3
1
9
""" | {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Linear Algebra Foundations #1 - Matrix Addition
# The basics of linear algebra and matrices as required in Machine Learning.
#
# https://www.hackerrank.com/challenges/linear-algebra-foundations-1/problem
#
5
7
9
9
11
13
5
6
8
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Linear Algebra Foundations #6 - An Equation involving Matrices
# Solve an equation involving matrices.
#
# https://www.hackerrank.com/challenges/linear-algebra-foundations-6-the-nsupthsup-power-of-a-matrix/problem
#
réponse:
-2
1
# A^2 = [[ 1 2 0]
# [ 0 1 0]
# [ 0 0 1]]
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Eigenvalue of a Matrix I
# Basic problems related to eigenvalues.
#
# https://www.hackerrank.com/challenges/eigenvalue-of-matrix-1/problem
#
import numpy as np
M = np.matrix([[1, -3, 3],
[3, -5, 3],
[6, -6, 4]])
print(np.linalg.eigvals(M))
I = np.identity(np.linalg.matrix_rank(M))
for λ in np.linalg.eigvals(M):
print(np.linalg.det(M - λ * I)) | {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Determinant of the matrix #1
# Basic problems related to determinants.
#
# https://www.hackerrank.com/challenges/determinant-of-the-matrix-1/problem
#
import numpy as np
M = np.matrix([[ 3, 0, 0, -2, 4],
[ 0, 2, 0, 0, 0],
[ 0, -1, 0, 5, -3],
[ -4, 0, 1, 0, 6],
[ 0, -1, 0, 3, 2]])
M = np.matrix([[ a, b, c],
[ d, e, f],
[ g, h, h]])
print(round(np.linalg.det(M)))
# réponse: -114
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Determinant of the matrix #2
# Basic problems related to determinants.
#
# https://www.hackerrank.com/challenges/determinant-of-the-matrix-2/problem
#
# det(A) = 5
# det(2A) = 5 * 2^dim(A) = 5 * 2^3 = 40
# det(transpose(A)) = det(A) = 5
# réponse:
5
40
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Linear Algebra Foundations #7 - The 1000th Power of a Matrix
# Compute the 1000th power of the given matrix.
#
# https://www.hackerrank.com/challenges/linear-algebra-foundations-7-the-1000th-power-of-a-matrix/problem
#
SOLUTION "EASY": avec numpy
In [1]: import numpy as np
In [2]: A = np.matrix([[-2, -9], [1, 4]])
In [3]: A ** 1000
Out[3]:
matrix([[-2999, -9000],
[ 1000, 3001]])
Réponse:
-2999
-9000
1000
3001 | {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Linear Algebra Foundations #3- Matrix Multiplication
# Matrix Multiplication of 2x2 Matrices
#
# https://www.hackerrank.com/challenges/linear-algebra-foundations-3-matrix-multiplication/problem
#
import numpy as np
a = np.matrix([[1, 2], [2, 3]])
b = np.matrix([[4, 5], [7, 8]])
p = a * b
print(p)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Linear Algebra Foundations #9 - Eigenvalues
# Compute the Eigenvalues of the following 2x2 matrix.
#
# https://www.hackerrank.com/challenges/linear-algebra-fundamentals-9-eigenvalues/problem
#
# http://mathworld.wolfram.com/Eigenvalue.html
Définition générale
det(A-λI) = 0
Solution générale pour dim=2
λ = 1/2 [ (a11 + a22] ± sqrt(4 * a12 * a21 + (a11 - a22)^2) ]
Solution avec numpy
print(np.linalg.eigvals(np.matrix([[0, 1],[ -2, -3]])))
Solution calulée:
A = [0 1]
[-2 -3]
λ = 1/2 * (-3 ± sqrt(-8+3^2))
⟹ λ₁ = -4/2 = -2
⟹ λ₂ = -2/2 = -1
Réponse:
-2
-1
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Linear Algebra Foundations #2 - Matrix Subtraction
# The basics of linear algebra and matrices as required in Machine Learning.
#
# https://www.hackerrank.com/challenges/linear-algebra-foundations-1-matrix-subtraction/problem
#
-3
-3
-3
-5
-5
-5
-3
-4
1
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# https://www.hackerrank.com/domains/mathematics/linear-algebra-foundations
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Eigenvalue of matrix #2
# Basic problems related to eigenvalues.
#
# https://www.hackerrank.com/challenges/eigenvalue-of-matrix-2/problem
#
import numpy as np
M = np.matrix([[1, 2],
[2, 4]])
print(np.linalg.eigvals(M))
I = np.identity(np.linalg.matrix_rank(M))
for λ in np.linalg.eigvals(M):
print(np.linalg.det(M - λ * I)) | {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Linear Algebra Foundations #5 - The 100th Power of a Matrix
# Compute the 100<sup>the</sup> power of a given matrix.
#
# https://www.hackerrank.com/challenges/linear-algebra-foundations-5-the-100th-power-of-a-matrix/problem
#
import numpy as np
a = np.matrix([[1,1,0],[0,1,0],[0,0,1]])
print(a ** 100)
"""
réponse:
1
100
1
0
1
""" | {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Linear Algebra Foundations #10 - Eigenvectors
# Compute the EigenVectors of the following 2x2 matrix.
#
# https://www.hackerrank.com/challenges/linear-algebra-fundamentals-10-eigenvectors/problem
#
import numpy as np
A = np.matrix([[ 0, 1],
[-2, -3]])
eig, vec = np.linalg.eig(A)
print(eig, vec)
v1 = vec[0].A1
v2 = vec[1].A1
print(v1)
print(v2)
# v1 = sqrt(1/2) -sqrt(2/5)
# v1 = -sqrt(1/2) sqrt(4/5)
# réponse
# cf. http://www.wolframalpha.com/input/?i=%7B%7B0,+1%7D,+%7B-2,+-3%7D%7D
# -2 -1
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Linear Algebra Foundations #7 - The 1000th Power of a Matrix
# Compute the 1000th power of the given matrix.
#
# https://www.hackerrank.com/challenges/linear-algebra-foundations-7-the-1000th-power-of-a-matrix/problem
#
# solution plus aboutie, en calculant l'exponentiation soi-même
def multm(A, B):
""" produit matriciel: A * B """
a00, a10, a01, a11 = A
b00, b10, b01, b11 = B
return [a00 * b00 + a10 * b01, a00 * b10 + a10 * b11,
a01 * b00 + a11 * b01, a01 * b10 + a11 * b11]
def multv(A, V):
""" produit matrice/vecteur: A * V """
a00, a10, a01, a11 = A
b0, b1 = V
return [a00 * b0 + a10 * b1,
a01 * b0 + a11 * b1]
def power(M, k):
""" fast exponentiation M^k """
P = [1, 0,
0, 1]
if k == 0:
return P
if k == 1:
return M
while k != 0:
if k % 2 == 1:
P = multm(P, M)
M = multm(M, M)
k //= 2
return P
A = [-2, -9, 1, 4]
B = power(A, 1000)
for x in B:
print(x)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Determinant of the matrix #3
# Basic problems related to determinants.
#
# https://www.hackerrank.com/challenges/determinant-of-the-matrix-3/problem
#
# le déterminant d'une matrice d'ordre 3 est a*e*i+b*f*g+c*d*h-g*e*c-h*f*a-i*d*b
# il ne change pas dans la deuxième matrice
# réponse:
-6
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Linear Algebra Foundations #3- Matrix Multiplication
# Matrix Multiplication of 2x2 Matrices
#
# https://www.hackerrank.com/challenges/linear-algebra-foundations-3-matrix-multiplication/problem
#
# 1*4+2*7 = 18
# 1*5+2*8 = 21
# 2*4+3*7 = 29
# 2*5+3*8 = 34
# réponse:
18
21
29
34
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
### [Mathematics](https://www.hackerrank.com/domains/mathematics)
Without mathematics, there's nothing you can do. Everything around you is mathematics. Everything around you is numbers.
#### [Linear Algebra Foundations](https://www.hackerrank.com/domains/mathematics/linear-algebra-foundations)
Name | Preview | Code | Difficulty
---- | ------- | ---- | ----------
[Linear Algebra Foundations #1 - Matrix Addition](https://www.hackerrank.com/challenges/linear-algebra-foundations-1)|The basics of linear algebra and matrices as required in Machine Learning.|[text](linear-algebra-foundations-1.txt)|Easy
[Linear Algebra Foundations #2 - Matrix Subtraction](https://www.hackerrank.com/challenges/linear-algebra-foundations-1-matrix-subtraction)|The basics of linear algebra and matrices as required in Machine Learning.|[text](linear-algebra-foundations-1-matrix-subtraction.txt)|Easy
[Linear Algebra Foundations #3- Matrix Multiplication](https://www.hackerrank.com/challenges/linear-algebra-foundations-3-matrix-multiplication)|Matrix Multiplication of 2x2 Matrices|[Python](linear-algebra-foundations-3-matrix-multiplication.py) [text](linear-algebra-foundations-3-matrix-multiplication.txt)|Easy
[Linear Algebra Foundations #4- Matrix Multiplication](https://www.hackerrank.com/challenges/linear-algebra-foundations-4-matrix-multiplication)|Matrix Multiplication of 2x2 Matrices|[Python](linear-algebra-foundations-4-matrix-multiplication.py)|Easy
[Linear Algebra Foundations #5 - The 100th Power of a Matrix](https://www.hackerrank.com/challenges/linear-algebra-foundations-5-the-100th-power-of-a-matrix)|Compute the 100<sup>the</sup> power of a given matrix.|[Python](linear-algebra-foundations-5-the-100th-power-of-a-matrix.py)|Medium
[Linear Algebra Foundations #6 - An Equation involving Matrices](https://www.hackerrank.com/challenges/linear-algebra-foundations-6-the-nsupthsup-power-of-a-matrix)|Solve an equation involving matrices.|[text](linear-algebra-foundations-6-the-nsupthsup-power-of-a-matrix.txt)|Medium
[Linear Algebra Foundations #7 - The 1000th Power of a Matrix](https://www.hackerrank.com/challenges/linear-algebra-foundations-7-the-1000th-power-of-a-matrix)|Compute the 1000th power of the given matrix.|[Python](linear-algebra-foundations-7-the-1000th-power-of-a-matrix.py) [text](linear-algebra-foundations-7-the-1000th-power-of-a-matrix.txt)|Hard
[Linear Algebra Foundations #8 - Systems of Equations](https://www.hackerrank.com/challenges/linear-algebra-fundamentals-8-systems-of-equations)|A system of equations with no solutions.|[Python](linear-algebra-fundamentals-8-systems-of-equations.py)|Hard
[Linear Algebra Foundations #9 - Eigenvalues](https://www.hackerrank.com/challenges/linear-algebra-fundamentals-9-eigenvalues)|Compute the Eigenvalues of the following 2x2 matrix.|[text](linear-algebra-fundamentals-9-eigenvalues.txt)|Hard
[Linear Algebra Foundations #10 - Eigenvectors](https://www.hackerrank.com/challenges/linear-algebra-fundamentals-10-eigenvectors)|Compute the EigenVectors of the following 2x2 matrix.|[Python](linear-algebra-fundamentals-10-eigenvectors.py)|Medium
[Determinant of the matrix #1](https://www.hackerrank.com/challenges/determinant-of-the-matrix-1)|Basic problems related to determinants.|[Python](determinant-of-the-matrix-1.py)|Medium
[Determinant of the matrix #2](https://www.hackerrank.com/challenges/determinant-of-the-matrix-2)|Basic problems related to determinants.|[text](determinant-of-the-matrix-2.txt)|Hard
[Determinant of the matrix #3](https://www.hackerrank.com/challenges/determinant-of-the-matrix-3)|Basic problems related to determinants.|[text](determinant-of-the-matrix-3.txt)|Medium
[Eigenvalue of a Matrix I](https://www.hackerrank.com/challenges/eigenvalue-of-matrix-1)|Basic problems related to eigenvalues.|[Python](eigenvalue-of-matrix-1.py)|Hard
[Eigenvalue of matrix #2](https://www.hackerrank.com/challenges/eigenvalue-of-matrix-2)|Basic problems related to eigenvalues.|[Python](eigenvalue-of-matrix-2.py)|Hard
[Eigenvalue of matrix #3](https://www.hackerrank.com/challenges/eigenvalues-of-matrix-3)|Basic problems related to eigenvalues.|[Python](eigenvalues-of-matrix-3.py)|Hard
[Eigenvalue of matrix #4](https://www.hackerrank.com/challenges/eigenvalues-of-matrix-4)|Basic problems related to eigenvalues.|[Python](eigenvalues-of-matrix-4.py)|Hard
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Linear Algebra Foundations > Linear Algebra Foundations #8 - Systems of Equations
# A system of equations with no solutions.
#
# https://www.hackerrank.com/challenges/linear-algebra-fundamentals-8-systems-of-equations/problem
#
import numpy as np
for a in range(-10, 11, 1):
M = np.matrix([[a, 1, 2],
[1, 2, 1],
[2, 1, a]])
if abs(np.linalg.det(M)) < 1e-6:
print(a)
"""
réponse:
-1
2
""" | {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Long Permutation
# Determine the n^th element of an infinite permutation!
#
# https://www.hackerrank.com/challenges/long-permutation/problem
# https://www.hackerrank.com/contests/101hack37/challenges/long-permutation
# challenge id: 21494
#
n, m = map(int, input().split())
p = list(map(int, input().split()))
x = 0
while m >= 1:
m -= 1
x = p[x]
if x >= n:
x += m
break
print(x)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Prime Sum
# Represent a number as sum of primes.
#
# https://www.hackerrank.com/challenges/prime-sum/problem
# https://www.hackerrank.com/contests/w3/challenges/prime-sum
# challenge id: 2310
#
from random import randrange
def miller_rabin(n, k=10):
if n == 2:
return True
if n & 1 == 0:
return False
def check(a, s, d, n):
x = pow(a, d, n)
if x == 1:
return True
for i in range(s - 1):
if x == n - 1:
return True
x = pow(x, 2, n)
return x == n - 1
s = 0
d = n - 1
while d % 2 == 0:
d >>= 1
s += 1
for i in range(k):
a = randrange(2, n - 1)
if not check(a, s, d, n):
return False
return True
class Crible:
""" Crible d'Eratosthène optimisé """
def __init__(self, n_max):
self.n_max = n_max
self.maximum = n = (n_max - 3) // 2 + 1
self.crible = crible = [False] * (n + 1)
self._premiers = None
self._phi = None
i = 0
while i < n:
while i < n:
if not crible[i]:
break
i += 1
k = 3
while True:
j = k * i + 3 * (k - 1) // 2
if j >= n:
break
crible[j] = True
k += 2
i += 1
def est_premier(self, n):
if n == 2:
return True
elif n % 2 == 0 or n <= 1:
return False
else:
# n est impair et >= 3
assert n < self.n_max
return not self.crible[(n - 3) // 2]
N = 1000000
sieve = Crible(N)
def is_prime(n):
if n < N:
return sieve.est_premier(n)
else:
return miller_rabin(n)
def check(n, k):
if k == 1:
# il faut que n soit premier
print("Yes" if is_prime(n) else "No")
elif n < 4:
# aucune solution
print("No")
elif k == 2 and n % 2 == 1:
# n ne peut être la somme que d'un nombre pair et d'un nombre impair
# et pas la somme de deux nombres impairs.
# le seul premier pair est 2.
# donc si n-2 est premier ok, sinon non
print("Yes" if is_prime(n - 2) else "No")
elif n % 2 == 0:
# 2+2+...+2 valeur minimale de la somme,
# sinon conjecture de Goldbach (on a n > 3 ici)
print("Yes" if k <= n // 2 else "No")
else:
# 3+2+2+...+2 valeur minimale de la somme
# n-3 est pair, on utilise Goldbach
print("Yes" if k - 1 <= (n - 3) // 2 else "No")
for _ in range(int(input())):
n, k = map(int, input().split())
check(n, k)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Closest Number
# What is the closest number?
#
# https://www.hackerrank.com/challenges/closest-number/problem
#
def closestNumber(a, b, x):
p = int(a ** b)
m = (p // x) * x
if p - m > m + x - p:
return m + x
else:
return m
if __name__ == '__main__':
for _ in range(int(input())):
a, b, x = map(int, input().split())
result = closestNumber(a, b, x)
print(result) | {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Fibonacci Finding (easy)
# Find some Fibonacci numbers!
#
# https://www.hackerrank.com/challenges/fibonacci-finding-easy/problem
#
MOD = 1000000007
def multm(A, B):
""" produit matriciel: A * B """
a00, a10, a01, a11 = A
b00, b10, b01, b11 = B
return [(a00 * b00 + a10 * b01) % MOD, (a00 * b10 + a10 * b11) % MOD,
(a01 * b00 + a11 * b01) % MOD, (a01 * b10 + a11 * b11) % MOD]
def multv(A, V):
""" produit matrice/vecteur: A * V """
a00, a10, a01, a11 = A
b0, b1 = V
return [(a00 * b0 + a10 * b1) % MOD,
(a01 * b0 + a11 * b1) % MOD]
def power(M, k):
""" fast exponentiation M^k """
P = [1, 0,
0, 1]
if k == 0:
return P
if k == 1:
return M
while k != 0:
if k % 2 == 1:
P = multm(P, M)
M = multm(M, M)
k //= 2
return P
# http://en.wikipedia.org/wiki/Fibonacci_number#Matrix_form
# Fn = A^n * F0
# avec Fn[f(n+1) f(n))
# et A = [[1 1][1 0]]
for _ in range(int(input())):
a, b, n = map(int, input().split())
A = [1, 1, 1, 0]
An = power(A, n)
F0 = [b, a]
Fn = multv(An, F0)
print(Fn[1])
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Easy math
# Help Johnny in figuring out the value of Y
#
# https://www.hackerrank.com/challenges/easy-math/problem
# https://www.hackerrank.com/contests/101oct13/challenges/easy-math
# challenge id: 1138
#
for _ in range(int(input())):
n = x = int(input())
n2 = 0
while x % 2 == 0:
n2 += 1
x //= 2
# le nombre de 0 est le nombre de 5
n5 = 0
while x % 5 == 0:
n5 += 1
x //= 5
if False:
# nota: on ne doit pas être très loin de l'utilisation
# de l'indicatrice d'Euler puisque:
# a^φ(n) ≡ 1 mod n avec a,n coprime
# en prenant a=10 et n=x, ils sont coprime
# et 10^n-1 = 9999...9 ≡ 0 mod x
# soit 9/4 * 44444...44 ≡ 0 mod x
# à un coefficient près (que je ne connais pas), φ(x) = nombre de 4
a = EulerPhi(x)
else:
y = 1
a = 1
while y % x != 0:
y = (y * 10 + 1) % x
a += 1
# le nombre de 4 est le nombre de 1, i.e. a
b = n5
if n2 - n5 > 2:
b += n2 - n5 - 2
print(2 * a + b)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > The Chosen One
# Given a list of integers, find and print an integer that is a divisor of all but one integer in the list.
#
# https://www.hackerrank.com/challenges/the-chosen-one/problem
#
from math import gcd
n = int(input())
A = list(map(int, input().split()))
if n == 1:
print(A[0] + 1)
else:
gauche = [0] * n
droite = [0] * n
# calcul du gcd de [A0..Ai] dans gauche[i]
g = 0
for i in range(n):
g = gauche[i] = gcd(g, A[i])
# calcul du gcd de [Ai..An] dans droite[i]
g = 0
for i in range(n - 1, -1, -1):
g = droite[i] = gcd(g, A[i])
# avec les deux tablaaux ci-dessus, on peut calculer le gcd de {A} \ A[i]
# gcd(gauche[i-1]), droite[i+1])
# si ce gcd ne divise pas A[i] on a trouvé une solution
for i in range(n):
if i == 0:
g = droite[i + 1]
elif i == n - 1:
g = gauche[i - 1]
else:
g = gcd(gauche[i - 1], droite[i + 1])
if A[i] % g != 0:
print(g)
break
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Manasa loves Maths
# Find out if any permutation of the given number is divisible by 8.
#
# https://www.hackerrank.com/challenges/manasa-loves-maths/problem
# https://www.hackerrank.com/contests/mar14/challenges/manasa-loves-maths
# challenge id: 1892
#
# here is my algorithm:
# if len(n) < 3: test directly with %
# if len(n) >= 3:
# A number is divisble by 8 if its three last digits form a number that is
# divisible by 8. In other words, a permutation of the input is divisible
# by 8 if the input contains the digits of a 3-digit number divisible by 8.
# Thus, no need to compute all the permutations.
# Step 1:
# precalculate all the 125 3-digit numbers divisible by 8 and compute
# a kind of signature: each unique digit is a bit (30 bits in total)
# 0 1 2 3 4 5 6 7 8 9
# ... ... ... ... ... ... ... ... ... ...
# ^^^
# 001 if there is one 0
# 011 if there is two 0
# 111 if there is three 0
# Step 2:
# compute the same signature (limiting digit count to 3) for the tests
# and test against the precomputed values
div8 = set()
for i in range(0, 1000, 8):
count = [0] * 10
count[i % 10] += 1
count[(i // 10) % 10] += 1
count[(i // 100) % 10] += 1
b = 0
for j in count:
b = (b << 3) + ((1 << j) - 1)
div8.add(b)
for _ in range(int(input())):
n = input()
ok = False
if len(n) == 1:
ok = int(n) % 8 == 0
elif len(n) == 2:
ok = (int(n) % 8 == 0) or (int(n[::-1]) % 8 == 0)
else:
count = [0] * 10
for c in list(n):
d = int(c)
if count[d] < 3: count[d] += 1
b = 0
for j in count:
b = (b << 3) + ((1 << j) - 1)
for i in div8:
if (b & i) == i:
ok = "YES"
break
print("YES" if ok else "NO")
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Fibonacci GCD
# Find gcd for n fibonacci numbers.
#
# https://www.hackerrank.com/challenges/fibonacci-gcd/problem
# https://www.hackerrank.com/contests/infinitum9/challenges/fibonacci-gcd
# challenge id: 4503
#
from math import gcd
MOD = 1000000007
def multm(A, B):
""" produit matriciel: A * B """
a00, a10, a01, a11 = A
b00, b10, b01, b11 = B
return [(a00 * b00 + a10 * b01) % MOD, (a00 * b10 + a10 * b11) % MOD,
(a01 * b00 + a11 * b01) % MOD, (a01 * b10 + a11 * b11) % MOD]
def multv(A, V):
""" produit matrice/vecteur: A * V """
a00, a10, a01, a11 = A
b0, b1 = V
return [(a00 * b0 + a10 * b1) % MOD,
(a01 * b0 + a11 * b1) % MOD]
def power(M, k):
""" fast exponentiation M^k """
P = [1, 0,
0, 1]
if k == 0:
return P
if k == 1:
return M
while k != 0:
if k % 2 == 1:
P = multm(P, M)
M = multm(M, M)
k //= 2
return P
# on utilise la propriété suivante:
# gcd(F(a), F(b)) = F(gcd(a, b))
# calcul du gcd(aᵢ)
g = 0
n = int(input())
for i in range(n):
g = gcd(g, int(input()))
# calcul de F(g) (cf. https://www.hackerrank.com/challenges/fibonacci-finding-easy)
# http://en.wikipedia.org/wiki/Fibonacci_number#Matrix_form
# Fn = A^n * F0
# avec Fn[f(n+1) f(n))
# et A = [[1 1][1 0]]
A = [1, 1, 1, 0]
An = power(A, g)
F0 = [1, 0]
Fn = multv(An, F0)
print(Fn[1])
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Power of large numbers
# How much does Hackerland coach pay to get Cristiano Ronaldo to play for his team?
#
# https://www.hackerrank.com/challenges/power-of-large-numbers/problem
#
def powmod(x, k, MOD):
""" fast exponentiation x^k % MOD """
p = 1
if k == 0:
return p
if k == 1:
return x
while k != 0:
if k % 2 == 1:
p = (p * x) % MOD
x = (x * x) % MOD
k //= 2
return p
MOD = 1000000007
for _ in range(int(input())):
sx, sy = input().split()
# x = x modulo MOD
x = 0
for d in sx:
x = (x * 10 + int(d)) % MOD
# y = y modulo (MOD - 1)
y = 0
for d in sy:
y = (y * 10 + int(d)) % (MOD - 1)
# petit théorème de Fermat: https://fr.wikipedia.org/wiki/Petit_théorème_de_Fermat
# p premier, m = n (mod p - 1)
# alors a^m = a^n (mod p)
# application ici: en calculant x^(y mod (p-1)) on a une valeur exacte modulo p
print(powmod(x, y, MOD))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
"""
Minimal Distance to Pi
https://www.hackerrank.com/challenges/minimal-distance-to-pi/problem
https://www.hackerrank.com/contests/w29/challenges/minimal-distance-to-pi
"""
from fractions import Fraction
#q1, q2 = 756624603896972, 837574890139508
q1, q2 = map(int, input().split())
""" BRUTE FORCE
pi50 = 314159265358979323846264338327950288419716939937515
base = 10 ** 50
rmin = 0
rmax = 0
for i in range(d0, d1 + 1):
q, r = divmod(i * pi50, base)
# print("{:<8} {:<8} {:<50} {:<50}".format(i, q, r, 10 ** 50 - r))
print(r / base)
if rmin == 0 or r < rmin:
rmin = r
nd1 = (q, i)
r = base - r
if rmin == 0 or r < rmin:
rmin = r
nd1 = (q + 1, i)
print("{}/{}".format(nd1[0], nd1[1]))
"""
# https://oeis.org/A001203
a001203 = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84,
2, 1, 1, 15, 3, 13, 1, 4, 2, 6, 6, 99, 1, 2, 2, 6, 3, 5, 1, 1, 6, 8, 1,
7, 1, 2, 3, 7, 1, 2, 1, 1, 12, 1, 1, 1, 3, 1, 1, 8, 1, 1, 2, 1, 6, 1, 1, 5,
2, 2, 3, 1, 2, 4, 4, 16, 1, 161, 45, 1, 22, 1, 2, 2, 1, 4, 1, 2, 24, 1, 2,
1, 3, 1, 2, 1]
def fraction_continue(f, a, i):
ai = a[0] if i == 0 else a[1 + (i - 1) % (len(a) - 1)]
if f == 0:
return Fraction(ai)
return ai + 1 / f
def calc_fraction_continue(a, k):
f = Fraction(0)
while k > 0:
k -= 1
f = fraction_continue(f, a, k)
return f
# http://www.libragold.com/blog/2017/03/minimal-distance-to-pi/
P = calc_fraction_continue(a001203, 30) - 3
# find endpoints of Farey intervals
a, b, c, d = 0, 1, 1, 1
farey = [(a,b),(c,d)]
while True:
f = b + d
if f > q2 - q1: break
e = a + c
farey.append((e, f))
if P < Fraction(e, f):
c, d = e, f
else:
a, b = e, f
p_min = int(P * q1)
# increase p_min/min by fractions in farey
while q1 <= q2:
c, d = 0, 0
for a, b in farey:
if q1 + b > q2: break
if abs(Fraction(p_min + a, q1 + b).real - P) < abs(Fraction(p_min, q1).real - P):
c, d = a, b
break
if d == 0:
break
p_min += c
q1 += d
print("{}/{}".format(p_min + 3 * q1, q1))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Sherlock Puzzle
# Help Sherlock get close to his Arch Nemesis, Jim Moriarty.
#
# https://www.hackerrank.com/challenges/sherlock-puzzle/problem
# https://www.hackerrank.com/contests/sep13/challenges/sherlock-puzzle
# challenge id: 836
#
from bisect import bisect_left
K, S = input().split()
K = int(K)
n = len(S)
s = [0] * (n + 1)
a = [0] * (n + 1)
a[0] = (0, 0)
for i in range(n):
s[i + 1] = s[i] - 3 * (S[i] == '1') + 2 * (S[i] == '0')
a[i + 1] = (s[i + 1], i + 1)
a.sort()
dp = [0] * (n + 1)
dp[0] = a[0][1]
for i in range(n):
dp[i + 1] = max(dp[i], a[i + 1][1])
answer = 0
for i in range(n):
dx = a[0][0] - s[i]
if s[n] <= 0:
x = K - 1
if dx + s[n] * x > 0:
continue
elif dx > 0:
continue
else:
x = min(K - 1, -dx // s[n])
v = x * s[n] - s[i]
p = bisect_left(a, (-v + 1, 0)) - 1
answer = max(answer, dp[p] - i + x * n)
print(answer)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
// Mathematics > Number Theory > Largest Non-Coprime Submatrix
// Given a matrix find the largest coprime submatrix.
//
// https://www.hackerrank.com/challenges/largest-coprime-submatrix/problem
// challenge id: 781
//
#include <bits/stdc++.h>
using namespace std;
// solution: brute force...
int gcd(int u, int v)
{
while (v != 0)
{
int r = u % v;
u = v;
v = r;
}
return u;
}
int main()
{
int matrix[200][200];
size_t n, m;
cin >> n >> m;
for (size_t i = 0; i < n; ++i)
{
for (size_t j = 0; j < m; ++j)
{
cin >> matrix[i][j];
}
}
size_t r = 0;
for (size_t x1 = 0; x1 < n; ++x1)
{
for (size_t y1 = 0; y1 < m; ++y1)
{
if (r > (n - x1) * (m - y1)) break;
// gcd entre (x1,y1) et (x2,y2)
int sub_gcd[200] = {0};
for (size_t x2 = x1; x2 < n; ++x2)
{
int g = 0;
for (size_t y2 = y1; y2 < m; ++y2)
{
g = gcd(gcd(g, matrix[x2][y2]), sub_gcd[y2]);
sub_gcd[y2] = g;
if (g == 1) break;
r = max(r, (x2 - x1 + 1) * (y2 - y1 + 1));
}
}
}
}
cout << r << endl;
return 0;
}
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Manasa and Factorials
# Think about number of zeros in k!
#
# https://www.hackerrank.com/challenges/manasa-and-factorials/problem
# https://www.hackerrank.com/contests/infinitum-apr14/challenges/manasa-and-factorials
#
def count5(n):
sum = 0
product = 1
while product < n:
product *= 5
sum += n // product
return sum
for _ in range(int(input())):
n = int(input())
# chaque mutiple de 5 ajoute un 0 (en fait de 2 et 5 mais il y a plus de mutiples de 2 que de 5 dans n!)
# et plus généralement:
# chaque mutiple de 5^k ajoute k 0
# la réponse est entre 4n et 5n
# et multiple de 5
j = (4 * n + 4) // 5 * 5
while count5(j) < n:
j += 5
print(j)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Megaprime Numbers
# Count the number of primes in a given range that consist only of prime digits.
#
# https://www.hackerrank.com/challenges/megaprime-numbers/problem
# https://www.hackerrank.com/contests/w29/challenges/megaprime-numbers
# challenge id: 33596
#
from random import randrange
import sys
def miller_rabin(n, k=10):
if n == 2 or n == 3 or n == 5 or n == 7: return True
if n % 2 == 0 or n % 5 == 0: return False
def check(a, s, d, n):
x = pow(a, d, n)
if x == 1:
return True
for i in range(s - 1):
if x == n - 1:
return True
x = pow(x, 2, n)
return x == n - 1
s = 0
d = n - 1
while d % 2 == 0:
d >>= 1
s += 1
for i in range(k):
a = randrange(2, n - 1)
if not check(a, s, d, n):
return False
return True
def to4(q):
digits = [2, 3, 5, 7]
q += 1
e = 1
n = 0
while q != 0:
q, r = divmod(q - 1, 4)
n += e * digits[r]
e *= 10
return n
def from4(s):
digits = [0, 0, 0, 1, 0, 2, 0, 3, 0, 0]
n = -1
for d in str(s):
d = digits[int(d)]
n = 4 * (n + 1) + d
return n
start, end = map(int, input().split())
# find the number below start in 'base-2357'
carry = False
start4 = -1
for d in str(start):
if carry:
d = 3
else:
d = int(d)
if d >= 7: d = 3
elif d >= 5: d = 2
elif d >= 3: d = 1
elif d == 2: d = 0
else:
d = 3
carry = True
start4 -= 1
start4 = 4 * (start4 + 1) + d
if start4 == -1:
start4 = 0
# then iterate through numbers between start to end
answer = 0
i = start4
while True:
n = to4(i)
i += 1
if n > end:
break
if n < start:
continue
if miller_rabin(n):
answer += 1
print(answer)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Mehta and his Laziness
# How will Mehta do these calculations?
#
# https://www.hackerrank.com/challenges/mehta-and-his-laziness/problem
# https://www.hackerrank.com/contests/infinitum-sep14/challenges/mehta-and-his-laziness
#
# le testcase 1 est en timeout avec Python3, ok avec pypy3
# j'ai dû rater une optimisation :-/
from fractions import Fraction
MAX = 1000000
even_squares = [False] * (MAX + 1)
for i in range(2, MAX, 2):
x = i * i
if x > MAX: break
even_squares[x] = True
def diviseurs(n):
div = [1]
i = 2
while i * i <= n:
q, r = divmod(n, i)
if r == 0:
div.append(i)
if i != q:
div.append(q)
i += 1
if n != 1:
div.append(n)
return div
def even_squares_divisors(n):
nb = 1 # 1 est diviseur
even = 0
i = 2
while i * i <= n:
q, r = divmod(n, i)
if r == 0:
nb += 1
if even_squares[i]:
even += 1
if i != q:
nb += 1
if even_squares[q]:
even += 1
i += 1
return Fraction(even, nb)
for _ in range(int(input())):
n = int(input())
# d = diviseurs(n)
# x = sum(1 for i in d if even_squares[i])
# print(n, d, x, Fraction(x, len(d)))
# print(Fraction(x, len(d)))
print(even_squares_divisors(n))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Twins
# How many pairs of twins can you find?
#
# https://www.hackerrank.com/challenges/twins/problem
# https://www.hackerrank.com/contests/w26/challenges/twins
#
# algo sans crible segemnté, peu efficace mais suffisant s'il est lancé en pypy3
# timeout en python3 :(
class bitset:
"""
Implémentation d'un bitset à stockage optimisé
"""
def __init__(self, taille):
self.bits = bytearray((taille + 7) // 8)
def set(self, pos):
""" poitionne le bit `pos` à `val` """
self.bits[pos // 8] |= (1 << (pos % 8))
def is_unset(self, pos):
""" lit l'état du bit `pos` """
return (self.bits[pos // 8] & (1 << (pos % 8))) == 0
class Crible:
""" Crible d'Eratosthène optimisé """
def __init__(self, n_max):
self.n_max = n_max
self.maximum = n = (n_max - 3) // 2 + 1
self.crible = crible = bitset(n)
self._premiers = None
i = 0
while i < n:
while i < n:
if crible.is_unset(i):
break
i += 1
k = 3
while True:
j = k * i + 3 * (k - 1) // 2
if j >= n:
break
crible.set(j)
k += 2
i += 1
premiers = [2]
for i in range(1, self.maximum + 1):
if self.crible.is_unset(i - 1):
premiers.append(2 * i + 1)
self._premiers = premiers
def liste(self):
return self._premiers
n, m = map(int, input().split())
primes = Crible(int(m ** 0.5) + 2).liste()[1:]
count = 0
last_prime = -3
n = max((n // 2) * 2 + 1, 3)
for i in range(n, m + 1, 2):
is_prime = True
for p in primes:
if i == p:
break
if i % p == 0:
is_prime = False
break
if not is_prime:
continue
if i - last_prime == 2:
count += 1
last_prime = i
print(count)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Number of zero-xor subsets
# How many subsets with zero xor are here?
#
# https://www.hackerrank.com/challenges/number-of-subsets/problem
# https://www.hackerrank.com/contests/infinitum10/challenges/number-of-subsets
# challenge id: 4731
#
MOD = 1000000007
# la réponse est 2^(2^n - n)
for _ in range(int(input())):
n = int(input())
# généralisation du petit théorème de Fermat
e = (pow(2, n, MOD - 1) - n) % (MOD - 1)
r = pow(2, e, MOD)
print(r)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
add_hackerrank_py(sherlock-and-gcd.py)
add_hackerrank_py(minimal-distance-to-pi.py)
add_hackerrank_py(identify-smith-numbers.py)
add_hackerrank_py(constructing-a-number.py)
add_hackerrank_py(littlepandapower.py)
add_hackerrank_py(fibonacci-finding-easy.py)
add_hackerrank_py(closest-number.py)
add_hackerrank_py(eulers-criterion.py)
add_hackerrank_py(john-and-gcd-list.py)
add_hackerrank_py(easy-gcd-1.py)
add_hackerrank_py(the-chosen-one.py)
add_hackerrank_py(power-of-large-numbers.py)
add_hackerrank_py(manasa-and-factorials.py)
add_hackerrank_py(primitive-problem.py)
add_hackerrank_py(twins.py)
add_hackerrank_py(mehta-and-his-laziness.py)
add_hackerrank_py(help-mike.py)
add_hackerrank_py(manasa-loves-maths.py)
add_hackerrank_py(dance-class.py)
add_hackerrank_py(akhil-and-gf.py)
add_hackerrank_py(salary-blues.py)
add_hackerrank(little-chammys-huge-donation little-chammys-huge-donation.cpp)
add_hackerrank_py(number-of-subsets.py)
add_hackerrank_py(cheese-and-random-toppings.py)
add_hackerrank(breaking-sticks breaking-sticks.cpp)
add_hackerrank_py(easy-math.py)
add_hackerrank(lucy-and-flowers lucy-and-flowers.cpp)
add_hackerrank_py(binomial-coefficients.py)
add_hackerrank(pairs-again pairs-again.cpp)
add_hackerrank(largest-coprime-submatrix largest-coprime-submatrix.cpp)
add_hackerrank_py(ncr.py)
set_tests_properties(pairs-again PROPERTIES TIMEOUT 120)
set_tests_properties(easy-math.py PROPERTIES TIMEOUT 120)
add_hackerrank_py(prime-sum.py)
add_hackerrank_py(fibonacci-gcd.py)
add_hackerrank_py(divisor-exploration-2.py)
add_hackerrank_py(strange-numbers.py)
add_hackerrank_py(divisor-exploration-3.py)
add_hackerrank(divisor-exploration-3 divisor-exploration-3.cpp)
add_hackerrank_py(equations.py)
add_hackerrank_py(superpowers.py)
add_hackerrank_py(divisibility-of-power.py)
add_hackerrank_py(devu-police.py)
add_hackerrank_py(long-permutation.py)
add_hackerrank_py(megaprime-numbers.py)
add_hackerrank_py(sherlock-puzzle.py)
add_hackerrank_py(divisor-exploration.py)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Salary Blues
# Help manager of HackerX company to normalize salaries.
#
# https://www.hackerrank.com/challenges/salary-blues/problem
# https://www.hackerrank.com/contests/infinitum-apr14/challenges/salary-blues
# challenge id: 1833
#
from math import gcd
n, q = map(int, input().split())
A = list(map(int, input().split()))
a0 = A[0]
for i in range(1, len(A)):
A[i] -= a0
g = A[1]
for i in range(2, len(A)):
g = gcd(g, A[i])
for _ in range(q):
k = int(input())
if len(A) == 1:
print(a0 + k)
else:
print(gcd(g, a0 + k))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
// Mathematics > Number Theory > Divisor Exploration 3
// Find the value given at the root of a tree constructing by the given rules.
//
// https://www.hackerrank.com/challenges/divisor-exploration-3/problem
// https://www.hackerrank.com/contests/infinitum18/challenges/divisor-exploration-3
// challenge id: 12630
//
// C++ version, I can't find a way to optimize these instructions
// num = (p * num * c_den - c_num * den) % MOD
// den = (den * (p - 1) * c_den) % MOD
// in Python (it's ok with numba.jit...)
#include <bits/stdc++.h>
using namespace std;
#define MOD 1000000007
vector<int64_t> primes;
void init_primes()
{
int64_t PRIME_1000 = 7919;
vector<bool> sieve(1 + PRIME_1000, true);
primes.reserve(1000);
for (int64_t n = 2; n <= PRIME_1000; ++n)
{
if (sieve[n])
{
primes.push_back(n);
for (int64_t i = n; i <= PRIME_1000; i += n)
sieve[i] = false;
}
}
}
int64_t modinv(int64_t a, int64_t b)
{
int64_t t, nt, r, nr, q, tmp;
if (b < 0) b = -b;
if (a < 0) a = b - (-a % b);
t = 0; nt = 1; r = b; nr = a % b;
while (nr != 0) {
q = r/nr;
tmp = nt; nt = t - q*nt; t = tmp;
tmp = nr; nr = r - q*nr; r = tmp;
}
if (r > 1) return -1; /* No inverse */
if (t < 0) t += b;
return t;
}
int64_t fast_f(int64_t i, int64_t p, int64_t a)
{
int64_t num, den;
int64_t c_num, c_den;
num = 1; den = 1;
for (int64_t i = 0; i < a; ++i)
num = (num * p) % MOD;
c_num = 1; c_den = 1;
for (int64_t j = 2; j <= i; ++j)
{
if (j > 2)
{
c_num = (c_num * (a + j - 2)) % MOD;
c_den = (c_den * (j - 2)) % MOD;
}
num = (p * ((num * c_den) % MOD) % MOD - c_num * den) % MOD; if (num < 0) num += MOD;
den = (((den * (p - 1)) % MOD) * c_den) % MOD;
}
num = (num * modinv(den, MOD)) % MOD;
return num;
}
int64_t solve(int64_t m, int64_t a, int64_t d)
{
int64_t res = 1;
for (int64_t i = 0; i < m; ++i)
res = (res * fast_f(d, primes[i], a + i + 1)) % MOD;
return res;
}
int main()
{
int64_t m, a, d;
int t;
init_primes();
cin >> t;
while (t--)
{
cin >> m >> a >> d;
cout << solve(m, a, d) << endl;
}
return 0;
}
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Superpowers of 2
# Just another numbers problem...
#
# https://www.hackerrank.com/challenges/superpowers/problem
# https://www.hackerrank.com/contests/101hack20/challenges/superpowers
# challenge id: 5505
#
a, b = map(int, input().split())
print(pow(2, pow(2, a), b))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
// Mathematics > Number Theory > Lucy and Flowers
// Help Lucy's father with a computation involving flowers
//
// https://www.hackerrank.com/challenges/lucy-and-flowers/problem
// https://www.hackerrank.com/contests/w4/challenges/lucy-and-flowers
// challenge id: 2414
//
#include <bits/stdc++.h>
using namespace std;
constexpr unsigned MAX = 5001;
constexpr unsigned MOD = 1000000009;
unsigned catalan[MAX];
unsigned C[MAX][MAX];
unsigned mult(unsigned a, unsigned b, unsigned mod)
{
unsigned long long la = a;
unsigned long long lb = b;
return (unsigned)((la * lb) % mod);
}
void precompute()
{
// calcule les nombres de Catalan
// https://oeis.org/A000108
catalan[0] = 1;
catalan[1] = 1;
for (unsigned i = 2; i < MAX; ++i)
{
unsigned c = 0;
for (unsigned j = 1; j <= i; j++)
c = (c + mult(catalan[j - 1], catalan[i - j], MOD)) % MOD;
catalan[i] = c;
}
// Caculate value of Binomial Coefficient in bottom up manner
//https://www.geeksforgeeks.org/dynamic-programming-set-9-binomial-coefficient/
memset(C, 0, sizeof(C));
for (unsigned i = 0; i < MAX; i++)
{
for (unsigned j = 0; j <= i; j++)
{
// Base Cases
if (j == 0 || j == i)
C[i][j] = 1;
// Calculate value using previosly stored values
else
C[i][j] = (C[i-1][j-1] + C[i-1][j]) % MOD;
}
}
}
// la solution est Σ C(n, i) * catalan(i)
//
unsigned solve(unsigned n)
{
unsigned r = 0;
for (unsigned i = 1; i <= n; i++)
r = (r + mult(C[n][i], catalan[i], MOD)) % MOD;
return r;
}
int main()
{
precompute();
int t;
cin >> t;
while (t--)
{
unsigned n;
cin >> n;
cout << solve(n) << endl;
}
return 0;
}
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Divisor Exploration
# Find and print the number of divisors for each dataset.
#
# https://www.hackerrank.com/challenges/divisor-exploration/problem
# https://www.hackerrank.com/contests/infinitum16/challenges/divisor-exploration
# challenge id: 11996
#
#!/bin/python3
import os
import sys
# (template_head) ----------------------------------------------------------------------
# p prime
# σ₀(pⁿ) = n+1
# ∑ σ₀(pⁿ) = 1+2+...+(n+1) = (n+1)(n+2)/2 = tri(n+1)
# ∑ σ₀(p₁ⁿ¹ ∙ p₂ⁿ²) = tri(n₁) ∙ tri(n₂)
# ∑ σ₀(∏ pᵢⁿⁱ) = ∏ tri(nᵢ)
# brute force is too long : O(10⁵ ∙ 10⁵)
# precompute P(n) = ∏ tri(i) (i ≤ n) with n ≤ m(max) + a(max) = 2∙10⁵
# answer is P(m+a+1) / P(a+1) = P(m+a+1) * modinv(P(a+1), MOD)
MOD = 1000000007
def egcd(b, a):
""" algortihme d'Euclide étendu: (g, x, y) tel que ax + by = g = gcd(a, b) """
# https://fr.wikipedia.org/wiki/Algorithme_d%27Euclide_étendu
x0, x1, y0, y1 = 1, 0, 0, 1
while a != 0:
q, b, a = b // a, a, b % a
x0, x1 = x1, x0 - q * x1
y0, y1 = y1, y0 - q * y1
return b, x0, y0
def modinv(a, m):
""" modular inverse avec Bachet-Bézout """
# https://fr.wikipedia.org/wiki/Théorème_de_Bachet-Bézout
g, x, _ = egcd(a, m)
assert g == 1
return x % m
MAX = 100000 + 100000
P = [1] * (MAX + 1)
invP = [0] * (MAX + 1)
for i in range(1, MAX + 1):
t = i * (i + 1) // 2
P[i] = (t * P[i - 1]) % MOD
invP[i] = modinv(P[i], MOD)
# Complete the solve function below.
def solve(m, a):
""" brute force
p = 1
for i in range(a + 2, a + m + 2):
p *= i * (i + 1) // 2
p %= MOD
return p
"""
return (P[m + a + 1] * invP[a + 1]) % MOD
# (template_tail) ----------------------------------------------------------------------
if __name__ == '__main__':
fptr = open(os.environ['OUTPUT_PATH'], 'w')
d = int(input())
for d_itr in range(d):
ma = input().split()
m = int(ma[0])
a = int(ma[1])
result = solve(m, a)
fptr.write(str(result) + '\n')
fptr.close()
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Little Panda Power
# Compute A^B mod X
#
# https://www.hackerrank.com/challenges/littlepandapower/problem
#
def egcd(b, a):
""" return a triple (g, x, y), such that ax + by = g = gcd(a, b) """
x0, x1, y0, y1 = 1, 0, 0, 1
while a != 0:
q, b, a = b // a, a, b % a
x0, x1 = x1, x0 - q * x1
y0, y1 = y1, y0 - q * y1
return b, x0, y0
def mulinv(b, m):
""" modular multiplicative inverse """
g, x, _ = egcd(b, m)
if g == 1:
return x % m
def powmod(x, k, m):
""" fast exponentiation x^k % m """
if k < 0:
x = mulinv(x, m)
k = -k
p = 1
if k == 0:
return p
if k == 1:
return x
while k != 0:
if k % 2 == 1:
p = (p * x) % m
x = (x * x) % m
k //= 2
return p
for _ in range(int(input())):
a, b, m = map(int, input().split())
print(powmod(a, b, m))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
// Mathematics > Number Theory > Breaking Sticks
// Find the length of the longest sequence of moves.
//
// https://www.hackerrank.com/challenges/breaking-sticks/problem
// https://www.hackerrank.com/contests/world-codesprint-12/challenges/breaking-sticks
// challenge id: 30186
//
#include <bits/stdc++.h>
using namespace std;
long single_bar(long n)
{
long moves = 1;
// décomposition en facteurs premiers
// et calcul du nombre de "mouvements" au fur et à mesure
long i = 2;
while (i * i <= n)
{
while (n % i == 0)
{
n /= i;
moves = moves * i + 1;
}
i += (i >= 3) ? 2 : 1;
}
if (n > 1)
moves = moves * n + 1;
return moves;
}
long longestSequence(const vector<long>& a)
{
long moves = 0;
for (auto n : a)
{
moves += single_bar(n);
}
return moves;
}
int main()
{
vector<long> a;
int n;
cin >> n;
while (n--)
{
long x;
cin >> x;
a.push_back(x);
}
cout << longestSequence(a) << endl;
return 0;
}
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Cheese and Random Toppings
# How many ways are there to choose exactly R toppings from N toppings?
#
# https://www.hackerrank.com/challenges/cheese-and-random-toppings/problem
# https://www.hackerrank.com/contests/infinitum10/challenges/cheese-and-random-toppings
# challenge id: 6061
#
# solution
# 1. décomposer M en facteurs premiers : {pi}
# 2. calculer ai = C(n,r) % pi avec le théorème de Lucas https://fr.wikipedia.org/wiki/Théorème_de_Lucas
# on a: ai = C(n,r) % pi
# 3. utiliser Bachet-Bezout puis le théorème des restes chinois https://fr.wikipedia.org/wiki/Théorème_des_restes_chinois
# x ≡ ai (mod pi)
# x = Σ ai∙(m / pi)
# 4. x est notre solution
import math
def nCk(n, k):
""" coefficient binomial (ou nombre de combinaisons) """
if n < k:
return 0
return math.factorial(n) // math.factorial(k) // math.factorial(n - k)
def decompose(n):
""" décomposition d'un nombre en facteurs premiers """
facteurs = {}
i = 2
while i * i <= n:
while n % i == 0:
n = n // i
facteurs[i] = facteurs.get(i, 0) + 1
if i >= 3:
i += 2
else:
i += 1
if n > 1:
facteurs[n] = facteurs.get(n, 0) + 1
return facteurs
def base(x, b):
""" calcule les chiffres de en base b """
d = []
while x != 0:
x, r = divmod(x, b)
d.append(r)
return d
def lucas(m, n, p):
""" théorème de Lucas """
M = base(m, p)
N = base(n, p)
C = 1
# nota: si m et n ont un nombre de chiffres différents, pas grave
# puisque nCr(x,0)=1 : le produit ne change donc pas
for mi, ni in zip(M, N):
C *= nCk(mi, ni) % p
C %= p
return C
def egcd(b, a):
""" algortihme d'Euclide étendu: (g, x, y) tel que ax + by = g = gcd(a, b) """
x0, x1, y0, y1 = 1, 0, 0, 1
while a != 0:
q, b, a = b // a, a, b % a
x0, x1 = x1, x0 - q * x1
y0, y1 = y1, y0 - q * y1
return b, x0, y0
def nCk_mod(n, r, m):
""" calcule C(n, r) % m avec m square-free """
if m < 2:
return 0
p = decompose(m)
assert set(p.values()) == set({1})
p = list(p.keys())
x = 0
for pi in p:
ai = lucas(n, r, pi)
_, _, v = egcd(pi, m // pi)
x += ai * v * (m // pi)
return x % m
# assert nCk_mod(20, 6, 210) == 120
for _ in range(int(input())):
n, r, m = map(int, input().split())
print(nCk_mod(n, r, m))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Help Mike
# Help Mike attend the NSA meeting
#
# https://www.hackerrank.com/challenges/help-mike/problem
# https://www.hackerrank.com/contests/sep13/challenges/help-mike
# challenge id: 803
#
for _ in range(int(input())):
n, k = map(int, input().split())
q, r = divmod(n, k)
nb_pairs = k * (q - 1) * q // 2 + (r + (k - 1) // 2) * q
if r > k // 2:
nb_pairs += r - k // 2
print(nb_pairs)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > John and GCD list
# Help John in making a list from GCD list
#
# https://www.hackerrank.com/challenges/john-and-gcd-list/problem
#
import math
import functools
def gcd(*numbers):
""" greatest common divisor """
return functools.reduce(math.gcd, numbers)
def lcm(*numbers):
""" least common multiple """
return functools.reduce(lambda a, b: (a * b) // gcd(a, b), numbers, 1)
# la réponse est le ppcm "glissant" des Ai
for _ in range(int(input())):
n = int(input())
A = list(map(int, input().split()))
x = A[0]
B = [x]
i = 1
while i < n:
y = A[i]
B.append(lcm(x, y))
x = y
i += 1
B.append(A[-1])
print(*B)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Strange numbers
# How many strange numbers belong to interval [L, R]?
#
# https://www.hackerrank.com/challenges/strange-numbers/problem
# https://www.hackerrank.com/contests/w11/challenges/strange-numbers
# challenge id: 3082
#
# la grosse astuce consiste à prendre le problème à l'envers:
# -> c'est facile de tester si un nombre est «strange»
# -> on en déduit comment ils sont construits
# problème amusant mais pas très mathématique
def forensic():
""" brute force / comprendre le problème ... """
def is_strange(i):
l = len(str(i))
if l == 1:
return True
if i % l != 0:
return False
return is_strange(i // l)
def construction(i):
s = str(i)
l = len(s)
if l == 1: return "1" + " (" + s + ")"
return str(l) + " " + construction(i // l)
n = 0
l = 0
for i in range(100, 100000):
if is_strange(i):
if l != len(str(i)):
l = len(str(i))
n = 0
n += 1
print("{:3} {:10} {}".format(n, i, construction(i)))
# résolution du challenge
stranges = []
def make_strange(n):
""" construction de tous les nombres «strange» de longueur ≤ 18 à partir de n """
stranges.append(n)
l = len(str(n))
if l > 18:
return
for i in range(l + 1, l + 5):
m = n
while len(str(m * i)) == i:
m *= i
make_strange(m)
for n in range(0, 10):
make_strange(n)
stranges.sort()
# c'est parti !
if __name__ == '__main__':
for _ in range(int(input())):
L, R = map(int, input().split())
print(sum(1 for i in stranges if L <= i <= R))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Equations
# Find the number of positive integral solutions for an equation.
#
# https://www.hackerrank.com/challenges/equations/problem
# challenge id: 39
#
# changement de variable:
# 1/x + 1/y = 1/n! (1)
# ⇒ (x+y)/(x∙y) = 1/n!
# ⇒ n!(x+y) = x∙y
# ⇒ xy - x∙n! - y∙n! + n!² = n!²
# ⇒ (x - n!)(y - n!) = n!²
# ⇒ x'∙y' = n!²
# donc le nombre de solutions de (1) est le nombre de diviseurs de n!²
primes = []
sieve = [True] * 1000001
for n in range(2, 1000001):
if sieve[n]:
primes.append(n)
# supprime les mutiples de n
for i in range(2 * n, 1000001, n):
sieve[i] = False
# l'exposant de p premier dans n! est ep = ∑ n/p^i
# n! = ∏ p^ep
# le nombre de diviseurs de n! est donc ∏ (ep + 1)
# n!² = ∏ p^(2*ep)
# le nombre de diviseurs de n!² est donc ∏ (2*ep + 1)
n = int(input())
r = 1
for p in primes:
ep = 0
i = p
while True:
e = n // i
if e == 0:
break
ep += e
i *= p
r *= (2 * ep + 1)
r %= 1000007
print(r)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Sherlock and GCD
# Help Sherlock in finding the subset.
#
# https://www.hackerrank.com/challenges/sherlock-and-gcd/problem
#
from math import gcd
def verif(a):
d = a[0]
for i in range(1, len(a)):
d = gcd(d, a[i])
if d == 1: return "YES"
return "NO"
for i in range(int(input())):
input()
a = list(map(int, input().split()))
print(verif(a))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Devu Vs Police
# Help Devu escape from police
#
# https://www.hackerrank.com/challenges/devu-police/problem
# https://www.hackerrank.com/contests/infinitum-mar14/challenges/devu-police
# challenge id: 1050
#
def EulerPhi(n):
""" calcul de l'Indicatrice d'Euler φ(n) ou totient(n) """
phi = n
i = 2
while i * i <= n:
if n % i == 0:
phi -= phi // i
while n % i == 0:
n = n // i
if i != 2:
i += 2
else:
i += 1
if n > 1:
phi -= phi // n
return phi
def solve(n1, k1, n2, k2, n):
if k1 == 0 or (n2 == 0 and k2 != 0): # exponent is 0
return pow(n1, 0, n)
if n2 == 1 or k2 == 0: # n2^k2 = 1
return pow(n1, k1, n)
if n1 == 0 or n1 % n == 0: # exponent is not 0
return 0
if k2 == 1: # other trivial case
return pow(n1, k1 * n2, n)
# Euler's theorem
phi = EulerPhi(n)
e = pow(n2, k2, phi) + phi
return pow(pow(n1, k1, n), e, n)
t = int(input())
for _ in range(t):
n1, k1, n2, k2, n = map(int, input().split())
print(solve(n1, k1, n2, k2, n))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Constructing a Number
# Construct a number divisible by 3 from the given numbers by reordering their digits.
#
# https://www.hackerrank.com/challenges/constructing-a-number/problem
#
def canConstruct(a):
# Return "Yes" or "No" denoting whether you can construct the required number.
s = sum(sum(int(d) for d in str(i)) for i in a)
return "Yes" if s % 3 == 0 else "No"
if __name__ == "__main__":
t = int(input().strip())
for a0 in range(t):
n = int(input().strip())
a = list(map(int, input().strip().split(' ')))
result = canConstruct(a)
print(result)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
// Mathematics > Number Theory > Little Ashish's Huge Donation
// Help Ashish calculate donations.
//
// https://www.hackerrank.com/challenges/little-chammys-huge-donation/problem
// https://www.hackerrank.com/contests/infinitum-sep14/challenges/little-chammys-huge-donation
// challenge id: 3334
//
#include <bits/stdc++.h>
using namespace std;
// note: sum i^2 from i=1 to n = 1/6 n (1 + n) (1 + 2 n)
int main()
{
int t;
unsigned long i, x;
vector<unsigned long> values;
values.resize(310723); // 310723 = solution de sum(i^2) = 10^16
for (i = 1; ; ++i)
{
x = i * (i + 1) * (2 * i + 1) / 6;
if (x > 10000000000000000) break;
values[i] = x;
}
cin >> t;
while (t--)
{
cin >> x;
auto i = upper_bound(values.cbegin(), values.cend(), x);
--i;
cout << (i - values.cbegin()) << endl;
}
return 0;
}
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Divisibility of Power
# Divisibility Test.
#
# https://www.hackerrank.com/challenges/divisibility-of-power/problem
# https://www.hackerrank.com/contests/infinitum-aug14/challenges/divisibility-of-power
# challenge id: 2597
#
import math
# if x = ∏ pi^ei, find(i,j) | x <=> Ai^(...) | x <=> Ai^(...) = ∏ pi^(ei+...)
# the worst case is x=2^54, Ai^(...) should equal to 2^(54+...) * ∏ pi^(...)
# 2^53 < 10^16 < 2^54, 2^16 is the upper limit for x
max_exp = math.ceil(math.log(10 ** 16) / math.log(2)) # 54
# modified but sufficient version of function find()
def find(i, j, n):
if n == 0: # stop the recursion
return 0 # starting value 4 should be enough since 2^2^2 < 54 < 2^2^2^2
if i > j or A[i] == 1 or A[i + 1] == 0:
return 1 # normal case, 1^n = 1, n^0 = 1
if A[i] == 0:
return 0 # 0^n = 0
if A[i] >= max_exp:
return max_exp # whatever A[i+1], if A[i]>=54 it's sufficient
# the "real" function, value up to 54
return min(max_exp, A[i] ** find(i + 1, j, n - 1))
n = int(input())
A = list(map(int, input().strip().split()))
A.append(0) # for testing A[i+1] without IndexError
for _ in range(int(input())):
i, j, x = map(int, input().strip().split())
i -= 1 # A[] is 0 based
j -= 1
if x == 1 or i > j:
a = 1 # trivial case
else:
a = pow(A[i], find(i + 1, j, 4), x)
print('Yes' if a % x == 0 else 'No')
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Euler's Criterion
# Detect whether the number is a quadratic residue.
#
# https://www.hackerrank.com/challenges/eulers-criterion/problem
#
def egcd(b, a):
""" return a triple (g, x, y), such that ax + by = g = gcd(a, b) """
x0, x1, y0, y1 = 1, 0, 0, 1
while a != 0:
q, b, a = b // a, a, b % a
x0, x1 = x1, x0 - q * x1
y0, y1 = y1, y0 - q * y1
return b, x0, y0
def mulinv(b, m):
""" modular multiplicative inverse """
g, x, _ = egcd(b, m)
if g == 1:
return x % m
def powmod(x, k, m):
""" fast exponentiation x^k % m """
if k < 0:
x = mulinv(x, m)
k = -k
p = 1
if k == 0:
return p
if k == 1:
return x
while k != 0:
if k % 2 == 1:
p = (p * x) % m
x = (x * x) % m
k //= 2
return p
# Euler's Criterion -> Legendre symbol -> quadratic residue
for _ in range(int(input())):
A, M = map(int, input().split())
if A <= 1 or powmod(A, (M - 1) // 2, M) == 1:
print('YES')
else:
print('NO')
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Dancing in Pairs
# Find out if they can dance in pairs?
#
# https://www.hackerrank.com/challenges/dance-class/problem
# https://www.hackerrank.com/contests/infinitum-jun14/challenges/dance-class
# challenge id: 2561
#
from decimal import Decimal
for _ in range(int(input())):
n = Decimal(input())
p = n.sqrt()
print(["even", "odd"][int(p) % 2])
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Akhil and GF
# Help Akhil in impressing his girlfriend
#
# https://www.hackerrank.com/challenges/akhil-and-gf/problem
# https://www.hackerrank.com/contests/infinitum-aug14/challenges/akhil-and-gf
# challenge id: 2324
#
for _ in range(int(input())):
n, m = map(int, input().split())
# 1111...11 = (10^n - 1) / 9
# 1111...11 mod m = ((10^n - 1) / 9) mod m
# = ((10^n mod (m * 9)) - 1) / 9
p = pow(10, n, m * 9)
print((p - 1) // 9)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Divisor Exploration II
# Find the product of a sequence and then calculate the summation of its divisors.
#
# https://www.hackerrank.com/challenges/divisor-exploration-2/problem
# https://www.hackerrank.com/contests/infinitum17/challenges/divisor-exploration-2
# challenge id: 12002
#
# à exécuter en Pypy3, trop lent sinon...
class Crible:
""" Crible d'Eratosthène optimisé """
def __init__(self, n_max):
self.n_max = n_max
self.maximum = n = (n_max - 3) // 2 + 1
self.crible = crible = [False] * (n + 1)
self._premiers = None
self._phi = None
i = 0
while i < n:
while i < n:
if not crible[i]:
break
i += 1
k = 3
while True:
j = k * i + 3 * (k - 1) // 2
if j >= n:
break
crible[j] = True
k += 2
i += 1
def liste(self):
if self._premiers is None:
premiers = [2]
for i in range(1, self.maximum + 1):
if not self.crible[i - 1]:
premiers.append(2 * i + 1)
self._premiers = premiers
return self._premiers
def egcd(b, a):
""" algortihme d'Euclide étendu: (g, x, y) tel que ax + by = g = gcd(a, b) """
# https://fr.wikipedia.org/wiki/Algorithme_d%27Euclide_étendu
x0, x1, y0, y1 = 1, 0, 0, 1
while a != 0:
q, b, a = b // a, a, b % a
x0, x1 = x1, x0 - q * x1
y0, y1 = y1, y0 - q * y1
return b, x0, y0
def modinv(a, m):
""" modular inverse avec Bachet-Bézout """
# https://fr.wikipedia.org/wiki/Théorème_de_Bachet-Bézout
_, x, _ = egcd(a, m)
return x % m
# précalcul des 10^5 premiers nombres premiers
crible = Crible(1299709 + 1) # le 100000e nombre premier
primes = crible.liste()
MOD = 1000000007
# la "vraie" formule, mais il faut calculer en arithmétique modulaire
def sigma_1(p, a):
return (pow(p, a + 1) - 1) // (p - 1)
def F(p, a):
return (p * sigma_1(p, a) - (a + 1)) // (p - 1)
# numérateur et dénominateur de F()
def F_num(p, a):
return (pow(p, a + 2, MOD) - (p + (p - 1) * (a + 1)) % MOD) % MOD
def F_den(p):
return (p - 1) ** 2
def solve(m, a):
n = d = 1
for i, p in enumerate(primes[:m], 1):
n *= F_num(p, a + i)
d *= F_den(p)
n %= MOD
d %= MOD
r = n * modinv(d, MOD)
r %= MOD
print(r)
for _ in range(int(input())):
m, a = map(int, input().split())
solve(m, a) | {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Primitive Problem
# Find the primitive roots of a prime number.
#
# https://www.hackerrank.com/challenges/primitive-problem/problem
# https://www.hackerrank.com/contests/infinitum17/challenges/primitive-problem
#
# https://math.stackexchange.com/questions/124408/finding-a-primitive-root-of-a-prime-number
def decompose(n):
""" décomposition d'un nombre en facteurs premiers """
facteurs = {}
i = 2
while i * i <= n:
while n % i == 0:
n = n // i
facteurs[i] = facteurs.get(i, 0) + 1
if i >= 3:
i += 2
else:
i += 1
if n > 1:
facteurs[n] = facteurs.get(n, 0) + 1
return facteurs
def EulerPhi(n):
""" calcul de l'Indicatrice d'Euler φ(n) ou totient(n) """
phi = n
i = 2
while i * i <= n:
if n % i == 0:
phi -= phi // i
while n % i == 0:
n = n // i
if i != 2:
i += 2
else:
i += 1
if n > 1:
phi -= phi // n
return phi
def powmod(x, k, MOD):
""" fast exponentiation x^k % MOD """
p = 1
if k == 0:
return p
if k == 1:
return x
while k != 0:
if k % 2 == 1:
p = (p * x) % MOD
x = (x * x) % MOD
k //= 2
return p
def primitive_roots(p):
s = EulerPhi(p)
f = decompose(s)
for a in range(2, p):
ok = all(powmod(a, s // pi, p) != 1 for pi in f.keys())
if ok:
break
if len(decompose(p)) == 1:
return a, EulerPhi(p - 1)
# nota: ce cas n'arrive dans les testcases
return a, "?"
print(*primitive_roots(int(input())))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Identify Smith Numbers
# Write a program to check whether a given integer is a Smith number.
#
# https://www.hackerrank.com/challenges/identify-smith-numbers/problem
#
def decompose(n):
facteurs = []
i = 2
while i * i <= n:
while n % i == 0:
n = n // i
facteurs.append(i)
if i >= 3:
i += 2
else:
i += 1
if n > 1:
facteurs.append(n)
return facteurs
N = input()
# somme des chiffres des diviseurs
sd = sum(sum(map(int, list(str(d)))) for d in decompose(int(N)))
# somme des chiffres
sc = sum(map(int, list(N)))
print(int(sc == sd))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Easy GCD
# Find the maximum number less than K such that GCD of all numbers is still more than one!
#
# https://www.hackerrank.com/challenges/easy-gcd-1/problem
#
import math
import functools
def gcd(*numbers):
""" greatest common divisor """
return functools.reduce(math.gcd, numbers)
def diviseur(n):
""" premier diviseur premier de n """
i = 2
while i * i <= n:
q, r = divmod(n, i)
if r == 0:
return i
i += 1
return n
n, k = map(int, input().split())
A = list(map(int, input().split()))
g = gcd(*A)
g = diviseur(g)
print((k // g) * g)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Divisor Exploration 3
# Find the value given at the root of a tree constructing by the given rules.
#
# https://www.hackerrank.com/challenges/divisor-exploration-3/problem
# https://www.hackerrank.com/contests/infinitum18/challenges/divisor-exploration-3
# challenge id: 12630
#
MOD = 1000000007
# compute the 1000 first primes
PRIME_1000 = 7919 # 7919 is the 1000th prime
primes = []
sieve = [True] * (1 + PRIME_1000)
for n in range(2, PRIME_1000 + 1):
if sieve[n]:
# by default, n is prime and add it to the list
primes.append(n)
# remove the multiples of n
for i in range(n, PRIME_1000 + 1, n):
sieve[i] = False
def binomial(n, k):
""" binomial coefficient """
if k < 0 or k > n:
return 0
if k == 0 or k == n:
return 1
num = 1
den = 1
for i in range(1, min(k, n - k) + 1): # take advantage of symmetry
num *= (n + 1 - i)
den *= i
c = num // den
return c
def f(i, p, a):
# f(1,p,a) = p^a
# f(i,p,a) = (p * f(i-1,p,a) - binomial(a+i-2,i-2)) / (p-1) for i >= 2
num = p ** a
for j in range(2, i + 1):
num = p * num - binomial(a + j - 2, j - 2)
num //= p - 1
# print(" f({} {} {}) = {}".format(i, p, a, num))
return num % MOD
def egcd(b, a):
""" algortihme d'Euclide étendu: (g, x, y) tel que ax + by = g = gcd(a, b) """
# https://fr.wikipedia.org/wiki/Algorithme_d%27Euclide_étendu
x0, x1, y0, y1 = 1, 0, 0, 1
while a != 0:
q, b, a = b // a, a, b % a
x0, x1 = x1, x0 - q * x1
y0, y1 = y1, y0 - q * y1
return b, x0, y0
def modinv(a, m):
""" modular inverse avec Bachet-Bézout """
# https://fr.wikipedia.org/wiki/Théorème_de_Bachet-Bézout
g, x, _ = egcd(a, m)
assert g == 1
return x % m
def fast_f(i, p, a):
# f(1,p,a) = p^a
# f(i,p,a) = (p * f(i-1,p,a) - binomial(a+i-2,i-2)) / (p-1) for i >= 2
num, den = pow(p, a, MOD), 1
c_num, c_den = 1, 1
for j in range(2, i + 1):
if j > 2:
# compute the binomial coef
c_num = (c_num * (a + j - 2)) % MOD
c_den = (c_den * (j - 2)) % MOD
num = (p * num * c_den - c_num * den) % MOD
den = (den * (p - 1) * c_den) % MOD
num = (num * modinv(den, MOD)) % MOD
#print(" f({} {} {}) = {}".format(i, p, a, num))
return num
def solve(m, a, d):
# R = ∏ f(d,pᵢ,a+i)
res = 1
for i in range(m):
#x = f(d, primes[i], a + i + 1) % MOD
x = fast_f(d, primes[i], a + i + 1) % MOD
res *= x
res %= MOD
return res
#assert solve(2,0,1) == 18
#assert solve(2,0,2) == 39
#assert solve(1,0,3) == 4
for _ in range(int(input())):
m, a, d = map(int, input().split())
# 1 <= m, a, d <= 1000
print(solve(m, a, d))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
// Mathematics > Number Theory > Satisfactory Pairs
// How many pairs of integers give a solution?
//
// https://www.hackerrank.com/challenges/pairs-again/problem
// https://www.hackerrank.com/contests/w26/challenges/pairs-again
// challenge id: 27017
//
#include <bits/stdc++.h>
using namespace std;
int main()
{
vector<vector<unsigned>> divs;
vector<bool> used;
unsigned n;
cin >> n;
divs.resize(n + 1);
used.resize(n + 1);
// calcule les diviseurs de i ∈ [1, n]
for (unsigned i = 1; i <= n; i++)
{
for (unsigned j = i; j <= n; j += i)
{
divs[j].push_back(i);
}
}
unsigned nb = 0;
for (unsigned a = 1; a <= n; a++)
{
for (unsigned x = 1; a * x <= n; x++)
{
for (unsigned d : divs[n - a * x])
{
if (a < d)
{
if (!used[d])
{
used[d] = true;
nb++;
}
}
}
}
for (unsigned x = 1; a * x <= n; x++)
{
for (unsigned d : divs[n - a * x])
{
used[d] = false;
}
}
}
cout << nb << endl;
return 0;
}
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
### [Mathematics](https://www.hackerrank.com/domains/mathematics)
Without mathematics, there's nothing you can do. Everything around you is mathematics. Everything around you is numbers.
#### [Number Theory](https://www.hackerrank.com/domains/mathematics/number-theory)
Name | Preview | Code | Difficulty
---- | ------- | ---- | ----------
[Constructing a Number](https://www.hackerrank.com/challenges/constructing-a-number)|Construct a number divisible by 3 from the given numbers by reordering their digits.|[Python](constructing-a-number.py)|Easy
[Closest Number](https://www.hackerrank.com/challenges/closest-number)|What is the closest number?|[Python](closest-number.py)|Medium
[Sherlock and GCD](https://www.hackerrank.com/challenges/sherlock-and-gcd)|Help Sherlock in finding the subset.|[Python](sherlock-and-gcd.py)|Easy
[Primitive Problem](https://www.hackerrank.com/challenges/primitive-problem)|Find the primitive roots of a prime number.|[Python](primitive-problem.py)|Easy
[Identify Smith Numbers](https://www.hackerrank.com/challenges/identify-smith-numbers)|Write a program to check whether a given integer is a Smith number.|[Python](identify-smith-numbers.py)|Easy
[Euler's Criterion](https://www.hackerrank.com/challenges/eulers-criterion)|Detect whether the number is a quadratic residue.|[Python](eulers-criterion.py)|Easy
[Twins](https://www.hackerrank.com/challenges/twins)|How many pairs of twins can you find?|[Python](twins.py)|Medium
[Fibonacci Finding (easy)](https://www.hackerrank.com/challenges/fibonacci-finding-easy)|Find some Fibonacci numbers!|[Python](fibonacci-finding-easy.py)|Easy
[Little Panda Power](https://www.hackerrank.com/challenges/littlepandapower)|Compute A^B mod X|[Python](littlepandapower.py)|Hard
[Mehta and his Laziness](https://www.hackerrank.com/challenges/mehta-and-his-laziness)|How will Mehta do these calculations?|[Python](mehta-and-his-laziness.py)|Hard
[Minimal Distance to Pi](https://www.hackerrank.com/challenges/minimal-distance-to-pi)|Given a range of denominators, find the common fraction that best approximates Pi.|[Python](minimal-distance-to-pi.py)|Hard
[Help Mike](https://www.hackerrank.com/challenges/help-mike)|Help Mike attend the NSA meeting|[Python](help-mike.py)|Hard
[Dancing in Pairs](https://www.hackerrank.com/challenges/dance-class)|Find out if they can dance in pairs?|[Python](dance-class.py)|Hard
[The Chosen One](https://www.hackerrank.com/challenges/the-chosen-one)|Given a list of integers, find and print an integer that is a divisor of all but one integer in the list.|[Python](the-chosen-one.py)|Medium
[Power of large numbers](https://www.hackerrank.com/challenges/power-of-large-numbers)|How much does Hackerland coach pay to get Cristiano Ronaldo to play for his team?|[Python](power-of-large-numbers.py)|Medium
[Salary Blues](https://www.hackerrank.com/challenges/salary-blues)|Help manager of HackerX company to normalize salaries.|[Python](salary-blues.py)|Medium
[Akhil and GF](https://www.hackerrank.com/challenges/akhil-and-gf)|Help Akhil in impressing his girlfriend|[Python](akhil-and-gf.py)|Hard
[Little Ashish's Huge Donation](https://www.hackerrank.com/challenges/little-chammys-huge-donation)|Help Ashish calculate donations.|[C++](little-chammys-huge-donation.cpp)|Hard
[Manasa and Factorials](https://www.hackerrank.com/challenges/manasa-and-factorials)|Think about number of zeros in k!|[Python](manasa-and-factorials.py)|Hard
[Number of zero-xor subsets](https://www.hackerrank.com/challenges/number-of-subsets)|How many subsets with zero xor are here?|[Python](number-of-subsets.py)|Medium
[Breaking Sticks](https://www.hackerrank.com/challenges/breaking-sticks)|Find the length of the longest sequence of moves.|[C++](breaking-sticks.cpp)|Medium
[Cheese and Random Toppings](https://www.hackerrank.com/challenges/cheese-and-random-toppings)|How many ways are there to choose exactly R toppings from N toppings?|[Python](cheese-and-random-toppings.py)|Easy
[Easy GCD](https://www.hackerrank.com/challenges/easy-gcd-1)|Find the maximum number less than K such that GCD of all numbers is still more than one!|[Python](easy-gcd-1.py)|Medium
[Satisfactory Pairs](https://www.hackerrank.com/challenges/pairs-again)|How many pairs of integers give a solution?|[C++](pairs-again.cpp)|Hard
[Manasa loves Maths](https://www.hackerrank.com/challenges/manasa-loves-maths)|Find out if any permutation of the given number is divisible by 8.|[Python](manasa-loves-maths.py)|Medium
[Largest Non-Coprime Submatrix](https://www.hackerrank.com/challenges/largest-coprime-submatrix)|Given a matrix find the largest coprime submatrix.|[C++](largest-coprime-submatrix.cpp)|Hard
[John and GCD list](https://www.hackerrank.com/challenges/john-and-gcd-list)|Help John in making a list from GCD list|[Python](john-and-gcd-list.py)|Easy
[Divisor Exploration II](https://www.hackerrank.com/challenges/divisor-exploration-2)|Find the product of a sequence and then calculate the summation of its divisors.|[Python](divisor-exploration-2.py)|Hard
[Strange numbers](https://www.hackerrank.com/challenges/strange-numbers)|How many strange numbers belong to interval [L, R]?|[Python](strange-numbers.py)|Hard
[Easy math](https://www.hackerrank.com/challenges/easy-math)|Help Johnny in figuring out the value of Y|[Python](easy-math.py)|Medium
[Equations](https://www.hackerrank.com/challenges/equations)|Find the number of positive integral solutions for an equation.|[Python](equations.py)|Medium
[Binomial Coefficients](https://www.hackerrank.com/challenges/binomial-coefficients)|Calculate how many binomial coefficients of n become 0 after modulo by P.|[Python](binomial-coefficients.py)|Medium
[Lucy and Flowers](https://www.hackerrank.com/challenges/lucy-and-flowers)|Help Lucy's father with a computation involving flowers|[C++](lucy-and-flowers.cpp)|Medium
[Divisor Exploration 3](https://www.hackerrank.com/challenges/divisor-exploration-3)|Find the value given at the root of a tree constructing by the given rules.|[C++](divisor-exploration-3.cpp) [Python](divisor-exploration-3.py)|Hard
[Superpowers of 2](https://www.hackerrank.com/challenges/superpowers)|Just another numbers problem...|[Python](superpowers.py)|Advanced
[Sherlock Puzzle](https://www.hackerrank.com/challenges/sherlock-puzzle)|Help Sherlock get close to his Arch Nemesis, Jim Moriarty.|[Python](sherlock-puzzle.py)|Hard
[Divisibility of Power](https://www.hackerrank.com/challenges/divisibility-of-power)|Divisibility Test.|[Python](divisibility-of-power.py)|Medium
[Devu Vs Police](https://www.hackerrank.com/challenges/devu-police)|Help Devu escape from police|[Python](devu-police.py)|Hard
[Long Permutation](https://www.hackerrank.com/challenges/long-permutation)|Determine the n^th element of an infinite permutation!|[Python](long-permutation.py)|Hard
[Megaprime Numbers](https://www.hackerrank.com/challenges/megaprime-numbers)|Count the number of primes in a given range that consist only of prime digits.|[Python](megaprime-numbers.py)|Medium
[Divisor Exploration](https://www.hackerrank.com/challenges/divisor-exploration)|Find and print the number of divisors for each dataset.|[Python](divisor-exploration.py)|Hard
[Prime Sum](https://www.hackerrank.com/challenges/prime-sum)|Represent a number as sum of primes.|[Python](prime-sum.py)|Medium
[nCr](https://www.hackerrank.com/challenges/ncr)|Given n and r, in how many ways can r items be chosen from n items?|[Python](ncr.py)|Expert
[Fibonacci GCD](https://www.hackerrank.com/challenges/fibonacci-gcd)|Find gcd for n fibonacci numbers.|[Python](fibonacci-gcd.py)|Hard
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > Binomial Coefficients
# Calculate how many binomial coefficients of n become 0 after modulo by P.
#
# https://www.hackerrank.com/challenges/binomial-coefficients/problem
# challenge id: 107
#
# corollaire du théorème de Lucas https://en.wikipedia.org/wiki/Lucas%27s_theorem
def solve(n, p):
a = 1
n1 = n + 1
while n >= p:
n, r = divmod(n, p)
a *= r + 1
a *= n + 1
a = n1 - a
print(a)
for _ in range(int(input())):
n, p = map(int, input().split())
solve(n, p)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Number Theory > nCr
# Given n and r, in how many ways can r items be chosen from n items?
#
# https://www.hackerrank.com/challenges/ncr/problem
# challenge id: 115
#
from math import factorial
MAX = 38
C = [[0 for _ in range(MAX) ] for _ in range(MAX)]
# Calculate value of Binomial Coefficient in bottom up manner
# https://www.geeksforgeeks.org/dynamic-programming-set-9-binomial-coefficient/
for i in range(MAX):
for j in range(i + 1):
# Base Cases
if j == 0 or j == i:
C[i][j] = 1
# Calculate value using previously stored values
else:
C[i][j] = C[i-1][j-1] + C[i-1][j]
def nCr(n, r):
""" binomial coefficient: n choose r """
if n < r: return 0
return factorial(n) // factorial(r) // factorial(n - r)
def lucas(n, r, p):
""" Théorème de Lucas """
# https://fr.wikipedia.org/wiki/Théorème_de_Lucas
assert n >= r
c = 1
while r != 0:
c = (c * C[n % p][r % p]) % p
n //= p
r //= p
return c
def egcd(b, a):
""" algortihme d'Euclide étendu: (g, x, y) tel que ax + by = g = gcd(a, b) """
# https://fr.wikipedia.org/wiki/Algorithme_d%27Euclide_étendu
x0, x1, y0, y1 = 1, 0, 0, 1
while a != 0:
q, b, a = b // a, a, b % a
x0, x1 = x1, x0 - q * x1
y0, y1 = y1, y0 - q * y1
return b, x0, y0
def modinv(a, m):
""" modular inverse avec Bachet-Bézout """
# https://fr.wikipedia.org/wiki/Théorème_de_Bachet-Bézout
g, x, _ = egcd(a, m)
assert g == 1
return x % m
""" autre possibilité:
def modinv(a, m):
# https://fr.wikipedia.org/wiki/Théorème_d%27Euler_(arithmétique)
# a et m coprime
phi = {27: 18, 11: 10, 13: 12, 37: 36}
return pow(a, phi[m] - 1, m)
"""
def crt(a, n):
""" Théorème des restes chinois """
# https://fr.wikipedia.org/wiki/Théorème_des_restes_chinois
p = 1
for i in n:
p *= i
r = 0
for ai, ni in zip(a, n):
r += ai * (p // ni) * modinv(p // ni, ni)
return r % p
def v(n, p):
""" formule de Legendre: exposant de p dans n! """
# https://fr.wikipedia.org/wiki/Formule_de_Legendre
s = 0
while n != 0:
n //= p
s += n
return s
fa = [1] * 28
for i in range(28):
fa[i] = (fa[i - 1] * (i if i % 3 != 0 else 1)) % 27
def f_mod27(n):
return (pow(fa[27], n // 27, 27) * fa[n % 27]) % 27
def fact_mod27(n):
i = 1
ret = 1
while i <= n:
ret = (ret * f_mod27(n // i)) % 27
i *= 3
return ret
def nCr_mod27(n, r):
""" (n r) mod 27 """
# (n r) = n! / r! / (n-r)!
# x! mod 27 = F(x) * 3^v(x,3) mod 27
e = (v(n, 3) - v(r, 3) - v(n - r, 3))
return (3 ** e * fact_mod27(n) * modinv(fact_mod27(r) * fact_mod27(n - r), 27)) % 27
def solve(n, r):
# 142857 = 3 * 3 * 3 * 11 * 13 * 37
a = [nCr_mod27(n, r), lucas(n, r, 11), lucas(n, r, 13), lucas(n, r, 37)]
p = [27, 11, 13, 37]
print(crt(a, p))
for _ in range(int(input())):
n, r = map(int, input().split())
solve(n, r)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Diwali Lights
# Number of ways to light the room
#
# https://www.hackerrank.com/challenges/diwali-lights/problem
#
# chaque lampe peut être allumée ou éteinte
# il y a donc 2^n possibilités pour n lampes
# -1 parce qu'il en faut une allumé
for n in range(int(input())):
n = int(input())
print((2 ** n - 1) % 100000) | {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
"""
Sherlock and Permutations
https://www.hackerrank.com/challenges/sherlock-and-permutations
"""
import sys
from math import factorial
def C(n, k):
return factorial(n) // factorial(k) // factorial(n - k)
def solve(m0, m1):
m1 -= 1
if m0 == 0 or m1 == 0:
print(1)
else:
print(C(m0 + m1, m0) % 1000000007)
if len(sys.argv) == 3:
solve(int(sys.argv[1]), int(sys.argv[2]))
else:
nb = int(input())
for _ in range(nb):
m0, m1 = map(int, input().split())
solve(m0, m1)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Russian Peasant Exponentiation
# The only correct way to raise numbers in powers.
#
# https://www.hackerrank.com/challenges/russian-peasant-exponentiation/problem
#
for _ in range(int(input())):
a, b, k, m = map(int, input().split())
# calcule (a + b∙𝑖)^k mod m
if k == 0:
print(1, 0)
else:
while k % 2 == 0:
# (a + b∙𝑖)² = a² + 2a∙b∙𝑖 - b²
a, b = a * a - b * b, 2 * a * b
a, b = a % m, b % m
k //= 2
c, d = a, b
k //= 2
while k > 0:
a, b = a * a - b * b, 2 * a * b
a, b = a % m, b % m
if k % 2 == 1:
# (a + b∙𝑖)×(c + d∙𝑖)
c, d = a * c - b * d, d * a + c * b
c, d = c % m, d % m
k //= 2
print(c, d)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Sumar and the Floating Rocks
# Count the number of integral rocks between Harry and Hermoine
#
# https://www.hackerrank.com/challenges/harry-potter-and-the-floating-rocks/problem
#
from math import gcd
for _ in range(int(input())):
x1, y1, x2, y2 = map(int, input().split())
# y = A* x + B
# y1 = A * x1 + B
# y2 = A * x2 + B
# A = (y2-y1) / (x2-x1)
f = gcd(y2 - y1, x2 - x1) - 1
print(f)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Fundamentals > Halloween party
# Help Alex give Silvia the maximum number of chocolates
#
# https://www.hackerrank.com/challenges/halloween-party/problem
#
for _ in range(int(input())):
K = int(input())
# K pair: on coupe K/2 fois horizontalement et K/2 fois verticalement
# K impair: on coupe une fois de plus horizontalement ou verticalement
print((K // 2) * ((K + 1) // 2)) | {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
// Special Multiple
// Can you find the least positive integer that is made of only 0s and 9s? - 30 Points
//
// https://www.hackerrank.com/challenges/special-multiple/problem
//
// cf. special-multiple.py pour l'explication
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
long nine_zero(int n)
{
for (int i = 1; ; ++i)
{
long multiple = 0;
long chiffre = 9;
for (int j = i; j != 0; j = j >> 1)
{
if (j & 1) multiple += chiffre;
chiffre *= 10;
}
if (multiple % n == 0) return multiple;
}
}
int main()
{
int t, n;
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);
printf("%ld\n", nine_zero(n));
}
return 0;
}
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Army Game
# Find the minimum number of supply packages Luke must drop to supply all of his army bases.
#
# https://www.hackerrank.com/challenges/game-with-cells/problem
#
n, m = map(int, input().split())
r = ((n + 1) // 2) * ((m + 1) // 2)
print(r)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Special Multiple
# Can you find the least positive integer that is made of only 0s and 9s? - 30 Points
#
# https://www.hackerrank.com/challenges/special-multiple/problem
#
# Le plus simple est décrire 1, 2, 3... en "binaire" {0,9} (au lieu de {0,1})
# et tester la divisibilité du nombre trouvé
# Amusant :) L'éditorial donne la même solution élégante en Python
# tandis que le tester code est carrément plus obscur
def nine_zero(n):
for i in range(1, 100000):
f = int(bin(i)[2:]) * 9
if f % n == 0:
return f
return "?"
for n in range(int(input())):
print(nine_zero(int(input()))) | {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Fundamentals > Jim and the Jokes
# Jim is running out of jokes! Help him finding new jokes.
#
# https://www.hackerrank.com/challenges/jim-and-the-jokes/problem
#
# algo: créer une table qui compte les nombres lus dans la base indiquée
jokes = {}
for _ in range(int(input())):
b, x = input().split()
try:
f = int(x, int(b))
jokes[f] = jokes.get(f, 0) + 1
except ValueError:
# erreur de conversion dans la base donnée
pass
# attention: quand il y a plusieurs fois le même nombre, toutes les valeurs comptent
print(sum(f * (f - 1) // 2 for f in jokes.values() if f >= 1))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Fundamentals > Is Fibo
# Find out if a number is a Fibonacci Number or not.
#
# https://www.hackerrank.com/challenges/is-fibo/problem
#
import bisect
SOLUTION = 4
fibo_max = 10 ** 10
fibo = [0, 1, 2]
while True:
c = fibo[-2] + fibo[-1]
if c > fibo_max:
break
fibo.append(c)
if SOLUTION == 0:
# recherche basique dans le tableau de 50 éléments
def is_fibo(n):
return n in fibo
elif SOLUTION == 1:
fibonacci = {}
for i in fibo:
fibonacci[i] = True
# recherche par hash
def is_fibo(n):
return n in fibonacci
elif SOLUTION == 2:
# binary search, fibo[] est déjà trié
def is_fibo(n):
i = bisect.bisect_right(fibo, n)
return i > 0 and fibo[i - 1] == n
elif SOLUTION == 3:
n_fibo = len(fibo)
# autre dichotomie
def is_fibo(n):
i = bisect.bisect_left(fibo, n)
return i < n_fibo and fibo[i] == n
elif SOLUTION == 4:
n_fibo = len(fibo)
# dichotomie manuelle
def is_fibo(n):
lo, hi = 0, n_fibo
while lo < hi:
mid = (lo + hi) // 2
if fibo[mid] < n: lo = mid + 1
elif fibo[mid] == n: return True
else: hi = mid
return False
for _ in range(int(input())):
print("IsFibo" if is_fibo(int(input())) else "IsNotFibo")
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Summing the N series
# Sum the N series.
#
# https://www.hackerrank.com/challenges/summing-the-n-series/problem
#
# c'est quand même plus facile que les problèmes de Project Euler...
for _ in range(int(input())):
n = int(input())
print((n ** 2) % 1000000007)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Handshake
# Count the number of Handshakes in a board meeting.
#
# https://www.hackerrank.com/challenges/handshake/problem
#
T = int(input())
for a0 in range(T):
N = int(input())
print(N * (N - 1) // 2)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Most Distant
# Measure the gap between the two most distant coordinates.
#
# https://www.hackerrank.com/challenges/most-distant/problem
#
# la plus grande distance se situe forcément entre deux extrêmités
# du quadrilatère entourant les points
n = int(input())
x, y = map(float, input().split())
x0, y0, x1, y1 = x, y, x, y
for _ in range(1, n):
x, y = map(int, input().split())
x0 = min(x0, x)
x1 = max(x1, x)
y0 = min(y0, y)
y1 = max(y1, y)
print("{:6f}".format(max(x1 - x0,
y1 - y0,
(x0 ** 2 + y1 ** 2) ** 0.5,
(x0 ** 2 + y0 ** 2) ** 0.5,
(x1 ** 2 + y1 ** 2) ** 0.5,
(x1 ** 2 + y0 ** 2) ** 0.5)))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Sherlock and Divisors
# Help Sherlock in Counting Divisors.
#
# https://www.hackerrank.com/challenges/sherlock-and-divisors/problem
#
# from my eulerlib.py
def diviseurs(n):
div = [1]
i = 2
while i * i <= n:
q, r = divmod(n, i)
if r == 0:
div.append(i)
if i != q:
div.append(q)
i += 1
if n != 1:
div.append(n)
return div
def even_divisors(n):
return sum(1 for d in diviseurs(n) if d % 2 == 0)
if __name__ == '__main__':
for _ in range(int(input())):
n = int(input())
result = even_divisors(n)
print(result)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Minimum Height Triangle
# Find the smallest height of a triangle preserving the given constraints.
#
# https://www.hackerrank.com/challenges/lowest-triangle/problem
#
base, area = map(int, input().split())
height = (2 * area - 1) // base + 1
print(height)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Fundamentals > Mutual Recurrences
# Compute terms in a mutual recurrence.
#
# https://www.hackerrank.com/challenges/mutual-recurrences/problem
# https://www.hackerrank.com/contests/infinitum14/challenges/mutual-recurrences
# challenge id: 15898
#
import sys
MOD = 1000000000
#------------------------------------------------------------------------------
a, b, c, d, e, f, g, h = 0, 0, 0, 0, 0, 0, 0, 0
cache_x = None
cache_y = None
def x(n):
if n < 0:
return 1
v = cache_x[n]
if v == 0:
v = x(n - a) + y(n - b) + y(n - c) + n * d ** n
cache_x[n] = v
return v
def y(n):
if n < 0:
return 1
v = cache_y[n]
if v == 0:
v = y(n - e) + x(n - f) + x(n - g) + n * h ** n
cache_y[n] = v
return v
#------------------------------------------------------------------------------
class Matrice:
def __init__(self, n, v=None):
self.n = n
self.v = [0] * (n * n)
if v is not None:
if isinstance(v, int) and v == 1:
for i in range(n):
self.v[i + n * i] = 1
elif isinstance(v, list) and len(v) == n * n:
self.v = v
else:
raise ValueError
def __setitem__(self, xy, v):
self.v[xy[0] + self.n * xy[1]] = v
def __getitem__(self, xy):
return self.v[xy[0] + self.n * xy[1]]
def __call__(self, x, y):
return self.v[x + self.n * y]
def __str__(self):
n = self.n
m = [max(len(str(self.v[x + n * y])) for y in range(n))
for x in range(n)]
s = ''
for i in range(0, n * n, n):
s += '[' if i == 0 else ' '
s += ' '.join(str(self.v[j]).rjust(m[j - i]) for j in range(i, i + n))
s += ']' if i == n * n - n else '\n'
return s
def __imod__(self, m):
""" A %= m """
for i in range(self.n * self.n):
self.v[i] %= m
return self
def tr(self):
n = self.n
Ap = Matrice(n)
for x in range(n):
for y in range(n):
Ap.v[x + n * y] = self.v[y + n * x]
return Ap
class Vecteur:
def __init__(self, n, v=None):
self.n = n
self.v = [0] * n
if v is not None:
if isinstance(v, list) and len(v) == n:
self.v = v
else:
raise ValueError
def __setitem__(self, x, v):
self.v[x] = v
def __getitem__(self, x):
return self.v[x]
def __call__(self, x):
return self.v[x]
def __str__(self):
n = self.n
s = '[' + ' '.join(map(str, self.v)) + ']'
return s
def __imod__(self, m):
""" V %= m """
for i in range(self.n):
self.v[i] %= m
return self
def multm(A, B):
""" produit matriciel: A * B """
assert A.n == B.n
n = A.n
r = Matrice(n)
for x in range(n):
for y in range(n):
r[(x, y)] = sum(A(i, y) * B(x, i) for i in range(n)) % MOD
return r
def multv(A, V):
""" produit matrice/vecteur: A * V """
assert A.n == V.n
n = A.n
r = Vecteur(n)
for y in range(n):
r[y] = sum(A(i, y) * V(i) for i in range(n)) % MOD
return r
def power(M, k):
""" fast exponentiation M^k """
P = Matrice(M.n, 1)
if k == 0:
return P
if k == 1:
return M
while k != 0:
if k % 2 == 1:
P = multm(P, M)
M = multm(M, M)
k //= 2
return P
#------------------------------------------------------------------------------
def fibonacci_easy(a, b, n):
A = Matrice(2, [1, 1, 1, 0])
An = power(A, n)
F0 = Vecteur(2, [b, a])
Fn = multv(An, F0)
print(Fn[1])
def solve(a, b, c, d, e, f, g, h, n):
A = Matrice(24)
A[( a - 1, 0)] += 1 # x(n) = x(n - a)
A[(10 + b - 1, 0)] += 1 # + y(n - b)
A[(10 + c - 1, 0)] += 1 # + y(n - c)
A[( 22, 0)] += 1 # + n * d ** n
A[(10 + e - 1, 10)] += 1 # y(n) = y(n - e)
A[( f - 1, 10)] += 1 # + x(n - f)
A[( g - 1, 10)] += 1 # + x(n - g)
A[( 20, 10)] += 1 # + n * h ** n
for i in range(1, 10):
A[(i - 1, i)] += 1
A[(10 + i - 1, 10 + i)] += 1
A[(20, 20)] = h
A[(21, 20)] = h
A[(21, 21)] = h
A[(22, 22)] = d
A[(23, 22)] = d
A[(23, 23)] = d
V = Vecteur(24, [1] * 24)
V[20] = 0
V[22] = 0
# print(A, file=sys.stderr)
A = power(A, n + 1)
r = multv(A, V)
print(r[0], r[10])
if __name__ == '__main__':
for _ in range(int(input())):
a, b, c, d, e, f, g, h, n = map(int, input().split())
""" naif
cache_x = [0] * (n + 1)
cache_y = [0] * (n + 1)
print(x(n) % MOD, y(n) % MOD)
"""
solve(a, b, c, d, e, f, g, h, n)
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
# Mathematics > Fundamentals > Bus Station
# Find all suitable bus sizes
#
# https://www.hackerrank.com/challenges/bus-station/problem
#
#TODO
import sys
n = int(input())
a = list(map(int, input().split()))
result = []
# solution timeout
if False:
max = sum(a)
bus = 1
while bus <= max:
if max % bus != 0:
bus += 1
continue
x = bus
i = 0
while i < n:
x -= a[i]
if x < 0: break
if x == 0:
x = bus
i += 1
if i == n and x == bus:
# sys.stdout.write(str(bus) + " ")
result.append(str(bus))
bus += 1
# solution OK
# on considère la taille du bus R comme le cumul des groupes qui restent
# et on vérifie que les groupes précédents sont compatibles
# |------------------------------------|
# <----- L -----><-------- R -------->
# à chaque instant, on doit avoir les groupes du côté L qui tiennent
# parfaitement dans un bus de taille R
if True:
L = 0
R = sum(a)
for x in a:
if R == 0:
break
if L % R == 0:
bus = 0
for i in a:
bus += i
if bus == R:
bus = 0
elif bus > R:
break
if bus == 0:
result.insert(0, str(R))
L += x
R -= x
print(" ".join(result))
| {
"repo_name": "rene-d/hackerrank",
"stars": "65",
"repo_language": "Python",
"file_name": "README.md",
"mime_type": "text/plain"
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.