term
stringlengths 1
63
⌀ | category
stringclasses 15
values | label
int64 0
1
| definition
stringlengths 5
3.18k
⌀ |
---|---|---|---|
above ground level | Space and Astronomy | 1 | In aviation , atmospheric sciences and broadcasting , a height above ground level ( AGL ) is a height measured with respect to the underlying ground surface . This is as opposed to altitude/elevation above mean sea level (AMSL), or (in broadcast engineering ) height above average terrain (HAAT). In other words, these expressions (AGL, AMSL, HAAT) indicate where the "zero level" or "reference altitude" is located. |
absolute humidity | Space and Astronomy | 1 | describes the water content of air and is expressed in either grams per cubic meter or grams per kilogram. |
absolute value | Space and Astronomy | 1 | In mathematics , the absolute value or modulus | x | of a real number x is the non-negative value of x without regard to its sign . Namely, | x | = x for a positive x , | x | = − x for a negative x (in which case − x is positive), and |0| = 0 . For example, the absolute value of 3 is 3, and the absolute value of −3 is also 3. The absolute value of a number may be thought of as its distance from zero. |
acceleration | Space and Astronomy | 1 | In physics , acceleration is the rate of change of velocity of an object with respect to time. An object's acceleration is the net result of any and all forces acting on the object, as described by Newton's Second Law . The SI unit for acceleration is metre per second squared (m s −2 ). s are vector quantities (they have magnitude and direction ) and add according to the parallelogram law . As a vector , the calculated net force is equal to the product of the object's mass (a scalar quantity) and its acceleration. |
acquisition of signal | Space and Astronomy | 1 | A pass , in spaceflight and satellite communications , is the period in which a satellite or other spacecraft is above the local horizon and available for radio communication with a particular ground station , satellite receiver , or relay satellite (or, in some cases, for visual sighting). The beginning of a pass is termed acquisition of signal ; the end of a pass is termed loss of signal . The point at which a spacecraft comes closest to a ground observer is the time of closest approach . |
action | Space and Astronomy | 1 | In physics , action is an attribute of the dynamics of a physical system from which the equations of motion of the system can be derived. It is a mathematical functional which takes the trajectory , also called path or history , of the system as its argument and has a real number as its result. Generally, the action takes different values for different paths. has the dimensions of ⋅ or ⋅ , and its SI unit is joule -second. |
adf | Space and Astronomy | 1 | Automatic direction finder |
advanced space vision system | Space and Astronomy | 1 | The (also known as the Space Vision System or by its acronym SVS) is a computer vision system designed primarily for International Space Station (ISS) assembly. The system uses regular 2D cameras in the Space Shuttle bay, on the Canadarm , or on the ISS along with cooperative targets to calculate the 3D position of an object. |
aeroacoustics | Space and Astronomy | 1 | is a branch of acoustics that studies noise generation via either turbulent fluid motion or aerodynamic forces interacting with surfaces. Noise generation can also be associated with periodically varying flows. A notable example of this phenomenon is the Aeolian tones produced by wind blowing over fixed objects. |
aerobraking | Space and Astronomy | 1 | is a spaceflight maneuver that reduces the high point of an elliptical orbit ( apoapsis ) by flying the vehicle through the atmosphere at the low point of the orbit ( periapsis ). The resulting drag slows the spacecraft . is used when a spacecraft requires a low orbit after arriving at a body with an atmosphere, and it requires less fuel than does the direct use of a rocket engine . |
aerocapture | Space and Astronomy | 1 | is an orbital transfer maneuver used to reduce the velocity of a spacecraft from a hyperbolic trajectory to an elliptical orbit around the targeted celestial body. |
aerodynamics | Space and Astronomy | 1 | is the study of the motion of air , particularly with respect to its interaction with a solid object, such as an airplane wing. is a sub-field of gas dynamics , which in turn is a sub-field of fluid dynamics . Many aspects and principles of aerodynamics theory are common to these three fields. |
aeroelasticity | Space and Astronomy | 1 | is the branch of physics and engineering that studies the interactions between the inertial , elastic , and aerodynamic forces that occur when an elastic body is exposed to a fluid flow. Although historical studies have been focused on aeronautical applications, recent research has found applications in fields such as energy harvesting and understanding snoring . The study of aeroelasticity may be broadly classified into two fields: static aeroelasticity, which deals with the static or steady response of an elastic body to a fluid flow; and dynamic aeroelasticity, which deals with the body's dynamic (typically vibrational ) response. draws on the study of fluid mechanics , solid mechanics , structural dynamics and dynamical systems . The synthesis of aeroelasticity with thermodynamics is known as aerothermoelasticity, and its synthesis with control theory is known as aeroservoelasticity. |
aeronautics | Space and Astronomy | 1 | is the science or art involved with the study, design , and manufacturing of air flight capable machines, and the techniques of operating aircraft and rockets within the atmosphere . |
aerospace architecture | Space and Astronomy | 1 | is broadly defined to encompass architectural design of non-habitable and habitable structures and living and working environments in aerospace-related facilities, habitats, and vehicles. These environments include, but are not limited to: science platform aircraft and aircraft-deployable systems; space vehicles , space stations , habitats and lunar and planetary surface construction bases; and Earth-based control, experiment, launch, logistics, payload, simulation and test facilities. Earth analogs to space applications may include Antarctic, desert, high altitude, underground, undersea environments and closed ecological systems. |
aerospace bearing | Space and Astronomy | 1 | s are the bearings installed in aircraft and aerospace systems including commercial, private, military, or space applications. |
aerospace engineering | Space and Astronomy | 1 | is the primary field of engineering concerned with the development of aircraft and spacecraft . It has two major and overlapping branches: Aeronautical engineering and Astronautical Engineering. Avionics engineering is similar, but deals with the electronics side of aerospace engineering. |
aerospace materials | Space and Astronomy | 1 | are materials, frequently metal alloys , that have either been developed for, or have come to prominence through, their use for aerospace purposes. These uses often require exceptional performance, strength or heat resistance, even at the cost of considerable expense in their production or machining. Others are chosen for their long-term reliability in this safety-conscious field, particularly for their resistance to fatigue . |
aerospike engine | Space and Astronomy | 1 | is a type of rocket engine that maintains its aerodynamic efficiency across a wide range of altitudes . It belongs to the class of altitude compensating nozzle engines. A vehicle with an aerospike engine uses 25–30% less fuel at low altitudes, where most missions have the greatest need for thrust . |
aerostat | Space and Astronomy | 1 | is a lighter than air aircraft that gains its lift through the use of a buoyant gas. s include unpowered balloons and powered airships . |
aerostructure | Space and Astronomy | 1 | is a component of an aircraft 's airframe. This may include all or part of the fuselage , wings , or flight control surfaces. |
aft-crossing trajectory | Space and Astronomy | 1 | is an alternate flight path for a rocket. The rocket's rotation (induced by the deployment from the aircraft) is slowed by a small parachute attached to its tail, then ignited once the carrier aircraft has passed it. It is ignited before it is pointing fully vertically, however it will turn to do so, and accelerates to pass behind the carrier aircraft. |
agl | Space and Astronomy | 1 | Above ground level |
aileron | Space and Astronomy | 1 | is a hinged flight control surface usually forming part of the trailing edge of each wing of a fixed-wing aircraft . s are used in pairs to control the aircraft in roll (or movement around the aircraft's longitudinal axis ), which normally results in a change in flight path due to the tilting of the lift vector . Movement around this axis is called 'rolling' or 'banking'. |
aircraft | Space and Astronomy | 1 | is a machine that is able to fly by gaining support from the air . It counters the force of gravity by using either static lift or by using the dynamic lift of an airfoil , or in a few cases the downward thrust from jet engines . Common examples of aircraft include airplanes , helicopters , airships (including blimps ), gliders , and hot air balloons . |
aircraft flight control systems | Space and Astronomy | 1 | A conventional fixed-wing aircraft flight control system consists of flight control surfaces , the respective cockpit controls, connecting linkages, and the necessary operating mechanisms to control an aircraft's direction in flight. Aircraft engine controls are also considered as flight controls as they change speed. |
airfoil | Space and Astronomy | 1 | An airfoil ( American English ) or aerofoil ( British English ) is the cross-sectional shape of a wing , blade (of a propeller , rotor , or turbine ), or sail (as seen in cross-section ). |
airlock | Space and Astronomy | 1 | An airtight room with two entrances that allows an astronaut to go on aspacewalk without letting the air out of the spacecraft. |
airship | Space and Astronomy | 1 | An airship or dirigible balloon is a type of aerostat or lighter-than-air aircraft that can navigate through the air under its own power. Aerostats gain their lift from large gas bags filled with a lifting gas that is less dense than the surrounding air. |
albedo | Space and Astronomy | 1 | is the measure of the diffuse reflection of solar radiation out of the total solar radiation received by an astronomical body (e.g. a planet like Earth ). It is dimensionless and measured on a scale from 0 (corresponding to a black body that absorbs all incident radiation) to 1 (corresponding to a body that reflects all incident radiation). |
anemometer | Space and Astronomy | 1 | is a device used for measuring wind speed , and is also a common weather station instrument. The term is derived from the Greek word anemos , which means wind , and is used to describe any wind speed instrument used in meteorology . |
angle of attack | Space and Astronomy | 1 | In fluid dynamics , angle of attack ( AOA , or α \alpha } ) is the angle between a reference line on a body (often the chord line of an airfoil ) and the vector representing the relative motion between the body and the fluid through which it is moving. is the angle between the body's reference line and the oncoming flow. |
angular momentum | Space and Astronomy | 1 | In physics , angular momentum (rarely, moment of momentum or rotational momentum ) is the rotational equivalent of linear momentum . It is an important quantity in physics because it is a conserved quantity —the total angular momentum of a system remains constant unless acted on by an external torque . |
angular velocity | Space and Astronomy | 1 | In physics , the angular velocity of a particle is the rate at which it rotates around a chosen center point: that is, the time rate of change of its angular displacement relative to the origin (i.e. in layman's terms: how quickly an object goes around something over a period of time – e.g. how fast the earth orbits the sun). It is measured in angle per unit time, radians per second in SI units, and is usually represented by the symbol omega ( ω , sometimes Ω ). By convention, positive angular velocity indicates counter-clockwise rotation, while negative is clockwise. |
anticyclone | Space and Astronomy | 1 | An anticyclone (that is, opposite to a cyclone ) is a weather phenomenon defined by the United States National Weather Service 's glossary as "a large-scale circulation of winds around a central region of high atmospheric pressure, clockwise in the Northern Hemisphere, counterclockwise in the Southern Hemisphere". |
antimatter rocket | Space and Astronomy | 1 | is a proposed class of rockets that use antimatter as their power source. There are several designs that attempt to accomplish this goal. The advantage to this class of rocket is that a large fraction of the rest mass of a matter/antimatter mixture may be converted to energy, allowing antimatter rockets to have a far higher energy density and specific impulse than any other proposed class of rocket. |
apsis | Space and Astronomy | 1 | is an extreme point in the orbit of an object . The word comes via Latin from Greek and is cognate with apse . For elliptic orbits about a larger body, there are two apsides, named with the prefixes peri- (from περί (peri) ' near ' ) and ap- / apo- (from ἀπ(ό) (ap(ó)) ' away from ' ) added to a reference to the body being orbited . |
arcjet rocket | Space and Astronomy | 1 | or arcjet thruster is a form of electrically powered spacecraft propulsion , in which an electrical discharge (arc) is created in a flow of propellant (typically hydrazine or ammonia ). This imparts additional energy to the propellant, so that one can extract more work out of each kilogram of propellant, at the expense of increased power consumption and (usually) higher cost. Also, the thrust levels available from typically used arcjet engines are very low compared with chemical engines. |
areal velocity | Space and Astronomy | 1 | In classical mechanics , areal velocity (also called sector velocity or sectorial velocity ) is the rate at which area is swept out by a particle as it moves along a curve . |
argument of periapsis | Space and Astronomy | 1 | (also called argument of perifocus or argument of pericenter ), symbolized as ω , is one of the orbital elements of an orbiting body. Parametrically, ω is the angle from the body's ascending node to its periapsis , measured in the direction of motion. |
aspect ratio | Space and Astronomy | 1 | In aeronautics , the aspect ratio of a wing is the ratio of its span to its mean chord . It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. Aspect ratio and other features of the planform are often used to predict the aerodynamic efficiency of a wing because the lift-to-drag ratio increases with aspect ratio, improving fuel economy in aircraft . |
aeronautics | Space and Astronomy | 1 | In aeronautics , the aspect ratio of a wing is the ratio of its span to its mean chord . It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. Aspect ratio and other features of the planform are often used to predict the aerodynamic efficiency of a wing because the lift-to-drag ratio increases with aspect ratio, improving fuel economy in aircraft . |
asteroid | Space and Astronomy | 1 | A rocky object in space that can be a few feet wide to several hundred miles wide. Most asteroids in the solar system orbit in a belt between Mars and Jupiter. |
astrodynamics | Space and Astronomy | 1 | Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft . |
atmospheric entry | Space and Astronomy | 1 | is the movement of an object from outer space into and through the gases of an atmosphere of a planet , dwarf planet or natural satellite . There are two main types of atmospheric entry: uncontrolled entry, such as the entry of astronomical objects , space debris or bolides ; and controlled entry (or reentry) of a spacecraft capable of being navigated or following a predetermined course. Technologies and procedures allowing the controlled atmospheric entry, descent and landing of spacecraft are collectively termed as EDL . |
attitude control | Space and Astronomy | 1 | is controlling the orientation of an object with respect to an inertial frame of reference or another entity like the celestial sphere , certain fields, and nearby objects, etc. Controlling vehicle attitude requires sensors to measure vehicle orientation, actuators to apply the torques needed to re-orient the vehicle to a desired attitude, and algorithms to command the actuators based on (1) sensor measurements of the current attitude and (2) specification of a desired attitude. The integrated field that studies the combination of sensors, actuators and algorithms is called "Guidance, Navigation and Control" (GNC). |
automatic direction finder | Space and Astronomy | 1 | ( ADF ) is a marine or aircraft radio-navigation instrument that automatically and continuously displays the relative bearing from the ship or aircraft to a suitable radio station. |
avionics | Space and Astronomy | 1 | are the electronic systems used on aircraft, artificial satellites , and spacecraft . Avionic systems include communications, navigation, the display and management of multiple systems, and the hundreds of systems that are fitted to aircraft to perform individual functions. |
axial stress | Space and Astronomy | 1 | a normal stress parallel to the axis of cylindrical symmetry. |
balloon | Space and Astronomy | 1 | In aeronautics , a balloon is an unpowered aerostat , which remains aloft or floats due to its buoyancy . A balloon may be free, moving with the wind, or tethered to a fixed point. It is distinct from an airship , which is a powered aerostat that can propel itself through the air in a controlled manner. |
ballute | Space and Astronomy | 1 | (a portmanteau of balloon and parachute ) is a parachute-like braking device optimized for use at high altitudes and supersonic velocities. Invented by Goodyear in 1958, the original ballute was a cone-shaped balloon with a toroidal burble fence fitted around its widest point. A burble fence is an inflated structure intended to ensure flow separation . |
beam-powered propulsion | Space and Astronomy | 1 | also known as directed energy propulsion, is a class of aircraft or spacecraft propulsion that uses energy beamed to the spacecraft from a remote power plant to provide energy. The beam is typically either a microwave or a laser beam and it is either pulsed or continuous. A continuous beam lends itself to thermal rockets , photonic thrusters and light sails , whereas a pulsed beam lends itself to ablative thrusters and pulse detonation engines . |
bearing | Space and Astronomy | 1 | In navigation , bearing is the horizontal angle between the direction of an object and another object, or between it and that of true north. Absolute bearing refers to the angle between the magnetic North (magnetic bearing) or true North (true bearing) and an object. For example, an object to the East would have an absolute bearing of 90 degrees. Relative bearing refers to the angle between the craft's forward direction, and the location of another object. For example, an object relative bearing of 0 degrees would be dead ahead; an object relative bearing 180 degrees would be behind. s can be measured in mils or degrees. |
bernoulli's principle | Space and Astronomy | 1 | A principle of fluid dynamics which states that an increase in the speed of a moving fluid occurs simultaneously with a decrease in the pressure exerted by the fluid or in the fluid's potential energy. |
bi-elliptic transfer | Space and Astronomy | 1 | is an orbital maneuver that moves a spacecraft from one orbit to another and may, in certain situations, require less delta-v than a Hohmann transfer maneuver. The bi-elliptic transfer consists of two half- elliptic orbits . From the initial orbit, a first burn expends delta-v to boost the spacecraft into the first transfer orbit with an apoapsis at some point r b r_{b}} away from the central body . At this point a second burn sends the spacecraft into the second elliptical orbit with periapsis at the radius of the final desired orbit, where a third burn is performed, injecting the spacecraft into the desired orbit. |
big dumb booster | Space and Astronomy | 1 | (BDB), is a general class of launch vehicle based on the premise that it is cheaper to operate large rockets of simple design than it is to operate smaller, more complex ones regardless of the lower payload efficiency. |
bleed air | Space and Astronomy | 1 | produced by gas turbine engines is compressed air that is taken from the compressor stage of those engines, which is upstream of the fuel-burning sections. |
booster | Space and Astronomy | 1 | A booster rocket (or engine) is either the first stage of a multistage launch vehicle , or else a shorter-burning rocket used in parallel with longer-burning sustainer rockets to augment the space vehicle 's takeoff thrust and payload capability. |
boundary layer | Space and Astronomy | 1 | In physics and fluid mechanics , a boundary layer is an important concept and refers to the layer of fluid in the immediate vicinity of a bounding surface where the effects of viscosity are significant. In the Earth's atmosphere , the atmospheric boundary layer is the air layer near the ground affected by diurnal heat, moisture or momentum transfer to or from the surface. On an aircraft wing the boundary layer is the part of the flow close to the wing, where viscous forces distort the surrounding non-viscous flow. |
buoyancy | Space and Astronomy | 1 | In physics , buoyancy or upthrust , is an upward force exerted by a fluid that opposes the weight of an immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the pressure at the bottom of a column of fluid is greater than at the top of the column. Similarly, the pressure at the bottom of an object submerged in a fluid is greater than at the top of the object. This pressure difference results in a net upwards force on the object. The magnitude of that force exerted is proportional to that pressure difference, and (as explained by Archimedes' principle ) is equivalent to the weight of the fluid that would otherwise occupy the volume of the object, i.e. the displaced fluid. |
cabin pressurization | Space and Astronomy | 1 | is a process in which conditioned air is pumped into the cabin of an aircraft or spacecraft , in order to create a safe and comfortable environment for passengers and crew flying at high altitudes. For aircraft, this air is usually bled off from the gas turbine engines at the compressor stage, and for spacecraft, it is carried in high-pressure, often cryogenic tanks. The air is cooled, humidified, and mixed with recirculated air if necessary, before it is distributed to the cabin by one or more environmental control systems . The cabin pressure is regulated by the outflow valve. |
cable lacing | Space and Astronomy | 1 | is a method for tying wiring harnesses and cable looms, traditionally used in telecommunication , naval, and aerospace applications. This old cable management technique, taught to generations of linemen , is still used in some modern applications since it does not create obstructions along the length of the cable, avoiding the handling problems of cables groomed by plastic or hook-and-loop cable ties . |
camber | Space and Astronomy | 1 | the asymmetric curves on the top and bottom, or front and back, of an aerofoil |
canard | Space and Astronomy | 1 | is an aeronautical arrangement wherein a small forewing or foreplane is placed forward of the main wing of a fixed-wing aircraft . The term "canard" may be used to describe the aircraft itself, the wing configuration or the foreplane. |
center of gravity | Space and Astronomy | 1 | A body's center of gravity is the point around which the resultant torque due to gravity forces vanishes. Where a gravity field can be considered to be uniform, the mass-center and the center-of-gravity will be the same. However, for satellites in orbit around a planet, in the absence of other torques being applied to a satellite, the slight variation (gradient) in gravitational field between closer-to (stronger) and further-from (weaker) the planet can lead to a torque that will tend to align the satellite such that its long axis is vertical. In such a case, it is important to make the distinction between the center-of-gravity and the mass-center. Any horizontal offset between the two will result in an applied torque. |
center of mass | Space and Astronomy | 1 | In physics , the center of mass of a distribution of mass in space is the unique point where the weighted relative position of the distributed mass sums to zero, or the point where if a force is applied it moves in the direction of the force without rotating. The distribution of mass is balanced around the center of mass and the average of the weighted position coordinates of the distributed mass defines its coordinates. |
center of pressure | Space and Astronomy | 1 | is the point where the total sum of a pressure field acts on a body, causing a force to act through that point. |
centrifugal compressor | Space and Astronomy | 1 | s , sometimes called radial compressors , are a sub-class of dynamic axisymmetric work-absorbing turbomachinery . They achieve a pressure rise by adding kinetic energy / velocity to a continuous flow of fluid through the rotor or impeller . This kinetic energy is then converted to an increase in potential energy /static pressure by slowing the flow through a diffuser. The pressure rise in the impeller is in most cases almost equal to the rise in the diffuser. |
chord | Space and Astronomy | 1 | is the imaginary straight line joining the leading and trailing edges of an aerofoil . The chord length is the distance between the trailing edge and the point on the leading edge where the chord intersects the leading edge . |
clean configuration | Space and Astronomy | 1 | is the flight configuration of a fixed-wing aircraft when its external equipment is retracted to minimize drag and thus maximize airspeed for a given power setting. |
cockpit | Space and Astronomy | 1 | or flight deck , is the area, usually near the front of an aircraft or spacecraft , from which a pilot controls the aircraft. |
collimated beam | Space and Astronomy | 1 | A collimated beam of light or other electromagnetic radiation has parallel rays , and therefore will spread minimally as it propagates. A perfectly collimated light beam , with no divergence , would not disperse with distance. Such a beam cannot be created, due to diffraction . |
comet | Space and Astronomy | 1 | A ball of frozen gases, rock and dust that is about the size of a small town.Cometsorbitthe sun. Jets of gas and dust from comets form long tailsthat can be seen from Earth. |
compressibility | Space and Astronomy | 1 | In thermodynamics and fluid mechanics , compressibility (also known as the coefficient of compressibility or isothermal compressibility ) is a measure of the relative volume change of a fluid or solid as a response to a pressure (or mean stress ) change. In its simple form, the compressibility β \beta } may be expressed as |
compression | Space and Astronomy | 1 | In mechanics , compression is the application of balanced inward ("pushing") forces to different points on a material or structure, that is, forces with no net sum or torque directed so as to reduce its size in one or more directions. It is contrasted with tension or traction, the application of balanced outward ("pulling") forces; and with shearing forces, directed so as to displace layers of the material parallel to each other. The compressive strength of materials and structures is an important engineering consideration. |
compressor map | Space and Astronomy | 1 | is a diagram showing significant performance parameters for a rotating compressor, and how they vary with changing ambient conditions of pressure and temperature. |
computational fluid dynamics | Space and Astronomy | 1 | ( CFD ), is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows . Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid ( liquids and gases ) with surfaces defined by boundary conditions . With high-speed supercomputers , better solutions can be achieved, and are often required to solve the largest and most complex problems. |
conservation of momentum | Space and Astronomy | 1 | The total momentum of objects involved in a collision remains constant regardless of friction and permanent deformation that may occur during the collision. The law of conservation of momentum can be used to analyse the interactions between objects, even in the presence of friction and other non-conservative forces. is a consequence of Newton's laws of motion. |
constant speed drive | Space and Astronomy | 1 | ( CSD ), is a type of transmission that takes an input shaft rotating at a wide range of speeds, delivering this power to an output shaft that rotates at a constant speed, despite the varying input. They are used to drive mechanisms, typically electrical generators , that require a constant input speed. The term is most commonly applied to hydraulic transmissions found on the accessory drives of gas turbine engines, such as aircraft jet engines . On modern aircraft, the CSD is often combined with a generator into a single unit known as an integrated drive generator ( IDG ). |
control engineering | Space and Astronomy | 1 | or control systems engineering , is an engineering discipline that applies automatic control theory to design systems with desired behaviors in control environments. The discipline of controls overlaps and is usually taught along with electrical engineering at many institutions around the world. |
critical mach | Space and Astronomy | 1 | In aerodynamics , the critical Mach number (Mcr or M* ) of an aircraft is the lowest Mach number at which the airflow over some point of the aircraft reaches the speed of sound , but does not exceed it. At the lower critical Mach number , airflow around the entire aircraft is subsonic. At the upper critical Mach number , airflow around the entire aircraft is supersonic. |
cylinder stress | Space and Astronomy | 1 | In mechanics , a cylinder stress is a stress distribution with rotational symmetry ; that is, which remains unchanged if the stressed object is rotated about some fixed axis. |
damage tolerance | Space and Astronomy | 1 | is a property of a structure relating to its ability to sustain defects safely until repair can be effected. The approach to engineering design to account for damage tolerance is based on the assumption that flaws can exist in any structure and such flaws propagate with usage. |
decalage | Space and Astronomy | 1 | on a fixed-wing aircraft is the angle difference between the upper and lower wings of a biplane , i.e. the acute angle contained between the chords of the wings in question. is said to be positive when the upper wing has a higher angle of incidence than the lower wing, and negative when the lower wing's incidence is greater than that of the upper wing. Positive decalage results in greater lift from the upper wing than the lower wing, the difference increasing with the amount of decalage. |
de laval nozzle | Space and Astronomy | 1 | (or convergent-divergent nozzle , CD nozzle or con-di nozzle ), is a tube that is pinched in the middle, making a carefully balanced, asymmetric hourglass shape. It is used to accelerate a hot, pressurized gas passing through it to a higher supersonic speed in the axial (thrust) direction, by converting the heat energy of the flow into kinetic energy . Because of this, the nozzle is widely used in some types of steam turbines and rocket engine nozzles . It also sees use in supersonic jet engines . |
dead reckoning | Space and Astronomy | 1 | In navigation , dead reckoning is the process of calculating one's current position by using a previously determined position, or fix , and advancing that position based upon known or estimated speeds over elapsed time and course. |
deflection | Space and Astronomy | 1 | is the degree to which a structural element is displaced under a load . It may refer to an angle or a distance. |
deformation | Space and Astronomy | 1 | (mechanics) – in continuum mechanics is the transformation of a body from a reference configuration to a current configuration. A configuration is a set containing the positions of all particles of the body. A deformation may be caused by external loads , body forces (such as gravity or electromagnetic forces ), or changes in temperature, moisture content, or chemical reactions, etc. |
delta-v | Space and Astronomy | 1 | (literally " change in velocity "), symbolised as ∆ v and pronounced delta-vee , as used in spacecraft flight dynamics , is a measure of the impulse that is needed to perform a maneuver such as launch from, or landing on a planet or moon, or in-space orbital maneuver . It is a scalar that has the units of speed . As used in this context, it is not the same as the physical change in velocity of the vehicle. |
delta-v budget | Space and Astronomy | 1 | is an estimate of the total delta- v required for a space mission . It is calculated as the sum of the delta-v required for the propulsive maneuvers during the mission, and as input to the Tsiolkovsky rocket equation , determines how much propellant is required for a vehicle of given mass and propulsion system. |
delta wing | Space and Astronomy | 1 | is a wing shaped in the form of a triangle. It is named for its similarity in shape to the Greek uppercase letter delta (Δ). Although long studied, it did not find significant applications until the jet age , when it proved suitable for high-speed subsonic and supersonic flight. |
departure resistance | Space and Astronomy | 1 | is a quality of an aircraft which enables it to remain in controlled flight and resist entering potentially dangerous less-controlled maneuvers such as spin . |
derivative | Space and Astronomy | 1 | The derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). s are a fundamental tool of calculus . For example, the derivative of the position of a moving object with respect to time is the object's velocity : this measures how quickly the position of the object changes when time advances. |
digital datcom | Space and Astronomy | 1 | The United States Air Force Stability and Control Digital DATCOM is a computer program that implements the methods contained in the USAF Stability and Control DATCOM to calculate the static stability, control and dynamic derivative characteristics of fixed-wing aircraft . Digital DATCOM requires an input file containing a geometric description of an aircraft, and outputs its corresponding dimensionless stability derivatives according to the specified flight conditions. The values obtained can be used to calculate meaningful aspects of flight dynamics . |
dihedral | Space and Astronomy | 1 | angle is the upward angle from horizontal of the wings or tailplane of a fixed-wing aircraft . "Anhedral angle" is the name given to negative dihedral angle, that is, when there is a downward angle from horizontal of the wings or tailplane of a fixed-wing aircraft. |
disk loading | Space and Astronomy | 1 | In fluid dynamics , disk loading or disc loading is the average pressure change across an actuator disk , such as an airscrew. Airscrews with a relatively low disk loading are typically called rotors, including helicopter main rotors and tail rotors ; propellers typically have a higher disk loading. |
distance measuring equipment | Space and Astronomy | 1 | (DME), is a radio navigation technology that measures the slant range (distance) between an aircraft and a ground station by timing the propagation delay of radio signals in the frequency band between 960 and 1215 megahertz (MHz). Line-of-visibility between the aircraft and ground station is required. An interrogator (airborne) initiates an exchange by transmitting a pulse pair, on an assigned ‘channel’, to the transponder ground station. The channel assignment specifies the carrier frequency and the spacing between the pulses. After a known delay, the transponder replies by transmitting a pulse pair on a frequency that is offset from the interrogation frequency by 63 MHz and having specified separation. |
dme | Space and Astronomy | 1 | distance measuring equipment. |
drag | Space and Astronomy | 1 | (physics) – In fluid dynamics , drag (sometimes called air resistance, a type of friction , or fluid resistance, another type of friction or fluid friction) is a force acting opposite to the relative motion of any object moving with respect to a surrounding fluid. This can exist between two fluid layers (or surfaces) or a fluid and a solid surface. Unlike other resistive forces, such as dry friction , which are nearly independent of velocity, drag forces depend on velocity. force is proportional to the velocity for a laminar flow and the squared velocity for a turbulent flow . Even though the ultimate cause of a drag is viscous friction, the turbulent drag is independent of viscosity . forces always decrease fluid velocity relative to the solid object in the fluid's path . |
drag coefficient | Space and Astronomy | 1 | In fluid dynamics , the drag coefficient (commonly denoted as: C d \scriptstyle C_{\mathrm {d} }\,} , C x \scriptstyle C_{\mathrm {x} }\,} or C w \scriptstyle C_{\mathrm {w} }\,} ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water. It is used in the drag equation in which a lower drag coefficient indicates the object will have less aerodynamic or hydrodynamic drag. The drag coefficient is always associated with a particular surface area. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.