The dataset viewer is not available for this split.
Error code: InfoError Exception: ReadTimeout Message: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 527c890f-744e-41e3-a222-42c3756af0ae)') Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 208, in compute_first_rows_from_streaming_response info = get_dataset_config_info(path=dataset, config_name=config, token=hf_token) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 278, in get_dataset_config_info builder = load_dataset_builder( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1781, in load_dataset_builder dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1663, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1620, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1018, in get_module data_files = DataFilesDict.from_patterns( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 690, in from_patterns else DataFilesList.from_patterns( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 593, in from_patterns origin_metadata = _get_origin_metadata(data_files, download_config=download_config) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 507, in _get_origin_metadata return thread_map( File "/src/services/worker/.venv/lib/python3.9/site-packages/tqdm/contrib/concurrent.py", line 69, in thread_map return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/tqdm/contrib/concurrent.py", line 51, in _executor_map return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs)) File "/src/services/worker/.venv/lib/python3.9/site-packages/tqdm/std.py", line 1169, in __iter__ for obj in iterable: File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 609, in result_iterator yield fs.pop().result() File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 446, in result return self.__get_result() File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 391, in __get_result raise self._exception File "/usr/local/lib/python3.9/concurrent/futures/thread.py", line 58, in run result = self.fn(*self.args, **self.kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 486, in _get_single_origin_metadata resolved_path = fs.resolve_path(data_file) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 198, in resolve_path repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 125, in _repo_and_revision_exist self._api.repo_info( File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2704, in repo_info return method( File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2561, in dataset_info r = get_session().get(path, headers=headers, timeout=timeout, params=params) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 602, in get return self.request("GET", url, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 589, in request resp = self.send(prep, **send_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 703, in send r = adapter.send(request, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_http.py", line 93, in send return super().send(request, *args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/adapters.py", line 635, in send raise ReadTimeout(e, request=request) requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 527c890f-744e-41e3-a222-42c3756af0ae)')
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

On Path to Multimodal Generalist: Levels and Benchmarks
[π Project] [π Leaderboard] [π Paper] [π€ Dataset-HF] [π Dataset-Github]
We divide our benchmark into two settings: open
and closed
.
This is the open benchmark
of Generalist-Bench, where we release the full ground-truth annotations for all datasets.
It allows researchers to train and evaluate their models with access to the answers.
If you wish to thoroughly evaluate your model's performance, please use the π closed benchmark, which comes with detailed usage instructions.
Final results will be updated on the π Leaderboard.
π Table of Contents
- β¨ File Origanization Structure
- π Usage
- π General-Bench
- πΌοΈ Image Task Taxonomy
- π½οΈ Video Task Taxonomy
- π Audio Task Taxonomy
- π 3D Task Taxonomy
- π Language Task Taxonomy
β¨β¨β¨ File Origanization Structure
Here is the organization structure of the file system:
General-Bench
βββ Image
β βββ comprehension
β β βββ Bird-Detection
β β β βββ annotation.json
β β β βββ images
β β β βββ Acadian_Flycatcher_0070_29150.jpg
β β βββ Bottle-Anomaly-Detection
β β β βββ annotation.json
β β β βββ images
β β βββ ...
β βββ generation
β βββ Layout-to-Face-Image-Generation
β βββ annotation.json
β βββ images
β βββ ...
βββ Video
β βββ comprehension
β β βββ Human-Object-Interaction-Video-Captioning
β β βββ annotation.json
β β βββ videos
β β βββ ...
β βββ generation
β βββ Scene-Image-to-Video-Generation
β βββ annotation.json
β βββ videos
β βββ ...
βββ 3d
β βββ comprehension
β β βββ 3D-Furniture-Classification
β β βββ annotation.json
β β βββ pointclouds
β β βββ ...
β βββ generation
β βββ Text-to-3D-Living-and-Arts-Point-Cloud-Generation
β βββ annotation.json
β βββ pointclouds
β βββ ...
βββ Audio
β βββ comprehension
β β βββ Accent-Classification
β β βββ annotation.json
β β βββ audios
β β βββ ...
β βββ generation
β βββ Video-To-Audio
β βββ annotation.json
β βββ audios
β βββ ...
βββ NLP
β βββ History-Question-Answering
β β βββ annotation.json
β βββ Abstractive-Summarization
β β βββ annotation.json
β βββ ...
An illustrative example of file formats:
πππ Usage
Please download all the files in this repository. We also provide overview.json, which is an example of the format of our dataset.
xxxx
πππ General-Bench
A companion massive multimodal benchmark dataset, encompasses a broader spectrum of skills, modalities, formats, and capabilities, including over 700
tasks and 325K
instances.

Overview of General-Bench, which covers 145 skills for more than 700 tasks with over 325,800 samples under comprehension and generation categories in various modalities
πππ Capabilities and Domians Distribution

Distribution of various capabilities evaluated in General-Bench.

Distribution of various domains and disciplines covered by General-Bench.
πΌοΈ Image Task Taxonomy

Taxonomy and hierarchy of data in terms of Image modality.
π½οΈ Video Task Taxonomy

Taxonomy and hierarchy of data in terms of Video modality.
π Audio Task Taxonomy

Taxonomy and hierarchy of data in terms of Audio modality.
π 3D Task Taxonomy

Taxonomy and hierarchy of data in terms of 3D modality.
π Language Task Taxonomy

Taxonomy and hierarchy of data in terms of Language modality.
π© Citation
If you find our benchmark useful in your research, please kindly consider citing us:
@article{generalist2025,
title={On Path to Multimodal Generalist: Levels and Benchmarks},
author={Hao Fei, Yuan Zhou, Juncheng Li, Xiangtai Li, Qingshan Xu, Bobo Li, Shengqiong Wu, Yaoting Wang, Junbao Zhou, Jiahao Meng, Qingyu Shi, Zhiyuan Zhou, Liangtao Shi, Minghe Gao, Daoan Zhang, Zhiqi Ge, Siliang Tang, Kaihang Pan, Yaobo Ye, Haobo Yuan, Tao Zhang, Weiming Wu, Tianjie Ju, Zixiang Meng, Shilin Xu, Liyu Jia, Wentao Hu, Meng Luo, Jiebo Luo, Tat-Seng Chua, Hanwang Zhang, Shuicheng YAN},
journal={arXiv},
year={2025}
}
- Downloads last month
- 23,481