index
int64
0
10k
blob_id
stringlengths
40
40
step-1
stringlengths
13
984k
step-2
stringlengths
6
1.23M
step-3
stringlengths
15
1.34M
step-4
stringlengths
30
1.34M
step-5
stringlengths
64
1.2M
step-ids
sequencelengths
1
5
700
360e661d8538a8f40b7546a54e9a9582fa64bd67
<mask token>
<mask token> def mutual_info(parent, child): parent = [int(x) for x in parent] child = [int(x) for x in child] return mutual_info_score(parent, child)
<mask token> def mimic_binary(max_iter=100, fitness_func=None, space=None): assert fitness_func is not None assert space is not None idx = np.random.permutation(np.arange(len(space))) pool = space[idx[:int(len(space) / 2)]] new_pool = [] for i in range(max_iter): print('mimic: {}|{}'.format(i + 1, max_iter)) theta += delta for j, parent in enumerate(pool): if j in new_pool or fitness_func(parent) < theta: continue best_score = 0 best_child = parent for k, child in enumerate(pool): if k <= j or child in new_pool: continue score = mutual_info(parent, child) if score > best_score and fitness_func(child) >= theta: best_score = score new_pool.append(parent) new_pool.append(child) return None def mutual_info(parent, child): parent = [int(x) for x in parent] child = [int(x) for x in child] return mutual_info_score(parent, child)
import numpy as np from sklearn.metrics import mutual_info_score def mimic_binary(max_iter=100, fitness_func=None, space=None): assert fitness_func is not None assert space is not None idx = np.random.permutation(np.arange(len(space))) pool = space[idx[:int(len(space) / 2)]] new_pool = [] for i in range(max_iter): print('mimic: {}|{}'.format(i + 1, max_iter)) theta += delta for j, parent in enumerate(pool): if j in new_pool or fitness_func(parent) < theta: continue best_score = 0 best_child = parent for k, child in enumerate(pool): if k <= j or child in new_pool: continue score = mutual_info(parent, child) if score > best_score and fitness_func(child) >= theta: best_score = score new_pool.append(parent) new_pool.append(child) return None def mutual_info(parent, child): parent = [int(x) for x in parent] child = [int(x) for x in child] return mutual_info_score(parent, child)
import numpy as np from sklearn.metrics import mutual_info_score def mimic_binary(max_iter=100, fitness_func=None, space=None): assert fitness_func is not None assert space is not None idx = np.random.permutation(np.arange(len(space))) pool = space[idx[:int(len(space)/2)]] # randomly sample 50% of the oringal space new_pool = [] for i in range(max_iter): print("mimic: {}|{}".format(i+1, max_iter)) theta += delta for j, parent in enumerate(pool): if j in new_pool or fitness_func(parent)<theta: continue best_score = 0 best_child = parent for k, child in enumerate(pool): if k<=j or child in new_pool: continue score = mutual_info(parent, child) if score > best_score and fitness_func(child)>=theta: best_score = score new_pool.append(parent) new_pool.append(child) return None def mutual_info(parent, child): parent = [int(x) for x in parent] child = [int(x) for x in child] return mutual_info_score(parent,child)
[ 0, 1, 2, 3, 4 ]
701
f489058c922d405754ad32a737f67bc03c08772b
<mask token> def blackbox(name, backend, targets, params, target='target', path='/probe', labels=None): labels = {} if labels is None else labels banned_oses = ['debian'] filtered_targets = [x for x in targets if lib.get_os(x) not in banned_oses] return {'job_name': name, 'metrics_path': path, 'params': params, 'static_configs': [{'targets': sorted(filtered_targets), 'labels': labels}], 'relabel_configs': [{'source_labels': ['__address__'], 'regex': '(.*)(:80)?', 'target_label': '__param_%s' % target, 'replacement': '${1}'}, {'source_labels': ['__param_%s' % target], 'regex': '(.*)', 'target_label': 'instance', 'replacement': '${1}'}, {'source_labels': [], 'regex': '.*', 'target_label': '__address__', 'replacement': backend}]} def generate_backend(host, local_services): scrape_configs = [] scrape_configs.extend(local_services) domain = lib.get_domain(host) basic_auth = lib.read_secret('services/monitoring:login') manifest = yaml.load(file(MANIFEST_PATH).read()) for package, spec in manifest['packages'].iteritems(): if spec is None or 'monitor' not in spec: continue urls = spec['monitor']['url'] if isinstance(spec['monitor']['url'], dict) else {None: spec['monitor']['url']} for url_id, url_str in urls.iteritems(): url = urlparse.urlparse(url_str) targets = [] for target in sorted(lib.get_nodes_with_package(package, domain ).keys()): targets.append(target if url.port is None else '%s:%d' % ( target, url.port)) scrape_config = {'job_name': package + ('-%s' % url_id if url_id else ''), 'metrics_path': url.path, 'scheme': url. scheme, 'static_configs': [{'targets': sorted(targets)}]} if 'interval' in spec['monitor']: scrape_config['scrape_interval'] = spec['monitor']['interval'] if 'labels' in spec['monitor']: scrape_config['static_configs'][0]['labels'] = spec['monitor'][ 'labels'] if spec['monitor'].get('auth', False) and url.scheme == 'https': scrape_config['basic_auth'] = basic_auth scrape_configs.append(scrape_config) layers = lib.get_layers(domain) snmp_nodes = {} ssh_nodes = {} for layer in layers: hosts = lib.get_nodes_with_layer(layer, domain) snmp_mute = lib.get_nodes_with_layer(layer, domain, 'no-snmp') ssh_mute = lib.get_nodes_with_layer(layer, domain, 'no-ssh') snmp_nodes[layer] = list(set(hosts) - set(snmp_mute)) ssh_nodes[layer] = [(x + ':22') for x in set(hosts) - set(ssh_mute)] for layer in layers: if layer == 'access': snmp_host = 'snmp2.event.dreamhack.se' else: snmp_host = 'snmp1.event.dreamhack.se' snmp = blackbox('snmp_%s' % layer, snmp_host, snmp_nodes[layer], { 'layer': [layer]}, labels={'layer': layer}) snmp['scrape_interval'] = '30s' snmp['scrape_timeout'] = '30s' scrape_configs.append(snmp) for layer in layers: for ssh_host in ['jumpgate1', 'jumpgate2', 'rancid']: fqdn = ssh_host + '.event.dreamhack.se:9115' ssh = blackbox('ssh_%s_%s' % (layer, ssh_host), fqdn, ssh_nodes [layer], {'module': ['ssh_banner']}, labels={'layer': layer}) ssh['scrape_interval'] = '30s' ssh['scrape_timeout'] = '30s' scrape_configs.append(ssh) external = {'job_name': 'external', 'file_sd_configs': [{'files': [ '/etc/prometheus/external/*.yaml']}]} scrape_configs.append(external) if host.endswith('.event.dreamhack.se'): puppet = {'job_name': 'puppet_runs', 'metrics_path': '/metrics', 'scrape_interval': '60s', 'scrape_timeout': '55s', 'static_configs': [{'targets': ['puppet.tech.dreamhack.se:9100']}]} scrape_configs.append(puppet) vcenter = {'job_name': 'vmware_vcenter', 'metrics_path': '/metrics', 'scrape_interval': '60s', 'scrape_timeout': '55s', 'static_configs': [{'targets': ['provision.event.dreamhack.se:9272']}]} scrape_configs.append(vcenter) relabel = {'regex': ':?([^:]*):?.*', 'separator': ':', 'replacement': '${1}', 'source_labels': ['host', 'instance'], 'target_label': 'host'} mrc = 'metric_relabel_configs' for scrape in scrape_configs: if mrc in scrape: scrape[mrc].append(relabel) else: scrape[mrc] = [relabel] return {'scrape_configs': scrape_configs} <mask token> def generate(host, *args): info = {} local_targets = [] local_targets.append({'job_name': 'prometheus', 'scheme': 'http', 'static_configs': [{'targets': ['localhost:9090']}]}) info['prometheus'] = generate_backend(host, local_targets) info['prometheus']['current_event'] = lib.get_current_event() return info
<mask token> def blackbox(name, backend, targets, params, target='target', path='/probe', labels=None): labels = {} if labels is None else labels banned_oses = ['debian'] filtered_targets = [x for x in targets if lib.get_os(x) not in banned_oses] return {'job_name': name, 'metrics_path': path, 'params': params, 'static_configs': [{'targets': sorted(filtered_targets), 'labels': labels}], 'relabel_configs': [{'source_labels': ['__address__'], 'regex': '(.*)(:80)?', 'target_label': '__param_%s' % target, 'replacement': '${1}'}, {'source_labels': ['__param_%s' % target], 'regex': '(.*)', 'target_label': 'instance', 'replacement': '${1}'}, {'source_labels': [], 'regex': '.*', 'target_label': '__address__', 'replacement': backend}]} def generate_backend(host, local_services): scrape_configs = [] scrape_configs.extend(local_services) domain = lib.get_domain(host) basic_auth = lib.read_secret('services/monitoring:login') manifest = yaml.load(file(MANIFEST_PATH).read()) for package, spec in manifest['packages'].iteritems(): if spec is None or 'monitor' not in spec: continue urls = spec['monitor']['url'] if isinstance(spec['monitor']['url'], dict) else {None: spec['monitor']['url']} for url_id, url_str in urls.iteritems(): url = urlparse.urlparse(url_str) targets = [] for target in sorted(lib.get_nodes_with_package(package, domain ).keys()): targets.append(target if url.port is None else '%s:%d' % ( target, url.port)) scrape_config = {'job_name': package + ('-%s' % url_id if url_id else ''), 'metrics_path': url.path, 'scheme': url. scheme, 'static_configs': [{'targets': sorted(targets)}]} if 'interval' in spec['monitor']: scrape_config['scrape_interval'] = spec['monitor']['interval'] if 'labels' in spec['monitor']: scrape_config['static_configs'][0]['labels'] = spec['monitor'][ 'labels'] if spec['monitor'].get('auth', False) and url.scheme == 'https': scrape_config['basic_auth'] = basic_auth scrape_configs.append(scrape_config) layers = lib.get_layers(domain) snmp_nodes = {} ssh_nodes = {} for layer in layers: hosts = lib.get_nodes_with_layer(layer, domain) snmp_mute = lib.get_nodes_with_layer(layer, domain, 'no-snmp') ssh_mute = lib.get_nodes_with_layer(layer, domain, 'no-ssh') snmp_nodes[layer] = list(set(hosts) - set(snmp_mute)) ssh_nodes[layer] = [(x + ':22') for x in set(hosts) - set(ssh_mute)] for layer in layers: if layer == 'access': snmp_host = 'snmp2.event.dreamhack.se' else: snmp_host = 'snmp1.event.dreamhack.se' snmp = blackbox('snmp_%s' % layer, snmp_host, snmp_nodes[layer], { 'layer': [layer]}, labels={'layer': layer}) snmp['scrape_interval'] = '30s' snmp['scrape_timeout'] = '30s' scrape_configs.append(snmp) for layer in layers: for ssh_host in ['jumpgate1', 'jumpgate2', 'rancid']: fqdn = ssh_host + '.event.dreamhack.se:9115' ssh = blackbox('ssh_%s_%s' % (layer, ssh_host), fqdn, ssh_nodes [layer], {'module': ['ssh_banner']}, labels={'layer': layer}) ssh['scrape_interval'] = '30s' ssh['scrape_timeout'] = '30s' scrape_configs.append(ssh) external = {'job_name': 'external', 'file_sd_configs': [{'files': [ '/etc/prometheus/external/*.yaml']}]} scrape_configs.append(external) if host.endswith('.event.dreamhack.se'): puppet = {'job_name': 'puppet_runs', 'metrics_path': '/metrics', 'scrape_interval': '60s', 'scrape_timeout': '55s', 'static_configs': [{'targets': ['puppet.tech.dreamhack.se:9100']}]} scrape_configs.append(puppet) vcenter = {'job_name': 'vmware_vcenter', 'metrics_path': '/metrics', 'scrape_interval': '60s', 'scrape_timeout': '55s', 'static_configs': [{'targets': ['provision.event.dreamhack.se:9272']}]} scrape_configs.append(vcenter) relabel = {'regex': ':?([^:]*):?.*', 'separator': ':', 'replacement': '${1}', 'source_labels': ['host', 'instance'], 'target_label': 'host'} mrc = 'metric_relabel_configs' for scrape in scrape_configs: if mrc in scrape: scrape[mrc].append(relabel) else: scrape[mrc] = [relabel] return {'scrape_configs': scrape_configs} def requires(host, *args): return ['apache(ldap)'] def generate(host, *args): info = {} local_targets = [] local_targets.append({'job_name': 'prometheus', 'scheme': 'http', 'static_configs': [{'targets': ['localhost:9090']}]}) info['prometheus'] = generate_backend(host, local_targets) info['prometheus']['current_event'] = lib.get_current_event() return info
<mask token> MANIFEST_PATH = '/etc/manifest' HTTP_BASIC_AUTH = None def blackbox(name, backend, targets, params, target='target', path='/probe', labels=None): labels = {} if labels is None else labels banned_oses = ['debian'] filtered_targets = [x for x in targets if lib.get_os(x) not in banned_oses] return {'job_name': name, 'metrics_path': path, 'params': params, 'static_configs': [{'targets': sorted(filtered_targets), 'labels': labels}], 'relabel_configs': [{'source_labels': ['__address__'], 'regex': '(.*)(:80)?', 'target_label': '__param_%s' % target, 'replacement': '${1}'}, {'source_labels': ['__param_%s' % target], 'regex': '(.*)', 'target_label': 'instance', 'replacement': '${1}'}, {'source_labels': [], 'regex': '.*', 'target_label': '__address__', 'replacement': backend}]} def generate_backend(host, local_services): scrape_configs = [] scrape_configs.extend(local_services) domain = lib.get_domain(host) basic_auth = lib.read_secret('services/monitoring:login') manifest = yaml.load(file(MANIFEST_PATH).read()) for package, spec in manifest['packages'].iteritems(): if spec is None or 'monitor' not in spec: continue urls = spec['monitor']['url'] if isinstance(spec['monitor']['url'], dict) else {None: spec['monitor']['url']} for url_id, url_str in urls.iteritems(): url = urlparse.urlparse(url_str) targets = [] for target in sorted(lib.get_nodes_with_package(package, domain ).keys()): targets.append(target if url.port is None else '%s:%d' % ( target, url.port)) scrape_config = {'job_name': package + ('-%s' % url_id if url_id else ''), 'metrics_path': url.path, 'scheme': url. scheme, 'static_configs': [{'targets': sorted(targets)}]} if 'interval' in spec['monitor']: scrape_config['scrape_interval'] = spec['monitor']['interval'] if 'labels' in spec['monitor']: scrape_config['static_configs'][0]['labels'] = spec['monitor'][ 'labels'] if spec['monitor'].get('auth', False) and url.scheme == 'https': scrape_config['basic_auth'] = basic_auth scrape_configs.append(scrape_config) layers = lib.get_layers(domain) snmp_nodes = {} ssh_nodes = {} for layer in layers: hosts = lib.get_nodes_with_layer(layer, domain) snmp_mute = lib.get_nodes_with_layer(layer, domain, 'no-snmp') ssh_mute = lib.get_nodes_with_layer(layer, domain, 'no-ssh') snmp_nodes[layer] = list(set(hosts) - set(snmp_mute)) ssh_nodes[layer] = [(x + ':22') for x in set(hosts) - set(ssh_mute)] for layer in layers: if layer == 'access': snmp_host = 'snmp2.event.dreamhack.se' else: snmp_host = 'snmp1.event.dreamhack.se' snmp = blackbox('snmp_%s' % layer, snmp_host, snmp_nodes[layer], { 'layer': [layer]}, labels={'layer': layer}) snmp['scrape_interval'] = '30s' snmp['scrape_timeout'] = '30s' scrape_configs.append(snmp) for layer in layers: for ssh_host in ['jumpgate1', 'jumpgate2', 'rancid']: fqdn = ssh_host + '.event.dreamhack.se:9115' ssh = blackbox('ssh_%s_%s' % (layer, ssh_host), fqdn, ssh_nodes [layer], {'module': ['ssh_banner']}, labels={'layer': layer}) ssh['scrape_interval'] = '30s' ssh['scrape_timeout'] = '30s' scrape_configs.append(ssh) external = {'job_name': 'external', 'file_sd_configs': [{'files': [ '/etc/prometheus/external/*.yaml']}]} scrape_configs.append(external) if host.endswith('.event.dreamhack.se'): puppet = {'job_name': 'puppet_runs', 'metrics_path': '/metrics', 'scrape_interval': '60s', 'scrape_timeout': '55s', 'static_configs': [{'targets': ['puppet.tech.dreamhack.se:9100']}]} scrape_configs.append(puppet) vcenter = {'job_name': 'vmware_vcenter', 'metrics_path': '/metrics', 'scrape_interval': '60s', 'scrape_timeout': '55s', 'static_configs': [{'targets': ['provision.event.dreamhack.se:9272']}]} scrape_configs.append(vcenter) relabel = {'regex': ':?([^:]*):?.*', 'separator': ':', 'replacement': '${1}', 'source_labels': ['host', 'instance'], 'target_label': 'host'} mrc = 'metric_relabel_configs' for scrape in scrape_configs: if mrc in scrape: scrape[mrc].append(relabel) else: scrape[mrc] = [relabel] return {'scrape_configs': scrape_configs} def requires(host, *args): return ['apache(ldap)'] def generate(host, *args): info = {} local_targets = [] local_targets.append({'job_name': 'prometheus', 'scheme': 'http', 'static_configs': [{'targets': ['localhost:9090']}]}) info['prometheus'] = generate_backend(host, local_targets) info['prometheus']['current_event'] = lib.get_current_event() return info
import lib import urlparse import yaml MANIFEST_PATH = '/etc/manifest' HTTP_BASIC_AUTH = None def blackbox(name, backend, targets, params, target='target', path='/probe', labels=None): labels = {} if labels is None else labels banned_oses = ['debian'] filtered_targets = [x for x in targets if lib.get_os(x) not in banned_oses] return {'job_name': name, 'metrics_path': path, 'params': params, 'static_configs': [{'targets': sorted(filtered_targets), 'labels': labels}], 'relabel_configs': [{'source_labels': ['__address__'], 'regex': '(.*)(:80)?', 'target_label': '__param_%s' % target, 'replacement': '${1}'}, {'source_labels': ['__param_%s' % target], 'regex': '(.*)', 'target_label': 'instance', 'replacement': '${1}'}, {'source_labels': [], 'regex': '.*', 'target_label': '__address__', 'replacement': backend}]} def generate_backend(host, local_services): scrape_configs = [] scrape_configs.extend(local_services) domain = lib.get_domain(host) basic_auth = lib.read_secret('services/monitoring:login') manifest = yaml.load(file(MANIFEST_PATH).read()) for package, spec in manifest['packages'].iteritems(): if spec is None or 'monitor' not in spec: continue urls = spec['monitor']['url'] if isinstance(spec['monitor']['url'], dict) else {None: spec['monitor']['url']} for url_id, url_str in urls.iteritems(): url = urlparse.urlparse(url_str) targets = [] for target in sorted(lib.get_nodes_with_package(package, domain ).keys()): targets.append(target if url.port is None else '%s:%d' % ( target, url.port)) scrape_config = {'job_name': package + ('-%s' % url_id if url_id else ''), 'metrics_path': url.path, 'scheme': url. scheme, 'static_configs': [{'targets': sorted(targets)}]} if 'interval' in spec['monitor']: scrape_config['scrape_interval'] = spec['monitor']['interval'] if 'labels' in spec['monitor']: scrape_config['static_configs'][0]['labels'] = spec['monitor'][ 'labels'] if spec['monitor'].get('auth', False) and url.scheme == 'https': scrape_config['basic_auth'] = basic_auth scrape_configs.append(scrape_config) layers = lib.get_layers(domain) snmp_nodes = {} ssh_nodes = {} for layer in layers: hosts = lib.get_nodes_with_layer(layer, domain) snmp_mute = lib.get_nodes_with_layer(layer, domain, 'no-snmp') ssh_mute = lib.get_nodes_with_layer(layer, domain, 'no-ssh') snmp_nodes[layer] = list(set(hosts) - set(snmp_mute)) ssh_nodes[layer] = [(x + ':22') for x in set(hosts) - set(ssh_mute)] for layer in layers: if layer == 'access': snmp_host = 'snmp2.event.dreamhack.se' else: snmp_host = 'snmp1.event.dreamhack.se' snmp = blackbox('snmp_%s' % layer, snmp_host, snmp_nodes[layer], { 'layer': [layer]}, labels={'layer': layer}) snmp['scrape_interval'] = '30s' snmp['scrape_timeout'] = '30s' scrape_configs.append(snmp) for layer in layers: for ssh_host in ['jumpgate1', 'jumpgate2', 'rancid']: fqdn = ssh_host + '.event.dreamhack.se:9115' ssh = blackbox('ssh_%s_%s' % (layer, ssh_host), fqdn, ssh_nodes [layer], {'module': ['ssh_banner']}, labels={'layer': layer}) ssh['scrape_interval'] = '30s' ssh['scrape_timeout'] = '30s' scrape_configs.append(ssh) external = {'job_name': 'external', 'file_sd_configs': [{'files': [ '/etc/prometheus/external/*.yaml']}]} scrape_configs.append(external) if host.endswith('.event.dreamhack.se'): puppet = {'job_name': 'puppet_runs', 'metrics_path': '/metrics', 'scrape_interval': '60s', 'scrape_timeout': '55s', 'static_configs': [{'targets': ['puppet.tech.dreamhack.se:9100']}]} scrape_configs.append(puppet) vcenter = {'job_name': 'vmware_vcenter', 'metrics_path': '/metrics', 'scrape_interval': '60s', 'scrape_timeout': '55s', 'static_configs': [{'targets': ['provision.event.dreamhack.se:9272']}]} scrape_configs.append(vcenter) relabel = {'regex': ':?([^:]*):?.*', 'separator': ':', 'replacement': '${1}', 'source_labels': ['host', 'instance'], 'target_label': 'host'} mrc = 'metric_relabel_configs' for scrape in scrape_configs: if mrc in scrape: scrape[mrc].append(relabel) else: scrape[mrc] = [relabel] return {'scrape_configs': scrape_configs} def requires(host, *args): return ['apache(ldap)'] def generate(host, *args): info = {} local_targets = [] local_targets.append({'job_name': 'prometheus', 'scheme': 'http', 'static_configs': [{'targets': ['localhost:9090']}]}) info['prometheus'] = generate_backend(host, local_targets) info['prometheus']['current_event'] = lib.get_current_event() return info
# Copyright 2018 dhtech # # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file import lib import urlparse import yaml MANIFEST_PATH = '/etc/manifest' HTTP_BASIC_AUTH = None def blackbox(name, backend, targets, params, target='target', path='/probe', labels=None): labels = {} if labels is None else labels # Strip banned OSes banned_oses = ['debian'] filtered_targets = [x for x in targets if lib.get_os(x) not in banned_oses] return { 'job_name': name, 'metrics_path': path, 'params': params, 'static_configs': [{ 'targets': sorted(filtered_targets), 'labels': labels }], 'relabel_configs': [{ 'source_labels': ['__address__'], 'regex': '(.*)(:80)?', 'target_label': '__param_%s' % target, 'replacement': '${1}', }, { 'source_labels': ['__param_%s' % target], 'regex': '(.*)', 'target_label': 'instance', 'replacement': '${1}', }, { 'source_labels': [], 'regex': '.*', 'target_label': '__address__', 'replacement': backend, }] } def generate_backend(host, local_services): scrape_configs = [] scrape_configs.extend(local_services) domain = lib.get_domain(host) basic_auth = lib.read_secret('services/monitoring:login') # Find services that wants to be monitored manifest = yaml.load(file(MANIFEST_PATH).read()) for package, spec in manifest['packages'].iteritems(): if spec is None or 'monitor' not in spec: continue urls = (spec['monitor']['url'] if isinstance(spec['monitor']['url'], dict) else {None: spec['monitor']['url']}) for url_id, url_str in urls.iteritems(): url = urlparse.urlparse(url_str) targets = [] for target in sorted( lib.get_nodes_with_package(package, domain).keys()): targets.append(target if url.port is None else '%s:%d' % ( target, url.port)) scrape_config = { 'job_name': package + ('-%s' % url_id if url_id else ''), 'metrics_path': url.path, 'scheme': url.scheme, 'static_configs': [ {'targets': sorted(targets)} ], } if 'interval' in spec['monitor']: scrape_config['scrape_interval'] = spec['monitor']['interval'] if 'labels' in spec['monitor']: scrape_config['static_configs'][0]['labels'] = spec['monitor']['labels'] # Only allow authentication over https if spec['monitor'].get('auth', False) and url.scheme == 'https': scrape_config['basic_auth'] = basic_auth scrape_configs.append(scrape_config) # Layer specific monitoring layers = lib.get_layers(domain) snmp_nodes = {} ssh_nodes = {} for layer in layers: hosts = lib.get_nodes_with_layer(layer, domain) snmp_mute = lib.get_nodes_with_layer(layer, domain, 'no-snmp') ssh_mute = lib.get_nodes_with_layer(layer, domain, 'no-ssh') snmp_nodes[layer] = list(set(hosts) - set(snmp_mute)) ssh_nodes[layer] = [x+':22' for x in set(hosts) - set(ssh_mute)] # SNMP for layer in layers: # TODO(bluecmd): Use options for this if layer == 'access': snmp_host = 'snmp2.event.dreamhack.se' else: snmp_host = 'snmp1.event.dreamhack.se' snmp = blackbox( 'snmp_%s' % layer, snmp_host, snmp_nodes[layer], {'layer': [layer]}, labels={ 'layer': layer}) snmp['scrape_interval'] = '30s' snmp['scrape_timeout'] = '30s' scrape_configs.append(snmp) # SSH for layer in layers: for ssh_host in ['jumpgate1', 'jumpgate2', 'rancid']: fqdn = ssh_host + '.event.dreamhack.se:9115' ssh = blackbox( 'ssh_%s_%s' % (layer, ssh_host), fqdn, ssh_nodes[layer], {'module': ['ssh_banner']}, labels={'layer': layer}) ssh['scrape_interval'] = '30s' ssh['scrape_timeout'] = '30s' scrape_configs.append(ssh) # Add external service-discovery external = { 'job_name': 'external', 'file_sd_configs': [{ 'files': ['/etc/prometheus/external/*.yaml'], }], } scrape_configs.append(external) if host.endswith('.event.dreamhack.se'): # Event should scrape puppet.tech.dreamhack.se to get information about # puppet runs puppet = { 'job_name': 'puppet_runs', 'metrics_path': '/metrics', 'scrape_interval': '60s', 'scrape_timeout': '55s', 'static_configs': [{ 'targets': ['puppet.tech.dreamhack.se:9100'], }], } scrape_configs.append(puppet) vcenter = { 'job_name': 'vmware_vcenter', 'metrics_path': '/metrics', 'scrape_interval': '60s', 'scrape_timeout': '55s', 'static_configs': [{ 'targets': ['provision.event.dreamhack.se:9272'], }], } scrape_configs.append(vcenter) # Make sure that all metrics have a host label. # This rule uses the existing host label if there is one, # stripping of the port (which shouldn't be part of the host label anyway) # *or* if that label does not exist it uses the instance label # (again stripping of the port) relabel = { 'regex': r':?([^:]*):?.*', 'separator': ':', 'replacement': '${1}', 'source_labels': ['host', 'instance'], 'target_label': 'host', } mrc = 'metric_relabel_configs' for scrape in scrape_configs: if mrc in scrape: scrape[mrc].append(relabel) else: scrape[mrc] = [relabel] return {'scrape_configs': scrape_configs} def requires(host, *args): return ['apache(ldap)'] def generate(host, *args): info = {} local_targets = [] local_targets.append({ 'job_name': 'prometheus', 'scheme': 'http', 'static_configs': [{'targets': ['localhost:9090']}]}) info['prometheus'] = generate_backend(host, local_targets) # Get current event info['prometheus']['current_event'] = lib.get_current_event() return info # vim: ts=4: sts=4: sw=4: expandtab
[ 3, 4, 5, 6, 7 ]
702
5299f2c66fd287be667ecbe11b8470263eafab5c
<mask token> class ConsoleLogger: <mask token> def set_level(self, level): self.logger.setLevel(level) <mask token> <mask token> <mask token> <mask token> <mask token> def __init__(self, name=__name__, default_level=logging.DEBUG): self.logger = logging.Logger(name) if not self.logger.handlers or len(self.logger.handlers) < 1: for handler_class, params, formatted, level in self.handlers: handler = handler_class(**params) handler.setFormatter(logging.Formatter(formatted)) handler.setLevel(level if not default_level else default_level) self.logger.addHandler(handler)
<mask token> class ConsoleLogger: <mask token> def set_level(self, level): self.logger.setLevel(level) def debug(self, message): self.logger.debug(message) def info(self, message): self.logger.info(message) <mask token> <mask token> def exception(self, message): self.logger.exception(message) def __init__(self, name=__name__, default_level=logging.DEBUG): self.logger = logging.Logger(name) if not self.logger.handlers or len(self.logger.handlers) < 1: for handler_class, params, formatted, level in self.handlers: handler = handler_class(**params) handler.setFormatter(logging.Formatter(formatted)) handler.setLevel(level if not default_level else default_level) self.logger.addHandler(handler)
<mask token> class ConsoleLogger: <mask token> def set_level(self, level): self.logger.setLevel(level) def debug(self, message): self.logger.debug(message) def info(self, message): self.logger.info(message) def warning(self, message): self.logger.warning(message) <mask token> def exception(self, message): self.logger.exception(message) def __init__(self, name=__name__, default_level=logging.DEBUG): self.logger = logging.Logger(name) if not self.logger.handlers or len(self.logger.handlers) < 1: for handler_class, params, formatted, level in self.handlers: handler = handler_class(**params) handler.setFormatter(logging.Formatter(formatted)) handler.setLevel(level if not default_level else default_level) self.logger.addHandler(handler)
<mask token> class ConsoleLogger: <mask token> def set_level(self, level): self.logger.setLevel(level) def debug(self, message): self.logger.debug(message) def info(self, message): self.logger.info(message) def warning(self, message): self.logger.warning(message) def error(self, message): self.logger.error(message) def exception(self, message): self.logger.exception(message) def __init__(self, name=__name__, default_level=logging.DEBUG): self.logger = logging.Logger(name) if not self.logger.handlers or len(self.logger.handlers) < 1: for handler_class, params, formatted, level in self.handlers: handler = handler_class(**params) handler.setFormatter(logging.Formatter(formatted)) handler.setLevel(level if not default_level else default_level) self.logger.addHandler(handler)
import logging class ConsoleLogger: handlers = [ (logging.StreamHandler, dict(), "[%(name)s]\t %(asctime)s [%(levelname)s] %(message)s ", logging.DEBUG) ] def set_level(self, level): self.logger.setLevel(level) def debug(self, message): self.logger.debug(message) def info(self, message): self.logger.info(message) def warning(self, message): self.logger.warning(message) def error(self, message): self.logger.error(message) def exception(self, message): self.logger.exception(message) def __init__(self, name=__name__, default_level=logging.DEBUG): self.logger = logging.Logger(name) if not self.logger.handlers or len(self.logger.handlers) < 1: for handler_class, params, formatted, level in self.handlers: handler = handler_class(**params) handler.setFormatter(logging.Formatter(formatted)) handler.setLevel(level if not default_level else default_level) self.logger.addHandler(handler)
[ 3, 6, 7, 8, 11 ]
703
e73e40a63b67ee1a6cca53a328af05e3eb3d8519
<mask token> def test_negativity(): assert make_it_negative(8) == -8 assert complain_about('enthusiasm') == 'I hate enthusiasm. Totally boring.' <mask token>
<mask token> def test_negativity(): assert make_it_negative(8) == -8 assert complain_about('enthusiasm') == 'I hate enthusiasm. Totally boring.' <mask token> def test_cleverness(): assert make_it_negative(-3) == 3
<mask token> def test_negativity(): assert make_it_negative(8) == -8 assert complain_about('enthusiasm') == 'I hate enthusiasm. Totally boring.' def test_easy(): assert 1 == 1 def test_cleverness(): assert make_it_negative(-3) == 3
import pytest from debbiedowner import make_it_negative, complain_about def test_negativity(): assert make_it_negative(8) == -8 assert complain_about('enthusiasm') == 'I hate enthusiasm. Totally boring.' def test_easy(): assert 1 == 1 def test_cleverness(): assert make_it_negative(-3) == 3
import pytest from debbiedowner import make_it_negative, complain_about def test_negativity(): assert make_it_negative(8) == -8 assert complain_about('enthusiasm') == "I hate enthusiasm. Totally boring." def test_easy(): assert 1 == 1 def test_cleverness(): assert make_it_negative(-3) == 3
[ 1, 2, 3, 4, 5 ]
704
01b615f8282d4d42c5e83181fffc2d7cb612c096
import sys def saludar(saludo): print saludo def iniciales(nombre,ape1,ape2): iniciales=nombre[0]+'.'+ape1[0]+'.'+ape2[0]+'.' return "Tus iniciales son:"+iniciales.upper() def iniciales1(nombre,ape1,*apellidos): iniciales=nombre[0]+'.'+ape1[0] for ape in apellidos: iniciales=iniciales+'.'+ape[0] return iniciales.upper()
null
null
null
null
[ 0 ]
705
eeb87891d1a02484a61537745ec6f13387017929
<mask token> def logined(func): def wrapper(request, *args, **kwargs): session = request.session.get('user') if not session: return render(request, 'login.html') else: return func(request, *args, **kwargs) return wrapper def api_check(func): def wrapper(request, *args, **kwargs): session = request.session.get('user') if not session: res = dict(state_code=-3, error_msg='登陆过期') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') else: return func(request, *args, **kwargs) return wrapper def login(request): if request.method == 'GET': if request.session.get('user'): return render(request, 'index.html') return render(request, 'login.html') else: req = json.loads(request.body) user = req.get('username') pwd = req.get('pwd') obj_user = models.Users.objects.filter(user_name=user).all() if not obj_user: res = dict(state_code=1, error_msg='用户不存在') else: password = obj_user.first().password if str(pwd) != str(password): res = dict(state_code=2, error_msg='密码错误') else: request.session['user'] = user request.session.set_expiry(60 * 60 * 4) res = dict(state_code=0, error_msg='密码错误') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') def logout(request): if request.session.get('user'): del request.session['user'] return render(request, 'login.html') @logined def index(request): return render(request, 'index.html') @api_check def get_dir_list(request): user = request.session.get('user') obj_dir = models.Dirs.objects.filter(user_name=user).all() dir_list = [] for dirs in obj_dir: user_dir = dirs.dir dir_list.append(user_dir) res = dict(state_code=0, error_msg='ok', data={'dir_list': dir_list}) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type= 'application/json') <mask token> @api_check def upload_file(request): dir_name = request.POST.get('dir_name') if not dir_name: res = dict(state_code=-2, error_msg='参数错误') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') dir_path = os.path.join(files_folder, dir_name) if not os.path.exists(dir_path): res = dict(state_code=1, error_msg='目录不存在') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') File = request.FILES.get('file', None) if File is None: res = dict(state_code=-2, error_msg='参数错误') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') file_name = File.name file_path = os.path.join(dir_path, file_name) with open(file_path, 'wb+') as f: for chunk in File.chunks(): f.write(chunk) res = dict(state_code=0, error_msg='ok') return HttpResponse(json.dumps(res), content_type='application/json') @api_check def query_file(request): req = json.loads(request.body) dir_name = req.get('dir_name') dir_path = os.path.join(files_folder, dir_name) cmd_info = os.popen('ls -l -h {}'.format(dir_path)).read() file_list = cmd_info.split('\n')[1:-1] file_list_data = [] for file_info_cmd in file_list: file_info_list = file_info_cmd.split(' ') file_info = list(filter(None, file_info_list)) file = file_info[-1] file_size = file_info[4] name_type = file.rsplit('.', 1) if len(name_type) < 2: name_type.append('未知') file_name, file_type = name_type file_list_data.append({'file_name': file_name, 'file_type': file_type, 'file_size': file_size}) res = dict(state_code=0, error_msg='ok', data={'file_list': file_list_data} ) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type= 'application/json') @api_check def del_file(request): req = json.loads(request.body) dir_name = req.get('dir_name') file_name = req.get('file_name') file_type = req.get('file_type') file = file_name + '.' + file_type if file_type != '未知' else file_name file_path = os.path.join(os.path.join(files_folder, dir_name), file) if not os.path.exists(file_path): res = dict(state_code=1, error_msg='文件不存在') else: os.remove(file_path) res = dict(state_code=0, error_msg='ok') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type= 'application/json') <mask token>
<mask token> def logined(func): def wrapper(request, *args, **kwargs): session = request.session.get('user') if not session: return render(request, 'login.html') else: return func(request, *args, **kwargs) return wrapper def api_check(func): def wrapper(request, *args, **kwargs): session = request.session.get('user') if not session: res = dict(state_code=-3, error_msg='登陆过期') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') else: return func(request, *args, **kwargs) return wrapper def login(request): if request.method == 'GET': if request.session.get('user'): return render(request, 'index.html') return render(request, 'login.html') else: req = json.loads(request.body) user = req.get('username') pwd = req.get('pwd') obj_user = models.Users.objects.filter(user_name=user).all() if not obj_user: res = dict(state_code=1, error_msg='用户不存在') else: password = obj_user.first().password if str(pwd) != str(password): res = dict(state_code=2, error_msg='密码错误') else: request.session['user'] = user request.session.set_expiry(60 * 60 * 4) res = dict(state_code=0, error_msg='密码错误') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') def logout(request): if request.session.get('user'): del request.session['user'] return render(request, 'login.html') @logined def index(request): return render(request, 'index.html') @api_check def get_dir_list(request): user = request.session.get('user') obj_dir = models.Dirs.objects.filter(user_name=user).all() dir_list = [] for dirs in obj_dir: user_dir = dirs.dir dir_list.append(user_dir) res = dict(state_code=0, error_msg='ok', data={'dir_list': dir_list}) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type= 'application/json') <mask token> @api_check def upload_file(request): dir_name = request.POST.get('dir_name') if not dir_name: res = dict(state_code=-2, error_msg='参数错误') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') dir_path = os.path.join(files_folder, dir_name) if not os.path.exists(dir_path): res = dict(state_code=1, error_msg='目录不存在') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') File = request.FILES.get('file', None) if File is None: res = dict(state_code=-2, error_msg='参数错误') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') file_name = File.name file_path = os.path.join(dir_path, file_name) with open(file_path, 'wb+') as f: for chunk in File.chunks(): f.write(chunk) res = dict(state_code=0, error_msg='ok') return HttpResponse(json.dumps(res), content_type='application/json') @api_check def query_file(request): req = json.loads(request.body) dir_name = req.get('dir_name') dir_path = os.path.join(files_folder, dir_name) cmd_info = os.popen('ls -l -h {}'.format(dir_path)).read() file_list = cmd_info.split('\n')[1:-1] file_list_data = [] for file_info_cmd in file_list: file_info_list = file_info_cmd.split(' ') file_info = list(filter(None, file_info_list)) file = file_info[-1] file_size = file_info[4] name_type = file.rsplit('.', 1) if len(name_type) < 2: name_type.append('未知') file_name, file_type = name_type file_list_data.append({'file_name': file_name, 'file_type': file_type, 'file_size': file_size}) res = dict(state_code=0, error_msg='ok', data={'file_list': file_list_data} ) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type= 'application/json') @api_check def del_file(request): req = json.loads(request.body) dir_name = req.get('dir_name') file_name = req.get('file_name') file_type = req.get('file_type') file = file_name + '.' + file_type if file_type != '未知' else file_name file_path = os.path.join(os.path.join(files_folder, dir_name), file) if not os.path.exists(file_path): res = dict(state_code=1, error_msg='文件不存在') else: os.remove(file_path) res = dict(state_code=0, error_msg='ok') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type= 'application/json') @api_check def download_file(request): req = json.loads(request.body) dir_name = req.get('dir_name') file_name = req.get('file_name') file_type = req.get('file_type') file = file_name + '.' + file_type if file_type != '未知' else file_name file_path = os.path.join(os.path.join(files_folder, dir_name), file) if not os.path.exists(file_path): res = dict(state_code=1, error_msg='文件不存在') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') from django.http import StreamingHttpResponse file_size = os.path.getsize(file_path) def file_iterator(file_name, chunk_size=512): with open(file_name, 'rb') as f: while True: c = f.read(chunk_size) if c: yield c else: break the_file_name = file_path res = file_iterator(the_file_name) response = StreamingHttpResponse(res) response['Content-Type'] = 'application/octet-stream; charset=UTF-8' response['Content-Length'] = file_size response['Content-Disposition'] = 'attachment;filename="{}"'.format( escape_uri_path(file)) return response
<mask token> def logined(func): def wrapper(request, *args, **kwargs): session = request.session.get('user') if not session: return render(request, 'login.html') else: return func(request, *args, **kwargs) return wrapper def api_check(func): def wrapper(request, *args, **kwargs): session = request.session.get('user') if not session: res = dict(state_code=-3, error_msg='登陆过期') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') else: return func(request, *args, **kwargs) return wrapper def login(request): if request.method == 'GET': if request.session.get('user'): return render(request, 'index.html') return render(request, 'login.html') else: req = json.loads(request.body) user = req.get('username') pwd = req.get('pwd') obj_user = models.Users.objects.filter(user_name=user).all() if not obj_user: res = dict(state_code=1, error_msg='用户不存在') else: password = obj_user.first().password if str(pwd) != str(password): res = dict(state_code=2, error_msg='密码错误') else: request.session['user'] = user request.session.set_expiry(60 * 60 * 4) res = dict(state_code=0, error_msg='密码错误') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') def logout(request): if request.session.get('user'): del request.session['user'] return render(request, 'login.html') @logined def index(request): return render(request, 'index.html') @api_check def get_dir_list(request): user = request.session.get('user') obj_dir = models.Dirs.objects.filter(user_name=user).all() dir_list = [] for dirs in obj_dir: user_dir = dirs.dir dir_list.append(user_dir) res = dict(state_code=0, error_msg='ok', data={'dir_list': dir_list}) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type= 'application/json') @api_check def user_mkdir(request): req = json.loads(request.body) dir_name = req.get('dir_name') if not dir_name: res = dict(state_code=-2, error_msg='参数错误') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') dir_path = os.path.join(files_folder, dir_name) if os.path.exists(dir_path): res = dict(state_code=1, error_msg='该目录已被使用') else: user = request.session.get('user') if user: models.Dirs.objects.create(user_name=user, dir=dir_name) os.mkdir(dir_path) res = dict(state_code=0, error_msg='ok') else: res = dict(state_code=-3, error_msg='登陆过期') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type= 'application/json') @api_check def del_dir(request): req = json.loads(request.body) dir_name = req.get('dir_name') if not dir_name: res = dict(state_code=-2, error_msg='参数错误') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') dir_path = os.path.join(files_folder, dir_name) if not os.path.exists(dir_path): res = dict(state_code=1, error_msg='目录不存在') else: with transaction.atomic(): obj_dir = models.Dirs.objects.filter(dir=dir_name).all() if obj_dir: obj_dir.delete() shutil.rmtree(dir_path) res = dict(state_code=0, eror_msg='ok') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type= 'application/json') @api_check def upload_file(request): dir_name = request.POST.get('dir_name') if not dir_name: res = dict(state_code=-2, error_msg='参数错误') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') dir_path = os.path.join(files_folder, dir_name) if not os.path.exists(dir_path): res = dict(state_code=1, error_msg='目录不存在') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') File = request.FILES.get('file', None) if File is None: res = dict(state_code=-2, error_msg='参数错误') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') file_name = File.name file_path = os.path.join(dir_path, file_name) with open(file_path, 'wb+') as f: for chunk in File.chunks(): f.write(chunk) res = dict(state_code=0, error_msg='ok') return HttpResponse(json.dumps(res), content_type='application/json') @api_check def query_file(request): req = json.loads(request.body) dir_name = req.get('dir_name') dir_path = os.path.join(files_folder, dir_name) cmd_info = os.popen('ls -l -h {}'.format(dir_path)).read() file_list = cmd_info.split('\n')[1:-1] file_list_data = [] for file_info_cmd in file_list: file_info_list = file_info_cmd.split(' ') file_info = list(filter(None, file_info_list)) file = file_info[-1] file_size = file_info[4] name_type = file.rsplit('.', 1) if len(name_type) < 2: name_type.append('未知') file_name, file_type = name_type file_list_data.append({'file_name': file_name, 'file_type': file_type, 'file_size': file_size}) res = dict(state_code=0, error_msg='ok', data={'file_list': file_list_data} ) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type= 'application/json') @api_check def del_file(request): req = json.loads(request.body) dir_name = req.get('dir_name') file_name = req.get('file_name') file_type = req.get('file_type') file = file_name + '.' + file_type if file_type != '未知' else file_name file_path = os.path.join(os.path.join(files_folder, dir_name), file) if not os.path.exists(file_path): res = dict(state_code=1, error_msg='文件不存在') else: os.remove(file_path) res = dict(state_code=0, error_msg='ok') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type= 'application/json') @api_check def download_file(request): req = json.loads(request.body) dir_name = req.get('dir_name') file_name = req.get('file_name') file_type = req.get('file_type') file = file_name + '.' + file_type if file_type != '未知' else file_name file_path = os.path.join(os.path.join(files_folder, dir_name), file) if not os.path.exists(file_path): res = dict(state_code=1, error_msg='文件不存在') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') from django.http import StreamingHttpResponse file_size = os.path.getsize(file_path) def file_iterator(file_name, chunk_size=512): with open(file_name, 'rb') as f: while True: c = f.read(chunk_size) if c: yield c else: break the_file_name = file_path res = file_iterator(the_file_name) response = StreamingHttpResponse(res) response['Content-Type'] = 'application/octet-stream; charset=UTF-8' response['Content-Length'] = file_size response['Content-Disposition'] = 'attachment;filename="{}"'.format( escape_uri_path(file)) return response
import os import shutil import json from django.shortcuts import render, HttpResponse from django.utils.encoding import escape_uri_path from django.db import transaction from web_pan.settings import files_folder from disk import models def logined(func): def wrapper(request, *args, **kwargs): session = request.session.get('user') if not session: return render(request, 'login.html') else: return func(request, *args, **kwargs) return wrapper def api_check(func): def wrapper(request, *args, **kwargs): session = request.session.get('user') if not session: res = dict(state_code=-3, error_msg='登陆过期') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') else: return func(request, *args, **kwargs) return wrapper def login(request): if request.method == 'GET': if request.session.get('user'): return render(request, 'index.html') return render(request, 'login.html') else: req = json.loads(request.body) user = req.get('username') pwd = req.get('pwd') obj_user = models.Users.objects.filter(user_name=user).all() if not obj_user: res = dict(state_code=1, error_msg='用户不存在') else: password = obj_user.first().password if str(pwd) != str(password): res = dict(state_code=2, error_msg='密码错误') else: request.session['user'] = user request.session.set_expiry(60 * 60 * 4) res = dict(state_code=0, error_msg='密码错误') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') def logout(request): if request.session.get('user'): del request.session['user'] return render(request, 'login.html') @logined def index(request): return render(request, 'index.html') @api_check def get_dir_list(request): user = request.session.get('user') obj_dir = models.Dirs.objects.filter(user_name=user).all() dir_list = [] for dirs in obj_dir: user_dir = dirs.dir dir_list.append(user_dir) res = dict(state_code=0, error_msg='ok', data={'dir_list': dir_list}) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type= 'application/json') @api_check def user_mkdir(request): req = json.loads(request.body) dir_name = req.get('dir_name') if not dir_name: res = dict(state_code=-2, error_msg='参数错误') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') dir_path = os.path.join(files_folder, dir_name) if os.path.exists(dir_path): res = dict(state_code=1, error_msg='该目录已被使用') else: user = request.session.get('user') if user: models.Dirs.objects.create(user_name=user, dir=dir_name) os.mkdir(dir_path) res = dict(state_code=0, error_msg='ok') else: res = dict(state_code=-3, error_msg='登陆过期') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type= 'application/json') @api_check def del_dir(request): req = json.loads(request.body) dir_name = req.get('dir_name') if not dir_name: res = dict(state_code=-2, error_msg='参数错误') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') dir_path = os.path.join(files_folder, dir_name) if not os.path.exists(dir_path): res = dict(state_code=1, error_msg='目录不存在') else: with transaction.atomic(): obj_dir = models.Dirs.objects.filter(dir=dir_name).all() if obj_dir: obj_dir.delete() shutil.rmtree(dir_path) res = dict(state_code=0, eror_msg='ok') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type= 'application/json') @api_check def upload_file(request): dir_name = request.POST.get('dir_name') if not dir_name: res = dict(state_code=-2, error_msg='参数错误') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') dir_path = os.path.join(files_folder, dir_name) if not os.path.exists(dir_path): res = dict(state_code=1, error_msg='目录不存在') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') File = request.FILES.get('file', None) if File is None: res = dict(state_code=-2, error_msg='参数错误') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') file_name = File.name file_path = os.path.join(dir_path, file_name) with open(file_path, 'wb+') as f: for chunk in File.chunks(): f.write(chunk) res = dict(state_code=0, error_msg='ok') return HttpResponse(json.dumps(res), content_type='application/json') @api_check def query_file(request): req = json.loads(request.body) dir_name = req.get('dir_name') dir_path = os.path.join(files_folder, dir_name) cmd_info = os.popen('ls -l -h {}'.format(dir_path)).read() file_list = cmd_info.split('\n')[1:-1] file_list_data = [] for file_info_cmd in file_list: file_info_list = file_info_cmd.split(' ') file_info = list(filter(None, file_info_list)) file = file_info[-1] file_size = file_info[4] name_type = file.rsplit('.', 1) if len(name_type) < 2: name_type.append('未知') file_name, file_type = name_type file_list_data.append({'file_name': file_name, 'file_type': file_type, 'file_size': file_size}) res = dict(state_code=0, error_msg='ok', data={'file_list': file_list_data} ) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type= 'application/json') @api_check def del_file(request): req = json.loads(request.body) dir_name = req.get('dir_name') file_name = req.get('file_name') file_type = req.get('file_type') file = file_name + '.' + file_type if file_type != '未知' else file_name file_path = os.path.join(os.path.join(files_folder, dir_name), file) if not os.path.exists(file_path): res = dict(state_code=1, error_msg='文件不存在') else: os.remove(file_path) res = dict(state_code=0, error_msg='ok') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type= 'application/json') @api_check def download_file(request): req = json.loads(request.body) dir_name = req.get('dir_name') file_name = req.get('file_name') file_type = req.get('file_type') file = file_name + '.' + file_type if file_type != '未知' else file_name file_path = os.path.join(os.path.join(files_folder, dir_name), file) if not os.path.exists(file_path): res = dict(state_code=1, error_msg='文件不存在') return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') from django.http import StreamingHttpResponse file_size = os.path.getsize(file_path) def file_iterator(file_name, chunk_size=512): with open(file_name, 'rb') as f: while True: c = f.read(chunk_size) if c: yield c else: break the_file_name = file_path res = file_iterator(the_file_name) response = StreamingHttpResponse(res) response['Content-Type'] = 'application/octet-stream; charset=UTF-8' response['Content-Length'] = file_size response['Content-Disposition'] = 'attachment;filename="{}"'.format( escape_uri_path(file)) return response
import os import shutil import json from django.shortcuts import render, HttpResponse from django.utils.encoding import escape_uri_path from django.db import transaction from web_pan.settings import files_folder from disk import models # Create your views here. def logined(func): def wrapper(request, *args, **kwargs): session = request.session.get('user') if not session: return render(request, 'login.html') else: return func(request, *args, **kwargs) return wrapper def api_check(func): def wrapper(request, *args, **kwargs): session = request.session.get('user') if not session: res = dict( state_code=-3, error_msg="登陆过期" ) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') else: return func(request, *args, **kwargs) return wrapper def login(request): if request.method == 'GET': if request.session.get('user'): return render(request, 'index.html') return render(request, 'login.html') else: req = json.loads(request.body) user = req.get('username') pwd = req.get('pwd') obj_user = models.Users.objects.filter(user_name=user).all() if not obj_user: res = dict( state_code=1, error_msg="用户不存在" ) else: password = obj_user.first().password if str(pwd) != str(password): res = dict( state_code=2, error_msg="密码错误" ) else: request.session['user'] = user request.session.set_expiry(60*60*4) res = dict( state_code=0, error_msg="密码错误" ) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') def logout(request): if request.session.get('user'): del request.session['user'] return render(request, 'login.html') @logined def index(request): return render(request, 'index.html') @api_check def get_dir_list(request): user = request.session.get('user') obj_dir = models.Dirs.objects.filter(user_name=user).all() dir_list = [] for dirs in obj_dir: user_dir = dirs.dir dir_list.append(user_dir) res = dict( state_code=0, error_msg='ok', data={ "dir_list": dir_list } ) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') @api_check def user_mkdir(request): req = json.loads(request.body) dir_name = req.get('dir_name') if not dir_name: res = dict( state_code=-2, error_msg='参数错误' ) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') dir_path = os.path.join(files_folder, dir_name) if os.path.exists(dir_path): res = dict( state_code=1, error_msg="该目录已被使用" ) else: user = request.session.get('user') if user: models.Dirs.objects.create( user_name=user, dir=dir_name ) os.mkdir(dir_path) res = dict( state_code=0, error_msg='ok' ) else: res = dict( state_code=-3, error_msg="登陆过期" ) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') @api_check def del_dir(request): req = json.loads(request.body) dir_name = req.get('dir_name') if not dir_name: res = dict( state_code=-2, error_msg='参数错误' ) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') dir_path = os.path.join(files_folder, dir_name) if not os.path.exists(dir_path): res = dict( state_code=1, error_msg='目录不存在' ) else: with transaction.atomic(): obj_dir = models.Dirs.objects.filter(dir=dir_name).all() if obj_dir: obj_dir.delete() shutil.rmtree(dir_path) res = dict( state_code=0, eror_msg='ok' ) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') @api_check def upload_file(request): dir_name = request.POST.get('dir_name') if not dir_name: res = dict( state_code=-2, error_msg='参数错误' ) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') dir_path = os.path.join(files_folder, dir_name) if not os.path.exists(dir_path): res = dict( state_code=1, error_msg='目录不存在' ) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') # 获取上传的文件,如果没有文件,则默认为None; File = request.FILES.get("file", None) if File is None: res = dict( state_code=-2, error_msg='参数错误' ) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') file_name = File.name file_path = os.path.join(dir_path, file_name) # 打开特定的文件进行二进制的写操作; with open(file_path, 'wb+') as f: # 分块写入文件; for chunk in File.chunks(): f.write(chunk) res = dict( state_code=0, error_msg='ok', ) return HttpResponse(json.dumps(res), content_type='application/json') @api_check def query_file(request): req = json.loads(request.body) dir_name = req.get('dir_name') dir_path = os.path.join(files_folder, dir_name) cmd_info = os.popen("ls -l -h {}".format(dir_path)).read() file_list = cmd_info.split('\n')[1:-1] file_list_data = [] for file_info_cmd in file_list: file_info_list = file_info_cmd.split(' ') file_info = list(filter(None, file_info_list)) file = file_info[-1] file_size = file_info[4] name_type = file.rsplit('.', 1) if len(name_type) < 2: name_type.append('未知') file_name, file_type = name_type file_list_data.append({ 'file_name': file_name, 'file_type': file_type, 'file_size': file_size }) res = dict( state_code=0, error_msg='ok', data={ 'file_list': file_list_data } ) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') @api_check def del_file(request): req = json.loads(request.body) dir_name = req.get('dir_name') file_name = req.get('file_name') file_type = req.get('file_type') file = file_name + '.' + file_type if file_type != '未知' else file_name file_path = os.path.join(os.path.join(files_folder,dir_name),file) if not os.path.exists(file_path): res = dict( state_code=1, error_msg='文件不存在' ) else: os.remove(file_path) res = dict( state_code=0, error_msg='ok' ) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') @api_check def download_file(request): req = json.loads(request.body) dir_name = req.get('dir_name') file_name = req.get('file_name') file_type = req.get('file_type') file = file_name+'.'+file_type if file_type != '未知' else file_name file_path = os.path.join(os.path.join(files_folder,dir_name),file) if not os.path.exists(file_path): res = dict( state_code=1, error_msg='文件不存在' ) return HttpResponse(json.dumps(res, ensure_ascii=False), content_type='application/json') from django.http import StreamingHttpResponse file_size = os.path.getsize(file_path) def file_iterator(file_name, chunk_size=512): # 用于形成二进制数据 with open(file_name, 'rb') as f: while True: c = f.read(chunk_size) if c: yield c else: break the_file_name = file_path # 要下载的文件路径 res = file_iterator(the_file_name) response = StreamingHttpResponse(res) # 这里创建返回 response['Content-Type'] = 'application/octet-stream; charset=UTF-8' # 注意格式 response['Content-Length'] = file_size response['Content-Disposition'] = 'attachment;filename="{}"'.format(escape_uri_path(file)) # 注意filename 这个是下载后的名字 return response
[ 9, 10, 12, 13, 14 ]
706
1b529d8bafc81ef4dd9ff355de6abbd6f4ebddf1
<mask token> def lazy(func): class Lazy: def __init__(self, original) ->None: self._value_computed = False self._value = None self._original = [original] def get_value(self, *args, **kwargs): if self._value_computed: return self._value else: self._value = func(*args, **kwargs) self._value_computed = True return self._value _lazy = Lazy(func) def replacement(*args, **kwargs): return _lazy.get_value(*args, **kwargs) return replacement
<mask token> def asynchronous(func): def task(*args, **kwargs): try: func(*args, **kwargs) except Exception as e: logger.exception('Exception during asynchronous execution: ' + str(e)) raise e def replacement(*args, **kwargs): return xdcs().executor().submit(lambda : task(*args, **kwargs)) return replacement def lazy(func): class Lazy: def __init__(self, original) ->None: self._value_computed = False self._value = None self._original = [original] def get_value(self, *args, **kwargs): if self._value_computed: return self._value else: self._value = func(*args, **kwargs) self._value_computed = True return self._value _lazy = Lazy(func) def replacement(*args, **kwargs): return _lazy.get_value(*args, **kwargs) return replacement
<mask token> logger = logging.getLogger(__name__) def asynchronous(func): def task(*args, **kwargs): try: func(*args, **kwargs) except Exception as e: logger.exception('Exception during asynchronous execution: ' + str(e)) raise e def replacement(*args, **kwargs): return xdcs().executor().submit(lambda : task(*args, **kwargs)) return replacement def lazy(func): class Lazy: def __init__(self, original) ->None: self._value_computed = False self._value = None self._original = [original] def get_value(self, *args, **kwargs): if self._value_computed: return self._value else: self._value = func(*args, **kwargs) self._value_computed = True return self._value _lazy = Lazy(func) def replacement(*args, **kwargs): return _lazy.get_value(*args, **kwargs) return replacement
import logging from xdcs.app import xdcs logger = logging.getLogger(__name__) def asynchronous(func): def task(*args, **kwargs): try: func(*args, **kwargs) except Exception as e: logger.exception('Exception during asynchronous execution: ' + str(e)) raise e def replacement(*args, **kwargs): return xdcs().executor().submit(lambda : task(*args, **kwargs)) return replacement def lazy(func): class Lazy: def __init__(self, original) ->None: self._value_computed = False self._value = None self._original = [original] def get_value(self, *args, **kwargs): if self._value_computed: return self._value else: self._value = func(*args, **kwargs) self._value_computed = True return self._value _lazy = Lazy(func) def replacement(*args, **kwargs): return _lazy.get_value(*args, **kwargs) return replacement
import logging from xdcs.app import xdcs logger = logging.getLogger(__name__) def asynchronous(func): def task(*args, **kwargs): try: func(*args, **kwargs) except Exception as e: logger.exception('Exception during asynchronous execution: ' + str(e)) raise e def replacement(*args, **kwargs): return xdcs().executor() \ .submit(lambda: task(*args, **kwargs)) return replacement def lazy(func): class Lazy: def __init__(self, original) -> None: self._value_computed = False self._value = None self._original = [original] def get_value(self, *args, **kwargs): if self._value_computed: return self._value else: self._value = func(*args, **kwargs) self._value_computed = True return self._value _lazy = Lazy(func) def replacement(*args, **kwargs): return _lazy.get_value(*args, **kwargs) return replacement
[ 1, 2, 3, 4, 5 ]
707
cb48a1601798f72f9cf3759d3c13969bc824a0f6
<mask token> def gen_windows(plan_grid, n, m, window_model): return STRUCT([T([1, 2])([j, i])(gen_cube_windows(plan_grid, window_model)(i, j, n, m)) for i in range(n) for j in range(m) if plan_grid[i][j]]) <mask token> def gen_body(plan_grid, n, m): c = CUBE(1) return STRUCT([T([1, 2])([j, i])(c) for i in range(n) for j in range(m) if plan_grid[i][j]]) <mask token> def q_shaped_house(box): grid = [[True, True, True], [True, True, True], [True, False, False]] roof = MKPOL([[[0, 0, 0], [3, 0, 0], [3, 2, 0], [1, 2, 0], [1, 3, 0], [ 0.5, 3, 0.5], [0, 3, 0], [0.5, 0.5, 0.5], [2.5, 0.5, 0.5], [2.5, 1.5, 0.5], [0.5, 1.5, 0.5]], [[1, 8, 6, 7], [1, 2, 9, 8], [2, 3, 10, 9], [10, 3, 4, 11], [4, 5, 6, 11], [6, 5, 7], [8, 9, 10, 11]], [1]]) window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2])) return gen_house(box, grid, None, window, roof) def rectangular_house(box): grid = [[True, True], [True, True], [True, True]] roof = MKPOL([[[0, 0, 0], [1, 0, 1], [2, 0, 0], [2, 3, 0], [1, 3, 1], [ 0, 3, 0]], [[1, 2, 5, 6], [2, 3, 4, 5], [1, 3, 2], [5, 4, 6]], [1]]) window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2])) return gen_house(box, grid, None, window, roof) def squared_house(box): grid = [[True, True, True], [True, True, True], [True, True, True]] roof = MKPOL([[[0, 0, 0], [3, 0, 0], [3, 3, 0], [0, 3, 0], [1.5, 1.5, 1 ]], [[5, 1, 2], [5, 2, 3], [5, 3, 4], [5, 4, 1]], [1]]) window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2])) return gen_house(box, grid, None, window, roof) <mask token>
<mask token> def gen_windows(plan_grid, n, m, window_model): return STRUCT([T([1, 2])([j, i])(gen_cube_windows(plan_grid, window_model)(i, j, n, m)) for i in range(n) for j in range(m) if plan_grid[i][j]]) <mask token> def gen_body(plan_grid, n, m): c = CUBE(1) return STRUCT([T([1, 2])([j, i])(c) for i in range(n) for j in range(m) if plan_grid[i][j]]) def gen_house(box, plan_grid, door_model, window_model, roof_model): n = len(plan_grid) m = len(plan_grid[0]) body = STRUCT([gen_body(plan_grid, n, m), T(3)(1), roof_model]) l2s_scale = map(lambda x, y: x / y, SIZE([1, 2, 3])(body), box) s2l_scale = [(1 / elem) for elem in l2s_scale] scaled_win = S([1, 2, 3])(l2s_scale)(window_model) windows = gen_windows(plan_grid, n, m, scaled_win) house = STRUCT([body, windows]) return TEXTURE(['wood.jpg', True, True, 300, 300, r.random() * 3.1415, 0.1, 0.1, 0, 0])(S([1, 2, 3])(s2l_scale)(house)) def l_shaped_house(box): grid = [[False, False, True], [True, True, True]] roof = MKPOL([[[2, 0, 0], [2.5, 0, 0.5], [3, 0, 0], [3, 2, 0], [0, 2, 0 ], [0, 1.5, 0.5], [0, 1, 0], [2, 1, 0], [2.5, 1.5, 0.5]], [[3, 2, 1 ], [9, 2, 3, 4], [5, 6, 9, 4], [7, 6, 5], [7, 8, 9, 6], [9, 8, 1, 2 ]], [1]]) window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2])) return gen_house(box, grid, None, window, roof) def q_shaped_house(box): grid = [[True, True, True], [True, True, True], [True, False, False]] roof = MKPOL([[[0, 0, 0], [3, 0, 0], [3, 2, 0], [1, 2, 0], [1, 3, 0], [ 0.5, 3, 0.5], [0, 3, 0], [0.5, 0.5, 0.5], [2.5, 0.5, 0.5], [2.5, 1.5, 0.5], [0.5, 1.5, 0.5]], [[1, 8, 6, 7], [1, 2, 9, 8], [2, 3, 10, 9], [10, 3, 4, 11], [4, 5, 6, 11], [6, 5, 7], [8, 9, 10, 11]], [1]]) window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2])) return gen_house(box, grid, None, window, roof) def rectangular_house(box): grid = [[True, True], [True, True], [True, True]] roof = MKPOL([[[0, 0, 0], [1, 0, 1], [2, 0, 0], [2, 3, 0], [1, 3, 1], [ 0, 3, 0]], [[1, 2, 5, 6], [2, 3, 4, 5], [1, 3, 2], [5, 4, 6]], [1]]) window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2])) return gen_house(box, grid, None, window, roof) def squared_house(box): grid = [[True, True, True], [True, True, True], [True, True, True]] roof = MKPOL([[[0, 0, 0], [3, 0, 0], [3, 3, 0], [0, 3, 0], [1.5, 1.5, 1 ]], [[5, 1, 2], [5, 2, 3], [5, 3, 4], [5, 4, 1]], [1]]) window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2])) return gen_house(box, grid, None, window, roof) <mask token>
<mask token> def gen_windows(plan_grid, n, m, window_model): return STRUCT([T([1, 2])([j, i])(gen_cube_windows(plan_grid, window_model)(i, j, n, m)) for i in range(n) for j in range(m) if plan_grid[i][j]]) def gen_cube_windows(plan_grid, window_model): w = window_model hpcs = [CUBE(1e-05)] def gen_cube0(i, j, n, m): if j + 1 == m or not plan_grid[i][j + 1]: hpcs.append(T([1, 2])([1, 0.5])(MAP([S2, S1, S3])(w))) if j - 1 < 0 or not plan_grid[i][j - 1]: hpcs.append(T(2)(0.5)(MAP([S2, S1, S3])(w))) if i + 1 == n or not plan_grid[i + 1][j]: hpcs.append(T([1, 2])([0.5, 1])(w)) if i - 1 < 0 or not plan_grid[i - 1][j]: hpcs.append(T(1)(0.5)(w)) return STRUCT(hpcs) return gen_cube0 def gen_body(plan_grid, n, m): c = CUBE(1) return STRUCT([T([1, 2])([j, i])(c) for i in range(n) for j in range(m) if plan_grid[i][j]]) def gen_house(box, plan_grid, door_model, window_model, roof_model): n = len(plan_grid) m = len(plan_grid[0]) body = STRUCT([gen_body(plan_grid, n, m), T(3)(1), roof_model]) l2s_scale = map(lambda x, y: x / y, SIZE([1, 2, 3])(body), box) s2l_scale = [(1 / elem) for elem in l2s_scale] scaled_win = S([1, 2, 3])(l2s_scale)(window_model) windows = gen_windows(plan_grid, n, m, scaled_win) house = STRUCT([body, windows]) return TEXTURE(['wood.jpg', True, True, 300, 300, r.random() * 3.1415, 0.1, 0.1, 0, 0])(S([1, 2, 3])(s2l_scale)(house)) def l_shaped_house(box): grid = [[False, False, True], [True, True, True]] roof = MKPOL([[[2, 0, 0], [2.5, 0, 0.5], [3, 0, 0], [3, 2, 0], [0, 2, 0 ], [0, 1.5, 0.5], [0, 1, 0], [2, 1, 0], [2.5, 1.5, 0.5]], [[3, 2, 1 ], [9, 2, 3, 4], [5, 6, 9, 4], [7, 6, 5], [7, 8, 9, 6], [9, 8, 1, 2 ]], [1]]) window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2])) return gen_house(box, grid, None, window, roof) def q_shaped_house(box): grid = [[True, True, True], [True, True, True], [True, False, False]] roof = MKPOL([[[0, 0, 0], [3, 0, 0], [3, 2, 0], [1, 2, 0], [1, 3, 0], [ 0.5, 3, 0.5], [0, 3, 0], [0.5, 0.5, 0.5], [2.5, 0.5, 0.5], [2.5, 1.5, 0.5], [0.5, 1.5, 0.5]], [[1, 8, 6, 7], [1, 2, 9, 8], [2, 3, 10, 9], [10, 3, 4, 11], [4, 5, 6, 11], [6, 5, 7], [8, 9, 10, 11]], [1]]) window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2])) return gen_house(box, grid, None, window, roof) def rectangular_house(box): grid = [[True, True], [True, True], [True, True]] roof = MKPOL([[[0, 0, 0], [1, 0, 1], [2, 0, 0], [2, 3, 0], [1, 3, 1], [ 0, 3, 0]], [[1, 2, 5, 6], [2, 3, 4, 5], [1, 3, 2], [5, 4, 6]], [1]]) window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2])) return gen_house(box, grid, None, window, roof) def squared_house(box): grid = [[True, True, True], [True, True, True], [True, True, True]] roof = MKPOL([[[0, 0, 0], [3, 0, 0], [3, 3, 0], [0, 3, 0], [1.5, 1.5, 1 ]], [[5, 1, 2], [5, 2, 3], [5, 3, 4], [5, 4, 1]], [1]]) window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2])) return gen_house(box, grid, None, window, roof) <mask token>
<mask token> def gen_windows(plan_grid, n, m, window_model): return STRUCT([T([1, 2])([j, i])(gen_cube_windows(plan_grid, window_model)(i, j, n, m)) for i in range(n) for j in range(m) if plan_grid[i][j]]) def gen_cube_windows(plan_grid, window_model): w = window_model hpcs = [CUBE(1e-05)] def gen_cube0(i, j, n, m): if j + 1 == m or not plan_grid[i][j + 1]: hpcs.append(T([1, 2])([1, 0.5])(MAP([S2, S1, S3])(w))) if j - 1 < 0 or not plan_grid[i][j - 1]: hpcs.append(T(2)(0.5)(MAP([S2, S1, S3])(w))) if i + 1 == n or not plan_grid[i + 1][j]: hpcs.append(T([1, 2])([0.5, 1])(w)) if i - 1 < 0 or not plan_grid[i - 1][j]: hpcs.append(T(1)(0.5)(w)) return STRUCT(hpcs) return gen_cube0 def gen_body(plan_grid, n, m): c = CUBE(1) return STRUCT([T([1, 2])([j, i])(c) for i in range(n) for j in range(m) if plan_grid[i][j]]) def gen_house(box, plan_grid, door_model, window_model, roof_model): n = len(plan_grid) m = len(plan_grid[0]) body = STRUCT([gen_body(plan_grid, n, m), T(3)(1), roof_model]) l2s_scale = map(lambda x, y: x / y, SIZE([1, 2, 3])(body), box) s2l_scale = [(1 / elem) for elem in l2s_scale] scaled_win = S([1, 2, 3])(l2s_scale)(window_model) windows = gen_windows(plan_grid, n, m, scaled_win) house = STRUCT([body, windows]) return TEXTURE(['wood.jpg', True, True, 300, 300, r.random() * 3.1415, 0.1, 0.1, 0, 0])(S([1, 2, 3])(s2l_scale)(house)) def l_shaped_house(box): grid = [[False, False, True], [True, True, True]] roof = MKPOL([[[2, 0, 0], [2.5, 0, 0.5], [3, 0, 0], [3, 2, 0], [0, 2, 0 ], [0, 1.5, 0.5], [0, 1, 0], [2, 1, 0], [2.5, 1.5, 0.5]], [[3, 2, 1 ], [9, 2, 3, 4], [5, 6, 9, 4], [7, 6, 5], [7, 8, 9, 6], [9, 8, 1, 2 ]], [1]]) window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2])) return gen_house(box, grid, None, window, roof) def q_shaped_house(box): grid = [[True, True, True], [True, True, True], [True, False, False]] roof = MKPOL([[[0, 0, 0], [3, 0, 0], [3, 2, 0], [1, 2, 0], [1, 3, 0], [ 0.5, 3, 0.5], [0, 3, 0], [0.5, 0.5, 0.5], [2.5, 0.5, 0.5], [2.5, 1.5, 0.5], [0.5, 1.5, 0.5]], [[1, 8, 6, 7], [1, 2, 9, 8], [2, 3, 10, 9], [10, 3, 4, 11], [4, 5, 6, 11], [6, 5, 7], [8, 9, 10, 11]], [1]]) window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2])) return gen_house(box, grid, None, window, roof) def rectangular_house(box): grid = [[True, True], [True, True], [True, True]] roof = MKPOL([[[0, 0, 0], [1, 0, 1], [2, 0, 0], [2, 3, 0], [1, 3, 1], [ 0, 3, 0]], [[1, 2, 5, 6], [2, 3, 4, 5], [1, 3, 2], [5, 4, 6]], [1]]) window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2])) return gen_house(box, grid, None, window, roof) def squared_house(box): grid = [[True, True, True], [True, True, True], [True, True, True]] roof = MKPOL([[[0, 0, 0], [3, 0, 0], [3, 3, 0], [0, 3, 0], [1.5, 1.5, 1 ]], [[5, 1, 2], [5, 2, 3], [5, 3, 4], [5, 4, 1]], [1]]) window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2])) return gen_house(box, grid, None, window, roof) if __name__ == '__main__': VIEW(squared_house([15, 15, 8]))
from pyplasm import * import random as r def gen_windows(plan_grid, n, m, window_model): return STRUCT([ T([1,2])([j,i])( gen_cube_windows(plan_grid, window_model)(i, j, n, m)) for i in range(n) for j in range(m) if plan_grid[i][j]]) def gen_cube_windows(plan_grid, window_model): w = window_model hpcs = [CUBE(0.00001)] def gen_cube0(i, j, n, m): if j+1 == m or not plan_grid[i][j+1]: hpcs.append(T([1, 2])([1, .5])(MAP([S2, S1, S3])(w))) if j-1 < 0 or not plan_grid[i][j-1]: hpcs.append(T(2)(.5)(MAP([S2, S1, S3])(w))) if i+1 == n or not plan_grid[i+1][j]: hpcs.append(T([1, 2])([.5, 1])(w)) if i-1 < 0 or not plan_grid[i-1][j]: hpcs.append(T(1)(.5)(w)) return STRUCT(hpcs) return gen_cube0 def gen_body(plan_grid, n, m): c = CUBE(1) return STRUCT([ T([1,2])([j,i])(c) for i in range(n) for j in range(m) if plan_grid[i][j]]) def gen_house( box, plan_grid, door_model, window_model, roof_model): n = len(plan_grid) m = len(plan_grid[0]) body = STRUCT([ gen_body(plan_grid, n, m), T(3)(1), roof_model]) l2s_scale = map(lambda x,y: x/y, SIZE([1,2,3])(body), box) s2l_scale = [1/elem for elem in l2s_scale] scaled_win = S([1,2,3])(l2s_scale)(window_model) windows = gen_windows(plan_grid, n, m, scaled_win) house = STRUCT([body, windows]) return TEXTURE(['wood.jpg',True, True, 300,300, r.random()*3.1415, .1,.1, 0,0])( S([1,2,3])(s2l_scale)(house)) def l_shaped_house(box): grid = [ [False, False, True], [True, True, True]] roof = MKPOL([ [ [ 2, 0, 0], [2.5, 0, .5], [ 3, 0, 0], [ 3, 2, 0], [ 0, 2, 0], [ 0, 1.5, .5], [ 0, 1, 0], [ 2, 1, 0], [2.5, 1.5, .5] ], [ [3,2,1], [9,2,3,4], [5,6,9,4], [7,6,5], [7,8,9,6], [9,8,1,2] ], [1]]) window = T([1,2,3])([-.75, -.1, 1.2])(CUBOID([1.5, .2, 2])) return gen_house(box, grid, None, window, roof) def q_shaped_house(box): grid = [ [True, True, True], [True, True, True], [True, False, False]] roof = MKPOL([ [ [0,0,0], #1 [3,0,0], #2 [3,2,0], #3 [1,2,0], #4 [1,3,0], #5 [.5,3,.5], #6 [0,3,0], #7 [.5,.5,.5], #8 [2.5,.5,.5], #9 [2.5,1.5,.5], #10 [.5,1.5,.5] #11 ], [ [1,8,6,7], [1,2,9,8], [2,3,10,9], [10,3,4,11], [4,5,6,11], [6,5,7], [8,9,10,11] ], [1]]) window = T([1,2,3])([-.75, -.1, 1.2])(CUBOID([1.5, .2, 2])) return gen_house(box, grid, None, window, roof) def rectangular_house(box): grid = [ [True, True], [True, True], [True, True]] roof = MKPOL([ [ [0,0,0], #1 [1,0,1], #2 [2,0,0], #3 [2,3,0], #4 [1,3,1], #5 [0,3,0] #6 ], [ [1,2,5,6], [2,3,4,5], [1,3,2], [5,4,6] ], [1]]) window = T([1,2,3])([-.75, -.1, 1.2])(CUBOID([1.5, .2, 2])) return gen_house(box, grid, None, window, roof) def squared_house(box): grid = [ [True, True, True], [True, True, True], [True, True, True]] roof = MKPOL([ [ [0,0,0], #1 [3,0,0], #2 [3,3,0], #3 [0,3,0], #4 [1.5,1.5,1] #5 ], [ [5,1,2], [5,2,3], [5,3,4], [5,4,1] ], [1]]) window = T([1,2,3])([-.75, -.1, 1.2])(CUBOID([1.5, .2, 2])) return gen_house(box, grid, None, window, roof) if __name__=='__main__': VIEW(squared_house([15, 15, 8]))
[ 5, 7, 8, 9, 11 ]
708
7d3355ee775f759412308ab68a7aa409b9c74b20
<mask token>
<mask token> print(num1)
<mask token> num1 = random.randint(50, 151) print(num1)
<mask token> import random num1 = random.randint(50, 151) print(num1)
''' 使用random模块,如何产生 50~150之间的数? ''' import random num1 = random.randint(50,151) print(num1)
[ 0, 1, 2, 3, 4 ]
709
7554b00f8c4d40f1d3ee2341f118048ca7ad10ea
<mask token> class Event(object): <mask token> <mask token>
<mask token> class Event(object): <mask token> def to_dict(self): d = {} for item in self.__dict__: val = getattr(self, item) if val != None: d[item] = val return d
<mask token> class Event(object): def __init__(self): self.id = None self.raw = None self.create_dt = datetime.datetime.now() self.device_id = None self.collector_id = None self.device_hostname = None self.device_domain_name = None self.device_ip_address = None self.types = [] def to_dict(self): d = {} for item in self.__dict__: val = getattr(self, item) if val != None: d[item] = val return d
import datetime class Event(object): def __init__(self): self.id = None self.raw = None self.create_dt = datetime.datetime.now() self.device_id = None self.collector_id = None self.device_hostname = None self.device_domain_name = None self.device_ip_address = None self.types = [] def to_dict(self): d = {} for item in self.__dict__: val = getattr(self, item) if val != None: d[item] = val return d
null
[ 1, 2, 3, 4 ]
710
f9db3c96bc3fd4911640d0428672c87072564b0d
<mask token>
<mask token> while True: r, f = stream.read() cv2.imshow('IP Camera stream', f) if cv2.waitKey(1) & 255 == ord('q'): break cv2.destroyAllWindows()
<mask token> stream = cv2.VideoCapture('rtsp://SeniorDesign:[email protected]:554/video') while True: r, f = stream.read() cv2.imshow('IP Camera stream', f) if cv2.waitKey(1) & 255 == ord('q'): break cv2.destroyAllWindows()
<mask token> import cv2 stream = cv2.VideoCapture('rtsp://SeniorDesign:[email protected]:554/video') while True: r, f = stream.read() cv2.imshow('IP Camera stream', f) if cv2.waitKey(1) & 255 == ord('q'): break cv2.destroyAllWindows()
"""Access IP Camera in Python OpenCV""" import cv2 #stream = cv2.VideoCapture('protocol://IP:port/1') # Use the next line if your camera has a username and password stream = cv2.VideoCapture('rtsp://SeniorDesign:[email protected]:554/video') while True: r, f = stream.read() cv2.imshow('IP Camera stream',f) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows()
[ 0, 1, 2, 3, 4 ]
711
7da2be1b530faa8ce9a8570247887e8e0d74c310
<mask token>
<mask token> print(data.head(6)) <mask token> print(data) <mask token> print(X_train.shape) print(y_train.shape) print(X_test.shape) print(y_test.shape) <mask token> model.fit(X_train, y_train) <mask token> print("""Predictions of test set: %s""" % y_pred) print(model.feature_importances_) print(model.score(X_test, y_test)) <mask token> model.fit(X_train, y_train) print(model.score(X_test, y_test)) <mask token> print(clf.score(X_test, y_test)) <mask token> model.fit(X_train, y_train) print(model.score(X_test, y_test))
<mask token> data = pd.read_csv('wheat.csv', index_col=0) print(data.head(6)) data = data.fillna(data.mean()) print(data) <mask token> X = data.iloc[:, :7] y = data.iloc[:, 7] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=300) print(X_train.shape) print(y_train.shape) print(X_test.shape) print(y_test.shape) <mask token> model = RandomForestClassifier(n_estimators=10) model.fit(X_train, y_train) y_pred = model.predict(X_test) print("""Predictions of test set: %s""" % y_pred) print(model.feature_importances_) print(model.score(X_test, y_test)) model = RandomForestClassifier(n_estimators=30) model.fit(X_train, y_train) print(model.score(X_test, y_test)) <mask token> clf = tree.DecisionTreeClassifier() clf = clf.fit(X_train, y_train) print(clf.score(X_test, y_test)) model = RandomForestClassifier(n_estimators=1) model.fit(X_train, y_train) print(model.score(X_test, y_test))
import pandas as pd data = pd.read_csv('wheat.csv', index_col=0) print(data.head(6)) data = data.fillna(data.mean()) print(data) from sklearn.model_selection import train_test_split X = data.iloc[:, :7] y = data.iloc[:, 7] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=300) print(X_train.shape) print(y_train.shape) print(X_test.shape) print(y_test.shape) from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=10) model.fit(X_train, y_train) y_pred = model.predict(X_test) print("""Predictions of test set: %s""" % y_pred) print(model.feature_importances_) print(model.score(X_test, y_test)) model = RandomForestClassifier(n_estimators=30) model.fit(X_train, y_train) print(model.score(X_test, y_test)) from sklearn import tree clf = tree.DecisionTreeClassifier() clf = clf.fit(X_train, y_train) print(clf.score(X_test, y_test)) model = RandomForestClassifier(n_estimators=1) model.fit(X_train, y_train) print(model.score(X_test, y_test))
import pandas as pd #1. 读入数据 #从本地读入“wheat.csv”文件,指定index_col参数为00,即将第一列作为每行的索引。用head()函数查看前几行数据。 data = pd.read_csv("wheat.csv",index_col=0) print(data.head(6)) #2. 缺失值处理 #该数据集中包含部分缺失值,在模型训练时会遇到特征值为空的问题,故对缺失值进行处理, ## 用DataFrame的fillna方法进行缺失值填充,填充值为用mean方法得到的该列平均值。 data = data.fillna(data.mean()) print(data) #3. 划分数据集从sklearn.model_selection模块导入train_test_split函数, # 并将返回值放入变量X_train、X_test、y_train和y_test之中,指定参数test_size=0.3, # 即将70%的数据样本作为训练集,将30%的数据样本作为测试集。输出训练集和测试集大小。 from sklearn.model_selection import train_test_split X = data.iloc[:,:7] y = data.iloc[:,7] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=300) print(X_train.shape) print(y_train.shape) print(X_test.shape) print(y_test.shape) #4.构建随机森林模型并训练 #从sklearn.ensemble模块中导入RandomForestClassifier函数, ## 并用其构建随机森林分类模型,指定n_estimators参数为1010, # 即使用1010棵决策树构建模型。将训练集传入模型进行模型训练。 from sklearn.ensemble import RandomForestClassifier model= RandomForestClassifier(n_estimators=10) model.fit(X_train, y_train) #5.利用随机森林模型预测分类 #运用predict方法预测测试集中样本的分类,该方法返回一个预测结果数组,输出预测的分类结果。 y_pred = model.predict(X_test) print("Predictions of test set:\n%s"%y_pred) #6. 查看各特征重要性 #用feature_importances_属性查看每个特征的重要性,相对而言第11、22、55、77个特征在随机森林分类中的重要性强一些。 print(model.feature_importances_) #7. 评估模型准确率 #利用score方法计算模型在测试集上的预测准确率。 print(model.score(X_test,y_test)) #8. 调整随机森林中的树木数量 #随机森林中的数目数量是模型中较为重要的参数, #通过指定n_estimators参数进行设置,设置为30时模型的性能较10时有所提升, #但设置为100时,其准确度不但没有提升已不明显,甚至可能下降,可能已经过拟合。 model= RandomForestClassifier(n_estimators=30) model.fit(X_train, y_train) print(model.score(X_test,y_test)) #9. 与决策树分类进行比较 #决策树与随机森林在分类效果上进行比较, # 决策树模型的分类准确率与仅含单棵决策树的随机森林类似, # 但是总体上随机森林的准确度要高于决策树,但其模型的解释性较差,无法轻易得到树的基本结构。 from sklearn import tree clf = tree.DecisionTreeClassifier() clf = clf.fit(X_train, y_train) print(clf.score(X_test,y_test)) model= RandomForestClassifier(n_estimators=1) model.fit(X_train, y_train) print(model.score(X_test,y_test))
[ 0, 1, 2, 3, 4 ]
712
7036ae5f74e6cb04518c20bb52122a1dfae76f23
<mask token> def read_summary(summary_file): return json.loads(open(summary_file, 'r').read()) def get_descriptions(summary): d = {} for o in summary['ontology_events']: print(o) d[o] = summary['ontology_events'][o].get('description', summary[ 'ontology_events'][o]['method']) + '_' + str(o) return d def plot_totals(summary): descriptions = get_descriptions(summary) totals = {} for event in summary['ontology_events'].keys(): totals[str(event)] = {'genes': [], 'rxns': [], 'terms': []} for gene in summary['genes']: for term in summary['genes'][gene]['terms']: for event in summary['genes'][gene]['terms'][term]: totals[str(event)]['genes'].append(gene) for term in summary['terms']: for event in summary['terms'][term]: totals[str(event)]['terms'].append(term) for rxn in summary['rxns']: for event in summary['rxns'][rxn]: totals[str(event)]['rxns'].append(rxn) events = [] types = ['genes', 'terms', 'rxns'] gene_counts = [] rxn_counts = [] term_counts = [] for event in totals: events.append(descriptions[event]) gene_counts.append(len(set(totals[event]['genes']))) rxn_counts.append(len(set(totals[event]['rxns']))) term_counts.append(len(set(totals[event]['terms']))) data = {'events': events, 'genes': gene_counts, 'terms': term_counts, 'rxns': rxn_counts} x = [(event, type) for event in events for type in types] counts = sum(zip(data['genes'], data['terms'], data['rxns']), ()) source = ColumnDataSource(data=dict(x=x, counts=counts)) p = figure(y_range=FactorRange(*x), plot_height=400, plot_width=1000, title='Unique Counts per Annotation Event', tools= 'wheel_zoom,box_zoom,reset,save') p.hbar(y='x', right='counts', height=0.9, source=source, line_color= 'black', fill_color=factor_cmap('x', palette=inferno(len(types)), factors=types, start=1, end=2)) p.x_range.start = 0 p.y_range.range_padding = 0.1 p.yaxis.major_label_orientation = 'horizontal' p.yaxis.subgroup_label_orientation = 'horizontal' p.yaxis.group_label_orientation = 'horizontal' p.ygrid.grid_line_color = None p.title.text_font_size = '12pt' p.xaxis.major_label_text_font_size = '12pt' p.yaxis.major_label_text_font_size = '12pt' p.yaxis.group_text_font_size = '12pt' p.add_tools(HoverTool(tooltips=[('Type', '@x'), ('Count', '@counts')])) return p <mask token>
<mask token> def read_summary(summary_file): return json.loads(open(summary_file, 'r').read()) def get_descriptions(summary): d = {} for o in summary['ontology_events']: print(o) d[o] = summary['ontology_events'][o].get('description', summary[ 'ontology_events'][o]['method']) + '_' + str(o) return d def plot_totals(summary): descriptions = get_descriptions(summary) totals = {} for event in summary['ontology_events'].keys(): totals[str(event)] = {'genes': [], 'rxns': [], 'terms': []} for gene in summary['genes']: for term in summary['genes'][gene]['terms']: for event in summary['genes'][gene]['terms'][term]: totals[str(event)]['genes'].append(gene) for term in summary['terms']: for event in summary['terms'][term]: totals[str(event)]['terms'].append(term) for rxn in summary['rxns']: for event in summary['rxns'][rxn]: totals[str(event)]['rxns'].append(rxn) events = [] types = ['genes', 'terms', 'rxns'] gene_counts = [] rxn_counts = [] term_counts = [] for event in totals: events.append(descriptions[event]) gene_counts.append(len(set(totals[event]['genes']))) rxn_counts.append(len(set(totals[event]['rxns']))) term_counts.append(len(set(totals[event]['terms']))) data = {'events': events, 'genes': gene_counts, 'terms': term_counts, 'rxns': rxn_counts} x = [(event, type) for event in events for type in types] counts = sum(zip(data['genes'], data['terms'], data['rxns']), ()) source = ColumnDataSource(data=dict(x=x, counts=counts)) p = figure(y_range=FactorRange(*x), plot_height=400, plot_width=1000, title='Unique Counts per Annotation Event', tools= 'wheel_zoom,box_zoom,reset,save') p.hbar(y='x', right='counts', height=0.9, source=source, line_color= 'black', fill_color=factor_cmap('x', palette=inferno(len(types)), factors=types, start=1, end=2)) p.x_range.start = 0 p.y_range.range_padding = 0.1 p.yaxis.major_label_orientation = 'horizontal' p.yaxis.subgroup_label_orientation = 'horizontal' p.yaxis.group_label_orientation = 'horizontal' p.ygrid.grid_line_color = None p.title.text_font_size = '12pt' p.xaxis.major_label_text_font_size = '12pt' p.yaxis.major_label_text_font_size = '12pt' p.yaxis.group_text_font_size = '12pt' p.add_tools(HoverTool(tooltips=[('Type', '@x'), ('Count', '@counts')])) return p <mask token> output_file('totals.html', title='Totals') <mask token> show(totals)
<mask token> def read_summary(summary_file): return json.loads(open(summary_file, 'r').read()) def get_descriptions(summary): d = {} for o in summary['ontology_events']: print(o) d[o] = summary['ontology_events'][o].get('description', summary[ 'ontology_events'][o]['method']) + '_' + str(o) return d def plot_totals(summary): descriptions = get_descriptions(summary) totals = {} for event in summary['ontology_events'].keys(): totals[str(event)] = {'genes': [], 'rxns': [], 'terms': []} for gene in summary['genes']: for term in summary['genes'][gene]['terms']: for event in summary['genes'][gene]['terms'][term]: totals[str(event)]['genes'].append(gene) for term in summary['terms']: for event in summary['terms'][term]: totals[str(event)]['terms'].append(term) for rxn in summary['rxns']: for event in summary['rxns'][rxn]: totals[str(event)]['rxns'].append(rxn) events = [] types = ['genes', 'terms', 'rxns'] gene_counts = [] rxn_counts = [] term_counts = [] for event in totals: events.append(descriptions[event]) gene_counts.append(len(set(totals[event]['genes']))) rxn_counts.append(len(set(totals[event]['rxns']))) term_counts.append(len(set(totals[event]['terms']))) data = {'events': events, 'genes': gene_counts, 'terms': term_counts, 'rxns': rxn_counts} x = [(event, type) for event in events for type in types] counts = sum(zip(data['genes'], data['terms'], data['rxns']), ()) source = ColumnDataSource(data=dict(x=x, counts=counts)) p = figure(y_range=FactorRange(*x), plot_height=400, plot_width=1000, title='Unique Counts per Annotation Event', tools= 'wheel_zoom,box_zoom,reset,save') p.hbar(y='x', right='counts', height=0.9, source=source, line_color= 'black', fill_color=factor_cmap('x', palette=inferno(len(types)), factors=types, start=1, end=2)) p.x_range.start = 0 p.y_range.range_padding = 0.1 p.yaxis.major_label_orientation = 'horizontal' p.yaxis.subgroup_label_orientation = 'horizontal' p.yaxis.group_label_orientation = 'horizontal' p.ygrid.grid_line_color = None p.title.text_font_size = '12pt' p.xaxis.major_label_text_font_size = '12pt' p.yaxis.major_label_text_font_size = '12pt' p.yaxis.group_text_font_size = '12pt' p.add_tools(HoverTool(tooltips=[('Type', '@x'), ('Count', '@counts')])) return p summary = read_summary('PT19DW.7.json') output_file('totals.html', title='Totals') totals = plot_totals(summary) show(totals)
import json from bokeh.plotting import figure, output_file from bokeh.io import show from bokeh.palettes import inferno from bokeh.models import ColumnDataSource, FactorRange from bokeh.transform import factor_cmap from bokeh.models import HoverTool def read_summary(summary_file): return json.loads(open(summary_file, 'r').read()) def get_descriptions(summary): d = {} for o in summary['ontology_events']: print(o) d[o] = summary['ontology_events'][o].get('description', summary[ 'ontology_events'][o]['method']) + '_' + str(o) return d def plot_totals(summary): descriptions = get_descriptions(summary) totals = {} for event in summary['ontology_events'].keys(): totals[str(event)] = {'genes': [], 'rxns': [], 'terms': []} for gene in summary['genes']: for term in summary['genes'][gene]['terms']: for event in summary['genes'][gene]['terms'][term]: totals[str(event)]['genes'].append(gene) for term in summary['terms']: for event in summary['terms'][term]: totals[str(event)]['terms'].append(term) for rxn in summary['rxns']: for event in summary['rxns'][rxn]: totals[str(event)]['rxns'].append(rxn) events = [] types = ['genes', 'terms', 'rxns'] gene_counts = [] rxn_counts = [] term_counts = [] for event in totals: events.append(descriptions[event]) gene_counts.append(len(set(totals[event]['genes']))) rxn_counts.append(len(set(totals[event]['rxns']))) term_counts.append(len(set(totals[event]['terms']))) data = {'events': events, 'genes': gene_counts, 'terms': term_counts, 'rxns': rxn_counts} x = [(event, type) for event in events for type in types] counts = sum(zip(data['genes'], data['terms'], data['rxns']), ()) source = ColumnDataSource(data=dict(x=x, counts=counts)) p = figure(y_range=FactorRange(*x), plot_height=400, plot_width=1000, title='Unique Counts per Annotation Event', tools= 'wheel_zoom,box_zoom,reset,save') p.hbar(y='x', right='counts', height=0.9, source=source, line_color= 'black', fill_color=factor_cmap('x', palette=inferno(len(types)), factors=types, start=1, end=2)) p.x_range.start = 0 p.y_range.range_padding = 0.1 p.yaxis.major_label_orientation = 'horizontal' p.yaxis.subgroup_label_orientation = 'horizontal' p.yaxis.group_label_orientation = 'horizontal' p.ygrid.grid_line_color = None p.title.text_font_size = '12pt' p.xaxis.major_label_text_font_size = '12pt' p.yaxis.major_label_text_font_size = '12pt' p.yaxis.group_text_font_size = '12pt' p.add_tools(HoverTool(tooltips=[('Type', '@x'), ('Count', '@counts')])) return p summary = read_summary('PT19DW.7.json') output_file('totals.html', title='Totals') totals = plot_totals(summary) show(totals)
import json from bokeh.plotting import figure, output_file from bokeh.io import show from bokeh.palettes import inferno from bokeh.models import ColumnDataSource, FactorRange from bokeh.transform import factor_cmap from bokeh.models import HoverTool # from bokeh.io import export_svgs def read_summary(summary_file): return json.loads(open(summary_file, "r").read()) def get_descriptions(summary): d = {} for o in summary["ontology_events"]: print(o) d[o] = summary["ontology_events"][o].get( 'description', summary["ontology_events"][o]['method']) + '_' + str(o) return(d) def plot_totals(summary): descriptions = get_descriptions(summary) totals = {} for event in summary['ontology_events'].keys(): totals[str(event)] = {'genes': [], 'rxns': [], 'terms': []} # genes for gene in summary['genes']: for term in summary['genes'][gene]['terms']: for event in summary['genes'][gene]['terms'][term]: totals[str(event)]['genes'].append(gene) # terms for term in summary['terms']: for event in summary['terms'][term]: totals[str(event)]['terms'].append(term) # rxns for rxn in summary['rxns']: for event in summary['rxns'][rxn]: totals[str(event)]['rxns'].append(rxn) # sums events = [] types = ['genes', 'terms', 'rxns'] gene_counts = [] rxn_counts = [] term_counts = [] for event in totals: events.append(descriptions[event]) gene_counts.append(len(set(totals[event]['genes']))) rxn_counts.append(len(set(totals[event]['rxns']))) term_counts.append(len(set(totals[event]['terms']))) data = {'events': events, 'genes': gene_counts, 'terms': term_counts, 'rxns': rxn_counts } x = [(event, type) for event in events for type in types] counts = sum(zip(data['genes'], data['terms'], data['rxns']), ()) source = ColumnDataSource(data=dict(x=x, counts=counts)) p = figure(y_range=FactorRange(*x), plot_height=400, plot_width=1000, title="Unique Counts per Annotation Event", tools="wheel_zoom,box_zoom,reset,save") p.hbar(y='x', right='counts', height=0.9, source=source, line_color="black", fill_color=factor_cmap('x', palette=inferno(len(types)), factors=types, start=1, end=2)) p.x_range.start = 0 p.y_range.range_padding = 0.1 p.yaxis.major_label_orientation = "horizontal" p.yaxis.subgroup_label_orientation = "horizontal" p.yaxis.group_label_orientation = "horizontal" p.ygrid.grid_line_color = None p.title.text_font_size = '12pt' p.xaxis.major_label_text_font_size = "12pt" p.yaxis.major_label_text_font_size = "12pt" p.yaxis.group_text_font_size = "12pt" p.add_tools(HoverTool(tooltips=[("Type", "@x"), ("Count", "@counts")])) return(p) #summary = read_summary("PT19DW.5.json") summary = read_summary("PT19DW.7.json") output_file("totals.html", title="Totals") totals = plot_totals(summary) show(totals)
[ 3, 4, 5, 6, 7 ]
713
5eb5388ffe7a7c880d8fcfaa137c2c9a133a0636
<mask token>
<mask token> print(wikipedia.summary(input_))
<mask token> input_ = input('Type in your question ') print(wikipedia.summary(input_))
import wikipedia input_ = input('Type in your question ') print(wikipedia.summary(input_))
import wikipedia input_ = input("Type in your question ") print(wikipedia.summary(input_))
[ 0, 1, 2, 3, 4 ]
714
51540a80c7b29dc0bbb6342ee45008108d54b6f2
<mask token>
<mask token> def gauss_seidel(relax, est, stop): """ Método iterativo de Gauss-Seidel para o sistema linear do trabalho. Onde relax é o fator de relaxação, est é o valor inicial, stop é o critério de parada, n é a quantidade de linhas do sistema e k é o número de iterações. """ k = 0 dif = 10000 n = len(est) diff = np.zeros(n) while dif > stop: k += 1 est[0] = (1 - relax) * est[0] + relax * (1.5 - est[1]) for i in range(1, int(n / 2)): est[i] = (1 - relax) * est[i] + relax * ((1.0 - est[i - 1] - est[i + 1] - est[i + 25]) / 4) for j in range(int(n / 2), n - 1): est[j] = (1 - relax) * est[j] + relax * ((2.0 - est[j - 25] - est[j - 1] - est[j + 1]) / 5) est[n - 1] = (1 - relax) * est[n - 1] + relax * (3.0 - est[n - 2]) dif = max(abs(np.subtract(est, diff))) diff = np.copy(est) return [est, k]
import numpy as np def gauss_seidel(relax, est, stop): """ Método iterativo de Gauss-Seidel para o sistema linear do trabalho. Onde relax é o fator de relaxação, est é o valor inicial, stop é o critério de parada, n é a quantidade de linhas do sistema e k é o número de iterações. """ k = 0 dif = 10000 n = len(est) diff = np.zeros(n) while dif > stop: k += 1 est[0] = (1 - relax) * est[0] + relax * (1.5 - est[1]) for i in range(1, int(n / 2)): est[i] = (1 - relax) * est[i] + relax * ((1.0 - est[i - 1] - est[i + 1] - est[i + 25]) / 4) for j in range(int(n / 2), n - 1): est[j] = (1 - relax) * est[j] + relax * ((2.0 - est[j - 25] - est[j - 1] - est[j + 1]) / 5) est[n - 1] = (1 - relax) * est[n - 1] + relax * (3.0 - est[n - 2]) dif = max(abs(np.subtract(est, diff))) diff = np.copy(est) return [est, k]
# -*- coding: utf-8 -*- import numpy as np def gauss_seidel(relax, est, stop): """ Método iterativo de Gauss-Seidel para o sistema linear do trabalho. Onde relax é o fator de relaxação, est é o valor inicial, stop é o critério de parada, n é a quantidade de linhas do sistema e k é o número de iterações. """ k = 0 dif = 10000 n = len(est) diff = np.zeros(n) while dif > stop: k += 1 est[0] = ((1 - relax) * est[0]) + relax * (1.50 - est[1]) for i in range(1, int(n/2)): est[i] = ((1 - relax) * est[i]) + relax * \ ((1.0 - est[i-1] - est[i+1] - est[i+25])/4) for j in range(int(n/2), n-1): est[j] = ((1 - relax) * est[j]) + relax * \ ((2.0 - est[j-25] - est[j-1] - est[j+1])/5) est[n-1] = ((1 - relax) * est[n-1]) + relax * (3.00 - est[n-2]) dif = max(abs(np.subtract(est, diff))) diff = np.copy(est) return [est, k]
null
[ 0, 1, 2, 3 ]
715
eb981a2d7f0ff5e6cc4a4a76f269c93c547965ba
from typing import Any, Dict, List import numpy as np from kedro.io import AbstractDataSet from msrest.exceptions import HttpOperationError from azureml.core import Workspace, Datastore from azureml.data.data_reference import DataReference class AZblob_datastore_data(AbstractDataSet): """``ImageDataSet`` loads / save image data from a given filepath as `numpy` array using Pillow. Example: :: >>> ImageDataSet(filepath='/img/file/path.png') """ def __init__(self, container_path: str, local_path : str, credentials: Dict[str, Any] = None): """Creates a new instance of ImageDataSet to load / save image data at the given filepath. Args: filepath: The location of the image file to load / save data. """ self._container_path = container_path self._local_path = local_path self._credentials = credentials def _load(self) -> np.ndarray: """Loads data from the image file. Returns: Data from the image file as a numpy array. """ # Initialis Workspace ws = Workspace.from_config() blob_datastore_name = self._credentials['storage_name'] account_name = self._credentials['storage_name'] # Storage account name container_name = self._credentials['container_name'] # Name of Azure blob container account_key = self._credentials['key'] # Storage account key # Register a new datastore try: blob_datastore = blob_datastore = Datastore.get(ws, blob_datastore_name) print("Found Blob Datastore with name: %s" % blob_datastore_name) except HttpOperationError: blob_datastore = Datastore.register_azure_blob_container(workspace = ws, datastore_name = blob_datastore_name, container_name = container_name, account_name = account_name, blob_datastore.download(target_path=self._local_path, prefix=self._container_path, show_progress=False) ... def _save(self, data: np.ndarray) -> None: """Saves image data to the specified filepath""" ... def _describe(self) -> Dict[str, Any]: """Returns a dict that describes the attributes of the dataset"""
null
null
null
null
[ 0 ]
716
0beb5c5c5db9247d66a5a49cfff7282ead52a9b7
<mask token> class HDF5_Parser(object): <mask token> <mask token> <mask token> <mask token> def read_file(self, file_obj, **kwargs): return h5py.File(file_obj.name, mode='r')
<mask token> class HDF5_Parser(object): <mask token> plugin_name = 'hdf5.read' plugin_descript = 'read *.hdf5 (in read mode) files using h5py' file_regex = '*.hdf5' def read_file(self, file_obj, **kwargs): return h5py.File(file_obj.name, mode='r')
<mask token> class HDF5_Parser(object): """ Examples -------- >>> import h5py >>> indata = h5py.File('test.hdf5') >>> dataset = indata.create_dataset("mydataset", (10,), dtype='i') >>> indata.close() >>> with open('test.hdf5') as f: ... data = HDF5_Parser().read_file(f) >>> data['mydataset'][:] array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32) >>> import os >>> os.remove('test.hdf5') """ plugin_name = 'hdf5.read' plugin_descript = 'read *.hdf5 (in read mode) files using h5py' file_regex = '*.hdf5' def read_file(self, file_obj, **kwargs): return h5py.File(file_obj.name, mode='r')
import h5py class HDF5_Parser(object): """ Examples -------- >>> import h5py >>> indata = h5py.File('test.hdf5') >>> dataset = indata.create_dataset("mydataset", (10,), dtype='i') >>> indata.close() >>> with open('test.hdf5') as f: ... data = HDF5_Parser().read_file(f) >>> data['mydataset'][:] array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32) >>> import os >>> os.remove('test.hdf5') """ plugin_name = 'hdf5.read' plugin_descript = 'read *.hdf5 (in read mode) files using h5py' file_regex = '*.hdf5' def read_file(self, file_obj, **kwargs): return h5py.File(file_obj.name, mode='r')
#!/usr/bin/env python import h5py class HDF5_Parser(object): # noqa: N801 """ Examples -------- >>> import h5py >>> indata = h5py.File('test.hdf5') >>> dataset = indata.create_dataset("mydataset", (10,), dtype='i') >>> indata.close() >>> with open('test.hdf5') as f: ... data = HDF5_Parser().read_file(f) >>> data['mydataset'][:] array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32) >>> import os >>> os.remove('test.hdf5') """ plugin_name = 'hdf5.read' plugin_descript = 'read *.hdf5 (in read mode) files using h5py' file_regex = '*.hdf5' def read_file(self, file_obj, **kwargs): return h5py.File(file_obj.name, mode='r')
[ 2, 3, 4, 5, 6 ]
717
93d4c6b6aef827d6746afc684c32a9cf1d0229e4
<mask token>
<mask token> while person_win_count < 4 or person_lose_count < 4: player = input('가위, 바위, 보 중 어떤 것을 낼래요? ') if player != '가위' and player != '바위' and player != '보': player = input('다시 입력해 주세요.(예: 가위, 바위, 보)') computer = random.choice(list_b) print('컴퓨터:', computer) if player == computer: print('비겼습니다.') elif player == '가위': if computer == '바위': person_lose_count = person_lose_count + 1 print('컴퓨터가 이겼습니다.') if computer == '보': person_win_count = person_win_count + 1 print('당신이 이겼습니다.') elif player == '바위': if computer == '가위': person_win_count = person_win_count + 1 print('당신이 이겼습니다.') if computer == '보': person_lose_count = person_lose_count + 1 print('컴퓨터가 이겼습니다.') elif player == '보': if computer == '바위': person_win_count = person_win_count + 1 print('당신이 이겼습니다.') if computer == '가위': person_lose_count = person_lose_count + 1 print('컴퓨터가 이겼습니다.') if person_win_count == 3: print('당신이 3번을 이겼습니다.^^; 가위바위보 게임을 종료합니다.') break elif person_lose_count == 3: print('당신이 3번을 졌습니다.-_-; 가위바위보 게임을 종료합니다.') break
<mask token> list_b = ['가위', '바위', '보'] person_win_count = 0 person_lose_count = 0 while person_win_count < 4 or person_lose_count < 4: player = input('가위, 바위, 보 중 어떤 것을 낼래요? ') if player != '가위' and player != '바위' and player != '보': player = input('다시 입력해 주세요.(예: 가위, 바위, 보)') computer = random.choice(list_b) print('컴퓨터:', computer) if player == computer: print('비겼습니다.') elif player == '가위': if computer == '바위': person_lose_count = person_lose_count + 1 print('컴퓨터가 이겼습니다.') if computer == '보': person_win_count = person_win_count + 1 print('당신이 이겼습니다.') elif player == '바위': if computer == '가위': person_win_count = person_win_count + 1 print('당신이 이겼습니다.') if computer == '보': person_lose_count = person_lose_count + 1 print('컴퓨터가 이겼습니다.') elif player == '보': if computer == '바위': person_win_count = person_win_count + 1 print('당신이 이겼습니다.') if computer == '가위': person_lose_count = person_lose_count + 1 print('컴퓨터가 이겼습니다.') if person_win_count == 3: print('당신이 3번을 이겼습니다.^^; 가위바위보 게임을 종료합니다.') break elif person_lose_count == 3: print('당신이 3번을 졌습니다.-_-; 가위바위보 게임을 종료합니다.') break
import random list_b = ['가위', '바위', '보'] person_win_count = 0 person_lose_count = 0 while person_win_count < 4 or person_lose_count < 4: player = input('가위, 바위, 보 중 어떤 것을 낼래요? ') if player != '가위' and player != '바위' and player != '보': player = input('다시 입력해 주세요.(예: 가위, 바위, 보)') computer = random.choice(list_b) print('컴퓨터:', computer) if player == computer: print('비겼습니다.') elif player == '가위': if computer == '바위': person_lose_count = person_lose_count + 1 print('컴퓨터가 이겼습니다.') if computer == '보': person_win_count = person_win_count + 1 print('당신이 이겼습니다.') elif player == '바위': if computer == '가위': person_win_count = person_win_count + 1 print('당신이 이겼습니다.') if computer == '보': person_lose_count = person_lose_count + 1 print('컴퓨터가 이겼습니다.') elif player == '보': if computer == '바위': person_win_count = person_win_count + 1 print('당신이 이겼습니다.') if computer == '가위': person_lose_count = person_lose_count + 1 print('컴퓨터가 이겼습니다.') if person_win_count == 3: print('당신이 3번을 이겼습니다.^^; 가위바위보 게임을 종료합니다.') break elif person_lose_count == 3: print('당신이 3번을 졌습니다.-_-; 가위바위보 게임을 종료합니다.') break
# 가위, 바위, 보 게임 # 컴퓨터 가위, 바위, 보 리스트에서 랜덤하게 뽑기 위해 random 함수 호출 import random # 컴퓨터 가위, 바위, 보 리스트 list_b = ["가위", "바위", "보"] # 이긴횟수, 진 횟수 카운팅 하기 위한 변수 person_win_count = 0 person_lose_count = 0 while person_win_count < 4 or person_lose_count < 4: # 가위, 바위, 보 입력 받기 player = input("가위, 바위, 보 중 어떤 것을 낼래요? ") if player != "가위" and player != "바위" and player != "보": player = input("다시 입력해 주세요.(예: 가위, 바위, 보)") # 컴퓨터 가위, 바위, 보 임의 추출 computer = random.choice(list_b) print("컴퓨터:", computer) # 사람과 컴퓨터간 가위, 바위, 보 비교 및 카운팅 if player == computer: print("비겼습니다.") elif player == "가위": if computer == "바위": person_lose_count = person_lose_count + 1 print("컴퓨터가 이겼습니다.") if computer == "보": person_win_count = person_win_count + 1 print("당신이 이겼습니다.") elif player == "바위": if computer == "가위": person_win_count = person_win_count + 1 print("당신이 이겼습니다.") if computer == "보": person_lose_count = person_lose_count + 1 print("컴퓨터가 이겼습니다.") elif player == "보": if computer == "바위": person_win_count = person_win_count + 1 print("당신이 이겼습니다.") if computer == "가위": person_lose_count = person_lose_count + 1 print("컴퓨터가 이겼습니다.") # 3번 이겼는지, 3번 졌는지 조건비교, 최종결과, 게임종료 if person_win_count == 3: print("당신이 3번을 이겼습니다.^^; 가위바위보 게임을 종료합니다.") break elif person_lose_count == 3: print("당신이 3번을 졌습니다.-_-; 가위바위보 게임을 종료합니다.") break
[ 0, 1, 2, 3, 4 ]
718
d7d94cfed0b819297069c3434c70359a327403cd
<mask token>
<mask token> admin.site.register(models.Comentario)
from django.contrib import admin from . import models admin.site.register(models.Comentario)
from django.contrib import admin from . import models admin.site.register(models.Comentario) # Register your models here.
null
[ 0, 1, 2, 3 ]
719
32f9b5c32acbb6411fe6ab99616d8459acfd7c74
<mask token>
<mask token> articlesFileNameList(reverse=True) <mask token> for fileName in articlesFileNameList: print(fileName) dictOut = pp.parse_medline_xml(articlesFolderPath + '/' + fileName) for item in dictOut: resultFile.write(item['abstract'] + '\n')
<mask token> nlpPath = '/Users/kapmayn/Desktop/nlp' articlesFolderPath = nlpPath + '/articles' abstractsFilePath = nlpPath + '/abstracts.txt' articlesFileNameList = os.listdir(articlesFolderPath) articlesFileNameList(reverse=True) resultFile = open(abstractsFilePath, 'w') for fileName in articlesFileNameList: print(fileName) dictOut = pp.parse_medline_xml(articlesFolderPath + '/' + fileName) for item in dictOut: resultFile.write(item['abstract'] + '\n')
import os import pubmed_parser as pp nlpPath = '/Users/kapmayn/Desktop/nlp' articlesFolderPath = nlpPath + '/articles' abstractsFilePath = nlpPath + '/abstracts.txt' articlesFileNameList = os.listdir(articlesFolderPath) articlesFileNameList(reverse=True) resultFile = open(abstractsFilePath, 'w') for fileName in articlesFileNameList: print(fileName) dictOut = pp.parse_medline_xml(articlesFolderPath + '/' + fileName) for item in dictOut: resultFile.write(item['abstract'] + '\n')
import os import pubmed_parser as pp nlpPath = "/Users/kapmayn/Desktop/nlp" articlesFolderPath = nlpPath + "/articles" abstractsFilePath = nlpPath + "/abstracts.txt" articlesFileNameList = os.listdir(articlesFolderPath) articlesFileNameList(reverse = True) resultFile = open(abstractsFilePath, 'w') for fileName in articlesFileNameList: print(fileName) dictOut = pp.parse_medline_xml(articlesFolderPath + "/" + fileName) for item in dictOut: resultFile.write((item['abstract'] + '\n'))
[ 0, 1, 2, 3, 4 ]
720
373c102018fdcc5211263304c368c2e8beef3257
<mask token>
<mask token> urlpatterns = [url('get_img_api$', router.get_img_api), url('add_book$', views.add_book), url('show_books$', views.show_books), url('add_story$', story.add_story), url('show_storys$', story.show_storys), url( 'add_comment$', story.add_comment), url('show_comments$', story. show_comments), url('uploadImg$', img.uploadImg), url('showImg$', img. showImg), url('uploadImgForUs$', img.uploadImgForUs), url( 'showImgForUs', img.showImgForUs), url('add_user', login.add_user), url ('login', login.login), url('get_username', login.get_username), url( 'send_register_email', login.send_register_email), url('check_username', login.check_username), url('chat_with_tuling', tuling.chat_with_tuling), url('utilView_getLive2d', utilView.get_live2d), url( 'utilView_getRandJson', utilView.get_rand_json), url('get_wechat', wechat_modules.on_get), url('', login.other_request)]
from django.conf.urls import url from myapp.view import views from myapp.view import story from myapp.view import img from myapp.view import login from myapp.view import tuling from myapp.view import utilView from myapp.view.wechat import wechat_modules from myapp.view import router urlpatterns = [url('get_img_api$', router.get_img_api), url('add_book$', views.add_book), url('show_books$', views.show_books), url('add_story$', story.add_story), url('show_storys$', story.show_storys), url( 'add_comment$', story.add_comment), url('show_comments$', story. show_comments), url('uploadImg$', img.uploadImg), url('showImg$', img. showImg), url('uploadImgForUs$', img.uploadImgForUs), url( 'showImgForUs', img.showImgForUs), url('add_user', login.add_user), url ('login', login.login), url('get_username', login.get_username), url( 'send_register_email', login.send_register_email), url('check_username', login.check_username), url('chat_with_tuling', tuling.chat_with_tuling), url('utilView_getLive2d', utilView.get_live2d), url( 'utilView_getRandJson', utilView.get_rand_json), url('get_wechat', wechat_modules.on_get), url('', login.other_request)]
# -- coding: utf-8 -- from django.conf.urls import url from myapp.view import views from myapp.view import story from myapp.view import img # 添加 from myapp.view import login from myapp.view import tuling from myapp.view import utilView from myapp.view.wechat import wechat_modules from myapp.view import router urlpatterns = [ url(r'get_img_api$', router.get_img_api), url(r'add_book$', views.add_book, ), url(r'show_books$', views.show_books, ), url(r'add_story$', story.add_story), url(r'show_storys$', story.show_storys), url(r'add_comment$', story.add_comment), url(r'show_comments$', story.show_comments), url(r'uploadImg$', img.uploadImg), url(r'showImg$', img.showImg), url(r'uploadImgForUs$', img.uploadImgForUs), url(r'showImgForUs', img.showImgForUs), url(r'add_user', login.add_user), url(r'login', login.login), url(r'get_username', login.get_username), url(r'send_register_email', login.send_register_email), url(r'check_username', login.check_username), url(r'chat_with_tuling', tuling.chat_with_tuling), url(r'utilView_getLive2d', utilView.get_live2d), url(r'utilView_getRandJson', utilView.get_rand_json), url(r'get_wechat', wechat_modules.on_get), url(r'', login.other_request), ]
null
[ 0, 1, 2, 3 ]
721
622b388beb56eba85bbb08510c2bcea55f23da9a
<mask token>
<mask token> for name in lst: name = name.strip().upper() rname = name[::-1] if name == rname: print(name) <mask token> print('-' * 20) <mask token> for name in names: name = name.upper() if 'D' in name: print(name)
data = ( ' Ramya , Deepa,LIRIL ,amma, dad, Kiran, 12321 , Suresh, Jayesh, Ramesh,Balu' ) lst = data.split(',') for name in lst: name = name.strip().upper() rname = name[::-1] if name == rname: print(name) girlsdata = 'Tanvi,Dhatri,Haadya,Deepthi,Deepa,Ramya' print('-' * 20) names = girlsdata.split(',') for name in names: name = name.upper() if 'D' in name: print(name)
data = " Ramya , Deepa,LIRIL ,amma, dad, Kiran, 12321 , Suresh, Jayesh, Ramesh,Balu" lst = data.split(",") for name in lst: name = name.strip().upper() rname = name[::-1] if name == rname: print(name) girlsdata = "Tanvi,Dhatri,Haadya,Deepthi,Deepa,Ramya" # Name which start with DEE get those name print("-"*20) names = girlsdata.split(",") for name in names: name = name.upper() if "D" in name: print(name)
null
[ 0, 1, 2, 3 ]
722
e1787fd4be66d19ab83ece44eacfd96cb488b504
with expression [as var] #...BODY... #object is the result of the expression and must have __enter__ and __exit__ methods #result of the expression must be context manager - implements context management protocol #https://www.python.org/dev/peps/pep-0343/ # This PEP adds a new statement "with" to the Python language to make # it possible to factor out standard uses of try/finally statements. # In this PEP, context managers provide __enter__() and __exit__() # methods that are invoked on entry to and exit from the body of the # with statement.
null
null
null
null
[ 0 ]
723
f3167d8f1a806c38fb10672605d8e94265d2fc9c
<mask token> class Event(db.Model): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> class EventSchema(ma.Schema): class Meta: fields = ('id', 'name', 'venue', 'location_lat', 'location_long', 'date_created', 'start_time', 'duration', 'coordinator_name', 'coordinator_contact', 'status_id', 'org_id', 'description') <mask token> class EventFullInfoSchema(ma.Schema): event = ma.Nested(event_schema) admin = ma.Nested(admin_limited_schema) status = ma.Nested(event_status_schema) org_unit = ma.Nested(org_unit_schema) <mask token>
<mask token> class Event(db.Model): __tablename__ = 'event' __table_args__ = ForeignKeyConstraint(['status_id'], ['event_status.id'] ), ForeignKeyConstraint(['org_id'], ['org_unit.id'] ), ForeignKeyConstraint(['created_by'], ['admin.id']) id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(45), nullable=False) venue = db.Column(db.String(45), nullable=False) location_lat = db.Column(db.Float, nullable=False) location_long = db.Column(db.Float, nullable=False) date_created = db.Column(db.DateTime, nullable=False, default=datetime.now) start_time = db.Column(db.DateTime, nullable=False) duration = db.Column(db.Float, nullable=False) coordinator_name = db.Column(db.String(45), nullable=False) coordinator_contact = db.Column(db.Integer, nullable=False) status_id = db.Column(db.Integer, nullable=False) org_id = db.Column(db.Integer, nullable=False) created_by = db.Column(db.Integer, nullable=False) description = db.Column(db.String(500), nullable=False) def __init__(self, name, venue, location_lat, location_long, start_time, duration, coordinator_name, coordinator_contact, status_id, org_id, created_by, description): self.name = name self.venue = venue self.location_lat = location_lat self.location_long = location_long self.start_time = start_time self.duration = duration self.coordinator_name = coordinator_name self.coordinator_contact = coordinator_contact self.status_id = status_id self.org_id = org_id self.created_by = created_by self.description = description class EventSchema(ma.Schema): class Meta: fields = ('id', 'name', 'venue', 'location_lat', 'location_long', 'date_created', 'start_time', 'duration', 'coordinator_name', 'coordinator_contact', 'status_id', 'org_id', 'description') <mask token> class EventFullInfoSchema(ma.Schema): event = ma.Nested(event_schema) admin = ma.Nested(admin_limited_schema) status = ma.Nested(event_status_schema) org_unit = ma.Nested(org_unit_schema) <mask token>
<mask token> class Event(db.Model): __tablename__ = 'event' __table_args__ = ForeignKeyConstraint(['status_id'], ['event_status.id'] ), ForeignKeyConstraint(['org_id'], ['org_unit.id'] ), ForeignKeyConstraint(['created_by'], ['admin.id']) id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(45), nullable=False) venue = db.Column(db.String(45), nullable=False) location_lat = db.Column(db.Float, nullable=False) location_long = db.Column(db.Float, nullable=False) date_created = db.Column(db.DateTime, nullable=False, default=datetime.now) start_time = db.Column(db.DateTime, nullable=False) duration = db.Column(db.Float, nullable=False) coordinator_name = db.Column(db.String(45), nullable=False) coordinator_contact = db.Column(db.Integer, nullable=False) status_id = db.Column(db.Integer, nullable=False) org_id = db.Column(db.Integer, nullable=False) created_by = db.Column(db.Integer, nullable=False) description = db.Column(db.String(500), nullable=False) def __init__(self, name, venue, location_lat, location_long, start_time, duration, coordinator_name, coordinator_contact, status_id, org_id, created_by, description): self.name = name self.venue = venue self.location_lat = location_lat self.location_long = location_long self.start_time = start_time self.duration = duration self.coordinator_name = coordinator_name self.coordinator_contact = coordinator_contact self.status_id = status_id self.org_id = org_id self.created_by = created_by self.description = description class EventSchema(ma.Schema): class Meta: fields = ('id', 'name', 'venue', 'location_lat', 'location_long', 'date_created', 'start_time', 'duration', 'coordinator_name', 'coordinator_contact', 'status_id', 'org_id', 'description') event_schema = EventSchema() events_schema = EventSchema(many=True) class EventFullInfoSchema(ma.Schema): event = ma.Nested(event_schema) admin = ma.Nested(admin_limited_schema) status = ma.Nested(event_status_schema) org_unit = ma.Nested(org_unit_schema) event_with_full_schema = EventFullInfoSchema() events_with_full_schema = EventFullInfoSchema(many=True)
from database import db from database import ma from datetime import datetime from sqlalchemy import ForeignKeyConstraint from models.admin import Admin, admin_limited_schema from models.event_status import EventStatus, event_status_schema from models.org_unit import org_unit_schema class Event(db.Model): __tablename__ = 'event' __table_args__ = ForeignKeyConstraint(['status_id'], ['event_status.id'] ), ForeignKeyConstraint(['org_id'], ['org_unit.id'] ), ForeignKeyConstraint(['created_by'], ['admin.id']) id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(45), nullable=False) venue = db.Column(db.String(45), nullable=False) location_lat = db.Column(db.Float, nullable=False) location_long = db.Column(db.Float, nullable=False) date_created = db.Column(db.DateTime, nullable=False, default=datetime.now) start_time = db.Column(db.DateTime, nullable=False) duration = db.Column(db.Float, nullable=False) coordinator_name = db.Column(db.String(45), nullable=False) coordinator_contact = db.Column(db.Integer, nullable=False) status_id = db.Column(db.Integer, nullable=False) org_id = db.Column(db.Integer, nullable=False) created_by = db.Column(db.Integer, nullable=False) description = db.Column(db.String(500), nullable=False) def __init__(self, name, venue, location_lat, location_long, start_time, duration, coordinator_name, coordinator_contact, status_id, org_id, created_by, description): self.name = name self.venue = venue self.location_lat = location_lat self.location_long = location_long self.start_time = start_time self.duration = duration self.coordinator_name = coordinator_name self.coordinator_contact = coordinator_contact self.status_id = status_id self.org_id = org_id self.created_by = created_by self.description = description class EventSchema(ma.Schema): class Meta: fields = ('id', 'name', 'venue', 'location_lat', 'location_long', 'date_created', 'start_time', 'duration', 'coordinator_name', 'coordinator_contact', 'status_id', 'org_id', 'description') event_schema = EventSchema() events_schema = EventSchema(many=True) class EventFullInfoSchema(ma.Schema): event = ma.Nested(event_schema) admin = ma.Nested(admin_limited_schema) status = ma.Nested(event_status_schema) org_unit = ma.Nested(org_unit_schema) event_with_full_schema = EventFullInfoSchema() events_with_full_schema = EventFullInfoSchema(many=True)
from database import db from database import ma from datetime import datetime from sqlalchemy import ForeignKeyConstraint from models.admin import Admin, admin_limited_schema from models.event_status import EventStatus, event_status_schema from models.org_unit import org_unit_schema class Event(db.Model): # class corresponding to the event table in the database __tablename__ = 'event' __table_args__ = ( ForeignKeyConstraint(['status_id'], ['event_status.id']), ForeignKeyConstraint(['org_id'], ['org_unit.id']), ForeignKeyConstraint(['created_by'], ['admin.id']), ) id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(45), nullable=False) venue = db.Column(db.String(45), nullable=False) location_lat = db.Column(db.Float, nullable=False) location_long = db.Column(db.Float, nullable=False) date_created = db.Column(db.DateTime, nullable=False, default=datetime.now) start_time = db.Column(db.DateTime, nullable=False) duration = db.Column(db.Float, nullable=False) coordinator_name = db.Column(db.String(45), nullable=False) coordinator_contact = db.Column(db.Integer, nullable=False) status_id = db.Column(db.Integer, nullable=False) org_id = db.Column(db.Integer, nullable=False) created_by = db.Column(db.Integer, nullable=False) description = db.Column(db.String(500), nullable=False) def __init__(self, name, venue, location_lat, location_long, start_time, duration, coordinator_name, coordinator_contact, status_id, org_id, created_by, description): self.name = name self.venue = venue self.location_lat = location_lat self.location_long = location_long self.start_time = start_time self.duration = duration self.coordinator_name = coordinator_name self.coordinator_contact = coordinator_contact self.status_id = status_id self.org_id = org_id self.created_by = created_by self.description = description class EventSchema(ma.Schema): class Meta: fields = ('id', 'name', 'venue', 'location_lat', 'location_long', 'date_created', 'start_time', 'duration', 'coordinator_name', 'coordinator_contact', 'status_id', 'org_id', 'description') # init schema event_schema = EventSchema() events_schema = EventSchema(many=True) class EventFullInfoSchema(ma.Schema): event = ma.Nested(event_schema) admin = ma.Nested(admin_limited_schema) status = ma.Nested(event_status_schema) org_unit = ma.Nested(org_unit_schema) event_with_full_schema = EventFullInfoSchema() events_with_full_schema = EventFullInfoSchema(many=True)
[ 4, 6, 7, 8, 9 ]
724
a26cab29f0777764f014eeff13745be60e55b62d
<mask token>
<mask token> try: r = requests.get('http://skitter.com') print(r) except (requests.ConnectionError, requests.Timeout) as x: pass
import requests try: r = requests.get('http://skitter.com') print(r) except (requests.ConnectionError, requests.Timeout) as x: pass
import requests #try make the request try: r = requests.get('http://skitter.com') print(r) # see the results # catch a failue except (requests.ConnectionError, requests.Timeout) as x: pass
null
[ 0, 1, 2, 3 ]
725
de77edaccdaada785f41828135ad2da4ae2b403e
<mask token> class Post(models.Model): blog = models.ForeignKey(Blog, on_delete=models.DO_NOTHING) user = models.ForeignKey(User, on_delete=models.CASCADE) header = models.CharField(max_length=50) text = models.CharField(max_length=2048) create_date = models.DateTimeField(auto_now=True) <mask token> class ReadPost(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) post = models.ForeignKey(Post, on_delete=models.DO_NOTHING) class Subscription(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) blog = models.ForeignKey(Blog, on_delete=models.DO_NOTHING)
<mask token> class Blog(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) class Post(models.Model): blog = models.ForeignKey(Blog, on_delete=models.DO_NOTHING) user = models.ForeignKey(User, on_delete=models.CASCADE) header = models.CharField(max_length=50) text = models.CharField(max_length=2048) create_date = models.DateTimeField(auto_now=True) <mask token> class ReadPost(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) post = models.ForeignKey(Post, on_delete=models.DO_NOTHING) class Subscription(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) blog = models.ForeignKey(Blog, on_delete=models.DO_NOTHING)
<mask token> class Blog(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) class Post(models.Model): blog = models.ForeignKey(Blog, on_delete=models.DO_NOTHING) user = models.ForeignKey(User, on_delete=models.CASCADE) header = models.CharField(max_length=50) text = models.CharField(max_length=2048) create_date = models.DateTimeField(auto_now=True) @receiver(post_save, sender=Post) def send_email(sender, **kwargs): post = Post.objects.get(id=kwargs.get('instance').id) template = loader.get_template('post2email.html') subject = 'Post in blog ' + post.blog.user.username context = {'header': post.header, 'text': post.text, 'id': post.id, 'host': getattr(settings, 'MY_DJANGO_URL_PATH', '')} html_content = template.render(context) msg = EmailMultiAlternatives(subject, '', '', [post.user.email]) msg.attach_alternative(html_content, 'text/html') msg.send() class ReadPost(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) post = models.ForeignKey(Post, on_delete=models.DO_NOTHING) class Subscription(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) blog = models.ForeignKey(Blog, on_delete=models.DO_NOTHING)
from django.db import models from django.contrib.auth.models import User from django.db.models.signals import post_save from django.dispatch import receiver from django.core.mail import EmailMultiAlternatives from django.template import loader from django.conf import settings from django.contrib.sites.shortcuts import get_current_site class Blog(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) class Post(models.Model): blog = models.ForeignKey(Blog, on_delete=models.DO_NOTHING) user = models.ForeignKey(User, on_delete=models.CASCADE) header = models.CharField(max_length=50) text = models.CharField(max_length=2048) create_date = models.DateTimeField(auto_now=True) @receiver(post_save, sender=Post) def send_email(sender, **kwargs): post = Post.objects.get(id=kwargs.get('instance').id) template = loader.get_template('post2email.html') subject = 'Post in blog ' + post.blog.user.username context = {'header': post.header, 'text': post.text, 'id': post.id, 'host': getattr(settings, 'MY_DJANGO_URL_PATH', '')} html_content = template.render(context) msg = EmailMultiAlternatives(subject, '', '', [post.user.email]) msg.attach_alternative(html_content, 'text/html') msg.send() class ReadPost(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) post = models.ForeignKey(Post, on_delete=models.DO_NOTHING) class Subscription(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) blog = models.ForeignKey(Blog, on_delete=models.DO_NOTHING)
from django.db import models from django.contrib.auth.models import User from django.db.models.signals import post_save from django.dispatch import receiver from django.core.mail import EmailMultiAlternatives from django.template import loader from django.conf import settings from django.contrib.sites.shortcuts import get_current_site class Blog(models.Model): user = models.ForeignKey(User,on_delete=models.CASCADE,) class Post(models.Model): blog = models.ForeignKey(Blog, on_delete=models.DO_NOTHING) user = models.ForeignKey(User,on_delete=models.CASCADE,) header = models.CharField(max_length=50) text = models.CharField(max_length=2048) create_date = models.DateTimeField(auto_now=True) @receiver(post_save, sender=Post) def send_email(sender, **kwargs): post = Post.objects.get(id=kwargs.get('instance').id) template = loader.get_template('post2email.html') subject = "Post in blog " + post.blog.user.username context = { "header": post.header, "text": post.text, "id": post.id, "host": getattr(settings, 'MY_DJANGO_URL_PATH', ''), } html_content = template.render(context) msg = EmailMultiAlternatives(subject, "", "", [post.user.email]) msg.attach_alternative(html_content, "text/html") msg.send() class ReadPost(models.Model): user = models.ForeignKey(User,on_delete=models.CASCADE,) post = models.ForeignKey(Post, on_delete=models.DO_NOTHING) class Subscription(models.Model): user = models.ForeignKey(User,on_delete=models.CASCADE,) blog = models.ForeignKey(Blog, on_delete=models.DO_NOTHING)
[ 6, 8, 9, 10, 11 ]
726
c3efaeab600ec9a7a9fffdfad5c9dc1faad8fee7
<mask token> class Plugin(LoggerPlugin): <mask token> def __init__(self, *args, **kwargs): super(Plugin, self).__init__(*args, **kwargs) self.setDeviceName(devicename) self.smallGUI = True self._last_value = 0 self._jump_allowed = True self.setPerpetualTimer(self._updateT, samplerate=SAMPLERATE) def __openPort(self, portname=default_device): self.portname = portname try: self._serial_port = serial.Serial(self.portname, baudrate= SERIAL_BAUDRATE, parity='N', bytesize=SERIAL_BYTESIZE, timeout=SERIAL_TIMEOUT, rtscts=1, dsrdtr=1) self._serial_port.dtr = True self._serial_port.rts = False return True except Exception: tb = traceback.format_exc() logging.debug(tb) return False def _updateT(self): valid, value, unit = self._get_data() if unit == 'V': datanames = ['Spannung'] elif unit == 'A': datanames = ['Strom'] elif unit == 'Ohm': datanames = ['Widerstand'] elif unit == '°C': datanames = ['Temperatur'] elif unit == 'F': datanames = ['Kapazität'] elif unit == 'Hz': datanames = ['Frequenz'] else: datanames = [unit] if valid: if abs(self._last_value - value) >= 2 and not self._jump_allowed: self._jump_allowed = True else: self.stream(y=[value], snames=datanames, unit=unit) self._jump_allowed = False self._last_value = value def loadGUI(self): self.widget = QtWidgets.QWidget() packagedir = self.getDir(__file__) uic.loadUi(packagedir + '/holdPeak_VC820/portSelectWidget.ui', self .widget) self.widget.pushButton.clicked.connect(self.__openPortCallback) self.__openPortCallback() return self.widget <mask token> <mask token> <mask token>
<mask token> class Plugin(LoggerPlugin): """ Zeichnet die Messdaten eines HoldPeak VC820 Multimeters auf """ def __init__(self, *args, **kwargs): super(Plugin, self).__init__(*args, **kwargs) self.setDeviceName(devicename) self.smallGUI = True self._last_value = 0 self._jump_allowed = True self.setPerpetualTimer(self._updateT, samplerate=SAMPLERATE) def __openPort(self, portname=default_device): self.portname = portname try: self._serial_port = serial.Serial(self.portname, baudrate= SERIAL_BAUDRATE, parity='N', bytesize=SERIAL_BYTESIZE, timeout=SERIAL_TIMEOUT, rtscts=1, dsrdtr=1) self._serial_port.dtr = True self._serial_port.rts = False return True except Exception: tb = traceback.format_exc() logging.debug(tb) return False def _updateT(self): valid, value, unit = self._get_data() if unit == 'V': datanames = ['Spannung'] elif unit == 'A': datanames = ['Strom'] elif unit == 'Ohm': datanames = ['Widerstand'] elif unit == '°C': datanames = ['Temperatur'] elif unit == 'F': datanames = ['Kapazität'] elif unit == 'Hz': datanames = ['Frequenz'] else: datanames = [unit] if valid: if abs(self._last_value - value) >= 2 and not self._jump_allowed: self._jump_allowed = True else: self.stream(y=[value], snames=datanames, unit=unit) self._jump_allowed = False self._last_value = value def loadGUI(self): self.widget = QtWidgets.QWidget() packagedir = self.getDir(__file__) uic.loadUi(packagedir + '/holdPeak_VC820/portSelectWidget.ui', self .widget) self.widget.pushButton.clicked.connect(self.__openPortCallback) self.__openPortCallback() return self.widget def __openPortCallback(self): if self.run: self.cancel() self.widget.pushButton.setText('Verbinden') else: port = self.widget.comboBox.currentText() if self.__openPort(port): self.start() self.widget.pushButton.setText('Beenden') else: self.cancel() self.widget.pushButton.setText('Fehler') def _get_data(self): test = self._serial_port.read(1) if len(test) != 1: logging.error('recieved incomplete data, skipping...', file=sys .stderr) return False, None, None if MultimeterMessage.check_first_byte(test[0]): data = test + self._serial_port.read(MultimeterMessage. MESSAGE_LENGTH - 1) else: logging.error('received incorrect data (%s), skipping...' % test.hex(), file=sys.stderr) return False, None, None if len(data) != MultimeterMessage.MESSAGE_LENGTH: logging.error('received incomplete message (%s), skipping...' % data.hex(), file=sys.stderr) return False, None, None try: message = MultimeterMessage(data) except ValueError as e: logging.debug(e) logging.error('Error decoding: %s on message %s' % (str(e), data.hex())) return False, None, None return True, round(message.value * message.multiplier, 10 ), message.base_unit <mask token>
try: from LoggerPlugin import LoggerPlugin except ImportError: from RTOC.LoggerPlugin import LoggerPlugin <mask token> log.basicConfig(level=log.INFO) logging = log.getLogger(__name__) devicename = 'HoldPeak' default_device = 'COM7' SERIAL_BAUDRATE = 2400 SERIAL_BYTESIZE = 8 SERIAL_TIMEOUT = 1 SAMPLERATE = 1 class Plugin(LoggerPlugin): """ Zeichnet die Messdaten eines HoldPeak VC820 Multimeters auf """ def __init__(self, *args, **kwargs): super(Plugin, self).__init__(*args, **kwargs) self.setDeviceName(devicename) self.smallGUI = True self._last_value = 0 self._jump_allowed = True self.setPerpetualTimer(self._updateT, samplerate=SAMPLERATE) def __openPort(self, portname=default_device): self.portname = portname try: self._serial_port = serial.Serial(self.portname, baudrate= SERIAL_BAUDRATE, parity='N', bytesize=SERIAL_BYTESIZE, timeout=SERIAL_TIMEOUT, rtscts=1, dsrdtr=1) self._serial_port.dtr = True self._serial_port.rts = False return True except Exception: tb = traceback.format_exc() logging.debug(tb) return False def _updateT(self): valid, value, unit = self._get_data() if unit == 'V': datanames = ['Spannung'] elif unit == 'A': datanames = ['Strom'] elif unit == 'Ohm': datanames = ['Widerstand'] elif unit == '°C': datanames = ['Temperatur'] elif unit == 'F': datanames = ['Kapazität'] elif unit == 'Hz': datanames = ['Frequenz'] else: datanames = [unit] if valid: if abs(self._last_value - value) >= 2 and not self._jump_allowed: self._jump_allowed = True else: self.stream(y=[value], snames=datanames, unit=unit) self._jump_allowed = False self._last_value = value def loadGUI(self): self.widget = QtWidgets.QWidget() packagedir = self.getDir(__file__) uic.loadUi(packagedir + '/holdPeak_VC820/portSelectWidget.ui', self .widget) self.widget.pushButton.clicked.connect(self.__openPortCallback) self.__openPortCallback() return self.widget def __openPortCallback(self): if self.run: self.cancel() self.widget.pushButton.setText('Verbinden') else: port = self.widget.comboBox.currentText() if self.__openPort(port): self.start() self.widget.pushButton.setText('Beenden') else: self.cancel() self.widget.pushButton.setText('Fehler') def _get_data(self): test = self._serial_port.read(1) if len(test) != 1: logging.error('recieved incomplete data, skipping...', file=sys .stderr) return False, None, None if MultimeterMessage.check_first_byte(test[0]): data = test + self._serial_port.read(MultimeterMessage. MESSAGE_LENGTH - 1) else: logging.error('received incorrect data (%s), skipping...' % test.hex(), file=sys.stderr) return False, None, None if len(data) != MultimeterMessage.MESSAGE_LENGTH: logging.error('received incomplete message (%s), skipping...' % data.hex(), file=sys.stderr) return False, None, None try: message = MultimeterMessage(data) except ValueError as e: logging.debug(e) logging.error('Error decoding: %s on message %s' % (str(e), data.hex())) return False, None, None return True, round(message.value * message.multiplier, 10 ), message.base_unit if __name__ == '__main__': standalone = Plugin() standalone.setup()
try: from LoggerPlugin import LoggerPlugin except ImportError: from RTOC.LoggerPlugin import LoggerPlugin from .holdPeak_VC820.vc820py.vc820 import MultimeterMessage import serial import sys import traceback from PyQt5 import uic from PyQt5 import QtWidgets import logging as log log.basicConfig(level=log.INFO) logging = log.getLogger(__name__) devicename = 'HoldPeak' default_device = 'COM7' SERIAL_BAUDRATE = 2400 SERIAL_BYTESIZE = 8 SERIAL_TIMEOUT = 1 SAMPLERATE = 1 class Plugin(LoggerPlugin): """ Zeichnet die Messdaten eines HoldPeak VC820 Multimeters auf """ def __init__(self, *args, **kwargs): super(Plugin, self).__init__(*args, **kwargs) self.setDeviceName(devicename) self.smallGUI = True self._last_value = 0 self._jump_allowed = True self.setPerpetualTimer(self._updateT, samplerate=SAMPLERATE) def __openPort(self, portname=default_device): self.portname = portname try: self._serial_port = serial.Serial(self.portname, baudrate= SERIAL_BAUDRATE, parity='N', bytesize=SERIAL_BYTESIZE, timeout=SERIAL_TIMEOUT, rtscts=1, dsrdtr=1) self._serial_port.dtr = True self._serial_port.rts = False return True except Exception: tb = traceback.format_exc() logging.debug(tb) return False def _updateT(self): valid, value, unit = self._get_data() if unit == 'V': datanames = ['Spannung'] elif unit == 'A': datanames = ['Strom'] elif unit == 'Ohm': datanames = ['Widerstand'] elif unit == '°C': datanames = ['Temperatur'] elif unit == 'F': datanames = ['Kapazität'] elif unit == 'Hz': datanames = ['Frequenz'] else: datanames = [unit] if valid: if abs(self._last_value - value) >= 2 and not self._jump_allowed: self._jump_allowed = True else: self.stream(y=[value], snames=datanames, unit=unit) self._jump_allowed = False self._last_value = value def loadGUI(self): self.widget = QtWidgets.QWidget() packagedir = self.getDir(__file__) uic.loadUi(packagedir + '/holdPeak_VC820/portSelectWidget.ui', self .widget) self.widget.pushButton.clicked.connect(self.__openPortCallback) self.__openPortCallback() return self.widget def __openPortCallback(self): if self.run: self.cancel() self.widget.pushButton.setText('Verbinden') else: port = self.widget.comboBox.currentText() if self.__openPort(port): self.start() self.widget.pushButton.setText('Beenden') else: self.cancel() self.widget.pushButton.setText('Fehler') def _get_data(self): test = self._serial_port.read(1) if len(test) != 1: logging.error('recieved incomplete data, skipping...', file=sys .stderr) return False, None, None if MultimeterMessage.check_first_byte(test[0]): data = test + self._serial_port.read(MultimeterMessage. MESSAGE_LENGTH - 1) else: logging.error('received incorrect data (%s), skipping...' % test.hex(), file=sys.stderr) return False, None, None if len(data) != MultimeterMessage.MESSAGE_LENGTH: logging.error('received incomplete message (%s), skipping...' % data.hex(), file=sys.stderr) return False, None, None try: message = MultimeterMessage(data) except ValueError as e: logging.debug(e) logging.error('Error decoding: %s on message %s' % (str(e), data.hex())) return False, None, None return True, round(message.value * message.multiplier, 10 ), message.base_unit if __name__ == '__main__': standalone = Plugin() standalone.setup()
try: from LoggerPlugin import LoggerPlugin except ImportError: from RTOC.LoggerPlugin import LoggerPlugin from .holdPeak_VC820.vc820py.vc820 import MultimeterMessage import serial import sys import traceback from PyQt5 import uic from PyQt5 import QtWidgets import logging as log log.basicConfig(level=log.INFO) logging = log.getLogger(__name__) devicename = "HoldPeak" default_device = 'COM7' SERIAL_BAUDRATE = 2400 SERIAL_BYTESIZE = 8 SERIAL_TIMEOUT = 1 SAMPLERATE = 1 class Plugin(LoggerPlugin): """ Zeichnet die Messdaten eines HoldPeak VC820 Multimeters auf """ def __init__(self, *args, **kwargs): # Plugin setup super(Plugin, self).__init__(*args, **kwargs) self.setDeviceName(devicename) self.smallGUI = True self._last_value = 0 self._jump_allowed = True # Data-logger thread self.setPerpetualTimer(self._updateT, samplerate=SAMPLERATE) # self.updater.start() def __openPort(self, portname=default_device): # Communication setup #self.portname = "/dev/ttyUSB0" #self.portname = "COM7" self.portname = portname ################################################################################# # os.system("sudo chmod a+rw /dev/ttyUSB0") # ####### # uncomment this line if you do not set device rules: # > sudo nano /etc/udev/rules.d/50-myusb.rules # > * SUBSYSTEMS=="usb", ATTRS{idVendor}=="067b", ATTRS{idProduct}=="2303", GROUP="users", MODE="0666" # > [Strg+O, Strg+X] # > sudo udevadm control --reload # Ref: http://ask.xmodulo.com/change-usb-device-permission-linux.html ################################################################################# try: self._serial_port = serial.Serial( self.portname, baudrate=SERIAL_BAUDRATE, parity='N', bytesize=SERIAL_BYTESIZE, timeout=SERIAL_TIMEOUT, rtscts=1, dsrdtr=1) # dtr and rts settings required for adapter self._serial_port.dtr = True self._serial_port.rts = False # ------------- return True except Exception: tb = traceback.format_exc() logging.debug(tb) return False # THIS IS YOUR THREAD def _updateT(self): valid, value, unit = self._get_data() if unit == "V": datanames = ["Spannung"] elif unit == "A": datanames = ["Strom"] elif unit == "Ohm": datanames = ["Widerstand"] elif unit == "°C": datanames = ["Temperatur"] elif unit == "F": datanames = ["Kapazität"] elif unit == "Hz": datanames = ["Frequenz"] else: datanames = [unit] if valid: if abs(self._last_value-value) >= 2 and not self._jump_allowed: self._jump_allowed = True else: self.stream(y=[value], snames=datanames, unit=unit) self._jump_allowed = False self._last_value = value def loadGUI(self): self.widget = QtWidgets.QWidget() packagedir = self.getDir(__file__) uic.loadUi(packagedir+"/holdPeak_VC820/portSelectWidget.ui", self.widget) # self.setCallbacks() self.widget.pushButton.clicked.connect(self.__openPortCallback) self.__openPortCallback() return self.widget def __openPortCallback(self): if self.run: self.cancel() self.widget.pushButton.setText("Verbinden") else: port = self.widget.comboBox.currentText() if self.__openPort(port): self.start() self.widget.pushButton.setText("Beenden") else: self.cancel() self.widget.pushButton.setText("Fehler") def _get_data(self): test = self._serial_port.read(1) if len(test) != 1: logging.error("recieved incomplete data, skipping...", file=sys.stderr) return False, None, None if MultimeterMessage.check_first_byte(test[0]): data = test + self._serial_port.read(MultimeterMessage.MESSAGE_LENGTH-1) else: logging.error("received incorrect data (%s), skipping..." % test.hex(), file=sys.stderr) return False, None, None if len(data) != MultimeterMessage.MESSAGE_LENGTH: logging.error("received incomplete message (%s), skipping..." % data.hex(), file=sys.stderr) return False, None, None try: message = MultimeterMessage(data) #message.value = message.get_base_reading() except ValueError as e: logging.debug(e) logging.error("Error decoding: %s on message %s" % (str(e), data.hex())) return False, None, None # logging.debug(str(message)) # return True, message.value, message.unit return True, round(message.value*message.multiplier, 10), message.base_unit if __name__ == "__main__": standalone = Plugin() standalone.setup()
[ 5, 8, 10, 11, 12 ]
727
776470546585257bf06073e2d894e8a04cf2376d
""" Duck typing Ref: http://www.voidspace.org.uk/python/articles/duck_typing.shtml """ ########## # mathmatic operator (syntactic sugar) print 3 + 3 # same as >>> print int.__add__(3, 3) # <<< # overload '+' operator class Klass1(object): def __init__(self, a, b): self.a = a self.b = b def __add__(self, other): return self.a - other.b class Klass2(object): def __init__(self, a, b): self.a = a self.b = b def __add__(self, other): return self.b - other.a obj1 = Klass1(1, 2) obj2 = Klass2(10, 20) print obj1 + obj2 # same as >>> print obj1.__add__(obj2) # <<< ########## # data access for sequence type objects(list, tuple) and mapping type object(dict) # (syntactic sugar) a = [0,1,2] print a[0] # same as >>> print list.__getitem__(a, 0) # <<< b = {'a':0, 'b':1} print b['a'] # same as >>> print dict.__getitem__(b, 'a') # <<< ########## # function call # callable checks where a var has __call__ attr. def f(arg): print arg f(123) # >>> 123 # same as >>> f.__call__(123) # >>> 123 # <<< \ # 'Duck typing' happens because when we do var['member'] Python doesn't care what type object var is. # All it cares is whether the call to its __getitem__ method returns anything sensible. If not - an error will be raised. Something like TypeError: Unsubscriptable object.. # This means you can create your own classes that have their own internal data structures - but are accessed using normal Python syntax. This is awfully convenient. # isinstance(object, dict) returns True if object is a dictionary - or an instance of a subclass of dict. # Instead of: # # if isinstance(object, dict): # value = object[member] # # it is considered more pythonic to do : # # try: # value = object[member] # except TypeError: # # do something else # # Our example above could become : # # if hasattr(object, 'keys'): # value = object[member] #
null
null
null
null
[ 0 ]
728
60b5e515c7275bfa0f79e22f54302a578c2f7b79
<mask token>
<mask token> def find_square_sum(num): _sum = 0 while num > 0: digit = num % 10 _sum += digit * digit num //= 10 return _sum <mask token>
def find_happy_number(num): slow, fast = num, num while True: slow = find_square_sum(slow) fast = find_square_sum(find_square_sum(fast)) if slow == fast: break return slow == 1 def find_square_sum(num): _sum = 0 while num > 0: digit = num % 10 _sum += digit * digit num //= 10 return _sum <mask token>
def find_happy_number(num): slow, fast = num, num while True: slow = find_square_sum(slow) fast = find_square_sum(find_square_sum(fast)) if slow == fast: break return slow == 1 def find_square_sum(num): _sum = 0 while num > 0: digit = num % 10 _sum += digit * digit num //= 10 return _sum print(find_happy_number(23)) print(find_happy_number(12))
def find_happy_number(num): slow, fast = num, num while True: slow = find_square_sum(slow) # move one step fast = find_square_sum(find_square_sum(fast)) # move two steps if slow == fast: # found the cycle break return slow == 1 # see if the cycle is stuck on the number '1' def find_square_sum(num): _sum = 0 while (num > 0): digit = num % 10 _sum += digit * digit num //= 10 return _sum print(find_happy_number(23)) print(find_happy_number(12))
[ 0, 1, 2, 3, 4 ]
729
af1a6c6009b21962228fbe737f27c22bf9460762
<mask token>
<mask token> received_event = Event() leave_rooms_event = Event() exit_event = Event() output_message_queue = AGQueue() input_message_queue = AGQueue() matrix_to_aio_queue = AGQueue() aio_to_matrix_queue = AGQueue() sync_to_matrix_queue = Queue() SERVER_URL = 'https://transport.transport01.raiden.network'
from gevent.event import Event from gevent.queue import Queue from ping_pong_chat.aio_queue import AGQueue received_event = Event() leave_rooms_event = Event() exit_event = Event() output_message_queue = AGQueue() input_message_queue = AGQueue() matrix_to_aio_queue = AGQueue() aio_to_matrix_queue = AGQueue() sync_to_matrix_queue = Queue() SERVER_URL = 'https://transport.transport01.raiden.network'
from gevent.event import Event from gevent.queue import Queue from ping_pong_chat.aio_queue import AGQueue received_event = Event() leave_rooms_event = Event() exit_event = Event() output_message_queue = AGQueue() input_message_queue = AGQueue() matrix_to_aio_queue = AGQueue() aio_to_matrix_queue = AGQueue() sync_to_matrix_queue = Queue() SERVER_URL = "https://transport.transport01.raiden.network"
null
[ 0, 1, 2, 3 ]
730
ed80f5f898548ca012779543051ccff5b34e4fcc
<mask token> def getdata(url): data = requests.get(url) return data.text def get_json(): file_path = staticfiles_storage.path('coordinates.json') with open(file_path, 'r') as f: data = json.load(f) html_doc = getdata('https://www.mygov.in/covid-19') soup = BeautifulSoup(html_doc, 'html.parser') k = soup.tbody.get_text() k = ('\n' + k).split('\n\n')[1:-1] datarow = {} for index, item in enumerate(k): value = item.split('\n') datarow[value[1].lower()] = {'coordinates': list(data.values())[ index], 'confirmed': value[2], 'active': value[3], 'recovered': value[4], 'deceased': value[5]} return datarow <mask token>
<mask token> def getdata(url): data = requests.get(url) return data.text def get_json(): file_path = staticfiles_storage.path('coordinates.json') with open(file_path, 'r') as f: data = json.load(f) html_doc = getdata('https://www.mygov.in/covid-19') soup = BeautifulSoup(html_doc, 'html.parser') k = soup.tbody.get_text() k = ('\n' + k).split('\n\n')[1:-1] datarow = {} for index, item in enumerate(k): value = item.split('\n') datarow[value[1].lower()] = {'coordinates': list(data.values())[ index], 'confirmed': value[2], 'active': value[3], 'recovered': value[4], 'deceased': value[5]} return datarow <mask token> @api_view(['GET']) def coordinates(request): url = ( 'https://raw.githubusercontent.com/namantam1/indian_coordinated/master/india.json' ) resp = requests.get(url) data = json.loads(resp.text) return Response(data, status=status.HTTP_200_OK)
<mask token> def getdata(url): data = requests.get(url) return data.text def get_json(): file_path = staticfiles_storage.path('coordinates.json') with open(file_path, 'r') as f: data = json.load(f) html_doc = getdata('https://www.mygov.in/covid-19') soup = BeautifulSoup(html_doc, 'html.parser') k = soup.tbody.get_text() k = ('\n' + k).split('\n\n')[1:-1] datarow = {} for index, item in enumerate(k): value = item.split('\n') datarow[value[1].lower()] = {'coordinates': list(data.values())[ index], 'confirmed': value[2], 'active': value[3], 'recovered': value[4], 'deceased': value[5]} return datarow @api_view(['GET']) @authentication_classes([TokenAuthentication]) @permission_classes([IsAuthenticated]) def get_map_josn(request): """ List all code snippets, or create a new snippet. """ if request.method == 'GET': data = get_json() print('Responsed') return Response(data, status=status.HTTP_200_OK) @api_view(['GET']) def coordinates(request): url = ( 'https://raw.githubusercontent.com/namantam1/indian_coordinated/master/india.json' ) resp = requests.get(url) data = json.loads(resp.text) return Response(data, status=status.HTTP_200_OK)
from django.shortcuts import render import requests from bs4 import BeautifulSoup import json from rest_framework.response import Response from rest_framework.decorators import api_view, authentication_classes, permission_classes from rest_framework import status from django.contrib.staticfiles.storage import staticfiles_storage from user.authentication import TokenAuthentication from rest_framework.permissions import IsAuthenticated def getdata(url): data = requests.get(url) return data.text def get_json(): file_path = staticfiles_storage.path('coordinates.json') with open(file_path, 'r') as f: data = json.load(f) html_doc = getdata('https://www.mygov.in/covid-19') soup = BeautifulSoup(html_doc, 'html.parser') k = soup.tbody.get_text() k = ('\n' + k).split('\n\n')[1:-1] datarow = {} for index, item in enumerate(k): value = item.split('\n') datarow[value[1].lower()] = {'coordinates': list(data.values())[ index], 'confirmed': value[2], 'active': value[3], 'recovered': value[4], 'deceased': value[5]} return datarow @api_view(['GET']) @authentication_classes([TokenAuthentication]) @permission_classes([IsAuthenticated]) def get_map_josn(request): """ List all code snippets, or create a new snippet. """ if request.method == 'GET': data = get_json() print('Responsed') return Response(data, status=status.HTTP_200_OK) @api_view(['GET']) def coordinates(request): url = ( 'https://raw.githubusercontent.com/namantam1/indian_coordinated/master/india.json' ) resp = requests.get(url) data = json.loads(resp.text) return Response(data, status=status.HTTP_200_OK)
from django.shortcuts import render import requests from bs4 import BeautifulSoup import json from rest_framework.response import Response from rest_framework.decorators import api_view,authentication_classes,permission_classes from rest_framework import status from django.contrib.staticfiles.storage import staticfiles_storage from user.authentication import TokenAuthentication from rest_framework.permissions import IsAuthenticated # Create your views here. def getdata(url): data = requests.get(url) return data.text def get_json(): file_path = staticfiles_storage.path('coordinates.json') with open(file_path,'r') as f: data = json.load(f) html_doc = getdata("https://www.mygov.in/covid-19") soup = BeautifulSoup(html_doc, 'html.parser') k = soup.tbody.get_text() k = (("\n"+k).split("\n\n"))[1:-1] datarow = {} for index,item in enumerate(k): value = item.split("\n") datarow[value[1].lower()] = { 'coordinates':list(data.values())[index], 'confirmed':value[2], 'active':value[3], 'recovered':value[4], 'deceased':value[5] } return datarow @api_view(['GET']) @authentication_classes([TokenAuthentication]) @permission_classes([IsAuthenticated]) def get_map_josn(request): """ List all code snippets, or create a new snippet. """ if request.method == 'GET': data = get_json() print('Responsed') return Response(data,status=status.HTTP_200_OK) @api_view(['GET']) def coordinates(request): url = 'https://raw.githubusercontent.com/namantam1/indian_coordinated/master/india.json' resp = requests.get(url) data = json.loads(resp.text) return Response(data,status=status.HTTP_200_OK)
[ 2, 3, 4, 5, 6 ]
731
53fae0103168f4074ba0645c33e4640fcefdfc96
<mask token> def decode_page(page_bytes, charsets=('utf-8',)): """通过指定的字符集对页面进行解码(不是每个网站都将字符集设置为utf-8)""" page_html = None for charset in charsets: try: page_html = page_bytes.decode(charset) break except UnicodeDecodeError: pass return page_html def get_page_html(seed_url, *, retry_times=3, charsets=('utf-8',)): """获取页面的HTML代码(通过递归实现指定次数的重试操作)""" page_html = None try: page_html = decode_page(urlopen(seed_url).read(), charsets) except URLError: if retry_times > 0: return get_page_html(seed_url, retry_times=retry_times - 1, charsets=charsets) return page_html def get_matched_parts(page_html, pattern_str, pattern_ignore_case=re.I): """从页面中提取需要的部分(通常是链接也可以通过正则表达式进行指定)""" soup = BeautifulSoup(page_html, 'html.parser') for h1 in soup.find_all('h1'): return h1.get_text() def get_link_list(page_html): soup = BeautifulSoup(page_html, 'html.parser') list = [] for a_link in soup.find_all('a'): link = a_link['href'] if 'https://' in link or 'http://' in link: list.append(link) return list def start_crawl(seed_url, match_pattern, *, max_depth=-1): """开始执行爬虫程序并对指定的数据进行持久化操作""" conn = pymysql.connect(host='localhost', port=3306, user='root', password='Huhaohao@123', charset='utf8') with conn.cursor() as cursor: cursor.execute('use crawler') cursor.execute('CREATE TABLE IF NOT EXISTS tb_result ' + '(' + 'title TEXT NOT NULL,' + 'link TEXT NOT NULL' + ')') try: with conn.cursor() as cursor: url_list = [seed_url] visited_url_list = {seed_url: 0} while url_list: current_url = url_list.pop(0) depth = visited_url_list[current_url] if depth != max_depth: page_html = get_page_html(current_url, charsets=( 'utf-8', 'gbk', 'gb2312')) links_list = get_link_list(page_html) param_list = [] for link in links_list: if link not in visited_url_list: visited_url_list[link] = depth + 1 page_html = get_page_html(link, charsets=( 'utf-8', 'gbk', 'gb2312')) headings = get_matched_parts(page_html, '<h1>(.*)<span') if headings: param_list.append((headings, link)) cursor.executemany( 'insert into tb_result(title, link) values(%s, %s)', param_list) conn.commit() except Error: pass finally: conn.close() <mask token>
<mask token> def decode_page(page_bytes, charsets=('utf-8',)): """通过指定的字符集对页面进行解码(不是每个网站都将字符集设置为utf-8)""" page_html = None for charset in charsets: try: page_html = page_bytes.decode(charset) break except UnicodeDecodeError: pass return page_html def get_page_html(seed_url, *, retry_times=3, charsets=('utf-8',)): """获取页面的HTML代码(通过递归实现指定次数的重试操作)""" page_html = None try: page_html = decode_page(urlopen(seed_url).read(), charsets) except URLError: if retry_times > 0: return get_page_html(seed_url, retry_times=retry_times - 1, charsets=charsets) return page_html def get_matched_parts(page_html, pattern_str, pattern_ignore_case=re.I): """从页面中提取需要的部分(通常是链接也可以通过正则表达式进行指定)""" soup = BeautifulSoup(page_html, 'html.parser') for h1 in soup.find_all('h1'): return h1.get_text() def get_link_list(page_html): soup = BeautifulSoup(page_html, 'html.parser') list = [] for a_link in soup.find_all('a'): link = a_link['href'] if 'https://' in link or 'http://' in link: list.append(link) return list def start_crawl(seed_url, match_pattern, *, max_depth=-1): """开始执行爬虫程序并对指定的数据进行持久化操作""" conn = pymysql.connect(host='localhost', port=3306, user='root', password='Huhaohao@123', charset='utf8') with conn.cursor() as cursor: cursor.execute('use crawler') cursor.execute('CREATE TABLE IF NOT EXISTS tb_result ' + '(' + 'title TEXT NOT NULL,' + 'link TEXT NOT NULL' + ')') try: with conn.cursor() as cursor: url_list = [seed_url] visited_url_list = {seed_url: 0} while url_list: current_url = url_list.pop(0) depth = visited_url_list[current_url] if depth != max_depth: page_html = get_page_html(current_url, charsets=( 'utf-8', 'gbk', 'gb2312')) links_list = get_link_list(page_html) param_list = [] for link in links_list: if link not in visited_url_list: visited_url_list[link] = depth + 1 page_html = get_page_html(link, charsets=( 'utf-8', 'gbk', 'gb2312')) headings = get_matched_parts(page_html, '<h1>(.*)<span') if headings: param_list.append((headings, link)) cursor.executemany( 'insert into tb_result(title, link) values(%s, %s)', param_list) conn.commit() except Error: pass finally: conn.close() def main(): """主函数""" ssl._create_default_https_context = ssl._create_unverified_context start_crawl('http://sports.sohu.com/nba_a.shtml', '<a[^>]*href=["\\\'](.*?)["\\\']', max_depth=2) <mask token>
<mask token> def decode_page(page_bytes, charsets=('utf-8',)): """通过指定的字符集对页面进行解码(不是每个网站都将字符集设置为utf-8)""" page_html = None for charset in charsets: try: page_html = page_bytes.decode(charset) break except UnicodeDecodeError: pass return page_html def get_page_html(seed_url, *, retry_times=3, charsets=('utf-8',)): """获取页面的HTML代码(通过递归实现指定次数的重试操作)""" page_html = None try: page_html = decode_page(urlopen(seed_url).read(), charsets) except URLError: if retry_times > 0: return get_page_html(seed_url, retry_times=retry_times - 1, charsets=charsets) return page_html def get_matched_parts(page_html, pattern_str, pattern_ignore_case=re.I): """从页面中提取需要的部分(通常是链接也可以通过正则表达式进行指定)""" soup = BeautifulSoup(page_html, 'html.parser') for h1 in soup.find_all('h1'): return h1.get_text() def get_link_list(page_html): soup = BeautifulSoup(page_html, 'html.parser') list = [] for a_link in soup.find_all('a'): link = a_link['href'] if 'https://' in link or 'http://' in link: list.append(link) return list def start_crawl(seed_url, match_pattern, *, max_depth=-1): """开始执行爬虫程序并对指定的数据进行持久化操作""" conn = pymysql.connect(host='localhost', port=3306, user='root', password='Huhaohao@123', charset='utf8') with conn.cursor() as cursor: cursor.execute('use crawler') cursor.execute('CREATE TABLE IF NOT EXISTS tb_result ' + '(' + 'title TEXT NOT NULL,' + 'link TEXT NOT NULL' + ')') try: with conn.cursor() as cursor: url_list = [seed_url] visited_url_list = {seed_url: 0} while url_list: current_url = url_list.pop(0) depth = visited_url_list[current_url] if depth != max_depth: page_html = get_page_html(current_url, charsets=( 'utf-8', 'gbk', 'gb2312')) links_list = get_link_list(page_html) param_list = [] for link in links_list: if link not in visited_url_list: visited_url_list[link] = depth + 1 page_html = get_page_html(link, charsets=( 'utf-8', 'gbk', 'gb2312')) headings = get_matched_parts(page_html, '<h1>(.*)<span') if headings: param_list.append((headings, link)) cursor.executemany( 'insert into tb_result(title, link) values(%s, %s)', param_list) conn.commit() except Error: pass finally: conn.close() def main(): """主函数""" ssl._create_default_https_context = ssl._create_unverified_context start_crawl('http://sports.sohu.com/nba_a.shtml', '<a[^>]*href=["\\\'](.*?)["\\\']', max_depth=2) if __name__ == '__main__': main()
from urllib.error import URLError from urllib.request import urlopen from bs4 import BeautifulSoup import re import pymysql import ssl from pymysql import Error def decode_page(page_bytes, charsets=('utf-8',)): """通过指定的字符集对页面进行解码(不是每个网站都将字符集设置为utf-8)""" page_html = None for charset in charsets: try: page_html = page_bytes.decode(charset) break except UnicodeDecodeError: pass return page_html def get_page_html(seed_url, *, retry_times=3, charsets=('utf-8',)): """获取页面的HTML代码(通过递归实现指定次数的重试操作)""" page_html = None try: page_html = decode_page(urlopen(seed_url).read(), charsets) except URLError: if retry_times > 0: return get_page_html(seed_url, retry_times=retry_times - 1, charsets=charsets) return page_html def get_matched_parts(page_html, pattern_str, pattern_ignore_case=re.I): """从页面中提取需要的部分(通常是链接也可以通过正则表达式进行指定)""" soup = BeautifulSoup(page_html, 'html.parser') for h1 in soup.find_all('h1'): return h1.get_text() def get_link_list(page_html): soup = BeautifulSoup(page_html, 'html.parser') list = [] for a_link in soup.find_all('a'): link = a_link['href'] if 'https://' in link or 'http://' in link: list.append(link) return list def start_crawl(seed_url, match_pattern, *, max_depth=-1): """开始执行爬虫程序并对指定的数据进行持久化操作""" conn = pymysql.connect(host='localhost', port=3306, user='root', password='Huhaohao@123', charset='utf8') with conn.cursor() as cursor: cursor.execute('use crawler') cursor.execute('CREATE TABLE IF NOT EXISTS tb_result ' + '(' + 'title TEXT NOT NULL,' + 'link TEXT NOT NULL' + ')') try: with conn.cursor() as cursor: url_list = [seed_url] visited_url_list = {seed_url: 0} while url_list: current_url = url_list.pop(0) depth = visited_url_list[current_url] if depth != max_depth: page_html = get_page_html(current_url, charsets=( 'utf-8', 'gbk', 'gb2312')) links_list = get_link_list(page_html) param_list = [] for link in links_list: if link not in visited_url_list: visited_url_list[link] = depth + 1 page_html = get_page_html(link, charsets=( 'utf-8', 'gbk', 'gb2312')) headings = get_matched_parts(page_html, '<h1>(.*)<span') if headings: param_list.append((headings, link)) cursor.executemany( 'insert into tb_result(title, link) values(%s, %s)', param_list) conn.commit() except Error: pass finally: conn.close() def main(): """主函数""" ssl._create_default_https_context = ssl._create_unverified_context start_crawl('http://sports.sohu.com/nba_a.shtml', '<a[^>]*href=["\\\'](.*?)["\\\']', max_depth=2) if __name__ == '__main__': main()
from urllib.error import URLError from urllib.request import urlopen from bs4 import BeautifulSoup import re import pymysql import ssl from pymysql import Error def decode_page(page_bytes, charsets=('utf-8',)): """通过指定的字符集对页面进行解码(不是每个网站都将字符集设置为utf-8)""" page_html = None for charset in charsets: try: page_html = page_bytes.decode(charset) break except UnicodeDecodeError: pass # logging.error('Decode:', error) return page_html def get_page_html(seed_url, *, retry_times=3, charsets=('utf-8',)): """获取页面的HTML代码(通过递归实现指定次数的重试操作)""" page_html = None try: page_html = decode_page(urlopen(seed_url).read(), charsets) except URLError: # logging.error('URL:', error) if retry_times > 0: return get_page_html(seed_url, retry_times=retry_times - 1, charsets=charsets) return page_html def get_matched_parts(page_html, pattern_str, pattern_ignore_case=re.I): """从页面中提取需要的部分(通常是链接也可以通过正则表达式进行指定)""" soup = BeautifulSoup(page_html, 'html.parser') for h1 in soup.find_all('h1'): return h1.get_text() def get_link_list(page_html): soup = BeautifulSoup(page_html, 'html.parser') list = [] for a_link in soup.find_all('a'): link = a_link['href'] if ('https://' in link) or ('http://' in link): list.append(link) # print(page_html) #print(list) return list def start_crawl(seed_url, match_pattern, *, max_depth=-1): """开始执行爬虫程序并对指定的数据进行持久化操作""" # conn = pymysql.connect(host='localhost', port=3306, # database='crawler', user='root', # password='Huhaohao@123', charset='utf8') conn = pymysql.connect(host='localhost', port=3306, user='root', password='Huhaohao@123', charset='utf8') with conn.cursor() as cursor: #cursor.execute("create database crawler if not exists;") cursor.execute('use crawler') cursor.execute( "CREATE TABLE IF NOT EXISTS tb_result " + "(" + "title TEXT NOT NULL," + "link TEXT NOT NULL" + ")" ) try: with conn.cursor() as cursor: url_list = [seed_url] # 通过下面的字典避免重复抓取并控制抓取深度 visited_url_list = {seed_url: 0} while url_list: current_url = url_list.pop(0) depth = visited_url_list[current_url] if depth != max_depth: # 尝试用utf-8/gbk/gb2312三种字符集进行页面解码 page_html = get_page_html(current_url, charsets=('utf-8', 'gbk', 'gb2312')) links_list = get_link_list(page_html) param_list = [] for link in links_list: if link not in visited_url_list: visited_url_list[link] = depth + 1 page_html = get_page_html(link, charsets=('utf-8', 'gbk', 'gb2312')) headings = get_matched_parts(page_html, r'<h1>(.*)<span') if headings: param_list.append((headings, link)) cursor.executemany('insert into tb_result(title, link) values(%s, %s)', param_list) conn.commit() except Error: pass # logging.error('SQL:', error) finally: conn.close() def main(): """主函数""" ssl._create_default_https_context = ssl._create_unverified_context start_crawl('http://sports.sohu.com/nba_a.shtml', r'<a[^>]*href=["\'](.*?)["\']', max_depth=2) if __name__ == '__main__': main()
[ 5, 6, 7, 8, 9 ]
732
45fcafdd30f890ddf5eaa090152fde2e2da4dbef
<mask token>
<mask token> print(t) print(t[:2]) print(t[1:]) <mask token> print(t2) print(t3) print(t2 + t3)
t = '코스모스', '민들레', '국화' print(t) print(t[:2]) print(t[1:]) t2 = 1, 2, 3 t3 = 4, print(t2) print(t3) print(t2 + t3)
# 튜플(tuple) - 리스트와 구조가 비슷함 #변경, 삭제 할 수 없다. t = ('코스모스', '민들레', '국화') print(t) print(t[:2]) print(t[1:]) #del t[0] - 삭제 안됨 #t[2] ="매화" - 수정 안됨 t2 = (1, 2, 3) t3 = (4,) # 1개 추가하기 (쉼표를 붙임) print(t2) print(t3) print(t2 + t3) # 요소 더하기
null
[ 0, 1, 2, 3 ]
733
73e7e43e9cfb3c0884480809bc03ade687d641d6
<mask token> def getScale(NumFrame, t_gt, seq_num): txt_file = open('/media/cordin/새 볼륨/rosbag/dataset/poses/{0:02d}.txt'. format(seq_num)) x_prev = float(t_gt[0]) y_prev = float(t_gt[1]) z_prev = float(t_gt[2]) line = txt_file.readlines() line_sp = line[NumFrame].split(' ') x = float(line_sp[3]) y = float(line_sp[7]) z = float(line_sp[11]) t_gt[0] = x t_gt[1] = y t_gt[2] = z txt_file.close() scale = math.sqrt((x - x_prev) ** 2 + (y - y_prev) ** 2 + (z - z_prev) ** 2 ) return scale, t_gt <mask token>
<mask token> def getScale(NumFrame, t_gt, seq_num): txt_file = open('/media/cordin/새 볼륨/rosbag/dataset/poses/{0:02d}.txt'. format(seq_num)) x_prev = float(t_gt[0]) y_prev = float(t_gt[1]) z_prev = float(t_gt[2]) line = txt_file.readlines() line_sp = line[NumFrame].split(' ') x = float(line_sp[3]) y = float(line_sp[7]) z = float(line_sp[11]) t_gt[0] = x t_gt[1] = y t_gt[2] = z txt_file.close() scale = math.sqrt((x - x_prev) ** 2 + (y - y_prev) ** 2 + (z - z_prev) ** 2 ) return scale, t_gt if __name__ == '__main__': MAX_FRAME = 1000 SEQ_NUM = 2 focal = 718.856 pp = 607.1928, 185.2157 textOrg1 = 10, 30 textOrg2 = 10, 80 textOrg3 = 10, 130 img_1_c = cv2.imread( '/media/cordin/새 볼륨/rosbag/dataset/sequences/{0:02d}/image_0/000000.png' .format(SEQ_NUM)) img_2_c = cv2.imread( '/media/cordin/새 볼륨/rosbag/dataset/sequences/{0:02d}/image_0/000001.png' .format(SEQ_NUM)) img_1 = cv2.cvtColor(img_1_c, cv2.COLOR_BGR2GRAY) img_2 = cv2.cvtColor(img_2_c, cv2.COLOR_BGR2GRAY) kp1, des1 = orb.detectAndCompute(img_1, None) kp2, des2 = orb.detectAndCompute(img_2, None) matches = bf.match(des1, des2) matches = sorted(matches, key=lambda x: x.distance) idx = matches[0:1500] pts1 = [] pts2 = [] for i in idx: pts1.append(kp1[i.queryIdx].pt) pts2.append(kp2[i.trainIdx].pt) pts1 = np.array(pts1) pts2 = np.array(pts2) E, mask = cv2.findEssentialMat(pts1, pts2, focal=focal, pp=pp, method= cv2.RANSAC, prob=0.999, threshold=1.0) _, R_f, t_f, _ = cv2.recoverPose(E, pts1, pts2, focal=focal, pp=pp) R_f_seg = R_f t_f_seg = t_f t_gt = np.zeros((3, 1), dtype=np.float64) prevImage = img_2 kp_prev = kp2 des_prev = des2 traj = np.zeros((1000, 2000), dtype=np.uint8) traj = cv2.cvtColor(traj, cv2.COLOR_GRAY2BGR) rmse_total = 0 for numFrame in range(2, MAX_FRAME): filename = ( '/media/cordin/새 볼륨/rosbag/dataset/sequences/{0:02d}/image_0/{1:06d}.png' .format(SEQ_NUM, numFrame)) currImage_c = cv2.imread(filename) currImage = cv2.cvtColor(currImage_c, cv2.COLOR_BGR2GRAY) kp_curr, des_curr = orb.detectAndCompute(currImage, None) matches = bf.match(des_prev, des_curr) matches = sorted(matches, key=lambda x: x.distance) idx = matches[0:1500] pts1 = [] pts2 = [] for i in idx: pts1.append(kp_prev[i.queryIdx].pt) pts2.append(kp_curr[i.trainIdx].pt) pts1 = np.array(pts1) pts2 = np.array(pts2) E_mat, mask_n = cv2.findEssentialMat(pts2, pts1, focal=focal, pp=pp, method=cv2.RANSAC, prob=0.999, threshold=1.0) _, R, t, _ = cv2.recoverPose(E_mat, pts2, pts1, focal=focal, pp=pp) abs_scale, t_gt = getScale(numFrame, t_gt, SEQ_NUM) t_f = t_f + abs_scale * R_f.dot(t) R_f = R.dot(R_f) error = map(operator.sub, t_gt, t_f) error_sum_square = sum(map(lambda x: x * x, error)) rmse = math.sqrt(error_sum_square / 3) rmse_total = rmse_total + rmse print('rmse = ', rmse_total / numFrame) prevImage = currImage kp_prev = kp_curr des_prev = des_curr x_gt = int(t_gt[0]) + 1000 y_gt = int(t_gt[2]) + 100 x = int(t_f[0]) + 1000 y = int(t_f[2]) + 100 cv2.circle(traj, (x, y), 1, (0, 0, 255), 2) cv2.circle(traj, (x_gt, y_gt), 1, (0, 255, 0), 2) cv2.rectangle(traj, (10, 10), (700, 150), (0, 0, 0), -1) text1 = ('orb Coordinates: x = {0:02f}m y = {1:02f}m z = {2:02f}m'. format(float(t_f[0]), float(t_f[1]), float(t_f[2]))) cv2.putText(traj, text1, textOrg1, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, 8) text3 = ('gt Coordinates: x = {0:02f}m y = {1:02f}m z = {2:02f}m'. format(float(t_gt[0]), float(t_gt[1]), float(t_gt[2]))) cv2.putText(traj, text3, textOrg3, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, 8) feature_img = cv2.drawKeypoints(currImage_c, kp_curr, None) cv2.imshow('trajectory', traj) cv2.imshow('feat_img', feature_img) cv2.waitKey(1) cv2.imwrite('result_{0:02d}.png'.format(SEQ_NUM), traj)
<mask token> orb = cv2.cv2.ORB_create(nfeatures=5000, scaleFactor=1.2, nlevels=8, edgeThreshold=31, firstLevel=0, WTA_K=2, scoreType=cv2.ORB_FAST_SCORE, patchSize=31, fastThreshold=25) bf = cv2.BFMatcher(cv2.NORM_HAMMING) def getScale(NumFrame, t_gt, seq_num): txt_file = open('/media/cordin/새 볼륨/rosbag/dataset/poses/{0:02d}.txt'. format(seq_num)) x_prev = float(t_gt[0]) y_prev = float(t_gt[1]) z_prev = float(t_gt[2]) line = txt_file.readlines() line_sp = line[NumFrame].split(' ') x = float(line_sp[3]) y = float(line_sp[7]) z = float(line_sp[11]) t_gt[0] = x t_gt[1] = y t_gt[2] = z txt_file.close() scale = math.sqrt((x - x_prev) ** 2 + (y - y_prev) ** 2 + (z - z_prev) ** 2 ) return scale, t_gt if __name__ == '__main__': MAX_FRAME = 1000 SEQ_NUM = 2 focal = 718.856 pp = 607.1928, 185.2157 textOrg1 = 10, 30 textOrg2 = 10, 80 textOrg3 = 10, 130 img_1_c = cv2.imread( '/media/cordin/새 볼륨/rosbag/dataset/sequences/{0:02d}/image_0/000000.png' .format(SEQ_NUM)) img_2_c = cv2.imread( '/media/cordin/새 볼륨/rosbag/dataset/sequences/{0:02d}/image_0/000001.png' .format(SEQ_NUM)) img_1 = cv2.cvtColor(img_1_c, cv2.COLOR_BGR2GRAY) img_2 = cv2.cvtColor(img_2_c, cv2.COLOR_BGR2GRAY) kp1, des1 = orb.detectAndCompute(img_1, None) kp2, des2 = orb.detectAndCompute(img_2, None) matches = bf.match(des1, des2) matches = sorted(matches, key=lambda x: x.distance) idx = matches[0:1500] pts1 = [] pts2 = [] for i in idx: pts1.append(kp1[i.queryIdx].pt) pts2.append(kp2[i.trainIdx].pt) pts1 = np.array(pts1) pts2 = np.array(pts2) E, mask = cv2.findEssentialMat(pts1, pts2, focal=focal, pp=pp, method= cv2.RANSAC, prob=0.999, threshold=1.0) _, R_f, t_f, _ = cv2.recoverPose(E, pts1, pts2, focal=focal, pp=pp) R_f_seg = R_f t_f_seg = t_f t_gt = np.zeros((3, 1), dtype=np.float64) prevImage = img_2 kp_prev = kp2 des_prev = des2 traj = np.zeros((1000, 2000), dtype=np.uint8) traj = cv2.cvtColor(traj, cv2.COLOR_GRAY2BGR) rmse_total = 0 for numFrame in range(2, MAX_FRAME): filename = ( '/media/cordin/새 볼륨/rosbag/dataset/sequences/{0:02d}/image_0/{1:06d}.png' .format(SEQ_NUM, numFrame)) currImage_c = cv2.imread(filename) currImage = cv2.cvtColor(currImage_c, cv2.COLOR_BGR2GRAY) kp_curr, des_curr = orb.detectAndCompute(currImage, None) matches = bf.match(des_prev, des_curr) matches = sorted(matches, key=lambda x: x.distance) idx = matches[0:1500] pts1 = [] pts2 = [] for i in idx: pts1.append(kp_prev[i.queryIdx].pt) pts2.append(kp_curr[i.trainIdx].pt) pts1 = np.array(pts1) pts2 = np.array(pts2) E_mat, mask_n = cv2.findEssentialMat(pts2, pts1, focal=focal, pp=pp, method=cv2.RANSAC, prob=0.999, threshold=1.0) _, R, t, _ = cv2.recoverPose(E_mat, pts2, pts1, focal=focal, pp=pp) abs_scale, t_gt = getScale(numFrame, t_gt, SEQ_NUM) t_f = t_f + abs_scale * R_f.dot(t) R_f = R.dot(R_f) error = map(operator.sub, t_gt, t_f) error_sum_square = sum(map(lambda x: x * x, error)) rmse = math.sqrt(error_sum_square / 3) rmse_total = rmse_total + rmse print('rmse = ', rmse_total / numFrame) prevImage = currImage kp_prev = kp_curr des_prev = des_curr x_gt = int(t_gt[0]) + 1000 y_gt = int(t_gt[2]) + 100 x = int(t_f[0]) + 1000 y = int(t_f[2]) + 100 cv2.circle(traj, (x, y), 1, (0, 0, 255), 2) cv2.circle(traj, (x_gt, y_gt), 1, (0, 255, 0), 2) cv2.rectangle(traj, (10, 10), (700, 150), (0, 0, 0), -1) text1 = ('orb Coordinates: x = {0:02f}m y = {1:02f}m z = {2:02f}m'. format(float(t_f[0]), float(t_f[1]), float(t_f[2]))) cv2.putText(traj, text1, textOrg1, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, 8) text3 = ('gt Coordinates: x = {0:02f}m y = {1:02f}m z = {2:02f}m'. format(float(t_gt[0]), float(t_gt[1]), float(t_gt[2]))) cv2.putText(traj, text3, textOrg3, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, 8) feature_img = cv2.drawKeypoints(currImage_c, kp_curr, None) cv2.imshow('trajectory', traj) cv2.imshow('feat_img', feature_img) cv2.waitKey(1) cv2.imwrite('result_{0:02d}.png'.format(SEQ_NUM), traj)
from os import wait import cv2 import numpy as np import math import sys import types import operator orb = cv2.cv2.ORB_create(nfeatures=5000, scaleFactor=1.2, nlevels=8, edgeThreshold=31, firstLevel=0, WTA_K=2, scoreType=cv2.ORB_FAST_SCORE, patchSize=31, fastThreshold=25) bf = cv2.BFMatcher(cv2.NORM_HAMMING) def getScale(NumFrame, t_gt, seq_num): txt_file = open('/media/cordin/새 볼륨/rosbag/dataset/poses/{0:02d}.txt'. format(seq_num)) x_prev = float(t_gt[0]) y_prev = float(t_gt[1]) z_prev = float(t_gt[2]) line = txt_file.readlines() line_sp = line[NumFrame].split(' ') x = float(line_sp[3]) y = float(line_sp[7]) z = float(line_sp[11]) t_gt[0] = x t_gt[1] = y t_gt[2] = z txt_file.close() scale = math.sqrt((x - x_prev) ** 2 + (y - y_prev) ** 2 + (z - z_prev) ** 2 ) return scale, t_gt if __name__ == '__main__': MAX_FRAME = 1000 SEQ_NUM = 2 focal = 718.856 pp = 607.1928, 185.2157 textOrg1 = 10, 30 textOrg2 = 10, 80 textOrg3 = 10, 130 img_1_c = cv2.imread( '/media/cordin/새 볼륨/rosbag/dataset/sequences/{0:02d}/image_0/000000.png' .format(SEQ_NUM)) img_2_c = cv2.imread( '/media/cordin/새 볼륨/rosbag/dataset/sequences/{0:02d}/image_0/000001.png' .format(SEQ_NUM)) img_1 = cv2.cvtColor(img_1_c, cv2.COLOR_BGR2GRAY) img_2 = cv2.cvtColor(img_2_c, cv2.COLOR_BGR2GRAY) kp1, des1 = orb.detectAndCompute(img_1, None) kp2, des2 = orb.detectAndCompute(img_2, None) matches = bf.match(des1, des2) matches = sorted(matches, key=lambda x: x.distance) idx = matches[0:1500] pts1 = [] pts2 = [] for i in idx: pts1.append(kp1[i.queryIdx].pt) pts2.append(kp2[i.trainIdx].pt) pts1 = np.array(pts1) pts2 = np.array(pts2) E, mask = cv2.findEssentialMat(pts1, pts2, focal=focal, pp=pp, method= cv2.RANSAC, prob=0.999, threshold=1.0) _, R_f, t_f, _ = cv2.recoverPose(E, pts1, pts2, focal=focal, pp=pp) R_f_seg = R_f t_f_seg = t_f t_gt = np.zeros((3, 1), dtype=np.float64) prevImage = img_2 kp_prev = kp2 des_prev = des2 traj = np.zeros((1000, 2000), dtype=np.uint8) traj = cv2.cvtColor(traj, cv2.COLOR_GRAY2BGR) rmse_total = 0 for numFrame in range(2, MAX_FRAME): filename = ( '/media/cordin/새 볼륨/rosbag/dataset/sequences/{0:02d}/image_0/{1:06d}.png' .format(SEQ_NUM, numFrame)) currImage_c = cv2.imread(filename) currImage = cv2.cvtColor(currImage_c, cv2.COLOR_BGR2GRAY) kp_curr, des_curr = orb.detectAndCompute(currImage, None) matches = bf.match(des_prev, des_curr) matches = sorted(matches, key=lambda x: x.distance) idx = matches[0:1500] pts1 = [] pts2 = [] for i in idx: pts1.append(kp_prev[i.queryIdx].pt) pts2.append(kp_curr[i.trainIdx].pt) pts1 = np.array(pts1) pts2 = np.array(pts2) E_mat, mask_n = cv2.findEssentialMat(pts2, pts1, focal=focal, pp=pp, method=cv2.RANSAC, prob=0.999, threshold=1.0) _, R, t, _ = cv2.recoverPose(E_mat, pts2, pts1, focal=focal, pp=pp) abs_scale, t_gt = getScale(numFrame, t_gt, SEQ_NUM) t_f = t_f + abs_scale * R_f.dot(t) R_f = R.dot(R_f) error = map(operator.sub, t_gt, t_f) error_sum_square = sum(map(lambda x: x * x, error)) rmse = math.sqrt(error_sum_square / 3) rmse_total = rmse_total + rmse print('rmse = ', rmse_total / numFrame) prevImage = currImage kp_prev = kp_curr des_prev = des_curr x_gt = int(t_gt[0]) + 1000 y_gt = int(t_gt[2]) + 100 x = int(t_f[0]) + 1000 y = int(t_f[2]) + 100 cv2.circle(traj, (x, y), 1, (0, 0, 255), 2) cv2.circle(traj, (x_gt, y_gt), 1, (0, 255, 0), 2) cv2.rectangle(traj, (10, 10), (700, 150), (0, 0, 0), -1) text1 = ('orb Coordinates: x = {0:02f}m y = {1:02f}m z = {2:02f}m'. format(float(t_f[0]), float(t_f[1]), float(t_f[2]))) cv2.putText(traj, text1, textOrg1, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, 8) text3 = ('gt Coordinates: x = {0:02f}m y = {1:02f}m z = {2:02f}m'. format(float(t_gt[0]), float(t_gt[1]), float(t_gt[2]))) cv2.putText(traj, text3, textOrg3, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, 8) feature_img = cv2.drawKeypoints(currImage_c, kp_curr, None) cv2.imshow('trajectory', traj) cv2.imshow('feat_img', feature_img) cv2.waitKey(1) cv2.imwrite('result_{0:02d}.png'.format(SEQ_NUM), traj)
from os import wait import cv2 import numpy as np import math import sys import types import operator ## orb 및 bf matcher 선언 orb = cv2.cv2.ORB_create( nfeatures=5000, scaleFactor=1.2, nlevels=8, edgeThreshold=31, firstLevel=0, WTA_K=2, scoreType=cv2.ORB_FAST_SCORE, patchSize=31, fastThreshold=25, ) bf = cv2.BFMatcher(cv2.NORM_HAMMING) def getScale(NumFrame, t_gt, seq_num): txt_file = open('/media/cordin/새 볼륨/rosbag/dataset/poses/{0:02d}.txt'.format(seq_num)) x_prev = float(t_gt[0]) y_prev = float(t_gt[1]) z_prev = float(t_gt[2]) line = txt_file.readlines() line_sp = line[NumFrame].split(' ') x = float(line_sp[3]) y = float(line_sp[7]) z = float(line_sp[11]) t_gt[0] = x t_gt[1] = y t_gt[2] = z txt_file.close() scale = math.sqrt((x-x_prev)**2 + (y-y_prev)**2 + (z-z_prev)**2) return scale, t_gt if __name__ == "__main__": MAX_FRAME = 1000 SEQ_NUM = 2 #Camera intrinsic parameter focal = 718.8560 pp = (607.1928, 185.2157) textOrg1 = (10,30) textOrg2 = (10,80) textOrg3 = (10,130) img_1_c = cv2.imread("/media/cordin/새 볼륨/rosbag/dataset/sequences/{0:02d}/image_0/000000.png".format(SEQ_NUM)) img_2_c = cv2.imread("/media/cordin/새 볼륨/rosbag/dataset/sequences/{0:02d}/image_0/000001.png".format(SEQ_NUM)) img_1 = cv2.cvtColor(img_1_c,cv2.COLOR_BGR2GRAY) img_2 = cv2.cvtColor(img_2_c,cv2.COLOR_BGR2GRAY) kp1, des1 = orb.detectAndCompute(img_1,None) kp2, des2 = orb.detectAndCompute(img_2,None) matches = bf.match(des1,des2) matches = sorted(matches, key = lambda x:x.distance) idx = matches[0:1500] pts1 = [] pts2 = [] for i in idx: pts1.append(kp1[i.queryIdx].pt) pts2.append(kp2[i.trainIdx].pt) pts1 = np.array(pts1) pts2 = np.array(pts2) E, mask = cv2.findEssentialMat(pts1,pts2,focal = focal, pp = pp, method=cv2.RANSAC, prob = 0.999, threshold=1.0) _, R_f, t_f, _ = cv2.recoverPose(E, pts1, pts2, focal = focal, pp = pp) R_f_seg = R_f t_f_seg = t_f t_gt = np.zeros((3,1),dtype=np.float64) prevImage = img_2 kp_prev = kp2 des_prev = des2 traj = np.zeros((1000,2000),dtype=np.uint8) traj = cv2.cvtColor(traj,cv2.COLOR_GRAY2BGR) rmse_total = 0 for numFrame in range(2, MAX_FRAME): filename = '/media/cordin/새 볼륨/rosbag/dataset/sequences/{0:02d}/image_0/{1:06d}.png'.format(SEQ_NUM,numFrame) currImage_c = cv2.imread(filename) currImage = cv2.cvtColor(currImage_c,cv2.COLOR_BGR2GRAY) # feature extraction kp_curr, des_curr = orb.detectAndCompute(currImage,None) # feature matching matches = bf.match(des_prev,des_curr) matches = sorted(matches, key = lambda x:x.distance) idx = matches[0:1500] pts1 = [] pts2 = [] for i in idx: pts1.append(kp_prev[i.queryIdx].pt) pts2.append(kp_curr[i.trainIdx].pt) pts1 = np.array(pts1) pts2 = np.array(pts2) # caculate R, t E_mat, mask_n = cv2.findEssentialMat(pts2, pts1, focal = focal, pp = pp, method=cv2.RANSAC, prob = 0.999, threshold=1.0) _, R, t, _ = cv2.recoverPose(E_mat, pts2, pts1, focal = focal, pp = pp) # get scale abs_scale, t_gt = getScale(numFrame, t_gt, SEQ_NUM) # update trajectory t_f = t_f + abs_scale*R_f.dot(t) R_f = R.dot(R_f) # caculate Error error = map(operator.sub,t_gt,t_f) error_sum_square = sum(map(lambda x:x*x,error)) rmse = math.sqrt(error_sum_square/3) rmse_total = rmse_total + rmse print("rmse = ",rmse_total/numFrame) prevImage = currImage kp_prev = kp_curr des_prev = des_curr # visualization x_gt = int(t_gt[0]) + 1000 y_gt = int(t_gt[2]) + 100 x = int(t_f[0]) + 1000 y = int(t_f[2]) + 100 cv2.circle(traj, (x,y), 1 , (0,0,255), 2) cv2.circle(traj, (x_gt,y_gt), 1 , (0,255,0), 2) cv2.rectangle(traj, (10,10), (700,150), (0,0,0), -1) text1 = 'orb Coordinates: x = {0:02f}m y = {1:02f}m z = {2:02f}m'.format(float(t_f[0]),float(t_f[1]),float(t_f[2])) cv2.putText(traj, text1, textOrg1, cv2.FONT_HERSHEY_PLAIN,1,(255,255,255),1,8) text3 = 'gt Coordinates: x = {0:02f}m y = {1:02f}m z = {2:02f}m'.format(float(t_gt[0]),float(t_gt[1]),float(t_gt[2])) cv2.putText(traj, text3, textOrg3, cv2.FONT_HERSHEY_PLAIN,1,(255,255,255),1,8) feature_img = cv2.drawKeypoints(currImage_c, kp_curr, None) cv2.imshow("trajectory", traj) cv2.imshow("feat_img", feature_img) cv2.waitKey(1) cv2.imwrite("result_{0:02d}.png".format(SEQ_NUM),traj)
[ 1, 2, 3, 4, 5 ]
734
d9538c030c0225c4255100da70d6bf23f550a64f
<mask token> class SaleOrderLine(osv.osv): <mask token> _inherit = 'sale.order.line' _columns = {'promotion_line': fields.boolean('Promotion Line', help= 'Indicates if the line was created by promotions')} <mask token>
<mask token> class SaleOrder(osv.osv): <mask token> <mask token> <mask token> <mask token> <mask token> class SaleOrderLine(osv.osv): """ Sale Order Line """ _inherit = 'sale.order.line' _columns = {'promotion_line': fields.boolean('Promotion Line', help= 'Indicates if the line was created by promotions')} <mask token>
<mask token> class SaleOrder(osv.osv): <mask token> _inherit = 'sale.order' _columns = {'coupon_code': fields.char('Promo Coupon Code', size=20)} def apply_promotions(self, cursor, user, ids, context=None): """ Applies the promotions to the given records @param cursor: Database Cursor @param user: ID of User @param ids: ID of current record. @param context: Context(no direct use). """ promotions_obj = self.pool.get('promos.rules') for order_id in ids: promotions_obj.apply_promotions(cursor, user, order_id, context =None) return True <mask token> class SaleOrderLine(osv.osv): """ Sale Order Line """ _inherit = 'sale.order.line' _columns = {'promotion_line': fields.boolean('Promotion Line', help= 'Indicates if the line was created by promotions')} <mask token>
from osv import osv, fields class SaleOrder(osv.osv): """ Sale Order """ _inherit = 'sale.order' _columns = {'coupon_code': fields.char('Promo Coupon Code', size=20)} def apply_promotions(self, cursor, user, ids, context=None): """ Applies the promotions to the given records @param cursor: Database Cursor @param user: ID of User @param ids: ID of current record. @param context: Context(no direct use). """ promotions_obj = self.pool.get('promos.rules') for order_id in ids: promotions_obj.apply_promotions(cursor, user, order_id, context =None) return True SaleOrder() class SaleOrderLine(osv.osv): """ Sale Order Line """ _inherit = 'sale.order.line' _columns = {'promotion_line': fields.boolean('Promotion Line', help= 'Indicates if the line was created by promotions')} SaleOrderLine()
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2011 NovaPoint Group LLC (<http://www.novapointgroup.com>) # Copyright (C) 2004-2010 OpenERP SA (<http://www.openerp.com>) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/> # ############################################################################## from osv import osv, fields class SaleOrder(osv.osv): ''' Sale Order ''' _inherit = 'sale.order' _columns = { 'coupon_code':fields.char('Promo Coupon Code', size=20), } def apply_promotions(self, cursor, user, ids, context=None): """ Applies the promotions to the given records @param cursor: Database Cursor @param user: ID of User @param ids: ID of current record. @param context: Context(no direct use). """ promotions_obj = self.pool.get('promos.rules') for order_id in ids: promotions_obj.apply_promotions(cursor, user, order_id, context=None) return True SaleOrder() class SaleOrderLine(osv.osv): ''' Sale Order Line ''' _inherit = "sale.order.line" _columns = { 'promotion_line':fields.boolean( "Promotion Line", help="Indicates if the line was created by promotions" ) } SaleOrderLine() # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
[ 2, 4, 6, 9, 10 ]
735
eb558644283d992af2c324d457dbe674b714235f
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.shortcuts import render from django.http import JsonResponse from knowdb.models import Knowledge import random # Create your views here. def answer(request): ret = {} data = Knowledge.objects.all() num = random.choice(range(1,int(data.count())+1)) ret['name'] = data[num-1].name ret['answer'] = data[num-1].answer print ret return JsonResponse({'exec':'true','ret':ret}) def edit(request): name = request.POST.get('name') answer = request.POST.get('answer') print name,answer try: adddata = Knowledge(name=name,answer=answer) adddata.save() return JsonResponse({'exec':'true','ret':'提交成功'}) except Exception as e: return JsonResponse({'exec':'false','ret':'提交失败'})
null
null
null
null
[ 0 ]
736
40b6d62f1e360c0df19b7e98fcb67dbd578e709f
#!/usr/bin/python # -*- coding: utf-8 -*- import csv from collections import defaultdict from docopt import docopt __doc__ = """{f} Usage: {f} <used_file> {f} -h | --help Options: -h --help Show this screen and exit. """.format(f=__file__) args = docopt(__doc__) used_file = args['<used_file>'] exceed_list = [] user_limit_dict = defaultdict(float) user_limit_f = open('/opt/uge/Accounting_Statistics/etc/user_limit_py.csv', 'r') reader = csv.reader(user_limit_f) header = next(reader) for row in reader: user_limit_dict[row[0]] = float(row[1]) print user_limit_dict used_f = open(used_file, 'r') reader = csv.DictReader(used_f) for row in reader: print row
null
null
null
null
[ 0 ]
737
4e8a5b0ba13921fb88d5d6371d50e7120ab01265
<mask token> def TestDrawGraphs(): manager = MetricsManager() manager.displayMetricsGraph() return <mask token>
<mask token> def TestDrawGraphs(): manager = MetricsManager() manager.displayMetricsGraph() return def main(): TestDrawGraphs() <mask token>
<mask token> def TestDrawGraphs(): manager = MetricsManager() manager.displayMetricsGraph() return def main(): TestDrawGraphs() if __name__ == '__main__': main()
from metricsManager import MetricsManager def TestDrawGraphs(): manager = MetricsManager() manager.displayMetricsGraph() return def main(): TestDrawGraphs() if __name__ == '__main__': main()
from metricsManager import MetricsManager def TestDrawGraphs(): manager = MetricsManager() manager.displayMetricsGraph() return def main(): TestDrawGraphs() if __name__ == "__main__": main()
[ 1, 2, 3, 4, 5 ]
738
f1f708f00e05941c9a18a24b9a7556558583c3c7
<mask token>
TRAIN_INPUT_PATH = '~/Projects/competitions/titanic/data/train.csv' TEST_INPUT_PATH = '~/Projects/competitions/titanic/data/test.csv' OUTPUT_PATH = 'output/' TRAIN_VAL_SPLIT = 0.75 RANDOM_SEED = 42 MODEL = 'LOGISTIC_REGRESSION' LOG_PATH = 'logs/'
TRAIN_INPUT_PATH = "~/Projects/competitions/titanic/data/train.csv" TEST_INPUT_PATH = "~/Projects/competitions/titanic/data/test.csv" OUTPUT_PATH = "output/" TRAIN_VAL_SPLIT = 0.75 RANDOM_SEED = 42 MODEL = "LOGISTIC_REGRESSION" LOG_PATH = "logs/"
null
null
[ 0, 1, 2 ]
739
911631e96d21bdf22a219007f1bdc04a5e6965dc
<mask token> def getRandomUserAgnet(): user_agents = [ 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 Safari/537.36 QIHU 360S' ] userAgent = random.choice(user_agents) return userAgent def getProxies(): proxies = [] for i in range(1, 10): url = 'http://www.xicidaili.com/nn/{0}'.format(i) userAgent = getRandomUserAgnet() headers = {'User-Agent': userAgent} opener = urllib.request.build_opener() opener.addheaders = [headers] try: data = opener.open(url, timeout=5).read() sleep(3) except Exception as e: logging.debug(e) selector = etree.HTML(data) ip_addr = selector.xpath("//tr[@class='odd']/td[2]/text()") port = selector.xpath("//tr[@class='odd']/td[3]/text()") sur_time = selector.xpath("//tr[@class='odd']/td[9]/text()") ver_time = selector.xpath("//tr[@class='odd']/td[10]/text()") for j in range(len(ip_addr)): ip = ip_addr[j] + ':' + port[j] proxies.append(ip) return proxies def verify_ip(currentIp): tmp_proxies = [] testUrl = 'http://www.baidu.com' userAgent = getRandomUserAgnet() proxy_support = urllib.request.ProxyHandler({'http': currentIp}) opener = urllib.request.build_opener(proxy_support) opener.addheaders = [('User-Agent', userAgent)] urllib.request.install_opener(opener) try: res = urllib.request.urlopen(testUrl, timeout=5).read() if len(res) != 0: tmp_proxies.append(currentIp) except urllib.error.URLError as er2: if hasattr(er2, 'code'): logging.debug('unvalid ipaddress' + currentIp + str(er2.code)) if hasattr(er2, 'reason'): logging.debug('reason is the ' + currentIp + str(er2.reason)) except Exception as er: logging.debug(er) sleep(2) return tmp_proxies <mask token>
<mask token> def getRandomUserAgnet(): user_agents = [ 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 Safari/537.36 QIHU 360S' ] userAgent = random.choice(user_agents) return userAgent def getProxies(): proxies = [] for i in range(1, 10): url = 'http://www.xicidaili.com/nn/{0}'.format(i) userAgent = getRandomUserAgnet() headers = {'User-Agent': userAgent} opener = urllib.request.build_opener() opener.addheaders = [headers] try: data = opener.open(url, timeout=5).read() sleep(3) except Exception as e: logging.debug(e) selector = etree.HTML(data) ip_addr = selector.xpath("//tr[@class='odd']/td[2]/text()") port = selector.xpath("//tr[@class='odd']/td[3]/text()") sur_time = selector.xpath("//tr[@class='odd']/td[9]/text()") ver_time = selector.xpath("//tr[@class='odd']/td[10]/text()") for j in range(len(ip_addr)): ip = ip_addr[j] + ':' + port[j] proxies.append(ip) return proxies def verify_ip(currentIp): tmp_proxies = [] testUrl = 'http://www.baidu.com' userAgent = getRandomUserAgnet() proxy_support = urllib.request.ProxyHandler({'http': currentIp}) opener = urllib.request.build_opener(proxy_support) opener.addheaders = [('User-Agent', userAgent)] urllib.request.install_opener(opener) try: res = urllib.request.urlopen(testUrl, timeout=5).read() if len(res) != 0: tmp_proxies.append(currentIp) except urllib.error.URLError as er2: if hasattr(er2, 'code'): logging.debug('unvalid ipaddress' + currentIp + str(er2.code)) if hasattr(er2, 'reason'): logging.debug('reason is the ' + currentIp + str(er2.reason)) except Exception as er: logging.debug(er) sleep(2) return tmp_proxies if __name__ == '__main__': getProxies()
__author__ = 'Administrator' <mask token> def getRandomUserAgnet(): user_agents = [ 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 Safari/537.36 QIHU 360S' ] userAgent = random.choice(user_agents) return userAgent def getProxies(): proxies = [] for i in range(1, 10): url = 'http://www.xicidaili.com/nn/{0}'.format(i) userAgent = getRandomUserAgnet() headers = {'User-Agent': userAgent} opener = urllib.request.build_opener() opener.addheaders = [headers] try: data = opener.open(url, timeout=5).read() sleep(3) except Exception as e: logging.debug(e) selector = etree.HTML(data) ip_addr = selector.xpath("//tr[@class='odd']/td[2]/text()") port = selector.xpath("//tr[@class='odd']/td[3]/text()") sur_time = selector.xpath("//tr[@class='odd']/td[9]/text()") ver_time = selector.xpath("//tr[@class='odd']/td[10]/text()") for j in range(len(ip_addr)): ip = ip_addr[j] + ':' + port[j] proxies.append(ip) return proxies def verify_ip(currentIp): tmp_proxies = [] testUrl = 'http://www.baidu.com' userAgent = getRandomUserAgnet() proxy_support = urllib.request.ProxyHandler({'http': currentIp}) opener = urllib.request.build_opener(proxy_support) opener.addheaders = [('User-Agent', userAgent)] urllib.request.install_opener(opener) try: res = urllib.request.urlopen(testUrl, timeout=5).read() if len(res) != 0: tmp_proxies.append(currentIp) except urllib.error.URLError as er2: if hasattr(er2, 'code'): logging.debug('unvalid ipaddress' + currentIp + str(er2.code)) if hasattr(er2, 'reason'): logging.debug('reason is the ' + currentIp + str(er2.reason)) except Exception as er: logging.debug(er) sleep(2) return tmp_proxies if __name__ == '__main__': getProxies()
__author__ = 'Administrator' from urllib import request import urllib.parse import logging from multiprocessing import pool from time import sleep import random from lxml import etree def getRandomUserAgnet(): user_agents = [ 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 Safari/537.36 QIHU 360S' ] userAgent = random.choice(user_agents) return userAgent def getProxies(): proxies = [] for i in range(1, 10): url = 'http://www.xicidaili.com/nn/{0}'.format(i) userAgent = getRandomUserAgnet() headers = {'User-Agent': userAgent} opener = urllib.request.build_opener() opener.addheaders = [headers] try: data = opener.open(url, timeout=5).read() sleep(3) except Exception as e: logging.debug(e) selector = etree.HTML(data) ip_addr = selector.xpath("//tr[@class='odd']/td[2]/text()") port = selector.xpath("//tr[@class='odd']/td[3]/text()") sur_time = selector.xpath("//tr[@class='odd']/td[9]/text()") ver_time = selector.xpath("//tr[@class='odd']/td[10]/text()") for j in range(len(ip_addr)): ip = ip_addr[j] + ':' + port[j] proxies.append(ip) return proxies def verify_ip(currentIp): tmp_proxies = [] testUrl = 'http://www.baidu.com' userAgent = getRandomUserAgnet() proxy_support = urllib.request.ProxyHandler({'http': currentIp}) opener = urllib.request.build_opener(proxy_support) opener.addheaders = [('User-Agent', userAgent)] urllib.request.install_opener(opener) try: res = urllib.request.urlopen(testUrl, timeout=5).read() if len(res) != 0: tmp_proxies.append(currentIp) except urllib.error.URLError as er2: if hasattr(er2, 'code'): logging.debug('unvalid ipaddress' + currentIp + str(er2.code)) if hasattr(er2, 'reason'): logging.debug('reason is the ' + currentIp + str(er2.reason)) except Exception as er: logging.debug(er) sleep(2) return tmp_proxies if __name__ == '__main__': getProxies()
__author__ = 'Administrator' # 抓取IP的主要逻辑 from urllib import request import urllib.parse import logging from multiprocessing import pool from time import sleep import random from lxml import etree def getRandomUserAgnet(): user_agents=[ "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 Safari/537.36 QIHU 360S" ] userAgent=random.choice(user_agents) return userAgent def getProxies(): proxies=[] for i in range(1,10): url="http://www.xicidaili.com/nn/{0}".format(i) userAgent=getRandomUserAgnet() headers={"User-Agent":userAgent} opener=urllib.request.build_opener() opener.addheaders=[headers] try: data=opener.open(url,timeout=5).read() sleep(3) except Exception as e: logging.debug(e) selector=etree.HTML(data) ip_addr=selector.xpath("//tr[@class='odd']/td[2]/text()") port=selector.xpath("//tr[@class='odd']/td[3]/text()") sur_time=selector.xpath("//tr[@class='odd']/td[9]/text()") ver_time=selector.xpath("//tr[@class='odd']/td[10]/text()") for j in range(len(ip_addr)): ip=ip_addr[j]+":"+port[j] proxies.append(ip) return proxies def verify_ip(currentIp): tmp_proxies=[] testUrl="http://www.baidu.com" userAgent=getRandomUserAgnet() proxy_support=urllib.request.ProxyHandler({"http":currentIp}) opener=urllib.request.build_opener(proxy_support) opener.addheaders=[("User-Agent",userAgent)] urllib.request.install_opener(opener) try: res=urllib.request.urlopen(testUrl,timeout=5).read() if len(res)!=0: tmp_proxies.append(currentIp) except urllib.error.URLError as er2: if hasattr(er2,'code'): logging.debug("unvalid ipaddress"+currentIp+str(er2.code)) if hasattr(er2,"reason"): logging.debug("reason is the "+currentIp+str(er2.reason)) except Exception as er: logging.debug(er) sleep(2) return tmp_proxies if __name__=="__main__": getProxies()
[ 3, 4, 5, 6, 7 ]
740
bc890f0f40a7e9c916628d491e473b5ecfa9bb9b
<mask token> class TemperatureSensor: <mask token> <mask token> <mask token> def __init__(self, average_temperature, temperature_variation, min_temperature, max_temperature): self.average_temperature = average_temperature self.temperature_variation = temperature_variation self.min_temperature = min_temperature self.max_temperature = max_temperature self.value = 0.0 <mask token> def noise(self): self.noise_value = np.random.normal(0, 1) return self.noise_value def simple_random(self): value = self.min_temperature + random() * (self.max_temperature - self.min_temperature) return value def complex_random(self): value = self.average_temperature * (1 + self.temperature_variation / 100 * (1 * random() - 1)) value = max(value, self.min_temperature) value = min(value, self.max_temperature) return value <mask token>
<mask token> class TemperatureSensor: sensor_type = 'temperature' unit = 'celsius' instance_id = '283h62gsj' def __init__(self, average_temperature, temperature_variation, min_temperature, max_temperature): self.average_temperature = average_temperature self.temperature_variation = temperature_variation self.min_temperature = min_temperature self.max_temperature = max_temperature self.value = 0.0 def sense(self): self.value = self.complex_random() + self.noise() return self.value def noise(self): self.noise_value = np.random.normal(0, 1) return self.noise_value def simple_random(self): value = self.min_temperature + random() * (self.max_temperature - self.min_temperature) return value def complex_random(self): value = self.average_temperature * (1 + self.temperature_variation / 100 * (1 * random() - 1)) value = max(value, self.min_temperature) value = min(value, self.max_temperature) return value <mask token>
<mask token> class TemperatureSensor: sensor_type = 'temperature' unit = 'celsius' instance_id = '283h62gsj' def __init__(self, average_temperature, temperature_variation, min_temperature, max_temperature): self.average_temperature = average_temperature self.temperature_variation = temperature_variation self.min_temperature = min_temperature self.max_temperature = max_temperature self.value = 0.0 def sense(self): self.value = self.complex_random() + self.noise() return self.value def noise(self): self.noise_value = np.random.normal(0, 1) return self.noise_value def simple_random(self): value = self.min_temperature + random() * (self.max_temperature - self.min_temperature) return value def complex_random(self): value = self.average_temperature * (1 + self.temperature_variation / 100 * (1 * random() - 1)) value = max(value, self.min_temperature) value = min(value, self.max_temperature) return value ts = TemperatureSensor(25, 10, 16, 35)
from random import random import numpy as np class TemperatureSensor: sensor_type = 'temperature' unit = 'celsius' instance_id = '283h62gsj' def __init__(self, average_temperature, temperature_variation, min_temperature, max_temperature): self.average_temperature = average_temperature self.temperature_variation = temperature_variation self.min_temperature = min_temperature self.max_temperature = max_temperature self.value = 0.0 def sense(self): self.value = self.complex_random() + self.noise() return self.value def noise(self): self.noise_value = np.random.normal(0, 1) return self.noise_value def simple_random(self): value = self.min_temperature + random() * (self.max_temperature - self.min_temperature) return value def complex_random(self): value = self.average_temperature * (1 + self.temperature_variation / 100 * (1 * random() - 1)) value = max(value, self.min_temperature) value = min(value, self.max_temperature) return value ts = TemperatureSensor(25, 10, 16, 35)
from random import random import numpy as np class TemperatureSensor: sensor_type = "temperature" unit="celsius" instance_id="283h62gsj" #initialisation def __init__(self, average_temperature, temperature_variation, min_temperature, max_temperature): self.average_temperature = average_temperature self.temperature_variation = temperature_variation self.min_temperature = min_temperature self.max_temperature= max_temperature self.value = 0.0 #initialise current temp value #sensing def sense(self): #self.value = self.value + self.simple_random() self.value = self.complex_random() + self.noise() return self.value #noise def noise(self): self.noise_value = np.random.normal(0,1) return self.noise_value #helper function for generating values with min temp as its base def simple_random(self): value = self.min_temperature + (random() * (self.max_temperature - self.min_temperature)) #so that it is in the range return value def complex_random(self): value = self.average_temperature * (1 + (self.temperature_variation/100) * (1 * random() -1)) value = max(value,self.min_temperature) value = min(value,self.max_temperature) return value #creating instance of sensor ts = TemperatureSensor(25,10,16,35)
[ 5, 7, 8, 9, 10 ]
741
fe597ad4462b1af3f3f99346c759c5fa8a7c14f4
<mask token>
def check_ip_or_mask(temp_str): IPv4_regex = '(?:[0-9]{1,3}\\.){3}[0-9]{1,3}' temp_list_ip_mask = re.findall(IPv4_regex, temp_str) binary_temp_list_ip_mask = [] temp_binary_ip_mask = '' for x in range(len(temp_list_ip_mask)): split_ip_address = re.split('\\.', temp_list_ip_mask[x]) for y in range(len(split_ip_address)): temp_binary_ip_mask += str(bin(int(split_ip_address[y]))[2:]. zfill(8)) binary_temp_list_ip_mask.append(temp_binary_ip_mask) temp_binary_ip_mask = '' ip_index_list = [] mask_index_list = [] for x in range(2): if not re.match('^[1]+[0]*$', binary_temp_list_ip_mask[x]): ip_index_list.append(x) if re.match('^[1]+[0]*$', binary_temp_list_ip_mask[x]): mask_index_list.append(x) if len(ip_index_list) == 1 and len(mask_index_list) == 1: ipv4 = temp_list_ip_mask[int(ip_index_list[0])] net_mask = temp_list_ip_mask[int(mask_index_list[0])] elif binary_temp_list_ip_mask[0].count('1') < binary_temp_list_ip_mask[0 ].count('1'): ipv4 = temp_list_ip_mask[0] net_mask = temp_list_ip_mask[1] else: ipv4 = temp_list_ip_mask[1] net_mask = temp_list_ip_mask[0] return 'IPv4: ' + ipv4 + '\n' + 'Net mask: ' + net_mask
def check_ip_or_mask(temp_str): IPv4_regex = (r'(?:[0-9]{1,3}\.){3}[0-9]{1,3}') temp_list_ip_mask = re.findall(IPv4_regex, temp_str) binary_temp_list_ip_mask = [] temp_binary_ip_mask = '' for x in range(len(temp_list_ip_mask)): split_ip_address = re.split(r'\.', temp_list_ip_mask[x]) for y in range(len(split_ip_address)): temp_binary_ip_mask += str(bin(int(split_ip_address[y]))[2:].zfill(8)) binary_temp_list_ip_mask.append(temp_binary_ip_mask) temp_binary_ip_mask = '' ip_index_list = [] mask_index_list = [] for x in range(2): if not re.match(r'^[1]+[0]*$', binary_temp_list_ip_mask[x]): ip_index_list.append(x) if re.match(r'^[1]+[0]*$', binary_temp_list_ip_mask[x]): mask_index_list.append(x) if len(ip_index_list) == 1 and len(mask_index_list) == 1: ipv4 = temp_list_ip_mask[int(ip_index_list[0])] net_mask = temp_list_ip_mask[int(mask_index_list[0])] else: if (binary_temp_list_ip_mask[0].count('1')) < (binary_temp_list_ip_mask[0].count('1')): ipv4 = temp_list_ip_mask[0] net_mask = temp_list_ip_mask[1] else: ipv4 = temp_list_ip_mask[1] net_mask = temp_list_ip_mask[0] return "IPv4: " + ipv4 + "\n" + "Net mask: " + net_mask
null
null
[ 0, 1, 2 ]
742
0528d7761cbbf3dbe881ff05b81060f3d97e7f6c
<mask token> class MonitorList(tp.Generic[T], collections.UserList, Monitor): <mask token> def __init__(self, *args): collections.UserList.__init__(self, *args) Monitor.__init__(self) <mask token> <mask token> def __getitem__(self, item: tp.Union[slice, int]) ->T: return self.data[item] def __setitem__(self, key: int, value: T) ->None: self.data[key] = value def __delitem__(self, key: tp.Union[slice, int]) ->None: del self.data[key] class MonitorDict(tp.Generic[K, V], collections.UserDict, Monitor): """ A dict that is also a monitor. Note that access to it's properties is not automatically synchronized, you got to invoke the monitor to implement an opportunistic locking of your own choice """ def __init__(self, *args, **kwargs): collections.UserDict.__init__(self, *args, **kwargs) Monitor.__init__(self) def __getitem__(self, item: K) ->V: return self.data[item] def __setitem__(self, key: K, value: V) ->None: self.data[key] = value def __delitem__(self, key: K) ->None: del self.data[key] def __copy__(self) ->'MonitorDict': return MonitorDict(copy.copy(self.data)) def __deepcopy__(self, memo) ->'MonitorDict': return MonitorDict(copy.deepcopy(self.data, memo=memo)) class MonitorSet(set, Monitor): """ A set that allows atomic insert-if-not-already-there operation """ def __init__(self, *args): super().__init__(*args) Monitor.__init__(self) def insert_and_check(self, item) ->bool: """ Perform an atomic insert if not already in set :param item: item to insert :return: whether the item was successfully inserted """ with Monitor.acquire(self): if item in self: return False self.add(item) return True
<mask token> class MonitorList(tp.Generic[T], collections.UserList, Monitor): """ A list that is also a monitor. Note that access to it's properties is not automatically synchronized, you got to invoke the monitor to implement an opportunistic locking of your own choice """ def __init__(self, *args): collections.UserList.__init__(self, *args) Monitor.__init__(self) def __copy__(self) ->'MonitorList': return MonitorList(copy.copy(self.data)) def __deepcopy__(self, memo) ->'MonitorList': return MonitorList(copy.deepcopy(self.data, memo=memo)) def __getitem__(self, item: tp.Union[slice, int]) ->T: return self.data[item] def __setitem__(self, key: int, value: T) ->None: self.data[key] = value def __delitem__(self, key: tp.Union[slice, int]) ->None: del self.data[key] class MonitorDict(tp.Generic[K, V], collections.UserDict, Monitor): """ A dict that is also a monitor. Note that access to it's properties is not automatically synchronized, you got to invoke the monitor to implement an opportunistic locking of your own choice """ def __init__(self, *args, **kwargs): collections.UserDict.__init__(self, *args, **kwargs) Monitor.__init__(self) def __getitem__(self, item: K) ->V: return self.data[item] def __setitem__(self, key: K, value: V) ->None: self.data[key] = value def __delitem__(self, key: K) ->None: del self.data[key] def __copy__(self) ->'MonitorDict': return MonitorDict(copy.copy(self.data)) def __deepcopy__(self, memo) ->'MonitorDict': return MonitorDict(copy.deepcopy(self.data, memo=memo)) class MonitorSet(set, Monitor): """ A set that allows atomic insert-if-not-already-there operation """ def __init__(self, *args): super().__init__(*args) Monitor.__init__(self) def insert_and_check(self, item) ->bool: """ Perform an atomic insert if not already in set :param item: item to insert :return: whether the item was successfully inserted """ with Monitor.acquire(self): if item in self: return False self.add(item) return True
<mask token> class RMonitor(Monitor): <mask token> def __init__(self): self._monitor_lock = threading.RLock() class MonitorList(tp.Generic[T], collections.UserList, Monitor): """ A list that is also a monitor. Note that access to it's properties is not automatically synchronized, you got to invoke the monitor to implement an opportunistic locking of your own choice """ def __init__(self, *args): collections.UserList.__init__(self, *args) Monitor.__init__(self) def __copy__(self) ->'MonitorList': return MonitorList(copy.copy(self.data)) def __deepcopy__(self, memo) ->'MonitorList': return MonitorList(copy.deepcopy(self.data, memo=memo)) def __getitem__(self, item: tp.Union[slice, int]) ->T: return self.data[item] def __setitem__(self, key: int, value: T) ->None: self.data[key] = value def __delitem__(self, key: tp.Union[slice, int]) ->None: del self.data[key] class MonitorDict(tp.Generic[K, V], collections.UserDict, Monitor): """ A dict that is also a monitor. Note that access to it's properties is not automatically synchronized, you got to invoke the monitor to implement an opportunistic locking of your own choice """ def __init__(self, *args, **kwargs): collections.UserDict.__init__(self, *args, **kwargs) Monitor.__init__(self) def __getitem__(self, item: K) ->V: return self.data[item] def __setitem__(self, key: K, value: V) ->None: self.data[key] = value def __delitem__(self, key: K) ->None: del self.data[key] def __copy__(self) ->'MonitorDict': return MonitorDict(copy.copy(self.data)) def __deepcopy__(self, memo) ->'MonitorDict': return MonitorDict(copy.deepcopy(self.data, memo=memo)) class MonitorSet(set, Monitor): """ A set that allows atomic insert-if-not-already-there operation """ def __init__(self, *args): super().__init__(*args) Monitor.__init__(self) def insert_and_check(self, item) ->bool: """ Perform an atomic insert if not already in set :param item: item to insert :return: whether the item was successfully inserted """ with Monitor.acquire(self): if item in self: return False self.add(item) return True
<mask token> class RMonitor(Monitor): """ Monitor, but using an reentrant lock instead of a normal one """ def __init__(self): self._monitor_lock = threading.RLock() class MonitorList(tp.Generic[T], collections.UserList, Monitor): """ A list that is also a monitor. Note that access to it's properties is not automatically synchronized, you got to invoke the monitor to implement an opportunistic locking of your own choice """ def __init__(self, *args): collections.UserList.__init__(self, *args) Monitor.__init__(self) def __copy__(self) ->'MonitorList': return MonitorList(copy.copy(self.data)) def __deepcopy__(self, memo) ->'MonitorList': return MonitorList(copy.deepcopy(self.data, memo=memo)) def __getitem__(self, item: tp.Union[slice, int]) ->T: return self.data[item] def __setitem__(self, key: int, value: T) ->None: self.data[key] = value def __delitem__(self, key: tp.Union[slice, int]) ->None: del self.data[key] class MonitorDict(tp.Generic[K, V], collections.UserDict, Monitor): """ A dict that is also a monitor. Note that access to it's properties is not automatically synchronized, you got to invoke the monitor to implement an opportunistic locking of your own choice """ def __init__(self, *args, **kwargs): collections.UserDict.__init__(self, *args, **kwargs) Monitor.__init__(self) def __getitem__(self, item: K) ->V: return self.data[item] def __setitem__(self, key: K, value: V) ->None: self.data[key] = value def __delitem__(self, key: K) ->None: del self.data[key] def __copy__(self) ->'MonitorDict': return MonitorDict(copy.copy(self.data)) def __deepcopy__(self, memo) ->'MonitorDict': return MonitorDict(copy.deepcopy(self.data, memo=memo)) class MonitorSet(set, Monitor): """ A set that allows atomic insert-if-not-already-there operation """ def __init__(self, *args): super().__init__(*args) Monitor.__init__(self) def insert_and_check(self, item) ->bool: """ Perform an atomic insert if not already in set :param item: item to insert :return: whether the item was successfully inserted """ with Monitor.acquire(self): if item in self: return False self.add(item) return True
import collections import copy import threading import typing as tp from ..decorators.decorators import wraps from ..typing import K, V, T class Monitor: """ Base utility class for creating monitors (the synchronization thingies!) These are NOT re-entrant! Use it like that: >>> class MyProtectedObject(Monitor): >>> def __init__(self, *args, **kwargs): >>> Monitor.__init__(self) >>> ... do your job .. >>> @Monitor.synchronized >>> def function_that_needs_mutual_exclusion(self): >>> .. do your threadsafe jobs .. >>> def function_that_partially_needs_protection(self): >>> .. do your jobs .. >>> with Monitor.acquire(self): >>> .. do your threadsafe jobs .. >>> .. do your jobs .. >>> with self: >>> .. do your threadsafe jobs .. """ def __enter__(self) -> 'Monitor': self._monitor_lock.acquire() return self def __exit__(self, exc_type, exc_val, exc_tb) -> bool: self._monitor_lock.release() return False def __init__(self): """You need to invoke this at your constructor You can also use it to release locks of other objects.""" self._monitor_lock = threading.Lock() # type: threading.Lock @staticmethod def synchronize_on_attribute(attr_name: str): """ When a Monitor is an attribute of a class, and you have a method instance that you would like secure by acquiring that monitor, use this. The first argument taken by that method instance must be self. :param attr_name: name of the attribute that is the monitor """ def outer(fun): @wraps(fun) def method(self, *args, **kwargs): # noinspection PyProtectedMember with getattr(self, attr_name)._monitor_lock: return fun(self, *args, **kwargs) return method return outer @staticmethod def synchronized(fun: tp.Callable) -> tp.Callable: """ This is a decorator. Class method decorated with that will lock the global lock of given instance, making it threadsafe. Depending on usage pattern of your class and it's data semantics, your performance may vary """ @wraps(fun) def monitored(*args, **kwargs): # noinspection PyProtectedMember with args[0]._monitor_lock: return fun(*args, **kwargs) return monitored class release: """ Returns a context manager object that can release another object as long as that object is a monitor. Consider foo, which is a monitor. You have a protected function, but you feel that you can release it for a while as it would improve parallelism. You can use it as such: >>> @Monitor.synchronized >>> def protected_function(self): >>> .. do some stuff that needs mutual exclusion .. >>> with Monitor.release(self): >>> .. do some I/O that does not need mutual exclusion .. >>> .. back to protected stuff .. """ __slots__ = ('foo',) def __init__(self, foo: 'Monitor'): self.foo = foo def __enter__(self) -> None: # noinspection PyProtectedMember self.foo._monitor_lock.release() def __exit__(self, e1, e2, e3) -> bool: # noinspection PyProtectedMember self.foo._monitor_lock.acquire() return False class acquire: """ Returns a context manager object that can lock another object, as long as that object is a monitor. Consider foo, which is a monitor. If you needed to lock it from outside, you would do: >>> with Monitor.acquire(foo): >>> .. do operations on foo that need mutual exclusion .. """ __slots__ = ('foo',) def __init__(self, foo: 'Monitor'): self.foo = foo def __enter__(self) -> None: # noinspection PyProtectedMember self.foo._monitor_lock.acquire() def __exit__(self, e1, e2, e3) -> bool: # noinspection PyProtectedMember self.foo._monitor_lock.release() return False @classmethod def synchronize_on(cls, monitor: 'Monitor') -> tp.Callable[[tp.Callable], tp.Callable]: """ A decorator for locking on non-self Monitor objects Use it like: >>> class MasterClass(Monitor): >>> def get_object(self): >>> class SlaveClass: >>> @Monitor.synchronize_on(self) >>> def get_object(self2): >>> ... >>> return SlaveClass """ def outer(fun): @wraps(fun) def inner(*args, **kwargs): with cls.acquire(monitor): return fun(*args, **kwargs) return inner return outer class RMonitor(Monitor): """ Monitor, but using an reentrant lock instead of a normal one """ def __init__(self): self._monitor_lock = threading.RLock() # type: threading.RLock class MonitorList(tp.Generic[T], collections.UserList, Monitor): """ A list that is also a monitor. Note that access to it's properties is not automatically synchronized, you got to invoke the monitor to implement an opportunistic locking of your own choice """ def __init__(self, *args): collections.UserList.__init__(self, *args) Monitor.__init__(self) def __copy__(self) -> 'MonitorList': return MonitorList(copy.copy(self.data)) def __deepcopy__(self, memo) -> 'MonitorList': return MonitorList(copy.deepcopy(self.data, memo=memo)) def __getitem__(self, item: tp.Union[slice, int]) -> T: return self.data[item] def __setitem__(self, key: int, value: T) -> None: self.data[key] = value def __delitem__(self, key: tp.Union[slice, int]) -> None: del self.data[key] class MonitorDict(tp.Generic[K, V], collections.UserDict, Monitor): """ A dict that is also a monitor. Note that access to it's properties is not automatically synchronized, you got to invoke the monitor to implement an opportunistic locking of your own choice """ def __init__(self, *args, **kwargs): collections.UserDict.__init__(self, *args, **kwargs) Monitor.__init__(self) def __getitem__(self, item: K) -> V: return self.data[item] def __setitem__(self, key: K, value: V) -> None: self.data[key] = value def __delitem__(self, key: K) -> None: del self.data[key] def __copy__(self) -> 'MonitorDict': return MonitorDict(copy.copy(self.data)) def __deepcopy__(self, memo) -> 'MonitorDict': return MonitorDict(copy.deepcopy(self.data, memo=memo)) class MonitorSet(set, Monitor): """ A set that allows atomic insert-if-not-already-there operation """ def __init__(self, *args): super().__init__(*args) Monitor.__init__(self) def insert_and_check(self, item) -> bool: """ Perform an atomic insert if not already in set :param item: item to insert :return: whether the item was successfully inserted """ with Monitor.acquire(self): if item in self: return False self.add(item) return True
[ 17, 20, 22, 23, 33 ]
743
8c336edddadbf4689721b474c254ded061ecf4b5
<mask token>
from . import scramsha1, scrammer
null
null
null
[ 0, 1 ]
744
0fb288e3ab074e021ec726d71cbd5c8546a8455b
<mask token> @skipIf(not net.HAS_NAPALM, 'napalm module required for this test') class NetTest(TestCase, LoaderModuleMockMixin): <mask token> <mask token> def test_interfaces(self): ret = net.interfaces() self.assertEqual(None, ret) def test_findarp(self): ret = net.findarp() self.assertEqual(None, ret) <mask token> <mask token> def test_find(self): ret = net.find('') self.assertEqual({}, ret) def test_multi_find(self): ret = net.multi_find() self.assertEqual(None, ret)
<mask token> @skipIf(not net.HAS_NAPALM, 'napalm module required for this test') class NetTest(TestCase, LoaderModuleMockMixin): <mask token> <mask token> def test_interfaces(self): ret = net.interfaces() self.assertEqual(None, ret) def test_findarp(self): ret = net.findarp() self.assertEqual(None, ret) def test_findmac(self): ret = net.findmac() self.assertEqual(None, ret) <mask token> def test_find(self): ret = net.find('') self.assertEqual({}, ret) def test_multi_find(self): ret = net.multi_find() self.assertEqual(None, ret)
<mask token> @skipIf(not net.HAS_NAPALM, 'napalm module required for this test') class NetTest(TestCase, LoaderModuleMockMixin): <mask token> def setup_loader_modules(self): mock_get = MagicMock(return_value={}) self.extmods_dir = tempfile.mkdtemp(dir=RUNTIME_VARS.TMP) self.addCleanup(shutil.rmtree, self.extmods_dir, ignore_errors=True) return {net: {'__opts__': {'optimization_order': [0, 1, 2], 'renderer': 'yaml', 'renderer_blacklist': [], 'renderer_whitelist': [], 'extension_modules': self.extmods_dir }, '__salt__': {'mine.get': mock_get}}} def test_interfaces(self): ret = net.interfaces() self.assertEqual(None, ret) def test_findarp(self): ret = net.findarp() self.assertEqual(None, ret) def test_findmac(self): ret = net.findmac() self.assertEqual(None, ret) def test_lldp(self): ret = net.lldp() self.assertEqual(None, ret) def test_find(self): ret = net.find('') self.assertEqual({}, ret) def test_multi_find(self): ret = net.multi_find() self.assertEqual(None, ret)
import shutil import tempfile import salt.runners.net as net from tests.support.mixins import LoaderModuleMockMixin from tests.support.mock import MagicMock from tests.support.runtests import RUNTIME_VARS from tests.support.unit import TestCase, skipIf @skipIf(not net.HAS_NAPALM, 'napalm module required for this test') class NetTest(TestCase, LoaderModuleMockMixin): """ Test the net runner """ def setup_loader_modules(self): mock_get = MagicMock(return_value={}) self.extmods_dir = tempfile.mkdtemp(dir=RUNTIME_VARS.TMP) self.addCleanup(shutil.rmtree, self.extmods_dir, ignore_errors=True) return {net: {'__opts__': {'optimization_order': [0, 1, 2], 'renderer': 'yaml', 'renderer_blacklist': [], 'renderer_whitelist': [], 'extension_modules': self.extmods_dir }, '__salt__': {'mine.get': mock_get}}} def test_interfaces(self): ret = net.interfaces() self.assertEqual(None, ret) def test_findarp(self): ret = net.findarp() self.assertEqual(None, ret) def test_findmac(self): ret = net.findmac() self.assertEqual(None, ret) def test_lldp(self): ret = net.lldp() self.assertEqual(None, ret) def test_find(self): ret = net.find('') self.assertEqual({}, ret) def test_multi_find(self): ret = net.multi_find() self.assertEqual(None, ret)
import shutil import tempfile import salt.runners.net as net from tests.support.mixins import LoaderModuleMockMixin from tests.support.mock import MagicMock from tests.support.runtests import RUNTIME_VARS from tests.support.unit import TestCase, skipIf @skipIf(not net.HAS_NAPALM, "napalm module required for this test") class NetTest(TestCase, LoaderModuleMockMixin): """ Test the net runner """ def setup_loader_modules(self): mock_get = MagicMock(return_value={}) self.extmods_dir = tempfile.mkdtemp(dir=RUNTIME_VARS.TMP) self.addCleanup(shutil.rmtree, self.extmods_dir, ignore_errors=True) return { net: { "__opts__": { "optimization_order": [0, 1, 2], "renderer": "yaml", "renderer_blacklist": [], "renderer_whitelist": [], "extension_modules": self.extmods_dir, }, "__salt__": {"mine.get": mock_get}, } } def test_interfaces(self): ret = net.interfaces() self.assertEqual(None, ret) def test_findarp(self): ret = net.findarp() self.assertEqual(None, ret) def test_findmac(self): ret = net.findmac() self.assertEqual(None, ret) def test_lldp(self): ret = net.lldp() self.assertEqual(None, ret) def test_find(self): ret = net.find("") self.assertEqual({}, ret) def test_multi_find(self): ret = net.multi_find() self.assertEqual(None, ret)
[ 5, 6, 8, 10, 11 ]
745
b12c8d0cb1cd1e48df6246fe3f16467b2db296e0
<mask token>
<mask token> def dir_slash(): slash = '/' if 'win' in sys.platform: slash = '\\' return slash
import sys def dir_slash(): slash = '/' if 'win' in sys.platform: slash = '\\' return slash
null
null
[ 0, 1, 2 ]
746
a09bc84a14718422894127a519d67dc0c6b13bc9
<mask token>
<mask token> for i in range(n - 1): if a[i + 1] - a[i] < m: ans += a[i + 1] - a[i] else: ans += m print(ans)
n, m = map(int, input().split()) a = [int(input()) for _ in range(n)] cnt, ans, mx, mn = 0, m, 0, 100000000 for i in range(n - 1): if a[i + 1] - a[i] < m: ans += a[i + 1] - a[i] else: ans += m print(ans)
#n = int(input()) #s = input() n, m = map(int, input().split()) #s, t = input().split() #n, m, l = map(int, input().split()) #s, t, r = input().split() #a = map(int, input().split()) #a = input().split() a = [int(input()) for _ in range(n)] #a = [input() for _ in range(n)] #t = input() #m = int(input()) #p, q = map(int, input().split()) #p, q = input().split() #p, q, r = map(int, input().split()) #p, q, r = input().split() #b = map(int, input().split()) #b = input().split() #b = [int(input()) for _ in range(m)] #b = [input() for _ in range(m)] cnt, ans, mx, mn = 0, m, 0, 100000000 for i in range(n - 1): if a[i + 1] - a[i] < m: ans += a[i + 1] - a[i] else: ans += m print(ans)
null
[ 0, 1, 2, 3 ]
747
330b843501e0fdaff21cc4eff1ef930d54ab6e8d
<mask token> class FRSHTTHolder: frshtt_code = '' star_count_lst = [0, 0, 0, 0, 0, 0] counter = 0 def __init__(self, in_frshtt_code): self.frshtt_code = in_frshtt_code self.counter = 0 self.star_count_lst = [0, 0, 0, 0, 0, 0] def is_in_code(self, in_frshtt_code): if self.frshtt_code == in_frshtt_code: return True else: return False def add_rating(self, rating): if int(rating) == 0: self.star_count_lst[0] += 1 if int(rating) == 1: self.star_count_lst[1] += 1 if int(rating) == 2: self.star_count_lst[2] += 1 if int(rating) == 3: self.star_count_lst[3] += 1 if int(rating) == 4: self.star_count_lst[4] += 1 if int(rating) == 5: self.star_count_lst[5] += 1 self.counter += 1 def __str__(self): return_str = '' return_str += 'Code: ' + str(self.frshtt_code) + '\n' return_str += 'Count: ' + str(self.counter) + '\n' if self.star_count_lst[0] == 0: return_str += '0 Stars: 0.00%\n' else: return_str += '0 Stars: ' + str(round(self.star_count_lst[0] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[1] == 0: return_str += '1 Stars: 0.00%\n' else: return_str += '1 Stars: ' + str(round(self.star_count_lst[1] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[2] == 0: return_str += '2 Stars: 0.00%\n' else: return_str += '2 Stars: ' + str(round(self.star_count_lst[2] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[3] == 0: return_str += '3 Stars: 0.00%\n' else: return_str += '3 Stars: ' + str(round(self.star_count_lst[3] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[4] == 0: return_str += '4 Stars: 0.00%\n' else: return_str += '4 Stars: ' + str(round(self.star_count_lst[4] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[5] == 0: return_str += '5 Stars: 0.00%\n' else: return_str += '5 Stars: ' + str(round(self.star_count_lst[5] / (self.counter * 1.0), 4) * 100) + '%\n' return return_str class FRSHTTAnalysis: frshtt_holder_lst = list() def __init__(self): self.frshtt_holder_lst.append(FRSHTTHolder('000000')) self.frshtt_holder_lst.append(FRSHTTHolder('010000')) self.frshtt_holder_lst.append(FRSHTTHolder('010010')) self.frshtt_holder_lst.append(FRSHTTHolder('100000')) self.frshtt_holder_lst.append(FRSHTTHolder('001000')) self.frshtt_holder_lst.append(FRSHTTHolder('011000')) self.frshtt_holder_lst.append(FRSHTTHolder('000010')) self.frshtt_holder_lst.append(FRSHTTHolder('000100')) def add_rating(self, rating, frshtt_code): for frshtt_holder in self.frshtt_holder_lst: if frshtt_holder.is_in_code(frshtt_code): frshtt_holder.add_rating(rating) return True return False def __str__(self): return_str = 'Breakdown by Code:\n' return_str += '-------------------------\n' for frshtt_holder in self.frshtt_holder_lst: return_str += str(frshtt_holder) + '\n' return return_str
<mask token> class TempAnalysis: <mask token> <mask token> <mask token> def __str__(self): return_str = 'Breakdown by Temperature:\n' return_str += '-------------------------\n' for temp_holder in self.temp_holder_lst: return_str += str(temp_holder) + '\n' return return_str <mask token> class FRSHTTHolder: frshtt_code = '' star_count_lst = [0, 0, 0, 0, 0, 0] counter = 0 def __init__(self, in_frshtt_code): self.frshtt_code = in_frshtt_code self.counter = 0 self.star_count_lst = [0, 0, 0, 0, 0, 0] def is_in_code(self, in_frshtt_code): if self.frshtt_code == in_frshtt_code: return True else: return False def add_rating(self, rating): if int(rating) == 0: self.star_count_lst[0] += 1 if int(rating) == 1: self.star_count_lst[1] += 1 if int(rating) == 2: self.star_count_lst[2] += 1 if int(rating) == 3: self.star_count_lst[3] += 1 if int(rating) == 4: self.star_count_lst[4] += 1 if int(rating) == 5: self.star_count_lst[5] += 1 self.counter += 1 def __str__(self): return_str = '' return_str += 'Code: ' + str(self.frshtt_code) + '\n' return_str += 'Count: ' + str(self.counter) + '\n' if self.star_count_lst[0] == 0: return_str += '0 Stars: 0.00%\n' else: return_str += '0 Stars: ' + str(round(self.star_count_lst[0] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[1] == 0: return_str += '1 Stars: 0.00%\n' else: return_str += '1 Stars: ' + str(round(self.star_count_lst[1] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[2] == 0: return_str += '2 Stars: 0.00%\n' else: return_str += '2 Stars: ' + str(round(self.star_count_lst[2] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[3] == 0: return_str += '3 Stars: 0.00%\n' else: return_str += '3 Stars: ' + str(round(self.star_count_lst[3] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[4] == 0: return_str += '4 Stars: 0.00%\n' else: return_str += '4 Stars: ' + str(round(self.star_count_lst[4] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[5] == 0: return_str += '5 Stars: 0.00%\n' else: return_str += '5 Stars: ' + str(round(self.star_count_lst[5] / (self.counter * 1.0), 4) * 100) + '%\n' return return_str class FRSHTTAnalysis: frshtt_holder_lst = list() def __init__(self): self.frshtt_holder_lst.append(FRSHTTHolder('000000')) self.frshtt_holder_lst.append(FRSHTTHolder('010000')) self.frshtt_holder_lst.append(FRSHTTHolder('010010')) self.frshtt_holder_lst.append(FRSHTTHolder('100000')) self.frshtt_holder_lst.append(FRSHTTHolder('001000')) self.frshtt_holder_lst.append(FRSHTTHolder('011000')) self.frshtt_holder_lst.append(FRSHTTHolder('000010')) self.frshtt_holder_lst.append(FRSHTTHolder('000100')) def add_rating(self, rating, frshtt_code): for frshtt_holder in self.frshtt_holder_lst: if frshtt_holder.is_in_code(frshtt_code): frshtt_holder.add_rating(rating) return True return False def __str__(self): return_str = 'Breakdown by Code:\n' return_str += '-------------------------\n' for frshtt_holder in self.frshtt_holder_lst: return_str += str(frshtt_holder) + '\n' return return_str
<mask token> class TempAnalysis: <mask token> def __init__(self): temp_counter = 0 while temp_counter < 110: self.temp_holder_lst.append(TempHolder(temp_counter, temp_counter + 10)) temp_counter += 10 def add_rating(self, rating, temp): for temp_holder in self.temp_holder_lst: if temp_holder.is_in_temp_range(temp): temp_holder.add_rating(rating) return True return False def __str__(self): return_str = 'Breakdown by Temperature:\n' return_str += '-------------------------\n' for temp_holder in self.temp_holder_lst: return_str += str(temp_holder) + '\n' return return_str <mask token> class FRSHTTHolder: frshtt_code = '' star_count_lst = [0, 0, 0, 0, 0, 0] counter = 0 def __init__(self, in_frshtt_code): self.frshtt_code = in_frshtt_code self.counter = 0 self.star_count_lst = [0, 0, 0, 0, 0, 0] def is_in_code(self, in_frshtt_code): if self.frshtt_code == in_frshtt_code: return True else: return False def add_rating(self, rating): if int(rating) == 0: self.star_count_lst[0] += 1 if int(rating) == 1: self.star_count_lst[1] += 1 if int(rating) == 2: self.star_count_lst[2] += 1 if int(rating) == 3: self.star_count_lst[3] += 1 if int(rating) == 4: self.star_count_lst[4] += 1 if int(rating) == 5: self.star_count_lst[5] += 1 self.counter += 1 def __str__(self): return_str = '' return_str += 'Code: ' + str(self.frshtt_code) + '\n' return_str += 'Count: ' + str(self.counter) + '\n' if self.star_count_lst[0] == 0: return_str += '0 Stars: 0.00%\n' else: return_str += '0 Stars: ' + str(round(self.star_count_lst[0] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[1] == 0: return_str += '1 Stars: 0.00%\n' else: return_str += '1 Stars: ' + str(round(self.star_count_lst[1] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[2] == 0: return_str += '2 Stars: 0.00%\n' else: return_str += '2 Stars: ' + str(round(self.star_count_lst[2] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[3] == 0: return_str += '3 Stars: 0.00%\n' else: return_str += '3 Stars: ' + str(round(self.star_count_lst[3] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[4] == 0: return_str += '4 Stars: 0.00%\n' else: return_str += '4 Stars: ' + str(round(self.star_count_lst[4] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[5] == 0: return_str += '5 Stars: 0.00%\n' else: return_str += '5 Stars: ' + str(round(self.star_count_lst[5] / (self.counter * 1.0), 4) * 100) + '%\n' return return_str class FRSHTTAnalysis: frshtt_holder_lst = list() def __init__(self): self.frshtt_holder_lst.append(FRSHTTHolder('000000')) self.frshtt_holder_lst.append(FRSHTTHolder('010000')) self.frshtt_holder_lst.append(FRSHTTHolder('010010')) self.frshtt_holder_lst.append(FRSHTTHolder('100000')) self.frshtt_holder_lst.append(FRSHTTHolder('001000')) self.frshtt_holder_lst.append(FRSHTTHolder('011000')) self.frshtt_holder_lst.append(FRSHTTHolder('000010')) self.frshtt_holder_lst.append(FRSHTTHolder('000100')) def add_rating(self, rating, frshtt_code): for frshtt_holder in self.frshtt_holder_lst: if frshtt_holder.is_in_code(frshtt_code): frshtt_holder.add_rating(rating) return True return False def __str__(self): return_str = 'Breakdown by Code:\n' return_str += '-------------------------\n' for frshtt_holder in self.frshtt_holder_lst: return_str += str(frshtt_holder) + '\n' return return_str
<mask token> class TempHolder: <mask token> <mask token> <mask token> <mask token> def __init__(self, in_range_start, in_range_end): self.range_start = in_range_start self.range_end = in_range_end self.counter = 0 self.star_count_lst = [0, 0, 0, 0, 0, 0] def is_in_temp_range(self, temp): if self.range_start <= temp and temp < self.range_end: return True else: return False <mask token> <mask token> class TempAnalysis: temp_holder_lst = list() def __init__(self): temp_counter = 0 while temp_counter < 110: self.temp_holder_lst.append(TempHolder(temp_counter, temp_counter + 10)) temp_counter += 10 def add_rating(self, rating, temp): for temp_holder in self.temp_holder_lst: if temp_holder.is_in_temp_range(temp): temp_holder.add_rating(rating) return True return False def __str__(self): return_str = 'Breakdown by Temperature:\n' return_str += '-------------------------\n' for temp_holder in self.temp_holder_lst: return_str += str(temp_holder) + '\n' return return_str <mask token> class FRSHTTHolder: frshtt_code = '' star_count_lst = [0, 0, 0, 0, 0, 0] counter = 0 def __init__(self, in_frshtt_code): self.frshtt_code = in_frshtt_code self.counter = 0 self.star_count_lst = [0, 0, 0, 0, 0, 0] def is_in_code(self, in_frshtt_code): if self.frshtt_code == in_frshtt_code: return True else: return False def add_rating(self, rating): if int(rating) == 0: self.star_count_lst[0] += 1 if int(rating) == 1: self.star_count_lst[1] += 1 if int(rating) == 2: self.star_count_lst[2] += 1 if int(rating) == 3: self.star_count_lst[3] += 1 if int(rating) == 4: self.star_count_lst[4] += 1 if int(rating) == 5: self.star_count_lst[5] += 1 self.counter += 1 def __str__(self): return_str = '' return_str += 'Code: ' + str(self.frshtt_code) + '\n' return_str += 'Count: ' + str(self.counter) + '\n' if self.star_count_lst[0] == 0: return_str += '0 Stars: 0.00%\n' else: return_str += '0 Stars: ' + str(round(self.star_count_lst[0] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[1] == 0: return_str += '1 Stars: 0.00%\n' else: return_str += '1 Stars: ' + str(round(self.star_count_lst[1] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[2] == 0: return_str += '2 Stars: 0.00%\n' else: return_str += '2 Stars: ' + str(round(self.star_count_lst[2] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[3] == 0: return_str += '3 Stars: 0.00%\n' else: return_str += '3 Stars: ' + str(round(self.star_count_lst[3] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[4] == 0: return_str += '4 Stars: 0.00%\n' else: return_str += '4 Stars: ' + str(round(self.star_count_lst[4] / (self.counter * 1.0), 4) * 100) + '%\n' if self.star_count_lst[5] == 0: return_str += '5 Stars: 0.00%\n' else: return_str += '5 Stars: ' + str(round(self.star_count_lst[5] / (self.counter * 1.0), 4) * 100) + '%\n' return return_str class FRSHTTAnalysis: frshtt_holder_lst = list() def __init__(self): self.frshtt_holder_lst.append(FRSHTTHolder('000000')) self.frshtt_holder_lst.append(FRSHTTHolder('010000')) self.frshtt_holder_lst.append(FRSHTTHolder('010010')) self.frshtt_holder_lst.append(FRSHTTHolder('100000')) self.frshtt_holder_lst.append(FRSHTTHolder('001000')) self.frshtt_holder_lst.append(FRSHTTHolder('011000')) self.frshtt_holder_lst.append(FRSHTTHolder('000010')) self.frshtt_holder_lst.append(FRSHTTHolder('000100')) def add_rating(self, rating, frshtt_code): for frshtt_holder in self.frshtt_holder_lst: if frshtt_holder.is_in_code(frshtt_code): frshtt_holder.add_rating(rating) return True return False def __str__(self): return_str = 'Breakdown by Code:\n' return_str += '-------------------------\n' for frshtt_holder in self.frshtt_holder_lst: return_str += str(frshtt_holder) + '\n' return return_str
''' Temperature Container ''' class TempHolder: range_start = 0 range_end = 0 star_count_lst = [0,0,0,0,0,0] counter = 0 def __init__(self, in_range_start, in_range_end): self.range_start = in_range_start self.range_end = in_range_end self.counter = 0 self.star_count_lst = [0,0,0,0,0,0] def is_in_temp_range(self, temp): if self.range_start <= temp and temp < self.range_end: return True else: return False def add_rating(self, rating): if int(rating) == 0: self.star_count_lst[0] += 1 if int(rating) == 1: self.star_count_lst[1] += 1 if int(rating) == 2: self.star_count_lst[2] += 1 if int(rating) == 3: self.star_count_lst[3] += 1 if int(rating) == 4: self.star_count_lst[4] += 1 if int(rating) == 5: self.star_count_lst[5] += 1 self.counter += 1 def __str__(self): return_str = "" return_str += "Temp: " + str(self.range_start) + "-" + str(self.range_end) + "\n" return_str += "Count: " + str(self.counter) + "\n" if self.star_count_lst[0] == 0: return_str += "0 Stars: 0.00%\n" else: return_str += "0 Stars: " + str(round((self.star_count_lst[0] / (self.counter * 1.0)), 4) * 100) + "%\n" if self.star_count_lst[1] == 0: return_str += "1 Stars: 0.00%\n" else: return_str += "1 Stars: " + str(round((self.star_count_lst[1] / (self.counter * 1.0)), 4) * 100) + "%\n" if self.star_count_lst[2] == 0: return_str += "2 Stars: 0.00%\n" else: return_str += "2 Stars: " + str(round((self.star_count_lst[2] / (self.counter * 1.0)), 4) * 100) + "%\n" if self.star_count_lst[3] == 0: return_str += "3 Stars: 0.00%\n" else: return_str += "3 Stars: " + str(round((self.star_count_lst[3] / (self.counter * 1.0)), 4) * 100) + "%\n" if self.star_count_lst[4] == 0: return_str += "4 Stars: 0.00%\n" else: return_str += "4 Stars: " + str(round((self.star_count_lst[4] / (self.counter * 1.0)), 4) * 100) + "%\n" if self.star_count_lst[5] == 0: return_str += "5 Stars: 0.00%\n" else: return_str += "5 Stars: " + str(round((self.star_count_lst[5] / (self.counter * 1.0)), 4) * 100) + "%\n" return return_str class TempAnalysis: temp_holder_lst = list() def __init__(self): temp_counter = 0 while temp_counter < 110: self.temp_holder_lst.append(TempHolder(temp_counter, temp_counter + 10)) temp_counter += 10 def add_rating(self, rating, temp): for temp_holder in self.temp_holder_lst: if temp_holder.is_in_temp_range(temp): temp_holder.add_rating(rating) return True return False def __str__(self): return_str = "Breakdown by Temperature:\n" return_str += "-------------------------\n" for temp_holder in self.temp_holder_lst: return_str += str(temp_holder) + "\n" return return_str ''' Temperature Container ''' class FRSHTTHolder: frshtt_code = "" star_count_lst = [0,0,0,0,0,0] counter = 0 def __init__(self, in_frshtt_code): self.frshtt_code = in_frshtt_code self.counter = 0 self.star_count_lst = [0,0,0,0,0,0] def is_in_code(self, in_frshtt_code): if self.frshtt_code == in_frshtt_code: return True else: return False def add_rating(self, rating): if int(rating) == 0: self.star_count_lst[0] += 1 if int(rating) == 1: self.star_count_lst[1] += 1 if int(rating) == 2: self.star_count_lst[2] += 1 if int(rating) == 3: self.star_count_lst[3] += 1 if int(rating) == 4: self.star_count_lst[4] += 1 if int(rating) == 5: self.star_count_lst[5] += 1 self.counter += 1 def __str__(self): return_str = "" return_str += "Code: " + str(self.frshtt_code) + "\n" return_str += "Count: " + str(self.counter) + "\n" if self.star_count_lst[0] == 0: return_str += "0 Stars: 0.00%\n" else: return_str += "0 Stars: " + str(round((self.star_count_lst[0] / (self.counter * 1.0)), 4) * 100) + "%\n" if self.star_count_lst[1] == 0: return_str += "1 Stars: 0.00%\n" else: return_str += "1 Stars: " + str(round((self.star_count_lst[1] / (self.counter * 1.0)), 4) * 100) + "%\n" if self.star_count_lst[2] == 0: return_str += "2 Stars: 0.00%\n" else: return_str += "2 Stars: " + str(round((self.star_count_lst[2] / (self.counter * 1.0)), 4) * 100) + "%\n" if self.star_count_lst[3] == 0: return_str += "3 Stars: 0.00%\n" else: return_str += "3 Stars: " + str(round((self.star_count_lst[3] / (self.counter * 1.0)), 4) * 100) + "%\n" if self.star_count_lst[4] == 0: return_str += "4 Stars: 0.00%\n" else: return_str += "4 Stars: " + str(round((self.star_count_lst[4] / (self.counter * 1.0)), 4) * 100) + "%\n" if self.star_count_lst[5] == 0: return_str += "5 Stars: 0.00%\n" else: return_str += "5 Stars: " + str(round((self.star_count_lst[5] / (self.counter * 1.0)), 4) * 100) + "%\n" return return_str class FRSHTTAnalysis: frshtt_holder_lst = list() def __init__(self): # no weather self.frshtt_holder_lst.append(FRSHTTHolder("000000")) # rain self.frshtt_holder_lst.append(FRSHTTHolder("010000")) # thunder strom self.frshtt_holder_lst.append(FRSHTTHolder("010010")) # fog self.frshtt_holder_lst.append(FRSHTTHolder("100000")) # snow self.frshtt_holder_lst.append(FRSHTTHolder("001000")) # mixed (snow/rain) self.frshtt_holder_lst.append(FRSHTTHolder("011000")) # dry thunder self.frshtt_holder_lst.append(FRSHTTHolder("000010")) # hail self.frshtt_holder_lst.append(FRSHTTHolder("000100")) def add_rating(self, rating, frshtt_code): for frshtt_holder in self.frshtt_holder_lst: if frshtt_holder.is_in_code(frshtt_code): frshtt_holder.add_rating(rating) return True return False def __str__(self): return_str = "Breakdown by Code:\n" return_str += "-------------------------\n" for frshtt_holder in self.frshtt_holder_lst: return_str += str(frshtt_holder) + "\n" return return_str
[ 11, 13, 15, 19, 23 ]
748
28d8f9d9b39c40c43a362e57a7907c0a38a6bd05
<mask token> class MyGame(arcade.Window): <mask token> def __init__(self, width, height, title): """ Initializer """ super().__init__(width, height, title) file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) """ Set up the game and initialize the variables. """ self.player_list = None self.score = 0 self.player = None <mask token> def on_draw(self): """ Render the screen. """ arcade.start_render() self.player_list.draw() output = f'Score: {self.score}' arcade.draw_text(output, 10, 20, arcade.color.WHITE, 14) def on_key_press(self, key, modifiers): """ Called whenever a key is pressed. """ if key == arcade.key.UP: self.player.change_y = MOVEMENT_SPEED elif key == arcade.key.DOWN: self.player.change_y = -MOVEMENT_SPEED elif key == arcade.key.LEFT: self.player.change_x = -MOVEMENT_SPEED elif key == arcade.key.RIGHT: self.player.change_x = MOVEMENT_SPEED def on_key_release(self, key, modifiers): """ Called when the user releases a key. """ if key == arcade.key.UP or key == arcade.key.DOWN: self.player.change_y = 0 elif key == arcade.key.LEFT or key == arcade.key.RIGHT: self.player.change_x = 0 def on_update(self, delta_time): """ Movement and game logic """ self.player_list.update() self.player_list.update_animation() <mask token>
<mask token> class MyGame(arcade.Window): <mask token> def __init__(self, width, height, title): """ Initializer """ super().__init__(width, height, title) file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) """ Set up the game and initialize the variables. """ self.player_list = None self.score = 0 self.player = None def setup(self): self.player_list = arcade.SpriteList() self.score = 0 self.player = Toad() self.player.center_x = SCREEN_WIDTH // 2 self.player.center_y = SCREEN_HEIGHT // 2 self.player_list.append(self.player) arcade.set_background_color(arcade.color.AMAZON) def on_draw(self): """ Render the screen. """ arcade.start_render() self.player_list.draw() output = f'Score: {self.score}' arcade.draw_text(output, 10, 20, arcade.color.WHITE, 14) def on_key_press(self, key, modifiers): """ Called whenever a key is pressed. """ if key == arcade.key.UP: self.player.change_y = MOVEMENT_SPEED elif key == arcade.key.DOWN: self.player.change_y = -MOVEMENT_SPEED elif key == arcade.key.LEFT: self.player.change_x = -MOVEMENT_SPEED elif key == arcade.key.RIGHT: self.player.change_x = MOVEMENT_SPEED def on_key_release(self, key, modifiers): """ Called when the user releases a key. """ if key == arcade.key.UP or key == arcade.key.DOWN: self.player.change_y = 0 elif key == arcade.key.LEFT or key == arcade.key.RIGHT: self.player.change_x = 0 def on_update(self, delta_time): """ Movement and game logic """ self.player_list.update() self.player_list.update_animation() <mask token>
<mask token> class MyGame(arcade.Window): """ Main application class. """ def __init__(self, width, height, title): """ Initializer """ super().__init__(width, height, title) file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) """ Set up the game and initialize the variables. """ self.player_list = None self.score = 0 self.player = None def setup(self): self.player_list = arcade.SpriteList() self.score = 0 self.player = Toad() self.player.center_x = SCREEN_WIDTH // 2 self.player.center_y = SCREEN_HEIGHT // 2 self.player_list.append(self.player) arcade.set_background_color(arcade.color.AMAZON) def on_draw(self): """ Render the screen. """ arcade.start_render() self.player_list.draw() output = f'Score: {self.score}' arcade.draw_text(output, 10, 20, arcade.color.WHITE, 14) def on_key_press(self, key, modifiers): """ Called whenever a key is pressed. """ if key == arcade.key.UP: self.player.change_y = MOVEMENT_SPEED elif key == arcade.key.DOWN: self.player.change_y = -MOVEMENT_SPEED elif key == arcade.key.LEFT: self.player.change_x = -MOVEMENT_SPEED elif key == arcade.key.RIGHT: self.player.change_x = MOVEMENT_SPEED def on_key_release(self, key, modifiers): """ Called when the user releases a key. """ if key == arcade.key.UP or key == arcade.key.DOWN: self.player.change_y = 0 elif key == arcade.key.LEFT or key == arcade.key.RIGHT: self.player.change_x = 0 def on_update(self, delta_time): """ Movement and game logic """ self.player_list.update() self.player_list.update_animation() def main(): """ Main method """ window = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE) window.setup() arcade.run() <mask token>
<mask token> import arcade import os from Toad_arcade import Toad SCREEN_WIDTH = 1920 SCREEN_HEIGHT = 1080 SCREEN_TITLE = 'PyToads - Battletoads reimplementation' CHARACTER_SCALING = 1 TILE_SCALING = 0.5 COIN_SCALING = 0.5 MOVEMENT_SPEED = 5 class MyGame(arcade.Window): """ Main application class. """ def __init__(self, width, height, title): """ Initializer """ super().__init__(width, height, title) file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) """ Set up the game and initialize the variables. """ self.player_list = None self.score = 0 self.player = None def setup(self): self.player_list = arcade.SpriteList() self.score = 0 self.player = Toad() self.player.center_x = SCREEN_WIDTH // 2 self.player.center_y = SCREEN_HEIGHT // 2 self.player_list.append(self.player) arcade.set_background_color(arcade.color.AMAZON) def on_draw(self): """ Render the screen. """ arcade.start_render() self.player_list.draw() output = f'Score: {self.score}' arcade.draw_text(output, 10, 20, arcade.color.WHITE, 14) def on_key_press(self, key, modifiers): """ Called whenever a key is pressed. """ if key == arcade.key.UP: self.player.change_y = MOVEMENT_SPEED elif key == arcade.key.DOWN: self.player.change_y = -MOVEMENT_SPEED elif key == arcade.key.LEFT: self.player.change_x = -MOVEMENT_SPEED elif key == arcade.key.RIGHT: self.player.change_x = MOVEMENT_SPEED def on_key_release(self, key, modifiers): """ Called when the user releases a key. """ if key == arcade.key.UP or key == arcade.key.DOWN: self.player.change_y = 0 elif key == arcade.key.LEFT or key == arcade.key.RIGHT: self.player.change_x = 0 def on_update(self, delta_time): """ Movement and game logic """ self.player_list.update() self.player_list.update_animation() def main(): """ Main method """ window = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE) window.setup() arcade.run() if __name__ == '__main__': main()
""" Platformer Game """ import arcade import os from Toad_arcade import Toad # Constants SCREEN_WIDTH = 1920 SCREEN_HEIGHT = 1080 SCREEN_TITLE = "PyToads - Battletoads reimplementation" # Constants used to scale our sprites from their original size CHARACTER_SCALING = 1 TILE_SCALING = 0.5 COIN_SCALING = 0.5 MOVEMENT_SPEED = 5 class MyGame(arcade.Window): """ Main application class. """ def __init__(self, width, height, title): """ Initializer """ super().__init__(width, height, title) # Set the working directory (where we expect to find files) to the same # directory this .py file is in. You can leave this out of your own # code, but it is needed to easily run the examples using "python -m" # as mentioned at the top of this program. file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) """ Set up the game and initialize the variables. """ # Sprite lists self.player_list = None # Set up the player self.score = 0 self.player = None def setup(self): self.player_list = arcade.SpriteList() # Set up the player self.score = 0 self.player = Toad() self.player.center_x = SCREEN_WIDTH // 2 self.player.center_y = SCREEN_HEIGHT // 2 #self.player.scale = 0.8 self.player_list.append(self.player) # Set the background color arcade.set_background_color(arcade.color.AMAZON) def on_draw(self): """ Render the screen. """ # This command has to happen before we start drawing arcade.start_render() # Draw all the sprites. self.player_list.draw() # Put the text on the screen. output = f"Score: {self.score}" arcade.draw_text(output, 10, 20, arcade.color.WHITE, 14) def on_key_press(self, key, modifiers): """ Called whenever a key is pressed. """ if key == arcade.key.UP: self.player.change_y = MOVEMENT_SPEED elif key == arcade.key.DOWN: self.player.change_y = -MOVEMENT_SPEED elif key == arcade.key.LEFT: self.player.change_x = -MOVEMENT_SPEED elif key == arcade.key.RIGHT: self.player.change_x = MOVEMENT_SPEED def on_key_release(self, key, modifiers): """ Called when the user releases a key. """ if key == arcade.key.UP or key == arcade.key.DOWN: self.player.change_y = 0 elif key == arcade.key.LEFT or key == arcade.key.RIGHT: self.player.change_x = 0 def on_update(self, delta_time): """ Movement and game logic """ self.player_list.update() self.player_list.update_animation() def main(): """ Main method """ window = MyGame(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE) window.setup() arcade.run() if __name__ == "__main__": main()
[ 6, 7, 9, 12, 13 ]
749
b51591de921f6e153c1dd478cec7fad42ff4251a
<mask token> @app.route('/direct') def direct(): """ A RemoteFlowSource is used directly as DN and search filter using a oneline call to .search """ unsafe_dc = request.args['dc'] unsafe_filter = request.args['username'] dn = 'dc={}'.format(unsafe_dc) search_filter = '(user={})'.format(unsafe_filter) srv = ldap3.Server('ldap://127.0.0.1') conn = ldap3.Connection(srv, user=dn, auto_bind=True).search(dn, search_filter)
<mask token> @app.route('/normal') def normal(): """ A RemoteFlowSource is used directly as DN and search filter """ unsafe_dc = request.args['dc'] unsafe_filter = request.args['username'] dn = 'dc={}'.format(unsafe_dc) search_filter = '(user={})'.format(unsafe_filter) srv = ldap3.Server('ldap://127.0.0.1') conn = ldap3.Connection(srv, user=dn, auto_bind=True) conn.search(dn, search_filter) @app.route('/direct') def direct(): """ A RemoteFlowSource is used directly as DN and search filter using a oneline call to .search """ unsafe_dc = request.args['dc'] unsafe_filter = request.args['username'] dn = 'dc={}'.format(unsafe_dc) search_filter = '(user={})'.format(unsafe_filter) srv = ldap3.Server('ldap://127.0.0.1') conn = ldap3.Connection(srv, user=dn, auto_bind=True).search(dn, search_filter)
<mask token> app = Flask(__name__) @app.route('/normal') def normal(): """ A RemoteFlowSource is used directly as DN and search filter """ unsafe_dc = request.args['dc'] unsafe_filter = request.args['username'] dn = 'dc={}'.format(unsafe_dc) search_filter = '(user={})'.format(unsafe_filter) srv = ldap3.Server('ldap://127.0.0.1') conn = ldap3.Connection(srv, user=dn, auto_bind=True) conn.search(dn, search_filter) @app.route('/direct') def direct(): """ A RemoteFlowSource is used directly as DN and search filter using a oneline call to .search """ unsafe_dc = request.args['dc'] unsafe_filter = request.args['username'] dn = 'dc={}'.format(unsafe_dc) search_filter = '(user={})'.format(unsafe_filter) srv = ldap3.Server('ldap://127.0.0.1') conn = ldap3.Connection(srv, user=dn, auto_bind=True).search(dn, search_filter)
from flask import request, Flask import ldap3 app = Flask(__name__) @app.route('/normal') def normal(): """ A RemoteFlowSource is used directly as DN and search filter """ unsafe_dc = request.args['dc'] unsafe_filter = request.args['username'] dn = 'dc={}'.format(unsafe_dc) search_filter = '(user={})'.format(unsafe_filter) srv = ldap3.Server('ldap://127.0.0.1') conn = ldap3.Connection(srv, user=dn, auto_bind=True) conn.search(dn, search_filter) @app.route('/direct') def direct(): """ A RemoteFlowSource is used directly as DN and search filter using a oneline call to .search """ unsafe_dc = request.args['dc'] unsafe_filter = request.args['username'] dn = 'dc={}'.format(unsafe_dc) search_filter = '(user={})'.format(unsafe_filter) srv = ldap3.Server('ldap://127.0.0.1') conn = ldap3.Connection(srv, user=dn, auto_bind=True).search(dn, search_filter)
from flask import request, Flask import ldap3 app = Flask(__name__) @app.route("/normal") def normal(): """ A RemoteFlowSource is used directly as DN and search filter """ unsafe_dc = request.args['dc'] unsafe_filter = request.args['username'] dn = "dc={}".format(unsafe_dc) search_filter = "(user={})".format(unsafe_filter) srv = ldap3.Server('ldap://127.0.0.1') conn = ldap3.Connection(srv, user=dn, auto_bind=True) conn.search(dn, search_filter) @app.route("/direct") def direct(): """ A RemoteFlowSource is used directly as DN and search filter using a oneline call to .search """ unsafe_dc = request.args['dc'] unsafe_filter = request.args['username'] dn = "dc={}".format(unsafe_dc) search_filter = "(user={})".format(unsafe_filter) srv = ldap3.Server('ldap://127.0.0.1') conn = ldap3.Connection(srv, user=dn, auto_bind=True).search( dn, search_filter) # if __name__ == "__main__": # app.run(debug=True)
[ 1, 2, 3, 4, 5 ]
750
555f4e41661ff4cbf4b9d72feab41ca8b7da2d5f
<mask token>
<mask token> def saveListToCSV(filepath, _list): with open(filepath, 'ab') as f: np.savetxt(f, [_list], delimiter=',', fmt='%f')
<mask token> import numpy as np def saveListToCSV(filepath, _list): with open(filepath, 'ab') as f: np.savetxt(f, [_list], delimiter=',', fmt='%f')
# -*- coding: utf-8 -*- """ Created on Sun Jan 28 12:54:27 2018 @author: Alex """ import numpy as np def saveListToCSV(filepath, _list): with open(filepath,'ab') as f: np.savetxt(f, [_list], delimiter=',', fmt='%f')
null
[ 0, 1, 2, 3 ]
751
81f5753e8d0004244b4ee8e26895cb2b38fbb8b6
<mask token>
<mask token> z1.write('file05.txt') z1.write('file03.txt') z1.close() <mask token> z2.extractall('电影') z2.close()
<mask token> z1 = zipfile.ZipFile('a.zip', 'w') z1.write('file05.txt') z1.write('file03.txt') z1.close() z2 = zipfile.ZipFile('a.zip', 'r') z2.extractall('电影') z2.close()
import shutil import zipfile z1 = zipfile.ZipFile('a.zip', 'w') z1.write('file05.txt') z1.write('file03.txt') z1.close() z2 = zipfile.ZipFile('a.zip', 'r') z2.extractall('电影') z2.close()
#coding=utf-8 import shutil import zipfile # shutil.copyfile("file03.txt","file05.txt") #拷贝 # shutil.copytree("movie/大陆","电影") #拷贝文件夹 #忽略不需要拷贝的文件 # shutil.copytree("movie/大陆","电影",ignore=shutil.ignore_patterns("*.txt","*.html")) #压缩和解压缩 # shutil.make_archive("电影/压缩","zip","movie/大陆") z1 = zipfile.ZipFile("a.zip","w") z1.write("file05.txt") z1.write("file03.txt") z1.close() #解压缩 z2 = zipfile.ZipFile("a.zip","r") z2.extractall("电影") z2.close()
[ 0, 1, 2, 3, 4 ]
752
ea2e9399a8384600d8457a9de3f263db44dc883d
<mask token>
<mask token> for i in cctv['구분']: gu_list.append(gu_dict_num[i]) <mask token> cctv.drop(['구분'], axis=1, inplace=True) <mask token> print(new_data.info()) new_data.to_csv('./dataset/train_add_cctv.csv', header=True, index=False)
<mask token> train_data = pd.read_csv('./dataset/train_park_daycare.csv') cctv = pd.read_csv('./dataset/cctv_origin.csv', encoding='EUC-KR') cctv = cctv.iloc[1:, :2] gu_dict_num = {'용산구': 0, '양천구': 1, '강동구': 2, '관악구': 3, '노원구': 4, '영등포': 5, '영등포구': 5, '마포구': 6, '서초구': 7, '성동구': 8, '금천구': 9, '도봉구': 10, '동작구': 11, '강서구': 12, '동대문': 13, '동대문구': 13, '강북구': 14, '서대문': 15, '서대문구': 15, '광진구': 16, '구로구': 17, '성북구': 18, '강남구': 19, '종로구': 20, '중구': 21, '중랑구': 22, '송파구': 23, '은평구': 24} gu_list = [] for i in cctv['구분']: gu_list.append(gu_dict_num[i]) cctv['gu'] = gu_list cctv.drop(['구분'], axis=1, inplace=True) cctv = cctv.rename(columns={'총계': 'cctv_num'}) cctv['cctv_num'] = cctv['cctv_num'].apply(lambda x: ''.join(x.split(','))) cctv['cctv_num'] = pd.to_numeric(cctv['cctv_num']) new_data = pd.merge(train_data, cctv, on='gu', how='left') print(new_data.info()) new_data.to_csv('./dataset/train_add_cctv.csv', header=True, index=False)
import pandas as pd train_data = pd.read_csv('./dataset/train_park_daycare.csv') cctv = pd.read_csv('./dataset/cctv_origin.csv', encoding='EUC-KR') cctv = cctv.iloc[1:, :2] gu_dict_num = {'용산구': 0, '양천구': 1, '강동구': 2, '관악구': 3, '노원구': 4, '영등포': 5, '영등포구': 5, '마포구': 6, '서초구': 7, '성동구': 8, '금천구': 9, '도봉구': 10, '동작구': 11, '강서구': 12, '동대문': 13, '동대문구': 13, '강북구': 14, '서대문': 15, '서대문구': 15, '광진구': 16, '구로구': 17, '성북구': 18, '강남구': 19, '종로구': 20, '중구': 21, '중랑구': 22, '송파구': 23, '은평구': 24} gu_list = [] for i in cctv['구분']: gu_list.append(gu_dict_num[i]) cctv['gu'] = gu_list cctv.drop(['구분'], axis=1, inplace=True) cctv = cctv.rename(columns={'총계': 'cctv_num'}) cctv['cctv_num'] = cctv['cctv_num'].apply(lambda x: ''.join(x.split(','))) cctv['cctv_num'] = pd.to_numeric(cctv['cctv_num']) new_data = pd.merge(train_data, cctv, on='gu', how='left') print(new_data.info()) new_data.to_csv('./dataset/train_add_cctv.csv', header=True, index=False)
import pandas as pd # 데이터 로드 train_data = pd.read_csv('./dataset/train_park_daycare.csv') cctv = pd.read_csv("./dataset/cctv_origin.csv", encoding="EUC-KR") ## 데이터 전처리 # 데이터 추출 cctv = cctv.iloc[1:, :2] # 구 매핑 gu_dict_num = {'용산구': 0, '양천구': 1, '강동구': 2, '관악구': 3, '노원구': 4, '영등포': 5, '영등포구': 5, '마포구': 6, '서초구': 7, '성동구': 8, '금천구': 9, '도봉구': 10, '동작구': 11, '강서구': 12, '동대문': 13, '동대문구': 13, '강북구': 14, '서대문': 15, '서대문구': 15, '광진구': 16, '구로구': 17, '성북구': 18, '강남구': 19, '종로구': 20, '중구': 21, '중랑구': 22, '송파구': 23, '은평구': 24} gu_list = [] for i in cctv['구분']: gu_list.append(gu_dict_num[i]) cctv['gu'] = gu_list cctv.drop(['구분'], axis=1, inplace=True) # 컬럼 이름 변경 cctv = cctv.rename(columns={'총계': 'cctv_num'}) # 데이터 타입 변경 cctv['cctv_num'] = cctv['cctv_num'].apply(lambda x: "".join(x.split(','))) cctv['cctv_num'] = pd.to_numeric(cctv['cctv_num']) # 조인 new_data = pd.merge(train_data, cctv, on='gu', how='left') print(new_data.info()) # 저장 new_data.to_csv("./dataset/train_add_cctv.csv", header=True, index=False)
[ 0, 1, 2, 3, 4 ]
753
86d42716e05155f9e659b22c42635a8f5b8c4a60
<mask token> def generate_model(base_model: tf.keras.Model, img_shape: Tuple[Optional[ int], Optional[int], Optional[int]], freeze: Union[bool, int, float]= False, preprocess_input: Optional[Callable]=None, use_data_augmentation: bool=True): inputs = tf.keras.layers.Input(shape=img_shape) if use_data_augmentation: x = _data_augmentation(inputs) if preprocess_input is not None: x = preprocess_input(inputs) x = base_model(x, training=False) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dropout(0.2)(x) outputs = tf.keras.layers.Dense(1, activation='sigmoid')(x) model = tf.keras.Model(inputs, outputs) _freeze_model(base_model, freeze) base_learning_rate = 0.0001 model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate= base_learning_rate), loss=tf.keras.losses.BinaryCrossentropy(), metrics=['accuracy']) return model
<mask token> def _freeze_model(model: tf.keras.Model, freeze: Union[bool, int, float]=False ): if isinstance(freeze, int): freeze_len = freeze elif isinstance(freeze, float): freeze_len = int(freeze * len(model.layers)) elif freeze: freeze_len = len(model.layers) else: freeze_len = 0 if freeze_len != len(model.layers): model.trainable = True for layer in model.layers[:freeze_len]: layer.trainable = False def generate_model(base_model: tf.keras.Model, img_shape: Tuple[Optional[ int], Optional[int], Optional[int]], freeze: Union[bool, int, float]= False, preprocess_input: Optional[Callable]=None, use_data_augmentation: bool=True): inputs = tf.keras.layers.Input(shape=img_shape) if use_data_augmentation: x = _data_augmentation(inputs) if preprocess_input is not None: x = preprocess_input(inputs) x = base_model(x, training=False) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dropout(0.2)(x) outputs = tf.keras.layers.Dense(1, activation='sigmoid')(x) model = tf.keras.Model(inputs, outputs) _freeze_model(base_model, freeze) base_learning_rate = 0.0001 model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate= base_learning_rate), loss=tf.keras.losses.BinaryCrossentropy(), metrics=['accuracy']) return model
<mask token> _data_augmentation = tf.keras.Sequential([tf.keras.layers.experimental. preprocessing.RandomFlip('horizontal'), tf.keras.layers.experimental. preprocessing.RandomRotation(0.2)]) def _freeze_model(model: tf.keras.Model, freeze: Union[bool, int, float]=False ): if isinstance(freeze, int): freeze_len = freeze elif isinstance(freeze, float): freeze_len = int(freeze * len(model.layers)) elif freeze: freeze_len = len(model.layers) else: freeze_len = 0 if freeze_len != len(model.layers): model.trainable = True for layer in model.layers[:freeze_len]: layer.trainable = False def generate_model(base_model: tf.keras.Model, img_shape: Tuple[Optional[ int], Optional[int], Optional[int]], freeze: Union[bool, int, float]= False, preprocess_input: Optional[Callable]=None, use_data_augmentation: bool=True): inputs = tf.keras.layers.Input(shape=img_shape) if use_data_augmentation: x = _data_augmentation(inputs) if preprocess_input is not None: x = preprocess_input(inputs) x = base_model(x, training=False) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dropout(0.2)(x) outputs = tf.keras.layers.Dense(1, activation='sigmoid')(x) model = tf.keras.Model(inputs, outputs) _freeze_model(base_model, freeze) base_learning_rate = 0.0001 model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate= base_learning_rate), loss=tf.keras.losses.BinaryCrossentropy(), metrics=['accuracy']) return model
import tensorflow as tf from typing import Optional, Tuple, Union, Callable _data_augmentation = tf.keras.Sequential([tf.keras.layers.experimental. preprocessing.RandomFlip('horizontal'), tf.keras.layers.experimental. preprocessing.RandomRotation(0.2)]) def _freeze_model(model: tf.keras.Model, freeze: Union[bool, int, float]=False ): if isinstance(freeze, int): freeze_len = freeze elif isinstance(freeze, float): freeze_len = int(freeze * len(model.layers)) elif freeze: freeze_len = len(model.layers) else: freeze_len = 0 if freeze_len != len(model.layers): model.trainable = True for layer in model.layers[:freeze_len]: layer.trainable = False def generate_model(base_model: tf.keras.Model, img_shape: Tuple[Optional[ int], Optional[int], Optional[int]], freeze: Union[bool, int, float]= False, preprocess_input: Optional[Callable]=None, use_data_augmentation: bool=True): inputs = tf.keras.layers.Input(shape=img_shape) if use_data_augmentation: x = _data_augmentation(inputs) if preprocess_input is not None: x = preprocess_input(inputs) x = base_model(x, training=False) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dropout(0.2)(x) outputs = tf.keras.layers.Dense(1, activation='sigmoid')(x) model = tf.keras.Model(inputs, outputs) _freeze_model(base_model, freeze) base_learning_rate = 0.0001 model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate= base_learning_rate), loss=tf.keras.losses.BinaryCrossentropy(), metrics=['accuracy']) return model
import tensorflow as tf from typing import Optional, Tuple, Union, Callable _data_augmentation = tf.keras.Sequential( [ tf.keras.layers.experimental.preprocessing.RandomFlip("horizontal"), tf.keras.layers.experimental.preprocessing.RandomRotation(0.2), ] ) def _freeze_model( model: tf.keras.Model, freeze: Union[bool, int, float] = False, ): # Obs: # When you set layer.trainable = False, the BatchNormalization layer will # run in inference mode, and will not update its mean and variance statistics # https://www.tensorflow.org/tutorials/images/transfer_learning#important_note_about_batchnormalization_layers if isinstance(freeze, int): freeze_len = freeze elif isinstance(freeze, float): freeze_len = int(freeze * len(model.layers)) else: # isinstance(freeze, bool): if freeze: freeze_len = len(model.layers) else: freeze_len = 0 if freeze_len != len(model.layers): model.trainable = True for layer in model.layers[:freeze_len]: layer.trainable = False def generate_model( base_model: tf.keras.Model, img_shape: Tuple[Optional[int], Optional[int], Optional[int]], freeze: Union[bool, int, float] = False, preprocess_input: Optional[Callable] = None, use_data_augmentation: bool = True, ): inputs = tf.keras.layers.Input(shape=img_shape) if use_data_augmentation: x = _data_augmentation(inputs) if preprocess_input is not None: x = preprocess_input(inputs) x = base_model(x, training=False) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dropout(0.2)(x) outputs = tf.keras.layers.Dense(1, activation="sigmoid")(x) model = tf.keras.Model(inputs, outputs) _freeze_model(base_model, freeze) base_learning_rate = 0.0001 model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=base_learning_rate), loss=tf.keras.losses.BinaryCrossentropy(), metrics=["accuracy"], ) return model
[ 1, 2, 3, 4, 5 ]
754
cac9d84f20a79b115c84ff4fe8cf4640182a42d7
<mask token> class Test(TestItem): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> def abortRun(self): self._runHistory.pop() <mask token> <mask token> <mask token> <mask token> @property def funcName(self): return self.item.__name__ <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> @property def state(self): rec = self.runRecord if rec: return rec.state return NOT_RUN <mask token> <mask token> <mask token> def addRunRecord(self, record): self._runHistory.append(record) if len(self._runHistory) > 5: self._runHistory[:] = self._runHistory[-5:] <mask token> <mask token> <mask token> <mask token> class NullTest(Test): amNull = True def __init__(self): context = Context.getContext(dirPath=os.getcwd()) super(NullTest, self).__init__(None, None, None, context) self.number = 0 self.startNewRun() def startNewRun(self): rec = RunRecord() self._runHistory.append(rec) def abortRun(self): self._runHistory.pop() @property def isBug(self): return False def __bool__(self): return False class Suite(TestItem): typeName = 'Suite' isSuite = True def __init__(self, *args, **kwargs): self.myDir = kwargs.pop('myDir') super(Suite, self).__init__(*args, **kwargs) self.exited = False self.number = 0 self.skipTests = False self.entered = False def reset(self): self.entered = False self.skipTests = False @intelliprop def children(self): """All the direct children of this item.""" tests = [t for t in self._collection if t.parent is self] suites = [t for t in self._collection.suites if t.parent is self] return suites + tests @intelliprop def tests(self): """All the direct test children of this item.""" return [t for t in self._collection if t.parent is self] @property def suite(self): return self.item @property def runAfter(self): """The _run_after for this source.""" return self.namespace.get('_run_after', []) @property def postCheck(self): return self.namespace.get('postCheck', lambda : None) @property def setUp(self): return self.namespace.get('setUp', lambda : None) @property def postSetUp(self): return self.namespace.get('postSetUp', lambda : None) @property def tearDown(self): return self.namespace.get('tearDown', lambda : None) @property def suiteSetUp(self): return self.namespace.get('suiteSetUp', lambda : None) @property def suiteTearDown(self): return self.namespace.get('suiteTearDown', lambda : None) def getResult(self, name=None): runCount = 0 childStates = {} result = Result(PASS, NONE) if not self.children: result.state = NOT_RUN return result for c in self.children: state = c.state runCount += state is not NOT_RUN childStates[state] = None if FAIL in childStates: result.state = CHILD_FAIL elif CHILD_FAIL in childStates: result.state = CHILD_FAIL elif BAD_SETUP in childStates: result.state = CHILD_FAIL elif PART_RUN in childStates: result.state = PART_RUN elif NOT_RUN in childStates: if runCount: result.state = PART_RUN else: result.state = NOT_RUN return result @property def result(self): return self.getResult() @property def state(self): result = self.getResult() return result.reportCode def hasTests(self): for t in self._collection: if t.parent is self: return True class ModuleSuite(Suite): pass class ClassSuite(Suite): @property def klass(self): return self.item.__class__.__name__ <mask token>
<mask token> class TestItem: <mask token> def __init__(self, item, uid, parentUid, context, namespace=None): """Constructor: :Parameters: item The concrete test item. For a test function/method this is the function/method itself. For a `ClassSuite` this is the instance and for a `ModuleSuite` this is the the module instance. uid The unique ID for this item, which is a tuple of strings. parentUid The unique ID of the parent item or ``None``. Only the root `Suite` of a test tree has a parent of ``None``. namespace A dictionary that provides the containing namespace for the test item. """ self.item = item self.uid = uid self.context = context self.parentUid = parentUid self.namespace = self._getNamespace(namespace) self._collection = None self._running = False self._marks = {} self.extraInfo = {} <mask token> <mask token> def isMarked(self, mark): return mark in self._marks <mask token> <mask token> @intelliprop def state(self): """The current state of the test. """ result = self.getResult() return result.state def setState(self, state): if state is PASS: pass <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> @property def path(self): p = self.namespace.get('__file__', None) if p is None: return self.parent.path if p.endswith('.pyc'): p = p[:-1] return p <mask token> <mask token> class Test(TestItem): typeName = 'Test' isSuite = False amNull = False def __init__(self, *args, **kwargs): super(Test, self).__init__(*args, **kwargs) self._runHistory = [] self.stopAll = False if self.func: self.func.cs_test_info.test = weakref.proxy(self) def getHistory(self): return self._runHistory def dumpHist(self): return self._runHistory[-1].dump() def startNewRun(self): rec = RunRecord() self._runHistory.append(rec) def abortRun(self): self._runHistory.pop() def addStepRecord(self, name): runRecord = self._runHistory[-1] return runRecord.addStepRecord(name) @property def postCheck(self): return self.parent.postCheck @intelliprop def hasFailed(self): """Check if this test has properly failed. :Return: ``True`` if the test has failed to run for any reason. """ record = self.getRunRecord().getRecord('run') return record.state is FAIL @property def klass(self): return self.parent.klass @property def funcName(self): return self.item.__name__ @property def func(self): return self.item @property def info(self): return self.func.cs_test_info @property def isBroken(self): if not hasattr(self, 'info'): raise PropertyError('%r has no attribute %r' % (self.__class__. __name__, 'info')) flag = self.info.reserved_cs_flags.get('broken', None) if flag is None: flag = self.info.cs_flags.get('broken', False) return flag @property def isTodo(self): if not hasattr(self, 'info'): raise PropertyError('%r has no attribute %r' % (self.__class__. __name__, 'info')) return self.info.cs_flags.get('todo', False) @property def isBug(self): if not hasattr(self, 'info'): raise PropertyError('%r has no attribute %r' % (self.__class__. __name__, 'info')) flag = self.info.reserved_cs_flags.get('bug', None) if flag is None: flag = self.info.cs_flags.get('bug', False) return flag @property def shouldFork(self): if not hasattr(self, 'info'): raise PropertyError('%r has no attribute %r' % (self.__class__. __name__, 'info')) if self.info.reserved_cs_flags.get('fork', False): return True parent = self.parent try: return parent.suite.cs_attrs.fork_all except AttributeError: return False @property def testID(self): return self.info.cs_tags.get('testID', None) @property def title(self): return self.info.cs_flags.get('title', None) @property def isRunnable(self): if self.parent.exited: return False return True @property def state(self): rec = self.runRecord if rec: return rec.state return NOT_RUN @property def result(self): rec = self.runRecord if rec: return rec.result return NOT_RUN @property def hasRunProblem(self): rec = self.runRecord if rec: return rec.hasRunProblem return False @property def hasFailed(self): rec = self.runRecord if rec: return rec.hasFailed return False def addRunRecord(self, record): self._runHistory.append(record) if len(self._runHistory) > 5: self._runHistory[:] = self._runHistory[-5:] @property def runRecord(self): """The XXX TODO""" if self._runHistory: for rec in reversed(self._runHistory): if not rec.invalid: return rec @property def phaseRecord(self): """The XXX TODO""" if not self._runHistory: return None, None return self._runHistory[-1].phaseRecord def getStepRecord(self, phase): return self._runHistory[-1].getStepRecord(phase) def getTestProcedure(self): return self._collection.spec.getThing(self) class NullTest(Test): amNull = True def __init__(self): context = Context.getContext(dirPath=os.getcwd()) super(NullTest, self).__init__(None, None, None, context) self.number = 0 self.startNewRun() def startNewRun(self): rec = RunRecord() self._runHistory.append(rec) def abortRun(self): self._runHistory.pop() @property def isBug(self): return False def __bool__(self): return False class Suite(TestItem): typeName = 'Suite' isSuite = True def __init__(self, *args, **kwargs): self.myDir = kwargs.pop('myDir') super(Suite, self).__init__(*args, **kwargs) self.exited = False self.number = 0 self.skipTests = False self.entered = False def reset(self): self.entered = False self.skipTests = False @intelliprop def children(self): """All the direct children of this item.""" tests = [t for t in self._collection if t.parent is self] suites = [t for t in self._collection.suites if t.parent is self] return suites + tests @intelliprop def tests(self): """All the direct test children of this item.""" return [t for t in self._collection if t.parent is self] @property def suite(self): return self.item @property def runAfter(self): """The _run_after for this source.""" return self.namespace.get('_run_after', []) @property def postCheck(self): return self.namespace.get('postCheck', lambda : None) @property def setUp(self): return self.namespace.get('setUp', lambda : None) @property def postSetUp(self): return self.namespace.get('postSetUp', lambda : None) @property def tearDown(self): return self.namespace.get('tearDown', lambda : None) @property def suiteSetUp(self): return self.namespace.get('suiteSetUp', lambda : None) @property def suiteTearDown(self): return self.namespace.get('suiteTearDown', lambda : None) def getResult(self, name=None): runCount = 0 childStates = {} result = Result(PASS, NONE) if not self.children: result.state = NOT_RUN return result for c in self.children: state = c.state runCount += state is not NOT_RUN childStates[state] = None if FAIL in childStates: result.state = CHILD_FAIL elif CHILD_FAIL in childStates: result.state = CHILD_FAIL elif BAD_SETUP in childStates: result.state = CHILD_FAIL elif PART_RUN in childStates: result.state = PART_RUN elif NOT_RUN in childStates: if runCount: result.state = PART_RUN else: result.state = NOT_RUN return result @property def result(self): return self.getResult() @property def state(self): result = self.getResult() return result.reportCode def hasTests(self): for t in self._collection: if t.parent is self: return True class ModuleSuite(Suite): pass class ClassSuite(Suite): @property def klass(self): return self.item.__class__.__name__ <mask token>
<mask token> class TestItem: <mask token> def __init__(self, item, uid, parentUid, context, namespace=None): """Constructor: :Parameters: item The concrete test item. For a test function/method this is the function/method itself. For a `ClassSuite` this is the instance and for a `ModuleSuite` this is the the module instance. uid The unique ID for this item, which is a tuple of strings. parentUid The unique ID of the parent item or ``None``. Only the root `Suite` of a test tree has a parent of ``None``. namespace A dictionary that provides the containing namespace for the test item. """ self.item = item self.uid = uid self.context = context self.parentUid = parentUid self.namespace = self._getNamespace(namespace) self._collection = None self._running = False self._marks = {} self.extraInfo = {} def setMark(self, mark): self._marks[mark] = None def clearMark(self, mark): if mark in self._marks: del self._marks[mark] def isMarked(self, mark): return mark in self._marks def setCollection(self, collection): self._collection = weakref.proxy(collection) <mask token> @intelliprop def state(self): """The current state of the test. """ result = self.getResult() return result.state def setState(self, state): if state is PASS: pass @intelliprop def level(self): """This item's level in the test tree. This is the number of ancestors this item has. If zero then this is the 'root' item. """ return len(self.ancestors) @intelliprop def parent(self): """The parent of this item, which may be ``None``. If this is ``None`` then this item is the root of a (possibly nested) suite of tests. """ return self._collection.parent(self) @intelliprop def ancestors(self): """A list of all ancestors for this item. Each entry is a UID. The first entry is the oldest ancesctor and the last entry is the immediate parent's UID. """ return self._collection.getAncestors(self) def hasFailingAncestor(self): """Check if any ancestor is considered to have failed. An ancestor suite has failed if, for example, its ``suiteSetup`` failed. :Return: ``True`` if any ancestors has failed. """ parent = self.parent if parent is None: return return return parent.hasFailed or parent.hasFailingAncestor() <mask token> @intelliprop def rawDoc(self): """The raw docstring, no cleaning up performed at all.""" return self.namespace['__doc__'] @intelliprop def docLines(self): """The docstring as lines. This is cleaned up to remove leading and trailing blank lines from the summary and details. :Return: A sequence of (non-nul terminated) lines for the docstring. The summary (if present) is separated from the details by a single empty line. """ summary, description = self._getDocParts() if description: return summary + [''] + description return summary @intelliprop def doc(self): """The docstring after being cleaned up. :Return: The cleaned up docstrinc as a multiline string. Leading and trailing blank lines are removed and the summary is separated from any details by a single blakn line. Common leading whitspace is also removed from each line. """ return '\n'.join(self.docLines) def _getDocParts(self): lines = self.rawDoc.splitlines() while lines and not lines[0].strip(): lines.pop(0) summary = [] while lines and lines[0].strip(): summary.append(lines.pop(0)) while lines and not lines[0].strip(): lines.pop(0) while lines and not lines[-1].strip(): lines.pop() summary = summary[:1] + dedentLines(summary[1:]) details = dedentLines(lines) return summary, details @property def summary(self): summary, description = self._getDocParts() return ' '.join(summary) @property def details(self): summary, description = self._getDocParts() return description @property def sourcesUnderTest(self): sources = [] for p in self.namespace.get('sources_under_test', []): if not os.path.isabs(p): p = os.path.abspath(os.path.join(self.dirname, p)) sources.append(p) p = self.parent if p is not None: sources.extend(p.sourcesUnderTest) return sources @property def klass(self): return None @property def path(self): p = self.namespace.get('__file__', None) if p is None: return self.parent.path if p.endswith('.pyc'): p = p[:-1] return p @property def dirname(self): f = self.path if f: return os.path.dirname(f) @property def isBug(self): return False class Test(TestItem): typeName = 'Test' isSuite = False amNull = False def __init__(self, *args, **kwargs): super(Test, self).__init__(*args, **kwargs) self._runHistory = [] self.stopAll = False if self.func: self.func.cs_test_info.test = weakref.proxy(self) def getHistory(self): return self._runHistory def dumpHist(self): return self._runHistory[-1].dump() def startNewRun(self): rec = RunRecord() self._runHistory.append(rec) def abortRun(self): self._runHistory.pop() def addStepRecord(self, name): runRecord = self._runHistory[-1] return runRecord.addStepRecord(name) @property def postCheck(self): return self.parent.postCheck @intelliprop def hasFailed(self): """Check if this test has properly failed. :Return: ``True`` if the test has failed to run for any reason. """ record = self.getRunRecord().getRecord('run') return record.state is FAIL @property def klass(self): return self.parent.klass @property def funcName(self): return self.item.__name__ @property def func(self): return self.item @property def info(self): return self.func.cs_test_info @property def isBroken(self): if not hasattr(self, 'info'): raise PropertyError('%r has no attribute %r' % (self.__class__. __name__, 'info')) flag = self.info.reserved_cs_flags.get('broken', None) if flag is None: flag = self.info.cs_flags.get('broken', False) return flag @property def isTodo(self): if not hasattr(self, 'info'): raise PropertyError('%r has no attribute %r' % (self.__class__. __name__, 'info')) return self.info.cs_flags.get('todo', False) @property def isBug(self): if not hasattr(self, 'info'): raise PropertyError('%r has no attribute %r' % (self.__class__. __name__, 'info')) flag = self.info.reserved_cs_flags.get('bug', None) if flag is None: flag = self.info.cs_flags.get('bug', False) return flag @property def shouldFork(self): if not hasattr(self, 'info'): raise PropertyError('%r has no attribute %r' % (self.__class__. __name__, 'info')) if self.info.reserved_cs_flags.get('fork', False): return True parent = self.parent try: return parent.suite.cs_attrs.fork_all except AttributeError: return False @property def testID(self): return self.info.cs_tags.get('testID', None) @property def title(self): return self.info.cs_flags.get('title', None) @property def isRunnable(self): if self.parent.exited: return False return True @property def state(self): rec = self.runRecord if rec: return rec.state return NOT_RUN @property def result(self): rec = self.runRecord if rec: return rec.result return NOT_RUN @property def hasRunProblem(self): rec = self.runRecord if rec: return rec.hasRunProblem return False @property def hasFailed(self): rec = self.runRecord if rec: return rec.hasFailed return False def addRunRecord(self, record): self._runHistory.append(record) if len(self._runHistory) > 5: self._runHistory[:] = self._runHistory[-5:] @property def runRecord(self): """The XXX TODO""" if self._runHistory: for rec in reversed(self._runHistory): if not rec.invalid: return rec @property def phaseRecord(self): """The XXX TODO""" if not self._runHistory: return None, None return self._runHistory[-1].phaseRecord def getStepRecord(self, phase): return self._runHistory[-1].getStepRecord(phase) def getTestProcedure(self): return self._collection.spec.getThing(self) class NullTest(Test): amNull = True def __init__(self): context = Context.getContext(dirPath=os.getcwd()) super(NullTest, self).__init__(None, None, None, context) self.number = 0 self.startNewRun() def startNewRun(self): rec = RunRecord() self._runHistory.append(rec) def abortRun(self): self._runHistory.pop() @property def isBug(self): return False def __bool__(self): return False class Suite(TestItem): typeName = 'Suite' isSuite = True def __init__(self, *args, **kwargs): self.myDir = kwargs.pop('myDir') super(Suite, self).__init__(*args, **kwargs) self.exited = False self.number = 0 self.skipTests = False self.entered = False def reset(self): self.entered = False self.skipTests = False @intelliprop def children(self): """All the direct children of this item.""" tests = [t for t in self._collection if t.parent is self] suites = [t for t in self._collection.suites if t.parent is self] return suites + tests @intelliprop def tests(self): """All the direct test children of this item.""" return [t for t in self._collection if t.parent is self] @property def suite(self): return self.item @property def runAfter(self): """The _run_after for this source.""" return self.namespace.get('_run_after', []) @property def postCheck(self): return self.namespace.get('postCheck', lambda : None) @property def setUp(self): return self.namespace.get('setUp', lambda : None) @property def postSetUp(self): return self.namespace.get('postSetUp', lambda : None) @property def tearDown(self): return self.namespace.get('tearDown', lambda : None) @property def suiteSetUp(self): return self.namespace.get('suiteSetUp', lambda : None) @property def suiteTearDown(self): return self.namespace.get('suiteTearDown', lambda : None) def getResult(self, name=None): runCount = 0 childStates = {} result = Result(PASS, NONE) if not self.children: result.state = NOT_RUN return result for c in self.children: state = c.state runCount += state is not NOT_RUN childStates[state] = None if FAIL in childStates: result.state = CHILD_FAIL elif CHILD_FAIL in childStates: result.state = CHILD_FAIL elif BAD_SETUP in childStates: result.state = CHILD_FAIL elif PART_RUN in childStates: result.state = PART_RUN elif NOT_RUN in childStates: if runCount: result.state = PART_RUN else: result.state = NOT_RUN return result @property def result(self): return self.getResult() @property def state(self): result = self.getResult() return result.reportCode def hasTests(self): for t in self._collection: if t.parent is self: return True class ModuleSuite(Suite): pass class ClassSuite(Suite): @property def klass(self): return self.item.__class__.__name__ <mask token>
<mask token> class StepRecord: <mask token> <mask token> <mask token> @property def state(self): return self.result <mask token> <mask token> class StepRecordList: def __init__(self): self.entries = [] class RunRecord: """A set of records containing all information about a single test's run. This stores multiple `StepRecord` instances. The records are stored in a dictionary keyed by the following names: setUp, tearDown, prevTearDown, rn Each maps to a single `StepRecord`. suiteSetUp, suiteTearDown, prevSuiteTearDown Each mapping to a list of `StepRecord` instances, in execution order. """ _simpleNames = 'setUp tearDown prevTearDown run postCheck'.split() _listNames = 'suiteSetUp suiteTearDown prevSuiteTearDown'.split() _recordNames = _simpleNames + _listNames _runTime = None def __init__(self): self.runTime = RunRecord._runTime self.invalid = False self._records = {} self.extraInfo = {} def __setstate__(self, state): self.invalid = False self.__dict__.update(state) @classmethod def startNewRun(cls): cls._runTime = time.time() @classmethod def finishRun(cls): cls._runTime = None def addStepRecord(self, name): """Add a new phase record to this run record. Adds a new `StepRecord` for a test phase, which must be one of those defined for a `RunRecord`. :Parameters: name The name for the record. It must be the name of a defined test phase. :Return: The newly added `StepRecord` instance. This will always be a newly created instance. """ assert name in RunRecord._recordNames record = StepRecord() if name in RunRecord._simpleNames: assert name not in self._records self._records[name] = record else: if name not in self._records: self._records[name] = StepRecordList() self._records[name].entries.append(record) return record def getResult(self, name): pass @property def result(self): try: rec = self._records['setUp'] except KeyError: pass else: if rec.state is not PASS: result = Result(BAD_SETUP, BAD_SETUP) return result try: rec = self._records['run'] except KeyError: pass else: result = Result(rec.state, rec.reason) return result for rec in self._records.get('suiteSetUp', []): if rec.state is not PASS: return Result(NOT_RUN, BAD_SUITE_SETUP) try: rec = self._records['setUp'] except KeyError: pass else: if rec.state is not PASS: return Result(NOT_RUN, BAD_SETUP) return Result(NOT_RUN, NONE) @property def state(self): try: rec = self._records['setUp'] except KeyError: pass else: if rec.state is NOT_RUN: return NOT_RUN if rec.state not in (PASS, BUG, BUG_PASS): return BAD_SETUP try: rec = self._records['run'] return rec.state except KeyError: pass return NOT_RUN @property def isRunnable(self): for name in ('suiteTearDown', 'tearDown', 'suiteSetUp', 'setUp'): try: if self._records[name].state not in (PASS, SKIPPED, NOT_RUN): return True except KeyError: pass return False @property def hasRunProblem(self): for name in ('tearDown', 'suiteTearDown', 'suiteSetUp', 'setUp', 'run', 'postCheck'): try: record = self._records[name] except KeyError: continue if name in ('tearDown', 'setUp', 'run', 'postCheck'): if record.state not in (PASS, SKIPPED, NOT_RUN, TODO, BUG, BUG_PASS): return True else: for rec in record.entries: if rec.state not in (PASS, SKIPPED, NOT_RUN, TODO, BUG, BUG_PASS): return True return False @property def hasFailed(self): for name in ('suiteSetUp', 'setUp', 'run'): try: record = self._records[name] except KeyError: continue if name in ('setUp', 'run'): if record.state not in (PASS, SKIPPED, NOT_RUN, TODO, BUG, BUG_PASS): return True else: for rec in record.entries: if rec.state not in (PASS, SKIPPED, NOT_RUN, TODO, BUG, BUG_PASS): return True return False @property def phaseRecord(self): """Get the most recent phaseRecord. This is used to get the most pertinent record for this test; i.e. the one that provides the most useful result for the test. TODO: This is not yet well defined. """ for name in ('tearDown', 'run', 'setUp'): try: return name, self._records[name] except KeyError: pass seq = self._records.get('suiteSetUp', None) if seq is None: return None, None for ent in seq.entries: if ent.hasFailed: return 'suiteSetUp', ent return 'suiteSetUp', seq.entries[0] def getStepRecord(self, phase): """Get the record details for a test run phase.""" ent = self._records.get(phase, None) if hasattr(ent, 'append'): seq = ent for ent in seq: if ent.hasFailed: return ent return seq.entries[0] if hasattr(ent, 'entries'): seq = ent.entries for ent in seq: if ent.hasFailed: return ent if seq: return seq[0] return return ent class TestItem: """Base class for `Test` and `Suite` classes. """ def __init__(self, item, uid, parentUid, context, namespace=None): """Constructor: :Parameters: item The concrete test item. For a test function/method this is the function/method itself. For a `ClassSuite` this is the instance and for a `ModuleSuite` this is the the module instance. uid The unique ID for this item, which is a tuple of strings. parentUid The unique ID of the parent item or ``None``. Only the root `Suite` of a test tree has a parent of ``None``. namespace A dictionary that provides the containing namespace for the test item. """ self.item = item self.uid = uid self.context = context self.parentUid = parentUid self.namespace = self._getNamespace(namespace) self._collection = None self._running = False self._marks = {} self.extraInfo = {} def setMark(self, mark): self._marks[mark] = None def clearMark(self, mark): if mark in self._marks: del self._marks[mark] def isMarked(self, mark): return mark in self._marks def setCollection(self, collection): self._collection = weakref.proxy(collection) def setPhase(self, phase): self._phase = phase @intelliprop def state(self): """The current state of the test. """ result = self.getResult() return result.state def setState(self, state): if state is PASS: pass @intelliprop def level(self): """This item's level in the test tree. This is the number of ancestors this item has. If zero then this is the 'root' item. """ return len(self.ancestors) @intelliprop def parent(self): """The parent of this item, which may be ``None``. If this is ``None`` then this item is the root of a (possibly nested) suite of tests. """ return self._collection.parent(self) @intelliprop def ancestors(self): """A list of all ancestors for this item. Each entry is a UID. The first entry is the oldest ancesctor and the last entry is the immediate parent's UID. """ return self._collection.getAncestors(self) def hasFailingAncestor(self): """Check if any ancestor is considered to have failed. An ancestor suite has failed if, for example, its ``suiteSetup`` failed. :Return: ``True`` if any ancestors has failed. """ parent = self.parent if parent is None: return return return parent.hasFailed or parent.hasFailingAncestor() def _getNamespace(self, namespace=None): return namespace or dict([(n, getattr(self.item, n)) for n in dir( self.item)]) @intelliprop def rawDoc(self): """The raw docstring, no cleaning up performed at all.""" return self.namespace['__doc__'] @intelliprop def docLines(self): """The docstring as lines. This is cleaned up to remove leading and trailing blank lines from the summary and details. :Return: A sequence of (non-nul terminated) lines for the docstring. The summary (if present) is separated from the details by a single empty line. """ summary, description = self._getDocParts() if description: return summary + [''] + description return summary @intelliprop def doc(self): """The docstring after being cleaned up. :Return: The cleaned up docstrinc as a multiline string. Leading and trailing blank lines are removed and the summary is separated from any details by a single blakn line. Common leading whitspace is also removed from each line. """ return '\n'.join(self.docLines) def _getDocParts(self): lines = self.rawDoc.splitlines() while lines and not lines[0].strip(): lines.pop(0) summary = [] while lines and lines[0].strip(): summary.append(lines.pop(0)) while lines and not lines[0].strip(): lines.pop(0) while lines and not lines[-1].strip(): lines.pop() summary = summary[:1] + dedentLines(summary[1:]) details = dedentLines(lines) return summary, details @property def summary(self): summary, description = self._getDocParts() return ' '.join(summary) @property def details(self): summary, description = self._getDocParts() return description @property def sourcesUnderTest(self): sources = [] for p in self.namespace.get('sources_under_test', []): if not os.path.isabs(p): p = os.path.abspath(os.path.join(self.dirname, p)) sources.append(p) p = self.parent if p is not None: sources.extend(p.sourcesUnderTest) return sources @property def klass(self): return None @property def path(self): p = self.namespace.get('__file__', None) if p is None: return self.parent.path if p.endswith('.pyc'): p = p[:-1] return p @property def dirname(self): f = self.path if f: return os.path.dirname(f) @property def isBug(self): return False class Test(TestItem): typeName = 'Test' isSuite = False amNull = False def __init__(self, *args, **kwargs): super(Test, self).__init__(*args, **kwargs) self._runHistory = [] self.stopAll = False if self.func: self.func.cs_test_info.test = weakref.proxy(self) def getHistory(self): return self._runHistory def dumpHist(self): return self._runHistory[-1].dump() def startNewRun(self): rec = RunRecord() self._runHistory.append(rec) def abortRun(self): self._runHistory.pop() def addStepRecord(self, name): runRecord = self._runHistory[-1] return runRecord.addStepRecord(name) @property def postCheck(self): return self.parent.postCheck @intelliprop def hasFailed(self): """Check if this test has properly failed. :Return: ``True`` if the test has failed to run for any reason. """ record = self.getRunRecord().getRecord('run') return record.state is FAIL @property def klass(self): return self.parent.klass @property def funcName(self): return self.item.__name__ @property def func(self): return self.item @property def info(self): return self.func.cs_test_info @property def isBroken(self): if not hasattr(self, 'info'): raise PropertyError('%r has no attribute %r' % (self.__class__. __name__, 'info')) flag = self.info.reserved_cs_flags.get('broken', None) if flag is None: flag = self.info.cs_flags.get('broken', False) return flag @property def isTodo(self): if not hasattr(self, 'info'): raise PropertyError('%r has no attribute %r' % (self.__class__. __name__, 'info')) return self.info.cs_flags.get('todo', False) @property def isBug(self): if not hasattr(self, 'info'): raise PropertyError('%r has no attribute %r' % (self.__class__. __name__, 'info')) flag = self.info.reserved_cs_flags.get('bug', None) if flag is None: flag = self.info.cs_flags.get('bug', False) return flag @property def shouldFork(self): if not hasattr(self, 'info'): raise PropertyError('%r has no attribute %r' % (self.__class__. __name__, 'info')) if self.info.reserved_cs_flags.get('fork', False): return True parent = self.parent try: return parent.suite.cs_attrs.fork_all except AttributeError: return False @property def testID(self): return self.info.cs_tags.get('testID', None) @property def title(self): return self.info.cs_flags.get('title', None) @property def isRunnable(self): if self.parent.exited: return False return True @property def state(self): rec = self.runRecord if rec: return rec.state return NOT_RUN @property def result(self): rec = self.runRecord if rec: return rec.result return NOT_RUN @property def hasRunProblem(self): rec = self.runRecord if rec: return rec.hasRunProblem return False @property def hasFailed(self): rec = self.runRecord if rec: return rec.hasFailed return False def addRunRecord(self, record): self._runHistory.append(record) if len(self._runHistory) > 5: self._runHistory[:] = self._runHistory[-5:] @property def runRecord(self): """The XXX TODO""" if self._runHistory: for rec in reversed(self._runHistory): if not rec.invalid: return rec @property def phaseRecord(self): """The XXX TODO""" if not self._runHistory: return None, None return self._runHistory[-1].phaseRecord def getStepRecord(self, phase): return self._runHistory[-1].getStepRecord(phase) def getTestProcedure(self): return self._collection.spec.getThing(self) class NullTest(Test): amNull = True def __init__(self): context = Context.getContext(dirPath=os.getcwd()) super(NullTest, self).__init__(None, None, None, context) self.number = 0 self.startNewRun() def startNewRun(self): rec = RunRecord() self._runHistory.append(rec) def abortRun(self): self._runHistory.pop() @property def isBug(self): return False def __bool__(self): return False class Suite(TestItem): typeName = 'Suite' isSuite = True def __init__(self, *args, **kwargs): self.myDir = kwargs.pop('myDir') super(Suite, self).__init__(*args, **kwargs) self.exited = False self.number = 0 self.skipTests = False self.entered = False def reset(self): self.entered = False self.skipTests = False @intelliprop def children(self): """All the direct children of this item.""" tests = [t for t in self._collection if t.parent is self] suites = [t for t in self._collection.suites if t.parent is self] return suites + tests @intelliprop def tests(self): """All the direct test children of this item.""" return [t for t in self._collection if t.parent is self] @property def suite(self): return self.item @property def runAfter(self): """The _run_after for this source.""" return self.namespace.get('_run_after', []) @property def postCheck(self): return self.namespace.get('postCheck', lambda : None) @property def setUp(self): return self.namespace.get('setUp', lambda : None) @property def postSetUp(self): return self.namespace.get('postSetUp', lambda : None) @property def tearDown(self): return self.namespace.get('tearDown', lambda : None) @property def suiteSetUp(self): return self.namespace.get('suiteSetUp', lambda : None) @property def suiteTearDown(self): return self.namespace.get('suiteTearDown', lambda : None) def getResult(self, name=None): runCount = 0 childStates = {} result = Result(PASS, NONE) if not self.children: result.state = NOT_RUN return result for c in self.children: state = c.state runCount += state is not NOT_RUN childStates[state] = None if FAIL in childStates: result.state = CHILD_FAIL elif CHILD_FAIL in childStates: result.state = CHILD_FAIL elif BAD_SETUP in childStates: result.state = CHILD_FAIL elif PART_RUN in childStates: result.state = PART_RUN elif NOT_RUN in childStates: if runCount: result.state = PART_RUN else: result.state = NOT_RUN return result @property def result(self): return self.getResult() @property def state(self): result = self.getResult() return result.reportCode def hasTests(self): for t in self._collection: if t.parent is self: return True class ModuleSuite(Suite): pass class ClassSuite(Suite): @property def klass(self): return self.item.__class__.__name__ <mask token>
"""Those things that are core to tests. This module provides the most fundamental test entities, which include such things as: - Tests - Suites - Test states """ from __future__ import print_function __docformat__ = "restructuredtext" import os import textwrap import time import weakref import inspect from cleversheep3.Prog.Aspects import intelliprop from cleversheep3.Prog.Enum import Enum from cleversheep3.Test.Tester import Context from cleversheep3.Test.Tester import Coordinator from cleversheep3.Test.Tester import options State = Enum("State") # Static test states. NOT_RUN = State("NOT_RUN") PASS = State("PASS") FAIL = State("FAIL") SKIPPED = State("SKIPPED") BROKEN = State("BROKEN") DISABLED = State("DISABLED") BUG = State("BUG") BUG_PASS = State("BUG_PASS") TODO = State("TODO") # Dynamic test states. SET_UP = State("SET_UP") TEAR_DOWN = State("TEAR_DOWN") RUNNING = State("RUNNING") FINISHED = State("FINISHED") # TODO: To remove! # Suite specific states. CHILD_FAIL = State("CHILD_FAIL") PART_RUN = State("PART_RUN") # Reason codes. Note that this list is those codes that are only used as # reasons, some states are also used as reason code. NONE = State("NONE") ERROR = State("ERROR") BAD_SETUP = State("BAD_SETUP") BAD_SUITE_SETUP = State("BAD_SUITE_SETUP") EXIT_SUITE = State("EXIT_SUITE") EXIT_ALL = State("EXIT_ALL") USER_STOPPED = State("USER_STOPPED") def dedentLines(lines): return textwrap.dedent("\n".join(lines)).splitlines() class TestInfo: """Information about a test function. This class supports the ``@test(...)`` decorator that is used by cleversheep3 to mark test functions. All such marked functions are given an attribute called ``cs_test_info``, which is in an instance of this class. This is most commonly used in test filter functions, as registered by `addTestFilter`. When tests are marked using the ``@test`` decorator they can be given one or more tags and/or flags. Currently this is little more than a struct, except that it provides a `__getattr__` that returns ``None`` by default. """ def __init__(self, *args, **kwargs): """Constructor: :Parameters: args Non-keyword arguments are interpreted by the test framework. Each argument is a string. The supported forms are: plat:<platformType> The test will only be executed if ``<platformType>`` matches `Sys.Platform.platformType`. For example: ``"plat:windows"``. kwargs Any keyword arguments are simply stored as attributes. So, if you decorate a ``test_x`` with ``test(xyz=123)`` then ``test_x.cs_test_info.xyz`` will be ``123``. """ self.reserved_cs_flags = {} self.cs_flags = {} self.cs_tags = {} for arg in args: if ":" in arg: name, value = arg.split(":", 1) self.cs_flags[name] = value else: self.cs_flags[arg] = True for name in kwargs: if name.startswith("cs_"): self.reserved_cs_flags[name[3:]] = kwargs[name] else: self.cs_tags[name] = kwargs[name] self.reserved_cs_flags['defined_in_base'] = None def __getattr__(self, name): """Attribute access: Provides read access to test method tags. For example, if you mark a test:<py>: @test(abc="Hello") Then, if ``info`` is the test's `TestInfo` object, ``info.abc`` will be ``"Hello"``. If the test does not have ``abc`` set then the result is ``None``. """ if name in self.__dict__: return self.__dict__.get(name) return self.cs_tags.get(name, None) class Result: """Full result details for a test.""" def __init__(self, state, reason): self.state, self.reason = state, reason @property def reportCode(self): if self.reason is NONE: return self.state return self.reason class StepRecord: """A single record used to store informmation about the success or otherwise of a test phase. A test phase is one of: - A suite set-up/tear-down. - A test set-up/tear-down. - The execution of the test-method itself. :Ivariables: result TODO reason TODO """ def __init__(self, result=NOT_RUN, reason=NONE, details=None): self.result, self.reason = result, reason self.exc = None self.reported = False def setResult(self, state, reason=NONE, details=None): self._state, self._reason = state, reason self._details = details # TODO: Just transitional. @property def state(self): return self.result @property def hasFailed(self): return self.result in (FAIL, BAD_SETUP) def __str__(self): return "StepRecord: %s/%s" % (self.state, self.reason) class StepRecordList: def __init__(self): self.entries = [] class RunRecord: """A set of records containing all information about a single test's run. This stores multiple `StepRecord` instances. The records are stored in a dictionary keyed by the following names: setUp, tearDown, prevTearDown, rn Each maps to a single `StepRecord`. suiteSetUp, suiteTearDown, prevSuiteTearDown Each mapping to a list of `StepRecord` instances, in execution order. """ _simpleNames = """setUp tearDown prevTearDown run postCheck""".split() _listNames = """suiteSetUp suiteTearDown prevSuiteTearDown""".split() _recordNames = _simpleNames + _listNames _runTime = None def __init__(self): #assert RunRecord._runTime is not None self.runTime = RunRecord._runTime self.invalid = False self._records = {} self.extraInfo = {} def __setstate__(self, state): self.invalid = False self.__dict__.update(state) @classmethod def startNewRun(cls): cls._runTime = time.time() @classmethod def finishRun(cls): cls._runTime = None def addStepRecord(self, name): """Add a new phase record to this run record. Adds a new `StepRecord` for a test phase, which must be one of those defined for a `RunRecord`. :Parameters: name The name for the record. It must be the name of a defined test phase. :Return: The newly added `StepRecord` instance. This will always be a newly created instance. """ assert name in RunRecord._recordNames record = StepRecord() if name in RunRecord._simpleNames: assert name not in self._records self._records[name] = record else: if name not in self._records: self._records[name] = StepRecordList() self._records[name].entries.append(record) return record def getResult(self, name): pass @property def result(self): # Is set-up failed then we report that as bad setup. try: rec = self._records["setUp"] except KeyError: pass else: if rec.state is not PASS: result = Result(BAD_SETUP, BAD_SETUP) return result # See if the test was actually executed. try: rec = self._records["run"] except KeyError: pass else: result = Result(rec.state, rec.reason) return result # Test was not run, so we need to find out why. A suite set-up # failure means we consider the test not-run. for rec in self._records.get("suiteSetUp", []): if rec.state is not PASS: return Result(NOT_RUN, BAD_SUITE_SETUP) try: rec = self._records["setUp"] except KeyError: pass else: if rec.state is not PASS: return Result(NOT_RUN, BAD_SETUP) return Result(NOT_RUN, NONE) @property def state(self): # If set-up failed then we report that as bad setup. try: rec = self._records["setUp"] except KeyError: pass else: if rec.state is NOT_RUN: return NOT_RUN if rec.state not in (PASS, BUG, BUG_PASS): return BAD_SETUP # If the test has a 'run' entry then that defines the state. try: rec = self._records["run"] #if rec.state is NOT_RUN: # return RUNNING return rec.state except KeyError: pass # Otherwise the state is not-run. return NOT_RUN @property def isRunnable(self): for name in ("suiteTearDown", "tearDown", "suiteSetUp", "setUp"): try: if self._records[name].state not in (PASS, SKIPPED, NOT_RUN): return True except KeyError: pass return False @property def hasRunProblem(self): for name in ("tearDown", "suiteTearDown", "suiteSetUp", "setUp", "run", "postCheck"): try: record = self._records[name] except KeyError: continue if name in ("tearDown", "setUp", "run", "postCheck"): if record.state not in (PASS, SKIPPED, NOT_RUN, TODO, BUG, BUG_PASS): return True else: for rec in record.entries: if rec.state not in (PASS, SKIPPED, NOT_RUN, TODO, BUG, BUG_PASS): return True return False @property def hasFailed(self): for name in ("suiteSetUp", "setUp", "run"): try: record = self._records[name] except KeyError: continue if name in ("setUp", "run"): if record.state not in (PASS, SKIPPED, NOT_RUN, TODO, BUG, BUG_PASS): return True else: for rec in record.entries: if rec.state not in (PASS, SKIPPED, NOT_RUN, TODO, BUG, BUG_PASS): return True return False @property def phaseRecord(self): """Get the most recent phaseRecord. This is used to get the most pertinent record for this test; i.e. the one that provides the most useful result for the test. TODO: This is not yet well defined. """ for name in ("tearDown", "run", "setUp"): try: return name, self._records[name] except KeyError: pass #return None, None seq = self._records.get("suiteSetUp", None) if seq is None: return None, None for ent in seq.entries: if ent.hasFailed: return "suiteSetUp", ent return "suiteSetUp", seq.entries[0] def getStepRecord(self, phase): """Get the record details for a test run phase.""" ent = self._records.get(phase, None) if hasattr(ent, "append"): # Yurk! seq = ent for ent in seq: if ent.hasFailed: return ent return seq.entries[0] if hasattr(ent, "entries"): # Double yurk! seq = ent.entries for ent in seq: if ent.hasFailed: return ent if seq: return seq[0] return return ent class TestItem: """Base class for `Test` and `Suite` classes. """ def __init__(self, item, uid, parentUid, context, namespace=None): """Constructor: :Parameters: item The concrete test item. For a test function/method this is the function/method itself. For a `ClassSuite` this is the instance and for a `ModuleSuite` this is the the module instance. uid The unique ID for this item, which is a tuple of strings. parentUid The unique ID of the parent item or ``None``. Only the root `Suite` of a test tree has a parent of ``None``. namespace A dictionary that provides the containing namespace for the test item. """ self.item = item self.uid = uid self.context = context self.parentUid = parentUid self.namespace = self._getNamespace(namespace) self._collection = None self._running = False self._marks = {} self.extraInfo = {} def setMark(self, mark): self._marks[mark] = None def clearMark(self, mark): if mark in self._marks: del self._marks[mark] def isMarked(self, mark): return mark in self._marks def setCollection(self, collection): self._collection = weakref.proxy(collection) # TODO: To remove. def setPhase(self, phase): self._phase = phase @intelliprop def state(self): """The current state of the test. """ result = self.getResult() return result.state def setState(self, state): if state is PASS: pass @intelliprop def level(self): """This item's level in the test tree. This is the number of ancestors this item has. If zero then this is the 'root' item. """ return len(self.ancestors) @intelliprop def parent(self): """The parent of this item, which may be ``None``. If this is ``None`` then this item is the root of a (possibly nested) suite of tests. """ return self._collection.parent(self) @intelliprop def ancestors(self): """A list of all ancestors for this item. Each entry is a UID. The first entry is the oldest ancesctor and the last entry is the immediate parent's UID. """ return self._collection.getAncestors(self) def hasFailingAncestor(self): """Check if any ancestor is considered to have failed. An ancestor suite has failed if, for example, its ``suiteSetup`` failed. :Return: ``True`` if any ancestors has failed. """ parent = self.parent if parent is None: return # TODO: Temporarily disabled. return return parent.hasFailed or parent.hasFailingAncestor() def _getNamespace(self, namespace=None): return namespace or dict([(n, getattr(self.item, n)) for n in dir(self.item)]) @intelliprop def rawDoc(self): """The raw docstring, no cleaning up performed at all.""" return self.namespace["__doc__"] @intelliprop def docLines(self): """The docstring as lines. This is cleaned up to remove leading and trailing blank lines from the summary and details. :Return: A sequence of (non-nul terminated) lines for the docstring. The summary (if present) is separated from the details by a single empty line. """ summary, description = self._getDocParts() if description: return summary + [""] + description return summary @intelliprop def doc(self): """The docstring after being cleaned up. :Return: The cleaned up docstrinc as a multiline string. Leading and trailing blank lines are removed and the summary is separated from any details by a single blakn line. Common leading whitspace is also removed from each line. """ return "\n".join(self.docLines) def _getDocParts(self): # Lose leading blank lines. lines = self.rawDoc.splitlines() while lines and not lines[0].strip(): lines.pop(0) # All lines up to next blank line are the summary. summary = [] while lines and lines[0].strip(): summary.append(lines.pop(0)) # Strip leading and trailing blank lines from the remaining details. while lines and not lines[0].strip(): lines.pop(0) while lines and not lines[-1].strip(): lines.pop() # Dedent the summary and details before returning them. summary = summary[:1] + dedentLines(summary[1:]) details = dedentLines(lines) return summary, details @property def summary(self): summary, description = self._getDocParts() return " ".join(summary) @property def details(self): summary, description = self._getDocParts() return description @property def sourcesUnderTest(self): sources = [] for p in self.namespace.get("sources_under_test", []): if not os.path.isabs(p): p = os.path.abspath(os.path.join(self.dirname, p)) sources.append(p) p = self.parent if p is not None: sources.extend(p.sourcesUnderTest) return sources @property def klass(self): return None @property def path(self): p = self.namespace.get("__file__", None) if p is None: return self.parent.path if p.endswith(".pyc"): p = p[:-1] return p @property def dirname(self): f = self.path if f: return os.path.dirname(f) @property def isBug(self): return False class Test(TestItem): typeName = "Test" isSuite = False amNull = False def __init__(self, *args, **kwargs): super(Test, self).__init__(*args, **kwargs) self._runHistory = [] self.stopAll = False if self.func: self.func.cs_test_info.test = weakref.proxy(self) def getHistory(self): return self._runHistory def dumpHist(self): return self._runHistory[-1].dump() def startNewRun(self): rec = RunRecord() self._runHistory.append(rec) def abortRun(self): self._runHistory.pop() def addStepRecord(self, name): runRecord = self._runHistory[-1] return runRecord.addStepRecord(name) @property def postCheck(self): return self.parent.postCheck @intelliprop def hasFailed(self): """Check if this test has properly failed. :Return: ``True`` if the test has failed to run for any reason. """ record = self.getRunRecord().getRecord("run") return record.state is FAIL @property def klass(self): return self.parent.klass @property def funcName(self): return self.item.__name__ @property def func(self): return self.item @property def info(self): return self.func.cs_test_info @property def isBroken(self): if not hasattr(self, "info"): raise PropertyError("%r has no attribute %r" % ( self.__class__.__name__, "info")) flag = self.info.reserved_cs_flags.get("broken", None) if flag is None: flag = self.info.cs_flags.get("broken", False) # deprecated return flag @property def isTodo(self): if not hasattr(self, "info"): raise PropertyError("%r has no attribute %r" % ( self.__class__.__name__, "info")) return self.info.cs_flags.get("todo", False) @property def isBug(self): if not hasattr(self, "info"): raise PropertyError("%r has no attribute %r" % ( self.__class__.__name__, "info")) flag = self.info.reserved_cs_flags.get("bug", None) if flag is None: flag = self.info.cs_flags.get("bug", False) # deprecated return flag @property def shouldFork(self): if not hasattr(self, "info"): raise PropertyError("%r has no attribute %r" % ( self.__class__.__name__, "info")) if self.info.reserved_cs_flags.get("fork", False): return True parent = self.parent try: return parent.suite.cs_attrs.fork_all except AttributeError: return False @property def testID(self): return self.info.cs_tags.get("testID", None) @property def title(self): return self.info.cs_flags.get("title", None) @property def isRunnable(self): #if self.isBroken and not options.no_disabled: # return False if self.parent.exited: return False return True @property def state(self): rec = self.runRecord if rec: return rec.state return NOT_RUN @property def result(self): rec = self.runRecord if rec: return rec.result return NOT_RUN @property def hasRunProblem(self): rec = self.runRecord if rec: return rec.hasRunProblem return False @property def hasFailed(self): rec = self.runRecord if rec: return rec.hasFailed return False def addRunRecord(self, record): self._runHistory.append(record) if len(self._runHistory) > 5: self._runHistory[:] = self._runHistory[-5:] @property def runRecord(self): """The XXX TODO""" if self._runHistory: for rec in reversed(self._runHistory): if not rec.invalid: return rec # TODO: Should now be StepRecord. @property def phaseRecord(self): """The XXX TODO""" if not self._runHistory: return None, None return self._runHistory[-1].phaseRecord def getStepRecord(self, phase): return self._runHistory[-1].getStepRecord(phase) def getTestProcedure(self): return self._collection.spec.getThing(self) class NullTest(Test): amNull = True def __init__(self): context = Context.getContext(dirPath=os.getcwd()) super(NullTest, self).__init__(None, None, None, context) self.number = 0 self.startNewRun() def startNewRun(self): rec = RunRecord() self._runHistory.append(rec) def abortRun(self): self._runHistory.pop() @property def isBug(self): return False def __bool__(self): return False class Suite(TestItem): typeName = "Suite" isSuite = True def __init__(self, *args, **kwargs): self.myDir = kwargs.pop("myDir") super(Suite, self).__init__(*args, **kwargs) self.exited = False self.number = 0 self.skipTests = False self.entered = False def reset(self): self.entered = False self.skipTests = False @intelliprop def children(self): """All the direct children of this item.""" tests = [t for t in self._collection if t.parent is self] suites = [t for t in self._collection.suites if t.parent is self] return suites + tests @intelliprop def tests(self): """All the direct test children of this item.""" return [t for t in self._collection if t.parent is self] @property def suite(self): return self.item @property def runAfter(self): """The _run_after for this source.""" return self.namespace.get("_run_after", []) @property def postCheck(self): return self.namespace.get("postCheck", lambda: None) @property def setUp(self): return self.namespace.get("setUp", lambda: None) @property def postSetUp(self): return self.namespace.get("postSetUp", lambda: None) @property def tearDown(self): return self.namespace.get("tearDown", lambda: None) @property def suiteSetUp(self): return self.namespace.get("suiteSetUp", lambda: None) @property def suiteTearDown(self): return self.namespace.get("suiteTearDown", lambda: None) def getResult(self, name=None): runCount = 0 childStates = {} result = Result(PASS, NONE) if not self.children: result.state = NOT_RUN return result for c in self.children: state = c.state runCount += state is not NOT_RUN childStates[state] = None if FAIL in childStates: result.state = CHILD_FAIL elif CHILD_FAIL in childStates: result.state = CHILD_FAIL elif BAD_SETUP in childStates: result.state = CHILD_FAIL elif PART_RUN in childStates: result.state = PART_RUN elif NOT_RUN in childStates: if runCount: result.state = PART_RUN else: result.state = NOT_RUN return result @property def result(self): return self.getResult() @property def state(self): result = self.getResult() return result.reportCode def hasTests(self): # Deprecated. Only used for old reporter support. for t in self._collection: if t.parent is self: return True class ModuleSuite(Suite): pass class ClassSuite(Suite): @property def klass(self): return self.item.__class__.__name__ def enter_pdb(): """Enter the python debugger.""" import sys, pdb sys.stdout, sys.stderr = sys.__stdout__, sys.__stderr__ pdb.set_trace()
[ 33, 64, 81, 104, 122 ]
755
7b1c7228c1fc9501ab857cba62a7e073691e75c9
<mask token> class Person: def __call__(self, name): print('__call__' + ' Hello ' + name) <mask token> <mask token>
<mask token> class Person: def __call__(self, name): print('__call__' + ' Hello ' + name) def hello(self, name): print('hello ' + name) <mask token>
<mask token> class Person: def __call__(self, name): print('__call__' + ' Hello ' + name) def hello(self, name): print('hello ' + name) <mask token> person('hcq') person.hello('hcq')
<mask token> class Person: def __call__(self, name): print('__call__' + ' Hello ' + name) def hello(self, name): print('hello ' + name) person = Person() person('hcq') person.hello('hcq')
""" @Description: @Author : HCQ @Contact_1: [email protected] @Project : pytorch @File : call_test @Time : 2022/5/24 下午10:19 @Last Modify Time @Version @Desciption -------------------- -------- ----------- 2022/5/24 下午10:19 1.0 None """ class Person(): def __call__(self, name): print("__call__" + " Hello " + name) def hello(self, name): print("hello " + name) person = Person() person("hcq") # 直接调用call person.hello("hcq")
[ 2, 3, 4, 5, 6 ]
756
6a7e5a78f516cecf083ca3900bdaaf427bedd497
<mask token> def get_stock_time_series(data_df, stock_id): curr_ID_data = data_df.loc[stock_id] output = np.array(curr_ID_data[0]) for i in range(1, len(curr_ID_data.index)): output = np.vstack((output, curr_ID_data[i])) return output <mask token>
<mask token> def get_stock_time_series(data_df, stock_id): curr_ID_data = data_df.loc[stock_id] output = np.array(curr_ID_data[0]) for i in range(1, len(curr_ID_data.index)): output = np.vstack((output, curr_ID_data[i])) return output <mask token> for ETF_ID in ETF_ID_list: Nm_conf = conf.config('feature_conf').config['Nm'] if Nm_conf['enable'] is True: Nm_method = Nm_conf['method'] file_postfix = '_Nm_' + str(Nm_conf['type'][0] ) + '_' + Nm_method + '_' + str(94) + '_' + ETF_ID + '.pkl' else: file_postfix = '_' + str(94) + '.pkl' src_file_path = './Data/all_feature_data' + file_postfix meta_file_path = './Data/all_meta_data' + file_postfix data = pd.read_pickle(src_file_path) f = open(meta_file_path, 'rb') tasharep_ID = pickle.load(f) member_ID = pickle.load(f) Date = pickle.load(f) feature_list = pickle.load(f) price_scaler = pickle.load(f) trade_scaler = pickle.load(f) f_idx = 59 src_time_period = ['20000101', '20180511'] eval_time_period = ['20180402', '20180518'] eval_time_len = Date.index(eval_time_period[1]) - Date.index( eval_time_period[0]) + 1 total_acc = 0 for day_shift in range(eval_time_len - 5): eval_start_date = Date.index(eval_time_period[0]) + day_shift target_start_date = eval_start_date - 21 target_time_period = [Date[target_start_date], Date[eval_start_date]] next_time_period = [Date[eval_start_date], Date[eval_start_date + 5]] date_mask = (data.columns > src_time_period[0]) & (data.columns <= src_time_period[1]) src_data = data.iloc[:, date_mask] date_mask = (data.columns > target_time_period[0]) & (data.columns <= target_time_period[1]) target_data = data.iloc[:, date_mask] date_mask = (data.columns > next_time_period[0]) & (data.columns <= next_time_period[1]) next_data = data.iloc[:, date_mask] src_TS = get_stock_time_series(src_data, ETF_ID) target_TS = get_stock_time_series(target_data, ETF_ID) next_TS = get_stock_time_series(next_data, ETF_ID) overall_TS = get_stock_time_series(data, ETF_ID) target_xcorr = np.correlate(src_TS[:, f_idx], target_TS[:, f_idx], mode='valid') target_len = len(target_TS) max_target_xcorr_idx = target_xcorr.argsort()[::-1] predict_target_idx = max_target_xcorr_idx + target_len next_len = len(next_TS) max_next_xcorr_idx = next_xcorr.argsort()[::-1] top_num = 10 acc = [] label = np.argmax(next_TS[:, -3:], axis=-1) for idx in max_target_xcorr_idx[:top_num]: predict = np.argmax(overall_TS[predict_target_idx[idx]: predict_target_idx[idx] + next_len, -3:], axis=-1) acc.append(sum(label == predict) / next_len) max_acc_idx = np.argsort(acc)[::-1] output_xcorr_idx = [max_target_xcorr_idx[acc_idx] for acc_idx in max_acc_idx] top_num = 3 avg_acc = 0 acc = [] for idx in output_xcorr_idx[:top_num]: predict = np.argmax(overall_TS[predict_target_idx[idx]: predict_target_idx[idx] + next_len, -3:], axis=-1) acc.append(sum(label == predict) / next_len) avg_acc = avg_acc + acc[-1] print('Avg. Acc.: [{}]'.format(avg_acc / top_num)) total_acc = total_acc + avg_acc / top_num print('[{}] Overall Acc.: [{}]'.format(ETF_ID, total_acc / ( eval_time_len - 5))) output_date[ETF_ID] = [Date[i] for i in output_xcorr_idx[:10]] <mask token> pickle.dump(output_date, f, True) f.close()
<mask token> def get_stock_time_series(data_df, stock_id): curr_ID_data = data_df.loc[stock_id] output = np.array(curr_ID_data[0]) for i in range(1, len(curr_ID_data.index)): output = np.vstack((output, curr_ID_data[i])) return output ID_conf = conf.config('feature_conf').config['ID'] ETF_ID_list = ['0050', '0052', '0053', '0054', '0055', '0056', '0057', '0058', '0059', '006201', '006203', '006204', '006208'] output_date = {} for ETF_ID in ETF_ID_list: Nm_conf = conf.config('feature_conf').config['Nm'] if Nm_conf['enable'] is True: Nm_method = Nm_conf['method'] file_postfix = '_Nm_' + str(Nm_conf['type'][0] ) + '_' + Nm_method + '_' + str(94) + '_' + ETF_ID + '.pkl' else: file_postfix = '_' + str(94) + '.pkl' src_file_path = './Data/all_feature_data' + file_postfix meta_file_path = './Data/all_meta_data' + file_postfix data = pd.read_pickle(src_file_path) f = open(meta_file_path, 'rb') tasharep_ID = pickle.load(f) member_ID = pickle.load(f) Date = pickle.load(f) feature_list = pickle.load(f) price_scaler = pickle.load(f) trade_scaler = pickle.load(f) f_idx = 59 src_time_period = ['20000101', '20180511'] eval_time_period = ['20180402', '20180518'] eval_time_len = Date.index(eval_time_period[1]) - Date.index( eval_time_period[0]) + 1 total_acc = 0 for day_shift in range(eval_time_len - 5): eval_start_date = Date.index(eval_time_period[0]) + day_shift target_start_date = eval_start_date - 21 target_time_period = [Date[target_start_date], Date[eval_start_date]] next_time_period = [Date[eval_start_date], Date[eval_start_date + 5]] date_mask = (data.columns > src_time_period[0]) & (data.columns <= src_time_period[1]) src_data = data.iloc[:, date_mask] date_mask = (data.columns > target_time_period[0]) & (data.columns <= target_time_period[1]) target_data = data.iloc[:, date_mask] date_mask = (data.columns > next_time_period[0]) & (data.columns <= next_time_period[1]) next_data = data.iloc[:, date_mask] src_TS = get_stock_time_series(src_data, ETF_ID) target_TS = get_stock_time_series(target_data, ETF_ID) next_TS = get_stock_time_series(next_data, ETF_ID) overall_TS = get_stock_time_series(data, ETF_ID) target_xcorr = np.correlate(src_TS[:, f_idx], target_TS[:, f_idx], mode='valid') target_len = len(target_TS) max_target_xcorr_idx = target_xcorr.argsort()[::-1] predict_target_idx = max_target_xcorr_idx + target_len next_len = len(next_TS) max_next_xcorr_idx = next_xcorr.argsort()[::-1] top_num = 10 acc = [] label = np.argmax(next_TS[:, -3:], axis=-1) for idx in max_target_xcorr_idx[:top_num]: predict = np.argmax(overall_TS[predict_target_idx[idx]: predict_target_idx[idx] + next_len, -3:], axis=-1) acc.append(sum(label == predict) / next_len) max_acc_idx = np.argsort(acc)[::-1] output_xcorr_idx = [max_target_xcorr_idx[acc_idx] for acc_idx in max_acc_idx] top_num = 3 avg_acc = 0 acc = [] for idx in output_xcorr_idx[:top_num]: predict = np.argmax(overall_TS[predict_target_idx[idx]: predict_target_idx[idx] + next_len, -3:], axis=-1) acc.append(sum(label == predict) / next_len) avg_acc = avg_acc + acc[-1] print('Avg. Acc.: [{}]'.format(avg_acc / top_num)) total_acc = total_acc + avg_acc / top_num print('[{}] Overall Acc.: [{}]'.format(ETF_ID, total_acc / ( eval_time_len - 5))) output_date[ETF_ID] = [Date[i] for i in output_xcorr_idx[:10]] f = open('./Data/xcorr_date_data.pkl', 'wb') pickle.dump(output_date, f, True) f.close()
<mask token> import numpy as np import pandas as pd import pickle import matplotlib.pyplot as plt from datetime import datetime, timedelta import config as conf def get_stock_time_series(data_df, stock_id): curr_ID_data = data_df.loc[stock_id] output = np.array(curr_ID_data[0]) for i in range(1, len(curr_ID_data.index)): output = np.vstack((output, curr_ID_data[i])) return output ID_conf = conf.config('feature_conf').config['ID'] ETF_ID_list = ['0050', '0052', '0053', '0054', '0055', '0056', '0057', '0058', '0059', '006201', '006203', '006204', '006208'] output_date = {} for ETF_ID in ETF_ID_list: Nm_conf = conf.config('feature_conf').config['Nm'] if Nm_conf['enable'] is True: Nm_method = Nm_conf['method'] file_postfix = '_Nm_' + str(Nm_conf['type'][0] ) + '_' + Nm_method + '_' + str(94) + '_' + ETF_ID + '.pkl' else: file_postfix = '_' + str(94) + '.pkl' src_file_path = './Data/all_feature_data' + file_postfix meta_file_path = './Data/all_meta_data' + file_postfix data = pd.read_pickle(src_file_path) f = open(meta_file_path, 'rb') tasharep_ID = pickle.load(f) member_ID = pickle.load(f) Date = pickle.load(f) feature_list = pickle.load(f) price_scaler = pickle.load(f) trade_scaler = pickle.load(f) f_idx = 59 src_time_period = ['20000101', '20180511'] eval_time_period = ['20180402', '20180518'] eval_time_len = Date.index(eval_time_period[1]) - Date.index( eval_time_period[0]) + 1 total_acc = 0 for day_shift in range(eval_time_len - 5): eval_start_date = Date.index(eval_time_period[0]) + day_shift target_start_date = eval_start_date - 21 target_time_period = [Date[target_start_date], Date[eval_start_date]] next_time_period = [Date[eval_start_date], Date[eval_start_date + 5]] date_mask = (data.columns > src_time_period[0]) & (data.columns <= src_time_period[1]) src_data = data.iloc[:, date_mask] date_mask = (data.columns > target_time_period[0]) & (data.columns <= target_time_period[1]) target_data = data.iloc[:, date_mask] date_mask = (data.columns > next_time_period[0]) & (data.columns <= next_time_period[1]) next_data = data.iloc[:, date_mask] src_TS = get_stock_time_series(src_data, ETF_ID) target_TS = get_stock_time_series(target_data, ETF_ID) next_TS = get_stock_time_series(next_data, ETF_ID) overall_TS = get_stock_time_series(data, ETF_ID) target_xcorr = np.correlate(src_TS[:, f_idx], target_TS[:, f_idx], mode='valid') target_len = len(target_TS) max_target_xcorr_idx = target_xcorr.argsort()[::-1] predict_target_idx = max_target_xcorr_idx + target_len next_len = len(next_TS) max_next_xcorr_idx = next_xcorr.argsort()[::-1] top_num = 10 acc = [] label = np.argmax(next_TS[:, -3:], axis=-1) for idx in max_target_xcorr_idx[:top_num]: predict = np.argmax(overall_TS[predict_target_idx[idx]: predict_target_idx[idx] + next_len, -3:], axis=-1) acc.append(sum(label == predict) / next_len) max_acc_idx = np.argsort(acc)[::-1] output_xcorr_idx = [max_target_xcorr_idx[acc_idx] for acc_idx in max_acc_idx] top_num = 3 avg_acc = 0 acc = [] for idx in output_xcorr_idx[:top_num]: predict = np.argmax(overall_TS[predict_target_idx[idx]: predict_target_idx[idx] + next_len, -3:], axis=-1) acc.append(sum(label == predict) / next_len) avg_acc = avg_acc + acc[-1] print('Avg. Acc.: [{}]'.format(avg_acc / top_num)) total_acc = total_acc + avg_acc / top_num print('[{}] Overall Acc.: [{}]'.format(ETF_ID, total_acc / ( eval_time_len - 5))) output_date[ETF_ID] = [Date[i] for i in output_xcorr_idx[:10]] f = open('./Data/xcorr_date_data.pkl', 'wb') pickle.dump(output_date, f, True) f.close()
# -*- coding: utf-8 -*- """ Created on Tue May 22 15:01:21 2018 @author: Weiyu_Lee """ import numpy as np import pandas as pd import pickle import matplotlib.pyplot as plt from datetime import datetime, timedelta import config as conf def get_stock_time_series(data_df, stock_id): curr_ID_data = data_df.loc[stock_id] output = np.array(curr_ID_data[0]) for i in range(1, len(curr_ID_data.index)): output = np.vstack((output, curr_ID_data[i])) return output ID_conf = conf.config('feature_conf').config['ID'] #ETF_ID = ID_conf["ID"] #ETF_ID_list = ["0050"] ETF_ID_list = ["0050", "0052", "0053", "0054", "0055", "0056", "0057", "0058", "0059", "006201", "006203", "006204", "006208"] output_date = {} for ETF_ID in ETF_ID_list: Nm_conf = conf.config('feature_conf').config['Nm'] if Nm_conf["enable"] is True: Nm_method = Nm_conf["method"] file_postfix = '_Nm_' + str(Nm_conf["type"][0]) + '_' + Nm_method + '_' + str(94) + "_" + ETF_ID + '.pkl' else: file_postfix = "_" + str(94) + '.pkl' src_file_path = './Data/all_feature_data' + file_postfix meta_file_path = './Data/all_meta_data' + file_postfix data = pd.read_pickle(src_file_path) f = open(meta_file_path, "rb") tasharep_ID = pickle.load(f) member_ID = pickle.load(f) Date = pickle.load(f) feature_list = pickle.load(f) price_scaler = pickle.load(f) trade_scaler = pickle.load(f) f_idx = 59 # MACD src_time_period = ['20000101', '20180511'] # eval_time_period = ['20180511', '20180518'] eval_time_period = ['20180402', '20180518'] eval_time_len = Date.index(eval_time_period[1]) - Date.index(eval_time_period[0]) + 1 total_acc = 0 for day_shift in range(eval_time_len-5): eval_start_date = Date.index(eval_time_period[0]) + day_shift target_start_date = eval_start_date - 21 target_time_period = [Date[target_start_date], Date[eval_start_date]] next_time_period = [Date[eval_start_date], Date[eval_start_date + 5]] date_mask = (data.columns > src_time_period[0]) & (data.columns <= src_time_period[1]) src_data = data.iloc[:, date_mask] date_mask = (data.columns > target_time_period[0]) & (data.columns <= target_time_period[1]) target_data = data.iloc[:, date_mask] date_mask = (data.columns > next_time_period[0]) & (data.columns <= next_time_period[1]) next_data = data.iloc[:, date_mask] src_TS = get_stock_time_series(src_data, ETF_ID) target_TS = get_stock_time_series(target_data, ETF_ID) next_TS = get_stock_time_series(next_data, ETF_ID) overall_TS = get_stock_time_series(data, ETF_ID) target_xcorr = np.correlate(src_TS[:, f_idx], target_TS[:, f_idx], mode='valid') # next_xcorr = np.correlate(src_TS[:, f_idx], next_TS[:, f_idx], mode='valid') target_len = len(target_TS) max_target_xcorr_idx = target_xcorr.argsort()[::-1] predict_target_idx = max_target_xcorr_idx + target_len next_len = len(next_TS) max_next_xcorr_idx = next_xcorr.argsort()[::-1] # plt.plot(target_xcorr) # plt.savefig("target_xcorr_{}.png".format(ETF_ID)) #for idx in max_target_xcorr_idx[:10]: # plt.figure() # plt.plot(target_TS[:, 84]) # plt.plot(src_TS[max_target_xcorr_idx[idx]:max_target_xcorr_idx[idx]+target_len, 84]) #plt.figure() #plt.plot(target_xcorr) #plt.plot(next_xcorr) top_num = 10 acc = [] label = np.argmax(next_TS[:, -3:], axis=-1) for idx in max_target_xcorr_idx[:top_num]: predict = np.argmax(overall_TS[predict_target_idx[idx]:predict_target_idx[idx]+next_len, -3:], axis=-1) acc.append(sum(label == predict) / next_len) max_acc_idx = np.argsort(acc)[::-1] output_xcorr_idx = [max_target_xcorr_idx[acc_idx] for acc_idx in max_acc_idx] top_num = 3 avg_acc = 0 acc = [] for idx in output_xcorr_idx[:top_num]: #plt.figure() #plt.plot(next_TS[:, 84]) #plt.plot(overall_TS[predict_target_idx[idx]:predict_target_idx[idx]+next_len, 84]) #plt.figure() #plt.plot(overall_TS[predict_target_idx[idx]:predict_target_idx[idx]+next_len, 3]) predict = np.argmax(overall_TS[predict_target_idx[idx]:predict_target_idx[idx]+next_len, -3:], axis=-1) acc.append(sum(label == predict) / next_len) avg_acc = avg_acc + acc[-1] #print("Acc.: [{}]".format(acc[-1])) print("Avg. Acc.: [{}]".format(avg_acc/top_num)) total_acc = total_acc + avg_acc/top_num print("[{}] Overall Acc.: [{}]".format(ETF_ID, total_acc/(eval_time_len-5))) output_date[ETF_ID] = [Date[i] for i in output_xcorr_idx[:10]] f = open('./Data/xcorr_date_data.pkl', 'wb') pickle.dump(output_date, f, True) f.close()
[ 1, 2, 3, 4, 5 ]
757
5a33aeffa740a41bd0bd1d80f45796ae37377a4c
<mask token> class AbstractLayer(models.Model): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> @classmethod def filter(cls, *args, **kwargs) ->models.QuerySet: """ Just to reduce the model.objects.filter to model.filter :param args: :param kwargs: :return: QuerySet """ return cls.objects.filter(*args, **kwargs) @classmethod def all(cls): """ Shortcut for model.objects.all """ return cls.objects.all() <mask token> @classmethod def create(cls, *args, **kwargs): """ Since we are not using auto fields for created_time, we will be implementing our custom create method to take care of that. Also, we reduce model.objects.create to model.create. :param args: :param kwargs: :return: created object """ now = get_now() obj = cls(*args, **kwargs, created_time=now, last_updated_time=now) obj.save() return obj class Meta: abstract = True class Country(AbstractLayer): code = models.CharField(max_length=7, unique=True) def __str__(self): return self.code class Meta: db_table = 'countries' class City(AbstractLayer): name = models.CharField(max_length=255) state = models.CharField(max_length=255) country = models.ForeignKey(Country, on_delete=models.CASCADE, related_name='cities') lon = models.CharField(max_length=31) lat = models.CharField(max_length=31) def __str__(self): return self.name class Meta: db_table = 'cities' class Forecast(AbstractLayer): city = models.ForeignKey(City, on_delete=models.CASCADE, related_name= 'forecasts') detailed_status = models.CharField(max_length=1023, blank=True, null=True) data = JSONField(blank=True, null=True, help_text= 'Whole JSON data representing the forecast details') time = models.DateTimeField() class Meta: db_table = 'forecasts'
<mask token> class BaseManager(models.Manager): <mask token> <mask token> <mask token> class AbstractLayer(models.Model): """ All basic abstraction is done here. Also, we'll implement some methods which will simplify the work with models. """ default_manager = BaseManager objects = BaseManager all_objects = models.Manager created_time = models.DateTimeField(default=get_now) last_updated_time = models.DateTimeField(default=get_now) @classmethod def get(cls, *args, **kwargs) ->(object or None): """ We use our custom get method to avoid errors (like Not Found). This way we won't have to use try/except for the rest of our codebase (at least for non-existing objects). :param args: :param kwargs: :return: object of model """ try: return cls.objects.get(*args, **kwargs) except cls.DoesNotExist: return None @classmethod def filter(cls, *args, **kwargs) ->models.QuerySet: """ Just to reduce the model.objects.filter to model.filter :param args: :param kwargs: :return: QuerySet """ return cls.objects.filter(*args, **kwargs) @classmethod def all(cls): """ Shortcut for model.objects.all """ return cls.objects.all() def save(self, *args, **kwargs) ->None: """ We won't be using auto_now and auto_add_now for created_time and last_updated_time, since they might cause unintentional errors in future. Instead we implement custom save method to update them. :param args: :param kwargs: :return: None """ self.last_updated_time = get_now() super(AbstractLayer, self).save(*args, **kwargs) @classmethod def create(cls, *args, **kwargs): """ Since we are not using auto fields for created_time, we will be implementing our custom create method to take care of that. Also, we reduce model.objects.create to model.create. :param args: :param kwargs: :return: created object """ now = get_now() obj = cls(*args, **kwargs, created_time=now, last_updated_time=now) obj.save() return obj class Meta: abstract = True class Country(AbstractLayer): code = models.CharField(max_length=7, unique=True) def __str__(self): return self.code class Meta: db_table = 'countries' class City(AbstractLayer): name = models.CharField(max_length=255) state = models.CharField(max_length=255) country = models.ForeignKey(Country, on_delete=models.CASCADE, related_name='cities') lon = models.CharField(max_length=31) lat = models.CharField(max_length=31) def __str__(self): return self.name class Meta: db_table = 'cities' class Forecast(AbstractLayer): city = models.ForeignKey(City, on_delete=models.CASCADE, related_name= 'forecasts') detailed_status = models.CharField(max_length=1023, blank=True, null=True) data = JSONField(blank=True, null=True, help_text= 'Whole JSON data representing the forecast details') time = models.DateTimeField() class Meta: db_table = 'forecasts'
<mask token> class BaseManager(models.Manager): <mask token> <mask token> def get_queryset(self): super(BaseManager, self).get_queryset().order_by('-created_time') class AbstractLayer(models.Model): """ All basic abstraction is done here. Also, we'll implement some methods which will simplify the work with models. """ default_manager = BaseManager objects = BaseManager all_objects = models.Manager created_time = models.DateTimeField(default=get_now) last_updated_time = models.DateTimeField(default=get_now) @classmethod def get(cls, *args, **kwargs) ->(object or None): """ We use our custom get method to avoid errors (like Not Found). This way we won't have to use try/except for the rest of our codebase (at least for non-existing objects). :param args: :param kwargs: :return: object of model """ try: return cls.objects.get(*args, **kwargs) except cls.DoesNotExist: return None @classmethod def filter(cls, *args, **kwargs) ->models.QuerySet: """ Just to reduce the model.objects.filter to model.filter :param args: :param kwargs: :return: QuerySet """ return cls.objects.filter(*args, **kwargs) @classmethod def all(cls): """ Shortcut for model.objects.all """ return cls.objects.all() def save(self, *args, **kwargs) ->None: """ We won't be using auto_now and auto_add_now for created_time and last_updated_time, since they might cause unintentional errors in future. Instead we implement custom save method to update them. :param args: :param kwargs: :return: None """ self.last_updated_time = get_now() super(AbstractLayer, self).save(*args, **kwargs) @classmethod def create(cls, *args, **kwargs): """ Since we are not using auto fields for created_time, we will be implementing our custom create method to take care of that. Also, we reduce model.objects.create to model.create. :param args: :param kwargs: :return: created object """ now = get_now() obj = cls(*args, **kwargs, created_time=now, last_updated_time=now) obj.save() return obj class Meta: abstract = True class Country(AbstractLayer): code = models.CharField(max_length=7, unique=True) def __str__(self): return self.code class Meta: db_table = 'countries' class City(AbstractLayer): name = models.CharField(max_length=255) state = models.CharField(max_length=255) country = models.ForeignKey(Country, on_delete=models.CASCADE, related_name='cities') lon = models.CharField(max_length=31) lat = models.CharField(max_length=31) def __str__(self): return self.name class Meta: db_table = 'cities' class Forecast(AbstractLayer): city = models.ForeignKey(City, on_delete=models.CASCADE, related_name= 'forecasts') detailed_status = models.CharField(max_length=1023, blank=True, null=True) data = JSONField(blank=True, null=True, help_text= 'Whole JSON data representing the forecast details') time = models.DateTimeField() class Meta: db_table = 'forecasts'
<mask token> class BaseManager(models.Manager): <mask token> use_for_related_fields = True def get_queryset(self): super(BaseManager, self).get_queryset().order_by('-created_time') class AbstractLayer(models.Model): """ All basic abstraction is done here. Also, we'll implement some methods which will simplify the work with models. """ default_manager = BaseManager objects = BaseManager all_objects = models.Manager created_time = models.DateTimeField(default=get_now) last_updated_time = models.DateTimeField(default=get_now) @classmethod def get(cls, *args, **kwargs) ->(object or None): """ We use our custom get method to avoid errors (like Not Found). This way we won't have to use try/except for the rest of our codebase (at least for non-existing objects). :param args: :param kwargs: :return: object of model """ try: return cls.objects.get(*args, **kwargs) except cls.DoesNotExist: return None @classmethod def filter(cls, *args, **kwargs) ->models.QuerySet: """ Just to reduce the model.objects.filter to model.filter :param args: :param kwargs: :return: QuerySet """ return cls.objects.filter(*args, **kwargs) @classmethod def all(cls): """ Shortcut for model.objects.all """ return cls.objects.all() def save(self, *args, **kwargs) ->None: """ We won't be using auto_now and auto_add_now for created_time and last_updated_time, since they might cause unintentional errors in future. Instead we implement custom save method to update them. :param args: :param kwargs: :return: None """ self.last_updated_time = get_now() super(AbstractLayer, self).save(*args, **kwargs) @classmethod def create(cls, *args, **kwargs): """ Since we are not using auto fields for created_time, we will be implementing our custom create method to take care of that. Also, we reduce model.objects.create to model.create. :param args: :param kwargs: :return: created object """ now = get_now() obj = cls(*args, **kwargs, created_time=now, last_updated_time=now) obj.save() return obj class Meta: abstract = True class Country(AbstractLayer): code = models.CharField(max_length=7, unique=True) def __str__(self): return self.code class Meta: db_table = 'countries' class City(AbstractLayer): name = models.CharField(max_length=255) state = models.CharField(max_length=255) country = models.ForeignKey(Country, on_delete=models.CASCADE, related_name='cities') lon = models.CharField(max_length=31) lat = models.CharField(max_length=31) def __str__(self): return self.name class Meta: db_table = 'cities' class Forecast(AbstractLayer): city = models.ForeignKey(City, on_delete=models.CASCADE, related_name= 'forecasts') detailed_status = models.CharField(max_length=1023, blank=True, null=True) data = JSONField(blank=True, null=True, help_text= 'Whole JSON data representing the forecast details') time = models.DateTimeField() class Meta: db_table = 'forecasts'
from django.contrib.postgres.fields import JSONField from django.db import models from core.utils.time import get_now class BaseManager(models.Manager): """ Our basic manager is used to order all child models of AbstractLayer by created time (descending), therefore it creates a LIFO order, causing the recent ones appear first in results. """ use_for_related_fields = True def get_queryset(self): super(BaseManager, self).get_queryset().order_by('-created_time') class AbstractLayer(models.Model): """ All basic abstraction is done here. Also, we'll implement some methods which will simplify the work with models. """ # let's configure managers default_manager = BaseManager objects = BaseManager all_objects = models.Manager # All objects in our database are gonna have time of creation and last updated time. created_time = models.DateTimeField(default=get_now) last_updated_time = models.DateTimeField(default=get_now) @classmethod def get(cls, *args, **kwargs) -> object or None: """ We use our custom get method to avoid errors (like Not Found). This way we won't have to use try/except for the rest of our codebase (at least for non-existing objects). :param args: :param kwargs: :return: object of model """ try: return cls.objects.get(*args, **kwargs) except cls.DoesNotExist: # if objects does not exist, we use None return None @classmethod def filter(cls, *args, **kwargs) -> models.QuerySet: """ Just to reduce the model.objects.filter to model.filter :param args: :param kwargs: :return: QuerySet """ return cls.objects.filter(*args, **kwargs) @classmethod def all(cls): """ Shortcut for model.objects.all """ return cls.objects.all() def save(self, *args, **kwargs) -> None: """ We won't be using auto_now and auto_add_now for created_time and last_updated_time, since they might cause unintentional errors in future. Instead we implement custom save method to update them. :param args: :param kwargs: :return: None """ self.last_updated_time = get_now() super(AbstractLayer, self).save(*args, **kwargs) @classmethod def create(cls, *args, **kwargs): """ Since we are not using auto fields for created_time, we will be implementing our custom create method to take care of that. Also, we reduce model.objects.create to model.create. :param args: :param kwargs: :return: created object """ now = get_now() obj = cls( *args, **kwargs, created_time=now, last_updated_time=now ) obj.save() return obj class Meta: abstract = True class Country(AbstractLayer): code = models.CharField(max_length=7, unique=True) def __str__(self): return self.code class Meta: db_table = 'countries' class City(AbstractLayer): name = models.CharField(max_length=255) state = models.CharField(max_length=255) country = models.ForeignKey(Country, on_delete=models.CASCADE, related_name='cities') lon = models.CharField(max_length=31) lat = models.CharField(max_length=31) def __str__(self): return self.name class Meta: db_table = 'cities' class Forecast(AbstractLayer): city = models.ForeignKey(City, on_delete=models.CASCADE, related_name='forecasts') detailed_status = models.CharField(max_length=1023, blank=True, null=True) data = JSONField(blank=True, null=True, help_text='Whole JSON data representing the forecast details') time = models.DateTimeField() class Meta: db_table = 'forecasts'
[ 12, 17, 18, 19, 22 ]
758
5cfd7744f98c80483cb4dd318c17a7cd83ed3ae3
<mask token> class Solution: <mask token>
<mask token> class Solution: def findDuplicates(self, nums: List[int]) ->List[int]: res = [] for num in nums: if nums[abs(num) - 1] < 0: res.append(abs(num)) else: nums[abs(num) - 1] *= -1 return res
<mask token> class Solution: <mask token> class Solution: def findDuplicates(self, nums: List[int]) ->List[int]: res = [] for num in nums: if nums[abs(num) - 1] < 0: res.append(abs(num)) else: nums[abs(num) - 1] *= -1 return res
<mask token> class Solution: def findDuplicates(self, nums: List[int]) ->List[int]: cnt = {} for num in nums: cnt[num] = cnt.get(num, 0) + 1 res = [] for k, v in cnt.items(): if v > 1: res.append(k) return res class Solution: def findDuplicates(self, nums: List[int]) ->List[int]: res = [] for num in nums: if nums[abs(num) - 1] < 0: res.append(abs(num)) else: nums[abs(num) - 1] *= -1 return res
""" Given an array of integers, 1 ≤ a[i] ≤ n (n = size of array), some elements appear twice and others appear once. Find all the elements that appear twice in this array. Could you do it without extra space and in O(n) runtime? Example: Input: [4,3,2,7,8,2,3,1] Output: [2,3] """ # O(n) TC and SC class Solution: def findDuplicates(self, nums: List[int]) -> List[int]: cnt = {} for num in nums: cnt[num] = cnt.get(num, 0) + 1 res = [] for k, v in cnt.items(): if v > 1: res.append(k) return res # O(n) TC and O(1) SC class Solution: def findDuplicates(self, nums: List[int]) -> List[int]: res = [] for num in nums: if nums[abs(num)-1] < 0: res.append(abs(num)) else: nums[abs(num)-1] *= -1 return res
[ 1, 2, 3, 4, 5 ]
759
cfa862988edf9d70aa5e975cca58b4e61a4de847
<mask token>
<mask token> setup(name='gromacsplotter', version='0.1', description= 'Read xvg files created with gromacs for plotting with matplotlib', url ='', author='Ilyas Kuhlemann', author_email='[email protected]', license='MIT', packages=['gromacsplotter'], scripts=[], install_requires=['numpy', 'matplotlib'], entry_points={ 'console_scripts': [ 'gromacsplotter = gromacsplotter.plot_xvg_data:main']}, zip_safe=False)
<mask token> from setuptools import setup setup(name='gromacsplotter', version='0.1', description= 'Read xvg files created with gromacs for plotting with matplotlib', url ='', author='Ilyas Kuhlemann', author_email='[email protected]', license='MIT', packages=['gromacsplotter'], scripts=[], install_requires=['numpy', 'matplotlib'], entry_points={ 'console_scripts': [ 'gromacsplotter = gromacsplotter.plot_xvg_data:main']}, zip_safe=False)
""" USAGE: o install in develop mode: navigate to the folder containing this file, and type 'python setup.py develop --user'. (ommit '--user' if you want to install for all users) """ from setuptools import setup setup(name='gromacsplotter', version='0.1', description='Read xvg files created with gromacs for plotting with matplotlib', url='', author='Ilyas Kuhlemann', author_email='[email protected]', license='MIT', packages=["gromacsplotter"], scripts=[], install_requires=['numpy', "matplotlib"], entry_points = { 'console_scripts': ["gromacsplotter = gromacsplotter.plot_xvg_data:main"] }, zip_safe=False)
null
[ 0, 1, 2, 3 ]
760
7b9660bba6fcb8c725251971f3733a1cc915c0e7
<mask token> class Point(object): <mask token> <mask token> <mask token> <mask token> <mask token> class Rect(object): """A rectangle identified by its lower left and upper right corners. """ def __init__(self, ll, ur): """Initialize rectangle with ll and ur as corners.""" log.debug('Rect from ll {}, ur {}'.format(repr(ll), repr(ur))) self.ll = Point(min(ll.x, ur.x), min(ll.y, ur.y)) log.debug('ll will be {}'.format(self.ll)) self.ur = Point(max(ll.x, ur.x), max(ll.y, ur.y)) log.debug('ur will be {}'.format(self.ur)) log.debug('Created rect {}'.format(repr(self))) def __repr__(self): return 'Rect({},{})'.format(self.ll, self.ur) def __str__(self): return 'Rect({},{})'.format(self.ll, self.ur) def __eq__(self, other): assert isinstance(other, Rect) return self.ll == other.ll and self.ur == other.ur def overlaps(self, other): """r1.overlaps(r2) if there is an area of positive size within r1 and also within r2. "Of positive size" means that touching at a corner or along an edge is not enough ... the area of overlap must be positive. """ if self.ll.x >= other.ur.x: return False if self.ll.y >= other.ur.y: return False if self.ur.x <= other.ll.x: return False if self.ur.y <= other.ll.y: return False return True def intersect(self, other): """Region of overlap, or (0,0),(0,0) if none""" if self.overlaps(other): return Rect(Point(max(self.ll.x, other.ll.x), max(self.ll.y, other.ll.y)), Point(min(self.ur.x, other.ur.x), min(self.ur .y, other.ur.y))) else: return Rect(Point(0, 0), Point(0, 0))
<mask token> class Point(object): <mask token> <mask token> def __repr__(self): return 'Point({},{})'.format(self.x, self.y) def __str__(self): return '({}, {})'.format(self.x, self.y) def __eq__(self, other): assert isinstance(other, Point) return self.x == other.x and self.y == other.y class Rect(object): """A rectangle identified by its lower left and upper right corners. """ def __init__(self, ll, ur): """Initialize rectangle with ll and ur as corners.""" log.debug('Rect from ll {}, ur {}'.format(repr(ll), repr(ur))) self.ll = Point(min(ll.x, ur.x), min(ll.y, ur.y)) log.debug('ll will be {}'.format(self.ll)) self.ur = Point(max(ll.x, ur.x), max(ll.y, ur.y)) log.debug('ur will be {}'.format(self.ur)) log.debug('Created rect {}'.format(repr(self))) def __repr__(self): return 'Rect({},{})'.format(self.ll, self.ur) def __str__(self): return 'Rect({},{})'.format(self.ll, self.ur) def __eq__(self, other): assert isinstance(other, Rect) return self.ll == other.ll and self.ur == other.ur def overlaps(self, other): """r1.overlaps(r2) if there is an area of positive size within r1 and also within r2. "Of positive size" means that touching at a corner or along an edge is not enough ... the area of overlap must be positive. """ if self.ll.x >= other.ur.x: return False if self.ll.y >= other.ur.y: return False if self.ur.x <= other.ll.x: return False if self.ur.y <= other.ll.y: return False return True def intersect(self, other): """Region of overlap, or (0,0),(0,0) if none""" if self.overlaps(other): return Rect(Point(max(self.ll.x, other.ll.x), max(self.ll.y, other.ll.y)), Point(min(self.ur.x, other.ur.x), min(self.ur .y, other.ur.y))) else: return Rect(Point(0, 0), Point(0, 0))
<mask token> logging.basicConfig() log = logging.getLogger(__name__) log.setLevel(logging.INFO) class Point(object): """A point is an ordered pair, (x,y)""" def __init__(self, x, y): assert isinstance(x, numbers.Number) assert isinstance(y, numbers.Number) self.x = x self.y = y log.debug('Created Point {}'.format(repr(self))) def __repr__(self): return 'Point({},{})'.format(self.x, self.y) def __str__(self): return '({}, {})'.format(self.x, self.y) def __eq__(self, other): assert isinstance(other, Point) return self.x == other.x and self.y == other.y class Rect(object): """A rectangle identified by its lower left and upper right corners. """ def __init__(self, ll, ur): """Initialize rectangle with ll and ur as corners.""" log.debug('Rect from ll {}, ur {}'.format(repr(ll), repr(ur))) self.ll = Point(min(ll.x, ur.x), min(ll.y, ur.y)) log.debug('ll will be {}'.format(self.ll)) self.ur = Point(max(ll.x, ur.x), max(ll.y, ur.y)) log.debug('ur will be {}'.format(self.ur)) log.debug('Created rect {}'.format(repr(self))) def __repr__(self): return 'Rect({},{})'.format(self.ll, self.ur) def __str__(self): return 'Rect({},{})'.format(self.ll, self.ur) def __eq__(self, other): assert isinstance(other, Rect) return self.ll == other.ll and self.ur == other.ur def overlaps(self, other): """r1.overlaps(r2) if there is an area of positive size within r1 and also within r2. "Of positive size" means that touching at a corner or along an edge is not enough ... the area of overlap must be positive. """ if self.ll.x >= other.ur.x: return False if self.ll.y >= other.ur.y: return False if self.ur.x <= other.ll.x: return False if self.ur.y <= other.ll.y: return False return True def intersect(self, other): """Region of overlap, or (0,0),(0,0) if none""" if self.overlaps(other): return Rect(Point(max(self.ll.x, other.ll.x), max(self.ll.y, other.ll.y)), Point(min(self.ur.x, other.ur.x), min(self.ur .y, other.ur.y))) else: return Rect(Point(0, 0), Point(0, 0))
<mask token> import numbers import logging logging.basicConfig() log = logging.getLogger(__name__) log.setLevel(logging.INFO) class Point(object): """A point is an ordered pair, (x,y)""" def __init__(self, x, y): assert isinstance(x, numbers.Number) assert isinstance(y, numbers.Number) self.x = x self.y = y log.debug('Created Point {}'.format(repr(self))) def __repr__(self): return 'Point({},{})'.format(self.x, self.y) def __str__(self): return '({}, {})'.format(self.x, self.y) def __eq__(self, other): assert isinstance(other, Point) return self.x == other.x and self.y == other.y class Rect(object): """A rectangle identified by its lower left and upper right corners. """ def __init__(self, ll, ur): """Initialize rectangle with ll and ur as corners.""" log.debug('Rect from ll {}, ur {}'.format(repr(ll), repr(ur))) self.ll = Point(min(ll.x, ur.x), min(ll.y, ur.y)) log.debug('ll will be {}'.format(self.ll)) self.ur = Point(max(ll.x, ur.x), max(ll.y, ur.y)) log.debug('ur will be {}'.format(self.ur)) log.debug('Created rect {}'.format(repr(self))) def __repr__(self): return 'Rect({},{})'.format(self.ll, self.ur) def __str__(self): return 'Rect({},{})'.format(self.ll, self.ur) def __eq__(self, other): assert isinstance(other, Rect) return self.ll == other.ll and self.ur == other.ur def overlaps(self, other): """r1.overlaps(r2) if there is an area of positive size within r1 and also within r2. "Of positive size" means that touching at a corner or along an edge is not enough ... the area of overlap must be positive. """ if self.ll.x >= other.ur.x: return False if self.ll.y >= other.ur.y: return False if self.ur.x <= other.ll.x: return False if self.ur.y <= other.ll.y: return False return True def intersect(self, other): """Region of overlap, or (0,0),(0,0) if none""" if self.overlaps(other): return Rect(Point(max(self.ll.x, other.ll.x), max(self.ll.y, other.ll.y)), Point(min(self.ur.x, other.ur.x), min(self.ur .y, other.ur.y))) else: return Rect(Point(0, 0), Point(0, 0))
""" Rectangles: Compute overlapping region of two rectangles. Point(x: number, y: number): Cartesian coordinate pair Rect(ll: Point, ur: Point): A rectangle defined by lower left and upper right coordinates Rect.overlaps(other: Rect) -> boolean: True if non-empty overlap Rect.intersect(other: Rect) -> Rect: region of intersection if non-empty, or empty Rect from 0,0 to 0,0 if not Rect.overlaps(other) CIS 211 Project 1 Author: Noah Tigner UO email: [email protected] """ import numbers import logging logging.basicConfig() log = logging.getLogger(__name__) log.setLevel(logging.INFO) # To turn on debugging output, change the above to # log.setLevel(logging.DEBUG) class Point(object): """A point is an ordered pair, (x,y)""" def __init__(self, x, y): assert isinstance(x, numbers.Number) assert isinstance(y, numbers.Number) self.x = x self.y = y log.debug("Created Point {}".format(repr(self))) def __repr__(self): return "Point({},{})".format(self.x, self.y) def __str__(self): return "({}, {})".format(self.x, self.y) def __eq__(self, other): assert(isinstance(other, Point)) return self.x == other.x and self.y == other.y class Rect(object): """A rectangle identified by its lower left and upper right corners. """ def __init__(self, ll, ur): """Initialize rectangle with ll and ur as corners.""" log.debug("Rect from ll {}, ur {}".format(repr(ll), repr(ur))) # Ensure ll really is lower left and ur really is upper right self.ll = Point(min(ll.x, ur.x), min(ll.y, ur.y)) log.debug("ll will be {}".format(self.ll)) self.ur = Point(max(ll.x, ur.x), max(ll.y, ur.y)) log.debug("ur will be {}".format(self.ur)) log.debug("Created rect {}".format(repr(self))) def __repr__(self): return "Rect({},{})".format(self.ll, self.ur) def __str__(self): return "Rect({},{})".format(self.ll, self.ur) def __eq__(self, other): assert isinstance(other, Rect) return self.ll == other.ll and self.ur == other.ur def overlaps(self, other): """r1.overlaps(r2) if there is an area of positive size within r1 and also within r2. "Of positive size" means that touching at a corner or along an edge is not enough ... the area of overlap must be positive. """ if self.ll.x >= other.ur.x: return False if self.ll.y >= other.ur.y: return False if self.ur.x <= other.ll.x: return False if self.ur.y <= other.ll.y: return False return True def intersect(self, other): """Region of overlap, or (0,0),(0,0) if none""" if self.overlaps(other): return Rect(Point(max(self.ll.x, other.ll.x), max(self.ll.y, other.ll.y)), Point(min(self.ur.x, other.ur.x), min(self.ur.y, other.ur.y))) else: return Rect(Point(0, 0), Point(0, 0))
[ 9, 12, 16, 17, 18 ]
761
f25351a3cb7bf583152baa8e7ec47b0f2161cb9c
<mask token> class Notifier(object): <mask token> def __init__(self): pass <mask token> @abc.abstractmethod def send(self, msg): pass
<mask token> class Notifier(object): <mask token> def __init__(self): pass @abc.abstractmethod def config(self, kwargs): pass @abc.abstractmethod def send(self, msg): pass
<mask token> class Notifier(object): __metaclass__ = abc.ABCMeta def __init__(self): pass @abc.abstractmethod def config(self, kwargs): pass @abc.abstractmethod def send(self, msg): pass
import abc class Notifier(object): __metaclass__ = abc.ABCMeta def __init__(self): pass @abc.abstractmethod def config(self, kwargs): pass @abc.abstractmethod def send(self, msg): pass
# Copyright 2014 The crabapple Authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. import abc class Notifier(object): __metaclass__ = abc.ABCMeta def __init__(self): pass @abc.abstractmethod def config(self, kwargs): pass @abc.abstractmethod def send(self, msg): pass
[ 3, 4, 5, 6, 7 ]
762
d0eb6ea2e816ac59ae93684edb38ff3a49909633
<mask token>
def usage_list(self): print('Available modules') print('=================') for module in sorted(self.list()): if 'module' not in self.mods[module]: self.import_module(module) if not self.mods[module]['module'].__doc__: continue text = self.mods[module]['module'].__doc__.strip('\n ') text = text.split('\n') if len(text) > 2: if text[1].startswith('='): text[1] = '=' * (14 + len(text[1])) text = '\n'.join(text) print('\n%-12s: %s' % (module, text))
def usage_list(self): print('Available modules') print('=================') for module in sorted(self.list()): if ('module' not in self.mods[module]): self.import_module(module) if (not self.mods[module]['module'].__doc__): continue text = self.mods[module]['module'].__doc__.strip('\n ') text = text.split('\n') if (len(text) > 2): if text[1].startswith('='): text[1] = ('=' * (14 + len(text[1]))) text = '\n'.join(text) print(('\n%-12s: %s' % (module, text)))
null
null
[ 0, 1, 2 ]
763
f3329962004a4454c04327da56d8dd1d0f1d45e7
<mask token>
<mask token> if r.status_code == 200: text = r.text pattern = 'Přispěvatel' m = re.search(pattern, text) pattern2 = '<strong>([0-9]{1,})' m2 = re.search(pattern2, text[m.start():]) pattern3 = 'currency " >([0-9]{1,})' m3 = re.search(pattern3, text.replace('&nbsp;', '')) with open(path + 'data.json', 'w') as fdata: json.dump({'date': datetime.datetime.now().isoformat(), 'amount': m3.group(1), 'supporters': m2.group(1)}, fdata)
<mask token> r = requests.get( 'https://www.hithit.com/cs/project/4067/volebni-kalkulacka-on-steroids') path = os.path.dirname(os.path.realpath(__file__)) + '/' if r.status_code == 200: text = r.text pattern = 'Přispěvatel' m = re.search(pattern, text) pattern2 = '<strong>([0-9]{1,})' m2 = re.search(pattern2, text[m.start():]) pattern3 = 'currency " >([0-9]{1,})' m3 = re.search(pattern3, text.replace('&nbsp;', '')) with open(path + 'data.json', 'w') as fdata: json.dump({'date': datetime.datetime.now().isoformat(), 'amount': m3.group(1), 'supporters': m2.group(1)}, fdata)
import csv import datetime import json import re import requests import os r = requests.get( 'https://www.hithit.com/cs/project/4067/volebni-kalkulacka-on-steroids') path = os.path.dirname(os.path.realpath(__file__)) + '/' if r.status_code == 200: text = r.text pattern = 'Přispěvatel' m = re.search(pattern, text) pattern2 = '<strong>([0-9]{1,})' m2 = re.search(pattern2, text[m.start():]) pattern3 = 'currency " >([0-9]{1,})' m3 = re.search(pattern3, text.replace('&nbsp;', '')) with open(path + 'data.json', 'w') as fdata: json.dump({'date': datetime.datetime.now().isoformat(), 'amount': m3.group(1), 'supporters': m2.group(1)}, fdata)
import csv import datetime import json import re import requests import os r = requests.get("https://www.hithit.com/cs/project/4067/volebni-kalkulacka-on-steroids") path = os.path.dirname(os.path.realpath(__file__)) + "/" if r.status_code == 200: text = r.text pattern = 'Přispěvatel' m = re.search(pattern, text) pattern2 = '<strong>([0-9]{1,})' m2 = re.search(pattern2, text[m.start():]) pattern3 = 'currency " >([0-9]{1,})' m3 = re.search(pattern3, text.replace('&nbsp;', '')) with open(path + "data.json", "w") as fdata: json.dump({ "date": datetime.datetime.now().isoformat(), "amount": m3.group(1), "supporters": m2.group(1) }, fdata)
[ 0, 1, 2, 3, 4 ]
764
2c505f3f1dfdefae8edbea0916873229bcda901f
<mask token>
<mask token> class NestableBlueprint(Blueprint): <mask token>
<mask token> class NestableBlueprint(Blueprint): def register_blueprint(self, blueprint, **options): def deferred(state): url_prefix = (state.url_prefix or u'') + (options.get( 'url_prefix', blueprint.url_prefix) or u'') if 'url_prefix' in options: del options['url_prefix'] state.app.register_blueprint(blueprint, url_prefix=url_prefix, **options) self.record(deferred)
from flask import Blueprint class NestableBlueprint(Blueprint): def register_blueprint(self, blueprint, **options): def deferred(state): url_prefix = (state.url_prefix or u'') + (options.get( 'url_prefix', blueprint.url_prefix) or u'') if 'url_prefix' in options: del options['url_prefix'] state.app.register_blueprint(blueprint, url_prefix=url_prefix, **options) self.record(deferred)
from flask import Blueprint class NestableBlueprint(Blueprint): def register_blueprint(self, blueprint, **options): def deferred(state): # state.url_prefix => 自己url前缀 + blueprint.url_prefix => /v3/api/cmdb/ url_prefix = (state.url_prefix or u"") + (options.get('url_prefix', blueprint.url_prefix) or u"") if 'url_prefix' in options: del options['url_prefix'] # app.register_blueprint(blueprint, '/v3/api/cmdb/') state.app.register_blueprint(blueprint, url_prefix=url_prefix, **options) self.record(deferred)
[ 0, 1, 2, 3, 4 ]
765
5721786b61cf8706b1d401a46d06f2d32153df8b
<mask token>
<mask token> for i in range(1, n - 1): rem = n % i if rem == 0: sum = sum + i if sum == n: print('the number is perfect') else: print('not prime')
n = int(input('enter the number\n')) sum = 0 for i in range(1, n - 1): rem = n % i if rem == 0: sum = sum + i if sum == n: print('the number is perfect') else: print('not prime')
n=int(input("enter the number\n")) sum=0 for i in range(1,n-1): rem=n%i if(rem==0): sum=sum+i if(sum==n): print("the number is perfect") else: print("not prime")
null
[ 0, 1, 2, 3 ]
766
24f87bd6aab0ff65cf2153e27df31122818ad0ac
<mask token> class TestColGroup(unittest.TestCase): <mask token> def test_col(self): return data = [['a', 'b', 'c'], [1, 2, 3], [4, 5, 6]] gen = Table({'data': data, 'colgroup': {'span': 3, 'width': 100}, 'attr_sort': 1}) self.assertEqual( '<table><colgroup span="3" width="100"><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'col': {}}), 'colgroup wraps col') self.assertEqual( '<table><colgroup span="3" width="100"><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'col': [{}, {}, {}]}), 'colgroup wraps multiple cols') self.assertEqual( '<table><colgroup><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': None, 'col': {}}), 'colgroup can be overriden when col is present too') gen = Table({'data': data, 'col': [{}, {}, {}]}) self.assertEqual( '<table><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': {}}), 'multiple cols against single colgroup') self.assertEqual( '<table><colgroup /><colgroup /><colgroup /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'col': None, 'colgroup': [{}, {}, {}]}), 'no cols against multiple colgroups') self.assertEqual( '<table><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': [{}, {}, {}]}), 'multiple cols against multiple colgroups') <mask token>
<mask token> class TestColGroup(unittest.TestCase): def test_colgroup(self): return data = [['a', 'b', 'c'], [1, 2, 3], [4, 5, 6]] gen = Table({'data': data, 'colgroup': {'span': 3, 'width': 100}, 'attr_sort': 1}) self.assertEqual( '<table><colgroup span="3" width="100" /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate(), 'colgroup present from generate()') self.assertEqual( '<table><colgroup span="3" width="100" /><thead><tr><th>a</th><th>b</th><th>c</th></tr></thead><tfoot><tr><td>4</td><td>5</td><td>6</td></tr></tfoot><tbody><tr><td>1</td><td>2</td><td>3</td></tr></tbody></table>' , gen.generate({'tgroups': 2}), 'colgroup present from generate() with tgroups') self.assertEqual( '<table><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': None}), 'colgroup can be overriden') self.assertEqual( '<table><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': 1}), 'colgroup yields no-op if scalar') self.assertEqual( '<table><colgroup color="red" span="1" /><colgroup color="blue" span="2" /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': [{'span': 1, 'color': 'red'}, { 'span': 2, 'color': 'blue'}]}), 'can specify multiple colgroups') def test_col(self): return data = [['a', 'b', 'c'], [1, 2, 3], [4, 5, 6]] gen = Table({'data': data, 'colgroup': {'span': 3, 'width': 100}, 'attr_sort': 1}) self.assertEqual( '<table><colgroup span="3" width="100"><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'col': {}}), 'colgroup wraps col') self.assertEqual( '<table><colgroup span="3" width="100"><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'col': [{}, {}, {}]}), 'colgroup wraps multiple cols') self.assertEqual( '<table><colgroup><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': None, 'col': {}}), 'colgroup can be overriden when col is present too') gen = Table({'data': data, 'col': [{}, {}, {}]}) self.assertEqual( '<table><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': {}}), 'multiple cols against single colgroup') self.assertEqual( '<table><colgroup /><colgroup /><colgroup /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'col': None, 'colgroup': [{}, {}, {}]}), 'no cols against multiple colgroups') self.assertEqual( '<table><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': [{}, {}, {}]}), 'multiple cols against multiple colgroups') <mask token>
<mask token> class TestColGroup(unittest.TestCase): def test_colgroup(self): return data = [['a', 'b', 'c'], [1, 2, 3], [4, 5, 6]] gen = Table({'data': data, 'colgroup': {'span': 3, 'width': 100}, 'attr_sort': 1}) self.assertEqual( '<table><colgroup span="3" width="100" /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate(), 'colgroup present from generate()') self.assertEqual( '<table><colgroup span="3" width="100" /><thead><tr><th>a</th><th>b</th><th>c</th></tr></thead><tfoot><tr><td>4</td><td>5</td><td>6</td></tr></tfoot><tbody><tr><td>1</td><td>2</td><td>3</td></tr></tbody></table>' , gen.generate({'tgroups': 2}), 'colgroup present from generate() with tgroups') self.assertEqual( '<table><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': None}), 'colgroup can be overriden') self.assertEqual( '<table><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': 1}), 'colgroup yields no-op if scalar') self.assertEqual( '<table><colgroup color="red" span="1" /><colgroup color="blue" span="2" /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': [{'span': 1, 'color': 'red'}, { 'span': 2, 'color': 'blue'}]}), 'can specify multiple colgroups') def test_col(self): return data = [['a', 'b', 'c'], [1, 2, 3], [4, 5, 6]] gen = Table({'data': data, 'colgroup': {'span': 3, 'width': 100}, 'attr_sort': 1}) self.assertEqual( '<table><colgroup span="3" width="100"><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'col': {}}), 'colgroup wraps col') self.assertEqual( '<table><colgroup span="3" width="100"><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'col': [{}, {}, {}]}), 'colgroup wraps multiple cols') self.assertEqual( '<table><colgroup><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': None, 'col': {}}), 'colgroup can be overriden when col is present too') gen = Table({'data': data, 'col': [{}, {}, {}]}) self.assertEqual( '<table><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': {}}), 'multiple cols against single colgroup') self.assertEqual( '<table><colgroup /><colgroup /><colgroup /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'col': None, 'colgroup': [{}, {}, {}]}), 'no cols against multiple colgroups') self.assertEqual( '<table><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': [{}, {}, {}]}), 'multiple cols against multiple colgroups') if __name__ == '__main__': unittest.main()
import unittest from Spreadsheet.HTML import Table class TestColGroup(unittest.TestCase): def test_colgroup(self): return data = [['a', 'b', 'c'], [1, 2, 3], [4, 5, 6]] gen = Table({'data': data, 'colgroup': {'span': 3, 'width': 100}, 'attr_sort': 1}) self.assertEqual( '<table><colgroup span="3" width="100" /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate(), 'colgroup present from generate()') self.assertEqual( '<table><colgroup span="3" width="100" /><thead><tr><th>a</th><th>b</th><th>c</th></tr></thead><tfoot><tr><td>4</td><td>5</td><td>6</td></tr></tfoot><tbody><tr><td>1</td><td>2</td><td>3</td></tr></tbody></table>' , gen.generate({'tgroups': 2}), 'colgroup present from generate() with tgroups') self.assertEqual( '<table><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': None}), 'colgroup can be overriden') self.assertEqual( '<table><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': 1}), 'colgroup yields no-op if scalar') self.assertEqual( '<table><colgroup color="red" span="1" /><colgroup color="blue" span="2" /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': [{'span': 1, 'color': 'red'}, { 'span': 2, 'color': 'blue'}]}), 'can specify multiple colgroups') def test_col(self): return data = [['a', 'b', 'c'], [1, 2, 3], [4, 5, 6]] gen = Table({'data': data, 'colgroup': {'span': 3, 'width': 100}, 'attr_sort': 1}) self.assertEqual( '<table><colgroup span="3" width="100"><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'col': {}}), 'colgroup wraps col') self.assertEqual( '<table><colgroup span="3" width="100"><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'col': [{}, {}, {}]}), 'colgroup wraps multiple cols') self.assertEqual( '<table><colgroup><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': None, 'col': {}}), 'colgroup can be overriden when col is present too') gen = Table({'data': data, 'col': [{}, {}, {}]}) self.assertEqual( '<table><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': {}}), 'multiple cols against single colgroup') self.assertEqual( '<table><colgroup /><colgroup /><colgroup /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'col': None, 'colgroup': [{}, {}, {}]}), 'no cols against multiple colgroups') self.assertEqual( '<table><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>' , gen.generate({'colgroup': [{}, {}, {}]}), 'multiple cols against multiple colgroups') if __name__ == '__main__': unittest.main()
import unittest from Spreadsheet.HTML import Table class TestColGroup(unittest.TestCase): def test_colgroup(self): return data = [ ['a','b','c'], [1,2,3], [4,5,6], ] gen = Table( { 'data': data, 'colgroup': { 'span': 3, 'width': 100 }, 'attr_sort': 1 } ) self.assertEqual( '<table><colgroup span="3" width="100" /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate(), "colgroup present from generate()" ) self.assertEqual( '<table><colgroup span="3" width="100" /><thead><tr><th>a</th><th>b</th><th>c</th></tr></thead><tfoot><tr><td>4</td><td>5</td><td>6</td></tr></tfoot><tbody><tr><td>1</td><td>2</td><td>3</td></tr></tbody></table>', gen.generate( { 'tgroups': 2 } ), "colgroup present from generate() with tgroups" ) self.assertEqual( '<table><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate( { 'colgroup': None } ), "colgroup can be overriden" ) self.assertEqual( '<table><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate( { 'colgroup': 1 } ), "colgroup yields no-op if scalar" ) self.assertEqual( '<table><colgroup color="red" span="1" /><colgroup color="blue" span="2" /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate( { 'colgroup': [ { 'span': 1, 'color': 'red' }, { 'span': 2, 'color': 'blue' } ] } ), "can specify multiple colgroups" ) def test_col(self): return data = [ ['a','b','c'], [1,2,3], [4,5,6], ] gen = Table( { 'data': data, 'colgroup': { 'span': 3, 'width': 100 }, 'attr_sort': 1 } ); self.assertEqual( '<table><colgroup span="3" width="100"><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate( { 'col': {} } ), "colgroup wraps col" ) self.assertEqual( '<table><colgroup span="3" width="100"><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate( { 'col': [{},{},{}] } ), "colgroup wraps multiple cols" ) self.assertEqual( '<table><colgroup><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate( { 'colgroup': None, 'col': {} } ), "colgroup can be overriden when col is present too" ) gen = Table( { 'data': data, 'col': [{},{},{}] } ); self.assertEqual( '<table><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate( { 'colgroup': {} } ), "multiple cols against single colgroup" ) self.assertEqual( '<table><colgroup /><colgroup /><colgroup /><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate( { 'col': None, 'colgroup': [{},{},{}] } ), "no cols against multiple colgroups" ) self.assertEqual( '<table><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><colgroup><col /><col /><col /></colgroup><tr><th>a</th><th>b</th><th>c</th></tr><tr><td>1</td><td>2</td><td>3</td></tr><tr><td>4</td><td>5</td><td>6</td></tr></table>', gen.generate( { 'colgroup': [{},{},{}] } ), "multiple cols against multiple colgroups" ) if __name__ == '__main__': unittest.main()
[ 2, 3, 4, 5, 6 ]
767
2a0172641c48c47f048bf5e9f1889b29abbb0b7c
<mask token> def shell(cmd): subprocess.call(cmd, shell=True) print('Done! {0}.'.format(cmd)) <mask token>
<mask token> def shell(cmd): subprocess.call(cmd, shell=True) print('Done! {0}.'.format(cmd)) <mask token> shell(cmd) <mask token> shell(cmd) <mask token> shell(cmd) <mask token> shell(cmd) print('time used = {0:.0f}'.format(time.time() - start))
<mask token> NR_THREAD = 20 def shell(cmd): subprocess.call(cmd, shell=True) print('Done! {0}.'.format(cmd)) start = time.time() cmd = 'mkdir FTRL/tmp -p' shell(cmd) cmd = 'mkdir FTRL/data -p' shell(cmd) cmd = ( 'FTRL/FTRLStarter.py ffmData/filter100/split_train.ffm ffmData/filter100/split_test.ffm FTRL/tmp/split_test_cv.out ffmData/filter100/click_test.ffm FTRL/tmp/click_test_cv.out' ) shell(cmd) cmd = 'util/map.py FTRL/tmp/split_test_cv.out data/split_test.csv' shell(cmd) print('time used = {0:.0f}'.format(time.time() - start))
from __future__ import division, absolute_import, print_function, unicode_literals import argparse, csv, sys, subprocess, time NR_THREAD = 20 def shell(cmd): subprocess.call(cmd, shell=True) print('Done! {0}.'.format(cmd)) start = time.time() cmd = 'mkdir FTRL/tmp -p' shell(cmd) cmd = 'mkdir FTRL/data -p' shell(cmd) cmd = ( 'FTRL/FTRLStarter.py ffmData/filter100/split_train.ffm ffmData/filter100/split_test.ffm FTRL/tmp/split_test_cv.out ffmData/filter100/click_test.ffm FTRL/tmp/click_test_cv.out' ) shell(cmd) cmd = 'util/map.py FTRL/tmp/split_test_cv.out data/split_test.csv' shell(cmd) print('time used = {0:.0f}'.format(time.time() - start))
#!/usr/bin/env python3 #coding=utf8 from __future__ import (division,absolute_import,print_function,unicode_literals) import argparse, csv, sys,subprocess,time NR_THREAD=20 def shell(cmd): subprocess.call(cmd,shell=True) print("Done! {0}.".format(cmd)) start=time.time() cmd = 'mkdir FTRL/tmp -p' shell(cmd) cmd = 'mkdir FTRL/data -p' shell(cmd) #cmd = 'FTRL/ensamble/ensamble.py -s {nr_thread} -f 5 ffmData/Filter100/click_train.ffm ffmData/Filter100/click_test.ffm FTRL/data/click_train_out.txt FTRL/data/click_test_out.txt '.format(nr_thread=NR_THREAD) #shell(cmd) cmd = 'FTRL/FTRLStarter.py ffmData/filter100/split_train.ffm ffmData/filter100/split_test.ffm FTRL/tmp/split_test_cv.out ffmData/filter100/click_test.ffm FTRL/tmp/click_test_cv.out' shell(cmd) cmd='util/map.py FTRL/tmp/split_test_cv.out data/split_test.csv' shell(cmd) print('time used = {0:.0f}'.format(time.time()-start))
[ 1, 2, 3, 4, 5 ]
768
eab5bf4776582349615ad56ee1ed93bc8f868565
<mask token> class Communication(Module): <mask token> <mask token> def receive(self, length): if not isinstance(length, int): raise Exception('Receive length must be an integer.') return self.port.read(length) <mask token> @property def port(self): return self._port <mask token>
<mask token> class Communication(Module): def __init__(self, parent, port_name, baud_rate): self.parent = parent if not isinstance(port_name, str): raise Exception('Port name must be a string.') if not isinstance(baud_rate, int): raise Exception('Baud rate must be an integer.') if baud_rate not in BAUD_RATES: raise Exception( '%d is not a valid baud rate; check the SCI Specification for acceptable values.' % baud_rate) self.port = serial.Serial(port_name, baud_rate) def send(self, data): if not isinstance(data, str): raise Exception('Data must be a string.') self.port.write(data) def receive(self, length): if not isinstance(length, int): raise Exception('Receive length must be an integer.') return self.port.read(length) <mask token> @property def port(self): return self._port @port.setter def port(self, value): self._port = value
<mask token> class Communication(Module): def __init__(self, parent, port_name, baud_rate): self.parent = parent if not isinstance(port_name, str): raise Exception('Port name must be a string.') if not isinstance(baud_rate, int): raise Exception('Baud rate must be an integer.') if baud_rate not in BAUD_RATES: raise Exception( '%d is not a valid baud rate; check the SCI Specification for acceptable values.' % baud_rate) self.port = serial.Serial(port_name, baud_rate) def send(self, data): if not isinstance(data, str): raise Exception('Data must be a string.') self.port.write(data) def receive(self, length): if not isinstance(length, int): raise Exception('Receive length must be an integer.') return self.port.read(length) _port = None @property def port(self): return self._port @port.setter def port(self, value): self._port = value
from common import * import serial CMD_BAUD = chr(129) BAUD_RATES = [300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200] class Communication(Module): def __init__(self, parent, port_name, baud_rate): self.parent = parent if not isinstance(port_name, str): raise Exception('Port name must be a string.') if not isinstance(baud_rate, int): raise Exception('Baud rate must be an integer.') if baud_rate not in BAUD_RATES: raise Exception( '%d is not a valid baud rate; check the SCI Specification for acceptable values.' % baud_rate) self.port = serial.Serial(port_name, baud_rate) def send(self, data): if not isinstance(data, str): raise Exception('Data must be a string.') self.port.write(data) def receive(self, length): if not isinstance(length, int): raise Exception('Receive length must be an integer.') return self.port.read(length) _port = None @property def port(self): return self._port @port.setter def port(self, value): self._port = value
from common import * import serial CMD_BAUD = chr(129) BAUD_RATES = [300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200] class Communication(Module): def __init__(self, parent, port_name, baud_rate): self.parent = parent if not isinstance(port_name, str): raise Exception("Port name must be a string.") if not isinstance(baud_rate, int): raise Exception("Baud rate must be an integer.") if baud_rate not in BAUD_RATES: raise Exception("%d is not a valid baud rate; check the SCI Specification for acceptable values." % baud_rate) self.port = serial.Serial(port_name, baud_rate) def send(self, data): if not isinstance(data, str): raise Exception("Data must be a string.") self.port.write(data) def receive(self, length): if not isinstance(length, int): raise Exception("Receive length must be an integer.") return self.port.read(length) _port = None @property def port(self): return self._port @port.setter def port(self, value): self._port = value
[ 3, 6, 7, 9, 10 ]
769
abbad57e945d2195021948a0e0838c6bfd9c6a1e
<mask token> class ConnectWindow: <mask token> def startScreen(self): """This function creates the board and intializes the board count for each column""" self.background = Rectangle(Point(0, 0), Point(690, 590)) self.background.setFill('blue') self.background.draw(self.window) for i in range(7): for j in range(6): self.Circles = Circle(Point(i * 100 + 50, j * 100 + 50), 30) self.Circles.setFill('white') self.Circles.draw(self.window) for i in range(6): self.horizLine = Line(Point(0, i * 100 + 100), Point(900, i * 100 + 100)) self.vertLine = Line(Point(100 * i + 100, 0), Point(100 * i + 100, 900)) self.horizLine.draw(self.window) self.vertLine.draw(self.window) self.grid = [[], [], [], [], [], [], []] self.boardCount = [0, 0, 0, 0, 0, 0, 0] counter = 2 for x in range(7): for y in range(6): self.grid[x].append(counter) counter += 1 <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token>
<mask token> class ConnectWindow: <mask token> def startScreen(self): """This function creates the board and intializes the board count for each column""" self.background = Rectangle(Point(0, 0), Point(690, 590)) self.background.setFill('blue') self.background.draw(self.window) for i in range(7): for j in range(6): self.Circles = Circle(Point(i * 100 + 50, j * 100 + 50), 30) self.Circles.setFill('white') self.Circles.draw(self.window) for i in range(6): self.horizLine = Line(Point(0, i * 100 + 100), Point(900, i * 100 + 100)) self.vertLine = Line(Point(100 * i + 100, 0), Point(100 * i + 100, 900)) self.horizLine.draw(self.window) self.vertLine.draw(self.window) self.grid = [[], [], [], [], [], [], []] self.boardCount = [0, 0, 0, 0, 0, 0, 0] counter = 2 for x in range(7): for y in range(6): self.grid[x].append(counter) counter += 1 def validClick(self, x): """This function checks if there is enough space vertically for move to be valid""" if self.boardCount[x] >= 6: print('Invalid Move') return False else: return True <mask token> def handleClick(self, point): """This function works with the user to add each move into the board count and to the current grid""" self.newX = point.getX() self.x = self.newX // 100 self.y = self.boardCount[self.x] if self.validClick(self.x): self.boardCount[self.x] += 1 self.limitCounter += 1 self.grid[self.x][self.y] = self.currentUser if self.isWon() == False: self.limitCounter += 1 self.computerMove() self.drawUmove() <mask token> def printWinner(self, winner): """This function prints who the winner is or if it is a tie""" if winner == 3: txt = Text(Point(345, 300), 'Tie Game!') txt.setFill('white') txt.setSize(35) txt.draw(self.window) return elif winner == 1: txt = Text(Point(345, 300), 'You Won!') txt.setFill('white') txt.setSize(35) txt.draw(self.window) return else: txt = Text(Point(345, 300), 'Computer Won!') txt.setFill('white') txt.setSize(35) txt.draw(self.window) return def validCmove(self, x, y): """This function checks if the computer's move will be valid""" if self.boardCount[x] > y: return False """ if it tries to place below the highest piece""" if self.boardCount[x] < y: return False """if it tries to place it in a column with 6 pieces already""" if self.boardCount[x] >= 6: return False else: return True def drawCmove(self, x, y): """This function adds the computer's move to the game board and adds it to the board count""" piece = Circle(Point(x * 100 + 50, 600 - (y * 100 + 50)), 30) piece.setFill('yellow') piece.draw(self.window) self.boardCount[x] += 1 self.grid[x][y] = -1 return <mask token> def randomMove(self): """This function creates a random coordinate for its move, checks if it's valid, then prints the move. It will continue to run until numbers are valid for current board""" randY = random.randint(0, 6) randX = random.randint(0, 7) if self.validCmove(randY, randX): self.drawCmove(randY, randX) return else: self.randomMove() <mask token>
<mask token> class ConnectWindow: <mask token> def startScreen(self): """This function creates the board and intializes the board count for each column""" self.background = Rectangle(Point(0, 0), Point(690, 590)) self.background.setFill('blue') self.background.draw(self.window) for i in range(7): for j in range(6): self.Circles = Circle(Point(i * 100 + 50, j * 100 + 50), 30) self.Circles.setFill('white') self.Circles.draw(self.window) for i in range(6): self.horizLine = Line(Point(0, i * 100 + 100), Point(900, i * 100 + 100)) self.vertLine = Line(Point(100 * i + 100, 0), Point(100 * i + 100, 900)) self.horizLine.draw(self.window) self.vertLine.draw(self.window) self.grid = [[], [], [], [], [], [], []] self.boardCount = [0, 0, 0, 0, 0, 0, 0] counter = 2 for x in range(7): for y in range(6): self.grid[x].append(counter) counter += 1 def validClick(self, x): """This function checks if there is enough space vertically for move to be valid""" if self.boardCount[x] >= 6: print('Invalid Move') return False else: return True def drawUmove(self): """This function prints the pieces onto the board at the given position from the user""" piece = Circle(Point(self.x * 100 + 50, 600 - (self.y * 100 + 50)), 30) piece.setFill('red') piece.draw(self.window) return def handleClick(self, point): """This function works with the user to add each move into the board count and to the current grid""" self.newX = point.getX() self.x = self.newX // 100 self.y = self.boardCount[self.x] if self.validClick(self.x): self.boardCount[self.x] += 1 self.limitCounter += 1 self.grid[self.x][self.y] = self.currentUser if self.isWon() == False: self.limitCounter += 1 self.computerMove() self.drawUmove() def isWon(self): """This function checks if there is a winner in the game (True/False) and calls printWinner function""" for i in range(7): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i][j + 1] self.square3 = self.grid[i][j + 2] self.square4 = self.grid[i][j + 3] if (self.square1 == self.square2 and self.square2 == self. square3 and self.square3 == self.square4): self.printWinner(self.square1) return True for i in range(4): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i + 1][j + 1] self.square3 = self.grid[i + 2][j + 2] self.square4 = self.grid[i + 3][j + 3] if (self.square1 == self.square2 and self.square2 == self. square3 and self.square3 == self.square4): self.printWinner(self.square1) return True for i in range(3, 7): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i - 1][j + 1] self.square3 = self.grid[i - 2][j + 2] self.square4 = self.grid[i - 3][j + 3] if (self.square1 == self.square2 and self.square2 == self. square3 and self.square3 == self.square4): self.printWinner(self.square1) return True for i in range(4): for j in range(6): self.square1 = self.grid[i][j] self.square2 = self.grid[i + 1][j] self.square3 = self.grid[i + 2][j] self.square4 = self.grid[i + 3][j] if (self.square1 == self.square2 and self.square2 == self. square3 and self.square3 == self.square4): self.printWinner(self.square1) return True if self.limitCounter == 42: self.printWinner(3) return True return False def printWinner(self, winner): """This function prints who the winner is or if it is a tie""" if winner == 3: txt = Text(Point(345, 300), 'Tie Game!') txt.setFill('white') txt.setSize(35) txt.draw(self.window) return elif winner == 1: txt = Text(Point(345, 300), 'You Won!') txt.setFill('white') txt.setSize(35) txt.draw(self.window) return else: txt = Text(Point(345, 300), 'Computer Won!') txt.setFill('white') txt.setSize(35) txt.draw(self.window) return def validCmove(self, x, y): """This function checks if the computer's move will be valid""" if self.boardCount[x] > y: return False """ if it tries to place below the highest piece""" if self.boardCount[x] < y: return False """if it tries to place it in a column with 6 pieces already""" if self.boardCount[x] >= 6: return False else: return True def drawCmove(self, x, y): """This function adds the computer's move to the game board and adds it to the board count""" piece = Circle(Point(x * 100 + 50, 600 - (y * 100 + 50)), 30) piece.setFill('yellow') piece.draw(self.window) self.boardCount[x] += 1 self.grid[x][y] = -1 return <mask token> def randomMove(self): """This function creates a random coordinate for its move, checks if it's valid, then prints the move. It will continue to run until numbers are valid for current board""" randY = random.randint(0, 6) randX = random.randint(0, 7) if self.validCmove(randY, randX): self.drawCmove(randY, randX) return else: self.randomMove() <mask token>
<mask token> class ConnectWindow: <mask token> def startScreen(self): """This function creates the board and intializes the board count for each column""" self.background = Rectangle(Point(0, 0), Point(690, 590)) self.background.setFill('blue') self.background.draw(self.window) for i in range(7): for j in range(6): self.Circles = Circle(Point(i * 100 + 50, j * 100 + 50), 30) self.Circles.setFill('white') self.Circles.draw(self.window) for i in range(6): self.horizLine = Line(Point(0, i * 100 + 100), Point(900, i * 100 + 100)) self.vertLine = Line(Point(100 * i + 100, 0), Point(100 * i + 100, 900)) self.horizLine.draw(self.window) self.vertLine.draw(self.window) self.grid = [[], [], [], [], [], [], []] self.boardCount = [0, 0, 0, 0, 0, 0, 0] counter = 2 for x in range(7): for y in range(6): self.grid[x].append(counter) counter += 1 def validClick(self, x): """This function checks if there is enough space vertically for move to be valid""" if self.boardCount[x] >= 6: print('Invalid Move') return False else: return True def drawUmove(self): """This function prints the pieces onto the board at the given position from the user""" piece = Circle(Point(self.x * 100 + 50, 600 - (self.y * 100 + 50)), 30) piece.setFill('red') piece.draw(self.window) return def handleClick(self, point): """This function works with the user to add each move into the board count and to the current grid""" self.newX = point.getX() self.x = self.newX // 100 self.y = self.boardCount[self.x] if self.validClick(self.x): self.boardCount[self.x] += 1 self.limitCounter += 1 self.grid[self.x][self.y] = self.currentUser if self.isWon() == False: self.limitCounter += 1 self.computerMove() self.drawUmove() def isWon(self): """This function checks if there is a winner in the game (True/False) and calls printWinner function""" for i in range(7): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i][j + 1] self.square3 = self.grid[i][j + 2] self.square4 = self.grid[i][j + 3] if (self.square1 == self.square2 and self.square2 == self. square3 and self.square3 == self.square4): self.printWinner(self.square1) return True for i in range(4): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i + 1][j + 1] self.square3 = self.grid[i + 2][j + 2] self.square4 = self.grid[i + 3][j + 3] if (self.square1 == self.square2 and self.square2 == self. square3 and self.square3 == self.square4): self.printWinner(self.square1) return True for i in range(3, 7): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i - 1][j + 1] self.square3 = self.grid[i - 2][j + 2] self.square4 = self.grid[i - 3][j + 3] if (self.square1 == self.square2 and self.square2 == self. square3 and self.square3 == self.square4): self.printWinner(self.square1) return True for i in range(4): for j in range(6): self.square1 = self.grid[i][j] self.square2 = self.grid[i + 1][j] self.square3 = self.grid[i + 2][j] self.square4 = self.grid[i + 3][j] if (self.square1 == self.square2 and self.square2 == self. square3 and self.square3 == self.square4): self.printWinner(self.square1) return True if self.limitCounter == 42: self.printWinner(3) return True return False def printWinner(self, winner): """This function prints who the winner is or if it is a tie""" if winner == 3: txt = Text(Point(345, 300), 'Tie Game!') txt.setFill('white') txt.setSize(35) txt.draw(self.window) return elif winner == 1: txt = Text(Point(345, 300), 'You Won!') txt.setFill('white') txt.setSize(35) txt.draw(self.window) return else: txt = Text(Point(345, 300), 'Computer Won!') txt.setFill('white') txt.setSize(35) txt.draw(self.window) return def validCmove(self, x, y): """This function checks if the computer's move will be valid""" if self.boardCount[x] > y: return False """ if it tries to place below the highest piece""" if self.boardCount[x] < y: return False """if it tries to place it in a column with 6 pieces already""" if self.boardCount[x] >= 6: return False else: return True def drawCmove(self, x, y): """This function adds the computer's move to the game board and adds it to the board count""" piece = Circle(Point(x * 100 + 50, 600 - (y * 100 + 50)), 30) piece.setFill('yellow') piece.draw(self.window) self.boardCount[x] += 1 self.grid[x][y] = -1 return def computerMove(self): """This function computes where the computer will put its next move and calls the drawCmove() fxn to do so. The computer will add its piece to wherever there are three in a row in either color then looks to see when there are two in a row. Move will be placed randomly if no pieces are placed in a row""" for i in range(7): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i][j + 1] self.square3 = self.grid[i][j + 2] if (self.square1 == self.square2 and self.square2 == self. square3): if self.validCmove(i, j + 3): self.drawCmove(i, j + 3) return else: self.randomMove() return for i in range(4): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i + 1][j + 1] self.square3 = self.grid[i + 2][j + 2] if (self.square1 == self.square2 and self.square2 == self. square3): if self.validCmove(i + 3, j + 3): self.drawCmove(i + 3, j + 3) return if self.validCmove(i - 1, j - 1): self.drawCmove(i - 1, j - 1) else: self.randomMove() return for i in range(3, 7): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i - 1][j + 1] self.square3 = self.grid[i - 2][j + 2] if (self.square1 == self.square2 and self.square2 == self. square3): if self.validCmove(i - 3, j + 3): self.drawCmove(i - 3, j + 3) return if self.validCmove(i + 1, j - 1): self.drawCmove(i + 1, j - 1) else: self.randomMove() return for i in range(4): for j in range(6): self.square1 = self.grid[i][j] self.square2 = self.grid[i + 1][j] self.square3 = self.grid[i + 2][j] if (self.square1 == self.square2 and self.square2 == self. square3): if self.validCmove(i + 3, j): self.drawCmove(i + 3, j) return if self.validCmove(i - 1, j): self.drawCmove(i - 1, j) return else: self.randomMove() return for i in range(4): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i + 1][j + 1] if self.square1 == self.square2: if self.validCmove(i + 2, j + 2): self.drawCmove(i + 2, j + 2) return if self.validCmove(i - 1, j - 1): self.drawCmove(i - 1, j - 1) else: self.randomMove() return for i in range(7): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i][j + 1] if self.square1 == self.square2: if self.validCmove(i, j + 2): self.drawCmove(i, j + 2) return if self.validCmove(i, j - 1): self.drawCmove(i, j - 1) return else: self.randomMove() return for i in range(3, 7): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i - 1][j + 1] if self.square1 == self.square2: if self.validCmove(i - 2, j + 2): self.drawCmove(i - 2, j + 2) return if self.validCmove(i + 1, j - 1): self.drawCmove(i + 1, j - 1) else: self.randomMove() return for i in range(4): for j in range(6): self.square1 = self.grid[i][j] self.square2 = self.grid[i + 1][j] if self.square1 == self.square2: if self.validCmove(i + 2, j): self.drawCmove(i + 2, j) return if self.validCmove(i - 1, j): self.drawCmove(i - 1, j) return else: self.randomMove() return else: self.randomMove() def randomMove(self): """This function creates a random coordinate for its move, checks if it's valid, then prints the move. It will continue to run until numbers are valid for current board""" randY = random.randint(0, 6) randX = random.randint(0, 7) if self.validCmove(randY, randX): self.drawCmove(randY, randX) return else: self.randomMove() <mask token>
#connect4_JayNa.py #Jay Na #CS111 Spring 2018 #This file creates a version of the game Connect4, where the user plays against an AI from graphics import * import random class ConnectWindow: def __init__(self): self.window = GraphWin("Connect Four", 690, 590) self.window.setMouseHandler(self.handleClick) self.startScreen() self.currentUser = 1 self.limitCounter = 0 def startScreen(self): '''This function creates the board and intializes the board count for each column''' #draws blue rectangle as the background self.background = Rectangle(Point(0,0), Point(690,590)) self.background.setFill('blue') self.background.draw(self.window) #draws white circles to represent the spots for the game for i in range(7): for j in range(6): self.Circles = Circle(Point(i*100+50,j*100+50),(30)) self.Circles.setFill('white') self.Circles.draw(self.window) #draws lines to separate circles in rectangle for i in range(6): self.horizLine = Line(Point(0,i*100+100), Point(900,i*100+100)) self.vertLine = Line(Point(100*i+100,0), Point(100*i+100,900)) self.horizLine.draw(self.window) self.vertLine.draw(self.window) #initiates counts for each column and creates grid self.grid = [[],[],[],[],[],[],[]] self.boardCount = [0,0,0,0,0,0,0] counter = 2 #help from CS Major, Joh Farmer for x in range(7): for y in range(6): self.grid[x].append(counter) counter += 1 def validClick(self, x): '''This function checks if there is enough space vertically for move to be valid''' if self.boardCount[x] >= 6: print("Invalid Move") return False else: return True def drawUmove(self): '''This function prints the pieces onto the board at the given position from the user''' piece = Circle(Point(self.x*100+50, 600-(self.y*100+50)),30) piece.setFill('red') piece.draw(self.window) return def handleClick(self, point): '''This function works with the user to add each move into the board count and to the current grid''' self.newX = point.getX() self.x = self.newX//100 self.y = self.boardCount[self.x] if self.validClick(self.x): self.boardCount[self.x] += 1 self.limitCounter += 1 self.grid[self.x][self.y] = self.currentUser if self.isWon() == False: self.limitCounter += 1 self.computerMove() self.drawUmove() def isWon(self): '''This function checks if there is a winner in the game (True/False) and calls printWinner function''' #checks to see if there is a winner vertically for i in range(7): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i][j+1] self.square3 = self.grid[i][j+2] self.square4 = self.grid[i][j+3] if self.square1 == self.square2 and self.square2 == self.square3 and self.square3 == self.square4: self.printWinner(self.square1) return True #checks to see if there is a winner diagonally from lower left to upper right for i in range(4): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i+1][j+1] self.square3 = self.grid[i+2][j+2] self.square4 = self.grid[i+3][j+3] if self.square1 == self.square2 and self.square2 == self.square3 and self.square3 == self.square4: self.printWinner(self.square1) return True #checks to see if there is a winner diagonally from upper left to lower right for i in range(3,7): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i-1][j+1] self.square3 = self.grid[i-2][j+2] self.square4 = self.grid[i-3][j+3] if self.square1 == self.square2 and self.square2 == self.square3 and self.square3 == self.square4: self.printWinner(self.square1) return True #checks to see if there is a winner horizontally for i in range(4): for j in range(6): self.square1 = self.grid[i][j] self.square2 = self.grid[i+1][j] self.square3 = self.grid[i+2][j] self.square4 = self.grid[i+3][j] if self.square1 == self.square2 and self.square2 == self.square3 and self.square3 == self.square4: self.printWinner(self.square1) return True #checks if board is full without a winner (tie) if self.limitCounter == 42: self.printWinner(3) return True return False def printWinner(self, winner): '''This function prints who the winner is or if it is a tie''' #if input is 3 from isWon() fxn, game is tied and so "Tie Game!" is printed if winner == 3: txt = Text(Point(345, 300), "Tie Game!") txt.setFill('white') txt.setSize(35) txt.draw(self.window) return else: #prints "You Won!" if user wins if winner == 1: txt = Text(Point(345, 300), "You Won!") txt.setFill('white') txt.setSize(35) txt.draw(self.window) return else: #prints "Computer Won!" if computer wins txt = Text(Point(345, 300), "Computer Won!") txt.setFill('white') txt.setSize(35) txt.draw(self.window) return def validCmove(self, x, y): '''This function checks if the computer's move will be valid''' #checks if '''if it tries to place it higher than the highest piece''' if self.boardCount[x] > y: return False ''' if it tries to place below the highest piece''' if self.boardCount[x] < y: return False '''if it tries to place it in a column with 6 pieces already''' if self.boardCount[x] >= 6: return False else: return True def drawCmove(self, x ,y): '''This function adds the computer's move to the game board and adds it to the board count''' piece = Circle(Point((x)*100+50, 600 - ((y)*100+50)),30) piece.setFill('yellow') piece.draw(self.window) self.boardCount[x] += 1 self.grid[x][y] = -1 return def computerMove(self): '''This function computes where the computer will put its next move and calls the drawCmove() fxn to do so. The computer will add its piece to wherever there are three in a row in either color then looks to see when there are two in a row. Move will be placed randomly if no pieces are placed in a row''' #checks if there are three pieces lined up vertically in a row and places its move to win or prevent the win''' for i in range(7): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i][j+1] self.square3 = self.grid[i][j+2] if self.square1 == self.square2 and self.square2 == self.square3: if self.validCmove(i,j+3): self.drawCmove(i,j+3) return else: self.randomMove() return #checks if there are three pieces lined up diagonally from lower left to upper right and places its move to win or prevent the win #help from CS major, Joh Farmer for i in range(4): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i+1][j+1] self.square3 = self.grid[i+2][j+2] if self.square1 == self.square2 and self.square2 == self.square3: if self.validCmove(i+3,j+3): self.drawCmove(i+3,j+3) return if self.validCmove(i-1,j-1): self.drawCmove(i-1,j-1) else: self.randomMove() return #checks if there are three pieces lined up diagonally from lower right to upper left and places its move to win or prevent the win for i in range(3,7): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i-1][j+1] self.square3 = self.grid[i-2][j+2] if self.square1 == self.square2 and self.square2 == self.square3: if self.validCmove(i-3,j+3): self.drawCmove(i-3,j+3) return if self.validCmove(i+1,j-1): self.drawCmove(i+1,j-1) else: self.randomMove() return #checks if there are three pieces lined up horizontally in a row and places its move to win or prevent the win (either side)''' for i in range(4): for j in range(6): self.square1 = self.grid[i][j] self.square2 = self.grid[i+1][j] self.square3 = self.grid[i+2][j] if self.square1 == self.square2 and self.square2 == self.square3: if self.validCmove(i+3,j): self.drawCmove(i+3,j) return if self.validCmove(i-1,j): self.drawCmove(i-1,j) return else: self.randomMove() return #checks if there are two in a row diagonally from lower left to upper right and places its move accordingly for i in range(4): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i+1][j+1] if self.square1 == self.square2: if self.validCmove(i+2,j+2): self.drawCmove(i+2,j+2) return if self.validCmove(i-1,j-1): self.drawCmove(i-1,j-1) else: self.randomMove() return #checks if there are two in a row vertically and places its move accordingly for i in range(7): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i][j+1] if self.square1 == self.square2: if self.validCmove(i,j+2): self.drawCmove(i,j+2) return if self.validCmove(i,j-1): self.drawCmove(i,j-1) return else: self.randomMove() return #checks if there are two in a row diagonally from lower right to upper left and places its move accordingly for i in range(3,7): for j in range(3): self.square1 = self.grid[i][j] self.square2 = self.grid[i-1][j+1] if self.square1 == self.square2: if self.validCmove(i-2,j+2): self.drawCmove(i-2,j+2) return if self.validCmove(i+1,j-1): self.drawCmove(i+1,j-1) else: self.randomMove() return #checks if there are two in a row horizontally and places its move accordingly for i in range(4): for j in range(6): self.square1 = self.grid[i][j] self.square2 = self.grid[i+1][j] if self.square1 == self.square2: if self.validCmove(i+2,j): self.drawCmove(i+2,j) return if self.validCmove(i-1,j): self.drawCmove(i-1,j) return else: self.randomMove() return #places move randomly if no pieces are being placed in a row else: self.randomMove() def randomMove(self): '''This function creates a random coordinate for its move, checks if it's valid, then prints the move. It will continue to run until numbers are valid for current board''' randY = random.randint(0,6) randX = random.randint(0,7) if self.validCmove(randY,randX): self.drawCmove(randY,randX) return else: self.randomMove() def main(): gameOver = False connect4 = ConnectWindow() while gameOver == False: connect4.window.getMouse() gameOver = connect4.isWon() input("Hit enter to quit") main()
[ 2, 8, 10, 11, 16 ]
770
96d5cf948a9b0f622889977e8b26993299bceead
<mask token>
<mask token> def file_name(file_dir): root_tmp = [] dirs_tmp = [] files_tmp = [] for root, dirs, files in os.walk(file_dir): root_tmp.append(root) dirs_tmp.append(dirs) files_tmp.append(files) return root_tmp, dirs_tmp, files_tmp <mask token> for key in lot_list: if key in combined_all.keys(): print('The Lot %d in %s already existed in %s' % (key, file_tmp, combined_all[key])) <mask token> for row_tmp in df.index: lot_tmp = df.iloc[row_tmp, :].Lot if lot_tmp == lot_last: list_tmp.append(df.iloc[row_tmp, :]) counter += 1 else: df_tmp = pd.concat(list_tmp, axis=1) combined_all[df_tmp.T.time.iloc[-1]] = df_tmp.T feature_tmp = df_tmp.T.iloc[:, 7:] feature_tmp = df_scaler.fit_transform(feature_tmp) t1 = np.mean(feature_tmp) t2 = np.std(feature_tmp) t3 = np.mean(np.sqrt(np.abs(feature_tmp))) ** 2 t4 = np.sqrt(np.mean(feature_tmp ** 2)) t5 = np.max(feature_tmp) t6 = np.sum((feature_tmp - t1) ** 3) / ((len(feature_tmp) - 1) * t2 ** 3) t7 = np.sum((feature_tmp - t1) ** 4) / ((len(feature_tmp) - 1) * t2 ** 4) t8 = t5 / t4 t9 = t5 / t3 t10 = t4 / (np.sum(np.abs(feature_tmp)) / len(feature_tmp)) t11 = t5 / (np.sum(np.abs(feature_tmp)) / len(feature_tmp)) feature_all.loc[idx, :] = [t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, df_tmp.T.time.iloc[0], df_tmp.T.time.iloc[-1], df_tmp.T. recipe.iloc[0], df_tmp.T.stage.iloc[0], lot_last] list_tmp = [] idx += 1 counter = 0 lot_last = lot_tmp print(row_tmp)
<mask token> def file_name(file_dir): root_tmp = [] dirs_tmp = [] files_tmp = [] for root, dirs, files in os.walk(file_dir): root_tmp.append(root) dirs_tmp.append(dirs) files_tmp.append(files) return root_tmp, dirs_tmp, files_tmp root = '/home/ninja1mmm/Desktop/phm/data' root_tmp, dirs_tmp, files_tmp = file_name(root) combined_all = {} feature_all = pd.DataFrame(columns=['mean', 'std', 'root amplitude', 'rms', 'max', 'skewness', 'kurtosis', 'peak factor', 'margin', 'waveform', 'pulse', 'start_time', 'end_time', 'recipe', 'stage', 'Lot']) file_tmp = files_tmp[2][0] path_tmp = root_tmp[2] + '/' + file_tmp df = pd.read_pickle(path_tmp) df = df.replace([np.inf, -np.inf], np.nan).dropna() df = df.reset_index(drop=True) df_scaler = preprocessing.MinMaxScaler(feature_range=(0, 1)) lot_list = list(set(df.Lot)) for key in lot_list: if key in combined_all.keys(): print('The Lot %d in %s already existed in %s' % (key, file_tmp, combined_all[key])) list_tmp = [] lot_last = df.Lot[0] counter = 0 idx = 0 for row_tmp in df.index: lot_tmp = df.iloc[row_tmp, :].Lot if lot_tmp == lot_last: list_tmp.append(df.iloc[row_tmp, :]) counter += 1 else: df_tmp = pd.concat(list_tmp, axis=1) combined_all[df_tmp.T.time.iloc[-1]] = df_tmp.T feature_tmp = df_tmp.T.iloc[:, 7:] feature_tmp = df_scaler.fit_transform(feature_tmp) t1 = np.mean(feature_tmp) t2 = np.std(feature_tmp) t3 = np.mean(np.sqrt(np.abs(feature_tmp))) ** 2 t4 = np.sqrt(np.mean(feature_tmp ** 2)) t5 = np.max(feature_tmp) t6 = np.sum((feature_tmp - t1) ** 3) / ((len(feature_tmp) - 1) * t2 ** 3) t7 = np.sum((feature_tmp - t1) ** 4) / ((len(feature_tmp) - 1) * t2 ** 4) t8 = t5 / t4 t9 = t5 / t3 t10 = t4 / (np.sum(np.abs(feature_tmp)) / len(feature_tmp)) t11 = t5 / (np.sum(np.abs(feature_tmp)) / len(feature_tmp)) feature_all.loc[idx, :] = [t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, df_tmp.T.time.iloc[0], df_tmp.T.time.iloc[-1], df_tmp.T. recipe.iloc[0], df_tmp.T.stage.iloc[0], lot_last] list_tmp = [] idx += 1 counter = 0 lot_last = lot_tmp print(row_tmp)
<mask token> import os import numpy as np import pandas as pd from sklearn import preprocessing def file_name(file_dir): root_tmp = [] dirs_tmp = [] files_tmp = [] for root, dirs, files in os.walk(file_dir): root_tmp.append(root) dirs_tmp.append(dirs) files_tmp.append(files) return root_tmp, dirs_tmp, files_tmp root = '/home/ninja1mmm/Desktop/phm/data' root_tmp, dirs_tmp, files_tmp = file_name(root) combined_all = {} feature_all = pd.DataFrame(columns=['mean', 'std', 'root amplitude', 'rms', 'max', 'skewness', 'kurtosis', 'peak factor', 'margin', 'waveform', 'pulse', 'start_time', 'end_time', 'recipe', 'stage', 'Lot']) file_tmp = files_tmp[2][0] path_tmp = root_tmp[2] + '/' + file_tmp df = pd.read_pickle(path_tmp) df = df.replace([np.inf, -np.inf], np.nan).dropna() df = df.reset_index(drop=True) df_scaler = preprocessing.MinMaxScaler(feature_range=(0, 1)) lot_list = list(set(df.Lot)) for key in lot_list: if key in combined_all.keys(): print('The Lot %d in %s already existed in %s' % (key, file_tmp, combined_all[key])) list_tmp = [] lot_last = df.Lot[0] counter = 0 idx = 0 for row_tmp in df.index: lot_tmp = df.iloc[row_tmp, :].Lot if lot_tmp == lot_last: list_tmp.append(df.iloc[row_tmp, :]) counter += 1 else: df_tmp = pd.concat(list_tmp, axis=1) combined_all[df_tmp.T.time.iloc[-1]] = df_tmp.T feature_tmp = df_tmp.T.iloc[:, 7:] feature_tmp = df_scaler.fit_transform(feature_tmp) t1 = np.mean(feature_tmp) t2 = np.std(feature_tmp) t3 = np.mean(np.sqrt(np.abs(feature_tmp))) ** 2 t4 = np.sqrt(np.mean(feature_tmp ** 2)) t5 = np.max(feature_tmp) t6 = np.sum((feature_tmp - t1) ** 3) / ((len(feature_tmp) - 1) * t2 ** 3) t7 = np.sum((feature_tmp - t1) ** 4) / ((len(feature_tmp) - 1) * t2 ** 4) t8 = t5 / t4 t9 = t5 / t3 t10 = t4 / (np.sum(np.abs(feature_tmp)) / len(feature_tmp)) t11 = t5 / (np.sum(np.abs(feature_tmp)) / len(feature_tmp)) feature_all.loc[idx, :] = [t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, df_tmp.T.time.iloc[0], df_tmp.T.time.iloc[-1], df_tmp.T. recipe.iloc[0], df_tmp.T.stage.iloc[0], lot_last] list_tmp = [] idx += 1 counter = 0 lot_last = lot_tmp print(row_tmp)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jul 18 13:37:10 2018 @author: ninja1mmm """ import os import numpy as np import pandas as pd from sklearn import preprocessing def file_name(file_dir): root_tmp=[] dirs_tmp=[] files_tmp=[] for root, dirs, files in os.walk(file_dir): root_tmp.append(root) dirs_tmp.append(dirs) files_tmp.append(files) return root_tmp, dirs_tmp, files_tmp root = '/home/ninja1mmm/Desktop/phm/data' root_tmp, dirs_tmp, files_tmp = file_name(root) combined_all = {} feature_all = pd.DataFrame(columns = ['mean', 'std','root amplitude', 'rms','max','skewness','kurtosis', 'peak factor','margin','waveform', 'pulse','start_time', 'end_time', 'recipe', 'stage', 'Lot']) #df_check = pd.DataFrame() # read the first file to test here file_tmp = files_tmp[2][0] # iterate through the files if needed #for file_tmp in files_tmp[2]: path_tmp = root_tmp[2]+'/'+file_tmp df = pd.read_pickle(path_tmp) #df_tmp = df[df['Lot']==28113] #if len(df_tmp)>0: # df_tmp = df_tmp.iloc[0,:] # df_check = df_check.append(df_tmp) #------------------------------------------------------------------------------ # Crucial step df=df.replace([np.inf, -np.inf], np.nan).dropna() df=df.reset_index(drop=True) df_scaler = preprocessing.MinMaxScaler(feature_range = (0,1)) #------------------------------------------------------------------------------ lot_list = list(set(df.Lot)) # Check if Lot already existed for key in lot_list: if key in combined_all.keys(): print('The Lot %d in %s already existed in %s' % (key, file_tmp, combined_all[key])) # for tmp in lot_list: # combined_all[tmp] = file_tmp # Select and save all the wafer processing cycles list_tmp = [] lot_last = df.Lot[0] counter = 0 idx = 0 # Specify the range. Here set to 100000 for the ease of test for row_tmp in df.index: lot_tmp = df.iloc[row_tmp,:].Lot if lot_tmp == lot_last: list_tmp.append(df.iloc[row_tmp,:]) counter += 1 else: df_tmp = pd.concat(list_tmp, axis = 1) # lot_last serves as the key, can be changed # combined_all[lot_last] = df_tmp.T combined_all[df_tmp.T.time.iloc[-1]] = df_tmp.T # Calculate mean and save in feature dictionary as an example # Normalize the data again because for some parameters we need the local (within cycle) feature feature_tmp = df_tmp.T.iloc[:,7:] # Not a correct way, because shutter position also need to be excluded feature_tmp = df_scaler.fit_transform(feature_tmp) # ------------------------------------------------------------------ # Add features here. Remember to add new columns when initialzing df t1 = np.mean(feature_tmp) t2 = np.std(feature_tmp) t3 = np.mean(np.sqrt(np.abs(feature_tmp)))**2 t4 = np.sqrt(np.mean(feature_tmp**2)) t5 = np.max(feature_tmp) t6 = np.sum((feature_tmp-t1)**3)/((len(feature_tmp)-1)*(t2**3)) t7 = np.sum((feature_tmp-t1)**4)/((len(feature_tmp)-1)*(t2**4)) t8 = t5/t4 t9 = t5/t3 t10 = t4/(np.sum(np.abs(feature_tmp))/len(feature_tmp)) t11 = t5/(np.sum(np.abs(feature_tmp))/(len(feature_tmp))) # Newly added # First order difference # --------------------------------------------------------------------- feature_all.loc[idx,:] = [t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11, df_tmp.T.time.iloc[0],df_tmp.T.time.iloc[-1], df_tmp.T.recipe.iloc[0],df_tmp.T.stage.iloc[0], lot_last] list_tmp = [] idx += 1 counter = 0 lot_last = lot_tmp print(row_tmp) #------------------------------------------------------------------------------
[ 0, 2, 3, 4, 5 ]
771
d09984c6e6a0ce82389dbbbade63507e9687355d
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [('Pages', '0014_auto_20191223_2032')] operations = [migrations.AlterField(model_name='dept', name= 'Hospital_id', field=models.ForeignKey(default='null', on_delete= django.db.models.deletion.CASCADE, to='Pages.Hospital'))]
from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [('Pages', '0014_auto_20191223_2032')] operations = [migrations.AlterField(model_name='dept', name= 'Hospital_id', field=models.ForeignKey(default='null', on_delete= django.db.models.deletion.CASCADE, to='Pages.Hospital'))]
# Generated by Django 2.2.6 on 2019-12-23 16:38 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('Pages', '0014_auto_20191223_2032'), ] operations = [ migrations.AlterField( model_name='dept', name='Hospital_id', field=models.ForeignKey(default='null', on_delete=django.db.models.deletion.CASCADE, to='Pages.Hospital'), ), ]
[ 0, 1, 2, 3, 4 ]
772
5d4ef314bb7169f5de4795e5c1aca62a1a060bae
<mask token> class AdminCityTable(models.Model): <mask token> <mask token> <mask token> <mask token> class AdminAreaModel(models.Model): area_id = models.AutoField(primary_key=True) area_name = models.CharField(max_length=30, unique=True) city = models.ForeignKey(AdminCityTable, on_delete=models.CASCADE) def __str__(self): return self.area_name class AdminRestaurantTypeModel(models.Model): restaurant_type_id = models.AutoField(primary_key=True) restaurant_type_name = models.CharField(max_length=30, unique=True) def __str__(self): return self.restaurant_type_name
<mask token> class AdminStateModel(models.Model): <mask token> <mask token> <mask token> class AdminCityTable(models.Model): city_id = models.AutoField(primary_key=True) city_name = models.CharField(max_length=30, unique=True) state = models.ForeignKey(AdminStateModel, on_delete=models.CASCADE) def __str__(self): return self.city_name class AdminAreaModel(models.Model): area_id = models.AutoField(primary_key=True) area_name = models.CharField(max_length=30, unique=True) city = models.ForeignKey(AdminCityTable, on_delete=models.CASCADE) def __str__(self): return self.area_name class AdminRestaurantTypeModel(models.Model): restaurant_type_id = models.AutoField(primary_key=True) restaurant_type_name = models.CharField(max_length=30, unique=True) def __str__(self): return self.restaurant_type_name
<mask token> class AdminLoginModel(models.Model): user_name = models.CharField(max_length=30, unique=True) password = models.CharField(max_length=16) class AdminStateModel(models.Model): state_id = models.AutoField(primary_key=True) state_name = models.CharField(max_length=30, unique=True) def __str__(self): return self.state_name class AdminCityTable(models.Model): city_id = models.AutoField(primary_key=True) city_name = models.CharField(max_length=30, unique=True) state = models.ForeignKey(AdminStateModel, on_delete=models.CASCADE) def __str__(self): return self.city_name class AdminAreaModel(models.Model): area_id = models.AutoField(primary_key=True) area_name = models.CharField(max_length=30, unique=True) city = models.ForeignKey(AdminCityTable, on_delete=models.CASCADE) def __str__(self): return self.area_name class AdminRestaurantTypeModel(models.Model): restaurant_type_id = models.AutoField(primary_key=True) restaurant_type_name = models.CharField(max_length=30, unique=True) def __str__(self): return self.restaurant_type_name
from django.db import models class AdminLoginModel(models.Model): user_name = models.CharField(max_length=30, unique=True) password = models.CharField(max_length=16) class AdminStateModel(models.Model): state_id = models.AutoField(primary_key=True) state_name = models.CharField(max_length=30, unique=True) def __str__(self): return self.state_name class AdminCityTable(models.Model): city_id = models.AutoField(primary_key=True) city_name = models.CharField(max_length=30, unique=True) state = models.ForeignKey(AdminStateModel, on_delete=models.CASCADE) def __str__(self): return self.city_name class AdminAreaModel(models.Model): area_id = models.AutoField(primary_key=True) area_name = models.CharField(max_length=30, unique=True) city = models.ForeignKey(AdminCityTable, on_delete=models.CASCADE) def __str__(self): return self.area_name class AdminRestaurantTypeModel(models.Model): restaurant_type_id = models.AutoField(primary_key=True) restaurant_type_name = models.CharField(max_length=30, unique=True) def __str__(self): return self.restaurant_type_name
from django.db import models # Login Admin Model class AdminLoginModel(models.Model): user_name = models.CharField(max_length=30,unique=True) password = models.CharField(max_length=16) # Swiggy Admin State Table class AdminStateModel(models.Model): state_id = models.AutoField(primary_key=True) state_name = models.CharField(max_length=30,unique=True) def __str__(self): return self.state_name # Admin City Table class AdminCityTable(models.Model): city_id = models.AutoField(primary_key = True) city_name = models.CharField(max_length=30,unique=True) state = models.ForeignKey(AdminStateModel,on_delete=models.CASCADE) def __str__(self): return self.city_name #Admin Area Models for Area Operations class AdminAreaModel(models.Model): area_id = models.AutoField(primary_key = True) area_name = models.CharField(max_length=30,unique=True) city = models.ForeignKey(AdminCityTable,on_delete=models.CASCADE) def __str__(self): return self.area_name #Admin Restaurant type Model class AdminRestaurantTypeModel(models.Model): restaurant_type_id = models.AutoField(primary_key = True) restaurant_type_name = models.CharField(max_length=30,unique=True) def __str__(self): return self.restaurant_type_name
[ 7, 10, 14, 15, 16 ]
773
5c5f00084f37837b749e1fbb52a18d515e09ba06
<mask token>
<mask token> def BFS(graph: Graph.Graph, start, end): visited = set() parent = dict() parent[start] = None queue = [] queue.append(start) visited.add(start) while queue: current = queue.pop(0) if current == end: break for v in graph.neighbors(current): if v not in visited: queue.append(v) visited.add(v) parent[v] = current return parent
import graph as Graph def BFS(graph: Graph.Graph, start, end): visited = set() parent = dict() parent[start] = None queue = [] queue.append(start) visited.add(start) while queue: current = queue.pop(0) if current == end: break for v in graph.neighbors(current): if v not in visited: queue.append(v) visited.add(v) parent[v] = current return parent
null
null
[ 0, 1, 2 ]
774
6b785502e8a8983c164ebdffdd304da47c926acb
<mask token>
<mask token> class LaughsappConfig(AppConfig): <mask token>
<mask token> class LaughsappConfig(AppConfig): name = 'laughsApp'
from django.apps import AppConfig class LaughsappConfig(AppConfig): name = 'laughsApp'
null
[ 0, 1, 2, 3 ]
775
4a7f8221208e8252c7f5c0adff2949f0e552def1
<mask token>
<mask token> print(rest_endpoint) <mask token> print(run_id)
<mask token> ws = Workspace.from_config() step1 = PythonScriptStep(name='prepare data', source_directory='scripts', script_name='data_prep.py', compute_target='aml-cluster') step2 = PythonScriptStep(name='train model', source_directory='scripts', script_name='train_model.py', compute_target='aml-cluster') train_pipeline = Pipeline(workspace=ws, steps=[step1, step2]) experiment = Experiment(workspace=ws, name='training-pipeline') pipeline_run = experiment.submit(train_pipeline) published_pipeline = pipeline_run.publish(name='training_pipeline', description='Model training pipeline', version='1.0') rest_endpoint = published_pipeline.endpoint print(rest_endpoint) response = requests.post(rest_endpoint, headers=some_auth_header, json={ 'ExperimentName': 'run_training_pipeline'}) run_id = response.json()['Id'] print(run_id)
from azureml.core import Workspace from azureml.pipeline.core import Pipeline from azureml.core import Experiment from azureml.pipeline.steps import PythonScriptStep import requests ws = Workspace.from_config() step1 = PythonScriptStep(name='prepare data', source_directory='scripts', script_name='data_prep.py', compute_target='aml-cluster') step2 = PythonScriptStep(name='train model', source_directory='scripts', script_name='train_model.py', compute_target='aml-cluster') train_pipeline = Pipeline(workspace=ws, steps=[step1, step2]) experiment = Experiment(workspace=ws, name='training-pipeline') pipeline_run = experiment.submit(train_pipeline) published_pipeline = pipeline_run.publish(name='training_pipeline', description='Model training pipeline', version='1.0') rest_endpoint = published_pipeline.endpoint print(rest_endpoint) response = requests.post(rest_endpoint, headers=some_auth_header, json={ 'ExperimentName': 'run_training_pipeline'}) run_id = response.json()['Id'] print(run_id)
from azureml.core import Workspace from azureml.pipeline.core import Pipeline from azureml.core import Experiment from azureml.pipeline.steps import PythonScriptStep import requests ws = Workspace.from_config() # Step to run a Python script step1 = PythonScriptStep( name = "prepare data", source_directory = "scripts", script_name = "data_prep.py", compute_target = "aml-cluster" ) # Step to train a model step2 = PythonScriptStep( name = "train model", source_directory = "scripts", script_name = "train_model.py", compute_target = "aml-cluster" ) # Construct the pipeline train_pipeline = Pipeline(workspace = ws, steps = [step1, step2]) # Create an experiment and run the pipeline with it experiment = Experiment(workspace = ws, name = "training-pipeline") pipeline_run = experiment.submit(train_pipeline) # To run all pipeline steps without cached results # pipeline_run = experiment.submit(train_pipeline, regenerate_outputs=True) # Publish the pipeline run published_pipeline = pipeline_run.publish( name="training_pipeline", description="Model training pipeline", version="1.0" ) # Get the endpoint for the published pipeline rest_endpoint = published_pipeline.endpoint print(rest_endpoint) # Consume the pipeline through REST request response = requests.post( rest_endpoint, headers=some_auth_header, json={"ExperimentName": "run_training_pipeline"}) run_id = response.json()["Id"] print(run_id)
[ 0, 1, 2, 3, 4 ]
776
03fb1cf0aac0c37858dd8163562a7139ed4e1179
<mask token>
<mask token> def buildExpectations(queryPath, searchPatternPath): """ Based on SpeechCommand_v0.02 directory structure. """ expectations = [] currentDirectory = '' queryFilename = queryPath.split('/')[-1] queryDirectory = queryPath.split('/')[-2] queryCode = queryFilename.split('_')[0] searchFileList = sorted(glob.glob(searchPatternPath)) for searchFile in searchFileList: searchFilename = searchFile.split('/')[-1] searchDirectory = searchFile.split('/')[-2] searchCode = searchFilename.split('_')[0] if searchDirectory != currentDirectory: currentDirectory = searchDirectory if searchCode == queryCode: if currentDirectory == queryDirectory: expectations.append([[0, 1]]) else: expectations.append([[0, 0]]) return expectations if __name__ == '__main__': parser = argparse.ArgumentParser(description='Dynamic Time Warping') parser.add_argument('-g', '--graph', action='store_true', help= 'Enable graph display') parser.add_argument('-t', '--threshold', type=float, default=0.4, help= 'Set score threshold') parser.add_argument('query_path') parser.add_argument('search_pattern_path') printGroup = parser.add_mutually_exclusive_group() printGroup.add_argument('-p', '--percentage', action='store_true', help ='Enable percentage display') printGroup.add_argument('-v', '--verbose', action='store_true', help= 'Enable verbose display') args = parser.parse_args() GRAPH = args.graph PERCENTAGE = args.percentage threshold = args.threshold VERBOSE = args.verbose queryPath = args.query_path searchPatternPath = args.search_pattern_path dtw.VERBOSE = VERBOSE stats.VERBOSE = VERBOSE labels, sweepList, bestList = dtw.runSearch(queryPath, searchPatternPath) results = dtw.computeResultsPrecisely(sweepList, threshold, positiveOnly=True) for i, result in enumerate(results): print(labels[i] + ': ', end='') for j, (hitIndex, _) in enumerate(result): print(hitIndex * 3, end='') if j < len(result) - 1: print(' | ', end='') print() if GRAPH: dtw.showSweeps(labels, sweepList, bestList) plt.show()
<mask token> GRAPH = False PERCENTAGE = False VERBOSE = False def buildExpectations(queryPath, searchPatternPath): """ Based on SpeechCommand_v0.02 directory structure. """ expectations = [] currentDirectory = '' queryFilename = queryPath.split('/')[-1] queryDirectory = queryPath.split('/')[-2] queryCode = queryFilename.split('_')[0] searchFileList = sorted(glob.glob(searchPatternPath)) for searchFile in searchFileList: searchFilename = searchFile.split('/')[-1] searchDirectory = searchFile.split('/')[-2] searchCode = searchFilename.split('_')[0] if searchDirectory != currentDirectory: currentDirectory = searchDirectory if searchCode == queryCode: if currentDirectory == queryDirectory: expectations.append([[0, 1]]) else: expectations.append([[0, 0]]) return expectations if __name__ == '__main__': parser = argparse.ArgumentParser(description='Dynamic Time Warping') parser.add_argument('-g', '--graph', action='store_true', help= 'Enable graph display') parser.add_argument('-t', '--threshold', type=float, default=0.4, help= 'Set score threshold') parser.add_argument('query_path') parser.add_argument('search_pattern_path') printGroup = parser.add_mutually_exclusive_group() printGroup.add_argument('-p', '--percentage', action='store_true', help ='Enable percentage display') printGroup.add_argument('-v', '--verbose', action='store_true', help= 'Enable verbose display') args = parser.parse_args() GRAPH = args.graph PERCENTAGE = args.percentage threshold = args.threshold VERBOSE = args.verbose queryPath = args.query_path searchPatternPath = args.search_pattern_path dtw.VERBOSE = VERBOSE stats.VERBOSE = VERBOSE labels, sweepList, bestList = dtw.runSearch(queryPath, searchPatternPath) results = dtw.computeResultsPrecisely(sweepList, threshold, positiveOnly=True) for i, result in enumerate(results): print(labels[i] + ': ', end='') for j, (hitIndex, _) in enumerate(result): print(hitIndex * 3, end='') if j < len(result) - 1: print(' | ', end='') print() if GRAPH: dtw.showSweeps(labels, sweepList, bestList) plt.show()
import dtw import stats import glob import argparse import matplotlib.pyplot as plt GRAPH = False PERCENTAGE = False VERBOSE = False def buildExpectations(queryPath, searchPatternPath): """ Based on SpeechCommand_v0.02 directory structure. """ expectations = [] currentDirectory = '' queryFilename = queryPath.split('/')[-1] queryDirectory = queryPath.split('/')[-2] queryCode = queryFilename.split('_')[0] searchFileList = sorted(glob.glob(searchPatternPath)) for searchFile in searchFileList: searchFilename = searchFile.split('/')[-1] searchDirectory = searchFile.split('/')[-2] searchCode = searchFilename.split('_')[0] if searchDirectory != currentDirectory: currentDirectory = searchDirectory if searchCode == queryCode: if currentDirectory == queryDirectory: expectations.append([[0, 1]]) else: expectations.append([[0, 0]]) return expectations if __name__ == '__main__': parser = argparse.ArgumentParser(description='Dynamic Time Warping') parser.add_argument('-g', '--graph', action='store_true', help= 'Enable graph display') parser.add_argument('-t', '--threshold', type=float, default=0.4, help= 'Set score threshold') parser.add_argument('query_path') parser.add_argument('search_pattern_path') printGroup = parser.add_mutually_exclusive_group() printGroup.add_argument('-p', '--percentage', action='store_true', help ='Enable percentage display') printGroup.add_argument('-v', '--verbose', action='store_true', help= 'Enable verbose display') args = parser.parse_args() GRAPH = args.graph PERCENTAGE = args.percentage threshold = args.threshold VERBOSE = args.verbose queryPath = args.query_path searchPatternPath = args.search_pattern_path dtw.VERBOSE = VERBOSE stats.VERBOSE = VERBOSE labels, sweepList, bestList = dtw.runSearch(queryPath, searchPatternPath) results = dtw.computeResultsPrecisely(sweepList, threshold, positiveOnly=True) for i, result in enumerate(results): print(labels[i] + ': ', end='') for j, (hitIndex, _) in enumerate(result): print(hitIndex * 3, end='') if j < len(result) - 1: print(' | ', end='') print() if GRAPH: dtw.showSweeps(labels, sweepList, bestList) plt.show()
import dtw import stats import glob import argparse import matplotlib.pyplot as plt GRAPH = False PERCENTAGE = False VERBOSE = False def buildExpectations(queryPath, searchPatternPath): """ Based on SpeechCommand_v0.02 directory structure. """ expectations = [] currentDirectory = "" queryFilename = queryPath.split("/")[-1] queryDirectory = queryPath.split("/")[-2] queryCode = queryFilename.split("_")[0] searchFileList = sorted(glob.glob(searchPatternPath)) for searchFile in searchFileList: searchFilename = searchFile.split("/")[-1] searchDirectory = searchFile.split("/")[-2] searchCode = searchFilename.split("_")[0] if searchDirectory != currentDirectory: currentDirectory = searchDirectory if searchCode == queryCode: if currentDirectory == queryDirectory: expectations.append([[0, 1]]) else: expectations.append([[0, 0]]) return expectations if __name__ == "__main__": # Parse arguments parser = argparse.ArgumentParser(description='Dynamic Time Warping') parser.add_argument('-g', '--graph', action='store_true', help='Enable graph display') parser.add_argument('-t', '--threshold', type=float, default=0.4, help='Set score threshold') parser.add_argument('query_path') parser.add_argument('search_pattern_path') printGroup = parser.add_mutually_exclusive_group() printGroup.add_argument('-p', '--percentage', action='store_true', help='Enable percentage display') printGroup.add_argument('-v', '--verbose', action='store_true', help='Enable verbose display') args = parser.parse_args() GRAPH = args.graph PERCENTAGE = args.percentage threshold = args.threshold VERBOSE = args.verbose queryPath = args.query_path searchPatternPath = args.search_pattern_path dtw.VERBOSE = VERBOSE stats.VERBOSE = VERBOSE labels, sweepList, bestList = dtw.runSearch(queryPath, searchPatternPath) results = dtw.computeResultsPrecisely(sweepList, threshold, positiveOnly=True) for i, result in enumerate(results): print(labels[i] + ": ", end='') for j, (hitIndex, _) in enumerate(result): print(hitIndex * 3, end='') if j < len(result) - 1: print(" | ", end='') print() if GRAPH: dtw.showSweeps(labels, sweepList, bestList) plt.show()
[ 0, 2, 3, 4, 5 ]
777
303a8609cb21c60a416160264c3d3da805674920
<mask token> @pytest.mark.slow def test_x_noise_reg(): x_train = np.linspace(-3, 3, 300, dtype=np.float32).reshape((300, 1)) noise = tfd.MultivariateNormalDiag(loc=5 * tf.math.sin(2 * x_train), scale_diag=abs(x_train)) y_train = noise.sample().numpy() too_much_noise = NormalizingFlowNetwork(1, n_flows=2, hidden_sizes=(16, 16), noise_reg=('fixed_rate', 3.0), trainable_base_dist=True) too_much_noise.fit(x_train, y_train, epochs=700, verbose=0) x_test = np.linspace(-3, 3, 300, dtype=np.float32).reshape((300, 1)) noise = tfd.MultivariateNormalDiag(loc=5 * tf.math.sin(2 * x_test), scale_diag=abs(x_test)) y_test = noise.sample().numpy() out1 = too_much_noise.pdf(x_test, y_test).numpy() out2 = too_much_noise.pdf(x_test, y_test).numpy() assert all(out1 == out2) little_noise = NormalizingFlowNetwork(1, n_flows=2, hidden_sizes=(16, 16), noise_reg=('rule_of_thumb', 0.1), trainable_base_dist=True) little_noise.fit(x_train, y_train, epochs=700, verbose=0) little_noise_score = tf.reduce_sum(little_noise.pdf(x_test, y_test) ) / 700.0 too_much_noise_score = tf.reduce_sum(too_much_noise.pdf(x_test, y_test) ) / 700.0 assert little_noise_score > too_much_noise_score def test_y_noise_reg(): x_train = np.linspace([[-1]] * 3, [[1]] * 3, 10, dtype=np.float32).reshape( (10, 3)) y_train = np.linspace([[-1]] * 3, [[1]] * 3, 10, dtype=np.float32).reshape( (10, 3)) noise = NormalizingFlowNetwork(3, n_flows=3, hidden_sizes=(16, 16), trainable_base_dist=True, noise_reg=('fixed_rate', 1.0)) noise.fit(x_train, y_train, epochs=10, verbose=0) input_model = noise._get_input_model() y1 = input_model(y_train, training=False).numpy() y2 = input_model(y_train, training=False).numpy() assert np.all(y1 == y2) y1 = input_model(y_train, training=True).numpy() y2 = input_model(y_train, training=True).numpy() assert not np.all(y1 == y2)
<mask token> tf.random.set_seed(22) np.random.seed(22) @pytest.mark.slow def test_x_noise_reg(): x_train = np.linspace(-3, 3, 300, dtype=np.float32).reshape((300, 1)) noise = tfd.MultivariateNormalDiag(loc=5 * tf.math.sin(2 * x_train), scale_diag=abs(x_train)) y_train = noise.sample().numpy() too_much_noise = NormalizingFlowNetwork(1, n_flows=2, hidden_sizes=(16, 16), noise_reg=('fixed_rate', 3.0), trainable_base_dist=True) too_much_noise.fit(x_train, y_train, epochs=700, verbose=0) x_test = np.linspace(-3, 3, 300, dtype=np.float32).reshape((300, 1)) noise = tfd.MultivariateNormalDiag(loc=5 * tf.math.sin(2 * x_test), scale_diag=abs(x_test)) y_test = noise.sample().numpy() out1 = too_much_noise.pdf(x_test, y_test).numpy() out2 = too_much_noise.pdf(x_test, y_test).numpy() assert all(out1 == out2) little_noise = NormalizingFlowNetwork(1, n_flows=2, hidden_sizes=(16, 16), noise_reg=('rule_of_thumb', 0.1), trainable_base_dist=True) little_noise.fit(x_train, y_train, epochs=700, verbose=0) little_noise_score = tf.reduce_sum(little_noise.pdf(x_test, y_test) ) / 700.0 too_much_noise_score = tf.reduce_sum(too_much_noise.pdf(x_test, y_test) ) / 700.0 assert little_noise_score > too_much_noise_score def test_y_noise_reg(): x_train = np.linspace([[-1]] * 3, [[1]] * 3, 10, dtype=np.float32).reshape( (10, 3)) y_train = np.linspace([[-1]] * 3, [[1]] * 3, 10, dtype=np.float32).reshape( (10, 3)) noise = NormalizingFlowNetwork(3, n_flows=3, hidden_sizes=(16, 16), trainable_base_dist=True, noise_reg=('fixed_rate', 1.0)) noise.fit(x_train, y_train, epochs=10, verbose=0) input_model = noise._get_input_model() y1 = input_model(y_train, training=False).numpy() y2 = input_model(y_train, training=False).numpy() assert np.all(y1 == y2) y1 = input_model(y_train, training=True).numpy() y2 = input_model(y_train, training=True).numpy() assert not np.all(y1 == y2)
<mask token> tfd = tfp.distributions tf.random.set_seed(22) np.random.seed(22) @pytest.mark.slow def test_x_noise_reg(): x_train = np.linspace(-3, 3, 300, dtype=np.float32).reshape((300, 1)) noise = tfd.MultivariateNormalDiag(loc=5 * tf.math.sin(2 * x_train), scale_diag=abs(x_train)) y_train = noise.sample().numpy() too_much_noise = NormalizingFlowNetwork(1, n_flows=2, hidden_sizes=(16, 16), noise_reg=('fixed_rate', 3.0), trainable_base_dist=True) too_much_noise.fit(x_train, y_train, epochs=700, verbose=0) x_test = np.linspace(-3, 3, 300, dtype=np.float32).reshape((300, 1)) noise = tfd.MultivariateNormalDiag(loc=5 * tf.math.sin(2 * x_test), scale_diag=abs(x_test)) y_test = noise.sample().numpy() out1 = too_much_noise.pdf(x_test, y_test).numpy() out2 = too_much_noise.pdf(x_test, y_test).numpy() assert all(out1 == out2) little_noise = NormalizingFlowNetwork(1, n_flows=2, hidden_sizes=(16, 16), noise_reg=('rule_of_thumb', 0.1), trainable_base_dist=True) little_noise.fit(x_train, y_train, epochs=700, verbose=0) little_noise_score = tf.reduce_sum(little_noise.pdf(x_test, y_test) ) / 700.0 too_much_noise_score = tf.reduce_sum(too_much_noise.pdf(x_test, y_test) ) / 700.0 assert little_noise_score > too_much_noise_score def test_y_noise_reg(): x_train = np.linspace([[-1]] * 3, [[1]] * 3, 10, dtype=np.float32).reshape( (10, 3)) y_train = np.linspace([[-1]] * 3, [[1]] * 3, 10, dtype=np.float32).reshape( (10, 3)) noise = NormalizingFlowNetwork(3, n_flows=3, hidden_sizes=(16, 16), trainable_base_dist=True, noise_reg=('fixed_rate', 1.0)) noise.fit(x_train, y_train, epochs=10, verbose=0) input_model = noise._get_input_model() y1 = input_model(y_train, training=False).numpy() y2 = input_model(y_train, training=False).numpy() assert np.all(y1 == y2) y1 = input_model(y_train, training=True).numpy() y2 = input_model(y_train, training=True).numpy() assert not np.all(y1 == y2)
import tensorflow as tf import tensorflow_probability as tfp import pytest import numpy as np from estimators import NormalizingFlowNetwork tfd = tfp.distributions tf.random.set_seed(22) np.random.seed(22) @pytest.mark.slow def test_x_noise_reg(): x_train = np.linspace(-3, 3, 300, dtype=np.float32).reshape((300, 1)) noise = tfd.MultivariateNormalDiag(loc=5 * tf.math.sin(2 * x_train), scale_diag=abs(x_train)) y_train = noise.sample().numpy() too_much_noise = NormalizingFlowNetwork(1, n_flows=2, hidden_sizes=(16, 16), noise_reg=('fixed_rate', 3.0), trainable_base_dist=True) too_much_noise.fit(x_train, y_train, epochs=700, verbose=0) x_test = np.linspace(-3, 3, 300, dtype=np.float32).reshape((300, 1)) noise = tfd.MultivariateNormalDiag(loc=5 * tf.math.sin(2 * x_test), scale_diag=abs(x_test)) y_test = noise.sample().numpy() out1 = too_much_noise.pdf(x_test, y_test).numpy() out2 = too_much_noise.pdf(x_test, y_test).numpy() assert all(out1 == out2) little_noise = NormalizingFlowNetwork(1, n_flows=2, hidden_sizes=(16, 16), noise_reg=('rule_of_thumb', 0.1), trainable_base_dist=True) little_noise.fit(x_train, y_train, epochs=700, verbose=0) little_noise_score = tf.reduce_sum(little_noise.pdf(x_test, y_test) ) / 700.0 too_much_noise_score = tf.reduce_sum(too_much_noise.pdf(x_test, y_test) ) / 700.0 assert little_noise_score > too_much_noise_score def test_y_noise_reg(): x_train = np.linspace([[-1]] * 3, [[1]] * 3, 10, dtype=np.float32).reshape( (10, 3)) y_train = np.linspace([[-1]] * 3, [[1]] * 3, 10, dtype=np.float32).reshape( (10, 3)) noise = NormalizingFlowNetwork(3, n_flows=3, hidden_sizes=(16, 16), trainable_base_dist=True, noise_reg=('fixed_rate', 1.0)) noise.fit(x_train, y_train, epochs=10, verbose=0) input_model = noise._get_input_model() y1 = input_model(y_train, training=False).numpy() y2 = input_model(y_train, training=False).numpy() assert np.all(y1 == y2) y1 = input_model(y_train, training=True).numpy() y2 = input_model(y_train, training=True).numpy() assert not np.all(y1 == y2)
import tensorflow as tf import tensorflow_probability as tfp import pytest import numpy as np from estimators import NormalizingFlowNetwork tfd = tfp.distributions tf.random.set_seed(22) np.random.seed(22) @pytest.mark.slow def test_x_noise_reg(): x_train = np.linspace(-3, 3, 300, dtype=np.float32).reshape((300, 1)) noise = tfd.MultivariateNormalDiag(loc=5 * tf.math.sin(2 * x_train), scale_diag=abs(x_train)) y_train = noise.sample().numpy() too_much_noise = NormalizingFlowNetwork( 1, n_flows=2, hidden_sizes=(16, 16), noise_reg=("fixed_rate", 3.0), trainable_base_dist=True, ) too_much_noise.fit(x_train, y_train, epochs=700, verbose=0) x_test = np.linspace(-3, 3, 300, dtype=np.float32).reshape((300, 1)) noise = tfd.MultivariateNormalDiag(loc=5 * tf.math.sin(2 * x_test), scale_diag=abs(x_test)) y_test = noise.sample().numpy() out1 = too_much_noise.pdf(x_test, y_test).numpy() out2 = too_much_noise.pdf(x_test, y_test).numpy() # making sure that the noise regularisation is deactivated in testing mode assert all(out1 == out2) little_noise = NormalizingFlowNetwork( 1, n_flows=2, hidden_sizes=(16, 16), noise_reg=("rule_of_thumb", 0.1), trainable_base_dist=True, ) little_noise.fit(x_train, y_train, epochs=700, verbose=0) little_noise_score = tf.reduce_sum(little_noise.pdf(x_test, y_test)) / 700.0 too_much_noise_score = tf.reduce_sum(too_much_noise.pdf(x_test, y_test)) / 700.0 assert little_noise_score > too_much_noise_score def test_y_noise_reg(): x_train = np.linspace([[-1]] * 3, [[1]] * 3, 10, dtype=np.float32).reshape((10, 3)) y_train = np.linspace([[-1]] * 3, [[1]] * 3, 10, dtype=np.float32).reshape((10, 3)) noise = NormalizingFlowNetwork( 3, n_flows=3, hidden_sizes=(16, 16), trainable_base_dist=True, noise_reg=("fixed_rate", 1.0), ) noise.fit(x_train, y_train, epochs=10, verbose=0) input_model = noise._get_input_model() # y_input should not include randomness during evaluation y1 = input_model(y_train, training=False).numpy() y2 = input_model(y_train, training=False).numpy() assert np.all(y1 == y2) # loss should include randomness during learning y1 = input_model(y_train, training=True).numpy() y2 = input_model(y_train, training=True).numpy() assert not np.all(y1 == y2)
[ 2, 3, 4, 5, 6 ]
778
830e7e84eebd6a4adb411cc95c9e9c8ff7bdac30
<mask token>
def isSubsetSum(set, n, sum): subset = [[(False) for i in range(sum + 1)] for i in range(n + 1)] for i in range(n + 1): subset[i][0] = True for i in range(1, sum + 1): subset[0][i] = False for i in range(1, n + 1): for j in range(1, sum + 1): if j < set[i - 1]: subset[i][j] = subset[i - 1][j] if j >= set[i - 1]: subset[i][j] = subset[i - 1][j] or subset[i - 1][j - set[i - 1] ] return subset[n][sum] <mask token>
def isSubsetSum(set, n, sum): subset = [[(False) for i in range(sum + 1)] for i in range(n + 1)] for i in range(n + 1): subset[i][0] = True for i in range(1, sum + 1): subset[0][i] = False for i in range(1, n + 1): for j in range(1, sum + 1): if j < set[i - 1]: subset[i][j] = subset[i - 1][j] if j >= set[i - 1]: subset[i][j] = subset[i - 1][j] or subset[i - 1][j - set[i - 1] ] return subset[n][sum] <mask token> for i in range(t): n, k = map(int, input().split()) lst = list(map(int, input().strip().split(' ')))[:n] if isSubsetSum(lst, n, k) == True: print('YES') else: print('NO')
def isSubsetSum(set, n, sum): subset = [[(False) for i in range(sum + 1)] for i in range(n + 1)] for i in range(n + 1): subset[i][0] = True for i in range(1, sum + 1): subset[0][i] = False for i in range(1, n + 1): for j in range(1, sum + 1): if j < set[i - 1]: subset[i][j] = subset[i - 1][j] if j >= set[i - 1]: subset[i][j] = subset[i - 1][j] or subset[i - 1][j - set[i - 1] ] return subset[n][sum] t = int(input()) for i in range(t): n, k = map(int, input().split()) lst = list(map(int, input().strip().split(' ')))[:n] if isSubsetSum(lst, n, k) == True: print('YES') else: print('NO')
def isSubsetSum(set, n, sum): subset =([[False for i in range(sum + 1)] for i in range(n + 1)]) for i in range(n + 1): subset[i][0] = True for i in range(1, sum + 1): subset[0][i]= False for i in range(1, n + 1): for j in range(1, sum + 1): if j<set[i-1]: subset[i][j] = subset[i-1][j] if j>= set[i-1]: subset[i][j] = (subset[i-1][j] or subset[i - 1][j-set[i-1]]) return subset[n][sum] t=int(input()) for i in range(t): n,k=map(int,input().split()) lst=list(map(int,input().strip().split(' ')))[:n] if (isSubsetSum(lst, n, k) == True): print("YES") else: print("NO")
[ 0, 1, 2, 3, 4 ]
779
e60c3a6aececd97ec08ae32b552bcda795375b3b
import os import sys from shutil import copyfile def buildDocumentation(): """ Build eMonitor Documentation with sphinx :param sys.argv: * html: build html documentation in directory */docs/output/html* * pdf: build pdf documentation in directory */docs/output/pdf* """ helptext = 'usage: build_doc.py <output format> <type of documentation>' \ '\n - html: for html output' \ '\n - pdf: for pdf output' \ '\n\n - all: complete documentation' \ '\n - dev: only developer documentation' \ '\n - user: only user documentation' if len(sys.argv) != 3: print helptext sys.exit(1) if sys.argv[1] not in ['pdf', 'html']: print helptext sys.exit(1) if sys.argv[2] not in ['all', 'dev', 'user']: print helptext sys.exit(1) copyfile('docs/index_%s.rst.template' % sys.argv[2], 'index.rst') # copy main file into root directory os.system('sphinx-build -b %s -c docs -D master_doc=index . docs/output/%s/%s' % (sys.argv[1], sys.argv[1], sys.argv[2])) os.remove('index.rst') # delete config file from root directory if __name__ == '__main__': buildDocumentation()
null
null
null
null
[ 0 ]
780
00a0668d5fcb8358b4bd7736c48e4867afc0f5b6
<mask token> class SolverError(Exception): pass <mask token> def ecos_solve(A, b, c, dim_dict, **kwargs): """Wraps ecos.solve for convenience.""" ecos_cones = {'l': dim_dict['l'] if 'l' in dim_dict else 0, 'q': dim_dict['q'] if 'q' in dim_dict else []} if 'ep' in dim_dict and dim_dict['ep'] > 0 or 's' in dim_dict and len( dim_dict['s']) > 0: raise SolverError( 'Only zero, linear, and second order cones supported.') zero = 0 if 'z' not in dim_dict else dim_dict['z'] ecos_A, ecos_G = A[:zero, :], A[zero:, :] ecos_b, ecos_h = b[:zero], b[zero:] sol = ecos.solve(c=c, G=ecos_G, h=ecos_h, dims=ecos_cones, A=ecos_A, b= ecos_b, **kwargs) solution = True x = sol['x'] s = np.concatenate([np.zeros(zero), sol['s']]) y = np.concatenate([sol['y'], sol['z']]) if sol['info']['exitFlag'] == 0: print('prim abs res.', np.linalg.norm(A @ x + s - b)) print('dua abs res.', np.linalg.norm(A.T @ y + c)) print('s^T y', s @ y) if sol['info']['exitFlag'] in [1, 11]: solution = False obj = b @ y assert obj < 0 y /= -obj print('primal infeas. cert residual norm', np.linalg.norm(A.T @ y)) proj = prod_cone.Pi(-y, *make_prod_cone_cache(dim_dict)) print('primal infeas dist from cone', np.linalg.norm(proj)) x = np.zeros_like(x) s = np.zeros_like(s) if sol['info']['exitFlag'] in [2, 12]: solution = False obj = c @ x assert obj < 0 x /= -obj s /= -obj print('dual infeas. cert residual norm', np.linalg.norm(A @ x + s)) proj = prod_cone.Pi(s, *make_prod_cone_cache(dim_dict)) print('dual infeas cert dist from cone', np.linalg.norm(s - proj)) y = np.zeros_like(y) z = xsy2z(x, s, y, tau=solution, kappa=not solution) return z, sol['info'] <mask token>
<mask token> class SolverError(Exception): pass def scs_solve(A, b, c, dim_dict, init_z=None, **kwargs): """Wraps scs.solve for convenience.""" scs_cones = {'l': dim_dict['l'] if 'l' in dim_dict else 0, 'q': dim_dict['q'] if 'q' in dim_dict else [], 's': dim_dict['s'] if 's' in dim_dict else [], 'ep': dim_dict['ep'] if 'ep' in dim_dict else 0, 'ed': dim_dict['ed'] if 'ed' in dim_dict else 0, 'f': dim_dict['z'] if 'z' in dim_dict else 0} sol = scs.solve({'A': A, 'b': b, 'c': c}, cone=scs_cones, **kwargs) info = sol['info'] if info['statusVal'] > 0: z = xsy2z(sol['x'], sol['s'], sol['y'], tau=1.0, kappa=0.0) if info['statusVal'] < 0: x = np.zeros_like(sol['x']) if np.any(np.isnan(sol['x'])) else sol['x'] s = np.zeros_like(sol['s']) if np.any(np.isnan(sol['s'])) else sol['s'] y = np.zeros_like(sol['y']) if np.any(np.isnan(sol['y'])) else sol['y'] if np.allclose(y, 0.0) and c @ x < 0: obj = c @ x x /= -obj s /= -obj if np.allclose(s, 0.0) and b @ y < 0: obj = b @ y y /= -obj z = xsy2z(x, s, y, tau=0.0, kappa=1.0) return z, info def ecos_solve(A, b, c, dim_dict, **kwargs): """Wraps ecos.solve for convenience.""" ecos_cones = {'l': dim_dict['l'] if 'l' in dim_dict else 0, 'q': dim_dict['q'] if 'q' in dim_dict else []} if 'ep' in dim_dict and dim_dict['ep'] > 0 or 's' in dim_dict and len( dim_dict['s']) > 0: raise SolverError( 'Only zero, linear, and second order cones supported.') zero = 0 if 'z' not in dim_dict else dim_dict['z'] ecos_A, ecos_G = A[:zero, :], A[zero:, :] ecos_b, ecos_h = b[:zero], b[zero:] sol = ecos.solve(c=c, G=ecos_G, h=ecos_h, dims=ecos_cones, A=ecos_A, b= ecos_b, **kwargs) solution = True x = sol['x'] s = np.concatenate([np.zeros(zero), sol['s']]) y = np.concatenate([sol['y'], sol['z']]) if sol['info']['exitFlag'] == 0: print('prim abs res.', np.linalg.norm(A @ x + s - b)) print('dua abs res.', np.linalg.norm(A.T @ y + c)) print('s^T y', s @ y) if sol['info']['exitFlag'] in [1, 11]: solution = False obj = b @ y assert obj < 0 y /= -obj print('primal infeas. cert residual norm', np.linalg.norm(A.T @ y)) proj = prod_cone.Pi(-y, *make_prod_cone_cache(dim_dict)) print('primal infeas dist from cone', np.linalg.norm(proj)) x = np.zeros_like(x) s = np.zeros_like(s) if sol['info']['exitFlag'] in [2, 12]: solution = False obj = c @ x assert obj < 0 x /= -obj s /= -obj print('dual infeas. cert residual norm', np.linalg.norm(A @ x + s)) proj = prod_cone.Pi(s, *make_prod_cone_cache(dim_dict)) print('dual infeas cert dist from cone', np.linalg.norm(s - proj)) y = np.zeros_like(y) z = xsy2z(x, s, y, tau=solution, kappa=not solution) return z, sol['info'] <mask token>
<mask token> class SolverError(Exception): pass def scs_solve(A, b, c, dim_dict, init_z=None, **kwargs): """Wraps scs.solve for convenience.""" scs_cones = {'l': dim_dict['l'] if 'l' in dim_dict else 0, 'q': dim_dict['q'] if 'q' in dim_dict else [], 's': dim_dict['s'] if 's' in dim_dict else [], 'ep': dim_dict['ep'] if 'ep' in dim_dict else 0, 'ed': dim_dict['ed'] if 'ed' in dim_dict else 0, 'f': dim_dict['z'] if 'z' in dim_dict else 0} sol = scs.solve({'A': A, 'b': b, 'c': c}, cone=scs_cones, **kwargs) info = sol['info'] if info['statusVal'] > 0: z = xsy2z(sol['x'], sol['s'], sol['y'], tau=1.0, kappa=0.0) if info['statusVal'] < 0: x = np.zeros_like(sol['x']) if np.any(np.isnan(sol['x'])) else sol['x'] s = np.zeros_like(sol['s']) if np.any(np.isnan(sol['s'])) else sol['s'] y = np.zeros_like(sol['y']) if np.any(np.isnan(sol['y'])) else sol['y'] if np.allclose(y, 0.0) and c @ x < 0: obj = c @ x x /= -obj s /= -obj if np.allclose(s, 0.0) and b @ y < 0: obj = b @ y y /= -obj z = xsy2z(x, s, y, tau=0.0, kappa=1.0) return z, info def ecos_solve(A, b, c, dim_dict, **kwargs): """Wraps ecos.solve for convenience.""" ecos_cones = {'l': dim_dict['l'] if 'l' in dim_dict else 0, 'q': dim_dict['q'] if 'q' in dim_dict else []} if 'ep' in dim_dict and dim_dict['ep'] > 0 or 's' in dim_dict and len( dim_dict['s']) > 0: raise SolverError( 'Only zero, linear, and second order cones supported.') zero = 0 if 'z' not in dim_dict else dim_dict['z'] ecos_A, ecos_G = A[:zero, :], A[zero:, :] ecos_b, ecos_h = b[:zero], b[zero:] sol = ecos.solve(c=c, G=ecos_G, h=ecos_h, dims=ecos_cones, A=ecos_A, b= ecos_b, **kwargs) solution = True x = sol['x'] s = np.concatenate([np.zeros(zero), sol['s']]) y = np.concatenate([sol['y'], sol['z']]) if sol['info']['exitFlag'] == 0: print('prim abs res.', np.linalg.norm(A @ x + s - b)) print('dua abs res.', np.linalg.norm(A.T @ y + c)) print('s^T y', s @ y) if sol['info']['exitFlag'] in [1, 11]: solution = False obj = b @ y assert obj < 0 y /= -obj print('primal infeas. cert residual norm', np.linalg.norm(A.T @ y)) proj = prod_cone.Pi(-y, *make_prod_cone_cache(dim_dict)) print('primal infeas dist from cone', np.linalg.norm(proj)) x = np.zeros_like(x) s = np.zeros_like(s) if sol['info']['exitFlag'] in [2, 12]: solution = False obj = c @ x assert obj < 0 x /= -obj s /= -obj print('dual infeas. cert residual norm', np.linalg.norm(A @ x + s)) proj = prod_cone.Pi(s, *make_prod_cone_cache(dim_dict)) print('dual infeas cert dist from cone', np.linalg.norm(s - proj)) y = np.zeros_like(y) z = xsy2z(x, s, y, tau=solution, kappa=not solution) return z, sol['info'] def solve(A, b, c, dim_dict, solver='scs', solver_options={}, refine_solver_time_ratio=1.0, max_iters=10, verbose=False, max_lsqr_iters=20, return_z=False): solver_start = time.time() if solver == 'scs': z, info = scs_solve(A, b, c, dim_dict, **solver_options) elif solver == 'ecos': z, info = ecos_solve(A, b, c, dim_dict, **solver_options) else: raise Exception('The only supported solvers are ecos and scs') solver_time = time.time() - solver_start A = sp.csc_matrix(A) new_residual, u, v = residual_and_uv(z, (A.indptr, A.indices, A.data), b, c, make_prod_cone_cache(dim_dict)) x, s, y, tau, kappa = uv2xsytaukappa(u, v, A.shape[1]) pres = np.linalg.norm(A @ x + s - b) / (1 + np.linalg.norm(b)) dres = np.linalg.norm(A.T @ y + c) / (1 + np.linalg.norm(c)) gap = np.abs(c @ x + b @ y) / (1 + np.abs(c @ x) + np.abs(b @ y)) print('pres %.2e, dres %.2e, gap %.2e' % (pres, dres, gap)) z_plus = refine(A, b, c, dim_dict, z, verbose=verbose, iters=max_iters, lsqr_iters=max_lsqr_iters) if return_z: return z_plus, info else: new_residual, u, v = residual_and_uv(z_plus, (A.indptr, A.indices, A.data), b, c, make_prod_cone_cache(dim_dict)) x, s, y, tau, kappa = uv2xsytaukappa(u, v, A.shape[1]) pres = np.linalg.norm(A @ x + s - b) / (1 + np.linalg.norm(b)) dres = np.linalg.norm(A.T @ y + c) / (1 + np.linalg.norm(c)) gap = np.abs(c @ x + b @ y) / (1 + np.abs(c @ x) + np.abs(b @ y)) print('pres %.2e, dres %.2e, gap %.2e' % (pres, dres, gap)) return x, s, y, info
<mask token> import numpy as np import scs import ecos import time from .problem import * from .refine import * class SolverError(Exception): pass def scs_solve(A, b, c, dim_dict, init_z=None, **kwargs): """Wraps scs.solve for convenience.""" scs_cones = {'l': dim_dict['l'] if 'l' in dim_dict else 0, 'q': dim_dict['q'] if 'q' in dim_dict else [], 's': dim_dict['s'] if 's' in dim_dict else [], 'ep': dim_dict['ep'] if 'ep' in dim_dict else 0, 'ed': dim_dict['ed'] if 'ed' in dim_dict else 0, 'f': dim_dict['z'] if 'z' in dim_dict else 0} sol = scs.solve({'A': A, 'b': b, 'c': c}, cone=scs_cones, **kwargs) info = sol['info'] if info['statusVal'] > 0: z = xsy2z(sol['x'], sol['s'], sol['y'], tau=1.0, kappa=0.0) if info['statusVal'] < 0: x = np.zeros_like(sol['x']) if np.any(np.isnan(sol['x'])) else sol['x'] s = np.zeros_like(sol['s']) if np.any(np.isnan(sol['s'])) else sol['s'] y = np.zeros_like(sol['y']) if np.any(np.isnan(sol['y'])) else sol['y'] if np.allclose(y, 0.0) and c @ x < 0: obj = c @ x x /= -obj s /= -obj if np.allclose(s, 0.0) and b @ y < 0: obj = b @ y y /= -obj z = xsy2z(x, s, y, tau=0.0, kappa=1.0) return z, info def ecos_solve(A, b, c, dim_dict, **kwargs): """Wraps ecos.solve for convenience.""" ecos_cones = {'l': dim_dict['l'] if 'l' in dim_dict else 0, 'q': dim_dict['q'] if 'q' in dim_dict else []} if 'ep' in dim_dict and dim_dict['ep'] > 0 or 's' in dim_dict and len( dim_dict['s']) > 0: raise SolverError( 'Only zero, linear, and second order cones supported.') zero = 0 if 'z' not in dim_dict else dim_dict['z'] ecos_A, ecos_G = A[:zero, :], A[zero:, :] ecos_b, ecos_h = b[:zero], b[zero:] sol = ecos.solve(c=c, G=ecos_G, h=ecos_h, dims=ecos_cones, A=ecos_A, b= ecos_b, **kwargs) solution = True x = sol['x'] s = np.concatenate([np.zeros(zero), sol['s']]) y = np.concatenate([sol['y'], sol['z']]) if sol['info']['exitFlag'] == 0: print('prim abs res.', np.linalg.norm(A @ x + s - b)) print('dua abs res.', np.linalg.norm(A.T @ y + c)) print('s^T y', s @ y) if sol['info']['exitFlag'] in [1, 11]: solution = False obj = b @ y assert obj < 0 y /= -obj print('primal infeas. cert residual norm', np.linalg.norm(A.T @ y)) proj = prod_cone.Pi(-y, *make_prod_cone_cache(dim_dict)) print('primal infeas dist from cone', np.linalg.norm(proj)) x = np.zeros_like(x) s = np.zeros_like(s) if sol['info']['exitFlag'] in [2, 12]: solution = False obj = c @ x assert obj < 0 x /= -obj s /= -obj print('dual infeas. cert residual norm', np.linalg.norm(A @ x + s)) proj = prod_cone.Pi(s, *make_prod_cone_cache(dim_dict)) print('dual infeas cert dist from cone', np.linalg.norm(s - proj)) y = np.zeros_like(y) z = xsy2z(x, s, y, tau=solution, kappa=not solution) return z, sol['info'] def solve(A, b, c, dim_dict, solver='scs', solver_options={}, refine_solver_time_ratio=1.0, max_iters=10, verbose=False, max_lsqr_iters=20, return_z=False): solver_start = time.time() if solver == 'scs': z, info = scs_solve(A, b, c, dim_dict, **solver_options) elif solver == 'ecos': z, info = ecos_solve(A, b, c, dim_dict, **solver_options) else: raise Exception('The only supported solvers are ecos and scs') solver_time = time.time() - solver_start A = sp.csc_matrix(A) new_residual, u, v = residual_and_uv(z, (A.indptr, A.indices, A.data), b, c, make_prod_cone_cache(dim_dict)) x, s, y, tau, kappa = uv2xsytaukappa(u, v, A.shape[1]) pres = np.linalg.norm(A @ x + s - b) / (1 + np.linalg.norm(b)) dres = np.linalg.norm(A.T @ y + c) / (1 + np.linalg.norm(c)) gap = np.abs(c @ x + b @ y) / (1 + np.abs(c @ x) + np.abs(b @ y)) print('pres %.2e, dres %.2e, gap %.2e' % (pres, dres, gap)) z_plus = refine(A, b, c, dim_dict, z, verbose=verbose, iters=max_iters, lsqr_iters=max_lsqr_iters) if return_z: return z_plus, info else: new_residual, u, v = residual_and_uv(z_plus, (A.indptr, A.indices, A.data), b, c, make_prod_cone_cache(dim_dict)) x, s, y, tau, kappa = uv2xsytaukappa(u, v, A.shape[1]) pres = np.linalg.norm(A @ x + s - b) / (1 + np.linalg.norm(b)) dres = np.linalg.norm(A.T @ y + c) / (1 + np.linalg.norm(c)) gap = np.abs(c @ x + b @ y) / (1 + np.abs(c @ x) + np.abs(b @ y)) print('pres %.2e, dres %.2e, gap %.2e' % (pres, dres, gap)) return x, s, y, info
""" Copyright 2019 Enzo Busseti, Walaa Moursi, and Stephen Boyd Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ #__all__ = ['solve'] import numpy as np import scs import ecos import time from .problem import * from .refine import * class SolverError(Exception): pass def scs_solve(A, b, c, dim_dict, init_z=None, **kwargs): """Wraps scs.solve for convenience.""" scs_cones = {'l': dim_dict['l'] if 'l' in dim_dict else 0, 'q': dim_dict['q'] if 'q' in dim_dict else [], 's': dim_dict['s'] if 's' in dim_dict else [], 'ep': dim_dict['ep'] if 'ep' in dim_dict else 0, 'ed': dim_dict['ed'] if 'ed' in dim_dict else 0, 'f': dim_dict['z'] if 'z' in dim_dict else 0} #print('scs_cones', scs_cones) sol = scs.solve({'A': A, 'b': b, 'c': c}, cone=scs_cones, **kwargs) info = sol['info'] if info['statusVal'] > 0: z = xsy2z(sol['x'], sol['s'], sol['y'], tau=1., kappa=0.) if info['statusVal'] < 0: x = np.zeros_like(sol['x']) \ if np.any(np.isnan(sol['x'])) else sol['x'] s = np.zeros_like(sol['s']) \ if np.any(np.isnan(sol['s'])) else sol['s'] y = np.zeros_like(sol['y']) \ if np.any(np.isnan(sol['y'])) else sol['y'] if np.allclose(y, 0.) and c@x < 0: obj = c@x # assert obj < 0 x /= -obj s /= -obj # print('primal res:', np.linalg.norm(A@x + s)) if np.allclose(s, 0.) and b@y < 0: obj = b@y # assert obj < 0 y /= -obj # print('dual res:', np.linalg.norm(A.T@y)) # print('SCS NONSOLVED') # print('x', x) # print('s', s) # print('y', y) z = xsy2z(x, s, y, tau=0., kappa=1.) return z, info def ecos_solve(A, b, c, dim_dict, **kwargs): """Wraps ecos.solve for convenience.""" ### # ECOS uses a different definition of the exp cone, # with y and z switched. In the future I might wrap it # (i.e., switch rows of A and elements of b, and switch # elements of the solutions s and y) but for now # I'm not supporting exp cones in ecos. ### ecos_cones = {'l': dim_dict['l'] if 'l' in dim_dict else 0, 'q': dim_dict['q'] if 'q' in dim_dict else []} # , # 'e': dim_dict['ep'] if 'ep' in dim_dict else 0} # print(ecos_cones) if ('ep' in dim_dict and dim_dict['ep'] > 0 or 's' in dim_dict and len(dim_dict['s']) > 0): raise SolverError( 'Only zero, linear, and second order cones supported.') zero = 0 if 'z' not in dim_dict else dim_dict['z'] ecos_A, ecos_G = A[:zero, :], A[zero:, :] ecos_b, ecos_h = b[:zero], b[zero:] sol = ecos.solve(c=c, G=ecos_G, h=ecos_h, dims=ecos_cones, A=ecos_A, b=ecos_b, **kwargs) solution = True x = sol['x'] s = np.concatenate([np.zeros(zero), sol['s']]) # not sure we can trust this # s = b - A@x y = np.concatenate([sol['y'], sol['z']]) if sol['info']['exitFlag'] == 0: # check that things make sense print('prim abs res.', np.linalg.norm(A@x + s - b)) print('dua abs res.', np.linalg.norm(A.T@y + c)) print('s^T y', s@y) if sol['info']['exitFlag'] in [1, 11]: # infeas solution = False obj = b@y assert (obj < 0) y /= -obj print('primal infeas. cert residual norm', np.linalg.norm(A.T@y)) #cones = dim2cones(dim_dict) proj = prod_cone.Pi(-y, *make_prod_cone_cache(dim_dict)) print('primal infeas dist from cone', np.linalg.norm(proj)) # if not (np.linalg.norm(proj) == 0.) and sol['info']['exitFlag'] == 1.: # raise SolverError x = np.zeros_like(x) s = np.zeros_like(s) if sol['info']['exitFlag'] in [2, 12]: # unbound solution = False obj = c@x assert (obj < 0) x /= -obj s /= -obj print('dual infeas. cert residual norm', np.linalg.norm(A@x + s)) proj = prod_cone.Pi(s, *make_prod_cone_cache(dim_dict)) print('dual infeas cert dist from cone', np.linalg.norm(s - proj)) # if not (np.linalg.norm(s - proj) == 0.) and sol['info']['exitFlag'] == 2.: # raise SolverError y = np.zeros_like(y) # print('ECOS SOLUTION') # print('solution', solution) # print('x', x) # print('s', s) # print('y', y) z = xsy2z(x, s, y, tau=solution, kappa=not solution) return z, sol['info'] def solve(A, b, c, dim_dict, solver='scs', solver_options={}, refine_solver_time_ratio=1., max_iters=10, verbose=False, max_lsqr_iters=20, return_z=False): solver_start = time.time() if solver == 'scs': z, info = scs_solve(A, b, c, dim_dict, **solver_options) elif solver == 'ecos': z, info = ecos_solve(A, b, c, dim_dict, **solver_options) else: raise Exception('The only supported solvers are ecos and scs') solver_time = time.time() - solver_start A = sp.csc_matrix(A) #A_tr = sp.csc_matrix(A.T) new_residual, u, v = residual_and_uv( z, (A.indptr, A.indices, A.data), b, c, make_prod_cone_cache(dim_dict)) x, s, y, tau, kappa = uv2xsytaukappa(u, v, A.shape[1]) pres = np.linalg.norm(A@x + s - b) / (1 + np.linalg.norm(b)) dres = np.linalg.norm(A.T@y + c) / (1 + np.linalg.norm(c)) gap = np.abs(c@x + b@y) / (1 + np.abs(c@x) + np.abs(b@y)) print('pres %.2e, dres %.2e, gap %.2e' % (pres, dres, gap)) z_plus = refine(A, b, c, dim_dict, z, verbose=verbose, iters=max_iters, lsqr_iters=max_lsqr_iters) # , # max_runtime=solver_time * refine_solver_time_ratio) if return_z: return z_plus, info else: new_residual, u, v =\ residual_and_uv(z_plus, (A.indptr, A.indices, A.data), b, c, make_prod_cone_cache(dim_dict)) x, s, y, tau, kappa = uv2xsytaukappa(u, v, A.shape[1]) pres = np.linalg.norm(A@x + s - b) / (1 + np.linalg.norm(b)) dres = np.linalg.norm(A.T@y + c) / (1 + np.linalg.norm(c)) gap = np.abs(c@x + b@y) / (1 + np.abs(c@x) + np.abs(b@y)) print('pres %.2e, dres %.2e, gap %.2e' % (pres, dres, gap)) return x, s, y, info
[ 2, 3, 4, 5, 6 ]
781
f5c277da2b22debe26327464ae736892360059b4
<mask token>
<mask token> plt.pcolor(df) plt.colorbar() plt.yticks(np.arange(0.5, len(df.index), 1), df.index) plt.xticks(np.arange(0.5, len(df.columns), 1), df.columns) plt.show()
<mask token> month = ['Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', 'Jan', 'Feb', 'Mar', 'Apr', 'May'] df = pd.DataFrame([[53, 0, 5, 3, 3], [51, 0, 1, 3, 2], [70, 4, 7, 5, 1], [ 66, 4, 1, 4, 2], [64, 4, 4, 3, 2], [69, 4, 7, 8, 2], [45, 2, 8, 4, 2], [29, 1, 6, 6, 1], [56, 4, 4, 2, 2], [41, 2, 2, 2, 1], [3, 0, 0, 0, 0], [8, 0, 0, 0, 0]], columns=['1000', '2000', '3000', '4000', '5000'], index=month) plt.pcolor(df) plt.colorbar() plt.yticks(np.arange(0.5, len(df.index), 1), df.index) plt.xticks(np.arange(0.5, len(df.columns), 1), df.columns) plt.show()
import numpy as np import matplotlib.pyplot as plt import pandas as pd month = ['Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', 'Jan', 'Feb', 'Mar', 'Apr', 'May'] df = pd.DataFrame([[53, 0, 5, 3, 3], [51, 0, 1, 3, 2], [70, 4, 7, 5, 1], [ 66, 4, 1, 4, 2], [64, 4, 4, 3, 2], [69, 4, 7, 8, 2], [45, 2, 8, 4, 2], [29, 1, 6, 6, 1], [56, 4, 4, 2, 2], [41, 2, 2, 2, 1], [3, 0, 0, 0, 0], [8, 0, 0, 0, 0]], columns=['1000', '2000', '3000', '4000', '5000'], index=month) plt.pcolor(df) plt.colorbar() plt.yticks(np.arange(0.5, len(df.index), 1), df.index) plt.xticks(np.arange(0.5, len(df.columns), 1), df.columns) plt.show()
null
[ 0, 1, 2, 3 ]
782
5c2a6802e89314c25f0264bbe2bc7ed2689a255a
<mask token>
<mask token> for i in range(n): a[i] = int(a[i]) for i in range(n - 1): for j in range(n - i - 1): if a[j] > a[j + 1]: a[j], a[j + 1] = a[j + 1], a[j] print('Sortes array :', a)
a = input('Please enter the elements with spaces between them:').split() n = len(a) for i in range(n): a[i] = int(a[i]) for i in range(n - 1): for j in range(n - i - 1): if a[j] > a[j + 1]: a[j], a[j + 1] = a[j + 1], a[j] print('Sortes array :', a)
a=input("Please enter the elements with spaces between them:").split() n=len(a) for i in range(n): a[i]=int(a[i]) for i in range(n-1): for j in range(n-i-1): if a[j]>a[j+1]: a[j],a[j+1]=a[j+1],a[j] print("Sortes array :",a)
null
[ 0, 1, 2, 3 ]
783
20f0480ee7e0782b23ec8ade150cdd8d8ad718bb
<mask token> def euler(): h = 0.1 x = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5] y_eval = [0.0] delta_y = [0.0] y_real = [0.0] eps = [0.0] for i in range(1, len(x)): y_eval.append(y_eval[i - 1] + h * fun(x[i - 1], y_eval[i - 1])) delta_y.append(h * fun(y_eval[i], x[i])) y_real.append(real_fun(x[i])) eps.append(abs(y_real[i] - y_eval[i])) print(y_eval) print(delta_y) print(y_real) print(eps) data_matrix = [['k', 'x', 'y', 'delta_y', 'y_real', 'eps']] for i in range(0, len(x)): data_matrix.append([i, x[i], y_eval[i], delta_y[i], y_real[i], eps[i]]) table = ff.create_table(data_matrix) plot(table) def fun(x, y): return pow(x + y, 2) <mask token>
<mask token> def euler(): h = 0.1 x = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5] y_eval = [0.0] delta_y = [0.0] y_real = [0.0] eps = [0.0] for i in range(1, len(x)): y_eval.append(y_eval[i - 1] + h * fun(x[i - 1], y_eval[i - 1])) delta_y.append(h * fun(y_eval[i], x[i])) y_real.append(real_fun(x[i])) eps.append(abs(y_real[i] - y_eval[i])) print(y_eval) print(delta_y) print(y_real) print(eps) data_matrix = [['k', 'x', 'y', 'delta_y', 'y_real', 'eps']] for i in range(0, len(x)): data_matrix.append([i, x[i], y_eval[i], delta_y[i], y_real[i], eps[i]]) table = ff.create_table(data_matrix) plot(table) def fun(x, y): return pow(x + y, 2) def real_fun(x): return tan(x) - x <mask token>
<mask token> def euler(): h = 0.1 x = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5] y_eval = [0.0] delta_y = [0.0] y_real = [0.0] eps = [0.0] for i in range(1, len(x)): y_eval.append(y_eval[i - 1] + h * fun(x[i - 1], y_eval[i - 1])) delta_y.append(h * fun(y_eval[i], x[i])) y_real.append(real_fun(x[i])) eps.append(abs(y_real[i] - y_eval[i])) print(y_eval) print(delta_y) print(y_real) print(eps) data_matrix = [['k', 'x', 'y', 'delta_y', 'y_real', 'eps']] for i in range(0, len(x)): data_matrix.append([i, x[i], y_eval[i], delta_y[i], y_real[i], eps[i]]) table = ff.create_table(data_matrix) plot(table) def fun(x, y): return pow(x + y, 2) def real_fun(x): return tan(x) - x euler()
from math import pow from math import tan import plotly.figure_factory as ff from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot def euler(): h = 0.1 x = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5] y_eval = [0.0] delta_y = [0.0] y_real = [0.0] eps = [0.0] for i in range(1, len(x)): y_eval.append(y_eval[i - 1] + h * fun(x[i - 1], y_eval[i - 1])) delta_y.append(h * fun(y_eval[i], x[i])) y_real.append(real_fun(x[i])) eps.append(abs(y_real[i] - y_eval[i])) print(y_eval) print(delta_y) print(y_real) print(eps) data_matrix = [['k', 'x', 'y', 'delta_y', 'y_real', 'eps']] for i in range(0, len(x)): data_matrix.append([i, x[i], y_eval[i], delta_y[i], y_real[i], eps[i]]) table = ff.create_table(data_matrix) plot(table) def fun(x, y): return pow(x + y, 2) def real_fun(x): return tan(x) - x euler()
from math import pow from math import tan import plotly.figure_factory as ff from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot def euler(): h = 0.1 x = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5] y_eval = [0.0] delta_y = [0.0] y_real = [0.0] eps = [0.0] for i in range(1, len(x)): y_eval.append(y_eval[i - 1] + h * fun(x[i - 1], y_eval[i - 1])) delta_y.append(h * fun(y_eval[i], x[i])) y_real.append(real_fun(x[i])) eps.append(abs(y_real[i] - y_eval[i])) # print in table format print(y_eval) print(delta_y) print(y_real) print(eps) data_matrix = [ ['k', 'x', 'y', 'delta_y', 'y_real', 'eps'] ] for i in range(0, len(x)): data_matrix.append([i, x[i], y_eval[i], delta_y[i], y_real[i], eps[i]]) table = ff.create_table(data_matrix) plot(table) def fun(x, y): return pow(x + y, 2) def real_fun(x): return tan(x) - x euler()
[ 2, 3, 4, 5, 6 ]
784
f145274c8caa1e725d12003874eb54a580a6e35e
<mask token>
<mask token> print(dic.get('country', 'Russia')) <mask token> print(dic)
dic = {'city': 'Moscow', 'temperature': 20} print(dic.get('country', 'Russia')) dic['date'] = '27.05.2019' print(dic)
dic = {"city": "Moscow", "temperature": 20} # print(dic["city"]) # dic["temperature"] -= 5 # print(dic) print(dic.get("country", "Russia")) dic["date"] = "27.05.2019" print(dic)
null
[ 0, 1, 2, 3 ]
785
038b8206f77b325bf43fc753f6cee8b4278f4bc9
<mask token> def calculate_recovery_clifford(cl_in, desired_cl=0): """ Extracts the clifford that has to be applied to cl_in to make the net operation correspond to desired_cl from the clifford lookuptable. This operation should perform the inverse of calculate_net_clifford """ row = list(clifford_lookuptable[cl_in]) return row.index(desired_cl) @deprecated(version='0.4', reason='not used within pyqed') def decompose_clifford_seq(clifford_sequence, gate_decomposition= gate_decomposition): decomposed_seq = [] for cl in clifford_sequence: decomposed_seq.extend(gate_decomposition[cl]) return decomposed_seq <mask token> def randomized_benchmarking_sequence(n_cl: int, desired_net_cl: int=0, number_of_qubits: int=1, max_clifford_idx: int=11520, interleaving_cl: int=None, seed: int=None) ->np.ndarray: """ Generates a randomized benchmarking sequence for the one or two qubit clifford group. Args: n_cl (int) : number of Cliffords desired_net_cl (int) : idx of the desired net clifford, if None is specified no recovery Clifford is calculated number_of_qubits(int): used to determine if Cliffords are drawn from the single qubit or two qubit clifford group. max_clifford_idx (int): used to set the index of the highest random clifford generated. Useful to generate e.g., simultaneous two qubit RB sequences. FIXME: seems useless, because none of the callers set this for real, and we trim it to the group size interleaving_cl (int): interleaves the sequence with a specific clifford if desired seed (int) : seed used to initialize the random number generator. Returns: list of clifford indices (ints) N.B. in the case of the 1 qubit clifford group this function does the same as "randomized_benchmarking_sequence_old" but does not use the 24 by 24 lookuptable method to calculate the net clifford. It instead uses the "Clifford" objects used in constructing the two qubit Clifford classes. The old method exists to establish the equivalence between the two methods. """ if number_of_qubits == 1: Cl = SingleQubitClifford group_size = np.min([24, max_clifford_idx]) elif number_of_qubits == 2: Cl = TwoQubitClifford group_size = np.min([11520, max_clifford_idx]) else: raise NotImplementedError() rng_seed = np.random.RandomState(seed) rb_clifford_indices = rng_seed.randint(0, group_size, int(n_cl)) if interleaving_cl is not None: rb_clif_ind_intl = np.empty(rb_clifford_indices.size * 2, dtype=int) rb_clif_ind_intl[0::2] = rb_clifford_indices rb_clif_ind_intl[1::2] = interleaving_cl rb_clifford_indices = rb_clif_ind_intl if desired_net_cl is not None: net_clifford = calculate_net_clifford(rb_clifford_indices, Cl) recovery_to_idx_clifford = net_clifford.get_inverse() recovery_clifford = Cl(desired_net_cl) * recovery_to_idx_clifford rb_clifford_indices = np.append(rb_clifford_indices, recovery_clifford.idx) return rb_clifford_indices
<mask token> def calculate_recovery_clifford(cl_in, desired_cl=0): """ Extracts the clifford that has to be applied to cl_in to make the net operation correspond to desired_cl from the clifford lookuptable. This operation should perform the inverse of calculate_net_clifford """ row = list(clifford_lookuptable[cl_in]) return row.index(desired_cl) @deprecated(version='0.4', reason='not used within pyqed') def decompose_clifford_seq(clifford_sequence, gate_decomposition= gate_decomposition): decomposed_seq = [] for cl in clifford_sequence: decomposed_seq.extend(gate_decomposition[cl]) return decomposed_seq @deprecated(version='0.4', reason='not used within pyqed') def convert_clifford_sequence_to_tape(clifford_sequence, lutmapping, gate_decomposition=gate_decomposition): """ Converts a list of qubit operations to the relevant pulse elements This method will be overwritten depending on the hardware implementation. """ decomposed_seq = [] for cl in clifford_sequence: decomposed_seq.extend(gate_decomposition[cl]) tape = [] for g in decomposed_seq: tape.append(lutmapping.index(g)) return tape def randomized_benchmarking_sequence_old(n_cl: int, desired_net_cl: int=0, seed: int=None): """ Generates a sequence of "n_cl" random single qubit Cliffords followed by a a recovery Clifford to make the net result correspond to the "desired_net_cl". Args: n_cl (int) : number of Cliffords desired_net_cl (int) : idx of the desired net clifford seed (int) : seed used to initialize the random number generator. The default behaviour is that the net clifford corresponds to an identity ("0"). If you want e.g. an inverting sequence you should set the desired_net_cl to "3" (corresponds to Pauli X). """ logging.warning( 'deprecation warning, only exists for testing equivalence to new function.' ) if seed is None: rb_cliffords = np.random.randint(0, 24, int(n_cl)) else: rng_seed = np.random.RandomState(seed) rb_cliffords = rng_seed.randint(0, 24, int(n_cl)) net_clifford = calculate_net_clifford(rb_cliffords).idx recovery_clifford = calculate_recovery_clifford(net_clifford, desired_net_cl) rb_cliffords = np.append(rb_cliffords, recovery_clifford) return rb_cliffords def randomized_benchmarking_sequence(n_cl: int, desired_net_cl: int=0, number_of_qubits: int=1, max_clifford_idx: int=11520, interleaving_cl: int=None, seed: int=None) ->np.ndarray: """ Generates a randomized benchmarking sequence for the one or two qubit clifford group. Args: n_cl (int) : number of Cliffords desired_net_cl (int) : idx of the desired net clifford, if None is specified no recovery Clifford is calculated number_of_qubits(int): used to determine if Cliffords are drawn from the single qubit or two qubit clifford group. max_clifford_idx (int): used to set the index of the highest random clifford generated. Useful to generate e.g., simultaneous two qubit RB sequences. FIXME: seems useless, because none of the callers set this for real, and we trim it to the group size interleaving_cl (int): interleaves the sequence with a specific clifford if desired seed (int) : seed used to initialize the random number generator. Returns: list of clifford indices (ints) N.B. in the case of the 1 qubit clifford group this function does the same as "randomized_benchmarking_sequence_old" but does not use the 24 by 24 lookuptable method to calculate the net clifford. It instead uses the "Clifford" objects used in constructing the two qubit Clifford classes. The old method exists to establish the equivalence between the two methods. """ if number_of_qubits == 1: Cl = SingleQubitClifford group_size = np.min([24, max_clifford_idx]) elif number_of_qubits == 2: Cl = TwoQubitClifford group_size = np.min([11520, max_clifford_idx]) else: raise NotImplementedError() rng_seed = np.random.RandomState(seed) rb_clifford_indices = rng_seed.randint(0, group_size, int(n_cl)) if interleaving_cl is not None: rb_clif_ind_intl = np.empty(rb_clifford_indices.size * 2, dtype=int) rb_clif_ind_intl[0::2] = rb_clifford_indices rb_clif_ind_intl[1::2] = interleaving_cl rb_clifford_indices = rb_clif_ind_intl if desired_net_cl is not None: net_clifford = calculate_net_clifford(rb_clifford_indices, Cl) recovery_to_idx_clifford = net_clifford.get_inverse() recovery_clifford = Cl(desired_net_cl) * recovery_to_idx_clifford rb_clifford_indices = np.append(rb_clifford_indices, recovery_clifford.idx) return rb_clifford_indices
<mask token> def calculate_net_clifford(rb_clifford_indices: np.ndarray, Cliff: Clifford =SingleQubitClifford) ->Clifford: """ Calculate the net-clifford from a list of cliffords indices. Args: rb_clifford_indices: list or array of integers specifying the cliffords. Cliff : Clifford object used to determine what inversion technique to use and what indices are valid. Valid choices are `SingleQubitClifford` and `TwoQubitClifford` Returns: net_clifford: a `Clifford` object containing the net-clifford. the Clifford index is contained in the Clifford.idx attribute. Note: the order corresponds to the order in a pulse sequence but is the reverse of what it would be in a chained dot product. """ net_clifford = Cliff(0) for idx in rb_clifford_indices: assert idx > -1, 'The convention for interleaved gates has changed! ' + 'See notes in this function. ' + 'You probably need to specify {}'.format( 100000 + abs(idx)) cliff = Cliff(idx % 100000) net_clifford = cliff * net_clifford return net_clifford def calculate_recovery_clifford(cl_in, desired_cl=0): """ Extracts the clifford that has to be applied to cl_in to make the net operation correspond to desired_cl from the clifford lookuptable. This operation should perform the inverse of calculate_net_clifford """ row = list(clifford_lookuptable[cl_in]) return row.index(desired_cl) @deprecated(version='0.4', reason='not used within pyqed') def decompose_clifford_seq(clifford_sequence, gate_decomposition= gate_decomposition): decomposed_seq = [] for cl in clifford_sequence: decomposed_seq.extend(gate_decomposition[cl]) return decomposed_seq @deprecated(version='0.4', reason='not used within pyqed') def convert_clifford_sequence_to_tape(clifford_sequence, lutmapping, gate_decomposition=gate_decomposition): """ Converts a list of qubit operations to the relevant pulse elements This method will be overwritten depending on the hardware implementation. """ decomposed_seq = [] for cl in clifford_sequence: decomposed_seq.extend(gate_decomposition[cl]) tape = [] for g in decomposed_seq: tape.append(lutmapping.index(g)) return tape def randomized_benchmarking_sequence_old(n_cl: int, desired_net_cl: int=0, seed: int=None): """ Generates a sequence of "n_cl" random single qubit Cliffords followed by a a recovery Clifford to make the net result correspond to the "desired_net_cl". Args: n_cl (int) : number of Cliffords desired_net_cl (int) : idx of the desired net clifford seed (int) : seed used to initialize the random number generator. The default behaviour is that the net clifford corresponds to an identity ("0"). If you want e.g. an inverting sequence you should set the desired_net_cl to "3" (corresponds to Pauli X). """ logging.warning( 'deprecation warning, only exists for testing equivalence to new function.' ) if seed is None: rb_cliffords = np.random.randint(0, 24, int(n_cl)) else: rng_seed = np.random.RandomState(seed) rb_cliffords = rng_seed.randint(0, 24, int(n_cl)) net_clifford = calculate_net_clifford(rb_cliffords).idx recovery_clifford = calculate_recovery_clifford(net_clifford, desired_net_cl) rb_cliffords = np.append(rb_cliffords, recovery_clifford) return rb_cliffords def randomized_benchmarking_sequence(n_cl: int, desired_net_cl: int=0, number_of_qubits: int=1, max_clifford_idx: int=11520, interleaving_cl: int=None, seed: int=None) ->np.ndarray: """ Generates a randomized benchmarking sequence for the one or two qubit clifford group. Args: n_cl (int) : number of Cliffords desired_net_cl (int) : idx of the desired net clifford, if None is specified no recovery Clifford is calculated number_of_qubits(int): used to determine if Cliffords are drawn from the single qubit or two qubit clifford group. max_clifford_idx (int): used to set the index of the highest random clifford generated. Useful to generate e.g., simultaneous two qubit RB sequences. FIXME: seems useless, because none of the callers set this for real, and we trim it to the group size interleaving_cl (int): interleaves the sequence with a specific clifford if desired seed (int) : seed used to initialize the random number generator. Returns: list of clifford indices (ints) N.B. in the case of the 1 qubit clifford group this function does the same as "randomized_benchmarking_sequence_old" but does not use the 24 by 24 lookuptable method to calculate the net clifford. It instead uses the "Clifford" objects used in constructing the two qubit Clifford classes. The old method exists to establish the equivalence between the two methods. """ if number_of_qubits == 1: Cl = SingleQubitClifford group_size = np.min([24, max_clifford_idx]) elif number_of_qubits == 2: Cl = TwoQubitClifford group_size = np.min([11520, max_clifford_idx]) else: raise NotImplementedError() rng_seed = np.random.RandomState(seed) rb_clifford_indices = rng_seed.randint(0, group_size, int(n_cl)) if interleaving_cl is not None: rb_clif_ind_intl = np.empty(rb_clifford_indices.size * 2, dtype=int) rb_clif_ind_intl[0::2] = rb_clifford_indices rb_clif_ind_intl[1::2] = interleaving_cl rb_clifford_indices = rb_clif_ind_intl if desired_net_cl is not None: net_clifford = calculate_net_clifford(rb_clifford_indices, Cl) recovery_to_idx_clifford = net_clifford.get_inverse() recovery_clifford = Cl(desired_net_cl) * recovery_to_idx_clifford rb_clifford_indices = np.append(rb_clifford_indices, recovery_clifford.idx) return rb_clifford_indices
import logging import numpy as np from deprecated import deprecated from pycqed.measurement.randomized_benchmarking.clifford_group import clifford_lookuptable from pycqed.measurement.randomized_benchmarking.clifford_decompositions import gate_decomposition from pycqed.measurement.randomized_benchmarking.two_qubit_clifford_group import Clifford, SingleQubitClifford, TwoQubitClifford def calculate_net_clifford(rb_clifford_indices: np.ndarray, Cliff: Clifford =SingleQubitClifford) ->Clifford: """ Calculate the net-clifford from a list of cliffords indices. Args: rb_clifford_indices: list or array of integers specifying the cliffords. Cliff : Clifford object used to determine what inversion technique to use and what indices are valid. Valid choices are `SingleQubitClifford` and `TwoQubitClifford` Returns: net_clifford: a `Clifford` object containing the net-clifford. the Clifford index is contained in the Clifford.idx attribute. Note: the order corresponds to the order in a pulse sequence but is the reverse of what it would be in a chained dot product. """ net_clifford = Cliff(0) for idx in rb_clifford_indices: assert idx > -1, 'The convention for interleaved gates has changed! ' + 'See notes in this function. ' + 'You probably need to specify {}'.format( 100000 + abs(idx)) cliff = Cliff(idx % 100000) net_clifford = cliff * net_clifford return net_clifford def calculate_recovery_clifford(cl_in, desired_cl=0): """ Extracts the clifford that has to be applied to cl_in to make the net operation correspond to desired_cl from the clifford lookuptable. This operation should perform the inverse of calculate_net_clifford """ row = list(clifford_lookuptable[cl_in]) return row.index(desired_cl) @deprecated(version='0.4', reason='not used within pyqed') def decompose_clifford_seq(clifford_sequence, gate_decomposition= gate_decomposition): decomposed_seq = [] for cl in clifford_sequence: decomposed_seq.extend(gate_decomposition[cl]) return decomposed_seq @deprecated(version='0.4', reason='not used within pyqed') def convert_clifford_sequence_to_tape(clifford_sequence, lutmapping, gate_decomposition=gate_decomposition): """ Converts a list of qubit operations to the relevant pulse elements This method will be overwritten depending on the hardware implementation. """ decomposed_seq = [] for cl in clifford_sequence: decomposed_seq.extend(gate_decomposition[cl]) tape = [] for g in decomposed_seq: tape.append(lutmapping.index(g)) return tape def randomized_benchmarking_sequence_old(n_cl: int, desired_net_cl: int=0, seed: int=None): """ Generates a sequence of "n_cl" random single qubit Cliffords followed by a a recovery Clifford to make the net result correspond to the "desired_net_cl". Args: n_cl (int) : number of Cliffords desired_net_cl (int) : idx of the desired net clifford seed (int) : seed used to initialize the random number generator. The default behaviour is that the net clifford corresponds to an identity ("0"). If you want e.g. an inverting sequence you should set the desired_net_cl to "3" (corresponds to Pauli X). """ logging.warning( 'deprecation warning, only exists for testing equivalence to new function.' ) if seed is None: rb_cliffords = np.random.randint(0, 24, int(n_cl)) else: rng_seed = np.random.RandomState(seed) rb_cliffords = rng_seed.randint(0, 24, int(n_cl)) net_clifford = calculate_net_clifford(rb_cliffords).idx recovery_clifford = calculate_recovery_clifford(net_clifford, desired_net_cl) rb_cliffords = np.append(rb_cliffords, recovery_clifford) return rb_cliffords def randomized_benchmarking_sequence(n_cl: int, desired_net_cl: int=0, number_of_qubits: int=1, max_clifford_idx: int=11520, interleaving_cl: int=None, seed: int=None) ->np.ndarray: """ Generates a randomized benchmarking sequence for the one or two qubit clifford group. Args: n_cl (int) : number of Cliffords desired_net_cl (int) : idx of the desired net clifford, if None is specified no recovery Clifford is calculated number_of_qubits(int): used to determine if Cliffords are drawn from the single qubit or two qubit clifford group. max_clifford_idx (int): used to set the index of the highest random clifford generated. Useful to generate e.g., simultaneous two qubit RB sequences. FIXME: seems useless, because none of the callers set this for real, and we trim it to the group size interleaving_cl (int): interleaves the sequence with a specific clifford if desired seed (int) : seed used to initialize the random number generator. Returns: list of clifford indices (ints) N.B. in the case of the 1 qubit clifford group this function does the same as "randomized_benchmarking_sequence_old" but does not use the 24 by 24 lookuptable method to calculate the net clifford. It instead uses the "Clifford" objects used in constructing the two qubit Clifford classes. The old method exists to establish the equivalence between the two methods. """ if number_of_qubits == 1: Cl = SingleQubitClifford group_size = np.min([24, max_clifford_idx]) elif number_of_qubits == 2: Cl = TwoQubitClifford group_size = np.min([11520, max_clifford_idx]) else: raise NotImplementedError() rng_seed = np.random.RandomState(seed) rb_clifford_indices = rng_seed.randint(0, group_size, int(n_cl)) if interleaving_cl is not None: rb_clif_ind_intl = np.empty(rb_clifford_indices.size * 2, dtype=int) rb_clif_ind_intl[0::2] = rb_clifford_indices rb_clif_ind_intl[1::2] = interleaving_cl rb_clifford_indices = rb_clif_ind_intl if desired_net_cl is not None: net_clifford = calculate_net_clifford(rb_clifford_indices, Cl) recovery_to_idx_clifford = net_clifford.get_inverse() recovery_clifford = Cl(desired_net_cl) * recovery_to_idx_clifford rb_clifford_indices = np.append(rb_clifford_indices, recovery_clifford.idx) return rb_clifford_indices
import logging import numpy as np from deprecated import deprecated from pycqed.measurement.randomized_benchmarking.clifford_group import clifford_lookuptable from pycqed.measurement.randomized_benchmarking.clifford_decompositions import gate_decomposition from pycqed.measurement.randomized_benchmarking.two_qubit_clifford_group import Clifford, SingleQubitClifford, TwoQubitClifford def calculate_net_clifford( rb_clifford_indices: np.ndarray, Cliff:Clifford = SingleQubitClifford ) -> Clifford: """ Calculate the net-clifford from a list of cliffords indices. Args: rb_clifford_indices: list or array of integers specifying the cliffords. Cliff : Clifford object used to determine what inversion technique to use and what indices are valid. Valid choices are `SingleQubitClifford` and `TwoQubitClifford` Returns: net_clifford: a `Clifford` object containing the net-clifford. the Clifford index is contained in the Clifford.idx attribute. Note: the order corresponds to the order in a pulse sequence but is the reverse of what it would be in a chained dot product. """ # Calculate the net clifford net_clifford = Cliff(0) # assumes element 0 is the Identity for idx in rb_clifford_indices: # [2020-07-03 Victor] the `abs` below was to remove the sign that was # used to treat CZ as CZ and not the member of CNOT-like set of gates # Using negative sign convention (i.e. `-4368` for the interleaved CZ) # was a bad choice because there is no such thing as negative zero and # the clifford numer 0 is the identity that is necessary for # benchmarking an idling identity with the same duration as the time # allocated to the flux pulses, for example # cliff = Clifford(abs(idx)) # Deprecated! assert idx > -1, ( "The convention for interleaved gates has changed! " + "See notes in this function. " + "You probably need to specify {}".format(100_000 + abs(idx)) ) # In order to benchmark specific gates (and not cliffords), e.g. CZ but # not as a member of the CNOT-like set of gates, or an identity with # the same duration as the CZ we use, by convention, when specifying # the interleaved gate, the index of the corresponding # clifford + 100000, this is to keep it readable and bigger than the # 11520 elements of the Two-qubit Clifford group C2 # corresponding clifford cliff = Cliff(idx % 100_000) # order of operators applied in is right to left, therefore # the new operator is applied on the left side. net_clifford = cliff * net_clifford return net_clifford # FIXME: deprecate along with randomized_benchmarking_sequence_old() def calculate_recovery_clifford(cl_in, desired_cl=0): """ Extracts the clifford that has to be applied to cl_in to make the net operation correspond to desired_cl from the clifford lookuptable. This operation should perform the inverse of calculate_net_clifford """ row = list(clifford_lookuptable[cl_in]) return row.index(desired_cl) @deprecated(version='0.4', reason='not used within pyqed') def decompose_clifford_seq(clifford_sequence, gate_decomposition=gate_decomposition): decomposed_seq = [] for cl in clifford_sequence: decomposed_seq.extend(gate_decomposition[cl]) return decomposed_seq @deprecated(version='0.4', reason='not used within pyqed') def convert_clifford_sequence_to_tape( clifford_sequence, lutmapping, gate_decomposition=gate_decomposition ): """ Converts a list of qubit operations to the relevant pulse elements This method will be overwritten depending on the hardware implementation. """ # This is intended to replace the block below but not done because # I cannot test it at this moment (MAR) # decomposed_seq = decompose_clifford_seq(clifford_sequence, # gate_decomposition) decomposed_seq = [] for cl in clifford_sequence: decomposed_seq.extend(gate_decomposition[cl]) tape = [] for g in decomposed_seq: tape.append(lutmapping.index(g)) return tape # FIXME: deprecate, also including calculate_recovery_clifford() and clifford_lookuptable def randomized_benchmarking_sequence_old( n_cl: int, desired_net_cl: int = 0, seed: int = None ): """ Generates a sequence of "n_cl" random single qubit Cliffords followed by a a recovery Clifford to make the net result correspond to the "desired_net_cl". Args: n_cl (int) : number of Cliffords desired_net_cl (int) : idx of the desired net clifford seed (int) : seed used to initialize the random number generator. The default behaviour is that the net clifford corresponds to an identity ("0"). If you want e.g. an inverting sequence you should set the desired_net_cl to "3" (corresponds to Pauli X). """ logging.warning( "deprecation warning, only exists for testing equivalence to new function." ) if seed is None: rb_cliffords = np.random.randint(0, 24, int(n_cl)) else: rng_seed = np.random.RandomState(seed) rb_cliffords = rng_seed.randint(0, 24, int(n_cl)) net_clifford = calculate_net_clifford(rb_cliffords).idx recovery_clifford = calculate_recovery_clifford(net_clifford, desired_net_cl) rb_cliffords = np.append(rb_cliffords, recovery_clifford) return rb_cliffords ############################################################################## # New style RB sequences (using the hash-table method) compatible # with Clifford object. # More advanced sequences are available using this method. ############################################################################## def randomized_benchmarking_sequence( n_cl: int, desired_net_cl: int = 0, number_of_qubits: int = 1, max_clifford_idx: int = 11520, interleaving_cl: int = None, seed: int = None, ) -> np.ndarray: """ Generates a randomized benchmarking sequence for the one or two qubit clifford group. Args: n_cl (int) : number of Cliffords desired_net_cl (int) : idx of the desired net clifford, if None is specified no recovery Clifford is calculated number_of_qubits(int): used to determine if Cliffords are drawn from the single qubit or two qubit clifford group. max_clifford_idx (int): used to set the index of the highest random clifford generated. Useful to generate e.g., simultaneous two qubit RB sequences. FIXME: seems useless, because none of the callers set this for real, and we trim it to the group size interleaving_cl (int): interleaves the sequence with a specific clifford if desired seed (int) : seed used to initialize the random number generator. Returns: list of clifford indices (ints) N.B. in the case of the 1 qubit clifford group this function does the same as "randomized_benchmarking_sequence_old" but does not use the 24 by 24 lookuptable method to calculate the net clifford. It instead uses the "Clifford" objects used in constructing the two qubit Clifford classes. The old method exists to establish the equivalence between the two methods. """ if number_of_qubits == 1: Cl = SingleQubitClifford group_size = np.min([24, max_clifford_idx]) elif number_of_qubits == 2: Cl = TwoQubitClifford group_size = np.min([11520, max_clifford_idx]) else: raise NotImplementedError() # Generate a random sequence of Cliffords # Even if no seed is provided make sure we pick a new state such that # it is safe to run generate and compile the random sequences in # parallel using multiprocess rng_seed = np.random.RandomState(seed) rb_clifford_indices = rng_seed.randint(0, group_size, int(n_cl)) # Add interleaving cliffords if applicable if interleaving_cl is not None: rb_clif_ind_intl = np.empty(rb_clifford_indices.size * 2, dtype=int) rb_clif_ind_intl[0::2] = rb_clifford_indices rb_clif_ind_intl[1::2] = interleaving_cl rb_clifford_indices = rb_clif_ind_intl if desired_net_cl is not None: # Calculate the net clifford net_clifford = calculate_net_clifford(rb_clifford_indices, Cl) # determine the inverse of the sequence recovery_to_idx_clifford = net_clifford.get_inverse() recovery_clifford = Cl(desired_net_cl) * recovery_to_idx_clifford rb_clifford_indices = np.append(rb_clifford_indices, recovery_clifford.idx) return rb_clifford_indices
[ 3, 5, 6, 7, 8 ]
786
3421c3b839721694945bdbb4f17183bceaed5296
<mask token> class MyDictTestCase(unittest.TestCase): <mask token> <mask token>
<mask token> class MyDictTestCase(unittest.TestCase): def test_Dict(self): actualDict1 = cldf.ConvertListsToDict([1, 2, 3], ['a', 'b', 'c']) expectedDict1 = {(1): 'a', (2): 'b', (3): 'c'} self.assertEqual(actualDict1, expectedDict1) actualDict2 = cldf.ConvertListsToDict([1, 2, 3], ['a', 'b', 'c', 'd', 'e', 'f']) expectedDict2 = {(1): 'a', (2): 'b', (3): 'c'} self.assertEqual(actualDict2, expectedDict2) actualDict2 = cldf.ConvertListsToDict([1, 2, 3, 4, 5, 6, 7], ['a', 'b', 'c']) expectedDict2 = {(1): 'a', (2): 'b', (3): 'c', (4): None, (5): None, (6): None, (7): None} self.assertEqual(actualDict2, expectedDict2) <mask token>
<mask token> class MyDictTestCase(unittest.TestCase): def test_Dict(self): actualDict1 = cldf.ConvertListsToDict([1, 2, 3], ['a', 'b', 'c']) expectedDict1 = {(1): 'a', (2): 'b', (3): 'c'} self.assertEqual(actualDict1, expectedDict1) actualDict2 = cldf.ConvertListsToDict([1, 2, 3], ['a', 'b', 'c', 'd', 'e', 'f']) expectedDict2 = {(1): 'a', (2): 'b', (3): 'c'} self.assertEqual(actualDict2, expectedDict2) actualDict2 = cldf.ConvertListsToDict([1, 2, 3, 4, 5, 6, 7], ['a', 'b', 'c']) expectedDict2 = {(1): 'a', (2): 'b', (3): 'c', (4): None, (5): None, (6): None, (7): None} self.assertEqual(actualDict2, expectedDict2) if __name__ == '__main__': unittest.main()
import unittest import ConvertListToDict as cldf class MyDictTestCase(unittest.TestCase): def test_Dict(self): actualDict1 = cldf.ConvertListsToDict([1, 2, 3], ['a', 'b', 'c']) expectedDict1 = {(1): 'a', (2): 'b', (3): 'c'} self.assertEqual(actualDict1, expectedDict1) actualDict2 = cldf.ConvertListsToDict([1, 2, 3], ['a', 'b', 'c', 'd', 'e', 'f']) expectedDict2 = {(1): 'a', (2): 'b', (3): 'c'} self.assertEqual(actualDict2, expectedDict2) actualDict2 = cldf.ConvertListsToDict([1, 2, 3, 4, 5, 6, 7], ['a', 'b', 'c']) expectedDict2 = {(1): 'a', (2): 'b', (3): 'c', (4): None, (5): None, (6): None, (7): None} self.assertEqual(actualDict2, expectedDict2) if __name__ == '__main__': unittest.main()
import unittest import ConvertListToDict as cldf class MyDictTestCase(unittest.TestCase): def test_Dict(self): # Testcase1 (len(keys) == len(values)) actualDict1 = cldf.ConvertListsToDict([1, 2, 3],['a','b','c']) expectedDict1 = {1: 'a', 2: 'b', 3: 'c'} self.assertEqual(actualDict1, expectedDict1) # Testcase2 (len(keys) < len(values)) actualDict2 = cldf.ConvertListsToDict([1, 2, 3], ['a', 'b', 'c','d','e','f']) expectedDict2 = {1: 'a', 2: 'b', 3: 'c'} self.assertEqual(actualDict2, expectedDict2) # Testcase3 (len(keys) > len(values)) actualDict2 = cldf.ConvertListsToDict([1, 2, 3, 4, 5, 6, 7], ['a', 'b', 'c']) expectedDict2 = {1: 'a', 2: 'b', 3: 'c', 4: None, 5: None, 6: None, 7: None} self.assertEqual(actualDict2, expectedDict2) if __name__ == '__main__': unittest.main()
[ 1, 2, 3, 4, 5 ]
787
1ea61ab4003de80ffe9fb3e284b6686d4bf20b15
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token> <mask token>
<mask token> class Migration(migrations.Migration): initial = True dependencies = [] operations = [migrations.CreateModel(name='Restaurant', fields=[('id', models.BigAutoField(auto_created=True, primary_key=True, serialize= False, verbose_name='ID')), ('restaurant_name', models.CharField( max_length=200)), ('city', models.CharField(max_length=200)), ( 'district', models.CharField(max_length=200)), ('rating', models. FloatField(validators=[django.core.validators.MinValueValidator(0), django.core.validators.MaxValueValidator(5)])), ('photo', models. ImageField(upload_to='uploads'))]), migrations.CreateModel(name= 'Reservation', fields=[('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('adult', models.IntegerField()), ('entry_date', models.DateTimeField()), ( 'restaurant', models.ForeignKey(on_delete=django.db.models.deletion .CASCADE, to='restaurant.restaurant'))])]
import django.core.validators from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [] operations = [migrations.CreateModel(name='Restaurant', fields=[('id', models.BigAutoField(auto_created=True, primary_key=True, serialize= False, verbose_name='ID')), ('restaurant_name', models.CharField( max_length=200)), ('city', models.CharField(max_length=200)), ( 'district', models.CharField(max_length=200)), ('rating', models. FloatField(validators=[django.core.validators.MinValueValidator(0), django.core.validators.MaxValueValidator(5)])), ('photo', models. ImageField(upload_to='uploads'))]), migrations.CreateModel(name= 'Reservation', fields=[('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('adult', models.IntegerField()), ('entry_date', models.DateTimeField()), ( 'restaurant', models.ForeignKey(on_delete=django.db.models.deletion .CASCADE, to='restaurant.restaurant'))])]
# Generated by Django 3.2.3 on 2021-08-26 09:18 import django.core.validators from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Restaurant', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('restaurant_name', models.CharField(max_length=200)), ('city', models.CharField(max_length=200)), ('district', models.CharField(max_length=200)), ('rating', models.FloatField(validators=[django.core.validators.MinValueValidator(0), django.core.validators.MaxValueValidator(5)])), ('photo', models.ImageField(upload_to='uploads')), ], ), migrations.CreateModel( name='Reservation', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('adult', models.IntegerField()), ('entry_date', models.DateTimeField()), ('restaurant', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='restaurant.restaurant')), ], ), ]
[ 0, 1, 2, 3, 4 ]
788
6db7189d26c63ca9f9667045b780ec11994bac28
<mask token> class PageRankReader(Reader): def read_num_of_vertices(self): line = self.config_fp.readline() return int(line) def read_vertex(self): line = self.graph_fp.readline() if not line: return None line = line.strip().split(':') vertex_id = int(line[0]) edges = [] if line[1]: for e in line[1].split(' '): edges.append(Edge(int(e), None)) return PageRankVertex(vertex_id, None, edges) class PageRankWriter(Writer): def write_vertex(self, vertex): return vertex.get_vertex_id(), str(vertex.get_value()) class PageRankCombiner(Combiner): def combine(self, msg_x, msg_y): msg_x_value = msg_x[1] msg_y_value = msg_y[1] return None, msg_x_value + msg_y_value <mask token>
<mask token> class PageRankVertex(Vertex): def compute(self): if self.superstep() >= 1: s = 0 while self.has_message(): msg = self.get_message() s += msg self.set_value(0.15 / self.get_num_of_vertices() + 0.85 * s) if self.superstep() < 30: n = len(self.get_out_edges()) if n > 0: self.send_message_to_all_neighbors(self.get_value() / n) else: self.vote_to_halt() class PageRankReader(Reader): def read_num_of_vertices(self): line = self.config_fp.readline() return int(line) def read_vertex(self): line = self.graph_fp.readline() if not line: return None line = line.strip().split(':') vertex_id = int(line[0]) edges = [] if line[1]: for e in line[1].split(' '): edges.append(Edge(int(e), None)) return PageRankVertex(vertex_id, None, edges) class PageRankWriter(Writer): def write_vertex(self, vertex): return vertex.get_vertex_id(), str(vertex.get_value()) class PageRankCombiner(Combiner): def combine(self, msg_x, msg_y): msg_x_value = msg_x[1] msg_y_value = msg_y[1] return None, msg_x_value + msg_y_value <mask token>
<mask token> class PageRankVertex(Vertex): def compute(self): if self.superstep() >= 1: s = 0 while self.has_message(): msg = self.get_message() s += msg self.set_value(0.15 / self.get_num_of_vertices() + 0.85 * s) if self.superstep() < 30: n = len(self.get_out_edges()) if n > 0: self.send_message_to_all_neighbors(self.get_value() / n) else: self.vote_to_halt() class PageRankReader(Reader): def read_num_of_vertices(self): line = self.config_fp.readline() return int(line) def read_vertex(self): line = self.graph_fp.readline() if not line: return None line = line.strip().split(':') vertex_id = int(line[0]) edges = [] if line[1]: for e in line[1].split(' '): edges.append(Edge(int(e), None)) return PageRankVertex(vertex_id, None, edges) class PageRankWriter(Writer): def write_vertex(self, vertex): return vertex.get_vertex_id(), str(vertex.get_value()) class PageRankCombiner(Combiner): def combine(self, msg_x, msg_y): msg_x_value = msg_x[1] msg_y_value = msg_y[1] return None, msg_x_value + msg_y_value def main(): if len(sys.argv) < 4: print('usage: python %s [config] [graph] [out_file]' % sys.argv[0]) return pagerank_reader = PageRankReader(sys.argv[1], sys.argv[2]) pagerank_writer = PageRankWriter(sys.argv[3]) pagerank_combiner = PageRankCombiner() pagerank = Pypregel(reader=pagerank_reader, writer=pagerank_writer, combiner=pagerank_combiner) pagerank.run() <mask token>
import sys from pypregel import Pypregel from pypregel.vertex import Vertex, Edge from pypregel.reader import Reader from pypregel.writer import Writer from pypregel.combiner import Combiner class PageRankVertex(Vertex): def compute(self): if self.superstep() >= 1: s = 0 while self.has_message(): msg = self.get_message() s += msg self.set_value(0.15 / self.get_num_of_vertices() + 0.85 * s) if self.superstep() < 30: n = len(self.get_out_edges()) if n > 0: self.send_message_to_all_neighbors(self.get_value() / n) else: self.vote_to_halt() class PageRankReader(Reader): def read_num_of_vertices(self): line = self.config_fp.readline() return int(line) def read_vertex(self): line = self.graph_fp.readline() if not line: return None line = line.strip().split(':') vertex_id = int(line[0]) edges = [] if line[1]: for e in line[1].split(' '): edges.append(Edge(int(e), None)) return PageRankVertex(vertex_id, None, edges) class PageRankWriter(Writer): def write_vertex(self, vertex): return vertex.get_vertex_id(), str(vertex.get_value()) class PageRankCombiner(Combiner): def combine(self, msg_x, msg_y): msg_x_value = msg_x[1] msg_y_value = msg_y[1] return None, msg_x_value + msg_y_value def main(): if len(sys.argv) < 4: print('usage: python %s [config] [graph] [out_file]' % sys.argv[0]) return pagerank_reader = PageRankReader(sys.argv[1], sys.argv[2]) pagerank_writer = PageRankWriter(sys.argv[3]) pagerank_combiner = PageRankCombiner() pagerank = Pypregel(reader=pagerank_reader, writer=pagerank_writer, combiner=pagerank_combiner) pagerank.run() if __name__ == '__main__': main()
import sys from pypregel import Pypregel from pypregel.vertex import Vertex, Edge from pypregel.reader import Reader from pypregel.writer import Writer from pypregel.combiner import Combiner class PageRankVertex(Vertex): def compute(self): if self.superstep() >= 1: s = 0 while self.has_message(): msg = self.get_message() s += msg self.set_value(0.15 / self.get_num_of_vertices() + 0.85 * s) if self.superstep() < 30: n = len(self.get_out_edges()) if n > 0: self.send_message_to_all_neighbors(self.get_value() / n) else: self.vote_to_halt() class PageRankReader(Reader): def read_num_of_vertices(self): line = self.config_fp.readline() return int(line) def read_vertex(self): line = self.graph_fp.readline() if not line: return None line = line.strip().split(':') vertex_id = int(line[0]) edges = [] if line[1]: for e in line[1].split(' '): edges.append(Edge(int(e), None)) return PageRankVertex(vertex_id, None, edges) class PageRankWriter(Writer): def write_vertex(self, vertex): return vertex.get_vertex_id(), str(vertex.get_value()) class PageRankCombiner(Combiner): def combine(self, msg_x, msg_y): msg_x_value = msg_x[1] msg_y_value = msg_y[1] return None, msg_x_value + msg_y_value def main(): if len(sys.argv) < 4: print("usage: python %s [config] [graph] [out_file]" % sys.argv[0]) return pagerank_reader = PageRankReader(sys.argv[1], sys.argv[2]) pagerank_writer = PageRankWriter(sys.argv[3]) pagerank_combiner = PageRankCombiner() pagerank = Pypregel( reader=pagerank_reader, writer=pagerank_writer, combiner=pagerank_combiner ) pagerank.run() if __name__ == "__main__": main()
[ 7, 9, 10, 12, 13 ]
789
78dc2193c05ddb4cd4c80b1c0322890eca7fcf19
<mask token>
<mask token> if __name__ == '__main__': n.notify('READY=1') time.sleep(2)
<mask token> n = sdnotify.SystemdNotifier() if __name__ == '__main__': n.notify('READY=1') time.sleep(2)
import signal import time import sdnotify n = sdnotify.SystemdNotifier() if __name__ == '__main__': n.notify('READY=1') time.sleep(2)
import signal import time import sdnotify n = sdnotify.SystemdNotifier() if __name__ == '__main__': n.notify("READY=1") time.sleep(2)
[ 0, 1, 2, 3, 4 ]
790
2fadc5c90d1bae14c57fc3bf02582e12aa8abdf6
<mask token> class PLTT(Editable): <mask token> <mask token> <mask token> def define(self, clr): self.clr = clr self.string('magic', length=4, default='PLTT') self.uint32('size_') self.uint32('format') self.uint32('extended') self.uint32('datasize') self.uint32('offset') self.data = '' def load(self, reader): Editable.load(self, reader) self.data = array.array('H', reader.read(self.datasize)) def save(self, writer): writer = Editable.save(self, writer) ofs = writer.tell() writer.write(self.data.tostring()) writer.writePadding(ofs + self.datasize) return writer def get_palettes(self): palettes = [] if self.format == self.FORMAT_16BIT: num = 16 elif self.format == self.FORMAT_256BIT: num = 256 start = 0 for pal_id in range(len(self.data) / num): palette = [] for i in range(num): val = self.data[start + i] palette.append(((val >> 0 & 31) << 3, (val >> 5 & 31) << 3, (val >> 10 & 31) << 3, 255)) start += num palettes.append(palette) return palettes <mask token> <mask token> class NCLR(Editable): """2d color information """ def define(self): self.string('magic', length=4, default='RLCN') self.uint16('endian', default=65534) self.uint16('version', default=257) self.uint32('size_') self.uint16('headersize', default=16) self.uint16('numblocks', default=1) self.pltt = PLTT(self) def load(self, reader): Editable.load(self, reader) assert self.magic == 'RLCN', 'Expected RLCN got '.format(self.magic) self.pltt.load(reader) def save(self, writer=None): writer = Editable.save(self, writer) writer = self.pltt.save(writer) return writer def get_palette(self, pal_id=0, transparent=True): return self.pltt.get_palette(pal_id, transparent) def get_palettes(self): return self.pltt.get_palettes() def set_palette(self, pal_id, palette): return self.pltt.set_palette(pal_id, palette)
<mask token> class PLTT(Editable): <mask token> <mask token> <mask token> def define(self, clr): self.clr = clr self.string('magic', length=4, default='PLTT') self.uint32('size_') self.uint32('format') self.uint32('extended') self.uint32('datasize') self.uint32('offset') self.data = '' def load(self, reader): Editable.load(self, reader) self.data = array.array('H', reader.read(self.datasize)) def save(self, writer): writer = Editable.save(self, writer) ofs = writer.tell() writer.write(self.data.tostring()) writer.writePadding(ofs + self.datasize) return writer def get_palettes(self): palettes = [] if self.format == self.FORMAT_16BIT: num = 16 elif self.format == self.FORMAT_256BIT: num = 256 start = 0 for pal_id in range(len(self.data) / num): palette = [] for i in range(num): val = self.data[start + i] palette.append(((val >> 0 & 31) << 3, (val >> 5 & 31) << 3, (val >> 10 & 31) << 3, 255)) start += num palettes.append(palette) return palettes <mask token> def set_palette(self, pal_id, palette): """ Parameters ---------- pal_id : int palette : list of tuple List of 4-/3-int-tuple colors """ if self.format == self.FORMAT_16BIT: num = 16 elif self.format == self.FORMAT_256BIT: num = 256 start = pal_id * num for i, color in enumerate(palette): if i > num: break r, g, b = color[:3] self.data[start + i] = r >> 3 | g >> 3 << 5 | b >> 3 << 10 class NCLR(Editable): """2d color information """ def define(self): self.string('magic', length=4, default='RLCN') self.uint16('endian', default=65534) self.uint16('version', default=257) self.uint32('size_') self.uint16('headersize', default=16) self.uint16('numblocks', default=1) self.pltt = PLTT(self) def load(self, reader): Editable.load(self, reader) assert self.magic == 'RLCN', 'Expected RLCN got '.format(self.magic) self.pltt.load(reader) def save(self, writer=None): writer = Editable.save(self, writer) writer = self.pltt.save(writer) return writer def get_palette(self, pal_id=0, transparent=True): return self.pltt.get_palette(pal_id, transparent) def get_palettes(self): return self.pltt.get_palettes() def set_palette(self, pal_id, palette): return self.pltt.set_palette(pal_id, palette)
<mask token> class PLTT(Editable): <mask token> <mask token> <mask token> def define(self, clr): self.clr = clr self.string('magic', length=4, default='PLTT') self.uint32('size_') self.uint32('format') self.uint32('extended') self.uint32('datasize') self.uint32('offset') self.data = '' def load(self, reader): Editable.load(self, reader) self.data = array.array('H', reader.read(self.datasize)) def save(self, writer): writer = Editable.save(self, writer) ofs = writer.tell() writer.write(self.data.tostring()) writer.writePadding(ofs + self.datasize) return writer def get_palettes(self): palettes = [] if self.format == self.FORMAT_16BIT: num = 16 elif self.format == self.FORMAT_256BIT: num = 256 start = 0 for pal_id in range(len(self.data) / num): palette = [] for i in range(num): val = self.data[start + i] palette.append(((val >> 0 & 31) << 3, (val >> 5 & 31) << 3, (val >> 10 & 31) << 3, 255)) start += num palettes.append(palette) return palettes def get_palette(self, pal_id, transparent=True): palette = [] if self.format == self.FORMAT_16BIT: num = 16 elif self.format == self.FORMAT_256BIT: num = 256 start = pal_id * num for i in range(num): if not num and transparent: palette.append(chr(0) * 4) continue val = self.data[start + i] palette.append(chr((val >> 0 & 31) << 3) + chr((val >> 5 & 31) << 3) + chr((val >> 10 & 31) << 3) + chr(255)) return palette def set_palette(self, pal_id, palette): """ Parameters ---------- pal_id : int palette : list of tuple List of 4-/3-int-tuple colors """ if self.format == self.FORMAT_16BIT: num = 16 elif self.format == self.FORMAT_256BIT: num = 256 start = pal_id * num for i, color in enumerate(palette): if i > num: break r, g, b = color[:3] self.data[start + i] = r >> 3 | g >> 3 << 5 | b >> 3 << 10 class NCLR(Editable): """2d color information """ def define(self): self.string('magic', length=4, default='RLCN') self.uint16('endian', default=65534) self.uint16('version', default=257) self.uint32('size_') self.uint16('headersize', default=16) self.uint16('numblocks', default=1) self.pltt = PLTT(self) def load(self, reader): Editable.load(self, reader) assert self.magic == 'RLCN', 'Expected RLCN got '.format(self.magic) self.pltt.load(reader) def save(self, writer=None): writer = Editable.save(self, writer) writer = self.pltt.save(writer) return writer def get_palette(self, pal_id=0, transparent=True): return self.pltt.get_palette(pal_id, transparent) def get_palettes(self): return self.pltt.get_palettes() def set_palette(self, pal_id, palette): return self.pltt.set_palette(pal_id, palette)
<mask token> class PLTT(Editable): <mask token> FORMAT_16BIT = 3 FORMAT_256BIT = 4 def define(self, clr): self.clr = clr self.string('magic', length=4, default='PLTT') self.uint32('size_') self.uint32('format') self.uint32('extended') self.uint32('datasize') self.uint32('offset') self.data = '' def load(self, reader): Editable.load(self, reader) self.data = array.array('H', reader.read(self.datasize)) def save(self, writer): writer = Editable.save(self, writer) ofs = writer.tell() writer.write(self.data.tostring()) writer.writePadding(ofs + self.datasize) return writer def get_palettes(self): palettes = [] if self.format == self.FORMAT_16BIT: num = 16 elif self.format == self.FORMAT_256BIT: num = 256 start = 0 for pal_id in range(len(self.data) / num): palette = [] for i in range(num): val = self.data[start + i] palette.append(((val >> 0 & 31) << 3, (val >> 5 & 31) << 3, (val >> 10 & 31) << 3, 255)) start += num palettes.append(palette) return palettes def get_palette(self, pal_id, transparent=True): palette = [] if self.format == self.FORMAT_16BIT: num = 16 elif self.format == self.FORMAT_256BIT: num = 256 start = pal_id * num for i in range(num): if not num and transparent: palette.append(chr(0) * 4) continue val = self.data[start + i] palette.append(chr((val >> 0 & 31) << 3) + chr((val >> 5 & 31) << 3) + chr((val >> 10 & 31) << 3) + chr(255)) return palette def set_palette(self, pal_id, palette): """ Parameters ---------- pal_id : int palette : list of tuple List of 4-/3-int-tuple colors """ if self.format == self.FORMAT_16BIT: num = 16 elif self.format == self.FORMAT_256BIT: num = 256 start = pal_id * num for i, color in enumerate(palette): if i > num: break r, g, b = color[:3] self.data[start + i] = r >> 3 | g >> 3 << 5 | b >> 3 << 10 class NCLR(Editable): """2d color information """ def define(self): self.string('magic', length=4, default='RLCN') self.uint16('endian', default=65534) self.uint16('version', default=257) self.uint32('size_') self.uint16('headersize', default=16) self.uint16('numblocks', default=1) self.pltt = PLTT(self) def load(self, reader): Editable.load(self, reader) assert self.magic == 'RLCN', 'Expected RLCN got '.format(self.magic) self.pltt.load(reader) def save(self, writer=None): writer = Editable.save(self, writer) writer = self.pltt.save(writer) return writer def get_palette(self, pal_id=0, transparent=True): return self.pltt.get_palette(pal_id, transparent) def get_palettes(self): return self.pltt.get_palettes() def set_palette(self, pal_id, palette): return self.pltt.set_palette(pal_id, palette)
import array from PIL import Image from generic.editable import XEditable as Editable class PLTT(Editable): """Palette information""" FORMAT_16BIT = 3 FORMAT_256BIT = 4 def define(self, clr): self.clr = clr self.string('magic', length=4, default='PLTT') # not reversed self.uint32('size_') self.uint32('format') self.uint32('extended') self.uint32('datasize') self.uint32('offset') self.data = '' def load(self, reader): Editable.load(self, reader) self.data = array.array('H', reader.read(self.datasize)) def save(self, writer): writer = Editable.save(self, writer) ofs = writer.tell() writer.write(self.data.tostring()) writer.writePadding(ofs+self.datasize) return writer def get_palettes(self): palettes = [] if self.format == self.FORMAT_16BIT: num = 16 elif self.format == self.FORMAT_256BIT: num = 256 start = 0 for pal_id in range(len(self.data)/num): palette = [] for i in range(num): val = self.data[start+i] palette.append((((val >> 0) & 0x1f) << 3, ((val >> 5) & 0x1f) << 3, ((val >> 10) & 0x1f) << 3, 255)) start += num palettes.append(palette) return palettes def get_palette(self, pal_id, transparent=True): palette = [] if self.format == self.FORMAT_16BIT: num = 16 elif self.format == self.FORMAT_256BIT: num = 256 start = pal_id*num for i in range(num): if not num and transparent: palette.append(chr(0)*4) continue val = self.data[start+i] palette.append(chr(((val >> 0) & 0x1f) << 3) + chr(((val >> 5) & 0x1f) << 3) + chr(((val >> 10) & 0x1f) << 3) + chr(255)) return palette def set_palette(self, pal_id, palette): """ Parameters ---------- pal_id : int palette : list of tuple List of 4-/3-int-tuple colors """ if self.format == self.FORMAT_16BIT: num = 16 elif self.format == self.FORMAT_256BIT: num = 256 start = pal_id*num for i, color in enumerate(palette): if i > num: break r, g, b = color[:3] self.data[start+i] = ((r >> 3) | (g >> 3 << 5) | (b >> 3 << 10)) class NCLR(Editable): """2d color information """ def define(self): self.string('magic', length=4, default='RLCN') self.uint16('endian', default=0xFFFE) self.uint16('version', default=0x101) self.uint32('size_') self.uint16('headersize', default=0x10) self.uint16('numblocks', default=1) self.pltt = PLTT(self) def load(self, reader): Editable.load(self, reader) assert self.magic == 'RLCN', 'Expected RLCN got '.format(self.magic) self.pltt.load(reader) def save(self, writer=None): writer = Editable.save(self, writer) writer = self.pltt.save(writer) return writer def get_palette(self, pal_id=0, transparent=True): return self.pltt.get_palette(pal_id, transparent) def get_palettes(self): return self.pltt.get_palettes() def set_palette(self, pal_id, palette): return self.pltt.set_palette(pal_id, palette)
[ 13, 14, 15, 16, 19 ]
791
bd06b04666ade1e7591b02f8211bc9b62fd08936
#!/usr/bin/env python import sys import errno # read first line from stdin and discard it first_line = sys.stdin.readline() # print all other lines for line in sys.stdin: try: print line, except IOError, e: if e.errno == errno.EPIPE: exit(0)
null
null
null
null
[ 0 ]
792
360063940bb82defefc4195a5e17c9778b47e9e5
<mask token> def get_iam_token(iam_url, oauth_token): response = post(iam_url, json={'yandexPassportOauthToken': oauth_token}) json_data = json.loads(response.text) if json_data is not None and 'iamToken' in json_data: return json_data['iamToken'] return None <mask token>
<mask token> def get_iam_token(iam_url, oauth_token): response = post(iam_url, json={'yandexPassportOauthToken': oauth_token}) json_data = json.loads(response.text) if json_data is not None and 'iamToken' in json_data: return json_data['iamToken'] return None <mask token> def MainYandex(): iam_url = 'https://iam.api.cloud.yandex.net/iam/v1/tokens' oauth_token = 'AgAAAAAGg6eyAATuwWwJRFQmXUwDp4RCH-96fRc' iam_token = get_iam_token(iam_url, oauth_token) vision_url = 'https://vision.api.cloud.yandex.net/vision/v1/batchAnalyze' folder_id = 'b1gneif5vbojdoubsq1d' image_data = new_image_string() response_text = request_analyze(vision_url, iam_token, folder_id, image_data) print(ParsOnText(response_text)) <mask token>
<mask token> def get_iam_token(iam_url, oauth_token): response = post(iam_url, json={'yandexPassportOauthToken': oauth_token}) json_data = json.loads(response.text) if json_data is not None and 'iamToken' in json_data: return json_data['iamToken'] return None def request_analyze(vision_url, iam_token, folder_id, image_data): response = post(vision_url, headers={'Authorization': 'Bearer ' + iam_token}, json={'folderId': folder_id, 'analyzeSpecs': [{ 'content': image_data, 'features': [{'type': 'TEXT_DETECTION', 'textDetectionConfig': {'languageCodes': ['en', 'ru']}}]}]}) return response.text def MainYandex(): iam_url = 'https://iam.api.cloud.yandex.net/iam/v1/tokens' oauth_token = 'AgAAAAAGg6eyAATuwWwJRFQmXUwDp4RCH-96fRc' iam_token = get_iam_token(iam_url, oauth_token) vision_url = 'https://vision.api.cloud.yandex.net/vision/v1/batchAnalyze' folder_id = 'b1gneif5vbojdoubsq1d' image_data = new_image_string() response_text = request_analyze(vision_url, iam_token, folder_id, image_data) print(ParsOnText(response_text)) <mask token>
from requests import post import json import argparse import base64 from ReadFromWindow import new_image_string from ParsOnText import ParsOnText def get_iam_token(iam_url, oauth_token): response = post(iam_url, json={'yandexPassportOauthToken': oauth_token}) json_data = json.loads(response.text) if json_data is not None and 'iamToken' in json_data: return json_data['iamToken'] return None def request_analyze(vision_url, iam_token, folder_id, image_data): response = post(vision_url, headers={'Authorization': 'Bearer ' + iam_token}, json={'folderId': folder_id, 'analyzeSpecs': [{ 'content': image_data, 'features': [{'type': 'TEXT_DETECTION', 'textDetectionConfig': {'languageCodes': ['en', 'ru']}}]}]}) return response.text def MainYandex(): iam_url = 'https://iam.api.cloud.yandex.net/iam/v1/tokens' oauth_token = 'AgAAAAAGg6eyAATuwWwJRFQmXUwDp4RCH-96fRc' iam_token = get_iam_token(iam_url, oauth_token) vision_url = 'https://vision.api.cloud.yandex.net/vision/v1/batchAnalyze' folder_id = 'b1gneif5vbojdoubsq1d' image_data = new_image_string() response_text = request_analyze(vision_url, iam_token, folder_id, image_data) print(ParsOnText(response_text)) if __name__ == '__main__': MainYandex()
from requests import post import json import argparse import base64 from ReadFromWindow import new_image_string from ParsOnText import ParsOnText # Функция возвращает IAM-токен для аккаунта на Яндексе. def get_iam_token(iam_url, oauth_token): response = post(iam_url, json={"yandexPassportOauthToken": oauth_token}) json_data = json.loads(response.text) if json_data is not None and 'iamToken' in json_data: return json_data['iamToken'] return None # Функция отправляет на сервер запрос на распознавание изображения и возвращает ответ сервера. def request_analyze(vision_url, iam_token, folder_id, image_data): response = post(vision_url, headers={'Authorization': 'Bearer '+ iam_token}, json={ 'folderId': folder_id, 'analyzeSpecs': [ { 'content': image_data, 'features': [ { 'type': 'TEXT_DETECTION', 'textDetectionConfig': {'languageCodes': ['en', 'ru']} } ], } ]}) return response.text def MainYandex(): iam_url = 'https://iam.api.cloud.yandex.net/iam/v1/tokens' oauth_token = "AgAAAAAGg6eyAATuwWwJRFQmXUwDp4RCH-96fRc" iam_token = get_iam_token(iam_url, oauth_token) vision_url = 'https://vision.api.cloud.yandex.net/vision/v1/batchAnalyze' folder_id="b1gneif5vbojdoubsq1d" # iam_token = "CggaATEVAgAAABKABGpvdJWrMiN0GIJtioMMmFcbtp8oIyD15ply3SU8iLfpSS8yabiP2U8ar1vYibjhCbmbLcwQZu12fLA3wtelEAFb6WiHyMtpXIKsStx3w9K0QVfW9n-6CEzrbzeIpfdRgcCH6oonbDJusNPYePXJ-bfXGqAXcVJVsBJ8W1WKmy1LRJdIZh3stv9dP23-334JnnlO0Hna2uKrb_wwuKruBu1P_EFECnn8f11N8UllADo5MbD5YFdvRhLCHvsAaAPH0lzwGadUDSqvU1OmZOMZqGNktgmiKUIH7QJpYb-879VZtEFtCm7TVSBAKPZCDF_kBPDEymLZY5foRWvb0nTrI9-7XspfCdyoUVcH9fGyni5d7NtFtydsv9Vyuf0EQUcCv8cJ03SZWZZXze63i785VUq1rYoCc12j_Qo8Qela_RWNnsDWTw0Va0rzk9csN0vhUz9aYnpJhb-F0i_T0NCrABsBGShAauhz20FgEaUgrQ7NdA0GwTFApJ6zsCQfzc1o0YMhUS7C2YDQ9RmTTbe1PRr5s4qNx8vVuJ-whdz0aeKUdgPVOOdxyGXFxhpkDY8ykHgQMWeFr6MomppHrXAf8qwt6Ob__rehJYEVV8iOcAxb9ust3gaobxv-QRspyRnNLvWrp7fa-iWqB2nwdXL0bRz6be6B--Qjg8PRbbyVkixxGmYKIGYyMjM1M2EwMzBlODRkYWFhNjY0ODJiZjUzMjMzMGE2EJCmpuoFGND3qOoFIiQKFGFqZTJ2b2VyZWc3aHNidmgwbjFhEgx0YWtzaGVldi5rcmlaADACOAFKCBoBMRUCAAAAUAEg9QQ" image_data = new_image_string() response_text = request_analyze(vision_url, iam_token, folder_id, image_data) # with open('output.json', 'w') as f: # f.write(response_text) print(ParsOnText(response_text)) if __name__ == '__main__': MainYandex()
[ 1, 2, 3, 5, 6 ]
793
75716aaaca63f8ca6d32c885021c1dc0f9a12dac
<mask token>
<mask token> def loudness_zwst(signal, fs=None, field_type='free', is_sdt_output=False): """Zwicker-loudness calculation for stationary signals Calculates the acoustic loudness according to Zwicker method for stationary signals. Normatice reference: ISO 532:1975 (method B) DIN 45631:1991 ISO 532-1:2017 (method 1) The code is based on BASIC program published in "Program for calculating loudness according to DIN 45631 (ISO 532B)", E.Zwicker and H.Fastl, J.A.S.J (E) 12, 1 (1991). Note that due to normative continuity, as defined in the preceeding standards, the method is in accordance with ISO 226:1987 equal loudness contours (instead of ISO 226:2003) Parameters ---------- signal : numpy.array or DataTime object Signal time values [Pa] fs : float, optional Sampling frequency, can be omitted if the input is a DataTime object. Default to None field_type : str Type of soundfield corresponding to spec_third ("free" by default or "diffuse"). is_sdt_output : Bool, optional If True, the outputs are returned as SciDataTool objects. Default to False Outputs ------- N : float or numpy.array The overall loudness array [sones], size (Ntime,). N_specific : numpy.ndarray or DataFreq object The specific loudness array [sones/bark], size (Nbark, Ntime). bark_axis: numpy.array The Bark axis array, size (Nbark,). """ if DataTime is not None and isinstance(signal, DataTime): time = signal.get_along('time')['time'] fs = 1 / (time[1] - time[0]) signal = signal.get_along('time')[signal.symbol] spec_third, _ = noct_spectrum(signal, fs, fmin=24, fmax=12600) spec_third = amp2db(spec_third, ref=2e-05) Nm = _main_loudness(spec_third, field_type) N, N_specific = _calc_slopes(Nm) bark_axis = np.linspace(0.1, 24, int(24 / 0.1)) if is_sdt_output: if DataLinspace is None: raise RuntimeError( "In order to handle Data objects you need the 'SciDataTool' package." ) else: bark_data = DataLinspace(name='Critical band rate', unit='Bark', initial=0, final=24, number=int(24 / 0.1), include_endpoint =True) N_specific = DataFreq(name= 'Specific loudness (Zwicker method for stationnary signal)', symbol="N'_{zwst}", axes=[bark_data], values=N_specific, unit='sone/Bark') return N, N_specific, bark_axis
<mask token> try: from SciDataTool import DataTime, DataLinspace, DataFreq except ImportError: DataTime = None DataLinspace = None DataFreq = None def loudness_zwst(signal, fs=None, field_type='free', is_sdt_output=False): """Zwicker-loudness calculation for stationary signals Calculates the acoustic loudness according to Zwicker method for stationary signals. Normatice reference: ISO 532:1975 (method B) DIN 45631:1991 ISO 532-1:2017 (method 1) The code is based on BASIC program published in "Program for calculating loudness according to DIN 45631 (ISO 532B)", E.Zwicker and H.Fastl, J.A.S.J (E) 12, 1 (1991). Note that due to normative continuity, as defined in the preceeding standards, the method is in accordance with ISO 226:1987 equal loudness contours (instead of ISO 226:2003) Parameters ---------- signal : numpy.array or DataTime object Signal time values [Pa] fs : float, optional Sampling frequency, can be omitted if the input is a DataTime object. Default to None field_type : str Type of soundfield corresponding to spec_third ("free" by default or "diffuse"). is_sdt_output : Bool, optional If True, the outputs are returned as SciDataTool objects. Default to False Outputs ------- N : float or numpy.array The overall loudness array [sones], size (Ntime,). N_specific : numpy.ndarray or DataFreq object The specific loudness array [sones/bark], size (Nbark, Ntime). bark_axis: numpy.array The Bark axis array, size (Nbark,). """ if DataTime is not None and isinstance(signal, DataTime): time = signal.get_along('time')['time'] fs = 1 / (time[1] - time[0]) signal = signal.get_along('time')[signal.symbol] spec_third, _ = noct_spectrum(signal, fs, fmin=24, fmax=12600) spec_third = amp2db(spec_third, ref=2e-05) Nm = _main_loudness(spec_third, field_type) N, N_specific = _calc_slopes(Nm) bark_axis = np.linspace(0.1, 24, int(24 / 0.1)) if is_sdt_output: if DataLinspace is None: raise RuntimeError( "In order to handle Data objects you need the 'SciDataTool' package." ) else: bark_data = DataLinspace(name='Critical band rate', unit='Bark', initial=0, final=24, number=int(24 / 0.1), include_endpoint =True) N_specific = DataFreq(name= 'Specific loudness (Zwicker method for stationnary signal)', symbol="N'_{zwst}", axes=[bark_data], values=N_specific, unit='sone/Bark') return N, N_specific, bark_axis
import numpy as np from mosqito.sound_level_meter import noct_spectrum from mosqito.sq_metrics.loudness.loudness_zwst._main_loudness import _main_loudness from mosqito.sq_metrics.loudness.loudness_zwst._calc_slopes import _calc_slopes from mosqito.utils.conversion import amp2db try: from SciDataTool import DataTime, DataLinspace, DataFreq except ImportError: DataTime = None DataLinspace = None DataFreq = None def loudness_zwst(signal, fs=None, field_type='free', is_sdt_output=False): """Zwicker-loudness calculation for stationary signals Calculates the acoustic loudness according to Zwicker method for stationary signals. Normatice reference: ISO 532:1975 (method B) DIN 45631:1991 ISO 532-1:2017 (method 1) The code is based on BASIC program published in "Program for calculating loudness according to DIN 45631 (ISO 532B)", E.Zwicker and H.Fastl, J.A.S.J (E) 12, 1 (1991). Note that due to normative continuity, as defined in the preceeding standards, the method is in accordance with ISO 226:1987 equal loudness contours (instead of ISO 226:2003) Parameters ---------- signal : numpy.array or DataTime object Signal time values [Pa] fs : float, optional Sampling frequency, can be omitted if the input is a DataTime object. Default to None field_type : str Type of soundfield corresponding to spec_third ("free" by default or "diffuse"). is_sdt_output : Bool, optional If True, the outputs are returned as SciDataTool objects. Default to False Outputs ------- N : float or numpy.array The overall loudness array [sones], size (Ntime,). N_specific : numpy.ndarray or DataFreq object The specific loudness array [sones/bark], size (Nbark, Ntime). bark_axis: numpy.array The Bark axis array, size (Nbark,). """ if DataTime is not None and isinstance(signal, DataTime): time = signal.get_along('time')['time'] fs = 1 / (time[1] - time[0]) signal = signal.get_along('time')[signal.symbol] spec_third, _ = noct_spectrum(signal, fs, fmin=24, fmax=12600) spec_third = amp2db(spec_third, ref=2e-05) Nm = _main_loudness(spec_third, field_type) N, N_specific = _calc_slopes(Nm) bark_axis = np.linspace(0.1, 24, int(24 / 0.1)) if is_sdt_output: if DataLinspace is None: raise RuntimeError( "In order to handle Data objects you need the 'SciDataTool' package." ) else: bark_data = DataLinspace(name='Critical band rate', unit='Bark', initial=0, final=24, number=int(24 / 0.1), include_endpoint =True) N_specific = DataFreq(name= 'Specific loudness (Zwicker method for stationnary signal)', symbol="N'_{zwst}", axes=[bark_data], values=N_specific, unit='sone/Bark') return N, N_specific, bark_axis
# -*- coding: utf-8 -*- # Third party imports import numpy as np # Local application imports from mosqito.sound_level_meter import noct_spectrum from mosqito.sq_metrics.loudness.loudness_zwst._main_loudness import _main_loudness from mosqito.sq_metrics.loudness.loudness_zwst._calc_slopes import _calc_slopes from mosqito.utils.conversion import amp2db # Optional package import try: from SciDataTool import DataTime, DataLinspace, DataFreq except ImportError: DataTime = None DataLinspace = None DataFreq = None def loudness_zwst(signal, fs=None, field_type="free", is_sdt_output=False): """Zwicker-loudness calculation for stationary signals Calculates the acoustic loudness according to Zwicker method for stationary signals. Normatice reference: ISO 532:1975 (method B) DIN 45631:1991 ISO 532-1:2017 (method 1) The code is based on BASIC program published in "Program for calculating loudness according to DIN 45631 (ISO 532B)", E.Zwicker and H.Fastl, J.A.S.J (E) 12, 1 (1991). Note that due to normative continuity, as defined in the preceeding standards, the method is in accordance with ISO 226:1987 equal loudness contours (instead of ISO 226:2003) Parameters ---------- signal : numpy.array or DataTime object Signal time values [Pa] fs : float, optional Sampling frequency, can be omitted if the input is a DataTime object. Default to None field_type : str Type of soundfield corresponding to spec_third ("free" by default or "diffuse"). is_sdt_output : Bool, optional If True, the outputs are returned as SciDataTool objects. Default to False Outputs ------- N : float or numpy.array The overall loudness array [sones], size (Ntime,). N_specific : numpy.ndarray or DataFreq object The specific loudness array [sones/bark], size (Nbark, Ntime). bark_axis: numpy.array The Bark axis array, size (Nbark,). """ # Manage SciDataTool input type if DataTime is not None and isinstance(signal, DataTime): time = signal.get_along("time")["time"] fs = 1 / (time[1] - time[0]) signal = signal.get_along("time")[signal.symbol] # Compute third octave band spectrum spec_third, _ = noct_spectrum(signal, fs, fmin=24, fmax=12600) # Compute dB values spec_third = amp2db(spec_third, ref=2e-5) # Compute main loudness Nm = _main_loudness(spec_third, field_type) # Computation of specific loudness pattern and integration of overall # loudness by attaching slopes towards higher frequencies N, N_specific = _calc_slopes(Nm) # Define Bark axis bark_axis = np.linspace(0.1, 24, int(24 / 0.1)) # Manage SciDataTool output type if is_sdt_output: if DataLinspace is None: raise RuntimeError( "In order to handle Data objects you need the 'SciDataTool' package." ) else: bark_data = DataLinspace( name="Critical band rate", unit="Bark", initial=0, final=24, number=int(24 / 0.1), include_endpoint=True, ) N_specific = DataFreq( name="Specific loudness (Zwicker method for stationnary signal)", symbol="N'_{zwst}", axes=[bark_data], values=N_specific, unit="sone/Bark", ) return N, N_specific, bark_axis
[ 0, 1, 2, 3, 4 ]
794
0e9d0927e8d69b0c0fad98479d47f2409c95a751
<mask token>
<mask token> for i in range(len(x)): ans += abs(x[i] - y[i]) for i in range(1, len(y)): ans += abs(x[i - 1] - y[i]) if n % 2 == 1: ans += max(abs(a[n // 2] - x[-1]), abs(a[n // 2] - y[0])) print(ans)
n = int(input()) a = sorted([int(input()) for _ in range(n)]) x = a[:n // 2] y = a[(n + 1) // 2:] ans = 0 for i in range(len(x)): ans += abs(x[i] - y[i]) for i in range(1, len(y)): ans += abs(x[i - 1] - y[i]) if n % 2 == 1: ans += max(abs(a[n // 2] - x[-1]), abs(a[n // 2] - y[0])) print(ans)
n = int(input()) a = sorted([int(input()) for _ in range(n)]) x = a[:n//2] y = a[(n + 1)//2:] ans = 0 for i in range(len(x)): ans += abs(x[i] - y[i]) for i in range(1, len(y)): ans += abs(x[i - 1] - y[i]) if n % 2 == 1: ans += max( abs(a[n // 2] - x[-1]), abs(a[n // 2] - y[0]), ) print(ans)
null
[ 0, 1, 2, 3 ]
795
e3dece36ba3e5b3df763e7119c485f6ed2155098
<mask token> def get_summary(): model = T5ForConditionalGeneration.from_pretrained('t5-small') tokenizer = T5Tokenizer.from_pretrained('t5-small') device = torch.device('cpu') text = str(url_display1.get('1.0', tk.END)) preprocess_text = text.strip().replace('\n', '') t5_prepared_Text = 'summarize: ' + preprocess_text tokenized_text = tokenizer.encode(t5_prepared_Text, return_tensors='pt' ).to(device) summary_ids = model.generate(tokenized_text, num_beams=4, no_repeat_ngram_size=2, min_length=30, max_length=100, early_stopping=True) output = tokenizer.decode(summary_ids[0], skip_special_tokens=True) Str1 = text str2 = output printt = difflib.SequenceMatcher(None, Str1, str2, False).ratio() * 100 edited = len(text) - len(output) Precision = (len(text) + len(output) + edited) / 2 Precisioncalc = Precision / 100 result = ('\n\nSummarized text: \n', output ), ' Precision = ', Precisioncalc, ' similarity = ', printt tab2_display_text.insert(tk.END, result) def open_pdf(): open_file = filedialog.askopenfilename(initialdir='C:/gui/', title= 'Open PDF File', filetypes=(('PDF Files', '*.pdf'), ('All Files', '.')) ) if open_file: pdf_file = PyPDF2.PdfFileReader(open_file) page = pdf_file.getPage(0) page_stuff = page.extractText() io = page_stuff.split() url_display.insert(3.0, io) def open_pdf1(): open_file = filedialog.askopenfilename(initialdir='C:/gui/', title= 'Open PDF File', filetypes=(('PDF Files', '*.pdf'), ('All Files', '.')) ) if open_file: pdf_file = PyPDF2.PdfFileReader(open_file) page = pdf_file.getPage(0) page_stuff = page.extractText() io = page_stuff.split() url_display1.insert(3.0, io) <mask token> def clear_url_entry(): url_entry.delete(0, END) <mask token> def get_text(): raw_text = str(url_entry.get()) page = urlopen(raw_text) soup = BeautifulSoup(page) fetched_text = ' '.join(map(lambda p: p.text, soup.find_all('p'))) url_display.insert(tk.END, fetched_text) def get_url_summary(): raw_text = url_display.get('1.0', tk.END) final_text = text_summarizer(raw_text) result = '\nSummary:{}'.format(final_text) tab3_display_text.insert(tk.END, result) def use_spacy(): raw_text = url_display.get('1.0', tk.END) final_text = text_summarizer(raw_text) print(final_text) Str1 = raw_text str2 = text_summarizer(raw_text) printt = difflib.SequenceMatcher(None, Str1, str2, False).ratio() * 100 Precision = len(raw_text) + len(nltk_summarizer(raw_text)) / len(raw_text) Precisioncalc = Precision / 100 result = '\nSpacy Summary:{}\n'.format(final_text ), ' Precision = ', Precisioncalc, ' similarity = ', printt tab3_display_text.insert(tk.END, result) def use_nltk(): raw_text = url_display.get('1.0', tk.END) final_text = nltk_summarizer(raw_text) print(final_text) Str1 = raw_text str2 = nltk_summarizer(raw_text) printt = difflib.SequenceMatcher(None, Str1, str2, False).ratio() * 100 Precision = len(raw_text) + len(nltk_summarizer(raw_text)) / len(raw_text) Precisioncalc = Precision / 100 result = '\nNLTK Summary:{}\n'.format(final_text ), ' Precision = ', Precisioncalc, ' similarity = ', printt tab3_display_text.insert(tk.END, result) <mask token>
<mask token> def get_summary(): model = T5ForConditionalGeneration.from_pretrained('t5-small') tokenizer = T5Tokenizer.from_pretrained('t5-small') device = torch.device('cpu') text = str(url_display1.get('1.0', tk.END)) preprocess_text = text.strip().replace('\n', '') t5_prepared_Text = 'summarize: ' + preprocess_text tokenized_text = tokenizer.encode(t5_prepared_Text, return_tensors='pt' ).to(device) summary_ids = model.generate(tokenized_text, num_beams=4, no_repeat_ngram_size=2, min_length=30, max_length=100, early_stopping=True) output = tokenizer.decode(summary_ids[0], skip_special_tokens=True) Str1 = text str2 = output printt = difflib.SequenceMatcher(None, Str1, str2, False).ratio() * 100 edited = len(text) - len(output) Precision = (len(text) + len(output) + edited) / 2 Precisioncalc = Precision / 100 result = ('\n\nSummarized text: \n', output ), ' Precision = ', Precisioncalc, ' similarity = ', printt tab2_display_text.insert(tk.END, result) def open_pdf(): open_file = filedialog.askopenfilename(initialdir='C:/gui/', title= 'Open PDF File', filetypes=(('PDF Files', '*.pdf'), ('All Files', '.')) ) if open_file: pdf_file = PyPDF2.PdfFileReader(open_file) page = pdf_file.getPage(0) page_stuff = page.extractText() io = page_stuff.split() url_display.insert(3.0, io) def open_pdf1(): open_file = filedialog.askopenfilename(initialdir='C:/gui/', title= 'Open PDF File', filetypes=(('PDF Files', '*.pdf'), ('All Files', '.')) ) if open_file: pdf_file = PyPDF2.PdfFileReader(open_file) page = pdf_file.getPage(0) page_stuff = page.extractText() io = page_stuff.split() url_display1.insert(3.0, io) def clear_display_result(): tab3_display_text.delete('1.0', END) def clear_url_entry(): url_entry.delete(0, END) <mask token> def get_text(): raw_text = str(url_entry.get()) page = urlopen(raw_text) soup = BeautifulSoup(page) fetched_text = ' '.join(map(lambda p: p.text, soup.find_all('p'))) url_display.insert(tk.END, fetched_text) def get_url_summary(): raw_text = url_display.get('1.0', tk.END) final_text = text_summarizer(raw_text) result = '\nSummary:{}'.format(final_text) tab3_display_text.insert(tk.END, result) def use_spacy(): raw_text = url_display.get('1.0', tk.END) final_text = text_summarizer(raw_text) print(final_text) Str1 = raw_text str2 = text_summarizer(raw_text) printt = difflib.SequenceMatcher(None, Str1, str2, False).ratio() * 100 Precision = len(raw_text) + len(nltk_summarizer(raw_text)) / len(raw_text) Precisioncalc = Precision / 100 result = '\nSpacy Summary:{}\n'.format(final_text ), ' Precision = ', Precisioncalc, ' similarity = ', printt tab3_display_text.insert(tk.END, result) def use_nltk(): raw_text = url_display.get('1.0', tk.END) final_text = nltk_summarizer(raw_text) print(final_text) Str1 = raw_text str2 = nltk_summarizer(raw_text) printt = difflib.SequenceMatcher(None, Str1, str2, False).ratio() * 100 Precision = len(raw_text) + len(nltk_summarizer(raw_text)) / len(raw_text) Precisioncalc = Precision / 100 result = '\nNLTK Summary:{}\n'.format(final_text ), ' Precision = ', Precisioncalc, ' similarity = ', printt tab3_display_text.insert(tk.END, result) <mask token>
<mask token> window = Tk() window.title('Summaryzer GUI') window.geometry('700x400') window.config(background='black') style = ttk.Style(window) style.configure('lefttab.TNotebook', tabposition='wn') tab_control = ttk.Notebook(window, style='lefttab.TNotebook') tab2 = ttk.Frame(tab_control) tab3 = ttk.Frame(tab_control) tab_control.add(tab3, text=f"{'Extractive':^20s}") tab_control.add(tab2, text=f"{'Abstractive':^20s}") label1 = Label(tab3, text='Extractive Summrize', padx=5, pady=5) label1.grid(column=1, row=0) label2 = Label(tab2, text='Abstractive Summrize', padx=5, pady=5) label2.grid(column=0, row=0) tab_control.pack(expand=1, fill='both') def get_summary(): model = T5ForConditionalGeneration.from_pretrained('t5-small') tokenizer = T5Tokenizer.from_pretrained('t5-small') device = torch.device('cpu') text = str(url_display1.get('1.0', tk.END)) preprocess_text = text.strip().replace('\n', '') t5_prepared_Text = 'summarize: ' + preprocess_text tokenized_text = tokenizer.encode(t5_prepared_Text, return_tensors='pt' ).to(device) summary_ids = model.generate(tokenized_text, num_beams=4, no_repeat_ngram_size=2, min_length=30, max_length=100, early_stopping=True) output = tokenizer.decode(summary_ids[0], skip_special_tokens=True) Str1 = text str2 = output printt = difflib.SequenceMatcher(None, Str1, str2, False).ratio() * 100 edited = len(text) - len(output) Precision = (len(text) + len(output) + edited) / 2 Precisioncalc = Precision / 100 result = ('\n\nSummarized text: \n', output ), ' Precision = ', Precisioncalc, ' similarity = ', printt tab2_display_text.insert(tk.END, result) def open_pdf(): open_file = filedialog.askopenfilename(initialdir='C:/gui/', title= 'Open PDF File', filetypes=(('PDF Files', '*.pdf'), ('All Files', '.')) ) if open_file: pdf_file = PyPDF2.PdfFileReader(open_file) page = pdf_file.getPage(0) page_stuff = page.extractText() io = page_stuff.split() url_display.insert(3.0, io) def open_pdf1(): open_file = filedialog.askopenfilename(initialdir='C:/gui/', title= 'Open PDF File', filetypes=(('PDF Files', '*.pdf'), ('All Files', '.')) ) if open_file: pdf_file = PyPDF2.PdfFileReader(open_file) page = pdf_file.getPage(0) page_stuff = page.extractText() io = page_stuff.split() url_display1.insert(3.0, io) def clear_display_result(): tab3_display_text.delete('1.0', END) def clear_url_entry(): url_entry.delete(0, END) def openfiles(): file1 = tkinter.filedialog.askopenfilename(filetypes=(('Text Files', '.txt'), ('All files', '*'))) read_text = open(file1).read() url_display.insert(tk.END, read_text) def get_text(): raw_text = str(url_entry.get()) page = urlopen(raw_text) soup = BeautifulSoup(page) fetched_text = ' '.join(map(lambda p: p.text, soup.find_all('p'))) url_display.insert(tk.END, fetched_text) def get_url_summary(): raw_text = url_display.get('1.0', tk.END) final_text = text_summarizer(raw_text) result = '\nSummary:{}'.format(final_text) tab3_display_text.insert(tk.END, result) def use_spacy(): raw_text = url_display.get('1.0', tk.END) final_text = text_summarizer(raw_text) print(final_text) Str1 = raw_text str2 = text_summarizer(raw_text) printt = difflib.SequenceMatcher(None, Str1, str2, False).ratio() * 100 Precision = len(raw_text) + len(nltk_summarizer(raw_text)) / len(raw_text) Precisioncalc = Precision / 100 result = '\nSpacy Summary:{}\n'.format(final_text ), ' Precision = ', Precisioncalc, ' similarity = ', printt tab3_display_text.insert(tk.END, result) def use_nltk(): raw_text = url_display.get('1.0', tk.END) final_text = nltk_summarizer(raw_text) print(final_text) Str1 = raw_text str2 = nltk_summarizer(raw_text) printt = difflib.SequenceMatcher(None, Str1, str2, False).ratio() * 100 Precision = len(raw_text) + len(nltk_summarizer(raw_text)) / len(raw_text) Precisioncalc = Precision / 100 result = '\nNLTK Summary:{}\n'.format(final_text ), ' Precision = ', Precisioncalc, ' similarity = ', printt tab3_display_text.insert(tk.END, result) def use_gensim(): raw_text = url_display.get('1.0', tk.END) final_text = summarize(raw_text) print(final_text) Str1 = raw_text str2 = summarize(raw_text) printt = difflib.SequenceMatcher(None, Str1, str2, False).ratio() * 100 Precision = len(raw_text) + len(nltk_summarizer(raw_text)) / len(raw_text) Precisioncalc = Precision / 100 result = '\nGensim Summary:{}\n'.format(final_text ), ' Precision = ', Precisioncalc, ' similarity = ', printt tab3_display_text.insert(tk.END, result) l1 = Label(tab3, text='Enter URL To Summarize') l1.grid(row=1, column=0) raw_entry = StringVar() url_entry = Entry(tab3, textvariable=raw_entry, width=50) url_entry.grid(row=1, column=1) button1 = Button(tab3, text='Reset', command=clear_url_entry, width=12, bg= '#03A9F4', fg='#fff') button1.grid(row=4, column=0, padx=10, pady=10) button2 = Button(tab3, text='Get Text', command=get_text, width=12, bg= '#03A9F4', fg='#fff') button2.grid(row=4, column=1, padx=10, pady=10) button3 = Button(tab3, text='Open File', width=12, command=openfiles, bg= '#c5cae9') button3.grid(row=5, column=0, padx=10, pady=10) button4 = Button(tab3, text='Open PDF', width=12, command=open_pdf, bg= '#c5cae9') button4.grid(row=5, column=1, padx=10, pady=10) button5 = Button(tab3, text='SpaCy', command=use_spacy, width=12, bg='red', fg='#fff') button5.grid(row=8, column=0, padx=10, pady=10) button6 = Button(tab3, text='Clear Result', command=clear_display_result, width=12, bg='#03A9F4', fg='#fff') button6.grid(row=9, column=1, padx=10, pady=10) button7 = Button(tab3, text='NLTK', command=use_nltk, width=12, bg= '#03A9F4', fg='#fff') button7.grid(row=8, column=1, padx=10, pady=10) button8 = Button(tab3, text='Gensim', command=use_gensim, width=12, bg= '#03A9F4', fg='#fff') button8.grid(row=9, column=0, padx=10, pady=10) url_display = ScrolledText(tab3, height=10) url_display.grid(row=7, column=0, columnspan=3, padx=5, pady=5) tab3_display_text = ScrolledText(tab3, height=10) tab3_display_text.grid(row=11, column=0, columnspan=3, padx=5, pady=5) l1 = Label(tab2, text='Enter URL To Summarize') l1.grid(row=1, column=0) raw_entry1 = StringVar() url_entry1 = Entry(tab2, textvariable=raw_entry, width=50) url_entry1.grid(row=1, column=1) button9 = Button(tab2, text='Reset', command=clear_url_entry, width=12, bg= '#03A9F4', fg='#fff') button9.grid(row=4, column=0, padx=10, pady=10) button10 = Button(tab2, text='Get Text', command=get_text, width=12, bg= '#03A9F4', fg='#fff') button10.grid(row=4, column=1, padx=10, pady=10) button11 = Button(tab2, text='Open File', width=12, command=openfiles, bg= '#c5cae9') button11.grid(row=5, column=0, padx=10, pady=10) button12 = Button(tab2, text='Open PDF', width=12, command=open_pdf1, bg= '#c5cae9') button12.grid(row=5, column=1, padx=10, pady=10) button13 = Button(tab2, text='Clear Result', command=clear_display_result, width=12, bg='#03A9F4', fg='#fff') button13.grid(row=9, column=1, padx=10, pady=10) button14 = Button(tab2, text='Abstract', command=get_summary, width=12, bg= '#03A9F4', fg='#fff') button14.grid(row=9, column=0, padx=10, pady=10) url_display1 = ScrolledText(tab2, height=10) url_display1.grid(row=7, column=0, columnspan=3, padx=5, pady=5) tab2_display_text = ScrolledText(tab2, height=10) tab2_display_text.grid(row=11, column=0, columnspan=3, padx=5, pady=5) window.mainloop()
import difflib import tkinter as tk from tkinter import * from tkinter import ttk from tkinter.scrolledtext import * import tkinter.filedialog import PyPDF2 from tkinter import filedialog import torch import json from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config from spacy_summarization import text_summarizer from gensim.summarization import summarize from nltk_summarization import nltk_summarizer from bs4 import BeautifulSoup from urllib.request import urlopen window = Tk() window.title('Summaryzer GUI') window.geometry('700x400') window.config(background='black') style = ttk.Style(window) style.configure('lefttab.TNotebook', tabposition='wn') tab_control = ttk.Notebook(window, style='lefttab.TNotebook') tab2 = ttk.Frame(tab_control) tab3 = ttk.Frame(tab_control) tab_control.add(tab3, text=f"{'Extractive':^20s}") tab_control.add(tab2, text=f"{'Abstractive':^20s}") label1 = Label(tab3, text='Extractive Summrize', padx=5, pady=5) label1.grid(column=1, row=0) label2 = Label(tab2, text='Abstractive Summrize', padx=5, pady=5) label2.grid(column=0, row=0) tab_control.pack(expand=1, fill='both') def get_summary(): model = T5ForConditionalGeneration.from_pretrained('t5-small') tokenizer = T5Tokenizer.from_pretrained('t5-small') device = torch.device('cpu') text = str(url_display1.get('1.0', tk.END)) preprocess_text = text.strip().replace('\n', '') t5_prepared_Text = 'summarize: ' + preprocess_text tokenized_text = tokenizer.encode(t5_prepared_Text, return_tensors='pt' ).to(device) summary_ids = model.generate(tokenized_text, num_beams=4, no_repeat_ngram_size=2, min_length=30, max_length=100, early_stopping=True) output = tokenizer.decode(summary_ids[0], skip_special_tokens=True) Str1 = text str2 = output printt = difflib.SequenceMatcher(None, Str1, str2, False).ratio() * 100 edited = len(text) - len(output) Precision = (len(text) + len(output) + edited) / 2 Precisioncalc = Precision / 100 result = ('\n\nSummarized text: \n', output ), ' Precision = ', Precisioncalc, ' similarity = ', printt tab2_display_text.insert(tk.END, result) def open_pdf(): open_file = filedialog.askopenfilename(initialdir='C:/gui/', title= 'Open PDF File', filetypes=(('PDF Files', '*.pdf'), ('All Files', '.')) ) if open_file: pdf_file = PyPDF2.PdfFileReader(open_file) page = pdf_file.getPage(0) page_stuff = page.extractText() io = page_stuff.split() url_display.insert(3.0, io) def open_pdf1(): open_file = filedialog.askopenfilename(initialdir='C:/gui/', title= 'Open PDF File', filetypes=(('PDF Files', '*.pdf'), ('All Files', '.')) ) if open_file: pdf_file = PyPDF2.PdfFileReader(open_file) page = pdf_file.getPage(0) page_stuff = page.extractText() io = page_stuff.split() url_display1.insert(3.0, io) def clear_display_result(): tab3_display_text.delete('1.0', END) def clear_url_entry(): url_entry.delete(0, END) def openfiles(): file1 = tkinter.filedialog.askopenfilename(filetypes=(('Text Files', '.txt'), ('All files', '*'))) read_text = open(file1).read() url_display.insert(tk.END, read_text) def get_text(): raw_text = str(url_entry.get()) page = urlopen(raw_text) soup = BeautifulSoup(page) fetched_text = ' '.join(map(lambda p: p.text, soup.find_all('p'))) url_display.insert(tk.END, fetched_text) def get_url_summary(): raw_text = url_display.get('1.0', tk.END) final_text = text_summarizer(raw_text) result = '\nSummary:{}'.format(final_text) tab3_display_text.insert(tk.END, result) def use_spacy(): raw_text = url_display.get('1.0', tk.END) final_text = text_summarizer(raw_text) print(final_text) Str1 = raw_text str2 = text_summarizer(raw_text) printt = difflib.SequenceMatcher(None, Str1, str2, False).ratio() * 100 Precision = len(raw_text) + len(nltk_summarizer(raw_text)) / len(raw_text) Precisioncalc = Precision / 100 result = '\nSpacy Summary:{}\n'.format(final_text ), ' Precision = ', Precisioncalc, ' similarity = ', printt tab3_display_text.insert(tk.END, result) def use_nltk(): raw_text = url_display.get('1.0', tk.END) final_text = nltk_summarizer(raw_text) print(final_text) Str1 = raw_text str2 = nltk_summarizer(raw_text) printt = difflib.SequenceMatcher(None, Str1, str2, False).ratio() * 100 Precision = len(raw_text) + len(nltk_summarizer(raw_text)) / len(raw_text) Precisioncalc = Precision / 100 result = '\nNLTK Summary:{}\n'.format(final_text ), ' Precision = ', Precisioncalc, ' similarity = ', printt tab3_display_text.insert(tk.END, result) def use_gensim(): raw_text = url_display.get('1.0', tk.END) final_text = summarize(raw_text) print(final_text) Str1 = raw_text str2 = summarize(raw_text) printt = difflib.SequenceMatcher(None, Str1, str2, False).ratio() * 100 Precision = len(raw_text) + len(nltk_summarizer(raw_text)) / len(raw_text) Precisioncalc = Precision / 100 result = '\nGensim Summary:{}\n'.format(final_text ), ' Precision = ', Precisioncalc, ' similarity = ', printt tab3_display_text.insert(tk.END, result) l1 = Label(tab3, text='Enter URL To Summarize') l1.grid(row=1, column=0) raw_entry = StringVar() url_entry = Entry(tab3, textvariable=raw_entry, width=50) url_entry.grid(row=1, column=1) button1 = Button(tab3, text='Reset', command=clear_url_entry, width=12, bg= '#03A9F4', fg='#fff') button1.grid(row=4, column=0, padx=10, pady=10) button2 = Button(tab3, text='Get Text', command=get_text, width=12, bg= '#03A9F4', fg='#fff') button2.grid(row=4, column=1, padx=10, pady=10) button3 = Button(tab3, text='Open File', width=12, command=openfiles, bg= '#c5cae9') button3.grid(row=5, column=0, padx=10, pady=10) button4 = Button(tab3, text='Open PDF', width=12, command=open_pdf, bg= '#c5cae9') button4.grid(row=5, column=1, padx=10, pady=10) button5 = Button(tab3, text='SpaCy', command=use_spacy, width=12, bg='red', fg='#fff') button5.grid(row=8, column=0, padx=10, pady=10) button6 = Button(tab3, text='Clear Result', command=clear_display_result, width=12, bg='#03A9F4', fg='#fff') button6.grid(row=9, column=1, padx=10, pady=10) button7 = Button(tab3, text='NLTK', command=use_nltk, width=12, bg= '#03A9F4', fg='#fff') button7.grid(row=8, column=1, padx=10, pady=10) button8 = Button(tab3, text='Gensim', command=use_gensim, width=12, bg= '#03A9F4', fg='#fff') button8.grid(row=9, column=0, padx=10, pady=10) url_display = ScrolledText(tab3, height=10) url_display.grid(row=7, column=0, columnspan=3, padx=5, pady=5) tab3_display_text = ScrolledText(tab3, height=10) tab3_display_text.grid(row=11, column=0, columnspan=3, padx=5, pady=5) l1 = Label(tab2, text='Enter URL To Summarize') l1.grid(row=1, column=0) raw_entry1 = StringVar() url_entry1 = Entry(tab2, textvariable=raw_entry, width=50) url_entry1.grid(row=1, column=1) button9 = Button(tab2, text='Reset', command=clear_url_entry, width=12, bg= '#03A9F4', fg='#fff') button9.grid(row=4, column=0, padx=10, pady=10) button10 = Button(tab2, text='Get Text', command=get_text, width=12, bg= '#03A9F4', fg='#fff') button10.grid(row=4, column=1, padx=10, pady=10) button11 = Button(tab2, text='Open File', width=12, command=openfiles, bg= '#c5cae9') button11.grid(row=5, column=0, padx=10, pady=10) button12 = Button(tab2, text='Open PDF', width=12, command=open_pdf1, bg= '#c5cae9') button12.grid(row=5, column=1, padx=10, pady=10) button13 = Button(tab2, text='Clear Result', command=clear_display_result, width=12, bg='#03A9F4', fg='#fff') button13.grid(row=9, column=1, padx=10, pady=10) button14 = Button(tab2, text='Abstract', command=get_summary, width=12, bg= '#03A9F4', fg='#fff') button14.grid(row=9, column=0, padx=10, pady=10) url_display1 = ScrolledText(tab2, height=10) url_display1.grid(row=7, column=0, columnspan=3, padx=5, pady=5) tab2_display_text = ScrolledText(tab2, height=10) tab2_display_text.grid(row=11, column=0, columnspan=3, padx=5, pady=5) window.mainloop()
# Core Packages import difflib import tkinter as tk from tkinter import * from tkinter import ttk from tkinter.scrolledtext import * import tkinter.filedialog import PyPDF2 from tkinter import filedialog import torch import json from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config # NLP Pkgs from spacy_summarization import text_summarizer from gensim.summarization import summarize from nltk_summarization import nltk_summarizer # Web Scraping Pkg from bs4 import BeautifulSoup from urllib.request import urlopen # Structure and Layout window = Tk() window.title("Summaryzer GUI") window.geometry("700x400") window.config(background='black') style = ttk.Style(window) style.configure('lefttab.TNotebook', tabposition='wn', ) # TAB LAYOUT tab_control = ttk.Notebook(window, style='lefttab.TNotebook') tab2 = ttk.Frame(tab_control) tab3 = ttk.Frame(tab_control) # ADD TABS TO NOTEBOOK tab_control.add(tab3, text=f'{"Extractive":^20s}') tab_control.add(tab2, text=f'{"Abstractive":^20s}') label1 = Label(tab3, text='Extractive Summrize', padx=5, pady=5) label1.grid(column=1, row=0) label2 = Label(tab2, text='Abstractive Summrize',padx=5, pady=5) label2.grid(column=0, row=0) tab_control.pack(expand=1, fill='both') def get_summary(): model = T5ForConditionalGeneration.from_pretrained ('t5-small') tokenizer = T5Tokenizer.from_pretrained ('t5-small') device = torch.device ('cpu') text = str(url_display1.get('1.0', tk.END)) preprocess_text = text.strip ().replace ("\n", "") t5_prepared_Text = "summarize: " + preprocess_text tokenized_text = tokenizer.encode (t5_prepared_Text, return_tensors="pt").to (device) summary_ids = model.generate (tokenized_text, num_beams=4, no_repeat_ngram_size=2, min_length=30, max_length=100, early_stopping=True) output = tokenizer.decode (summary_ids[0], skip_special_tokens=True) Str1 = text str2 = output printt = difflib.SequenceMatcher(None, Str1, str2, False).ratio() * 100 edited = len(text)-len(output) Precision = (len(text)+len(output)+edited)/2 Precisioncalc = Precision / 100 result =("\n\nSummarized text: \n", output)," Precision = " , Precisioncalc , " similarity = " , printt tab2_display_text.insert(tk.END, result) def open_pdf(): open_file = filedialog.askopenfilename( initialdir="C:/gui/", title="Open PDF File", filetypes=( ("PDF Files", "*.pdf"), ("All Files", "."))) if open_file: pdf_file = PyPDF2.PdfFileReader(open_file) page = pdf_file.getPage(0) page_stuff = page.extractText() io = page_stuff.split() url_display.insert(3.0, io) def open_pdf1(): open_file = filedialog.askopenfilename( initialdir="C:/gui/", title="Open PDF File", filetypes=( ("PDF Files", "*.pdf"), ("All Files", "."))) if open_file: pdf_file = PyPDF2.PdfFileReader(open_file) page = pdf_file.getPage(0) page_stuff = page.extractText() io = page_stuff.split() url_display1.insert(3.0, io) def clear_display_result(): tab3_display_text.delete('1.0', END) # Clear For URL def clear_url_entry(): url_entry.delete(0, END) # Open File to Read and Process def openfiles(): file1 = tkinter.filedialog.askopenfilename(filetypes=(("Text Files", ".txt"), ("All files", "*"))) read_text = open(file1).read() url_display.insert(tk.END, read_text) def get_text(): raw_text = str(url_entry.get()) page = urlopen(raw_text) soup = BeautifulSoup(page) fetched_text = ' '.join(map(lambda p: p.text, soup.find_all('p'))) url_display.insert(tk.END, fetched_text) def get_url_summary(): raw_text = url_display.get('1.0', tk.END) final_text = text_summarizer(raw_text) result = '\nSummary:{}'.format(final_text) tab3_display_text.insert(tk.END, result) def use_spacy (): raw_text = url_display.get('1.0', tk.END) final_text = text_summarizer(raw_text) print(final_text) Str1 = raw_text str2 = text_summarizer(raw_text) printt = difflib.SequenceMatcher(None, Str1, str2, False).ratio() * 100 Precision = len(raw_text) + len(nltk_summarizer(raw_text)) / len(raw_text) Precisioncalc = Precision / 100 result = '\nSpacy Summary:{}\n'.format(final_text)," Precision = " , Precisioncalc , " similarity = " , printt tab3_display_text.insert(tk.END, result) def use_nltk(): raw_text = url_display.get ('1.0', tk.END) final_text = nltk_summarizer (raw_text) print (final_text) Str1 = raw_text str2 = nltk_summarizer(raw_text) printt = difflib.SequenceMatcher(None, Str1, str2, False).ratio() * 100 Precision = len(raw_text) + len(nltk_summarizer(raw_text)) / len(raw_text) Precisioncalc = Precision / 100 result = '\nNLTK Summary:{}\n'.format(final_text)," Precision = " , Precisioncalc , " similarity = " , printt tab3_display_text.insert(tk.END, result) def use_gensim(): raw_text = url_display.get ('1.0', tk.END) final_text = summarize(raw_text) print (final_text) Str1 = raw_text str2 = summarize(raw_text) printt = difflib.SequenceMatcher(None, Str1, str2, False).ratio() * 100 Precision = len(raw_text) + len(nltk_summarizer(raw_text)) / len(raw_text) Precisioncalc = Precision / 100 result ='\nGensim Summary:{}\n'.format(final_text)," Precision = " , Precisioncalc , " similarity = " , printt tab3_display_text.insert(tk.END, result) # URL TAB l1 = Label(tab3, text="Enter URL To Summarize") l1.grid(row=1, column=0) raw_entry = StringVar() url_entry = Entry(tab3, textvariable=raw_entry, width=50) url_entry.grid(row=1, column=1) # BUTTONS button1 = Button(tab3, text="Reset", command=clear_url_entry, width=12, bg='#03A9F4', fg='#fff') button1.grid(row=4, column=0, padx=10, pady=10) button2 = Button(tab3, text="Get Text", command=get_text, width=12, bg='#03A9F4', fg='#fff') button2.grid(row=4, column=1, padx=10, pady=10) button3 = Button(tab3, text="Open File", width=12, command=openfiles, bg='#c5cae9') button3.grid(row=5, column=0, padx=10, pady=10) button4 = Button(tab3, text="Open PDF", width=12, command=open_pdf, bg='#c5cae9') button4.grid(row=5, column=1, padx=10, pady=10) button5 = Button(tab3, text="SpaCy", command=use_spacy, width=12, bg='red', fg='#fff') button5.grid(row=8, column=0, padx=10, pady=10) button6 = Button(tab3, text="Clear Result", command=clear_display_result, width=12, bg='#03A9F4', fg='#fff') button6.grid(row=9, column=1, padx=10, pady=10) button7 = Button(tab3, text="NLTK", command=use_nltk, width=12, bg='#03A9F4', fg='#fff') button7.grid(row=8, column=1, padx=10, pady=10) button8 = Button(tab3, text="Gensim", command=use_gensim, width=12, bg='#03A9F4', fg='#fff') button8.grid(row=9, column=0, padx=10, pady=10) # Display Screen For Result url_display = ScrolledText(tab3, height=10) url_display.grid(row=7, column=0, columnspan=3, padx=5, pady=5) tab3_display_text = ScrolledText(tab3, height=10) tab3_display_text.grid(row=11, column=0, columnspan=3, padx=5, pady=5) l1 = Label(tab2, text="Enter URL To Summarize") l1.grid(row=1, column=0) raw_entry1 = StringVar() url_entry1 = Entry(tab2, textvariable=raw_entry, width=50) url_entry1.grid(row=1, column=1) # BUTTONS button9 = Button(tab2, text="Reset", command=clear_url_entry, width=12, bg='#03A9F4', fg='#fff') button9.grid(row=4, column=0, padx=10, pady=10) button10 = Button(tab2, text="Get Text", command=get_text, width=12, bg='#03A9F4', fg='#fff') button10.grid(row=4, column=1, padx=10, pady=10) button11 = Button(tab2, text="Open File", width=12, command=openfiles, bg='#c5cae9') button11.grid(row=5, column=0, padx=10, pady=10) button12 = Button(tab2, text="Open PDF", width=12, command=open_pdf1, bg='#c5cae9') button12.grid(row=5, column=1, padx=10, pady=10) button13 = Button(tab2, text="Clear Result", command=clear_display_result, width=12, bg='#03A9F4', fg='#fff') button13.grid(row=9, column=1, padx=10, pady=10) button14 = Button(tab2, text="Abstract", command=get_summary, width=12, bg='#03A9F4', fg='#fff') button14.grid(row=9, column=0, padx=10, pady=10) url_display1 = ScrolledText(tab2, height=10) url_display1.grid(row=7, column=0, columnspan=3, padx=5, pady=5) tab2_display_text = ScrolledText(tab2, height=10) tab2_display_text.grid(row=11, column=0, columnspan=3, padx=5, pady=5) window.mainloop()
[ 8, 9, 13, 14, 15 ]
796
64366e8532ffe05db7e7b7313e1d573c78a4e030
<mask token> class TestPipRequirement: def is_packaging_subclass(self): r = PipRequirement('prefect') assert isinstance(r, packaging.requirements.Requirement) def test_can_be_used_in_pydantic_model(self): class MyModel(pydantic.BaseModel): req: PipRequirement inst = MyModel(req='prefect') assert inst.req == PipRequirement('prefect') assert isinstance(inst.req, PipRequirement) def test_equality(self): assert PipRequirement('prefect') == PipRequirement('prefect') assert PipRequirement('prefect') != PipRequirement('prefect>=2') <mask token> def test_current_environment_requirements_warns_about_editable_prefect(): with pytest.warns(UserWarning, match='prefect.*is an editable installation' ): requirements = current_environment_requirements( on_uninstallable_requirement='warn') assert all(isinstance(r, PipRequirement) for r in requirements) names = [r.name for r in requirements] assert 'prefect' not in names assert len(names) == len(set(names)), 'Names should not be repeated' <mask token> def test_current_environment_requirements_top_level_only(): requirements = current_environment_requirements(exclude_nested=True, on_uninstallable_requirement='ignore') all_requirements = current_environment_requirements( on_uninstallable_requirement='ignore') assert {r.name for r in requirements}.issubset({r.name for r in all_requirements}) assert len(requirements) < len(all_requirements) assert all(isinstance(r, PipRequirement) for r in requirements)
<mask token> class TestPipRequirement: def is_packaging_subclass(self): r = PipRequirement('prefect') assert isinstance(r, packaging.requirements.Requirement) def test_can_be_used_in_pydantic_model(self): class MyModel(pydantic.BaseModel): req: PipRequirement inst = MyModel(req='prefect') assert inst.req == PipRequirement('prefect') assert isinstance(inst.req, PipRequirement) def test_equality(self): assert PipRequirement('prefect') == PipRequirement('prefect') assert PipRequirement('prefect') != PipRequirement('prefect>=2') <mask token> def test_current_environment_requirements_warns_about_editable_prefect(): with pytest.warns(UserWarning, match='prefect.*is an editable installation' ): requirements = current_environment_requirements( on_uninstallable_requirement='warn') assert all(isinstance(r, PipRequirement) for r in requirements) names = [r.name for r in requirements] assert 'prefect' not in names assert len(names) == len(set(names)), 'Names should not be repeated' def test_current_environment_requirements_raises_on_editable_prefect(): with pytest.raises(ValueError, match='prefect.*is an editable installation' ): current_environment_requirements(on_uninstallable_requirement='raise') <mask token> def test_current_environment_requirements_top_level_only(): requirements = current_environment_requirements(exclude_nested=True, on_uninstallable_requirement='ignore') all_requirements = current_environment_requirements( on_uninstallable_requirement='ignore') assert {r.name for r in requirements}.issubset({r.name for r in all_requirements}) assert len(requirements) < len(all_requirements) assert all(isinstance(r, PipRequirement) for r in requirements)
<mask token> class TestPipRequirement: def is_packaging_subclass(self): r = PipRequirement('prefect') assert isinstance(r, packaging.requirements.Requirement) def test_can_be_used_in_pydantic_model(self): class MyModel(pydantic.BaseModel): req: PipRequirement inst = MyModel(req='prefect') assert inst.req == PipRequirement('prefect') assert isinstance(inst.req, PipRequirement) def test_equality(self): assert PipRequirement('prefect') == PipRequirement('prefect') assert PipRequirement('prefect') != PipRequirement('prefect>=2') def test_current_environment_requirements(): requirements = current_environment_requirements( on_uninstallable_requirement='ignore') assert all(isinstance(r, PipRequirement) for r in requirements) names = [r.name for r in requirements] assert 'prefect' not in names assert len(names) == len(set(names)), 'Names should not be repeated' def test_current_environment_requirements_warns_about_editable_prefect(): with pytest.warns(UserWarning, match='prefect.*is an editable installation' ): requirements = current_environment_requirements( on_uninstallable_requirement='warn') assert all(isinstance(r, PipRequirement) for r in requirements) names = [r.name for r in requirements] assert 'prefect' not in names assert len(names) == len(set(names)), 'Names should not be repeated' def test_current_environment_requirements_raises_on_editable_prefect(): with pytest.raises(ValueError, match='prefect.*is an editable installation' ): current_environment_requirements(on_uninstallable_requirement='raise') <mask token> def test_current_environment_requirements_top_level_only(): requirements = current_environment_requirements(exclude_nested=True, on_uninstallable_requirement='ignore') all_requirements = current_environment_requirements( on_uninstallable_requirement='ignore') assert {r.name for r in requirements}.issubset({r.name for r in all_requirements}) assert len(requirements) < len(all_requirements) assert all(isinstance(r, PipRequirement) for r in requirements)
import packaging.requirements import pydantic import pytest from prefect.software.pip import PipRequirement, current_environment_requirements class TestPipRequirement: def is_packaging_subclass(self): r = PipRequirement('prefect') assert isinstance(r, packaging.requirements.Requirement) def test_can_be_used_in_pydantic_model(self): class MyModel(pydantic.BaseModel): req: PipRequirement inst = MyModel(req='prefect') assert inst.req == PipRequirement('prefect') assert isinstance(inst.req, PipRequirement) def test_equality(self): assert PipRequirement('prefect') == PipRequirement('prefect') assert PipRequirement('prefect') != PipRequirement('prefect>=2') def test_current_environment_requirements(): requirements = current_environment_requirements( on_uninstallable_requirement='ignore') assert all(isinstance(r, PipRequirement) for r in requirements) names = [r.name for r in requirements] assert 'prefect' not in names assert len(names) == len(set(names)), 'Names should not be repeated' def test_current_environment_requirements_warns_about_editable_prefect(): with pytest.warns(UserWarning, match='prefect.*is an editable installation' ): requirements = current_environment_requirements( on_uninstallable_requirement='warn') assert all(isinstance(r, PipRequirement) for r in requirements) names = [r.name for r in requirements] assert 'prefect' not in names assert len(names) == len(set(names)), 'Names should not be repeated' def test_current_environment_requirements_raises_on_editable_prefect(): with pytest.raises(ValueError, match='prefect.*is an editable installation' ): current_environment_requirements(on_uninstallable_requirement='raise') def test_current_environment_requirements_raises_on_bad_mode(): with pytest.raises(ValueError, match= 'Unknown mode for `on_uninstallable_requirement`'): current_environment_requirements(on_uninstallable_requirement='foo') def test_current_environment_requirements_top_level_only(): requirements = current_environment_requirements(exclude_nested=True, on_uninstallable_requirement='ignore') all_requirements = current_environment_requirements( on_uninstallable_requirement='ignore') assert {r.name for r in requirements}.issubset({r.name for r in all_requirements}) assert len(requirements) < len(all_requirements) assert all(isinstance(r, PipRequirement) for r in requirements)
import packaging.requirements import pydantic import pytest from prefect.software.pip import PipRequirement, current_environment_requirements class TestPipRequirement: def is_packaging_subclass(self): r = PipRequirement("prefect") assert isinstance(r, packaging.requirements.Requirement) def test_can_be_used_in_pydantic_model(self): class MyModel(pydantic.BaseModel): req: PipRequirement inst = MyModel(req="prefect") assert inst.req == PipRequirement("prefect") assert isinstance(inst.req, PipRequirement) def test_equality(self): assert PipRequirement("prefect") == PipRequirement("prefect") assert PipRequirement("prefect") != PipRequirement("prefect>=2") # TODO: Add tests that mock the working set so we can make meaningful assertions def test_current_environment_requirements(): requirements = current_environment_requirements( on_uninstallable_requirement="ignore" ) assert all(isinstance(r, PipRequirement) for r in requirements) names = [r.name for r in requirements] assert "prefect" not in names # Editable install is excluded assert len(names) == len(set(names)), "Names should not be repeated" def test_current_environment_requirements_warns_about_editable_prefect(): with pytest.warns( UserWarning, match=r"prefect.*is an editable installation", ): requirements = current_environment_requirements( on_uninstallable_requirement="warn" ) assert all(isinstance(r, PipRequirement) for r in requirements) names = [r.name for r in requirements] assert "prefect" not in names assert len(names) == len(set(names)), "Names should not be repeated" def test_current_environment_requirements_raises_on_editable_prefect(): with pytest.raises( ValueError, match=r"prefect.*is an editable installation", ): current_environment_requirements(on_uninstallable_requirement="raise") def test_current_environment_requirements_raises_on_bad_mode(): with pytest.raises( ValueError, match=r"Unknown mode for `on_uninstallable_requirement`", ): current_environment_requirements(on_uninstallable_requirement="foo") def test_current_environment_requirements_top_level_only(): requirements = current_environment_requirements( exclude_nested=True, on_uninstallable_requirement="ignore" ) all_requirements = current_environment_requirements( on_uninstallable_requirement="ignore" ) assert {r.name for r in requirements}.issubset({r.name for r in all_requirements}) assert len(requirements) < len(all_requirements) assert all(isinstance(r, PipRequirement) for r in requirements)
[ 6, 7, 8, 10, 11 ]
797
8c318d7152bfdf2bc472258eb87dfa499b743193
<mask token>
def application(env, handle_headers): status = '200' response_headers = [('Server', '')] return ''
# coding:utf-8 def application(env,handle_headers): status="200" response_headers=[ ('Server','') ] return ""
null
null
[ 0, 1, 2 ]
798
6a601d1c7c3c162c0902d03e6c39f8d75d4bcaf0
import numpy as np, argparse, sys, itertools, os, errno, warnings from mpi4py import MPI from enlib import enmap as en, powspec, utils from enlib.degrees_of_freedom import DOF, Arg from enlib.cg import CG warnings.filterwarnings("ignore") #from matplotlib.pylab import * parser = argparse.ArgumentParser() parser.add_argument("freqs") parser.add_argument("maps") parser.add_argument("noise") parser.add_argument("powspec") parser.add_argument("posfile") parser.add_argument("odir") parser.add_argument("-R", "--radius", type=float, default=30) parser.add_argument("--burnin", type=int, default=10) parser.add_argument("-n", "--nsamp", type=int, default=50) parser.add_argument("--dump", type=int, default=0) parser.add_argument("-v", "--verbose", action="store_true") parser.add_argument("-i", type=int, default=0) parser.add_argument("--nmax", type=int, default=0) parser.add_argument("--mindist-group", type=float, default=10) parser.add_argument("-c", "--cont", action="store_true") args = parser.parse_args() comm = MPI.COMM_WORLD myid = comm.rank nproc= comm.size r2c = 180/np.pi r2b = r2c*60*(8*np.log(2))**0.5 def read_maps(fmt, n, ntot=4): try: maps = en.read_map(fmt) if maps.ndim == ntot-1: maps = en.enmap([maps]*n,maps.wcs) if maps.ndim != ntot: raise ValueError("Map %s must have %d dimensions" % (fmt,ntot)) return maps except (IOError, OSError): maps = [en.read_map(fmt % i) for i in range(n)] maps = en.ndmap(maps, maps[0].wcs) if maps.ndim != ntot: maps = maps.reshape(maps.shape[:-2]+(1,)*(maps.ndim-ntot)+maps.shape[-2:]) return maps def flat_noise(shape, wcs, sigmas): res = en.zeros([len(sigmas),shape[-3],shape[-3],shape[-2],shape[-1]], wcs) for i,s in enumerate(sigmas): res[i] = (np.eye(shape[-3])*s**2)[:,:,None,None] return res def read_noise(info, shape, wcs, n): try: nmat = flat_noise(shape, wcs, parse_floats(info)) except ValueError: nmat = read_maps(info, n, 5) if len(nmat) != n: raise ValueError("Number of noise maps (%d) != number of signal maps (%d)!" % (len(nmat), n)) if np.any(nmat.shape[-2:] != shape[-2:]): raise ValueError("Noise and maps have inconsistent shape!") return nmat def parse_floats(strs): return np.array([float(w) for w in strs.split(",")]) def apodize(m, rad, apod_fun): scale = m.extent()/m.shape[-2:] y = np.arange(m.shape[-2])*scale[0] x = np.arange(m.shape[-1])*scale[1] yfun = apod_fun(y, rad)*apod_fun(y[-1]-y, rad) xfun = apod_fun(x, rad)*apod_fun(x[-1]-x, rad) a = yfun[:,None]*xfun[None,:] return m*a def apod_step(x, r): return x>r def apod_butter(x, r): return (1+(x/r)**-4)**-1 def apod_cos(x,r): return (1-np.cos(np.min(1,nx/r)*np.pi))/2 # Read our inputs freqs = parse_floats(args.freqs) maps = read_maps(args.maps, len(freqs)) ncomp = maps.shape[-3] nfreq = maps.shape[-4] noise = read_noise(args.noise, maps.shape, maps.wcs, len(freqs)) ps = powspec.read_spectrum(args.powspec, expand="diag")[:ncomp,:ncomp] poss = np.loadtxt(args.posfile)[:,:2]/r2c R = args.radius/r2c/60 beam_fiducial = 1.5/r2b beam_range = [0.8/r2b,3.0/r2b] beam_max_asym = 2 apod_rad = R/10 # We will cut out small mini-maps around each source candadate and # sample the CMB and source parameters jointly. But some candiates # are so near each other that they aren't independent. These must # be grouped into groups. def build_groups(poss): def dist(a,b): return np.sum((poss[a]-poss[b])**2)**0.5*180*60/np.pi rest = set(range(len(poss))) groups = [] while len(rest) > 0: group = [] tocheck = [rest.pop()] # Find distance to all other points while len(tocheck) > 0: current = tocheck.pop() rnew = set() while rest: other = rest.pop() if dist(current,other) < args.mindist_group: tocheck.append(other) else: rnew.add(other) rest = rnew group.append(current) groups.append(group) return groups groups = build_groups(poss) print "Found %d groups" % len(groups) # We will sample (cmb,A,pos,ibeam) jointly in gibbs fashion: # cmb,A <- P(cmb,A|data,A,pos,ibeam) # direct, but requires cr # pos,ibeam <- P(pos,ibeam|data,cmb,A) # MCMC # To take into account the nonperiodicity of each submap, we must introduce # a region of extra noise around the edge. class CMBSampler: """Draws samples from P(s,a|d,Cl,N,T), where T[ntemp,nfreq,ncomp,ny,nx] is a set of templates. a[ntemp] is the set of template amplitudes.""" def __init__(self, maps, inoise, ps, T=None): self.d = maps self.iN = inoise self.hN = en.multi_pow(inoise, 0.5, axes=[1,2]) self.iS = en.spec2flat(maps.shape[-3:], maps.wcs, ps, -1.0) self.hS = en.spec2flat(maps.shape[-3:], maps.wcs, ps, -0.5) self.ps = ps self.b, self.x = None, None # Prepare the preconditioner. It approximates the noise as the # same in every pixel, and ignores the cmb-template coupling. # See M(self,u) for details. iN_white = np.array(np.sum(np.mean(np.mean(self.iN,-1),-1),0)) # iN_white is now in pixel space, but the preconditioner needs it # in harmonic space, which introduces a #norm = np.prod((maps.box[1]-maps.box[0])/maps.shape[-2:]) #norm = 1./np.prod(maps.shape[-2:]) #iN_white /= norm self.S_prec = en.multi_pow(self.iS + iN_white[:,:,None,None], -1) # The template self.set_template(T) def set_template(self, T): if T is None: T = np.zeros((0,)+self.d.shape) self.T = T self.TT = np.einsum("aijyx,bijyx->ab",self.T,self.T) self.dof = DOF(Arg(default=self.d[0]), Arg(shape=T.shape[:1])) def P(self, u): s, a = self.dof.unzip(u) return s[None,:,:,:] + np.sum(self.T*a[:,None,None,None,None],0) def PT(self, d): return self.dof.zip(np.sum(d,0), np.einsum("qijyx,ijyx->q",self.T, d)) def A(self, u): s, a = self.dof.unzip(u) # U"u = [S"s, 0a] Uu = self.dof.zip(en.harm2map(en.map_mul(self.iS, en.map2harm(s))),a*0) # P'N"P u PNPu = self.PT(en.map_mul(self.iN, self.P(u))) return Uu + PNPu def M(self, u): # Multiplying things out, the full expression for A is: # [ S" + sum(N") sum(N"T) ] # [ sum(T'N") sum(T'T) ] # A reasonable approximation for this is # [ S" + sum(sigma^{-2}) 0 ] # [ 0 sum(T'T) ] # which can be directly inverted. s, a = self.dof.unzip(u) # Solve for the cmb signal component res_s = en.harm2map(en.map_mul(self.S_prec,en.map2harm(s))) res_a = np.linalg.solve(self.TT, a) return self.dof.zip(res_s, res_a) def calc_b(self): PNd = self.PT(en.map_mul(self.iN, self.d)) Uw1_s = en.harm2map(en.map_mul(self.hS, en.rand_gauss_harm(self.d.shape[-3:],self.d.wcs))) Uw1_a = np.zeros(self.T.shape[0]) Uw1 = self.dof.zip(Uw1_s, Uw1_a) PNw2 = self.PT(en.map_mul(self.hN, en.rand_gauss(self.d.shape, self.d.wcs))) return PNd + Uw1 + PNw2 def solve(self, b, x0, verbose=False): cg = CG(self.A, b, x0=x0*0, M=self.M) while cg.err > 1e-6: cg.step() if verbose: print "%5d %15.7e %15.7e" % (cg.i, cg.err, cg.err_true) #, self.dof.unzip(cg.x)[1] #if cg.i % 10 == 0: # s, a = self.dof.unzip(cg.x) # matshow(s[0]); colorbar(); show() return cg.x def sample(self, verbose=False): self.b = self.calc_b() if self.x is None: self.x = self.dof.zip(self.d[0], np.zeros(self.T.shape[0])) self.x = self.solve(self.b, self.x, verbose) return self.dof.unzip(self.x) class PtsrcModel: """This class converts from point source shape parameters to amplitude basis functions.""" def __init__(self, template): self.pos = template.posmap() self.nfreq, self.ncomp = template.shape[:2] self.nparam = self.nfreq*self.ncomp def get_templates(self, pos, irads): x = utils.rewind(self.pos - pos[:,None,None],0,2*np.pi) W = np.array([[irads[0],irads[2]],[irads[2],irads[1]]]) xWx = np.sum(np.einsum("ab,byx->ayx", W, x)*x,0) profile = np.exp(-0.5*xWx) bases = np.eye(self.nfreq*self.ncomp).reshape(self.nfreq*self.ncomp,self.nfreq,self.ncomp) return profile[None,None,None]*bases[:,:,:,None,None] def get_model(self, amps, pos, irads): return np.sum((self.get_templates(pos, irads).T*amps.T).T,0) class ShapeSampler: def __init__(self, maps, inoise, model, amps, pos, pos0, irads, nsamp=200, stepsize=0.02, maxdist=1.5*np.pi/180/60): self.maps = maps self.inoise = inoise self.model= model self.nsamp= nsamp self.stepsize = stepsize self.amps = amps self.pos, self.irads = pos, irads self.pos0 = pos0 self.maxdist=maxdist self.lik = self.getlik(self.amps, self.pos, self.irads) def getlik(self, amps, pos, irads): if irads[0] < 0 or irads[1] < 0: return np.inf if irads[0]*irads[1]-irads[2]**2 <= 0: return np.inf sigma, phi = expand_beam(irads) # The beam has a tendency to run off in unrealistic directions, # so we need a relatively strong prior on it. if np.min(sigma) < beam_range[0] or np.max(sigma) > beam_range[1] or np.max(sigma)/np.min(sigma) > beam_max_asym: return np.inf template = self.model.get_model(amps, pos, irads) residual = self.maps-template tmp = np.einsum("fabyx,abyx->fayx",self.inoise, residual) deviation = np.sum((pos-self.pos0)**2)**0.5/self.maxdist penalty = 1+max(deviation-1,0)**2 return 0.5*np.sum(tmp*residual)*penalty def newpos(self, pos): # Draw pos with gaussian prior centered on previous position # With a width given by the fiducial beam size. step = self.stepsize if np.random.uniform() < 0.1: step*100 # Sometimes try larger steps to break out of ruts return pos + np.random.standard_normal(2) * beam_fiducial * self.stepsize def newshape(self, irads): return irads + np.random.standard_normal(3) * 1.0/beam_fiducial**2 * self.stepsize * 0.5 def newamp(self, amps): return amps + np.random.standard_normal(len(amps)) * 1000 * self.stepsize def subsample(self, verbose=False): pos = self.newpos(self.pos) lik = self.getlik(self.amps, pos, self.irads) if np.random.uniform() < np.exp(self.lik-lik): self.pos, self.lik = pos, lik irads = self.newshape(self.irads) lik = self.getlik(self.amps, self.pos, irads) if np.random.uniform() < np.exp(self.lik-lik): self.irads, self.lik = irads, lik amps = self.newamp(self.amps) lik = self.getlik(amps, self.pos, self.irads) if np.random.uniform() < np.exp(self.lik-lik): self.amps, self.lik = amps, lik if verbose: sigma, phi = expand_beam(self.irads) print (" %9.2f"*len(self.amps)+" %10.5f %10.5f %8.3f %8.3f %8.3f") % (tuple(self.amps)+tuple(self.pos*r2c)+tuple(sigma*r2b)+(phi*r2c,)) return self.amps, self.pos, self.irads def sample(self, verbose=False): """Draw a new, uncorrelated sample.""" for i in range(self.nsamp): self.subsample(verbose) return self.amps, self.pos, self.irads class ShapeSamplerMulti: def __init__(self, maps, inoise, model, amps, pos, pos0, irads, nsamp=1500, stepsize=0.02, maxdist=1.5*np.pi/180/60): self.samplers = [ShapeSampler(maps, inoise, model, amp1, pos1, pos01, irads1, nsamp=1, stepsize=stepsize, maxdist=maxdist) for amp1, pos1, pos01, irads1 in zip(amps, pos, pos0, irads)] self.nsamp = nsamp def sample(self, verbose=False): for i in range(self.nsamp): for sampler in self.samplers: sampler.sample(verbose) amps = np.array([s.amps for s in self.samplers]) pos = np.array([s.pos for s in self.samplers]) irads= np.array([s.irads for s in self.samplers]) return amps, pos, irads class GibbsSampler: def __init__(self, maps, inoise, ps, pos0, amp0, irads0, cmb0): self.maps = maps self.inoise = inoise self.ps = ps self.src_model = PtsrcModel(maps) self.pos, self.amp, self.irads, self.cmb = pos0, amp0, irads0, cmb0 self.pos0 = pos0 self.cmb_sampler = CMBSampler(maps, inoise, ps) def sample(self, verbose=False): # First draw cmb,amp <- P(cmb,amp|data,pos,irads) src_template = self.src_model.get_templates(self.pos, self.irads) self.cmb_sampler.set_template(src_template) self.cmb, self.amp = self.cmb_sampler.sample(verbose) # Then draw pos,irads <- P(pos,irads|data,cmb,amp) maps_nocmb = self.maps - self.cmb[None,:,:,:] shape_sampler = ShapeSampler(maps_nocmb, self.inoise, self.src_model, self.amp, self.pos, self.pos0, self.irads) self.amp, self.pos, self.irads = shape_sampler.sample(verbose) return self.pos, self.amp, self.irads, self.cmb class GibbsSamplerMulti: """Like GibbsSampler, but samples multiple points jointly. This means that the source amplitude parameters will be arrays.""" def __init__(self, maps, inoise, ps, pos0, amp0, irads0, cmb0): self.maps = maps self.inoise = inoise self.ps = ps self.src_model = PtsrcModel(maps) self.pos, self.amp, self.irads, self.cmb = pos0, amp0, irads0, cmb0 self.pos0 = pos0 self.cmb_sampler = CMBSampler(maps, inoise, ps) def sample(self, verbose=False): # First draw cmb,amp <- P(cmb,amp|data,pos,irads) src_template = np.concatenate([self.src_model.get_templates(pos, irads) for pos,irads in zip(self.pos, self.irads)]) self.cmb_sampler.set_template(src_template) self.cmb, self.amp = self.cmb_sampler.sample(verbose) # Separate amps for each source self.amp = self.amp.reshape(self.pos.shape[0],-1) # Then draw pos,irads <- P(pos,irads|data,cmb,amp) maps_nocmb = self.maps - self.cmb[None,:,:,:] shape_sampler = ShapeSamplerMulti(maps_nocmb, self.inoise, self.src_model, self.amp, self.pos, self.pos0, self.irads) self.amp, self.pos, self.irads = shape_sampler.sample(verbose) return self.pos, self.amp, self.irads, self.cmb def expand_beam(irads): C = np.array([[irads[0],irads[2]],[irads[2],irads[1]]]) E, V = np.linalg.eigh(C) phi = np.arctan2(V[1,0],V[0,0]) sigma = E**-0.5 if sigma[1] > sigma[0]: sigma = sigma[::-1] phi += np.pi/2 phi %= np.pi return sigma, phi def smooth_gauss(m, sigma): l = np.sum(m.lmap()**2,0)**0.5 return np.real(en.ifft(en.fft(m)*np.exp(-0.5*(l*sigma)**2))) def get_startpoint(maps, inoise, ps, rad=5): # Filter away the CMB sampler = CMBSampler(maps, inoise, ps, maps[None][:0]) cmb, _ = sampler.sample() residual = maps - cmb[None] # Smooth based on fiducial beam residual = smooth_gauss(residual, beam_fiducial) # Extract best point near center cpix = np.array(residual.shape[-2:])/2 center = np.sum(np.sum((residual[:,:,cpix[0]-rad:cpix[0]+rad,cpix[1]-rad:cpix[1]+rad])**2,0),0) I = np.argmax(center) ipix = np.unravel_index(I, center.shape) pos = center.posmap()[:,ipix[0],ipix[1]] return pos def B(T,nu): c = 299792458.0 h = 6.62606957e-34 k = 1.3806488e-23 return 2*h*nu**3/c**2/(np.exp(h*nu/k/T)-1) def uK2mJ(amp,b1,b2): T0 = 2.73; nu=148e9 dB = B(T0+amp*1e-6,nu)-B(T0,nu) return dB*2*np.pi*b1*b2/1e-29 def output_dummy(id): with open(args.odir+"/samps%03d.txt" % id, "w") as ofile: pass utils.mkdir(args.odir) if args.nmax > 0: groups = groups[:args.nmax] for i in range(myid, len(groups), nproc): if i < args.i: continue group = groups[i] if args.cont: # If all our members are done, skip to next group try: lens = [len(np.loadtxt(args.odir + "/samps%03d.txt" % j)) for j in group] if np.min(lens) >= args.nsamp: continue except (IOError, OSError): pass print "%5d/%d %3d:" % (i+1, len(groups), myid), print (" %3d"*len(group)) % tuple(group) pos0 = np.array([poss[j] for j in group]) # Cut out a relevant region box = np.array([np.min(pos0,0)-R,np.max(pos0,0)+R]) submap = maps.submap(box) if submap.size == 0: for g in group: output_dummy(g) continue subnoise = apodize(noise.submap(box), apod_rad, apod_step) # Set up initial values for the sampler irads = np.tile(np.array([1/beam_fiducial**2,1/beam_fiducial**2,0]),(len(group),1)) amp = np.zeros([len(group),ncomp*nfreq]) cmb = submap[0] sampler = GibbsSamplerMulti(submap, subnoise, ps, pos0, amp, irads, cmb) # Open ofiles ofiles = [open(args.odir + "/samps%03d.txt" % j, "w") for j in group] for j in xrange(-args.burnin, args.nsamp): pos, amp, irad, cmb = sampler.sample(args.verbose) if j >= 0: for mypos, myamp, myirad, ofile, isrc in zip(pos, amp, irad, ofiles,group): sigma, phi = expand_beam(myirad) mJ = uK2mJ(myamp,sigma[0],sigma[1]) print >> ofile, (" %10.5f"*2 + " %6.1f"*len(myamp) + "%8.3f %8.3f %8.3f" + " %6.2f"*len(mJ)) % (tuple(mypos*r2c)+tuple(myamp)+tuple(sigma*r2b)+(phi*r2c,)+tuple(mJ)) ofile.flush() if args.dump > 0 and j % args.dump == 0: dumpdir = args.odir + "/dump%03d" % isrc utils.mkdir(dumpdir) src = sampler.src_model.get_model(myamp, mypos, myirad) residual = submap - src - cmb[None] # Cut out our area mybox = np.array([poss[isrc]-R,poss[isrc]+R]) mycmb, myres, mymod, mysub = [a.submap(mybox) for a in [cmb,residual,src,submap]] en.write_map(dumpdir + "/cmb%03d.hdf" % j, mycmb) en.write_map(dumpdir + "/residual%03d.hdf" % j, myres) en.write_map(dumpdir + "/model%03d.hdf" % j, mymod) en.write_map(dumpdir + "/submap.hdf", mysub)
null
null
null
null
[ 0 ]
799
af35075eaca9bba3d6bdb73353eaf944869cdede
<mask token> def delete_pdp(pdp_id): from moon_manager.db_driver import PDPManager PDPManager.delete_pdp('', pdp_id) <mask token>
<mask token> def delete_pdp(pdp_id): from moon_manager.db_driver import PDPManager PDPManager.delete_pdp('', pdp_id) def add_pdp(pdp_id=None, value=None): from moon_manager.db_driver import PDPManager return PDPManager.add_pdp('', pdp_id, value) <mask token>
<mask token> def delete_pdp(pdp_id): from moon_manager.db_driver import PDPManager PDPManager.delete_pdp('', pdp_id) def add_pdp(pdp_id=None, value=None): from moon_manager.db_driver import PDPManager return PDPManager.add_pdp('', pdp_id, value) def get_pdp(pdp_id=None): from moon_manager.db_driver import PDPManager return PDPManager.get_pdp('', pdp_id)
def update_pdp(pdp_id, value): from moon_manager.db_driver import PDPManager return PDPManager.update_pdp('', pdp_id, value) def delete_pdp(pdp_id): from moon_manager.db_driver import PDPManager PDPManager.delete_pdp('', pdp_id) def add_pdp(pdp_id=None, value=None): from moon_manager.db_driver import PDPManager return PDPManager.add_pdp('', pdp_id, value) def get_pdp(pdp_id=None): from moon_manager.db_driver import PDPManager return PDPManager.get_pdp('', pdp_id)
# Software Name: MOON # Version: 5.4 # SPDX-FileCopyrightText: Copyright (c) 2018-2020 Orange and its contributors # SPDX-License-Identifier: Apache-2.0 # This software is distributed under the 'Apache License 2.0', # the text of which is available at 'http://www.apache.org/licenses/LICENSE-2.0.txt' # or see the "LICENSE" file for more details. def update_pdp(pdp_id, value): from moon_manager.db_driver import PDPManager return PDPManager.update_pdp("", pdp_id, value) def delete_pdp(pdp_id): from moon_manager.db_driver import PDPManager PDPManager.delete_pdp("", pdp_id) def add_pdp(pdp_id=None, value=None): from moon_manager.db_driver import PDPManager return PDPManager.add_pdp("", pdp_id, value) def get_pdp(pdp_id=None): from moon_manager.db_driver import PDPManager return PDPManager.get_pdp("", pdp_id)
[ 1, 2, 3, 4, 5 ]