index
int64
0
10k
blob_id
stringlengths
40
40
step-1
stringlengths
13
984k
step-2
stringlengths
6
1.23M
step-3
stringlengths
15
1.34M
step-4
stringlengths
30
1.34M
step-5
stringlengths
64
1.2M
step-ids
sequencelengths
1
5
1,300
753bdbf080e7a8652c39e40beeae51f74382d606
<mask token>
<mask token> def test_detector(): detector = Detector(n_jobs=1) assert detector['n_jobs'] == 1 assert type(detector) == Detector inputFname = os.path.join(get_test_data_path(), 'input.jpg') out = detector.detect_image(inputFname=inputFname) assert type(out) == Fex assert len(out) == 1 assert out.happiness.values[0] > 0 outputFname = os.path.join(get_test_data_path(), 'output.csv') out = detector.detect_image(inputFname=inputFname, outputFname=outputFname) assert out assert os.path.exists(outputFname) out = pd.read_csv(outputFname) assert out.happiness.values[0] > 0 inputFname = os.path.join(get_test_data_path(), 'input.mp4') out = detector.detect_video(inputFname=inputFname) assert len(out) == 72 outputFname = os.path.join(get_test_data_path(), 'output.csv') out = detector.detect_video(inputFname=inputFname, outputFname=outputFname) assert out assert os.path.exists(outputFname) out = pd.read_csv(outputFname) assert out.happiness.values.max() > 0
<mask token> from feat.detector import Detector from feat.data import Fex from feat.utils import get_resource_path from .utils import get_test_data_path import pandas as pd import feat import os import wget def test_detector(): detector = Detector(n_jobs=1) assert detector['n_jobs'] == 1 assert type(detector) == Detector inputFname = os.path.join(get_test_data_path(), 'input.jpg') out = detector.detect_image(inputFname=inputFname) assert type(out) == Fex assert len(out) == 1 assert out.happiness.values[0] > 0 outputFname = os.path.join(get_test_data_path(), 'output.csv') out = detector.detect_image(inputFname=inputFname, outputFname=outputFname) assert out assert os.path.exists(outputFname) out = pd.read_csv(outputFname) assert out.happiness.values[0] > 0 inputFname = os.path.join(get_test_data_path(), 'input.mp4') out = detector.detect_video(inputFname=inputFname) assert len(out) == 72 outputFname = os.path.join(get_test_data_path(), 'output.csv') out = detector.detect_video(inputFname=inputFname, outputFname=outputFname) assert out assert os.path.exists(outputFname) out = pd.read_csv(outputFname) assert out.happiness.values.max() > 0
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for `feat` package.""" from feat.detector import Detector from feat.data import Fex from feat.utils import get_resource_path from .utils import get_test_data_path import pandas as pd import feat import os import wget # def test_models(): # print("Downloading FEX emotion model.") # fex_emotion_model = "https://github.com/cosanlab/feat/releases/download/v0.1/fer_aug_model.h5" # wget.download(fex_emotion_model, get_resource_path()) # if os.path.exists(os.path.join(get_resource_path(), "fer_aug_model.h5")): # print("\nFEX emotion model downloaded successfully.\n") # else: # print("Something went wrong. Model not found in directory.") # print("Downloading landmark detection model.") # lbfmodel = "https://github.com/cosanlab/feat/releases/download/v0.1/lbfmodel.yaml" # wget.download(lbfmodel, get_resource_path()) # if os.path.exists(os.path.join(get_resource_path(), "lbfmodel.yaml")): # print("\nLandmark detection model downloaded successfully.\n") # else: # print("Something went wrong. Model not found in directory.") # emotion_model = "fer_aug_model.h5" # emotion_model_path = os.path.join(get_resource_path(), emotion_model) # print("PATH TO EMOTION MODEL",emotion_model_path) # assert os.path.exists(emotion_model_path)==True # landmark_model = "lbfmodel.yaml" # landmark_model_path = os.path.join(get_resource_path(), landmark_model) # assert os.path.exists(landmark_model_path)==True def test_detector(): detector = Detector(n_jobs=1) assert detector['n_jobs']==1 assert type(detector)==Detector # Test detect image inputFname = os.path.join(get_test_data_path(), "input.jpg") out = detector.detect_image(inputFname = inputFname) assert type(out) == Fex assert len(out) == 1 assert out.happiness.values[0] > 0 outputFname = os.path.join(get_test_data_path(), "output.csv") out = detector.detect_image(inputFname=inputFname, outputFname=outputFname) assert out assert os.path.exists(outputFname) out = pd.read_csv(outputFname) assert out.happiness.values[0] > 0 # Test detect video inputFname = os.path.join(get_test_data_path(), "input.mp4") out = detector.detect_video(inputFname=inputFname) assert len(out)==72 outputFname = os.path.join(get_test_data_path(), "output.csv") out = detector.detect_video(inputFname=inputFname, outputFname=outputFname) assert out assert os.path.exists(outputFname) out = pd.read_csv(outputFname) assert out.happiness.values.max() > 0
null
[ 0, 1, 2, 3 ]
1,301
1e24952006afebb7bf10a83077fc4effd5cc9c58
<mask token>
print('Different Code!!!')
#Sample Python Code print("Different Code!!!") #print("Hello World!")
null
null
[ 0, 1, 2 ]
1,302
fc26574ac8628d7e2896e3e6d055ac61264c7db0
<mask token>
<mask token> FIGURES_DIR.mkdir(exist_ok=True, parents=True)
<mask token> script_name = pathlib.Path(sys.argv[0]).stem FIGURES_DIR = pathlib.Path(__file__).parents[2 ] / 'figures' / 'simulations' / script_name FIGURES_DIR.mkdir(exist_ok=True, parents=True)
import sys import pathlib from matplotlib import pyplot as plt import matplotlib as mpl script_name = pathlib.Path(sys.argv[0]).stem FIGURES_DIR = pathlib.Path(__file__).parents[2 ] / 'figures' / 'simulations' / script_name FIGURES_DIR.mkdir(exist_ok=True, parents=True)
import sys import pathlib from matplotlib import pyplot as plt import matplotlib as mpl script_name = pathlib.Path(sys.argv[0]).stem FIGURES_DIR = pathlib.Path( __file__).parents[2] / "figures" / "simulations" / script_name FIGURES_DIR.mkdir(exist_ok=True, parents=True) # mpl.rc("text", usetex=True) # mpl.rc("font", family="serif") # mpl.rc( # "text.latex", # preamble=r"\usepackage{mathpazo} \usepackage{eulervm} \usepackage{amssymb}" # r"\usepackage{amsmath} \usepackage{bm} \usepackage{DejaVuSans}", # )
[ 0, 1, 2, 3, 4 ]
1,303
8ddb7abb480ea8ee674c59719c0946f133ef0a4b
<mask token> class addItemThread(QThread): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> class Example(QWidget): def __init__(self): super(Example, self).__init__() mthread = addItemThread() mthread.update_qvix.connect(self.update_qvix) mthread.update_north.connect(self.update_north) mthread.update_vol.connect(self.update_volume) mthread.update_month.connect(self.update_month) mthread.update_iv.connect(self.update_iv) mthread.update_greek.connect(self.update_greek) mthread.start() self.initUI() def initUI(self): self.setGeometry(400, 400, 1200, 620) self.setWindowTitle('不被仓位左右思想,没找到弱点不要重仓') self.gridLayout = QGridLayout(self) self.plot() """ buttom """ self.label_greek = QLabel('label_greek') self.label_greek.setStyleSheet('background-color:rgb(250,250,250)') self.gridLayout.addWidget(self.label_greek, 2, 0, 1, 3) """ right """ def plot(self): pg.setConfigOption('background', 'w') pg.setConfigOption('foreground', 'k') pw_iv50 = pg.PlotWidget(title='50-IV') self.plt_iv50_1 = pw_iv50.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=12, symbolBrush=(0, 255, 0)) self.plt_iv50_2 = pw_iv50.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=12, symbolBrush=(0, 255, 0)) self.plt_iv50_3 = pw_iv50.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=10, symbolBrush=(0, 170, 0)) self.plt_iv50_4 = pw_iv50.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=10, symbolBrush=(0, 170, 0)) self.plt_iv50_5 = pw_iv50.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=8, symbolBrush=(0, 85, 0)) self.plt_iv50_6 = pw_iv50.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=8, symbolBrush=(0, 85, 0)) self.plt_iv50_7 = pw_iv50.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=6, symbolBrush=(0, 0, 0)) self.plt_iv50_8 = pw_iv50.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=6, symbolBrush=(0, 0, 0)) self.gridLayout.addWidget(pw_iv50, 0, 0) plt300 = pg.PlotWidget(title='300-IV') self.plt_iv300_1 = plt300.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=12, symbolBrush=(0, 255, 0)) self.plt_iv300_2 = plt300.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=12, symbolBrush=(0, 255, 0)) self.plt_iv300_3 = plt300.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=10, symbolBrush=(0, 170, 0)) self.plt_iv300_4 = plt300.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=10, symbolBrush=(0, 170, 0)) self.plt_iv300_5 = plt300.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=8, symbolBrush=(0, 85, 0)) self.plt_iv300_6 = plt300.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=8, symbolBrush=(0, 85, 0)) self.plt_iv300_7 = plt300.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=6, symbolBrush=(0, 0, 0)) self.plt_iv300_8 = plt300.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=6, symbolBrush=(0, 0, 0)) self.gridLayout.addWidget(plt300, 0, 1) pw_month = pg.PlotWidget(title='MONTH-50-300-MONTH') pw_month.showGrid(x=False, y=True) pw_month.addLegend(offset=(30, 100)) self.plt_month50 = pw_month.plot(name='50') self.plt_month300 = pw_month.plot(name='300') self.gridLayout.addWidget(pw_month, 0, 2) pw_qvix = pg.PlotWidget(title='QVIX') pw_qvix.showGrid(x=True, y=True) pw_qvix.addLegend() self.plt_qvix = pw_qvix.plot(pen=pg.mkPen('d', width=4), name='iv') self.gridLayout.addWidget(pw_qvix, 1, 0) pw_north = pg.PlotWidget(title='NORTH') pw_north.showGrid(x=False, y=True) pw_north.addLegend() self.plt_north_hgt = pw_north.plot(pen=pg.mkPen('b', width=2), name ='hgt') self.plt_north_sgt = pw_north.plot(pen=pg.mkPen('g', width=1), name ='sgt') self.plt_north_all = pw_north.plot(pen=pg.mkPen('d', width=1), name ='all') self.gridLayout.addWidget(pw_north, 1, 1) pw_volume = pg.PlotWidget(title='VOLUME') pw_volume.showGrid(x=False, y=True) self.plt_volume = pw_volume.plot(name='volume') self.stock_50 = pw_volume.plot(name='stock_50') self.gridLayout.addWidget(pw_volume, 1, 2) def update_qvix(self, df): df = df.drop(['Pre', 'max', 'min'], axis=1) self.plt_qvix.setData(df.index.values, df['QVIX']) def update_north(self, df): self.plt_north_hgt.setData(df['hgt'].astype(float) / 10000) self.plt_north_sgt.setData(df['sgt'].astype(float) / 10000) self.plt_north_all.setData(df['all'].astype(float) / 10000) def update_volume(self, data, ser): self.plt_volume.setPen(pg.mkPen('b', width=3)) self.plt_volume.setData(data.values) self.stock_50.setData(ser) def update_month(self, data): data.columns = ['data', '50iv', 'data2', '300iv'] self.plt_month50.setData(data['50iv']) self.plt_month50.setPen(pg.mkPen('r', width=2)) self.plt_month300.setData(data['300iv']) self.plt_month300.setPen(pg.mkPen('b', width=1)) def update_iv(self, data50, data300): data50.sort_index(inplace=True) data50 = data50.astype(float) data50[data50 < 1] = np.nan self.plt_iv50_1.setData(data50.iloc[:, 0]) self.plt_iv50_2.setData(data50.iloc[:, 5]) self.plt_iv50_3.setData(data50.iloc[:, 1]) self.plt_iv50_4.setData(data50.iloc[:, 6]) self.plt_iv50_5.setData(data50.iloc[:, 2]) self.plt_iv50_6.setData(data50.iloc[:, 7]) self.plt_iv50_7.setData(data50.iloc[:, 3]) self.plt_iv50_8.setData(data50.iloc[:, 8]) data300.sort_index(inplace=True) data300 = data300.astype(float) data300[data300 < 1] = np.nan self.plt_iv300_1.setData(data300.iloc[:, 0]) self.plt_iv300_2.setData(data300.iloc[:, 5]) self.plt_iv300_3.setData(data300.iloc[:, 1]) self.plt_iv300_4.setData(data300.iloc[:, 6]) self.plt_iv300_5.setData(data300.iloc[:, 2]) self.plt_iv300_6.setData(data300.iloc[:, 7]) self.plt_iv300_7.setData(data300.iloc[:, 3]) self.plt_iv300_8.setData(data300.iloc[:, 8]) def update_greek(self, gk): text = 'DELTA:{}GAMMA:{}VEGA:{}THETA:{}'.format(gk[0], gk[1], gk[2], gk[3]) self.label_greek.setText(text) <mask token>
<mask token> class addItemThread(QThread): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> def __init__(self, *args, **kwargs): super(addItemThread, self).__init__(*args, **kwargs) self.data_model = DataModel() self.num = 0 <mask token> class Example(QWidget): def __init__(self): super(Example, self).__init__() mthread = addItemThread() mthread.update_qvix.connect(self.update_qvix) mthread.update_north.connect(self.update_north) mthread.update_vol.connect(self.update_volume) mthread.update_month.connect(self.update_month) mthread.update_iv.connect(self.update_iv) mthread.update_greek.connect(self.update_greek) mthread.start() self.initUI() def initUI(self): self.setGeometry(400, 400, 1200, 620) self.setWindowTitle('不被仓位左右思想,没找到弱点不要重仓') self.gridLayout = QGridLayout(self) self.plot() """ buttom """ self.label_greek = QLabel('label_greek') self.label_greek.setStyleSheet('background-color:rgb(250,250,250)') self.gridLayout.addWidget(self.label_greek, 2, 0, 1, 3) """ right """ def plot(self): pg.setConfigOption('background', 'w') pg.setConfigOption('foreground', 'k') pw_iv50 = pg.PlotWidget(title='50-IV') self.plt_iv50_1 = pw_iv50.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=12, symbolBrush=(0, 255, 0)) self.plt_iv50_2 = pw_iv50.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=12, symbolBrush=(0, 255, 0)) self.plt_iv50_3 = pw_iv50.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=10, symbolBrush=(0, 170, 0)) self.plt_iv50_4 = pw_iv50.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=10, symbolBrush=(0, 170, 0)) self.plt_iv50_5 = pw_iv50.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=8, symbolBrush=(0, 85, 0)) self.plt_iv50_6 = pw_iv50.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=8, symbolBrush=(0, 85, 0)) self.plt_iv50_7 = pw_iv50.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=6, symbolBrush=(0, 0, 0)) self.plt_iv50_8 = pw_iv50.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=6, symbolBrush=(0, 0, 0)) self.gridLayout.addWidget(pw_iv50, 0, 0) plt300 = pg.PlotWidget(title='300-IV') self.plt_iv300_1 = plt300.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=12, symbolBrush=(0, 255, 0)) self.plt_iv300_2 = plt300.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=12, symbolBrush=(0, 255, 0)) self.plt_iv300_3 = plt300.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=10, symbolBrush=(0, 170, 0)) self.plt_iv300_4 = plt300.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=10, symbolBrush=(0, 170, 0)) self.plt_iv300_5 = plt300.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=8, symbolBrush=(0, 85, 0)) self.plt_iv300_6 = plt300.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=8, symbolBrush=(0, 85, 0)) self.plt_iv300_7 = plt300.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=6, symbolBrush=(0, 0, 0)) self.plt_iv300_8 = plt300.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=6, symbolBrush=(0, 0, 0)) self.gridLayout.addWidget(plt300, 0, 1) pw_month = pg.PlotWidget(title='MONTH-50-300-MONTH') pw_month.showGrid(x=False, y=True) pw_month.addLegend(offset=(30, 100)) self.plt_month50 = pw_month.plot(name='50') self.plt_month300 = pw_month.plot(name='300') self.gridLayout.addWidget(pw_month, 0, 2) pw_qvix = pg.PlotWidget(title='QVIX') pw_qvix.showGrid(x=True, y=True) pw_qvix.addLegend() self.plt_qvix = pw_qvix.plot(pen=pg.mkPen('d', width=4), name='iv') self.gridLayout.addWidget(pw_qvix, 1, 0) pw_north = pg.PlotWidget(title='NORTH') pw_north.showGrid(x=False, y=True) pw_north.addLegend() self.plt_north_hgt = pw_north.plot(pen=pg.mkPen('b', width=2), name ='hgt') self.plt_north_sgt = pw_north.plot(pen=pg.mkPen('g', width=1), name ='sgt') self.plt_north_all = pw_north.plot(pen=pg.mkPen('d', width=1), name ='all') self.gridLayout.addWidget(pw_north, 1, 1) pw_volume = pg.PlotWidget(title='VOLUME') pw_volume.showGrid(x=False, y=True) self.plt_volume = pw_volume.plot(name='volume') self.stock_50 = pw_volume.plot(name='stock_50') self.gridLayout.addWidget(pw_volume, 1, 2) def update_qvix(self, df): df = df.drop(['Pre', 'max', 'min'], axis=1) self.plt_qvix.setData(df.index.values, df['QVIX']) def update_north(self, df): self.plt_north_hgt.setData(df['hgt'].astype(float) / 10000) self.plt_north_sgt.setData(df['sgt'].astype(float) / 10000) self.plt_north_all.setData(df['all'].astype(float) / 10000) def update_volume(self, data, ser): self.plt_volume.setPen(pg.mkPen('b', width=3)) self.plt_volume.setData(data.values) self.stock_50.setData(ser) def update_month(self, data): data.columns = ['data', '50iv', 'data2', '300iv'] self.plt_month50.setData(data['50iv']) self.plt_month50.setPen(pg.mkPen('r', width=2)) self.plt_month300.setData(data['300iv']) self.plt_month300.setPen(pg.mkPen('b', width=1)) def update_iv(self, data50, data300): data50.sort_index(inplace=True) data50 = data50.astype(float) data50[data50 < 1] = np.nan self.plt_iv50_1.setData(data50.iloc[:, 0]) self.plt_iv50_2.setData(data50.iloc[:, 5]) self.plt_iv50_3.setData(data50.iloc[:, 1]) self.plt_iv50_4.setData(data50.iloc[:, 6]) self.plt_iv50_5.setData(data50.iloc[:, 2]) self.plt_iv50_6.setData(data50.iloc[:, 7]) self.plt_iv50_7.setData(data50.iloc[:, 3]) self.plt_iv50_8.setData(data50.iloc[:, 8]) data300.sort_index(inplace=True) data300 = data300.astype(float) data300[data300 < 1] = np.nan self.plt_iv300_1.setData(data300.iloc[:, 0]) self.plt_iv300_2.setData(data300.iloc[:, 5]) self.plt_iv300_3.setData(data300.iloc[:, 1]) self.plt_iv300_4.setData(data300.iloc[:, 6]) self.plt_iv300_5.setData(data300.iloc[:, 2]) self.plt_iv300_6.setData(data300.iloc[:, 7]) self.plt_iv300_7.setData(data300.iloc[:, 3]) self.plt_iv300_8.setData(data300.iloc[:, 8]) def update_greek(self, gk): text = 'DELTA:{}GAMMA:{}VEGA:{}THETA:{}'.format(gk[0], gk[1], gk[2], gk[3]) self.label_greek.setText(text) <mask token>
<mask token> class addItemThread(QThread): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> def __init__(self, *args, **kwargs): super(addItemThread, self).__init__(*args, **kwargs) self.data_model = DataModel() self.num = 0 def run(self, *args, **kwargs): while True: df = LoadNet().get_QVIX() self.update_qvix.emit(df) df_north = LoadNet().get_north() self.update_north.emit(df_north) df_vol, cha = Volume().update() data, last = LoadNet().get_50_163() ser = (data['current'] - last) / last self.update_vol.emit(df_vol, ser) if not self.data_model.df_op.empty: df_month = self.data_model.iv_month_50300() self.update_month.emit(df_month) df_iv50, df_iv300 = self.data_model.get_iv() self.update_iv.emit(df_iv50, df_iv300) hp = HoldPositions() greek = hp.update(self.data_model.df_op) self.update_greek.emit(greek) time.sleep(3) class Example(QWidget): def __init__(self): super(Example, self).__init__() mthread = addItemThread() mthread.update_qvix.connect(self.update_qvix) mthread.update_north.connect(self.update_north) mthread.update_vol.connect(self.update_volume) mthread.update_month.connect(self.update_month) mthread.update_iv.connect(self.update_iv) mthread.update_greek.connect(self.update_greek) mthread.start() self.initUI() def initUI(self): self.setGeometry(400, 400, 1200, 620) self.setWindowTitle('不被仓位左右思想,没找到弱点不要重仓') self.gridLayout = QGridLayout(self) self.plot() """ buttom """ self.label_greek = QLabel('label_greek') self.label_greek.setStyleSheet('background-color:rgb(250,250,250)') self.gridLayout.addWidget(self.label_greek, 2, 0, 1, 3) """ right """ def plot(self): pg.setConfigOption('background', 'w') pg.setConfigOption('foreground', 'k') pw_iv50 = pg.PlotWidget(title='50-IV') self.plt_iv50_1 = pw_iv50.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=12, symbolBrush=(0, 255, 0)) self.plt_iv50_2 = pw_iv50.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=12, symbolBrush=(0, 255, 0)) self.plt_iv50_3 = pw_iv50.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=10, symbolBrush=(0, 170, 0)) self.plt_iv50_4 = pw_iv50.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=10, symbolBrush=(0, 170, 0)) self.plt_iv50_5 = pw_iv50.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=8, symbolBrush=(0, 85, 0)) self.plt_iv50_6 = pw_iv50.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=8, symbolBrush=(0, 85, 0)) self.plt_iv50_7 = pw_iv50.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=6, symbolBrush=(0, 0, 0)) self.plt_iv50_8 = pw_iv50.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=6, symbolBrush=(0, 0, 0)) self.gridLayout.addWidget(pw_iv50, 0, 0) plt300 = pg.PlotWidget(title='300-IV') self.plt_iv300_1 = plt300.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=12, symbolBrush=(0, 255, 0)) self.plt_iv300_2 = plt300.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=12, symbolBrush=(0, 255, 0)) self.plt_iv300_3 = plt300.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=10, symbolBrush=(0, 170, 0)) self.plt_iv300_4 = plt300.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=10, symbolBrush=(0, 170, 0)) self.plt_iv300_5 = plt300.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=8, symbolBrush=(0, 85, 0)) self.plt_iv300_6 = plt300.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=8, symbolBrush=(0, 85, 0)) self.plt_iv300_7 = plt300.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=6, symbolBrush=(0, 0, 0)) self.plt_iv300_8 = plt300.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=6, symbolBrush=(0, 0, 0)) self.gridLayout.addWidget(plt300, 0, 1) pw_month = pg.PlotWidget(title='MONTH-50-300-MONTH') pw_month.showGrid(x=False, y=True) pw_month.addLegend(offset=(30, 100)) self.plt_month50 = pw_month.plot(name='50') self.plt_month300 = pw_month.plot(name='300') self.gridLayout.addWidget(pw_month, 0, 2) pw_qvix = pg.PlotWidget(title='QVIX') pw_qvix.showGrid(x=True, y=True) pw_qvix.addLegend() self.plt_qvix = pw_qvix.plot(pen=pg.mkPen('d', width=4), name='iv') self.gridLayout.addWidget(pw_qvix, 1, 0) pw_north = pg.PlotWidget(title='NORTH') pw_north.showGrid(x=False, y=True) pw_north.addLegend() self.plt_north_hgt = pw_north.plot(pen=pg.mkPen('b', width=2), name ='hgt') self.plt_north_sgt = pw_north.plot(pen=pg.mkPen('g', width=1), name ='sgt') self.plt_north_all = pw_north.plot(pen=pg.mkPen('d', width=1), name ='all') self.gridLayout.addWidget(pw_north, 1, 1) pw_volume = pg.PlotWidget(title='VOLUME') pw_volume.showGrid(x=False, y=True) self.plt_volume = pw_volume.plot(name='volume') self.stock_50 = pw_volume.plot(name='stock_50') self.gridLayout.addWidget(pw_volume, 1, 2) def update_qvix(self, df): df = df.drop(['Pre', 'max', 'min'], axis=1) self.plt_qvix.setData(df.index.values, df['QVIX']) def update_north(self, df): self.plt_north_hgt.setData(df['hgt'].astype(float) / 10000) self.plt_north_sgt.setData(df['sgt'].astype(float) / 10000) self.plt_north_all.setData(df['all'].astype(float) / 10000) def update_volume(self, data, ser): self.plt_volume.setPen(pg.mkPen('b', width=3)) self.plt_volume.setData(data.values) self.stock_50.setData(ser) def update_month(self, data): data.columns = ['data', '50iv', 'data2', '300iv'] self.plt_month50.setData(data['50iv']) self.plt_month50.setPen(pg.mkPen('r', width=2)) self.plt_month300.setData(data['300iv']) self.plt_month300.setPen(pg.mkPen('b', width=1)) def update_iv(self, data50, data300): data50.sort_index(inplace=True) data50 = data50.astype(float) data50[data50 < 1] = np.nan self.plt_iv50_1.setData(data50.iloc[:, 0]) self.plt_iv50_2.setData(data50.iloc[:, 5]) self.plt_iv50_3.setData(data50.iloc[:, 1]) self.plt_iv50_4.setData(data50.iloc[:, 6]) self.plt_iv50_5.setData(data50.iloc[:, 2]) self.plt_iv50_6.setData(data50.iloc[:, 7]) self.plt_iv50_7.setData(data50.iloc[:, 3]) self.plt_iv50_8.setData(data50.iloc[:, 8]) data300.sort_index(inplace=True) data300 = data300.astype(float) data300[data300 < 1] = np.nan self.plt_iv300_1.setData(data300.iloc[:, 0]) self.plt_iv300_2.setData(data300.iloc[:, 5]) self.plt_iv300_3.setData(data300.iloc[:, 1]) self.plt_iv300_4.setData(data300.iloc[:, 6]) self.plt_iv300_5.setData(data300.iloc[:, 2]) self.plt_iv300_6.setData(data300.iloc[:, 7]) self.plt_iv300_7.setData(data300.iloc[:, 3]) self.plt_iv300_8.setData(data300.iloc[:, 8]) def update_greek(self, gk): text = 'DELTA:{}GAMMA:{}VEGA:{}THETA:{}'.format(gk[0], gk[1], gk[2], gk[3]) self.label_greek.setText(text) <mask token>
<mask token> class addItemThread(QThread): update_qvix = pyqtSignal(pd.DataFrame) update_north = pyqtSignal(pd.DataFrame) update_vol = pyqtSignal(pd.Series, pd.Series) update_month = pyqtSignal(pd.DataFrame) update_iv = pyqtSignal(pd.DataFrame, pd.DataFrame) update_greek = pyqtSignal(list) def __init__(self, *args, **kwargs): super(addItemThread, self).__init__(*args, **kwargs) self.data_model = DataModel() self.num = 0 def run(self, *args, **kwargs): while True: df = LoadNet().get_QVIX() self.update_qvix.emit(df) df_north = LoadNet().get_north() self.update_north.emit(df_north) df_vol, cha = Volume().update() data, last = LoadNet().get_50_163() ser = (data['current'] - last) / last self.update_vol.emit(df_vol, ser) if not self.data_model.df_op.empty: df_month = self.data_model.iv_month_50300() self.update_month.emit(df_month) df_iv50, df_iv300 = self.data_model.get_iv() self.update_iv.emit(df_iv50, df_iv300) hp = HoldPositions() greek = hp.update(self.data_model.df_op) self.update_greek.emit(greek) time.sleep(3) class Example(QWidget): def __init__(self): super(Example, self).__init__() mthread = addItemThread() mthread.update_qvix.connect(self.update_qvix) mthread.update_north.connect(self.update_north) mthread.update_vol.connect(self.update_volume) mthread.update_month.connect(self.update_month) mthread.update_iv.connect(self.update_iv) mthread.update_greek.connect(self.update_greek) mthread.start() self.initUI() def initUI(self): self.setGeometry(400, 400, 1200, 620) self.setWindowTitle('不被仓位左右思想,没找到弱点不要重仓') self.gridLayout = QGridLayout(self) self.plot() """ buttom """ self.label_greek = QLabel('label_greek') self.label_greek.setStyleSheet('background-color:rgb(250,250,250)') self.gridLayout.addWidget(self.label_greek, 2, 0, 1, 3) """ right """ def plot(self): pg.setConfigOption('background', 'w') pg.setConfigOption('foreground', 'k') pw_iv50 = pg.PlotWidget(title='50-IV') self.plt_iv50_1 = pw_iv50.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=12, symbolBrush=(0, 255, 0)) self.plt_iv50_2 = pw_iv50.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=12, symbolBrush=(0, 255, 0)) self.plt_iv50_3 = pw_iv50.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=10, symbolBrush=(0, 170, 0)) self.plt_iv50_4 = pw_iv50.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=10, symbolBrush=(0, 170, 0)) self.plt_iv50_5 = pw_iv50.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=8, symbolBrush=(0, 85, 0)) self.plt_iv50_6 = pw_iv50.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=8, symbolBrush=(0, 85, 0)) self.plt_iv50_7 = pw_iv50.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=6, symbolBrush=(0, 0, 0)) self.plt_iv50_8 = pw_iv50.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=6, symbolBrush=(0, 0, 0)) self.gridLayout.addWidget(pw_iv50, 0, 0) plt300 = pg.PlotWidget(title='300-IV') self.plt_iv300_1 = plt300.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=12, symbolBrush=(0, 255, 0)) self.plt_iv300_2 = plt300.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=12, symbolBrush=(0, 255, 0)) self.plt_iv300_3 = plt300.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=10, symbolBrush=(0, 170, 0)) self.plt_iv300_4 = plt300.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=10, symbolBrush=(0, 170, 0)) self.plt_iv300_5 = plt300.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=8, symbolBrush=(0, 85, 0)) self.plt_iv300_6 = plt300.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=8, symbolBrush=(0, 85, 0)) self.plt_iv300_7 = plt300.plot(symbol='o', pen=pg.mkPen('r', width= 1), symbolSize=6, symbolBrush=(0, 0, 0)) self.plt_iv300_8 = plt300.plot(symbol='o', pen=pg.mkPen('g', width= 1), symbolSize=6, symbolBrush=(0, 0, 0)) self.gridLayout.addWidget(plt300, 0, 1) pw_month = pg.PlotWidget(title='MONTH-50-300-MONTH') pw_month.showGrid(x=False, y=True) pw_month.addLegend(offset=(30, 100)) self.plt_month50 = pw_month.plot(name='50') self.plt_month300 = pw_month.plot(name='300') self.gridLayout.addWidget(pw_month, 0, 2) pw_qvix = pg.PlotWidget(title='QVIX') pw_qvix.showGrid(x=True, y=True) pw_qvix.addLegend() self.plt_qvix = pw_qvix.plot(pen=pg.mkPen('d', width=4), name='iv') self.gridLayout.addWidget(pw_qvix, 1, 0) pw_north = pg.PlotWidget(title='NORTH') pw_north.showGrid(x=False, y=True) pw_north.addLegend() self.plt_north_hgt = pw_north.plot(pen=pg.mkPen('b', width=2), name ='hgt') self.plt_north_sgt = pw_north.plot(pen=pg.mkPen('g', width=1), name ='sgt') self.plt_north_all = pw_north.plot(pen=pg.mkPen('d', width=1), name ='all') self.gridLayout.addWidget(pw_north, 1, 1) pw_volume = pg.PlotWidget(title='VOLUME') pw_volume.showGrid(x=False, y=True) self.plt_volume = pw_volume.plot(name='volume') self.stock_50 = pw_volume.plot(name='stock_50') self.gridLayout.addWidget(pw_volume, 1, 2) def update_qvix(self, df): df = df.drop(['Pre', 'max', 'min'], axis=1) self.plt_qvix.setData(df.index.values, df['QVIX']) def update_north(self, df): self.plt_north_hgt.setData(df['hgt'].astype(float) / 10000) self.plt_north_sgt.setData(df['sgt'].astype(float) / 10000) self.plt_north_all.setData(df['all'].astype(float) / 10000) def update_volume(self, data, ser): self.plt_volume.setPen(pg.mkPen('b', width=3)) self.plt_volume.setData(data.values) self.stock_50.setData(ser) def update_month(self, data): data.columns = ['data', '50iv', 'data2', '300iv'] self.plt_month50.setData(data['50iv']) self.plt_month50.setPen(pg.mkPen('r', width=2)) self.plt_month300.setData(data['300iv']) self.plt_month300.setPen(pg.mkPen('b', width=1)) def update_iv(self, data50, data300): data50.sort_index(inplace=True) data50 = data50.astype(float) data50[data50 < 1] = np.nan self.plt_iv50_1.setData(data50.iloc[:, 0]) self.plt_iv50_2.setData(data50.iloc[:, 5]) self.plt_iv50_3.setData(data50.iloc[:, 1]) self.plt_iv50_4.setData(data50.iloc[:, 6]) self.plt_iv50_5.setData(data50.iloc[:, 2]) self.plt_iv50_6.setData(data50.iloc[:, 7]) self.plt_iv50_7.setData(data50.iloc[:, 3]) self.plt_iv50_8.setData(data50.iloc[:, 8]) data300.sort_index(inplace=True) data300 = data300.astype(float) data300[data300 < 1] = np.nan self.plt_iv300_1.setData(data300.iloc[:, 0]) self.plt_iv300_2.setData(data300.iloc[:, 5]) self.plt_iv300_3.setData(data300.iloc[:, 1]) self.plt_iv300_4.setData(data300.iloc[:, 6]) self.plt_iv300_5.setData(data300.iloc[:, 2]) self.plt_iv300_6.setData(data300.iloc[:, 7]) self.plt_iv300_7.setData(data300.iloc[:, 3]) self.plt_iv300_8.setData(data300.iloc[:, 8]) def update_greek(self, gk): text = 'DELTA:{}GAMMA:{}VEGA:{}THETA:{}'.format(gk[0], gk[1], gk[2], gk[3]) self.label_greek.setText(text) <mask token>
from PyQt5.QtWidgets import QPushButton,QWidget,QApplication,QGridLayout,QListWidget,QLineEdit,QVBoxLayout,QLabel import pyqtgraph as pg import sys import numpy as np from tools import DataModel,HoldPositions from load_sina import LoadNet import time from get_day_histroy import history import pandas as pd from volume import Volume from PyQt5.QtCore import QThread, pyqtSignal, QDateTime class addItemThread(QThread): update_qvix = pyqtSignal(pd.DataFrame) update_north = pyqtSignal(pd.DataFrame) update_vol = pyqtSignal(pd.Series,pd.Series) update_month = pyqtSignal(pd.DataFrame) update_iv =pyqtSignal(pd.DataFrame,pd.DataFrame) update_greek = pyqtSignal(list) def __init__(self,*args, **kwargs): super(addItemThread, self).__init__(*args, **kwargs) self.data_model =DataModel() self.num = 0 def run(self, *args, **kwargs): while True: df =LoadNet().get_QVIX() self.update_qvix.emit(df) df_north =LoadNet().get_north() self.update_north.emit(df_north) df_vol ,cha= Volume().update() data ,last = LoadNet().get_50_163() ser = (data['current']-last)/last self.update_vol.emit(df_vol,ser) if not self.data_model.df_op.empty: df_month = self.data_model.iv_month_50300() self.update_month.emit(df_month) df_iv50,df_iv300 = self.data_model.get_iv() self.update_iv.emit(df_iv50,df_iv300) hp = HoldPositions() greek = hp.update(self.data_model.df_op) self.update_greek.emit(greek) time.sleep(3) class Example(QWidget): def __init__(self): super(Example, self).__init__() mthread = addItemThread() mthread.update_qvix.connect(self.update_qvix) mthread.update_north.connect(self.update_north) mthread.update_vol.connect(self.update_volume) mthread.update_month.connect(self.update_month) mthread.update_iv.connect(self.update_iv) mthread.update_greek.connect(self.update_greek) mthread.start() self.initUI() def initUI(self): self.setGeometry(400,400,1200,620) self.setWindowTitle("不被仓位左右思想,没找到弱点不要重仓") self.gridLayout = QGridLayout(self) self.plot() ''' buttom ''' self.label_greek = QLabel('label_greek') self.label_greek.setStyleSheet("background-color:rgb(250,250,250)") self.gridLayout.addWidget(self.label_greek, 2, 0,1,3) ''' right ''' # wight_r = QWidget(self) # layout_r = QVBoxLayout() # wight_r.setLayout(layout_r) # btn_calculated = QPushButton('计算收益') # layout_r.addWidget(btn_calculated) # self.gridLayout.addWidget(wight_r, 0, 3,2,1) def plot(self): pg.setConfigOption('background', 'w') pg.setConfigOption('foreground', 'k') pw_iv50 = pg.PlotWidget(title='50-IV') self.plt_iv50_1 = pw_iv50.plot(symbol="o",pen=pg.mkPen("r",width=1),symbolSize=12,symbolBrush=(0,255,0)) self.plt_iv50_2 = pw_iv50.plot(symbol="o",pen=pg.mkPen("g",width=1),symbolSize=12,symbolBrush=(0,255,0)) self.plt_iv50_3 = pw_iv50.plot(symbol="o",pen=pg.mkPen("r",width=1),symbolSize=10,symbolBrush=(0,170,0)) self.plt_iv50_4 = pw_iv50.plot(symbol="o",pen=pg.mkPen("g",width=1),symbolSize=10,symbolBrush=(0,170,0)) self.plt_iv50_5 = pw_iv50.plot(symbol="o",pen=pg.mkPen("r",width=1),symbolSize=8,symbolBrush=(0,85,0)) self.plt_iv50_6 = pw_iv50.plot(symbol="o",pen=pg.mkPen("g",width=1),symbolSize=8,symbolBrush=(0,85,0)) self.plt_iv50_7 = pw_iv50.plot(symbol="o",pen=pg.mkPen("r",width=1),symbolSize=6,symbolBrush=(0,0,0)) self.plt_iv50_8 = pw_iv50.plot(symbol="o",pen=pg.mkPen("g",width=1),symbolSize=6,symbolBrush=(0,0,0)) self.gridLayout.addWidget(pw_iv50, 0, 0) plt300 = pg.PlotWidget(title='300-IV') self.plt_iv300_1 = plt300.plot(symbol="o",pen=pg.mkPen("r",width=1),symbolSize=12,symbolBrush=(0,255,0)) self.plt_iv300_2 = plt300.plot(symbol="o",pen=pg.mkPen("g",width=1),symbolSize=12,symbolBrush=(0,255,0)) self.plt_iv300_3 = plt300.plot(symbol="o",pen=pg.mkPen("r",width=1),symbolSize=10,symbolBrush=(0,170,0)) self.plt_iv300_4 = plt300.plot(symbol="o",pen=pg.mkPen("g",width=1),symbolSize=10,symbolBrush=(0,170,0)) self.plt_iv300_5 = plt300.plot(symbol="o",pen=pg.mkPen("r",width=1),symbolSize=8,symbolBrush=(0,85,0)) self.plt_iv300_6 = plt300.plot(symbol="o",pen=pg.mkPen("g",width=1),symbolSize=8,symbolBrush=(0,85,0)) self.plt_iv300_7 = plt300.plot(symbol="o",pen=pg.mkPen("r",width=1),symbolSize=6,symbolBrush=(0,0,0)) self.plt_iv300_8 = plt300.plot(symbol="o",pen=pg.mkPen("g",width=1),symbolSize=6,symbolBrush=(0,0,0)) self.gridLayout.addWidget(plt300, 0, 1) pw_month = pg.PlotWidget(title='MONTH-50-300-MONTH') pw_month.showGrid(x=False,y=True) pw_month.addLegend(offset=(30, 100)) self.plt_month50 = pw_month.plot(name="50") self.plt_month300 = pw_month.plot(name="300") self.gridLayout.addWidget(pw_month, 0, 2) pw_qvix = pg.PlotWidget( title='QVIX') pw_qvix.showGrid(x=True,y=True) pw_qvix.addLegend() self.plt_qvix = pw_qvix.plot(pen=pg.mkPen("d",width=4),name="iv") self.gridLayout.addWidget(pw_qvix, 1, 0) pw_north = pg.PlotWidget( title='NORTH') pw_north.showGrid(x=False,y=True) pw_north.addLegend() self.plt_north_hgt =pw_north.plot(pen=pg.mkPen("b",width=2),name="hgt") self.plt_north_sgt =pw_north.plot(pen=pg.mkPen("g",width=1),name="sgt") self.plt_north_all =pw_north.plot(pen=pg.mkPen("d",width=1),name="all") self.gridLayout.addWidget(pw_north, 1, 1) pw_volume = pg.PlotWidget( title='VOLUME') pw_volume.showGrid(x=False,y=True) self.plt_volume =pw_volume.plot(name="volume") self.stock_50 =pw_volume.plot(name="stock_50") self.gridLayout.addWidget(pw_volume, 1, 2) def update_qvix(self,df): df = df.drop(['Pre','max','min'],axis=1) self.plt_qvix.setData(df.index.values, df['QVIX']) def update_north(self,df): self.plt_north_hgt.setData( df['hgt'].astype(float)/10000) self.plt_north_sgt.setData( df['sgt'].astype(float)/10000) self.plt_north_all.setData(df['all'].astype(float)/10000) def update_volume(self,data,ser): self.plt_volume.setPen(pg.mkPen("b",width=3)) self.plt_volume.setData(data.values) self.stock_50.setData(ser) def update_month(self,data): data.columns=['data','50iv','data2','300iv'] self.plt_month50.setData(data['50iv']) self.plt_month50.setPen(pg.mkPen("r",width=2)) self.plt_month300.setData(data['300iv']) self.plt_month300.setPen(pg.mkPen("b",width=1)) def update_iv(self,data50,data300): data50.sort_index(inplace=True) data50 = data50.astype(float) data50[data50<1]=np.nan self.plt_iv50_1.setData(data50.iloc[:,0]) self.plt_iv50_2.setData(data50.iloc[:,5]) self.plt_iv50_3.setData(data50.iloc[:,1]) self.plt_iv50_4.setData(data50.iloc[:,6]) self.plt_iv50_5.setData(data50.iloc[:,2]) self.plt_iv50_6.setData(data50.iloc[:,7]) self.plt_iv50_7.setData(data50.iloc[:,3]) self.plt_iv50_8.setData(data50.iloc[:,8]) data300.sort_index(inplace=True) data300 = data300.astype(float) data300[data300<1]=np.nan self.plt_iv300_1.setData(data300.iloc[:,0]) self.plt_iv300_2.setData(data300.iloc[:,5]) self.plt_iv300_3.setData(data300.iloc[:,1]) self.plt_iv300_4.setData(data300.iloc[:,6]) self.plt_iv300_5.setData(data300.iloc[:,2]) self.plt_iv300_6.setData(data300.iloc[:,7]) self.plt_iv300_7.setData(data300.iloc[:,3]) self.plt_iv300_8.setData(data300.iloc[:,8]) def update_greek(self,gk): text = 'DELTA:{}GAMMA:{}VEGA:{}THETA:{}'.format(gk[0],gk[1],gk[2],gk[3]) self.label_greek.setText(text) if __name__ == '__main__': app = QApplication(sys.argv) ex = Example() ex.show() sys.exit(app.exec_())
[ 11, 12, 13, 14, 17 ]
1,304
c3de6cd76ca7180a1a4d236bb2a6a18f7594f38b
<mask token>
<mask token> for i in range(3): numList[i] = int(sys.stdin.readline()) <mask token> for i in intList: print(resultList.count(str(i)))
<mask token> numList = list(range(3)) for i in range(3): numList[i] = int(sys.stdin.readline()) result = numList[0] * numList[1] * numList[2] resultList = list(str(result)) intList = list(range(10)) for i in intList: print(resultList.count(str(i)))
import sys numList = list(range(3)) for i in range(3): numList[i] = int(sys.stdin.readline()) result = numList[0] * numList[1] * numList[2] resultList = list(str(result)) intList = list(range(10)) for i in intList: print(resultList.count(str(i)))
null
[ 0, 1, 2, 3 ]
1,305
8d8ea6ad7a3ed1a1e6e96ab75260ecf6e8211d32
<mask token>
<mask token> st.merge() st.detrend(type='demean') st.remove_response() st.filter('bandpass', freqmin=F1, freqmax=F2, corners=4) st.trim(t1, t2) <mask token> plt.suptitle(LABEL) <mask token> ax.plot(st[0].times(reftime=orig_time), st[0].data * 1000, linewidth=0.2, color='darkred') <mask token> for phase in PHASES: phase = [phase] tt = model.get_travel_times(source_depth_in_km=EVT_Z, distance_in_degree=dist, phase_list=phase) ax.vlines(tt[0].time, ymin, ymax, color='blue', linewidth=1.2, zorder=3, linestyle='--', alpha=0.5) ax.text(tt[0].time * 1.02, ymax, phase[0], fontsize=12, horizontalalignment='left', verticalalignment='top') ax.set_xlabel('Time after earthquake (s)') ax.set_title("""{:}.{:}.{:}.{:} Bandpass filter: {:}-{:} Hz""".format(st[0] .stats.network, st[0].stats.station, st[0].stats.location, st[0].stats. channel, F1, F2)) ax.set_ylabel('Ground velocity (mm/s)') <mask token> ax3.set_title('Epicentral distance: {:3.1f}$^\\circ$'.format(dist)) plt.tight_layout(rect=[0, 0.03, 1, 0.95]) plt.savefig('traces.png') plt.show()
<mask token> NETWORK = 'AM' STATION = 'RAEBE' CHANNEL = 'EHZ' EQ_TIME = '2020-01-07T08:24:26' T_START = 0 T_END = 1250 PHASES = ['P', 'S'] EVT_LAT = 17.916 EVT_LON = -66.813 EVT_Z = 10 STA_LAT = 51.33 STA_LON = -0.49 F1 = 0.3 F2 = 0.7 LABEL = 'M 6.4 Puerto Rico' MODEL = 'iasp91' client = Client('http://fdsnws.raspberryshakedata.com') orig_time = UTCDateTime(EQ_TIME) t1 = orig_time - T_START t2 = orig_time + T_END st = client.get_waveforms(NETWORK, STATION, '00', CHANNEL, starttime=t1, endtime=t2, attach_response=True) st.merge() st.detrend(type='demean') st.remove_response() st.filter('bandpass', freqmin=F1, freqmax=F2, corners=4) st.trim(t1, t2) fig = plt.figure(figsize=(12, 8)) plt.suptitle(LABEL) ax = plt.subplot(121) dist = locations2degrees(EVT_LAT, EVT_LON, STA_LAT, STA_LON) model = TauPyModel(model=MODEL) ax.plot(st[0].times(reftime=orig_time), st[0].data * 1000, linewidth=0.2, color='darkred') ymin, ymax = ax.get_ylim() for phase in PHASES: phase = [phase] tt = model.get_travel_times(source_depth_in_km=EVT_Z, distance_in_degree=dist, phase_list=phase) ax.vlines(tt[0].time, ymin, ymax, color='blue', linewidth=1.2, zorder=3, linestyle='--', alpha=0.5) ax.text(tt[0].time * 1.02, ymax, phase[0], fontsize=12, horizontalalignment='left', verticalalignment='top') ax.set_xlabel('Time after earthquake (s)') ax.set_title("""{:}.{:}.{:}.{:} Bandpass filter: {:}-{:} Hz""".format(st[0] .stats.network, st[0].stats.station, st[0].stats.location, st[0].stats. channel, F1, F2)) ax.set_ylabel('Ground velocity (mm/s)') ax2 = plt.subplot(122, projection='polar') arrivals = model.get_ray_paths(source_depth_in_km=EVT_Z, distance_in_degree =dist, phase_list=PHASES) ax3 = arrivals.plot_rays(phase, legend=False, ax=ax2, show=False, label_arrivals=True) ax3.set_title('Epicentral distance: {:3.1f}$^\\circ$'.format(dist)) plt.tight_layout(rect=[0, 0.03, 1, 0.95]) plt.savefig('traces.png') plt.show()
<mask token> from obspy.clients.fdsn import Client from obspy import UTCDateTime from obspy.taup import TauPyModel from obspy.geodetics.base import locations2degrees import matplotlib.pyplot as plt NETWORK = 'AM' STATION = 'RAEBE' CHANNEL = 'EHZ' EQ_TIME = '2020-01-07T08:24:26' T_START = 0 T_END = 1250 PHASES = ['P', 'S'] EVT_LAT = 17.916 EVT_LON = -66.813 EVT_Z = 10 STA_LAT = 51.33 STA_LON = -0.49 F1 = 0.3 F2 = 0.7 LABEL = 'M 6.4 Puerto Rico' MODEL = 'iasp91' client = Client('http://fdsnws.raspberryshakedata.com') orig_time = UTCDateTime(EQ_TIME) t1 = orig_time - T_START t2 = orig_time + T_END st = client.get_waveforms(NETWORK, STATION, '00', CHANNEL, starttime=t1, endtime=t2, attach_response=True) st.merge() st.detrend(type='demean') st.remove_response() st.filter('bandpass', freqmin=F1, freqmax=F2, corners=4) st.trim(t1, t2) fig = plt.figure(figsize=(12, 8)) plt.suptitle(LABEL) ax = plt.subplot(121) dist = locations2degrees(EVT_LAT, EVT_LON, STA_LAT, STA_LON) model = TauPyModel(model=MODEL) ax.plot(st[0].times(reftime=orig_time), st[0].data * 1000, linewidth=0.2, color='darkred') ymin, ymax = ax.get_ylim() for phase in PHASES: phase = [phase] tt = model.get_travel_times(source_depth_in_km=EVT_Z, distance_in_degree=dist, phase_list=phase) ax.vlines(tt[0].time, ymin, ymax, color='blue', linewidth=1.2, zorder=3, linestyle='--', alpha=0.5) ax.text(tt[0].time * 1.02, ymax, phase[0], fontsize=12, horizontalalignment='left', verticalalignment='top') ax.set_xlabel('Time after earthquake (s)') ax.set_title("""{:}.{:}.{:}.{:} Bandpass filter: {:}-{:} Hz""".format(st[0] .stats.network, st[0].stats.station, st[0].stats.location, st[0].stats. channel, F1, F2)) ax.set_ylabel('Ground velocity (mm/s)') ax2 = plt.subplot(122, projection='polar') arrivals = model.get_ray_paths(source_depth_in_km=EVT_Z, distance_in_degree =dist, phase_list=PHASES) ax3 = arrivals.plot_rays(phase, legend=False, ax=ax2, show=False, label_arrivals=True) ax3.set_title('Epicentral distance: {:3.1f}$^\\circ$'.format(dist)) plt.tight_layout(rect=[0, 0.03, 1, 0.95]) plt.savefig('traces.png') plt.show()
#!/usr/bin/env python """ Script to download and plot RaspberryShake station data Also computes and plots theoretical phase arrival times and raypaths. See https://docs.obspy.org/packages/obspy.taup.html for more info on Earth models and phase-nmaing nomenclature. Stephen Hicks Imperial College London Feb 2020 """ from obspy.clients.fdsn import Client from obspy import UTCDateTime from obspy.taup import TauPyModel from obspy.geodetics.base import locations2degrees import matplotlib.pyplot as plt # Start of parameters to define NETWORK = "AM" # AM = RaspberryShake network STATION = "RAEBE" # Station code of station to get data for CHANNEL = "EHZ" # channel to grab data for (e.g. EHZ, SHZ, EHE, EHN) EQ_TIME = "2020-01-07T08:24:26" # origin time of earthquake T_START = 0 # Length in seconds of data to plot before origin time T_END = 1250 # Length in seconds of data to plot after origin time PHASES = ["P", "S"] # list of phases to compute theoretical times for EVT_LAT = 17.916 # Latitude of event EVT_LON = -66.813 # Longitude of event EVT_Z = 10 # Depth of event STA_LAT = 51.33 # Latitude of station STA_LON = -0.49 # Longitude of station F1 = 0.3 # High-pass filter corner F2 = 0.7 # Low-pass filter corner LABEL = "M 6.4 Puerto Rico" # Title to plot on figure MODEL = 'iasp91' # Velocity model to predict travel-times through # End of parameters to define # Define fdsn client to get data from client = Client('http://fdsnws.raspberryshakedata.com') # Define start and end time orig_time = UTCDateTime(EQ_TIME) t1 = orig_time - T_START t2 = orig_time + T_END # Download and filfter data st = client.get_waveforms(NETWORK, STATION, "00", CHANNEL, starttime=t1, endtime=t2, attach_response=True) st.merge() st.detrend(type="demean") st.remove_response() st.filter("bandpass", freqmin=F1, freqmax=F2, corners=4) st.trim(t1, t2) # Set-up figure fig = plt.figure(figsize=(12, 8)) plt.suptitle(LABEL) ax = plt.subplot(121) # Set-up taup travel-time model dist = locations2degrees(EVT_LAT, EVT_LON, STA_LAT, STA_LON) model = TauPyModel(model=MODEL) # Now plot the waveform data ax.plot(st[0].times(reftime=orig_time), st[0].data*1000, linewidth=0.2, color="darkred") ymin, ymax = ax.get_ylim() # Now plot the theoretical arrival times for phase in PHASES: phase = [phase] tt = model.get_travel_times(source_depth_in_km=EVT_Z, distance_in_degree=dist, phase_list=phase) ax.vlines(tt[0].time, ymin, ymax, color="blue", linewidth=1.2, zorder=3, linestyle="--", alpha=0.5) ax.text(tt[0].time*1.02, ymax, phase[0], fontsize=12, horizontalalignment="left", verticalalignment="top") ax.set_xlabel("Time after earthquake (s)") ax.set_title("{:}.{:}.{:}.{:}\nBandpass filter: {:}-{:} Hz".format( st[0].stats.network, st[0].stats.station, st[0].stats.location, st[0].stats.channel, F1, F2)) ax.set_ylabel("Ground velocity (mm/s)") # Now plot the raypaths through the Earth ax2 = plt.subplot(122, projection='polar') arrivals = model.get_ray_paths( source_depth_in_km=EVT_Z, distance_in_degree=dist, phase_list=PHASES) ax3 = arrivals.plot_rays(phase, legend=False, ax=ax2, show=False, label_arrivals=True) ax3.set_title("Epicentral distance: {:3.1f}$^\circ$".format(dist)) # Save and plot the figure plt.tight_layout(rect=[0, 0.03, 1, 0.95]) plt.savefig("traces.png") plt.show()
[ 0, 1, 2, 3, 4 ]
1,306
85c2a4163a3132794186b95b4068f6c6e1104828
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [('cms', '0020_old_tree_cleanup'), ('styleguide', '0002_flexcontainer')] operations = [migrations.CreateModel(name='ContentSection', fields=[( 'cmsplugin_ptr', models.OneToOneField(auto_created=True, on_delete= django.db.models.deletion.CASCADE, parent_link=True, primary_key= True, related_name='styleguide_contentsection', serialize=False, to ='cms.CMSPlugin')), ('background_color', models.CharField(choices=[ ('navy', '#1c2532'), ('light', '#f3f4f5'), ('white', '#ffffff')], default='white', max_length=20))], options={'abstract': False}, bases=('cms.cmsplugin',)), migrations.AlterField(model_name= 'flexcontainer', name='spacing', field=models.CharField(choices=[( 'flex-start', 'flex-start'), ('flex-end', 'flex-end'), ('center', 'center'), ('space-between', 'space-between'), ('space-around', 'space-around')], default='flex-start', max_length=13))]
from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [('cms', '0020_old_tree_cleanup'), ('styleguide', '0002_flexcontainer')] operations = [migrations.CreateModel(name='ContentSection', fields=[( 'cmsplugin_ptr', models.OneToOneField(auto_created=True, on_delete= django.db.models.deletion.CASCADE, parent_link=True, primary_key= True, related_name='styleguide_contentsection', serialize=False, to ='cms.CMSPlugin')), ('background_color', models.CharField(choices=[ ('navy', '#1c2532'), ('light', '#f3f4f5'), ('white', '#ffffff')], default='white', max_length=20))], options={'abstract': False}, bases=('cms.cmsplugin',)), migrations.AlterField(model_name= 'flexcontainer', name='spacing', field=models.CharField(choices=[( 'flex-start', 'flex-start'), ('flex-end', 'flex-end'), ('center', 'center'), ('space-between', 'space-between'), ('space-around', 'space-around')], default='flex-start', max_length=13))]
# -*- coding: utf-8 -*- # Generated by Django 1.11.13 on 2018-06-27 21:49 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('cms', '0020_old_tree_cleanup'), ('styleguide', '0002_flexcontainer'), ] operations = [ migrations.CreateModel( name='ContentSection', fields=[ ('cmsplugin_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, related_name='styleguide_contentsection', serialize=False, to='cms.CMSPlugin')), ('background_color', models.CharField(choices=[('navy', '#1c2532'), ('light', '#f3f4f5'), ('white', '#ffffff')], default='white', max_length=20)), ], options={ 'abstract': False, }, bases=('cms.cmsplugin',), ), migrations.AlterField( model_name='flexcontainer', name='spacing', field=models.CharField(choices=[('flex-start', 'flex-start'), ('flex-end', 'flex-end'), ('center', 'center'), ('space-between', 'space-between'), ('space-around', 'space-around')], default='flex-start', max_length=13), ), ]
[ 0, 1, 2, 3, 4 ]
1,307
38f9cddfde4787ead2314fc70c1f4d91a3da9687
<mask token> class TemplateParser: <mask token> <mask token> def __init__(self, template=None, providers=None, date_generator=None): self.fake = Faker() self.fake.add_provider(FileDataSourceProvider) self.fake.add_provider(NumbersProvider) self.fake.add_provider(InternetProvider) self.template = template self.providers = {} if providers is None else providers self.date_generator = (TemplateParser.null_date_generator if date_generator is None else date_generator) <mask token> def process(self, date_generator=None, **kwargs): """Procces template, parsing it""" template = Template(self.template) if date_generator is None: date_generator = self.date_generator return template.render(fake=self.fake, datetime=datetime, date_generator=date_generator, next=next, **self.providers, ** kwargs)
<mask token> class TemplateParser: <mask token> <mask token> def __init__(self, template=None, providers=None, date_generator=None): self.fake = Faker() self.fake.add_provider(FileDataSourceProvider) self.fake.add_provider(NumbersProvider) self.fake.add_provider(InternetProvider) self.template = template self.providers = {} if providers is None else providers self.date_generator = (TemplateParser.null_date_generator if date_generator is None else date_generator) @staticmethod def null_date_generator(): """Generate now date""" return str(datetime.now()) def process(self, date_generator=None, **kwargs): """Procces template, parsing it""" template = Template(self.template) if date_generator is None: date_generator = self.date_generator return template.render(fake=self.fake, datetime=datetime, date_generator=date_generator, next=next, **self.providers, ** kwargs)
<mask token> class TemplateParser: """Parser for templates, using jinja2 and Faker""" fake = None def __init__(self, template=None, providers=None, date_generator=None): self.fake = Faker() self.fake.add_provider(FileDataSourceProvider) self.fake.add_provider(NumbersProvider) self.fake.add_provider(InternetProvider) self.template = template self.providers = {} if providers is None else providers self.date_generator = (TemplateParser.null_date_generator if date_generator is None else date_generator) @staticmethod def null_date_generator(): """Generate now date""" return str(datetime.now()) def process(self, date_generator=None, **kwargs): """Procces template, parsing it""" template = Template(self.template) if date_generator is None: date_generator = self.date_generator return template.render(fake=self.fake, datetime=datetime, date_generator=date_generator, next=next, **self.providers, ** kwargs)
<mask token> from datetime import datetime from jinja2 import Template from faker import Faker from faker.providers.internet import Provider as InternetProvider from ..providers.file_data_source_provider import FileDataSourceProvider from ..providers.numbers_provider import NumbersProvider class TemplateParser: """Parser for templates, using jinja2 and Faker""" fake = None def __init__(self, template=None, providers=None, date_generator=None): self.fake = Faker() self.fake.add_provider(FileDataSourceProvider) self.fake.add_provider(NumbersProvider) self.fake.add_provider(InternetProvider) self.template = template self.providers = {} if providers is None else providers self.date_generator = (TemplateParser.null_date_generator if date_generator is None else date_generator) @staticmethod def null_date_generator(): """Generate now date""" return str(datetime.now()) def process(self, date_generator=None, **kwargs): """Procces template, parsing it""" template = Template(self.template) if date_generator is None: date_generator = self.date_generator return template.render(fake=self.fake, datetime=datetime, date_generator=date_generator, next=next, **self.providers, ** kwargs)
# -*- coding: utf-8 -*- """Template parser for Faker""" from datetime import datetime from jinja2 import Template from faker import Faker from faker.providers.internet import Provider as InternetProvider from ..providers.file_data_source_provider import FileDataSourceProvider from ..providers.numbers_provider import NumbersProvider class TemplateParser: """Parser for templates, using jinja2 and Faker""" fake = None def __init__(self, template=None, providers=None, date_generator=None): self.fake = Faker() self.fake.add_provider(FileDataSourceProvider) self.fake.add_provider(NumbersProvider) # Ips networks emails etc.. self.fake.add_provider(InternetProvider) self.template = template self.providers = {} if providers is None else providers self.date_generator = TemplateParser.null_date_generator \ if date_generator is None else date_generator @staticmethod def null_date_generator(): """Generate now date""" return str(datetime.now()) def process(self, date_generator=None, **kwargs): """Procces template, parsing it""" template = Template(self.template) if date_generator is None: date_generator = self.date_generator # Only the passed objects will be accessible from the template # the next built-in needs to be passed for next(date_generator) to work return template.render(fake=self.fake, datetime=datetime, date_generator=date_generator, next=next, **self.providers, **kwargs)
[ 3, 4, 6, 7, 8 ]
1,308
13da16ba89e4743b12d9b8e24929864747f8bbf2
<mask token>
<mask token> class ModD(Soppa): <mask token> <mask token>
<mask token> class ModD(Soppa): needs = ['test_project.modf'] something = 1
from soppa.contrib import * class ModD(Soppa): needs = ['test_project.modf'] something = 1
null
[ 0, 1, 2, 3 ]
1,309
3eb071fa826c838d847e3f97abe3b706760a1336
''' Faraday Penetration Test IDE Copyright (C) 2013 Infobyte LLC (http://www.infobytesec.com/) See the file 'doc/LICENSE' for the license information ''' """ This module contains some useful functions to embedd an IPython shell. This allows to interactively test things. TODO: create a QT Widget capable of running the IPython shell whitout blocking the entire app. Kind of the http://ipython.scipy.org/moin/Cookbook/EmbeddingInGTK """ import traceback import model.api IPYTHON_BANNER = "\n".join(["-"*45, "Starting embedded IPython Shell...", "Press CTRL + D to exit.", "-"*45]) IPYTHON_EXIT_MSG = "\n".join(["-"*45, "Exiting IPython Shell...", "Returning normal execution.", "-"*45]) __ipython_active = False def embedd_ipython011(local_ns={}, global_ns={}): from IPython.config.loader import Config from IPython.frontend.terminal.embed import InteractiveShellEmbed cfg = Config() ipshell = InteractiveShellEmbed(config=cfg, banner1 = IPYTHON_BANNER, exit_msg = IPYTHON_EXIT_MSG) ipshell(local_ns=local_ns, global_ns=global_ns) def embedd_ipython010(local_ns={}, global_ns={}): from IPython.Shell import IPShellEmbed ipshell = IPShellEmbed( [""], banner = IPYTHON_BANNER, exit_msg = IPYTHON_EXIT_MSG ) ipshell(local_ns=local_ns, global_ns=global_ns) def embedd(local_ns={}, global_ns={}): global __ipython_active if __ipython_active: return __ipython_active = True try: import IPython version = IPython.__version__.split(".")[1] if int(version) > 10: embedd_ipython011(local_ns, global_ns) else: embedd_ipython010(local_ns, global_ns) except Exception, e: msg = "An error ocurred while trying to embedd the IPython Shell\n%s" model.api.log(msg % str(e), "ERROR") model.api.devlog(msg % traceback.format_exc()) finally: __ipython_active = False def embeddQT(local_ns={}, global_ns={}): global __ipython_active if __ipython_active: return __ipython_active = True try: from IPython.Shell import IPShellQt ipshell = IPShellQt( [""], user_ns=local_ns, user_global_ns=global_ns ) ipshell.run() except Exception: model.api.devlog("An error ocurred while trying to embedd the IPython Shell\n%s" % traceback.format_exc()) finally: __ipython_active = False
null
null
null
null
[ 0 ]
1,310
723d8819b5341f1397163533f59c17ba1a74b77d
""" get poly data(face center, face id, etc), select face, create object by face data setPosition for vertex (random) import sys module_path = '/home/shrimo/Desktop/course/git/vfx_dev/maya/general_lesson' if module_path not in sys.path: sys.path.append(module_path) import lesson_v01 reload(lesson_v01) lesson_v01.start() """ import maya.cmds as cmds import maya.api.OpenMaya as om2 import random class Face(): def __init__(self, shape, face_index, vertex, center): self.face_path = '{shape}.f[{index}]'.format( shape=shape, index=face_index) self.vertex = vertex self.face_index = face_index self.face_center = center def get_shapes(): # get selected object # print(cmds.ls()) # print(cmds.ls(selection=True)) return cmds.ls(selection=True, shapes=True, dagObjects=True) def get_faces(shapes): # cmds.select(clear=True) # print(shapes) face_data = [] for shape in shapes: mSel = om2.MSelectionList() mSel.add(shape) mDagPath, mObj = mSel.getComponent(0) geo = om2.MItMeshPolygon(mDagPath, mObj) while not geo.isDone(): center = geo.center() print 'face index: {}'.format(geo.index()) vertices = [] for i in geo.getPoints(om2.MSpace.kWorld): vertices.append((i[0], i[1], i[2])) face_in = Face(shape, geo.index(), vertices, center) face_data.append(face_in) geo.next(0) return face_data def get_vertex(shapes): vertex_data = [] spc = om2.MSpace.kWorld for shape in shapes: mSel = om2.MSelectionList() mSel.add(shape) mDagPath, mObj = mSel.getComponent(0) vtx = om2.MItMeshVertex(mDagPath, mObj) while not vtx.isDone(): vtx_pos = vtx.position(spc) print 'vertex index: {}'.format(vtx.index()), vtx_pos face_in = Face(shape, vtx.index(), vtx_pos, None) vertex_data.append(face_in) vtx.next() return vertex_data def set_pos_vertex(shapes, up_y): spc = om2.MSpace.kWorld for shape in shapes: mSel = om2.MSelectionList() mSel.add(shape) mDagPath, mObj = mSel.getComponent(0) vtx = om2.MItMeshVertex(mDagPath, mObj) while not vtx.isDone(): vtx_pos = vtx.position(spc) print 'vertex:'+str(vtx.index()), vtx_pos.y if vtx.index() & 1: vtx_pos.y += up_y vtx.setPosition(vtx_pos, spc) vtx.next() vtx.updateSurface() def set_random_vertex(shapes, up_y): spc = om2.MSpace.kWorld for shape in shapes: mSel = om2.MSelectionList() mSel.add(shape) mDagPath, mObj = mSel.getComponent(0) vtx = om2.MItMeshVertex(mDagPath, mObj) while not vtx.isDone(): vtx_pos = vtx.position(spc) print 'vertex:'+str(vtx.index()), vtx_pos.y vtx_pos.z += random.uniform(0, up_y) vtx.setPosition(vtx_pos, spc) vtx.next() vtx.updateSurface() def create_boxes(shapes, group_name, shape_name, on_face): if on_face: face_data = get_faces(shapes) else: face_data = get_vertex(shapes) cmds.group(em=True, name=group_name) for face in face_data: # print(face.face_index, face.face_path, face.face_center) if face.face_index & 1: cmds.select(face.face_path, add=True) p_name = shape_name + str(face.face_index) cmds.polyCube(n=p_name) # create polyCube name by p_ + face index cmds.setAttr(p_name+'.scale', 0.3, 0.3, 0.3) if on_face: cmds.setAttr( p_name+'.translate', face.face_center[0], face.face_center[1], face.face_center[2]) else: cmds.setAttr(p_name+'.translate', face.vertex.x, face.vertex.y, face.vertex.z) cmds.select(all=True) cmds.parent(p_name, group_name) # cmds.group(p_name, parent=group_name) cmds.select(all=True) def start(): # shapes = cmds.ls(selection=True, shapes=True, dagObjects=True) # set_pos_vertex(get_shapes(), 1) # set_random_vertex(get_shapes(), 1) create_boxes(get_shapes(), 'boxes', 'v_', 0)
null
null
null
null
[ 0 ]
1,311
325efe65030ad3488a7fc45c0d4a289eb0b17196
<mask token> class StepUtilTest(wf_testcase.WaterfallTestCase): def testGetLowerBoundBuildNumber(self): self.assertEqual(5, step_util._GetLowerBoundBuildNumber(5, 100)) self.assertEqual(50, step_util._GetLowerBoundBuildNumber(None, 100, 200)) self.assertEqual(100, step_util._GetLowerBoundBuildNumber(None, 600, 500)) def testGetBoundingIsolatedTargets(self): lower_bound_commit_position = 1000 upper_bound_commit_position = 1010 requested_commit_position = 1005 build_id = 10000 target_name = 'browser_tests' master_name = 'm' builder_name = 'b' luci_name = 'chromium' bucket_name = 'ci' gitiles_host = 'chromium.googlesource.com' gitiles_project = 'chromium/src' gitiles_ref = 'refs/heads/master' gerrit_patch = '' lower_bound_revision = 'r1000' upper_bound_revision = 'r1010' lower_bound_target = IsolatedTarget.Create(build_id - 1, luci_name, bucket_name, master_name, builder_name, gitiles_host, gitiles_project, gitiles_ref, gerrit_patch, target_name, 'hash_1', lower_bound_commit_position, lower_bound_revision) lower_bound_target.put() upper_bound_target = IsolatedTarget.Create(build_id, luci_name, bucket_name, master_name, builder_name, gitiles_host, gitiles_project, gitiles_ref, gerrit_patch, target_name, 'hash_2', upper_bound_commit_position, upper_bound_revision) upper_bound_target.put() self.assertEqual((lower_bound_target, upper_bound_target), step_util.GetBoundingIsolatedTargets(master_name, builder_name, target_name, requested_commit_position)) <mask token> @mock.patch.object(build_util, 'GetBuildInfo') def testGetValidBuildSearchAscendingOutOfRange(self, mocked_get_build_info ): master_name = 'm' builder_name = 'b' step_name = 's' invalid_build_100 = BuildInfo(master_name, builder_name, 100) invalid_build_101 = BuildInfo(master_name, builder_name, 101) valid_build_102 = BuildInfo(master_name, builder_name, 102) valid_build_102.commit_position = 1020 mocked_get_build_info.side_effect = [invalid_build_100, invalid_build_101, valid_build_102] self.assertIsNone(step_util.GetValidBuild(master_name, builder_name, 100, step_name, True, 1)) @mock.patch.object(build_util, 'GetBuildInfo') def testGetValidBuildSearchDescending(self, mocked_get_build_info): master_name = 'm' builder_name = 'b' step_name = 's' invalid_build_100 = BuildInfo(master_name, builder_name, 100) invalid_build_99 = BuildInfo(master_name, builder_name, 99) valid_build_98 = BuildInfo(master_name, builder_name, 98) valid_build_98.commit_position = 980 mocked_get_build_info.side_effect = [invalid_build_100, invalid_build_99, valid_build_98] self.assertEqual(valid_build_98, step_util.GetValidBuild( master_name, builder_name, 100, step_name, True, 2)) <mask token> @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitBeforeEarliestBuild(self, *_): lower_bound_build_number = 3 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', lower_bound_build_number, 100, 10) self.assertIsNone(lower_bound) self.assertEqual(lower_bound_build_number, upper_bound.build_number) <mask token> <mask token> @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=False) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitAfterLatestBuildInvalid(self, *_ ): upper_bound_build_number = 5 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', None, upper_bound_build_number, 10000) self.assertIsNone(lower_bound) self.assertIsNone(upper_bound) @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitRightAtUpperBound(self, *_): upper_bound_build_number = 4 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', None, upper_bound_build_number, 50) self.assertEqual(50, lower_bound.commit_position) self.assertEqual(50, upper_bound.commit_position) <mask token> def testIsStepSupportedByFinditObjectNone(self): self.assertFalse(step_util.IsStepSupportedByFindit(None, 'step', 'm')) <mask token> def testIsStepSupportedByFinditOtherIsolatedScriptTest(self): self.assertFalse(step_util.IsStepSupportedByFindit( WebkitLayoutTestResults(None), 'telemetry_perf_tests', 'm')) @mock.patch.object(waterfall_config, 'StepIsSupportedForMaster', return_value=True) def testIsStepSupportedByFinditWebkitLayoutTests(self, _): self.assertTrue(step_util.IsStepSupportedByFindit( WebkitLayoutTestResults(None), 'webkit_layout_tests', 'm')) <mask token> @parameterized.expand([({'step_log_return': wf_testcase. SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase. SAMPLE_STEP_METADATA},), ({'step_log_return': wf_testcase. SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase. SAMPLE_STEP_METADATA},), ({'step_log_return': None, 'expected_step_metadata': None},), ({'step_log_return': None, 'expected_step_metadata': None},)]) @mock.patch.object(step_util, 'GetStepLogForLuciBuild') def testGetStepMetadata(self, cases, mock_step_log): mock_step_log.return_value = cases['step_log_return'] step_metadata = step_util.GetStepMetadata(123, 'step') self.assertEqual(cases['expected_step_metadata'], step_metadata) @mock.patch.object(step_util, 'GetStepLogForLuciBuild') def testGetStepMetadataPartialMatch(self, mock_step_log): step_util.GetStepMetadata(123, 'step', True) self.assertIn(True, mock_step_log.call_args[0]) step_util.GetStepMetadata(123, 'step', False) self.assertIn(False, mock_step_log.call_args[0]) <mask token> <mask token> <mask token> <mask token> @mock.patch.object(step_util, 'GetStepLogForLuciBuild', return_value= wf_testcase.SAMPLE_STEP_METADATA) @mock.patch.object(build_util, 'DownloadBuildData') def testLegacyGetStepMetadataFromLUCIBuild(self, mock_build, _): build = WfBuild.Create('m', 'b', 123) build.build_id = '8948240770002521488' build.put() mock_build.return_value = build step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertEqual(step_metadata, wf_testcase.SAMPLE_STEP_METADATA) @mock.patch.object(build_util, 'DownloadBuildData', return_value= MockWaterfallBuild()) @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath', return_value='step') @mock.patch.object(logdog_util, '_GetStreamForStep', return_value='stream') @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value= 'log1/nlog2') def testGetStepLogStdio(self, *_): self.assertEqual('log1/nlog2', step_util.GetWaterfallBuildStepLog( 'm', 'b', 123, 's', None)) <mask token> <mask token> @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None) @mock.patch.object(logdog_util, 'GetLogFromViewUrl') @mock.patch.object(buildbucket_client, 'GetV2Build') def testGetStepLogForLuciBuildNoViewUrl(self, mock_get_build, mock_get_log, _): build_id = '8945610992972640896' mock_log = common_pb2.Log() mock_log.name = 'step_metadata' mock_log.view_url = 'view_url' mock_step = Step() mock_step.name = 's' mock_step.logs.extend([mock_log]) mock_build = Build() mock_build.id = int(build_id) mock_build.steps.extend([mock_step]) mock_get_build.return_value = mock_build self.assertIsNone(step_util.GetStepLogForLuciBuild(build_id, 's', None, 'step_metadata')) self.assertFalse(mock_get_log.called) <mask token> @mock.patch.object(buildbucket_client, 'GetV2Build') @mock.patch.object(step_util, 'GetStepLogFromBuildObject') def testGetStepLogForLuciBuildPartialMatch(self, mock_log_from_build, _): step_util.GetStepLogForLuciBuild('87654321', 's', None) self.assertIn(False, mock_log_from_build.call_args[0]) step_util.GetStepLogForLuciBuild('87654321', 's', None, True) self.assertIn(True, mock_log_from_build.call_args[0]) @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None) def testGetStepLogFromBuildObjectPartialMatch(self, mock_get_log_url): step_util.GetStepLogFromBuildObject(Build(), 'full_step_name', 'http_client') self.assertIn(False, mock_get_log_url.call_args[0]) step_util.GetStepLogFromBuildObject(Build(), 'full_step_name', 'http_client', partial_match=True) self.assertIn(True, mock_get_log_url.call_args[0]) def testGetStepLogViewUrlNoMatchingLog(self): build_id = 8945610992972640896 mock_log = common_pb2.Log() mock_log.name = 'another_log' mock_log.view_url = 'view_url' mock_step1 = Step() mock_step1.name = 's1' mock_step1.logs.extend([mock_log]) mock_step2 = Step() mock_step2.name = 's2' mock_step2.logs.extend([mock_log]) mock_build = Build() mock_build.id = build_id mock_build.steps.extend([mock_step1, mock_step2]) self.assertIsNone(step_util._GetStepLogViewUrl(mock_build, 's2', 'log') ) @parameterized.expand([(True, 'step_name', 'view_url', 'view_url_partial_match'), (False, 'step_name', 'view_url', None)]) def testGetStepLogViewUrlPartialMatching(self, partial_match, full_step_name, expected_url_in_build1, expected_url_in_build2): mock_step1 = Step() mock_step1.name = 'step_name' mock_log1 = common_pb2.Log() mock_log1.name = 'log' mock_log1.view_url = 'view_url' mock_step1.logs.extend([mock_log1]) mock_step2 = Step() mock_step2.name = 'step_name_longer' mock_log2 = common_pb2.Log() mock_log2.name = 'log' mock_log2.view_url = 'view_url_partial_match' mock_step2.logs.extend([mock_log2]) mock_build1 = Build() mock_build1.steps.extend([mock_step1, mock_step2]) self.assertEqual(expected_url_in_build1, step_util. _GetStepLogViewUrl(mock_build1, full_step_name, 'log', partial_match=partial_match)) mock_build2 = Build() mock_build2.steps.extend([mock_step2]) self.assertEqual(expected_url_in_build2, step_util. _GetStepLogViewUrl(mock_build2, full_step_name, 'log', partial_match=partial_match)) <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value=None) def testLegacyGetIsolateTargetNameStepMetadataIsNone(self, _): self.assertEqual(None, step_util.LegacyGetIsolateTargetName('m', 'b', 200, 'viz_browser_tests (with patch) on Android')) <mask token> @parameterized.expand([({'isolate_target_name': 'isolate_target'}, 'isolate_target'), (None, None), ({'a': 'b'}, None)]) @mock.patch.object(step_util, 'GetStepMetadata') def testGetIsolateTargetName(self, step_metadata, expected_isolate_target, mocked_get_stepmeta): mocked_get_stepmeta.return_value = step_metadata self.assertEqual(expected_isolate_target, step_util. GetIsolateTargetName(123, 'full step name')) @mock.patch.object(step_util, 'GetStepMetadata') def testGetIsolateTargetPartialMatch(self, mock_get_step_metadata): step_util.GetIsolateTargetName(123, 'full step name') self.assertIn(False, mock_get_step_metadata.call_args[0]) step_util.GetIsolateTargetName(123, 'full step name', True) self.assertIn(True, mock_get_step_metadata.call_args[0]) @parameterized.expand([(wf_testcase.SAMPLE_STEP_METADATA, 'platform'), (None, None)]) @mock.patch.object(step_util, 'GetStepMetadata') def testGetOS(self, mock_fn_return, expected_platform, mock_fn): mock_fn.return_value = mock_fn_return self.assertEqual(expected_platform, step_util.GetOS(123, 'builder_name', 'step_name')) <mask token> @mock.patch.object(step_util, 'GetStepMetadata', return_value= wf_testcase.SAMPLE_STEP_METADATA) def testGetOSCached(self, mock_fn): self.assertEqual('platform', step_util.GetOS(123, 'builder_name', 'step_name')) self.assertEqual(1, mock_fn.call_count) self.assertEqual('platform', step_util.GetOS(123, 'builder_name', 'step_name')) self.assertEqual(1, mock_fn.call_count) def testGetStepStartAndEndTime(self): build_id = '8945610992972640896' start_time = datetime.datetime(2019, 3, 6) end_time = datetime.datetime(2019, 3, 6, 0, 0, 10) step = Step() step.name = 's' step.start_time.FromDatetime(start_time) step.end_time.FromDatetime(end_time) build = Build() build.id = int(build_id) build.steps.extend([step]) self.assertEqual((start_time, end_time), step_util. GetStepStartAndEndTime(build, 's')) self.assertEqual((None, None), step_util.GetStepStartAndEndTime( build, 's2'))
<mask token> class StepUtilTest(wf_testcase.WaterfallTestCase): def testGetLowerBoundBuildNumber(self): self.assertEqual(5, step_util._GetLowerBoundBuildNumber(5, 100)) self.assertEqual(50, step_util._GetLowerBoundBuildNumber(None, 100, 200)) self.assertEqual(100, step_util._GetLowerBoundBuildNumber(None, 600, 500)) def testGetBoundingIsolatedTargets(self): lower_bound_commit_position = 1000 upper_bound_commit_position = 1010 requested_commit_position = 1005 build_id = 10000 target_name = 'browser_tests' master_name = 'm' builder_name = 'b' luci_name = 'chromium' bucket_name = 'ci' gitiles_host = 'chromium.googlesource.com' gitiles_project = 'chromium/src' gitiles_ref = 'refs/heads/master' gerrit_patch = '' lower_bound_revision = 'r1000' upper_bound_revision = 'r1010' lower_bound_target = IsolatedTarget.Create(build_id - 1, luci_name, bucket_name, master_name, builder_name, gitiles_host, gitiles_project, gitiles_ref, gerrit_patch, target_name, 'hash_1', lower_bound_commit_position, lower_bound_revision) lower_bound_target.put() upper_bound_target = IsolatedTarget.Create(build_id, luci_name, bucket_name, master_name, builder_name, gitiles_host, gitiles_project, gitiles_ref, gerrit_patch, target_name, 'hash_2', upper_bound_commit_position, upper_bound_revision) upper_bound_target.put() self.assertEqual((lower_bound_target, upper_bound_target), step_util.GetBoundingIsolatedTargets(master_name, builder_name, target_name, requested_commit_position)) <mask token> @mock.patch.object(build_util, 'GetBuildInfo') def testGetValidBuildSearchAscendingOutOfRange(self, mocked_get_build_info ): master_name = 'm' builder_name = 'b' step_name = 's' invalid_build_100 = BuildInfo(master_name, builder_name, 100) invalid_build_101 = BuildInfo(master_name, builder_name, 101) valid_build_102 = BuildInfo(master_name, builder_name, 102) valid_build_102.commit_position = 1020 mocked_get_build_info.side_effect = [invalid_build_100, invalid_build_101, valid_build_102] self.assertIsNone(step_util.GetValidBuild(master_name, builder_name, 100, step_name, True, 1)) @mock.patch.object(build_util, 'GetBuildInfo') def testGetValidBuildSearchDescending(self, mocked_get_build_info): master_name = 'm' builder_name = 'b' step_name = 's' invalid_build_100 = BuildInfo(master_name, builder_name, 100) invalid_build_99 = BuildInfo(master_name, builder_name, 99) valid_build_98 = BuildInfo(master_name, builder_name, 98) valid_build_98.commit_position = 980 mocked_get_build_info.side_effect = [invalid_build_100, invalid_build_99, valid_build_98] self.assertEqual(valid_build_98, step_util.GetValidBuild( master_name, builder_name, 100, step_name, True, 2)) @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepExactMatch(self, *_): lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', 0, 100, 30) self.assertEqual(1, lower_bound.build_number) self.assertEqual(2, upper_bound.build_number) @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitBeforeEarliestBuild(self, *_): lower_bound_build_number = 3 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', lower_bound_build_number, 100, 10) self.assertIsNone(lower_bound) self.assertEqual(lower_bound_build_number, upper_bound.build_number) <mask token> <mask token> @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=False) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitAfterLatestBuildInvalid(self, *_ ): upper_bound_build_number = 5 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', None, upper_bound_build_number, 10000) self.assertIsNone(lower_bound) self.assertIsNone(upper_bound) @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitRightAtUpperBound(self, *_): upper_bound_build_number = 4 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', None, upper_bound_build_number, 50) self.assertEqual(50, lower_bound.commit_position) self.assertEqual(50, upper_bound.commit_position) <mask token> def testIsStepSupportedByFinditObjectNone(self): self.assertFalse(step_util.IsStepSupportedByFindit(None, 'step', 'm')) <mask token> def testIsStepSupportedByFinditOtherIsolatedScriptTest(self): self.assertFalse(step_util.IsStepSupportedByFindit( WebkitLayoutTestResults(None), 'telemetry_perf_tests', 'm')) @mock.patch.object(waterfall_config, 'StepIsSupportedForMaster', return_value=True) def testIsStepSupportedByFinditWebkitLayoutTests(self, _): self.assertTrue(step_util.IsStepSupportedByFindit( WebkitLayoutTestResults(None), 'webkit_layout_tests', 'm')) <mask token> @parameterized.expand([({'step_log_return': wf_testcase. SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase. SAMPLE_STEP_METADATA},), ({'step_log_return': wf_testcase. SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase. SAMPLE_STEP_METADATA},), ({'step_log_return': None, 'expected_step_metadata': None},), ({'step_log_return': None, 'expected_step_metadata': None},)]) @mock.patch.object(step_util, 'GetStepLogForLuciBuild') def testGetStepMetadata(self, cases, mock_step_log): mock_step_log.return_value = cases['step_log_return'] step_metadata = step_util.GetStepMetadata(123, 'step') self.assertEqual(cases['expected_step_metadata'], step_metadata) @mock.patch.object(step_util, 'GetStepLogForLuciBuild') def testGetStepMetadataPartialMatch(self, mock_step_log): step_util.GetStepMetadata(123, 'step', True) self.assertIn(True, mock_step_log.call_args[0]) step_util.GetStepMetadata(123, 'step', False) self.assertIn(False, mock_step_log.call_args[0]) <mask token> @mock.patch.object(build_util, 'DownloadBuildData', return_value= MockWaterfallBuild()) @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value=':') def testMalformattedNinjaInfo(self, *_): step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'json.output[ninja_info]') self.assertIsNone(step_metadata) @mock.patch.object(build_util, 'DownloadBuildData', return_value= MockWaterfallBuild()) @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath', return_value=None) def testLegacyGetStepMetadataStepNone(self, *_): step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertIsNone(step_metadata) <mask token> @mock.patch.object(step_util, 'GetStepLogForLuciBuild', return_value= wf_testcase.SAMPLE_STEP_METADATA) @mock.patch.object(build_util, 'DownloadBuildData') def testLegacyGetStepMetadataFromLUCIBuild(self, mock_build, _): build = WfBuild.Create('m', 'b', 123) build.build_id = '8948240770002521488' build.put() mock_build.return_value = build step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertEqual(step_metadata, wf_testcase.SAMPLE_STEP_METADATA) @mock.patch.object(build_util, 'DownloadBuildData', return_value= MockWaterfallBuild()) @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath', return_value='step') @mock.patch.object(logdog_util, '_GetStreamForStep', return_value='stream') @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value= 'log1/nlog2') def testGetStepLogStdio(self, *_): self.assertEqual('log1/nlog2', step_util.GetWaterfallBuildStepLog( 'm', 'b', 123, 's', None)) @mock.patch.object(build_util, 'DownloadBuildData', return_value= MockWaterfallBuild()) @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value='log') @mock.patch.object(logging, 'error') def testGetStepLogNotJosonLoadable(self, mocked_log, *_): self.assertIsNone(step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata')) mocked_log.assert_called_with( 'Failed to json load data for step_metadata. Data is: log.') <mask token> @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None) @mock.patch.object(logdog_util, 'GetLogFromViewUrl') @mock.patch.object(buildbucket_client, 'GetV2Build') def testGetStepLogForLuciBuildNoViewUrl(self, mock_get_build, mock_get_log, _): build_id = '8945610992972640896' mock_log = common_pb2.Log() mock_log.name = 'step_metadata' mock_log.view_url = 'view_url' mock_step = Step() mock_step.name = 's' mock_step.logs.extend([mock_log]) mock_build = Build() mock_build.id = int(build_id) mock_build.steps.extend([mock_step]) mock_get_build.return_value = mock_build self.assertIsNone(step_util.GetStepLogForLuciBuild(build_id, 's', None, 'step_metadata')) self.assertFalse(mock_get_log.called) <mask token> @mock.patch.object(buildbucket_client, 'GetV2Build') @mock.patch.object(step_util, 'GetStepLogFromBuildObject') def testGetStepLogForLuciBuildPartialMatch(self, mock_log_from_build, _): step_util.GetStepLogForLuciBuild('87654321', 's', None) self.assertIn(False, mock_log_from_build.call_args[0]) step_util.GetStepLogForLuciBuild('87654321', 's', None, True) self.assertIn(True, mock_log_from_build.call_args[0]) @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None) def testGetStepLogFromBuildObjectPartialMatch(self, mock_get_log_url): step_util.GetStepLogFromBuildObject(Build(), 'full_step_name', 'http_client') self.assertIn(False, mock_get_log_url.call_args[0]) step_util.GetStepLogFromBuildObject(Build(), 'full_step_name', 'http_client', partial_match=True) self.assertIn(True, mock_get_log_url.call_args[0]) def testGetStepLogViewUrlNoMatchingLog(self): build_id = 8945610992972640896 mock_log = common_pb2.Log() mock_log.name = 'another_log' mock_log.view_url = 'view_url' mock_step1 = Step() mock_step1.name = 's1' mock_step1.logs.extend([mock_log]) mock_step2 = Step() mock_step2.name = 's2' mock_step2.logs.extend([mock_log]) mock_build = Build() mock_build.id = build_id mock_build.steps.extend([mock_step1, mock_step2]) self.assertIsNone(step_util._GetStepLogViewUrl(mock_build, 's2', 'log') ) @parameterized.expand([(True, 'step_name', 'view_url', 'view_url_partial_match'), (False, 'step_name', 'view_url', None)]) def testGetStepLogViewUrlPartialMatching(self, partial_match, full_step_name, expected_url_in_build1, expected_url_in_build2): mock_step1 = Step() mock_step1.name = 'step_name' mock_log1 = common_pb2.Log() mock_log1.name = 'log' mock_log1.view_url = 'view_url' mock_step1.logs.extend([mock_log1]) mock_step2 = Step() mock_step2.name = 'step_name_longer' mock_log2 = common_pb2.Log() mock_log2.name = 'log' mock_log2.view_url = 'view_url_partial_match' mock_step2.logs.extend([mock_log2]) mock_build1 = Build() mock_build1.steps.extend([mock_step1, mock_step2]) self.assertEqual(expected_url_in_build1, step_util. _GetStepLogViewUrl(mock_build1, full_step_name, 'log', partial_match=partial_match)) mock_build2 = Build() mock_build2.steps.extend([mock_step2]) self.assertEqual(expected_url_in_build2, step_util. _GetStepLogViewUrl(mock_build2, full_step_name, 'log', partial_match=partial_match)) <mask token> <mask token> <mask token> @mock.patch.object(step_util, 'GetStepLogForLuciBuild') def testGetStepMetadataCached(self, mock_fn, *_): mock_fn.side_effect = [None, {'canonical_step_name': 'step_name'}] self.assertEqual(None, step_util.GetStepMetadata(123, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 1) self.assertEqual({'canonical_step_name': 'step_name'}, step_util. GetStepMetadata(123, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 2) self.assertEqual({'canonical_step_name': 'step_name'}, step_util. GetStepMetadata(123, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 2) <mask token> <mask token> @mock.patch.object(step_util, 'GetStepMetadata') def testGetCanonicalStepNamePartialMatch(self, mock_get_step_metadata): step_util.GetCanonicalStepName(123, 'full step name') self.assertIn(False, mock_get_step_metadata.call_args[0]) step_util.GetCanonicalStepName(123, 'full step name', True) self.assertIn(True, mock_get_step_metadata.call_args[0]) <mask token> @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value=None) def testLegacyGetIsolateTargetNameStepMetadataIsNone(self, _): self.assertEqual(None, step_util.LegacyGetIsolateTargetName('m', 'b', 200, 'viz_browser_tests (with patch) on Android')) <mask token> @parameterized.expand([({'isolate_target_name': 'isolate_target'}, 'isolate_target'), (None, None), ({'a': 'b'}, None)]) @mock.patch.object(step_util, 'GetStepMetadata') def testGetIsolateTargetName(self, step_metadata, expected_isolate_target, mocked_get_stepmeta): mocked_get_stepmeta.return_value = step_metadata self.assertEqual(expected_isolate_target, step_util. GetIsolateTargetName(123, 'full step name')) @mock.patch.object(step_util, 'GetStepMetadata') def testGetIsolateTargetPartialMatch(self, mock_get_step_metadata): step_util.GetIsolateTargetName(123, 'full step name') self.assertIn(False, mock_get_step_metadata.call_args[0]) step_util.GetIsolateTargetName(123, 'full step name', True) self.assertIn(True, mock_get_step_metadata.call_args[0]) @parameterized.expand([(wf_testcase.SAMPLE_STEP_METADATA, 'platform'), (None, None)]) @mock.patch.object(step_util, 'GetStepMetadata') def testGetOS(self, mock_fn_return, expected_platform, mock_fn): mock_fn.return_value = mock_fn_return self.assertEqual(expected_platform, step_util.GetOS(123, 'builder_name', 'step_name')) <mask token> @mock.patch.object(step_util, 'GetStepMetadata', return_value= wf_testcase.SAMPLE_STEP_METADATA) def testGetOSCached(self, mock_fn): self.assertEqual('platform', step_util.GetOS(123, 'builder_name', 'step_name')) self.assertEqual(1, mock_fn.call_count) self.assertEqual('platform', step_util.GetOS(123, 'builder_name', 'step_name')) self.assertEqual(1, mock_fn.call_count) def testGetStepStartAndEndTime(self): build_id = '8945610992972640896' start_time = datetime.datetime(2019, 3, 6) end_time = datetime.datetime(2019, 3, 6, 0, 0, 10) step = Step() step.name = 's' step.start_time.FromDatetime(start_time) step.end_time.FromDatetime(end_time) build = Build() build.id = int(build_id) build.steps.extend([step]) self.assertEqual((start_time, end_time), step_util. GetStepStartAndEndTime(build, 's')) self.assertEqual((None, None), step_util.GetStepStartAndEndTime( build, 's2'))
<mask token> class StepUtilTest(wf_testcase.WaterfallTestCase): def testGetLowerBoundBuildNumber(self): self.assertEqual(5, step_util._GetLowerBoundBuildNumber(5, 100)) self.assertEqual(50, step_util._GetLowerBoundBuildNumber(None, 100, 200)) self.assertEqual(100, step_util._GetLowerBoundBuildNumber(None, 600, 500)) def testGetBoundingIsolatedTargets(self): lower_bound_commit_position = 1000 upper_bound_commit_position = 1010 requested_commit_position = 1005 build_id = 10000 target_name = 'browser_tests' master_name = 'm' builder_name = 'b' luci_name = 'chromium' bucket_name = 'ci' gitiles_host = 'chromium.googlesource.com' gitiles_project = 'chromium/src' gitiles_ref = 'refs/heads/master' gerrit_patch = '' lower_bound_revision = 'r1000' upper_bound_revision = 'r1010' lower_bound_target = IsolatedTarget.Create(build_id - 1, luci_name, bucket_name, master_name, builder_name, gitiles_host, gitiles_project, gitiles_ref, gerrit_patch, target_name, 'hash_1', lower_bound_commit_position, lower_bound_revision) lower_bound_target.put() upper_bound_target = IsolatedTarget.Create(build_id, luci_name, bucket_name, master_name, builder_name, gitiles_host, gitiles_project, gitiles_ref, gerrit_patch, target_name, 'hash_2', upper_bound_commit_position, upper_bound_revision) upper_bound_target.put() self.assertEqual((lower_bound_target, upper_bound_target), step_util.GetBoundingIsolatedTargets(master_name, builder_name, target_name, requested_commit_position)) <mask token> @mock.patch.object(build_util, 'GetBuildInfo') def testGetValidBuildSearchAscendingOutOfRange(self, mocked_get_build_info ): master_name = 'm' builder_name = 'b' step_name = 's' invalid_build_100 = BuildInfo(master_name, builder_name, 100) invalid_build_101 = BuildInfo(master_name, builder_name, 101) valid_build_102 = BuildInfo(master_name, builder_name, 102) valid_build_102.commit_position = 1020 mocked_get_build_info.side_effect = [invalid_build_100, invalid_build_101, valid_build_102] self.assertIsNone(step_util.GetValidBuild(master_name, builder_name, 100, step_name, True, 1)) @mock.patch.object(build_util, 'GetBuildInfo') def testGetValidBuildSearchDescending(self, mocked_get_build_info): master_name = 'm' builder_name = 'b' step_name = 's' invalid_build_100 = BuildInfo(master_name, builder_name, 100) invalid_build_99 = BuildInfo(master_name, builder_name, 99) valid_build_98 = BuildInfo(master_name, builder_name, 98) valid_build_98.commit_position = 980 mocked_get_build_info.side_effect = [invalid_build_100, invalid_build_99, valid_build_98] self.assertEqual(valid_build_98, step_util.GetValidBuild( master_name, builder_name, 100, step_name, True, 2)) @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepExactMatch(self, *_): lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', 0, 100, 30) self.assertEqual(1, lower_bound.build_number) self.assertEqual(2, upper_bound.build_number) @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitBeforeEarliestBuild(self, *_): lower_bound_build_number = 3 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', lower_bound_build_number, 100, 10) self.assertIsNone(lower_bound) self.assertEqual(lower_bound_build_number, upper_bound.build_number) <mask token> <mask token> @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=False) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitAfterLatestBuildInvalid(self, *_ ): upper_bound_build_number = 5 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', None, upper_bound_build_number, 10000) self.assertIsNone(lower_bound) self.assertIsNone(upper_bound) @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitRightAtUpperBound(self, *_): upper_bound_build_number = 4 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', None, upper_bound_build_number, 50) self.assertEqual(50, lower_bound.commit_position) self.assertEqual(50, upper_bound.commit_position) @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitRightAtLowerBound(self, *_): upper_bound_build_number = 4 lower_bound_build_number = 1 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', lower_bound_build_number, upper_bound_build_number, 20) self.assertEqual(20, lower_bound.commit_position) self.assertEqual(20, upper_bound.commit_position) def testIsStepSupportedByFinditObjectNone(self): self.assertFalse(step_util.IsStepSupportedByFindit(None, 'step', 'm')) @mock.patch.object(waterfall_config, 'StepIsSupportedForMaster', return_value=False) def testStepNotSupportedByFindit(self, _): self.assertFalse(step_util.IsStepSupportedByFindit( WebkitLayoutTestResults(None), 'step', 'm')) def testIsStepSupportedByFinditOtherIsolatedScriptTest(self): self.assertFalse(step_util.IsStepSupportedByFindit( WebkitLayoutTestResults(None), 'telemetry_perf_tests', 'm')) @mock.patch.object(waterfall_config, 'StepIsSupportedForMaster', return_value=True) def testIsStepSupportedByFinditWebkitLayoutTests(self, _): self.assertTrue(step_util.IsStepSupportedByFindit( WebkitLayoutTestResults(None), 'webkit_layout_tests', 'm')) @mock.patch.object(waterfall_config, 'StepIsSupportedForMaster', return_value=True) def testIsStepSupportedByFinditGtests(self, _): self.assertTrue(step_util.IsStepSupportedByFindit(GtestTestResults( None), 'browser_tests', 'm')) @parameterized.expand([({'step_log_return': wf_testcase. SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase. SAMPLE_STEP_METADATA},), ({'step_log_return': wf_testcase. SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase. SAMPLE_STEP_METADATA},), ({'step_log_return': None, 'expected_step_metadata': None},), ({'step_log_return': None, 'expected_step_metadata': None},)]) @mock.patch.object(step_util, 'GetStepLogForLuciBuild') def testGetStepMetadata(self, cases, mock_step_log): mock_step_log.return_value = cases['step_log_return'] step_metadata = step_util.GetStepMetadata(123, 'step') self.assertEqual(cases['expected_step_metadata'], step_metadata) @mock.patch.object(step_util, 'GetStepLogForLuciBuild') def testGetStepMetadataPartialMatch(self, mock_step_log): step_util.GetStepMetadata(123, 'step', True) self.assertIn(True, mock_step_log.call_args[0]) step_util.GetStepMetadata(123, 'step', False) self.assertIn(False, mock_step_log.call_args[0]) @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath', return_value='step') @mock.patch.object(logdog_util, '_GetStreamForStep', return_value= 'log_stream') @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value=json. dumps(wf_testcase.SAMPLE_STEP_METADATA)) @mock.patch.object(build_util, 'DownloadBuildData', return_value= MockWaterfallBuild()) def testLegacyGetStepMetadata(self, *_): step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertEqual(step_metadata, wf_testcase.SAMPLE_STEP_METADATA) @mock.patch.object(build_util, 'DownloadBuildData', return_value= MockWaterfallBuild()) @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value=':') def testMalformattedNinjaInfo(self, *_): step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'json.output[ninja_info]') self.assertIsNone(step_metadata) @mock.patch.object(build_util, 'DownloadBuildData', return_value= MockWaterfallBuild()) @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath', return_value=None) def testLegacyGetStepMetadataStepNone(self, *_): step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertIsNone(step_metadata) @mock.patch.object(build_util, 'DownloadBuildData', return_value= MockWaterfallBuild()) @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath', return_value='step') @mock.patch.object(logdog_util, '_GetStreamForStep', return_value=None) def testLegacyGetStepMetadataStreamNone(self, *_): step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertIsNone(step_metadata) @mock.patch.object(step_util, 'GetStepLogForLuciBuild', return_value= wf_testcase.SAMPLE_STEP_METADATA) @mock.patch.object(build_util, 'DownloadBuildData') def testLegacyGetStepMetadataFromLUCIBuild(self, mock_build, _): build = WfBuild.Create('m', 'b', 123) build.build_id = '8948240770002521488' build.put() mock_build.return_value = build step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertEqual(step_metadata, wf_testcase.SAMPLE_STEP_METADATA) @mock.patch.object(build_util, 'DownloadBuildData', return_value= MockWaterfallBuild()) @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath', return_value='step') @mock.patch.object(logdog_util, '_GetStreamForStep', return_value='stream') @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value= 'log1/nlog2') def testGetStepLogStdio(self, *_): self.assertEqual('log1/nlog2', step_util.GetWaterfallBuildStepLog( 'm', 'b', 123, 's', None)) @mock.patch.object(build_util, 'DownloadBuildData', return_value= MockWaterfallBuild()) @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value='log') @mock.patch.object(logging, 'error') def testGetStepLogNotJosonLoadable(self, mocked_log, *_): self.assertIsNone(step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata')) mocked_log.assert_called_with( 'Failed to json load data for step_metadata. Data is: log.') @mock.patch.object(buildbucket_client, 'GetV2Build', return_value=None) def testGetStepLogForLuciBuildError(self, _): self.assertIsNone(step_util.GetStepLogForLuciBuild('87654321', 's', None)) @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None) @mock.patch.object(logdog_util, 'GetLogFromViewUrl') @mock.patch.object(buildbucket_client, 'GetV2Build') def testGetStepLogForLuciBuildNoViewUrl(self, mock_get_build, mock_get_log, _): build_id = '8945610992972640896' mock_log = common_pb2.Log() mock_log.name = 'step_metadata' mock_log.view_url = 'view_url' mock_step = Step() mock_step.name = 's' mock_step.logs.extend([mock_log]) mock_build = Build() mock_build.id = int(build_id) mock_build.steps.extend([mock_step]) mock_get_build.return_value = mock_build self.assertIsNone(step_util.GetStepLogForLuciBuild(build_id, 's', None, 'step_metadata')) self.assertFalse(mock_get_log.called) <mask token> @mock.patch.object(buildbucket_client, 'GetV2Build') @mock.patch.object(step_util, 'GetStepLogFromBuildObject') def testGetStepLogForLuciBuildPartialMatch(self, mock_log_from_build, _): step_util.GetStepLogForLuciBuild('87654321', 's', None) self.assertIn(False, mock_log_from_build.call_args[0]) step_util.GetStepLogForLuciBuild('87654321', 's', None, True) self.assertIn(True, mock_log_from_build.call_args[0]) @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None) def testGetStepLogFromBuildObjectPartialMatch(self, mock_get_log_url): step_util.GetStepLogFromBuildObject(Build(), 'full_step_name', 'http_client') self.assertIn(False, mock_get_log_url.call_args[0]) step_util.GetStepLogFromBuildObject(Build(), 'full_step_name', 'http_client', partial_match=True) self.assertIn(True, mock_get_log_url.call_args[0]) def testGetStepLogViewUrlNoMatchingLog(self): build_id = 8945610992972640896 mock_log = common_pb2.Log() mock_log.name = 'another_log' mock_log.view_url = 'view_url' mock_step1 = Step() mock_step1.name = 's1' mock_step1.logs.extend([mock_log]) mock_step2 = Step() mock_step2.name = 's2' mock_step2.logs.extend([mock_log]) mock_build = Build() mock_build.id = build_id mock_build.steps.extend([mock_step1, mock_step2]) self.assertIsNone(step_util._GetStepLogViewUrl(mock_build, 's2', 'log') ) @parameterized.expand([(True, 'step_name', 'view_url', 'view_url_partial_match'), (False, 'step_name', 'view_url', None)]) def testGetStepLogViewUrlPartialMatching(self, partial_match, full_step_name, expected_url_in_build1, expected_url_in_build2): mock_step1 = Step() mock_step1.name = 'step_name' mock_log1 = common_pb2.Log() mock_log1.name = 'log' mock_log1.view_url = 'view_url' mock_step1.logs.extend([mock_log1]) mock_step2 = Step() mock_step2.name = 'step_name_longer' mock_log2 = common_pb2.Log() mock_log2.name = 'log' mock_log2.view_url = 'view_url_partial_match' mock_step2.logs.extend([mock_log2]) mock_build1 = Build() mock_build1.steps.extend([mock_step1, mock_step2]) self.assertEqual(expected_url_in_build1, step_util. _GetStepLogViewUrl(mock_build1, full_step_name, 'log', partial_match=partial_match)) mock_build2 = Build() mock_build2.steps.extend([mock_step2]) self.assertEqual(expected_url_in_build2, step_util. _GetStepLogViewUrl(mock_build2, full_step_name, 'log', partial_match=partial_match)) @mock.patch.object(step_util, 'GetWaterfallBuildStepLog', return_value= {'canonical_step_name': 'unsupported_step1'}) def testStepIsSupportedForMaster(self, _): master_name = 'master1' builder_name = 'b' build_number = 123 step_name = 'unsupported_step1 on master1' self.assertFalse(step_util.StepIsSupportedForMaster(master_name, builder_name, build_number, step_name)) <mask token> @mock.patch.object(step_util, 'GetWaterfallBuildStepLog') def testLegacyGetStepMetadataCached(self, mock_fn): mock_fn.side_effect = ['invalid', {'canonical_step_name': 'step_name'}] self.assertEqual('invalid', step_util.LegacyGetStepMetadata('m', 'b', 201, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 1) self.assertEqual({'canonical_step_name': 'step_name'}, step_util. LegacyGetStepMetadata('m', 'b', 201, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 2) self.assertEqual({'canonical_step_name': 'step_name'}, step_util. LegacyGetStepMetadata('m', 'b', 201, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 2) @mock.patch.object(step_util, 'GetStepLogForLuciBuild') def testGetStepMetadataCached(self, mock_fn, *_): mock_fn.side_effect = [None, {'canonical_step_name': 'step_name'}] self.assertEqual(None, step_util.GetStepMetadata(123, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 1) self.assertEqual({'canonical_step_name': 'step_name'}, step_util. GetStepMetadata(123, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 2) self.assertEqual({'canonical_step_name': 'step_name'}, step_util. GetStepMetadata(123, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 2) @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value={ 'canonical_step_name': 'step_name'}) def testLegacyGetCanonicalStep(self, _): self.assertEqual('step_name', step_util.LegacyGetCanonicalStepName( 'm', 'b', 200, 'step_name on a platform')) @parameterized.expand([({'canonical_step_name': 'step_name'}, 'step_name'), (None, 'step_name'), ({'a': 'b'}, None)]) @mock.patch.object(step_util, 'GetStepMetadata') def testGetCanonicalStepName(self, step_metadata, expected_canonical_step, mocked_get_step): mocked_get_step.return_value = step_metadata self.assertEqual(expected_canonical_step, step_util. GetCanonicalStepName(123, 'step_name (with patch)')) @mock.patch.object(step_util, 'GetStepMetadata') def testGetCanonicalStepNamePartialMatch(self, mock_get_step_metadata): step_util.GetCanonicalStepName(123, 'full step name') self.assertIn(False, mock_get_step_metadata.call_args[0]) step_util.GetCanonicalStepName(123, 'full step name', True) self.assertIn(True, mock_get_step_metadata.call_args[0]) <mask token> @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value=None) def testLegacyGetIsolateTargetNameStepMetadataIsNone(self, _): self.assertEqual(None, step_util.LegacyGetIsolateTargetName('m', 'b', 200, 'viz_browser_tests (with patch) on Android')) @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value={ 'a': 'b'}) def testLegacyGetIsolateTargetNameIsolateTargetNameIsMissing(self, _): self.assertEqual(None, step_util.LegacyGetIsolateTargetName('m', 'b', 200, 'viz_browser_tests (with patch) on Android')) @parameterized.expand([({'isolate_target_name': 'isolate_target'}, 'isolate_target'), (None, None), ({'a': 'b'}, None)]) @mock.patch.object(step_util, 'GetStepMetadata') def testGetIsolateTargetName(self, step_metadata, expected_isolate_target, mocked_get_stepmeta): mocked_get_stepmeta.return_value = step_metadata self.assertEqual(expected_isolate_target, step_util. GetIsolateTargetName(123, 'full step name')) @mock.patch.object(step_util, 'GetStepMetadata') def testGetIsolateTargetPartialMatch(self, mock_get_step_metadata): step_util.GetIsolateTargetName(123, 'full step name') self.assertIn(False, mock_get_step_metadata.call_args[0]) step_util.GetIsolateTargetName(123, 'full step name', True) self.assertIn(True, mock_get_step_metadata.call_args[0]) @parameterized.expand([(wf_testcase.SAMPLE_STEP_METADATA, 'platform'), (None, None)]) @mock.patch.object(step_util, 'GetStepMetadata') def testGetOS(self, mock_fn_return, expected_platform, mock_fn): mock_fn.return_value = mock_fn_return self.assertEqual(expected_platform, step_util.GetOS(123, 'builder_name', 'step_name')) <mask token> @mock.patch.object(step_util, 'GetStepMetadata', return_value= wf_testcase.SAMPLE_STEP_METADATA) def testGetOSCached(self, mock_fn): self.assertEqual('platform', step_util.GetOS(123, 'builder_name', 'step_name')) self.assertEqual(1, mock_fn.call_count) self.assertEqual('platform', step_util.GetOS(123, 'builder_name', 'step_name')) self.assertEqual(1, mock_fn.call_count) def testGetStepStartAndEndTime(self): build_id = '8945610992972640896' start_time = datetime.datetime(2019, 3, 6) end_time = datetime.datetime(2019, 3, 6, 0, 0, 10) step = Step() step.name = 's' step.start_time.FromDatetime(start_time) step.end_time.FromDatetime(end_time) build = Build() build.id = int(build_id) build.steps.extend([step]) self.assertEqual((start_time, end_time), step_util. GetStepStartAndEndTime(build, 's')) self.assertEqual((None, None), step_util.GetStepStartAndEndTime( build, 's2'))
<mask token> class StepUtilTest(wf_testcase.WaterfallTestCase): def testGetLowerBoundBuildNumber(self): self.assertEqual(5, step_util._GetLowerBoundBuildNumber(5, 100)) self.assertEqual(50, step_util._GetLowerBoundBuildNumber(None, 100, 200)) self.assertEqual(100, step_util._GetLowerBoundBuildNumber(None, 600, 500)) def testGetBoundingIsolatedTargets(self): lower_bound_commit_position = 1000 upper_bound_commit_position = 1010 requested_commit_position = 1005 build_id = 10000 target_name = 'browser_tests' master_name = 'm' builder_name = 'b' luci_name = 'chromium' bucket_name = 'ci' gitiles_host = 'chromium.googlesource.com' gitiles_project = 'chromium/src' gitiles_ref = 'refs/heads/master' gerrit_patch = '' lower_bound_revision = 'r1000' upper_bound_revision = 'r1010' lower_bound_target = IsolatedTarget.Create(build_id - 1, luci_name, bucket_name, master_name, builder_name, gitiles_host, gitiles_project, gitiles_ref, gerrit_patch, target_name, 'hash_1', lower_bound_commit_position, lower_bound_revision) lower_bound_target.put() upper_bound_target = IsolatedTarget.Create(build_id, luci_name, bucket_name, master_name, builder_name, gitiles_host, gitiles_project, gitiles_ref, gerrit_patch, target_name, 'hash_2', upper_bound_commit_position, upper_bound_revision) upper_bound_target.put() self.assertEqual((lower_bound_target, upper_bound_target), step_util.GetBoundingIsolatedTargets(master_name, builder_name, target_name, requested_commit_position)) @mock.patch.object(build_util, 'GetBuildInfo') def testGetValidBuildSearchAscendingWithinRange(self, mocked_get_build_info ): master_name = 'm' builder_name = 'b' step_name = 's' invalid_build_100 = BuildInfo(master_name, builder_name, 100) invalid_build_101 = BuildInfo(master_name, builder_name, 101) valid_build_102 = BuildInfo(master_name, builder_name, 102) valid_build_102.commit_position = 1020 mocked_get_build_info.side_effect = [invalid_build_100, invalid_build_101, valid_build_102] self.assertEqual(valid_build_102, step_util.GetValidBuild( master_name, builder_name, 100, step_name, True, 2)) @mock.patch.object(build_util, 'GetBuildInfo') def testGetValidBuildSearchAscendingOutOfRange(self, mocked_get_build_info ): master_name = 'm' builder_name = 'b' step_name = 's' invalid_build_100 = BuildInfo(master_name, builder_name, 100) invalid_build_101 = BuildInfo(master_name, builder_name, 101) valid_build_102 = BuildInfo(master_name, builder_name, 102) valid_build_102.commit_position = 1020 mocked_get_build_info.side_effect = [invalid_build_100, invalid_build_101, valid_build_102] self.assertIsNone(step_util.GetValidBuild(master_name, builder_name, 100, step_name, True, 1)) @mock.patch.object(build_util, 'GetBuildInfo') def testGetValidBuildSearchDescending(self, mocked_get_build_info): master_name = 'm' builder_name = 'b' step_name = 's' invalid_build_100 = BuildInfo(master_name, builder_name, 100) invalid_build_99 = BuildInfo(master_name, builder_name, 99) valid_build_98 = BuildInfo(master_name, builder_name, 98) valid_build_98.commit_position = 980 mocked_get_build_info.side_effect = [invalid_build_100, invalid_build_99, valid_build_98] self.assertEqual(valid_build_98, step_util.GetValidBuild( master_name, builder_name, 100, step_name, True, 2)) @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepExactMatch(self, *_): lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', 0, 100, 30) self.assertEqual(1, lower_bound.build_number) self.assertEqual(2, upper_bound.build_number) @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitBeforeEarliestBuild(self, *_): lower_bound_build_number = 3 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', lower_bound_build_number, 100, 10) self.assertIsNone(lower_bound) self.assertEqual(lower_bound_build_number, upper_bound.build_number) @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=False) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitBeforeEarliestBuildInValid(self, *_): lower_bound_build_number = 3 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', lower_bound_build_number, 100, 10) self.assertIsNone(lower_bound) self.assertIsNone(upper_bound) @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitAfterLatestBuild(self, *_): upper_bound_build_number = 5 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', None, upper_bound_build_number, 10000) self.assertEqual(upper_bound_build_number, lower_bound.build_number) self.assertIsNone(upper_bound) @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=False) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitAfterLatestBuildInvalid(self, *_ ): upper_bound_build_number = 5 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', None, upper_bound_build_number, 10000) self.assertIsNone(lower_bound) self.assertIsNone(upper_bound) @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitRightAtUpperBound(self, *_): upper_bound_build_number = 4 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', None, upper_bound_build_number, 50) self.assertEqual(50, lower_bound.commit_position) self.assertEqual(50, upper_bound.commit_position) @mock.patch.object(swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitRightAtLowerBound(self, *_): upper_bound_build_number = 4 lower_bound_build_number = 1 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep('m', 'b', 's', lower_bound_build_number, upper_bound_build_number, 20) self.assertEqual(20, lower_bound.commit_position) self.assertEqual(20, upper_bound.commit_position) def testIsStepSupportedByFinditObjectNone(self): self.assertFalse(step_util.IsStepSupportedByFindit(None, 'step', 'm')) @mock.patch.object(waterfall_config, 'StepIsSupportedForMaster', return_value=False) def testStepNotSupportedByFindit(self, _): self.assertFalse(step_util.IsStepSupportedByFindit( WebkitLayoutTestResults(None), 'step', 'm')) def testIsStepSupportedByFinditOtherIsolatedScriptTest(self): self.assertFalse(step_util.IsStepSupportedByFindit( WebkitLayoutTestResults(None), 'telemetry_perf_tests', 'm')) @mock.patch.object(waterfall_config, 'StepIsSupportedForMaster', return_value=True) def testIsStepSupportedByFinditWebkitLayoutTests(self, _): self.assertTrue(step_util.IsStepSupportedByFindit( WebkitLayoutTestResults(None), 'webkit_layout_tests', 'm')) @mock.patch.object(waterfall_config, 'StepIsSupportedForMaster', return_value=True) def testIsStepSupportedByFinditGtests(self, _): self.assertTrue(step_util.IsStepSupportedByFindit(GtestTestResults( None), 'browser_tests', 'm')) @parameterized.expand([({'step_log_return': wf_testcase. SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase. SAMPLE_STEP_METADATA},), ({'step_log_return': wf_testcase. SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase. SAMPLE_STEP_METADATA},), ({'step_log_return': None, 'expected_step_metadata': None},), ({'step_log_return': None, 'expected_step_metadata': None},)]) @mock.patch.object(step_util, 'GetStepLogForLuciBuild') def testGetStepMetadata(self, cases, mock_step_log): mock_step_log.return_value = cases['step_log_return'] step_metadata = step_util.GetStepMetadata(123, 'step') self.assertEqual(cases['expected_step_metadata'], step_metadata) @mock.patch.object(step_util, 'GetStepLogForLuciBuild') def testGetStepMetadataPartialMatch(self, mock_step_log): step_util.GetStepMetadata(123, 'step', True) self.assertIn(True, mock_step_log.call_args[0]) step_util.GetStepMetadata(123, 'step', False) self.assertIn(False, mock_step_log.call_args[0]) @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath', return_value='step') @mock.patch.object(logdog_util, '_GetStreamForStep', return_value= 'log_stream') @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value=json. dumps(wf_testcase.SAMPLE_STEP_METADATA)) @mock.patch.object(build_util, 'DownloadBuildData', return_value= MockWaterfallBuild()) def testLegacyGetStepMetadata(self, *_): step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertEqual(step_metadata, wf_testcase.SAMPLE_STEP_METADATA) @mock.patch.object(build_util, 'DownloadBuildData', return_value= MockWaterfallBuild()) @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value=':') def testMalformattedNinjaInfo(self, *_): step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'json.output[ninja_info]') self.assertIsNone(step_metadata) @mock.patch.object(build_util, 'DownloadBuildData', return_value= MockWaterfallBuild()) @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath', return_value=None) def testLegacyGetStepMetadataStepNone(self, *_): step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertIsNone(step_metadata) @mock.patch.object(build_util, 'DownloadBuildData', return_value= MockWaterfallBuild()) @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath', return_value='step') @mock.patch.object(logdog_util, '_GetStreamForStep', return_value=None) def testLegacyGetStepMetadataStreamNone(self, *_): step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertIsNone(step_metadata) @mock.patch.object(step_util, 'GetStepLogForLuciBuild', return_value= wf_testcase.SAMPLE_STEP_METADATA) @mock.patch.object(build_util, 'DownloadBuildData') def testLegacyGetStepMetadataFromLUCIBuild(self, mock_build, _): build = WfBuild.Create('m', 'b', 123) build.build_id = '8948240770002521488' build.put() mock_build.return_value = build step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertEqual(step_metadata, wf_testcase.SAMPLE_STEP_METADATA) @mock.patch.object(build_util, 'DownloadBuildData', return_value= MockWaterfallBuild()) @mock.patch.object(logdog_util, '_GetAnnotationsProtoForPath', return_value='step') @mock.patch.object(logdog_util, '_GetStreamForStep', return_value='stream') @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value= 'log1/nlog2') def testGetStepLogStdio(self, *_): self.assertEqual('log1/nlog2', step_util.GetWaterfallBuildStepLog( 'm', 'b', 123, 's', None)) @mock.patch.object(build_util, 'DownloadBuildData', return_value= MockWaterfallBuild()) @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value='log') @mock.patch.object(logging, 'error') def testGetStepLogNotJosonLoadable(self, mocked_log, *_): self.assertIsNone(step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata')) mocked_log.assert_called_with( 'Failed to json load data for step_metadata. Data is: log.') @mock.patch.object(buildbucket_client, 'GetV2Build', return_value=None) def testGetStepLogForLuciBuildError(self, _): self.assertIsNone(step_util.GetStepLogForLuciBuild('87654321', 's', None)) @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None) @mock.patch.object(logdog_util, 'GetLogFromViewUrl') @mock.patch.object(buildbucket_client, 'GetV2Build') def testGetStepLogForLuciBuildNoViewUrl(self, mock_get_build, mock_get_log, _): build_id = '8945610992972640896' mock_log = common_pb2.Log() mock_log.name = 'step_metadata' mock_log.view_url = 'view_url' mock_step = Step() mock_step.name = 's' mock_step.logs.extend([mock_log]) mock_build = Build() mock_build.id = int(build_id) mock_build.steps.extend([mock_step]) mock_get_build.return_value = mock_build self.assertIsNone(step_util.GetStepLogForLuciBuild(build_id, 's', None, 'step_metadata')) self.assertFalse(mock_get_log.called) <mask token> @mock.patch.object(buildbucket_client, 'GetV2Build') @mock.patch.object(step_util, 'GetStepLogFromBuildObject') def testGetStepLogForLuciBuildPartialMatch(self, mock_log_from_build, _): step_util.GetStepLogForLuciBuild('87654321', 's', None) self.assertIn(False, mock_log_from_build.call_args[0]) step_util.GetStepLogForLuciBuild('87654321', 's', None, True) self.assertIn(True, mock_log_from_build.call_args[0]) @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None) def testGetStepLogFromBuildObjectPartialMatch(self, mock_get_log_url): step_util.GetStepLogFromBuildObject(Build(), 'full_step_name', 'http_client') self.assertIn(False, mock_get_log_url.call_args[0]) step_util.GetStepLogFromBuildObject(Build(), 'full_step_name', 'http_client', partial_match=True) self.assertIn(True, mock_get_log_url.call_args[0]) def testGetStepLogViewUrlNoMatchingLog(self): build_id = 8945610992972640896 mock_log = common_pb2.Log() mock_log.name = 'another_log' mock_log.view_url = 'view_url' mock_step1 = Step() mock_step1.name = 's1' mock_step1.logs.extend([mock_log]) mock_step2 = Step() mock_step2.name = 's2' mock_step2.logs.extend([mock_log]) mock_build = Build() mock_build.id = build_id mock_build.steps.extend([mock_step1, mock_step2]) self.assertIsNone(step_util._GetStepLogViewUrl(mock_build, 's2', 'log') ) @parameterized.expand([(True, 'step_name', 'view_url', 'view_url_partial_match'), (False, 'step_name', 'view_url', None)]) def testGetStepLogViewUrlPartialMatching(self, partial_match, full_step_name, expected_url_in_build1, expected_url_in_build2): mock_step1 = Step() mock_step1.name = 'step_name' mock_log1 = common_pb2.Log() mock_log1.name = 'log' mock_log1.view_url = 'view_url' mock_step1.logs.extend([mock_log1]) mock_step2 = Step() mock_step2.name = 'step_name_longer' mock_log2 = common_pb2.Log() mock_log2.name = 'log' mock_log2.view_url = 'view_url_partial_match' mock_step2.logs.extend([mock_log2]) mock_build1 = Build() mock_build1.steps.extend([mock_step1, mock_step2]) self.assertEqual(expected_url_in_build1, step_util. _GetStepLogViewUrl(mock_build1, full_step_name, 'log', partial_match=partial_match)) mock_build2 = Build() mock_build2.steps.extend([mock_step2]) self.assertEqual(expected_url_in_build2, step_util. _GetStepLogViewUrl(mock_build2, full_step_name, 'log', partial_match=partial_match)) @mock.patch.object(step_util, 'GetWaterfallBuildStepLog', return_value= {'canonical_step_name': 'unsupported_step1'}) def testStepIsSupportedForMaster(self, _): master_name = 'master1' builder_name = 'b' build_number = 123 step_name = 'unsupported_step1 on master1' self.assertFalse(step_util.StepIsSupportedForMaster(master_name, builder_name, build_number, step_name)) def testStepIsSupportedForMasterCompile(self): master_name = 'm' builder_name = 'b' build_number = 123 step_name = 'compile' self.assertTrue(step_util.StepIsSupportedForMaster(master_name, builder_name, build_number, step_name)) @mock.patch.object(step_util, 'GetWaterfallBuildStepLog') def testLegacyGetStepMetadataCached(self, mock_fn): mock_fn.side_effect = ['invalid', {'canonical_step_name': 'step_name'}] self.assertEqual('invalid', step_util.LegacyGetStepMetadata('m', 'b', 201, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 1) self.assertEqual({'canonical_step_name': 'step_name'}, step_util. LegacyGetStepMetadata('m', 'b', 201, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 2) self.assertEqual({'canonical_step_name': 'step_name'}, step_util. LegacyGetStepMetadata('m', 'b', 201, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 2) @mock.patch.object(step_util, 'GetStepLogForLuciBuild') def testGetStepMetadataCached(self, mock_fn, *_): mock_fn.side_effect = [None, {'canonical_step_name': 'step_name'}] self.assertEqual(None, step_util.GetStepMetadata(123, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 1) self.assertEqual({'canonical_step_name': 'step_name'}, step_util. GetStepMetadata(123, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 2) self.assertEqual({'canonical_step_name': 'step_name'}, step_util. GetStepMetadata(123, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 2) @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value={ 'canonical_step_name': 'step_name'}) def testLegacyGetCanonicalStep(self, _): self.assertEqual('step_name', step_util.LegacyGetCanonicalStepName( 'm', 'b', 200, 'step_name on a platform')) @parameterized.expand([({'canonical_step_name': 'step_name'}, 'step_name'), (None, 'step_name'), ({'a': 'b'}, None)]) @mock.patch.object(step_util, 'GetStepMetadata') def testGetCanonicalStepName(self, step_metadata, expected_canonical_step, mocked_get_step): mocked_get_step.return_value = step_metadata self.assertEqual(expected_canonical_step, step_util. GetCanonicalStepName(123, 'step_name (with patch)')) @mock.patch.object(step_util, 'GetStepMetadata') def testGetCanonicalStepNamePartialMatch(self, mock_get_step_metadata): step_util.GetCanonicalStepName(123, 'full step name') self.assertIn(False, mock_get_step_metadata.call_args[0]) step_util.GetCanonicalStepName(123, 'full step name', True) self.assertIn(True, mock_get_step_metadata.call_args[0]) @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value={ 'isolate_target_name': 'browser_tests'}) def testLegacyGetIsolateTargetName(self, _): self.assertEqual('browser_tests', step_util. LegacyGetIsolateTargetName('m', 'b', 200, 'viz_browser_tests (with patch) on Android')) @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value=None) def testLegacyGetIsolateTargetNameStepMetadataIsNone(self, _): self.assertEqual(None, step_util.LegacyGetIsolateTargetName('m', 'b', 200, 'viz_browser_tests (with patch) on Android')) @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value={ 'a': 'b'}) def testLegacyGetIsolateTargetNameIsolateTargetNameIsMissing(self, _): self.assertEqual(None, step_util.LegacyGetIsolateTargetName('m', 'b', 200, 'viz_browser_tests (with patch) on Android')) @parameterized.expand([({'isolate_target_name': 'isolate_target'}, 'isolate_target'), (None, None), ({'a': 'b'}, None)]) @mock.patch.object(step_util, 'GetStepMetadata') def testGetIsolateTargetName(self, step_metadata, expected_isolate_target, mocked_get_stepmeta): mocked_get_stepmeta.return_value = step_metadata self.assertEqual(expected_isolate_target, step_util. GetIsolateTargetName(123, 'full step name')) @mock.patch.object(step_util, 'GetStepMetadata') def testGetIsolateTargetPartialMatch(self, mock_get_step_metadata): step_util.GetIsolateTargetName(123, 'full step name') self.assertIn(False, mock_get_step_metadata.call_args[0]) step_util.GetIsolateTargetName(123, 'full step name', True) self.assertIn(True, mock_get_step_metadata.call_args[0]) @parameterized.expand([(wf_testcase.SAMPLE_STEP_METADATA, 'platform'), (None, None)]) @mock.patch.object(step_util, 'GetStepMetadata') def testGetOS(self, mock_fn_return, expected_platform, mock_fn): mock_fn.return_value = mock_fn_return self.assertEqual(expected_platform, step_util.GetOS(123, 'builder_name', 'step_name')) @mock.patch.object(step_util, 'GetStepMetadata') def testGetOSPartialMatch(self, mock_get_step_metadata): step_util.GetOS(123, 'builder_name', 'step_name') self.assertIn(False, mock_get_step_metadata.call_args[0]) step_util.GetOS(123, 'builder_name', 'step_name', True) self.assertIn(True, mock_get_step_metadata.call_args[0]) @mock.patch.object(step_util, 'GetStepMetadata', return_value= wf_testcase.SAMPLE_STEP_METADATA) def testGetOSCached(self, mock_fn): self.assertEqual('platform', step_util.GetOS(123, 'builder_name', 'step_name')) self.assertEqual(1, mock_fn.call_count) self.assertEqual('platform', step_util.GetOS(123, 'builder_name', 'step_name')) self.assertEqual(1, mock_fn.call_count) def testGetStepStartAndEndTime(self): build_id = '8945610992972640896' start_time = datetime.datetime(2019, 3, 6) end_time = datetime.datetime(2019, 3, 6, 0, 0, 10) step = Step() step.name = 's' step.start_time.FromDatetime(start_time) step.end_time.FromDatetime(end_time) build = Build() build.id = int(build_id) build.steps.extend([step]) self.assertEqual((start_time, end_time), step_util. GetStepStartAndEndTime(build, 's')) self.assertEqual((None, None), step_util.GetStepStartAndEndTime( build, 's2'))
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import datetime import json import logging import mock from parameterized import parameterized from buildbucket_proto import common_pb2 from buildbucket_proto.build_pb2 import Build from buildbucket_proto.step_pb2 import Step from common.waterfall import buildbucket_client from infra_api_clients import logdog_util from libs.test_results.gtest_test_results import GtestTestResults from libs.test_results.webkit_layout_test_results import WebkitLayoutTestResults from model.isolated_target import IsolatedTarget from model.wf_build import WfBuild from services import step_util from services import swarming from waterfall import build_util from waterfall import waterfall_config from waterfall.build_info import BuildInfo from waterfall.test import wf_testcase class MockWaterfallBuild(object): def __init__(self): self.build_id = None self.log_location = 'logdog://logs.chromium.org/chromium/buildbucket/path' def _MockedGetBuildInfo(master_name, builder_name, build_number): build = BuildInfo(master_name, builder_name, build_number) build.commit_position = (build_number + 1) * 10 build.result = ( common_pb2.SUCCESS if build_number > 4 else common_pb2.INFRA_FAILURE) return build class StepUtilTest(wf_testcase.WaterfallTestCase): def testGetLowerBoundBuildNumber(self): self.assertEqual(5, step_util._GetLowerBoundBuildNumber(5, 100)) self.assertEqual(50, step_util._GetLowerBoundBuildNumber(None, 100, 200)) self.assertEqual(100, step_util._GetLowerBoundBuildNumber(None, 600, 500)) def testGetBoundingIsolatedTargets(self): lower_bound_commit_position = 1000 upper_bound_commit_position = 1010 requested_commit_position = 1005 build_id = 10000 target_name = 'browser_tests' master_name = 'm' builder_name = 'b' luci_name = 'chromium' bucket_name = 'ci' gitiles_host = 'chromium.googlesource.com' gitiles_project = 'chromium/src' gitiles_ref = 'refs/heads/master' gerrit_patch = '' lower_bound_revision = 'r1000' upper_bound_revision = 'r1010' lower_bound_target = IsolatedTarget.Create( build_id - 1, luci_name, bucket_name, master_name, builder_name, gitiles_host, gitiles_project, gitiles_ref, gerrit_patch, target_name, 'hash_1', lower_bound_commit_position, lower_bound_revision) lower_bound_target.put() upper_bound_target = IsolatedTarget.Create( build_id, luci_name, bucket_name, master_name, builder_name, gitiles_host, gitiles_project, gitiles_ref, gerrit_patch, target_name, 'hash_2', upper_bound_commit_position, upper_bound_revision) upper_bound_target.put() self.assertEqual((lower_bound_target, upper_bound_target), step_util.GetBoundingIsolatedTargets( master_name, builder_name, target_name, requested_commit_position)) @mock.patch.object(build_util, 'GetBuildInfo') def testGetValidBuildSearchAscendingWithinRange(self, mocked_get_build_info): master_name = 'm' builder_name = 'b' step_name = 's' invalid_build_100 = BuildInfo(master_name, builder_name, 100) invalid_build_101 = BuildInfo(master_name, builder_name, 101) valid_build_102 = BuildInfo(master_name, builder_name, 102) valid_build_102.commit_position = 1020 mocked_get_build_info.side_effect = [ invalid_build_100, invalid_build_101, valid_build_102, ] self.assertEqual( valid_build_102, step_util.GetValidBuild(master_name, builder_name, 100, step_name, True, 2)) @mock.patch.object(build_util, 'GetBuildInfo') def testGetValidBuildSearchAscendingOutOfRange(self, mocked_get_build_info): master_name = 'm' builder_name = 'b' step_name = 's' invalid_build_100 = BuildInfo(master_name, builder_name, 100) invalid_build_101 = BuildInfo(master_name, builder_name, 101) valid_build_102 = BuildInfo(master_name, builder_name, 102) valid_build_102.commit_position = 1020 mocked_get_build_info.side_effect = [ invalid_build_100, invalid_build_101, valid_build_102, ] self.assertIsNone( step_util.GetValidBuild(master_name, builder_name, 100, step_name, True, 1)) @mock.patch.object(build_util, 'GetBuildInfo') def testGetValidBuildSearchDescending(self, mocked_get_build_info): master_name = 'm' builder_name = 'b' step_name = 's' invalid_build_100 = BuildInfo(master_name, builder_name, 100) invalid_build_99 = BuildInfo(master_name, builder_name, 99) valid_build_98 = BuildInfo(master_name, builder_name, 98) valid_build_98.commit_position = 980 mocked_get_build_info.side_effect = [ invalid_build_100, invalid_build_99, valid_build_98, ] self.assertEqual( valid_build_98, step_util.GetValidBuild(master_name, builder_name, 100, step_name, True, 2)) @mock.patch.object( swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepExactMatch(self, *_): lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep( 'm', 'b', 's', 0, 100, 30) self.assertEqual(1, lower_bound.build_number) self.assertEqual(2, upper_bound.build_number) @mock.patch.object( swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitBeforeEarliestBuild(self, *_): lower_bound_build_number = 3 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep( 'm', 'b', 's', lower_bound_build_number, 100, 10) self.assertIsNone(lower_bound) self.assertEqual(lower_bound_build_number, upper_bound.build_number) @mock.patch.object( swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=False) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitBeforeEarliestBuildInValid( self, *_): lower_bound_build_number = 3 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep( 'm', 'b', 's', lower_bound_build_number, 100, 10) self.assertIsNone(lower_bound) self.assertIsNone(upper_bound) @mock.patch.object( swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitAfterLatestBuild(self, *_): upper_bound_build_number = 5 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep( 'm', 'b', 's', None, upper_bound_build_number, 10000) self.assertEqual(upper_bound_build_number, lower_bound.build_number) self.assertIsNone(upper_bound) @mock.patch.object( swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=False) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitAfterLatestBuildInvalid(self, *_): upper_bound_build_number = 5 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep( 'm', 'b', 's', None, upper_bound_build_number, 10000) self.assertIsNone(lower_bound) self.assertIsNone(upper_bound) @mock.patch.object( swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitRightAtUpperBound(self, *_): upper_bound_build_number = 4 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep( 'm', 'b', 's', None, upper_bound_build_number, 50) self.assertEqual(50, lower_bound.commit_position) self.assertEqual(50, upper_bound.commit_position) @mock.patch.object( swarming, 'CanFindSwarmingTaskFromBuildForAStep', return_value=True) @mock.patch.object(build_util, 'GetBuildInfo', _MockedGetBuildInfo) def testGetValidBoundingBuildsForStepCommitRightAtLowerBound(self, *_): upper_bound_build_number = 4 lower_bound_build_number = 1 lower_bound, upper_bound = step_util.GetValidBoundingBuildsForStep( 'm', 'b', 's', lower_bound_build_number, upper_bound_build_number, 20) self.assertEqual(20, lower_bound.commit_position) self.assertEqual(20, upper_bound.commit_position) def testIsStepSupportedByFinditObjectNone(self): self.assertFalse(step_util.IsStepSupportedByFindit(None, 'step', 'm')) @mock.patch.object( waterfall_config, 'StepIsSupportedForMaster', return_value=False) def testStepNotSupportedByFindit(self, _): self.assertFalse( step_util.IsStepSupportedByFindit( WebkitLayoutTestResults(None), 'step', 'm')) def testIsStepSupportedByFinditOtherIsolatedScriptTest(self): self.assertFalse( step_util.IsStepSupportedByFindit( WebkitLayoutTestResults(None), 'telemetry_perf_tests', 'm')) @mock.patch.object( waterfall_config, 'StepIsSupportedForMaster', return_value=True) def testIsStepSupportedByFinditWebkitLayoutTests(self, _): self.assertTrue( step_util.IsStepSupportedByFindit( WebkitLayoutTestResults(None), 'webkit_layout_tests', 'm')) @mock.patch.object( waterfall_config, 'StepIsSupportedForMaster', return_value=True) def testIsStepSupportedByFinditGtests(self, _): self.assertTrue( step_util.IsStepSupportedByFindit( GtestTestResults(None), 'browser_tests', 'm')) @parameterized.expand([ ({ 'step_log_return': wf_testcase.SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase.SAMPLE_STEP_METADATA },), ({ 'step_log_return': wf_testcase.SAMPLE_STEP_METADATA, 'expected_step_metadata': wf_testcase.SAMPLE_STEP_METADATA },), ({ 'step_log_return': None, 'expected_step_metadata': None },), ({ 'step_log_return': None, 'expected_step_metadata': None },), ]) @mock.patch.object(step_util, 'GetStepLogForLuciBuild') def testGetStepMetadata(self, cases, mock_step_log): mock_step_log.return_value = cases['step_log_return'] step_metadata = step_util.GetStepMetadata(123, 'step') self.assertEqual(cases['expected_step_metadata'], step_metadata) @mock.patch.object(step_util, 'GetStepLogForLuciBuild') def testGetStepMetadataPartialMatch(self, mock_step_log): step_util.GetStepMetadata(123, 'step', True) self.assertIn(True, mock_step_log.call_args[0]) step_util.GetStepMetadata(123, 'step', False) self.assertIn(False, mock_step_log.call_args[0]) @mock.patch.object( logdog_util, '_GetAnnotationsProtoForPath', return_value='step') @mock.patch.object( logdog_util, '_GetStreamForStep', return_value='log_stream') @mock.patch.object( logdog_util, 'GetStepLogLegacy', return_value=json.dumps(wf_testcase.SAMPLE_STEP_METADATA)) @mock.patch.object( build_util, 'DownloadBuildData', return_value=MockWaterfallBuild()) def testLegacyGetStepMetadata(self, *_): step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertEqual(step_metadata, wf_testcase.SAMPLE_STEP_METADATA) @mock.patch.object( build_util, 'DownloadBuildData', return_value=MockWaterfallBuild()) @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value=':') def testMalformattedNinjaInfo(self, *_): step_metadata = step_util.GetWaterfallBuildStepLog( 'm', 'b', 123, 's', None, 'json.output[ninja_info]') self.assertIsNone(step_metadata) @mock.patch.object( build_util, 'DownloadBuildData', return_value=MockWaterfallBuild()) @mock.patch.object( logdog_util, '_GetAnnotationsProtoForPath', return_value=None) def testLegacyGetStepMetadataStepNone(self, *_): step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertIsNone(step_metadata) @mock.patch.object( build_util, 'DownloadBuildData', return_value=MockWaterfallBuild()) @mock.patch.object( logdog_util, '_GetAnnotationsProtoForPath', return_value='step') @mock.patch.object(logdog_util, '_GetStreamForStep', return_value=None) def testLegacyGetStepMetadataStreamNone(self, *_): step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertIsNone(step_metadata) @mock.patch.object( step_util, 'GetStepLogForLuciBuild', return_value=wf_testcase.SAMPLE_STEP_METADATA) @mock.patch.object(build_util, 'DownloadBuildData') def testLegacyGetStepMetadataFromLUCIBuild(self, mock_build, _): build = WfBuild.Create('m', 'b', 123) build.build_id = '8948240770002521488' build.put() mock_build.return_value = build step_metadata = step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata') self.assertEqual(step_metadata, wf_testcase.SAMPLE_STEP_METADATA) @mock.patch.object( build_util, 'DownloadBuildData', return_value=MockWaterfallBuild()) @mock.patch.object( logdog_util, '_GetAnnotationsProtoForPath', return_value='step') @mock.patch.object(logdog_util, '_GetStreamForStep', return_value='stream') @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value='log1/nlog2') def testGetStepLogStdio(self, *_): self.assertEqual( 'log1/nlog2', step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None)) @mock.patch.object( build_util, 'DownloadBuildData', return_value=MockWaterfallBuild()) @mock.patch.object(logdog_util, 'GetStepLogLegacy', return_value='log') @mock.patch.object(logging, 'error') def testGetStepLogNotJosonLoadable(self, mocked_log, *_): self.assertIsNone( step_util.GetWaterfallBuildStepLog('m', 'b', 123, 's', None, 'step_metadata')) mocked_log.assert_called_with( 'Failed to json load data for step_metadata. Data is: log.') @mock.patch.object(buildbucket_client, 'GetV2Build', return_value=None) def testGetStepLogForLuciBuildError(self, _): self.assertIsNone(step_util.GetStepLogForLuciBuild('87654321', 's', None)) @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None) @mock.patch.object(logdog_util, 'GetLogFromViewUrl') @mock.patch.object(buildbucket_client, 'GetV2Build') def testGetStepLogForLuciBuildNoViewUrl(self, mock_get_build, mock_get_log, _): build_id = '8945610992972640896' mock_log = common_pb2.Log() mock_log.name = 'step_metadata' mock_log.view_url = 'view_url' mock_step = Step() mock_step.name = 's' mock_step.logs.extend([mock_log]) mock_build = Build() mock_build.id = int(build_id) mock_build.steps.extend([mock_step]) mock_get_build.return_value = mock_build self.assertIsNone( step_util.GetStepLogForLuciBuild(build_id, 's', None, 'step_metadata')) self.assertFalse(mock_get_log.called) @mock.patch.object( step_util, '_ParseStepLogIfAppropriate', return_value='log') @mock.patch.object(logdog_util, 'GetLogFromViewUrl', return_value='log') @mock.patch.object(buildbucket_client, 'GetV2Build') def testGetStepLogForLuciBuild(self, mock_get_build, mock_get_log, _): build_id = '8945610992972640896' mock_log = common_pb2.Log() mock_log.name = 'step_metadata' mock_log.view_url = 'view_url' mock_step = Step() mock_step.name = 's' mock_step.logs.extend([mock_log]) mock_build = Build() mock_build.id = int(build_id) mock_build.steps.extend([mock_step]) mock_get_build.return_value = mock_build self.assertEqual( 'log', step_util.GetStepLogForLuciBuild(build_id, 's', None, 'step_metadata')) mock_get_log.assert_called_once_with('view_url', None) @mock.patch.object(buildbucket_client, 'GetV2Build') @mock.patch.object(step_util, 'GetStepLogFromBuildObject') def testGetStepLogForLuciBuildPartialMatch(self, mock_log_from_build, _): step_util.GetStepLogForLuciBuild('87654321', 's', None) self.assertIn(False, mock_log_from_build.call_args[0]) step_util.GetStepLogForLuciBuild('87654321', 's', None, True) self.assertIn(True, mock_log_from_build.call_args[0]) @mock.patch.object(step_util, '_GetStepLogViewUrl', return_value=None) def testGetStepLogFromBuildObjectPartialMatch(self, mock_get_log_url): step_util.GetStepLogFromBuildObject(Build(), 'full_step_name', 'http_client') self.assertIn(False, mock_get_log_url.call_args[0]) step_util.GetStepLogFromBuildObject( Build(), 'full_step_name', 'http_client', partial_match=True) self.assertIn(True, mock_get_log_url.call_args[0]) def testGetStepLogViewUrlNoMatchingLog(self): build_id = 8945610992972640896 mock_log = common_pb2.Log() mock_log.name = 'another_log' mock_log.view_url = 'view_url' mock_step1 = Step() mock_step1.name = 's1' mock_step1.logs.extend([mock_log]) mock_step2 = Step() mock_step2.name = 's2' mock_step2.logs.extend([mock_log]) mock_build = Build() mock_build.id = build_id mock_build.steps.extend([mock_step1, mock_step2]) self.assertIsNone(step_util._GetStepLogViewUrl(mock_build, 's2', 'log')) @parameterized.expand([ (True, 'step_name', 'view_url', 'view_url_partial_match'), (False, 'step_name', 'view_url', None), ]) def testGetStepLogViewUrlPartialMatching(self, partial_match, full_step_name, expected_url_in_build1, expected_url_in_build2): mock_step1 = Step() mock_step1.name = 'step_name' mock_log1 = common_pb2.Log() mock_log1.name = 'log' mock_log1.view_url = 'view_url' mock_step1.logs.extend([mock_log1]) mock_step2 = Step() mock_step2.name = 'step_name_longer' mock_log2 = common_pb2.Log() mock_log2.name = 'log' mock_log2.view_url = 'view_url_partial_match' mock_step2.logs.extend([mock_log2]) mock_build1 = Build() mock_build1.steps.extend([mock_step1, mock_step2]) self.assertEqual( expected_url_in_build1, step_util._GetStepLogViewUrl( mock_build1, full_step_name, 'log', partial_match=partial_match)) mock_build2 = Build() mock_build2.steps.extend([mock_step2]) self.assertEqual( expected_url_in_build2, step_util._GetStepLogViewUrl( mock_build2, full_step_name, 'log', partial_match=partial_match)) @mock.patch.object( step_util, 'GetWaterfallBuildStepLog', return_value={'canonical_step_name': 'unsupported_step1'}) def testStepIsSupportedForMaster(self, _): master_name = 'master1' builder_name = 'b' build_number = 123 step_name = 'unsupported_step1 on master1' self.assertFalse( step_util.StepIsSupportedForMaster(master_name, builder_name, build_number, step_name)) def testStepIsSupportedForMasterCompile(self): master_name = 'm' builder_name = 'b' build_number = 123 step_name = 'compile' self.assertTrue( step_util.StepIsSupportedForMaster(master_name, builder_name, build_number, step_name)) @mock.patch.object(step_util, 'GetWaterfallBuildStepLog') def testLegacyGetStepMetadataCached(self, mock_fn): mock_fn.side_effect = ['invalid', {'canonical_step_name': 'step_name'}] # Returns the invalid step_metadata but not cache it. self.assertEqual( 'invalid', step_util.LegacyGetStepMetadata('m', 'b', 201, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 1) # Returns the valid step_metadata and cache it. self.assertEqual({ 'canonical_step_name': 'step_name' }, step_util.LegacyGetStepMetadata('m', 'b', 201, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 2) self.assertEqual({ 'canonical_step_name': 'step_name' }, step_util.LegacyGetStepMetadata('m', 'b', 201, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 2) @mock.patch.object(step_util, 'GetStepLogForLuciBuild') def testGetStepMetadataCached(self, mock_fn, *_): mock_fn.side_effect = [None, {'canonical_step_name': 'step_name'}] # Returns the invalid step_metadata but not cache it. self.assertEqual(None, step_util.GetStepMetadata(123, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 1) # Returns the valid step_metadata and cache it. self.assertEqual({ 'canonical_step_name': 'step_name' }, step_util.GetStepMetadata(123, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 2) self.assertEqual({ 'canonical_step_name': 'step_name' }, step_util.GetStepMetadata(123, 'step_name on a platform')) self.assertTrue(mock_fn.call_count == 2) @mock.patch.object( step_util, 'LegacyGetStepMetadata', return_value={'canonical_step_name': 'step_name'}) def testLegacyGetCanonicalStep(self, _): self.assertEqual( 'step_name', step_util.LegacyGetCanonicalStepName('m', 'b', 200, 'step_name on a platform')) @parameterized.expand([({ 'canonical_step_name': 'step_name' }, 'step_name'), (None, 'step_name'), ({ 'a': 'b' }, None)]) @mock.patch.object(step_util, 'GetStepMetadata') def testGetCanonicalStepName(self, step_metadata, expected_canonical_step, mocked_get_step): mocked_get_step.return_value = step_metadata self.assertEqual( expected_canonical_step, step_util.GetCanonicalStepName(123, 'step_name (with patch)')) @mock.patch.object(step_util, 'GetStepMetadata') def testGetCanonicalStepNamePartialMatch(self, mock_get_step_metadata): step_util.GetCanonicalStepName(123, 'full step name') self.assertIn(False, mock_get_step_metadata.call_args[0]) step_util.GetCanonicalStepName(123, 'full step name', True) self.assertIn(True, mock_get_step_metadata.call_args[0]) @mock.patch.object( step_util, 'LegacyGetStepMetadata', return_value={'isolate_target_name': 'browser_tests'}) def testLegacyGetIsolateTargetName(self, _): self.assertEqual( 'browser_tests', step_util.LegacyGetIsolateTargetName( 'm', 'b', 200, 'viz_browser_tests (with patch) on Android')) @mock.patch.object(step_util, 'LegacyGetStepMetadata', return_value=None) def testLegacyGetIsolateTargetNameStepMetadataIsNone(self, _): self.assertEqual( None, step_util.LegacyGetIsolateTargetName( 'm', 'b', 200, 'viz_browser_tests (with patch) on Android')) @mock.patch.object( step_util, 'LegacyGetStepMetadata', return_value={'a': 'b'}) def testLegacyGetIsolateTargetNameIsolateTargetNameIsMissing(self, _): self.assertEqual( None, step_util.LegacyGetIsolateTargetName( 'm', 'b', 200, 'viz_browser_tests (with patch) on Android')) @parameterized.expand([({ 'isolate_target_name': 'isolate_target' }, 'isolate_target'), (None, None), ({ 'a': 'b' }, None)]) @mock.patch.object(step_util, 'GetStepMetadata') def testGetIsolateTargetName(self, step_metadata, expected_isolate_target, mocked_get_stepmeta): mocked_get_stepmeta.return_value = step_metadata self.assertEqual(expected_isolate_target, step_util.GetIsolateTargetName(123, 'full step name')) @mock.patch.object(step_util, 'GetStepMetadata') def testGetIsolateTargetPartialMatch(self, mock_get_step_metadata): step_util.GetIsolateTargetName(123, 'full step name') self.assertIn(False, mock_get_step_metadata.call_args[0]) step_util.GetIsolateTargetName(123, 'full step name', True) self.assertIn(True, mock_get_step_metadata.call_args[0]) @parameterized.expand([(wf_testcase.SAMPLE_STEP_METADATA, 'platform'), (None, None)]) @mock.patch.object(step_util, 'GetStepMetadata') def testGetOS(self, mock_fn_return, expected_platform, mock_fn): mock_fn.return_value = mock_fn_return self.assertEqual(expected_platform, step_util.GetOS(123, 'builder_name', 'step_name')) @mock.patch.object(step_util, 'GetStepMetadata') def testGetOSPartialMatch(self, mock_get_step_metadata): step_util.GetOS(123, 'builder_name', 'step_name') self.assertIn(False, mock_get_step_metadata.call_args[0]) step_util.GetOS(123, 'builder_name', 'step_name', True) self.assertIn(True, mock_get_step_metadata.call_args[0]) @mock.patch.object( step_util, 'GetStepMetadata', return_value=wf_testcase.SAMPLE_STEP_METADATA) def testGetOSCached(self, mock_fn): self.assertEqual('platform', step_util.GetOS(123, 'builder_name', 'step_name')) self.assertEqual(1, mock_fn.call_count) self.assertEqual('platform', step_util.GetOS(123, 'builder_name', 'step_name')) self.assertEqual(1, mock_fn.call_count) def testGetStepStartAndEndTime(self): build_id = '8945610992972640896' start_time = datetime.datetime(2019, 3, 6) end_time = datetime.datetime(2019, 3, 6, 0, 0, 10) step = Step() step.name = 's' step.start_time.FromDatetime(start_time) step.end_time.FromDatetime(end_time) build = Build() build.id = int(build_id) build.steps.extend([step]) self.assertEqual((start_time, end_time), step_util.GetStepStartAndEndTime(build, 's')) self.assertEqual((None, None), step_util.GetStepStartAndEndTime( build, 's2'))
[ 26, 32, 43, 49, 55 ]
1,312
aec311cae7cb6cbe3e3a927a133ec20a2d2afbf5
<mask token>
class Solution: <mask token>
class Solution: def letterCombinations(self, digits): """ :type digits: str :rtype: List[str] """ if not digits: return [] result_set = [] letters = {'2': 'abc', '3': 'def', '4': 'ghi', '5': 'jkl', '6': 'mno', '7': 'pqrs', '8': 'tuv', '9': 'wxyz'} def permutate(index, result, result_set): if index == len(digits): result_set.append(''.join(result)) return for letter in letters[digits[index]]: result[index] = letter permutate(index + 1, result, result_set) permutate(0, ['' for _ in digits], result_set) return result_set
null
null
[ 0, 1, 2 ]
1,313
2dbb1051b35898288db629fd0c5b3887c429e9b8
<mask token> def SetCommon(Common, XmlCommon): XmlTag = 'Usage' Common.Usage = XmlAttribute(XmlCommon, XmlTag).split() XmlTag = 'FeatureFlag' Common.FeatureFlag = XmlAttribute(XmlCommon, XmlTag) XmlTag = 'SupArchList' Common.SupArchList = XmlAttribute(XmlCommon, XmlTag).split() XmlTag = XmlNodeName(XmlCommon) + '/' + 'HelpText' Common.HelpText = XmlElement(XmlCommon, XmlTag) def SetIdentification(CommonHeader, XmlCommonHeader, NameTag, FileName): XmlParentTag = XmlNodeName(XmlCommonHeader) XmlTag = XmlParentTag + '/' + NameTag CommonHeader.Name = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParentTag + '/' + 'GuidValue' CommonHeader.Guid = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParentTag + '/' + 'Version' CommonHeader.Version = XmlElement(XmlCommonHeader, XmlTag) CommonHeader.FileName = os.path.basename(FileName) CommonHeader.FullPath = os.path.abspath(FileName) <mask token> def AddToSpecificationDict(SpecificationDict, SpecificationString): """Abstract specification name, value pair from Specification String""" for SpecificationMatch in mReSpecification.finditer(SpecificationString): Specification = SpecificationMatch.group('Specification') Value = SpecificationMatch.group('Value') SpecificationDict[Specification] = Value <mask token> def LoadClonedRecord(XmlCloned): ClonedRecord = ClonedRecordClass() XmlTag = 'Id' ClonedRecord.Id = int(XmlAttribute(XmlCloned, XmlTag)) XmlTag = 'FarGuid' ClonedRecord.FarGuid = XmlAttribute(XmlCloned, XmlTag) XmlTag = 'Cloned/PackageGuid' ClonedRecord.PackageGuid = XmlElement(XmlCloned, XmlTag) XmlTag = 'Cloned/PackageVersion' ClonedRecord.PackageVersion = XmlElement(XmlCloned, XmlTag) XmlTag = 'Cloned/ModuleGuid' ClonedRecord.ModuleGuid = XmlElement(XmlCloned, XmlTag) XmlTag = 'Cloned/ModuleVersion' ClonedRecord.ModuleVersion = XmlElement(XmlCloned, XmlTag) return ClonedRecord def LoadGuidProtocolPpiCommon(XmlGuidProtocolPpiCommon): GuidProtocolPpiCommon = GuidProtocolPpiCommonClass() XmlTag = 'Name' GuidProtocolPpiCommon.Name = XmlAttribute(XmlGuidProtocolPpiCommon, XmlTag) XmlParent = XmlNodeName(XmlGuidProtocolPpiCommon) if XmlParent == 'Entry': XmlTag = '%s/C_Name' % XmlParent elif XmlParent == 'GuidCNames': XmlTag = '%s/GuidCName' % XmlParent else: XmlTag = '%s/%sCName' % (XmlParent, XmlParent) GuidProtocolPpiCommon.CName = XmlElement(XmlGuidProtocolPpiCommon, XmlTag) XmlTag = XmlParent + '/' + 'GuidValue' GuidProtocolPpiCommon.Guid = XmlElement(XmlGuidProtocolPpiCommon, XmlTag) if XmlParent.endswith('Notify'): GuidProtocolPpiCommon.Notify = True XmlTag = 'GuidTypeList' GuidTypes = XmlAttribute(XmlGuidProtocolPpiCommon, XmlTag) GuidProtocolPpiCommon.GuidTypeList = GuidTypes.split() XmlTag = 'SupModuleList' SupModules = XmlAttribute(XmlGuidProtocolPpiCommon, XmlTag) GuidProtocolPpiCommon.SupModuleList = SupModules.split() SetCommon(GuidProtocolPpiCommon, XmlGuidProtocolPpiCommon) return GuidProtocolPpiCommon def LoadPcd(XmlPcd): """Return a new PcdClass object equivalent to XmlPcd""" Pcd = PcdClass() XmlTag = 'PcdEntry/C_Name' Pcd.CName = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/Token' Pcd.Token = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/TokenSpaceGuidCName' Pcd.TokenSpaceGuidCName = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/DatumType' Pcd.DatumType = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/MaxDatumSize' Pcd.MaxDatumSize = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/DefaultValue' Pcd.DefaultValue = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdItemType' Pcd.ItemType = XmlAttribute(XmlPcd, XmlTag) XmlTag = 'PcdEntry/ValidUsage' Pcd.ValidUsage = XmlElement(XmlPcd, XmlTag).split() XmlTag = 'SupModuleList' Pcd.SupModuleList = XmlAttribute(XmlPcd, XmlTag).split() SetCommon(Pcd, XmlPcd) return Pcd <mask token> def StoreTextFile(TextFile, Content): EdkLogger.verbose(Content) TextFile.write(Content) def AddToSection(Section, Arch, Item): SectionArch = Section.get(Arch, []) if Item not in SectionArch: SectionArch.append(Item) Section[Arch] = SectionArch <mask token> def GetUserExtensions(UserExtensions): UserId = UserExtensions.UserID Identifier = UserExtensions.Identifier Content = UserExtensions.Content return '[UserExtensions.%s.%s]\n %s\n\n' % (UserId, Identifier, Content) <mask token> def GetXmlFileInfo(FileName, TagTuple): XmlDom = XmlParseFile(FileName) return tuple([XmlElement(XmlDom, XmlTag) for XmlTag in TagTuple]) def MigrationOptionParser(Source, Destinate, ToolName, VersionNumber=1.0): UsageString = '%s [-a] [-v|-q] [-o <output_file>] <input_file>' % ToolName Version = '%s Version %.2f' % (ToolName, VersionNumber) Copyright = 'Copyright (c) 2007, Intel Corporation. All rights reserved.' Parser = OptionParser(description=Copyright, version=Version, usage= UsageString) Parser.add_option('-o', '--output', dest='OutputFile', help= 'The name of the %s file to be created.' % Destinate) Parser.add_option('-a', '--auto', dest='AutoWrite', action='store_true', default=False, help= 'Automatically create the %s file using the name of the %s file and replacing file extension' % (Source, Destinate)) Parser.add_option('-q', '--quiet', action='store_true', type=None, help ='Disable all messages except FATAL ERRORS.') Parser.add_option('-v', '--verbose', action='store_true', type=None, help='Turn on verbose output with informational messages printed.') Options, Args = Parser.parse_args() if Options.verbose: EdkLogger.setLevel(EdkLogger.VERBOSE) elif Options.quiet: EdkLogger.setLevel(EdkLogger.QUIET) else: EdkLogger.setLevel(EdkLogger.INFO) if len(Args) == 0: raise MigrationError(PARAMETER_MISSING, name='Input file', usage= Parser.get_usage()) if len(Args) > 1: raise MigrationError(PARAMETER_INVALID, name='Too many input files', usage=Parser.get_usage()) InputFile = Args[0] if not os.path.exists(InputFile): raise MigrationError(FILE_NOT_FOUND, name=InputFile) if Options.OutputFile: if Options.AutoWrite: raise MigrationError(OPTION_CONFLICT, arg1='-o', arg2='-a', usage=Parser.get_usage()) elif Options.AutoWrite: Options.OutputFile = os.path.splitext(InputFile)[0 ] + '.' + Destinate.lower() else: raise MigrationError(OPTION_MISSING, name='-o', usage=Parser. get_usage()) return Options, InputFile <mask token>
<mask token> def SetCommon(Common, XmlCommon): XmlTag = 'Usage' Common.Usage = XmlAttribute(XmlCommon, XmlTag).split() XmlTag = 'FeatureFlag' Common.FeatureFlag = XmlAttribute(XmlCommon, XmlTag) XmlTag = 'SupArchList' Common.SupArchList = XmlAttribute(XmlCommon, XmlTag).split() XmlTag = XmlNodeName(XmlCommon) + '/' + 'HelpText' Common.HelpText = XmlElement(XmlCommon, XmlTag) def SetIdentification(CommonHeader, XmlCommonHeader, NameTag, FileName): XmlParentTag = XmlNodeName(XmlCommonHeader) XmlTag = XmlParentTag + '/' + NameTag CommonHeader.Name = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParentTag + '/' + 'GuidValue' CommonHeader.Guid = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParentTag + '/' + 'Version' CommonHeader.Version = XmlElement(XmlCommonHeader, XmlTag) CommonHeader.FileName = os.path.basename(FileName) CommonHeader.FullPath = os.path.abspath(FileName) <mask token> def AddToSpecificationDict(SpecificationDict, SpecificationString): """Abstract specification name, value pair from Specification String""" for SpecificationMatch in mReSpecification.finditer(SpecificationString): Specification = SpecificationMatch.group('Specification') Value = SpecificationMatch.group('Value') SpecificationDict[Specification] = Value def SetCommonHeader(CommonHeader, XmlCommonHeader): """Set all attributes of CommonHeaderClass object from XmlCommonHeader""" XmlParent = XmlNodeName(XmlCommonHeader) XmlTag = XmlParent + '/' + 'Abstract' CommonHeader.Abstract = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParent + '/' + 'Description' CommonHeader.Description = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParent + '/' + 'Copyright' CommonHeader.Copyright = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParent + '/' + 'License' CommonHeader.License = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParent + '/' + 'Specification' Specification = XmlElement(XmlCommonHeader, XmlTag) AddToSpecificationDict(CommonHeader.Specification, Specification) XmlTag = XmlParent + '/' + 'ModuleType' CommonHeader.ModuleType = XmlElement(XmlCommonHeader, XmlTag) def LoadClonedRecord(XmlCloned): ClonedRecord = ClonedRecordClass() XmlTag = 'Id' ClonedRecord.Id = int(XmlAttribute(XmlCloned, XmlTag)) XmlTag = 'FarGuid' ClonedRecord.FarGuid = XmlAttribute(XmlCloned, XmlTag) XmlTag = 'Cloned/PackageGuid' ClonedRecord.PackageGuid = XmlElement(XmlCloned, XmlTag) XmlTag = 'Cloned/PackageVersion' ClonedRecord.PackageVersion = XmlElement(XmlCloned, XmlTag) XmlTag = 'Cloned/ModuleGuid' ClonedRecord.ModuleGuid = XmlElement(XmlCloned, XmlTag) XmlTag = 'Cloned/ModuleVersion' ClonedRecord.ModuleVersion = XmlElement(XmlCloned, XmlTag) return ClonedRecord def LoadGuidProtocolPpiCommon(XmlGuidProtocolPpiCommon): GuidProtocolPpiCommon = GuidProtocolPpiCommonClass() XmlTag = 'Name' GuidProtocolPpiCommon.Name = XmlAttribute(XmlGuidProtocolPpiCommon, XmlTag) XmlParent = XmlNodeName(XmlGuidProtocolPpiCommon) if XmlParent == 'Entry': XmlTag = '%s/C_Name' % XmlParent elif XmlParent == 'GuidCNames': XmlTag = '%s/GuidCName' % XmlParent else: XmlTag = '%s/%sCName' % (XmlParent, XmlParent) GuidProtocolPpiCommon.CName = XmlElement(XmlGuidProtocolPpiCommon, XmlTag) XmlTag = XmlParent + '/' + 'GuidValue' GuidProtocolPpiCommon.Guid = XmlElement(XmlGuidProtocolPpiCommon, XmlTag) if XmlParent.endswith('Notify'): GuidProtocolPpiCommon.Notify = True XmlTag = 'GuidTypeList' GuidTypes = XmlAttribute(XmlGuidProtocolPpiCommon, XmlTag) GuidProtocolPpiCommon.GuidTypeList = GuidTypes.split() XmlTag = 'SupModuleList' SupModules = XmlAttribute(XmlGuidProtocolPpiCommon, XmlTag) GuidProtocolPpiCommon.SupModuleList = SupModules.split() SetCommon(GuidProtocolPpiCommon, XmlGuidProtocolPpiCommon) return GuidProtocolPpiCommon def LoadPcd(XmlPcd): """Return a new PcdClass object equivalent to XmlPcd""" Pcd = PcdClass() XmlTag = 'PcdEntry/C_Name' Pcd.CName = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/Token' Pcd.Token = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/TokenSpaceGuidCName' Pcd.TokenSpaceGuidCName = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/DatumType' Pcd.DatumType = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/MaxDatumSize' Pcd.MaxDatumSize = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/DefaultValue' Pcd.DefaultValue = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdItemType' Pcd.ItemType = XmlAttribute(XmlPcd, XmlTag) XmlTag = 'PcdEntry/ValidUsage' Pcd.ValidUsage = XmlElement(XmlPcd, XmlTag).split() XmlTag = 'SupModuleList' Pcd.SupModuleList = XmlAttribute(XmlPcd, XmlTag).split() SetCommon(Pcd, XmlPcd) return Pcd def LoadLibraryClass(XmlLibraryClass): LibraryClass = LibraryClassClass() XmlTag = 'LibraryClass/Keyword' LibraryClass.LibraryClass = XmlElement(XmlLibraryClass, XmlTag) if LibraryClass.LibraryClass == '': XmlTag = 'Name' LibraryClass.LibraryClass = XmlAttribute(XmlLibraryClass, XmlTag) XmlTag = 'LibraryClass/IncludeHeader' LibraryClass.IncludeHeader = XmlElement(XmlLibraryClass, XmlTag) XmlTag = 'RecommendedInstanceVersion' RecommendedInstanceVersion = XmlAttribute(XmlLibraryClass, XmlTag) LibraryClass.RecommendedInstanceVersion = RecommendedInstanceVersion XmlTag = 'RecommendedInstanceGuid' RecommendedInstanceGuid = XmlAttribute(XmlLibraryClass, XmlTag) LibraryClass.RecommendedInstanceGuid = RecommendedInstanceGuid XmlTag = 'SupModuleList' SupModules = XmlAttribute(XmlLibraryClass, XmlTag) LibraryClass.SupModuleList = SupModules.split() SetCommon(LibraryClass, XmlLibraryClass) return LibraryClass def LoadBuildOption(XmlBuildOption): """Return a new BuildOptionClass object equivalent to XmlBuildOption""" BuildOption = BuildOptionClass() BuildOption.Option = XmlElementData(XmlBuildOption) XmlTag = 'BuildTargets' BuildOption.BuildTargetList = XmlAttribute(XmlBuildOption, XmlTag).split() XmlTag = 'ToolChainFamily' BuildOption.ToolChainFamily = XmlAttribute(XmlBuildOption, XmlTag) XmlTag = 'TagName' BuildOption.TagName = XmlAttribute(XmlBuildOption, XmlTag) XmlTag = 'ToolCode' BuildOption.ToolCode = XmlAttribute(XmlBuildOption, XmlTag) XmlTag = 'SupArchList' BuildOption.SupArchList = XmlAttribute(XmlBuildOption, XmlTag).split() return BuildOption def LoadUserExtensions(XmlUserExtensions): UserExtensions = UserExtensionsClass() XmlTag = 'UserID' UserExtensions.UserID = XmlAttribute(XmlUserExtensions, XmlTag) XmlTag = 'Identifier' UserExtensions.Identifier = XmlAttribute(XmlUserExtensions, XmlTag) UserExtensions.Content = XmlElementData(XmlUserExtensions) return UserExtensions def StoreTextFile(TextFile, Content): EdkLogger.verbose(Content) TextFile.write(Content) def AddToSection(Section, Arch, Item): SectionArch = Section.get(Arch, []) if Item not in SectionArch: SectionArch.append(Item) Section[Arch] = SectionArch <mask token> def StoreHeader(TextFile, CommonHeader): CopyRight = CommonHeader.Copyright Abstract = CommonHeader.Abstract Description = CommonHeader.Description License = CommonHeader.License Header = '#/** @file\n#\n' Header += '# ' + Abstract + '\n#\n' Header += '# ' + Description.strip().replace('\n', '\n# ') + '\n' Header += '# ' + CopyRight + '\n#\n' Header += '# ' + License.replace('\n', '\n# ').replace(' ', ' ') Header += '\n#\n#**/\n\n' StoreTextFile(TextFile, Header) def StoreDefinesSection(TextFile, DefinesTupleList): Section = '[Defines]\n' for DefineItem in DefinesTupleList: Section += ' %-30s = %s\n' % DefineItem Section += '\n\n' StoreTextFile(TextFile, Section) def GetUserExtensions(UserExtensions): UserId = UserExtensions.UserID Identifier = UserExtensions.Identifier Content = UserExtensions.Content return '[UserExtensions.%s.%s]\n %s\n\n' % (UserId, Identifier, Content) <mask token> def GetTextFileInfo(FileName, TagTuple): ValueTuple = [''] * len(TagTuple) try: for Line in open(FileName): Line = Line.split('#', 1)[0] MatchEquation = mReEquation.match(Line) if MatchEquation: Tag = MatchEquation.group(1).upper() Value = MatchEquation.group(2) for Index in range(len(TagTuple)): if TagTuple[Index] == Tag: ValueTuple[Index] = Value except: EdkLogger.info('IO Error in reading file %s' % FileName) return ValueTuple def GetXmlFileInfo(FileName, TagTuple): XmlDom = XmlParseFile(FileName) return tuple([XmlElement(XmlDom, XmlTag) for XmlTag in TagTuple]) def MigrationOptionParser(Source, Destinate, ToolName, VersionNumber=1.0): UsageString = '%s [-a] [-v|-q] [-o <output_file>] <input_file>' % ToolName Version = '%s Version %.2f' % (ToolName, VersionNumber) Copyright = 'Copyright (c) 2007, Intel Corporation. All rights reserved.' Parser = OptionParser(description=Copyright, version=Version, usage= UsageString) Parser.add_option('-o', '--output', dest='OutputFile', help= 'The name of the %s file to be created.' % Destinate) Parser.add_option('-a', '--auto', dest='AutoWrite', action='store_true', default=False, help= 'Automatically create the %s file using the name of the %s file and replacing file extension' % (Source, Destinate)) Parser.add_option('-q', '--quiet', action='store_true', type=None, help ='Disable all messages except FATAL ERRORS.') Parser.add_option('-v', '--verbose', action='store_true', type=None, help='Turn on verbose output with informational messages printed.') Options, Args = Parser.parse_args() if Options.verbose: EdkLogger.setLevel(EdkLogger.VERBOSE) elif Options.quiet: EdkLogger.setLevel(EdkLogger.QUIET) else: EdkLogger.setLevel(EdkLogger.INFO) if len(Args) == 0: raise MigrationError(PARAMETER_MISSING, name='Input file', usage= Parser.get_usage()) if len(Args) > 1: raise MigrationError(PARAMETER_INVALID, name='Too many input files', usage=Parser.get_usage()) InputFile = Args[0] if not os.path.exists(InputFile): raise MigrationError(FILE_NOT_FOUND, name=InputFile) if Options.OutputFile: if Options.AutoWrite: raise MigrationError(OPTION_CONFLICT, arg1='-o', arg2='-a', usage=Parser.get_usage()) elif Options.AutoWrite: Options.OutputFile = os.path.splitext(InputFile)[0 ] + '.' + Destinate.lower() else: raise MigrationError(OPTION_MISSING, name='-o', usage=Parser. get_usage()) return Options, InputFile <mask token>
<mask token> def SetCommon(Common, XmlCommon): XmlTag = 'Usage' Common.Usage = XmlAttribute(XmlCommon, XmlTag).split() XmlTag = 'FeatureFlag' Common.FeatureFlag = XmlAttribute(XmlCommon, XmlTag) XmlTag = 'SupArchList' Common.SupArchList = XmlAttribute(XmlCommon, XmlTag).split() XmlTag = XmlNodeName(XmlCommon) + '/' + 'HelpText' Common.HelpText = XmlElement(XmlCommon, XmlTag) def SetIdentification(CommonHeader, XmlCommonHeader, NameTag, FileName): XmlParentTag = XmlNodeName(XmlCommonHeader) XmlTag = XmlParentTag + '/' + NameTag CommonHeader.Name = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParentTag + '/' + 'GuidValue' CommonHeader.Guid = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParentTag + '/' + 'Version' CommonHeader.Version = XmlElement(XmlCommonHeader, XmlTag) CommonHeader.FileName = os.path.basename(FileName) CommonHeader.FullPath = os.path.abspath(FileName) <mask token> def AddToSpecificationDict(SpecificationDict, SpecificationString): """Abstract specification name, value pair from Specification String""" for SpecificationMatch in mReSpecification.finditer(SpecificationString): Specification = SpecificationMatch.group('Specification') Value = SpecificationMatch.group('Value') SpecificationDict[Specification] = Value def SetCommonHeader(CommonHeader, XmlCommonHeader): """Set all attributes of CommonHeaderClass object from XmlCommonHeader""" XmlParent = XmlNodeName(XmlCommonHeader) XmlTag = XmlParent + '/' + 'Abstract' CommonHeader.Abstract = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParent + '/' + 'Description' CommonHeader.Description = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParent + '/' + 'Copyright' CommonHeader.Copyright = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParent + '/' + 'License' CommonHeader.License = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParent + '/' + 'Specification' Specification = XmlElement(XmlCommonHeader, XmlTag) AddToSpecificationDict(CommonHeader.Specification, Specification) XmlTag = XmlParent + '/' + 'ModuleType' CommonHeader.ModuleType = XmlElement(XmlCommonHeader, XmlTag) def LoadClonedRecord(XmlCloned): ClonedRecord = ClonedRecordClass() XmlTag = 'Id' ClonedRecord.Id = int(XmlAttribute(XmlCloned, XmlTag)) XmlTag = 'FarGuid' ClonedRecord.FarGuid = XmlAttribute(XmlCloned, XmlTag) XmlTag = 'Cloned/PackageGuid' ClonedRecord.PackageGuid = XmlElement(XmlCloned, XmlTag) XmlTag = 'Cloned/PackageVersion' ClonedRecord.PackageVersion = XmlElement(XmlCloned, XmlTag) XmlTag = 'Cloned/ModuleGuid' ClonedRecord.ModuleGuid = XmlElement(XmlCloned, XmlTag) XmlTag = 'Cloned/ModuleVersion' ClonedRecord.ModuleVersion = XmlElement(XmlCloned, XmlTag) return ClonedRecord def LoadGuidProtocolPpiCommon(XmlGuidProtocolPpiCommon): GuidProtocolPpiCommon = GuidProtocolPpiCommonClass() XmlTag = 'Name' GuidProtocolPpiCommon.Name = XmlAttribute(XmlGuidProtocolPpiCommon, XmlTag) XmlParent = XmlNodeName(XmlGuidProtocolPpiCommon) if XmlParent == 'Entry': XmlTag = '%s/C_Name' % XmlParent elif XmlParent == 'GuidCNames': XmlTag = '%s/GuidCName' % XmlParent else: XmlTag = '%s/%sCName' % (XmlParent, XmlParent) GuidProtocolPpiCommon.CName = XmlElement(XmlGuidProtocolPpiCommon, XmlTag) XmlTag = XmlParent + '/' + 'GuidValue' GuidProtocolPpiCommon.Guid = XmlElement(XmlGuidProtocolPpiCommon, XmlTag) if XmlParent.endswith('Notify'): GuidProtocolPpiCommon.Notify = True XmlTag = 'GuidTypeList' GuidTypes = XmlAttribute(XmlGuidProtocolPpiCommon, XmlTag) GuidProtocolPpiCommon.GuidTypeList = GuidTypes.split() XmlTag = 'SupModuleList' SupModules = XmlAttribute(XmlGuidProtocolPpiCommon, XmlTag) GuidProtocolPpiCommon.SupModuleList = SupModules.split() SetCommon(GuidProtocolPpiCommon, XmlGuidProtocolPpiCommon) return GuidProtocolPpiCommon def LoadPcd(XmlPcd): """Return a new PcdClass object equivalent to XmlPcd""" Pcd = PcdClass() XmlTag = 'PcdEntry/C_Name' Pcd.CName = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/Token' Pcd.Token = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/TokenSpaceGuidCName' Pcd.TokenSpaceGuidCName = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/DatumType' Pcd.DatumType = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/MaxDatumSize' Pcd.MaxDatumSize = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/DefaultValue' Pcd.DefaultValue = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdItemType' Pcd.ItemType = XmlAttribute(XmlPcd, XmlTag) XmlTag = 'PcdEntry/ValidUsage' Pcd.ValidUsage = XmlElement(XmlPcd, XmlTag).split() XmlTag = 'SupModuleList' Pcd.SupModuleList = XmlAttribute(XmlPcd, XmlTag).split() SetCommon(Pcd, XmlPcd) return Pcd def LoadLibraryClass(XmlLibraryClass): LibraryClass = LibraryClassClass() XmlTag = 'LibraryClass/Keyword' LibraryClass.LibraryClass = XmlElement(XmlLibraryClass, XmlTag) if LibraryClass.LibraryClass == '': XmlTag = 'Name' LibraryClass.LibraryClass = XmlAttribute(XmlLibraryClass, XmlTag) XmlTag = 'LibraryClass/IncludeHeader' LibraryClass.IncludeHeader = XmlElement(XmlLibraryClass, XmlTag) XmlTag = 'RecommendedInstanceVersion' RecommendedInstanceVersion = XmlAttribute(XmlLibraryClass, XmlTag) LibraryClass.RecommendedInstanceVersion = RecommendedInstanceVersion XmlTag = 'RecommendedInstanceGuid' RecommendedInstanceGuid = XmlAttribute(XmlLibraryClass, XmlTag) LibraryClass.RecommendedInstanceGuid = RecommendedInstanceGuid XmlTag = 'SupModuleList' SupModules = XmlAttribute(XmlLibraryClass, XmlTag) LibraryClass.SupModuleList = SupModules.split() SetCommon(LibraryClass, XmlLibraryClass) return LibraryClass def LoadBuildOption(XmlBuildOption): """Return a new BuildOptionClass object equivalent to XmlBuildOption""" BuildOption = BuildOptionClass() BuildOption.Option = XmlElementData(XmlBuildOption) XmlTag = 'BuildTargets' BuildOption.BuildTargetList = XmlAttribute(XmlBuildOption, XmlTag).split() XmlTag = 'ToolChainFamily' BuildOption.ToolChainFamily = XmlAttribute(XmlBuildOption, XmlTag) XmlTag = 'TagName' BuildOption.TagName = XmlAttribute(XmlBuildOption, XmlTag) XmlTag = 'ToolCode' BuildOption.ToolCode = XmlAttribute(XmlBuildOption, XmlTag) XmlTag = 'SupArchList' BuildOption.SupArchList = XmlAttribute(XmlBuildOption, XmlTag).split() return BuildOption def LoadUserExtensions(XmlUserExtensions): UserExtensions = UserExtensionsClass() XmlTag = 'UserID' UserExtensions.UserID = XmlAttribute(XmlUserExtensions, XmlTag) XmlTag = 'Identifier' UserExtensions.Identifier = XmlAttribute(XmlUserExtensions, XmlTag) UserExtensions.Content = XmlElementData(XmlUserExtensions) return UserExtensions def StoreTextFile(TextFile, Content): EdkLogger.verbose(Content) TextFile.write(Content) def AddToSection(Section, Arch, Item): SectionArch = Section.get(Arch, []) if Item not in SectionArch: SectionArch.append(Item) Section[Arch] = SectionArch def GetSection(SectionName, Method, ObjectList): SupportedArches = ['common', 'Ia32', 'X64', 'Ipf', 'Ebc', 'ARM', 'AARCH64'] SectionDict = {} for Object in ObjectList: Item = Method(Object) if Item == '': continue Item = ' %s' % Item Arches = Object.SupArchList if len(Arches) == 0: AddToSection(SectionDict, 'common', Item) else: for Arch in SupportedArches: if Arch.upper() in Arches: AddToSection(SectionDict, Arch, Item) Section = '' for Arch in SupportedArches: SectionArch = '\n'.join(SectionDict.get(Arch, [])) if SectionArch != '': Section += '[%s.%s]\n%s\n' % (SectionName, Arch, SectionArch) Section += '\n' if Section != '': Section += '\n' return Section def StoreHeader(TextFile, CommonHeader): CopyRight = CommonHeader.Copyright Abstract = CommonHeader.Abstract Description = CommonHeader.Description License = CommonHeader.License Header = '#/** @file\n#\n' Header += '# ' + Abstract + '\n#\n' Header += '# ' + Description.strip().replace('\n', '\n# ') + '\n' Header += '# ' + CopyRight + '\n#\n' Header += '# ' + License.replace('\n', '\n# ').replace(' ', ' ') Header += '\n#\n#**/\n\n' StoreTextFile(TextFile, Header) def StoreDefinesSection(TextFile, DefinesTupleList): Section = '[Defines]\n' for DefineItem in DefinesTupleList: Section += ' %-30s = %s\n' % DefineItem Section += '\n\n' StoreTextFile(TextFile, Section) def GetUserExtensions(UserExtensions): UserId = UserExtensions.UserID Identifier = UserExtensions.Identifier Content = UserExtensions.Content return '[UserExtensions.%s.%s]\n %s\n\n' % (UserId, Identifier, Content) <mask token> def GetTextFileInfo(FileName, TagTuple): ValueTuple = [''] * len(TagTuple) try: for Line in open(FileName): Line = Line.split('#', 1)[0] MatchEquation = mReEquation.match(Line) if MatchEquation: Tag = MatchEquation.group(1).upper() Value = MatchEquation.group(2) for Index in range(len(TagTuple)): if TagTuple[Index] == Tag: ValueTuple[Index] = Value except: EdkLogger.info('IO Error in reading file %s' % FileName) return ValueTuple def GetXmlFileInfo(FileName, TagTuple): XmlDom = XmlParseFile(FileName) return tuple([XmlElement(XmlDom, XmlTag) for XmlTag in TagTuple]) def MigrationOptionParser(Source, Destinate, ToolName, VersionNumber=1.0): UsageString = '%s [-a] [-v|-q] [-o <output_file>] <input_file>' % ToolName Version = '%s Version %.2f' % (ToolName, VersionNumber) Copyright = 'Copyright (c) 2007, Intel Corporation. All rights reserved.' Parser = OptionParser(description=Copyright, version=Version, usage= UsageString) Parser.add_option('-o', '--output', dest='OutputFile', help= 'The name of the %s file to be created.' % Destinate) Parser.add_option('-a', '--auto', dest='AutoWrite', action='store_true', default=False, help= 'Automatically create the %s file using the name of the %s file and replacing file extension' % (Source, Destinate)) Parser.add_option('-q', '--quiet', action='store_true', type=None, help ='Disable all messages except FATAL ERRORS.') Parser.add_option('-v', '--verbose', action='store_true', type=None, help='Turn on verbose output with informational messages printed.') Options, Args = Parser.parse_args() if Options.verbose: EdkLogger.setLevel(EdkLogger.VERBOSE) elif Options.quiet: EdkLogger.setLevel(EdkLogger.QUIET) else: EdkLogger.setLevel(EdkLogger.INFO) if len(Args) == 0: raise MigrationError(PARAMETER_MISSING, name='Input file', usage= Parser.get_usage()) if len(Args) > 1: raise MigrationError(PARAMETER_INVALID, name='Too many input files', usage=Parser.get_usage()) InputFile = Args[0] if not os.path.exists(InputFile): raise MigrationError(FILE_NOT_FOUND, name=InputFile) if Options.OutputFile: if Options.AutoWrite: raise MigrationError(OPTION_CONFLICT, arg1='-o', arg2='-a', usage=Parser.get_usage()) elif Options.AutoWrite: Options.OutputFile = os.path.splitext(InputFile)[0 ] + '.' + Destinate.lower() else: raise MigrationError(OPTION_MISSING, name='-o', usage=Parser. get_usage()) return Options, InputFile if __name__ == '__main__': pass
<mask token> def SetCommon(Common, XmlCommon): XmlTag = 'Usage' Common.Usage = XmlAttribute(XmlCommon, XmlTag).split() XmlTag = 'FeatureFlag' Common.FeatureFlag = XmlAttribute(XmlCommon, XmlTag) XmlTag = 'SupArchList' Common.SupArchList = XmlAttribute(XmlCommon, XmlTag).split() XmlTag = XmlNodeName(XmlCommon) + '/' + 'HelpText' Common.HelpText = XmlElement(XmlCommon, XmlTag) def SetIdentification(CommonHeader, XmlCommonHeader, NameTag, FileName): XmlParentTag = XmlNodeName(XmlCommonHeader) XmlTag = XmlParentTag + '/' + NameTag CommonHeader.Name = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParentTag + '/' + 'GuidValue' CommonHeader.Guid = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParentTag + '/' + 'Version' CommonHeader.Version = XmlElement(XmlCommonHeader, XmlTag) CommonHeader.FileName = os.path.basename(FileName) CommonHeader.FullPath = os.path.abspath(FileName) mReSpecification = re.compile('(?P<Specification>\\w+)\\s+(?P<Value>\\w*)') def AddToSpecificationDict(SpecificationDict, SpecificationString): """Abstract specification name, value pair from Specification String""" for SpecificationMatch in mReSpecification.finditer(SpecificationString): Specification = SpecificationMatch.group('Specification') Value = SpecificationMatch.group('Value') SpecificationDict[Specification] = Value def SetCommonHeader(CommonHeader, XmlCommonHeader): """Set all attributes of CommonHeaderClass object from XmlCommonHeader""" XmlParent = XmlNodeName(XmlCommonHeader) XmlTag = XmlParent + '/' + 'Abstract' CommonHeader.Abstract = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParent + '/' + 'Description' CommonHeader.Description = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParent + '/' + 'Copyright' CommonHeader.Copyright = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParent + '/' + 'License' CommonHeader.License = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParent + '/' + 'Specification' Specification = XmlElement(XmlCommonHeader, XmlTag) AddToSpecificationDict(CommonHeader.Specification, Specification) XmlTag = XmlParent + '/' + 'ModuleType' CommonHeader.ModuleType = XmlElement(XmlCommonHeader, XmlTag) def LoadClonedRecord(XmlCloned): ClonedRecord = ClonedRecordClass() XmlTag = 'Id' ClonedRecord.Id = int(XmlAttribute(XmlCloned, XmlTag)) XmlTag = 'FarGuid' ClonedRecord.FarGuid = XmlAttribute(XmlCloned, XmlTag) XmlTag = 'Cloned/PackageGuid' ClonedRecord.PackageGuid = XmlElement(XmlCloned, XmlTag) XmlTag = 'Cloned/PackageVersion' ClonedRecord.PackageVersion = XmlElement(XmlCloned, XmlTag) XmlTag = 'Cloned/ModuleGuid' ClonedRecord.ModuleGuid = XmlElement(XmlCloned, XmlTag) XmlTag = 'Cloned/ModuleVersion' ClonedRecord.ModuleVersion = XmlElement(XmlCloned, XmlTag) return ClonedRecord def LoadGuidProtocolPpiCommon(XmlGuidProtocolPpiCommon): GuidProtocolPpiCommon = GuidProtocolPpiCommonClass() XmlTag = 'Name' GuidProtocolPpiCommon.Name = XmlAttribute(XmlGuidProtocolPpiCommon, XmlTag) XmlParent = XmlNodeName(XmlGuidProtocolPpiCommon) if XmlParent == 'Entry': XmlTag = '%s/C_Name' % XmlParent elif XmlParent == 'GuidCNames': XmlTag = '%s/GuidCName' % XmlParent else: XmlTag = '%s/%sCName' % (XmlParent, XmlParent) GuidProtocolPpiCommon.CName = XmlElement(XmlGuidProtocolPpiCommon, XmlTag) XmlTag = XmlParent + '/' + 'GuidValue' GuidProtocolPpiCommon.Guid = XmlElement(XmlGuidProtocolPpiCommon, XmlTag) if XmlParent.endswith('Notify'): GuidProtocolPpiCommon.Notify = True XmlTag = 'GuidTypeList' GuidTypes = XmlAttribute(XmlGuidProtocolPpiCommon, XmlTag) GuidProtocolPpiCommon.GuidTypeList = GuidTypes.split() XmlTag = 'SupModuleList' SupModules = XmlAttribute(XmlGuidProtocolPpiCommon, XmlTag) GuidProtocolPpiCommon.SupModuleList = SupModules.split() SetCommon(GuidProtocolPpiCommon, XmlGuidProtocolPpiCommon) return GuidProtocolPpiCommon def LoadPcd(XmlPcd): """Return a new PcdClass object equivalent to XmlPcd""" Pcd = PcdClass() XmlTag = 'PcdEntry/C_Name' Pcd.CName = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/Token' Pcd.Token = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/TokenSpaceGuidCName' Pcd.TokenSpaceGuidCName = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/DatumType' Pcd.DatumType = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/MaxDatumSize' Pcd.MaxDatumSize = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdEntry/DefaultValue' Pcd.DefaultValue = XmlElement(XmlPcd, XmlTag) XmlTag = 'PcdItemType' Pcd.ItemType = XmlAttribute(XmlPcd, XmlTag) XmlTag = 'PcdEntry/ValidUsage' Pcd.ValidUsage = XmlElement(XmlPcd, XmlTag).split() XmlTag = 'SupModuleList' Pcd.SupModuleList = XmlAttribute(XmlPcd, XmlTag).split() SetCommon(Pcd, XmlPcd) return Pcd def LoadLibraryClass(XmlLibraryClass): LibraryClass = LibraryClassClass() XmlTag = 'LibraryClass/Keyword' LibraryClass.LibraryClass = XmlElement(XmlLibraryClass, XmlTag) if LibraryClass.LibraryClass == '': XmlTag = 'Name' LibraryClass.LibraryClass = XmlAttribute(XmlLibraryClass, XmlTag) XmlTag = 'LibraryClass/IncludeHeader' LibraryClass.IncludeHeader = XmlElement(XmlLibraryClass, XmlTag) XmlTag = 'RecommendedInstanceVersion' RecommendedInstanceVersion = XmlAttribute(XmlLibraryClass, XmlTag) LibraryClass.RecommendedInstanceVersion = RecommendedInstanceVersion XmlTag = 'RecommendedInstanceGuid' RecommendedInstanceGuid = XmlAttribute(XmlLibraryClass, XmlTag) LibraryClass.RecommendedInstanceGuid = RecommendedInstanceGuid XmlTag = 'SupModuleList' SupModules = XmlAttribute(XmlLibraryClass, XmlTag) LibraryClass.SupModuleList = SupModules.split() SetCommon(LibraryClass, XmlLibraryClass) return LibraryClass def LoadBuildOption(XmlBuildOption): """Return a new BuildOptionClass object equivalent to XmlBuildOption""" BuildOption = BuildOptionClass() BuildOption.Option = XmlElementData(XmlBuildOption) XmlTag = 'BuildTargets' BuildOption.BuildTargetList = XmlAttribute(XmlBuildOption, XmlTag).split() XmlTag = 'ToolChainFamily' BuildOption.ToolChainFamily = XmlAttribute(XmlBuildOption, XmlTag) XmlTag = 'TagName' BuildOption.TagName = XmlAttribute(XmlBuildOption, XmlTag) XmlTag = 'ToolCode' BuildOption.ToolCode = XmlAttribute(XmlBuildOption, XmlTag) XmlTag = 'SupArchList' BuildOption.SupArchList = XmlAttribute(XmlBuildOption, XmlTag).split() return BuildOption def LoadUserExtensions(XmlUserExtensions): UserExtensions = UserExtensionsClass() XmlTag = 'UserID' UserExtensions.UserID = XmlAttribute(XmlUserExtensions, XmlTag) XmlTag = 'Identifier' UserExtensions.Identifier = XmlAttribute(XmlUserExtensions, XmlTag) UserExtensions.Content = XmlElementData(XmlUserExtensions) return UserExtensions def StoreTextFile(TextFile, Content): EdkLogger.verbose(Content) TextFile.write(Content) def AddToSection(Section, Arch, Item): SectionArch = Section.get(Arch, []) if Item not in SectionArch: SectionArch.append(Item) Section[Arch] = SectionArch def GetSection(SectionName, Method, ObjectList): SupportedArches = ['common', 'Ia32', 'X64', 'Ipf', 'Ebc', 'ARM', 'AARCH64'] SectionDict = {} for Object in ObjectList: Item = Method(Object) if Item == '': continue Item = ' %s' % Item Arches = Object.SupArchList if len(Arches) == 0: AddToSection(SectionDict, 'common', Item) else: for Arch in SupportedArches: if Arch.upper() in Arches: AddToSection(SectionDict, Arch, Item) Section = '' for Arch in SupportedArches: SectionArch = '\n'.join(SectionDict.get(Arch, [])) if SectionArch != '': Section += '[%s.%s]\n%s\n' % (SectionName, Arch, SectionArch) Section += '\n' if Section != '': Section += '\n' return Section def StoreHeader(TextFile, CommonHeader): CopyRight = CommonHeader.Copyright Abstract = CommonHeader.Abstract Description = CommonHeader.Description License = CommonHeader.License Header = '#/** @file\n#\n' Header += '# ' + Abstract + '\n#\n' Header += '# ' + Description.strip().replace('\n', '\n# ') + '\n' Header += '# ' + CopyRight + '\n#\n' Header += '# ' + License.replace('\n', '\n# ').replace(' ', ' ') Header += '\n#\n#**/\n\n' StoreTextFile(TextFile, Header) def StoreDefinesSection(TextFile, DefinesTupleList): Section = '[Defines]\n' for DefineItem in DefinesTupleList: Section += ' %-30s = %s\n' % DefineItem Section += '\n\n' StoreTextFile(TextFile, Section) def GetUserExtensions(UserExtensions): UserId = UserExtensions.UserID Identifier = UserExtensions.Identifier Content = UserExtensions.Content return '[UserExtensions.%s.%s]\n %s\n\n' % (UserId, Identifier, Content) mReEquation = re.compile('\\s*(\\S+)\\s*=\\s*(\\S*)\\s*') def GetTextFileInfo(FileName, TagTuple): ValueTuple = [''] * len(TagTuple) try: for Line in open(FileName): Line = Line.split('#', 1)[0] MatchEquation = mReEquation.match(Line) if MatchEquation: Tag = MatchEquation.group(1).upper() Value = MatchEquation.group(2) for Index in range(len(TagTuple)): if TagTuple[Index] == Tag: ValueTuple[Index] = Value except: EdkLogger.info('IO Error in reading file %s' % FileName) return ValueTuple def GetXmlFileInfo(FileName, TagTuple): XmlDom = XmlParseFile(FileName) return tuple([XmlElement(XmlDom, XmlTag) for XmlTag in TagTuple]) def MigrationOptionParser(Source, Destinate, ToolName, VersionNumber=1.0): UsageString = '%s [-a] [-v|-q] [-o <output_file>] <input_file>' % ToolName Version = '%s Version %.2f' % (ToolName, VersionNumber) Copyright = 'Copyright (c) 2007, Intel Corporation. All rights reserved.' Parser = OptionParser(description=Copyright, version=Version, usage= UsageString) Parser.add_option('-o', '--output', dest='OutputFile', help= 'The name of the %s file to be created.' % Destinate) Parser.add_option('-a', '--auto', dest='AutoWrite', action='store_true', default=False, help= 'Automatically create the %s file using the name of the %s file and replacing file extension' % (Source, Destinate)) Parser.add_option('-q', '--quiet', action='store_true', type=None, help ='Disable all messages except FATAL ERRORS.') Parser.add_option('-v', '--verbose', action='store_true', type=None, help='Turn on verbose output with informational messages printed.') Options, Args = Parser.parse_args() if Options.verbose: EdkLogger.setLevel(EdkLogger.VERBOSE) elif Options.quiet: EdkLogger.setLevel(EdkLogger.QUIET) else: EdkLogger.setLevel(EdkLogger.INFO) if len(Args) == 0: raise MigrationError(PARAMETER_MISSING, name='Input file', usage= Parser.get_usage()) if len(Args) > 1: raise MigrationError(PARAMETER_INVALID, name='Too many input files', usage=Parser.get_usage()) InputFile = Args[0] if not os.path.exists(InputFile): raise MigrationError(FILE_NOT_FOUND, name=InputFile) if Options.OutputFile: if Options.AutoWrite: raise MigrationError(OPTION_CONFLICT, arg1='-o', arg2='-a', usage=Parser.get_usage()) elif Options.AutoWrite: Options.OutputFile = os.path.splitext(InputFile)[0 ] + '.' + Destinate.lower() else: raise MigrationError(OPTION_MISSING, name='-o', usage=Parser. get_usage()) return Options, InputFile if __name__ == '__main__': pass
## @file # Contains several utilitities shared by migration tools. # # Copyright (c) 2007 - 2014, Intel Corporation. All rights reserved.<BR> # This program and the accompanying materials # are licensed and made available under the terms and conditions of the BSD License # which accompanies this distribution. The full text of the license may be found at # http://opensource.org/licenses/bsd-license.php # # THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, # WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. # ## # Import Modules # import Common.LongFilePathOs as os import re import EdkLogger from optparse import OptionParser from Common.BuildToolError import * from XmlRoutines import * from CommonDataClass.CommonClass import * from Common.LongFilePathSupport import OpenLongFilePath as open ## Set all fields of CommonClass object. # # Set all attributes of CommonClass object from XML Dom object of XmlCommon. # # @param Common The destine CommonClass object. # @param XmlCommon The source XML Dom object. # def SetCommon(Common, XmlCommon): XmlTag = "Usage" Common.Usage = XmlAttribute(XmlCommon, XmlTag).split() XmlTag = "FeatureFlag" Common.FeatureFlag = XmlAttribute(XmlCommon, XmlTag) XmlTag = "SupArchList" Common.SupArchList = XmlAttribute(XmlCommon, XmlTag).split() XmlTag = XmlNodeName(XmlCommon) + "/" + "HelpText" Common.HelpText = XmlElement(XmlCommon, XmlTag) ## Set some fields of CommonHeaderClass object. # # Set Name, Guid, FileName and FullPath fields of CommonHeaderClass object from # XML Dom object of XmlCommonHeader, NameTag and FileName. # # @param CommonHeader The destine CommonClass object. # @param XmlCommonHeader The source XML Dom object. # @param NameTag The name tag in XML Dom object. # @param FileName The file name of the XML file. # def SetIdentification(CommonHeader, XmlCommonHeader, NameTag, FileName): XmlParentTag = XmlNodeName(XmlCommonHeader) XmlTag = XmlParentTag + "/" + NameTag CommonHeader.Name = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParentTag + "/" + "GuidValue" CommonHeader.Guid = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParentTag + "/" + "Version" CommonHeader.Version = XmlElement(XmlCommonHeader, XmlTag) CommonHeader.FileName = os.path.basename(FileName) CommonHeader.FullPath = os.path.abspath(FileName) ## Regular expression to match specification and value. mReSpecification = re.compile(r"(?P<Specification>\w+)\s+(?P<Value>\w*)") ## Add specification to specification dictionary. # # Abstract specification name, value pair from Specification String and add them # to specification dictionary. # # @param SpecificationDict The destine Specification dictionary. # @param SpecificationString The source Specification String from which the # specification name and value pair is abstracted. # def AddToSpecificationDict(SpecificationDict, SpecificationString): """Abstract specification name, value pair from Specification String""" for SpecificationMatch in mReSpecification.finditer(SpecificationString): Specification = SpecificationMatch.group("Specification") Value = SpecificationMatch.group("Value") SpecificationDict[Specification] = Value ## Set all fields of CommonHeaderClass object. # # Set all attributes of CommonHeaderClass object from XML Dom object of # XmlCommonHeader, NameTag and FileName. # # @param CommonHeader The destine CommonClass object. # @param XmlCommonHeader The source XML Dom object. # @param NameTag The name tag in XML Dom object. # @param FileName The file name of the XML file. # def SetCommonHeader(CommonHeader, XmlCommonHeader): """Set all attributes of CommonHeaderClass object from XmlCommonHeader""" XmlParent = XmlNodeName(XmlCommonHeader) XmlTag = XmlParent + "/" + "Abstract" CommonHeader.Abstract = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParent + "/" + "Description" CommonHeader.Description = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParent + "/" + "Copyright" CommonHeader.Copyright = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParent + "/" + "License" CommonHeader.License = XmlElement(XmlCommonHeader, XmlTag) XmlTag = XmlParent + "/" + "Specification" Specification = XmlElement(XmlCommonHeader, XmlTag) AddToSpecificationDict(CommonHeader.Specification, Specification) XmlTag = XmlParent + "/" + "ModuleType" CommonHeader.ModuleType = XmlElement(XmlCommonHeader, XmlTag) ## Load a new Cloned Record class object. # # Read an input XML ClonedRecord DOM object and return an object of Cloned Record # contained in the DOM object. # # @param XmlCloned A child XML DOM object in a Common XML DOM. # # @retvel ClonedRecord A new Cloned Record object created by XmlCloned. # def LoadClonedRecord(XmlCloned): ClonedRecord = ClonedRecordClass() XmlTag = "Id" ClonedRecord.Id = int(XmlAttribute(XmlCloned, XmlTag)) XmlTag = "FarGuid" ClonedRecord.FarGuid = XmlAttribute(XmlCloned, XmlTag) XmlTag = "Cloned/PackageGuid" ClonedRecord.PackageGuid = XmlElement(XmlCloned, XmlTag) XmlTag = "Cloned/PackageVersion" ClonedRecord.PackageVersion = XmlElement(XmlCloned, XmlTag) XmlTag = "Cloned/ModuleGuid" ClonedRecord.ModuleGuid = XmlElement(XmlCloned, XmlTag) XmlTag = "Cloned/ModuleVersion" ClonedRecord.ModuleVersion = XmlElement(XmlCloned, XmlTag) return ClonedRecord ## Load a new Guid/Protocol/Ppi common class object. # # Read an input XML Guid/Protocol/Ppi DOM object and return an object of # Guid/Protocol/Ppi contained in the DOM object. # # @param XmlGuidProtocolPpiCommon A child XML DOM object in a Common XML DOM. # # @retvel GuidProtocolPpiCommon A new GuidProtocolPpiCommon class object # created by XmlGuidProtocolPpiCommon. # def LoadGuidProtocolPpiCommon(XmlGuidProtocolPpiCommon): GuidProtocolPpiCommon = GuidProtocolPpiCommonClass() XmlTag = "Name" GuidProtocolPpiCommon.Name = XmlAttribute(XmlGuidProtocolPpiCommon, XmlTag) XmlParent = XmlNodeName(XmlGuidProtocolPpiCommon) if XmlParent == "Entry": XmlTag = "%s/C_Name" % XmlParent elif XmlParent == "GuidCNames": XmlTag = "%s/GuidCName" % XmlParent else: XmlTag = "%s/%sCName" % (XmlParent, XmlParent) GuidProtocolPpiCommon.CName = XmlElement(XmlGuidProtocolPpiCommon, XmlTag) XmlTag = XmlParent + "/" + "GuidValue" GuidProtocolPpiCommon.Guid = XmlElement(XmlGuidProtocolPpiCommon, XmlTag) if XmlParent.endswith("Notify"): GuidProtocolPpiCommon.Notify = True XmlTag = "GuidTypeList" GuidTypes = XmlAttribute(XmlGuidProtocolPpiCommon, XmlTag) GuidProtocolPpiCommon.GuidTypeList = GuidTypes.split() XmlTag = "SupModuleList" SupModules = XmlAttribute(XmlGuidProtocolPpiCommon, XmlTag) GuidProtocolPpiCommon.SupModuleList = SupModules.split() SetCommon(GuidProtocolPpiCommon, XmlGuidProtocolPpiCommon) return GuidProtocolPpiCommon ## Load a new Pcd class object. # # Read an input XML Pcd DOM object and return an object of Pcd # contained in the DOM object. # # @param XmlPcd A child XML DOM object in a Common XML DOM. # # @retvel Pcd A new Pcd object created by XmlPcd. # def LoadPcd(XmlPcd): """Return a new PcdClass object equivalent to XmlPcd""" Pcd = PcdClass() XmlTag = "PcdEntry/C_Name" Pcd.CName = XmlElement(XmlPcd, XmlTag) XmlTag = "PcdEntry/Token" Pcd.Token = XmlElement(XmlPcd, XmlTag) XmlTag = "PcdEntry/TokenSpaceGuidCName" Pcd.TokenSpaceGuidCName = XmlElement(XmlPcd, XmlTag) XmlTag = "PcdEntry/DatumType" Pcd.DatumType = XmlElement(XmlPcd, XmlTag) XmlTag = "PcdEntry/MaxDatumSize" Pcd.MaxDatumSize = XmlElement(XmlPcd, XmlTag) XmlTag = "PcdEntry/DefaultValue" Pcd.DefaultValue = XmlElement(XmlPcd, XmlTag) XmlTag = "PcdItemType" Pcd.ItemType = XmlAttribute(XmlPcd, XmlTag) XmlTag = "PcdEntry/ValidUsage" Pcd.ValidUsage = XmlElement(XmlPcd, XmlTag).split() XmlTag = "SupModuleList" Pcd.SupModuleList = XmlAttribute(XmlPcd, XmlTag).split() SetCommon(Pcd, XmlPcd) return Pcd ## Load a new LibraryClass class object. # # Read an input XML LibraryClass DOM object and return an object of LibraryClass # contained in the DOM object. # # @param XmlLibraryClass A child XML DOM object in a Common XML DOM. # # @retvel LibraryClass A new LibraryClass object created by XmlLibraryClass. # def LoadLibraryClass(XmlLibraryClass): LibraryClass = LibraryClassClass() XmlTag = "LibraryClass/Keyword" LibraryClass.LibraryClass = XmlElement(XmlLibraryClass, XmlTag) if LibraryClass.LibraryClass == "": XmlTag = "Name" LibraryClass.LibraryClass = XmlAttribute(XmlLibraryClass, XmlTag) XmlTag = "LibraryClass/IncludeHeader" LibraryClass.IncludeHeader = XmlElement(XmlLibraryClass, XmlTag) XmlTag = "RecommendedInstanceVersion" RecommendedInstanceVersion = XmlAttribute(XmlLibraryClass, XmlTag) LibraryClass.RecommendedInstanceVersion = RecommendedInstanceVersion XmlTag = "RecommendedInstanceGuid" RecommendedInstanceGuid = XmlAttribute(XmlLibraryClass, XmlTag) LibraryClass.RecommendedInstanceGuid = RecommendedInstanceGuid XmlTag = "SupModuleList" SupModules = XmlAttribute(XmlLibraryClass, XmlTag) LibraryClass.SupModuleList = SupModules.split() SetCommon(LibraryClass, XmlLibraryClass) return LibraryClass ## Load a new Build Option class object. # # Read an input XML BuildOption DOM object and return an object of Build Option # contained in the DOM object. # # @param XmlBuildOption A child XML DOM object in a Common XML DOM. # # @retvel BuildOption A new Build Option object created by XmlBuildOption. # def LoadBuildOption(XmlBuildOption): """Return a new BuildOptionClass object equivalent to XmlBuildOption""" BuildOption = BuildOptionClass() BuildOption.Option = XmlElementData(XmlBuildOption) XmlTag = "BuildTargets" BuildOption.BuildTargetList = XmlAttribute(XmlBuildOption, XmlTag).split() XmlTag = "ToolChainFamily" BuildOption.ToolChainFamily = XmlAttribute(XmlBuildOption, XmlTag) XmlTag = "TagName" BuildOption.TagName = XmlAttribute(XmlBuildOption, XmlTag) XmlTag = "ToolCode" BuildOption.ToolCode = XmlAttribute(XmlBuildOption, XmlTag) XmlTag = "SupArchList" BuildOption.SupArchList = XmlAttribute(XmlBuildOption, XmlTag).split() return BuildOption ## Load a new User Extensions class object. # # Read an input XML UserExtensions DOM object and return an object of User # Extensions contained in the DOM object. # # @param XmlUserExtensions A child XML DOM object in a Common XML DOM. # # @retvel UserExtensions A new User Extensions object created by # XmlUserExtensions. # def LoadUserExtensions(XmlUserExtensions): UserExtensions = UserExtensionsClass() XmlTag = "UserID" UserExtensions.UserID = XmlAttribute(XmlUserExtensions, XmlTag) XmlTag = "Identifier" UserExtensions.Identifier = XmlAttribute(XmlUserExtensions, XmlTag) UserExtensions.Content = XmlElementData(XmlUserExtensions) return UserExtensions ## Store content to a text file object. # # Write some text file content to a text file object. The contents may echo # in screen in a verbose way. # # @param TextFile The text file object. # @param Content The string object to be written to a text file. # def StoreTextFile(TextFile, Content): EdkLogger.verbose(Content) TextFile.write(Content) ## Add item to a section. # # Add an Item with specific CPU architecture to section dictionary. # The possible duplication is ensured to be removed. # # @param Section Section dictionary indexed by CPU architecture. # @param Arch CPU architecture: Ia32, X64, Ipf, ARM, AARCH64, Ebc or Common. # @param Item The Item to be added to section dictionary. # def AddToSection(Section, Arch, Item): SectionArch = Section.get(Arch, []) if Item not in SectionArch: SectionArch.append(Item) Section[Arch] = SectionArch ## Get section contents. # # Return the content of section named SectionName. # the contents is based on Methods and ObjectLists. # # @param SectionName The name of the section. # @param Method A function returning a string item of an object. # @param ObjectList The list of object. # # @retval Section The string content of a section. # def GetSection(SectionName, Method, ObjectList): SupportedArches = ["common", "Ia32", "X64", "Ipf", "Ebc", "ARM", "AARCH64"] SectionDict = {} for Object in ObjectList: Item = Method(Object) if Item == "": continue Item = " %s" % Item Arches = Object.SupArchList if len(Arches) == 0: AddToSection(SectionDict, "common", Item) else: for Arch in SupportedArches: if Arch.upper() in Arches: AddToSection(SectionDict, Arch, Item) Section = "" for Arch in SupportedArches: SectionArch = "\n".join(SectionDict.get(Arch, [])) if SectionArch != "": Section += "[%s.%s]\n%s\n" % (SectionName, Arch, SectionArch) Section += "\n" if Section != "": Section += "\n" return Section ## Store file header to a text file. # # Write standard file header to a text file. The content includes copyright, # abstract, description and license extracted from CommonHeader class object. # # @param TextFile The text file object. # @param CommonHeader The source CommonHeader class object. # def StoreHeader(TextFile, CommonHeader): CopyRight = CommonHeader.Copyright Abstract = CommonHeader.Abstract Description = CommonHeader.Description License = CommonHeader.License Header = "#/** @file\n#\n" Header += "# " + Abstract + "\n#\n" Header += "# " + Description.strip().replace("\n", "\n# ") + "\n" Header += "# " + CopyRight + "\n#\n" Header += "# " + License.replace("\n", "\n# ").replace(" ", " ") Header += "\n#\n#**/\n\n" StoreTextFile(TextFile, Header) ## Store file header to a text file. # # Write Defines section to a text file. DefinesTupleList determines the content. # # @param TextFile The text file object. # @param DefinesTupleList The list of (Tag, Value) to be added as one item. # def StoreDefinesSection(TextFile, DefinesTupleList): Section = "[Defines]\n" for DefineItem in DefinesTupleList: Section += " %-30s = %s\n" % DefineItem Section += "\n\n" StoreTextFile(TextFile, Section) ## Return one User Extension section. # # Read the input UserExtentsions class object and return one section. # # @param UserExtensions An input UserExtensions class object. # # @retval UserExtensionSection A section representing UserExtensions object. # def GetUserExtensions(UserExtensions): UserId = UserExtensions.UserID Identifier = UserExtensions.Identifier Content = UserExtensions.Content return "[UserExtensions.%s.%s]\n %s\n\n" % (UserId, Identifier, Content) ## Regular expression to match an equation. mReEquation = re.compile(r"\s*(\S+)\s*=\s*(\S*)\s*") ## Return a value tuple matching information in a text fle. # # Parse the text file and return a value tuple corresponding to an input tag # tuple. In case of any error, an tuple of empty strings is returned. # # @param FileName The file name of the text file. # @param TagTuple A tuple of tags as the key to the value. # # @param ValueTupe The returned tuple corresponding to the tag tuple. # def GetTextFileInfo(FileName, TagTuple): ValueTuple = [""] * len(TagTuple) try: for Line in open(FileName): Line = Line.split("#", 1)[0] MatchEquation = mReEquation.match(Line) if MatchEquation: Tag = MatchEquation.group(1).upper() Value = MatchEquation.group(2) for Index in range(len(TagTuple)): if TagTuple[Index] == Tag: ValueTuple[Index] = Value except: EdkLogger.info("IO Error in reading file %s" % FileName) return ValueTuple ## Return a value tuple matching information in an XML fle. # # Parse the XML file and return a value tuple corresponding to an input tag # tuple. In case of any error, an tuple of empty strings is returned. # # @param FileName The file name of the XML file. # @param TagTuple A tuple of tags as the key to the value. # # @param ValueTupe The returned tuple corresponding to the tag tuple. # def GetXmlFileInfo(FileName, TagTuple): XmlDom = XmlParseFile(FileName) return tuple([XmlElement(XmlDom, XmlTag) for XmlTag in TagTuple]) ## Parse migration command line options # # Use standard Python module optparse to parse command line option of this tool. # # @param Source The source file type. # @param Destinate The destinate file type. # # @retval Options A optparse object containing the parsed options. # @retval InputFile Path of an source file to be migrated. # def MigrationOptionParser(Source, Destinate, ToolName, VersionNumber = 1.0): # use clearer usage to override default usage message UsageString = "%s [-a] [-v|-q] [-o <output_file>] <input_file>" % ToolName Version = "%s Version %.2f" % (ToolName, VersionNumber) Copyright = "Copyright (c) 2007, Intel Corporation. All rights reserved." Parser = OptionParser(description=Copyright, version=Version, usage=UsageString) Parser.add_option("-o", "--output", dest="OutputFile", help="The name of the %s file to be created." % Destinate) Parser.add_option("-a", "--auto", dest="AutoWrite", action="store_true", default=False, help="Automatically create the %s file using the name of the %s file and replacing file extension" % (Source, Destinate)) Parser.add_option("-q", "--quiet", action="store_true", type=None, help="Disable all messages except FATAL ERRORS.") Parser.add_option("-v", "--verbose", action="store_true", type=None, help="Turn on verbose output with informational messages printed.") Options, Args = Parser.parse_args() # Set logging level if Options.verbose: EdkLogger.setLevel(EdkLogger.VERBOSE) elif Options.quiet: EdkLogger.setLevel(EdkLogger.QUIET) else: EdkLogger.setLevel(EdkLogger.INFO) # error check if len(Args) == 0: raise MigrationError(PARAMETER_MISSING, name="Input file", usage=Parser.get_usage()) if len(Args) > 1: raise MigrationError(PARAMETER_INVALID, name="Too many input files", usage=Parser.get_usage()) InputFile = Args[0] if not os.path.exists(InputFile): raise MigrationError(FILE_NOT_FOUND, name=InputFile) if Options.OutputFile: if Options.AutoWrite: raise MigrationError(OPTION_CONFLICT, arg1="-o", arg2="-a", usage=Parser.get_usage()) else: if Options.AutoWrite: Options.OutputFile = os.path.splitext(InputFile)[0] + "." + Destinate.lower() else: raise MigrationError(OPTION_MISSING, name="-o", usage=Parser.get_usage()) return Options, InputFile # This acts like the main() function for the script, unless it is 'import'ed # into another script. if __name__ == '__main__': pass
[ 11, 18, 20, 21, 23 ]
1,314
645f8f1ebd3bfa0ba32d5be8058b07e2a30ba9b5
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [('barriers', '0011_auto_20170904_1658')] operations = [migrations.CreateModel(name='BarrierCountry', fields=[( 'id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models. DateTimeField(auto_now_add=True)), ('updated_date', models. DateTimeField(auto_now=True)), ('is_deleted', models.BooleanField( default=False)), ('name', models.CharField(max_length=100, verbose_name='Country or Territory Name')), ('code', models. CharField(blank=True, max_length=100, null=True, verbose_name= 'Country or Territory Code')), ('official_name', models.CharField( blank=True, max_length=100, null=True, verbose_name= 'Offical Country or Territory name')), ('govuk_index_entry_code', models.CharField(blank=True, max_length=10, null=True, verbose_name ='GOV.UK index code')), ('country_or_territory', models.CharField( choices=[('CO', 'Country'), ('TE', 'Territory')], default='CO', max_length=2, verbose_name='Country or Territory flag'))], options= {'verbose_name_plural': 'countries or territories'}), migrations. CreateModel(name='BarrierNotification', fields=[('id', models. AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField( auto_now_add=True)), ('updated_date', models.DateTimeField(auto_now =True)), ('is_deleted', models.BooleanField(default=False)), ( 'title', models.TextField(blank=True, verbose_name='Title')), ( 'description', models.TextField(blank=True, verbose_name= 'Description')), ('distribution_date', models.DateField(blank=True, null=True, verbose_name='Distribution Date')), ('barrier_symbol', models.CharField(blank=True, max_length=500, verbose_name= 'Barrier Symbol')), ('core_symbol', models.CharField(blank=True, max_length=500, verbose_name='Core Symbol')), ('mab_type', models. CharField(blank=True, max_length=500, verbose_name='Barrier type')), ('products_text', models.TextField(blank=True, verbose_name= 'Products')), ('product_codes', models.TextField(blank=True, verbose_name='Product codes')), ('objectives', models.TextField( blank=True, verbose_name='Objectives')), ('keywords', models. TextField(blank=True, verbose_name='Keywords')), ( 'regions_affected', models.TextField(blank=True, verbose_name= 'Regions affected')), ('comments_due_date', models.DateField(blank= True, null=True, verbose_name='Final date for comments')), ( 'notification_type', models.CharField(blank=True, max_length=50, verbose_name='Notification type')), ('document_link', models. CharField(blank=True, max_length=1500, verbose_name='Document link' )), ('external_link', models.CharField(blank=True, max_length=1500, verbose_name='External site link'))], options={'abstract': False}), migrations.CreateModel(name='BarrierRecord', fields=[('id', models. AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField( auto_now_add=True)), ('updated_date', models.DateTimeField(auto_now =True)), ('is_deleted', models.BooleanField(default=False)), ( 'status', models.CharField(blank=True, choices=[('Active', 'Active' )], default=None, max_length=10, null=True)), ('title', models. TextField(blank=True, verbose_name='Title')), ('description', models.TextField(blank=True, verbose_name='Description')), ( 'products_text', models.TextField(blank=True, verbose_name= 'Products affected')), ('sectors_text', models.TextField(blank=True, verbose_name='Sectors affected')), ('source_id', models.CharField( blank=True, max_length=20, null=True, verbose_name= 'ID in source system')), ('distribution_date', models.DateField( blank=True, null=True, verbose_name='Distribution Date')), ( 'external_link', models.CharField(blank=True, max_length=1500, verbose_name='External site link'))], options={'abstract': False}), migrations.CreateModel(name='BarrierReport', fields=[('id', models. AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField( auto_now_add=True)), ('updated_date', models.DateTimeField(auto_now =True)), ('is_deleted', models.BooleanField(default=False)), ( 'status', models.CharField(blank=True, choices=[('Draft', 'Draft'), ('Submitted', 'Submitted')], default=None, max_length=10, null=True )), ('name', models.CharField(blank=True, max_length=200, null=True )), ('problem_description', models.TextField(blank=True, null=True) ), ('product_text', models.TextField(blank=True, null=True)), ( 'product_code', models.CharField(blank=True, max_length=500, null= True)), ('business_impact_description', models.TextField(blank=True, null=True)), ('problem_duration_description', models.TextField( blank=True, null=True)), ('other_companies_affected_choice', models .CharField(blank=True, choices=[('Yes', 'Yes'), ('No', 'No'), ( 'DontKnow', "Don't know")], default=None, max_length=10, null=True) ), ('other_countries_affected_description', models.TextField(blank= True, null=True)), ('steps_taken_to_resolve', models.TextField( blank=True, null=True)), ('outcome_looking_for', models.TextField( blank=True, null=True)), ('support_desired_choice', models. CharField(blank=True, choices=[('SUPPORT_DESIRED_NONE', 'None - this is for your information only'), ( 'SUPPORT_DESIRED_LOCAL', 'Local engagement only with UK Government officials in the country I am trying to export to' ), ('SUPPORT_DESIRED_BROAD', 'Broader UK Government involvement'), ('SUPPORT_DESIRED_NOT_SURE', 'Not sure')], default=None, max_length =10, null=True)), ('confidentiality_issues_description', models. TextField(blank=True, null=True)), ('happy_to_publish_choice', models.CharField(blank=True, choices=[('HAPPY_TO_PUBLISH_YES', 'Yes'), ('HAPPY_TO_PUBLISH_NO', 'No'), ('HAPPY_TO_PUBLISH_MAYBE', 'Maybe, following consultation with me')], default=None, max_length =10, null=True)), ('any_other_details_description', models. TextField(blank=True, null=True)), ('country', models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='barriers.BarrierCountry'))], options={'abstract': False}), migrations.CreateModel(name='BarrierReporter', fields=[('id', models.AutoField(auto_created=True, primary_key=True, serialize= False, verbose_name='ID')), ('created_date', models.DateTimeField( auto_now_add=True)), ('updated_date', models.DateTimeField(auto_now =True)), ('is_deleted', models.BooleanField(default=False)), ( 'name', models.CharField(blank=True, max_length=1500, verbose_name= 'Reporter name')), ('company', models.CharField(blank=True, max_length=1500, verbose_name='Company name'))], options={ 'abstract': False}), migrations.CreateModel(name='BarrierSource', fields=[('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models. DateTimeField(auto_now_add=True)), ('updated_date', models. DateTimeField(auto_now=True)), ('is_deleted', models.BooleanField( default=False)), ('name', models.CharField(max_length=100)), ( 'description', models.CharField(blank=True, max_length=500, null= True)), ('short_name', models.CharField(blank=True, max_length=20, null=True)), ('remote_url', models.URLField(blank=True, max_length= 20, null=True))], options={'abstract': False}), migrations. CreateModel(name='BarrierTypeMapping', fields=[('id', models. AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField( auto_now_add=True)), ('updated_date', models.DateTimeField(auto_now =True)), ('is_deleted', models.BooleanField(default=False)), ( 'destination_barrier_list', models.ForeignKey(on_delete=django.db. models.deletion.CASCADE, related_name='destination_barrier_list', to='barriers.BarrierSource'))], options={'abstract': False}), migrations.RemoveField(model_name='marketaccessbarrier', name= 'barrier_types'), migrations.RenameField(model_name='barriertype', old_name='ec_barrier_code', new_name='barrier_code'), migrations. AlterField(model_name='barriertype', name='name', field=models. CharField(max_length=200)), migrations.DeleteModel(name= 'MarketAccessBarrier'), migrations.AddField(model_name= 'barriertypemapping', name='destination_barrier_type', field=models .ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='destination_barrier_type', to='barriers.BarrierType') ), migrations.AddField(model_name='barriertypemapping', name= 'source_barrier_list', field=models.ForeignKey(on_delete=django.db. models.deletion.CASCADE, related_name='source_barrier_list', to= 'barriers.BarrierSource')), migrations.AddField(model_name= 'barriertypemapping', name='source_barrier_type', field=models. ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='source_barrier_type', to='barriers.BarrierType')), migrations.AddField(model_name='barrierreport', name='reporter', field=models.ForeignKey(blank=True, null=True, on_delete=django.db. models.deletion.CASCADE, to='barriers.BarrierReporter')), migrations.AddField(model_name='barrierreport', name= 'top_level_barrier_type', field=models.ForeignKey(blank=True, null= True, on_delete=django.db.models.deletion.CASCADE, related_name= 'barrier_reports', to='barriers.BarrierType')), migrations.AddField (model_name='barrierrecord', name='barrier_source', field=models. ForeignKey(on_delete=django.db.models.deletion.CASCADE, to= 'barriers.BarrierSource')), migrations.AddField(model_name= 'barrierrecord', name='barrier_types', field=mptt.fields. TreeManyToManyField(blank=True, db_index=True, related_name='types', to='barriers.BarrierType')), migrations.AddField(model_name= 'barrierrecord', name='country', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to= 'barriers.BarrierCountry')), migrations.AddField(model_name= 'barriernotification', name='barrier_source', field=models. ForeignKey(on_delete=django.db.models.deletion.CASCADE, to= 'barriers.BarrierSource')), migrations.AddField(model_name= 'barriernotification', name='barrier_types', field=mptt.fields. TreeManyToManyField(blank=True, db_index=True, related_name= 'barrier_types', to='barriers.BarrierType')), migrations.AddField( model_name='barriernotification', name='country', field=models. ForeignKey(blank=True, null=True, on_delete=django.db.models. deletion.CASCADE, related_name='notification_countries', to= 'barriers.BarrierCountry')), migrations.AddField(model_name= 'barriertype', name='barrier_source', field=models.ForeignKey( default=1, on_delete=django.db.models.deletion.CASCADE, to= 'barriers.BarrierSource'))]
from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import mptt.fields class Migration(migrations.Migration): dependencies = [('barriers', '0011_auto_20170904_1658')] operations = [migrations.CreateModel(name='BarrierCountry', fields=[( 'id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models. DateTimeField(auto_now_add=True)), ('updated_date', models. DateTimeField(auto_now=True)), ('is_deleted', models.BooleanField( default=False)), ('name', models.CharField(max_length=100, verbose_name='Country or Territory Name')), ('code', models. CharField(blank=True, max_length=100, null=True, verbose_name= 'Country or Territory Code')), ('official_name', models.CharField( blank=True, max_length=100, null=True, verbose_name= 'Offical Country or Territory name')), ('govuk_index_entry_code', models.CharField(blank=True, max_length=10, null=True, verbose_name ='GOV.UK index code')), ('country_or_territory', models.CharField( choices=[('CO', 'Country'), ('TE', 'Territory')], default='CO', max_length=2, verbose_name='Country or Territory flag'))], options= {'verbose_name_plural': 'countries or territories'}), migrations. CreateModel(name='BarrierNotification', fields=[('id', models. AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField( auto_now_add=True)), ('updated_date', models.DateTimeField(auto_now =True)), ('is_deleted', models.BooleanField(default=False)), ( 'title', models.TextField(blank=True, verbose_name='Title')), ( 'description', models.TextField(blank=True, verbose_name= 'Description')), ('distribution_date', models.DateField(blank=True, null=True, verbose_name='Distribution Date')), ('barrier_symbol', models.CharField(blank=True, max_length=500, verbose_name= 'Barrier Symbol')), ('core_symbol', models.CharField(blank=True, max_length=500, verbose_name='Core Symbol')), ('mab_type', models. CharField(blank=True, max_length=500, verbose_name='Barrier type')), ('products_text', models.TextField(blank=True, verbose_name= 'Products')), ('product_codes', models.TextField(blank=True, verbose_name='Product codes')), ('objectives', models.TextField( blank=True, verbose_name='Objectives')), ('keywords', models. TextField(blank=True, verbose_name='Keywords')), ( 'regions_affected', models.TextField(blank=True, verbose_name= 'Regions affected')), ('comments_due_date', models.DateField(blank= True, null=True, verbose_name='Final date for comments')), ( 'notification_type', models.CharField(blank=True, max_length=50, verbose_name='Notification type')), ('document_link', models. CharField(blank=True, max_length=1500, verbose_name='Document link' )), ('external_link', models.CharField(blank=True, max_length=1500, verbose_name='External site link'))], options={'abstract': False}), migrations.CreateModel(name='BarrierRecord', fields=[('id', models. AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField( auto_now_add=True)), ('updated_date', models.DateTimeField(auto_now =True)), ('is_deleted', models.BooleanField(default=False)), ( 'status', models.CharField(blank=True, choices=[('Active', 'Active' )], default=None, max_length=10, null=True)), ('title', models. TextField(blank=True, verbose_name='Title')), ('description', models.TextField(blank=True, verbose_name='Description')), ( 'products_text', models.TextField(blank=True, verbose_name= 'Products affected')), ('sectors_text', models.TextField(blank=True, verbose_name='Sectors affected')), ('source_id', models.CharField( blank=True, max_length=20, null=True, verbose_name= 'ID in source system')), ('distribution_date', models.DateField( blank=True, null=True, verbose_name='Distribution Date')), ( 'external_link', models.CharField(blank=True, max_length=1500, verbose_name='External site link'))], options={'abstract': False}), migrations.CreateModel(name='BarrierReport', fields=[('id', models. AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField( auto_now_add=True)), ('updated_date', models.DateTimeField(auto_now =True)), ('is_deleted', models.BooleanField(default=False)), ( 'status', models.CharField(blank=True, choices=[('Draft', 'Draft'), ('Submitted', 'Submitted')], default=None, max_length=10, null=True )), ('name', models.CharField(blank=True, max_length=200, null=True )), ('problem_description', models.TextField(blank=True, null=True) ), ('product_text', models.TextField(blank=True, null=True)), ( 'product_code', models.CharField(blank=True, max_length=500, null= True)), ('business_impact_description', models.TextField(blank=True, null=True)), ('problem_duration_description', models.TextField( blank=True, null=True)), ('other_companies_affected_choice', models .CharField(blank=True, choices=[('Yes', 'Yes'), ('No', 'No'), ( 'DontKnow', "Don't know")], default=None, max_length=10, null=True) ), ('other_countries_affected_description', models.TextField(blank= True, null=True)), ('steps_taken_to_resolve', models.TextField( blank=True, null=True)), ('outcome_looking_for', models.TextField( blank=True, null=True)), ('support_desired_choice', models. CharField(blank=True, choices=[('SUPPORT_DESIRED_NONE', 'None - this is for your information only'), ( 'SUPPORT_DESIRED_LOCAL', 'Local engagement only with UK Government officials in the country I am trying to export to' ), ('SUPPORT_DESIRED_BROAD', 'Broader UK Government involvement'), ('SUPPORT_DESIRED_NOT_SURE', 'Not sure')], default=None, max_length =10, null=True)), ('confidentiality_issues_description', models. TextField(blank=True, null=True)), ('happy_to_publish_choice', models.CharField(blank=True, choices=[('HAPPY_TO_PUBLISH_YES', 'Yes'), ('HAPPY_TO_PUBLISH_NO', 'No'), ('HAPPY_TO_PUBLISH_MAYBE', 'Maybe, following consultation with me')], default=None, max_length =10, null=True)), ('any_other_details_description', models. TextField(blank=True, null=True)), ('country', models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='barriers.BarrierCountry'))], options={'abstract': False}), migrations.CreateModel(name='BarrierReporter', fields=[('id', models.AutoField(auto_created=True, primary_key=True, serialize= False, verbose_name='ID')), ('created_date', models.DateTimeField( auto_now_add=True)), ('updated_date', models.DateTimeField(auto_now =True)), ('is_deleted', models.BooleanField(default=False)), ( 'name', models.CharField(blank=True, max_length=1500, verbose_name= 'Reporter name')), ('company', models.CharField(blank=True, max_length=1500, verbose_name='Company name'))], options={ 'abstract': False}), migrations.CreateModel(name='BarrierSource', fields=[('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models. DateTimeField(auto_now_add=True)), ('updated_date', models. DateTimeField(auto_now=True)), ('is_deleted', models.BooleanField( default=False)), ('name', models.CharField(max_length=100)), ( 'description', models.CharField(blank=True, max_length=500, null= True)), ('short_name', models.CharField(blank=True, max_length=20, null=True)), ('remote_url', models.URLField(blank=True, max_length= 20, null=True))], options={'abstract': False}), migrations. CreateModel(name='BarrierTypeMapping', fields=[('id', models. AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField( auto_now_add=True)), ('updated_date', models.DateTimeField(auto_now =True)), ('is_deleted', models.BooleanField(default=False)), ( 'destination_barrier_list', models.ForeignKey(on_delete=django.db. models.deletion.CASCADE, related_name='destination_barrier_list', to='barriers.BarrierSource'))], options={'abstract': False}), migrations.RemoveField(model_name='marketaccessbarrier', name= 'barrier_types'), migrations.RenameField(model_name='barriertype', old_name='ec_barrier_code', new_name='barrier_code'), migrations. AlterField(model_name='barriertype', name='name', field=models. CharField(max_length=200)), migrations.DeleteModel(name= 'MarketAccessBarrier'), migrations.AddField(model_name= 'barriertypemapping', name='destination_barrier_type', field=models .ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='destination_barrier_type', to='barriers.BarrierType') ), migrations.AddField(model_name='barriertypemapping', name= 'source_barrier_list', field=models.ForeignKey(on_delete=django.db. models.deletion.CASCADE, related_name='source_barrier_list', to= 'barriers.BarrierSource')), migrations.AddField(model_name= 'barriertypemapping', name='source_barrier_type', field=models. ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='source_barrier_type', to='barriers.BarrierType')), migrations.AddField(model_name='barrierreport', name='reporter', field=models.ForeignKey(blank=True, null=True, on_delete=django.db. models.deletion.CASCADE, to='barriers.BarrierReporter')), migrations.AddField(model_name='barrierreport', name= 'top_level_barrier_type', field=models.ForeignKey(blank=True, null= True, on_delete=django.db.models.deletion.CASCADE, related_name= 'barrier_reports', to='barriers.BarrierType')), migrations.AddField (model_name='barrierrecord', name='barrier_source', field=models. ForeignKey(on_delete=django.db.models.deletion.CASCADE, to= 'barriers.BarrierSource')), migrations.AddField(model_name= 'barrierrecord', name='barrier_types', field=mptt.fields. TreeManyToManyField(blank=True, db_index=True, related_name='types', to='barriers.BarrierType')), migrations.AddField(model_name= 'barrierrecord', name='country', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to= 'barriers.BarrierCountry')), migrations.AddField(model_name= 'barriernotification', name='barrier_source', field=models. ForeignKey(on_delete=django.db.models.deletion.CASCADE, to= 'barriers.BarrierSource')), migrations.AddField(model_name= 'barriernotification', name='barrier_types', field=mptt.fields. TreeManyToManyField(blank=True, db_index=True, related_name= 'barrier_types', to='barriers.BarrierType')), migrations.AddField( model_name='barriernotification', name='country', field=models. ForeignKey(blank=True, null=True, on_delete=django.db.models. deletion.CASCADE, related_name='notification_countries', to= 'barriers.BarrierCountry')), migrations.AddField(model_name= 'barriertype', name='barrier_source', field=models.ForeignKey( default=1, on_delete=django.db.models.deletion.CASCADE, to= 'barriers.BarrierSource'))]
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-10-02 14:41 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import mptt.fields class Migration(migrations.Migration): dependencies = [ ('barriers', '0011_auto_20170904_1658'), ] operations = [ migrations.CreateModel( name='BarrierCountry', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField(auto_now_add=True)), ('updated_date', models.DateTimeField(auto_now=True)), ('is_deleted', models.BooleanField(default=False)), ('name', models.CharField(max_length=100, verbose_name='Country or Territory Name')), ('code', models.CharField(blank=True, max_length=100, null=True, verbose_name='Country or Territory Code')), ('official_name', models.CharField(blank=True, max_length=100, null=True, verbose_name='Offical Country or Territory name')), ('govuk_index_entry_code', models.CharField(blank=True, max_length=10, null=True, verbose_name='GOV.UK index code')), ('country_or_territory', models.CharField(choices=[('CO', 'Country'), ('TE', 'Territory')], default='CO', max_length=2, verbose_name='Country or Territory flag')), ], options={ 'verbose_name_plural': 'countries or territories', }, ), migrations.CreateModel( name='BarrierNotification', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField(auto_now_add=True)), ('updated_date', models.DateTimeField(auto_now=True)), ('is_deleted', models.BooleanField(default=False)), ('title', models.TextField(blank=True, verbose_name='Title')), ('description', models.TextField(blank=True, verbose_name='Description')), ('distribution_date', models.DateField(blank=True, null=True, verbose_name='Distribution Date')), ('barrier_symbol', models.CharField(blank=True, max_length=500, verbose_name='Barrier Symbol')), ('core_symbol', models.CharField(blank=True, max_length=500, verbose_name='Core Symbol')), ('mab_type', models.CharField(blank=True, max_length=500, verbose_name='Barrier type')), ('products_text', models.TextField(blank=True, verbose_name='Products')), ('product_codes', models.TextField(blank=True, verbose_name='Product codes')), ('objectives', models.TextField(blank=True, verbose_name='Objectives')), ('keywords', models.TextField(blank=True, verbose_name='Keywords')), ('regions_affected', models.TextField(blank=True, verbose_name='Regions affected')), ('comments_due_date', models.DateField(blank=True, null=True, verbose_name='Final date for comments')), ('notification_type', models.CharField(blank=True, max_length=50, verbose_name='Notification type')), ('document_link', models.CharField(blank=True, max_length=1500, verbose_name='Document link')), ('external_link', models.CharField(blank=True, max_length=1500, verbose_name='External site link')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='BarrierRecord', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField(auto_now_add=True)), ('updated_date', models.DateTimeField(auto_now=True)), ('is_deleted', models.BooleanField(default=False)), ('status', models.CharField(blank=True, choices=[('Active', 'Active')], default=None, max_length=10, null=True)), ('title', models.TextField(blank=True, verbose_name='Title')), ('description', models.TextField(blank=True, verbose_name='Description')), ('products_text', models.TextField(blank=True, verbose_name='Products affected')), ('sectors_text', models.TextField(blank=True, verbose_name='Sectors affected')), ('source_id', models.CharField(blank=True, max_length=20, null=True, verbose_name='ID in source system')), ('distribution_date', models.DateField(blank=True, null=True, verbose_name='Distribution Date')), ('external_link', models.CharField(blank=True, max_length=1500, verbose_name='External site link')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='BarrierReport', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField(auto_now_add=True)), ('updated_date', models.DateTimeField(auto_now=True)), ('is_deleted', models.BooleanField(default=False)), ('status', models.CharField(blank=True, choices=[('Draft', 'Draft'), ('Submitted', 'Submitted')], default=None, max_length=10, null=True)), ('name', models.CharField(blank=True, max_length=200, null=True)), ('problem_description', models.TextField(blank=True, null=True)), ('product_text', models.TextField(blank=True, null=True)), ('product_code', models.CharField(blank=True, max_length=500, null=True)), ('business_impact_description', models.TextField(blank=True, null=True)), ('problem_duration_description', models.TextField(blank=True, null=True)), ('other_companies_affected_choice', models.CharField(blank=True, choices=[('Yes', 'Yes'), ('No', 'No'), ('DontKnow', "Don't know")], default=None, max_length=10, null=True)), ('other_countries_affected_description', models.TextField(blank=True, null=True)), ('steps_taken_to_resolve', models.TextField(blank=True, null=True)), ('outcome_looking_for', models.TextField(blank=True, null=True)), ('support_desired_choice', models.CharField(blank=True, choices=[('SUPPORT_DESIRED_NONE', 'None - this is for your information only'), ('SUPPORT_DESIRED_LOCAL', 'Local engagement only with UK Government officials in the country I am trying to export to'), ('SUPPORT_DESIRED_BROAD', 'Broader UK Government involvement'), ('SUPPORT_DESIRED_NOT_SURE', 'Not sure')], default=None, max_length=10, null=True)), ('confidentiality_issues_description', models.TextField(blank=True, null=True)), ('happy_to_publish_choice', models.CharField(blank=True, choices=[('HAPPY_TO_PUBLISH_YES', 'Yes'), ('HAPPY_TO_PUBLISH_NO', 'No'), ('HAPPY_TO_PUBLISH_MAYBE', 'Maybe, following consultation with me')], default=None, max_length=10, null=True)), ('any_other_details_description', models.TextField(blank=True, null=True)), ('country', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='barriers.BarrierCountry')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='BarrierReporter', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField(auto_now_add=True)), ('updated_date', models.DateTimeField(auto_now=True)), ('is_deleted', models.BooleanField(default=False)), ('name', models.CharField(blank=True, max_length=1500, verbose_name='Reporter name')), ('company', models.CharField(blank=True, max_length=1500, verbose_name='Company name')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='BarrierSource', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField(auto_now_add=True)), ('updated_date', models.DateTimeField(auto_now=True)), ('is_deleted', models.BooleanField(default=False)), ('name', models.CharField(max_length=100)), ('description', models.CharField(blank=True, max_length=500, null=True)), ('short_name', models.CharField(blank=True, max_length=20, null=True)), ('remote_url', models.URLField(blank=True, max_length=20, null=True)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='BarrierTypeMapping', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_date', models.DateTimeField(auto_now_add=True)), ('updated_date', models.DateTimeField(auto_now=True)), ('is_deleted', models.BooleanField(default=False)), ('destination_barrier_list', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='destination_barrier_list', to='barriers.BarrierSource')), ], options={ 'abstract': False, }, ), migrations.RemoveField( model_name='marketaccessbarrier', name='barrier_types', ), migrations.RenameField( model_name='barriertype', old_name='ec_barrier_code', new_name='barrier_code', ), migrations.AlterField( model_name='barriertype', name='name', field=models.CharField(max_length=200), ), migrations.DeleteModel( name='MarketAccessBarrier', ), migrations.AddField( model_name='barriertypemapping', name='destination_barrier_type', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='destination_barrier_type', to='barriers.BarrierType'), ), migrations.AddField( model_name='barriertypemapping', name='source_barrier_list', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='source_barrier_list', to='barriers.BarrierSource'), ), migrations.AddField( model_name='barriertypemapping', name='source_barrier_type', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='source_barrier_type', to='barriers.BarrierType'), ), migrations.AddField( model_name='barrierreport', name='reporter', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='barriers.BarrierReporter'), ), migrations.AddField( model_name='barrierreport', name='top_level_barrier_type', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='barrier_reports', to='barriers.BarrierType'), ), migrations.AddField( model_name='barrierrecord', name='barrier_source', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='barriers.BarrierSource'), ), migrations.AddField( model_name='barrierrecord', name='barrier_types', field=mptt.fields.TreeManyToManyField(blank=True, db_index=True, related_name='types', to='barriers.BarrierType'), ), migrations.AddField( model_name='barrierrecord', name='country', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='barriers.BarrierCountry'), ), migrations.AddField( model_name='barriernotification', name='barrier_source', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='barriers.BarrierSource'), ), migrations.AddField( model_name='barriernotification', name='barrier_types', field=mptt.fields.TreeManyToManyField(blank=True, db_index=True, related_name='barrier_types', to='barriers.BarrierType'), ), migrations.AddField( model_name='barriernotification', name='country', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='notification_countries', to='barriers.BarrierCountry'), ), migrations.AddField( model_name='barriertype', name='barrier_source', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to='barriers.BarrierSource'), ), ]
[ 0, 1, 2, 3, 4 ]
1,315
a34584a71fdff65e5b1bb15a6304af79774dac2c
<mask token> def upgrade(): op.drop_constraint('component_files_component_id_fkey', 'component_files') op.drop_constraint('components_topic_id_fkey', 'components') op.drop_constraint('files_job_id_fkey', 'files') op.drop_constraint('files_jobstate_id_fkey', 'files') op.drop_constraint('files_team_id_fkey', 'files') op.drop_constraint('files_test_id_fkey', 'files') op.drop_constraint('jobdefinition_tests_jobdefinition_id_fkey', 'jobdefinition_tests') op.drop_constraint('jobdefinition_tests_test_id_fkey', 'jobdefinition_tests') op.drop_constraint('jobdefinitions_topic_id_fkey', 'jobdefinitions') op.drop_constraint('jobs_team_id_fkey', 'jobs') op.drop_constraint('jobs_jobdefinition_id_fkey', 'jobs') op.drop_constraint('jobs_remoteci_id_fkey', 'jobs') op.drop_constraint('jobs_previous_job_id_fkey', 'jobs') op.drop_constraint('jobs_components_component_id_fkey', 'jobs_components') op.drop_constraint('jobs_components_job_id_fkey', 'jobs_components') op.drop_constraint('jobs_issues_issue_id_fkey', 'jobs_issues') op.drop_constraint('jobs_issues_job_id_fkey', 'jobs_issues') op.drop_constraint('jobstates_team_id_fkey', 'jobstates') op.drop_constraint('jobstates_job_id_fkey', 'jobstates') op.drop_constraint('logs_team_id_fkey', 'logs') op.drop_constraint('logs_user_id_fkey', 'logs') op.drop_constraint('metas_job_id_fkey', 'metas') op.drop_constraint('remoteci_tests_test_id_fkey', 'remoteci_tests') op.drop_constraint('remoteci_tests_remoteci_id_fkey', 'remoteci_tests') op.drop_constraint('remotecis_team_id_fkey', 'remotecis') op.drop_constraint('tests_team_id_fkey', 'tests') op.drop_constraint('topic_tests_test_id_fkey', 'topic_tests') op.drop_constraint('topic_tests_topic_id_fkey', 'topic_tests') op.drop_constraint('topics_next_topic_fkey', 'topics') op.drop_constraint('topics_teams_topic_id_fkey', 'topics_teams') op.drop_constraint('topics_teams_team_id_fkey', 'topics_teams') op.drop_constraint('user_remotecis_user_id_fkey', 'user_remotecis') op.drop_constraint('user_remotecis_remoteci_id_fkey', 'user_remotecis') op.drop_constraint('users_team_id_fkey', 'users') op.execute( 'ALTER TABLE component_files ALTER COLUMN component_id TYPE UUID USING component_id::uuid' ) op.execute( 'ALTER TABLE component_files ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE components ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE components ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN jobstate_id TYPE UUID USING jobstate_id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN test_id TYPE UUID USING test_id::uuid' ) op.execute( 'ALTER TABLE issues ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE jobdefinition_tests ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid' ) op.execute( 'ALTER TABLE jobdefinition_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid' ) op.execute( 'ALTER TABLE jobdefinitions ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE jobdefinitions ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN previous_job_id TYPE UUID USING previous_job_id::uuid' ) op.execute( 'ALTER TABLE jobs_components ALTER COLUMN component_id TYPE UUID USING component_id::uuid' ) op.execute( 'ALTER TABLE jobs_components ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE jobs_issues ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE jobs_issues ALTER COLUMN issue_id TYPE UUID USING issue_id::uuid' ) op.execute( 'ALTER TABLE jobstates ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE jobstates ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE jobstates ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE logs ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE logs ALTER COLUMN user_id TYPE UUID USING user_id::uuid' ) op.execute( 'ALTER TABLE logs ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE metas ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE metas ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE remoteci_tests ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid' ) op.execute( 'ALTER TABLE remoteci_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid' ) op.execute( 'ALTER TABLE remotecis ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE remotecis ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE teams ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE tests ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE tests ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE topic_tests ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid' ) op.execute( 'ALTER TABLE topic_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid' ) op.execute( 'ALTER TABLE topics ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE topics ALTER COLUMN next_topic TYPE UUID USING next_topic::uuid' ) op.execute( 'ALTER TABLE topics_teams ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid' ) op.execute( 'ALTER TABLE topics_teams ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE user_remotecis ALTER COLUMN user_id TYPE UUID USING user_id::uuid' ) op.execute( 'ALTER TABLE user_remotecis ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid' ) op.execute( 'ALTER TABLE users ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE users ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.create_foreign_key('component_files_component_id_fkey', 'component_files', 'components', ['component_id'], ['id'], ondelete ='CASCADE') op.create_foreign_key('components_topic_id_fkey', 'components', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_job_id_fkey', 'files', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_jobstate_id_fkey', 'files', 'jobstates', [ 'jobstate_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_team_id_fkey', 'files', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_test_id_fkey', 'files', 'tests', [ 'test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobdefinition_tests_jobdefinition_id_fkey', 'jobdefinition_tests', 'jobdefinitions', ['jobdefinition_id'], [ 'id'], ondelete='CASCADE') op.create_foreign_key('jobdefinition_tests_test_id_fkey', 'jobdefinition_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE' ) op.create_foreign_key('jobdefinitions_topic_id_fkey', 'jobdefinitions', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_team_id_fkey', 'jobs', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_jobdefinition_id_fkey', 'jobs', 'jobdefinitions', ['jobdefinition_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_remoteci_id_fkey', 'jobs', 'remotecis', [ 'remoteci_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_previous_job_id_fkey', 'jobs', 'jobs', [ 'previous_job_id'], ['id']) op.create_foreign_key('jobs_components_component_id_fkey', 'jobs_components', 'components', ['component_id'], ['id'], ondelete ='CASCADE') op.create_foreign_key('jobs_components_job_id_fkey', 'jobs_components', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_issues_issue_id_fkey', 'jobs_issues', 'issues', ['issue_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_issues_job_id_fkey', 'jobs_issues', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobstates_team_id_fkey', 'jobstates', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobstates_job_id_fkey', 'jobstates', 'jobs', [ 'job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('logs_team_id_fkey', 'logs', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('logs_user_id_fkey', 'logs', 'users', ['user_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('metas_job_id_fkey', 'metas', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('remoteci_tests_test_id_fkey', 'remoteci_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('remoteci_tests_remoteci_id_fkey', 'remoteci_tests', 'remotecis', ['remoteci_id'], ['id'], ondelete= 'CASCADE') op.create_foreign_key('remotecis_team_id_fkey', 'remotecis', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('tests_team_id_fkey', 'tests', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topic_tests_test_id_fkey', 'topic_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topic_tests_topic_id_fkey', 'topic_tests', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topics_next_topic_fkey', 'topics', 'topics', [ 'next_topic'], ['id']) op.create_foreign_key('topics_teams_topic_id_fkey', 'topics_teams', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topics_teams_team_id_fkey', 'topics_teams', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('user_remotecis_user_id_fkey', 'user_remotecis', 'users', ['user_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('user_remotecis_remoteci_id_fkey', 'user_remotecis', 'remotecis', ['remoteci_id'], ['id'], ondelete= 'CASCADE') op.create_foreign_key('users_team_id_fkey', 'users', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') <mask token>
<mask token> def upgrade(): op.drop_constraint('component_files_component_id_fkey', 'component_files') op.drop_constraint('components_topic_id_fkey', 'components') op.drop_constraint('files_job_id_fkey', 'files') op.drop_constraint('files_jobstate_id_fkey', 'files') op.drop_constraint('files_team_id_fkey', 'files') op.drop_constraint('files_test_id_fkey', 'files') op.drop_constraint('jobdefinition_tests_jobdefinition_id_fkey', 'jobdefinition_tests') op.drop_constraint('jobdefinition_tests_test_id_fkey', 'jobdefinition_tests') op.drop_constraint('jobdefinitions_topic_id_fkey', 'jobdefinitions') op.drop_constraint('jobs_team_id_fkey', 'jobs') op.drop_constraint('jobs_jobdefinition_id_fkey', 'jobs') op.drop_constraint('jobs_remoteci_id_fkey', 'jobs') op.drop_constraint('jobs_previous_job_id_fkey', 'jobs') op.drop_constraint('jobs_components_component_id_fkey', 'jobs_components') op.drop_constraint('jobs_components_job_id_fkey', 'jobs_components') op.drop_constraint('jobs_issues_issue_id_fkey', 'jobs_issues') op.drop_constraint('jobs_issues_job_id_fkey', 'jobs_issues') op.drop_constraint('jobstates_team_id_fkey', 'jobstates') op.drop_constraint('jobstates_job_id_fkey', 'jobstates') op.drop_constraint('logs_team_id_fkey', 'logs') op.drop_constraint('logs_user_id_fkey', 'logs') op.drop_constraint('metas_job_id_fkey', 'metas') op.drop_constraint('remoteci_tests_test_id_fkey', 'remoteci_tests') op.drop_constraint('remoteci_tests_remoteci_id_fkey', 'remoteci_tests') op.drop_constraint('remotecis_team_id_fkey', 'remotecis') op.drop_constraint('tests_team_id_fkey', 'tests') op.drop_constraint('topic_tests_test_id_fkey', 'topic_tests') op.drop_constraint('topic_tests_topic_id_fkey', 'topic_tests') op.drop_constraint('topics_next_topic_fkey', 'topics') op.drop_constraint('topics_teams_topic_id_fkey', 'topics_teams') op.drop_constraint('topics_teams_team_id_fkey', 'topics_teams') op.drop_constraint('user_remotecis_user_id_fkey', 'user_remotecis') op.drop_constraint('user_remotecis_remoteci_id_fkey', 'user_remotecis') op.drop_constraint('users_team_id_fkey', 'users') op.execute( 'ALTER TABLE component_files ALTER COLUMN component_id TYPE UUID USING component_id::uuid' ) op.execute( 'ALTER TABLE component_files ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE components ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE components ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN jobstate_id TYPE UUID USING jobstate_id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN test_id TYPE UUID USING test_id::uuid' ) op.execute( 'ALTER TABLE issues ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE jobdefinition_tests ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid' ) op.execute( 'ALTER TABLE jobdefinition_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid' ) op.execute( 'ALTER TABLE jobdefinitions ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE jobdefinitions ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN previous_job_id TYPE UUID USING previous_job_id::uuid' ) op.execute( 'ALTER TABLE jobs_components ALTER COLUMN component_id TYPE UUID USING component_id::uuid' ) op.execute( 'ALTER TABLE jobs_components ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE jobs_issues ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE jobs_issues ALTER COLUMN issue_id TYPE UUID USING issue_id::uuid' ) op.execute( 'ALTER TABLE jobstates ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE jobstates ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE jobstates ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE logs ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE logs ALTER COLUMN user_id TYPE UUID USING user_id::uuid' ) op.execute( 'ALTER TABLE logs ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE metas ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE metas ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE remoteci_tests ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid' ) op.execute( 'ALTER TABLE remoteci_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid' ) op.execute( 'ALTER TABLE remotecis ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE remotecis ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE teams ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE tests ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE tests ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE topic_tests ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid' ) op.execute( 'ALTER TABLE topic_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid' ) op.execute( 'ALTER TABLE topics ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE topics ALTER COLUMN next_topic TYPE UUID USING next_topic::uuid' ) op.execute( 'ALTER TABLE topics_teams ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid' ) op.execute( 'ALTER TABLE topics_teams ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE user_remotecis ALTER COLUMN user_id TYPE UUID USING user_id::uuid' ) op.execute( 'ALTER TABLE user_remotecis ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid' ) op.execute( 'ALTER TABLE users ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE users ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.create_foreign_key('component_files_component_id_fkey', 'component_files', 'components', ['component_id'], ['id'], ondelete ='CASCADE') op.create_foreign_key('components_topic_id_fkey', 'components', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_job_id_fkey', 'files', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_jobstate_id_fkey', 'files', 'jobstates', [ 'jobstate_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_team_id_fkey', 'files', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_test_id_fkey', 'files', 'tests', [ 'test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobdefinition_tests_jobdefinition_id_fkey', 'jobdefinition_tests', 'jobdefinitions', ['jobdefinition_id'], [ 'id'], ondelete='CASCADE') op.create_foreign_key('jobdefinition_tests_test_id_fkey', 'jobdefinition_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE' ) op.create_foreign_key('jobdefinitions_topic_id_fkey', 'jobdefinitions', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_team_id_fkey', 'jobs', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_jobdefinition_id_fkey', 'jobs', 'jobdefinitions', ['jobdefinition_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_remoteci_id_fkey', 'jobs', 'remotecis', [ 'remoteci_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_previous_job_id_fkey', 'jobs', 'jobs', [ 'previous_job_id'], ['id']) op.create_foreign_key('jobs_components_component_id_fkey', 'jobs_components', 'components', ['component_id'], ['id'], ondelete ='CASCADE') op.create_foreign_key('jobs_components_job_id_fkey', 'jobs_components', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_issues_issue_id_fkey', 'jobs_issues', 'issues', ['issue_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_issues_job_id_fkey', 'jobs_issues', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobstates_team_id_fkey', 'jobstates', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobstates_job_id_fkey', 'jobstates', 'jobs', [ 'job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('logs_team_id_fkey', 'logs', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('logs_user_id_fkey', 'logs', 'users', ['user_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('metas_job_id_fkey', 'metas', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('remoteci_tests_test_id_fkey', 'remoteci_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('remoteci_tests_remoteci_id_fkey', 'remoteci_tests', 'remotecis', ['remoteci_id'], ['id'], ondelete= 'CASCADE') op.create_foreign_key('remotecis_team_id_fkey', 'remotecis', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('tests_team_id_fkey', 'tests', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topic_tests_test_id_fkey', 'topic_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topic_tests_topic_id_fkey', 'topic_tests', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topics_next_topic_fkey', 'topics', 'topics', [ 'next_topic'], ['id']) op.create_foreign_key('topics_teams_topic_id_fkey', 'topics_teams', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topics_teams_team_id_fkey', 'topics_teams', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('user_remotecis_user_id_fkey', 'user_remotecis', 'users', ['user_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('user_remotecis_remoteci_id_fkey', 'user_remotecis', 'remotecis', ['remoteci_id'], ['id'], ondelete= 'CASCADE') op.create_foreign_key('users_team_id_fkey', 'users', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') def downgrade(): pass
<mask token> revision = '1bb42ff54435' down_revision = '6bbbf58ed9de' branch_labels = None depends_on = None <mask token> def upgrade(): op.drop_constraint('component_files_component_id_fkey', 'component_files') op.drop_constraint('components_topic_id_fkey', 'components') op.drop_constraint('files_job_id_fkey', 'files') op.drop_constraint('files_jobstate_id_fkey', 'files') op.drop_constraint('files_team_id_fkey', 'files') op.drop_constraint('files_test_id_fkey', 'files') op.drop_constraint('jobdefinition_tests_jobdefinition_id_fkey', 'jobdefinition_tests') op.drop_constraint('jobdefinition_tests_test_id_fkey', 'jobdefinition_tests') op.drop_constraint('jobdefinitions_topic_id_fkey', 'jobdefinitions') op.drop_constraint('jobs_team_id_fkey', 'jobs') op.drop_constraint('jobs_jobdefinition_id_fkey', 'jobs') op.drop_constraint('jobs_remoteci_id_fkey', 'jobs') op.drop_constraint('jobs_previous_job_id_fkey', 'jobs') op.drop_constraint('jobs_components_component_id_fkey', 'jobs_components') op.drop_constraint('jobs_components_job_id_fkey', 'jobs_components') op.drop_constraint('jobs_issues_issue_id_fkey', 'jobs_issues') op.drop_constraint('jobs_issues_job_id_fkey', 'jobs_issues') op.drop_constraint('jobstates_team_id_fkey', 'jobstates') op.drop_constraint('jobstates_job_id_fkey', 'jobstates') op.drop_constraint('logs_team_id_fkey', 'logs') op.drop_constraint('logs_user_id_fkey', 'logs') op.drop_constraint('metas_job_id_fkey', 'metas') op.drop_constraint('remoteci_tests_test_id_fkey', 'remoteci_tests') op.drop_constraint('remoteci_tests_remoteci_id_fkey', 'remoteci_tests') op.drop_constraint('remotecis_team_id_fkey', 'remotecis') op.drop_constraint('tests_team_id_fkey', 'tests') op.drop_constraint('topic_tests_test_id_fkey', 'topic_tests') op.drop_constraint('topic_tests_topic_id_fkey', 'topic_tests') op.drop_constraint('topics_next_topic_fkey', 'topics') op.drop_constraint('topics_teams_topic_id_fkey', 'topics_teams') op.drop_constraint('topics_teams_team_id_fkey', 'topics_teams') op.drop_constraint('user_remotecis_user_id_fkey', 'user_remotecis') op.drop_constraint('user_remotecis_remoteci_id_fkey', 'user_remotecis') op.drop_constraint('users_team_id_fkey', 'users') op.execute( 'ALTER TABLE component_files ALTER COLUMN component_id TYPE UUID USING component_id::uuid' ) op.execute( 'ALTER TABLE component_files ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE components ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE components ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN jobstate_id TYPE UUID USING jobstate_id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN test_id TYPE UUID USING test_id::uuid' ) op.execute( 'ALTER TABLE issues ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE jobdefinition_tests ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid' ) op.execute( 'ALTER TABLE jobdefinition_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid' ) op.execute( 'ALTER TABLE jobdefinitions ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE jobdefinitions ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN previous_job_id TYPE UUID USING previous_job_id::uuid' ) op.execute( 'ALTER TABLE jobs_components ALTER COLUMN component_id TYPE UUID USING component_id::uuid' ) op.execute( 'ALTER TABLE jobs_components ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE jobs_issues ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE jobs_issues ALTER COLUMN issue_id TYPE UUID USING issue_id::uuid' ) op.execute( 'ALTER TABLE jobstates ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE jobstates ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE jobstates ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE logs ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE logs ALTER COLUMN user_id TYPE UUID USING user_id::uuid' ) op.execute( 'ALTER TABLE logs ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE metas ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE metas ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE remoteci_tests ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid' ) op.execute( 'ALTER TABLE remoteci_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid' ) op.execute( 'ALTER TABLE remotecis ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE remotecis ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE teams ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE tests ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE tests ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE topic_tests ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid' ) op.execute( 'ALTER TABLE topic_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid' ) op.execute( 'ALTER TABLE topics ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE topics ALTER COLUMN next_topic TYPE UUID USING next_topic::uuid' ) op.execute( 'ALTER TABLE topics_teams ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid' ) op.execute( 'ALTER TABLE topics_teams ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE user_remotecis ALTER COLUMN user_id TYPE UUID USING user_id::uuid' ) op.execute( 'ALTER TABLE user_remotecis ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid' ) op.execute( 'ALTER TABLE users ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE users ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.create_foreign_key('component_files_component_id_fkey', 'component_files', 'components', ['component_id'], ['id'], ondelete ='CASCADE') op.create_foreign_key('components_topic_id_fkey', 'components', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_job_id_fkey', 'files', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_jobstate_id_fkey', 'files', 'jobstates', [ 'jobstate_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_team_id_fkey', 'files', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_test_id_fkey', 'files', 'tests', [ 'test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobdefinition_tests_jobdefinition_id_fkey', 'jobdefinition_tests', 'jobdefinitions', ['jobdefinition_id'], [ 'id'], ondelete='CASCADE') op.create_foreign_key('jobdefinition_tests_test_id_fkey', 'jobdefinition_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE' ) op.create_foreign_key('jobdefinitions_topic_id_fkey', 'jobdefinitions', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_team_id_fkey', 'jobs', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_jobdefinition_id_fkey', 'jobs', 'jobdefinitions', ['jobdefinition_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_remoteci_id_fkey', 'jobs', 'remotecis', [ 'remoteci_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_previous_job_id_fkey', 'jobs', 'jobs', [ 'previous_job_id'], ['id']) op.create_foreign_key('jobs_components_component_id_fkey', 'jobs_components', 'components', ['component_id'], ['id'], ondelete ='CASCADE') op.create_foreign_key('jobs_components_job_id_fkey', 'jobs_components', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_issues_issue_id_fkey', 'jobs_issues', 'issues', ['issue_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_issues_job_id_fkey', 'jobs_issues', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobstates_team_id_fkey', 'jobstates', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobstates_job_id_fkey', 'jobstates', 'jobs', [ 'job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('logs_team_id_fkey', 'logs', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('logs_user_id_fkey', 'logs', 'users', ['user_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('metas_job_id_fkey', 'metas', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('remoteci_tests_test_id_fkey', 'remoteci_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('remoteci_tests_remoteci_id_fkey', 'remoteci_tests', 'remotecis', ['remoteci_id'], ['id'], ondelete= 'CASCADE') op.create_foreign_key('remotecis_team_id_fkey', 'remotecis', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('tests_team_id_fkey', 'tests', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topic_tests_test_id_fkey', 'topic_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topic_tests_topic_id_fkey', 'topic_tests', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topics_next_topic_fkey', 'topics', 'topics', [ 'next_topic'], ['id']) op.create_foreign_key('topics_teams_topic_id_fkey', 'topics_teams', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topics_teams_team_id_fkey', 'topics_teams', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('user_remotecis_user_id_fkey', 'user_remotecis', 'users', ['user_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('user_remotecis_remoteci_id_fkey', 'user_remotecis', 'remotecis', ['remoteci_id'], ['id'], ondelete= 'CASCADE') op.create_foreign_key('users_team_id_fkey', 'users', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') def downgrade(): pass
<mask token> revision = '1bb42ff54435' down_revision = '6bbbf58ed9de' branch_labels = None depends_on = None from alembic import op def upgrade(): op.drop_constraint('component_files_component_id_fkey', 'component_files') op.drop_constraint('components_topic_id_fkey', 'components') op.drop_constraint('files_job_id_fkey', 'files') op.drop_constraint('files_jobstate_id_fkey', 'files') op.drop_constraint('files_team_id_fkey', 'files') op.drop_constraint('files_test_id_fkey', 'files') op.drop_constraint('jobdefinition_tests_jobdefinition_id_fkey', 'jobdefinition_tests') op.drop_constraint('jobdefinition_tests_test_id_fkey', 'jobdefinition_tests') op.drop_constraint('jobdefinitions_topic_id_fkey', 'jobdefinitions') op.drop_constraint('jobs_team_id_fkey', 'jobs') op.drop_constraint('jobs_jobdefinition_id_fkey', 'jobs') op.drop_constraint('jobs_remoteci_id_fkey', 'jobs') op.drop_constraint('jobs_previous_job_id_fkey', 'jobs') op.drop_constraint('jobs_components_component_id_fkey', 'jobs_components') op.drop_constraint('jobs_components_job_id_fkey', 'jobs_components') op.drop_constraint('jobs_issues_issue_id_fkey', 'jobs_issues') op.drop_constraint('jobs_issues_job_id_fkey', 'jobs_issues') op.drop_constraint('jobstates_team_id_fkey', 'jobstates') op.drop_constraint('jobstates_job_id_fkey', 'jobstates') op.drop_constraint('logs_team_id_fkey', 'logs') op.drop_constraint('logs_user_id_fkey', 'logs') op.drop_constraint('metas_job_id_fkey', 'metas') op.drop_constraint('remoteci_tests_test_id_fkey', 'remoteci_tests') op.drop_constraint('remoteci_tests_remoteci_id_fkey', 'remoteci_tests') op.drop_constraint('remotecis_team_id_fkey', 'remotecis') op.drop_constraint('tests_team_id_fkey', 'tests') op.drop_constraint('topic_tests_test_id_fkey', 'topic_tests') op.drop_constraint('topic_tests_topic_id_fkey', 'topic_tests') op.drop_constraint('topics_next_topic_fkey', 'topics') op.drop_constraint('topics_teams_topic_id_fkey', 'topics_teams') op.drop_constraint('topics_teams_team_id_fkey', 'topics_teams') op.drop_constraint('user_remotecis_user_id_fkey', 'user_remotecis') op.drop_constraint('user_remotecis_remoteci_id_fkey', 'user_remotecis') op.drop_constraint('users_team_id_fkey', 'users') op.execute( 'ALTER TABLE component_files ALTER COLUMN component_id TYPE UUID USING component_id::uuid' ) op.execute( 'ALTER TABLE component_files ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE components ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE components ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN jobstate_id TYPE UUID USING jobstate_id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE files ALTER COLUMN test_id TYPE UUID USING test_id::uuid' ) op.execute( 'ALTER TABLE issues ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE jobdefinition_tests ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid' ) op.execute( 'ALTER TABLE jobdefinition_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid' ) op.execute( 'ALTER TABLE jobdefinitions ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE jobdefinitions ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN jobdefinition_id TYPE UUID USING jobdefinition_id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE jobs ALTER COLUMN previous_job_id TYPE UUID USING previous_job_id::uuid' ) op.execute( 'ALTER TABLE jobs_components ALTER COLUMN component_id TYPE UUID USING component_id::uuid' ) op.execute( 'ALTER TABLE jobs_components ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE jobs_issues ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE jobs_issues ALTER COLUMN issue_id TYPE UUID USING issue_id::uuid' ) op.execute( 'ALTER TABLE jobstates ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE jobstates ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE jobstates ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE logs ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE logs ALTER COLUMN user_id TYPE UUID USING user_id::uuid' ) op.execute( 'ALTER TABLE logs ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE metas ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE metas ALTER COLUMN job_id TYPE UUID USING job_id::uuid' ) op.execute( 'ALTER TABLE remoteci_tests ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid' ) op.execute( 'ALTER TABLE remoteci_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid' ) op.execute( 'ALTER TABLE remotecis ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE remotecis ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE teams ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE tests ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE tests ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE topic_tests ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid' ) op.execute( 'ALTER TABLE topic_tests ALTER COLUMN test_id TYPE UUID USING test_id::uuid' ) op.execute( 'ALTER TABLE topics ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE topics ALTER COLUMN next_topic TYPE UUID USING next_topic::uuid' ) op.execute( 'ALTER TABLE topics_teams ALTER COLUMN topic_id TYPE UUID USING topic_id::uuid' ) op.execute( 'ALTER TABLE topics_teams ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.execute( 'ALTER TABLE user_remotecis ALTER COLUMN user_id TYPE UUID USING user_id::uuid' ) op.execute( 'ALTER TABLE user_remotecis ALTER COLUMN remoteci_id TYPE UUID USING remoteci_id::uuid' ) op.execute( 'ALTER TABLE users ALTER COLUMN id TYPE UUID USING id::uuid' ) op.execute( 'ALTER TABLE users ALTER COLUMN team_id TYPE UUID USING team_id::uuid' ) op.create_foreign_key('component_files_component_id_fkey', 'component_files', 'components', ['component_id'], ['id'], ondelete ='CASCADE') op.create_foreign_key('components_topic_id_fkey', 'components', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_job_id_fkey', 'files', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_jobstate_id_fkey', 'files', 'jobstates', [ 'jobstate_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_team_id_fkey', 'files', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_test_id_fkey', 'files', 'tests', [ 'test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobdefinition_tests_jobdefinition_id_fkey', 'jobdefinition_tests', 'jobdefinitions', ['jobdefinition_id'], [ 'id'], ondelete='CASCADE') op.create_foreign_key('jobdefinition_tests_test_id_fkey', 'jobdefinition_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE' ) op.create_foreign_key('jobdefinitions_topic_id_fkey', 'jobdefinitions', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_team_id_fkey', 'jobs', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_jobdefinition_id_fkey', 'jobs', 'jobdefinitions', ['jobdefinition_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_remoteci_id_fkey', 'jobs', 'remotecis', [ 'remoteci_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_previous_job_id_fkey', 'jobs', 'jobs', [ 'previous_job_id'], ['id']) op.create_foreign_key('jobs_components_component_id_fkey', 'jobs_components', 'components', ['component_id'], ['id'], ondelete ='CASCADE') op.create_foreign_key('jobs_components_job_id_fkey', 'jobs_components', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_issues_issue_id_fkey', 'jobs_issues', 'issues', ['issue_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_issues_job_id_fkey', 'jobs_issues', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobstates_team_id_fkey', 'jobstates', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobstates_job_id_fkey', 'jobstates', 'jobs', [ 'job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('logs_team_id_fkey', 'logs', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('logs_user_id_fkey', 'logs', 'users', ['user_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('metas_job_id_fkey', 'metas', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('remoteci_tests_test_id_fkey', 'remoteci_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('remoteci_tests_remoteci_id_fkey', 'remoteci_tests', 'remotecis', ['remoteci_id'], ['id'], ondelete= 'CASCADE') op.create_foreign_key('remotecis_team_id_fkey', 'remotecis', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('tests_team_id_fkey', 'tests', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topic_tests_test_id_fkey', 'topic_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topic_tests_topic_id_fkey', 'topic_tests', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topics_next_topic_fkey', 'topics', 'topics', [ 'next_topic'], ['id']) op.create_foreign_key('topics_teams_topic_id_fkey', 'topics_teams', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topics_teams_team_id_fkey', 'topics_teams', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('user_remotecis_user_id_fkey', 'user_remotecis', 'users', ['user_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('user_remotecis_remoteci_id_fkey', 'user_remotecis', 'remotecis', ['remoteci_id'], ['id'], ondelete= 'CASCADE') op.create_foreign_key('users_team_id_fkey', 'users', 'teams', [ 'team_id'], ['id'], ondelete='CASCADE') def downgrade(): pass
# # Copyright (C) 2017 Red Hat, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Change varchar ID to UUID Revision ID: 1bb42ff54435 Revises: 6bbbf58ed9de Create Date: 2017-02-07 09:28:37.493302 """ # revision identifiers, used by Alembic. revision = '1bb42ff54435' down_revision = '6bbbf58ed9de' branch_labels = None depends_on = None from alembic import op def upgrade(): # Drop constraint op.drop_constraint('component_files_component_id_fkey', 'component_files') op.drop_constraint('components_topic_id_fkey', 'components') op.drop_constraint('files_job_id_fkey', 'files') op.drop_constraint('files_jobstate_id_fkey', 'files') op.drop_constraint('files_team_id_fkey', 'files') op.drop_constraint('files_test_id_fkey', 'files') op.drop_constraint('jobdefinition_tests_jobdefinition_id_fkey', 'jobdefinition_tests') op.drop_constraint('jobdefinition_tests_test_id_fkey', 'jobdefinition_tests') op.drop_constraint('jobdefinitions_topic_id_fkey', 'jobdefinitions') op.drop_constraint('jobs_team_id_fkey', 'jobs') op.drop_constraint('jobs_jobdefinition_id_fkey', 'jobs') op.drop_constraint('jobs_remoteci_id_fkey', 'jobs') op.drop_constraint('jobs_previous_job_id_fkey', 'jobs') op.drop_constraint('jobs_components_component_id_fkey', 'jobs_components') op.drop_constraint('jobs_components_job_id_fkey', 'jobs_components') op.drop_constraint('jobs_issues_issue_id_fkey', 'jobs_issues') op.drop_constraint('jobs_issues_job_id_fkey', 'jobs_issues') op.drop_constraint('jobstates_team_id_fkey', 'jobstates') op.drop_constraint('jobstates_job_id_fkey', 'jobstates') op.drop_constraint('logs_team_id_fkey', 'logs') op.drop_constraint('logs_user_id_fkey', 'logs') op.drop_constraint('metas_job_id_fkey', 'metas') op.drop_constraint('remoteci_tests_test_id_fkey', 'remoteci_tests') op.drop_constraint('remoteci_tests_remoteci_id_fkey', 'remoteci_tests') op.drop_constraint('remotecis_team_id_fkey', 'remotecis') op.drop_constraint('tests_team_id_fkey', 'tests') op.drop_constraint('topic_tests_test_id_fkey', 'topic_tests') op.drop_constraint('topic_tests_topic_id_fkey', 'topic_tests') op.drop_constraint('topics_next_topic_fkey', 'topics') op.drop_constraint('topics_teams_topic_id_fkey', 'topics_teams') op.drop_constraint('topics_teams_team_id_fkey', 'topics_teams') op.drop_constraint('user_remotecis_user_id_fkey', 'user_remotecis') op.drop_constraint('user_remotecis_remoteci_id_fkey', 'user_remotecis') op.drop_constraint('users_team_id_fkey', 'users') # Change type # Table component_files op.execute("ALTER TABLE component_files ALTER COLUMN component_id TYPE \ UUID USING component_id::uuid") op.execute("ALTER TABLE component_files ALTER COLUMN id TYPE \ UUID USING id::uuid") # Table components op.execute("ALTER TABLE components ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE components ALTER COLUMN topic_id TYPE \ UUID USING topic_id::uuid") # Table files op.execute("ALTER TABLE files ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE files ALTER COLUMN jobstate_id TYPE \ UUID USING jobstate_id::uuid") op.execute("ALTER TABLE files ALTER COLUMN team_id TYPE \ UUID USING team_id::uuid") op.execute("ALTER TABLE files ALTER COLUMN job_id TYPE \ UUID USING job_id::uuid") op.execute("ALTER TABLE files ALTER COLUMN test_id TYPE \ UUID USING test_id::uuid") # Table issues op.execute("ALTER TABLE issues ALTER COLUMN id TYPE \ UUID USING id::uuid") # Table jobdefinition_tests op.execute("ALTER TABLE jobdefinition_tests ALTER COLUMN jobdefinition_id \ TYPE UUID USING jobdefinition_id::uuid") op.execute("ALTER TABLE jobdefinition_tests ALTER COLUMN test_id TYPE \ UUID USING test_id::uuid") # Table jobdefinitions op.execute("ALTER TABLE jobdefinitions ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE jobdefinitions ALTER COLUMN topic_id TYPE \ UUID USING topic_id::uuid") # Table jobs op.execute("ALTER TABLE jobs ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE jobs ALTER COLUMN jobdefinition_id TYPE \ UUID USING jobdefinition_id::uuid") op.execute("ALTER TABLE jobs ALTER COLUMN remoteci_id TYPE \ UUID USING remoteci_id::uuid") op.execute("ALTER TABLE jobs ALTER COLUMN team_id TYPE \ UUID USING team_id::uuid") op.execute("ALTER TABLE jobs ALTER COLUMN previous_job_id TYPE \ UUID USING previous_job_id::uuid") # Table jobs_components op.execute("ALTER TABLE jobs_components ALTER COLUMN component_id TYPE \ UUID USING component_id::uuid") op.execute("ALTER TABLE jobs_components ALTER COLUMN job_id TYPE \ UUID USING job_id::uuid") # Table jobs_issues op.execute("ALTER TABLE jobs_issues ALTER COLUMN job_id TYPE \ UUID USING job_id::uuid") op.execute("ALTER TABLE jobs_issues ALTER COLUMN issue_id TYPE \ UUID USING issue_id::uuid") # Table jobstates op.execute("ALTER TABLE jobstates ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE jobstates ALTER COLUMN job_id TYPE \ UUID USING job_id::uuid") op.execute("ALTER TABLE jobstates ALTER COLUMN team_id TYPE \ UUID USING team_id::uuid") # Table logs op.execute("ALTER TABLE logs ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE logs ALTER COLUMN user_id TYPE \ UUID USING user_id::uuid") op.execute("ALTER TABLE logs ALTER COLUMN team_id TYPE \ UUID USING team_id::uuid") # Table metas op.execute("ALTER TABLE metas ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE metas ALTER COLUMN job_id TYPE \ UUID USING job_id::uuid") # Table remoteci_tests op.execute("ALTER TABLE remoteci_tests ALTER COLUMN remoteci_id TYPE \ UUID USING remoteci_id::uuid") op.execute("ALTER TABLE remoteci_tests ALTER COLUMN test_id TYPE \ UUID USING test_id::uuid") # Table remotecis op.execute("ALTER TABLE remotecis ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE remotecis ALTER COLUMN team_id TYPE \ UUID USING team_id::uuid") # Table teams op.execute("ALTER TABLE teams ALTER COLUMN id TYPE \ UUID USING id::uuid") # Table tests op.execute("ALTER TABLE tests ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE tests ALTER COLUMN team_id TYPE \ UUID USING team_id::uuid") # Table topic_tests op.execute("ALTER TABLE topic_tests ALTER COLUMN topic_id TYPE \ UUID USING topic_id::uuid") op.execute("ALTER TABLE topic_tests ALTER COLUMN test_id TYPE \ UUID USING test_id::uuid") # Table topics op.execute("ALTER TABLE topics ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE topics ALTER COLUMN next_topic TYPE \ UUID USING next_topic::uuid") # Table topics_teams op.execute("ALTER TABLE topics_teams ALTER COLUMN topic_id TYPE \ UUID USING topic_id::uuid") op.execute("ALTER TABLE topics_teams ALTER COLUMN team_id TYPE \ UUID USING team_id::uuid") # Table user_remotecis op.execute("ALTER TABLE user_remotecis ALTER COLUMN user_id TYPE \ UUID USING user_id::uuid") op.execute("ALTER TABLE user_remotecis ALTER COLUMN remoteci_id TYPE \ UUID USING remoteci_id::uuid") # Table users op.execute("ALTER TABLE users ALTER COLUMN id TYPE \ UUID USING id::uuid") op.execute("ALTER TABLE users ALTER COLUMN team_id TYPE \ UUID USING team_id::uuid") # Re-Create constraint op.create_foreign_key('component_files_component_id_fkey', 'component_files', 'components', ['component_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('components_topic_id_fkey', 'components', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_job_id_fkey', 'files', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_jobstate_id_fkey', 'files', 'jobstates', ['jobstate_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_team_id_fkey', 'files', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('files_test_id_fkey', 'files', 'tests', ['test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobdefinition_tests_jobdefinition_id_fkey', 'jobdefinition_tests', 'jobdefinitions', ['jobdefinition_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobdefinition_tests_test_id_fkey', 'jobdefinition_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobdefinitions_topic_id_fkey', 'jobdefinitions', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_team_id_fkey', 'jobs', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_jobdefinition_id_fkey', 'jobs', 'jobdefinitions', ['jobdefinition_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_remoteci_id_fkey', 'jobs', 'remotecis', ['remoteci_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_previous_job_id_fkey', 'jobs', 'jobs', ['previous_job_id'], ['id']) op.create_foreign_key('jobs_components_component_id_fkey', 'jobs_components', 'components', ['component_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_components_job_id_fkey', 'jobs_components', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_issues_issue_id_fkey', 'jobs_issues', 'issues', ['issue_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobs_issues_job_id_fkey', 'jobs_issues', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobstates_team_id_fkey', 'jobstates', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('jobstates_job_id_fkey', 'jobstates', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('logs_team_id_fkey', 'logs', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('logs_user_id_fkey', 'logs', 'users', ['user_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('metas_job_id_fkey', 'metas', 'jobs', ['job_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('remoteci_tests_test_id_fkey', 'remoteci_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('remoteci_tests_remoteci_id_fkey', 'remoteci_tests', 'remotecis', ['remoteci_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('remotecis_team_id_fkey', 'remotecis', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('tests_team_id_fkey', 'tests', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topic_tests_test_id_fkey', 'topic_tests', 'tests', ['test_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topic_tests_topic_id_fkey', 'topic_tests', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topics_next_topic_fkey', 'topics', 'topics', ['next_topic'], ['id']) op.create_foreign_key('topics_teams_topic_id_fkey', 'topics_teams', 'topics', ['topic_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('topics_teams_team_id_fkey', 'topics_teams', 'teams', ['team_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('user_remotecis_user_id_fkey', 'user_remotecis', 'users', ['user_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('user_remotecis_remoteci_id_fkey', 'user_remotecis', 'remotecis', ['remoteci_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('users_team_id_fkey', 'users', 'teams', ['team_id'], ['id'], ondelete='CASCADE') def downgrade(): pass
[ 1, 2, 3, 4, 5 ]
1,316
a288e66e64d386afd13bfc7b5b13d4a47d15cd6d
<mask token> class Client(Base): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> class TakenBook(Base): __tablename__ = 'taken_books' id = Column(Integer, primary_key=True) book_id = Column(Integer, ForeignKey('books.id')) client_id = Column(Integer, ForeignKey('clients.id')) taken_date = Column(Date) return_date = Column(Date, default=None)
<mask token> class Author(Base): <mask token> <mask token> <mask token> <mask token> class Book(Base): __tablename__ = 'books' id = Column(Integer, primary_key=True) title = Column(String) count = Column(Integer) taken_count = Column(Integer) authors_id = Column(postgresql.ARRAY(Integer), default=None) publisher_id = Column(Integer) publishing_year = Column(Integer) class Client(Base): __tablename__ = 'clients' id = Column(Integer, primary_key=True) type = Column(String) full_name = Column(String) taken_books_now_id = Column(postgresql.ARRAY(Integer), default=[]) all_taken_books_id = Column(postgresql.ARRAY(Integer), default=[]) class TakenBook(Base): __tablename__ = 'taken_books' id = Column(Integer, primary_key=True) book_id = Column(Integer, ForeignKey('books.id')) client_id = Column(Integer, ForeignKey('clients.id')) taken_date = Column(Date) return_date = Column(Date, default=None)
<mask token> class Author(Base): __tablename__ = 'authors' id = Column(Integer, primary_key=True) full_name = Column(String) taken_count = Column(Integer, default=0) class Book(Base): __tablename__ = 'books' id = Column(Integer, primary_key=True) title = Column(String) count = Column(Integer) taken_count = Column(Integer) authors_id = Column(postgresql.ARRAY(Integer), default=None) publisher_id = Column(Integer) publishing_year = Column(Integer) class Client(Base): __tablename__ = 'clients' id = Column(Integer, primary_key=True) type = Column(String) full_name = Column(String) taken_books_now_id = Column(postgresql.ARRAY(Integer), default=[]) all_taken_books_id = Column(postgresql.ARRAY(Integer), default=[]) class TakenBook(Base): __tablename__ = 'taken_books' id = Column(Integer, primary_key=True) book_id = Column(Integer, ForeignKey('books.id')) client_id = Column(Integer, ForeignKey('clients.id')) taken_date = Column(Date) return_date = Column(Date, default=None)
<mask token> class Publisher(Base): __tablename__ = 'publishers' id = Column(Integer, primary_key=True) name = Column(String) class Author(Base): __tablename__ = 'authors' id = Column(Integer, primary_key=True) full_name = Column(String) taken_count = Column(Integer, default=0) class Book(Base): __tablename__ = 'books' id = Column(Integer, primary_key=True) title = Column(String) count = Column(Integer) taken_count = Column(Integer) authors_id = Column(postgresql.ARRAY(Integer), default=None) publisher_id = Column(Integer) publishing_year = Column(Integer) class Client(Base): __tablename__ = 'clients' id = Column(Integer, primary_key=True) type = Column(String) full_name = Column(String) taken_books_now_id = Column(postgresql.ARRAY(Integer), default=[]) all_taken_books_id = Column(postgresql.ARRAY(Integer), default=[]) class TakenBook(Base): __tablename__ = 'taken_books' id = Column(Integer, primary_key=True) book_id = Column(Integer, ForeignKey('books.id')) client_id = Column(Integer, ForeignKey('clients.id')) taken_date = Column(Date) return_date = Column(Date, default=None)
# created by RomaOkorosso at 21.03.2021 # models.py from datetime import datetime from sqlalchemy import ( Column, Integer, String, Boolean, DateTime, ForeignKey, Date ) from sqlalchemy.dialects import postgresql from sqlalchemy.orm import relationship from Database.database import Base class Publisher(Base): __tablename__ = "publishers" id = Column(Integer, primary_key=True) name = Column(String) class Author(Base): __tablename__ = "authors" id = Column(Integer, primary_key=True) full_name = Column(String) taken_count = Column(Integer, default=0) class Book(Base): __tablename__ = "books" id = Column(Integer, primary_key=True) title = Column(String) count = Column(Integer) taken_count = Column(Integer) authors_id = Column(postgresql.ARRAY(Integer), default=None) publisher_id = Column(Integer) publishing_year = Column(Integer) class Client(Base): __tablename__ = "clients" id = Column(Integer, primary_key=True) type = Column(String) full_name = Column(String) taken_books_now_id = Column(postgresql.ARRAY(Integer), default=[]) all_taken_books_id = Column(postgresql.ARRAY(Integer), default=[]) class TakenBook(Base): __tablename__ = "taken_books" id = Column(Integer, primary_key=True) book_id = Column(Integer, ForeignKey("books.id")) client_id = Column(Integer, ForeignKey("clients.id")) taken_date = Column(Date) return_date = Column(Date, default=None)
[ 3, 7, 8, 10, 12 ]
1,317
2ec41e02c95a270455c096e85829b7220eeda0c7
<mask token> def validate_email(value, row_number): error_message = _(u'Invalid e-mail address on "%d" line.') return validators.EmailValidator(validators.email_re, unicode( error_message % row_number), 'invalid')(value) <mask token> def get_externalsubscribers(file_obj): pass_count = 0 fail_count = 0 PATH = '/tmp/import_subscribers.xls' upload_handler(file_obj, PATH) sheet = xlrd.open_workbook(PATH).sheet_by_index(0) for i in range(1, sheet.nrows): row = sheet.row(i) if not row[0].value: continue subscriber = {} subscriber['email'] = row[0].value try: validate_email(subscriber['email'].strip(), i) pass_count += 1 except Exception as e: fail_count += 1 continue try: subscriber['first_name'] = row[1].value except IndexError: pass try: subscriber['last_name'] = row[2].value except IndexError: pass if not bool(Account.objects.filter(email=subscriber['email']).only( 'id')): obj, created = ExternalSubscriber.objects.get_or_create(email= subscriber['email'], defaults={'first_name': subscriber.get ('first_name'), 'last_name': subscriber.get('last_name')}) if not created: for field in ['first_name', 'last_name']: if subscriber.get(field) and getattr(obj, field ) != subscriber.get(field): setattr(obj, field, subscriber.get(field)) obj.save() return pass_count, fail_count <mask token>
<mask token> def validate_email(value, row_number): error_message = _(u'Invalid e-mail address on "%d" line.') return validators.EmailValidator(validators.email_re, unicode( error_message % row_number), 'invalid')(value) def upload_handler(file_obj, path_to_save): destination = open(path_to_save, 'wb+') for chunk in file_obj.chunks(): destination.write(chunk) destination.close() def get_externalsubscribers(file_obj): pass_count = 0 fail_count = 0 PATH = '/tmp/import_subscribers.xls' upload_handler(file_obj, PATH) sheet = xlrd.open_workbook(PATH).sheet_by_index(0) for i in range(1, sheet.nrows): row = sheet.row(i) if not row[0].value: continue subscriber = {} subscriber['email'] = row[0].value try: validate_email(subscriber['email'].strip(), i) pass_count += 1 except Exception as e: fail_count += 1 continue try: subscriber['first_name'] = row[1].value except IndexError: pass try: subscriber['last_name'] = row[2].value except IndexError: pass if not bool(Account.objects.filter(email=subscriber['email']).only( 'id')): obj, created = ExternalSubscriber.objects.get_or_create(email= subscriber['email'], defaults={'first_name': subscriber.get ('first_name'), 'last_name': subscriber.get('last_name')}) if not created: for field in ['first_name', 'last_name']: if subscriber.get(field) and getattr(obj, field ) != subscriber.get(field): setattr(obj, field, subscriber.get(field)) obj.save() return pass_count, fail_count <mask token>
<mask token> def validate_email(value, row_number): error_message = _(u'Invalid e-mail address on "%d" line.') return validators.EmailValidator(validators.email_re, unicode( error_message % row_number), 'invalid')(value) def upload_handler(file_obj, path_to_save): destination = open(path_to_save, 'wb+') for chunk in file_obj.chunks(): destination.write(chunk) destination.close() def get_externalsubscribers(file_obj): pass_count = 0 fail_count = 0 PATH = '/tmp/import_subscribers.xls' upload_handler(file_obj, PATH) sheet = xlrd.open_workbook(PATH).sheet_by_index(0) for i in range(1, sheet.nrows): row = sheet.row(i) if not row[0].value: continue subscriber = {} subscriber['email'] = row[0].value try: validate_email(subscriber['email'].strip(), i) pass_count += 1 except Exception as e: fail_count += 1 continue try: subscriber['first_name'] = row[1].value except IndexError: pass try: subscriber['last_name'] = row[2].value except IndexError: pass if not bool(Account.objects.filter(email=subscriber['email']).only( 'id')): obj, created = ExternalSubscriber.objects.get_or_create(email= subscriber['email'], defaults={'first_name': subscriber.get ('first_name'), 'last_name': subscriber.get('last_name')}) if not created: for field in ['first_name', 'last_name']: if subscriber.get(field) and getattr(obj, field ) != subscriber.get(field): setattr(obj, field, subscriber.get(field)) obj.save() return pass_count, fail_count @render_to('newsletter/import_subscribers_form.html') def import_subscribers(request): if request.method == 'POST': form = ExternalSubscriberUpload(request.POST, request.FILES) if form.is_valid(): passed, failed = get_externalsubscribers(form.cleaned_data['xls']) messages.add_message(request, messages.INFO, _( 'Subscribers successfuly imported. %(passed)d added and %(failed)d failed ' ) % {'passed': passed, 'failed': failed}) return redirect('admin:newsletter_externalsubscriber_changelist') else: form = ExternalSubscriberUpload() return {'form': form}
import xlrd from django.shortcuts import redirect from django.contrib import messages from django.utils.translation import ugettext_lazy as _ from django.core import validators from utils.views import render_to from accounts.models import Account from .models import ExternalSubscriber from .forms import ExternalSubscriberUpload def validate_email(value, row_number): error_message = _(u'Invalid e-mail address on "%d" line.') return validators.EmailValidator(validators.email_re, unicode( error_message % row_number), 'invalid')(value) def upload_handler(file_obj, path_to_save): destination = open(path_to_save, 'wb+') for chunk in file_obj.chunks(): destination.write(chunk) destination.close() def get_externalsubscribers(file_obj): pass_count = 0 fail_count = 0 PATH = '/tmp/import_subscribers.xls' upload_handler(file_obj, PATH) sheet = xlrd.open_workbook(PATH).sheet_by_index(0) for i in range(1, sheet.nrows): row = sheet.row(i) if not row[0].value: continue subscriber = {} subscriber['email'] = row[0].value try: validate_email(subscriber['email'].strip(), i) pass_count += 1 except Exception as e: fail_count += 1 continue try: subscriber['first_name'] = row[1].value except IndexError: pass try: subscriber['last_name'] = row[2].value except IndexError: pass if not bool(Account.objects.filter(email=subscriber['email']).only( 'id')): obj, created = ExternalSubscriber.objects.get_or_create(email= subscriber['email'], defaults={'first_name': subscriber.get ('first_name'), 'last_name': subscriber.get('last_name')}) if not created: for field in ['first_name', 'last_name']: if subscriber.get(field) and getattr(obj, field ) != subscriber.get(field): setattr(obj, field, subscriber.get(field)) obj.save() return pass_count, fail_count @render_to('newsletter/import_subscribers_form.html') def import_subscribers(request): if request.method == 'POST': form = ExternalSubscriberUpload(request.POST, request.FILES) if form.is_valid(): passed, failed = get_externalsubscribers(form.cleaned_data['xls']) messages.add_message(request, messages.INFO, _( 'Subscribers successfuly imported. %(passed)d added and %(failed)d failed ' ) % {'passed': passed, 'failed': failed}) return redirect('admin:newsletter_externalsubscriber_changelist') else: form = ExternalSubscriberUpload() return {'form': form}
import xlrd from django.shortcuts import redirect from django.contrib import messages from django.utils.translation import ugettext_lazy as _ from django.core import validators from utils.views import render_to from accounts.models import Account from .models import ExternalSubscriber from .forms import ExternalSubscriberUpload def validate_email(value, row_number): error_message = _(u'Invalid e-mail address on "%d" line.') return validators.EmailValidator( validators.email_re, unicode(error_message % row_number), 'invalid' )(value) def upload_handler(file_obj, path_to_save): destination = open(path_to_save, 'wb+') for chunk in file_obj.chunks(): destination.write(chunk) destination.close() def get_externalsubscribers(file_obj): pass_count = 0 fail_count = 0 PATH = '/tmp/import_subscribers.xls' upload_handler(file_obj, PATH) sheet = xlrd.open_workbook(PATH).sheet_by_index(0) for i in range(1,sheet.nrows): row = sheet.row(i) if not row[0].value: continue subscriber = {} subscriber['email'] = row[0].value try: validate_email(subscriber['email'].strip(), i) pass_count+=1 except Exception as e: fail_count+=1 #print e, u'"%s"' % subscriber['email'] continue try: subscriber['first_name'] = row[1].value except IndexError: pass try: subscriber['last_name'] = row[2].value except IndexError: pass if not bool(Account.objects.filter(email=subscriber['email']).only('id')): obj, created = ExternalSubscriber.objects.get_or_create( email=subscriber['email'], defaults={ 'first_name': subscriber.get('first_name'), 'last_name': subscriber.get('last_name'), } ) if not created: for field in ['first_name', 'last_name']: if subscriber.get(field) and\ getattr(obj, field) != subscriber.get(field): setattr(obj, field, subscriber.get(field)) obj.save() return pass_count, fail_count @render_to('newsletter/import_subscribers_form.html') def import_subscribers(request): if request.method == 'POST': form = ExternalSubscriberUpload(request.POST, request.FILES) if form.is_valid(): passed, failed = get_externalsubscribers(form.cleaned_data['xls']) messages.add_message(request, messages.INFO, _('Subscribers successfuly imported. %(passed)d added and %(failed)d failed ') % {'passed':passed, 'failed': failed}) return redirect('admin:newsletter_externalsubscriber_changelist') else: form = ExternalSubscriberUpload() return {'form': form}
[ 2, 3, 4, 5, 6 ]
1,318
b42414b7d8ed80d8794ab7c49dfde1e5df0721f1
<mask token>
<mask token> BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) ALLOWED_HOSTS = [] INSTALLED_APPS = ['django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'admin_honeypot', 'bootstrap3', 'el_pagination', 'compressor', 'accounts', 'bot', 'home', 'pages', 'serve_media', 'events', 'gallery', 'groups', 'django_rq', 'surveys'] MIDDLEWARE_CLASSES = ['django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'csp.middleware.CSPMiddleware'] ROOT_URLCONF = 'config.urls' TEMPLATES = [{'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates'), os.path.join(BASE_DIR, 'templates/error_pages')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': ['django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages']}}] WSGI_APPLICATION = 'config.wsgi.application' AUTH_PASSWORD_VALIDATORS = [{'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator' }, {'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator'}, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator'}, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator'} ] LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True LOCALE_PATHS = [os.path.join(BASE_DIR, 'static/locale/')] STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'assets/') LOGIN_REDIRECT_URL = '/home' TELEGRAM_TOKEN = os.environ.get('GROUPSOME_TELEGRAM_TOKEN') TELEGRAM_WEBHOOK_SECRET = os.environ.get('GROUPSOME_TELEGRAM_WEBHOOK_SECRET') TELEGRAM_BOT_USERNAME = 'groupsomebot' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_SERVE_USING_NGINX = False STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', 'compressor.finders.CompressorFinder', 'pipeline.finders.PipelineFinder') STATICFILES_STORAGE = 'pipeline.storage.PipelineStorage' PIPELINE = {'PIPELINE_ENABLED': True, 'COMPILERS': ( 'pipeline.compilers.stylus.StylusCompiler',), 'STYLESHEETS': {'main': { 'source_filenames': ('style/main.styl',), 'output_filename': 'style/main.css'}}, 'STYLUS_ARGUMENTS': '-c'} CSP_STYLE_SRC = "'self'", "'unsafe-inline'", 'fonts.googleapis.com' CSP_FONT_SRC = "'self'", 'fonts.gstatic.com'
<mask token> import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) ALLOWED_HOSTS = [] INSTALLED_APPS = ['django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'admin_honeypot', 'bootstrap3', 'el_pagination', 'compressor', 'accounts', 'bot', 'home', 'pages', 'serve_media', 'events', 'gallery', 'groups', 'django_rq', 'surveys'] MIDDLEWARE_CLASSES = ['django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'csp.middleware.CSPMiddleware'] ROOT_URLCONF = 'config.urls' TEMPLATES = [{'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates'), os.path.join(BASE_DIR, 'templates/error_pages')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': ['django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages']}}] WSGI_APPLICATION = 'config.wsgi.application' AUTH_PASSWORD_VALIDATORS = [{'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator' }, {'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator'}, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator'}, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator'} ] LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True LOCALE_PATHS = [os.path.join(BASE_DIR, 'static/locale/')] STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'assets/') LOGIN_REDIRECT_URL = '/home' TELEGRAM_TOKEN = os.environ.get('GROUPSOME_TELEGRAM_TOKEN') TELEGRAM_WEBHOOK_SECRET = os.environ.get('GROUPSOME_TELEGRAM_WEBHOOK_SECRET') TELEGRAM_BOT_USERNAME = 'groupsomebot' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_SERVE_USING_NGINX = False STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', 'compressor.finders.CompressorFinder', 'pipeline.finders.PipelineFinder') STATICFILES_STORAGE = 'pipeline.storage.PipelineStorage' PIPELINE = {'PIPELINE_ENABLED': True, 'COMPILERS': ( 'pipeline.compilers.stylus.StylusCompiler',), 'STYLESHEETS': {'main': { 'source_filenames': ('style/main.styl',), 'output_filename': 'style/main.css'}}, 'STYLUS_ARGUMENTS': '-c'} CSP_STYLE_SRC = "'self'", "'unsafe-inline'", 'fonts.googleapis.com' CSP_FONT_SRC = "'self'", 'fonts.gstatic.com'
""" Django settings for gamelibrary project. Generated by 'django-admin startproject' using Django 1.9.5. For more information on this file, see https://docs.djangoproject.com/en/1.9/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.9/ref/settings/ """ import os # from django.conf.global_settings import TEMPLATE_CONTEXT_PROCESSORS # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.9/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! # SECURITY WARNING: don't run with debug turned on in production! ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'admin_honeypot', 'bootstrap3', 'el_pagination', 'compressor', # 'pipeline', 'accounts', 'bot', 'home', 'pages', 'serve_media', 'events', 'gallery', 'groups', 'django_rq', 'surveys', ] MIDDLEWARE_CLASSES = [ # 'django.middleware.cache.UpdateCacheMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', # 'django.middleware.cache.FetchFromCacheMiddleware', 'csp.middleware.CSPMiddleware', ] ROOT_URLCONF = 'config.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates'), os.path.join(BASE_DIR, 'templates/error_pages')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'config.wsgi.application' # Password validation # https://docs.djangoproject.com/en/1.9/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.9/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True LOCALE_PATHS = [ os.path.join(BASE_DIR, 'static/locale/'), ] # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.9/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'assets/') # Redirect to here after Login LOGIN_REDIRECT_URL = '/home' TELEGRAM_TOKEN = os.environ.get('GROUPSOME_TELEGRAM_TOKEN') TELEGRAM_WEBHOOK_SECRET = os.environ.get('GROUPSOME_TELEGRAM_WEBHOOK_SECRET') TELEGRAM_BOT_USERNAME = "groupsomebot" # Media root directory MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_SERVE_USING_NGINX = False # Needed for Endless Scrolling # TEMPLATE_CONTEXT_PROCESSORS += ( # 'django.core.context_processors.request', # ) STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', 'compressor.finders.CompressorFinder', 'pipeline.finders.PipelineFinder', ) STATICFILES_STORAGE = 'pipeline.storage.PipelineStorage' PIPELINE = { 'PIPELINE_ENABLED': True, 'COMPILERS': ( 'pipeline.compilers.stylus.StylusCompiler', ), 'STYLESHEETS': { 'main': { 'source_filenames': ( 'style/main.styl', ), 'output_filename': 'style/main.css', } }, 'STYLUS_ARGUMENTS': '-c', } CSP_STYLE_SRC = ("'self'", "'unsafe-inline'", "fonts.googleapis.com") CSP_FONT_SRC = ("'self'", "fonts.gstatic.com")
null
[ 0, 1, 2, 3 ]
1,319
449ae193f8817d4ee2fe67eadf72d9c19b2c5e53
<mask token> class MovieRankings(models.Model): <mask token> <mask token> <mask token> class Movie(models.Model): """ 电影的数据库表格 """ movie_name = models.CharField(max_length=64, blank=True) douban_link = models.CharField(max_length=256, null=True, blank=True) douban_score = models.CharField(max_length=64, null=True, blank=True) douban_counter = models.PositiveIntegerField(default=0, blank=True) imdb_link = models.CharField(max_length=256, null=True, blank=True) imdb_score = models.CharField(max_length=64, null=True, blank=True) imdb_counter = models.PositiveIntegerField(default=0, blank=True) nomovie_link = models.CharField(max_length=256, null=True, blank=True) nomovie_score = models.CharField(max_length=64, null=True, blank=True) nomovie_counter = models.PositiveIntegerField(default=0, blank=True) country = models.CharField(max_length=64, null=True, blank=True) dateyear = models.CharField(max_length=64, null=True, blank=True) actor = models.CharField(max_length=256, null=True, blank=True) director = models.CharField(max_length=256, null=True, blank=True) style = models.CharField(max_length=64, null=True, blank=True) movie_address = models.CharField(max_length=256, null=True, blank=True) download_link = models.CharField(max_length=256, null=True, blank=True) counter = models.PositiveIntegerField(default=0, blank=True) original = models.CharField(max_length=256, null=True, blank=True) status = models.IntegerField(null=True, blank=True) image = models.CharField(max_length=256, null=True, blank=True) spidertime = models.DateTimeField(auto_now_add=True, null=True) aboutmovie = models.CharField(max_length=256, null=True, blank=True) language = models.CharField(max_length=64, null=True, blank=True) dyttsearch = models.CharField(max_length=256, null=True, blank=True) dyttdetail = models.CharField(max_length=256, null=True, blank=True) movierankings = models.ForeignKey(MovieRankings, null=True, blank=True) def __unicode__(self): return self.movie_name class MovieHistory(models.Model): user = models.ForeignKey(User) movie = models.ForeignKey(Movie) date = models.DateTimeField(auto_now_add=True) marked = models.IntegerField(blank=True, null=True) def __unicode__(self): return '{%s}--{%s}' % (self.user.username, self.movie.movie_name)
<mask token> class MovieRankings(models.Model): <mask token> name = models.CharField(max_length=100) def __unicode__(self): return self.name class Movie(models.Model): """ 电影的数据库表格 """ movie_name = models.CharField(max_length=64, blank=True) douban_link = models.CharField(max_length=256, null=True, blank=True) douban_score = models.CharField(max_length=64, null=True, blank=True) douban_counter = models.PositiveIntegerField(default=0, blank=True) imdb_link = models.CharField(max_length=256, null=True, blank=True) imdb_score = models.CharField(max_length=64, null=True, blank=True) imdb_counter = models.PositiveIntegerField(default=0, blank=True) nomovie_link = models.CharField(max_length=256, null=True, blank=True) nomovie_score = models.CharField(max_length=64, null=True, blank=True) nomovie_counter = models.PositiveIntegerField(default=0, blank=True) country = models.CharField(max_length=64, null=True, blank=True) dateyear = models.CharField(max_length=64, null=True, blank=True) actor = models.CharField(max_length=256, null=True, blank=True) director = models.CharField(max_length=256, null=True, blank=True) style = models.CharField(max_length=64, null=True, blank=True) movie_address = models.CharField(max_length=256, null=True, blank=True) download_link = models.CharField(max_length=256, null=True, blank=True) counter = models.PositiveIntegerField(default=0, blank=True) original = models.CharField(max_length=256, null=True, blank=True) status = models.IntegerField(null=True, blank=True) image = models.CharField(max_length=256, null=True, blank=True) spidertime = models.DateTimeField(auto_now_add=True, null=True) aboutmovie = models.CharField(max_length=256, null=True, blank=True) language = models.CharField(max_length=64, null=True, blank=True) dyttsearch = models.CharField(max_length=256, null=True, blank=True) dyttdetail = models.CharField(max_length=256, null=True, blank=True) movierankings = models.ForeignKey(MovieRankings, null=True, blank=True) def __unicode__(self): return self.movie_name class MovieHistory(models.Model): user = models.ForeignKey(User) movie = models.ForeignKey(Movie) date = models.DateTimeField(auto_now_add=True) marked = models.IntegerField(blank=True, null=True) def __unicode__(self): return '{%s}--{%s}' % (self.user.username, self.movie.movie_name)
<mask token> class MovieRankings(models.Model): """ 各种电影排行榜. """ name = models.CharField(max_length=100) def __unicode__(self): return self.name class Movie(models.Model): """ 电影的数据库表格 """ movie_name = models.CharField(max_length=64, blank=True) douban_link = models.CharField(max_length=256, null=True, blank=True) douban_score = models.CharField(max_length=64, null=True, blank=True) douban_counter = models.PositiveIntegerField(default=0, blank=True) imdb_link = models.CharField(max_length=256, null=True, blank=True) imdb_score = models.CharField(max_length=64, null=True, blank=True) imdb_counter = models.PositiveIntegerField(default=0, blank=True) nomovie_link = models.CharField(max_length=256, null=True, blank=True) nomovie_score = models.CharField(max_length=64, null=True, blank=True) nomovie_counter = models.PositiveIntegerField(default=0, blank=True) country = models.CharField(max_length=64, null=True, blank=True) dateyear = models.CharField(max_length=64, null=True, blank=True) actor = models.CharField(max_length=256, null=True, blank=True) director = models.CharField(max_length=256, null=True, blank=True) style = models.CharField(max_length=64, null=True, blank=True) movie_address = models.CharField(max_length=256, null=True, blank=True) download_link = models.CharField(max_length=256, null=True, blank=True) counter = models.PositiveIntegerField(default=0, blank=True) original = models.CharField(max_length=256, null=True, blank=True) status = models.IntegerField(null=True, blank=True) image = models.CharField(max_length=256, null=True, blank=True) spidertime = models.DateTimeField(auto_now_add=True, null=True) aboutmovie = models.CharField(max_length=256, null=True, blank=True) language = models.CharField(max_length=64, null=True, blank=True) dyttsearch = models.CharField(max_length=256, null=True, blank=True) dyttdetail = models.CharField(max_length=256, null=True, blank=True) movierankings = models.ForeignKey(MovieRankings, null=True, blank=True) def __unicode__(self): return self.movie_name class MovieHistory(models.Model): user = models.ForeignKey(User) movie = models.ForeignKey(Movie) date = models.DateTimeField(auto_now_add=True) marked = models.IntegerField(blank=True, null=True) def __unicode__(self): return '{%s}--{%s}' % (self.user.username, self.movie.movie_name)
from __future__ import unicode_literals import markdown from django.db import models from django.contrib.auth.models import User from datetime import datetime class MovieRankings(models.Model): """ 各种电影排行榜. """ name = models.CharField(max_length=100) def __unicode__(self): return self.name class Movie(models.Model): """ 电影的数据库表格 """ movie_name = models.CharField(max_length=64, blank=True) douban_link = models.CharField(max_length=256, null=True, blank=True) douban_score = models.CharField(max_length=64, null=True, blank=True) douban_counter = models.PositiveIntegerField(default=0, blank=True) imdb_link = models.CharField(max_length=256, null=True, blank=True) imdb_score = models.CharField(max_length=64, null=True, blank=True) imdb_counter = models.PositiveIntegerField(default=0, blank=True) nomovie_link = models.CharField(max_length=256, null=True, blank=True) nomovie_score = models.CharField(max_length=64, null=True, blank=True) nomovie_counter = models.PositiveIntegerField(default=0, blank=True) country = models.CharField(max_length=64, null=True, blank=True) dateyear = models.CharField(max_length=64, null=True, blank=True) actor = models.CharField(max_length=256, null=True, blank=True) director = models.CharField(max_length=256, null=True, blank=True) style = models.CharField(max_length=64, null=True, blank=True) movie_address = models.CharField(max_length=256, null=True, blank=True) download_link = models.CharField(max_length=256, null=True, blank=True) counter = models.PositiveIntegerField(default=0, blank=True) original = models.CharField(max_length=256, null=True, blank=True) status = models.IntegerField(null=True, blank=True) image = models.CharField(max_length=256, null=True, blank=True) spidertime = models.DateTimeField(auto_now_add=True, null=True) aboutmovie = models.CharField(max_length=256, null=True, blank=True) language = models.CharField(max_length=64, null=True, blank=True) dyttsearch = models.CharField(max_length=256, null=True, blank=True) dyttdetail = models.CharField(max_length=256, null=True, blank=True) movierankings = models.ForeignKey(MovieRankings, null=True, blank=True) def __unicode__(self): return self.movie_name class MovieHistory(models.Model): user = models.ForeignKey(User) movie = models.ForeignKey(Movie) date = models.DateTimeField(auto_now_add=True) marked = models.IntegerField(blank=True, null=True) def __unicode__(self): return '{%s}--{%s}' % (self.user.username, self.movie.movie_name)
# -*- coding: utf-8 -*- from __future__ import unicode_literals import markdown from django.db import models from django.contrib.auth.models import User from datetime import datetime class MovieRankings(models.Model): """ 各种电影排行榜. """ name = models.CharField(max_length=100) def __unicode__(self): return self.name class Movie(models.Model): """ 电影的数据库表格 """ movie_name = models.CharField(max_length=64, blank=True) # 豆瓣链接,值可以是null,也可以不填这个字段. douban_link = models.CharField(max_length=256, null=True, blank=True) # 豆瓣评分. douban_score = models.CharField(max_length=64, null=True, blank=True) # 豆瓣评分人数. douban_counter = models.PositiveIntegerField(default=0, blank=True) # Imdb链接. imdb_link = models.CharField(max_length=256, null=True, blank=True) # Imdb评分. imdb_score = models.CharField(max_length=64, null=True, blank=True) # Imdb评分人数. imdb_counter = models.PositiveIntegerField(default=0, blank=True) # 网站中的链接. nomovie_link = models.CharField(max_length=256, null=True, blank=True) # 网站中评分. nomovie_score = models.CharField(max_length=64, null=True, blank=True) # 网站中评分人数. nomovie_counter = models.PositiveIntegerField(default=0, blank=True) # 上映国家. country = models.CharField(max_length=64, null=True, blank=True) # 上映日期. dateyear = models.CharField(max_length=64, null=True, blank=True) # 主演. actor = models.CharField(max_length=256, null=True, blank=True) # 导演. director = models.CharField(max_length=256, null=True, blank=True) # 电影类型. style = models.CharField(max_length=64, null=True, blank=True) # 电影播放地址. movie_address = models.CharField(max_length=256, null=True, blank=True) # 电影下载链接. download_link = models.CharField(max_length=256, null=True, blank=True) # 电影在本网站的播放次数. counter = models.PositiveIntegerField(default=0, blank=True) # 电影来源, # 0:表示豆瓣top250 1:表示imdbtop250 2:表示普通豆瓣 3:表示普通imdb # 4:表示在豆瓣和imdb中都存在 5表示:用户自添加 original = models.CharField(max_length=256, null=True, blank=True) # 1:表示通过 0:表示未通过 2:表示审核中 status = models.IntegerField(null=True, blank=True) # 图片保存地址 image = models.CharField(max_length=256, null=True, blank=True) # 爬取电影入库时间 spidertime = models.DateTimeField(auto_now_add=True, null=True) # 关于电影 aboutmovie = models.CharField(max_length=256, null=True, blank=True) # 电影语言 language = models.CharField(max_length=64, null=True, blank=True) # 电影天堂搜索地址 dyttsearch = models.CharField(max_length=256, null=True, blank=True) # 电影天堂搜索电影详情页面 dyttdetail = models.CharField(max_length=256, null=True, blank=True) movierankings = models.ForeignKey(MovieRankings, null=True, blank=True) def __unicode__(self): return self.movie_name # def get_comments(self): class MovieHistory(models.Model): # 观看的用户. # 用户一对多MovieHistory,可以看多个电影. user = models.ForeignKey(User) # 观看的电影. movie = models.ForeignKey(Movie) # 观看的时间. date = models.DateTimeField(auto_now_add=True) # 0表示用户观看了该电影,1表示收藏,2表示推荐. marked = models.IntegerField(blank=True, null=True) def __unicode__(self): return "{%s}--{%s}" % (self.user.username, self.movie.movie_name)
[ 8, 10, 11, 12, 13 ]
1,320
902159d9ad3a1e36b69142518007b5d4bcaef0f3
<mask token>
<mask token> def crawl(file): gis = GIS() map = gis.map('United States') map job_df = pd.read_csv(Point_v1.CONSULTING_FILE).append(pd.read_csv( Point_v1.DS_FILE)).append(pd.read_csv(Point_v1.SDE_FILE)) company_loc_df = pd.DataFrame() company_loc_df['company'] = job_df['company'].unique() geo_info = company_loc_df['company'].apply(lambda company: geocode( company)[0] if geocode(company) else None) company_loc_df['longitude'] = geo_info.apply(lambda info: info[ 'location']['x'] if info else None) company_loc_df['latitude'] = geo_info.apply(lambda info: info[ 'location']['y'] if info else None) company_loc_df['city'] = geo_info.apply(lambda info: info['attributes'] ['City'] if info else None) company_loc_df['state'] = geo_info.apply(lambda info: info['attributes' ]['RegionAbbr'] if info else None) company_loc_df.to_csv(file, encoding='utf-8', index=False)
from arcgis.geocoding import geocode from arcgis.gis import GIS import pandas as pd import Point_v1 <mask token> def crawl(file): gis = GIS() map = gis.map('United States') map job_df = pd.read_csv(Point_v1.CONSULTING_FILE).append(pd.read_csv( Point_v1.DS_FILE)).append(pd.read_csv(Point_v1.SDE_FILE)) company_loc_df = pd.DataFrame() company_loc_df['company'] = job_df['company'].unique() geo_info = company_loc_df['company'].apply(lambda company: geocode( company)[0] if geocode(company) else None) company_loc_df['longitude'] = geo_info.apply(lambda info: info[ 'location']['x'] if info else None) company_loc_df['latitude'] = geo_info.apply(lambda info: info[ 'location']['y'] if info else None) company_loc_df['city'] = geo_info.apply(lambda info: info['attributes'] ['City'] if info else None) company_loc_df['state'] = geo_info.apply(lambda info: info['attributes' ]['RegionAbbr'] if info else None) company_loc_df.to_csv(file, encoding='utf-8', index=False)
from arcgis.geocoding import geocode from arcgis.gis import GIS import pandas as pd import Point_v1 """ This module is used to get the location information of different companies from arcgis API. """ def crawl(file): gis = GIS() map = gis.map("United States") map # read all kinds of job files job_df = pd.read_csv(Point_v1.CONSULTING_FILE).append( pd.read_csv(Point_v1.DS_FILE)).append( pd.read_csv(Point_v1.SDE_FILE)) company_loc_df = pd.DataFrame() company_loc_df["company"] = job_df["company"].unique() geo_info = company_loc_df["company"].apply(lambda company: geocode(company)[0] if geocode(company) else None) company_loc_df['longitude'] = geo_info.apply(lambda info: info["location"]["x"] if info else None) company_loc_df['latitude'] = geo_info.apply(lambda info: info["location"]["y"] if info else None) company_loc_df['city'] = geo_info.apply(lambda info: info['attributes']['City'] if info else None) company_loc_df['state'] = geo_info.apply(lambda info: info['attributes']['RegionAbbr'] if info else None) company_loc_df.to_csv(file, encoding='utf-8', index=False)
null
[ 0, 1, 2, 3 ]
1,321
bad13218a7a9e687fbd29099ca80771296789d36
<mask token> class Form(QDialog): def __init__(self, parent=None): super(Form, self).__init__(parent) self.setWindowTitle('Cover Letter Developer') self.label1 = QLabel('Input Company Name') self.edit1 = QLineEdit('') self.label2 = QLabel('Input Position Title') self.edit2 = QLineEdit('') self.label3 = QLabel('How did you get introduced to the company?') self.edit3 = QLineEdit('') self.label4 = QLabel( 'What skills do you have that would help the COOP/Internship') self.edit4 = QLineEdit('') self.button = QPushButton('Develop') layout = QVBoxLayout() layout.addWidget(self.label1) layout.addWidget(self.edit1) layout.addWidget(self.label2) layout.addWidget(self.edit2) layout.addWidget(self.label3) layout.addWidget(self.edit3) layout.addWidget(self.label4) layout.addWidget(self.edit4) layout.addWidget(self.button) self.setLayout(layout) self.button.clicked.connect(self.coverlet) <mask token> <mask token>
<mask token> class Form(QDialog): def __init__(self, parent=None): super(Form, self).__init__(parent) self.setWindowTitle('Cover Letter Developer') self.label1 = QLabel('Input Company Name') self.edit1 = QLineEdit('') self.label2 = QLabel('Input Position Title') self.edit2 = QLineEdit('') self.label3 = QLabel('How did you get introduced to the company?') self.edit3 = QLineEdit('') self.label4 = QLabel( 'What skills do you have that would help the COOP/Internship') self.edit4 = QLineEdit('') self.button = QPushButton('Develop') layout = QVBoxLayout() layout.addWidget(self.label1) layout.addWidget(self.edit1) layout.addWidget(self.label2) layout.addWidget(self.edit2) layout.addWidget(self.label3) layout.addWidget(self.edit3) layout.addWidget(self.label4) layout.addWidget(self.edit4) layout.addWidget(self.button) self.setLayout(layout) self.button.clicked.connect(self.coverlet) def coverlet(self): name = self.edit1.text() pos = self.edit2.text() intro = self.edit3.text() skills = self.edit4.text() mytext = '\n Dear ' + name + """’s Hiring Team, """ + ' ' + ' I am writing to apply to the ' + pos + ' Intern/COOP position at ' + name + '. I am a 4th year at Wentworth Institute of Technology, pursuing a Bachelor of Science degree in Electro-mechanical Engineering. The Electro-mechanical Engineering program combines the technical disciplines of Electrical and Mechanical Engineering. ' + intro + """ """ + 'As an intern at ' + name + ' , I will bring my toolset of ' + skills + """. Additionally I have experience in quality and reliability of electronic circuit systems through the tests that I have done when I was Analog Devices like shock, high voltage, HALT testing. Along with developing reliability testers that I programmed using LabView(a graphical programming language). My C programming and Python experience is from a project that I have done for a Junior Design Project and you can see the pictures through my personal website list below. """ + ' ' + ' As an engineering student, the most valuable thing that I have currently learned about myself is that when faced with a difficult problem I may initially fail, but I don’t quit until I eventually solve the problem. I am a quick learner and will be a good asset to ' + name + '. Wentworth Institute of Technology incorporates COOPS/internships as part of its curriculum, and, therefore, I would be available to work full time throughout the summer for a minimum of 14 weeks. I would be honored to intern for ' + name + ' and gain experience in engineering and further ' + name + """ initiative. has a reputation for excellence, and I value your commitment to making the world a better and safer place. """ + ' ' + """ You may contact me by phone, email or my personal website, which I have supplied below. Thank you for your time and consideration. """ anothertext = """ Respectfully yours, Martynas Baranauskas [email protected] 781-572-9775 Personal Website: https://baranauskasm.wixsite.com/mysite or scan QR code with smartphone camera """ document = Document() p = document.add_paragraph(mytext) g = document.add_paragraph(anothertext) k = document.add_picture('qr_code.png', width=Inches(0.7)) filename = name + '_' + pos + '_baranauskas_.docx' document.save(filename) print('-----------------------------------------------------') print(name + '_' + pos + '_baranauskas.doxc document was developed') print('------------------------------------------------------') self.edit1.clear() self.edit2.clear() self.edit3.clear() self.edit4.clear() <mask token>
<mask token> class Form(QDialog): def __init__(self, parent=None): super(Form, self).__init__(parent) self.setWindowTitle('Cover Letter Developer') self.label1 = QLabel('Input Company Name') self.edit1 = QLineEdit('') self.label2 = QLabel('Input Position Title') self.edit2 = QLineEdit('') self.label3 = QLabel('How did you get introduced to the company?') self.edit3 = QLineEdit('') self.label4 = QLabel( 'What skills do you have that would help the COOP/Internship') self.edit4 = QLineEdit('') self.button = QPushButton('Develop') layout = QVBoxLayout() layout.addWidget(self.label1) layout.addWidget(self.edit1) layout.addWidget(self.label2) layout.addWidget(self.edit2) layout.addWidget(self.label3) layout.addWidget(self.edit3) layout.addWidget(self.label4) layout.addWidget(self.edit4) layout.addWidget(self.button) self.setLayout(layout) self.button.clicked.connect(self.coverlet) def coverlet(self): name = self.edit1.text() pos = self.edit2.text() intro = self.edit3.text() skills = self.edit4.text() mytext = '\n Dear ' + name + """’s Hiring Team, """ + ' ' + ' I am writing to apply to the ' + pos + ' Intern/COOP position at ' + name + '. I am a 4th year at Wentworth Institute of Technology, pursuing a Bachelor of Science degree in Electro-mechanical Engineering. The Electro-mechanical Engineering program combines the technical disciplines of Electrical and Mechanical Engineering. ' + intro + """ """ + 'As an intern at ' + name + ' , I will bring my toolset of ' + skills + """. Additionally I have experience in quality and reliability of electronic circuit systems through the tests that I have done when I was Analog Devices like shock, high voltage, HALT testing. Along with developing reliability testers that I programmed using LabView(a graphical programming language). My C programming and Python experience is from a project that I have done for a Junior Design Project and you can see the pictures through my personal website list below. """ + ' ' + ' As an engineering student, the most valuable thing that I have currently learned about myself is that when faced with a difficult problem I may initially fail, but I don’t quit until I eventually solve the problem. I am a quick learner and will be a good asset to ' + name + '. Wentworth Institute of Technology incorporates COOPS/internships as part of its curriculum, and, therefore, I would be available to work full time throughout the summer for a minimum of 14 weeks. I would be honored to intern for ' + name + ' and gain experience in engineering and further ' + name + """ initiative. has a reputation for excellence, and I value your commitment to making the world a better and safer place. """ + ' ' + """ You may contact me by phone, email or my personal website, which I have supplied below. Thank you for your time and consideration. """ anothertext = """ Respectfully yours, Martynas Baranauskas [email protected] 781-572-9775 Personal Website: https://baranauskasm.wixsite.com/mysite or scan QR code with smartphone camera """ document = Document() p = document.add_paragraph(mytext) g = document.add_paragraph(anothertext) k = document.add_picture('qr_code.png', width=Inches(0.7)) filename = name + '_' + pos + '_baranauskas_.docx' document.save(filename) print('-----------------------------------------------------') print(name + '_' + pos + '_baranauskas.doxc document was developed') print('------------------------------------------------------') self.edit1.clear() self.edit2.clear() self.edit3.clear() self.edit4.clear() if __name__ == '__main__': app = QApplication(sys.argv) form = Form() form.resize(1300, 250) form.show() sys.exit(app.exec_())
import sys from PySide2.QtWidgets import QApplication, QDialog, QLineEdit, QPushButton, QVBoxLayout, QLabel, QWidget from docx import Document from docx.shared import Inches class Form(QDialog): def __init__(self, parent=None): super(Form, self).__init__(parent) self.setWindowTitle('Cover Letter Developer') self.label1 = QLabel('Input Company Name') self.edit1 = QLineEdit('') self.label2 = QLabel('Input Position Title') self.edit2 = QLineEdit('') self.label3 = QLabel('How did you get introduced to the company?') self.edit3 = QLineEdit('') self.label4 = QLabel( 'What skills do you have that would help the COOP/Internship') self.edit4 = QLineEdit('') self.button = QPushButton('Develop') layout = QVBoxLayout() layout.addWidget(self.label1) layout.addWidget(self.edit1) layout.addWidget(self.label2) layout.addWidget(self.edit2) layout.addWidget(self.label3) layout.addWidget(self.edit3) layout.addWidget(self.label4) layout.addWidget(self.edit4) layout.addWidget(self.button) self.setLayout(layout) self.button.clicked.connect(self.coverlet) def coverlet(self): name = self.edit1.text() pos = self.edit2.text() intro = self.edit3.text() skills = self.edit4.text() mytext = '\n Dear ' + name + """’s Hiring Team, """ + ' ' + ' I am writing to apply to the ' + pos + ' Intern/COOP position at ' + name + '. I am a 4th year at Wentworth Institute of Technology, pursuing a Bachelor of Science degree in Electro-mechanical Engineering. The Electro-mechanical Engineering program combines the technical disciplines of Electrical and Mechanical Engineering. ' + intro + """ """ + 'As an intern at ' + name + ' , I will bring my toolset of ' + skills + """. Additionally I have experience in quality and reliability of electronic circuit systems through the tests that I have done when I was Analog Devices like shock, high voltage, HALT testing. Along with developing reliability testers that I programmed using LabView(a graphical programming language). My C programming and Python experience is from a project that I have done for a Junior Design Project and you can see the pictures through my personal website list below. """ + ' ' + ' As an engineering student, the most valuable thing that I have currently learned about myself is that when faced with a difficult problem I may initially fail, but I don’t quit until I eventually solve the problem. I am a quick learner and will be a good asset to ' + name + '. Wentworth Institute of Technology incorporates COOPS/internships as part of its curriculum, and, therefore, I would be available to work full time throughout the summer for a minimum of 14 weeks. I would be honored to intern for ' + name + ' and gain experience in engineering and further ' + name + """ initiative. has a reputation for excellence, and I value your commitment to making the world a better and safer place. """ + ' ' + """ You may contact me by phone, email or my personal website, which I have supplied below. Thank you for your time and consideration. """ anothertext = """ Respectfully yours, Martynas Baranauskas [email protected] 781-572-9775 Personal Website: https://baranauskasm.wixsite.com/mysite or scan QR code with smartphone camera """ document = Document() p = document.add_paragraph(mytext) g = document.add_paragraph(anothertext) k = document.add_picture('qr_code.png', width=Inches(0.7)) filename = name + '_' + pos + '_baranauskas_.docx' document.save(filename) print('-----------------------------------------------------') print(name + '_' + pos + '_baranauskas.doxc document was developed') print('------------------------------------------------------') self.edit1.clear() self.edit2.clear() self.edit3.clear() self.edit4.clear() if __name__ == '__main__': app = QApplication(sys.argv) form = Form() form.resize(1300, 250) form.show() sys.exit(app.exec_())
import sys from PySide2.QtWidgets import QApplication, QDialog, QLineEdit, QPushButton,QVBoxLayout, QLabel, QWidget from docx import Document from docx.shared import Inches class Form(QDialog): def __init__(self, parent=None): super(Form, self).__init__(parent) #set the size #Creat widgets self.setWindowTitle("Cover Letter Developer") self.label1 = QLabel('Input Company Name') self.edit1 = QLineEdit("") self.label2 = QLabel('Input Position Title') self.edit2 = QLineEdit("") self.label3 = QLabel('How did you get introduced to the company?') self.edit3 = QLineEdit("") self.label4 = QLabel('What skills do you have that would help the COOP/Internship') self.edit4 = QLineEdit("") self.button = QPushButton("Develop") # Creat layout and add widgets layout = QVBoxLayout() layout.addWidget(self.label1) layout.addWidget(self.edit1) layout.addWidget(self.label2) layout.addWidget(self.edit2) layout.addWidget(self.label3) layout.addWidget(self.edit3) layout.addWidget(self.label4) layout.addWidget(self.edit4) layout.addWidget(self.button) #set dialog layout self.setLayout(layout) self.button.clicked.connect(self.coverlet) def coverlet(self): name = self.edit1.text() pos = self.edit2.text() intro = self.edit3.text() skills = self.edit4.text() mytext = """ Dear """ + name + """’s Hiring Team, \n """ + """ """ + """ I am writing to apply to the """ + pos + """ Intern/COOP position at """ + name + """. I am a 4th year at Wentworth Institute of Technology, pursuing a Bachelor of Science degree in Electro-mechanical Engineering. The Electro-mechanical Engineering program combines the technical disciplines of Electrical and Mechanical Engineering. """ + intro + """ """+ """As an intern at """ + name + """ , I will bring my toolset of """ + skills + """. Additionally I have experience in quality and reliability of electronic circuit systems through the tests that I have done when I was Analog Devices like shock, high voltage, HALT testing. Along with developing reliability testers that I programmed using LabView(a graphical programming language). My C programming and Python experience is from a project that I have done for a Junior Design Project and you can see the pictures through my personal website list below. """ + """ """ + """ As an engineering student, the most valuable thing that I have currently learned about myself is that when faced with a difficult problem I may initially fail, but I don’t quit until I eventually solve the problem. I am a quick learner and will be a good asset to """ + name + """. Wentworth Institute of Technology incorporates COOPS/internships as part of its curriculum, and, therefore, I would be available to work full time throughout the summer for a minimum of 14 weeks. I would be honored to intern for """ + name + """ and gain experience in engineering and further """+ name +""" initiative. has a reputation for excellence, and I value your commitment to making the world a better and safer place. """ + """ """ + """ You may contact me by phone, email or my personal website, which I have supplied below. Thank you for your time and consideration. """ anothertext = """ Respectfully yours, Martynas Baranauskas [email protected] 781-572-9775 Personal Website: https://baranauskasm.wixsite.com/mysite or scan QR code with smartphone camera """ document = Document() p = document.add_paragraph(mytext) g = document.add_paragraph(anothertext) k = document.add_picture('qr_code.png', width=Inches(0.7)) # document.add_page_break() # the saving of the document and the path to the filename = name + '_' + pos + '_baranauskas_.docx' # filepath = r'C:\Users\baranauskasm\Desktop\COOP Stuff\Summer 2020 COOP (future)\cover letters\automated cover letters' document.save(filename) print("-----------------------------------------------------") print(name + "_" + pos + "_baranauskas.doxc document was developed") print("------------------------------------------------------") #clear the form for another submition self.edit1.clear() self.edit2.clear() self.edit3.clear() self.edit4.clear() if __name__ == '__main__': #or you can do a automatic one with something like # Create the Qt Application app = QApplication(sys.argv) # Create and show the form form = Form() #the size of the gui form.resize(1300,250) form.show() # Run the main Qt loop sys.exit(app.exec_())
[ 2, 3, 4, 5, 6 ]
1,322
029f4f015f558dbd4d6096b00c53f5f0fe69883d
<mask token>
<mask token> class CurriculoSerializer(serializers.ModelSerializer): class Meta: model = Curriculo fields = 'id', 'name', 'description', 'image', 'create_at', 'update_at'
from rest_framework import serializers from core.models import Curriculo class CurriculoSerializer(serializers.ModelSerializer): class Meta: model = Curriculo fields = 'id', 'name', 'description', 'image', 'create_at', 'update_at'
from rest_framework import serializers from core.models import Curriculo class CurriculoSerializer(serializers.ModelSerializer): class Meta: model = Curriculo fields = ('id','name', 'description','image','create_at','update_at')
null
[ 0, 1, 2, 3 ]
1,323
8e1eef3c5a9ca3ea504bbc269b48446527637626
<mask token> class PageIndex(BasePageIndex, Indexable): template = CharField(model_attr='template') template_title = CharField(model_attr='get_template_display') get_template_display = CharField(model_attr='get_template_display')
<mask token> class BasePageIndex(SearchIndex): <mask token> <mask token> <mask token> <mask token> <mask token> def get_model(self): return swapper.load_model('varlet', 'page') class PageIndex(BasePageIndex, Indexable): template = CharField(model_attr='template') template_title = CharField(model_attr='get_template_display') get_template_display = CharField(model_attr='get_template_display')
<mask token> class BasePageIndex(SearchIndex): text = CharField(document=True, use_template=True, template_name= 'search/indexes/varlet/page_text.txt') url = CharField(model_attr='url') get_absolute_url = CharField(model_attr='get_absolute_url') created = DateTimeField(model_attr='created') modified = DateTimeField(model_attr='modified') def get_model(self): return swapper.load_model('varlet', 'page') class PageIndex(BasePageIndex, Indexable): template = CharField(model_attr='template') template_title = CharField(model_attr='get_template_display') get_template_display = CharField(model_attr='get_template_display')
from __future__ import absolute_import, unicode_literals import swapper from haystack.constants import Indexable from haystack.fields import CharField, DateTimeField from haystack.indexes import SearchIndex class BasePageIndex(SearchIndex): text = CharField(document=True, use_template=True, template_name= 'search/indexes/varlet/page_text.txt') url = CharField(model_attr='url') get_absolute_url = CharField(model_attr='get_absolute_url') created = DateTimeField(model_attr='created') modified = DateTimeField(model_attr='modified') def get_model(self): return swapper.load_model('varlet', 'page') class PageIndex(BasePageIndex, Indexable): template = CharField(model_attr='template') template_title = CharField(model_attr='get_template_display') get_template_display = CharField(model_attr='get_template_display')
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals import swapper from haystack.constants import Indexable from haystack.fields import CharField, DateTimeField from haystack.indexes import SearchIndex class BasePageIndex(SearchIndex): text = CharField(document=True, use_template=True, template_name='search/indexes/varlet/page_text.txt') url = CharField(model_attr='url') get_absolute_url = CharField(model_attr='get_absolute_url') created = DateTimeField(model_attr='created') modified = DateTimeField(model_attr='modified') def get_model(self): return swapper.load_model('varlet', 'page') class PageIndex(BasePageIndex, Indexable): template = CharField(model_attr='template') template_title = CharField(model_attr='get_template_display') get_template_display = CharField(model_attr='get_template_display')
[ 2, 4, 5, 6, 7 ]
1,324
11ed7550c25ca9944ce7073d9655cb9af7bdeae9
<mask token> class Modeller: <mask token> <mask token>
<mask token> class Modeller: <mask token> def event_mode(self): refusals = 0 processed = 0 generated_requests = self._generator.num_requests generator = self._generator generator.receivers = self._operators.copy() self._operators[0].receivers = [self._computers[0]] self._operators[1].receivers = [self._computers[0]] self._operators[2].receivers = [self._computers[1]] generator.next = generator.next_time() self._operators[0].next = self._operators[0].next_time() blocks = [generator, self._operators[0], self._operators[1], self. _operators[2], self._computers[0], self._computers[1]] while generator.num_requests >= 0: current_time = generator.next for block in blocks: if 0 < block.next < current_time: current_time = block.next for block in blocks: if current_time == block.next: if not isinstance(block, Processor): next_generator = generator.generate_request() if next_generator is not None: next_generator.next = (current_time + next_generator.next_time()) processed += 1 else: refusals += 1 generator.next = current_time + generator.next_time() else: block.process_request() if block.current_queue_size == 0: block.next = 0 else: block.next = current_time + block.next_time() return {'refusal_percentage': refusals / generated_requests * 100, 'refusals': refusals, 'processed': processed}
<mask token> class Modeller: def __init__(self, generator, operators, computers): self._generator = generator self._operators = operators self._computers = computers def event_mode(self): refusals = 0 processed = 0 generated_requests = self._generator.num_requests generator = self._generator generator.receivers = self._operators.copy() self._operators[0].receivers = [self._computers[0]] self._operators[1].receivers = [self._computers[0]] self._operators[2].receivers = [self._computers[1]] generator.next = generator.next_time() self._operators[0].next = self._operators[0].next_time() blocks = [generator, self._operators[0], self._operators[1], self. _operators[2], self._computers[0], self._computers[1]] while generator.num_requests >= 0: current_time = generator.next for block in blocks: if 0 < block.next < current_time: current_time = block.next for block in blocks: if current_time == block.next: if not isinstance(block, Processor): next_generator = generator.generate_request() if next_generator is not None: next_generator.next = (current_time + next_generator.next_time()) processed += 1 else: refusals += 1 generator.next = current_time + generator.next_time() else: block.process_request() if block.current_queue_size == 0: block.next = 0 else: block.next = current_time + block.next_time() return {'refusal_percentage': refusals / generated_requests * 100, 'refusals': refusals, 'processed': processed}
from Distributions import UniformDistribution from EventGenerator import Generator from Processor import Processor class Modeller: def __init__(self, generator, operators, computers): self._generator = generator self._operators = operators self._computers = computers def event_mode(self): refusals = 0 processed = 0 generated_requests = self._generator.num_requests generator = self._generator generator.receivers = self._operators.copy() self._operators[0].receivers = [self._computers[0]] self._operators[1].receivers = [self._computers[0]] self._operators[2].receivers = [self._computers[1]] generator.next = generator.next_time() self._operators[0].next = self._operators[0].next_time() blocks = [generator, self._operators[0], self._operators[1], self. _operators[2], self._computers[0], self._computers[1]] while generator.num_requests >= 0: current_time = generator.next for block in blocks: if 0 < block.next < current_time: current_time = block.next for block in blocks: if current_time == block.next: if not isinstance(block, Processor): next_generator = generator.generate_request() if next_generator is not None: next_generator.next = (current_time + next_generator.next_time()) processed += 1 else: refusals += 1 generator.next = current_time + generator.next_time() else: block.process_request() if block.current_queue_size == 0: block.next = 0 else: block.next = current_time + block.next_time() return {'refusal_percentage': refusals / generated_requests * 100, 'refusals': refusals, 'processed': processed}
from Distributions import UniformDistribution from EventGenerator import Generator from Processor import Processor class Modeller: def __init__(self, generator, operators, computers): self._generator = generator self._operators = operators self._computers = computers def event_mode(self): refusals = 0 processed = 0 generated_requests = self._generator.num_requests generator = self._generator generator.receivers = self._operators.copy() self._operators[0].receivers = [self._computers[0]] self._operators[1].receivers = [self._computers[0]] self._operators[2].receivers = [self._computers[1]] generator.next = generator.next_time() self._operators[0].next = self._operators[0].next_time() blocks = [ generator, self._operators[0], self._operators[1], self._operators[2], self._computers[0], self._computers[1], ] while generator.num_requests >= 0: # находим наименьшее время current_time = generator.next for block in blocks: if 0 < block.next < current_time: current_time = block.next # для каждого из блоков for block in blocks: # если событие наступило для этого блока if current_time == block.next: if not isinstance(block, Processor): # для генератора # проверяем, может ли оператор обработать next_generator = generator.generate_request() if next_generator is not None: next_generator.next = \ current_time + next_generator.next_time() processed += 1 else: refusals += 1 generator.next = current_time + generator.next_time() else: block.process_request() if block.current_queue_size == 0: block.next = 0 else: block.next = current_time + block.next_time() return {"refusal_percentage": refusals / generated_requests * 100, "refusals": refusals, "processed": processed, }
[ 1, 2, 3, 4, 5 ]
1,325
d9a871fb6c889bcff455732007718af734859c72
# SSURGO_ExportMuRaster.py # # Convert MUPOLYGON featureclass to raster for the specified SSURGO geodatabase. # By default any small NoData areas (< 5000 sq meters) will be filled using # the Majority value. # # Input mupolygon featureclass must have a projected coordinate system or it will skip. # Input databases and featureclasses must use naming convention established by the # 'SDM Export By State' tool. # # For geographic regions that have USGS NLCD available, the tool wil automatically # align the coordinate system and raster grid to match. # # 10-31-2013 Added gap fill method # # 11-05-2014 # 11-22-2013 # 12-10-2013 Problem with using non-unique cellvalues for raster. Going back to # creating an integer version of MUKEY in the mapunit polygon layer. # 12-13-2013 Occasionally see error messages related to temporary GRIDs (g_g*) created # under "C:\Users\steve.peaslee\AppData\Local\Temp\a subfolder". These # are probably caused by orphaned INFO tables. # 01-08-2014 Added basic raster metadata (still need process steps) # 01-12-2014 Restricted conversion to use only input MUPOLYGON featureclass having # a projected coordinate system with linear units=Meter # 01-31-2014 Added progressor bar to 'Saving MUKEY values..'. Seems to be a hangup at this # point when processing CONUS geodatabase # 02-14-2014 Changed FeatureToLayer (CELL_CENTER) to PolygonToRaster (MAXIMUM_COMBINED_AREA) # and removed the Gap Fill option. # 2014-09-27 Added ISO metadata import # # 2014-10-18 Noticed that failure to create raster seemed to be related to long # file names or non-alphanumeric characters such as a dash in the name. # # 2014-10-29 Removed ORDER BY MUKEY sql clause because some computers were failing on that line. # Don't understand why. # # 2014-10-31 Added error message if the MUKEY column is not populated in the MUPOLYGON featureclass # # 2014-11-04 Problems occur when the user's gp environment points to Default.gdb for the scratchWorkpace. # Added a fatal error message when that occurs. # # 2015-01-15 Hopefully fixed some of the issues that caused the raster conversion to crash at the end. # Cleaned up some of the current workspace settings and moved the renaming of the final raster. # # 2015-02-26 Adding option for tiling raster conversion by areasymbol and then mosaicing. Slower and takes # more disk space, but gets the job done when otherwise PolygonToRaster fails on big datasets. # 2015-02-27 Make bTiling variable an integer (0, 2, 5) that can be used to slice the areasymbol value. This will # give the user an option to tile by state (2) or by survey area (5) # 2015-03-10 Moved sequence of CheckInExtension. It was at the beginning which seems wrong. # # 2015-03-11 Switched tiled raster format from geodatabase raster to TIFF. This should allow the entire # temporary folder to be deleted instead of deleting rasters one-at-a-time (slow). # 2015-03-11 Added attribute index (mukey) to raster attribute table # 2015-03-13 Modified output raster name by incorporating the geodatabase name (after '_' and before ".gdb") # # 2015-09-16 Temporarily renamed output raster using a shorter string # # 2015-09-16 Trying several things to address 9999 failure on CONUS. Created a couple of ArcInfo workspace in temp # 2015-09-16 Compacting geodatabase before PolygonToRaster conversion # # 2015-09-18 Still having problems with CONUS raster even with ArcGIS 10.3. Even the tiled method failed once # on AR105. Actually may have been the next survey, but random order so don't know which one for sure. # Trying to reorder mosaic to match the spatial order of the polygon layers. Need to figure out if # the 99999 error in PolygonToRaster is occurring with the same soil survey or same count or any # other pattern. # # 2015-09-18 Need to remember to turn off all layers in ArcMap. Redraw is triggered after each tile. # # 2015-10-01 Found problem apparently caused by 10.3. SnapRaster functionality was failing with tiles because of # MakeFeatureLayer where_clause. Perhaps due to cursor lock persistence? Rewrote entire function to # use SAPOLYGON featureclass to define extents for tiles. This seems to be working better anyway. # # 2015-10-02 Need to look at some method for sorting the extents of each tile and sort them in a geographic fashion. # A similar method was used in the Create gSSURGO database tools for the Append process. # # 2015-10-23 Jennifer and I finally figured out what was causing her PolygonToRaster 9999 errors. # It was dashes in the output GDB path. Will add a check for bad characters in path. # # 2015-10-26 Changed up SnapToNLCD function to incorporate SnapRaster input as long as the coordinate # system matches and the extent coordinates are integer (no floating point!). # # 2015-10-27 Looking at possible issue with batchmode processing of rasters. Jennifer had several # errors when trying to run all states at once. # # 2015-11-03 Fixed failure when indexing non-geodatabase rasters such as .IMG. ## =================================================================================== class MyError(Exception): pass ## =================================================================================== def PrintMsg(msg, severity=0): # prints message to screen if run as a python script # Adds tool message to the geoprocessor # #Split the message on \n first, so that if it's multiple lines, a GPMessage will be added for each line try: for string in msg.split('\n'): #Add a geoprocessing message (in case this is run as a tool) if severity == 0: arcpy.AddMessage(string) elif severity == 1: arcpy.AddWarning(string) elif severity == 2: arcpy.AddMessage(" ") arcpy.AddError(string) except: pass ## =================================================================================== def errorMsg(): try: tb = sys.exc_info()[2] tbinfo = traceback.format_tb(tb)[0] theMsg = tbinfo + "\n" + str(sys.exc_type)+ ": " + str(sys.exc_value) PrintMsg(theMsg, 2) except: PrintMsg("Unhandled error in errorMsg method", 2) pass ## =================================================================================== def WriteToLog(theMsg, theRptFile): # prints message to screen if run as a python script # Adds tool message to the geoprocessor #print msg # try: fh = open(theRptFile, "a") theMsg = "\n" + theMsg fh.write(theMsg) fh.close() except: errorMsg() pass ## =================================================================================== def elapsedTime(start): # Calculate amount of time since "start" and return time string try: # Stop timer # end = time.time() # Calculate total elapsed seconds eTotal = end - start # day = 86400 seconds # hour = 3600 seconds # minute = 60 seconds eMsg = "" # calculate elapsed days eDay1 = eTotal / 86400 eDay2 = math.modf(eDay1) eDay = int(eDay2[1]) eDayR = eDay2[0] if eDay > 1: eMsg = eMsg + str(eDay) + " days " elif eDay == 1: eMsg = eMsg + str(eDay) + " day " # Calculated elapsed hours eHour1 = eDayR * 24 eHour2 = math.modf(eHour1) eHour = int(eHour2[1]) eHourR = eHour2[0] if eDay > 0 or eHour > 0: if eHour > 1: eMsg = eMsg + str(eHour) + " hours " else: eMsg = eMsg + str(eHour) + " hour " # Calculate elapsed minutes eMinute1 = eHourR * 60 eMinute2 = math.modf(eMinute1) eMinute = int(eMinute2[1]) eMinuteR = eMinute2[0] if eDay > 0 or eHour > 0 or eMinute > 0: if eMinute > 1: eMsg = eMsg + str(eMinute) + " minutes " else: eMsg = eMsg + str(eMinute) + " minute " # Calculate elapsed secons eSeconds = "%.1f" % (eMinuteR * 60) if eSeconds == "1.00": eMsg = eMsg + eSeconds + " second " else: eMsg = eMsg + eSeconds + " seconds " return eMsg except: errorMsg() return "" ## =================================================================================== def Number_Format(num, places=0, bCommas=True): try: # Format a number according to locality and given places #locale.setlocale(locale.LC_ALL, "") if bCommas: theNumber = locale.format("%.*f", (places, num), True) else: theNumber = locale.format("%.*f", (places, num), False) return theNumber except: errorMsg() return False ## =================================================================================== def CheckStatistics(outputRaster): # For no apparent reason, ArcGIS sometimes fails to build statistics. Might work one # time and then the next time it may fail without any error message. # try: #PrintMsg(" \n\tChecking raster statistics", 0) for propType in ['MINIMUM', 'MAXIMUM', 'MEAN', 'STD']: statVal = arcpy.GetRasterProperties_management (outputRaster, propType).getOutput(0) #PrintMsg("\t\t" + propType + ": " + statVal, 1) return True except: return False ## =================================================================================== def UpdateMetadata(outputWS, target, surveyInfo, iRaster): # # Used for non-ISO metadata # # Search words: xxSTATExx, xxSURVEYSxx, xxTODAYxx, xxFYxx # try: PrintMsg("\tUpdating metadata...") arcpy.SetProgressor("default", "Updating metadata") # Set metadata translator file dInstall = arcpy.GetInstallInfo() installPath = dInstall["InstallDir"] prod = r"Metadata/Translator/ARCGIS2FGDC.xml" mdTranslator = os.path.join(installPath, prod) # Define input and output XML files mdImport = os.path.join(env.scratchFolder, "xxImport.xml") # the metadata xml that will provide the updated info xmlPath = os.path.dirname(sys.argv[0]) mdExport = os.path.join(xmlPath, "gSSURGO_MapunitRaster.xml") # original template metadata in script directory # Cleanup output XML files from previous runs if os.path.isfile(mdImport): os.remove(mdImport) # Get replacement value for the search words # stDict = StateNames() st = os.path.basename(outputWS)[8:-4] if st in stDict: # Get state name from the geodatabase mdState = stDict[st] else: # Leave state name blank. In the future it would be nice to include a tile name when appropriate mdState = "" # Set date strings for metadata, based upon today's date # d = datetime.date.today() today = str(d.isoformat().replace("-","")) # Set fiscal year according to the current month. If run during January thru September, # set it to the current calendar year. Otherwise set it to the next calendar year. # if d.month > 9: fy = "FY" + str(d.year + 1) else: fy = "FY" + str(d.year) # Convert XML to tree format tree = ET.parse(mdExport) root = tree.getroot() # new citeInfo has title.text, edition.text, serinfo/issue.text citeInfo = root.findall('idinfo/citation/citeinfo/') if not citeInfo is None: # Process citation elements # title, edition, issue # for child in citeInfo: #PrintMsg("\t\t" + str(child.tag), 0) if child.tag == "title": if child.text.find('xxSTATExx') >= 0: child.text = child.text.replace('xxSTATExx', mdState) elif mdState != "": child.text = child.text + " - " + mdState elif child.tag == "edition": if child.text == 'xxFYxx': child.text = fy elif child.tag == "serinfo": for subchild in child.iter('issue'): if subchild.text == "xxFYxx": subchild.text = fy # Update place keywords ePlace = root.find('idinfo/keywords/place') if not ePlace is None: #PrintMsg("\t\tplace keywords", 0) for child in ePlace.iter('placekey'): if child.text == "xxSTATExx": child.text = mdState elif child.text == "xxSURVEYSxx": child.text = surveyInfo # Update credits eIdInfo = root.find('idinfo') if not eIdInfo is None: #PrintMsg("\t\tcredits", 0) for child in eIdInfo.iter('datacred'): sCreds = child.text if sCreds.find("xxSTATExx") >= 0: #PrintMsg("\t\tcredits " + mdState, 0) child.text = child.text.replace("xxSTATExx", mdState) if sCreds.find("xxFYxx") >= 0: #PrintMsg("\t\tcredits " + fy, 0) child.text = child.text.replace("xxFYxx", fy) if sCreds.find("xxTODAYxx") >= 0: #PrintMsg("\t\tcredits " + today, 0) child.text = child.text.replace("xxTODAYxx", today) idPurpose = root.find('idinfo/descript/purpose') if not idPurpose is None: ip = idPurpose.text if ip.find("xxFYxx") >= 0: idPurpose.text = ip.replace("xxFYxx", fy) #PrintMsg("\t\tpurpose", 0) # create new xml file which will be imported, thereby updating the table's metadata tree.write(mdImport, encoding="utf-8", xml_declaration=None, default_namespace=None, method="xml") # import updated metadata to the geodatabase table # Using three different methods with the same XML file works for ArcGIS 10.1 # #PrintMsg("\t\tApplying metadata translators...") arcpy.MetadataImporter_conversion (mdImport, target) arcpy.ImportMetadata_conversion(mdImport, "FROM_FGDC", target, "DISABLED") # delete the temporary xml metadata file if os.path.isfile(mdImport): os.remove(mdImport) pass # delete metadata tool logs logFolder = os.path.dirname(env.scratchFolder) logFile = os.path.basename(mdImport).split(".")[0] + "*" currentWS = env.workspace env.workspace = logFolder logList = arcpy.ListFiles(logFile) for lg in logList: arcpy.Delete_management(lg) env.workspace = currentWS return True except: errorMsg() False ## =================================================================================== def CheckSpatialReference(muPolygon): # Make sure that the coordinate system is projected and units are meters try: desc = arcpy.Describe(muPolygon) inputSR = desc.spatialReference if inputSR.type.upper() == "PROJECTED": if inputSR.linearUnitName.upper() == "METER": env.outputCoordinateSystem = inputSR return True else: raise MyError, os.path.basename(theGDB) + ": Input soil polygon layer does not have a valid coordinate system for gSSURGO" else: raise MyError, os.path.basename(theGDB) + ": Input soil polygon layer must have a projected coordinate system" except MyError, e: # Example: raise MyError, "This is an error message" PrintMsg(str(e), 2) return False except: errorMsg() return False ## =================================================================================== def ConvertToRaster(muPolygon, rasterName): # main function used for raster conversion try: # # Set geoprocessing environment # env.overwriteOutput = True arcpy.env.compression = "LZ77" env.tileSize = "128 128" gdb = os.path.dirname(muPolygon) outputRaster = os.path.join(gdb, rasterName) iRaster = 10 # output resolution is 10 meters # Make sure that the env.scratchGDB is NOT Default.gdb. This causes problems for # some unknown reason. if (os.path.basename(env.scratchGDB).lower() == "default.gdb") or \ (os.path.basename(env.scratchWorkspace).lower() == "default.gdb") or \ (os.path.basename(env.scratchGDB).lower() == gdb): raise MyError, "Invalid scratch workspace setting (" + env.scratchWorkspace + ")" # Create an ArcInfo workspace under the scratchFolder. Trying to prevent # 99999 errors for PolygonToRaster on very large databases # aiWorkspace = env.scratchFolder if not arcpy.Exists(os.path.join(aiWorkspace, "info")): #PrintMsg(" \nCreating ArcInfo workspace (" + os.path.basename(aiWorkspace) + ") in: " + os.path.dirname(aiWorkspace), 1) arcpy.CreateArcInfoWorkspace_management(os.path.dirname(aiWorkspace), os.path.basename(aiWorkspace)) # turn off automatic Pyramid creation and Statistics calculation env.rasterStatistics = "NONE" env.pyramid = "PYRAMIDS 0" env.workspace = gdb # Need to check for dashes or spaces in folder names or leading numbers in database or raster names desc = arcpy.Describe(muPolygon) if not arcpy.Exists(muPolygon): raise MyError, "Could not find input featureclass: " + muPolygon # Check input layer's coordinate system to make sure horizontal units are meters # set the output coordinate system for the raster (neccessary for PolygonToRaster) if CheckSpatialReference(muPolygon) == False: return False # Sometimes it helps to compact large databases before raster conversion #arcpy.SetProgressorLabel("Compacting database prior to rasterization...") #arcpy.Compact_management(gdb) # For rasters named using an attribute value, some attribute characters can result in # 'illegal' names. outputRaster = outputRaster.replace("-", "") if arcpy.Exists(outputRaster): arcpy.Delete_management(outputRaster) time.sleep(1) if arcpy.Exists(outputRaster): err = "Output raster (" + os.path.basename(outputRaster) + ") already exists" raise MyError, err #start = time.time() # start clock to measure total processing time #begin = time.time() # start clock to measure set up time time.sleep(2) PrintMsg(" \nBeginning raster conversion process", 0) # Create Lookup table for storing MUKEY values and their integer counterparts # lu = os.path.join(env.scratchGDB, "Lookup") if arcpy.Exists(lu): arcpy.Delete_management(lu) # The Lookup table contains both MUKEY and its integer counterpart (CELLVALUE). # Using the joined lookup table creates a raster with CellValues that are the # same as MUKEY (but integer). This will maintain correct MUKEY values # during a moscaic or clip. # arcpy.CreateTable_management(os.path.dirname(lu), os.path.basename(lu)) arcpy.AddField_management(lu, "CELLVALUE", "LONG") arcpy.AddField_management(lu, "mukey", "TEXT", "#", "#", "30") # Create list of areasymbols present in the MUPOLYGON featureclass # Having problems processing CONUS list of MUKEYs. Python seems to be running out of memory, # but I don't see high usage in Windows Task Manager # # PrintMsg(" \nscratchFolder set to: " + env.scratchFolder, 1) # Create list of MUKEY values from the MUPOLYGON featureclass # # Create a list of map unit keys present in the MUPOLYGON featureclass # PrintMsg("\tGetting list of mukeys from input soil polygon layer...", 0) arcpy.SetProgressor("default", "Getting inventory of map units...") tmpPolys = "SoilPolygons" sqlClause = ("DISTINCT", None) with arcpy.da.SearchCursor(muPolygon, ["mukey"], "", "", "", sql_clause=sqlClause) as srcCursor: # Create a unique, sorted list of MUKEY values in the MUPOLYGON featureclass mukeyList = [row[0] for row in srcCursor] mukeyList.sort() if len(mukeyList) == 0: raise MyError, "Failed to get MUKEY values from " + muPolygon muCnt = len(mukeyList) # Load MUKEY values into Lookup table # #PrintMsg("\tSaving " + Number_Format(muCnt, 0, True) + " MUKEY values for " + Number_Format(polyCnt, 0, True) + " polygons" , 0) arcpy.SetProgressorLabel("Creating lookup table...") with arcpy.da.InsertCursor(lu, ("CELLVALUE", "mukey") ) as inCursor: for mukey in mukeyList: rec = mukey, mukey inCursor.insertRow(rec) # Add MUKEY attribute index to Lookup table arcpy.AddIndex_management(lu, ["mukey"], "Indx_LU") # # End of Lookup table code # Match NLCD raster (snapraster) cdlRasters = arcpy.ListRasters("wsCDL*") if len(cdlRasters) == 0: raise MyError, "Required Cropland Data Layer rasters missing from " + gdb else: cdlRaster = cdlRasters[-1] env.snapRaster = cdlRaster #env.extent = cdlRaster # Raster conversion process... # PrintMsg(" \nConverting featureclass " + os.path.basename(muPolygon) + " to raster (" + str(iRaster) + " meter)", 0) tmpPolys = "poly_tmp" arcpy.MakeFeatureLayer_management (muPolygon, tmpPolys) arcpy.AddJoin_management (tmpPolys, "mukey", lu, "mukey", "KEEP_ALL") arcpy.SetProgressor("default", "Running PolygonToRaster conversion...") # Need to make sure that the join was successful time.sleep(1) rasterFields = arcpy.ListFields(tmpPolys) rasterFieldNames = list() for rFld in rasterFields: rasterFieldNames.append(rFld.name.upper()) if not "LOOKUP.CELLVALUE" in rasterFieldNames: raise MyError, "Join failed for Lookup table (CELLVALUE)" if (os.path.basename(muPolygon).upper() + ".MUKEY") in rasterFieldNames: #raise MyError, "Join failed for Lookup table (SPATIALVERSION)" priorityFld = os.path.basename(muPolygon) + ".MUKEY" else: priorityFld = os.path.basename(muPolygon) + ".CELLVALUE" #ListEnv() arcpy.PolygonToRaster_conversion(tmpPolys, "Lookup.CELLVALUE", outputRaster, "MAXIMUM_COMBINED_AREA", "", iRaster) # No priority field for single raster # immediately delete temporary polygon layer to free up memory for the rest of the process time.sleep(1) arcpy.Delete_management(tmpPolys) # End of single raster process # Now finish up the single temporary raster # PrintMsg(" \nFinalizing raster conversion process:", 0) # Reset the stopwatch for the raster post-processing #begin = time.time() # Remove lookup table if arcpy.Exists(lu): arcpy.Delete_management(lu) # **************************************************** # Build pyramids and statistics # **************************************************** if arcpy.Exists(outputRaster): time.sleep(1) arcpy.SetProgressor("default", "Calculating raster statistics...") PrintMsg("\tCalculating raster statistics...", 0) env.pyramid = "PYRAMIDS -1 NEAREST" arcpy.env.rasterStatistics = 'STATISTICS 100 100' arcpy.CalculateStatistics_management (outputRaster, 1, 1, "", "OVERWRITE" ) if CheckStatistics(outputRaster) == False: # For some reason the BuildPyramidsandStatistics command failed to build statistics for this raster. # # Try using CalculateStatistics while setting an AOI PrintMsg("\tInitial attempt to create statistics failed, trying another method...", 0) time.sleep(3) if arcpy.Exists(os.path.join(gdb, "SAPOLYGON")): # Try running CalculateStatistics with an AOI to limit the area that is processed # if we have to use SAPOLYGON as an AOI, this will be REALLY slow #arcpy.CalculateStatistics_management (outputRaster, 1, 1, "", "OVERWRITE", os.path.join(outputWS, "SAPOLYGON") ) arcpy.CalculateStatistics_management (outputRaster, 1, 1, "", "OVERWRITE" ) if CheckStatistics(outputRaster) == False: time.sleep(3) PrintMsg("\tFailed in both attempts to create statistics for raster layer", 1) arcpy.SetProgressor("default", "Building pyramids...") PrintMsg("\tBuilding pyramids...", 0) arcpy.BuildPyramids_management(outputRaster, "-1", "NONE", "NEAREST", "DEFAULT", "", "SKIP_EXISTING") # **************************************************** # Add MUKEY to final raster # **************************************************** # Build attribute table for final output raster. Sometimes it fails to automatically build. PrintMsg("\tBuilding raster attribute table and updating MUKEY values", ) arcpy.SetProgressor("default", "Building raster attrribute table...") arcpy.BuildRasterAttributeTable_management(outputRaster) # Add MUKEY values to final mapunit raster # arcpy.SetProgressor("default", "Adding MUKEY attribute to raster...") arcpy.AddField_management(outputRaster, "MUKEY", "TEXT", "#", "#", "30") with arcpy.da.UpdateCursor(outputRaster, ["VALUE", "MUKEY"]) as cur: for rec in cur: rec[1] = rec[0] cur.updateRow(rec) # Add attribute index (MUKEY) for raster arcpy.AddIndex_management(outputRaster, ["mukey"], "Indx_RasterMukey") else: err = "Missing output raster (" + outputRaster + ")" raise MyError, err # Compare list of original mukeys with the list of raster mukeys # Report discrepancies. These are usually thin polygons along survey boundaries, # added to facilitate a line-join. # arcpy.SetProgressor("default", "Looking for missing map units...") rCnt = int(arcpy.GetRasterProperties_management (outputRaster, "UNIQUEVALUECOUNT").getOutput(0)) if rCnt <> muCnt: missingList = list() rList = list() # Create list of raster mukeys... with arcpy.da.SearchCursor(outputRaster, ("MUKEY",)) as rcur: for rec in rcur: mukey = rec[0] rList.append(mukey) missingList = list(set(mukeyList) - set(rList)) queryList = list() for mukey in missingList: queryList.append("'" + mukey + "'") if len(queryList) > 0: PrintMsg("\tDiscrepancy in mapunit count for new raster", 1) #PrintMsg("\t\tInput polygon mapunits: " + Number_Format(muCnt, 0, True), 0) #PrintMsg("\t\tOutput raster mapunits: " + Number_Format(rCnt, 0, True), 0) PrintMsg("The following MUKEY values were present in the original MUPOLYGON featureclass, ", 1) PrintMsg("but not in the raster", 1) PrintMsg("\t\tMUKEY IN (" + ", ".join(queryList) + ") \n ", 0) # Update metadata file for the geodatabase # # Query the output SACATALOG table to get list of surveys that were exported to the gSSURGO # #saTbl = os.path.join(theGDB, "sacatalog") #expList = list() #with arcpy.da.SearchCursor(saTbl, ("AREASYMBOL", "SAVEREST")) as srcCursor: # for rec in srcCursor: # expList.append(rec[0] + " (" + str(rec[1]).split()[0] + ")") #surveyInfo = ", ".join(expList) surveyInfo = "" # could get this from SDA #time.sleep(2) arcpy.SetProgressorLabel("Updating metadata NOT...") #bMetaData = UpdateMetadata(outputWS, outputRaster, surveyInfo, iRaster) del outputRaster del muPolygon arcpy.CheckInExtension("Spatial") return True except MyError, e: # Example: raise MyError, "This is an error message" PrintMsg(str(e), 2) arcpy.CheckInExtension("Spatial") return False except MemoryError: raise MyError, "Not enough memory to process. Try running again with the 'Use tiles' option" except: errorMsg() arcpy.CheckInExtension("Spatial") return False ## =================================================================================== ## =================================================================================== ## MAIN ## =================================================================================== # Import system modules import sys, string, os, arcpy, locale, traceback, math, time, datetime, shutil import xml.etree.cElementTree as ET from arcpy import env # Create the Geoprocessor object try: if __name__ == "__main__": # get parameters muPolygon = arcpy.GetParameterAsText(0) # required gSSURGO polygon layer rasterName = arcpy.GetParameterAsText(1) # required name for output gdb raster env.overwriteOutput= True iRaster = 10 # Get Spatial Analyst extension if arcpy.CheckExtension("Spatial") == "Available": # try to find the name of the tile from the geodatabase name # set the name of the output raster using the tilename and cell resolution from arcpy.sa import * arcpy.CheckOutExtension("Spatial") else: raise MyError, "Required Spatial Analyst extension is not available" # Call function that does all of the work bRaster = ConvertToRaster(muPolygon, theSnapRaster, iRaster) arcpy.CheckInExtension("Spatial") except MyError, e: # Example: raise MyError, "This is an error message" PrintMsg(str(e), 2) except: errorMsg()
null
null
null
null
[ 0 ]
1,326
1b58d294f02ce85bf19da03f94100af87408081d
import stockquote import time import datetime from datetime import date from connection import db start_date='20100101' def prices(symbol): """ Loads the prices from the start date for the given symbol Only new quotes are downloaded. """ to = date.today().strftime("%Y%m%d") c = db.cursor() c.execute("SELECT DATE_ADD(max(date), INTERVAL 1 DAY) FROM quote where symbol = %s", (symbol)) (_from, ) = c.fetchone() if _from == date.today(): print "Skipping %s" % symbol return print "Downloading %s" % symbol if _from is None: _from = start_date else: _from = _from.strftime("%Y%m%d") prices = stockquote.get_historical_prices(symbol, _from, to) headers = prices[0] try: close = get_idx(headers, 'Close') date_ = get_idx(headers, 'Date') open = get_idx(headers, 'Open') high = get_idx(headers, 'High') low = get_idx(headers, 'Low') quotes = prices[1:] for l in quotes: #print "%s %s" % (l[date_], l[close]) try: insert(symbol, l[date_], l[close], l[high], l[low], l[open]) except Exception, e: print "Could not insert %s:%s" % (symbol, e) print "Inserted %s new quotes for %s" % (len(quotes), symbol) except Exception, e: print "Could not download %s" % symbol print e def get_idx(headers, query): for index, item in enumerate(headers): if (item == query): return index #print("Could not find requested header [%s]" % query) #print("Available ones are %s" % headers) raise "Eror ind downloading quote" def insert(symbol, date, close, high, low, open): c = db.cursor() c.execute("INSERT INTO quote (date, symbol, close, high, low, open) VALUES (%s, %s, %s, %s, %s, %s)", (date, symbol, close, high, low, open))
null
null
null
null
[ 0 ]
1,327
5d0a45b93bd7972333f5574188c65484c065e9cf
''' Created on June 10 2013 @author: Eugene Shim This unit test suite is designed to test the unitTestParser module. At the moment, the functions of that module are too simple to really unit test effectively ''' #Standard library modules import unittest #the module being tested import unitTestParser class TestResultsTestSuite(unittest.TestCase): #check the verbosity def test_results
null
null
null
null
[ 0 ]
1,328
95ea811d38c314f5f19294500e16bae3d00d4fff
<mask token> def merge_bitplane_to_image(bitplane, arr, color): arr = bp.to_image(arr) img = np.zeros(arr.shape) img[:, :, color] = bitplane return img <mask token>
<mask token> if len(sys.argv) < 4: print('USAGE: {0} <PATH> <COLOR> <BIT>'.format(sys.argv[0])) print(' PATH: image path') print(' COLOR: GRAY=-1, RED=0, GREEN=1, BLUE=2') print(' BIT : 0~7 (0:MSB, 7:LSB)') exit(1) <mask token> def merge_bitplane_to_image(bitplane, arr, color): arr = bp.to_image(arr) img = np.zeros(arr.shape) img[:, :, color] = bitplane return img <mask token> if len(arr.shape) < 2 or len(arr.shape) > 3: print('Unsupported shape of image') exit(1) <mask token> if COLOR != -1 and len(arr.shape) == 4: arr = merge_bitplane_to_image(bitplane, arr, COLOR) else: arr = bitplane Image.fromarray(np.uint8(arr)).show()
<mask token> if len(sys.argv) < 4: print('USAGE: {0} <PATH> <COLOR> <BIT>'.format(sys.argv[0])) print(' PATH: image path') print(' COLOR: GRAY=-1, RED=0, GREEN=1, BLUE=2') print(' BIT : 0~7 (0:MSB, 7:LSB)') exit(1) PATH = sys.argv[1] COLOR = int(sys.argv[2]) BIT = int(sys.argv[3]) def merge_bitplane_to_image(bitplane, arr, color): arr = bp.to_image(arr) img = np.zeros(arr.shape) img[:, :, color] = bitplane return img arr = bp.read_image_as_numpy(PATH) if len(arr.shape) < 2 or len(arr.shape) > 3: print('Unsupported shape of image') exit(1) arr = bp.to_binary(arr) bitplane = bp.extract_bitplane(arr, COLOR, BIT) bitplane[bitplane > 0] = 255 if COLOR != -1 and len(arr.shape) == 4: arr = merge_bitplane_to_image(bitplane, arr, COLOR) else: arr = bitplane Image.fromarray(np.uint8(arr)).show()
import sys import numpy as np import bpcs as bp from PIL import Image if len(sys.argv) < 4: print('USAGE: {0} <PATH> <COLOR> <BIT>'.format(sys.argv[0])) print(' PATH: image path') print(' COLOR: GRAY=-1, RED=0, GREEN=1, BLUE=2') print(' BIT : 0~7 (0:MSB, 7:LSB)') exit(1) PATH = sys.argv[1] COLOR = int(sys.argv[2]) BIT = int(sys.argv[3]) def merge_bitplane_to_image(bitplane, arr, color): arr = bp.to_image(arr) img = np.zeros(arr.shape) img[:, :, color] = bitplane return img arr = bp.read_image_as_numpy(PATH) if len(arr.shape) < 2 or len(arr.shape) > 3: print('Unsupported shape of image') exit(1) arr = bp.to_binary(arr) bitplane = bp.extract_bitplane(arr, COLOR, BIT) bitplane[bitplane > 0] = 255 if COLOR != -1 and len(arr.shape) == 4: arr = merge_bitplane_to_image(bitplane, arr, COLOR) else: arr = bitplane Image.fromarray(np.uint8(arr)).show()
import sys import numpy as np import bpcs as bp from PIL import Image if len(sys.argv)<4: print("USAGE: {0} <PATH> <COLOR> <BIT>".format(sys.argv[0])) print(" PATH: image path") print(" COLOR: GRAY=-1, RED=0, GREEN=1, BLUE=2") print(" BIT : 0~7 (0:MSB, 7:LSB)") exit(1) PATH = sys.argv[1] COLOR = int(sys.argv[2]) BIT = int(sys.argv[3]) def merge_bitplane_to_image(bitplane, arr, color): arr = bp.to_image(arr) img = np.zeros(arr.shape) img[:,:,color] = bitplane return img arr = bp.read_image_as_numpy(PATH) if len(arr.shape)<2 or len(arr.shape)>3: print("Unsupported shape of image") exit(1) arr = bp.to_binary(arr) # arr.shape = (h, w, 3(color), 8(byte)) or (h, w, 8(byte)) # arr = bp.to_image(arr) # arr.shape = (h, w, 3) or (h, w) bitplane = bp.extract_bitplane(arr, COLOR, BIT) bitplane[bitplane>0] = 255 if COLOR!=-1 and len(arr.shape)==4: arr = merge_bitplane_to_image(bitplane, arr, COLOR) else: arr = bitplane Image.fromarray(np.uint8(arr)).show() # show image # Image.fromarray(np.uint8(arr)).save("test.png") # save image
[ 1, 2, 3, 4, 5 ]
1,329
60411e922bfec8f98028f959a370f954eef5437e
import re import itertools import setpath import functions import lib.jopts as jopts from operator import itemgetter import random __docformat__ = 'reStructuredText en' re_params=re.compile('(\w*):(.*)') def consumer(func): """A decorator, advances func to its first yield point when called. """ from functools import wraps @wraps(func) def wrapper(*args,**kw): gen = func(*args, **kw) gen.next() return gen return wrapper class freqitemsets: """ .. function:: freqitemsets(datacol, [threshold, noautothres, stats, maxlen]) -> [itemset_id:int, itemset_length:int, itemset_frequency:int, item:text] Calculates frequent itemsets on a given column (datacol). The algorithm is tuned for the case when we have many different items (in the order of millions), many input itemsets, but small itemset length (10-20). Returned table schema: :itemset_id: Automatic itemset id :itemset_length: Length of itemset :itemset_frequency: How many times an itemset has been found :item: Itemset's item value Parameters: :datacol: Column on which to calculate frequent itemsets :threshold: Default is 2 How many times an freq. itemset must appear for it to appear in the results :noautothres: 1/0 (Default is 0) Do not calculate the threshold automatically :stats: 1/0 (Default is 0) Return frequent itemset statistics :maxlen: NUMBER (Default is no limit at all) Maximum itemset length to search Examples: >>> table1(''' ... 'car wood bike' 'first group' ... 'car car wood' 'first group' ... 'car wood' 'first group' ... 'car wood ice' 'first group' ... 'ice' 'second group' ... 'car ice' 'second group' ... 'car cream toy' 'second group' ... 'icecream ice car toy' 'second group' ... ''') >>> sql("select b,freqitemsets(a, 'threshold:2', 'noautothres:1', 'maxlen:2') from table1 group by b") b | itemset_id | itemset_length | itemset_frequency | item --------------------------------------------------------------------- first group | 1 | 1 | 4 | wood first group | 2 | 1 | 4 | car first group | 3 | 2 | 4 | car first group | 3 | 2 | 4 | wood second group | 1 | 1 | 3 | ice second group | 2 | 1 | 3 | car second group | 3 | 1 | 2 | toy second group | 4 | 2 | 2 | car second group | 4 | 2 | 2 | ice second group | 5 | 2 | 2 | car second group | 5 | 2 | 2 | toy >>> sql("select b,freqitemsets(a, 'stats:1') from table1 group by b") b | MaxTransactionLength | CombinationCount | PassedTransactions | ValidKeywords ------------------------------------------------------------------------------------------- first group | 3 | 2 | 3 | 2 first group | 3 | 1 | 1 | 2 first group | 3 | 0 | 0 | 0 second group | 4 | 3 | 3 | 3 second group | 4 | 0 | 3 | 0 """ registered=True multiset=True def __init__(self): self.threshold=2 self.startingthreshold=2 self.autothres=1 self.compress=0 self.initstatic=False self.input={} self.maxlength=0 self.kwcode={} self.codekw={} self.maxkwcode=0 self.overthres={} self.belowthres={} self.passedkw={} self.init=True self.itemset_id=0 self.maxlen=None self.stats=False def initargs(self, args): self.init=False for i in xrange(1, len(args)): v=re_params.match(args[i]) if v is not None and v.groups()[0]!='' and v.groups()[1]!='' and i>0: v=v.groups() if v[0]=='threshold': try: self.threshold=int(v[1]) self.startingthreshold=self.threshold except KeyboardInterrupt: raise except: raise functions.OperatorError("FreqItemsets",'No integer value given for threshold') if v[0]=='noautothres': self.autothres=0 if v[0]=='compress': self.compress=1 if v[0]=='maxlen': self.maxlen=int(v[1]) if v[0]=='stats': self.stats=True def demultiplex(self, data): iterable=None iterpos=-1 for i in xrange(len(data)): if hasattr(data[i],'__iter__')==True: iterable=data[i] iterpos=i break if iterpos==-1: yield list(data) else: pre=list(data[0:iterpos]) post=list(data[iterpos+1:]) for i in iterable: if hasattr(i,'__iter__')==False: yield pre+[i]+post else: yield pre+list(i)+post def insertcombfreq(self, comb, freq): if comb in self.overthres: self.overthres[comb]+=freq else: if comb in self.belowthres: self.belowthres[comb]+=freq else: self.belowthres[comb]=freq if self.belowthres[comb]>=self.threshold: self.overthres[comb]=self.belowthres[comb] del(self.belowthres[comb]) for k in comb: if self.compress==0: self.passedkw[k]=True elif not k in self.passedkw: self.passedkw[k]=self.overthres[comb] else: self.passedkw[k]+=self.overthres[comb] def insertitemset(self, itemset): if itemset not in self.input: self.input[itemset]=1 else: self.input[itemset]+=1 def cleanitemsets(self, minlength): newitemsets={} for k,v in self.input.iteritems(): itemset=tuple(i for i in k if i in self.passedkw) if self.compress==1: esoteric_itemset=tuple(i for i in itemset if self.passedkw[i]==v) if len(esoteric_itemset)>0: if len(itemset)>=minlength: self.overthres[itemset]=v itemset=tuple(i for i in itemset if self.passedkw[i]!=v) if len(itemset)>=minlength: if itemset not in newitemsets: newitemsets[itemset]=v else: newitemsets[itemset]+=v self.input=newitemsets def step(self, *args): if self.init==True: self.initargs(args) if len(args[0])==0: return itms=sorted(set(args[0].split(' '))) itms=[x for x in itms if x!=''] li=len(itms) if li>0: if li>self.maxlength: self.maxlength=li inputkws=[] for kw in itms: if len(kw)==0: print itms, args[0], len(args[0]), li if kw not in self.kwcode: self.kwcode[kw]=self.maxkwcode self.codekw[self.maxkwcode]=kw inputkws.append(self.maxkwcode) self.insertcombfreq( (self.maxkwcode,),1 ) self.maxkwcode+=1 else: itm=self.kwcode[kw] self.insertcombfreq( (itm,),1 ) inputkws.append(itm) if len(inputkws)>1: self.insertitemset(tuple(inputkws)) def final(self): if not self.stats: yield ('itemset_id', 'itemset_length', 'itemset_frequency', 'item') else: yield ('MaxTransactionLength', 'CombinationCount', 'PassedTransactions', 'ValidKeywords') splist=[{},{}] del(self.kwcode) splist[1]=self.overthres if self.stats: yield [self.maxlength, len(splist[1]), len(self.input), len(self.passedkw)] if not self.stats: for its,v in sorted(splist[1].items(), key=itemgetter(1),reverse=True): self.itemset_id+=1 for i in self.demultiplex( (self.itemset_id, len([self.codekw[i] for i in its]), v, [self.codekw[i] for i in its]) ): yield i if self.maxlen==None: self.maxlen=self.maxlength for l in xrange(2, min(self.maxlength+1, self.maxlen+1)): splist.append({}) self.belowthres={} self.overthres={} prevl=l-1 # Autothresholding if self.autothres==1: if len(self.input)==0 or len(self.passedkw)==0: break else: self.threshold=self.startingthreshold + int(len(self.passedkw)/len(self.input)) self.cleanitemsets(l) self.passedkw={} prevsplist = splist[prevl] icombs = itertools.combinations insertcomb = self.insertcombfreq for k,v in self.input.iteritems(): for k in icombs(k,l): insertit=True for i1 in icombs(k, prevl): if i1 not in prevsplist: insertit=False break if insertit: insertcomb( k,v ) splist[l-1]={} splist[l]=self.overthres if self.stats: yield [self.maxlength, len(splist[l]), len(self.input), len(self.passedkw)] if not self.stats: for its,v in sorted(splist[l].items(), key=itemgetter(1),reverse=True): self.itemset_id+=1 for i in self.demultiplex( (self.itemset_id, len([self.codekw[i] for i in its]), v, [self.codekw[i] for i in its]) ): yield i del(self.overthres) del(self.belowthres) del(self.passedkw) del(self.input) del(self.codekw) del(splist) class sampledistvals: """ .. function:: sampledistvals(sample_size, C1, C2, C3) -> [C1, C2, C3] Sampledistvals returns sample_size distinct values for each of the input C1..Cn columns. >>> table1(''' ... test1 2 3 ... test1 2 3 ... test2 4 2 ... test4 2 t ... ''') >>> sql("select sampledistvals(3, a, b, c) from table1") C1 | C2 | C3 --------------------------------------------- ["test1","test2","test4"] | [2,4] | [2,3,"t"] """ registered=True def __init__(self): self.vals=None self.lenargs = -1 self.init=True def step(self, *args): if self.init: self.lenargs = len(args) self.vals = a=[set() for i in xrange(self.lenargs-1)] self.init = False for i in xrange(1, self.lenargs): if len(self.vals[i-1])<args[0] and args[i] not in self.vals[i-1]: self.vals[i-1].add(args[i]) def final(self): yield tuple(['C'+str(i) for i in xrange(1, self.lenargs)] ) yield [jopts.toj(list(i)) for i in self.vals] class sample: """ .. function:: sample(sample_size, C1, C2, C3) Sample returns a random sample_size set of rows. >>> table1(''' ... test1 2 3 ... test1 2 3 ... test2 4 2 ... test4 2 t ... ''') >>> sql("select sample(2, a, b, c) from table1") # doctest: +ELLIPSIS C1 | C2 | C3 --------------- ... """ registered=True def __init__(self): self.samplelist = [] self.index = 0 def step(self, *args): sample_count = args[0] # Generate the reservoir if self.index < sample_count: self.samplelist.append(args[1:]) else: r = random.randint(0, self.index) if r < sample_count: self.samplelist[r] = args[1:] self.index += 1 def final(self): if len(self.samplelist) == []: yield tuple(['C1']) else: yield tuple(['C'+str(i) for i in xrange(1, len(self.samplelist[0]) + 1)] ) for r in self.samplelist: yield list(r) if not ('.' in __name__): """ This is needed to be able to test the function, put it at the end of every new function you create """ import sys import setpath from functions import * testfunction() if __name__ == "__main__": reload(sys) sys.setdefaultencoding('utf-8') import doctest doctest.testmod()
null
null
null
null
[ 0 ]
1,330
df6fa0409500f97e5afde8f97796d6ed0cc4d746
<mask token> def fcn_model_fn(features, labels, mode): L2 = tf.contrib.layers.l2_regularizer(scale=0.1) trainable = False if mode == tf.estimator.ModeKeys.TRAIN: trainable = True seed = 2019 with tf.name_scope('vgg16_pretrained'): x = tf.layers.conv2d(features, 64, (3, 3), activation='relu', padding='same', name='conv1_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp1_1') x = tf.layers.conv2d(x, 64, (3, 3), activation='relu', padding= 'same', name='conv1_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp1_2') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool1') x = tf.layers.conv2d(x, 128, (3, 3), activation='relu', padding= 'same', name='conv2_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp2_1') x = tf.layers.conv2d(x, 128, (3, 3), activation='relu', padding= 'same', name='conv2-2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp2_2') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool2') x = tf.layers.conv2d(x, 256, (3, 3), activation='relu', padding= 'same', name='conv3_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp3_1') x = tf.layers.conv2d(x, 256, (3, 3), activation='relu', padding= 'same', name='conv3_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp3_2') x = tf.layers.conv2d(x, 256, (3, 3), activation='relu', padding= 'same', name='conv3_3', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp3_3') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool3') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv4_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp4_1') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv4_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp4_2') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv4_3', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp4_3') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool4') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv5_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp5_1') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv5_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp5_2') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv5_3', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp5_3') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool5') with tf.name_scope('deconv_layers'): x = tf.layers.conv2d(x, 4096, (7, 7), activation='relu', padding= 'same', name='conv6_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp6_1') x = tf.layers.conv2d(x, 4096, (1, 1), activation='relu', padding= 'same', name='conv6_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp6_2') x = tf.layers.conv2d(x, 1, (1, 1), activation='relu', padding= 'same', name='conv6_3', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp6_3') heatmap = tf.layers.conv2d_transpose(x, 1, (64, 64), strides=(32, 32), activation='linear', padding='same', name='deconv6_1', kernel_regularizer=L2, trainable=trainable) logit = tf.nn.sigmoid(heatmap, name='logit') pred = tf.to_int32(logit > 0.5) pred = tf.squeeze(pred, axis=3) predictions = {'classes': pred, 'probabilities': logit} if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) if False: logit_f = tf.reshape(heatmap, (-1, 1, 1, 1)) logit_f = tf.squeeze(logit_f, axis=[2, 3]) label_f = tf.reshape(labels, (-1, 1)) keep = tf.where(tf.greater_equal(labels, 0)) logit_f = tf.gather(logit_f, keep) label_f = tf.gather(label_f, keep) tf.assert_equal(tf.shape(label_f)[0], tf.shape(logit_f)[0]) tf.assert_non_negative(label_f) loss = tf.losses.sigmoid_cross_entropy(multi_class_labels=label_f, logits=logit_f) heatmap = tf.squeeze(heatmap, axis=3) label_f = tf.to_int32(labels > 0) tf.assert_equal(tf.shape(label_f), tf.shape(heatmap)) tf.assert_non_negative(label_f) loss = tf.losses.sigmoid_cross_entropy(multi_class_labels=label_f, logits=heatmap) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.MomentumOptimizer(learning_rate=0.001, momentum=0.99) train_op = optimizer.minimize(loss=loss, global_step=tf.train. get_global_step()) tf.summary.scalar('train_loss', loss) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op= train_op) iou = tf.metrics.mean_iou(label_f, predictions['classes'], num_classes= 2, name='mean_iou') eval_metric_ops = {'IoU': iou} tensors_to_log_prob = {'probabilities': 'deconv_layers/logit'} tensors_to_log_iou = {'mean_iou': iou} tf.summary.scalar('mean_iou', iou[0]) logging_hook = tf.train.LoggingTensorHook(tensors=tensors_to_log_iou, every_n_iter=200) if mode == tf.estimator.ModeKeys.EVAL: tf.summary.scalar('eval_loss', loss) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) <mask token>
<mask token> tf.logging.set_verbosity(tf.logging.INFO) <mask token> def fcn_model_fn(features, labels, mode): L2 = tf.contrib.layers.l2_regularizer(scale=0.1) trainable = False if mode == tf.estimator.ModeKeys.TRAIN: trainable = True seed = 2019 with tf.name_scope('vgg16_pretrained'): x = tf.layers.conv2d(features, 64, (3, 3), activation='relu', padding='same', name='conv1_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp1_1') x = tf.layers.conv2d(x, 64, (3, 3), activation='relu', padding= 'same', name='conv1_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp1_2') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool1') x = tf.layers.conv2d(x, 128, (3, 3), activation='relu', padding= 'same', name='conv2_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp2_1') x = tf.layers.conv2d(x, 128, (3, 3), activation='relu', padding= 'same', name='conv2-2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp2_2') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool2') x = tf.layers.conv2d(x, 256, (3, 3), activation='relu', padding= 'same', name='conv3_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp3_1') x = tf.layers.conv2d(x, 256, (3, 3), activation='relu', padding= 'same', name='conv3_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp3_2') x = tf.layers.conv2d(x, 256, (3, 3), activation='relu', padding= 'same', name='conv3_3', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp3_3') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool3') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv4_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp4_1') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv4_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp4_2') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv4_3', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp4_3') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool4') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv5_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp5_1') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv5_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp5_2') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv5_3', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp5_3') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool5') with tf.name_scope('deconv_layers'): x = tf.layers.conv2d(x, 4096, (7, 7), activation='relu', padding= 'same', name='conv6_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp6_1') x = tf.layers.conv2d(x, 4096, (1, 1), activation='relu', padding= 'same', name='conv6_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp6_2') x = tf.layers.conv2d(x, 1, (1, 1), activation='relu', padding= 'same', name='conv6_3', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp6_3') heatmap = tf.layers.conv2d_transpose(x, 1, (64, 64), strides=(32, 32), activation='linear', padding='same', name='deconv6_1', kernel_regularizer=L2, trainable=trainable) logit = tf.nn.sigmoid(heatmap, name='logit') pred = tf.to_int32(logit > 0.5) pred = tf.squeeze(pred, axis=3) predictions = {'classes': pred, 'probabilities': logit} if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) if False: logit_f = tf.reshape(heatmap, (-1, 1, 1, 1)) logit_f = tf.squeeze(logit_f, axis=[2, 3]) label_f = tf.reshape(labels, (-1, 1)) keep = tf.where(tf.greater_equal(labels, 0)) logit_f = tf.gather(logit_f, keep) label_f = tf.gather(label_f, keep) tf.assert_equal(tf.shape(label_f)[0], tf.shape(logit_f)[0]) tf.assert_non_negative(label_f) loss = tf.losses.sigmoid_cross_entropy(multi_class_labels=label_f, logits=logit_f) heatmap = tf.squeeze(heatmap, axis=3) label_f = tf.to_int32(labels > 0) tf.assert_equal(tf.shape(label_f), tf.shape(heatmap)) tf.assert_non_negative(label_f) loss = tf.losses.sigmoid_cross_entropy(multi_class_labels=label_f, logits=heatmap) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.MomentumOptimizer(learning_rate=0.001, momentum=0.99) train_op = optimizer.minimize(loss=loss, global_step=tf.train. get_global_step()) tf.summary.scalar('train_loss', loss) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op= train_op) iou = tf.metrics.mean_iou(label_f, predictions['classes'], num_classes= 2, name='mean_iou') eval_metric_ops = {'IoU': iou} tensors_to_log_prob = {'probabilities': 'deconv_layers/logit'} tensors_to_log_iou = {'mean_iou': iou} tf.summary.scalar('mean_iou', iou[0]) logging_hook = tf.train.LoggingTensorHook(tensors=tensors_to_log_iou, every_n_iter=200) if mode == tf.estimator.ModeKeys.EVAL: tf.summary.scalar('eval_loss', loss) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) if __name__ == '__main__': root_dir = '/home/pohsuanh/Documents/Computer_Vision/HW6' train_data, eval_data, test_data, gt = data_load.load() TRAIN = False PREDICT = True DRAW_SAMPLE = False if DRAW_SAMPLE == True: pic = np.random.randint(len(test_data['x'])) image_sample = test_data['x'][pic] label_sample = test_data['y'][pic] plt.figure(figsize=(20, 40)) plt.title('data') plt.imshow(image_sample) plt.figure(figsize=(20, 40)) plt.title('gt') plt.imshow(label_sample) pretrained_weights = tf.estimator.WarmStartSettings(ckpt_to_initialize_from =os.path.join(root_dir, 'pretrained_weights', 'vgg_16.ckpt'), vars_to_warm_start=tf.get_collection(tf.GraphKeys. TRAINABLE_VARIABLES, scope='vgg16_pretrained')) fcn_segmentor = tf.estimator.Estimator(model_fn=fcn_model_fn, model_dir =os.path.join(root_dir, 'ckpts'), warm_start_from=pretrained_weights) if TRAIN == True: for epoch in range(100): train_input_fn = tf.estimator.inputs.numpy_input_fn(x= train_data['x'], y=train_data['y'], batch_size=1, num_epochs=None, shuffle=True) fcn_segmentor.train(input_fn=train_input_fn, steps=200) eval_input_fn = tf.estimator.inputs.numpy_input_fn(x=eval_data[ 'x'], y=eval_data['y'], num_epochs=1, batch_size=10, shuffle=False) eval_results = fcn_segmentor.evaluate(input_fn=eval_input_fn) print('eval_loss :', eval_results) if PREDICT == True: pred_input_fn = tf.estimator.inputs.numpy_input_fn(x=test_data['x'], y=test_data['y'], batch_size=1, num_epochs=1, shuffle=False) pred = list(fcn_segmentor.predict(input_fn=pred_input_fn)) pred = [p['classes'] for p in pred] fig = plt.figure(1, figsize=(32, 16)) for i, p in enumerate(pred): fig.add_subplot(3, 1, 1) plt.title('camera photo') plt.imshow(test_data['x'][i]) fig.add_subplot(3, 1, 2) plt.title('prediction') plt.imshow(p) fig.add_subplot(3, 1, 3) plt.title('ground truth') plt.imshow(gt['test'][i]) filename = 'pred_{}.png'.format(i) plt.savefig(os.path.join(root_dir, 'predictions', filename))
<mask token> tf.logging.set_verbosity(tf.logging.INFO) now = datetime.utcnow().strftime('%Y%m%d%H%M%S') root_logdir = 'logs' logdir = '{}/run-{}/'.format(root_logdir, now) def fcn_model_fn(features, labels, mode): L2 = tf.contrib.layers.l2_regularizer(scale=0.1) trainable = False if mode == tf.estimator.ModeKeys.TRAIN: trainable = True seed = 2019 with tf.name_scope('vgg16_pretrained'): x = tf.layers.conv2d(features, 64, (3, 3), activation='relu', padding='same', name='conv1_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp1_1') x = tf.layers.conv2d(x, 64, (3, 3), activation='relu', padding= 'same', name='conv1_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp1_2') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool1') x = tf.layers.conv2d(x, 128, (3, 3), activation='relu', padding= 'same', name='conv2_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp2_1') x = tf.layers.conv2d(x, 128, (3, 3), activation='relu', padding= 'same', name='conv2-2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp2_2') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool2') x = tf.layers.conv2d(x, 256, (3, 3), activation='relu', padding= 'same', name='conv3_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp3_1') x = tf.layers.conv2d(x, 256, (3, 3), activation='relu', padding= 'same', name='conv3_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp3_2') x = tf.layers.conv2d(x, 256, (3, 3), activation='relu', padding= 'same', name='conv3_3', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp3_3') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool3') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv4_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp4_1') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv4_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp4_2') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv4_3', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp4_3') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool4') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv5_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp5_1') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv5_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp5_2') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv5_3', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp5_3') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool5') with tf.name_scope('deconv_layers'): x = tf.layers.conv2d(x, 4096, (7, 7), activation='relu', padding= 'same', name='conv6_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp6_1') x = tf.layers.conv2d(x, 4096, (1, 1), activation='relu', padding= 'same', name='conv6_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp6_2') x = tf.layers.conv2d(x, 1, (1, 1), activation='relu', padding= 'same', name='conv6_3', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp6_3') heatmap = tf.layers.conv2d_transpose(x, 1, (64, 64), strides=(32, 32), activation='linear', padding='same', name='deconv6_1', kernel_regularizer=L2, trainable=trainable) logit = tf.nn.sigmoid(heatmap, name='logit') pred = tf.to_int32(logit > 0.5) pred = tf.squeeze(pred, axis=3) predictions = {'classes': pred, 'probabilities': logit} if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) if False: logit_f = tf.reshape(heatmap, (-1, 1, 1, 1)) logit_f = tf.squeeze(logit_f, axis=[2, 3]) label_f = tf.reshape(labels, (-1, 1)) keep = tf.where(tf.greater_equal(labels, 0)) logit_f = tf.gather(logit_f, keep) label_f = tf.gather(label_f, keep) tf.assert_equal(tf.shape(label_f)[0], tf.shape(logit_f)[0]) tf.assert_non_negative(label_f) loss = tf.losses.sigmoid_cross_entropy(multi_class_labels=label_f, logits=logit_f) heatmap = tf.squeeze(heatmap, axis=3) label_f = tf.to_int32(labels > 0) tf.assert_equal(tf.shape(label_f), tf.shape(heatmap)) tf.assert_non_negative(label_f) loss = tf.losses.sigmoid_cross_entropy(multi_class_labels=label_f, logits=heatmap) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.MomentumOptimizer(learning_rate=0.001, momentum=0.99) train_op = optimizer.minimize(loss=loss, global_step=tf.train. get_global_step()) tf.summary.scalar('train_loss', loss) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op= train_op) iou = tf.metrics.mean_iou(label_f, predictions['classes'], num_classes= 2, name='mean_iou') eval_metric_ops = {'IoU': iou} tensors_to_log_prob = {'probabilities': 'deconv_layers/logit'} tensors_to_log_iou = {'mean_iou': iou} tf.summary.scalar('mean_iou', iou[0]) logging_hook = tf.train.LoggingTensorHook(tensors=tensors_to_log_iou, every_n_iter=200) if mode == tf.estimator.ModeKeys.EVAL: tf.summary.scalar('eval_loss', loss) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) if __name__ == '__main__': root_dir = '/home/pohsuanh/Documents/Computer_Vision/HW6' train_data, eval_data, test_data, gt = data_load.load() TRAIN = False PREDICT = True DRAW_SAMPLE = False if DRAW_SAMPLE == True: pic = np.random.randint(len(test_data['x'])) image_sample = test_data['x'][pic] label_sample = test_data['y'][pic] plt.figure(figsize=(20, 40)) plt.title('data') plt.imshow(image_sample) plt.figure(figsize=(20, 40)) plt.title('gt') plt.imshow(label_sample) pretrained_weights = tf.estimator.WarmStartSettings(ckpt_to_initialize_from =os.path.join(root_dir, 'pretrained_weights', 'vgg_16.ckpt'), vars_to_warm_start=tf.get_collection(tf.GraphKeys. TRAINABLE_VARIABLES, scope='vgg16_pretrained')) fcn_segmentor = tf.estimator.Estimator(model_fn=fcn_model_fn, model_dir =os.path.join(root_dir, 'ckpts'), warm_start_from=pretrained_weights) if TRAIN == True: for epoch in range(100): train_input_fn = tf.estimator.inputs.numpy_input_fn(x= train_data['x'], y=train_data['y'], batch_size=1, num_epochs=None, shuffle=True) fcn_segmentor.train(input_fn=train_input_fn, steps=200) eval_input_fn = tf.estimator.inputs.numpy_input_fn(x=eval_data[ 'x'], y=eval_data['y'], num_epochs=1, batch_size=10, shuffle=False) eval_results = fcn_segmentor.evaluate(input_fn=eval_input_fn) print('eval_loss :', eval_results) if PREDICT == True: pred_input_fn = tf.estimator.inputs.numpy_input_fn(x=test_data['x'], y=test_data['y'], batch_size=1, num_epochs=1, shuffle=False) pred = list(fcn_segmentor.predict(input_fn=pred_input_fn)) pred = [p['classes'] for p in pred] fig = plt.figure(1, figsize=(32, 16)) for i, p in enumerate(pred): fig.add_subplot(3, 1, 1) plt.title('camera photo') plt.imshow(test_data['x'][i]) fig.add_subplot(3, 1, 2) plt.title('prediction') plt.imshow(p) fig.add_subplot(3, 1, 3) plt.title('ground truth') plt.imshow(gt['test'][i]) filename = 'pred_{}.png'.format(i) plt.savefig(os.path.join(root_dir, 'predictions', filename))
<mask token> import os import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import data_load from datetime import datetime tf.logging.set_verbosity(tf.logging.INFO) now = datetime.utcnow().strftime('%Y%m%d%H%M%S') root_logdir = 'logs' logdir = '{}/run-{}/'.format(root_logdir, now) def fcn_model_fn(features, labels, mode): L2 = tf.contrib.layers.l2_regularizer(scale=0.1) trainable = False if mode == tf.estimator.ModeKeys.TRAIN: trainable = True seed = 2019 with tf.name_scope('vgg16_pretrained'): x = tf.layers.conv2d(features, 64, (3, 3), activation='relu', padding='same', name='conv1_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp1_1') x = tf.layers.conv2d(x, 64, (3, 3), activation='relu', padding= 'same', name='conv1_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp1_2') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool1') x = tf.layers.conv2d(x, 128, (3, 3), activation='relu', padding= 'same', name='conv2_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp2_1') x = tf.layers.conv2d(x, 128, (3, 3), activation='relu', padding= 'same', name='conv2-2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp2_2') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool2') x = tf.layers.conv2d(x, 256, (3, 3), activation='relu', padding= 'same', name='conv3_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp3_1') x = tf.layers.conv2d(x, 256, (3, 3), activation='relu', padding= 'same', name='conv3_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp3_2') x = tf.layers.conv2d(x, 256, (3, 3), activation='relu', padding= 'same', name='conv3_3', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp3_3') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool3') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv4_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp4_1') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv4_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp4_2') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv4_3', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp4_3') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool4') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv5_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp5_1') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv5_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp5_2') x = tf.layers.conv2d(x, 512, (3, 3), activation='relu', padding= 'same', name='conv5_3', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp5_3') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool5') with tf.name_scope('deconv_layers'): x = tf.layers.conv2d(x, 4096, (7, 7), activation='relu', padding= 'same', name='conv6_1', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp6_1') x = tf.layers.conv2d(x, 4096, (1, 1), activation='relu', padding= 'same', name='conv6_2', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp6_2') x = tf.layers.conv2d(x, 1, (1, 1), activation='relu', padding= 'same', name='conv6_3', kernel_regularizer=L2, trainable=trainable) x = tf.layers.dropout(x, rate=0.4, seed=seed, training=trainable, name='dp6_3') heatmap = tf.layers.conv2d_transpose(x, 1, (64, 64), strides=(32, 32), activation='linear', padding='same', name='deconv6_1', kernel_regularizer=L2, trainable=trainable) logit = tf.nn.sigmoid(heatmap, name='logit') pred = tf.to_int32(logit > 0.5) pred = tf.squeeze(pred, axis=3) predictions = {'classes': pred, 'probabilities': logit} if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) if False: logit_f = tf.reshape(heatmap, (-1, 1, 1, 1)) logit_f = tf.squeeze(logit_f, axis=[2, 3]) label_f = tf.reshape(labels, (-1, 1)) keep = tf.where(tf.greater_equal(labels, 0)) logit_f = tf.gather(logit_f, keep) label_f = tf.gather(label_f, keep) tf.assert_equal(tf.shape(label_f)[0], tf.shape(logit_f)[0]) tf.assert_non_negative(label_f) loss = tf.losses.sigmoid_cross_entropy(multi_class_labels=label_f, logits=logit_f) heatmap = tf.squeeze(heatmap, axis=3) label_f = tf.to_int32(labels > 0) tf.assert_equal(tf.shape(label_f), tf.shape(heatmap)) tf.assert_non_negative(label_f) loss = tf.losses.sigmoid_cross_entropy(multi_class_labels=label_f, logits=heatmap) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.MomentumOptimizer(learning_rate=0.001, momentum=0.99) train_op = optimizer.minimize(loss=loss, global_step=tf.train. get_global_step()) tf.summary.scalar('train_loss', loss) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op= train_op) iou = tf.metrics.mean_iou(label_f, predictions['classes'], num_classes= 2, name='mean_iou') eval_metric_ops = {'IoU': iou} tensors_to_log_prob = {'probabilities': 'deconv_layers/logit'} tensors_to_log_iou = {'mean_iou': iou} tf.summary.scalar('mean_iou', iou[0]) logging_hook = tf.train.LoggingTensorHook(tensors=tensors_to_log_iou, every_n_iter=200) if mode == tf.estimator.ModeKeys.EVAL: tf.summary.scalar('eval_loss', loss) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) if __name__ == '__main__': root_dir = '/home/pohsuanh/Documents/Computer_Vision/HW6' train_data, eval_data, test_data, gt = data_load.load() TRAIN = False PREDICT = True DRAW_SAMPLE = False if DRAW_SAMPLE == True: pic = np.random.randint(len(test_data['x'])) image_sample = test_data['x'][pic] label_sample = test_data['y'][pic] plt.figure(figsize=(20, 40)) plt.title('data') plt.imshow(image_sample) plt.figure(figsize=(20, 40)) plt.title('gt') plt.imshow(label_sample) pretrained_weights = tf.estimator.WarmStartSettings(ckpt_to_initialize_from =os.path.join(root_dir, 'pretrained_weights', 'vgg_16.ckpt'), vars_to_warm_start=tf.get_collection(tf.GraphKeys. TRAINABLE_VARIABLES, scope='vgg16_pretrained')) fcn_segmentor = tf.estimator.Estimator(model_fn=fcn_model_fn, model_dir =os.path.join(root_dir, 'ckpts'), warm_start_from=pretrained_weights) if TRAIN == True: for epoch in range(100): train_input_fn = tf.estimator.inputs.numpy_input_fn(x= train_data['x'], y=train_data['y'], batch_size=1, num_epochs=None, shuffle=True) fcn_segmentor.train(input_fn=train_input_fn, steps=200) eval_input_fn = tf.estimator.inputs.numpy_input_fn(x=eval_data[ 'x'], y=eval_data['y'], num_epochs=1, batch_size=10, shuffle=False) eval_results = fcn_segmentor.evaluate(input_fn=eval_input_fn) print('eval_loss :', eval_results) if PREDICT == True: pred_input_fn = tf.estimator.inputs.numpy_input_fn(x=test_data['x'], y=test_data['y'], batch_size=1, num_epochs=1, shuffle=False) pred = list(fcn_segmentor.predict(input_fn=pred_input_fn)) pred = [p['classes'] for p in pred] fig = plt.figure(1, figsize=(32, 16)) for i, p in enumerate(pred): fig.add_subplot(3, 1, 1) plt.title('camera photo') plt.imshow(test_data['x'][i]) fig.add_subplot(3, 1, 2) plt.title('prediction') plt.imshow(p) fig.add_subplot(3, 1, 3) plt.title('ground truth') plt.imshow(gt['test'][i]) filename = 'pred_{}.png'.format(i) plt.savefig(os.path.join(root_dir, 'predictions', filename))
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Nov 26 23:42:11 2018 @author: pohsuanh Fully Covolutional Network FCN-32s. FCN-32s network is based on VGG-16 """ import os import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import data_load from datetime import datetime tf.logging.set_verbosity(tf.logging.INFO) # assign each run to a separate log file, so the tensorboard can function properly. now = datetime.utcnow().strftime("%Y%m%d%H%M%S") root_logdir = "logs" logdir = "{}/run-{}/".format(root_logdir,now) def fcn_model_fn(features, labels, mode): L2 = tf.contrib.layers.l2_regularizer(scale=0.1) trainable = False if mode == tf.estimator.ModeKeys.TRAIN : trainable = True seed = 2019 with tf.name_scope("vgg16_pretrained"): x = tf.layers.conv2d(features, 64, (3, 3), activation='relu', padding='same', name='conv1_1', kernel_regularizer= L2, trainable = trainable) x = tf.layers.dropout(x, rate = 0.4, seed = seed, training = trainable , name ='dp1_1') x = tf.layers.conv2d(x, 64, (3, 3), activation='relu', padding='same', name='conv1_2', kernel_regularizer= L2, trainable = trainable) x = tf.layers.dropout(x, rate = 0.4, seed = seed, training = trainable , name ='dp1_2') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool1') # Block 2 x = tf.layers.conv2d(x, 128, (3, 3), activation='relu', padding='same', name='conv2_1', kernel_regularizer= L2, trainable = trainable) x = tf.layers.dropout(x, rate = 0.4, seed = seed, training = trainable , name ='dp2_1') x = tf.layers.conv2d(x, 128, (3, 3), activation='relu', padding='same', name='conv2-2', kernel_regularizer= L2, trainable = trainable) x = tf.layers.dropout(x, rate = 0.4, seed = seed, training = trainable , name ='dp2_2') x = tf.layers.max_pooling2d(x,(2, 2), strides=(2, 2), name='pool2') # Block 3 x = tf.layers.conv2d (x, 256, (3, 3), activation='relu', padding='same', name='conv3_1', kernel_regularizer= L2, trainable = trainable) x = tf.layers.dropout(x, rate = 0.4, seed = seed, training = trainable , name ='dp3_1') x = tf.layers.conv2d (x, 256, (3, 3), activation='relu', padding='same', name='conv3_2', kernel_regularizer= L2, trainable = trainable) x = tf.layers.dropout(x, rate = 0.4, seed = seed, training = trainable , name ='dp3_2') x = tf.layers.conv2d (x, 256, (3, 3), activation='relu', padding='same', name='conv3_3', kernel_regularizer= L2, trainable = trainable) x = tf.layers.dropout(x, rate = 0.4, seed = seed, training = trainable , name ='dp3_3') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool3') # Block 4 x = tf.layers.conv2d (x, 512, (3, 3), activation='relu', padding='same', name='conv4_1', kernel_regularizer= L2, trainable = trainable) x = tf.layers.dropout(x, rate = 0.4, seed = seed, training = trainable , name ='dp4_1') x = tf.layers.conv2d (x, 512, (3, 3), activation='relu', padding='same', name='conv4_2', kernel_regularizer= L2, trainable = trainable) x = tf.layers.dropout(x, rate = 0.4, seed = seed, training = trainable , name ='dp4_2') x = tf.layers.conv2d (x, 512, (3, 3), activation='relu', padding='same', name='conv4_3', kernel_regularizer= L2, trainable = trainable) x = tf.layers.dropout(x, rate = 0.4, seed = seed, training = trainable , name ='dp4_3') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool4') # Block 5 x = tf.layers.conv2d (x, 512, (3, 3), activation='relu', padding='same', name='conv5_1', kernel_regularizer= L2, trainable = trainable) x = tf.layers.dropout(x, rate = 0.4, seed = seed, training = trainable , name ='dp5_1') x = tf.layers.conv2d (x, 512, (3, 3), activation='relu', padding='same', name='conv5_2', kernel_regularizer= L2, trainable = trainable) x = tf.layers.dropout(x, rate = 0.4, seed = seed, training = trainable , name ='dp5_2') x = tf.layers.conv2d (x, 512, (3, 3), activation='relu', padding='same', name='conv5_3', kernel_regularizer= L2, trainable = trainable) x = tf.layers.dropout(x, rate = 0.4, seed = seed, training = trainable , name ='dp5_3') x = tf.layers.max_pooling2d(x, (2, 2), strides=(2, 2), name='pool5') with tf.name_scope("deconv_layers"): # Block 6 x = tf.layers.conv2d(x, 4096, (7,7), activation='relu', padding='same', name='conv6_1', kernel_regularizer= L2, trainable = trainable) x = tf.layers.dropout(x, rate = 0.4, seed = seed, training = trainable , name ='dp6_1') x = tf.layers.conv2d(x, 4096, (1,1), activation='relu', padding='same', name='conv6_2', kernel_regularizer= L2, trainable = trainable) x = tf.layers.dropout(x, rate = 0.4, seed = seed, training = trainable , name ='dp6_2') x = tf.layers.conv2d(x, 1, (1,1), activation='relu', padding='same', name='conv6_3', kernel_regularizer= L2, trainable = trainable) x = tf.layers.dropout(x, rate = 0.4, seed = seed, training = trainable , name ='dp6_3') # There are two classes [1: road, 0: non-road] heatmap = tf.layers.conv2d_transpose(x, 1, (64,64), strides=(32,32), activation='linear', padding='same', name='deconv6_1', kernel_regularizer= L2, trainable = trainable) logit = tf.nn.sigmoid(heatmap, name = 'logit') pred = tf.to_int32(logit > 0.5) pred = tf.squeeze(pred, axis = 3) # print(heatmap.shape) # Do pixel-wise classification : predictions = { # Generate predictions (for PREDICT and EVAL mode) "classes": pred, # tf.argmax(logit, axis =3 ) # Add `softmax_tensor` to the graph. It is used for PREDICT and by the logging_hook`. "probabilities": logit #tf.nn.softmax(logit, name="softmax_tensor") } if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) # Calculate Loss (for both TRAIN and EVAL modes) # Homework requires tf.nn.sigmoid_cross_entropy_with_logits() if False : # ignore where label is -1 , which corresponds to Void. logit_f = tf.reshape(heatmap, (-1,1,1,1)) # flatten the output logit_f = tf.squeeze(logit_f, axis = [2,3]) label_f = tf.reshape(labels,(-1,1)) keep = tf.where(tf.greater_equal(labels, 0) ) logit_f = tf.gather(logit_f, keep) label_f = tf.gather(label_f, keep) tf.assert_equal(tf.shape(label_f)[0], tf.shape(logit_f)[0]) tf.assert_non_negative(label_f) # Void is labelled -1, which should be excluded from the loss func # sigmoid_cross_entorpy implements tf.nn.sparse_signoid_cross_entropy_with_logit, # it will convert output to logit in the op loss = tf.losses.sigmoid_cross_entropy(multi_class_labels = label_f, logits=logit_f) heatmap = tf.squeeze(heatmap, axis =3) label_f = tf.to_int32(labels > 0) tf.assert_equal(tf.shape(label_f), tf.shape(heatmap)) tf.assert_non_negative(label_f) loss = tf.losses.sigmoid_cross_entropy( multi_class_labels = label_f ,logits = heatmap) # Configure the trainable Op (for TRAIN mode) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.MomentumOptimizer(learning_rate=0.001, momentum = 0.99) train_op = optimizer.minimize(loss=loss, global_step = tf.train.get_global_step()) tf.summary.scalar('train_loss', loss) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op) # Add evaluation metrics (for EVAL mode) # Set up logging for metrics iou = tf.metrics.mean_iou(label_f,predictions['classes'], num_classes = 2 , name = 'mean_iou') eval_metric_ops = {"IoU": iou} tensors_to_log_prob = {"probabilities": "deconv_layers/logit"} tensors_to_log_iou = {"mean_iou": iou} tf.summary.scalar('mean_iou', iou[0]) logging_hook = tf.train.LoggingTensorHook( tensors=tensors_to_log_iou, every_n_iter=200) if mode == tf.estimator.ModeKeys.EVAL : tf.summary.scalar('eval_loss', loss) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops = eval_metric_ops) #%% if __name__ == "__main__": root_dir = '/home/pohsuanh/Documents/Computer_Vision/HW6' # Load training and eval data train_data, eval_data, test_data, gt = data_load.load() # Flags TRAIN = False PREDICT = True DRAW_SAMPLE = False # Construct model if DRAW_SAMPLE == True : # pic = np.random.randint((test_data['x']).shape[0]) pic = np.random.randint(len(test_data['x'])) image_sample = test_data['x'][pic] label_sample = test_data['y'][pic] # image_sample = tf.Session().run(image_sample) # # label_sample = tf.Session().run(label_sample) plt.figure(figsize=(20,40)) plt.title('data') plt.imshow(image_sample) plt.figure(figsize =(20,40)) plt.title('gt') plt.imshow(label_sample) # Create the Estimator pretrained_weights = tf.estimator.WarmStartSettings( ckpt_to_initialize_from=os.path.join(root_dir,'pretrained_weights','vgg_16.ckpt'), vars_to_warm_start= tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope = 'vgg16_pretrained')) fcn_segmentor = tf.estimator.Estimator( model_fn=fcn_model_fn, model_dir=os.path.join(root_dir, 'ckpts'), warm_start_from= pretrained_weights) if TRAIN == True : for epoch in range(100): # Train the model train_input_fn = tf.estimator.inputs.numpy_input_fn( x=train_data['x'], y=train_data['y'], batch_size=1, num_epochs=None, # number of epochs to iterate over data. If None will run forever. shuffle=True) fcn_segmentor.train( input_fn=train_input_fn, steps=200 ) # Evaluate the model and print results eval_input_fn = tf.estimator.inputs.numpy_input_fn( x=eval_data['x'], y=eval_data['y'], num_epochs=1, batch_size=10, shuffle=False) eval_results = fcn_segmentor.evaluate(input_fn=eval_input_fn) print('eval_loss :', eval_results) #%% We withhold the predction from test set untill all the hyperparameters are finetuned. if PREDICT == True : pred_input_fn = tf.estimator.inputs.numpy_input_fn( x=test_data['x'], y=test_data['y'], batch_size =1, num_epochs=1, shuffle=False) # predict method returns a generator pred = list( fcn_segmentor.predict(input_fn = pred_input_fn)) pred = [p['classes'] for p in pred] fig = plt.figure(1, figsize=(32,16)) for i, p in enumerate(pred) : fig.add_subplot(3,1,1) plt.title('camera photo') plt.imshow(test_data['x'][i]) fig.add_subplot(3,1,2) plt.title('prediction') plt.imshow(p) fig.add_subplot(3,1,3) plt.title('ground truth') plt.imshow(gt['test'][i]) filename = 'pred_{}.png'.format(i) plt.savefig(os.path.join(root_dir,'predictions',filename))
[ 1, 2, 3, 4, 5 ]
1,331
20d09a616133295a6162a7ab1d7970ccbaf6de95
<mask token>
<mask token> torch.nn.functional.adaptive_avg_pool3d(**data)
<mask token> data = pickle.load(open('dd0eb7901523d494d4aa324f474c782063e9e231.p', 'rb')) torch.nn.functional.adaptive_avg_pool3d(**data)
import pickle import torch data = pickle.load(open('dd0eb7901523d494d4aa324f474c782063e9e231.p', 'rb')) torch.nn.functional.adaptive_avg_pool3d(**data)
null
[ 0, 1, 2, 3 ]
1,332
f69b4d022ebed5a0b660f55704bbe762d5d765d5
<mask token>
<mask token> def checkio(data): return True or False
''' Given an expression with numbers, brackets and operators. But in this task only brackets are important. Brackets can be one of three types -- "{}" "()" "[]". Brackets are determine the scope or restricted some expression. So each if was opened, then must be closed with the same type. The scopes of brackets must not intersected. You should to make a decision correct an expression or not. Don't care about operators and operands. Input: An expression with different of types brackets. Output: A boolean. Correct an expression or not. Example: ? 1 2 3 4 5 checkio("((5+3)*2+1)") == True checkio("{[(3+1)+2]+}") == True checkio("(3+{1-1)}") == False checkio("[1+1]+(2*2)-{3/3}") == True checkio("(({[(((1)-2)+3)-3]/3}-3)") == False ''' def checkio(data): #replace this for solution return True or False
null
null
[ 0, 1, 2 ]
1,333
97a51d959ad642467c508cedc8786f636e4050bb
<mask token> @pytest.fixture def runner() ->CliRunner: """Fixture for invoking command-line interfaces.""" return CliRunner() def test_main_succeeds(runner: CliRunner) ->None: """It exits with a status code of zero.""" with runner.isolated_filesystem(): df = generate_test_data() df.to_csv('test_file.csv', index=False) result = runner.invoke(__main__.main, ['test_file.csv']) assert result.exit_code == 0 <mask token> def test_002_header_style() ->None: """Tests that the header style optional argument works.""" df = generate_test_data() skim(df, header_style='italic green') <mask token>
<mask token> @pytest.fixture def runner() ->CliRunner: """Fixture for invoking command-line interfaces.""" return CliRunner() def test_main_succeeds(runner: CliRunner) ->None: """It exits with a status code of zero.""" with runner.isolated_filesystem(): df = generate_test_data() df.to_csv('test_file.csv', index=False) result = runner.invoke(__main__.main, ['test_file.csv']) assert result.exit_code == 0 def test_000_basic_functionality() ->None: """Tests that a skim of the test data works.""" df = generate_test_data() skim(df) def test_001_colour_kwargs() ->None: """Tests that colour keyword arguments work.""" df = generate_test_data() skim(df, datetime='chartreuse1') def test_002_header_style() ->None: """Tests that the header style optional argument works.""" df = generate_test_data() skim(df, header_style='italic green') <mask token> def test_004_when_df_is_named() ->None: """Tests what happens when df has a name.""" df = generate_test_data() df.name = 'Named dataframe' skim(df)
<mask token> @pytest.fixture def runner() ->CliRunner: """Fixture for invoking command-line interfaces.""" return CliRunner() def test_main_succeeds(runner: CliRunner) ->None: """It exits with a status code of zero.""" with runner.isolated_filesystem(): df = generate_test_data() df.to_csv('test_file.csv', index=False) result = runner.invoke(__main__.main, ['test_file.csv']) assert result.exit_code == 0 def test_000_basic_functionality() ->None: """Tests that a skim of the test data works.""" df = generate_test_data() skim(df) def test_001_colour_kwargs() ->None: """Tests that colour keyword arguments work.""" df = generate_test_data() skim(df, datetime='chartreuse1') def test_002_header_style() ->None: """Tests that the header style optional argument works.""" df = generate_test_data() skim(df, header_style='italic green') def test_003_not_enough_datetimes() ->None: """Tests logic branch with too few datetimes for freq inference.""" df = generate_test_data() df = df.head(2) skim(df) def test_004_when_df_is_named() ->None: """Tests what happens when df has a name.""" df = generate_test_data() df.name = 'Named dataframe' skim(df)
<mask token> import pytest from click.testing import CliRunner from skimpy import __main__ from skimpy import generate_test_data from skimpy import skim @pytest.fixture def runner() ->CliRunner: """Fixture for invoking command-line interfaces.""" return CliRunner() def test_main_succeeds(runner: CliRunner) ->None: """It exits with a status code of zero.""" with runner.isolated_filesystem(): df = generate_test_data() df.to_csv('test_file.csv', index=False) result = runner.invoke(__main__.main, ['test_file.csv']) assert result.exit_code == 0 def test_000_basic_functionality() ->None: """Tests that a skim of the test data works.""" df = generate_test_data() skim(df) def test_001_colour_kwargs() ->None: """Tests that colour keyword arguments work.""" df = generate_test_data() skim(df, datetime='chartreuse1') def test_002_header_style() ->None: """Tests that the header style optional argument works.""" df = generate_test_data() skim(df, header_style='italic green') def test_003_not_enough_datetimes() ->None: """Tests logic branch with too few datetimes for freq inference.""" df = generate_test_data() df = df.head(2) skim(df) def test_004_when_df_is_named() ->None: """Tests what happens when df has a name.""" df = generate_test_data() df.name = 'Named dataframe' skim(df)
"""Test cases for the __main__ module.""" import pytest from click.testing import CliRunner from skimpy import __main__ from skimpy import generate_test_data from skimpy import skim @pytest.fixture def runner() -> CliRunner: """Fixture for invoking command-line interfaces.""" return CliRunner() def test_main_succeeds(runner: CliRunner) -> None: """It exits with a status code of zero.""" with runner.isolated_filesystem(): df = generate_test_data() df.to_csv("test_file.csv", index=False) result = runner.invoke(__main__.main, ["test_file.csv"]) assert result.exit_code == 0 def test_000_basic_functionality() -> None: """Tests that a skim of the test data works.""" df = generate_test_data() skim(df) def test_001_colour_kwargs() -> None: """Tests that colour keyword arguments work.""" df = generate_test_data() skim(df, datetime="chartreuse1") def test_002_header_style() -> None: """Tests that the header style optional argument works.""" df = generate_test_data() skim(df, header_style="italic green") def test_003_not_enough_datetimes() -> None: """Tests logic branch with too few datetimes for freq inference.""" df = generate_test_data() df = df.head(2) skim(df) def test_004_when_df_is_named() -> None: """Tests what happens when df has a name.""" df = generate_test_data() df.name = "Named dataframe" skim(df)
[ 3, 6, 7, 8, 9 ]
1,334
005650e2747c61b730960a29891b6ba6c8bd381b
<mask token> def double_factorial(n): k = 1 for i in range(n, 1, -2): k *= i return k <mask token> def gaussian_integral(alpha, m): if int(m / 2) * 2 == m: n = int(m / 2) value = double_factorial(2 * n - 1) * sqrt(pi) / pow(2, n + 1) / pow( alpha, n + 0.5) else: n = int((m - 1) / 2) value = factorial(n) / 2 / pow(alpha, n + 1) return value <mask token>
<mask token> def factorial(n): value = 1 for i in range(n, 1, -1): value *= i return value def double_factorial(n): k = 1 for i in range(n, 1, -2): k *= i return k <mask token> def gaussian_integral(alpha, m): if int(m / 2) * 2 == m: n = int(m / 2) value = double_factorial(2 * n - 1) * sqrt(pi) / pow(2, n + 1) / pow( alpha, n + 0.5) else: n = int((m - 1) / 2) value = factorial(n) / 2 / pow(alpha, n + 1) return value <mask token>
<mask token> def factorial(n): value = 1 for i in range(n, 1, -1): value *= i return value def double_factorial(n): k = 1 for i in range(n, 1, -2): k *= i return k <mask token> def gaussian_integral(alpha, m): if int(m / 2) * 2 == m: n = int(m / 2) value = double_factorial(2 * n - 1) * sqrt(pi) / pow(2, n + 1) / pow( alpha, n + 0.5) else: n = int((m - 1) / 2) value = factorial(n) / 2 / pow(alpha, n + 1) return value def overlap_s_gaussians(expo1, expo2, power_of_r): norm1 = pow(2 * expo1 / pi, 0.75) norm2 = pow(2 * expo2 / pi, 0.75) value = norm1 * norm2 * 4 * pi * gaussian_integral(expo1 + expo2, power_of_r + 2) return value
import os, sys import numpy as np from math import exp, sqrt, pi def factorial(n): value = 1 for i in range(n, 1, -1): value *= i return value def double_factorial(n): k = 1 for i in range(n, 1, -2): k *= i return k <mask token> def gaussian_integral(alpha, m): if int(m / 2) * 2 == m: n = int(m / 2) value = double_factorial(2 * n - 1) * sqrt(pi) / pow(2, n + 1) / pow( alpha, n + 0.5) else: n = int((m - 1) / 2) value = factorial(n) / 2 / pow(alpha, n + 1) return value def overlap_s_gaussians(expo1, expo2, power_of_r): norm1 = pow(2 * expo1 / pi, 0.75) norm2 = pow(2 * expo2 / pi, 0.75) value = norm1 * norm2 * 4 * pi * gaussian_integral(expo1 + expo2, power_of_r + 2) return value
# coding: utf-8 import os, sys import numpy as np from math import exp, sqrt, pi def factorial(n): value = 1 for i in range(n,1,-1): value *= i return value def double_factorial(n): k = 1 for i in range(n, 1, -2): k *= i #print("n:", n, "double factorial:", k) return k """\int_0^\infty r^m e^{-alpha * r^2} dr""" def gaussian_integral(alpha, m): if int(m/2)*2 == m: # even number n = int(m/2) value = double_factorial(2*n-1) * sqrt(pi) / pow(2, n+1) / pow(alpha, n+0.5) else: n = int((m-1)/2) value = factorial(n) / 2 / pow(alpha, n+1) return value def overlap_s_gaussians(expo1, expo2, power_of_r): norm1 = pow(2*expo1/pi, 0.75) norm2 = pow(2*expo2/pi, 0.75) value = norm1 * norm2 * 4 * pi * gaussian_integral(expo1+expo2, power_of_r+2) return value
[ 2, 3, 4, 5, 6 ]
1,335
26f466a6a2fd09bb108ca89e4537192c070ff83b
<mask token>
<mask token> print(len(c))
c = 'こ に ち わ ' print(len(c))
c = "こ に ち わ " print (len(c))
null
[ 0, 1, 2, 3 ]
1,336
8c0a4d5a86d9ebd38ea05efb5b5b570368ce1449
<mask token> def matches_panic_funcs(name): """If the passed name contains one of the known panic_functions, return the match """ for func in panic_functions: if func in name: return func return '' <mask token> def any_origin_matches_panic_func(elf, addr): """returns name if any origin for the passed addr matches one of the functions in the panic_functions array """ origins = linkage_or_origin_all_parents(elf, addr) for origin in origins: name = matches_panic_funcs(origin) if name: return name return '' def any_linkage_matches_panic_func(elf, addr): """returns True + name if any linkage for the passed addr matches one of the functions in the panic_functions array """ linkages = linkage_or_origin_all_parents(elf, addr, True) for linkage in linkages: name = matches_panic_funcs(linkage) if name: return name return '' def check_for_source_in_parent(elf, addr): """Takes in a dwarfdump lookup including parents of the source DWARF location, returns the first parent with a call file not in the core library. If found, this often indicates the source of the panic in the Tock source code. """ result = subprocess.run((DWARFDUMP, '--lookup=0x' + addr, '-p', elf), capture_output=True, text=True) dwarfdump = result.stdout matches = re.findall(dw_at_file_re, dwarfdump) def getFile(line): return line.strip().split('"')[1] source_files = list(map(getFile, matches)) for i, f in enumerate(source_files[::-1]): if '/core/' not in f: line_matches = re.findall(dw_at_line_re, dwarfdump) def getLine(line): return line.strip().split('(')[1].split(')')[0] source_lines = list(map(getLine, line_matches)) source_line = source_lines[::-1][i] return f, source_line return '', '' def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('ELF', help='ELF file for analysis') parser.add_argument('--verbose', '-v', action='store_true', help= 'Output additional DWARF info for each panic location in the binary') parser.add_argument('--riscv', action='store_true', help= 'Use risc-v based objdump') return parser.parse_args() def find_all_panics(objdump, elf, is_riscv): panic_list = [] within_core_panic_list = [] no_info_panic_list = [] result = subprocess.run((objdump, '-d', elf), capture_output=True, text =True) objdump_out = result.stdout for function in panic_functions: function_re = re.compile('.*:.*#.*' + function + '.*') if not is_riscv: function_re = re.compile('.*:.*<.*' + function + '.*') matches = re.findall(function_re, objdump_out) def getAddr(line): return line.strip().split(':')[0] addrs = list(map(getAddr, matches)) for addr in addrs: result = subprocess.run((DWARFDUMP, '--lookup=0x' + addr, elf), capture_output=True, text=True) dwarfdump = result.stdout dw_at_file = re.search(dw_at_file_re, dwarfdump) dw_at_line = re.search(dw_at_line_re, dwarfdump) line_info = re.search(line_info_re, dwarfdump) abstract_origin = re.search(abstract_origin_re, dwarfdump) linkage_name = re.search(dw_at_linkage_name_re, dwarfdump) file_string = '' line_string = '' line_info_string = '' abstract_origin_string = '' linkage_name_string = '' if dw_at_file: file_string = dw_at_file.group(0).strip() line_string = dw_at_line.group(0).strip() panicinfo = {} panicinfo['addr'] = addr panicinfo['function'] = function if line_info: line_info_string = line_info.group(0).strip() panicinfo['line_info'] = line_info_string if abstract_origin: abstract_origin_string = abstract_origin.group(0).strip() if linkage_name: linkage_name_string = linkage_name.group(0).strip() if ('DW_AT_call_file' in file_string and 'DW_AT_decl_file' in file_string): raise RuntimeError('I misunderstand DWARF') if ('DW_AT_call_file' in file_string or 'DW_AT_decl_file' in file_string): filename = file_string.split('"')[1] line_num = line_string.split('(')[1].split(')')[0] if 'DW_AT_call_file' in file_string: panicinfo['call_file'] = filename panicinfo['call_line'] = line_num if 'DW_AT_decl_file' in file_string: panicinfo['decl_file'] = filename panicinfo['decl_line'] = line_num if not '/core/' in filename: if not 'closure' in abstract_origin_string: panicinfo['best_guess_source'] = 'call/decl' else: panicinfo['best_guess_source' ] = 'call-closure-line-info' panic_list.append(panicinfo) continue else: parent_file, parent_line = check_for_source_in_parent(elf, addr) if parent_file: panicinfo['parent_call_file'] = parent_file panicinfo['parent_call_line'] = parent_line panicinfo['best_guess_source'] = 'parent' panic_list.append(panicinfo) continue elif not abstract_origin and not linkage_name: no_info_panic_list.append(panicinfo) continue elif abstract_origin: if 'core' in abstract_origin_string: name = matches_panic_funcs(abstract_origin_string) if name: within_core_panic_list.append(panicinfo) continue else: name2 = any_origin_matches_panic_func(elf, addr ) name3 = any_linkage_matches_panic_func(elf, addr) if name2: within_core_panic_list.append(panicinfo) continue elif name3: within_core_panic_list.append(panicinfo) continue else: no_info_panic_list.append(panicinfo) continue elif 'closure' in abstract_origin_string: panicinfo['best_guess_source'] = 'lineinfo' panic_list.append(panicinfo) continue else: raise RuntimeError('Unhandled') if linkage_name: name = matches_panic_funcs(linkage_name_string) if name: within_core_panic_list.append(panicinfo) continue else: no_info_panic_list.append(panicinfo) print( 'Failed to match panic but we probably have enough info to trace it up. Linkage name: {}, addr: {}' .format(linkage_name_string, addr)) continue no_info_panic_list.append(panic_info) print('did not find source for panic: {}'.format(addr)) continue elif abstract_origin: origin = abstract_origin_string.split('"')[1] panicinfo['abstract_origin'] = origin if 'core' in origin: if matches_panic_funcs(origin): within_core_panic_list.append(panicinfo) continue no_info_panic_list.append(panicinfo) print( 'Probably could add this origin or one of its parents to the panic function list: {}' .format(abstract_origin_string)) continue else: panicinfo['best_guess_source'] = 'abstract_origin + line' panic_list.append(panicinfo) continue else: try: dw_at_name_string = re.findall(dw_at_name_re, dwarfdump)[-1 ].strip() function_name = dw_at_name_string.split('"')[1] if 'OUTLINED_FUNCTION_' in function_name: if function_name not in panic_functions: panic_functions.append(function_name + '>') within_core_panic_list.append(panicinfo) continue no_info_panic_list.append(panicinfo) continue except: no_info_panic_list.append(panicinfo) continue raise RuntimeError('BUG: Should not reach here') return panic_list, within_core_panic_list, no_info_panic_list <mask token> def main(): args = parse_args() if sys.version_info.minor < 7: print('This tool requires Python 3.7+') return -1 print('Tock panic report for ' + args.ELF) objdump = ARM_OBJDUMP if args.riscv: objdump = RISCV_OBJDUMP panic_list, within_core_panic_list, no_info_panic_list = find_all_panics( objdump, args.ELF, args.riscv) print('num_panics: {}'.format(len(panic_list))) buckets_list = {} for f in panic_functions: buckets_list[f] = [] for panic in panic_list: buckets_list[panic['function']].append(panic) for f, l in buckets_list.items(): if len(l) > 0: print('{}: {}'.format(f, len(l))) for p in l: pretty_print(p) if args.verbose: print(p) print() print('num panics in core ignored: {}'.format(len(within_core_panic_list))) print('num panics for which no info available: {}'.format(len( no_info_panic_list))) if args.verbose: print( 'If more debug info is needed, run dwarfdump directly on the address in question.' ) <mask token>
<mask token> if platform.system() == 'Darwin': DWARFDUMP = 'dwarfdump' elif platform.system() == 'Linux': DWARFDUMP = 'llvm-dwarfdump' else: raise NotImplementedError('Unknown platform') <mask token> def matches_panic_funcs(name): """If the passed name contains one of the known panic_functions, return the match """ for func in panic_functions: if func in name: return func return '' def linkage_or_origin_all_parents(elf, addr, linkage=False): """Returns a list of the abstract origin or linkage of all parents of the dwarf location for the passed address """ result = subprocess.run((DWARFDUMP, '--lookup=0x' + addr, '-p', elf), capture_output=True, text=True) dwarfdump = result.stdout regex = abstract_origin_re if linkage: regex = dw_at_linkage_name_re matches = re.findall(regex, dwarfdump) def getFunction(line): return line.strip().split('"')[1] origins = list(map(getFunction, matches)) return origins def any_origin_matches_panic_func(elf, addr): """returns name if any origin for the passed addr matches one of the functions in the panic_functions array """ origins = linkage_or_origin_all_parents(elf, addr) for origin in origins: name = matches_panic_funcs(origin) if name: return name return '' def any_linkage_matches_panic_func(elf, addr): """returns True + name if any linkage for the passed addr matches one of the functions in the panic_functions array """ linkages = linkage_or_origin_all_parents(elf, addr, True) for linkage in linkages: name = matches_panic_funcs(linkage) if name: return name return '' def check_for_source_in_parent(elf, addr): """Takes in a dwarfdump lookup including parents of the source DWARF location, returns the first parent with a call file not in the core library. If found, this often indicates the source of the panic in the Tock source code. """ result = subprocess.run((DWARFDUMP, '--lookup=0x' + addr, '-p', elf), capture_output=True, text=True) dwarfdump = result.stdout matches = re.findall(dw_at_file_re, dwarfdump) def getFile(line): return line.strip().split('"')[1] source_files = list(map(getFile, matches)) for i, f in enumerate(source_files[::-1]): if '/core/' not in f: line_matches = re.findall(dw_at_line_re, dwarfdump) def getLine(line): return line.strip().split('(')[1].split(')')[0] source_lines = list(map(getLine, line_matches)) source_line = source_lines[::-1][i] return f, source_line return '', '' def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('ELF', help='ELF file for analysis') parser.add_argument('--verbose', '-v', action='store_true', help= 'Output additional DWARF info for each panic location in the binary') parser.add_argument('--riscv', action='store_true', help= 'Use risc-v based objdump') return parser.parse_args() def find_all_panics(objdump, elf, is_riscv): panic_list = [] within_core_panic_list = [] no_info_panic_list = [] result = subprocess.run((objdump, '-d', elf), capture_output=True, text =True) objdump_out = result.stdout for function in panic_functions: function_re = re.compile('.*:.*#.*' + function + '.*') if not is_riscv: function_re = re.compile('.*:.*<.*' + function + '.*') matches = re.findall(function_re, objdump_out) def getAddr(line): return line.strip().split(':')[0] addrs = list(map(getAddr, matches)) for addr in addrs: result = subprocess.run((DWARFDUMP, '--lookup=0x' + addr, elf), capture_output=True, text=True) dwarfdump = result.stdout dw_at_file = re.search(dw_at_file_re, dwarfdump) dw_at_line = re.search(dw_at_line_re, dwarfdump) line_info = re.search(line_info_re, dwarfdump) abstract_origin = re.search(abstract_origin_re, dwarfdump) linkage_name = re.search(dw_at_linkage_name_re, dwarfdump) file_string = '' line_string = '' line_info_string = '' abstract_origin_string = '' linkage_name_string = '' if dw_at_file: file_string = dw_at_file.group(0).strip() line_string = dw_at_line.group(0).strip() panicinfo = {} panicinfo['addr'] = addr panicinfo['function'] = function if line_info: line_info_string = line_info.group(0).strip() panicinfo['line_info'] = line_info_string if abstract_origin: abstract_origin_string = abstract_origin.group(0).strip() if linkage_name: linkage_name_string = linkage_name.group(0).strip() if ('DW_AT_call_file' in file_string and 'DW_AT_decl_file' in file_string): raise RuntimeError('I misunderstand DWARF') if ('DW_AT_call_file' in file_string or 'DW_AT_decl_file' in file_string): filename = file_string.split('"')[1] line_num = line_string.split('(')[1].split(')')[0] if 'DW_AT_call_file' in file_string: panicinfo['call_file'] = filename panicinfo['call_line'] = line_num if 'DW_AT_decl_file' in file_string: panicinfo['decl_file'] = filename panicinfo['decl_line'] = line_num if not '/core/' in filename: if not 'closure' in abstract_origin_string: panicinfo['best_guess_source'] = 'call/decl' else: panicinfo['best_guess_source' ] = 'call-closure-line-info' panic_list.append(panicinfo) continue else: parent_file, parent_line = check_for_source_in_parent(elf, addr) if parent_file: panicinfo['parent_call_file'] = parent_file panicinfo['parent_call_line'] = parent_line panicinfo['best_guess_source'] = 'parent' panic_list.append(panicinfo) continue elif not abstract_origin and not linkage_name: no_info_panic_list.append(panicinfo) continue elif abstract_origin: if 'core' in abstract_origin_string: name = matches_panic_funcs(abstract_origin_string) if name: within_core_panic_list.append(panicinfo) continue else: name2 = any_origin_matches_panic_func(elf, addr ) name3 = any_linkage_matches_panic_func(elf, addr) if name2: within_core_panic_list.append(panicinfo) continue elif name3: within_core_panic_list.append(panicinfo) continue else: no_info_panic_list.append(panicinfo) continue elif 'closure' in abstract_origin_string: panicinfo['best_guess_source'] = 'lineinfo' panic_list.append(panicinfo) continue else: raise RuntimeError('Unhandled') if linkage_name: name = matches_panic_funcs(linkage_name_string) if name: within_core_panic_list.append(panicinfo) continue else: no_info_panic_list.append(panicinfo) print( 'Failed to match panic but we probably have enough info to trace it up. Linkage name: {}, addr: {}' .format(linkage_name_string, addr)) continue no_info_panic_list.append(panic_info) print('did not find source for panic: {}'.format(addr)) continue elif abstract_origin: origin = abstract_origin_string.split('"')[1] panicinfo['abstract_origin'] = origin if 'core' in origin: if matches_panic_funcs(origin): within_core_panic_list.append(panicinfo) continue no_info_panic_list.append(panicinfo) print( 'Probably could add this origin or one of its parents to the panic function list: {}' .format(abstract_origin_string)) continue else: panicinfo['best_guess_source'] = 'abstract_origin + line' panic_list.append(panicinfo) continue else: try: dw_at_name_string = re.findall(dw_at_name_re, dwarfdump)[-1 ].strip() function_name = dw_at_name_string.split('"')[1] if 'OUTLINED_FUNCTION_' in function_name: if function_name not in panic_functions: panic_functions.append(function_name + '>') within_core_panic_list.append(panicinfo) continue no_info_panic_list.append(panicinfo) continue except: no_info_panic_list.append(panicinfo) continue raise RuntimeError('BUG: Should not reach here') return panic_list, within_core_panic_list, no_info_panic_list def pretty_print(panicinfo): if panicinfo['best_guess_source'] == 'call/decl': try: print('\t{} -- {}:{}'.format(panicinfo['addr'], panicinfo[ 'call_file'], panicinfo['call_line'])) except: print('\t{} -- in function starting at {}:{}'.format(panicinfo[ 'addr'], panicinfo['decl_file'], panicinfo['decl_line'])) elif panicinfo['best_guess_source'] == 'parent': print('\t{} -- at or in function starting at {}:{}'.format( panicinfo['addr'], panicinfo['parent_call_file'], panicinfo[ 'parent_call_line'])) elif panicinfo['best_guess_source'] == 'lineinfo': print('\t{} -- in closure, try: {}'.format(panicinfo['addr'], panicinfo['line_info'])) elif panicinfo['best_guess_source'] == 'abstract_origin + line': print('\t{} -- line_info: {} from origin :{}'.format(panicinfo[ 'addr'], panicinfo['line_info'], panicinfo['abstract_origin'])) elif panicinfo['best_guess_source'] == 'call-closure-line-info': print('\t{} -- in closure starting on line_info: {}'.format( panicinfo['addr'], panicinfo['line_info'])) else: raise RuntimeError('Missing best guess source: {}'.format(panicinfo)) def main(): args = parse_args() if sys.version_info.minor < 7: print('This tool requires Python 3.7+') return -1 print('Tock panic report for ' + args.ELF) objdump = ARM_OBJDUMP if args.riscv: objdump = RISCV_OBJDUMP panic_list, within_core_panic_list, no_info_panic_list = find_all_panics( objdump, args.ELF, args.riscv) print('num_panics: {}'.format(len(panic_list))) buckets_list = {} for f in panic_functions: buckets_list[f] = [] for panic in panic_list: buckets_list[panic['function']].append(panic) for f, l in buckets_list.items(): if len(l) > 0: print('{}: {}'.format(f, len(l))) for p in l: pretty_print(p) if args.verbose: print(p) print() print('num panics in core ignored: {}'.format(len(within_core_panic_list))) print('num panics for which no info available: {}'.format(len( no_info_panic_list))) if args.verbose: print( 'If more debug info is needed, run dwarfdump directly on the address in question.' ) if __name__ == '__main__': main()
<mask token> if platform.system() == 'Darwin': DWARFDUMP = 'dwarfdump' elif platform.system() == 'Linux': DWARFDUMP = 'llvm-dwarfdump' else: raise NotImplementedError('Unknown platform') ARM_OBJDUMP = 'arm-none-eabi-objdump' RISCV_OBJDUMP = 'riscv64-unknown-elf-objdump' panic_functions = ['expect_failed', 'unwrap_failed', 'panic_bounds_check', 'slice_index_order_fail', 'slice_end_index_len_fail', 'slice_start_index_len_fail', 'slice17len_mismatch_fail', 'str16slice_error_fail', 'copy_from_slice17len_mismatch_fail', 'copy_from_slice17', 'panicking5panic', '6unwrap17', '6expect17', '11copy_within17', 'core..fmt..builders..PadAdapter', '11copy_within17', 'write_char', 'write_str', 'printable5check', 'char$u20$as$u20$core..fmt..Debug', 'GenericRadix7fmt_int', '10unwrap_err17h6', '13is_whitespace17', '$u20$core..slice..index..SliceIndex$LT', 'core..iter..adapters..filter..Filter$LT$I$C$P$GT$$u20$as$u20$core..iter', '_ZN4core5slice5index74_$LT$impl$u20$core..ops..index..Index$LT$I$GT$$u20$for$u20$$u5b$T$u5d$$GT$5index17h4c77379bd26a525bE' , '_ZN4core5slice5index74_$LT$impl$u20$core..ops..index..Index$LT$I$GT$$u20$for$u20$$u5b$T$u5d$$GT$5index17hfe7e43aa2388c47bE' ] dw_at_file_re = re.compile('.*(?:DW_AT_call_file|DW_AT_decl_file).*') dw_at_line_re = re.compile('.*(?:DW_AT_call_line|DW_AT_decl_line).*') line_info_re = re.compile('.*Line info.*') abstract_origin_re = re.compile('.*DW_AT_abstract_origin.*') dw_at_linkage_name_re = re.compile('.*DW_AT_linkage_name.*') dw_at_name_re = re.compile('.*DW_AT_name.*') def matches_panic_funcs(name): """If the passed name contains one of the known panic_functions, return the match """ for func in panic_functions: if func in name: return func return '' def linkage_or_origin_all_parents(elf, addr, linkage=False): """Returns a list of the abstract origin or linkage of all parents of the dwarf location for the passed address """ result = subprocess.run((DWARFDUMP, '--lookup=0x' + addr, '-p', elf), capture_output=True, text=True) dwarfdump = result.stdout regex = abstract_origin_re if linkage: regex = dw_at_linkage_name_re matches = re.findall(regex, dwarfdump) def getFunction(line): return line.strip().split('"')[1] origins = list(map(getFunction, matches)) return origins def any_origin_matches_panic_func(elf, addr): """returns name if any origin for the passed addr matches one of the functions in the panic_functions array """ origins = linkage_or_origin_all_parents(elf, addr) for origin in origins: name = matches_panic_funcs(origin) if name: return name return '' def any_linkage_matches_panic_func(elf, addr): """returns True + name if any linkage for the passed addr matches one of the functions in the panic_functions array """ linkages = linkage_or_origin_all_parents(elf, addr, True) for linkage in linkages: name = matches_panic_funcs(linkage) if name: return name return '' def check_for_source_in_parent(elf, addr): """Takes in a dwarfdump lookup including parents of the source DWARF location, returns the first parent with a call file not in the core library. If found, this often indicates the source of the panic in the Tock source code. """ result = subprocess.run((DWARFDUMP, '--lookup=0x' + addr, '-p', elf), capture_output=True, text=True) dwarfdump = result.stdout matches = re.findall(dw_at_file_re, dwarfdump) def getFile(line): return line.strip().split('"')[1] source_files = list(map(getFile, matches)) for i, f in enumerate(source_files[::-1]): if '/core/' not in f: line_matches = re.findall(dw_at_line_re, dwarfdump) def getLine(line): return line.strip().split('(')[1].split(')')[0] source_lines = list(map(getLine, line_matches)) source_line = source_lines[::-1][i] return f, source_line return '', '' def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('ELF', help='ELF file for analysis') parser.add_argument('--verbose', '-v', action='store_true', help= 'Output additional DWARF info for each panic location in the binary') parser.add_argument('--riscv', action='store_true', help= 'Use risc-v based objdump') return parser.parse_args() def find_all_panics(objdump, elf, is_riscv): panic_list = [] within_core_panic_list = [] no_info_panic_list = [] result = subprocess.run((objdump, '-d', elf), capture_output=True, text =True) objdump_out = result.stdout for function in panic_functions: function_re = re.compile('.*:.*#.*' + function + '.*') if not is_riscv: function_re = re.compile('.*:.*<.*' + function + '.*') matches = re.findall(function_re, objdump_out) def getAddr(line): return line.strip().split(':')[0] addrs = list(map(getAddr, matches)) for addr in addrs: result = subprocess.run((DWARFDUMP, '--lookup=0x' + addr, elf), capture_output=True, text=True) dwarfdump = result.stdout dw_at_file = re.search(dw_at_file_re, dwarfdump) dw_at_line = re.search(dw_at_line_re, dwarfdump) line_info = re.search(line_info_re, dwarfdump) abstract_origin = re.search(abstract_origin_re, dwarfdump) linkage_name = re.search(dw_at_linkage_name_re, dwarfdump) file_string = '' line_string = '' line_info_string = '' abstract_origin_string = '' linkage_name_string = '' if dw_at_file: file_string = dw_at_file.group(0).strip() line_string = dw_at_line.group(0).strip() panicinfo = {} panicinfo['addr'] = addr panicinfo['function'] = function if line_info: line_info_string = line_info.group(0).strip() panicinfo['line_info'] = line_info_string if abstract_origin: abstract_origin_string = abstract_origin.group(0).strip() if linkage_name: linkage_name_string = linkage_name.group(0).strip() if ('DW_AT_call_file' in file_string and 'DW_AT_decl_file' in file_string): raise RuntimeError('I misunderstand DWARF') if ('DW_AT_call_file' in file_string or 'DW_AT_decl_file' in file_string): filename = file_string.split('"')[1] line_num = line_string.split('(')[1].split(')')[0] if 'DW_AT_call_file' in file_string: panicinfo['call_file'] = filename panicinfo['call_line'] = line_num if 'DW_AT_decl_file' in file_string: panicinfo['decl_file'] = filename panicinfo['decl_line'] = line_num if not '/core/' in filename: if not 'closure' in abstract_origin_string: panicinfo['best_guess_source'] = 'call/decl' else: panicinfo['best_guess_source' ] = 'call-closure-line-info' panic_list.append(panicinfo) continue else: parent_file, parent_line = check_for_source_in_parent(elf, addr) if parent_file: panicinfo['parent_call_file'] = parent_file panicinfo['parent_call_line'] = parent_line panicinfo['best_guess_source'] = 'parent' panic_list.append(panicinfo) continue elif not abstract_origin and not linkage_name: no_info_panic_list.append(panicinfo) continue elif abstract_origin: if 'core' in abstract_origin_string: name = matches_panic_funcs(abstract_origin_string) if name: within_core_panic_list.append(panicinfo) continue else: name2 = any_origin_matches_panic_func(elf, addr ) name3 = any_linkage_matches_panic_func(elf, addr) if name2: within_core_panic_list.append(panicinfo) continue elif name3: within_core_panic_list.append(panicinfo) continue else: no_info_panic_list.append(panicinfo) continue elif 'closure' in abstract_origin_string: panicinfo['best_guess_source'] = 'lineinfo' panic_list.append(panicinfo) continue else: raise RuntimeError('Unhandled') if linkage_name: name = matches_panic_funcs(linkage_name_string) if name: within_core_panic_list.append(panicinfo) continue else: no_info_panic_list.append(panicinfo) print( 'Failed to match panic but we probably have enough info to trace it up. Linkage name: {}, addr: {}' .format(linkage_name_string, addr)) continue no_info_panic_list.append(panic_info) print('did not find source for panic: {}'.format(addr)) continue elif abstract_origin: origin = abstract_origin_string.split('"')[1] panicinfo['abstract_origin'] = origin if 'core' in origin: if matches_panic_funcs(origin): within_core_panic_list.append(panicinfo) continue no_info_panic_list.append(panicinfo) print( 'Probably could add this origin or one of its parents to the panic function list: {}' .format(abstract_origin_string)) continue else: panicinfo['best_guess_source'] = 'abstract_origin + line' panic_list.append(panicinfo) continue else: try: dw_at_name_string = re.findall(dw_at_name_re, dwarfdump)[-1 ].strip() function_name = dw_at_name_string.split('"')[1] if 'OUTLINED_FUNCTION_' in function_name: if function_name not in panic_functions: panic_functions.append(function_name + '>') within_core_panic_list.append(panicinfo) continue no_info_panic_list.append(panicinfo) continue except: no_info_panic_list.append(panicinfo) continue raise RuntimeError('BUG: Should not reach here') return panic_list, within_core_panic_list, no_info_panic_list def pretty_print(panicinfo): if panicinfo['best_guess_source'] == 'call/decl': try: print('\t{} -- {}:{}'.format(panicinfo['addr'], panicinfo[ 'call_file'], panicinfo['call_line'])) except: print('\t{} -- in function starting at {}:{}'.format(panicinfo[ 'addr'], panicinfo['decl_file'], panicinfo['decl_line'])) elif panicinfo['best_guess_source'] == 'parent': print('\t{} -- at or in function starting at {}:{}'.format( panicinfo['addr'], panicinfo['parent_call_file'], panicinfo[ 'parent_call_line'])) elif panicinfo['best_guess_source'] == 'lineinfo': print('\t{} -- in closure, try: {}'.format(panicinfo['addr'], panicinfo['line_info'])) elif panicinfo['best_guess_source'] == 'abstract_origin + line': print('\t{} -- line_info: {} from origin :{}'.format(panicinfo[ 'addr'], panicinfo['line_info'], panicinfo['abstract_origin'])) elif panicinfo['best_guess_source'] == 'call-closure-line-info': print('\t{} -- in closure starting on line_info: {}'.format( panicinfo['addr'], panicinfo['line_info'])) else: raise RuntimeError('Missing best guess source: {}'.format(panicinfo)) def main(): args = parse_args() if sys.version_info.minor < 7: print('This tool requires Python 3.7+') return -1 print('Tock panic report for ' + args.ELF) objdump = ARM_OBJDUMP if args.riscv: objdump = RISCV_OBJDUMP panic_list, within_core_panic_list, no_info_panic_list = find_all_panics( objdump, args.ELF, args.riscv) print('num_panics: {}'.format(len(panic_list))) buckets_list = {} for f in panic_functions: buckets_list[f] = [] for panic in panic_list: buckets_list[panic['function']].append(panic) for f, l in buckets_list.items(): if len(l) > 0: print('{}: {}'.format(f, len(l))) for p in l: pretty_print(p) if args.verbose: print(p) print() print('num panics in core ignored: {}'.format(len(within_core_panic_list))) print('num panics for which no info available: {}'.format(len( no_info_panic_list))) if args.verbose: print( 'If more debug info is needed, run dwarfdump directly on the address in question.' ) if __name__ == '__main__': main()
import argparse import platform import re import subprocess import sys if platform.system() == 'Darwin': DWARFDUMP = 'dwarfdump' elif platform.system() == 'Linux': DWARFDUMP = 'llvm-dwarfdump' else: raise NotImplementedError('Unknown platform') ARM_OBJDUMP = 'arm-none-eabi-objdump' RISCV_OBJDUMP = 'riscv64-unknown-elf-objdump' panic_functions = ['expect_failed', 'unwrap_failed', 'panic_bounds_check', 'slice_index_order_fail', 'slice_end_index_len_fail', 'slice_start_index_len_fail', 'slice17len_mismatch_fail', 'str16slice_error_fail', 'copy_from_slice17len_mismatch_fail', 'copy_from_slice17', 'panicking5panic', '6unwrap17', '6expect17', '11copy_within17', 'core..fmt..builders..PadAdapter', '11copy_within17', 'write_char', 'write_str', 'printable5check', 'char$u20$as$u20$core..fmt..Debug', 'GenericRadix7fmt_int', '10unwrap_err17h6', '13is_whitespace17', '$u20$core..slice..index..SliceIndex$LT', 'core..iter..adapters..filter..Filter$LT$I$C$P$GT$$u20$as$u20$core..iter', '_ZN4core5slice5index74_$LT$impl$u20$core..ops..index..Index$LT$I$GT$$u20$for$u20$$u5b$T$u5d$$GT$5index17h4c77379bd26a525bE' , '_ZN4core5slice5index74_$LT$impl$u20$core..ops..index..Index$LT$I$GT$$u20$for$u20$$u5b$T$u5d$$GT$5index17hfe7e43aa2388c47bE' ] dw_at_file_re = re.compile('.*(?:DW_AT_call_file|DW_AT_decl_file).*') dw_at_line_re = re.compile('.*(?:DW_AT_call_line|DW_AT_decl_line).*') line_info_re = re.compile('.*Line info.*') abstract_origin_re = re.compile('.*DW_AT_abstract_origin.*') dw_at_linkage_name_re = re.compile('.*DW_AT_linkage_name.*') dw_at_name_re = re.compile('.*DW_AT_name.*') def matches_panic_funcs(name): """If the passed name contains one of the known panic_functions, return the match """ for func in panic_functions: if func in name: return func return '' def linkage_or_origin_all_parents(elf, addr, linkage=False): """Returns a list of the abstract origin or linkage of all parents of the dwarf location for the passed address """ result = subprocess.run((DWARFDUMP, '--lookup=0x' + addr, '-p', elf), capture_output=True, text=True) dwarfdump = result.stdout regex = abstract_origin_re if linkage: regex = dw_at_linkage_name_re matches = re.findall(regex, dwarfdump) def getFunction(line): return line.strip().split('"')[1] origins = list(map(getFunction, matches)) return origins def any_origin_matches_panic_func(elf, addr): """returns name if any origin for the passed addr matches one of the functions in the panic_functions array """ origins = linkage_or_origin_all_parents(elf, addr) for origin in origins: name = matches_panic_funcs(origin) if name: return name return '' def any_linkage_matches_panic_func(elf, addr): """returns True + name if any linkage for the passed addr matches one of the functions in the panic_functions array """ linkages = linkage_or_origin_all_parents(elf, addr, True) for linkage in linkages: name = matches_panic_funcs(linkage) if name: return name return '' def check_for_source_in_parent(elf, addr): """Takes in a dwarfdump lookup including parents of the source DWARF location, returns the first parent with a call file not in the core library. If found, this often indicates the source of the panic in the Tock source code. """ result = subprocess.run((DWARFDUMP, '--lookup=0x' + addr, '-p', elf), capture_output=True, text=True) dwarfdump = result.stdout matches = re.findall(dw_at_file_re, dwarfdump) def getFile(line): return line.strip().split('"')[1] source_files = list(map(getFile, matches)) for i, f in enumerate(source_files[::-1]): if '/core/' not in f: line_matches = re.findall(dw_at_line_re, dwarfdump) def getLine(line): return line.strip().split('(')[1].split(')')[0] source_lines = list(map(getLine, line_matches)) source_line = source_lines[::-1][i] return f, source_line return '', '' def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('ELF', help='ELF file for analysis') parser.add_argument('--verbose', '-v', action='store_true', help= 'Output additional DWARF info for each panic location in the binary') parser.add_argument('--riscv', action='store_true', help= 'Use risc-v based objdump') return parser.parse_args() def find_all_panics(objdump, elf, is_riscv): panic_list = [] within_core_panic_list = [] no_info_panic_list = [] result = subprocess.run((objdump, '-d', elf), capture_output=True, text =True) objdump_out = result.stdout for function in panic_functions: function_re = re.compile('.*:.*#.*' + function + '.*') if not is_riscv: function_re = re.compile('.*:.*<.*' + function + '.*') matches = re.findall(function_re, objdump_out) def getAddr(line): return line.strip().split(':')[0] addrs = list(map(getAddr, matches)) for addr in addrs: result = subprocess.run((DWARFDUMP, '--lookup=0x' + addr, elf), capture_output=True, text=True) dwarfdump = result.stdout dw_at_file = re.search(dw_at_file_re, dwarfdump) dw_at_line = re.search(dw_at_line_re, dwarfdump) line_info = re.search(line_info_re, dwarfdump) abstract_origin = re.search(abstract_origin_re, dwarfdump) linkage_name = re.search(dw_at_linkage_name_re, dwarfdump) file_string = '' line_string = '' line_info_string = '' abstract_origin_string = '' linkage_name_string = '' if dw_at_file: file_string = dw_at_file.group(0).strip() line_string = dw_at_line.group(0).strip() panicinfo = {} panicinfo['addr'] = addr panicinfo['function'] = function if line_info: line_info_string = line_info.group(0).strip() panicinfo['line_info'] = line_info_string if abstract_origin: abstract_origin_string = abstract_origin.group(0).strip() if linkage_name: linkage_name_string = linkage_name.group(0).strip() if ('DW_AT_call_file' in file_string and 'DW_AT_decl_file' in file_string): raise RuntimeError('I misunderstand DWARF') if ('DW_AT_call_file' in file_string or 'DW_AT_decl_file' in file_string): filename = file_string.split('"')[1] line_num = line_string.split('(')[1].split(')')[0] if 'DW_AT_call_file' in file_string: panicinfo['call_file'] = filename panicinfo['call_line'] = line_num if 'DW_AT_decl_file' in file_string: panicinfo['decl_file'] = filename panicinfo['decl_line'] = line_num if not '/core/' in filename: if not 'closure' in abstract_origin_string: panicinfo['best_guess_source'] = 'call/decl' else: panicinfo['best_guess_source' ] = 'call-closure-line-info' panic_list.append(panicinfo) continue else: parent_file, parent_line = check_for_source_in_parent(elf, addr) if parent_file: panicinfo['parent_call_file'] = parent_file panicinfo['parent_call_line'] = parent_line panicinfo['best_guess_source'] = 'parent' panic_list.append(panicinfo) continue elif not abstract_origin and not linkage_name: no_info_panic_list.append(panicinfo) continue elif abstract_origin: if 'core' in abstract_origin_string: name = matches_panic_funcs(abstract_origin_string) if name: within_core_panic_list.append(panicinfo) continue else: name2 = any_origin_matches_panic_func(elf, addr ) name3 = any_linkage_matches_panic_func(elf, addr) if name2: within_core_panic_list.append(panicinfo) continue elif name3: within_core_panic_list.append(panicinfo) continue else: no_info_panic_list.append(panicinfo) continue elif 'closure' in abstract_origin_string: panicinfo['best_guess_source'] = 'lineinfo' panic_list.append(panicinfo) continue else: raise RuntimeError('Unhandled') if linkage_name: name = matches_panic_funcs(linkage_name_string) if name: within_core_panic_list.append(panicinfo) continue else: no_info_panic_list.append(panicinfo) print( 'Failed to match panic but we probably have enough info to trace it up. Linkage name: {}, addr: {}' .format(linkage_name_string, addr)) continue no_info_panic_list.append(panic_info) print('did not find source for panic: {}'.format(addr)) continue elif abstract_origin: origin = abstract_origin_string.split('"')[1] panicinfo['abstract_origin'] = origin if 'core' in origin: if matches_panic_funcs(origin): within_core_panic_list.append(panicinfo) continue no_info_panic_list.append(panicinfo) print( 'Probably could add this origin or one of its parents to the panic function list: {}' .format(abstract_origin_string)) continue else: panicinfo['best_guess_source'] = 'abstract_origin + line' panic_list.append(panicinfo) continue else: try: dw_at_name_string = re.findall(dw_at_name_re, dwarfdump)[-1 ].strip() function_name = dw_at_name_string.split('"')[1] if 'OUTLINED_FUNCTION_' in function_name: if function_name not in panic_functions: panic_functions.append(function_name + '>') within_core_panic_list.append(panicinfo) continue no_info_panic_list.append(panicinfo) continue except: no_info_panic_list.append(panicinfo) continue raise RuntimeError('BUG: Should not reach here') return panic_list, within_core_panic_list, no_info_panic_list def pretty_print(panicinfo): if panicinfo['best_guess_source'] == 'call/decl': try: print('\t{} -- {}:{}'.format(panicinfo['addr'], panicinfo[ 'call_file'], panicinfo['call_line'])) except: print('\t{} -- in function starting at {}:{}'.format(panicinfo[ 'addr'], panicinfo['decl_file'], panicinfo['decl_line'])) elif panicinfo['best_guess_source'] == 'parent': print('\t{} -- at or in function starting at {}:{}'.format( panicinfo['addr'], panicinfo['parent_call_file'], panicinfo[ 'parent_call_line'])) elif panicinfo['best_guess_source'] == 'lineinfo': print('\t{} -- in closure, try: {}'.format(panicinfo['addr'], panicinfo['line_info'])) elif panicinfo['best_guess_source'] == 'abstract_origin + line': print('\t{} -- line_info: {} from origin :{}'.format(panicinfo[ 'addr'], panicinfo['line_info'], panicinfo['abstract_origin'])) elif panicinfo['best_guess_source'] == 'call-closure-line-info': print('\t{} -- in closure starting on line_info: {}'.format( panicinfo['addr'], panicinfo['line_info'])) else: raise RuntimeError('Missing best guess source: {}'.format(panicinfo)) def main(): args = parse_args() if sys.version_info.minor < 7: print('This tool requires Python 3.7+') return -1 print('Tock panic report for ' + args.ELF) objdump = ARM_OBJDUMP if args.riscv: objdump = RISCV_OBJDUMP panic_list, within_core_panic_list, no_info_panic_list = find_all_panics( objdump, args.ELF, args.riscv) print('num_panics: {}'.format(len(panic_list))) buckets_list = {} for f in panic_functions: buckets_list[f] = [] for panic in panic_list: buckets_list[panic['function']].append(panic) for f, l in buckets_list.items(): if len(l) > 0: print('{}: {}'.format(f, len(l))) for p in l: pretty_print(p) if args.verbose: print(p) print() print('num panics in core ignored: {}'.format(len(within_core_panic_list))) print('num panics for which no info available: {}'.format(len( no_info_panic_list))) if args.verbose: print( 'If more debug info is needed, run dwarfdump directly on the address in question.' ) if __name__ == '__main__': main()
#!/usr/bin/env python3 # Licensed under the Apache License, Version 2.0 or the MIT License. # SPDX-License-Identifier: Apache-2.0 OR MIT # Copyright Tock Contributors 2023. # Prints out the source locations of panics in a Tock kernel ELF # # This tool attempts to trace all panic locations in a Tock kernel ELF by # tracing calls to panic functions in the core library, using the debug information # embedded in the ELF file. This tool requires an ELF which includes debug information. # In its current state, cannot accurately provide the source locations # corresponding to each panic, but tries to be honest about its confidence in # each guess. In general, each guess is usually enough to locate the relevant panic. # More creative analysis might be able to increase # the accuracy with which this tool can identify source locations of panics. For now, # this tool is useful for: # # - obtaining a rough count of the number of panics in a Tock kernel binary # # - finding and removing panics in a Tock kernel binary # # - roughly determining which components of a Tock kernel binary contain the most panic # paths # # There are several assumptions built into this tool which may not always hold. For one, # the list of panic_functions are assumed to not match any strings in the actual # codebase, despite the fact they are incomplete function names and overlap is possible. # I could solve this by using full names of these functions, but I am unsure how often # the name mangling of these functions will change as the rust compiler changes so this # approach felt potentially more stable. # # Several assumptions are made about DWARF locations that do not always hold, so source # locations are not always accurate -- sometimes, the printed location just points to # the function containing a panic, rather than the actual line on which the panic # occurs. Some assumptions about which panics are in the core library and will be # caught by grepping for other calls may also not always hold. The best way to inspect # these is by manually inspecting the panics in the `within_core_panic_list`. # # This script stores panics which it cannot trace out of the core library in the # `no_info_panic_list`. If this list contains some panics, that is a sign that some # panics have not been identified. You can manually look at the addresses stored in # this list, attempt to find the core library function which leads to these instrucitons # being called, and then add those core library functions to the list of panic functions. # # The output of this script is *not* stable. # # Usage: find_panics.py ELF [--riscv] # # Requires Python 3.7+ # # Author: Hudson Ayers <[email protected]> import argparse import platform import re import subprocess import sys if platform.system() == 'Darwin': DWARFDUMP = "dwarfdump" elif platform.system() == 'Linux': DWARFDUMP = "llvm-dwarfdump" else: raise NotImplementedError("Unknown platform") # Note: In practice, GCC objdumps are better at symbol resolution than LLVM objdump ARM_OBJDUMP = "arm-none-eabi-objdump" RISCV_OBJDUMP = "riscv64-unknown-elf-objdump" # TODO: For all functions below the initial batch, it would like be preferable to # automatically populate the list with additional functions in the core library using # debug info. For now, however, I do this manually. panic_functions = [ "expect_failed", "unwrap_failed", "panic_bounds_check", "slice_index_order_fail", "slice_end_index_len_fail", "slice_start_index_len_fail", "slice17len_mismatch_fail", "str16slice_error_fail", "copy_from_slice17len_mismatch_fail", "copy_from_slice17", "panicking5panic", # below are functions I have manually traced up from the above, more "core" panics, on a riscv binary with a low inline threshold "6unwrap17", "6expect17", "11copy_within17", "core..fmt..builders..PadAdapter", # calls slice_error_fail "11copy_within17", # calls panicking::panic "write_char", # calls PadAdapter one above "write_str", # calls write_char "printable5check", # calls slice_index_order_fail "char$u20$as$u20$core..fmt..Debug", # calls printable5check "GenericRadix7fmt_int", # calls slice_start_index_len_fail # below are functions I manually traced on an arm binary, # with a somewhat higher inline threshold. "10unwrap_err17h6", "13is_whitespace17", "$u20$core..slice..index..SliceIndex$LT", "core..iter..adapters..filter..Filter$LT$I$C$P$GT$$u20$as$u20$core..iter", "_ZN4core5slice5index74_$LT$impl$u20$core..ops..index..Index$LT$I$GT$$u20$for$u20$$u5b$T$u5d$$GT$5index17h4c77379bd26a525bE", "_ZN4core5slice5index74_$LT$impl$u20$core..ops..index..Index$LT$I$GT$$u20$for$u20$$u5b$T$u5d$$GT$5index17hfe7e43aa2388c47bE", ] # Pre-compiled regex lookups dw_at_file_re = re.compile(r""".*(?:DW_AT_call_file|DW_AT_decl_file).*""") dw_at_line_re = re.compile(r""".*(?:DW_AT_call_line|DW_AT_decl_line).*""") line_info_re = re.compile(r""".*Line info.*""") abstract_origin_re = re.compile(r""".*DW_AT_abstract_origin.*""") dw_at_linkage_name_re = re.compile(r""".*DW_AT_linkage_name.*""") dw_at_name_re = re.compile(r""".*DW_AT_name.*""") def matches_panic_funcs(name): """If the passed name contains one of the known panic_functions, return the match """ for func in panic_functions: if func in name: return func return "" def linkage_or_origin_all_parents(elf, addr, linkage=False): """Returns a list of the abstract origin or linkage of all parents of the dwarf location for the passed address """ result = subprocess.run( (DWARFDUMP, "--lookup=0x" + addr, "-p", elf), capture_output=True, text=True ) dwarfdump = result.stdout regex = abstract_origin_re if linkage: regex = dw_at_linkage_name_re matches = re.findall(regex, dwarfdump) def getFunction(line): return line.strip().split('"')[1] origins = list(map(getFunction, matches)) return origins def any_origin_matches_panic_func(elf, addr): """returns name if any origin for the passed addr matches one of the functions in the panic_functions array """ origins = linkage_or_origin_all_parents(elf, addr) for origin in origins: name = matches_panic_funcs(origin) if name: return name return "" def any_linkage_matches_panic_func(elf, addr): """returns True + name if any linkage for the passed addr matches one of the functions in the panic_functions array """ linkages = linkage_or_origin_all_parents(elf, addr, True) for linkage in linkages: name = matches_panic_funcs(linkage) if name: return name return "" def check_for_source_in_parent(elf, addr): """Takes in a dwarfdump lookup including parents of the source DWARF location, returns the first parent with a call file not in the core library. If found, this often indicates the source of the panic in the Tock source code. """ result = subprocess.run( (DWARFDUMP, "--lookup=0x" + addr, "-p", elf), capture_output=True, text=True ) dwarfdump = result.stdout matches = re.findall(dw_at_file_re, dwarfdump) def getFile(line): return line.strip().split('"')[1] source_files = list(map(getFile, matches)) for (i, f) in enumerate(source_files[::-1]): if "/core/" not in f: line_matches = re.findall(dw_at_line_re, dwarfdump) def getLine(line): return line.strip().split("(")[1].split(")")[0] source_lines = list(map(getLine, line_matches)) source_line = source_lines[::-1][i] return (f, source_line) return ("", "") def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("ELF", help="ELF file for analysis") parser.add_argument( "--verbose", "-v", action="store_true", help="Output additional DWARF info for each panic location in the binary", ) parser.add_argument("--riscv", action="store_true", help="Use risc-v based objdump") return parser.parse_args() # Find all addresses that panic, and get basic dwarf info on those addresses def find_all_panics(objdump, elf, is_riscv): panic_list = [] within_core_panic_list = [] no_info_panic_list = [] result = subprocess.run((objdump, "-d", elf), capture_output=True, text=True) objdump_out = result.stdout for function in panic_functions: function_re = re.compile(".*:.*#.*" + function + ".*") if not is_riscv: # Arm-none-eabi-objdump uses ';' for comments instead of '#' function_re = re.compile(".*:.*<.*" + function + ".*") # TODO: arm elfs include loads of offsets from symbols in such a way that these lines # are matched by this regex. In general, these loads occur within the instruction stream # associated with the symbol at hand, and will usually be excluded by logic later in # this function. This leads to `within_core_panic_list` and `no_info_panic_list` # containing more "panics" than when analyzing a risc-v binary. We could fix this # by matching *only* on functions with instructions that actually jump to a new symbol, # but this would require a list of such instructions for each architecture. However # as written it actually lets us identify panics which are jumped to via addresses # stored in registers, which may actually catch additional valid panics. matches = re.findall(function_re, objdump_out) def getAddr(line): return line.strip().split(":")[0] addrs = list(map(getAddr, matches)) for addr in addrs: result = subprocess.run( (DWARFDUMP, "--lookup=0x" + addr, elf), capture_output=True, text=True ) dwarfdump = result.stdout dw_at_file = re.search(dw_at_file_re, dwarfdump) dw_at_line = re.search(dw_at_line_re, dwarfdump) line_info = re.search(line_info_re, dwarfdump) abstract_origin = re.search(abstract_origin_re, dwarfdump) linkage_name = re.search(dw_at_linkage_name_re, dwarfdump) file_string = "" line_string = "" line_info_string = "" abstract_origin_string = "" linkage_name_string = "" if dw_at_file: file_string = dw_at_file.group(0).strip() line_string = dw_at_line.group(0).strip() panicinfo = {} panicinfo["addr"] = addr panicinfo["function"] = function if line_info: line_info_string = line_info.group(0).strip() panicinfo["line_info"] = line_info_string if abstract_origin: abstract_origin_string = abstract_origin.group(0).strip() if linkage_name: linkage_name_string = linkage_name.group(0).strip() if "DW_AT_call_file" in file_string and "DW_AT_decl_file" in file_string: raise RuntimeError("I misunderstand DWARF") if "DW_AT_call_file" in file_string or "DW_AT_decl_file" in file_string: filename = file_string.split('"')[1] line_num = line_string.split("(")[1].split(")")[0] if "DW_AT_call_file" in file_string: panicinfo["call_file"] = filename panicinfo["call_line"] = line_num if "DW_AT_decl_file" in file_string: panicinfo["decl_file"] = filename panicinfo["decl_line"] = line_num if not "/core/" in filename: if not "closure" in abstract_origin_string: panicinfo["best_guess_source"] = "call/decl" else: panicinfo["best_guess_source"] = "call-closure-line-info" panic_list.append(panicinfo) continue else: # 'core' in filename (parent_file, parent_line) = check_for_source_in_parent(elf, addr) if parent_file: panicinfo["parent_call_file"] = parent_file panicinfo["parent_call_line"] = parent_line panicinfo["best_guess_source"] = "parent" panic_list.append(panicinfo) continue elif not abstract_origin and not linkage_name: no_info_panic_list.append(panicinfo) continue elif abstract_origin: if "core" in abstract_origin_string: name = matches_panic_funcs(abstract_origin_string) if name: within_core_panic_list.append(panicinfo) continue else: name2 = any_origin_matches_panic_func(elf, addr) name3 = any_linkage_matches_panic_func(elf, addr) if name2: within_core_panic_list.append(panicinfo) continue elif name3: within_core_panic_list.append(panicinfo) continue else: no_info_panic_list.append(panicinfo) continue elif "closure" in abstract_origin_string: # not in core, in closure, line info is probably sufficient panicinfo["best_guess_source"] = "lineinfo" panic_list.append(panicinfo) continue else: # i have not seen this happen -- core in file, not closure, origin not core raise RuntimeError("Unhandled") if linkage_name: name = matches_panic_funcs(linkage_name_string) if name: within_core_panic_list.append(panicinfo) continue else: no_info_panic_list.append(panicinfo) print( "Failed to match panic but we probably have enough info to trace it up. Linkage name: {}, addr: {}".format( linkage_name_string, addr ) ) continue no_info_panic_list.append(panic_info) print("did not find source for panic: {}".format(addr)) continue elif abstract_origin: origin = abstract_origin_string.split('"')[1] panicinfo["abstract_origin"] = origin if "core" in origin: if matches_panic_funcs(origin): within_core_panic_list.append(panicinfo) continue no_info_panic_list.append(panicinfo) print( "Probably could add this origin or one of its parents to the panic function list: {}".format( abstract_origin_string ) ) continue else: panicinfo["best_guess_source"] = "abstract_origin + line" panic_list.append(panicinfo) continue else: # This gets hit for OUTLINED_FUNCTION_XX a bunch on ARM try: dw_at_name_string = re.findall(dw_at_name_re, dwarfdump)[ -1 ].strip() # see multiple matches for this string sometimes function_name = dw_at_name_string.split('"')[1] if "OUTLINED_FUNCTION_" in function_name: # This is a common pattern where panicing paths are repeated in many # places throughout the binary, and LLVMs optimizer outlines the repeated code. # Let's add these to the list of panicing functions, dynamically so this is resilient to # changes in the binary. if function_name not in panic_functions: # don't double insert panic_functions.append( function_name + ">" ) # so FUNCTION_22 does not catch FUNCTION_222 within_core_panic_list.append(panicinfo) continue no_info_panic_list.append(panicinfo) continue except: # There seem to be a places where lookup fails completely # Not easy to recover, log these and continue on. no_info_panic_list.append(panicinfo) continue raise RuntimeError("BUG: Should not reach here") return (panic_list, within_core_panic_list, no_info_panic_list) def pretty_print(panicinfo): if panicinfo["best_guess_source"] == "call/decl": try: print( "\t{} -- {}:{}".format( panicinfo["addr"], panicinfo["call_file"], panicinfo["call_line"] ) ) except: print( "\t{} -- in function starting at {}:{}".format( panicinfo["addr"], panicinfo["decl_file"], panicinfo["decl_line"] ) ) elif panicinfo["best_guess_source"] == "parent": print( "\t{} -- at or in function starting at {}:{}".format( panicinfo["addr"], panicinfo["parent_call_file"], panicinfo["parent_call_line"], ) ) elif panicinfo["best_guess_source"] == "lineinfo": print( "\t{} -- in closure, try: {}".format( panicinfo["addr"], panicinfo["line_info"] ) ) elif panicinfo["best_guess_source"] == "abstract_origin + line": print( "\t{} -- line_info: {} from origin :{}".format( panicinfo["addr"], panicinfo["line_info"], panicinfo["abstract_origin"] ) ) elif panicinfo["best_guess_source"] == "call-closure-line-info": print( "\t{} -- in closure starting on line_info: {}".format( panicinfo["addr"], panicinfo["line_info"] ) ) else: raise RuntimeError("Missing best guess source: {}".format(panicinfo)) def main(): args = parse_args() if sys.version_info.minor < 7: print("This tool requires Python 3.7+") return -1 print("Tock panic report for " + args.ELF) objdump = ARM_OBJDUMP if args.riscv: objdump = RISCV_OBJDUMP (panic_list, within_core_panic_list, no_info_panic_list) = find_all_panics( objdump, args.ELF, args.riscv ) print("num_panics: {}".format(len(panic_list))) buckets_list = {} for f in panic_functions: buckets_list[f] = [] for panic in panic_list: buckets_list[panic["function"]].append(panic) for f, l in buckets_list.items(): if len(l) > 0: print("{}: {}".format(f, len(l))) for p in l: pretty_print(p) if args.verbose: print(p) print() print("num panics in core ignored: {}".format(len(within_core_panic_list))) print("num panics for which no info available: {}".format(len(no_info_panic_list))) if args.verbose: print( "If more debug info is needed, run dwarfdump directly on the address in question." ) if __name__ == "__main__": main()
[ 7, 10, 11, 12, 13 ]
1,337
9b8db3407313a3e39d429b7c10897fc447fcdc27
<mask token> class Solution(object): <mask token>
<mask token> class Solution(object): def exist(self, board, word): """ :type board: List[List[str]] :type word: str :rtype: bool """ def dfs(i, j, word, visited=set()): if not word: return True for ni, nj in ((i + 1, j), (i - 1, j), (i, j + 1), (i, j - 1)): if 0 <= ni < m and 0 <= nj < n and (ni, nj) not in visited: if board[ni][nj] == word[0]: if dfs(ni, nj, word[1:], visited | {(ni, nj)}): return True return False m, n = len(board), len(board[0]) for i in range(m): for j in range(n): if board[i][j] == word[0]: if dfs(i, j, word[1:], set([(i, j)])): return True return False
class Solution(object): <mask token> class Solution(object): def exist(self, board, word): """ :type board: List[List[str]] :type word: str :rtype: bool """ def dfs(i, j, word, visited=set()): if not word: return True for ni, nj in ((i + 1, j), (i - 1, j), (i, j + 1), (i, j - 1)): if 0 <= ni < m and 0 <= nj < n and (ni, nj) not in visited: if board[ni][nj] == word[0]: if dfs(ni, nj, word[1:], visited | {(ni, nj)}): return True return False m, n = len(board), len(board[0]) for i in range(m): for j in range(n): if board[i][j] == word[0]: if dfs(i, j, word[1:], set([(i, j)])): return True return False
class Solution(object): def exist(self, board, word): """ :type board: List[List[str]] :type word: str :rtype: bool """ if not board or not board[0]: return not word self.length = len(word) def hasPathCore(row, col, depth=0): if self.length == depth: return True hasPath = False if 0 <= row and row < len(board) and 0 <= col and col < len(board [0]) and board[row][col] == word[depth] and not visited[row][ col]: visited[row][col] = True up = hasPathCore(row - 1, col, depth + 1) down = hasPathCore(row + 1, col, depth + 1) left = hasPathCore(row, col - 1, depth + 1) right = hasPathCore(row, col + 1, depth + 1) hasPath = up or down or left or right if not hasPath: visited[row][col] = False return hasPath visited = [([False] * len(board[0])) for _ in range(len(board))] for i in range(len(board)): for j in range(len(board[0])): if hasPathCore(i, j, 0): return True return False class Solution(object): def exist(self, board, word): """ :type board: List[List[str]] :type word: str :rtype: bool """ def dfs(i, j, word, visited=set()): if not word: return True for ni, nj in ((i + 1, j), (i - 1, j), (i, j + 1), (i, j - 1)): if 0 <= ni < m and 0 <= nj < n and (ni, nj) not in visited: if board[ni][nj] == word[0]: if dfs(ni, nj, word[1:], visited | {(ni, nj)}): return True return False m, n = len(board), len(board[0]) for i in range(m): for j in range(n): if board[i][j] == word[0]: if dfs(i, j, word[1:], set([(i, j)])): return True return False
class Solution(object): def exist(self, board, word): """ :type board: List[List[str]] :type word: str :rtype: bool """ if not board or not board[0]: return not word self.length = len(word) def hasPathCore(row, col, depth=0): if self.length == depth: return True hasPath = False if 0 <= row and row < len(board) and \ 0 <= col and col < len(board[0]) and \ board[row][col] == word[depth] and \ not visited[row][col]: visited[row][col] = True up = hasPathCore(row - 1, col, depth + 1) down = hasPathCore(row + 1, col, depth + 1) left = hasPathCore(row, col - 1, depth + 1) right = hasPathCore(row, col + 1, depth + 1) hasPath = up or down or left or right if not hasPath: visited[row][col] = False return hasPath visited = [[False] * len(board[0]) for _ in range(len(board))] for i in range(len(board)): for j in range(len(board[0])): if hasPathCore(i, j, 0): return True return False # python, dfs解法 class Solution(object): def exist(self, board, word): """ :type board: List[List[str]] :type word: str :rtype: bool """ def dfs(i, j, word, visited=set()): # Base case if not word: return True for ni, nj in ((i + 1, j), (i - 1, j), (i, j + 1), (i, j - 1)): # 搜索相邻的,且没有被访问过的位置 if 0 <= ni < m and 0 <= nj < n and (ni, nj) not in visited: # 这个位置字符和word开头对上了 if board[ni][nj] == word[0]: # 在下一层中,找到了一个成功的方向,即刻返回true if dfs(ni, nj, word[1:], visited | {(ni, nj)}): return True return False m, n = len(board), len(board[0]) for i in range(m): for j in range(n): # 开头对上了,进入下一层寻找 if board[i][j] == word[0]: # 剩下的依然匹配,则返回true if dfs(i, j, word[1:], set([(i, j)])): return True return False
[ 1, 2, 3, 4, 5 ]
1,338
01ede703e36268dc9b3331b21726c24674a43817
<mask token>
<mask token> for i in range(0, 10): lista.append(int(input())) while z < j: c = lista[z] lista[z] = lista[j] lista[j] = c z += 1 j -= 1 print(lista)
lista = [] z = 0 j = 9 for i in range(0, 10): lista.append(int(input())) while z < j: c = lista[z] lista[z] = lista[j] lista[j] = c z += 1 j -= 1 print(lista)
null
null
[ 0, 1, 2 ]
1,339
2c960685eaa14861c1c5b3ddb38b366a3e0e8e86
#!/usr/bin/evn python #-*-coding:utf8 -*- import os, sys, json class settings(object): filename = '' config = {} def __init__(self): self.DEBUG = os.environ.get('RdsMonitor_DEBUG', 0) def get_settings(self): """Parses the settings from redis-live.conf. """ # TODO: Consider YAML. Human writable, machine readable. with open(self.filename) as fp: try: return json.load(fp) except Exception, e: if self.DEBUG: print >>sys.stderr, 'get_settings exception:', e return {} def get_redis_servers(self): if self.DEBUG: print >>sys.stderr, "get_redis_servers config:%s"%self.config return self.config.get("RedisServers", '') def get_redis_stats_server(self): if self.DEBUG: print >>sys.stderr, "get_redis_stats_server config:%s"%self.config return self.config.get("RedisStatsServer", '') def get_data_store_type(self): if self.DEBUG: print >>sys.stderr, "get_redis_stats_server config:%s"%self.config return self.config.get("DataStoreType", '') def get_sqlite_stats_store(self): if self.DEBUG: print >>sys.stderr, "get_redis_stats_server config:%s"%self.config return self.config.get("SqliteStatsStore", '')
null
null
null
null
[ 0 ]
1,340
5b33615e1890631bac68801310e4b606ac41cb13
<mask token> class TestTimeDehydration(_TestTemporalDehydrationV1): @pytest.fixture def hydration_handler(self): return HydrationHandler() <mask token> <mask token> def test_pandas_date_time_fixed_offset(self, assert_transforms): dt = pd.Timestamp('2018-10-12T11:37:41.474716862+0100') assert_transforms(dt, Structure(b'I', 1539340661, 474716862, 3600)) def test_date_time_fixed_negative_offset(self, assert_transforms): dt = DateTime(2018, 10, 12, 11, 37, 41, 474716862, pytz.FixedOffset (-60)) assert_transforms(dt, Structure(b'I', 1539347861, 474716862, -3600)) <mask token> <mask token> <mask token> def test_native_date_time_zone_id(self, assert_transforms): dt = datetime.datetime(2018, 10, 12, 11, 37, 41, 474716) dt = pytz.timezone('Europe/Stockholm').localize(dt) assert_transforms(dt, Structure(b'i', 1539337061, 474716000, 'Europe/Stockholm')) @pytest.mark.parametrize(('dt', 'fields'), ((pd.Timestamp( '2018-10-12T11:37:41.474716862+0200', tz='Europe/Stockholm'), ( 1539337061, 474716862, 'Europe/Stockholm')), (pd.Timestamp((1032 * 24 + 2) * 3600 * 1000000000 + 1001000001, tz='Europe/London'), (( 1032 * 24 + 2) * 3600 + 1, 1000001, 'Europe/London')), (pd. Timestamp((1032 * 24 + 1) * 3600 * 1000000000 + 1001000001, tz= 'Europe/London'), ((1032 * 24 + 1) * 3600 + 1, 1000001, 'Europe/London')))) def test_pandas_date_time_zone_id(self, dt, fields, assert_transforms): assert_transforms(dt, Structure(b'i', *fields))
<mask token> class TestTimeDehydration(_TestTemporalDehydrationV1): @pytest.fixture def hydration_handler(self): return HydrationHandler() <mask token> <mask token> def test_pandas_date_time_fixed_offset(self, assert_transforms): dt = pd.Timestamp('2018-10-12T11:37:41.474716862+0100') assert_transforms(dt, Structure(b'I', 1539340661, 474716862, 3600)) def test_date_time_fixed_negative_offset(self, assert_transforms): dt = DateTime(2018, 10, 12, 11, 37, 41, 474716862, pytz.FixedOffset (-60)) assert_transforms(dt, Structure(b'I', 1539347861, 474716862, -3600)) def test_native_date_time_fixed_negative_offset(self, assert_transforms): dt = datetime.datetime(2018, 10, 12, 11, 37, 41, 474716, pytz. FixedOffset(-60)) assert_transforms(dt, Structure(b'I', 1539347861, 474716000, -3600)) <mask token> <mask token> def test_native_date_time_zone_id(self, assert_transforms): dt = datetime.datetime(2018, 10, 12, 11, 37, 41, 474716) dt = pytz.timezone('Europe/Stockholm').localize(dt) assert_transforms(dt, Structure(b'i', 1539337061, 474716000, 'Europe/Stockholm')) @pytest.mark.parametrize(('dt', 'fields'), ((pd.Timestamp( '2018-10-12T11:37:41.474716862+0200', tz='Europe/Stockholm'), ( 1539337061, 474716862, 'Europe/Stockholm')), (pd.Timestamp((1032 * 24 + 2) * 3600 * 1000000000 + 1001000001, tz='Europe/London'), (( 1032 * 24 + 2) * 3600 + 1, 1000001, 'Europe/London')), (pd. Timestamp((1032 * 24 + 1) * 3600 * 1000000000 + 1001000001, tz= 'Europe/London'), ((1032 * 24 + 1) * 3600 + 1, 1000001, 'Europe/London')))) def test_pandas_date_time_zone_id(self, dt, fields, assert_transforms): assert_transforms(dt, Structure(b'i', *fields))
<mask token> class TestTimeDehydration(_TestTemporalDehydrationV1): @pytest.fixture def hydration_handler(self): return HydrationHandler() <mask token> def test_native_date_time_fixed_offset(self, assert_transforms): dt = datetime.datetime(2018, 10, 12, 11, 37, 41, 474716, pytz. FixedOffset(60)) assert_transforms(dt, Structure(b'I', 1539340661, 474716000, 3600)) def test_pandas_date_time_fixed_offset(self, assert_transforms): dt = pd.Timestamp('2018-10-12T11:37:41.474716862+0100') assert_transforms(dt, Structure(b'I', 1539340661, 474716862, 3600)) def test_date_time_fixed_negative_offset(self, assert_transforms): dt = DateTime(2018, 10, 12, 11, 37, 41, 474716862, pytz.FixedOffset (-60)) assert_transforms(dt, Structure(b'I', 1539347861, 474716862, -3600)) def test_native_date_time_fixed_negative_offset(self, assert_transforms): dt = datetime.datetime(2018, 10, 12, 11, 37, 41, 474716, pytz. FixedOffset(-60)) assert_transforms(dt, Structure(b'I', 1539347861, 474716000, -3600)) <mask token> <mask token> def test_native_date_time_zone_id(self, assert_transforms): dt = datetime.datetime(2018, 10, 12, 11, 37, 41, 474716) dt = pytz.timezone('Europe/Stockholm').localize(dt) assert_transforms(dt, Structure(b'i', 1539337061, 474716000, 'Europe/Stockholm')) @pytest.mark.parametrize(('dt', 'fields'), ((pd.Timestamp( '2018-10-12T11:37:41.474716862+0200', tz='Europe/Stockholm'), ( 1539337061, 474716862, 'Europe/Stockholm')), (pd.Timestamp((1032 * 24 + 2) * 3600 * 1000000000 + 1001000001, tz='Europe/London'), (( 1032 * 24 + 2) * 3600 + 1, 1000001, 'Europe/London')), (pd. Timestamp((1032 * 24 + 1) * 3600 * 1000000000 + 1001000001, tz= 'Europe/London'), ((1032 * 24 + 1) * 3600 + 1, 1000001, 'Europe/London')))) def test_pandas_date_time_zone_id(self, dt, fields, assert_transforms): assert_transforms(dt, Structure(b'i', *fields))
<mask token> class TestTimeDehydration(_TestTemporalDehydrationV1): @pytest.fixture def hydration_handler(self): return HydrationHandler() def test_date_time_fixed_offset(self, assert_transforms): dt = DateTime(2018, 10, 12, 11, 37, 41, 474716862, pytz.FixedOffset(60) ) assert_transforms(dt, Structure(b'I', 1539340661, 474716862, 3600)) def test_native_date_time_fixed_offset(self, assert_transforms): dt = datetime.datetime(2018, 10, 12, 11, 37, 41, 474716, pytz. FixedOffset(60)) assert_transforms(dt, Structure(b'I', 1539340661, 474716000, 3600)) def test_pandas_date_time_fixed_offset(self, assert_transforms): dt = pd.Timestamp('2018-10-12T11:37:41.474716862+0100') assert_transforms(dt, Structure(b'I', 1539340661, 474716862, 3600)) def test_date_time_fixed_negative_offset(self, assert_transforms): dt = DateTime(2018, 10, 12, 11, 37, 41, 474716862, pytz.FixedOffset (-60)) assert_transforms(dt, Structure(b'I', 1539347861, 474716862, -3600)) def test_native_date_time_fixed_negative_offset(self, assert_transforms): dt = datetime.datetime(2018, 10, 12, 11, 37, 41, 474716, pytz. FixedOffset(-60)) assert_transforms(dt, Structure(b'I', 1539347861, 474716000, -3600)) def test_pandas_date_time_fixed_negative_offset(self, assert_transforms): dt = pd.Timestamp('2018-10-12T11:37:41.474716862-0100') assert_transforms(dt, Structure(b'I', 1539347861, 474716862, -3600)) def test_date_time_zone_id(self, assert_transforms): dt = DateTime(2018, 10, 12, 11, 37, 41, 474716862) dt = pytz.timezone('Europe/Stockholm').localize(dt) assert_transforms(dt, Structure(b'i', 1539337061, 474716862, 'Europe/Stockholm')) def test_native_date_time_zone_id(self, assert_transforms): dt = datetime.datetime(2018, 10, 12, 11, 37, 41, 474716) dt = pytz.timezone('Europe/Stockholm').localize(dt) assert_transforms(dt, Structure(b'i', 1539337061, 474716000, 'Europe/Stockholm')) @pytest.mark.parametrize(('dt', 'fields'), ((pd.Timestamp( '2018-10-12T11:37:41.474716862+0200', tz='Europe/Stockholm'), ( 1539337061, 474716862, 'Europe/Stockholm')), (pd.Timestamp((1032 * 24 + 2) * 3600 * 1000000000 + 1001000001, tz='Europe/London'), (( 1032 * 24 + 2) * 3600 + 1, 1000001, 'Europe/London')), (pd. Timestamp((1032 * 24 + 1) * 3600 * 1000000000 + 1001000001, tz= 'Europe/London'), ((1032 * 24 + 1) * 3600 + 1, 1000001, 'Europe/London')))) def test_pandas_date_time_zone_id(self, dt, fields, assert_transforms): assert_transforms(dt, Structure(b'i', *fields))
# Copyright (c) "Neo4j" # Neo4j Sweden AB [https://neo4j.com] # # This file is part of Neo4j. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import pandas as pd import pytest import pytz from neo4j._codec.hydration.v2 import HydrationHandler from neo4j._codec.packstream import Structure from neo4j.time import DateTime from ..v1.test_temporal_dehydration import ( TestTimeDehydration as _TestTemporalDehydrationV1, ) class TestTimeDehydration(_TestTemporalDehydrationV1): @pytest.fixture def hydration_handler(self): return HydrationHandler() def test_date_time_fixed_offset(self, assert_transforms): dt = DateTime(2018, 10, 12, 11, 37, 41, 474716862, pytz.FixedOffset(60)) assert_transforms( dt, Structure(b"I", 1539340661, 474716862, 3600) ) def test_native_date_time_fixed_offset(self, assert_transforms): dt = datetime.datetime(2018, 10, 12, 11, 37, 41, 474716, pytz.FixedOffset(60)) assert_transforms( dt, Structure(b"I", 1539340661, 474716000, 3600) ) def test_pandas_date_time_fixed_offset(self, assert_transforms): dt = pd.Timestamp("2018-10-12T11:37:41.474716862+0100") assert_transforms(dt, Structure(b"I", 1539340661, 474716862, 3600)) def test_date_time_fixed_negative_offset(self, assert_transforms): dt = DateTime(2018, 10, 12, 11, 37, 41, 474716862, pytz.FixedOffset(-60)) assert_transforms( dt, Structure(b"I", 1539347861, 474716862, -3600) ) def test_native_date_time_fixed_negative_offset(self, assert_transforms): dt = datetime.datetime(2018, 10, 12, 11, 37, 41, 474716, pytz.FixedOffset(-60)) assert_transforms( dt, Structure(b"I", 1539347861, 474716000, -3600) ) def test_pandas_date_time_fixed_negative_offset(self, assert_transforms): dt = pd.Timestamp("2018-10-12T11:37:41.474716862-0100") assert_transforms(dt, Structure(b"I", 1539347861, 474716862, -3600)) def test_date_time_zone_id(self, assert_transforms): dt = DateTime(2018, 10, 12, 11, 37, 41, 474716862) dt = pytz.timezone("Europe/Stockholm").localize(dt) # offset should be UTC+2 (7200 seconds) assert_transforms( dt, Structure(b"i", 1539337061, 474716862, "Europe/Stockholm") ) def test_native_date_time_zone_id(self, assert_transforms): dt = datetime.datetime(2018, 10, 12, 11, 37, 41, 474716) dt = pytz.timezone("Europe/Stockholm").localize(dt) # offset should be UTC+2 (7200 seconds) assert_transforms( dt, Structure(b"i", 1539337061, 474716000, "Europe/Stockholm") ) @pytest.mark.parametrize(("dt", "fields"), ( ( pd.Timestamp("2018-10-12T11:37:41.474716862+0200", tz="Europe/Stockholm"), (1539337061, 474716862, "Europe/Stockholm"), ), ( # 1972-10-29 02:00:01.001000001+0100 pre DST change pd.Timestamp((1032 * 24 + 2) * 3600 * 1000000000 + 1001000001, tz="Europe/London"), ((1032 * 24 + 2) * 3600 + 1, 1000001, "Europe/London"), ), ( # 1972-10-29 02:00:01.001000001+0000 post DST change pd.Timestamp((1032 * 24 + 1) * 3600 * 1000000000 + 1001000001, tz="Europe/London"), ((1032 * 24 + 1) * 3600 + 1, 1000001, "Europe/London"), ) )) def test_pandas_date_time_zone_id(self, dt, fields, assert_transforms): assert_transforms(dt, Structure(b"i", *fields))
[ 6, 7, 8, 11, 13 ]
1,341
33867677611ceb757f6973eb70368c9f75f3ce92
# system import os import numpy as np import random import copy import time # ROS import rospy import std_msgs.msg import sensor_msgs.msg import geometry_msgs.msg import visualization_msgs.msg import tf2_ros import rosbag import actionlib from actionlib_msgs.msg import GoalStatus import ros_numpy # spartan ROS import spartan_grasp_msgs.msg import spartan_grasp_msgs.srv import pdc_ros_msgs.msg import fusion_server.msg import fusion_server.srv # spartan import spartan.utils.utils as spartanUtils import spartan.utils.ros_utils as rosUtils import spartan.utils.director_utils as director_utils import spartan.utils.control_utils as control_utils from spartan.manipulation.schunk_driver import SchunkDriver import fusion_server from fusion_server.srv import * import spartan.manipulation.gripper from spartan.poser.poser_visualizer import PoserVisualizer from spartan.manipulation.grasp_data import GraspData from spartan.manipulation.object_manipulation import ObjectManipulation from spartan.manipulation.category_manipulation_type import CategoryManipulationType from spartan.utils.director_ros_visualizer import DirectorROSVisualizer # director from director import transformUtils from director import visualization as vis import director.objectmodel as om import director.vtkNumpy as vnp from director.debugVis import DebugData import director.vtkAll as vtk import director.segmentation as segmentation import director.filterUtils as filterUtils USING_DIRECTOR = True if USING_DIRECTOR: from spartan.utils.taskrunner import TaskRunner MUG_RACK_CONFIG_FILE = os.path.join(spartanUtils.getSpartanSourceDir(), "src/catkin_projects/station_config/RLG_iiwa_1/manipulation/mug_rack.yaml") # IF true limits you to this speed DEBUG_SPEED = 20 # degrees per second USE_DEBUG_SPEED = False MANIP_TYPE = CategoryManipulationType.SHOE_ON_RACK # MANIP_TYPE = CategoryManipulationType.MUG_ON_SHELF_3D EXPERIMENT_MODE = True class GraspSupervisorState(object): STATUS_LIST = ["ABOVE_TABLE", "PRE_GRASP", "GRASP", "IK_FAILED", "NO_GRASP_FOUND", "GRASP_FOUND", "OBJECT_IN_GRIPPER", "GRASP_FAILED", "SAFETY_CHECK_FAILED", "PLANNING_FAILED", "FAILED"] def __init__(self): self.setPickFront() self.clear() def setPickFront(self): self.graspingLocation = "front" self.stowLocation = "left" def setPickLeft(self): self.graspingLocation = "left" self.stowLocation = "front" @property def grasp_data(self): return self._grasp_data @grasp_data.setter def grasp_data(self, value): """ :param value: GraspData :return: """ self._grasp_data = value @property def cache(self): return self._cache def clear(self): """ Clear any stateful elements of the state :return: """ self._grasp_data = None self._status = None self._cache = dict() self._trajectory_result = None def clear_cache(self): """ Clears only the cache :return: """ self._cache = dict() def set_status(self, status): assert status in GraspSupervisorState.STATUS_LIST self._status = status @property def status(self): return self._status @status.setter def status(self, status): assert status in GraspSupervisorState.STATUS_LIST self._status = status def set_status_ik_failed(self): self.status = "IK_FAILED" def print_status(self): """ Prints the status :return: """ if self._status is None: print "Current Status: None" else: print "Current Status: " + self._status class GraspSupervisor(object): def __init__(self, graspingParamsFile=None, cameraSerialNumber="carmine_1", tfBuffer=None): self.graspingParamsFile = graspingParamsFile self.reloadParams() self.cameraSerialNumber = cameraSerialNumber self.cameraName = 'camera_' + str(cameraSerialNumber) self.pointCloudTopic = '/' + str(self.cameraName) + '/depth/points' self.rgbImageTopic = '/' + str(self.cameraName) + '/rgb/image_rect_color' self.depthImageTopic = '/' + str(self.cameraName) + '/depth_registered/sw_registered/image_rect' self.camera_info_topic = '/' + str(self.cameraName) + '/rgb/camera_info' self.graspFrameName = 'base' self.ggcnn_grasp_frame_camera_axes_id = "ggcnn_grasp" self.depthOpticalFrameName = self.cameraName + "_depth_optical_frame" self.rgbOpticalFrameName = self.cameraName + "_rgb_optical_frame" self.state = GraspSupervisorState() self.robotService = rosUtils.RobotService.makeKukaRobotService() self.robotService._use_debug_speed = USE_DEBUG_SPEED self.robotService._debug_speed = DEBUG_SPEED self.usingDirector = True self.tfBuffer = tfBuffer # don't create a new one if it is passed in self.setupConfig() self._grasp_point = None # stores the grasp point to be used in grasp3DLocation self._cache = dict() self._gripper = spartan.manipulation.gripper.Gripper.make_schunk_gripper() self._poser_visualizer = PoserVisualizer.make_default() self.poser_result = None self._object_manipulation = None self._category_manip = None # can be assigned later as needed self._shoe_manipulation_counter = 0 filename = os.path.join(os.path.join(spartanUtils.getSpartanSourceDir(), 'src/catkin_projects/station_config/RLG_iiwa_1/stored_poses.yaml')) self._stored_poses_director = spartanUtils.getDictFromYamlFilename(filename) if USING_DIRECTOR: self.taskRunner = TaskRunner() self.taskRunner.callOnThread(self.setup) else: self.setup() self.debugMode = False if self.debugMode: print "\n\n----------WARNING GRASP SUPERVISOR IN DEBUG MODE----------\n" # if self.debugMode: # self.pointCloudListMsg = GraspSupervisor.getDefaultPointCloudListMsg() def reloadParams(self): self.graspingParams = spartanUtils.getDictFromYamlFilename(self.graspingParamsFile) def setup(self): self.setupSubscribers() self.setupPublishers() self.setupTF() self.setupROSActions() self.gripperDriver = SchunkDriver() self.setup_visualization() def _clear_cache(self): """ Clears our local cache of variables :return: """ self._cache = dict() def setupDirector(self): self.taskRunner.callOnThread(self.setup) def setupConfig(self): self.config = dict() self.config['base_frame_id'] = "base" self.config['end_effector_frame_id'] = "iiwa_link_ee" self.config['pick_up_distance'] = 0.25 # distance to move above the table after grabbing the object self.config["sleep_time_for_sensor_collect"] = 0.1 self.config['scan'] = dict() self.config['scan']['pose_list'] = ['scan_left_close', 'scan_above_table', 'scan_right'] self.config['scan']['joint_speed'] = 45 self.config['grasp_speed'] = 20 normal_speed = 30 self.config['speed'] = dict() self.config['speed']['stow'] = normal_speed self.config['speed']['pre_grasp'] = normal_speed self.config['speed']['grasp'] = 10 self.config['home_pose_name'] = 'above_table_pre_grasp' self.config['grasp_nominal_direction'] = np.array([1, 0, 0]) # x forwards self.config['grasp_to_ee'] = dict() self.config["object_interaction"] = dict() self.config["object_interaction"]["speed"] = 10 self.config["object_interaction"]["rotate_speed"] = 30 self.config["object_interaction"]["pickup_distance"] = 0.15 # self.config["object_interaction"]["drop_distance_above_grasp"] = 0.035 # good for shoes self.config["object_interaction"]["drop_distance_above_grasp"] = 0.002 # good for mugs self.config["object_interaction"]["drop_location"] = [0.65, 0, 0.5] # z coordinate is overwritten later self.graspToIiwaLinkEE = spartanUtils.transformFromPose( self.graspingParams['gripper_palm_to_ee']) self.iiwaLinkEEToGraspFrame = self.graspToIiwaLinkEE.GetLinearInverse() self.gripper_fingertip_to_iiwa_link_ee = spartanUtils.transformFromPose( self.graspingParams['gripper_fingertip_to_ee']) self.T_gripper_fingertip__iiwa_link_ee = self.gripper_fingertip_to_iiwa_link_ee.GetLinearInverse() pos = [-0.15, 0, 0] quat = [1, 0, 0, 0] self.preGraspToGraspTransform = transformUtils.transformFromPose(pos, quat) def setupSubscribers(self): self.pointCloudSubscriber = rosUtils.SimpleSubscriber(self.pointCloudTopic, sensor_msgs.msg.PointCloud2) self.rgbImageSubscriber = rosUtils.SimpleSubscriber(self.rgbImageTopic, sensor_msgs.msg.Image) self.depthImageSubscriber = rosUtils.SimpleSubscriber(self.depthImageTopic, sensor_msgs.msg.Image) self.camera_info_subscriber = rosUtils.SimpleSubscriber(self.camera_info_topic, sensor_msgs.msg.CameraInfo) self.pointCloudSubscriber.start() self.rgbImageSubscriber.start() self.depthImageSubscriber.start() self.camera_info_subscriber.start() self.clicked_point_subscriber = rosUtils.SimpleSubscriber("/clicked_point", geometry_msgs.msg.PointStamped, self.on_clicked_point) self.clicked_point_subscriber.start() self.ggcnn_subscriber = rosUtils.SimpleSubscriber('ggcnn/out/command', std_msgs.msg.Float32MultiArray) def setupPublishers(self): """ Sets up some ROS publishers """ self.rviz_marker_publisher = rospy.Publisher("/spartan_grasp/visualization_marker", visualization_msgs.msg.Marker, queue_size=1) self.rviz_marker_array_publisher = rospy.Publisher("/grasp_supervisor/visualization_marker_array", visualization_msgs.msg.MarkerArray, queue_size=1) self.grasp_pointcloud_publisher = rospy.Publisher("/grasp_supervisor/points", sensor_msgs.msg.PointCloud2, queue_size=1) def setup_visualization(self): self._vis_container = om.getOrCreateContainer("grasp supervisor") def on_clicked_point(self, clicked_point_msg): """ Visualizes the clicked point in rviz """ print "received a /clicked_point message . . . visualizing" pos = clicked_point_msg.point x, y, z = pos.x, pos.y, pos.z marker = visualization_msgs.msg.Marker() marker.header.frame_id = "base" marker.header.stamp = rospy.Time.now() marker.ns = "clicked_point" marker.id = 0 marker.type = visualization_msgs.msg.Marker.SPHERE marker.action = visualization_msgs.msg.Marker.ADD marker.pose.position.x = x marker.pose.position.y = y marker.pose.position.z = z marker.pose.orientation.x = 0.0 marker.pose.orientation.y = 0.0 marker.pose.orientation.z = 0.0 marker.pose.orientation.w = 1.0 marker.scale.x = 0.03 marker.scale.y = 0.03 marker.scale.z = 0.03 marker.color.a = 1.0 marker.color.r = 1.0 marker.color.g = 0.0 marker.color.b = 0.0 # hack to get around director funny business for i in xrange(0, 5): self.rviz_marker_publisher.publish(marker) rospy.sleep(0.02) def get_clicked_point(self): """ Returns the stored clicked point. If there is none it raises and error rtype: geometry_msgs.Point """ lastMsg = self.clicked_point_subscriber.lastMsg if lastMsg is None: raise ValueError("No /clicked_point messages found.") return lastMsg.point def setupROSActions(self): actionName = '/spartan_grasp/GenerateGraspsFromPointCloudList' self.generate_grasps_client = actionlib.SimpleActionClient(actionName, spartan_grasp_msgs.msg.GenerateGraspsFromPointCloudListAction) actionName = '/spartan_grasp/Grasp3DLocation' self.grasp_3D_location_client = actionlib.SimpleActionClient(actionName, spartan_grasp_msgs.msg.Grasp3DLocationAction) findBestBatchActionName = '/FindBestMatch' self.find_best_match_client = actionlib.SimpleActionClient(findBestBatchActionName, pdc_ros_msgs.msg.FindBestMatchAction) poser_action_name = '/Poser' self.poser_client = actionlib.SimpleActionClient(poser_action_name, pdc_ros_msgs.msg.DeformableRegistrationAction) category_manipulation_name = "/CategoryManipulation" self.category_manip_client = actionlib.SimpleActionClient(category_manipulation_name, pdc_ros_msgs.msg.CategoryManipulationAction) action_name = "/KeypointDetection" self.keypoint_detection_client = actionlib.SimpleActionClient(action_name, pdc_ros_msgs.msg.KeypointDetectionAction) action_name = "/PoseEstimation" self.pose_estimation_client = actionlib.SimpleActionClient(action_name, pdc_ros_msgs.msg.EstimatePoseAction) action_name = "/SaveRGBD" self.save_RGBD_client = actionlib.SimpleActionClient(action_name, pdc_ros_msgs.msg.KeypointDetectionAction) def setupTF(self): if self.tfBuffer is None: self.tfBuffer = tf2_ros.Buffer() self.tfListener = tf2_ros.TransformListener(self.tfBuffer) self.tfBroadcaster = tf2_ros.TransformBroadcaster() def getDepthOpticalFrameToWorldTransform(self): depth_optical_frame_to_world = self.tfBuffer.lookup_transform("base", self.depthOpticalFrameName, rospy.Time(0)) return depth_optical_frame_to_world def get_transform(self, from_name, to_name, ros_time=None): if ros_time is None: ros_time = rospy.Time(0) transform_stamped_msg = self.tfBuffer.lookup_transform(to_name, from_name, ros_time) # convert to vtkTransform pos, quat = rosUtils.poseFromROSTransformMsg(transform_stamped_msg.transform) return pos, quat def getRgbOpticalFrameToWorldTransform(self, time=None): """ :param time: :type time: :return: geometry_msgs/TransformStamped :rtype: """ if time is None: time = rospy.Time(0) rgb_optical_frame_to_world = self.tfBuffer.lookup_transform("base", self.rgbOpticalFrameName, time) return rgb_optical_frame_to_world def capturePointCloudAndCameraTransform(self, cameraOrigin=[0, 0, 0]): """ Captures the current PointCloud2 from the sensor. Also records the pose of camera frame. """ # sleep to transforms can update msg = spartan_grasp_msgs.msg.PointCloudWithTransform() msg.header.stamp = rospy.Time.now() msg.camera_origin.x = cameraOrigin[0] msg.camera_origin.y = cameraOrigin[1] msg.camera_origin.z = cameraOrigin[2] msg.point_cloud_to_base_transform = self.getDepthOpticalFrameToWorldTransform() msg.point_cloud = self.pointCloudSubscriber.waitForNextMessage() self.testData = msg # for debugging return msg def captureRgbdAndCameraTransform(self, cameraOrigin=[0, 0, 0]): # sleep to transforms can update msg = pdc_ros_msgs.msg.RGBDWithPose() msg.header.stamp = rospy.Time.now() msg.camera_pose = self.getRgbOpticalFrameToWorldTransform() msg.rgb_image = self.rgbImageSubscriber.waitForNextMessage() msg.depth_image = self.depthImageSubscriber.waitForNextMessage() # maybe be careful about rostime here msg.point_cloud = self.pointCloudSubscriber.waitForNextMessage() msg.point_cloud_pose = self.getDepthOpticalFrameToWorldTransform() return msg def moveHome(self, speed=None): rospy.loginfo("moving home") if speed is None: speed = self.graspingParams['speed']['nominal'] homePose = self.graspingParams[self.state.graspingLocation]['poses']['scan_above_table'] self.robotService.moveToJointPosition(homePose, maxJointDegreesPerSecond=speed) def getStowPose(self): stow_location = self.state.stowLocation params = self.graspingParams[stow_location] return params['poses']['stow'] # scans to several positions def collectSensorData(self, saveToBagFile=False, **kwargs): """ Collects PointCloud Messages, also RGB and Depth images. Writes the result to two class variables - self.pointCloudListMsg - self.listOfRgbdWithPose also returns these two values """ self.moveHome() rospy.loginfo("collecting sensor data") graspLocationData = self.graspingParams[self.state.graspingLocation] pointCloudListMsg = spartan_grasp_msgs.msg.PointCloudList() pointCloudListMsg.header.stamp = rospy.Time.now() data = dict() pose_list = graspLocationData['scan_pose_list'] listOfRgbdWithPoseMsg = [] for poseName in pose_list: rospy.loginfo("moving to pose = " + poseName) joint_positions = graspLocationData['poses'][poseName] self.robotService.moveToJointPosition(joint_positions, maxJointDegreesPerSecond=self.config['scan']['joint_speed']) rospy.sleep(self.config["sleep_time_for_sensor_collect"]) pointCloudWithTransformMsg = self.capturePointCloudAndCameraTransform() pointCloudListMsg.point_cloud_list.append(pointCloudWithTransformMsg) data[poseName] = pointCloudWithTransformMsg rgbdWithPoseMsg = self.captureRgbdAndCameraTransform() listOfRgbdWithPoseMsg.append(rgbdWithPoseMsg) self.sensorData = data self.pointCloudListMsg = pointCloudListMsg self.listOfRgbdWithPoseMsg = listOfRgbdWithPoseMsg if saveToBagFile: self.saveSensorDataToBagFile(pointCloudListMsg=pointCloudListMsg, **kwargs) return pointCloudListMsg, listOfRgbdWithPoseMsg def findBestBatch(self): """ This function will: - collect a small handful of RGBDWithPose msgs - call the FindBestMatch service (a service of pdc-ros) - return what was found from FindBestMatch """ self.moveHome() _, listOfRgbdWithPoseMsg = self.collectSensorData() self.list_rgbd_with_pose_msg = listOfRgbdWithPoseMsg # request via a ROS Action rospy.loginfo("waiting for find best match server") self.find_best_match_client.wait_for_server() goal = pdc_ros_msgs.msg.FindBestMatchGoal() goal.rgbd_with_pose_list = listOfRgbdWithPoseMsg goal.camera_info = self.camera_info_subscriber.waitForNextMessage() rospy.loginfo("requesting best match from server") self.find_best_match_client.send_goal(goal) self.moveHome() rospy.loginfo("waiting for find best match result") self.find_best_match_client.wait_for_result() result = self.find_best_match_client.get_result() rospy.loginfo("received best match result") self.best_match_result = result if result.match_found: print "match found" print "location:", result.best_match_location else: print "NO MATCH FOUND" return result def run_poser(self): """ This function will: - collect a small handful of RGBDWithPose msgs - call the FindBestMatch service (a service of pdc-ros) - return what was found from FindBestMatch """ # self.moveHome() rgbdWithPoseMsg = self.captureRgbdAndCameraTransform() listOfRgbdWithPoseMsg = [rgbdWithPoseMsg] self.list_rgbd_with_pose_msg = listOfRgbdWithPoseMsg # request via a ROS Action rospy.loginfo("waiting for poser server") self.poser_client.wait_for_server() rospy.loginfo("connected to poser server") goal = pdc_ros_msgs.msg.DeformableRegistrationGoal() goal.rgbd_with_pose_list = listOfRgbdWithPoseMsg goal.camera_info = self.camera_info_subscriber.waitForNextMessage() rospy.loginfo("requesting registration from poser") self.poser_client.send_goal(goal) self.moveHome() rospy.loginfo("waiting for poser result") self.poser_client.wait_for_result() result = self.poser_client.get_result() state = self.poser_client.get_state() rospy.loginfo("received poser result") print("result:\n", result) succeeded = (state == GoalStatus.SUCCEEDED) if not succeeded: rospy.loginfo("Poser failed") self.poser_result = result self._cache['poser_result'] = result result_dict = dict() result_dict['result'] = result result_dict['output_dir'] = result.output_dir result_dict['state'] = state result_dict['succeeded'] = succeeded result_dict['type'] = "mankey" self._cache["keypoint_detection_result"] = result_dict self.taskRunner.callOnMain(self.visualize_poser_result) def run_keypoint_detection(self, wait_for_result=True, move_to_stored_pose=True, clear_state=True): """ Runs keypoint detection using ManKey in pdc-ros. Note that this clears the cache :return: :rtype: """ if clear_state: self._clear_cache() self.state.clear() if move_to_stored_pose: CMT = CategoryManipulationType q = self._stored_poses_director["General"]["home"] # for mugs if MANIP_TYPE in [CMT.SHOE_ON_RACK, CMT.SHOE_ON_TABLE]: q = self._stored_poses_director['General']['center_back'] else: # basically all mugs q = self._stored_poses_director["General"]["home"] self.robotService.moveToJointPosition(q, maxJointDegreesPerSecond=self.graspingParams['speed']['fast']) rgbdWithPoseMsg = self.captureRgbdAndCameraTransform() self.state.cache['rgbd_with_pose_list'] = [] self.state.cache['rgbd_with_pose_list'].append(rgbdWithPoseMsg) # request via a ROS Action rospy.loginfo("waiting for KeypointDetection server") self.keypoint_detection_client.wait_for_server() rospy.loginfo("connected to KeypointDetection server") goal = pdc_ros_msgs.msg.KeypointDetectionGoal() goal.rgbd_with_pose_list = self.state.cache['rgbd_with_pose_list'] goal.camera_info = self.camera_info_subscriber.waitForNextMessage() if EXPERIMENT_MODE: goal.output_dir = "mankey_experiments/%s" %(spartanUtils.get_current_YYYY_MM_DD_hh_mm_ss()) rospy.loginfo("requesting action from KeypointDetection server") self.keypoint_detection_client.send_goal(goal) self.state.set_status("ABOVE_TABLE") if wait_for_result: self.wait_for_keypoint_detection_result() def wait_for_keypoint_detection_result(self): """ Wait for keypont detection result, save it to cache """ rospy.loginfo("waiting for KeypointDetection result") self.keypoint_detection_client.wait_for_result() result = self.keypoint_detection_client.get_result() state = self.keypoint_detection_client.get_state() rospy.loginfo("received KeypointDetection result") print "result:\n", result self.keypoint_detection_result = result succeeded = (state == GoalStatus.SUCCEEDED) if not succeeded: rospy.loginfo("KeypointDetection failed") result_dict = dict() result_dict['result'] = result result_dict['output_dir'] = result.output_dir result_dict['state'] = state result_dict['succeeded'] = succeeded result_dict['type'] = "mankey" self._cache["keypoint_detection_result"] = result_dict self.state._cache["keypoint_detection_result"] = result_dict return result_dict def check_keypoint_detection_succeeded(self): """ Checks whether keypoint detection succeeded or not :return: :rtype: """ # you should have run keypoint detection before this keypoint_detection_result = self.state.cache['keypoint_detection_result'] if keypoint_detection_result["state"] == GoalStatus.SUCCEEDED: return True else: print("keypoint detection failed, ABORTING") return False def check_category_goal_estimation_succeeded(self): """ Returns a bool as to whether category goal estimation succeeded or not :return: :rtype: """ state = self.state.cache['category_manipulation_goal']['state'] if state == GoalStatus.SUCCEEDED: return True else: print("category goal estimation failed, ABORTING") return False def estimate_mug_rack_pose(self): """ :return: :rtype: """ # fusion_params_file = os.path.join(spartanUtils.getSpartanSourceDir(), "src/catkin_projects/station_config/RLG_iiwa_1/fusion/fusion_params.yaml") # # # fusion_params = spartanUtils.getDictFromYamlFilename(fusion_params_file) # bbox_min = np.array(fusion_params['left']['bbox_min']) # bbox_min[2] += 0.05 # be conservative on where bottom of table is # bbox_max = np.array(fusion_params['left']['bbox_max']) bbox_min = np.array([0.07001, 0.49, 0.01026]) bbox_max = np.array([0.47195, 0.85201, 0.75]) rgbd_with_pose_list = [] # move to pose 1, capture RGBD q = self._stored_poses_director["left_table"]["look_at_rack"] speed = self.graspingParams["speed"]["fast"] self.robotService.moveToJointPosition(q, maxJointDegreesPerSecond=speed) rgbd_with_pose = self.captureRgbdAndCameraTransform() rgbd_with_pose_list.append(rgbd_with_pose) # move to pose 2, capture RGBD q = self._stored_poses_director["left_table"]["look_at_rack_2"] speed = self.graspingParams["speed"]["fast"] self.robotService.moveToJointPosition(q, maxJointDegreesPerSecond=speed) rgbd_with_pose = self.captureRgbdAndCameraTransform() rgbd_with_pose_list.append(rgbd_with_pose) # convert to VTK poly data and crop d = DebugData() for msg in rgbd_with_pose_list: pointcloud_numpy = DirectorROSVisualizer.numpy_from_pointcloud2_msg(msg.point_cloud) pointcloud_vtk = vnp.getVtkPolyDataFromNumpyPoints(pointcloud_numpy) T_world_pointcloud = ros_numpy.numpify(msg.point_cloud_pose.transform) T_world_pointcloud_vtk = transformUtils.getTransformFromNumpy(T_world_pointcloud) pointcloud_vtk = filterUtils.transformPolyData(pointcloud_vtk, T_world_pointcloud_vtk) d.addPolyData(pointcloud_vtk) pointcloud = d.getPolyData() print "pointcloud.GetNumberOfPoints()", pointcloud.GetNumberOfPoints() # crop transform = vtk.vtkTransform() bounds = np.zeros([2,3]) bounds[0,:] = bbox_min bounds[1,:] = bbox_max print "bounds", bounds cropped_pointcloud = segmentation.cropToBounds(pointcloud, transform, bounds) print "cropped_pointcloud.GetNumberOfPoints()", cropped_pointcloud.GetNumberOfPoints() # visualize it def vis_function(): print "visualizing pointcloud" vis.showPolyData(pointcloud, "pointcloud") vis.showPolyData(cropped_pointcloud, "Mug rack pointcloud") self.mug_rack_pointcloud = cropped_pointcloud # not working for some reason print "visualizing" self.taskRunner.callOnMain(vis_function) return rgbd_with_pose = pdc_ros_msgs.msg.RGBDWithPose() # N x 3 cropped_pointcloud_numpy = vnp.getNumpyFromVtk(cropped_pointcloud) print "cropped_pointcloud_numpy.shape", cropped_pointcloud_numpy.shape # save numpy to file save_file = "/home/manuelli/sandbox/spartan/pointcloud.npy" np.save(save_file, cropped_pointcloud_numpy) return # it's already in world frame rgbd_with_pose.point_cloud = DirectorROSVisualizer.pointcloud2_msg_from_numpy(cropped_pointcloud_numpy) # convert it back to ROS msg goal = pdc_ros_msgs.msg.EstimatePoseGoal() goal.rgbd_with_pose_list.append(rgbd_with_pose) T_world_rack_vtk = self._category_manip.mug_rack_vis_obj.getChildFrame().transform T_world_rack = transformUtils.getNumpyFromTransform(T_world_rack_vtk) goal.T_init = ros_numpy.msgify(geometry_msgs.Pose, T_world_rack) # send out service call self.pose_estimation_client.wait_for_server() self.pose_estimation_client.send_goal(goal) # wait for result self.pose_estimation_client.wait_for_result() result = self.pose_estimation_client.get_result() T_world_rack_estimated = ros_numpy.numpify(result.T_world_model) T_world_rack_estimated_vtk = transformUtils.getTransformFromNumpy(T_world_rack_estimated) self._category_manip.mug_rack_vis_obj.getChildFrame().copyFrame(T_world_rack_estimated_vtk) def run_category_manipulation_goal_estimation(self, wait_for_result=True, capture_rgbd=True): """ Calls the CategoryManipulation service of pdc-ros which is provided by category_manip_server.py. Uses the keypoint detection result from either `run_poser` or `run_keypoint_detection` :return: bool :rtype: """ if not self.check_keypoint_detection_succeeded(): return False keypoint_detection_result = self.state.cache['keypoint_detection_result'] # don't specify poser output dir for now goal = pdc_ros_msgs.msg.CategoryManipulationGoal() goal.output_dir = keypoint_detection_result['output_dir'] goal.keypoint_detection_type = keypoint_detection_result['type'] if capture_rgbd: self.moveHome() rgbd_with_pose = self.captureRgbdAndCameraTransform() self.state.cache['rgbd_with_pose_list'].append(rgbd_with_pose) goal.rgbd_with_pose_list = self.state.cache['rgbd_with_pose_list'] if 'rgbd_with_pose_list' in self.state.cache: goal.rgbd_with_pose_list = self.state.cache['rgbd_with_pose_list'] if MANIP_TYPE == CategoryManipulationType.SHOE_ON_RACK: print("applying T_adjust") print("self._shoe_manipulation_counter", self._shoe_manipulation_counter) goal.apply_T_adjust = True pos = np.array([self.graspingParams["shoe_offset"], 0, 0]) * self._shoe_manipulation_counter quat = [1,0,0,0] T_adjust_vtk = transformUtils.transformFromPose(pos, quat) T_adjust = transformUtils.getNumpyFromTransform(T_adjust_vtk) goal.T_adjust = ros_numpy.msgify(geometry_msgs.msg.Pose, T_adjust) else: goal.apply_T_adjust =False rospy.loginfo("waiting for CategoryManip server") self.category_manip_client.wait_for_server() rospy.loginfo("connected to CategoryManip server") self.category_manip_client.send_goal(goal) if wait_for_result: self.wait_for_category_manipulation_goal_result() return True def wait_for_category_manipulation_goal_result(self): """ Waits for category manipulation goal result """ print("waiting for category manipulation result") self.category_manip_client.wait_for_result() result = self.category_manip_client.get_result() state = self.category_manip_client.get_state() T_goal_obs = ros_numpy.numpify(result.T_goal_obs) print "T_goal_obs:\n", T_goal_obs T_goal_obs_vtk = transformUtils.getTransformFromNumpy(T_goal_obs) print transformUtils.poseFromTransform(T_goal_obs_vtk) self.state.cache['category_manipulation_goal'] = dict() self.state.cache['category_manipulation_goal']['result'] = result self.state.cache['category_manipulation_goal']["T_goal_obs"] = T_goal_obs_vtk self.state.cache['category_manipulation_goal']['state'] = state self.state.cache['category_manipulation_goal']["type"] = CategoryManipulationType.from_string(result.category_manipulation_type) def run_mug_shelf_3D_pipeline(self): """ Runs entire pipeline for mug shelf 3D :return: :rtype: """ self.state.clear() self._clear_cache() # move home speed = self.graspingParams['speed']['fast'] super_fast_speed = self.graspingParams['speed']['fast'] # q = self._stored_poses_director["General"]["home"] # q = self._stored_poses_director["mug"]["image_capture_for_mug_shelf"] q = self._stored_poses_director["General"]["center_back"] self.robotService.moveToJointPosition(q, maxJointDegreesPerSecond=super_fast_speed) self.run_keypoint_detection(wait_for_result=False, move_to_stored_pose=False, clear_state=False) # run keypoint detection # move to center back to capture another RGBD image q = self._stored_poses_director["General"]["home"] self.robotService.moveToJointPosition(q, maxJointDegreesPerSecond=super_fast_speed) rgbd_with_pose = self.captureRgbdAndCameraTransform() self.state.cache['rgbd_with_pose_list'].append(rgbd_with_pose) self.wait_for_keypoint_detection_result() if not self.check_keypoint_detection_succeeded(): self.state.set_status("FAILED") return False # run category manip code = self.run_category_manipulation_goal_estimation(capture_rgbd=False) if not code: self.state.set_status("FAILED") return False self.wait_for_category_manipulation_goal_result() if not self.check_category_goal_estimation_succeeded(): self.state.set_status("PLANNING_FAILED") return False # run the manipulation # need safety checks in there before running autonomously code = self.run_mug_shelf_manipulation() if not (code == True): self.state.set_status("FAILED") return False # if the place was successful then retract self.retract_from_mug_shelf() if EXPERIMENT_MODE: output_dir = self.state.cache['keypoint_detection_result']['output_dir'] print "\n\n", os.path.split(output_dir)[1] def run_mug_on_rack_pipeline(self, side_view=False): """ Runs entire pipeline for mug shelf 3D :return: :rtype: """ self.state.clear() self._clear_cache() # move home speed = self.graspingParams['speed']['fast'] q = self._stored_poses_director["General"]["home"] if side_view: print "\nusing side view\n" q = self._stored_poses_director["General"]["center_back"] self.robotService.moveToJointPosition(q, maxJointDegreesPerSecond=speed) # run keypoint detection self.run_keypoint_detection(wait_for_result=False, move_to_stored_pose=False, clear_state=False) self.wait_for_keypoint_detection_result() # move to center back to capture another RGBD image q = self._stored_poses_director["General"]["center_back"] if side_view: q = self._stored_poses_director["General"]["home"] self.robotService.moveToJointPosition(q, maxJointDegreesPerSecond=speed) rgbd_with_pose = self.captureRgbdAndCameraTransform() self.state.cache['rgbd_with_pose_list'].append(rgbd_with_pose) q = self._stored_poses_director["General"]["home"] self.robotService.moveToJointPosition(q, maxJointDegreesPerSecond=speed) if not self.check_keypoint_detection_succeeded(): self.state.set_status("FAILED") return False # run category manip code = self.run_category_manipulation_goal_estimation(capture_rgbd=False) if not code: self.state.set_status("FAILED") return False self.wait_for_category_manipulation_goal_result() if not self.check_category_goal_estimation_succeeded(): self.state.set_status("PLANNING_FAILED") return False # run the manipulation # need safety checks in there before running autonomously code = self.run_mug_on_rack_manipulation() if not (code == True): self.state.set_status("FAILED") return False if EXPERIMENT_MODE: output_dir = self.state.cache['keypoint_detection_result']['output_dir'] print "\n\n", os.path.split(output_dir)[1] def run_shoe_on_rack_pipeline(self): """ Runs entire pipeline for mug shelf 3D :return: :rtype: """ if EXPERIMENT_MODE: self._shoe_manipulation_counter = 0 # for testing self.state.clear() self._clear_cache() # move home speed = self.graspingParams['speed']['fast'] # q = self._stored_poses_director["General"]["center_back"] q = self._stored_poses_director["General"]["home"] self.robotService.moveToJointPosition(q, maxJointDegreesPerSecond=speed) # run keypoint detection self.run_keypoint_detection(wait_for_result=False, move_to_stored_pose=False, clear_state=False) self.wait_for_keypoint_detection_result() if not self.check_keypoint_detection_succeeded(): self.state.set_status("FAILED") return False # run category manip code = self.run_category_manipulation_goal_estimation(capture_rgbd=False) if not code: self.state.set_status("FAILED") return False self.wait_for_category_manipulation_goal_result() if not self.check_category_goal_estimation_succeeded(): self.state.set_status("PLANNING_FAILED") return False # run the manipulation # need safety checks in there before running autonomously code = self.run_shoe_rack_manipulation() if not code: self.state.set_status("FAILED") return False # if the place was successful then retract self.retract_from_shoe_rack() if EXPERIMENT_MODE: print "\n\n", self.state.cache['keypoint_detection_result']['output_dir'] def run_manipulate_object(self, debug=False): """ Runs the object manipulation code. Will put the object into the specified target pose from `run_category_manipulation_goal_estimation` :return: """ # self.taskRunner.callOnMain(self._poser_visualizer.visualize_result) if not self.check_category_goal_estimation_succeeded(): return False if debug: self._object_manipulation = ObjectManipulation() self._object_manipulation.assign_defaults() self._object_manipulation.compute_transforms() return self.moveHome() grasp_found, grasp_data = self.request_spartan_grasp(clear_state=False) if not grasp_found: print "no grasp found, returning\n" return False # execute the grasp object_in_gripper = self.execute_grasp(self.state.grasp_data, close_gripper=True, use_cartesian_plan=True) print "object_in_gripper:", object_in_gripper T_goal_obs = self.state.cache['category_manipulation_T_goal_obs'] T_W_G = self.state.cache['gripper_frame_at_grasp'] self._object_manipulation = ObjectManipulation(T_goal_object=T_goal_obs, T_W_G=T_W_G) self._object_manipulation.grasp_data = self.state.grasp_data self._object_manipulation.compute_transforms() self.taskRunner.callOnMain(self._object_manipulation.visualize) pre_grasp_pose = self.state.cache['pre_grasp_ik_response'].joint_state.position pickup_speed = self.graspingParams['speed']['pickup'] if not object_in_gripper: # open the gripper and back away self.gripperDriver.send_open_gripper_set_distance_from_current() self.robotService.moveToJointPosition(pre_grasp_pose, maxJointDegreesPerSecond= pickup_speed) return False # pickup the object self.robotService.moveToJointPosition(pre_grasp_pose, maxJointDegreesPerSecond= pickup_speed) # place the object grasp_data_place = self._object_manipulation.get_place_grasp_data() self.execute_place(grasp_data_place) # open the gripper and back away pre_grasp_pose = self.state.cache['pre_grasp_ik_response'].joint_state.position pickup_speed = self.graspingParams['speed']['pickup'] self.gripperDriver.send_open_gripper_set_distance_from_current() # pickup the object self.robotService.moveToJointPosition(pre_grasp_pose, maxJointDegreesPerSecond= pickup_speed) # move home self.moveHome() def run_shoe_rack_manipulation(self, debug=False, push_in_distance=0.00): """ Runs the object manipulation code. Will put the object into the specified target pose from `run_category_manipulation_goal_estimation` :return: """ print("\n\n--- Running Shoe Manipulation-------\n\n") # self.taskRunner.callOnMain(self._poser_visualizer.visualize_result) if not self.check_category_goal_estimation_succeeded(): return False # check that we really are doing mug category_manipulation_type = self.state.cache['category_manipulation_goal']['type'] assert category_manipulation_type == CategoryManipulationType.SHOE_ON_RACK speed = self.graspingParams['speed']['fast'] self.moveHome(speed=speed) result = self.state.cache['category_manipulation_goal']['result'] T_W_fingertip = ros_numpy.numpify(result.T_world_gripper_fingertip) T_W_fingertip_vtk = transformUtils.getTransformFromNumpy(T_W_fingertip) grasp_data = GraspData.from_gripper_fingertip_frame(T_W_fingertip) grasp_data.gripper.params["hand_inner_diameter"] = result.gripper_width grasp_data.gripper.params["hand_inner_diameter"] = 0.07 self.state.grasp_data = grasp_data # rotate the grasp to align with nominal params = self.getParamsForCurrentLocation() grasp_z_axis_nominal = np.array(params['grasp']['grasp_nominal_direction']) grasp_data.rotate_grasp_frame_to_nominal(grasp_z_axis_nominal) def vis_function(): vis.updateFrame(T_W_fingertip_vtk, "gripper fingertip frame", scale=0.15, parent=self._vis_container) vis.updateFrame(grasp_data.grasp_frame, "grasp frame", scale=0.15, parent=self._vis_container) self.visualize_grasp(grasp_data) self.taskRunner.callOnMain(vis_function) # execute the grasp force_threshold_magnitude = 30 object_in_gripper = self.execute_grasp(grasp_data, close_gripper=True, use_cartesian_plan=True, force_threshold_magnitude=force_threshold_magnitude, push_in_distance=0.04, ee_speed_m_s=0.1) if not object_in_gripper: print("grasp failed, returning") return False print "object_in_gripper:", object_in_gripper T_goal_obs = self.state.cache['category_manipulation_goal']["T_goal_obs"] T_W_G = self.state.cache['gripper_frame_at_grasp'] pre_grasp_pose = self.state.cache['pre_grasp_ik_response'].joint_state.position pickup_speed = self.graspingParams['speed']['pickup'] if not object_in_gripper: # open the gripper and back away self.gripperDriver.send_open_gripper_set_distance_from_current() self.robotService.moveToJointPosition(pre_grasp_pose, maxJointDegreesPerSecond= pickup_speed) return False # pickup the object self.robotService.moveToJointPosition(pre_grasp_pose, maxJointDegreesPerSecond= pickup_speed) # move home self.moveHome() # move to approach pose speed = self.graspingParams['speed']['fast'] q_approach = np.array(self._stored_poses_director["left_table"]["shoe_approach"]) self.robotService.moveToJointPosition(q_approach, maxJointDegreesPerSecond=speed) # compute some poses T_goal_obs = ros_numpy.numpify(result.T_goal_obs) # 4 x 4 numpy matrix T_goal_obs_vtk = transformUtils.getTransformFromNumpy(T_goal_obs) object_manip = ObjectManipulation(T_goal_object=T_goal_obs_vtk, T_W_G=T_W_G) object_manip.compute_transforms() T_W_Gn_vtk = object_manip.T_W_Gn # gripper to world for place pose T_pre_goal_obs = ros_numpy.numpify(result.T_pre_goal_obs) T_pre_goal_obs_vtk = transformUtils.getTransformFromNumpy(T_pre_goal_obs) object_manip_approach = ObjectManipulation(T_goal_object=T_pre_goal_obs_vtk, T_W_G=T_W_G) object_manip_approach.compute_transforms() T_W_Gn_approach_vtk = object_manip_approach.T_W_Gn # move this down by push_in_distance pos, quat = transformUtils.poseFromTransform(T_W_Gn_approach_vtk) T_W_Gn_approach_vtk = transformUtils.transformFromPose(pos, quat) # now convert these to ee poses for running IK pos, quat = transformUtils.poseFromTransform(T_W_Gn_vtk) pos[2] -= push_in_distance T_W_Gn_vtk = transformUtils.transformFromPose(pos, quat) T_W_ee_vtk = self.getIiwaLinkEEFrameFromGraspFrame(T_W_Gn_vtk) T_W_ee = transformUtils.getNumpyFromTransform(T_W_ee_vtk) T_W_ee_approach_vtk = self.getIiwaLinkEEFrameFromGraspFrame(T_W_Gn_approach_vtk) T_W_ee_approach = transformUtils.getNumpyFromTransform(T_W_ee_approach_vtk) # place the object force_threshold_magnitude = 50 # shoes are heavy q_nom = np.array(self._stored_poses_director["Grasping"]["above_table_pre_grasp"]) q_nom = np.array(self._stored_poses_director["left_table"]["above_table_pre_grasp"]) code =self.execute_place_new(T_W_ee, T_W_ee_approach, q_nom=q_nom, use_cartesian_plan=True, force_threshold_magnitude=force_threshold_magnitude) print("\n\n--- Finished Shoe Manipulation-------\n\n") self._shoe_manipulation_counter += 1 return code def retract_from_shoe_rack(self): """ Retract from the shoe rack :return: :rtype: """ # open the gripper and back away self.gripperDriver.send_open_gripper_set_distance_from_current(distance=0.045) # back away along gripper x-direction ee_speed_m_s = 0.05 xyz_goal = [-0.15, 0, 0] # 10 cm duration = np.linalg.norm(xyz_goal) / ee_speed_m_s ee_frame_id = "iiwa_link_ee" base_frame_id = "base" expressed_in_frame = ee_frame_id cartesian_traj_goal = \ control_utils.make_cartesian_trajectory_goal(xyz_goal, ee_frame_id, expressed_in_frame, duration=duration, speed=0.1) action_client = self.robotService.cartesian_trajectory_action_client action_client.send_goal(cartesian_traj_goal) # wait for result action_client.wait_for_result() result = action_client.get_result() self.state.cache['cartesian_traj_result'] = result speed = self.graspingParams['speed']['fast'] if EXPERIMENT_MODE: # move to pose q = self._stored_poses_director["left_table"]["shoe_evaluation_side"] self.robotService.moveToJointPosition(q, maxJointDegreesPerSecond=speed) msg = self.captureRgbdAndCameraTransform() save_dir = os.path.join(spartanUtils.get_sandbox_dir(), self.state.cache['keypoint_detection_result']['output_dir'], "evaluation") self.save_RGBD_client.wait_for_server() goal = pdc_ros_msgs.msg.KeypointDetectionGoal() goal.rgbd_with_pose_list.append(msg) goal.camera_info = self.camera_info_subscriber.waitForNextMessage() goal.output_dir = save_dir self.save_RGBD_client.send_goal(goal) self.save_RGBD_client.wait_for_result() self.moveHome(speed=speed) def run_mug_on_rack_manipulation(self): """ Runs the object manipulation code. Will put the object into the specified target pose from `run_category_manipulation_goal_estimation` :return: """ self.wait_for_category_manipulation_goal_result() if not self.check_category_goal_estimation_succeeded(): return False category_manipulation_type = self.state.cache['category_manipulation_goal']['type'] assert category_manipulation_type == CategoryManipulationType.MUG_ON_RACK self.moveHome() # extract grasp from gripper fingertip pose result = self.state.cache["category_manipulation_goal"]["result"] T_W_fingertip = ros_numpy.numpify(result.T_world_gripper_fingertip) T_W_fingertip_vtk = transformUtils.getTransformFromNumpy(T_W_fingertip) grasp_data = GraspData.from_gripper_fingertip_frame(T_W_fingertip) grasp_data.gripper.params["hand_inner_diameter"] = 0.05 # 4 cm wide self.state.grasp_data = grasp_data self.visualize_grasp(grasp_data) debug_speed = 10 def vis_function(): vis.updateFrame(T_W_fingertip_vtk, "gripper fingertip frame", scale=0.15, parent=self._vis_container) vis.updateFrame(grasp_data.grasp_frame, "grasp frame", scale=0.15, parent=self._vis_container) self.taskRunner.callOnThread(vis_function) # debugging print("visualizing grasp") self.visualize_grasp(grasp_data) # execute the grasp object_in_gripper = self.execute_grasp(self.state.grasp_data, close_gripper=True, use_cartesian_plan=True, push_in_distance=0.01, ee_speed_m_s=0.1) T_W_G = self.state.cache['gripper_frame_at_grasp'] # this is set in execute_grasp pre_grasp_pose = self.state.cache['pre_grasp_ik_response'].joint_state.position pickup_speed = self.graspingParams['speed']['pickup'] if not object_in_gripper: # open the gripper and back away self.gripperDriver.send_open_gripper_set_distance_from_current() self.robotService.moveToJointPosition(pre_grasp_pose, maxJointDegreesPerSecond= pickup_speed) return False # pickup the object self.robotService.moveToJointPosition(pre_grasp_pose, maxJointDegreesPerSecond= pickup_speed) # now move to nominal position for the place # speed = self.graspingParams["speed"]["nominal"] speed = self.graspingParams["speed"]["fast"] # q_nom_left_table = self._stored_poses_director["left_table"]["above_table_pre_grasp"] q_nom_left_table = self._stored_poses_director["left_table"]["above_table_pre_grasp_right"] self.robotService.moveToJointPosition(q_nom_left_table, maxJointDegreesPerSecond= speed) # compute some poses T_goal_obs = ros_numpy.numpify(result.T_goal_obs) # 4 x 4 numpy matrix T_goal_obs_vtk = transformUtils.getTransformFromNumpy(T_goal_obs) object_manip = ObjectManipulation(T_goal_object=T_goal_obs_vtk, T_W_G=T_W_G) object_manip.compute_transforms() T_W_Gn_vtk = object_manip.T_W_Gn # gripper to world for place pose T_pre_goal_obs = ros_numpy.numpify(result.T_pre_goal_obs) T_pre_goal_obs_vtk = transformUtils.getTransformFromNumpy(T_pre_goal_obs) object_manip_approach = ObjectManipulation(T_goal_object=T_pre_goal_obs_vtk, T_W_G=T_W_G) object_manip_approach.compute_transforms() T_W_Gn_approach_vtk = object_manip_approach.T_W_Gn # now convert these to ee poses T_W_ee_vtk = self.getIiwaLinkEEFrameFromGraspFrame(T_W_Gn_vtk) T_W_ee = transformUtils.getNumpyFromTransform(T_W_ee_vtk) T_W_ee_approach_vtk = self.getIiwaLinkEEFrameFromGraspFrame(T_W_Gn_approach_vtk) T_W_ee_approach = transformUtils.getNumpyFromTransform(T_W_ee_approach_vtk) # execute the place print("executing place on rack") return self.execute_place_new(T_W_ee, T_W_ee_approach, q_nom=q_nom_left_table, use_cartesian_plan=True, force_threshold_magnitude=30, ee_speed_m_s=0.1) def retract_from_mug_rack(self, gripper_open=True): """ Move backwards from the mug rack :return: :rtype: """ category_manipulation_type = self.state.cache['category_manipulation_goal']['type'] assert category_manipulation_type == CategoryManipulationType.MUG_ON_RACK if gripper_open: self.gripperDriver.send_open_gripper_set_distance_from_current() xyz_goal = np.array([-0.10, 0, 0]) ee_frame_id = "iiwa_link_ee" expressed_in_frame = ee_frame_id cartesian_grasp_speed = self.graspingParams['speed']['cartesian_grasp'] cartesian_traj_goal = \ control_utils.make_cartesian_trajectory_goal(xyz_goal, ee_frame_id, expressed_in_frame, speed=cartesian_grasp_speed) action_client = self.robotService.cartesian_trajectory_action_client action_client.send_goal(cartesian_traj_goal) # wait for result action_client.wait_for_result() result = action_client.get_result() # now move to nominal position for the place speed = self.graspingParams["speed"]["fast"] super_fast_speed = self.graspingParams["speed"]["super_fast"] # q_nom_left_table = self._stored_poses_director["left_table"]["above_table_pre_grasp"] q_nom_left_table = self._stored_poses_director["left_table"]["above_table_pre_grasp_right"] self.robotService.moveToJointPosition(q_nom_left_table, maxJointDegreesPerSecond= speed) if EXPERIMENT_MODE: q = self._stored_poses_director["left_table"]["mug_rack_evaluation"] self.robotService.moveToJointPosition(q, maxJointDegreesPerSecond= speed) msg = self.captureRgbdAndCameraTransform() save_dir = os.path.join(spartanUtils.get_sandbox_dir(), self.state.cache['keypoint_detection_result']['output_dir'], "evaluation") self.save_RGBD_client.wait_for_server() goal = pdc_ros_msgs.msg.KeypointDetectionGoal() goal.rgbd_with_pose_list.append(msg) goal.camera_info = self.camera_info_subscriber.waitForNextMessage() goal.output_dir = save_dir self.save_RGBD_client.send_goal(goal) self.save_RGBD_client.wait_for_result() self.moveHome(speed=super_fast_speed) if EXPERIMENT_MODE: output_dir = self.state.cache['keypoint_detection_result']['output_dir'] print "\n\n", os.path.split(output_dir)[1] # clear the cache, to avoid you doing it twice self.state.clear() self._clear_cache() def run_mug_shelf_manipulation(self, use_debug_speed=True): """ Runs the object manipulation code. Will put the object into the specified target pose from `run_category_manipulation_goal_estimation` :return: """ self.wait_for_category_manipulation_goal_result() if not self.check_category_goal_estimation_succeeded(): self.state.set_status("PLANNING_FAILED") return False category_manipulation_type = self.state.cache['category_manipulation_goal']['type'] assert category_manipulation_type == CategoryManipulationType.MUG_ON_SHELF_3D self.moveHome() result = self.state.cache['category_manipulation_goal']['result'] print("\n\n---result----\n\n", result) print("\n\n\n") T_W_fingertip = ros_numpy.numpify(result.T_world_gripper_fingertip) T_W_fingertip_vtk = transformUtils.getTransformFromNumpy(T_W_fingertip) grasp_data = GraspData.from_gripper_fingertip_frame(T_W_fingertip) grasp_data.gripper.params["hand_inner_diameter"] = result.gripper_width # rotate grasp frame to align with nominal if we are doing a vertical grasp force_threshold_magnitude = 30 push_in_distance = 0.0 if result.mug_orientation == "HORIZONTAL": push_in_distance = -0.005 force_threshold_magnitude = 30 elif result.mug_orientation == "UPRIGHT": push_in_distance = 0.01 force_threshold_magnitude = 30 # params = self.getParamsForCurrentLocation() # grasp_z_axis_nominal = np.array(params['grasp']['grasp_nominal_direction']) # grasp_data.rotate_grasp_frame_to_nominal(grasp_z_axis_nominal) self.state.grasp_data = grasp_data self.visualize_grasp(grasp_data) def vis_function(): vis.updateFrame(T_W_fingertip_vtk, "gripper fingertip frame", scale=0.15, parent=self._vis_container) vis.updateFrame(grasp_data.grasp_frame, "grasp frame", scale=0.15, parent=self._vis_container) self.taskRunner.callOnThread(vis_function) # debugging print("visualizing grasp") self.visualize_grasp(grasp_data) # execute the grasp object_in_gripper = self.execute_grasp(self.state.grasp_data, close_gripper=True, use_cartesian_plan=True, push_in_distance=push_in_distance, force_threshold_magnitude=force_threshold_magnitude, ee_speed_m_s=0.1) T_W_G = self.state.cache['gripper_frame_at_grasp'] # this is set in execute_grasp pre_grasp_pose = self.state.cache['pre_grasp_ik_response'].joint_state.position pickup_speed = self.graspingParams['speed']['pickup'] if not object_in_gripper: # open the gripper and back away self.gripperDriver.send_open_gripper_set_distance_from_current() self.robotService.moveToJointPosition(pre_grasp_pose, maxJointDegreesPerSecond= pickup_speed) return False # pickup the object self.robotService.moveToJointPosition(pre_grasp_pose, maxJointDegreesPerSecond= pickup_speed) # move to above table pre grasp speed = self.graspingParams["speed"]["fast"] q = self._stored_poses_director["Grasping"]["above_table_pre_grasp"] self.robotService.moveToJointPosition(q, maxJointDegreesPerSecond= speed) q_approach = None if result.mug_orientation == "HORIZONTAL": q_nom = self._stored_poses_director["mug"]["horizontal_grasp_nominal"] q_approach_2 = self._stored_poses_director["mug"]["horizontal_grasp_approach_2"] self.robotService.moveToJointPosition(q_approach_2, maxJointDegreesPerSecond= speed) elif result.mug_orientation == "UPRIGHT": q_nom = self._stored_poses_director["mug"]["vertical_grasp_nominal"] q_approach_1 = self._stored_poses_director["mug"]["vertical_grasp_above_table"] self.robotService.moveToJointPosition(q_approach_1, maxJointDegreesPerSecond= speed) else: raise ValueError("unknown mug orientation: %s" %(result.mug_orientation)) # compute some poses T_goal_obs = ros_numpy.numpify(result.T_goal_obs) # 4 x 4 numpy matrix T_goal_obs_vtk = transformUtils.getTransformFromNumpy(T_goal_obs) object_manip = ObjectManipulation(T_goal_object=T_goal_obs_vtk, T_W_G=T_W_G) object_manip.compute_transforms() T_W_Gn_vtk = object_manip.T_W_Gn # gripper to world for place pose T_pre_goal_obs = ros_numpy.numpify(result.T_pre_goal_obs) T_pre_goal_obs_vtk = transformUtils.getTransformFromNumpy(T_pre_goal_obs) object_manip_approach = ObjectManipulation(T_goal_object=T_pre_goal_obs_vtk, T_W_G=T_W_G) object_manip_approach.compute_transforms() T_W_Gn_approach_vtk = object_manip_approach.T_W_Gn # now convert these to ee poses T_W_ee_vtk = self.getIiwaLinkEEFrameFromGraspFrame(T_W_Gn_vtk) T_W_ee = transformUtils.getNumpyFromTransform(T_W_ee_vtk) T_W_ee_approach_vtk = self.getIiwaLinkEEFrameFromGraspFrame(T_W_Gn_approach_vtk) T_W_ee_approach = transformUtils.getNumpyFromTransform(T_W_ee_approach_vtk) # execute the place print("executing place on shelf") code = self.execute_place_new(T_W_ee, T_W_ee_approach, q_nom=q_nom, use_cartesian_plan=True, force_threshold_magnitude=30) return code def retract_from_mug_shelf(self, gripper_open=True, use_debug_speed=True): """ Move backwards from the rack :return: :rtype: """ category_manipulation_type = self.state.cache['category_manipulation_goal']['type'] assert category_manipulation_type == CategoryManipulationType.MUG_ON_SHELF_3D result = self.state.cache['category_manipulation_goal']['result'] if gripper_open: if result.mug_orientation == "HORIZONTAL": self.gripperDriver.sendOpenGripperCommand() else: self.gripperDriver.send_open_gripper_set_distance_from_current() # do different things depending on whether it was horizontal or vertical drop result = self.state.cache['category_manipulation_goal']['result'] mug_orientation = result.mug_orientation xyz_goal = np.array([-0.10, 0, 0]) ee_frame_id = "iiwa_link_ee" expressed_in_frame = ee_frame_id cartesian_grasp_speed = self.graspingParams['speed']['cartesian_grasp'] cartesian_traj_goal = \ control_utils.make_cartesian_trajectory_goal(xyz_goal, ee_frame_id, expressed_in_frame, speed=cartesian_grasp_speed) action_client = self.robotService.cartesian_trajectory_action_client action_client.send_goal(cartesian_traj_goal) # wait for result action_client.wait_for_result() result = action_client.get_result() # now move to nominal position for the place speed = self.graspingParams["speed"]["fast"] super_fast_speed = q = self.graspingParams["speed"]["super_fast"] if use_debug_speed: speed = DEBUG_SPEED if mug_orientation == "UPRIGHT": q_pose_1 = self._stored_poses_director["mug"]["vertical_grasp_above_table"] self.robotService.moveToJointPosition(q_pose_1, maxJointDegreesPerSecond= super_fast_speed) elif mug_orientation=="HORIZONTAL": q_pose_1 = self._stored_poses_director["mug"]["horizontal_grasp_approach"] self.robotService.moveToJointPosition(q_pose_1, maxJointDegreesPerSecond= speed) q_pose_2 = self._stored_poses_director["Grasping"]["above_table_pre_grasp"] self.robotService.moveToJointPosition(q_pose_2, maxJointDegreesPerSecond= super_fast_speed) if EXPERIMENT_MODE: # move to pose q = self._stored_poses_director["left_table"]["look_at_mug_shelf_2"] self.robotService.moveToJointPosition(q, maxJointDegreesPerSecond=super_fast_speed) msg = self.captureRgbdAndCameraTransform() save_dir = os.path.join(spartanUtils.get_sandbox_dir(), self.state.cache['keypoint_detection_result']['output_dir'], "evaluation") self.save_RGBD_client.wait_for_server() goal = pdc_ros_msgs.msg.KeypointDetectionGoal() goal.rgbd_with_pose_list.append(msg) goal.camera_info = self.camera_info_subscriber.waitForNextMessage() goal.output_dir = save_dir self.save_RGBD_client.send_goal(goal) self.save_RGBD_client.wait_for_result() super_fast_speed = q = self.graspingParams["speed"]["super_fast"] self.moveHome(speed=super_fast_speed) def run_category_manipulation_pipeline(self): self._clear_cache() self.run_keypoint_detection() self.run_category_manipulation_goal_estimation() self.run_manipulate_object() def visualize_poser_result(self): """ DEPRECATED (this code is best used from pdc_ros) Visualize the poser output """ # debugging if self.poser_result is None: # use the default path for debugging purposes path_to_poser_output = os.path.join(spartanUtils.get_sandbox_dir(), "poser") else: path_to_poser_output = os.path.join(spartanUtils.get_sandbox_dir(), self.poser_result.poser_output_folder) self._poser_visualizer = PoserVisualizer(path_to_poser_output) poser_response = self._poser_visualizer.load_poser_response() self._poser_visualizer.visualize_result(poser_response) def grasp_best_match(self): assert self.best_match_result.match_found best_match_location_msg = self.best_match_result.best_match_location best_match_location = np.zeros(3) best_match_location[0] = best_match_location_msg.x best_match_location[1] = best_match_location_msg.y best_match_location[2] = best_match_location_msg.z # check that it is above table min_pt = np.array([0.4, -0.357198029757, 0.0]) max_pt = np.array([0.822621226311, 0.3723, 0.5]) greater_than_min = (best_match_location > min_pt).all() less_than_max = (best_match_location < max_pt).all() if not (greater_than_min and less_than_max): print "best match location is outside of workspace bounds" print "best_match_location:", best_match_location return False print "requesting Grasp 3D location" self.grasp_3D_location_request(best_match_location) result = self.wait_for_grasp_3D_location_result() print "received Grasp 3D Location Response" print "result:\n", result grasp_found = self.processGenerateGraspsResult(result) if not grasp_found: print "no grasp found, returning" return False print "attempting grasp" return self.attemptGrasp(self.graspFrame) def find_best_match_and_grasp_and_stow(self): # find best match result = self.findBestBatch() if not result.match_found: return False # attempt grasp best match grasp_successful = self.grasp_best_match() if not grasp_successful: self.gripperDriver.send_open_gripper_set_distance_from_current() self.moveHome() print "grasp attempt failed, resetting" return False # stow stow_pose = self.graspingParams["poses"]["hand_to_human_right"] # stow_pose = self.graspingParams["poses"]["stow_in_bin"] self.pickupObject(stow=True, stow_pose=stow_pose) def request_best_match(self): goal = pdc_ros_msgs.msg.FindBestMatchGoal() goal.rgbd_with_pose_list = self.list_rgbd_with_pose_msg goal.camera_info = self.camera_info_subscriber.waitForNextMessage() self.find_best_match_client.send_goal(goal) self.moveHome() # From: https://www.programcreek.com/python/example/99841/sensor_msgs.msg.PointCloud2 def pointcloud2_to_array(self, cloud_msg): ''' Converts a rospy PointCloud2 message to a numpy recordarray Assumes all fields 32 bit floats, and there is no padding. ''' dtype_list = [(f.name, np.float32) for f in cloud_msg.fields] cloud_arr = np.fromstring(cloud_msg.data, dtype_list) return cloud_arr return np.reshape(cloud_arr, (cloud_msg.height, cloud_msg.width)) def processGenerateGraspsResult(self, result): """ Takes the result of spartan_grasp and parses it into a usable form :param result: :return: """ print "num antipodal grasps = ", len(result.antipodal_grasps) print "num volume grasps = ", len(result.volume_grasps) if (len(result.antipodal_grasps) == 0) and (len(result.volume_grasps) == 0): self.topGrasp = None self._grasp_found = False rospy.loginfo("no valid grasps found") return False if len(result.antipodal_grasps) > 0: self._grasp_found = True grasp_msg = result.antipodal_grasps[0] print "top grasp was ANTIPODAL" elif len(result.volume_grasps) > 0: self._grasp_found = True grasp_msg = result.volume_grasps[0] print "top grasp was VOLUME" self.topGrasp = grasp_msg rospy.loginfo("-------- top grasp score = %.3f", self.topGrasp.score) self.graspFrame = spartanUtils.transformFromROSPoseMsg(self.topGrasp.pose.pose) self.rotateGraspFrameToAlignWithNominal(self.graspFrame) return True def make_grasp_data_from_spartan_grasp_result(self, result): """ Takes the result of spartan_grasp and parses it into a usable form :param result: :return: bool, GraspData """ print "num antipodal grasps = ", len(result.antipodal_grasps) print "num volume grasps = ", len(result.volume_grasps) if (len(result.antipodal_grasps) == 0) and (len(result.volume_grasps) == 0): rospy.loginfo("no valid grasps found") return False, False if len(result.antipodal_grasps) > 0: grasp_msg = result.antipodal_grasps[0] type = "antipodal" print "top grasp was ANTIPODAL" elif len(result.volume_grasps) > 0: grasp_msg = result.volume_grasps[0] type = "volume" print "top grasp was VOLUME" rospy.loginfo("-------- top grasp score = %.3f", grasp_msg.score) grasp_data = GraspData.from_spartan_grasp(grasp_msg) grasp_data.data['type'] = type # rotate the grasp to align with nominal params = self.getParamsForCurrentLocation() grasp_z_axis_nominal = np.array(params['grasp']['grasp_nominal_direction']) grasp_data.rotate_grasp_frame_to_nominal(grasp_z_axis_nominal) return True, grasp_data def getIiwaLinkEEFrameFromGraspFrame(self, graspFrame): return transformUtils.concatenateTransforms([self.iiwaLinkEEToGraspFrame, graspFrame]) def get_iiwa_link_ee_from_gripper_fingertip_frame(self, T_W__gripper_fingertip): """ :param T_gripper_fingertip__W: gripper fingertip to world transform :return: """ return transformUtils.concatenateTransforms([self.T_gripper_fingertip__iiwa_link_ee, T_W__gripper_fingertip]) def moveToFrame(self, graspFrame, speed=None): if speed is None: speed = self.config['grasp_speed'] poseStamped = self.makePoseStampedFromGraspFrame(graspFrame) return self.robotService.moveToCartesianPosition(poseStamped, speed) def makePoseStampedFromGraspFrame(self, graspFrame): """ Make PoseStamped message for the end effector frame from a given grasp frame :param graspFrame: vtkTransform of the gripper frame :return : pose of the end-effector for that grasp frame location :rtype : geometry_msgs/PoseStamped """ iiwaLinkEEFrame = self.getIiwaLinkEEFrameFromGraspFrame(graspFrame) poseDict = spartanUtils.poseFromTransform(iiwaLinkEEFrame) poseMsg = rosUtils.ROSPoseMsgFromPose(poseDict) poseStamped = geometry_msgs.msg.PoseStamped() poseStamped.pose = poseMsg poseStamped.header.frame_id = "base" return poseStamped def make_ee_pose_stamped_from_grasp(self, T_W_gripper_fingertip): """ Make PoseStamped message for the end effector frame from a given grasp frame. :param T_W_gripper_fingertip: The position of the tips of the fingers, move down 3 cm to get :return : pose of the end-effector for that grasp frame location :rtype : geometry_msgs/PoseStamped """ iiwaLinkEEFrame = self.get_iiwa_link_ee_from_gripper_fingertip_frame(T_W_gripper_fingertip) poseDict = spartanUtils.poseFromTransform(iiwaLinkEEFrame) poseMsg = rosUtils.ROSPoseMsgFromPose(poseDict) poseStamped = geometry_msgs.msg.PoseStamped() poseStamped.pose = poseMsg poseStamped.header.frame_id = "base" return poseStamped def execute_grasp(self, grasp_data=None, close_gripper=True, use_cartesian_plan=True, stop_at_pre_grasp=False, push_in_distance=None, use_debug_speed=False, force_threshold_magnitude=None, ee_speed_m_s=0.05): """ Moves to pre-grasp frame, then grasp frame attemps to close gripper if `close_gripper=True` was passed in :return: bool (whether or not grasp was successful) """ if grasp_data is None: grasp_data = self.state.grasp_data if push_in_distance is None: push_in_distance = self.graspingParams['grasp_push_in_distance'] gripper_width = grasp_data.grasp_inner_diameter if gripper_width is not None: gripper_driver_width = gripper_width + self.graspingParams['gripper_width_offset'] self.gripperDriver.sendGripperCommand(gripper_driver_width, force=20.0) else: self.gripperDriver.send_open_gripper_set_distance_from_current() rospy.sleep(0.5) # wait for 0.5 for gripper to move # compute the pre-grasp frame pre_grasp_distance = self.graspingParams['pre_grasp_distance'] pre_grasp_frame_gripper = grasp_data.compute_pre_grasp_frame(distance=pre_grasp_distance) pre_grasp_ee_pose_stamped = self.makePoseStampedFromGraspFrame(pre_grasp_frame_gripper) # safety check is_safe = (GraspData.grasp_frame_safety_check(grasp_data.grasp_frame) and GraspData.grasp_frame_safety_check(pre_grasp_frame_gripper)) if not is_safe: self.state.set_status("SAFETY_CHECK_FAILED") return False # run the ik for moving to pre-grasp location graspLocationData = self.graspingParams[self.state.graspingLocation] above_table_pre_grasp = graspLocationData['poses']['above_table_pre_grasp'] pre_grasp_ik_response = self.robotService.runIK(pre_grasp_ee_pose_stamped, seedPose=above_table_pre_grasp, nominalPose=above_table_pre_grasp) pre_grasp_pose = pre_grasp_ik_response.joint_state.position if not pre_grasp_ik_response.success: rospy.loginfo("pre grasp pose ik failed, returning") self.state.set_status_ik_failed() self.state.print_status() return False # run the ik for moving to grasp location # for now just do IK, otherwise use cartesian space plan with force guards grasp_frame_ee_pose_stamped = self.makePoseStampedFromGraspFrame(grasp_data.grasp_frame) grasp_ik_response = self.robotService.runIK(grasp_frame_ee_pose_stamped, seedPose=above_table_pre_grasp, nominalPose=above_table_pre_grasp) grasp_pose = grasp_ik_response.joint_state.position if not grasp_ik_response.success: rospy.loginfo("pre grasp pose ik failed, returning") self.state.set_status_ik_failed() self.state.print_status() return False # store for later use self.state.cache['grasp_ik_response'] = grasp_ik_response self.state.cache['pre_grasp_ik_response'] = pre_grasp_ik_response # move to pre-grasp position # we do this using a position trajectory print "moving to pre-grasp" pre_grasp_speed = self.graspingParams['speed']['pre_grasp'] #### debugging speed = pre_grasp_speed if use_debug_speed: speed = DEBUG_SPEED self.robotService.moveToJointPosition(pre_grasp_pose, maxJointDegreesPerSecond= speed) self.state.set_status("PRE_GRASP") print "at pre-grasp pose" if stop_at_pre_grasp: return if use_cartesian_plan: # move to grasp position using compliant cartesian plan move_forward_distance = pre_grasp_distance + push_in_distance print "move_forward_distance", move_forward_distance xyz_goal = move_forward_distance * np.array([1, 0, 0]) ee_frame_id = "iiwa_link_ee" expressed_in_frame = ee_frame_id cartesian_grasp_speed = self.graspingParams['speed']['cartesian_grasp'] cartesian_grasp_speed = ee_speed_m_s cartesian_traj_goal = \ control_utils.make_cartesian_trajectory_goal(xyz_goal, ee_frame_id, expressed_in_frame, speed=cartesian_grasp_speed) # add force guards # -z (gripper) direction in frame iiwa_link_ee, if force_threshold_magnitude is None: force_threshold_magnitude = self.graspingParams['force_threshold_magnitude'] force_vector = force_threshold_magnitude * np.array([-1, 0, 0]) force_guard = control_utils.make_force_guard_msg(force_vector) cartesian_traj_goal.force_guard.append(force_guard) action_client = self.robotService.cartesian_trajectory_action_client action_client.send_goal(cartesian_traj_goal) # wait for result action_client.wait_for_result() result = action_client.get_result() grasp_data.data['cartesian_trajectory_result'] = result print "Cartesian Trajectory Result\n", result else: # move to grasp pose using standard IK speed = self.graspingParams['speed']['grasp'] if use_debug_speed: speed = DEBUG_SPEED self.robotService.moveToJointPosition(grasp_pose, maxJointDegreesPerSecond= speed) # record current location of gripper (in world frame) # before closing the gripper pos, quat = self.get_transform("iiwa_link_ee", "base") T_world_ee = transformUtils.transformFromPose(pos, quat) T_world_grasp = transformUtils.concatenateTransforms([self.graspToIiwaLinkEE, T_world_ee]) self.state.cache['gripper_frame_at_grasp'] = T_world_grasp has_object = False if close_gripper: print "closing gripper" has_object = self.gripperDriver.closeGripper() if has_object: self.state.set_status("OBJECT_IN_GRIPPER") print "object in gripper" else: self.state.set_status("GRASP_FAILED") print "grasp failed" return has_object def execute_place(self, grasp_data=None, use_cartesian_plan=True): if grasp_data is None: grasp_data = self.state.grasp_data # compute the pre-grasp frame pre_grasp_distance = self.graspingParams['pre_grasp_distance'] pre_grasp_frame_gripper = grasp_data.compute_pre_grasp_frame(distance=pre_grasp_distance) pre_grasp_ee_pose_stamped = self.makePoseStampedFromGraspFrame(pre_grasp_frame_gripper) # run the ik for moving to pre-grasp location graspLocationData = self.graspingParams[self.state.graspingLocation] above_table_pre_grasp = graspLocationData['poses']['above_table_pre_grasp'] pre_grasp_ik_response = self.robotService.runIK(pre_grasp_ee_pose_stamped, seedPose=above_table_pre_grasp, nominalPose=above_table_pre_grasp) pre_grasp_pose = pre_grasp_ik_response.joint_state.position if not pre_grasp_ik_response.success: rospy.loginfo("pre grasp pose ik failed, returning") self.state.set_status_ik_failed() self.state.print_status() return False # run the ik for moving to grasp location # for now just do IK, otherwise use cartesian space plan with force guards grasp_frame_ee_pose_stamped = self.makePoseStampedFromGraspFrame(grasp_data.grasp_frame) grasp_ik_response = self.robotService.runIK(grasp_frame_ee_pose_stamped, seedPose=above_table_pre_grasp, nominalPose=above_table_pre_grasp) grasp_pose = grasp_ik_response.joint_state.position if not grasp_ik_response.success: rospy.loginfo("pre grasp pose ik failed, returning") self.state.set_status_ik_failed() self.state.print_status() return False # store for later use self.state.cache['grasp_ik_response'] = grasp_ik_response self.state.cache['pre_grasp_ik_response'] = pre_grasp_ik_response # move to pre-grasp position # we do this using a position trajectory print "moving to pre-grasp" pre_grasp_speed = self.graspingParams['speed']['pre_grasp'] self.robotService.moveToJointPosition(pre_grasp_pose, maxJointDegreesPerSecond= pre_grasp_speed) self.state.set_status("PRE_GRASP") print "at pre-grasp pose" if use_cartesian_plan: # move to grasp position using compliant cartesian plan push_distance = self.graspingParams['grasp_push_in_distance'] move_forward_distance = pre_grasp_distance + push_distance print "move_forward_distance", move_forward_distance xyz_goal = move_forward_distance * np.array([1, 0, 0]) ee_frame_id = "iiwa_link_ee" expressed_in_frame = ee_frame_id cartesian_grasp_speed = self.graspingParams['speed']['cartesian_grasp'] cartesian_traj_goal = \ control_utils.make_cartesian_trajectory_goal(xyz_goal, ee_frame_id, expressed_in_frame, speed=cartesian_grasp_speed) # add force guards # -z (gripper) direction in frame iiwa_link_ee, force_magnitude = self.graspingParams['force_threshold_magnitude'] force_vector = force_magnitude * np.array([-1, 0, 0]) force_guard = control_utils.make_force_guard_msg(force_vector) cartesian_traj_goal.force_guard.append(force_guard) action_client = self.robotService.cartesian_trajectory_action_client action_client.send_goal(cartesian_traj_goal) # wait for result action_client.wait_for_result() result = action_client.get_result() grasp_data.data['cartesian_trajectory_result'] = result print "Cartesian Trajectory Result\n", result else: # move to grasp pose using standard IK speed = self.graspingParams['speed']['grasp'] self.robotService.moveToJointPosition(grasp_pose, maxJointDegreesPerSecond= speed) self.gripperDriver.send_open_gripper_set_distance_from_current() return True def execute_place_new(self, T_W_ee, T_W_ee_approach, q_nom=None, use_cartesian_plan=False, use_debug_speed=False, force_threshold_magnitude=10, ee_speed_m_s=0.05): """ :param T_W_ee: ee location for place :type T_W_ee: :param T_W_ee_approach: ee location for approach :type T_W_ee_approach: :param q_nom: pose for use as nominal and seed for ik :type q_nom: :param use_cartesian_plan: whether or not to use the cartesian plane :type use_cartesian_plan: :return: :rtype: """ # safety check is_safe = (GraspData.grasp_frame_safety_check(T_W_ee) and GraspData.grasp_frame_safety_check(T_W_ee_approach)) if not is_safe: self.state.set_status("SAFETY_CHECK_FAILED") return False # run the ik for moving to pre-grasp location debug_speed = 10 if q_nom is None: graspLocationData = self.graspingParams[self.state.graspingLocation] q_nom = graspLocationData['poses']['above_table_pre_grasp'] T_W_ee_vtk = transformUtils.getTransformFromNumpy(T_W_ee) T_W_ee_approach_vtk = transformUtils.getTransformFromNumpy(T_W_ee_approach) # pose stamped frame_id = "base" T_W_ee_approach_stamped = geometry_msgs.msg.PoseStamped() T_W_ee_approach_stamped.pose = ros_numpy.msgify(geometry_msgs.msg.Pose, T_W_ee_approach) T_W_ee_approach_stamped.header.frame_id = frame_id T_W_ee_approach_stamped.header.stamp = rospy.Time.now() print T_W_ee_approach_stamped pre_place_ik_response = self.robotService.runIK(T_W_ee_approach_stamped, seedPose=q_nom, nominalPose=q_nom) pre_place_pose = pre_place_ik_response.joint_state.position self.state.cache["pre_place_ik_response"] = pre_place_ik_response if not pre_place_ik_response.success: rospy.loginfo("pre place pose ik failed, returning") self.state.set_status_ik_failed() self.state.print_status() return False # run the ik for moving to grasp location frame_id = "base" T_W_ee_stamped = geometry_msgs.msg.PoseStamped() T_W_ee_stamped.pose = ros_numpy.msgify(geometry_msgs.msg.Pose, T_W_ee) T_W_ee_stamped.header.frame_id = frame_id T_W_ee_stamped.header.stamp = rospy.Time.now() # for now just do IK, otherwise use cartesian space plan with force guards place_ik_response = self.robotService.runIK(T_W_ee_stamped, seedPose=q_nom, nominalPose=q_nom) place_pose = place_ik_response.joint_state.position if not place_ik_response.success: rospy.loginfo("place pose ik failed, returning") self.state.set_status_ik_failed() self.state.print_status() return False # store for later use self.state.cache['place_ik_response'] = place_ik_response # move to pre-grasp position # we do this using a position trajectory print "moving to approach pose" # pre_grasp_speed = self.graspingParams['speed']['pre_grasp'] speed = self.graspingParams['speed']['grasp'] if use_debug_speed: speed = debug_speed self.robotService.moveToJointPosition(pre_place_pose, maxJointDegreesPerSecond= speed) self.state.set_status("PRE_GRASP") print "at approach pose" if use_cartesian_plan: # move to grasp position using compliant cartesian plan # for now doesn't deal with orientations xyz_approach = np.array(T_W_ee_approach_vtk.GetPosition()) xyz_place = np.array(T_W_ee_vtk.GetPosition()) distance = np.linalg.norm(xyz_place - xyz_approach) duration = distance/ee_speed_m_s xyz_goal = xyz_place ee_frame_id = "iiwa_link_ee" base_frame_id = "base" expressed_in_frame = base_frame_id cartesian_grasp_speed = self.graspingParams['speed']['cartesian_grasp'] cartesian_traj_goal = \ control_utils.make_cartesian_trajectory_goal(xyz_goal, ee_frame_id, expressed_in_frame, duration=duration) # add force guards # x_axis in frame iiwa_link_ee, force_vector = force_threshold_magnitude * np.array([-1, 0, 0]) force_guard = control_utils.make_force_guard_msg(force_vector) cartesian_traj_goal.force_guard.append(force_guard) # z_axis in frame iiwa_link_ee force_vector = force_threshold_magnitude * np.array([0, 0, 1]) force_guard = control_utils.make_force_guard_msg(force_vector) cartesian_traj_goal.force_guard.append(force_guard) action_client = self.robotService.cartesian_trajectory_action_client action_client.send_goal(cartesian_traj_goal) # wait for result action_client.wait_for_result() result = action_client.get_result() self.state.cache['cartesian_traj_result'] = result print "Cartesian Trajectory Result\n", result else: # move to grasp pose using standard IK speed = self.graspingParams['speed']['grasp'] self.robotService.moveToJointPosition(place_pose, maxJointDegreesPerSecond= speed) # now back off # self.gripperDriver.send_open_gripper_set_distance_from_current() return True def attemptGrasp(self, graspFrame): """ Attempt a grasp return: boolean if it was successful or not """ self._clear_cache() self._cache["grasp_frame"] = graspFrame preGraspFrame = transformUtils.concatenateTransforms([self.preGraspToGraspTransform, self.graspFrame]) graspLocationData = self.graspingParams[self.state.graspingLocation] above_table_pre_grasp = graspLocationData['poses']['above_table_pre_grasp'] preGraspFramePoseStamped = self.makePoseStampedFromGraspFrame(preGraspFrame) preGrasp_ik_response = self.robotService.runIK(preGraspFramePoseStamped, seedPose=above_table_pre_grasp, nominalPose=above_table_pre_grasp) if not preGrasp_ik_response.success: rospy.loginfo("pre grasp pose ik failed, returning") return False graspFramePoseStamped = self.makePoseStampedFromGraspFrame(graspFrame) preGraspPose = preGrasp_ik_response.joint_state.position grasp_ik_response = self.robotService.runIK(graspFramePoseStamped, seedPose=preGraspPose, nominalPose=preGraspPose) self._cache['grasp_ik_response'] = grasp_ik_response self._cache['pre_grasp_ik_response'] = preGrasp_ik_response if not grasp_ik_response.success: rospy.loginfo("grasp pose not reachable, returning") return False graspPose = grasp_ik_response.joint_state.position # store for future use self.preGraspFrame = preGraspFrame self.graspFrame = graspFrame self.gripperDriver.send_open_gripper_set_distance_from_current() rospy.sleep(0.5) # wait for the gripper to open self.robotService.moveToJointPosition(preGraspPose, maxJointDegreesPerSecond=self.graspingParams['speed']['pre_grasp']) self.robotService.moveToJointPosition(graspPose, maxJointDegreesPerSecond=self.graspingParams['speed']['grasp']) objectInGripper = self.gripperDriver.closeGripper() return objectInGripper def vtkFrameToPoseMsg(self, vtkFrame): poseDict = spartanUtils.poseFromTransform(vtkFrame) poseMsg = rosUtils.ROSPoseMsgFromPose(poseDict) poseStamped = geometry_msgs.msg.PoseStamped() poseStamped.pose = poseMsg poseStamped.header.frame_id = "base" return poseStamped """ Moves the gripper up 15cm then moves home """ def pickupObject(self, stow=True, stow_pose=None): endEffectorFrame = self.tfBuffer.lookup_transform(self.config['base_frame_id'], self.config['end_effector_frame_id'], rospy.Time(0)) eeFrameVtk = spartanUtils.transformFromROSTransformMsg(endEffectorFrame.transform) eeFrameVtk.PostMultiply() eeFrameVtk.Translate(0, 0, self.config['pick_up_distance']) vis.updateFrame(eeFrameVtk, 'pickup frame') self._cache['eeFrameVtk'] = eeFrameVtk self._cache['endEffectorFrame'] = endEffectorFrame poseStamped = self.vtkFrameToPoseMsg(eeFrameVtk) speed = 10 # joint degrees per second params = self.getParamsForCurrentLocation() above_table_pre_grasp = params['poses']['above_table_pre_grasp'] ik_response = self.robotService.runIK(poseStamped, seedPose=above_table_pre_grasp, nominalPose=above_table_pre_grasp) if ik_response.success: self.robotService.moveToJointPosition(ik_response.joint_state.position, maxJointDegreesPerSecond=self.graspingParams['speed']['slow']) if stow_pose is None: stow_pose = self.getStowPose() # move to above_table_pre_grasp # self.robotService.moveToJointPosition(above_table_pre_grasp, maxJointDegreesPerSecond=self.graspingParams['speed']['stow']) # move to stow_pose if stow: self.robotService.moveToJointPosition(stow_pose, maxJointDegreesPerSecond=self.graspingParams['speed']['stow']) # release object self.gripperDriver.send_open_gripper_set_distance_from_current() rospy.sleep(0.5) # move Home self.moveHome() def pickup_object(self): """ Just moves to pre-grasp frame :return: """ if "pre_grasp_ik_response" not in self.state.cache: return False pre_grasp_ik_response = self.state.cache['pre_grasp_ik_response'] pre_grasp_pose = pre_grasp_ik_response.joint_state.position pre_grasp_speed = self.graspingParams['speed']['stow'] self.robotService.moveToJointPosition(pre_grasp_pose, maxJointDegreesPerSecond= pre_grasp_speed) def pickup_object_and_reorient_on_table(self): """ Places the object back on the table in a random orientation Relies on variables in self._cache being set from when we picked up the object :return: """ def set_position(t, pos): _, quat = transformUtils.poseFromTransform(t) return transformUtils.transformFromPose(pos, quat) speed = self.config["object_interaction"]["speed"] pick_up_distance = self.config["object_interaction"]["pickup_distance"] drop_distance_above_grasp = self.config["object_interaction"]["drop_distance_above_grasp"] rotate_speed = self.config["object_interaction"]["rotate_speed"] drop_location = self.config["object_interaction"]["drop_location"] # z coordinate is overwritten later endEffectorFrame = self.tfBuffer.lookup_transform(self.config['base_frame_id'], self.config['end_effector_frame_id'], rospy.Time(0)) grasp_ee_frame = spartanUtils.transformFromROSTransformMsg(endEffectorFrame.transform) # the frame of the end-effector after we have picked up the object pickup_ee_frame_vtk = transformUtils.copyFrame(grasp_ee_frame) pickup_ee_frame_vtk.PostMultiply() pickup_ee_frame_vtk.Translate(0, 0, pick_up_distance) vis.updateFrame(pickup_ee_frame_vtk, 'pickup frame', scale=0.15) self._cache['grasped_ee_frame'] = endEffectorFrame self._cache['pickup_ee_frame_vtk'] = pickup_ee_frame_vtk poseStamped = self.vtkFrameToPoseMsg(pickup_ee_frame_vtk) speed = 10 # joint degrees per second params = self.getParamsForCurrentLocation() above_table_pre_grasp = params['poses']['above_table_pre_grasp'] pickup_ik_response = self.robotService.runIK(poseStamped, seedPose=above_table_pre_grasp, nominalPose=above_table_pre_grasp) # compute the drop frame location # This is done by rotating along the z-axis of the grasp frame by some random # amount in [-90, 90] and then just releasing rotate_x_angle = random.uniform(45, 90) # if random.random() < 0.5: # rotate_x_angle *= -1 pre_drop_frame = transformUtils.copyFrame(pickup_ee_frame_vtk) pre_drop_frame.PreMultiply() pre_drop_frame.RotateX(rotate_x_angle) pre_drop_frame_pos, _ = transformUtils.poseFromTransform(pre_drop_frame) pre_drop_frame_pos[0:2] = drop_location[0:2] pre_drop_frame = set_position(pre_drop_frame, pre_drop_frame_pos) grasp_ee_height = grasp_ee_frame.GetPosition()[2] drop_frame_pos = copy.copy(pre_drop_frame_pos) drop_frame_pos[2] = grasp_ee_height + drop_distance_above_grasp print "drop_frame_pos", drop_frame_pos drop_frame = transformUtils.copyFrame(pre_drop_frame) drop_frame = set_position(drop_frame, drop_frame_pos) vis.updateFrame(pre_drop_frame, "pre drop frame", scale=0.15) vis.updateFrame(drop_frame, "drop frame", scale=0.15) # run IK pre_drop_frame_pose_stamped = self.vtkFrameToPoseMsg(pre_drop_frame) pre_drop_ik_response = self.robotService.runIK(pre_drop_frame_pose_stamped, seedPose=above_table_pre_grasp, nominalPose=above_table_pre_grasp) drop_frame_pose_stamped = self.vtkFrameToPoseMsg(drop_frame) drop_ik_response = self.robotService.runIK(drop_frame_pose_stamped, seedPose=above_table_pre_grasp, nominalPose=above_table_pre_grasp) if pickup_ik_response.success and pre_drop_ik_response.success and drop_ik_response.success: # pickup object self.robotService.moveToJointPosition(pickup_ik_response.joint_state.position, maxJointDegreesPerSecond=speed) # move to pre-drop self.robotService.moveToJointPosition(pre_drop_ik_response.joint_state.position, maxJointDegreesPerSecond=rotate_speed) # move to drop location self.robotService.moveToJointPosition(drop_ik_response.joint_state.position, maxJointDegreesPerSecond=speed) self.gripperDriver.send_open_gripper_set_distance_from_current() rospy.sleep(0.5) # move to pre-drop self.robotService.moveToJointPosition(pre_drop_ik_response.joint_state.position, maxJointDegreesPerSecond=rotate_speed) self.moveHome() else: print "ik failed" return False return True def planGraspAndPickupObject(self, stow=True): self.collectSensorData() self.requestGrasp() self.moveHome() result = self.waitForGenerateGraspsResult() graspFound = self.processGenerateGraspsResult(result) if not graspFound: rospy.loginfo("no grasp found, returning") return False graspSuccessful = self.attemptGrasp(self.graspFrame) if not graspSuccessful: rospy.loginfo("grasp not successful returning") return False self.pickupObject(stow) def graspAndStowObject(self): graspSuccessful = self.attemptGrasp(self.graspFrame) if not graspSuccessful: rospy.loginfo("grasp not successful returning") return False stow = True self.pickupObject(stow) def askForCaptureScene(self): """ This function just waits for, then asks for the capture_scene service provided by fusion_server. This only collects fusion data without performing fusion, so it's fast. See fusion_server for documentation. """ rospy.wait_for_service('capture_scene') print "Found it!, starting capture..." try: capture_scene = rospy.ServiceProxy('capture_scene', fusion_server.srv.CaptureScene) resp = capture_scene() print "bag_filepath = %s" % resp.bag_filepath rospy.loginfo("bag_filepath = %s", resp.bag_filepath) except rospy.ServiceException, e: print "Service call failed: %s" % e def interact_with_object(self): """ Runs one iteration of picking up the object re-orienting it and then placing it back on the table """ self.collectSensorData() self.moveHome() self.requestGrasp() result = self.waitForGenerateGraspsResult() graspFound = self.processGenerateGraspsResult(result) if not graspFound: print "no grasp found" return False grasp_successful = self.attemptGrasp(self.graspFrame) if not grasp_successful: print "grasp attemp was not successful" return False else: print "grasped object" reoriented_object = self.pickup_object_and_reorient_on_table() if not reoriented_object: print "didn't manage to reorient object" return False return True def interactAndCollectFusionDataLoop(self, num_interactions): """ Attempts to pickup the object and move it around :param num_interactions: :return: """ for i in range(num_interactions): success = self.interact_with_object() if not success: print "Human, please go move the object? \n" print "If you don't want to keep doing this," print "then go implement a 'smack-the-object' primitive." # in future: # self.smackObject() rospy.sleep(4.0) rospy.sleep(1.0) self.askForCaptureScene() def testMoveToFrame(self): pos = [0.51148583, 0.0152224, 0.50182436] quat = [0.68751512, 0.15384615, 0.69882778, -0.12366916] targetFrame = transformUtils.transformFromPose(pos, quat) poseDict = spartanUtils.poseFromTransform(targetFrame) poseMsg = rosUtils.ROSPoseMsgFromPose(poseDict) poseStamped = geometry_msgs.msg.PoseStamped() poseStamped.pose = poseMsg poseStamped.header.frame_id = "base" self.poseStamped = poseStamped self.robotService.moveToCartesianPosition(poseStamped, 30) def showGraspFrame(self): vis.updateFrame(self.graspFrame, 'grasp frame', scale=0.15) vis.updateFrame(self.getIiwaLinkEEFrameFromGraspFrame(self.graspFrame), 'iiwa_link_ee_grasp_frame', scale=0.15) def showGripperFrame(self): iiwaLinkEE = self.robotSystem.robotStateModel.getLinkFrame('iiwa_link_ee') gripperFrame = transformUtils.concatenateTransforms([self.graspToIiwaLinkEE, iiwaLinkEE]) vis.updateFrame(gripperFrame, 'Gripper Frame', scale=0.15) def show_gripper_fingertip_frame(self): iiwaLinkEE = self.robotSystem.robotStateModel.getLinkFrame('iiwa_link_ee') gripperFrame = transformUtils.concatenateTransforms([self.gripper_fingertip_to_iiwa_link_ee, iiwaLinkEE]) vis.updateFrame(gripperFrame, 'Gripper Fingertip Frame', scale=0.15) def getParamsForCurrentLocation(self): return self.graspingParams[self.state.graspingLocation] def rotateGraspFrameToAlignWithNominal(self, graspFrame): """ Rotate the grasp frame to align with the nominal direction. In this case we want the ZAxis of the grasp to be aligned with (1,0,0) in world frame. If it's not aligned rotate it by 180 degrees about the x-axis of the grasp :param graspFrame: :return: """ graspFrameZAxis = graspFrame.TransformVector(0, 0, 1) params = self.getParamsForCurrentLocation() graspNominalDirection = params['grasp']['grasp_nominal_direction'] if (np.dot(graspFrameZAxis, graspNominalDirection) < 0): graspFrame.PreMultiply() graspFrame.RotateX(180) def saveSensorDataToBagFile(self, pointCloudListMsg=None, filename=None, overwrite=True): """ Save sensor data to a bag file """ if pointCloudListMsg is None: return if filename is None: filename = os.path.join(spartanUtils.get_sandbox_dir(), "rosbag", 'grasp_sensor_data_%s.bag' %(spartanUtils.get_current_time_unique_name())) if not os.path.isdir(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) if overwrite and os.path.isfile(filename): os.remove(filename) bag = rosbag.Bag(filename, 'w') bag.write('data', pointCloudListMsg) bag.close() def requestGrasp(self, pointCloudListMsg=None): """ Requests a grasp from the SpartanGrasp ROS service Doesn't collect new sensor data """ # request the grasp via a ROS Action if pointCloudListMsg is None: pointCloudListMsg = self.pointCloudListMsg rospy.loginfo("waiting for spartan grasp server") self.generate_grasps_client.wait_for_server() rospy.loginfo("requsting grasps spartan grasp server") params = self.getParamsForCurrentLocation() goal = spartan_grasp_msgs.msg.GenerateGraspsFromPointCloudListGoal() goal.point_clouds = self.pointCloudListMsg if 'grasp_volume' in params: node = params['grasp_volume'] rectangle = GraspSupervisor.rectangleMessageFromYamlNode(node) goal.params.grasp_volume.append(rectangle) if 'collision_volume' in params: node = params['collision_volume'] rectangle = GraspSupervisor.rectangleMessageFromYamlNode(node) goal.params.collision_volume.append(rectangle) if 'collision_objects' in params: for key, val in params['collision_objects'].iteritems(): rectangle = GraspSupervisor.rectangleMessageFromYamlNode(val) goal.params.collision_objects.append(rectangle) self.generate_grasps_client.send_goal(goal) def call_spartan_grasp(self): """ Better named wrapper method :return: """ self.requestGrasp() def waitForGenerateGraspsResult(self): rospy.loginfo("waiting for result") self.generate_grasps_client.wait_for_result() result = self.generate_grasps_client.get_result() self.generate_grasps_result = result rospy.loginfo("received result") return result def wait_for_grasp_3D_location_result(self): """ Waits for the result of the Grasp3DLocation action :return: """ rospy.loginfo("waiting for result") self.grasp_3D_location_client.wait_for_result() result = self.grasp_3D_location_client.get_result() self.grasp_3D_location_result = result # debugging rospy.loginfo("received result") return result def request_grasp_3D_location(self, pointCloudListMsg=None, grasp_point=None): """ Requests a grasp3DLocation from the SpartanGrasp ROS service Doesn't collect new sensor data """ # request the grasp via a ROS Action if pointCloudListMsg is None: pointCloudListMsg = self.pointCloudListMsg rospy.loginfo("waiting for spartan grasp server") self.grasp_3D_location_client.wait_for_server() rospy.loginfo("requsting grasps spartan grasp server") params = self.getParamsForCurrentLocation() goal = spartan_grasp_msgs.msg.Grasp3DLocationGoal() if grasp_point is None: grasp_point = self.get_clicked_point() goal.grasp_point = self.get_clicked_point() goal.point_clouds = pointCloudListMsg if 'grasp_volume' in params: node = params['grasp_volume'] rectangle = GraspSupervisor.rectangleMessageFromYamlNode(node) goal.params.grasp_volume.append(rectangle) if 'collision_volume' in params: node = params['collision_volume'] rectangle = GraspSupervisor.rectangleMessageFromYamlNode(node) goal.params.collision_volume.append(rectangle) if 'collision_objects' in params: for key, val in params['collision_objects'].iteritems(): rectangle = GraspSupervisor.rectangleMessageFromYamlNode(val) goal.params.collision_objects.append(rectangle) self.grasp_3D_location_client.send_goal(goal) def request_spartan_grasp(self, clear_state=True): """ - collect sensor data - send request to spartan grasp :return: bool, GraspData """ self.moveHome() self.collectSensorData() self.moveHome() self.requestGrasp() result = self.waitForGenerateGraspsResult() grasp_found, grasp_data = self.make_grasp_data_from_spartan_grasp_result(result) if clear_state: self.state.clear() if grasp_found: self.state.set_status("GRASP_FOUND") self.state.grasp_data = grasp_data else: self.state.set_status("NO_GRASP_FOUND") if grasp_found and self.debugMode: # visualize the grasp frame self.visualize_grasp(grasp_data) return grasp_found, grasp_data def grasp_3D_location_request(self, grasp_point, pointCloudListMsg=None): """ Sends a request to grasp a specific 3D location :param : grasp_point is numpy array or list of size [3] """ params = self.getParamsForCurrentLocation() goal = spartan_grasp_msgs.msg.Grasp3DLocationGoal() if pointCloudListMsg is None: goal.point_clouds = self.pointCloudListMsg goal.grasp_point.x = grasp_point[0] goal.grasp_point.y = grasp_point[1] goal.grasp_point.z = grasp_point[2] if 'grasp_volume' in params: node = params['grasp_volume'] rectangle = GraspSupervisor.rectangleMessageFromYamlNode(node) goal.params.grasp_volume.append(rectangle) if 'collision_volume' in params: node = params['collision_volume'] rectangle = GraspSupervisor.rectangleMessageFromYamlNode(node) goal.params.collision_volume.append(rectangle) if 'collision_objects' in params: for key, val in params['collision_objects'].iteritems(): rectangle = GraspSupervisor.rectangleMessageFromYamlNode(val) goal.params.collision_objects.append(rectangle) self.grasp_3D_location_client.send_goal(goal) def grasp_3D_location(self): """ Runs the grasping_3D_location pipeline 1. Checks to make sure there is a clicked_point 2. Collects sensor data 3. Sends off the request to spartan_grasp server :return: None """ self.get_clicked_point() self.collectSensorData() self.request_grasp_3D_location() self.moveHome() result = self.wait_for_grasp_3D_location_result() grasp_found = self.processGenerateGraspsResult(result) def visualize_grasp(self, grasp_data): stamp = rospy.Time.now() vis.updateFrame(grasp_data.grasp_frame, "grasp frame", parent=self._vis_container, scale=0.15) point_cloud_msg = None if 'point_cloud_msg' in grasp_data.data: point_cloud_msg = grasp_data.data['point_cloud_msg'] # publish grasp to world transform pose = director_utils.poseFromTransform(grasp_data.grasp_frame) transform_msg = rosUtils.ROSTransformMsgFromPose(pose) ts = geometry_msgs.msg.TransformStamped() ts.header.stamp = stamp ts.header.frame_id = self.config["base_frame_id"] frame_id = "grasp_frame" ts.child_frame_id = frame_id ts.transform = transform_msg # use the gripper stored in the grasp data if it exists gripper = grasp_data.gripper if gripper is None: gripper = self._gripper marker_array = gripper.make_rviz_visualization_msg(frame_id, stamp) for i in xrange(0, 5): if point_cloud_msg is not None: self.grasp_pointcloud_publisher.publish(point_cloud_msg) self.rviz_marker_array_publisher.publish(marker_array) self.tfBroadcaster.sendTransform(ts) rospy.sleep(0.02) def get_ggcnn_grasp(self): """ Looks up the ggcnn grasp frame from the tf server Also need to think about gripper width etc. :return: tuple (bool, dict) :rtype: """ # just do a transform lookup return_data = dict() self.state.clear() try: ggcnn_grasp_frame_camera_axes = self.tfBuffer.lookup_transform(self.config["base_frame_id"], self.ggcnn_grasp_frame_camera_axes_id, rospy.Time.now(), rospy.Duration(2.0)) except Exception as e: rospy.loginfo("Unable to get ggcnn grasp frame from tf, returning") print(e) return False, return_data return_data['ggcnn_grasp_frame_camera_axes'] = ggcnn_grasp_frame_camera_axes # make grasp object T_W_GC = director_utils.transformFromROSTransformMsg(ggcnn_grasp_frame_camera_axes.transform) grasp_data = GraspData.from_ggcnn_grasp_frame_camera_axes(T_W_GC) # get the pointcloud associated with this grasp point_cloud_msg = self.pointCloudSubscriber.waitForNextMessage() grasp_data.data['point_cloud_msg'] = point_cloud_msg # rotate the grasp to align with nominal params = self.getParamsForCurrentLocation() grasp_z_axis_nominal = np.array(params['grasp']['grasp_nominal_direction']) grasp_data.rotate_grasp_frame_to_nominal(grasp_z_axis_nominal) self.state.grasp_data = grasp_data return_data['grasp_data'] = grasp_data if self.debugMode: # visualize the grasp frame self.visualize_grasp(grasp_data) return True, return_data def start_bagging(self): print "Waiting for 'start_bagging_fusion_data' service..." rospy.wait_for_service('start_bagging_fusion_data') print "Found it!, starting bagging..." try: start_bagging_fusion_data = rospy.ServiceProxy('start_bagging_fusion_data', StartBaggingFusionData) resp1 = start_bagging_fusion_data() # return resp1.data_filepath except rospy.ServiceException, e: print "Service call failed: %s" % e def stop_bagging(self): print "Waiting for 'stop_bagging_fusion_data' service..." rospy.wait_for_service('stop_bagging_fusion_data') print "Found it!, stopping bagging..." try: stop_bagging_fusion_data = rospy.ServiceProxy('stop_bagging_fusion_data', StopBaggingFusionData) resp1 = stop_bagging_fusion_data() return resp1.status except rospy.ServiceException, e: print "Service call failed: %s" % e def testInThread(self): """ DEPRECATED Runs the grasping pipeline 1. Move the robot to collect sensor data 2. Request the grasp (via a Ros Action) 3. Move Home 4. Wait for the response from SpartanGrasp 5. Process the result """ self.collectSensorData() self.moveHome() self.requestGrasp() result = self.waitForGenerateGraspsResult() graspFound = self.processGenerateGraspsResult(result) return graspFound def testMoveHome(self): self.taskRunner.callOnThread(self.moveHome) def test(self): self.taskRunner.callOnThread(self.testInThread) def test_grasp_3D_location(self): """ Calls grasp_3D_location in a thread :return: """ self.taskRunner.callOnThread(self.grasp_3D_location) def testAttemptGrasp(self): self.taskRunner.callOnThread(self.attemptGrasp, self.graspFrame) def testPickupObject(self): self.taskRunner.callOnThread(self.pickupObject) def test_pickup_object(self): self.taskRunner.callOnThread(self.pickup_object) def testGraspAndStowObject(self): self.taskRunner.callOnThread(self.graspAndStowObject) def testPipeline(self): self.taskRunner.callOnThread(self.planGraspAndPickupObject) def testCollectSensorData(self, **kwargs): self.taskRunner.callOnThread(self.collectSensorData, **kwargs) def testRequestGrasp(self): self.taskRunner.callOnThread(self.requestGrasp) def testInteractionLoop(self, num_interactions=3): self.taskRunner.callOnThread(self.interactAndCollectFusionDataLoop, num_interactions) def test_on_clicked_point(self): self.taskRunner.callOnThread(self.on_clicked_point) def testFindBestMatch(self): self.taskRunner.callOnThread(self.findBestBatch) def test_grasp_best_match(self): self.taskRunner.callOnThread(self.grasp_best_match) def test_find_best_match_and_grasp_and_stow(self): self.taskRunner.callOnThread(self.find_best_match_and_grasp_and_stow) def test_best_match_no_data(self): self.taskRunner.callOnThread(self.request_best_match) def test_reorient(self): self.taskRunner.callOnThread(self.pickup_object_and_reorient_on_table) def test_interact_with_object(self): self.taskRunner.callOnThread(self.interact_with_object) def test_start_bagging(self): self.taskRunner.callOnThread(self.start_bagging) def test_stop_bagging(self): self.taskRunner.callOnThread(self.stop_bagging) def test_execute_grasp(self): self.taskRunner.callOnThread(self.execute_grasp) def test_request_spartan_grasp(self, *args, **kwargs): """ Collect sensor data and send request to spartan_grasp Visualize resulting grasp :return: """ self.taskRunner.callOnThread(self.request_spartan_grasp, *args, **kwargs) def test_run_poser(self, *args, **kwargs): self.taskRunner.callOnThread(self.run_poser, *args, **kwargs) def test_run_manipulate_object(self, *args, **kwargs): self.taskRunner.callOnThread(self.run_manipulate_object, *args, **kwargs) def test_run_category_manipulation_goal_estimation(self,*args, **kwargs): self.taskRunner.callOnThread(self.run_category_manipulation_goal_estimation, *args, **kwargs) def test_run_category_manipulation_pipeline(self, *args, **kwargs): self.taskRunner.callOnThread(self.run_category_manipulation_pipeline, *args, **kwargs) def test_run_keypoint_detection(self, *args, **kwargs): self.taskRunner.callOnThread(self.run_keypoint_detection, *args, **kwargs) def test_run_mug_on_rack_manipulation(self, *args, **kwargs): self.taskRunner.callOnThread(self.run_mug_on_rack_manipulation, *args, **kwargs) def test_retract_from_rack(self, *args, **kwargs): self.taskRunner.callOnThread(self.retract_from_mug_rack, *args, **kwargs) def test_retract_from_mug_shelf(self, *args, **kwargs): self.taskRunner.callOnThread(self.retract_from_mug_shelf, *args, **kwargs) def test_run_mug_shelf_manipulation(self, *args, **kwargs): self.taskRunner.callOnThread(self.run_mug_shelf_manipulation, *args, **kwargs) def test_run_shoe_manipulation(self, *args, **kwargs): self.taskRunner.callOnThread(self.run_shoe_rack_manipulation, *args, **kwargs) def loadDefaultPointCloud(self): self.pointCloudListMsg = GraspSupervisor.getDefaultPointCloudListMsg() def test_dev(self): def thread_fun(): self.run_keypoint_detection(wait_for_result=False, move_to_stored_pose=True) speed = self.graspingParams['speed']['fast'] self.moveHome(speed=speed) self.run_category_manipulation_goal_estimation() self.taskRunner.callOnThread(thread_fun) def test_mug_shelf_3D_pipeline(self): self.taskRunner.callOnThread(self.run_mug_shelf_3D_pipeline) def test_mug_rack_pipeline(self, *args, **kwargs): # time.sleep(10.0) # sleep for 10 seconds self.taskRunner.callOnThread(self.run_mug_on_rack_pipeline, *args, **kwargs) def test_shoe_rack_pipeline(self): self.taskRunner.callOnThread(self.run_shoe_on_rack_pipeline) def test_category_manip_pipeline(self): """ Runs the appropriate category manip pipeline :return: :rtype: """ raise NotImplementedError("") def test_estimate_mug_rack_pose(self): self.taskRunner.callOnThread(self.estimate_mug_rack_pose) def r(self): self.test_retract_from_rack() @staticmethod def rectangleMessageFromYamlNode(node): msg = spartan_grasp_msgs.msg.Rectangle() msg.min_pt = rosUtils.listToPointMsg(node['min_pt']) msg.max_pt = rosUtils.listToPointMsg(node['max_pt']) msg.pose = rosUtils.ROSPoseMsgFromPose(node) return msg @staticmethod def makeDefault(**kwargs): graspingParamsFile = os.path.join(spartanUtils.getSpartanSourceDir(), 'src', 'catkin_projects', 'station_config', 'RLG_iiwa_1', 'manipulation', 'params.yaml') return GraspSupervisor(graspingParamsFile=graspingParamsFile, **kwargs) @staticmethod def getPointCloudListMsg(rosBagFilename): bag = rosbag.Bag(rosBagFilename) pointCloudListMsg = None for topic, msg, t in bag.read_messages(topics=['data']): pointCloudListMsg = msg bag.close() return pointCloudListMsg @staticmethod def getDefaultPointCloudListMsg(): spartanSourceDir = spartanUtils.getSpartanSourceDir() # filename = "grasp_sensor_data.bag" filename = "sr300_box.bag" rosBagFilename = os.path.join(spartanSourceDir, 'data', 'rosbag', 'iiwa', filename) return GraspSupervisor.getPointCloudListMsg(rosBagFilename)
null
null
null
null
[ 0 ]
1,342
b59dfd97a2b52ddef4e37557ea96bff9edf34989
<mask token>
<mask token> class Solution(object): <mask token>
<mask token> class Solution(object): def buildTree(self, inorder, postorder): """ :type inorder: List[int] :type postorder: List[int] :rtype: TreeNode """ hashmap = {} for i, val in enumerate(inorder): hashmap[val] = i global post_index post_index = len(inorder) - 1 def helper(left_index, right_index): if left_index >= right_index: return None global post_index root_val = postorder[post_index] root = TreeNode(root_val) post_index -= 1 index = hashmap[root_val] root.right = helper(index + 1, right_index) root.left = helper(left_index, index) return root return helper(0, len(inorder))
<mask token> global post_index class Solution(object): def buildTree(self, inorder, postorder): """ :type inorder: List[int] :type postorder: List[int] :rtype: TreeNode """ hashmap = {} for i, val in enumerate(inorder): hashmap[val] = i global post_index post_index = len(inorder) - 1 def helper(left_index, right_index): if left_index >= right_index: return None global post_index root_val = postorder[post_index] root = TreeNode(root_val) post_index -= 1 index = hashmap[root_val] root.right = helper(index + 1, right_index) root.left = helper(left_index, index) return root return helper(0, len(inorder))
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Copyright 2020, Yutong Xie, UIUC. Using recursion to construct binary tree from postorder and inorder traversal ''' # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right global post_index class Solution(object): def buildTree(self, inorder, postorder): """ :type inorder: List[int] :type postorder: List[int] :rtype: TreeNode """ hashmap = {} for i, val in enumerate(inorder): hashmap[val] = i global post_index post_index = len(inorder)-1 def helper(left_index, right_index): if left_index >= right_index: return None global post_index root_val = postorder[post_index] root = TreeNode(root_val) post_index -= 1 index = hashmap[root_val] root.right = helper(index+1, right_index) root.left = helper(left_index, index) return root return helper(0, len(inorder))
[ 0, 1, 2, 3, 4 ]
1,343
22afc6b9df87ef1eba284da20a807366278c24d4
<mask token> def rest_api(mode=None): """""" values = config.read() wt_url = Text(value=values['api']['url'], placeholder='Add URL', description='API URL:', disabled=False) wt_user = Text(value=values['api']['user'], placeholder='Username', description='API User:', disabled=False) wt_pass = Password(value=values['api']['pass'], placeholder='******', description='API Password:', disabled=False) wb_save = Button(description='Save', disabled=False, icon='save') progress = Output() def outlog(*text): with progress: print(*text) @wb_save.on_click def wb_save_on_click(b): config.update(['api', 'url'], str(wt_url.value)) config.update(['api', 'user'], str(wt_user.value)) if wt_pass.value != '': config.update(['api', 'pass'], str(wt_pass.value)) outlog('API information is updated') wbox = VBox([wt_url, wt_user, wt_pass, wb_save, progress]) return wbox <mask token> def direct_settings(): values = config.read() ds_def = values['set']['ds_conf'] ds_dye = values['set']['ds_year'] if ds_def not in [d for d in values['ds_conf']]: ds_def = [d for d in values['ds_conf']][0] dsc = Dropdown(options=[d for d in values['ds_conf']], value=ds_def, description='Default:', disabled=False, layout=Layout(width='200px')) dsy = Dropdown(options=[int(y) for y in values['ds_conf'][dsc.value][ 'years']], value=int(ds_dye), description='Dataset year:', disabled =False, layout=Layout(width='180px')) btn_refresh = Button(layout=Layout(width='35px'), icon='fa-refresh') @btn_refresh.on_click def btn_refresh_on_click(b): values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) def on_dsc_change(change): config.update(['set', 'ds_conf'], dsc.value) values = config.read() ds_c = values['set']['ds_conf'] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.observe(on_dsc_change, 'value') def on_dsy_change(change): config.update(['set', 'ds_year'], str(dsy.value)) dsy.observe(on_dsy_change, 'value') bt_set = Button(layout=Layout(width='40px'), icon='cogs', tooltip= 'Configure this dataset') bt_new = Button(layout=Layout(width='40px'), icon='plus', tooltip= 'Add new dataset configuration') bt_rec = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip= 'Delete dataset configuration') bt_rey = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip= 'Delete only the selected year.') dsc_box = HBox([dsc, btn_refresh, bt_rec, dsy, bt_set, bt_rey, bt_new]) progress = Output() def outlog(*text): with progress: print(*text) def dsc_config(dsc_value): values = config.read() ds_db = Dropdown(options=['1'], value='1', description='Database:', disabled=False, layout=Layout(width='140px')) try: with open(f"{config.get_value(['paths', 'temp'])}tb_prefix", 'r' ) as f: code_value = f.read() except Exception: code_value = dsc_value ds_code = Combobox(value=code_value, placeholder='abc', options=[m for m in data_options.eu_ms()] + [''], description='AOI code:', ensure_option=False, disabled=False, layout=Layout(width= '200px'), tooltip= 'Lowercase AOI code name for the dataset (5chr max).') ds_year = BoundedIntText(value=int(dsy.value), min=1980, max=2100, step=1, description='Dataset year:', disabled=False, layout= Layout(width='180px')) ds_desc = Text(value=values['ds_conf'][dsc_value]['desc'], description='Description:', disabled=False) info_map_text = ['Set default map view options. ', 'You can get automatically the dataset ', 'center coordinates.'] lat, lon = values['ds_conf'][dsc_value]['center'].split(',') map_cent_lat = FloatText(value=float(lat), description='Lat:', disabled=False, layout=Layout(width='160px')) map_cent_lon = FloatText(value=float(lon), description='Lon:', disabled=False, layout=Layout(width='160px')) map_zoom = BoundedIntText(value=values['ds_conf'][dsc_value]['zoom' ], min=0, max=20, step=1, description='Zoom:', disabled=False, layout=Layout(width='140px')) bt_get_center = Button(layout=Layout(width='40px'), icon='bullseye', tooltip='Get center point from database.') ds_box = HBox([ds_code, ds_year, ds_desc]) map_box = HBox([Label('Map center: '), map_cent_lat, map_cent_lon, bt_get_center, map_zoom]) info_config = Label( """Change 'AOI code' value to create a new configuration set or leave the same 'AOI code' value to configure the selected one.""" ) db = int(values['ds_conf'][dsc_value]['db']) def get_tb_list(): tbls = database.tables(db, None, False) if tbls is None: return [] else: return tbls tb_dc = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['dias_catalog'], get_tb_list(), False), description= 'DIAS catalog:', disabled=False) tb_pr = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['parcels'], get_tb_list(), False), description= 'Parcels:', disabled=False) def get_pr_columns(): try: colms = database.table_columns(tb_pr.value, 1, None) if colms is None: return [] else: return colms except Exception: return [] tc_id = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['parcels_id'], get_pr_columns(), False), description ='Parcels ID:', disabled=False, layout=Layout(width='180px')) tc_cn = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['crop_names'], get_pr_columns(), False), description ='Crop names:', disabled=False, layout=Layout(width='180px')) tc_cc = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['crop_codes'], get_pr_columns(), False), description ='Crop codes:', disabled=False, layout=Layout(width='180px')) def on_tb_pr_change(change): tc_id.options = get_pr_columns() tc_cn.options = get_pr_columns() tc_cc.options = get_pr_columns() tb_pr.observe(on_tb_pr_change, 'value') parcel_box = HBox([tb_pr, tc_id, tc_cn, tc_cc]) tb_s2 = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['s2'], get_tb_list(), False), description= 'S2 signatures:', disabled=False) tb_bs = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['bs'], get_tb_list(), False), description= 'Backscattering:', disabled=False) tb_6c = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['c6'], get_tb_list(), False), description= '6 day coherence:', disabled=False) wb_save = Button(description='Save', disabled=False, icon='save') @bt_get_center.on_click def bt_get_center_on_click(b): import json center_json = json.loads(database.getTableCentroid(tb_pr.value) ['center'][0]) map_cent_lat.value = round(center_json['coordinates'][1], 2) map_cent_lon.value = round(center_json['coordinates'][0], 2) map_zoom.value = 10 @wb_save.on_click def wb_save_on_click(b): progress.clear_output() dscode = ds_code.value config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'dias_catalog'], str(tb_dc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'parcels'], str(tb_pr.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'parcels_id'], str(tc_id.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_names'], str(tc_cn.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_codes'], str(tc_cc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 's2'], str(tb_s2.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'bs'], str(tb_bs.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'c6'], str(tb_6c.value)) config.update(['ds_conf', dscode, 'db'], str(ds_db.value)) config.update(['ds_conf', dscode, 'desc'], str(ds_desc.value)) config.update(['ds_conf', dscode, 'center'], f'{map_cent_lat.value},{map_cent_lon.value}') config.update(['ds_conf', dscode, 'zoom'], str(map_zoom.value)) config.update(['set', 'ds_conf'], str(dscode)) config.update(['set', 'ds_year'], str(ds_year.value)) values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) outlog('The configurations are saved.') return VBox([info_config, ds_box, parcel_box, tb_dc, tb_s2, tb_bs, tb_6c, Label(''.join(info_map_text)), map_box, wb_save]) dsc_new_box = HBox([]) @bt_set.on_click def bt_set_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_new.on_click def bt_new_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_rec.on_click def bt_rec_on_click(b): progress.clear_output() if len(dsc.options) > 1: config.delete(['ds_conf', dsc.value]) outlog(f"Dataset configuration '{dsc.value}' is deleted.") values = config.read() dsc.options = [d for d in values['ds_conf']] else: outlog('Can not remove last configuration.') @bt_rey.on_click def bt_rey_on_click(b): progress.clear_output() if len(dsy.options) > 1: config.delete(['ds_conf', dsc.value, 'years', str(dsy.value)]) outlog(f"Year {dsy.value} of dataset '{dsc.value}' is deleted.") values = config.read() dsy.options = [int(y) for y in values['ds_conf'][str(dsc.value) ]['years']] else: outlog('Can not remove last configuration.') wbox = VBox([Label('Datasets configurations.'), dsc_box, dsc_new_box, progress]) return wbox
<mask token> def widget_box(): source = int(config.get_value(['set', 'data_source'])) sources = RadioButtons(options=[('JRC RESTful API.', 0), ( 'Direct access to database and object storage.', 1)], value=source, layout={'width': 'max-content'}) sources_box = Box([Label(value='Data sources:'), sources]) info_api = Label('RESTful API Settings.') info_direct = Label('Direct access settings') view_options = VBox([info_direct]) if source == 0: view_options.children = [info_api, rest_api()] elif source == 1: view_options.children = [info_direct, direct()] def on_source_change(change): view_options.children = [] if sources.value == 0: view_options.children = [info_api, rest_api()] elif sources.value == 1: view_options.children = [info_direct, direct()] config.update(['set', 'data_source'], str(sources.value)) sources.observe(on_source_change, 'value') wbox_sources = VBox([sources_box, view_options], layout=Layout(border= '1px solid black')) info_general = Label(value='General settings:') wbox = VBox([wbox_sources, info_general, settings.widget_box()]) return wbox def rest_api(mode=None): """""" values = config.read() wt_url = Text(value=values['api']['url'], placeholder='Add URL', description='API URL:', disabled=False) wt_user = Text(value=values['api']['user'], placeholder='Username', description='API User:', disabled=False) wt_pass = Password(value=values['api']['pass'], placeholder='******', description='API Password:', disabled=False) wb_save = Button(description='Save', disabled=False, icon='save') progress = Output() def outlog(*text): with progress: print(*text) @wb_save.on_click def wb_save_on_click(b): config.update(['api', 'url'], str(wt_url.value)) config.update(['api', 'user'], str(wt_user.value)) if wt_pass.value != '': config.update(['api', 'pass'], str(wt_pass.value)) outlog('API information is updated') wbox = VBox([wt_url, wt_user, wt_pass, wb_save, progress]) return wbox <mask token> def direct_settings(): values = config.read() ds_def = values['set']['ds_conf'] ds_dye = values['set']['ds_year'] if ds_def not in [d for d in values['ds_conf']]: ds_def = [d for d in values['ds_conf']][0] dsc = Dropdown(options=[d for d in values['ds_conf']], value=ds_def, description='Default:', disabled=False, layout=Layout(width='200px')) dsy = Dropdown(options=[int(y) for y in values['ds_conf'][dsc.value][ 'years']], value=int(ds_dye), description='Dataset year:', disabled =False, layout=Layout(width='180px')) btn_refresh = Button(layout=Layout(width='35px'), icon='fa-refresh') @btn_refresh.on_click def btn_refresh_on_click(b): values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) def on_dsc_change(change): config.update(['set', 'ds_conf'], dsc.value) values = config.read() ds_c = values['set']['ds_conf'] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.observe(on_dsc_change, 'value') def on_dsy_change(change): config.update(['set', 'ds_year'], str(dsy.value)) dsy.observe(on_dsy_change, 'value') bt_set = Button(layout=Layout(width='40px'), icon='cogs', tooltip= 'Configure this dataset') bt_new = Button(layout=Layout(width='40px'), icon='plus', tooltip= 'Add new dataset configuration') bt_rec = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip= 'Delete dataset configuration') bt_rey = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip= 'Delete only the selected year.') dsc_box = HBox([dsc, btn_refresh, bt_rec, dsy, bt_set, bt_rey, bt_new]) progress = Output() def outlog(*text): with progress: print(*text) def dsc_config(dsc_value): values = config.read() ds_db = Dropdown(options=['1'], value='1', description='Database:', disabled=False, layout=Layout(width='140px')) try: with open(f"{config.get_value(['paths', 'temp'])}tb_prefix", 'r' ) as f: code_value = f.read() except Exception: code_value = dsc_value ds_code = Combobox(value=code_value, placeholder='abc', options=[m for m in data_options.eu_ms()] + [''], description='AOI code:', ensure_option=False, disabled=False, layout=Layout(width= '200px'), tooltip= 'Lowercase AOI code name for the dataset (5chr max).') ds_year = BoundedIntText(value=int(dsy.value), min=1980, max=2100, step=1, description='Dataset year:', disabled=False, layout= Layout(width='180px')) ds_desc = Text(value=values['ds_conf'][dsc_value]['desc'], description='Description:', disabled=False) info_map_text = ['Set default map view options. ', 'You can get automatically the dataset ', 'center coordinates.'] lat, lon = values['ds_conf'][dsc_value]['center'].split(',') map_cent_lat = FloatText(value=float(lat), description='Lat:', disabled=False, layout=Layout(width='160px')) map_cent_lon = FloatText(value=float(lon), description='Lon:', disabled=False, layout=Layout(width='160px')) map_zoom = BoundedIntText(value=values['ds_conf'][dsc_value]['zoom' ], min=0, max=20, step=1, description='Zoom:', disabled=False, layout=Layout(width='140px')) bt_get_center = Button(layout=Layout(width='40px'), icon='bullseye', tooltip='Get center point from database.') ds_box = HBox([ds_code, ds_year, ds_desc]) map_box = HBox([Label('Map center: '), map_cent_lat, map_cent_lon, bt_get_center, map_zoom]) info_config = Label( """Change 'AOI code' value to create a new configuration set or leave the same 'AOI code' value to configure the selected one.""" ) db = int(values['ds_conf'][dsc_value]['db']) def get_tb_list(): tbls = database.tables(db, None, False) if tbls is None: return [] else: return tbls tb_dc = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['dias_catalog'], get_tb_list(), False), description= 'DIAS catalog:', disabled=False) tb_pr = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['parcels'], get_tb_list(), False), description= 'Parcels:', disabled=False) def get_pr_columns(): try: colms = database.table_columns(tb_pr.value, 1, None) if colms is None: return [] else: return colms except Exception: return [] tc_id = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['parcels_id'], get_pr_columns(), False), description ='Parcels ID:', disabled=False, layout=Layout(width='180px')) tc_cn = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['crop_names'], get_pr_columns(), False), description ='Crop names:', disabled=False, layout=Layout(width='180px')) tc_cc = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['crop_codes'], get_pr_columns(), False), description ='Crop codes:', disabled=False, layout=Layout(width='180px')) def on_tb_pr_change(change): tc_id.options = get_pr_columns() tc_cn.options = get_pr_columns() tc_cc.options = get_pr_columns() tb_pr.observe(on_tb_pr_change, 'value') parcel_box = HBox([tb_pr, tc_id, tc_cn, tc_cc]) tb_s2 = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['s2'], get_tb_list(), False), description= 'S2 signatures:', disabled=False) tb_bs = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['bs'], get_tb_list(), False), description= 'Backscattering:', disabled=False) tb_6c = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['c6'], get_tb_list(), False), description= '6 day coherence:', disabled=False) wb_save = Button(description='Save', disabled=False, icon='save') @bt_get_center.on_click def bt_get_center_on_click(b): import json center_json = json.loads(database.getTableCentroid(tb_pr.value) ['center'][0]) map_cent_lat.value = round(center_json['coordinates'][1], 2) map_cent_lon.value = round(center_json['coordinates'][0], 2) map_zoom.value = 10 @wb_save.on_click def wb_save_on_click(b): progress.clear_output() dscode = ds_code.value config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'dias_catalog'], str(tb_dc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'parcels'], str(tb_pr.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'parcels_id'], str(tc_id.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_names'], str(tc_cn.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_codes'], str(tc_cc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 's2'], str(tb_s2.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'bs'], str(tb_bs.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'c6'], str(tb_6c.value)) config.update(['ds_conf', dscode, 'db'], str(ds_db.value)) config.update(['ds_conf', dscode, 'desc'], str(ds_desc.value)) config.update(['ds_conf', dscode, 'center'], f'{map_cent_lat.value},{map_cent_lon.value}') config.update(['ds_conf', dscode, 'zoom'], str(map_zoom.value)) config.update(['set', 'ds_conf'], str(dscode)) config.update(['set', 'ds_year'], str(ds_year.value)) values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) outlog('The configurations are saved.') return VBox([info_config, ds_box, parcel_box, tb_dc, tb_s2, tb_bs, tb_6c, Label(''.join(info_map_text)), map_box, wb_save]) dsc_new_box = HBox([]) @bt_set.on_click def bt_set_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_new.on_click def bt_new_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_rec.on_click def bt_rec_on_click(b): progress.clear_output() if len(dsc.options) > 1: config.delete(['ds_conf', dsc.value]) outlog(f"Dataset configuration '{dsc.value}' is deleted.") values = config.read() dsc.options = [d for d in values['ds_conf']] else: outlog('Can not remove last configuration.') @bt_rey.on_click def bt_rey_on_click(b): progress.clear_output() if len(dsy.options) > 1: config.delete(['ds_conf', dsc.value, 'years', str(dsy.value)]) outlog(f"Year {dsy.value} of dataset '{dsc.value}' is deleted.") values = config.read() dsy.options = [int(y) for y in values['ds_conf'][str(dsc.value) ]['years']] else: outlog('Can not remove last configuration.') wbox = VBox([Label('Datasets configurations.'), dsc_box, dsc_new_box, progress]) return wbox
<mask token> def widget_box(): source = int(config.get_value(['set', 'data_source'])) sources = RadioButtons(options=[('JRC RESTful API.', 0), ( 'Direct access to database and object storage.', 1)], value=source, layout={'width': 'max-content'}) sources_box = Box([Label(value='Data sources:'), sources]) info_api = Label('RESTful API Settings.') info_direct = Label('Direct access settings') view_options = VBox([info_direct]) if source == 0: view_options.children = [info_api, rest_api()] elif source == 1: view_options.children = [info_direct, direct()] def on_source_change(change): view_options.children = [] if sources.value == 0: view_options.children = [info_api, rest_api()] elif sources.value == 1: view_options.children = [info_direct, direct()] config.update(['set', 'data_source'], str(sources.value)) sources.observe(on_source_change, 'value') wbox_sources = VBox([sources_box, view_options], layout=Layout(border= '1px solid black')) info_general = Label(value='General settings:') wbox = VBox([wbox_sources, info_general, settings.widget_box()]) return wbox def rest_api(mode=None): """""" values = config.read() wt_url = Text(value=values['api']['url'], placeholder='Add URL', description='API URL:', disabled=False) wt_user = Text(value=values['api']['user'], placeholder='Username', description='API User:', disabled=False) wt_pass = Password(value=values['api']['pass'], placeholder='******', description='API Password:', disabled=False) wb_save = Button(description='Save', disabled=False, icon='save') progress = Output() def outlog(*text): with progress: print(*text) @wb_save.on_click def wb_save_on_click(b): config.update(['api', 'url'], str(wt_url.value)) config.update(['api', 'user'], str(wt_user.value)) if wt_pass.value != '': config.update(['api', 'pass'], str(wt_pass.value)) outlog('API information is updated') wbox = VBox([wt_url, wt_user, wt_pass, wb_save, progress]) return wbox def direct(): tab_box = Tab(children=[settings.direct_conn(), direct_settings()]) tab_box.set_title(0, 'Connection') tab_box.set_title(1, 'db Configuration') return tab_box def direct_settings(): values = config.read() ds_def = values['set']['ds_conf'] ds_dye = values['set']['ds_year'] if ds_def not in [d for d in values['ds_conf']]: ds_def = [d for d in values['ds_conf']][0] dsc = Dropdown(options=[d for d in values['ds_conf']], value=ds_def, description='Default:', disabled=False, layout=Layout(width='200px')) dsy = Dropdown(options=[int(y) for y in values['ds_conf'][dsc.value][ 'years']], value=int(ds_dye), description='Dataset year:', disabled =False, layout=Layout(width='180px')) btn_refresh = Button(layout=Layout(width='35px'), icon='fa-refresh') @btn_refresh.on_click def btn_refresh_on_click(b): values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) def on_dsc_change(change): config.update(['set', 'ds_conf'], dsc.value) values = config.read() ds_c = values['set']['ds_conf'] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.observe(on_dsc_change, 'value') def on_dsy_change(change): config.update(['set', 'ds_year'], str(dsy.value)) dsy.observe(on_dsy_change, 'value') bt_set = Button(layout=Layout(width='40px'), icon='cogs', tooltip= 'Configure this dataset') bt_new = Button(layout=Layout(width='40px'), icon='plus', tooltip= 'Add new dataset configuration') bt_rec = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip= 'Delete dataset configuration') bt_rey = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip= 'Delete only the selected year.') dsc_box = HBox([dsc, btn_refresh, bt_rec, dsy, bt_set, bt_rey, bt_new]) progress = Output() def outlog(*text): with progress: print(*text) def dsc_config(dsc_value): values = config.read() ds_db = Dropdown(options=['1'], value='1', description='Database:', disabled=False, layout=Layout(width='140px')) try: with open(f"{config.get_value(['paths', 'temp'])}tb_prefix", 'r' ) as f: code_value = f.read() except Exception: code_value = dsc_value ds_code = Combobox(value=code_value, placeholder='abc', options=[m for m in data_options.eu_ms()] + [''], description='AOI code:', ensure_option=False, disabled=False, layout=Layout(width= '200px'), tooltip= 'Lowercase AOI code name for the dataset (5chr max).') ds_year = BoundedIntText(value=int(dsy.value), min=1980, max=2100, step=1, description='Dataset year:', disabled=False, layout= Layout(width='180px')) ds_desc = Text(value=values['ds_conf'][dsc_value]['desc'], description='Description:', disabled=False) info_map_text = ['Set default map view options. ', 'You can get automatically the dataset ', 'center coordinates.'] lat, lon = values['ds_conf'][dsc_value]['center'].split(',') map_cent_lat = FloatText(value=float(lat), description='Lat:', disabled=False, layout=Layout(width='160px')) map_cent_lon = FloatText(value=float(lon), description='Lon:', disabled=False, layout=Layout(width='160px')) map_zoom = BoundedIntText(value=values['ds_conf'][dsc_value]['zoom' ], min=0, max=20, step=1, description='Zoom:', disabled=False, layout=Layout(width='140px')) bt_get_center = Button(layout=Layout(width='40px'), icon='bullseye', tooltip='Get center point from database.') ds_box = HBox([ds_code, ds_year, ds_desc]) map_box = HBox([Label('Map center: '), map_cent_lat, map_cent_lon, bt_get_center, map_zoom]) info_config = Label( """Change 'AOI code' value to create a new configuration set or leave the same 'AOI code' value to configure the selected one.""" ) db = int(values['ds_conf'][dsc_value]['db']) def get_tb_list(): tbls = database.tables(db, None, False) if tbls is None: return [] else: return tbls tb_dc = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['dias_catalog'], get_tb_list(), False), description= 'DIAS catalog:', disabled=False) tb_pr = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['parcels'], get_tb_list(), False), description= 'Parcels:', disabled=False) def get_pr_columns(): try: colms = database.table_columns(tb_pr.value, 1, None) if colms is None: return [] else: return colms except Exception: return [] tc_id = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['parcels_id'], get_pr_columns(), False), description ='Parcels ID:', disabled=False, layout=Layout(width='180px')) tc_cn = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['crop_names'], get_pr_columns(), False), description ='Crop names:', disabled=False, layout=Layout(width='180px')) tc_cc = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['crop_codes'], get_pr_columns(), False), description ='Crop codes:', disabled=False, layout=Layout(width='180px')) def on_tb_pr_change(change): tc_id.options = get_pr_columns() tc_cn.options = get_pr_columns() tc_cc.options = get_pr_columns() tb_pr.observe(on_tb_pr_change, 'value') parcel_box = HBox([tb_pr, tc_id, tc_cn, tc_cc]) tb_s2 = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['s2'], get_tb_list(), False), description= 'S2 signatures:', disabled=False) tb_bs = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['bs'], get_tb_list(), False), description= 'Backscattering:', disabled=False) tb_6c = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['c6'], get_tb_list(), False), description= '6 day coherence:', disabled=False) wb_save = Button(description='Save', disabled=False, icon='save') @bt_get_center.on_click def bt_get_center_on_click(b): import json center_json = json.loads(database.getTableCentroid(tb_pr.value) ['center'][0]) map_cent_lat.value = round(center_json['coordinates'][1], 2) map_cent_lon.value = round(center_json['coordinates'][0], 2) map_zoom.value = 10 @wb_save.on_click def wb_save_on_click(b): progress.clear_output() dscode = ds_code.value config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'dias_catalog'], str(tb_dc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'parcels'], str(tb_pr.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'parcels_id'], str(tc_id.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_names'], str(tc_cn.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_codes'], str(tc_cc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 's2'], str(tb_s2.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'bs'], str(tb_bs.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'c6'], str(tb_6c.value)) config.update(['ds_conf', dscode, 'db'], str(ds_db.value)) config.update(['ds_conf', dscode, 'desc'], str(ds_desc.value)) config.update(['ds_conf', dscode, 'center'], f'{map_cent_lat.value},{map_cent_lon.value}') config.update(['ds_conf', dscode, 'zoom'], str(map_zoom.value)) config.update(['set', 'ds_conf'], str(dscode)) config.update(['set', 'ds_year'], str(ds_year.value)) values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) outlog('The configurations are saved.') return VBox([info_config, ds_box, parcel_box, tb_dc, tb_s2, tb_bs, tb_6c, Label(''.join(info_map_text)), map_box, wb_save]) dsc_new_box = HBox([]) @bt_set.on_click def bt_set_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_new.on_click def bt_new_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_rec.on_click def bt_rec_on_click(b): progress.clear_output() if len(dsc.options) > 1: config.delete(['ds_conf', dsc.value]) outlog(f"Dataset configuration '{dsc.value}' is deleted.") values = config.read() dsc.options = [d for d in values['ds_conf']] else: outlog('Can not remove last configuration.') @bt_rey.on_click def bt_rey_on_click(b): progress.clear_output() if len(dsy.options) > 1: config.delete(['ds_conf', dsc.value, 'years', str(dsy.value)]) outlog(f"Year {dsy.value} of dataset '{dsc.value}' is deleted.") values = config.read() dsy.options = [int(y) for y in values['ds_conf'][str(dsc.value) ]['years']] else: outlog('Can not remove last configuration.') wbox = VBox([Label('Datasets configurations.'), dsc_box, dsc_new_box, progress]) return wbox
from ipywidgets import Text, VBox, HBox, Label, Password, RadioButtons, Button, Layout, Box, Tab, Output, Dropdown, FloatText, BoundedIntText, Combobox from cbm.utils import config, data_options from cbm.ipycbm.utils import settings from cbm.sources import database def widget_box(): source = int(config.get_value(['set', 'data_source'])) sources = RadioButtons(options=[('JRC RESTful API.', 0), ( 'Direct access to database and object storage.', 1)], value=source, layout={'width': 'max-content'}) sources_box = Box([Label(value='Data sources:'), sources]) info_api = Label('RESTful API Settings.') info_direct = Label('Direct access settings') view_options = VBox([info_direct]) if source == 0: view_options.children = [info_api, rest_api()] elif source == 1: view_options.children = [info_direct, direct()] def on_source_change(change): view_options.children = [] if sources.value == 0: view_options.children = [info_api, rest_api()] elif sources.value == 1: view_options.children = [info_direct, direct()] config.update(['set', 'data_source'], str(sources.value)) sources.observe(on_source_change, 'value') wbox_sources = VBox([sources_box, view_options], layout=Layout(border= '1px solid black')) info_general = Label(value='General settings:') wbox = VBox([wbox_sources, info_general, settings.widget_box()]) return wbox def rest_api(mode=None): """""" values = config.read() wt_url = Text(value=values['api']['url'], placeholder='Add URL', description='API URL:', disabled=False) wt_user = Text(value=values['api']['user'], placeholder='Username', description='API User:', disabled=False) wt_pass = Password(value=values['api']['pass'], placeholder='******', description='API Password:', disabled=False) wb_save = Button(description='Save', disabled=False, icon='save') progress = Output() def outlog(*text): with progress: print(*text) @wb_save.on_click def wb_save_on_click(b): config.update(['api', 'url'], str(wt_url.value)) config.update(['api', 'user'], str(wt_user.value)) if wt_pass.value != '': config.update(['api', 'pass'], str(wt_pass.value)) outlog('API information is updated') wbox = VBox([wt_url, wt_user, wt_pass, wb_save, progress]) return wbox def direct(): tab_box = Tab(children=[settings.direct_conn(), direct_settings()]) tab_box.set_title(0, 'Connection') tab_box.set_title(1, 'db Configuration') return tab_box def direct_settings(): values = config.read() ds_def = values['set']['ds_conf'] ds_dye = values['set']['ds_year'] if ds_def not in [d for d in values['ds_conf']]: ds_def = [d for d in values['ds_conf']][0] dsc = Dropdown(options=[d for d in values['ds_conf']], value=ds_def, description='Default:', disabled=False, layout=Layout(width='200px')) dsy = Dropdown(options=[int(y) for y in values['ds_conf'][dsc.value][ 'years']], value=int(ds_dye), description='Dataset year:', disabled =False, layout=Layout(width='180px')) btn_refresh = Button(layout=Layout(width='35px'), icon='fa-refresh') @btn_refresh.on_click def btn_refresh_on_click(b): values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) def on_dsc_change(change): config.update(['set', 'ds_conf'], dsc.value) values = config.read() ds_c = values['set']['ds_conf'] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.observe(on_dsc_change, 'value') def on_dsy_change(change): config.update(['set', 'ds_year'], str(dsy.value)) dsy.observe(on_dsy_change, 'value') bt_set = Button(layout=Layout(width='40px'), icon='cogs', tooltip= 'Configure this dataset') bt_new = Button(layout=Layout(width='40px'), icon='plus', tooltip= 'Add new dataset configuration') bt_rec = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip= 'Delete dataset configuration') bt_rey = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip= 'Delete only the selected year.') dsc_box = HBox([dsc, btn_refresh, bt_rec, dsy, bt_set, bt_rey, bt_new]) progress = Output() def outlog(*text): with progress: print(*text) def dsc_config(dsc_value): values = config.read() ds_db = Dropdown(options=['1'], value='1', description='Database:', disabled=False, layout=Layout(width='140px')) try: with open(f"{config.get_value(['paths', 'temp'])}tb_prefix", 'r' ) as f: code_value = f.read() except Exception: code_value = dsc_value ds_code = Combobox(value=code_value, placeholder='abc', options=[m for m in data_options.eu_ms()] + [''], description='AOI code:', ensure_option=False, disabled=False, layout=Layout(width= '200px'), tooltip= 'Lowercase AOI code name for the dataset (5chr max).') ds_year = BoundedIntText(value=int(dsy.value), min=1980, max=2100, step=1, description='Dataset year:', disabled=False, layout= Layout(width='180px')) ds_desc = Text(value=values['ds_conf'][dsc_value]['desc'], description='Description:', disabled=False) info_map_text = ['Set default map view options. ', 'You can get automatically the dataset ', 'center coordinates.'] lat, lon = values['ds_conf'][dsc_value]['center'].split(',') map_cent_lat = FloatText(value=float(lat), description='Lat:', disabled=False, layout=Layout(width='160px')) map_cent_lon = FloatText(value=float(lon), description='Lon:', disabled=False, layout=Layout(width='160px')) map_zoom = BoundedIntText(value=values['ds_conf'][dsc_value]['zoom' ], min=0, max=20, step=1, description='Zoom:', disabled=False, layout=Layout(width='140px')) bt_get_center = Button(layout=Layout(width='40px'), icon='bullseye', tooltip='Get center point from database.') ds_box = HBox([ds_code, ds_year, ds_desc]) map_box = HBox([Label('Map center: '), map_cent_lat, map_cent_lon, bt_get_center, map_zoom]) info_config = Label( """Change 'AOI code' value to create a new configuration set or leave the same 'AOI code' value to configure the selected one.""" ) db = int(values['ds_conf'][dsc_value]['db']) def get_tb_list(): tbls = database.tables(db, None, False) if tbls is None: return [] else: return tbls tb_dc = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['dias_catalog'], get_tb_list(), False), description= 'DIAS catalog:', disabled=False) tb_pr = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['parcels'], get_tb_list(), False), description= 'Parcels:', disabled=False) def get_pr_columns(): try: colms = database.table_columns(tb_pr.value, 1, None) if colms is None: return [] else: return colms except Exception: return [] tc_id = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['parcels_id'], get_pr_columns(), False), description ='Parcels ID:', disabled=False, layout=Layout(width='180px')) tc_cn = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['crop_names'], get_pr_columns(), False), description ='Crop names:', disabled=False, layout=Layout(width='180px')) tc_cc = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['crop_codes'], get_pr_columns(), False), description ='Crop codes:', disabled=False, layout=Layout(width='180px')) def on_tb_pr_change(change): tc_id.options = get_pr_columns() tc_cn.options = get_pr_columns() tc_cc.options = get_pr_columns() tb_pr.observe(on_tb_pr_change, 'value') parcel_box = HBox([tb_pr, tc_id, tc_cn, tc_cc]) tb_s2 = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['s2'], get_tb_list(), False), description= 'S2 signatures:', disabled=False) tb_bs = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['bs'], get_tb_list(), False), description= 'Backscattering:', disabled=False) tb_6c = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['c6'], get_tb_list(), False), description= '6 day coherence:', disabled=False) wb_save = Button(description='Save', disabled=False, icon='save') @bt_get_center.on_click def bt_get_center_on_click(b): import json center_json = json.loads(database.getTableCentroid(tb_pr.value) ['center'][0]) map_cent_lat.value = round(center_json['coordinates'][1], 2) map_cent_lon.value = round(center_json['coordinates'][0], 2) map_zoom.value = 10 @wb_save.on_click def wb_save_on_click(b): progress.clear_output() dscode = ds_code.value config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'dias_catalog'], str(tb_dc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'parcels'], str(tb_pr.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'parcels_id'], str(tc_id.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_names'], str(tc_cn.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_codes'], str(tc_cc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 's2'], str(tb_s2.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'bs'], str(tb_bs.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'c6'], str(tb_6c.value)) config.update(['ds_conf', dscode, 'db'], str(ds_db.value)) config.update(['ds_conf', dscode, 'desc'], str(ds_desc.value)) config.update(['ds_conf', dscode, 'center'], f'{map_cent_lat.value},{map_cent_lon.value}') config.update(['ds_conf', dscode, 'zoom'], str(map_zoom.value)) config.update(['set', 'ds_conf'], str(dscode)) config.update(['set', 'ds_year'], str(ds_year.value)) values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) outlog('The configurations are saved.') return VBox([info_config, ds_box, parcel_box, tb_dc, tb_s2, tb_bs, tb_6c, Label(''.join(info_map_text)), map_box, wb_save]) dsc_new_box = HBox([]) @bt_set.on_click def bt_set_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_new.on_click def bt_new_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_rec.on_click def bt_rec_on_click(b): progress.clear_output() if len(dsc.options) > 1: config.delete(['ds_conf', dsc.value]) outlog(f"Dataset configuration '{dsc.value}' is deleted.") values = config.read() dsc.options = [d for d in values['ds_conf']] else: outlog('Can not remove last configuration.') @bt_rey.on_click def bt_rey_on_click(b): progress.clear_output() if len(dsy.options) > 1: config.delete(['ds_conf', dsc.value, 'years', str(dsy.value)]) outlog(f"Year {dsy.value} of dataset '{dsc.value}' is deleted.") values = config.read() dsy.options = [int(y) for y in values['ds_conf'][str(dsc.value) ]['years']] else: outlog('Can not remove last configuration.') wbox = VBox([Label('Datasets configurations.'), dsc_box, dsc_new_box, progress]) return wbox
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # This file is part of CbM (https://github.com/ec-jrc/cbm). # Author : Konstantinos Anastasakis # Credits : GTCAP Team # Copyright : 2021 European Commission, Joint Research Centre # License : 3-Clause BSD from ipywidgets import (Text, VBox, HBox, Label, Password, RadioButtons, Button, Layout, Box, Tab, Output, Dropdown, FloatText, BoundedIntText, Combobox) from cbm.utils import config, data_options from cbm.ipycbm.utils import settings from cbm.sources import database def widget_box(): source = int(config.get_value(['set', 'data_source'])) sources = RadioButtons( options=[ ("JRC RESTful API.", 0), ("Direct access to database and object storage.", 1) ], value=source, layout={'width': 'max-content'} ) sources_box = Box([ Label(value="Data sources:"), sources] ) info_api = Label("RESTful API Settings.") info_direct = Label("Direct access settings") view_options = VBox([info_direct]) if source == 0: view_options.children = [info_api, rest_api()] elif source == 1: view_options.children = [info_direct, direct()] def on_source_change(change): view_options.children = [] if sources.value == 0: view_options.children = [info_api, rest_api()] elif sources.value == 1: view_options.children = [info_direct, direct()] config.update(['set', 'data_source'], str(sources.value)) sources.observe(on_source_change, 'value') wbox_sources = VBox([sources_box, view_options], layout=Layout(border='1px solid black')) info_general = Label(value="General settings:") wbox = VBox([wbox_sources, info_general, settings.widget_box()]) return wbox def rest_api(mode=None): """""" values = config.read() wt_url = Text( value=values['api']['url'], placeholder='Add URL', description='API URL:', disabled=False ) wt_user = Text( value=values['api']['user'], placeholder='Username', description='API User:', disabled=False ) wt_pass = Password( value=values['api']['pass'], placeholder='******', description='API Password:', disabled=False ) wb_save = Button( description='Save', disabled=False, icon='save' ) progress = Output() def outlog(*text): with progress: print(*text) @wb_save.on_click def wb_save_on_click(b): config.update(['api', 'url'], str(wt_url.value)) config.update(['api', 'user'], str(wt_user.value)) if wt_pass.value != '': config.update(['api', 'pass'], str(wt_pass.value)) outlog("API information is updated") wbox = VBox([wt_url, wt_user, wt_pass, wb_save, progress]) return wbox def direct(): # try: tab_box = Tab(children=[settings.direct_conn(), direct_settings()]) tab_box.set_title(0, 'Connection') tab_box.set_title(1, 'db Configuration') # except: # tab_box = Tab(children=[direct_conn()]) # tab_box.set_title(0, 'Connection') # print("!WARNING! Can not load direct configuration settings.") return tab_box def direct_settings(): values = config.read() ds_def = values['set']['ds_conf'] ds_dye = values['set']['ds_year'] if ds_def not in [d for d in values['ds_conf']]: ds_def = [d for d in values['ds_conf']][0] dsc = Dropdown( options=[d for d in values['ds_conf']], value=ds_def, description='Default:', disabled=False, layout=Layout(width='200px') ) dsy = Dropdown( options=[int(y) for y in values['ds_conf'][dsc.value]['years']], value=int(ds_dye), description='Dataset year:', disabled=False, layout=Layout(width='180px') ) btn_refresh = Button( layout=Layout(width='35px'), icon='fa-refresh') @btn_refresh.on_click def btn_refresh_on_click(b): values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) def on_dsc_change(change): config.update(['set', 'ds_conf'], dsc.value) values = config.read() ds_c = values['set']['ds_conf'] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.observe(on_dsc_change, 'value') def on_dsy_change(change): config.update(['set', 'ds_year'], str(dsy.value)) dsy.observe(on_dsy_change, 'value') bt_set = Button(layout=Layout(width='40px'), icon='cogs', tooltip="Configure this dataset") bt_new = Button(layout=Layout(width='40px'), icon='plus', tooltip="Add new dataset configuration") bt_rec = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip='Delete dataset configuration') bt_rey = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip='Delete only the selected year.') dsc_box = HBox([dsc, btn_refresh, bt_rec, dsy, bt_set, bt_rey, bt_new]) progress = Output() def outlog(*text): with progress: print(*text) def dsc_config(dsc_value): values = config.read() ds_db = Dropdown( options=["1"], value="1", description='Database:', disabled=False, layout=Layout(width='140px') ) try: with open(f"{config.get_value(['paths','temp'])}tb_prefix", 'r') as f: code_value = f.read() except Exception: code_value = dsc_value ds_code = Combobox( value=code_value, placeholder='abc', options=[m for m in data_options.eu_ms()]+[''], description='AOI code:', ensure_option=False, disabled=False, layout=Layout(width='200px'), tooltip='Lowercase AOI code name for the dataset (5chr max).' ) ds_year = BoundedIntText( value=int(dsy.value), min=1980, max=2100, step=1, description='Dataset year:', disabled=False, layout=Layout(width='180px') ) ds_desc = Text( value=values['ds_conf'][dsc_value]['desc'], description='Description:', disabled=False ) info_map_text = ["Set default map view options. ", "You can get automatically the dataset ", "center coordinates."] lat, lon = values['ds_conf'][dsc_value]['center'].split(",") map_cent_lat = FloatText( value=float(lat), description='Lat:', disabled=False, layout=Layout(width='160px') ) map_cent_lon = FloatText( value=float(lon), description='Lon:', disabled=False, layout=Layout(width='160px') ) map_zoom = BoundedIntText( value=values['ds_conf'][dsc_value]['zoom'], min=0, max=20, step=1, description='Zoom:', disabled=False, layout=Layout(width='140px') ) bt_get_center = Button( layout=Layout(width='40px'), icon='bullseye', tooltip='Get center point from database.' ) ds_box = HBox([ds_code, ds_year, ds_desc]) map_box = HBox([Label("Map center: "), map_cent_lat, map_cent_lon, bt_get_center, map_zoom]) info_config = Label( """Change 'AOI code' value to create a new configuration set or leave the same 'AOI code' value to configure the selected one.""") db = int(values['ds_conf'][dsc_value]['db']) def get_tb_list(): tbls = database.tables(db, None, False) if tbls is None: return [] else: return tbls tb_dc = Dropdown( options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][ str(ds_year.value)]['tables']['dias_catalog'], get_tb_list(), False), description='DIAS catalog:', disabled=False ) tb_pr = Dropdown( options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][ str(ds_year.value)]['tables']['parcels'], get_tb_list(), False), description='Parcels:', disabled=False ) def get_pr_columns(): try: colms = database.table_columns(tb_pr.value, 1, None) if colms is None: return [] else: return colms except Exception: return [] tc_id = Dropdown( options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][ str(ds_year.value)]['columns']['parcels_id'], get_pr_columns(), False), description='Parcels ID:', disabled=False, layout=Layout(width='180px') ) tc_cn = Dropdown( options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][ str(ds_year.value)]['columns']['crop_names'], get_pr_columns(), False), description='Crop names:', disabled=False, layout=Layout(width='180px') ) tc_cc = Dropdown( options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][ str(ds_year.value)]['columns']['crop_codes'], get_pr_columns(), False), description='Crop codes:', disabled=False, layout=Layout(width='180px') ) def on_tb_pr_change(change): tc_id.options = get_pr_columns() tc_cn.options = get_pr_columns() tc_cc.options = get_pr_columns() tb_pr.observe(on_tb_pr_change, 'value') parcel_box = HBox([tb_pr, tc_id, tc_cn, tc_cc]) tb_s2 = Dropdown( options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][ str(ds_year.value)]['tables']['s2'], get_tb_list(), False), description='S2 signatures:', disabled=False ) tb_bs = Dropdown( options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][ str(ds_year.value)]['tables']['bs'], get_tb_list(), False), description='Backscattering:', disabled=False ) tb_6c = Dropdown( options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][ str(ds_year.value)]['tables']['c6'], get_tb_list(), False), description='6 day coherence:', disabled=False ) wb_save = Button( description='Save', disabled=False, icon='save' ) @bt_get_center.on_click def bt_get_center_on_click(b): import json center_json = json.loads( database.getTableCentroid(tb_pr.value)['center'][0]) map_cent_lat.value = round(center_json['coordinates'][1], 2) map_cent_lon.value = round(center_json['coordinates'][0], 2) map_zoom.value = 10 @wb_save.on_click def wb_save_on_click(b): progress.clear_output() dscode = ds_code.value config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'dias_catalog'], str(tb_dc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'parcels'], str(tb_pr.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'parcels_id'], str(tc_id.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_names'], str(tc_cn.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_codes'], str(tc_cc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 's2'], str(tb_s2.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'bs'], str(tb_bs.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'c6'], str(tb_6c.value)) config.update(['ds_conf', dscode, 'db'], str(ds_db.value)) config.update(['ds_conf', dscode, 'desc'], str(ds_desc.value)) config.update(['ds_conf', dscode, 'center'], f"{map_cent_lat.value},{map_cent_lon.value}") config.update(['ds_conf', dscode, 'zoom'], str(map_zoom.value)) config.update(['set', 'ds_conf'], str(dscode)) config.update(['set', 'ds_year'], str(ds_year.value)) values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) outlog("The configurations are saved.") return VBox([info_config, ds_box, parcel_box, tb_dc, tb_s2, tb_bs, tb_6c, Label(''.join(info_map_text)), map_box, wb_save]) dsc_new_box = HBox([]) @bt_set.on_click def bt_set_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_new.on_click def bt_new_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_rec.on_click def bt_rec_on_click(b): progress.clear_output() if len(dsc.options) > 1: config.delete(['ds_conf', dsc.value]) outlog(f"Dataset configuration '{dsc.value}' is deleted.") values = config.read() dsc.options = [d for d in values['ds_conf']] else: outlog("Can not remove last configuration.") @bt_rey.on_click def bt_rey_on_click(b): progress.clear_output() if len(dsy.options) > 1: config.delete(['ds_conf', dsc.value, 'years', str(dsy.value)]) outlog(f"Year {dsy.value} of dataset '{dsc.value}' is deleted.") values = config.read() dsy.options = [int(y) for y in values['ds_conf'] [str(dsc.value)]['years']] else: outlog("Can not remove last configuration.") wbox = VBox([Label("Datasets configurations."), dsc_box, dsc_new_box, progress]) return wbox
[ 2, 3, 4, 5, 6 ]
1,344
83ce5ee4d2a18caeb364b74c3739015fc0e1474c
#!/usr/bin/env python import rospy import numpy as np from sensor_msgs.msg import Image import cv2, cv_bridge from geometry_msgs.msg import Twist, Pose2D from std_msgs.msg import String import pytesseract as ocr from PIL import Image as imagePil import os import time from roseli.srv import CreateMap, CreateMapRequest from roseli.srv import TagImage, TagImageResponse from roseli.srv import ResetEnc, ResetEncRequest from dynamic_reconfigure.server import Server from roseli.cfg import ocr_tagConfig class ReadTag: def __init__(self): self.bridge = cv_bridge.CvBridge() self.twist=Twist() self.image_server = rospy.Service('/cropTag', TagImage, self.image_callback) #/cropTag self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=1) self.range_param = Server(ocr_tagConfig, self.reconfigure) self.string = String() self._pose2d_ = Pose2D() self.rate = rospy.Rate(1) def reconfigure(self, config, level): #print(config) self.min_h = config.min_hue_ocr self.min_s = config.min_saturation_ocr self.min_v = config.min_value_ocr self.max_h = config.max_hue_ocr self.max_s = config.max_saturation_ocr self.max_v = config.max_value_ocr return config def creating_map_client(self, pose2d, ip): rospy.wait_for_service('/pose2D') try: create_map = rospy.ServiceProxy('/pose2D', CreateMap) resp = CreateMapRequest(pose2d, ip) return create_map(resp) except rospy.ServiceException, e: print "Service call failed: %s"%e def reset_enc_func(self): rospy.wait_for_service('/reset_enc_server') try: reset = rospy.ServiceProxy('/reset_enc_server', ResetEnc) resp = ResetEncRequest() return reset(resp) except rospy.ServiceException, e: print "Service call failed: %s"%e def image_callback (self, msg): self.twist.linear.x = 0 self.twist.angular.z = 0 self.cmd_vel_pub.publish(self.twist) self.rate.sleep() try: img = self.bridge.imgmsg_to_cv2(msg.tag, "bgr8") except cv_bridge.CvBridgeError as e: print ("Error: Imagem da Tag nao recebida") print(e) lowerBound1=np.array([self.min_h, self.min_s, self.min_v]) #lower boundary of the HSV image upperBound1=np.array([self.max_h, self.max_s, self.max_v]) #Upper boundary of the HSV image img_HSV=cv2.cvtColor(img,cv2.COLOR_BGR2HSV) imgThresholder=cv2.inRange(img_HSV,lowerBound1,upperBound1,1) cv2.imshow('picamera', img) cv2.waitKey(500) kernel = np.ones((3, 3), np.uint8) imgFilter=cv2.morphologyEx(imgThresholder, cv2.MORPH_DILATE, kernel) #imgFilter=cv2.adaptiveThreshold(imgThresholder, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 1) cv2.imshow('window_tag', imgFilter) cv2.waitKey(500) #cv2.destroyAllWindows() #cv2.waitKey(1000) filename = "{}.png".format(os.getpid()) cv2.imwrite(filename, imgFilter) text = ocr.image_to_string(imagePil.open(filename),config="-c tessedit_char_whitelist=1234567890.") os.remove(filename) print(text) separated= text.split(' ') if (not len(separated) == 3): print("It doesn't read a tag!") return TagImageResponse() else: self._pose2d_.x = float(separated[0]) self._pose2d_.y = float(separated[1]) self._pose2d_.theta = float(separated[2]) _resp_ = self.creating_map_client(self._pose2d_, 0) flag = self.reset_enc_func() self.twist.linear.x = 0.3 self.twist.angular.z = 0 for x in range(0, 10): self.cmd_vel_pub.publish(self.twist) time.sleep(0.5) return TagImageResponse() if __name__=='__main__': try: rospy.init_node('readtag') readtag = ReadTag() rospy.spin() except rospy.ROSInterruptException: pass
null
null
null
null
[ 0 ]
1,345
0b2fd671b99b7012a14b132db2322318873b826c
<mask token> class Other_Operations_Stack(Stack): def min_value(self): min_value = self.peek() for value in self._data: if value < min_value: min_value = value self.pop() return min_value <mask token>
<mask token> class Other_Operations_Stack(Stack): def min_value(self): min_value = self.peek() for value in self._data: if value < min_value: min_value = value self.pop() return min_value <mask token> content_stack.push(1) content_stack.push(-2) content_stack.push(3) print(content_stack.min_value())
<mask token> class Other_Operations_Stack(Stack): def min_value(self): min_value = self.peek() for value in self._data: if value < min_value: min_value = value self.pop() return min_value content_stack = Other_Operations_Stack() content_stack.push(1) content_stack.push(-2) content_stack.push(3) print(content_stack.min_value())
<mask token> from stack import Stack class Other_Operations_Stack(Stack): def min_value(self): min_value = self.peek() for value in self._data: if value < min_value: min_value = value self.pop() return min_value content_stack = Other_Operations_Stack() content_stack.push(1) content_stack.push(-2) content_stack.push(3) print(content_stack.min_value())
''' Exercício 1: Estenda a classe Stack , que escrevemos durante as explicações do conteúdo, adicionando uma nova função chamada min_value() que irá retornar o menor valor inteiro presente na pilha. ''' from stack import Stack class Other_Operations_Stack(Stack): def min_value(self): min_value = self.peek() for value in self._data: if value < min_value: min_value = value self.pop() return min_value content_stack = Other_Operations_Stack() content_stack.push(1) content_stack.push(-2) content_stack.push(3) print(content_stack.min_value()) # saída: -2
[ 2, 3, 4, 5, 6 ]
1,346
68c2fd1d8ca9e1dd9373ca9f641c2920c87b2392
<mask token> class IntCode: def __init__(self, code): self.code = code self.base = 0 self.idx = 0 self.terminated = False @staticmethod def load_code(code_string): return IntCode(read_code(code_string)) @staticmethod def load_from_file(filename): return IntCode.load_code(open(filename, 'r').read()) def copy(self): """ Returns a fresh copy of the code, **in the same state**. """ return IntCode(self.code.copy()) def get_value(self, mode, value): if mode == 0: return self.code[value] elif mode == 1: return value elif mode == 2: return self.code[value + self.base] def get_values(self, modes): return [self.get_value(mode, self.code[self.idx + i]) for i, mode in enumerate(modes, start=1)] def get_modes(self, value, n_modes): value = value // 100 modes = [] for _ in range(n_modes): modes.append(int(value % 10)) value //= 10 return modes def write_to(self, mode, param, value): """ write value to the location given by param, based on the mode. """ if mode == 0: self.code[param] = value elif mode == 1: raise ValueError elif mode == 2: self.code[param + self.base] = value def run(self, inputs=None, print_outputs=False): """ Resumes the code from the current instruction, using the given 'inputs' for any required inputs. When it halts, the outputs from this run are returned. If the program has terminated, the 'terminated' flag is set. """ input_idx = 0 outputs = [] while True: value = self.code[self.idx] opcode = value % 100 if opcode == 1: modes = self.get_modes(value, 3) values = self.get_values(modes) self.write_to(modes[2], self.code[self.idx + 3], values[0] + values[1]) self.idx += 4 elif opcode == 2: modes = self.get_modes(value, 3) values = self.get_values(modes) self.write_to(modes[2], self.code[self.idx + 3], values[0] * values[1]) self.idx += 4 elif opcode == 3: if inputs is None or input_idx >= len(inputs): return outputs input_val = inputs[input_idx] input_idx += 1 modes = self.get_modes(value, 1) self.write_to(modes[0], self.code[self.idx + 1], input_val) self.idx += 2 elif opcode == 4: modes = self.get_modes(value, 1) v = self.get_value(modes[0], self.code[self.idx + 1]) outputs.append(v) if print_outputs: print(v) self.idx += 2 elif opcode == 5: modes = self.get_modes(value, 2) values = self.get_values(modes) if values[0] != 0: self.idx = values[1] else: self.idx += 3 elif opcode == 6: modes = self.get_modes(value, 2) values = self.get_values(modes) if values[0] == 0: self.idx = values[1] else: self.idx += 3 elif opcode == 7: modes = self.get_modes(value, 3) values = self.get_values(modes) compare_val = 1 if values[0] < values[1] else 0 self.write_to(modes[2], self.code[self.idx + 3], compare_val) self.idx += 4 elif opcode == 8: modes = self.get_modes(value, 3) values = self.get_values(modes) compare_val = 1 if values[0] == values[1] else 0 self.write_to(modes[2], self.code[self.idx + 3], compare_val) self.idx += 4 elif opcode == 9: modes = self.get_modes(value, 1) values = self.get_values(modes) self.base += values[0] self.idx += 2 elif opcode == 99: self.terminated = True return outputs else: raise ValueError
<mask token> def to_ascii(line): """ Writes a string as ASCII code. Appends a newline at the end. """ data = [ord(c) for c in line] data.append(10) return data class IntCode: def __init__(self, code): self.code = code self.base = 0 self.idx = 0 self.terminated = False @staticmethod def load_code(code_string): return IntCode(read_code(code_string)) @staticmethod def load_from_file(filename): return IntCode.load_code(open(filename, 'r').read()) def copy(self): """ Returns a fresh copy of the code, **in the same state**. """ return IntCode(self.code.copy()) def get_value(self, mode, value): if mode == 0: return self.code[value] elif mode == 1: return value elif mode == 2: return self.code[value + self.base] def get_values(self, modes): return [self.get_value(mode, self.code[self.idx + i]) for i, mode in enumerate(modes, start=1)] def get_modes(self, value, n_modes): value = value // 100 modes = [] for _ in range(n_modes): modes.append(int(value % 10)) value //= 10 return modes def write_to(self, mode, param, value): """ write value to the location given by param, based on the mode. """ if mode == 0: self.code[param] = value elif mode == 1: raise ValueError elif mode == 2: self.code[param + self.base] = value def run(self, inputs=None, print_outputs=False): """ Resumes the code from the current instruction, using the given 'inputs' for any required inputs. When it halts, the outputs from this run are returned. If the program has terminated, the 'terminated' flag is set. """ input_idx = 0 outputs = [] while True: value = self.code[self.idx] opcode = value % 100 if opcode == 1: modes = self.get_modes(value, 3) values = self.get_values(modes) self.write_to(modes[2], self.code[self.idx + 3], values[0] + values[1]) self.idx += 4 elif opcode == 2: modes = self.get_modes(value, 3) values = self.get_values(modes) self.write_to(modes[2], self.code[self.idx + 3], values[0] * values[1]) self.idx += 4 elif opcode == 3: if inputs is None or input_idx >= len(inputs): return outputs input_val = inputs[input_idx] input_idx += 1 modes = self.get_modes(value, 1) self.write_to(modes[0], self.code[self.idx + 1], input_val) self.idx += 2 elif opcode == 4: modes = self.get_modes(value, 1) v = self.get_value(modes[0], self.code[self.idx + 1]) outputs.append(v) if print_outputs: print(v) self.idx += 2 elif opcode == 5: modes = self.get_modes(value, 2) values = self.get_values(modes) if values[0] != 0: self.idx = values[1] else: self.idx += 3 elif opcode == 6: modes = self.get_modes(value, 2) values = self.get_values(modes) if values[0] == 0: self.idx = values[1] else: self.idx += 3 elif opcode == 7: modes = self.get_modes(value, 3) values = self.get_values(modes) compare_val = 1 if values[0] < values[1] else 0 self.write_to(modes[2], self.code[self.idx + 3], compare_val) self.idx += 4 elif opcode == 8: modes = self.get_modes(value, 3) values = self.get_values(modes) compare_val = 1 if values[0] == values[1] else 0 self.write_to(modes[2], self.code[self.idx + 3], compare_val) self.idx += 4 elif opcode == 9: modes = self.get_modes(value, 1) values = self.get_values(modes) self.base += values[0] self.idx += 2 elif opcode == 99: self.terminated = True return outputs else: raise ValueError
<mask token> def read_code(string): """ string should be a comma-separated string. """ code = defaultdict(int) for i, x in enumerate(string.split(',')): code[i] = int(x) return code def to_ascii(line): """ Writes a string as ASCII code. Appends a newline at the end. """ data = [ord(c) for c in line] data.append(10) return data class IntCode: def __init__(self, code): self.code = code self.base = 0 self.idx = 0 self.terminated = False @staticmethod def load_code(code_string): return IntCode(read_code(code_string)) @staticmethod def load_from_file(filename): return IntCode.load_code(open(filename, 'r').read()) def copy(self): """ Returns a fresh copy of the code, **in the same state**. """ return IntCode(self.code.copy()) def get_value(self, mode, value): if mode == 0: return self.code[value] elif mode == 1: return value elif mode == 2: return self.code[value + self.base] def get_values(self, modes): return [self.get_value(mode, self.code[self.idx + i]) for i, mode in enumerate(modes, start=1)] def get_modes(self, value, n_modes): value = value // 100 modes = [] for _ in range(n_modes): modes.append(int(value % 10)) value //= 10 return modes def write_to(self, mode, param, value): """ write value to the location given by param, based on the mode. """ if mode == 0: self.code[param] = value elif mode == 1: raise ValueError elif mode == 2: self.code[param + self.base] = value def run(self, inputs=None, print_outputs=False): """ Resumes the code from the current instruction, using the given 'inputs' for any required inputs. When it halts, the outputs from this run are returned. If the program has terminated, the 'terminated' flag is set. """ input_idx = 0 outputs = [] while True: value = self.code[self.idx] opcode = value % 100 if opcode == 1: modes = self.get_modes(value, 3) values = self.get_values(modes) self.write_to(modes[2], self.code[self.idx + 3], values[0] + values[1]) self.idx += 4 elif opcode == 2: modes = self.get_modes(value, 3) values = self.get_values(modes) self.write_to(modes[2], self.code[self.idx + 3], values[0] * values[1]) self.idx += 4 elif opcode == 3: if inputs is None or input_idx >= len(inputs): return outputs input_val = inputs[input_idx] input_idx += 1 modes = self.get_modes(value, 1) self.write_to(modes[0], self.code[self.idx + 1], input_val) self.idx += 2 elif opcode == 4: modes = self.get_modes(value, 1) v = self.get_value(modes[0], self.code[self.idx + 1]) outputs.append(v) if print_outputs: print(v) self.idx += 2 elif opcode == 5: modes = self.get_modes(value, 2) values = self.get_values(modes) if values[0] != 0: self.idx = values[1] else: self.idx += 3 elif opcode == 6: modes = self.get_modes(value, 2) values = self.get_values(modes) if values[0] == 0: self.idx = values[1] else: self.idx += 3 elif opcode == 7: modes = self.get_modes(value, 3) values = self.get_values(modes) compare_val = 1 if values[0] < values[1] else 0 self.write_to(modes[2], self.code[self.idx + 3], compare_val) self.idx += 4 elif opcode == 8: modes = self.get_modes(value, 3) values = self.get_values(modes) compare_val = 1 if values[0] == values[1] else 0 self.write_to(modes[2], self.code[self.idx + 3], compare_val) self.idx += 4 elif opcode == 9: modes = self.get_modes(value, 1) values = self.get_values(modes) self.base += values[0] self.idx += 2 elif opcode == 99: self.terminated = True return outputs else: raise ValueError
from collections import defaultdict def read_code(string): """ string should be a comma-separated string. """ code = defaultdict(int) for i, x in enumerate(string.split(',')): code[i] = int(x) return code def to_ascii(line): """ Writes a string as ASCII code. Appends a newline at the end. """ data = [ord(c) for c in line] data.append(10) return data class IntCode: def __init__(self, code): self.code = code self.base = 0 self.idx = 0 self.terminated = False @staticmethod def load_code(code_string): return IntCode(read_code(code_string)) @staticmethod def load_from_file(filename): return IntCode.load_code(open(filename, 'r').read()) def copy(self): """ Returns a fresh copy of the code, **in the same state**. """ return IntCode(self.code.copy()) def get_value(self, mode, value): if mode == 0: return self.code[value] elif mode == 1: return value elif mode == 2: return self.code[value + self.base] def get_values(self, modes): return [self.get_value(mode, self.code[self.idx + i]) for i, mode in enumerate(modes, start=1)] def get_modes(self, value, n_modes): value = value // 100 modes = [] for _ in range(n_modes): modes.append(int(value % 10)) value //= 10 return modes def write_to(self, mode, param, value): """ write value to the location given by param, based on the mode. """ if mode == 0: self.code[param] = value elif mode == 1: raise ValueError elif mode == 2: self.code[param + self.base] = value def run(self, inputs=None, print_outputs=False): """ Resumes the code from the current instruction, using the given 'inputs' for any required inputs. When it halts, the outputs from this run are returned. If the program has terminated, the 'terminated' flag is set. """ input_idx = 0 outputs = [] while True: value = self.code[self.idx] opcode = value % 100 if opcode == 1: modes = self.get_modes(value, 3) values = self.get_values(modes) self.write_to(modes[2], self.code[self.idx + 3], values[0] + values[1]) self.idx += 4 elif opcode == 2: modes = self.get_modes(value, 3) values = self.get_values(modes) self.write_to(modes[2], self.code[self.idx + 3], values[0] * values[1]) self.idx += 4 elif opcode == 3: if inputs is None or input_idx >= len(inputs): return outputs input_val = inputs[input_idx] input_idx += 1 modes = self.get_modes(value, 1) self.write_to(modes[0], self.code[self.idx + 1], input_val) self.idx += 2 elif opcode == 4: modes = self.get_modes(value, 1) v = self.get_value(modes[0], self.code[self.idx + 1]) outputs.append(v) if print_outputs: print(v) self.idx += 2 elif opcode == 5: modes = self.get_modes(value, 2) values = self.get_values(modes) if values[0] != 0: self.idx = values[1] else: self.idx += 3 elif opcode == 6: modes = self.get_modes(value, 2) values = self.get_values(modes) if values[0] == 0: self.idx = values[1] else: self.idx += 3 elif opcode == 7: modes = self.get_modes(value, 3) values = self.get_values(modes) compare_val = 1 if values[0] < values[1] else 0 self.write_to(modes[2], self.code[self.idx + 3], compare_val) self.idx += 4 elif opcode == 8: modes = self.get_modes(value, 3) values = self.get_values(modes) compare_val = 1 if values[0] == values[1] else 0 self.write_to(modes[2], self.code[self.idx + 3], compare_val) self.idx += 4 elif opcode == 9: modes = self.get_modes(value, 1) values = self.get_values(modes) self.base += values[0] self.idx += 2 elif opcode == 99: self.terminated = True return outputs else: raise ValueError
# helper functions to handle intcode from collections import defaultdict def read_code(string): """ string should be a comma-separated string. """ code = defaultdict(int) for i, x in enumerate(string.split(',')): code[i] = int(x) return code def to_ascii(line): """ Writes a string as ASCII code. Appends a newline at the end. """ data = [ord(c) for c in line] data.append(10) return data class IntCode: def __init__(self, code): self.code = code self.base = 0 # instruction pointer self.idx = 0 self.terminated = False @staticmethod def load_code(code_string): return IntCode(read_code(code_string)) @staticmethod def load_from_file(filename): return IntCode.load_code(open(filename, 'r').read()) def copy(self): """ Returns a fresh copy of the code, **in the same state**. """ return IntCode(self.code.copy()) def get_value(self, mode, value): if mode == 0: # position mode return self.code[value] elif mode == 1: # immediate mode return value elif mode == 2: # relative mode return self.code[value + self.base] def get_values(self, modes): return [ self.get_value(mode, self.code[self.idx + i]) for i, mode in enumerate(modes, start=1) ] def get_modes(self, value, n_modes): value = value // 100 modes = [] for _ in range(n_modes): modes.append(int(value % 10)) value //= 10 return modes def write_to(self, mode, param, value): """ write value to the location given by param, based on the mode. """ if mode == 0: # position mode self.code[param] = value elif mode == 1: # cannot be in immediate mode raise ValueError elif mode == 2: # relative mode self.code[param + self.base] = value def run(self, inputs=None, print_outputs=False): """ Resumes the code from the current instruction, using the given 'inputs' for any required inputs. When it halts, the outputs from this run are returned. If the program has terminated, the 'terminated' flag is set. """ input_idx = 0 outputs = [] while True: # parse the value value = self.code[self.idx] opcode = value % 100 if opcode == 1: # Day 2 modes = self.get_modes(value, 3) values = self.get_values(modes) self.write_to(modes[2], self.code[self.idx+3], values[0] + values[1]) self.idx += 4 elif opcode == 2: # Day 2 modes = self.get_modes(value, 3) values = self.get_values(modes) self.write_to(modes[2], self.code[self.idx+3], values[0] * values[1]) self.idx += 4 elif opcode == 3: # Day 5 if inputs is None or input_idx >= len(inputs): # halt if we are expecting an input, resume later return outputs input_val = inputs[input_idx] input_idx += 1 modes = self.get_modes(value, 1) self.write_to(modes[0], self.code[self.idx+1], input_val) self.idx += 2 elif opcode == 4: # Day 5 modes = self.get_modes(value, 1) v = self.get_value(modes[0], self.code[self.idx+1]) outputs.append(v) if print_outputs: print(v) self.idx += 2 elif opcode == 5: # Day 5 modes = self.get_modes(value, 2) values = self.get_values(modes) if values[0] != 0: self.idx = values[1] else: self.idx += 3 elif opcode == 6: # Day 5 modes = self.get_modes(value, 2) values = self.get_values(modes) if values[0] == 0: self.idx = values[1] else: self.idx += 3 elif opcode == 7: # Day 5 modes = self.get_modes(value, 3) values = self.get_values(modes) compare_val = 1 if values[0] < values[1] else 0 self.write_to(modes[2], self.code[self.idx+3], compare_val) self.idx += 4 elif opcode == 8: # Day 5 modes = self.get_modes(value, 3) values = self.get_values(modes) compare_val = 1 if values[0] == values[1] else 0 self.write_to(modes[2], self.code[self.idx+3], compare_val) self.idx += 4 elif opcode == 9: # Day 9 modes = self.get_modes(value, 1) values = self.get_values(modes) self.base += values[0] self.idx += 2 elif opcode == 99: self.terminated = True return outputs else: raise ValueError
[ 10, 11, 12, 13, 14 ]
1,347
b7ebee3c96fd9cd3d8ddc69838363925085a944d
<mask token>
<mask token> def rotate_left3(nums): if len(nums) < 3: return 0 nums.append(nums[0]) del nums[0] return nums
''' Given an array of ints length 3, return an array with the elements "rotated left" so {1, 2, 3} yields {2, 3, 1}. rotate_left3([1, 2, 3]) → [2, 3, 1] rotate_left3([5, 11, 9]) → [11, 9, 5] rotate_left3([7, 0, 0]) → [0, 0, 7] ''' #卡了很久,还是列表的基本操作不太熟 #参考:https://zhidao.baidu.com/question/1244520812319200859.html def rotate_left3(nums): if len(nums) < 3: return 0 nums.append(nums[0])#是nums.append(),下面是del nums[index] del nums[0] return nums
null
null
[ 0, 1, 2 ]
1,348
51ef1c0f6a17e12b2324a80f962b2ce47cc05bcc
<mask token>
def _get_single_variable(self, name, shape=None, dtype=dtypes.float32, initializer=None, regularizer=None, partition_info=None, reuse=None, trainable=True, collections=None, caching_device=None, validate_shape= True, use_resource=None): """Get or create a single Variable (e.g. a shard or entire variable). See the documentation of get_variable above (ignore partitioning components) for details. Args: name: see get_variable. shape: see get_variable. dtype: see get_variable. initializer: see get_variable. regularizer: see get_variable. partition_info: _PartitionInfo object. reuse: see get_variable. trainable: see get_variable. collections: see get_variable. caching_device: see get_variable. validate_shape: see get_variable. use_resource: see get_variable. Returns: A Variable. See documentation of get_variable above. Raises: ValueError: See documentation of get_variable above. """ initializing_from_value = False if initializer is not None and not callable(initializer): initializing_from_value = True if shape is not None and initializing_from_value: raise ValueError('If initializer is a constant, do not specify shape.') should_check = reuse is not None dtype = dtypes.as_dtype(dtype) shape = tensor_shape.as_shape(shape) if name in self._vars: if should_check and not reuse: tb = self._vars[name].op.traceback[::-1] tb = [x for x in tb if 'tensorflow/python' not in x[0]][:3] raise ValueError( """Variable %s already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at: %s""" % (name, ''.join(traceback.format_list(tb)))) found_var = self._vars[name] if not shape.is_compatible_with(found_var.get_shape()): raise ValueError( 'Trying to share variable %s, but specified shape %s and found shape %s.' % (name, shape, found_var.get_shape())) if not dtype.is_compatible_with(found_var.dtype): dtype_str = dtype.name found_type_str = found_var.dtype.name raise ValueError( 'Trying to share variable %s, but specified dtype %s and found dtype %s.' % (name, dtype_str, found_type_str)) return found_var if should_check and reuse: raise ValueError( 'Variable %s does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope?' % name) if not shape.is_fully_defined() and not initializing_from_value: raise ValueError( 'Shape of a new variable (%s) must be fully defined, but instead was %s.' % (name, shape)) if initializer is None: initializer, initializing_from_value = self._get_default_initializer( name=name, shape=shape, dtype=dtype) with ops.control_dependencies(None): if initializing_from_value: init_val = initializer variable_dtype = None else: if isinstance(initializer, type(init_ops.Initializer)): initializer = initializer(dtype=dtype) init_val = lambda : initializer(shape.as_list(), dtype=dtype, partition_info=partition_info) variable_dtype = dtype.base_dtype if use_resource is None: use_resource = False if use_resource: v = resource_variable_ops.ResourceVariable(initial_value=init_val, name=name, trainable=trainable, collections=collections, caching_device=caching_device, dtype=variable_dtype, validate_shape=validate_shape) else: v = variables.Variable(initial_value=init_val, name=name, trainable =trainable, collections=collections, caching_device= caching_device, dtype=variable_dtype, validate_shape=validate_shape ) self._vars[name] = v logging.vlog(1, 'Created variable %s with shape %s and init %s', v.name, format(shape), initializer) if regularizer: with ops.colocate_with(v.op): with ops.name_scope(name + '/Regularizer/'): loss = regularizer(v) if loss is not None: logging.vlog(1, 'Applied regularizer to %s and added the result %s to REGULARIZATION_LOSSES.' , v.name, loss.name) ops.add_to_collection(ops.GraphKeys.REGULARIZATION_LOSSES, loss ) return v
def _get_single_variable(self, name, shape=None, dtype=dtypes.float32, initializer=None, regularizer=None, partition_info=None, reuse=None, trainable=True, collections=None, caching_device=None, validate_shape=True, use_resource=None): 'Get or create a single Variable (e.g. a shard or entire variable).\n\n See the documentation of get_variable above (ignore partitioning components)\n for details.\n\n Args:\n name: see get_variable.\n shape: see get_variable.\n dtype: see get_variable.\n initializer: see get_variable.\n regularizer: see get_variable.\n partition_info: _PartitionInfo object.\n reuse: see get_variable.\n trainable: see get_variable.\n collections: see get_variable.\n caching_device: see get_variable.\n validate_shape: see get_variable.\n use_resource: see get_variable.\n\n Returns:\n A Variable. See documentation of get_variable above.\n\n Raises:\n ValueError: See documentation of get_variable above.\n ' initializing_from_value = False if ((initializer is not None) and (not callable(initializer))): initializing_from_value = True if ((shape is not None) and initializing_from_value): raise ValueError('If initializer is a constant, do not specify shape.') should_check = (reuse is not None) dtype = dtypes.as_dtype(dtype) shape = tensor_shape.as_shape(shape) if (name in self._vars): if (should_check and (not reuse)): tb = self._vars[name].op.traceback[::(- 1)] tb = [x for x in tb if ('tensorflow/python' not in x[0])][:3] raise ValueError(('Variable %s already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:\n\n%s' % (name, ''.join(traceback.format_list(tb))))) found_var = self._vars[name] if (not shape.is_compatible_with(found_var.get_shape())): raise ValueError(('Trying to share variable %s, but specified shape %s and found shape %s.' % (name, shape, found_var.get_shape()))) if (not dtype.is_compatible_with(found_var.dtype)): dtype_str = dtype.name found_type_str = found_var.dtype.name raise ValueError(('Trying to share variable %s, but specified dtype %s and found dtype %s.' % (name, dtype_str, found_type_str))) return found_var if (should_check and reuse): raise ValueError(('Variable %s does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope?' % name)) if ((not shape.is_fully_defined()) and (not initializing_from_value)): raise ValueError(('Shape of a new variable (%s) must be fully defined, but instead was %s.' % (name, shape))) if (initializer is None): (initializer, initializing_from_value) = self._get_default_initializer(name=name, shape=shape, dtype=dtype) with ops.control_dependencies(None): if initializing_from_value: init_val = initializer variable_dtype = None else: if isinstance(initializer, type(init_ops.Initializer)): initializer = initializer(dtype=dtype) init_val = (lambda : initializer(shape.as_list(), dtype=dtype, partition_info=partition_info)) variable_dtype = dtype.base_dtype if (use_resource is None): use_resource = False if use_resource: v = resource_variable_ops.ResourceVariable(initial_value=init_val, name=name, trainable=trainable, collections=collections, caching_device=caching_device, dtype=variable_dtype, validate_shape=validate_shape) else: v = variables.Variable(initial_value=init_val, name=name, trainable=trainable, collections=collections, caching_device=caching_device, dtype=variable_dtype, validate_shape=validate_shape) self._vars[name] = v logging.vlog(1, 'Created variable %s with shape %s and init %s', v.name, format(shape), initializer) if regularizer: with ops.colocate_with(v.op): with ops.name_scope((name + '/Regularizer/')): loss = regularizer(v) if (loss is not None): logging.vlog(1, 'Applied regularizer to %s and added the result %s to REGULARIZATION_LOSSES.', v.name, loss.name) ops.add_to_collection(ops.GraphKeys.REGULARIZATION_LOSSES, loss) return v
null
null
[ 0, 1, 2 ]
1,349
26a778f16cc50d1a8791fb672fb8907464865f3f
n = 5 a = '1' if n == 1: print(a) else: for i in range(2, n + 1): if i == 2: a = '11' else: count = 1 for j in range(len(a) - 1): if j == len(a) - 2 : if a[j] == a[j + 1]: count += 1 a = a + count + a[j] else: elif a[j] == a[j + 1]: count += 1 print(a) else: a = a + count + a[j] count = 1 print(a)
null
null
null
null
[ 0 ]
1,350
ab12468b1da20c896e3578091fd9ba245dcfa0a4
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [('core', '0003_auto_20200310_1620')] operations = [migrations.AddField(model_name='tag', name='name', field= models.CharField(choices=[('METHOD', 'METHOD'), ('FUNCTION', 'FUNCTION'), ('OPERATOR', 'OPERATOR'), ('HELPER FUNCTION', 'HELPER FUNCTION')], default='code', max_length=100)), migrations. AddField(model_name='tag', name='slug', field=models.CharField( default='code', max_length=100, unique=True))]
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [('core', '0003_auto_20200310_1620')] operations = [migrations.AddField(model_name='tag', name='name', field= models.CharField(choices=[('METHOD', 'METHOD'), ('FUNCTION', 'FUNCTION'), ('OPERATOR', 'OPERATOR'), ('HELPER FUNCTION', 'HELPER FUNCTION')], default='code', max_length=100)), migrations. AddField(model_name='tag', name='slug', field=models.CharField( default='code', max_length=100, unique=True))]
# Generated by Django 3.0.4 on 2020-03-11 17:48 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0003_auto_20200310_1620'), ] operations = [ migrations.AddField( model_name='tag', name='name', field=models.CharField(choices=[('METHOD', 'METHOD'), ('FUNCTION', 'FUNCTION'), ('OPERATOR', 'OPERATOR'), ('HELPER FUNCTION', 'HELPER FUNCTION')], default='code', max_length=100), ), migrations.AddField( model_name='tag', name='slug', field=models.CharField(default='code', max_length=100, unique=True), ), ]
[ 0, 1, 2, 3, 4 ]
1,351
6e253747182716f84aa6326aafe15ff82be17378
<mask token> class MyDaemon(DaemonBase): <mask token> def __init__(self, api_url, monitor_port, pidfile, stdin='/dev/null', stdout='/dev/null', stderr='/dev/null'): self.api_url = api_url self.monitor_port = monitor_port super().__init__(pidfile, stdin, stdout, stderr) @staticmethod def get_host_addrs(family): for nic, snics in psutil.net_if_addrs().items(): for snic in snics: if snic.family == family: yield nic, snic.address <mask token> def tasks(self): pnic_before = get_net_io_counters() while 1: time.sleep(60) pnic_after = get_net_io_counters() send_datas = {'type': 8, 'ip_addr': ''.join([n[1] for n in self .get_host_addrs(socket.AF_INET) if n[0] == self. monitor_port]), 'cpu_perf': get_cpu_percent(), 'mem_perf': get_mem_usage(), 'disk_perf': get_disk_usage(), 'disk_speed': get_disk_speed(), 'net_perf': get_network_traffic(pnic_before, pnic_after)} self.do_post(send_datas) pnic_before = get_net_io_counters() <mask token>
<mask token> class MyDaemon(DaemonBase): <mask token> def __init__(self, api_url, monitor_port, pidfile, stdin='/dev/null', stdout='/dev/null', stderr='/dev/null'): self.api_url = api_url self.monitor_port = monitor_port super().__init__(pidfile, stdin, stdout, stderr) @staticmethod def get_host_addrs(family): for nic, snics in psutil.net_if_addrs().items(): for snic in snics: if snic.family == family: yield nic, snic.address <mask token> def tasks(self): pnic_before = get_net_io_counters() while 1: time.sleep(60) pnic_after = get_net_io_counters() send_datas = {'type': 8, 'ip_addr': ''.join([n[1] for n in self .get_host_addrs(socket.AF_INET) if n[0] == self. monitor_port]), 'cpu_perf': get_cpu_percent(), 'mem_perf': get_mem_usage(), 'disk_perf': get_disk_usage(), 'disk_speed': get_disk_speed(), 'net_perf': get_network_traffic(pnic_before, pnic_after)} self.do_post(send_datas) pnic_before = get_net_io_counters() def run(self): sys.stdout.write('Daemon started with pid %s\n' % os.getpid()) _p = Process(target=self.tasks, daemon=True) _p.start() p = psutil.Process(_p.pid) while 1: current_cpu = p.cpu_percent() current_mem = p.memory_percent() if p.is_running() and (current_mem > 1 or current_cpu > 1): p.terminate() p.wait() with open('/tmp/test_daemon.log', 'a') as f: f.write('CPU: %s - MEM: %s - at: %s\n' % (current_cpu, current_mem, time.ctime())) _p = Process(target=self.tasks, daemon=True) _p.start() sys.stdout.write('The subprocess restart pid %s\n' % _p.pid) p = psutil.Process(_p.pid) time.sleep(60)
<mask token> class MyDaemon(DaemonBase): """Real Daemon class""" def __init__(self, api_url, monitor_port, pidfile, stdin='/dev/null', stdout='/dev/null', stderr='/dev/null'): self.api_url = api_url self.monitor_port = monitor_port super().__init__(pidfile, stdin, stdout, stderr) @staticmethod def get_host_addrs(family): for nic, snics in psutil.net_if_addrs().items(): for snic in snics: if snic.family == family: yield nic, snic.address def do_post(self, params): data = json.dumps(params) data = parse.urlencode({'data': data}) req = request.Request(self.api_url, data=data.encode('utf-8')) try: with request.urlopen(req, timeout=3) as resp: return resp.status except Exception as e: with open('/tmp/test_daemon.err', 'a') as f: print('%s at: %s' % (e, time.ctime()), file=f) def tasks(self): pnic_before = get_net_io_counters() while 1: time.sleep(60) pnic_after = get_net_io_counters() send_datas = {'type': 8, 'ip_addr': ''.join([n[1] for n in self .get_host_addrs(socket.AF_INET) if n[0] == self. monitor_port]), 'cpu_perf': get_cpu_percent(), 'mem_perf': get_mem_usage(), 'disk_perf': get_disk_usage(), 'disk_speed': get_disk_speed(), 'net_perf': get_network_traffic(pnic_before, pnic_after)} self.do_post(send_datas) pnic_before = get_net_io_counters() def run(self): sys.stdout.write('Daemon started with pid %s\n' % os.getpid()) _p = Process(target=self.tasks, daemon=True) _p.start() p = psutil.Process(_p.pid) while 1: current_cpu = p.cpu_percent() current_mem = p.memory_percent() if p.is_running() and (current_mem > 1 or current_cpu > 1): p.terminate() p.wait() with open('/tmp/test_daemon.log', 'a') as f: f.write('CPU: %s - MEM: %s - at: %s\n' % (current_cpu, current_mem, time.ctime())) _p = Process(target=self.tasks, daemon=True) _p.start() sys.stdout.write('The subprocess restart pid %s\n' % _p.pid) p = psutil.Process(_p.pid) time.sleep(60)
import os import sys import time import json import socket from urllib import request, parse from concurrent.futures import ThreadPoolExecutor from multiprocessing import Process import psutil from daemon import DaemonBase from host_performence import * class MyDaemon(DaemonBase): """Real Daemon class""" def __init__(self, api_url, monitor_port, pidfile, stdin='/dev/null', stdout='/dev/null', stderr='/dev/null'): self.api_url = api_url self.monitor_port = monitor_port super().__init__(pidfile, stdin, stdout, stderr) @staticmethod def get_host_addrs(family): for nic, snics in psutil.net_if_addrs().items(): for snic in snics: if snic.family == family: yield nic, snic.address def do_post(self, params): data = json.dumps(params) data = parse.urlencode({'data': data}) req = request.Request(self.api_url, data=data.encode('utf-8')) try: with request.urlopen(req, timeout=3) as resp: return resp.status except Exception as e: with open('/tmp/test_daemon.err', 'a') as f: print('%s at: %s' % (e, time.ctime()), file=f) def tasks(self): pnic_before = get_net_io_counters() while 1: time.sleep(60) pnic_after = get_net_io_counters() send_datas = {'type': 8, 'ip_addr': ''.join([n[1] for n in self .get_host_addrs(socket.AF_INET) if n[0] == self. monitor_port]), 'cpu_perf': get_cpu_percent(), 'mem_perf': get_mem_usage(), 'disk_perf': get_disk_usage(), 'disk_speed': get_disk_speed(), 'net_perf': get_network_traffic(pnic_before, pnic_after)} self.do_post(send_datas) pnic_before = get_net_io_counters() def run(self): sys.stdout.write('Daemon started with pid %s\n' % os.getpid()) _p = Process(target=self.tasks, daemon=True) _p.start() p = psutil.Process(_p.pid) while 1: current_cpu = p.cpu_percent() current_mem = p.memory_percent() if p.is_running() and (current_mem > 1 or current_cpu > 1): p.terminate() p.wait() with open('/tmp/test_daemon.log', 'a') as f: f.write('CPU: %s - MEM: %s - at: %s\n' % (current_cpu, current_mem, time.ctime())) _p = Process(target=self.tasks, daemon=True) _p.start() sys.stdout.write('The subprocess restart pid %s\n' % _p.pid) p = psutil.Process(_p.pid) time.sleep(60)
import os import sys import time import json import socket from urllib import request, parse from concurrent.futures import ThreadPoolExecutor from multiprocessing import Process import psutil from daemon import DaemonBase from host_performence import * class MyDaemon(DaemonBase): """Real Daemon class""" def __init__(self, api_url, monitor_port, pidfile, stdin='/dev/null', stdout='/dev/null', stderr='/dev/null'): self.api_url = api_url self.monitor_port = monitor_port super().__init__(pidfile, stdin, stdout, stderr) @staticmethod def get_host_addrs(family): for nic, snics in psutil.net_if_addrs().items(): for snic in snics: if snic.family == family: yield (nic, snic.address) def do_post(self, params): data = json.dumps(params) # Json Post # headers = {'Content-Type': 'application/json'} # req = request.Request(self.api_url, data=data.encode('utf-8'), headers=headers) # Form Post eg. ?data=params&code=1 data = parse.urlencode({'data': data}) req = request.Request(self.api_url, data=data.encode('utf-8')) try: with request.urlopen(req, timeout=3) as resp: # print(resp.read().decode('utf-8')) return resp.status except Exception as e: with open('/tmp/test_daemon.err', 'a') as f: print('%s at: %s' % (e, time.ctime()), file=f) def tasks(self): pnic_before = get_net_io_counters() while 1: time.sleep(60) pnic_after = get_net_io_counters() send_datas = { 'type': 8, 'ip_addr': ''.join([ n[1] for n in self.get_host_addrs(socket.AF_INET) if n[0] == self.monitor_port ]), 'cpu_perf': get_cpu_percent(), 'mem_perf': get_mem_usage(), 'disk_perf': get_disk_usage(), 'disk_speed': get_disk_speed(), 'net_perf': get_network_traffic(pnic_before, pnic_after) } self.do_post(send_datas) pnic_before = get_net_io_counters() def run(self): sys.stdout.write('Daemon started with pid %s\n' % os.getpid()) _p = Process(target=self.tasks, daemon=True) _p.start() p = psutil.Process(_p.pid) while 1: current_cpu = p.cpu_percent() current_mem = p.memory_percent() # print(current_cpu, current_mem, time.ctime(), p.pid, p.ppid()) if p.is_running() and (current_mem > 1 or current_cpu > 1): p.terminate() p.wait() with open('/tmp/test_daemon.log', 'a') as f: f.write('CPU: %s - MEM: %s - at: %s\n' % (current_cpu, current_mem, time.ctime())) _p = Process(target=self.tasks, daemon=True) _p.start() sys.stdout.write('The subprocess restart pid %s\n' % _p.pid) p = psutil.Process(_p.pid) time.sleep(60)
[ 4, 5, 7, 8, 9 ]
1,352
603708c830dadb6f1a3e5de00536d558f448b5fb
<mask token> class Getter(object): <mask token> def __call__(self, url, **kwargs): try: return self._inner_call(url, **kwargs) except (Timeout, ConnectionError, RequestException) as ex: message = ex.response.reason if getattr(ex, 'response', None ) is not None else type(ex).__name__ raise GetterError(message, ex, not isinstance(ex, RequestException) ) def _inner_call(self, url, **kwargs): if 'timeout' not in kwargs: kwargs['timeout'] = 20 result = self.session.get(url, **kwargs) if result is None: return if result.status_code == 401: if self.login(): result = self.session.get(url, **kwargs) if result is None: return if result.status_code == 404: return result.raise_for_status() return result class GetterError(Exception): def __init__(self, message, cause, connection_error): super(GetterError, self).__init__() self.message = message self.cause = cause self.connection_error = connection_error self.request = getattr(cause, 'request', None) self.response = getattr(cause, 'response', None)
<mask token> class Getter(object): def __init__(self, contenttype=None, login=lambda : False, session=None): self.session = session or retryable_session() self.login = login if contenttype: self.session.headers['Accept'] = contenttype def __call__(self, url, **kwargs): try: return self._inner_call(url, **kwargs) except (Timeout, ConnectionError, RequestException) as ex: message = ex.response.reason if getattr(ex, 'response', None ) is not None else type(ex).__name__ raise GetterError(message, ex, not isinstance(ex, RequestException) ) def _inner_call(self, url, **kwargs): if 'timeout' not in kwargs: kwargs['timeout'] = 20 result = self.session.get(url, **kwargs) if result is None: return if result.status_code == 401: if self.login(): result = self.session.get(url, **kwargs) if result is None: return if result.status_code == 404: return result.raise_for_status() return result class GetterError(Exception): def __init__(self, message, cause, connection_error): super(GetterError, self).__init__() self.message = message self.cause = cause self.connection_error = connection_error self.request = getattr(cause, 'request', None) self.response = getattr(cause, 'response', None)
<mask token> def retryable_session(retries=3, backoff_factor=0.5, status_forcelist=(500, 502, 504, 520), session=None): session = session or requests.Session() retry = Retry(total=retries, read=retries, connect=retries, backoff_factor=backoff_factor, status_forcelist=status_forcelist) adapter = HTTPAdapter(max_retries=retry) session.mount('http://', adapter) session.mount('https://', adapter) return session class Getter(object): def __init__(self, contenttype=None, login=lambda : False, session=None): self.session = session or retryable_session() self.login = login if contenttype: self.session.headers['Accept'] = contenttype def __call__(self, url, **kwargs): try: return self._inner_call(url, **kwargs) except (Timeout, ConnectionError, RequestException) as ex: message = ex.response.reason if getattr(ex, 'response', None ) is not None else type(ex).__name__ raise GetterError(message, ex, not isinstance(ex, RequestException) ) def _inner_call(self, url, **kwargs): if 'timeout' not in kwargs: kwargs['timeout'] = 20 result = self.session.get(url, **kwargs) if result is None: return if result.status_code == 401: if self.login(): result = self.session.get(url, **kwargs) if result is None: return if result.status_code == 404: return result.raise_for_status() return result class GetterError(Exception): def __init__(self, message, cause, connection_error): super(GetterError, self).__init__() self.message = message self.cause = cause self.connection_error = connection_error self.request = getattr(cause, 'request', None) self.response = getattr(cause, 'response', None)
import requests from requests.adapters import HTTPAdapter from requests.exceptions import ConnectionError, Timeout, RequestException from requests.packages.urllib3.util.retry import Retry def retryable_session(retries=3, backoff_factor=0.5, status_forcelist=(500, 502, 504, 520), session=None): session = session or requests.Session() retry = Retry(total=retries, read=retries, connect=retries, backoff_factor=backoff_factor, status_forcelist=status_forcelist) adapter = HTTPAdapter(max_retries=retry) session.mount('http://', adapter) session.mount('https://', adapter) return session class Getter(object): def __init__(self, contenttype=None, login=lambda : False, session=None): self.session = session or retryable_session() self.login = login if contenttype: self.session.headers['Accept'] = contenttype def __call__(self, url, **kwargs): try: return self._inner_call(url, **kwargs) except (Timeout, ConnectionError, RequestException) as ex: message = ex.response.reason if getattr(ex, 'response', None ) is not None else type(ex).__name__ raise GetterError(message, ex, not isinstance(ex, RequestException) ) def _inner_call(self, url, **kwargs): if 'timeout' not in kwargs: kwargs['timeout'] = 20 result = self.session.get(url, **kwargs) if result is None: return if result.status_code == 401: if self.login(): result = self.session.get(url, **kwargs) if result is None: return if result.status_code == 404: return result.raise_for_status() return result class GetterError(Exception): def __init__(self, message, cause, connection_error): super(GetterError, self).__init__() self.message = message self.cause = cause self.connection_error = connection_error self.request = getattr(cause, 'request', None) self.response = getattr(cause, 'response', None)
import requests from requests.adapters import HTTPAdapter from requests.exceptions import ConnectionError, Timeout, RequestException # import from `requests` because Jarvis / some platforms still have old urllib3 from requests.packages.urllib3.util.retry import Retry def retryable_session(retries=3, backoff_factor=0.5, status_forcelist=(500, 502, 504, 520), session=None): # from https://www.peterbe.com/plog/best-practice-with-retries-with-requests session = session or requests.Session() # 'Retry-After' 413/503/529 headers are respected by default retry = Retry(total=retries, read=retries, connect=retries, backoff_factor=backoff_factor, status_forcelist=status_forcelist) adapter = HTTPAdapter(max_retries=retry) session.mount('http://', adapter) session.mount('https://', adapter) return session class Getter(object): def __init__(self, contenttype=None, login=lambda: False, session=None): self.session = session or retryable_session() self.login = login if contenttype: self.session.headers['Accept'] = contenttype def __call__(self, url, **kwargs): try: return self._inner_call(url, **kwargs) except (Timeout, ConnectionError, RequestException) as ex: message = ex.response.reason if getattr(ex, 'response', None) is not None else type(ex).__name__ raise GetterError(message, ex, not isinstance(ex, RequestException)) def _inner_call(self, url, **kwargs): if 'timeout' not in kwargs: kwargs['timeout'] = 20 result = self.session.get(url, **kwargs) if result is None: return if result.status_code == 401: if self.login(): result = self.session.get(url, **kwargs) if result is None: return if result.status_code == 404: return result.raise_for_status() return result class GetterError(Exception): def __init__(self, message, cause, connection_error): super(GetterError, self).__init__() self.message = message self.cause = cause self.connection_error = connection_error self.request = getattr(cause, 'request', None) self.response = getattr(cause, 'response', None)
[ 5, 6, 7, 8, 9 ]
1,353
b8ab6b8c111876d6a781c82438f79307a849c47a
# -*- coding: utf-8 -*- import requests import Queue import codecs import os import urllib import base64 from threading import Thread from Crypto.Cipher import AES requests.packages.urllib3.disable_warnings() def check(q): while True: try: c = q.get() user = c.split(':')[0] passw = c.split(':')[1] work = False proxy = { 'http': '127.0.0.1:8888', 'https': '127.0.0.1:8888' } s = requests.session() headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.97 Safari/537.36', 'Accept-Encoding': 'gzip', 'Accept': 'application/json, text/javascript, */*; q=0.01', 'X-Requested-With': 'XMLHttpRequest' } r = s.get( 'https://www.namecheap.com/Cart/ajax/DomainSelection.ashx?action=checkuser&username={0}'.format(user), verify=False, headers=headers, proxies=proxy ) if 'UserExist' in r.text: print user, 'is registered!' f = open("registered.txt", "a") f.write('{0}\n'.format(c)) f.close() else: print user, 'does not work!' except Exception, e: print e raw_input("Please Send Me The Error Message!") q.task_done() def main(): with codecs.open('tocheck.txt', 'r', encoding='utf-8') as f: users = f.readlines() with codecs.open('regthreads.txt', 'r', encoding='utf-8') as f: threads = f.read() queue = Queue.Queue() for _ in range(int(threads)): worker = Thread(target=check, args=(queue,)) worker.start() for user in users: queue.put(user.strip().encode('ascii', 'ignore')) if __name__ == '__main__': try: key = os.environ['COMPUTERNAME'] f = open("data.txt", "r") data = f.read() f.close() while len(key) < 32: key += 'A' IV = 16 * '\x00' mode = AES.MODE_CBC encryptor = AES.new(key, mode, IV=IV) l = base64.b16encode(encryptor.encrypt(data)) r = requests.get( 'http://divcentral.xyz/login.php?l={0}&serial={1}'.format(urllib.quote_plus(l), data) ) if encryptor.decrypt(base64.b16decode(urllib.unquote(r.text))): main() else: print 'Could not log in!' except Exception, e: print 'Error! PM Me with the message!' print e raw_input()
null
null
null
null
[ 0 ]
1,354
3ac13cc74a7eabef686ceb9d9e46f2ef109a225e
#!/usr/bin/env python # -*-coding:utf-8 -*- from common import http_requests_get,is_domain import re class Crt(object): def __init__(self, domain): self.domain=domain self.site='http://crt.sh/?q=%25.' self.result=[] def run(self): url = self.site + self.domain print url try: r=http_requests_get(url=url) # self.result.append(re) results = re.findall('</TD>\n <TD>(.*?)</TD>\n <TD><A',r.content,re.S) for result in results: if is_domain(result): self.result.append(result) return list(set(self.result)) except Exception,e: return self.result
null
null
null
null
[ 0 ]
1,355
af4d2380f92ea636594695e5ad4ba766d6874dd3
<mask token> def dadata_clean(method, data): return dadata_proxy.dadata_clean(method, data) def get_detailed_address(address): from fw.utils.address_utils import get_detailed_address as _get_detailed_address return _get_detailed_address(address) def dadata_standardize_address(address): from fw.utils.address_utils import dadata_standardize_address as _dadata_standardize_address return _dadata_standardize_address(address) def get_ifns_by_address(address, service_nalog_ru_url): from services.ifns.ifns_manager import get_ifns_by_address as _get_ifns_by_address return _get_ifns_by_address(address, service_nalog_ru_url) <mask token> def get_nalog_ru_time_slots(person_data, company_data, internal_ifns_number, internal_ifns_service, logger): from services.ifns.ifns_manager import get_nalog_ru_time_slots as _get_nalog_ru_time_slots return _get_nalog_ru_time_slots(person_data, company_data, internal_ifns_number, internal_ifns_service, logger) def book_ifns(person_data, company_data, internal_ifns_number, internal_ifns_service, dt, logger): from services.ifns.ifns_manager import book_ifns as _book_ifns return _book_ifns(person_data, company_data, internal_ifns_number, internal_ifns_service, dt, logger) def get_registration_ifns(service_nalog_ru_url, address_ifns=None): from services.ifns.ifns_manager import get_registration_ifns as _get_registration_ifns return _get_registration_ifns(service_nalog_ru_url, address_ifns= address_ifns) def get_ifns_registrations(name, company_type='ooo', date_from=None, date_to=None, service=None, ifns=None, service_nalog_ru_url=None, logger=None): from services.ifns.ifns_manager import get_ifns_registrations as _get_ifns_registrations return _get_ifns_registrations(name, company_type=company_type, date_from=date_from, date_to=date_to, service=service, ifns=ifns, service_nalog_ru_url=service_nalog_ru_url, logger=logger) def check_car_policy(policy_series, policy_number, timeout=20.0): from services.car_assurance.integration import check_car_policy as _check_car_policy return _check_car_policy(policy_series, policy_number, timeout=timeout)
<mask token> def dadata_suggest(method, data): return dadata_proxy.dadata_suggest(method, data) def dadata_clean(method, data): return dadata_proxy.dadata_clean(method, data) def get_detailed_address(address): from fw.utils.address_utils import get_detailed_address as _get_detailed_address return _get_detailed_address(address) def dadata_standardize_address(address): from fw.utils.address_utils import dadata_standardize_address as _dadata_standardize_address return _dadata_standardize_address(address) def get_ifns_by_address(address, service_nalog_ru_url): from services.ifns.ifns_manager import get_ifns_by_address as _get_ifns_by_address return _get_ifns_by_address(address, service_nalog_ru_url) def get_ifns_by_code(tax_office, service_nalog_ru_url): from services.ifns.ifns_manager import get_ifns_by_code as _get_ifns_by_code return _get_ifns_by_code(tax_office, service_nalog_ru_url) def get_nalog_ru_time_slots(person_data, company_data, internal_ifns_number, internal_ifns_service, logger): from services.ifns.ifns_manager import get_nalog_ru_time_slots as _get_nalog_ru_time_slots return _get_nalog_ru_time_slots(person_data, company_data, internal_ifns_number, internal_ifns_service, logger) def book_ifns(person_data, company_data, internal_ifns_number, internal_ifns_service, dt, logger): from services.ifns.ifns_manager import book_ifns as _book_ifns return _book_ifns(person_data, company_data, internal_ifns_number, internal_ifns_service, dt, logger) def get_registration_ifns(service_nalog_ru_url, address_ifns=None): from services.ifns.ifns_manager import get_registration_ifns as _get_registration_ifns return _get_registration_ifns(service_nalog_ru_url, address_ifns= address_ifns) def get_ifns_registrations(name, company_type='ooo', date_from=None, date_to=None, service=None, ifns=None, service_nalog_ru_url=None, logger=None): from services.ifns.ifns_manager import get_ifns_registrations as _get_ifns_registrations return _get_ifns_registrations(name, company_type=company_type, date_from=date_from, date_to=date_to, service=service, ifns=ifns, service_nalog_ru_url=service_nalog_ru_url, logger=logger) def check_car_policy(policy_series, policy_number, timeout=20.0): from services.car_assurance.integration import check_car_policy as _check_car_policy return _check_car_policy(policy_series, policy_number, timeout=timeout)
<mask token> cache = CacheWrapper() def dadata_suggest(method, data): return dadata_proxy.dadata_suggest(method, data) def dadata_clean(method, data): return dadata_proxy.dadata_clean(method, data) def get_detailed_address(address): from fw.utils.address_utils import get_detailed_address as _get_detailed_address return _get_detailed_address(address) def dadata_standardize_address(address): from fw.utils.address_utils import dadata_standardize_address as _dadata_standardize_address return _dadata_standardize_address(address) def get_ifns_by_address(address, service_nalog_ru_url): from services.ifns.ifns_manager import get_ifns_by_address as _get_ifns_by_address return _get_ifns_by_address(address, service_nalog_ru_url) def get_ifns_by_code(tax_office, service_nalog_ru_url): from services.ifns.ifns_manager import get_ifns_by_code as _get_ifns_by_code return _get_ifns_by_code(tax_office, service_nalog_ru_url) def get_nalog_ru_time_slots(person_data, company_data, internal_ifns_number, internal_ifns_service, logger): from services.ifns.ifns_manager import get_nalog_ru_time_slots as _get_nalog_ru_time_slots return _get_nalog_ru_time_slots(person_data, company_data, internal_ifns_number, internal_ifns_service, logger) def book_ifns(person_data, company_data, internal_ifns_number, internal_ifns_service, dt, logger): from services.ifns.ifns_manager import book_ifns as _book_ifns return _book_ifns(person_data, company_data, internal_ifns_number, internal_ifns_service, dt, logger) def get_registration_ifns(service_nalog_ru_url, address_ifns=None): from services.ifns.ifns_manager import get_registration_ifns as _get_registration_ifns return _get_registration_ifns(service_nalog_ru_url, address_ifns= address_ifns) def get_ifns_registrations(name, company_type='ooo', date_from=None, date_to=None, service=None, ifns=None, service_nalog_ru_url=None, logger=None): from services.ifns.ifns_manager import get_ifns_registrations as _get_ifns_registrations return _get_ifns_registrations(name, company_type=company_type, date_from=date_from, date_to=date_to, service=service, ifns=ifns, service_nalog_ru_url=service_nalog_ru_url, logger=logger) def check_car_policy(policy_series, policy_number, timeout=20.0): from services.car_assurance.integration import check_car_policy as _check_car_policy return _check_car_policy(policy_series, policy_number, timeout=timeout)
from fw.api import dadata_proxy from flask import current_app from fw.cache.cache_wrapper import CacheWrapper cache = CacheWrapper() def dadata_suggest(method, data): return dadata_proxy.dadata_suggest(method, data) def dadata_clean(method, data): return dadata_proxy.dadata_clean(method, data) def get_detailed_address(address): from fw.utils.address_utils import get_detailed_address as _get_detailed_address return _get_detailed_address(address) def dadata_standardize_address(address): from fw.utils.address_utils import dadata_standardize_address as _dadata_standardize_address return _dadata_standardize_address(address) def get_ifns_by_address(address, service_nalog_ru_url): from services.ifns.ifns_manager import get_ifns_by_address as _get_ifns_by_address return _get_ifns_by_address(address, service_nalog_ru_url) def get_ifns_by_code(tax_office, service_nalog_ru_url): from services.ifns.ifns_manager import get_ifns_by_code as _get_ifns_by_code return _get_ifns_by_code(tax_office, service_nalog_ru_url) def get_nalog_ru_time_slots(person_data, company_data, internal_ifns_number, internal_ifns_service, logger): from services.ifns.ifns_manager import get_nalog_ru_time_slots as _get_nalog_ru_time_slots return _get_nalog_ru_time_slots(person_data, company_data, internal_ifns_number, internal_ifns_service, logger) def book_ifns(person_data, company_data, internal_ifns_number, internal_ifns_service, dt, logger): from services.ifns.ifns_manager import book_ifns as _book_ifns return _book_ifns(person_data, company_data, internal_ifns_number, internal_ifns_service, dt, logger) def get_registration_ifns(service_nalog_ru_url, address_ifns=None): from services.ifns.ifns_manager import get_registration_ifns as _get_registration_ifns return _get_registration_ifns(service_nalog_ru_url, address_ifns= address_ifns) def get_ifns_registrations(name, company_type='ooo', date_from=None, date_to=None, service=None, ifns=None, service_nalog_ru_url=None, logger=None): from services.ifns.ifns_manager import get_ifns_registrations as _get_ifns_registrations return _get_ifns_registrations(name, company_type=company_type, date_from=date_from, date_to=date_to, service=service, ifns=ifns, service_nalog_ru_url=service_nalog_ru_url, logger=logger) def check_car_policy(policy_series, policy_number, timeout=20.0): from services.car_assurance.integration import check_car_policy as _check_car_policy return _check_car_policy(policy_series, policy_number, timeout=timeout)
# -*- coding: utf-8 -*- from fw.api import dadata_proxy from flask import current_app from fw.cache.cache_wrapper import CacheWrapper cache = CacheWrapper() def dadata_suggest(method, data): return dadata_proxy.dadata_suggest(method, data) def dadata_clean(method, data): return dadata_proxy.dadata_clean(method, data) def get_detailed_address(address): from fw.utils.address_utils import get_detailed_address as _get_detailed_address return _get_detailed_address(address) def dadata_standardize_address(address): from fw.utils.address_utils import dadata_standardize_address as _dadata_standardize_address return _dadata_standardize_address(address) def get_ifns_by_address(address, service_nalog_ru_url): from services.ifns.ifns_manager import get_ifns_by_address as _get_ifns_by_address return _get_ifns_by_address(address, service_nalog_ru_url) def get_ifns_by_code(tax_office, service_nalog_ru_url): from services.ifns.ifns_manager import get_ifns_by_code as _get_ifns_by_code return _get_ifns_by_code(tax_office, service_nalog_ru_url) def get_nalog_ru_time_slots(person_data, company_data, internal_ifns_number, internal_ifns_service, logger): from services.ifns.ifns_manager import get_nalog_ru_time_slots as _get_nalog_ru_time_slots return _get_nalog_ru_time_slots(person_data, company_data, internal_ifns_number, internal_ifns_service, logger) def book_ifns(person_data, company_data, internal_ifns_number, internal_ifns_service, dt, logger): from services.ifns.ifns_manager import book_ifns as _book_ifns return _book_ifns(person_data, company_data, internal_ifns_number, internal_ifns_service, dt, logger) def get_registration_ifns(service_nalog_ru_url, address_ifns=None): from services.ifns.ifns_manager import get_registration_ifns as _get_registration_ifns return _get_registration_ifns(service_nalog_ru_url, address_ifns=address_ifns) def get_ifns_registrations(name, company_type='ooo', date_from=None, date_to=None, service=None, ifns=None, service_nalog_ru_url=None, logger=None): from services.ifns.ifns_manager import get_ifns_registrations as _get_ifns_registrations return _get_ifns_registrations(name, company_type=company_type, date_from=date_from, date_to=date_to, service=service, ifns=ifns, service_nalog_ru_url=service_nalog_ru_url, logger=logger) def check_car_policy(policy_series, policy_number, timeout=20.0): from services.car_assurance.integration import check_car_policy as _check_car_policy return _check_car_policy(policy_series, policy_number, timeout=timeout)
[ 9, 11, 12, 13, 14 ]
1,356
a8ae59bb525c52ef852655f0ef1e32d96c8914d6
<mask token> class ReloadModelHandler(BaseHandler): def __init__(self, application, request, **kwargs): super(ReloadModelHandler, self).__init__(application, request, **kwargs ) <mask token>
<mask token> class ReloadModelHandler(BaseHandler): def __init__(self, application, request, **kwargs): super(ReloadModelHandler, self).__init__(application, request, **kwargs ) def do_action(self): model_name = self.get_argument('modelname', None) if model_name is None: for model_name in os.listdir(model_path): if model_name.find('.model') == -1: continue model = read_model(os.path.join(model_path, model_name)) options.models[model_name] = model self.set_result(result={'message': 'server has reload all models'}) else: model = read_model(os.path.join(model_path, model_name)) options.models[model_name] = model self.set_result(result={'message': 'server has reload {model}'. format(model=model_name)})
<mask token> module_path = os.path.abspath(os.path.join(os.curdir)) model_path = os.path.join(module_path, 'model') class ReloadModelHandler(BaseHandler): def __init__(self, application, request, **kwargs): super(ReloadModelHandler, self).__init__(application, request, **kwargs ) def do_action(self): model_name = self.get_argument('modelname', None) if model_name is None: for model_name in os.listdir(model_path): if model_name.find('.model') == -1: continue model = read_model(os.path.join(model_path, model_name)) options.models[model_name] = model self.set_result(result={'message': 'server has reload all models'}) else: model = read_model(os.path.join(model_path, model_name)) options.models[model_name] = model self.set_result(result={'message': 'server has reload {model}'. format(model=model_name)})
from src.handler.base.base_handler import BaseHandler from src.utils.tools import read_model from tornado.options import options import os module_path = os.path.abspath(os.path.join(os.curdir)) model_path = os.path.join(module_path, 'model') class ReloadModelHandler(BaseHandler): def __init__(self, application, request, **kwargs): super(ReloadModelHandler, self).__init__(application, request, **kwargs ) def do_action(self): model_name = self.get_argument('modelname', None) if model_name is None: for model_name in os.listdir(model_path): if model_name.find('.model') == -1: continue model = read_model(os.path.join(model_path, model_name)) options.models[model_name] = model self.set_result(result={'message': 'server has reload all models'}) else: model = read_model(os.path.join(model_path, model_name)) options.models[model_name] = model self.set_result(result={'message': 'server has reload {model}'. format(model=model_name)})
# -*- coding: utf-8 -*- # @Time : 2019/3/5 上午9:55 # @Author : yidxue from src.handler.base.base_handler import BaseHandler from src.utils.tools import read_model from tornado.options import options import os module_path = os.path.abspath(os.path.join(os.curdir)) model_path = os.path.join(module_path, 'model') class ReloadModelHandler(BaseHandler): def __init__(self, application, request, **kwargs): super(ReloadModelHandler, self).__init__(application, request, **kwargs) def do_action(self): model_name = self.get_argument('modelname', None) if model_name is None: for model_name in os.listdir(model_path): if model_name.find(".model") == -1: continue model = read_model(os.path.join(model_path, model_name)) options.models[model_name] = model self.set_result(result={"message": "server has reload all models"}) else: model = read_model(os.path.join(model_path, model_name)) options.models[model_name] = model self.set_result(result={"message": "server has reload {model}".format(model=model_name)})
[ 2, 3, 4, 5, 6 ]
1,357
9ed674513bebe65ece538e9ce2b3945bb0c532cc
<mask token> class GoogleTTS: <mask token> def check_google_connection(self): try: message = 'Hallo' filename = 'temp_voice.mp3' tts = gTTS(text=message, lang='de') tts.save(filename) os.remove(filename) return True except Exception as err: logging.error('Error during Google TTS testing {}'.format(err)) return False class SapiTTS: def __init__(self): self.engine = pyttsx3.init('sapi5') rate = self.engine.getProperty('rate') self.engine.setProperty('rate', rate - 20) self.engine.setProperty('volume', 0.9) def utter_voice_message(self, message): try: self.engine.say(message) self.engine.runAndWait() return 'TTS finished' except Exception as err: logging.error('Error during TTS {}'.format(err)) return None <mask token>
<mask token> class GoogleTTS: def utter_voice_message(self, message): try: filename = 'temp_voice.mp3' tts = gTTS(text=message, lang='de', slow=False) tts.save(filename) media = pyglet.media.load(filename, streaming=True) media.play() time.sleep(media.duration) return 'TTS finished' except Exception as err: logging.error('Error during TTS {}'.format(err)) return None def check_google_connection(self): try: message = 'Hallo' filename = 'temp_voice.mp3' tts = gTTS(text=message, lang='de') tts.save(filename) os.remove(filename) return True except Exception as err: logging.error('Error during Google TTS testing {}'.format(err)) return False class SapiTTS: def __init__(self): self.engine = pyttsx3.init('sapi5') rate = self.engine.getProperty('rate') self.engine.setProperty('rate', rate - 20) self.engine.setProperty('volume', 0.9) def utter_voice_message(self, message): try: self.engine.say(message) self.engine.runAndWait() return 'TTS finished' except Exception as err: logging.error('Error during TTS {}'.format(err)) return None if __name__ == '__main__': gtts = GoogleTTS() gtts.utter_voice_message('Guten Tag, mein Name ist Carina')
<mask token> ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) class GoogleTTS: def utter_voice_message(self, message): try: filename = 'temp_voice.mp3' tts = gTTS(text=message, lang='de', slow=False) tts.save(filename) media = pyglet.media.load(filename, streaming=True) media.play() time.sleep(media.duration) return 'TTS finished' except Exception as err: logging.error('Error during TTS {}'.format(err)) return None def check_google_connection(self): try: message = 'Hallo' filename = 'temp_voice.mp3' tts = gTTS(text=message, lang='de') tts.save(filename) os.remove(filename) return True except Exception as err: logging.error('Error during Google TTS testing {}'.format(err)) return False class SapiTTS: def __init__(self): self.engine = pyttsx3.init('sapi5') rate = self.engine.getProperty('rate') self.engine.setProperty('rate', rate - 20) self.engine.setProperty('volume', 0.9) def utter_voice_message(self, message): try: self.engine.say(message) self.engine.runAndWait() return 'TTS finished' except Exception as err: logging.error('Error during TTS {}'.format(err)) return None if __name__ == '__main__': gtts = GoogleTTS() gtts.utter_voice_message('Guten Tag, mein Name ist Carina')
import pyttsx3 import pyglet import time import logging import os from gtts import gTTS ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) class GoogleTTS: def utter_voice_message(self, message): try: filename = 'temp_voice.mp3' tts = gTTS(text=message, lang='de', slow=False) tts.save(filename) media = pyglet.media.load(filename, streaming=True) media.play() time.sleep(media.duration) return 'TTS finished' except Exception as err: logging.error('Error during TTS {}'.format(err)) return None def check_google_connection(self): try: message = 'Hallo' filename = 'temp_voice.mp3' tts = gTTS(text=message, lang='de') tts.save(filename) os.remove(filename) return True except Exception as err: logging.error('Error during Google TTS testing {}'.format(err)) return False class SapiTTS: def __init__(self): self.engine = pyttsx3.init('sapi5') rate = self.engine.getProperty('rate') self.engine.setProperty('rate', rate - 20) self.engine.setProperty('volume', 0.9) def utter_voice_message(self, message): try: self.engine.say(message) self.engine.runAndWait() return 'TTS finished' except Exception as err: logging.error('Error during TTS {}'.format(err)) return None if __name__ == '__main__': gtts = GoogleTTS() gtts.utter_voice_message('Guten Tag, mein Name ist Carina')
import pyttsx3 import pyglet import time import logging import os from gtts import gTTS ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) class GoogleTTS: def utter_voice_message(self, message): try: # Google Text-to-Speech API - needs internet connectivity #filename = ROOT_DIR + '\\temp_voice.mp3' filename = 'temp_voice.mp3' tts = gTTS(text=message, lang='de', slow=False) tts.save(filename) media = pyglet.media.load(filename, streaming=True) media.play() time.sleep(media.duration) #os.remove(filename) return 'TTS finished' except Exception as err: logging.error("Error during TTS {}".format(err)) return None def check_google_connection(self): try: message = "Hallo" filename = 'temp_voice.mp3' tts = gTTS(text=message, lang='de') tts.save(filename) os.remove(filename) return True except Exception as err: logging.error("Error during Google TTS testing {}".format(err)) return False class SapiTTS: def __init__(self): # Sapi Microsoft speech engine - works offline self.engine = pyttsx3.init('sapi5') # use SAPI5 engine rate = self.engine.getProperty('rate') self.engine.setProperty('rate', rate - 20) # words per minute self.engine.setProperty('volume', 0.9) def utter_voice_message(self, message): try: self.engine.say(message) self.engine.runAndWait() return 'TTS finished' except Exception as err: logging.error("Error during TTS {}".format(err)) return None if __name__ == '__main__': gtts = GoogleTTS() gtts.utter_voice_message('Guten Tag, mein Name ist Carina')
[ 5, 7, 8, 9, 10 ]
1,358
3496216de9f6b7d9d3db69eb4d8f8c0fdcd5123c
<mask token> class RSAGraphModel(SimpleLasagneModel): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> class RSALearner(NeuralLearner): def __init__(self, id=None): self.get_options() self.init_submodels(id) super(RSALearner, self).__init__(id=id) color_resolution = (self.options.listener_color_resolution if self. options.listener else self.options.speaker_color_resolution) self.seq_vec = SequenceVectorizer() self.color_vec = BucketsVectorizer(color_resolution, hsv=self. options.speaker_hsv) def init_submodels(self, id=None): id_tag = id + '/' if id else '' self.get_options() listener_classes = self.options.listener_class speaker_classes = self.options.speaker_class if len(listener_classes) != self.options.rsa_listeners: assert len(listener_classes) == 1, len(listener_classes) listener_classes = listener_classes * self.options.rsa_listeners if len(speaker_classes) != self.options.rsa_speakers: assert len(speaker_classes) == 1, len(speaker_classes) speaker_classes = speaker_classes * self.options.rsa_speakers self.listeners = [LISTENERS[listener_classes[j]](id='%sL%d' % ( id_tag, j)) for j in range(self.options.rsa_listeners)] self.speakers = [SPEAKERS[speaker_classes[k]](id='%sS%d' % (id_tag, k)) for k in range(self.options.rsa_speakers)] agents = self.listeners if self.options.listener else self.speakers self.eval_agent = agents[self.options.eval_agent] def predict(self, eval_instances, verbosity=0): return self.eval_agent.predict(eval_instances, verbosity=verbosity) def score(self, eval_instances, verbosity=0): return self.eval_agent.score(eval_instances, verbosity=verbosity) def predict_and_score(self, eval_instances, verbosity=0): return self.eval_agent.predict_and_score(eval_instances, verbosity= verbosity) def on_iter_end(self, step, writer): for agent in (self.speakers + self.listeners): agent.on_iter_end(step, writer) def sample_joint_smooth(self, num_samples): return self.eval_agent.sample_joint_smooth(num_samples) def _data_to_arrays(self, training_instances, init_vectorizer=False, test=False, inverted=False): input_arrays = [] target_arrays = [] if self.options.listener != inverted: listener_dataset = training_instances speaker_dataset = [inst.inverted() for inst in training_instances] else: listener_dataset = [inst.inverted() for inst in training_instances] speaker_dataset = training_instances for listener in self.listeners: if not test: listener.dataset = listener_dataset inputs, targets = listener._data_to_arrays(listener_dataset, test=test, init_vectorizer=init_vectorizer) input_arrays.extend(inputs) target_arrays.extend(targets) for speaker in self.speakers: if not test: speaker.dataset = speaker_dataset inputs, targets = speaker._data_to_arrays(speaker_dataset, test =test, init_vectorizer=init_vectorizer) input_arrays.extend(inputs) target_arrays.extend(targets) return input_arrays, target_arrays def _build_model(self): for agent in (self.listeners + self.speakers): agent._build_model(RSASubModel) self.build_aggregate_model() def train_priors(self, training_instances, listener_data=False): prior_class = LISTENER_PRIORS[self.options.listener_prior ] if self.options.listener else SPEAKER_PRIORS[self.options. speaker_prior] self.prior_emp = prior_class() self.prior_smooth = prior_class() self.prior_emp.train(training_instances, listener_data=listener_data) self.prior_smooth.train(training_instances, listener_data=listener_data ) for agent in (self.listeners + self.speakers): agent.train_priors(training_instances, listener_data=listener_data) def build_aggregate_model(self): self.model = RSAGraphModel(self.listeners, self.speakers, self. eval_agent) self.prior_emp = AggregatePrior(self.listeners, self.speakers, 'prior_emp') self.prior_smooth = AggregatePrior(self.listeners, self.speakers, 'prior_smooth') def __getstate__(self): return self.seq_vec, self.color_vec, [agent.__getstate__() for agent in self.listeners + self.speakers] def __setstate__(self, state): self.seq_vec, self.color_vec, submodels = state self.init_submodels() for agent, substate in zip(self.listeners + self.speakers, submodels): agent.unpickle(substate, RSASubModel) self.build_aggregate_model() <mask token>
<mask token> class RSAGraphModel(SimpleLasagneModel): <mask token> def params(self): result = [] for listener in self.listeners: result.extend(listener.params()) for speaker in self.speakers: result.extend(speaker.params()) return result def get_train_loss(self, target_vars, params): for agent in self.speakers: agent.model.build_sample_vars(len(self.listeners)) for agent in self.listeners: agent.model.build_sample_vars(len(self.speakers)) monitored = self.get_est_loss(layer_by_layer=self.options. layer_by_layer) if self.options.grad_of_est: est_grad, monitored_grads = self.get_grad_of_est(monitored, params) else: est_grad, monitored_grads = self.get_est_grad(params, layer_by_layer=self.options.layer_by_layer) monitored.update(monitored_grads) synth_vars = [v for agent in self.listeners + self.speakers for v in agent.model.all_synth_vars] return monitored, est_grad, synth_vars def get_est_loss(self, layer_by_layer=False): def kl(agent_p, agent_q, other_idx): if layer_by_layer: return agent_q.loss_out(agent_q.model.sample_inputs_others[ other_idx], agent_q.model.sample_target_others[other_idx] ).mean() else: return (agent_p.log_joint_emp(agent_p.model. sample_inputs_self, agent_p.model.sample_target_self) - agent_q.log_joint_smooth(agent_q.model. sample_inputs_others[other_idx], agent_q.model. sample_target_others[other_idx])).mean() id_tag_log = self.id + ': ' if self.id else '' id_tag = self.id + '/' if self.id else '' if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(dataset || L)') alpha_losses = [('%salpha_%s' % (id_tag, listener.id), alpha * listener.loss_out().mean()) for alpha, listener in zip(self. options.rsa_alpha, self.listeners)] if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(dataset || S)') beta_losses = [('%sbeta_%s' % (id_tag, speaker.id), beta * speaker. loss_out().mean()) for beta, speaker in zip(self.options. rsa_beta, self.speakers)] if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(L || S)') mu_losses = [('%smu_%s_%s' % (id_tag, listener.id, speaker.id), mu * kl(listener, speaker, j)) for mu, (listener, j, speaker, k) in zip(self.options.rsa_mu, self.dyads())] if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(S || L)') nu_losses = [('%snu_%s_%s' % (id_tag, speaker.id, listener.id), nu * kl(speaker, listener, k)) for nu, (listener, j, speaker, k) in zip(self.options.rsa_nu, self.dyads())] all_sublosses = alpha_losses + beta_losses + mu_losses + nu_losses est_loss = t_sum(loss for tag, loss in all_sublosses) monitored = OrderedDict([('loss', est_loss)]) if self.options.monitor_sublosses: monitored.update(all_sublosses) if self.options.monitor_activations: for agent in (self.listeners + self.speakers): for name, layer in get_named_layers(agent.l_out).iteritems(): monitored['activation/' + name] = get_output(layer) return monitored <mask token> <mask token> def dyads(self): for j, listener in enumerate(self.listeners): for k, speaker in enumerate(self.speakers): yield listener, j, speaker, k def minibatches(self, inputs, targets, batch_size, shuffle=False): agents = self.listeners + self.speakers batches = super(RSAGraphModel, self).minibatches(inputs, targets, batch_size, shuffle=shuffle) for dataset_inputs, dataset_targets, _synth in batches: inputs_batch = [] targets_batch = [] synth_batch = [] filtered = self.filter_arrays(dataset_inputs, dataset_targets) for agent, (agent_inputs, agent_targets) in zip(agents, filtered): inputs_batch.extend(agent_inputs) targets_batch.extend(agent_targets) input_types = [a.shape for a in agent_inputs] target_types = [a.shape for a in agent_targets] if self.options.verbosity >= 8: print('%s: %s -> %s' % (agent.id, input_types, target_types)) listener_samples = [(listener.sample_joint_smooth(self.options. listener_samples) if self.options.listener_sample_smoothed else listener.sample_joint_emp(self.options.listener_samples)) for listener in self.listeners] speaker_samples = [(speaker.sample_joint_smooth(self.options. speaker_samples) if self.options.speaker_sample_smoothed else speaker.sample_joint_emp(self.options.listener_samples)) for speaker in self.speakers] for listener, samples in zip(self.listeners, listener_samples): arrays = listener.model.data_to_synth_arrays(listener, samples, speaker_samples) synth_batch.extend(arrays) synth_types = [a.shape for a in arrays] if self.options.verbosity >= 8: print('%s synth: %s' % (listener.id, synth_types)) for speaker, samples in zip(self.speakers, speaker_samples): arrays = speaker.model.data_to_synth_arrays(speaker, samples, listener_samples) synth_batch.extend(arrays) synth_types = [a.shape for a in arrays] if self.options.verbosity >= 8: print('%s synth: %s' % (speaker.id, synth_types)) yield inputs_batch, targets_batch, synth_batch def filter_arrays(self, inputs, targets): result = [] input_idx = 0 for agent, target in zip(self.listeners + self.speakers, targets): assert input_idx + len(agent.model.input_vars) <= len(inputs), ( input_idx, len(agent.model.input_vars), len(inputs)) agent_inputs = inputs[input_idx:input_idx + len(agent.model. input_vars)] agent_targets = [target] result.append((agent_inputs, agent_targets)) input_idx += len(agent.model.input_vars) return result class RSALearner(NeuralLearner): def __init__(self, id=None): self.get_options() self.init_submodels(id) super(RSALearner, self).__init__(id=id) color_resolution = (self.options.listener_color_resolution if self. options.listener else self.options.speaker_color_resolution) self.seq_vec = SequenceVectorizer() self.color_vec = BucketsVectorizer(color_resolution, hsv=self. options.speaker_hsv) def init_submodels(self, id=None): id_tag = id + '/' if id else '' self.get_options() listener_classes = self.options.listener_class speaker_classes = self.options.speaker_class if len(listener_classes) != self.options.rsa_listeners: assert len(listener_classes) == 1, len(listener_classes) listener_classes = listener_classes * self.options.rsa_listeners if len(speaker_classes) != self.options.rsa_speakers: assert len(speaker_classes) == 1, len(speaker_classes) speaker_classes = speaker_classes * self.options.rsa_speakers self.listeners = [LISTENERS[listener_classes[j]](id='%sL%d' % ( id_tag, j)) for j in range(self.options.rsa_listeners)] self.speakers = [SPEAKERS[speaker_classes[k]](id='%sS%d' % (id_tag, k)) for k in range(self.options.rsa_speakers)] agents = self.listeners if self.options.listener else self.speakers self.eval_agent = agents[self.options.eval_agent] def predict(self, eval_instances, verbosity=0): return self.eval_agent.predict(eval_instances, verbosity=verbosity) def score(self, eval_instances, verbosity=0): return self.eval_agent.score(eval_instances, verbosity=verbosity) def predict_and_score(self, eval_instances, verbosity=0): return self.eval_agent.predict_and_score(eval_instances, verbosity= verbosity) def on_iter_end(self, step, writer): for agent in (self.speakers + self.listeners): agent.on_iter_end(step, writer) def sample_joint_smooth(self, num_samples): return self.eval_agent.sample_joint_smooth(num_samples) def _data_to_arrays(self, training_instances, init_vectorizer=False, test=False, inverted=False): input_arrays = [] target_arrays = [] if self.options.listener != inverted: listener_dataset = training_instances speaker_dataset = [inst.inverted() for inst in training_instances] else: listener_dataset = [inst.inverted() for inst in training_instances] speaker_dataset = training_instances for listener in self.listeners: if not test: listener.dataset = listener_dataset inputs, targets = listener._data_to_arrays(listener_dataset, test=test, init_vectorizer=init_vectorizer) input_arrays.extend(inputs) target_arrays.extend(targets) for speaker in self.speakers: if not test: speaker.dataset = speaker_dataset inputs, targets = speaker._data_to_arrays(speaker_dataset, test =test, init_vectorizer=init_vectorizer) input_arrays.extend(inputs) target_arrays.extend(targets) return input_arrays, target_arrays def _build_model(self): for agent in (self.listeners + self.speakers): agent._build_model(RSASubModel) self.build_aggregate_model() def train_priors(self, training_instances, listener_data=False): prior_class = LISTENER_PRIORS[self.options.listener_prior ] if self.options.listener else SPEAKER_PRIORS[self.options. speaker_prior] self.prior_emp = prior_class() self.prior_smooth = prior_class() self.prior_emp.train(training_instances, listener_data=listener_data) self.prior_smooth.train(training_instances, listener_data=listener_data ) for agent in (self.listeners + self.speakers): agent.train_priors(training_instances, listener_data=listener_data) def build_aggregate_model(self): self.model = RSAGraphModel(self.listeners, self.speakers, self. eval_agent) self.prior_emp = AggregatePrior(self.listeners, self.speakers, 'prior_emp') self.prior_smooth = AggregatePrior(self.listeners, self.speakers, 'prior_smooth') def __getstate__(self): return self.seq_vec, self.color_vec, [agent.__getstate__() for agent in self.listeners + self.speakers] def __setstate__(self, state): self.seq_vec, self.color_vec, submodels = state self.init_submodels() for agent, substate in zip(self.listeners + self.speakers, submodels): agent.unpickle(substate, RSASubModel) self.build_aggregate_model() <mask token>
<mask token> class RSAGraphModel(SimpleLasagneModel): def __init__(self, listeners, speakers, eval_agent, id=None): self.get_options() self.listeners = listeners self.speakers = speakers self.eval_agent = eval_agent input_vars = [v for listener in listeners for v in listener.model. input_vars] + [v for speaker in speakers for v in speaker.model .input_vars] target_vars = [listener.model.target_var for listener in listeners] + [ speaker.model.target_var for speaker in speakers] super(RSAGraphModel, self).__init__(input_vars, target_vars, l_out= eval_agent.model.l_out, loss=None, optimizer=OPTIMIZERS[self. options.rsa_optimizer], learning_rate=self.options. rsa_learning_rate, id=id) def params(self): result = [] for listener in self.listeners: result.extend(listener.params()) for speaker in self.speakers: result.extend(speaker.params()) return result def get_train_loss(self, target_vars, params): for agent in self.speakers: agent.model.build_sample_vars(len(self.listeners)) for agent in self.listeners: agent.model.build_sample_vars(len(self.speakers)) monitored = self.get_est_loss(layer_by_layer=self.options. layer_by_layer) if self.options.grad_of_est: est_grad, monitored_grads = self.get_grad_of_est(monitored, params) else: est_grad, monitored_grads = self.get_est_grad(params, layer_by_layer=self.options.layer_by_layer) monitored.update(monitored_grads) synth_vars = [v for agent in self.listeners + self.speakers for v in agent.model.all_synth_vars] return monitored, est_grad, synth_vars def get_est_loss(self, layer_by_layer=False): def kl(agent_p, agent_q, other_idx): if layer_by_layer: return agent_q.loss_out(agent_q.model.sample_inputs_others[ other_idx], agent_q.model.sample_target_others[other_idx] ).mean() else: return (agent_p.log_joint_emp(agent_p.model. sample_inputs_self, agent_p.model.sample_target_self) - agent_q.log_joint_smooth(agent_q.model. sample_inputs_others[other_idx], agent_q.model. sample_target_others[other_idx])).mean() id_tag_log = self.id + ': ' if self.id else '' id_tag = self.id + '/' if self.id else '' if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(dataset || L)') alpha_losses = [('%salpha_%s' % (id_tag, listener.id), alpha * listener.loss_out().mean()) for alpha, listener in zip(self. options.rsa_alpha, self.listeners)] if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(dataset || S)') beta_losses = [('%sbeta_%s' % (id_tag, speaker.id), beta * speaker. loss_out().mean()) for beta, speaker in zip(self.options. rsa_beta, self.speakers)] if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(L || S)') mu_losses = [('%smu_%s_%s' % (id_tag, listener.id, speaker.id), mu * kl(listener, speaker, j)) for mu, (listener, j, speaker, k) in zip(self.options.rsa_mu, self.dyads())] if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(S || L)') nu_losses = [('%snu_%s_%s' % (id_tag, speaker.id, listener.id), nu * kl(speaker, listener, k)) for nu, (listener, j, speaker, k) in zip(self.options.rsa_nu, self.dyads())] all_sublosses = alpha_losses + beta_losses + mu_losses + nu_losses est_loss = t_sum(loss for tag, loss in all_sublosses) monitored = OrderedDict([('loss', est_loss)]) if self.options.monitor_sublosses: monitored.update(all_sublosses) if self.options.monitor_activations: for agent in (self.listeners + self.speakers): for name, layer in get_named_layers(agent.l_out).iteritems(): monitored['activation/' + name] = get_output(layer) return monitored <mask token> def get_grad_of_est(self, monitored, params): grad_of_est = T.grad(monitored['loss'], params) monitored_grads = OrderedDict() if self.options.monitor_grads: monitored_grads.update([('grad/' + param.name, grad) for param, grad in zip(params, grad_of_est)]) if self.options.monitor_subgrads: monitored_grads.update([(tag + '/' + param.name, grad) for tag, subloss in monitored.iteritems() if tag != 'loss' for param, grad in zip(params, T.grad(subloss, params, disconnected_inputs='ignore'))]) return grad_of_est, monitored_grads def dyads(self): for j, listener in enumerate(self.listeners): for k, speaker in enumerate(self.speakers): yield listener, j, speaker, k def minibatches(self, inputs, targets, batch_size, shuffle=False): agents = self.listeners + self.speakers batches = super(RSAGraphModel, self).minibatches(inputs, targets, batch_size, shuffle=shuffle) for dataset_inputs, dataset_targets, _synth in batches: inputs_batch = [] targets_batch = [] synth_batch = [] filtered = self.filter_arrays(dataset_inputs, dataset_targets) for agent, (agent_inputs, agent_targets) in zip(agents, filtered): inputs_batch.extend(agent_inputs) targets_batch.extend(agent_targets) input_types = [a.shape for a in agent_inputs] target_types = [a.shape for a in agent_targets] if self.options.verbosity >= 8: print('%s: %s -> %s' % (agent.id, input_types, target_types)) listener_samples = [(listener.sample_joint_smooth(self.options. listener_samples) if self.options.listener_sample_smoothed else listener.sample_joint_emp(self.options.listener_samples)) for listener in self.listeners] speaker_samples = [(speaker.sample_joint_smooth(self.options. speaker_samples) if self.options.speaker_sample_smoothed else speaker.sample_joint_emp(self.options.listener_samples)) for speaker in self.speakers] for listener, samples in zip(self.listeners, listener_samples): arrays = listener.model.data_to_synth_arrays(listener, samples, speaker_samples) synth_batch.extend(arrays) synth_types = [a.shape for a in arrays] if self.options.verbosity >= 8: print('%s synth: %s' % (listener.id, synth_types)) for speaker, samples in zip(self.speakers, speaker_samples): arrays = speaker.model.data_to_synth_arrays(speaker, samples, listener_samples) synth_batch.extend(arrays) synth_types = [a.shape for a in arrays] if self.options.verbosity >= 8: print('%s synth: %s' % (speaker.id, synth_types)) yield inputs_batch, targets_batch, synth_batch def filter_arrays(self, inputs, targets): result = [] input_idx = 0 for agent, target in zip(self.listeners + self.speakers, targets): assert input_idx + len(agent.model.input_vars) <= len(inputs), ( input_idx, len(agent.model.input_vars), len(inputs)) agent_inputs = inputs[input_idx:input_idx + len(agent.model. input_vars)] agent_targets = [target] result.append((agent_inputs, agent_targets)) input_idx += len(agent.model.input_vars) return result class RSALearner(NeuralLearner): def __init__(self, id=None): self.get_options() self.init_submodels(id) super(RSALearner, self).__init__(id=id) color_resolution = (self.options.listener_color_resolution if self. options.listener else self.options.speaker_color_resolution) self.seq_vec = SequenceVectorizer() self.color_vec = BucketsVectorizer(color_resolution, hsv=self. options.speaker_hsv) def init_submodels(self, id=None): id_tag = id + '/' if id else '' self.get_options() listener_classes = self.options.listener_class speaker_classes = self.options.speaker_class if len(listener_classes) != self.options.rsa_listeners: assert len(listener_classes) == 1, len(listener_classes) listener_classes = listener_classes * self.options.rsa_listeners if len(speaker_classes) != self.options.rsa_speakers: assert len(speaker_classes) == 1, len(speaker_classes) speaker_classes = speaker_classes * self.options.rsa_speakers self.listeners = [LISTENERS[listener_classes[j]](id='%sL%d' % ( id_tag, j)) for j in range(self.options.rsa_listeners)] self.speakers = [SPEAKERS[speaker_classes[k]](id='%sS%d' % (id_tag, k)) for k in range(self.options.rsa_speakers)] agents = self.listeners if self.options.listener else self.speakers self.eval_agent = agents[self.options.eval_agent] def predict(self, eval_instances, verbosity=0): return self.eval_agent.predict(eval_instances, verbosity=verbosity) def score(self, eval_instances, verbosity=0): return self.eval_agent.score(eval_instances, verbosity=verbosity) def predict_and_score(self, eval_instances, verbosity=0): return self.eval_agent.predict_and_score(eval_instances, verbosity= verbosity) def on_iter_end(self, step, writer): for agent in (self.speakers + self.listeners): agent.on_iter_end(step, writer) def sample_joint_smooth(self, num_samples): return self.eval_agent.sample_joint_smooth(num_samples) def _data_to_arrays(self, training_instances, init_vectorizer=False, test=False, inverted=False): input_arrays = [] target_arrays = [] if self.options.listener != inverted: listener_dataset = training_instances speaker_dataset = [inst.inverted() for inst in training_instances] else: listener_dataset = [inst.inverted() for inst in training_instances] speaker_dataset = training_instances for listener in self.listeners: if not test: listener.dataset = listener_dataset inputs, targets = listener._data_to_arrays(listener_dataset, test=test, init_vectorizer=init_vectorizer) input_arrays.extend(inputs) target_arrays.extend(targets) for speaker in self.speakers: if not test: speaker.dataset = speaker_dataset inputs, targets = speaker._data_to_arrays(speaker_dataset, test =test, init_vectorizer=init_vectorizer) input_arrays.extend(inputs) target_arrays.extend(targets) return input_arrays, target_arrays def _build_model(self): for agent in (self.listeners + self.speakers): agent._build_model(RSASubModel) self.build_aggregate_model() def train_priors(self, training_instances, listener_data=False): prior_class = LISTENER_PRIORS[self.options.listener_prior ] if self.options.listener else SPEAKER_PRIORS[self.options. speaker_prior] self.prior_emp = prior_class() self.prior_smooth = prior_class() self.prior_emp.train(training_instances, listener_data=listener_data) self.prior_smooth.train(training_instances, listener_data=listener_data ) for agent in (self.listeners + self.speakers): agent.train_priors(training_instances, listener_data=listener_data) def build_aggregate_model(self): self.model = RSAGraphModel(self.listeners, self.speakers, self. eval_agent) self.prior_emp = AggregatePrior(self.listeners, self.speakers, 'prior_emp') self.prior_smooth = AggregatePrior(self.listeners, self.speakers, 'prior_smooth') def __getstate__(self): return self.seq_vec, self.color_vec, [agent.__getstate__() for agent in self.listeners + self.speakers] def __setstate__(self, state): self.seq_vec, self.color_vec, submodels = state self.init_submodels() for agent, substate in zip(self.listeners + self.speakers, submodels): agent.unpickle(substate, RSASubModel) self.build_aggregate_model() <mask token>
<mask token> parser = config.get_options_parser() parser.add_argument('--rsa_listeners', type=int, default=1, help= 'Number of listeners to use in RSA cooperative nets graph') parser.add_argument('--rsa_speakers', type=int, default=1, help= 'Number of speakers to use in RSA cooperative nets graph') parser.add_argument('--listener_class', default=['Listener'], choices= LISTENERS.keys(), nargs='+', help= 'The name of the listener model to use in the RSA network.') parser.add_argument('--speaker_class', default=['Speaker'], choices= SPEAKERS.keys(), nargs='+', help= 'The name of the speaker model to use in the RSA network.') parser.add_argument('--eval_agent', type=int, default=0, help= 'Index of the agent (listener/speaker) to use as the primary object of evaluation. Whether this agent is a listener or speaker will be inferred from the --listener flag.' ) parser.add_argument('--rsa_optimizer', choices=OPTIMIZERS.keys(), default= 'rmsprop', help= 'The optimization (update) algorithm to use for RSA training.') parser.add_argument('--rsa_learning_rate', type=float, default=0.1, help= 'The learning rate to use for RSA training.') parser.add_argument('--rsa_alpha', type=float, nargs='*', default=[1.0], help= 'Weights for the log-likelihood of the dataset according to the listeners. Provide as many values as there are listeners.' ) parser.add_argument('--rsa_beta', type=float, nargs='*', default=[1.0], help= 'Weights for the log-likelihood of the dataset according to the speakers. Provide as many values as there are speakers.' ) parser.add_argument('--rsa_mu', type=float, nargs='*', default=[1.0], help= 'Weights for KL(L_j||S_k). Provide values to fill a rsa_listeners x rsa_speakers matrix, in row-major order (i.e. all speakers for first listener, then all speakers for second listener, etc.).' ) parser.add_argument('--rsa_nu', type=float, nargs='*', default=[1.0], help= 'Weights for KL(S_k||L_j). Provide values to fill a rsa_listeners x rsa_speakers matrix, in row-major order (i.e. all speakers for first listener, then all speakers for second listener, etc.).' ) parser.add_argument('--listener_samples', type=int, default=128, help= 'Number of samples to draw from the listener per minibatch.') parser.add_argument('--speaker_samples', type=int, default=128, help= 'Number of samples to draw from the speaker per minibatch.') parser.add_argument('--monitor_sublosses', type=config.boolean, default= False, help= 'If `True`, return sub-losses for monitoring and write them to the TensorBoard events file. This will likely increase compilation time.' ) parser.add_argument('--monitor_subgrads', type=config.boolean, default= False, help= 'If `True`, return sub-gradients for monitoring and write them to the TensorBoard events file. This will likely increase compilation time.' ) parser.add_argument('--grad_of_est', type=config.boolean, default=False, help= 'If `True`, optimize using the gradient of the estimated loss; otherwise, use the manually-derived estimate of the gradient of the true loss.' ) parser.add_argument('--layer_by_layer', type=config.boolean, default=False, help= 'If `True`, train RSA agents layer-by-layer (only use the log-likelihood sub-gradients, equivalent to training each agent on data generated from the other agents); otherwise, use the gradient of the full RSA objective.' ) parser.add_argument('--listener_sample_smoothed', type=config.boolean, default=False, help= 'If `True`, take samples from the smoothed utterance prior; otherwise, sample from the empirical utterance prior.' ) parser.add_argument('--speaker_sample_smoothed', type=config.boolean, default=False, help= 'If `True`, take samples from the smoothed world prior; otherwise, sample from the empirical world prior.' ) class AggregatePrior(object): def __init__(self, listeners, speakers, prior_name='prior_emp'): self.listeners = listeners self.speakers = speakers self.prior_name = prior_name def train(self, training_instances, listener=False): for agent in self.listeners: getattr(agent, self.prior_name).train(training_instances, listener=listener) for agent in self.speakers: getattr(agent, self.prior_name).train(training_instances, listener=listener) def apply(self, input_vars): assert False, "AggregatePrior.apply shouldn't be called; only individual model priors are used in RSA coop nets model" class RSASubModel(SimpleLasagneModel): """ A SimpleLasagneModel for a subcomponent of an RSA graph. """ def __init__(self, input_vars, target_vars, l_out, loss, optimizer, learning_rate=0.001, id=None): super(RSASubModel, self).__init__(input_vars, target_vars, l_out, loss, optimizer, learning_rate=learning_rate, id=id) if len(target_vars) != 1: raise ValueError( 'target_vars should be a sequence of length 1, instead got %s' % (target_vars,)) self.target_var = target_vars[0] def build_sample_vars(self, num_other_agents): self.sample_inputs_self = [v.type('%s_sample_self' % (v.name,)) for v in self.input_vars] self.sample_inputs_others = [[v.type('%s_sample_other%d' % (v.name, i)) for v in self.input_vars] for i in range(num_other_agents)] t = self.target_var self.sample_target_self = t.type('%s_sample_self' % (t.name,)) self.sample_target_others = [t.type('%s_sample_other%d' % (t.name, i)) for i in range(num_other_agents)] self.all_synth_vars = self.sample_inputs_self + [self. sample_target_self] + [v for o_inputs, o_target in zip(self. sample_inputs_others, self.sample_target_others) for v in o_inputs + [o_target]] def data_to_synth_arrays(self, agent, samples_self, samples_others): def flatten(arrays): inputs, targets = arrays return inputs + targets return [arr for i, samples in enumerate([samples_self] + samples_others) for arr in flatten(agent._data_to_arrays( samples, inverted=i != 0))] class RSAGraphModel(SimpleLasagneModel): def __init__(self, listeners, speakers, eval_agent, id=None): self.get_options() self.listeners = listeners self.speakers = speakers self.eval_agent = eval_agent input_vars = [v for listener in listeners for v in listener.model. input_vars] + [v for speaker in speakers for v in speaker.model .input_vars] target_vars = [listener.model.target_var for listener in listeners] + [ speaker.model.target_var for speaker in speakers] super(RSAGraphModel, self).__init__(input_vars, target_vars, l_out= eval_agent.model.l_out, loss=None, optimizer=OPTIMIZERS[self. options.rsa_optimizer], learning_rate=self.options. rsa_learning_rate, id=id) def params(self): result = [] for listener in self.listeners: result.extend(listener.params()) for speaker in self.speakers: result.extend(speaker.params()) return result def get_train_loss(self, target_vars, params): for agent in self.speakers: agent.model.build_sample_vars(len(self.listeners)) for agent in self.listeners: agent.model.build_sample_vars(len(self.speakers)) monitored = self.get_est_loss(layer_by_layer=self.options. layer_by_layer) if self.options.grad_of_est: est_grad, monitored_grads = self.get_grad_of_est(monitored, params) else: est_grad, monitored_grads = self.get_est_grad(params, layer_by_layer=self.options.layer_by_layer) monitored.update(monitored_grads) synth_vars = [v for agent in self.listeners + self.speakers for v in agent.model.all_synth_vars] return monitored, est_grad, synth_vars def get_est_loss(self, layer_by_layer=False): def kl(agent_p, agent_q, other_idx): if layer_by_layer: return agent_q.loss_out(agent_q.model.sample_inputs_others[ other_idx], agent_q.model.sample_target_others[other_idx] ).mean() else: return (agent_p.log_joint_emp(agent_p.model. sample_inputs_self, agent_p.model.sample_target_self) - agent_q.log_joint_smooth(agent_q.model. sample_inputs_others[other_idx], agent_q.model. sample_target_others[other_idx])).mean() id_tag_log = self.id + ': ' if self.id else '' id_tag = self.id + '/' if self.id else '' if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(dataset || L)') alpha_losses = [('%salpha_%s' % (id_tag, listener.id), alpha * listener.loss_out().mean()) for alpha, listener in zip(self. options.rsa_alpha, self.listeners)] if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(dataset || S)') beta_losses = [('%sbeta_%s' % (id_tag, speaker.id), beta * speaker. loss_out().mean()) for beta, speaker in zip(self.options. rsa_beta, self.speakers)] if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(L || S)') mu_losses = [('%smu_%s_%s' % (id_tag, listener.id, speaker.id), mu * kl(listener, speaker, j)) for mu, (listener, j, speaker, k) in zip(self.options.rsa_mu, self.dyads())] if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(S || L)') nu_losses = [('%snu_%s_%s' % (id_tag, speaker.id, listener.id), nu * kl(speaker, listener, k)) for nu, (listener, j, speaker, k) in zip(self.options.rsa_nu, self.dyads())] all_sublosses = alpha_losses + beta_losses + mu_losses + nu_losses est_loss = t_sum(loss for tag, loss in all_sublosses) monitored = OrderedDict([('loss', est_loss)]) if self.options.monitor_sublosses: monitored.update(all_sublosses) if self.options.monitor_activations: for agent in (self.listeners + self.speakers): for name, layer in get_named_layers(agent.l_out).iteritems(): monitored['activation/' + name] = get_output(layer) return monitored def get_est_grad(self, params, layer_by_layer=False): def mean_weighted_grad(weights, loss): return T.Lop(loss, params, weights / T.cast(weights.shape[0], 'float32'), disconnected_inputs='ignore') def mean_grad(loss): return T.grad(loss.mean(), params, disconnected_inputs='ignore') id_tag = self.id + ': ' if self.id else '' if self.options.verbosity >= 4: print(id_tag + 'grad: alpha') all_subgrads = [('grad_alpha/%s' % (listener.id,), mean_grad(alpha * listener.loss_out())) for alpha, listener in zip(self.options. rsa_alpha, self.listeners)] if self.options.verbosity >= 4: print(id_tag + 'grad: beta') all_subgrads.extend([('grad_beta/%s' % (speaker.id,), mean_grad( beta * speaker.loss_out())) for beta, speaker in zip(self. options.rsa_beta, self.speakers)]) if self.options.verbosity >= 4: print(id_tag + 'grad: nu co-training') all_subgrads.extend([('grad_nu_co/%s_%s' % (listener.id, speaker.id ), mean_grad(nu * listener.loss_out(listener.model. sample_inputs_others[k], listener.model.sample_target_others[k] ))) for nu, (listener, j, speaker, k) in zip(self.options. rsa_nu, self.dyads())]) if self.options.verbosity >= 4: print(id_tag + 'grad: mu co-training') all_subgrads.extend([('grad_mu_co/%s_%s' % (listener.id, speaker.id ), mean_grad(mu * speaker.loss_out(speaker.model. sample_inputs_others[j], speaker.model.sample_target_others[j]) )) for mu, (listener, j, speaker, k) in zip(self.options.rsa_mu, self.dyads())]) if not layer_by_layer: if self.options.verbosity >= 4: print(id_tag + 'grad: mu regularizer') all_subgrads.extend([('grad_mu_reg/%s_%s' % (listener.id, speaker.id), mean_weighted_grad(mu * (1 + listener. log_joint_emp(listener.model.sample_inputs_self, listener. model.sample_target_self) - speaker.log_joint_smooth( speaker.model.sample_inputs_others[j], speaker.model. sample_target_others[j])), listener.loss_out(listener.model .sample_inputs_self, listener.model.sample_target_self))) for mu, (listener, j, speaker, k) in zip(self.options.rsa_mu, self.dyads())]) if self.options.verbosity >= 4: print(id_tag + 'grad: nu regularizer') all_subgrads.extend([('grad_nu_reg/%s_%s' % (listener.id, speaker.id), mean_weighted_grad(nu * (1 + speaker. log_joint_emp(speaker.model.sample_inputs_self, speaker. model.sample_target_self) - listener.log_joint_smooth( listener.model.sample_inputs_others[k], listener.model. sample_target_others[k])), speaker.loss_out(speaker.model. sample_inputs_self, speaker.model.sample_target_self))) for nu, (listener, j, speaker, k) in zip(self.options.rsa_nu, self.dyads())]) est_grad = t_sum([grads for tag, grads in all_subgrads], nested=True) monitored = OrderedDict() if self.options.monitor_grads: monitored.update([('grad/' + param.name, grad) for param, grad in zip(params, est_grad)]) if self.options.monitor_subgrads: monitored.update([(tag + '/' + param.name, grad) for tag, grads in all_subgrads for param, grad in zip(params, grads)]) return est_grad, monitored def get_grad_of_est(self, monitored, params): grad_of_est = T.grad(monitored['loss'], params) monitored_grads = OrderedDict() if self.options.monitor_grads: monitored_grads.update([('grad/' + param.name, grad) for param, grad in zip(params, grad_of_est)]) if self.options.monitor_subgrads: monitored_grads.update([(tag + '/' + param.name, grad) for tag, subloss in monitored.iteritems() if tag != 'loss' for param, grad in zip(params, T.grad(subloss, params, disconnected_inputs='ignore'))]) return grad_of_est, monitored_grads def dyads(self): for j, listener in enumerate(self.listeners): for k, speaker in enumerate(self.speakers): yield listener, j, speaker, k def minibatches(self, inputs, targets, batch_size, shuffle=False): agents = self.listeners + self.speakers batches = super(RSAGraphModel, self).minibatches(inputs, targets, batch_size, shuffle=shuffle) for dataset_inputs, dataset_targets, _synth in batches: inputs_batch = [] targets_batch = [] synth_batch = [] filtered = self.filter_arrays(dataset_inputs, dataset_targets) for agent, (agent_inputs, agent_targets) in zip(agents, filtered): inputs_batch.extend(agent_inputs) targets_batch.extend(agent_targets) input_types = [a.shape for a in agent_inputs] target_types = [a.shape for a in agent_targets] if self.options.verbosity >= 8: print('%s: %s -> %s' % (agent.id, input_types, target_types)) listener_samples = [(listener.sample_joint_smooth(self.options. listener_samples) if self.options.listener_sample_smoothed else listener.sample_joint_emp(self.options.listener_samples)) for listener in self.listeners] speaker_samples = [(speaker.sample_joint_smooth(self.options. speaker_samples) if self.options.speaker_sample_smoothed else speaker.sample_joint_emp(self.options.listener_samples)) for speaker in self.speakers] for listener, samples in zip(self.listeners, listener_samples): arrays = listener.model.data_to_synth_arrays(listener, samples, speaker_samples) synth_batch.extend(arrays) synth_types = [a.shape for a in arrays] if self.options.verbosity >= 8: print('%s synth: %s' % (listener.id, synth_types)) for speaker, samples in zip(self.speakers, speaker_samples): arrays = speaker.model.data_to_synth_arrays(speaker, samples, listener_samples) synth_batch.extend(arrays) synth_types = [a.shape for a in arrays] if self.options.verbosity >= 8: print('%s synth: %s' % (speaker.id, synth_types)) yield inputs_batch, targets_batch, synth_batch def filter_arrays(self, inputs, targets): result = [] input_idx = 0 for agent, target in zip(self.listeners + self.speakers, targets): assert input_idx + len(agent.model.input_vars) <= len(inputs), ( input_idx, len(agent.model.input_vars), len(inputs)) agent_inputs = inputs[input_idx:input_idx + len(agent.model. input_vars)] agent_targets = [target] result.append((agent_inputs, agent_targets)) input_idx += len(agent.model.input_vars) return result class RSALearner(NeuralLearner): def __init__(self, id=None): self.get_options() self.init_submodels(id) super(RSALearner, self).__init__(id=id) color_resolution = (self.options.listener_color_resolution if self. options.listener else self.options.speaker_color_resolution) self.seq_vec = SequenceVectorizer() self.color_vec = BucketsVectorizer(color_resolution, hsv=self. options.speaker_hsv) def init_submodels(self, id=None): id_tag = id + '/' if id else '' self.get_options() listener_classes = self.options.listener_class speaker_classes = self.options.speaker_class if len(listener_classes) != self.options.rsa_listeners: assert len(listener_classes) == 1, len(listener_classes) listener_classes = listener_classes * self.options.rsa_listeners if len(speaker_classes) != self.options.rsa_speakers: assert len(speaker_classes) == 1, len(speaker_classes) speaker_classes = speaker_classes * self.options.rsa_speakers self.listeners = [LISTENERS[listener_classes[j]](id='%sL%d' % ( id_tag, j)) for j in range(self.options.rsa_listeners)] self.speakers = [SPEAKERS[speaker_classes[k]](id='%sS%d' % (id_tag, k)) for k in range(self.options.rsa_speakers)] agents = self.listeners if self.options.listener else self.speakers self.eval_agent = agents[self.options.eval_agent] def predict(self, eval_instances, verbosity=0): return self.eval_agent.predict(eval_instances, verbosity=verbosity) def score(self, eval_instances, verbosity=0): return self.eval_agent.score(eval_instances, verbosity=verbosity) def predict_and_score(self, eval_instances, verbosity=0): return self.eval_agent.predict_and_score(eval_instances, verbosity= verbosity) def on_iter_end(self, step, writer): for agent in (self.speakers + self.listeners): agent.on_iter_end(step, writer) def sample_joint_smooth(self, num_samples): return self.eval_agent.sample_joint_smooth(num_samples) def _data_to_arrays(self, training_instances, init_vectorizer=False, test=False, inverted=False): input_arrays = [] target_arrays = [] if self.options.listener != inverted: listener_dataset = training_instances speaker_dataset = [inst.inverted() for inst in training_instances] else: listener_dataset = [inst.inverted() for inst in training_instances] speaker_dataset = training_instances for listener in self.listeners: if not test: listener.dataset = listener_dataset inputs, targets = listener._data_to_arrays(listener_dataset, test=test, init_vectorizer=init_vectorizer) input_arrays.extend(inputs) target_arrays.extend(targets) for speaker in self.speakers: if not test: speaker.dataset = speaker_dataset inputs, targets = speaker._data_to_arrays(speaker_dataset, test =test, init_vectorizer=init_vectorizer) input_arrays.extend(inputs) target_arrays.extend(targets) return input_arrays, target_arrays def _build_model(self): for agent in (self.listeners + self.speakers): agent._build_model(RSASubModel) self.build_aggregate_model() def train_priors(self, training_instances, listener_data=False): prior_class = LISTENER_PRIORS[self.options.listener_prior ] if self.options.listener else SPEAKER_PRIORS[self.options. speaker_prior] self.prior_emp = prior_class() self.prior_smooth = prior_class() self.prior_emp.train(training_instances, listener_data=listener_data) self.prior_smooth.train(training_instances, listener_data=listener_data ) for agent in (self.listeners + self.speakers): agent.train_priors(training_instances, listener_data=listener_data) def build_aggregate_model(self): self.model = RSAGraphModel(self.listeners, self.speakers, self. eval_agent) self.prior_emp = AggregatePrior(self.listeners, self.speakers, 'prior_emp') self.prior_smooth = AggregatePrior(self.listeners, self.speakers, 'prior_smooth') def __getstate__(self): return self.seq_vec, self.color_vec, [agent.__getstate__() for agent in self.listeners + self.speakers] def __setstate__(self, state): self.seq_vec, self.color_vec, submodels = state self.init_submodels() for agent, substate in zip(self.listeners + self.speakers, submodels): agent.unpickle(substate, RSASubModel) self.build_aggregate_model() def t_sum(seq, start=None, nested=False): """A version of sum that doesn't start with 0, for constructing Theano graphs without superfluous TensorConstants. If `nested` is True, sum expressions embedded within lists, elementwise (for use with the output for T.jacobian). >>> t_sum([1, 2, 3]) 6 >>> t_sum(xrange(1, 4), start=4) 10 >>> t_sum([[1, 2], [3, 4], [5, 6]], nested=True) [9, 12] >>> t_sum([[1, 2], [3, 4], [5, 6]], start=[-1, -2], nested=True) [8, 10] """ if nested: if not isinstance(seq, list): seq = list(seq) if start: return [t_sum(subseq, start_elem) for subseq, start_elem in zip (zip(*seq), start)] else: return [t_sum(subseq) for subseq in zip(*seq)] seq_list = list(seq) if seq_list: reduced = reduce(operator.add, seq_list) if start: reduced = start + reduced return reduced elif start: return start else: return 0
import operator import theano.tensor as T from collections import OrderedDict from lasagne.layers import get_output from stanza.research import config from neural import SimpleLasagneModel, NeuralLearner from vectorizers import SequenceVectorizer, BucketsVectorizer from neural import OPTIMIZERS, get_named_layers from listener import LISTENERS, PRIORS as LISTENER_PRIORS from speaker import SPEAKERS, PRIORS as SPEAKER_PRIORS parser = config.get_options_parser() parser.add_argument('--rsa_listeners', type=int, default=1, help='Number of listeners to use in RSA cooperative nets graph') parser.add_argument('--rsa_speakers', type=int, default=1, help='Number of speakers to use in RSA cooperative nets graph') parser.add_argument('--listener_class', default=['Listener'], choices=LISTENERS.keys(), nargs='+', help='The name of the listener model to use in the RSA network.') parser.add_argument('--speaker_class', default=['Speaker'], choices=SPEAKERS.keys(), nargs='+', help='The name of the speaker model to use in the RSA network.') parser.add_argument('--eval_agent', type=int, default=0, help='Index of the agent (listener/speaker) to use as the primary object ' 'of evaluation. Whether this agent is a listener or speaker will be ' 'inferred from the --listener flag.') parser.add_argument('--rsa_optimizer', choices=OPTIMIZERS.keys(), default='rmsprop', help='The optimization (update) algorithm to use for RSA training.') parser.add_argument('--rsa_learning_rate', type=float, default=0.1, help='The learning rate to use for RSA training.') parser.add_argument('--rsa_alpha', type=float, nargs='*', default=[1.0], help='Weights for the log-likelihood of the dataset according to the ' 'listeners. Provide as many values as there are listeners.') parser.add_argument('--rsa_beta', type=float, nargs='*', default=[1.0], help='Weights for the log-likelihood of the dataset according to the ' 'speakers. Provide as many values as there are speakers.') parser.add_argument('--rsa_mu', type=float, nargs='*', default=[1.0], help='Weights for KL(L_j||S_k). Provide values to fill a ' 'rsa_listeners x rsa_speakers matrix, in row-major order ' '(i.e. all speakers for first listener, then all speakers for second ' 'listener, etc.).') parser.add_argument('--rsa_nu', type=float, nargs='*', default=[1.0], help='Weights for KL(S_k||L_j). Provide values to fill a ' 'rsa_listeners x rsa_speakers matrix, in row-major order ' '(i.e. all speakers for first listener, then all speakers for second ' 'listener, etc.).') parser.add_argument('--listener_samples', type=int, default=128, help='Number of samples to draw from the listener per minibatch.') parser.add_argument('--speaker_samples', type=int, default=128, help='Number of samples to draw from the speaker per minibatch.') parser.add_argument('--monitor_sublosses', type=config.boolean, default=False, help='If `True`, return sub-losses for monitoring and write them to the ' 'TensorBoard events file. This will likely increase compilation time.') parser.add_argument('--monitor_subgrads', type=config.boolean, default=False, help='If `True`, return sub-gradients for monitoring and write them to the ' 'TensorBoard events file. This will likely increase compilation time.') parser.add_argument('--grad_of_est', type=config.boolean, default=False, help='If `True`, optimize using the gradient of the estimated loss; ' 'otherwise, use the manually-derived estimate of the gradient of ' 'the true loss.') parser.add_argument('--layer_by_layer', type=config.boolean, default=False, help='If `True`, train RSA agents layer-by-layer (only use the log-likelihood ' 'sub-gradients, equivalent to training each agent on data generated from ' 'the other agents); otherwise, use the gradient of the full RSA ' 'objective.') parser.add_argument('--listener_sample_smoothed', type=config.boolean, default=False, help='If `True`, take samples from the smoothed utterance prior; otherwise, ' 'sample from the empirical utterance prior.') parser.add_argument('--speaker_sample_smoothed', type=config.boolean, default=False, help='If `True`, take samples from the smoothed world prior; otherwise, ' 'sample from the empirical world prior.') class AggregatePrior(object): def __init__(self, listeners, speakers, prior_name='prior_emp'): self.listeners = listeners self.speakers = speakers self.prior_name = prior_name def train(self, training_instances, listener=False): for agent in self.listeners: getattr(agent, self.prior_name).train(training_instances, listener=listener) for agent in self.speakers: getattr(agent, self.prior_name).train(training_instances, listener=listener) def apply(self, input_vars): assert False, ("AggregatePrior.apply shouldn't be called; " "only individual model priors are used in RSA coop nets model") class RSASubModel(SimpleLasagneModel): ''' A SimpleLasagneModel for a subcomponent of an RSA graph. ''' def __init__(self, input_vars, target_vars, l_out, loss, optimizer, learning_rate=0.001, id=None): super(RSASubModel, self).__init__(input_vars, target_vars, l_out, loss, optimizer, learning_rate=learning_rate, id=id) if len(target_vars) != 1: raise ValueError('target_vars should be a sequence of length 1, instead got %s' % (target_vars,)) self.target_var = target_vars[0] def build_sample_vars(self, num_other_agents): self.sample_inputs_self = [v.type('%s_sample_self' % (v.name,)) for v in self.input_vars] self.sample_inputs_others = [[v.type('%s_sample_other%d' % (v.name, i)) for v in self.input_vars] for i in range(num_other_agents)] t = self.target_var self.sample_target_self = t.type('%s_sample_self' % (t.name,)) self.sample_target_others = [t.type('%s_sample_other%d' % (t.name, i)) for i in range(num_other_agents)] self.all_synth_vars = (self.sample_inputs_self + [self.sample_target_self] + [v for o_inputs, o_target in zip(self.sample_inputs_others, self.sample_target_others) for v in o_inputs + [o_target]]) def data_to_synth_arrays(self, agent, samples_self, samples_others): def flatten(arrays): inputs, targets = arrays return inputs + targets return [arr for i, samples in enumerate([samples_self] + samples_others) for arr in flatten(agent._data_to_arrays(samples, inverted=(i != 0)))] class RSAGraphModel(SimpleLasagneModel): def __init__(self, listeners, speakers, eval_agent, id=None): self.get_options() self.listeners = listeners self.speakers = speakers self.eval_agent = eval_agent input_vars = ([v for listener in listeners for v in listener.model.input_vars] + [v for speaker in speakers for v in speaker.model.input_vars]) target_vars = ([listener.model.target_var for listener in listeners] + [speaker.model.target_var for speaker in speakers]) super(RSAGraphModel, self).__init__(input_vars, target_vars, l_out=eval_agent.model.l_out, loss=None, optimizer=OPTIMIZERS[self.options.rsa_optimizer], learning_rate=self.options.rsa_learning_rate, id=id) def params(self): result = [] for listener in self.listeners: result.extend(listener.params()) for speaker in self.speakers: result.extend(speaker.params()) return result def get_train_loss(self, target_vars, params): for agent in self.speakers: agent.model.build_sample_vars(len(self.listeners)) for agent in self.listeners: agent.model.build_sample_vars(len(self.speakers)) monitored = self.get_est_loss(layer_by_layer=self.options.layer_by_layer) if self.options.grad_of_est: est_grad, monitored_grads = self.get_grad_of_est(monitored, params) else: est_grad, monitored_grads = self.get_est_grad( params, layer_by_layer=self.options.layer_by_layer) monitored.update(monitored_grads) synth_vars = [v for agent in self.listeners + self.speakers for v in agent.model.all_synth_vars] return monitored, est_grad, synth_vars def get_est_loss(self, layer_by_layer=False): def kl(agent_p, agent_q, other_idx): if layer_by_layer: return agent_q.loss_out(agent_q.model.sample_inputs_others[other_idx], agent_q.model.sample_target_others[other_idx]).mean() else: return ( agent_p.log_joint_emp(agent_p.model.sample_inputs_self, agent_p.model.sample_target_self) - agent_q.log_joint_smooth(agent_q.model.sample_inputs_others[other_idx], agent_q.model.sample_target_others[other_idx]) ).mean() id_tag_log = (self.id + ': ') if self.id else '' id_tag = (self.id + '/') if self.id else '' # \alpha * KL(dataset || L) = \alpha * log L(dataset) + C if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(dataset || L)') alpha_losses = [ ('%salpha_%s' % (id_tag, listener.id), alpha * listener.loss_out().mean()) for alpha, listener in zip(self.options.rsa_alpha, self.listeners) ] # \beta * KL(dataset || S) = \beta * log S(dataset) + C if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(dataset || S)') beta_losses = [ ('%sbeta_%s' % (id_tag, speaker.id), beta * speaker.loss_out().mean()) for beta, speaker in zip(self.options.rsa_beta, self.speakers) ] # \mu * KL(L || S) if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(L || S)') mu_losses = [ ('%smu_%s_%s' % (id_tag, listener.id, speaker.id), mu * kl(listener, speaker, j)) for mu, (listener, j, speaker, k) in zip(self.options.rsa_mu, self.dyads()) ] # \nu * KL(S || L) if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(S || L)') nu_losses = [ ('%snu_%s_%s' % (id_tag, speaker.id, listener.id), nu * kl(speaker, listener, k)) for nu, (listener, j, speaker, k) in zip(self.options.rsa_nu, self.dyads()) ] all_sublosses = alpha_losses + beta_losses + mu_losses + nu_losses est_loss = t_sum(loss for tag, loss in all_sublosses) monitored = OrderedDict([('loss', est_loss)]) if self.options.monitor_sublosses: monitored.update(all_sublosses) if self.options.monitor_activations: for agent in self.listeners + self.speakers: for name, layer in get_named_layers(agent.l_out).iteritems(): monitored['activation/' + name] = get_output(layer) return monitored def get_est_grad(self, params, layer_by_layer=False): def mean_weighted_grad(weights, loss): # Lop to the rescue! Here I was calling T.jacobian and trying to # broadcast things and elementwise-multiply through the resulting lists, # when a function already existed to do all of that for me... return T.Lop(loss, params, weights / T.cast(weights.shape[0], 'float32'), disconnected_inputs='ignore') # TODO: control variates? def mean_grad(loss): return T.grad(loss.mean(), params, disconnected_inputs='ignore') id_tag = (self.id + ': ') if self.id else '' # alpha and beta: train the agents directly against the dataset. # \alpha_j E_D [-d/d\theta_j log L(c | m; \theta_j)] if self.options.verbosity >= 4: print(id_tag + 'grad: alpha') all_subgrads = [ ('grad_alpha/%s' % (listener.id,), mean_grad(alpha * listener.loss_out())) for alpha, listener in zip(self.options.rsa_alpha, self.listeners) ] # \beta_k E_D [-d/d\phi_k log S(m | c; \phi_k)] if self.options.verbosity >= 4: print(id_tag + 'grad: beta') all_subgrads.extend([ ('grad_beta/%s' % (speaker.id,), mean_grad(beta * speaker.loss_out())) for beta, speaker in zip(self.options.rsa_beta, self.speakers) ]) # The "simple" mu and nu terms: train the agents directly against each other. # These are still ordinary log-likelihood terms; the complexity comes from # identifying the right input variables and iterating over the m x n dyads. # sum_k \nu_jk E_{G_S(\phi_k)} [-d/d\theta_j log L(c | m; \theta_j)] if self.options.verbosity >= 4: print(id_tag + 'grad: nu co-training') all_subgrads.extend([ ('grad_nu_co/%s_%s' % (listener.id, speaker.id), mean_grad(nu * listener.loss_out(listener.model.sample_inputs_others[k], listener.model.sample_target_others[k]))) for nu, (listener, j, speaker, k) in zip(self.options.rsa_nu, self.dyads()) ]) # sum_j \nu_jk E_{G_L(\theta_j)} [-d/d\phi_k log S(m | c; \phi_k)] if self.options.verbosity >= 4: print(id_tag + 'grad: mu co-training') all_subgrads.extend([ ('grad_mu_co/%s_%s' % (listener.id, speaker.id), mean_grad(mu * speaker.loss_out(speaker.model.sample_inputs_others[j], speaker.model.sample_target_others[j]))) for mu, (listener, j, speaker, k) in zip(self.options.rsa_mu, self.dyads()) ]) # The "hard" mu and nu terms: regularize the agents with maximum entropy and # accommodating other agents' priors. # # Zero out these subgradients if we're doing layer-by-layer training. if not layer_by_layer: # sum_k \mu_jk E_{G_L(\theta_j)} # [(1 + log G_L(c, m; \theta_j) - log H_S(c, m; \phi_k)) * # d/d\theta_j log L(c | m; \theta_j)] if self.options.verbosity >= 4: print(id_tag + 'grad: mu regularizer') all_subgrads.extend([ ('grad_mu_reg/%s_%s' % (listener.id, speaker.id), mean_weighted_grad( mu * (1 + listener.log_joint_emp(listener.model.sample_inputs_self, listener.model.sample_target_self) - speaker.log_joint_smooth(speaker.model.sample_inputs_others[j], speaker.model.sample_target_others[j])), listener.loss_out(listener.model.sample_inputs_self, listener.model.sample_target_self))) for mu, (listener, j, speaker, k) in zip(self.options.rsa_mu, self.dyads()) ]) # sum_j \nu_jk E_{G_S(\phi_k)} # [(1 + log G_S(c, m; \phi_k) - log H_L(c, m; \theta_j)) * # d/d\phi_k log S(m | c; \phi_k)] if self.options.verbosity >= 4: print(id_tag + 'grad: nu regularizer') all_subgrads.extend([ ('grad_nu_reg/%s_%s' % (listener.id, speaker.id), mean_weighted_grad( nu * (1 + speaker.log_joint_emp(speaker.model.sample_inputs_self, speaker.model.sample_target_self) - listener.log_joint_smooth(listener.model.sample_inputs_others[k], listener.model.sample_target_others[k])), speaker.loss_out(speaker.model.sample_inputs_self, speaker.model.sample_target_self))) for nu, (listener, j, speaker, k) in zip(self.options.rsa_nu, self.dyads()) ]) est_grad = t_sum([grads for tag, grads in all_subgrads], nested=True) monitored = OrderedDict() if self.options.monitor_grads: monitored.update([ ('grad/' + param.name, grad) for param, grad in zip(params, est_grad) ]) if self.options.monitor_subgrads: monitored.update([ (tag + '/' + param.name, grad) for tag, grads in all_subgrads for param, grad in zip(params, grads) ]) return est_grad, monitored def get_grad_of_est(self, monitored, params): grad_of_est = T.grad(monitored['loss'], params) monitored_grads = OrderedDict() if self.options.monitor_grads: monitored_grads.update([ ('grad/' + param.name, grad) for param, grad in zip(params, grad_of_est) ]) if self.options.monitor_subgrads: monitored_grads.update([ (tag + '/' + param.name, grad) for tag, subloss in monitored.iteritems() if tag != 'loss' for param, grad in zip(params, T.grad(subloss, params, disconnected_inputs='ignore')) ]) return grad_of_est, monitored_grads def dyads(self): for j, listener in enumerate(self.listeners): for k, speaker in enumerate(self.speakers): yield (listener, j, speaker, k) def minibatches(self, inputs, targets, batch_size, shuffle=False): agents = self.listeners + self.speakers batches = super(RSAGraphModel, self).minibatches(inputs, targets, batch_size, shuffle=shuffle) for dataset_inputs, dataset_targets, _synth in batches: inputs_batch = [] targets_batch = [] synth_batch = [] filtered = self.filter_arrays(dataset_inputs, dataset_targets) for agent, (agent_inputs, agent_targets) in zip(agents, filtered): inputs_batch.extend(agent_inputs) targets_batch.extend(agent_targets) input_types = [a.shape for a in agent_inputs] target_types = [a.shape for a in agent_targets] if self.options.verbosity >= 8: print('%s: %s -> %s' % (agent.id, input_types, target_types)) listener_samples = [listener.sample_joint_smooth(self.options.listener_samples) if self.options.listener_sample_smoothed else listener.sample_joint_emp(self.options.listener_samples) for listener in self.listeners] speaker_samples = [speaker.sample_joint_smooth(self.options.speaker_samples) if self.options.speaker_sample_smoothed else speaker.sample_joint_emp(self.options.listener_samples) for speaker in self.speakers] for listener, samples in zip(self.listeners, listener_samples): arrays = listener.model.data_to_synth_arrays(listener, samples, speaker_samples) synth_batch.extend(arrays) synth_types = [a.shape for a in arrays] if self.options.verbosity >= 8: print('%s synth: %s' % (listener.id, synth_types)) for speaker, samples in zip(self.speakers, speaker_samples): arrays = speaker.model.data_to_synth_arrays(speaker, samples, listener_samples) synth_batch.extend(arrays) synth_types = [a.shape for a in arrays] if self.options.verbosity >= 8: print('%s synth: %s' % (speaker.id, synth_types)) yield inputs_batch, targets_batch, synth_batch def filter_arrays(self, inputs, targets): result = [] input_idx = 0 for agent, target in zip(self.listeners + self.speakers, targets): assert input_idx + len(agent.model.input_vars) <= len(inputs), \ (input_idx, len(agent.model.input_vars), len(inputs)) agent_inputs = inputs[input_idx:input_idx + len(agent.model.input_vars)] agent_targets = [target] result.append((agent_inputs, agent_targets)) input_idx += len(agent.model.input_vars) return result class RSALearner(NeuralLearner): def __init__(self, id=None): self.get_options() self.init_submodels(id) super(RSALearner, self).__init__(id=id) color_resolution = (self.options.listener_color_resolution if self.options.listener else self.options.speaker_color_resolution) self.seq_vec = SequenceVectorizer() self.color_vec = BucketsVectorizer(color_resolution, hsv=self.options.speaker_hsv) def init_submodels(self, id=None): id_tag = (id + '/') if id else '' self.get_options() listener_classes = self.options.listener_class speaker_classes = self.options.speaker_class if len(listener_classes) != self.options.rsa_listeners: assert len(listener_classes) == 1, len(listener_classes) listener_classes = listener_classes * self.options.rsa_listeners if len(speaker_classes) != self.options.rsa_speakers: assert len(speaker_classes) == 1, len(speaker_classes) speaker_classes = speaker_classes * self.options.rsa_speakers self.listeners = [LISTENERS[listener_classes[j]](id='%sL%d' % (id_tag, j)) for j in range(self.options.rsa_listeners)] self.speakers = [SPEAKERS[speaker_classes[k]](id='%sS%d' % (id_tag, k)) for k in range(self.options.rsa_speakers)] agents = self.listeners if self.options.listener else self.speakers self.eval_agent = agents[self.options.eval_agent] def predict(self, eval_instances, verbosity=0): return self.eval_agent.predict(eval_instances, verbosity=verbosity) def score(self, eval_instances, verbosity=0): return self.eval_agent.score(eval_instances, verbosity=verbosity) def predict_and_score(self, eval_instances, verbosity=0): return self.eval_agent.predict_and_score(eval_instances, verbosity=verbosity) def on_iter_end(self, step, writer): for agent in self.speakers + self.listeners: agent.on_iter_end(step, writer) def sample_joint_smooth(self, num_samples): return self.eval_agent.sample_joint_smooth(num_samples) def _data_to_arrays(self, training_instances, init_vectorizer=False, test=False, inverted=False): input_arrays = [] target_arrays = [] if self.options.listener != inverted: listener_dataset = training_instances speaker_dataset = [inst.inverted() for inst in training_instances] else: listener_dataset = [inst.inverted() for inst in training_instances] speaker_dataset = training_instances for listener in self.listeners: if not test: listener.dataset = listener_dataset inputs, targets = listener._data_to_arrays(listener_dataset, test=test, init_vectorizer=init_vectorizer) input_arrays.extend(inputs) target_arrays.extend(targets) for speaker in self.speakers: if not test: speaker.dataset = speaker_dataset inputs, targets = speaker._data_to_arrays(speaker_dataset, test=test, init_vectorizer=init_vectorizer) input_arrays.extend(inputs) target_arrays.extend(targets) return input_arrays, target_arrays def _build_model(self): for agent in self.listeners + self.speakers: agent._build_model(RSASubModel) self.build_aggregate_model() def train_priors(self, training_instances, listener_data=False): prior_class = (LISTENER_PRIORS[self.options.listener_prior] if self.options.listener else SPEAKER_PRIORS[self.options.speaker_prior]) self.prior_emp = prior_class() self.prior_smooth = prior_class() self.prior_emp.train(training_instances, listener_data=listener_data) self.prior_smooth.train(training_instances, listener_data=listener_data) for agent in self.listeners + self.speakers: agent.train_priors(training_instances, listener_data=listener_data) def build_aggregate_model(self): self.model = RSAGraphModel(self.listeners, self.speakers, self.eval_agent) self.prior_emp = AggregatePrior(self.listeners, self.speakers, 'prior_emp') self.prior_smooth = AggregatePrior(self.listeners, self.speakers, 'prior_smooth') def __getstate__(self): return (self.seq_vec, self.color_vec, [agent.__getstate__() for agent in self.listeners + self.speakers]) def __setstate__(self, state): self.seq_vec, self.color_vec, submodels = state self.init_submodels() for agent, substate in zip(self.listeners + self.speakers, submodels): agent.unpickle(substate, RSASubModel) self.build_aggregate_model() def t_sum(seq, start=None, nested=False): '''A version of sum that doesn't start with 0, for constructing Theano graphs without superfluous TensorConstants. If `nested` is True, sum expressions embedded within lists, elementwise (for use with the output for T.jacobian). >>> t_sum([1, 2, 3]) 6 >>> t_sum(xrange(1, 4), start=4) 10 >>> t_sum([[1, 2], [3, 4], [5, 6]], nested=True) [9, 12] >>> t_sum([[1, 2], [3, 4], [5, 6]], start=[-1, -2], nested=True) [8, 10] ''' if nested: if not isinstance(seq, list): seq = list(seq) if start: return [t_sum(subseq, start_elem) for subseq, start_elem in zip(zip(*seq), start)] else: return [t_sum(subseq) for subseq in zip(*seq)] seq_list = list(seq) if seq_list: reduced = reduce(operator.add, seq_list) if start: reduced = start + reduced return reduced elif start: return start else: return 0
[ 15, 21, 23, 36, 38 ]
1,359
d30e2fa4d5b0a0965dad7d69b672b8f4ad137ff4
<mask token> def get_file_vocabs(file): file_vocabs = Counter() for sent in file.readlines(): voc = Counter() for word in sent.split(): voc[word] += 1 file_vocabs.update(voc) return file_vocabs <mask token>
<mask token> def get_file_vocabs(file): file_vocabs = Counter() for sent in file.readlines(): voc = Counter() for word in sent.split(): voc[word] += 1 file_vocabs.update(voc) return file_vocabs def get_vocab(dirpath): vocabs = {} cvocabs = Counter() for filename in os.listdir(dirpath): with open(dirpath + '\\' + filename, 'r', encoding='utf-8') as file: file_vocabs = get_file_vocabs(file) cvocabs.update(file_vocabs) print('Step 1: Process file', filename) n = len(cvocabs) if n >= MOST_COMMON: n = MOST_COMMON cvocabs = dict(cvocabs.most_common(n)) print('Step 2...') for i, kk in enumerate(cvocabs.keys()): vocabs[kk] = i + 1 return vocabs if __name__ == '__main__': vocabs = get_vocab(dirpath) print('Saving...') with open(savepath, 'w') as file: file.write(json.dumps(vocabs))
<mask token> MOST_COMMON = 120000 savepath = ( 'D:\\My Documents\\My Project\\experiment1\\finished\\test_vocabs.json') dirpath = 'D:\\My Documents\\My Project\\experiment1\\finished\\test' def get_file_vocabs(file): file_vocabs = Counter() for sent in file.readlines(): voc = Counter() for word in sent.split(): voc[word] += 1 file_vocabs.update(voc) return file_vocabs def get_vocab(dirpath): vocabs = {} cvocabs = Counter() for filename in os.listdir(dirpath): with open(dirpath + '\\' + filename, 'r', encoding='utf-8') as file: file_vocabs = get_file_vocabs(file) cvocabs.update(file_vocabs) print('Step 1: Process file', filename) n = len(cvocabs) if n >= MOST_COMMON: n = MOST_COMMON cvocabs = dict(cvocabs.most_common(n)) print('Step 2...') for i, kk in enumerate(cvocabs.keys()): vocabs[kk] = i + 1 return vocabs if __name__ == '__main__': vocabs = get_vocab(dirpath) print('Saving...') with open(savepath, 'w') as file: file.write(json.dumps(vocabs))
import os import os.path import json from collections import defaultdict, Counter MOST_COMMON = 120000 savepath = ( 'D:\\My Documents\\My Project\\experiment1\\finished\\test_vocabs.json') dirpath = 'D:\\My Documents\\My Project\\experiment1\\finished\\test' def get_file_vocabs(file): file_vocabs = Counter() for sent in file.readlines(): voc = Counter() for word in sent.split(): voc[word] += 1 file_vocabs.update(voc) return file_vocabs def get_vocab(dirpath): vocabs = {} cvocabs = Counter() for filename in os.listdir(dirpath): with open(dirpath + '\\' + filename, 'r', encoding='utf-8') as file: file_vocabs = get_file_vocabs(file) cvocabs.update(file_vocabs) print('Step 1: Process file', filename) n = len(cvocabs) if n >= MOST_COMMON: n = MOST_COMMON cvocabs = dict(cvocabs.most_common(n)) print('Step 2...') for i, kk in enumerate(cvocabs.keys()): vocabs[kk] = i + 1 return vocabs if __name__ == '__main__': vocabs = get_vocab(dirpath) print('Saving...') with open(savepath, 'w') as file: file.write(json.dumps(vocabs))
#!/usr/bin/python # -*- coding: utf-8 -*- import os import os.path import json from collections import defaultdict, Counter MOST_COMMON = 120000 savepath = r'D:\My Documents\My Project\experiment1\finished\test_vocabs.json' dirpath = 'D:\\My Documents\\My Project\\experiment1\\finished\\test' #dirpath = 'D:\\Corpus\\1-billion-word-language-modeling-benchmark-r13output\\1-billion-word-language-modeling-benchmark-r13output\\training-monolingual.tokenized.shuffled' #savepath = 'D:\\My Documents\\My Project\\experiment1\\finished\\a.json' #dirpath = 'D:\\My Documents\\My Project\\experiment1\\finished\\test' def get_file_vocabs(file): file_vocabs = Counter() for sent in file.readlines(): voc = Counter() for word in sent.split(): voc[word] += 1 file_vocabs.update(voc) return file_vocabs def get_vocab(dirpath): vocabs = {} cvocabs = Counter() for filename in os.listdir(dirpath): with open(dirpath + '\\' + filename, 'r', encoding='utf-8') as file: file_vocabs = get_file_vocabs(file) cvocabs.update(file_vocabs) print('Step 1: Process file', filename) n = len(cvocabs) if n >= MOST_COMMON: n = MOST_COMMON cvocabs = dict(cvocabs.most_common(n)) print('Step 2...') for i, kk in enumerate(cvocabs.keys()): vocabs[kk] = i + 1 return vocabs if __name__ == '__main__': vocabs = get_vocab(dirpath) print('Saving...') with open(savepath, 'w') as file: file.write(json.dumps(vocabs))
[ 1, 3, 4, 5, 6 ]
1,360
16879598a8b1a0b23c5ea6de18f8fb0b0b77201c
<mask token> def get(path): return reduce(lambda view, part: view[part], path.split('.'), config).get()
<mask token> config.set_file('config.yaml') def get(path): return reduce(lambda view, part: view[part], path.split('.'), config).get()
<mask token> config = confuse.Configuration('SleepCycleWebhooks') config.set_file('config.yaml') def get(path): return reduce(lambda view, part: view[part], path.split('.'), config).get()
from functools import reduce import confuse config = confuse.Configuration('SleepCycleWebhooks') config.set_file('config.yaml') def get(path): return reduce(lambda view, part: view[part], path.split('.'), config).get()
null
[ 1, 2, 3, 4 ]
1,361
267695555e876dc2fe5820dc194490aad9e5e344
<mask token> def avg_dissim_within_group_element(node, element_list): max_diameter = -np.inf sum_dissm = 0 for i in element_list: sum_dissm += dissimilarity_matrix[node][i] if dissimilarity_matrix[node][i] > max_diameter: max_diameter = dissimilarity_matrix[node][i] if len(element_list) > 1: avg = sum_dissm / (len(element_list) - 1) else: avg = 0 return avg def avg_dissim_across_group_element(node, main_list, splinter_list): if len(splinter_list) == 0: return 0 sum_dissm = 0 for j in splinter_list: sum_dissm = sum_dissm + dissimilarity_matrix[node][j] avg = sum_dissm / len(splinter_list) return avg def splinter(main_list, splinter_group): most_dissm_object_value = -np.inf most_dissm_object_index = None for node in main_list: x = avg_dissim_within_group_element(node, main_list) y = avg_dissim_across_group_element(node, main_list, splinter_group) diff = x - y if diff > most_dissm_object_value: most_dissm_object_value = diff most_dissm_object_index = node if most_dissm_object_value > 0: return most_dissm_object_index, 1 else: return -1, -1 def split(element_list): main_list = element_list splinter_group = [] most_dissm_object_index, flag = splinter(main_list, splinter_group) while flag > 0: main_list.remove(most_dissm_object_index) splinter_group.append(most_dissm_object_index) most_dissm_object_index, flag = splinter(element_list, splinter_group) return main_list, splinter_group <mask token>
<mask token> def avg_dissim_within_group_element(node, element_list): max_diameter = -np.inf sum_dissm = 0 for i in element_list: sum_dissm += dissimilarity_matrix[node][i] if dissimilarity_matrix[node][i] > max_diameter: max_diameter = dissimilarity_matrix[node][i] if len(element_list) > 1: avg = sum_dissm / (len(element_list) - 1) else: avg = 0 return avg def avg_dissim_across_group_element(node, main_list, splinter_list): if len(splinter_list) == 0: return 0 sum_dissm = 0 for j in splinter_list: sum_dissm = sum_dissm + dissimilarity_matrix[node][j] avg = sum_dissm / len(splinter_list) return avg def splinter(main_list, splinter_group): most_dissm_object_value = -np.inf most_dissm_object_index = None for node in main_list: x = avg_dissim_within_group_element(node, main_list) y = avg_dissim_across_group_element(node, main_list, splinter_group) diff = x - y if diff > most_dissm_object_value: most_dissm_object_value = diff most_dissm_object_index = node if most_dissm_object_value > 0: return most_dissm_object_index, 1 else: return -1, -1 def split(element_list): main_list = element_list splinter_group = [] most_dissm_object_index, flag = splinter(main_list, splinter_group) while flag > 0: main_list.remove(most_dissm_object_index) splinter_group.append(most_dissm_object_index) most_dissm_object_index, flag = splinter(element_list, splinter_group) return main_list, splinter_group def max_distance(cluster_list): max_diameter_cluster_index = None max_diameter_cluster_value = -np.inf index = 0 for element_list in cluster_list: for i in element_list: for j in element_list: if dissimilarity_matrix[i][j] > max_diameter_cluster_value: max_diameter_cluster_value = dissimilarity_matrix[i][j] max_diameter_cluster_index = index index += 1 if max_diameter_cluster_value <= 0: return -1 return max_diameter_cluster_index <mask token>
<mask token> print(dissimilarity_matrix) def avg_dissim_within_group_element(node, element_list): max_diameter = -np.inf sum_dissm = 0 for i in element_list: sum_dissm += dissimilarity_matrix[node][i] if dissimilarity_matrix[node][i] > max_diameter: max_diameter = dissimilarity_matrix[node][i] if len(element_list) > 1: avg = sum_dissm / (len(element_list) - 1) else: avg = 0 return avg def avg_dissim_across_group_element(node, main_list, splinter_list): if len(splinter_list) == 0: return 0 sum_dissm = 0 for j in splinter_list: sum_dissm = sum_dissm + dissimilarity_matrix[node][j] avg = sum_dissm / len(splinter_list) return avg def splinter(main_list, splinter_group): most_dissm_object_value = -np.inf most_dissm_object_index = None for node in main_list: x = avg_dissim_within_group_element(node, main_list) y = avg_dissim_across_group_element(node, main_list, splinter_group) diff = x - y if diff > most_dissm_object_value: most_dissm_object_value = diff most_dissm_object_index = node if most_dissm_object_value > 0: return most_dissm_object_index, 1 else: return -1, -1 def split(element_list): main_list = element_list splinter_group = [] most_dissm_object_index, flag = splinter(main_list, splinter_group) while flag > 0: main_list.remove(most_dissm_object_index) splinter_group.append(most_dissm_object_index) most_dissm_object_index, flag = splinter(element_list, splinter_group) return main_list, splinter_group def max_distance(cluster_list): max_diameter_cluster_index = None max_diameter_cluster_value = -np.inf index = 0 for element_list in cluster_list: for i in element_list: for j in element_list: if dissimilarity_matrix[i][j] > max_diameter_cluster_value: max_diameter_cluster_value = dissimilarity_matrix[i][j] max_diameter_cluster_index = index index += 1 if max_diameter_cluster_value <= 0: return -1 return max_diameter_cluster_index if __name__ == '__main__': argv = sys.argv num_clusters = sys.argv[-1] current_clusters = [all_elements] print(current_clusters) level = 1 index = 0 with tqdm(total=100) as pbar: while index != -1 and level != num_clusters: a_clstr, b_clstr = split(current_clusters[index]) del current_clusters[index] current_clusters.append(a_clstr) current_clusters.append(b_clstr) index = max_distance(current_clusters) level += 1 pbar.update(10) for i in range(num_clusters): pd.DataFrame(current_clusters[i], columns=['id']).to_csv( '%s_cluster_%d.txt' % (sys.argv[1], i), sep='\t')
import pandas as pd import numpy as np import sys from tqdm import tqdm import time from scipy.spatial.distance import pdist, squareform data = pd.read_csv(sys.argv[1], delimiter='\t') all_elements = [index for index in data.index] distance_matrix = pdist(data, metric='euclidean') dissimilarity_matrix = np.array(squareform(distance_matrix)) print(dissimilarity_matrix) def avg_dissim_within_group_element(node, element_list): max_diameter = -np.inf sum_dissm = 0 for i in element_list: sum_dissm += dissimilarity_matrix[node][i] if dissimilarity_matrix[node][i] > max_diameter: max_diameter = dissimilarity_matrix[node][i] if len(element_list) > 1: avg = sum_dissm / (len(element_list) - 1) else: avg = 0 return avg def avg_dissim_across_group_element(node, main_list, splinter_list): if len(splinter_list) == 0: return 0 sum_dissm = 0 for j in splinter_list: sum_dissm = sum_dissm + dissimilarity_matrix[node][j] avg = sum_dissm / len(splinter_list) return avg def splinter(main_list, splinter_group): most_dissm_object_value = -np.inf most_dissm_object_index = None for node in main_list: x = avg_dissim_within_group_element(node, main_list) y = avg_dissim_across_group_element(node, main_list, splinter_group) diff = x - y if diff > most_dissm_object_value: most_dissm_object_value = diff most_dissm_object_index = node if most_dissm_object_value > 0: return most_dissm_object_index, 1 else: return -1, -1 def split(element_list): main_list = element_list splinter_group = [] most_dissm_object_index, flag = splinter(main_list, splinter_group) while flag > 0: main_list.remove(most_dissm_object_index) splinter_group.append(most_dissm_object_index) most_dissm_object_index, flag = splinter(element_list, splinter_group) return main_list, splinter_group def max_distance(cluster_list): max_diameter_cluster_index = None max_diameter_cluster_value = -np.inf index = 0 for element_list in cluster_list: for i in element_list: for j in element_list: if dissimilarity_matrix[i][j] > max_diameter_cluster_value: max_diameter_cluster_value = dissimilarity_matrix[i][j] max_diameter_cluster_index = index index += 1 if max_diameter_cluster_value <= 0: return -1 return max_diameter_cluster_index if __name__ == '__main__': argv = sys.argv num_clusters = sys.argv[-1] current_clusters = [all_elements] print(current_clusters) level = 1 index = 0 with tqdm(total=100) as pbar: while index != -1 and level != num_clusters: a_clstr, b_clstr = split(current_clusters[index]) del current_clusters[index] current_clusters.append(a_clstr) current_clusters.append(b_clstr) index = max_distance(current_clusters) level += 1 pbar.update(10) for i in range(num_clusters): pd.DataFrame(current_clusters[i], columns=['id']).to_csv( '%s_cluster_%d.txt' % (sys.argv[1], i), sep='\t')
#library import pandas as pd import numpy as np import sys from tqdm import tqdm # appear the precess of running situation. import time from scipy.spatial.distance import pdist, squareform #0. Data Load data = pd.read_csv(sys.argv[1], delimiter='\t') # Load train (input text file) #1. Data Preprocessing all_elements = [index for index in data.index] # Save index name. #Make a distance metrix to compute dissimilarity. distance_matrix = pdist(data, metric='euclidean') dissimilarity_matrix = np.array(squareform(distance_matrix)) #dissimilarity_matrix = pd.DataFrame(squareform(distance_matrix), columns=all_elements, index=all_elements) print(dissimilarity_matrix) #2. Modeling : DIANA Clustering #2-1. Compute dissimilarity average in ONE Cluster. def avg_dissim_within_group_element(node, element_list): max_diameter = -np.inf sum_dissm = 0 #Set Sum equal zero. for i in element_list: sum_dissm += dissimilarity_matrix[node][i] #While iterate element_list, Sum the distance matrix value singly in a node. if( dissimilarity_matrix[node][i] > max_diameter): #If distance matrix is bigger than max_distance, max_diameter = dissimilarity_matrix[node][i] # that distance matrix value become a max_diameter. if(len(element_list)>1): avg = sum_dissm/(len(element_list)-1) # Average of distance matrix. else: avg = 0 return avg # 2-2. Compute dissimilarity average between different Group(e.g. Cluster1 and Cluster2) # id in sperated new group = splinter_list def avg_dissim_across_group_element(node, main_list, splinter_list): if len(splinter_list) == 0: #there is no spliter group, return zero. return 0 sum_dissm = 0 for j in splinter_list: sum_dissm = sum_dissm + dissimilarity_matrix[node][j] #Compute average between Object in splinter group avg = sum_dissm/(len(splinter_list)) #and all object dissimilarity matrix. return avg # 2-3. Cluster Splinter def splinter(main_list, splinter_group): most_dissm_object_value = -np.inf #initate minus. most_dissm_object_index = None for node in main_list: x = avg_dissim_within_group_element(node, main_list) # Previously, a point in main group as a standard. y = avg_dissim_across_group_element(node, main_list, splinter_group) # a point in the seperated group. diff = x - y # difference between X and Y if diff > most_dissm_object_value: most_dissm_object_value = diff most_dissm_object_index = node # save index and value which has largest value between two groups. if(most_dissm_object_value>0): # differnce is Plus, Create new splinter group. flag = 1 return (most_dissm_object_index, 1) else: # difference is minus, flag = -1 return (-1, -1) # 2-4. Split def split(element_list): main_list = element_list splinter_group = [] (most_dissm_object_index, flag) = splinter(main_list, splinter_group) while(flag > 0): # Iterate splinter function until a flag become minus. main_list.remove(most_dissm_object_index) #Delete the most largest dissimilarity average object index in the main list. splinter_group.append(most_dissm_object_index) # Then, append in the new splinter group. (most_dissm_object_index, flag) = splinter(element_list, splinter_group) return (main_list, splinter_group) # 2-5. look for maximum distance in the current cluster. def max_distance(cluster_list): max_diameter_cluster_index = None max_diameter_cluster_value = -np.inf index = 0 for element_list in cluster_list: for i in element_list: #columns for j in element_list: #rows #Switch the largest dissimilarity average object(index), value. if dissimilarity_matrix[i][j] > max_diameter_cluster_value: max_diameter_cluster_value = dissimilarity_matrix[i][j] max_diameter_cluster_index = index index +=1 if(max_diameter_cluster_value <= 0): return -1 return max_diameter_cluster_index # main if __name__ == '__main__': # Save arguments list argv = sys.argv # Set the number of cluster. num_clusters = sys.argv[-1] current_clusters = ([all_elements]) print(current_clusters) level = 1 index = 0 with tqdm(total=100) as pbar: while((index!=-1) and (level!=num_clusters)): #Proceed until the index equal -1 and setting number of cluster. (a_clstr, b_clstr) = split(current_clusters[index]) del current_clusters[index] # Delete current cluster. current_clusters.append(a_clstr) #original cluster current_clusters.append(b_clstr) #splinter cluster index = max_distance(current_clusters) level +=1 pbar.update(10) for i in range(num_clusters): # Save the results. pd.DataFrame(current_clusters[i], columns=['id']).to_csv("%s_cluster_%d.txt" %(sys.argv[1], i), sep='\t')
[ 4, 5, 6, 8, 9 ]
1,362
61f2fbed184ff6f842ba9527456da453844f8dc6
# DATA TYPES (DATA TİPLERİ) # STRİNGS (KARAKTER DİZİNLERİ) # Bir karakter dizinini tanımlamak için tırnaklar kullanılır. birkaç satır ka- # rakter dizini yazıyorsak 3 tırnak kullanılır: print("""Üç tırnaklı karakter dizinine örnek""") üç tırnaklı karakter dizinine örnek print('Tek tırnak: Tek satırlık stringlerde uygulanır.') Tek tırnak: Tek satırlık stringlerde uygulanır. print("Çift Tırnak: Yine tek satırlık cümlelerde kullanılır.") Çift Tırnak: Yine tek satırlık cümlelerde kullanılır. # Farklı tırnakların olmasının nedeni, tek tırnakla ayrılan özel isimlerin ayrım # işaretinin çıktıyı string olarak kabul etmesini önlemek: print("Türkiye'nin başkenti Ankara'dır.") Türkiye'nin başkenti Ankara'dır. # Yukarıdaki gibi bir çıktı almak için çift tırnak ("") kullandım. Çünkü tek # tırnak kullansam şöyle hatalı bir print kodu oluşurdu: print('Türkiye'nin başkenti Ankara'dır.') # Python, dğerlerin hatalı olduğunu # ifade eden renklendirme yapardı. # Çift tırnakla başlayıp ayraçları tek tırnak yaparsak Python, çift tırnakla # başladığından dolayı aradaki tek tırnakları görmez ve onu da string içeriği # olarak kabul eder. Aynı şekilde üç tırnakla başlasaydım bu sefer de çift tır- # nakları görmeyip onları da string içeriği olarak kabul ederdi.
null
null
null
null
[ 0 ]
1,363
2b87b8571664989e78790bd9df23eee9cbd44035
<mask token>
<mask token> @itchat.msg_register(itchat.content.TEXT) def text_reply(msg): return msg.text <mask token>
<mask token> @itchat.msg_register(itchat.content.TEXT) def text_reply(msg): return msg.text itchat.auto_login() itchat.run()
import itchat @itchat.msg_register(itchat.content.TEXT) def text_reply(msg): return msg.text itchat.auto_login() itchat.run()
# @Time : 2019/12/12 15:54 # @Author : Libuda # @FileName: 远程服务器文件监控.py # @Software: PyCharm import itchat @itchat.msg_register(itchat.content.TEXT) def text_reply(msg): return msg.text itchat.auto_login() itchat.run()
[ 0, 1, 2, 3, 4 ]
1,364
9c3f6c368c764918da5cce44da574b7c041fa414
class Node: <mask token> def __init__(self, k: int=None, loc: tuple=None, **kwargs): """ Each node contain dew fields: key: node_id. location: node's position represent as 3DPoint. ni_out: a dictionary that holds all the "edges" that connected from this node, each edge is represented using a pair (key, edge weight). ni_in: a dictionary that holds all the "edges" that connected to this node, each edge is represented using a pair (key, edge weight) """ self.__key = k self.__location = loc self.__ni_out = {} self.__ni_in = {} def add_neighbor_out(self, neighbor_id: int, weight: float) ->None: """ Add "edge" that connected from this node (node_id ---> neighbor_id). :param neighbor_id: dest node key :param weight: edge's weight """ self.__ni_out[neighbor_id] = weight def add_neighbor_in(self, neighbor_id: int, weight: float) ->None: """ Add "edge" that connected to this node (neighbor_id ---> node_id). :param neighbor_id: dest node key :param weight: edge's weight """ self.__ni_in[neighbor_id] = weight def get_connections_out(self) ->dict: """ Return a dictionary that holds all the "edges" that connected from this node, each edge is represented using a pair (key, edge weight). :return: dictionary (key, edge weight). """ return self.__ni_out def get_connections_in(self) ->dict: """ Return a dictionary that holds all the "edges" that connected to this node, each edge is represented using a pair (key, edge weight). :return: dictionary (key, edge weight). """ return self.__ni_in def get_key(self) ->int: """ Return this node key. :return: key """ return self.__key <mask token> def set_location(self, location: tuple) ->None: """ Allows to add location to this node. This method used for load and plot graphs that their nodes have no position. :param location: the new position of this node """ self.__location = location def as_dict_node(self): """ Return the node as dictionary {"pos": "x", "y", "z", "id": key} :return: the node as dictionary """ loc_as_str = str(self.get_location()) m_dict = {'pos': loc_as_str[1:-1], 'id': self.get_key()} return m_dict def as_dict_edge(self): """ Return the edge as dictionary {"src": src node_id, "w": edge weight, "dest": dest node_id} :return: the edge as dictionary """ l_list = [] for k, v in self.get_connections_out().items(): m_dict = {'src': int(self.get_key()), 'w': float(v), 'dest': int(k) } l_list.append(m_dict) return l_list <mask token> def __str__(self) ->str: return 'Node: id: ' + str(self.__key) + ' neighbors: ' + str(self. __ni_out) def __eq__(self, o: object) ->bool: if self is o: return True if o is None or self.__class__ is not o.__class__: return False other = o return self.__key == other.__key and self.__location.__eq__(other. __location) and self.__ni_in.__eq__(other.__ni_in ) and self.__ni_out.__eq__(other.__ni_out)
class Node: <mask token> def __init__(self, k: int=None, loc: tuple=None, **kwargs): """ Each node contain dew fields: key: node_id. location: node's position represent as 3DPoint. ni_out: a dictionary that holds all the "edges" that connected from this node, each edge is represented using a pair (key, edge weight). ni_in: a dictionary that holds all the "edges" that connected to this node, each edge is represented using a pair (key, edge weight) """ self.__key = k self.__location = loc self.__ni_out = {} self.__ni_in = {} def add_neighbor_out(self, neighbor_id: int, weight: float) ->None: """ Add "edge" that connected from this node (node_id ---> neighbor_id). :param neighbor_id: dest node key :param weight: edge's weight """ self.__ni_out[neighbor_id] = weight def add_neighbor_in(self, neighbor_id: int, weight: float) ->None: """ Add "edge" that connected to this node (neighbor_id ---> node_id). :param neighbor_id: dest node key :param weight: edge's weight """ self.__ni_in[neighbor_id] = weight def get_connections_out(self) ->dict: """ Return a dictionary that holds all the "edges" that connected from this node, each edge is represented using a pair (key, edge weight). :return: dictionary (key, edge weight). """ return self.__ni_out def get_connections_in(self) ->dict: """ Return a dictionary that holds all the "edges" that connected to this node, each edge is represented using a pair (key, edge weight). :return: dictionary (key, edge weight). """ return self.__ni_in def get_key(self) ->int: """ Return this node key. :return: key """ return self.__key <mask token> def set_location(self, location: tuple) ->None: """ Allows to add location to this node. This method used for load and plot graphs that their nodes have no position. :param location: the new position of this node """ self.__location = location def as_dict_node(self): """ Return the node as dictionary {"pos": "x", "y", "z", "id": key} :return: the node as dictionary """ loc_as_str = str(self.get_location()) m_dict = {'pos': loc_as_str[1:-1], 'id': self.get_key()} return m_dict def as_dict_edge(self): """ Return the edge as dictionary {"src": src node_id, "w": edge weight, "dest": dest node_id} :return: the edge as dictionary """ l_list = [] for k, v in self.get_connections_out().items(): m_dict = {'src': int(self.get_key()), 'w': float(v), 'dest': int(k) } l_list.append(m_dict) return l_list def __repr__(self): return str([self.get_key()]) def __str__(self) ->str: return 'Node: id: ' + str(self.__key) + ' neighbors: ' + str(self. __ni_out) def __eq__(self, o: object) ->bool: if self is o: return True if o is None or self.__class__ is not o.__class__: return False other = o return self.__key == other.__key and self.__location.__eq__(other. __location) and self.__ni_in.__eq__(other.__ni_in ) and self.__ni_out.__eq__(other.__ni_out)
class Node: <mask token> def __init__(self, k: int=None, loc: tuple=None, **kwargs): """ Each node contain dew fields: key: node_id. location: node's position represent as 3DPoint. ni_out: a dictionary that holds all the "edges" that connected from this node, each edge is represented using a pair (key, edge weight). ni_in: a dictionary that holds all the "edges" that connected to this node, each edge is represented using a pair (key, edge weight) """ self.__key = k self.__location = loc self.__ni_out = {} self.__ni_in = {} def add_neighbor_out(self, neighbor_id: int, weight: float) ->None: """ Add "edge" that connected from this node (node_id ---> neighbor_id). :param neighbor_id: dest node key :param weight: edge's weight """ self.__ni_out[neighbor_id] = weight def add_neighbor_in(self, neighbor_id: int, weight: float) ->None: """ Add "edge" that connected to this node (neighbor_id ---> node_id). :param neighbor_id: dest node key :param weight: edge's weight """ self.__ni_in[neighbor_id] = weight def get_connections_out(self) ->dict: """ Return a dictionary that holds all the "edges" that connected from this node, each edge is represented using a pair (key, edge weight). :return: dictionary (key, edge weight). """ return self.__ni_out def get_connections_in(self) ->dict: """ Return a dictionary that holds all the "edges" that connected to this node, each edge is represented using a pair (key, edge weight). :return: dictionary (key, edge weight). """ return self.__ni_in def get_key(self) ->int: """ Return this node key. :return: key """ return self.__key def get_location(self) ->tuple: """ Return this node location as a 3DPoint (x, y, z). :return: this node location """ return self.__location def set_location(self, location: tuple) ->None: """ Allows to add location to this node. This method used for load and plot graphs that their nodes have no position. :param location: the new position of this node """ self.__location = location def as_dict_node(self): """ Return the node as dictionary {"pos": "x", "y", "z", "id": key} :return: the node as dictionary """ loc_as_str = str(self.get_location()) m_dict = {'pos': loc_as_str[1:-1], 'id': self.get_key()} return m_dict def as_dict_edge(self): """ Return the edge as dictionary {"src": src node_id, "w": edge weight, "dest": dest node_id} :return: the edge as dictionary """ l_list = [] for k, v in self.get_connections_out().items(): m_dict = {'src': int(self.get_key()), 'w': float(v), 'dest': int(k) } l_list.append(m_dict) return l_list def __repr__(self): return str([self.get_key()]) def __str__(self) ->str: return 'Node: id: ' + str(self.__key) + ' neighbors: ' + str(self. __ni_out) def __eq__(self, o: object) ->bool: if self is o: return True if o is None or self.__class__ is not o.__class__: return False other = o return self.__key == other.__key and self.__location.__eq__(other. __location) and self.__ni_in.__eq__(other.__ni_in ) and self.__ni_out.__eq__(other.__ni_out)
class Node: """ This class represent a node (vertex). """ def __init__(self, k: int=None, loc: tuple=None, **kwargs): """ Each node contain dew fields: key: node_id. location: node's position represent as 3DPoint. ni_out: a dictionary that holds all the "edges" that connected from this node, each edge is represented using a pair (key, edge weight). ni_in: a dictionary that holds all the "edges" that connected to this node, each edge is represented using a pair (key, edge weight) """ self.__key = k self.__location = loc self.__ni_out = {} self.__ni_in = {} def add_neighbor_out(self, neighbor_id: int, weight: float) ->None: """ Add "edge" that connected from this node (node_id ---> neighbor_id). :param neighbor_id: dest node key :param weight: edge's weight """ self.__ni_out[neighbor_id] = weight def add_neighbor_in(self, neighbor_id: int, weight: float) ->None: """ Add "edge" that connected to this node (neighbor_id ---> node_id). :param neighbor_id: dest node key :param weight: edge's weight """ self.__ni_in[neighbor_id] = weight def get_connections_out(self) ->dict: """ Return a dictionary that holds all the "edges" that connected from this node, each edge is represented using a pair (key, edge weight). :return: dictionary (key, edge weight). """ return self.__ni_out def get_connections_in(self) ->dict: """ Return a dictionary that holds all the "edges" that connected to this node, each edge is represented using a pair (key, edge weight). :return: dictionary (key, edge weight). """ return self.__ni_in def get_key(self) ->int: """ Return this node key. :return: key """ return self.__key def get_location(self) ->tuple: """ Return this node location as a 3DPoint (x, y, z). :return: this node location """ return self.__location def set_location(self, location: tuple) ->None: """ Allows to add location to this node. This method used for load and plot graphs that their nodes have no position. :param location: the new position of this node """ self.__location = location def as_dict_node(self): """ Return the node as dictionary {"pos": "x", "y", "z", "id": key} :return: the node as dictionary """ loc_as_str = str(self.get_location()) m_dict = {'pos': loc_as_str[1:-1], 'id': self.get_key()} return m_dict def as_dict_edge(self): """ Return the edge as dictionary {"src": src node_id, "w": edge weight, "dest": dest node_id} :return: the edge as dictionary """ l_list = [] for k, v in self.get_connections_out().items(): m_dict = {'src': int(self.get_key()), 'w': float(v), 'dest': int(k) } l_list.append(m_dict) return l_list def __repr__(self): return str([self.get_key()]) def __str__(self) ->str: return 'Node: id: ' + str(self.__key) + ' neighbors: ' + str(self. __ni_out) def __eq__(self, o: object) ->bool: if self is o: return True if o is None or self.__class__ is not o.__class__: return False other = o return self.__key == other.__key and self.__location.__eq__(other. __location) and self.__ni_in.__eq__(other.__ni_in ) and self.__ni_out.__eq__(other.__ni_out)
class Node: """ This class represent a node (vertex). """ def __init__(self, k: int = None, loc: tuple = None, **kwargs): """ Each node contain dew fields: key: node_id. location: node's position represent as 3DPoint. ni_out: a dictionary that holds all the "edges" that connected from this node, each edge is represented using a pair (key, edge weight). ni_in: a dictionary that holds all the "edges" that connected to this node, each edge is represented using a pair (key, edge weight) """ self.__key = k self.__location = loc self.__ni_out = {} self.__ni_in = {} def add_neighbor_out(self, neighbor_id: int, weight: float) -> None: """ Add "edge" that connected from this node (node_id ---> neighbor_id). :param neighbor_id: dest node key :param weight: edge's weight """ self.__ni_out[neighbor_id] = weight def add_neighbor_in(self, neighbor_id: int, weight: float) -> None: """ Add "edge" that connected to this node (neighbor_id ---> node_id). :param neighbor_id: dest node key :param weight: edge's weight """ self.__ni_in[neighbor_id] = weight def get_connections_out(self) -> dict: """ Return a dictionary that holds all the "edges" that connected from this node, each edge is represented using a pair (key, edge weight). :return: dictionary (key, edge weight). """ return self.__ni_out def get_connections_in(self) -> dict: """ Return a dictionary that holds all the "edges" that connected to this node, each edge is represented using a pair (key, edge weight). :return: dictionary (key, edge weight). """ return self.__ni_in def get_key(self) -> int: """ Return this node key. :return: key """ return self.__key def get_location(self) -> tuple: """ Return this node location as a 3DPoint (x, y, z). :return: this node location """ return self.__location def set_location(self, location: tuple) -> None: """ Allows to add location to this node. This method used for load and plot graphs that their nodes have no position. :param location: the new position of this node """ self.__location = location def as_dict_node(self): """ Return the node as dictionary {"pos": "x", "y", "z", "id": key} :return: the node as dictionary """ loc_as_str = str(self.get_location()) m_dict = {"pos": loc_as_str[1:-1], "id": self.get_key()} return m_dict def as_dict_edge(self): """ Return the edge as dictionary {"src": src node_id, "w": edge weight, "dest": dest node_id} :return: the edge as dictionary """ l_list = [] for k, v in self.get_connections_out().items(): m_dict = {"src": int(self.get_key()), "w": float(v), "dest": int(k)} l_list.append(m_dict) return l_list def __repr__(self): return str([self.get_key()]) def __str__(self) -> str: return "Node: id: " + str(self.__key) + ' neighbors: ' + str(self.__ni_out) def __eq__(self, o: object) -> bool: if self is o: return True if o is None or self.__class__ is not o.__class__: return False other = o return self.__key == other.__key and self.__location.__eq__(other.__location) and self.__ni_in.__eq__( other.__ni_in) and self.__ni_out.__eq__(other.__ni_out)
[ 12, 13, 14, 15, 16 ]
1,365
21d261dec6668a24030f37b7dcb87c0132e63528
<mask token> class EditUserProfileView(LoginRequiredMixin, UpdateView): model = Profile form_class = UserProfileForm template_name = 'profile.html'
<mask token> @login_required def home(request): return render(request, 'home.html') <mask token> class EditUserProfileView(LoginRequiredMixin, UpdateView): model = Profile form_class = UserProfileForm template_name = 'profile.html'
<mask token> @login_required def home(request): return render(request, 'home.html') def signup(request): if request.method == 'POST': form = SignUpForm(request.POST) if form.is_valid(): user = form.save() user.refresh_from_db() user.profile.birth_date = form.cleaned_data.get('birth_date') user.save() raw_password = form.cleaned_data.get('password1') return redirect('login') else: form = SignUpForm() return render(request, 'signup.html', {'form': form}) class EditUserProfileView(LoginRequiredMixin, UpdateView): model = Profile form_class = UserProfileForm template_name = 'profile.html'
from django.contrib.auth.decorators import login_required from django.contrib.auth import login, authenticate from django.shortcuts import render, redirect from mysite.core.forms import SignUpForm, UserProfileForm from django.views.generic import UpdateView from .models import Profile from django.contrib.auth.mixins import LoginRequiredMixin @login_required def home(request): return render(request, 'home.html') def signup(request): if request.method == 'POST': form = SignUpForm(request.POST) if form.is_valid(): user = form.save() user.refresh_from_db() user.profile.birth_date = form.cleaned_data.get('birth_date') user.save() raw_password = form.cleaned_data.get('password1') return redirect('login') else: form = SignUpForm() return render(request, 'signup.html', {'form': form}) class EditUserProfileView(LoginRequiredMixin, UpdateView): model = Profile form_class = UserProfileForm template_name = 'profile.html'
from django.contrib.auth.decorators import login_required from django.contrib.auth import login, authenticate from django.shortcuts import render, redirect from mysite.core.forms import SignUpForm,UserProfileForm from django.views.generic import UpdateView from .models import Profile from django.contrib.auth.mixins import LoginRequiredMixin @login_required def home(request): return render(request, 'home.html') def signup(request): if request.method == 'POST': form = SignUpForm(request.POST) if form.is_valid(): user = form.save() user.refresh_from_db() # load the profile instance created by the signal user.profile.birth_date = form.cleaned_data.get('birth_date') user.save() raw_password = form.cleaned_data.get('password1') # user = authenticate(username=user.username, password=raw_password) # login(request, user) return redirect('login') else: form = SignUpForm() return render(request, 'signup.html', {'form': form}) class EditUserProfileView(LoginRequiredMixin,UpdateView): model = Profile form_class = UserProfileForm template_name = "profile.html"
[ 2, 3, 4, 5, 6 ]
1,366
c8565e1b5659dd0908aabf91e07738a798dc3232
<mask token>
<mask token> regressor.fit(X, y) <mask token> plt.scatter(X, y, color='red') plt.plot(X_grid, regressor.predict(X_grid), color='blue') plt.scatter(6.5, y_pred, color='green') plt.title('Salary vs Title') plt.xlabel('Title') plt.ylabel('Salary') plt.show()
<mask token> dataset = pd.read_csv('Position_Salaries.csv') X = dataset.iloc[:, 1:-1].values y = dataset.iloc[:, dataset.shape[1] - 1].values <mask token> regressor = DecisionTreeRegressor(random_state=0) regressor.fit(X, y) y_pred = regressor.predict(np.reshape([6.5], (-1, 1))) X_grid = np.arange(min(X), max(X), 0.1) X_grid = X_grid.reshape((len(X_grid), 1)) plt.scatter(X, y, color='red') plt.plot(X_grid, regressor.predict(X_grid), color='blue') plt.scatter(6.5, y_pred, color='green') plt.title('Salary vs Title') plt.xlabel('Title') plt.ylabel('Salary') plt.show()
import numpy as np import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('Position_Salaries.csv') X = dataset.iloc[:, 1:-1].values y = dataset.iloc[:, dataset.shape[1] - 1].values from sklearn.tree import DecisionTreeRegressor regressor = DecisionTreeRegressor(random_state=0) regressor.fit(X, y) y_pred = regressor.predict(np.reshape([6.5], (-1, 1))) X_grid = np.arange(min(X), max(X), 0.1) X_grid = X_grid.reshape((len(X_grid), 1)) plt.scatter(X, y, color='red') plt.plot(X_grid, regressor.predict(X_grid), color='blue') plt.scatter(6.5, y_pred, color='green') plt.title('Salary vs Title') plt.xlabel('Title') plt.ylabel('Salary') plt.show()
import numpy as np import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('Position_Salaries.csv') X = dataset.iloc[:, 1:-1].values y = dataset.iloc[:, dataset.shape[1]-1].values #Fitting the Decision Tree Regression from sklearn.tree import DecisionTreeRegressor regressor = DecisionTreeRegressor(random_state = 0) regressor.fit(X, y) #Predicting a new result y_pred = regressor.predict(np.reshape([6.5], (-1, 1))) #Visualizing the results X_grid = np.arange(min(X), max(X), 0.1) X_grid = X_grid.reshape((len(X_grid), 1)) plt.scatter(X, y, color = 'red') plt.plot(X_grid, regressor.predict(X_grid), color = 'blue') plt.scatter(6.5, y_pred, color = 'green') plt.title('Salary vs Title') plt.xlabel('Title') plt.ylabel('Salary') plt.show()
[ 0, 1, 2, 3, 4 ]
1,367
53cd9d5a79e97bb1af69446a82c747248c3cc298
<mask token> def _get_headers(environ): """ Returns only proper HTTP headers. """ for key, value in iteritems(environ): key = str(key) if key.startswith('HTTP_') and key not in ('HTTP_CONTENT_TYPE', 'HTTP_CONTENT_LENGTH'): yield key[5:].replace('_', '-').title(), value elif key in ('CONTENT_TYPE', 'CONTENT_LENGTH'): yield key.replace('_', '-').title(), value <mask token>
<mask token> def _get_headers(environ): """ Returns only proper HTTP headers. """ for key, value in iteritems(environ): key = str(key) if key.startswith('HTTP_') and key not in ('HTTP_CONTENT_TYPE', 'HTTP_CONTENT_LENGTH'): yield key[5:].replace('_', '-').title(), value elif key in ('CONTENT_TYPE', 'CONTENT_LENGTH'): yield key.replace('_', '-').title(), value def get_host(environ, use_x_forwarded_for=False): """ Return the host for the given WSGI environment. """ if use_x_forwarded_for and 'HTTP_X_FORWARDED_HOST' in environ: rv = environ['HTTP_X_FORWARDED_HOST'] if environ['wsgi.url_scheme'] == 'http' and rv.endswith(':80'): rv = rv[:-3] elif environ['wsgi.url_scheme'] == 'https' and rv.endswith(':443'): rv = rv[:-4] elif environ.get('HTTP_HOST'): rv = environ['HTTP_HOST'] if environ['wsgi.url_scheme'] == 'http' and rv.endswith(':80'): rv = rv[:-3] elif environ['wsgi.url_scheme'] == 'https' and rv.endswith(':443'): rv = rv[:-4] elif environ.get('SERVER_NAME'): rv = environ['SERVER_NAME'] if (environ['wsgi.url_scheme'], environ['SERVER_PORT']) not in (( 'https', '443'), ('http', '80')): rv += ':' + environ['SERVER_PORT'] else: rv = 'unknown' return rv
<mask token> if TYPE_CHECKING: from typing import Dict from typing import Iterator from typing import Tuple def _get_headers(environ): """ Returns only proper HTTP headers. """ for key, value in iteritems(environ): key = str(key) if key.startswith('HTTP_') and key not in ('HTTP_CONTENT_TYPE', 'HTTP_CONTENT_LENGTH'): yield key[5:].replace('_', '-').title(), value elif key in ('CONTENT_TYPE', 'CONTENT_LENGTH'): yield key.replace('_', '-').title(), value def get_host(environ, use_x_forwarded_for=False): """ Return the host for the given WSGI environment. """ if use_x_forwarded_for and 'HTTP_X_FORWARDED_HOST' in environ: rv = environ['HTTP_X_FORWARDED_HOST'] if environ['wsgi.url_scheme'] == 'http' and rv.endswith(':80'): rv = rv[:-3] elif environ['wsgi.url_scheme'] == 'https' and rv.endswith(':443'): rv = rv[:-4] elif environ.get('HTTP_HOST'): rv = environ['HTTP_HOST'] if environ['wsgi.url_scheme'] == 'http' and rv.endswith(':80'): rv = rv[:-3] elif environ['wsgi.url_scheme'] == 'https' and rv.endswith(':443'): rv = rv[:-4] elif environ.get('SERVER_NAME'): rv = environ['SERVER_NAME'] if (environ['wsgi.url_scheme'], environ['SERVER_PORT']) not in (( 'https', '443'), ('http', '80')): rv += ':' + environ['SERVER_PORT'] else: rv = 'unknown' return rv
<mask token> from sentry_sdk._compat import iteritems from sentry_sdk._types import TYPE_CHECKING if TYPE_CHECKING: from typing import Dict from typing import Iterator from typing import Tuple def _get_headers(environ): """ Returns only proper HTTP headers. """ for key, value in iteritems(environ): key = str(key) if key.startswith('HTTP_') and key not in ('HTTP_CONTENT_TYPE', 'HTTP_CONTENT_LENGTH'): yield key[5:].replace('_', '-').title(), value elif key in ('CONTENT_TYPE', 'CONTENT_LENGTH'): yield key.replace('_', '-').title(), value def get_host(environ, use_x_forwarded_for=False): """ Return the host for the given WSGI environment. """ if use_x_forwarded_for and 'HTTP_X_FORWARDED_HOST' in environ: rv = environ['HTTP_X_FORWARDED_HOST'] if environ['wsgi.url_scheme'] == 'http' and rv.endswith(':80'): rv = rv[:-3] elif environ['wsgi.url_scheme'] == 'https' and rv.endswith(':443'): rv = rv[:-4] elif environ.get('HTTP_HOST'): rv = environ['HTTP_HOST'] if environ['wsgi.url_scheme'] == 'http' and rv.endswith(':80'): rv = rv[:-3] elif environ['wsgi.url_scheme'] == 'https' and rv.endswith(':443'): rv = rv[:-4] elif environ.get('SERVER_NAME'): rv = environ['SERVER_NAME'] if (environ['wsgi.url_scheme'], environ['SERVER_PORT']) not in (( 'https', '443'), ('http', '80')): rv += ':' + environ['SERVER_PORT'] else: rv = 'unknown' return rv
""" Copyright (c) 2007 by the Pallets team. Some rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE AND DOCUMENTATION IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE AND DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from sentry_sdk._compat import iteritems from sentry_sdk._types import TYPE_CHECKING if TYPE_CHECKING: from typing import Dict from typing import Iterator from typing import Tuple # # `get_headers` comes from `werkzeug.datastructures.EnvironHeaders` # https://github.com/pallets/werkzeug/blob/0.14.1/werkzeug/datastructures.py#L1361 # # We need this function because Django does not give us a "pure" http header # dict. So we might as well use it for all WSGI integrations. # def _get_headers(environ): # type: (Dict[str, str]) -> Iterator[Tuple[str, str]] """ Returns only proper HTTP headers. """ for key, value in iteritems(environ): key = str(key) if key.startswith("HTTP_") and key not in ( "HTTP_CONTENT_TYPE", "HTTP_CONTENT_LENGTH", ): yield key[5:].replace("_", "-").title(), value elif key in ("CONTENT_TYPE", "CONTENT_LENGTH"): yield key.replace("_", "-").title(), value # # `get_host` comes from `werkzeug.wsgi.get_host` # https://github.com/pallets/werkzeug/blob/1.0.1/src/werkzeug/wsgi.py#L145 # def get_host(environ, use_x_forwarded_for=False): # type: (Dict[str, str], bool) -> str """ Return the host for the given WSGI environment. """ if use_x_forwarded_for and "HTTP_X_FORWARDED_HOST" in environ: rv = environ["HTTP_X_FORWARDED_HOST"] if environ["wsgi.url_scheme"] == "http" and rv.endswith(":80"): rv = rv[:-3] elif environ["wsgi.url_scheme"] == "https" and rv.endswith(":443"): rv = rv[:-4] elif environ.get("HTTP_HOST"): rv = environ["HTTP_HOST"] if environ["wsgi.url_scheme"] == "http" and rv.endswith(":80"): rv = rv[:-3] elif environ["wsgi.url_scheme"] == "https" and rv.endswith(":443"): rv = rv[:-4] elif environ.get("SERVER_NAME"): rv = environ["SERVER_NAME"] if (environ["wsgi.url_scheme"], environ["SERVER_PORT"]) not in ( ("https", "443"), ("http", "80"), ): rv += ":" + environ["SERVER_PORT"] else: # In spite of the WSGI spec, SERVER_NAME might not be present. rv = "unknown" return rv
[ 1, 2, 3, 4, 5 ]
1,368
ee5e970f32b1d601f9dc3ab37a5028ce7ff8a32e
<mask token>
<mask token> print(message)
message = 'Hello Python World ' print(message)
# message 为定义的变量 message = 'Hello Python World ' print(message)
null
[ 0, 1, 2, 3 ]
1,369
8d1067a9bb0629276ef27de91f63cf2370a44e24
<mask token> class Protocol: <mask token> <mask token> <mask token> @abstractmethod def execute(self, command): """"execute command method""" class LocalProtocol(Protocol): """simple protocol for using bots within app""" def __init__(self, command_executor): self._command_executor = command_executor def execute(self, command): if not self._command_executor.has_executor(command.name): return Protocol.FAIL try: result = self._command_executor.execute(command) except: result = Protocol.FAIL return result <mask token>
<mask token> class Protocol: <mask token> __metaclass__ = ABCMeta FAIL = 'Failed' @abstractmethod def execute(self, command): """"execute command method""" class LocalProtocol(Protocol): """simple protocol for using bots within app""" def __init__(self, command_executor): self._command_executor = command_executor def execute(self, command): if not self._command_executor.has_executor(command.name): return Protocol.FAIL try: result = self._command_executor.execute(command) except: result = Protocol.FAIL return result <mask token>
<mask token> class Protocol: """base protocol class""" __metaclass__ = ABCMeta FAIL = 'Failed' @abstractmethod def execute(self, command): """"execute command method""" class LocalProtocol(Protocol): """simple protocol for using bots within app""" def __init__(self, command_executor): self._command_executor = command_executor def execute(self, command): if not self._command_executor.has_executor(command.name): return Protocol.FAIL try: result = self._command_executor.execute(command) except: result = Protocol.FAIL return result <mask token>
from abc import ABCMeta, abstractmethod __author__ = 'Alexiy' class Protocol: """base protocol class""" __metaclass__ = ABCMeta FAIL = 'Failed' @abstractmethod def execute(self, command): """"execute command method""" class LocalProtocol(Protocol): """simple protocol for using bots within app""" def __init__(self, command_executor): self._command_executor = command_executor def execute(self, command): if not self._command_executor.has_executor(command.name): return Protocol.FAIL try: result = self._command_executor.execute(command) except: result = Protocol.FAIL return result Protocol.register(LocalProtocol)
null
[ 6, 7, 8, 11 ]
1,370
1ffdc2845bc503c0a30407de444a152f8cc68d57
<mask token>
<mask token> path.append('D:/Github/astrophy-research/mylib') path.append('D:/Github/astrophy-research/multi_shear_detect') path.append('%s/work/mylib' % my_home) <mask token> if rank == 0: nbytes = 2 * signal_num * itemsize else: nbytes = 0 <mask token> print(rank, signal_est) comm.Barrier() if rank == 0: print(signals) print(result) mc = numpy.array(tool_box.data_fit(signals, result[0], result[1])) mc[0] = mc[0] - 1 print(mc)
<mask token> my_home = os.popen('echo $MYWORK_DIR').readlines()[0][:-1] <mask token> path.append('D:/Github/astrophy-research/mylib') path.append('D:/Github/astrophy-research/multi_shear_detect') path.append('%s/work/mylib' % my_home) <mask token> comm = MPI.COMM_WORLD rank = comm.Get_rank() numprocs = comm.Get_size() source_num = int(argv[1]) * 10000 sigma_1 = float(argv[2]) sigma_2 = float(argv[3]) signal_num = numprocs signals = numpy.linspace(-0.05, 0.05, signal_num) itemsize = MPI.DOUBLE.Get_size() if rank == 0: nbytes = 2 * signal_num * itemsize else: nbytes = 0 win1 = MPI.Win.Allocate_shared(nbytes, itemsize, comm=comm) buf1, itemsize = win1.Shared_query(0) result = numpy.ndarray(buffer=buf1, dtype='d', shape=(2, signal_num)) fq = Fourier_Quad(12, 123) n = numpy.ones((source_num,)) source = numpy.random.normal(signals[rank], sigma_1, source_num ) + numpy.random.normal(-signals[rank] / 100, sigma_2, source_num) signal_est = fq.find_shear(source, n, 8, scale=100, left=-0.08, right=0.08)[:2] result[:, rank] = signal_est print(rank, signal_est) comm.Barrier() if rank == 0: print(signals) print(result) mc = numpy.array(tool_box.data_fit(signals, result[0], result[1])) mc[0] = mc[0] - 1 print(mc)
import os my_home = os.popen('echo $MYWORK_DIR').readlines()[0][:-1] import numpy from sys import path, argv path.append('D:/Github/astrophy-research/mylib') path.append('D:/Github/astrophy-research/multi_shear_detect') path.append('%s/work/mylib' % my_home) from Fourier_Quad import Fourier_Quad import tool_box from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() numprocs = comm.Get_size() source_num = int(argv[1]) * 10000 sigma_1 = float(argv[2]) sigma_2 = float(argv[3]) signal_num = numprocs signals = numpy.linspace(-0.05, 0.05, signal_num) itemsize = MPI.DOUBLE.Get_size() if rank == 0: nbytes = 2 * signal_num * itemsize else: nbytes = 0 win1 = MPI.Win.Allocate_shared(nbytes, itemsize, comm=comm) buf1, itemsize = win1.Shared_query(0) result = numpy.ndarray(buffer=buf1, dtype='d', shape=(2, signal_num)) fq = Fourier_Quad(12, 123) n = numpy.ones((source_num,)) source = numpy.random.normal(signals[rank], sigma_1, source_num ) + numpy.random.normal(-signals[rank] / 100, sigma_2, source_num) signal_est = fq.find_shear(source, n, 8, scale=100, left=-0.08, right=0.08)[:2] result[:, rank] = signal_est print(rank, signal_est) comm.Barrier() if rank == 0: print(signals) print(result) mc = numpy.array(tool_box.data_fit(signals, result[0], result[1])) mc[0] = mc[0] - 1 print(mc)
import os my_home = os.popen("echo $MYWORK_DIR").readlines()[0][:-1] import numpy from sys import path, argv path.append("D:/Github/astrophy-research/mylib") path.append("D:/Github/astrophy-research/multi_shear_detect") path.append('%s/work/mylib' % my_home) from Fourier_Quad import Fourier_Quad # import h5py # from plot_tool import Image_Plot import tool_box from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() numprocs = comm.Get_size() source_num = int(argv[1])*10000 sigma_1 = float(argv[2]) sigma_2 = float(argv[3]) signal_num = numprocs signals = numpy.linspace(-0.05, 0.05, signal_num) itemsize = MPI.DOUBLE.Get_size() if rank == 0: # bytes for 10 double elements nbytes = 2*signal_num*itemsize else: nbytes = 0 # on rank 0 of comm, create the contiguous shared block win1 = MPI.Win.Allocate_shared(nbytes, itemsize, comm=comm) buf1, itemsize = win1.Shared_query(0) result = numpy.ndarray(buffer=buf1, dtype='d', shape=(2, signal_num)) # array filled with zero fq = Fourier_Quad(12,123) n = numpy.ones((source_num, )) # for i in range(signal_num): source = numpy.random.normal(signals[rank], sigma_1, source_num) + numpy.random.normal(-signals[rank]/100, sigma_2, source_num) signal_est = fq.find_shear(source, n, 8,scale=100, left=-0.08, right=0.08)[:2] result[:, rank] = signal_est print(rank, signal_est) comm.Barrier() if rank == 0: # result[2] = signals print(signals) print(result) mc = numpy.array(tool_box.data_fit(signals, result[0], result[1])) mc[0] = mc[0] - 1 print(mc) # img = Image_Plot() # img.subplots(1,1) # img.axs[0][0].errorbar(signals, result[0], result[1]) # img.axs[0][0].plot([-0.06,0.06],[-0.06, 0.06]) # img.show_img()
[ 0, 1, 2, 3, 4 ]
1,371
7e5cf782692d9cfb2718b2efcc83efa2ecb815cd
<mask token>
<mask token> try: from psycopg2 import connect except: pass
<mask token> import pgnumpy import cpgnumpy from pgnumpy import connect from pgnumpy import PgNumpy from pgnumpy import PgInput from pgnumpy import ArrayWriter from pgnumpy import ArrayStringifier from pgnumpy import array2table from pgnumpy import test from pgnumpy import test_simple try: from psycopg2 import connect except: pass
""" Package: pgnumpy Description A class and a set of functions for interacting with a PostgreSql database. A C++ extension module allows returning results as a NumPy array. Numpy arrays can also be written to tables. The workhorse class is called PgNumpy This class has limited functionality compared to the full Python database api specification. It can execute arbitrary queries and extract results into numpy arrays. However, cursors are not yet supported. For getting results, only the fetchall() command is available, as the goal is always to extract all rows into a single numpy structure rather than work row by row. More generic DB-API compliant packges like psycopg are more suitable when more flexible operations are needed. Classes: PgNumpy: The class used in all database interactions. This class represents a database connection and facilitates executing queries and extracting results. See docs for pgnumpy.PgNumpy for more details. PgInput: A class for writing input files for use in a COPY into the database. ArrayWriter: Write arrays to a file for input to postgres. This slower version can be used if recfile is not available. ArrayStringifier: Make a string from an array, possibly with brackets indicating dimensions. Convenience Functions: connect: Create a database connection, returning a PgNumpy object. If conninfo is None or "" then the "default" connection based on the PGUSER and PGDATABASE environment variables is used. array2table: Write array with fields (a structure) to a postgres table. If the table does not yet exist it is created with column definitions based on the input array. If it does exist the data are appended as new rows in the table. """ import pgnumpy import cpgnumpy from pgnumpy import connect from pgnumpy import PgNumpy from pgnumpy import PgInput from pgnumpy import ArrayWriter from pgnumpy import ArrayStringifier from pgnumpy import array2table #from pgnumpy import tables #from pgnumpy import table_exists #from pgnumpy import describe from pgnumpy import test from pgnumpy import test_simple #from pgnumpy import obliterate #from pgnumpy import compare_arrays # attempt to import the connect method from psycopg2 try: from psycopg2 import connect except: pass
null
[ 0, 1, 2, 3 ]
1,372
34f98d4a6a15c9a7b42f237cab204b736dc97136
<mask token>
{'name': 'Clarico CMS Blocks', 'category': 'Website', 'version': '1.0', 'summary': '13 CMS Building Blocks', 'description': '', 'depends': [ 'snippet_style_1', 'snippet_style_2', 'snippet_style_3', 'snippet_style_4', 'snippet_style_5', 'snippet_style_6', 'snippet_style_7', 'snippet_style_8', 'snippet_style_9', 'snippet_style_10', 'snippet_style_11', 'snippet_style_12', 'snippet_style_13'], 'author': 'Emipro Technologies Pvt. Ltd.', 'website': 'http://www.emiprotechnologies.com', 'installable': True}
{ # Theme information 'name' : 'Clarico CMS Blocks', 'category' : 'Website', 'version' : '1.0', 'summary': '13 CMS Building Blocks', 'description': """""", # Dependencies 'depends': [ 'snippet_style_1', 'snippet_style_2', 'snippet_style_3', 'snippet_style_4', 'snippet_style_5', 'snippet_style_6', 'snippet_style_7', 'snippet_style_8', 'snippet_style_9', 'snippet_style_10', 'snippet_style_11', 'snippet_style_12', 'snippet_style_13', ], # Author 'author': 'Emipro Technologies Pvt. Ltd.', 'website': 'http://www.emiprotechnologies.com', # Technical 'installable': True, }
null
null
[ 0, 1, 2 ]
1,373
c27c2df1830f066ca4f973c46967722869090d05
<mask token>
<mask token> class Config(object): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token>
<mask token> class Config(object): from_train_file = 'data/dev.en' to_train_file = 'data/dev.vi' _PAD = b'_PAD' _GO = b'_GO' _EOS = b'_EOS' _UNK = b'_UNK' _START_VOCAB = [_PAD, _GO, _EOS, _UNK] PAD_ID = 0 GO_ID = 1 EOS_ID = 2 UNK_ID = 3 batch_size = 64 max_epochs = 1 early_stopping = 2 dropout = 0.9 lr = 0.5 l2 = 0.001 learning_rate_decay = 0.99 batch_size = 32 size = 1024 num_layers = 3 from_vocab_size = 10000 to_vocab_size = 10000 data_dir = 'data/' dev_dir = 'data/' max_train_data_size = 200 steps_per_checkpoint = 5 forward_only = False buckets = [(10, 50)] num_samples = 512 encode_layers = 3 encode_num_steps = 10 encode_hidden_size = 50 decode_layers = 3 encode_num_steps = 10 decode_hidden_size = 50 dtype = tf.float32
import tensorflow as tf class Config(object): from_train_file = 'data/dev.en' to_train_file = 'data/dev.vi' _PAD = b'_PAD' _GO = b'_GO' _EOS = b'_EOS' _UNK = b'_UNK' _START_VOCAB = [_PAD, _GO, _EOS, _UNK] PAD_ID = 0 GO_ID = 1 EOS_ID = 2 UNK_ID = 3 batch_size = 64 max_epochs = 1 early_stopping = 2 dropout = 0.9 lr = 0.5 l2 = 0.001 learning_rate_decay = 0.99 batch_size = 32 size = 1024 num_layers = 3 from_vocab_size = 10000 to_vocab_size = 10000 data_dir = 'data/' dev_dir = 'data/' max_train_data_size = 200 steps_per_checkpoint = 5 forward_only = False buckets = [(10, 50)] num_samples = 512 encode_layers = 3 encode_num_steps = 10 encode_hidden_size = 50 decode_layers = 3 encode_num_steps = 10 decode_hidden_size = 50 dtype = tf.float32
import tensorflow as tf class Config(object): # Source and Target files from_train_file='data/dev.en' to_train_file='data/dev.vi' # Special characters and ID's _PAD = b"_PAD" _GO = b"_GO" _EOS = b"_EOS" _UNK = b"_UNK" _START_VOCAB = [_PAD, _GO, _EOS, _UNK] PAD_ID = 0 GO_ID = 1 EOS_ID = 2 UNK_ID = 3 # NMT hyperparameters batch_size = 64 max_epochs = 1 early_stopping = 2 dropout = 0.9 lr = 0.5 l2 = 0.001 learning_rate_decay = 0.99 batch_size = 32 size = 1024 num_layers = 3 from_vocab_size = 10000 to_vocab_size = 10000 data_dir = "data/" dev_dir = "data/" max_train_data_size = 200 steps_per_checkpoint = 5 forward_only = False # Buckets buckets = [(10,50)] # Other config variables num_samples = 512 # Encoding parameters encode_layers = 3 encode_num_steps = 10 encode_hidden_size = 50 # Encoding parameters decode_layers = 3 encode_num_steps = 10 decode_hidden_size = 50 dtype = tf.float32
[ 0, 1, 2, 3, 4 ]
1,374
153e7e66e2b796d011b78aed102d30e37bb0b80f
<mask token>
<mask token> def main(): env = gym.make('Pendulum-v0') log_dir = 'log/pendulum' agent = DDPG(env, sigma=0.2, num_episodes=250, buffer_size=1000000, batch_size=64, tau=0.001, batch_norm=False, merge_layer=0) agent.train() agent.eval_all(log_dir + '/models', num_eps=10) <mask token>
<mask token> def main(): env = gym.make('Pendulum-v0') log_dir = 'log/pendulum' agent = DDPG(env, sigma=0.2, num_episodes=250, buffer_size=1000000, batch_size=64, tau=0.001, batch_norm=False, merge_layer=0) agent.train() agent.eval_all(log_dir + '/models', num_eps=10) if __name__ == '__main__': main()
import gym from ddpg import DDPG def main(): env = gym.make('Pendulum-v0') log_dir = 'log/pendulum' agent = DDPG(env, sigma=0.2, num_episodes=250, buffer_size=1000000, batch_size=64, tau=0.001, batch_norm=False, merge_layer=0) agent.train() agent.eval_all(log_dir + '/models', num_eps=10) if __name__ == '__main__': main()
import gym from ddpg import DDPG def main(): #env = gym.make('LunarLanderContinuous-v2') #log_dir = 'log/lander' env = gym.make('Pendulum-v0') log_dir = 'log/pendulum' # paper settings # agent = DDPG(env, sigma=0.2, num_episodes=1000, buffer_size=1000000, batch_size=64, # tau=1e-3, batch_norm=True, merge_layer=2) # did not work unless I merged action into critic at first layer # worked btter without batchnorm agent = DDPG(env, sigma=0.2, num_episodes=250, buffer_size=1000000, batch_size=64, tau=1e-3, batch_norm=False, merge_layer=0) agent.train() agent.eval_all(log_dir+'/models', num_eps=10) if __name__ == '__main__': main()
[ 0, 1, 2, 3, 4 ]
1,375
917a291c7b62dee392d7411c3e039949d74d7af8
<mask token> class Nest: <mask token> <mask token> <mask token> def update_pos(self, new_position: Tuple[float, float]) ->None: """ If the new position's value is better than the old one, update the nests position and value. Arguments: new_position {Tuple[float, float]} -- The new position """ new_value = self.__function(new_position) if new_value < self.__value: self.__value = new_value self.__position = new_position
<mask token> class Nest: def __init__(self, function, lower_boundary, upper_boundary): self.__function = function self.__lower_boundary = lower_boundary self.__upper_boundary = upper_boundary self.__position = np.random.uniform(self.__lower_boundary, self. __upper_boundary, 2) self.__value = self.__function(self.__position) <mask token> <mask token> def update_pos(self, new_position: Tuple[float, float]) ->None: """ If the new position's value is better than the old one, update the nests position and value. Arguments: new_position {Tuple[float, float]} -- The new position """ new_value = self.__function(new_position) if new_value < self.__value: self.__value = new_value self.__position = new_position
<mask token> class Nest: def __init__(self, function, lower_boundary, upper_boundary): self.__function = function self.__lower_boundary = lower_boundary self.__upper_boundary = upper_boundary self.__position = np.random.uniform(self.__lower_boundary, self. __upper_boundary, 2) self.__value = self.__function(self.__position) <mask token> @property def value(self) ->float: return self.__value def update_pos(self, new_position: Tuple[float, float]) ->None: """ If the new position's value is better than the old one, update the nests position and value. Arguments: new_position {Tuple[float, float]} -- The new position """ new_value = self.__function(new_position) if new_value < self.__value: self.__value = new_value self.__position = new_position
<mask token> class Nest: def __init__(self, function, lower_boundary, upper_boundary): self.__function = function self.__lower_boundary = lower_boundary self.__upper_boundary = upper_boundary self.__position = np.random.uniform(self.__lower_boundary, self. __upper_boundary, 2) self.__value = self.__function(self.__position) @property def position(self) ->Tuple[float, float]: return self.__position @property def value(self) ->float: return self.__value def update_pos(self, new_position: Tuple[float, float]) ->None: """ If the new position's value is better than the old one, update the nests position and value. Arguments: new_position {Tuple[float, float]} -- The new position """ new_value = self.__function(new_position) if new_value < self.__value: self.__value = new_value self.__position = new_position
# ------------------------------------------------------------------------------------------------------ # Copyright (c) Leo Hanisch. All rights reserved. # Licensed under the BSD 3-Clause License. See LICENSE.txt in the project root for license information. # ------------------------------------------------------------------------------------------------------ from typing import Tuple import numpy as np class Nest: def __init__(self, function, lower_boundary, upper_boundary): self.__function = function self.__lower_boundary = lower_boundary self.__upper_boundary = upper_boundary # Randomly create a new nest position self.__position = np.random.uniform(self.__lower_boundary, self.__upper_boundary, 2) self.__value = self.__function(self.__position) @property def position(self) -> Tuple[float, float]: return self.__position @property def value(self) -> float: return self.__value def update_pos(self, new_position: Tuple[float, float]) -> None: """ If the new position's value is better than the old one, update the nests position and value. Arguments: new_position {Tuple[float, float]} -- The new position """ new_value = self.__function(new_position) if new_value < self.__value: self.__value = new_value self.__position = new_position
[ 2, 3, 4, 5, 7 ]
1,376
6455741bbda42b9d84428545ddd50a5d1b54a7ba
<mask token> def get_ports(): ports = serial.tools.list_ports.comports() ports_str = [] for port in ports: ports_str.append(port.device) return ports_str def start(): opt_mode = mode.get() opt_filename = filename.get() opt_port = portname.get() if not opt_mode or not opt_filename or not opt_mode: return messagebox.showwarning('Error', 'Invalid input') if opt_mode == MODE_PLAYBACK: read(opt_filename, opt_port) elif opt_mode == MODE_RECORD: print('record ' + opt_filename + ' ' + opt_port) action_button.set('Stop') <mask token>
<mask token> root.title('ChadBotX') <mask token> def pick_file(): newfilename = filedialog.askopenfilename(initialdir='/', title= 'Select file', filetypes=(('Byte files', '*.txt'), ('all files', '*.*'))) filename.set(newfilename) def get_ports(): ports = serial.tools.list_ports.comports() ports_str = [] for port in ports: ports_str.append(port.device) return ports_str def start(): opt_mode = mode.get() opt_filename = filename.get() opt_port = portname.get() if not opt_mode or not opt_filename or not opt_mode: return messagebox.showwarning('Error', 'Invalid input') if opt_mode == MODE_PLAYBACK: read(opt_filename, opt_port) elif opt_mode == MODE_RECORD: print('record ' + opt_filename + ' ' + opt_port) action_button.set('Stop') <mask token> label.pack() ttk.Button(root, text='Choose file', command=pick_file).pack(pady=(10, 7)) ttk.Label(root, text='File name:').pack() <mask token> ttk.Label(root, text='Port:').pack() ttk.Combobox(root, textvariable=portname, values=get_ports()).pack(pady=(0, 2), padx=(10, 10)) ttk.Radiobutton(root, text='Record', variable=mode, value=1).pack(pady=(5, 2)) ttk.Radiobutton(root, text='Playback', variable=mode, value=2).pack(pady=(2, 5) ) ttk.Button(root, textvariable=action_button, command=start).pack(pady=(2, 10)) root.mainloop()
<mask token> root = tkinter.Tk() root.title('ChadBotX') MODE_RECORD = 1 MODE_PLAYBACK = 2 portname = tkinter.StringVar(root, '') filename = tkinter.StringVar(root, '') mode = tkinter.IntVar(root, 0) action_button = tkinter.StringVar(root, 'Start') def pick_file(): newfilename = filedialog.askopenfilename(initialdir='/', title= 'Select file', filetypes=(('Byte files', '*.txt'), ('all files', '*.*'))) filename.set(newfilename) def get_ports(): ports = serial.tools.list_ports.comports() ports_str = [] for port in ports: ports_str.append(port.device) return ports_str def start(): opt_mode = mode.get() opt_filename = filename.get() opt_port = portname.get() if not opt_mode or not opt_filename or not opt_mode: return messagebox.showwarning('Error', 'Invalid input') if opt_mode == MODE_PLAYBACK: read(opt_filename, opt_port) elif opt_mode == MODE_RECORD: print('record ' + opt_filename + ' ' + opt_port) action_button.set('Stop') image = Image.open('./chad.png') photo = ImageTk.PhotoImage(image) label = tkinter.Label(image=photo) label.image = photo label.pack() ttk.Button(root, text='Choose file', command=pick_file).pack(pady=(10, 7)) ttk.Label(root, text='File name:').pack() entry = ttk.Entry(root, textvariable=filename).pack(pady=(0, 2)) ttk.Label(root, text='Port:').pack() ttk.Combobox(root, textvariable=portname, values=get_ports()).pack(pady=(0, 2), padx=(10, 10)) ttk.Radiobutton(root, text='Record', variable=mode, value=1).pack(pady=(5, 2)) ttk.Radiobutton(root, text='Playback', variable=mode, value=2).pack(pady=(2, 5) ) ttk.Button(root, textvariable=action_button, command=start).pack(pady=(2, 10)) root.mainloop()
import tkinter from tkinter import ttk, filedialog, messagebox import serial.tools.list_ports from PIL import ImageTk, Image from read_bytes import read root = tkinter.Tk() root.title('ChadBotX') MODE_RECORD = 1 MODE_PLAYBACK = 2 portname = tkinter.StringVar(root, '') filename = tkinter.StringVar(root, '') mode = tkinter.IntVar(root, 0) action_button = tkinter.StringVar(root, 'Start') def pick_file(): newfilename = filedialog.askopenfilename(initialdir='/', title= 'Select file', filetypes=(('Byte files', '*.txt'), ('all files', '*.*'))) filename.set(newfilename) def get_ports(): ports = serial.tools.list_ports.comports() ports_str = [] for port in ports: ports_str.append(port.device) return ports_str def start(): opt_mode = mode.get() opt_filename = filename.get() opt_port = portname.get() if not opt_mode or not opt_filename or not opt_mode: return messagebox.showwarning('Error', 'Invalid input') if opt_mode == MODE_PLAYBACK: read(opt_filename, opt_port) elif opt_mode == MODE_RECORD: print('record ' + opt_filename + ' ' + opt_port) action_button.set('Stop') image = Image.open('./chad.png') photo = ImageTk.PhotoImage(image) label = tkinter.Label(image=photo) label.image = photo label.pack() ttk.Button(root, text='Choose file', command=pick_file).pack(pady=(10, 7)) ttk.Label(root, text='File name:').pack() entry = ttk.Entry(root, textvariable=filename).pack(pady=(0, 2)) ttk.Label(root, text='Port:').pack() ttk.Combobox(root, textvariable=portname, values=get_ports()).pack(pady=(0, 2), padx=(10, 10)) ttk.Radiobutton(root, text='Record', variable=mode, value=1).pack(pady=(5, 2)) ttk.Radiobutton(root, text='Playback', variable=mode, value=2).pack(pady=(2, 5) ) ttk.Button(root, textvariable=action_button, command=start).pack(pady=(2, 10)) root.mainloop()
import tkinter from tkinter import ttk, filedialog, messagebox import serial.tools.list_ports from PIL import ImageTk, Image from read_bytes import read root = tkinter.Tk() root.title('ChadBotX') # Define constants for mode selection MODE_RECORD = 1 MODE_PLAYBACK = 2 # Define gui state portname = tkinter.StringVar(root, "") filename = tkinter.StringVar(root, "") mode = tkinter.IntVar(root, 0) action_button = tkinter.StringVar(root, "Start") def pick_file(): # Open file picker and return name of file selcted newfilename = filedialog.askopenfilename(initialdir = "/",title = "Select file",filetypes = (("Byte files","*.txt"),("all files","*.*"))) # tkinter.StringVar(root, filename) filename.set(newfilename) def get_ports(): # Get list of com ports # https://pythonhosted.org/pyserial/tools.html ports = serial.tools.list_ports.comports() ports_str = [] for port in ports: ports_str.append(port.device) return ports_str def start(): opt_mode = mode.get() opt_filename = filename.get() opt_port = portname.get() if (not opt_mode or not opt_filename or not opt_mode): return messagebox.showwarning("Error", "Invalid input") if (opt_mode == MODE_PLAYBACK): read(opt_filename, opt_port) elif (opt_mode == MODE_RECORD): print("record " + opt_filename + " " + opt_port) action_button.set('Stop') # Add widgets to window image = Image.open("./chad.png") photo = ImageTk.PhotoImage(image) label = tkinter.Label(image=photo) label.image = photo label.pack() ttk.Button(root, text="Choose file", command=pick_file).pack(pady=(10, 7)) ttk.Label(root, text="File name:").pack() entry = ttk.Entry(root, textvariable=filename).pack(pady=(0, 2)) ttk.Label(root, text="Port:").pack() ttk.Combobox(root, textvariable=portname, values=get_ports()).pack(pady=(0, 2), padx=(10, 10)) ttk.Radiobutton(root, text="Record", variable=mode, value=1).pack(pady=(5, 2)) ttk.Radiobutton(root, text="Playback", variable=mode, value=2).pack(pady=(2, 5)) ttk.Button(root, textvariable=action_button, command=start).pack(pady=(2, 10)) root.mainloop()
[ 2, 4, 5, 6, 7 ]
1,377
e280b003c95681ed4a887b0939077efeac9deefe
<mask token>
<mask token> def sorting_l2(mat): mat_l2 = norma_l2(mat) mat_sort_index = np.argsort(mat_l2) mat_sort_l2 = mat[mat_sort_index, :] return mat_sort_l2[::-1]
import numpy as np from Ejercicio1 import norma_l2 def sorting_l2(mat): mat_l2 = norma_l2(mat) mat_sort_index = np.argsort(mat_l2) mat_sort_l2 = mat[mat_sort_index, :] return mat_sort_l2[::-1]
null
null
[ 0, 1, 2 ]
1,378
7aba77137b96071101078c38c1c9397bf837d92a
<mask token>
<mask token> a.index(333) print(a)
a = [66.25, 333, 333, 1, 1234.5] a.index(333) print(a)
null
null
[ 0, 1, 2 ]
1,379
a2e77298059104b403555af95430d7995f8a697b
<mask token> class LoginViewWebApp(FlaskView): <mask token> def __init__(self): self.user_controller = UserController() @route('/register', methods=['GET', 'POST']) def register_user(self): if request.method == 'GET': return render_template('register.html') elif request.method == 'POST': app.logger.info('Got post') app.logger.info(request.form) username, password, email = request.form['username'], request.form[ 'password'], request.form['email'] ok, error = self.user_controller.create_user(username, password, email) if ok: return '', 200 else: return 'User already registered', 432 <mask token> @route('/logout', methods=['GET']) def logout(self): logout_user() return '', 200
<mask token> class LoginViewWebApp(FlaskView): <mask token> def __init__(self): self.user_controller = UserController() @route('/register', methods=['GET', 'POST']) def register_user(self): if request.method == 'GET': return render_template('register.html') elif request.method == 'POST': app.logger.info('Got post') app.logger.info(request.form) username, password, email = request.form['username'], request.form[ 'password'], request.form['email'] ok, error = self.user_controller.create_user(username, password, email) if ok: return '', 200 else: return 'User already registered', 432 @route('/login', methods=['GET', 'POST']) def login(self): if request.method == 'GET': return render_template('login.html') elif request.method == 'POST': username = request.form['username'] password = request.form['password'] user = self.user_controller.get_user_w_password(username, password) if user is None: return 'Invalid credentials', 432 else: login_user(user) return '', 200 @route('/logout', methods=['GET']) def logout(self): logout_user() return '', 200
<mask token> class LoginViewWebApp(FlaskView): route_base = '/' def __init__(self): self.user_controller = UserController() @route('/register', methods=['GET', 'POST']) def register_user(self): if request.method == 'GET': return render_template('register.html') elif request.method == 'POST': app.logger.info('Got post') app.logger.info(request.form) username, password, email = request.form['username'], request.form[ 'password'], request.form['email'] ok, error = self.user_controller.create_user(username, password, email) if ok: return '', 200 else: return 'User already registered', 432 @route('/login', methods=['GET', 'POST']) def login(self): if request.method == 'GET': return render_template('login.html') elif request.method == 'POST': username = request.form['username'] password = request.form['password'] user = self.user_controller.get_user_w_password(username, password) if user is None: return 'Invalid credentials', 432 else: login_user(user) return '', 200 @route('/logout', methods=['GET']) def logout(self): logout_user() return '', 200
import flask from flask.ext.classy import FlaskView, route, request from annotator_supreme.controllers.user_controller import UserController from annotator_supreme.views import view_tools from annotator_supreme.views import error_views from flask import render_template, flash, redirect, url_for from annotator_supreme import app from flask.ext.login import login_user, logout_user import json class LoginViewWebApp(FlaskView): route_base = '/' def __init__(self): self.user_controller = UserController() @route('/register', methods=['GET', 'POST']) def register_user(self): if request.method == 'GET': return render_template('register.html') elif request.method == 'POST': app.logger.info('Got post') app.logger.info(request.form) username, password, email = request.form['username'], request.form[ 'password'], request.form['email'] ok, error = self.user_controller.create_user(username, password, email) if ok: return '', 200 else: return 'User already registered', 432 @route('/login', methods=['GET', 'POST']) def login(self): if request.method == 'GET': return render_template('login.html') elif request.method == 'POST': username = request.form['username'] password = request.form['password'] user = self.user_controller.get_user_w_password(username, password) if user is None: return 'Invalid credentials', 432 else: login_user(user) return '', 200 @route('/logout', methods=['GET']) def logout(self): logout_user() return '', 200
import flask from flask.ext.classy import FlaskView, route, request from annotator_supreme.controllers.user_controller import UserController from annotator_supreme.views import view_tools from annotator_supreme.views import error_views from flask import render_template, flash, redirect, url_for from annotator_supreme import app from flask.ext.login import login_user, logout_user import json class LoginViewWebApp(FlaskView): route_base = '/' def __init__(self): self.user_controller = UserController() @route('/register' , methods=['GET','POST']) def register_user(self): if request.method == 'GET': return render_template('register.html') elif request.method == 'POST': app.logger.info("Got post") app.logger.info(request.form) username, password, email = request.form['username'] , request.form['password'], request.form['email'] ok, error = self.user_controller.create_user(username, password, email) if ok: return "", 200 else: return "User already registered", 432 @route('/login',methods=['GET','POST']) def login(self): if request.method == 'GET': return render_template('login.html') elif request.method == 'POST': username = request.form['username'] password = request.form['password'] user = self.user_controller.get_user_w_password(username, password) if user is None: return "Invalid credentials", 432 else: login_user(user) return "", 200 @route('/logout', methods=['GET']) def logout(self): logout_user() return "", 200
[ 4, 5, 6, 7, 8 ]
1,380
f0ac2e66cc7fe9730c77a8feb77a74e26986a3f8
import pygame class MenuManager(): def __init__(self, manager): print "Menu manager created. Continue? [y/n]" self.manager = manager self.paused = False self.intro_done = False self.menus = [] self.menus.append(Pause_menu(self)) self.menus.append(Start_screen(self)) def get_paused(self): return self.paused def set_paused(self, pause): self.paused = pause def set_intro_done(self, startup): self.intro_done = startup def get_intro_done(self): return self.intro_done def set_active(self, menu_index): self.menus[menu_index].set_active() def unset_active(self, menu_index): self.menus[menu_index].unset_active() def exit_game(self): self.manager.exit_game() def pass_event(self, event): if event.type == pygame.KEYDOWN: if event.key == pygame.K_p: self.unset_active(1) self.paused = not self.paused def draw(self, screen): if self.paused and self.menus[1].is_active() == False: self.set_active(0) else: self.unset_active(0) for menu in self.menus: if menu.is_active(): menu.draw(screen) class Button(): def __init__(self, pos, size, color, font, font_size, font_color, image=None, text=None): self.pos = pos self.size = size self.rect = pygame.Rect(self.pos, self.size) self.color = color self.d_color = 40 if self.color[0]>235 or self.color[1]>235 or self.color[2]>235: self.hover_color = (self.color[0]-self.d_color, self.color[1]-self.d_color, self.color[2]-self.d_color) else: self.hover_color = (self.color[0]+self.d_color, self.color[1]+self.d_color, self.color[2]+self.d_color) self.font = pygame.font.SysFont(font, font_size) self.font_color = font_color self.font.set_bold(True) if image != None: self.image = pygame.image.load("Sprites/"+image+".png") else: self.image = None if text != None: self.text = self.font.render(text, True, self.font_color) def draw(self, screen): draw_pos = (screen.get_width()/2+self.pos[0]-self.size[0]/2, screen.get_height()/2+self.pos[1]) if self.image != None: screen.blit(self.image, draw_pos) else: self.rect = pygame.Rect(draw_pos, self.size) if self.rect.collidepoint(pygame.mouse.get_pos()[0], pygame.mouse.get_pos()[1]): draw_color = self.hover_color else: draw_color = self.color pygame.draw.rect(screen, draw_color, self.rect) screen.blit(self.text, (self.rect.x+self.rect.w/2-self.text.get_width()/2, self.rect.y+self.rect.h/2-self.text.get_height()/2)) pygame.draw.rect(screen, (0,0,0), self.rect, 1) def is_clicked(self): if self.rect.collidepoint(pygame.mouse.get_pos()): return True else: return False class Pause_menu(): def __init__(self, manager): self.manager = manager self.buttons = [] self.buttons.append(Button((-100, 30), (100,50), (255,255,255), "Arial", 20, (255,0,0), text="Continue")) self.buttons.append(Button((100, 30), (120,50), (255,255,255), "Arial", 20, (255,0,0), text="Exit game")) self.active = False def draw(self, screen): for button in self.buttons: self.check_clicked() button.draw(screen) def is_active(self): return self.active def set_active(self): self.active = True def unset_active(self): self.active = False def check_clicked(self): for button_i in range(len(self.buttons)): if pygame.mouse.get_pressed()[0] == True and self.buttons[button_i].is_clicked(): if button_i == 0: self.manager.set_paused(False) self.manager.unset_active(1) elif button_i == 1: print "Exit button pressed. Goodbye" self.manager.exit_game() class Start_screen(): def __init__(self, manager): self.manager = manager self.active = False self.image = pygame.image.load("Files/Start_screen.png") self.buttons = [] self.buttons.append(Button((-100, 150), (130,50), (255,255,255), "Arial", 20, (255,0,0), text="Start")) self.buttons.append(Button((100, 150), (190,50), (255,255,255), "Arial", 20, (255,0,0), text="Exit game [ESC]")) def draw(self, screen): draw_pos = (screen.get_width()/2-self.image.get_width()/2, 20) self.check_clicked() for button in self.buttons: button.draw(screen) screen.blit(self.image, draw_pos) def is_active(self): return self.active def set_active(self): self.active = True def unset_active(self): self.active = False def check_clicked(self): for button_i in range(len(self.buttons)): if pygame.mouse.get_pressed()[0] == True: if self.buttons[button_i].is_clicked(): if button_i == 0: self.manager.set_intro_done(True) self.manager.unset_active(1) self.manager.manager.get_universe().set_can_shoot(True) elif button_i == 1: print "Exit button pressed. Goodbye" self.manager.exit_game()
null
null
null
null
[ 0 ]
1,381
0659df48bb150582917e333a7a25d2d25395dfda
<mask token>
<mask token> class face_verifier: <mask token> def verify_person(self, f1, f2): batch_tensor = torch.cat([f1, f2], 0) output_feat = self.model(batch_tensor.cuda()) sim = torch.nn.CosineSimilarity(dim=0) sim = sim(output_feat[0], output_feat[1]).data.cpu().numpy() if sim > 0.7: return 0 elif sim > 0.5: return 1 else: return 2
<mask token> class face_verifier: def __init__(self, net_depth=50, drop_ratio=0.6, net_mode='ir_se', device='cuda'): self.model = Backbone(net_depth, drop_ratio, net_mode).to(device) save_path = 'face_recognition/model_ir_se50.pth' self.model.load_state_dict(torch.load(save_path)) self.model.eval() def verify_person(self, f1, f2): batch_tensor = torch.cat([f1, f2], 0) output_feat = self.model(batch_tensor.cuda()) sim = torch.nn.CosineSimilarity(dim=0) sim = sim(output_feat[0], output_feat[1]).data.cpu().numpy() if sim > 0.7: return 0 elif sim > 0.5: return 1 else: return 2
from face_recognition.model import Backbone import torch import numpy class face_verifier: def __init__(self, net_depth=50, drop_ratio=0.6, net_mode='ir_se', device='cuda'): self.model = Backbone(net_depth, drop_ratio, net_mode).to(device) save_path = 'face_recognition/model_ir_se50.pth' self.model.load_state_dict(torch.load(save_path)) self.model.eval() def verify_person(self, f1, f2): batch_tensor = torch.cat([f1, f2], 0) output_feat = self.model(batch_tensor.cuda()) sim = torch.nn.CosineSimilarity(dim=0) sim = sim(output_feat[0], output_feat[1]).data.cpu().numpy() if sim > 0.7: return 0 elif sim > 0.5: return 1 else: return 2
from face_recognition.model import Backbone import torch import numpy class face_verifier(): def __init__(self, net_depth=50, drop_ratio=0.6, net_mode="ir_se", device="cuda"): # create model self.model = Backbone(net_depth, drop_ratio, net_mode).to(device) save_path = "face_recognition/model_ir_se50.pth" # load model self.model.load_state_dict(torch.load(save_path)) self.model.eval() def verify_person(self, f1, f2): # 0: same / 1: ambiguous / 2: different batch_tensor = torch.cat([f1, f2], 0) output_feat = self.model(batch_tensor.cuda()) sim = torch.nn.CosineSimilarity(dim=0) sim = sim(output_feat[0], output_feat[1]).data.cpu().numpy() if sim > 0.7: # same return 0 elif sim > 0.5: # ambiguous return 1 else: return 2
[ 0, 2, 3, 4, 5 ]
1,382
dccdca65cce2959b07657636e23e7c9ab8a4f96c
<mask token> class MoneyFst(GraphFst): <mask token> def __init__(self, decimal: GraphFst, deterministic: bool=True): super().__init__(name='money', kind='verbalize', deterministic= deterministic) maj_singular_masc = pynutil.delete('currency_maj: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ masc_singular + pynutil.delete('"') maj_singular_fem = pynutil.delete('currency_maj: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ fem_singular + pynutil.delete('"') maj_plural_masc = pynutil.delete('currency_maj: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ masc_plural + pynutil.delete('"') maj_plural_fem = pynutil.delete('currency_maj: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ fem_plural + pynutil.delete('"') maj_masc = maj_plural_masc | maj_singular_masc maj_fem = maj_plural_fem | maj_singular_fem min_singular_masc = pynutil.delete('currency_min: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ masc_singular + pynutil.delete('"') min_singular_fem = pynutil.delete('currency_min: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ fem_singular + pynutil.delete('"') min_plural_masc = pynutil.delete('currency_min: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ masc_plural + pynutil.delete('"') min_plural_fem = pynutil.delete('currency_min: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ fem_plural + pynutil.delete('"') min_masc = min_plural_masc | min_singular_masc min_fem = min_plural_fem | min_singular_fem fractional_part = pynutil.delete('fractional_part: "' ) + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete('"') integer_part = pynutil.delete('integer_part: "') + pynini.closure( NEMO_NOT_QUOTE, 1) + pynutil.delete('"') optional_add_and = pynini.closure(pynutil.insert(pynini.union( 'con ', 'y ')), 0, 1) graph_integer_masc = integer_part + NEMO_SPACE + maj_masc graph_integer_fem = shift_cardinal_gender(integer_part ) + NEMO_SPACE + maj_fem graph_integer = graph_integer_fem | graph_integer_masc graph_integer_with_minor_masc = (graph_integer_masc + NEMO_SPACE + pynini.union(optional_add_and + strip_cardinal_apocope( fractional_part), optional_add_and + fractional_part + NEMO_SPACE + min_masc, optional_add_and + shift_cardinal_gender (fractional_part) + NEMO_SPACE + min_fem) + delete_preserve_order) graph_integer_with_minor_fem = (graph_integer_fem + NEMO_SPACE + pynini.union(optional_add_and + shift_cardinal_gender( fractional_part), optional_add_and + fractional_part + NEMO_SPACE + min_masc, optional_add_and + shift_cardinal_gender (fractional_part) + NEMO_SPACE + min_fem) + delete_preserve_order) graph_integer_with_minor = (graph_integer_with_minor_fem | graph_integer_with_minor_masc) graph_decimal_masc = decimal.graph_masc + NEMO_SPACE + maj_masc graph_decimal_fem = decimal.graph_fem graph_decimal_fem |= decimal.numbers_only_quantity graph_decimal_fem += NEMO_SPACE + maj_fem graph_decimal = graph_decimal_fem | graph_decimal_masc graph_decimal = pynini.cdrewrite(pynutil.insert(' de'), 'quantity: "' + pynini.closure(NEMO_NOT_QUOTE, 1), '"', NEMO_SIGMA ) @ graph_decimal graph_minor_masc = (fractional_part + NEMO_SPACE + min_masc + delete_preserve_order) graph_minor_fem = shift_cardinal_gender(fractional_part ) + NEMO_SPACE + min_fem + delete_preserve_order graph_minor = graph_minor_fem | graph_minor_masc graph = (graph_integer | graph_integer_with_minor | graph_decimal | graph_minor) delete_tokens = self.delete_tokens(graph) self.fst = delete_tokens.optimize()
<mask token> class MoneyFst(GraphFst): """ Finite state transducer for verbalizing money, e.g. money { currency_maj: "euro" integer_part: "un"} -> "un euro" money { currency_maj: "euro" integer_part: "un" fractional_part: "cero cero un"} -> "uno coma cero cero uno euros" money { integer_part: "un" currency_maj: "libra" fractional_part: "cuarenta" preserve_order: true} -> "una libra cuarenta" money { integer_part: "un" currency_maj: "libra" fractional_part: "cuarenta" currency_min: "peniques" preserve_order: true} -> "una libra con cuarenta peniques" money { fractional_part: "un" currency_min: "penique" preserve_order: true} -> "un penique" Args: decimal: GraphFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, decimal: GraphFst, deterministic: bool=True): super().__init__(name='money', kind='verbalize', deterministic= deterministic) maj_singular_masc = pynutil.delete('currency_maj: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ masc_singular + pynutil.delete('"') maj_singular_fem = pynutil.delete('currency_maj: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ fem_singular + pynutil.delete('"') maj_plural_masc = pynutil.delete('currency_maj: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ masc_plural + pynutil.delete('"') maj_plural_fem = pynutil.delete('currency_maj: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ fem_plural + pynutil.delete('"') maj_masc = maj_plural_masc | maj_singular_masc maj_fem = maj_plural_fem | maj_singular_fem min_singular_masc = pynutil.delete('currency_min: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ masc_singular + pynutil.delete('"') min_singular_fem = pynutil.delete('currency_min: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ fem_singular + pynutil.delete('"') min_plural_masc = pynutil.delete('currency_min: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ masc_plural + pynutil.delete('"') min_plural_fem = pynutil.delete('currency_min: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ fem_plural + pynutil.delete('"') min_masc = min_plural_masc | min_singular_masc min_fem = min_plural_fem | min_singular_fem fractional_part = pynutil.delete('fractional_part: "' ) + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete('"') integer_part = pynutil.delete('integer_part: "') + pynini.closure( NEMO_NOT_QUOTE, 1) + pynutil.delete('"') optional_add_and = pynini.closure(pynutil.insert(pynini.union( 'con ', 'y ')), 0, 1) graph_integer_masc = integer_part + NEMO_SPACE + maj_masc graph_integer_fem = shift_cardinal_gender(integer_part ) + NEMO_SPACE + maj_fem graph_integer = graph_integer_fem | graph_integer_masc graph_integer_with_minor_masc = (graph_integer_masc + NEMO_SPACE + pynini.union(optional_add_and + strip_cardinal_apocope( fractional_part), optional_add_and + fractional_part + NEMO_SPACE + min_masc, optional_add_and + shift_cardinal_gender (fractional_part) + NEMO_SPACE + min_fem) + delete_preserve_order) graph_integer_with_minor_fem = (graph_integer_fem + NEMO_SPACE + pynini.union(optional_add_and + shift_cardinal_gender( fractional_part), optional_add_and + fractional_part + NEMO_SPACE + min_masc, optional_add_and + shift_cardinal_gender (fractional_part) + NEMO_SPACE + min_fem) + delete_preserve_order) graph_integer_with_minor = (graph_integer_with_minor_fem | graph_integer_with_minor_masc) graph_decimal_masc = decimal.graph_masc + NEMO_SPACE + maj_masc graph_decimal_fem = decimal.graph_fem graph_decimal_fem |= decimal.numbers_only_quantity graph_decimal_fem += NEMO_SPACE + maj_fem graph_decimal = graph_decimal_fem | graph_decimal_masc graph_decimal = pynini.cdrewrite(pynutil.insert(' de'), 'quantity: "' + pynini.closure(NEMO_NOT_QUOTE, 1), '"', NEMO_SIGMA ) @ graph_decimal graph_minor_masc = (fractional_part + NEMO_SPACE + min_masc + delete_preserve_order) graph_minor_fem = shift_cardinal_gender(fractional_part ) + NEMO_SPACE + min_fem + delete_preserve_order graph_minor = graph_minor_fem | graph_minor_masc graph = (graph_integer | graph_integer_with_minor | graph_decimal | graph_minor) delete_tokens = self.delete_tokens(graph) self.fst = delete_tokens.optimize()
<mask token> try: import pynini from pynini.lib import pynutil fem = pynini.string_file(get_abs_path('data/money/currency_plural_fem.tsv') ) masc = pynini.string_file(get_abs_path( 'data/money/currency_plural_masc.tsv')) fem_singular = pynini.project(fem, 'input') masc_singular = pynini.project(masc, 'input') fem_plural = pynini.project(fem, 'output') masc_plural = pynini.project(masc, 'output') PYNINI_AVAILABLE = True except (ModuleNotFoundError, ImportError): fem_plural = None masc_plural = None fem_singular = None masc_singular = None PYNINI_AVAILABLE = False class MoneyFst(GraphFst): """ Finite state transducer for verbalizing money, e.g. money { currency_maj: "euro" integer_part: "un"} -> "un euro" money { currency_maj: "euro" integer_part: "un" fractional_part: "cero cero un"} -> "uno coma cero cero uno euros" money { integer_part: "un" currency_maj: "libra" fractional_part: "cuarenta" preserve_order: true} -> "una libra cuarenta" money { integer_part: "un" currency_maj: "libra" fractional_part: "cuarenta" currency_min: "peniques" preserve_order: true} -> "una libra con cuarenta peniques" money { fractional_part: "un" currency_min: "penique" preserve_order: true} -> "un penique" Args: decimal: GraphFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, decimal: GraphFst, deterministic: bool=True): super().__init__(name='money', kind='verbalize', deterministic= deterministic) maj_singular_masc = pynutil.delete('currency_maj: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ masc_singular + pynutil.delete('"') maj_singular_fem = pynutil.delete('currency_maj: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ fem_singular + pynutil.delete('"') maj_plural_masc = pynutil.delete('currency_maj: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ masc_plural + pynutil.delete('"') maj_plural_fem = pynutil.delete('currency_maj: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ fem_plural + pynutil.delete('"') maj_masc = maj_plural_masc | maj_singular_masc maj_fem = maj_plural_fem | maj_singular_fem min_singular_masc = pynutil.delete('currency_min: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ masc_singular + pynutil.delete('"') min_singular_fem = pynutil.delete('currency_min: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ fem_singular + pynutil.delete('"') min_plural_masc = pynutil.delete('currency_min: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ masc_plural + pynutil.delete('"') min_plural_fem = pynutil.delete('currency_min: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ fem_plural + pynutil.delete('"') min_masc = min_plural_masc | min_singular_masc min_fem = min_plural_fem | min_singular_fem fractional_part = pynutil.delete('fractional_part: "' ) + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete('"') integer_part = pynutil.delete('integer_part: "') + pynini.closure( NEMO_NOT_QUOTE, 1) + pynutil.delete('"') optional_add_and = pynini.closure(pynutil.insert(pynini.union( 'con ', 'y ')), 0, 1) graph_integer_masc = integer_part + NEMO_SPACE + maj_masc graph_integer_fem = shift_cardinal_gender(integer_part ) + NEMO_SPACE + maj_fem graph_integer = graph_integer_fem | graph_integer_masc graph_integer_with_minor_masc = (graph_integer_masc + NEMO_SPACE + pynini.union(optional_add_and + strip_cardinal_apocope( fractional_part), optional_add_and + fractional_part + NEMO_SPACE + min_masc, optional_add_and + shift_cardinal_gender (fractional_part) + NEMO_SPACE + min_fem) + delete_preserve_order) graph_integer_with_minor_fem = (graph_integer_fem + NEMO_SPACE + pynini.union(optional_add_and + shift_cardinal_gender( fractional_part), optional_add_and + fractional_part + NEMO_SPACE + min_masc, optional_add_and + shift_cardinal_gender (fractional_part) + NEMO_SPACE + min_fem) + delete_preserve_order) graph_integer_with_minor = (graph_integer_with_minor_fem | graph_integer_with_minor_masc) graph_decimal_masc = decimal.graph_masc + NEMO_SPACE + maj_masc graph_decimal_fem = decimal.graph_fem graph_decimal_fem |= decimal.numbers_only_quantity graph_decimal_fem += NEMO_SPACE + maj_fem graph_decimal = graph_decimal_fem | graph_decimal_masc graph_decimal = pynini.cdrewrite(pynutil.insert(' de'), 'quantity: "' + pynini.closure(NEMO_NOT_QUOTE, 1), '"', NEMO_SIGMA ) @ graph_decimal graph_minor_masc = (fractional_part + NEMO_SPACE + min_masc + delete_preserve_order) graph_minor_fem = shift_cardinal_gender(fractional_part ) + NEMO_SPACE + min_fem + delete_preserve_order graph_minor = graph_minor_fem | graph_minor_masc graph = (graph_integer | graph_integer_with_minor | graph_decimal | graph_minor) delete_tokens = self.delete_tokens(graph) self.fst = delete_tokens.optimize()
from nemo_text_processing.text_normalization.en.graph_utils import NEMO_NOT_QUOTE, NEMO_SIGMA, NEMO_SPACE, GraphFst, delete_preserve_order from nemo_text_processing.text_normalization.es.graph_utils import shift_cardinal_gender, strip_cardinal_apocope from nemo_text_processing.text_normalization.es.utils import get_abs_path try: import pynini from pynini.lib import pynutil fem = pynini.string_file(get_abs_path('data/money/currency_plural_fem.tsv') ) masc = pynini.string_file(get_abs_path( 'data/money/currency_plural_masc.tsv')) fem_singular = pynini.project(fem, 'input') masc_singular = pynini.project(masc, 'input') fem_plural = pynini.project(fem, 'output') masc_plural = pynini.project(masc, 'output') PYNINI_AVAILABLE = True except (ModuleNotFoundError, ImportError): fem_plural = None masc_plural = None fem_singular = None masc_singular = None PYNINI_AVAILABLE = False class MoneyFst(GraphFst): """ Finite state transducer for verbalizing money, e.g. money { currency_maj: "euro" integer_part: "un"} -> "un euro" money { currency_maj: "euro" integer_part: "un" fractional_part: "cero cero un"} -> "uno coma cero cero uno euros" money { integer_part: "un" currency_maj: "libra" fractional_part: "cuarenta" preserve_order: true} -> "una libra cuarenta" money { integer_part: "un" currency_maj: "libra" fractional_part: "cuarenta" currency_min: "peniques" preserve_order: true} -> "una libra con cuarenta peniques" money { fractional_part: "un" currency_min: "penique" preserve_order: true} -> "un penique" Args: decimal: GraphFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, decimal: GraphFst, deterministic: bool=True): super().__init__(name='money', kind='verbalize', deterministic= deterministic) maj_singular_masc = pynutil.delete('currency_maj: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ masc_singular + pynutil.delete('"') maj_singular_fem = pynutil.delete('currency_maj: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ fem_singular + pynutil.delete('"') maj_plural_masc = pynutil.delete('currency_maj: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ masc_plural + pynutil.delete('"') maj_plural_fem = pynutil.delete('currency_maj: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ fem_plural + pynutil.delete('"') maj_masc = maj_plural_masc | maj_singular_masc maj_fem = maj_plural_fem | maj_singular_fem min_singular_masc = pynutil.delete('currency_min: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ masc_singular + pynutil.delete('"') min_singular_fem = pynutil.delete('currency_min: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ fem_singular + pynutil.delete('"') min_plural_masc = pynutil.delete('currency_min: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ masc_plural + pynutil.delete('"') min_plural_fem = pynutil.delete('currency_min: "') + pynini.closure( NEMO_NOT_QUOTE, 1) @ fem_plural + pynutil.delete('"') min_masc = min_plural_masc | min_singular_masc min_fem = min_plural_fem | min_singular_fem fractional_part = pynutil.delete('fractional_part: "' ) + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete('"') integer_part = pynutil.delete('integer_part: "') + pynini.closure( NEMO_NOT_QUOTE, 1) + pynutil.delete('"') optional_add_and = pynini.closure(pynutil.insert(pynini.union( 'con ', 'y ')), 0, 1) graph_integer_masc = integer_part + NEMO_SPACE + maj_masc graph_integer_fem = shift_cardinal_gender(integer_part ) + NEMO_SPACE + maj_fem graph_integer = graph_integer_fem | graph_integer_masc graph_integer_with_minor_masc = (graph_integer_masc + NEMO_SPACE + pynini.union(optional_add_and + strip_cardinal_apocope( fractional_part), optional_add_and + fractional_part + NEMO_SPACE + min_masc, optional_add_and + shift_cardinal_gender (fractional_part) + NEMO_SPACE + min_fem) + delete_preserve_order) graph_integer_with_minor_fem = (graph_integer_fem + NEMO_SPACE + pynini.union(optional_add_and + shift_cardinal_gender( fractional_part), optional_add_and + fractional_part + NEMO_SPACE + min_masc, optional_add_and + shift_cardinal_gender (fractional_part) + NEMO_SPACE + min_fem) + delete_preserve_order) graph_integer_with_minor = (graph_integer_with_minor_fem | graph_integer_with_minor_masc) graph_decimal_masc = decimal.graph_masc + NEMO_SPACE + maj_masc graph_decimal_fem = decimal.graph_fem graph_decimal_fem |= decimal.numbers_only_quantity graph_decimal_fem += NEMO_SPACE + maj_fem graph_decimal = graph_decimal_fem | graph_decimal_masc graph_decimal = pynini.cdrewrite(pynutil.insert(' de'), 'quantity: "' + pynini.closure(NEMO_NOT_QUOTE, 1), '"', NEMO_SIGMA ) @ graph_decimal graph_minor_masc = (fractional_part + NEMO_SPACE + min_masc + delete_preserve_order) graph_minor_fem = shift_cardinal_gender(fractional_part ) + NEMO_SPACE + min_fem + delete_preserve_order graph_minor = graph_minor_fem | graph_minor_masc graph = (graph_integer | graph_integer_with_minor | graph_decimal | graph_minor) delete_tokens = self.delete_tokens(graph) self.fst = delete_tokens.optimize()
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_NOT_QUOTE, NEMO_SIGMA, NEMO_SPACE, GraphFst, delete_preserve_order, ) from nemo_text_processing.text_normalization.es.graph_utils import shift_cardinal_gender, strip_cardinal_apocope from nemo_text_processing.text_normalization.es.utils import get_abs_path try: import pynini from pynini.lib import pynutil fem = pynini.string_file((get_abs_path("data/money/currency_plural_fem.tsv"))) masc = pynini.string_file((get_abs_path("data/money/currency_plural_masc.tsv"))) fem_singular = pynini.project(fem, "input") masc_singular = pynini.project(masc, "input") fem_plural = pynini.project(fem, "output") masc_plural = pynini.project(masc, "output") PYNINI_AVAILABLE = True except (ModuleNotFoundError, ImportError): fem_plural = None masc_plural = None fem_singular = None masc_singular = None PYNINI_AVAILABLE = False class MoneyFst(GraphFst): """ Finite state transducer for verbalizing money, e.g. money { currency_maj: "euro" integer_part: "un"} -> "un euro" money { currency_maj: "euro" integer_part: "un" fractional_part: "cero cero un"} -> "uno coma cero cero uno euros" money { integer_part: "un" currency_maj: "libra" fractional_part: "cuarenta" preserve_order: true} -> "una libra cuarenta" money { integer_part: "un" currency_maj: "libra" fractional_part: "cuarenta" currency_min: "peniques" preserve_order: true} -> "una libra con cuarenta peniques" money { fractional_part: "un" currency_min: "penique" preserve_order: true} -> "un penique" Args: decimal: GraphFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, decimal: GraphFst, deterministic: bool = True): super().__init__(name="money", kind="verbalize", deterministic=deterministic) maj_singular_masc = ( pynutil.delete("currency_maj: \"") + (pynini.closure(NEMO_NOT_QUOTE, 1) @ masc_singular) + pynutil.delete("\"") ) maj_singular_fem = ( pynutil.delete("currency_maj: \"") + (pynini.closure(NEMO_NOT_QUOTE, 1) @ fem_singular) + pynutil.delete("\"") ) maj_plural_masc = ( pynutil.delete("currency_maj: \"") + (pynini.closure(NEMO_NOT_QUOTE, 1) @ masc_plural) + pynutil.delete("\"") ) maj_plural_fem = ( pynutil.delete("currency_maj: \"") + (pynini.closure(NEMO_NOT_QUOTE, 1) @ fem_plural) + pynutil.delete("\"") ) maj_masc = maj_plural_masc | maj_singular_masc # Tagger kept quantity resolution stable maj_fem = maj_plural_fem | maj_singular_fem min_singular_masc = ( pynutil.delete("currency_min: \"") + (pynini.closure(NEMO_NOT_QUOTE, 1) @ masc_singular) + pynutil.delete("\"") ) min_singular_fem = ( pynutil.delete("currency_min: \"") + (pynini.closure(NEMO_NOT_QUOTE, 1) @ fem_singular) + pynutil.delete("\"") ) min_plural_masc = ( pynutil.delete("currency_min: \"") + (pynini.closure(NEMO_NOT_QUOTE, 1) @ masc_plural) + pynutil.delete("\"") ) min_plural_fem = ( pynutil.delete("currency_min: \"") + (pynini.closure(NEMO_NOT_QUOTE, 1) @ fem_plural) + pynutil.delete("\"") ) min_masc = min_plural_masc | min_singular_masc min_fem = min_plural_fem | min_singular_fem fractional_part = ( pynutil.delete("fractional_part: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") ) integer_part = pynutil.delete("integer_part: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") optional_add_and = pynini.closure(pynutil.insert(pynini.union("con ", "y ")), 0, 1) # *** currency_maj graph_integer_masc = integer_part + NEMO_SPACE + maj_masc graph_integer_fem = shift_cardinal_gender(integer_part) + NEMO_SPACE + maj_fem graph_integer = graph_integer_fem | graph_integer_masc # *** currency_maj + (***) | ((con) *** current_min) graph_integer_with_minor_masc = ( graph_integer_masc + NEMO_SPACE + pynini.union( optional_add_and + strip_cardinal_apocope(fractional_part), (optional_add_and + fractional_part + NEMO_SPACE + min_masc), (optional_add_and + shift_cardinal_gender(fractional_part) + NEMO_SPACE + min_fem), ) # Could be minor currency that is different gender + delete_preserve_order ) graph_integer_with_minor_fem = ( graph_integer_fem + NEMO_SPACE + pynini.union( optional_add_and + shift_cardinal_gender(fractional_part), (optional_add_and + fractional_part + NEMO_SPACE + min_masc), (optional_add_and + shift_cardinal_gender(fractional_part) + NEMO_SPACE + min_fem), ) # Could be minor currency that is different gender + delete_preserve_order ) graph_integer_with_minor = graph_integer_with_minor_fem | graph_integer_with_minor_masc ## *** coma *** currency_maj graph_decimal_masc = decimal.graph_masc + NEMO_SPACE + maj_masc graph_decimal_fem = decimal.graph_fem graph_decimal_fem |= decimal.numbers_only_quantity # can still have "x billions" with fem currency graph_decimal_fem += NEMO_SPACE + maj_fem graph_decimal = graph_decimal_fem | graph_decimal_masc graph_decimal = ( pynini.cdrewrite( pynutil.insert(" de"), "quantity: \"" + pynini.closure(NEMO_NOT_QUOTE, 1), "\"", NEMO_SIGMA ) @ graph_decimal ) # formally it's millones/billones de *** # *** current_min graph_minor_masc = fractional_part + NEMO_SPACE + min_masc + delete_preserve_order graph_minor_fem = shift_cardinal_gender(fractional_part) + NEMO_SPACE + min_fem + delete_preserve_order graph_minor = graph_minor_fem | graph_minor_masc graph = graph_integer | graph_integer_with_minor | graph_decimal | graph_minor delete_tokens = self.delete_tokens(graph) self.fst = delete_tokens.optimize()
[ 2, 3, 4, 5, 6 ]
1,383
ebbc79d6582f7d6139e0dcec6333b679bb86c63c
<mask token>
class Solution(object): <mask token>
class Solution(object): def findPaths(self, m, n, N, i, j): """ :type m: int :type n: int :type N: int :type i: int :type j: int :rtype: int """ MOD = 10 ** 9 + 7 dz = zip((1, 0, -1, 0), (0, 1, 0, -1)) dp = [([0] * n) for x in range(m)] dp[i][j] = 1 ans = 0 for _ in range(N): ndp = [([0] * n) for x in range(m)] for x in range(m): for y in range(n): for dx, dy in dz: nx, ny = x + dx, y + dy if 0 <= nx < m and 0 <= ny < n: ndp[nx][ny] = (ndp[nx][ny] + dp[x][y]) % MOD else: ans = (ans + dp[x][y]) % MOD dp = ndp return ans
class Solution(object): def findPaths(self, m, n, N, i, j): """ :type m: int :type n: int :type N: int :type i: int :type j: int :rtype: int """ MOD = 10 ** 9 + 7 dz = zip((1,0,-1,0),(0,1,0,-1)) dp = [[0]* n for x in range(m)] dp[i][j] = 1 ans = 0 for _ in range(N): ndp = [[0] * n for x in range(m)] for x in range(m): for y in range(n): for dx,dy in dz: nx,ny = x + dx, y+dy if 0 <= nx < m and 0 <= ny <n: ndp[nx][ny]= (ndp[nx][ny]+dp[x][y])%MOD else: ans = (ans + dp[x][y])% MOD dp = ndp return ans
null
[ 0, 1, 2, 3 ]
1,384
2da6debb1f9ae2c966a17fdfb3b668160a3ef8d7
<mask token>
<mask token> if real_fdragon50 == input: print('Hello!') else: print('Who are you')
<mask token> input = 11 real_fdragon50 = 11 if real_fdragon50 == input: print('Hello!') else: print('Who are you')
''' #조건문 예제 #fdragon50 #2016 ''' # 주석 : 도움말/덧글 / 미사용(추후 사용가능한) 코드 기록 # 여러줄의 문자열 표현은 ''' ''' 사이에 표현 가능하나 사용은 권장않음 # #으로 시작하는것은 문자열 자체가 아닌.. 무시되는 구간 # 주석은 누가봐도 이해할수있게 / 간결하게 # 더 좋은것은 누가봐도 이해할수 있는 코드임 # 가독성이 좋은 코드를 만들수 있도록.. #조건문 예제 #fdragon50 #2016 input = 11 real_fdragon50 = 11 #real_k8805 = "ab" if real_fdragon50 == input: print("Hello!") #elif real_k8805 == input: # print("Hello!") else: print("Who are you")
null
[ 0, 1, 2, 3 ]
1,385
deb8ee1d6327a6406244147a819821e8d2b2890e
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [migrations.swappable_dependency(settings.AUTH_USER_MODEL)] operations = [migrations.CreateModel(name='Invoice', fields=[('id', models.AutoField(verbose_name='ID', serialize=False, auto_created= True, primary_key=True)), ('created_on', models.DateTimeField( verbose_name='Created on', unique=True, editable=False)), ( 'payment_no', models.PositiveIntegerField(verbose_name='Payment on', unique=True, editable=False)), ('payment_info', models.CharField( verbose_name='Payment Info', max_length=128, editable=False)), ( 'user', models.ForeignKey(editable=False, to=settings. AUTH_USER_MODEL, verbose_name='User'))], options={'verbose_name': 'invoice', 'verbose_name_plural': 'invoices'}), migrations. CreateModel(name='Payment', fields=[('id', models.AutoField( verbose_name='ID', serialize=False, auto_created=True, primary_key= True)), ('created_on', models.DateTimeField(auto_now_add=True, verbose_name='Created on')), ('amount', models.DecimalField( verbose_name='Amount', max_digits=9, decimal_places=2)), ( 'payment_no', models.PositiveIntegerField(unique=True, verbose_name ='Payment no')), ('mode', models.PositiveSmallIntegerField( verbose_name='Mode', choices=[(0, b'REAL'), (1, b'TEST')])), ( 'sys_invs_no', models.PositiveIntegerField(verbose_name= b'LMI_SYS_INVS_NO')), ('sys_trans_no', models.PositiveIntegerField( verbose_name=b'LMI_SYS_TRANS_NO')), ('sys_trans_date', models. DateTimeField(verbose_name=b'LMI_SYS_TRANS_DATE')), ('payer_purse', models.CharField(max_length=13, verbose_name='Payer purse')), ( 'payer_wm', models.CharField(max_length=12, verbose_name='Payer WM' )), ('paymer_number', models.CharField(max_length=30, verbose_name= 'Paymer number', blank=True)), ('paymer_email', models.EmailField( max_length=254, verbose_name='Paymer email', blank=True)), ( 'telepat_phonenumber', models.CharField(max_length=30, verbose_name ='Phone number', blank=True)), ('telepat_orderid', models.CharField (max_length=30, verbose_name='Order id', blank=True)), ( 'payment_creditdays', models.PositiveIntegerField(null=True, verbose_name='Credit days', blank=True)), ('invoice', models. OneToOneField(related_name='payment', null=True, blank=True, to= 'webmoney_merchant.Invoice', verbose_name='Invoice'))], options={ 'verbose_name': 'payment', 'verbose_name_plural': 'payments'}), migrations.CreateModel(name='Purse', fields=[('id', models. AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('purse', models.CharField(unique=True, max_length=13, verbose_name='Purse')), ('purse_type', models. CharField(default=b'B', unique=True, max_length=1, verbose_name= 'Purse type', choices=[(b'B', b'WMB'), (b'C', b'WMC'), (b'D', b'WMD'), (b'E', b'WME'), (b'G', b'WMG'), (b'K', b'WMK'), (b'R', b'WMR'), (b'U', b'WMU'), (b'X', b'WMX'), (b'Y', b'WMY'), (b'Z', b'WMZ')])), ('secret_key', models.CharField(max_length=50, verbose_name='Secret key'))], options={'verbose_name': 'purse', 'verbose_name_plural': 'purses'}), migrations.AddField(model_name= 'payment', name='payee_purse', field=models.ForeignKey(related_name ='payments', verbose_name='Payee purse', to='webmoney_merchant.Purse')) ]
from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings class Migration(migrations.Migration): dependencies = [migrations.swappable_dependency(settings.AUTH_USER_MODEL)] operations = [migrations.CreateModel(name='Invoice', fields=[('id', models.AutoField(verbose_name='ID', serialize=False, auto_created= True, primary_key=True)), ('created_on', models.DateTimeField( verbose_name='Created on', unique=True, editable=False)), ( 'payment_no', models.PositiveIntegerField(verbose_name='Payment on', unique=True, editable=False)), ('payment_info', models.CharField( verbose_name='Payment Info', max_length=128, editable=False)), ( 'user', models.ForeignKey(editable=False, to=settings. AUTH_USER_MODEL, verbose_name='User'))], options={'verbose_name': 'invoice', 'verbose_name_plural': 'invoices'}), migrations. CreateModel(name='Payment', fields=[('id', models.AutoField( verbose_name='ID', serialize=False, auto_created=True, primary_key= True)), ('created_on', models.DateTimeField(auto_now_add=True, verbose_name='Created on')), ('amount', models.DecimalField( verbose_name='Amount', max_digits=9, decimal_places=2)), ( 'payment_no', models.PositiveIntegerField(unique=True, verbose_name ='Payment no')), ('mode', models.PositiveSmallIntegerField( verbose_name='Mode', choices=[(0, b'REAL'), (1, b'TEST')])), ( 'sys_invs_no', models.PositiveIntegerField(verbose_name= b'LMI_SYS_INVS_NO')), ('sys_trans_no', models.PositiveIntegerField( verbose_name=b'LMI_SYS_TRANS_NO')), ('sys_trans_date', models. DateTimeField(verbose_name=b'LMI_SYS_TRANS_DATE')), ('payer_purse', models.CharField(max_length=13, verbose_name='Payer purse')), ( 'payer_wm', models.CharField(max_length=12, verbose_name='Payer WM' )), ('paymer_number', models.CharField(max_length=30, verbose_name= 'Paymer number', blank=True)), ('paymer_email', models.EmailField( max_length=254, verbose_name='Paymer email', blank=True)), ( 'telepat_phonenumber', models.CharField(max_length=30, verbose_name ='Phone number', blank=True)), ('telepat_orderid', models.CharField (max_length=30, verbose_name='Order id', blank=True)), ( 'payment_creditdays', models.PositiveIntegerField(null=True, verbose_name='Credit days', blank=True)), ('invoice', models. OneToOneField(related_name='payment', null=True, blank=True, to= 'webmoney_merchant.Invoice', verbose_name='Invoice'))], options={ 'verbose_name': 'payment', 'verbose_name_plural': 'payments'}), migrations.CreateModel(name='Purse', fields=[('id', models. AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('purse', models.CharField(unique=True, max_length=13, verbose_name='Purse')), ('purse_type', models. CharField(default=b'B', unique=True, max_length=1, verbose_name= 'Purse type', choices=[(b'B', b'WMB'), (b'C', b'WMC'), (b'D', b'WMD'), (b'E', b'WME'), (b'G', b'WMG'), (b'K', b'WMK'), (b'R', b'WMR'), (b'U', b'WMU'), (b'X', b'WMX'), (b'Y', b'WMY'), (b'Z', b'WMZ')])), ('secret_key', models.CharField(max_length=50, verbose_name='Secret key'))], options={'verbose_name': 'purse', 'verbose_name_plural': 'purses'}), migrations.AddField(model_name= 'payment', name='payee_purse', field=models.ForeignKey(related_name ='payments', verbose_name='Payee purse', to='webmoney_merchant.Purse')) ]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Invoice', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('created_on', models.DateTimeField(verbose_name='Created on', unique=True, editable=False)), ('payment_no', models.PositiveIntegerField(verbose_name='Payment on', unique=True, editable=False)), ('payment_info', models.CharField(verbose_name='Payment Info', max_length=128, editable=False)), ('user', models.ForeignKey(editable=False, to=settings.AUTH_USER_MODEL, verbose_name='User')), ], options={ 'verbose_name': 'invoice', 'verbose_name_plural': 'invoices', }, ), migrations.CreateModel( name='Payment', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('created_on', models.DateTimeField(auto_now_add=True, verbose_name='Created on')), ('amount', models.DecimalField(verbose_name='Amount', max_digits=9, decimal_places=2)), ('payment_no', models.PositiveIntegerField(unique=True, verbose_name='Payment no')), ('mode', models.PositiveSmallIntegerField(verbose_name='Mode', choices=[(0, b'REAL'), (1, b'TEST')])), ('sys_invs_no', models.PositiveIntegerField(verbose_name=b'LMI_SYS_INVS_NO')), ('sys_trans_no', models.PositiveIntegerField(verbose_name=b'LMI_SYS_TRANS_NO')), ('sys_trans_date', models.DateTimeField(verbose_name=b'LMI_SYS_TRANS_DATE')), ('payer_purse', models.CharField(max_length=13, verbose_name='Payer purse')), ('payer_wm', models.CharField(max_length=12, verbose_name='Payer WM')), ('paymer_number', models.CharField(max_length=30, verbose_name='Paymer number', blank=True)), ('paymer_email', models.EmailField(max_length=254, verbose_name='Paymer email', blank=True)), ('telepat_phonenumber', models.CharField(max_length=30, verbose_name='Phone number', blank=True)), ('telepat_orderid', models.CharField(max_length=30, verbose_name='Order id', blank=True)), ('payment_creditdays', models.PositiveIntegerField(null=True, verbose_name='Credit days', blank=True)), ('invoice', models.OneToOneField(related_name='payment', null=True, blank=True, to='webmoney_merchant.Invoice', verbose_name='Invoice')), ], options={ 'verbose_name': 'payment', 'verbose_name_plural': 'payments', }, ), migrations.CreateModel( name='Purse', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('purse', models.CharField(unique=True, max_length=13, verbose_name='Purse')), ('purse_type', models.CharField(default=b'B', unique=True, max_length=1, verbose_name='Purse type', choices=[(b'B', b'WMB'), (b'C', b'WMC'), (b'D', b'WMD'), (b'E', b'WME'), (b'G', b'WMG'), (b'K', b'WMK'), (b'R', b'WMR'), (b'U', b'WMU'), (b'X', b'WMX'), (b'Y', b'WMY'), (b'Z', b'WMZ')])), ('secret_key', models.CharField(max_length=50, verbose_name='Secret key')), ], options={ 'verbose_name': 'purse', 'verbose_name_plural': 'purses', }, ), migrations.AddField( model_name='payment', name='payee_purse', field=models.ForeignKey(related_name='payments', verbose_name='Payee purse', to='webmoney_merchant.Purse'), ), ]
[ 0, 1, 2, 3, 4 ]
1,386
d64140466e62b78506d0f200f451649023697a3b
<mask token> def deps_remote(): for step in INSTALL_STEPS: run(step)
<mask token> def deps_local(): for step in INSTALL_STEPS: local(step) def deps_remote(): for step in INSTALL_STEPS: run(step)
<mask token> INSTALL_STEPS = [ 'yes | sudo apt-get install libmysqlclient-dev\t python-dev python-mysqldb python-virtualenv' , 'virtualenv --no-site-packages env', '. env/bin/activate;pip install -r requirements.txt'] def deps_local(): for step in INSTALL_STEPS: local(step) def deps_remote(): for step in INSTALL_STEPS: run(step)
from fabric.api import local, run INSTALL_STEPS = [ 'yes | sudo apt-get install libmysqlclient-dev\t python-dev python-mysqldb python-virtualenv' , 'virtualenv --no-site-packages env', '. env/bin/activate;pip install -r requirements.txt'] def deps_local(): for step in INSTALL_STEPS: local(step) def deps_remote(): for step in INSTALL_STEPS: run(step)
from fabric.api import local,run INSTALL_STEPS = ['yes | sudo apt-get install libmysqlclient-dev python-dev python-mysqldb python-virtualenv', 'virtualenv --no-site-packages env', '. env/bin/activate;pip install -r requirements.txt'] def deps_local(): for step in INSTALL_STEPS: local(step) def deps_remote(): for step in INSTALL_STEPS: run(step)
[ 1, 2, 3, 4, 5 ]
1,387
8356bc92a3a8b561d55bf5f2d9aeb0da89b730ca
# -*- coding: utf-8 -*- from matplotlib import pyplot as plt from matplotlib import colors import numpy as np import sys max_value = int(sys.argv[1]) file1 = open(sys.argv[2]) file2 = open(sys.argv[3]) file3 = open(sys.argv[4]) histogram = np.zeros(max_value, dtype=int).tolist() highest_value = 0.0 sample_size = 0.5 sample = [] for i,line in enumerate(file1.readlines()): values = line.strip().split(",") for j, value in enumerate(values): if(j == 0): histogram[int(value.split("[")[1])] += 1 elif(j == len(values) - 1): histogram[int(value.split("]")[0])] += 1 else: histogram[int(value)] += 1 for i,line in enumerate(file2.readlines()): values = line.strip().split(",") for j, value in enumerate(values): if(j == 0): histogram[int(value.split("[")[1])] += 1 elif(j == len(values) - 1): histogram[int(value.split("]")[0])] += 1 else: histogram[int(value)] += 1 for i,line in enumerate(file3.readlines()): values = line.strip().split(",") for j, value in enumerate(values): if(j == 0): histogram[int(value.split("[")[1])] += 1 elif(j == len(values) - 1): histogram[int(value.split("]")[0])] += 1 else: histogram[int(value)] += 1 for i in range(len(histogram)): histogram[i] = histogram[i] / 3.0 for value in histogram: if(value > highest_value): highest_value = float(value) print highest_value for i,value in enumerate(histogram): if(value >= (highest_value - (highest_value * sample_size))): sample.append(i) sample_file = open(sys.argv[1].split("_mean.")[0] + ".sample", "w") for value in sample: sample_file.write(str(value) + " ") sample_file.close() objects = [] for i in range(max_value): objects.append(str(i)) y_pos = np.arange(len(objects)) ibar = plt.bar(y_pos, histogram, align='center', alpha=0.5) for i,element in enumerate(ibar): norm = colors.Normalize(0.0, 1.0) color = plt.cm.winter(norm(histogram[i]/highest_value)) element.set_color(color) #plt.xticks(y_pos, objects) plt.xlabel('Individuo') plt.ylabel('Vezes Selecionado') plt.title('GASIR - Genetic Algorithm for SIR Model') plt.savefig(sys.argv[1].split(".")[0] + "_mean.svg", format="svg") #plt.show()
null
null
null
null
[ 0 ]
1,388
aaebd9eba8a5c51c64baaf60224720b87a6364e1
<mask token> @print_run_time def dbscan(train_x, train_y): db = cluster.DBSCAN(eps=0.2, min_samples=3) db.fit(train_x) fmi = metrics.fowlkes_mallows_score(train_y, db.labels_) return fmi <mask token>
<mask token> def sort_data(data_list): x_list = [] y_list = [] for data in data_list: x_list.append(data[0]) y_list.append(data[1]) x_array = np.array(x_list) y_array = np.array(y_list) return x_array, y_array def print_run_time(func): def wrapper(*args, **kw): local_time = time.time() output = func(*args, **kw) time_cost = time.time() - local_time print('{} run time is {}'.format(func.__name__, time_cost)) with open('./cluster/tmp.csv', 'a+') as csvfile: writer = csv.writer(csvfile) writer.writerow([func.__name__, output, time_cost]) return output, time_cost return wrapper @print_run_time def kmeans(train_x, train_y, num_cluster=5): km_cluster = cluster.KMeans(n_clusters=num_cluster) km_cluster.fit(train_x) fmi = metrics.fowlkes_mallows_score(train_y, km_cluster.labels_) return fmi @print_run_time def dbscan(train_x, train_y): db = cluster.DBSCAN(eps=0.2, min_samples=3) db.fit(train_x) fmi = metrics.fowlkes_mallows_score(train_y, db.labels_) return fmi @print_run_time def AC(train_x, train_y, num_cluster=5): ac = cluster.AgglomerativeClustering(n_clusters=num_cluster) ac.fit(train_x) predicted_labels = ac.fit_predict(train_x) fmi = metrics.fowlkes_mallows_score(train_y, ac.labels_) return fmi @print_run_time @print_run_time def S_C(train_x, train_y, num_cluster=5): sc = cluster.SpectralClustering(n_clusters=num_cluster).fit(train_x) fmi = metrics.fowlkes_mallows_score(train_y, sc.labels_) return fmi @print_run_time def MBK(train_x, train_y, num_cluster=5): mbk = cluster.MiniBatchKMeans(n_clusters=num_cluster).fit(train_x) fmi = metrics.fowlkes_mallows_score(train_y, mbk.labels_) return fmi <mask token>
<mask token> sys.path.append('./feature/') <mask token> def sort_data(data_list): x_list = [] y_list = [] for data in data_list: x_list.append(data[0]) y_list.append(data[1]) x_array = np.array(x_list) y_array = np.array(y_list) return x_array, y_array def print_run_time(func): def wrapper(*args, **kw): local_time = time.time() output = func(*args, **kw) time_cost = time.time() - local_time print('{} run time is {}'.format(func.__name__, time_cost)) with open('./cluster/tmp.csv', 'a+') as csvfile: writer = csv.writer(csvfile) writer.writerow([func.__name__, output, time_cost]) return output, time_cost return wrapper @print_run_time def kmeans(train_x, train_y, num_cluster=5): km_cluster = cluster.KMeans(n_clusters=num_cluster) km_cluster.fit(train_x) fmi = metrics.fowlkes_mallows_score(train_y, km_cluster.labels_) return fmi @print_run_time def dbscan(train_x, train_y): db = cluster.DBSCAN(eps=0.2, min_samples=3) db.fit(train_x) fmi = metrics.fowlkes_mallows_score(train_y, db.labels_) return fmi @print_run_time def AC(train_x, train_y, num_cluster=5): ac = cluster.AgglomerativeClustering(n_clusters=num_cluster) ac.fit(train_x) predicted_labels = ac.fit_predict(train_x) fmi = metrics.fowlkes_mallows_score(train_y, ac.labels_) return fmi @print_run_time @print_run_time def S_C(train_x, train_y, num_cluster=5): sc = cluster.SpectralClustering(n_clusters=num_cluster).fit(train_x) fmi = metrics.fowlkes_mallows_score(train_y, sc.labels_) return fmi @print_run_time def MBK(train_x, train_y, num_cluster=5): mbk = cluster.MiniBatchKMeans(n_clusters=num_cluster).fit(train_x) fmi = metrics.fowlkes_mallows_score(train_y, mbk.labels_) return fmi if __name__ == '__main__': parser = argparse.ArgumentParser(description='') parser.add_argument('-d', '--dataset', type=str, default='cit-HepPh', help='') parser.add_argument('-t', '--task', type=int, default=0, help='') parser.add_argument('-f', '--feature_type', type=int, default=0, help='') parser.add_argument('-l', '--label_type', type=int, default=2, help='') parser.add_argument('-s', '--shuffle', type=bool, default=True, help='') parser.add_argument('-p', '--proportion', type=tuple, default=(0.7, 0.3 ), help='') parser.add_argument('-m', '--method', type=str, default='all', choices= ['kmeans', 'dbscan', 'AC', 'AP', 'meanshift', 'S_C', 'FA', 'MBK', 'all'], help='') parser.add_argument('-sp', '--save_path', type=str, default= './cluster/result.csv', help='') args = parser.parse_args() training_set, validation_set, test_set = fe.get_datasets(dataset=args. dataset, task=args.task, feature_type=args.feature_type, label_type =args.label_type, shuffle=args.shuffle, proportion=args.proportion) train_x, train_y = sort_data(training_set) val_x, val_y = sort_data(validation_set) with open('./cluster/tmp.csv', 'w') as csvfile: writer = csv.writer(csvfile) writer.writerow(['method', 'index', 'time_cost']) if args.method == 'kmeans': acc = kmeans(train_x, train_y, len(np.unique(train_y))) elif args.method == 'dbscan': acc = dbscan(train_x, train_y) elif args.method == 'AC': acc = AC(train_x, train_y, len(np.unique(train_y))) elif args.method == 'AP': acc = AP(train_x, train_y) elif args.method == 'meanshift': acc = meanshift(train_x, train_y) elif args.method == 'S_C': acc = S_C(train_x, train_y, len(np.unique(train_y))) elif args.method == 'FA': acc = FA(train_x, train_y, len(np.unique(train_y))) elif args.method == 'MBK': acc = MBK(train_x, train_y, len(np.unique(train_y))) elif args.method == 'all': acc_k = kmeans(train_x, train_y, len(np.unique(train_y))) acc_ac = AC(train_x, train_y, len(np.unique(train_y))) acc_sc = S_C(train_x, train_y, len(np.unique(train_y))) acc_mbk = MBK(train_x, train_y, len(np.unique(train_y))) acc_db = dbscan(train_x, train_y) tmp_path = os.path.abspath('./cluster/tmp.csv') os.rename('./cluster/tmp.csv', args.save_path)
import numpy as np import sklearn.cluster as cluster import os import time import argparse import csv from sklearn import metrics import sys sys.path.append('./feature/') import feature_extraction as fe def sort_data(data_list): x_list = [] y_list = [] for data in data_list: x_list.append(data[0]) y_list.append(data[1]) x_array = np.array(x_list) y_array = np.array(y_list) return x_array, y_array def print_run_time(func): def wrapper(*args, **kw): local_time = time.time() output = func(*args, **kw) time_cost = time.time() - local_time print('{} run time is {}'.format(func.__name__, time_cost)) with open('./cluster/tmp.csv', 'a+') as csvfile: writer = csv.writer(csvfile) writer.writerow([func.__name__, output, time_cost]) return output, time_cost return wrapper @print_run_time def kmeans(train_x, train_y, num_cluster=5): km_cluster = cluster.KMeans(n_clusters=num_cluster) km_cluster.fit(train_x) fmi = metrics.fowlkes_mallows_score(train_y, km_cluster.labels_) return fmi @print_run_time def dbscan(train_x, train_y): db = cluster.DBSCAN(eps=0.2, min_samples=3) db.fit(train_x) fmi = metrics.fowlkes_mallows_score(train_y, db.labels_) return fmi @print_run_time def AC(train_x, train_y, num_cluster=5): ac = cluster.AgglomerativeClustering(n_clusters=num_cluster) ac.fit(train_x) predicted_labels = ac.fit_predict(train_x) fmi = metrics.fowlkes_mallows_score(train_y, ac.labels_) return fmi @print_run_time @print_run_time def S_C(train_x, train_y, num_cluster=5): sc = cluster.SpectralClustering(n_clusters=num_cluster).fit(train_x) fmi = metrics.fowlkes_mallows_score(train_y, sc.labels_) return fmi @print_run_time def MBK(train_x, train_y, num_cluster=5): mbk = cluster.MiniBatchKMeans(n_clusters=num_cluster).fit(train_x) fmi = metrics.fowlkes_mallows_score(train_y, mbk.labels_) return fmi if __name__ == '__main__': parser = argparse.ArgumentParser(description='') parser.add_argument('-d', '--dataset', type=str, default='cit-HepPh', help='') parser.add_argument('-t', '--task', type=int, default=0, help='') parser.add_argument('-f', '--feature_type', type=int, default=0, help='') parser.add_argument('-l', '--label_type', type=int, default=2, help='') parser.add_argument('-s', '--shuffle', type=bool, default=True, help='') parser.add_argument('-p', '--proportion', type=tuple, default=(0.7, 0.3 ), help='') parser.add_argument('-m', '--method', type=str, default='all', choices= ['kmeans', 'dbscan', 'AC', 'AP', 'meanshift', 'S_C', 'FA', 'MBK', 'all'], help='') parser.add_argument('-sp', '--save_path', type=str, default= './cluster/result.csv', help='') args = parser.parse_args() training_set, validation_set, test_set = fe.get_datasets(dataset=args. dataset, task=args.task, feature_type=args.feature_type, label_type =args.label_type, shuffle=args.shuffle, proportion=args.proportion) train_x, train_y = sort_data(training_set) val_x, val_y = sort_data(validation_set) with open('./cluster/tmp.csv', 'w') as csvfile: writer = csv.writer(csvfile) writer.writerow(['method', 'index', 'time_cost']) if args.method == 'kmeans': acc = kmeans(train_x, train_y, len(np.unique(train_y))) elif args.method == 'dbscan': acc = dbscan(train_x, train_y) elif args.method == 'AC': acc = AC(train_x, train_y, len(np.unique(train_y))) elif args.method == 'AP': acc = AP(train_x, train_y) elif args.method == 'meanshift': acc = meanshift(train_x, train_y) elif args.method == 'S_C': acc = S_C(train_x, train_y, len(np.unique(train_y))) elif args.method == 'FA': acc = FA(train_x, train_y, len(np.unique(train_y))) elif args.method == 'MBK': acc = MBK(train_x, train_y, len(np.unique(train_y))) elif args.method == 'all': acc_k = kmeans(train_x, train_y, len(np.unique(train_y))) acc_ac = AC(train_x, train_y, len(np.unique(train_y))) acc_sc = S_C(train_x, train_y, len(np.unique(train_y))) acc_mbk = MBK(train_x, train_y, len(np.unique(train_y))) acc_db = dbscan(train_x, train_y) tmp_path = os.path.abspath('./cluster/tmp.csv') os.rename('./cluster/tmp.csv', args.save_path)
#聚类算法: # kmeans # 密度聚类:DBSCAN # 层次聚类:AgglomerativeClustering # 谱聚类:SpectralClustering # 分批kmeans:MiniBatchKMeans # 评价指标:FMI(Fowlkes–Mallows index) # 排除:特征聚类:FeatureAgglomeration# 亲和传播聚类(AP)聚类:affinity_propagation# 偏移均值向量:MeanShift import numpy as np import sklearn.cluster as cluster import os import time import argparse import csv from sklearn import metrics import sys sys.path.append('./feature/') import feature_extraction as fe def sort_data(data_list): x_list=[] y_list=[] for data in data_list: x_list.append(data[0]) y_list.append(data[1]) x_array=np.array(x_list) y_array=np.array(y_list) return x_array,y_array def print_run_time(func): def wrapper(*args, **kw): local_time = time.time() output=func(*args, **kw) time_cost=time.time() - local_time print('{} run time is {}'.format(func.__name__,time_cost)) with open("./cluster/tmp.csv","a+") as csvfile: writer = csv.writer(csvfile) writer.writerow([func.__name__,output,time_cost]) return output,time_cost return wrapper @print_run_time def kmeans (train_x,train_y,num_cluster = 5): km_cluster = cluster.KMeans(n_clusters=num_cluster) km_cluster.fit(train_x) #FMI指数:与真实值对比 fmi = metrics.fowlkes_mallows_score(train_y,km_cluster.labels_) # print("kmeans的FMI评价分值为:%f"%(fmi)) return fmi @print_run_time def dbscan(train_x,train_y): # 密度聚类 db = cluster.DBSCAN(eps=0.2,min_samples=3) db.fit(train_x) #FMI指数:与真实值对比 fmi = metrics.fowlkes_mallows_score(train_y,db.labels_) return fmi @print_run_time def AC(train_x,train_y,num_cluster = 5): # 层次聚类 ac = cluster.AgglomerativeClustering(n_clusters=num_cluster) ac.fit(train_x) predicted_labels = ac.fit_predict(train_x) # #计算ARI指数 # ARI = (metrics.adjusted_rand_score(train_y, predicted_labels)) #FMI指数:与真实值对比 fmi = metrics.fowlkes_mallows_score(train_y,ac.labels_) return fmi @print_run_time # def AP(train_x,train_y): # #亲和传播聚类(AP)聚类 # ap = cluster.affinity_propagation(preference=-50).fit(train_x) # #FMI指数:与真实值对比 # fmi = metrics.fowlkes_mallows_score(train_y,ap.labels_) # return fmi # @print_run_time # def meanshift(train_x,train_y): # #偏移均值向量(meanshift) # ms = cluster.MeanShift(bandwidth=2).fit(train_x) # #FMI指数:与真实值对比 # fmi = metrics.fowlkes_mallows_score(train_y,ms.labels_) # return fmi @print_run_time def S_C(train_x,train_y,num_cluster = 5): #谱聚类 sc = cluster.SpectralClustering(n_clusters=num_cluster).fit(train_x) #FMI指数:与真实值对比 fmi = metrics.fowlkes_mallows_score(train_y,sc.labels_) return fmi # @print_run_time # def FA(train_x,train_y,num_cluster = 5): # #特征聚类 # fa = cluster.FeatureAgglomeration(n_clusters=num_cluster).fit(train_x) # #FMI指数:与真实值对比 # fmi = metrics.fowlkes_mallows_score(train_y,fa.labels_) # return fmi @print_run_time def MBK(train_x,train_y,num_cluster = 5): #分批kmeans mbk = cluster.MiniBatchKMeans(n_clusters=num_cluster).fit(train_x) #FMI指数:与真实值对比 fmi = metrics.fowlkes_mallows_score(train_y,mbk.labels_) return fmi if __name__ == "__main__": parser = argparse.ArgumentParser(description="") parser.add_argument("-d", "--dataset", type=str, default="cit-HepPh", help="") parser.add_argument("-t", "--task", type=int, default=0, help="") parser.add_argument("-f", "--feature_type", type=int, default=0, help="") parser.add_argument("-l", "--label_type", type=int, default=2, help="") parser.add_argument("-s", "--shuffle", type=bool, default=True, help="") parser.add_argument("-p", "--proportion", type=tuple, default=(0.7, 0.3), help="") parser.add_argument("-m", "--method", type=str, default='all',choices=['kmeans','dbscan','AC','AP','meanshift','S_C','FA','MBK','all'], help="") parser.add_argument("-sp", "--save_path", type=str, default='./cluster/result.csv', help="") args = parser.parse_args() training_set, validation_set, test_set = fe.get_datasets(dataset=args.dataset, task=args.task, feature_type=args.feature_type, label_type=args.label_type, shuffle=args.shuffle, proportion=args.proportion) train_x,train_y=sort_data(training_set) val_x,val_y=sort_data(validation_set) with open("./cluster/tmp.csv","w") as csvfile: writer = csv.writer(csvfile) writer.writerow(['method','index','time_cost']) if args.method=='kmeans': acc = kmeans(train_x,train_y,len(np.unique(train_y))) elif args.method=='dbscan': acc = dbscan(train_x,train_y) elif args.method=='AC': acc = AC(train_x,train_y,len(np.unique(train_y))) elif args.method=='AP': acc = AP(train_x,train_y) elif args.method=='meanshift': acc = meanshift(train_x,train_y) elif args.method=='S_C': acc = S_C(train_x,train_y,len(np.unique(train_y))) elif args.method=='FA': acc = FA(train_x,train_y,len(np.unique(train_y))) elif args.method=='MBK': acc = MBK(train_x,train_y,len(np.unique(train_y))) elif args.method=='all': acc_k = kmeans(train_x,train_y,len(np.unique(train_y))) acc_ac = AC(train_x,train_y,len(np.unique(train_y))) acc_sc = S_C(train_x,train_y,len(np.unique(train_y))) # acc_fa = FA(train_x,train_y,len(np.unique(train_y))) ValueError: Found input variables with inconsistent numbers of samples: [7414, 24684] acc_mbk = MBK(train_x,train_y,len(np.unique(train_y))) acc_db = dbscan(train_x,train_y) # acc_ap = AP(train_x,train_y) affinity_propagation() missing 1 required positional argument: 'S' # acc_ms = meanshift(train_x,train_y) timesout tmp_path=os.path.abspath('./cluster/tmp.csv') os.rename('./cluster/tmp.csv',args.save_path)
[ 1, 7, 8, 9, 10 ]
1,389
eb81b0e41743e1785b82e88f6a618dc91eba73e5
<mask token> def process_frame(img): global vid_data img = cv2.resize(img, (w, h)) cv2.imshow('Frame', img) cv2.waitKey(1) vid_data = np.append(vid_data, img, axis=0) <mask token>
<mask token> def process_frame(img): global vid_data img = cv2.resize(img, (w, h)) cv2.imshow('Frame', img) cv2.waitKey(1) vid_data = np.append(vid_data, img, axis=0) <mask token> while vid.isOpened(): ret, frame = vid.read() if ret: process_frame(frame) n = n + 1 """ cv2.imshow('Frame', frame) if cv2.waitKey(25) & 0xFF == ord('q'): break """ else: break vid.release() cv2.destroyAllWindows() print(vid_data.shape) <mask token> print(vid_data.shape) np.savetxt('trackmania_vid_data2D_360x640.csv', vid_data, delimiter=',')
<mask token> vid = cv2.VideoCapture('trackmania_test_vid.mp4') w = 1280 // 2 h = 720 // 2 vid_data = np.empty((360, 640, 3)) def process_frame(img): global vid_data img = cv2.resize(img, (w, h)) cv2.imshow('Frame', img) cv2.waitKey(1) vid_data = np.append(vid_data, img, axis=0) n = 0 while vid.isOpened(): ret, frame = vid.read() if ret: process_frame(frame) n = n + 1 """ cv2.imshow('Frame', frame) if cv2.waitKey(25) & 0xFF == ord('q'): break """ else: break vid.release() cv2.destroyAllWindows() print(vid_data.shape) vid_data = vid_data.reshape((vid_data.shape[0], -1)) print(vid_data.shape) np.savetxt('trackmania_vid_data2D_360x640.csv', vid_data, delimiter=',')
import numpy as np import cv2 vid = cv2.VideoCapture('trackmania_test_vid.mp4') w = 1280 // 2 h = 720 // 2 vid_data = np.empty((360, 640, 3)) def process_frame(img): global vid_data img = cv2.resize(img, (w, h)) cv2.imshow('Frame', img) cv2.waitKey(1) vid_data = np.append(vid_data, img, axis=0) n = 0 while vid.isOpened(): ret, frame = vid.read() if ret: process_frame(frame) n = n + 1 """ cv2.imshow('Frame', frame) if cv2.waitKey(25) & 0xFF == ord('q'): break """ else: break vid.release() cv2.destroyAllWindows() print(vid_data.shape) vid_data = vid_data.reshape((vid_data.shape[0], -1)) print(vid_data.shape) np.savetxt('trackmania_vid_data2D_360x640.csv', vid_data, delimiter=',')
#train a neural network from input video feed import numpy as np import cv2 vid = cv2.VideoCapture('trackmania_test_vid.mp4') w = 1280//2 h = 720//2 vid_data = np.empty((360, 640, 3)) #print(vid_data.shape) def process_frame(img): global vid_data img = cv2.resize(img, (w, h)) cv2.imshow('Frame', img) cv2.waitKey(1) vid_data = np.append(vid_data, img, axis=0) #print(img.shape) # Read until video is completed n = 0 while vid.isOpened(): # Capture frame-by-frame ret, frame = vid.read() if ret: #print("frame = {}".format(frame.shape)) process_frame(frame) n = n + 1 ''' cv2.imshow('Frame', frame) if cv2.waitKey(25) & 0xFF == ord('q'): break ''' else: break # When everything done, release the video capture object vid.release() # Closes all the frames cv2.destroyAllWindows() print(vid_data.shape) vid_data = vid_data.reshape((vid_data.shape[0], -1)) print(vid_data.shape) # n = 1340 #print('No. of frames = {}'.format(n)) np.savetxt("trackmania_vid_data2D_360x640.csv", vid_data, delimiter=",") #50580,320,3 ---> 281,180,320,3 #101160,640,3 ---> 281,360,640,3
[ 1, 2, 3, 4, 5 ]
1,390
b2d3ebe4b1ce8f6f0fde8495fb90542080b810ce
<mask token> class _TimeIT(object): <mask token> def __init__(self, func, args_list, kwargs_dict, setup_line_list, check_too_fast, run_sec, name, perf_counter_reference_time): """ Constructor. See class doc string. """ self.func = func self.orig_func_name = getattr(self.func, '__name__', self.func) self.args_list = args_list.copy() self.kwargs_dict = kwargs_dict.copy() self.setup_line_list = setup_line_list self.check_too_fast = check_too_fast self.run_sec = run_sec self.name = name self.perf_counter_reference_time = perf_counter_reference_time if callable(self.func): _ns = {} self.src = self.__get_final_inner_function() if (self.run_sec is not None and self.run_sec != -1 and self. run_sec < 0.1): raise Err('_TimeIT.__init__()', 'run_sec: <{:.1f}> must be at least <0.1 second> or <-1 to run it once> or <None to print the `func code block`>' .format(self.run_sec)) _code = compile(self.src, 'benchmarkit-src', 'exec') exec(_code, globals(), _ns) self.inner = _ns['inner'] else: raise ValueError('<func>: is not a `callable` type: <{}>'. format(self.func)) def benchmark_it(self, with_gc): """ Returns timing result for the `func code block` .. note:: By default, timeit() temporarily turns off garbage collection during the timing. The advantage of this approach is that it makes independent timings more comparable. This disadvantage is that GC may be an important component of the performance of the function being measured. If so, GC can be re-enabled as the with_gc=True Returns: dict: benchmark result: dict keys: loops, all_loops_time_sec, avg_loop_sec, best_loop_sec, worst_loop_sec - loops: how many times the `func code block` was executed (looped over) - all_loops_time_sec: the total time in seconds for all loops: only loop times are counted not other times: depending on the `func code block` this can be about 25% of the total runtime - avg_loop_sec: average loop time in seconds: this should be mostly used as measure time: if there where only a very low number of loops - one might want to increase the `run_sec` and rerun it - two_best_loop_sec: time in seconds for the two fastest of all loops - two_worst_loop_sec: time in seconds for the two slowest of all loops Raises: SpeedIT.Err: example if `run_sec` is not <-1 run once>, <None only print> but less than 0.1 """ if self.run_sec is None: benchmark_result = self.src elif with_gc: gc_old = gc.isenabled() gc.enable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if not gc_old: gc.disable() else: gc_old = gc.isenabled() gc.disable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if gc_old: gc.enable() return benchmark_result def __get_final_inner_function(self): """ Returns a string of an generated inner function with the code body from: func Tries to generate a function with the 'code-body' from the passed on func as well as the args_list, kwargs_dict .. warnings:: the `func` function may not have any return statements: but any inner function can have one Returns: str: generated inner function Raises: SpeedIT.Err: example if an indentation is encountered which is not a multiple of the first found indentation """ has_block_speedit = False _start_block_stripped_line = '' start_tag_block_speedit = 0 end_tag_block_speedit = 0 func_line, lnum = getsourcelines(self.func) sig = signature(self.func) indent_ = None func_def_indent = len(func_line[0]) - len(func_line[0].lstrip()) func_body = func_line[1:] search_docstring = False first_none_docstring_idx = 0 for idx, line_orig in enumerate(func_body): rstripped_line = line_orig.rstrip() if rstripped_line: stripped_codeline = rstripped_line.lstrip() if stripped_codeline[0] == '#': if not ('::SPEEDIT::' in stripped_codeline or '**SPEEDIT**' in stripped_codeline): continue if search_docstring: if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3 ] == "'''": search_docstring = False continue else: codebody_indent = len(rstripped_line) - len( stripped_codeline) indent_ = codebody_indent - func_def_indent if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3 ] == "'''": search_docstring = True continue first_none_docstring_idx = idx break adjusted_func_code_line = [] for line_orig in func_body[first_none_docstring_idx:]: if line_orig: rstrip_line = line_orig.rstrip() if rstrip_line: stripped_line = rstrip_line.lstrip() if stripped_line[0] == '#': if ('::SPEEDIT::' in stripped_line or '**SPEEDIT**' in stripped_line): has_block_speedit = True else: continue line_indentation = len(rstrip_line) - len(stripped_line) if line_indentation % indent_ != 0: raise Err('_TimeIT.get_final_inner_function', """<{}>: ERROR: indentation must be a multiple of the second function line: <{}> seems we encountered a wrong indented line: line_indentation: <{}> {}""" .format(self.orig_func_name, indent_, line_indentation, line_orig)) line_indentation_level = int((line_indentation - func_def_indent) / indent_) + 1 if has_block_speedit: if '::SPEEDIT::' in stripped_line: if (start_tag_block_speedit != end_tag_block_speedit): raise Err('_TimeIT.get_final_inner_function', """<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}> Expected an END-TAG <**SPEEDIT**>: {}""" .format(self.orig_func_name, has_block_speedit, line_orig)) adjusted_func_code_line.append(' ' * line_indentation_level + '_speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added' ) start_tag_block_speedit += 1 _start_block_stripped_line = stripped_line elif '**SPEEDIT**' in stripped_line: if (end_tag_block_speedit != start_tag_block_speedit - 1): raise Err('_TimeIT.get_final_inner_function', """<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}> Expected an START-TAG <::SPEEDIT::>: {}""" .format(self.orig_func_name, has_block_speedit, line_orig)) adjusted_func_code_line.append(' ' * line_indentation_level + '_speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append(' ' * line_indentation_level + 'if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>' .format(_start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) end_tag_block_speedit += 1 else: adjusted_func_code_line.append(' ' * line_indentation_level + stripped_line) else: adjusted_func_code_line.append(' ' * line_indentation_level + stripped_line) if has_block_speedit: if start_tag_block_speedit != end_tag_block_speedit: adjusted_func_code_line.append( ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append( ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>'.format( _start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) else: adjusted_func_code_line.insert(0, ' _speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added' ) adjusted_func_code_line.append( ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append( ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) final_param_line = [] for param, value in sig.parameters.items(): if value.kind == value.POSITIONAL_OR_KEYWORD: if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.POSITIONAL_ONLY: value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) raise Err('_TimeIT.get_final_inner_function()', 'POSITIONAL_ONLY !! not sure what to do .. check in future if needed: param: <{}> value.kind: <{}>' .format(param, value.kind)) elif value.kind == value.VAR_POSITIONAL: parameter_line = '{} = {}'.format(param, self.args_list) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.KEYWORD_ONLY: if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: value_to_set = value.default if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.VAR_KEYWORD: parameter_line = '{} = {}'.format(param, self.kwargs_dict) final_param_line.append(' ' * 2 + parameter_line) else: continue final_setup_lines = [] for setup_line in self.setup_line_list: setup_line = setup_line.strip() if setup_line: final_setup_lines.append(' ' + setup_line) final_inner_function_lines = [ 'def inner(): # orig function name: <{}>'.format(self. orig_func_name), ' from time import perf_counter as _speeit_prefix__perf_counter', '', ' _speeit_prefix__run_sec = {}'.format(self.run_sec), '', ' # ==================== START SETUP LINES ==================== #' , ''] final_inner_function_lines.extend(final_setup_lines) inner_function_lines_part2 = ['', ' # ==================== END SETUP LINES ==================== #', '', ' # The smallest difference of calling _speeit_prefix__perf_counter() immediately after each other a couple of times' , ' _speeit_prefix__check_reference_time = {}'.format(self. perf_counter_reference_time), ' _speeit_prefix__loops = 0', ' _speeit_prefix__all_loops_time_sec = 0.0', ' _speeit_prefix__avg_loop_sec = 0.0', ' _speeit_prefix__best_loop_sec = 99999999999.0', ' _speeit_prefix__second_best_loop_sec = 99999999999.0', ' _speeit_prefix__worst_loop_sec = 0.0', ' _speeit_prefix__second_worst_loop_sec = 0.0', ' if _speeit_prefix__run_sec is None:', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,' , ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,' , ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec' , ' }', ' elif _speeit_prefix__run_sec == -1:', ' # only run it once', ' _speeit_prefix__run_once = True', ' else:', ' _speeit_prefix__run_once = False', ' _speeit_prefix__main_start_time = _speeit_prefix__perf_counter()' , ' while True:', ' _speeit_prefix__loops += 1', ' _speeit_prefix__result_time = 0', '', ' # ==================== START CODE BLOCK ==================== #' , ''] final_inner_function_lines.extend(inner_function_lines_part2) final_inner_function_lines.extend(final_param_line) final_inner_function_lines.extend(adjusted_func_code_line) inner_function_lines_rest = ['', ' # ==================== END CODE BLOCK ==================== #' , '', ' _speeit_prefix__all_loops_time_sec += _speeit_prefix__result_time' , ' if _speeit_prefix__result_time <= _speeit_prefix__best_loop_sec:' , ' _speeit_prefix__second_best_loop_sec = _speeit_prefix__best_loop_sec' , ' _speeit_prefix__best_loop_sec = _speeit_prefix__result_time' , ' if _speeit_prefix__result_time >= _speeit_prefix__worst_loop_sec:' , ' _speeit_prefix__second_worst_loop_sec = _speeit_prefix__worst_loop_sec' , ' _speeit_prefix__worst_loop_sec = _speeit_prefix__result_time' , ' if _speeit_prefix__run_once:', ' break', ' # check if we have to get out', ' if _speeit_prefix__perf_counter() - _speeit_prefix__main_start_time >= _speeit_prefix__run_sec:' , ' break', ' _speeit_prefix__avg_loop_sec = _speeit_prefix__all_loops_time_sec / _speeit_prefix__loops' , ' if _speeit_prefix__second_best_loop_sec == 99999999999.0:', ' _speeit_prefix__second_best_loop_sec = -1.0', ' if _speeit_prefix__second_worst_loop_sec == 0.0:', ' _speeit_prefix__second_worst_loop_sec = -1.0', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,', ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,' , ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec' , ' }', ''] final_inner_function_lines.extend(inner_function_lines_rest) return '\n'.join(final_inner_function_lines) <mask token>
<mask token> class _TimeIT(object): """ Class for timing execution speed of function code. Partially based on code from python timeit.py This does not execute the original function but generates a new function which executes only the code body of 'func': `func code block` This avoids calling into the function itself Args: func (function): .. warning:: the `func` function may not have any return statements: but any inner function can have one OK .. code-block:: python def example_formal_func_inner(data_): shuffle(data_) def fninner(x): return x[1] result = sorted(data_.items(), key=fninner) del result NOT OK .. code-block:: python def example_pep265(data_): shuffle(data_) result = sorted(data_.items(), key=itemgetter(1)) return result func_positional_arguments (list): positional arguments for the function func_keyword_arguments (dict): any keyword arguments for the function setup_line_list (list): of strings with import lines needed by the functions any global data ect.. this part is executed once before the actual `func code block` enters the loop .. warning:: no multiline string or indented code line check_too_fast(bool): if True and a code block is timed faster than a `Reference-Time` an Exception is raised. - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times .. seealso:: _helper_get_perf_counter_reference_time() run_sec (float or -1 or None): seconds the `func code block` will be executed (looped over) - if run_sec is -1: then the generated function source code is only run once - if run_sec is None: then the generated function source code is only printed this is mainly useful to see the exact final `func code block` which will be timed. name (str): the name used for the output `name` part perf_counter_reference_time (float): passed on see: _helper_get_perf_counter_reference_time() """ def __init__(self, func, args_list, kwargs_dict, setup_line_list, check_too_fast, run_sec, name, perf_counter_reference_time): """ Constructor. See class doc string. """ self.func = func self.orig_func_name = getattr(self.func, '__name__', self.func) self.args_list = args_list.copy() self.kwargs_dict = kwargs_dict.copy() self.setup_line_list = setup_line_list self.check_too_fast = check_too_fast self.run_sec = run_sec self.name = name self.perf_counter_reference_time = perf_counter_reference_time if callable(self.func): _ns = {} self.src = self.__get_final_inner_function() if (self.run_sec is not None and self.run_sec != -1 and self. run_sec < 0.1): raise Err('_TimeIT.__init__()', 'run_sec: <{:.1f}> must be at least <0.1 second> or <-1 to run it once> or <None to print the `func code block`>' .format(self.run_sec)) _code = compile(self.src, 'benchmarkit-src', 'exec') exec(_code, globals(), _ns) self.inner = _ns['inner'] else: raise ValueError('<func>: is not a `callable` type: <{}>'. format(self.func)) def benchmark_it(self, with_gc): """ Returns timing result for the `func code block` .. note:: By default, timeit() temporarily turns off garbage collection during the timing. The advantage of this approach is that it makes independent timings more comparable. This disadvantage is that GC may be an important component of the performance of the function being measured. If so, GC can be re-enabled as the with_gc=True Returns: dict: benchmark result: dict keys: loops, all_loops_time_sec, avg_loop_sec, best_loop_sec, worst_loop_sec - loops: how many times the `func code block` was executed (looped over) - all_loops_time_sec: the total time in seconds for all loops: only loop times are counted not other times: depending on the `func code block` this can be about 25% of the total runtime - avg_loop_sec: average loop time in seconds: this should be mostly used as measure time: if there where only a very low number of loops - one might want to increase the `run_sec` and rerun it - two_best_loop_sec: time in seconds for the two fastest of all loops - two_worst_loop_sec: time in seconds for the two slowest of all loops Raises: SpeedIT.Err: example if `run_sec` is not <-1 run once>, <None only print> but less than 0.1 """ if self.run_sec is None: benchmark_result = self.src elif with_gc: gc_old = gc.isenabled() gc.enable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if not gc_old: gc.disable() else: gc_old = gc.isenabled() gc.disable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if gc_old: gc.enable() return benchmark_result def __get_final_inner_function(self): """ Returns a string of an generated inner function with the code body from: func Tries to generate a function with the 'code-body' from the passed on func as well as the args_list, kwargs_dict .. warnings:: the `func` function may not have any return statements: but any inner function can have one Returns: str: generated inner function Raises: SpeedIT.Err: example if an indentation is encountered which is not a multiple of the first found indentation """ has_block_speedit = False _start_block_stripped_line = '' start_tag_block_speedit = 0 end_tag_block_speedit = 0 func_line, lnum = getsourcelines(self.func) sig = signature(self.func) indent_ = None func_def_indent = len(func_line[0]) - len(func_line[0].lstrip()) func_body = func_line[1:] search_docstring = False first_none_docstring_idx = 0 for idx, line_orig in enumerate(func_body): rstripped_line = line_orig.rstrip() if rstripped_line: stripped_codeline = rstripped_line.lstrip() if stripped_codeline[0] == '#': if not ('::SPEEDIT::' in stripped_codeline or '**SPEEDIT**' in stripped_codeline): continue if search_docstring: if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3 ] == "'''": search_docstring = False continue else: codebody_indent = len(rstripped_line) - len( stripped_codeline) indent_ = codebody_indent - func_def_indent if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3 ] == "'''": search_docstring = True continue first_none_docstring_idx = idx break adjusted_func_code_line = [] for line_orig in func_body[first_none_docstring_idx:]: if line_orig: rstrip_line = line_orig.rstrip() if rstrip_line: stripped_line = rstrip_line.lstrip() if stripped_line[0] == '#': if ('::SPEEDIT::' in stripped_line or '**SPEEDIT**' in stripped_line): has_block_speedit = True else: continue line_indentation = len(rstrip_line) - len(stripped_line) if line_indentation % indent_ != 0: raise Err('_TimeIT.get_final_inner_function', """<{}>: ERROR: indentation must be a multiple of the second function line: <{}> seems we encountered a wrong indented line: line_indentation: <{}> {}""" .format(self.orig_func_name, indent_, line_indentation, line_orig)) line_indentation_level = int((line_indentation - func_def_indent) / indent_) + 1 if has_block_speedit: if '::SPEEDIT::' in stripped_line: if (start_tag_block_speedit != end_tag_block_speedit): raise Err('_TimeIT.get_final_inner_function', """<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}> Expected an END-TAG <**SPEEDIT**>: {}""" .format(self.orig_func_name, has_block_speedit, line_orig)) adjusted_func_code_line.append(' ' * line_indentation_level + '_speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added' ) start_tag_block_speedit += 1 _start_block_stripped_line = stripped_line elif '**SPEEDIT**' in stripped_line: if (end_tag_block_speedit != start_tag_block_speedit - 1): raise Err('_TimeIT.get_final_inner_function', """<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}> Expected an START-TAG <::SPEEDIT::>: {}""" .format(self.orig_func_name, has_block_speedit, line_orig)) adjusted_func_code_line.append(' ' * line_indentation_level + '_speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append(' ' * line_indentation_level + 'if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>' .format(_start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) end_tag_block_speedit += 1 else: adjusted_func_code_line.append(' ' * line_indentation_level + stripped_line) else: adjusted_func_code_line.append(' ' * line_indentation_level + stripped_line) if has_block_speedit: if start_tag_block_speedit != end_tag_block_speedit: adjusted_func_code_line.append( ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append( ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>'.format( _start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) else: adjusted_func_code_line.insert(0, ' _speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added' ) adjusted_func_code_line.append( ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append( ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) final_param_line = [] for param, value in sig.parameters.items(): if value.kind == value.POSITIONAL_OR_KEYWORD: if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.POSITIONAL_ONLY: value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) raise Err('_TimeIT.get_final_inner_function()', 'POSITIONAL_ONLY !! not sure what to do .. check in future if needed: param: <{}> value.kind: <{}>' .format(param, value.kind)) elif value.kind == value.VAR_POSITIONAL: parameter_line = '{} = {}'.format(param, self.args_list) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.KEYWORD_ONLY: if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: value_to_set = value.default if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.VAR_KEYWORD: parameter_line = '{} = {}'.format(param, self.kwargs_dict) final_param_line.append(' ' * 2 + parameter_line) else: continue final_setup_lines = [] for setup_line in self.setup_line_list: setup_line = setup_line.strip() if setup_line: final_setup_lines.append(' ' + setup_line) final_inner_function_lines = [ 'def inner(): # orig function name: <{}>'.format(self. orig_func_name), ' from time import perf_counter as _speeit_prefix__perf_counter', '', ' _speeit_prefix__run_sec = {}'.format(self.run_sec), '', ' # ==================== START SETUP LINES ==================== #' , ''] final_inner_function_lines.extend(final_setup_lines) inner_function_lines_part2 = ['', ' # ==================== END SETUP LINES ==================== #', '', ' # The smallest difference of calling _speeit_prefix__perf_counter() immediately after each other a couple of times' , ' _speeit_prefix__check_reference_time = {}'.format(self. perf_counter_reference_time), ' _speeit_prefix__loops = 0', ' _speeit_prefix__all_loops_time_sec = 0.0', ' _speeit_prefix__avg_loop_sec = 0.0', ' _speeit_prefix__best_loop_sec = 99999999999.0', ' _speeit_prefix__second_best_loop_sec = 99999999999.0', ' _speeit_prefix__worst_loop_sec = 0.0', ' _speeit_prefix__second_worst_loop_sec = 0.0', ' if _speeit_prefix__run_sec is None:', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,' , ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,' , ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec' , ' }', ' elif _speeit_prefix__run_sec == -1:', ' # only run it once', ' _speeit_prefix__run_once = True', ' else:', ' _speeit_prefix__run_once = False', ' _speeit_prefix__main_start_time = _speeit_prefix__perf_counter()' , ' while True:', ' _speeit_prefix__loops += 1', ' _speeit_prefix__result_time = 0', '', ' # ==================== START CODE BLOCK ==================== #' , ''] final_inner_function_lines.extend(inner_function_lines_part2) final_inner_function_lines.extend(final_param_line) final_inner_function_lines.extend(adjusted_func_code_line) inner_function_lines_rest = ['', ' # ==================== END CODE BLOCK ==================== #' , '', ' _speeit_prefix__all_loops_time_sec += _speeit_prefix__result_time' , ' if _speeit_prefix__result_time <= _speeit_prefix__best_loop_sec:' , ' _speeit_prefix__second_best_loop_sec = _speeit_prefix__best_loop_sec' , ' _speeit_prefix__best_loop_sec = _speeit_prefix__result_time' , ' if _speeit_prefix__result_time >= _speeit_prefix__worst_loop_sec:' , ' _speeit_prefix__second_worst_loop_sec = _speeit_prefix__worst_loop_sec' , ' _speeit_prefix__worst_loop_sec = _speeit_prefix__result_time' , ' if _speeit_prefix__run_once:', ' break', ' # check if we have to get out', ' if _speeit_prefix__perf_counter() - _speeit_prefix__main_start_time >= _speeit_prefix__run_sec:' , ' break', ' _speeit_prefix__avg_loop_sec = _speeit_prefix__all_loops_time_sec / _speeit_prefix__loops' , ' if _speeit_prefix__second_best_loop_sec == 99999999999.0:', ' _speeit_prefix__second_best_loop_sec = -1.0', ' if _speeit_prefix__second_worst_loop_sec == 0.0:', ' _speeit_prefix__second_worst_loop_sec = -1.0', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,', ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,' , ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec' , ' }', ''] final_inner_function_lines.extend(inner_function_lines_rest) return '\n'.join(final_inner_function_lines) def speedit_benchmark(func_dict, setup_line_list, use_func_name=True, output_in_sec=False, benchmarkit__with_gc=False, benchmarkit__check_too_fast=True, benchmarkit__rank_by='best', benchmarkit__run_sec=1, benchmarkit__repeat=3): """ Returns one txt string for the ready comparison table: format is conform with reStructuredText Usage: .. code-block:: python func_dict = { 'function_f1': (function_f1, [act_one_hamlet], {}), 'function_f2': (function_f2, [act_one_hamlet], {}), 'function_f3': (function_f3, [act_one_hamlet], {}), } setup_line_list = [ 'from random import shuffle', 'from os.path import abspath, dirname, join', 'MY_CONSTANT = 15' ] benchmark_result = BenchmarkIT.speedit_benchmark(func_dict, setup_line_list, benchmarkit__run_sec=1.0, output_in_sec=True, use_func_name=True, benchmarkit__with_gc=False, benchmarkit__repeat=3) Args: func_dict (dict): mapping function names to functions value format: tuple (function, list_of_positional_arguments, dictionary_of_keyword_arguments) setup_line_list (list): of strings with import lines needed by the functions any global data ect.. .. warning:: no multiline string or indented code line use_func_name (bool): if True the function name will be used in the output `name` if False the `func_dict key` will be used in the the output `name` output_in_sec (int): if true the output is keep in seconds if false it is transformed to: second (s) millisecond (ms) One thousandth of one second microsecond (µs) One millionth of one second nanosecond (ns) One billionth of one second benchmarkit__with_gc (bool): if True gc is kept on during timing: if False: turns off garbage collection during the timing benchmarkit__check_too_fast(bool): if True and aa code block is timed faster than a `Reference-Time` an Exception is raised. - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times .. seealso:: _helper_get_perf_counter_reference_time() benchmarkit__rank_by (str): `best` or `average` benchmarkit__run_sec (float or -1 or None): the number of loops per run is scaled to approximately fit the benchmarkit__run_sec - if benchmarkit__run_sec is -1: then the generated function source code is only run once - if benchmarkit__run_sec is None: then the generated function source code is only printed this is mainly useful to see the exact final `func code block` which will be timed. benchmarkit__repeat (int): how often everything is repeated This is a convenience variable that calls the whole setup repeatedly Returns: str: ready to print or write to file: table format is conform with reStructuredText Raises: SpeedIT.Err """ if not func_dict: raise Err('speedit_benchmark()', 'At least one function must be defined in `func_dict`: <{}>'. format(func_dict)) if benchmarkit__rank_by != 'best' and benchmarkit__rank_by != 'average': raise Err('speedit_benchmark()', '<benchmarkit__rank_by> must be one of: <best, average> We got: <{}>' .format(benchmarkit__rank_by)) if benchmarkit__repeat < 1: raise Err('speedit_benchmark()', '<benchmarkit__repeat> must be greater than <0> We got: <{}>'. format(benchmarkit__repeat)) all_final_lines = [] perf_counter_reference_time = _helper_get_perf_counter_reference_time() if benchmarkit__run_sec is None: all_final_lines.extend([ '================ RUN SECONDS: benchmarkit__run_sec was defined as: None (benchmarkit__run_sec=None) ================' , '', '']) for func_name, (function_, func_positional_arguments, func_keyword_arguments) in sorted(func_dict.items()): if use_func_name: name = getattr(function_, '__name__', function_) else: name = func_name benchmark_result = _TimeIT(function_, func_positional_arguments, func_keyword_arguments, setup_line_list, benchmarkit__check_too_fast, benchmarkit__run_sec, name, perf_counter_reference_time).benchmark_it(benchmarkit__with_gc) all_final_lines.extend([ '===================== function name: <{}>'.format( func_name), '', benchmark_result, '', '']) else: title_line = ( 'SpeedIT: `BenchmarkIT` for: <{}> functions. benchmarkit__with_gc: <{}> benchmarkit__run_sec: <{}> ' .format(len(func_dict), benchmarkit__with_gc, benchmarkit__run_sec) ) for repeat_all in range(benchmarkit__repeat): table = [] for func_name, (function_, func_positional_arguments, func_keyword_arguments) in sorted(func_dict.items()): if use_func_name: name = getattr(function_, '__name__', function_) else: name = func_name benchmark_result = _TimeIT(function_, func_positional_arguments, func_keyword_arguments, setup_line_list, benchmarkit__check_too_fast, benchmarkit__run_sec, name, perf_counter_reference_time ).benchmark_it(with_gc=benchmarkit__with_gc) table.append(benchmark_result) if benchmarkit__rank_by == 'best': table = sorted(table, key=itemgetter('best_loop_sec')) compare_reference = table[0]['best_loop_sec'] for idx, dict_ in enumerate(table): dict_['compare'] = '{:,.3f}'.format(dict_[ 'best_loop_sec'] / compare_reference * 100.0) dict_['rank'] = '{:,}'.format(idx + 1) dict_['loops'] = '{:,}'.format(dict_['loops']) if output_in_sec: dict_['avg_loop_sec'] = '{:.11f}'.format(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = '{:.11f}'.format(dict_[ 'best_loop_sec']) if dict_['second_best_loop_sec'] == -1.0: dict_['second_best_loop_sec'] = 'NOT-MEASURED' else: dict_['second_best_loop_sec'] = '{:.11f}'.format( dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = '{:.11f}'.format(dict_[ 'worst_loop_sec']) if dict_['second_worst_loop_sec'] == -1.0: dict_['second_worst_loop_sec'] = 'NOT-MEASURED' else: dict_['second_worst_loop_sec'] = '{:.11f}'.format( dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_ ['all_loops_time_sec']) else: dict_['avg_loop_sec'] = format_time(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = format_time(dict_[ 'best_loop_sec']) dict_['second_best_loop_sec'] = format_time(dict_[ 'second_best_loop_sec']) dict_['worst_loop_sec'] = format_time(dict_[ 'worst_loop_sec']) dict_['second_worst_loop_sec'] = format_time(dict_[ 'second_worst_loop_sec']) dict_['all_loops_time_sec'] = format_time(dict_[ 'all_loops_time_sec']) elif benchmarkit__rank_by == 'average': table = sorted(table, key=itemgetter('avg_loop_sec')) compare_reference = table[0]['avg_loop_sec'] for idx, dict_ in enumerate(table): dict_['compare'] = '{:,.3f}'.format(dict_[ 'avg_loop_sec'] / compare_reference * 100.0) dict_['rank'] = '{:,}'.format(idx + 1) dict_['loops'] = '{:,}'.format(dict_['loops']) if output_in_sec: dict_['avg_loop_sec'] = '{:.11f}'.format(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = '{:.11f}'.format(dict_[ 'best_loop_sec']) if dict_['second_best_loop_sec'] == -1.0: dict_['second_best_loop_sec'] = 'NOT-MEASURED' else: dict_['second_best_loop_sec'] = '{:.11f}'.format( dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = '{:.11f}'.format(dict_[ 'worst_loop_sec']) if dict_['second_worst_loop_sec'] == -1.0: dict_['second_worst_loop_sec'] = 'NOT-MEASURED' else: dict_['second_worst_loop_sec'] = '{:.11f}'.format( dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_ ['all_loops_time_sec']) else: dict_['avg_loop_sec'] = format_time(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = format_time(dict_[ 'best_loop_sec']) dict_['second_best_loop_sec'] = format_time(dict_[ 'second_best_loop_sec']) dict_['worst_loop_sec'] = format_time(dict_[ 'worst_loop_sec']) dict_['second_worst_loop_sec'] = format_time(dict_[ 'second_worst_loop_sec']) dict_['all_loops_time_sec'] = format_time(dict_[ 'all_loops_time_sec']) header_mapping = [('name', 'name'), ('rank-{}'.format( benchmarkit__rank_by), 'rank'), ('compare %', 'compare'), ( 'num. loops', 'loops'), ('avg_loop', 'avg_loop_sec'), ( 'best_loop', 'best_loop_sec'), ('second_best_loop', 'second_best_loop_sec'), ('worst_loop', 'worst_loop_sec'), ('second_worst_loop', 'second_worst_loop_sec'), ( 'all_loops time', 'all_loops_time_sec')] all_final_lines.extend(get_table_rst_formatted_lines(table, header_mapping, title_line)) all_final_lines.extend(['', '']) return '\n'.join(all_final_lines)
<mask token> def _helper_get_perf_counter_reference_time(): """ Helper: Returns 2 times: the smallest difference of calling perf_counter() immediately after each other a couple of times Returns: float: 2 times the smallest difference of calling perf_counter() immediately after each other a couple of times """ _result_time = 99999999999.0 for y_ in range(50): for x_ in range(3000): temp_start = perf_counter() temp_time = perf_counter() - temp_start if temp_time < _result_time: _result_time = temp_time return _result_time * 2 class _TimeIT(object): """ Class for timing execution speed of function code. Partially based on code from python timeit.py This does not execute the original function but generates a new function which executes only the code body of 'func': `func code block` This avoids calling into the function itself Args: func (function): .. warning:: the `func` function may not have any return statements: but any inner function can have one OK .. code-block:: python def example_formal_func_inner(data_): shuffle(data_) def fninner(x): return x[1] result = sorted(data_.items(), key=fninner) del result NOT OK .. code-block:: python def example_pep265(data_): shuffle(data_) result = sorted(data_.items(), key=itemgetter(1)) return result func_positional_arguments (list): positional arguments for the function func_keyword_arguments (dict): any keyword arguments for the function setup_line_list (list): of strings with import lines needed by the functions any global data ect.. this part is executed once before the actual `func code block` enters the loop .. warning:: no multiline string or indented code line check_too_fast(bool): if True and a code block is timed faster than a `Reference-Time` an Exception is raised. - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times .. seealso:: _helper_get_perf_counter_reference_time() run_sec (float or -1 or None): seconds the `func code block` will be executed (looped over) - if run_sec is -1: then the generated function source code is only run once - if run_sec is None: then the generated function source code is only printed this is mainly useful to see the exact final `func code block` which will be timed. name (str): the name used for the output `name` part perf_counter_reference_time (float): passed on see: _helper_get_perf_counter_reference_time() """ def __init__(self, func, args_list, kwargs_dict, setup_line_list, check_too_fast, run_sec, name, perf_counter_reference_time): """ Constructor. See class doc string. """ self.func = func self.orig_func_name = getattr(self.func, '__name__', self.func) self.args_list = args_list.copy() self.kwargs_dict = kwargs_dict.copy() self.setup_line_list = setup_line_list self.check_too_fast = check_too_fast self.run_sec = run_sec self.name = name self.perf_counter_reference_time = perf_counter_reference_time if callable(self.func): _ns = {} self.src = self.__get_final_inner_function() if (self.run_sec is not None and self.run_sec != -1 and self. run_sec < 0.1): raise Err('_TimeIT.__init__()', 'run_sec: <{:.1f}> must be at least <0.1 second> or <-1 to run it once> or <None to print the `func code block`>' .format(self.run_sec)) _code = compile(self.src, 'benchmarkit-src', 'exec') exec(_code, globals(), _ns) self.inner = _ns['inner'] else: raise ValueError('<func>: is not a `callable` type: <{}>'. format(self.func)) def benchmark_it(self, with_gc): """ Returns timing result for the `func code block` .. note:: By default, timeit() temporarily turns off garbage collection during the timing. The advantage of this approach is that it makes independent timings more comparable. This disadvantage is that GC may be an important component of the performance of the function being measured. If so, GC can be re-enabled as the with_gc=True Returns: dict: benchmark result: dict keys: loops, all_loops_time_sec, avg_loop_sec, best_loop_sec, worst_loop_sec - loops: how many times the `func code block` was executed (looped over) - all_loops_time_sec: the total time in seconds for all loops: only loop times are counted not other times: depending on the `func code block` this can be about 25% of the total runtime - avg_loop_sec: average loop time in seconds: this should be mostly used as measure time: if there where only a very low number of loops - one might want to increase the `run_sec` and rerun it - two_best_loop_sec: time in seconds for the two fastest of all loops - two_worst_loop_sec: time in seconds for the two slowest of all loops Raises: SpeedIT.Err: example if `run_sec` is not <-1 run once>, <None only print> but less than 0.1 """ if self.run_sec is None: benchmark_result = self.src elif with_gc: gc_old = gc.isenabled() gc.enable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if not gc_old: gc.disable() else: gc_old = gc.isenabled() gc.disable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if gc_old: gc.enable() return benchmark_result def __get_final_inner_function(self): """ Returns a string of an generated inner function with the code body from: func Tries to generate a function with the 'code-body' from the passed on func as well as the args_list, kwargs_dict .. warnings:: the `func` function may not have any return statements: but any inner function can have one Returns: str: generated inner function Raises: SpeedIT.Err: example if an indentation is encountered which is not a multiple of the first found indentation """ has_block_speedit = False _start_block_stripped_line = '' start_tag_block_speedit = 0 end_tag_block_speedit = 0 func_line, lnum = getsourcelines(self.func) sig = signature(self.func) indent_ = None func_def_indent = len(func_line[0]) - len(func_line[0].lstrip()) func_body = func_line[1:] search_docstring = False first_none_docstring_idx = 0 for idx, line_orig in enumerate(func_body): rstripped_line = line_orig.rstrip() if rstripped_line: stripped_codeline = rstripped_line.lstrip() if stripped_codeline[0] == '#': if not ('::SPEEDIT::' in stripped_codeline or '**SPEEDIT**' in stripped_codeline): continue if search_docstring: if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3 ] == "'''": search_docstring = False continue else: codebody_indent = len(rstripped_line) - len( stripped_codeline) indent_ = codebody_indent - func_def_indent if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3 ] == "'''": search_docstring = True continue first_none_docstring_idx = idx break adjusted_func_code_line = [] for line_orig in func_body[first_none_docstring_idx:]: if line_orig: rstrip_line = line_orig.rstrip() if rstrip_line: stripped_line = rstrip_line.lstrip() if stripped_line[0] == '#': if ('::SPEEDIT::' in stripped_line or '**SPEEDIT**' in stripped_line): has_block_speedit = True else: continue line_indentation = len(rstrip_line) - len(stripped_line) if line_indentation % indent_ != 0: raise Err('_TimeIT.get_final_inner_function', """<{}>: ERROR: indentation must be a multiple of the second function line: <{}> seems we encountered a wrong indented line: line_indentation: <{}> {}""" .format(self.orig_func_name, indent_, line_indentation, line_orig)) line_indentation_level = int((line_indentation - func_def_indent) / indent_) + 1 if has_block_speedit: if '::SPEEDIT::' in stripped_line: if (start_tag_block_speedit != end_tag_block_speedit): raise Err('_TimeIT.get_final_inner_function', """<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}> Expected an END-TAG <**SPEEDIT**>: {}""" .format(self.orig_func_name, has_block_speedit, line_orig)) adjusted_func_code_line.append(' ' * line_indentation_level + '_speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added' ) start_tag_block_speedit += 1 _start_block_stripped_line = stripped_line elif '**SPEEDIT**' in stripped_line: if (end_tag_block_speedit != start_tag_block_speedit - 1): raise Err('_TimeIT.get_final_inner_function', """<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}> Expected an START-TAG <::SPEEDIT::>: {}""" .format(self.orig_func_name, has_block_speedit, line_orig)) adjusted_func_code_line.append(' ' * line_indentation_level + '_speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append(' ' * line_indentation_level + 'if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>' .format(_start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) end_tag_block_speedit += 1 else: adjusted_func_code_line.append(' ' * line_indentation_level + stripped_line) else: adjusted_func_code_line.append(' ' * line_indentation_level + stripped_line) if has_block_speedit: if start_tag_block_speedit != end_tag_block_speedit: adjusted_func_code_line.append( ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append( ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>'.format( _start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) else: adjusted_func_code_line.insert(0, ' _speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added' ) adjusted_func_code_line.append( ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append( ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) final_param_line = [] for param, value in sig.parameters.items(): if value.kind == value.POSITIONAL_OR_KEYWORD: if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.POSITIONAL_ONLY: value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) raise Err('_TimeIT.get_final_inner_function()', 'POSITIONAL_ONLY !! not sure what to do .. check in future if needed: param: <{}> value.kind: <{}>' .format(param, value.kind)) elif value.kind == value.VAR_POSITIONAL: parameter_line = '{} = {}'.format(param, self.args_list) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.KEYWORD_ONLY: if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: value_to_set = value.default if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.VAR_KEYWORD: parameter_line = '{} = {}'.format(param, self.kwargs_dict) final_param_line.append(' ' * 2 + parameter_line) else: continue final_setup_lines = [] for setup_line in self.setup_line_list: setup_line = setup_line.strip() if setup_line: final_setup_lines.append(' ' + setup_line) final_inner_function_lines = [ 'def inner(): # orig function name: <{}>'.format(self. orig_func_name), ' from time import perf_counter as _speeit_prefix__perf_counter', '', ' _speeit_prefix__run_sec = {}'.format(self.run_sec), '', ' # ==================== START SETUP LINES ==================== #' , ''] final_inner_function_lines.extend(final_setup_lines) inner_function_lines_part2 = ['', ' # ==================== END SETUP LINES ==================== #', '', ' # The smallest difference of calling _speeit_prefix__perf_counter() immediately after each other a couple of times' , ' _speeit_prefix__check_reference_time = {}'.format(self. perf_counter_reference_time), ' _speeit_prefix__loops = 0', ' _speeit_prefix__all_loops_time_sec = 0.0', ' _speeit_prefix__avg_loop_sec = 0.0', ' _speeit_prefix__best_loop_sec = 99999999999.0', ' _speeit_prefix__second_best_loop_sec = 99999999999.0', ' _speeit_prefix__worst_loop_sec = 0.0', ' _speeit_prefix__second_worst_loop_sec = 0.0', ' if _speeit_prefix__run_sec is None:', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,' , ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,' , ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec' , ' }', ' elif _speeit_prefix__run_sec == -1:', ' # only run it once', ' _speeit_prefix__run_once = True', ' else:', ' _speeit_prefix__run_once = False', ' _speeit_prefix__main_start_time = _speeit_prefix__perf_counter()' , ' while True:', ' _speeit_prefix__loops += 1', ' _speeit_prefix__result_time = 0', '', ' # ==================== START CODE BLOCK ==================== #' , ''] final_inner_function_lines.extend(inner_function_lines_part2) final_inner_function_lines.extend(final_param_line) final_inner_function_lines.extend(adjusted_func_code_line) inner_function_lines_rest = ['', ' # ==================== END CODE BLOCK ==================== #' , '', ' _speeit_prefix__all_loops_time_sec += _speeit_prefix__result_time' , ' if _speeit_prefix__result_time <= _speeit_prefix__best_loop_sec:' , ' _speeit_prefix__second_best_loop_sec = _speeit_prefix__best_loop_sec' , ' _speeit_prefix__best_loop_sec = _speeit_prefix__result_time' , ' if _speeit_prefix__result_time >= _speeit_prefix__worst_loop_sec:' , ' _speeit_prefix__second_worst_loop_sec = _speeit_prefix__worst_loop_sec' , ' _speeit_prefix__worst_loop_sec = _speeit_prefix__result_time' , ' if _speeit_prefix__run_once:', ' break', ' # check if we have to get out', ' if _speeit_prefix__perf_counter() - _speeit_prefix__main_start_time >= _speeit_prefix__run_sec:' , ' break', ' _speeit_prefix__avg_loop_sec = _speeit_prefix__all_loops_time_sec / _speeit_prefix__loops' , ' if _speeit_prefix__second_best_loop_sec == 99999999999.0:', ' _speeit_prefix__second_best_loop_sec = -1.0', ' if _speeit_prefix__second_worst_loop_sec == 0.0:', ' _speeit_prefix__second_worst_loop_sec = -1.0', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,', ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,' , ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec' , ' }', ''] final_inner_function_lines.extend(inner_function_lines_rest) return '\n'.join(final_inner_function_lines) def speedit_benchmark(func_dict, setup_line_list, use_func_name=True, output_in_sec=False, benchmarkit__with_gc=False, benchmarkit__check_too_fast=True, benchmarkit__rank_by='best', benchmarkit__run_sec=1, benchmarkit__repeat=3): """ Returns one txt string for the ready comparison table: format is conform with reStructuredText Usage: .. code-block:: python func_dict = { 'function_f1': (function_f1, [act_one_hamlet], {}), 'function_f2': (function_f2, [act_one_hamlet], {}), 'function_f3': (function_f3, [act_one_hamlet], {}), } setup_line_list = [ 'from random import shuffle', 'from os.path import abspath, dirname, join', 'MY_CONSTANT = 15' ] benchmark_result = BenchmarkIT.speedit_benchmark(func_dict, setup_line_list, benchmarkit__run_sec=1.0, output_in_sec=True, use_func_name=True, benchmarkit__with_gc=False, benchmarkit__repeat=3) Args: func_dict (dict): mapping function names to functions value format: tuple (function, list_of_positional_arguments, dictionary_of_keyword_arguments) setup_line_list (list): of strings with import lines needed by the functions any global data ect.. .. warning:: no multiline string or indented code line use_func_name (bool): if True the function name will be used in the output `name` if False the `func_dict key` will be used in the the output `name` output_in_sec (int): if true the output is keep in seconds if false it is transformed to: second (s) millisecond (ms) One thousandth of one second microsecond (µs) One millionth of one second nanosecond (ns) One billionth of one second benchmarkit__with_gc (bool): if True gc is kept on during timing: if False: turns off garbage collection during the timing benchmarkit__check_too_fast(bool): if True and aa code block is timed faster than a `Reference-Time` an Exception is raised. - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times .. seealso:: _helper_get_perf_counter_reference_time() benchmarkit__rank_by (str): `best` or `average` benchmarkit__run_sec (float or -1 or None): the number of loops per run is scaled to approximately fit the benchmarkit__run_sec - if benchmarkit__run_sec is -1: then the generated function source code is only run once - if benchmarkit__run_sec is None: then the generated function source code is only printed this is mainly useful to see the exact final `func code block` which will be timed. benchmarkit__repeat (int): how often everything is repeated This is a convenience variable that calls the whole setup repeatedly Returns: str: ready to print or write to file: table format is conform with reStructuredText Raises: SpeedIT.Err """ if not func_dict: raise Err('speedit_benchmark()', 'At least one function must be defined in `func_dict`: <{}>'. format(func_dict)) if benchmarkit__rank_by != 'best' and benchmarkit__rank_by != 'average': raise Err('speedit_benchmark()', '<benchmarkit__rank_by> must be one of: <best, average> We got: <{}>' .format(benchmarkit__rank_by)) if benchmarkit__repeat < 1: raise Err('speedit_benchmark()', '<benchmarkit__repeat> must be greater than <0> We got: <{}>'. format(benchmarkit__repeat)) all_final_lines = [] perf_counter_reference_time = _helper_get_perf_counter_reference_time() if benchmarkit__run_sec is None: all_final_lines.extend([ '================ RUN SECONDS: benchmarkit__run_sec was defined as: None (benchmarkit__run_sec=None) ================' , '', '']) for func_name, (function_, func_positional_arguments, func_keyword_arguments) in sorted(func_dict.items()): if use_func_name: name = getattr(function_, '__name__', function_) else: name = func_name benchmark_result = _TimeIT(function_, func_positional_arguments, func_keyword_arguments, setup_line_list, benchmarkit__check_too_fast, benchmarkit__run_sec, name, perf_counter_reference_time).benchmark_it(benchmarkit__with_gc) all_final_lines.extend([ '===================== function name: <{}>'.format( func_name), '', benchmark_result, '', '']) else: title_line = ( 'SpeedIT: `BenchmarkIT` for: <{}> functions. benchmarkit__with_gc: <{}> benchmarkit__run_sec: <{}> ' .format(len(func_dict), benchmarkit__with_gc, benchmarkit__run_sec) ) for repeat_all in range(benchmarkit__repeat): table = [] for func_name, (function_, func_positional_arguments, func_keyword_arguments) in sorted(func_dict.items()): if use_func_name: name = getattr(function_, '__name__', function_) else: name = func_name benchmark_result = _TimeIT(function_, func_positional_arguments, func_keyword_arguments, setup_line_list, benchmarkit__check_too_fast, benchmarkit__run_sec, name, perf_counter_reference_time ).benchmark_it(with_gc=benchmarkit__with_gc) table.append(benchmark_result) if benchmarkit__rank_by == 'best': table = sorted(table, key=itemgetter('best_loop_sec')) compare_reference = table[0]['best_loop_sec'] for idx, dict_ in enumerate(table): dict_['compare'] = '{:,.3f}'.format(dict_[ 'best_loop_sec'] / compare_reference * 100.0) dict_['rank'] = '{:,}'.format(idx + 1) dict_['loops'] = '{:,}'.format(dict_['loops']) if output_in_sec: dict_['avg_loop_sec'] = '{:.11f}'.format(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = '{:.11f}'.format(dict_[ 'best_loop_sec']) if dict_['second_best_loop_sec'] == -1.0: dict_['second_best_loop_sec'] = 'NOT-MEASURED' else: dict_['second_best_loop_sec'] = '{:.11f}'.format( dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = '{:.11f}'.format(dict_[ 'worst_loop_sec']) if dict_['second_worst_loop_sec'] == -1.0: dict_['second_worst_loop_sec'] = 'NOT-MEASURED' else: dict_['second_worst_loop_sec'] = '{:.11f}'.format( dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_ ['all_loops_time_sec']) else: dict_['avg_loop_sec'] = format_time(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = format_time(dict_[ 'best_loop_sec']) dict_['second_best_loop_sec'] = format_time(dict_[ 'second_best_loop_sec']) dict_['worst_loop_sec'] = format_time(dict_[ 'worst_loop_sec']) dict_['second_worst_loop_sec'] = format_time(dict_[ 'second_worst_loop_sec']) dict_['all_loops_time_sec'] = format_time(dict_[ 'all_loops_time_sec']) elif benchmarkit__rank_by == 'average': table = sorted(table, key=itemgetter('avg_loop_sec')) compare_reference = table[0]['avg_loop_sec'] for idx, dict_ in enumerate(table): dict_['compare'] = '{:,.3f}'.format(dict_[ 'avg_loop_sec'] / compare_reference * 100.0) dict_['rank'] = '{:,}'.format(idx + 1) dict_['loops'] = '{:,}'.format(dict_['loops']) if output_in_sec: dict_['avg_loop_sec'] = '{:.11f}'.format(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = '{:.11f}'.format(dict_[ 'best_loop_sec']) if dict_['second_best_loop_sec'] == -1.0: dict_['second_best_loop_sec'] = 'NOT-MEASURED' else: dict_['second_best_loop_sec'] = '{:.11f}'.format( dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = '{:.11f}'.format(dict_[ 'worst_loop_sec']) if dict_['second_worst_loop_sec'] == -1.0: dict_['second_worst_loop_sec'] = 'NOT-MEASURED' else: dict_['second_worst_loop_sec'] = '{:.11f}'.format( dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_ ['all_loops_time_sec']) else: dict_['avg_loop_sec'] = format_time(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = format_time(dict_[ 'best_loop_sec']) dict_['second_best_loop_sec'] = format_time(dict_[ 'second_best_loop_sec']) dict_['worst_loop_sec'] = format_time(dict_[ 'worst_loop_sec']) dict_['second_worst_loop_sec'] = format_time(dict_[ 'second_worst_loop_sec']) dict_['all_loops_time_sec'] = format_time(dict_[ 'all_loops_time_sec']) header_mapping = [('name', 'name'), ('rank-{}'.format( benchmarkit__rank_by), 'rank'), ('compare %', 'compare'), ( 'num. loops', 'loops'), ('avg_loop', 'avg_loop_sec'), ( 'best_loop', 'best_loop_sec'), ('second_best_loop', 'second_best_loop_sec'), ('worst_loop', 'worst_loop_sec'), ('second_worst_loop', 'second_worst_loop_sec'), ( 'all_loops time', 'all_loops_time_sec')] all_final_lines.extend(get_table_rst_formatted_lines(table, header_mapping, title_line)) all_final_lines.extend(['', '']) return '\n'.join(all_final_lines)
<mask token> import gc from inspect import signature, getsourcelines from operator import itemgetter from time import perf_counter from SpeedIT.ProjectErr import Err from SpeedIT.Utils import format_time, get_table_rst_formatted_lines def _helper_get_perf_counter_reference_time(): """ Helper: Returns 2 times: the smallest difference of calling perf_counter() immediately after each other a couple of times Returns: float: 2 times the smallest difference of calling perf_counter() immediately after each other a couple of times """ _result_time = 99999999999.0 for y_ in range(50): for x_ in range(3000): temp_start = perf_counter() temp_time = perf_counter() - temp_start if temp_time < _result_time: _result_time = temp_time return _result_time * 2 class _TimeIT(object): """ Class for timing execution speed of function code. Partially based on code from python timeit.py This does not execute the original function but generates a new function which executes only the code body of 'func': `func code block` This avoids calling into the function itself Args: func (function): .. warning:: the `func` function may not have any return statements: but any inner function can have one OK .. code-block:: python def example_formal_func_inner(data_): shuffle(data_) def fninner(x): return x[1] result = sorted(data_.items(), key=fninner) del result NOT OK .. code-block:: python def example_pep265(data_): shuffle(data_) result = sorted(data_.items(), key=itemgetter(1)) return result func_positional_arguments (list): positional arguments for the function func_keyword_arguments (dict): any keyword arguments for the function setup_line_list (list): of strings with import lines needed by the functions any global data ect.. this part is executed once before the actual `func code block` enters the loop .. warning:: no multiline string or indented code line check_too_fast(bool): if True and a code block is timed faster than a `Reference-Time` an Exception is raised. - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times .. seealso:: _helper_get_perf_counter_reference_time() run_sec (float or -1 or None): seconds the `func code block` will be executed (looped over) - if run_sec is -1: then the generated function source code is only run once - if run_sec is None: then the generated function source code is only printed this is mainly useful to see the exact final `func code block` which will be timed. name (str): the name used for the output `name` part perf_counter_reference_time (float): passed on see: _helper_get_perf_counter_reference_time() """ def __init__(self, func, args_list, kwargs_dict, setup_line_list, check_too_fast, run_sec, name, perf_counter_reference_time): """ Constructor. See class doc string. """ self.func = func self.orig_func_name = getattr(self.func, '__name__', self.func) self.args_list = args_list.copy() self.kwargs_dict = kwargs_dict.copy() self.setup_line_list = setup_line_list self.check_too_fast = check_too_fast self.run_sec = run_sec self.name = name self.perf_counter_reference_time = perf_counter_reference_time if callable(self.func): _ns = {} self.src = self.__get_final_inner_function() if (self.run_sec is not None and self.run_sec != -1 and self. run_sec < 0.1): raise Err('_TimeIT.__init__()', 'run_sec: <{:.1f}> must be at least <0.1 second> or <-1 to run it once> or <None to print the `func code block`>' .format(self.run_sec)) _code = compile(self.src, 'benchmarkit-src', 'exec') exec(_code, globals(), _ns) self.inner = _ns['inner'] else: raise ValueError('<func>: is not a `callable` type: <{}>'. format(self.func)) def benchmark_it(self, with_gc): """ Returns timing result for the `func code block` .. note:: By default, timeit() temporarily turns off garbage collection during the timing. The advantage of this approach is that it makes independent timings more comparable. This disadvantage is that GC may be an important component of the performance of the function being measured. If so, GC can be re-enabled as the with_gc=True Returns: dict: benchmark result: dict keys: loops, all_loops_time_sec, avg_loop_sec, best_loop_sec, worst_loop_sec - loops: how many times the `func code block` was executed (looped over) - all_loops_time_sec: the total time in seconds for all loops: only loop times are counted not other times: depending on the `func code block` this can be about 25% of the total runtime - avg_loop_sec: average loop time in seconds: this should be mostly used as measure time: if there where only a very low number of loops - one might want to increase the `run_sec` and rerun it - two_best_loop_sec: time in seconds for the two fastest of all loops - two_worst_loop_sec: time in seconds for the two slowest of all loops Raises: SpeedIT.Err: example if `run_sec` is not <-1 run once>, <None only print> but less than 0.1 """ if self.run_sec is None: benchmark_result = self.src elif with_gc: gc_old = gc.isenabled() gc.enable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if not gc_old: gc.disable() else: gc_old = gc.isenabled() gc.disable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if gc_old: gc.enable() return benchmark_result def __get_final_inner_function(self): """ Returns a string of an generated inner function with the code body from: func Tries to generate a function with the 'code-body' from the passed on func as well as the args_list, kwargs_dict .. warnings:: the `func` function may not have any return statements: but any inner function can have one Returns: str: generated inner function Raises: SpeedIT.Err: example if an indentation is encountered which is not a multiple of the first found indentation """ has_block_speedit = False _start_block_stripped_line = '' start_tag_block_speedit = 0 end_tag_block_speedit = 0 func_line, lnum = getsourcelines(self.func) sig = signature(self.func) indent_ = None func_def_indent = len(func_line[0]) - len(func_line[0].lstrip()) func_body = func_line[1:] search_docstring = False first_none_docstring_idx = 0 for idx, line_orig in enumerate(func_body): rstripped_line = line_orig.rstrip() if rstripped_line: stripped_codeline = rstripped_line.lstrip() if stripped_codeline[0] == '#': if not ('::SPEEDIT::' in stripped_codeline or '**SPEEDIT**' in stripped_codeline): continue if search_docstring: if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3 ] == "'''": search_docstring = False continue else: codebody_indent = len(rstripped_line) - len( stripped_codeline) indent_ = codebody_indent - func_def_indent if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3 ] == "'''": search_docstring = True continue first_none_docstring_idx = idx break adjusted_func_code_line = [] for line_orig in func_body[first_none_docstring_idx:]: if line_orig: rstrip_line = line_orig.rstrip() if rstrip_line: stripped_line = rstrip_line.lstrip() if stripped_line[0] == '#': if ('::SPEEDIT::' in stripped_line or '**SPEEDIT**' in stripped_line): has_block_speedit = True else: continue line_indentation = len(rstrip_line) - len(stripped_line) if line_indentation % indent_ != 0: raise Err('_TimeIT.get_final_inner_function', """<{}>: ERROR: indentation must be a multiple of the second function line: <{}> seems we encountered a wrong indented line: line_indentation: <{}> {}""" .format(self.orig_func_name, indent_, line_indentation, line_orig)) line_indentation_level = int((line_indentation - func_def_indent) / indent_) + 1 if has_block_speedit: if '::SPEEDIT::' in stripped_line: if (start_tag_block_speedit != end_tag_block_speedit): raise Err('_TimeIT.get_final_inner_function', """<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}> Expected an END-TAG <**SPEEDIT**>: {}""" .format(self.orig_func_name, has_block_speedit, line_orig)) adjusted_func_code_line.append(' ' * line_indentation_level + '_speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added' ) start_tag_block_speedit += 1 _start_block_stripped_line = stripped_line elif '**SPEEDIT**' in stripped_line: if (end_tag_block_speedit != start_tag_block_speedit - 1): raise Err('_TimeIT.get_final_inner_function', """<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}> Expected an START-TAG <::SPEEDIT::>: {}""" .format(self.orig_func_name, has_block_speedit, line_orig)) adjusted_func_code_line.append(' ' * line_indentation_level + '_speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append(' ' * line_indentation_level + 'if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>' .format(_start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) end_tag_block_speedit += 1 else: adjusted_func_code_line.append(' ' * line_indentation_level + stripped_line) else: adjusted_func_code_line.append(' ' * line_indentation_level + stripped_line) if has_block_speedit: if start_tag_block_speedit != end_tag_block_speedit: adjusted_func_code_line.append( ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append( ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>'.format( _start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) else: adjusted_func_code_line.insert(0, ' _speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added' ) adjusted_func_code_line.append( ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append( ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) final_param_line = [] for param, value in sig.parameters.items(): if value.kind == value.POSITIONAL_OR_KEYWORD: if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.POSITIONAL_ONLY: value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) raise Err('_TimeIT.get_final_inner_function()', 'POSITIONAL_ONLY !! not sure what to do .. check in future if needed: param: <{}> value.kind: <{}>' .format(param, value.kind)) elif value.kind == value.VAR_POSITIONAL: parameter_line = '{} = {}'.format(param, self.args_list) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.KEYWORD_ONLY: if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: value_to_set = value.default if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.VAR_KEYWORD: parameter_line = '{} = {}'.format(param, self.kwargs_dict) final_param_line.append(' ' * 2 + parameter_line) else: continue final_setup_lines = [] for setup_line in self.setup_line_list: setup_line = setup_line.strip() if setup_line: final_setup_lines.append(' ' + setup_line) final_inner_function_lines = [ 'def inner(): # orig function name: <{}>'.format(self. orig_func_name), ' from time import perf_counter as _speeit_prefix__perf_counter', '', ' _speeit_prefix__run_sec = {}'.format(self.run_sec), '', ' # ==================== START SETUP LINES ==================== #' , ''] final_inner_function_lines.extend(final_setup_lines) inner_function_lines_part2 = ['', ' # ==================== END SETUP LINES ==================== #', '', ' # The smallest difference of calling _speeit_prefix__perf_counter() immediately after each other a couple of times' , ' _speeit_prefix__check_reference_time = {}'.format(self. perf_counter_reference_time), ' _speeit_prefix__loops = 0', ' _speeit_prefix__all_loops_time_sec = 0.0', ' _speeit_prefix__avg_loop_sec = 0.0', ' _speeit_prefix__best_loop_sec = 99999999999.0', ' _speeit_prefix__second_best_loop_sec = 99999999999.0', ' _speeit_prefix__worst_loop_sec = 0.0', ' _speeit_prefix__second_worst_loop_sec = 0.0', ' if _speeit_prefix__run_sec is None:', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,' , ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,' , ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec' , ' }', ' elif _speeit_prefix__run_sec == -1:', ' # only run it once', ' _speeit_prefix__run_once = True', ' else:', ' _speeit_prefix__run_once = False', ' _speeit_prefix__main_start_time = _speeit_prefix__perf_counter()' , ' while True:', ' _speeit_prefix__loops += 1', ' _speeit_prefix__result_time = 0', '', ' # ==================== START CODE BLOCK ==================== #' , ''] final_inner_function_lines.extend(inner_function_lines_part2) final_inner_function_lines.extend(final_param_line) final_inner_function_lines.extend(adjusted_func_code_line) inner_function_lines_rest = ['', ' # ==================== END CODE BLOCK ==================== #' , '', ' _speeit_prefix__all_loops_time_sec += _speeit_prefix__result_time' , ' if _speeit_prefix__result_time <= _speeit_prefix__best_loop_sec:' , ' _speeit_prefix__second_best_loop_sec = _speeit_prefix__best_loop_sec' , ' _speeit_prefix__best_loop_sec = _speeit_prefix__result_time' , ' if _speeit_prefix__result_time >= _speeit_prefix__worst_loop_sec:' , ' _speeit_prefix__second_worst_loop_sec = _speeit_prefix__worst_loop_sec' , ' _speeit_prefix__worst_loop_sec = _speeit_prefix__result_time' , ' if _speeit_prefix__run_once:', ' break', ' # check if we have to get out', ' if _speeit_prefix__perf_counter() - _speeit_prefix__main_start_time >= _speeit_prefix__run_sec:' , ' break', ' _speeit_prefix__avg_loop_sec = _speeit_prefix__all_loops_time_sec / _speeit_prefix__loops' , ' if _speeit_prefix__second_best_loop_sec == 99999999999.0:', ' _speeit_prefix__second_best_loop_sec = -1.0', ' if _speeit_prefix__second_worst_loop_sec == 0.0:', ' _speeit_prefix__second_worst_loop_sec = -1.0', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,', ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,' , ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec' , ' }', ''] final_inner_function_lines.extend(inner_function_lines_rest) return '\n'.join(final_inner_function_lines) def speedit_benchmark(func_dict, setup_line_list, use_func_name=True, output_in_sec=False, benchmarkit__with_gc=False, benchmarkit__check_too_fast=True, benchmarkit__rank_by='best', benchmarkit__run_sec=1, benchmarkit__repeat=3): """ Returns one txt string for the ready comparison table: format is conform with reStructuredText Usage: .. code-block:: python func_dict = { 'function_f1': (function_f1, [act_one_hamlet], {}), 'function_f2': (function_f2, [act_one_hamlet], {}), 'function_f3': (function_f3, [act_one_hamlet], {}), } setup_line_list = [ 'from random import shuffle', 'from os.path import abspath, dirname, join', 'MY_CONSTANT = 15' ] benchmark_result = BenchmarkIT.speedit_benchmark(func_dict, setup_line_list, benchmarkit__run_sec=1.0, output_in_sec=True, use_func_name=True, benchmarkit__with_gc=False, benchmarkit__repeat=3) Args: func_dict (dict): mapping function names to functions value format: tuple (function, list_of_positional_arguments, dictionary_of_keyword_arguments) setup_line_list (list): of strings with import lines needed by the functions any global data ect.. .. warning:: no multiline string or indented code line use_func_name (bool): if True the function name will be used in the output `name` if False the `func_dict key` will be used in the the output `name` output_in_sec (int): if true the output is keep in seconds if false it is transformed to: second (s) millisecond (ms) One thousandth of one second microsecond (µs) One millionth of one second nanosecond (ns) One billionth of one second benchmarkit__with_gc (bool): if True gc is kept on during timing: if False: turns off garbage collection during the timing benchmarkit__check_too_fast(bool): if True and aa code block is timed faster than a `Reference-Time` an Exception is raised. - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times .. seealso:: _helper_get_perf_counter_reference_time() benchmarkit__rank_by (str): `best` or `average` benchmarkit__run_sec (float or -1 or None): the number of loops per run is scaled to approximately fit the benchmarkit__run_sec - if benchmarkit__run_sec is -1: then the generated function source code is only run once - if benchmarkit__run_sec is None: then the generated function source code is only printed this is mainly useful to see the exact final `func code block` which will be timed. benchmarkit__repeat (int): how often everything is repeated This is a convenience variable that calls the whole setup repeatedly Returns: str: ready to print or write to file: table format is conform with reStructuredText Raises: SpeedIT.Err """ if not func_dict: raise Err('speedit_benchmark()', 'At least one function must be defined in `func_dict`: <{}>'. format(func_dict)) if benchmarkit__rank_by != 'best' and benchmarkit__rank_by != 'average': raise Err('speedit_benchmark()', '<benchmarkit__rank_by> must be one of: <best, average> We got: <{}>' .format(benchmarkit__rank_by)) if benchmarkit__repeat < 1: raise Err('speedit_benchmark()', '<benchmarkit__repeat> must be greater than <0> We got: <{}>'. format(benchmarkit__repeat)) all_final_lines = [] perf_counter_reference_time = _helper_get_perf_counter_reference_time() if benchmarkit__run_sec is None: all_final_lines.extend([ '================ RUN SECONDS: benchmarkit__run_sec was defined as: None (benchmarkit__run_sec=None) ================' , '', '']) for func_name, (function_, func_positional_arguments, func_keyword_arguments) in sorted(func_dict.items()): if use_func_name: name = getattr(function_, '__name__', function_) else: name = func_name benchmark_result = _TimeIT(function_, func_positional_arguments, func_keyword_arguments, setup_line_list, benchmarkit__check_too_fast, benchmarkit__run_sec, name, perf_counter_reference_time).benchmark_it(benchmarkit__with_gc) all_final_lines.extend([ '===================== function name: <{}>'.format( func_name), '', benchmark_result, '', '']) else: title_line = ( 'SpeedIT: `BenchmarkIT` for: <{}> functions. benchmarkit__with_gc: <{}> benchmarkit__run_sec: <{}> ' .format(len(func_dict), benchmarkit__with_gc, benchmarkit__run_sec) ) for repeat_all in range(benchmarkit__repeat): table = [] for func_name, (function_, func_positional_arguments, func_keyword_arguments) in sorted(func_dict.items()): if use_func_name: name = getattr(function_, '__name__', function_) else: name = func_name benchmark_result = _TimeIT(function_, func_positional_arguments, func_keyword_arguments, setup_line_list, benchmarkit__check_too_fast, benchmarkit__run_sec, name, perf_counter_reference_time ).benchmark_it(with_gc=benchmarkit__with_gc) table.append(benchmark_result) if benchmarkit__rank_by == 'best': table = sorted(table, key=itemgetter('best_loop_sec')) compare_reference = table[0]['best_loop_sec'] for idx, dict_ in enumerate(table): dict_['compare'] = '{:,.3f}'.format(dict_[ 'best_loop_sec'] / compare_reference * 100.0) dict_['rank'] = '{:,}'.format(idx + 1) dict_['loops'] = '{:,}'.format(dict_['loops']) if output_in_sec: dict_['avg_loop_sec'] = '{:.11f}'.format(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = '{:.11f}'.format(dict_[ 'best_loop_sec']) if dict_['second_best_loop_sec'] == -1.0: dict_['second_best_loop_sec'] = 'NOT-MEASURED' else: dict_['second_best_loop_sec'] = '{:.11f}'.format( dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = '{:.11f}'.format(dict_[ 'worst_loop_sec']) if dict_['second_worst_loop_sec'] == -1.0: dict_['second_worst_loop_sec'] = 'NOT-MEASURED' else: dict_['second_worst_loop_sec'] = '{:.11f}'.format( dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_ ['all_loops_time_sec']) else: dict_['avg_loop_sec'] = format_time(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = format_time(dict_[ 'best_loop_sec']) dict_['second_best_loop_sec'] = format_time(dict_[ 'second_best_loop_sec']) dict_['worst_loop_sec'] = format_time(dict_[ 'worst_loop_sec']) dict_['second_worst_loop_sec'] = format_time(dict_[ 'second_worst_loop_sec']) dict_['all_loops_time_sec'] = format_time(dict_[ 'all_loops_time_sec']) elif benchmarkit__rank_by == 'average': table = sorted(table, key=itemgetter('avg_loop_sec')) compare_reference = table[0]['avg_loop_sec'] for idx, dict_ in enumerate(table): dict_['compare'] = '{:,.3f}'.format(dict_[ 'avg_loop_sec'] / compare_reference * 100.0) dict_['rank'] = '{:,}'.format(idx + 1) dict_['loops'] = '{:,}'.format(dict_['loops']) if output_in_sec: dict_['avg_loop_sec'] = '{:.11f}'.format(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = '{:.11f}'.format(dict_[ 'best_loop_sec']) if dict_['second_best_loop_sec'] == -1.0: dict_['second_best_loop_sec'] = 'NOT-MEASURED' else: dict_['second_best_loop_sec'] = '{:.11f}'.format( dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = '{:.11f}'.format(dict_[ 'worst_loop_sec']) if dict_['second_worst_loop_sec'] == -1.0: dict_['second_worst_loop_sec'] = 'NOT-MEASURED' else: dict_['second_worst_loop_sec'] = '{:.11f}'.format( dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_ ['all_loops_time_sec']) else: dict_['avg_loop_sec'] = format_time(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = format_time(dict_[ 'best_loop_sec']) dict_['second_best_loop_sec'] = format_time(dict_[ 'second_best_loop_sec']) dict_['worst_loop_sec'] = format_time(dict_[ 'worst_loop_sec']) dict_['second_worst_loop_sec'] = format_time(dict_[ 'second_worst_loop_sec']) dict_['all_loops_time_sec'] = format_time(dict_[ 'all_loops_time_sec']) header_mapping = [('name', 'name'), ('rank-{}'.format( benchmarkit__rank_by), 'rank'), ('compare %', 'compare'), ( 'num. loops', 'loops'), ('avg_loop', 'avg_loop_sec'), ( 'best_loop', 'best_loop_sec'), ('second_best_loop', 'second_best_loop_sec'), ('worst_loop', 'worst_loop_sec'), ('second_worst_loop', 'second_worst_loop_sec'), ( 'all_loops time', 'all_loops_time_sec')] all_final_lines.extend(get_table_rst_formatted_lines(table, header_mapping, title_line)) all_final_lines.extend(['', '']) return '\n'.join(all_final_lines)
""" Benchmark module: can also compare multiple functions """ import gc from inspect import ( signature, getsourcelines ) from operator import itemgetter from time import perf_counter from SpeedIT.ProjectErr import Err from SpeedIT.Utils import ( format_time, get_table_rst_formatted_lines ) def _helper_get_perf_counter_reference_time(): """ Helper: Returns 2 times: the smallest difference of calling perf_counter() immediately after each other a couple of times Returns: float: 2 times the smallest difference of calling perf_counter() immediately after each other a couple of times """ _result_time = 99999999999.0 for y_ in range(50): for x_ in range(3000): temp_start = perf_counter() temp_time = perf_counter() - temp_start if temp_time < _result_time: _result_time = temp_time return _result_time * 2 class _TimeIT(object): """ Class for timing execution speed of function code. Partially based on code from python timeit.py This does not execute the original function but generates a new function which executes only the code body of 'func': `func code block` This avoids calling into the function itself Args: func (function): .. warning:: the `func` function may not have any return statements: but any inner function can have one OK .. code-block:: python def example_formal_func_inner(data_): shuffle(data_) def fninner(x): return x[1] result = sorted(data_.items(), key=fninner) del result NOT OK .. code-block:: python def example_pep265(data_): shuffle(data_) result = sorted(data_.items(), key=itemgetter(1)) return result func_positional_arguments (list): positional arguments for the function func_keyword_arguments (dict): any keyword arguments for the function setup_line_list (list): of strings with import lines needed by the functions any global data ect.. this part is executed once before the actual `func code block` enters the loop .. warning:: no multiline string or indented code line check_too_fast(bool): if True and a code block is timed faster than a `Reference-Time` an Exception is raised. - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times .. seealso:: _helper_get_perf_counter_reference_time() run_sec (float or -1 or None): seconds the `func code block` will be executed (looped over) - if run_sec is -1: then the generated function source code is only run once - if run_sec is None: then the generated function source code is only printed this is mainly useful to see the exact final `func code block` which will be timed. name (str): the name used for the output `name` part perf_counter_reference_time (float): passed on see: _helper_get_perf_counter_reference_time() """ def __init__(self, func, args_list, kwargs_dict, setup_line_list, check_too_fast, run_sec, name, perf_counter_reference_time): """ Constructor. See class doc string. """ self.func = func self.orig_func_name = getattr(self.func, "__name__", self.func) self.args_list = args_list.copy() self.kwargs_dict = kwargs_dict.copy() self.setup_line_list = setup_line_list self.check_too_fast = check_too_fast self.run_sec = run_sec self.name = name self.perf_counter_reference_time = perf_counter_reference_time if callable(self.func): _ns = {} self.src = self.__get_final_inner_function() if self.run_sec is not None and self.run_sec != -1 and self.run_sec < 0.1: raise Err('_TimeIT.__init__()', 'run_sec: <{:.1f}> must be at least <0.1 second> or <-1 to run it once> or <None to print the `func code block`>'.format(self.run_sec)) _code = compile(self.src, 'benchmarkit-src', "exec") exec(_code, globals(), _ns) self.inner = _ns["inner"] else: raise ValueError('<func>: is not a `callable` type: <{}>'.format(self.func)) def benchmark_it(self, with_gc): """ Returns timing result for the `func code block` .. note:: By default, timeit() temporarily turns off garbage collection during the timing. The advantage of this approach is that it makes independent timings more comparable. This disadvantage is that GC may be an important component of the performance of the function being measured. If so, GC can be re-enabled as the with_gc=True Returns: dict: benchmark result: dict keys: loops, all_loops_time_sec, avg_loop_sec, best_loop_sec, worst_loop_sec - loops: how many times the `func code block` was executed (looped over) - all_loops_time_sec: the total time in seconds for all loops: only loop times are counted not other times: depending on the `func code block` this can be about 25% of the total runtime - avg_loop_sec: average loop time in seconds: this should be mostly used as measure time: if there where only a very low number of loops - one might want to increase the `run_sec` and rerun it - two_best_loop_sec: time in seconds for the two fastest of all loops - two_worst_loop_sec: time in seconds for the two slowest of all loops Raises: SpeedIT.Err: example if `run_sec` is not <-1 run once>, <None only print> but less than 0.1 """ if self.run_sec is None: benchmark_result = self.src elif with_gc: gc_old = gc.isenabled() gc.enable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if not gc_old: gc.disable() else: gc_old = gc.isenabled() gc.disable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if gc_old: gc.enable() return benchmark_result def __get_final_inner_function(self): """ Returns a string of an generated inner function with the code body from: func Tries to generate a function with the 'code-body' from the passed on func as well as the args_list, kwargs_dict .. warnings:: the `func` function may not have any return statements: but any inner function can have one Returns: str: generated inner function Raises: SpeedIT.Err: example if an indentation is encountered which is not a multiple of the first found indentation """ has_block_speedit = False _start_block_stripped_line = '' start_tag_block_speedit = 0 end_tag_block_speedit = 0 func_line, lnum = getsourcelines(self.func) sig = signature(self.func) indent_ = None func_def_indent = len(func_line[0]) - len(func_line[0].lstrip()) func_body = func_line[1:] search_docstring = False # PREPARE: remove docstring and get final indentation first_none_docstring_idx = 0 for idx, line_orig in enumerate(func_body): rstripped_line = line_orig.rstrip() if rstripped_line: stripped_codeline = rstripped_line.lstrip() if stripped_codeline[0] == '#': # remove comment lines if not ('::SPEEDIT::' in stripped_codeline or '**SPEEDIT**' in stripped_codeline): continue if search_docstring: if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3] == "'''": search_docstring = False continue else: codebody_indent = len(rstripped_line) - len(stripped_codeline) indent_ = codebody_indent - func_def_indent # Check if we have a docstring if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3] == "'''": search_docstring = True continue first_none_docstring_idx = idx break # do the func code body adjusted_func_code_line = [] for line_orig in func_body[first_none_docstring_idx:]: # remove empty if line_orig: # get indentation check it is a multiple of indent_ rstrip_line = line_orig.rstrip() if rstrip_line: stripped_line = rstrip_line.lstrip() if stripped_line[0] == '#': # remove comment lines: keep any with ::SPEEDIT:: if '::SPEEDIT::' in stripped_line or '**SPEEDIT**' in stripped_line: has_block_speedit = True else: continue line_indentation = len(rstrip_line) - len(stripped_line) if line_indentation % indent_ != 0: raise Err('_TimeIT.get_final_inner_function', '<{}>: ERROR: indentation must be a multiple of the second function line: <{}>\n seems we encountered a wrong indented line: line_indentation: <{}>\n {}'.format(self.orig_func_name, indent_, line_indentation, line_orig)) line_indentation_level = int((line_indentation - func_def_indent) / indent_) + 1 # need one extra level if has_block_speedit: if '::SPEEDIT::' in stripped_line: if start_tag_block_speedit != end_tag_block_speedit: # expected END Tag raise Err('_TimeIT.get_final_inner_function', '<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}>\n Expected an END-TAG <**SPEEDIT**>: \n {}'.format(self.orig_func_name, has_block_speedit, line_orig)) adjusted_func_code_line.append((' ' * line_indentation_level) + '_speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added') start_tag_block_speedit += 1 _start_block_stripped_line = stripped_line elif '**SPEEDIT**' in stripped_line: if end_tag_block_speedit != start_tag_block_speedit - 1: # expected START TAG raise Err('_TimeIT.get_final_inner_function', '<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}>\n Expected an START-TAG <::SPEEDIT::>: \n {}'.format(self.orig_func_name, has_block_speedit, line_orig)) # Do this inner result adjusted_func_code_line.append((' ' * line_indentation_level) + '_speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added') if self.check_too_fast: adjusted_func_code_line.append((' ' * line_indentation_level) + 'if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>'.format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>'.format(_start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added') end_tag_block_speedit += 1 else: adjusted_func_code_line.append((' ' * line_indentation_level) + stripped_line) else: adjusted_func_code_line.append((' ' * line_indentation_level) + stripped_line) # CHECK: LAST END TAG # e.g. if a function body ends with an END-TAG this is not returned by: inspect.getsourcelines(self.func) if has_block_speedit: if start_tag_block_speedit != end_tag_block_speedit: # Do the last inner result: ADDING an END-TAG adjusted_func_code_line.append(' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added') if self.check_too_fast: adjusted_func_code_line.append(' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>'.format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>'.format(_start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added') # add the normal perf_counter time lines else: adjusted_func_code_line.insert(0, ' _speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added') adjusted_func_code_line.append(' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added') if self.check_too_fast: adjusted_func_code_line.append(' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>'.format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added') # Do the arguments final_param_line = [] for param, value in sig.parameters.items(): if value.kind == value.POSITIONAL_OR_KEYWORD: # check if we have a keyword if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: # use the positional value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append((' ' * 2) + parameter_line) elif value.kind == value.POSITIONAL_ONLY: value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append((' ' * 2) + parameter_line) # TODO: From docs: 3.4 Python has no explicit syntax for defining positional-only parameters, but many built-in and extension module functions (especially those that accept only one or two parameters) accept them. raise Err('_TimeIT.get_final_inner_function()', 'POSITIONAL_ONLY !! not sure what to do .. check in future if needed: param: <{}> value.kind: <{}>'.format(param, value.kind)) elif value.kind == value.VAR_POSITIONAL: # do the remaining POSITIONAL arguments parameter_line = '{} = {}'.format(param, self.args_list) final_param_line.append((' ' * 2) + parameter_line) elif value.kind == value.KEYWORD_ONLY: if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: # use the default value_to_set = value.default if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append((' ' * 2) + parameter_line) elif value.kind == value.VAR_KEYWORD: # do the remaining KEYWORD arguments parameter_line = '{} = {}'.format(param, self.kwargs_dict) final_param_line.append((' ' * 2) + parameter_line) else: continue # do self.setup_line_list final_setup_lines = [] for setup_line in self.setup_line_list: setup_line = setup_line.strip() if setup_line: final_setup_lines.append(' ' + setup_line) final_inner_function_lines = [ 'def inner(): # orig function name: <{}>'.format(self.orig_func_name), ' from time import perf_counter as _speeit_prefix__perf_counter', '', ' _speeit_prefix__run_sec = {}'.format(self.run_sec), '', ' # ==================== START SETUP LINES ==================== #', '', ] final_inner_function_lines.extend(final_setup_lines) inner_function_lines_part2 = [ '', ' # ==================== END SETUP LINES ==================== #', '', ' # The smallest difference of calling _speeit_prefix__perf_counter() immediately after each other a couple of times', ' _speeit_prefix__check_reference_time = {}'.format(self.perf_counter_reference_time), ' _speeit_prefix__loops = 0', ' _speeit_prefix__all_loops_time_sec = 0.0', ' _speeit_prefix__avg_loop_sec = 0.0', ' _speeit_prefix__best_loop_sec = 99999999999.0', ' _speeit_prefix__second_best_loop_sec = 99999999999.0', ' _speeit_prefix__worst_loop_sec = 0.0', ' _speeit_prefix__second_worst_loop_sec = 0.0', ' if _speeit_prefix__run_sec is None:', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,', ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,', ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec', ' }', ' elif _speeit_prefix__run_sec == -1:', ' # only run it once', ' _speeit_prefix__run_once = True', ' else:', ' _speeit_prefix__run_once = False', ' _speeit_prefix__main_start_time = _speeit_prefix__perf_counter()', ' while True:', ' _speeit_prefix__loops += 1', ' _speeit_prefix__result_time = 0', '', ' # ==================== START CODE BLOCK ==================== #', '', ] final_inner_function_lines.extend(inner_function_lines_part2) final_inner_function_lines.extend(final_param_line) final_inner_function_lines.extend(adjusted_func_code_line) inner_function_lines_rest = [ '', ' # ==================== END CODE BLOCK ==================== #', '', ' _speeit_prefix__all_loops_time_sec += _speeit_prefix__result_time', ' if _speeit_prefix__result_time <= _speeit_prefix__best_loop_sec:', ' _speeit_prefix__second_best_loop_sec = _speeit_prefix__best_loop_sec', ' _speeit_prefix__best_loop_sec = _speeit_prefix__result_time', ' if _speeit_prefix__result_time >= _speeit_prefix__worst_loop_sec:', ' _speeit_prefix__second_worst_loop_sec = _speeit_prefix__worst_loop_sec', ' _speeit_prefix__worst_loop_sec = _speeit_prefix__result_time', ' if _speeit_prefix__run_once:', ' break', ' # check if we have to get out', ' if _speeit_prefix__perf_counter() - _speeit_prefix__main_start_time >= _speeit_prefix__run_sec:', ' break', ' _speeit_prefix__avg_loop_sec = _speeit_prefix__all_loops_time_sec / _speeit_prefix__loops', ' if _speeit_prefix__second_best_loop_sec == 99999999999.0:', ' _speeit_prefix__second_best_loop_sec = -1.0', ' if _speeit_prefix__second_worst_loop_sec == 0.0:', ' _speeit_prefix__second_worst_loop_sec = -1.0', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,', ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,', ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec', ' }', '' ] final_inner_function_lines.extend(inner_function_lines_rest) return '\n'.join(final_inner_function_lines) def speedit_benchmark(func_dict, setup_line_list, use_func_name=True, output_in_sec=False, benchmarkit__with_gc=False, benchmarkit__check_too_fast=True, benchmarkit__rank_by='best', benchmarkit__run_sec=1, benchmarkit__repeat=3): """ Returns one txt string for the ready comparison table: format is conform with reStructuredText Usage: .. code-block:: python func_dict = { 'function_f1': (function_f1, [act_one_hamlet], {}), 'function_f2': (function_f2, [act_one_hamlet], {}), 'function_f3': (function_f3, [act_one_hamlet], {}), } setup_line_list = [ 'from random import shuffle', 'from os.path import abspath, dirname, join', 'MY_CONSTANT = 15' ] benchmark_result = BenchmarkIT.speedit_benchmark(func_dict, setup_line_list, benchmarkit__run_sec=1.0, output_in_sec=True, use_func_name=True, benchmarkit__with_gc=False, benchmarkit__repeat=3) Args: func_dict (dict): mapping function names to functions value format: tuple (function, list_of_positional_arguments, dictionary_of_keyword_arguments) setup_line_list (list): of strings with import lines needed by the functions any global data ect.. .. warning:: no multiline string or indented code line use_func_name (bool): if True the function name will be used in the output `name` if False the `func_dict key` will be used in the the output `name` output_in_sec (int): if true the output is keep in seconds if false it is transformed to: second (s) millisecond (ms) One thousandth of one second microsecond (µs) One millionth of one second nanosecond (ns) One billionth of one second benchmarkit__with_gc (bool): if True gc is kept on during timing: if False: turns off garbage collection during the timing benchmarkit__check_too_fast(bool): if True and aa code block is timed faster than a `Reference-Time` an Exception is raised. - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times .. seealso:: _helper_get_perf_counter_reference_time() benchmarkit__rank_by (str): `best` or `average` benchmarkit__run_sec (float or -1 or None): the number of loops per run is scaled to approximately fit the benchmarkit__run_sec - if benchmarkit__run_sec is -1: then the generated function source code is only run once - if benchmarkit__run_sec is None: then the generated function source code is only printed this is mainly useful to see the exact final `func code block` which will be timed. benchmarkit__repeat (int): how often everything is repeated This is a convenience variable that calls the whole setup repeatedly Returns: str: ready to print or write to file: table format is conform with reStructuredText Raises: SpeedIT.Err """ if not func_dict: raise Err('speedit_benchmark()', 'At least one function must be defined in `func_dict`: <{}>'.format(func_dict)) if benchmarkit__rank_by != 'best' and benchmarkit__rank_by != 'average': raise Err('speedit_benchmark()', '<benchmarkit__rank_by> must be one of: <best, average> We got: <{}>'.format(benchmarkit__rank_by)) if benchmarkit__repeat < 1: raise Err('speedit_benchmark()', '<benchmarkit__repeat> must be greater than <0> We got: <{}>'.format(benchmarkit__repeat)) all_final_lines = [] # get once the perf_counter_reference_time perf_counter_reference_time = _helper_get_perf_counter_reference_time() if benchmarkit__run_sec is None: all_final_lines.extend([ '================ RUN SECONDS: benchmarkit__run_sec was defined as: None (benchmarkit__run_sec=None) ================', '', '' ]) # Run all only once and get the code for func_name, (function_, func_positional_arguments, func_keyword_arguments) in sorted(func_dict.items()): if use_func_name: name = getattr(function_, "__name__", function_) else: name = func_name benchmark_result = _TimeIT(function_, func_positional_arguments, func_keyword_arguments, setup_line_list, benchmarkit__check_too_fast, benchmarkit__run_sec, name, perf_counter_reference_time).benchmark_it(benchmarkit__with_gc) all_final_lines.extend([ '===================== function name: <{}>'.format(func_name), '', benchmark_result, '', '', ]) else: title_line = 'SpeedIT: `BenchmarkIT` for: <{}> functions. benchmarkit__with_gc: <{}> benchmarkit__run_sec: <{}> '.format(len(func_dict), benchmarkit__with_gc, benchmarkit__run_sec) for repeat_all in range(benchmarkit__repeat): table = [] for func_name, (function_, func_positional_arguments, func_keyword_arguments) in sorted(func_dict.items()): if use_func_name: name = getattr(function_, "__name__", function_) else: name = func_name benchmark_result = _TimeIT(function_, func_positional_arguments, func_keyword_arguments, setup_line_list, benchmarkit__check_too_fast, benchmarkit__run_sec, name, perf_counter_reference_time).benchmark_it(with_gc=benchmarkit__with_gc) table.append(benchmark_result) if benchmarkit__rank_by == 'best': table = sorted(table, key=itemgetter('best_loop_sec')) compare_reference = table[0]['best_loop_sec'] for idx, dict_ in enumerate(table): dict_['compare'] = '{:,.3f}'.format((dict_['best_loop_sec'] / compare_reference) * 100.0) dict_['rank'] = '{:,}'.format(idx + 1) dict_['loops'] = '{:,}'.format(dict_['loops']) if output_in_sec: dict_['avg_loop_sec'] = '{:.11f}'.format(dict_['avg_loop_sec']) dict_['best_loop_sec'] = '{:.11f}'.format(dict_['best_loop_sec']) if dict_['second_best_loop_sec'] == -1.0: dict_['second_best_loop_sec'] = 'NOT-MEASURED' else: dict_['second_best_loop_sec'] = '{:.11f}'.format(dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = '{:.11f}'.format(dict_['worst_loop_sec']) if dict_['second_worst_loop_sec'] == -1.0: dict_['second_worst_loop_sec'] = 'NOT-MEASURED' else: dict_['second_worst_loop_sec'] = '{:.11f}'.format(dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_['all_loops_time_sec']) else: dict_['avg_loop_sec'] = format_time(dict_['avg_loop_sec']) dict_['best_loop_sec'] = format_time(dict_['best_loop_sec']) dict_['second_best_loop_sec'] = format_time(dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = format_time(dict_['worst_loop_sec']) dict_['second_worst_loop_sec'] = format_time(dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = format_time(dict_['all_loops_time_sec']) elif benchmarkit__rank_by == 'average': table = sorted(table, key=itemgetter('avg_loop_sec')) compare_reference = table[0]['avg_loop_sec'] for idx, dict_ in enumerate(table): dict_['compare'] = '{:,.3f}'.format((dict_['avg_loop_sec'] / compare_reference) * 100.0) dict_['rank'] = '{:,}'.format(idx + 1) dict_['loops'] = '{:,}'.format(dict_['loops']) if output_in_sec: dict_['avg_loop_sec'] = '{:.11f}'.format(dict_['avg_loop_sec']) dict_['best_loop_sec'] = '{:.11f}'.format(dict_['best_loop_sec']) if dict_['second_best_loop_sec'] == -1.0: dict_['second_best_loop_sec'] = 'NOT-MEASURED' else: dict_['second_best_loop_sec'] = '{:.11f}'.format(dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = '{:.11f}'.format(dict_['worst_loop_sec']) if dict_['second_worst_loop_sec'] == -1.0: dict_['second_worst_loop_sec'] = 'NOT-MEASURED' else: dict_['second_worst_loop_sec'] = '{:.11f}'.format(dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_['all_loops_time_sec']) else: dict_['avg_loop_sec'] = format_time(dict_['avg_loop_sec']) dict_['best_loop_sec'] = format_time(dict_['best_loop_sec']) dict_['second_best_loop_sec'] = format_time(dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = format_time(dict_['worst_loop_sec']) dict_['second_worst_loop_sec'] = format_time(dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = format_time(dict_['all_loops_time_sec']) header_mapping = [ ('name', 'name'), ('rank-{}'.format(benchmarkit__rank_by), 'rank'), ('compare %', 'compare'), ('num. loops', 'loops'), ('avg_loop', 'avg_loop_sec'), ('best_loop', 'best_loop_sec'), ('second_best_loop', 'second_best_loop_sec'), ('worst_loop', 'worst_loop_sec'), ('second_worst_loop', 'second_worst_loop_sec'), ('all_loops time', 'all_loops_time_sec') ] all_final_lines.extend(get_table_rst_formatted_lines(table, header_mapping, title_line)) all_final_lines.extend([ '', '', ]) return '\n'.join(all_final_lines)
[ 4, 6, 7, 8, 9 ]
1,391
4e30f0a9b420123c28858aad2a71040dcc952829
<mask token> class MachopWatchCommand(MachopProcess): class MachopHandler(PatternMatchingEventHandler): """ watcher for a file system event """ def on_modified(self, event): if event.is_directory: return source = event.src_path self._watcher.modified(source) <mask token> <mask token> def modified(self, eventsrc): """ @@@ needs proper event handling for actions!!! """ if not self.has_changed(eventsrc): return matched = False for pattern in self.globs: if fnmatch.fnmatch(eventsrc, pattern): matched = True break if matched: for action in self.actions: action(cmdpath=eventsrc, log=MachopLog(self.queue, 'watch')) self.announce() def announce(self, nl=False): log = self.log msg = 'watching ' + log.yellow(self.watchpath) for match in self.globs: msg += ' for [' + log.yellow(match) + ']' msg += '...' if nl: msg += '\n' log.out(msg) def run(self): self.log = MachopLog(self.queue, 'watch') self.handler = self.MachopHandler(patterns=self.globs) self.handler._watcher = self self.observer = Observer() self.observer.schedule(self.handler, self.watchpath, recursive=True) self.observer.start() self.announce(True) wait_for_interrupt(self.observer) self.observer.stop() self.observer.join(3) <mask token>
<mask token> class MachopWatchCommand(MachopProcess): class MachopHandler(PatternMatchingEventHandler): """ watcher for a file system event """ def on_modified(self, event): if event.is_directory: return source = event.src_path self._watcher.modified(source) def __init__(self, globs=None, cmds=None, path=None, queue=None): super(MachopWatchCommand, self).__init__() recreate = globs, cmds, path, queue self._safe_process(queue=queue, cfgpath=path, init=recreate) self.globs = globs if globs else [] self.actions = cmds if cmds else [] self.watchpath = path self.queue = queue self.hashmap = {} self.log = None <mask token> def modified(self, eventsrc): """ @@@ needs proper event handling for actions!!! """ if not self.has_changed(eventsrc): return matched = False for pattern in self.globs: if fnmatch.fnmatch(eventsrc, pattern): matched = True break if matched: for action in self.actions: action(cmdpath=eventsrc, log=MachopLog(self.queue, 'watch')) self.announce() def announce(self, nl=False): log = self.log msg = 'watching ' + log.yellow(self.watchpath) for match in self.globs: msg += ' for [' + log.yellow(match) + ']' msg += '...' if nl: msg += '\n' log.out(msg) def run(self): self.log = MachopLog(self.queue, 'watch') self.handler = self.MachopHandler(patterns=self.globs) self.handler._watcher = self self.observer = Observer() self.observer.schedule(self.handler, self.watchpath, recursive=True) self.observer.start() self.announce(True) wait_for_interrupt(self.observer) self.observer.stop() self.observer.join(3) <mask token>
<mask token> class MachopWatchCommand(MachopProcess): class MachopHandler(PatternMatchingEventHandler): """ watcher for a file system event """ def on_modified(self, event): if event.is_directory: return source = event.src_path self._watcher.modified(source) def __init__(self, globs=None, cmds=None, path=None, queue=None): super(MachopWatchCommand, self).__init__() recreate = globs, cmds, path, queue self._safe_process(queue=queue, cfgpath=path, init=recreate) self.globs = globs if globs else [] self.actions = cmds if cmds else [] self.watchpath = path self.queue = queue self.hashmap = {} self.log = None def set_queue(self, queue): self.queue = queue def modified(self, eventsrc): """ @@@ needs proper event handling for actions!!! """ if not self.has_changed(eventsrc): return matched = False for pattern in self.globs: if fnmatch.fnmatch(eventsrc, pattern): matched = True break if matched: for action in self.actions: action(cmdpath=eventsrc, log=MachopLog(self.queue, 'watch')) self.announce() def announce(self, nl=False): log = self.log msg = 'watching ' + log.yellow(self.watchpath) for match in self.globs: msg += ' for [' + log.yellow(match) + ']' msg += '...' if nl: msg += '\n' log.out(msg) def run(self): self.log = MachopLog(self.queue, 'watch') self.handler = self.MachopHandler(patterns=self.globs) self.handler._watcher = self self.observer = Observer() self.observer.schedule(self.handler, self.watchpath, recursive=True) self.observer.start() self.announce(True) wait_for_interrupt(self.observer) self.observer.stop() self.observer.join(3) def has_changed(self, key): hasher = hashlib.md5() with open(key, 'rb') as modfile: hasher.update(modfile.read()) xhash = hasher.hexdigest() if self.hashmap.get(key, '') != xhash: self.hashmap[key] = xhash return True return False
import fnmatch import hashlib from .mplog import MachopLog from .utils import MachopProcess, wait_for_interrupt from watchdog.observers import Observer from watchdog.events import PatternMatchingEventHandler class MachopWatchCommand(MachopProcess): class MachopHandler(PatternMatchingEventHandler): """ watcher for a file system event """ def on_modified(self, event): if event.is_directory: return source = event.src_path self._watcher.modified(source) def __init__(self, globs=None, cmds=None, path=None, queue=None): super(MachopWatchCommand, self).__init__() recreate = globs, cmds, path, queue self._safe_process(queue=queue, cfgpath=path, init=recreate) self.globs = globs if globs else [] self.actions = cmds if cmds else [] self.watchpath = path self.queue = queue self.hashmap = {} self.log = None def set_queue(self, queue): self.queue = queue def modified(self, eventsrc): """ @@@ needs proper event handling for actions!!! """ if not self.has_changed(eventsrc): return matched = False for pattern in self.globs: if fnmatch.fnmatch(eventsrc, pattern): matched = True break if matched: for action in self.actions: action(cmdpath=eventsrc, log=MachopLog(self.queue, 'watch')) self.announce() def announce(self, nl=False): log = self.log msg = 'watching ' + log.yellow(self.watchpath) for match in self.globs: msg += ' for [' + log.yellow(match) + ']' msg += '...' if nl: msg += '\n' log.out(msg) def run(self): self.log = MachopLog(self.queue, 'watch') self.handler = self.MachopHandler(patterns=self.globs) self.handler._watcher = self self.observer = Observer() self.observer.schedule(self.handler, self.watchpath, recursive=True) self.observer.start() self.announce(True) wait_for_interrupt(self.observer) self.observer.stop() self.observer.join(3) def has_changed(self, key): hasher = hashlib.md5() with open(key, 'rb') as modfile: hasher.update(modfile.read()) xhash = hasher.hexdigest() if self.hashmap.get(key, '') != xhash: self.hashmap[key] = xhash return True return False
import fnmatch import hashlib from .mplog import MachopLog from .utils import MachopProcess, wait_for_interrupt from watchdog.observers import Observer from watchdog.events import PatternMatchingEventHandler class MachopWatchCommand(MachopProcess): class MachopHandler(PatternMatchingEventHandler): """ watcher for a file system event """ def on_modified(self, event): if event.is_directory: return source = event.src_path self._watcher.modified(source) def __init__(self, globs=None, cmds=None, path=None, queue=None): super(MachopWatchCommand, self).__init__() recreate = (globs, cmds, path, queue) self._safe_process(queue=queue, cfgpath=path, init=recreate) self.globs = globs if globs else [] self.actions = cmds if cmds else [] self.watchpath = path self.queue = queue self.hashmap = {} self.log = None def set_queue(self, queue): self.queue = queue def modified(self, eventsrc): """ @@@ needs proper event handling for actions!!! """ if not self.has_changed(eventsrc): return matched = False for pattern in self.globs: if fnmatch.fnmatch(eventsrc, pattern): matched = True break if matched: for action in self.actions: action(cmdpath=eventsrc, log=MachopLog(self.queue, 'watch')) self.announce() def announce(self, nl=False): log = self.log msg = "watching " + log.yellow(self.watchpath) for match in self.globs: msg += " for [" + log.yellow(match) + "]" msg += "..." if nl: msg += '\n' log.out(msg) def run(self): self.log = MachopLog(self.queue, 'watch') self.handler = self.MachopHandler(patterns=self.globs) self.handler._watcher = self self.observer = Observer() self.observer.schedule(self.handler, self.watchpath, recursive=True) self.observer.start() self.announce(True) wait_for_interrupt(self.observer) self.observer.stop() self.observer.join(3) def has_changed(self, key): hasher = hashlib.md5() with open(key, 'rb') as modfile: hasher.update(modfile.read()) xhash = hasher.hexdigest() if self.hashmap.get(key, "") != xhash: self.hashmap[key] = xhash return True return False
[ 4, 5, 7, 8, 9 ]
1,392
d19310a45a684a7bbb456555a954439df8ae92b6
<mask token>
<mask token> def download_subreddit(sub): reddit = praw.Reddit(client_id='oFOYuOd31vUb4UstBWDhnQ', client_secret= '0W_86zufGFCJlSE4lK3CwF_0UEQEQw', username='MarshallBranin', password='#Marshall2', user_agent= 'macos:com.example.text_app:v1.0.0 (by /u/MarshallBranin)') reddit.read_only = True for submission in praw.reddit.Subreddit(reddit, display_name=f'{sub}').new( limit=None): url = str(submission.url) if url.endswith('jpg') or url.endswith('jpeg') or url.endswith('png'): urllib.request.urlretrieve(url, 'instagram/INSTAGRAM.jpg') break
import urllib.request import praw from praw import reddit from praw.models.listing.mixins import submission def download_subreddit(sub): reddit = praw.Reddit(client_id='oFOYuOd31vUb4UstBWDhnQ', client_secret= '0W_86zufGFCJlSE4lK3CwF_0UEQEQw', username='MarshallBranin', password='#Marshall2', user_agent= 'macos:com.example.text_app:v1.0.0 (by /u/MarshallBranin)') reddit.read_only = True for submission in praw.reddit.Subreddit(reddit, display_name=f'{sub}').new( limit=None): url = str(submission.url) if url.endswith('jpg') or url.endswith('jpeg') or url.endswith('png'): urllib.request.urlretrieve(url, 'instagram/INSTAGRAM.jpg') break
import urllib.request import praw from praw import reddit from praw.models.listing.mixins import submission def download_subreddit(sub): reddit = praw.Reddit(client_id='oFOYuOd31vUb4UstBWDhnQ', client_secret='0W_86zufGFCJlSE4lK3CwF_0UEQEQw', username='MarshallBranin', password='#Marshall2', user_agent='macos:com.example.text_app:v1.0.0 (by /u/MarshallBranin)') reddit.read_only=True # Iterate through top submissions for submission in praw.reddit.Subreddit(reddit, display_name=f"{sub}").new(limit=None): # Get the link of the submission url = str(submission.url) # Check if the link is an image if url.endswith("jpg") or url.endswith("jpeg") or url.endswith("png"): # Retrieve the image and save it in current folder urllib.request.urlretrieve(url, "instagram/INSTAGRAM.jpg") break
null
[ 0, 1, 2, 3 ]
1,393
f5b74ca95cb368d70139b5d36e3c8d553b8c5393
<mask token>
<mask token> print('Max: {}'.format(max_value)) print('Max: {}'.format(max_value1)) print('Max: {}'.format(max_value2)) print('Max: {}'.format(max_value3))
max_integer = __import__('9-max_integer').max_integer my_list = [1, 90, 2, 13, 34, 5, -13, 3] my_list1 = [] my_list2 = [1, 90, 2, 13, 34, 100, -13, 3] max_value = max_integer(my_list) max_value1 = max_integer(my_list1) max_value2 = max_integer(my_list2) max_value3 = max_integer() print('Max: {}'.format(max_value)) print('Max: {}'.format(max_value1)) print('Max: {}'.format(max_value2)) print('Max: {}'.format(max_value3))
#!/usr/bin/python3 max_integer = __import__('9-max_integer').max_integer my_list = [1, 90, 2, 13, 34, 5, -13, 3] my_list1 = [] my_list2 = [1, 90, 2, 13, 34, 100, -13, 3] max_value = max_integer(my_list) max_value1 = max_integer(my_list1) max_value2 = max_integer(my_list2) max_value3 = max_integer() print("Max: {}".format(max_value)) print("Max: {}".format(max_value1)) print("Max: {}".format(max_value2)) print("Max: {}".format(max_value3))
null
[ 0, 1, 2, 3 ]
1,394
09660cfcff7d5da0339da201cb18b6f63bec2df9
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [('shop', '0032_product_sex')] operations = [migrations.AddField(model_name='product', name= 'price_ret_sale', field=models.IntegerField(default=0, verbose_name ='Розничная цена, с учетом скидки')), migrations.AddField( model_name='product', name='size_5xl', field=models.IntegerField( default=0, verbose_name='5XL размер')), migrations.AddField( model_name='product', name='size_6xl', field=models.IntegerField( default=0, verbose_name='6XL размер')), migrations.AlterField( model_name='product', name='price_opt_2', field=models.IntegerField (default=0, verbose_name='- 3% от 30000')), migrations.AlterField( model_name='product', name='price_opt_3', field=models.IntegerField (default=0, verbose_name='- 7% от 70000')), migrations.AlterField( model_name='product', name='price_opt_4', field=models.IntegerField (default=0, verbose_name='- 11% от 110000')), migrations.AlterField (model_name='product', name='sex', field=models.CharField(choices=[ ('Мужское', 'Male'), ('Женское', 'Female'), ('Детское', 'Kids'), ( 'Унисекс', 'Unisex')], default='Мужское', max_length=10))]
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [('shop', '0032_product_sex')] operations = [migrations.AddField(model_name='product', name= 'price_ret_sale', field=models.IntegerField(default=0, verbose_name ='Розничная цена, с учетом скидки')), migrations.AddField( model_name='product', name='size_5xl', field=models.IntegerField( default=0, verbose_name='5XL размер')), migrations.AddField( model_name='product', name='size_6xl', field=models.IntegerField( default=0, verbose_name='6XL размер')), migrations.AlterField( model_name='product', name='price_opt_2', field=models.IntegerField (default=0, verbose_name='- 3% от 30000')), migrations.AlterField( model_name='product', name='price_opt_3', field=models.IntegerField (default=0, verbose_name='- 7% от 70000')), migrations.AlterField( model_name='product', name='price_opt_4', field=models.IntegerField (default=0, verbose_name='- 11% от 110000')), migrations.AlterField (model_name='product', name='sex', field=models.CharField(choices=[ ('Мужское', 'Male'), ('Женское', 'Female'), ('Детское', 'Kids'), ( 'Унисекс', 'Unisex')], default='Мужское', max_length=10))]
# Generated by Django 3.1.6 on 2021-07-17 10:35 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('shop', '0032_product_sex'), ] operations = [ migrations.AddField( model_name='product', name='price_ret_sale', field=models.IntegerField(default=0, verbose_name='Розничная цена, с учетом скидки'), ), migrations.AddField( model_name='product', name='size_5xl', field=models.IntegerField(default=0, verbose_name='5XL размер'), ), migrations.AddField( model_name='product', name='size_6xl', field=models.IntegerField(default=0, verbose_name='6XL размер'), ), migrations.AlterField( model_name='product', name='price_opt_2', field=models.IntegerField(default=0, verbose_name='- 3% от 30000'), ), migrations.AlterField( model_name='product', name='price_opt_3', field=models.IntegerField(default=0, verbose_name='- 7% от 70000'), ), migrations.AlterField( model_name='product', name='price_opt_4', field=models.IntegerField(default=0, verbose_name='- 11% от 110000'), ), migrations.AlterField( model_name='product', name='sex', field=models.CharField(choices=[('Мужское', 'Male'), ('Женское', 'Female'), ('Детское', 'Kids'), ('Унисекс', 'Unisex')], default='Мужское', max_length=10), ), ]
[ 0, 1, 2, 3, 4 ]
1,395
7404dd324d54bb072e56985716bbae746b4dd219
<mask token>
<mask token> print(jsondata)
<mask token> r = requests.get('http://pythonspot.com/') jsondata = str(r.headers).replace("'", '"') print(jsondata)
import requests import json r = requests.get('http://pythonspot.com/') jsondata = str(r.headers).replace("'", '"') print(jsondata)
import requests import json r = requests.get('http://pythonspot.com/') jsondata = str(r.headers).replace("'", '"') print(jsondata) #headerObj = json.loads(jsondata) #ERROR >> json.decoder.JSONDecodeError: Expecting ',' delimiter: line 1 column 556 (char 555) #print(headerObj)["server"] #print(headerObj)['content-length'] #print(headerObj)['content-encoding'] #print(headerObj)['content-type'] #print(headerObj)['date'] #print(headerObj)['x-powered-by'] ## I could not the problem.
[ 0, 1, 2, 3, 4 ]
1,396
90f1fd45d58c7e6f275a33cd9c693ff584b2df47
<mask token>
def print99(): """ 打印99乘法口诀表 :return: """ for i in range(1, 10): for j in range(1, i + 1): print('%dX%d=%2s ' % (j, i, i * j)) print('\n') <mask token>
def print99(): """ 打印99乘法口诀表 :return: """ for i in range(1, 10): for j in range(1, i + 1): print('%dX%d=%2s ' % (j, i, i * j)) print('\n') print99()
#-*- coding: utf-8 -*- def print99(): """ 打印99乘法口诀表 :return: """ for i in range(1,10): for j in range(1, i+1): print('%dX%d=%2s ' %(j,i,i*j)) print('\n') print99()
null
[ 0, 1, 2, 3 ]
1,397
1e9afe6435285da6c6efb678177587d7ba5a01b2
import tornado.httpserver import tornado.websocket import tornado.ioloop import tornado.web import tornado.options import serial import time from datetime import timedelta import cv2 import time from datetime import datetime #for webcam users camera=cv2.VideoCapture(0) #for picam users #import picam #camera=picam.OpenCVCapture() #if you prefer to change the resolution of the image otherwise comment below 2 lines ret = camera.set(3,320) #width ret = camera.set(4,240) #height #ret=camera.set(10,0.6) face_cascade = cv2.CascadeClassifier('/usr/share/opencv/haarcascades/haarcascade_frontalface_alt.xml') clients = [] f=open("/home/pi/visitor_project/register.txt","a") class WSHandler(tornado.websocket.WebSocketHandler): def check_origin(self, origin): return True def open(self): print 'A Client Is Connected' clients.append(self) def on_message(self, message): print 'Incoming status', message #a=message.split("!") if message=='who': count=0 list1=[] a="" f=open("/home/pi/visitor_project/register.txt","r") for line in f.readlines(): if len(line) != 1 : list1.append(line) #count=count+1 f.close() a=''.join(map(str,list1)) self.write_message(a) def on_close(self): print 'Client Closed the Connecttion ' clients.remove(self) def send_message_to_clients(msg): for client in clients: client.write_message(msg) def function_second(): ret, image=camera.read() # gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) # faces = face_cascade.detectMultiScale(gray, 1.3, 4) faces = face_cascade.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=3, minSize=(30,30), flags=cv2.CASCADE_SCALE_IMAGE) print "Found "+str(len(faces))+" face(s)" #Draw a rectangle around every found face for (x,y,w,h) in faces: cv2.rectangle(image,(x,y),(x+w,y+h),(255,0,0),2) if len(faces)>=1: send_message_to_clients(str(len(faces))+" Visitors") cv2.imwrite('/home/pi/visitor_project/result.jpg',image) gt=datetime.now().strftime('%Y-%m-%d- %H:%M:%S - ') m="log-"+gt+str(len(faces))+" Visitors" f.write("\n"+m) tornado.ioloop.IOLoop.instance().add_timeout(timedelta(seconds=1), function_second) if __name__ == "__main__": tornado.options.parse_command_line() application=tornado.web.Application(handlers=[ (r"/ws",WSHandler), (r'/visitor_project/(.*)',tornado.web.StaticFileHandler,{'path':'/home/pi/visitor_project'}) ]) http_server = tornado.httpserver.HTTPServer(application) http_server.listen(3030) tornado.ioloop.IOLoop.instance().add_timeout(timedelta(seconds=1), function_second) tornado.ioloop.IOLoop.instance().start()
null
null
null
null
[ 0 ]
1,398
d9b6efce92e30267a9f992c4fea698fe14e0c3e4
<mask token> def mesh_add_vertex_to_face_edge(mesh, key, fkey, v): """Add an existing vertex of the mesh to an existing face. Parameters ---------- mesh : compas.datastructures.Mesh The mesh data structure. key : hashable The identifier of the vertex. fkey : hashable The identifier of the face. v : hashable The identifier of the vertex before which the new vertex should be added. Notes ----- The algorithm is merely there for convenience. It does not check if the resulting mesh is still valid. Examples -------- Consider the following points and one face definition and the resulting mesh. >>> points = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.0, 0.0]] >>> faces = [[0, 1, 2, 3]] >>> mesh = Mesh.from_vertices_and_faces(points, faces) >>> mesh.number_of_vertices() 5 >>> mesh.number_of_faces() 1 >>> mesh.face_degree(0) 4 >>> mesh.vertex_degree(4) 0 To add the isolated vertex to the single mesh face >>> mesh_add_vertex_to_face_edge(mesh, 4, 0, 0, 1) >>> mesh.face_degree(0) 5 >>> mesh.vertex_degree(4) 2 """ vertices = mesh.face_vertices(fkey) i = vertices.index(v) u = vertices[i - 1] vertices.insert(key, i - 1) mesh.halfedge[u][key] = fkey mesh.halfedge[key][v] = fkey if u not in mesh.halfedge[key]: mesh.halfedge[key][u] = None if key not in mesh.halfedge[v]: mesh.halfedge[v][key] = None del mesh.halfedge[u][v] if u in mesh.halfedge[v]: del mesh.halfedge[v][u] if (u, v) in mesh.edgedata: del mesh.edgedata[u, v] if (v, u) in mesh.edgedata: del mesh.edgedata[v, u] <mask token>
<mask token> def mesh_add_vertex_to_face_edge(mesh, key, fkey, v): """Add an existing vertex of the mesh to an existing face. Parameters ---------- mesh : compas.datastructures.Mesh The mesh data structure. key : hashable The identifier of the vertex. fkey : hashable The identifier of the face. v : hashable The identifier of the vertex before which the new vertex should be added. Notes ----- The algorithm is merely there for convenience. It does not check if the resulting mesh is still valid. Examples -------- Consider the following points and one face definition and the resulting mesh. >>> points = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.0, 0.0]] >>> faces = [[0, 1, 2, 3]] >>> mesh = Mesh.from_vertices_and_faces(points, faces) >>> mesh.number_of_vertices() 5 >>> mesh.number_of_faces() 1 >>> mesh.face_degree(0) 4 >>> mesh.vertex_degree(4) 0 To add the isolated vertex to the single mesh face >>> mesh_add_vertex_to_face_edge(mesh, 4, 0, 0, 1) >>> mesh.face_degree(0) 5 >>> mesh.vertex_degree(4) 2 """ vertices = mesh.face_vertices(fkey) i = vertices.index(v) u = vertices[i - 1] vertices.insert(key, i - 1) mesh.halfedge[u][key] = fkey mesh.halfedge[key][v] = fkey if u not in mesh.halfedge[key]: mesh.halfedge[key][u] = None if key not in mesh.halfedge[v]: mesh.halfedge[v][key] = None del mesh.halfedge[u][v] if u in mesh.halfedge[v]: del mesh.halfedge[v][u] if (u, v) in mesh.edgedata: del mesh.edgedata[u, v] if (v, u) in mesh.edgedata: del mesh.edgedata[v, u] if __name__ == '__main__': pass
<mask token> __all__ = ['mesh_add_vertex_to_face_edge'] def mesh_add_vertex_to_face_edge(mesh, key, fkey, v): """Add an existing vertex of the mesh to an existing face. Parameters ---------- mesh : compas.datastructures.Mesh The mesh data structure. key : hashable The identifier of the vertex. fkey : hashable The identifier of the face. v : hashable The identifier of the vertex before which the new vertex should be added. Notes ----- The algorithm is merely there for convenience. It does not check if the resulting mesh is still valid. Examples -------- Consider the following points and one face definition and the resulting mesh. >>> points = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.0, 0.0]] >>> faces = [[0, 1, 2, 3]] >>> mesh = Mesh.from_vertices_and_faces(points, faces) >>> mesh.number_of_vertices() 5 >>> mesh.number_of_faces() 1 >>> mesh.face_degree(0) 4 >>> mesh.vertex_degree(4) 0 To add the isolated vertex to the single mesh face >>> mesh_add_vertex_to_face_edge(mesh, 4, 0, 0, 1) >>> mesh.face_degree(0) 5 >>> mesh.vertex_degree(4) 2 """ vertices = mesh.face_vertices(fkey) i = vertices.index(v) u = vertices[i - 1] vertices.insert(key, i - 1) mesh.halfedge[u][key] = fkey mesh.halfedge[key][v] = fkey if u not in mesh.halfedge[key]: mesh.halfedge[key][u] = None if key not in mesh.halfedge[v]: mesh.halfedge[v][key] = None del mesh.halfedge[u][v] if u in mesh.halfedge[v]: del mesh.halfedge[v][u] if (u, v) in mesh.edgedata: del mesh.edgedata[u, v] if (v, u) in mesh.edgedata: del mesh.edgedata[v, u] if __name__ == '__main__': pass
from __future__ import print_function from __future__ import absolute_import from __future__ import division __all__ = ['mesh_add_vertex_to_face_edge'] def mesh_add_vertex_to_face_edge(mesh, key, fkey, v): """Add an existing vertex of the mesh to an existing face. Parameters ---------- mesh : compas.datastructures.Mesh The mesh data structure. key : hashable The identifier of the vertex. fkey : hashable The identifier of the face. v : hashable The identifier of the vertex before which the new vertex should be added. Notes ----- The algorithm is merely there for convenience. It does not check if the resulting mesh is still valid. Examples -------- Consider the following points and one face definition and the resulting mesh. >>> points = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.0, 0.0]] >>> faces = [[0, 1, 2, 3]] >>> mesh = Mesh.from_vertices_and_faces(points, faces) >>> mesh.number_of_vertices() 5 >>> mesh.number_of_faces() 1 >>> mesh.face_degree(0) 4 >>> mesh.vertex_degree(4) 0 To add the isolated vertex to the single mesh face >>> mesh_add_vertex_to_face_edge(mesh, 4, 0, 0, 1) >>> mesh.face_degree(0) 5 >>> mesh.vertex_degree(4) 2 """ vertices = mesh.face_vertices(fkey) i = vertices.index(v) u = vertices[i - 1] vertices.insert(key, i - 1) mesh.halfedge[u][key] = fkey mesh.halfedge[key][v] = fkey if u not in mesh.halfedge[key]: mesh.halfedge[key][u] = None if key not in mesh.halfedge[v]: mesh.halfedge[v][key] = None del mesh.halfedge[u][v] if u in mesh.halfedge[v]: del mesh.halfedge[v][u] if (u, v) in mesh.edgedata: del mesh.edgedata[u, v] if (v, u) in mesh.edgedata: del mesh.edgedata[v, u] if __name__ == '__main__': pass
from __future__ import print_function from __future__ import absolute_import from __future__ import division __all__ = [ 'mesh_add_vertex_to_face_edge' ] def mesh_add_vertex_to_face_edge(mesh, key, fkey, v): """Add an existing vertex of the mesh to an existing face. Parameters ---------- mesh : compas.datastructures.Mesh The mesh data structure. key : hashable The identifier of the vertex. fkey : hashable The identifier of the face. v : hashable The identifier of the vertex before which the new vertex should be added. Notes ----- The algorithm is merely there for convenience. It does not check if the resulting mesh is still valid. Examples -------- Consider the following points and one face definition and the resulting mesh. >>> points = [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.0, 0.0]] >>> faces = [[0, 1, 2, 3]] >>> mesh = Mesh.from_vertices_and_faces(points, faces) >>> mesh.number_of_vertices() 5 >>> mesh.number_of_faces() 1 >>> mesh.face_degree(0) 4 >>> mesh.vertex_degree(4) 0 To add the isolated vertex to the single mesh face >>> mesh_add_vertex_to_face_edge(mesh, 4, 0, 0, 1) >>> mesh.face_degree(0) 5 >>> mesh.vertex_degree(4) 2 """ vertices = mesh.face_vertices(fkey) i = vertices.index(v) u = vertices[i - 1] vertices.insert(key, i - 1) mesh.halfedge[u][key] = fkey mesh.halfedge[key][v] = fkey if u not in mesh.halfedge[key]: mesh.halfedge[key][u] = None if key not in mesh.halfedge[v]: mesh.halfedge[v][key] = None del mesh.halfedge[u][v] if u in mesh.halfedge[v]: del mesh.halfedge[v][u] if (u, v) in mesh.edgedata: del mesh.edgedata[u, v] if (v, u) in mesh.edgedata: del mesh.edgedata[v, u] # ============================================================================== # Main # ============================================================================== if __name__ == "__main__": pass
[ 1, 2, 3, 4, 5 ]
1,399
27d9e6a868cfc18780ec9615e8dbc3b5ea2fd0c3
<mask token> @app.route('/') def index(): return render_template('index.html') @app.route('/submit', methods=['POST']) def submit(): if request.method == 'POST': name = request.form['name'] email = request.form['email'] subject = request.form['subject'] message = request.form['message'] msg = EmailMessage() msg['From'] = email msg['To'] = EMAIL_ADDRESS msg['Subject'] = subject msg.set_content(message) with smtplib.SMTP_SSL('smtp.gmail.com', 465) as smtp: smtp.login(EMAIL_ADDRESS, EMAIL_PASSWORD) smtp.send_message(msg) return render_template('success.html') return render_template('index.html') <mask token>
<mask token> @app.route('/') def index(): return render_template('index.html') @app.route('/submit', methods=['POST']) def submit(): if request.method == 'POST': name = request.form['name'] email = request.form['email'] subject = request.form['subject'] message = request.form['message'] msg = EmailMessage() msg['From'] = email msg['To'] = EMAIL_ADDRESS msg['Subject'] = subject msg.set_content(message) with smtplib.SMTP_SSL('smtp.gmail.com', 465) as smtp: smtp.login(EMAIL_ADDRESS, EMAIL_PASSWORD) smtp.send_message(msg) return render_template('success.html') return render_template('index.html') if __name__ == '__main__': app.run()
<mask token> app = Flask(__name__) EMAIL_ADDRESS = os.environ.get('EMAIL_USER') EMAIL_PASSWORD = os.environ.get('EMAIL_PASS') @app.route('/') def index(): return render_template('index.html') @app.route('/submit', methods=['POST']) def submit(): if request.method == 'POST': name = request.form['name'] email = request.form['email'] subject = request.form['subject'] message = request.form['message'] msg = EmailMessage() msg['From'] = email msg['To'] = EMAIL_ADDRESS msg['Subject'] = subject msg.set_content(message) with smtplib.SMTP_SSL('smtp.gmail.com', 465) as smtp: smtp.login(EMAIL_ADDRESS, EMAIL_PASSWORD) smtp.send_message(msg) return render_template('success.html') return render_template('index.html') if __name__ == '__main__': app.run()
from flask import Flask, request, render_template, redirect import os import smtplib from email.message import EmailMessage app = Flask(__name__) EMAIL_ADDRESS = os.environ.get('EMAIL_USER') EMAIL_PASSWORD = os.environ.get('EMAIL_PASS') @app.route('/') def index(): return render_template('index.html') @app.route('/submit', methods=['POST']) def submit(): if request.method == 'POST': name = request.form['name'] email = request.form['email'] subject = request.form['subject'] message = request.form['message'] msg = EmailMessage() msg['From'] = email msg['To'] = EMAIL_ADDRESS msg['Subject'] = subject msg.set_content(message) with smtplib.SMTP_SSL('smtp.gmail.com', 465) as smtp: smtp.login(EMAIL_ADDRESS, EMAIL_PASSWORD) smtp.send_message(msg) return render_template('success.html') return render_template('index.html') if __name__ == '__main__': app.run()
null
[ 2, 3, 4, 5 ]